
VCS®/VCSi™
User Guide
 L-2016.06, June 2016

ii

Copyright Notice and Proprietary Information
© 2016 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys,
Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Third-Party Software Notices
VCS®/VCSi™ and VCS® MX/VCS® MXi™ includes or is bundled with software licensed to Synopsys under free or
open-source licenses. For additional information regarding Synopsys's use of free and open-source software, refer to
the third_party_notices.txt file included within the <install_path>/doc directory of the installed VCS/VCS MX software.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
http://www.synopsys.com/Company/Pages/Trademarks.aspx.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com

iii

Contents

1. Getting Started

Simulator Support with Technologies . 1-2

Simulation Preemption Support. 1-4

Setting Up the Simulator . 1-5

Verifying Your System Configuration 1-5

Obtaining a License . 1-6

Setting Up Your Environment. 1-7

Setting Up Your C Compiler. 1-9

Using the Simulator . 1-9

Basic Usage Model . 1-10

Default Time Unit and Time Precision . 1-10

Searching Identifiers in the Design Using UNIX Commands . . . 1-10

Examples . 1-12

2. VCS Flow

Compilation . 2-1

iv

Using vcs . 2-2

Commonly Used Options . 2-3

Simulation . 2-8

Interactive Mode . 2-9

Batch Mode . 2-9

Commonly Used Runtime Options. 2-10

3. Modeling Your Design

Avoiding Race Conditions . 3-2

Using and Setting a Value at the Same Time 3-2

Setting a Value Twice at the Same Time 3-3

Flip-Flop Race Condition . 3-4

Continuous Assignment Evaluation . 3-5

Counting Events. 3-6

Time Zero Race Conditions . 3-7

Race Detection . 3-8

The Dynamic Race Detection Tool. 3-8

Introduction to the Dynamic Race Detection Tool 3-8

Enabling Race Detection . 3-12

The Race Detection Report . 3-12

Post Processing the Report . 3-15

Debugging Simulation Mismatches 3-17

The Static Race Detection Tool . 3-20

Optimizing Testbenches for Debugging. 3-22

Conditional Compilation. 3-23

Enabling Debugging Features At Runtime. 3-24

v

Combining the Techniques . 3-27

Creating Models That Simulate Faster . 3-28

Unaccelerated Data Types, Primitives, and Statements 3-29

Inferring Faster Simulating Sequential Devices. 3-31

Modeling Faster always Blocks . 3-35

Using Verilog 2001 Constructs. 3-36

Case Statement Behavior . 3-38

Precedence in Text Macro Definitions . 3-38

Memory Size Limits in the Simulator . 3-39

Using Sparse Memory Models . 3-40

Obtaining Scope Information. 3-42

Scope Format Specifications . 3-42

Returning Information About the Scope. 3-45

Avoiding Circular Dependency . 3-48

Designing With $lsi_dumpports for Simulation and Test 3-49

Dealing With Unassigned Nets . 3-50

Code Values at Time 0. 3-51

Cross Module Forces and No Instance Instantiation 3-51

Signal Value/Strength Codes . 3-53

4. Compiling the Design

Compiling or Elaborating the Design in Debug Mode 4-1

Compiling or Elaborating the Design in Optimized Mode 4-3

vi

Optimizing Simulation Performance for Desired Debug Visibility with the
-debug_access Option. 4-3

Use Model . 4-4

Specifying Design Regions for -debug_access Capabilities . 4-6

Enabling Additional Debug Capabilities 4-11

Reduction in the Objects Being Dumped 4-13

Testbench (TB) Definition. 4-13

Differences Between -debug_pp and -debug_access 4-14

Using -debug_access with Tab Files 4-15

Using -debug_access with -ucli/-gui at Compile-Time 4-16

Unused Tab File Calls . 4-16

Including Tab Files . 4-16

Interaction with Other Debug Options 4-17

Dynamic Loading of DPI Libraries at Runtime 4-17

The Use Model . 4-18

Dynamic Loading of PLI Libraries at Runtime 4-19

Key Compilation or Elaboration Features. 4-20

Initializing Verilog Variables, Registers and Memories 4-21

Initializing Verilog Variables, Registers and Memories in an entire
Design. 4-21

Initializing Verilog Variables, Registers and Memories in Selective
Parts of a Design . 4-23

Selections for Initialization of Registers or Memories. . . . 4-26

Reporting the Initialized Values of Variables, Registers and
Memories . 4-27

Overriding Parameters. 4-27

Checking for x and z Values In Conditional Expressions. . . . 4-29

vii

Enabling the Checking . 4-30

Filtering Out False Negatives . 4-30

VCS V2K Configurations and Libmaps 4-33

Library Mapping Files . 4-33

Configurations . 4-35

Hierarchical Configurations . 4-38

The -top Compile-time Option . 4-39

Limitations of Configurations . 4-40

Lint Warning Message for Missing ‘endcelldefine 4-40

Error/Warning/Lint Message Control 4-44

Controlling Error/Warning/Lint Messages Using Compile-Time
Options . 4-45

Controlling Error/Warning/Lint Messages Using a Configuration
File . 4-61

Extracting the Files Used in Compilation 4-70

XML File Format. 4-71

5. Simulating the Design

Using DVE. 5-2

Using UCLI . 5-3

ucli2Proc Command. 5-5

Options for Debugging Using DVE and UCLI 5-6

Reporting Forces/Injections in a Simulation 5-9

Use Model . 5-9

Reporting Force/Deposit/Release Information. 5-11

Handling Forces on Bit/Part Select and MDA Word. 5-12

Handling Forces on Concatenated Codes 5-13

viii

Output Format . 5-13

Usage Example . 5-17

Limitations . 5-19

Key Runtime Features. 5-21

Passing Values from the Runtime Command Line 5-22

Save and Restart The Simulation . 5-23

Save and Restart Example. 5-24

Save and Restart File I/O . 5-25

Save and Restart With Runtime Options 5-26

Specifying a Long Time Before Stopping The Simulation . . . 5-27

How VCS Prevents Time 0 Race Conditions. 5-29

Supporting Simulation Executable to Return Non-Zero Value on Error
Results . 5-30

Use Model . 5-32

Limitations . 5-32

Supporting Memory Load and Dump Task Verbosity. 5-32

Use Model . 5-34

6. The Unified Simulation Profiler

The Use Model . 6-2

Omitting Profiling at Runtime . 6-4

Omitting the -simprofile Runtime Option 6-5

Omitting Profile Report Writing after Runtime 6-6

Specifying a Directory for the Profile Database 6-6

Post Simulation Profile Information . 6-7

Specifying the Name of the Profile Report 6-7

ix

Running the profrpt Profile Report Generator 6-8

Specifying Views . 6-10

The Snapshot Mechanism . 6-13

Specifying Timeline Reports . 6-14

Recording and Viewing Memory Stack Traces 6-15

Reporting PLI, DPI, and DirectC Function Call Information . . 6-15

Compiling and Running the Profiler Example. 6-16

Profiling Time Used by Various Parts of the Design. 6-18

Profiling Memory Used by Various Parts of the Design . . 6-19

The Output Directories and Files . 6-20

The Enhanced Accumulative Views. 6-21

The Comparative View. 6-28

The Caller-Callee Views . 6-30

HTML Profiler Reports. 6-36

Display of Parameterized Class Functions and Tasks in Profiling
Reports. 6-63

Hypertext Links to the Source Files . 6-65

Single Text Format Report . 6-68

Stack Trace Report Example . 6-69

SystemC Views . 6-71

Constraint Profiling Integrated in the Unified Profiler 6-79

Changes to the Use Model for Constraint Profiling 6-79

The Time Constraint Solver View. 6-81

The Memory Constraint Solver View 6-89

Performance/Memory Profiling for Coverage Covergroups. 6-93

Use Model . 6-94

x

Example. 6-94

HTML Profiler Reports . 6-95

Default Summary View. 6-95

Time/Memory Summary View . 6-96

Time/Memory Module View . 6-96

Time/Memory Construct View . 6-97

Time/Memory Covergroup View. 6-99

Limitations . 6-99

Reporting Debug Capabilities for Each Module. 6-100

Use Model . 6-101

HTML Reports . 6-102

Text Reports. 6-104

Limitations . 6-105

Supporting Line-Based CPU Time Profiler 6-105

Use Model . 6-106

Limitations . 6-107

Supporting Simulation Time Slice Based Profiler 6-108

Use Model . 6-108

Diagnostics . 6-111

Limitations . 6-112

Isolating the Cost of Garbage Collection. 6-112

Use Model . 6-112

Isolating the Cost of Loading Design Database 6-113

Use Model . 6-113

Support for Third-Party Shared Library Profiler Report 6-114

xi

Use Model . 6-115

7. Diagnostics

Using Diagnostics . 7-2

Using –diag Option . 7-2

Using Smartlog . 7-3

Compile-time Diagnostics . 7-5

Libconfig Diagnostics . 7-5

Timescale Diagnostics . 7-6

Example . 7-6

Runtime Diagnostics . 7-10

Diagnostics for VPI PLI Applications 7-10

Keeping the UCLI/DVE Prompt Active After a Runtime Error 7-14

UCLI Use Model . 7-14

DVE Use Model . 7-16

UCLI Usage Example. 7-18

Limitations . 7-20

Diagnosing Quickthread Issues . 7-20

Diagnosing Quickthread Issues in DPI. 7-21

Diagnosing Quickthread Issues in SystemC 7-22

Post-processing Diagnostics . 7-26

Using the vpdutil Utility to Generate Statistics 7-26

The vpdutil Utility Syntax . 7-26

Options . 7-27

xii

8. VCS Multicore Technology
Application Level Parallelism

Enabling Multicore Technology Application Level Parallelism. . . 8-2

Multicore SAIF File Dumping . 8-4

Limitations . 8-5

9. VPD, VCD, and EVCD Utilities

Advantages of VPD . 9-2

Dumping a VPD File . 9-3

Using System Tasks. 9-3

Enable and Disable Dumping. 9-4

Override the VPD Filename . 9-7

Dump Multi-dimensional Arrays and Memories 9-8

Using $vcdplusmemorydump. 9-17

Capture Delta Cycle Information 9-18

Dumping an EVCD File . 9-19

Using $dumpports System Task . 9-19

EVCD File for Mixed Designs Using UCLI dump Command . 9-20

Use Model . 9-20

Use Model for Dumping CCN Driver Through INOUT . . . 9-21

Limitations . 9-23

Post-processing Utilities . 9-25

The vcdpost Utility . 9-26

Scalarizing the Vector Signals . 9-26

Uniquifying the Identifier Codes . 9-27

The vcdpost Utility Syntax . 9-28

xiii

The vcdiff Utility . 9-29

The vcdiff Utility Syntax . 9-30

The vcdiff Utility Output Example 9-37

The vcat Utility . 9-39

The vcat Utility Syntax . 9-40

Generating Source Files From VCD Files 9-44

Writing the Configuration File . 9-45

The vcsplit Utility . 9-49

The vcsplit Utility Syntax . 9-50

The vcd2vpd Utility . 9-53

Options for specifying EVCD options 9-54

The vpd2vcd Utility . 9-55

The Command File Syntax. 9-61

The vpdmerge Utility . 9-64

The vpdutil Utility . 9-68

10. Performance Tuning

Compile-time Performance . 10-2

Incremental Compilation . 10-3

Compile Once and Run Many Times 10-4

Parallel Compilation. 10-4

Runtime Performance . 10-5

Using Radiant Technology . 10-5

Compiling With Radiant Technology. 10-5

Applying Radiant Technology to Parts of the Design 10-6

Improving Performance When Using PLIs. 10-15

Usage Model . 10-16

xiv

Enabling TAB File Capabilities in UCLI Using -debug_access 10-16

Use Model . 10-17

Example . 10-17

Impact on Performance . 10-19

Obtaining VCS Consumption of CPU Resources 10-20

Use Model . 10-20

Compile time . 10-20

Simulation Time . 10-21

11. Using X-Propagation

Introduction to X-Propagation . 11-2

Guidelines for Running X-Propagation Simulations. 11-4

Using the X-Propagation Simulator . 11-6

Specifying X-propagation Merge Mode 11-9

X-Propagation Configuration File. 11-17

X-Propagation Configuration File Syntax 11-18

Xprop Instrumentation Control . 11-21

Process Based X-Propagation Exclusion 11-24

Bounds Checking. 11-25

Changing $uniq_prior_checkoff/on Usage Model 11-26

Time Zero Initialization. 11-27

Handling Non-pure Functions Due to Static Lifetime 11-27

Supporting UCLI Commands for X-Propagation Control Tasks 11-29

Use Model . 11-29

UCLI Command to Specify the Merge Mode 11-29

UCLI Command to Control Error Messages or Warning Messages
11-30

xv

X-Propagation Code Examples . 11-31

If Statement . 11-32

Verilog Example . 11-32

Case Statement . 11-33

Verilog Example . 11-33

Edge Sensitive Expression . 11-35

Verilog Example . 11-35

Latch . 11-36

Verilog Example . 11-36

Support for Active Drivers in X-Propagation 11-37

Combinational Logic. 11-38

Latches. 11-40

Flip-flops. 11-42

Key points to Note . 11-44

Limitations . 11-45

12. Gate-Level Simulation

SDF Annotation . 12-2

Using Unified SDF Feature . 12-2

Using $sdf_annotate System Task. 12-3

Using -xlrm Option for SDF Retain, Gate Pulse Propagation, and Gate
Pulse Detection Warning . 12-5

Using Optimistic Mode in SDF . 12-5

Using Gate Pulse Propagation . 12-6

Generating Warnings During Gate Pulses 12-7

Precompiling an SDF File . 12-8

Creating the Precompiled Version of the SDF file 12-8

xvi

SDF Configuration File . 12-10

Delay Objects and Constructs . 12-11

SDF Configuration File Commands 12-12

approx_command. 12-12

mtm_command. 12-13

scale_command . 12-14

SDF Example with Configuration File. 12-15

Delays and Timing. 12-18

Transport and Inertial Delays. 12-18

The Inertial Delay Implementation 12-20

Enabling Transport Delays . 12-21

Pulse Control . 12-22

Pulse Control with Transport Delays 12-24

Pulse Control with Inertial Delays. 12-26

Specifying Pulse on Event or Detect Behavior 12-30

Specifying the Delay Mode . 12-35

Using the Configuration File to Disable Timing 12-37

Using the timopt Timing Optimizer . 12-38

Editing the timopt.cfg File . 12-40

Editing Potential Sequential Device Entries 12-40

Editing Clock Signal Entries . 12-41

 Using Scan Simulation Optimizer . 12-42

ScanOpt Config File Format . 12-43

ScanOpt Assumptions . 12-44

Negative Timing Checks . 12-45

The Need for Negative Value Timing Checks 12-46

xvii

The $setuphold Timing Check Extended Syntax 12-51

Negative Timing Checks for Asynchronous Controls 12-54

The $recrem Timing Check Syntax 12-55

Enabling Negative Timing Checks . 12-57

Other Timing Checks Using the Delayed Signals 12-58

Checking Conditions . 12-62

Toggling the Notifier Register. 12-63

SDF Back-annotation to Negative Timing Checks. 12-64

How VCS Calculates Delays . 12-65

13. Coverage

Code Coverage . 13-1

Functional Coverage . 13-2

Options For Coverage Metrics . 13-3

14. Using OpenVera Native Testbench

Usage Model . 14-3

Example. 14-3

Usage Model . 14-5

Using Template Generator . 14-5

Example . 14-6

Key Features . 14-18

Multiple Program Support . 14-18

Configuration File Model . 14-18

Configuration File . 14-19

Usage Model for Multiple Programs. 14-20

xviii

NTB Options and the Configuration File. 14-21

Class Dependency Source File Reordering. 14-22

Circular Dependencies . 14-24

Dependency-based Ordering in Encrypted Files 14-25

Using Encrypted Files . 14-25

Functional Coverage . 14-26

Using Reference Verification Methodology 14-26

Limitations . 14-27

15. Using SystemVerilog

Usage Model . 15-2

Using UVM With VCS . 15-3

Update on UVM-1.2 . 15-4

Natively Compiling and Elaborating UVM-1.1d 15-4

Natively Compiling and Elaborating UVM-1.2 15-4

Compiling the External UVM Library 15-5

Using the -ntb_opts uvm Option. 15-5

Explicitly Specifying UVM Files and Arguments 15-6

Accessing HDL Registers Through UVM Backdoor. 15-6

Generating UVM Register Abstraction Layer Code 15-7

Recording UVM Transactions . 15-8

Debugging UVM Testbench Designs Using DVE. 15-8

Recording UVM Phases. 15-9

UVM Template Generator (uvmgen) 15-10

Using Mixed VMM/UVM Libraries . 15-11

Migrating from OVM to UVM . 15-12

xix

Where to Find UVM Examples. 15-13

Where to Find UVM Documentation 15-14

UVM-1.1d Documentation . 15-14

UVM-VMM Interop Documentation 15-14

Using VMM with VCS . 15-14

Using OVM with VCS . 15-15

Native Compilation and Elaboration of OVM 2.1.2 15-15

Compiling the External OVM Library 15-16

Using the -ntb_opts ovm Option. 15-16

Explicitly Specifying OVM Files and Arguments. 15-16

Recording OVM Transactions . 15-17

Debugging SystemVerilog Designs . 15-18

Functional Coverage . 15-18

SystemVerilog Constructs . 15-19

Extern Task and Function Calls through Virtual Interfaces . . 15-20

Modport Expressions in an Interface 15-23

Limitations . 15-25

Interface Classes . 15-25

Difference Between Extends and Implements 15-28

Cast and Interface Class . 15-31

Name Conflicts and Resolution . 15-32

Interface Class and Randomization 15-35

Package Exports . 15-37

Severity System Tasks as Procedural Statements. 15-38

Width Casting Using Parameters. 15-40

The std::randomize() Function . 15-42

xx

SystemVerilog Bounded Queues. 15-45

wait() Statement with a Static Class Member Variable. 15-46

Support for Consistent Behavior of Class Static Properties. . 15-47

Parameters and Localparams in Classes 15-49

SystemVerilog Math Functions . 15-49

Streaming Operators . 15-50

Packing (Used on RHS) . 15-50

Unpacking (Used on LHS) . 15-51

Packing and Unpacking . 15-51

Propagation and force Statement. 15-51

Error Conditions . 15-52

Structures with Streaming Operators 15-52

Support for with Expression . 15-52

Constant Functions in Generate Blocks. 15-55

Support for Aggregate Methods in Constraints Using the “with”
Construct . 15-57

Debugging During Initialization SystemVerilog Static Functions and
Tasks in Module Definitions . 15-58

Explicit External Constraint Blocks . 15-62

Generate Constructs in Program Blocks 15-65

Error Condition for Using a Genvar Outside of its Generate Block
15-67

Randomizing Unpacked Structs. 15-68

Using the Scope Randomize Method std::randomize() . . 15-68

Using the Class Randomize Method randomize() . 15-72

Disabling and Re-enabling Randomization 15-75

Using In-line Random Variable Control 15-79

Limitation . 15-83

xxi

Making wait fork Statements Compliant with the SV LRM . . . 15-83

Making disable fork Statements Compliant with the SV LRM 15-86

Using a Package in a SystemVerilog Module, Program, and Interface
Header . 15-87

Support for Overriding Parameter Values through Configuration 15-89

Example. 15-89

Precedence Override Rules. 15-90

Limitations . 15-91

Extensions to SystemVerilog. 15-91

Unique/Priority Case/IF Final Semantic Enhancements 15-92

Using Unique/Priority Case/If with Always Block or Continuous
Assign . 15-93

Using Unique/Priority Inside a Function 15-96

System Tasks to Control Warning Messages. 15-99

Single-Sized Packed Dimension Extension. 15-100

Covariant Virtual Function Return Types 15-102

Self Instance of a Virtual Interface . 15-104

UVM Example . 15-106

16. Aspect Oriented Extensions

Aspect-Oriented Extensions in SV. 16-3

Processing of AOE as a Precompilation Expansion 16-5

Weaving advice into the target method 16-10

Pre-compilation Expansion details. 16-15

Precedence . 16-16

xxii

17. Using Constraints

Support for Array Slice in Unique Constraints 17-2

Support for Object Handle Comparison in Constraint Guards. . . 17-4

Support for Pure Constraint Block. 17-8

Support for SystemVerilog Bit Vector Functions in Constraints. . 17-14

$countones Function . 17-16

$onehot Function . 17-17

$onehot0 Function . 17-19

$countbits Function . 17-20

$bits Function. 17-21

Inconsistent Constraints . 17-23

Constraint Debug . 17-25

Partition . 17-26

Randomize Serial Number. 17-28

Solver Trace. 17-29

Constraint Profiler . 17-34

Test Case Extraction . 17-35

Using multiple +ntb_solver_debug arguments 17-37

Summary for +ntb_solver_debug. 17-37

+ntb_solver_debug=serial . 17-37

+ntb_solver_debug=trace. 17-37

+ntb_solver_debug=profile. 17-38

+ntb_solver_debug=extract . 17-38

Constraint Debug Using DVE . 17-38

Constraint Guard Error Suppression . 17-40

xxiii

Error Message Suppression Limitations 17-42

Flattening Nested Guard Expressions 17-42

Pushing Guard Expressions into Foreach Loops 17-43

Array and XMR Support in std::randomize() 17-44

Error Conditions . 17-46

XMR Support in Constraints . 17-46

XMR Function Calls in Constraints . 17-48

State Variable Index in Constraints . 17-49

Runtime Check for State Versus Random Variables 17-49

Array Index . 17-50

Using DPI Function Calls in Constraints 17-50

Invoking Non-pure DPI Functions from Constraints. 17-51

Using Foreach Loops Over Packed Dimensions in Constraints . 17-55

Memories with Packed Dimensions. 17-55

Single Packed Dimension . 17-55

Multiple Packed Dimensions . 17-56

MDAs with Packed Dimensions. 17-56

Single Packed Dimension . 17-56

Multiple Packed Dimensions . 17-57

Just Packed Dimensions . 17-57

The foreach Iterative Constraint for Packed Arrays. 17-58

Randomized Objects in a Structure. 17-59

Support for Typecast in Constraints . 17-61

Syntax . 17-61

Description . 17-61

xxiv

Strings in Constraints . 17-64

SystemVerilog LRM P1800-2012 Update 17-65

Using Soft Constraints in SystemVerilog 17-65

Using Soft Constraints . 17-66

Soft Constraint Prioritization. 17-67

Soft Constraints Defined in Classes Instantiated as rand Members
in Another Class . 17-68

Soft Constraints Inheritance Between Classes 17-70

Soft Constraints in AOP Extensions to a Class 17-71

Soft Constraints in View Constraints Blocks. 17-78

Discarding Lower-Priority Soft Constraints. 17-78

Unique Constraints . 17-81

Enhancement to the Randomization of Multidimensional Array
Functionality. 17-83

Limitations . 17-85

Supporting Random Array Index . 17-85

Limitation . 17-86

Supporting $size() System Function Call 17-87

Supporting Foreach Loop Iteration over Array Select 17-88

18. Extensions for SystemVerilog Coverage

Support for Reference Arguments in get_coverage() 18-1

get_inst_coverage() method . 18-2

get_coverage() method . 18-2

Functional Coverage Methodology Using the SystemVerilog C/C++
Interface. 18-3

xxv

SystemVerilog Functional Coverage Flow 18-4

Covergroup Definition . 18-6

SystemVerilog (Covergroup for C/C++): covg.sv 18-7

C Testbench: test.c. 18-7

Approach #1: Passing Arguments by Reference 18-8

Approach #2: Passing Arguments by Value 18-8

Compile Flow . 18-8

Runtime . 18-9

C/C++ Functional Coverage API Specification 18-9

19. OpenVera-SystemVerilog Testbench Interoperability

Scope of Interoperability . 19-2

Importing OpenVera types into SystemVerilog 19-3

Data Type Mapping . 19-6

Mailboxes and Semaphores . 19-7

Events . 19-9

Strings . 19-9

Enumerated Types . 19-10

Integers and Bit-Vectors . 19-12

Arrays . 19-13

Structs and Unions . 19-15

Connecting to the Design . 19-15

Mapping Modports to Virtual Ports. 19-15

Virtual Modports . 19-15

Importing Clocking Block Members into a Modport 19-16

Semantic Issues with Samples, Drives, and Expects 19-21

xxvi

Notes to Remember . 19-22

Blocking Functions in OpenVera 19-22

Constraints and Randomization 19-22

Functional Coverage . 19-23

Usage Model . 19-24

Limitations . 19-25

20. Using SystemVerilog Assertions

Using SVAs in the HDL Design . 20-3

Using VCS Checker Library . 20-3

Instantiating SVA Checkers in Verilog 20-3

 Binding SVA to a Design. 20-4

Inlining SVAs in the Verilog Design . 20-5

Usage Model . 20-6

Number of SystemVerilog Assertions Supported in a Module 20-7

Controlling SystemVerilog Assertions . 20-7

Compilation and Runtime Options . 20-7

Concatenating Assertion Options . 20-10

Assertion Monitoring System Tasks. 20-11

Using Assertion Categories . 20-14

Using System Tasks . 20-15

Using Attributes . 20-16

Stopping and Restarting Assertions By Category 20-17

Viewing Results . 20-22

Using a Report File . 20-23

Enhanced Reporting for SystemVerilog Assertions in Functions 20-23

xxvii

Introduction . 20-24

Usage Model . 20-25

Name Conflict Resolution . 20-26

Checker and Generate Blocks. 20-26

Controlling Assertion Failure Messages 20-26

Introduction . 20-27

Options for Controlling Default Assertion Failure Messages . 20-27

Options to Control Termination of Simulation. 20-29

Option to Enable Compilation of OVA Case Pragmas 20-31

Reporting Values of Variables in the Assertion Failure Messages 20-33

Limitations . 20-34

Reporting Messages When $uniq_prior_checkon/$uniq_prior_checkoff
System Tasks are Called . 20-35

Enabling Lint Messages for Assertions . 20-37

Fail-Only Assertion Evaluation Mode . 20-39

Key Points to Note . 20-40

Limitations . 20-42

Using SystemVerilog Constructs Inside vunits 20-43

Limitations . 20-44

Calling $error Task when Else Block is Not Present 20-44

Disabling Default Assertion Success Dumping in -debug_pp . . . 20-45

List of supported IEEE Std. 1800-2009 Compliant SVA Features 20-46

Enabling IEEE Std. 1800-2009 Compliant Features 20-49

Limitations . 20-49

xxviii

Supported IEEE Std. 1800-2012 Compliant SVA Features 20-50

Support for $countbits System Function 20-50

Support for Real Data Type Variables 20-51

Support for $assertcontrol Assertion Control System Task . . 20-51

Limitations . 20-52

SystemVerilog Assertions Limitations . 20-52

Debug Support for New Constructs 20-52

Note on Cross Features . 20-53

21. Using Property Specification Language

Including PSL in the Design . 21-1

Examples . 21-2

Usage Model . 21-2

Examples . 21-3

Using SVA Options, SVA System Tasks, and OV Classes 21-4

Limitations . 21-5

22. Using SystemC

23. C Language Interface

Using PLI. 23-2

Writing a PLI Application . 23-2

Functions in a PLI Application . 23-4

Header Files for PLI Applications. 23-5

PLI Table File . 23-6

Syntax . 23-6

xxix

Using the PLI Table File . 23-22

Enabling ACC Capabilities. 23-23

Globally . 23-23

Using the Configuration File . 23-24

Selected ACC Capabilities . 23-27

PLI Access to Ports of Celldefine and Library Modules 23-33

Example . 23-34

Visualization in DVE . 23-36

Using VPI Routines . 23-37

Support for VPI Callbacks for Reasons cbForce and cbRelease
23-37

Support for the vpi_register_systf Routine. 23-38

Integrating a VPI Application With VCS. 23-39

PLI Table File for VPI Routines . 23-41

Virtual Interface Debug Support. 23-41

Example . 23-42

Limitations . 23-45

Unimplemented VPI Routines . 23-45

Modified VPI Features . 23-47

Backwards Compatibility . 23-50

Diagnostics for VPI PLI Applications . 23-50

Using DirectC . 23-51

Using Direct C/C++ Function Calls . 23-52

How C/C++ Functions Work in a Verilog Environment. . . 23-55

Declaring the C/C++ Function . 23-56

Calling the C/C++ Function . 23-62

Storing Vector Values in Machine Memory. 23-64

xxx

Converting Strings . 23-66

Avoiding a Naming Problem. 23-69

Using Pass by Reference. 23-70

Using Direct Access. 23-71

Using the vc_hdrs.h File. 23-78

Access Routines for Multi-Dimensional Arrays 23-79

Using Abstract Access. 23-80

Using vc_handle. 23-81

Using Access Routines . 23-82

Summary of Access Routines . 23-126

Enabling C/C++ Functions. 23-131

Mixing Direct And Abstract Access 23-133

Specifying the DirectC.h File . 23-133

Extended BNF for External Function Declarations 23-134

24. SAIF Support

Using SAIF Files . 24-2

SAIF System Tasks . 24-2

The Flows to Generate a Backward SAIF File 24-5

Generating an SDPD Backward SAIF File. 24-5

Generating a Non-SPDP Backward SAIF File 24-6

SAIF Support for Two-Dimensional Memories in v2k Designs . . 24-7

UCLI SAIF Dumping . 24-7

Criteria for Choosing Signals for SAIF Dumping 24-8

xxxi

25. Encrypting Source Files

IEEE Verilog Standard 1364-2005 Encryption. 25-1

The Protection Header File . 25-3

Unsupported Protection Pragma Expressions 25-6

Other Options for IEEE Std 1364-2005 Encryption Mode . . . 25-6

How Protection Envelopes Work . 25-8

The VCS Public Encryption Key . 25-9

Creating Interoperable Digital Envelopes Using VCS - Example
25-11

Discontinued -ipkey Option . 25-15

128-bit Advanced Encryption Standard . 25-15

Compiler Directives for Source Protection 25-16

Using Compiler Directives or Pragmas 25-16

Example . 25-17

Automatic Protection Options . 25-20

Using Automatic Protection Options 25-23

Protecting ‘include File Directive . 25-31

+autoincludeprotect . 25-31

Enabling Debug Access to Ports and Instance Hierarchy . . . 25-32

+autobodyprotect . 25-32

Debugging Partially Encrypted Source Code. 25-32

Skipping Encrypted Source Code . 25-33

26. Integrating VCS With Certitude

Introduction to Certitude . 26-1

VCS and Certitude Integration . 26-2

xxxii

Loading Designs Automatically in Verdi with Native Certitude . . 26-4

Use Model . 26-4

Points to Note . 26-5

Dumping and Comparing Waveforms in Verdi for SystemC Designs 26-6

Use Model . 26-6

Points to Note . 26-8

27. Integrating VCS with Vera

Setting Up Vera and VCS . 27-2

Using Vera with VCS . 27-3

Usage Model . 27-4

28. Integrating VCS with Specman

Type Support . 28-2

Usage Flow . 28-3

Setting Up The Environment . 28-3

Specman e Code Accessing Verilog 28-3

Using specrun and specview. 28-5

Adding Specman Objects To DVE. 28-8

Version Checker for Specman. 28-10

Use Model . 28-10

29. Integrating VCS with Denali

Setting Up Denali Environment for VCS 29-1

xxxiii

Integrating Denali with VCS . 29-2

Usage Model . 29-2

Usage Model for Verilog Memory Models 29-2

Execute Denali Commands at UCLI Prompt 29-3

30. Integrating VCS with Debussy

Using the Current Version of VCS with Novas 2010.07 Version . 30-1

Setting Up Debussy . 30-2

Usage Model to Dump fsdb File. 30-2

Using Verilog System Tasks . 30-3

Using UCLI . 30-3

Examples . 30-4

31. VCS and CustomSim Cosimulation

Integrating VCS with CustomSim . 31-1

Setting up the Environment . 31-2

Licenses . 31-3

Required UNIX Paths and Variable Settings 31-3

Use Model . 31-4

Scheduling Analog-to-Digital Events in the NBA Region. 31-4

Use Model . 31-4

32. Integrating VCS with MVSIM Native Mode

Introduction to MVSIM. 32-1

MVSIM Native Mode in VCS . 32-2

References . 32-3

xxxiv

33. Unified UVM Library for VCS and Verdi

Transaction/Message Recording in Verdi/DVE with VCS 33-6

Compilation . 33-6

Enabling FSDB or DVE Transaction Recording 33-6

Simulation . 33-8

Dumping Transactions or Messages in Verdi Flow 33-8

Dumping Transactions or Messages in DVE Flow 33-9

34. Integrating VCS with Verdi

Introduction . 34-1

Unified Compile Front End . 34-3

Generating Verdi KDB with Unified Compile Front End. 34-3

Interactive and Post Simulation Debug 34-8

Prerequisites . 34-9

Interactive Simulation Debug Flow. 34-9

Post Simulation Debug Flow . 34-11

Limitations . 34-12

Unified UCLI Dump Command . 34-13

Default Dump File. 34-14

Default Dump Type. 34-14

Use Model . 34-14

Enhanced UCLI Dump Options . 34-16

New UCLI Dump Options . 34-26

Limitations . 34-30

Dumping Analog Signals in FSDB File in VCS-CustomSim Cosimulation
Flow . 34-31

Use Model . 34-32

xxxv

Enabling Merge Dumping. 34-34

Usage Example . 34-35

Support for Reverse Debug in UCLI . 34-35

Enabling Reverse Debug. 34-37

UCLI Commands for Reverse Debug 34-38

Creating Checkpoints on Breakpoint Hits. 34-38

Using Reverse Simulation Control Commands 34-39

Limitations . 34-40

Optimized Performance of Gate Level Designs Using FSDB Gates34-41

Use Model . 34-42

Key Points to Note . 34-42

Limitations . 34-43

Appendix A. VCS Environment Variables

Simulation Environment Variables. A-1

Optional Environment Variables . A-3

Appendix B. Compile-Time Options

Option for Code Generation. B-4

Options for Accessing Verilog Libraries B-4

Options for Incremental Compilation B-7

Options for Help. B-9

Option for SystemVerilog . B-9

Options for SystemVerilog Assertions B-9

Options to Enable Compilation of OVA Case Pragmas B-19

Options for Native Testbench. B-19

xxxvi

Options for Different Versions of Verilog B-27

Option for Initializing Verilog Variables, Registers and Memories with
Random Values . B-29

Option for Initializing Verilog Variables, Registers and Memories in
Selective Parts of a Design . B-32

Options for Selecting Register or Memory Initialization B-36

Options for Using Radiant Technology. B-37

Options for Starting Simulation Right After Compilation B-37

Options for Specifying Delays and SDF Files B-37

Options for Compiling an SDF File . B-45

Options for Specify Blocks and Timing Checks B-45

Options for Pulse Filtering . B-46

Options for Negative Timing Checks B-47

Options for Profiling Your Design. B-49

Options to Specify Source Files and Compile-time Options in a File
B-49

Options for Compiling Runtime Options into the Executable . B-51

Options for PLI Applications . B-52

Options to Enable the VCS DirectC Interface B-54

Options for Flushing Certain Output Text File Buffers B-55

Options for Simulating SWIFT VMC Models and SmartModels B-56

Options for Controlling Messages . B-57

Option to Run VCS in Syntax Checking Mode. B-62

Limitations . B-64

Options for Cell Definition . B-64

Options for Licensing . B-66

Options for Controlling the Linker . B-67

xxxvii

Options for Controlling the C Compiler B-69

Options for Source Protection . B-72

Options for Mixed Analog/Digital Simulation B-72

Options for Changing Parameter Values B-73

Checking for x and z Values in Conditional Expressions B-74

Options for Detecting Race Conditions B-74

Options to Specify the Time Scale . B-75

Options to Exclude Environment Variables During Timestamp Checks
B-76

Options for Overriding Parameters . B-78

Option to Enable Bounds Check at Compile-Time B-80

Warning-[SIOB] Select Index Out of Bounds B-81

Option to Enable Bounds Check at Runtime B-81

Error-[DT-OBAE] Out of Bounds Access for Queues B-82

Error-[DT-OBAE] Out of Bounds Access for Dynamic Arrays B-83

Warning-[AOOBAW] Array Out of Bounds Access. B-84

Warning-[AOOBAW] Array Out of Bounds Access. B-84

Error-[DT-OBAE] Intermediate Access for Dynamic Arrays B-85

Warning-[AAIIW] Array Access with Intermediate Index . B-86

Warning-[AAIIW] Array Access with Intermediate Index for Fixed
Size Packed Arrays . B-87

General Options. B-88

Specifying Directories for ‘include Searches B-88

Enable the VCS/SystemC Cosimulation Interface B-89

TetraMAX . B-89

Suppressing Port Coersion to inout B-89

Allow Inout Port Connection Width Mismatches. B-90

Allow Zero or Negative Multiconcat Multiplier B-90

xxxviii

Specifying a VCD File. B-91

Enabling Dumping . B-91

Enabling Identifier Search . B-91

Memories and Multi-Dimensional Arrays (MDAs) B-92

Specifying a Log File . B-93

Changing Source File Identifiers to Upper Case B-93

Defining a Text Macro. B-93

Option for Macro Expansion. B-94

Specifying the Name of the Executable File. B-95

Returning The Platform Directory Name B-95

Enabling Loop Detect . B-96

Changing the Time Slot of Sequential UDP Output Evaluation
B-97

Gate-Level Performance . B-97

Option to Omit Compilation of Code Between Pragmas . B-97

Generating a List of Source Files B-99

Option for Dumping Environment Variables B-100

Appendix C. Simulation Options

Options for Simulating Native Testbenches C-2

Options for SystemVerilog Assertions C-10

Options to Control Termination of Simulation. C-20

Options for Enabling and Disabling Specify Blocks C-20

Options for Specifying When Simulation Stops C-21

Options for Recording Output . C-22

Options for Controlling Messages . C-22

Options for VPD Files . C-24

Options for VCD Files . C-26

xxxix

Options for Specifying Delays . C-27

Options for Flushing Certain Output Text File Buffers C-29

Options for Licensing . C-30

Option to Specify User-Defined Runtime Options in a File . . C-31

Option for Initializing Verilog Variables, Registers and Memories at
Runtime . C-31

Option for Initializing Verilog Variables, Registers and Memories in
Selective Parts of a Design at Runtime C-32

General Options. C-34

Viewing the Compile-Time Options C-34

Recording Where ACC Capabilities are Used C-35

Suppressing the $stop System Task C-35

Enabling User-defined Plusarg Options C-35

Enabling Overriding the Timing of a SWIFT SmartModel. C-35

Enabling Loop Detect . C-36

Specifying acc_handle_simulated_net PLI Routine C-37

Loading DPI Libraries Dynamically at Rutime C-37

Loading PLI Libraries Dynamically at Runtime. C-38

Appendix D. Compiler Directives and System Tasks

Compiler Directives . D-1

Compiler Directives for Cell Definition D-2

Compiler Directives for Setting Defaults D-2

Compiler Directives for Macros . D-3

Compiler Directives for Delays. D-5

Compiler Directives for Backannotating SDF Delay Values. . D-6

Compiler Directives for Source Protection D-7

General Compiler Directives . D-7

xl

Compiler Directive for Including a Source File D-7

Compiler Directive for Setting the Time Scale D-8

Compiler Directive for Specifying a Library D-8

Compiler Directive for File Names and Line Numbers . . . D-9

Unimplemented Compiler Directives D-9

System Tasks and Functions. D-10

System Tasks for SystemVerilog Assertions Severity D-10

System Tasks for SystemVerilog Assertions Control D-10

System Tasks for SystemVerilog Assertions D-11

System Tasks for VCD Files . D-13

System Tasks for LSI Certification VCD and EVCD Files . . . D-15

System Tasks for VPD Files. D-18

System Tasks for SystemVerilog Assertions D-25

System Tasks for Executing Operating System Commands . D-26

System Tasks for Log Files . D-27

System Tasks for Data Type Conversions D-27

System Tasks for Displaying Information D-28

System Tasks for File I/O. D-29

System Tasks for Loading Memories D-31

System Tasks for Time Scale. D-32

System Tasks for Simulation Control D-33

System Tasks for Timing Checks. D-33

Timing Checks for Clock and Control Signals D-34

System Tasks for PLA Modeling . D-36

System Tasks for Stochastic Analysis D-36

System Tasks for Simulation Time. D-37

xli

System Tasks for Probabilistic Distribution D-38

System Tasks for Resetting VCS. D-39

General System Tasks and Functions D-39

Checks for a Plusarg . D-39

SDF Files . D-40

Counting the Drivers on a Net . D-40

Depositing Values. D-40

Fast Processing Stimulus Patterns. D-40

Saving and Restarting The Simulation State D-41

Checking for X and Z Values in Conditional Expressions D-41

Calculating Bus Widths . D-42

Displaying the Method Stack . D-43

IEEE Standard System Tasks Not Yet Implemented D-47

Appendix E. PLI Access Routines

Access Routines for Reading and Writing to Memories E-2

acc_setmem_int. E-4

acc_getmem_int . E-5

acc_clearmem_int . E-6

Examples . E-6

acc_setmem_hexstr. E-11

Examples . E-12

acc_getmem_hexstr . E-15

acc_setmem_bitstr. E-16

acc_getmem_bitstr. E-17

acc_handle_mem_by_fullname . E-18

acc_readmem . E-18

xlii

Examples . E-19

acc_getmem_range . E-21

acc_getmem_size . E-22

acc_getmem_word_int. E-23

acc_getmem_word_range . E-24

Access Routines for Multidimensional Arrays E-24

tf_mdanodeinfo and tf_imdanodeinfo. E-26

acc_get_mda_range . E-27

acc_get_mda_word_range() . E-29

acc_getmda_bitstr() . E-30

acc_setmda_bitstr() . E-31

Access Routines for Probabilistic Distribution E-32

vcs_random . E-33

vcs_random_const_seed. E-34

vcs_random_seed . E-34

vcs_dist_uniform . E-35

vcs_dist_normal . E-35

vcs_dist_exponential . E-36

vcs_dist_poisson . E-37

Access Routines for Returning a Pointer to a Parameter Value . E-37

acc_fetch_paramval_str. E-38

Access Routines for Extended VCD Files E-38

acc_lsi_dumpports_all . E-40

acc_lsi_dumpports_call . E-41

acc_lsi_dumpports_close. E-43

xliii

acc_lsi_dumpports_flush . E-44

acc_lsi_dumpports_limit. E-45

acc_lsi_dumpports_misc . E-46

acc_lsi_dumpports_off . E-47

acc_lsi_dumpports_on . E-48

acc_lsi_dumpports_setformat . E-50

acc_lsi_dumpports_vhdl_enable . E-51

Access Routines for Line Callbacks . E-52

acc_mod_lcb_add . E-53

acc_mod_lcb_del . E-55

acc_mod_lcb_enabled. E-57

acc_mod_lcb_fetch . E-57

acc_mod_lcb_fetch2 . E-59

acc_mod_sfi_fetch. E-61

Access Routines for Source Protection. E-62

vcsSpClose . E-66

vcsSpEncodeOff . E-67

vcsSpEncodeOn . E-68

vcsSpEncoding . E-70

vcsSpGetFilePtr . E-71

vcsSpInitialize . E-72

vcsSpOvaDecodeLine . E-73

vcsSpOvaDisable. E-74

vcsSpOvaEnable . E-75

vcsSpSetDisplayMsgFlag . E-77

vcsSpSetFilePtr . E-77

xliv

vcsSpSetLibLicenseCode . E-78

vcsSpSetPliProtectionFlag. E-79

vcsSpWriteChar . E-80

vcsSpWriteString . E-81

Access Routine for Signal in a Generate Block. E-83

acc_object_of_type . E-83

VCS API Routines . E-83

Vcsinit() . E-84

VcsSimUntil() . E-84

1-1

Getting Started

1
Getting Started 1

VCS® is a high-performance, high-capacity Verilog® simulator that
incorporates advanced, high-level abstraction verification
technologies into a single open native platform.

VCS is a compiled code simulator. It enables you to analyze,
compile, and simulate Verilog, SystemVerilog, OpenVera and
SystemC design descriptions. It also provides you with a set of
simulation and debugging features to validate your design. These
features provide capabilities for source-level debugging and
simulation result viewing.

VCS accelerates complete system verification by delivering the
fastest and highest capacity Verilog simulation for RTL functional
verification.

1-2

Getting Started

This chapter includes the following sections:

• “Simulator Support with Technologies”

• “Simulation Preemption Support”

• “Setting Up the Simulator”

• “Using the Simulator”

• “Default Time Unit and Time Precision”

• “Searching Identifiers in the Design Using UNIX Commands”

Simulator Support with Technologies

VCS supports the following IEEE standards:

• The Verilog language as defined in the Standard Verilog Hardware
Description Language (IEEE Std 1364).

• The SystemVerilog language (with some exceptions) as defined
in the IEEE Standard for SystemVerilog -- Unified Hardware
Design, Specification, and Verification Language (IEEE Std
1800™ - 2012)

In addition to its standard Verilog and SystemVerilog compilation and
simulation capabilities, VCS includes the following integrated set of
features and tools:

• SystemC - VCS / SystemC Co-simulation Interface enables VCS
and the SystemC modeling environment to work together when
simulating a system described in the Verilog and SystemC
languages. For more information, refer to “Using SystemC” .

1-3

Getting Started

• Discovery Visualization Environment (DVE) — For more
information, refer to “Using DVE” .

• Unified Command-line Interface (UCLI) — For more information,
refer to “Using UCLI” .

• Built-In Coverage Metrics — a comprehensive built-in coverage
analysis functionality that includes condition, toggle, line,
finite-state-machine (FSM), path, and branch coverage. You can
use coverage metrics to determine the quality of coverage of your
verification test and focus on creating additional test cases. You
only need to compile once to run both simulation and coverage
analysis. For more information, refer to “Coverage” .

• DirectC Interface — this interface allows you to directly embed
user-created C/C++ functions within your Verilog design
description. This results in a significant improvement in
ease-of-use and performance over existing PLI-based methods.
VCS atomically recognizes C/C++ function calls and integrates
them for simulation, thus eliminating the need to manually create
PLI files.

VCS supports Synopsys DesignWare IPs, VCS Verification Library,
VMC models, Vera, CustomSim, CustomSimHSIM and CustomSim
FineSim. For information on integrating VCS with CustomSim, refer
to the Discovery AMS: Mixed-Signal Simulation User Guide. For
more information about CutomSim FineSim, see the FineSim User
Guide: Pro and SPICE Reference.

VCS can also be integrated with third-party tools such as Specman,
Debussy, Denali, and other acceleration and emulation systems.

1-4

Getting Started

Simulation Preemption Support

VCS supports simulation preemption. If one suspends a VCS
simulation, VCS waits for the safe memory point to suspend the job
and checks in the license. When VCS simulation is resumed at a
later time, it checks out the license and continues the simulation from
the point where it was suspended. You can use ctrl+z or kill –
TSTP <pid> to preempt simulation in VCS.

1-5

Getting Started

Setting Up the Simulator

This section outlines the basic steps for preparing to run VCS. It
includes the following topics:

• “Verifying Your System Configuration”

• “Obtaining a License”

• “Setting Up Your Environment”

• “Setting Up Your C Compiler”

Verifying Your System Configuration

You can use the syschk.sh script to check if your system and
environment match the QSC requirements for a given release of a
Synopsys product. The QSC (Qualified System Configurations)
represents all system configurations maintained internally and tested
by Synopsys.

To check whether the system you are on meets the QSC
requirements, enter:

% syschk.sh

When you encounter any issue, run the script with tracing enabled to
capture the output and contact Synopsys. To enable tracing, you can
either uncomment the set -x line in the syschk.sh file or enter
the following command:

% sh -x syschk.sh >& syschk.log

1-6

Getting Started

Use syschk.sh -v to generate a more verbose output stream
including the exact path for various binaries used by the script, etc.
For example:

% syschk.sh -v

Note:
If you copy the syschk.sh script to another location before using
it, you must also copy the syschk.dat data file to the same
directory.

You can also refer to the "Supported Platforms and Products" section
of the VCS Release Notes for a list of supported platforms, and
recommended C compiler and linker versions.

Obtaining a License

You must have a license to run VCS. To obtain a license, contact
your local Synopsys Sales Representative. Your Sales
Representative will need the hostid for your machine.

To start a new license, do the following:

1. Verify that your license file is functioning correctly:

% lmcksum -c license_file_pathname

Running this licensing utility ensures that the license file is not
corrupt. You should see an "OK" for every INCREMENT statement
in the license file.

1-7

Getting Started

Note:
The snpslmd platform binaries and accompanying FlexLM utilities
are shipped separately and are not included with this distribution.
You can download these binaries as part of the Synopsys
Common Licensing (SCL) kit from the Synopsys Web Site at:

http://www.synopsys.com/cgi-bin/ASP/sk/smartkeys.cgi

2. Start the license server:

% lmgrd -c license_file_pathname -l logfile_pathname

3. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE
environment variable to point to the license file. For example:

% setenv LM_LICENSE_FILE /u/edatools/vcs/license.dat

or

% setenv SNPSLMD_LICENSE_FILE /u/edatools/vcs/
license.dat

Note:
- You can use SNPSLMD_LICENSE_FILE environment

variable to set licenses explicitly for Synopsys tools.

- If you set the SNPSLMD_LICENSE_FILE environment
variable, then VCS ignores the LM_LICENSE_FILE
environment variable.

Setting Up Your Environment

To run VCS, you need to set the following environment variables:

• $VCS_HOME environment variable

1-8

Getting Started

Set the environment variable VCS_HOME to the path where VCS
is installed as shown below:

% setenv VCS_HOME installation_path

• $PATH environment variable

Set your UNIX PATH variable to $VCS_HOME/bin as shown
below:

% set path = ($VCS_HOME/bin $path)

OR

% setenv PATH $VCS_HOME/bin:$PATH

• LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment
variable:

Set the license variable LM_LICENSE_FILE or
SNPSLMD_LICENSE_FILE to your license file as shown below:

% setenv LM_LICENSE_FILE Location_to_the_license_file

or

% setenv SNPSLMD_LICENSE_FILE /u/edatools/vcs/
license.dat

Note:

- You can use SNPSLMD_LICENSE_FILE environment
variable to set licenses explicitly for Synopsys tools.

- If you set the SNPSLMD_LICENSE_FILE environment
variable, then VCS ignores the LM_LICENSE_FILE
environment variable.

For additional information on environment variables, see Appendix
A, "VCS Environment Variables".

1-9

Getting Started

Setting Up Your C Compiler

On Solaris VCS requires a C compiler to compile the intermediate
files, and to link the executable file that you simulate. Solaris does
not include a C compiler, therefore, you must purchase the C
compiler for Solaris or use gcc. For Solaris, VCS assumes the C
compiler is located in its default location (/usr/ccs/bin).

RHEL32, RHEL64 and IBM RS/6000 AIX platforms all include a C
compiler, and VCS assumes the compiler is located in its default
location (/usr/bin).

You can specify a different C compiler using the environment
VCS_CC or the -cc compile-time option.

Using the Simulator

VCS uses the following steps to compile and simulate Verilog
designs:

• Compiling the Design

• Simulating the Design

 the Compiling the Design

VCS provides you with the vcs executable to compile and elaborate
the design. This executable compiles your design using the
intermediate files in the design or work library, generates the object
code, and statically links them to generate a binary simulation
executable, simv. For more information, see Chapter - "VCS Flow".

1-10

Getting Started

Simulating the Design

Simulate your design by executing the binary simulation executable,
simv. For more information, see Chapter - "VCS Flow".

Basic Usage Model

Compilation

% vcs [compile_options] Verilog_files

Simulation

% simv [run_options]

Default Time Unit and Time Precision

The default time unit is 1 s.

The default time precision is 1 s.

Searching Identifiers in the Design Using UNIX
Commands

You can use the following vcsfind UNIX command to search for
identifiers in your design. The vcsfind script is located in
$VCS_HOME/bin. You must specify the location of the fsearch.db
file.

vcsfind [<options> --] [<identifier>] [(+/-)<search
group>]+

Where,

1-11

Getting Started

options

Search options (see Table 1-1). These options must be separated
by a “--” from the search query. Any change to the DVE GUI
settings has no effect on the vcsfind command.

Table 1-1

Search Option Description

--version Displays program's version number and exits

-h, --help Displays help message and exits

-b,
--bw(Black and White)

Highlights with bold and underline only, no colors.

-d N, --dir_levels=N Prints n directory levels for every matching line. Default
is 0.

-f DB-FILE,
--file=DB-FILE

Specifies the database file. Default is vcsfind.db

-H, --gui-help Prints help for GUI use.

-l N, --limit=N Limits search to the first n matches. 0 means no limit.
Default is 1000.

-m, --match_only Matches the query pattern only. Does not display scope
information.

-o OUTPUT-FILE,
--output=OUTPUT-FILE

Outputs into a file. Default is stdout/stderr. This option
bundles stdout and stderr, so -o - will redirect errors
to stdout.

-p, --plain Does not highlight matches in bold.

-r, --regexp Regular expression search pattern. The pattern is
interpreted as ^<pattern>$, so .* may be desired at
the beginning and end of the pattern.

-t, --translate Translation mode. Prints only the translation of the query
pattern into the internal SQL query string.

-u, --uclimode Enables UCLI mode. This option is used for interaction
with UCLI.

-v, --verbose Enables verbose mode.

Supported Search Options

1-12

Getting Started

identifier

Identifier string to be searched.

search group

The name of the group to be included to search or excluded from
search. The following search groups are supported:

Packages, Modules, Ports, Parameters, Vars,
Functions, Assertions, Types, Members, Instances

You can also use DVE and UCLI to search for the identifiers in your
design. For more information, refer to the Discovery Visualization
Environment User Guide.

Examples

% vcsfind -f simv.daidir/debug_dump/fsearch/fsearch.db -- Top

Below is the sample output:

Matching modules:
top.v:11 module Top
 scope: Top

Matching instances:
top.v:11 inst Top of module Top
 scope: Top

Total: 4 results found in 0.053 seconds

2-1

VCS Flow

2
VCS Flow 1

Simulating a design using VCS involves two basic steps:

• “Compilation”

• “Simulation”

This flow is supported only for Verilog HDL and SystemVerilog
designs. For information on supported technologies, refer to
“Simulator Support with Technologies” .

Compilation

Compiling is the first step to simulate your design. In this phase, VCS
builds the instance hierarchy and generates a binary executable
simv. This binary executable is later used for simulation.

2-2

VCS Flow

In this phase, you can choose to compile the design either in
optimized mode or in debug mode. Runtime performance of VCS is
based on the mode you choose and the level of flexibility required
during simulation. Synopsys recommends you use full-debug or
partial-debug mode until the design correctness is achieved, and
then switch to optimized mode.

In optimized mode, also called batch mode, VCS delivers the best
compile-time and runtime performance for a design. You typically
choose optimized mode to run regressions, or when you do not
require extensive debug capabilities. For more information, see
“Compiling or Elaborating the Design in Optimized Mode” .

You compile the design in debug mode, also called interactive mode,
when you are in the initial phase of your development cycle, or when
you need more debug capabilities or tools to debug the design
issues. In this mode, the performance will not be the best that VCS
can deliver. However, using some of the compile-time options, you
can compile your design in full-debug or partial-debug mode to get
maximum performance in debug mode. For more information, see
“Compiling or Elaborating the Design in Debug Mode” .

Using vcs

The syntax to use vcs is shown below:

% vcs [compile options] Verilog_files

2-3

VCS Flow

Commonly Used Options

This section lists some of the commonly used vcs options. For a
complete list of options, see the appendix on Compile-Time options.

Options for Help

-h or -help

Lists descriptions of the most commonly used VCS compile and
runtime options.

-ID

Returns useful information such as VCS version and build date,
VCS compiler version (same as VCS), and your work station
name, platform, and host ID (used in licensing).

Options for Licensing

-licqueue

Tells VCS to wait for a network license if none is available.

By default, -licqueue and +vcs+lic+wait options enable
queuing, so that the jobs wait in a queue and start polling the license
server for every 20 seconds.

You must set the VCS_LICENSE_WAIT variable along with
+vcs+lic+wait or -licqueue command line options to queue
the jobs in a FIFO queue format. This ensures that the licenses are
served to the jobs in a first come first serve basis, that is, the first job
to enter the queue gets the license when the license is available.

You can set this variable as follows:

% setenv VCS_LICENSE_WAIT 1

2-4

VCS Flow

Options for Accessing Verilog Libraries

-v filename

Specifies a Verilog library file. VCS looks in this file for definitions
of the module and UDP instances that VCS found in your source
code but for which it did not find the corresponding module or UDP
definitions in your source code.

-y directory

Specifies a Verilog library directory. VCS looks in the source files
in this directory for definitions of the module and UDP instances
that VCS found in your source code but for which it did not find
the corresponding module or UDP definitions in your source code.
VCS looks in this directory for a file with the same name as the
module or UDP identifier in the instance (not the instance name).
If it finds this file, VCS looks in the file for the module or UDP
definition to resolve the instance.

Note:

If you have multiple modules with the same name in different
libraries, VCS selects the module defined in the library that is
specified with the first -y option.

For example:

If rev1/cell.v and rev2/cell.v and rev3/cell.v all
exist and define the module cell(), and you issue the
following command:

% vcs -y rev1 -y rev2 -y rev3 +libext+.v top.v

VCS selects cell.v from rev1.

2-5

VCS Flow

However, if the top.v file has a `uselib compiler directive
as shown below:

//top.v
`uselib directory = /proj/libraries/rev3
//rest of top module code
//end top.v

...then ̀ uselib takes priority. In this case, VCS will use rev3/
cell.v when you issue the following command:

% vcs -y rev1 -y rev2 +libext+.v top.v

Include the +libext compile-time option to specify the file name
extension of the files you want VCS to look for in these directories.

+incdir+directory+

Specifies the directory or directories that VCS searches for include
files used in the `include compiler directive. More than one
directory may be specified when separated by the plus (+)
character.

+libext+extension+

Specifies that VCS search only for files with the specified file name
extensions in a library directory. You can specify more than one
extension, separating the extensions with the plus (+) character.
For example, +libext+.v+.V+ specifies searching for files with
either the .v or .V extension in a library. The order in which you
add file name extensions to this option does not specify an order
in which VCS searches files in the library with these file name
extensions.

+liborder

2-6

VCS Flow

Specifies searching for module definitions for unresolved module
instances through the remainder of the library where VCS finds
the instance, then searching the next and then the next library on
the vcs command line before searching in the first library on the
command line.

Note:
+liborder and +librescan switches on elaboration command
line will have impact only when the user specifies -y/-v on
elaboration command line.

Options for 64-bit Compilation

-full64

Enables compilation and simulation in 64-bit mode.

Option to Specify Files and Compile-time Options in a File

-file filename

Specifies a file containing a list of files and compile-time options.

Options for Discovery Visualization Environment (DVE) and
UCLI

-gui

When used at compile time, always starts DVE at runtime.

For information on DVE, see the DVE User Guide. For information
on UCLI, see the UCLI User Guide.

Options for Starting Simulation Right After Compilation

-R

Runs the executable file immediately after VCS links it together.

2-7

VCS Flow

Options for Changing Parameter Values

-pvalue+parameter_hierarchical_name=value

Changes the specified parameter to the specified value.

-parameters filename

Changes parameters specified in the file to values specified in the
file. The syntax for a line in the file is as follows:

assign value path_to_parameter

The path to the parameter is similar to a hierarchical name except
that you use the forward slash character (/) instead of a period
as the delimiter.

Options for Controlling Messages

-notice

Enables verbose diagnostic messages.

-q

Quiet mode; suppresses messages such as those about the C
compiler VCS is using, the source files VCS is parsing, the
top-level modules, or the specified timescale.

-V

Verbose mode; compiles verbosely. The compiler driver program
prints the commands it executes as it runs the C compiler,
assembler, and linker.

Specifying a Log File

-l filename

2-8

VCS Flow

Specifies a file where VCS records compilation messages. If you
also enter the -R option, VCS records messages from both
compilation and simulation in the same file.

Defining a Text Macro

+define+macro=value+

Defines a text macro in your source code to a value or character
string. You can test for this definition in your Verilog source code
using the ‘ifdef compiler directive. If there are blank spaces in
the character string then you must enclose it in quotation marks.

For example:

vcs design.v +define+USELIB="dir=dir1 dir=dir2"

The macro is used in a ‘uselib compiler directive:

‘uselib ‘USELIB libext+.v

Simulation

During compilation, VCS generates a binary executable, simv. You
can use simv to run the simulation. Based on how you compile the
design, you can run your simulation the following ways:

• Interactive mode

• Batch mode

For information on compiling the design, refer to the “Compilation”
section.

2-9

VCS Flow

Note:
The relocation of the binary executable, simv is not supported in
single compile flow. It is only supported in Partition Compile Flow
or PreCompiled IP flow using the simcopy utility.

Interactive Mode

You compile your design in interactive mode, also called debug
mode, in the initial phase of your design cycle. In this phase, you
require abilities to debug the design issues using a GUI or through
the command line. To debug using a GUI, you can use the Discovery
Visualization Environment (DVE), and to debug through the
command-line interface, you can use the Unified Command-line
Interface (UCLI).

Note:

To simulate the design in the interactive mode, you must compile
the design using the -debug, -debug_all, or
-debug_access(+<option>) compile-time options.

For information on compiling the design, refer to the “Compilation”
section.

Batch Mode

You compile your design in batch mode, also called as optimized
mode, when most of your design issues are resolved. In this phase,
you will be more interested to achieve better performance to run
regressions, and with minimum debug abilities.

2-10

VCS Flow

Note:
The runtime performance reduces if you use -debug,
-debug_all, or -debug_access(+<option>). Use these
options only when you require runtime debug abilities.

The following command line simulates the design in batch mode:

% simv

Commonly Used Runtime Options

Use the following command line to simulate the design:

% executable [runtime_options]

By default, VCS generates the binary executable simv. However,
you can use the compile-time option, -o with the vcs command line
to generate the binary executable with the specified name.

For a complete list of options, see “Simulation Options” .

3-1

Modeling Your Design

3
Modeling Your Design 1

Verilog coding style is the most important factor that affects the
simulation performance of a design. How you write your design can
make the difference between a fast error-free simulation, and one
that suffers from race conditions and poor performance. This chapter
describes some Verilog modeling techniques that will help your code
designs simulate most efficiently with VCS.

This chapter includes the following topics:

• “Avoiding Race Conditions”

• “Race Detection”

• “Optimizing Testbenches for Debugging”

• “Creating Models That Simulate Faster”

• “Creating Models That Simulate Faster”

3-2

Modeling Your Design

• “Case Statement Behavior”

• “Precedence in Text Macro Definitions”

• “Memory Size Limits in the Simulator”

• “Using Sparse Memory Models”

• “Obtaining Scope Information”

• “Avoiding Circular Dependency”

• “Designing With $lsi_dumpports for Simulation and Test”

Avoiding Race Conditions

A race condition is defined as a coding style for which there is more
than one correct result. Since the output of the race condition is
unpredictable, it can cause unexpected problems during simulation.
It is easy to accidentally code race conditions in Verilog. For
example, in Digital Design with Verilog HDL by Sternheim, Singh,
and Trivedi, at least two of the examples provided with the book
(adder and cachemem) have race conditions. VCS provides some
tools for race detection.

Some common race conditions and ways of avoiding them are
described in the following sections.

Using and Setting a Value at the Same Time

In this example, the two parallel blocks have no guaranteed ordering,
so it is ambiguous whether the $display statement will be
executed.

3-3

Modeling Your Design

module race;
reg a;
initial begin

a = 0;
#10 a = 1;

end
initial begin

#10 if (a) $display("may not print");
end

endmodule

The solution is to delay the $display statement with a #0 delay:

initial begin
#10 if (a)

#0 $display("may not print");
end

You can also move it to the next time step with a non-zero delay.

Setting a Value Twice at the Same Time

In this example, the race condition occurs at time 10 because no
ordering is guaranteed between the two parallel initial blocks.

module race;
reg r1;
initial #10 r1 = 0;
initial #10 r1 = 1;
initial

#20 if (r1) $display("may not print");
endmodule

The solution is to stagger the assignments to register r1 by finite
time, so that the ordering of the assignments is guaranteed. Note
that using the nonblocking assignment (<=) in both assignments to
r1 would not remove the race condition in this example.

3-4

Modeling Your Design

Flip-Flop Race Condition

It is very common to have race conditions near latches or flip-flops.
Here is one variant in which an intermediate node a between two
flip-flops is set and sampled at the same time:

module test(out,in,clk);
input in,clk;
output out;
wire a;
dff dff0(a,in,clk);
dff dff1(out,a,clk);

endmodule
module dff(q,d,clk);

output q;
input d,clk;
reg q;
always @(posedge clk)
q = d; // race!

endmodule

The solution for this case is straightforward. Use the nonblocking
assignment in the flip-flop to guarantee the order of assignments to
the output of the instances of the flip-flop and sampling of that output.
The change looks like this:

always @(posedge clk)
q <= d; // ok

Or add a nonzero delay on the output of the flip-flop:

always @(posedge clk)
q = #1 d; // ok

Or use a nonzero delay in addition to the nonblocking form:

always @(posedge clk)

3-5

Modeling Your Design

q <= #1 d; // ok

Note that the following change does not resolve the race condition:

always @(posedge clk)
#1 q = d; // race!

The #1 delay simply shifts the original race by one time unit, so that
the intermediate node is set and sampled one time unit after the
posedge of clock, rather than on the posedge of clock. Avoid this
coding style.

If you are modeling flip-flops using sequential UDPs (user-defined
primitives), note that VCS evaluates the output terminals of
sequential UDP (user-defined primitive) in the Active time slot of a
simulation time. This can cause a race condition. The default
behavior is required by the SystemVerilog LRM, IEEE Std 1800-
2009.

Continuous Assignment Evaluation

Continuous assignments with no delay are sometimes propagated
earlier in VCS than in Verilog-XL. This is fully correct behavior, but
exposes race conditions such as the one in the following code
fragment:

assign x = y;
initial begin

y = 1;
#1
y = 0;
$display(x);

end

3-6

Modeling Your Design

In VCS, this displays 0, while in Verilog-XL, it displays 1, because the
assignment of the value to x races with the usage of that value by
the $display.

Another example of this type of race condition is the following:

assign state0 = (state == 3'h0);
always @(posedge clk)
begin

state = 0;
if (state0)

// do something
end

The modification of state may propagate to state0 before the if
statement, causing unexpected behavior. You can avoid this by
using the nonblocking assignment to state in the procedural code
as follows:

state <= 0;
if (state0)

// do something

This guarantees that state is not updated until the end of the time
step, that is, after the if statement has executed.

Counting Events

A different type of race condition occurs when code depends on the
number of times events are triggered in the same time step. For
instance, in the following example, if A and B change at the same
time, it is unpredictable whether count is incremented once or
twice:

always @(A or B)

3-7

Modeling Your Design

count = count + 1;

Another form of this race condition is to toggle a register within the
always block. If toggled once or twice, the result may be
unexpected behavior.

The solution to this race condition is to make the code inside the
always block insensitive to the number of times it is called.

Time Zero Race Conditions

The following race condition is subtle but very common:

always @(posedge clock)
$display("May or may not display");

initial begin
clock = 1;
forever #50 clock = ~clock;

end

This is a race condition because the transition of clock to 1
(posedge) may happen before or after the event trigger (always
@(posedge clock)) is established. Often the race is not evident in
the simulation result because reset occurs at time zero.

The solution to this race condition is to guarantee that no transitions
take place at time zero of any signals inside event triggers. Rewrite
the clock driver in the above example as follows:

initial begin
clock = 1’bx;
#50 clock = 1’b0;
forever #50 clock = ~clock;

end

3-8

Modeling Your Design

Race Detection

VCS provides the following race detection tools:

• Dynamic Race Detection Tool - Finds the race conditions during
simulation.

• Static Race Detection Tool - Finds the race conditions by
analyzing source code during compilation.

The above two tools are described in the following sections:

• The Dynamic Race Detection Tool

• The Static Race Detection Tool

The Dynamic Race Detection Tool

This section consists of following topics:

• Introduction to the Dynamic Race Detection Tool

• Enabling Race Detection

• The Race Detection Report

• Post Processing the Report

• Debugging Simulation Mismatches

Introduction to the Dynamic Race Detection Tool

The dynamic race detection tool finds two basic types of race
conditions during simulation:

3-9

Modeling Your Design

• Read - Write Race Condition

• Write - Write Race Condition

Read - Write Race Condition

The Read - Write race condition occurs when both Read and Write
on a signal take place at the same simulation time.

Example:

initial
#5 var1 = 0; // write operation on signal var1

initial
#5 var2 = var1; // read operation on signal var2

Read

Procedural assignment in any one of the always or initial block, or a
continuous assignment samples the value of signal var1 to drive
signal var2.

Write

Procedural assignment in another always or initial block, or another
continuous assignment assigns a new value to signal var1.

In the above example, at the simulation time 5, there is both read and
write operation on signal var1. When simulation time 5 is over, you
do not know if signal var2 will have the value 0 or the previous value
of signal var1.

Write - Write Race Condition

The Write - Write race condition occurs when multiple writes on a
signal take place at the same simulation time.

3-10

Modeling Your Design

Example:

initial
#5 var1 = 0; // write operation on signal var1

initial
#5 var1 = 1; // write operation on signal var1

Write-Write

Value of the signal var1 is non-deterministic when there are multiple
concurrent procedural assignments on the same variable at the
same simulation time.

In the above example, at simulation time 5, different initial blocks
assign 0 and 1 to signal var1. When simulation time 5 is over, you
do not know if var1 signal value is 0 or 1.

Finding these race conditions is important because in Verilog
simulation you cannot control the order of execution of statements in
different always or initial blocks, or continuous assignments that
execute at the same simulation time. This means that a race
condition can produce different simulation results when you simulate
a design with different, but both properly functioning Verilog
simulators.

Even worse, a race condition can result in different simulation results
with different versions of a particular simulator, or with different
optimizations or performance features of the same version of a
simulator.

Note:

$dumpvars can also expose races.

3-11

Modeling Your Design

Also, sometimes modifications in one part of a design can cause
hidden race conditions to surface even in unmodified parts of a
design, thereby causing different simulation results from the
unmodified part of the design.

The indications of a race condition are the following:

• When simulation results do not match when comparing simulators

• When design modifications cause inexplicable results

• When simulation results do not match between different
simulation runs of the same simulator, when different versions or
different optimization features of that simulator are used

Therefore, even when a Verilog design appears to be simulating
correctly and you see the results you want, you should look for race
conditions and remove them so that you will continue to see the
same simulation results from an unrevised design well into the
future. Also, you should look for race conditions while a design is in
development.

VCS can help you find these race conditions by writing report files
about the race conditions in your design.

VCS writes the reports at run time, but you should enable race
detection at compile-time with a compile-time option.

The reports can be lengthy for large designs. You can post-process
the report to generate another shorter report that is limited, for
example, to only part of the design or to only between certain
simulation times.

3-12

Modeling Your Design

Enabling Race Detection

When you compile your design, you can enable race detection
during simulation for your entire design or part of your design.

The -race compile-time option enables race detection for your
entire design.

The -racecd compile-time option enables race detection for the
part of your design that is enclosed between the ‘race and
‘endrace compiler directives.

Note:

The -race and -racecd compile-time options supports dynamic
race detection for both pure Verilog and SystemVerilog data types.

The Race Detection Report

While VCS simulates your design, it writes race detection reports to
the race.out and race.unique.out files.

The race.out file contains a line for all race conditions that it finds
at all times throughout the simulation. If VCS executes two different
statements in the same time step for several times, the race.out
file contains a line for each of these times.

The race.unique.out file contains only lines for race conditions
that are unique, and which have not been reported in a previous line.

3-13

Modeling Your Design

Note:
The race.unique.out is automatically created by the
PostRace.pl Perl script after the simulation. This script needs
a perl5 interpreter. The first line of the script points to perl at a
specific location, see “Modifying the PostRace.pl Script” . If that
location at your site is not a perl5 interpreter, the script fails with
syntax errors.

The report describes read-write and write-write race conditions. The
following is an example of the contents of a small race.out file:

 Synopsys Simulation VCS RACE REPORT

0 "c": write test (exp1.v: 5) && read test (exp1.v:23)
1 "a": write test (exp1.v: 16) && write test (exp1.v:10)
1 "c": write test (exp1.v: 5) && read test (exp1.v:17)

 END RACE REPORT

The following explains a line in the race.out file:

Simulation time
when VCS detected
the race condition

Identifier of the
signal whose
value change is in
the race condition

Shorthand term for
assigning a value to
the signal

Identifier of the
module definition
where VCS finds the
write operation

1 "c": write test (exp1.v: 5) && read test (exp1.v:17)

Filename and line
number where VCS
finds the write operation

Delimiter between
information for a
a write and a read
operation or between
two write operations

Identifier of the
module definition
where VCS finds
the read operation.

Filename and line
number where VCS
finds the read operation

Shorthand term for
using a signal’s
value in another operation

3-14

Modeling Your Design

The following is the source file, with line numbers added for this race
condition report:

1. module test;
2. reg a,b,c,d;
3.
4. always @(a or b)
5. c = a & b;
6.
7. always
8. begin
9. a = 1;
10. #1 a = 0;
11. #2;
12. end
13.
14. always
15. begin
16. #1 a = 1;
17. d = b | c;
18. #2;
19. end
20.
21. initial
22. begin
23. $display("%m c = %b",c);
24. #2 $finish;
25. end
26. endmodule

As stipulated in race.out:

• At simulation time 0, there is a procedural assignment to reg c on
line 5, and also $display system task displays the value of reg
c on line 23.

• At simulation time 1, there is a procedural assignment to reg a on
line 10 and another procedural assignment to reg a on line 16.

3-15

Modeling Your Design

• Also, at simulation time 1, there is a procedural assignment to reg
c on line 5, and the value of reg c is in an expression that is
evaluated in a procedural assignment to another register on line
17.

Races of No Consequence

Sometimes race conditions exist, such as write-write race to a signal
at the same simulation time, but the two statements that are
assigning to the signal are assigning the same value. This is a race
of no consequence, and the race tool indicates this with **NC at the
end of the line for the race in the race.out file.

0 "r4": write test (nc1.v: 40) && write test
(nc1.v:44)**NC
20 "r4": write test (nc1.v: 40) && write test
(nc1.v:44)**NC
40 "r4": write test (nc1.v: 40) && write test
(nc1.v:44)**NC
60 "r4": write test (nc1.v: 40) && write test (nc1.v:44)
80 "r4": write test (nc1.v: 40) && write test
(nc1.v:44)**NC

Post Processing the Report

VCS comes with the PostRace.pl Perl script that you can use to
post-process the race.out report to generate another report that
contains a subset of the race conditions in the race.out file. You
should include options on the command line for the PostRace.pl
script to specify this subset. These options are as follows:

-hier module_instance
Specifies the hierarchical name of a module instance. The new
report lists only the race conditions found in this instance and all
module instances hierarchically under this instance.

3-16

Modeling Your Design

-sig signal
Specifies the signal that you want to examine for race conditions.
You can only specify one signal, and must not include a
hierarchical name for the signal. If two signals in different module
instances have the same identifier, the report lists race conditions
for both signals.

-minmax min max
Specifies the minimum (or earliest) and the maximum (or latest)
simulation time in the report.

-nozero
Omits race conditions that occur at simulation time 0.

-uniq
Omits race conditions that also occurred earlier in the simulation.
The output is the same as the contents of the race.unique.out
file.

-f filename
Specifies the name of the input file. Use this option if you have
changed the name of the race.out file.

-o filename
The default name of the output file is race.out.post. If you
want a different name, specify it with this option.

You can enter more than one of these options on the PostRace.pl
command line.

If you enter an option more than once, the script uses the last of
these multiple entries.

Unless you specify a different name with the -o option, the report
generated by the PostRace.pl script is in the race.out.post
file.

3-17

Modeling Your Design

The following is an example of the command line:

PostRace.pl -minmax 80 250 -f mydesign.race.out -o
mydesign.race.out.post

In this example, the output file is named
mydesign.race.out.post, and reports the race conditions
between 80 and 250 time units. The post-process file is named
mydesign.race.out.

Modifying the PostRace.pl Script

The first line of the PostRace.pl Perl script is as follows:

#! /usr/local/bin/perl

If Perl is installed at a different location at your site, you must modify
the first line of this script. This script needs a perl5 interpreter. You
can find this script at the following location:

 vcs_install_dir/bin/PostRace.pl

Debugging Simulation Mismatches

A design can contain several race conditions where many of them
behave the same in different simulations, so they are not the cause
of a simulation mismatch. For a simulation mismatch, you must find
critical races. Critical races are the race conditions that cause the
simulation mismatch. This section describes how to do this.

Add system tasks to generate VCD files to the source code of the
simulations that mismatch. Recompile them with the -race or
-racecd options and run the simulations again.

3-18

Modeling Your Design

When you have two VCD files, find their differences with the vcdiff
utility. This utility is located in the vcs_install_dir/bin
directory. The command line for vcdiff is as follows:

vcdiff vcdfile1.dmp vcdfile2.dmp -options > output_filename

If you enter the vcdiff command without arguments, you see the
usage information including the options.

Method 1: If the Number of Unique Race Conditions is Small

A unique race condition is a race condition that can occur several
times during simulation, but only the first occurrence is reported in
the race.unique.out file. If the number of lines in the
race.unique.out file are smaller than the number of unique race
conditions, then for each signal in the race.unique.out file:

1. Look in the output file from the vcdiff utility. If the signal values
are different, you have found a critical write-write race condition.

2. If the signal values are not different, look for the signals that are
assigned the value of this signal, or assigned expressions that
include this signal (read operations).

3. If the values of these other signals are different at any point in the
two simulations, note the simulation times of these differences on
the other signals, and post-process the race.out file looking for
race conditions in the first signal at around the simulation times
of the value differences on the other signals. Specify simulation
times before and after the time of these differences with the
-minmax option. Enter:

PostRace.pl -sig first_signal -minmax time time2

If the race.out.post file contains the first signal, then it is a
critical race condition, and must be corrected.

3-19

Modeling Your Design

Method 2: If the Number of Unique Races is Large

If there are many lines in the race.unique.out file and a large
number of unique race conditions, then the method of finding the
critical race conditions is to do the following:

1. Look in the output file from the vcdiff utility for the simulation
time of the first difference in simulation values.

2. Post-process the race.out file looking for races at the time of
the first simulation value difference. Specify simulation times
before and after the time of these differences with the -minmax
option. Enter:

PostRace.pl -minmax time time2

3. For each signal in the resulting race.out.post file:

- If the simulation values differ in the two simulations, then the
race condition in the race.out.post file is a critical race
condition.

- If the simulation values are not different, check the signals that
are assigned the value of this signal or assigned expressions
that include this signal. If the values of these other signals are
different, then the race condition in the race.out.post file is
a critical race condition.

Method 3: An Alternative When the Number of Unique Race
Conditions is Large

1. Look in the output file from the vcdiff utility for the simulation
time of the first difference in simulation values.

2. For each signal that has a difference at this simulation time:

3-20

Modeling Your Design

a. Traverse the signal dependency backwards in the design
until you find a signal whose values are same in both
simulations.

b. Look for a race condition on that signal at that time. Enter:

PostRace.pl -sig signal -minmax time time2

If there is a race condition at that time on that signal, then it is
a critical race condition.

The Static Race Detection Tool

It is possible for a group of statements to combine and form a loop,
so that the loop is executed once by VCS and more than once by
other Verilog simulators. This is a race condition.

These situations arise when level-sensitive sensitivity lists (event
controls which immediately follow the always keyword in an
always block, and which do not contain the posedge or negedge
keywords) and procedural assignment statements in the always
blocks combine with other statements such as continuous
assignment or module instantiation statements to form a potential
loop. It is observed that these situations do not occur if the always
blocks contain delays or other timing information, non-blocking
assignment statements, or PLI calls through user-defined system
tasks.

You can use the +race=all compile-time option to start the static
race detection tool.

3-21

Modeling Your Design

Note:
The +race=all compile-time option supports only pure Verilog
constructs.

After compilation, the static race detection tool writes the file named
race.out.static which reports the race conditions.

The following example shows an always block that combines with
other statements to form a loop:

 35 always @(A or C) begin
 36 D = C;
 37 B = A;
 38 end
 39
 40 assign C = B;

The race.out.static file from the compilation of this source
code follows:

Race-[CLF] Combinational loop found
 "source.v", 35: The trigger ’C’ of the always block
can cause
 the following sequence of event(s) which can again
trigger
 the always block.
 "source.v", 37: B = A;
 which triggers ’B’.
 "source.v", 40: assign C = B;
 which triggers ’C’.

3-22

Modeling Your Design

Optimizing Testbenches for Debugging

Testbenches typically execute debugging features, for example,
displaying text in certain situations as specified with the $monitor
or $display system tasks. Another debugging feature, which is
typically enabled in testbenches, is writing simulation history files
during simulation so that you can view the results after simulation.
Among other things, these simulation history files record the
simulation times at which the signals in your design change value.
These simulation history files can be either ASCII
Value-Change-Dump (VCD) files that you can input into a number of
third-party viewers, or binary VPD files that you can input into DVE.
The $dumpvars system task specifies writing a VCD file and the
$vcdpluson system task specifies writing a VPD file. You can also
input a VCD file to DVE, which translates the VCD file to a VPD file
and then displays the results from the new VPD file. For details on
using DVE, see the Discovery Visualization Environment User
Guide.

Debugging features significantly slow down the simulation
performance of any logic simulator including VCS. This is particularly
true for operations that make VCS display text on the screen and
even more so for operations that make VCS write information to a
file. For this reason, you’ll want to be selective about where in your
design and where in the development cycle of your design you
enable debugging features. The following sections describe a
number of techniques that you can use to choose when debugging
features are enabled.

3-23

Modeling Your Design

Conditional Compilation

Use ‘ifdef, ‘else, and ‘endif compiler directives in your
testbench to specify which system tasks you want to compile for
debugging features. Then, when you compile the design with the
+define compile-time option on the command line (or when the
‘define compiler directive appears in the source code), VCS will
compile these tasks for debugging features. For example:

initial
begin
`ifdef postprocess
$vcdpluson(0,design_1);
$vcdplusdeltacycleon;
$vcdplusglitchon;
`endif
end

In this case, the vcs command is as follows:

% vcs testbench.v design.v +define+postprocess

The system tasks in this initial block record several types of
information in a VPD file. You can use the VPD file with DVE to
post-process the design. In this particular case, the information is for
all the signals in the design, so the performance cost is extensive.
You would only want to do this early in the development cycle of the
design when finding bugs is more important than simulation speed.

The command line includes the +define+postprocess
compile-time option, which tells VCS to compile the design with
these system tasks compiled into the testbench.

3-24

Modeling Your Design

Later in the development cycle of the design, you can compile the
design without the +define+postprocess compile-time option
and VCS will not compile these system tasks into the testbench.
Doing so enables VCS to simulate your design much faster.

Advantages and Disadvantages

The advantage of this technique is that simulation can run faster than
if you enable debugging features at runtime. When you use
conditional compilation, VCS has all the information it needs at
compile-time.

The disadvantage of this technique is that you have to recompile the
testbench to include these system tasks in the testbench, thus
increasing the overall compilation time in the development cycle of
your design.

Synopsys recommends that you consider this technique as a way to
prevent these system tasks from inadvertently remaining compiled
into the testbench, later in the development cycle, when you want
faster performance.

Enabling Debugging Features At Runtime

Use the $test$plusargs system function in place of the ‘ifdef
compiler directives. The $test$plusargs system function checks
for a plusarg runtime option on the simv command line.

Note:

A plusarg option is an option that has a plus (+) symbol as a prefix.

An example of the $test$plusargs system function is as follows:

initial

3-25

Modeling Your Design

if ($test$plusargs("postprocess"))
begin
$vcdpluson(0,design_1);
$vcdplusdeltacycleon;
$vcdplusglitchon;
end

In this technique you do not include the +define compile-time
argument on the vcs command line. Instead you compile the system
tasks into the testbench and then enable the execution of the system
tasks with the runtime argument to the $test$plusargs system
function. Therefore, in this example, the simv command line is as
follows:

% simv +postprocess

During simulation VCS writes the VPD file with all the information
specified by these system tasks. Later you can execute another
simv command line, without the +postprocess runtime option. As
a result, VCS does not write the VPD file, and therefore runs faster.

There is a pitfall to this technique. This system function will match
any plusarg that has the function’s argument as a prefix. For
example:

module top;
initial
begin
if ($test$plusargs("a"))
 $display("\n<<< Now a >>>\n");
else if ($test$plusargs("ab"))
 $display("\n<<< Now ab >>>\n");
else if ($test$plusargs("abc"))
 $display("\n<<< Now abc >>>\n");
end
endmodule

3-26

Modeling Your Design

No matter whether you enter the +a, +ab, or +abc plusarg, when
you simulate the executable, VCS always displays the following:

<<< Now a >>>

To avoid this pitfall, enter the longest plusarg first. For example, you
would revise the previous example as follows:

module top;
initial
begin
if ($test$plusargs("abc"))
 $display("\n<<< Now abc >>>\n");
else if ($test$plusargs("ab"))
 $display("\n<<< Now ab >>>\n");
else if ($test$plusargs("a"))
 $display("\n<<< Now a >>>\n");
end
endmodule

Advantages and Disadvantages

The advantage to using this technique is that you do not have to
recompile the testbench in order to stop VCS from writing the VPD
file. This technique is something to consider using, particularly early
in the development cycle of your design, when you are fixing a lot of
bugs and already doing a lot of recompilation.

The disadvantages to this technique are considerable. Compiling
these system tasks, or any system tasks that write to a file, into the
testbench requires VCS to compile the simv executable so that it is
possible for it to write the VPD file when the runtime option is
included on the command line. This means that the simulation runs
significantly slower than if you don’t compile these system tasks into
the testbench. This impact on performance remains even when you
don’t include the runtime option on the simv command line.

3-27

Modeling Your Design

Using the $test$plusargs system function forces VCS to
consider the worst case scenario — plusargs will be used at runtime
— and VCS generates the simv executable with the corresponding
overhead to prepare for these plusargs. The more fixed information
VCS has at compile-time, the more VCS can optimize simv for
efficient simulation. Alternatively, the more user control at runtime,
the more overhead VCS has to add to simv to accept runtime
options, and the less efficient the simulation.

For this reason Synopsys recommends that if you use this
technique, you should plan to abandon it fairly early in the
development cycle and switch to either the conditional compilation
technique for writing simulation history files, or a combination of the
two techniques.

Combining the Techniques

Some users find that they have the greatest amount of control over
the advantages and disadvantages of these techniques when they
combine them. Consider the following example:

`ifdef comppostprocess
initial
 if ($test$plusargs("runpostprocess"))
 begin
 $vcdpluson(0,design_1);
 $vcsplusdeltacycleon;
 $vcdplusglitchon;
 end
`endif

In this instance, both the +define+comppostprocess compile-
time option and the +runpostprocess runtime option are required
for VCS to write the VPD file. This technique allows you to avoid

3-28

Modeling Your Design

recompiling just to prevent VCS from writing the file during the next
simulation and also provides you with a way to recompile the
testbench, later in the development cycle, to exclude these system
tasks without first editing the source code for the testbench.

Creating Models That Simulate Faster

When modeling your design, for faster simulation use higher levels
of abstraction. Behavioral and RTL models simulate much faster
than gate and switch level models. This rule of thumb is not unique
to VCS; it applies to all Verilog simulators and even all logic
simulators in general.

What is unique to VCS are the acceleration algorithms that make
behavioral and RTL models simulate even faster. In fact, VCS is
particularly optimized for RTL models for which simulation
performance is critical.

These acceleration algorithms work better for some designs than for
others. Certain types of designs prevent VCS from applying some of
these algorithms. This section describes the design styles that
simulate faster or slower.

The acceleration algorithms apply to most data types and primitives
and most types of statements but not all of them. This section also
describes the data types, primitives, and types of statements that
you should try to avoid.

3-29

Modeling Your Design

VCS is optimized for simulating sequential devices. Under certain
circumstances VCS infers that an always block is a sequential
device and simulates the always block much faster. This section
describes the coding guidelines you should follow to make VCS infer
an always block as a sequential device.

When writing an always block, if you cannot follow the inferencing
rules for a sequential device there are still things that you should
keep in mind so that VCS simulates the always block faster. This
section also describes the guidelines for coding faster simulating
always blocks that VCS infers to be combinatorial instead of
sequential devices.

Unaccelerated Data Types, Primitives, and Statements

VCS cannot accelerate certain data types and primitives. VCS also
cannot accelerate certain types of statements. This section
describes the data types, primitives, and types of statements that
you should try to avoid.

Avoid Unaccelerated Data Types

VCS cannot accelerate certain data types. The following table lists
these data types:

Data Type Description in IEEE Std
1364-2001

time and realtime Page 22

real Page 22

named event Page 138

trireg net Page 26

integer array Page 22

3-30

Modeling Your Design

Avoid Unaccelerated Primitives

VCS cannot accelerate tranif1, tranif0, rtranif1, rtranif0, tran, and
rtran switches. They are defined in IEEE Std 1364-2001 page 86.

Avoid Calls to User-defined Tasks or Functions Declared in
Another Module

VCS cannot accelerate user-defined tasks or functions declared in
another module. For example:

module bottom (x,y);
.
.
.
always @ y
top.task_indentifier(y,rb);
endmodule

Avoid Strength Specifications in Continuous Assignment
Statements

Omit strength specifications in continuous assignment statements.
For example:

assign net1 = flag1;

Simulates faster than:

assign (strong1, pull0) net1= flag1;

Continuous assignment statements are described on IEEE
1364-2001 pages 69-70.

3-31

Modeling Your Design

Inferring Faster Simulating Sequential Devices

VCS is optimized to simulate sequential devices. If VCS can infer
that an always block behaves like a sequential device, VCS can
simulate the always block much faster.

The IEEE Std 1364-2001 defines always constructs on page 149.
Verilog users commonly use the term always block when referring
to an always construct.

VCS can infer whether an always block is a combinatorial or
sequential device. This section describes the basis on which VCS
makes this inference.

Avoid Unaccelerated Statements

VCS does not infer an always block to be a sequential device if it
contains any of the following statements:

Statement Description in IEEE Std 1364-2001

force and release procedural
statements

Page 126-127

repeat statements Page 134-135, see the other looping statements
on these pages and consider them as an
alternative.

wait statements, also called
level-sensitive event controls

Page 141

disable statements Page 162-164

fork-join block statements, also
called parallel blocks

Page 146-147

3-32

Modeling Your Design

Using either blocking or nonblocking procedural assignment
statements in the always block does not prevent VCS from inferring
a sequential device, but in VCS blocking procedural assignment
statements are more efficient.

Synopsys recommends zero delay nonblocking assignment
statements to avoid race conditions.

IEEE Std 1364-2001 describes blocking and nonblocking procedural
assignment statements on pages 119-124.

Place Task Enabling Statements in Their Own always Block and
Use No Delays

IEEE Std 1364-2001 defines tasks and task enabling statements on
pages 151-156.

VCS infers that an always block that contains a task enabling
statement is a sequential device only when there are no delays in the
task declaration.

All Sequential Controls Must Be in the Sensitivity List

To borrow a concept from VHDL, the sensitivity list for an always
block is the event control that immediately follows the always
keyword.

IEEE Std 1364-2001 defines event controls on page 138 and
mentions sensitivity lists on page 139.

For correct inference, all sequential controls must be in the
sensitivity list. The following code examples illustrate this rule:

• VCS does not infer the following DFF to be a sequential device:

always @ (d)

3-33

Modeling Your Design

 @ (posedge clk) q <=d;

Even though clk is in an event control, it is not in the sensitivity
list event control.

• VCS does not infer the following latch to be a sequential device:

always begin
 wait clk; q <= d; @ d;
end

There is no sensitivity list event control.

• VCS infers the following latch to be a sequential device:

always @ (clk or d)
 if (clk) q <= d;

The sequential controls, clk and d, are in the sensitivity list event
control.

Avoid Level-sensitive Sensitivity Lists Whose Signals are Used
“Completely”

VCS infers a combinational device instead of a sequential device if
the following conditions are both met:

• The sensitivity list event control is level sensitive

A level sensitive event control does not contain the posedge or
negedge keywords.

• The signals in the sensitivity list event control are used
“completely” in the always block

Used “completely” means that there is a possible simulation event
if the signal has a true or a false (1 or 0) value.

3-34

Modeling Your Design

The following code examples illustrate this rule:

Example 1

VCS infers that the following always block is combinatorial, not
sequential:

always @ (a or b)
 y = a or b

Here the sensitivity list event control is level sensitive and VCS
assigns a value to y whether a or b are true or false.

Example 2

VCS also infers that the following always block is combinatorial, not
sequential:

always @ (sel or a or b)
 if (sel)
 y=a;
 else
 y=b;

Here the sensitivity list event control is also level sensitive and VCS
assigns a value to y whether a, b, or sel are true or false. Note that
the if-else conditional statement uses signal sel completely,
VCS executes an assignment statement whether sel is true or false.

Example 3

VCS infers that the following always block is sequential:

always @ (sel or a or b)
 if (sel)
 y=a;

3-35

Modeling Your Design

In this instance, there is no simulation event when signal sel is false
(0).

Modeling Faster always Blocks

Whether VCS infers an always block to be a sequential device or
not, there are modeling techniques you should use for faster
simulation.

Place All Signals Being Read in the Sensitivity List

The sensitivity list for an always block is the event control that
immediately follows the always keyword. Place all nets and
registers, whose values you are assigning to other registers, in the
always block, and place all nets and registers, whose value
changes trigger simulation events, in the sensitivity list control.

Use Blocking Procedural Assignment Statements

In VCS, blocking procedural assignment statements are more
efficient.

Synopsys recommends zero delay nonblocking procedural
assignment statements to avoid race conditions.

IEEE Std 1364-2001 describes blocking and nonblocking procedural
assignment statements on pages 119-124.

Avoid force and release Procedural Statements

IEEE Std 1364-2001 defines these statements on pages 126-127. A
few occurrences of these statements in combinatorial always
blocks does not noticeably slow down simulation but their frequent
use does lead to a performance cost.

3-36

Modeling Your Design

Using Verilog 2001 Constructs

In G-2012.09 and newer releases, Verilog 2001 or V2K source code
conforms to the Verilog IEEE Std 1364-2001 instead of the Verilog
IEEE Std 1364-1995.

If your Verilog code contains a V2K keyword as an identifier, you can
tell VCS not to recognize V2K keywords with the -v95 compile time
option, for example:

module cell (...,...);

The module identifier cell is a keyword in Verilog 2001, so to use it
as an identifier, include the -v95 compile-time option.

The following table lists the implemented constructs in Std 1364-
2001 and whether you need a compile-time option to use them.

Std 1364-2001 Construct Default

comma separated event control expressions:
always @ (r1,r2,r3)

yes

name-based parameter passing:
modname #(.param_name(value)) inst_name(sig1,...);

yes

ANSI-style port and argument lists:
module dev(output reg [7:0] out1, input wire [7:0]
w1);

yes

initialize a reg in its declaration:
reg [15:0] r2 = 0;

yes

conditional compiler directives:
‘ifndef and ‘elseif

yes

disabling the default net data type:
‘default_nettype

yes

signed arithmetic extensions:
reg signed [7:0] r1;

yes

file I/O system tasks:
$fopen $fsanf $scanf and more

yes

3-37

Modeling Your Design

passing values from the runtime command line:
$value$plusarg system function

yes

indexed part-selects:
reg1[8+:5]=5’b11111;

yes

multi-dimensional arrays:
reg [7:0] r1 [3:0] [3:0];

yes

maintaining file name and line number:
‘line

yes

implicit event control expression lists:
always @*

yes

the power operator:
r1=r2**r3;

yes

attributes:
(* optimize_power=1 *)
module dev (res,out,clk,data1,data2);

yes

generate statements yes

localparam declarations yes

Automatic tasks and functions
task automatic t1();

requires the
-sverilog
compile-time
option

constant functions
localparam lp1 = const_func(p1);

yes

parameters with a bit range
parameter bit [7:0][31:0] P =
{32'd1,32'd2,32'd3,32'd4,32'd5,32'd6,32'd7,32'd8};

requires the
-sverilog
compile-time
option

Std 1364-2001 Construct Default

3-38

Modeling Your Design

Case Statement Behavior

The IEEE Std 1364-2001 standards for the Verilog language state
that you can enter the question mark character (?) in place of the z
character in casex and casez statements. The standard does not
specify that you can also make this substitution in case statements
and you might infer that this substitution is not allowed in case
statements.

VCS, like other Verilog simulators, does not make this inference, and
allows you to also substitute ? for z in case statements. If you do,
remember that z does not stand for "don’t care" in a case statement,
like it does in a casez or casex statement. In a case statement z
stands for the usual high impedance and therefore so does ?.

Precedence in Text Macro Definitions

In text macros, the line continuation character (\) has a higher
precedence than the one line comment characters (//). This
means that VCS can merge a subsequent line with the text in a one
line comment, for example:

`define print_me_1 \
$display("Hello 1"); // just a comment \
$display("I'm OK");

VCS merges the second $display system task with the comment
on the previous line and does not display the text string I’m OK.

The following are the precedence rules for text macro definitions:

3-39

Modeling Your Design

1. The `undef compiler directive has a higher precedence than
the +define compile-time option.

2. The +define compile-time option has a higher precedence than
the `define and `undefineall compiler directives.

Memory Size Limits in the Simulator

The bit width for a word or an element in a memory in VCS must be

less than 0x100000 (or 220 or 1,048,576) bits.

The number of elements or words (sometimes also called rows) in a

memory in VCS must be less than 0x3FFF_FFFE-1 (or 230 - 2 or
1,073,741,822) elements or words.

The total bit count of a memory (total number of elements * word
size) must be less than 8 * (1024 * 1024 * 1024 - 2) or 8589934576.

3-40

Modeling Your Design

Note:
The reg data type has 4 states and the bit data type has 2 states.
The memory consumption of reg and bit variables are not the
same.

For example:

module top;
bit [127:0] mem_bit [0:1<<26];
reg [127:0] mem_reg [0:1<<26];

endmodule

In the above example, the memory consumed by the bit variable
mem_bit is:

2**26 * 128 = 8,589,934,592 bits (1G Bytes)

The memory consumed by the reg variable mem_reg is:

2 * 2**26 * 128 = 17,179,869,184 bits (2G Bytes)

The implementation limit of memory size in VCS is (2GB - 1).
Therefore, a “Memory Too Large” error is issued for the mem_reg
variable.

Using Sparse Memory Models

If your design contains a large memory, the simv executable will
need large amounts of machine memory to simulate it. However, if
/*sparse*/ is specified, the large memory will not occupy the IP
space, so the above 2G-1 size limit (See “Memory Size Limits in the
Simulator”) does not exist. The maximum memory size depends on
address space size. If /*sparse*/ is not specified, both full 64-bit

3-41

Modeling Your Design

and 32-bit VCS will have the same limitation (2G-1 size limit),
because even with full 64-bit, VCS still uses 32-bit IP index in back-
end and runtime. So, if the memory size exceeds 2G, simulation will
have errors.

You use the /*sparse*/ pragma or metacomment in the memory
declaration to specify a sparse memory model. For example:

reg /*sparse*/ [31:0] pattern [0:10_000_000];
integer i, j;
initial
 begin
 for (j=1; j<10_000; j=j+1)

 for (i=0; i<10_000_000; i=i+1_000)
 pattern[i] = i+j;

 end
endmodule

In simulations, this memory model uses 4 MB of machine memory
with the /*sparse*/ pragma, 81 MB without it. There is a small
runtime performance cost to sparse memory models: the simulation
of the memory with the /*sparse*/ pragma took 64 seconds, 56
seconds without it.

The larger the memory, and the fewer elements in the memory that
your design reads or writes to, the more machine memory you will
save by using this feature. It is intended for memories that contain at
least a few MBs. If your design accesses 1% of its elements you
could save 97% of machine memory. If your design accesses 50%
of its elements, you save 25% of machine memory. Do not use this
feature if your design accesses more than 50% of its elements
because using the feature in these cases may lead to more memory
consumption than not using it.

3-42

Modeling Your Design

Note:
• Sparse memory models cannot be manipulated by PLI

applications through tf calls (the tf_nodeinfo routine issues
a warning for sparse memory and returns NULL for the memory
handle).

• Sparse memory models cannot be used as a personality matrix
in PLA system tasks.

Obtaining Scope Information

VCS has custom format specifications (IEEE Std 1364-2001 does
not define these) for displaying scope information. It also has system
functions for returning information about the current scope.

Scope Format Specifications

The IEEE Std 1364-2001 describes the %m format specification for
system tasks for displaying information such as $write and
$display. The %m specification tells VCS to display the hierarchical
name of the module instance that contains the system task. If the
system task is in a scope lower than a module instance, it tells VCS
to do the following:

• In named begin-end or fork-join blocks, it adds the block name to
the hierarchical name.

• In user-defined tasks or functions, it considers the hierarchical
name of the task declaration or function definition as the
hierarchical name of the module instance.

3-43

Modeling Your Design

VCS has the following additional format specifications for displaying
scope information:

%i

Specifies the same as %m with the following difference: when in a
user-defined task or function, the hierarchical name is the
hierarchical name of the instance or named block containing the
task enabling statement or function call, not the hierarchical name
of the task or function declaration.

If the task enabling statement is in another user-defined task, the
hierarchical name is the hierarchical name of the instance or
named block containing the task enabling statement for this other
user-defined task.

If the function call is in another user-defined function, the
hierarchical name is the hierarchical name of the instance or
named block containing the function call for this other user-defined
function.

If the function call is in a user-defined task, the hierarchical name
is the hierarchical name of the instance or named block containing
the task enabling statement for this user-defined task.

%-i

Specifies that the hierarchical name is always of a module
instance, not a named block or user-defined task or function. If
the system task (such as $write and $display) is in:

- A named block — the hierarchical name is that of the module
instance that contains the named block

3-44

Modeling Your Design

- A user-defined task or function — the hierarchical name is that
of the module instance containing the task enabling statement
or function call

Note:

The %i and %-i format specifications are not supported with the
$monitor system task.

The following commented code example shows what these format
specifications do:

module top;
reg r1;

task my_task;
input taskin;
begin
$display("%m"); // displays "top.my_task"
$display("%i"); // displays "top.d1.named"
$display("%-i"); // displays "top.d1"
end
endtask

function my_func;
input taskin;
begin
$display("%m"); // displays "top.my_func"
$display("%i"); // displays "top.d1.named"
$display("%-i"); // displays "top.d1"
end
endfunction

dev1 d1 (r1);
endmodule

module dev1(inport);
input inport;

initial
begin:named

3-45

Modeling Your Design

reg namedreg;
$display("%m"); // displays "top.d1.named"
$display("%i"); // displays "top.d1.named"
$display("%-i"); // displays "top.d1"
namedreg=1;
top.my_task(namedreg);
namedreg = top.my_func(namedreg);
end

endmodule

Returning Information About the Scope

The $activeinst system function returns information about the
module instance that contains this system function. The
$activescope system function returns information about the
scope that contains the system function. This scope can be a module
instance, a named block, a user-defined task, or a function in a
module instance.

When VCS executes these system functions, it performs the
following:

1. Stores the current scope in a temporary location.

2. If there are no arguments, it returns a pointer to the temporary
location. Pointers are not used in Verilog but they are in DirectC
applications.

The possible arguments are hierarchical names. If there are
arguments, it compares them from left to right with the current
scope. If an argument matches, the system function returns a
32-bit non-zero value. If none of the arguments match the current
scope, the system function returns a 32-bit zero value.

3-46

Modeling Your Design

The following example contains these system functions:

module top;
reg r1;
initial
r1=1;
dev1 d1(r1);
endmodule

module dev1(in);
input in;
always @ (posedge in)
begin:named
if ($activeinst("top.d0","top.d1"))
 $display("%i");
if ($activescope("top.d0.block","top.d1.named"))
 $display("%-i");
end
endmodule

The following is an example of a DirectC application that uses the
$activeinst system function:

extern void showInst(input bit[31:0]);

module discriminator;
task t;
reg[31:0] r;
begin
 showInst($activeinst);
 if($activeinst("top.c1", "top.c3"))
 begin
 r = $activeinst;
 $display("for instance %i the pointer is %s", r ? "non-zero" : "zero");
 end
end
endtask

declaration of C function named showInst

$activeinst system function without arguments
passed to the C function

module child;
initial discriminator.t;
endmodule

module top;

3-47

Modeling Your Design

child c1();
child c2();
child c3();
child c4();
endmodule

In task t, the following occurs:

1. The $activeinst system function returns a pointer to the
current scope, which is passed to the C function showInst. It is
a pointer to a volatile or temporary char buffer containing the name
of the instance.

2. A nested begin block executes only if the current scope is either
top.c1 or top.c3.

3. VCS displays whether $activeinst points to a zero or non-zero
value.

The C code is as follows:

#include <stdio.h>

void showInst(unsigned str_arg)
{
 const char *str = (const char *)str_arg;
 printf("DirectC: [%s]\n", str);
}

Function showInst declares the char pointer str and assigns to it
the value of its parameter, which is the pointer in $activeinst in
the Verilog code. Then with a printf statement, it displays the
hierarchical name that str is pointing to. Notice that the function
begins the information it displays with DirectC: so that you can
differentiate it from what VCS displays.

During simulation VCS and the C function display the following:

3-48

Modeling Your Design

DirectC: [top.c1]
for instance top.c1 the pointer is non-zero
DirectC: [top.c2]
DirectC: [top.c3]
for instance top.c3 the pointer is non-zero
DirectC: [top.c4]

Avoiding Circular Dependency

The $random system function has an optional seed argument. You
can use this argument to make the return value of this system
function the assigned value in a continuous assignment, procedural
continuous assignment, or force statement. For example:

assign out = $random(in);

initial
begin
assign dr1 = $random(in);
force dr2 = $random(in);

When you do this, you might set up a circular dependency between
the seed value and the statement, resulting in an infinite loop and a
simulation failure.

This circular dependency doesn’t usually occur, but it can occur, so
VCS displays a warning message when you use a seeded argument
with these kinds of statements. This warning message is as follows:

Warning-[RWSI] $random() with a ’seed’ input
$random in the following statement was called with a ’seed’ input
This may cause an infinite loop and an eventual crash at runtime.
"exp1.v", 24: assign dr1 = $random(in);

The warning message ends with the source file name and line
number of the statement, followed by the statement itself.

3-49

Modeling Your Design

This possible circular dependency does not occur either when you
use a seed argument and the return value is the assigned value in a
procedural assignment statement, or when you do not use the seed
argument in a continuous, procedural continuous, or force
statement.

For example:

assign out = $random();

initial
begin
assign dr1 = $random();
force dr2 = $random();
dr3 = $random(in);

These statements do not generate the warning message.

You can tell VCS not to display the warning message by using the
+warn=noRWSI compile-time argument and option.

Designing With $lsi_dumpports for Simulation and Test

This section is intended to provide guidance when using
$lsi_dumpports with Automatic Test Pattern Generation (ATPG)
tools. Occasionally, ATPG tools strictly follow port direction and do
not allow unidirectional ports to be driven from within the device. If
you are not careful while writing the test fixture, the results of
$lsi_dumpports causes problems for ATPG tools.

Note:

See “Signal Value/Strength Codes” . These are based on the TSSI
Standard Events Format State Character set.

3-50

Modeling Your Design

Dealing With Unassigned Nets

Consider the following example:

module test(A);
input A;
wire A;
DUT DUT_1 (A);
// assign A = 1'bz;
initial
$lsi_dumpports(DUT_1,"dump.out");
endmodule

module DUT(A);
input A;
wire A;
child child_1(A);
endmodule

module child(A);
input A;
wire Z,A,B;
and (Z,A,B);
endmodule

In this case, the top-level wire A is undriven at the top level. It is an
input which goes to an input in DUT_1, then to an input in CHILD_1
and finally to an input of an AND gate in CHILD_1. When
$lsi_dumpports evaluates the drivers on port A of test.DUT_1, it
finds no drivers on either side of port A of DUT_1, and therefore gives
a code of F, tristate (input and output unconnected).

The designer actually meant for a code of Z to be returned, input
tristated. To achieve this code, the input A needs to be assigned a
value of z. This is achieved by removing the comment from the line,
// assign A = 1'bz;, in the above code. Now, when the code

3-51

Modeling Your Design

is executed, VCS is able to identify that the wire A going into DUT_1
is being driven to a z. With the wire driven from the outside and not
the inside, $lsi_dumpports returns a code of Z.

Code Values at Time 0

Another issue can occur at time 0, before values have been
assigned to ports as you intended. As a result, $lsi_dumpports
makes an evaluation for drivers when all of the users intended
assignments haven't been made. To correct this situation, you need
to advance simulation time just enough to have your assignments
take place. This can be accomplished by adding a #1 before
$lsi_dumpports as follows:

initial
begin
#1 $lsi_dumpports(instance,"dump.out");
end

Cross Module Forces and No Instance Instantiation

In the following example there are two problems.

module test;
initial
begin
force top.u1.a = 1'b0;
$lsi_dumpports(top.u1,"dump.out");
end
endmodule

module top;
middle u1 (a);
endmodule

module middle(a);

3-52

Modeling Your Design

input a;
wire b;
buf(b,a);
endmodule

First, there is no instance name specified for $lsi_dumpports.
The syntax for $lsi_dumpports calls for an instance name. Since
the user didn't instantiate module top in the test fixture, they are left
specifying the MODULE name top. This will produce a warning
message from VCS. Since top appears only once, that instance will
be assumed.

The second problem comes from the cross-module reference (XMR)
that the force command uses. Since the module test doesn't
instantiate top, the example uses an XMR to force the desired
signal. The signal being forced is port a in instance u1. The problem
here is that this force is done on the port from within the instance u1.
The user expects this port a of u1 to be an input, but when
$lsi_dumpports evaluates the ports for the drivers, it finds that
port a of instance u1 is being driven from inside and therefore
returns a code of L.

To correct these two problems, you need to instantiate top inside
test, and drive the signal a from within test. This is done in the
following way:

module test;
wire a;
initial
begin
force a = 1'b0;
$lsi_dumpports(test.u0.u1,"dump.out2");
end
top u0 (a);
endmodule

module top(a);

3-53

Modeling Your Design

input a;
middle u1 (a);
endmodule

module middle(a);
input a;
wire b;
buf(b,a);
endmodule

By using the method in this example, the port a of instance u1 is
driven from the outside, and when $lsi_dumpports checks for the
drivers it reports a code of D as desired.

Signal Value/Strength Codes

The enhanced state character set is based on the TSSI Standard
Events Format State Character set with additional expansion to
include more unknown states. The supported character set is as
follows:

Testbench Level (only z drivers from the DUT)

D low

U high

N unknown

Z tristate

d low (2 or more test fixture drivers active)

u high (2 or more test fixture drivers active)

DUT Level (only z drivers from the testbench)

L low

H high

X unknown (don’t care)

T tristate

l low (2 or more DUT drivers active)

Testbench Level (only z drivers from the DUT)

3-54

Modeling Your Design

h high (2 or more DUT drivers active

Drivers Active on Both Levels

0 low (both input and output are active with 0
values)

1 high (both input and output are active with 1
values)

? unknown

F tristate (input and output unconnected)

A unknown (input 0 and output unconnected)

a unknown (input 0 and output X)

B unknown (input 1 and output 0)

b unknown (input 1 and output X)

C unknown (input X and output 0)

c unknown (input X and output 1)

f unknown (input and output tristate)

4-1

Compiling the Design

4
Compiling the Design 1

This chapter describes the following sections:

• “Compiling or Elaborating the Design in Debug Mode”

• “Compiling or Elaborating the Design in Optimized Mode”

• “Dynamic Loading of DPI Libraries at Runtime”

• “Dynamic Loading of PLI Libraries at Runtime”

• “Key Compilation or Elaboration Features”

Compiling or Elaborating the Design in Debug Mode

Debug mode, also called interactive mode, is typically used (but not
limited to):

4-2

Compiling the Design

• During your initial phase of the design, when you need to debug
the design using debug tools like DVE, or UCLI.

• If you are using PLIs.

• If you use the UCLI commands to force a signal, to write into a
registers/nets

VCS has the following compile-time options for debug mode:

-debug_pp, -debug, -debug_access(+<option>), -debug_all,
-debug_region=(<option>)(+<option>)

The following examples show how to compile the design in full,
partial, and minimum debug modes.

Compiling the design in partial debug mode

vcs -debug [compile_options] TOP.v

Compiling the design in full debug mode

vcs -debug_all [compile_options] TOP.v

Compiling the design with desired debug capability

vcs -debug_access<+options> [compile_options]
TOP.v

For more information on the -debug_access and
-debug_region options, see “Optimizing Simulation Performance
for Desired Debug Visibility with the -debug_access Option” section.

For information on DVE or UCLI, see the DVE User Guide and UCLI
User Guide respectively.

4-3

Compiling the Design

Compiling or Elaborating the Design in Optimized Mode

Optimized mode is used when your design is fully-verified for design
correctness, and is ready for regressions. VCS runtime performance
is best in this mode when VCS optimizes a design.

For more information on performance, refer to the chapter entitled,
“Performance Tuning” .

Note:

The runtime performance reduces if you use the -debug or
-debug_all options. Use these options only when you require
runtime debug capabilities.

Optimizing Simulation Performance for Desired Debug
Visibility with the -debug_access Option

You can use the -debug_access option at compile time to have
more granular control over the debug capabilities in a simulation.

The -debug_access option enables the dumping of the VPD and
FSDB files for post-process debug, and enables reduced debug
capabilities when compared to -debug_pp.

You can specify additional options with the -debug_access option
to selectively enable the required debug capabilities. You can
optimize the simulation performance by enabling only the required
debug capabilities.

4-4

Compiling the Design

Use Model

Following is the use model of the -debug_access debug option:

–debug_access(+<option>)*

Table 4-1 describes the supported options:

Table 4-1 Supported Options

Option Description

drivers Enables driver debugging.

r The -debug_access+r option enables the read capability for the entire
design.

w Applies write (deposit) capability to the registers and variables for the entire
design.

wn Applies write (deposit) capability to the nets for the entire design.

f The -debug_access+f option enables the following:

• Write (deposit) capability on registers and variables

• Force capability on registers, variables, and nets

This option is equivalent to -debug_access+f+w+fn.

fn Applies force capability to the nets for the entire design.

fwn The -debug_access+fwn option applies write (deposit) and force
capability to all nets in the design.

line Enables line debugging. Allows you to use the commands for step/next and
line breakpoints.

object Enables object IDs, dynamic callbacks on class members, and line
debugging.

classdbg -debug_access+classdbg is equivalent to the following command:
-debug_access+object+w

-debug_access+classdbg enables testbench debug capabilities.

4-5

Compiling the Design

Example: -debug_access+r+line+object+drivers

Key Points to Note
• In the GENIP flow, the -debug_access option will not affect the

recompilation of IPs in the shared libraries.

• To enable assertions debug in DVE, use -debug_access+f or
-debug_access+fwn.

• Read capability is disabled by default with the -debug_access
option.

• The following abbreviation of -debug_access is supported:

-debug_acc

pp -debug_access+pp is equivalent to the following command:
-debug_access+cbk+w+drivers

-debug_access+pp enables debug capabilities equal to -debug_pp
(except for no thread debugging, and does not apply capability inside cells
and encrypted modules).

all -debug_access+all is equivalent to the following commands:

-debug_access+line+object+wn+driver+r+w+cbkd+f+fn+cbk

-debug_access+all enables debug capabilities equal to -debug_all
(except it does not apply capability inside cells and encrypted modules).

dmptf The -debug_access+dmptf option enables dumping of task/function
ports and internal nodes/memories for the entire design.

nomemcbk The -debug_access+nomemcbk option disables the callbacks for
memories and multidimensional arrays (MDAs). By default,
-debug_access enables callbacks for memories and multidimensional
arrays (MDAs).

Option Description

4-6

Compiling the Design

• The dynamic value change callbacks are enabled as part of the
object, all, and classdbg options.

Specifying Design Regions for -debug_access
Capabilities

You can use the -debug_region option to have better control over
the performance of -debug_access. This option enables you to
apply debugging capabilities to the desired portion of a design (DUT,
cell, testbench (TB), standard package (OVM, UVM, VMM, and
RAL), or encrypted instances (modules, programs, packages,
interfaces)).

You must use the -debug_region option along with the
-debug_access option at compile time. Following is the use model
of -debug_region:

-debug_access(+<option>)* -debug_region=(<option>)(+<option>)*

Table 4-2 describes the options supported by
-debug_region:

4-7

Compiling the Design

Table 4-2 -debug_region Options

Option Description Default functionality if
-debug_region is not specified

lib Applies debug capabilities to the cells
inside libraries.

Debug capability is not applied to
the libraries.

cell Applies debug capabilities to the cells. Debug capability is not applied to
the cells.

encrypt Applies debug capabilities to the fully
encrypted instances (modules,
programs, packages, interfaces).

Debug capability is not applied to
the fully encrypted instances.

tb Applies debug capabilities only to the
testbench (TB), but does not apply
debug capabilities to the standard
packages. For more information on what
defines a TB, see “Testbench (TB)
Definition” .
It does not apply the debug capability to
the standard packages.
The VPD/FSDB dumping of the DUT is
not affected by this option.

Debug capability is applied to TB
and DUT.

dut Applies debug capabilities only to the
non-TB objects. For more information on
what defines TB, see “Testbench (TB)
Definition” .

Debug capability is applied to TB
and DUT.

stdpkg Applies debug capabilities to the
standard packages.

You must use the stdpkg option in
combination with the tb option. VCS
issues a warning message if you use -
debug_region=stdpkg.

The -debug_region=tb+stdpkg
option applies debug capabilities to both
testbench (TB) and standard packages.

Debug capability is applied to the
standard packages.

4-8

Compiling the Design

Examples
• -debug_access+classdbg -debug_region=tb

Applies class debug capability only to the TB. Debug capability is
not applied to the standard packages.

• -debug_access+force -debug_region=dut

Applies force debug capability to the DUT.

• -debug_access+classdbg -debug_region=tb+stdpkg

Applies testbench debug capability to the TB and standard
packages.

• -debug_access+drivers -debug_region=cell+lib

Applies -debug_access and driver debug capability to the cells
both inside and outside libraries.

• -debug_access+classdbg -debug_region=tb -
debug_access+drivers -debug_region=dut

This option is equivalent to not specifying the -debug_region
option, so a warning message as shown below, is issued in this
case:

Warning-[DBGACC_REG_CMB2] Illegal '-debug_region' usage
The combination of options 'tb+dut' is not valid. -
debug_access capability will be enabled for the entire
design
Please recompile using the '-debug_access<+options>'
switch and incremental options as required. Recommended
options are '-debug_access' for post-process debug, '-
debug_access+classdbg' for testbench debug, and
'-debug_access+all' for all debug capabilities. Refer the
VCS user guide for more granular options for debug control
under the switch '-debug_access'and refer to '-
debug_region' for region control.

4-9

Compiling the Design

• -debug_access+drivers -debug_region=dut+stdpkg

Debug capability is applied outside the TB, but the standard
packages are considered as TB, so a warning message as shown
below, is issued in this case:

Warning-[DBGACC_REG_CMB2] Illegal '-debug_region' usage
The combination of options 'dut+stdpkg' is not valid. -
debug_access capability will be enabled for the entire
design.
Please recompile using the '-debug_access<+options>'
switch and incremental options as required. Recommended
options are '-debug_access' for post-process debug, '-
debug_access+classdbg' for testbench debug, and
'-debug_access+all' for all debug capabilities. Refer the
VCS user guide for more granular options for debug control
under the switch '-debug_access'and refer to '-
debug_region' for region control.

• -debug_access+classdbg -debug_region=tb -
debug_access -debug_region=tb

Applies testbench debug capability only to the TB

Key Points to Note
• The -debug_region option works only for the capabilities

specified by the -debug_access option. It has no effect on the
capabilities specified in tab files or configuration files

• An error message is issued if you use -debug_region without
an option (cell, tb, dut, encrypt, lib, or stdpkg)

• An error message is issued if you use -debug_region without
-debug_access

4-10

Compiling the Design

• A warning message is issued if you use -debug_region=tb/
dut/stdpkg with other debug options like -PP, -debug_pp,
-debug, or -debug_all. Following is the sample warning
message:

Warning-[DBGACC_CMB] Illegal '-debug_access' usage
The combination of options '(-debug_all, -debug_obj, -
debug or -debug_pp) and -debug_region=dut' is not valid.
Ignoring the option '-debug_region=dut'
Please recompile using the '-debug_access<+options>'
switch and incremental options as required. Recommended
options are '-debug_access' for post-process debug, '-
debug_access+classdbg' for testbench debug, and
'-debug_access+all' for all debug capabilities. Refer the
VCS user guide for more granular options for debug control
under the switch '-debug_access' and refer to '-
debug_region' for region control.

• Use of -debug_region=tb (without the stdpkg option) may
effectively enable debugging in the code that belongs to stdpkg.
If some stdpkg code belongs to a parameterized class, the code
is instrumented in the “parameterized class repository”. The
“parameterized class repository” is part of tb, and is not a
stdpkg.

The -debug_region option is applicable only to the
SystemVerilog portion of a design. It is not applicable to the pure
VHDL or SystemC designs.

For mixed designs, if you specify the -debug_region=tb
option, then the -debug_access option applies to the TB portion
of SystemVerilog and all the VHDL/SystemC portions of the
design.

Note:

If the standard packages cannot be debugged, then the UCLI
command config stepintotblib (on | off) returns
a warning message.

4-11

Compiling the Design

• The +vcsd and +memcbk global debug options are turned off for
the following cases:

- Inside the cells if -debug_region=cell option is not
specified.

- Inside the fully encrypted modules if
-debug_region=encrypt option is not specified.

- Inside the DUT when the -debug_region=tb option is
specified.

- Inside the TB when the -debug_region=dut option is
specified.

• Dynamic callbacks are enabled if any of the following
–debug_access options are specified:

object, cbkd, class, all

Dynamic callbacks are turned off for the following cases:

- Inside the TB if the -debug_region=dut option is specified.

- Inside the fully encrypted modules if the
-debug_region=encrypt option is not specified.

Enabling Additional Debug Capabilities

Driver/Load Debug Capability

By default, the driver/load debug support is disabled. You must use
the -debug_access+drivers option at compile time to enable the
driver/load debug support.This option enables the following
capabilities:

4-12

Compiling the Design

• Active drivers

• DVE and UCLI show driver/load

• $countdrivers

• $dumpports, $lsi_dumpports

VCS generates an error message, if you use any driver/load debug
functionality without specifying -debug_acess+drivers.

Statement Debug Capability

By default, statement debugging is disabled. In UCLI, the step,
next, and file/line breakpoints are disabled. To enable the
statement debug capability, use the -debug_access+line option
at compile time.

Value Change Debug Capability

By default, changing the value of a signal, variable, or net is
disabled. In UCLI, the force command is disabled, and in VPI the
vpi_put_value() function is disabled. To enable value change
debug capability, use the following option at compile time:

• -debug_access+w: For writing (depositing) values to the
registers or variables.

• -debug_access+wn: For writing (depositing) values to the nets.

• -debug_access+f: For writing (depositing) values to the
registers and variables, and for forcing values onto the registers,
variables, and nets.

• -debug_access+fn: For forcing values onto the nets.

4-13

Compiling the Design

Object Debug Capability

Object IDs uniquely identify class object, and are used extensively in
DVE/UCLI testbench debug.

The DVE object browser, and setting object breakpoints requires
object IDs. By default, object debugging is disabled. To enable object
debugging, use the -debug_access+object option at compile
time.

Class Debug Capability

Class debugging enables line stepping, object IDs, thread
debugging, and write capability.

This allows for object browser debugging in DVE, constraint
debugging in DVE/UCLI, thread debugging in DVE/UCLI, and the
usage/display of object IDs in DVE.

By default, class debugging is disabled. To enable class debugging,
use the -debug_access+classdbg option at compile time.

Reduction in the Objects Being Dumped

The -debug_access option does not dump the ports of tasks and
functions by default. You can use the -debug_access+dmptf
option to dump the ports of tasks and functions.

Testbench (TB) Definition

This section describes the objects that are considered as part of the
testbench.

4-14

Compiling the Design

• SystemVerilog program/package instances are part of the TB. All
objects declared inside the program/package block are
considered as a part of the TB

• SystemVerilog module (including all objects declared inside the
module block) is considered as a part of the TB, if the module
contains any of the following elements:

a. class definitions

b. declarations of dynamic or associate arrays

c. declarations of smart queues

d. declarations of class variables

e. imports of all or part of a package

• SystemVerilog interface instances that contain clocking blocks or
the elements mentioned in the above point (class definitions, and
so on) are part of the TB. All objects declared inside the interface
block are considered as a part of the TB

Note:
$unit is considered as part of the TB if it contains the elements
mentioned in the points above (class definitions, and so on).

Differences Between -debug_pp and -debug_access

Table 4-3 describes some of the important functionality differences
between -debug_pp and -debug_access.

4-15

Compiling the Design

Table 4-3 Comparing -debug_pp and -debug_access

 DEBUG_PP DEBUG_ACCESS

Read and write capability is supported Read and write capability is not supported

Debug capability is enabled for the entire cell
by default

By default, this option disables the cell
debug capability. You must use the
-debug_region=cell option along with
-debug_access to enable the cell debug
capability.

Debug capability inside an encrypted region
is enabled by default

By default, this option disables the debug
capability inside an encrypted region. You
must use the -debug_region=encrypt
option to enable the encrypted object
debug capability.

Driver debugging is enabled Driver debugging is disabled

Signals in tasks/functions are dumped Signals in tasks/functions are not dumped

Using -debug_access with Tab Files

If you use -debug_access with tab files, then the capabilities of -
debug_access and the tab files are unioned. For example, if you
have a tab file with force capability applied (using -P) on module
FOO, and -debug_access+r is specified, then the debug access
capability is applied to all instances, but the force capability is applied
only to instances of module FOO.

The -debug_access capabilities are ignored, if the design is also
compiled with +applylearn. In this case, UCLI and DVE are
enabled.

4-16

Compiling the Design

Using -debug_access with -ucli/-gui at Compile-Time

If you use the -ucli or -gui compile-time option without an
additional -debug_pp, -debug, -debug_all, or -
debug_access* option, it is treated as compiling with the
-debug option.

Unused Tab File Calls

The -debug_access option does not apply the debug capabilities
of unused tab file calls to the design. If a tab file call is marked
“persistent”, then the associated debug capabilities are applied to
the design.

Including Tab Files

The -debug_access option automatically includes all the compile
options required for VPD and FSDB dumping. There is no need to
specify additional options to enable dumping, adding tab files or
adding PLI objects to link with simv.

Dumping FSDB

If the environment variable NOVAS_HOME is set, then you can use -
debug_access to dump FSDB. You must make sure that your
source code contains the $fsdbDumpvars task. There is no need
to specify the pli and tab files on the vcs command line to dump
FSDB.

4-17

Compiling the Design

Interaction with Other Debug Options

The following points describe the interaction of -debug_access
with other debug options:

• If you specify multiple -debug_access options on the same
command line, then the functionality is unioned. For example,
specifying -debug_acc+w -debug_acc+drivers is
equivalent to -debug_acc+w+drivers.

• If you use -debug_access with -debug_pp, -debug,
-debug_all, or -debug_obj, then all debug options are
unioned.

Dynamic Loading of DPI Libraries at Runtime

This feature is the implementation of the SV LRM appendix on
including non-Verilog or non-SystemVerilog code, through the DPI,
in a design or testbench (IEEE Std 1800-2009 Annex J “Inclusion of
foreign language code.”)

For partition compile (an LCA feature) there also is another issue. If
you declare an import DPI function, and you do not provide the C
source code on the vcs command line, VCS finds this to be an error
condition and displays the following:

ibvcspc_test_IAwm9b.so: undefined reference to
`my_export_dpi'
collect2: ld returned 1 exit status

With dynamic loading this error condition with partition compile and
C/C++ source code does not occur.

4-18

Compiling the Design

The Use Model

Dynamic loading of a DPI shared library at runtime requires a
number of steps before the simv command line. These steps are as
follows:

1. Compile the Verilog or SystemVerilog code, for example:

%> vcs -sverilog other_options test.v

2. Compile the C code and create a shared object, for example:

%> gcc -fPIC -Wall ${CFLAGS} -I${VCS_HOME}/include \
–I other_libraries -c test.c

%> gcc -fPIC -shared ${CFLAGS} -o test.so test.o

3. Load the shared object at runtime using one of the following
runtime options for this purpose:

-sv_lib -sv_root -sv_liblist

4-19

Compiling the Design

Example simv command lines for loading the shared object are
as follows:

where the bootstrap file contains an entry
specifying the location of the library

where the path is relative or
absolute to the shared object

the extension for the
shared object is omitted

%> simv -sv_liblist bootstrap_file

%> simv –sv_root path_relative_or_absolute_to_shared_object \

%> simv -sv_lib test

-sv_lib test

The followig is an example of a bootstrap file:

#!SV_LIBRARIES
myclibs/lib1
myclibs/lib3
proj1/clibs/lib4
proj3/clibs/lib2

Where lib1, lib2, lib3 and lib4 are shared object file names which
needs to be specified without extension.

Dynamic Loading of PLI Libraries at Runtime

You can dynamically load a PLI library at runtime instead of linking
the PLI library at compile-time. To do so do the following:

4-20

Compiling the Design

1. Compile the design including the PLI table file for the PLI libraries
with the -P compile-time option:

% vcs -P pli.tab design_source_files

2. Load the libraries dynamically at runtime, specifying the libraries
with the -load runtime option, entering -load for each library:

% simv -load ./pli1.so -load ./pli2.so

In this example, there are two -load options for the libraries named
pli1.so and pli2.so.

Important:

If the PLI library is linked at compile-time, that library has
precedence over a PLI library loaded at runtime.

Key Compilation or Elaboration Features

This section describes the following features in detail with a usage
model and an example:

• “Initializing Verilog Variables, Registers and Memories”

• “Overriding Parameters”

• “Checking for x and z Values In Conditional Expressions”

• “Lint Warning Message for Missing ‘endcelldefine”

• “Error/Warning/Lint Message Control”

• “Extracting the Files Used in Compilation”

4-21

Compiling the Design

Initializing Verilog Variables, Registers and Memories

You can use one of the following options to initialize Verilog
variables, registers and memories in a design.

• +vcs+initreg+random

This option enables initialization for an entire design.

• +vcs+initreg+config+config_file

This option enables initialization for selective parts of a design.

Initializing Verilog Variables, Registers and Memories in
an entire Design

You can use the +vcs+initreg+random option to initialize all bits
of the Verilog variables, registers defined in sequential UDPs, and
memories including multi-dimensional arrays (MDAs) in your design
to random value 0 or 1, at time zero. The default random seed is
used.

The supported data types are:

- reg

- bit

- integer

- int

- logic

4-22

Compiling the Design

To enable initialization for an entire design, the
+vcs+initreg+random option must be specified at compile-time
and one of the following options must be specified at runtime:

- +vcs+initreg+0

- +vcs+initreg+1

- +vcs+initreg+random

- +vcs+initreg+seed_value

Example 4-1

% vcs +vcs+initreg+random [other_vcs_options] file1.v
 file2.v file3.v
% simv +vcs+initreg+random [simv_options]

All Verilog variables, registers and memories are assigned random
initial values.

Example 4-2

% vcs +vcs+initreg+random [other_vcs_options] file1.v
 file2.v file3.v
% simv +vcs+initreg+0 [simv_options]

All Verilog variables, registers and memories are assigned initial
values of 0.

For more information on the +vcs+initreg+random compile-time
option, see “Option for Initializing Verilog Variables, Registers and
Memories with Random Values” .

For more information on the runtime initialization options, see
“Option for Initializing Verilog Variables, Registers and Memories at
Runtime” .

4-23

Compiling the Design

The initialization options may cause potential race conditions due to
the initialized values specified. For more information on race
condition prevention, see “Option for Initializing Verilog Variables,
Registers and Memories with Random Values” .

Initializing Verilog Variables, Registers and Memories in
Selective Parts of a Design

You can use the +vcs+initreg+config+config_file option
to specify a configuration file for initializing Verilog variables,
registers defined in sequential UDPs, and memories including multi-
dimensional arrays (MDAs) in your design, at time zero. In the
configuration file, you can define the parts of a design to apply the
initialization and the initialization values of the variables.

The supported data types are:

- reg

- bit

- integer

- int

- logic

To enable the initialization in selective parts of a design, you can
specify the +vcs+initreg+config+config_file option at
compile-time. The config_file is the configuration file used for the
initialization.

If the +vcs+initreg+config+config_file option is specified
again at runtime, then the configuration file specified at runtime
overrides the configuration file specified at compile-time.

4-24

Compiling the Design

Example 4-3

% vcs +vcs+initreg+config+test_config [other_vcs_options]
file1.v file2.v file3.v
% simv [simv_options]

The configuration file, test_config, is used for the initialization.

Example 4-4

% vcs +vcs+initreg+config+test_config [other_vcs_options]
file1.v file2.v file3.v
% simv +vcs+initreg+config+my_config [simv_options]

The configuration file, my_config, is used for the initialization.

For more information on the
+vcs+initreg+config+config_file option, see the following
sections:

• “Option for Initializing Verilog Variables, Registers and Memories
in Selective Parts of a Design”

• “Option for Initializing Verilog Variables, Registers and Memories
in Selective Parts of a Design at Runtime” .

Configuration File Syntax:

The syntax of the configuration file entries are:

defaultvalue x|z|0|1|random|random seed_value

instance instance_hierarchical_name [x|z|0|1|random|
random seed_value]

tree instance_hierarchical_name depth [x|z|0|1|random|
random seed_value]

module module_name [x|z|0|1|random|random seed_value]

4-25

Compiling the Design

modtree module_name depth [x|z|0|1|random|
random seed_value]

For more information on the configuration file, see “Option for
Initializing Verilog Variables, Registers and Memories in Selective
Parts of a Design” .

Configuration File Example:

Figure 4-1 is a hierarchical diagram of a small design.

Figure 4-1 Design Hierarchy for Initializing from a Configuration File

module top

module dev
instance top.d1

module gizmo
instance top.d1.g1

module gizmo
instance top.d1.g2

module gizmo
instance top.d2.g3

module gizmo
instance top.d2.g4

module dev
instance top.d2

The following are example entries in a configuration file for the small
design shown in Figure 4-1.

instance top.d1 0

Initialize the variables, registers and memories in the instance
top.d1 to value 0.

tree top 0 0
tree top.d1 0 x

4-26

Compiling the Design

The first entry initializes all variables, registers and memories in
the design to value 0. The second entry changes the initial values
from 0 to x for the variables, registers and memories in the
instance top.d1 and all instances beneath top.d1, namely
top.d1.g1 and top.d1.g2.

module gizmo 1

Initialize the variables, registers and memories in all instances of
the module gizmo to value 1, namely top.d1.g1, top.d1.g2,
top.d2.g3, and top.d2.g4.

modtree dev 0 random

Initialize the variables, registers and memories in both instances
of module dev and all four instances beneath those instances
with random values. Module top is not initialized.

modtree dev 0 random
instance top.d1.g2 x

The first entry is described in the previous example. The second
entry changes the initial values from random values to x for the
variables, registers and memories in the instance top.d1.g2.

Selections for Initialization of Registers or Memories

When the +vcs+initreg+random or
+vcs+initreg+config+config_file option is specified at
compile-time, you can include one of the following initialization
options:

- +vcs+initreg+random+nomem

- +vcs+initreg+random+noreg

4-27

Compiling the Design

The +vcs+initreg+random+nomem option disables initialization
of memories or multi-dimensional arrays (MDAs). This option allows
initialization of variables that do not have a dimension.

Conversely, the +vcs+initreg+random+noreg option disables
initialization of variables that do not have a dimension. This option
allows initialization of memories or MDAs.

Reporting the Initialized Values of Variables, Registers
and Memories

The VCS_PRINT_INITREG_INITIALIZATION environment
variable enables printing of all initialized variables, registers,
memories, and their initialized values to a file named
vcs_initreg_random_value.txt.

For example:

% setenv VCS_PRINT_INITREG_INITIALIZATION 1

Overriding Parameters

There are two compile-time options for changing parameter values
from the vcs command line:

• -pvalue

• -parameters

You specify a parameter with the -pvalue option. It has the
following syntax:

vcs -pvalue+hierarchical_name_of_parameter=value

4-28

Compiling the Design

For example:

vcs source.v -pvalue+test.d1.param1=33

You specify a file with the -parameters option. The file contains
command lines for changing values. A line in the file has the
following syntax:

assign value path_to_the_parameter

Here:

assign

Keyword that starts a line in the file.

value

New value of the parameter.

path_to_the_parameter

Hierarchical path to the parameter. This entry is similar to a Verilog
hierarchical name except that you use forward slash characters
(/), instead of periods, as the delimiters.

The following is an example of the contents of this file:

assign 33 test/d1/param1
assign 27 test/d1/param2

Note:
The -parameters and -pvalue options do not work with a
localparam or a specparam.

4-29

Compiling the Design

Checking for x and z Values In Conditional Expressions

The -xzcheck compile-time option tells VCS to display a warning
message when it evaluates a conditional expression and finds it to
have an x or Z value.

A conditional expression is of the following types or statements:

• A conditional or if statement:

if(conditional_exp)
 $display("conditional_exp is true");

• A case statement:

case(conditional_exp)
 1’b1: sig2=1;
 1’b0: sig3=1;
 1’bx: sig4=1;
 1’bz: sig5=1;
endcase

• A statement using the conditional operator:

reg1 = conditional_exp ? 1’b1 : 1’b0;

The following is an example of the warning message that VCS
displays when it evaluates the conditional expression and finds it to
have an x or z value:

warning ’signal_name’ within scope hier_name in file_name.v:
line_number to x/z at time simulation_time

VCS displays this warning every time it evaluates the conditional
expression to have an x or z value, not just when the signal or
signals in the expression transition to an x or z value.

4-30

Compiling the Design

VCS does not display a warning message when a sub-expression
has the value x or z, but the conditional expression evaluates to a
1 or 0 value. For example:

r1 = 1’bz;
r2 = 1’b1;
if ((r1 && r2) || 1’b1)
 r3 = 1;

In this example, the conditional expression always evaluates to a
value of 1. Therefore, VCS does not display a warning message.

Enabling the Checking

The -xzcheck compile-time option globally checks all the
conditional expressions in the design and displays a warning
message every time it evaluates a conditional expression to have an
x or z value. You can suppress or enable these warning messages
on selected modules using $xzcheckoff and $xzcheckon
system tasks. For more details on $xzcheckoff and $xzcheckon
system tasks, see “Checking for X and Z Values in Conditional
Expressions” on page 41.

The -xzcheck compile-time option has an optional argument to
suppress the warning for glitches evaluating to x or z value.
Synopsys calls these glitches as false negatives. See “Filtering Out
False Negatives” .

Filtering Out False Negatives

By default, if a signal in a conditional expression transitions to an x
or z value and then to 0 or 1 in the same simulation time step, VCS
displays the warning.

4-31

Compiling the Design

Example 1

In this example, VCS displays the warning message when reg r1
transitions from 0 to x to 1 during simulation time 1.

Example 4-5 False Negative Example

module test;
reg r1;

initial
begin
r1=1'b0;
#1 r1=1'bx;

#0 r1=1'b1;
end

always @ (r1)
begin
if (r1)
 $display("\n r1 true at %0t\n",$time);
else
 $display("\n r1 false at %0t\n",$time);
end
endmodule

Example 2

In this example, VCS displays the warning message when reg r1
transitions from 1 to x during simulation time 1.

Example 4-6 False Negative Example

module test;
reg r1;

initial
begin
r1=1'b0;
#1 r1<=1'b1;
r1=1'bx;

4-32

Compiling the Design

end
always @ (r1)
begin
if (r1)
 $display("\n r1 true at %0t\n",$time);
else
 $display("\n r1 false at %0t\n",$time);
end

endmodule

If you consider these warning messages to be false negatives, use
the nofalseneg argument to the -xzcheck option to suppress the
messages.

For example:

% vcs -xzcheck nofalseneg example.v

If you compile and simulate example1 or example2 with the
-xzcheck rcompilation option, but without the nofalseneg
argument, VCS displays the following warning about signal r1
transitioning to an x or z value:

r1 false at 0
Warning: 'r1' within scope test in source.v: 13 goes to x/
z at time 1

 r1 false at 1

 r1 true at 1

If you compile and simulate the examples shown earlier in this
chapter, Example 1 or Example 2, with the
-xzcheck rcompilation option and the nofalseneg argument,
VCS does not display the warning message.

4-33

Compiling the Design

VCS V2K Configurations and Libmaps

Library mapping files are an alternative to the defacto standard way
of specifying Verilog library directories and files with the -v, -y, and
+libext+ext compile-time options and the ‘uselib compiler
directive.

Configurations use the contents of library mapping files to specify
what source code to use to resolve instances in other parts of your
source code.

Library mapping and configurations are described in Std 1364-2001
IEEE Verilog Hardware Description Language. There is additional
information on SystemVerilog in Std 1800-2009 IEEE Standard for
SystemVerilog - Unified Hardware Design, Specification, and
Verification Language.

It specifies that SystemVerilog interfaces can be assigned to logical
libraries.

Library Mapping Files

A library mapping file enables you to specify logical libraries and
assign source files to these libraries. You can specify one or more
logical libraries in the library mapping file. If you specify more than
one logical library, you are also specifying the search order VCS
uses to resolve instances in your design.

The following is an example of the contents of a library mapping file:

library lib1 /net/design1/design1_1/*.v;
library lib2 /net/design1/design1_2/*.v;

4-34

Compiling the Design

Note:
Path names can be absolute or relative to the current directory
that contains the library mapping file.

In this example library mapping file, there are two logical libraries.
VCS searches the source code assigned to lib1 first to resolve
module instances (or user-defined primitive or SystemVerilog
interface instances) because that logical library is listed first in the
library mapping file.

When you use a library mapping file, source files that are not
assigned to a logical library in this file are assigned to the default
logical library named work.

You specify the library mapping file with the -libmap during
compilation.

Resolving ‘include Compiler Directives

The source file in a logical library might include the ‘include
compiler directive. If so, you can include the -incdir option on the
line in the library mapping file that declares the logical library, for
example:

library gatelib /net/design1/gatelib/*.v -incdir /
net/
design1/spec1lib, /net/design1/spec2lib;

Note:

The -incdir option specified in the library mapping file overrides
the +incdir option specified in the VCS command line.

4-35

Compiling the Design

Configurations

Verilog 2001 configurations are sets of rules that specify what source
code is used for particular instances.

Verilog 2001 introduces the concept of configurations and it also
introduces the concept of cells. A cell is like a VHDL design unit. A
module definition is a type of cell, as is a user-defined primitive.
Similarly, a configuration is also a cell. A SystemVerilog interface and
testbench program block are also types of cells.

Configurations do the following:

• Specify a library search order for resolving cell instances (as does
a library mapping file)

• Specifies overrides to the logical library search order for specified
instances

• Specifies overrides to the logical library search order for all
instances of specified cells

You can define a configuration in a library mapping file or in any type
of Verilog source file outside the module definition .

Configurations can be mapped to a logical library just like any other
type of cell.

Configuration Syntax

A configuration contains the following statements:

config config_identifier;
design [library_identifier.]cell_identifier;
config_rule_statement;
endconfig

4-36

Compiling the Design

Where:

config

Is the keyword that begins a configuration.

config_identifier

Is the name you enter for the configuration.

design

Is the keyword that starts a design statement for specifying the
top of the design.

[library_identifier.]cell_identifier;

Specifies the top-level module (or top-level modules) in the design
and the logical library for this module (modules).

config_rule_statement

Zero, one, or more of the following clauses: default, instance,
or cell.

endconfig

Is the keyword that ends a configuration.

The default Clause

The default clause specifies the logical libraries in which to search
to resolve a default cell instance. A default cell instance is an
instance in the design that is not specified in a subsequent
instance or cell clause in the configuration.

You specify these libraries with the liblist keyword. The following
is an example of a default clause:

4-37

Compiling the Design

default liblist lib1 lib2;

This default clause specifies resolving default instances in the
logical libraries names lib1 and lib 2.

Note:

- Do not enter a comma (,) between logical libraries.

- The default logical library work, if not listed in the list of logical
libraries, is appended to the list of logical libraries and VCS
searches the source files in work last.

The instance Clause

The instance clause specifies something about a specific
instance. What it specifies depends on the use of the liblist or
use keywords:

liblist

Specifies the logical libraries to search to resolve the instance.

use

Specifies that the instance is an instance of the specified cell in
the specified logical library.

The following are examples of instance clauses:

instance top.dev1 liblist lib1 lib2;

This instance clause tells VCS to resolve instance top.dev1 with
the cells assigned to logical libraries lib1 and lib2;

instance top.dev1.gm1 use lib2.gizmult;

4-38

Compiling the Design

This instance clause tells VCS that top.dev1.gm1 is an
instance of the cell named gizmult in logical library lib2.

The cell Clause

A cell clause is similar to an instance clause except that it
specifies something about all instances of a cell definition instead of
specifying something about a particular instance. What it specifies
depends on the use of the liblist or use keywords:

liblist

Specifies the logical libraries to search to resolve all instances of
the cell.

use

The specified cell’s definition is in the specified library.

Hierarchical Configurations

A design can have more than one configuration. You can, for
example, define a configuration that specifies the source code you
use in particular instances in a subhierarchy, then you can define a
configuration for a higher level of the design.

Suppose, for example, a subhierarchy of a design was an eight-bit
adder and you have RTL Verilog code describing the adder in a
logical library named rtllib and you have gate-level code
describing the adder in a logical library named gatelib. If, for
example, you wanted the gate-level code used for the 0 (zero) bit of
the adder and the RTL level code used for the other seven bits, the
configuration might appear as:

config cfg1;
design aLib.eight_adder;

4-39

Compiling the Design

default liblist rtllib;
instance adder.fulladd0 liblist gatelib;
endconfig

Now, if you were going to instantiate this eight-bit adder eight times
to make a 64-bit adder, you would use configuration cfg1 for the first
instance of the eight-bit adder, but not in any other instance. A
configuration that would perform this function is as follows:

config cfg2;
design bLib.64_adder;
default liblist bLib;
instance top.64add0 use work.cfg1:config;
endconfig

The -top Compile-time Option

VCS has the -top compile-time option for specifying the
configuration that describes the top-level configuration or module of
the design, for example:

vcs -top top_cfg ...

If you have coded your design to have more than one top-level
module, you can enter more than one -top option, or you can
append arguments to the option using the plus delimiter. For
example:

-top top_cfg+test+

Using the -top options tells VCS not to create extraneous top-level
modules, that is, one that you do not specify.

4-40

Compiling the Design

Limitations of Configurations

In the current implementation, V2K configurations have the following
limitations:

• You cannot specify source code for user-defined primitives in a
configuration.

• The VPI functionality, described in section 13.6 "Displaying library
binding information" in the Std 1364-2001 IEEE Verilog Hardware
Description LRM, is not implemented.

Lint Warning Message for Missing ‘endcelldefine

You can tell VCS to display a lint warning message if your Verilog or
SystemVerilog code contains a ‘celldefine compiler directive
without a corresponding ‘endcelldefine compiler directive and
vice versa.

You enable this warning message with the +lint=CDUB VCS
compile-time option . The CDUB argument stands for “compiler
directives unbalanced.”

The examples in this section show the warning message and the
source code that results in its display.

Example 4-7 Source Code with Missing ‘endcelldefine

`celldefine
module mod;
endmodule

In this example there is no corresponding ‘endcelldefine
compiler directive.

4-41

Compiling the Design

In VCS, if you enter the following vcs command line:

vcs exp1.v +lint=CDUB

VCS displays the following Lint warning message:

Lint-[CDUB] Compiler directive unbalanced
exp1.v, 1
 Unbalanced compiler directive is detected : `celldefine
 has no matching `endcelldefine.
 Please make sure that all directives are balanced.

The source code in Example 4-8 does not display this warning
message when you include the +lint=CDUB.

Example 4-8 Source Code with ‘celldefine and ‘endcelldefine

`celldefine
module mod;
endmodule
`endcelldefine

It doesn’t display the warning message because there is an
‘endcelldefine compiler directive after the ‘celldefine
compiler directive in the source code.

Instead of the ‘endcelldefine compiler directive you can
substitute the ‘resetall compiler directive, as shown in Example
4-9.

Example 4-9 Source Code with ‘celldefine and ‘resetall

`celldefine
module mod;
endmodule
`resetall

4-42

Compiling the Design

The source code in both Example 4-8 and Example 4-9 do not result
in the warning message when you include the +lint=CDUB option.

Also with the +lint=CDUB option, if your source code contains an
‘endcelldefine compiler directive without the preceding and
corresponding ‘celldefine compiler directive, you see a similar
warning message.

Example 4-10 ‘endcelldefine Without a Preceding and Corresponding
‘celldefine

module mod;
endmodule
`endcelldefine

With the +lint=CDUB option, this source code results in the
following lint warning message:

Lint-[CDUB] Compiler directive unbalanced
exp6.v, 3
 Unbalanced compiler directive is detected : ̀ endcelldefine
 has no matching `celldefine.
 Please make sure that all directives are balanced.

With the +lint=CDUB option, it is not just that the number of
‘endcelldefine compiler directives must be equal to the number
of ‘celldefine compiler directives. The ‘endcelldefine
compiler directive must follow the ‘celldefine compiler directive
before there is another ‘celldefine compiler directive.

Example 4-11 Equal Number of ‘celldefine and ‘endcelldefine But Not in the
Required Sequence

`celldefine \\ line 1
module mod;
endmodule

`celldefine

4-43

Compiling the Design

module schmodule;
endmodule

`endcelldefine

`endcelldefine \\ line 11

In Example 4-11 the number of ‘celldefine compiler directives
matches the number of ‘endcelldefine compiler directives, but
they are not in a corresponding sequence, and so result in the
following lint warning messages:

Lint-[CDUB] Compiler directive unbalanced
exp5.v, 1
 Unbalanced compiler directive is detected : `celldefine
 has no matching `endcelldefine.
 Please make sure that all directives are balanced.

Lint-[CDUB] Compiler directive unbalanced
exp5.v, 11
 Unbalanced compiler directive is detected : ̀ endcelldefine
 has no matching `celldefine.
 Please make sure that all directives are balanced.

Limitation

The ‘celldefine/‘endcelldefine compiler directives must be
matched serially. Recursive ‘celldefine/‘endcelldefine
directives are not supported with the +lint=CDUB option and
keyword argument, for example:

Example 4-12 Recursive ‘celldefine/‘endcelldefine compiler directives

‘celldefine
‘celldefine
module dev (...,...);
‘celldefine
‘celldefine
module dev (...,...);

4-44

Compiling the Design

 ...
endmodule
‘endcelldefine
‘endcelldefine

Example 4-12 shows redundant and unnecessary ‘celldefine
and ‘endcelldefine compiler directives, but does not prevent
compilation. The +lint=CDUB option and keyword argument
triggers the Lint compiler directives unbalanced message when VCS
reads another ‘celldefine directive before reading an
‘endcelldefine directive,

Error/Warning/Lint Message Control

You can control error, warning, and lint messages two ways:

• With the -error, -suppress, +lint, and +warn compile-
options, see “Controlling Error/Warning/Lint Messages Using
Compile-Time Options” on page 45.

• With a configuration file that you specify with the following
compile-time option:

-msg_config=message_configuration_file_name

Using a configuration file, you can control lint, warning, and error
messages that VCS displays according to the following:

- by source file name

- by module name

- by design subhierarchy

See “Controlling Error/Warning/Lint Messages Using a
Configuration File” .

4-45

Compiling the Design

Controlling Error/Warning/Lint Messages Using
Compile-Time Options

The -error, -suppress, +lint, and +warn options control error
and warning messages. With them you can:

• disable the display of any lint, warning or error messages

• disable the display of specific messages

• limit the display of specific messages to a maximum number that
you specify

To control the display of specific messages you will need the
message ID. A messages ID is the character string in a messages
between the square brackets [], as shown in Figure 4-2.

Note:
The -error option is also a runtime option.

Figure 4-2 Message IDs

Warning-[MFACF] Missing flag argument
 Argument for flag 'verboseLevel' is missing in config statement, it will be
 ignored.
 Config file : error_id0_id1.cfg, starting at line 4.

message ID

The message ID in Figure 4-2 is MFACF.

The new compile-time options for controlling messages and their
syntax are as follows:

4-46

Compiling the Design

-error=[no]message_ID[:max_number],...|none|all

-error=all,noWarn_ID|noLint_ID

+warn=[no]message_ID[:max_number],...|none|all

+lint=[no]message_ID[:max_number],...|none|all

-suppress[=message_ID,...]

Note:
The -error option is also a runtime option. However, only the
following feature is supported at runtime:

-error=[no]message_ID[:max_number],...

These compile-time options and their arguments are described in the
following sections:

• “Controlling Error Messages”

• “Controlling Lint Messages”

• “Suppressing Lint, Warning, and Error Messages”

• “Error Conditions and Messages That Cannot Be Disabled”

• “Using Message Control Options Together”

Controlling Error Messages

You can control error messages with the -error option in the
following ways:

4-47

Compiling the Design

• Limit the number of occurrences of an error message to a number
you specify. You do so by specifying the message ID as an
argument to the -error option along with the specified maximum
number of occurrences.

• Disable the display of all error messages which are downgradable
with the none argument .

• Enables the display of all error/warnings/lint messages with the
all argument to the -error option.

Upgrading Lint and Warning Messages to Error Messages

If you enter the message ID for a warning or lint message as an
argument to the -error option, VCS upgrades the condition causing
the warning or lint message to an error condition and an error
message.

Controlling Warning Messages

Like error messages, you can control warning messages with the
+warn option in the following ways:

• Limit the number of occurrences of a warning message to a
number you specify. You do so by specifying the message ID as
an argument to the +warn option along with the specified
maximum number of occurrences.

• Disable the display of a particular warning message by entering
the keyword no as an argument and appending to this keyword
the message ID, for example:

+warn=noTFIPC

This option disables the display of the error message with the
TFIPC message ID.

4-48

Compiling the Design

Important:
Do not enter a maximum number of occurrences, even if 0, if also
appending the no keyword to the message ID.

• Disable the display of all warning messages with the none
argument to the +warn option.

• Enable the display of all warning messages with the all argument
to the +warn option.

• Controls the display of all notes. For example,

+warn=noFCICIO

This option suppresses the display of the following note:

Note-[FCICIO] Instance coverage is ON

Upgrading Lint Messages to Warning Messages

Important:
- All lint/warning messages are suppressible. But only some of

the error messages can be downgraded or suppressed.

- You cannot downgrade all error conditions and messages to a
warning condition and message. Entering a message ID for an
error message that can’t be downgraded as an argument to the
+warn option results in VCS ignoring the message ID and
displaying a warning message similar to the following:

Warning-[CSMC] Cannot set message count
 Failed to set display count for message id 'TFAFTC'
because cannot set count
 for non-warning ID in '+warn' switch.
 Specified count is ignored.

For an example of this warning see “Example 4: An Error Message
That Can’t Be Controlled” .

4-49

Compiling the Design

This warning message was in response to the following +warn
option:

+warn=TFAFTC:2

When TFATFC is the ID for the following error message:

Error-[TFAFTC] Too few arguments to function/task call
tfatc_err.v, 9
"wrFld4(.bus(1));"
 The above function/task call is not done with sufficient
arguments.

Controlling Lint Messages

Like error and warning messages, you can control lint messages
with the +lint option in the following ways:

• You can limit the number of occurrences of a lint message to a
number you specify. You do so by specifying the message ID as
an argument to the +lint option along with the specified
maximum number of occurrences.

You can enter a maximum of 0 to disable any display of the
message specified by the message ID, see “Example 2: Reducing
the number of lint messages” .

Important:

Do not:

- Enter a maximum number of occurrences, even if 0, if also
appending the no keyword to the message ID.

- Disable the display of all lint messages with the none argument
to the +lint option.

4-50

Compiling the Design

- Enable the display of all lint messages with the all argument
to the +lint option.

Important:

You cannot downgrade an error or warning condition and message
to a lint condition and message.

Suppressing Lint, Warning, and Error Messages

The -suppress option suppresses lint, warning, and error
messages. The -suppress option with no argument should
suppress all warnings/lint and downgradable error messages

If you enter a message ID argument, and the message is
downgradable, VCS does not display that message. You can enter
the ID for any lint, warning, or downgradable error message.

The -suppress option gives you a message control option that
takes a higher precedence that the -error, +warn, or +lint
options when you enter more that one of these options, see “Using
Message Control Options Together” .

Note:
The -error option is also a runtime option.

Error Conditions and Messages That Cannot Be Disabled

Some error conditions always terminate compilation without creating
an executable and cannot be controlled or suppressed by the
-error or -suppress options.

• syntax errors

• fatal error messages, those from error conditions that immediately
halt compilation

4-51

Compiling the Design

Using Message Control Options Together

If you are entering more than one of these message control options,
you will need to know their precedence when used together. The
order of precedence is as follows, from highest to lowest:

3. The -suppress option with no arguments, suppresses all
possible messages and cannot be overridden by another
message control option.

4. The none argument has a higher precedence than specifying all
or a message ID.

5. The order on the vcs command line

The following options and arguments have the same intrinsic
precedence:

-suppress=messageID

-error=messageID:max -error=all

 +warn=messageID:max +warn=all

 +lint=messageID:max +lint=all

Because they have equal intrinsic precedence, the order on the vcs
command line determines relative precedence, and so the first of
these options on the command line has the least precedence and the
last of these has the most.

Message Control Examples

The following examples show how to use these options.

Example 1: Reducing the number of warning messages

If you have small system verilog source file named as
diff_clk_wosvaext.sv with the following content,

4-52

Compiling the Design

1 module top #(Pa = 1);
2 bit a , c, clk;
3 wand b1;
4 wand c1;
5
6 clocking cb2 @(posedge clk);
7 endclocking
8
9 sequence S2();
10 @(cb2)
$past($past(a,,$stable($isunknown(1'bx),@(negedge
clk)),@(posedge clk)),,$sampled(a),@(negedge clk));
11 endsequence
12
13 property P1();
14 @(cb2 , posedge clk iff($stable(b1,@(posedge clk))))
$stable($past(b1,,,@(posedge clk)),@(negedge clk));
15 endproperty
16
17 A1: assume property (@(S2) S2);
18 A2: assume property (@(S2) P1());
19 A3: assume property (@(cb2) disable iff($stable(c1)) P1);
20 A4: assume property (@(cb2) disable
iff($sampled($past(c1,,,@(clk)))) first_match (S2));
21
22 sequence S3();
23 @(cb2) S2() ##1 @(negedge clk) $stable(b1 || $sampled(c1),
@(posedge clk));
24 endsequence
25
26 A5: cover property (@(S2) S3);
27 initial begin
28 a = 1;
29 repeat (20)
30 #5 clk = !clk;
31 end
32 endmodule

If you compile the above system Verilog file with following command,

vcs -sverilog diff_clk_wosvaext.sv

4-53

Compiling the Design

VCS displays following warning messages:

Warning-[SVA-LCDNAWPSC] Lead and property/sequence clocks
differ
diff_clk_wosvaext.sv, 17
top
 Leading clock of expression does not agree with property/
sequence clock.
 Leading clock will be applied.
 property/sequence clock: S2
 leading clock: posedge clk

Warning-[SVA-LCDNAWPSC] Lead and property/sequence clocks
differ
diff_clk_wosvaext.sv, 18
top
 Leading clock of expression does not agree with property/
sequence clock.
 Leading clock will be applied.
 property/sequence clock: S2
 leading clock: top.cb2,posedge clk iff $stable(b1,
@(posedge clk))

Warning-[SVA-LCDNAWPSC] Lead and property/sequence clocks
differ
diff_clk_wosvaext.sv, 19
top
 Leading clock of expression does not agree with property/
sequence clock.
 Leading clock will be applied.
 property/sequence clock: posedge clk
 leading clock: top.cb2,posedge clk iff $stable(b1,
@(posedge clk))

Warning-[SVA-LCDNAWPSC] Lead and property/sequence clocks
differ
diff_clk_wosvaext.sv, 26
top
 Leading clock of expression does not agree with property/

4-54

Compiling the Design

sequence clock.
 Leading clock will be applied.
 property/sequence clock: S2
 leading clock: posedge clk

VCS displays the same warning four times, if you want to control the
number of warning messages, you can use the compile time option
+warn=warn_ID:n...

For example

vcs -sverilog +warn=SVA-LCDNAWPSC:1 diff_clk_wosvaext.sv

VCS limits the warning messages to one.

Warning-[SVA-LCDNAWPSC] Lead and property/sequence clocks
differ
diff_clk_wosvaext.sv, 17
top
 Leading clock of expression does not agree with property/
sequence clock.
 Leading clock will be applied.
 property/sequence clock: S2
 leading clock: posedge clk

Example 2: Reducing the number of lint messages

If you have small SystemVerilog source file named as top.sv with
the following content,

1 `celldefine
2 module sub;
3 endmodule
4
5 `celldefine
6 module sub1;
7 endmodule
8
9 `celldefine

4-55

Compiling the Design

10 module top;
11 sub inst();
12 sub1 inst1();
13 endmodule

By default all lint messages are disabled if you want to enable the lint
message you need to use the compile time option +lint=lint_ID.
For example:

vcs -sverilog +lint=CDUB top.sv

VCS displays the following lint messages during compilation.

Lint-[CDUB] Compiler directive unbalanced
top.sv, 1
 Unbalanced compiler directive is detected : `celldefine
has no matching
 `endcelldefine.
 Please make sure that all directives are balanced.

Lint-[CDUB] Compiler directive unbalanced
top.sv, 5
 Unbalanced compiler directive is detected : `celldefine
has no matching
 `endcelldefine.
 Please make sure that all directives are balanced.

Lint-[CDUB] Compiler directive unbalanced
top.sv, 9
 Unbalanced compiler directive is detected : `celldefine
has no matching
 `endcelldefine.
 Please make sure that all directives are balanced.

If you want to control the number of lint messages printed in the
compile time you can use +lint=lint_ID:n... For example:

vcs -sverilog +lint=CDUB:1 top.sv

4-56

Compiling the Design

Now VCS controls the number of lint messages printed to one:

Lint-[CDUB] Compiler directive unbalanced
top.sv, 1
 Unbalanced compiler directive is detected : `celldefine
has no matching
 `endcelldefine.
 Please make sure that all directives are balanced

Example 3: Upgrading Multiple Warnings to One Error

If you have a Verilog file named tfpic.v with the following contents:

module top();
wire a,b,c;
child child_position_instance(a,b);
child child_name_instance(.b(b));
endmodule

module child(input a, input b, input c);
endmodule

Notice that module child has three input ports, but the module
instantiation statements have only two or one port connection.

If you compile this source file without message control:

vcs tfpic.v

VCS displays the following during compilation:

Warning-[TFIPC] Too few instance port connections
 The following instance has fewer port connections than the
module definition
 "tfipc.v", 3: child child_position_instance(a, b);

Warning-[TFIPC] Too few instance port connections
 The following instance has fewer port connections than the

4-57

Compiling the Design

module definition
 "tfipc.v", 4: child child_name_instance(.b (b));

Warning-[TFIPC] Too few instance port connections
 The following instance has fewer port connections than the
module definition
 "tfipc.v", 4: child child_name_instance(.b (b));

If you recompile specifying that message ID TFIPC is upgraded to an
error, and display this error message no more that once:

vcs tfpic.v -error=TFIPC:1

VCS displays:

Error-[TFIPC] Too few instance port connections
 The following instance has fewer port connections than the
module definition
 "tfipc.v", 3: child child_position_instance(a, b);

1 error

Example 4: An Error Message That Can’t Be Controlled

If you have a Verilog file named tfatf_err.v with the following contents:

module top;
 task wrFld4(input string fldName, input int bus = 0,input
string fldName2);
 $display("In wrFld4");
 endtask
 task wrFld4_2(input int bus = 0,input string fldName);
 $display("In wrFld4");
 endtask
 initial begin
 wrFld4(.bus(1)); // this is line 9
 wrFld4(,1); // 10

4-58

Compiling the Design

 wrFld4_2(.bus(1)); // 11
 end
endmodule

Task wrFld4 has three input ports. Task wrFld4_2 has two input
ports, but the task enabling statements for them have only one
connection.

VCS displays the following during compilation:

Error-[TFAFTC] Too few arguments to function/task call
tfatc_err.v, 9
"wrFld4(.bus(1));"
 The above function/task call is not done with sufficient
arguments.

Error-[TFAFTC] Too few arguments to function/task call
tfatc_err.v, 10
"wrFld4(, 1);"
 The above function/task call is not done with sufficient
arguments.

Error-[TFAFTC] Too few arguments to function/task call
tfatc_err.v, 10
top, "wrFld4(, 1);"
 The above function/task call is not done with sufficient
arguments.

Error-[TFAFTC] Too few arguments to function/task call
tfatc_err.v, 11
top, "wrFld4_2(1);"
 The above function/task call is not done with sufficient
arguments.

The error message with the ID TFAFTC displays four times. If you
recompile while specifying that this error message display only once:

4-59

Compiling the Design

vcs tfatc_err.v -sverilog -error=TFAFTC:1

VCS displays:

Warning-[CSMC] Cannot set message count
 Failed to set display count for message id 'TFAFTC' because
it cannot be
 suppressed.
 Specified count is ignored.

Parsing design file 'tfatc_err.v'

Error-[TFAFTC] Too few arguments to function/task call
tfatc_err.v, 9
"wrFld4(.bus(1));"
 The above function/task call is not done with sufficient
arguments.

Error-[TFAFTC] Too few arguments to function/task call
tfatc_err.v, 10
"wrFld4(, 1);"
 The above function/task call is not done with sufficient
arguments.

Error-[TFAFTC] Too few arguments to function/task call
tfatc_err.v, 10
top, "wrFld4(, 1);"
 The above function/task call is not done with sufficient
arguments.

Error-[TFAFTC] Too few arguments to function/task call
tfatc_err.v, 11
top, "wrFld4_2(1);"
 The above function/task call is not done with sufficient
arguments.

1 warning
4 errors

4-60

Compiling the Design

None of the error messages are disabled and there is a warning
saying that VCS can’t limit the display of the message.

Example 5: Syntax Using the -suppress option

If you have SystemVerilog file example.sv with the following
content:

1 module top;
2 wire [5:0]data;
3 longint result,result1,result2,result3,result4;
4 assign data = 6'h2345;
5 initial
6 begin
7 result = $clog2(4294967296); //2 ** 32
8 result4 = $clog2(2147483648); //2 ** 31
9 result3 = $clog2(1073741824); //2 ** 30
10 result1=2**16;
11 result2=result1*result1;
12 $display("clog: %0d result2 %0d \n",result,result2);
13 $display("clog3: %0d \n",result3);
14 $display("clog43: %0d \n",result4);
15 end
16 endmodule

If you compile this file normally:

vcs -sverilog exmaple.sv

VCS display following warning messages:

Warning-[TMBIN] Too many bits in Based Number
example.sv, 4
 The specified width is '6' bits, actually got '16' bits.
 The offending number is : '2345'.

Warning-[DCTL] Decimal constant too large

4-61

Compiling the Design

example.sv, 7
 Decimal constant is too large to be handled in compilation.
 Absolute value 4294967296 should be smaller than
2147483648.

Warning-[DCTL] Decimal constant too large
example.sv, 8
 Decimal constant is too large to be handled in compilation.
 Absolute value 2147483648 should be smaller than
2147483648.

If you are using -supress option with the command line all warning
messages will suppressed.

For example if you are using:

vcs -sverilog -suppress example.sv

The -suppress option suppresses all warning/lint/downgradable
error messages.

Controlling Error/Warning/Lint Messages Using a
Configuration File

Using a configuration file, you can control lint, warning, and error
messages that VCS displays according to the following:

• by source file name

• by module name

• by design subhierarchy

You control these messages with entries in a configuration file that
you specify with the following compile-time option:

4-62

Compiling the Design

-msg_config=message_configuration_file_name

In this message configuration file the basic rules are as follows:

• Each configuration entry is enclosed in braces or curly brackets
{ }; for example:

{ +warn=noTFIPC;
 +file=$VCS_HOME/vmm.sv;
}

This entry specifies disabling the warning message with the
TFIPC message ID about the content of the vmm.sv source file
in the VCS installation.

• Each entry can have only one message operation command,
beginning with one the following keywords:

+lint +warn -error -suppress

• There can be multiple control conditions specified in same the
entry, beginning with the following keywords:

+file +module +tree -file -module and -tree

• Message operation commands and control conditions that begin
with + are for including something; those that begin with - are for
excluding something.

• The message operation command and control conditions are
separated with a semicolon ; or white space or return.

Note:

- any + control condition, such as +file, cannot be used
together with its corresponding - control condition, such as
-file, in same configuration entry.

4-63

Compiling the Design

- VCS reports an error condition if you specify conflicting control
conditions for same message ID.

The sections in this section are:

• “Controlling Lint Messages”

• “Controlling Warning Messages”

• “Controlling Error Messages”

• “Upgrading Lint and Warning Messages to Error Messages”

• “Downgrading Error Messages to Warning Messages”

• “Suppressing All Types of Messages”

• “Enabling and Disabling by Source File”

• “Enabling and Disabling by Module Definition”

• “Enabling and Disabling by Subhierarchy”

Controlling Lint Messages

Lint messages are disabled by default so the lines in the
configuration file are to enable their display.

You specify that you want to enable lint messages with a message
operation command line in a configuration entry that begins with
+lint=arguments. The arguments you can enter are as follows:

+lint=all

To specify that the lines that follow are for enabling the display of
all lint messages.

+lint=ID1,ID2...

4-64

Compiling the Design

A comma separated list of lint message IDs to specify that you
want to enable these specific lint messages, for example:

+lint=CDUB,NCEID

This list of IDs specifies that you are enabling the display of the
lint messages with the CDUB and NCEID message IDs.

+lint=none

To specify that the lines that follow are for disabling the display of
all lint messages for a particular control condition in a configuration
entry.

+lint=all,noID1,noID2...

A comma separated list of message IDs, each preceded by no,
and no space between the no and the IDs, to specify that you
want to disable these specified lint messages in a configuration
entry.

About the +lint message operation command:

• It suppresses the lint messages for the specified modules (see
“Enabling and Disabling by Module Definition”) when you enter
the +lint=none message operation command.

• It suppresses the specific lint messages for the specified modules
when you enter the +lint=noID message operation command.

Controlling Warning Messages

You specify that you want to disable warning messages with the
+warn=arguments message operation command. The arguments
you can enter are as follows:

4-65

Compiling the Design

+warn=none

To specify that the lines that follow are for disabling the display of
all warning messages.

+warn=noID1,noID2...

A comma separated list of message IDs, each preceded by no
and no space between the no and the IDs, to specify that you
want to disable these specific warning messages, for example:

+warn=noMFACF,noCSMC

This list of IDs specifies that you are disabling the display of the
warning messages with the MFACF and CSMC message IDs.

Note the following about the +warn message operation command:

• It suppresses the warning messages for the specified modules
when you enter the +warn=none message operation command.

• It suppresses the specific warning messages for the specified
modules when you enter the +warn=noID message operation
command.

Controlling Error Messages

Error messages, like warning messages, are enabled by default. You
can use the configuration file to do the following:

• Upgrade lint and warning messages to error messages

• Downgrade applicable error messages to warning messages (not
all error messages are downgradable).

4-66

Compiling the Design

Upgrading Lint and Warning Messages to Error Messages

You specify that you want to upgrade lint and warning messages to
error messages with the -error=arguments message operation
command in the configuration entry. The arguments you can enter
are as follows:

-error=all

Upgrades all lint and warning messages to error messages.

-error=ID1,ID2...

A comma separated list of lint and warning message IDs to specify
that you want to upgrade them to error messages, for example:

-error=CDUB,MFACF

This list of IDs specifies that you are upgrading the lint message
with the ID of CDUB and the warning message with the ID of MFACF
to error messages.

Downgrading Error Messages to Warning Messages

You specify that you want to downgrade error messages to warning
messages with a message operation command in the configuration
entry that begins with:

-error=noID1,noID2...

The comma separated list is a list of error message IDs, preceded
by the keyword no, for example:

-error=noURMI,noETMFCB

4-67

Compiling the Design

Not all error messages are downgradable. If you enter an error
message ID for an undowngradable error message, you will see a
different error message indicating that it’s not downgradable.

Important:

You cannot downgrade all error messages to warning messages
with the following line:

-error=none

Suppressing All Types of Messages

You can disable the display of all these types of messages
informational, lint, warning, and error messages, with a line in the
configuration file beginning with the -suppress or
-suppress=arguments message operation command except the
error messages that cannot be downgraded.

Note:

The -suppress message operation command cannot suppress
non-downgradable error messages.

The arguments you can enter are as follows:

-suppress without an argument

Suppress all downgradable messages. This message operation
command is the equivalent of the -error=none message
operation command.

-suppress=ID1,ID2...

A comma separated list of message IDs to specify that you want
to suppress specific lint, warning, or error messages, for example:

-suppress=CDUB,CSMC

4-68

Compiling the Design

This list of IDs specifies that you are suppressing the display of
the lint message with the CDUB ID and the warning message with
the CSMC IDs.

Enabling and Disabling by Source File

You can enable or disable lint, warning, and error messages for
specific source files by adding the following control conditions to
message operation command the configuration entry:

+file=source_file_list

The source file list is a comma separated list of source files without
spaces between them, for example:

+file=top.sv,introctr.sv,arbit.sv

This control condition specifies that the messages enabled in the
preceding message operation command are enabled only for the
source files named top.sv, introctr.sv, and arbit.sv.

-file=source_file_list

This control condition is similar to but opposite from
+file=source_file_list. This control condition specifies the
source files not affected by the message operation command.

Enabling and Disabling by Module Definition

You can enable or disable messages for specific module definitions
by adding the following control conditions to a message operation
command in a configuration entry:

+module=module_name_list

4-69

Compiling the Design

The module name list is a comma separated list of module names,
for example:

+module=top,introctr,arbit

This control condition specifies that the messages enabled in the
message operation command are enabled for the contents of the
modules named top, introctr, and arbit.

-module=module_name_list

This control condition is similar to but opposite from
+module=module_name_list. This control condition specifies the
module definitions not affected by the message operation
command.

Enabling and Disabling by Subhierarchy

If your design includes subhierarchies, such as in a Verilog library file
that has a top-level module and module definitions hierarchically
under it, or some other discrete set of module definitions in a
hierarchy with a top-level module, such as in design re-use in a
larger design, you can enable or disable messages for these
subhierarchies by specifying the top-level module definition with the
following control conditions:

+tree=module_name_list

The module name list is a comma separated list of top-level
module names, for example:

+tree=introctr,arbit

This control condition specifies that the messages enabled in the
message operation command are enabled for module definitions
introctr and arbit and the module definitions hierarchically
under them.

4-70

Compiling the Design

-tree=module_name_list

This control condition is similar to but opposite from
+tree=module_name_list. This control condition specifies the
subhierarchies not affected by the message operation command.

Extracting the Files Used in Compilation

To extract the Extensible Markup Language (XML) files, which are
required to create the top module, use the -metadump compile-
time option. The syntax is as follows:

% vcs -metadump <design_top>

Using this syntax, you can generate the list of files required to create
the top level module and create simv.

The -metadump option generates the XML files from which you can
get information about all files with the file name and the information
about the line number used to resolve the simv.

The reporting files are in the XML file format. The
verilogMetadata.xml file is extracted for the Verilog portion of
the design. This file can be accessed from the current working
directory.

Note:

This section describes the feature in the context of UUM flow only.
The two-step flow is not supported in this implementation.

4-71

Compiling the Design

XML File Format

This section describes the format of the XML document. Synopsys
does not provide a parser for the XML file and it is suggested to
choose to process the file in the way you want.

There are four main sections in the XML file as described in this
section.

Section 1

<?xml version="1.0" encoding="ISO-8859-1" ?>
<opml version="1.0">
<head>
<title>VCS Dump File for Post Process</title>
<vcsVersion> H-2013.06-SP1 (ENG)</vcsVersion>
<dateCreated>Tue May 14 13:35:00 2013</dateCreated>
</head>

The top level head section describes the basic statistical information
about the file, such as the VCS version that is used and the date.
This information can be used to keep track of when the list of files
was extracted.

Section 2

The following example provides the collection of files that are listed
in the <filelist> section. These are the complete set of files that
are used in the entire design.

<fileList>
<file fid="0" path="/remote/path1/directory1/Macro/m.h" />
<file fid="1" path="/remote/path2/directory2/y.h" />
<file fid="2" path="/remote/path1/directory1/Macro_n.h" />
<file fid="3" path="/remote/path1/directory1/Macro/x.h" />
<file fid="4" path="="/remote/path1/directory1/Macro/
test.v" />
</fileList>

4-72

Compiling the Design

Each of the file fid’s point to a specific path on the file system from
where it is picked up. This section also provides a list of all the files
that make up simv.

In this example, file fid =”1” refers to the /remote/path2/
directory2/y.h file on the file system. The file fid=”0”
refers to the m.h file in some other location. The list of files included
in this section are both include files and elaboration files.

Section 3

This section provides the information about the files that are included
by other files as understood by the VCS parser. It provides a list of
include files that are used for elaboration of the design. Note that the
list of include files are non-unique. If a file is included by many files,
it is displayed as separate lines in this section of the XML file.

<!-- Include file list for the whole design -->
<includeFileList>
<incfile fid="0" lineno="10" includeID="3" />
<incfile fid="4" lineno="1" includeID="0" />
<incfile fid="4" lineno="2" includeID="2" />
<incfile fid="4" lineno="3" includeID="3" />
</includeFileList>

For example,

<incfile fid="0" lineno="10" includeID="3" />

is interpreted as follows:

File fid=”0”, that is /remote/path1/directory1/Macro/
m.v includes file fid = “3”,(/remote/path1/directory1/
Macro/x.h) on line number 10.

4-73

Compiling the Design

Each file picked up by the parser is reported as explained.

In this example, it is noted that file fid=”3” (that is /remote/
path1/directory1/Macro/x.h) is included by multiple files,
and therefore shows up multiple times in the list.

Section 4

This section is a unified unique list of files that are included in the
design using the `include directive from the previous section,
which is a list of unique includeIDs.

This section displays only a subset of the list presented in section 3.
As mentioned earlier, includedfile fid=”3” has been included
multiple times by many files and can be seen in the XML entries in
the previous section. However, it is reported once in this section.

<uniqIncludeFileList>
<includedfile fid=”0” />
<includedfile fid=”2” />
<includedfile fid=”3” />
</uniqIncludeFileList>

Example

If the top module is specified as design top in elaboration, VCS
gathers top.v and header.v elaboration files. The top.v file is
gathered as a non-include file and header.v is gathered as an
include file. If these two files are provided as input to tools such as
vlogan, multiple-definition errors might occur.

top.v

`include "header.v"
module top;
bottom bot();
endmodule

4-74

Compiling the Design

header.v

module bottom;
endmodule
not_used.v

module not_used;
endmodule

VCS Command Line:

% vcs top.v
% vcs header.v
% vcs not_used.v
% vcs top -sverilog -metadump
% simv

VCS generates the verilogMetadata.xml file, which can be
accessed from the current working directory and contains the
following in <body>:

<fileList>

<file fid="0" path="/remote/xxxx/yyy/Documents/header.v" />
<file fid="1" path="/remote/xxxx/yyy/Documents/top.v" />

</fileList>

The verilogMetadata.xml file lists only header.v and top.v.
However, it does not list the not_used.v file as it is not used in
simulation.

4-75

Compiling the Design

Note:

For any tool that is capable of parsing the Verilog file and substitute
the `include directive, non-include files are sufficient to work.
•

4-76

Compiling the Design

5-1

Simulating the Design

5
Simulating the Design 1

This chapter describes the following:

• “Using DVE”

• “Using UCLI”

• “Reporting Forces/Injections in a Simulation”

• “Key Runtime Features”

As described in the section “Simulation”, you can simulate your
design in either interactive or batch mode. To simulate your design
in interactive mode, you need to use DVE or UCLI. To simulate your
design in batch mode, refer to the section entitled, “Batch Mode”.

5-2

Simulating the Design

Using DVE

DVE provides you with a graphical user interface to debug your
design. Using DVE, you can debug the design in interactive mode or
in post-processing mode. You must use the same version of VCS
and DVE to ensure problem-free debugging of your simulation.

In the interactive mode, apart from running the simulation, DVE
allows you to do the following:

• View waveforms

• Trace Drivers and loads

• Schematic and Path Schematic view

• Compare waveforms

• Execute UCLI/Tcl commands

• Set line, time, event, etc breakpoints

• Perform line stepping

However, in post-processing mode, a VPD/VCD/EVCD file is created
during simulation, and you use DVE to:

• View waveforms

• Trace Drivers and loads

• Schematic and Path Schematic view

• Compare waveforms

Use the following command to invoke the simulation in interactive
mode using DVE:

5-3

Simulating the Design

% simv -gui

Use the following command to invoke DVE in post-processing mode:

% dve -vpd [VPD/EVCD_filename]

Note:

The interactive mode of DVE is not supported, when you are
running VCS slave mode simulation.

For information on generating a VPD/EVCD dump file, see “VPD,
VCD, and EVCD Utilities”.

For more information on using DVE, see Discovery Visualization
Environment User Guide under VCS documentation in SolvNet.

Using UCLI

Unified Command-line Interface (UCLI) provides a common set of
commands for interactive simulation. UCLI is the default command-
line interface for batch mode debugging in VCS .

UCLI commands are based on Tcl, therefore you can use any Tcl
command with UCLI. You can also write Tcl procedures and execute
them at the UCLI prompt. Using UCLI commands, you can do the
following:

• Control the simulation

• Dump a VPD file

• Save/Restore the simulation state

• Force/Release a signal

5-4

Simulating the Design

• Debug the design using breakpoints, scope/thread information,
built-in macros

UCLI commands are built based on Tcl. Therefore, you can execute
any Tcl command or procedures at the UCLI prompt. This provides
you with more flexibility to debug the design in interactive mode. The
following command starts the simulation from the UCLI prompt:

% simv [simv_options] -ucli

When you execute the above command, VCS takes you to the UCLI
command prompt. To invoke UCLI, ensure that you specify the -
debug_pp, -debug, or -debug_all options during compilation.
You can then use the -ucli option at runtime to enter the UCLI
prompt at time 0 as shown:

% simv -ucli
ucli%

At the ucli prompt, you can execute any UCLI command to debug or
run the simulation. You also can specify the list of required UCLI
commands in a file, and source it to the UCLI prompt or specify the
file as an argument to the runtime option, -do, as shown below:

% simv -ucli
ucli% source file.cmds

% simv -ucli -do file.cmds

Note:

UCLI is not supported when you are running VCS slave mode
simulation.

5-5

Simulating the Design

Note:
You can use the -ucli flag at runtime even if you have NOT
used some form of -debug switches during compilation. This is
called a "mini UCLI" feature, where full power of Tcl is now
provided with just run and quit UCLI commands.

Note the following behavioral changes when UCLI is the default
command-line interface:

• The -s switch is no longer allowed in simv.

• Command line flags, such as simv -i or -do, only accept UCLI
commands.

• Interrupting the simulation using Ctrl+C takes you to UCLI
prompt by default for debugging your designs.

• ucli>"Include file options (-i or -do) expects a UCLI script by
default.

%> simv -ucli -i ucli_script.inc

• The -R feature in VCS will continue to take you to the old CLI/
MX UI, unless you explicitly add -ucli as well to VCS command
line.

ucli2Proc Command

There are a few scenarios after UCLI became the default command
line interface, which may require using of the -ucli2Proc switch:

• In SystemC designs, you need to add the -ucli2Proc command
if you want to call 'cbug' in batch mode (ucli). VCS issues a warning
message if you do not add this command.

5-6

Simulating the Design

• When you issue a restore command inside a -i/-do/source, you
need to pass the -ucli2Proc. This situation is only applicable
when there are commands following the restore commands that
need to be executed in the do script.

• Any usage of start/restart/finish/config "endofsim"
from UCLI needs the -ucli2Proc command.

For more information about UCLI, click the link Unified Command-
line Interface (UCLI) if you are using the VCS Online Documentation.

If you are using the PDF interface, see ucli_ug.pdf to view the UCLI
User Guide.

Options for Debugging Using DVE and UCLI

-debug_pp

Gives best performance with the ability to generate the VPD/VCD
file for post-process debug. It is the recommended option for post-
process debug.

It enables read/write access and callbacks to design nets, memory
callback, assertion debug, VCS DKI, and VPI routine usage. You
can also run interactive simulation when the design is compiled
with this option, but certain capabilities are not enabled. It does
not provide force net and reg capabilities. Set value and time
breakpoints are permissible, but line breakpoints cannot be set.

5-7

Simulating the Design

-debug

Gives average performance and debug visibility/control i.e more
visibility/control than –debug_pp and better performance than –
debug_all. It provides force net and reg capabilities in addition
to all capabilities of the –debug_pp option. Similar to the –
debug_pp option, with the –debug option also you can set value
and time breakpoints, but not line breakpoints.

-debug_all

Gives the most visibility/control and you can use this option
typically for debugging with interactive simulation. This option
provides the same capabilities as the –debug option, in addition
it adds simulation line stepping and allows you to track the
simulation line-by-line and setting breakpoints within the source
code. With this option, you can set all types of breakpoints (line,
time, value, event, and so on).

-debug_access(+<option>)

Allows you to have more granular control over the debug
capabilities in a simulation. The -debug_access option enables
the dumping of the VPD and FSDB files for post-process debug,
and enables reduced debug capabilities when compared to
-debug_pp.

You can specify additional options with the -debug_access
option to selectively enable the required debug capabilities. You
can optimize the simulation performance by enabling only the
required debug capabilities.

For more information on -debug_access, see “Optimizing
Simulation Performance for Desired Debug Visibility with the -
debug_access Option”section.

5-8

Simulating the Design

-debug_region=(<option>)(+<option>)

Allows you to have better control over the performance of
-debug_access. This option enables you to apply debugging
capabilities to the desired portion of a design (DUT, cell, testbench
(TB), standard package (OVM, UVM, VMM, and RAL), or
encrypted instances (modules, programs, packages, interfaces)).

You must use the -debug_region option along with the
-debug_access option at compile time.

For more information on -debug_region, see “Optimizing
Simulation Performance for Desired Debug Visibility with the -
debug_access Option”section.

-ucli

During compile time, this option enables -debug capabilities if no
debug option (-debug, -debug_access, -debug_pp, or -
debug_all) is specified. Also, during runtime, this option starts
simv in UCLI mode.

-gui

When used at compile time, starts DVE at runtime.

+vpdfile+filename

Specifies the name of the generated VPD file. You can also use
this option for post-processing where it specifies the name of the
VPD file.

+vpdfileswitchsize+number_in_MB

Specifies a size for the vpd file. When the vpd file reaches this
size, VCS closes this file and opens a new one with the same size.

5-9

Simulating the Design

Reporting Forces/Injections in a Simulation

VCS provides the details of all the forces applied on your design
during the simulation in a user-defined ASCII text file. This feature
helps you to debug forces by allowing you to view all the forces that
are effective in a simulation.

Use Model

Perform the below steps to use this feature:

1. Use the -force_list option at compile time, as shown below,
to allow force reporting feature to record language forces/
releases.

% vcs <debug_option> filename.v -force_list
<other_vcs_options>

Where,

<debug_option>

Debug option (-debug_pp, -debug). For PLI force, you must
use the -debug option. For language force, the minimum
debug option required is -debug_pp.

Note:

This step does not enable force reporting feature by itself. You
must use –force_list <filename> at runtime, as shown
in the following step. For more information, see Table 5-1.

5-10

Simulating the Design

2. Use the -force_list option at runtime, as shown below, to
enable force reporting feature and generate an ASCII text file
containing information about forces/deposits/releases applied
during the simulation in time order.

% simv –force_list <filename>

Where, filename is the user-defined ASCII file name. It can be
relative path or absolute path. Compression is disabled by default.
Use the -force_list_compress option at runtime to
compress the resulting log file with the gzip compression. The log
file is saved with the same name, but changes its filename
extension by appending .gz at the end of it.

For example, for the below command:

% simv –force_list report.log –force_list_compress

the output file will be: report.log.gz

Use gunzip to uncompress a force list file. For example,
uncompress the above output file as follows:

gunzip report.log.gz

This results in the original file report.log which is
uncompressed.

Key Points to Note

• If you use the -force_list option at runtime, but not at compile
time, then only external forces will be logged.

5-11

Simulating the Design

• If you use the -force_list option at both compile time and
runtime, then both language forces and external forces will be
logged.

• Table 5-1 describes the usage of the -force_list option in
detail.

Table 5-1

-force_list at
compile time

-force_list at
runtime

Language forces
logged

External forces
logged

No/Yes No No No

No Yes No Yes

Yes Yes Yes Yes

Usage of the -force_list Option

Reporting Force/Deposit/Release Information

The ASCII text file consists of the following parts:

• A header section that includes the information given in Table 5-2,
associated with an ASCII character ID that is 1 to 4 characters
long. For more information, see “Header Section”.

• A time order sorted list of force/release/deposits, as they occur
during the simulation, indexed by the ID shown in the header
section. For more information, see “Event List Section”.

5-12

Simulating the Design

Table 5-2

Force
type

Time Instance
name of the
target node

Module
name
where
force
occurred

File / Line data
logged

Value

Language
force/
release/
deposit

Simulation
time when
the node
was
forced or
released.

Hierarchical
node name
being forced.

Example:
top.test.
child2.a

Name of
the
module.

Example:
top

Full path of the
file where the
force statement
occurs, and the
line number of
the statement in
the source file.
For example:
/home/work/
test.v:1234

Value
represented as
binary except
for int, real, and
string types.

Binary value will
be prefixed with
‘b.

Release will not
have values.

VPI/ACC/
UCLI
force/
release/
deposit

Simulation
time when
the node
was
forced or
released.

Hierarchical
node name
being forced.

Not
Applicable

Not Applicable Value
represented as
binary except
for int, real, and
string types.

Binary value will
be prefixed with
‘b.

Release will not
have values.

Force Capture and Log Information

Handling Forces on Bit/Part Select and MDA Word

If the target of the force is bit-select, part-select, or mda word, then
the appropriate indices is included in the target node name, for
example, as shown below:

Bit select top.a.b[2]
Part select top.a.b[0:3]
MDA bit select top.c.d[2][3][4]

5-13

Simulating the Design

MDA part select top.c.d.[2][3][1:4]

Forces recorded can be any object supported by language and PLI
forces.

Expressions are evaluated only if they contain constants and/or
parameters. For example, top.a[(1+paramb)*2)] will be
evaluated to determine the resulting constant index.

Expressions are not evaluated if they contain variables. For
example, consider the following code. In this case, only the base
vector is captured.

logic [0:9] top.a;
 for (i= 0; i < 10; i++)
 begin
 force top.a[i] = 1; // captures the entire vector
for top.a and not a select of top.a
 end
 end

Handling Forces on Concatenated Codes

Forces consisting of more than one signal on a signal line will be split
up on a signal basis.

For example, force {a,b} = 2’b11 results in two header entries,
one for a and one for b. Both a and b display the same file/line
number, but will carry different IDs since they are different nodes.

Output Format

The ASCII text file output consists of the following two sections:

• Header Section

5-14

Simulating the Design

• Event List Section

Header Section

The header section contains mapping between forced object list and
unique ASCII ID. This section is divided into two parts: Language
Forces and External Forces.

Language forces are unique by statement, whereas external forces
are unique by node. Multiple language forces on the same node from
different lines result in multiple header entries for that node.

Multiple external forces results in one external force header entry for
that node. Nodes with both language and external forces will have
entries in both Language Forces and External Forces parts.

For a unique node, only single ID will be used for all entries in header
for that particular node.

If VCS finds unsupported force/release event, it labels such event
with a reason.

Below is the display format for Language Forces and External
Forces:

Language Forces:

 ID Target Module File:Line

External Forces (VPI/ACC/UCLI):

 ID Target

5-15

Simulating the Design

Header Example

Header Section

 Language Forces

 ID Target Module File Line

 1 top.child1.a top /home/user/top.v:10 **
 NO_VALUE_CHANGE full mda **
 2 top.child1.child2.foo child /home/user/child.v:125
 3 top.child1.a_real child /home/user/child.v:127

 External Forces

 ID Target

 4 top.child1.a_int
 5 top.child1.b[0:3]
 6 top.child1.b[2]

Event List Section

This section displays the time during which the value is forced, ID
from the header, type of the force, and the value of force or deposit.
Release value is not displayed. Table 5-3 lists the phrases of the
acronyms used in the Event List section.

5-16

Simulating the Design

Table 5-3

Acronym Phrase

LF Language Force

LR Language Release

LD Language Deposit/write

EF External Force

ER External Release

ED External Deposit

List of Acronyms Displayed in the Event List Section

Event List Example

 ID Type Value
 ---- Time: 1 ---
 2 LF ‘b0
 5 EF ‘b1111
 6 EF ‘b1
 4 ED 25
 ---- Time: 2 ---
 3 EF 2.14
 3 ER
 5 LR
 5 LD ‘b0110
 --- Time: 3 ---

The Value column displays the integer and real values as decimal
values, strings as ASCII characters, and rest of them as binary
values prefixed with ‘b. Long value strings will be line-wrapped.

5-17

Simulating the Design

Usage Example

Consider the following testcase test.v and the test.ucli file
which contains UCLI forces.

Example 5-1 Design Testcase test.v

module top;

reg clk,rst,d;
wire q;

DUT dut (clk,rst,d,q);

always #1 clk = ~clk;

initial begin
 clk = 0 ; rst =0 ; d=0 ;

 #5 force rst = 1;
 #5 release rst ;
 #10 force dut.q =1 ;
 #10 release dut.q ;
 #100 $finish ;
end
endmodule

module DUT (clk,rst,d,q);
input clk,rst,d;
output q;
wire q;
reg q_reg;

assign q = q_reg;

always @ (posedge clk)
if (rst) begin
 q_reg <= 0;
end else begin

5-18

Simulating the Design

 q_reg <= d;
end

endmodule

Example 5-2 test.ucli

run 30
force top.dut.q 1
release top.dut.q
run

Compile the test.v code, as follows:

% vcs -debug -sverilog -force_list test.v

Run the simulation, as follows:

% simv -ucli -i test.ucli -force_list report.log

Use the following command to view the report.log file:

% cat report.log

Below is the content of the report.log file:

VCS Force List
 Header Section

 Language Forces

ID Target Module File Line

1 top.rst top force.v 13
1 top.rst top force.v 14
2 top.dut.q top force.v 15
2 top.dut.q top force.v 16

 External Forces

5-19

Simulating the Design

ID Target

2 top.dut.q

 Event List Section

---- Time: 0 ----
---- Time: 5 ----
1 LF 'b1
---- Time: 10 ----
1 LR
---- Time: 20 ----
2 LF 'b1
---- Time: 30 ----
2 EF 'b1
2 LF 'b1
2 ER
2 LR
2 LR

Limitations

• The -R option is not supported.

• Language forces from encrypted code will not be reported.

• VCS does not determine $deposit() drivers for every value
change. Therefore, on nodes that are target or 1 or more deposit
statements, all value changes will be recorded.

• Nodes that are forced by more than one line in the Verilog source
will not be analyzed for exact line that is driving the value. If a
force/release event occurs on the node, VCS records the event,
but not the file and line that exactly caused the event. VCS only
lists the possible force drivers, not the exact driver.

5-20

Simulating the Design

• Force on entire mda is not supported for event list capture. For
example, consider the following code:

logic [1:0] foo [1:0][1:0] = 8’b11111111;
logic [1:0] baz [1:0][1:0];
initial begin
#1 force baz = foo; //force entire mda baz
end

VCS does not record this value change on the force at #1, it just
captures the header information for this force. VCS provides a
comment in the header saying that value changes for this force
event will not be recorded.

• Values in the event list for language forces represent the current
value at the time of the force, and not necessarily the forced value.
This becomes an issue when multiple force statements influence
one or more but not all of the same bits in part selects and full
vectors. As an example of this limitation, consider the following
code:

logic foo [0:3] = 4’b0000;
Initial begin
 #0 force foo[0] = 1; //creates force list header
item 1 for the force on bit select of foo[0].
 #1 force foo[0:2] = ‘b111; //creates force list header
item2 for the force on part select foo[0:2], note bit 0.
 #1 release foo[0:2] = ‘b000; // This creates a new
header entry using same id as line above
 #1 foo[0:2] = ‘b000; //reset bits
 #1 force foo[0] = 1; //this force creates new header
entry using same id as first force on this node
end

Below is the output report for the above code. Comments are
added to the below report for illustration purposes only.

Language Forces
ID Target Module File Line

5-21

Simulating the Design

1 top.foo[0] top test.v 11
2 top.foo[0:2] top test.v 12
2 top.foo[0:2] top test.v 17
1 top.foo[0] top test.v 18
 Event List Section
---- Time: 0 ----
2 LF ‘b100 //at time 0 force is really occurring
on id 1 so values for bits 1 and 2 on id2 are not forced
1 LF ‘b1 //this is the real force at this time
but forcelist cannot know that the force is from id 1
or id 2.
---- Time: 1 ----
2 LF ‘b111 // this is the real force , no issue here
because all values are forced.
1 LF ‘b1
---- Time: 2 ----
2 LR // release fires, this is ok
---- Time: 4 ----
2 LF ‘b100 //similar to time 0, bits 1 and 2 are not
forced but reported.
1 LF ‘b1 //this is the real force

Key Runtime Features

Key runtime features includes:

• “Passing Values from the Runtime Command Line”

• “Save and Restart The Simulation”

• “Specifying a Long Time Before Stopping The Simulation”

• “How VCS Prevents Time 0 Race Conditions”

• “Supporting Simulation Executable to Return Non-Zero Value on
Error Results”

• “Supporting Memory Load and Dump Task Verbosity”

5-22

Simulating the Design

Passing Values from the Runtime Command Line

The $value$plusargs system function can pass a value to a
signal from the simv runtime command line using a plusarg. The
syntax is as follows:

integer = $value$plusargs("plusarg_format",signalname);

The plusarg_format argument specifies a user-defined runtime
option for passing a value to the specified signal. It specifies the text
of the option and the radix of the value that you pass to the signal.

The following code example contains this system function:

module valueplusargs;
reg [31:0] r1;
integer status;

initial
begin
$monitor("r1=%0d at %0t",r1,$time);
#1 r1=0;
#1 status=$value$plusargs("r1=%d",r1);
end
endmodule

If you enter the following simv command line:

% simv +r1=10

The $monitor system task displays the following:

r1=x at 0
r1=0 at 1
r1=10 at 2

5-23

Simulating the Design

Save and Restart The Simulation

VCS provides a save and restart feature using $save and
$restart system tasks. These system tasks allow you to save the
checkpoints of the simulation at arbitrary times. The resulting
checkpoint files can be executed at a later time, causing simulation
to resume at the point immediately following the save.

Note:

Save and Restart using $save and $restart system task is for
designs having both DUT and the testbench in Verilog HDL. You
can also use the UCLI save and restart feature. For more
information, see the Unified Command-line Interface User Guide,
available in the online HTML documentation system.

Benefits of save and restart include:

• Regular checkpoints for interactively debugging problems found
during long batch runs

• Use of plusargs to start action such as $dumpvars on restart

• Execution of common simulation system tasks such as $reset
just once in a regression

Restrictions of save and restart include:

• Requires extra Verilog code to manage the save and restart

• Must duplicate start-up code if handling plusargs on restart

• File I/O suspend and resume in PLI applications must be given
special consideration

5-24

Simulating the Design

Save and Restart Example

Example 5-3 illustrates the basic functionality of save and restart.

The $save call does not execute a save immediately, but schedules
the checkpoint save at the end of the current simulation time just
before events scheduled with #0 are processed. Therefore, events
delayed with #0 are the first to be processed upon restart.

Example 5-3 Save and Restart Example

% cat test.v
module simple_restart;
initial begin

#10
$display("one");
$save("test.chk");
$display("two");
#0 // make the following occur at restart
$display("three");
#10
$display("four");

end
endmodule

Now compile the example source file:

% vcs test.v

Now run the simulation:

% simv

VCS displays the following:

one
two
$save: Creating test.chk from current state of simv...

5-25

Simulating the Design

three
four

To restart the simulation from the state saved in the check file, enter:

% simv -r test.chk

VCS displays the following:

Restart of a saved simulation
three
four

Save and Restart File I/O

VCS remembers the files you opened via $fopen and reopens them
when you restart the simulation. If no file with the old file name exists,
VCS opens a new file with the old file name. If a file exists having the
same name and length at the time you saved the old file, then VCS
appends further output to that file. Otherwise, VCS attempts to open
a file with a file name equal to the old file name plus the suffix .N. If
a file with this name already exists, VCS exits with an error.

If your simulation contains PLI routines that do file I/O, the routines
must detect both the save and restart events, closing and reopening
files as needed. You can detect save and restart calls using
misctf callbacks with reasons reason_save and
reason_restart.

When running the saved checkpoint file, be sure to rename it so that
further $save calls do not overwrite the binary you are running.
There is no way from within the Verilog source code to determine if
you are in a previously saved and restarted simulation, therefore,
you cannot suppress the $save calls in a restarted binary.

5-26

Simulating the Design

Save and Restart With Runtime Options

If your simulation behavior depends on the existence of runtime
plusargs or any other runtime action (such as reading a vector file),
be aware that the restarted simulation uses the values from the
original run unless you add special code to process runtime events
after the restart action. Depending on the complexity of your
environment and your usage of the save and restart feature, this can
be a significant task.

For example, if you load a memory image with $readmemb at the
beginning of the simulation and want to be able to restart from a
checkpoint with a different memory image, you must add Verilog
code to load the memory image after every $save call. This ensures
that at the beginning of any restart the correct memory image is
loaded before simulation begins. A reasonable way to manage this
is to create a task to handle processing arguments, and call this task
at the start of execution, and after each save.

The following example illustrates this in greater detail. The first run
optimizes simulation speed by omitting the +dump flag. If a bug is
found, the latest checkpoint file is run with the +dump flag to enable
signal dumping.

// file test.v
module dumpvars();
task processargs;

begin
if ($test$plusargs("dump")) begin

$dumpvars;
end

end
end task
//normal start comes here
initial begin

processargs;

5-27

Simulating the Design

end
// checkpoint every 1000 time units
always

#1000 begin
// save some old restarts
$system("mv -f save.1 save.2");
$system("mv -f save save.1");
$save("save");
#0 processargs;

end
endmodule
// The design itself here
module top();

.....
endmodule

Specifying a Long Time Before Stopping The Simulation

You can use the +vcs+stop+time runtime option to specify the
simulation time when VCS halts simulation. This works if the time

value you specify is less than 232 or 4,294,967,296. You can also use
the +vcs+finish+time runtime option to specify when VCS either

halts or ends simulation, provided that the time value is less than 232.

For time values greater than 232, you must follow a special
procedure that uses two arguments with the +vcs+stop or
+vcs+finish runtime options, as shown below:

+vcs+stop+<first argument>+<second argument>

+vcs+finish+<first argument>+<second argument>

This procedure is as follows:

For example, if you want a time value of 10,000,000,000 (10 billion):

5-28

Simulating the Design

3. Divide the large time value by 232.

In this example:

4. Narrow down this quotient to the nearest whole number. This
whole number is the second argument.

In this example, you would narrow down to 2.

5. Multiply 232 with the second argument (that is, 2), and then
subtract the obtained result from the large time value (that is,

subtract 2 X 232 from the large time value), as shown below:

10,000,000,000-(2*4,294,967,296)=(1,410,065,408)

This difference is the first argument.

You now have the first and second argument. Therefore, in this
example, to specify stopping simulation at time 10,000,00,000, you
would enter the following runtime option:

+vcs+stop+1410065408+2

VCS can do some of this work for you by using the following source
code:

module wide_time;
time wide;
initial
begin
wide = 64’d10_000_000_000;
$display(“Hi=%0d, Lo=%0d”, wide[63:32], wide[31:0]);
end
endmodule

5-29

Simulating the Design

VCS displays:

Hi=2,Lo=1410065408

How VCS Prevents Time 0 Race Conditions

At simulation time 0, VCS always executes the always blocks where
any of the signals in the event control expression, that follows the
always keyword (the sensitivity list), initializes at time 0.

For example, consider the following code:

module top;
reg rst;
wire w1,w2;
initial
rst=1;
bottom bottom1 (rst,w1,w2);
endmodule

module bottom (rst,q1,q2);
output q1,q2;
input rst;
reg rq1,rq2;

assign q1=rq1;
assign q2=rq2;

always @ rst
begin
 rq1=1’b0;
 rq2=1’b0;
 $display("This always block executed!");
end
endmodule

5-30

Simulating the Design

With other Verilog simulators there are two possibilities at time 0:

• The simulator executes the initial block first, initializing reg rst,
then the simulator evaluates the event control sensitivity list for
the always block and executes the always block because the
simulator initialized rst.

• The simulator evaluates the event control sensitivity list for the
always block, and so far, reg rst has not changed value during
this time step, therefore, the simulator does not execute the
always block. Then the simulator executes the initial block
and initializes rst. When this occurs, the simulator does not re-
evaluate the event control sensitivity list for the always block.

Supporting Simulation Executable to Return Non-Zero
Value on Error Results

Simulation executable generated by VCS returns non-zero value in
case of fatals, errors, and assertion failures.

The simulation executable return values on fatals, errors, and
assertion values are:

• 0 (no indication)

• 1 (as in runtime crash or system crash)

• 2 (error)

• 3 (fatal)

5-31

Simulating the Design

The possible scenarios and return error value for the scenarios are
listed in the following table:

Table 5-4 List of Scenarios and Return Error Values

Scenario Return Error Value

$fatal/UVM_FATAL/OVM_FATAL/VMM_FATAL 3

$error/UVM_ERROR/ OVM_ERROR/ VMM_ERROR/ Errors
promoted from warning messages to errors

2

NLP ERROR 2

Assertion failure Verilog 2

$warning /UVM_WARNING/ OVM_WARNING/ VMM_WARNING 0

NLP WARNING 0

Unique/priority RT warnings 0

-xzcheck 0

Note:
The -assert quiet and -assert quiet1 runtime options
cannot override the exit status in case of assertion failures. The
exit status value still must be value 2 in case of assertion failures.

Use of -error runtime option generates non-zero return values
in case of fatals and errors as well as in case of errors resulting
from warning messages.

If the messages are suppressed using the-error runtime option,
non-zero return values are not generated.

If a simulation has several errors, fatals and/or assertion failures,
the most severe status must be returned. For example, if
simulation has both $error and $fatal messages, the returned
status must be of value 3 as in case of $fatal scenario.

5-32

Simulating the Design

Use Model

The following is the use model for this feature:

• Compile time

The compile time is same as the previous use model. There is no
change needed.

• Runtime

%simv -exitstatus
% echo $status

This returns a value based on the type of exit.

Limitations

The following are the limitations with this feature:

• VHDL assertions are not supported.

• VMM is not supported.

Supporting Memory Load and Dump Task Verbosity

When the -diag sys_task_mem compile-time option is passed to
the VCS, $writememh, $writememb, $readmemh and
$readmemb system tasks get into a verbose mode and displays the
following information:

• The full path of the file being written by $writememh and
$writememb and being read by $readmemh and $readmemb
and, such as /foo/bar/filename.

5-33

Simulating the Design

• The full hierarchical instance path of the module from where
$writememh, $writememb, $readmemh, and $readmemb is
invoked, such as soc.a1.b1.c1.my_module_instance. All
instances are reported.

• The name of the module template from where it is displayed, such
as my_module.

• The full path to the file that includes the module that contains the
$writememh, $writememb, $readmemh, and $readmemb,
such as /baz/qux/my_module.vs.

Syntax:

$writememh (filename , memory_name [, start_addr [,
finish_addr]]) ;

$writememb (filename , memory_name [, start_addr [,
finish_addr]]) ;

The system tasks $writememh and $writememb dump memory
array contents to files that are readable by $readmemh and
$readmemb respectively.

$readmemh (mem_name , start_address , finish_address ,
string { , string }) ;

$readmemb (mem_name , start_address , finish_address ,
string { , string }) ;

The system tasks $readmemh and $readmemb load data into
memory mem_name from a character string.

The $readmemh and $readmemb system tasks take memory data
values and addresses as string literal arguments. These strings take
the same format as the strings that appear in the input files and are

5-34

Simulating the Design

passed as arguments to $readmemh and $readmemb. The
start_address and finish_address indicate the bounds for
the data to be stored in the memory.

Use Model

The following is the use model to support memory load and dump
task verbosity:

%vcs -diag sys_task_mem

The following examples illustrate the usage of $writemem and
$readmem system tasks:

Example 5-4 Example to illustrate $writemem system task

//test.v
module test;
reg [31:0] mem[0:11];

initial begin
$writememh("./datah.dat", mem);

end
endmodule

Run the example using the following commands:

%vcs test.v -diag sys_task_mem
%simv

It generates the following output:

Note-[STASK_WMEM] Encountered Memory Write Task
/home/user/task/test.v, 5
 At module test, Instance test
 Writing to file /home/user/task/datah.dat.

Example 5-5 Example to illustrate $readmem system task

//test.v

5-35

Simulating the Design

module test;
reg [31:0] mem[0:11];

initial begin

$readmemh("./data.dat", mem);
end
endmodule

Run the example using the following commands:

%vcs test.v -diag sys_task_mem
%simv

It generates the following output:

Note-[STASK_RMEM] Encountered Memory Read Task
/home/user/task/test.v, 5
 At module test, Instance test
 Reading from file /home/user/task/data.dat.

5-36

Simulating the Design

 6-1

The Unified Simulation Profiler

6
The Unified Simulation Profiler 1

The unified simulation profiler reports the amount of CPU time and
machine memory used by the Verilog or SystemVerilog parts of the
design. For SystemC parts the unified profiler reports just the CPU
times.

This information can be in summary form and per module definition
and module instance. It also can be based on constructs such as
always procedures.

The reports are written by the profrpt profile report generator.
These reports can be in text or HTML format or both.

Note:
You need a correct installation of Python version 2.4 or newer for
profrpt to generate HTML reports. If the version of Python is
older than v 2.4, or the installation was done incorrectly, then
profrpt might not function properly.

6-2

The Unified Simulation Profiler

The major sections in this unified profiler documentation are as
follows:

• “The Use Model”

• “HTML Profiler Reports”

• “Constraint Profiling Integrated in the Unified Profiler”

• “Performance/Memory Profiling for Coverage Covergroups”

• “Limitations”

For examples of SystemC profiler reports see “SystemC Views” .

The Use Model

The use model for the unified simulation profiler is as follows:

1. Compile your design using the -simprofile compile-time
option.

Important:
If this is not the first compilation of your design, delete the csrc
and simv.daidir directories and simv executable file before
this step. Incremental compilation is not yet supported for the
unified profiler.

2. At runtime you can enter the -simprofile runtime option with
a keyword argument or sub-option to specify the type of data VCS
collects during the simulation. These keyword arguments or sub-
options are as follows:

time

 6-3

The Unified Simulation Profiler

The time argument specifies collecting CPU time profile
information.

mem

The mem argument specifies collecting machine memory profile
information.

noprof

Tells VCS not to collect profiling information at runtime.
Synopsys recommends entering this runtime option and
keyword argument or sub-option instead of simply omitting the
-simprofile runtime option. See “Omitting Profiling at
Runtime” .

noreport

Tells VCS to collect profile information at runtime but not write
the profileReport.html file or the profileReport
directory after simulation, see “Omitting Profile Report Writing
after Runtime” .

After simulation, but before you run the profrpt profile report
generator there is a summary of profile information available to
you, see “Post Simulation Profile Information” .

3. Run the profrpt profile report generator using the profrpt
command and its command-line options.

4. Then review the reports created by the profrpt profile report
generator; see “Running the profrpt Profile Report Generator” for
more information.

6-4

The Unified Simulation Profiler

Omitting Profiling at Runtime

If you compiled the design to collect profile data, by entering the
-simprofile compile-time option, but decide to forgo the
performance cost of collecting profile data during simulation, you
enter the -simprofile noprof runtime option and keyword
argument.

When you do, VCS does not create the profileReport.html file
or the profileReport directory, but does create the
simprofile_dir directory, however this simprofile_dir
directory will be empty.

Omitting the -simprofile runtime option after compiling with the
-simprofile compile-time option is not recommended.

If you compile your design with the -simprofile compile-time
option, but omit the -simprofile runtime option when you run the
simulation, VCS, by default, creates the simprofile_dir and
profileReport directories and write the profileReport.html
in the current directory that only contains information about the
simulation time.

The simprofile_dir directory never contains any information
that you can read. It does contain database files that come with a
performance cost.

If simprofile_dir, the directory profileReport and the file
profileReport.html exist and you run the test, then VCS
renames them to simprofile_dir.integer,
profileReport.integer, profileReport.integer.html
so they don't get overwritten.

 6-5

The Unified Simulation Profiler

Omitting the -simprofile Runtime Option

The -simprofile compile-time option has optional arguments.

With no arguments its purpose is to enable VCS to collect profile
information at runtime, and at runtime you also entered the
-simprofile option adding the time or mem arguments, for
example:

%> simv -simprofile time

or

%> simv -simprofile mem

The time argument specified collecting CPU time profile
information.

The mem argument specified collecting machine memory profile
information.

Note:
Synopsys does not recommend collecting both CPU time and
machine memory profile information in the same simulation.

The -simprofile compile-time option also has optional
arguments:

-simprofile=time

Specifies compiling the design and testbench for collecting both
CPU time and machine memory profile information, then specifies
collecting CPU time profile information at runtime.

-simprofile=mem

6-6

The Unified Simulation Profiler

Specifies compiling the design and testbench for collecting both
CPU time and machine memory profile information, then specifies
collecting machine memory profile information at runtime.

With these arguments you can omit the -simprofile runtime
option if you want to collect the type of profile information that you
specified at compile-time.

If, at runtime you want VCS to collect the different type of profile
information than the type you specified at compile-time, you specify
the different type with the runtime option, for example:

%> vcs source.v -simprofile=time

%> simv -simprofile mem

Omitting Profile Report Writing after Runtime

If you compiled your design to collect profile data and want VCS to
collect profile data during simulation, but don’t want VCS to write the
profileReport.html file or the profileReport directory, enter
the -simprofile noreport runtime option and keyword
argument.

When you do this you still have the profile database and can obtain
profile information after simulation with a profrpt command line.

Specifying a Directory for the Profile Database

By default VCS creates the profile database, the directory named
simprofile_dir that contains all the profile information gathered
during simulation, in the directory that contains the simv executable.

 6-7

The Unified Simulation Profiler

You can specify a different directory for the profile database with the
-simprofile_dir_path pathname runtime option, for example:

% simv -simprofile time -simprofile_dir_path /tmp/SUBDIR1

To use this option the directories in the pathname must already exist.
VCS does not create the directories in the pathname.

Post Simulation Profile Information

After simulation, but before you run the profrpt profile report
generator, VCS provides a summary report of profile information.

At the end of simulation VCS writes the simprofile_dir and
profileReport directories and the profileReport.html file.

The simprofile_dir directory contains the databases that are
read by the profrpt profile report generator to write profile reports
in a separate step after the simulation.

the profileReport.html file can tell you the total simulation time
and the location of the profiler databases.

Specifying the Name of the Profile Report

By default VCS writes the profile report named
profileReport.html and the corresponding profileReport
directory that contains the profile report information. You can enter
the -simprofile_report reportname runtime option to specify
a different name for this file and directory, for example:

% simv –simprofile_report memory_rprt_default_constraints

6-8

The Unified Simulation Profiler

This example creates the following profile report and report directory
named the memory_rprt_default_constraints.html file and
memory_rprt_default_constraints directory.

Running the profrpt Profile Report Generator

You run the profrpt profile report generator with the profrpt
command line. The syntax of this command line is as follows:

profrpt simprofile_dir -view view1[+view2[+...]]
[-h|-help][-format text|html|ALL][-output name]
[-filter percentage][-snapshot [delta|incr|delta+incr]]
[-timeline [dynamic_memory_type_or_class +...]]

Where:

simprofile_dir

Specifies the profile database directory that VCS writes at runtime.
The default name is simprofile_dir. You enable the writing
of this database with the -simprofile compile-time option and
specify the kind of data in the database with the -simprofile
runtime option.

-view view1[+view2[+...]]

Specifies the views you want to see in the reports, see “Specifying
Views” . You must specify this option.

-h|-help

Displays help information about the profrpt command-line
options.

-format text|html|ALL

 6-9

The Unified Simulation Profiler

Specifies whether the report files are text files, HTML files, or in
both formats (by specifying the ALL keyword). The default format
is HTML. Some views, like the accumulative views, are only
available in HTML format.

-output name

Specifies the name of the directory for the profile report and, if
profrpt is writing an HTML report (which is the default format),
the name of the HTML index file that contains hypertext links to
the HTML files in that directory.

If you omit the -output option, the default name of the output
directory is profileReport and the default name of the HTML
index file is profileReport.html.

Any currently existing profileReport directory and
profileReport.html file is renamed by profrpt to
profileReport.integer directory and
profileReport.integer.html. The integer value is
incremented to differentiate it from the current profrpt output.

See “The Output Directories and Files” for more information on
the -output option.

-filter percentage

Specifies the minimum percentage of machine memory or CPU
time that a module, instance, or construct needs to use before
profrpt enables reporting about it in the output views and
reports. The default limit is 0.5%. For a more granular report enter
a small percentage, for example: -filter 0.0001

-snapshot [delta|incr|delta+incr]

6-10

The Unified Simulation Profiler

Specifies writing snapshot reports for SystemVerilog dynamic
memories. It writes a snapshot report each time a dynamic
memory uses a specified different amount of machine memory.
For information on specifying this amount, and more on the
snapshot mechanism, see “The Snapshot Mechanism” .

-timeline [dynamic_memory_type_or_class +...]

Specifies two things:

- Timeline reports for SystemVerilog dynamic memories.

- Snapshot reports using the default delta threshold of 5%.

If you omit the dynamic_memory_type_or_class +...
argument or arguments, profrpt writes all the dynamic class
timeline views.

For information on the keyword arguments or sub-options for
specifying the types of SystemVerilog dynamic memories in the
timeline reports, see “Specifying Timeline Reports” .

Specifying Views

You must enter the -view option on the profrpt command line.

The views you can specify with the -view option depend on the type
of report that profrpt is writing, which depends on the argument
to the -simprofile runtime option.

The arguments and the views they specify are as follows:

CPU Time views:

time_summary

 6-11

The Unified Simulation Profiler

To specify writing the time summary view.

time_inst

To specify writing the time instance view that shows the CPU time
used by the various module, program, and interface instances in
a design.

time_mod

To specify writing the time module view that shows the CPU time
used by the various module, program, and interface definitions in
a design.

time_constr

To specify writing the time construct view that shows the CPU time
used by constructs such as the always procedures.

time_solver

To specify generating the Time Constraint Solver view.

time_callercallee

To specify the Caller/Callee view for CPU time information.

time_all

Specifies writing all the supported CPU time views.

Machine memory views:

mem_summary

To specify writing the peak memory summary view which is when
your design used the most machine memory.

6-12

The Unified Simulation Profiler

mem_inst

To specify writing the peak memory instance view.

mem_mod

To specify writing the peak memory module view.

mem_constr

To specify writing the peak memory construct view.

dynamic_mem

To specify writing the dynamic memory peak view.

dynamic_mem+stack

To specify writing the dynamic memory peak view, and machine
memory stack traces. The stack traces can help you determine
which callers consume the most memory, see “Stack Trace Report
Example”

mem_solver

To specify generating the Memory Constraint Solver view.

mem_callercallee

To specify the Caller/Callee view for machine memory
information.

mem_all

To specify writing all supported machine memory views. This
argument also enables machine memory stack traces.

Both memory and time profiler:

 6-13

The Unified Simulation Profiler

ALL

To specify writing all supported views. The profrpt output is the
HTML or text files for all these views, including machine memory
stack traces.

The Snapshot Mechanism

The keyword arguments, or sub-options, that you include after the
-snapshot option control the snapshot mechanism. They are as
follows:

delta

A numerical value (not a keyword) specifying the delta threshold
for another snapshot, for example -snapshot 8.5 specifies a
delta threshold of 8.5%, so profrpt writes another snapshot
report when a dynamic memory uses 8.5% more machine
memory or 8.5% less machine memory.

incr

A keyword specifying the generation of another snapshot only
when the machine memory for a SystemVerilog dynamic memory
increases by 5%.

delta+incr

Specifies another snapshot when the amount of machine memory
used by a SystemVerilog dynamic memory increases, but not
decreases, by the specified delta threshold.

6-14

The Unified Simulation Profiler

If you enter no arguments or sub-options, the profiler uses the
default delta threshold of 5%, and enables a new snapshot when the
amount of machine memory used by a SystemVerilog dynamic
memory increases or decreases by that 5%.

Specifying Timeline Reports

The -timeline option specifies writing timeline reports. The
keyword arguments or sub-options that you include after the
-timeline option specify the types of SystemVerilog dynamic
memories are in the timeline reports. You can also specify a
SystemVerilog class by name and it’s dynamic memories are
included in the timeline reports.

The arguments or sub-options for the -timeline option are as
follows:

vcs_ST

keyword for string dynamic memories

vcs_ET

keyword for event dynamic memories

vcs_DA

keyword for dynamic arrays

vcs_SQ

keyword for queues

vcs_AA

keyword for associative arrays

 6-15

The Unified Simulation Profiler

class

a class name, not a keyword, specifying a class

ALL

keyword specifying all types of dynamic memories

If you enter the -timeline option without an argument or sub-
option, profrpt writes timeline reports for all dynamic memories,
so the keyword ALL as an argument or sub-option is the same as
entering no argument or sub-option.

Recording and Viewing Memory Stack Traces

You can use the unified profiler to record stack traces whenever
machine memory is allocated. The stack traces can help you
determine which callers consume the most memory.

You enable memory stack traces with the dynamic_mem+stack,
mem_all, or ALL arguments to the profrpt -view option. See
“Stack Trace Report Example” .

Reporting PLI, DPI, and DirectC Function Call
Information

Profile information is reported for each PLI, DPI, or DirectC function
called by your Verilog or SystemVerilog code.

There are views for this profile information. These views are in the
pulldown menu for views in the left pane. The new views are as
follows:

6-16

The Unified Simulation Profiler

• Time PLI/DPI/DirectC (see “Profiling Time Used by Various Parts
of the Design”).

• Memory PLI/DPI/DirectC (see “Profiling Memory Used by Various
Parts of the Design”).

You can tell the profrpt report generator to write these views with
the time_pli or mem_pli arguments (or suboptions) to the -view
option.

The profrpt report generator also writes the Time PLI/DPI/DirectC
view with the time_all and ALL arguments. It also writes the
Memory PLI/DPI/DirectC view with the mem_all or ALL arguments.

SystemC code is not included in these views.

This profile capability has the following limitations:

• The location of the external language call is not reported.

• Text format reports are not supported; only the HTML format is
supported.

Compiling and Running the Profiler Example

The following example illustrates the new runtime and memory
usage reporting.

If your Verilog code contains user-defined system tasks for PLI
functions like those shown in Example 6-1 for a file named pli.v:

Example 6-1 Verilog System Tasks for PLI Functions

module top;
initial
 begin
 $foo_200M();

 6-17

The Unified Simulation Profiler

 $foo_400M();
 $foo_200M();
 $foo_400M();
 $foo_200M();
 $foo_400M();
 $foo_200M();
 $foo_400M();
 end
endmodule

The pli.tab file looks like Example 6-2.

Example 6-2 PLI Tab File

$foo_200M call=foo_200M_func
$foo_400M call=foo_400M_func

The C code in example file pli.c looks like Example 6-3.

Example 6-3 C File

#include "stdio.h"
void foo_200M_func()
{
 char *a = NULL;
 int i = 0;
 for (i = 0; i < 100; i++)
 a = (void *) malloc (1024*2048);
}
void foo_400M_func()
{
 char *a = NULL;
 int i = 0;
 for (i = 0; i < 100; i++)
 a = (void *) malloc (2048*2048);
}

To compile these example files, use the following command line:

% vcs -simprofile -P pli.tab pli.v pli.c

6-18

The Unified Simulation Profiler

Profiling Time Used by Various Parts of the Design

To profile the CPU time used by various parts of the design, use the
-simprofile time option:

% simv -simprofile time

VCS creates:

• simprofile_dir database directory for the CPU time profile
information.

• profileReport.html file and profileReport directory for the CPU time
post-simulation profile report information.

To generate the Time PLI/DPI/DirectC view, use the profprt
command with the following options:

% profrpt -view time_pli simprofile_dir

To view the Time PLI/DPI/DirectC reports, open the
profileReport.html file. In the left pane, select the simprofile_dir
database and the Time PLI/DPI/DirectC view (see Figure 6-1).

This view shows you the $foo_200M() and $foo_400M PLI user-
defined system tasks that call the foo_200M_func() and
foo_$00M_func() C functions, how much CPU time they use, and
their percentage of the total CPU time of the simulation.

 6-19

The Unified Simulation Profiler

Figure 6-1 Time PLI/DPI/DirectC View

Profiling Memory Used by Various Parts of the Design

To profile the machine memory used by various parts of the design,
simulate using the -simprofile mem option:

% simv -simprofile mem

To generate the Memory PLI/DPI/DirectC view, use the profrpt
command with the following options:

% profrpt -view mem_pli simprofile_dir

To view the Memory PLI/DPI/DirectC reports, open the
profileReport.html file. In the left pane, select the simprofile_dir
database and the Memory PLI/DPI/DirectC view (see Figure 6-2).

This view shows you the $foo_200M() and $foo_400M PLI user-
defined system tasks that call the foo_200M_func() and
foo_$00M_func() C functions, how much machine memory they
used, and their percentage of the total machine memory needed
during the simulation.

6-20

The Unified Simulation Profiler

Figure 6-2 Memory PLI/DPI/DirectC View

Here, the clock reference (clock:0) specifies the clock cycle of peak
memory usage (in this example, time 0).

The Output Directories and Files

The -output name option and argument specifies two things:

• The name of the directory for the profiler reports

• If the profiler is writing HTML reports (the default format), the name
of the HTML index file that the profrpt writes in the current
directory. This index file is name.html.

If you omit the -output option, the default name of the output
directory is profileReport and the default name of the HTML
index file is profileReport.html.

 6-21

The Unified Simulation Profiler

As explained in “Post Simulation Profile Information” VCS writes the
profileReport directory and HTML index file
profileReport.html at the end of simulation. So if you omit the
-output option, profrpt renames this directory and file
profileReport.integer and
profileReport.integer.html and then writes a new
profileReport directory and profileReport.html file. This
new directory and file contain post-processing information from the
database.

If the specified directory and file already exists you will see a warning
message, and the profrpt creates a new output directory and file
and renames the older output name.integer and
name.integer.html to differentiate them from the new directory
and file.

The Enhanced Accumulative Views

The accumulative views displaying the accumulated CPU time or
machine memory profile information from two or more databases
have been expanded to more accumulative views. These new views
are:

• the accumulative summary view

• the accumulative module view

• the accumulative instance view

• the accumulative construct view

To generate a report showing the accumulated results from more
than one profile database, follow these steps:

1. Write a file that lists the profile databases.

6-22

The Unified Simulation Profiler

2. Run the profrpt profile report generator without entering a
profile database on the command line, instead enter the -f option
specifying the file that lists the databases.

% profrpt -view time_all -f time_db_list \
-output accum_time

In this example the -f option specifies the file time_db_list
which contains a list of databases:

simprofile_dir
simprofile_dir.1
simprofile_dir.2

The profrpt profile report writing utility writes accum_time.html.

The profrpt utility only writes this accumulative view in HTML
format, text file format is not supported.

Figure 6-3 The Right Pane of the Accumulated CPU Time View in
accum_time.html

This view shows the accumulated CPU times.

 6-23

The Unified Simulation Profiler

Figure 6-4 The Left Pane of the Accumulated CPU Time Views in
accum_time.html

The Database pulldown contains:

• selections for each of the accumulated databases

• selections for the module, instance and construct points of view.

Figure 6-5 The Database Pulldown in the Left Pane

6-24

The Unified Simulation Profiler

The following selections display the accumulated information from
different points of view:

module summary

Contains a section for each module definition.

instance summary

Contains a section for each module instance.

constr summary

Contains a section for each type of construct, such as initial and
always blocks.

Also in the pulldown are selection for each of the accumulated
simulation time profile databases. If you select one of these
databases. the view changes to the time summary view for that
database.

This example has shown how to generate accumulative views of the
CPU time profile data. The same can be done for machine memory
profile data.

Example 6-4 Code Example for the Accumulative View

// test .v
module dut (input reg in[0:3], output reg out);
wire c1, c2;
assign c1 = in[0] & in[1];
assign c2 = in[2] & in[3];
or o1 (out, c1, c2);
endmodule

//tb.v
module tb1;
reg in[0:3], out;

 6-25

The Unified Simulation Profiler

dut d1 (in, out);
initial begin
in[0]=1; in[1]=0; in[2]=1; in[3]=0;
end
always #5 in[0] = ~in[0];
always #6 in[1] = ~in[1];
always #7 in[2] = ~in[2];
always #8 in[3] = ~in[3];
initial begin
$monitor($time,"in[0]=%b, in[1]=%b, in[2]=%b, in[3]=%b,
out=%b\n", in[0], in[1], in[2], in[3], out);
end
endmodule

Also for this example you have the following -i UCLI command files:

// run1
run 10000
quit

// run2
run 100000
quit

6-26

The Unified Simulation Profiler

To run this example enter the following command lines:

% vlogan -nc -sverilog test.v tb1.v

% vcs tb1 -sverilog -nc -simprofile -debug_pp

% simv -simprofile time -ucli -i run1

% simv -simprofile time -ucli -i run2

% profrpt -view time_all -f file

VCS writes the first profile database

VCS writes the second profile database

The time_all argument specifies, among other views, the
accumulative time view.

Open the profileReport.html file to see the accumulative time
view

Figure 6-6 The Accumulative Summary View

 6-27

The Unified Simulation Profiler

Figure 6-7 The Accumulative Module View

Figure 6-8 The Accumulative Instance View

Figure 6-9 The Accumulative Construct View

The accumulative views are only avaiable in HTML format.

6-28

The Unified Simulation Profiler

The Comparative View

To generate a report that compares the results of two profile
databases from two different simulations, include the -diff option
and enter both databases on the profrpt command line.

Of the two specified databases, the first is the target database and
the second is the reference database, for example:

% profrpt -view ALL -diff simprofile_dir simprofile_dir.1 \
-output diff

The profrpt profile report writing utility, in this example writes the
diff.html file to compare the two profile databases.

Figure 6-10 The Comparative View in diff.html

 6-29

The Unified Simulation Profiler

In this example the target database is the newer simprofile_dir
directory and the reference database is the older
simprofile_dir.1 directory.

The significant differences are in the CPU times. Figure 6-11 shows
magnifications of the CPU time part of the comparative view.

Figure 6-11 Magnifications of the Values in the Comparative View

As you can see in Figure 6-11, the reference database needed a full
3.0 seconds more of CPU time to execute its PLI application, but in
the other components the target database needed more CPU time.

6-30

The Unified Simulation Profiler

Green negative gap values are for when the reference database
values exceed the target database, red values are for when the
target database exceeds the reference database.

Limitations

• The comparative view only compares the information in the
summary views.

• The comparative view is only supported in HTML format.

The Caller-Callee Views

The unified simulation profiler has new views that show you the
hierarchical constructs that call other hierarchical constructs (these
are caller constructs) and the hierarchical constructs that were called
by other constructs (these are callee constructs). These new views
are as follows:

• The Caller-Callee Memory View, see Figure 6-12

• The Caller-Callee Time view

The concepts and organization is the same in both of these views.

 6-31

The Unified Simulation Profiler

Figure 6-12 The Caller-Callee Memory View

The caller-calleee views are only supported in HTML format.

For an example, a hierarchical construct such as a user-defined task
can contain a task enabling statement that starts another user-
defined construct.

Other views can tell you when a construct consumes the most CPU
time or Machine memory, but the reason a construct uses so much
of these resources is not apparent. Take, for example, the source
code in Example 6-5.

Example 6-5 Tasks That Consume Resources

module top;
 integer a[$];
 integer i;

 initial begin

6-32

The Unified Simulation Profiler

 i = 0;
 foo_1();
 foo_2();
 end

 task bar;
 a.push_back(i);
 i++;
 endtask

 task foo_1;
 integer i;
 for(i = 0; i < 10; i++)
 bar();
 endtask

 task foo_2;
 integer j;
 for(j = 0; j < 1024 * 1024; j++)
 bar();
 endtask

endmodule

If you profile for machine memory the code in Example 6-5 and
examine the Memory Construct view.

Figure 6-13 The Memory Construct View

In the Memory Construct View in Figure 6-13, you see that the task
named bar consumed most of the machine memory during
simulations, it is the only construct that used enough resource to
warrant inclusion in this file.

 6-33

The Unified Simulation Profiler

The question remains why is task bar called (or enabled) so many
times that it consumes so much of this resource? The unified profiler
has a new view that shows us why. It’s called the Memory Caller-
Callee view (and its corresponding Caller-Callee Time view).

Let’s look at the different panes of the Caller-Callee Memory view in
Figure 6-12.

Figure 6-14 The Left Pane of the Caller-Callee Memory View

Unlike other left panes of views, which are a place for selecting
profile databases and views, this left pane contains:

• a search field for searching for constructs such as modules, tasks,
and other hierarchical constructs in the call stack

• A list of hierarchical constructs and their inclusive and exclusive
memory usage.

6-34

The Unified Simulation Profiler

In Figure 6-14 the call stack for this example contains user-defined
tasks bar, foo_1, foo_2, and top-level module top.

Task bar is a callee, tasks foo_1, foo_2, and module top are callers.

As in other views, inclusive is the resource used by the hierarchical
construct and all other such constructs hierarchically under it,
exclusive is the amount or the resource used by the construct itself.

For an extensive list of callers and callees, there is a search field.

As shown in Figure 6-14 task bar uses most of the exclusive
machine memory that is used by the code example.

 6-35

The Unified Simulation Profiler

Figure 6-15 The Right Division of the Caller-Callee Memory View

Hierarchical construct that is the callee

Hierarchical construct that is the caller

Inclusive and exclusive
memory sed during
simulation

Hypertext link that opens
to show the a window

source code

The location in the caller of the call

In Figure 6-15 The caller of task bar is top-level module top that
contains task foo_1 and foo_2, which contain task enabling
statement that calls task bar. The Stack Information section of the
view shows the source code of task foo_1.

6-36

The Unified Simulation Profiler

As in other views, inclusive memory is the amount of memory used
by the hierarchical construct and those other hierarchical constructs
that are under it in the design hierarchy.

Also as in other views, exclusive memory is the amount of memory
used solely by the hierarchical construct.

HTML Profiler Reports

Profiler reports are by default in HTML format.

What follows are examples of these reports based on the following
SystemVerilog code:

Example 6-6 Profiler SystemVerilog Code Example

program tb_top;

 logic [255:0] Squeue_data_info[$];
 logic [255:0] temp;

 class PACKET;
 rand reg [255:0] packet_val;
 endclass

initial
 begin

 for(int y = 0 ; y < 1000 ; y++)
 begin
 PACKET packet_inst;

 packet_inst = new();
 packet_inst.randomize();
 #1;

 6-37

The Unified Simulation Profiler

 Squeue_data_info.push_back(packet_inst.packet_val);
 #1;

 end

repeat(10)
 $display("DEBUG===> Pushed 1000");

 for(int y = 0 ; y < 500 ; y++)
 begin

 #1;
 temp = Squeue_data_info.pop_front();
 #1;

 end
repeat(10)
 $display("DEBUG===> Popped 500");

 for(int y = 0 ; y < 10000 ; y++)
 begin
 PACKET packet_inst;

 packet_inst = new();
 packet_inst.randomize();
 #1;

 Squeue_data_info.push_back(packet_inst.packet_val);
 #1;

 end

repeat(10)
 $display("DEBUG===> Pushed 10000");

 for(int y = 0 ; y < 5000 ; y++)
 begin
 PACKET packet_inst_2;

6-38

The Unified Simulation Profiler

 #1;
 temp = Squeue_data_info.pop_front();
 #1;

 end
repeat(10)
 $display("DEBUG===> Popped 5000");

 for(int y = 0 ; y < 100000 ; y++)
 begin
 PACKET packet_inst;

 packet_inst = new();
 packet_inst.randomize();
 #1;

 Squeue_data_info.push_back(packet_inst.packet_val);
 #1;

 end

repeat(10)
 $display("DEBUG===> Pushed 100000");

 for(int y = 0 ; y < 50000 ; y++)
 begin
 PACKET packet_inst_2;

 #1;
 temp = Squeue_data_info.pop_front();
 #1;

 end
repeat(10)
 $display("DEBUG===> Popped 50000");

 for(int y = 0 ; y < 1000000 ; y++)
 begin
 PACKET packet_inst;

 6-39

The Unified Simulation Profiler

 packet_inst = new();
 packet_inst.randomize();
 #1;

 Squeue_data_info.push_back(packet_inst.packet_val);
 #1;

 end

repeat(10)
 $display("DEBUG===> Pushed 1000000");

 for(int y = 0 ; y < 500000 ; y++)
 begin
 PACKET packet_inst_2;

 #1;
 temp = Squeue_data_info.pop_front();
 #1;

 end
repeat(10)
 $display("DEBUG===> Popped 500000");

 $finish;

end

endprogram

This code was compiled and simulated for CPU time profile
information with the following command lines:

vcs smart_queue.v -simprofile -sverilog

simv -simprofile time

6-40

The Unified Simulation Profiler

The profrpt command line was as follows:

profrpt simprofile_dir -view time_all -timeline ALL

Figure 6-16 The profileReport.html File for CPU Time Profile Information

left pane right pane

The profileReport.html file contains two panes:

• The left pane is for specifying the profile database and the view
you want to see.

• The right pane is for displaying profile information.

 6-41

The Unified Simulation Profiler

Figure 6-17 The Left Pane of the simprofileReport.html file

The Database: field is a pulldown menu. You can select the only
database in this example so far, the simprofile_dir directory. Doing so
adds the View: field to the left pane and the default view, which in this
case is the Time Summary view. Then click the GO button.

Figure 6-18 The Left Pane of the simprofileReport.html file

click here

6-42

The Unified Simulation Profiler

Figure 6-19 The Right Pane of the simprofileReport.html file for CPU Time
Summary Information

Components, in this case, are consumers of CPU time during
simulation. The components in this example are as follows:

CONSTRAINT

The CPU time needed to solve and simulated SystemVerilog
constraint blocks.

Also the CPU time used for calls to the randomize() method,
like in this example, are included in this component. These calls
to randomize() are taking most of the CPU time reported for
this component, and this component used most of the CPU time.

KERNEL

The CPU time used by the VCS kernel. This CPU time is separate
from the CPU time needed to simulated your Verilog or
SystemVerilog, SystemC, or C or C++ code for your design and
testbench.

VERILOG

 6-43

The Unified Simulation Profiler

The CPU time VCS needed to simulate this example’s
SystemVerilog code, which is a program block. For Verilog and
SystemVerilog there are sub-components. In this example there
is only one sub-component named Program.

This example consists of a SystemVerilog program block that
used 22.03% of the CPU time.

Possible other sub-components are Module, Interface, UDP, and
Assertion, for the CPU time used by Verilog and SystemVerilog
definitions for module, interface, user-defined primitive,
package and assertion.

Other possible components are as follows:

DEBUG

The CPU time VCS needed to simulate this example with the
debugging capabilities of DVE and the UCLI or to write a
simulation history VCD or VPD file.

Value Change Dumping

The CPU time VCS needed to write a simulation history VCD or
VPD file. This component is always accompanied by the DEBUG
component. This component has the following sub-components:

VPD

The CPU time VCS needed to write a VPD file.

VCD

The CPU time VCS needed to write a VCD file.

PLI/DPI/DirectC

6-44

The Unified Simulation Profiler

The CPU time VCS needed to simulate the C/C++ in a PLI, DPI,
or DirectC application.

HSIM

This is about the CPU time used by HSOPT optimizations.

COVERAGE

The CPU time needed for functional coverage (testbench and
assertion coverage). Code coverage is not part of this component.

SystemC

The CPU time needed for SystemC simulation.

If you select the Time Module view in the View: field in the left pane,
then click the GO button again, the right pane changes to show this
view.

Figure 6-20 The CPU Time Module View

click here

As explained earlier, modules not only include Verilog and
SystemVerilog modules, but can also include SystemVerilog
programs and interfaces,.

 6-45

The Unified Simulation Profiler

In this example program block tb_top used 3.59 seconds of CPU
time, which was 22.03% of the CPU time used by the simulation.

The program name is a hypertext link to expand the display in this
view. If you click on it you see the scopes inside the program block.

Figure 6-21 The Expanded CPU Time Module View

In this example the scopes inside the program block are begin-end
blocks that are not named, so profrpt calls them all NoName.
These begin-end blocks use most of the CPU time used by the
program block. In this example NoName is not a hypertext link.

Other possible scopes inside a module are fork-join blocks and user-
defined tasks and functions.

If you select the Time Construct view in the View: field in the left
pane, then click the GO button again, the right pane changes to show
this view.

6-46

The Unified Simulation Profiler

Figure 6-22 The CPU Time Construct View

click here

In this example the only construct is an initial block. This initial block
uses 21.16% of the CPU time.

For Verilog and SystemVerilog, the constructs in this view can
include initial procedures, always procedures (including the
SystemVerilog always procedures such as always_comb),
SystemVerilog final procedures, user-defined tasks, and user-
defined functions.

The initial keyword is a hypertext link to expand the display in this
view. If you click on it you see the scopes inside the initial procedure.

Figure 6-23 The Expanded CPU Time Construct View

 6-47

The Unified Simulation Profiler

In this example the scopes inside the initial procedure are begin-end
blocks that are not named, so the profiler calls them all NoName.
These begin-end blocks use most of the CPU time used by the
program block. In this example NoName is not a hypertext link.

If you select the Time Instance view in the View: field in the left pane,
then click the GO button again, the right pane changes to show this
view.

Figure 6-24 The CPU Time Instance View

This view shows CPU times and percentages for the instances in the
design. These are instances of Verilog and SystemVerilog modules
and also instances of SystemVerilog interfaces.

This view shows for an instance the inclusive and exclusive time and
percentage values.

The inclusive time and percentage is for the percentage of CPU time
used by this instance and all instances that are hierarchically under
it in the design hierarchy.

The exclusive time and percentage is for the CPU time used by this
instance alone, not counting the instances that are hierarchically
under this instance.

6-48

The Unified Simulation Profiler

In this example there is only one instance of program tb_top, so the
inclusive and exclusive values are the same, which are 3.59 seconds
and 22.03% of the CPU time.

The instance name tb_top is not a hypertext link.

In this example there is no PLI, DPI, or DirectC code so there is no
information in the Pli/DPI/DirectC view. There also is no information
in the Dynamic Timeline view because this view is for machine
memory information and you do not collect machine memory profile
information in the profile database.

You can now simulate for machine memory profile information:

simv -simprofile mem

The profrpt command line is as follows:

profrpt simprofile_dir -view mem_all -timeline ALL

The -timeline option specifies snapshot reports.

The profile report generator, profrpt, rewrites the
profileReport.html file for machine memory information, so re-open
this file.

In the left pane, in the Database: field select again the simprofile_dir
profile database directory. Doing so adds the following fields to the
left pane:

• the View: field which is at the default selection of the Memory
Summary view

 6-49

The Unified Simulation Profiler

• the Snapshot: field which is at the default selection of the peak
machine memory snapshot, in this example the 33rd snapshot at
simulation time 2000000.

Then click the GO button.

Figure 6-25 The Machine Memory Summary View for the Peak Snapshot

simulation time of the
peak snapshot

Components, in this view, are consumers of machine memory during
simulation. This view reports the amount machine memory used by
each component and their percentage of the total machine memory
used in the snapshot. In this example this is the peak snapshot.

In this snapshot the preponderance of machine memory is used by
the VERILOG and KERNEL components.

The components in this view are as follows:

VERILOG

6-50

The Unified Simulation Profiler

The machine memory VCS needed to simulate this example’s
SystemVerilog code, which is a program block, at the peak
snapshot. There are the following sub-components:

Program

The machine memory needed to simulate the SystemVerilog
program block in the code example.

Package

Usually the machine memory needed to simulate a
SystemVerilog package.

In this case this is an anomaly, reporting a small amount of
machine memory for a package when there is no package in
the code example. You can ignore these anomalies.

Possible other sub-components are Module, Interface, UDP, and
Assertion.

KERNEL

The machine memory used by the VCS kernel. This is separate
machine memory from the machine memory needed to simulate
the code in the code example.

CONSTRAINT

The machine memory needed to solve and simulate
SystemVerilog constraint blocks, but also counted in this
component are calls to the randomize() method.

HSIM

 6-51

The Unified Simulation Profiler

This is about the machine memory used by HSOPT optimizations.

Library/Executable

This is the sum of the VCS and Third-party sub-components.

VCS

Memory consumed by VCS executable and library. It consists
of simv and all the libraries provided by VCS. Most of these
libraries are located in $VCS_HOME/lib.

Third-party

Memory consumed by user-provided libraries and global
libraries such as libc.so. This includes all the other libraries.

COVERAGE

This component is for functional coverage. A small percentage of
machine memory is reported here even though there is no
functional coverage code in the design. This is the machine
memory needed for functional coverage enabling optimizations,
which are default optimizations.

Code coverage is not reported in this component. The machine
memory used for code coverage is in the VERILOG component.

Other possible components, if you change the example source code
and entered different options, are as follows:

DEBUG

6-52

The Unified Simulation Profiler

This component is for the machine memory VCS needed to
simulate this example with the debugging capabilities of DVE and
the UCLI or to write a simulation history VCD or VPD file.

PLI/DPI/DirectC

This component is for the machine memory VCS needed to
simulate the C/C++ code in a design.

SystemC

The machine memory needed for SystemC simulation.

So far you have looked at the machine memory summary view for
the peak snapshot. There is a summary view for other snapshots.

For example, if you select the 10th snapshot.

Figure 6-26 Selecting the 10th Snapshot

Then click the GO button, the right pane shows the machine memory
summary view for this snapshot.

 6-53

The Unified Simulation Profiler

Figure 6-27 The Machine Memory Summary View for the 10th Snapshot

This view shows the machine memory used by the various
components in the 10th snapshot.

Now, back in the left pane, you can return to the peak snapshot, the
33rd, in the Snapshot: field and select the Memory Module view in
the View: field, then click the GO button. The right pane changes to
the machine memory module view for the peak snapshot.

Figure 6-28 The Machine Memory Module View for the Peak Snapshot

click here

6-54

The Unified Simulation Profiler

As explained earlier, modules not only include Verilog and
SystemVerilog modules, but can also include SystemVerilog
programs and interfaces.

In this example program block tb_top used 116.14 MB of machine
memory, which is 74.33% of the machine memory used to simulate
the peak snapshot.

The program name is a hypertext link to expand the display in this
view. If you click on it you see the scopes inside the program block.

Figure 6-29 The Expanded Machine Memory Module View for the Peak
Snapshot

In this example the scope inside the program block is a begin-end
blocks that is not named, so profrpt calls it NoName. This begin-
end block uses most of the machine memory used by the program
block. In this example NoName is not a hypertext link.

Other possible scopes inside a “module” are fork-join blocks and
user-defined tasks and functions.

There is a machine memory module view for each snapshot.

 6-55

The Unified Simulation Profiler

If, in the left pane, you select the Memory Constant view and then
click the GO button, the right pane changes to the machine memory
construct view for the peak snapshot.

Figure 6-30 The Machine Memory Construct View for the Peak Snapshot

click here

In this example the only construct is an initial block. This initial block
uses, at the peak snapshot, 116.14 MB of machine memory, which
is 73.92% of the total machine memory use at the peak snapshot.

For Verilog and SystemVerilog, the constructs in this view can
include initial procedures, always procedures (including the
SystemVerilog always procedures such as always_comb),
SystemVerilog final procedures, user-defined tasks, and user-
defined functions.

The initial keyword is a hypertext link to expand the display in this
view. If you click on it you see the scope inside the initial procedure.

6-56

The Unified Simulation Profiler

Figure 6-31 The Expanded Machine Memory Construct View for the Peak
Snapshot

In this example the scope inside the initial procedure is a begin-end
block that is unnamed, so profrpt calls it NoName. This begin-end
blocs use all of the machine memory used by the initial procedure.
In this example NoName is not a hypertext link.

There is a machine memory construct view for each snapshot.

If you select the Memory Instance view in the View: field in the left
pane, then click the GO button again, the right pane changes to show
this view.

Figure 6-32 The Machine Memory Instance View for the Peak Snapshot

 6-57

The Unified Simulation Profiler

This view shows the machine memory used and percentages for the
instances in the design at the peak snapshot. These are instances of
Verilog and SystemVerilog modules and also instances of
SystemVerilog programs and interfaces.

This view shows for an instance the inclusive and exclusive machine
memory used and percentage values for the peak snapshot.

The inclusive machine memory amount and percentage is the
percentage of machine memory used by this instance and all
instances that are hierarchically under it in the design hierarchy.

The exclusive machine memory amount and percentage is the
machine memory used by this instance alone, not counting the
instances that are hierarchically under this instance.

In this example there is only one instance of program tb_top, so the
inclusive and exclusive values are the same, which are 116.14 MB
and 73.92% of the machine memory.

The instance name tb_top is not a hypertext link.

Like the machine memory summary, module, and construct views,
there is a machine memory instance view for each snapshot.

In this example there is no PLI, DPI, or DirectC code so there is no
information in the Pli/DPI/DirectC view.

If you select the Dynamic Memory view in the View: field in the left
pane, the Snapshot: field to automatically change to snapshot #997.

6-58

The Unified Simulation Profiler

Figure 6-33 The Left Pane After Selecting the Dynamic Memory View

Snapshot #997 is the peak snapshot for dynamic objects.

If you click the GO button again, the right pane changes to show this
view.

Figure 6-34 The Dynamic Memory View for the Peak Snapshot

click here

 6-59

The Unified Simulation Profiler

The peak machine memory dynamic view shows the machine
memory that was used by dynamic objects at their peak machine
memory consumption. This is not the peak machine memory
consumption of the entire design and testbench, just the peak
machine memory consumption of their dynamic objects.

The dynamic objects include dynamic and associative arrays and
queues.

In this view is a SystemVerilog queue and string.

Smart Queues are a concept in the OpenVera Language Reference
Manual: Testbench. The profrpt profile report generator lists
SystemVerilog queues as Smart Queues. In this example there is
only one SystemVerilog queue. It is declared as follows:

logic [255:0] Squeue_data_info[$];

Squeue_data_info, in this peak machine memory dynamic view,
used 4.39 MB of machine memory, which is 12.88% of the machine
memory used at this peak by the this queue.

The profrpt profile report generator cannot report the number of
instances of this queue.

The string entry is for a small amount of machine memory and can
be ignored.

There is a dynamic object machine memory view for each snapshot.

If you select the Dynamic Timeline view in the View: field in the left
pane, the Snapshot: field disappears.

6-60

The Unified Simulation Profiler

Figure 6-35 The Left Pane After Selecting the Dynamic Timeline View

If you click the GO button again, the right pane changes to show this
view.

 6-61

The Unified Simulation Profiler

Figure 6-36 The Machine Memory Dynamic Timeline View

Column for snapshots

hypertext links for page numbers

This view, unlike the previous machine memory views, is not for a
specific snapshot, but for all snapshots in the profile database.

In this example there are multiple pages and the page numbers, at
the bottom of the view, are hypertext links to show the different
pages. In this view there are many pages because there are
hundreds of snapshots in the database.

6-62

The Unified Simulation Profiler

Notice that there is a significant increase in the machine memory for
the queue in snapshot 13.

You can scroll to the right and click on page 50, which includes the
dynamic object machine memory peak snapshot, and the right pane
changes to show this page.

Figure 6-37 Page 50 of the Machine Memory Dynamic Timeline View

 6-63

The Unified Simulation Profiler

Display of Parameterized Class Functions and Tasks in
Profiling Reports

The reports generated by the unified simulation profiler display
functions and tasks of parameterized classes that are defined in a
package or in the global scope.

For example:

class vector #(int size = 1);
 rand bit [size-1:0] a;
 bit [size-1:0] a_arry[];

 constraint num { a > 1; }

 task obj_disp();
 $display("%0d : Object v%0d : %p", $time, size, this);
 endtask

 function void disp_count();
 int i;
 for (i=0; i<1000000; i++) begin
 this.randomize();
 a_arry[i] = a;
 end
 endfunction
endclass

program prog;
 vector #(2) v2 = new;
 vector #(3) v3 = new;
 vector #(4) v4 = new;

 initial begin
 v2.disp_count();
 v3.disp_count();
 v4.disp_count();
 v2.obj_disp();
 v3.obj_disp();

6-64

The Unified Simulation Profiler

 v4.obj_disp();
 end
endprogram

In the above example, the parameterized class vector is defined in
the global scope. In the profiling report, the instance _global_ is
displayed in the Time Instance View and the class function
disp_count()is displayed in the Time Module View.

Note:
For objects of the same parameterized class, profiling data for
their functions and tasks are combined and displayed as a single
entry.

Figure 6-38 is the Time Module View.

Figure 6-38 Time Module View

 6-65

The Unified Simulation Profiler

Hypertext Links to the Source Files

The pathnames of source files in any of the HTML views are
hypertext links. Clicking on one of these links opens a new window
of the browser to display that source file. This section describes and
illustrates this feature.

Note:

The hypertext link to the source files feature is not implemented
for SystemC/C/C++ source files.

To use this feature do the following:

1. Compile a design with the -simprofile option.

2. Run the simulation with the -simprofile time/mem/
time+mem option and keyword argument to enable VCS to collect
time/memory/time&memory profile information.

3. Run the profrpt utility to create the HTML views.

4. Open the profileReport.html file.

5. Select a profile database in the left pane.

6. Select the Time Instance view.

6-66

The Unified Simulation Profiler

Figure 6-39 Time Instance View

click here

7. Click on an instance in the view.

This adds this information about the instance to the bottom of the
HTML page:

Instance Name a reiteration of the instance name

Exclusive Time the CPU time used by the instance

Exclusive Percentage the percentage of the total CPU time that
was used by this instance

Inclusive Time the CPU time used by the instance and all
instances under it in the design hierarchy

Inclusive Percentage the percentage of the total CPU time that
was used by this instance and all instances
under it in the design hierarchy

Master Module the name of the top-level module in the
design hierarchy

Child Instance Number the number of instances under this instance
in the design hierarchy

Source Information the path to the source file and line number
of the header of the module, interface, or
program definition

The Source Information is in blue text in this expanded view
because it is a hypertext link to the source code. See Figure 6-40.

 6-67

The Unified Simulation Profiler

Figure 6-40 Time Instance View Expanded

click here

In this example source information for the instance is the program
definition for instance tb_top is in:
/file_system/big_design/VCS_user_files/smart_queue.v on line
2.

8. Click on the blue path name of the source file and line number,
this is a hypertext link.The browser opens a new window to display
the source file, see Figure 6-41.

Note:

To display the source file in new window, you should open the
source file with Firefox 3.* web browser.

6-68

The Unified Simulation Profiler

Figure 6-41 New Source File window

The program header is program tb_top; in line 2, has a lighter
background.

The lines in this source file window also shows the line numbers.

Single Text Format Report

Text format views are merged together into a text file named
profileReport.txt in the current directory.

 6-69

The Unified Simulation Profiler

You specify text format reports with the -format text or
-format all option and argument on the profrpt command line.

If you run the profrpt report generator more than once, the utility
overwrites the profileReport.txt file in the current directory so
that its profile information is from the last run.

When you specify text format reports the profrpt utility also
creates separate text files for each view in the profile report directory,
These separate text files for each view have names such as
PeakMemInstanceView.txt or TimeConstr.txt.

Stack Trace Report Example

The following file, named check.v, is used to produce a sample stack
trace report.

class Packet;
 bit[100000:0] b;
 function new();
 b = 0;
 endfunction
endclass

Packet pp[int];
 int cindex = 0;
reg r;

program p;
 function Packet AllocPacket();
 begin
 AllocPacket = new;
 end
 endfunction

 task A;
 begin

6-70

The Unified Simulation Profiler

 fork
 B();
 C();
 join
 end
 endtask

 task B;
 int i;
 Packet lpp[int];
 begin
 $display("B called");
 for (i=0; i < 100000; i++)
 pp[i] = AllocPacket();
 end
 endtask

 task C;
 int i;
 Packet lpp[int];
 begin
 $display("C called");
 for (i=0; i < 10000; i++)
 lpp[i] = AllocPacket();
 end
 endtask

 initial
 begin
 A();
 end
endprogram

The following command sequence generates the stack trace report
for the check.v example:

vcs check.v -simprofile -sverilog

simv -simprofile mem

profrpt simprofile_dir -view dynamic_mem+stack

 6-71

The Unified Simulation Profiler

Figure 6-42 shows the HTML stack trace report for the check.v
example. The stack trace information is at the bottom of the view.

Figure 6-42 The Machine Memory Dynamic Object View for the Peak
Snapshot

SystemC Views

The following views are from a SystemC cosimulation after running
the profrpt profile report generator.

6-72

The Unified Simulation Profiler

The code examples for these views is in the $VCS_HOME/doc/
examples/systemc/vcs/vcs_profiler. There is a minor change to one
of the files to show the name for a begin-end block in sv_mod.sv as
follows:

module sv_mod(iclk);
input iclk;
static int count=0;
int i;

always @(posedge iclk)
begin: be1

count++;
$display("SV:Executing on pos edge @%d",count);
for(i=0;i<1000*100000000;i++)

;
end

endmodule

Figure 6-43 The Time Summary View

As you would expect from reading the SystemVerilog and SystemC
files in this example, most of the CPU time was used by the
SystemVerilog and SystemC modules.

 6-73

The Unified Simulation Profiler

A small amount of CPU time was used by The VCS kernel.

A small amount of CPU time was reported used by a SystemVerilog
package, writing a VPD file, and PLI, DPI, or a DirectC application,
even though these are not present in this example. Notice that they
all take 0.00% of the CPU time. You can ignore these anomalies.

If our example wrote a VPD file or contained a PLI, DPI, or DirectC
application, you would see significant values for the CPU times in
this view.

Figure 6-44 The Time Module View

This view shows the CPU times and percentages for the main
consumers of CPU times, the SystemVerilog module sv_mod and
the SystemC module sc_mod. A small amount of time is used by the
top level module sv_top.

The modules std and _global_ are from the internals of VCS and
when seen in this view should be ignored.

If you click on these module names the view expands to show
scopes inside these module definitions.

6-74

The Unified Simulation Profiler

Figure 6-45 The Expanded Time Module View

In SystemVerilog module sv_mod:

• The begin-end block named be1 consumes all of the CPU time
of the module.

• There is an extraneous process call NoName that consumed no
CPU time and can be ignored.

• The input port named iclk in sv_mod is shown as a process, like
a begin-end block of code, because it also attached to sc_mod
and in SystemC the clock signal is a process. If sv_mod had other
ports that were not clock signals, profrpt would not show them
as processes.

 6-75

The Unified Simulation Profiler

In SystemC module sc_mod, mythread() is the SystemC variant of a
named block in Verilog or SystemVerilog, and represents code (like
in a SystemVerilog always procedure, but is shown in this view rather
that the Time Construct view). The implementation of this function is
in the .cpp file.

Figure 6-46 The CPU Time Construct View

The CPU time construct view shows the CPU times and percentages
used by the always and initial procedures in the design, and also the
port in the design.

In this example Task and Function do not refer to a user-defined task
and function, but rather refer to the internals of VCS and did not
consume CPU time. If this example contained user-defined tasks or
functions, they would be listed as a Task or Function here.

6-76

The Unified Simulation Profiler

Figure 6-47 The Time Instance View

In this view, as it initially appears, you see the SystemVerilog top-
level instance sv_top. You youalso see the SystemC instance
sv_top.sc_mod_inst because it is a SystemC instance in this
SystemVerilog on top example.

As in previous views, std and _global_ are from the internals of VCS
and can be ignored.

If you click on the top-level module sv_top you see instance
sv_mod_inst.

 6-77

The Unified Simulation Profiler

Figure 6-48 The Expanded CPU Time Instance View

Figure 6-49 The PLI/DPI/DirectC View

6-78

The Unified Simulation Profiler

This view, for the PLI, shows both VCS internal functions and user
written PLI functions.

In this example all functions are VCS internal functions. You can look
for ones that consume significant CPU time. The $vcdplusmsglog
system function, not in this example, can consume significant CPU
time.

For SystemC there is an additional CPU time view, the SC
(SystemC) OverHead View.

Figure 6-50 The SC OverHead View

This data depends on the test case. It can be that kernel overhead
becomes an issue and/or it can be compared against the Verilog
kernel overhead.

The sc-value overhead is time taken to transfer data from one
domain to another, like to or from SystemC to or from Verilog, or
SystemVerilog. This can be expensive when there is large amounts
of data such as with a large vector signal or a large multi-dimensional
array. Also spawning of processes can take time and accumulate sc-
overhead.

 6-79

The Unified Simulation Profiler

Kernel overhead from SystemC, but also from Verilog
orSystemVerilog, can become an issue when your code doesn't
consume much CPU time and there is significant overhead to keep
the cosimulation running.

Usually you want these CPU time values to be low.

Constraint Profiling Integrated in the Unified Profiler

Constraint profiling is integrated in the unified profiler. This
integration adds the following views to the profile reports:

- the Time Constraint Solver view

- the Memory Constraint Solver view

These views tell you, in detail, the calls to the randomize() method
that use the most CPU time or the most machine memory. With this
information you can consider revising your constraints on the
random variables to use less of these resources.

Changes to the Use Model for Constraint Profiling

To tell profrpt to generate these views the following is added to the
use model:

The profrpt -view option’s arguments now include:

• time_solver to specify generating the Time Constraint Solver
view

• mem_solver to specify generating the Memory Constraint Solver
view.

6-80

The Unified Simulation Profiler

The time_all and mem_all arguments also generate these views.

The left pane of the profileReport.html file, after selecting a profile
database, contains a drop down menu for views. This menu now
contains the following for constraint profiling:

• the Time Constraint Solver view

• the Memory Constraint Solver view

Figure 6-51 New Constraint Views

The following sections describe these views.

 6-81

The Unified Simulation Profiler

The Time Constraint Solver View

The following is an example of the Time Constraint Solver View.

Figure 6-52 Example Time Constraint Solver View

6-82

The Unified Simulation Profiler

Parts of this view,Figure 6-52 are described in detail below in
Figure 6-53,Figure 6-54, Figure 6-55, Figure 6-56, Figure 6-57, and
Figure 6-58.

 6-83

The Unified Simulation Profiler

Figure 6-53 Introductory information is at the top of the view

Total user time:

Specifies the total CPU time to simulate the design and testbench.
In this example it is 11.670 seconds.

Total system time:

Specifies the total CPU time used by VCS when not simulating
the design or testbench. In this example it is 0.12 seconds.

Total randomize time:

Specifies the CPU time VCS needed to execute the
randomize() method calls in the design. In this example it is
0.03 seconds.

Total randomize count:

Specifies the number of entries of the randomize() method are
in the SystemVerilog source code. In this example it is 2.

6-84

The Unified Simulation Profiler

Figure 6-54 Top randomize calls based on cpu time

hypertext link

This section of the view is for the randomize() entries in the source
code that use the most CPU time. There is a separate line for each
entry. There are two such entries in this code example, so they are
listed here.

The columns in this section are for the following values:

File:line@visit

Specifies the following three things:

File

Specifies the path name for the source file that contains the
entry. In this example view the first line is for a source file with
the path name /env/nvs_atapi_env.sv.

line

Specifies the line number in the source file that contains the
entry. In this example the entry is on line 118.

@visit

 6-85

The Unified Simulation Profiler

A visit is an execution of the entry. There can be multiple
executions of the same entry throughout a simulation. In this
example view, the first line is for the first execution, or visit, of
the entry.

If the code example had VCS execute the entry three times,
there could have been a line in this section that began with:

/env/nvs_atapi_env.sv:118@3

Important:

The File:line@visit part of a line is blue because this part is a
hypertext link. When you click on it, the browser opens a new
window showing the source file with the line specified at the top.

serial#

The series in this column is the order in which VCS executes the
calls to the randomize() method. In this example line 118
contained the first call and line 120 contained the second call.

Note:

This section of the view is for the calls that used the most CPU
time, and these top users are not always the first or second
randomize() calls that VCS executes.

time (sec)

The amount of CPU time used by the call.

variables

The number of rand or randc variables randomized by a call.
Not all such variables in a class are randomized by a call.

6-86

The Unified Simulation Profiler

constraints

The number of constraints in the class that are randomized by a
call.

cnst blocks

The number of constraint blocks that contain these constraints.

Note:

In the following example:

constraint reasonable_on_latencies {
 dior_to_data_place_time < 10;
 data_prepare_time < 10;
 dior_to_data_place_time > 0;
 data_prepare_time > 0;
 }//end constraint reasonable_on_latencies

There is one constraint block and four constraints.

Figure 6-55 Top randomize calls based on cumulative cpu runtime

hypertext link

VCS can execute, or visit, a call to the randomize() method in a
specific location of the source code more than once. If it does so,
VCS keeps track of the cumulative CPU time used by these multiply
executed calls and profrpt reports this cumulative time in this
section.

 6-87

The Unified Simulation Profiler

This section reports:

• The location of the call in a hypertext link that opens a new window
displaying the source code.

• The number of calls or visits to this location.

• The cumulative CPU time used by the calls.

Figure 6-56 Top partitions based on cpu time

hypertext link

VCS has a constraint solver to determine the possible values that
conform to your constraints. To solve these problems the constraint
solver divides its work into partitions. This section reports the number
of partitions in a problem.

In this example this section reports on the one visit to the
randmomize() method in the example source file at /env/
nvs_atapi_env.sv on line 118.

The constraint solver divided its work into 10 partitions. The
profrpt utility reports, for each partition:

6-88

The Unified Simulation Profiler

• the CPU time needed to solve the partition

• the number of random variables in the partition

• The number of constraints

• The number of constraint blocks that contained these constraints

Figure 6-57 Constraint solver profile

The total randomize time is further broken down into the different
internal solvers and problem generation. This information might
indicate where you can revise your constraints and randomize calls
to improve the total CPU time.

Figure 6-58 Top partitions based on BDD size

This part of the constraint profile report is empty unless VCS uses
the solver (mode=1) in the randomization. When it uses mode=1,
this section shows some memory footprint information of different

 6-89

The Unified Simulation Profiler

randomize calls executed under this solver (mode=1). You specify
using the mode=1 solver with the +ntb_solver_mode=1 runtime
option and argument.

No information is in this example section because the default solver
is doing the constraint solving for this example.

The Memory Constraint Solver View

The following is an example of the memory constraint solver view.

Figure 6-59 Example Memory Constraint Solver View

Parts of this view,Figure 6-59, are described in detail below in
Figure 6-60 and Figure 6-61.

6-90

The Unified Simulation Profiler

The view begins with the size of that largest increase of machine
memory during the simulation:

Figure 6-60 Largest memory increment

In this example the largest increase in machine memory was an
increase of 640 KB.

Next are the randomize() entries that cause the largest increases
in the use of machine memory:

Figure 6-61 Top randomize calls based on memory increment

hypertext link

The columns in this section are for the following values:

File:line@visit

Specifies the following three things:

File

 6-91

The Unified Simulation Profiler

Specifies the path name for the source file that contains the
entry. In this example view the first line is for a source file with
the path name /env/nvs_atapi_env.sv (just like it
was with .

line

Specifies the line number in the source file that contains the
entry. In this example the entry is on line 118.

@visit

A visit is an execution of the call. There can be multiple
executions of the same call throughout a simulation. In this
example view, the first line is for the first execution, or visit, of
the call.

If the code example had VCS execute the call three times, there
could have been a line in this section that began with:

/env/nvs_atapi_env.sv:118@3

Important:

The File:line@visit part of a line is blue because this part is a
hypertext link. When you click on it, the browser opens a new
window showing the source file with the line specified at the top.

serial#

The series in this column is the order in which VCS executes the
calls to the randomize() method. In this example line 118
contained the first call and line 120 contained the second call.

6-92

The Unified Simulation Profiler

Note:
This section of the view is for the calls that used the most machine
memory, and these top users are not always the first or second
randomize() calls that VCS executes.

mem incr (KB)

The amount of additional machine memory VCS needs when it
executes the call.

variables

The number of rand or randc variables randomized by a call.
Not all such variables in a class are randomized by a call.

constraints

The number of constraints in the class that are randomized by a
call.

cnst blocks

The number of constraint blocks that contain these constraints.

hypertext link

 6-93

The Unified Simulation Profiler

The next section is for the randomize() calls that VCS executes the
most. There are two randomize() entries in this example, and
each are executed only once. These executed once calls are in this
section because the code example does not contain calls that
execute more frequently during the simulation.

This section reports:

• The path to the source file, and the line number of the call.

• The number of times VCS executes a call

• The amount of additional machine memory VCS needs to execute
the call.

Performance/Memory Profiling for Coverage
Covergroups

This is an extension to the Unified Simulation Profiler to increase the
granularity at which it reports the coverage related data. It provides
the total time/memory taken by each covergroup across all its
instantiations and the time/memory taken by individual instances of
each covergroup.

The data reported for a covergroup or a covergroup instance
includes the time/memory spent in instantiating and initializing the
covergroup instance(s) and the time/memory spent in sampling the
covergroup and the associated processing of the bins.

A covergroup instance is defined as the covergroup instantiation that
is uniquely determined by an external reference as defined by the
SystemVerilog LRM. This will also be the lowest granularity at which
time/memory data is reported. Note that if a covergroup is

6-94

The Unified Simulation Profiler

instantiated multiple times on the same line of code, then the time/
memory data is gathered for all those instances. Similarly, if a
covergroup is instantiated within the same scope in different
branches using the same handle, then the time/memory data is
gathered for all those instances.

Use Model

The naming mechanism should be similar to URG.

For covergroups: declaring scope name::covergroup name

For covergroup instances, you must provide a full hierarchical path
including both static and dynamic components for embedded
covergroup definitions.

Example

The covergroups for which the time/memory data are provided:

my_mod::my_static_cg
my_class1::my_cg

The covergroup instances for which a separate time/memory data is
provided:

top.i1.cg1
top.i2.cg1
top.i1.cg2
top.i2.cg2
top.i1.mc1_top.my_cg
top.i2.mc1_top.my_cg
top.i1.mc2_top.mc1.my_cg
top.i2.mc2_top.mc1.my_cg
top.i1.mc2_top.mc2.my_cg

 6-95

The Unified Simulation Profiler

top.i2.mc2_top.mc2.my_cg

HTML Profiler Reports

Profiler reports are by default in HTML format.

The following sections provide the covergroup enhancements for
each of the views.

Default Summary View

When a default HTML SimprofileReport is loaded, the Default
Summary View is opened.

The coverage component is split into two new components,
Functional Coverage and Code Coverage. The Covergroup
captures the total time/memory spent in all the instantiated
covergroups for the run. The Code Coverage component captures
the time/memory spent in segments of code coverage collection to
be determined later. The full code coverage data is collected and
reported.

6-96

The Unified Simulation Profiler

Figure 6-62 Default Summary View

Time/Memory Summary View

To access the Time/Memory Summary View, click Time/Memory
Summary option in the left pane of the Simprofile Report.

This view is similar to Default Summary View. To view more
information, see “HTML Profiler Reports” .

Time/Memory Module View

To access the Time/Memory Module View, click Time/Memory
Module option in the left pane of the Simprofile Report.

Expanding a module/interface/program/package provides the data
for the covergroups instantiated in it. The data for each covergroup
captures the total time/memory spent in all instances of that
covergroup across all the instances of the scope. In Figure 6-63, the
covergroup, my_class1::my_cg is instantiated thrice in module
my_mod, once as part of mc1_top, an object of class my_class1,
and twice as part of mc2_top, an object of class my_class2. There
are two instances of my_mod in the design. The data presented for
my_class1::my_cg under my_mod is the cumulative data from all
the six instances of the covergroup.

 6-97

The Unified Simulation Profiler

The covergroups are further expanded to provide data for each cover
item (coverpoint or cross) in the covergroup.

Figure 6-63 Time/Memory Module View

In Time/Memory Module view, click a covergroup to view the details
of that covergroup in the Construct Information pane. These include
the name of the covergroup, the scope in which it is declared
(package, module, programs, interface, checker, or class), the total
time/memory taken by all the covergroup instances in all the
instances of the instantiating scope, and file and line number for the
declaration of the covergroup. Click the source file/line information to
get the appropriate file and move the cursor to the appropriate line.

Time/Memory Construct View

To access the Time/Memory Construct View, click Time/Memory
Construct option in the left pane of the Simprofile Report.

6-98

The Unified Simulation Profiler

A new covergroup entry is added to the existing constructs. When a
covergroup is expanded, it lists all the covergroups declared in the
design. The data displayed for each covergroup is the cumulative
data across all the instances of that covergroup regardless where it
is instantiated.

The covergroups are further expanded to provide data for each cover
item (coverpoint or cross) in the covergroup.

Figure 6-64 Time/Memory Construct View

In Time/Construct View, click on a covergroup to provide the details
of the covergroup in the Construct Information pane. These include
name of the covergroup, scope in which it is declared (package,
module, programs, interface, checker, or class), total time/memory
taken by all the covergroup instances of this covergroup in the entire
design, and file and line number for the declaration of the
covergroup. Click the source file/line information to get the
appropriate file and move the cursor to the appropriate line.

 6-99

The Unified Simulation Profiler

Time/Memory Covergroup View

To access the Time/Memory Covergroup View, click Time/Memory
Covergroup option in the left pane of the Simprofile Report. It
provides information for the functional covergroups and the time/
memory information both at the covergroup definition level and at the
covergroup instance level. The time/memory data for the covergroup
definition includes the time/memory spent in all the instances of that
covergroup in the entire design, whereas the time/memory data for
the covergroup instance includes only the time/memory spent in that
particular instance of the covergroup.

Figure 6-65 Time/Memory Coverage View

Limitations

The following technologies are not supported in the unified profiler:

• Multicore — Both for Application Level Parallelism (ALP) and
Design Level Parallelism (DLP is an LCA feature).

6-100

The Unified Simulation Profiler

• The behavior would be unpredictable if you fork child processes
or threads in your C code which might be called through PLI/DPI/
DirectC interfaces.

• Incremental compilation — Not supported yet for the unified
profiler.

• OpenVera is not officially supported, VCS provides some
information for reference but the name of the programs and
constructs might be a bit different from the original one.

• Code coverage is not supported yet, the time and memory used
by code coverage would be counted to corresponding HDL code.

• The accumulative views are only available in HTML format.

• The caller-callee views are only available in HTML format.

• No break down information is available for analog simulations.
The information is available only in the summary form.

• No instance information is available for System Verilog Assertions
(SVAs). Only time module view is displayed that helps you to
determine which caller consume the most memory or time.

Reporting Debug Capabilities for Each Module

VCS integrates the profiler report with debug capacities profile that
shows the debug capacities enabled and used by each module. The
following are the methods that can enable the debug capabilities:

• .tab files

• -debug flags

• +acc flags

 6-101

The Unified Simulation Profiler

The ACC capabilities that you enable are collected on the compile
time. On runtime, the capabilities actually used by modules are
recorded. Simprofile automatically analyzes the database generated
on runtime as well as the compile-time data and shows the profile in
the final report.

Use Model

The following is the use model for reporting debug capabilities:

• Compile time

The compile time use model remains same as that of the previous
use model for reporting debug capabilities. There is no change
needed for reporting debug capabilities.

%vcs -simprofile

• Runtime

Debug aware profile is enabled automatically when you enable
time profiler at runtime:

%vcs -simprofile <time/mem>

• Profpt

To generate debug aware profile report, invoke profrpt using
one of the following commands:

%profrpt -view plilearn <other profrpt options>

or

%profrpt -view ALL <other profrpt options>

6-102

The Unified Simulation Profiler

Separate file PliLearn.txt is generated for PLI debug view. The
switch at profrpt is profrpt -view plilearn plilearn+mem_mod,
which considers both time and memory to generate report.

HTML Reports

The debug capacity profile presents a separate view. This is called
as the ACC capacity view in the final HTML report. This view consists
of two sets of data:

• Capacities Statistics (PLI Debug Capability View)

For each capability, the following three sets of statistics data are
generated:

- Enabled modules

- Enabled and used modules

- Enabled but not used modules

The HTML reports are shown in Figure 6-66:

 6-103

The Unified Simulation Profiler

Figure 6-66 PLI Debug Capability View in HTML Report

Percentage = enabled module
number / Total number of modules
enabled. For example. 9/9 for read,
6/9 for read_write and so on.

Click this hyperlink to display the full
module view with each capabilities
enabled.

Click this blue colored hyperlink to
display the time taken by the module
below HTML report.

Each data set includes module number, the percentage in total
module number, modules exclusive time, and the percentage in
total execution time.

As shown in the figure, percentage is calculated as follows:

Percentage = enabled module number / Total number of
modules enabled

To display the full module view with each capabilities enabled,
click the module number, as shown in Figure 6-67:

VCS also provides the following aggregated statistics:

- Capabilities enabled but no module uses. This means that the
capacities are enabled by some modules but are not used in
any of the modules.

6-104

The Unified Simulation Profiler

- Capabilities enabled and used by all modules. This means that
the capacities are enabled by some modules and are used in
all these modules.

• Module level debug capacities (Full Module View)

The reports indicates which module needs which capacity.
Capacities that are used by all modules or by no modules are
extracted for clarity.

The slot labels are:

- Enabled: Enabled but not used

- Used: Enabled and used

- Empty slot: Not enabled

Figure 6-67 Full Module List View in HTML Report

Text Reports

There are large number of modules in a design. Therefore, the
module level data do not fit into the size of the text report. So, the text
report includes only the capacities statistics data as shown in
Figure 6-68.

 6-105

The Unified Simulation Profiler

Figure 6-68 Text Report

Limitations

The following are the limitations with this feature:

• Module level data is available only for text reports.

• No detail data, such as source code is available in module list
view in HTML or text reports.

• Only support capabilities, such as read, read_write,
callback, callback_all, force, static are reported.
Other debug capabilities like line callback are not reported.

• Only the original module is shown for parameterized modules.

Supporting Line-Based CPU Time Profiler

You can generate line-based profile report. This helps you to
generate more accurate profile report and also helps you to
efficiently identify the line in a module or construct that has taken
most of the time.

6-106

The Unified Simulation Profiler

Use Model

The use model remains the same as that of the previous use model.

Line-based profile is enabled automatically along with the simprofile.
The line-based profile report is generated in the source information
window that is displayed when you click a module or a construct.

If you select the Time Module View or the Time Construct View in
the View field in the left pane and then click the GO button, the right
pane changes to show the Time Module View or the Time
Construct View respectively as shown in Figure 6-69 and Figure 6-
70.

Figure 6-69 The CPU Time Module View

Figure 6-70 The CPU Time Construct View

In Time Module View or Time Construct View, click the hyperlink
of the source information in the Construct Information pane as
shown in Figure 6-71:

 6-107

The Unified Simulation Profiler

Figure 6-71 Construct Information Pane

click here

The line-based profile report is displayed in a new browser as shown
in Figure 6-72:

Figure 6-72 Line-Based Profile Report

The first column displays the CPU time consumed by that line and
the second column displays the percentage. The CPU time of a
construct is not reported in the source view. The CPU time of a
construct is equal to the total CPU time of all the lines in a construct.

Limitations

The following are the limitations with this feature:

• Supports only the CPU time profile.

6-108

The Unified Simulation Profiler

• Supports only the HTML form for the line-based profile.

Supporting Simulation Time Slice Based Profiler

VCS allows you to generate profile report for a specific time period
and helps you to limit the size of the database.

For example, you can generate a profile report for the time period
when the simulation is very slow (before reset) or you can generate
a profile report for the time period when the simulation is occupying
huge memory.

Use Model

The following is the use model for reporting debug capabilities:

• Compile time

The compile time use model remains the same as that of the
previous use model for reporting time slice profile. There is no
change needed for reporting time slice profile.

%vcs -simprofile

• Runtime

%simv -simprofile -simprofile_start <t+ht> -
simprofile_stop <t+ht>

where,

-simprofile_start <t+ht>

 6-109

The Unified Simulation Profiler

Turns on the simulation profile dumping at simulation time t. ht
is the high 32 bits. If ht is 0, then it can be omitted.

simprofile_stop <t+ht>

Turns off the simulation profile dumping at simulation time t. ht
is the high 32 bits. If ht is 0, then it can be omitted.

Example 1

%simv -simprofile time -simprofile_start 1+50 -
simprofile_stop 1+60

Here,

start time is è 1 * 2 ^32 + 50 = 4294967346ns
stop time is è 1 * 2 ^32 + 60 = 4294967356ns

Example 2

%simv -simprofile time -simprofile_start 50 -
simprofile_stop 60

Here,

start time is è 50 = 50ns
stop time will be è 60 = 60ns

• Profrpt

To generate time slice profiler report, invoke profrpt as follows:

%profrpt -start <start-time> -stop<stop-time> <other
profrpt options>

where,

-start <time>

6-110

The Unified Simulation Profiler

Specifies the starting time (in simulation units) when the report
generation should begin. By default, the start time is 0.

-stop <time>

Specifies the stopping time (in simulation units) when the report
generation should end. By default, the report generation stops at
the latest time available in the simulation profile database.

Figure 6-73 HTML Report - Time/Memory Controlled During Simulation

%simv -simprofile time -simprofile_start 290000 -
simprofile_stop 29271423

All individual profile report contains the profile start and profile stop
duration and time consumed is during this specified time only.

 6-111

The Unified Simulation Profiler

Figure 6-74 HTML Report - Time/Memory Controlled During Profrpt

%simv -simprofile time -simprofile_start 290000 -
simprofile_stop 29271423
%profrpt -start 291000 -stop 29270000 <all other
options>

Profile start time and stop time is profrpt time.
All individual reports is for this duration only.

Diagnostics

The diagnostics feature sends you a message indicating when the
simulation profile is turned on and turned off in the simulation log.

Note-[ON-SIMPROF] Simprofile is turned on
simulation profile is turned on at simulation time
<time>

For example, simulation profile is turned on at simulation time
290000.

Note-[OFF-SIMPROF] Simprofile is turned off
simulation profile is turned off at simulation time
<time>

For example, simulation profile is turned off at simulation time
2971423.

6-112

The Unified Simulation Profiler

Limitations

The following are the limitations with this feature:

• Multiple start and stop on the same command line is not supported
during profrpt stage.

• Multiple start and stop on the same command line is not supported
during simulation stage.

Isolating the Cost of Garbage Collection

VCS isolates the CPU time consumed by the garbage collection.

The cost of garbage collection is reported in the Time Summary
View report. It is displayed as a sub-category under the KERNEL
category.

Use Model

The use model remains the same as that of the previous use model.

 6-113

The Unified Simulation Profiler

Figure 6-75 The Time Summary View

Time consumption for garbage
collection under KERNEL.

Isolating the Cost of Loading Design Database

In some large designs, loading the design database consumes lot of
time and memory.

VCS isolates the CPU time and memory consumed for loading the
design database.

The cost of loading the design database is reported in the Time PLI/
DPI/DirectC View and Peak Memory PLI/DPI/DirectC View
reports. It is displayed as a sub-category under the PLI category.

Use Model

The use model remains the same as that of the previous use model.

6-114

The Unified Simulation Profiler

Figure 6-76 Time PLI/DPI/DirectC View

Cost of loading the design database.

Figure 6-77 Peak Memory PLI/DPI/DirectC View

Cost of loading the design database.

Support for Third-Party Shared Library Profiler Report

Simprofile report displays the detailed information of the memory
cost of the individual shared library besides the total memory cost of
all third-party shared libraries.

 6-115

The Unified Simulation Profiler

Use Model

The use model remains the same as that of the previous use model.

Figure 6-78 Memory Size of the Individual Third-Party Shared Library

Profile report provide the detailed
information for each individual library.

6-116

The Unified Simulation Profiler

 7-1

Diagnostics

7
Diagnostics 1

This chapter covers various diagnostic tools and provides
instructions on how to use these tools.

The following tasks are covered in this chapter:

• “Using Diagnostics”

• “Compile-time Diagnostics”

• “Runtime Diagnostics”

• “Post-processing Diagnostics”

7-2

Diagnostics

Using Diagnostics

This section describes the following topics:

• “Using –diag Option”

• “Using Smartlog”

Using –diag Option

Use the –diag option to enable the libconfig/timescale diagnostic
messages at compile-time and VPI/VHPI diagnostic messages at
runtime. The –diag option supports compile-time diagnostics on the
vcs command-line and runtime diagnostics on the simv command-
line.

Syntax

Below is the syntax of the –diag option:

–diag <diag_arg>[,diag_arg][,diag_arg]..

Where, diag_arg is a diagnostic argument. Table 7-1 lists the
supported diagnostic arguments.

 7-3

Diagnostics

Table 7-1

Argument Use Model Description

libconfig vcs –diag libconfig Enables the library binding
diagnostics. For more information, see
“Libconfig Diagnostics” .

timescale vcs –diag timescale Enables timescale diagnostics. For
more information, see “Timescale
Diagnostics” .

vpi simv –diag vpi Enables VPI diagnostics. For more
information, see “Diagnostics for VPI
PLI Applications” .

all
vcs -diag all Enables the libconfig and

timescale diagnostics.

simv -diag all Enables the vpi diagnostics.

help vcs -diag help

simv -diag help

Displays the following help message:
Usage for -diag flag: -diag
<option>,<option>,...
Options:
all Enable all diagnostics
help Display this message
libconfig Library binding
diagnostics (compile time)
timescale Timescale
diagnostics (compile time)
vpi VPI diagnostics
(simulation time)
vhpi VHPI diagnostics
(simulation time)

Supported Diagnostic Arguments

Using Smartlog

DVE Smartlog provides log analysis (diagnostic information) for
each line in the log file. It takes the compile log and simulation log
created by VCS and summarizes the data into reports. Smartlog
provides the diagnostic information in a separate log file known as a
smartlog file. Following are the main features of Smartlog:

7-4

Diagnostics

• Hyperlink the log occurrences to the Source View

• Highlights the words, namely, Error, Warning, and so on, in
different colors

• Displays the selected message within a blue rectangle

For more information, refer to the Using Smartlog section of the
Discovery Visualization Environment User Guide category in the
VCS Online Documentation.

 7-5

Diagnostics

Compile-time Diagnostics

This section describes the following topics:

• “Libconfig Diagnostics”

• “Timescale Diagnostics”

Libconfig Diagnostics

You can use the libconfig option, as shown below, to enable
libconfig diagnostics:

% vcs –diag libconfig

This option provides the library binding diagnostics at compile-time.
It generates physical mappings of user-defined libraries and the
default work library specified by VCS.

For each Verilog instance, this option generates the instance name,
location, binding rule, and entity-architecture pair/module to which it
is bound.

Note:

- If VCS option -l is specified, the output is dumped into the
corresponding text log file.

- If VCS option -sml is also specified, smart log output will also
be dumped into the corresponding smart log file. For more
information, refer to the Using Smartlog section of the Discovery
Visualization Environment User Guide category in the VCS
Online Documentation.

7-6

Diagnostics

Timescale Diagnostics

You can use the timescale option, as shown below, to enable
timescale diagnostics:

% vcs –diag timescale

This option generates timescale diagnostic message for each
module during VCS elaboration phase.

This allows you to understand how VCS has scaled delays in its
design, and helps to quickly identify, localize and fix the timescale
issues.

Note:
- The output will be printed on the STDOUT by default.

- If VCS option -l is specified, the output is dumped into the
corresponding text log file.

- If VCS option -sml is also specified, smart log information will
also be dumped into the corresponding smart log file. For more
information, refer to the Using Smartlog section of the Discovery
Visualization Environment User Guide category in the VCS
Online Documentation.

Example

Example 1: Module has `timescale

Consider the following test case test.v, which contains module
test with `timescale as 1ns/1ns:

`timescale 1ns/1ns
module test;

 7-7

Diagnostics

initial
$printtimescale;
endmodule

Enabling timescale diagnostics at elaboration time using –diag
timescale:

% vcs test.v -diag timescale

Following is the output:

Parsing design file 'test.v'
Top Level Modules:
 test
TimeScale is 1ns/1ns
module 'test' gets time unit '1ns' from source code '/remote/
vgscratch7/timescale_diag/tests/cft/sva_bind/ll_svb/
Source/test.v', 1
module 'test' gets time precision '1ns' from source code '/
remote/vgscratch7/timescale_diag/tests/cft/sva_bind/
ll_svb/Source/test.v', 1
Starting vcs inline pass...
1 module and 0 UDP read.
recompiling module test
if [-x ../simv]; then chmod -x ../simv; fi
g++ -o ../simv -melf_i386 -m32 -Wl,-whole-archive -
Wl,-no-whole-archive _vcsobj_1_1.o 5NrI_d.o
…
../simv up to date

From the above output, you can figure out which module gets what
timescale at elaboration, and also the reason why and from where
the module got that timescale.

module 'test' gets time unit '1ns' from source code '/remote/
vgscratch7/timescale_diag/tests/cft/sva_bind/ll_svb/
Source/test.v', 1
module 'test' gets time precision '1ns' from source code '/
remote/vgscratch7/timescale_diag/tests/cft/sva_bind/
ll_svb/Source/test.v', 1

7-8

Diagnostics

In the above example, as mentioned `timescale 1ns/1ns on
line# 1, so module has got the timeunit of 1ns and timeprecision
of 1ns.

Example 2: Passing -timescale from vcs command-line

Consider the following testcase test.v:

module test;
initial
$printtimescale;
endmodule

Perform the following command:

% vcs test.v -diag timescale -timescale=1ns/1ns

Following is the output:

Parsing design file test.v
Top Level Modules:
 test
TimeScale is 1ns/1ns
module 'test' gets time unit '1ns' from vcs command option
module 'test' gets time precision '1ns' from vcs command
option
Starting vcs inline pass...
1 module and 0 UDP read.
recompiling module test
if [-x ../simv]; then chmod -x ../simv; fi
g++ -o ../simv -melf_i386 -m32 -Wl,-whole-archive -
Wl,-no-whole-archive _vcsobj_1_1.o 5NrI_d.o
…
../simv up to date

In the below command, you are passing timescale at elaboration
using the –timescale option.

% vcs test.v -diag timescale -timescale=1ns/1ns

 7-9

Diagnostics

 So the diagnostics message printed on the output is:

module 'test' gets time unit '1ns' from vcs command option
module 'test' gets time precision '1ns' from vcs command
option

7-10

Diagnostics

Runtime Diagnostics

This section describes the following topics:

• “Diagnostics for VPI PLI Applications”

• “Keeping the UCLI/DVE Prompt Active After a Runtime Error”

• “Diagnosing Quickthread Issues”

Diagnostics for VPI PLI Applications

As per LRM, VPI remain silent when an error occurs. The application
checks for error status to report an error. If error detection
mechanisms are not in place, the C code of the application must be
modified and recompiled. In addition, you may need to recompile the
HDL code, if required.

However, you can use the following new runtime diagnostic option to
make the PLI application to report errors without code modification:

• –diag vpi

Furthermore, reporting provides you the information related to the
HDL code context, where applicable, to help fix problems with a
faster turnaround time.

Note:

- If VCS option -l is specified, the output is dumped into the
corresponding text log file.

 7-11

Diagnostics

- If VCS option -sml is also specified, smart log information will
also be dumped into the corresponding smart log file. For more
information, refer to the Using Smartlog section of the Discovery
Visualization Environment User Guide category in the VCS
Online Documentation.

For example, consider the following test case tokens.v and files
value.tab and value.c.

Example 7-1 tokens.v

module top;
 reg r;

 initial begin
 #5;
 $putValue("sys_top.rst", 1'b1);

 #1 $finish;
 end
endmodule

module sys_top;
 wire rst;

 assign db.A = rst;
endmodule

module db;

 wire Y;
 wire A;

 my_buf b1(Y, A);

 initial begin
 end
endmodule

module my_buf(Y, A);

7-12

Diagnostics

 output Y;
 input A;

 buf #5 (Y, A);
endmodule

Example 7-2 value.tab

$putValue call=put_value acc=rw:top

Example 7-3 value.c

#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include "sv_vpi_user.h"

void put_value() {
 vpiHandle sysTfH, argI, objH, valueH;
 s_vpi_value value;
 s_vpi_time time_s;
 int format;
 p_vpi_value value_p;
 p_vpi_time time_p;

 sysTfH = vpi_handle(vpiSysTfCall, 0x0);

 argI = vpi_iterate(vpiArgument, sysTfH);

 objH = vpi_scan(argI);
 valueH = vpi_scan(argI);

 if (vpi_get(vpiType, objH) == vpiConstant) {
 value.format = vpiStringVal;
 vpi_get_value(objH, &value);
 vpi_free_object(objH);
 if(strcmp(value.value.str, "null")) {
 objH = vpi_handle_by_name(value.value.str, 0x0);
 } else {

 7-13

Diagnostics

 objH = 0x0;
 }
 }

 time_p = 0x0;
 value.format = vpiIntVal;
 vpi_get_value(valueH, &value);
 value_p = &value;

 vpi_put_value(objH, value_p, time_p, vpiNoDelay);
}

Compile the tokens.v code shown in Example 7-1, as follows:

% vcs -sverilog +vpi -P value.tab value.c tokens.v

Run the tokens.v code, as follows:

% simv -diag vpi

Here, the user application tries to write a value on the sys_top.rst
signal, but there is no write permission enabled on sys_top. So VPI
generates an error message and prints the HDL information, as
follows:

7-14

Diagnostics

Keeping the UCLI/DVE Prompt Active After a Runtime
Error

VCS now allows you to debug an unexpected error condition by not
exiting and keeping active the UCLI or DVE prompt for debugging
commands.

In previous releases, when there was a runtime error condition the
simulation exited. Starting this release the DVE or UCLI command
prompt remains active when there is an error condition, allowing you
to examine the current simulation state (the simulation stack,
variable values, and so on) so you can debug the error condition.

UCLI Use Model

If simv is executed from the UCLI, follow the below steps to enable
this feature:

1. Specify the following UCLI configuration command in a Tcl file (
see Example 7-5) or in $HOME/.synopsys_ucli_prefs.tcl file:

config -onfail enable [failure_type]

Where the failure_type is optional. It allows you to specify the
failure type. Table 7-1 lists the types of failures which are normally
observed during an unexpected runtime error.

 7-15

Diagnostics

Table 7-2

Failure Type Failure Description

sysfault Assertion or signal (including segfault)

{error <regex>} Error for which the tag matches regex. The tag of an error can
be seen in the error message (Error-[TAG]).

fatal Fatal error for which VCS currently dumps a stack trace.

all All failures (default)

Types of Failures

Note:

- You can divide configuration of onfail into multiple
configuration commands.

- You can use the config -onfail disable configuration
command to disable this feature.

Example

The following command enables you to catch for system faults,
DT.* errors, and NOA errors:

config -onfail enable sysfault {error DT.*}
{error NOA}

You can also specify the above command as three different
configuration commands:

config -onfail enable sysfault
config -onfail enable {error DT.*}
config -onfail enable {error NOA}

2. Use the following UCLI command to get a UCLI prompt when a
runtime error occurs:

% simv –ucli -i file_name.tcl

7-16

Diagnostics

or

% simv –ucli

ucli% do file_name.tcl

Where file_name.tcl is the Tcl file that contains the
config -onfail enable command and run script (see
Example 7-5).

Note:

You must run the simulation using the run command by
specifying it in a Tcl file. You can also specify the
config -onfail enable command in the same Tcl file, but
instead, if you use simv –ucli at the UNIX prompt to run the
simulation, then UCLI exits when there is a failure.

Automating User Actions on Failure

You can create the onfail routine to automate some actions (like
printing specific message, collecting data into a file, and so on) when
an unexpected crash happens during runtime. You can create this
routine in your script or in the .synopsys_ucli_prefs.tcl file.

If you declare this routine, and the onfail configuration is enabled,
then simv will call the onfail routine before going into the UCLI
prompt. If you do not want to go into the UCLI prompt, you can call
the UCLI exit command from that routine.

DVE Use Model

By default, DVE enables the onfail configuration on all types of
failures.

 7-17

Diagnostics

DVE systematically enables the onfail config on all error types. In
previous versions, if there is error or failure, simv stops, and many
DVE functionalities like expand hierarchy, show data for a given
module (if not already loaded before the simv crash), create
schematic, do not work, especially when DVE is running with the
preference option “Use simulation as design debug library in
interactive.”

From this version, If you enable the onfail config, simv stays active
and continue to respond to DVE queries. Therefore, all the features
mentioned in the previous paragraph continue to work. Also, DVE
shows the location of the error with the simulation pointer (yellow
arrow in the source view), and the stack pane shows the current HDL
stack. You can use value annotation to obtain signal values in order
to debug the issue.

Figure 7-1 The DVE Prompt After a Runtime Error

7-18

Diagnostics

UCLI Usage Example

Consider the following test case test.v. This code causes simv to
exit during simulation:

Example 7-4 UCLI Prompt on Error Test Case (test.v)

module test;
 class Packet;
 int _a;

 function void set (int a);
 _a = a;
 endfunction
 endclass

 initial begin
 Packet pkt;
 reg a;
 pkt.set(a);
 end
endmodule

Compile the test.v file:

% vcs -sverilog -debug_all test.v

If you run the above test case using the simv -ucli command,
then VCS generates the following NOA error message:

 7-19

Diagnostics

Figure 7-2 NOA Error Message

Create the following Tcl file to catch the above error and analyze it
inside an onfail routine:

Example 7-5 Tcl File (test.tcl)

onfail {
 set err_msg "Stopped in "
 append err_msg [scope]
 puts $err_msg
}
config -onfail enable {error NOA}
run

Run the test.tcl file using the following command to keep the
UCLI prompt active after the NOA error, as shown in Figure 7-3:

% simv -ucli -i test.tcl

7-20

Diagnostics

Figure 7-3 Viewing the UCLI Prompt After Failure

The onfail routine is executed after the NOA error is generated.

Limitations

• You cannot specify an onfail routine to be executed on error in
DVE.

Diagnosing Quickthread Issues

VCS is now equipped with a better mechanism to report VCS
runtime crashes caused by certain problems with quickthreads used
during VCS runtime. You will get clear feedback as to what went
wrong and which thread is causing the crash thereby enabling you
to take specific action to circumvent the issue.

 7-21

Diagnostics

Diagnosing Quickthread Issues in DPI

While calling an import DPI routine that either calls any
SystemVerilog blocking/time consuming task or is declared as a
context task, VCS creates quickthread with a runtime memory of 256
KB (by default) for the call chain that originated from the import DPI
routine. Such import DPI routine is also called a heavy weight DPI
routine. If the call chain from the import DPI routine uses more
memory than the pre-allocated buffer (due to large local variables
and/or a deep call chain), it causes a segmentation fault and the
following runtime error is generated:

Note-[VCS-QTHREAD-OVERRUN] Stack of quickthread maybe too
small
The simulation received a fatal segmentation violation signal
SEGV and will end because it accessed protected stack guard
memory. This memory belongs to the thread 'top'. It is likely,
but not certain that a stack overflow in this thread caused
the segmentation violation (SEGV). It may also be caused by
a different, unknown problem and the quickthread is not
related.
The suspected quickthread belongs to the DPI domain.
Its stack has a size of 4194300.96 K bytes and is located
from address '0x9eb43dc' to '0x9eb5000'.
Its redzone has a size of 4.00 K bytes and is located from
address '0x9eb5000' to '0x9eb4000'.
The SEGV happened at address '0x9eb4390' which is 3184 bytes
into the redzone.
Increase the stack size for this thread and check whether
this solves the problem. See the VCS user guide for more
information.

You should give a conservative (less restrictive) estimate about the
DPI quickthread runtime memory based on the import DPI routine
code. If the default runtime memory of 256 KB is too restrictive, the
DPI quickthread runtime memory size can be set with the
environment variable DPI_QSTACK_SIZE in the following ways:

7-22

Diagnostics

• Before running the simulation as follows:

% setenv DPI_QSTACK_SIZE <number>

Or

• From the DPI application using the setenv function as follows:

setenv ("DPI_QSTACK_SIZE", "<number>", 1);

Here, the <number> should be provided in bytes.

For example, to set the limit of 8 KB, the value should be 8*1024 =
8192.

If the default DPI quickthread runtime memory size is overwritten
and a heavy weight DPI routine is invoked, VCS issues the following
message at runtime starting from VCS K-2015.09 release:

Note-[DPI-RTMBSS] DPI runtime memory buffer size set
The size of the runtime memory buffer for invoking time
consuming DPI task(s) has been overwritten from default 256KB
to 8192B (8KB) by environment variable DPI_QSTACK_SIZE.

Diagnosing Quickthread Issues in SystemC

VCS reports runtime crashes in the following two scenarios:

• A quickthread overruns its allocated stack

• Simulation runs out of memory due to quickthread stacks

The default stack size of a SystemC thread (either SC_THREAD or
SC_CTHREAD) is 1MB and the default stackguard size is 16KB.

 7-23

Diagnostics

If a quickthread overruns its allocated stack, then it will probably try
to read/write into its redzone. This causes an SEGV with the
following diagnostic message. Here is an example:

 Error-[SC-VCS-QTHREAD-OVERRUN] Stack of quickthread maybe
too small
 The simulation received a fatal segmentation violation
signal SEGV and will end, because it accessed protected stack
guard memory. This memory belongs to the thread
'top.ref_model_0.cpu.ALU'. It is likely, but not certain
that a stack overflow in this thread caused the segmentation
violation (SEGV). It may also be caused by a different,
unknown problem and the quickthread is not related.
The suspected quickthread belongs to SystemC domain.
Its stack has a size of 60 K bytes and is located from address
'0x800a00000' to '0x800a0efff'.
Its redzone has a size of 4 K bytes and is located from
address '0x800a0f000' to '0x800a0ffff'.
The SEGV happened at address '0x800a0f004' which is 5 bytes
into the redzone.
Increase the stack size for this thread and check whether
this solves the problem. This can be done by calling the
stack_size() method within the SC_CTOR. Alternatively, start
the simulation with 'simv -sysc=stacksize:10M'. See the VCS
SystemC user guide for more information.

Limitations

The SC-VCS-QTHREAD-OVERRUN diagnostic applies only to
quickthreads. It is not available if you use POSIX threads in SystemC
by defining environment SYSC_USE_PTHREADS.

Simulation Runs Out of Memory Due to Quickthread Stacks

Each quickthread allocates memory for its stack. Simv may run out
of memory due to this. When allocation of memory for a SystemC
stack of a quickthread fails, a message like the following is printed:

Error-[SC-VCS-QTHREAD-ALLOC] Thread memory allocation
failed

7-24

Diagnostics

 The creation of thread 'top.sc_thread_04' in the SystemC
domain failed
 because its stack of 64MB could not be allocated. Currently,
149MB stack
 memory are allocated by 95 threads.

 Details about stack allocation:
 (sorted by size in decreasing order)
 32MB total (31.9MB stack + 19.9KB guard) in
SystemC:top.sc_thread_05
 16MB total (15.9MB stack + 19.9KB guard) in
SystemC:top.sc_thread_06
 8.01MB total (7.99MB stack + 19.9KB guard) in
SystemC:top.sc_thread_07
 (~50 lines removed, we show approx. 50..60 stack frames
, ordered by size, largest first)
 ...(truncated)...
 Total: 149MB qthread stack memory used in 95 threads.

 If this was a 32 bit simulation, consider a 64 bit
simulation. You can also
 decrease the stack size for other threads. This can be
done by calling the
 stack_size() method within the SC_CTOR. Alternatively,
start the simulation
 with e.g. 'simv -sysc=stacksize:500k'. See the VCS user
guide, chapter Using SystemC for more information.

Reducing or Turning Off Redzones

You can decrease the number of redzones or turn them off altogether
in case if the number of quickthreads you are using is exceedingly
large. For instance, if the quickthreads are reaching the limit set in
your OS, then some of the operations may fail. To avoid such a
situation, you may want to decrease the number of the redzones or
turn them off completely. Though the diagnostic support will not be
there when a particular thread overruns its stack, you would still
increase the chances of running your simulation without any issues.

 7-25

Diagnostics

You can use the following environment variable to either decrease
the number of redzones or turn them off completely. To decrease the
number of redzones, you must set the following environment
variable to a value greater than 2000 and less than 30000. For
example:

setenv SNPS_VCS_SYSC_RESERVED_MAP_COUNT 10000

Setting the above environment variable to a value higher than 30000
will turn off the redzones completely.

7-26

Diagnostics

Post-processing Diagnostics

This section describes the following topic:

• “Using the vpdutil Utility to Generate Statistics”

Using the vpdutil Utility to Generate Statistics

The vpdutil utility generates statistics about the data in the vpd file.
The utility takes a single vpd file as input. You can specify options to
this utility to query at design, module, instance, and node levels.

This utility supports time ranges and input lists for query on more
than one object. Output will be in ascii to stdout with option to redirect
to an output file.

The vpdutil Utility Syntax

The syntax of the vpdutil utility is as follows:

vpdutil <input_vpd_file>
 [-help]
 [-vc_info]
 [-tree [-lvl <level>][-source]]
 [-vc_info_detail]
 [-info]
 [-design]
 [-find_forces]
 [-start <Time> -end <Time>]
 [-find_glitches]
 [output_file_name]

 7-27

Diagnostics

Options

-h/help

Displays the options to be used with the vpdutil application.

output_file_name

Writes the output of vpdutil application to a file instead of stdout.

Options for VPD File Information
-info

Prints the basic information present in the header of vpd file.

Options for Design Information
-design

Prints statistics about static design hierarchy in vpd.

-tree

Prints the full hierarchy tree in the vcd-like (not vcd compatible)
format.

-lvl <level>

Print the tree with the hierarchy depth=level.

-source

Prints source file/line data to tree.

Options for Value Change Information
-vc_info

7-28

Diagnostics

Displays information for the value changes information with
number of dump off events, force events, glitch events, and repeat
count events.

-vc_info_detail

Prints the detailed value change summary statistics about given
vpd file.

-find_forces

Displays forces on node and the times when forces occurred.

-start <Time> -end <Time>

Enables the collection of value change data between start time to
end time.

-find_glitches

Print the list of nodes with glitches and the time when glitches
occurred, if the glitch capturing was enabled during the simulation.

8-1

VCS Multicore Technology Application Level Parallelism

8
VCS Multicore Technology
Application Level Parallelism 1

VCS Multicore Technology takes advantage of the computing power
of multiple processors or cores in one machine to improve simulation
turnaround time. These cores in Multicore technology are sometimes
described as consumers, processes, or threads.

With Multicore application level parallelism you can use different
cores to compile and simulate in parallel the following applications:

• SystemVerilog assertions

• Toggle coverage

• SAIF file dumping

8-2

VCS Multicore Technology Application Level Parallelism

Enabling Multicore Technology Application Level
Parallelism

You use the VCS -parallel compile-time option to enable parallel
compilation and simulation. The syntax is:

vcs source_files -parallel[+mulitcore_keyword_arguments]
[-o multicore_executable_name]
[other_compile-time_options]

These options and arguments are as follows:

-parallel

Enables parallel compilation and simulation for various
applications.

If you omit the keyword arguments, you enable parallel
compilation and simulation for all the types of the Multicore
applications. If you include keyword arguments, you enable
parallel compilation and simulation for only the Multicore
applications that they specify.

In some Multicore applications you can specify the number of
cores that VCS uses to compile for and simulate that application.
You can do so if the Multicore application’s keyword argument has
an optional =NCORES argument to specify the number of cores.

If you do not enter the optional =NCORES argument to a keyword
argument, VCS uses one core for the application.

The keyword arguments are as follows:

+sva[=NCORES]

8-3

VCS Multicore Technology Application Level Parallelism

Specifies one or more cores for SystemVerilog assertions. You
can change the number of cores at runtime.

+saif

Specifies one or more cores for SAIF file dumping, see
“Multicore SAIF File Dumping” .

+tgl[=NCORES]

Specifies one or more cores for toggle coverage.

+show_features

This keyword argument is not for enabling a Multicore
application but to tell VCS to display the applications you
enabled during compilation. The following is an example of the
Multicore information displayed:

PVCS features:
- DLP: disabled
- Parallel SVA: disabled
- Parallel TGL: disabled
- Parallel SAIF: disabled

In this example DLP is Design Level Parallelism which is an LCA
feature.

You can enter more than one keyword argument by using the +
delimiter, for example:

vcs example.sv -parallel+tgl+sva -sverilog \
-debug_pp -assert hier=svafile -cm tgl+assert

This command line specifies parallel compilation and simulation
with:

8-4

VCS Multicore Technology Application Level Parallelism

• one core for toggle coverage

• one core for SystemVerilog assertions

The -o compile-time option is for naming the VCS executable file. Its
default name is simv. The following vcs command line shows its
use:

vcs tb0.sv dut.sv -parallel+tgl -o psimv0
vcs tb1.sv dut.sv -parallel+tgl -o psimv1
vcs tb2.sv dut.sv -parallel+tgl -o psimv2

Assigning different names to the executable in Multicore ALP
enables you to run multiple simultaneous Multicore simulations.
VCS MX stores Multicore-specific information in the
executable_name.daidir directory.

Multicore SAIF File Dumping

SAIF is Switching Activity Interchange Format, a file format for
Power Compiler. VCS writes or dumps SAIF files for it.

If you enabled Parallel SAIF at compile-time and want to disable it at
runtime, you can do so with the -parallel+saif=0 runtime option
and keyword argument.

Parallel SAIF has the following limitations:

• Parallel SAIF is not implemented for VCS Multicore Design Level
Parallelism (DLP).

• Parallel SAIF only works with one core, so for example specifying
more results in an error condition.

• SAIF file read mode is not implemented for Multicore SAIF file
dumping.

8-5

VCS Multicore Technology Application Level Parallelism

• Multiple $toggle_start system tasks are not supported in
Multicore SAIF file dumping. Only full dump mode is supported,
which is one $toggle_start and $toggle_stop system task.
Entering multiple $toggle_start system tasks in Multicore
SAIF file dumping is an error condition.

Limitations

Multicore ALP has limitations, it does not work with the following
technologies:

• Partition Compile (an LCA feature).

• Hierarchical Cross Coverage (an LCA feature).

8-6

VCS Multicore Technology Application Level Parallelism

9-1

VPD, VCD, and EVCD Utilities

9
VPD, VCD, and EVCD Utilities 1

This chapter describes the following:

• “Advantages of VPD”

• “Dumping a VPD File”

• “Dump Multi-dimensional Arrays and Memories”

• “Dumping an EVCD File”

• “Post-processing Utilities”

VCS allows you to save your simulation history in the following
formats:

• Value Change Dumping (VCD)

VCD is the IEEE Standard for Verilog designs. You can save your
simulation history in VCD format by using the $dumpvars Verilog
system task.

9-2

VPD, VCD, and EVCD Utilities

• VCDPlus Dumping (VPD)

VPD is a Synopsys propriety dumping technology. VPD has many
advantages over the standard VCD ASCII format. See
“Advantages of VPD” for more information. To dump a VPD file,
use the $vcdpluson Verilog system task. See “Dumping a VPD
File” for more information.

• Extended VCD (EVCD)

EVCD dumps only the port information of your design. See
“Dumping an EVCD File” for more information.

VCS also provides several post-processing utilities to:

• Convert VPD to VCD

• Convert VCD to VPD

• Merge VPD Files

Advantages of VPD

VPD offers the following significant advantages over the standard
VCD ASCII format:

• Provides a compressed binary format that dramatically reduces
the file size as compared to VCD and other proprietary file formats.

• The VPD compressed binary format dramatically reduces the
signal load time.

• Allows data collection for signals or scopes to be turned on and
off during a simulation run, therefore, dramatically improving
simulation runtime and file size.

9-3

VPD, VCD, and EVCD Utilities

• Can save source statement execution data. This allows instant
replay of source execution in the DVE Source Window.

To optimize VCS performance and VPD file size, consider the size of
the design, the RAM memory capacity of your workstation, swap
space, disk storage limits, and the methodology used in the project.

Dumping a VPD File

You can save your simulation history in VPD format in the following
ways:

• “Using System Tasks” - For Verilog designs.

• “Using UCLI” - For VHDL, Verilog, and mixed designs.

• “Using DVE” See the Discovery Visualization Environment User
Guide.

Using System Tasks

VCS provides Verilog system tasks to:

• “Enable and Disable Dumping”

• “Override the VPD Filename”

• “Dump Multi-dimensional Arrays and Memories”

• “Capture Delta Cycle Information”

9-4

VPD, VCD, and EVCD Utilities

Enable and Disable Dumping

You can use the Verilog system task $vcdpluson and
$vcdplusoff to enable and disable dumping the simulation history
in VPD format.

Note:

The default VPD filename is vcdplus.vpd. However, you can
use $vcdplusfile to override the default filename, see
“Override the VPD Filename” .

$vcdpluson

The following displays the syntax for $vcdpluson:

$vcdpluson (level|"LVL=integer",scope*,signal*);

Usage:

level |LVL=integer_variable

Specifies the number of hierarchy scope levels to descend to
record signal value changes (a zero value records all scope
instances to the end of the hierarchy; the default is zero).

You can also specify the number of hierarchy scope levels using
"LVL=integer_variable". In this example, the
integer_variable specifies the level to descend to record
signal value changes.

scope

Specifies the name of the scope in which to record signal value
changes (the default is all).

9-5

VPD, VCD, and EVCD Utilities

signal

Specifies the name of the signal in which to record signal value
changes (the default is all).

Note:

In the syntax, * indicates that the argument can have a list of more
than one value (for scopes or signals).

Example 1: Record all signal value changes.

‘timescale 1ns/1ns
module test ();
...

initial
$vcdpluson;

...
endmodule

When you simulate the above example, VCS saves the simulation
history of the whole design in vcdplus.vpd. For information on the
use model to simulate the design, see “Basic Usage Model” .

Example 2: Record signal value changes for scope
test.risc1.alureg and all levels below it.

‘timescale 1ns/1ns
module test ();
...

risc1 risc(...);

initial
$vcdpluson(test.risc1.alureg);

...
endmodule

9-6

VPD, VCD, and EVCD Utilities

When you simulate the previous example, VCS saves the simulation
history of the instance alureg, and all instances below alureg in
vcdplus.vpd.

$vcdplusoff

The $vcdplusoff task stops recording the signal value changes
for specified scopes or signals.

The following displays the syntax for vcdplusoff:

$vcdplusoff (level|"LVL=integer",scope*,signal*);

Example 1: Turn recording off.

‘timescale 1ns/1ns
module test ();
...
initial
 begin
 $vcdpluson; // Enable Dumping
 #5 $vcdplusoff; //Disable Dumping after 5ns
 ...
 end
...
endmodule

The above example, enables dumping at 0ns, and disables dumping
after 5ns.

Example 2: Stop recording signal value changes for scope
test.risc1.alu1.

‘timescale 1ns/1ns
module test ();
...
initial
 begin
 $vcdpluson; // Enable Dumping
 $vcdplusoff(test.risc1.alu1); //Does not dump signal value

9-7

VPD, VCD, and EVCD Utilities

 //changes in test.risc1.alu1
 ...
 end
...
endmodule

The above example, enables dumping on the entire design.
However, $vcdplusoff disables dumping the instance alu1 and
instances below alu1.

Note:
If multiple $vcdpluson commands cause a given signal to be
saved, the signal will continue to be saved until an equivalent
number of $vcdplusoff commands are applied to the signal.

Override the VPD Filename

By default, $vcdpluson writes the simulation history in the
vcdplus.vpd file. However, you can override the default filename
by using the system task $vcdplusfile, as shown below:

$vcdplusfile ("filename.vpd");
$vcdpluson();

Note:
You must use $vcdpluson after specifying $vcdplusfile, as
shown above, to override the default filename.

Example:

‘timescale 1ns/1ns
module test ();
...
initial
 begin
 $vcdplusfile("my.vpd"); //Dumps signal value changes
 //in my.vpd

9-8

VPD, VCD, and EVCD Utilities

 $vcdpluson; // Enable Dumping
 ...
 end
...
endmodule

The above example writes the signal value changes of the whole
design in my.vpd.

Dump Multi-dimensional Arrays and Memories

This section describes system tasks and functions that provide
visibility into multi-dimensional arrays (MDAs).

There are two ways to view MDA data:

• The first method, which uses the $vcdplusmemon and
$vcdplusmemoff system tasks, records data each time an MDA
has a data change.

Note:

You should use the compilation option +memcbk to use these
system tasks.

• The second method, which uses the $vcdplusmemorydump
system task, stores data only when the task is called.

Syntax for Specifying MDAs

Use the following syntax to specify MDAs using the
$vcdplusmemon, $vcdplusmemoff, and
$vcdplusmemorydump system tasks:

system_task(Mda [, dim1Lsb [, dim1Rsb [, dim2Lsb [, dim2Rsb
[, ... dimNLsb [, dimNRsb]]]]]]);

9-9

VPD, VCD, and EVCD Utilities

Usage:

system_task

Name of the system task (required). It can be $vcdplusmemon,
$vcdplusmemoff, or $vcdplusmemorydump.

Mda

Name of the MDA to be recorded. It must not be a part select. If
there are no other arguments, then all elements of the MDA are
recorded to the VPD file.

dim1Lsb

Name of the variable that contains the left bound of the first
dimension. This is an optional argument. If there are no other
arguments, then all elements under this single index of this
dimension are recorded.

dim1Rsb

Name of the variable that contains the right bound of the first
dimension. This is an optional argument.

Note:

The dim1Lsb and dim1Rsb arguments specify the range of the
first dimension to be recorded. If there are no other arguments,
then all elements under this range of addresses within the first
dimension are recorded.

dim2Lsb

This is an optional argument with the same functionality as
dim1Lsb, but refers to the second dimension.

9-10

VPD, VCD, and EVCD Utilities

dim2Rsb

This is an optional argument with the same functionality as
dim1Rsb, but refers to the second dimension.

dimNLsb

This is an optional argument that specifies the left bound of the
Nth dimension.

dimNRsb

This is an optional argument that specifies the right bound of the
Nth dimension.

Note that MDA system tasks can take 0 or more arguments, with the
following caveats:

• No arguments: The whole design is traversed and all memories
and MDAs are recorded.

Note that this process may cause significant memory usage, and
simulation drag.

• One argument: If the object is a scope instance, all memories/
MDAs contained in that scope instance and its children will be
recorded. If the object is a memory/MDA, that object will be
recorded.

Examples

This section provides examples and graphical representations of
various MDA and memory declarations using the $vcdplusmemon
and $vcdplusmemoff tasks.

9-11

VPD, VCD, and EVCD Utilities

In this example, mem01 is a three-dimensional array. It has 3x3x3
(27) locations; each location is 8 bits in length, as shown in
Figure 9-1.

module tb();
...
reg [3:0] addr1L, addr1R, addr2L, addr2R, addr3L, addr3R;

reg [7:0] mem01 [1:3] [4:6] [7:9]

...
endmodule

Example 1: To dump all elements to the VPD File

module test();
...
initial
$vcdplusmemon(mem01);
 // Records all elements of mem01 to the VPD file.
...
endmodule

In the above example, $vcdplusmemon dumps the entire mem01
MDA.

9-12

VPD, VCD, and EVCD Utilities

Figure 9-1 reg [7:0] mem01 [1:3] [4:6] [7:9]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

Dimension 1

1

2

3

Dimension 2

4 5 6
Dimension 3

7

8

9

Note: Unlimited
dimensions can be

1

2

3

1

2

3

Example 2: Removed variable 'addr1L' and replaced it with
constant in the system task

module test();
...
initial
 begin
 $vcdplusmemon(mem01, 2);
 // Records elements mem01[2][4][7] through mem01[2][6][9]
 ...
 end
...
endmodule

9-13

VPD, VCD, and EVCD Utilities

The elements highlighted by the in the following Figure 9-2,
illustrate this example.

Figure 9-2 $vcdplusmemon(mem01, addr1L)

1

2

3

1

2

3

Starting bound:

Ending
bound:mem0

9

1

2

3 [76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

8
[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

7

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

4 5 6

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

Example 3: Removed variable 'addr1L','addr1R' and replaced
them with constants in the system task

module test();
...
initial
 begin
 $vcdplusmemon(mem01, 2, 3);
 // Records elements mem01[2][4][7] through mem01[3][6][9]
 ...
 end
..
endmodule

9-14

VPD, VCD, and EVCD Utilities

The elements highlighted by the in the following Figure 9-3,

illustrate this example.

Figure 9-3 $vcdplusmemon(mem01, addr1L, addr1R)

Starting bound:

Ending
bound:mem0

9

1

2

3

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

8

1

2

3 [76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

1

2

3

7

[76543210] [76543210] [76543210]

4 5 6

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

Example 4: Removed variable 'addr1L','addr1R','addr2L' and
replaced them with constants in the system task

module test();
...
initial
 begin
 $vcdplusmemon(mem01, 2, 2, 5);
 // Records elements mem01[2][5][7] through mem01[2][5][9]
 ...
 end

9-15

VPD, VCD, and EVCD Utilities

...
endmodule

The elements highlighted by the in the following Figure 9-4,

illustrate this example.

Figure 9-4 $vcdplusmemon(mem01, addr1L, addr1R, addr2L)

Starting bound: mem01[2][5][7]

Ending
bound:

[76543210] [76543210] [76543210]

9

1

2

3

[76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

8

1

2

3

[76543210] [76543210] [76543210]

1

2

3

7

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

4 5 6

[76543210] [76543210] [76543210]

Example 5: Removed variable
'addr1L','addr1R','addr2L','addr2R','addr3L','addr3R' and
replaced them with constants in the system task

module test();
...
initial
 begin
 $vcdplusmemon(mem01, 2, 2, 5, 5, 8, 8);

9-16

VPD, VCD, and EVCD Utilities

 // Either command records element mem01[2][5][8]
 ...
 end
...
endmodule

The elements highlighted by the in the following Figure 9-5

illustrate this example.

9-17

VPD, VCD, and EVCD Utilities

Figure 9-5 $vcdplusmemon(mem01, addr1L, addr1R, addr2L, addr2R,
addr3L, addr3R)

Selected
element:mem

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

9

1

2

3

[76543210] [76543210]

[76543210] [76543210] [76543210]

8

1

2

3

[76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

1

2

3

4 5 6

7

[76543210] [76543210] [76543210]

Using $vcdplusmemorydump

The $vcdplusmemorydump task dumps a snapshot of memory
locations. When the function is called, the current contents of the
specified range of memory locations are recorded (dumped).

You can specify to dump the complete set of multi-dimensional array
elements only once. You can specify multiple element subsets of an
array using multiple $vcdplusmemorydump commands, but they
must occur in the same simulation time. In subsequent simulation

9-18

VPD, VCD, and EVCD Utilities

times, $vcdplusmemorydump commands must use the initial set of
array elements or a subset of those elements. Dumping elements
outside the initial specifications results in a warning message.

Capture Delta Cycle Information

You can use the following VPD system tasks to capture and display
delta cycle information in the Waveform Window.

$vcdplusdeltacycleon

The $vcdplusdeltacycleon task enables reporting of delta cycle
information from the Verilog source code. It must be followed by the
appropriate $vcdpluson/$vcdplusoff tasks.

Glitch detection is automatically turned on when VCS executes
$vcdplusdeltacycleon unless you have previously used
$vcdplusglitchon/off. Once you use $vcdplusglitchon/
off, DVE allows you explicit control of glitch detection.

Syntax:

$vcdplusdeltacycleon;

Note:

Delta cycle collection can start only at the beginning of a time
sample. The $vcdplusdeltacycleon task must precede the
$vcdpluson command to ensure that delta cycle collection will
start at the beginning of the time sample.

$vcdplusdeltacycleoff

The $vcdplusdeltacycleoff task turns off reporting of delta
cycle information starting at the next sample time.

9-19

VPD, VCD, and EVCD Utilities

Glitch detection is automatically turned off when VCS executes
$vcdplusdeltacycleoff unless you have previously used
$vcdplusglitchon/off. Once you use $vcdplusglitchon/
off, DVE allows you explicit control of glitch detection.

Syntax:

$vcdplusdeltacycleoff;

Dumping an EVCD File

EVCD dumps the signal value changes of the ports at the specified
module instance. You can dump an EVCD file, using the following
methods:

• Using $dumpports System Task

• EVCD File for Mixed Designs Using UCLI dump Command

Using $dumpports System Task

The $dumpports system task creates an EVCD file as specified in
IEEE Standard 1364-2001 pages 339-340. The EVCD file records
the transition times and values of the ports in a module instance. The
EVCD file contains more information than the VCD file specified by
the $dumpvars system task, it includes strength levels and whether
the test fixture module (test bench) or the Device Under Test (the
specified module instance or DUT) is driving a signal’s value.

Syntax:

9-20

VPD, VCD, and EVCD Utilities

$dumpports(module_instance,[module_instance,]"fil
ename");

Example:

$dumpports(top.middle1, "dumpports.evcd");

EVCD File for Mixed Designs Using UCLI dump
Command

You can either use the $dumpports system task or the UCLI dump
command to dump the EVCD file for mixed designs. However, due
to the XMR restriction in VHDL, you may not be able to use
$dumpports for all mixed design flows.

For pure Verilog design flow, it is recommended to use the
$dumpports system task to dump the EVCD file, as it does not
require any changes at compile time. Also, $dumpports allows you
to dump multiple EVCD files, which is not possible with UCLI.

For mixed design flows, it is recommended to use the UCLI dump
command along with the configuration file to dump the EVCD file, as
described in the following use model.

Use Model

To dump EVCD file for mixed design flows, it is recommended to use
the configuration file with the +optconfigfile compile-time option
to specify all the instances for which the UCLI dump command may
be used to dump EVCD.

% vcs +optconfigfile+file_name.cfg -debug_pp
file_name.v

9-21

VPD, VCD, and EVCD Utilities

Where, file_name.cfg is the configuration file which allows you
to specify the instances that needs to be dumped at compile time.
Following is the syntax of the configuration file:

instance {list_of_instance_hierarchical_names}
{enable_evcd};

For example,

instance {top.dut} {enable_evcd};

Note:

- The configuration file only enables EVCD dumping, it will not
dump EVCD. To dump the EVCD file, you must use the UCLI
dump command at runtime, as follows:

 ucli% dump -file test.evcd -type EVCD
 ucli% dump –add {top.dut}

- If the configuration file is not specified, then a warning message
is issued for the cases where ports are connected to
bidirectional switches, and EVCD results may not be accurate.

Use Model for Dumping CCN Driver Through INOUT

EVCD file contains the CCN driver when the CCN is connected
through INPUT or OUTPUT ports in Verilog-VHDL or VHDL-Verilog
MX designs. However, if a target VHDL instance lies inside a VHDL
connected through INOUT ports, you must use the
+dumpports+mxccn option at compile time to dump CNN drivers.

% vhdlan <design files>

% vlogan <design file>

9-22

VPD, VCD, and EVCD Utilities

% vcs +optconfigfile+file_name.cfg -debug_pp
 top_module +dumpports+mxccn

Following is a sample VHDL-Verilog design which requires
+dumpports+mxccn:

Both testbench and DUT have VHDL and the design is mixed (VHDL
and Verilog) and Verilog design has CCN which is connected to
VHDL through the INOUT ports.

9-23

VPD, VCD, and EVCD Utilities

Limitations

Following are the limitations for EVCD dumping using $dumpports
or UCLI command dump -type EVCD:

Unsupported Port Types
• For Verilog DUT:

- Ports can only be of type Verilog-2001. SystemVerilog type
ports are not allowed. VCS generates a warning message, if it
finds any unsupported port type.

- SystemVerilog complex types (including MDAs, dynamic
arrays, associative arrays, queues, and so on) are not
supported, and not legal in LRM. Interface or virtual interface
is not supported.

• For VHDL DUT:

- Ports can only be of type STD_LOGIC, STD_ULOGIC,
STD_LOGIC_VECTOR, STD_ULOGIC_VECTOR, BIT,
BIT_VECTOR, BOOLEAN. Any user-defined type or sub-type of
the above types is supported.

- Complex types like aggregates, MDA, or enums are not allowed
as port or port drivers, and a warning message will be generated
if such constructs are found.

- Ports having type with user-defined resolution functions in
VHDL are not supported.

Unsupported DUT Types
• DUT cannot be SV program, interface, SystemC, Spice, or

Verilog-AMS.

9-24

VPD, VCD, and EVCD Utilities

Unsupported Driver Types
• Since tran gates divide a net into different segments, the EVCD

behavior might be different in presence of XMR drivers.

• $deposit and force -deposit (UCLI command) associated
with EVCD port are not supported. They are not true drivers, and
LRM is silent about the intended behavior.

• If drivers of port are in encrypted region, they are ignored.

• Drivers through virtual interface/nested interface and so on, are
not supported.

• High-conn logical expressions are not supported.

• For Verilog-VHDL-Verilog and VHDL-Verilog-VHDL topology
designs, tran gate drivers are not supported.

SystemC Support
• Each SystemC module is treated like a Verilog shell, and multiple

drivers cannot be detected inside SystemC.

• SystemC is not supported as a DUT.

Note:

- All forces will be considered as TB regardless of where the
force is applied from (TB, DUT, or UCLI).

- EVCD port associated with SDF timing may not be properly
handled. LRM does not specify how the delay has to be
handled for various scenarios (whether to add delay on driver
side for EVCD and so on).

9-25

VPD, VCD, and EVCD Utilities

In case of SDF, value is not same for different net segments
of the same net (there is a delay) and whether they should
be treated as same net or different net for EVCD purpose.
Current behavior is all net segments are treated as part of
the same net, all drivers are reported, and driver value
change is reported as it occurs in core simulation.

Post-processing Utilities

VCS provides you with the following utilities to process VCD and
VPD files. You can use these utilities to perform the following
conversions:

• VPD file to a VCD file

• VCD file to a VPD file

• Merge a VPD file

Note:
All utilities are available in $VCS_HOME/bin.

This section describes these utilities in the following sections:

• “The vcdpost Utility”

• “The vcdiff Utility”

• “The vcat Utility”

• “The vcsplit Utility”

• “The vcd2vpd Utility”

• “The vpd2vcd Utility”

9-26

VPD, VCD, and EVCD Utilities

• “The vpdmerge Utility”

• “The vpdutil Utility”

The vcdpost Utility

You use the vcdpost utility to generate an alternative VCD file that
has the following characteristics:

• Contains value change and transition times for each bit of a vector
net or register, recorded as a separate signal. This is called
“scalarizing” the vector signals in the VCD file.

• Avoids sharing the same VCD identifier code with more than one
net or register. This is called “uniquifying” the identifier codes.

Scalarizing the Vector Signals

The VCD format does not support a mechanism to dump part of a
vector. For this reason, if you enter a bit select or a part select for a
net or register as an argument to the $dumpvars system task, VCS
records value changes and transition times for the entire net or
register in the VCD file. For example, if you enter the following in your
source code:

$dumpvars(1,mid1.out1[0]);

In this example, mid1.out1[0]is a bit select of a signal because
you need to examine the transition times and value changes of this
bit. VCS however writes a VCD file that contains the following:

$var wire 8 ! out1 [7:0] $end

9-27

VPD, VCD, and EVCD Utilities

Therefore, all the value changes and simulation times for signal
out1 are for the entire signal and not just for the 0 bit.

The vcdpost utility can create an alternative VCD file that defines a
separate $var section for each bit of the vector signal. The results
are as follows:

$var wire 8 ! out1 [7] $end
$var wire 8 " out1 [6] $end
$var wire 8 # out1 [5] $end
$var wire 8 $ out1 [4] $end
$var wire 8 % out1 [3] $end
$var wire 8 & out1 [2] $end
$var wire 8 ’ out1 [1] $end
$var wire 8 (out1 [0] $end

What this means is that the new VCD file contains value changes
and simulation times for each bit.

Uniquifying the Identifier Codes

In certain circumstances, to enable better performance, VCS
assigns the same VCD file identifier code to more than one net or
register, if these nets or registers have the same value throughout
the simulation. For example:

$var wire 1 ! ramsel_0_0 $end
$var wire 1 ! ramsel_0_1 $end
$var wire 1 ! ramsel_1_0 $end
$var wire 1 ! ramsel_1_1 $end

In this example, VCS assigns the ! identifier code to more than one
net.

9-28

VPD, VCD, and EVCD Utilities

Some back-end tools from other vendors fail when you input such a
VCD file. You can use the vcdpost utility to create an alternative
VCD file in which the identifier codes for all nets and registers,
including those instances without value changes, are unique. For
example:

$var wire 1 ! ramsel_0_0 $end
$var wire 1 " ramsel_0_1 $end
$var wire 1 # ramsel_1_0 $end
$var wire 1 $ ramsel_1_1 $end

The vcdpost Utility Syntax

The syntax for the vcdpost utility is as follows:

vcdpost [+scalar] [+unique] input_VCD_file output_VCD_file

Usage:

+scalar

Specifies creating separate $var sections for each bit in a vector
signal. This option is the default option and you include it on the
command line when you also include the +unique option and
want to create a VCD file that both scalarizes the vector nets and
uniquifies the identifier codes.

+unique

Specifies uniquifying the identifier codes. When you include this
option without the +scalar option, vcdpost uniquifies the
identifier codes without scalarizing the vector signals.

input_VCD_file

The name of the VCD file created by VCS.

9-29

VPD, VCD, and EVCD Utilities

output_VCD_file

The name of the alternative VCD file created by the vcdpost
utility.

The vcdiff Utility

The vcdiff utility compares two dump files and reports any
differences it finds. The dump file can be of type VCD, EVCD or a
VPD.

Note:

The vcdiff utility cannot compare dump files of different types.

Dump files consist of two sections:

• A header section that reflects the hierarchy (or some subset) of
the design that was used to create the dump file.

• A value change section, which contains all of the value changes
(and times when those value changes occurred) for all of the
signals referenced in the header.

The vcdiff utility always performs two diffs. First, it compares the
header sections and reports any signals/scopes that are present in
one dump file but are absent in the other.

The second diff compares the value change sections of the dump
files, for signals that appear in both dump files. The utility determines
value change differences based on the final value of the signal in a
time step.

9-30

VPD, VCD, and EVCD Utilities

The vcdiff Utility Syntax

The syntax of the vcdiff utility is as follows:

vcdiff first_dump_file second_dump_file
[-noabsentsig] [-absentsigscope scope] [-absentsigiserror]
[-allabsentsig][-absentfile filename][-matchtypes] [-
ignorecase]
[-min time] [-max time] [-scope instance] [-level
level_number]
[-include filename] [-ignore filename] [-strobe time1 time2]
[-prestrobe] [-synch signal] [-synch0 signal] [-synch1
signal]
[-when expression] [-xzmatch] [-noxzmatchat0]
[-compare01xz] [-xumatch] [-xdmatch] [-zdmatch] [-zwmatch]
[-showmasters] [-allsigdiffs] [-wrapsize size]
[-limitdiffs number] [-ignorewires] [-ignoreregs]
[ingorereals]
[-ignorefunctaskvars][-ignoretiming units] [-
ignorestrength]
[-geninclude [filename]] [-spikes]

Options for Specifying Scope/Signal Hierarchy

The following options control how the vcdiff utility compares the
header sections of the dump files:

-noabsentsig

Does not report any signals that are present in one dump file but
are absent in the other.

-absentsigscope [scope]

Reports only absent signals in the given scope.

-absentfile [file]

Prints the full path names of all absent scopes/signals to the given
file, as opposed to stdout.

9-31

VPD, VCD, and EVCD Utilities

-absentsigiserror

If this option is present and there are any absent signals in either
dump file, then vcdiff returns an error status upon completion
even if it doesn’t detect any value change differences. If this option
is not present, absent signals do not cause an error.

-allabsentsig

Reports all absent signals. If this option is not present, by default,
vcdiff reports only the first 10 absent signals.

-ignorecase

Ignores the case of scope/signal names when looking for absent
signals. In effect, it converts all signal/scope names to uppercase
before comparison.

-matchtypes

Reports mismatches in signal data types between the two dump
files.

Options for Specifying Scope(s) to be Value Change Diffed

By default, vcdiff compares the value changes for all signals that
appear in both dump files. The following options limit value change
comparisons to specific scopes.

-scope [scope]

Changes the top-level scope to be value change diffed from the
top of the design to the indicated scope. Note, all child scopes/
signals of the indicated scope will be diffed unless modified by the
-level option (below).

-level N

9-32

VPD, VCD, and EVCD Utilities

Limits the depth of scope for which value change diffing occurs.
For example, if -level 1 is the only command-line option, then
vcdiff diffs the value changes of only the signals in the top-level
scope in the dump file.

-include [file]

Reports value change diffs only for those signals/scopes given in
the specified file. The file contains a set of full path specifications
of signals and/or scopes, one per line.

-ignore [file]

Removes any signals/scopes contained in the given file from
value change diffing. The file contains a set of full path
specifications of signals and/or scopes, one per line.

Note:

The vcdiff utility applies the -scope/-level options first. It then
applies the -include option to the remaining scopes/signals,
and finally applies the -ignore option.

Options for Specifying When to Perform Value Change Diffing

The following options limit when vcdiff detects value change
differences:

-min time

Specifies the starting time (in simulation units) when value change
diffing is to begin (by default, time 0).

-max time

9-33

VPD, VCD, and EVCD Utilities

Specifies the stopping time (in simulation units) when value
change diffing will end. By default, this occurs at the latest time
found in either dump file.

-strobe first_time delta_time

Only checks for differences when the strobe is true. The strobe
is true at first_time (in simulation units) and then every
delta_time increment thereafter.

-prestrobe

Used in conjunction with -strobe, tells vcdiff to look for
differences just before the strobe is true.

-when expression

Reports differences only when the given when expression is true.
Initially this expression can consist only of scalar signals,
combined with and, or, xor, xnor, and not operators and
employ parentheses to group these expressions. You must fully
specify the complete path (from root) for all signals used in
expressions. Note, operators may be either Verilog style (&, |, ^,
~^, ~) or VHDL (and, or, xor, xnor, not).

-synch signal

Checks for differences only when the given signal changes value.
In effect, the given signal is a "clock" for value change diffing,
where diffs are only checked for on transitions (any) of this signal.

-synch0 signal

As -sync (above) except that it checks for diffs when the given
signal transitions to ’0’.

-synch1

9-34

VPD, VCD, and EVCD Utilities

As -sync (above) except that it checks for diffs only when the
given signal transitions to ’1’.

Note:

The -max, -min and -when options must all be true in order for
vcdiff to report a value change difference.

Options for Filtering Differences

The following options filter out value change differences that are
detected under certain circumstances. For the most part, these
options are additive.

-ignoretiming time

Ignores the value change when the same signal in one of the VCD
files has a different value from the same signal in the other VCD
file for less than the specified time. This is to filter out signals that
have only slightly different transition times in the two VCD files.
The vcdiff utility reports a change when there is a transition to
a different value in one of the VCD files and then a transition back
to a matching value in that same file.

-ignoreregs

Does not report value change differences on signals that are of
type register.

-ignorewires

Does not report value change differences on signals that are of
type wire.

 -ignorereals

9-35

VPD, VCD, and EVCD Utilities

Does not report value change differences on signals that are of
type real.

-ignorefunctaskvars

Does not report value change differences on signals that are
function or task variables.

-ignorestrength (EVCD only)

EVCD files contain a richer set of signal strength and directional
information than VCD or even VPD files. This option ignores the
strength portion of a signal value when checking for differences.

-compare01xz (EVCD only)

Converts all signal state information to equivalent 4-state values
(0, 1, x, z) before difference comparison is made (EVCD files
only). Also ignores the strength information.

-xzmatch

Equates x and z values.

-xumatch (9-state VPD file only)

Equates x and u (uninitialized) values.

-xdmatch (9-state VPD file only)

Equates x and d (dontcare) values.

-zdmatch (9-state VPD file only)

Equates z and d (dontcare) values.

-zwmatch (9-state VPD file only)

9-36

VPD, VCD, and EVCD Utilities

Equates z and w (weak 1) values. In conjunction with -xzmatch
(above), this option causes x and z value to be equated at all
times EXCEPT time 0.

Options for Specifying Output Format

The following options change how value change differences are
reported.

-allsigdiffs

By default, vcdiff only shows the first difference for a given signal.
This option reports all diffs for a signal until the maximum number
of diffs is reported (see -limitdiffs).

 -wrapsize columns

Wraps the output of vectors longer than the given size to the next
line. By default, this value is 64.

-showmasters (VCD, EVCD files only)

Shows collapsed net masters. VCS can split a collapsed net into
several sub-nets when this has a performance benefit. This option
reports the master signals when the master signals (first signal
defined on a net) are different in the two dump files.

-limitdiffs number_of_diffs

By default, vcdiff stops after the first 50 diffs are reported. This
option overrides that default. Setting this value to 0 causes
vcdiff to report all diffs.

-geninclude filename

9-37

VPD, VCD, and EVCD Utilities

Produces a separate file of the given name in addition to the
standard vcdiff output. This file contains a list of signals that
have at least one value change difference. The format of the file
is one signal per line. Each signal name is a full path name. You
can use this file as input to the vcat tool with vcat’s -include
option.

-spikes

A spike is defined as a signal that changes multiple times in a
single time step. This option annotates with #’s the value change
differences detected when the signal spikes (glitches). It keeps
and reports a total count of such diffs.

The vcdiff Utility Output Example

The following is an example of the vcdiff output:

--- top.sig1 --- 200 ---
< 200 0

> 100 1

--- top.sig2 --- 200 ---
< 100 1

> 200 0

In this example there are two differences between the two compared
dump files. the format of a difference is as follows:

--- signal_hierarchical_name --- time_of_mismatch ---
< time_of_last_change change_to_this_value

> time_of_last_change change_to_this_value

Where:

9-38

VPD, VCD, and EVCD Utilities

< (line beginning with <)

Contains the time of the last value change of that signal, at or
before the time of the mismatch, in the first dump file on the
vcdiff command line.

> (line beginning with >)

Contains the corespondiing information in the second dump file
on the vcdiff command line.

Figure 9-6 shows callout notes on the different names and values in
an example difference.

9-39

VPD, VCD, and EVCD Utilities

Figure 9-6 An Annotated Difference Example

--- top.sig1 --- 200 ---
< 200 0

> 100 1

comparing the transition times
and values of signal top.sig1
in the two dump files there is a mismatch at

simulation time 200

In the first file
top.sig1
changed at to
value 0 at time
200, the time
of the
mismatch

it changed to
the value 0 at
time 200

but in the second file there
was no change of top.sig1
at 200, in this file the last
change before 200 was a
change to value 1 at time 100

at time 100
top.sig1
changed to the 1
value

You can infer from this example that signal top.sig1, in both the
first and second dump file, transitioned to 1 at time 100 because
there is no mismatch at time 100.

The vcat Utility

The format of a VCD or a EVCD file, although a text file, is written to
be read by software and not by human designers. VCS includes the
vcat utility to enable you to more easily understand the information
contained in a VCD file.

9-40

VPD, VCD, and EVCD Utilities

The vcat Utility Syntax

The vcat utility has the following syntax:

vcat VCD_filename [-deltaTime] [-raw] [-min time] [-max time]
[-scope instance_name] [-level level_number]
[-include filename] [-ignore filename] [-spikes] [-noalpha]
[-wrapsize size] [-showmasters] [-showdefs] [-showcodes]
[-stdin] [-vgen]

Here:

-deltaTime

Specifies writing simulation times as the interval since the last
value change rather than the absolute simulation time of the signal
transition. Without -deltaTime a vcat output looks like this:

--- TEST_top.TEST.U4._G002 ---
 0 x
 33 0
 20000 1
 30000 x
 30030 z
 50030 x
 50033 1
 60000 0
 70000 x
 70030 z

With -deltaTime a vcat output looks like this:

--- TEST_top.TEST.U4._G002 ---
 0 x
 33 0
 19967 1
 10000 x
 30 z
 20000 x
 3 1
 9967 0
 10000 x

9-41

VPD, VCD, and EVCD Utilities

 30 z

-raw

Displays “raw” value changed data, organized by simulation time,
rather than signal name.

-min time

Specifies a start simulation time from which vcat begins to display
data.

-max time

Specifies an end simulation time up to which vcat displays data.

-scope instance_name

Specifies a module instance. The vcat utility displays data for all
signals in the instance and all signals hierarchically under this
instance.

-level level_number

Specifies the number of hierarchical levels for which vcat displays
data. The starting point is either the top-level module or the
module instance you specify with the -scope option.

-include filename

Specifies a file that contains a list of module instances and signals.
The vcat utility only displays data for these signals or the signals
in these module instances.

-ignore filename

9-42

VPD, VCD, and EVCD Utilities

Specifies a file that contains a list of module instances and signals.
However, the vcat utility does NOT display data for these signals
or the signals in these module instances.

-spikes

Indicates all zero-time transitions with the >> symbol in the
leftmost column. In addition, prints a summary of the total number
of spikes seen at the end of the vcat output. The following is an
example of the new output:

 --- DF_test.logic.I_348.N_1 ---
 0 x
 100 0
 120 1
 >>120 0
 4000 1
 12000 0
 20000 1

 Spikes detected: 5

-noalpha

By default vcat displays signals within a module instance in
alphabetical order. This option disables this ordering.

-wrapsize size

Specifies value displays for wide vector signals, how many bits to
display on a line before wrapping to the next line.

-showmasters

Specifies showing collapsed net masters.

-showdefs

9-43

VPD, VCD, and EVCD Utilities

Specifies displaying signals but not their value changes or the
simulation time of these value changes.

-showcodes

Specifies displaying the signal’s VCD file identifier code.

-stdin

Enables you to use standard input, such as piping the VCD file
into vcat, instead of specifying the filename.

-vgen

Generates from a VCD file two types of source files for a module
instance: one that models how the design applies stimulus to the
instance, and the other that models how the instance applies
stimulus to the rest of the design. See “Generating Source Files
From VCD Files” .

The following is an example of the output from the vcat utility:

vcat exp1.vcd

exp1.vcd: scopes:6 signals:12 value-changes:13

--- top.mid1.in1 ---
 0 1

--- top.mid1.in2 ---
 0 xxxxxxxx
 10000 00000000

--- top.mid1.midr1 ---
 0 x
 2000 1

--- top.mid1.midr2 ---
 0 x

9-44

VPD, VCD, and EVCD Utilities

 2000 1

In this output, for example, you see that signal top.mid1.midr1 at
time 0 had a value of X and at simulation time 2000 (as specified by
the $timescale section of the VCD file, which VCS derives from
the time precision argument of the ‘timescale compiler directive)
this signal transitioned to 1.

Generating Source Files From VCD Files

The vcat utility can generate Verilog and VHDL source files that are
one of the following:

• A module definition that succinctly models how a module instance
is driven by a design, that is, a concise testbench module that
instantiates the specified instance and applies stimulus to that
instance the way the entire design does. This is called testbench
generation.

• A module definition that mimics the behavior of the specified
instance to the rest of the design, that is, it has the same output
ports as the instance and in this module definition the values from
the VCD file are directly assigned to these output ports. This is
called module generation.

Note:

The vcat utility can only generate these source files for instances
of module definitions that do not have inout ports.

Testbench generation enables you to focus on a module instance,
applying the same stimulus as the design does, but at faster
simulation because the testbench is far more concise than the entire
design. You can substitute module definitions at different levels of
abstraction and use vcdiff to compare the results.

9-45

VPD, VCD, and EVCD Utilities

Module generation enables you to use much faster simulating
“canned” modules for a part of the design to enable the faster
simulation of other parts of the design that need investigation.

The name of the generated source file from testbench generation
begins with testbench followed by the module and instance names
in the hierarchical name of the module instance, separated by
underscores. For example testbench_top_ad1.v.

Similarly, the name of the generated source file from module
generation begins with moduleGeneration followed by the
module and instance names in the hierarchical name of the module
instance, separated by underscores. For example
moduleGeneration_top_ad1.v.

You enable vcat to generate these files by doing the following:

1. Writing a configuration file.

2. Running vcat with the -vgen command-line option.

Writing the Configuration File

The configuration file is named vgen.cfg by default and vcat looks
for it in the current directory. This file needs three types of information
specified in the following order:

1. The hierarchical name of the module instance.

2. Specification of testbench generation with the keyword
testbench or specification of module generation with the
keyword moduleGeneration.

3. The module header and the port declarations from the module
definition of the module instance.

9-46

VPD, VCD, and EVCD Utilities

You can use Verilog comments in the configuration file.

The following is an example of a configuration file:

Example 9-1 Configuration File

top.ad1
testbench
//moduleGeneration
module adder (out,in1,in2);
input in1,in2;
output [1:0] out;

You can use a different name and location for the configuration file.
In order to do this, you must enter it as an argument to the -vgen
option. For example:

vcat filename.vcd -vgen /u/design1/vgen2.cfg

Example 9-2 Source Code

Consider the following source code:

module top;
reg r1,r2;
wire int1,int2;
wire [1:0] result;

initial
begin
$dumpfile("exp3.vcd");
$dumpvars(0,top.pa1,top.ad1);
#0 r1=0;
#10 r2=0;
#10 r1=1;
#10 r2=1;
#10 r1=0;
#10 r2=0;
#10 r1=1;
#10 r2=1;

9-47

VPD, VCD, and EVCD Utilities

#10 r1=0;
#10 r2=0;
#10 r1=1;
#10 r2=1;
#10 r1=0;
#10 r2=0;
#100 $finish;
end

passer pa1 (int1,int2,r1,r2);
adder ad1 (result,int1,int2);
endmodule

module passer (out1,out2,in1,in2);
input in1,in2;
output out1,out2;

assign out1=in1;
assign out2=in2;
endmodule

module adder (out,in1,in2);
input in1,in2;
output [1:0] out;

reg r1,r2;
reg [1:0] sum;

always @ (in1 or in2)
begin
r1=in1;
r2=in2;
sum=r1+r2;
end

assign out=sum;
endmodule

Notice that the stimulus from the testbench module named test
propagates through an instance of a module named passer before
it propagates to an instance of a module named adder. The vcat

9-48

VPD, VCD, and EVCD Utilities

utility can generate a testbench module to stimulate the instance of
adder in the same exact way but in a more concise and therefore
faster simulating module.

If you use the sample vgen.cfg configuration file in Example 9-1
and enter the following command line:

vcat filename.vcd -vgen

The generated source file, testbench_top_ad1.v, is as follows:

module tbench_adder ;
wire [1:0] out ;
reg in2 ;
reg in1 ;
initial #131 $finish;
initial $dumpvars;
initial begin
 #0 in2 = 1’bx;
 #10 in2 = 1’b0;
 #20 in2 = 1’b1;
 #20 in2 = 1’b0;
 #20 in2 = 1’b1;
 #20 in2 = 1’b0;
 #20 in2 = 1’b1;
 #20 in2 = 1’b0;
end
initial begin
 in1 = 1’b0;
 forever #20 in1 = ~in1 ;
end
adder ad1 (out,in1,in2);
endmodule

This source file uses significantly less code to apply the same
stimulus with the instance of module passer omitted.

9-49

VPD, VCD, and EVCD Utilities

If you revise the vgen.cfg file to have vcat perform module
generation, the generated source file,
moduleGeneration__top_ad1.v, is as follows:

module adder (out,in1,in2) ;
input in2 ;
input in1 ;
output [1:0] out ;
reg [1:0] out ;
initial begin
 #0 out = 2’bxx;
 #10 out = 2’b00;
 #10 out = 2’b01;
 #10 out = 2’b10;
 #10 out = 2’b01;
 #10 out = 2’b00;
 #10 out = 2’b01;
 #10 out = 2’b10;
 #10 out = 2’b01;
 #10 out = 2’b00;
 #10 out = 2’b01;
 #10 out = 2’b10;
 #10 out = 2’b01;
 #10 out = 2’b00;
end
endmodule

Notice that the input ports are stubbed and the values from the VCD
file are assigned directly to the output port.

The vcsplit Utility

The vcsplit utility generates a VCD, EVCD, or VPD file that contains
a selected subset of value changes found in a given input VCD,
EVCD, or VPD file (the output file has the same type as the input file).
You can select the scopes/signals to be included in the generated file
either via a command-line argument, or a separate "include" file.

9-50

VPD, VCD, and EVCD Utilities

The vcsplit Utility Syntax

The vcsplit utility has the following syntax:

vcsplit [-o output_file] [-scope selected_scope_or_signal]
[-include include_file] [-min min_time] [-max max_time]
[-level n] [-ignore ignore_file] input_file [-v] [-h]

Here:

-o output_file

Specifies the name of the new VCD/EVCD/VPD file to be
generated. If output_file is not specified, vcsplit creates the
file with the default name vcsplit.vcd.

-scope selected_scope_or_signal

Specifies a signal or scope whose value changes are to be
included in the output file. If a scope name is given, then all signals
and sub-scopes in that scope are included.

-include include_file

Specifies the name of an include file that contains a list of signals/
scopes whose value changes are to be included in the output file.

The include file must contain one scope or signal per line. Each
presented scope/signal must be found in the input VCD, EVCD,
or VPD file. If the file contains a scope, and separately, also
contains a signal in that scope, vcsplit includes all the signals in
that scope, and issues a warning.

Note:

If you use both -include and -scope options, vcsplit uses all
the signals and scopes indicated.

9-51

VPD, VCD, and EVCD Utilities

input_file

Specifies the VCD, EVCD, or VPD file to be used as input.

Note:

If the input file is either VCD or EVCD, and it is not specified,
vcsplit takes its input from stdin. The vcsplit utility has this stdin
option for VCD and EVCD files so that you can pipe the output
of gunzip to this tool. If you try to pipe a VPD file through stdin,
vcsplit exits with an error message.

-min min_time

Specifies the time to begin the scan.

-max max_time

Specifies the time to stop the scan.

-ignore ignore_file

Specifies the name of the file that contains a list of signals/scopes
whose value changes are to be ignored in the output file.

If you specify neither include_file nor
selected_scope_or_signal, then vcsplit includes all the
value changes in the output file except the signals/scopes in the
ignore_file.

If you specify an include_file and/or a
selected_scope_or_signal, vcsplit includes all value
changes of those signals/scopes that are present in the
include_file and the selected_scope_or_signal but
absent in ignore_file in the output file. If the ignore_file
contains a scope, vcsplit ignores all the signals and the scopes
in this scope.

9-52

VPD, VCD, and EVCD Utilities

-level n

Reports only n levels hierarchy from top or scope. If you specify
neither include_file nor selected_scope_or_signal,
vcsplit computes n from the top level of the design. Otherwise, it
computes n from the highest scope included.

-v

Displays the current version message.

-h

Displays a help message explaining usage of the vcsplit utility.

Note:

In general, any command-line error (such as illegal arguments)
that VCS detects causes vcsplit to issue an error message and
exit with an error status. Specifically:

- If there are any errors in the -scope argument or in the
include file (such as a listing a signal or scope name that does
not exist in the input file), VCS issues an error message, and
vcsplit exits with an error status.

- If VCS detects an error while parsing the input file, it reports
an error, and vcsplit exits with an error status.

- If you do not provide either a -scope, -include or
-ignore option, VCS issues an error message, and vcsplit
exits with an error status.

Limitations

• MDAs are not supported.

• Bit/part selection for a variable is not supported. If this usage is
detected, the vector will be regarded as all bits are specified.

9-53

VPD, VCD, and EVCD Utilities

The vcd2vpd Utility

The vcd2vpd utility converts a VCD file generated using $dumpvars
or UCLI dump commands to a VPD file.

The syntax is as shown below:

vcd2vpd [-bmin_buffer_size] [-fmax_output_filesize] [-h]
[-m] [-q] [+] [+glitchon] [+nocompress] [+nocurrentvalue]
[+bitrangenospace] [+vpdnoreadopt] [+dut+dut_sufix]
[+tf+tf_sufix] vcd_file vpd_file

Usage:

-b<min_buffer_size>

Minimum buffer size in KB used to store Value Change Data
before writing it to disk.

-f<max_output_filesize>

Maximum output file size in KB. Wrap around occurs if the
specified file size is reached.

-h

Translate hierarchy information only.

-m

Give translation metrics during translation.

-q

Suppress printing of copyright and other informational messages.

+deltacycle

Add delta cycle information to each signal value change.

9-54

VPD, VCD, and EVCD Utilities

+glitchon

Add glitch event detection data.

+nocompress

Turn data compression off.

+nocurrentvalue

Do not include object's current value at the beginning of each
VCB.

+bitrangenospace

Support non-standard VCD files that do not have white space
between a variable identifier and its bit range.

+vpdnoreadopt

Turn off read optimization format.

Options for specifying EVCD options

+dut+dut_sufix

Modifies the string identifier for the Device Under Test (DUT) half
of the split signal. Default is "DUT".

+tf+tf_sufix

Modifies the string identifier for the Test-Fixture half of the split
signal. Default is "TF".

+indexlast

Appends the bit index of a vector bit as the last element of the
name.

9-55

VPD, VCD, and EVCD Utilities

vcd_file

Specify the vcd filename or use "-" to indicate VCD data to be read
from stdin.

vpd_file

Specify the VPD file name. You can also specify the path and the
filename of the VPD file, otherwise, the VPD file will be generated
with the specified name in the current working directory.

The vpd2vcd Utility

The vpd2vcd utility converts a VPD file generated using the system
task $vcdpluson or UCLI dump commands to a VCD or EVCD file.

The syntax is as shown below:

vpd2vcd [-h] [-q] [-s] [-x] [-xlrm] [+zerodelayglitchfilter]
[+morevhdl] [+start+value] [+end+value] [+splitpacked] [-f
cmd_filename] vpd_file vcd_file

Here:

-h

Translate hierarchy information only.

-q

Suppress the copyright and other informational messages.

-s

Allow sign extension for vectors. Reduces the file size of the
generated vcd_file.

9-56

VPD, VCD, and EVCD Utilities

-x

Expand vector variables to full length when displaying $dumpoff
value blocks.

-xlrm

Convert uppercase VHDL objects to lowercase.

+zerodelayglitchfilter

Zero delay glitch filtering for multiple value changes within the
same time unit.

+morevhdl

Translates the VHDL types of both directly mappable and those
that are not directly mappable to verilog types.

Note:

This switch may create a non-standard VCD file.

+start+time

Translate the value changes starting after the specified start time.

+end+time

Translate the value changes ending before the specified end time.

Note:

Specify both start time and end time to translate the value
changes occuring between start and end time.

-f cmd_filename

9-57

VPD, VCD, and EVCD Utilities

Specify a command file containing commands to limit the design
converted to VCD or EVCD. See the “The Command File Syntax”
section for more information.

+splitpacked

Use this option to change the way packed structs and arrays are
reported in the output VCD file. It does the following:

- Treats a packed structure the same as an unpacked structure
and dumps the value changes of each field.

Consider the following example:

typedef logic [1:0] t_vec;

typedef struct packed {
 t_vec f_vec_b;
} t_ps_b;

module test();
 t_ps_b var_ps_b;
endmodule

The VCD file created in the previous example is as follows:

$scope module test $end
$scope fork var_ps_b $end
$var reg 2 ! f_vec_b [1:0] $end
$upscope $end
$upscope $end

- Treats a packed MDA as an unpacked MDA except for the inner
most dimensions.

Consider the following example:

typedef logic [1:0] t_vec;

9-58

VPD, VCD, and EVCD Utilities

module test();
 t_vec [3:2] var_vec;
endmodule

The VCD file created in the previous example is as follows:

$scope module test $end
$var reg 2 % var_vec[3] [1:0] $end
$var reg 2 & var_vec[2] [1:0] $end
$upscope $end

- Expands all packed arrays defined in a packed struct.

Consider the following example:

typedef logic [1:0] t_vec;

typedef struct packed {
 t_vec f_vec;
 t_vec [3:2][1:0] f_vec_array;
 } t_ps;

module test();
 t_ps var_ps;
endmodule

The VCD file created in the previous example is as follows:

$scope module test $end
$scope fork var_ps $end
$var reg 2 ' f_vec [1:0] $end
$var reg 2 (f_vec_array[3][1] [1:0] $end
$var reg 2) f_vec_array[3][0] [1:0] $end
$var reg 2 * f_vec_array[2][1] [1:0] $end
$var reg 2 + f_vec_array[2][0] [1:0] $end
$upscope $end
$upscope $end

- Expands all dimensions of a packed array defined in a packed
struct.

9-59

VPD, VCD, and EVCD Utilities

Consider the following example:

typedef logic [1:0] t_vec;

typedef struct packed {
 t_vec f_vec;
 t_vec [3:2][1:0] f_vec_array;
 } t_ps;

module test();
 t_ps [1:0] var_paps;
endmodule

The VCD file created in the previous example is as follows:

$scope module test $end
$scope fork var_paps[1] $end
$var reg 2 ' f_vec [1:0] $end
$var reg 2 (f_vec_array[3][1] [1:0] $end
$var reg 2) f_vec_array[3][0] [1:0] $end
$var reg 2 * f_vec_array[2][1] [1:0] $end
$var reg 2 + f_vec_array[2][0] [1:0] $end
$upscope $end
$scope fork var_paps[0] $end
$var reg 2 , f_vec [1:0] $end
$var reg 2 - f_vec_array[3][1] [1:0] $end
$var reg 2 . f_vec_array[3][0] [1:0] $end
$var reg 2 / f_vec_array[2][1] [1:0] $end
$var reg 2 0 f_vec_array[2][0] [1:0] $end
$upscope $end
$upscope $end

- Expands and prints the value of each member of a packed
union.

Consider the following example:

module testit;

9-60

VPD, VCD, and EVCD Utilities

 typedef logic [1:0] t_vec;

typedef union packed {
 t_vec f_vec;
 struct packed {
 logic f_a;
 logic f_b;
 } f_ps;
} t_pu_v;
typedef union packed {
 struct packed {
 logic f_a;
 logic f_b;
 } f_ps;
 t_vec f_vec;
} t_pu_s;
 t_pu_v var_pu_v;
 t_pu_s var_pu_s;
endmodule

The VCD file created in the previous example is as follows:

$scope module testit $end
$scope fork var_pu_v $end
$var reg 2 - f_vec [1:0] $end
$scope fork f_ps $end
$var reg 1 . f_a $end
$var reg 1 / f_b $end
$upscope $end
$upscope $end
$scope fork var_pu_s $end
$scope fork f_ps $end
$var reg 1 0 f_a $end
$var reg 1 1 f_b $end
$upscope $end
$var reg 2 2 f_vec [1:0] $end
$upscope $end
$upscope $end

9-61

VPD, VCD, and EVCD Utilities

The Command File Syntax

Using a command file, you can generate:

• A VCD file for the whole design or for the specified instances.

• Only the port information for the specified instances.

• An EVCD file for the specified instances.

Note the following before writing a command file:

• All commands must start as the first word in the line, and the
arguments for these commands should be written in the same
line. For example:

dumpvars 1 adder4

• All comments must start with “//”. For example:

//Add your comment here
dumpvars 1 adder4

• All comments written after a command, must be preceded by a
space. For example:

dumpvars 1 adder4 //can write your comment here

A command file can contain the following commands:

dumpports instance [instance1 instance2]

Specify an instance for which an EVCD file has to be generated.
You can generate an EVCD file for more than one instance by
specifying the instance names separated by a space. You can
also specify multiple dumpports commands in the same
command file.

9-62

VPD, VCD, and EVCD Utilities

dumpvars [level] [instance instance1 instance2
....]

Specify an instance for which a VCD file has to be generated.
[level] is a numeric value indicating the number of levels to
traverse down the specified instance. If not specified, or if the
value specified is "0", then all the instances under the specified
instance will be dumped.

You can generate a VCD file for more than one instance by
specifying the instance names separated by a space. You can
also specify multiple dumpvars commands in the same
command file.

If this command is not specified or the command has no
arguments, then a VCD file will be generated for the whole design.

dumpvcdports [level] instance [instance1 instance2
....]

Specify an instance whose port values are dumped to a VCD file.
[level] is a numeric value indicating the number of levels to
traverse down the specified instance. If not specified, or if the
value specified is "0", then the port values of all the instances
under the specified instance will be dumped.

You can generate a dump file for more than one instance by
specifying the instance names separated by a space. You can
also specify multiple dumpvcdports commands in the same
command file.

Note:

dumpvcdports splits the inout ports of type wire into two
separate variables:

9-63

VPD, VCD, and EVCD Utilities

- one shows the value change information driven into the port.
VCS adds a suffix _DUT to the basename of this variable.

- the other variable shows the value change information driven
out of the port. VCS adds a suffix _TB to the basename of this
variable.

dutsuffix DUT_suffix

Specify a string to change the suffix added to the variable name
that shows the value change date driven out of the inout port. The
default value is _DUT. The suffix can also be enclosed within
double quotes.

tbsuffix TB_suffix

Specify a string to change the suffix added to the variable name
that shows the value change date driven into the inout port. The
default value is _TB. The suffix can also be enclosed within
double quotes.

starttime start_time

Specify the start time to start dumping the value change data to
the VCD file. If this command is not specified, the start time will
be the start time of the VPD file.

Note:
Only one +start command is allowed in a command file.

endtime end_time

Specify the end time to stop dumping the value change data to
the VCD file. If this command is not specified, the end time will be
the end time of the VPD file.

9-64

VPD, VCD, and EVCD Utilities

Note:
Only one +end command is allowed in a command file, and
must be equal to or greater than the start time.

Limitations
• dumpports is mutually exclusive with either the dumpvars or

dumpvcdports commands. The reason for this is that
dumpports generates an EVCD file while both dumpvars and
dumpvcdports generates standard VCD files.

• Escaped identifiers must include the trailing space.

• Any error parsing the file will cause the translation to terminate.

The vpdmerge Utility

Using the vpdmerge utility, you can merge different VPD files storing
simulation history data for different simulation times, or parts of the
design hierarchy into one large VPD file. For example in the DVE
Wave view in Figure 9-7, there are three signal groups for the same
signals in different VPD files.

9-65

VPD, VCD, and EVCD Utilities

Figure 9-7 DVE Wave Window with Signal Groups from Different VPD Files

Signal group test is from a VPD file from the first half of a
simulation, signal group test_1 is from a VPD file for the second
half of a simulation, and signal group test_2 is from the merged
VPD file.

The syntax is as shown below:

vpdmerge [-h] [-q] [-hier] [-v] -o merged_VPD_filename
input_VPD_filename input_VPD_filename ...

Usage:

-h

Displays a list of the valid options and their purpose.

-o merged_VPD_filenames

Specifies the name of the output merged VPD file. This option is
required.

-q

9-66

VPD, VCD, and EVCD Utilities

Specifies quiet mode, disables the display of most output to the
terminal.

-hier

Specifies that you are merging VPD files for different parts of the
design, instead of the default condition, without this option, which
is merging VPD files from different simulation times.

-v

Specifies verbose mode, enables the display of warning and error
messages.

Restrictions

The vpdmerge utility includes the following restrictions:

• To read the merged VPD file, DVE must have the same or later
version than that of the vpdmerge utility.

• VCS must have written the input VPD files on the same platform
as the vpdmerge utility.

• The input VPD files cannot contain delta cycle data (different
values for a signal during the same time step).

• The input VPD files cannot contain named events.

• The merged line stepping data does not always accurately replay
scope changes within a time step.

• If you are merging VPD files from different parts of the design,
using the -hier option, the VPD files must be used for distinctly
different parts of the design, they cannot contain information for
the same scope.

9-67

VPD, VCD, and EVCD Utilities

• You cannot use the vpdmerge option on two vpd files, which are
created based on timing, for both timing & hierarchy (using the -
hier option) based merging.

Limitations

The verbose option -v may not display error or warning messages
in the following scenarios:

• If the reference signal completely or coincidentally overlaps the
compared signal.

• During hierarchy merging, if the design object already exists in
the merged file.

During hierarchy merging, the -hier option may not display error
or warning messages in the following scenarios.

• If the start and end times of the two dump files are the same.

• If the datatype of the hierarchical signal in the dump files do not
match.

Value Conflicts

If the vpdmerge utility encounters conflicting values for the same
signal, with the same hierarchical name, in different input VPD files,
it does the following when writing the merged VPD file:

• If the signals have the same end time, vpdmerge uses the values
from the first input VPD file that you entered on the command line.

• If the signals have different end times, vpdmerge uses the values
for the signal with the greatest end time.

In cases where there are value conflicts, the -v option displays
messages about these conflicts.

9-68

VPD, VCD, and EVCD Utilities

The vpdutil Utility

The vpdutil utility generates statistics about the data in the vpd file.
The utility takes a single vpd file as input. You can specify options to
this utility to query at design, module, instance, and node levels.

This utility supports time ranges and input lists for query on more
than one object. Output will be in ascii to stdout with option to redirect
to an output file.

For more information, see “Using the vpdutil Utility to Generate
Statistics” .

10-1

Performance Tuning

10
Performance Tuning 1

VCS delivers the best performance during both compile-time and
runtime by reducing the size of the simulation executable, and the
amount of memory consumed for compilation and simulation. By
default, it is optimized for the following types of designs:

• Designs with many layers of hierarchy

• Gate-level designs

• Structural RTL-level designs - Using libraries where the cells are
RTL-level code

• Designs with extensive use of timing such as delays, timing
checks, and SDF back annotation, particularly to
INTERCONNECT delays

However, depending on the phase of your design cycle, you can fine-
tune VCS for a better compile-time and runtime performance.

10-2

Performance Tuning

This chapter describes the following sections:

• Compile-time Performance

Compile-time performance plays a very important role when you
are in the initial phase of your design development cycle. In this
phase, you may want to modify and recompile the design to
observe the behavior. Since, this phase involves lot many
recompiling cycles, achieving a faster compilation is important.
For additional information, see the section entitled, “Compile-time
Performance” .

• Runtime Performance

Runtime performance is important in regression phase or in the
final phase of the design development cycle. For additional
information, see the section entitled, “Runtime Performance” .

• Obtaining VCS Consumption of CPU Resources

You can now capture the CPU resource statistics for compilation
and simulation using the switch -reportstats. For more
information, see “Obtaining VCS Consumption of CPU
Resources”

Compile-time Performance

You can improve compile-time performance in the following ways:

• “Incremental Compilation”

• “Compile Once and Run Many Times”

• “Parallel Compilation”

10-3

Performance Tuning

Incremental Compilation

During compilation, VCS builds the design hierarchy. By default,
when you recompile the design, VCS compiles only those design
units that have changed since the last compilation. This is called
incremental compilation.

The incremental compilation feature is the default in VCS. It triggers
recompilation of design units under the following conditions:

• Changes in the command-line options.

• Change in the target of a hierarchical reference.

• Change in the ports of a design unit.

• Change in the functional behavior of the design.

• Change in a compile-time constant such as a parameter.

The following conditions do not cause VCS to recompile a module:

• Change of time stamp of any source file.

• Change in file name or grouping of modules in any source file.

• Unrelated change in the same source file.

• Nonfunctional changes such as comments or white space.

10-4

Performance Tuning

Compile Once and Run Many Times

The VCS usage model is devised in such a way that you can create
a single binary executable and execute it many times avoiding the
elaboration step for all but the first run. For information on the VCS
usage model, see “Using the Simulator” .

For example, you can use this feature in the following scenarios:

• Use VCS runtime features, like passing values at runtime, to
modify the design, and simulate it without re-compiling. For
information on runtime features, see Chapter - "Simulating the
Design".

• Run the same test with different seeds.

• Create a softlink of the executable and the .daidir or .db.dir
directory in a different directory, to run multiple simulations in
parallel.

Parallel Compilation

You can improve the compile-time performance by specifying the
number of parallel processes VCS can launch for the native code
generation phase of the compilation. You should specify this using
the compile-time option -j[no_of_processes], as shown below:

% vcs -j[no_of_processes] [options] top_entity/module/
config

For example, the following command line will fork off two parallel
processes to generate a binary executable:

% vcs -j2 top

10-5

Performance Tuning

Runtime Performance

VCS runtime performance is based on the following:

• Coding Style (see Chapter - "Modeling Your Design").

• Access to the internals of your design at runtime, using PLIs,
UCLI, debugging using GUI, dumping waveforms and so on.

This section describes the following to improve the runtime
performance:

• “Using Radiant Technology”

• “Improving Performance When Using PLIs”

• “Enabling TAB File Capabilities in UCLI Using -debug_access”

Using Radiant Technology

VCS Radiant Technology applies performance optimizations to the
Verilog portion of your design while VCS compiles your Verilog
source code. These Radiant optimizations improve the simulation
performance of all types of designs from behavioral, RTL to gate-
level designs. Radiant Technology particularly improves the
performance of functional simulations where there are no timing
specifications or when delays are distributed to gates and
assignment statements.

Compiling With Radiant Technology

Radiant Technology optimizations are not enabled by default. You
enable them using the compile-time options:

10-6

Performance Tuning

+rad

Specifies using Radiant Technology

Note:

These optimizations are also enabled for SystemVerilog part of
the design.

+optconfigfile

Optional. Specifies applying Radiant Technology optimizations to
part of the design using a configuration file as described in the
following section.

Applying Radiant Technology to Parts of the Design

The configuration file enables you to apply Radiant optimizations
selectively to different parts of your design. You can enable or
disable Radiant optimizations for all instances of a module, specific
instances of a module, or specific signals.

You specify the configuration file with the +optconfigfile
compile-time option. For example:

+optconfigfile+file_name

Note:

The configuration file is a general purpose file that has other
purposes, such as specifying ACC write capabilities. Therefore,
to enable Radiant Technology optimizations with a configuration
file, you must also include the +rad compile-time option.

10-7

Performance Tuning

The Configuration File Syntax

The configuration file contains one or more statements that set
Radiant optimization attributes, such as enabling or disabling
optimization on a type of design object, such as a module definition,
a module instance, or a signal.

The syntax of each type of statement is as follows:

module {list_of_module_identifiers} {list_of_attributes};

or

instance
{list_of_module_identifiers_and_hierarchical_names}
{list_of_attributes};

or

tree [(depth)] {list_of_module_identifiers}
{list_of_attributes};

Usage:

module

Keyword that specifies that the attributes in this statement apply
to all instances of each module in the list, specified by module
identifier.

list_of_module_identifiers

A comma separated list of module identifiers enclosed in curly
braces: { }

list_of_attributes

A comma separated list of Radiant optimization attributes
enclosed in curly braces: { }

10-8

Performance Tuning

instance

Keyword that specifies that the attributes in this statement apply
to:

- All instances of each module in the list specified by module
identifier.

- All module instances in the list specified by their hierarchical
names.

- The individual signals in the list specified by their hierarchical
names.

list_of_module_identifiers_and_hierarchical_nam
es

A comma separated list of module identifiers, hierarchical
names of module instances, or signals enclosed in curly braces:
{ }

Note:

Follow the Verilog syntax for signal names and hierarchical
names of module instances.

tree

Keyword that specifies that the attributes in this statement apply
to all instances of the modules in the list, specified by module
identifier, and also apply to all module instances hierarchically
under these module instances.

depth

10-9

Performance Tuning

An integer that specifies how far down the module hierarchy,
from the specified modules, you want to apply Radiant
optimization attributes. You can specify a negative value. A
negative value specifies descending to the leaf level and
counting up levels of the hierarchy to apply these attributes.
This specification is optional. Enclose this specification in
parentheses: ()

The valid Radiant optimization attributes are as follows:

noOpt

Disables Radiant optimizations on the module instance or signal.

noPortOpt

Prevents port optimizations such as optimizing away unused ports
on a module instance.

Opt

Enables all possible Radiant optimizations on the module instance
or signal.

PortOpt

Enables port optimizations such as optimizing away unused ports
on a module instance.

Statements can use more than one line and must end with a
semicolon.

Verilog style comments characters /* comment */ and //
comment can be used in the configuration file.

10-10

Performance Tuning

Configuration File Statement Examples

The following are examples of statements in a configuration file.

module statement example

module {mod1, mod2, mod3} {noOpt, PortOpt};

This module statement example disables Radiant optimizations for
all instances of modules mod1, mod2, and mod3, with the exception
of port optimizations.

multiple module statement example

module {mod1, mod2} {noOpt};
module {mod1} {Opt};

In this example, the first module statement disables radiant
optimizations for all instances of modules mod1 and mod2 and then
the second module statement enables Radiant optimizations for all
instances of module mod1. VCS processes statements in the order
in which they appear in the configuration file so the enabling of
optimizations for instances of module mod1 in the second statement
overrides the first statement.

instance statement example

instance {mod1} {noOpt};

In this example, mod1 is a module identifier so the statement
disables Radiant optimizations for all instances of mod1. This
statement is the equivalent of:

module {mod1} {noOpt};

module and instance statement example

module {mod1} {noOpt};
instance {mod1.mod2_inst1.mod3_inst1,
mod1.mod2_inst1.reg_a} {noOpt};

10-11

Performance Tuning

In this example, the module statement disables Radiant
optimizations for all instances of module mod1.

The instance statement disables Radiant optimizations for the
following:

• Hierarchical instance mod1.mod2_inst1.mod3_inst1

• Hierarchical signal mod1.mod2_inst1.reg_a

first tree statement example

tree {mod1,mod2} {Opt};

This example is for a design with the following module hierarchy:

module mod1
mod1_inst1

module mod11
mod11_inst1

module mod12
mod12_inst1

module mod111
mod111_inst1

module mod1111
mod1111_inst1

module top

module mod2
mod2_inst1

module mod21
mod21_inst1

module mod3
mod3_inst1

Radiant Technology optimizations
apply to this part of the design

The statement enables Radiant Technology optimizations for the
instances of modules mod1 and mod2 and for all the module
instances hierarchically under these instances.

10-12

Performance Tuning

second tree statement example

tree (0) {mod1,mod2} {Opt};

This modification of the previous tree statement includes a depth
specification. A depth of 0 means that the attributes apply no further
down the hierarchy than the instances of the specified modules,
mod1 and mod2.

module mod1
mod1_inst1

module mod11
mod11_inst1

module mod12
mod12_inst1

module mod111
mod111_inst1

module mod1111
mod1111_inst1

module top

module mod2
mod2_inst1

module mod21
mod21_inst1

module mod3
mod3_inst1

Radiant Technology
optimizations apply
to this part of the
design

A tree statement with a depth of 0 is the equivalent of a module
statement.

third tree statement example

You can specify a negative value for the depth value. If you do this,
specify ascending the hierarchy from the leaf level. For example:

tree (-2) {mod1, mod3} {Opt};

10-13

Performance Tuning

This statement specifies looking down the module hierarchy under
the instances of modules mod1 and mod3 to the leaf level and
counting up from there. (Leaf level module instances contain no
module instantiation statements.)

module mod1
mod1_inst1

module mod11
mod11_inst1

module mod12
mod12_inst1

module mod111
mod111_inst1

module mod1111
mod1111_inst1

module top

module mod2
mod2_inst1

module mod21
mod21_inst1

module mod3
mod3_inst1

Radiant Technology
optimizations apply
to these parts of the
design

In this example, the instances of mod1111, mod12, and mod3 are at
a depth of -1 and the instances of mod111 and mod1 are at a depth
of -2. The attributes do not apply to the instance of mod11 because
it is at a depth of -3.

fourth tree statement example

You can disable Radiant optimizations at the leaf level under
specified modules. For example:

tree(-1) {mod1, mod2} {noOpt};

This example disables optimizations at the leaf level, the instances
of modules mod1111, mod12, and mod21, under the instances of
modules mod1 and mod2.

10-14

Performance Tuning

Known Limitations

Radiant Technology is not applicable to all simulation situations.
Some features of VCS are not available when you use Radiant
Technology.

These limitations are:

• Back-annotating SDF Files

You cannot use Radiant Technology if your design back-annotates
delay values from either a compiled or an ASCII SDF file at
runtime.

• SystemVerilog

Radiant Technology does not work with SystemVerilog design
construct code. For example, structures and unions, new types
of always blocks, interfaces, or things defined in $root.

The only SystemVerilog constructs that work with Radiant
Technology are SystemVerilog assertions that refer to signals with
Verilog-2001 data types, not the new data types in SystemVerilog.

Potential Differences in Coverage Metrics

VCS supports coverage metrics with Radiant Technology and you
can enter both the +rad and -cm compile-time options. However,
Synopsys does not recommend comparing coverage between two
simulation runs when only one simulation was compiled for Radiant
Technology.

The Radiant Technology optimizations, though not changing the
simulation results, can change the coverage results.

10-15

Performance Tuning

Compilation Performance With Radiant Technology

Using Radiant Technology incurs longer incremental compile times
because the analysis performed by Radiant Technology occurs
every time you recompile the design even when only a few modules
have changed. However, VCS only performs the code generation
phase on the parts of the design that have actually changed.
Therefore, the incremental compile times are longer when you use
Radiant Technology but shorter than a full recompilation of the
design.

Improving Performance When Using PLIs

As mentioned earlier, the runtime performance is reduced when you
have PLIs accessing the design. In some cases, you may have ACC
capabilities enabled on all the modules in the design, including those
which actually do not require them. These scenarios will
unnecessarily reduce the runtime performance. Ideally the
performance can be improved if you are able to control the access
rights of the PLIs. However, this may not be possible in many
situations. In this situation, you can use the +vcs+learn+pli
runtime option.

+vcs+learn+pli tells VCS to write a new tab file with the ACC
capabilities enabled on the modules/scopes which actually need
them during runtime. Now, during recompile, along with your original
tab file, you can pass the new tab file using the compile-time option,
+applylearn+[tabfile], so that the next simulation will have a
better runtime. Therefore, this is a two-step process:

• Using the runtime option +vcs+learn+pli

• Using the compilation option +applylearn+[tabfile] during
recompile. You do not have to reanalyze the files in this step.

10-16

Performance Tuning

The usage model and an example is shown below:

Usage Model

Step1: Using the runtime option +vcs+learn+pli.

Compilation

% vcs [vcs_options] Verilog_files

Simulation

% simv [sim_options] +vcs+learn+pli

Step2: Using the compilation option +applylearn+[tabfile].

Compilation

% vcs [vcs_options] +applylearn+[tabfile] Verilog_files

Simulation

% simv [sim_options]

Enabling TAB File Capabilities in UCLI Using
-debug_access

UCLI checks for the debug capability of a signal applied through a
PLI table file (pli.tab), instance/signal based PLI(SIGPLI), PLI
learn file, or config file. UCLI enables this capability with the -
debug_access option, which is the minimum debug option required
to enable UCLI.

This feature improves the runtime performance by allowing you to
run your design with minimum debug capability.

10-17

Performance Tuning

Use Model

Following is the use model to check for the debug capability of a
signal applied through a tab file:

% vcs -debug_access -sverilog -P file.tab file.v

%./simv -ucli

where, file.tab is the tab file that specifies the debug capability
for a signal.

Example

Consider the following test case (test.v) and tab file (test.tab):

Example 10-1 test.v

module top;
 reg clk, a,b,c,d;
 dut d1(clk,a,b);
 dut1 d2(clk,c,d);
 initial begin
 clk=0;
 forever #1 clk =~clk;
 end
 initial begin
 #15 $finish;
 end
endmodule;

module dut(input clk,a,output b);
 initial begin
 $display("DUT B=%b\n",b);
 end
endmodule

module dut1(input clk,a,output b);
initial begin
 $display("DUT1 B=%b\n",b);

10-18

Performance Tuning

 end
endmodule

Example 10-2 test.tab

acc+=frc:dut.a

Compile and run test.v as shown below:

% vcs -nc -sverilog -debug_access -P test.tab test.v
% ./simv -ucli

Following is the output:

ucli% force top.d1.a 0
ucli% get top.d1.a
‘b0

Although the above test case is compiled with minimum debug
option -debug_access, the force capability enabled through the
tab file is available in UCLI.

10-19

Performance Tuning

Impact on Performance

Options like -debug_pp, -debug, and -debug_all disable VCS
optimizations and also impact the performance. The -debug_pp
option has less performance impact than the -debug or
-debug_all options. The following table describes these options
and their performance impact:

Table 10-1 Performance Impact of -debug_pp, -debug, and -debug_all

Options Description

-debug_pp Use this option to generate a dump file. You can also use this option
to invoke UCLI and DVE with some limitations. This has less
performance impact when compared to -debug or -debug_all

-debug Use this option if you want to use the force command at the UCLI
prompt, and for more debug capabilities.

-debug_all This option enables all debug capabilities, and therefore will have
a huge performance impact.

See the section “Compiling or Elaborating the Design in Debug
Mode” for more information.

Note that using extensive user interface commands, like force or
release at runtime, will have an huge impact on the performance.

To improve the performance, Synopsys recommends you to convert
these user interface commands to HDL files and to compile and
simulate them along with the design.

Contact Synopsys Support Center (vcs_support@synopsys.com) or
your Synopsys Application Consultant for further assistance.

10-20

Performance Tuning

Obtaining VCS Consumption of CPU Resources

You can now capture the CPU resource statistics for compilation and
simulation using the switch -reportstats.

Use Model

You can specify this option at compile time as well as runtime or both
depending on your requirement.

For example:

%vcs –reportstats
or
%simv -reportstats

Note:
This option is supported only on RHEL32, RHEL64, SUSE32, and
SUSE64 platforms. If you attempt to use this option on other
platforms, VCS issues a warning and then continues.

When you specify this option at compile time, VCS prints out the
following information.

Compile time

Compilation Performance Summary
===============================
vcs started at : Sat Nov 12 11:02:38 2011
Elapsed time : 4 sec
CPU Time : 3.0 sec
Virtual memory size : 361.7 MB
Resident set size : 141.7 MB
Shared memory size : 79.7 MB

10-21

Performance Tuning

Private memory size : 62.1 MB
Major page faults : 0
===============================

The details of the above report are as follows:

• VCS start time

• Elapsed real time: wall clock time from VCS start to VCS end.

• CPU time: Accumulated user time + system time from all
processes spawned from VCS.

• Peak virtual memory size summarized from all the contributing
processes at specific time points.

• Sum of resident set size from all the contributing processes at
specific time points.

• Sum of shared memory from all the contributing processes at
specific time points.

• Sum of Private memory from all the contributing processes at
specific time points.

• Major fault accumulated from all processes spawned from VCS.

Simulation Time

Specifying this option at compile time and runtime, VCS prints out
both the compile time and simulation time data:

Simulation time sample report data

Simulation Performance Summary
==============================
Simulation started at : Sat Nov 12 11:02:43 2011
Elapsed Time : 1 sec
CPU Time : 0.1 sec

10-22

Performance Tuning

Virtual memory size : 152.2 MB
Resident set size : 106.5 MB
Shared memory size : 21.2 MB
Private memory size : 85.3 MB
Major page faults : 0
==============================

If you specify the option only runtime and not at compile time, VCS
prints only runtime data at runtime.

 11-1

Using X-Propagation

11
Using X-Propagation 1

This chapter includes the following sections:

• “Introduction to X-Propagation”

• “Using the X-Propagation Simulator”

•

• “X-Propagation Code Examples”

• “Support for Active Drivers in X-Propagation”

• “Limitations”

11-2

Using X-Propagation

Introduction to X-Propagation

Designers use RTL constructs to describe hardware behaviors.
However, certain RTL simulation semantics are insufficient to
accurately model hardware behaviors. Therefore, simulation results
are either too optimistic or pessimistic than actual hardware
behaviors.

The simulation semantics of conditional constructs in Verilog and the
simulation semantics of the STD_LOGIC and STD_LOGIC_VECTOR
types along with the Boolean equality and relational operators are
insufficient to accurately model the ambiguity inherent in un-
initialized registers and power-on reset values. This is particularly
problematic when indeterminate states that are modeled as 'X'
values become control expressions.

Standard RTL simulations ignore the uncertainty of X-valued control
signals and assign predictable output values. As a result, RTL
simulations often fail to detect design problems related to the lack of
X propagation. However, the same design problems can be detected
in gate-level simulations. With X propagation support in RTL
simulations, engineers can save time and effort in debugging
differences between RTL and gate-level simulation results.

The simulation semantics of Verilog control constructs is thus
insufficient to account for the ambiguity of statements executed
under X control. A more accurate simulation model to handle
indeterminate control signals is to execute the design with a 0 and 1
control signal, and then merge the results.

 11-3

Using X-Propagation

Gate-level simulations and pseudo-exhaustive 2-state simulations
are techniques used to expose X-propagation (Xprop) problems.
However, as designs grow in size, these techniques become
increasingly expensive and time consuming, often covering only a
fraction of the overall design space.

The VCS X-Propagation simulator provides an effective simulation
model that allows Xprop problems to be exposed by standard RTL
simulations.

The VCS X-Propagation simulator provides two built-in merge
modes that you can choose at either compile time or run time:

• xmerge mode

This mode is more pessimistic than a standard gate-level
simulation.

• tmerge mode

This mode is closer to actual hardware behavior and is the more
commonly used mode.

In addition to these two merge modes, users can also select at run
time the vmerge mode to specify standard RTL semantics, which
effectively disables the enhanced Xprop semantics:

• vmerge mode

This mode is the classic Verilog (optimistic) behavior.

11-4

Using X-Propagation

Guidelines for Running X-Propagation Simulations

Enabling Xprop on an entire design changes the simulation behavior,
and may result in simulation failures. To facilitate deployment on
existing designs, you can use a divide-and-conquer approach to
debug the failures.

• Enable Xprop on certain blocks at a time.

• Find and fix any design or testbench issues.

• Repeat the steps for the next set of blocks.

Debugging simulation failures is easier when only a small block is
enabled for Xprop simulation at a time. However, resolving the Xprop
simulation issues in all the small blocks independently, does not
guarantee that the entire design will simulate without any Xprop
problems. Multiple iterations may be required to debug and fix all the
issues.

One of the most common sources of simulation differences with
Xprop enabled is incorrect initialization sequences. The behavior is
typically caused by a reset or clock signal transitioning from 0 to X,
1 to X or vice-versa.

If a flip-flop is sensitive to the rising edge of its clock signal, an X to
1 transition will trigger the flip-flop and pass the value from input to
output when coded using the Verilog posedge event type of usage.
Effectively, the RTL constructs in these cases consider the X to 1
transition as true. However, in an Xprop simulation, the same clock
transition will cause the flip-flop to merge the input and output,
possibly resulting in an unknown value. Hence, to effectively load
new values onto a flip-flip, you must ensure that clock signals have
valid and stable values.

 11-5

Using X-Propagation

You can specify various Xprop behaviors using a configuration file.
In an Xprop configuration file, you can specify the top level module
of a DUT (Design Under Test), and enable Xprop on the DUT
instance tree. The Xprop technology is targeted for designs
simulating actual hardware (synthesizable RTL code). Non-
synthesizable or testbench blocks should be excluded from Xprop
simulation using the configuration file.

Debugging a simulation mismatch is easier at the RTL level than at
the gate-level because RTL descriptions are closer to the actual
functional intent of a circuit. There are different methods to debug
RTL simulation failures.

A typical debug flow is:

• Identify a regression or test failure.

• Re-run the test with waveform dumping enabled.

• Go to point of test failure (assertion, monitor).

• Trace back a mismatching signal to its origin.

• Identify the root cause of the problem.

One method is to compare the dump file of a passing test and a
failing test, and search for differences near the point of failure.

Another debugging method is to compare a test when the simulation
passes and when the simulation fails. The user identifies potential
code modifications between the passing and failing simulations that
may cause the simulation failure.

Traditional RTL debug techniques can be used to debug Xprop
simulation failures.

11-6

Using X-Propagation

However, you should generally not compare waveform files with and
without Xprop enabled. This can lead to extraneous and wasted
debug cycles. For example, resetting a device may take 10ms in
normal RTL mode. In Xprop mode, the reset or clock may take
100ms due to an indeterminate reset signal. If you compare the
waveform files of the two simulations, you will find that because the
simulations are not cycle accurate with respect to one another, the
actual problem is at a point much farther away in the future than the
first few simulation mismatches.

Most simulation debug tools automatically trace back signal changes
across multiple logic levels to some origin that caused the signal
changes. These debug tools are closely tied to RTL behaviors. Since
VCS signal update is different when Xprop is enabled, these debug
tools may not function accurately in Xprop simulations. Some
manual intervention may be required to use these debug tools
correctly.

The recommended debug methodology is to implement a sufficient
number of assertions or testbench monitors. With this methodology
any deviation from the correct design functionality triggers one of
these checkers and give a runtime error message. You can debug
the simulation problem starting with the error message.

Using the X-Propagation Simulator

The X-Propagation (Xprop) usage model is to compile the design in
Xprop mode and execute the simv executable. The -xprop compile
time option is used to enable Xprop and to specify the merge mode
at run time. By default, VCS uses the tmerge merge mode.

 11-7

Using X-Propagation

However, you can specify a different merge mode at either compile
time or runtime. The keyword argument flowctrl is added for
VHDL instrumentation.

Following is the syntax of the -xprop option:

vcs -xprop[=tmerge|xmerge|xprop_config_file]
 [-xprop=flowctrl]
 other_vcs_options

Where:

-xprop

Using this option without an argument enables Xprop in the entire
design. The default tmerge merge mode is used at run time.

tmerge

Use the tmerge merge mode in the entire design. Merge result
yields X when all output values of logic 0 and logic 1 control signal
are different, similar to a ternary operator. This mode is closer to
actual hardware behavior and is more commonly used.

xmerge

Use the xmerge merge mode in the entire design. Merge result
always yields X. This mode is more pessimistic than a standard
gate-level simulation.

xprop_config_file

Specify a configuration file. You can define the scope of Xprop
instrumentation and select the merge mode in the configuration
file. For more information on using the Xprop configuration file,
see “X-Propagation Configuration File” .

11-8

Using X-Propagation

flowctrl

The xprop_vhdl.log/xprop.loglog file records a YES line for
the for loop as the next/continue, exit/break and
return statements are supported. In addition, the parent
statement chain is no longer disabled for Xprop with these
structures and the logging of these disabled statements is
changed from NO to YES.

Note:

Simulation behavior is undefined for multiple specifications of the
-xprop options, tmerge, xmerge and xprop_config_file.
In the following command, the application of the option is
undefined and an error is issued.

% vcs -xprop -xprop=xp_config_file1
-xprop=xp_config_file2 design.v

You may specify the following options only once in the compilation
command.

- Merge mode (tmerge or xmerge)

- Configuration file (xprop_config_file)

Examples:

vcs -xprop

vcs -xprop=xprop.cfg

vcs -xprop=tmerge top.v

 11-9

Using X-Propagation

Note:
The automatic hardware inference of flip-flops in Verilog
simulations is enabled by default. Flip-flops with an active reset
value of 0 are correctly simulated when the reset signal transition
from X to 0. VCS MX generates a file named
unifiedInference.log file to record a list of inferred flip-flops

Specifying X-propagation Merge Mode

Merge mode can be mentioned at both compile and run time.

For example,

% vcs -xprop=xmerge -sverilog top.v

When the -xprop=xmerge option is specified, the design is
compiled and simulation starts in the xmerge mode.

% vcs -xprop=tmerge -sverilog top.v

When the -xprop=tmerge option is specified, the design is
compiled and simulation starts in the tmerge mode.

To change the merge mode at runtime you can invoke the
$set_x_prop Verilog system task.

Verilog examples:

$$et_x_prop("tmerge");

$set_x_prop("xmerge");

$set_x_prop("vmerge");

$set_x_prop("xprop");

11-10

Using X-Propagation

When only -xprop compile time option without specifying a merge
mode is passed and if you do not use $set_x_prop to specify the
merge mode, the default tmerge mode is used.

The vmerge run time merge mode enables standard RTL simulation
behaviors, which effectively disables the Xprop semantics. The
Verilog $set_x_prop task can be called as many times as
necessary in a simulation.

Another method to specify the Xprop merge mode is to use a Xprop
configuration file. For more information on how to use the Xprop
configuration file, see “X-Propagation Configuration File” .

For example:

% vcs -xprop=xp_config cache.v alu.v

Use the merge mode and the scope of Xprop instrumentation
specified in the Xprop configuration file xp_config.

Compile Time Diagnostic Report

When you compile a design with Xprop enabled, VCS generate
reports which record all the statements considered for Xprop
instrumentation, whether or not the statements are instrumented,
and the reason for statements not being instrumented. Reports are
generated with the name xprop.log for Verilog.

Report entries are created for the following HDL constructs:

• if statement in Verilog

• case statement in Verilog

• Body of an edge triggered always block in Verilog

 11-11

Using X-Propagation

Below is the format of a report entry in xprop.log files:

filename:line_number YES|NO ["reason" (primary_line)]

Where:

filename

Name of the source file containing a statement being considered
for Xprop instrumentation.

line_number

Line number that corresponds to the start of the statement.

YES|NO

Xprop instrumentation status of the statement.

reason

The reason for the statement not being instrumented. This is
issued only when the Xprop instrumentation status is “NO”.

primary_line

The line number of the statement containing the actual construct
not being instrumented. This is issued only when the Xprop
instrumentation status is "NO".

xprop.log example:

decode.v:3 YES
decode.v:7 NO "prevented by sub-statement" (12)
decode.v:16 NO "delay statement" (17)
decode.v:18 YES
decode.v:20 NO "a dynamic object" (22)

11-12

Using X-Propagation

The Xprop statistics are presented at the end of the xprop.log
report. The statistics consist of the number of assignment
statements considered for Xprop instrumentation, the number of
statements instrumented, and the ratio of those two numbers
(instrumented/instrumentable) which represents the percentage of
the design instrumented for Xprop.

For example:

test.v:31 YES
test.v:45 NO "a dynamic type expression" (48)
test.v:52 YES
==
X P R O P S T A T I S T I C S
instrumentable assignments: 7
instrumented assignments: 5
instrumentation success rate: 71%

The Xprop instrumentation numbers reported in xprop.log are
essentially the same between different compilation flows. In certain
cases, subtle internal differences between the compilation flows may
affect the calculation of the instrumentation numbers. Even though
the instrumented code is the same in both flows, the numbers in
xprop.log may differ. You should not compare the Xprop
instrumentation numbers between different compilation flows.

Note:

VCS does not record Xprop instrumentation information on
modules that are excluded from Xprop via the configuration file.
Instrumentation for instances excluded via the configuration file
is recorded unless all instances of a particular module are
excluded. The excluded modules do not appear in the file
xprop.log.

 11-13

Using X-Propagation

Querying X-Propagation at Runtime

You can use the $is_xprop_active Verilog system function to
query the X-prop status for a particular module or entity instance.
The function returns an '1' if Xprop is enabled in the current instance.

For example:

$set_x_prop("tmerge");
$display("%m: is Xprop active = %d",$is_xprop_active());

$set_x_prop("xmerge");
$display("%m: is Xprop active = %d",$is_xprop_active());

$set_x_prop("vmerge");
$display("%m: is Xprop active = %d",$is_xprop_active());

The Xprop configuration file:

tree {top}{xpropOn}
instance {top.dut2}{xpropOff}

The query result:

top.dut1: is Xprop active = 1
top.dut1: is Xprop active = 1
top.dut1: is Xprop active = 0
top.dut2: is Xprop active = 0
top.dut2: is Xprop active = 0
top.dut2: is Xprop active = 0

In the above example, Xprop instrumentation in the top.dut2
instance is disabled at compile time using the configuration file. As a
result, the instrumentation cannot be changed at runtime using the
$set_x_prop system tasks. The Xprop status is shown in the query
result.

11-14

Using X-Propagation

X-Propagation Instrumentation Report

You can generate an Xprop instrumentation report with the -report
runtime option. The report displays the instrumentation status of
every module instance in a design.

-report=xprop[+exit]

Where:

xprop

Generate an Xprop instrumentation report named
xprop_config.report and continue the simulation.

xprop+exit

Generate an Xprop instrumentation report named
xprop_config.report and terminate the simulation.

Below are the formats of the statements in the Xprop instrumentation
report:

ON:instance
OFF:instance

Where:

instance

A module instance in a design.

ON

The instance is included in Xprop instrumentation.

OFF

 11-15

Using X-Propagation

The instance is excluded from Xprop instrumentation.

For example:

simv -report=xprop

The xprop_config.report file:

ON: top
ON: top.il
ON: top.p1
OFF: top.p1.u1

Automatic Hardware Inference of Flip-Flops Enabled by Default

The automatic hardware inference of flip-flops in Verilog simulations
is enabled by default. Flip-flops with an active reset value of 0 are
correctly simulated when the reset signal transition from X to 0. VCS
generates an unifiedInference.log file to record a list of
inferred flip-flops. The unified inference statistics are presented at
the end of the log file.

Following are the formats of the unifiedInference.log file
entries:

filename:line_number YES:SyncFF|AsyncFF
filename:line_number NO "reason"

Where:

filename

Name of the source file containing a flip-flop being considered for
Xprop instrumentation.

line_number

11-16

Using X-Propagation

Line number that corresponds to the start of a statement
describing the flip-flop.

YES

The specified flip-flop is inferred.

SyncFF|AsyncFF

Type of the specified flip-flop. SyncFF indicates a synchronized
flip-flop. AsyncFF indicates an asynchronous flip-flop.

NO

The specified flip-flop is not inferred.

reason

The reason for the specified flip-flop not being inferred.

For example:

test2.v:3 YES:AsyncFF
test2.v:10 YES:SyncFF
test2.v:17 NO "Unable to infer clock for flip-flop"
==
Unified Inference Statistics
Number of always_ff: 0
Number of always_latch: 0
Number of always @*: 0
Number of always_comb : 0
Number of always : 4
Number of flip-flop candidates: 3
Number of synchronous flops inferred: 1
Number of Asynchronous flops inferred: 1

 11-17

Using X-Propagation

X-Propagation Configuration File

The Xprop configuration file is used to define the scope of Xprop
instrumentation in a design. The file allows you to specify the design
hierarchies or modules to be excluded or included for Xprop
instrumentation. You can also use the file to specify merge modes.
Synopsys recommends that you use a Xprop configuration file when
Xprop is enabled.

Important:
If you use an Xprop configuration file, by default VCS does not
perform Xprop instrumentation. You must use the xpropOn
attribute to specify the design hierarchies or modules for Xprop
instrumentation. For example:

module {*}{xpropOn};

The Xprop configuration file consists of the following types of
statements:

• “X-Propagation Instrumentation Definition”

• “X-Propagation Merge Mode Specification”

The statements are processed in sequential order. Subsequent
statements override previously listed statements. If Xprop merge
mode is specified multiple times in the configuration file, the merge
mode from the last statement is enabled.

Note:

You can add comments to the file using the character types “//”
and “/* */”. For example:

11-18

Using X-Propagation

// This is a single line comment
/* This is

a multi-line comment*/

X-Propagation Configuration File Syntax

Below is the BNF of the Xprop configuration file.

xprop_config_text ::= { xprop_config_item ; }

xprop_config_item ::=
 merge = merge_function
| module_item
| instance_item
| tree_item

merge_function ::= tmerge | xmerge

module_item ::= module { module_identifier_list } {
xprop_mode }

tree_item ::= tree { module_identifier_list } { xprop_mode }

instance_item ::= instance { instance_path_list } {
xprop_mode }

xprop_mode ::= xpropOn | xpropOff | tmerge| xmerge

module_identifier_list ::= module { , module }

module ::= module_identifier

instance_path_list ::= instance_path { , instance_path }
instance_path ::= { instance_identifier . }
instance_identifier

 11-19

Using X-Propagation

Note:
If a merge mode is explicitly specified for a module, or a tree, or
an instance, then that mode is used throughout the simulation
whenever Xprop is enabled on that module, or instance, or tree..

X-Propagation Instrumentation Definition

The following are the BNF rules for the Xprop instrumentation
definition in a configuration file.

module_item ::= module { module_identifier_list } {
xprop_mode }

tree_item ::= tree { module_identifier_list } {
xprop_mode }

instance_item ::= instance { instance_path_list } {
xprop_mode }

module_item

Apply the specified Xprop mode to all modules in the list.

instance_item

Apply the specified Xprop mode to all instances in the list and
recursively to all the sub-instances.

tree_item

Apply the specified Xprop mode to all modules in the list and
recursively to all the sub-instances.

For example,

11-20

Using X-Propagation

Consider the following figure, in which Xprop instrumentation is
turned off for the tree and the module and Xprop instrumentation is
turned on for the instance.

tree { bridge } { xpropOff } ;
instance { top.bridge.cpu } { xpropOn } ;
module { sram } { xpropOff } ;

The first line specifies that the entire sub-tree under the module
bridge should be excluded from Xprop instrumentation. The
second line designates that the sub-tree under top.bridge.cpu

 11-21

Using X-Propagation

should be included for gate-X-propagation. The third line specifies
that all instances of module sram are excluded from Xprop
instrumentation and not the sub-instance, cache.

A module specification in a configuration file only affects the module
instances, but not its sub-instances. For Verilog modules only, a
module identifier may include asterisks (*) to denote a wildcard
string.

X-Propagation Merge Mode Specification

The following are the BNF rules for the Xprop merge mode
specification in a configuration file.

merge = merge_function
merge_function ::= tmerge | xmerge

merge_function

Enable the specified Xprop merge mode.

For example:

merge = xmerge ;

In the above example, xmerge mode is enabled.

Xprop Instrumentation Control

Table 11-1 is a summary of the Xprop instrumentation control in a
design hierarchy when Xprop is enabled using various methods.

11-22

Using X-Propagation

Table 11-1

Xprop Specification Instrumentation Control Runtime Control

Compile-time option

example:
vcs -xprop=tmerge

Entire hierarchy is
instrumented for Xprop
semantics

Verilog task call
$set_x_prop can be used
to change merge mode at
runtime for instances that
have been already compiled
for Xprop
Caution: Use sparingly

Configuration file

example:
vcs -xprop=cfg

Instance/module specific
control

Verilog task call
$set_x_prop can be used
to change merge mode at
runtime for instances that
have been already compiled
for Xprop
Caution: Use sparingly

Pragma based

Verilog example:
always (*xprop_off*)
@(posedge clk)

Disabled Xprop for this
process only

Process is disabled and
cannot be enabled at runtime

Xprop Instrumentation Control

When a model use Xprop configuration file, by default nothing is
instrumented for Xprop.

To enable Xprop on all modules, packages, and $unit, start the
configuration with a wildcard * (asterisk).

module {*}{xpropOn};

Note:

The wildcard * (asterisk) is only supported for Verilog.

As an example, consider the following code that needs to be
simulated:

%cat t.v:

 11-23

Using X-Propagation

`include "unit_functions.vh"
module top ();

alldmtxd alldmtxd_xPropMe ();
alldmtxd alldmtxd_FreeSpirit ();

endmodule

module alldmtxd ();
import my_pkg::*;
logic [6:0] a7,b7,c7;
logic a,b;

 assign a7 = f_INC(b7,a ,b);
 assign c7 = f_PKG(b7,a ,b);

endmodule

%cat unit_functions.vh :
function logic [6:0] f_INC(logic [6:0] vec, logic enable45,
logic enable67);
 logic [6:0] tmp;
 unique casez({vec,enable45,enable67})
 9'b0000000_11 : tmp = 7'b1111111;
 9'b1111111_11 : tmp = 7'b1111110;
 9'b1111110_11 : tmp = 7'b1111100;
 default : tmp = 7'b1111111;
 endcase
 f_INC = tmp;
endfunction

%cat pkg_functions.vh :
package my_pkg;
function logic [6:0] f_PKG(logic [6:0] vec, logic enable45,
logic enable67);
 logic [6:0] tmp;
 unique casez({vec,enable45,enable67})
 9'b0000000_11 : tmp = 7'b1111111;
 9'b1111111_11 : tmp = 7'b1111110;
 9'b1111110_11 : tmp = 7'b1111100;
 default : tmp = 7'b1111111;
 endcase
 f_PKG = tmp;
endfunction

endpackage

11-24

Using X-Propagation

To enable Xprop instrumentation on just some hierarchy (without
$unit and without any packages), use the following rule:

instance {top.alldmtxd_xPropMe } {xpropOn};

To enable Xprop instrumentation on $unit, use the following rule:

module {_vcs_unit* }{xpropOn};

To enable Xprop instrumentation on my_pkg package, use the
following option:

 module {my_pkg }{xpropOn};

To turn on xprop on alldmtxd_xPropMe(), the configuration file
looks like this.

%cat xprop.cfg
instance {top} {xpropOff};
instance {top.alldmtxd_xPropMe } {xpropOn};

Process Based X-Propagation Exclusion

The Xprop configuration file allows exclusion of Xprop at module or
entity level. See “X-Propagation Configuration File” . If you need a
finer granularity, you can use the xprop_off attribute to disable
Xprop on a specific process.

Verilog example:

always (* xprop_off *) @(posedge clk) begin
 if (we) begin
 q <= in;
 end
end

 11-25

Using X-Propagation

Bounds Checking

In Verilog, the -boundscheck compile time option can be used to
catch invalid indices. When the option is specified, the four types of
assertions listed in Table 11-2 are enabled:

Table 11-2 Assertions Enabled In Bounds Checking

Assertion Type Description Default Behavior

xindex-wr Write with indeterminate index
(index containing X values)

Warning

xindex-rd Read with indeterminate index
(index containing X values)

Warning

index-wr Write with out-of-bounds index Warning

index-rd Read with out-of-bounds index Warning

In Xprop simulations, the behavior and severity of the above four
types of assertions can be controlled by a set of run time Xprop
assertion control Verilog system tasks. The system tasks operate on
all assertions of the specified type in a design.

Note:

For VHDL these assertion controls are synonymous to each other as
VHDL does not distinguish between an out -of-bounds index and an
X index (xindex). It also does not distinguish between an indexed-
read and an indexed-write.

• $xprop_assert_on(assertion_type)

Enable the specified assertion type.

• $xprop_assert_off(assertion_type)

11-26

Using X-Propagation

Disable the specified assertion type. Assertion check of the
specified assertion type is stopped until a subsequent call of the
$xprop_assert_on task with the same assertion type is
executed.

• $xprop_assert_fatal(assertion_type)

Set the severity of the specified assertion type to fatal. When an
assertion of the specified type is triggered, the simulation
terminates.

• $xprop_assert_warn(assertion_type)

Set the severity of the specified assertion type to warning. When
an assertion of the specified type is triggered, the simulation
continues.

Note:

The Xprop assertion control system tasks have no effect on
Verilog behavior, if the -boundscheck option is not used. The
assertion control system tasks are always effective in VHDL.

Changing $uniq_prior_checkoff/on Usage Model

To control the run time warning messages with
$uniq_prior_checkon and $uniq_prior_checkoff system
tasks in presence of Xprop simulations, you must use the
-xprop=enableUniqPriorCheck compile time switch.

Note:

The feature applies to Verilog only.

 11-27

Using X-Propagation

Time Zero Initialization

When Xprop is enabled, initialization of a latch or flip-flop at time zero
may result in an “X” output instead of the initialized value. At time
zero, the SystemVerilog always_latch and always_comb
processes are executed. An “X” value on the clock signal propagates
through the device and may cause an indeterminate output.

Handling Non-pure Functions Due to Static Lifetime

VCS provides an easy way to denote the lifetime of all user-defined
functions that do not specify an explicit lifetime as automatic.
Functions with a static lifetime (the default) often create side-effects
that require the compiler to consider those functions as non-pure.
The side-effects due to static lifetime sometimes leads to simulation-
synthesis mismatches; furthermore they prevent the code calling
those functions from being instrumented by hardware-accurate
simulation features such as X-Propagation (Xprop). To eliminate the
side-effects due to static lifetime, VCS provides a compile-time
option, -fauto. When this option is specified, all Verilog functions
that do not specify an explicit lifetime are automatically converted to
automatic functions.

The default lifetime of Verilog functions defined within modules or
interfaces is static (note that functions in program blocks or class
methods are already automatic by default). This means that all the
arguments, the return value, and all variables declared within those
functions are static and retain their values in between calls. The
retention of values across calls may result in side-effects such that
the behavior of the function depends not only on the current
argument values, but on the previous invocations. By definition, such
functions are considered as non-pure functions.

11-28

Using X-Propagation

For example:

module foo;
function crc (input [31:0] data);

reg tmp;
tmp = tmp ^ data;
crc = tmp;

endfunction
endmodule

In the above example, the crc function is static by default, hence,
the state of the variable tmp is retained through each invocation of
the crc function. The result of each crc function call does not
depend solely on the input argument, data. The crc function is
therefore a non-pure function.

You can use the compile-time option, -fauto, to change the lifetime
of all functions that do not specify an explicit lifetime to automatic.
The automatic lifetime will eliminate the potential simulation-
synthesis mismatches and enable the instrumentation of code that
calls such functions in Xprop simulations. The behavior of the
-fauto option is similar to declaring an automatic lifetime for the
functions.

For example:

function automatic crc (input [31:0] data);

Note:

Functions that do indeed rely on the value retention side-effect
for correct simulation need to be modified to specify the intended
lifetime.

For example:

 11-29

Using X-Propagation

function static crc (input [31:0] data);

Supporting UCLI Commands for X-Propagation Control
Tasks

X-Propagation (Xprop) supports UCLI/TCL commands. The
commands allow you to control the Xprop behavior at runtime. The
commands return a success value or return a resultant value for a
query (such as $is_xprop_active()).

Use Model

This section describes how to use the UCLi commands.

UCLI Command to Specify the Merge Mode

The syntax of the new UCLI command to specify the merge mode is
as follows:

xprop {-is_active [inst_name]
| -merge_mode {vmerge|tmerge|xmerge|xprop}}

This command is equivalent to the Verilog $set_x_prop() and
$is_xprop_active() system tasks calls as well as the VHDL
built-in package subprograms XPROPUSER.set_x_prop() and
XPROP_USER.is_xprop_active().

For example,

xprop -is_active top.dut.core0.dff
xprop -merge_mode vmerge
xprop -merge_mode xprop

11-30

Using X-Propagation

Note:
- For a non-Xprop simulation, the command returns False and

if the option -merge_mode is present, a warning message is
generated.

- You must use either -is_active option or -merge_mode
option. If neither or both options are provided, or if the value of
the option -merge_mode is not valid, a help message is
generated.

- The UCLI command allows you to provide both relative (to the
current scope) instance name and absolute instance name. If
no instance name is provided for the option -is_active, the
command uses the current scope.

- If the [inst_name] option does not exist, a warning message
is generated and the UCLI command returns False.

UCLI Command to Control Error Messages or Warning
Messages

The syntax of the new UCLI command to control error messages or
warning messages is as follows:

report_violations -type {oob_index_rd | oob_index_wr|
x_index_rd | x_index_wr | lossy_conversion| enum_cast |
ffdcheck} {-severity {warn | error}| -on | -off}

The following command is equivalent to
$xprop_assert_{on,off,warn,fatal}() or
XPROP_USER.xprop_assert_{on,off,warn,fatal}()
Verilog system task calls and VHDL XPROP_USER built-in package
sub-programs.

 11-31

Using X-Propagation

Note:
- Multiple options are allowed, however, at least one option must

be provided. If no option is provided, or illegal options or option
values are provided, a help message is generated.

- If both -on and -off options are provided, a warning message
is generated. The command returns False and the violation
reporting state is not changed.

- Multiple options are allowed to the (singular) -type switch, if
presented in a TCL list (enclosed in braces and separated by
spaces).

- For pure VHDL in non-Xprop mode, this command is not
relevant under any circumstances. Hence, this command
always generates a warning message and returns False.

- For Verilog and MX in non-Xprop mode, this command
generates a warning message and returns False for
lossy_conversion, enum_cast, and ffdcheck violation
types. The VHDL portion of the design is not affected by this
command while running in non-Xprop mode.

X-Propagation Code Examples

X-propagation (Xprop) changes the simulation semantics of
standard HDL conditional constructs. This section describes the
Xprop simulation behavior of the following code examples.

• “If Statement”

- “Verilog Example”

• “Case Statement”

11-32

Using X-Propagation

- “Verilog Example”

• “Edge Sensitive Expression”

- “Verilog Example”

• “Latch”

- “Verilog Example”

If Statement

Verilog Example

The following Verilog code example of an if statement represents a
simple multiplexor.

always@*
if(s)

r = a;
else

r = b;

Table 11-3

s a b vmerge tmerge xmerge

X 0 0 0 0 X

X 0 1 1 X X

X 1 0 0 X X

X 1 1 1 1 X

Xprop Merge Mode Truth Table for if Statement

Table 11-3 describes the truth table of the above code example when
the control signal, s, of the if statement is unknown, with a value
of X.

 11-33

Using X-Propagation

Under the vmerge mode, the standard HDL simulation semantics is
used. When the control signal, s, is unknown, the output signal, r, is
always assigned the value of the else statement. In this case, the
value of r is the same as signal b.

Under the tmerge mode, the simulation semantics is modified when
the control signal, s, is unknown. In this scenario two of the case
statements are executed, one considering s=0 and one considering
s=1. The output values that result from both statements are then
merged. If the values of the output signal, r, are the same in both
conditions, then the merged value of r is the same as in either
condition, s=0 and s=1. If the values of the output signal, r, are
different then the merged value of r is X. Thus, if the input signals, a
and b are the same, the value of r is the same as a (or b). If a and
b are different, the value of r is X.

In the xmerge mode, when the control signal, s, is unknown, the
value of the output signal, r, is always X.

Case Statement

Verilog Example

The following Verilog code example of a case statement represents
a simple multiplexor.

case (s)
1'b0: r = a;
1'b1: r = b;

endcase

11-34

Using X-Propagation

Table 11-4 Xprop Merge Mode Truth Table for Case Statement

s a b vmerge tmerge xmerge

X 0 0 r(t-1) 0 X

X 0 1 r(t-1) X X

X 1 0 r(t-1) X X

X 1 1 r(t-1) 1 X

Table 11-4 describes the truth table of the above code example when
the control signal, s, of the case statement is unknown, with a value
of X.

In the vmerge mode, the standard HDL simulation semantics is
used. When the control signal, s, is unknown, the value of the output
signal, r, remains the same as before the case statement is
executed.

In the tmerge mode, when the control signal, s, is unknown, the
case statement is executed twice, once with s=0 and once with
s=1. The output values from both conditions are computed and
merged. If the values of the output signal, r, are the same in both
conditions, then the merged and final value of r is the same as in
both conditions, s=0 and s=1. If the values of the output signal, r,
are different in both conditions, then the merged and final value of r
is determined by the values of the input signals, a and b. If a and b
are the same, the merged and final value of r is the same as a and
b. If a and b are different, the merged and final value of r is X.

In the xmerge mode, the value of the output signal, r, is always X
when the control signal, s, is unknown.

 11-35

Using X-Propagation

Edge Sensitive Expression

Verilog Example

In standard Verilog RTL simulations, a positive edge transition is
triggered for the following value changes in a clocking signal:

0 -> 1
0 -> X
0 -> Z
X -> 1
Z -> 1

If X is considered as either a 0 or a 1 value, then in the 0->X
transition, X may represent a value of 0, which denotes no transition.
And, X may represent a value of 1, which denotes a positive edge
transition. An Xprop simulation considers both these behaviors and
merges the outcome.

The following Verilog code example of an edge sensitive expression
represents a simple D flip-flop with an inactive reset.

always@(posedge clk, negedge rst)
if (! rst)

q <= 1'b0;
else

q <= d ;

11-36

Using X-Propagation

Table 11-5 Xprop Merge Mode Truth Table for D Flip-Flop

clk vmerge tmerge xmerge

0 -> 1 d d d

0 -> X d merge(d,q(t-1)) X

0 -> Z d merge(d,q(t-1)) X

X -> 1 d merge(d,q(t-1)) X

Z -> 1 d merge(d,q(t-1)) X

Table 11-5 describes the truth table of the above code example with
different value transitions of the clocking signal, clk.

In all merge modes, if the clocking signal, clk, is changing from 0 to
1, then a positive edge transition is triggered. The output signal of the
D flip-flop, q, is assigned the value of the input signal, d.

For all other clocking signal transitions, the output signal, q, is
assigned the value of the input signal, d, in the vmerge mode. The
output signal, q, is assigned the value of X in the xmerge mode. In
the tmerge mode, the current value of the output signal, q, is merged
with the input signal, d, as described in the tmerge column of the
truth table Table 11-3. Then, the merged value is assigned to q.

Latch

Verilog Example

The following Verilog code example of an if statement without an
else branch represents a simple latch.

always@(*)
if(g)

q <= d ;

 11-37

Using X-Propagation

Table 11-6 Xprop Merge Mode Truth Table for Latch

g d vmerge tmerge xmerge

X 0 q(t-1) merge(d,q(t-1)) X

X 1 q(t-1) merge(d,q(t-1)) X

Table 11-6 describes the truth table of the above code example when
the control signal, g, of the if statement is unknown, with a value
of X.

In the vmerge mode, when the control signal, g, is unknown, the
value of the output signal, q, is unchanged. In the tmerge mode, the
current value of the output signal, q, is merged with the input signal,
d, as described in the tmerge column of the truth table Table 11-3.
The merged value assigned to q when the control signal, g, is
unknown thus depends on the values of both q and d.

In the xmerge mode, the value of the output signal, q, is always X
when the control signal, g, is unknown.

Support for Active Drivers in X-Propagation

DVE supports active driver tracing functionality for the designs
compiled with X-propagation (using the -xprop option). DVE
supports active drivers tracing for X-propagation (Xprop) in
combinational logic, latches, and flip-flops. This section describes
the following topics:

• Combinational Logic

• Latches

• Flip-flops

11-38

Using X-Propagation

• Key points to Note

Combinational Logic

DVE supports active drivers tracing for Xprop in combinational logic.
For tmerge, all drivers which are used for Xprop merge function are
shown as active. For xmerge, all drivers from the branches of control
structure with unknown condition value are shown as active.

For example, consider the following test case (comb_logic.sv) that
contains combinational logic:

Example 11-1 comb_logic.sv

module top();
 reg op;
 reg [2:0] out;
 reg [1:0] a,b;
 dut dut1 (op,a,b,out);
 initial begin
 op = 1'b0; a = 2'b11; b = 2'b10;
 #1 op = 1; a = 2'b00;
 #3 a = 1; b = 2'b01; op = 1'bx;
 #2 op = 1; b = 2'b11;
 #1 op = 1'bx;
 #2 op = 0;
 end
endmodule

module dut(input op,a,b, output out);
 logic op;
 logic [1:0] a,b;
 logic [2:0] out;
 always_comb begin
 if (op)
 out = a + b;
 else
 out = a - b;
 end

 11-39

Using X-Propagation

endmodule

Perform the following steps:

1. Compile the comb_logic.sv code shown in Example 11-1 as
follows:

% vcs comb_logic.sv -sverilog -xprop=tmerge -debug_pp

2. Invoke the DVE GUI using the following command:

% simv -gui

3. Perform Trace Drivers.

DVE displays active drivers for the combinational logic signals
that cause Xprop, in the DriverLoad Pane, as shown in Figure 11-
1.

Figure 11-1 Viewing Active Drivers of the Combinational Logic Signals

DVE displays both active and inactive contributor signals for the
driver. Active contributor is a contributor, which has a value
change and impacts the value of the traced signal. You can
expand the active contributor signal, as shown in Figure 11-2, to
further trace the origin of X.

11-40

Using X-Propagation

Figure 11-2 Tracing Origin of X

Note:

In the xmerge mode, all RHS contributors are displayed as
inactive. In tmerge mode, the contributors with value change
which can impact RHS value, are displayed as active, otherwise
as inactive.

Latches

DVE supports active drivers tracing for Xprop in latches. DVE
displays the control signals as contributors for the drivers.

For example, consider the following test case (latch.sv) that contains
latch signals:

Example 11-2 latch.sv

module top;
 reg clk,y,a;
 dut dut1 (clk,a,y);
 initial begin
 clk = 1'b1;
 a = 1'b0;
 #1 clk = 1'b0;
 #1 a = 1'b1;
 #1 clk = 1'bx;

 11-41

Using X-Propagation

 #1 clk = 1'b1;
 end
endmodule

module dut(input clk,a, output y);
 logic clk,a,y;
 always_latch begin
 if (clk)
 y = a;
 end
endmodule

Perform the following steps:

1. Compile the latch.sv code shown in Example 11-2 as follows:

% vcs latch.sv -sverilog -xprop=tmerge -debug_pp

2. Invoke the DVE GUI using the following command:

% simv -gui

3. Perform Trace Drivers.

DVE displays active drivers for the latch signals that cause Xprop,
in the DriverLoad Pane, as shown in Figure 11-3.

11-42

Using X-Propagation

Figure 11-3 Viewing Active Drivers of the Latch Signals

DVE displays both active and inactive contributor signals for the
driver. You can expand the active contributor signal, as shown in
Figure 11-4, to further trace the origin of X.

Figure 11-4 Tracing Origin of X

Flip-flops

DVE supports active drivers tracing for Xprop in flip-flops. DVE also
displays signals from the edge-sensitivity list, which has transition to
X, as contributors for the drivers.

For example, consider the following test case (flip_flop.sv):

Example 11-3 flip_flop.sv

module top;
 reg clk;

 11-43

Using X-Propagation

 reg q,d;
 dut dut1 (clk,d,q);
 always #2 clk = ~clk;
 initial begin
 clk = 1'b0;
 d = 1'b1;
 #4 d = 1'b0;
 #1 clk = 1'bx;
 #1 d = 1'b0;
 #1 clk = 1'b1;
 #1 d = 1'b1;
 #10 $finish();
 end
endmodule

module dut(input clk,d,output q);
 logic clk,q,d;
 always_ff@(posedge clk) q <= d;
endmodule

Perform the following steps:

1. Compile the flip_flop.sv code shown in Example 11-3 as follows:

% vcs flip_flop.sv -sverilog -xprop=tmerge -debug_pp

2. Invoke the DVE GUI using the following command:

% simv -gui

3. Perform Trace Drivers.

DVE displays active drivers for the flip-flops that cause Xprop, in
the DriverLoad Pane, as shown in Figure 11-5.

11-44

Using X-Propagation

Figure 11-5 Viewing Active Drivers of Flip-Flops

DVE does not display signals from always block sensitivity list as
contributor except in this case, where a signal from the process
sensitivity list (for example, clock) has an unclean edge and
causes Xprop. You can expand the active contributor signal, as
shown in Figure 11-6, to further trace the origin of X.

Figure 11-6 Tracing Origin of X

Key points to Note

• The change of the merge function at runtime will be ignored. That
is, analysis is done using the merge function specified at compile
time.

 11-45

Using X-Propagation

Limitations

1. X-Propagation is not supported with the following VCS features:

- Multicore

- $xzcheck

- +vcs+initreg option described in the section “Initializing
Verilog Variables, Registers and Memories” .

2. X-Propagation support for the following VCS features have
limitations:

- Code coverage in Verilog

Code coverage does not exclude branches that are executed
ambiguously, that is, under control of an X. Therefore, code
coverage results may appear to overestimate coverage when
Xprop is enabled.

- A loop with non-constant bounds

The loops with variable bounds are not synthesizable. Xprop
requires loop bounds to be constant or constant expressions
for the loops to be instrumented. Along with the use of explicit
variables, return values of function calls are also treated as non-
constant expressions.

3.

11-46

Using X-Propagation

12-1

Gate-Level Simulation

12
Gate-Level Simulation 1

This chapter contains the following sections:

• “SDF Annotation”

• “Precompiling an SDF File”

• “SDF Configuration File”

• “Delays and Timing”

• “Using the Configuration File to Disable Timing”

• “Using the timopt Timing Optimizer”

• “Using Scan Simulation Optimizer”

• “Negative Timing Checks”

12-2

Gate-Level Simulation

SDF Annotation

The OVI Standard Delay File (SDF) specification provides a
standard ASCII file format for representing and applying delay
information. VCS supports the OVI versions 1.0, 1.1, 2.0, 2.1, and
3.0 of this specification.

In the SDF format a tool can specify intrinsic delays, interconnect
delays, port delays, timing checks, timing constraints, and pulse
control (PATHPULSE).

When VCS reads an SDF file it “back-annotates” delay values to the
design, that is, it adds delay values or changes the delay values
specified in the source files.

Following are ways to back-annotate the delays specified in the SDF
file:

• “Using Unified SDF Feature”

• “Using $sdf_annotate System Task”

• “Using -xlrm Option for SDF Retain, Gate Pulse Propagation, and
Gate Pulse Detection Warning”

Using Unified SDF Feature

Unified SDF feature allows you to back-annotate the SDF delays
using the following compile-time option:

-sdf min|typ|max:instance_name:file.sdf

Compilation% vcs -sdf min|typ|max:instance_name:file.sdf \
 [compile_options]

12-3

Gate-Level Simulation

Simulation

% simv [run_options]

For more information, see “Options for Specifying Delays and SDF
Files”

Using $sdf_annotate System Task

You can use the $sdf_annotate system task to back-annotate
delay values from an SDF file to your Verilog design.

The syntax for the $sdf_annotate system task is as follows:

$sdf_annotate ("sdf_file"[, module_instance]
[,"sdf_configfile"][,"sdf_logfile"][,"mtm_spec"]
[,"scale_factors"][,"scale_type"]);

Where:

"sdf_file"

Specifies the path to the SDF file.

module_instance

Specifies the scope where back-annotation starts. The default is
the scope of the module instance that calls $sdf_annotate.

"sdf_configfile"

Specifies the SDF configuration file. For more information on the
SDF configuration file, refer to the “SDF Configuration File”
section.

12-4

Gate-Level Simulation

"sdf_logfile"

Specifies the SDF log file to which VCS sends error messages
and warnings. By default, VCS displays no more than ten warning
and ten error messages about back-annotation and writes no
more than that in the log file you specify with the -l option.
However, if you specify an SDF log file with this argument, the
SDF log file receives all messages about back-annotation. You
can also use the +sdfverbose runtime option to enable the
display of all back-annotation messages.

"mtm_spec"

Specifies which delay values of min:typ:max triplets VCS back-
annotates. Specify "MINIMUM", "TYPICAL", "MAXIMUM" or
"TOOL_CONTROL" (default).

"scale_factors"

Specifies the multiplier for the minimum, typical and maximum
components of delay triplets. It is a colon separated string of three
positive, real numbers "1.0:1.0:1.0" by default.

"scale_type"

Specifies the delay value from each triplet in the SDF file for use
before scaling. Possible values: "FROM_TYPICAL",
"FROM_MIMINUM", "FROM_MAXIMUM", "FROM_MTM" (default).

The usage model to simulate a design using $sdf_annotate is the
same as the basic usage model as shown below:

Compilation

% vcs [elab_options] top_cfg/entity/module

12-5

Gate-Level Simulation

Simulation

% simv [run_options]

See “Options for Specifying Delays and SDF Files” .

Using -xlrm Option for SDF Retain, Gate Pulse
Propagation, and Gate Pulse Detection Warning

The following sections explain how to use the new features added
under the -xlrm option:

• “Using Optimistic Mode in SDF”

• “Using Gate Pulse Propagation”

• “Generating Warnings During Gate Pulses”

Using Optimistic Mode in SDF

Currently, when you use the -sdfretain option, SDF retain is
visible whenever there is a change in related inputs.

When you specify the -sdfretain option with -xlrm
alt_retain, SDF retain is visible only when there is a change in
the output. This new behavior is called optimistic mode. For
example, consider the following Verilog code:

and u(qout,d1,d2);

specify
 (d1 => qout) = (10); //RETAIN (6)
 (d2 => qout) = (10);
endspecify

12-6

Gate-Level Simulation

The corresponding SDF entry is:

(IOPATH d1 qout (RETAIN (6))(10))
(IOPATH d2 qout (10))

The default output for the above example is:

time= 10 , d1=0,d2=0, qout=0
time= 100 , d1=1,d2=0, qout=0
time= 106 , d1=1,d2=0, qout=x // since input d1 change at
100, VCS propagate "x" to qout
time= 110 , d1=1,d2=0, qout=0
= 200 , d1=0,d2=0, qout=0
time= 206 , d1=0,d2=0, qout=x // since input d1 change at
200, VCS propagate "x" to qout
time= 210 , d1=0,d2=0, qout=0
time= 300 , d1=0,d2=1, qout=0
time= 400 , d1=1,d2=1, qout=0
time= 406 , d1=1,d2=1, qout=x
time= 410 , d1=1,d2=1, qout=1

The output using the -xlrm alt_retain option (new behavior) is:

time= 10 , d1=0,d2=0, qout=0
time= 100 , d1=1,d2=0, qout=0 // since there is no logic
change on "qout", no retain "x" seen
time= 200 , d1=0,d2=0, qout=0
time= 300 , d1=0,d2=1, qout=0
time= 400 , d1=1,d2=1, qout=0
time= 406 , d1=1,d2=1, qout=x // since there is logic change
on "qout", retain "x" propagated
time= 410 , d1=1,d2=1, qout=1

Using Gate Pulse Propagation

Using the -xlrm gd_pulseprop option, VCS always propagates
a gate pulse, even when the pulse width is equal to the gate delay.
For example, consider the following Verilog code:

12-7

Gate-Level Simulation

module dut(qout,dinA,dinB);
output qout;
input dinA;
input dinB;

xor #10 inst(qout,dinA,dinB);

endmodule

Under the -xlrm gd_pulseprop option, if the pulse width on a
gate is equal to the gate delay, VCS always propagates the pulse as
shown below:

0 qout=x, dinA=1 dinB=1
10 qout=0, dinA=0 dinB=1
20 qout=1, dinA=0 dinB=0
30 qout=0, dinA=0 dinB=1
40 qout=1, dinA=0 dinB=0
50 qout=0, dinA=0 dinB=0

Generating Warnings During Gate Pulses

Using the -xlrm gd_pulsewarn option, VCS generates a warning
when it detects that the width of a pulse is identical to the gate delay.
For example, consider the following Verilog code:

module dut(qout,dinA,dinB);
output qout;
input dinA;
input dinB;

xor #10 inst(qout,dinA,dinB);
endmodule

Under the -xlrm gd_pulsewarn option, if the pulse width on a
gate is equal to the gate delay, VCS generates the following warning
message:

12-8

Gate-Level Simulation

0 qout=x, dinA=1 dinB=1

Warning-[PWIWGD] Pulse Width Identical With Gate Delay
verilogfile.v, 42
top.mid_inst.dut_inst
At time 10, pulse width identical with gate delay "10" is
detected

 10 qout=0, dinA=0 dinB=1

 20 qout=1, dinA=0 dinB=0

Precompiling an SDF File

Whenever you compile your design, if your design backannotates
SDF data, VCS parses either the ASCII text SDF file or the
precompiled version of the ASCII text SDF file that VCS can make
from the original ASCII text SDF file. VCS does this even if the SDF
file is unchanged and already compiled into a binary version by a
previous compilation, and even when you are using incremental
compilation and the parts of the design backannotated by the SDF
file are unchanged.

VCS can parse the precompiled SDF file much faster than it can
parse the ASCII text SDF file, so for large SDF files it’s a good idea
to have VCS create a precompiled version of the SDF file.

Creating the Precompiled Version of the SDF file

To create the precompiled version of the SDF file, include the
+csdf+precompile option on the vcs command line.

12-9

Gate-Level Simulation

By default, the +csdf+precompile option creates the precompiled
SDF file in the same directory as the ASCII text SDF file and
differentiates the precompiled version by appending "_c" to its
extension. For example, if the /u/design/sdf directory contains a
design1.sdf file, using the +csdf+precompile option creates
the precompiled version of the file named design1.sdf_c in the /
u/design/sdf directory.

After you have created the precompiled version of the SDF file, you
no longer need to include the +csdf+precompile option on the
vcs command line unless there is a change in the SDF file.
Continuing to include it, however, such as in a script that you run
every time you compile your design, would have no effect when the
precompiled version is newer than the ASCII text SDF file, but would
create a new precompiled version of the SDF file whenever the
ASCII text SDF file changes. Therefore this option is intended to be
used in scripts for compiling your design.

When you recompile your design, VCS finds the precompiled SDF
file in the same directory as the SDF file specified in the
$sdf_annotate system task. You can also specify the precompiled
SDF file in the $sdf_annotate system task. The
+csdf+precompile option also supports zipped SDF.

Precompiling SDF alone Without Compiling Design Files

You can also precompile the SDF alone without compiling the entire
set of design files. You can use the following command option to
precompile the SDF alone:

+csdf+precomp+file+<sdf file>

The following is the use model for this option:

12-10

Gate-Level Simulation

vcs +csdf+precomp+file+<sdf file>

For example:

vcs +csdf+precomp+file+./test.sdf

Writing Precompiled SDF to a Different Directory

One can write the precompiled SDF to a different directory. To do
this, use the following command option:

+csdf+precomp+dir+PRE_COMP_SDF/

The following is the use model for this option:

vcs +csdf+precomp+file+<sdf file> +csdf+precomp+dir+<DIR>

For example:

mkdir PRE_COMP_SDF
vcs +csdf+precomp+file+./test.sdf
+csdf+precomp+dir+PRE_COMP_SDF/

Note:The precompiled sdf file will be generated in PRE_COMP_SDF
directory.

SDF Configuration File

You can use the configuration file to control the following on a
module type basis, as well as a global basis:

• min:typ:max selection

• Scaling

12-11

Gate-Level Simulation

• MIPD (module-input-delay) approximation policy for cases of
‘overlapping’ annotations to the same input port.

Additionally, there is a mapping command you can use to redirect the
target of IOPATH and TIMINGCHECK statements from the scope of the
INSTANCE to a specific IOPATH or TIMINGCHECK in its sub hierarchy
for all instances of a specified module type.

Delay Objects and Constructs

The mapping from SDF statements to simulation objects in VCS is
fixed, as shown in Table 12-1.

Table 12-1 VCS Simulation Delay Objects/Constructs

SDF Constructs VCS Simulation Object

Delays

PATHPULSE module path pulse delay

GLOBALPATHPULSE module path pulse reject/error delay

IOPATH module path delay

PORT module input port delay

INTERCONNECT module input port delay or,
intermodule path delay when
+multisource_int_delays
specified

NETDELAY module input port delay

DEVICE primitive and module path delay
Timing-checks

SETUP $setup timing-check limit

HOLD $hold timing-check limit

SETUPHOLD $setup and $hold timing-check
limit

RECOVERY $recovery timing-check limit

12-12

Gate-Level Simulation

SDF Configuration File Commands

This section explains the following commands used in SDF
configuration files, with syntax and examples.

• approx_command

• mtm_command

• scale_command

approx_command

The INTERCONNECT_MPID keyword selects the INTERCONNECT
delays in the SDF file that are mapped to MIPDs in VCS. It can
specify one of the following to VCS:

MINIMUM
Annotates, to the MIPD for the input or inout port instance, the
shortest delay of all the INTERCONNECT delay value entries in
the SDF file that specify a connection to the input or inout port.

SKEW $skew timing-check limit

WIDTH $width timing-check limit

PERIOD $period timing-check limit

NOCHANGE ignored

PATHCONSTRAINT ignored

SUM ignored

DIFF ignored

SKEWCONSTRAINT ignored

Table 12-1 VCS Simulation Delay Objects/Constructs

SDF Constructs VCS Simulation Object

12-13

Gate-Level Simulation

MAXIMUM
Annotates, to the MIPD for the input or inout port instance, the
longest delay of all the INTERCONNECT delay value entries in
the SDF file that specify a connection to the input or inout port.

AVERAGE
Annotates, to the MIPD for the input or inout port instance, the
average delay of all the INTERCONNECT delay value entries in
the SDF file that specify a connection to the input or inout port.

LAST
Annotates, to the MIPD for the input or inout port instance, the
delays in the last INTERCONNECT entry in the SDF file that
specifies a connection to the input or inout port.

The default approximation is MAXIMUM.

Syntax:

INTERCONNECT_MIPD = MINIMUM | MAXIMUM | AVERAGE | LAST;

Example:

INTERCONNECT_MIPD=LAST;

mtm_command

Annotates the minimum, typical, or maximum delay value. Specifies
one of the following keywords:

MINIMUM
Annotates the minimum delay value

TYPICAL
Annotates the typical delay value

12-14

Gate-Level Simulation

MAXIMUM
Annotates the maximum delay value

TOOL_CONTROL
Delay value is determined by the command line options of the
Verilog tool (+mindelays, +typdelays, or +maxdelays)

The default for min_typ_max is TOOL_CONTROL.

Syntax:

MTM = MINIMUM | TYPICAL | MAXIMUM | TOOL_CONTROL;

Example:

MTM=MAXIMUM;

scale_command

• SCALE_FACTORS - Set of three real number multipliers that
scale the timing information in the SDF file to the minimum, typical,
and maximum timing information that is backannotated to the
Verilog tool. The multipliers each represent a positive real number,
for example 1.6:1.4:1.2

• SCALE_TYPE - Selects one of the following keywords to scale
the timing specification in the SDF file to the minimum, typical,
and maximum timing that is backannotated to the Verilog tool:

FROM_MINIMUM
Scales from the minimum timing specification in the SDF file.

FROM_TYPICAL
Scales from the typical timing specification in the SDF file.

FROM_MAXIMUM
Scales from the maximum timing specification in the SDF file.

12-15

Gate-Level Simulation

FROM_MTM
Scales directly from the minimum, typical, and maximum timing
specifications in the SDF file.

Syntax:

SCALE_FACTORS = number : number : number;
SCALE_TYPE = FROM_MINIMUM | FROM_TYPICAL | FROM_MAXIMUM |
FROM_MTM;

Example:

 SCALE_FACTORS=100:0:9;
 SCALE_TYPE=FROM_MTM;
 SCALE_FACTORS=1.1:2.1:3.1;
 SCALE_TYPE=FROM_MINIMUM;

SDF Example with Configuration File

The following example uses the VCS SDF configuration file sdf.cfg:

// test.v - test sdf annotation
`timescale 1ns/1ps
module test;
initial begin

$sdf_annotate("./test.sdf",test, "./sdf.cfg",,,,);
end
wire out1,out2;
wire w1,w2;
reg in;
reg ctrl,ctrlw;
sub Y (w1,w2,in,in,ctrl,ctrl);
sub W (out1,out2,w1,w2,ctrlw,ctrlw);
initial begin

$display(" i c ww oo");
$display("ttt n t 12 12");
$monitor($realtime,,,in,,ctrl,,w1,w2,,out1,out2);

end
initial begin

ctrl = 0;// enable

12-16

Gate-Level Simulation

ctrlw = 0;
in = 1'bx; //stabilize at x;
#100 in = 1; // x-1
#100 ctrl = 1; // 1-z
#100 ctrl = 0; // z-1
#100 in = 0; // 1-0
#100 ctrl = 1; // 0-z
#100 ctrl = 0; // z-0
#100 in = 1'bx; // 0-x
#100 ctrl = 1; // x-z
#100 ctrl = 0; // z-x
#100 in = 0; // x-0
#100 in = 1; // 0-1
#100 in = 1'bx; // 1-x

end
endmodule
`celldefine
module sub(o1,o2,i1,i2,c1,c2);
output o1,o2;
input i1,i2;
input c1,c2;
bufif0 Z(o1,i1,c1);
bufif0 (o2,i2,c2);
specify

(i1,c1 *> o1) = (1,2,3,4,5,6);
// 01 = 1, 10 = 2, 0z = 3, z1 = 4, 1z = 5, z0 = 6
if (i2==1'b1) (i2,c2 *> o2) = (7,8,9,10,11,12);

 // 01 = 7, 10 = 8, z1 = 10, 1z = 11, z0 = 12
endspecify
subsub X ();
endmodule
`endcelldefine
module subsub(oa,ob,ib,ia);
input ia,ib;output oa,ob;
specify

(ia *> oa) = 99.99;
(ib *> ob) = 2.99;

endspecify
endmodule

SDF File: test.sdf
(DELAYFILE

12-17

Gate-Level Simulation

(SDFVERSION "3.0")
(DESIGN "sdftest")
(DATE "July 14, 1997")
(VENDOR "Synopsys")
(PROGRAM "manual")
(VERSION "4.0")
(DIVIDER .)
(VOLTAGE)
(PROCESS "")
(TEMPERATURE)
(TIMESCALE 1 ns)
(CELL (CELLTYPE "sub")
(INSTANCE *)
(DELAY (ABSOLUTE
(IOPATH i1 o1
(10:11:12)(13:14:15)(16:17:18)(19:20:21)(22:23:24)(25:26:2
7))
(COND (i2==1) (IOPATH i2 o2
(10:11:12)(13:14:15)(16:17:18)(19:20:21)(22:23:24)(25:26:2
7)))
))
)
)
SDF Configuration File: sdf.cfg
PATHPULSE=IGNORE;
INTERCONNECT_MIPD=MAXIMUM;
MTM=TOOL_CONTROL;
SCALE_FACTORS=100:0:9;
SCALE_TYPE=FROM_MTM;
MTM = TYPICAL;
SCALE_TYPE=FROM_MINIMUM;
SCALE_FACTORS=1.1:2.1:3.1;

MODULE sub {
SCALE_TYPE=FROM_MTM;
SCALE_FACTORS=1:2:3;
MTM=MINIMUM;
MAP_INNER = X;
(i1 *> o1) = IGNORE;
(i1 *> o1) = ADD { (ia *> oa); }
(i1 *> o1) = ADD { (ib *> ob); }
if (i2==1) (i2 *> o2) = ADD { (ib *> ob); }

12-18

Gate-Level Simulation

}

Delays and Timing

This section describes the following topics:

• “Transport and Inertial Delays”

• “Pulse Control”

• “Specifying the Delay Mode”

Transport and Inertial Delays

Delays can be categorized into transport and inertial delays.

Transport delays allow all pulses that are narrower than the delay to
propagate through. For example, Figure 12-1 shows the waveforms
for an input and output port of a module that models a buffer with a
module path delay of seven time units between these ports. The
waveform on top is that of the input port and the waveform
underneath is that of the output port. In this example, you have
enabled transport delays for module path delays and specified that
a pulse three time units wide can propagate through. For an
explanation on how this is done, see “Enabling Transport Delays”
and “Pulse Control” .

12-19

Gate-Level Simulation

Figure 12-1 Transport Delay Waveforms

At time 0, a pulse three time units wide begins on the input port. This
pulse is narrower than the module path delay of seven time units, but
this pulse propagates through the module and appears on the output
port after seven time units. Similarly, another narrow pulse begins on
the input port at time 3 and it also appears on the output port seven
time units later.

You can apply transport delays on all module path delays and all
SDF INTERCONNECT delays back-annotated to a net from an SDF
file. For more information on SDF back-annotation, see “SDF
Annotation” .

Inertial delays, in contrast, filter out all pulses that are narrower than
the delay. Figure 12-2 shows the waveforms for the same input and
output ports when you have not enabled transport delays for module
path delays.

12-20

Gate-Level Simulation

Figure 12-2 Inertial Delay Waveforms

The pulse that begins at time 0 that is three time units wide does not
propagate to the output port because it is narrower than the seven
time unit module path delay. Neither does the narrow pulse that
begins at time 3. Note that the wide pulse that begins at time 6 does
propagate to the output port.

Gates, switches, MIPDs, and continuous assignments only have
inertial delays, which are the default type of delay for module path
delays and INTERCONNECT delays back-annotated from an SDF
file to a net.

The Inertial Delay Implementation

The inertial delay implementation is the same for primitives (gates,
switches and UDPs), continuous assignments, MIPDs (Module Input
Port Delays), module path delays, and INTERCONNECT delays
back-annotated from an SDF file to a net. For more details on SDF
back-annotation, see “SDF Annotation” . There is also a third
implementation that is for module path and INTERCONNECT delays
and pulse control, see “Pulse Control” .

The implementation of inertial delays is as follows: if the event
scheduled by the leading edge of a pulse is scheduled for a later
simulation time, or in other words, has not yet occurred, then the

12-21

Gate-Level Simulation

event scheduled by the trailing edge at the end of the specified delay
and at a new simulation time, replaces the event scheduled by the
leading edge. All narrow pulses are filtered out.

Note:

VCS enables more complex and flexible pulse control processing
when you include the +pulse_e/number and +pulse_r/
number options. See “Pulse Control” .

Enabling Transport Delays

Transport delays are never the default delay.

You can specify transport delays on module path delays with the
+transport_path_delays compile-time option. For this option to
work, you must also include the +pulse_e/number and
+pulse_r/number compile-time options. See “Pulse Control” .

You can specify transport delays on a net to which you back-
annotate SDF INTERCONNECT delays with the
+transport_int_delays compile-time option. For this option to
work, you must also include the +pulse_int_e/number and
+pulse_int_r/number compile-time options. See “Pulse Control”
.

The +pulse_e/number, +pulse_r/number, +pulse_int_e/
number, and +pulse_int_r/number options define specific
thresholds for pulse width, which allow you to tell VCS to filter out
only some of the pulses and let the other pulses through. See “Pulse
Control” .

12-22

Gate-Level Simulation

Pulse Control

You have seen that with pulses narrower than a module path or
INTERCONNECT delay, you have the option of filtering all of them
out by using the default inertial delay or allowing all of them to
propagate through, by specifying transport delays. VCS also
provides a third option - pulse control. With pulse control you can:

• Allow pulses that are slightly narrower than the delay to propagate
through.

• Have VCS replace even narrower pulses with an X value pulse
on the output and display a warning message.

• Have VCS then filter out and ignore pulses that are even narrower
that the ones for which it propagates an X value pulse and displays
an error message.

You specify pulse control with the +pulse_e/number and
+pulse_r/number compile-time options for module path delays
and the +pulse_int_e/number and +pulse_int_r/number
compile-time options for INTERCONNECT delays.

The +pulse_e/number option’s number argument specifies a
percentage of the module path delay. VCS replaces pulses whose
widths that are narrower than the specified percentage of the delay
with an X value pulse on the output or inout port and displays a
warning message.

Similarly, the +pulse_int_e/number option’s number argument
specifies a percentage of the INTERCONNECT delay. VCS replaces
pulses whose widths are narrower than the specified percentage of
the delay with an X value pulse on the inout or output port instance
that is the load of the net to which you back-annotated the
INTERCONNECT delay. It also displays a warning message.

12-23

Gate-Level Simulation

The +pulse_r/number option’s number argument also specifies a
percentage of the module path delay. VCS filters out the pulses
whose widths are narrower than the specified percentage of the
delay. With these pulses there is no warning message; VCS simply
ignores these pulses.

Similarly, the +pulse_int_r/number option’s number argument
specifies a percentage of the INTERCONNECT delay. VCS filters
out pulses whose widths are narrower than the specified percentage
of the delay. There is no warning message with these pulses.

You can use pulse control with transport delays (see “Pulse Control
with Transport Delays”) or inertial delays (see “Pulse Control with
Inertial Delays”).

When a pulse is narrow enough for VCS to display a warning
message and propagate an X value pulse, you can set VCS to do
one of the following:

• Place the starting edge of the X value pulse on the output, as soon
as it detects that the pulse is sufficiently narrow, by including the
+pulse_on_detect compile-time option.

• Place the starting edge on the output at the time when the rising
or falling edge of the narrow pulse would have propagated to the
output. This is the default behavior.

See “Specifying Pulse on Event or Detect Behavior” .

Also when a pulse is sufficiently narrow to display a warning
message and propagate an X value pulse, you can have VCS
propagate the X value pulse but disable the display of the warning
message with the +no_pulse_msg runtime option.

12-24

Gate-Level Simulation

Pulse Control with Transport Delays

You specify transport delays for module path delays with the
+transport_path_delays, +pulse_e/number, and
+pulse_r/number options. You must include all three of these
options.

You specify transport delays for INTERCONNECT delays on nets
with the +transport_int_delays, +pulse_int_e/number,
and +pulse_int_r/number options. You must include all three of
these options.

If you want VCS to propagate all pulses, no matter how narrow,
specify a 0 percentage. For example, if you want VCS to replace
pulses that are narrower than 80% of the delay with an X value pulse
(and display a warning message) and filter out pulses that are
narrower than 50% of the delay, enter the +pulse_e/80 and
+pulse_r/50 or +pulse_int_e/80 and +pulse_int_r/50
compile-time options.

Figure 12-3 shows the waveforms for the input and output ports for
an instance of a module that models a buffer with a ten time unit
module path delay. The vcs command line contains the following
compile-time options:

+transport_path_delays +pulse_e/80 +pulse_r/50

12-25

Gate-Level Simulation

Figure 12-3 Pulse Control with Transport Delays

In the example illustrated in Figure 12-3 the following occurs:

1. At time 20, the input port toggles to 1.

2. At time 29, the input port toggles to 0 ending a nine time unit wide
value 1 pulse on the input port.

3. At time 30, the output port toggles to 1. The nine time unit wide
value 1 pulse that began at time 20 on the input port is propagating
to the output port because you you have enabled transport delays
and nine time units is more than 80% of the ten time unit module
path delay.

4. At time 39, the input port toggles to 1 ending a ten time unit wide
value 0 pulse. Also, at time 39 the output port toggles to 0. The
ten time unit wide value 0 pulse that began at time 29 on the input
port is propagating to the output port.

5. At time 46, the input port toggles to 0 ending a seven time unit
wide value 1 pulse.

6. At time 49, the output port transitions to X. The seven time unit
wide value 1 pulse that began at time 39 on the input port has
propagated to the output port, but VCS has replaced it with an X
value pulse because seven time units is less than 80% of the
module path delay. VCS issues a warning message in this case.

12-26

Gate-Level Simulation

7. At time 56, the input port toggles to 1 ending a ten time unit wide
value 0 pulse. Also, at time 56, the output port toggles to 0. The
ten time unit wide value 0 pulse that began at time 46 on the input
port is propagating to the output port.

8. At time 60, the input port toggles to 0 ending a four time unit wide
value 1 pulse. Four time units is less than 50% of the module path
delay, therefore, VCS filters out this pulse and no indication of it
appears on the output port.

Pulse Control with Inertial Delays

You can enter the +pulse_e/number and +pulse_r/number or
+pulse_int_e/number and +pulse_int_r/number options
without the +transport_path_delays or
+transport_int_delays options. If you do this, you are
specifying pulse control for inertial delays on module path delays and
INTERCONNECT delays.

There is a special implementation of inertial delays with pulse control
for module path delays and INTERCONNECT delays. In this
implementation, value changes on the input can schedule two
events on the output.

The first of these two scheduled events always causes a change on
the output. The type of value change on the output is determined by
the following:

• If the first event is scheduled by the leading edge of a pulse whose
width is equal to or wider than the percentage specified by the
+pulse_e/number option, the value change on the input
propagates to the output.

12-27

Gate-Level Simulation

• If the pulse is not wider than the percentage specified by the
+pulse_e/number option, but is wider that the percentage
specified by the +pulse_r/number option, the value change is
replaced by an X value.

• If the pulse is not wider than the percentage specified by the
+pulse_r/number option, the pulse is filtered out.

The second scheduled event is always tentative. If another event
occurs on the input before the first event occurs on the output, that
additional event on the input cancels the second scheduled event
and schedules a new second event.

Figure 12-4 shows the waveforms for the input and output ports for
an instance of a module that models a buffer with a ten time unit
module path delay. The vcs command line contains the following
compile-time options:

+pulse_e/0 +pulse_r/0

In this example, specifying 0 percentages means that the trailing
edge of all pulses can change the second scheduled event on the
output. Specifying 0 does not mean that all pulses propagate to the
output because this implementation has its own way of filtering out
short pulses.

Figure 12-4 Pulse Control with Inertial Delays

In the example illustrated in Figure 12-4 the following occurs:

12-28

Gate-Level Simulation

1. At time 20, the input port transitions to 0. This schedules a
transition to 0 on the output port at time 30, ten time units later as
specified by the module path delay. This is the first scheduled
event on the output port. This event is not tentative, it will occur.

2. At time 23, the input port toggles to 1. This schedules a transition
to 1 on the output port at time 33. This is the second scheduled
event on the output port. This event is tentative.

3. At time 26, the input port toggles to 0. This cancels the current
scheduled second event and replaces it by scheduling a transition
to 0 at time 36. The first scheduled event is a transition to 0 at
time 30 so the new second scheduled event isn’t really a transition
on the output port. This is how this implementation filters out
narrow pulses.

4. At time 29, the input port toggles to 1. This cancels the current
scheduled second event and replaces it by scheduling a transition
to 1 at time 39.

5. At time 30, the output port transitions to 0. The second scheduled
event on the output becomes the first scheduled event and is
therefore no longer tentative.

6. At time 39, the output port toggles to 1.

Typically, however, you will want to specify that VCS replace or reject
certain narrow pulses. Figure 12-5 shows the waveforms for the
input and output ports for an instance of the same module with a ten
time unit module path delay. The vcs command line contains the
following compile-time options:

+pulse_e/60 +pulse_r/40

12-29

Gate-Level Simulation

Figure 12-5 Pulse Control with Inertial Delays and a Narrow Pulses

In the example illustrated in Figure 12-5 the following occurs:

1. At simulation time 20, the input port transitions to 0. This
schedules the first event on the output port, a transition to 0 at
time 30.

2. At simulation time 30, the input port toggles to 1. This schedules
the output port to toggle to 1 at time 40. Also, at simulation time
30, the output port transitions to 0. It doesn’t matter which of these
events happened first. At the end of this time there is only one
scheduled event on the output.

3. At simulation time 36, the input port toggles to 0. This is the trailing
edge of a six time unit wide value 1 pulse. The pulse is equal to
the width specified with the +pulse_e/60 option so VCS
schedules a second event on the output, a value change to 0 on
the output at time 46.

4. At simulation time 40, the output toggles to 1 so now there is only
one event scheduled on the output, the value change to 0 at time
46.

5. At simulation time 46, the input toggles to 1 scheduling a transition
to 1 at time 56 on the output. Also at time 46, the output toggles
to 0. There is now only one event scheduled on the output.

12-30

Gate-Level Simulation

6. At time 50, input port toggles to 0. This is the trailing edge of a
four time unit wide value 1 pulse. The pulse is not equal to the
width specified with the +pulse_e/60 option, but is equal to the
width specified with the +pulse_r/40 option, therefore, VCS
changes the first scheduled event from a change to 1 to a change
to X at time 56 and schedules a second event on the output, a
transition to 0 at time 60.

7. At time 56, the output transitions to X and VCS issues a warning
message.

8. At time 60, the output transitions to 0.

Pulse control sometimes blurs the distinction between inertial and
transport delays. In this example, the results would have been the
same if you also included the +transport_path_delays option.

Specifying Pulse on Event or Detect Behavior

Asymmetric delays, such as different rise and fall times for a module
path delay, can cause schedule cancellation problems for pulses.
These problems persist when you specify transport delay and can
persist for a wide range of percentages that you specify for the pulse
control options.

For example, for a module that models a buffer, if you specify a rise
time of 4 and a fall time of 6 for a module path delay, a narrow value
0 pulse can cause scheduling problems, as illustrated in Figure 12-6.

12-31

Gate-Level Simulation

Figure 12-6 Asymmetric Delays and Scheduling Problems

In this example, you include the +pulse_e/100 and +pulse_r/0
options. The scheduling problem is that the leading edge of the pulse
on the input, at time 10, schedules a transition to 0 on the output at
time 16; but the trailing edge, at time 11, schedules a transition to 1
on the output at time 15.

Obviously, the output has to end up with a value of 1 so VCS can’t
allow the events scheduled at time 15 and 16 to occur in sequence;
if it did, the output would end up with a value of 0. This problem
persists when you enable transport delays and whenever the
percentage specified in the +pulse_r/number option is low
enough to enable the pulse to propagate through the module.

To circumvent this problem, when a later event on the input
schedules an event on the output that is earlier than the event
scheduled by the previous event on the input, VCS cancels both
events on the output.

This ensures that the output ends up with the proper value, but what
it doesn’t do is indicate that something happened on the output
between times 15 and 16. You might want to see an error message
and an X value pulse on the output indicating there was an undefined
event on the output between these simulation times. You see this
message and the X value pulse if you include the
+pulse_on_event compile-time option, specifying pulse on event
behavior, as illustrated in Figure 12-7. Pulse on event behavior calls

12-32

Gate-Level Simulation

for an X value pulse on the output after the delay and when there are
asymmetrical delays scheduling events on the output that would be
canceled by VCS , to output an X value pulse between those events
instead.

Figure 12-7 Using +pulse_on_event

In most cases where the +pulse_e/number and +pulse_r/
number options already create X value pulses on the output, also
including the +pulse_on_event option to specify pulse on event
behavior will make no change on the output.

Pulse on detect behavior, specified by the +pulse_on_detect
compile-time option, displays the leading edge of the X value pulse
on the output as soon as events on the input, controlled by the
+pulse_e/number and +pulse_r/number options, schedule an
X value pulse to appear on the output. Pulse on detect behavior
differs from pulse on event behavior in that it calls for the X value
pulse to begin before the delay elapses. Figure 12-8 illustrates pulse
on detect behavior.

12-33

Gate-Level Simulation

Figure 12-8 Using +pulse_on_detect

In this example, by including the +pulse_on_detect option, VCS
causes the leading edge of the X value pulse on the output to begin
at time 11 because of an unusual event that occurred on the output
between times 15 and 16 because of the rise at simulation time 11.

Using pulse on detect behavior can also show you when VCS has
scheduled multiple events for the same simulation time on the output
by starting the leading edge of an X value pulse on the output as
soon as VCS has scheduled the second event.

For example, a module that models a buffer has a rise time module
path delay of 10 time units and a fall time module path delay of 4 time
units.

Figure 12-9 shows the waveforms for the input and output port when
you include the +pulse_on_detect option.

Figure 12-9 Pulse on Detect Behavior Showing Multiple Transitions

In the example illustrated in Figure 12-9 the following occurs:

12-34

Gate-Level Simulation

1. At simulation time 0 the input port transitions to 0 scheduling the
first event on the output, a transition to 0 at time 4.

2. At time 4 the output transitions to 0.

3. At time 10 the input transitions to 1 scheduling a transition to 1
on the output at time 20.

4. At time 16 the input toggles to 0 scheduling a second event on
the output at time 20, a transition to 0. This event also is the trailing
edge of a six time unit wide value 1 pulse so the first event changes
to a transition to X. There is more than one event for different value
changes on the output at time 20, so VCS begins the leading edge
of the X value pulse on the output at this time.

5. At time 20 the output toggles to 0, the second scheduled event
at this time.

If you did not include the +pulse_on_detect option, or substituted
the +pulse_on_event option, you would not see the X value pulse
on the output between times 16 and 20.

Pulse on detect behavior does not just show you when asymmetrical
delays schedule multiple events on the output. Other kinds of events
can cause multiple events on the output at the same simulation time,
such as different transition times on two input ports and different
module path delays from these input ports to the output port. Pulse
on detect behavior would show you an X value pulse on the output
starting when the second event was scheduled on the output port.

12-35

Gate-Level Simulation

Specifying the Delay Mode

It is possible for a module definition to include module path delay that
does not equal the cumulative delay specifications in primitive
instances and continuous assignment statements in that path.
Example 12-1 shows such a conflict.

Example 12-1 Conflicting Delay Modes

‘timescale 1 ns / 1 ns
module design (out,in);
output out;
input in;
wire int1,int2;

assign #4 out=int2;

buf #3 buf2 (int2,int1),
 buf1 (int1,in);

specify
(in => out) = 7;
endspecify
endmodule

In Example 12-1, the module path delay is seven time units, but the
delay specifications distributed along that path add up to ten time
units.

If you include the +delay_mode_path compile-time option, VCS
ignores the delay specifications in the primitive instantiation and
continuous assignment statements and uses only the module path
delay. In Example 12-1, it would use the seven time unit delay for
propagating signal values through the module.

12-36

Gate-Level Simulation

If you include the +delay_mode_distributed compile-time
option, VCS ignores the module path delays and uses the delay in
the delay specifications in the primitive instantiation and continuous
assignment statements. In Example 12-1, it uses the ten time unit
delay for propagating signal values through the module.

There are other modes that you can specify:

• If you include the +delay_mode_unit compile-time option, VCS
ignores the module path delays and changes the delay
specification in all primitive instantiation and continuous
assignment statements to the shortest time precision argument
of all the ‘timescale compiler directives in the source code. (The
default time unit and time precision argument of the ‘timescale
compiler directive is 1 s). In Example 12-1 the ‘timescale
compiler directive has a precision argument of 1 ns. VCS might
use this 1 ns as the delay, but if the module definition is used in
a larger design and there is another ‘timescale compiler
directive in the source code with a finer precision argument, then
VCS uses the finer precision argument.

• If you include the +delay_mode_zero compile-time option, VCS
changes all delay specifications and module path delays to zero.

• If you include none of the compile-time options described in this
section, when, as in Example 12-1, the module path delay does
not equal the distributed delays along the path, VCS uses the
longer of the two.

12-37

Gate-Level Simulation

Using the Configuration File to Disable Timing

You can use the VCS configuration file to disable module path
delays, specify blocks, and timing checks for module instances that
you specify as well as all instances of module definitions that you
specify. You use the instance, module, and tree statements to do this
just as you do for applying Radiant Technology. See “The
Configuration File Syntax” on page 7 for details on how to do this.
The attribute keywords for timing are as follows:

noIopath

Specifies disabling the module path delays in the specified module
instances.

Iopath

Specifies enabling the module path delays in the specified module
instances.

noSpecify

Specifies disabling the specify blocks in the specified module
instances.

Specify

Specifies enabling the specify blocks in the specified module
instances.

noTiming

Specifies disabling the timing checks in the specified module
instances.

12-38

Gate-Level Simulation

Timing

Specifies enabling the timing checks in the specified module
instances.

Using the timopt Timing Optimizer

The timopt timing optimizer can yield large speedups for full-timing
gate-level designs. The timopt timing optimizer makes its
optimizations based on the clock signals and sequential devices that
it identifies in the design. timopt is particularly useful when you use
SDF files because SDF files can’t be used with Radiant Technology
(+rad).

You enable timopt with the +timopt+clock_period
compile-time option, where the argument is the shortest clock period
(or clock cycle) of the clock signals in your design. For example:

+timopt+100ns

This options specifies that the shortest clock period is 100ns.

timopt first displays the number of sequential devices that it finds
in the design and the number of these sequential devices to which it
might be able to apply optimizations. For example:

Total Sequential Elements : 2001
Total Sequential Elements 2001, Optimizable 2001

timopt then displays the percentage of identified sequential
devices to which it can actually apply optimizations followed by
messages about the optimization process.

TIMOPT optimized 75 percent of the design

12-39

Gate-Level Simulation

Starting TIMOPT Delay optimizations
Done TIMOPT Delay Optimizations
DONE TIMOPT

The next step is to simulate the design and see if the optimizations
applied by timopt produce a satisfactory increase in performance.
If you are not satisfied there are additional steps that you can take to
get more optimizations from timopt.

If timopt was able to identify all the clock signals and all the
sequential devices with an absolute certainty it simply applies its
optimizations. If timopt is uncertain about a number of clock
signals and sequential devices then you can use the following
process to maximize timopt optimizations:

1. timopt writes a configuration file named timopt.cfg in the
current directory that lists the signals and sequential devices that
it finds questionable.

2. You review and edit this file, validating that the signals in the file
are, or are not, clock signals and that the module definitions in it
are, or are not, sequential devices. If you do not need to make
any changes in the file, go to step 5. If you do make changes, go
to step 3.

3. Compile your design again with the +timopt+clock_period
compile-time option.

timopt will make the additional optimizations that it did not make,
because it was unsure of the signals and sequential devices in
the timopt.cfg file that it wrote during the first compilation.

4. Look at the timopt.cfg file again:

- If timopt wrote no new entries for potential clock signals or
sequential devices, go to step 5.

12-40

Gate-Level Simulation

- If timopt wrote new entries, but you make no changes to the
new entries, go to step 5.

- If you make modifications to the new entries, return to step 3.

5. timopt does not need to look for any more clock signals and it
can assume that the timopt.cfg file correctly specifies clock signal
and sequential devices. At this point, it just needs to apply the
latest optimizations. Compile your design one more time,
including the +timopt compile-time option, but without its
+clock_period argument.

6. You now simulate your design using timopt optimizations.
timopt monitors the simulation and makes its optimizations
based on its analysis of the design and information in the
timopt.cfg file. During simulation, if it finds that its
assumptions are incorrect, for example the clock period for a clock
signal is incorrect, or there is a port for asynchronous control on
a module for a sequential device, timopt displays a warning
message similar to the following:

+ Timopt Warning: for clock testbench.clockgen..clk:
TimePeriod 50ns Expected 100ns

Editing the timopt.cfg File

When editing the timopt.cfg file, first edit the potential sequential
device entries. Edit the potential clock signal only when you have
made no changes to the entries for sequential devices.

Editing Potential Sequential Device Entries

The following is an example of sequential devices that timopt was
not sure of:

12-41

Gate-Level Simulation

// POTENTIAL SEQUENTIAL CELLS
// flop {jknpn} {,};
// flop {jknpc} {,};
// flop {tfnpc} {,};

You can remove the comment marks for the module definitions that
are, in fact, model sequential devices and which provide the clock
port, clock polarity, and optionally asynchronous ports.

A modified list might look like the following:

flop { jknpn } { CP, true};
flop { jknpc } { CP, true, CLN};
flop { tfnpc } { CP, true, CLN};

In this example, CP is the clock port and the keyword true indicates
that the sequential device is triggered on the posedge of the clock
port and CLN is an asynchronous port.

If you uncomment any of these module definitions, then timopt
might identify additional clock signals that drive these sequential
devices. To enable timopt to do this:

1. Remove the clock signal entries from the timopt.cfg file.

2. Recompile the design with the same +timopt+clock_period
compile-time option.

timopt will write new clock signal entries in the timopt.cfg file.

Editing Clock Signal Entries

The following is an example of the clock signal entries:

clock {
 // test.badClock , // 1

12-42

Gate-Level Simulation

 test.goodClock // 2000
} {100ns};

These clock signals have a period of 100ns or longer. This time
value comes from the +clock_period argument that you added to
the +timopt compile-time option when you first compiled the
design. The entry for the signal test.badClock is commented out
because it connects to a small percentage of the sequential devices
in the design. In this instance, it is only 1 of the 2001 sequential
devices that it identified in the design. The entry for the signal
test.goodClock is not commented out because it connects to a
large percentage of the sequential devices. In this instance, it is
2000 of the 2001 sequential devices in the design.

If a commented out clock signal is a clock signal that you want
timopt to use when it optimizes the design in a subsequent
compilation, then remove the comment characters preceding the
signal’s hierarchical name.

 Using Scan Simulation Optimizer

The Scan Simulation Optimizer (ScanOpt) yields large speed-ups
when used with Serial Scan DFT simulations. The optimizations are
done based on the scan cells that are identified in the design. This
optimization is applicable only on the Serial Scan DFT designs,
using scan flops built with the MUX-FLOP combination.

This optimization can be enabled by using the
-scanopt=<clock_period> compile-time option, where the
clock_period argument is the shortest clock period (or clock
cycle) of the clock signals in the design. For example, you must use
-scanopt=100ns for a shortest clock period of 100ns.

12-43

Gate-Level Simulation

The optimizer applies its optimization after the scan flops in the
design are identified. There is an option for providing all the scan
flops in the design through a configuration file scanopt.cfg in the
current directory. This can be used if the optimizer fails to identify the
scan flops, thereby not producing a satisfactory performance
improvement.

For example, for a design with shortest clock period of 100ns, you
can supply the list of scan flops in the file scanopt.cfg using the
format specified in the following section, and then use the following
compile-time option.

-scanopt=100ns,cfg

This enables the optimizer to pick up the scan flops specified in the
configuration file and use for its optimization.

The optimizer also determines the length of the scan chain(s) on its
own. If there are multiple scan chains, the minimal scan length is
chosen for optimizations.

ScanOpt Config File Format

The following format must be used for specifying a scan flop:

BEGIN_FLOP <scan_cell_name>
 BEGIN_PORT
 Q_PORT <q_port_name>
 [QN_PORT <qn_port_name>]
 D_PORT <d_port_name>
 TI_PORT <ti_port_name>
 TE_PORT <te_port_name>
 END_PORT
END_FLOP

12-44

Gate-Level Simulation

The section between BEGIN_FLOP and END_FLOP corresponds to
one particular scan flop. The field <scan_cell_name>
corresponds to the name of scan flop (scan cell). Multiple sections
can be used to specify multiple scan flops.

The section between BEGIN_PORT and END_PORT corresponds to
ports of the scan flop. Specifying Q_PORT, D_PORT, TI_PORT, and
TE_PORT are mandatory, whereas QN_PORT could be optional.

ScanOpt Assumptions

Combinational Path Delays

By default, the optimizer assumes that the worst case delay for any
combinational path in the design is not more than five times the
shortest clock period and applies the optimizations. The following
banner is printed at the compile time to indicate this assumption to
you:

“ScanOpt assumes that no combinational path has worst-case delay
more than 5 clock period. Please use,
”-scanopt=<clock_period>,cdel=<overriding_value>” to override the
assumed value”

For example, for a design with shortest clock period of 100ns, if the
default value of 5 is to be overridden with a value of 10, you can use
the following compile-time option.

-scanopt=100ns,cdel=10

12-45

Gate-Level Simulation

Length of Test Cycles

The optimizer assumes that the simulation remains in the test mode
for at least the scan chain length times the shortest clock period. Any
violation of this assumption is automatically detected during the
simulation, and the following error message is displayed quitting the
simulation.

“Error: Simulation has been aborted due to fatal violation of ScanOpt
assumptions. Please refer to the documentation for more details. To
get around this error, please rerun simulation with “-noscanopt”
switch”

For example, if the inferred length of scan chain in the design is 5000
and the short clock period is 100ns, then the Test enable signal(s)
should remain in test mode for at least 500000ns (that is, 5000 *
100ns).

Note:

The -noscanopt option can be used at runtime, thereby
avoiding re-compilation of the design.

Negative Timing Checks

Negative timing checks are either $setuphold timing checks with
negative setup or hold limits, or $recrem timing checks with
negative recovery or removal limits.

This following sections describe their purpose, how they work, and
how to use them:

• “The Need for Negative Value Timing Checks”

12-46

Gate-Level Simulation

• “The $setuphold Timing Check Extended Syntax”

• “The $recrem Timing Check Syntax”

• “Enabling Negative Timing Checks”

• “Checking Conditions”

• “Toggling the Notifier Register”

• “SDF Back-annotation to Negative Timing Checks”

• “How VCS Calculates Delays”

The Need for Negative Value Timing Checks

The $setuphold timing check defines a timing violation window of
a specified amount of simulation time before and after a reference
event, such as a transition on some other signal, for example, a clock
signal, in which a data signal must remain constant. A transition on
the data signal, called a data event, during the specified window is a
timing violation. For example:

$setuphold (posedge clock, data, 10, 11, notifyreg);

In this example, VCS reports the timing violation if there is a
transition on signal data less that 10 time units before, or less than
11 time units after, a rising edge on signal clock. When there is a
timing violation, VCS toggles a notify register, in this example,
notifyreg. You could use this toggling of a notify register to output
an X value from a device, such as a sequential flop, when there is a
timing violation.

12-47

Gate-Level Simulation

Figure 12-10 Positive Setup and Hold Limits

setup
limit

hold
limit

violation window

reference
event

data
event

data
event

clock

data

010 11

In this example, both the setup and hold limits have positive values.
When this occurs, the violation window straddles the reference
event.

There are cases where the violation window cannot straddle the
reference event at the inputs of an ASIC cell. Such a case occurs
when:

• The data event takes longer than the reference event to propagate
to a sequential device in the cell

• Timing must be accurate at the sequential device

• You need to check for timing violations at the cell boundary

It also occurs when the opposite is true, that is, when the reference
event takes longer than the data event to propagate to the sequential
device.

12-48

Gate-Level Simulation

When this happens, use the $setuphold timing check in the
top-level module of the cell to look for timing violations when signal
values propagate to that sequential device. In this case, you need to
use negative setup or hold limits in the $setuphold timing check.

Figure 12-11 ASIC Cell with Long Propagation Delays on Reference
Events

causes

long

delay

causes short delay

clock

data

clk

d

q

When this occurs, the violation window shifts at the cell boundary so
that it no longer straddles the reference event. It shifts to the right
when there are longer propagation delays on the reference event.
This right shift requires a negative setup limit:

$setuphold (posedge clock, data, -10, 31, notifyreg);

Figure 12-12 illustrates this scenario.

12-49

Gate-Level Simulation

Figure 12-12 Negative Setup Limit

setup
limit

hold
limit

violation window

reference
event

data
event

data
event

clock

data

0 10 31

In this example, the $setuphold timing check is in the specify block
of the top-level module of the cell. It specifies that there is a timing
violation if there is a data event between 10 and 31 time units after
the reference event on the cell boundary.

This is giving the reference event a “head start” at the cell boundary,
anticipating that the delays on the reference event will allow the data
events to “catch up” at the sequential device inside the cell.

Note:

When you specify a negative setup limit, its value must be less
than the hold limit.

12-50

Gate-Level Simulation

Figure 12-13 ASIC Cell with Long Propagation Delays on Data Events

causes

long

delay

causes short delay
clock

data

clk

d

q

The violation window shifts to the left when there are longer
propagation delays on the data event. This left shift requires a
negative hold limit:

$setuphold (posedge clock, data, 31, -10, notifyreg);

Figure 12-14 illustrates this scenario.

Figure 12-14 Negative Hold Limit

setup
limit

hold
limit

violation window

reference
event

data
event

data
event

clock

data

031 10

In this example, the $setuphold timing check is in the specify block
of the top-level module of the cell. It specifies that there is a timing
violation if there is a data event between 31 and 10 time units before
the reference event on the cell boundary.

12-51

Gate-Level Simulation

This is giving the data events a “head start” at the cell boundary,
anticipating that the delays on the data events will allow the
reference event to “catch up” at the sequential device inside the cell.

Note:

When you specify a negative hold limit, its value must be less than
the setup limit.

To implement negative timing checks, VCS creates delayed versions
of the signals that carry the reference and data events and an
alternative violation window where the window straddles the delayed
reference event.

You can specify the names of the delayed versions by using the
extended syntax of the $setuphold system task, or by allowing
VCS to name them internally.

The extended syntax also allows you to specify expressions for
additional conditions that must be true for a timing violation to occur.

The $setuphold Timing Check Extended Syntax

The $setuphold timing check has the following extended syntax:

$setuphold(reference_event, data_event, setup_limit,
hold_limit, notifier, [timestamp_cond, timecheck_cond,
delayed_reference_signal, delayed_data_signal]);

The following additional arguments are optional:

timestamp_cond

This argument specifies the condition which determines whether
or not VCS reports a timing violation.

12-52

Gate-Level Simulation

In the setup phase of a $setuphold timing check, VCS records
or “stamps” the time of a data event internally so that when a
reference event occurs, it can compare the times of these events
to see if there is a setup timing violation. If the condition specified
by this argument is false, VCS does not record or “stamp” the data
event so there cannot be a setup timing violation.

Similarly, in the hold phase of a $setuphold timing check, VCS
records or “stamps” the time of a reference event internally so that
when a data event occurs, it can compare the times of these
events to see if there is a hold timing violation. If the condition
specified by this argument is false, VCS does not record or
“stamp” the reference event so there cannot be a hold timing
violation.

timecheck_cond

This argument specifies the condition which determines whether
or not VCS reports a timing violation.

In the setup phase of a $setuphold timing check, VCS
compares or “checks” the time of the reference event with the time
of the data event to see if there is a setup timing violation. If the
condition specified by this argument is false, VCS does not make
this comparison and so there is no setup timing violation.

Similarly, in the hold phase of a $setuphold timing check, VCS
compares or “checks” the time of a data event with the time of a
reference event to see if there is a hold timing violation. If the
condition specified by this argument is false, VCS does not make
this comparison and so there is no hold timing violation.

delayed_reference_signal

The name of the delayed version of the reference signal.

12-53

Gate-Level Simulation

delayed_data_signal

The name of the delayed version of the data signal.

The following example demonstrates how to use the extended
syntax:

$setuphold(ref, data, -4, 10, notifr1, stampreg===1, , d_ref,
 d_data);

In this example, the timestamp_cond argument specifies that reg
stampreg must equal 1 for VCS to “stamp” or record the times of
data events in the setup phase or “stamp” the times of reference
events in the hold phase. If this condition is not met, and stamping
does not occur, VCS will not find timing violations no matter what the
time is for these events. Also in the example, the delayed versions of
the reference and data signals are named d_ref and d_data.

You can use these delayed signal versions of the signals to drive
sequential devices in your cell model. For example:

module DFF(D,RST,CLK,Q);
input D,RST,CLK;
output Q;
reg notifier;
DFF_UDP d2(Q,dCLK,dD,dRST,notifier);
specify
 (D => Q) = 20;
 (CLK => Q) = 20;
 $setuphold(posedge CLK,D,-5,10,notifier,,,dCLK,dD);
 $setuphold(posedge CLK,RST,-8,12,notifier,,,dCLK,
 dRST);
endspecify
endmodule

primitive DFF_UDP(q,clk,data,rst,notifier);
output q; reg q;
input data,clk,rst,notifier;

12-54

Gate-Level Simulation

table
// clock data rst notifier state q
// ------------------------------
 r 0 0 ? : ? : 0 ;
 r 1 0 ? : ? : 1 ;
 f ? 0 ? : ? : - ;
 ? ? r ? : ? : 0 ;
 ? * ? ? : ? : - ;
 ? ? ? * : ? : x ;
endtable
endprimitive

In this example, the DFF_UDP user-defined primitive is driven by the
delayed signals dClk, dD, dRST, and the notifier reg.

Negative Timing Checks for Asynchronous Controls

The $recrem timing check is used for checking how close
asynchronous control signal transitions are to clock signals. Similar
to the setup and hold limits in $setuphold timing checks, the
$recrem timing check has recovery and removal limits. The
recovery limit specifies how much time must elapse after a control
signal toggles from its active state before there is an active clock
edge. The removal limit specifies how much time must elapse after
an active clock edge before the control signal can toggle from its
active state.

In the same way a reference signal, such as a clock signal and data
signal can have different propagation delays from the cell boundary
to a sequential device inside the cell, there can be different
propagation delays between the clock signal and the control signal.
For this reason, there can be negative recovery and removal limits in
the $recrem timing check.

12-55

Gate-Level Simulation

The $recrem Timing Check Syntax

The $recrem timing check syntax is very similar to the extended
syntax for $setuphold:

$recrem(reference_event, data_event, recovery_limit,
removal_limit, notifier, [timestamp_cond, timecheck_cond,
delayed_reference_signal, delayed_data_signal]);

reference_event

Typically the reference event is the active edge on a control signal,
such as a clear signal. Specify the active edge with the posedge
or negedge keyword.

data_event

Typically, the data event occurs on a clock signal. Specify the
active edge on this signal with the posedge or negedge keyword.

recovery_limit

Specifies how much time must elapse after a control signal, such
as a clear signal toggles from its active state (the reference event),
before there is an active clock edge (the data event).

removal_limit

Specifies how much time must elapse after an active clock edge
(the data event), before the control signal can toggle from its active
state (the reference event).

notifier

A register whose value VCS toggles when there is a timing
violation.

12-56

Gate-Level Simulation

timestamp_cond

This argument specifies the condition which determines whether
or not VCS reports a timing violation.

In the recovery phase of a $recrem timing check, VCS records
or “stamps” the time of a reference event internally so that when
a data event occurs it can compare the times of these events to
see if there is a recovery timing violation. If the condition specified
by this argument is false, VCS does not record or “stamp” the
reference event so there cannot be a recovery timing violation.

Similarly, in the removal phase of a $recrem timing check, VCS
records or “stamps” the time of a data event internally so that when
a reference event occurs, it can compare the times of these events
to see if there is a removal timing violation. If the condition
specified by this argument is false, VCS does not record or
“stamp” the data event so there cannot be a removal timing
violation.

timecheck_cond

This argument specifies the condition which determines whether
or not VCS reports a timing violation.

In the recovery phase of a $recrem timing check, VCS compares
or “checks” the time of the data event with the time of the reference
event to see if there is a recovery timing violation. If the condition
specified by this argument is false, VCS does not make this
comparison and so there is no recovery timing violation.

12-57

Gate-Level Simulation

Similarly, in the removal phase of a $recrem timing check, VCS
compares or “checks” the time of a reference event with the time
of a data event to see if there is a removal timing violation. If the
condition specified by this argument is false, VCS does not make
this comparison and so there is no removal timing violation.

delayed_reference_signal

The name of the delayed version of the reference signal, typically
a control signal.

delayed_data_signal

The name of the delayed version of the data signal, typically a
clock signal.

Enabling Negative Timing Checks

To use a negative timing check you must include the +neg_tchk
compile-time option when you compile your design. If you omit this
option, VCS changes all negative limits to 0.

If you include the +no_notifier compile-time option with the
+neg_tchk option, you only disable notifier toggling. VCS still
creates the delayed versions of the reference and data signals and
displays timing violation messages.

Conversely, if you include the +no_tchk_msg compile-time option
with the +neg_tchk option, you only disable timing violation
messages. VCS still creates the delayed versions of the reference
and data signals and toggles notifier regs when there are timing
violations.

12-58

Gate-Level Simulation

If you include the +neg_tchk compile-time option but also include
the +notimingcheck or +nospecify compile-time options, VCS
does not compile the $setuphold and $recrem timing checks into
the simv executable. However, it does create the signals that you
specified in the delayed_reference_signal and
delayed_data_signal arguments, and you can use these to
drive sequential devices in the cell. Note that there is no delay on
these "delayed" arguments and they have the same transition times
as the signals specified in the reference_event and
data_event arguments.

Similarly, if you include the +neg_tchk compile-time option and
then include the +notimingcheck runtime option instead of the
compile-time option, you disable the $setuphold and $recrem
timing checks that VCS compiled into the executable. At compile
time, VCS creates the signals that you specified in the
delayed_reference_signal and delayed_data_signal
arguments, and you can use them to drive sequential devices in the
cell, but the +notimingcheck runtime option disables the delay on
these “delayed” versions.

Other Timing Checks Using the Delayed Signals

When you enable negative timing limits in the $setuphold and
$recrem timing checks, and have VCS create delayed versions of
the data and reference signals, by default the other timing checks
also use the delayed versions of these signals. You can prevent the
other timing checks from doing this with the +old_ntc compile-time
option.

Having the other timing checks use the delayed versions of these
signals is particularly useful when the other timing checks use a
notifier register to change the output of the sequential element to X.

12-59

Gate-Level Simulation

Example 12-2 Notifier Register Example for Delayed Reference and Data
Signals

`timescale 1ns/1ns

module top;
 reg clk, d;
 reg rst;
 wire q;

 dff dff1(q, clk, d, rst);

 initial begin
$monitor($time,,clk,,d,,q);
rst = 0; clk = 0; d = 0;
#100 clk = 1;
#100 clk = 0;
#10 d = 1;
#90 clk = 1;
#1 clk = 0; // width violation
#100 $finish;

 end
endmodule

module dff(q, clk, d, rst);
 output q;
 input clk, d, rst;
 reg notif;

 DFF_UDP(q, d_clk, d_d, d_rst, notif);

 specify
$setuphold(posedge clk, d, -10, 20, notif, , , d_clk,

 d_d);
$setuphold(posedge clk, rst, 10, 10, notif, , , d_clk,

 d_rst);
$width(posedge clk, 5, 0, notif);

 endspecify
endmodule

12-60

Gate-Level Simulation

primitive DFF_UDP(q,data,clk,rst,notifier);
output q; reg q;
input data,clk,rst,notifier;

table
// clock data rst notifier state q
// ------------------------------
 r 0 0 ? : ? : 0 ;
 r 1 0 ? : ? : 1 ;
 f ? 0 ? : ? : - ;
 ? ? r ? : ? : 0 ;
 ? * ? ? : ? : - ;
 ? ? ? * : ? : x ;
endtable
endprimitive

In this example, if you include the +neg_tchk compile-time option,
the $width timing check uses the delayed version of signal clk,
named d_clk, and the following sequence of events occurs:

1. At time 311, the delayed version of the clock transitions to 1,
causing output q to toggle to 1.

2. At time 312, the narrow pulse on the clock causes a width
violation:

"test1.v", 31: Timing violation in top.dff1
$width(posedge clk:300, : 301, limit: 5);

The timing violation message looks like it occurs at time 301, but
you do not see it until time 312.

3. Also at time 312, reg notif toggles from X to 1. This changes
output q from 1 to X. There are no subsequent changes on output
q.

12-61

Gate-Level Simulation

Figure 12-15 Other Timing Checks Using the Delayed Versions

If you include both the +neg_tchk and +old_ntc compile-time
options, the $width timing check does not use the delayed version
of signal clk, causing the following sequence of events to occur:

1. At time 301, the narrow pulse on signal clk causes a width
violation:

"test1.v", 31: Timing violation in top.dff1
$width(posedge clk:300, : 301, limit: 5);

2. Also at time 301, the notifier reg named notif toggles from X to
1. In turn, this changes the output q of the user-defined primitive
DFF_UDP and module instance dff1 from 0 to X.

3. At time 311, the delayed version of signal clk, named d_clk,
reaches the user-defined primitive DFF_UDP, thereby changing
the output q to 1, erasing the X value on this output.

12-62

Gate-Level Simulation

Figure 12-16 Other Timing Checks Not Using the Delayed Versions

The timing violation, as represented by the X value, is lost to the
design. If a module path delay that is greater than ten time units was
used for the module instance, the X value would not appear on the
output at all.

For this reason, Synopsys does not recommend using the
+old_ntc compile-time option. It exists only for unforeseen
circumstances.

Checking Conditions

VCS evaluates the expressions in the timestamp_cond and
timecheck_cond arguments either when there is a value change
on the original reference and data signals at the cell boundary, or
when the value changes propagate from the delayed versions of
these signals at the sequential device inside the cell. It decides when
to evaluate the expressions depending on which signals are the
operands in these expressions. Note the following:

12-63

Gate-Level Simulation

• If the operands in these expressions are neither the original nor
the delayed versions of the reference or data signals, and if these
operands are signals that do not change value between value
changes on the original reference and data signals and their
delayed versions, then it does not matter when VCS evaluates
these expressions.

• If the operands in these expressions are delayed versions of the
original reference and data signals, then you want VCS to
evaluate these expressions when there are value changes on the
delayed versions of the reference and data signals. VCS does
this by default.

• If the operands in these expressions are the original reference
and data signals and not the delayed versions, then you want VCS
to evaluate these expressions when there are value changes on
the original reference and data signals. To specify evaluating
these expressions when the original reference and data signals
change value, include the +NTC2 compile-time option.

Toggling the Notifier Register

VCS waits for a timing violation to occur on the delayed versions of
the reference and data signals before toggling the notifier register.
Toggling means the following value changes:

• X to 0

• 0 to 1

• 1 to 0

VCS does not change the value of the notifier register if you have
assigned a Z value to it.

12-64

Gate-Level Simulation

SDF Back-annotation to Negative Timing Checks

You can back-annotate negative setup and hold limits from SDF files
to $setuphold timing checks and negative recovery and removal
limits from SDF files to $recrem timing checks, if the following
conditions are met:

• You included the arguments for the names of the delayed
reference and data signals in the timing checks.

• You compiled your design with the +neg_tchk compile-time
option.

• For all $setuphold timing checks, the positive setup or hold limit
is greater than the negative setup or hold limit.

• For all $recrem timing checks, the positive recovery or removal
limit is greater than the negative recovery or removal limit.

As documented in the OVI SDF3.0 specification:

• TIMINGCHECK statements in the SDF file back-annotate timing
checks in the model which match the edge and condition
arguments in the SDF statement.

• If the SDF statement specifies SCOND or CCOND expressions, they
must match the corresponding timestamp_cond or
timecheck_cond in the timing check declaration for back-
annotation to occur.

• If there is no SCOND or CCOND expressions in the SDF statement,
all timing checks that otherwise match are back-annotated.

12-65

Gate-Level Simulation

How VCS Calculates Delays

This section describes how VCS calculates the delays of the delayed
versions of reference and data signals. It does not describe how you
use negative timing checks; it is supplemental material intended for
users who would like to read more about how negative timing checks
work in VCS.

VCS uses the limits you specify in the $setuphold or $recrem
timing check to calculate the delays on the delayed versions of the
reference and data signals. For example:

$setuphold(posedge clock,data,-10,20, , , , del_clock,
 del_data);

This specifies that the propagation delays on the reference event (a
rising edge on signal clock), are more than 10 but less than 20 time
units more than the propagation delays on the data event (any
transition on signal data).

So when VCS creates the delayed signals, del_clock and
del_data, and the alternative violation window that straddles a
rising edge on del_clock, VCS uses the following relationship:

20 > (delay on del_clock - delay on del_data) > 10

There is no reason to make the delays on either of these delayed
signals any longer than they have to be so the delay on del_data
is 0 and the delay on del_clock is 11. Any delay on del_clock
between 11 and 19 time units would report a timing violation for the
$setuphold timing check.

12-66

Gate-Level Simulation

Multiple timing checks, that share reference or data events, and
specified delayed signal names, can define a set of delay
relationships. For example:

$setuphold(posedge CP,D,-10,20, notifier, , ,
 del_CP, del_D);
$setuphold(posedge CP,TI,20,-10, notifier, , ,
 del_CP, del_TI);
$setuphold(posedge CP,TE,-4,8, notifier, , ,
 del_CP, del_TE);

In this example:

• The first $setuphold timing check specifies the delay on
del_CP is more than 10 but less than 20 time units more than
the delay on del_D.

• The second $setuphold timing check specifies the delay on
del_TI is more than 10 but less than 20 time units more than
the delay on del_CP.

• The third $setuphold timing check specifies the delay on
del_CP is more than 4 but less than 8 time units more than the
delay on del_TE.

Therefore:

• The delay on del_D is 0 because its delay does not have to be
more than any other delayed signal.

• The delay on del_CP is 11 because it must be more than 10 time
units more than the 0 delay on del_D.

12-67

Gate-Level Simulation

• The delay on del_TE is 4 because the delay on del_CP is 11.
The 11 makes the possible delay on del_TE larger than 3, but
less than 7. The delay cannot be 3 or less, because the delay on
del_CP is less than 8 time units more that the delay on del_TE.
VCS makes the delay 4 because it always uses the shortest
possible delay.

• The delay on del_TI is 22 because it must be more than 10 time
units more that the 11 delay on del_CP.

In unusual and rare circumstances, multiple $setuphold and
$recrem timing checks, including those that have no negative limits,
can make the delays on the delayed versions of these signals
mutually exclusive. When this happens, VCS repeats the following
procedure until the signals are no longer mutually exclusive:

1. Sets one negative limit to 0.

2. Recalculates the delays of the delayed signals.

12-68

Gate-Level Simulation

13-1

Coverage

13
Coverage 1

VCS monitors the execution of the HDL code during simulation. The
verification engineers can determine which part of the code has not
been tested yet so that they can focus their efforts on those areas to
achieve 100% coverage. VCS offers two coverage techniques to test
your HDL code. Code coverage and Functional coverage.

Code Coverage

The following coverage metrics are classified as code coverage:

• Line Coverage — This metric measures statements in your HDL
code that have been executed in the simulation.

13-2

Coverage

• Toggle Coverage — This metric measures the bits of logic that
have toggled during simulation. A toggle simply means that a bit
changes from 0 to 1 or from 1 to 0. It is one of the oldest metrics
of coverage in hardware design and can be used at both the
register transfer level (RTL) and gate level.

• Condition Coverage — This metric measures how the variables
or sub-expressions in the conditional statements are evaluated
during simulation. It can find the errors in the conditional
statements that cannot be found by other coverage analysis.

• Branch Coverage — This metric measures the coverage of
expressions and case statements that affect the control flow (such
as the if-statement and while-statement) of the HDL. It focuses
on the decision points that affect the control flow of the HDL
execution.

• FSM Coverage — This metric verifies that every legal state of the
state machine has been visited and that every transition between
states has been covered.

For more information about coverage technology and how you can
generate the coverage information for your design, see the
Coverage Technology User Guide in VCS Online Documentation.

Functional Coverage

Functional coverage checks the overall functionality of the
implementation. To perform functional coverage, you must define the
coverage points for the functions to be covered in the DUT. VCS
supports both NTB and SystemVerilog covergroup model.
Covergroups are specified by the user. They allow the system to
monitor values and transitions for variables and signals. They also
enable cross coverage between variables and signals.

13-3

Coverage

For more information about NTB or SystemVerilog functional
coverage models, see the VCS Native Testbench Language
Reference Manual or the VCS SystemVerilog Language Reference
Manual respectively in the Testbench category in the VCS Online
Documentation.

Options For Coverage Metrics

-cm line|cond|fsm|tgl|branch|assert

Specifies compiling for the specified type or types of coverage.
The argument specifies the types of coverage:

line

Compile for line or statement coverage.

cond

Compile for condition coverage.

fsm

Compile for FSM coverage.

tgl

Compile for toggle coverage.

branch

Compile for branch coverage

assert

Compile for SystemVerilog assertion coverage.

13-4

Coverage

For more information on Coverage options, see the Coverage
Technology Reference Manual in VCS Online Documentation.

14-1

Using OpenVera Native Testbench

14
Using OpenVera Native Testbench 1

OpenVera Native Testbench is a high-performance, single-kernel
technology in VCS that enables:

• Native compilation of testbenches written in OpenVera and in
SystemVerilog.

• Simulation of these testbenches along with the designs.

This technology provides a unified design and verification
environment in VCS for significantly improving overall design and
verification productivity. Native Testbench is uniquely geared
towards efficiently catching hard-to-find bugs early in the design
cycle, enabling not only completing functional validation of designs
with the desired degree of confidence, but also achieving this goal in
the shortest time possible.

14-2

Using OpenVera Native Testbench

Native Testbench is built around the preferred methodology of
keeping the testbench and its development separate from the
design. This approach facilitates development, debug, maintenance
and reusability of the testbench, as well as ensuring a smooth
synthesis flow for your design by keeping it clean of all testbench
code. Further, you have the choice of either compiling your
testbench along with your design or separate from it. The latter
choice not only saves you from unnecessary recompilations of your
design, it also enables you to develop and maintain multiple
testbenches for your design.

This chapter describes the high-level, object-oriented verification
language of OpenVera, which enables you to write your testbench in
a straightforward, elegant and clear manner and at a high level
essential for a better understanding of and control over the design
validation process. Further, OpenVera assimilates and extends the
best features found in C++ and Java along with syntax that is a
natural extension of the hardware description languages. Adopting
and using OpenVera, therefore, means a disciplined and systematic
testbench structure that is easy to develop, debug, understand,
maintain and reuse.

Thus, the high-performance of Native Testbench technology,
together with the unique combination of the features and strengths
of OpenVera, can yield a dramatic improvement in your productivity,
especially when your designs become very large and complex.

This chapter includes the following topics:

• “Usage Model”

• “Key Features”

14-3

Using OpenVera Native Testbench

Usage Model

As any other VCS applications, the usage model to simulate
OpenVera testbench includes the following steps:

Compilation

% vcs [ntb_options] [compile_options] file1.vr file2.vr
 file3.v file4.v

Simulation

% simv [run_options]

Example

In this example, you have an interface file, a Verilog design arb.v,
OpenVera testbench arb.vr, all instantiated in a Verilog top file,
arb.test_top.v.

//Interface
#ifndef INC_ARB_IF_VRH
#define INC_ARB_IF_VRH

 interface arb {
 input clk CLOCK;
 output [1:0] request OUTPUT_EDGE OUTPUT_SKEW;
 output reset OUTPUT_EDGE OUTPUT_SKEW;
 input [1:0] grant INPUT_EDGE INPUT_SKEW;
 } // end of interface arb

#endif

//Verilog module: arb.v
module arb (clk, reset, request, grant) ;
 input [1:0] request ;

14-4

Using OpenVera Native Testbench

 output [1:0] grant ;
 input reset ;
 input clk ;

 parameter IDLE = 2, GRANT0 = 0, GRANT1 = 1;

 reg last_winner ;
 reg winner ;
 reg [1:0] grant ;
 reg [1:0] next_grant ;

 reg [1:0] state, nxState;

 ...

endmodule

//OpenVera Testbench: arb.vr

#define OUTPUT_EDGE PHOLD
#define OUTPUT_SKEW #1
#define INPUT_SKEW #-1
#define INPUT_EDGE PSAMPLE
#include <vera_defines.vrh>

#include "arb.if.vrh"

program arb_test
{ // start of top block

 ...

} // end of program arb_test

Note:
You can find the complete example in the following path:

14-5

Using OpenVera Native Testbench

$VCS_HOME/doc/examples/testbench/ov/Tutorial/
arb

Usage Model

Compilation

% vcs -ntb arb.v arb.vr arb.test_top.v

Simulation

% simv

Using Template Generator

To ease the process of writing a testbench in OpenVera, VCS
provides you with a testbench template generator.

Use the following command to invoke the template generator on a
Verilog design unit:

% ntb_template -t design_module_name [-c clock] design_file\
 [-vcs vcs_compile-time_options]

Where:

-t design_module_name

Specifies the top-level design module name.

design_file

Name of the design file.

-c

Specifies the clock input of the design.

14-6

Using OpenVera Native Testbench

-template

Can be omitted.

-program

Optional. Use it to specify program name.

-simcycle

Optional. Use this to override the default cycle value of 100.

-vcs vcs_compile-time_options

Optional. Use it to supply a VCS compile-time option. Multiple
-vcs vcs_compile-time_options options can be used to specify
multiple options. Use this option only for Verilog on top designs.

Example

An example SRAM model is used in this demonstration of using the
template generator to develop a testbench environment.

For details on the OpenVera verification language, refer to the
OpenVera Language Reference Manual: Native Testbench.

Design Description

The design is an SRAM whose RTL Verilog model is in the file
sram.v. It has four ports:

- ce_N (chip enable)

- rdWr_N (read/write enable)

- ramAddr (address)

- ramData (data)

14-7

Using OpenVera Native Testbench

Example 14-1 RTL Verilog Model of SRAM in sram.v

module sram(ce_N, rdWr_N, ramAddr, ramData);

input ce_N, rdWr_N;
input [5:0] ramAddr;
inout [7:0] ramData;
wire [7:0] ramData;
reg [7:0] chip[63:0];

assign #5 ramData = (~ce_N & rdWr_N) ? chip[ramAddr] :
8'bzzzzzzzz;

always @(ce_N or rdWr_N)
begin
 if(~ce_N && ~rdWr_N)
 #3 chip[ramAddr] = ramData;
end
endmodule

During a read operation, when ce_N is driven low and rdWr_N is
driven high, ramData is continuously driven from inside the SRAM
with the value stored in the SRAM memory element specified by
ramAddr. During a write operation, when both ce_N and rdWr_N
are driven low, the value driven on ramData from outside the SRAM
is stored in the SRAM memory element specified by ramAddr. At all
other times, ce_N is driven high, and as a result, ramData gets
continuously driven from inside the SRAM with the high-impedance
value Z.

Generating the Testbench Template, the Interface, and the Top-
level Verilog Module from the Design

As previously mentioned, Native Testbench provides a template
generator to start the process of constructing a testbench. The
template generator is invoked on sram.v as shown below:

% ntb_template -t sram sram.v

14-8

Using OpenVera Native Testbench

Where:

• The –t option is followed with the top-level design module name,
which is sram, in this case.

• sram is the name of the module.

• sram.v is the name of the file containing the top-level design
module.

• If the design uses a clock input, then the –c option is to be used
and followed with the name of the clock input. Doing so provides
a clock input derived from the system-clock for the interface and
the design. In this example, there is no clock input required by the
design.

Template generator generates the following files:

• sram.vr.tmp

• sram.if.vrh

• sram.test_top.v

sram.vr.tmp

This is the template for testbench development. The following is an
example, based on the sram.v file of the output of the previous
command line:

//sram.vr.tmp
#define OUTPUT_EDGE PHOLD
#define OUTPUT_SKEW #1
#define INPUT_SKEW #-1
#define INPUT_EDGE PSAMPLE
#include <vera_defines.vrh>

// define interfaces, and verilog_node here if necessary

14-9

Using OpenVera Native Testbench

#include "sram.if.vrh"

// define ports, binds here if necessary

// declare external tasks/classes/functions here if
//necessary

// declare verilog_tasks here if necessary

// declare class typedefs here if necessary

program sram_test
{ // start of top block

 // define global variables here if necessary

 // Start of sram_test

 // Type your test program here:

 //
 // Example of drive:
 // @1 sram.ce_N = 0 ;
 //
 //
 // Example of expect:
 // @1,100 sram.example_output == 0 ;
 //

} // end of program sram_test

// define tasks/classes/functions here if necessary

sram.if.vrh

This is the interface file which provides the basic connectivity
between your testbench signals and your design’s ports and/or
internal nodes. All signals going back and forth between the

14-10

Using OpenVera Native Testbench

testbench and the design go through this interface. The following is
the sram.if.vrh file which results from the previous command
line:

//sram.if.vrh
#ifndef INC_SRAM_IF_VRH
#define INC_SRAM_IF_VRH
 interface sram {
 output ce_N OUTPUT_EDGE OUTPUT_SKEW;
 output rdWr_N OUTPUT_EDGE OUTPUT_SKEW;
 output [5:0] ramAddr OUTPUT_EDGE OUTPUT_SKEW;
 inout [7:0] ramData INPUT_EDGE INPUT_SKEW
OUTPUT_EDGE OUTPUT_SKEW;
 } // end of interface sram

#endif

Notice that, for example, the direction of ce_N is now "output"
instead of "input". The signal direction specified in the interface
is from the point of view of the testbench and not the DUT.

This file must be modified to include the clock input.

sram.test_top.v

This is the top-level Verilog module that contains the testbench
instance, the design instance, and the system-clock. The system
clock can also provide the clock input for both the interface and the
design. The following is the sram.test_top.v file that results from
the previous command line:

//sram.test_top.v
module sram_test_top;
 parameter simulation_cycle = 100;

 reg SystemClock;

 wire ce_N;

14-11

Using OpenVera Native Testbench

 wire rdWr_N;
 wire [5:0] ramAddr;
 wire [7:0] ramData;
`ifdef SYNOPSYS_NTB
 sram_test vshell(
 .SystemClock (SystemClock),
 .\sram.ce_N (ce_N),
 .\sram.rdWr_N (rdWr_N),
 .\sram.ramAddr (ramAddr),
 .\sram.ramData (ramData)
);
`else

 vera_shell vshell(
 .SystemClock (SystemClock),
 .sram_ce_N (ce_N),
 .sram_rdWr_N (rdWr_N),
 .sram_ramAddr (ramAddr),
 .sram_ramData (ramData)
);
`endif

`ifdef emu
/* DUT is in emulator, so not instantiated here */
`else
 sram dut(
 .ce_N (ce_N),
 .rdWr_N (rdWr_N),
 .ramAddr (ramAddr),
 .ramData (ramData)
);
`endif

 initial begin
 SystemClock = 0;
 forever begin
 #(simulation_cycle/2)
 SystemClock = ~SystemClock;
 end
 end

endmodule

14-12

Using OpenVera Native Testbench

Figure 14-1 shows how the three generated files and the design
connect and fit in with each other in the final configuration.

Figure 14-1 Testbench and Design Configuration

Testbench Development and Description

Your generated testbench template, sram.vr.tmp, contains a list of
macro definitions for the interface, include statements for the
interface file and the library containing predefined tasks and
functions, comments indicating where to define or declare the
various parts of the testbench, and the skeleton program shell that
will contain the main testbench constructs. Starting with this
template, you can develop a testbench for the SRAM and rename it
sram.vr. An example testbench is shown in Example 14-2.

Example 14-2 Example testbench for SRAM, sram.vr
// macro definitions for Interface signal types and skews

14-13

Using OpenVera Native Testbench

#define OUTPUT_EDGE PHOLD // for specifying posedge-drive type
#define OUTPUT_SKEW #1 // for specifying drive skew
#define INPUT_SKEW #-1 // for specifying sample skew
#define INPUT_EDGE PSAMPLE // for specifying posedge-sample type

#include <vera_defines.vrh> // include the library of predefined
 // functions and tasks
#include "sram.if.vrh" // include the Interface file

program sram_test { // start of program sram_test

reg [5:0] address = 6'b00_0001; // declare, initialize address (for
 // driving ramAddr during Write and
 // Read)
reg [7:0] rand_bits; // declare rand_bits (for driving
 // ramData during Write)
reg [7:0] data_result; // declare data_result (for receiving
 // ramData during Read)

@(posedge sram.clk); // move to the first posedge of clock
rand_bits = random(); // initialize rand_bits with a random
 // value using the random() function

@1 sram.ramAddr = address; // move to the next posedge of clock,
 // drive ramAddr with the value of
 // address
sram.ce_N = 1'b1; // disable SRAM by driving ce_N high
sram.ramData = rand_bits; // drive ramData with rand_bits and
 // keep it ready for a Write
sram.rdWr_N = 1'b0; // drive rdWr_N low and keep it ready
 // for a Write

@1 sram.ce_N = 1'b0; // move to the next posedge of clock,
 // and enable a SRAM Write by driving
 // ce_N low
printf("Cycle: %d Time: %d \n", get_cycle(), get_time(0));
printf("The SRAM is being written at ramAddr: %b Data written: %b \n", address,
sram.ramData);

@1 sram.ce_N = 1'b1; // move to the next posedge of clock,
 // disable SRAM by driving ce_N high
sram.rdWr_N = 1'b1; // drive rdWr_N high and keep it ready
 // for a Read
sram.ramData = 8'bzzzz_zzzz; // drive a high-impedance value on
 // ramData

@1 sram.ce_N = 1'b0; // move to the next posedge of clock,
 // enable a SRAM Read by driving ce_N

14-14

Using OpenVera Native Testbench

 // low

@1 sram.ce_N = 1'b1; // move to the next posedge of clock,
 // disable SRAM by driving ce_N high
data_result = sram.ramData; // sample ramData and receive the data
 // from SRAM in data_result
printf("Cycle: %d Time: %d\n",get_cycle(), get_time(0));
printf("The SRAM is being read at ramAddr: %b Data read : %b \n", address,
data_result);

} // end of program sram_test

The main body of the testbench is the program, which is named
sram_test. The program contains three data declarations of type
reg in the beginning. It then moves execution through a Write
operation first and then a Read operation. The memory element of
the SRAM written to and read from is 6’b 00_0001. The correct
functioning of the SRAM implies data that is stored in a memory
element during a Write operation must be the same as that which is
received from the memory element during a Read operation later.
The example testbench only demonstrates how any memory
element can be functionally validated. For complete functional
validation of the SRAM, the testbench would need further
development to cover all memory elements from 6’b00_0000 to
6b’11_1111.

Interface Description

The generated if.vrh file has to be modified to include the clock
input. The modified interface is shown in Example 14-3.

Interface for SRAM, sram.if.vrh

Example 14-3
#ifndef INC_SRAM_IF_VRH
#define INC_SRAM_IF_VRH

 interface sram {

14-15

Using OpenVera Native Testbench

 input clk CLOCK; // add clock
 output ce_N OUTPUT_EDGE OUTPUT_SKEW;
 output rdWr_N OUTPUT_EDGE OUTPUT_SKEW;
 output [5:0] ramAddr OUTPUT_EDGE OUTPUT_SKEW;
 inout [7:0] ramData INPUT_EDGE OUTPUT_EDGE OUTPUT_SKEW;
 } // end of interface sram

#endif

The interface consists of signals that are either driven as outputs into
the design or sampled as inputs from the design. The clock input,
clk, is derived from the system clock in the top-level Verilog module.

Top-level Verilog Module Description

The generated top-level module has been modified to include the
clock input for the interface and eliminate code that was not relevant.
The clock input is derived from the system clock. Example 14-4
shows the modified top-level Verilog module for the SRAM.

Example 14-4 Top-level Verilog Module, sram.test_top.v

module sram_test_top;
 parameter simulation_cycle = 100;
 reg SystemClock;
 wire ce_N;
 wire rdWr_N;
 wire [5:0] ramAddr;
 wire [7:0] ramData;
 wire clk = SystemClock;/* Add this line. Interface

clock input derived from the system clock*/

 `ifdef SYNOPSYS_NTB
 sram_test vshell(
 .SystemClock (SystemClock),
 .\sram.clk(clk),
 .\sram.ce_N (ce_N),
 .\sram.rdWr_N (rdWr_N),
 .\sram.ramAddr (ramAddr),
 .\sram.ramData (ramData)
);
`else

14-16

Using OpenVera Native Testbench

 vera_shell vshell(
 .SystemClock (SystemClock),
 .sram_ce_N (ce_N),
 .sram_rdWr_N (rdWr_N),
 .sram_ramAddr (ramAddr),
 .sram_ramData (ramData)
);
`endif

 // design instance
 sram dut(
 .ce_N (ce_N),
 .rdWr_N (rdWr_N),
 .ramAddr (ramAddr),
 .ramData (ramData)
);

 // system-clock generator
 initial begin
 SystemClock = 0;
 forever begin
 #(simulation_cycle/2)
 SystemClock = ~SystemClock;
 end
 end

endmodule

The top-level Verilog module contains the following:

• The system clock, SystemClock. The system clock is contained
in the port list of the testbench instance.

• The declaration of the interface clock input, clk, and its derivation
from the system clock.

14-17

Using OpenVera Native Testbench

• The testbench instance, vshell. The module name for the
instance must be the name of the testbench program,
sram_test. The instance name can be something you choose.
The ports of the testbench instance, other than the system clock,
refer to the interface signals. The period in the port names
separates the interface name from the signal name. A backslash
is appended to the period in each port name because periods are
not normally allowed in port names.

• The design instance, dut.

Compiling Testbench With the Design And Running

The VCS command line for compiling both your example testbench
and design is the following:

Compilation

% vcs -ntb sram.v sram.test_top.v sram.vr

Simulation

% simv

You will find the simulation output to be the following:

Cycle: 3 Time: 250
The SRAM is being written at ramAddr: 000001 with ramData:
10101100
Cycle: 6 Time: 550
The SRAM is being read at ramAddr: 000001 its ramData is:
10101100
$finish at simulation time 550
 V C S S i m u l a t i o n R e p o r t

14-18

Using OpenVera Native Testbench

Key Features

VCS supports the following features for OpenVera testbench:

• “Multiple Program Support”

• “Class Dependency Source File Reordering”

• “Using Encrypted Files”

• “Functional Coverage”

• “Using Reference Verification Methodology”

Multiple Program Support

Multiple program support enables multiple testbenches to run in
parallel. This is useful when testbenches model stand-alone
components (for example, Verification IP (VIP) or work from a
previous project). Because components are independent, direct
communication between them except through signals is undesirable.
For example, UART and CPU models would communicate only
through their respective interfaces, and not via the testbench. Thus,
multiple program support allows the use of stand-alone components
without requiring knowledge of the code for each component, or
requiring modifications to your own testbench.

Configuration File Model

The configuration file that you create, specifies file dependencies for
OpenVera programs.

14-19

Using OpenVera Native Testbench

Specify the configuration file as an argument to -ntb_opts as
shown in the following usage model:

% vcs -ntb -ntb -ntb_opts
config=configfileVerilog_and_OV_files

Configuration File

The configuration file contains the program construct.

The program keyword is followed by the OpenVera program file (.vr
file) containing the testbench program and all the OpenVera program
files needed for this program. For example:

//configuration file
program

main1.vr
main1_dep1.vr
main1_dep2.vr
...
main1_depN.vr
[NTB_options]

program
main2.vr
main2_dep1.vr
main2_dep2.vr
...
main2_depN.vr
[NTB_options]

program
mainN.vr
mainN_dep1.vr
mainN_dep2.vr
...
mainN_depN.vr
[NTB_options]

14-20

Using OpenVera Native Testbench

In this example, main1.vr, main2.vr and mainN files each
contain a program. The other files contain items such as definitions
of functions, classes, tasks and so on needed by the program files.
For example, the main1_dep1.vr, main1_dep2.vr
main1_depN.vr files contain definitions relevant to main1.vr.
Files main2_dep1.v, main2_dep2.vr ... main2_depN.vr
contain definitions relevant to main2.vr, and so forth.

Usage Model for Multiple Programs

You can specify programs and related support files with multiple
programs in two different ways:

1. Specifying all OpenVera programs in the configuration file

2. Specifying one OpenVera program on the command line, and the
rest in the configuration file

Note:

- Specifying multiple OpenVera files containing the program
construct at the VCS command prompt is an error.

- If you specify one program at the VCS command line and if any
support files are missing from the command line, VCS issues
an error.

Specifying all OpenVera programs in the configuration file

When there are two or more program files listed in the configuration
file, the VCS command line is:

% vcs -ntb -ntb_opts config=configfile

The configuration file, could be:

program main1.vr -ntb_define ONE

14-21

Using OpenVera Native Testbench

program main2.vr -ntb_incdir /usr/vera/include

Specifying one OpenVera program on the command line, and
the rest in the configuration file

You can specify one program in the configuration file and the other
program file at the command prompt.

% vcs -ntb -ntb_opts config=configfile main2.vr

The configuration file used in this example is:

program main1.vr

In the previous example, main1.vr is specified in the configuration
file and main2.vr is specified on the command line along with the
files needed by main2.vr.

NTB Options and the Configuration File

The configuration file supports different OpenVera programs with
different NTB options such as ‘include, ‘define, or
‘timescale. For example, if there are three OpenVera programs
p1.vr, p2.vr and p3.vr, and p1.vr requires the -ntb_define
VERA1 runtime option, and p2.vr should run with
-ntb_incdir /usr/vera/include option, specify these
options in the configuration file:

program p1.vr -ntb_define VERA1
program p2.vr -ntb_incdir /usr/vera/include

and specify the command line as follows.

% vcs -ntb -ntb_opts config=configfile p3.vr

14-22

Using OpenVera Native Testbench

Any NTB options mentioned at the command prompt, in addition to
the configuration file, are applicable to all OpenVera programs.

In the configuration file, you may specify the NTB options in one line
separated by spaces, or on multiple lines.

program file1.vr -ntb_opts no_file_by_file_pp

The following options are allowed for multiple program use.

• -ntb_define macro

• -ntb_incdir directory

• -ntb_opts no_file_by_file_pp

• -ntb_opts tb_timescale=value

• -ntb_opts dep_check

• -ntb_opts print_deps

• -ntb_opts use_sigprop

• -ntb_opts vera_portname

See the appendix on “Compile-time Options” or “Elaboration
Options” for descriptions of the these options.

Class Dependency Source File Reordering

In order to ease transitioning of legacy code from Vera’s make-based
single-file compilation scheme to VCS-NTB, where all source files
have to be specified on the command line, VCS provides a way of

14-23

Using OpenVera Native Testbench

instructing the compiler to reorder Vera files in such a way that class
declarations are in topological order (that is, base classes precede
derived classes).

In Vera, where files are compiled one-by-one, and extensive use of
header files is a must, the structure of file inclusions makes it very
likely that the combined source text has class declarations in
topological order.

If specifying a command line like the following leads to problems
(error messages related to classes), adding the analysis option
-ntb_opts dep_check to the command line directs the compiler
to activate analysis of Vera files and process them in topological
order with regard to class derivation relationships.

% vcs -ntb *.vr

By default, files are processed in the order specified (or
wildcard-expanded by the shell). This is a global option, and affects
all Vera input files, including those preceding it, and those named in
-f file.list.

When using the option –ntb_opts print_deps in addition to
–ntb_opts dep_check with vcs, the reordered list of source files
is printed on standard output. This could be used, for example, to
establish a baseline for further testbench development.

For example, assume the following files and declarations:

b.vr: class Base {integer i;}
d.vr: class Derived extends Base {integer j;}
p.vr: program test {Derived d = new;}

14-24

Using OpenVera Native Testbench

File d.vr depends on file b.vr, since it contains a class derived
from a class in b.vr, whereas p.vr depends on neither, despite
containing a reference to a class declared in the former. The p.vr
file does not participate in inheritance relationships. The effect of
dependency ordering is to properly order the files b.vr and d.vr,
while leaving files without class inheritance relationships alone.

The following command lines result in reordered sequences.

% vcs –ntb –ntb_opts dep_check d.vr b.vr p.vr
% vcs –ntb –ntb_opts dep_check p.vr d.vr b.vr

The first command line yields the order b.vr d.vr p.vr, while
the second line yields, p.vr b.vr d.vr.

Circular Dependencies

With some programming styles, source files can appear to have
circular inheritance dependencies in spite of correct inheritance
trees being cycle-free. This can happen, for example, in the following
scenario:

a.vr: class Base_A {...}
 class Derived_B extends Base_B {...}
b.vr: class Base_B {...}
 class Derived_A extends Base_A {...}

In this example, classes are derived from base classes that are in the
other file, respectively, or more generally, when the inheritance
relationships project onto a loop among the files. This is, however,
an abnormality that should not occur in good programming styles.
VCS will detect and report the loop, and will use a heuristic to break
it. This may not lead to successful compilation, in which case you

14-25

Using OpenVera Native Testbench

can use the -ntb_opts print_deps option to generate a starting
point for manual resolution; however, if possible, the code should be
rewritten.

Dependency-based Ordering in Encrypted Files

As encrypted files are intended to be mostly self-contained library
modules that the testbench builds upon, they are excluded from
reordering regardless of dependencies (these files should not exist
in unencrypted code). VCS splits Vera input files into those that are
encrypted or declared as such by having the .vrp or .vrhp file
extension or as specified using the –ntb_vipext option, and
others. Only the latter unencrypted files are subject to dependency-
based reordering, and encrypted files are prefixed to them.

Note:
The -ntb_opts dep_check compile-time option specifically
resolves dependencies involving classes and enums. That is, you
only consider definitions and declarations of classes and enums.
Other constructs such as ports, interfaces, tasks and functions
are not currently supported for dependency check.

Using Encrypted Files

VCS NTB allows distributors of Verification IP (Intellectual Property)
to make testbench modules available in encrypted form. This
enables the IP vendors to protect their source code from
reverse-engineering. Encrypted testbench IP is regular OpenVera
code, and is not subject to special processing other than to protect
the source code from inspection in the debugger, through the PLI, or
otherwise.

14-26

Using OpenVera Native Testbench

Encrypted code files provided on the command line are detected by
VCS, and are combined into one preprocessing unit that is
preprocessed separately from unencrypted files, and is for itself,
always preprocessed in –ntb_opts no_file_by_file_pp
mode. The preprocessed result of encrypted code is prefixed to
preprocessed unencrypted code.

VCS only detects encrypted files on the command line (including -f
option files), and does not descend into include hierarchies. While
the generally recommended usage methodology is to separate
encrypted from unencrypted code, and not include encrypted files in
unencrypted files, encrypted files can be included in unencrypted
files if the latter are marked as encrypted-mode by naming them with
extensions .vrp, .vrhp, or additional extensions specified using
the –ntb_vipext option. This implies that the extensions are
considered OpenVera extensions similar to using
-ntb_filext for unencrypted files. This causes those files and
everything they include to be preprocessed in encrypted mode.

Functional Coverage

The VCS implementation of OpenVera supports the covergroup
construct. For more information about the covergroup and other
functional coverage model, see the section "Functional Coverage
Groups" in the VCS OpenVera Language Reference Manual.

Using Reference Verification Methodology

VCS supports the use of Reference Verification Methodology (RVM)
for implementing testbenches as part of a scalable verification
architecture.

14-27

Using OpenVera Native Testbench

The usage model for using RVM with VCS is:

Compilation

% vcs -ntb -ntb_opts rvm [ntb_options] [compile_options]
file1.vr file2.vr file3.v file4.v

Simulation

% simv [run_options]

For details on the use of RVM, see the Reference Verification
Methodology User Guide. Though the manual descriptions refer to
Vera, NTB uses a subset of the OpenVera language and all
language specific descriptions apply to NTB.

Differences between the usage of NTB and Vera are:

• NTB does not require header files (.vrh) as described in the
Reference Verification Methodology User Guide chapter “Coding
and Compilation.”

• NTB parses all testbench files in a single compilation.

• The VCS command-line option -ntb_opts rvm must be used with
NTB.

Limitations

• The handshake configuration of notifier is not supported (since
there is no handshake for triggers/syncs in NTB).

• RVM enhancements for assertion support in Vera 6.2.10 and later
are not supported for NTB.

• If there are multiple consumers and producers, there is no
guarantee of fairness in reads from channels, etc.

14-28

Using OpenVera Native Testbench

15-1

Using SystemVerilog

15
Using SystemVerilog 1

VCS supports the SystemVerilog language (with some exceptions)
as defined in the Standard for SystemVerilog -- Unified Hardware
Design, Specification, and Verification Language (IEEE Std 1800™
-2012).

This chapter describes the following:

• “Usage Model”

• “Using UVM With VCS”

• “Using VMM with VCS”

• “Using OVM with VCS”

• “Debugging SystemVerilog Designs”

• “Functional Coverage”

• “SystemVerilog Constructs”

15-2

Using SystemVerilog

• “Support for Overriding Parameter Values through Configuration”

• “Extensions to SystemVerilog”

For SystemVerilog assertions, see Chapter - "Using SystemVerilog
Assertions".

Usage Model

The usage model to compile and simulate your design with
SystemVerilog files is as follows:

Compilation

% vcs -sverilog [compile_options] Verilog_files

Simulation

% simv [simv_options]

To analyze SV files, use the option -sverilog with vcs as shown
in the above usage model.

15-3

Using SystemVerilog

Using UVM With VCS

This version of VCS provides native support for UVM-1.1d. These
libraries are located in:

• $VCS_HOME/etc/uvm-1.1

UVM 1.1 is now replaced with UVM 1.1d, which is the default. You
can load UVM 1.1d by:

• Using the -ntb_opts uvm option

• Explicitly specifying the -ntb_opts uvm-1.1 option

The following sections explain your options for using UVM with VCS:

• “Update on UVM-1.2”

• “Natively Compiling and Elaborating UVM-1.1d”

• “Natively Compiling and Elaborating UVM-1.2”

• “Compiling the External UVM Library”

• “Accessing HDL Registers Through UVM Backdoor”

• “Generating UVM Register Abstraction Layer Code”

• “Recording UVM Transactions”

• “Debugging UVM Testbench Designs Using DVE”

• “Recording UVM Phases”

• “UVM Template Generator (uvmgen)”

• “Using Mixed VMM/UVM Libraries”

15-4

Using SystemVerilog

• “Migrating from OVM to UVM”

• “Where to Find UVM Examples”

• “Where to Find UVM Documentation”

Update on UVM-1.2

You can load UVM-1.2 using the -ntb_opts uvm-1.2 option.

Note:

You may see some backward compatibility issues while migrating
to UVM-1.2. Please refer to UVM-1.2 release notes for the
changes required.

Natively Compiling and Elaborating UVM-1.1d

You can compile and elaborate SystemVerilog code which extends
from UVM-1.1d base classes by using the following command:

% vcs -sverilog -ntb_opts uvm [compile_options] \
user_source_files_using_UVM

Using the -ntb_opts uvm option is the same as specifying the
version explicitly using the -ntb_opts uvm-1.1 option. However,
it is best to specify the version explicitly, because later versions of
UVM might carry the default UVM library.

Natively Compiling and Elaborating UVM-1.2

You can compile and elaborate SystemVerilog code which extends
from UVM-1.2 base classes using the following command:

15-5

Using SystemVerilog

% vcs -sverilog -ntb_opts uvm-1.2 [compile_options] \
user_source_files_using_UVM

Compiling the External UVM Library

If you want to use a UVM version from Accellera in place of the
UVM-1.1d version shipped with VCS, follow either of these
procedures:

• “Using the -ntb_opts uvm Option”

• “Explicitly Specifying UVM Files and Arguments”

Using the -ntb_opts uvm Option

When you set the VCS_UVM_HOME environment variable to specify a
UVM library directory, VCS uses this location even if the -ntb_opts
uvm option is used. For example,

% setenv VCS_UVM_HOME <path_to_uvm_library>

Here, <path_to_uvm_library> is the absolute path to the
directory that contains the uvm_pkg.sv file. Typically, the
uvm_pkg.sv file is present in the src directory inside the Accellera
distribution for UVM.

% vcs -sverilog -ntb_opts uvm [compile_options] \
user_source_files_using_UVM

15-6

Using SystemVerilog

Specifying External uvm_dpi.cc Source

When using -ntb_opts uvm, the uvm_dpi.cc is picked up from
the UVM installation inside the VCS installation. However, you might
want to use the custom UVM DPI files instead of the ones shipped
with the UVM library.

Explicitly Specifying UVM Files and Arguments

The following example shows how to compile and elaborate the
UVM extended code by explicitly specifying the UVM files and
arguments:

% vcs -sverilog +incdir+${UVM_HOME}/src \
${UVM_HOME}/src/uvm_pkg.sv \
${UVM_HOME}/src/dpi/uvm_dpi.cc \
-CFLAGS -DVCS \
[compile_options] \
user_source_files_using_UVM

Accessing HDL Registers Through UVM Backdoor

If you are using tests that need to access HDL registers through the
default UVM register backdoor mechanism, add the -debug_pp
option to your command line:

% vcs -sverilog -debug_pp -ntb_opts uvm [compile_options] \
user_source_files_using_UVM

Note:

The -debug_pp option may affect simulation performance.
Therefore, you should use the +vcs+learn+pli option to
improve the HDL access. To simulate, use the following
command:

15-7

Using SystemVerilog

% simv +UVM_TESTNAME=your_uvm_test [simv_options]

If you use the -b option with ralgen, the -debug_pp option is not
required and the HDL backdoor is enabled through cross-module
references instead of the VPI. This provides better performance.

Generating UVM Register Abstraction Layer Code

VCS ships a utility called ralgen. Given a description of the
available registers and memories in a design, ralgen automatically
generates the UVM RAL abstraction model for these registers and
memories. The description of these registers and memories can be
in RALF format or in the IPXACT schema.

To generate a register model from a RALF file, use the following
command:

% ralgen [options] -t <topname> -uvm <filename.ralf>

Here, filename.ralf is the name of the RALF input file and
topname is the top block or system name in the RALF file.

To generate a register model from an IPXACT file, you use a two-
step flow. The first step is to generate RALF from IPXACT as follows:

% ralgen -ipxact2ralf <input_file>

The second step is the same as the one described above. For more
information, see the UVM Register Abstraction Layer Generator
User Guide.

15-8

Using SystemVerilog

Recording UVM Transactions

UVM has additional features that allow you to take advantage of VCS
transaction recording and DVE transaction debugging capabilities.
These features are available with both the UVM-1.1d and UVM-1.2
libraries.

No compile-time option is needed for UVM-1.1d and UVM-1.2. Then
you enable recording using a runtime option. The transaction and
report recordings are stored in the simulation VPD file.

Compiling and Simulating UVM-1.1d and UVM-1.2

To compile and simulate your UVM-1.1d or UVM-1.2 code, see
“Enabling FSDB or DVE Transaction Recording” .

Debugging UVM Testbench Designs Using DVE

DVE supports the debugging of UVM testbench designs and allows
you to do the following. Refer to the Debugging UVM Testbench
Designs section in the DVE User Guide for more details.

• View all available configurations in your design

• View the set/get history of a configuration item

• View all the predefined phases of common and UVM domain

• Set breakpoints on the important phases or on the phase methods
of uvm_component

• View runtime arguments using the Simulation Arguments dialog
box

• Filter UVM object items in the Watch Pane

15-9

Using SystemVerilog

• View active and executed sequences

• View the start and end time of a sequence

• View the executing thread of a sequence

• Set a breakpoint on a sequence method

• View sequencer and sequencer ID

• View the definition and invocation of a sequence in the Source
View

• View the class instance of a sequence in the Class Pane

• View the execution (start method) of a sequence in the Stack Pane

• View the transaction item of a sequence in the Transaction Pane

• View relations within the sequences in the Transaction Pane

• View a sequence object in the References dialog box

• Add a sequence/sequencer object to the Watch Pane

• Add a sequencer stream to the Wave View from the Transaction
Pane

• Navigate to the next/previous/parent/child for sequences and
sequence items in the Transaction Pane and transaction
waveforms

Recording UVM Phases

In addition to UVM transaction recording capabilities, VCS allows
you to record the UVM phases and enables the phase debugging
capabilities. With this phase recording, you can see the start time

15-10

Using SystemVerilog

and end time for each component in each phase and the connectivity
information for ports in end_of_elab. This feature is available with
UVM-1.1 libraries in VCS.

To turn on UVM phase recording, use +UVM_PHASE_RECORD at
runtime and pass any of the -debug/-debug_pp/-debug_all
options during compilation. The phase recordings are stored in
simulation VPD file.

You can then use DVE to debug the UVM phases in msglog window.
This is supported for both interactive and post-process debug.

UVM Template Generator (uvmgen)

uvmgen is a template generator for creating robust and extensible
UVM-compliant environments. The primary purpose of uvmgen is to
minimize the VIP and environment development cycle by providing
detailed templates for developing UVM-compliant verification
environments. You can also use uvmgen to quickly understand how
different UVM base classes can be used in different contexts. This is
possible because the templates use a rich set of the latest UVM
features to ensure the appropriate base classes and their features
are picked up optimally.

In addition, uvmgen can be used to generate both individual
templates and complete UVM environments.

uvmgen is a part of the VCS installation. It can be invoked by:

uvmgen [-L libdir] [-X] [-o fname] [-O]

where,

-L Takes user-defined library for template generation

15-11

Using SystemVerilog

-X Excludes standard template library

-o Generates templates in specified file

-O Overwrites if file already exists

-q Quick mode to generate complete environment

For more information, see the UVM Template Generator (uvmgen)
User Guide.

Using Mixed VMM/UVM Libraries

For interoperability reasons (using UVM components in a VMM
environment and vice versa), VCS allows you to load the VMM and
UVM libraries simultaneously, along with the VMM/UVM interop kit.

The VMM/UVM interop kit is located in:

• $VCS_HOME/etc/uvm-1.1/uvm_vmm_pkg.sv (for UVM-1.1 and
later UVM releases)

You can load mixed VMM-1.2 and UVM by using a combination of
the following VCS options:

• -ntb_opts uvm[1.1]+rvm

-or-

• -ntb_opts rvm+uvm[1.1]

For example:

%vcs -ntb_opts uvm+rvm compile-time_options source_files

15-12

Using SystemVerilog

You can turn off the automatic inclusion of uvm_vmm_pkg.sv using
+define+NO_VMM_UVM_INTEROP.

For example:

%vcs -ntb_opts uvm+rvm +define+NO_VMM_UVM_INTEROP
compile-time_options source_files

By default, the mixed environment is driven by a VMM top timeline.
However, you can define a UVM top using +define+UVM_ON_TOP.

%vcs -ntb_opts uvm+rvm +define+ UVM_ON_TOP
compile-time_options source_files

The UVM/VMM interop kit examples are located in $VCS_HOME/
doc/examples/uvm_vmm_interop_kit.

For details on how to use native VMM/UVM interop kit, refer to the
Class Reference section available in the VCS Online documentation
> UVM_VMM documentation.

Note:

In this version of VCS, the UVM-EA and VMM-1.2 interop kit is
no longer included. If you need either one of these kits, contact
vcs_support@synopsys.com.

Migrating from OVM to UVM

To convert your OVM code to UVM, you can use a script stored in
${VCS_HOME}/bin/OVM_UVM_Rename.pl. This script makes the
migration process easy.

15-13

Using SystemVerilog

Note:
This process is simple for SystemVerilog code that extends from
OVM 2.1.1 onward.

Use the following command to convert your OVM code to UVM code:

% OVM_UVM_Rename.pl

This script hierarchically changes all occurrences of “ovm_” to
“uvm_” for files with .v, .vh, .sv, and.svh extensions.

Change the simulation command line by replacing OVM_TESTNAME
with UVM_TESTNAME.

Note:

Some additional work is required for the base classes that differ
between OVM and UVM. For example, you may need to modify
callbacks, some global function names, arguments, etc.

Where to Find UVM Examples

The UVM-1.1d interop examples are located in:

$VCS_HOME/doc/examples/uvm.

The UVM-VMM interop examples are located in:

$VCS_HOME/doc/examples/uvm_vmm_interop_kit.

15-14

Using SystemVerilog

Where to Find UVM Documentation

The UVM-1.1d and UVM-VMM interop documentation is available in
the following locations.

UVM-1.1d Documentation

The PDF version of the UVM-1.1d User Guide
(uvm_users_guide_1.1.pdf) is located under VCS documentation in
SolvNet.

The PDF version of the UVM-1.1d Reference Guide
(UVM_Class_Reference_1.1.pdf) is located under VCS
documentation in SolvNet.

UVM-VMM Interop Documentation

The unified HTML version of the UVM-VMM Interop Reference
Guide is accessible in VCS Online documentation > UVM_VMM
documentation.

Using VMM with VCS

The usage model to use VMM with VCS is as follows:

Compilation

% vcs -sverilog -ntb_opts rvm [compile-time_options]
Verilog_files

Simulation

% simv [simv_options]

15-15

Using SystemVerilog

To analyze SV files using VMM, use the options -sverilog and
-ntb_opts rvm with vcs as shown in the above use model.

For more information on VMM, refer to the Verification Methodology
Manual for SystemVerilog.

Using OVM with VCS

VCS provides native support for OVM 2.1.2 The libraries are located
in:

$VCS_HOME/etc/ovm

Native Compilation and Elaboration of OVM 2.1.2

You can compile and elaborate SystemVerilog code which extends
from OVM 2.1.2 base classes by using the following command:

% vcs -sverilog -ntb_opts ovm [compile_options] \
<user source files using OVM>

When you natively compile and elaborate the OVM code, you do not
have to explicitly include OVM source files in user code as they
would get parsed by default.

Starting with the G-2012.09 version of VCS, the OVM 2.1.2 library is
default.

15-16

Using SystemVerilog

Compiling the External OVM Library

If you want to use an OVM version from Accellera in place of the
OVM 2.1.2 version shipped with VCS, use one of the following
procedures:

• Using the -ntb_opts ovm option

• Explicitly specifying OVM files and arguments

Using the -ntb_opts ovm Option

When you set the VCS_OVM_HOME environment variable to specify
a OVM library directory, VCS uses this location even if the
-ntb_opts ovm option is used. For example,

% setenv VCS_OVM_HOME /<path_to_ovm_library>/myOVM-2.1.2

% vcs -sverilog -ntb_opts ovm [compile_options] \
<user source files using OVM>

This is also supported for the UUM flow and for using vlogan.

Explicitly Specifying OVM Files and Arguments

The following example shows how to compile and elaborate the
OVM extended code by explicitly specifying the OVM files and
arguments:

% vcs -sverilog +incdir+${OVM_HOME} \
${OVM_HOME}/ovm_pkg.sv \
[compile_options] \
<user source files using OVM>

15-17

Using SystemVerilog

Recording OVM Transactions

The OVM version shipped with VCS has additional features that
allows you to take advantage of VCS and DVE's transaction
recording and debugging capabilities.

To turn on OVM transaction recording, you need to use a specific
compile-time option for OVM or use any of the -debug options with
VCS in the two step flow and then enable recording using a different
runtime option. The transaction and report recordings are stored in
the simulation VPD file. -PP can be provided instead of -debug
options if only post process debug is desired.

To compile your OVM code, add the -debug, -debug_pp, or
-debug_all option to your vcs command line.

For example:

% vcs -sverilog -ntb_opts ovm -debug[_pp/all]\
[compile-time_options]

To simulate, use +OVM_TR_RECORD to turn on transaction recording
and use +OVM_LOG_RECORD to turn on recording of OVM report log
messages:

% simv +OVM_TESTNAME=<my_ovm_testname> +OVM_TR_RECORD \
+OVM_LOG_RECORD [simv_options]

You can then use DVE to debug the transactions and log messages.
This is supported for both interactive and post-process debug. The
recorded streams with transactions and report logs are available in
the VMM/OVM folder of the transaction browser.

15-18

Using SystemVerilog

Debugging SystemVerilog Designs

VCS provides UCLI commands to perform the following tasks to
debug a design:

Task Related UCLI commands are...

Line stepping step
next
run

Thread debugging step
thread

Setting breakpoints stop
run

Mailbox related information show

Semaphore related information show

For detailed information on the UCLI commands, see the UCLI User
Guide.

Functional Coverage

The VCS implementation of SystemVerilog supports the
covergroup construct, which you specify as the user. These
constructs allow the system to monitor values and transitions for
variables and signals. They also enable cross coverage between
variables and signals.

If you have covergroups in your design, VCS collects the coverage
data during simulation and generates a database, simv.vdb. Once
you have simv.vdb, you can use the Unified Report Generator to
generate text or HTML reports. For more information about

15-19

Using SystemVerilog

covergroups, see the VCS SystemVerilog LRM. For more
information about functional coverage generated in VCS, see the
Coverage Technology User Guide.

SystemVerilog Constructs

VCS has implemented the following SystemVerilog constructs in
recent releases:

• “Extern Task and Function Calls through Virtual Interfaces”

• “Modport Expressions in an Interface”

• “Interface Classes”

• “Package Exports”

• “Severity System Tasks as Procedural Statements”

• “Width Casting Using Parameters”

• “The std::randomize() Function”

• “SystemVerilog Bounded Queues”

• “wait() Statement with a Static Class Member Variable”

• “Support for Consistent Behavior of Class Static Properties”

• “Parameters and Localparams in Classes”

• “SystemVerilog Math Functions”

• “Streaming Operators”

• “Constant Functions in Generate Blocks”

15-20

Using SystemVerilog

• “Support for Aggregate Methods in Constraints Using the “with”
Construct”

• “Debugging During Initialization SystemVerilog Static Functions
and Tasks in Module Definitions”

• “Explicit External Constraint Blocks”

• “Generate Constructs in Program Blocks”

• “Error Condition for Using a Genvar Outside of its Generate Block”
on page 67

• “Randomizing Unpacked Structs”

• “Making wait fork Statements Compliant with the SV LRM”

• “Making disable fork Statements Compliant with the SV LRM”

• “Using a Package in a SystemVerilog Module, Program, and
Interface Header”

Extern Task and Function Calls through Virtual
Interfaces

You can define tasks and functions in an interface with one or more
of the modules connected by the interface. You declare them as
export in a modport or as extern in the interface. When they are
called through virtual interfaces, the actual task or function that VCS
executes depends on the interface instance of the virtual interface.

Example of exporting tasks in modports

interface simple_bus ; // Define the interface
modport slave (export task Read);
endinterface: simple_bus

module memMod (simple_bus sb_intf);

15-21

Using SystemVerilog

task sb_intf.Read; // Read method
...
endtask
endmodule

module top;
simple_bus sb_intf(); // Instantiate the interface
memMod mem(sb_intf.slave); // exports the Read tasks
endmodule

Example of extern tasks in interfaces

interface intf;
extern task T1();
extern task T2();
endinterface

module top;
intf i1();
intf i2();

virtual intf vi;
M1 m1(i1);
M2 m2(i1);
M3 m3(i2);
M4 m4(i2);

initial begin
vi = i1;

vi.T1(); // Task i1.T1 in M1
vi.T2(); // Task i1.T2 in M2
vi = i2;
vi.T1(); // Task i2.T1 in M3
vi.T2(); // Task i2.T2 in M4
end
endmodule

module M1(intf i1);
task i1.T1;
…
endtask
endmodule

15-22

Using SystemVerilog

module M2(intf i1);
task i1.T2;
…
endtask
endmodule

module M3(intf i2);
task i2.T1;
…
endtask
endmodule

module M4(intf i2);
task i2.T2;
…
endtask
endmodule

The definition of extern subroutines within an interface shall observe
the following rules:

• Each interface instance may have different implementations of its
extern subroutines.

- The same extern subroutine of different interface instances can
be defined in different modules.

- Different extern subroutines of the same interface instance can
be defined in different modules.

• Every interface instance must have one and only definition of its
extern subroutines.

- If an interface instance containing an extern subroutine, one of
the modules connected must define that subroutine.

- Any extern subroutine of an interface instance cannot be
defined in more than one module.

15-23

Using SystemVerilog

- The module implementing any extern subroutine can be
instantiated only once.

• These rules apply for exported subroutines in modports as well.

Limitations

• Extern task and function calls through virtual interface are not
supported in constraints.

• The interface containing an extern task or function can only be
passed as port to module and program scopes. It cannot be
instantiated inside module defining the extern task/function of
interface and doing so will give an error.

Modport Expressions in an Interface

As described in the SystemVerilog LRM (IEEE Std 1800-2009)
Section 25.5.4 “Modport expressions,” a modport expression allows
you to include the following in the modport list in an interface:

• elements of an array or structure

• concatenation of elements

• assignment pattern expressions

VCS has implemented modport expressions. For the third bullet:
“assignment pattern expressions” constant expressions are allowed
only with input ports.

The following interface example includes modport expressions in a
modport connection list.

15-24

Using SystemVerilog

Example 15-1 Modport Expressions

interface interoceter_intf;
 logic [63:0] intrctr_bus;
 const longint flag=1879048192;
 wire [3:0] w1,w2;
 logic [7:0] log1,log2;
 modport mp1 (output .out(intrctr_bus[31:0]),
 input .in(flag),.pt({log1,log2}));
 modport mp2 (output .out(intrctr_bus[63:32]),
 input .in(7));
endinterface

part-select of a
vector

concatenating elements

The modport expressions in Example 15-1 are as follows:

.out(intrctr_bus[31:0])

.in(flag)

.pt({log1,log2})

.out(intrctr_bus[63:32])

.in(7)

Modport expressions consist of the following:

1. a port name preceded by a period, for example:.out or.pt.

2. The expression enclosed in parentheses, for example:

(intrctr_bus[64:32])

15-25

Using SystemVerilog

Limitations

In addition to “assignment pattern expressions of elements declared
in the interface” being limited to input ports, there also are the
following limitations:

• ref ports with modport expressions are not supported.

• Cross-module references in modport expressions are not
supported.

• Modport expressions containing a mix of nets and variables are
not supported.

• Modport expressions connected to OpenVera ports are not
supported.

• Multiple driver checks are not supported yet.

Interface Classes

An interface class can be seen more as a virtual class whose
methods have to be pure virtual (see Standard for SystemVerilog --
Unified Hardware Design, Specification, and Verification Language
(IEEE Std 1800™ -2012) section 8.21“Polymorphism: dynamic
method lookup”). In addition to pure virtual methods, interface
classes can have type declarations (see the SV LRM section 8.23
“Out-of-block declarations”) and parameters declarations (see
section 6.20 “Constants” and section 8.25 “Typedef class”).
Constraint blocks, nested classes and covergroups are not allowed
inside an interface class. An interface class cannot be nested inside
any other class.

15-26

Using SystemVerilog

Just like a virtual class, an interface class cannot be instantiated,
however its handle can be created, and all the pure virtual methods
declared inside the interface class or its base classes can be
accessed through its class handle.

At run-time a virtual class handle needs to point to a concrete class,
which derives from the virtual class directly or indirectly and provides
a concrete implementation of all its pure virtual methods. This
approach applies a restriction that all the common methods go into
their virtual class, so that they can be accessed using a virtual class
handle, and all the objects which can be used to be pointed to by
such virtual class handles must be descendants of the virtual class.
Interface classes do away with the restriction of being descendant of
it in inheritance hierarchy to be able to be pointed to by its handle,
thus mitigating the effect of not having multiple inheritance.

Interface classes can have multiple inheritance, that is they can
inherit zero or more interface classes using the extends keyword.
In case of multiple inheritance, name conflicts should be resolved.

An interface class handle can point to class objects which implement
the interface class. A class implements an interface class using the
keyword implements. A class can implement zero or more
interface classes using the implements keyword. The
implements keyword is not inheritance, it is a condition, so classes
implementing interface classes do not inherit any type or parameters
from them, however, implementing classes can refer to types and
parameters inside an interface using the scope resolution ::
operator. A class implements an interface class, if it itself implements
the interface class, or if any of its ancestor implements the interface
class.

15-27

Using SystemVerilog

For a non-interface class to implement an interface class it must
provide implementations for the set of methods, declared in interface
class as pure virtual, that satisfy the requirements of a virtual class
method override (see section 8.20 “Abstract classes and pure virtual
methods”).

interface class I;
 pure virtual function string getName();
endclass

class Foo implements I;
 virtual function string getName();
 return “Foo”;
 endfunction
endclass

class Bar extends Foo;
 virtual function string getName();
 return “Bar”;
 endfunction
endclass

module test;
Bar bar = new;
Foo foo = new;
I i;
//I i1 = new;
// Like virtual class, interface class can’t be instantiated.
initial begin
 i = bar;
 $display(i.getName());
 i = foo;
 $display(i.getName());
end
endmodule

15-28

Using SystemVerilog

In the above example interface class I has a pure virtual method
getName, and non-interface class Foo implements interface class I.
As class Bar extends Foo, so, implicitly Bar also implements
interface class I. class Foo provides implementation for pure virtual
function declared inside interface class I.

A class which implements an interface class must have a virtual
method for every pure virtual method in its interface class. A class
that is implementing an interface class can provide implementation
for an interface class pure virtual method either by inheriting/
overriding a virtual method or by defining its own virtual method.

A virtual class can also implement an interface class. When a virtual
class implements an interface class it must either provide a method
implementation for the pure virtual method of interface class, or re-
declare the method prototype with the pure qualifier.

An interface class handle can point to objects of only those classes
which either directly or indirectly implement an interface class using
keyword implements.

Methods declared inside interface classes are allowed to have
default arguments. The default argument should be a constant
expression and, it should be the same for the all the implementing
classes. The default argument should be evaluated in the scope
containing the method declaration.

Difference Between Extends and Implements

When a class extends another class, it inherits all the members and
methods of its superclass which are accessible to it based upon the
access type, however, when a class implements an interface class,
nothing is inherited. If the class needs to access a type or parameter

15-29

Using SystemVerilog

of the interface class, then the class should use the scope resolution
:: operator to access a member of the interface class, just like the
way static members of a class are accessed.

• An interface class can extend zero or more interface classes using
the extends keyword.

• An interface class cannot extend a non-interface class.

• An interface class cannot implement another interface or non-
interface class.

• An interface class cannot extend a type parameter.

• An interface class cannot extend a forward declared interface
class.

• A non-interface class can extend zero or one non-interface class
using the extends keyword.

• A non-interface class cannot extend an interface class.

• A non-interface class can implement zero or more interface
classes using the implements keyword.

• A non-interface class cannot implement non-interface class.

• A non-interface class can extend a class and implement interface
classes simultaneously.

• A non-interface class cannot implement a type parameter.

• A non-interface class cannot implement a forward declared
interface class.

interface class Shape;
 typedef string NAME;
 pure virtual function NAME getShape();

15-30

Using SystemVerilog

endclass

interface class Area;
 pure virtual function int getArea();
endclass

class Rectangle implements Shape, Area;
 int x;
 int y;
 //virtual function NAME getShape();
 //illegal NAME is not accessible

 virtual function Shape::NAME getShape(); // legal
 return “Rectangle”;
 endfunction

 virtual function int getArea();
 return (x*y);
 endfunction
endclass

class Square extends Rectangle;
 virtual function string getShape();
 return “Square”;
 endfunction
endclass

module test;
Shape s;
Rectangle r = new;
Square sq = new;
initial begin
 s = r;
 $display(s.getShape());
 s = sq;
 $display(s.getShape());
end
endmodule

15-31

Using SystemVerilog

In the above example class Rectangle implements interface
classes Shape and Area using keyword implements, and
provides implementation for both the pure virtual methods declared
inside these interface classes. Class Square indirectly/implicitly
implements interface class Shape and Area.

The above example also shows that types and parameters inside
interface class cannot be accessed directly by the class
implementing the interface class, as when a class implements an
interface class, it does not inherit anything from interface class.
Types and parameters inside an interface class are static, and can
be accessed using the class scope resolution :: operator (see
section 8.23 “Out-of-block declarations”)

Cast and Interface Class

If a class implements an interface class, then the class’ object can
be assigned to be the handle of that interface class.

interface class I1;
endclass
interface class I2;
endclass

interface class I3 extends I1, I2;
endclass

interface class I4;
endclass

class A implements I3, I4;
endclass

class B extends A;
endclass

A a = new;

15-32

Using SystemVerilog

B b = new;
I1 i1 = a; // legal, as class A implements interface
 // class I3 which extends I1;
I2 i2;
I3 i3 =a ; // legal, as class A implements interface class I3;
$cast(i2, b); // casting is not required, as class B
 // extends A which implements interface class
 // I3 which in turn extends I2;
$cast(a, i2) ; // valid, casting is must here.

Interface class handles can be cast dynamically if the actual object
assigned to destination is valid.

$cast(i4, i3); // valid, as i3 is pointing to object of
 // class “A”, which implements interface
 // class I4;

Name Conflicts and Resolution

A class can implement multiple interface classes, and interface
classes can extend multiple interface classes. In such cases
identifiers from multiple name spaces may become visible in the
single name space, leading to name conflicts. Such name conflicts
must be resolved, even when there is no usage of the identifier in the
current scope.

Name Conflicts During Implementation

A class can implement multiple interface classes, and when the
same method name appears in more than one interface classes, a
method name conflict happens which must be resolved by providing
an implementation of the method that simultaneously provides
implementation for all the implemented interface classes’ method
with the same name.

interface class I1;

15-33

Using SystemVerilog

 pure virtual task t();
endclass

interface class I2;
 pure virtual task t();
endclass

class A implements I1, I2;
 virtual task t();
 $display(“A::t”);
 endtask
endclass

In this example class A is implementing two interface classes I1,
and I2 both of which has method with name t. class A resolves the
conflict by providing an implementation of the virtual task A::t
which simultaneously provides implementation for both I1::t and
I2::t. However, it may not be always possible to resolve such
conflict, and that would result into error.

interface class I1;
 pure virtual task t(int i);
endclass

interface class I2;
 pure virtual task t();
endclass

class A implements I1, I2;
 virtual task t();
 $display(“A::t”);
 endtask
endclass

In this example, although A::t provides a valid implementation for
I2::t, but it does no provide a valid implementation for I1::t, so,
it is an error.

15-34

Using SystemVerilog

Name Conflicts During Inheritance

An interface class can inherit type, parameters, and pure virtual
methods from multiple base classes, and if the same name is
inherited from multiple base interface classes, then a name conflict
occurs and it must be resolved. Types and parameters name conflict
should be resolved by providing a declaration of type/parameter
which overrides all such name collisions. For methods it should
provide a single prototype which overrides all the name collisions.
The method prototype must also be a valid virtual method override
(see section 8.20 “Abstract classes and pure virtual methods”) for
any inherited method of the same name.

interface class I1;
 pure virtual task t(int i);
endclass

interface class I2;
 pure virtual task t(int i);
endclass

interface class I3 extends I1, I2;
 pure virtual task t(int i);
endclass

In this example I3 inherits method t from both I1 and I2, so, it
provides a prototype for method t which resolves the conflict, and
the prototype is also a valid virtual method override.

interface class I1;
 pure virtual task t(int i);
endclass

interface class I2 extends I1;
endclass

interface class I3 extends I1;
endclass

15-35

Using SystemVerilog

interface class I4 extends I2, I3;
endclass

In the case of diamond relationship name conflict does no occur if
the originating class for the method is the same. So, in the above
example, there is no conflict for method name t in class I4 because
I2::t and I3::t, which I4 inherits, are actually coming from the
same interface class I1, therefore there would be only a single copy
of t in I4 leading to no name conflict.

interface class I1;
 typedef int INT;
 pure virtual task t(INT i);
endclass

interface class I2;
 typedef int INT;
 pure virtual task t1(INT j);
endclass

interface class I3 extends I1, I2;
 typedef int INT;
endclass

In the above example even though INT is of the same type in both
the interface classes I1 and I2, still I3 needs to resolve the conflict
by redefining the type.

Interface Class and Randomization

It is legal to call the randomize() method on an interface class
handle. An inline constraint is also legal on an interface class handle,
however, it is of little use, because interface class cannot have any
members. The rand_mode() and constraint_mode() are
illegal as an interface class handle.

15-36

Using SystemVerilog

Unlike non-interface classes, interface classes have virtual and
empty pre_randomize() and post_randomize() built-in
methods, so, any direct call to these methods using interface class
handle would lead to call to these empty methods. However, when
randomize is be called on interface class handle, that would lead to
the call of randomize method on the class object being pointed to by
interface class handle which in turn would internally call
pre_randomize() and post_randomize() methods of the
actual object pointed to by interface class handle.

interface class I;
endclass

class A implements I;
 rand int i;
 function void pre_randomize();
 $display(“A::pre_randomize”, i);
 endfunction

 function void post_randomize();
 $display(“A::post_randomize”, i);
 endfunction
endclass

A a = new;
I i = a;

i.randomize(); // it would call A::pre_randomize()
 // and A::post_randomize() internally.
i.pre_randomize(); // built-in empty body I::pre_randomize
 // would be called.

15-37

Using SystemVerilog

Package Exports

Declarations imported into a package are not visible by way of
subsequent imports of that package by default. Package export
declarations allow a package to specify those imported declarations
to be made visible in subsequent imports.

There are three forms of export directives:

export pkg::name;

This both imports and exports name from the specified package
named pkg.

export pkg::*;

This exports all names imported from package pkg into the
current package. Those imports can be by name reference or by
named export directive.

export *::*;

Exports all names imported from any packages into the current
package. Those imports can be by name reference or by named
export directive. An export directive *::* must match at least one
import directive

Unlike package import directives, package export directives can only
occur at package scope, and cannot occur in $unit.

Example 15-2 illustrates the package export functionality:

15-38

Using SystemVerilog

Example 15-2 The Package Import Functionality Example 1

package p1;
int x, y;

endpackage
package p2;

import p1::x;
export p1::*;

endpackage

package p3;
import p1::*;
import p2::*;
export p2::*;
int q = x;

endpackage

exports p1::x as the variable
named x

p1::x and p2::x are the same
declaration

p1::x and q are made available
from p3

Although p1::y is a candidate
for import, it is not actually imported
since it is not referenced.

Since p1::y is not imported, it is not
made available by the export

Severity System Tasks as Procedural Statements

The severity system tasks can be included as procedural statements
in user-defined tasks and functions, in initial, final and any always
blocks.

Example 15-3 shows using these system tasks in an initial block

Example 15-3 Severity Statements in Procedural Blocks

initial
if (Verilog_simulator == "VCS")
 $display("\n\t Smart User! \n");
 else
 begin
 #10 $warning(2,"\n\t Expect a performance cost \n\n");
 if (Verilog_simulator == "Questa_questionable")

15-39

Using SystemVerilog

 #10 $info (3,"\n\t you paid too much \n\n");
 if (Verilog_simulator == "Indecisive")
 #10 $fatal(1,"\n\t give up now\n");

In Example 15-3, because the conditional expression:

(Verilog_simulator == "VCS")

is true, VCS displays the following when it compiles and simulates
Example 15-3:

 Smart User!

If the conditional expression were as follows:

(Verilog_simulator == "Indecisive")

VCS displays the following when it compiles and simulates Example
15-3:

Warning: "exp1.sv", 21: mod: at time 10
 2
 Expect a performance cost

Fatal: "exp1.sv", 25: mod: at time 20

 give up now

Note:
The severity system tasks can be used as elaboration system
tasks. Elaboration system tasks require the -assert svaext
compile-time option and keyword argument.

15-40

Using SystemVerilog

Width Casting Using Parameters

VCS used to support width casting using integers only, such as:

4’(x)

However, according to the 1800-2009IEEE Standard for
SystemVerilog, section 6.24.1:

“If the casting type is a constant expression with a positive integral
value, the expression in parentheses shall be padded or truncated to
the size specified. It shall be an error if the size specified is zero or
negative.”

VCS now supports any constant expression could be used in width
casting. For example:

parameter p = 16;
(p+1)’(x-2)// This is now supported

According to the syntax:

casting_type ::= simple_type | constant_primary | signing
| string | const
constant_primary ::= // from A.8.4
primary_literal | ps_parameter_identifier
constant_select
| specparam_identifier [[constant_range_expression]]
| genvar_identifier35 | [package_scope | class_scope]
enum_identifier
| constant_concatenation |
constant_multiple_concatenation
| constant_function_call | (
constant_mintypmax_expression)
| constant_cast | constant_assignment_pattern_expression
| type_reference36

15-41

Using SystemVerilog

The constant expressions could also include parameter cross-
module references. So the following examples are legal and now are
supported.

Example 15-4 Casting for a Parameter with an Expression

module test (input clk);
 parameter integer signed XYZ_NUMBER_VL = 3;

 logic [3:0] next_vls_in_use_reg;
 int next_vl_to_use_reg, next_vl_to_use_re2;
 int XYZ_VL_SIZE, vl_index;

 always @ (posedge clk) begin
 vl_index = 5;

 next_vl_to_use_re2 = 4'(3); // ok
 next_vl_to_use_reg = XYZ_NUMBER_VL’(vl_index) ;
 // the line above with an expression now supported
 end
endmodule

Example 15-5 Casting for a Parameter with a Localparam

program p1;
 localparam int aa=4;
 localparam int bb = 10;

 logic[aa-1:0] mytime;
 initial begin
 mytime = aa'(bb); // line now supported
 end
endprogram

Casting type can be any positive constant expression and the
expression in the parenthesis can be padded or truncated based on
the casting type. Cast type can also be parameter cross-module
references (which are constant expressions) which can include
concatenation as well as well assignment patterns.

15-42

Using SystemVerilog

Example 15-6 Casting type a positive constant expression

module m #(p = 0);
endmodule

module test;
 localparam int P1=4;
 localparam int P2 = 10;

 logic[P1-1:0] mytime;

 m #(2) u1();

 initial begin
 mytime = (u1.P1+u1.P1)'(bb);
// line above now supported
 end
endmodule

The std::randomize() Function

The randomize() function randomizes variables that are not class
members.

Syntax
[std::]randomize(variable-identifier-list)
 [with constraint-block]

Description

SystemVerilog defines extensive randomization methods and
operators for class members. Most modeling methodologies
recommend the use of classes for randomization. However, there
are situations where the data to be randomized is not available in a
class. SystemVerilog provides the std::randomize() function to
randomize variables that are not class members.

15-43

Using SystemVerilog

The std::randomize() function can be used in the following
scopes:

• module

• function

• task

• class method

Arguments to std::randomize() can be of integral types
including:

• integer

• bit vector

• enumerated type

Object handles and strings cannot be used as arguments to
std::randomize().

The variables passed to std::randomize() must be visible in the
scope where the function is called. Cross-module references are not
allowed as arguments to the std::randomize() function.

All constraint expressions currently available with
obj.randomize() in VCS can be used as constraints in the
constraint-block.

Only constraints specified in the constraint block are honored. Any
rand mode specified on the class members is ignored when
std::randomize() is called with the given class member.

15-44

Using SystemVerilog

The pre_randomize() and post-randomize() tasks are not
called when std::randomize() is used within a class member
function.

The “std::” prefix must be explicitly specified for the
randomize() call.

The std::randomize() function is supported in VCS. Files
containing std::randomize() calls can be compiled with
vlogan.

The function using std::randomize() can be declared in a task
inside a package that can be imported into modules and programs.

Example

module M;
 bit[11:0] addr;
 integer data;

 function bit genAddrData();
 bit success;
 success = std::randomize(addr, data);
 return success;
 endfunction

 function bit genConstrainedAddrData();
 bit success;
 success = std::randomize(addr, data)
 with {addr > 1000; addr + data < 20000;};
 return success;
 endfunction

endmodule

15-45

Using SystemVerilog

The genAddrData function uses std::randomize(addr,
data) to assign random values to addr and data variables. The
std::randomize() function randomizes any variables that are
visible in the scope.

The getConstrainedAddrData() function uses
std::randomize(addr, data) to assign random values to
addr and data variables. In this case there is an additional
constraint given to the call, which is that addr is greater than 1,000
and addr+data is less than 20,000.

SystemVerilog Bounded Queues

A bounded queue is a queue limited to a fixed number of items, for
example:

bit q[$:255];

a bit queue whose maximum size is 257 bits

int q[$:5000];

an int queue whose maximum size is 50001

This section explains the how bounded queues work in certain
operations.

q1 = q2;

This is a bounded queue assignment. VCS copies the items in q2
into q1 until q1 is full or until all the items in q2 are copied into q1.
The bound number of items in the queues remain as you declared
them.

q.push_front(new_item)

15-46

Using SystemVerilog

If adding a new item to the front of a full bounded queue, VCS
deletes the last item in the back of the queue.

q.push_back(new_item)

If the bounded queue is full, a new item cannot be added to the back
of the queue and the queue remains the same.

q1 === q2

A bounded queue comparison behaves the same as an unbounded
queue, the bound sizes should be the same when the two bounded
queues are equal.

Limitation for SystemVerilog Bounded Queues

Bounded queues are not supported in constraints.

wait() Statement with a Static Class Member Variable

A wait statement with a static class member variable is now
supported. The following is an example:

class foo;
 static bit is_true = 0;
 task my_task();
 fork
 begin
 #20;
 is_true = 1;
 end
 begin
 wait(is_true == 1);
 $display("%0d: is_true is now %0d", $time, is_true);
 end
 join
 endtask: my_task

15-47

Using SystemVerilog

endclass: foo

program automatic main;
 foo foo_i;
 initial begin
 foo_i = new();
 foo_i.my_task();
 end
endprogram: main

Support for Consistent Behavior of Class Static
Properties

VCS supports access and usage of class static members in
structural contexts including continuous assign and force.

Consider the following test.sv testcase that uses class static
member in a continuous assign statement:

class mymode;
 static int mode;
endclass

class testbench
mymode p;
function new();

p = new();
endfunction

endclass

module test()

testbench tb = new();
int local_mode;

assign local_mode = tb.p.mode; //class static variable
in continuous assign

always@(local_mode) $display($time, " local_mode
changed: module tb.p = %d", local_mode);

15-48

Using SystemVerilog

always@(tb.p.mode) $display($time, " tb.p.mode changed:
module tb.p = %d", tb.p.mode);
initial begin

 #1;
 $display($time, " local_mode = %d, tb.p.mode = %d",

local_mode, tb.p.mode);
 #10;
 $display($time, " local_mode = %d, tb.p.mode = %d",

local_mode, tb.p.mode);
end

endmodule

module top;

test t();
testbench tb = new();

 initial begin
 tb.p.mode = 0;
 #10;
 tb.p.mode = 10;
 #10;
 end

endmodule

The expected results after simulating this testcase is that
local_mode local variable must be equal to tb.p.mode at all
times.

With previous releases, the results are as follows:

1 local_mode = 0, tb.p.mode = 0
10 tb.p.mode changed: module tb.p = 0
11 local_mode = 0, tb.p.mode = 10

With this release, the results are as follows:

1 local_mode = 0, tb.p.mode = 0
10 tb.p.mode changed: module tb.p = 10
10 local_mode changed: module tb.p = 10

15-49

Using SystemVerilog

11 local_mode = 10, tb.p.mode = 10

Parameters and Localparams in Classes

You can include parameters and localparams in classes, for
example:

class cls;
 localparam int Lp = 10;
 parameter int P = 5;
endclass

SystemVerilog Math Functions

Verilog defines math functions that behave the same as their
corresponding math functions in C. These functions are as follows:

$ln(x) Natural logarithm
$log10(x) Decimal logarithm
$exp(x) Exponential
$sqrt(x) Square root
$pow(x,y) x**y
$floor(x) Floor
$ceil(x) Ceiling
$sin(x) Sine
$cos(x) Cosine
$tan(x) Tangent
$asin(x) Arc-sine
$acos(x) Arc-cosine
$atan(x) Arc-tangent
$atan2(x,y) Arc-tangent of x/y
$hypot(x,y) sqrt(x*x+y*y)

15-50

Using SystemVerilog

Streaming Operators

Streaming operators can be applied to any bit-stream data types
consists of the following:

• Any integral, packed, or string type

• Unpacked arrays, structures, or class of the above types

• Dynamically sized arrays (dynamic, associative, or queues) of any
of the above types

Packing (Used on RHS)

Primitive Operation
expr_target = {>>|<< slice{expr_1, expr_2, ..., expr_n }}

The expr_target and expr_i can be any primary expressions of
any streamed data types.

The slice determines the size of each block measured in bits. If
specified, it may be either a constant integral expression, or a simple
type.

The << or >> determines the order in which blocks of data are
streamed.

$sinh(x) Hyperbolic sine
$cosh(x) Hyperbolic cosine
$tanh(x) Hyperbolic tangent
$asinh(x) Arc-hyperbolic sine
$acosh(x) Arc-hyperbolic cosine
$atanh(x) Arc-hyperbolic tangent
$clog2(n) Ceiling of log base 2 of n (as integer)

15-51

Using SystemVerilog

Streaming Concatenation
expr_target = {>>slice1 {expr1, expr2, {<< slice2{expr3,
expr4}}}

Unpacking (Used on LHS)

Primitive operation
{>>|<< slice{expr_1, expr_2, ..., expr_n }} = expr_src;

If the unpacked operation includes unbounded dynamically sized
types, the process is greedy. The first dynamically sized items is
resized to accept all the available data (excluding subsequent fixed
sized items) in the stream; any remaining dynamically sized items
are left empty.

Streaming Concatenation
{>>slice1 {expr1, expr2, {<< slice2{expr3, expr4}}} =
expr_src;

Packing and Unpacking

{>>|<< slice_target{target_1, target_2, ..., target_n }} =
{>>|<< slice_src{src_1, src_2, ..., src_n }};

Propagation and force Statement

Any operand (either dynamic or not) in the stream can be
propagated and forced/released correctly.

15-52

Using SystemVerilog

Error Conditions

• Compile time error for associative arrays as assignment target

• Run time error for Any null class handles in packing and unpacking
operations

Structures with Streaming Operators

Although the whole structure is not allowed in the stream, any
structure members, sub structures excluded, could be used as an
operand of both packing and unpacking operations.

For example:

 s1 = {>>{expr_1, expr_2, .., expr_n}} //invalid
 s1.data = {>>{expr_1, expr_2, expr_n}}//valid

Support for with Expression

VCS supports the with expression with streaming operator.

The syntax of the with expression defined in the IEEE Standard for
SystemVerilog (IEEE Std P1800-2012) is as follows:

stream_expression ::= expression [with [
array_range_expression]]

array_range_expression ::=
expression
| expression : expression
| expression +: expression
| expression -: expression

Semantics

The feature has the following semantics:

15-53

Using SystemVerilog

1. You can set the array expression range within the with construct
to an integral type or to an expression that evaluates to an integral
type. You cannot use other types.

For example,

function int eval(int a);
 eval = a;
endfunction

{ >> { target with [0 : 7]}} = 31;//case 1
{ >> { target with [0 : eval(31)]}} = 31;//case 2

For case 2, the function evaluates to an integral type. Hence, this
case is allowed.

2. You can set the expression before the with construct to any
single unpacked dimensional array that includes a queue.

For example,

bit target[][];

Usage:

{ >> { target with [0:2]}} = data;

This case is illegal, as the expression before the with expression
has multiple unpacked dimension.

Usage:

{ >> { target[3] with [0:2]}} = data;

However, this case is legal as the expression before the with
expression has a single unpacked dimension.

15-54

Using SystemVerilog

3. The expression within the with construct is evaluated
immediately before its corresponding array is streamed (packed
or unpacked). Thus, the expression can refer to data that are
unpacked by the same operator but before the array.

For example,

{ >> { a, target with [a:0], b}} = data;

In this case, assuming target is a single dimension unpacked array
and the value of a is 2 before streaming and the value of a is 4
after streaming, the value of the index should be 4.

4. When you use the with expression within the context of an
unpack operation and the array is a variable-sized array, the with
expression must be resized to accommodate the expression
range.

For example,

Size of data = 32, size of a = 8, sizeof b = 8
bit target[];
{ >> { a, target, b}} = data;

In this case, a total of 16 bits are allocated to the target.

{ >> { a, target with [0: 7], b}} = data;

However, in this case only 8 bits are allocated to the target.
Therefore, you can limit the data allocation to any dynamic type
using the with expression.

5. If the array is a fixed-size array and the expression range
evaluates to a range outside the extent of the array, only the range
that lies within the array is unpacked and an error is issued.

For example,

bit target[0:3];

15-55

Using SystemVerilog

{ >> {target with [0:7}} = data;

This is illegal, as it exceeds the array bound.

6. If the range expression evaluates to a range smaller than the
extent of the array (fixed or variable size), only the specified items
are unpacked into the designated array locations. The rest of the
array is unmodified.

7. When you use the with expression within the context of a pack
(on RHS), it behaves in the same way as an array slice.

For example,

data = { >> {target with [a:0]}};

The above example can be interpreted directly as {>>
{target[value_of_a:0]}}. In array slice, variable index
might not be allowed in all the cases, but with the with
expression, you can provide a variable index.

8. You can set the array range expression within the with construct
to be of integral type and it evaluates to values that lie within the
bounds of a fixed-size array or to a positive value for dynamic
arrays or queues.

Constant Functions in Generate Blocks

Calls to constant user-defined functions can be included in
generate blocks.

As stated in the IEEE Std 1800-2009, you can use these constant
functions to build complex calculations. The standard also
establishes things that cannot be in a user-defined function for it to
operate as a constant function. For example, a constant function
cannot have an output, inout, or ref argument, they cannot

15-56

Using SystemVerilog

contain statements that schedule events after the function has
returned its value, or contain the fork construct. There are more
than a few other requirements.

A call to a constant function can occur in a generate block but the
generate block cannot contain a definition or declaration of a
constant function.

Example 15-7 contains a module definition that includes a
generate block and a user-defined function that qualifies as a
constant function. The generate block contains a call to this
constant function.

15-57

Using SystemVerilog

Example 15-7 Calling a Constant Function in a Generate Block

module interoceter ();
parameter adrs_width = 4;
 generate
 genvar dim1;
 genvar dim2;
 for (dim1 = 1; dim1 <= adrs_width; dim1 = dim1 + 1)
 begin : outer_floop
 for (dim2 = 0; dim2 < adrs_width; dim2 = dim2 + const_func(dim1))
 begin : inner_floop
 reg [2:0] P;
 end : inner_floop
 end : outer_floop
 endgenerate

 function integer const_func;
 input [31:0] lwrd; integer intgr0;
 begin : func_main
 if (lwrd > 0)
 begin : ifloop
 lwrd = {lwrd >> 1};
 intgr0 = 1;
 while (lwrd > 0)
 begin : wloop
 lwrd = {lwrd >> 1};
 intgr0 = {intgr0 << 1};
 end : wloop
 end : ifloop
 else
 intgr0 = 0; // return 0 when lwrd <= 0
 const_func = intgr0;
 end : func_main
 endfunction
endmodule

constant function call

constant function

Support for Aggregate Methods in Constraints Using the
“with” Construct

Aggregate methods in constraint blocks using the with construct
have two variants, as shown in the following code example:

15-58

Using SystemVerilog

byte arr[3] = { 10, 20, 30 };
class C;
 rand int x1;
 rand int x2;
 rand int x3;
 rand int x4;

 constraint cons {
 // Newly implemented variant
 x1 == arr.sum() with (item * item);
 x2 == arr.sum(x) with (x + x);

 // Previously implemented variant
 // Supported in older releases
 x3 == arr.sum() with (arr[item.index] * arr[item.index]);
 x4 == arr.sum(x) with (arr[x.index] + arr[x.index]);
 }
endclass

The first variant is implemented in this release.

For a discussion and examples of aggregate methods in constraints
using the with construct, see IEEE Std 1800-2009, section 7.12.4
“Iterator index querying.”

As specified in the standard, the entire with expression must be in
parentheses.

Debugging During Initialization SystemVerilog Static
Functions and Tasks in Module Definitions

You can tell VCS to enable UCLI debugging when initialization
begins for static SystemVerilog tasks and functions in module
definitions with the -ucli=init runtime option and keyword
argument.

15-59

Using SystemVerilog

This debugging capability enables you to do, among other things, to
set breakpoints during initialization.

If you omit the =init keyword argument and just enter the -ucli
runtime option, the UCLI begins after initialization and you cannot
debug inside static initialization routines during initialization.

Note:

- Debugging static SystemVerilog tasks and functions in program
blocks during initialization does not require the =init keyword
argument.

- This feature does not apply to SystemC code.

When you enable this debugging VCS displays the following prompt
indicating that the UCLI is in the initialization phase:

init%

When initialization ends the UCLI returns to its usual prompt:

ucli%

During the initialization the run UCLI command with the 0 argument
(run 0), or the -nba or -delta options runs VCS until initialization
ends. As usual, after initialization, the run 0 command and
argument runs the simulation until the end of the current simulation
time.

During initialization the following restrictions apply:

• UCLI commands that alter the simulation state, such as a force
command, create an error condition.

• Attaching or configuring Cbug, or in other ways enabling C, C++,
or SystemC debugging during initialization is an error condition.

15-60

Using SystemVerilog

• The following UCLI commands are not allowed during
initialization:

session management commands: save and restore

signal and variable commands: force, release, and call

The signal value and memory dump specification commands:
memory -read/-write and dump

The coverage commands: coverage and assertion

Example

Consider the following code example:

module mod1;
class C;
 static int I=F();
 static function int F();
 logic log1;
 begin
 log1 = 1;
 $display("%m log1=%0b",log1);
 $display("In function F");
 F = 10;
 end
 endfunction
endclass
endmodule

If you simulate this example, with the -ucli runtime option, you see
the following:

Command: simv =ucli
Chronologic VCS simulator copyright 1991-year
Contains Synopsys proprietary information.
Compiler version version-number; Runtime version version-

15-61

Using SystemVerilog

number; simulation-start-date-time
mod1.\C::F log1=1
In function F
 V C S S i m u l a t i o n R e p o r t
Time: 0
CPU Time: 0.510 seconds; Data structure size: 0.0Mb
simulation-ends-day-date-time

VCS executed the $display tasks right away and the simulation
immediately ran to completion.

If you simulate this example, with the -ucli=init runtime option
and keyword argument, you see the following:

Command: simv -ucli=init
Chronologic VCS simulator copyright 1991-year
Contains Synopsys proprietary information.
Compiler version version-number; Runtime version version-
number; simulation-start-date-time
init%

Notice that VCS has not executed the $display system tasks yet
and the prompt is init%.

You can set a breakpoint, for example:

init% stop -in \C::F
1

To run through the initialization phase:

init% run 0

Stop point #1 @ 0 s;
init%

The breakpoint halts VCS.

15-62

Using SystemVerilog

If you run the simulation up to the end of the initialization phase with
the run 0 UCLI command again, you see the following:

init% run 0
mod1.\C::F log1=1
In function F
ucli%

Now VCS executes the $display system tasks and changes the
prompt to ucli%.

Explicit External Constraint Blocks

External constraint blocks are constraint blocks, also called the
constraint bodies, that are outside of a class, and at the same
hierarchical level of that class. You enable them with external
constraint prototypes in the class.

There are two forms of external constraint prototypes:

• explicit — where you include the extern keyword in the
prototype.

• implicit — where you omit the extern keyword in the prototype.

The explicit form is implemented in this release.

The following code example shows these two forms of external
constraint prototypes.

class Class1;
 rand int int1,int2;
 constraint imp_ext_cnstr_proto1; // implicit form
 extern constraint exp_ext_cnstr_proto2; // explicit form
...
endclass

15-63

Using SystemVerilog

The external constraint block, or body, for these prototypes must be
at the same hierarchical level as the class and follow the class
definition.

The following are external constraint blocks or bodies for these
external constraint prototypes:

constraint Class1::imp_ext_cnstr_proto1 {
 int1 inside {0, [3:5], [7:31]};}
constraint Class1::exp_ext_cnstr_proto2 {
 int2 dist {100 := 1, 101 := 2};}

Besides the extern keyword, the difference between the implicit
and explicit forms is how VCS responds when the external constraint
block or body for a prototype is missing:

• With the implicit form, VCShandles a missing external constraint
block as an empty constraint block. This is not an error condition
and VCSjust outputs a warning message, for example:

Warning-[BCNACMBP] Missing constraint definition
doc_example.sv, 6
prog, "constraint imp_ext_cnstr_proto1;"
 The constraint imp_ext_cnstr_proto1 declared in the
class Class1 is not defined.
Provide a definition of the constraint body
imp_ext_cnstr_proto1 or remove the constraint declaration
imp_ext_cnstr_proto1 from the class declaration Class1.

An empty constraint block would be the same as the following:

constraint imp_ext_cnstr_proto1 { };

15-64

Using SystemVerilog

With a missing external constraint block for the implicit form,
because it is not an error condition, VCScontinues to compile or
elaborate and generates the simv executable. If you do not notice
the warning message you might expect to see the missing
constraint block constraining the values of the random variables.

• With the explicit form, a missing external constraint block is an
error condition, for example:

Error-[SV_MEECD] Missing explicit external constraint def
doc_example.sv, 7
prog, "constraint exp_ext_cnstr_proto2;"
The explicit external constraint 'exp_ext_cnstr_proto2'
declared in the class 'Class1' is not defined.
Provide a definition of the constraint body
'exp_ext_cnstr_proto2' or remove the explicit external
constraint declaration 'exp_ext_cnstr_proto2' from the
class declaration 'Class1'.

With a missing external constraint block for the explicit form,
because it is an error condition, VCS does not compile or
elaborate.

Using an Empty Constraint Block

You can use the implicit form of a constraint prototype, without the
corresponding constraint block, in a subclass to remove a constraint
from a base class, for example:

module top;
class C;
rand int x;
 constraint protoC_1 { x < 5; }
 constraint protoC_2 { x > 3; }
endclass

class CD extends C;
 rand int y;
 constraint protoC_1; // removing this constraint in

15-65

Using SystemVerilog

 // this subclass
 constraint protoCD_1 { x < 6; } // applying a new constraint
 // on x
endclass

C ci = new;
CD cdi = new;
int res1;
int res2;

initial begin
 repeat (20) begin
 res1 = ci.randomize(); // here x can have value 4 only
 res2 = cdi.randomize(); // here x can have values 4 and 5
 if ((res1 == 1) && (res2 == 1))
 $display("niru>> ci.x=%d cdi.x=%d",ci.x, cdi.x);
 end
end

endmodule

Generate Constructs in Program Blocks

Generate constructs are now supported in program blocks, not just
in modules.

These constructs are described in The Verilog LRM, IEEE Std 1364-
2005 in the following sections:

12.4 Generate constructs

12.4.1 Loop generate constructs

12.4.2 Conditional generate constructs

The following are examples of these constructs in a program block:

15-66

Using SystemVerilog

program prog;
...
generate
 reg reg1;
endgenerate

if (1) logic log1;

genvar gv1;
for(gv1=1; gv1<10; gv1++) logic log2;

case (param1)
 0 : logic log3;
 ...
endcase

endprogram

The first is a generate region, specified with the generate and
endgenerate keywords inside a program block:

generate
 reg reg1;
endgenerate

The second is a conditional generate construct with the if keyword:

if (1) logic log1;

The third is a generate loop variable declared with the genvar
keyword, followed by a for loop for that variable:

genvar gv1;
for(gv1=1; gv1<10; gv1++) logic log2;

The fourth is a generate case construct:

case (param1)

15-67

Using SystemVerilog

 0 : logic log3;
 ...
endcase

Error Condition for Using a Genvar Outside of its
Generate Block

A genvar variable declared in local scope of a generate block, that is
used outside that block is an error condition starting from
VCS2011.12-FCS release. The following code example shows this
error condition:

module test;
generate
 for (genvar i = 0; i < 1; i++)
 begin
 a1: assert final (1);
 end
endgenerate
generate
 for (i = 0; i < 1; i++)
 begin
 a1: assert final (1);
 end
endgenerate
endmodule

Compiling this example with the following command line:

vcs generate.sv -sverilog -assert svaext

Results in the following error message:

Error-[IND] Identifier not declared
generate.sv, 9
 Identifier 'i' has not been declared yet. If this error
is not expected,

15-68

Using SystemVerilog

 please check if you have set `default_nettype to none.

1 error

To fix this error, declare genvar i in module scope.

Randomizing Unpacked Structs

You can now randomize members of an unpacked struct. You can do
this in the following ways:

• use the scope randomize method std::randomize()

• use the class randomize method randomize()

You can also:

• disable and re-enable randomization in an unpacked struct with
the rand_mode() method.

• use in-line random variable control to specify the randomized
variables with an argument to the randomize() method.

Using the Scope Randomize Method std::randomize()

The following example illustrates using this method:

Example 15-8 First Example of the Scope Randomize Method
std::randomize()

module test();

typedef struct {
 bit [1:0] b1;
 integer i1;
 } ST1;

15-69

Using SystemVerilog

ST1 st1;

initial
 repeat (4)
 begin
 std::randomize(st1);
 #10 $display("\n\n\t at %0t",$time);
 $display("\t st1.b1 is %0d",st1.b1);
 $display("\t st1.i1 is %0d",st1.i1);
 end

endmodule

This example randomizes struct instance st1. The $display
system tasks display the following:

at 10
 st1.b1 is 2
 st1.i1 is 1474208060

 at 20
 st1.b1 is 1
 st1.i1 is 816460770

 at 30
 st1.b1 is 3
 st1.i1 is -1179418145

 at 40
 st1.b1 is 0
 st1.i1 is -719881993

Here is another code example that randomizes members of an
unpacked struct and uses constraints:

15-70

Using SystemVerilog

Example 15-9 Second Example of the Scope Randomize Method
std::randomize()

module test;
 typedef struct {
 rand byte aa;
 byte bb;
 } ST;

 ST st;
 bit [3:0] c;

initial begin
 std::randomize(st.bb); // std randomization on a
 // struct member
 std::randomize(st) with { st.aa > 10; };
 // support st.aa in with block
 std::randomize(c,st) with { st.aa > c; };
 $display("\n\n\t at %0t",$time);
 $display("\t st.aa is %0d",st.aa);
 $display("\t st.bb is %0d",st.bb);
 $display("\t bit c is %0d",c);
 end
endmodule

The $display system tasks display the following:

at 0
 st.aa is 121
 st.bb is -9
 bit c is 0

Example 15-10 Third Example of the Scope Randomize Method
std::randomize()

module test;
 typedef struct {
 byte a0;
 byte b0;
 } ST0;
 typedef struct {

15-71

Using SystemVerilog

 byte aa;
 ST0 st0;
 } ST_NONE;

 typedef struct {
 rand byte aa;
 byte bb;
 } ST_PART;

 typedef struct {
 rand byte aa;
 randc byte bb;
 } ST_ALL;

 ST_NONE st;
 ST_PART st1;
ST_ALL st2;

initial begin
 repeat (5) begin
 // random variables: st.aa st.st0.a0 st.st0.b0
 std::randomize(st);

 // random variables: st1.aa st.bb
 std::randomize(st1) with {st1.aa>st1.bb;};

 // random variables: st2.aa st2.bb
 std::randomize(st2);

 $display("st %p",st);
 $display("st1 %p",st1);
 $display("st2 %p",st2);
 end
end

endmodule

This example randomizes unpacked struct instance st1. The
$display system tasks display the following:

st '{aa:54, st0:'{a0:60, b0:125}}

15-72

Using SystemVerilog

st1 '{aa:-125, bb:-126}
st2 '{aa:-9, bb:-90}
st '{aa:27, st0:'{a0:-75, b0:-6}}
st1 '{aa:-37, bb:-47}
st2 '{aa:-106, bb:49}
st '{aa:-60, st0:'{a0:-86, b0:-60}}
st1 '{aa:-71, bb:-103}
st2 '{aa:-120, bb:-15}
st '{aa:44, st0:'{a0:-50, b0:5}}
st1 '{aa:-69, bb:-96}
st2 '{aa:96, bb:95}
st '{aa:122, st0:'{a0:-94, b0:-16}}
st1 '{aa:-2, bb:-63}
st2 '{aa:18, bb:-12}

Using the Class Randomize Method randomize()

The following example illustrates using this method.

Example 15-11 The Class Randomize Method randomize()

module test();

typedef struct {
 rand bit [1:0] b1;
 rand integer i1;
 } ST1;

class CC;
 rand ST1 st1;
endclass

CC cc = new;

initial
 repeat (4)
 begin
 cc.randomize();
 #10 $display("\n\n\t at %0t",$time);
 $display("\t cc.st1.b1 is %0d",cc.st1.b1);
 $display("\t cc.st1.i1 is %0d",cc.st1.i1);

15-73

Using SystemVerilog

 end

endmodule

This example randomizes instance cc of class CC that contains
unpacked struct ST. The $display system tasks display the
following:

at 10
 cc.st1.b1 is 3
 cc.st1.i1 is -1241023056

 at 20
 cc.st1.b1 is 3
 cc.st1.i1 is -1877783293

 at 30
 cc.st1.b1 is 1
 cc.st1.i1 is 629780255

 at 40
 cc.st1.b1 is 3
 cc.st1.i1 is 469272579

Here is another code example:

Example 15-12 Another Example of the Class Randomize Method
randomize()

module test;

typedef struct {
 bit[3:0] c;
 randc bit[1:0] d;
} ST0;

typedef struct {

15-74

Using SystemVerilog

 rand bit[5:0] a;
 rand bit[5:0] b;
 rand ST0 st0;
 bit [5:0] e;
}ST;

class CC;
 rand ST st;
endclass

CC cc = new;

initial begin
repeat (10) begin
 // random variables: cc.st.a cc.st.b and cc.st.st0.d
 // state variables: cc.st.e and cc.st.st0.c
 cc.randomize() with { st.a<10 ; st.b>10; st.a+st.b==64;};

 $display("st %p",cc.st);
end
end

endmodule

This example randomizes class instance cc according to the
constraint that follows the with keyword. The $display system
task displays the following:

st '{a:'h7, b:'h39, st0:'{c:'h0, d:'h0}, e:'h0}
st '{a:'h8, b:'h38, st0:'{c:'h0, d:'h1}, e:'h0}
st '{a:'h1, b:'h3f, st0:'{c:'h0, d:'h3}, e:'h0}
st '{a:'h1, b:'h3f, st0:'{c:'h0, d:'h2}, e:'h0}
st '{a:'h1, b:'h3f, st0:'{c:'h0, d:'h0}, e:'h0}
st '{a:'h8, b:'h38, st0:'{c:'h0, d:'h1}, e:'h0}
st '{a:'h9, b:'h37, st0:'{c:'h0, d:'h2}, e:'h0}
st '{a:'h9, b:'h37, st0:'{c:'h0, d:'h3}, e:'h0}
st '{a:'h7, b:'h39, st0:'{c:'h0, d:'h3}, e:'h0}
st '{a:'h8, b:'h38, st0:'{c:'h0, d:'h1}, e:'h0}

15-75

Using SystemVerilog

Disabling and Re-enabling Randomization

You can disable and re-enable randomization in an unpacked struct
with the rand_mode() method.

Example 15-13 Disabling and Re-enabling Randomization with the
rand_mode() Method

module test();

typedef struct {
 rand integer i1;
 } ST1;

class CC;
 rand ST1 st1;
endclass

CC cc = new;

initial
 repeat (10)
 begin
 cc.randomize();
 #10 $display("\n\t at %0t",$time);
 $display("\t cc.st1.i1 is %0d",cc.st1.i1);
 end

initial
 begin
 #55 cc.rand_mode(0);
 #20 cc.rand_mode(1);
 end

endmodule

In this example the rand_mode() method, with its arguments,
disables and re-enables randomization in class instance cc. The
$display system tasks display the following:

15-76

Using SystemVerilog

at 10
 cc.st1.i1 is -902462825

 at 20
 cc.st1.i1 is -1241023056

 at 30
 cc.st1.i1 is 69704603

 at 40
 cc.st1.i1 is -1877783293

 at 50
 cc.st1.i1 is -795611063

 at 60
 cc.st1.i1 is 629780255

 at 70
 cc.st1.i1 is 629780255

 at 80
 cc.st1.i1 is 629780255

 at 90
 cc.st1.i1 is 1347943271

 at 100
 cc.st1.i1 is 469272579

In this example randomization is disabled at simulation time 55 and
re-enabled at simulation time 75, enabling new random values at
simulation time 90.

In the previous version of VCS, this example would result in the
following error messages at compile-time:

Error-[SV-RISNYI] Rand in Struct Not Yet Implemented
doc_ex3.sv, 4
 The qualifier 'rand' was seen in a struct. This is not yet

15-77

Using SystemVerilog

supported.
 Please remove the 'rand' declaration.

1 error

Here is another code example:

Example 15-14 Another Example of Disabling and Re-enabling
Randomization with the rand_mode() Method

module test;

typedef struct {
 bit[3:0] c;
 randc bit[1:0] d;
 } ST0;

typedef struct {
 rand bit[5:0] a;
 rand bit[5:0] b;
 rand ST0 st0;
 bit [5:0] e;
 }ST;

class CC;
 rand ST st;
 rand bit[2:0] n1;
endclass

CC cc = new;

initial
 begin
 cc.st.rand_mode(0);
 repeat (10)
 begin
 // random variables: cc.n1
 // state variables: all members of cc.st
 cc.randomize();
 $display("turn off st %p , cc.n1 %b",

cc.st,cc.n1);
 end

15-78

Using SystemVerilog

 cc.st.rand_mode(1);
 cc.st.st0.rand_mode(0);
 repeat (10)
 begin
 // random variables: cc.n1 cc.st.a cc.st.b
 // state variables: cc.st.e cc.st.st0.c cc.st.st0.d
 cc.randomize();
 $display("turn off st.st0 %p , cc.n1 %b",

cc.st,cc.n1);
 end
 cc.st.st0.rand_mode(1);
 end

endmodule

In this example the rand_mode() method disables randomization
in unpacked struct instance cc.st.st0 and then re-enables it. The
$display system tasks displays the following:

turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 111
turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 000
turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 011
turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 011
turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 001
turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 111
turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 111
turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 011
turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 001
turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 100
turn off st.st0 '{a:'h39, b:'h17, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 010
turn off st.st0 '{a:'h26, b:'h1f, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 001
turn off st.st0 '{a:'h9, b:'h3, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 010
turn off st.st0 '{a:'h23, b:'he, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 101
turn off st.st0 '{a:'h21, b:'h18, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 000
turn off st.st0 '{a:'h34, b:'h1d, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 001
turn off st.st0 '{a:'h2f, b:'h27, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 011
turn off st.st0 '{a:'h2f, b:'h17, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 100
turn off st.st0 '{a:'hd, b:'h34, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 010
turn off st.st0 '{a:'h27, b:'h11, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 010

15-79

Using SystemVerilog

Using In-line Random Variable Control

The following example illustrates using in-line random variable
control to specify the randomized variables with an argument to the
randomize() method.

Example 15-15 In-line Random Variable Control

module test();

typedef struct {
 rand integer i1;
 } ST1;

typedef struct {
 rand integer i1;
 } ST2;

class CC;
 rand ST1 st1;
 rand ST2 st2;
endclass

CC cc = new;

initial
 begin
 #10 cc.randomize();
 $display("\n\t at sim time %0t",$time);
 $display("\t cc.st1.i1 is %0d",cc.st1.i1);
 $display("\t cc.st2.i1 is %0d",cc.st2.i1);
 #10 cc.randomize(st1);
 $display("\n\t at sim time %0t",$time);
 $display("\t cc.st1.i1 is %0d",cc.st1.i1);
 $display("\t cc.st2.i1 is %0d",cc.st2.i1);
 #10 cc.randomize(null);
 $display("\n\t at sim time %0t",$time);
 $display("\t cc.st1.i1 is %0d",cc.st1.i1);
 $display("\t cc.st2.i1 is %0d",cc.st2.i1);
 #10 cc.randomize(st2);
 $display("\n\t at sim time %0t",$time);

15-80

Using SystemVerilog

 $display("\t cc.st1.i1 is %0d",cc.st1.i1);
 $display("\t cc.st2.i1 is %0d",cc.st2.i1);
 end

endmodule

This example supplies the randomize() method with arguments
for unpacked struct instances st1 and st2 and the null keyword.

1. At simulation time 20 randomization is limited to st1.

2. At simulation time 30 randomization is turned off.

3. At simulation time 40 randomization is limited to st2.

The $display system tasks displays the following:

 at sim time 10
 cc.st1.i1 is -902462825
 cc.st2.i1 is -1241023056

 at sim time 20
 cc.st1.i1 is 69704603
 cc.st2.i1 is -1241023056

 at sim time 30
 cc.st1.i1 is 69704603
 cc.st2.i1 is -1241023056

 at sim time 40
 cc.st1.i1 is 69704603
 cc.st2.i1 is -1877783293

At simulation 20 a new random value is in st1 but not st2.

At simulation time 30 there are no new random values.

At simulation time 40 a new random value is in st2 but not st1.

15-81

Using SystemVerilog

In the previous version of VCS, this example would result in the
following error messages at compile-time:

Error-[SV-RISNYI] Rand in Struct Not Yet Implemented
doc_ex4.sv, 4
 The qualifier 'rand' was seen in a struct. This is not yet
supported.
 Please remove the 'rand' declaration.

Error-[SV-RISNYI] Rand in Struct Not Yet Implemented
doc_ex4.sv, 8
 The qualifier 'rand' was seen in a struct. This is not yet
supported.
 Please remove the 'rand' declaration.

2 errors

Here is another code example:

Example 15-16 Another Example of In-line Random Variable Control

module test;

typedef struct {
 bit[3:0] c;
 randc bit[1:0] d;
} ST0;

typedef struct {
 rand bit[5:0] a;
 rand bit[5:0] b;
 rand ST0 st0;
 bit [5:0] e;
}ST;

class CC;
 ST st;
 rand bit[2:0] n1;
endclass

CC cc = new;

15-82

Using SystemVerilog

initial begin
 // random variables: cc.n1
 // state variables: all members of cc.st
repeat (5) begin
 cc.randomize();
 $display("default st %p , cc.n1 %b",cc.st,cc.n1);
end

 // random variables: cc.st.a cc.st.b cc.st.st0.d
 // state variables: cc.n1 cc.st.e cc.st.st0.c
repeat (5) begin
 cc.randomize(st);
 $display("inline st %p , cc.n1 %b",cc.st,cc.n1);
end

end
endmodule

In this example the randomize() method is called without an
argument and then with the st struct instance argument. The
$display system tasks display the following:

default st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 111
default st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 000
default st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 011
default st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 011
default st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 001
inline st '{a:'h1f, b:'h27, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 001
inline st '{a:'h11, b:'h34, st0:'{c:'h0, d:'h1}, e:'h0} , cc.n1 001
inline st '{a:'h17, b:'h2a, st0:'{c:'h0, d:'h2}, e:'h0} , cc.n1 001
inline st '{a:'h1f, b:'h9, st0:'{c:'h0, d:'h3}, e:'h0} , cc.n1 001
inline st '{a:'h3, b:'h12, st0:'{c:'h0, d:'h3}, e:'h0} , cc.n1 001

VCS executes the second $display system task after it executes
the randomize() method with the st argument.

15-83

Using SystemVerilog

Limitation

Random class objects as members of an unpacked struct are not yet
implemented (NYI), for example:

module test;

class CC0;
 rand int a;
endclass

typedef struct {
 rand bit[5:0] a;
 rand bit[5:0] b;
 rand CC0 cc0; // this is not allowed in this release
}ST;

endmodule

Making wait fork Statements Compliant with the SV LRM

You specify making wait fork statements compliant with the SV
LRM with the -ntb_opts sv_dwfork compile-time option and
keyword argument.

The IEEE Std 1800-2009 standard LRM for SystemVerilog states the
following about wait fork statements:

“The wait fork statement blocks process execution flow until all
immediate child subprocesses (processes created by the current
process, excluding their descendants) have completed their
execution.”

15-84

Using SystemVerilog

For backwards compatibility reasons, by default, VCS blocks the
process execution flow until all child subprocesses, not just the
immediate child subprocesses, have completed their execution. It
also waits only for those processes that are created by the current
task or process that contains the wait fork statement.

You can specify that VCS be compliant with the standard and block
process execution flow only for immediate child subprocesses and
wait for processes created by the current process (even if the wait
fork is contained within a task) with the -ntb_opts sv_dwfork
compile-time option and keyword argument.

The following code example shows the difference in behavior for wait
fork.

program A;
task t1();
 #1 $display($time,," T1_1 \n");
endtask
task t2();
 fork
 #1 $display($time,," T2_1 \n");
 #9 $display($time,," T2_2 \n");
 join_any
endtask
task disp();
 fork
 t1();
 t2();
 join_any
 wait fork;
 $display($time,,"After Wait fork");
endtask
initial begin
 fork
 #1 $display($time,," Initial Thread 1 \n");
 #5 $display($time,," Initial Thread 2 \n");
 join_any

15-85

Using SystemVerilog

 disp();
end
endprogram

VCS by default waits for the execution of:

#9 $display($time,," T2_2 \n");

It executes this line at simulation time 10, even though the fork for
this $display system task is not an immediate child subprocess of
task disp().

The $display system tasks, by default, displays the following:

1 Initial Thread 1
2 T1_1
2 T2_1
5 Initial Thread 2
10 T2_2
10 After Wait fork

If you include the -ntb_opts sv_dwfork compile-time option and
keyword argument, the $display system tasks displays the
following:

1 Initial Thread 1
2 T1_1
2 T2_1
5 Initial Thread 2
5 After Wait fork

15-86

Using SystemVerilog

Making disable fork Statements Compliant with the SV
LRM

You also specify making disable fork statements compliant with
the SV LRM with the -ntb_opts sv_dwfork compile-time option
and keyword argument.

The IEEE Std 1800-2009 standard LRM for SystemVerilog states the
following about disable fork statements:

“The disable fork statement terminates all active descendants
(subprocesses) of the calling process.”

For backwards compatibility reasons, by default, VCS terminates
only those processes that are created by the current task or process
that contains the disable fork.

You can specify that VCS be compliant with the standard and
terminate all the processes that are created by the process that
contains the disable fork (even if the disable fork is
contained within a task) with the –ntb_opts sv_dwfork compile-
time option and keyword argument.

The following code example shows the difference in behavior for
disable fork.

program A;
task disp();
 fork
 #1 $display($time,,"disp_T1");
 #2 $display($time,,"disp_T2");
 join_any
 disable fork;
 $display($time,,"After disable fork");
endtask
initial begin

15-87

Using SystemVerilog

fork
 #1 $display($time,," Initial Thread 1 \n");
 #5 $display($time,," Initial Thread 2 \n");
join_any
disp();
#10 $display($time,, "End");
end
endprogram

By default, disable fork does not disable the fork in the process,
but only disables the fork in the task in which it is present, to give the
output:

1 Initial Thread 1
2 disp_T1
2 After disable fork
5 Initial Thread 2
12 End

With the -ntb_opts sv_dwfork option, disable fork disables
the fork in the process also, giving the output:

1 Initial Thread 1
2 disp_T1
2 After disable fork
12 End

Using a Package in a SystemVerilog Module, Program,
and Interface Header

Importing from a package to a module, program, or interface by
including the package in the module, program, or interface header is
now implemented.

15-88

Using SystemVerilog

This technique of importing from a package is described in the
SystemVerilog LRM IEEE Std 1800-2009 in the section named
“26.4 Using packages in module headers” in clause “26 Packages.”

The primary purpose of this syntax and usage is to enable you to
imported names in the parameter list or port list, without importing
the package into the enclosing scope ($unit).

To illustrate this technique you import from a package into a module
definition and then into a program definition, as shown in Example
15-17 and Example 15-8. This technique is also implemented for
importing from a package to an interface.

Example 15-17 Importing a Package in a Module Header

package my_pkg;
 typedef reg [3:0] my_type1;
 typedef int my_type2;
endpackage

module my_module import my_pkg::*;
 (input my_type1 a, output my_type2 z);

endmodule

In Example 15-7 the design objects declared in package my_pkg are
imported into module my_module with the import keyword followed
by the name of the package. Use the wildcard * (asterisk) to specify
importing all design objects in the package.

Example 15-18 shows importing from packages in a program
header.

Example 15-18 Importing Packages in a Program Header

package pack1;
 typedef struct {
 real r1;

15-89

Using SystemVerilog

 } struct1;
 typedef enum bit {H,T} bool_sds;
endpackage:pack1

package pack3;
 integer int1=0;
endpackage: pack3

program prog1 import pack1::struct1,pack3::*;
 (output out1,out2);

endprogram: prog1

The header of program prog1 includes the keyword import
followed by the packages pack1 and pack3. Import structure struct1
from pack1 into program prog1, then using the wildcard * (asterisk)
import all the design objects in pack3 into the program.

Support for Overriding Parameter Values through
Configuration

VCS supports overriding the parameter value through a
configuration as defined in SystemVerilog LRM. Configurations can
be used either to override parameter values that are declared within
a design or to override parameter values for a specific instance of a
design.

Example

The following example illustrates overriding of parameter values
through configuration:

15-90

Using SystemVerilog

Example 15-19 Example of parameter overriding through configuration

config cfg;
 design rtlLib.top;
 default liblist rtlLib;
 localparam LP = 19;
 instance top.B1 use #(.P(LP)); // assign 19 to top.B1.P
 instance top.B2 use #(.P(3)); // assign 3 to top.B2.P
 instance top.B3 use #(.P()); // assign its default value to
top.B3.P
 cell bot use #(.P(10)); // assign 10 to rest of instances of bot
endconfig : cfg

module top;
 bot #(11) B1(); // instance parameter value being override

// inside configuration
 bot B2();
 bot B3();
 bot B4();
 bot B5();
 bot B6();
 defparam top.B4.P = 20; // defparam specified parameter value

//being override inside configuration
endmodule

module bot;
 parameter P = 9;
 initial $display("%m",P);
endmodule

Precedence Override Rules

Parameter overriding during elaboration is determined in the
following order of priority (highest to lowest):

1. Parameter overriding from VCS elaboration command line
(-pvalue)

2. Parameter overriding through a configuration using instance and
cell rules

3. defparam using hierarchical path names

15-91

Using SystemVerilog

4. Instance based overriding

Note:

If multiple instance and cell rules are used, VCS applies the rule
that appears first in configuration. It ignores multiple rules and
generates a warning message.

Limitations

This feature has the following limitations:

• Cross-module references (XMRs) for parameter overriding is not
supported.

• For VCS MX, parameter overriding rules are not supported if the
design hierarchy crosses the VHDL boundary.

Extensions to SystemVerilog

This section contains descriptions of Synopsys enhancements to
SystemVerilog. This section contains the following topics:

• “Unique/Priority Case/IF Final Semantic Enhancements”

• “Single-Sized Packed Dimension Extension”

• “Covariant Virtual Function Return Types”

• “Self Instance of a Virtual Interface”

15-92

Using SystemVerilog

Unique/Priority Case/IF Final Semantic Enhancements

The behavior of the compliance checking keywords unique and
priority for case and for if...else if...else selection
statements as defined in the IEEE 1800-2009 LRM section named
“Conditional if-else statement” in some cases can cause spurious
warnings when used inside a module's continuous assignment or
always block. By default, VCS will evaluate compliance with unique
or priority on every update to the selection statement input.

To force unique and priority to evaluate compliance only on the
stable and final value of the selection input at the end of a simulation
timestep, VCS now provides a compile time option -xlrm
uniq_prior_final.

This can be useful, for example, when always_comb might trigger
several times within a simulation time slot while its input values are
getting stabilized. The case statements can get executed several
times during same time slot if it is valid for combinational blocks.
While going through intermediate transitions, the case statement
might get values that violate the unique or priority property and
cause VCS to report multiple runtime warnings. When it is
undesirable to receive intermediate warnings, compile time option
‘-xlrm uniq_prior_final’ can be used to evaluate compliance
for only the final stable value of the input.

15-93

Using SystemVerilog

Using Unique/Priority Case/If with Always Block or
Continuous Assign

-xlrm uniq_prior_final behavior only applies to the use of
unique and priority keywords when selection statements are
used inside a module's continuous assignment statements or
always blocks. The option is not applicable to selection statements
in a program block or an initial block.

The following two examples illustrate this behavior:

Example 15-20 unique case statement at the same timestep

//test.sv:
module top;
reg cond;
bit [7:0] a = 0,b, v1, v2;
always_comb begin

if (cond) begin
unique case (a)

v1: begin b = 0; $display(" Executing Case
 with cond value 1 "); end

v2: begin b = 1; $display(" Executing Case
 with cond value 1 "); end
 endcase

end
else begin

 unique case (a)
v1: begin b = 0; $display(" Executing Case

 with cond value 0 "); end
v2: begin b = 1; $display(" Executing Case

 with cond value 0 "); end
 endcase

end
end

initial begin
#1 cond = 1;
a=a+4; v1=4; v2=4;

$display("\n TIME %0d ns : cond value %0b, a value %0d",

15-94

Using SystemVerilog

$time, cond, a);
#0 cond = 0;
a=a+1; v1++; v2++;
$display("\n TIME %0d ns: cond value %0b, a value %0d",

$time, cond, a);
 end
endmodule

Simulation output without -xlrm uniq_prior_final:

%> vcs -sverilog test.sv -R

Executing Case with condition value 0
RT Warning: More than one conditions match in 'unique case'
statement.
 "unique_case.sv", line 12, for top.
 Line 13 & 14 are overlapping at time 0.
Executing Case with cond value 0
RT Warning: More than one conditions match in 'unique case'
statement.
 "unique_case.sv", line 12, for top.
 Line 13 & 14 are overlapping at time 0.

 TIME 1 ns : cond value 1, a value 4
 Executing Case with cond value 1
RT Warning: More than one conditions match in 'unique case'
statement.
 "unique_case.sv", line 6, for top.
 Line 7 & 8 are overlapping at time 1.

 TIME 1 ns: cond value 0, a value 5
 Executing Case with cond value 0
RT Warning: More than one conditions match in 'unique case'
statement.
 "unique_case.sv", line 12, for top.
 Line 13 & 14 are overlapping at time 1.

Simulation output with -xlrm uniq_prior_final compile-
time option:

%> vcs -sverilog test.sv -xlrm uniq_prior_final -R
Executing Case with cond value 0:

15-95

Using SystemVerilog

RT Warning: More than one conditions match in 'unique case'
statement.
 "unique_case.sv", line 12, for top.
 Line 13 & 14 are overlapping at time 0.

 TIME 1 ns : cond value 1, a value 4
 Executing Case with cond value 1

 TIME 1 ns: cond value 0, a value 5
 Executing Case with cond value 0
RT Warning: More than one conditions match in 'unique case'
statement.
 "unique_case.sv", line 12, for top.
 Line 13 & 14 are overlapping at time 1.

Example 15-21 unique if inside always_comb

//test.sv
module top;
reg cond;
bit [7:0] a = 0,b;
always_comb begin

unique if (a == 0 || a == 1) $display ("A is 0 or 1");
else if (a == 2) $display ("A is 2");

end

initial begin
#100;
a = 1;
#100 a = 2;
#100 a = 3;
#0 a++;
#0 a++;
#0 a++;
#10 $finish;

end

endmodule

15-96

Using SystemVerilog

Simulation output without -xlrm:

%> vcs -sverilog test.sv -R

A is 0 or 1
A is 0 or 1
A is 0 or 1
A is 2
RT Warning: No condition matches in 'unique if' statement.

"unique_if.sv", line 5, for top, at time 300.
RT Warning: No condition matches in 'unique if' statement.

"unique_if.sv", line 5, for top, at time 300.
RT Warning: No condition matches in 'unique if' statement.

"unique_if.sv", line 5, for top, at time 300.
RT Warning: No condition matches in 'unique if' statement.

"unique_if.sv", line 5, for top, at time 300.
$finish called from file "unique_if.sv", line 17.

Simulation output with -xlrm uniq_prior_final:

%> vcs -sverilog test.sv -xlrm uniq_prior_final -R

A is 0 or 1
A is 0 or 1
A is 0 or 1
A is 2
RT Warning: No condition matches in 'unique if' statement.

"unique_if.sv", line 5, for top, at time 300.
$finish called from file "unique_if.sv", line 17.

Using Unique/Priority Inside a Function

With this enhancement, if unique/priority case statement is
used inside a function, VCS not only points to the current case
statement but also provides a complete stack trace of where the
function is called. The following example illustrate this behavior:

Example 15-22 unique case used with nested loop inside function

//test.sv

15-97

Using SystemVerilog

module top;
 int i,j;
 reg [1:0][2:0] a, b, c;
 bit flag;

 function foo;
 for (int i=0; i<2; i++)
 for (int j=0; j<3; j++)
 unique case (a[i][j])
 0: b[i][j] = 1'b0;
 1: b[i][j] = c[i][j];
 endcase
 endfunction : foo

 always_comb begin
 for(i=0; i<4; i++) begin
 if (i==2)
 foo();
 end
 end

 initial begin
 a = 6'b00x011;
 end

endmodule : top

Simulation output without the -xlrm option:

%> vcs -sverilog test.sv -R

RT Warning: No condition matches in 'unique case' statement.
"unique_case_inside_func.sv", line 8, for top.foo, at time 0.

RT Warning: No condition matches in 'unique case' statement.
"unique_case_inside_func.sv", line 8, for top.foo, at time 0.

Simulation output with -xlrm uniq_prior_final:

%> vcs -sverilog test.sv -xlrm uniq_prior_final -R

RT Warning: No condition matches in 'unique case' statement.

15-98

Using SystemVerilog

"unique_case_inside_func.sv", line 8, for top.foo, at time 0.
#0 in foo at unique_case_inside_func.sv:8
#1 in loop with j= 0 at unique_case_inside_func.sv:7
#2 in loop with i= 1 at unique_case_inside_func.sv:6
#3 in top at unique_case_inside_func.sv:16
#4 in loop with i= 2 at unique_case_inside_func.sv:14

Note:

The following limitations must be noted while using the -xlrm
uniq_prior_final feature for loop indices:

- It must be written in for statement. The while and
do...while are not supported.

- The loop bounds must be compile-time constants.

- for(i= lsb; i<msb; i++)

- Here, lsb and msb must be compile-time constant, or will
become constant when upper loops get unrolled.

- No other drivers of the loop variable must be in the loop body.

VCS also supports unique/prior final in a for loop that cannot
be unrolled at compile time. For example, if you have a for loop
whose range could not be determined at compile-time and if there
are errors during the last evaluation of such a for loop, VCS still
reports the error. However, loop index information will not be
provided. Even if multiple failures occur in different iterations, VCS
reports only the last one.

Important:

Use unique/priority case/if statement only inside always block,
continuous assign, or inside a function. If you use it in other places,
the final semantic will be ignored.

15-99

Using SystemVerilog

System Tasks to Control Warning Messages

Two system tasks $uniq_prior_checkon and
$uniq_prior_checkoff will enable you to switch on/off runtime
warning messages for unique/priority if/case statements.
The following example illustrates the use model of these tasks to
ignore violations:

Example 15-23 System tasks to control warning messages

//test.sv
module m;
 bit sel, v1, v2;

//Disable this initial block to display all RT warning
messages
initial
begin

$display($time, " Priority checker OFF\n");
$uniq_prior_checkoff();
#1;
$display($time, " Priority checker ON\n");
$uniq_prior_checkon();

 end

initial
begin
//violation with this set of values (warning disabled)
sel = 1'b1;
v1 = 1'b1;
v2 = 1'b1;
#1;
//violation with this set of values (warning enabled)
sel = 1'b0;
v1 = 1'b0;
v2 = 1'b0;
#1;
end
always_comb begin
unique case(sel)
 v1: $display($time, " Hello");

15-100

Using SystemVerilog

 v2: $display($time, " World");
endcase
end
endmodule

Simulation Output:

%> vcs -sverilog test.sv -R

0 Priority checker OFF
0 Hello
0 Hello
1 Priority checker ON
1 Hello

RT Warning: More than one conditions match in 'unique case'
statement.

"system_task_control_warning.sv", line 28, for m.
Line 29 & 30 are overlapping at time 1.

Single-Sized Packed Dimension Extension

VCS has implemented an extension to a single-sized packed
dimension SystemVerilog signals and Multi-Dimensional Arrays
(MDAs). This section provides examples of using this extension for
a single-sized packed dimension and explains how VCS expands
the single size.

You can use the extension for these basic data types: bit, reg, and
wire (using other basic data types with this extension is an error
condition) The following is an example:

bit [4] a;

VCS expands the packed dimension [4] into [0:3].

For packed MDAs, for example:

bit [4][4] a;

15-101

Using SystemVerilog

VCS expands the packed dimensions [4][4] into [0:3][0:3].

You can use this extension in several ways. The following is an
example of using this extension in a user defined type:

typedef reg [8] DREG;

The following is an example of using this extension in a structure,
union, and enumerated type:

struct packed {
DREG [20][20] arr4;
} [2][2] st1;

union packed {
DBIT [20][20] arr5;
} [2][2] un1;

enum logic [8] {IDLE, XX=8'bxxxxxxxx, S1=8'bzzzzzzzz,
S2=8'hff} arr3;

The following is an example of a user-defined structure and union
with a packed memory or MDA:

typedef bit [2][24] DBIT;

typedef reg [2][24] DREG;

typedef struct packed {
DBIT [20][20] arr1;
} ST;

ST [2][2] st;

typedef union packed {
DREG [20][20] arr2;
} UN;

UN [2][2] un;

15-102

Using SystemVerilog

You can also use this extension for specifying module ports, for
example:

module mux2(input wire [3] a,
input wire [3] b,
output logic [3] y);

You can use this extension in the parameter list of a user-defined
function or task, for example:

function automatic integer factorial (input [32] operand);

You can use this extension in the definition of a parameter, for
example:

parameter reg [2][2][2] p2 = 8;

Error Conditions

The following are error conditions for this extension:

• Using the dollar sign ($) as the size, for example:

reg [8:$] a;
reg [$] b;

• Using basic data types other than bit, reg, and wire, for
example:

typedef shortint [8] DREG;

Covariant Virtual Function Return Types

VCS supports, as an extension to SystemVerilog, covariant virtual
function return types.

15-103

Using SystemVerilog

A covariant return type allows overriding a superclass method with a
return type that is a derived type of the superclass method’s return
type. Covariant return types minimize the need for dynamic casts
(upcasting or downcasting).

Example 15-24 Sample code for covariant function return types

class Base;
 virtual function Base clone();
 Base b = new this;
 return b;
 endfunction
endclass

class Derived extends Base;
 virtual function Derived clone();
 Derived d = new this;
 return d;
 endfunction
endclass

Without covariant types, the signature of the Derived::clone()
above would have to be the same as in the Base class, like the
following:

class Derived extends Base;
 virtual function Base clone();
 Derived d = new this;
 return d;
 endfunction
endclass

This would lead to code like the following for users of the class:

Derived d = new;
Base b = d.clone(); // automatic down-cast to Base
Derived d2;
if(!($cast(d2, b))) begin
 b = null;

15-104

Using SystemVerilog

 $error(...) // some exception
end

Instead, with covariant return types, the code is simplified to:

Derived d = new;
Derived d2 = d.clone();

Self Instance of a Virtual Interface

You can create a self instance of a virtual interface that points to itself
when it is initialized, for example:

interface intf;
 int data1;
 int data2;
 virtual intf vi;
 initial
 vi = interface::self();
endinterface

module top;
 intf i0();
 initial #1 i0.vi.data1 = 100;
 always @(i0.data1)
 $display("trigger success");
endmodule

In this example the virtual interface named vi is initialized with the
expression:

 vi = interface::self();

The interface::self() expression enables you provide a string
variable that is effectively the %m format specification of the interface
instance that VCS returns for assignment to the virtual interface
variable. You use the interface::self() expression to initialize

15-105

Using SystemVerilog

virtual interface variables in methodologies like UVM and VMM. It
enables you to write components that are configurable with a string
is the %m of the virtual interface that the component drives or
monitors.

The expression interface::self() must be entered precisely,
otherwise it is a syntax error. Also notice the required delay (in this
case #1) in the initialization of virtual interface vi. This delay is
required to prevent a race condition.

This implementation is in accordance with the SystemVerilog IEEE
STD 1800-2009 section 9.7 Fine-grain process control which
specifies:

“The self() function returns a handle to the current process, that
is, a handle to the process making the call.”

SVA-bind is supported with self instances of virtual interfaces.

Note:

A self instance of a virtual interface is not supported in Partition
Compile.

The following conditions are required for a self instance of a virtual
interface:

• The self instance must be defined in the scope.

• The virtual interface type in the interface declaration must be the
same as the interface that includes itself.

• Within an interface, you can only use the virtual
interface::self() expression can be used in a context that
is valid for initializing a virtual interface. Any other use of the
interface::self() expression results in a compilation error.

15-106

Using SystemVerilog

• Within an interface, the virtual interface::self() expression
in a context that is valid for initializing a virtual interface. Any other
use of the interface::self() expression results in a
compilation error.

UVM Example

The following is an example of a self instance of a virtual interface:

/* interface definition */
interface bus_if; //ports.
//signal declaration.
…
 initial begin
 uvm_resource_db#(virtual bus_if)::set("*",
 $sformatf("%m"), interface::self());
 end
endinterface

/* instantiated bus interface in design. */
//Add "bus()" to module called "top".
bind top bus_if bus();

/*Example config_db usage: */
 if(!uvm_config_db#(virtual bus_if)::get(this, "",
 "top.bus", bus))
 ̀ uvm_error("TESTERROR", "no bus interface available");
 else
 'uvm_info("build", "got bus_if", UVM_LOW)

OR

/*Example resource_db usage: */
 if(!uvm_resource_db#(virtual
bus_if)::read_by_type(get_full_name(), bus, this))
 ̀ uvm_error("TESTERROR", "no bus interface available");

15-107

Using SystemVerilog

 else
 'uvm_info("build", "got bus_if", UVM_LOW)

15-108

Using SystemVerilog

16-1

Aspect Oriented Extensions

16
Aspect Oriented Extensions 1

Aspect-Oriented Programming (AOP) methodology complements
the OOP methodology using a construct called aspect or an aspect-
oriented extension (AOE) that can affect the behavior of a class or
multiple classes. In AOP methodology, the terms “aspect” and
“aspect-oriented extension” are used interchangeably.

Aspect oriented extensions in SV allow testbench engineers to
design testcase more efficiently, using fewer lines of code.

AOP addresses issues or concerns that prove difficult to solve when
using Object-Oriented Programming (OOP) tow write constrained-
random test benches.

Such concerns include:

1. Context-sensitive behavior.

2. Unanticipated extensions.

16-2

Aspect Oriented Extensions

3. Multi-object protocols.

In AOP these issues are termed cross-cutting concerns as they cut
across the typical divisions of responsibility in a given programming
model.

In OOP, the natural unit of modularity is the class. Some of the cross
cutting concerns, such as "Multi-object protocols", cut across
multiple classes and are not easy to solve using the OOP
methodology. AOP is a way of modularizing such cross-cutting
concerns. AOP extends the functionality of existing OOP derived
classes and uses the notion of aspect as a natural unit of modularity.
Behavior that affects multiple classes can be encapsulated in
aspects to form reusable modules. As potential benefits of AOP are
achieved better in a language where an aspect unit can affect
behavior of multiple classes and therefore can modularize the
behavior that affects multiple classes, AOP ability in SV language is
currently limited in the sense that an aspect extension affects the
behavior of only a single class. It is useful nonetheless, enabling test
engineers to design code that efficiently addresses concerns
"Context-sensitive behavior" and "Unanticipated extensions".

AOP is used in conjunction with object-oriented programming. By
compartmentalizing code containing aspects, cross-cutting concerns
become easy to deal with. Aspects of a system can be changed,
inserted or removed at compile time, and become reusable.

It is important to understand that the overall verification environment
should be assembled using OOP to retain encapsulation and
protection. NTB's Aspect-Oriented Extensions should be used only
for constrained-random test specifications with the aim of minimizing
code.

SV’s Aspect-Oriented Extensions should not be used to:

16-3

Aspect Oriented Extensions

• Code base classes and class libraries

• Debug, trace or monitor unknown or inaccessible classes

• Insert new code to fix an existing problem

For information on the creation and refinement of verification test
benches, see the Reference Verification Methodology User Guide.

Aspect-Oriented Extensions in SV

In SV, AOP is supported by a set of directives and constructs that
need to be processed before compilation. Therefore, an SV program
with these Aspect oriented directives and constructs would need to
be processed as per the definition of these directives and constructs
in SV to generate an equivalent SV program that is devoid of aspect
extensions, and consists of traditional SV. Conceptually, AOP is
implemented as pre-compilation expansion of code.

This chapter explains how AOE in SV are directives to SV compiler
as to how the pre-compilation expansion of code needs to be
performed.

In SV, an aspect extension for a class can be defined in any scope
where the class is visible, except for within another aspect extension.
That is, aspect extensions can not be nested.

An aspect oriented extension in SV is defined using a new top-level
extends directive. Terms aspect and “extends directive” have been
used interchangeably throughout the document. Normally, a class is
extended through derivation, but an extends directive defines
modifications to a pre-existing class by doing in-place extension of
the class. in-place extension modifies the definition of a class by
adding new member fields and member methods, and changing the

16-4

Aspect Oriented Extensions

behavior of earlier defined class methods, without creating any new
subclasse(s). That is, SV’s Aspect-Oriented Extensions change the
original class definition without creating subclasses. These changes
affect all instances of the original class that was extended by AOEs.

An extends directive for a class defines a scope in SV language.
Within this scope exist the items that modify the class definition.
These items within an extends directive for a class can be divided
into the following three categories.

• Introduction

Declaration of a new property, or the definition of a new method,
a new constraint, or a new coverage group within the extends
directive scope adds (or introduces) the new symbol into the
original class definition as a new member. Such declaration/
definition is called an introduction.

• Advice

An advice is a construct to specify code that affects the behavior
of a member method of the class by weaving the specified code
into the member method definition. This is explained in more detail
later. The advice item is said to be an advice to the affected
member method.

• Hide list:

Some items within an extends directive, such as a virtual method
introduction, or an advice to virtual method may not be permissible
within the extends directive scope depending upon the hide
permissions at the place where the item is defined. A hide list is
a construct whose placement and arguments within the extends
directive scope controls the hide permissions. There could be
multiple hide lists within an extends directive.

16-5

Aspect Oriented Extensions

Processing of AOE as a Precompilation Expansion

As a precompilation expansion, AOE code is processed by VCS to
modify the class definitions that it extends as per the directives in
AOE.

A symbol is a valid identifier in a program. Classes and class
methods are symbols that can be affected by AOE. AOE code is
processed which involves adding of introductions and weaving of
advices in and around the affected symbols. Weaving is performed
before actual compilation (and thereby before symbol resolution),
therefore, under certain conditions, introduced symbols with the
same identifier as some already visible symbol, can hide the already
visible symbols. This is explained in more detail in Section , “hide_list
details,” . The preprocessed input program, now devoid of AOE, is
then compiled.

Syntax:

extends_directive ::=
extends extends_identifier

(class_identifier)[dominate_list];
extends_item_list

endextends

dominate_list ::=

dominates(extends_identifier
{,extends_identifier});

extends_item_list ::=
extends_item {extends_item}

extends_item ::=

class_item
| advice
| hide_list

16-6

Aspect Oriented Extensions

class_item ::=
class_property
| class_method
| class_constraint
| class_coverage
| enum_defn

advice ::= placement procedure

placement ::=

before
| after
| around

procedure ::=

| optional_method_specifiers task
task_identifier(list_of_task_proto_formals);

| optional_method_specifiers function
function_type

function_identifier(list_of_function_proto_formals)
endfunction

 advice_code ::= [stmt] {stmt}

 stmt ::= statement
 | proceed ;

hide_list ::=
hide([hide_item {,hide_item}]);

hide_item ::=
// Empty
| virtuals
| rules

The symbols in boldface are keywords and their syntax are as
follows:

extends_identifier

16-7

Aspect Oriented Extensions

 Name of the aspect extension.

class_identifier

 Name of the class that is being extended by the extends directive.

dominate_list

Specifies extensions that are dominated by the current directive.
Domination defines the precedence between code woven by
multiple extensions into the same scope. One extension can
dominate one or more of the other extensions. In such a case, you
must use a comma-separated list of extends identifiers.

dominates(extends_identifier
{,extends_identifier});

A dominated extension is assigned lower precedence than an
extension that dominates it. Precedence among aspects extensions
of a class determines the order in which introductions defined in the
aspects are added to the class definition. It also determines the order
in which advices defined in the aspects are woven into the class
method definitions thus affecting the behavior of a class method.
Rules for determination of precedence among aspects are explained
later in “Precedence” .

class_property

 Refers to an item that can be parsed as a property of a class.

class_method

 Refers to an item that can be parsed as a class method.

class_constraint

16-8

Aspect Oriented Extensions

 Refers to an item that can be parsed as a class constraint.

class_coverage

 Refers to an item that can be parsed as a coverage_group in a
class.

advice_code

 Specifies to a block of statements.

statement

 Is an SV statement.

procedure_prototype

A full prototype of the target procedure. Prototypes enable the advice
code to reference the formal arguments of the procedure.

opt_method_specifiers

Refers to a combination of protection level specifier (local, or
protected), virtual method specifier (virtual), and the static method
specifier (static) for the method.

task_identifier

 Name of the task.

function_identifier

 Name of the function.

function_type

16-9

Aspect Oriented Extensions

 Data type of the return value of the function.

list_of_task_proto_formals

 List of formal arguments to the task.

list_of_function_proto_formals

 List of formal arguments to the function.

placement

Specifies the position at which the advice code within the advice is
woven into the target method definition. Target method is either the
class method, or some other new method that was created as part of
the process of weaving, which is a part of pre-compilation expansion
of code. The overall details of the process of “weaving” are explained
in Pre-compilation Expansion details. The placement element could
be any of the keywords, before, after, or around, and the advices with
these placement elements are referred to as before advice, after
advice and around advice, respectively.

proceed statement

The proceed keyword specifies an SV statement that can be used
within advice code. A proceed statement is valid only within an
around block and only a single proceed statement can be used
inside the advice code block of an around advice. It cannot be used
in a before advice block or an after advice block. The proceed
statement is optional.

hide_list

16-10

Aspect Oriented Extensions

Specifies the permission(s) for introductions to hide a symbol, and/
or permission(s) for advices to modify local and protected methods.
It is explained in detail in Section , “hide_list details,” .

Weaving advice into the target method

The target method is either the class method, or some other new
method that was created as part of the process of weaving.
“Weaving” of all advices in the input program comprises several
steps of weaving of an advice into the target method. Weaving of an
advice into its target method involves the following.

A new method is created with the same method prototype as the
target method and with the advice code block as the code block of
the new method. This method is referred to as the advice method.

16-11

Aspect Oriented Extensions

The following table shows the rest of the steps involved in weaving
of the advice for each type of placement element (before, after, and
around).

Table 16-1 Placement Elements

Element Description

before Inserts a new method-call statement
that calls an advice method. The
statement is inserted as the first
statement to be executed before any
other statements.

after Creates a new method A with the target
method prototype, with its first
statement being a call to the target
method. Second statement with A is a
new method call statement that calls
the advice method. All the instances
in the input program where the target
method is called are replaced by newly
created method calls to A. A is
replaced as the new target method.

around All the instances in the input program
where the target method is called are
replaced by newly created method calls
to the advice method.

Within an extends directive, you can specify only one advice can be
specified for a given placement element and a given method. For
example, an extends directive may contain a maximum of one
before, one after, and one around advice each for a class method
Packet::foo of a class Packet, but it may not contain two before
advices for the Packet::foo.

Example 16-1 before Advice

Target method:

class packet;
 task myTask();
 $display("Executing original code\n");
 endtask

16-12

Aspect Oriented Extensions

endclass

Advice:

before task myTask ();
$display("Before in aoe1\n");

endtask

Weaving of the advice in the target method yields the following.

task myTask();
mytask_before();
$display("Executing original code\n");

endtask

task mytask_before ();
$display("Before in aoe1\n");

endtask

Note that the SV language does not impose any restrictions on the
names of newly created methods during pre-compilation expansion,
such as mytask_before. Compilers can adopt any naming
conventions such methods that are created as a result of the
weaving process.

Example 16-2 after Advice

Target method:

class packet;
 task myTask();
 $display("Executing original code\n");
 endtask
endclass

Advice:

after task myTask ();
$display("Before in aoe1\n");

endtask

16-13

Aspect Oriented Extensions

Weaving of the advice in the target method yields the following.

 task myTask_newTarget();
myTask();
myTask_after();

endtask

task myTask();
$display("Executing original code\n");

endtask

task myTask_after ();
$display("After in aoe1\n");

endtask

As a result of weaving, all the method calls to myTask() in the input
program code are replaced by method calls to myTask_newTarget().
Also, myTask_newTarget replaces myTask as the target method for
myTask().

Example 16-3 around Advice

Target method:

class packet;
 task myTask();
 $display("Executing original code\n");
 endtask
endclass

Advice:

around task myTask ();
$display("Around in aoe1\n");

endtask

Weaving of the advice in the target method yields the following.

16-14

Aspect Oriented Extensions

 task myTask_around();
$display("Around in aoe1\n");

endtask

task myTask();
$display("Executing original code\n");

endtask

As a result of weaving, all the method calls to myTask() in the input
program code are replaced by method calls to myTask_around().
Also, myTask_around() replaces myTask() as the target method for
myTask().

During weaving of an around advice that contains a proceed
statement, the proceed statement is replaced by a method call to the
target method.

Example 16-4 around Advice with proceed

Target method:

class packet;
 task myTask();
 $display("Executing original code\n");
 endtask
endclass

Advice:

around task myTask ();
proceed;
$display("Around in aoe1\n");

endtask

Weaving of the advice in the target method yields:

 task myTask_around();
myTask();

16-15

Aspect Oriented Extensions

$display("Around in aoe1\n");
endtask

task myTask();
$display("Executing original code\n");

endtask

As a result of weaving, all the method calls to myTask() in the input
program code are replaced by method calls to myTask_around().
The proceed statement in the around code is replaced with a call to
the target method myTask(). Also, myTask_around replaces myTask
as the target method for myTask().

Pre-compilation Expansion details

Pre-compilation expansion of a program containing AOE code is
done in the following order:

1. Preprocessing and parsing of all input code.

2. Identification of the symbols, such as methods and classes
affected by extensions.

3. The precedence order of aspect extensions (and thereby
introductions and advices) for each class is established.

4. Addition of introductions to their respective classes as class
members in their order of precedence. Whether an introduction
can or can not override or hide a symbol with the same name that
is visible in the scope of the original class definition, is dependent
on certain rules related to the hide_list parameter. For a detailed
explanation, see Section , “hide_list details,” .

5. Weaving of all advices in the input program are weaved into their
respective class methods as per the precedence order.

16-16

Aspect Oriented Extensions

These steps are described in more detail in the following sections.

Precedence

Precedence is specified through the dominate_list (see
“dominate_list”) There is no default precedence across files; if
precedence is not specified, the tool is free to weave code in any
order. Within a file, dominance established by dominate_lists always
overrides precedence established by the order in which extends
directives are coded. Only when the precedence is not established
after analyzing the dominate lists of directives, is the order of coding
used to define the order of precedence.

Within an extends directive there is an inherent precedence between
advices. Advices that are defined later in the directive have higher
precedence that those defined earlier.

Precedence does not change the order between adding of
introductions and weaving of advices in the code. Precedence
defines the order in which introductions to a class are added to the
class, and the order in which advices to methods belonging to a
class are woven into the class methods.

Example 16-5 Precedence Using dominates

// Beginning of file test.sv
class packet;
 // Other member fields/methods
 //...

 task send();
 $display("Sending data\n");
 endtask
endclass

program top ;

16-17

Aspect Oriented Extensions

 initial begin
 packet p;
 p = new();
 p.send();
 end
endprogram

extends aspect_1(packet) dominates (aspect_2, aspect_3);

 after task send(); // Advice 1
 $display("Aspect_1: send advice after\n");
 endtask
endextends

extends aspect_2(packet);

 after task send() ; // Advice 2
 $display("Aspect_2: send advice after\n");
 endtask
endextends

extends aspect_3(packet);

 around task send(); // Advice 3
 $display("Aspect_3: Begin send advice around\n");
 proceed;
 $display("Aspect_3: End send advice around\n");
 endtask

 before task send(); // Advice 4
 $display("Aspect_3: send advice before\n");
 endtask
endextends

// End of file test.sv

In Example 16-5, multiple aspect extensions for a class named
packet are defined in a single SV file. As specified in the dominating
list of aspect_1, aspect_1 dominates both aspect_2 and aspect_3.

16-18

Aspect Oriented Extensions

As per the dominating lists of the aspect extensions, there is no
precedence order established between aspect_2 and aspect_3, and
since aspect_3 is coded later in Input.vr than aspect_2, aspect_3
has higher precedence than aspect_2. Therefore, the precedence of
these aspect extensions in the decreasing order of precedence is:

{aspect_1, aspect_3, aspect_2}

This implies that the advice(s) within aspect_2 have lower
precedence than advice(s) within aspect_3, and advice(s) within
aspect_3 have lower precedence than advice(s) within aspect_1.
Therefore, advice 2 has lower precedence than advice 3 and advice
4. Both advice 3 and advice 4 have lower precedence than advice 1.
Between advice 3 and advice 4, advice 4 has higher precedence as
it is defined later than advice 3. That puts the order of advices in the
increasing order of precedence as:

{2, 3, 4, 1}.

Adding of Introductions

Target scope refers to the scope of the class definition that is being
extended by an aspect. Introductions in an aspect are appended as
new members at the end of its target scope. If an extension A has
precedence over extension B, the symbols introduced by A are
appended first.

Within an aspect extension, symbols introduced by the extension are
appended to the target scope in the order they appear in the
extension.

16-19

Aspect Oriented Extensions

There are certain rules according to which an introduction symbol
with the same identifier name as a symbol that is visible in the target
scope, may or may not be allowed as an introduction. These rules
are discussed later in the chapter.

Weaving of advices

An input program may contain several aspect extensions for any or
each of the different class definitions in the program. Weaving of
advices needs to be carried out for each class method for which an
advice is specified.

Weaving of advices in the input program consists of weaving of
advices into each such class method. Weaving of advices into a
class method A is unrelated to weaving of advices into a different
class method B, and therefore weaving of advices to various class
methods can be done in any ordering of the class methods.

For weaving of advices into a class method, all the advices
pertaining to the class method are identified and ordered in the order
of increasing precedence in a list L. This is the order in which these
advices are woven into the class method thereby affecting the run-
time behavior of the method. The advices in list L are woven in the
class method as per the following steps. Target method is initialized
to the class method.

a. Advice A that has the lowest precedence in L is woven into the
target method as explained earlier. Note that the target method
may either be the class method or some other method newly
created during the weaving process.

b. Advice A is deleted from list L.

c. The next advice on list L is woven into the target method. This
continues until all the advices on the list have been woven into
list L.

16-20

Aspect Oriented Extensions

It would become apparent from the example provided later in this
section how the order of precedence of advices for a class method
affects how advices are woven into their target method and thus the
relative order of execution of advice code blocks. Before and after
advices within an aspect to a target method are unrelated to each
other in the sense that their relative precedence to each other does
not affect their relative order of execution when a method call to the
target method is executed. The before advice’s code block executes
before the target method code block, and the after advice code block
executes after the target method code block. When an around
advice is used with a before or after advice in the same aspect, code
weaving depends upon their precedence with respect to each other.
Depending upon the precedence of the around advice with respect
to other advices in the aspect for the same target method, the around
advice either may be woven before all or some of the other advices,
or may be woven after all of the other advices.

As an example, weaving of advices 1, 2, 3, 4 specified in aspect
extensions in Example 16-5 leads to the expansion of code in the
following manner. Advices are woven in the order of increasing
precedence {2, 3, 4, 1} as explained earlier.

Example 16-6 After Weaving Advice-2 of Class packet

// Beginning of file test.sv

program top ;
packet p;
p = new();
p.send_Created_a();

endprogram

class packet;
...
// Other member fields/methods
...
task send();

p$display("Sending data\n”);

16-21

Aspect Oriented Extensions

endtask

task send_Created_a();
send();
send_after_Created_b();

endtask

task send_after_Created_b();
$display("Aspect_2: send advice after\n");

endtask

endclass

extends aspect_1(packet) dominates (aspect_2, aspect_3);
after task send(); // Advice 1

$display("Aspect_1: send advice after\n");
endtask

endextends

extends aspect_3(packet);
around task send(); // Advice 3

$display("Aspect_3: Begin send advice around\n");
proceed;
$display("Aspect_3: End send advice around\n");

endtask

before task send(); // Advice 4
 $display("Aspect_3: send advice before\n");

endtask
endextends

// End of file test.sv

This Example 16-6 shows what the input program looks like after
weaving advice 2 into the class method. Two new methods
send_Created_a and send_after_Created_b are created in the
process and the instances of method call to the target method
packet::send are modified, such that the code block from advice 2
executes after the code block of the target method packet::send.

Example 16-7 After Weaving Advice-3 of Class packet
// Beginning of file test.sv

program top;

16-22

Aspect Oriented Extensions

packet p;
p = new();
p.send_around_Created_c();

endprogram

class packet;
...
// Other member fields/methods
...
task send();

$display("Sending data\n”);
endtask

task send_Created_a();
send();
send_after_Created_b();

endtask

task send_after_Created_b();
$display("Aspect_2: send advice after\n");

endtask

task send_around_Created_c();
$display("Aspect_3: Begin send advice around\n");
send_Created_a();
$display("Aspect_3: End send advice around\n");

endtask
endclass

extends aspect_1(packet) dominates (aspect_2, aspect_3);
after task send(); // Advice 1

$display("Aspect_1: send advice after\n");
endtask

endextends

extends aspect_3(packet);
before task send(); // Advice 4

 $display("Aspect_3: send advice before\n");
endtask

endextends

// End of file test.sv

This Example 16-7 shows what the input program looks like after
weaving advice 3 into the class method. A new method
send_around_Created_c is created in this step and the instances of

16-23

Aspect Oriented Extensions

method call to the target method packet::send_Created_a are
modified, such that the code block from advice 3 executes around
the code block of method packet::send_Created_a. Also note that
the proceed statement from the advice code block is replaced by a
call to send_Created_a. At the end of this step,
send_around_Created_c becomes the new target method for
weaving of further advices to packet::send.

Example 16-8 After Weaving Advice-4 of Class packet

// Beginning of file test.sv

program top;
packet p;
p = new();
p.send_around_Created_c();

endprogram

class packet;
...
// Other member fields/methods
...
task send();

$display("Sending data\n”);
endtask

task send_Created_a();
send();
send_after_Created_b();

endtask

task send_after_Created_b();
$display("Aspect_2: send advice after\n");

endtask

task send_around_Created_c();
send_before_Created_d();
 $display("Aspect_3: Begin send advice around\n");
send_after_Created_a();
 $display("Aspect_3: End send advice around\n");

endtask

task send_before_Created_d();
 $display("Aspect_3: send advice before\n");

16-24

Aspect Oriented Extensions

endtask
endclass

 extends aspect_1(packet) dominates (aspect_2, aspect_3);
after task send(); // Advice 1

$display("Aspect_1: send advice after\n");
endtask

endextends

// End of file test.sv

This Example 16-8 shows what the input program looks like after
weaving advice 4 into the class method. A new method
send_before_Created_d is created in this step and a call to it is
added as the first statement in the target method
packet::send_around_Created_c. Also note that the outcome would
have been different if advice 4 (before advice) was defined earlier
than advice 3 (around advice) within aspect_3, as that would have
affected the order of precedence of advice 3 and advice. In that
scenario the advice 3 (around advice) would have weaved around
the code block from advice 4 (before advice), unlike the current
outcome.

Example 16-9 After Weaving all{2,3,4,1} Advices of Class packet

// Beginnning of file test.sv

program top;
packet p;
p = new();
p.send_Created_f();

endprogram

class packet;
...
// Other member fields/methods
...
task send();

$display("Sending data\n”);
endtask

task send_Created_a();

16-25

Aspect Oriented Extensions

send();
send_Created_b();

endtask

task send_after_Created_b();
$display("Aspect_2: send advice after\n");

endtask

task send_around_Created_c();
send_before_Created_d();
$display("Aspect_3: Begin send advice around\n");
send_after_Created_a();
$display("Aspect_3: End send advice around\n");

endtask

task send_before_Created_d();
 $display("Aspect_3: send advice before\n");

endtask
task send_after_Created_e();

$display("Aspect_1: send advice after\n");
endtask

task send_Created_f();
send_around_Created_c();
send_after_Created_e()

endtask
endclass

// End of file test.sv

This Example 16-9 shows the input program after weaving of all four
advices {2, 3, 4, 1}. New methods send_after_Created_e and
send_Created_f are created in the last step of weaving and the
instances of method call to packet::send_around_Created_c were
replaced by method call to packet::send_Created_f.

When executed, output of this program is:

Aspect_3: send advice before
Aspect_3: Begin send advice around
Sending data
Aspect_2: send advice after
Aspect_3: End send advice around
Aspect_1: send advice after

16-26

Aspect Oriented Extensions

Example 16-10 Around Advice With dominates-I

// Begin file test.sv
class foo;
 int i;

 task myTask();
 $display("Executing original code\n");
 endtask
endclass

extends aoe1 (foo) dominates(aoe2);
 around task myTask();
 proceed;
 $display("around in aoe1\n");
 endtask
endextends

extends aoe2 (foo);
 around task myTask();
 proceed;
 $display("around in aoe2\n");
 endtask
endextends

program top;
 foo f;

 initial begin
 f = new();
 f.myTask();
 end
endprogram

// End file test.sv

When aoe1 dominates aoe2, as in func1, the output when the
program is executed is:

Executing original code
around in aoe2
around in aoe1

16-27

Aspect Oriented Extensions

Example 16-11 Around Advice with dominates-II

// Begin file test.sv
class foo;
 int i;
 task myTask();
 $display("Executing original code\n");
 endtask
endclass

extends aoe1 (foo);
 around task myTask();
 proceed;
 $display("around in aoe1\n");
 endtask
endextends

extends aoe2 (foo) dominates (aoe1);
 around task myTask();
 proceed;
 $display("around in aoe2\n");
 endtask
endextends

program top;
 foo f;

 initial begin
 f = new();
 f.myTask();
 end
endprogram
// End file test.sv

On the other hand, when aoe2 dominates aoe1 as in this Example
16-11, the output is:

Executing original code
around in aoe1
around in aoe2

16-28

Aspect Oriented Extensions

Symbol Resolution Details:

As introductions and advices defined within extends directives are
pre-processed as a pre-compilation expansion of the input program,
the pre-processing occurs earlier than final symbol resolution stage
within a compiler. Therefore, it possible for AOE code to reference
symbols that were added to the original class definition using AOEs.
Because advices are woven after introductions have been added to
the class definitions, advices can be specified for introduced
member methods and can reference introduced symbols.

An advice to a class method can access and modify the member
fields and methods of the class object to which the class method
belongs. An advice to a class function can access and modify the
variable that stores the return value of the function.

Furthermore, members of the original class definition can also
reference symbols introduced by aspect extensions using the extern
declarations (?). Extern declarations can also be used to reference
symbols introduced by an aspect extension to a class in some other
aspect extension code that extends the same class.

An introduction that has the same identifier as a symbol that is
already defined in the target scope as a member property or member
method is not permitted.

Examples:

Example 16-12 before Advice on Class Task

// Begin file test.sv
class packet;
 task foo(integer x); //Formal argument is "x"
 $display("x=%0d\n", x);
 endtask
endclass

16-29

Aspect Oriented Extensions

extends myaspect(packet);
 // Make packet::foo always print: "x=99"
 before task foo(integer x);
 x = 99; //force every call to foo to use x=99
 endtask
endextends

program top;
 packet p;

 initial begin
 p = new();
 p.foo(100);
 end
endprogram
// End file test.sv

The extends directive in Example 16-12 sets the x parameter inside
the foo() task to 99 before the original code inside of foo() executes.
Actual argument to foo() is not affected, and is not set unless
passed-by-reference using ref.

Example 16-13 after Advice on Class Function

// Begin file test.sv
class packet ;
 function integer bar();
 bar = 5;
 $display("Point 1: Value = %d\n", bar);
 endfunction
endclass

extends myaspect(packet);
 after function integer bar();
 $display("Point 2: Value = %d\n", bar);
 bar = bar + 1; // Stmt A
 $display("Point 3: Value = %d\n", bar);
 endfunction
endextends

program top ;

16-30

Aspect Oriented Extensions

 packet p;

 initial begin
 p = new();
 $display("Output is: %d\n", p.bar());
 end
endprogram

// End file test.sv

An advice to a function can access and modify the variable that
stores the return value of the function as shown in Example 16-13,
in this example a call to packet::bar returns 6 instead of 5 as the final
return value is set by the Stmt A in the advice code block.

When executed, the output of the program code is:

Point 1: Value = 5
Point 2: Value = 5
Point 3: Value = 6
Output is: 6

 hide_list details

The hide_list item of an extends_directive specifies the
permission(s) for introductions to hide symbols, and/or advice to
modify local and protected methods. By default, an introduction does
not have permission to hide symbols that were previously visible in
the target scope, and it is an error for an extension to introduce a
symbol that hides a global or super-class symbol.

The hide_list option contains a comma-separated list of options such
as:

16-31

Aspect Oriented Extensions

• The virtuals option permits the hiding (that is, overriding) of virtual
methods defined in a super class. Virtual methods are the only
symbols that may be hidden; global, and file-local tasks and
functions may not be hidden. Furthermore, all introduced methods
must have the same virtual modifier as their overridden super-
class and overriding sub-class methods.

• The rules option permits the extension to suspend access rules
and to specify advice that changes protected and local virtual
methods; by default, extensions cannot change protected and
local virtual methods.

• An empty option list removes all permissions, that is, it resets
permissions to default.

In Example 16-14, the print method introduced by the extends
directive hides the print method in the super class.

Example 16-14 Change Permission Using hide virtuals

class pbase;
 virtual task print();
 $display("I’m pbase\n");
 endtask
endclass

class packet extends pbase;
 task foo();
 $display(); //Call the print task
 endtask
endclass

extends myaspect(packet);
 hide(virtuals); // Allows permissions to
 // hide pbase::print task

 virtual task print();
 $display("I.m packet\n.");
 endtask
endextends

16-32

Aspect Oriented Extensions

program test;
 packet tr;
 pbase base;

 initial begin
 tr = new();
 tr.print();
 base = tr;
 base.print();
 end
endprogram

As explained earlier, there are two types of hide permissions:

a. Permission to hide virtual methods defined in a super class
(option virtuals) is referred to as virtuals-permission. An aspect
item is either an introduction, an advice, or a hide list within an
aspect. If at an aspect item within an aspect, such permission
is granted, then the virtuals-permission is said to be on or the
status of virtuals-permission is said to be on at that aspect item
and at all the aspect items following that, until a hide list that
forfeits the permission is encountered. If virtuals-permission is
not on or the status of virtuals-permission is not on at an aspect
item, then the virtuals-permission at that item is said to be off
or the status of virtuals-permission at that item is said to be off

b. Permission to suspend access rules and to specify advice that
changes protected and local virtual methods (option "rules") is
referred to as rules-permission. If within an aspect, at an aspect
item, such permission is granted, then the rules-permission is
said to be on or the status of rules-permission is said to be on
at that aspect item and at all the aspect items following that,
until a hide list that forfeits the permission is encountered. If
rules-permission is not on or the status of rules-permission is
not on at an aspect item, then the rules-permission at that item
is said to be off or the status of rules-permission at that item is
said to be off.

16-33

Aspect Oriented Extensions

Permission for one of the above types of hide permissions does not
affect the other. Status of rules-permission and hide-permission
varies with the position of an aspect item within the aspect. Multiple
hide_list(s) may appear in the extension. In an aspect, whether an
introduction or an advice that can be affected by hide permissions is
permitted to be defined at a given position within the aspect
extension is determined by the status of the relevant hide permission
at the position. A hide_list at a given position in an aspect can
change the status of rules-permission and/or virtuals-permission at
that position and all following aspect items until any hide permission
status is changed again in that aspect using hide_list.

Example 16-15 illustrates how the two hide permissions can change
at different aspect items within an aspect extension.

Example 16-15 Hide Permissions

class pbase;
 virtual task print1();
 $display("pbase::print1\n");
 endtask

 virtual task print2();
 $display("pbase::print2\n");
 endtask
endclass

class packet extends pbase;
 task foo();
 rules_test();
 endtask

 local virtual task rules_test();
 $display("Rules-permission example\n");
 endtask
endclass

extends myaspect(packet);

16-34

Aspect Oriented Extensions

 // At this point within the myaspect scope,
 // virtuals-permission and rules-permission are both off.
 hide(virtuals); // Grants virtuals-permission

 // virtuals-permission is on at this point within aspect,
 // and therefore can define print1 method introduction.
 virtual task print1();
 $display("packet::print1\n.");
 endtask

 hide(); // virtuals-permission is forfieted

 hide(rules); // Grants rules-permission

 // Following advice permitted as rules-permission is on
 before local virtual task rules_test();
 $display("Advice to Rules-permission example\n");
 endtask

 hide(virtuals); // Grants virtuals-permission

 // virtuals-permission is on at this point within aspect,
 // and therefore can define print2 method introduction.
 virtual task print2();
 $display("packet::print2\n.");
 endtask
endextends

program test;
 packet tr;

 initial begin
 tr = new();
 tr.print1();
 tr.foo();
 tr.print2();
 end
endprogram

16-35

Aspect Oriented Extensions

Examples

Introducing new members into a class:

Example 16-16 shows how AOE can be used to introduce new
members into a class definition. myaspect adds a new property,
constraint, coverage group, and method to the packet class.

Example 16-16 Introducing New Member

class packet;
 rand bit[31:0] hdr_len;
endclass

extends myaspect(packet);
 integer sending_port;
 event cg_trigger;

 constraint con2 {
 hdr_len == 4;
 }

 covergroup cov2 @(cg_trigger);
 coverpoint sending_port;
 endgroup

 task print_sender();
 $display("Sending port = %0d\n", sending_port);
 endtask
endextends

program test;
 packet tr;

 initial begin
 tr = new();
 void'(tr.randomize());
 tr.sending_port = 1;
 tr.print_sender();
 -> tr.cg_trigger;
 end

16-36

Aspect Oriented Extensions

endprogram

As mentioned earlier, new members that are introduced should not
have the same name as a symbol that is already defined in the class
scope. So, AOE defined in the manner shown in Example 16-17 will
is not allowed, as the aspect myaspect defines x as one of the
introductions when the symbol x is already defined in class foo.

Example 16-17 Non-permissible Introduction

class foo;
 rand integer myfield;
 integer x;
endclass

extends myaspect(foo);
 integer x ;

 constraint con1 {
 myfield == 4;
 }
endextends

program test;
 foo tr;

 initial begin
 tr = new();
 $display("Non-permissible introduction error....!");
 void'(tr.randomize());
 end
endprogram

Examples of advice code

In Example 16-18, the extends directive adds advices to the
packet::send method.

16-37

Aspect Oriented Extensions

Example 16-18 before-after Advices

// Begin file test.sv
class packet;
 task send();
 $display("Sending data\n.");
 endtask
endclass

extends myaspect(packet);
 before task send();
 $display("Before sending packet\n");
 endtask

 after task send();
 $display("After sending packet\n");
 endtask
endextends

program test;
 packet p;

 initial begin
 p = new();
 p.send();
 end
endprogram

// End file test.sv

When Example 16-18 is executed, the output is:

Before sending packet
Sending data
After sending packet

In Example 16-19, extends directive myaspect adds advice to turn
off constraint c1 before each call to the foo::pre_randomize
method.

16-38

Aspect Oriented Extensions

Example 16-19 Turn-off Constraint Using before Advice

class foo;
 rand integer myfield;

 constraint c1 {
 myfield == 4;
 }
endclass

extends myaspect(foo);

 before function void pre_randomize();
 c1.constraint_mode(0);
 endfunction
endextends

program test;
 foo tr;

 initial begin
 tr = new();
 void'(tr.randomize());
 $display("myfiled value = %d, constraint mode OFF (!=
4)!", tr.myfield);
 end
endprogram

In Example 16-20, extends directive myaspect adds advice to set a
property named valid to 0 after each call to the
foo::post_randomize method.

Example 16-20 Change Property Value After post-randomize()

class foo;
 integer valid;
 rand integer myfield;

 constraint c1 {
 myfield inside {[0:6]};
 }

16-39

Aspect Oriented Extensions

endclass

extends myaspect(foo);
 after function void post_randomize();
 if (myfield > 6)
 valid = 0;
 else
 valid = 1;
 endfunction
endextends

program test;
 foo tr;

 initial begin
 tr = new();
 void'(tr.randomize());
 $display("valid = %0d ", tr.valid);
 end
endprogram

Example 16-21 shows an aspect extension that defines an around
advice for the class method packet::send. When the code in
example is compiled and run, the around advice code is executed
instead of original packet::send code.

Example 16-21 Changing Test Functionality Using around Advice

// Begin file test.sv
class packet;
 integer len;
 task setLen(integer i);
 len = i;
 endtask

 task send();
 $display("Sending data\n.");
 endtask
endclass

program test;

16-40

Aspect Oriented Extensions

 packet p;

 initial begin
 p = new();
 p.setLen(5000);
 p.send();
 p.setLen(10000);
 p.send();
 end
endprogram

extends myaspect(packet);
 around task send();
 if (len < 8000)
 proceed;
 else
 $display("Dropping packet\n");
 endtask
endextends

// End file test.sv

This Example 16-21 also demonstrates how the around advice code
can reference properties such as len in the packet object p. When
executed the output of the above example is,

Sending data
Dropping packet

17-1

Using Constraints

17
Using Constraints 1

This chapter explains VCS support for the following constraints
features:

• “Support for Array Slice in Unique Constraints”

• “Support for Object Handle Comparison in Constraint Guards”

• “Support for Pure Constraint Block”

• “Support for SystemVerilog Bit Vector Functions in Constraints”

• “Inconsistent Constraints”

• “Constraint Debug”

• “Constraint Debug Using DVE”

• “Constraint Guard Error Suppression”

• “Array and XMR Support in std::randomize()”

17-2

Using Constraints

• “XMR Support in Constraints”

• “State Variable Index in Constraints”

• “Using DPI Function Calls in Constraints”

• “Using Foreach Loops Over Packed Dimensions in Constraints”

• “Randomized Objects in a Structure”

• “Support for Typecast in Constraints”

• “Strings in Constraints”

• “SystemVerilog LRM P1800-2012 Update”

• “Enhancement to the Randomization of Multidimensional Array
Functionality”

• “Supporting Random Array Index”

• “Supporting $size() System Function Call”

• “Supporting Foreach Loop Iteration over Array Select”

Support for Array Slice in Unique Constraints

You can specify slices of unpacked array variables in unique
constraints as defined in the IEEE Standard for SystemVerilog (IEEE
Std P1800-2012), section 18.5.5 Uniqueness constraints.

Example 17-1 Array Slice in Unique Constraint

module top;

class c;
 rand bit[2:0] a[7];

17-3

Using Constraints

 rand bit[2:0] b;

 constraint cst1 {
 unique { a[0:2], a[6], a[3:5], b };
 }
endclass: c

c c1;

initial
begin
 c1 = new;
 c1.randomize();
end

endmodule: top

In Example 17-1, the array slices, a[0:2] and a [3:5], are used in
the specification of the unique constraint cst1.

Limitation:

Specifying loop variables of the foreach statement inside array
slices is not supported in unique constraints.

Example 17-2 Loop Variables Inside an Array Slice

class C;
 rand int x[5];

 constraint cst {
 foreach (x[i]) {
 if (i > 0) unique { x[i-1+:2] };
 }
 }
endclass

program automatic test;
 C obj = new;

17-4

Using Constraints

 initial obj.randomize;
endprogram

In Example 17-2, the loop variable i is specified in the array slice
x[i-1+:2]. The following error message is issued.

Error-[NYI-CSTR-AS] NYI constraint: array slice
test.sv, 6
$unit, "this.x[(i - 1)+:2]"
 The expression 'this.x[(i - 1)+:2]' contains an array slice
 that is not yet supported in unique constraint.
 Please remove the array slice from the unique constraint,
 or replace it with entire array or simple array select.

Support for Object Handle Comparison in Constraint
Guards

You can use the equal, ==, and not equal, !=, operators to specify
object handle comparisons in constraint guards as defined in the
IEEE Standard for SystemVerilog (IEEE Std P1800-2012), section
18.5.13 Constraint guards. You can compare between two object
handles, or between an object handle and the value null. The object
handles being compared must be instances of the same class. Using
object handle comparison as constraint guards can prevent potential
randomization errors caused by nonexistent or incorrect object
handles.

Example 17-3 Comparison Between Two Object Handles

module top;

class A;
 rand int i;

 constraint cst0 {

17-5

Using Constraints

 i > 0;
 i < 10;
 }
endclass: A

class C;
 rand bit[3:0] x;
 rand A a1,a2,a3;

 constraint cst1 {
 if (a1 == a3) { x == 3; }
 if (a1 != a3) { x == 5; }
 }

 function new;
 a1 = new;
 a2 = new;

 a3 = a2;
 endfunction

endclass: C

C c1;

initial
begin
 c1 = new;
 repeat(3) begin
 c1.randomize();
 $display("x = %p\ta1 = %p\ta2= %p", c1.x, c1.a1, c1.a2);
 end

 c1.a1 = c1.a2;

 repeat(3) begin
c1.randomize();
 $display("x = %p\ta1 = %p\ta2= %p", c1.x, c1.a1, c1.a2);
 end
end

endmodule: top

17-6

Using Constraints

In Example 17-3, a different constraint is applied to the variable x
depending on the object handles, a1 and a3. If a1 equals to a3, x is
constrained to 3. If a1 is not equal to a3, x is constrained to 5. The
following is the result of the example:

x = 5 a1 = '{i:2} a2= '{i:5}
x = 5 a1 = '{i:8} a2= '{i:5}
x = 5 a1 = '{i:9} a2= '{i:1}
x = 3 a1 = '{i:1} a2= '{i:1}
x = 3 a1 = '{i:3} a2= '{i:3}
x = 3 a1 = '{i:7} a2= '{i:7}

Example 17-4 Comparison Between an Object Handle and Null

module top;

class A;
 rand int i;

 constraint cst0 {
 i > 0;
 i < 10;
 }
endclass: A

class C;
 rand bit[3:0] x;
 rand A a1;
 A a2;

 constraint cst1 {
if (a2 != null) { x == 3; }
 }

 function new;
 a1 = new;
 endfunction
endclass: C

17-7

Using Constraints

C c1;

initial
begin
 c1 = new;
 repeat(3) begin
 c1.randomize();
 $display("x = %p\ta1 = %p\ta2 = %p", c1.x, c1.a1, c1.a2);
 end

 c1.a2 = new;
 repeat(3) begin
 c1.randomize();
 $display("x = %p\ta1 = %p\ta2 = %p", c1.x, c1.a1, c1.a2);
 end
end

endmodule: top

In Example 17-4, the 4-bit variable x is constrained to value 3 when
the object handle a2 is not null. The following is the result of the
example:

x = 6 a1 = '{i:5} a2 = null
x = 1 a1 = '{i:5} a2 = null
x = 9 a1 = '{i:1} a2 = null
x = 3 a1 = '{i:1} a2 = '{i:0}
x = 3 a1 = '{i:3} a2 = '{i:0}
x = 3 a1 = '{i:7} a2 = '{i:0}

Limitations:

• Object handles returned by function calls cannot be used for
comparison in constraint guards.

17-8

Using Constraints

• An array of objects cannot be used for comparison in constraint
guards. Comparing singleton members is supported. The
following constraint specification results in a “Not Yet
Implemented” runtime error.

constraint cst1 {
 foreach (a_arry[j]) {
 if (a_arry[j] != null) { x inside { [2:5] }; }
 }
 }

Error message:

Error-[NYI] Not Yet Implemented
orig_null.sv, 18
 Feature is not yet supported: objects in object
(in)equality must currently
 refer to singleton members (no array elements, function
calls, null, ...)

Support for Pure Constraint Block

You can specify pure constraint block as defined in the IEEE
Standard for SystemVerilog (IEEE Std P1800-2012), section 18.5.2
Constraint inheritance. A pure constraint block, specified with the
pure keyword, defines a constraint prototype in a virtual class. The
constraint implementation is provided when a non-virtual class is
derived from the virtual class. The constraint that overrides a pure
constraint block may be declared using a constraint block, a
constraint prototype or an external constraint of the same name in
the body of the derived class.

Example 17-5 Pure Constraint Implementation in a Derived Class

virtual class B;

17-9

Using Constraints

 pure constraint t1;
 pure constraint q1;
endclass

class C extends B;

 rand int z,z1;
 randc int x,y;
 rand bit a,b;

 constraint t1{
 x inside {2,3,5};
 y inside {3,4,7};
 z==x+y;
 }

 constraint q1{
 z1==(a+b);
 }
endclass

module m;
 C c=new();
 initial begin
 repeat (3) begin
 c.randomize();
 $display("x = %0d y = %0d z = %0d\n", c.x, c.y, c.z);
 $display("a = %0d b = %0d z1 = %0d\n", c.a, c.b, c.z1);
 end
 end
endmodule

In Example 17-5, the pure constraint block is declared in the virtual
base class B. The constraints of the pure constraint block are
implemented in class C that is derived from class B. The following is
the result of the example:

x = 5 y = 7 z = 12
a = 1 b = 0 z1 = 1
x = 2 y = 3 z = 5

17-10

Using Constraints

a = 0 b = 1 z1 = 1
x = 3 y = 4 z = 7
a = 0 b = 0 z1 = 0

Example 17-6 Pure Constraint Implementation in a Hierarchy of Derived
Classes

virtual class A;
 pure constraint q;

 virtual function obj ();
 endfunction
endclass

virtual class B extends A;
 pure constraint s;
 int i;

 function obj ();
 i=10;
endfunction
endclass

class C extends B;
 rand bit [7:0]x,y,z;
 rand bit [3:0]a;

 constraint q {
 x < 8'h80; y < 8'h80; z < 8'h80;
 z == x+y;
 }

 constraint s{
 a inside { 0, 10 };
 }
endclass

module top;
 C c=new;
 initial begin

17-11

Using Constraints

 repeat(2) begin
 c.randomize();
 c.obj();
 $display("x = %0d y = %0d z = %0d", c.x, c.y, c.z);
 $display("a = %0d\n", c.a);
 end
 end
endmodule

In Example 17-6, the pure constraint blocks are declared in the
virtual base class A and the virtual class B that is derived from class
A. The constraints of the pure constraint blocks are implemented in
class C that is derived from class B. The following is the result of the
example:

x = 91 y = 20 z = 111
a = 10

x = 13 y = 45 z = 58
a = 10

Example 17-7 Pure Constraint Error With Missing Constraint
Implementation

virtual class A;
 rand int i;
 pure constraint t;
endclass

class B extends A ;
 rand bit [7:0]x,y,z;
endclass

module m;
 B b=new;

 initial begin
 b.randomize();
 end

17-12

Using Constraints

endmodule

In Example 17-7, the pure constraint block is declared in the virtual
base class A. The derived class B does not include the constraint
implementation for the pure constraint block. As a result, the
following error message is issued:

Error-[CSTR-PCNI] 'pure' constraint not implemented
test.v, 6
$unit
 'pure' constraint 't' has not been implemented in class 'B'

Example 17-8 Pure Constraint Error With Missing Virtual Declaration

class A;
 pure constraint c1;
endclass

class B;
 rand int x;
 randc int y;

 constraint c1 {
 x == 12;
 y inside {2,3,5};
 }
endclass

program test;
 B c ;
 initial begin
 c=new();
 c.randomize(x,y);
 end
endprogram

17-13

Using Constraints

In Example 17-8, the pure constraint block is declared in the base
class A. Pure constraint blocks must be declared inside a virtual
class. As a result, the following error message is issued:

Error-[CSTR-IUPC] Illegal use of pure constraint
test.v, 2
$unit
 Only 'virtual' (i.e. abstract) class may contain 'pure'
constraints.

Example 17-9 Pure Constraint Error With Mismatched Prototypes

virtual class A;
 pure static constraint q1;
endclass;

virtual class B extends A;
 pure static constraint v1;
endclass;

class C extends B;
 rand bit [3:0]a[3];
 rand bit [3:0]b;
 rand int dyn_arr[];

 constraint q1 {
 foreach (dyn_arr [k])
 { dyn_arr [k] > 10; }

 dyn_arr.sum() == 500;
 }

 constraint v1 { unique {a, b}; }
endclass

module m;
 C c=new();
 initial begin
 c.dyn_arr =new[10];
 c.randomize();

17-14

Using Constraints

 end
endmodule

In Example 17-9, the pure constraint blocks are declared in the
virtual base class A and the virtual class B that is derived from class
A. The constraints of the pure constraint blocks are implemented in
class C that is derived from class B. However, the constraint
declarations in class C do not include the static keyword that is
specified in the pure constraint blocks. As a result, the following error
messages are issued:

Error-[CSTR-PCPM] 'pure' constraint prototype mismatch
negative_pureconstraint3.v, 14
$unit
 The declaration of constraint 'q1' in class 'C' must match
its corresponding
 'pure' constraint declaration in its base class hierarchy.

Error-[CSTR-PCPM] 'pure' constraint prototype mismatch
negative_pureconstraint3.v, 21
$unit, "constraint v1 { unique {this.a, this.b};}"
 The declaration of constraint 'v1' in class 'C' must match
its corresponding
 'pure' constraint declaration in its base class hierarchy.

Support for SystemVerilog Bit Vector Functions in
Constraints

You can specify the following SystemVerilog bit vector functions in
constraints:

• “$countones Function”

• “$onehot Function”

17-15

Using Constraints

• “$onehot0 Function”

• “$countbits Function”

• “$bits Function”

The $countones, $onehot, $onehot0, $countbits and $bits
are defined as bit vector system functions in the IEEE Standard for
SystemVerilog (IEEE Std P1800-2012). These functions are
supported in the constraint context as an operator to the expression
in its argument, and can be used to create an iterated constraint
expression, similar to the use of array reduction methods in
constraints.

The following example explains the differences between handling
$countones, $onehot, $onehot0, and $countbits as functions
and as expressions in the constraint context:

rand bit [3:0] vector;

constraint cst { $countones (vector) == 4; }

As defined in Section 18.5.12 of the IEEE Standard for
SystemVerilog (IEEE Std P1800-2012), the semantic restrictions
related to a function call in constraints require the solver to solve the
random variable as a function argument first, and then use the return
value of the function as a state variable. In the above example, if
$countones is treated as a system function, the random variable,
vector, is used as the function argument. The random variable is
unconstrained and it can be assigned any value between 4'b0000
and 4'b1111. For example, vector is randomized to a value
4'b1010. The function $countones returns a value of 2 based on
the vector value of 4'b0101. A constraint solver failure is issued

17-16

Using Constraints

because the return value of the function, 2, is not equal to 4. In this
case, there is a 31/32 chance that a constraint solver failure is
issued. This is unlikely the user intent.

If $countones is treated as an operator to the expression in its
argument, it can be used to create iterative expression involving the
bits of the expression. In this case, you can constrain how many bits
of the expression is 1'b1. The constraint

$countones (vector) == 4

is considered as

vector[0] + vector[1] + vector[2] + vector[3] == 4

The solver generates a solution for the random variable vector:
4'b1111. This is the most likely the user intent when $countones,
$onehot, $onehot0, and $countbits are used in the constraint
context, and is the behavior supported by VCS.

For more information on the bit vector functions, see the IEEE
Standard for SystemVerilog (IEEE Std P1800-2012), section 20.9 Bit
vector system functions.

$countones Function

The $countones system function returns an integer equal to the
number of bits in the expression having value 1. You can use
$countones as a constraint expression to specify the number of
bits inside the $countones expression to be randomized to value 1.

Example 17-10 Using $countones in Constraint Specification

module top;

17-17

Using Constraints

class c;
 rand bit[7:0] b;

 constraint cst1 {
 $countones (b) == 3;
 }
endclass: c

c c1;

initial
begin
 c1 = new;
 repeat(5) begin
 c1.randomize();
 $display("b = %b", c1.b);
 end
end

endmodule: top

In Example 17-1, the 8-bit variable b is constrained to generate a
random value with exactly 3 bits having value 1. The following is the
result of the example.

b = 10000011
b = 01010001
b = 10010010
b = 01100001
b = 10001100

$onehot Function

The $onehot function returns true if one and only one bit in the
expression having value 1. You can use $onehot as a constraint
expression to specify one and only one bit inside the $onehot
expression to be randomized to value 1.

17-18

Using Constraints

Example 17-11 Using $onehot in Constraint Specification

module top;

class c;
 rand bit[7:0] b;

 constraint cst1 {
 $onehot (b);
 }
endclass: c

c c1;

initial
begin
 c1 = new;
 repeat(5) begin
 c1.randomize();
 $display("b = %b", c1.b);
 end
end

endmodule: top

In Example 17-4, the 8-bit variable b is constrained to generate a
random value with one and only one bit having value 1. The following
is the result of the example.

b = 00000001
b = 01000000
b = 00001000
b = 10000000
b = 01000000

17-19

Using Constraints

$onehot0 Function

The $onehot0 function returns true if zero or one bit in the
expression having value 1. You can use $onehot0 as a constraint
expression to specify zero or one bit inside the $onehot0
expression to be randomized to value 1.

Example 17-12 Using $onehot0 in Constraint Specification

module top;

class c;
 rand bit[2:0] b;

 constraint cst1 {
 $onehot0 (b);
 }
endclass: c

c c1;

initial
begin
 c1 = new;
 repeat(5) begin
 c1.randomize();
 $display("b = %b", c1.b);
 end
end

endmodule: top

In Example 17-12, the 3-bit variable b is constrained to generate a
random value with zero or one bit having value 1. The following is the
result of the example.

b = 100
b = 000

17-20

Using Constraints

b = 100
b = 001
b = 010

$countbits Function

The $countbits function counts the number of bits that have a
specific set of values (0, 1, X, Z) in a bit vector. The syntax is as
follows:

$countbits (expression, control_bit {, control_bit})

The control bit is a1-bit logic that can have'0, '1, 'x, or 'z values.
If a value with a width greater than 1 is passed, only the least
significant bit (LSB) is used. If any individual value appears more
than once in the control bits, it is treated exactly as if it had appeared
once.

The $countbits function returns an integer that is equal to the
number of bits in the expression whose values match one of the
control bit entries.

For example,

• $countbits (expression, '1) returns the number of bits
in the expression having value 1.

• $countbits (expression, '1, '0) returns the number of
bits in the expression having values 1 or 0.

Note:

As SystemVerilog constraints support only two-state values, the
use of 'x or 'z as control bits results in an error message when
used in the constraint context.

17-21

Using Constraints

The expression argument is of a bit-stream type. For more
information on the bit vector functions, see Section 20.9 Bit vector
system functions in the IEEE Standard for SystemVerilog (IEEE Std
P1800-2012).

Example 17-13 Using $countbits in Constraint Specification

program automatic test;
 class cls;
 rand bit [7:0] driver_port1, driver_port2;

 constraint c1 {
 //randomize 'driver_port1' in such a way that

number of "ones" or
 // no of activer driver ports should be two
 $countbits(driver_port1, 1) == 2;

 // randomize 'driver_port2' in such a way that
number of "zeros" should be four

 $countbits(driver_port2, 0) == 4;
 }
 endclass

 cls obj = new;

 initial begin
 obj.randomize;
 assert($countbits(obj.driver_port1, 1) == 2);
 assert($countbits(obj.driver_port2, 0) == 4);
 end
endprogram

$bits Function

The $bits system function returns the number of bits required to
hold an expression as a bit stream. The return type is integer. The
syntax is as follows:

$bits (expression | data_type)

17-22

Using Constraints

The value returned by $bits is determined without actual
evaluation of the expression it encloses. An error message is issued
if you enclose a function that returns a dynamically sized data type.
The $bits return value is valid during elaboration only if the
expression contains fixed-size data types.

The $bits system function returns 0 when called with a dynamic
sized expression that is empty. An error message is issued,

• When you use the $bits system function directly with a
dynamically sized data type identifier.

• When you use the $bits system function on an object of an
interface class type.

For more information on the bit vector functions, see Section 20.6.2
Expression size system function in the IEEE Standard for
SystemVerilog (IEEE Std P1800-2012).

Example 17-14 Using $bits in Constraint Specification

program automatic test;

 class cls1 #(parameter width1 = 8, width2 = 32);

 rand bit [width1-1:0] r1;
 rand bit [width2-1:0] r2;
 rand bit [7:0] r3;

 constraint c1 {
 r2[$bits(r1)-1:0] == '1; // randomize r2, such

that LSB bits
($bits(r1) no of bits)
to all ones

 r3 == $bits(r1); // randomize r3, such that r3
should be equal to $bits(r1) or
width of r1

 }

17-23

Using Constraints

 endclass

 cls1 #() obj1 = new; // object obj1 holds default parameter
values 8(w1), 32(w2)
// so, $bits(r1) will be '8'

 cls1 #(4, 16) obj2 = new; // object obj2 holds over-
ridden parameter values
4(w1), 16(w2)
// so, $bits(r1) will be '4'

 initial begin
 obj1.randomize;
 assert(obj1.r3 == 8);
 assert(obj1.r2[7:0] == '1);

 obj2.randomize;
 assert(obj2.r3 == 4);
 assert(obj2.r2[3:0] == '1);

 end
endprogram

Inconsistent Constraints

VCS correctly identifies inconsistent constraints while trying to find
the minimal set causing the inconsistency. VCS supports two options
to find inconsistent constraints: binary search and linear search. You
can use two new options to set larger timeout values. The default
timeout values for each iteration of the constraint solver are 100
seconds for the binary search and 10 seconds for the linear search.
You can set larger timeout values in seconds. For example:

simv +ntb_binary_debug_solver_cpu_limit=200
simv +ntb_linear_debug_solver_cpu_limit=20

17-24

Using Constraints

Note:
If the constraint solver timeout value is too low, VCS may not be
able to find the minimal set of conflicting constraints. If the solver
timeout value is too high, performance may degrade while finding
a conflict. Therefore, setting optimal timeout values is important.

Inconsistent constraints are non-fatal by default. VCS continues to
run after a constraint failure. Use the
+ntb_stop_on_constraint_solver_error=0|1 option,
where 1 enables stop on first error and 0 disables stop on first error
to control how VCS handles these inconsistencies. For example, to
make VCS stop the simulation on the first constraint failure, use the
following command line:

simv +ntb_stop_on_constraint_solver_error=1

When VCS detects inconsistent constraints, the default printing
mode only displays the failure subset. For example:

The solver failed when solving following set of constraints

rand integer y; // rand_mode = ON
rand integer z; // rand_mode = ON
rand integer x; // rand_mode = ON
constraint c // (from this) (constraint_mode = ON)
{
(x < 1) ;
(x in { 3 , 5 , 7 : 11 }) ;
}

You can use the
+ntb_enable_solver_trace_on_failure=0|1|2|3 runtime
option as follows:

0 Print a one-line failure message with no details.

17-25

Using Constraints

Constraint Debug

Generally, there are two kinds of constraint debug scenarios. In the
first scenario, VCS solves the random variables but the user wishes
to get a better understanding how the random variables are
solved.This is about debugging the solved values. In the second
scenario, VCS either times out when solving or solves after a long
time. This is about performance debug.

The following sections describe the VCS features that can help with
these kinds of constraint debug.

- “Partition”

- “Randomize Serial Number”

- “Solver Trace”

- “Test Case Extraction”

- “Using multiple +ntb_solver_debug arguments ”

- “Summary for +ntb_solver_debug”

1 Print only the failure subset (this is the default).

2 Print the entire constraint problem and failure subset.

3 Print only the failure problem. This is useful when the
solver fails to determine the minimum subset.

17-26

Using Constraints

Partition

Whether it is std::randomize or the randomization of a class
object, it generally involves one or more state and random
variables.Constraints are used to describe relationships that
between these variables. An important concept of constrained
randomization is the notion of partitions. In other words, a randomize
call is partitioned into one or more smaller constraint problems to
solve. At run time, VCS groups all the related random variables
involved in each randomization into one or more partitions. If there
are no constraints between two random variables, they are not
solved in the same partition. Here is an example to illustrate this
concept:

class myClass;
 rand int x;
 rand int y;
 rand int z;
 rand byte a;
 rand byte b;
 bit c;
 constraint m {
 x > z;
 c -> a == b;
 }
 constraint n {
 y > 0;
 }

myClass obj = new;
obj.randomize(); // 1st randomize() call
obj.randomize() with {x!=y;}; // 2nd randomize() call

17-27

Using Constraints

For the first randomize call, the following constraints are used to
solve the five random variables: x, y, z, a, and b and VCS creates
three partitions for these random variables.

 x > z; // from the constraint block m
 c -> a == b; // from the constraint block m
 y > 0; // from the constraint block n

The random variables x and z are grouped in one partition because
of a constraint (x > z) relating the two together.

The random variables a and b are grouped in another partition
because of the constraint (c -> a == b).

There are no constraints between y and any other random variable.
So y is on a third partition of its own.

Because the random variables from different partitions are not
constrained together, they do not have to be solved in any particular
order.

For the second randomize() call, a new constraint is added in the
inline constraint (that is randomize() with). Here are the four
constraints for the same 5 random variables.

 x > z; // from the constraint block m
 c -> a == b; // from the constraint block m
 y > 0; // from the constraint block n
 x != y; // from the inline constraint

// – randomize() with ..

For this second randomize call, two partitions are created.

The first partition has the random variables: x, y, and z because the
following constraints relate all three together: (x > z), (y > 0), and
(x != y).

17-28

Using Constraints

The second partition has the random variables a and b because of
the (c -> a == b) constraint.

Randomize Serial Number

Each randomization in a simulation is assigned a serial number
starting with 1. For example, if there are ten randomize calls
(std::randomize or randomization of class objects) in a
simulation, they are numbered from 1 to 10.

By default, the randomize serial numbers are not printed at run time.
To display the randomize serial numbers during simulation, you need
to run the simulation with the +ntb_solver_debug=serial
option.

simv +ntb_solver_debug=serial

After each randomization completes, VCS prints the randomize
serial number along with some run time and memory data for the
randomize() call.

Using a randomize serial number provides a mechanism to focus the
constraint debug on a specific randomize() call. If the randomize
serial number is used together with the partition number, it is the
specified partition within the specified randomize call that becomes
the focus for the constraint debug.

To specify the nth partition of the mth randomize call, the notation m.n
is used.

17-29

Using Constraints

Solver Trace

To get more insight to how VCS solves a randomize call, you can
enable solver trace reporting by using the
+ntb_solver_debug=trace runtime option. Here is an example
of the solver trace:

// Part.sv
class C;
 rand byte x, y, z, m, n, p, q;

 constraint imply {
 x > 3 -> y > p; // C1
 z < bigadd (x, q); // C2
 n != 0; // C3
 }

 function byte bigadd (byte a, b);
 return (a + b);
 endfunction

endclass

program automatic test;
 C obj = new;
 initial begin
 repeat (5) begin
 obj.randomize() with { m == z; }; // C4
 end
 end
endprogram

For this example, let us determine the partitions that will be created
by the solver.

17-30

Using Constraints

The SystemVerilog LRM mandates that function arguments must be
solved first in order to compute the function that is used to constraint
other random variables. In other words, separate partitions must be
created for (x, q) and then for z.

• The constraint expression C1 relates the random variables, x, y,
p together. So they are solved together in one partition.

• The constraint expression C2 using function call in constraint
requires that z is solved in a different partition from x and q.

• Since the random variable q is not related to any other random
variables, q is solved in a partition on its own.

• Similarly, the random variable n is not related to any other random
variables, n is solved in another partition on its own.

• The constraint expression C4 is an inline constraint relating the
two random variables, m and z, together. Therefore, m and z will
be solved together in one partition.

• Given the above descriptions, you can see four partitions will be
created.

• Partition 1 to solve x, y, p together

• Partition 2 to solve n alone

• Partition 3 to solve q alone

• Partition 4 to solve z and m together

To compile and run this example and enable solver trace for the third
randomize call:

vcs –sverilog part.sv

simv +ntb_solver_debug=trace +ntb_solver_debug_filter=3

17-31

Using Constraints

Part of the solver trace will show the partition information. Here is a
part of the solver trace from the command above.

===
SOLVING constraints
At file part.sv, line 20, serial 3

Rng state is:
01x0z11xzxxx11zx1xz0zx100zxxzzz0zxxzzzzxzzzxxzxzzzzzxzzzzz
xxzxxz
Virtual class C, Static class C

…
Solving Partition 1 (mode = 2)

rand bit signed [7:0] y; // rand_mode = ON
rand bit signed [7:0] p; // rand_mode = ON
rand bit signed [7:0] x; // rand_mode = ON

...

Solving Partition 2 (mode = 2)

rand bit signed [7:0] n; // rand_mode = ON

...

Solving Partition 3 (mode = 2)

rand bit signed [7:0] q; // rand_mode = ON

...

Solving Partition 4 (mode = 2)

bit signed [7:0] fv_3 /* this .C::bigadd(x , q) */ = -127;
rand bit signed [7:0] z; // rand_mode = ON
rand bit signed [7:0] m; // rand_mode = ON

17-32

Using Constraints

It is required to specify the randomize() call(s) and/or partitions(s)
to report the solver trace details. For example:

The following command reports the solver trace for the second
randomize() call and all partitions within this randomize() call of
the simulation.

simv +ntb_solver_debug=trace +ntb_solver_debug_filter=2

The following command reports the solver trace for the third partition
of the fifth randomize() call of the simulation.

simv +ntb_solver_debug=trace +ntb_solver_debug_filter=5.3

If the solver trace is to be enabled for multiple randomize calls, you
can specify the list of random serial and, optionally, partition numbers
in a comma separated list for the +ntb_solver_debug_filter
option. For example: the following command reports the solver
traces for the following randomize() calls and their partitions:

• Serial number 2, all partitions of this second randomize() call

• Serial number 5, just the third partition of this fifth randomize()
call

• Serial number 10, all partitions of this tenth randomize() call

• Serial number 15, just the 30th partition of this 15th randomize()
call.

simv +ntb_solver_debug=trace \
+ntb_solver_debug_filter=2,5.3,10,15.30

The following command reports the solver traces for the
randomize() calls or partitions listed in a text file, for example if
serial_trace.txt is the file name.

17-33

Using Constraints

simv +ntb_solver_debug=trace \
+ntb_solver_debug_filter=file:serial_trace.txt

The following command reports the solver traces for all
randomize() calls in the simulation. Be aware that this may
produce a lot of data if there are many randomize() calls in the
simulation.

simv +ntb_solver_debug=trace +ntb_solver_debug_filter=all

or

simv +ntb_solver_debug=trace_all

The +ntb_solver_debug_filter is not needed on the second
simv command line.

Note:

Reporting solver traces for all randomize() calls can generate
very large data files. Using the +ntb_solver_debug=trace
and +ntb_solver_debug_filter=serial_num|file
options and arguments limit the solver trace reports to the one(s)
on which you want to focus the constraint debug.

Constraint debugging capability is also in DVE, including a similar
solver trace capability to understand the details of a randomize()
call and many graphical user interface features, such as cross
probing, search, and filters to make debugging constraints faster and
easier. For more information see the DVE User Guide.

17-34

Using Constraints

Constraint Profiler

To debug any performance related issues, profiling is required to
identify the top consumers of time/memory. VCS provides a
constraint profiler feature that can be enabled by using the
+ntb_solver_debug=profile runtime option and keyword
argument.

simv +ntb_solver_debug=profile

This simv command line runs the simulation and collects runtime
and memory data on each of the randomize() calls in the
simulation. The randomize calls/partitions that take the most time
and memory will be listed out in a constraint profile report in the file
simv.cst/html/profile.xml, where simv is the name of the
simulation executable.

To view the constraint profile report in simv.cst/html/
profile.xml, open the file with the Firefox or Chrome web
browser. Viewing this file in Internet Explorer on Windows is not
supported.

The random serial numbers for the randomize calls and/or partitions
that take the most time are listed in the simv.cst/
serial2trace.txt file.

Note:

The unified profiler also does constraint profiling. The Unified
profiler is an LCA feature, for more information see the VCS/VCSi
LCA Features book.

17-35

Using Constraints

Test Case Extraction

The solver trace shows the list of variables and constraints for each
of the partitions. By wrapping this data inside a SystemVerilog class
in a program block, you can create a standalone test case to compile
and simulate to shorten the debug time. If you wishes to try different
things to better understand the solver behavior and or to fix the
constraint issue, you can do it on this extracted test case instead of
the original design to save compile and run time.

To enable test case extraction, you can enable solver trace reporting
by using the +ntb_solver_debug=extract runtime option and
keyword argument. You must specify the specific randomize()
call(s) to extract the test cases for using the
+ntb_solver_debug_filter option.

For example, test case extraction is enabled for the second
randomize call, that is randomize serial number = 2:

simv +ntb_solver_debug=extract +ntb_solver_debug_filter=2

This extracts a test case for each of the partitions of the
randomize() call. Extracted test cases are saved in the
simv.cst/testcases directory, where simv is the name of the
simulation executable. The extracted test cases follow this naming
convention:

extracted_r_serial#_p_partition#.sv

Once extracted, you can follow the commands below to compile and
run the standalone test case. For example, to simulate the extracted
test case for the third partition of the second randomize() call of
the original design:

17-36

Using Constraints

cd simv.cst/testcases
vcs –sverilog extracted_r_2_p_3.sv -R

Similar to reporting solver traces for a single partition or for multiple
randomize() calls and their partitions, you can enable test case
extraction for these too. For example:

simv +ntb_solver_debug=extract \
+ntb_solver_debug_filter=5.3

simv +ntb_solver_debug=extract \
+ntb_solver_debug_filter=2,5.3,10,15.30

simv +ntb_solver_debug=extract \
+ntb_solver_debug_filter=file:serial_trace.txt

Note:
You can only extract test cases from a partition. If VCS fails before
any partition is created, test case extraction does not work.

When VCS encounters a randomize() call that has no solution or
has constraint inconsistencies, VCS MX automatically extracts a test
for it and saves the extracted test case using the following naming
convention:

simv.cst/testcases/
extracted_r_serial#_p_partition#_inconsistency.sv

When VCS fails to solve a randomize() call due to solver time
outs, test case extraction is also automatically enabled for it and
VCS saves the extracted test case using the following naming
convention:

simv.cst/testcases/
extracted_r_serial#_p_partition#_timeout.sv

17-37

Using Constraints

Using multiple +ntb_solver_debug arguments

To use multiple +ntb_solver_debug arguments such as serial,
trace, extract, and profile, you can use pluses (+) to combine
them, for example:

simv +ntb_solver_debug=serial+trace+extract \
+ntb_solver_debug_filter=3,4

Summary for +ntb_solver_debug

The runtime option +ntb_solver_debug provides you with many
constraint debug features to debug constraints in batch mode.

+ntb_solver_debug=serial

The serial number assignment to the randomizations in a simulation
provides a method to identify the randomize() calls to be
debugged next. Once identified, you can use this runtime option with
appropriate arguments to report the trace and extract test cases. The
constraint profiler also uses the same identification method to
provide feedback to you which specific randomize() calls to
optimize for best performance improvements.

+ntb_solver_debug=trace

This enables solver trace reporting for the specified randomize()
calls. This helps the user to understands how VCS solves the
random variables for given randomize calls. The
+ntb_solver_debug_filter option is required to specify a list of
randomize() calls for which to enable the solver trace.

17-38

Using Constraints

+ntb_solver_debug=profile

This enables constraint profiling for the simulation at runtime. The
profile report provides important information to you which randomize
calls should be targeted for improving constraint performance to
bring down the total simulation run time or memory.

+ntb_solver_debug=extract

This enables test case extraction for the specified randomize calls.
This creates standalone test cases for you to compile and run
outside of the original design. This should help quicker turnaround
time to experiment possible fixes as it is faster to compile and run a
smaller test case. The +ntb_solver_debug_filter option is
required to specify a list of randomize calls for which to enable test
case extraction.

Constraint Debug Using DVE

DVE supports constraint debugging and allows you to do the
following. Refer to the Debugging Constraints section in the DVE
User Guide for more details.

• View static information about the constraint problem (including
constraint blocks that are overridden due to class inheritance) in
the Class Browser and Member Pane

• Browse dynamic information of the object being randomized,
including rand_mode, constraint_mode, and object ID, in the
Local Pane

• Use flexible solver breakpoint infrastructure to stop the simulation
during interactive debug from the Breakpoint dialog box

17-39

Using Constraints

- Using randomize serial IDs: For example, stop the simulation

at the 10th randomize call

- Specifying the solver conditions on the randomization call. For
example:

- Stop the simulation when ‘packet’ class is randomized and
when the solution has ‘addr == 10’ (addr is a rand data
member of the packet class)

- Stop the simulation when there is constraint inconsistency
from randomizations of any (*) class

• Step into the constraint solver after the simulation stops at a
randomize statement, to easily navigate to the solution and
relation spaces in the Constraints dialog box

- Browse the solver trace in the Constraints dialog box showing
partitioning of random variables, initial value ranges of random
variables, and their current solved values

- View the relationship between random variables and the
constraints that establish such relationship

- Find the random variables or constraint blocks of interest
quickly using the “Search” feature with drag-and-drop, “add to
search” option, and so on.

- Change the radix for the variable and constraint expressions to
improve readability

- Extract testcase for the randomize call or selected partitions in
the randomize call

- Debug inconsistency constraint – showing a minimal set of
constraints causing the inconsistency

17-40

Using Constraints

- Debug default constraints – showing the overridden default
variables and constraints

- Debug soft constraints – showing which soft constraints are
honored and which ones are dropped

• Interactively modify the constraint problem from the Local Pane
without recompile

- Control rand_mode of random variables

- Control constraint_mode of constraint blocks

- Add new constraint expressions to the constraint problem

- Disable selected constraint expressions from active constraint
blocks

• Re-randomize on-the-fly without recompiling the design

- Re-randomize the modified problem and step into the constraint
solver

- View the histogram of solutions for random variables after
multiple re-randomizations to debug distribution from the
Constraints dialog box

Constraint Guard Error Suppression

If a guard expression is false, and if there are no other errors during
randomization, VCS suppresses errors in the implied expressions of
guard constraints. For example, here is a sample error message that
VCS now suppresses:

Error-[CNST-NPE] Constraint null pointer error
test_guard.sv, 27

17-41

Using Constraints

 Accessing null pointer obj.x in constraints.
 Please make sure variable obj.x is allocated.

Guarded constraints are defined in the SystemVerilog LRM (section
13.4; especially sections 13.4.5, 13.4.6, and 13.4.12).

The VCS constraint solver does not distinguish between implication
(LRM section 13.4.5) and if-else constraints (LRM section
13.4.6). They are equivalent representations in the VCS constraint
solver. These are called guarded constraints in this document.

Hence, the two formats shown in Example 17-15 are equivalent
inside the VCS constraint solver.

Example 17-15 Guarded Expressions

if (a | b | c)
{
obj.x == 10;
}

-or-

(a | b | c) -> (obj.x == 10);

In Example 17-15, the expression inside the if condition (or the left
side of the implication operator) is the guard expression. The
remaining part of the expression (the right side of the implication
operator) is the implied expression.

Note:

If there are other types of errors or conflicts, VCS does not
guarantee suppression of those errors in the implied expression
of the guard constraint.

17-42

Using Constraints

The LRM says that the implication operator (or the if-else
statement) should be at the top level of each constraint. Therefore,
a constraint may have at most one guard (or one implication
operator).

Error Message Suppression Limitations

The constraint guard error message suppression feature has some
limitations, as explained in the following sections:

• “Flattening Nested Guard Expressions”

• “Pushing Guard Expressions into Foreach Loops”

Flattening Nested Guard Expressions

If there are multiple nested guards for a constraint, VCS combines
them into one guard. For example, given the following code:

 if (a)
 {
 if (b)
 {
 if (c)
 {
 obj.x == 10;
 }
 }
 }

VCS flattens the guard expression into the following equivalent code:

 if (a && b && c)
 {
 obj.x == 10;
 }

17-43

Using Constraints

In the above example, if a is false, and b has an error (for example,
a null address error), VCS still generates the error message.

Pushing Guard Expressions into Foreach Loops

VCS pushes constraint guards into foreach loops. For example, if
you have:

 if (a | b | c)
 {
 foreach (array[i])
 {
 array[i].obj.x == 10;
 }
 }

VCS transforms it into the following equivalent code:

 foreach (array[i])
 {
 if (a | b | c)
 {
 array[i].obj.x == 10;
 }
 }

In the above example, if a | b | c is false, and array has an
error (for example, a null address error), VCS still generates the error
message.

17-44

Using Constraints

Array and XMR Support in std::randomize()

VCS allows you to use cross-module references (XMRs) in class
constraints and inline constraints, in all applicable contexts. Here,
XMR means a variable with static storage (anything accessed as a
global variable).

VCS std::randomize() support allow the use of arrays and
cross-module references (XMRs) as arguments.

VCS supports all types of arrays:

• fixed-size arrays

• associative arrays

• dynamic arrays

• multidimensional arrays

• smart queues

Note:
VCS does not support multidimensional, variable-sized arrays.

Array elements are also supported as arguments to
std::randomize().

VCS supports all types of XMRs:

• class XMRs

• package XMRs

• interface XMRs

17-45

Using Constraints

• module XMRs

• static variable XMRs

• any combination of the above

You can use arrays, array elements, and XMRs as arguments to
std::randomize().

Syntax

integer fa[3];
success= std::randomize(fa);
success= std::randomize(fa[2]);
success= std::randomize(pkg::xmr);

Example

module test;
integer i, success;
integer fa[3];
initial
begin

foreach(fa[i]) $display("%d %d\n", i, fa[i]);
success = std::randomize(fa);
foreach(fa[i]) $display("%d %d\n", i, fa[i]);

end
endmodule

When std::randomize() is called, VCS ignores any rand mode
specified on class member arrays or array elements that are used as
arguments. This is consistent with how std::randomize() is
specified in the SystemVerilog LRM. This means that for purposes of
std::randomize() calls, all arguments have rand mode ON, and
none of them are randc.

17-46

Using Constraints

Error Conditions

If you specify an argument to a std::randomize() array element
which is outside the range of the array, VCS prints the following error
message:

Error-[CNST-VOAE] Constraint variable outside array error

Random variables are not allowed as part of an array index.

If you specify an XMR argument in a std::randomize() call, and
that XMR that cannot be resolved, VCS prints an error message.

XMR Support in Constraints

You can use XMRs in class constraints and inlined constraints. You
can refer to XMR variables directly or by specifying the full
hierarchical name, where appropriate. You can use XMRs for all data
types, including scalars, enums, arrays, and class objects.

VCS supports all types of XMRs:

• class XMRs

• package XMRs

• interface XMRs

• module XMRs

• static variable XMRs

• any combination of the above

17-47

Using Constraints

Syntax

constraint general
{
varxmr1 == 3;
pkg::varxmr2 == 4;
}

c.randomize with { a.b == 5; }

Examples

Here is an example of a module XMR:

// xmr from module
module mod1;
 int x = 10;
class cls1;

rand int i1 [3:0];
rand int i2;

constraint constr
{
foreach(i1[a]) i1[a] == mod1.x;
}

endclass

cls1 c1 = new();
initial
begin

c1.randomize() with {i2 == mod1.x + 5;};
end
endmodule

Here is an example of a package XMR:

package pkg;
typedef enum {WEAK,STRONG} STRENGTH;
class C;

static rand STRENGTH stren;
endclass

17-48

Using Constraints

pkg::C inst = new;
endpackage

module test;
import pkg::*;
initial
begin

inst.randomize() with {pkg::C::stren == STRONG;};
$display("%d", pkg::C::stren);

end
endmodule

Functional Clarifications

XMR resolution in constraints (that is, choosing to which variable
VCS binds an XMR variable) is consistent with XMR resolution in
procedural SystemVerilog code. VCS first tries to resolve an XMR
reference in the local scope. If the variable is not found in the local
scope, VCS searches for it in the immediate upper enclosing scope,
and so on, until it finds the variable.

If you specify an XMR variable that cannot be resolved in any parent
scopes of the constraint/scope where it is used, VCS errors out and
prints an error message.

XMR Function Calls in Constraints

VCS supports XMR function calls in class constraints, inlined
constraints, and std::randomize. You can refer to XMR functions
with or without specifying the full hierarchical name. XMR functions
can return and have as arguments all supported data types,
including scalar data types, enums, arrays, and class objects.

17-49

Using Constraints

State Variable Index in Constraints

VCS supports the use of state variables as array indexes in
constraints and inline constraints, in all applicable contexts. These
state variables must evaluate to the same type required by the index
type of the array to which they are addressed.

Note:

String-type state variables in array indexes are not supported.

VCS supports the set of expressions (operators and constructs) that
also work with loop variables as array indices in constraints. The set
of supported expressions is restricted in the sense that they must
evaluate in the constraint framework.

Runtime Check for State Versus Random Variables

VCS supports state variables for array indexes, but not random
variables, so the tool performs runtime checks for the randomness
of the variable. The randomness may be affected if the variable is
aliased (due to object hierarchy, module hierarchy, or XMR). When
this runtime check finds a random variable being used as an array
index, the tool issues an error message.

To differentiate random versus state variables, VCS uses the
following scheme:

• For randomize with a list of arguments (std::randomize or
obj.randomize), variables or objects in the argument list are
considered to be random. Variables or objects outside the list (and
not aliased by the random objects) are considered to be state
variables.

17-50

Using Constraints

• For randomize without a list of arguments (obj.randomize)
variables declared as non-random, or declared as random but
with rand mode OFF, are considered to be state variables.

Array Index

The variable (or supported expression) used for an array index must
be an integral data type. If the value of the expression or the state
variable evaluates out of bounds, comes to a negative index value,
references a non-existent array member, or contains X or Z, VCS
issues a runtime error message.

Using DPI Function Calls in Constraints

VCS supports calling DPI functions directly from constraints. These
DPI function calls must be pure and cannot have any side effects, as
per the SystemVerilog LRM (Section 18.5.11 of Std. 1800-2009). For
more information on DPI function call contexts (pure and non-pure),
see Section 35 of the SystemVerilog LRM.

Following are some examples of valid import DPI function
declarations that you can call from constraints:

import "DPI-C" pure function int func1();
import "DPI-C" pure function int func2(int a, int b);

Example 17-16 shows a pure DPI function in C.

Example 17-16 Pure DPI Function in C

#include <svdpi.h>

int dpi_func (int a, int b) {

17-51

Using Constraints

return (a+b); // Result depends solely on its inputs.
}

Example 17-17 shows how to call a pure DPI function from
constraints.

Example 17-17 Invoking a Pure DPI Function from Constraints

import "DPI-C" pure function int dpi_func(int a, int b);
class C;

rand int ii;
constraint cstr {

ii == dpi_func(10, 20);
}

endclass

program tb;
initial begin

C cc;
cc = new;
cc.randomize();

end
endprogram

Invoking Non-pure DPI Functions from Constraints

VCS issues an error message when it detects a call to any context
DPI function or other import DPI function for which the context is not
specified or the import property is not specified as pure. VCS issues
this error even if the DPI function actually has no side effects. To
prevent this kind of error, explicitly mark the DPI function import
declaration with the pure keyword.

For example, running Example 17-18 with the C code shown in
Example 17-16 results in an error because the import DPI function is
not explicitly marked as pure.

17-52

Using Constraints

Example 17-18 Invoking a DPI Function Not Marked pure from Constraints.

import "DPI-C" function int dpi_func(int a, int b);
// Error: Only functions explicitly marked as
// pure can be called from constraints

class C;
rand int ii;
constraint cstr {

ii == dpi_func(10, 20);
}

endclass

program tb;
initial begin

C cc;
cc = new;
cc.randomize();

end
endprogram

Similarly, running Example 17-19 with the C code shown in Example
17-16 results in an error because context import DPI functions
cannot be called from constraints.

Example 17-19 Invoking a context DPI Function from Constraints

import "DPI-C" context function int dpi_func(int a, int b);

// Error: Calling 'context' DPI function
// from constraint is illegal.

class C;
rand int ii;
constraint cstr {

ii == dpi_func(10, 20);
}

endclass

program tb;
initial begin

17-53

Using Constraints

C cc;
cc = new;
cc.randomize();

end
endprogram

Calling an import DPI function that is explicitly marked pure (as
shown in Example 17-16) has undefined behavior if the actual
implementation of the function does things that are not pure, such
as:

• Calling DPI exported functions/tasks.

• Accessing SystemVerilog data objects other than the function’s
actual arguments (for example, via VPI calls).

For example, Example 17-20 has undefined behavior (and may even
cause a crash).

Example 17-20 Non-pure DPI Function in C

#include <stdio.h>
#include <stdlib.h>
#include "svdpi.h"

int readValueOfBFromFile(char * file) {
int result = 0;

char * buf = NULL;
FILE * fp = fopen(file, "r");

// Read the content of the file in 'buf' here...
 ...

if (buf) return strlen(buf);
else return 0;

}

int dpi_func () {

 char * str = getenv("ENV_VAL_OF_A");

17-54

Using Constraints

 int a = str ? atoi(str) : -1;
 int b = readValueOfBFromFile("/some/file");
 int c;

 svScope scp = svGetScopeFromName("$unit");
 if (scp == NULL) {
 fprintf(stderr, "FATAL: Cannot set scope to $unit\n");
 exit(-1);
 }
 svSetScope(scp);

 c = export_dpi_func();
 return (a+b+c);
}

Example 17-21 shows a DPI function marked pure that is actually
doing non-pure activities. This results in an error.

Example 17-21 DPI Function Marked pure but Non-pure Activities

import "DPI-C" pure function int dpi_func();
export "DPI-C" function export_dpi_func;

function int export_dpi_func();
return 10;

endfunction

class C;
rand int ii;
constraint cstr {

ii == dpi_func();
}

endclass

program tb;
initial begin

C cc;
cc = new;
cc.randomize();

end
endprogram

17-55

Using Constraints

So make sure that DPI functions called from constraints explicitly
use the pure keyword. Also make sure that the DPI function
corresponding foreign language implementation is indeed pure (that
is, has no side effects).

Using Foreach Loops Over Packed Dimensions in
Constraints

VCS supports foreach loops over the following kinds of packed
dimensions in constraints:

• “Memories with Packed Dimensions”

• “MDAs with Packed Dimensions”

You do not need to set any special compilation or runtime switches
to make this work. VCS supports foreach loop variables for entirely
packed dimensions of an array. For more information, see the
section “The foreach Iterative Constraint for Packed Arrays” .

Memories with Packed Dimensions

You can use foreach loops over memories with single or multiple
packed dimensions, as shown in the following examples.

Single Packed Dimension

class C;
rand bit [5:2] arr [2];
constraint Cons {

foreach(arr[i,j]) {

17-56

Using Constraints

arr[i][j] == 1;
}

}
endclass

Multiple Packed Dimensions

class C;
rand bit [3:1][5:2] arr [2];
constraint Cons {

foreach(arr[i,j,k]) {
arr[i][j][k] == 1;

}
}
endclass

MDAs with Packed Dimensions

You can use foreach loops over MDAs with single or multiple packed
dimensions, as shown in the following examples.

Single Packed Dimension

class C;
rand bit [5:2] arr [2][3];
constraint Cons {

foreach(arr[i,j,k]) {
arr[i][j][k] == 1;

}
}
endclass

17-57

Using Constraints

Multiple Packed Dimensions

class C;
rand bit [-1:1][5:2] arr [2][3];
constraint Cons {

foreach(arr[i,j,k,l]) {
arr[i][j][k][l] == 1;}

}
}
endclass

Just Packed Dimensions

class C;
rand bit [5:2] arr1;
rand bit [-1:0][5:2] arr2;
constraint Cons1 {
foreach(arr1[i]) {
arr1[i] == 1;
}
}
Constraint Cons2 {
 foreach(arr2[i,j]) {
 arr2[i][j] == 1;
}
}
endclass

VCS does not create implicit constraints that guarantee the array
indexed by the variable (or expression) is valid. You must properly
constrain or set the variable value so that the array is correctly
addressed.

VCS also supports associative array indices. The indexes of these
arrays may be integral data types or strings if the associative array
is string-indexed. However, you cannot use expressions for
associative arrays.

17-58

Using Constraints

The foreach Iterative Constraint for Packed Arrays

VCS has implemented foreach loop variables for entirely packed
dimensions of an array in the constraint context.

In previous releases up to 2011.12-2, a foreach loop for the
dimensions of a multi-dimensional array in the constraint context
required that at least one of the dimensions be unpacked. That
restriction is removed, a multi-dimensional packed array in the
constraint context is now fully supported.

The following code example illustrates this implementation.

Example 17-22 The foreach Iterative Constraint for Packed Arrays

program prog;

class my_class;

 rand reg [2][2][2][2] arr;

 constraint constr {

 foreach (arr[i,j,k,l]) {

 (i==0) -> arr [i][j][k][l] == 1;

 (i==1) -> arr [i][j][k][l] == 0;
 }
 }
endclass

endprogram

all dimensions packed

In previous releases at least one of the dimensions of MDA array
needed to be unpacked.

17-59

Using Constraints

This code example results in the following error message in previous
releases:

Error-[NYI-UFAIFE] NYI constraint: packed dimensions
doc_ex.sv,9
prog, "this.arr"
 arr has only packed dimensions and no unpacked dimensions.
 Foreach over packed dimensions is supported if the object
has at least one
 unpacked dimension.

1 error

Starting with release F-2011.12-3 and G-2012.09, entirely packed
arrays in the constraint context are not an error condition and do not
result in this error message.

Randomized Objects in a Structure

VCS has implemented randomized objects in a structure. The
following code example illustrates this implementation.

Example 17-23 Randomized Object in a Structure

program test;

 class packet;
 randc int addr = 1;
 int crc;
 rand byte data [] = {1,2,3,4};
 endclass
class packet_test;
 typedef struct {
 rand packet p1;
 } header;
 header hd;

randomized object
in a structure

17-60

Using Constraints

function new();
 this.hd.p1 = new;
endfunction

endclass

packet_test pt = new;

initial begin
 pt.randomize(hd);
 end
endprogram

In previous releases declaring this class in a structure with the rand
type-modifier keyword resulted in the following error message:

Error-[SV-NYI-CRUDST] Rand class object under structure
code_ex_rand_struct.sv, 10
"p1"
 Rand class objects which defined under structure is not
yet supported.

1 error

This code example compiles and runs without any errors since rand
class objects inside a structure are implemented.

17-61

Using Constraints

Support for Typecast in Constraints

You can use a cast (') operator on constraints as defined in Section
6.24, “Casting”, of the IEEE Standard for SystemVerilog.

Syntax

Following is the syntax for casting constraints.

constant_cast ::= casting_type ' (constant_expression)

cast ::= casting_type ' (expression)

casting_type ::= simple_type | constant_primary | signing

simple_type ::= integer_type | ps_type_identifier |
 ps_parameter_identifier

integer_type::= bit | logic | reg | byte | shortint | int | longint |
 integer | time

Description

Note the following about typecasting constraints.

• VCS only supports variables and constants of integral types. As
a result, typecasting constraints will only be applied to integral or
equivalent types (6.22.2).

• Built-in integer types can be cast to each other.

• Packed arrays, structs, unions and enum types can be cast
to built-in integral types if their base types are integral types.

• For casting an enumerated type, if an enumerated value is outside
of the defined range of the enum type, then VCS issues a
constraint inconsistency message (through the Solver).

17-62

Using Constraints

• Casting from a non-integral types (real, string, etc.) to integral
types is not supported. VCS will issue a compile time error
message.

• Casting from user-defined types (class, unpacked struct,
unpacked unions, etc.) to integral types is not supported. VCS
will issue a compile time error message.

Examples
// First example.
typedef struct packed signed {
 bit [7:0] a;
 byte b;
 shortint c;
} p1;
rand p1 p;
rand int q;
constraint c1 { int’(p) == q; };

For example, p is a 32-bit packed signed struct and is randomized
to the value of 'h815F_8D74. The members of this packed struct
are p.a = 8'h81, p.b = 8'h5F, p.c = 8'h8D74 (or -29324 as it's
signed).Because of the equality constraint, q takes on the value of
8'h815F_8474, or -2124444300 as int is a signed data type

// Second example.
class C;
 typedef enum {
 red=0,
 yellow=5,
 green
 } light_t;

 rand light_t x;
 rand int y;

 constraint c0 { x == light_t’(y); }
endclass

17-63

Using Constraints

C obj = new;
obj.randomize();

Note, in the previous example (“Second example”), y is always 0, 5,
or 6. The following would produce a constraint solver failure
message:

obj.randomize() with { y == 10; };

Following is a third example.

// Third example.
class cfg;
 rand bit en[16];
 constraint only_enable_4_GOOD {
 // Intent: only 4 of the 16 of the 1-bit elements are 1'b1
 en.sum() with (int'(item)) == 4;
 }
endclass
program automatic test;
 cfg obj = new;
 initial obj.randomize();
endprogram

According to the LRM, sum() returns a single value of the same type
as the array element type; or, if specified, the expression in the 'with'
clause. In the previous case, sum() will return the type 'int'
because of the with clause, and not a single 'bit' as the type of the
individual array elements. Without the use of the with clause and
casting the item from a bit to an int type, there would have been
a constraint failure as sum() would have returned a value of type
'bit', and no 1-bit value would be equal to 4.

17-64

Using Constraints

// Fourth example.
class A;
 rand int x;
 constraint c {
 x >= 0;
 x < ((41'(2 ** 40)) - 1024);
 }
endclass

program automatic test;
 A obj = new;
 initial obj.randomize();
endprogram

The cast to increase the size of the expression (2**40) from 30 to 41
is needed so that 2**40 is treated as the value
41'h10000000000.Otherwise, the expressions in the second
constraint will be evaluated as 32-bit values, and (2**40) would have
been evaluated to 32'h0.

Strings in Constraints

You can compare string type state variables and string literals with
the logical equality == and inequality != operators.

All other uses of strings in constraints, such as string concatenation,
string methods (for example str.substr()), string replication and
casting to or from strings are unsupported.

The following is an example of the supported use of strings in
constraints:

bit [31:0] p = "string_lit";
string p2 = “string_var”;
rand int flg;

17-65

Using Constraints

constraint constr0 {
 if (p == "string_lit" && p2 != “string_var”) flg == 1;
 else flg == 10;
}

SystemVerilog LRM P1800-2012 Update

The SystemVerilog constructs in this update are as follows:

• “Using Soft Constraints in SystemVerilog”

• “Unique Constraints”

Using Soft Constraints in SystemVerilog

Input stimulus randomization in SystemVerilog is controlled by user-
specified constraints. If there is a conflict between two or more
constraints, the randomization fails.

To solve this problem, you can use soft constraints. Soft constraints
are constraints that VCS disables if they conflict with other
constraints.

VCS use a deterministic, priority-based mechanism to disable soft
constraints. When there is a constraint conflict, VCS disables any
soft constraints in reverse order of priority (that is, the lowest priority
soft constraint is disabled first) until the conflict is resolved. The
following sections explain how to use soft constraints with VCS:

• “Using Soft Constraints”

17-66

Using Constraints

• “Soft Constraint Prioritization”

• “Soft Constraints Defined in Classes Instantiated as rand
Members in Another Class”

• “Soft Constraints Inheritance Between Classes”

• “Soft Constraints in AOP Extensions to a Class”

• “Soft Constraints in View Constraints Blocks”

• “Discarding Lower-Priority Soft Constraints”

Using Soft Constraints

Use the soft keyword to identify soft constraints. Constraints not
defined as soft constraints are hard constraints. Example 17-24
shows a soft constraint.

Example 17-24 Soft Constraint

class A;
 rand int x;
constraint c1 {

soft x > 2; // soft constraint
}
endclass

Example 17-25 shows a hard constraint.

Example 17-25 Hard Constraint

class A;
 rand int x;
constraint c1 {

x > 2; // hard constraint
}
endclass

17-67

Using Constraints

Soft Constraint Prioritization

VCS determines the priorities of soft constraints according to the set
of rules described in this section. In general, VCS assigns increasing
priorities to soft constraints as they climb the following list:

• Class parents in the inheritance graph

• Class members

• Soft constraints in the class itself

• Soft constraints in any extends blocks applied to a class

In this schema, soft constraints in any extends blocks applied to a
class are assigned the highest priority.

In this documentation, the following notation is used to describe the
priority of a given soft constraint (SC):

priority(SCx)

If the following is true:

priority(SC2) > priority(SC1)

then VCS disables constraint SC1 before constraint SC2 when there
is a conflict.

Within a Single Class

VCS assigns soft constraints declared within a class increasing
priority by order of declaration. Soft constraints that appear later in
the class body have higher priority than soft constraints that appear
earlier in the class body.

For example, in Example 17-26, priority(SC2) > priority(SC1).

17-68

Using Constraints

Example 17-26 SC2 Higher Priority than SC1

class A;
rand int x;

constraint c1 {
soft x > 10; // SC1
soft x > 5; // SC2
}

endclass

In Example 17-27, priority(SC2) > priority(SC1).

Example 17-27 SC2 Higher Priority than SC1

class A;
rand int x;

constraint c1 {
soft x > 10; // SC1
}

constraint c2 {
soft x > 5; // SC2
}

endclass

Soft Constraints Defined in Classes Instantiated as rand
Members in Another Class

VCS assigns soft constraints declared within rand members of
classes increasing priority by order of member declaration. In
Example 17-28, the soft constraints contributed by C.objB are
higher priority than the soft constraints contributed by C.objA
because C.objB is declared after C.objA within class C.

Example 17-28 also shows why some soft constraints are dropped,
instead of honored, because of the relative priorities assigned to soft
constraints:

17-69

Using Constraints

• // objC.x = 4 because SC6 is honored.

• // objC.objA.x = 4 because priority(SC4) > priority(SC1).

Here, SC4 is honored and SC1 is dropped. If SC1 were not
dropped, it would have caused a conflict because objA.x cannot
be 4 (objC.x in SC4) and 2 (SC1) at the same time.

• // objC.objB.x = 5 because priority(SC5) > priority(SC3) >
priority(SC2).

Here, SC5 is honored and SC3 is dropped (otherwise, SC3 would
conflict with SC5). SC2 is honored because it does not conflict
with SC5. By honoring SC2, objC.objB.x = 5.

Example 17-28 SC3 Higher Priority than SC2 and SC1

class A;
rand int x;
constraint c1 { soft x == 2; } // SC1

endclass

class B;
rand int x;
constraint c2 { soft x == 5; } // SC2
constraint c3 { soft x == 3; } // SC3

endclass

class C;
rand int x;
rand A objA;
rand B objB;
constraint c4 { soft x == objA.x; } // SC4
constraint c5 { soft objA.x < objB.x; } // SC5
constraint c6 { soft x == 4; } // SC6

function
new(); objA = new; objB = new;

endfunction
endclass

17-70

Using Constraints

program test;
C objC;
initial begin

objC = new;
objC.randomize();
$display(objC.x); /// should print "4"
$display(objC.objA.x); // should print "4"
$display(objC.objB.x); // should print "5"

end
endprogram

For array members where objects are allocated prior to
randomization, priorities are assigned in increasing order by position
in the array, where soft constraints in element N have lower priority
than soft constraints in element N+1.

For array members where the objects are allocated during
randomization, all soft constraints in allocated objects and their base
classes and member classes have the same priority.

Soft Constraints Inheritance Between Classes

Soft constraints in an inherited class have a higher priority than soft
constraints in its base class. For example, in Example 17-29,
priority(SC2) > priority(SC1).

Example 17-29 SC2 Higher Priority than SC1

class A;
rand int x;
constraint c1 {

 soft x > 2; // SC1
}

endclass

class B extends A;
constraint c1 {

soft x > 3; // SC2

17-71

Using Constraints

}
endclass

Soft Constraints in AOP Extensions to a Class

As defined in "Aspect Oriented Extensions", constraint blocks in
AOP extensions modify the class definition as an AOP Introduction
directive. When there are multiple AOP extensions to the same
class, the AOP precedence must be considered. The AOP
precedence defines the order in which introductions to a class are
added to the class. First, symbols introduced by an AOP extension
with a higher precedence are appended to the class. Subsequently,
same AOP extensions are appended to the class in the order they
appear in the extension.

For example,

class A;
rand int x;
constraint c1 {

soft x == 1; // SC1
}

endclass

extends A_aop1(A);
constraint c2 {

soft x == 2; // SC2
}

endextends

This means that the new constraint block c2 Is added as a new
symbol in the original class definition as a new member. As a result,
class A gets modified as follows:

17-72

Using Constraints

class A;
rand int x;
constraint c1 {

soft x == 1; // SC1
}
constraint c2 { // from A_aop1(A)

soft x == 2; // SC2
}

endclass

After the AOP introduction to the class definition, VCS assigns
priorities to multiple soft constraints in the modified class. In this
case, as the constraint block c2 is declared later in the modified
class, the priority of the soft constraint SC2 is higher than that of the
soft constraint SC1, or priority(SC2) > priority(SC1). As a result, x is
randomized to 2 in the example.

Consider another example, where soft constraints are added on the
same random variable in multiple AOP extensions to the same class.

For example:

class A;
rand int x;
constraint c1 {

soft x == 1; // SC1
}

endclass

extends A_aop2(A);
constraint c2 {

soft x == 2; // SC2
}
constraint c3 {

soft x == 3; // SC3
}

endextends

extends A_aop4(A);

17-73

Using Constraints

constraint c4 {
soft x == 4; // SC4

}
endextends

extends A_aop5(A);
constraint c5 {

soft x == 5; // SC5
}

endextends

The last AOP extension A_aop5 of the class A has the highest
precedence as it is declared last. As the introduction is added to the
class in the order of the precedence, this becomes the content of the
modified class as follows:

class A;
rand int x;
constraint c1 {

soft x == 1; // SC1
}

// A_aop5(A) - highest AOP precedence gets added to the
class first

constraint c5 {
soft x == 5; // SC5

}

// A_aop4(A) - next highest AOP precedence gets added
to the class next

constraint c4 {
soft x == 4; // SC4

}

// A_aop2(A) - lowest AOP precedence gets added to the
class last

// but within the same AOP extension, the constraint
blocks c2 and c3

// are added in the order of declaration.
constraint c2 {

soft x == 2; // SC2

17-74

Using Constraints

}
constraint c3 {

soft x == 3; // SC3
}

endclass

VCS then computes the priorities for the soft constraints based on
this modified class: as follows:

priority(SC3) > priority(SC2) > priority(SC4) > priority(SC5) >
priority(SC1)

In this example, x is randomized to 3. It is noted that constraint
blocks from the highest AOP precedence are added to the class first,
Soft constraints from the highest AOP precedence may have an
overall lower soft constraint priority.

Here is the original class definition for the class A.

class A;
rand int x;
constraint c1 {

soft x == 1; // SC1
}

endclass

Few modified examples with the dominate_list along with the
resulting soft priority assignments and solver results for the random
variable x are listed in the Table 17-1.

17-75

Using Constraints

Table 17-1 Examples with the Dominates_list
Dominates_list variations Resulting AOP precedence

and soft constraint priority
Solver
result
for x

extends A_aop2(A) dominates (A_aop5);
constraint c2 {

soft x == 2; // SC2
}
constraint c3 {

soft x == 3; // SC3
}

endextends

extends A_aop4(A);
constraint c4 {

soft x == 4; // SC4
}

endextends

extends A_aop5(A);
constraint c5 {

soft x == 5; // SC5
}

endextends

• Precedence set by
dominates: A_aop2 >
A_aop5

• No specific precedence set
between A_aop2 and
A_aop4. Therefore, the
order of declaration depends
on the precedence order
between the two as follows:
A_aop4 > A_aop2

• Overall precedence order is
set as:A_aop4 > A_aop2
> A_aop5

This means the soft constraint
from A_aop5 is appended last
to the class A, making this soft
constraint (SC5) the highest soft
priority.

5

17-76

Using Constraints

extends A_aop2(A) dominates
(A_aop4);

constraint c2 {
soft x == 2; // SC2

}
constraint c3 {

soft x == 3; // SC3
}

endextends

extends A_aop4(A);
constraint c4 {

soft x == 4; // SC4
}

endextends

extends A_aop5(A);
constraint c5 {

soft x == 5; // SC5
}

endextends

• Precedence set by
dominates: A_aop2 >
A_aop4

• No specific precedence set
between A_aop2 and
A_aop5. Therefore, the
order of declaration depends
on the precedence order
between the two as follows:
A_aop5 > A_aop2

• Overall precedence order:is
set as A_aop5 > A_aop2
> A_aop4

This means the soft constraint
from A_aop4 is appended last
to the class A, making this soft
constraint (SC4) the highest soft
priority.

4

Table 17-1 Examples with the Dominates_list
Dominates_list variations Resulting AOP precedence

and soft constraint priority
Solver
result
for x

17-77

Using Constraints

extends A_aop2(A);
constraint c2 {

soft x == 2; // SC2
}
constraint c3 {

soft x == 3; // SC3
}

endextends

extends A_aop4(A) dominates
(A_aop5;

constraint c4 {
soft x == 4; // SC4

}
endextends

extends A_aop5(A);
constraint c5 {

soft x == 5; // SC5
}

endextends

• Precedence set by
dominates: A_aop4 >
A_aop5.

• No specific precedence set
between A_aop2 and
A_aop5. Therefore, the
order of declaration depends
on the precedence order
between the two as follows:
A_aop5 > A_aop2.

• Overall precedence order is
set as: A_aop4 > A_aop5
> A_aop2.

This means the soft constraints
from A_aop2 is appended last
to the class A. Within the same
A_aop2 extension, the order of
introduction of new constraint
blocks (c2 and c3) is the same
as the order of declaration.
Thus, it makes the soft
constraint from the constraint
block c3(SC3) the highest soft
priority.

3

Table 17-1 Examples with the Dominates_list
Dominates_list variations Resulting AOP precedence

and soft constraint priority
Solver
result
for x

17-78

Using Constraints

Soft Constraints in View Constraints Blocks

VCS assigns soft constraints within a view constraint block
increasing priority by order of declaration. Soft constraints that
appear later have higher priority than those that appear earlier. For
example, in Example 17-30, priority(SC3) > priority(SC2) >
priority(SC1).

Example 17-30 SC3 Higher Priority than SC1

class A;
rand int a;
rand int b;
constraint c1 {

soft a == 2; // SC1
}

endclass

A objA;
objA.randomize () with {
soft a > 2; // SC2
soft b == 1; // SC3
}

Discarding Lower-Priority Soft Constraints

You can use a disable soft constraint to discard lower-priority
soft constraints, even when they are not in conflict with other
constraints (see Example 17-31).

Example 17-31 Discarding Lower-Priority Soft Constraints

class A;
rand int x;
constraint A1 {soft x == 3;}
constraint A2 {disable soft x;} // discard soft constraints
constraint A3 {soft x inside {1, 2};}
endclass

17-79

Using Constraints

initial begin
A a= new();
a.randomize();
end

In Example 17-31, constraint A2 tells the solver to discard all soft
constraints of lower priority on random variable x. This results in
constraint A1 being discarded. Now, only the last constraint (A3)
needs to be honored. This example results in random variable x
taking the values 1 and 2.

A disable soft constraint causes lower-priority soft constraints to
be discarded even when they are not in conflict with other
constraints. This feature allows you to introduce fresh soft
constraints which replace default values specified in preceding soft
constraints (see Example 17-32).

Example 17-32 Specifying Fresh Soft Constraints

class B;
rand int x;
constraint B1 {soft x == 5;}
constraint B2 {disable soft x; soft x dist {5, 8};}
endclass
initial begin
B b = new();
b.randomize();
end

In Example 17-32, the disable soft constraint preceding the
soft dist in block B2 causes the lower-priority constraint on
variable x in block B1 to be discarded. Now, the solver assigns the
values 5 and 8 to x with equal distribution (the result from the fresh
constraint: soft x dist {5,8}).

Compare the behavior of Example 17-32 with Example 17-33, where
the disable soft constraint is omitted.

17-80

Using Constraints

Example 17-33 Specifying Additional Soft Constraints

class B;
rand int x;
constraint B1 {soft x == 5;}
constraint B3 {soft x dist {5, 8};}
endclass
initial begin
B b = new();
b.randomize();
end

In Example 17-33, the soft dist constraint in block B3 can be
satisfied with a value of 5, so the solver assigns x the value 5. If you
want the distribution weights of a soft dist constraint to be
satisfied regardless of the presence of lower-priority soft constraints,
you should first use a disable soft to discard those lower-priority
soft constraints.

Limitation

VCS has the following limitation on the usage of random variables in
the guard expression of disable soft constraint:

• Random variables in the guard expression of disable soft
constraint is not supported and displays an error message.

Example 17-34 Usage of Random Variable in Guard Expression

program tb;
 class cls;
 rand int x;
 rand bit cond;

 constraint C1 {soft x == 3;}
 constraint C2 {(cond) -> disable soft x;}
 constraint C3 {x inside {1, 2};}
 endclass

 initial begin

17-81

Using Constraints

 cls obj = new;
 obj.randomize;
 end
endprogram

In Example 17-34, cond is a random variable that is used in the
guard expression of disable soft constraint. VCS or VCS MX
displays the following error message:

Error-[CNST-NYI-DSCNS] Disable soft constraint not supported
test.v, 12
 The variable 'cond' is not a state variable.
 Only state variables can be used in guard expressions of
disable soft constraints.

Unique Constraints

VCS has implemented unique constraints as specified in IEEE Std
1800-2012 SystemVerilog LRM, section 18.5.5 Unique constraints.

A unique constraint, specified with the unique keyword, specifies
that a group of random variables, after randomization, have different
(or unique) values.

17-82

Using Constraints

Example 17-35 Unique Constraint

module mod;

class myclass;
rand logic [1:0] log0, log1, log2;

constraint constr1 { unique {log0,log1,log2};}
endclass

myclass mc1 = new;

initial
begin
#25 if (mc1.randomize()==1)
 $display("\n\n at %0t log0=%0b log1=%0b log2=%0b \n",
 $time,mc1.log0,mc1.log1,mc1.log2);
end

endmodule

unique keyword

The $display system task displays the following:

at 25 log0=10 log1=11 log2=1

None of the random variables has the same value after
randomization.

The SystemVerilog LRM has the following limitations on the random
variables in the unique constraint:

• The random variables must be either:

- scalar equivalent types

- arrays whose leaf elements are equivalent types

• The random variables cannot be randc variables.

17-83

Using Constraints

If the constraint solver cannot find unique values for the variables in
the group, such as if the three variables in Example 17-35 were
scalar variables so they could not have unique values, VCS or VCS
MX displays the following error message:

Error-[CNST-CIF] Constraints inconsistency failure
exp3.sv, 13
 Constraints are inconsistent and cannot be solved.
 Please check the inconsistent constraints being printed

Enhancement to the Randomization of
Multidimensional Array Functionality

VCS MX supports MDA with variable size dimensions. As defined in
the IEEE Standard for SystemVerilog (IEEE Std P1800-2012),
section 7.4.2 Unpacked arrays, unpacked or dynamic arrays can be
made up of any data type. Arrays can have more than one
dimension. These array of arrays are called multidimensional arrays.
Therefore, you can extend the semantics of a single-dimensional
array to MDA.

Syntax

rand int m [][];
m.size() constrains the first dimension (say, number of rows)
m[0].size() constrains the second dimension for the first row
m[1].size() constrains the second dimension for the second
row

Example 17-36 Example of MDA for Variable Size Dimensions

rand int m [][];
rand int m_length;
constraint cst { m.size() == m_length; m_length inside
{[1:3]}; }
constraint cst2 {
(m_length == 1) -> m[0].size == 5;

17-84

Using Constraints

(m_length == 2) -> { m[0].size == 3; m[1].size == 4; }
(m_length == 3) -> { m[0].size == 2; m[1].size == 5; m[2].size
== 1; }
}

• If m_length is set to 1, m_data structure may look like:
[0] * * * * *

• If m_length is set to 2, m_data structure may look like
[0] * * *
[1] * * * *

• If m_length is set to 3, m_data structure may look like
[0] * *
[1] * * * * *
[2] *

You can combine the dynamic array dimension with the fixed or
associative array and queue dimensions. Any unpacked dimension
in an array declaration can be a dynamic array dimension. For
example:

rand int data1[][4][];
rand int data2[$][2];
rand int data3[string][];

Example 17-37 Example of MDA for Array Method Calls and Set
Membership

program tb;
 class cls;
 rand bit [7:0] mda1[][$];
 rand bit [7:0] a, b, c;

 constraint cons1 {

 // size constraints
 mda1.size == 2;
 foreach (mda1[i,])
 mda1[i].size inside {3,4,5,6};

17-85

Using Constraints

 // array methods on rand MDA members
 foreach (mda1[i,])
 mda1[i].sum with (int'(item)) <= 100;

 // rand MDA members with the 'setmembership' operator
 a inside {mda1[0], 1, 2, 3};
 b inside {mda1[0][0], 4, 5, 6};
 }
 endclass

 initial begin
 cls obj = new;
 obj.randomize;
 end
endprogram

Limitations

The following are the limitations with this feature:

• Randomization of MDA is not supported with unique constraints.

• Randomization of MDA is not supported with std::randomize
calls.

Supporting Random Array Index

You can use random variable in array index expressions. You can
use the random array index in fixed-size array, dynamic array (or
smart queue) of single dimensional arrays.

The following examples shows the usage of random array index:

17-86

Using Constraints

Example 17-38 Usage of random array index

program test;
 class cls;
 rand bit [7:0] indx1, indx2;
 rand bit [7:0] arr1[7:0], arr2[];

 constraint cons1 {
 indx1 inside {0,2,4,6};

 // rand variable 'indx1' used as the array index
 arr1[indx1] == 11;
 }

 constraint cons2 {
 indx2 inside {0, 1};
 arr2.size inside {[2:10]};

 // rand variable 'indx2' used as the array index
 arr2[indx2] == 22;
 }
 endclass

 initial begin
 cls obj = new;
 obj.randomize;
 end
endprogram

Limitation

The feature has the following limitation:

• Nested indices are not supported.

17-87

Using Constraints

Supporting $size() System Function Call

VCS supports usage of the $size() system function call in the
constraint code.

Example 17-39 Example for the usage of $size()

program test;
 class cls;
 rand bit [7:0] arr1[1:0];
 rand bit [7:0] arr2[][2:0][3:0];
 rand bit [7:0] size1, size2, size3;

 constraint cons_size {
 arr2.size == 2;

 // returns 'arr1' dimension size as '2'
 size1 == $size(arr1);

 // returns 'arr2' second dimension size as '3'
 size2 == $size(arr2[0]);

 // returns 'arr2' third dimension size as '4'
 size3 == $size(arr2[0], 2);
 }
 endclass

 initial begin
 cls obj = new;
 obj.randomize;
 $display("size1 = %0d, size2 = %0d, size3 = %0d",
 obj.size1, obj.size2, obj.size3);
 end
endprogram

17-88

Using Constraints

Supporting Foreach Loop Iteration over Array Select

VCS supports foreach loop iteration over array select, such as
foreach (arr [0] [i]).

Example 17-40 Example for foreach loop iteration over array select

program tb;
 class cls;
 rand bit [7:0] arr[1:0][7:0];

 constraint cons_array {

 // foreach iteration over the array select 'arr[0]'
 foreach (arr [0] [i]) {
 if (i <= 3) {
 arr[0][i] inside {10, 20, 30, 40};
 } else {
 arr[0][i] inside {50, 06, 70, 80};
 }
 }
 }
 endclass

 initial begin
 cls obj = new;
 obj.randomize;
 end
endprogram

18-1

Extensions for SystemVerilog Coverage

18
Extensions for SystemVerilog Coverage 2

The extensions for SystemVerilog coverage include the following:

• “Support for Reference Arguments in get_coverage()”

• “Functional Coverage Methodology Using the SystemVerilog C/
C++ Interface”

Support for Reference Arguments in get_coverage()

The Systemverilog LRM provides several pre-defined methods for
every covergroup, coverpoint, or cross. See “Predefined Coverage
Methods” in Clause 18 of the SystemVerilog Language Reference
Manual for VCS/VCS MX for information. Two of these pre-defined
methods, get_coverage() and get_inst_coverage(),
support optional arguments.

18-2

Extensions for SystemVerilog Coverage

You can use the get_coverage() and get_inst_coverage()
predefined methods to query on coverage during the simulation run,
so that you can react to the coverage statistics dynamically.

The get_coverage() and get_inst_coverage() methods both
accept, as optional arguments, a pair of integer values passed by
reference.

get_inst_coverage() method

When the optional arguments are entered with the method in
coverpoint scope or cross scope, the get_inst_coverage()
method assigns to the first argument the value of the covered bins,
and assigns to the second argument the number of bins for the given
coverage item. These two values correspond to the numerator and
the denominator used for calculating the coverage score (before
scaling by 100).

In covergroup scope, the get_inst_coverage() method assigns
to the first argument the weighted sum of coverpoint and cross
coverage, rounded to the nearest integer, and assigns to the second
argument the sum of the weights of the coverpoint or cross items.

get_coverage() method

The numerator and denominator assigned by the get_coverage()
method depend on the scope.

In covergroup scope, get_coverage() assigns to its first
argument the weighted sum of the coverage of merged coverpoints
and crosses.

18-3

Extensions for SystemVerilog Coverage

In coverpoint or cross scope the first argument to get_coverage()
is assigned the number of covered bins in the merged coverpoint or
cross, and the second argument is assigned the total number of bins.

In all cases, weighted sums are rounded to the nearest integer and
the second argument is set to the sum of weights.

Functional Coverage Methodology Using the
SystemVerilog C/C++ Interface

This section describes a SystemVerilog-based functional coverage
flow. The flow supports functional coverage features—data
collection, reporting, merging, grading, analysis, GUI, and so on.

The SystemVerilog functional coverage flow has the following
features:

• Performs RTL coverage using covergroups and cover properties.

• Performs C coverage using covergroups.

• Integrates easily with the existing testbench environment.

• Provides coverage analysis capabilities — reporting, grading
merging, and GUI.

• Has no negative impact on RTL simulation performance.

Functional coverage is very important in verifying correct
functionality of a design. SystemVerilog natively supports functional
coverage in RTL code.

18-4

Extensions for SystemVerilog Coverage

However, because C/C++ code is now commonly used in a design
(with PLI, DPI, DirectC, and so on), there is no systematic approach
to verify the functionality of C/C++.

The SystemVerilog C/C++ interface feature provides an application
programming interface (API) so that C/C++ code can use the
SystemVerilog functional coverage infrastructure to verify its
coverage.

Note:

When you use the SystemVerilog C/C++ interface feature, you
need include the header file svCovgAPI.h.

SystemVerilog Functional Coverage Flow

Figure 18-1 illustrates the functional coverage flow:

18-5

Extensions for SystemVerilog Coverage

Figure 18-1 SystemVerilog C/C++ Functional Coverage Flow

RTL & C Testbench (C++)

RTL Design

Wrapper Module

Coverage DB

Coverage

DPI

DPI

VPI

C-API

DPI is the SystemVerilog Direct Programming Interface. See
“SystemVerilog DPI” in the SystemVerilog Language Reference
Manual for VCS/VCS MX for details and examples of using DPI.

VPI is the Verilog Procedural Interface. See “SystemVerilog VPI
Object Model” in the SystemVerilog Language Reference Manual for
VCS/VCS MX for information about using VPI with SystemVerilog.

Covergroups are defined in SystemVerilog, and then they are used
to track the functional coverage of C/C++ code through the C-API (C
Application Programming Interface). There are two major parts to C/
C++ functional coverage interface:

• Covergroup(s)

• The C/C++ testbench using those covergroups

18-6

Extensions for SystemVerilog Coverage

Covergroup Definition

The following section lists the covergroup limitations for C/C++
functional coverage. Covergroups

• Cannot have a sampling clock.

• Must be declared in $unit.

• Cannot be inside another scope (for example, modules,
programs, and so on).

• Must not be instantiated anywhere in else SystemVerilog code.

• Arguments can only be in int, enum (base type int), and bit

vector types. The SystemVerilog-to-C data-type mapping is
compliant with DPI. Table 18-1 shows the mapping of the
supported types:

Table 18-1 SystemVerilog-to-C Data-Type Mapping by DPI

SystemVerilog C

int int

bit unsigned char

bit[m:n] svBitVec32

enum int int

• Definitions must appear in files that are separate from the DUT
because the definitions are compiled separately with the VCS
command-line option -c_covg.

After you define the covergroups, compile them with -c_covg (that
is, -c_covg <covergroup_file>). If you have multiple
covergroup files, you must precede each of them with the -c_covg
option (that is, -c_covg <cov_file1> -c_covg <cov_file2>
…).

18-7

Extensions for SystemVerilog Coverage

The options -sverilog and +vpi are also needed when compiling
with -c_covg.

After compiling the covergroups to be used with C/C++, the C-API
allows for the allocation of covergroup handles, manual triggering of
the covergroup sample, and the ability to de-instance and free the
previously declared covergroup handle.

The following is a list of the C-API functions:

• svCovgNew / svCovgNew2

• svCovgSample / svCovgSample2

• svCovgDelete

Detailed specifications for these functions appear in “C/C++
Functional Coverage API Specification” .

The following examples demonstrate the use model.

SystemVerilog (Covergroup for C/C++): covg.sv

cp: coverpoint count {
 bins b = {data};
 …
}
endgroup

C Testbench: test.c

int my_c_testbench ()
{
svCovgHandle cgh;
// C variables
int data;
int count;

18-8

Extensions for SystemVerilog Coverage

Approach #1: Passing Arguments by Reference

// Create a covergroup instance; pass data as a value
// parameter and count as a reference parameter;
// coverage handle remembers references
cgh = svCovgNew(“cg”, “cg_inst”, SV_SAMPLE_REF, data,
&count);

// Sample stored references
svCovgSample(cgh); // sampling by the stored reference
...

// Delete covergroup instance
svCovgDelete(cgh);

Approach #2: Passing Arguments by Value

// Create a covergroup instance; pass data and count as
// value parameters
cgh = svCovgNew(“cg”, “cg_inst”, SV_SAMPLE_VAL, data,
count);

// Sample values passed for covergroup ref arguments
svCovgSample(cgh, count); // sampling the value of count
...

// Delete covergroup instance
svCovgDelete(cgh);

Compile Flow

Compile the coverage model (covg.sv) using -c_covg together
with the design and the C testbench

This step assumes that you invoke the C testbench from the design
dut.sv through some C interface (for example, DPI, PLI, and so
on). For example:

vcs –sverilog dut.sv test.c –c_covg +vpi covg.sv

18-9

Extensions for SystemVerilog Coverage

Runtime

At runtime (executing simv), the functional coverage data is
collected and stored in the coverage database.

C/C++ Functional Coverage API Specification

This section gives detailed specifications for the C/C++ functional
coverage C-API.

svCovgHandle svCovgNew (char* cgName, char* ciName, int
refType, args …);

svCovgHandle svCovgNew2 (char* cgName, char* ciName, int
refType, va_list vl);

Parameters
cgName

Covergroup name.

ciName

Covergroup instance name (should be unique).

refType

SV_SAMPLE_REF or SV_SAMPLE_VAL.

args…

A variable number of arguments for creating a new covergroup
instance.

18-10

Extensions for SystemVerilog Coverage

vl

Represents a C predefined data structure (va_list) for
maintaining a list of arguments.

Description

Create a covergroup instance using the covergroup and instance
names. If no error, return svCovgHandle, otherwise return NULL.
The C variable sampling type (either reference or value) is specified
using refType. The sampling type is stored in svCovgHandle. The
svCovgNew2 function is similar to svCovgNew except that you
provide it with a va_list, instead of a variable number of
arguments (represented by “…”) to svCovgNew.

For value sampling, pass values for non-reference and reference
arguments in the order specified in the covergroup declaration, and
set refType to SV_SAMPLE_VAL.

For reference sampling, pass values for non-reference arguments
and addresses for reference arguments in the order specified in the
covergroup declaration. References must remain valid during the life
of the covergroup instance. Set refType to SV_SAMPLE_REF.

Type checking is not performed for arguments. It is your
responsibility to pass correct values and addresses.

int svCovgSample(svCovgHandle ch, args …);

int svCovgSample2(svCovgHandle ch, va_list vl);

Parameters
ch

Handle to a covergroup instance created by svCovgNew().

18-11

Extensions for SystemVerilog Coverage

args

A variable number of arguments for sampling a covergroup by
value, if refType = SV_SAMPLE_VAL in svCovgNew().

vl

Represents a C predefined data structure (va_list) for
maintaining a list of arguments.

Description

Sample a covergroup instance using the sampling style stored in
svCovgHandle and return 1 (TRUE) if no error, otherwise return 0
(FALSE). The svCovgSample2 function is similar to
svCovgSample except that you provide a va_list, instead of a
variable number of arguments (represented by “…”), to
svCovgSample.

For value sampling, provide values for reference arguments in the
order specified in the covergroup declaration. Type checking is not
performed for value arguments. It is your responsibility to pass
correct values.

For reference sampling, use stored addresses for reference
arguments in svCovgHandle.

int svCovgDelete(svCovgHandle ch);

Parameters
ch

Handle to a covergroup instance created by svCovgNew() (or
svCovgNew2).

18-12

Extensions for SystemVerilog Coverage

Description

Delete a covergroup instance and return 1 (TRUE) if no error,
otherwise return 0 (FALSE).

19-1

OpenVera-SystemVerilog Testbench Interoperability

19
OpenVera-SystemVerilog Testbench
Interoperability 1

The primary purpose of OpenVera-SystemVerilog interoperability in
VCS Native Testbench is to enable you to reuse OpenVera classes
in new SystemVerilog code without rewriting OpenVera code into
SystemVerilog.

This chapter describes:

• “Scope of Interoperability”

• “Importing OpenVera types into SystemVerilog”

Using the SystemVerilog package import syntax to import
OpenVera data types and constructs into SystemVerilog.

19-2

OpenVera-SystemVerilog Testbench Interoperability

• “Data Type Mapping”

The automatic mapping of data types between the two languages
as well as the limitations of this mapping (some data types cannot
be directly mapped).

• “Connecting to the Design”

Mapping of SystemVerilog modports to OpenVera where they can
be used as OpenVera virtual ports.

• “Notes to Remember”

• “Usage Model”

• “Limitations”

Scope of Interoperability

The scope of OpenVera-SystemVerilog interoperability in VCS
Native Testbench is as follows:

• Classes defined in OpenVera can be used directly or extended in
SystemVerilog testbenches.

• Program blocks must be coded in SystemVerilog. The
SystemVerilog interface can include constructs like modports and
clocking blocks to communicate with the design.

• OpenVera code must not contain program blocks, bind
statements, or predefined methods. It can contain classes,
enums, ports, interfaces, tasks, and functions.

19-3

OpenVera-SystemVerilog Testbench Interoperability

• OpenVera code can use virtual ports for sampling, driving, or
waiting on design signals that are connected to the SystemVerilog
testbench.

Importing OpenVera types into SystemVerilog

OpenVera has two user-defined types: enums and classes. These
types can be imported into SystemVerilog by using the
SystemVerilog package import syntax:

import OpenVera::openvera_class_name;
import OpenVera::openvera_enum_name;

Allows one to use openvera_class_name in SystemVerilog code
in the same way as a SystemVerilog class. This includes the ability
to:

• Create objects of type openvera_class_name

• Access or use properties and types defined in
openvera_class_name or its base classes

• Invoke methods (virtual and non-virtual) defined in
openvera_class_name or its base classes

• Extend openvera_class_name to SV classes

However, this does not import the names of base classes of
openvera_class_name into SystemVerilog (that requires an
explicit import). For example:

// OpenVera
 class Base {
 .
 .

19-4

OpenVera-SystemVerilog Testbench Interoperability

 .
 task foo(arguments) {
 .
 .
 .
 }
 virtual task (arguments) {
 .
 .
 .
 }
 class Derived extends Base {
 virtual task vfoo(arguments) {
 .
 .
 .
 }
 }

// SystemVerilog
 import OpenVera::Derived;
 Derived d = new; // OK
 initial begin
 d.foo(); // OK (Base::foo automatically
 // imported)
 d.vfoo(); // OK
 end
 Base b = new; // not OK (don't know that Base is a
 //class name)

The previous example would be valid if you add the following line
before the first usage of the name Base.

import OpenVera::Base;

Continuing with the previous example, SystemVerilog code can
extend an OpenVera class as shown below:

// SystemVerilog
 import OpenVera::Base;

19-5

OpenVera-SystemVerilog Testbench Interoperability

 class SVDerived extends Base;
 virtual task vmt()
 begin
 .
 .
 .
 end
 endtask
 endclass

Note:
- If a derived class redefines a base class method, the arguments

of the derived class method must exactly match the arguments
of the base class method.

- Explicit import of each data type from OpenVera can be avoided
by a single import OpenVera::*.

// OpenVera
 class Base {

integer i;
 .
 .
 .
 }
 class wrappedBase {
 public Base myBase;
 }
// SystemVerilog
 import OpenVera::wrappedBase;
 class extendedWrappedBase extends wrappedBase;
 .
 .
 .
 endclass

In this example, myBase.i can be used to refer to this member of
Base from the SV side. However, if SV also needs to use objects of
type Base, then you must include:

19-6

OpenVera-SystemVerilog Testbench Interoperability

import OpenVera::Base;

Data Type Mapping

This section describes how various data types in SystemVerilog are
mapped to OpenVera and vice-versa:

• Direct mapping: Many data types have a direct mapping in the
other language and no conversion of data representation is
required. In such cases, the OpenVera type is equivalent to the
SystemVerilog type.

• Implicit conversion: In other cases, VCS performs implicit type
conversion. The rules of inter-language implicit type conversion
follows the implicit type conversion rules specified in
SystemVerilog LRM. To apply SystemVerilog rules to OpenVera,
the OpenVera type must be first mapped to its equivalent
SystemVerilog type. For example, there is no direct mapping
between OpenVera reg and SystemVerilog bit. But reg in
OpenVera can be directly mapped to logic in SystemVerilog.
Then the same implicit conversion rules between SystemVerilog
logic and SystemVerilog bit can be applied to OpenVera reg
and SystemVerilog bit.

• Explicit translation: In the case of mailboxes and semaphores, the
translation must be explicitly performed by the user. This is
because in OpenVera, mailboxes and semaphores are
represented by integer ids and VCS cannot reliably determine
if an integer value represents a mailbox id.

19-7

OpenVera-SystemVerilog Testbench Interoperability

Mailboxes and Semaphores

Mailboxes and semaphores are referenced using object handles in
SystemVerilog whereas in OpenVera they are referenced using
integral ids.

VCS supports the mapping of mailboxes between the two
languages.

For example, consider a mailbox created in SystemVerilog. To use it
in OpenVera, you need to get the id for the mailbox somehow. The
get_id() function, available as a VCS extension to SV, returns this
value:

function int mailbox::get_id();

It will be used as follows:

// SystemVerilog
 mailbox mbox = new;
 int id;
 .
 .
 .
 id = mbox.get_id();
 .
 .
 .
 foo.vera_method(id);

// OpenVera
 class Foo {
 .
 .
 .
 task vera_method(integer id) {
 .

19-8

OpenVera-SystemVerilog Testbench Interoperability

 .
 .
 void = mailbox_put(data_type mailbox_id,
 data_type variable);
 }
 }

Once OpenVera gets an id for a mailbox/semaphore it can save it
into any integer type variable. Note that however if get_id is
invoked for a mailbox, the mailbox can no longer be garbage
collected because VCS has no way of knowing when the mailbox
ceases to be in use.

Typed mailboxes (currently not supported), when they are supported
in SystemVerilog can be passed to OpenVera code using the same
method as untyped mailboxes above. However, if the OpenVera
code attempts to put an object of incompatible type into a typed
mailbox, a simulation error will result.

Bounded mailboxes (currently not supported), when they are
supported in SystemVerilog can be passed to OpenVera code using
the same method as above. OpenVera code trying to do
mailbox_put into a full mailbox will result in a simulation error.

To use an OpenVera mailbox in SystemVerilog, you need to get a
handle to the mailbox object using a system function call. The
system function $get_mailbox returns this handle:

function mailbox $get_mailbox(int id);

It will be used as follows:

// SystemVerilog
 .
 .
 .

19-9

OpenVera-SystemVerilog Testbench Interoperability

 mailbox mbox;
 int id = foo.vera_method(); // vera_method returns an
 // OpenVera mailbox id
 mbox = $get_mailbox(id);

Analogous extensions are available for semaphores:

function int semaphore::get_id();
function semaphore $get_semaphore(int id);

Events

The OpenVera event data type is equivalent to the SystemVerilog
event data type. Events from either language can be passed (as
method arguments or return values) to the other language without
any conversion. The operations performed on events in a given
language are determined by the language syntax:

An event variable can be used in OpenVera in sync and trigger.
An event variable event1 can be used in SystemVerilog as follows:

event1.triggered //event1 triggered state property

->event1 //trigger event1

@(event1) //wait for event1

Strings

OpenVera and SystemVerilog strings are equivalent. Strings from
either language can be passed (as method arguments or return
values) to the other language without any conversion. In OpenVera,
null is the default value for a string. In SystemVerilog, the default

19-10

OpenVera-SystemVerilog Testbench Interoperability

value is the empty string (""). It is illegal to assign null to a string
in SystemVerilog. Currently, NTB-OV treats "" and null as distinct
constants (equality fails).

Enumerated Types

SystemVerilog enumerated types have arbitrary base types and are
not generally compatible with OpenVera enumerated types. A
SystemVerilog enumerated type will be implicitly converted to the
base type of the enum (an integral type) and then the bit-vector
conversion rules (section 2.5) are applied to convert to an OpenVera
type. This is illustrated in the following example:

// SystemVerilog
 typedef reg [7:0] formal_t; // SV type equivalent to
 // 'reg [7:0]' in OV
 typedef enum reg [7:0] { red = 8'hff, blue = 8'hfe,
 green = 8'hfd } color;
 // Note: the base type of color is 'reg [7:0]'
 typedef enum bit [1:0] { high = 2'b11, med = 2'b01,
 low = 2'b00 } level;
 color c;
 level d = high;
 Foo foo;
 ...
 foo.vera_method(c); // OK: formal_t'(c) is passed to
 // vera_method.
 foo.vera_method(d); // OK: formal_t'(d) is passed to
 // vera_method.
 // If d == high, then 8'b00000011 is
 // passed to vera_method.
// OpenVera
 class Foo {
 ...
 task vera_method(reg [7:0] r) {
 ...
 }
 }

19-11

OpenVera-SystemVerilog Testbench Interoperability

The above data type conversion does not involve a conversion in
data representation. An enum can be passed by reference to
OpenVera code but the formal argument of the OpenVera method
must exactly match the enum base type (for example: 2-to-4 value
conversion, sign conversion, padding or truncation are not allowed
for arguments passed by reference; they are OK for arguments
passed by value).

Enumerated types with 2-value base types will be implicitly
converted to the appropriate 4-state type (of the same bit length).
See the discussion in 2.5 on the conversion of bit vector types.

OpenVera enum types can be imported to SystemVerilog using the
following syntax:

import OpenVera::openvera_enum_name;

It will be used as follows:

// OpenVera
 enum OpCode { Add, Sub, Mul };

// System Verilog
 import OpenVera::OpCode;
 OpCode x = OpenVera::Add;

// or the enum label can be imported and then used
// without OpenVera::

 import OpenVera::Add;
 OpCode y = Add;

Note: SystemVerilog enum methods such as next, prev and
name can be used on imported OpenVera enums.

Enums contained within OV classes are illustrated in the following
example:

19-12

OpenVera-SystemVerilog Testbench Interoperability

class OVclass{
enum Opcode {Add, Sub, Mul};

}

import OpenVera::OVclass;
OVclass::Opcode SVvar;
SVvar=OVclass::Add;

Integers and Bit-Vectors

The mapping between SystemVerilog and OpenVera integral types
are shown in the following table:

SystemVerilog OpenVera
2/4 or 4/2 value

conversion? Change in sign?

integer integer N
(equivalent types)

N (Both signed)

byte reg [7:0] Y Y

shortint reg [15:0] Y Y

int integer Y N (Both signed)

longint reg [63:0] Y Y

logic [m:n] reg [abs(m-n)+1:0] N
(equivalent types)

N (Both unsigned)

bit [m:n] reg [abs(m-n)+1:0] Y N (Both unsigned)

time reg [63:0] Y N (Both unsigned)

Note:

If a value or sign conversion is needed between the actual and
formal arguments of a task or function, then the argument cannot
be passed by reference.

19-13

OpenVera-SystemVerilog Testbench Interoperability

Arrays

Arrays can be passed as arguments to tasks and functions from
SystemVerilog to OpenVera and vice-versa. The formal and actual
array arguments must have equivalent element types, the same
number of dimensions with corresponding dimensions of the same
length. These rules follow the SystemVerilog LRM.

• A SystemVerilog fixed array dimension of the form [m:n] is
directly mapped to [abs(m-n)+1] in OpenVera.

• An OpenVera fixed array dimension of the form [m] is directly
mapped to [m] in SystemVerilog.

Rules for equivalency of other (non-fixed) types of arrays are as
follows:

• A dynamic array (or Smart queue) in OpenVera is directly mapped
to a SystemVerilog dynamic array if their element types are
equivalent (can be directly mapped).

• An OpenVera associative array with unspecified key type (for
example integer a[]) is equivalent to a SystemVerilog
associative array with key type reg [63:0] provided the element
types are equivalent.

• An OpenVera associative array with string key type is
equivalent to a SystemVerilog associative array with string key
type provided the element types are equivalent.

Other types of SystemVerilog associative arrays have no equivalent
in OpenVera and hence they cannot be passed across the language
boundary.

19-14

OpenVera-SystemVerilog Testbench Interoperability

Some examples of compatibility are described in the following table:

OpenVera SystemVerilog Compatibility

integer a[10] integer b[11:2]

integer a[10] int b[11:2]

reg [11:0] a[5] logic [3:0][2:0] b[5]

A 2-valued array type in SystemVerilog cannot be directly mapped
to a 4-valued array in OpenVera. However, a cast may be performed
as follows:

// OpenVera
 class Foo {
 .
 .
 .
 task vera_method(integer array[5]) {
 .
 .
 . }
 .
 .
 .
 }
// SystemVerilog
 int array[5];
 typedef integer array_t[5];
 import OpenVera::Foo;
 Foo f;
 .
 .
 .
 f.vera_method(array); // Error: type mismatch
 f.vera_method(array_t'(array)); // OK
 .
 .
 .

Yes

No

Yes

19-15

OpenVera-SystemVerilog Testbench Interoperability

Structs and Unions

Unpacked structs/unions cannot be passed as arguments to
OpenVera methods. Packed structs/unions can be passed as
arguments to OpenVera: they will be implicitly converted to bit
vectors of the same width.

packed struct {...} s in SystemVerilog is mapped to
reg [m:0] r in OpenVera where m == $bits(s).

Analogous mapping applies to unions.

Connecting to the Design

Mapping Modports to Virtual Ports

This section relies on the following extensions to SystemVerilog
supported in VCS.

Virtual Modports

VCS supports a reference to a modport in an interface to be declared
using the following syntax.

virtual interface_name.modport_name virtual_modport_name;

For example:

interface IFC;
 wire a, b;
 modport mp (input a, output b);
endinterface

19-16

OpenVera-SystemVerilog Testbench Interoperability

IFC i();
virtual IFC.mp vmp;
.
.
.
 vmp = i.mp;

Importing Clocking Block Members into a Modport

VCS allows a reference to a clocking block member to be made by
omitting the clocking block name.

For example, in SystemVerilog a clocking block is used in a modport
as follows:

interface IFC(input clk);
 wire a, b;
 clocking cb @(posedge clk);
 input a;
 input b;
 endclocking
 modport mp (clocking cb);
endinterface

program mpg(IFC ifc);
 .
 .
 .
 .
virtual IFC.mp vmp;
 .
 .
 .
 vmp = i.mp;
 @(vmp.cb.a); // here you need to specify cb explicitly
 .
endprogram
module top();
 .

19-17

OpenVera-SystemVerilog Testbench Interoperability

 .
 IFC ifc(clk); // use this to connect to DUT and TB
 mpg mpg(ifc);
 dut dut(...);
 .
 .
endmodule

VCS supports the following extensions that allow the clocking block
name to be omitted from vmp.cb.a.

// Example-1
 interface IFC(input clk);
 wire a, b;
 clocking cb @(posedge clk);
 input a;
 input b;
 endclocking
 modport mp (import cb.a, import cb.b);
 endinterface

 program mpg(IFC ifc);
 .
 .
 .
 virtual IFC.mp vmp;
 .
 .
 .
 vmp = i.mp;
 @(vmp.a); // cb can be omitted; 'cb.a' is
 // imported into the modport
 .
 endprogram
 module top();
 .
 .
 IFC ifc(clk); // use this to connect to DUT and TB
 mpg mpg(ifc);
 dut dut(...);
 .

19-18

OpenVera-SystemVerilog Testbench Interoperability

 .
 endmodule

// Example-2
 interface IFC(input clk);
 wire a, b;
 bit clk;
 clocking cb @(posedge clk);
 input a;
 input b;
 endclocking
 modport mp (import cb.*); // All members of cb
 // are imported.
 // Equivalent to the
 // modport in
 // Example-1.
 endinterface

 program mpg(IFC ifc);
 .
 .
 IFC i(clk);
 .
 .
 .
 virtual IFC.mp vmp;
 .
 .
 .
 vmp = i.mp;
 @(vmp.a); // cb can be omitted;
 //'cb.a' is imported into the modport
 endprogram

module top();
 .
 .
 IFC ifc(clk); // use this to connect to DUT and TB
 mpg mpg(ifc);
 dut dut(...);
 .
 .

19-19

OpenVera-SystemVerilog Testbench Interoperability

endmodule

A SystemVerilog modport can be implicitly converted to an
OpenVera virtual port provided the following conditions are satisfied:

• The modport and the virtual port have the same number of
members.

• Each member of the modport converted to a virtual port must
either be: (1) a clocking block, or (2) imported from a clocking
block using the import syntax above.

• For different modports to be implicitly converted to the same virtual
port, the corresponding members of the modports (in the order in
which they appear in the modport declaration) be of bit lengths.
If the members of a clocking block are imported into the modport
using the cb.* syntax, where cb is a clocking block, then the
order of those members in the modport is determined by their
declaration order in cb.

Example

// OpenVera
port P {
 clk;
 a;
 b;
}

class Foo {
 P p;
 task new(P p_) {
 p = p_;
 }

 task foo() {
 .
 .
 .

19-20

OpenVera-SystemVerilog Testbench Interoperability

 @(p.$clk);
 .
 variable = p.$b;
 p.$a = variable;
 .
 .
 .
 }
}

// SystemVerilog
interface IFC(input clk);
 wire a;
 wire b;

 clocking clk_cb @(clk);
 input #0 clk;
 endclocking

 clocking cb @(posedge clk);
 output a;
 input b;
 endclocking

modport mp (import clk_cb.*, import cb.*); // modport
 // can aggregate signals from multiple clocking blocks.

endinterface: IFC

program mpg(IFC ifc);
 import OpenVera::Foo;
 .
 .
 virtual IFC.mp vmp = ifc.mp;
 Foo f = new(vmp); // clocking event of ifc.cb mapped to
 // $clk in port P
 // ifc.cb.a mapped to $a in port P
 // ifc.cb.b mapped to $b in port P
 .
 f.foo();
 .
 .

19-21

OpenVera-SystemVerilog Testbench Interoperability

 .
endprogram

module top();
 .
 .
 IFC ifc(clk); // use this to connect to DUT and TB
 mpg mpg(ifc);
 dut dut(...);
 .
 .
endmodule

Note:

In the above example, you can also directly pass the vmp modport
from an interface instance:

Foo f = new(ifc.mp);

Semantic Issues with Samples, Drives, and Expects

When OpenVera code wants to sample a DUT signal through a
virtual port (or interface), if the current time is not at the relevant clock
edge, the current thread is suspended until that clock edge occurs
and then the value is sampled. NTB-OV implements this behavior by
default. On the other hand, in SystemVerilog, sampling never blocks
and the value that was sampled at the most recent edge of the clock
is used. Analogous differences exist for drives and expects.

19-22

OpenVera-SystemVerilog Testbench Interoperability

Notes to Remember

Blocking Functions in OpenVera

When a SystemVerilog function calls a virtual function that may
resolve to a blocking OpenVera function at runtime, the compiler
cannot determine with certainty if the SystemVerilog function will
block. VCS issues a warning at compile time and let the
SystemVerilog function block at runtime.

Besides killing descendant processes in the same language domain,
terminate invoked from OpenVera will also kill descendant
processes in SystemVerilog. Similarly, disable fork invoked
from SystemVerilog will also kill descendant processes in OpenVera.
wait_child will also wait for SystemVerilog descendant
processes and wait fork will also wait for OpenVera descendant
processes.

Constraints and Randomization

• SystemVerilog code can call randomize() on objects of an
OpenVera class type.

• In SystemVerilog code, SystemVerilog syntax must be used to
turn off/on constraint blocks or randomization of specific rand
variables (even for OpenVera classes).

• Random stability will be maintained across the language domain.

//OV
class OVclass{

rand integer ri;
constraint cnst{...}

}

19-23

OpenVera-SystemVerilog Testbench Interoperability

//SV
OVclass obj=new();
SVclass Svobj=new();
SVobj.randomize();
obj.randomize() with
{obj.ri==SVobj.var;};

Functional Coverage

There are some differences in functional coverage semantics
between OpenVera and SystemVerilog. These differences are
currently being eliminated by changing OpenVera semantics to
conform to SystemVerilog. In interoperability mode,
coverage_group in OpenVera and covergroup in SystemVerilog
will have the same (SystemVerilog) semantics. Non-embedded
coverage group can be imported from Vera to SystemVerilog using
the package import syntax (similar to classes).

Coverage reports will be unified and keywords such as coverpoint,
bins will be used from SystemVerilog instead of OpenVera keywords.

Here is an example of usage of coverage groups across the
language boundary:

// OpenVera
class A
{
 B b;
 coverage_group cg {
 sample x(b.c);

 sample y(b.d);
 cross cc1(x, y);

 sample_event = @(posedge CLOCK);
 }
 task new() {
 b = new;
 }
}

19-24

OpenVera-SystemVerilog Testbench Interoperability

// SystemVerilog

import OpenVera::A;

initial begin
 A obj = new;
 obj.cg.option.at_least = 2;
 obj.cg.option.comment = "this should work”;
 @(posedge CLOCK);
 $display("coverage=%f", obj.cg.get_coverage());
end

Usage Model

Any `define from the OV code will be visible in SV once they are
explicitly included.

Note:

OV #define must be rewritten as ̀ define for ease of migration
to SV.

Compilation

% vcs [compile_options] -sverilog -ntb_opts interop
[other_NTB_options] file4.sv file5.vr file2.v file1.v

Simulation

% simv [simv_options]

Note:

- If RVM class libs are used in the OV code, use -ntb_opts
rvm with vlogan command line.

- Using -ntb_opts interop -ntb_opts rvm with vcs,
automatically translates rvm_ macros in OV package to vmm_
equivalents.

19-25

OpenVera-SystemVerilog Testbench Interoperability

Limitations

• Classes extended/defined in SystemVerilog cannot be
instantiated by OpenVera. OpenVera verification IP will need to
be compiled with the NTB syntax and semantic restrictions. These
restrictions are detailed in the Native Testbench Coding Guide,
included in the VCS release.

• SystemVerilog contains several data types that are not supported
in OpenVera including real, unpacked-structures, and unpacked-
unions. OpenVera cannot access any variables or class data
members of these types. A compiler error will occur if the
OpenVera code attempts to access the undefined SystemVerilog
data member. This does not prevent SystemVerilog passing an
object to OpenVera, and then receiving it back again, with the
unsupported data items unchanged.

• When using VMM RVM Interoperability, you should only register
VMM or RVM scenarios with a generator in the same language.
You can instantiate an OpenVera scenario in a SystemVerilog
scenario, but only a SystemVerilog scenario can be registered
with a SystemVerilog generator. You cannot register OpenVera
Multi-Stream Scenarios on a SystemVerilog Multi-Stream
Scenario Generator (MSSG).

19-26

OpenVera-SystemVerilog Testbench Interoperability

20-1

Using SystemVerilog Assertions

20
Using SystemVerilog Assertions 1

Using SystemVerilog Assertions (SVA) you can specify how you
expect a design to behave and have VCS display messages when
the design does not behave as specified.

assert property (@(posedge clk) req |-> ##2 ack)
else $display ("ACK failed to follow the request);

The above example displays, "ACK failed to follow the
request", if ACK is not high two clock cycles after req is high. This
example is a very simple assertion. For more information on how to
write assertions, refer to Chapter 17 of SystemVerilog Language
Reference Manual.

VCS allows you to:

• Control the SVAs

• Enable or Disable SVAs

20-2

Using SystemVerilog Assertions

• Control the simulation based on the assertion results

This chapter describes the following:

• “Using SVAs in the HDL Design”

• “Controlling SystemVerilog Assertions”

• “Viewing Results”

• “Enhanced Reporting for SystemVerilog Assertions in Functions”

• “Controlling Assertion Failure Messages”

• “Reporting Values of Variables in the Assertion Failure Messages”

• “Reporting Messages When $uniq_prior_checkon/
$uniq_prior_checkoff System Tasks are Called”

• “Enabling Lint Messages for Assertions”

• “Fail-Only Assertion Evaluation Mode”

• “Using SystemVerilog Constructs Inside vunits”

• “Calling $error Task when Else Block is Not Present”

• “Disabling Default Assertion Success Dumping in -debug_pp”

• “List of supported IEEE Std. 1800-2009 Compliant SVA Features”

• “Supported IEEE Std. 1800-2012 Compliant SVA Features”

• “SystemVerilog Assertions Limitations”

Note:

Synopsys recommends you to use the gcc compiler for Solaris
platform.

20-3

Using SystemVerilog Assertions

Using SVAs in the HDL Design

You can instantiate SVAs in your HDL design in the following ways:

• “Using VCS Checker Library”

• “Binding SVA to a Design”

• “Inlining SVAs in the Verilog Design”

• “Number of SystemVerilog Assertions Supported in a Module”

Using VCS Checker Library

VCS provides you SVA checkers, which can be directly instantiated
in your Verilog source files. You can find these SVA checkers files in
$VCS_HOME/packages/sva_cg directory.

This section describes the usage model to compile and simulate the
design with SVA checkers. For more information on SVA checker
libraries and list of available checkers, see the SystemVerilog
Assertions Checker Library Reference Manual.

Instantiating SVA Checkers in Verilog

You can instantiate SVA checkers in your Verilog source just like
instantiating any other Verilog module. For example, to instantiate
the checker assert_always, specify:

module my_verilog();
....
 assert_always always_inst (.clk(clk), .reset(rst),
 .test_expr(test_expr));
...

20-4

Using SystemVerilog Assertions

endmodule

The usage model to simulate the design with SVA checkers is as
follows:

Compilation

% vcs [vcs_options] -sverilog +define+ASSERT_ON \
 +incdir+$VCS_HOME/packages/sva –y $VCS_HOME/packages/sva
 +libext+.v \
 Verilog_source_files

Simulation

% simv [simv_options]

For more information on SVA checker libraries and a list of available
checkers, see the SystemVerilog Assertions Checker Library
Reference Manual.

 Binding SVA to a Design

Using bind statements to bind SVAs to your Verilog design is another
way to use SVAs. The advantage is, bind statements allow you to
bind SVAs to Verilog designs without modifying or editing your
design files.

The bind statement syntax is as follows:

bind inst_name/module SVA_module #[SVA_parameters]
SVA_inst_name [SVA_ports]

The bind statement for Verilog targets can be used anywhere within
your Verilog source file. For example:

//Verilog file
module dev (...);
...

20-5

Using SystemVerilog Assertions

endmodule

bind dev dev_checker dc1 (.clk(clk), .a(a), .b(b));

As shown in the above example, the bind statement is specified in
the same Verilog file.

The usage model to simulate the design is as shown below:

Compilation
% vcs -sverilog [compile_options] Verilog_files

Simulation
% simv [run_options]

Inlining SVAs in the Verilog Design

For Verilog designs, you can write SVAs as part of the code or within
pragmas as shown in the following example:

Example 1: Writing Assertions as a part of the code

module dut(...);

....

sequence s1;
@(posedge clk) sig1 ##[1:3] sig2;
endsequence

....

endmodule

20-6

Using SystemVerilog Assertions

Example 2: Writing Assertions using SVA pragmas
(//sv_pragma)

module dut(...);

....

//sv_pragma sequence s1;
//sv_pragma @(posedge clk) sig1 ##[1:3] sig2;
//sv_pragma endsequence

/*sv_pragma
sequence s2;
 @(posedge clk) sig3 ##[1:3] sig4;
endsequence
*/
....
endmodule

As shown in Example 2, you can use SVA pragmas as
//sv_pragma at the beginning of all SVA lines, or you can use the
following to mark a block of code as SVA code:

/* sv_pragma
 sequence s2;
 @(posedge clk) sig3 ##[1:3] sig4;
 endsequence
*/

Usage Model

The usage model to compile and simulate the designs having inlined
assertions is as follows:

Compilation

% vcs -sv_pragma [compile_options] Verilog_files

20-7

Using SystemVerilog Assertions

Simulation

% simv [run_options]

Number of SystemVerilog Assertions Supported in a
Module

VCS supports 1,048,000 SystemVerilog assertions per module. That
is, you can define 1,048,000 assertions in a module.

Note:

Large number of assertions in a module can cause performance
issues. If the performance degrades, it is recommended to sub-
divide the module into multiple modules and distribute assertions
over those modules.

Controlling SystemVerilog Assertions

SVAs can be controlled or monitored using:

• “Compilation and Runtime Options”

• “Concatenating Assertion Options” on page 10

• “Assertion Monitoring System Tasks”

• “Using Assertion Categories”

Compilation and Runtime Options

VCS provides various compilation options to perform the following
tasks:

20-8

Using SystemVerilog Assertions

• If you want to control assertions at runtime, use the -assert
enable_diag option at compile time.

• To enable -assert hier=<file_name> at runtime, use the
-assert enable_hier option at compile time.

Note:

The -assert quiet and -assert report=<file_name>
options do not require the use of the -assert enable_hier or
-assert enable_diag options at compile time.

• To enable dumping assertion information in a VPD file, use the
-assert dve option. This option also allows you to view
assertion information in the assertion pane in DVE (for more
information, see the DVE User Guide.)

• To disable all SVAs in the design, use the -assert disable
compilation option. To disable only the SVAs specified in a file,
use the -assert hier=<file_name> compilation option.

• To disable assertion coverage, use the -assert
disable_cover compilation option. By default, when you use
the -cm assert option, VCS enables monitoring your assertions
for coverage, and writes an assertion coverage database during
simulation.

• To disable property checks (that is, assert and assume
directives) and retain assertion coverage (that is, cover
directives), use -assert disable_assert at compile-time.

• Disable dumping of SVA information in the VPD file

You can use the -assert dumpoff option to disable the
dumping of SVA information to the VPD file during simulation (for
additional information, see “Options for SystemVerilog
Assertions”).

20-9

Using SystemVerilog Assertions

Following are the tasks VCS allows you to do during the runtime:

• Terminate simulation after certain number of assertion failures

You can use either the -assert finish_maxfail=N or -
assert global_finish_maxfail=N runtime option to
terminate the simulation if the number of failures for any assertion
reaches N or if the total number of failures from all SVAs reaches
N, respectively.

• Show both passing and failing assertions

By default, VCS reports only failures. However, you can use the
-assert success option to enable reporting of successful
matches, and successes on cover statements, in addition to
failures.

• Limit the maximum number of successes reported

You can use the -assert maxsuccesses=N option to limit the
total number of reported successes to N.

• Disable the display of messages when assertions fail

You can use the -assert quiet option to disable the display
of messages when assertions fail.

• Enable or disable assertions during runtime

You can use the -assert hier=file_name option to enable
or disable the list of assertions in the specified file.

20-10

Using SystemVerilog Assertions

• Generate a report file

You can use the -assert report=file_name option to
generate a report file with the specified name. For additional
information, see “Options for SystemVerilog Assertions” .

• Enable assertion control using wildcard characters

You can use the -assert enable_wildcard option to enable
the support of assertion control through wildcards.

You can enter more than one keyword, using the plus + separator.
For example:

% vcs -assert maxfail=10+maxsucess=20+success ...

Concatenating Assertion Options

VCS allows you to concatenate the compile time and runtime
assertion options on the compile command-line using the ‘+’
separator. VCS identifies and appropriately passes these options to
compile and runtime, wherever applicable. Concatenating all options
simplifies the use model.

For example, you can concatenate compile-time option -assert
enable_diag with runtime option -assert success, as shown
below:

% vcs -assert success+enable_diag -R

When an option has the same name at both compile time and
runtime, and used on the vcs compile command line with -R, then it
will be applied only at compile time.

20-11

Using SystemVerilog Assertions

Assertion Monitoring System Tasks

For monitoring SystemVerilog assertions you have developed the
following new system tasks:

$assert_monitor
$assert_monitor_off
$assert_monitor_on

Note:

Enter these system tasks in an initial block. Do not enter these
system tasks in an always block.

The $assert_monitor system task is analogous to the standard
$monitor system task in that it continually monitors specified
assertions and displays what is happening with them (you can have
it only display on the next clock of the assertion). The syntax is as
follows:

$assert_monitor([0|1,]assertion_identifier...);

Where:

0

Specifies reporting on the assertion if it is active (VCS is checking
for its properties) and for the rest of the simulation reporting on
the assertion or assertions, whenever they start.

1

Specifies reporting on the assertion or assertions only once, the
next time they start.

If you specify neither 0 or 1, the default is 0.

20-12

Using SystemVerilog Assertions

assertion_identifier...

A comma separated list of assertions. If one of these assertions
is not declared in the module definition containing this system
task, specify it by its hierarchical name.

Consider the following assertion:

property p1;
 @ (posedge clk) (req1 ##[1:5] req2);
endproperty

a1: assert property(p1);

For property p1 in assertion a1, a clock tick is a rising edge on signal
clk. When there is a clock tick VCS checks to see if signal req1 is
true, and then to see if signal req2 is true at any of the next five clock
ticks.

In this example simulation, signal clk initializes to 0 and toggles
every 1 ns, so the clock ticks at 1 ns, 3 ns, 5 ns and so on.

A typical display of this system task is as follows:

Assertion test.a1 [’design.v’27]:
5ns: tracing "test.a1" started at 5ns:

attempt starting found: req1 looking for: req2 or
any
5ns: tracing "test.a1" started at 3ns:

trace: req1 ##1 any looking for: req2 or any
failed: req1 ##1 req2

20-13

Using SystemVerilog Assertions

5ns: tracing "test.a1" started at 1ns:
trace: req1 ##1 any[* 2] looking for: req2 or any
failed: req1 ##1 any ##1 req2

Breaking this display into smaller chunks:

Assertion test.a1 [’design.v’27]:

The display is about the assertion with the hierarchical name
test.a1. It is in the source file named design.v and declared on
line 27.

5ns: tracing "test.a1" started at 5ns:
attempt starting found: req1 looking for: req2 or

any

At simulation time, 5 ns VCS is tracing test.a1. An attempt at the
assertion started at 5 ns. At this time, VCS found req1 to be true
and is looking to see if req2 is true one to five clock ticks after 5 ns.
Signal req2 doesn’t have to be true on the next clock tick, so req2
not being true is okay on the next clock tick; that’s what looking for
“or any” means, anything else than req2 being true.

5ns: tracing "test.a1" started at 3ns:
trace: req1 ##1 any looking for: req2 or any
failed: req1 ##1 req2

The attempt at the assertion also started at 3 ns. At that time, VCS
found req1 to be true at 3 ns and it is looking for req2 to be true
some time later. The assertion “failed” in that req2 was not true one
clock tick later. This is not a true failure of the assertion at 3 ns, it can
still succeed in two more clock ticks, but it didn’t succeed at 5 ns.

5ns: tracing "test.a1" started at 1ns:
trace: req1 ##1 any[* 2] looking for: req2 or any
failed: req1 ##1 any ##1 req2

20-14

Using SystemVerilog Assertions

The attempt at the assertion also started at 1 ns. [* is the repeat
operator. ##1 any[* 2] means that after one clock tick, anything
can happen, repeated twice. So the second line here says that req1
was true at 1 ns, anything happened after a clock tick after 1 ns (3
ns) and again after another clock tick (5 ns) and VCS is now looking
for req2 to be true or anything else could happen. The third line here
says the assertion “failed” two clock ticks (5 ns) after req1 was found
to be true at 1 ns.

The $assert_monitor_off and $assert_monitor_on system
tasks turn off and on the display from the $assert_monitor
system task, just like the $monitoroff and $monitoron system
turn off and on the display from the $monitor system task.

Using Assertion Categories

You can categorize assertions and then enable and disable them by
category. There are two ways to categorize assertions:

• Using System Tasks

- Using Assertion System Tasks

• Using Attributes

• Stopping and Restarting Assertions By Category

- Starting and Stopping Assertions Using Assertion System
Tasks

After you categorize assertions you can use these categories to stop
and restart assertions.

20-15

Using SystemVerilog Assertions

Using System Tasks

VCS has a number of system tasks and functions for assertions.
These system tasks do the following:

• Set a category for an assertion

• Return the category of an assertion

Using Assertion System Tasks

You can use the following assertion system tasks to set the category
and severity attributes of assertions:

$assert_set_severity("assertion_full_hier_name", severity)

Sets the severity level attributes of an assertion. The severity level is
an unsigned integer from 0 to 255.

$assert_set_category("assertion_full_hier_name", category)

Sets the category level attributes of an assertion. The category level

is an unsigned integer from 0 to 224 - 1.

You can use the following system tasks to retrieve the category and
severity attributes of assertions:

$assert_get_severity("assertion_full_hier_name")

Returns the severity of action for an assertion failure.

$assert_get_category("assertion_full_hier_name")

Returns an unsigned integer for the category.

20-16

Using SystemVerilog Assertions

After specifying these system tasks and functions, you can start or
stop the monitoring of assertions based upon their specified
category or severity. For details on starting and stopping assertions,
see “Stopping and Restarting Assertions By Category” .

Using Attributes

You can prefix an attribute in front of an assert statement to specify
the category of the assertion. The attribute must begin with the
category name and specify an integer value, for example:

(* category=1 *) a1: assert property (p1);
(* category=2 *) a2: assert property (s1);

The value you specify can be an unsigned integer from 0 to 224 - 1,

or a constant expression that evaluates to 0 to 224 - 1.

You can use a parameter, localparam, or genvar in these
attributes. For example:

parameter p=1;
localparam l=2;
.
.
.
(* category=p+1 *) a1: assert property (p1);
(* category=l *) a2: assert property (s1);

genvar g;
generate
for (g=0; g<1; g=g+1)
begin:loop
(* category=g *) a3: assert property (s2);
end
endgenerate

20-17

Using SystemVerilog Assertions

Note:
In a generate statement the category value cannot be an
expression, the attribute in the following example is invalid:

genvar g;
generate
for (g=0; g<1; g=g+1)
begin:loop
(* category=g+1 *) a3: assert property (s2);
end
endgenerate

If you use a parameter for a category value, the parameter value
can be overwritten in a module instantiation statement.

You can use these attributes to assign categories to both named and
unnamed assertions. For example:

(* category=p+1 *) a1: assert property (p1);
(* category=l *) assert property (s1);

The attribute is retained in a tokens.v file when you use the
-Xman=0x4 compile-time option and keyword argument.

Stopping and Restarting Assertions By Category

Starting and Stopping Assertions Using Assertion System
Tasks

There are assertions system tasks for starting and stopping
assertions. These system tasks are as follows:

Stopping Assertions by Category or Severity

$assert_category_stop(categoryValue,
[maskValue[,globalDirective]]);

20-18

Using SystemVerilog Assertions

Stops all assertions associated with the specified category.

$assert_severity_stop(severityValue,
[maskValue[,globalDirective]]);

Stops all assertions associated with the specified severity level.

where,

categoryValue

Since there is a maskValue argument, it is now the result of an
anding operation between the assertion categories and the
maskValue argument. If the result matches this value, these
categories stop. Without the maskValue argument, this
argument is the value you specify in $assert_set_category
system tasks or category attributes.

maskValue

A value that is logically anded with the category of the assertion.
If the result of this and operation matches the categoryValue,
VCS stops monitoring the assertion.

globalDirective

Can be either of the following values:

0

Enables an $assert_category_start system task that
does not have a globalDirective argument, to restart the
assertions stopped with this system task.

20-19

Using SystemVerilog Assertions

1

Prevents an $assert_category_start system task that
does not have a globalDirective argument from restarting
the assertions stopped with this system task.

Starting Assertions by Category or Severity

$assert_category_start(categoryValue,
[maskValue[,globalDirective]]);

Starts all assertions associated with the specified category.

$assert_severity_start(severityValue,
[maskValue[,globalDirective]]);

Starts all assertions associated with the specified severity level. The
severity level is an unsigned integer from 0 to 255.

where,

categoryValue

Since there is a maskValue argument, this argument is the result
of an anding operation between the assertion categories and the
maskValue argument. If the result matches this value, these
categories start. Without the maskValue argument, this
argument is the value you specify in $assert_set_category
system tasks or category attributes.

maskValue

A value that is logically anded with the category of the assertion.
If the result of this and operation matches the categoryValue,
VCS starts monitoring the assertion.

20-20

Using SystemVerilog Assertions

globalDirective

Can be either of the following values:

0

Enables an $assert_category_stop system task (that
does not have a globalDirective argument) to stop the
assertions started with this system task.

1

Prevents an $assert_category_stop system task that
does not have a globalDirective argument from stopping
the assertions started with this system task.

Example Showing How to Use MaskValue

Example 20-1 stops the odd numbered categories

Example 20-1 MaskValue Numbering:

$assert_set_category(top.d1.a1,1);
$assert_set_category(top.d1.a2,2);
$assert_set_category(top.d1.a3,3);
$assert_set_category(top.d1.a4,4);

.

.

.

.
$assert_category_stop(1,’h1);

The categories are masked with the maskValue argument and
compared with the categoryValue argument as shown in the
following table.

bits categoryValue

20-21

Using SystemVerilog Assertions

1. VCS logically ands the category value to the maskValue
argument, which is 1.

2. The result of the and operation is true for categories 1 and 3 as
per the calculation shown above. The result is false for categories
2 and 4.

3. VCS stops all the assertions which result in a true match with the
and operation.

Example 20-2 uses the globalDirective argument.

Example 20-2 Mask Value with Global Directive

$assert_set_category(top.d1.a1,1);
$assert_set_category(top.d1.a2,2);
$assert_set_category(top.d1.a3,3);
$assert_set_category(top.d1.a4,4);
.
.
$assert_category_stop(1,’h1,1);
$assert_category_start(0,’h1);

category 1 001

maskValue 1

result 1 1 match

category 2 010

maskValue 1

result 0 1 no match

category 3 011

maskValue 1

result 1 1 match

category 4 100

maskValue 1

result 0 1 no match

20-22

Using SystemVerilog Assertions

The assertions that are stopped or started with globalDirective
value 1, cannot be restarted or stopped with a call to
$assert_category_start, without using the
globalDirective argument. The above code cannot restart
assertions.

The assertions can only be restarted with a call to
$assert_category_start with globalDirective, as follows:

$assert_category_start(1,'h1,1);

or

$assert_category_start(1,'h1,0);

Viewing Results

By default, VCS reports only assertion of the failures. However, you
can use the -assert success runtime option to report both pass
and failures.

Assertion results can be viewed:

• Using a Report File

• Using DVE

For information on viewing assertions in DVE, refer to the "Using the
Assertion Pane" chapter, in the DVE user guide.

20-23

Using SystemVerilog Assertions

Using a Report File

Using the -assert report=file_name option, you can create an
assertion report file. VCS writes all SVA messages to the specified
file.

Assertion attempts generate messages with the following format:

"design.v", 157: top.cnt_in.a2: started at 22100ns failed
at 22700ns
 Offending '(busData == mem[$past(busAddr, 3)])'

File and line with
the assertion Full hierarchical name

of the assertion
Start time Status (succeeded at ...,

failed at ...,
not finished)

Expression that failed (only with failure of check assertions)

Enhanced Reporting for SystemVerilog Assertions in
Functions

This section describes an efficient reporting convention for functions
containing assertions in the following topics:

• “Introduction”

• “Usage Model”

• “Name Conflict Resolution”

• “Checker and Generate Blocks”

20-24

Using SystemVerilog Assertions

Introduction

In earlier releases, when assertions were present inside functions,
assertion path names were reported based on the position of the
function call in the source file. For example, consider the following
code:

module top;
bit b, a1, a2, a3, a4, a5;
function bit myfunc(input bit k);
 $display("FUNC name: %m");
 AF: assert #0(k && !k);
 return !k;
endfunction

always_comb a1=myfunc(b);
always_comb begin: A
 begin: B
 a2=myfunc(b);
 begin a3=myfunc(!b); end
 end
end
always_comb begin
 a4=myfunc(b);
 a5=myfunc(!b);
end
endmodule

If you run this code, it generates the following output:

"top.v", 5: top.\top.v_18__myfunc.AF : started
"top.v", 5: top.\top.v_17__myfunc.AF : started
"top.v", 5: top.\top.v_13__myfunc.AF : started
"top.v", 5: top.\top.v_12__myfunc.AF : started
"top.v", 5: top.\top.v_9__myfunc.AF : started

20-25

Using SystemVerilog Assertions

But the problem with this type of naming convention is, when code
changes, the output of the simulation also changes. To overcome
this limitation, a new naming convention is implemented under the
-assert funchier compile-time option. This new naming
convention is implemented as follows:

• Function names are generated based on the named blocks under
which the functions are called. Each function name is appended
with an index (index=0, 1, 2, 3...), where index 0 is given to the
first function call, index 1 is given to the second function call, and
so on.

• For unnamed blocks, the function name is based on the closest
named block.

• If there is no named scope around the function call, then a module
scope is used as a named block with an empty name.

• Each assertion status reporting message contains the file name
and line number of the function caller.

Usage Model

Use the -assert funchier option to enable the new function
naming convention, as shown in the following command:

% vcs -sverilog -assert funchier+svaext

If you run the above code using this command, it generates the
following output:

"top.v", 5: top.myfunc_2.AF ("top.v", 18): started
"top.v", 5: top.myfunc_1.AF ("top.v", 17): started
"top.v", 5: top.\A.B.myfunc_1.AF ("top.v", 13): started ...
"top.v", 5: top.\A.B.myfunc_0.AF ("top.v", 12): started

20-26

Using SystemVerilog Assertions

"top.v", 5: top.myfunc_0.AF ("top.v", 9): started

Name Conflict Resolution

When a function name generated with the new naming convention
conflicts with an existing block or identifier name in that scope, then
the suffix index is incremented until the conflict is resolved.

Checker and Generate Blocks

When a function is present inside a checker, the generated name of
that function contains the checker name appended to all named
blocks and identifiers in that checker.

Similarly, when a function is present inside a generate block, the
generated name of that function contains the generated block name
appended to all named blocks and identifiers in that generate block.

Controlling Assertion Failure Messages

This section describes the mechanism for controlling failure
messages for SystemVerilog Assertions (SVA), OpenVera
Assertions (OVA), Property Specification Language (PSL)
assertions, and OVA case checks.

This section contains the following topics:

• “Introduction”

• “Options for Controlling Default Assertion Failure Messages”

• “Options to Control Termination of Simulation”

20-27

Using SystemVerilog Assertions

• “Option to Enable Compilation of OVA Case Pragmas”

Introduction

Earlier releases did not provide the flexibility to control the display of
default messages for assertion (SVA, OVA, or PSL) failures, based
on the presence of an action block (for SVA) or a user message (for
OVA and PSL). Also, there was no control over whether these
assertion failures contributed to the failure counts for
–assert [global_]finish_maxfail, or affected simulation if
$ova_[severity|category]_action(<severity_or_category>,

“finish”) was specified.

You can now use the options described in the following topics to
enable additional controls on failure messages, and to terminate the
simulation and compilation of OVA case pragmas.

Options for Controlling Default Assertion Failure
Messages

You can use the following runtime options to control the default
assertion failure messages:

–assert no_default_msg[=SVA|OVA|PSL]

Disables the display of default failure messages for SVA
assertions that contain a fail action block, and OVA and PSL
assertions that contain user messages.

The default failure messages are displayed for:

- SVA assertions without fail action blocks

20-28

Using SystemVerilog Assertions

- PSL and OVA assertions that do not contain user messages

When used without arguments, this option affects SVA, OVA, and
PSL assertions. You can use an optional argument with this option
to specify the class of assertions that should be affected.

Note:

The -assert quiet and -assert report options override
the -assert no_default_msg option. That is, if you use either
of these options along with -assert no_default_msg, then
the latter has no effect.

The –assert no_default_msg=SVA option affects only SVA.

The –assert no_default_msg=OVA and
–assert no_default_msg=PSL options affect both OVA and
PSL assertions, but not SVA.

In addition to the default message, an extra message is displayed
by default, for PSL assertions that have a severity (info, warning,
error, or fatal) associated with them. This message is considered
as a user message, and no default message is displayed, if you
use the –assert no_default_msg[=PSL] option.

Example

Consider the following assertion:

As1: assert property (@(posedge clk) P1) else
$info(“As1 fails”);

By default, VCS displays the following information for each
assertion failure:

20-29

Using SystemVerilog Assertions

"sva_test.v", 15: top.As1: started at 5s failed at 5s
Offending 'a'
Info: "sva_test.v", 15: top.As1: at time 5
As1 fails

If you use the –assert no_default_msg option at runtime, it
disables the default message, and displays only the user
message, as shown below:

Info: "sva_test.v", 15: top.As1: at time 5
As1 fails

Options to Control Termination of Simulation

You can use the following runtime options to control the termination
of simulation:

–assert no_fatal_action

Excludes failures on SVA assertions with fail action blocks for
computation of failure count in the –assert
[global_]finish_maxfail=N runtime option. This option
also excludes failures of these assertions for termination of
simulation, if you use the following command:

$ova_[severity|category]_action(<severity_or_category>,
“finish”)

Note:

This option does not affect OVA case violations and OVA or
PSL assertions, with or without user messages.

20-30

Using SystemVerilog Assertions

Specifying $fatal() in the fail action block of an SVA
assertion or in a fatal severity associated with a PSL assertion,
results in termination of simulation irrespective of whether this
option is used or not.

This option is useful when you want to exclude failures of
assertions having fail action blocks, from adding up to the global
failure count, for the –assert [global]_finish_maxfail=N
option.

Example

Consider the following assertion:

As1: assert property (@(posedge clk) P1) else
$info(“As1 fails”);

If you use the –assert global_finish_maxfail=1 option at
runtime, then the simulation terminates at the first As1 assertion
failure. Now, if you use –assert global_finish_maxfail=1
–assert no_fatal_action at runtime, then the failure of
assertion As1 does not cause the simulation to terminate.

–ova_enable_case_maxfail

Includes OVA case violations in computation of global failure
count for the –assert global_finish_maxfail=N option.

Note:

The –assert finish_maxfail=N option does not include
OVA case violations. This option maintains a per-assertion
failure count for termination of simulation.

Example

20-31

Using SystemVerilog Assertions

Consider an OVA case pragma, as shown in the following code,
to check the case statements for full case violations:

reg [2:0] mda[31:0][31:0];
//ova full_case on;
initial begin

for(i = 31; i >= 0; i = i - 1) begin
 for(j = 0; j <= 31; j = j + 1) begin
 case(mda[i][j])
 1: begin
 testdetect[i][j] = 1'b1;
 end
 endcase
 #1;
 end
 end
end

The above code violates full case check. Therefore, case
violations are displayed as follows:

Select expression value when violation happened for last
iteration : 3'b000
Ova [0]: "ova_case_full.v", 20: Full case violation at
time 9 in a
Failed in iteration: [31] [9]

By default, these violations are not considered in the failure count
for the –assert global_finish_maxfail=N option. But if you use
the -ova_enable_case_maxfail option at runtime, then the case
violations are added in the failure count.

Option to Enable Compilation of OVA Case Pragmas

You can use the following compile-time option to enable compilation
of OVA case pragmas:

20-32

Using SystemVerilog Assertions

–ova_enable_case

Enables the compilation of OVA case pragmas only, when used
without –Xova or –ova_inline. All inlined OVA assertion
pragmas are ignored.

Note:

-Xova or –ova_inline is the superset of the
-ova_enable_case option. They are used to compile both
the case pragmas and assertions.

Example

Consider the following code:

//ova parallel_case on;
//ova full_case on; /* case pragma*/
always @(negedge clock)
 case (opcode)
//ova check_bool (alu_out>10, "ddd", negedge clock); /*
assertion pragma */
 3'h0: alu_out = accum;
 3'h1: alu_out = accum;
 3'h2: alu_out = accum + data;
 3'h3: alu_out = accum & data;
 3'h4: alu_out = accum ^ data;
 3'h5: alu_out = data;
 3'h6: alu_out = accum;
 endcase

The above code contains both OVA case pragmas and assertions.
This option ignores the OVA assertion pragmas, and compiles
only the case pragmas.

20-33

Using SystemVerilog Assertions

Reporting Values of Variables in the Assertion Failure
Messages

You can use the -assert offending_values compile-time
option to enable reporting of the values of all variables used in the
assertion failure messages, as shown below:

"test.sv", 12: test.a1: started at 5s failed at 5s
 Offending 'ack'
 $rose(sh) = 0
 $fell(rst) = 1
 ack = 'b0

This feature allows you to debug simple assertions directly from the
failure message, and avoids more complex debug process using
DVE.

The values of the variables contained in the failing portion of a
property will be output using the following formats:

Table 20-1 Reporting Formats

Variable Type Format

Simple scalar bit or logic
variables

<var_name> = %b

Bitvector variables <var_name> = %h

Int and integer variables <var_name> = %0d

20-34

Using SystemVerilog Assertions

Limitations

The reporting of failing assertion variables is not supported for the
following:

• When an assertion is used in the action block of another assertion.

• For other directives like assume, restrict. This feature is
supported only for assert.

• Sequence method

• PSL

• Randomize with

• When the type is one of the following:

- Parameter/constant

- Local variable

- Clocking block variables

Real, realtime variables <var_name> = %g

Sampled value function
calls

<$sampled_function_call(argument list)> = %b

Note: The values of the variables in the argument list are
not reported. Also, if sampled value functions are nested,
only the value of the top-level function is reported.

Unknown Expressions <expr> = %h

User-defined function calls <function_name>(list of var_name – value
pairs)

Part select and bit select
items

VCS reports with the sampled value of the selector, if it is a
variable.

Variable Type Format

20-35

Using SystemVerilog Assertions

- Dynamic types including class variables

Reporting Messages When $uniq_prior_checkon/
$uniq_prior_checkoff System Tasks are Called

VCS reports messages when the $uniq_prior_checkon/
$uniq_prior_checkoff system tasks are called in the source
code or from UCLI. This feature allows you to control assertion
failures.

Consider Example 20-3,

Example 20-3 test.v

module m;
 bit [1:0]a;
 bit b,c;
 initial begin
 repeat (8)
 begin
 #1;
 c=1'b1;
 a=2'b10;
 #1;
 a=2'b11;
 $monitor($time, "a %0d \n",a);
 end
 end
 always_comb
 unique case(a)
 2'b10: b=1'b0;
 2'b10: b=1'b1;
 default: b=1'b0;
 endcase

 initial
 begin

20-36

Using SystemVerilog Assertions

 #2 $uniq_prior_checkon();
 #8 $uniq_prior_checkoff();
 end
endmodule

The following output is generated when the
$uniq_prior_checkon/$uniq_prior_checkoff system tasks
are called in the source code:

Starting Unique/Priority checks at time 2s : Level = 0 arg
= * (Source - test.v,23)
Stopping Unique/Priority checks at time 10s : Level = 0 arg
= * (Source - test.v,24)

Example 20-4 test.ucli

run 5
call {$uniq_prior_checkoff}
run 2
call {$uniq_prior_checkon}
run
exit

Consider Example 20-3 and Example 20-4. The following output is
generated when the $uniq_prior_checkon/
$uniq_prior_checkoff system tasks are called from UCLI:

Stopping Unique/Priority checks at time 5s : Level = 0 arg
= * (from inst m (UCLI))
Starting Unique/Priority checks at time 7s : Level = 0 arg
= * (from inst m (UCLI))

20-37

Using SystemVerilog Assertions

Enabling Lint Messages for Assertions

You can use the +lint=sva option at compile time to enable lint
messages for SystemVerilog Assertions with the rules listed in
Table 20-2. You can also use the +lint=<ID> or +lint=all
compile-time option to enable this feature.

Note:

For SVA-LDA, SVA-NCRT, and SVA-PWLNT lint IDs, you can use
the +lint=<ID>:<N>:<M> option to control the display of the
lint messages. N denotes the number of times the lint message
shall appear, and M denotes the threshold limit to be set. For the
remaining lint IDs specified in Table 20-2, you can use the
+lint=<ID>:<N> option to control the display of messages.

Table 20-2 List of New LINT IDs

Assertion Rule Description Lint Message

Assertion with large delays Lint-[SVA-LDA] Large delay assertion

Consequent contains
throughout operator on non-
consecutive repetition

Lint-[SVA-NCRT] Non-consecutive
repetition in 'throughout'

Assertions using $past with
>5 clock cycles

Lint-[PWLNT] PAST with large number of
ticks

Non-singular edge found in
assertion clock

Lint-[SVA-NSEF] Non-singular edge found

Complex clock expression is
used with an assertion

Lint-[SVA-CE] Complex expression found

Non-sampled variable used in
the action block of an assertion

Lint-[SVA-NSVU] Non-sampled variable used

Assertions using local
variables

Lint-[SVA-LVU] Local variable used

20-38

Using SystemVerilog Assertions

Assertion declared outside a
module

Lint-[SVA-ADOM] Assertion declared
outside module

Disable iff expression used
inside an assertion

Lint-[SVA-DIU] 'disable iff' used in
assertion statement

Assertions used inside
generate “for” loop

Lint-[SVA-AGFL] Assertions in generate
for loop

Unnamed assertion Lint-[SVA-UA] Unnamed Assertion

Cover on a sequence Lint-[SVA-SCU] Sequences inside 'Cover'
statement

Deferred assertion Lint-[SVA-DAU] Deferred assertion used

Assertions using antecedent
expression that results in an
empty match

Lint-[SVA-AEM] Antecedent empty match

Consequent expression of an
assert property is always true

Lint-[SVA-CAT] Consequent always true

Implication in a cover property Lint-[SVA-ICP] Implication in cover
property

Using (clk iff
gate_expr) inside an assert
property

Lint-[SVA-LCE] Logical 'AND' in clock
expression

Pass action block in assert
property

Lint-[SVA-PAB] Pass action block

$info/$display statement
in a cover property

Lint-[SVA-IUC] Info messages used in cover

Assertion with empty “begin --
end” action block

Lint-[SVA-EFAB] Empty fail action block

Assertion in a loop without
using the loop index

Lint-[SVA-FINUA] For-loop index not used
in assertion

Assertion with a severity task
in the pass action block

Lint-[SVA-STPAB] Severity task in pass
action block

Assertion Rule Description Lint Message

20-39

Using SystemVerilog Assertions

Fail-Only Assertion Evaluation Mode

Fail-only is an assertion evaluation mode by which VCS provides an
optional optimization controlled by the -assert failonly
compile-time option. This option enables fail-only mode for
concurrent assertions.

Immediate/deferred assertions and concurrent assertions without
pass action blocks, local variables, match operators, or multiple
clocks tend to benefit from this evaluation mode.

Note:

VCS ignores the fail-only assertion evaluation mode, if you use
any of the following options:

-assert dve, -assert enable_diag, -debug,
-debug_all, -debug_pp, -cm assert

By default, VCS reports the start and end times of assertion
evaluation attempts. Therefore, each attempt needs to be stored in
memory until it matures. This can cause slowdown if there are
multiple attempts pending till the simulation is finished.

If you use the -assert failonly option at compile time, VCS
reports only assertion failures with their end times. This reduces
memory footprint and speeds up the simulation.

Consider Example 20-5.

Example 20-5 test.v

`timescale 1ns/1ns
module top();
 reg a,b,c;
 reg clk = 0;

20-40

Using SystemVerilog Assertions

 A1: assert property(@(posedge clk) a ##1 !c[*1:$] |-> b);

 always
 #1 clk = ~clk;
 initial begin
 a = 1;
 b = 0; c = 0;

 #100 b = 1;
 #2 $finish;
 end
endmodule

The following output is generated with -assert failonly:

"test.v", 6: top.A1: failed at 101ns

In the above output, VCS reports only end times.

The following output is generated without -assert failonly
(default mode):

"test.v", 6: top.A1: started at 99ns failed at 101ns
 Offending 'c'
"test.v", 6: top.A1: started at 97ns failed at 101ns
 Offending 'c'
…………………….
"test.v", 6: top.A1: started at 1ns failed at 101ns
 Offending 'c'

In the default mode, VCS reports start and end times for each failing
attempt.

Key Points to Note

• VCS reports only assertion failures with their end times.

20-41

Using SystemVerilog Assertions

• VCS reports only a single failure for multiple failures of a single
assertion maturing at the same time.

• Behavior with DVE:

- Supports -debug_pp and -debug_access options

- DVE displays only one failure and reports end time

- For debugging, it is better to use the default mode.

Figure 20-1 Behavior with DVE

• Behavior with Coverage:

- Reports unique matches only

20-42

Using SystemVerilog Assertions

- The -cm assert option is not supported with -assert
failonly

Consider Example 20-6.

Example 20-6 cov.v

module top;
 reg a,b,c;
 reg clk=0;
 C2: cover property(@(posedge clk) b[=1:$] ##1 c);

 initial begin
 a=1;b=0;c=1;

 #25 b=1;
 #110 $finish;
 end
 always #5 clk=~clk;
endmodule

 The following output is generated with -assert failonly:

"cov.v", 7: top.C2, 9 match

[4 succeeds at same time 45] hence counted only once
hence count is 9 vs 12 in default mode

The following output is generated without -assert failonly
(default mode):

"cov.v", 7: top.C2, 13 attempts, 12 match

Limitations

The following are not supported:

20-43

Using SystemVerilog Assertions

• Reporting of offending expressions upon failure

• Success reporting (including vacuous success)

• VPI callback on success (including vacuous success)

• Attempt start time reporting

Using SystemVerilog Constructs Inside vunits

VCS supports using SystemVerilog (SV) and SystemVerilog
Assertions (SVA) inside a Property Specification Language (PSL)
verification unit (vunit). This feature enables the following:

• Allows SV or SVA code inside a vunit

• Allows you to easily bind the checkers containing assertions and
model a vunit code to a design

• Allows module instantiation inside a vunit

Use the -assert svvunit compile-time option, as shown in the
following example, to enable this feature. You can specify this option
with the vcs or vlogan command.

% vcs –assert svvunit <filename.v> <design_filename.v> \
 <vunit_filename.psl>

where,

<vunit_filename.psl> — PSL vunit that contains SV or SVA
code. For example:

% vcs –assert svvunit test.v design.v vunit_checker.psl

20-44

Using SystemVerilog Assertions

Limitations

• Inheritance of vunits is not supported.

• vunit binding is supported only for modules.

• SV checker (checker/endchecker construct) in vunit is not
supported.

• In the above use model, you cannot specify PSL constructs in any
vunit specified in the same vlogan command. You must
separate the PSL vunits from SV vunits and use them in two
separate compilations, as shown in the following examples:

% vlogan vunit_psl.psl design.v

% vlogan –assert svvunit vunit_sv.psl test.v

where,

- vunit_psl.psl is a vunit that contains PSL code

- vunit_sv.psl is a vunit that contains SV or SVA code.

Calling $error Task when Else Block is Not Present

You can use the following compile-time option to enable the calling
of the $error task for the assert statements as per the IEEE 1800-
2012 SystemVerilog LRM:

-assert error_default_action_block

20-45

Using SystemVerilog Assertions

If you use this option, VCS calls the $error task if an assert
statement fails and else clause is not specified. This feature is
supported for immediate, deferred, and concurrent assertions.

Consider the following test case (test.v):

module assertit;
 logic clk = 0; initial repeat (10) #1 clk++;
 logic [2:0] a = 0; always @(posedge clk) a <= a + 1;
 a1: assert property (@(posedge clk) !a[2]);
 a2: assert property (@(posedge clk) !a[2]) else
$error("failed");
endmodule

The output for both asserts (a1 and a2) will be identical for the
preceding test case, as follows:

"test.v", 6: assertit.a1: started at 9s failed at 9s
 Offending '(!a[2])'
Error: "test.v", 6: assertit.a1: at time 9
"test.v", 7: assertit.a2: started at 9s failed at 9s
 Offending '(!a[2])'
Error: "test.v", 7: assertit.a2: at time 9
failed

Disabling Default Assertion Success Dumping in
-debug_pp

VCS does not dump the SystemVerilog assertion successes to the
VPD file by default when the -debug_pp option is enabled. This
optimization can improve the VCS performance.

You can use the -assert dumpsuccess option at runtime to
enable dumping of the SystemVerilog assertion successes to the
VPD file.

20-46

Using SystemVerilog Assertions

List of supported IEEE Std. 1800-2009 Compliant SVA
Features

The following features are supported in compliance with the IEEE
1800-2009 Standard for SystemVerilog— Unified Hardware Design,
Specification, and Verification Language. See that document for
details.

• Overlapping operators in multiclock environment

• Immediate and Deferred Assertions

• weak and strong sequence operators

Note:

Limitations exist. See “Limitations” section.

• Implication and equivalence operators (-> and <->)

• until operator in four variants

- until

- s_until

- until_with

- s_until_with

• nexttime operator in four variants

- nexttime property_expr

- nexttime [N] property_expr

- s_nexttime property_expr

- s_nexttime [N] property_expr

20-47

Using SystemVerilog Assertions

• always operator in three variants

- always property_expr

- always [cycle_delay_const_range_expression]
property_expr

- s_always [constant_range] property_expr strong

• eventually operator in three variants

- eventually [constant_range] property_expr

- s_eventually property_expr

- s_eventually

• followed-by operator (#-#, #=#)

• accept_on and reject_on abort conditions

• Inferred Value Functions

- $inferred_clock

- $inferred_disable

- $inferred_enable

Note:
$inferred_enable is a VCS extension to the Inferred functions
and not a standard LRM feature.

• Local variable initialization and input

• Global clocking

• Global clocking past value functions

- $past_gclk(expression)

20-48

Using SystemVerilog Assertions

- $rose_gclk(expression)

- $fell_gclk(expression)

- $stable_gclk(expression)

- $changed_gclk(expression)

• Global clocking future value functions

- $future_gclk(expression)

- $rising_gclk(expression)

- $falling_gclk(expression)

- $steady_gclk(expression)

- $changing_gclk(expression)

• let construct

• Checker Endchecker Construct

- Checker Declarations

- Checker Instantiation

- Procedural and Static Checkers

- Default Clocking in Checkers

- Default Disable in Checkers

- Checker Instantiation in a Procedural for loop

- Random Variable Support in Checker

• Immediate and Deferred Assertions

• edge Operator

20-49

Using SystemVerilog Assertions

• Bit/part/field Select Support in the let Operator

• Elaboration System Tasks

• VPI Support

Enabling IEEE Std. 1800-2009 Compliant Features

You must use the –assert svaext compile-time option to enable
the new IEEE Std. 1800-2009 compliant SVA features.

Limitations

• In VCS, strong and weak properties are not distinguished in terms
of their reporting at the end of simulation. In all cases, if a property
evaluation attempt did not complete evaluation, it will be reported
as "unfinished evaluation attempt”, and allows you to decide
whether it is a failure or success.

• Checker declaration are allowed in unit scope only.

• Bind construct with checkers are not supported.

Limitations on debug support are as follows:

• Use -assert dve at compile/elab to enable debug for
assertions. While basic debug support is available with this
release, assertion tracing in DVE not supported completely. DVE
provides information such as: start_time, end_time for every
attempt and statistics for every assertion/cover. DVE also groups
all signals involved in an assertion on tracing an attempt. However
the extra "hints" that are provided for SVA constructs are not
available for new constructs as of now.

• UCLI support for new assertions is not supported.

20-50

Using SystemVerilog Assertions

Supported IEEE Std. 1800-2012 Compliant SVA Features

The following SVA features are supported in compliance with the
IEEE 1800-2012 Standard for SystemVerilog:

• Support for $countbits System Function

• Support for Real Data Type Variables

Support for $countbits System Function

VCS supports the IEEE 1800-2012 SystemVerilog LRM system
function $countbits. The $countbits function given below
counts the number of bits that have a specific set of values (for
example, 0, 1, X, Z) in a bit vector.

$countbits (expression, control_bit { , control_bit })

This function returns an integer value equal to the number of bits in
expression whose values match one of the control_bit
entries. For example:

• $countbits (expression, '1) returns the number of bits
in expression having value 1.

• $countbits (expression, '1, '0) returns the number of
bits in expression having values 1 or 0.

• $countbits (expression, 'x, 'z) returns the number of
bits in expression having values X or Z.

This support allows efficient implementation of basic non-temporal
assertions in the presence of unknown values.

20-51

Using SystemVerilog Assertions

Support for Real Data Type Variables

VCS supports the following as per the IEEE 1800-2012
SystemVerilog LRM:

• Real data type variables in the sub-expressions of a concurrent
assertion.

• Sampling of real data type variables similar to sampling of any
integral variable.

Support for $assertcontrol Assertion Control System
Task

VCS supports the IEEE 1800-2012 SystemVerilog LRM assertion
control system task $assertcontrol. The $assertcontrol
system task provides the capability to enable, disable, or kill the
assertions based on the assertion type or directive type. Similarly,
this task also provides the capability to enable or disable action block
execution of assertions and expect statements based on the
assertion type or directive type.

Syntax:

$assertcontrol (control_type [, [assertion_type] [
, [directive_type] [, [levels] [,
list_of_scopes_or_assertions]]]]) ;

The $assertcontrol system task provides finer assertion
selection controls than $asserton, $assertoff, and
$assertkill system tasks.

20-52

Using SystemVerilog Assertions

Limitations

The following are the limitations with this feature:

• The Unique0 assertion type is not supported.

• The assertion type 16 (Expect statement) is not supported.

• The control type values from 6 to 11 (PassOn, PassOff, FailOn,
FailOff, NonvacuousOn, VacuousOff) are not supported.

• The control type Kill is not supported for Unique and
Priority assertion types.

SystemVerilog Assertions Limitations

This section describes the limitations that apply to SystemVerilog
Assertions:

Debug Support for New Constructs

Use -assert dve at compile/elab to enable debug for assertions.
While basic debug support is available with this release, assertion
tracing in DVE is not supported completely. DVE provides
information such as: start_time, end_time for every attempt and
statistics for every assertion/cover. DVE also groups all signals
involved in an assertion on tracing an attempt. However, the extra
"hints" that are provided for SVA constructs are not available for new
constructs as of now.

UCLI support for new assertions (LTL operators, checker block)
supported under -assert svaext is not fully qualified.

20-53

Using SystemVerilog Assertions

Note on Cross Features

Some of the new features in assertions (LTL operators, checker
block) under -assert svaext have known limitations with cross
feature support, such as Debug and Coverage. Please check with
Synopsys support if there are unexpected results with cross feature
behavior for these new constructs.

 Some known issues:

• –cm property_path is not available for the new constructs.

• New sequence operators when used as sampling event for
covergroups may not function well.

20-54

Using SystemVerilog Assertions

21-1

Using Property Specification Language

21
Using Property Specification Language 1

VCS supports the Simple Subset of the IEEE 1850 Property
Specification Language (PSL) standard. Refer to Section 4.4.4 of the
IEEE 1850 PSL LRM for the subset definition.

You can use PSL along with SystemVerilog Assertions (SVA), SVA
options, SVA system tasks, and OpenVera (OV) classes.

Including PSL in the Design

You can include PSL in your design in any of the following ways:

• Inlining the PSL using the //psl or /*psl */ pragmas in Verilog
and SystemVerilog.

• Specifying the PSL in an external file using a verification unit
(vunit).

21-2

Using Property Specification Language

Examples

The following example shows how to inline PSL in Verilog using the
//psl and /*psl */ pragmas.

module mod;

 // psl a1: assert always {r1; r2; r3} @(posedge clk);

 /* psl
 A2: assert always {a;b} @(posedge clk);
 ...
 */
endmodule

The following example shows how to use vunit to include PSL in
the design.

vunit vunit1 (verilog_mod)
{
 a1: assert always {r1; r2; r3} @(posedge clk);
}

Usage Model

If you inline the PSL code, you must compile it with the -psl option.

If you use vunit, you must compile the file that contains the vunit
with the -pslfile option. You do not need to use this option if the
file has the .psl extension.

Compilation

% vcs -psl [vcs_options] Verilog_files

21-3

Using Property Specification Language

Simulation

% simv

Examples

To simulate the PSL code inlined in a Verilog file (test.v), execute
the following commands:

% vcs -psl test.v
% simv

To simulate the vunit specified in an external file with the .psl
extension (checker.psl), execute the following commands:

% vcs dev.v checker.psl
% simv

To simulate the vunit specified in an external file without the .psl
extension (checker.txt), execute the following commands:

% vcs dev.v -pslfile checker.txt
% simv

To simulate both the PSL code inlined in a Verilog file (test.v), and
the vunit specified in an external file (checker.psl or
checker.txt), execute the following commands:

% vcs -psl -test.v checker.psl
% simv

or

% vcs -psl -test.v -pslfile checker.txt
% simv

21-4

Using Property Specification Language

Using SVA Options, SVA System Tasks, and OV Classes

VCS enables you to use all assertion options with SVA, PSL, and
OVA. For example, to enable PSL coverage and debug assertions
while compiling the PSL code, execute the following commands:

% vcs -psl -cm assert -debug -assert enable_diag test.v
% simv -cm assert -assert success

For information on all assertion options, see Appendix - Compile
Time Options .

You can control PSL assertions in any of the following ways:

• Using the $asserton, $assertoff, or $assertkill SVA
system tasks.

• Using NTB-OpenVera assert classes.

Note that VCS treats the assume PSL directive as the assert PSL
directive.

Discovery Visualization Environment (DVE) supports PSL
assertions. The PSL assertion information displayed by VCS is
similar to SystemVerilog assertions.

21-5

Using Property Specification Language

Limitations

The VCS implementation of PSL has the following limitations:

• VCS does not support binding vunit to an instance of a module
or entity.

• VCS does not support the following data types in your PSL code
-- shortreal, real, realtime, associative arrays, and dynamic
arrays.

• VCS does not support the union operator and union expressions
in your PSL code.

• Clock expressions have the following limitations:

- You must not include the rose() and fell() built-in
functions.

- You must not include endpoint instances.

• Endpoint declarations must have a clocked SERE with either a
clock expression or default clock declaration.

• VCS does not support the %for and %if macros.

• VCS supports only the always and never FL invariance
operators in top-level properties. Ensure that you do not
instantiate top-level properties in other properties.

• VCS supports all LTL operators, except sync_abort and
async_abort. You can apply the abort operator only to the top
property.

• VCS does not support the assume_guarantee, restrict, and
restrict_guarantee PSL directives.

21-6

Using Property Specification Language

22-1

Using SystemC

22
Using SystemC 1

The VCS SystemC Co-simulation Interface enables VCS and the
SystemC modeling environment to work together when simulating a
system described in the Verilog and SystemC languages.

With this interface, you can use the most appropriate modeling
language for each part of the system, and verify the correctness of
the design. For example, the VCS SystemC Co-simulation Interface
allows you to:

• Use a SystemC module as a reference model for the Verilog RTL
design under test in your testbench

• Verify a Verilog netlist after synthesis with the original SystemC
testbench

• Write test benches in SystemC to check the correctness of Verilog
designs

• Import legacy Verilog IP into a SystemC description

22-2

Using SystemC

• Import third-party Verilog IP into a SystemC description

• Export SystemC IP into a Verilog environment when only a few of
the design blocks are implemented in SystemC

• Use SystemC to provide stimulus to your design

The VCS /SystemC Co-simulation Interface creates the necessary
infrastructure to co-simulate SystemC models with Verilog models.
The infrastructure consists of the required build files and any
generated wrapper or stimulus code. VCS writes these files in
subdirectories in the ./csrc directory. To use the interface, it is not
required to update or write to these files.

During co-simulation, the VCS /SystemC Co-simulation Interface is
responsible for:

• Synchronizing the SystemC kernel and VCS

• Exchanging data between the two environments

Note:

• The unified profiler can report CPU time profile information about
the SystemC part or parts of a design. See chapter "The Unified
Simulation Profiler" in the VCS/VCS MX User Guide.

• There are examples of Verilog instantiated in SystemC and
SystemC instantiated in Verilog in the
$VCS_HOME/doc/examples/systemc directory.

For more information about SystemC co-simulation interface and
how you can use SystemC with VCS MX, for your design, see the
VCS/VCS MX SystemC User Guide available in the SolvNet online
support site.

23-1

C Language Interface

23
C Language Interface 2

It is common to mix C and C++ with both Verilog and VHDL. There
are many different mechanisms and what you do will depend on your
objective as well as the performance and restrictions of each
mechanism. VCS supports the following ways to use C and C++ with
your design:

• “Using PLI”

• “Using VPI Routines”

• “Using DirectC”

• Using SystemC - See the Using SystemC chapter.

• Using SystemVerilog DPI routines - See the SystemVerilog LRM.

Note:
PLI1.0 refers to TF and ACC routines, and PLI2.0 refers to VPI.

23-2

C Language Interface

Using PLI

PLI is the programming language interface (PLI) between C/C++
functions and VCS. It helps to link applications containing C/C++
functions with VCS, so that they execute concurrently. The C/C++
functions in the application use the PLI to read and write delay and
simulation values in the VCS executable, and VCS can call these
functions during simulation.

VCS supports PLI 1.0 and PLI 2.0 routines for the PLI. Therefore,
you can use VPI, ACC or TF routines to write the PLI application.
See Appendix , "PLI Access Routines".

This chapter covers the following topics:

• “Writing a PLI Application”

• “Functions in a PLI Application”

• “Header Files for PLI Applications”

• “PLI Table File”

• “Enabling ACC Capabilities”

Writing a PLI Application

When writing a PLI application, you need to do the following:

1. Write the C/C++ functions of the application calling the VPI, ACC
or TF routines to access data inside VCS.

23-3

C Language Interface

2. Associate user-defined system tasks and system functions with
the C/C++ functions in your application. VCS will call these
functions when it compiles or executes these system tasks or
system functions in the Verilog source code. In VCS, associate
the user-defined system tasks and system functions with the C/
C++ functions in your application using a PLI table file (see “PLI
Table File”). In this file, you can also limit the scope and operations
of the ACC routines for faster performance.

3. Enter the user-defined system tasks and functions in the Verilog
source code.

4. Compile and simulate your design, specifying the table file and
including the C/C++ source files (or compiled object files or
libraries) so that the application is linked with VCS in the simv
executable. If you include object files, use the -cc and -ld
options to specify the compiler and linker that generated them.
Linker errors occur if you include a C/C++ function in the PLI table
file, but omit the source code for this function at compile-time.

To use the debugging features, perform the following:

1. Write a PLI table file, limiting the scope and operations of the ACC
routines used by the debugging features.

2. Compile and simulate your design, specifying the table file.

These procedures are not mutually exclusive. It is, for example, quite
possible that you have a PLI application that you write and use
during the debugging phase of your design. If so, you can write a PLI
table file that both:

• Associates user-defined system tasks or system functions with
the functions in your application and limits the scope and
operations called by your functions for faster performance.

23-4

C Language Interface

• Limits scope and operations of the functions called by the
debugging features in VCS.

Functions in a PLI Application

When you write a PLI application, you typically write a number of
functions. The following are PLI functions that VCS expects with a
user-defined system task or system function:

• The function that VCS calls when it executes the user-defined
system task. Other functions are not necessary but this call
function must be present. It is not unusual for there to be more
than one call function. You’ll need a separate user-defined system
task for each call function. If the function returns a value then you
must write a user-defined system function for it instead of a
user-defined system task.

• The function that VCS calls during compilation to check if the
user-defined system task has the correct syntax. You can omit
this check function.

• The function that VCS calls for miscellaneous reasons such as
the execution of $stop, $finish, or other reasons such a value
change. When VCS calls this function, it passes a reason
argument to it that explains why VCS is calling it. You can omit
this miscellaneous function.

These are the functions you tell VCS about in the PLI table file; apart
from these PLI applications can have several more functions that are
called by other functions.

23-5

C Language Interface

Note:
You do not specify a function to determine the return value size
of a user-defined system function; instead you specify the size
directly in the PLI table file.

Header Files for PLI Applications

For PLI applications, you need to include one or more of the
following header files:

vpi_user.h

For PLI Applications whose functions call IEEE Standard VPI
routines as documented in the IEEE Verilog Language Reference
Manual.

acc_user.h

For PLI Applications whose functions call IEEE Standard ACC
routines as documented in the IEEE Verilog Language Reference
Manual.

vcsuser.h

For PLI applications whose functions call IEEE Standard TF
routines as documented in the IEEE Verilog Language Reference
Manual.

vcs_acc_user.h

For PLI applications whose functions call the special ACC routines
implemented exclusively for VCS.

These header files are located in the
$VCS_HOME/your_platform/lib directory.

23-6

C Language Interface

PLI Table File

The PLI table file (also referred to as the pli.tab file) is used to:

• Associate user-defined system tasks and system functions with
functions in a PLI application. This enables VCS to call these
functions when it compiles or executes the system task or
function.

• Limit the scope and operation of the PLI 1.0 or PLI 2.0 functions
called by the debugging features. See “Specifying Access
Capabilities for PLI Functions” and “Specifying Access
Capabilities for VCS Debugging Features” .

Syntax

The following is the syntax of the PLI table file:

$name PLI_specifications [access_capabilities]

Here:

$name

Specify the name of the user-defined system task or function.

PLI_specifications

Specify one or more specifications such as the name of the C
function (mandatory), size of the return value (mandatory only for
user-defined system functions), and so on. For a complete list of
PLI specifications, see “PLI Specifications” .

access_capabilities

23-7

C Language Interface

Specify the access capabilities of the functions defined in the PLI
application. Use this to control the PLI 1.0 or PLI 2.0 functions’
ability to access the design hierarchy. See “Access Capabilities”
for more information.

Synopsys recommends you enable this feature while using PLIs
to improve the runtime performance.

PLI Specifications

The PLI specifications are as follows:

call=function

Specifies the name of the function defined in the PLI application.
This is mandatory.

check=function

Specifies the name of the check function.

misc=function

Specifies the name of the misc function.

data=integer

Specifies the value passed as the first argument to the call, check,
and misc functions. The default value is 0.

Use this argument if you want more than one user-defined system
task or function to use the same call, check, or misc function. In
such a case, specify a different integer for each user-defined
system task or function that uses the same call, check, or misc
function.

size=number

23-8

C Language Interface

Specifies the size of the returned value in bits. While this is
mandatory for user-defined system functions, you can ignore or
specify 0 for user-defined system tasks. For user-defined system
functions, specify a decimal value for the number of bits. For
example, size=64. If the user-defined system function returns a
real value, specify r. For example, size=r

args=number

Specifies the number of arguments passed to the user-defined
system task or function.

minargs=number

Specifies the minimum number of arguments.

maxargs=number

Specifies the maximum number of arguments.

nocelldefinepli

Disables the dumping of value change and simulation time data
of modules defined under the ‘celldefine compiler directive
into a VPD file created by the $vcdpluson system task. This
capability is only used for batch simulation.

persistent

Checks if the specified function is defined in the PLI application,
even if the corresponding system task or function is not used in
the Verilog file. If the function is not found or defined in the PLI
application, VCS exits with an undefined reference error
message.

23-9

C Language Interface

Note that if you use the -debug, -debug_all, or -debug_pp
options during compilation, VCS performs these checks on every
function mapped in the tab file.

To ignore this check, which is enabled by the above debug options
or the persistent specification, set the PERSISTENT_FLAG
environment variable to 1.

Example 1

$val_proc call=val_proc check=check_proc misc=misc_proc

In this line, VCS calls the function named val_proc when it
executes the associated user-defined system task named
$val_proc. It calls the check_proc function at compile-time to
see if the user-defined system task has the correct syntax, and calls
the misc_proc function in special circumstances like interrupts.

Example 2

$set_true size=16 call=set_true

In this line, there is an associated user-defined system function that
returns a 15-bit return value. VCS calls the function named
set_true when it executes this system function.

Note:

Do not enter blank spaces inside a PLI specification. The following
copy of the last example of PLI specifications does not work:

$set_true size = 16 call = set_true

Access Capabilities

You can specify access capabilities in a PLI table file for the following
reasons:

23-10

C Language Interface

• PLI functions associated with your user-defined system task or
system function. To do this, specify the access capabilities on a
line in a PLI table file after the name of the user-defined system
task or system function and its PLI specifications. See “Specifying
Access Capabilities for PLI Functions” for more details.

• For the debugging features VCS can use. To do this, specify
access capabilities alone on a line in a PLI table file, without an
associated user-defined system task or system function. See
“Specifying Access Capabilities for VCS Debugging Features” for
more details.

In many ways, specifying access capabilities for your PLI functions,
and specifying them for VCS debugging features, is the same.
However, the capabilities that you enable, and the parts of the design
to which you can apply them are different.

Specifying Access Capabilities for PLI Functions

The format for specifying access capabilities is as follows:

acc=|+=|-=|:=capabilities:module_names|sig_name|inst_name
[+]|%CELL|%TASK|*

Here:

acc

Keyword that begins a line for specifying access capabilities.

=|+=|-=|:=

Operators for adding, removing, or changing access capabilities.
The operators in this syntax are as follows:

=

A shorthand for +=.

23-11

C Language Interface

+=

Specifies adding the access capabilities that follow to the parts
of the design that follow, as specified by module name,
%CELL,%TASK, or * wildcard character.

-=

Specifies removing the access capabilities that follow from the
parts of the design that follow, as specified by module name,
%CELL,%TASK, or * wildcard character.

:=

Specifies changing the access capabilities of the parts of the
design that follow, as specified by module name, %CELL,%TASK,
or * wildcard character, to only those in the list of capabilities
on this specification. A specification with this operator can
change the capabilities specified in a previous specification.

capabilities

Comma-separated list of access capabilities. The capabilities that
you can specify for the functions in your PLI specifications are as
follows:

r or read

Reads the values of nets and registers in your design.

rw or read_write

Both reads from and writes to the values of registers or variables
(but not nets) in your design.

wn

Enables writing values to nets.

23-12

C Language Interface

cbk or callback

To be called when named objects (nets registers, ports) change
value.

cbka or callback_all

To be called when named and unnamed objects (such as
primitive terminals) change value.

frc or force

Forces values on nets and registers.

prx or pulserx_backannotation

Sets pulse error and pulse rejection percentages for module
path delays.

s or static_info

Enables access to static information, such as instance or signal
names and connectivity information. Signal values are not static
information.

tchk or timing_check_backannotation

Back-annotates timing check delay values.

gate or gate_backannotation

Back-annotates delay values on gates.

mp or module_path_backannotation

Back-annotates module path delays.

mip or module_input_port_backannotation

23-13

C Language Interface

Back-annotates delays on module input ports.

mipb or module_input_port_bit_backannotation

Back-annotates delays on individual bits of module input ports.

module_names

Comma-separated list of module identifiers (or names).

Specifying modules enables, disables, or changes (depending on
the operator) the ability of the PLI function to use the access
capability in all instances of the specified module.

sig_name

Signal name on which PLI capabilities are applied. sig_name is
the full hierarchical path, for example:
<mod_name>.<sig_name> or
<mod_name>.<inst_name>.<sig_name>

Note:

- Signal names defined inside generate block are not
supported.

- Structure and interface type is not supported.

inst_name

Full hierarchical path of the instance name on which PLI
capabilities are applied. You can use the “*” wild card character
at the end of an instance path.

Note:

Partition compile and PIP flow is not supported.

+

23-14

C Language Interface

Specifies adding, removing, or changing the access capabilities
for not only the instances of the specified modules but also the
instances hierarchically under the instances of the specified
modules.

Note:

The ‘[+]’ feature is not supported for the debug capabilities
specified at the signal level (sig_name).

%CELL

Enables, disables, or changes (depending on the operator) the
ability of the PLI function to use the access capability in all
instances of module definitions compiled under the ‘celldefine
compiler directive and all module definitions in Verilog library
directories and library files (as specified with the -y and -v
analysis options).

%TASK

Enables, disables, or changes (depending on the operator) the
ability of the PLI function to use the access capability in all
instances of module definitions that contain the user-defined
system task or system function associated with the PLI function.

*

Enables, disables, or changes (depending on the operator) the
ability of the PLI function to use the access capability throughout
the entire design. Using wildcard characters could seriously
impede the performance of VCS.

Note:

There are no blank spaces when specifying access capabilities.

23-15

C Language Interface

The following examples are the PLI specification examples from the
previous section with access capabilities added to them. The
examples wrap to more than one line, but when you edit your PLI
table file, be sure there are no line breaks in these lines.

Example 1

$val_proc call=val_proc check=check_proc misc=misc_proc
acc+= rw,tchk:top,bot acc-=tchk:top

This example adds the access capabilities for reading and writing to
nets and registers, and for back-annotating timing check delays, to
these PLI functions, and enables them to do these things in all
instances of modules top and bot. It then removes the access
capability for back-annotating timing check delay values from these
PLI functions in all instances of module top.

Example 2

$value_passer size=0 args=2 call=value_passer persistent
acc+=rw:%TASK acc-=rw:%CELL

This example adds the access capability to read from and write to the
values of nets and registers to these PLI functions. It enables them
to do these things in all instances of modules declared in module
definitions that contain the $value_passer user-defined system
task. The example then removes the access capability to read from
and write to the values of nets and registers, from these PLI
functions, in module definitions compiled under the ‘celldefine

compiler directive and all module definitions in Verilog library
directories and library files.

Example 3

$set_true size=16 call=set_true acc+=rw:*

23-16

C Language Interface

This example adds the access capability to read from and write to the
values of nets and registers to the PLI functions. It enables them to
do this throughout the entire design.

Example 4

acc=rw:top.I1,top.I2

This example adds the access capabilities on instances top.I1,
top.I2.

Example 5

acc=rw:mod1.s1,mod1.s2

This example adds the access capabilities on signals s1, s2 of
mod1.

Example 7

acc=rw:top.I1.s1,top.I1.s2,top.I2.s1,top.I2.s2

This example adds the access capabilities on signals s1, s2 of
instances top.I1, top.I2.

Example 8

acc=rw:top.I1+

This example adds the access capabilities on instance top.I1 and
its sub-instances.

Example 9

acc=rw:top.I1.*

This example adds read and write capabilities on instance top.I1
and all its sub-instances.

23-17

C Language Interface

Usage Example

Consider the following files:

Example 23-1 Testcase test.v

module top;
integer myInt;
dut d1();
initial
begin
 force myInt = 20;
 $display(" After Force d1.g myInt at %0t is %0d %0d",
$time, d1.g,myInt);
 #5;
 $myFrc(myInt);
 $display(" After PLI call d1.g myInt at %0t is %0d %0d",
$time, d1.g,myInt);
 #5
 release myInt;
 $myDrv(d1.g);
 $display(" After PLI call d1.g myInt at %0t is %0d %0d",
$time, d1.g,myInt);
end
endmodule

module dut;
 integer g;
endmodule

Example 23-2 driver.c

#include "acc_user.h"

myDrv()
{
 handle reg = acc_handle_object("top.d1.g");
 static s_setval_delay delay_s = { { 0, 1, 0, 0.0 },
accNoDelay };
 static s_setval_value value_s = {accIntVal};
 value_s.value.integer=0;
 acc_set_value(reg, &value_s, &delay_s);

23-18

C Language Interface

}

myFrc()
{
 handle reg = acc_handle_object("top.myInt");
 static s_setval_delay delay_s = { { 0, 0, 0, 0.0 },
accForceFlag };
 static s_setval_value value_s = {accIntVal};
 value_s.value.integer =2;
 acc_set_value(reg, &value_s, &delay_s);

}

Example 23-3 pli.tab

$myDrv call=myDrv acc=rw:top.d1
$myFrc call=myFrc acc=frc:top.myInt

Compile the test.v code as follows:

% vcs driver.c -P pli.tab test.v -R -sverilog

Perform simulation:

% simv

VCS displays the following output:

After Force d1.g myInt at 0 is x 20
After PLI call d1.g myInt at 5 is x 2
After PLI call d1.g myInt at 10 is 0 2

Specifying Access Capabilities for VCS Debugging Features

The format for specifying these capabilities for VCS debugging
features is as follows:

acc=|+=|-=|:=capabilities:module_names[+]|%CELL|*

23-19

C Language Interface

Here:

acc

Keyword that begins a line for specifying access capabilities.

=|+=|-=|:=

Operators for adding, removing, or changing access capabilities.

capabilities

Comma separated list of access capabilities.

module_names

Comma-separated list of module identifiers. The specified access
capabilities will be added, removed, or changed for all instances
of these modules.

+

Specifies adding, removing, or changing the access capabilities
for not only the instances of the specified modules but also the
instances hierarchically under the instances of the specified
modules.

%CELL

Specifies all modules compiled under the ‘celldefine compiler
directive and all modules in Verilog library directories and library
files (as specified with the -y and -v options.)

*

Specifies all modules in the design. Using a wildcard character is
no more efficient than using the -debug option with vcs.

23-20

C Language Interface

The access capabilities and the interactive commands they enable
are as follows:

ACC Capability What it enables your PLI functions to do

r or read For specifying “reads” in your design, it enables commands
for performing the following:

• Creating an alias for another UCLI command (alias)

• Displaying UCLI help

• Specifying the radix of displayed simulation values
(oformat)

• Displaying simulation values

• Descending and ascending the module hierarchy

• Depositing values on registers

• Displaying the set breakpoints on signals

• Displaying the port names of the current location, and the
current module instance or scope, in the module hierarchy

• Displaying the names of instances in the current module
instance or scope

• Displaying the nets and registers in the current scope

• Moving up the module hierarchy

• Deleting an alias for another UCLI command

• Ending the simulation

rw or read_write For specifying “reads and writes” in your design but r
enables everything that rw does. A longer way to specify
this capability is with the read_write keyword.

23-21

C Language Interface

Example 1

The following specification enables many interactive commands
including those for displaying the values of signals in specified
modules and depositing values to the signals that are registers:

acc+=r:top,mid,bot

Notice that there are no blank spaces in this specification. Blank
spaces cause a syntax error.

cbk or callback Commands for performing the following:

• Setting a repeating breakpoint. In other words always
halting simulation, when a specified signal changes value

• Setting a one shot breakpoint. In other words halting
simulation the next time the signal changes value but not
the subsequent times it changes value

• Removing a breakpoint from a signal

• Showing the line number or number in the source code of
the statement or statements that causes the current value
of a net

•A longer way to specify this capability is with the callback
keyword.

frc or force Commands for performing the following:
• Forcing a net or a register to a specified value so that this

value cannot be changed by subsequent simulation events
in the design

• Releasing a net or register from its forced value

A longer way to specify this capability is with the force
keyword.

ACC Capability What it enables your PLI functions to do

23-22

C Language Interface

Example 2

The following specifications enable most interactive commands for
most of the modules in a design. They then change the ACC
capabilities preventing breakpoint and force commands in instances
of modules in Verilog libraries and modules designated as cells with
the ‘celldefine compiler directive.

acc+=rw,cbk,frc:top+ acc:=rw:%CELL

In this example, the first specification enables the interactive
commands that are enabled by the rw, cbk, and frc capabilities for
module top, which, in this example, is the top-level module of the
design, and all module instances under it. The second specification
limits the interactive commands for the specified modules to only
those enabled by the rw (same as r) capability.

Using the PLI Table File

You specify the PLI table file with the -P compile-time option,
followed by the name of the PLI table file (by convention, the PLI
table file has a .tab extension). For example:

-P pli.tab

When you enter this option on the vcs command line, you can also
enter C source files, compiled .o object files, or .a libraries on the
vcs command line, to specify the PLI application that you want to
link with VCS. For example:

vcs -P pli.tab pli.c my_design.v

23-23

C Language Interface

One advantage to entering .o object files and .a libraries is that you
do not have to recompile the PLI application every time you compile

your design.

Enabling ACC Capabilities

As well as specifying ACC capabilities in only specific parts of your
design (as described in “PLI Table File”), VCS allows you to enable
ACC capabilities throughout your design. It also enables you to
specify selected write capabilities using a configuration file. Since
enabling ACC capabilities has an adverse effect on performance,
VCS also allows you to enable only the ACC capabilities you need.

Globally

You can enter the +acc+level_number compile-time option to
globally enable ACC capabilities throughout your design.

Note:

Using the +acc+level_number option significantly impedes the
simulation performance of your design. Synopsys recommends
that you use a PLI table file to enable ACC capabilities for only
the parts of your design where you need them. For more details
on doing this, see “PLI Table File” .

The level_number in this option specifies additional ACC
capabilities as follows:

+acc+1 or +acc

Enables all capabilities except value change callbacks and delay
annotation.

23-24

C Language Interface

+acc+2

Above, plus value change callbacks.

+acc+3

Above, plus module path delay annotation.

+acc+4

Above, plus gate delay annotation.

Using the Configuration File

Specify the configuration file with the +optconfigfile compile-
time option. For example:

+optconfigfile+filename

The VCS configuration file enables you to enter statements that
specify:

• Using the optimizations of Radiant Technology on part of a design

• Enabling PLI ACC write capabilities for all memories in the design,
disabling them for the entire design, or enabling them for part or
parts of the design hierarchy

• Four state simulation for part of a design

The entries in the configuration file override the ACC write-enabling
entries in the PLI table file.

The syntax of each type of statement in the configuration file to
enable ACC write capabilities is as follows:

23-25

C Language Interface

set writeOnMem;

or

set noAccWrite;

or

module {list_of_module_identifiers} {accWrite};

or

instance {list_of_module_instance_hierarchical_names}
{accWrite};

or

tree [(depth)] {list_of_module_identifiers} {accWrite};

or

signal {list_of_signal_hierarchical_names}
{accWrite};

Here:

set

Keyword preceding a property that applies to the entire design.

writeOnMem

Enables ACC write to memories (any single or multi-dimensional
array of the reg data type) throughout the entire design.

noAccWrite

Disables ACC write capabilities throughout the entire design.

accWrite

23-26

C Language Interface

Enables ACC write capabilities.

module

Keyword specifying that the accWrite attribute in this statement
applies to all instances of the modules in the list, specified by
module identifier.

list_of_module_identifiers

Comma-separated list of module identifiers (also called module
names).

instance

Keyword specifying that the accWrite attribute in this statement
applies to all instances in the list.

list_of_module_instance_hierarchical_names

Comma-separated list of module instance hierarchical names.

Note:

Follow the Verilog syntax for signal names and hierarchical
names of module instances.

tree

Keyword specifying that the accWrite attribute in this statement
applies to all instances of the modules in the list, specified by
module identifier, and also applies to all module instances
hierarchically under these module instances.

23-27

C Language Interface

depth

An integer that specifies how far down the module hierarchy
from the specified modules you want to apply the accWrite
attribute. You can specify a negative value. A negative value
specifies descending to the leaf level and counting up levels of
the hierarchy to apply these attributes. This specification is
optional. Enclose this specification in parentheses: ()

signal

Keyword specifying that the accWrite attribute in this statement
applies to all signals in the list.

list_of_signal_hierarchical_names

Comma-separated list of signal hierarchical names.

Selected ACC Capabilities

There are compile-time and runtime options that enable VCS and
PLI applications to use only the ACC capabilities they need and no
more. The procedure to use these options is as follows:

1. Use the following runtime options to tell VCS to keep track of, or
learn, the ACC capabilities:

23-28

C Language Interface

Table 23-1 Runtime

Option Description

+vcs+learn+pli Enables module level PLI learn

+vcs+learn+pli+instpli Enables instance level PLI learn

+vcs+learn+pli+sigpli Enables signal PLI learn at module level

+vcs+learn+pli+sigpli
+vcs+learn+pli+instpli

Enables signal PLI learn at instance level

Options to Enable PLI Learn

Note:

PLI learn at signal or instance level is enabled by default, if the
PLI table file has any hierarchical path specified.

VCS uses this information to create a secondary PLI table file,
named pli_learn.tab. You can use this table file to recompile
your design so that subsequent simulations use only the ACC
capabilities that are needed.

2. Tell VCS to apply what it has learned in the next compilation of
your design, and specify the secondary PLI table file, with the
+applylearn+filename compile-time option (if you omit
+filename from the +applylearn compile-time option, VCS
uses the pli_learn.tab secondary PLI table file).

3. Simulate again with a simv executable in which only the ACC
capabilities you need are enabled.

Learning What Access Capabilities are Used

You include the +vcs+learn+pli runtime option to tell VCS to
learn the access capabilities that were used by the modules in your
design and write them into a secondary PLI table file named,
pli_learn.tab.

23-29

C Language Interface

This file is considered a secondary PLI table file because it does not
replace the first PLI table file that you used (if you used one). This file
does, however, modify whatever access capabilities are specified in
a first PLI table file, or other means of specifying access capabilities,
so that you enable only the capabilities you need in subsequent
simulations.

You should look at the contents of the pli_learn.tab file that VCS
writes to see what access capabilities were actually used during
simulation. The following is an example of this file:

////////////////// SYNOPSYS INC ////////////////
// PLI LEARN FILE
// AUTOMATICALLY GENERATED BY VCS(TM) LEARN MODE
//
acc=r:testfixture

//SIGNAL STIM_SRLS:r
acc=rw:SDFFR

//SIGNAL S1:rw

The following line in this file specifies that during simulation, the read
capability was needed for signals in the module named
testfixture.

acc=r:testfixture
//SIGNAL STIM_SRLS:r

The comment lets you know that the only signal for which this
capability was needed was the signal named, STIM_SRLS. This line
is in the form of a comment because the syntax of the PLI table file
does not permit specifying access capabilities on a signal-by-signal
basis.

The following line in this file specifies that during simulation, the read
and write capabilities were needed for signals in the module named,
SDFFR, specifically for the signal named S1.

23-30

C Language Interface

acc=rw:SDFFR
//SIGNAL S1:rw

The following are the examples of the pli_learn.tab file for
+vcs+learn+pli+instpli and +vcs+learn+pli+sigpli
options:

Consider Example 23-1, Example 23-2, and Example 23-3.

Compile the test.v code as follows:

% vcs driver.c -P pli.tab test.v -R -sverilog

Perform simulation using the +vcs+learn+pli+instpli option:

% simv +vcs+learn+pli+instpli

VCS displays the following output:

////////////////// SYNOPSYS INC ////////////////
// PLI LEARN FILE
// AUTOMATICALLY GENERATED BY VCS(TM) LEARN MODE
//
acc=frc:top

//SIGNAL myInt:frc
acc=rw:top.d1

//SIGNAL g:rw

Perform simulation using the +vcs+learn+pli+sigpli option:

% simv +vcs+learn+pli+sigpli

VCS displays the following output:

////////////////// SYNOPSYS INC ////////////////
// PLI LEARN FILE
// AUTOMATICALLY GENERATED BY VCS(TM) LEARN MODE

23-31

C Language Interface

//
acc=frc:top.myInt

acc=rw:dut.g

Signs of a Potentially Significant Performance Gain

You might see one of following comments in the pli_learn.tab
file:

//!VCS_LEARNED: NO_ACCESS_PERFORMED

This indicates that none of the enabled access capabilities were
used during the simulation.

//!VCS_LEARNED: NO_DYNAMIC_ACCESS_PERFORMED

This indicates that only static information was accessed through
access capabilities and there was no value change information
during simulation.

These comments indicate that there is a potentially significant
performance gain when you apply the access capabilities in the
pli_learn.tab file.

Compiling to Enable Only the Access Capabilities You Need

After you have run the simulation to learn what access capabilities
were actually used by your design, you can then recompile the
design with the information you have learned, so the resulting simv
executable uses only the access capabilities you require.

When you recompile your design, include the +applylearn
compile-time option.

23-32

C Language Interface

If, for some reason, you renamed the pli_learn.tab file that VCS
writes when you include the +vcs+learn+pli runtime option,
specify the new filename in the compile-time option by appending it
to the option with the following syntax:

+applylearn+filename

When you recompile your design with the +applylearn
compile-time option, it is important that you also re-enter all the
compile-time options that you used for the previous compilation. For
example, if in a previous compilation, you specified a PLI table file
with the -P compile-time option, specify this PLI table file again,
using the -P option, along with the +applylearn option.

Note:

If you change your design after VCS writes the pli_learn.tab
file, and you want to make sure that you are using only the access
capabilities you need, you will need to have VCS write another
one, by including the +vcs+learn+pli runtime option and then
compiling your design again with the +applylearn option.

Limitations

VCS is not able maintain a history of all access capabilities.
However, the capabilities it does maintain, and specify in the
pli_learned.tab file, are as follows:

• r - read

• rw - read and write

• cbk - callbacks

• cbka - callback all including unnamed objects

• frc - forcing values on signals

23-33

C Language Interface

The +applylearn compile-time option does not work if you also
use either the +multisource_int_delays or
+transport_int_delays compile-time option, because
interconnect delays need global access capabilities.

If you enter the +applylearn compile-time option more than once
on the vcs command line, VCS ignores all occurrences except the
first.

Important:

The +applylearn option is for performance and if you enter this
option with options for debugging, such as -debug, VCS ignores
the debugging options.

PLI Access to Ports of Celldefine and Library Modules

VCS provides a compile-time option +nocelldefinepli that
blocks debug access to celldefine and library modules. This option
deletes (Programming Language Interface) PLI capabilities from the
modules that are cell-defined or library modules.

However, you can access the ports inside such modules even in the
presence of +nocelldefinepli optimization with an additional
option +ports.

+nocelldefinepli+1+ports

Removes the PLI caps from `celldefine modules and allows PLI
access to port nodes and parameters.

+nocelldefinepli+2+ports

Removes the PLI caps from library and ‘celldefine modules and
allows PLI access to port nodes and parameters.

23-34

C Language Interface

Example

Following is a sample Verilog code in which the dut is a cell define
module.

test.sv

`celldefine
module ram (Addr, Data, CS, WE, OE);

parameter AddrSize = 4;
parameter WordSize = 1;

input [AddrSize-1:0] Addr;
inout [WordSize-1:0] Data;
input CS, WE, OE;

reg [WordSize-1:0] Mem [0:1<<AddrSize];

assign Data = (!CS && !OE) ? Mem[Addr] : {WordSize{1'bz}};

always @(CS or WE)
 if (!CS && !WE)
 Mem[Addr] = Data;

endmodule
`endcelldefine

module ramTop;
reg [7:0] addr;
wire [7:0] data;
reg cs, we, oe;
reg [7:0] data_temp;

ram #(8,8) dut (addr, data, cs, we, oe);

assign data = (!cs && !we) ? data_temp : data;

initial begin

23-35

C Language Interface

 $vcdpluson;
 $vcdplusmemon;
 repeat (10) begin
 #10;
 { cs, we, oe} = {$urandom%2, $urandom%2, $urandom%2};
 addr = {$urandom%2, $urandom%2, $urandom%2, $urandom%2,
$urandom%2, $urandom%2, $urandom%2, $urandom%2};
 data_temp = {$urandom%2, $urandom%2, $urandom%2,
$urandom%2, $urandom%2, $urandom%2, $urandom%2,
$urandom%2};
 end
end
endmodule

To compile this example code, use the following commands:

vcs test.sv -debug_all -sverilog +nocelldefinepli+2+ports
simv -gui &

23-36

C Language Interface

Visualization in DVE

In the following illustration, you can see that “Mem” which is an
internal signal for the “ram” module is not shown in the Data pane
anymore. However other signals, which are ports or parameters, are
visible.

Ports

Parameters

Limitations
• Only Direct Kernel Interface (DKI) applications can access the

ports, PLI applications cannot access.

23-37

C Language Interface

Using VPI Routines

To enable VPI capabilities in VCS, use the compilation option +vpi.
as shown in the following example:

% vcs +vpi top -P test.tab test.c

The header file for the VPI routines is $VCS_HOME/include/
vpi_user.h.

You can register your user-defined system tasks/function-related
callbacks using the vpi_register_systf VPI routine, see
“Support for the vpi_register_systf Routine” .

You can also use a PLI .tab file to associate your user-defined
system tasks with your VPI routines, see “PLI Table File for VPI
Routines” .

Support for VPI Callbacks for Reasons cbForce and
cbRelease

The vpi_register_cb() callback mechanism can be registered
for callbacks to occur for simulation events, such as value changes
on an expression or terminal, or the execution of a behavioral
statement. When the cb_data_p-> reason field is set to one of
the following, the callback occurs as described below:

• cbForce/cbRelease — After a force or release has occurred

• cbAssign/cbDeassign — After a procedural assign or
deassign statement has been executed

23-38

C Language Interface

VPI callbacks reasons cbForce and cbRelease are now
supported with the following limitations:

• The force and release commands generates a callback only if
cb_data_p > obj is a valid handle. If it is set to NULL, it doesn’t
generate a callback.

• For cbForce, cbRelease, cbAssign, and cbDeassign
callbacks, the handle that you supplied while registering the
callback is returned and not the corresponding statement handle
[NULL handles are not allowed].

For more information about the VPI callbacks, see the section
Simulation-event-related callbacks in the Verilog IEEE LRM 1364-
2001.

Support for the vpi_register_systf Routine

VCS supports the vpi_register_systf VPI access routine. To
use this routine, you need to make an entry in the vpi_user.c file.
You can copy this file from $VCS_HOME/etc/vpi.

The following is an example::
/*==
 Copyright (c) 2003 Synopsys Inc
==*/

/* Fill your start up routines in this array, Last entry
should be
zero, */
extern void register_me();
void (*vlog_startup_routines[])() = {
register_me,

0 /* Last Entry */
}; entry here

23-39

C Language Interface

In this example:

• The routine named register_me is externally declared.

• It is also included in the array named
vlog_startup_routines.

• The last entry in the array is zero.

For example:

% vcs top.v vpi_user.c +vpi

You can also write a PLI table file for VPI routines. See “PLI Table
File for VPI Routines” .

Integrating a VPI Application With VCS

If you create one or more shared libraries for a VPI application, the
application should not contain the vlog_startup_routines
array.

Instead, enter the -load compile-time option to specify the
registration routine. The syntax is as follows:

-load shared_library:registration_routine

You do not have to specify the path name of the shared library, if that
path is part of your LD_LIBRARY_PATH environment variable.

The following are some examples of using this option:

• -load lib1.so:my_register

23-40

C Language Interface

The my_register() routine is in lib1.so. The location of
lib1.so is in the LD_LIBRARY_PATH environment variable.

• -load lib1.so:my_register,new_register

The registration routines my_register() and
new_register() are in lib1.so. The location of lib1.so is
in the LD_LIBRARY_PATH environment variable.

• -load lib1.so:my_register -load
lib2.so:new_register

The registration routine my_register() is in lib1.so and the
second registration routine new_register() is in lib2.so.
The path to both of these libraries are in the LD_LIBRARY_PATH
environment variable. You can enter more than one -load option
to specify multiple shared libraries and their registration routines.

• -load lib1.so:my_register

The registration routine my_register() is in lib1.so. The
location of lib1.so is in the LD_LIBRARY_PATH environment
variable.

• -load /usr/lib/mylib.so:my_register

The registration routine my_register() is in lib1.so, which
is in /usr/lib/mylib.so, and not in the LD_LIBRARY_PATH
environment variable.

23-41

C Language Interface

PLI Table File for VPI Routines

The PLI table file for VPI routines works the same way, and with the
same syntax as a PLI table file for user-defined system tasks that
execute C functions. The following is an example of such a PLI table
file:

$set_mipd_delays call=PLIbook_SetMipd_calltf
check=PLIbook_SetMipd_compiletf
acc=mip,mp,gate,tchk,rw:test+

Note that this entry includes acc= even though the C functions in the
PLI specification call VPI routines instead of PLI 1.0 routines. The
syntax has not changed; you use the same syntax for enabling PLI
1.0 and PLI 2.0 routines.

This PLI table file is used for an example file named
set_mipd_delays_vpi.c, which is available with The Verilog PLI
Handbook by Stuart Sutherland, Kluwer Academic Publishers,
Boston, Dordrect, and London.

Virtual Interface Debug Support

You can debug the Virtual Interface object. A Virtual Interface is a
reference object that can either be initially assigned at its declaration
or not assigned.

You can debug the Virtual Interface object when it is initially assigned
or not assigned within a module or a class.

23-42

C Language Interface

To debug the Virtual Interface objects, the VPI properties defined in
the SystemVerilog LRM, such as vpiVirtual, vpiActual, and
vpiInterfaceDecl, are supported. For more information about
these properties, see the IEEE SystemVerilog LRM.

Example

The following example show the VPI routines usage for Virtual
Interface Debug:

virtual_interface.sv

interface ifc (input logic clk);
 event reset;
 int ifci;
 modport tracker (input clk);
endinterface: ifc

package p;

class C;

 virtual ifc.tracker busmpIF;
VI declared in Class
scope

 virtual ifc busIF;
 int i;

 function new (virtual ifc inf);
 busIF = inf;
 endfunction // new

 function test(virtual ifc inf);
 busIF = inf;
 $display("hello");
 endfunction: test
endclass: C
endpackage: p

23-43

C Language Interface

module mod(input logic clk);
 import p::*;
 ifc trkIF(.clk(clk));

 virtual ifc modbusIF = trkIF;

VI declared in Module
scope

 virtual ifc.tracker modportIF2;

 C c;

 initial begin
`ifdef DUMP
 $vcdpluson;
`endif
 c = new(trkIF);
 c.test(modbusIF);
 modbusIF.ifci <= 10;
 #1
 $getVar;
 $display("end the first round\n");
 #1
 modbusIF.ifci <= 11;

$getVar;
 $display("end the second round.");
 end
endmodule: mod
pli.c

#include <stdio.h>
#include <stdlib.h>
#include "vcs_vpi_user.h"
#include "sv_vpi_user.h"

void traverse(){
vpiHandle Han, iterHan, scanHan, cls, obj, intfHan,

Href, Hactual;

vpi_configure(vpiDisplayWarnings,"true");

 intfHan = vpi_handle_by_name("mod.vbusIF",NULL);
 vpi_printf("\tVAR `%s'\n", vpi_get_str(vpiName,intfHan
));

23-44

C Language Interface

 vpi_printf("\t--- DefName `%s'\n\t--- FullName:%s\n\t-
-- vpiType:%s\n",
 vpi_get_str(vpiDefName,intfHan),
vpi_get_str(vpiFullName,intfHan),
 vpi_get_str(vpiType,intfHan));
 if(vpi_get(vpiVirtual, intfHan)){
 vpi_printf("\t%s is Virtual
Interface\n",vpi_get_str(vpiName,intfHan));
 }
 Hactual = vpi_handle(vpiActual, intfHan);
 if (Hactual)
 {
 vpi_printf("\n\tActual `%s'\n",
vpi_get_str(vpiName,Hactual));
 vpi_printf("\t--- DefName ̀ %s'\n\t--- FullName:%s\n\t-
-- vpiType:%s\n",
 vpi_get_str(vpiDefName,Hactual),
vpi_get_str(vpiFullName,Hactual),
 vpi_get_str(vpiType,Hactual));
 if(vpi_get(vpiVirtual, Hactual)){
 vpi_printf("\tActual Handle is Virtual Interface\n");
 }
 }
}
pli.tab

$getVar call=traverse acc+=r:* acc+=cbk:*

To compile this example code, use the following commands:

vcs -P pli.tab pli.c virtual_interface.sv -debug_all
-sverilog

simv -gui &

To view how the virtual interface objects appear in DVE, see the DVE
User Guide.

23-45

C Language Interface

Limitations

• Virtual Interface passed as a method port is not shown in DVE.

• Virtual Interface as an array is not supported.

• Virtual Interface debugging is not supported in UCLI.

• $vcdplusmsglog do not dump Virtual Interface.

Unimplemented VPI Routines

VCS has not implemented everything specified for VPI routines in
the IEEE Verilog Language Reference Manual, because some
routines would be rarely used and some of the data access
operations of other routines would be rarely used. The
unimplemented routines are as follows:

• vpi_get_data

• vpi_put_data

• vpi_sim_control

Object data model diagrams in the IEEE Verilog Language
Reference Manual specify that some VPI routines should be able to
access data that is rarely needed. These routines, and the data they
cannot access, are as follows:

vpi_get_value

- Cannot retrieve the value of var select objects (diagram 26.6.8
Variables) and func call objects (diagram 26.6.18 Task,
function declaration).

- Cannot retrieve the value of VPI operators (expressions) unless
they are arguments to system tasks or system functions.

23-46

C Language Interface

- Cannot retrieve the value of UDP table entries (vpiVectorVal
not implemented).

vpi_put_value

Cannot set the value of var select objects (diagram 26.6.8
Variables) and primitive objects (diagram 26.6.13 Primitive, prim
term).

vpi_get_delays

Cannot retrieve the values of continuous assign objects (diagram
26.6.24 Continuous assignment) or procedurally assigned
objects.

vpi_put_delays

Cannot put values on continuous assign objects (diagram 26.6.24
Continuous assignment) or procedurally assigned objects.

vpi_register_cb

Cannot register the following types of callbacks that are defined
for this routine:

cbEndOfSimulation cbError cbPliError

cbTchkViolation cbSignal

Also, the cbValueChange callback is not supported for the
following objects:

- A memory or a memory word (index or element)

- VarArray or VarSelect

23-47

C Language Interface

Modified VPI Features

VCS is enhanced to comply with some of the constants that are
standardized to comply with the LRM 1800-2009.

Table 23-2 provides the modified constants for the handle type
returned by vpi_get(vpiType, handle).

Table 23-2 Modified Constants for the Handle Type Returned by
vpi_get(vpiType, handle)

In G-2012.09 and earlier releases From H-2013.06 release

vpiImmediateAssertType vpiImmediateAssert

vpiImmediateAssumeType vpiImmediateAssume

vpiImmediateCoverType vpiImmediateCover

vpiAssertType vpiAssert

vpiAssumeType vpiAssume

vpiCoverType vpiCover

*vpiImmediateFinalAssertType vpiImmediateAssert

*vpiImmediateFinalAssumeType vpiImmediateAssume

*vpiImmediateFinalCoverType vpiImmediateCover

vpiEndedOp vpiTriggeredOp

vpiModPortPort vpiModportPort

* Use vpi_get(vpiFinal, <assert_handle>) to determine if
they are final type.

Table 23-3 provides the modified constants used in iterators.

23-48

C Language Interface

Table 23-3 Modified Constants Used in Iterators
vpi_iterate(constant)

In G-2012.09 and earlier releases From H-2013.06 release

vpiSequence vpiExpr

vpiSequenceExpr vpiExpr

vpiModPort vpiModport

vpiIdentifier vpiSeqFormalDecl when ref
handle is vpiSequenceDecl

vpiIdentifier vpiPropFormalDecl when ref
handle is vpiPropertyDecl

Example

pli.c

modport_iter = vpi_iterate(vpiModPort, refHandle);
// here refHandle points to object of type interface

Error Message
< …: error: 'vpiModPort' undeclared (first use in this
function)

Solution

You must change the code to comply with the LRM 1800-2009.

Table 23-4 provides the constants that are updated for the new
value.

Table 23-4 Constants That Are Updated for the New Value

Modified Constants

vpiPortType

vpiInterfacePort

23-49

C Language Interface

Example

plic.c

assertIter = vpi_iterate(700, 0x0);Solution

vpiMember

vpiStructUnionMember

vpiAssertion

vpiClockingEvent

vpiDisableCondition

vpiIfOp

vpiIfElseOp

vpiCompAndOp

vpiCompOrOp

vpiAssignmentOp

vpiAcceptOnOp

vpiRejectOnOp

vpiSyncAcceptOnOp

vpiSyncRejectOnOp

vpiOverlapFollowedByOp

vpiNonOverlapFollowedByOp

vpiNexttimeOp

vpiAlwaysOp

vpiEventuallyOp

vpiUntilOp

vpiUntilWithOp

vpiImpliesOp

vpiInsideOp

23-50

C Language Interface

Warning Message
Warning-[VCS-VPI-DEPRECATED] VPI value deprecated

 In 'vpi_iterate' call, the VPI value for
 `vpiAssertion`(700) is deprecated and will not be
 supported in the next release.
 Please check, fix and recompile your PLI program.

Solution

When using the hardcoded values, change the code to use the
constants.

Backwards Compatibility

When using the precompiled library, you can use the
-vpi_compliance=bc runtime option for backwards compatibility.
However, it is recommended to recompile the library with the latest
VPI header files.

Diagnostics for VPI PLI Applications

As per LRM, VPI remains silent when an error occurs. The
application checks for error status to report an error. If error detection
mechanisms are not in place, the C code of the application must be
modified and recompiled. In addition, you may need to recompile the
HDL code, if required.

However, you can use the following new runtime diagnostic option to
make the PLI application to report errors without code modification:

• –diag vpi

For more information, see “Diagnostics for VPI PLI Applications” .

23-51

C Language Interface

Using DirectC

DirectC is an extended interface between Verilog and C/C++. It is an
alternative to the PLI that, unlike the PLI, enables you to do the
following:

• More efficiently pass values between Verilog module instances
and C/C++ functions by calling the functions directly, along with
actual parameters, in your Verilog code.

• Pass more types of data between Verilog and C/C++. With the
PLI, you can only pass Verilog information to and from a C/C++
application. With DirectC you do not have this limitation.

With DirectC, for example, you can model a simulation environment
for your design in C/C++ in which you can pass pointers from the
environment to your design and store them in Verilog signals, and at
a later simulation time, pass these pointers to the simulation
environment.

Similarly, you can use DirectC to develop applications to run with
VCS to which you can pass pointers to the location of simulation
values for your design.

DirectC is an alternative to, but not a replacement for, the PLI. You
can do things with the PLI that you cannot do with DirectC. For
example, there are PLI TF and ACC routines to implement a callback
to start a C/C++ function when a Verilog signal changes value. You
cannot do this with DirectC.

23-52

C Language Interface

You can use Direct C/C++ function calls for existing and proven C
code as well as C/C++ code that you write in the future. You can also
use them without much rewriting of, or additions to, your Verilog
code. You call them the same way you call (or enable) a Verilog
function or Verilog task.

This section describes the DirectC interface in the following sections:

• “Using Direct C/C++ Function Calls”

• “Using Direct Access”

• “Using Abstract Access”

• “Enabling C/C++ Functions”

• “Extended BNF for External Function Declarations”

Using Direct C/C++ Function Calls

To enable a direct call of a C/C++ function during simulation, perform
the following:

1. Declare the function in your Verilog code.

2. Call the function in your Verilog code.

3. Compile your design and C/C++ code using compile-time options
for DirectC.

However, there are complications to this otherwise straightforward
procedure.

23-53

C Language Interface

DirectC allows the invocation of C++ functions that are declared in
C++ using the extern "C" linkage directive. The extern "C"
directive is necessary to protect the name of the C++ function from
being mangled by the C++ compiler. Plain C functions do not
undergo mangling, and therefore, do not need any special directive.

The declaration of these functions involves specifying a direction for
the parameters of the C function, because, in the Verilog
environment, they become analogous to Verilog tasks as well as
functions. Verilog tasks are similar to void C functions in that they do
not return a value. However, Verilog tasks do have input, output, and
inout arguments, whereas C function parameters do not have
explicitly declared directions. See “Declaring the C/C++ Function” .

There are two access modes for C/C++ function calls. These modes
do not make much difference in your Verilog code; they only pertain
to the development of the C/C++ function. They are as follows:

• The slightly more efficient direct access mode - this mode has
rules for how values of different types and sizes are passed to
and from Verilog and C/C++. This mode is explained in detail in
the section, “Using Direct Access” .

• The slightly less efficient, but with better error handling abstract
access mode - in this implementation, VCS creates a descriptor
for each actual parameter of the C function. You access these
descriptors using a specially defined pointer called a handle. All
formal arguments are handles. DirectC comes with a library of
accessory functions for using these handles. This mode is
explained in detail in the section, “Using Abstract Access” .

23-54

C Language Interface

The abstract access library of accessory functions contains
operations for reading and writing values and for querying about
argument types, sizes, etc. An alternative library, with perhaps
different levels of security or efficiency, can be developed and used
in abstract access without changing your Verilog or C/C++ code.

If you have an existing C/C++ function that you want to use in a
Verilog design, you consider using direct access and see if you really
need to edit your C/C++ function or write a wrapper so that you can
use direct access inside the wrapper. There is a small performance
gain by using direct access compared to abstract access.

If you are about to write a C/C++ function to use in a Verilog design,
first decide how you wish to use it in your Verilog code and write the
external declaration for it, then decide which access mode you want.
You can change the mode later with perhaps a small change in your
Verilog code.

Using abstract access is “safer” because the library of accessory
functions for abstract access has error messages to help you to
debug the interface between C/C++ and Verilog. With direct access,
errors simply result in segmentation faults, memory corruption, etc.

Abstract access can be generalized more easily for your C/C++
function. For example, with open arrays you can call the function with
8-bit arguments at one point in your Verilog design and call it again
some place else with 32-bit arguments. The accessory functions can
manage the differences in size. With abstract access you can have
the size of a parameter returned to you. With direct access you must
know the size.

23-55

C Language Interface

How C/C++ Functions Work in a Verilog Environment

Like Verilog functions, and unlike Verilog tasks, no simulation time
elapses during the execution of a C/C++ function.

C/C++ functions work in two-state and four-state simulation, and in
some cases, work better in two-state simulation. Short vector values,
32-bits or less, are passed by value instead of by reference. Using
two-state simulation makes a difference in how you declare a C/C++
function in your Verilog code.

The parameters of C/C++ functions, are analogous to the arguments
of Verilog tasks. They can be input, output, or inout just like the
arguments of Verilog tasks. You don’t specify them as such in your C
code, but you do when you declare them in your Verilog code.
Accordingly your Verilog code can pass values to parameters
declared to be input or inout, but not output, in the function
declaration in your Verilog code, and your C function can only pass
values from parameters declared to be inout or output, but not input,
in the function declaration in your Verilog code.

If a C/C++ function returns a value to a Verilog register (the C/C++
function is in an expression that is assigned to the register) the return
value of the C/C++ function is restricted to the following:

• The value of a scalar reg or bit

Note:
In two-state simulation, a reg has a new name, bit.

- The value of the C type int

- A pointer

- A short, 32 bits or less, vector bit

23-56

C Language Interface

- The value of a Verilog real which is represented by the C type
double

So C/C++ functions cannot return the value of a four-state vector
reg, long (longer than 32 bits) vector bit, or Verilog integer,
realtime, or time data type. You can pass these type of values out
of the C/C++ function using a parameter that you declare to be inout
or output in the declaration of the function in your Verilog code.

Declaring the C/C++ Function

A partial EBNF specification for external function declaration is as
follows:

source_text ::= description +

description ::= module | user_defined_primitive | extern_declaration

extern_declaration ::= extern access_mode ? attribute ? return_type function_id
 (extern_func_args ?) ;

access_mode ::= ("A" | "C")

attribute ::= pure

return_type ::= void | reg | bit | DirectC_primitive_type
| small_bit_vector

small_bit_vector ::= bit [(constant_expression : constant_expression)]

extern_func_args ::= extern_func_arg (, extern_func_arg) *

extern_func_arg ::= arg_direction ? arg_type arg_id ?
arg_direction ::= input | output | inout

arg_type ::= bit_or_reg_type | array_type | DirectC_primitive_type

bit_or_reg_type ::= (bit | reg) optional_vector_range ?

optional_vector_range ::= [(constant_expression : constant_expression) ?]

array_type ::= bit_or_reg_type array [(constant_expression :
 constant_expression) ?]

23-57

C Language Interface

DirectC_primitive_type ::= int | real | pointer | string

Here:

extern

Keyword that begins the declaration of the C/C++ function
declaration.

access_mode

Specifies the mode of access in the declaration. Enter C for direct
access, or A for abstract access. Using this entry enables some
functions to use direct access and others to use abstract access.

attribute

An optional attribute for the function. The pure attribute enables
some optimizations. Enter this attribute if the function has no side
effects and is dependent only on the values of its input parameters.

return_type

The valid return types are int, bit, reg, string, pointer, and
void. See Table 23-5 for a description of what these types
specify.

small_bit_vector

Specifies a bit-width of a returned vector bit. A C/C++ function
cannot return a four-state vector reg, but it can return a vector
bit if its bit-width is 32 bits or less.

function_id

The name of the C/C++ function.

direction

23-58

C Language Interface

One of the following keywords: input, output, inout. In a C/
C++ function, these keywords specify the same thing that they
specify in a Verilog task; see Table 23-6.

arg_type

The valid argument types are real, reg, bit, int, pointer,
string.

[bit_width]

Specifies the bit-width of a vector reg or bit that is an argument
to the C/C++ function. You can leave the bit-width open by entering
[].

array

Specifies that the argument is a Verilog memory.

[index_range]

Specifies a range of elements (words, addresses) in the memory.
You can leave the range open by entering [].

arg_id

The Verilog register argument to the C/C++ function that becomes
the actual parameter to the function.

23-59

C Language Interface

Note:
Argument direction (i.e., input, output, inout) applies to all
arguments that follow it until the next direction occurs; the default
direction is input.

Table 23-5 C/C++ Function Return Types

Return Type Specifies

int The C/C++ function returns a value for type int.

bit The C/C++ function returns the value of a bit, which is a Verilog
reg in two state simulation, if it is 32 bits or less.

reg The C/C++ function returns the value of a Verilog scalar reg.

string The C/C++ function returns a pointer to a character string.

pointer The C/C++ function returns a pointer.

void The C/C++ function does not return a value.

Table 23-6 C/C++ Function Argument Directions

keyword Specifies

input The C/C++ function can only read the value or address of the
argument. If you specify an input argument first, you can omit
the input keyword.

output The C/C++ function can only write the value or address of the
argument.

inout The C/C++ function can both read and write the value or address
of the argument.

Table 23-7 C/C++ Function Argument Types

keyword Specifies

real The C/C++ function reads or writes the address of a Verilog real
data type.

reg The C/C++ function reads or writes the value or address of a
Verilog reg.

bit The C/C++ function reads or writes the value or address of a
Verilog reg in two state simulation.

int The C/C++ function reads or writes the address of a C/C++ int
data type.

pointer The C/C++ function reads or writes the address that a pointer
is pointing to.

string The C/C++ function reads from or writes to the address of a
string.

23-60

C Language Interface

Example 1

extern "A" reg return_reg (input reg r1);

This example declares a C/C++ function named return_reg. This
function returns the value of a scalar reg. When you call this function,
the value of a scalar reg named r1 is passed to the function. This
function uses abstract access.

Example 2

extern "C" bit [7:0] return_vector_bit (bit [7:0] r3);

This example declares a C/C++ function named
return_vector_bit. This function returns an 8-bit vector bit (a
reg in two state simulation). When you youcall this function, the value
of an 8-bit vector bit (a reg in two state simulation) named r3 is
passed to the function. This function uses direct access.

23-61

C Language Interface

The keyword input is omitted. This keyword can be omitted if the
first argument specified is an input argument.

Example 3

extern string return_string();

This example declares a C/C++ function named return_string.
This function returns a character string and takes no arguments.

Example 4

extern void receive_string(input string r5);

This example declares a C/C++ function named receive_string.
It is a void function. At some time earlier in the simulation, another C/
C++ function passed the address of a character string to reg r5.
When you call this function, it reads the address in reg r5.

Example 5

extern pointer return_pointer();

This example declares a C/C++ function named return_pointer.
When you call this function, it returns a pointer.

Example 6

extern void receive_pointer (input pointer r6);

This example declares a C/C++ function named
receive_pointer. When you call this function the address in reg
r6 is passed to the function.

Example 7

extern void memory_reorg (input bit [32:0] array [7:0] mem2,
output bit [32:0] array [7:0] mem1);

23-62

C Language Interface

This example declares a C/C++ function named memory_reorg.
When you call this function, the values in memory mem2 are passed
to the function. After the function executes, new values are passed
to memory mem1.

Example 8

extern void incr (inout bit [] r7);

This example declares a C/C++ function named incr. When you
call this function, the value in bit r7 is passed to the function. When
it finishes executing, it passes a new value to bit r7. Bit width for
vector bit r7is not specified. youThis allows us to use various sizes
in the parameter declaration in the C/C++ function header.

Example 9

extern void passbig (input bit [63:0] r8,
 output bit [63:0] r9);

This example declares a C/C++ function named passbig. When
you call this function, the value in bit r8 is passed by reference to the
function because it is more than 32 bits; see “Using Direct Access” .
When it finishes executing, a new value is passed by reference to bit
r9.

Calling the C/C++ Function

After declaring the C/C++ function, you can call it in your Verilog
code. You call a void C/C++ function in the same manner as you call
a Verilog task-enabling statement, that is, by entering the function
name and its arguments, either on a separate line in an always or
initial block, or in the procedural statements in a Verilog task or
function declaration. Unlike Verilog tasks, you can call a C/C++
function in a Verilog function.

23-63

C Language Interface

You call a non-void (returns a value) C/C++ function in the same
manner as you call a Verilog function call, that is, by entering its
name and arguments, either in an expression on the RHS of a
procedural assignment statement in an always or initial block,
or in a Verilog task or function declaration.

Examples

r2=return_reg(r1);

The value of scalar reg r1 is passed to C/C++ function
return_reg. It returns a value to reg r2.

r4=return_vector_bit(r3);

The value of vector bit r3 is passed to C/C++ function
return_vector_bit. It returns a value to vector bit r4.

r5=return_string();

The address of a character string is passed to reg r5.

receive_string(r5);

The address of a character string in reg r5 is passed to C/C++
function receive_string.

r6=return_pointer();

The address pointed to in a pointer in C/C++ function
return_pointer is passed to reg r6.

get_pointer(r6);

The address in reg r6 is passed to C/C++ function get_pointer.

23-64

C Language Interface

memory_reorg(mem1,mem2);

In this example, all the values in memory mem2 are passed to C/C++
function memory_reorg, and when it finishes executing, it passes
new values to memory mem1.

incr(r7);

In this example, the value of bit r7 is passed to C/C++ function incr,
and when it finishes executing, it passes a new value to bit r7.

Storing Vector Values in Machine Memory

Users of direct access need to know how vector values are stored in
memory. This information is also helpful for users of abstract access.

Verilog four-state simulation values (1, 0, x, and z) are represented
in machine memory with data and control bits. The control bit
differentiates between the 1 and x and the 0 and z values, as shown
in the following table:

Simulation Value Data Bit Control Bit

1 1 0

x 1 1

0 0 0

z 0 1

When a routine returns Verilog data to a C/C++ function, how that
data is stored depends on whether it is from a two-state or four-state
value, and whether it is from a scalar, a vector, or from an element in
a Verilog memory.

23-65

C Language Interface

For a four-state vector (denoted by the keyword reg), the Verilog data
is stored in type vec32, which for abstract access is defined as
follows:

typedef unsigned int U;
typedef struct { U c; U d;} vec32;

So, type vec32* has two members of type U; member c is for control
bits and member d is for data bits.

For a two-state vector bit, the Verilog data is stored in type U*.

Vector values are stored in arrays of chunks of 32 bits. For four-state
vectors there are chunks of 32 bits for data values and 32 bits for
control values. For two-state vectors, there are chunks of 32 bits for
data values.

Figure 23-1 Storing Vector Values

control data

data

four-state

two-state

Long vectors, more than 32 bits, have their value stored in more than
one group of 32 bits and can be accessed by chunk. Short vectors,
32 bits or less, are stored in a single chunk.

23-66

C Language Interface

For long vectors, the chunk for the least significant bits come first,
followed by the chunks for the more significant bits.

Figure 23-2 Storing Vector Values of More than 32 Bits

control data

data

four-state

two-state

control data

data data data

Chunk for the least significant bits

In an element in a Verilog memory, for each eight bits in the element,
there is a data byte and a control byte with an additional set of bytes
for remainder bit. So, if a memory had 9 bits, it would need two data
bytes and two control bytes. If it had 17 bits, it would need three data
bytes and three control bytes. All the data bytes precede the control
bytes. Two-state memories have both data and control bytes, but the
bits in the control bytes always have a zero value.

Figure 23-3 Storing Verilog Memory Elements in Machine Memory

0 1 2 3 4 5

data data data control control control

Converting Strings

There are no *true* strings in Verilog, and a string literal, like
"some_text," is just a notation for vectors of bits, based on the same
principle as binary, octal, decimal, and hexadecimal numbers. So
there is a need for a conversion between the two representations of
"strings": the C-style representation (which actually is a pointer to
the sequence of bytes terminated with null byte) and the Verilog
vector encoding a string.

23-67

C Language Interface

DirectC comes with the vc_ConvertToString() routine that you
can use to convert a Verilog string to a C string. Its syntax is as
follows:

void vc_ConvertTo String(vec32 *, int, char *)

There are scenarios in which a string is created on the Verilog side
and is passed to C code, and therefore, has to be converted from
Verilog representation to C representation. Consider the following
example:

extern void WriteReport(string result_code, /* other
stuff */);

Example of a valid call:

WriteReport("Passes",);

Example of incorrect code:

reg [100*8:1] message;
.
.
.
message = "Failed";
.
.
.
WriteReport(message,);

This call causes a core dump because the function expects a pointer
and gets some random bits instead.

It may happen that a string, or different strings, are assigned to a
signal in Verilog code and their values are passed to C. For example:

task DoStuff(...., result_code); ... output reg [100*8:1]

23-68

C Language Interface

result_code;
begin
.
.
.
if (...) result_code = "Bus error";
.
.
.
if (...) result_code = "Erroneous address";
.
.
.
else result_code = "Completed");
end
endtask

reg [100*8:1] message;

....
DoStuff(..., message);

You cannot directly call the function as follows:

WriteReport(message, ...)

There are two solutions:

Solution 1: Write a C wrapper function, pass "message" to this
function and perform the conversion of vector-to-C string in C, calling
vc_ConvertToString.

Solution 2: Perform the conversion on the Verilog side. This requires
some additional effort, as the memory space for a C string has to be
allocated as follows:

extern "C" string malloc(int);
extern "C" void vc_ConvertToString(reg [], int, string);

23-69

C Language Interface

// this function comes from DirectC library

reg [31:0] sptr;
.
.
.
// allocate memory for a C-string
sptr = malloc(8*100+1);
//100 is the width of 'message', +1 is for NULL terminator
// perform conversion
vc_ConvertToString(message, 800, sptr);
WriteReport(sptr, ...);

Avoiding a Naming Problem

In a module definition, do not call an external C/C++ function with the
same name as the module definition. The following is an example of
the type of source code you should avoid:

extern void receive_string (input string r5);
.
.
.
module receive_string;
.
.
.
always @ r5
begin
.
.
.
receive_string(r5);
.
.
.
end
endmodule

23-70

C Language Interface

Using Pass by Reference

You can use pass by reference with DirectC. The following source
files: main.v and pythag.c, illustrate using pass by reference.

main.v

extern void pythag(inout real);
module main;
real p;
initial begin
 p = 7.89;
 pythag(p);
 $finish;
end
endmodule

pythag.c

#include <stdio.h>
void pythag(double *p)
{
 printf ("Passed real value from verilog p=%f \n",*p);
}

You can try out this example with the following command-line:

vcs +vc main.v pythag.c -R -l somv.log

At runtime, VCS displays the following:

Passed real value from verilog p=7.890000

23-71

C Language Interface

Using Direct Access

Direct access was implemented for C/C++ routines whose formal
parameters are of the following types:

int int* double* void* void**

char* char** scalar scalar*

U* vec32 UB*

Some of these type identifiers are standard C/C++ types; those that
are not, were defined with the following typedef statements:

typedef unsigned int U;
typedef unsigned char UB;
typedef unsigned char scalar;
typedef struct {U c; U d;} vec32;

The type identifier you use depends on the corresponding argument
direction, type, and bit-width that you specified in the declaration of
the function in your Verilog code. The following rules apply:

• Direct access passes all output and inout arguments by reference,
so their corresponding formal parameters in the C/C++ function
must be pointers.

• Direct access passes a Verilog bit by value only if it is 32 bits or
less. If it is larger than 32 bits, direct access passes the bit by
reference so the corresponding formal parameters in the C/C++
function must be pointers if they are larger than 32 bits.

• Direct access passes a scalar reg by value. It passes a vector reg
direct access by reference, so the corresponding formal
parameter in the C/C++ function for a vector reg must be a pointer.

23-72

C Language Interface

• An open bit-width for a reg makes it possible for you to pass a
vector reg, so the corresponding formal parameter for a reg
argument, specified with an open bit-width, must be a pointer.
Similarly, an open bit-width for a bit makes it possible for you to
pass a bit larger than 32 bits, so the corresponding formal
parameter for a bit argument specified with an open bit width must
be a pointer.

• Direct access passes by value the following types of input
arguments: int, string, and pointer.

• Direct access passes input arguments of type real by reference.

The following tables show the mapping between the data types you
use in the C/C++ function and the arguments you specify in the
function declaration in your Verilog code.

Table 23-8 For Input Arguments

argument type C/C++ formal
parameter data type

Passed by

int int value

real double* reference

pointer void* value

string char* value

bit scalar value

reg scalar value

bit [] - 1-32 bit wide vector U value

bit [] - open vector, any vector wider than
32 bits

U* reference

reg [] - 1-32 bit wide vector vec32* reference

array [] - open vector, any vector wider
than 32 bits

UB* reference

Table 23-9 For Output and Inout Arguments

argument type C/C++ formal
parameter data type

Passed by

int int* reference

real double* reference

pointer void** reference

string char** reference

bit scalar* reference

reg scalar* reference

bit [] - any vector, including open vector U* reference

reg[] - any vector, including open vector vec32* reference

array[] - any array, 2 state or 4 state, including
open array

UB* reference

23-73

C Language Interface

In direct access, the return value of the function is always passed by
value. The data type of the returned value is the same as the input
argument.

Example 1

Consider the following C/C++ function declared in the Verilog source
code:

extern reg return_reg (input reg r1);

In this example, the function named return_reg returns the value
of a scalar reg. The value of a scalar reg is passed to it. The header
of the C/C++ function is as follows:

extern "C" scalar return_reg(scalar reti);
scalar return_reg(scalar reti);

23-74

C Language Interface

If return_reg() is a C++ function, it must be protected from name
mangling, as follows:

extern "C" scalar return_reg(scalar reti);

Note:

The extern "C" directive has been omitted in subsequent
examples, for brevity.

A scalar reg is passed by value to the function so the parameter is
not a pointer. The parameter’s type is scalar.

Example 2

Consider the following C/C++ function declared in the Verilog source
code:

extern "C" bit [7:0] return_vector_bit (bit [7:0] r3);

In this example, the function named return_vector_bit returns
the value of a vector bit. The "C" entry specifies direct access.
Typically, a declaration includes this when some other functions use
abstract access. The value of an 8-bit vector bit is passed to it. The
header of the C/C++ function is as follows:

U return_vector_bit(U returner);

A vector bit is passed by value to the function because the vector bit
is less than 33 bits so the parameter is not a pointer. The parameter’s
type is U.

23-75

C Language Interface

Example 3

Consider the following C/C++ function declared in the Verilog source
code:

extern void receive_pointer (input pointer r6);

In this example, the function named receive_pointer does not
return a value. The argument passed to it is declared to be a pointer.
The header of the C/C++ function is as follows:

void receive_pointer(*pointer_receiver);

A pointer is passed by value to the function so the parameter is a
pointer of type void, a generic pointer. In this example, it is not
required to know the type of data that it points to.

Example 4

Consider the following C/C++ function declared in the Vyouerilog
source code:

extern void memory_rewriter (input bit [1:0] array [1:0]
 mem2, output bit [1:0] array [1:0] mem1);

In this example, the function named memory_rewriter has two
arguments, one declared as an input, the other as an output. Both
arguments are bit memories. The header of the C/C++ function is as
follows:

void memory_rewriter(UB *out[2],*in[2]);

23-76

C Language Interface

Memories are always passed by reference to a C/C++ function so
the parameter named in is a pointer of type UB with the size that
matched the memory range. The parameter named out is also a
pointer, because its corresponding argument is declared to be
output. Its type is also UB because it outputs to a Verilog memory.

Example 5

Consider the following C/C++ function declared in the Verilog source
code:

extern void incr (inout bit [] r7);

In this example, the function named incr, that does not return a
value, has an argument declared as inout. No bit-width is
specified, but the [] entry for the argument specifies that it is not a
scalar bit. The header of the C/C++ function is as follows:

void incr (U *p);

Open bit-width parameters are always passed to by reference. A
parameter whose corresponding argument is declared to be inout
is passed to and from by reference. So there are two reasons for
parameter p to be a pointer. It is a pointer to type U because its
corresponding argument is a vector bit.

Example 6

Consider the following C/C++ function declared in the Verilog source
code:

extern void passbig1 (input bit [63:0] r8,
 output bit [63:0] r9);

23-77

C Language Interface

In this example, the function named passbig1, that does not return
a value, has input and output arguments declared as bit and larger
than 32 bits. The header of the C/C++ function is as follows:

void passbig (U *in, U *out)

In this example, the parameters in and out are pointers to type U.
They are pointers because their corresponding arguments are larger
than 32 bits and type U because their corresponding arguments are
type bit.

Example 7

Consider the following C/C++ function declared in the Verilog source
code:

extern void passbig2 (input reg [63:0] r10,
 output reg [63:0] r11);

In this example, the function named passbig2, that does not return
a value, has input and output arguments declared as non-scalar reg.
The header of the C/C++ function is as follows:

void passbig2(vec32 *in, vec32 *out)

In this example, the parameters in and out are pointers to type
vec32. They are pointers because their corresponding arguments
are non-scalar type reg.

Example 8

Consider the following C/C++ function declared in the Verilog source
code:

extern void reality (input real real1, output real real2);

23-78

C Language Interface

In this example, the function named reality, that does not return a
value, has input and output arguments of declared type real. The
header of the C/C++ function is as follows:

void reality (double *in, double *out)

In this example, the parameters in and out are pointers to type
double because their corresponding arguments are type real.

Using the vc_hdrs.h File

When you compile your design for DirectC (by including the +vc
compile-time option), VCS writes a file in the current directory named
vc_hdrs.h. In this file, there are extern declarations for all the C/
C++ functions that you declared in your Verilog code. For example,
if you compile the Verilog code that contains all the C/C++
declarations in the examples in this section, the vc_hdrs.h file
contains the following extern declarations:

extern void memory_rewriter(UB* mem2, /*OUT*/UB* mem1);
extern U return_vector_bit(U r3);
extern void receive_pointer(void* r6);
extern void incr(/*INOUT*/U* r7);
extern void* return_pointer();
extern scalar return_reg(scalar r1);
extern void reality(double* real1, /*OUT*/double* real2);
extern void receive_string(char* r5);
extern void passbig2(vec32* r8, /*OUT*/vec32* r9);
extern char* return_string();
extern void passbig1(U* r8, /*OUT*/U* r9);

These declarations contain the /*OUT*/ comment in the parameter
specification if its corresponding argument in your Verilog code is of
type output in the declaration of the function.

23-79

C Language Interface

These declarations contain the /*INOUT*/ comment in the
parameter specification if its corresponding argument in your Verilog
code is of type inout in the declaration of the function.

You can copy from these extern declarations to the function
headers in your C code. If you do, you will always use the right type
of parameter in your function header and you do not have to learn
the rules for direct access. Let VCS do this for you.

Access Routines for Multi-Dimensional Arrays

DirectC requires that Verilog multi-dimensional arrays be linearized
(turned into arrays of the same size, but with only one dimension).
VCS provides routines for obtaining information about Verilog
multi-dimensional arrays when using direct access. This section
describes these routines.

UB *vc_arrayElemRef(UB*, U, ...)

The UB* parameter points to an array, either a single dimensional
array or a multi-dimensional array, and the U parameters specify
indices in the multi-dimensional array. This routine returns a pointer
to an element of the array or NULL if the indices are outside the
range of the array or there is a null pointer.

U dgetelem(UB *mem_ptr, int i, int j) {
 int indx;
 U k;
 /* remaining indices are constant */
 UB *p = vc_arrayElemRef(mem_ptr,i,j,0,1);
 k = *p;
 return(k);
}

23-80

C Language Interface

There are specialized versions of this routine for one-, two-, and
three-dimensional arrays:

UB *vc_array1ElemRef(UB*, U)
UB *vc_array2ElemRef(UB*, U, U)
UB *vc_array3ElemRef(UB*, U, U, U)

U vc_getSize(UB*,U)

This routine is similar to the vc_mdaSize() routine used in
abstract access. It returns the following:

• If the U type parameter has a value of 0, it returns the number of
indices in an array.

• If the U type parameter has a value greater than 0, it returns the
number of values in the index specified by the parameter. There
is an error condition if this parameter is out of the range of indices.

If the UB pointer is null, this routine returns 0.

Using Abstract Access

In abstract access, VCS creates a descriptor for each argument in a
function call. The corresponding formal parameters in the function
uses a specially defined pointer to these descriptors called
vc_handle. In abstract access, you use these “handles” to pass
data and values by reference to and from these descriptors.

The idea behind abstract access is that you do not have to worry
about the type you use for parameters, because you always use a
special pointer type called vc_handle.

23-81

C Language Interface

In abstract access, VCS creates a descriptor for every argument that
you enter in the function call in your Verilog code. The vc_handle
is a pointer to the descriptor for the argument. It is defined as follows:

typdef struct VeriC_Descriptor *vc_handle;

Using vc_handle

In the function header, the vc_handle for a Verilog reg, bit, or
memory is based on the order that you declare the vc_handle and
the order that you entered its corresponding reg, bit, or memory in
the function call in your Verilog code. For example, you could have
declared the function and called it in your Verilog code as follows:

extern "A" void my_function(input bit [31:0] r1,
 input bit [32:0] r2);

module dev1;
reg [31:0] bit1;
reg [32:0] bit2;
initial
begin
.
.
.
my_function(bit1,bit2);
.
.
.
end
endmodule

Declare the function

Enter first bit1 then bit2 as arguments
in the function call

This is using abstract access so VCS created descriptors for bit1
and bit2. These descriptors contain information about their value,
but also other information such as whether they are scalar or vector,
and whether they are simulating in two- or four-state simulation.

23-82

C Language Interface

The corresponding header for the C/C++ function is as follows:

.

.
my_function(vc_handle h1, vc_handle h2)
{
.
.

 up1=vc_2stVectorRef(h1);
 up2=vc_2stVectorRef(h2);
.
.
.
}

h1 is the vc_handle for bit1
h2 is the vc_handle for bit2

A routine that accesses the data
structures for bit1 and bit2 using
their vc_handles

After declaring the vc_handles, you can use them to pass data to and
from these descriptors.

Using Access Routines

Abstract access comes with a set of access routines that enable your
C/C++ function to pass values to and from the descriptors for the
Verilog reg, bit, and memory arguments in the function call.

These access routines use the vc_handle to pass values by
reference, but the vc_handle is not the only type of parameter for
many of these routines. These routines also have the following types
of parameters:

• Scalar — an unsigned char

• Integers — uninterpreted 32 bits with no implied semantics

• Other types of pointers — primitive types “string” and “pointer”

• Real numbers

23-83

C Language Interface

The access routines were named to help you to remember their
function. Routine names beginning with vc_get are for retrieving
data from the descriptor for the Verilog parameter. Routine names
beginning with vc_put are for passing new values to these
descriptors.

These routines can convert Verilog representation of simulation
values and strings to string representation in C/C++. Strings can also
be created in a C/C++ function and passed to Verilog, but you should
keep in mind that they can be overwritten in Verilog. Therefore, you
should copy them to local buffers if you want them to persist.

The following are the access routines, their parameters, and return
values, and examples of how they are used. There is a summary of
the access routines at the end of this chapter; see “Summary of
Access Routines” .

int vc_isScalar(vc_handle)

Returns a 1 value if the vc_handle is for a one-bit reg or bit; returns
a 0 value for a vector reg or bit or any memory including memories
with scalar elements. For example:

extern "A" void scalarfinder(input reg r1,
 input reg [1:0] r2,
 input reg [1:0] array [1:0] r3,
 input reg array [1:0] r4);
module top;
reg r1;
reg [1:0] r2;
reg [1:0] r3 [1:0];
reg r4 [1:0];
initial
scalarfinder(r1,r2,r3,r4);
endmodule

23-84

C Language Interface

In this example, a routine named scalarfinder and input a scalar
reg, a vector reg and two memories (one with scalar elements) are
declared.

The declaration contains the "A" specification for abstract access.
You typically include it in the declaration when other functions will
use direct access, that is, you have a mix of functions with direct and
abstract access.

#include <stdio.h>
#include "DirectC.h"

scalarfinder(vc_handle h1, vc_handle h2, vc_handle h3,
vc_handle h4)
{
int i1 = vc_isScalar(h1),
 i2 = vc_isScalar(h2),
 i3 = vc_isScalar(h3),
 i4 = vc_isScalar(h4);
printf("\ni1=%d i2=%d i3=%d i4=%d\n\n",i1,i2,i3,i4);
}

Parameters h1, h2, h3, and h4 are vc_handles to regs r1 and r2
and memories r3 and r4, respectively. The function prints the
following:

i1=1 i2=0 i3=0 i4=0

int vc_isVector(vc_handle)

This routine returns a 1 value if the vc_handle is to a vector reg or
bit. It returns a 0 value for a vector bit or reg or any memory. For
example, using the Verilog code from the previous example, and the
following C/C++ function:

scalarfinder(vc_handle h1, vc_handle h2, vc_handle h3,
vc_handle h4)
{

23-85

C Language Interface

int i1 = vc_isVector(h1),
 i2 = vc_isVector(h2),
 i3 = vc_isVector(h3),
 i4 = vc_isVector(h4);
printf("\ni1=%d i2=%d i3=%d i4=%d\n\n",i1,i2,i3,i4);
}

The function prints the following:

i1=0 i2=1 i3=0 i4=0

int vc_isMemory(vc_handle)

This routine returns a 1 value if the vc_handle is to a memory. It
returns a 0 value for a bit or reg that is not a memory. For example,
using the Verilog code from the previous example and the following
C/C++ function:

#include <stdio.h>
#include "DirectC.h"

scalarfinder(vc_handle h1, vc_handle h2, vc_handle h3,
vc_handle h4)
{
int i1 = vc_isMemory(h1),
 i2 = vc_isMemory(h2),
 i3 = vc_isMemory(h3),
 i4 = vc_isMemory(h4);
printf("\ni1=%d i2=%d i3=%d i4=%d\n\n",i1,i2,i3,i4);
}

The function prints the following:

i1=0 i2=0 i3=1 i4=1

23-86

C Language Interface

int vc_is4state(vc_handle)

This routine returns a 1 value if the vc_handle is to a reg or
memory that simulates with four states. It returns a 0 value for a bit
or a memory that simulates with two states. For example, the
following Verilog code uses metacomments to specify four- and two-
state simulation:

extern void statefinder (input reg r1,
 input reg [1:0] r2,
 input reg [1:0] array [1:0] r3,
 input reg array [1:0] r4,
 input bit r5,
 input bit [1:0] r6,
 input bit [1:0] array [1:0] r7,
 input bit array [1:0] r8);
module top;
reg /*4value*/ r1;
reg /*4value*/ [1:0] r2;
reg /*4value*/ [1:0] r3 [1:0];
reg /*4value*/ r4 [1:0];
reg /*2value*/ r5;
reg /*2value*/ [1:0] r6;
reg /*2value*/ [1:0] r7 [1:0];
reg /*2value*/ r8 [1:0];
initial
statefinder(r1,r2,r3,r4,r5,r6,r7,r8);
endmodule

The C/C++ function that calls the vc_is4state routine is as
follows:

#include <stdio.h>
#include "DirectC.h"

statefinder(vc_handle h1, vc_handle h2, vc_handle h3,
 vc_handle h4,vc_handle h5, vc_handle h6,
 vc_handle h7, vc_handle h8)
{
printf("\nThe vc_handles to 4state are:");

23-87

C Language Interface

printf("\nh1=%d h2=%d h3=%d h4=%d\n\n",
 vc_is4state(h1),vc_is4state(h2),
 vc_is4state(h3),vc_is4state(h4));
printf("\nThe vc_handles to 2state are:");
printf("\nh5=%d h6=%d h7=%d h8=%d\n\n",
 vc_is4state(h5),vc_is4state(h6),
 vc_is4state(h7),vc_is4state(h8));
}

The function prints the following:

The vc_handles to 4state are:
h1=1 h2=1 h3=1 h4=1

The vc_handles to 2state are:
h5=0 h6=0 h7=0 h8=0

int vc_is2state(vc_handle)

This routine does the opposite of the vc_is4state routine. For
example, using the Verilog code from the previous example and the
following C/C++ function:

#include <stdio.h>
#include "DirectC.h"

statefinder(vc_handle h1, vc_handle h2, vc_handle h3,
 vc_handle h4, vc_handle h5, vc_handle h6,
 vc_handle h7, vc_handle h8)
{
printf("\nThe vc_handles to 4state are:");
printf("\nh1=%d h2=%d h3=%d h4=%d\n\n",
 vc_is2state(h1),vc_is2state(h2),
 vc_is2state(h3),vc_is2state(h4));
printf("\nThe vc_handles to 2state are:");
printf("\nh5=%d h6=%d h7=%d h8=%d\n\n",
 vc_is2state(h5),vc_is2state(h6),
 vc_is2state(h7),vc_is2state(h8));
}

23-88

C Language Interface

The function prints the following:

The vc_handles to 4state are:
h1=0 h2=0 h3=0 h4=0

The vc_handles to 2state are:
h5=1 h6=1 h7=1 h8=1

int vc_is4stVector(vc_handle)

This routine returns a 1 value if the vc_handle is to a vector reg. It
returns a 0 value if the vc_handle is to a scalar reg, scalar or vector
bit, or memory. For example, using the Verilog code from the
previous example, and the following C/C++ function:

#include <stdio.h>
#include "DirectC.h"

statefinder(vc_handle h1, vc_handle h2,
 vc_handle h3, vc_handle h4,
 vc_handle h5, vc_handle h6,
 vc_handle h7, vc_handle h8)
{
printf("\nThe vc_handle to a 4state Vector is:");
printf("\nh2=%d \n\n",vc_is4stVector(h2));
printf("\nThe vc_handles to 4state scalars or
 memories and 2state are:");
printf("\nh1=%d h3=%d h4=%d h5=%d h6=%d h7=%d h8=%d\n\n",
 vc_is4stVector(h1), vc_is4stVector(h3),
 vc_is4stVector(h4),vc_is4stVector(h5),
 vc_is4stVector(h6), vc_is4stVector(h7),
 vc_is4stVector(h8));
}

The function prints the following:

The vc_handle to a 4state Vector is:
h2=1

23-89

C Language Interface

The vc_handles to 4state scalars or
 memories and 2state are:
h1=0 h3=0 h4=0 h5=0 h6=0 h7=0 h8=0

int vc_is2stVector(vc_handle)

This routine returns a 1 value if the vc_handle is to a vector bit. It
returns a 0 value if the vc_handle is to a scalar bit, scalar or vector
reg, or to a memory. For example, using the Verilog code from the
previous example and the following C/C++ function:

#include <stdio.h>
#include "DirectC.h"

statefinder(vc_handle h1, vc_handle h2,
 vc_handle h3, vc_handle h4,
 vc_handle h5, vc_handle h6,
 vc_handle h7, vc_handle h8)
{
printf("\nThe vc_handle to a 2state Vector is:");
printf("\nh6=%d \n\n",vc_is2stVector(h6));
printf("\nThe vc_handles to 2state scalars or
 memories and 4state are:");
printf("\nh1=%d h2=%d h3=%d h4=%d h5=%d h7=%d h8=%d\n\n",
 vc_is2stVector(h1), vc_is2stVector(h2),
 vc_is2stVector(h3), vc_is2stVector(h4),
 vc_is2stVector(h5), vc_is2stVector(h7),
 vc_is2stVector(h8));
}

The function prints the following:

The vc_handle to a 2state Vector is:
h6=1

The vc_handles to 2state scalars or
 memories and 4state are:
h1=0 h2=0 h3=0 h4=0 h5=0 h7=0 h8=0

23-90

C Language Interface

int vc_width(vc_handle)

Returns the width of a vc_handle. For example:

void memcheck_int(vc_handle h)
{
 int i;

int mem_size = vc_arraySize(h);

 /* determine minimal needed width, assuming signed int */
 for (i=0; (1 << i) < (mem_size-1); i++) ;

 if (vc_width(h) < (i+1)) {
 printf("Register too narrow to be assigned %d\n",
(mem_size-1));
 return;
 }

 for(i=0;i<8;i++) {
 vc_putMemoryInteger(h,i,i*4);
 printf("memput : %d\n",i*4);
 }
 for(i=0;i<8;i++) {
 printf("memget:: %d \n",vc_getMemoryInteger(h,i));
 }

}

int vc_arraySize(vc_handle)

Returns the number of elements in a memory or multi-dimensional
array. The previous example also shows a usage of
vc_arraySize().

scalar vc_getScalar(vc_handle)

Returns the value of a scalar reg or bit. For example:

void rotate_scalars(vc_handle h1, vc_handle h2, vc_handle

23-91

C Language Interface

h3)
{

scalar a;

a = vc_getScalar(h1);
vc_putScalar(h1, vc_getScalar(h2));
vc_putScalar(h2, vc_getScalar(h3));
vc_putScalar(h3, a);
return;

}

void vc_putScalar(vc_handle, scalar)

Passes the value of a scalar reg or bit to a vc_handle by reference.
The previous example also shows a usage of vc_putScalar().

char vc_toChar(vc_handle)

Returns the 0, 1, x, or z character. For example:

void print_scalar(vc_handle h) {
 printf("%c", vc_toChar(h));
 return;
}

int vc_toInteger(vc_handle)

Returns an int value for a vc_handle to a scalar bit or a vector bit
of 32 bits or less. For a vector reg or a vector bit with more than 32
bits this routine returns a 0 value and displays the following warning
message:

DirectC interface warning: 0 returned for 4-state value
(vc_toInteger)

The following is an example of Verilog code that calls a C/C++
function that uses this routine:

23-92

C Language Interface

extern void rout1 (input bit onebit, input bit [7:0] mobits);

module top;
reg /*2value*/ onebit;
reg /*2value*/ [7:0] mobits;
initial
begin
rout1(onebit,mobits);
onebit=1;
mobits=128;
rout1(onebit,mobits);
end
endmodule

Notice that the function declaration specifies that the parameters are
of type bit. It includes metacomments for two-state simulation in the
declaration of reg onebit and mobits. There are two calls to the
function rout1, before and after values are assigned in this Verilog
code.

The following C/C++ function uses this routine:

#include <stdio.h>
#include "DirectC.h"

void rout1 (vc_handle onebit, vc_handle mobits)
{
printf("\n\nonebit is %d mobits is %d\n\n",
 vc_toInteger(onebit), vc_toInteger(mobits));
}

This function prints the following:

onebit is 0 mobits is 0

onebit is 1 mobits is 128

23-93

C Language Interface

char *vc_toString(vc_handle)

Returns a string that contains the 1, 0, x, and z characters. For
example:

extern void vector_printer (input reg [7:0] r1);

module test;
reg [7:0] r1,r2;

initial
begin
#5 r1 = 8’bzx01zx01;
#5 vector_printer(r1);
#5 $finish;
end
endmodule

void vector_printer (vc_handle h)
{
vec32 b,*c;
c=vc_4stVectorRef(h);
b=*c;
printf("\n b is %x[control] %x[data]\n\n",b.c,b.d);
printf("\n b is %s \n\n",vc_toString(h));
}

In this example, a vector reg is assigned a value that contains x and
z values, as well as, 1 and 0 values. In the abstract access C/C++
function, there are two ways of displaying the value of the reg:

• Recognize that type vec32 is defined as follows in the
DirectC.h file:

typdef struct {U c; U d;} vec32;

23-94

C Language Interface

In machine memory, there are control, as well as, data bits for
Verilog data to differentiate X from 1 and Z from 0 data, so there
are c (control) and d (data) data variables in the structure and you
must specify which variable when you access the vec32 type.

• Use the vc_toString routine to display the value of the reg that
contains X and Z values.

This example displays:

 b is cc[control 55[data]

 b is zx01zx01

char *vc_toStringF(vc_handle, char)

Returns a string that contains the 1, 0, x, and z characters and allows
you to specify the format or radix for the display. The char
parameter can be ’b’, ’o’, ’d’, or ’x’.

So, if you youmodify the C/C++ function in the previous example, it
is as follows:

void vector_printer (vc_handle h)
{
vec32 b,*c;
c=vc_4stVectorRef(h);
b=*c;
printf("\n b is %s \n\n",vc_toStringF(h,’b’));
printf("\n b is %s \n\n",vc_toStringF(h,’o’));
printf("\n b is %s \n\n",vc_toStringF(h,’d’));
printf("\n b is %s \n\n",vc_toStringF(h,’x’));
}

This example now displays:

 b is zx01zx01

23-95

C Language Interface

 b is XZX

 b is X

 b is XX

void vc_putReal(vc_handle, double)

Passes by reference a real (double) value to a vc_handle. For
example:

void get_PI(vc_handle h)
{
 vc_putReal(h, 3.14159265);
}

double vc_getReal(vc_handle)

Returns a real (double) value from a vc_handle. For example:

void print_real(vc_handle h)
{
 printf("[print_real] %f\n", vc_getReal(h));
}

void vc_putValue(vc_handle, char *)

This function passes, by reference, through the vc_handle, a value
represented as a string containing the 0, 1, x, and z characters. For
example:

extern void check_vc_putvalue(output reg [] r1);

module tester;
reg [31:0] r1;

23-96

C Language Interface

initial
begin
check_vc_putvalue(r1);
$display("r1=%0b",r1);
$finish;
end
endmodule

In this example, the C/C++ function is declared in the Verilog code
specifying that the function passes a value to a four-state reg (and,
therefore, can hold X and Z values).

#include <stdio.h>
#include "DirectC.h"

void check_vc_putvalue(vc_handle h)
{
 vc_putValue(h,"10xz");
}

The vc_putValue routine passes the string "10xz" to the reg r1
through the vc_handle. The Verilog code displays:

r1=10xz

void vc_putValueF(vc_handle, char *, char)

This function passes by reference, through the vc_handle, a value
for which you specify a radix with the third parameter. The valid
radixes are ’b’, ’o’, ’d’, and ’x’. For example the following
Verilog code declares a function named assigner that uses this
routine:

extern void assigner (output reg [31:0] r1,
 output reg [31:0] r2,
 output reg [31:0] r3,
 output reg [31:0] r4);

module test;

23-97

C Language Interface

reg [31:0] r1,r2,r3,r4;
initial
begin
assigner(r1,r2,r3,r4);
$display("r1=%0b in binary r1=%0d in decimal\n",r1,r1);
$display("r2=%0o in octal r2 =%0d in decimal\n",r2,r2);
$display("r3=%0d in decimal r3=%0b in binary\n",r3,r3);
$display("r4=%0h in hex r4= %0d in decimal\n\n",r4,r4);
$finish;
end
endmodule

The following is the C/C++ function:

#include <stdio.h>
#include "DirectC.h"

void assigner (vc_handle h1, vc_handle h2, vc_handle h3,
vc_handle h4)
{
vc_putValueF(h1,"10",’b’);
vc_putValueF(h2,"11",’o’);
vc_putValueF(h3,"10",’d’);
vc_putValueF(h4,"aff",’x’);
}

The Verilog code displays the following:

r1=10 in binary r1=2 in decimal

r2=11 in octal r2 =9 in decimal

r3=10 in decimal r3=1010 in binary

r4=aff in hex r4= 2815 in decimal

23-98

C Language Interface

void vc_putPointer(vc_handle, void*)
void *vc_getPointer(vc_handle)

These functions pass a generic type of pointer or string to a
vc_handle by reference. Do not use these functions for passing
Verilog data (the values of Verilog signals). Use them for passing C/
C++ data instead. vc_putPointer passes this data by reference to
Verilog and vc_getPointer receives this data in a pass by
reference from Verilog. You can also use these functions for passing
Verilog strings.

For example:

extern void passback(output string, input string);
extern void printer(input pointer);

module top;
reg [31:0] r2;
initial
begin
passback(r2,"abc");
printer(r2);
end
endmodule

This Verilog code passes the string "abc" to the passback C/C++
function by reference, and that function passes it by reference to reg
r2. The Verilog code then passes it by reference to the C/C++
function printer from reg r2.

passback(vc_handle h1, vc_handle h2)
{
vc_putPointer(h1, vc_getPointer(h2));
}

printer(vc_handle h)
{
printf("Procedure printer prints the string value %s\n\n",

23-99

C Language Interface

 vc_getPointer (h));
}

The function named printer prints the following:

Procedure printer prints the string value abc

void vc_StringToVector(char *, vc_handle)

Converts a C string (a pointer to a sequence of ASCII characters
terminated with a null character) into a Verilog string (a vector with
8-bit groups representing characters). For example:

extern "C" string FullPath(string filename);
// find full path to the file
// C string obtained from C domain

extern "A" void s2v(string, output reg[]);
// string-to-vector
// wrapper for vc_StringToVector().

`define FILE_NAME_SIZE 512

module Test;
 reg [`FILE_NAME_SIZE*8:1] file_name;
// this file_name will be passed to the Verilog code that
expects
// a Verilog-like string
.
.
.
 initial begin
s2v(FullPath("myStimulusFile"), file_name); // C-string to
Verilog-string
// bits of 'file_name' represent now 'Verilog string'
end
.
.
.
endmodule

23-100

C Language Interface

The C code is as follows:

void s2v(vc_handle hs, vc_handle hv) {
 vc_StringToVector((char *)vc_getPointer(hs), hv);

 }

void vc_VectorToString(vc_handle, char *)

Converts a vector value to a string value.

int vc_getInteger(vc_handle)

Same as vc_toInteger.

void vc_putInteger(vc_handle, int)

Passes an int value by reference through a vc_handle to a scalar
reg or bit or a vector bit that is 32 bits or less. For example:

void putter (vc_handle h1, vc_handle h2, vc_handle h3,
vc_handle h4)
{
int a,b,c,d;
a=1;
b=2;
c=3;
d=9999999;

vc_putInteger(h1,a);
vc_putInteger(h2,b);
vc_putInteger(h3,c);
vc_putInteger(h4,d);
}

vec32 *vc_4stVectorRef(vc_handle)

Returns a vec32 pointer to a four-state vector. Returns NULL if the
specified vc_handle is not to a four-state vector reg. For example:

23-101

C Language Interface

typedef struct vector_descriptor {
 int width; /* number ofbits */
 int is4stte; /* TRUE/FALSE */
} VD;

void WriteVector(vc_handle file_handle, vc_handle a_vector)
{
 FILE *fp;
 int n, size;
 vec32 *v;
 VD vd;
 fp = vc_getPointer(file_handle);

 /* write vector’s size and type */
 vd.is4state = vc_is4stVector(a_vector);
 vd.width = vc_width(a_vector);
 size = (vd.width + 31) >> 5; /* number of 32-bit chunks */
 /* printf("writing: %d bits, is 4 state: %d, #chunks:
 %d\n", vd.width, vd.is4state, size); */
 n = fwrite(&vd, sizeof(vd), 1, fp);
 if (n != 1) {
 printf("Error: write failed.\n");
 }

 /* write the vector into a file; vc_*stVectorRef
 is a pointer to the actual Verilog vector */
 if (vc_is4stVector(a_vector)) {
 n = fwrite(vc_4stVectorRef(a_vector), sizeof(vec32),
 size, fp);
 } else {
 n = fwrite(vc_2stVectorRef(a_vector), sizeof(U),
 size, fp);
 }
 if (n != size) {
 printf("Error: write failed for vector.\n");
 }
}

23-102

C Language Interface

U *vc_2stVectorRef(vc_handle)

Returns a U pointer to a bit vector that is larger than 32 bits. If you
specify a short bit vector (32 bits or fewer) this routine returns a
NULL value. For example:

extern void big_2state(input bit [31:0] r1,
 input bit [32:0] r2);

module test;
reg [31:0] r1;
reg [32:0] r2;
initial
begin
r1=4294967295;
r2=33’b100000000000000000000000000000010;
big_2state(r1,r2);
end
endmodule

In this example, the Verilog code declares a 32-bit vector bit, r1, and
a 33-bit vector bit, r2. The values of both are passed to the C/C++
function big_2state.

When you pass the short bit vector r1 to vc_2stVectorRef, it
returns a null value because it has fewer than 33 bits. This is not the
case when you pass bit vector r2 because it has more than 32 bits.
Notice that from right to left, the first 32 bits of r2 have a value of 2
and the MSB 33rd bit has a value of 1. This is significant in how the
C/C++ stores this data.

#include <stdio.h>
#include "DirectC.h"

big_2state(vc_handle h1, vc_handle h2)
{
 U u1,*up1,u2,*up2;
 int i;

23-103

C Language Interface

 int size;

 up1=vc_2stVectorRef(h1);
 up2=vc_2stVectorRef(h2);
 if (up1){ /* check for the null value returned to up1 */
 u1=*up1;} else{
 u1=0;
 printf("\nShort 2 state vector passed to up1\n");
 }
 if (up2){ /* check for the null value returned to up2 */
 size = vc_width (h2); /* to find out the number of bits */
 /* in h2 */
 printf("\n width of h2 is %d\n",size);
 size = (size + 31) >> 5; /* to get number of 32-bit chunks */
 printf("\n the number of chunks needed for h2 is %d\n\n",
 size);
 printf("loading into u2");
 for(i = size - 1; i >= 0; i--){
 u2=up2[i]; /* load a chunk of the vector */
 printf(" %x",up2[i]);}
 printf("\n");}
 else{
 u2=0;
 printf("\nShort 2 state vector passed to up2\n");}
}

In this example, the short bit vector is passed to the
vc_2stVectorRef routine, so it returns a null value to pointer up1.
Then the long bit vector is passed to the vc_2stVectorRef
routine, so it returns a pointer to the Verilog data for vector bit r2 to
pointer up2.

It checks for the null value in up1. If it doesn’t have a null value,
whatever it points to is passed to u1. If it does have a null value, the
function prints a message about the short bit vector. In this example,
you can expect it to print this message.

23-104

C Language Interface

Still later in the function, it checks for the null value in up2 and the
size of the long bit vector that is passed to the second parameter.
Then, because Verilog values are stored in 32-bit chucks in C/C++,
the function finds out how many chunks are needed to store the long
bit vector. It then loads one chunk at a time into u2 and prints the
chunk starting with the most significant bits. This function displays
the following:

Short 2 state vector passed to up1

 width of h2 is 33

 the number of chunks needed for h2 is 2

loading into u2 1 2

void vc_get4stVector(vc_handle, vec32 *)
void vc_put4stVector(vc_handle, vec32 *)

Passes a four-state vector by reference to a vc_handle to and from
an array in C/C++ function. vc_get4stVector receives the vector
from Verilog and passes it to the array and vc_put4stVector
passes the array to Verilog.

These routines work only if there are enough elements in the array
for all the bits in the vector. The array must have an element for every
32 bit in the vector plus an additional element for any remaining bits.
For example:

extern void copier (input reg [67:0] r1,
output reg [67:0] r2);

module top;

reg [67:0] r1,r2;

initial

23-105

C Language Interface

begin
r1 [67:65] = 3’b111;
r1 [64:33] = 32’bzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz;
r1 [32:0] = 32’b00000000000000000000000000000000;
copier(r1,r2);
$display("r1=%0b\n",r1);
$display("r2=%0b\n",r2);

end
endmodule

In this example, there are two 68-bit regs. Values are assigned to all
the bits of one reg and both of these regs are parameters to the C/
C++ function named copier.

copier(vc_handle h1, vc_handle h2)
{
vec32 holder[3];
vc_get4stVector(h1,holder);
vc_put4stVector(h2,holder);
}

This function declares a vec32 array of three elements named
holder. It uses three elements because its parameters are 68-bit
regs so you need an element for every 32 bits and one more for the
remaining four bits.

The Verilog code displays the following:

r1=111zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz000000000000000000000000000000000

r2=111zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz000000000000000000000000000000000

23-106

C Language Interface

void vc_get2stVector(vc_handle, U *)
void vc_put2stVector(vc_handle, U *)

Passes a two-state vector by reference to a vc_handle to and from
an array in C/C++ function. vc_get2stVector receives the vector
from Verilog and passes it to the array and vc_put4stVector
passes the array to Verilog.

There routines, just like the vc_get4stVector and
vc_put4stVector routines, work only if there are enough
elements in the array for all the bits in the vector. The array must
have an element for every 32 bit in the vector plus an additional
element for any remaining bits.

The only differences between these routines and the
vc_get4stVector and vc_put4stVector routines are the type
of data they pass, two- or four-state simulation values, and the type
you declare for the array in the C/C++ function.

UB *vc_MemoryRef(vc_handle)

Returns a pointer of type UB that points to a memory in Verilog. For
example:

extern void mem_doer (input reg [1:0] array [3:0]
 memory1, output reg [1:0] array
 [31:0] memory2);

module top;
reg [1:0] memory1 [3:0];
reg [1:0] memory2 [31:0];
initial
begin
memory1 [3] = 2’b11;
memory1 [2] = 2’b10;
memory1 [1] = 2’b01;
memory1 [0] = 2’b00;
mem_doer(memory1,memory2);

23-107

C Language Interface

$display("memory2[31]=%0d",memory2[31]);
end
endmodule

In this example, two memories, one with 4 addresses, memory1, the
other with 32 addresses, memory2 are declared. Youyou assign
values to the addresses of memory1, and then pass both memories
to the C/C++ function mem_doer.

#include <stdio.h>
#include "DirectC.h"

void mem_doer(vc_handle h1, vc_handle h2)
{
 UB *p1, *p2;
 int i;

 p1 = vc_MemoryRef(h1);
 p2 = vc_MemoryRef(h2);

 for (i = 0; i < 8; i++){
 memcpy(p2,p1,8);
 p2 += 8;
 }
}

The purpose of the C/C++ function mem_doer is to copy the four
elements in Verilog memory memory1 into the 32 elements of
memory2.

The vc_MemoryRef routines return pointers to the Verilog
memories and the machine memory locations they point to are also
pointed to by pointers p1 and p2. Pointer p1 points to the location of
Verilog memory memory1, and p2 points to the location of Verilog
memory memory2.

23-108

C Language Interface

The function uses a for loop to copy the data from Verilog memory
memory1 to Verilog memory memory2. It uses the standard memcpy
function to copy a total of 64 bytes by copying eight bytes eight times.

This example copies a total of 64 bytes because each element of
memory2 is only two bits wide, but for every eight bits in an element
in machine memory there are two bytes, one for data and another for
control. The bits in the control byte specify whether the data bit with
a value of 0 is actually 0 or Z, or whether the data bit with a value of
1 is actually 1 or X.

Figure 23-4 Storing Verilog Memory Elements in Machine Memory

0 1 2 3 4 5

data data data data control control control control

6 7

In an element in a Verilog memory, for each eight bits in the element
there is a data byte and a control byte with an additional set of bytes
for a remainder bit. So, if a memory had 9 bits it would need two data
bytes and two control bytes. If it had 17 bits it would need three data
bytes and three control bytes. All the data bytes precede the control
bytes.

Therefore, memory1 needs 8 bytes of machine memory (four for
data and four for control) and memory2 needs 64 bytes of machine
memory (32 for data and 32 for control). Therefore, the C/C++
function needs to copy 64 bytes.

The Verilog code displays the following:

memory2[31]=3

23-109

C Language Interface

UB *vc_MemoryElemRef(vc_handle, U indx)

Returns a pointer to an element (word, address or index) of a Verilog
memory. You specify the vc_handle of the memory and the
element. For example:

extern void mem_elem_doer(inout reg [25:1] array [3:0]
memory1);

module top;
reg [25:1] memory1 [3:0];
initial
begin
memory1 [0] = 25’bz00000000xxxxxxxx11111111;
$display("memory1 [0] = %0b\n", memory1[0]);
mem_add_doer(memory1);
$display("\nmemory1 [3] = %0b", memory1[3]);
end
endmodule

In this example, there is a Verilog memory with four addresses, each
element has 25 bits. This means that the Verilog memory needs
eight bytes of machine memory because there is a data byte and a
control byte for every eight bits in an element, with an additional data
and control byte for any remainder bits.

In this example, in element 0 the 25 bits are assigned, from right to
left, eight 1 bits, eight unknown x bits, eight 0 bits, and one high
impedance z bit.

#include <stdio.h>
#include "DirectC.h"

void mem_elem_doer(vc_handle h)
{

 U indx;
 UB *p1, *p2, t [8];

23-110

C Language Interface

 indx = 0;
 p1 = vc_MemoryElemRef(h, indx);
 indx = 3;
 p2 = vc_MemoryElemRef(h, indx);
 memcpy(p2,p1,8);

 memcpy(t,p2,8);
 printf(" %d from t[0], %d from t[1]\n",
 (int)t[0], (int) t[1]);
 printf(" %d from t[2], %d from t[3]\n",
 (int)t[2], (int) t[3]);
 printf(" %d from t[4], %d from t[5]\n",
 (int)t[4], (int)t[5]);
 printf(" %d from t[6], %d from t[7]\n",
 (int)t[6], (int)t[7]);

}

C/C++ function mem_elem_doer uses the vc_MemoryElemRef
routine to return pointers to addresses 0 and 3 in Verilog memory1
and pass them to UB pointers p1 and p2. The standard memcpy
routine then copies the eight bytes for address 0 to address 3.

The remainder of the function is additional code to show you data
and control bytes. The eight bytes pointed to by p2 are copied to
array t and then the elements of the array are printed.

The combined Verilog and C/C++ code displays the following:

memory1 [0] = z00000000xxxxxxxx11111111

 255 from t[0], 255 from t[1]
 0 from t[2], 0 from t[3]
 0 from t[4], 255 from t[5]
 0 from t[6], 1 from t[7]

memory1 [3] = z00000000xxxxxxxx11111111

23-111

C Language Interface

As you can see, function mem_elem_doer passes the contents of
the Verilog memory memory1 element 0 to element 3.

In array t, the elements contain the following:

[0] The data bits for the eight 1 values assigned to the element.

[1] The data bits for the eight X values assigned to the element

[2] The data bits for the eight 0 values assigned to the element

[3] The data bit for the Z value assigned to the element

[4] The control bits for the eight 1 values assigned to the element

[5] The control bits for the eight X values assigned to the element

[6] The control bits for the eight 0 values assigned to the element

[7] The control bit for the Z value assigned to the element

scalar vc_getMemoryScalar(vc_handle, U indx)

Returns the value of a one-bit memory element. For example:

extern void bitflipper (inout reg array [127:0] mem1);

module test;
reg mem1 [127:0];
initial
begin
mem1 [0] = 1;
$display("mem1[0]=%0d",mem1[0]);
bitflipper(mem1);
$display("mem1[0]=%0d",mem1[0]);
$finish;
end
endmodule

In this example of Verilog code, a memory with 128 one-bit elements,
assign a value to element 0 is declared, and display its value before
and after you cyouall a C/C++ function named bitflipper.

#include <stdio.h>

23-112

C Language Interface

#include "DirectC.h"

void bitflipper(vc_handle h)
{
scalar holder=vc_getMemoryScalar(h, 0);
holder = ! holder;
vc_putMemoryScalar(h, 0, holder);
}

In this example, a variable of type scalar, named holder, to hold the
value of the one-bit Verilog memory element is declared. The routine
vc_getMemoryScalar returns the value of the element to the
variable. The value of holder is inverted and then the variable is
included as a parameter in the vc_putMemoryScalar routine to
pass the value to that element in the Verilog memory.

The Verilog code displays the following:

mem[0]=1
mem[0]=0

void vc_putMemoryScalar(vc_handle, U indx, scalar)

Passes a value of type scalar to a Verilog memory element. You
specify the memory by vc_handle and the element by the indx
parameter. This routine is used in the previous example.

int vc_getMemoryInteger(vc_handle, U indx)

Returns the integer equivalent of the data bits in a memory element
whose bit-width is 32 bits or less. For example:

extern void mem_elem_halver (inout reg [] array [] memX);

module test;
reg [31:0] mem1 [127:0];
reg [7:0] mem2 [1:0];
initial

23-113

C Language Interface

begin
mem1 [0] = 999;
mem2 [0] = 8’b1111xxxx;
$display("mem1[0]=%0d",mem1[0]);
$display("mem2[0]=%0d",mem2[0]);
mem_elem_halver(mem1);
mem_elem_halver(mem2);
$display("mem1[0]=%0d",mem1[0]);
$display("mem2[0]=%0d",mem2[0]);
$finish;
end
endmodule

In this example, when the C/C++ function is declared on our Verilog
code it does not specify a bit-width or element range for the inout
argument to the mem_elem_halver C/C++ function, because in the
Verilog code you call the C/C++ function twice, with a different
memory each time and these memories have different bit widths and
different element ranges.

Notice that you assign a value that included X values to the 0
element in memory mem2.

#include <stdio.h>
#include "DirectC.h"

void mem_elem_halver(vc_handle h)
{
int i =vc_getMemoryInteger(h, 0);
i = i/2;
vc_putMemoryInteger(h, 0, i);
}

This C/C++ function inputs the value of an element and then outputs
half that value. The vc_getMemoryInteger routine returns the
integer equivalent of the element you specify by vc_handle and

23-114

C Language Interface

index number, to an int variable i. The function halves the value in
i. Then the vc_putMemoryInteger routine passes the new value
by value to the specified memory element.

The Verilog code displays the following before the C/C++ function is
called twice with the different memories as the arguments:

mem1[0]=999
mem2[0]=X

Element mem2[0] has an X value because half of its binary value
is x and the value is displayed with the %d format specification and,
in this example, a partially unknown value is just an unknown value.
After the second call of the function, the Verilog code displays:

mem1[1]=499
mem2[0]=127

This occurs because before calling the function, mem1[0] had a
value of 999, and after the call it has a value of 499 which is as close
as it can get to half the value with integer values.

Before calling the function, mem2[0] had a value of 8’b1111xxxx,
but the data bits for the element would all be 1s (11111111). It’s the
control bits that specify 1 from x and this routine only deals with the
data bits. So, the vc_getMemoryInteger routine returned an
integer value of 255 (the integer equivalent of the binary 11111111) to
the C/C++ function, which is why the function outputs the integer
value 127 to mem2[0].

void vc_putMemoryInteger(vc_handle, U indx, int)

Passes an integer value to a memory element that is 32 bits or fewer.
You specify the memory by vc_handle and the element by the
indx argument. This routine is used in the previous example.

23-115

C Language Interface

void vc_get4stMemoryVector(vc_handle, U indx, vec32 *)

Copies the value in an Verilog memory element to an element in an
array. This routine copies both the data and control bytes. It copies
them into an array of type vec32 which is defined as follows:

typedef struct { U c; U d;} vec32;

Therefore, type vec32 has two members, c and d, for control and
data information. This routine always copies to the 0 element of the
array. For example:

extern void mem_elem_copier (inout reg [] array [] memX);

module test;
reg [127:0] mem1 [127:0];
reg [7:0] mem2 [64:0];
initial
begin
mem1 [0] = 999;
mem2 [0] = 8’b0000000z;
$display("mem1[0]=%0d",mem1[0]);
$display("mem2[0]=%0d",mem2[0]);
mem_elem_copier(mem1);
mem_elem_copier(mem2);
$display("mem1[32]=%0d",mem1[32]);
$display("mem2[32]=%0d",mem2[32]);
$finish;
end
endmodule

In the Verilog code, a C/C++ function is declared that is called twice.
Notice the value assigned to mem2[0]. The C/C++ function copies
the values to another element in the memory.

#include <stdio.h>
#include "DirectC.h"

void mem_elem_copier(vc_handle h)

23-116

C Language Interface

{
vec32 holder[1];
vc_get4stMemoryVector(h,0,holder);
vc_put4stMemoryVector(h,32,holder);
printf(" holder[0].d is %d holder[0].c is %d\n\n",
 holder[0].d,holder[0].c);
}

This C/C++ function declares an array of type vec32. You must
declare an array for this type, but as shown here, it is specified that
it has oyounly one element. The vc_get4stMemoryVector
routine copies the data from the Verilog memory element (in this
example, specified as the 0 element) to the 0 element of the vec32
array. It always copies to the 0 element. The
vc_put4stMemoryVector routine copies the data from the vec32
array to the Verilog memory element (in this case, element 32).

The call to printf is to show you how the Verilog data is stored in
element 0 of the vec32 array.

The Verilog and C/C++ code display the following:

mem1[0]=999
mem2[0]=Z
 holder[0].d is 999 holder[0].c is 0

 holder[0].d is 768 holder[0].c is 1

mem1[32]=999
mem2[32]=Z

As you can see, the function does copy the Verilog data from one
element to another in both memories. When the function is copying
the 999 value, the c (control) member has a value of 0; when it is
copying the 8’b0000000z value, the c (control) member has a value
of 1 because one of the control bits is 1, the rest are 0.

23-117

C Language Interface

void vc_put4stMemoryVector(vc_handle, U indx, vec32 *)

Copies Verilog data from a vec32 array to a Verilog memory
element. This routine is used in the previous example.

void vc_get2stMemoryVector(vc_handle, U indx, U *)

Copies the data bytes, but not the control bytes, from a Verilog
memory element to an array in your C/C++ function. For example, if
you use the Verilog code from the previous example, but simulate in
two-state and use the following C/C++ code:

#include <stdio.h>
#include "DirectC.h"

void mem_elem_copier(vc_handle h)
{
U holder[1];
vc_get2stMemoryVector(h,0,holder);
vc_put2stMemoryVector(h,32,holder);

}

The only difference here is that you declare the array to be of type U
instead and you do not copy the control bytes, because there are
none in two-state simulation.

void vc_put2stMemoryVector(vc_handle, U indx, U *)

Copies Verilog data from a U array to a Verilog memory element.
This routine is used in the previous example.

23-118

C Language Interface

void vc_putMemoryValue(vc_handle, U indx, char *)

This routine works like the vc_putValue routine except that is for
passing values to a memory element instead of to a reg or bit. You
enter an argument to specify the element (index) to which you want
the routine to pass the value. For example:

#include <stdio.h>
#include "DirectC.h"

void check_vc_putvalue(vc_handle h)
{
 vc_putMemoryValue(h,0,"10xz");
}

void vc_putMemoryValueF(vc_handle, U indx, char, char *)

This routine works like the vc_putValueF routine except that it is
for passing values to a memory element instead of to a reg or bit. You
enter an argument to specify the element (index) to which you want
the routine to pass the value. For example:

#include <stdio.h>
#include "DirectC.h"

void assigner (vc_handle h1, vc_handle h2, vc_handle h3,
vc_handle h4)
{
vc_putMemoryValueF(h1, 0, "10", ’b’);
vc_putMemoryValueF(h2, 0, "11", ’o’);
vc_putMemoryValueF(h3, 0, "10", ’d’);
vc_putMemoryValueF(h4, 0, "aff", ’x’);
}

23-119

C Language Interface

char *vc_MemoryString(vc_handle, U indx)

This routine works like the vc_toString routine except that it used
is for passing values to/from memory elements instead of to a reg or
bit. You enter an argument to specify the element (index) whose
value you want the routine to pass. For example:

extern void memcheck_vec(inout reg[] array[]);

module top;
reg [0:7] mem[0:7];
integer i;

initial
begin
 for(i=0;i<8;i=i+1) begin

 mem[i] = 8’b00000111;
 $display("Verilog code says \"mem [%0d] = %0b\"",

 i,mem[i]);
 end

 memcheck_vec(mem);
end

endmodule

The C/C++ function that calls vc_MemoryString is as follows:

#include <stdio.h>
#include "DirectC.h"

void memcheck_vec(vc_handle h)
{

 int i;

 for(i= 0; i<8;i++) {
 printf("C/C++ code says \"mem [%d] is %s
\"\n",i,vc_MemoryString(h,i));

23-120

C Language Interface

 }
}

The Verilog and C/C++ code display the following:

Verilog code says "mem [0] = 111"
Verilog code says "mem [1] = 111"
Verilog code says "mem [2] = 111"
Verilog code says "mem [3] = 111"
Verilog code says "mem [4] = 111"
Verilog code says "mem [5] = 111"
Verilog code says "mem [6] = 111"
Verilog code says "mem [7] = 111"
C/C++ code says "mem [0] is 00000111 "
C/C++ code says "mem [1] is 00000111 "
C/C++ code says "mem [2] is 00000111 "
C/C++ code says "mem [3] is 00000111 "
C/C++ code says "mem [4] is 00000111 "
C/C++ code says "mem [5] is 00000111 "
C/C++ code says "mem [6] is 00000111 "
C/C++ code says "mem [7] is 00000111 "

char *vc_MemoryStringF(vc_handle, U indx, char)

This routine works like the vc_MemoryString function except that
you specify a radix with the third parameter. The valid radixes are
’b’, ’o’, ’d’, and ’x’. For example:

extern void memcheck_vec(inout reg[] array[]);

module top;
reg [0:7] mem[0:7];

initial begin
mem[0] = 8’b00000111;
$display("Verilog code says \"mem[0]=%0b radix b\"",mem[0]);
$display("Verilog code says \"mem[0]=%0o radix o\"",mem[0]);
$display("Verilog code says \"mem[0]=%0d radix d\"",mem[0]);
$display("Verilog code says \"mem[0]=%0h radix h\"",mem[0]);
memcheck_vec(mem);

23-121

C Language Interface

end

endmodule

The C/C++ function that calls vc_MemoryStringF is as follows:

#include <stdio.h>
#include "DirectC.h"

void memcheck_vec(vc_handle h)
{

printf("C/C++ code says \"mem [0] is %s radix b\"\n",
 vc_MemoryStringF(h,0,’b’));
printf("C/C++ code says \"mem [0] is %s radix o\"\n",
 vc_MemoryStringF(h,0,’o’));
printf("C/C++ code says \"mem [0] is %s radix d\"\n",
 vc_MemoryStringF(h,0,’d’));
printf("C/C++ code says \"mem [0] is %s radix x\"\n",
 vc_MemoryStringF(h,0,’x’));
}

The Verilog and C/C++ code display the following:

Verilog code says "mem [0]=111 radix b"
Verilog code says "mem [0]=7 radix o"
Verilog code says "mem [0]=7 radix d"
Verilog code says "mem [0]=7 radix h"
C/C++ code says "mem [0] is 00000111 radix b"
C/C++ code says "mem [0] is 007 radix o"
C/C++ code says "mem [0] is 7 radix d"
C/C++ code says "mem [0] is 07 radix x"

void vc_FillWithScalar(vc_handle, scalar)

This routine fills all the bits or a reg, bit, or memory with all 1, 0, x, or
z values (you can choose only one of these four values).

23-122

C Language Interface

You specify the value with the scalar argument, which can be a
variable of the scalar type. The scalar type is defined in the
DirectC.h file as:

typedef unsigned char scalar;

You can also specify the value with integer arguments as follows:

0 Specifies 0 values

1 Specifies 1 values

2 Specifies z values

3 Specifies x values

If you declare a scalar type variable, enter it as the argument, and
assign only the 0, 1, 2, or 3 integer values to it, they specify filling the
Verilog reg, bit, or memory with the 0, 1, z, or x values.

You can use the following definitions from the DirectC.h file to
specify these values:

#define scalar_0 0
#define scalar_1 1
#define scalar_z 2
#define scalar_x 3

The following Verilog and C/C++ code shows you how to use this
routine to fill a reg and a memory using the following values:

extern void filler (inout reg [7:0] r1,
 inout reg [7:0] array [1:0] r2,
 inout reg [7:0] array [1:0] r3);
module top;
reg [7:0] r1;
reg [7:0] r2 [1:0];
reg [7:0] r3 [1:0];
initial

23-123

C Language Interface

begin
$display("r1 is %0b",r1);
$display("r2[0] is %0b",r2[0]);
$display("r2[1] is %0b",r2[1]);
$display("r3[0] is %0b",r3[0]);
$display("r3[1] is %0b",r3[1]);
filler(r1,r2,r3);
$display("r1 is %0b",r1);
$display("r2[0] is %0b",r2[0]);
$display("r2[1] is %0b",r2[1]);
$display("r3[0] is %0b",r3[0]);
$display("r3[1] is %0b",r3[1]);
end
endmodule

The C/C++ code for the function is as follows:

#include <stdio.h>
#include "DirectC.h"

filler(vc_handle h1, vc_handle h2, vc_handle h3)
{
scalar s = 1;
vc_FillWithScalar(h1,s);
vc_FillWithScalar(h2,0);
vc_FillWithScalar(h3,scalar_z);
}

The Verilog code displays the following:

r1 is xxxxxxxx
r2[0] is xxxxxxxx
r2[1] is xxxxxxxx
r3[0] is xxxxxxxx
r3[1] is xxxxxxxx
r1 is 11111111
r2[0] is 0
r2[1] is 0
r3[0] is zzzzzzzz
r3[1] is zzzzzzzz

23-124

C Language Interface

char *vc_argInfo(vc_handle)

Returns a string containing the information about the argument in the
function call in your Verilog source code. For example, if you have
the following Verilog source code:

extern void show(reg [] array []);
module tester;
reg [31:0] mem [7:0];
reg [31:0] mem2 [16:1];
reg [64:1] mem3 [32:1];
initial begin
 show(mem);
 show(mem2);
 show(mem3);
end
endmodule

Verilog memories mem, mem2, and mem3 are all arguments to the
function named show. If that function is defined as follows:

#include <stdio.h>
#include "DirectC.h"

void show(vc_handle h)
{
 printf("%s\n", vc_argInfo(h)); /* notice \n after the
string */
}

This routine prints the following:

input reg[0:31] array[0:7]
input reg[0:31] array[0:15]
input reg[0:63] array[0:31]

23-125

C Language Interface

int vc_Index(vc_handle, U, ...)

Internally, a multi-dimensional array is always stored as a one-
dimensional array and this makes a difference in how it can be
accessed. In order to avoid duplicating many of the previous access
routines for multi-dimensional arrays, the access process is split into
two steps. The first step, which this routine performs, is to translate
the multiple indices into a single index of a linearized array. The
second step is for another access routine to perform an access
operation on the linearized array.

This routine returns the index of a linearized array or returns -1 if the
U-type parameter is not an index of a multi-dimensional array or the
vc_handle parameter is not a handle to a multi-dimensional array of
the reg data type.

/* get the sum of all elements from a 2-dimensional slice
 of a 4-dimensional array */
int getSlice(vc_handle vh_array, vc_handle vh_indx1,
vc_handle vh_indx2) {

 int sum = 0;
 int i1, i2, i3, i4, indx;

 i1 = vc_getInteger(vh_indx1);
 i2 = vc_getInteger(vh_indx2);
 /* loop over all possible indices for that slice */
 for (i3 = 0; i3 < vc_mdaSize(vh_array, 3); i3++) {

 for (i4 = 0; i4 < vc_mdaSize(vh_array, 4); i4++) {

 indx = vc_Index(vh_array, i1, i2, i3, i4);
 sum += vc_getMemoryInteger(vh_array, indx);
 }
 }
 return sum;
}

23-126

C Language Interface

There are specialized, more efficient versions for two- and three-
dimensional arrays. They are as follows:

int vc_Index2(vc_handle, U, U)

Specialized version of vc_Index() where the two U parameters
are the indices in a two-dimensional array.

int vc_Index3(vc_handle, U, U, U)

Specialized version of vc_Index() where the two U parameters
are the indices in a three-dimensional array.

U vc_mdaSize(vc_handle, U)

Returns the following:

• If the U-type parameter has a value of 0, it returns the number of
indices in the multi-dimensional array.

• If the U-type parameter has a value greater than 0, it returns the
number of values in the index specified by the parameter. There
is an error condition if this parameter is out of the range of indices.

• If the vc_handle parameter is not an array, it returns 0.

Summary of Access Routines

Table 23-10 summarizes all the access routines described in the
previous section.

23-127

C Language Interface

Table 23-10 Summary of Access Routines
 Access Routine Description

int vc_isScalar(vc_handle) Returns a 1 value if the vc_handle is for a one-bit
reg or bit. It returns a 0 value for a vector reg or bit
or any memory including memories with scalar
elements.

int vc_isVector(vc_handle) This routine returns a 1 value if the vc_handle is to
a vector reg or bit. It returns a 0 value for a vector
bit or reg or any memory.

int vc_isMemory(vc_handle) This routine returns a 1 value if the vc_handle is to
a memory. It returns a 0 value for a bit or reg that is
not a memory.

int vc_is4state(vc_handle) This routine returns a 1 value if the vc_handle is to
a reg or memory that simulates with four states. It
returns a 0 value for a bit or a memory that simulates
with two states.

int vc_is2state(vc_handle) This routine does the opposite of the vc_is4state
routine.

int
vc_is4stVector(vc_handle)

This routine returns a 1 value if the vc_handle is to
a vector reg. It returns a 0 value if the vc_handle is
to a scalar reg, scalar or vector bit, or to a memory.

int
vc_is2stVector(vc_handle)

This routine returns a 1 value if the vc_handle is to
a vector bit. It returns a 0 value if the vc_handle is
to a scalar bit, scalar or vector reg, or to a memory.

int vc_width(vc_handle) Returns the width of a vc_handle.

int
vc_arraySize(vc_handle)

Returns the number of elements in a memory.

scalar
vc_getScalar(vc_handle)

Returns the value of a scalar reg or bit.

void
vc_putScalar(vc_handle,
scalar)

Passes the value of a scalar reg or bit to a vc_handle
by reference.

char vc_toChar(vc_handle) Returns the 0, 1, x, or z character.

int
vc_toInteger(vc_handle)

Returns an int value for a vc_handle to a scalar bit
or a vector bit of 32 bits or less.

char
*vc_toString(vc_handle)

Returns a string that contains the 1, 0, x, and z
characters.

23-128

C Language Interface

char
*vc_toStringF(vc_handle,
char)

Returns a string that contains the 1, 0, x, and z
characters and allows you to specify the format or
radix for the display. The char parameter can be ’b’,
’o’, ’d’, or ’x’.

void
vc_putReal(vc_handle,
double)

Passes by reference a real (double) value to a
vc_handle.

double
vc_getReal(vc_handle)

Returns a real (double) value from a vc_handle.

void
vc_putValue(vc_handle,
char *)

This function passes, by reference through the
vc_handle, a value represented as a string
containing the 0, 1, x, and z characters.

void
vc_putValueF(vc_handle,
char, char *)

This function passes by reference through the
vc_handle a value for which you specify a radix with
the third parameter. The valid radixes are ’b’, ’o’, ’d’,
and ’x’.

void
vc_putPointer(vc_handle,
void*)
void
*vc_getPointer(vc_handle)

These functions pass, by reference to a vc_handle,
a generic type of pointer or string. Do not use these
functions for passing Verilog data (the values of
Verilog signals). Use it for passing C/C++ data.
vc_putPointer passes this data by reference to
Verilog and vc_getPointer receives this data in a
pass by reference from Verilog. You can also use
these functions for passing Verilog strings.

void
vc_StringToVector(char *,
vc_handle)

Converts a C string (a pointer to a sequence of ASCII
characters terminated with a null character) into a
Verilog string (a vector with 8-bit groups
representing characters).

void
vc_VectorToString(vc_handl
e, char *)

Converts a vector value to a string value.

int
vc_getInteger(vc_handle)

Same as vc_toInteger.

void
vc_putInteger(vc_handle,
int)

Passes an int value by reference through a
vc_handle to a scalar reg or bit or a vector bit that
is 32 bits or less.

 Access Routine Description

23-129

C Language Interface

vec32
*vc_4stVectorRef(vc_handle
)

Returns a vec32 pointer to a four state vector.
Returns NULL if the specified vc_handle is not to a
four-state vector reg.

U
*vc_2stVectorRef(vc_handle
)

This routine returns a U pointer to a bit vector that
is larger than 32 bits. If you specify a short bit vector
(32 bits or fewer), this routine returns a NULL value.

void
vc_get4stVector(vc_handle,
vec32 *)
void
vc_put4stVector(vc_handle,
vec32 *)

Passes a four-state vector by reference to a
vc_handle to and from an array in C/C++ function.
vc_get4stVector receives the vector from Verilog
and passes it to the array. vc_put4stVector passes
the array to Verilog.

void
vc_get2stVector(vc_handle,
U *)
void
vc_put2stVector(vc_handle,
U *)

Passes a two state vector by reference to a
vc_handle to and from an array in C/C++ function.
vc_get2stVector receives the vector from Verilog
and passes it to the array. vc_put4stVector passes
the array to Verilog.

UB
*vc_MemoryRef(vc_handle)

Returns a pointer of type UB that points to a memory
in Verilog.

UB
*vc_MemoryElemRef(vc_handl
e, U indx)

Returns a pointer to an element (word, address or
index) of a Verilog memory. You specify the
vc_handle of the memory and the element.

scalar
vc_getMemoryScalar(vc_hand
le, U indx)

Returns the value of a one-bit memory element.

void
vc_putMemoryScalar(vc_hand
le, U indx, scalar)

Passes a value, of type scalar, to a Verilog memory
element. You specify the memory by vc_handle and
the element by the indx parameter.

int
vc_getMemoryInteger(vc_han
dle, U indx)

Returns the integer equivalent of the data bits in a
memory element whose bit-width is 32 bits or less.

void
vc_putMemoryInteger(vc_han
dle, U indx, int)

Passes an integer value to a memory element that
is 32 bits or fewer. You specify the memory by
vc_handle and the element by the indx parameter.

 Access Routine Description

23-130

C Language Interface

void
vc_get4stMemoryVector(vc_h
andle, U indx, vec32 *)

Copies the value in an Verilog memory element to
an element in an array. This routine copies both the
data and control bytes. It copies them into an array
of type vec32.

void
vc_put4stMemoryVector(vc_h
andle, U indx,
vec32 *)

Copies Verilog data from a vec32 array to a Verilog
memory element.

void
vc_get2stMemoryVector(vc_h
andle, U indx, U *)

Copies the data bytes, but not the control bytes, from
a Verilog memory element to an array in your C/C++
function.

void
vc_put2stMemoryVector(vc_h
andle, U indx, U *)

Copies Verilog data from a U array to a Verilog
memory element.

void
vc_putMemoryValue(vc_handl
e, U indx, char *)

This routine works like the vc_putValue routine
except that it is for passing values to a memory
element instead of to a reg or bit. You enter an
parameter to specify the element (index) you want
the routine to pass the value to.

void
vc_putMemoryValueF(vc_hand
le, U indx, char, char *)

This routine works like the vc_putValueF routine
except that it is for passing values to a memory
element instead of to a reg or bit. You enter an
parameter to specify the element (index) you want
the routine to pass the value to.

char
*vc_MemoryString(vc_handle
, U indx)

This routine works like the vc_toString routine
except that it is for passing values to from memory
element instead of to a reg or bit. You enter an
parameter to specify the element (index) you want
the routine to pass the value of.

char
*vc_MemoryStringF(vc_handl
e, U indx, char)

This routine works like the vc_MemoryString
function except that you specify a radix with the third
parameter. The valid radixes are ’b’, ’o’, ’d’, and ’x’.

void
vc_FillWithScalar(vc_handl
e, scalar)

This routine fills all the bits or a reg, bit, or memory
with all 1, 0, x, or z values (you can choose only one
of these four values).

 Access Routine Description

23-131

C Language Interface

Enabling C/C++ Functions

The +vc compile-time option is required for enabling the direct call
of C/C++ functions in your Verilog code. When you use this option
you can enter the C/C++ source files on the vcs command line.
These source files must have a .c extension.

There are suffixes that you can append to the +vc option to enable
additional features. You can append all of them to the +vc option in
any order. For example:

+vc+abstract+allhdrs+list

char
*vc_argInfo(vc_handle)

Returns a string containing the information about the
parameter in the function call in your Verilog source
code.

int vc_Index(vc_handle, U,
...)

Returns the index of a linearized array, or returns -
1 if the U-type parameter is not an index of a multi-
dimensional array, or the vc_handle parameter is
not a handle to a multi-dimensional array of the reg
data type.

int vc_Index2(vc_handle, U,
U)

Specialized version of vc_Index() where the two U
parameters are the indices in a two-dimensional
array.

int vc_Index3(vc_handle, U,
U, U)

Specialized version of vc_Index() where the two U
parameters are the indexes in a three-dimensional
array.

U vc_mdaSize(vc_handle, U) If the U type parameter has a value of 0, it returns
the number of indices in multi-dimensional array. If
the U type parameter has a value greater than 0, it
returns the number of values in the index specified
by the parameter. There is an error condition if this
parameter is out of the range of indices. If the
vc_handle parameter is not a multi-dimensional
array, it returns 0.

 Access Routine Description

23-132

C Language Interface

These suffixes specify the following:

+abstract

Specifies that you are using abstract access through vc_handles
to the data structures for the Verilog arguments.

When you include this suffix, all functions use abstract access
except those with "C" in their declaration; these exceptions use
direct access.

If you omit this suffix, all functions use direct access except those
wit the "A" in their declaration; these exceptions use abstract
access.

+allhdrs

Writes the vc_hdrs.h file that contains external function
declarations that you can use in your Verilog code.

+list

Displays on the screen all the functions that you called in your
Verilog source code. In this display, void functions are called
procedures. The following is an example of this display:

__
The following external functions have been actually
called:
 procedure receive_string
 procedure passbig2
 function return_string
 procedure passbig1
 procedure memory_rewriter
 function return_vector_bit
 procedure receive_pointer
 procedure incr
 function return_pointer

23-133

C Language Interface

 function return_reg
_____________________ [DirectC interface] _________

Mixing Direct And Abstract Access

If you want some C/C++ functions to use direct access and others to
use abstract access, you can do so by using a combination of "A"
or "C" entries for abstract or direct access in the declaration of the
function and the use of the +abstract suffix. The following table
shows the result of these combinations:

no +abstract suffix include the +abstract suffix

extern
(no mode specified)

direct access abstract access

extern "A" abstract access abstract access

extern "C" direct access direct access

Specifying the DirectC.h File

The C/C++ functions need the DirectC.h file in order to use
abstract access. This file is located in $VCS_HOME/include (and
there is a symbolic link to it at $VCS_HOME/platform/lib/
DirectC.h). You need to tell VCS where to look for it. You can
accomplish this in the following three ways:

• Copy the $VCS_HOME/include/DirectC.h file to your current
directory. VCS will always look for this file in your current directory.

• Establish a link in the current directory to the $VCS_HOME/
include/DirectC.h file.

• Include the -CC option as follows:

-CC "-I$VCS_HOME/include"

23-134

C Language Interface

Extended BNF for External Function Declarations

A partial EBNF specification for external function declaration is as
follows:

source_text ::= description +
description ::= module | user_defined_primitive |
extern_function_declaration
extern_function_declaration ::= extern access_mode
extern_func_type extern_function_name (
list_of_extern_func_args ?) ;
access_mode ::= ("A" | "C") ?

Note:

If access mode is not specified, then the command-line option
+abstract rules; default mode is "C".]

extern_func_type ::= void | reg | bit |
DirectC_primitive_type | bit_vector_type
bit_vector_type ::= bit [constant_expression :
constant_expression]
list_of_extern_func_args ::= extern_func_arg
(, extern_func_arg) *
extern_func_arg ::= arg_direction ? arg_type
optional_arg_name ?

Note:

Argument direction (i.e., input, output, inout) applies to all
arguments that follow it until the next direction occurs; the default
direction is input.

arg_direction ::= input | output | inout
arg_type ::= bit_or_reg_type | array_type |
DirectC_primitive_type
bit_or_reg_type ::= (bit | reg) optional_vector_range ?
optional_vector_range ::= [(constant_expression :
constant_expression) ?]
array_type ::= bit_or_reg_type array [(constant_expression
: constant_expression) ?]
DirectC_primitive_type ::= int | real | pointer | string

23-135

C Language Interface

In this specification, extern_function_name and
optional_arg_name are user-defined identifiers.

23-136

C Language Interface

24-1

SAIF Support

24
SAIF Support 3

The Synopsys Power Compiler enables you to perform power
analysis and power optimization for your designs by entering the
power command at the vcs prompt. This command outputs
Switching Activity Interchange Format (SAIF) files for your design.

SAIF files support signals and ports for monitoring as well as
constructs such as generates, enumerated types, and integers.

This chapter covers the following topics:

• Using SAIF Files

• SAIF System Tasks

• The Flows to Generate a Backward SAIF File

• SAIF Support for Two-Dimensional Memories in v2k Designs

• UCLI SAIF Dumping

24-2

SAIF Support

• Criteria for Choosing Signals for SAIF Dumping

Using SAIF Files

VCS has native SAIF support so you no longer need to specify any
compile-time options to use SAIF files. If you want to switch to the
old flow of dumping SAIF files with the PLI, you can continue to give
the option -P $VPOWER_TAB $VPOWER_LIB to VCS, and the flow
will not use the native support.

Note the following when using VCS native support for SAIF files:

• VCS does not need any additional switches.

• VCS does not need a Power Compiler specific tab file (and the
corresponding library)

• VCS does not need any additional settings.

• Functionality is built into VCS.

SAIF System Tasks

This section describes SAIF system tasks that you can use at the
command line prompt.

$set_toggle_region

Specifies a module instance (or scope) for which VCS records
switching activity in the generated SAIF file. Syntax:

 $set_toggle_region(instance[, instance]);

24-3

SAIF Support

$toggle_start

Instructs VCS to start monitoring switching activity.

Syntax:

$toggle_start();

$toggle_stop

Instructs VCS to stop monitoring switching activity.

Syntax

$toggle_stop();

$toggle_reset

Sets the toggle counter to 0 for all the nets in the current toggle
region.

Syntax:

$toggle_reset();

$toggle_report

Reports switching activity to an output file.

Syntax:

$toggle_report("outputFile", synthesisTimeUnit,
 Scope);

This task has a slight change in native SAIF implementation
compared to PLI-based implementation. VCS considers only the
arguments specified here for processing. Other arguments have
no meaning.

VCS does not report signals in modules defined under the
‘celldefine compiler directive.

$read_lib_saif

24-4

SAIF Support

Allows you to read in a state dependent and path dependent
(SDPD) library forward SAIF file. It registers the state and path
dependent information on the scope. It also monitors the internal
nets of the design.

Syntax:

$read_lib_saif("inputFile");

$set_gate_level_monitoring

Allows you to turn on or off the monitoring of nets in the design.

Syntax:

$set_gate_level_monitoring("on" | "rtl_on");

The "on" and "rtl_on" keyword arguments are called policies.

"rtl_on"
Monitors all reg, tri, and trireg data objects for toggles. Monitors
other types of nets for toggles if they are cell highconn (ports
that connect toward the top of the design hierarchy in a module
declared to be a cell).

"on"
Monitors all net type of objects for toggles. Monitors reg data
objects if they are cell highconn. This is the default monitoring
policy.

Note:

Verilog memories, Multi-dimensional arrays, and
SystemVerilog data objects are supported with an extended
syntax:

$set_gate_level_monitoring("on" | "rtl_on",
"mda" | "sv");

24-5

SAIF Support

You include the mda argument for Verilog memories and multi-
dimensional arrays, the sv argument for SystemVerilog data
objects.

For more details on these task calls, refer to the Power Compiler
User Guide.

Note:

The $read_mpm_saif, $toggle_set, and $toggle_count
tasks in the PLI-based vpower.tab file are obsolete and no longer
supported.

The Flows to Generate a Backward SAIF File

You can generate the following kinds of backward (or output) SAIF
files:

• an SDPD backward SAIF file — using a library forward (or input)
SAIF file

• a non-SDPD backward SAIF file — without using a library forward
(or input) SAIF file.

Generating an SDPD Backward SAIF File

To generate an SDPD backward SAIF file, include the SAIF system
tasks in the module definition containing the
$read_lib_saif("inputFile") system task.

For example:

initial begin
 $read_lib_saif("inputFile");

24-6

SAIF Support

 $set_toggle_region(Scope);
 // initialization of Verilog signals

 $toggle_start;
 // testbench

 $toggle_stop;
 $toggle_report("outputFile", timeUnit,Scope);
end

The $set_toggle_region(Scope) system task's scope
argument must be one level higher in the design hierarchy than the
scope of the module in the library forward SAIF file, for which you
intend VCS MX to generate the backward SAIF file.

For example, if VCS monitors instance
top.u_dut.u_saif_module, the argument to the
$set_toggle_region system task is top.u_dut, as follows:

$set_toggle_region(top.u_dut);

Enclose the modules listed in the library forward SAIF file, those from
which you intend VCS to monitor and generate the backward SAIF
file, between ‘celldefine and ‘endcelldefine compiler
directives.

Generating a Non-SPDP Backward SAIF File

If you are not including a library forward (or input) SAIF file, include
the $set_gate_level_monitoring("on") system task with the
other SAIF system tasks.

For example:

initial begin

24-7

SAIF Support

 $set_gate_level_monitoring("on");
 $set_toggle_region(Scope);
 // initialization of Verilog signals, and then:
 $toggle_start;
 // testbench

 $toggle_stop;
 $toggle_report("outputFile", timeUnit,Scope);
end

SAIF Support for Two-Dimensional Memories in v2k
Designs

SAIF supports monitoring of two-dimensional memories in v2k
designs.

You must pass the mda keyword to the
$set_gate_level_monitoring system task to monitor two-
dimensional memories in v2k designs.

Note:

You must pass the +memcbk compile-time option at vcs
command-line, to dump two-dimensional wire or register.

If you want to dump through the UCLI command, you must pass the
mda string to the power -gate_level command, as shown in the
below section.

UCLI SAIF Dumping

The following is the use model for UCLI SAIF dumping:

24-8

SAIF Support

% simv –ucli
ucli% power –gate_level on mda
ucli% power <scope>
ucli% power –enable
ucli% run 100
ucli% power –disable
ucli% power –report <saif_filename> <timeUnit> <modulename>
ucli% quit

Criteria for Choosing Signals for SAIF Dumping

VCS supports only scalar wire and reg, as well as vector wire and
reg, for monitoring. It does not consider wire/reg declared within
functions, tasks and named blocks for dumping. Also, it does not
support bit selects and part selects as arguments to
$set_toggle_region or $toggle_report. In addition, it
monitors cell highconns based on the policy.

25-1

Encrypting Source Files

25
Encrypting Source Files 1

You can use VCS to encrypt your HDL source files in such a way that
they can be used only with VCS. This chapter describes how to use
VCS to encrypt the source files for this purpose.

You can choose to encrypt only certain parts of your source files or
entire files using either of the following methods:

• “IEEE Verilog Standard 1364-2005 Encryption”

• “128-bit Advanced Encryption Standard”

• “Skipping Encrypted Source Code”

IEEE Verilog Standard 1364-2005 Encryption

VCS supports encryption of Verilog and SystemVerilog IP code in
protected envelopes as defined by the IEEE Standard 1364-2005.

25-2

Encrypting Source Files

In addition, VCS supports the recommendations from the IEEE
P1735 working group for encryption interoperability between
different encryption and decryption tools, denoted as “version 1” by
P1735.

Note:

SystemC encryption is not supported by this feature.

The following option tells VCS to encrypt the specified Verilog or
SystemVerilog source files according to the “IEEE Std 1364-2005”
standard for encryption envelopes.

-ipprotect protection_header_file

In this encryption mode, VCS does not compile the Verilog or
SystemVerilog source files, but instead encrypts each source file into
a separate encrypted Verilog or SystemVerilog file. Each encrypted
file is saved under the same filename, but changes its filename
extension to .vp. Using the -ipprotect option allows IP providers
to specify a protection_header_file that contains various
protection pragmas.

VCS encrypts:

• the source files on the vcs command line

• the source files specified in ‘include compiler directives.

Note:

- By default VCS encrypt complete input files. Use the -
ipopt=partialprotect option and argument to enable
partial protection, with it VCS encrypt only the regions specified
by ‘pragma protect begin-end expressions.

25-3

Encrypting Source Files

- All `include directives in the encrypted source files are
modified by changing the extension of the included filenames
from .v to .vp. The modified ‘include directives are left as
unencrypted text. In addition, every file included by a ̀ include
directive is also encrypted and saved under the modified
filename (changing the extension to .vp). Use the
-ipopt=noincludeprotect option and argument with the
-ipprotect option to disable processing of `include
compiler directives and the source files included by it.

This section on the IEEE Std 1364-2005 encryption mode includes
the following:

• “The Protection Header File”

• “Other Options for IEEE Std 1364-2005 Encryption Mode”

• “How Protection Envelopes Work”

• “The VCS Public Encryption Key ”

• “Creating Interoperable Digital Envelopes Using VCS - Example”

• “Discontinued -ipkey Option”

The Protection Header File

The protection_header_file may look like the following:

Example 25-1 Sample IEEE Encryption Header File

`pragma protect data_method = "aes128-cbc"
`pragma protect encoding = (enctype = "base64")
`pragma protect key_keyowner="Synopsys"
`pragma protect key_method="rsa"
`pragma protect key_keyname="SNPS-VCS-RSA-1"
`pragma protect key_public_key
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDjJMv7PI1V+DJDaHZuVI

25-4

Encrypting Source Files

FbAXvr
6/tEpuM8cAKFuvpIoO6PE3DRqEwaHEJRyIsFnJnavVJ33+Kub54Cr/
9JCh6fnQht
AmKt/
nAznESOLExCKO1tmjYNCXLJ+QqWFoCuDuI4QS8Ruy1u3RwABCw7ESQwwIu
V
SZpOghOvjrPHzvlc0QIDAQAB

The following `pragma protect expressions are required inside
the protection_header_file:

key_keyowner

Identifies the owner of the key encryption key.

key_method

Specifies the key encryption algorithm, the asymmetric method
for encrypting or decrypting.

key_keyname

Specifies keyowner’s key name.

key_public_key

Specifies the public key for key encryption

The optional `pragma protect expressions that can be included
are as follows:

data_method

Identifies the data encryption algorithm. Supported methods are
as follows:

aes256-cbc aes192-cbc aes128-cbc

des-cbc 3des-cbc

25-5

Encrypting Source Files

The default data_method, if none is specified, is aes256-cbc.

author

Identifies the author of an envelope.

author_info

Specifies additional author information.

encoding

Specifies the coding scheme for encrypted data, you can specify
either of the following:

base64 uuencode

The default encoding scheme, if none is specified, is base64.

comment

Comment documentation string that is not encrypted.

Note:
These encryption pragmas are only supported inside the
protection_header_file, which is specified by the
-ipprotect option. If they are specified anywhere else (such
as in the Verilog or SystemVerilog source files), VCS outputs a
warning message and ignores the pragma.

The only ‘pragma protect expressions allowed in input Verilog
and SystemVerilog files are ‘pragma protect begin and
‘pragma protect end, when enabled with the
-ipopt=partialprotect option and argument to mark the
regions to be protected.

25-6

Encrypting Source Files

Unsupported Protection Pragma Expressions

The `pragma protect expressions that are not currently
supported include:

data_keyowner data_keyname

data_public_key data_decrypt_key

decrypt_license runtime_license

reset viewpoint

Also unsupported are any expressions beginning with digest_.

Other Options for IEEE Std 1364-2005 Encryption Mode

In addition to the -ipprotect option, there are other options that
you can use in this mode. This section describes them.

-ipopt=partialprotect

VCS encrypts complete file by default. Use this option to encrypt
only regions marked by the pragmas:`pragma protect begin
and `pragma protect end in the Verilog or SystemVerilog
source files.

-ipopt=noincludeprotect

VCS in encryption mode encrypt files which are included by
the`include compiler directive. Use this option to disable the
processing of the ̀ include compiler directive and files included
by it.

-ipopt=ext=ext

Use this option to specify the filename extension for encrypted
files.

25-7

Encrypting Source Files

-ipopt=outdir=dir

Use this option to specify the target directory for encrypted files.

+incdir+directory+...

Specifies the directories that VCS searches for source files
specified with the ‘include compiler directive. By default VCS
writes encrypted versions of these source files in the directory in
which if finds the source files.

The encrypted copies have the same filename and extension of
the original except that the p character is appended to the filename
extension. So for example if it finds a SystemVerilog source file
in a Verilog library with the name dev1.sv, the encrypted version
in that library is dev1.svp.

You can specify multiple Verilog libraries with this option by using
the plus (+) character as a delimiter, for example:

+incdir+INTRCTR+IOMTR+/DW/SIMENV

-f|-F|-file filename

Specifies a file that contains a list of Verilog or SystemVerilog
source files to be encrypted. The -f, -F, and -file options are
interchangeable in this encryption mode.

+define+MACRO=VALUE

Defines the specified text macro to the specified value.

25-8

Encrypting Source Files

A text macro so defined at encryption time (when encrypting files
instead of compiling files) cannot be overridden at a subsequent
compile-time (when including the encrypted files in some later
compilation and also entering the +define option). VCS ignores
the attempted override without displaying any error, warning, or
informational message.

-ipout filename.ext

This option tells VCS to write the encrypted file for the first Verilog
or SystemVerilog source file on the command line with the
specified filename and extension. You can enter a pathname for
the protected file.

This option only works for the first Verilog or SystemVerilog source
file on the vcs command line, and does not work for other source
files on the command line or files included with the ‘include
compiler directive or in Verilog libraries.

How Protection Envelopes Work

As specified in IEEE Std 1364-2005, annex H “Encryption/decryption
flow,” section H.3 Digital envelopes:

“The sender encrypts the design using a symmetric key encryption
algorithm and then encrypts the symmetric key using the
recipient’s public key. The encrypted symmetric key is recorded
in a key_block in the protected envelope. The recipient is able to
recover the symmetric key using the appropriate private key and
then decrypts the design with the symmetric key.”

Protection envelopes work as follows:

1. The encrypting tool generates a random key called "session key."

25-9

Encrypting Source Files

2. The encrypting tool then encrypts the design using this session
key.

3. For each potential decrypting tool, information about that tool must
be provided using ‘pragma protect expressions in the
encryption envelope.

This information includes key_keyowner, key_keyname, the
asymmetric key_method, and key_public_key for each tool.

4. The encrypting tool then encrypts the session key multiple times,
once for each decrypting tool using information provided in the
encryption envelope for that tool.

5. The encrypted session key is then recorded in key_blocks in
the protected envelope.

Multiple key_blocks are generated, one for each decrypting
tool.

6. The decrypting tool examines the key_blocks in the decryption
envelope to find one encrypted using a key to which the tool has
access.

7. The decrypting tool is able to recover the session key from it's
key_block using the appropriate private key.

8. The decrypting tool then decrypts the design with the session key.

The VCS Public Encryption Key

The VCS base64 encoded RSA public key is:

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDjJMv7PI1V+DJDaHZuVI
FbAXvr
6/tEpuM8cAKFuvpIoO6PE3DRqEwaHEJRyIsFnJnavVJ33+Kub54Cr/

25-10

Encrypting Source Files

9JCh6fnQht
AmKt/
nAznESOLExCKO1tmjYNCXLJ+QqWFoCuDuI4QS8Ruy1u3RwABCw7ESQwwIu
V
SZpOghOvjrPHzvlc0QIDAQAB

The following `pragma protect expressions will identify this key:

`pragma protect key_keyowner="Synopsys"
`pragma protect key_method="rsa"
`pragma protect key_keyname="SNPS-VCS-RSA-1"

VCS can decrypt and compile source files which are encrypted by
VCS or third party tools.

To allow VCS to decrypt encrypted source files, the following snippet
must be included while encrypting.

`pragma protect key_keyowner="Synopsys"
`pragma protect key_method="rsa"
`pragma protect key_keyname="SNPS-VCS-RSA-1"
`pragma protect key_public_key
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDjJMv7PI1V+DJDaHZuVI
FbAXvr
6/tEpuM8cAKFuvpIoO6PE3DRqEwaHEJRyIsFnJnavVJ33+Kub54Cr/
9JCh6fnQht
AmKt/
nAznESOLExCKO1tmjYNCXLJ+QqWFoCuDuI4QS8Ruy1u3RwABCw7ESQwwIu
V
SZpOghOvjrPHzvlc0QIDAQAB

The following example illustrates the protection envelope
methodology for using this key in Verilog or SystemVerilog source
code.

25-11

Encrypting Source Files

Creating Interoperable Digital Envelopes Using VCS -
Example

VCS allows more than one key_block in a single protected envelope
so it can be decrypted by tools from different vendors.

In the following example an IP provider created encrypted source
files that can be decrypted by two different EDA tools, VCS and tools
from VendorX.

An IP provider retrieves public keys for an EDA tool from its
documentation. For VCS it is this section on IEEE Verilog Std
1364-2005 Encryption. For other tools an IP provider might need
to contact its vendor.

The protection_header_file that this example specifies with
the -ipprotect option is in Example 25-2.

25-12

Encrypting Source Files

Example 25-2 Example Protection Header File for Source Encryption with
VCS

1

2

`pragma protect author = "IP Provider"
`pragma protect data_method = "aes128-cbc"
`pragma protect encoding = (enctype = "base64")

`pragma protect key_keyowner="Synopsys"
`pragma protect key_method="rsa"
`pragma protect key_keyname="SNPS-VCS-RSA-1"
`pragma protect key_public_key
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDjJMv7PI1V+DJDaHZuVIFbAXvr
6/tEpuM8cAKFuvpIoO6PE3DRqEwaHEJRyIsFnJnavVJ33+Kub54Cr/9JCh6fnQht
AmKt/nAznESOLExCKO1tmjYNCXLJ+QqWFoCuDuI4QS8Ruy1u3RwABCw7ESQwwIuV
SZpOghOvjrPHzvlc0QIDAQAB

`pragma protect key_keyowner="VendorX"
`pragma protect key_method="rsa"
`pragma protect key_keyname="VENDORX-RSA-1"
`pragma protect key_public_key
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDjJMv7PI1V+DJDaHZuVIFbAXvr
6/tEpuM8cAKFuvpIoO6PE3DRqEwaHEJRyIsFnJnavVJ33+Kub54Cr/9JCh6fnQht
AmKt/nAznESOLExCKO1tmjYNCXLJ+QqWFoCuDuI4QS8Ruy1u3RwABCw7ESQwwIuV
SZpOghOvjrPHzvlc0QIDAQAB

1

2

key block for VCS

key block for VendorX

Example 25-3 Verilog Source File to be Encrypted

// example.v
module secret (a, b);
 input a;
 output b;
 reg b;

25-13

Encrypting Source Files

 initial
 begin
 b = 0;
 end

 always
 begin
 #5 b = a;
 end
endmodule

The following vcs command line generate the encrypted file
example.vp which can be decrypted by VCS and tools from
VendorX.

vcs –ipprotect pragma_header_file example.v

Example 25-4 example.vp generated by VCS

`pragma protect begin_protected
`pragma protect version=1
`pragma protect encrypt_agent="VCS"
`pragma protect encrypt_agent_info="G-2012.09-A[D]
(ENG) Build Date Feb 18 2012 00:14:12"
`pragma protect author="IP Provider"
`pragma protect key_keyowner="Synopsys"
`pragma protect key_keyname="SNPS-VCS-RSA-1"
`pragma protect key_method="rsa"
`pragma protect encoding = (enctype = "base64",
line_length = 76, bytes = 128)
`pragma protect key_block
fCY5ZM3A757rFLqRV/
Lk+hy8kPqXMnJ5rmr53Jnyv7u8nCxHUaZVqzmvWhp2pNwbJ+N
06jmd/
GF3KIexxUlD2nkF+tQEAtBAnHBvxweFAsBa43s1hRJW6TgXGD
FFktg5qa2b9clRWl92AggGSqmS+a1btkTZJ7PTjfanUrvtF3g

1

`pragma protect key_keyowner="VendorX"
`pragma protect key_keyname="VENDORX-RSA-N1"
`pragma protect key_method="rsa"
`pragma protect encoding = (enctype = "base64",
line_length = 76, bytes = 128)
`pragma protect key_block
pNpqXq9REx09UGv+o62OuOYvoyf4mVIDIoaYfyZ6WDOEXZJq3rR
eZu+Jys7JYUhhUkHo638PP03pmnEasZjPXi9MqR/
tWCNeva5Ly0bEnkl2mrxqvOsvporedEyFx3swyQ48Kzq76rU7Qs
xlLz+mN3m97aaD/WusVe/Z0ozXtVo=

2

`pragma protect data_method="aes128-cbc"

`pragma protect encoding = (enctype = "base64",
line_length = 76, bytes = 176)
`pragma protect data_block
+MW2QpXLShFRtT83KhWLYmbtcbKlE6jtCrr68RuPfNGys4r5cLDT
NGgytecJ1Br7WF6MXnS6NjRxpB7ZMEpN/
75UpcyVVUd3hOMVLVvQ+rrWtzVIPWa8td/
wvRA1qhQHVRC3QvW9UJWvOoAj6+6KPEi4TbZwMVFX5g/
J3XN4xASqClubQp+9sR2PJrpuWc3K
RN5dOZaq6Hmr0LVNbraNY4O8JwzNLOrR3gcQSul/86U=

3

1

2

3

Key block for VCS which contains the encrypted session key.
(encrypted using VCS public RSA key)

Key block for VendorX which contains the encrypted session key.
(encrypted using VendorX public RSA key)

Data block which contains the encrypted IP (encrypted using the
session key)

25-14

Encrypting Source Files

To determine the session key that was used to encrypt the
data_block:

25-15

Encrypting Source Files

• VCS retrieves the session key from first key_block

• VendorX uses the second key_block

Consequently, both implementations could successfully decrypt the
data block which contains the encrypted IP.

Discontinued -ipkey Option

The -ipkey key option will be obsolete in future releases.

IP providers should use –ipprotect instead. It allows you to
specify various protection pragmas (via a protection header file)
which are needed while generating interoperably encrypted IPs.

VCS will no longer use the key you pass with the -ipkey key
option. It will generate a secure key internally.

128-bit Advanced Encryption Standard

VCS uses the 128-bit Advanced Encryption Standard (AES) to
encrypt the Verilog files. The 128-bit key is generated internally by
VCS. This 128-bit encryption methodology is exclusive to VCS, and
can be decrypted only by VCS.

This section includes the following topics:

• “Compiler Directives for Source Protection”

• “Using Compiler Directives or Pragmas”

• “Automatic Protection Options”

• “Using Automatic Protection Options”

25-16

Encrypting Source Files

• “Protecting ‘include File Directive”

• “Enabling Debug Access to Ports and Instance Hierarchy”

• “Debugging Partially Encrypted Source Code”

Compiler Directives for Source Protection

`protect

Defines the start of protected code. Syntax: `protect

`endprotect

Defines the end of protected code. Syntax: `endprotect

`protected

Defines the start of protected code. Syntax: `protected

`endprotected

Defines the end of protected code. Syntax: `endprotected

`protect128

Defines the start of protected code. Syntax: `protect128

`endprotect128

Defines the end of protected code. Syntax: `endprotect128

Using Compiler Directives or Pragmas

You can use VCS to encrypt selected parts of your source files. In
order to achieve this, complete the following steps:

25-17

Encrypting Source Files

-protect128
1. Enclose the Verilog code that you want to encrypt between the

‘protect128 and the ‘endprotect128 compiler directives.

2. Compile the files with the -protect128 option. For example:

% vcs -protect128 foo.v

When you compile the design with the -protect128 option, VCS
creates a new file with the .vp extension for each Verilog file
specified in the command line. For example, VCS creates foo.vp
when you execute the command listed above.

In the .vp files, VCS replaces the ‘protect128 and
‘endprotect128 compiler directives with the ‘protected128
and ‘endprotected128 compiler directives and encrypts the
code in between these directives.

Note:

- If you specify the protect and protect128 compile options
on the same vcs command line, VCS ignores the protect128
option and uses the protect option. It also reports a warning
message.

- The protect128 and genip options are mutually exclusive,
you cannot specify both of these options on the same vcs
command line.

Example

The following Verilog file illustrates the use of ‘protect128 and
‘endprotect128 to mark the code that needs to be encrypted:

cat test.v
module counter(inp, outp);
input [7:0] inp;

25-18

Encrypting Source Files

output [7:0] outp;
reg [7:0] count;
always
begin:counter
`protect128
reg [7:0] int;
count = 0;
int = inp;
while (int)
begin
if (int [0]) count = count + 1;
int = int >> 1;
end
`endprotect128
end
assign outp = count;
endmodule

module top;
parameter p1 = 3;
wire mux;
reg control,dataA,dataB;
dut #(.p1(3)) d1(mux,control,dataA,dataB);
counter c1(inp,outp);
initial begin
 control=0;
 dataA=1;
 dataB=0;
 #2; dataA=1;dataB=1;
 #2;dataB=1'bx;
 #2; dataA=0; dataB=0;
 #2; dataB=1;
 #2; dataB=1'bx;
 #2 ;control=1; dataB=1;
 #2; dataA=1;
 #2;dataA=1'bx;
 #2; dataA=0; dataB=0;
 #2; dataA=1;
 #2; dataA=1'bx;
 #2; control=1'bx; dataA=0; dataB=0;
 #2; dataA=1;dataB=1;
 #2; $finish;

25-19

Encrypting Source Files

end
endmodule

primitive multiplexer(mux, control, dataA, dataB) ;
output mux ;
input control, dataA, dataB ;
table
// control dataA dataB mux
0 1 0 : 1 ;
0 1 1 : 1 ;
0 1 x : 1 ;
0 0 0 : 0 ;
0 0 1 : 0 ;
0 0 x : 0 ;
1 0 1 : 1 ;
1 1 1 : 1 ;
1 x 1 : 1 ;
1 0 0 : 0 ;
1 1 0 : 0 ;
1 x 0 : 0 ;
x 0 0 : 0 ;
x 1 1 : 1 ;
endtable
endprimitive

module dut #(parameter p1 = 1) (output mux,input control,
dataA, dataB);
multiplexer m1(mux, control, dataA, dataB);
endmodule

The contents of the.vp file that are generated using the -
protect128 compile option are as follows:

always
begin:counter
`protected128
PWXH[Q[X&;D#.->0!SIF<HI"D7X)2F-MZCTCK.R+U8;SAE3M.+ ,;N'/
3.B=6%$_5PHYD]E1G#<O,VW A_>!1S/0%XYM98MW0'OA]?PNK:[T)*_]
IRSN+R.EE#]%-I JJRPA_#KZ+7$\TIAY83B8L<U0!U.GK[V?\V,
=>JF:GK6"C8=\M5MB'!2+WY/7S5_&RONPGO!LK8#25
(CO>3N7N.YG%=FF'),"J90A8OS5$E2+ &4@T2Q!U?DOS;2(O3G6G3T>

25-20

Encrypting Source Files

`endprotected128

-putprotect128 <Dir-name>

By default, the encrypted .vp file is saved in the same directory as
the source files. You can change this location by using the -
putprotect128 compile option.

For example, the following command saves the foo.vp encrypted
file in the ./out directory:

% vcs -putprotect128 ./out -protect128 foo.v

VCS creates a protected file in the specified directory. The './out/
foo.vp' protected file is created.

Automatic Protection Options

-autoprotect128

For Verilog and VHDL files, VCS encrypts the module port list (or
UDP terminal list) along with the body of the module (or UDP).

-auto2protect128

For Verilog and VHDL files, VCS encrypts only the body of the
module or UDP. It does not encrypt port lists or UDP terminal lists.
This option produces a syntactically correct Verilog module or
UDP header statement.

-auto3protect128

This option is similar to the -auto2protect128 option except
that VCS does not encrypt parameters preceding the ports
declaration in a Verilog module.

25-21

Encrypting Source Files

+autoprotect[file_suffix]

Creates a protected source file; all modules are encrypted.

+auto2protect[file_suffix]

Creates a protected source file that does not encrypt the port
connection list in the module header; all modules are encrypted.

+auto3protect[file_suffix]

Creates a protected source file that does not encrypt the port
connection list in the module header or any parameter
declarations that precede the first port declaration; all modules
are encrypted.

+deleteprotected

Allows overwriting of existing files when doing source protection.

+pli_unprotected

Enables PLI and UCLI access to the modules in the protected
source file being created (PLI and UCLI access is normally
disabled for protected modules).

+protect[file_suffix]

Creates a protected source file by only encrypting `protect/
`endprotect regions.

+object_protect <sourcefile>

Debugs the partially encrypted source code.

vcs +protect +object_protect <sourcefile.v>

+putprotect+target_dir

25-22

Encrypting Source Files

Specifies the target directory for protected files.

+sdfprotect[file_suffix]

Creates a protected SDF file.

-Xmangle=number

Produces a mangled version of input, changing variable names
to words from list. Useful to get an entire Verilog design into a
single file. Output is saved in the tokens.v file. You can
substitute -Xman for -Xmangle.

The argument number can be 1, 4, 12, or 28:

-Xman=1

Randomly changes names and identifiers, and removes
comments, to provide more secure code.

-Xman=4

Preserves variable names, but removes comments.

-Xman=12

Does the same thing as -Xman=4, but also enters, in comments,
the original source file name and the line number of each
module header.

-Xman=28

Does the same thing as -Xman=12, but also writes at the bottom
of the file comprehensive statistics about the contents of the
original source file.

25-23

Encrypting Source Files

-Xnomangle=.first|module_identifier,...

Specifies module definitions whose module and port identifiers
VCS does not change. You use this option with the -Xman option.
The .first argument specifies the module by location (first in
file) rather than by identifier. You can substitute -Xnoman for
-Xnomangle.

Using Automatic Protection Options

Note:

The -auto3protect128 option takes precedence over
-auto2protect128 and -autoprotect128 options,
-auto2protect128 takes precedence over
-autoprotect128, and -autoprotect128 takes precedence
over –protect128.

-autoprotect128

For Verilog and VHDL files, VCS encrypts the module port list (or
UDP terminal list) along with the body of the module (or UDP).

For example, the contents of the .vp file that are generated using
the -autoprotect128 option are as follows:

module counter
`protected128
P6O # ON'-,5&.Y)AO)WH1MLZ6=M^=MG!HNZ[;]%0^2CSHD;!"DA
Y_*<7CQP.GB
P>NV,,82,G9%HZBYEBWO@D^JP*HXZR8K\)1?'OI=-Q^T(@V7^I^@T&I1
[>.3GCO@[PWTN(F,CSX.ZH$37A3F/8IWXLM[>/JJN8P\Q)Y=\FQ$J4M>
#.(31WZ'&(5&+%/L<RP0F+!$)E-U7!KA1Y!&5;S3>ID8RC):@*V>X
YZ1NC:S"/F]!NX0NKD"K8X5&4D_#)%PV(Y%PFO?4*96PED9&SI:PGMM
(J?GOD$%XF8CV:?#A_[^<QX3-;IC1)I3\-8C%GIDPRR$%26.$L 'OZ5B4

25-24

Encrypting Source Files

6-_C10X,WOMU'Y'IM'CZ*;/CW=XYBE\L\,4.U =N<HY*O2I@
`endprotected128
endmodule

primitive multiplexer
`protected128
P"-9R8;C8?O\K)>&)$0%*8Q2_OQP5(+NY%R&X+=G;QX@:=#$<CRS0A\&]
/IO&6+SFP+OK+-UK)$^ B*1NCC./ESFVG!_H2CYI3"+'T'*^-&*/#
P%<U:&I@]S=Y#2""])I&P).;YML_ #-[&7>#5[9K@>9+L(Y8H$G\?TJ
&35W=*#-NKBM9]!HZ&(=B:;$_]FUPE@T8Q+:7*(Z+14ES2-^ZRJ(WX
#NV!6;%>UM>VL0H(T0\+TRKYZG5)G'AK1)*F'$P=9LR \&;G#.
6D":CF71O@V/:&/;O3T491+,=A5((6LN"\U*J!,7>RQX2A1*DP,2J
PK_..KR$/((1C"+/^0"MHNPQ.,;D][?NRD_X6W._XTPGP6-,0"<47*7>
$KYQS,-S<P84)%2K^O/:,>&+0#4\]CJ)TA45&7H1$V@PJ$Q<=\/PI9\5\
-3PSENY+K,)C-V.0E
`endprotected128
endprimitive

In this example all the module port lists and UDP terminal list along
with UDP definition are encrypted.

-auto2protect128

For Verilog and VHDL files, VCS encrypts only the body of the
module or UDP. It does not encrypt port lists or UDP terminal lists.
This option produces a syntactically correct Verilog module or UDP
header statement.

The contents of the .vp file that are generated using the -
auto2protect128 compile option are as follows:

module counter(inp, outp);
input [7:0] inp;
output [7:0] outp;
`protected128
P-62]23&H.F//I;K-%+[=
WD$[*GB:L2U<9W,03Y&<B_1=DRWLJV;'OM'P];^[B5ZI
P"T)X^0Y.WRTK61I+D1_3=7\0D1C!%3+"(NR'K3$HKQA[FL@^).B.(P/
"'-X;,XUJP"# 4)M:.<4R2VAUA0TZM'61%_!;=,UY3/,P(=A$RA_/$

25-25

Encrypting Source Files

(EBK*>X>P8K,@'*LIS0,PVGH"H+7,C4;@,.?X *HQLHHM3::F_E!
((8>BYMKVT8HA-4*N6EJU1OIU0T3]6@9!PAS43Y)QD_DI(J15%0KCEX[/+
Y'7UC6<%D@;.0?I/-W$P[HNCB6A+X\9P</C6-$[.
`endprotected128
endmodule

primitive multiplexer(mux, control, dataA, dataB) ;
output mux ;
input control, dataA, dataB ;
`protected128
P1T4VA5J%C(4VK!^U;R^"ND56SO3AG+*12MZ&7#<;&/_;Q1D4V >".4-
4Q#"(@T;P-P<'^#*2WG'8T/SNA(/:2Z*HK"$@L^D&AP@E;,P$O:9#PG3]
1X >DV?TZK/, S*:PMC+T1#65A@RYU+*=XFFMS^+C(8H9XL-Z-<J"E6%V>
2N,%%:*U I>HQ2*F Z%D/QYPG32(5;P;D>X"_^^0O8])%]O&3/7/P)O"?
[B@\,E<Y,N'"(&R 0530O;7X%3TV]QJP[H47--_DZ .]FAAJ^! V":T=
E0#PYJL\)Y.:OGH%VW]D=R-.K_11S)4I-CU-P=&+
`endprotected128
endprimitive
endmodule

In this example it encrypts only the body of the module or UDP and
does not encrypt port lists or UDP terminal lists.

-auto3protect128

This option is similar to the -auto2protect128 option except that
VCS does not encrypt parameters preceding the ports declaration in
a Verilog module.

The contents of the .vp file that are generated using the -
auto3protect128 compile option are as follows:

module dut (mux,control, dataA, dataB);
parameter p1 = 1;
output mux;
input control;
input data;
input dataB;

25-26

Encrypting Source Files

`protected128
PR@#>:B8A;TV_". 4184;Y,%!E@E-P8,WL)%D+%2C@JY0L3)_%J"P;8S*
ESYV_;38PAAX3?7V=/PD$@4E*9DK2U^R_0>@2JUT:=#?D:0EX'+GLZ?8
S';N=FS!"S?D[I;E7
`endprotected128
endmodule

In this example it encrypts only the body of the module or UDP and
does not encrypt port lists or UDP terminal lists.

module top;
parameter p1 = 3;

+protect option
1. Enclose the Verilog and VHDL code that you want to encrypt

between the 'protect and the 'endprotect compiler
directives.

2. Compile the files with the +protect option

For example:

% vcs +protect foo.v

When you compile the design with the +protect option, VCS
creates a new file with the .vp extension for each Verilog file
specified at the command line. For example, VCS creates foo.vp
when you execute the command listed above.

In the .vp file, VCS replaces the 'protect and 'endprotect
compiler directives with the 'protected and 'endprotected
compiler directives, and encrypts the code in between these
directives.

The contents of the .vp file that are generated using the
+protect compile option are as follows:

always

25-27

Encrypting Source Files

begin:counter
reg [7:0] int;
count = 0;
int = inp;
`protected
Z370P(PNd1ZOKL9PH7?6a=LC8JB\Lff9dBES3T<#ZE58?b#[=[#_&)>
_3eL6_1aY7+c,@0BZF#U;</EHfdM&I1fI-@]#?U;Gef\PX2fJ?1.HQ
:M.X_>3CYc9_QUZ2R97VA^8IT3V/,Kf<9N^-MHS(=bBbN&BDPH\?$
`endprotected

+putprotect+<Dir-name>

By default, the encrypted .vp file is saved in the same directory as
the source files. You can change this location by using the
+putprotect compile option.

For example, the following command saves the foo.vp encrypted
file in the ./out directory:

% vcs +putprotect ./out +protect foo.v

VCS creates a protected file under the specified directory. The
protected file is './out/foo.vp'.

This option is not supported with -protect128 ,
-aotuprotect128, -auto2protect128, and
-auto3protect128 options

+autoprotect[file_suffix]

For Verilog and VHDL files, VCS encrypts the module port list (or
UDP terminal list) along with the body of the module (or UDP).

For example, the contents of the .vp file that are generated using
the +autoprotect compile option are as follows:

module counter
`protected

25-28

Encrypting Source Files

.423IPYX4.Z-JJ#MF2_EDM(7RN]634+76?=U?f-
ZVLX(1?N<2UTZ())T4I2K)fXK
-@+EK?e=^Z\DLXU5XH0VQ19,>-9]]6+gDJ7Rf431EgL=7#>Y1V,9+3-
8&G>F[Q0C
4#B[FgQ#DUU<>_UR^I#D:eS(2+O15=^HMTY]f<XXU6=;4RP]f>?X,5d4B&
X1T&UC
MAZQ[N=K6(>R>b2g/,HGEHMD/
+W:38b[(6Lf4f@g]_Me#b\34E7ECQMDcHJKaY?\
cK:ZA]TbbMa]bAFX>fR&YC-MH[79#=CUUFG>:0RcKOU\bI-
&2I^_[K=LbUL9,GRF
U9)68:,CZ@Df[@(:PdEP2F)cWU7\K<[c)A?K,-9:C@c\F$
`endprotected
endmodule

primitive multiplexer
`protected
T:=e^@R59Xg#P];gMBf9#>(d[ZD7J.Pa/8PSPY)=G1BaGT,//
+QM5)T.a[/+e,D+
>g--ENRe-4GV(@7#UN0f_e/.dY.1Xbg-?9NZ0CTP-
U^D@?Ja^8AF@&R=0CHd/VKV
--NN]RIS;Q2.A2RBE5_A,PJF@7</
F6fH]AgM8N57RJ,.C>3KEWD4dN+V4B2a@<V:
5\QQJJ2O#_/=f/YbF-\)/
ERc_gM(Y,_.3+?&?IGU_87ZLeYc;(SfcTePTRB]2LUR
4/,aMg?WIPS[A]+OUG]7,<]L4FP-8=_JPE)7O]&UbSdI+-
F_+5gK[27NgXW4<0SD
Q2D>.d_;L89<Y[LFD0OME?fMA7b.5aa+^N/
F#3[<[\N_<d5+>QKYQ>>+KZ,0/fbB
@ZTB7#P2RL=3Ud>e1CMa2<<7<\PIYR(S;$
`endprotected
endprimitive

In this example all the module port lists, UDP terminal list along with
UDP definition are encrypted.

+auto2protect[file_suffix]

For Verilog and VHDL files, VCS encrypts only the body of the
module or UDP. It does not encrypt port lists or UDP terminal lists.
This option produces a syntactically correct Verilog module or UDP
header statement.

25-29

Encrypting Source Files

For example, the contents of the .vp file that are generated using
the +auto2protect compile option are as follows:

module counter(inp, outp);
input [7:0] inp;
output [7:0] outp;
`protected
Y5S,#M;BJ&FL9:,U#/R;T;+)G:#XZD#NUZ58-U0RB;V?9JM?FcOI/)FE
:XM0ILM.D]L2X0<:,89-DQ07GWM[Gc9LRc#7#IN:#1H@+CRBU-Z?G
O/c[9B;.Q9e@30IZM]7XR0LRXFI;FT4<&&M#+E6Z-].B(,ceZBDO4<fO
[Nd,O@#>a3\-Df4EL[^SgXX^:#R+0-d3MK^Wf(QY\WfLK?4IVdPXJFdHg
Ld(#./_NIYKaSOOMURg@00(C[1A\eO(<9WIT1,+Q8^e>fATb6\Y2K7@9f>
SK>=\H20&86;Y6;6KD$
`endprotected
endmodule

primitive multiplexer(mux, control, dataA, dataB) ;
output mux ;
input control, dataA, dataB ;
`protected
X-NKV3Ld>NGW@?2WZKeWBaZJ:[IUV+=H[?BKE&:##@+B;fSa^YL<,)dJ-
2HF.#A89K?K4+WT11Id9R<CJ^@=Q5KF(Y^S#_\L5#bEdP:ag49F;=b15
CHfW</f?Sa.9=+^Id^0WN^-IAX^.AU<^_81T2AB=4+Ce)]KFAYBRD>DT>L
#Z/7;;YC>KRBJ3GHLKT;_<V&6V?(WJa#W//.QRcW&OCG^R#A.+0HH(>=/
(((SegQ]YC0,G2^4.03B9@Uf/@a_OG=-++Rc?A2/J^_;MdG-C>S_NaH\WM
f#BY6;VR_2451C2<7A].Nb^\3BP$
`endprotected
endprimitive

module dut #(parameter p1 = 1) (output mux,input control,
dataA, dataB);
`protected
.5(K9-=#4,NGO2NY+&g&+^bN,SN4f))0]J2PC)&(?9+WKdaGS\C+))
;KP>;I_@1B3?SFLc5U&B;,?,S==2_;4K-PD,-I=1E\a8^YC=-/)I9f--
GE24UBaD9CFGd;BHJKU$
`endprotected
endmodule

In this example it encrypts only the body of the module or UDP and
does not encrypt port lists or UDP terminal lists.

25-30

Encrypting Source Files

+auto3protect[file_suffix]

This option is similar to the +auto2protect option except that VCS
does not encrypt parameters preceding the ports declaration in a
Verilog module.

The contents of the .vp file that are generated using the
+auto3protect compile option are as follows:

module top;
parameter p1 = 3;

In this example it encrypts only the body of the module or UDP and
does not encrypt port lists or UDP terminal lists.

+deleteprotected

Allows overwriting of existing files when doing source protection
using the +protect option.

This option is not supported with -protect128,
-autoprotect128, -auto2protect128, and
-auto3protect128 options.

+pli_unprotected

Enables PLI and UCLI access to the modules in the protected source
file being created (PLI and UCLI access is normally disabled for
protected modules).

This works with both +protect (all variants) and -protect128 (all
variants). To enable PLI capabilities, use the +pli_unprotected
option as follows:

% vcs +protect +pli_unprotected <sourcefile.v>

or

25-31

Encrypting Source Files

% vcs -protect128 +pli_unprotected <sourcefile.v>

Protecting ‘include File Directive

You can use VCS to automatically protect ‘include file directive
while protecting the module.

+autoincludeprotect

For Verilog files, VCS encrypts the ‘include files using the switch
+autoincludeprotect.

vlogan +autoincludeprotect test.v <auto-protect switches>

Or,

%vcs +autoincludeprotect test.v <auto-protect switches>

Consider that the source file a.v include b.v as shown below:

`include “b.v”
module a();
endmodule

After encryption, b.v is encrypted and is renamed to b.vp. The
encrypted b.vp file along with the source file a.vp is saved in the
same directory specified by - putprotect128 compile option. The
directive changes to ‘include b.vp as shown below:

`include “b.vp”
module a();
endmodule

Note:

This option is not supported for VHDL.

25-32

Encrypting Source Files

Enabling Debug Access to Ports and Instance Hierarchy

You can use VCS to enable debug access to port and instance
hierarchy.

+autobodyprotect

For Verilog files, VCS enables debug access to port and instance
hierarchy using the switch +autobodyprotect.

%vcs +autobodyprotect test.v

Hence, port list containing parameter and instance hierarchy of each
module are accessible only to VPD/FSDB for DVE/Verdi users.

Note:

This option is not supported with +autoprotect and -
autoprotect128 options. This option is not supported for
VHDL.

Debugging Partially Encrypted Source Code

The partial encrypted code is a code that has some of its part
enclosed with the ‘protect and ‘endprotect macros. VCS
allows you to debug the objects that are not enclosed within
‘protect and ‘endprotect while restricting access to the
variables that are within ‘protected and ‘endprotected
macros.

25-33

Encrypting Source Files

Note:
When you enclose a part of code using ‘protect and
‘endprotect, VCS converts it into ‘protected and
‘endprotected when you pass +protect.

To debug the partially encrypted source code, use the
+object_protect option as follows:

vcs +protect +object_protect <sourcefile.v>

You can enable partial debug capability by adding the
+object_protect option in the vcs encryption command line, so
that partial encryption is applied and the encrypted file is also
enabled with debug capability (-debug_all) for the unencrypted
objects.

Skipping Encrypted Source Code

VCS allows you to skip some portion of the code unencrypted when
the complete module is encrypted with autoprotect options. You
can use ‘unprotect and ‘endunprotect pragmas to mark a
block of source code to be excluded from encryption.

All autoprotect options ignore protection when you use ‘unprotect
and ‘endunprotect pragmas.

Enclose the Verilog code that you want to decrypt between the
'unprotect and the 'endunprotect compiler directives.
Enclose the VHDL code that you want decrypt between the -
unprotect and the -endunprotect compiler directives.

25-34

Encrypting Source Files

Note:
unprotect and ‘endunprotect pragmas do not work with -
Xman=4 (for tokens.v file) and -Xrad=0x2 (for rad.v file)
options.

26-1

Integrating VCS With Certitude

26
Integrating VCS With Certitude 1

This feature is Limited Customer Availability (LCA). Limited Customer
Availability (LCA) features are features available with select
functionality. These features will be ready for a general release, based
on customer feedback and meeting the required feature completion
criteria. LCA features does not need any additional license keys.

This chapter provides a brief description on the Certitude tool and how
VCS works with Certitude.

Introduction to Certitude

Certitude is a functional qualification tool. This tool enhances
simulation-based functional verification by providing measures and
feedback to assist in improving the quality of the verification
environment (VE).

To detect errors, the functional verification environment must ensure
that each error is activated, propagated, and then detected.

26-2

Integrating VCS With Certitude

Mutation-based techniques used by Certitude helps improve the
testbench by identifying the flaws in the testbench. Generating the
coverage metrics using simulation and performing the testbench
qualification are sequential activities. This necessitates the need to
perform redundant steps to setup the tool, one time for simulation and
secondly for functional qualification of the testbench, which involves
generation of database and fault-aware simulation executable.

VCS and Certitude Integration

With VCS and Certitude integration, you can generate VCS and
Certitude databases with the same compilation. By eliminating the
dependency on different parsers, the fault-aware simulation executable
can be generated without having to prepare the design for testbench
qualification separately. This seamless integration:

• Simplifies the setup requirements of Certitude environment with VCS

• Generates one or more simulation executables that contain all the
instrumentation necessary to activate and detect faults.

With this integration, VCS generates the following database and
executables:

• A Certitude database that corresponds to the Certitude model
command.

• One or more simulation executables that contain all the
instrumentation necessary to run activate, detect, regress and
testscript commands.

Figure 26-1 shows the Certitude integration with VCS.

26-3

Integrating VCS With Certitude

Figure 26-1 Certitude Integration with VCS

The Certitude Functional Qualification System requires a specific set of
configuration files for a qualification run. These configuration files
describe the verification environment. You must create these files
before running a qualification phase. For more information about
configuration files and use model, see the Certitude User Manual.

Note:

Certitude communicates with VCS internally through a combination
of environment variables and the Certitude database. This process
is transparent.

26-4

Integrating VCS With Certitude

Loading Designs Automatically in Verdi with Native
Certitude

With the integration of Certitude, VCS and Verdi, you can load designs
automatically in the Verdi system without setting the Certitude
VerdiInitCommand configuration option.

This section consists of the following subsections:

• “Use Model”

• “Points to Note”

Use Model

To use this feature, perform the following steps:

1. Specify the Native mode using the following setting in the
certitude_config.cer configuration file:

setconfig -Simulator=native

2. Specify the -kdb option in the certitude_compile configuration
file.

In the two-step flow, specify the -kdb option in the command line as
follows:

#!/bin/sh -e

VCS compile script

vcs -kdb -sverilog tb_top.sv dut_top.sv dut_bot.sv -debug

In the UUM flow, specify the -kdb option in all the vcs/vlogan/vhdlan
command lines as follows:

26-5

Integrating VCS With Certitude

#!/bin/sh -e

VCS compile script

vlogan -kdb -sverilog tb_top.sv dut_top.sv dut_bot.sv

vcs -kdb -debug top

3. Leave the VerdiInitCommand configuration option as empty
(default value).

Points to Note

The following points must be noted for using this feature:

• During the model phase, the certitude_compile file is executed
once and information of the KDB design is collected. The KDB design
is then automatically loaded when the Verdi system is launched by
Certitude. The KDB design cannot be loaded automatically if the
model phase has not been executed. The feature is effective only
after the model phase.

• If the design is not loaded automatically in the Verdi system, it may
be due to one of the following:

- The -kdb option is not applied correctly in the
certitude_compile file.

- The -kdb option is applied but the KDB design is not compiled
and generated correctly.

- The VerdiInitCommand configuration option is set by the user,
and Certitude applies the user setting.

26-6

Integrating VCS With Certitude

Dumping and Comparing Waveforms in Verdi for SystemC
Designs

With the integration of Certitude, VCS, Verdi and CBug, the following
benefits are available with this seamless integration:

• Dump the waveform for SystemC designs run on a specific testcase
with or without an injected fault.

• Compare the reference waveform with the faulty waveform for
SystemC designs.

• Generate Runtime Information Database (RIDB) for loading
SystemC designs in Verdi.

This section consists of the following subsections:

• “Use Model”

• “Points to Note”

Use Model

To use this feature, perform the following steps:

4. Specify VCS as the simulator using the following setting in the
certitude_config.cer configuration file:

setconfig -Simulator=vcs

In the certitude_compile configuration file, compile the design
using VCS. Example as follows:

#!/bin/sh -e

VCS compile script

syscan $CER_SYSCAN_OPTIONS $SRC/top.cpp

26-7

Integrating VCS With Certitude

vcs -sysc sc_main $CER_VCS_SC_OPTIONS

5. Set the WaveUseEmbeddedDumper configuration option to true in
the certitude_config.cer configuration file to use the
embedded dumper for dumping waveforms:

setconfig -WaveUseEmbeddedDumper=true

6. Invoke Certitude and execute commands for the model, activation
and detection phases.

>certitude

cer> model

cer> activate

cer> detect

7. Execute the dumpwaves and verdiwavedebug commands
accordingly to dump and compare waveforms. Examples are as
follows:

cer> dumpwaves -fault=10 -testcaselist=fir_rtl

cer> verdiwavedebug -fault=10 -testcase=fir_rtl

Note:

For more details on dump and compare waveforms with Certitude,
see the Certitude User Manual.

8. Generate an RIDB file with the original source code and load the
design automatically in Verdi with the verdistart, or
verdisourcedebug command. Example as follows:

verdidumpridb -testcase=fir_rtl

26-8

Integrating VCS With Certitude

Points to Note

The following points must be noted for using this feature:

• Simulation executed by the dumpwaves command will be killed if
simulation CPU timeout is reached. However, simulation will not be
killed if the dumpwaves command is executed straight after the
model command.

27-1

Integrating VCS with Vera

27
Integrating VCS with Vera 1

Vera® is a comprehensive testbench automation solution for
module, block and full system verification. The Vera testbench
automation system is based on the OpenVera™ language. This is an
intuitive, high-level, object-oriented programming language
developed specifically to meet the unique requirements of functional
verification.

You can use Vera with VCS to simulate your testbench and design.
This chapter describes the required environment settings and usage
model to integrate Vera with VCS.

27-2

Integrating VCS with Vera

Setting Up Vera and VCS

To use Vera, you must set the Vera environment as shown below:

% setenv VERA_HOME Vera_Installation
% setenv PATH $VERA_HOME/bin:$PATH
% setenv LM_LICENSE_FILE license_path:$LM_LICENSE_FILE
or
% setenv SNPSLMD_LICENSE_FILE license_path:$SNPSLMD_LICENSE_FILE

Note:

If you set the SNPSLMD_LICENSE_FILE environment variable,
then VCS ignores the LM_LICENSE_FILE environment variable.

Set the VCS environment as shown below:

% setenv VCS_HOME VCS_Installation
% setenv PATH $VCS_HOME/bin:$PATH
% setenv LM_LICENSE_FILE license_path:$LM_LICENSE_FILE
or
% setenv SNPSLMD_LICENSE_FILE license_path:$SNPSLMD_LICENSE_FILE

Note:

If you set the SNPSLMD_LICENSE_FILE environment variable,
then VCS ignores the LM_LICENSE_FILE environment variable.

For more information on VCS installation, see “Setting Up the
Simulator” .

27-3

Integrating VCS with Vera

Using Vera with VCS

The usage model to use Vera with VCS includes the following steps:

• Compile your OpenVera code using Vera

This will generate a .vro file and a filename_vshell.v file.
The filename_vshell.v is a Verilog file.

The following table lists the Vera option to generate a shell file
based on your design topology:

Table 0-1.

Option Description

-vlog Generates a Verilog shell file, filename_vshell.v. Use
this option if your design is a Verilog-only design.

• Compile your design and the filename_vshell.v file using the
-vera option. This option is required to use Vera with VCS.

• Simulate the design by specifying the .vro file created in the first
step using the +vera_load runtime option. You can also specify
this .vro file in the vera.ini file in your working directory as
shown in the following example:

vera_load = tb_top.vro

See the Vera User Guide for more information.

27-4

Integrating VCS with Vera

Usage Model

Use the following usage model to compile OpenVera code using
Vera:

% vera -cmp [Vera_options] OpenVera_files

See the Vera User Guide for a list of Vera compilation options.

Compilation

% vcs [compile_options] -vera verilog_filelist
filename_vshell.v

Simulation

% simv [simv_options] +vera_load=file.vro

28-1

Integrating VCS with Specman

28
Integrating VCS with Specman 1

The VCS ESI Adapter integrates VCS with the Specman Elite. This
chapter describes how to prepare a stand-alone Verilog design for
use with the ESI interface. See the Specman Elite User Guide for
further information.

% specman –c "load xor_verify.e ; write stubs -
vcsmx_vhdl"

Analyze the VHDL stub file using the following command:

% vhdlan -nc specman_vcsmx.vhd

This chapter includes the following topics:

• “Type Support”

28-2

Integrating VCS with Specman

• “Usage Flow”

• “Using specrun and specview”

• “Adding Specman Objects To DVE”

• “Version Checker for Specman”

Type Support

The VCS ESI adapter supports the following Verilog Types:

• nets

• wires

• registers

• integers

• array of registers (verilog memory)

Other Verilog support:

• Verilog macros

• Verilog tasks

• Verilog functions

• Verilog events

• in/out/inout ports

28-3

Integrating VCS with Specman

Usage Flow

This section explains how to integrate Specman with VCS.

Setting Up The Environment

To set up the environment to run Specman with VCS:

• Set your VCS_HOME and VRST_HOME environment variables:

% setenv VCS_HOME [vcs_installation_path]
% set path = ($VCS_HOME/bin $path)
% setenv VRST_HOME [specman installation]

• Source your env.csh file for Specman:

% source ${VRST_HOME}/env.csh

For 64-bit simulation, source your env.csh file as shown below:

% source ${VRST_HOME}/env.csh -64bit

Specman e Code Accessing Verilog

Create the Verilog stub file specman.v and compile all Verilog files
including specman.v as shown below:

% specman -c “load [top_e_file]; write stubs -verilog;”

28-4

Integrating VCS with Specman

Compile the design as given in the following table:

Elaboration
Mode Commands

Generated
Executable

Compile

Execution with -o "% sn_compile.sh -sim vcs \
-sim_flags “[compile-

time_options] \
-debug top_cfg/entity/mod-
ule” -o <exe_name> <top_e_-

file>.e
"

vcs_<exe_name>

Execution without -o "% sn_compile.sh -sim vcs \
-sim_flags “[compile-

time_options] \
-debug top_cfg/entity/mod-

ule” <top_e_file>.e
"

vcs_<top_e_file>

Loaded

Execution with -o "% sn_compile.sh -sim vcs \
-sim_flags “[compile-

time_options] \
-debug top_cfg/entity/mod-

ule” -o <exe_name>
"

<exe_name>

Execution without -o "% sn_compile.sh -sim vcs \
-sim_flags “[compile-

time_options] \
-debug top_cfg/entity/mod-

ule”
"

vcs_specman

Simulate the design as given below:

• In Compiled mode:

% vcs_simv -ucli [simv_options]
ucli> sn “test”
ucli> run

28-5

Integrating VCS with Specman

ucli> quit

Note:

Notice the use of the -o option with this script in compile mode
to change the name of the executable generated to vcs_simv
from the default name given by the script which is
vcs_<top_e_file>.

• In Loaded mode:

% simv -ucli [simv_options]
ucli% sn “load <top_e_file>; test”
ucli% run
ucli% quit

Note:

Notice the use of the -o option with this script in loaded mode to
change the name of the executable generated to simv from the
default name given by the script which is vcs_specman.

Using specrun and specview

VCS allows you to use the following Specman utilities to simulate
your design:

• specrun

• specview

specrun invokes Specman in batch mode, while specview
invokes the Specman GUI. The usage model is shown below:

28-6

Integrating VCS with Specman

Using specrun

• In Compiled mode:

 % specrun -p "test -seed=1;" simv [simv_options]

• In Loaded mode:

 % specrun -p "load [top_e_file]; test -seed=1;" \
simv [simv_options]

Using specview

Set the environment variable SPECMAN_OUTPUT_TO_TTY as shown
below:

% setenv SPECMAN_OUTPUT_TO_TTY 1

• In Compiled mode:

 % specview -p "test -seed=1;" -sio simv -gui

• In Loaded mode:

 % specview -p "load [top_e_file]; test -seed=1;" \
-sio simv -gui

You can also specify VCS runtime options with specview or
specrun as shown in the following examples:

Example 28-1 To Invoke DVE Using specview

The following command invokes the Specman GUI, as well as, DVE.

% specview -p "test -seed=1;" -sio simv -gui

Similarly, you can also use -ucli with specview to invoke
simulation in UCLI mode.

28-7

Integrating VCS with Specman

Example 28-2 To Invoke UCLI Using specrun

The following command invokes the simulation in UCLI mode:

% specrun -p "test -seed=1;" simv -ucli -i include.cmd

Similarly, you can also use -gui with specrun to invoke DVE.

28-8

Integrating VCS with Specman

Adding Specman Objects To DVE

Following are the steps involved to add e-objects to the DVE wave
window:

• Compile the design. See “Usage Flow” .

• Create the wave.ecom file containing the list of e-objects to be
added. For example:

wave exp sys.U_TbDut.My_Trans
wave event *.clk

• Simulate the design as shown below:

- In Compiled mode:

% simv -gui -do run.do

Here, the run.do contains:

sn set wave -mode=manual dve
sn config wave -event_data=all_data
sn test
sn @wave
run 8 us

- In Loaded mode:

% simv -gui -do run.do

Here, the run.do contains:

sn set wave -mode=manual dve
sn config wave -event_data=all_data
sn load top_e_file.e
sn test
sn @wave
run 8 us

28-9

Integrating VCS with Specman

The simv -gui -do run.do command starts DVE, executes
the UCLI commands specified in run.do and creates the
sn_wave_sys.tcl session file.

• Now, load sn_wave_sys.tcl using File > Load Session and
the dumped e-objects will be added to the Wave window
automatically.

• Go to the Wave window and click on the groups icon to the side
of the filter pane and select the e-objects to be added. See the
figure shown below:

Select Groups

Select the e-objects to be added

28-10

Integrating VCS with Specman

Version Checker for Specman

This section describes how to check the compatibility version of
Specman with VCS. If non-compatible version of Specman is used,
then VCS generates a warning message at compile-time.

Use Model

Through Command-line Options

% vcs +warn=V2V_CHECK_SPECMAN

To convert warning to error:

% vcs -error=V2V_CHECK_SPECMAN

Enabling at Runtime:

%simv +warn=V2V_CHECK_SPECMAN

You can use the +warn=noV2V_CHECK_SPECMAN option to turn off
the warning message. In this option, no specifies disabling warning
messages.

29-1

Integrating VCS with Denali

29
Integrating VCS with Denali 1

Denali, a third-party Memory Modeler - Advanced Verification
(MMAV) product, can be integrated with VCS through a set of APIs.
Denali provides a complete solution for memory modeling and
system verification. It automatically monitors all the timing and
protocol requirements specified by the memory vendor.

Setting Up Denali Environment for VCS

To use Denali along with VCS, set your Denali environment as
shown below:

% setenv DENALI [installation_path_of_DENALI]
% setenv LM_LICENSE_FILE [Denali_license]:$LM_LICENSE_FILE

29-2

Integrating VCS with Denali

Integrating Denali with VCS

The generic functionality of various memory architectures are
captured in a set of highly-optimized 'C' models. The vendor-specific
features and the timing for any particular memory device are defined
within the specification of memory architecture (SOMA) file. Once
the Denali model objects are linked into the simulation environment,
modeling any type of memory is as simple as referencing the
appropriate SOMA file for that particular memory device.

To access a particular SOMA file, include the following declaration in
the source code:

parameter memory_spec = soma_file_path;
parameter init_file = "";

Note:

 memory_spec and init_file are keywords.

Usage Model

This section describes the following:

• Usage Model for Verilog Memory Models

• Execute Denali Commands at UCLI Prompt

Usage Model for Verilog Memory Models

Verilog memory models can be integrated with VCS using PLIs. To
use Verilog memory models, you need to specify the pli.tab file
and denverlib.o during compilation.

29-3

Integrating VCS with Denali

The usage model is shown below:

Compilation

% vcs -debug [vcs_options] verilog_filelist \
-P $DENALI/verilog/pli.tab $DENALI/verilog/denverlib.o

Note:

To compile the design in 64-bit mode, you must use the
-lpthread option.

Simulation

% simv [simv_options]

Execute Denali Commands at UCLI Prompt

VCS allows you to execute Denali commands at the UCLI prompt.
For example:

% simv -ucli
ucli% mmload :top:I_dut:I_denali_model data_file

The above UCLI command loads the Denali memory in the instance
I_denali_model with the data specified in the data_file.

For more information on invoking UCLI, see “Using UCLI” .

29-4

Integrating VCS with Denali

30-1

Integrating VCS with Debussy

30
Integrating VCS with Debussy 1

In this release, VCS supports Novas 2010.07 version under the
–fsdb option.

This chapter contains the following section:

• “Using the Current Version of VCS with Novas 2010.07 Version”
on page 1

Using the Current Version of VCS with Novas 2010.07
Version

This section describes the required environmental settings and the
usage model to dump an fsdb file:

• “Setting Up Debussy”

30-2

Integrating VCS with Debussy

• “Usage Model to Dump fsdb File”

• “Examples”

Setting Up Debussy

To dump an fsdb file, you need to set the following environment
variables:

% setenv DEBUSSY_HOME Debussy_installation
% setenv DEBUSSY_LIB $DEBUSSY_HOME/share/PLI/VCS/LINUX
% setenv LD_LIBRARY_PATH ${DEBUSSY_HOME}/share/PLI/lib/
LINUX:$DEBUSSY_LIB
% setenv LM_LICENSE_FILE[Debussy_license]:$LM_LICENSE_FILE

Usage Model to Dump fsdb File

This section describes the usage model to dump an fsdb file using
Verilog system tasks, or UCLI.

• Using Verilog System Tasks

You can use the Verilog system tasks $fsdbDumpfile() and
$fsdbDumpvars() in your Verilog design to dump an fsdb file
(see “Using Verilog System Tasks”).

• UCLI

At UCLI prompt, you can use the UCLI commands
fsdbDumpfile and fsdbDumpvars to dump an fsdb file.

Irrespective of whether you are using system tasks or UCLI
commands, you must use the -fsdb compile-time option to enable
fsdb dumping, as shown below:

30-3

Integrating VCS with Debussy

Using Verilog System Tasks

Compilation

This can be done in following two ways:

• % vcs -fsdb [compile_options] verilog_filelist

• For –P tab flow, replace vcsd.tab with novas.tab, where
novas.tab is available in:

<NOVAS_INST_DIR>/share/PLI/VCS/${PLATFORM}/
novas.tab

The following is the use model change:

% vcs -debug_pp -P $DEBUSSY_LIB/novas.tab
$DEBUSSY_LIB/pli.a [compile_options]
verilog_filelist

Simulation

% simv [run_options]

Using UCLI

Compilation

This can be done in following two ways:

• % vcs -fsdb [compile_options] verilog_filelist

• For –P tab flow, include –load libnovas.so:FSDBDumpCmd
in the compilation step.

30-4

Integrating VCS with Debussy

The following is the use model change:

% vcs -debug_pp -P $DEBUSSY_LIB/novas.tab
$DEBUSSY_LIB/pli.a -load libnovas.so:FSDBDumpCmd

Simulation

% simv [run_options] -ucli
ucli> fsdbDumpfile your_fsdb_dumpfile
ucli> fsdbDumpvars level module/entity

Note:

The default fsdb file name is novas.fsdb.

Examples

Example 30-1 Using Verilog System Tasks

This example demonstrates the use of Verilog system tasks,
$fsdbDumpfile and $fsdbDumpvars.

`timescale 1ns/1ns
module test;
 initial
 begin
 $fsdbDumpfile("test.fsdb");
 $fsdbDumpvars(0,test);
 end

...
endmodule

Now the usage model to compile and simulate the above design is
as shown below:

Compilation

% vcs -fsdb test.v

30-5

Integrating VCS with Debussy

Simulation

% simv

The above set of commands dumps all the instances in test into the
test.fsdb file.

Example 30-2 Using UCLI

This example demonstrates the use of UCLI commands
fsdbDumpfile and fsdbDumpvars at the UCLI prompt to dump
an fsdb file:

Consider the following Verilog file:

‘timescale 1ns/1ns
module test();
....
endmodule

The usage model to compile the design to use UCLI commands is
as shown below:

Compilation

% vcs -fsdb -debug_pp test.v

Simulation

% simv -ucli
ucli> fsdbDumpfile test.fsdb
ucli> fsdbDumpvars 0 test
ucli> run
ucli> quit

The above command dumps the whole design test into the
test.fsdb file.

30-6

Integrating VCS with Debussy

31-1

 VCS and CustomSim Cosimulation

31
 VCS and CustomSim Cosimulation 1

This chapter briefly describes the environment setup and usage model

of the Synopsys CustomSimTM simulator and VCS mixed-signal
simulations. Supported analog simulators also include HSIM and
FineSim. You can use any one of the simulators to do mixed-signal
simulations.

Integrating VCS with CustomSim

VCS and CustomSim cosimulation allows a mixed-signal simulation
solution, which enables simulating a design that is partly modeled in
both analog and digital form. This section briefly describes the
environment setup and usage model of VCS and CustomSim
cosimulation mixed-signal simulations.

31-2

 VCS and CustomSim Cosimulation

Note:
Unlike the VPI/PLI implementation of mixed-signal simulation
previously used by CustomSim with VPI/PLI standard compliant
digital simulators, CustomSim and VCS cosimulation uses a Direct
Kernel Interface to exchange information between the CustomSim
analog simulator and the VCS digital simulator. This approach
provides more flexibility and better performance over VPI/PLI-based
mixed-signal simulation.

It is recommended that before starting a mixed-signal simulation, both
SPICE subcircuits and Verilog modules should be error-free
(individually tested).

VCS and CustomSim cosimulation mixed-signal simulation supports:

• Verilog top-level netlists and SPICE top-level netlists.

• Donut partitioning, which is the arbitrary instantiation of SPICE
subcircuits and Verilog modules under either SPICE or Verilog
throughout the design hierarchy.

• Instance-based or cell-based partitioning.

For more information about CustomSim, see the Discovery AMS:
Mixed-Signal Simulation User Guide. For information about CustomSim
HSIM, see the CustomSim HSIM documentation. For more information
about CutomSim FineSim, see the FineSim User Guide: Pro and SPICE
Reference.

Setting up the Environment

A working installation of VCS and a matching version of CustomSim are
required to run mixed-signal simulation. The compatibility table for VCS
and CustomSim versions that work together can be found at: https://
solvnet.synopsys.com/retrieve/1463626.html.

31-3

 VCS and CustomSim Cosimulation

Licenses

Either LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE can be used
to specify the license file location:

% setenv LM_LICENSE_FILE license_file_path

or

% setenv SNPSLMD_LICENSE_FILE license_file_path

Note:

If you set the SNPSLMD_LICENSE_FILE environment variable, then
VCS ignores the LM_LICENSE_FILE environment variable.

Required UNIX Paths and Variable Settings

To set the paths for CustomSim and VCS, do the following:

For CustomSim

% source XA_install_directory/CSHRC_platform

For CustomSim HSIM

% setenv HSIM_HOME HSIM_install_directory
% set path = ($VCS_HOME/bin $HSIM_HOME/bin $path)
% setenv HSIM_64 1

Unset the HSIM_64 variable if you are using in 32-bit mode.

Note:

If you set the SNPSLMD_LICENSE_FILE environment variable, then
VCS ignores the LM_LICENSE_FILE environment variable.

For CustomSim FineSim

% source FineSim_install_directory/finesim.cshrc

31-4

 VCS and CustomSim Cosimulation

For VCS

% setenv VCS_HOME vcs_install_directory
% set path = ($VCS_HOME/bin $path)

Use Model

To Compile

The syntax to start the compile process is:

% vcs -ad=init_file verilog_source_files [other_vcs_options]

Where, -ad=init_file enables mixed-signal simulation. In the
absence of the init_file, VCS looks for the default initialization file,
vcsAD.init.

To Run Simulation

The syntax to run the mixed-signal simulation is:

% simv [runtime_options]

Scheduling Analog-to-Digital Events in the NBA Region

VCS enables you to schedule a2d events in the nonblocking
assignment (NBA) region. With this feature you will have more flexibility
on data latching and more control to handle data race conditions
thereby bringing in more predictability in mixed signal designs.

Use Model

To schedule all a2d events on a given SPICE node in the NBA region,
add the queue=blocking|nonblocking option to the a2d command in
the mixed signal setup file (vcsAD.init).

31-5

 VCS and CustomSim Cosimulation

a2d node=<spice_node> queue=nonblocking;

The default value is blocking and all a2d events on <spice_node>
to the digital field are scheduled in the active region. When the value is
nonblocking, the a2d events on the given node are scheduled in the
NBA region.

Note:
If a SPICE node for which queue=nonblocking is assigned turns
to be a digta-to-digtal (d2d) node, then this feature will have no effect
on the SPICE node.

31-6

 VCS and CustomSim Cosimulation

32-1

Integrating VCS with MVSIM Native Mode

32
Integrating VCS with MVSIM Native Mode 1

This chapter provides brief description on the MVSIM tool and how VCS
works with MVSIM native mode.

Introduction to MVSIM

MVSIM is a multivoltage simulation tool that enables voltage-level
aware simulation and verification of power-managed designs. The tool
enables you to simulate the impact of voltage variation on digital logic.

You can use MVSIM for both RTL and Netlist simulations. MVSIM uses
IEEE-1801 (also known as UPF) as the format to capture power-intent
of a design.

32-2

Integrating VCS with MVSIM Native Mode

MVSIM Native Mode in VCS

Native mode of MVSIM enables you to specify the UPF based power-
intent of your design directly to VCS and generate a simulation model,
which contains all power-objects directly instrumented in it.

MVSIM-Native mode eliminates MVCMP or MVDBGEN based
compilation (as done in MVSIM-PLI mode), EV or EVHD compilation,
and the intermediate apdb database, giving significant improvement in
performance and ease-of-use over MVSIM-PLI mode. MVSIM-Native
requires the MVSIM license, as does the MVSIM-PLI mode.

The following figure illustrates the architecture of MVSIM PLI and Native
modes:

32-3

Integrating VCS with MVSIM Native Mode

References

For more details about getting the license for MVSIM and installing it,
refer to the Multi-Voltage Low Power Verification Tools Suite Installation
Guide.

For more details about MVSIM Native mode in VCS, refer to the
MVSIM Native Mode User Guide.

32-4

Integrating VCS with MVSIM Native Mode

 33-5

Unified UVM Library for VCS and Verdi

33
Unified UVM Library for VCS and Verdi 1

The unified UVM library integrates the instrumented UVM libraries
available in VCS and Verdi. With the introduction of the unified UVM
library, VCS and Verdi transaction recorder and message catcher
now coexist and are compiled together. You can directly use the
Unified UVM library with Verdi recording mechanism during
simulation, and for debugging with Verdi. You do not need to set
VCS_UVM_HOME pointing to NOVAS_HOME for Verdi transactions.

Single compilation, UUM and UVM-VMM interoperability flows are
supported in the unified UVM library. The unified UVM library can
also be qualified and validated using Synopsys VIPs.

The UVM libraries are available at the following paths:

• $VCS_HOME/etc/uvm-1.1: The unified UVM 1.1d library.

• $VCS_HOME/etc/uvm-1.2: The unified UVM 1.2 library.

33-6

Unified UVM Library for VCS and Verdi

• $VCS_HOME/etc/uvm: This path is symbolically linked to the
$VCS_HOME/etc/uvm-1.1 directory.

Transaction/Message Recording in Verdi/DVE with VCS

The following sections describe how you can use the unified UVM
library with Verdi or DVE transaction recorder and message catcher
for the VCS simulator:

• Compilation

• Simulation

Compilation

The compile flow is same for both DVE and Verdi transaction
recording. You do not need to point VCS_UVM_HOME to UVM library
in Verdi installation and recompile.

Enabling FSDB or DVE Transaction Recording

Unified UVM library shipped with VCS has additional features that
allow you to take advantage of VPD/FSDB transaction recording and
DVE/Verdi transaction debugging capabilities.

For FSDB transaction recording, you must set NOVAS_HOME and
VCS_HOME environment variables. With debug switches such as
-debug_pp | -debug | -debug_all, and NOVAS tab and PLI
files, both Verdi transaction recorder and DVE transaction recorder
are compiled.

 33-7

Unified UVM Library for VCS and Verdi

You can link to the novas.tab and pli.a files of FSDB dumper as
follows:

% vcs -sverilog -ntb_opts uvm -debug_pp -P $NOVAS_HOME/share/
PLI/VCS/LINUX/novas.tab

$NOVAS_HOME/share/PLI/VCS/LINUX/pli.a

Note:

In case NOVAS_HOME variable is not set or novas.tab and
pli.a files are not added, only the DVE transaction recorder is
compiled.

Recommended Use Model for FSDB Transaction Dumping

To enable FSDB transaction recorder with unified UVM library, it is
recommended to use the -debug_access option, as follows:

% vcs -sverilog -debug_access+all -ntb_opts uvm-1.1
[compile_options]

Note:

- The -debug_access option is a Limited Customer Availability
(LCA) feature.

- You must use the -ntb_opts uvm-1.2 option for UVM-1.2
code.

- You must set NOVAS_HOME and VCS_HOME environment
variables.

To compile your UVM-1.1d or UVM-1.2 code, no extra compile-time
option is needed. VCS transaction recorder, Verdi settings and
recorder, novas.tab and pli.a files of FSDB dumper are
automatically included.

33-8

Unified UVM Library for VCS and Verdi

Simulation

The following sections describe how you can perform simulation
using the unified UVM library.

Dumping Transactions or Messages in Verdi Flow

Add the following runtime options to enable Verdi transaction
recorder and message catcher:

• +UVM_VERDI_TRACE=”<Argument>”

Enables the Verdi flow when added during simulation.

You can use any of the following values as an input to the
<Argument> parameter:
UVM_AWARE|RAL|TLM|MSG|HIER|PRINT

For more details, see the Verdi Application Note -
V3_new_transaction_debug_platform.doc

• +UVM_TR_RECORD

Enables Verdi transaction recorder.

• +UVM_LOG_RECORD

Enables Verdi message catcher.

Note:

If you do not use +UVM_VERDI_TRACE in simv command line,
transactions get dumped in the VPD file.

For example,

 33-9

Unified UVM Library for VCS and Verdi

%> ./simv +UVM_VERDI_TRACE +UVM_TR_RECORD \
+UVM_LOG_RECORD

Dumping Transactions or Messages in DVE Flow

To simulate, use +UVM_TR_RECORD to turn on transaction recording
and use +UVM_LOG_RECORD to turn on recording of UVM report log
messages:

% simv +UVM_TESTNAME=<your_uvm_test> +UVM_TR_RECORD \
+UVM_LOG_RECORD [simv_options]

You can then use DVE to debug the transactions and messages.
This is supported for both interactive and post-process debug. The
recorded streams with transactions and report logs are available in
the VMM/UVM folder of the transaction browser.

Note:

If you used the UVM_TR_RECORD feature with a previous version
of VCS, then you should remove the set_config_int("*",
"recording_detail", UVM_FULL) statement from your UVM
code, because it is no longer required.

33-10

Unified UVM Library for VCS and Verdi

 34-1

Integrating VCS with Verdi

34
Integrating VCS with Verdi 1

This feature is Limited Customer Availability (LCA). To enable LCA
features, use the -lca compile-time option. Limited Customer
Availability (LCA) features are features available with select
functionality. These features will be ready for a general release,
based on customer feedback and meeting the required feature
completion criteria. LCA features do not need any additional license
keys.

Introduction

The increasing complexity and demand for quality and time to
market of today's electronic devices has brought in a new set of
challenges. Typically, majority of verification engineer's time is spent
on debug. Simulation and debug are sequential activities and once
the simulation fails, debugging the failure is needed.

34-2

Integrating VCS with Verdi

You use the desired debug tool to debug and fix the failure and may
end up in executing redundant steps to setup the tool for debugging
after the simulation is complete. For example, Verdi and VCS use
different compilers to compile the HDL design and testbench that
requires you to use different compiler scripts and compile the design
twice to simulate and debug the design. In addition, the subset of
supported HDL and the options for both the tools are different, so,
you need to spend more time and effort to overcome these
disparities.

The unified debug platform based on Verdi provides the ease of use,
ease of migration, and helps in avoiding the time spent on redundant
setups.The Unified Debug platform based on Verdi is tightly
integrated to the VCS simulator and can be used to debug. The
following sections describe the unified debug flow:

• Unified Compile Front End

• Interactive and Post Simulation Debug

• Unified UCLI Dump Command

• Dumping Analog Signals in FSDB File in VCS-CustomSim
Cosimulation Flow

• Support for Reverse Debug in UCLI

• Optimized Performance of Gate Level Designs Using FSDB
Gates

 34-3

Integrating VCS with Verdi

Unified Compile Front End

Unified Compile front end is the integration of VCS and Verdi
compilers to unify the compilation flows for simulation and
debugging. Unified Compile front end uses VCS compiler scripts to
compile the Knowledge Database (KDB) for Verdi. Consequently,
only one common compiler script needs to be maintained for both
VCS and Verdi, ensuring consistency between the two databases.

The benefits offered by Unified Compile front end are as follows:

• Single VCS and Verdi compilation

• Consistent HDL language support

• Consistency in utilizing or handling VCS and Verdi options

Generating Verdi KDB with Unified Compile Front End

Unified Compile front end is supported in both VCS two-step and
three-step flows. In the VCS two-step flow, add the -kdb option to
the command line to generate the KDB. In case of VCS three-step
flow, add the -kdb option in all the vlogan/vcs command lines.

When you specify the –kdb option, Unified Compile front end
creates the Verdi KDB and dumps the design into the libraries
specified in the synopsys_sim.setup file.

For example,

// Compile design using VCS and generate both VCS database
// and Verdi KDB

// -kdb in VCS two-step flow

34-4

Integrating VCS with Verdi

%> vcs -kdb <compile_options> <source files> -lca

// -kdb in VCS three-step flow

% vlogan -kdb <vlogan_options> <source files>

% vcs -kdb <top_name> -lca

To generate only the Verdi KDB and skip the simulation database
generation, specify the following argument with the -kdb option:

-kdb=only

Generates only the Verdi KDB that is needed for both post-
process and interactive simulation debug with Verdi.

This option is supported only in VCS two-step flow. It is not
supported in VCS three-step flow.

In VCS two-step flow, this option does not generate the VCS
compile data/executable, and does not disturb the existing VCS
compile data/executables.

For example,

% vcs -kdb=only <compile_options> <source files> -lca

Reading Compiled Design with Verdi

To read a compiled design, add the -simflow option to the Verdi
command line. This imports the KDB compiled by the Unified
Compile front end and enables Verdi and its utilities to use the library
mapping from the synopsys_sim.setup file. It is also used to
import the design from the KDB library paths.

You can perform the same operations through the Verdi GUI as
follows:

 34-5

Integrating VCS with Verdi

1. Click on File > Import Design option.

2. In the Import Design form, select the From Library tab.

3. In the From field, select the VC/VCS Native Compile option, as
shown in Figure 34-1.

Figure 34-1 Import Design Form

You can also add the -simdir <path> option to the Verdi
command line to ensure that VCS and Verdi use the same data from
the synopsys_sim.setup file. The <path> argument points to the

34-6

Integrating VCS with Verdi

library directory from where VCS is compiled. Use this option if you
want to invoke Verdi from a working directory that is different from the
VCS working directory.

You can also use the -top option with the -simdir option to specify
the top module in the specified library directory. For example,

%> verdi -simflow –simdir [<path>] -top [<your top module>]

If the -top option is not specified, the design top is used by default.

Notes
• The vericom utility exists in Verdi. For VCS users, Unified

Compile front end flow is recommended to generate KDB for data
consistency and better performance. For third-party simulator
users, the compile flow does not change and continues to use
vericom. When loading the compiled design library (KDB) from
the GUI (loading from the command line stays the same), ensure
that the vericom option is selected in the From field under the
From Library tab of the Import Design form.

• As VCS and vericom are different Verilog compilers, there are
some behavioral differences between them. In such cases,
Unified Compile follows the behavior of VCS for consistency
reasons. The supported language subset also follows the
supported subset of VCS.

• All the compilation information including compile log of Verdi KDB
is logged to the regular VCS compiler log file.

• The library mapping information is obtained from the
synopsys_sim.setup file in VCS three-step flow. The library
mapping information in the novas.rc resource file is ignored in
the VCS three-step unified compile flow.

 34-7

Integrating VCS with Verdi

• The Unified Compile front end does not apply to the import-from-
file flow of Verdi. The import-from-file flow continues to use the
vericom parser to read in the Verilog source code directly. It uses
the library mapping information from the novas.rc resource file,
which is similar to the Verdi behavior.

• In the VCS two-step flow, the VCS generated KDB (work.lib++)
is saved in the work directory in the current working directory.

• In the VCS three-step flow, the vlogan -work <work>
generated KDB (work.lib++) is saved in the same working
directory as AN.DB and the physical directory path of the library
is picked as per the mapping present in the
synopsys_sim.setp file. You can use the verdi -simflow
-lib option to specify the working directory to load the KDB.

34-8

Integrating VCS with Verdi

Limitations

The following are the limitations with Unified Compile front end:

• Verilog-AMS (AMS) and Property Specification Language (PSL)
are not supported. Verdi can parse the constructs successfully
without an error message. However, Verdi has a limited support
for debug functionality for AMS and PSL.

• Parallel compilation is not supported.

• Fault tolerance compilation is not supported.

Interactive and Post Simulation Debug

After the Verdi Knowledge Database (KDB) is generated using
Unified Compile front end, the Unified Debug solution allows you to
invoke Verdi with the KDB in a single step for the following debug
modes respectively:

• Interactive simulation debug mode:

Verdi can be automatically invoked with the KDB through the
simulator command line option to perform interactive simulation
debugging in Verdi without other configurations.

• Post simulation debug mode:

The KDB and the synopsys_sim.setup file information can be
automatically loaded into Verdi through a command line option to
perform post simulation debugging. You will not need to manually
specify the compiled design. VCS and Verdi will have the same
information from the synopsys_sim.setup file.

 34-9

Integrating VCS with Verdi

Prerequisites

The following is the prerequisite to perform interactive simulation
debugging using Unified Debug solution:

• Generate Verdi KDB using Unified Compile front end. For more
information, see “Unified Compile Front End” section.

The following are the prerequisites to perform post simulation
debugging using Unified Debug solution:

• Generate Verdi KDB using Unified Compile front end. For more
information, see “Unified Compile Front End” section.

• Specify the -debug_access+<option> compile time option on
the VCS command line. This option automatically picks up Novas
tab file and Novas PLI file and there is no need to pass these files
explicitly during compilation. For more information on this option,
see the VCS documentation.

Note:

You can specify the -debug_access+all option to enable
the complete set of debug capabilities.

• Enable FSDB file dumping using the dumping tasks present in the
source file or at runtime using fsdbDumpvars from the UCLI
command line.

Interactive Simulation Debug Flow

When executing the simv simulator executable, perform one of the
following steps to invoke Verdi or DVE within the interactive
simulation debug mode:

34-10

Integrating VCS with Verdi

• Add the -gui/-verdi/-gui=verdi/-gui=dve options to
specify Verdi or DVE as the debug tool.

For example,

// invoke Verdi
%> simv <simv_options> -verdi [-verdi_opts
“<verdi_options>”]
%> simv <simv_options> –gui=verdi [-verdi_opts
“<verdi_options>”]

// invoke DVE
%> simv <simv_options> –gui=dve [-dve_opt
“<dve_options>”]

• Set the SNPS_SIM_DEFAULT_GUI environment variable to
verdi/dve to specify Verdi or DVE as the debug tool. In VCS,
the default debug tool is DVE and the default dump type is VPD.

Examples

//setting the default debug tool as Verdi and the default
dump type as FSDB

%> setenv SNPS_SIM_DEFAULT_GUI verdi
%> simv <simv_options> –gui [-verdi_opts
“<verdi_options>”]

//setting the default debug tool as DVE and the default
dump type as VPD

%> setenv SNPS_SIM_DEFAULT_GUI dve
%> simv <simv_options> –gui [-dve_opt “<dve_options>”]

Key Points to Note
• Use the -verdi_opts and -dve_opt options to specify other

Verdi specific and DVE specific options.

 34-11

Integrating VCS with Verdi

• The UVM Interactive Debug in Verdi is enabled by default while
using the Unified Debug solution.

• If the design includes SystemC and the default.ridb is not
available under the simv.daidir/ directory, Verdi generates it
automatically.

• In SystemC designs, for SystemC debug flow, you must create
an ridb file and set the SNPS_VERDI_CBUG_LCA environment
variable.

Post Simulation Debug Flow

To automatically load the KDB compiled by the Unified Compile front
end, use the following Verdi command line options:

• -simflow

Enables Verdi and its utilities to use the library mapping from the

synopsys_sim.setup file and also import the design from

the KDB library paths.

• -simBin <simv_path/simv>

Specifies the path of simv executable. This ensures that VCS

and Verdi have the same data from the synopsys_sim.setup

file.

 For example,

%> verdi –simflow –simBin <simv_path/simv>

//import the FSDB file into Verdi
%> verdi –simflow –simBin <simv_path/simv> –ssf
novas.fsdb

34-12

Integrating VCS with Verdi

After specifying the path of simv, you can also directly start the

Verdi Interactive Simulation Debug mode using the Tools

Run Simulation menu command in the Verdi nTrace.

If the design contains SystemC and the default.ridb file

exists in the simv.daidir/ directory, the default.ridb file

is also loaded into the KDB for SystemC debugging.

Note:

- When –simflow and –simBin options are used together, all
the other options related to importing KDB are ignored.

- If you are trying to perform post simulation debug from a
directory different than the compilation directory, you must
specify the absolute physical path mapping in the
synopsys_sim.setup file.

• -simdir <path>

Specifies the path of the library directory when you want to invoke
Verdi from a working directory that is different from the VCS
working directory. For more information, see “Reading Compiled
Design with Verdi” .

Limitations

The following is the limitation when performing power debug with
UPF:

• The UPF file needs to be manually imported into Verdi both for
Interactive and Post Simulation Debug flows:

 34-13

Integrating VCS with Verdi

- In Interactive Simulation Debug flow, add the -upf <UPF
file> option to import your UPF file.

For example,

%> vlogan -kdb <compile_options> <source files>

%> vcs -kdb -upf <UPF file>

%> simv -gui -upf <UPF file>

- In Post Simulation Debug flow, add the -upf <UPF file>
option to import your UPF file.

For example,

%> vlogan -kdb <compile_options> <source files>

%> vcs -kdb -upf <UPF file>

%> simv

 %> verdi –ssf novas.fsdb –simflow –simBin <simv_path/
 simv> -upf <UPF file>

Unified UCLI Dump Command

The UCLI dump command is enhanced to dump the Fast Signal
Database (FSDB) file.

You can now use the dump command to dump the Fast Signal
Database (FSDB) file in addition to the VPD and EVCD file dumping
supported in previous releases. You can also perform the following
operations using the dump command:

34-14

Integrating VCS with Verdi

• Simultaneously open single VPD, EVCD, and FSDB dump files
and manage them individually.

• Simultaneously open multiple FSDB dump files and manage them
individually.

Default Dump File

The default dump file for VPD is inter.vpd, and for FSDB it is
inter.fsdb.

Default Dump Type

The default dump type for VCS is VPD. You can use the following
environment variable to control the default dump type (FSDB, VPD)
in VCS.

% setenv SNPS_SIM_DEFAULT_GUI <verdi or dve>

The following command sets the default dump type as VPD:

% setenv SNPS_SIM_DEFAULT_GUI dve

Similarly, the following command sets the default dump type as
FSDB:

% setenv SNPS_SIM_DEFAULT_GUI verdi

Use Model

Use Model for FSDB Dumping

The following steps describe the use model:

1. Set the NOVAS_HOME variable as follows:

 34-15

Integrating VCS with Verdi

% setenv NOVAS_HOME <novas_path>

2. Compile your designs with the -debug_access option, as
follows:

% vcs -debug_access <file_name>

OR

Compile your designs with a debug option (that is, -debug, -
debug_pp, or -debug_all), as follows:

% vcs debug_option -p $NOVAS_HOME/share/PLI/VCS/LINUX/
novas.tab $NOVAS_HOME/share/PLI/VCS/LINUX/pli.a test.v

Note:

- You must make sure that the FSDB dumping tasks are present
in the Verilog code, otherwise you must dump them interactively
using UCLI.

- If you use -debug, -debug_pp, and -debug_all options,
you must specify novas.tab and pli.a files on the VCS
command line. The -debug_access option automatically sets
the novas.tab and pli.a files.

Use Model for VPD Dumping

For information on the use model for VPD dumping, see Dumping a
VPD File section in the VCS User Guide.

Key Points to Note
• If a single dump file is open, you are not required to specify the

-fid argument with the dump commands that follow the
dump -file command.

Example:

34-16

Integrating VCS with Verdi

ucli% dump -file test.vpd (this command returns VPD0)

ucli% dump –add / -depth 0 (this command dumps into
the VPD file test.vpd)

• If multiple dump files are open, you must specify the -fid
argument with the dump commands that follow the second dump
-file command.

Example:

ucli% dump -file test.vpd (this command returns VPD0)

ucli% dump -file test.vpd -type FSDB (this command
returns FSDB0)

ucli% dump –add/-depth 0 -fid VPD0 (this command
dumps into the VPD file test.vpd)

• During simulation, if the number of open dump files return to one,
you can exclude the -fid argument. An error message is issued,
if a dump command is specified without the -fid argument when
multiple dump files are open.

Enhanced UCLI Dump Options

This section describes the enhanced UCLI dump options.

Following are the enhanced UCLI dump options:

• dump -file

• dump -add

• dump -close

 34-17

Integrating VCS with Verdi

• dump -deltaCycle

• dump -flush

• dump -autoflush

• dump -switch

• dump -forceEvent

• dump -filter

• dump -showfilter

• dump -power

• dump -powerstate

dump -file

Opens a specific type of file for dumping.

Syntax:

dump -file <filename> -type <file_type>

<file_type> can be one of the following:

• VPD

• EVCD

• FSDB

This command returns the file ID, <fid>, which is the unique string
that identifies the opened file.

Examples:

34-18

Integrating VCS with Verdi

• ucli% dump -file test.evcd -type EVCD

This command returns EVCD0

• ucli% dump -file test.fsdb -type FSDB

This command returns FSDB0

• ucli% dump -file test.vpd -type VPD

This command returns VPD0

dump -add

Adds design objects to the dump file.

Syntax:

dump -add <list_of_nids> [-fid <fid>] -depth
<levels> [-aggregates] [-ports |-in|-out| -inout]
[-filter=<filter_list>] [-power]

This command returns an integer value which increments after each
call.

Note:

You must specify the -fid argument if multiple dump files are
open, else VCS issues an error message.

For the dump file of type FSDB,

• VCS issues a warning message if the port direction is specified
with the -filter argument

 34-19

Integrating VCS with Verdi

• The -aggregates argument dumps both SVA and MDA signals.
This option combines the functionality of the $fsdbDumpSVA and
$fsdbDumpMDA system tasks

If no dump file has been opened using dump –file, a VPD file is
opened, and its file ID is returned.

Example:

• ucli% dump -add top.a -aggregates -fid FSDB0

• ucli% dump -add/-aggregates -fid VPD0

The dump -add command dumps the signals in the default dump
file. For example:

ucli% dump -file a.dump

Creates a dump file based on the default dump type.

ucli% dump -add/-aggregates

Dumps signals in the default dump file.

Support for the $fsdbDumpvars Options

The dump -add command supports the $fsdbDumpvars system
task options using the -fsdb_opt argument, as shown in the
following command:

dump -add <object> -fsdb_opt <+option> [-fid <fid>]

The -fid argument must specify a valid FSDB ID, else VCS issues
an error message.

Example:

34-20

Integrating VCS with Verdi

dump -add . -fsdb_opt +mda+packedmda+struct -fid FSDB0

Table 34-1 lists the options supported for the -fsdb_opt argument.
For more information on these options, see the Linking Novas Files
with Simulators and Enabling FSDB Dumping User Guide.

Table 34-1

Option Description

+mda Dumps memory and MDA signals in all scopes. This
does not apply to VHDL

+packedmda Dumps packed signals

+struct Dumps structs

+skip_cell_instance=mode Enables or disables cell dumping

+strength Enables strength dumping

+parameter Dumps parameters

+power Dumps power-related signals

+trace_process Dumps VHDL processes

+no_functions Disables dumping of functions

+fsdb+<filename> Specifies the dump file name. The default name is
novas.fsdb
Note: This option is ignored if the file ID is present

+sva Dumps assertions

+Reg_Only Dumps only reg type signals

+IO_Only Dumps only IO port signals

+by_file=<filename> File to specify objects to add

+all Dumps memories, MDA signals, structs, unions,
power, and packed structs

Supported Options

 34-21

Integrating VCS with Verdi

dump -close

Closes an open dump file.

Syntax:

dump -close [-fid <fid>]

Here, <fid> specifies the file ID and follows these rules:

• If the file ID is VPD or EVCD, this command closes the dump file
with the corresponding file ID

• If the file ID is FSDB, VCS issues a warning message indicating
that FSDB is not supported for the dump -close command

• If the file ID is not specified, this command closes all open dump
files

VCS issues a warning message if the file ID is specified, but the
corresponding file does not exist or is not currently open.

You can close VPD or EVCD file using the dump -close -fid
VPD* | EVCD* command.

Note:

The FSDB API does not support the closing of specific open FSDB
files. You can use the dump -close command to close all the
opened dump files.

dump -deltaCycle

Enables or disables delta cycle dumping.

Syntax:

dump -deltaCycle <on|off> [-fid <fid>]

34-22

Integrating VCS with Verdi

Note:
- You must specify the file ID if multiple dump files are open, else

VCS issues an error message

- For FSDB dump files, you must execute this command before
dumping is started

dump -flush

Forces the contents of the value change buffer to be written to the
disk file.

Syntax:

dump -flush [-fid <fid>]

Here, <fid> specifies the file ID and follows these rules:

• If the file ID is VPD or EVCD, this option forces the contents of
the dump file corresponding to the file ID

• If the file ID is FSDB, this option forces the contents of the FSDB
dump file

• If the file ID is not specified and there is only one open file, this
option forces the contents of the open dump file

dump -autoflush

Forces the contents of the value change buffer to be written to the
disk file, if the simulator stops due to any of the following reasons:

• The $stop statement is used in the design

• Ctrl+C is used to break the simulation

• The simulation stops at a user-defined breakpoint

 34-23

Integrating VCS with Verdi

Syntax:

dump -autoflush <on|off> [-fid <fid>]

Note:
- You must specify the file ID if multiple dump files are open, else

VCS issues an error message and this option is ignored

- This command is not supported for the FSDB dump files

dump -interval

Specifies a specific time interval to force the contents of the value
change buffer to the dump file.

Syntax:

dump –interval <seconds> [-fid <fid>]

Note:

- You must specify the file ID if multiple dump files are open, else
VCS issues an error message

- This command is not supported for the FSDB dump files

dump -switch

Closes the current file and opens a new file with the given name. The
new file retains the hierarchy of the closed file.

Syntax:

dump –switch <new_name> [-fid <fid>]

34-24

Integrating VCS with Verdi

Note:
- You must specify the file ID if multiple dump files are open, else

VCS issues an error message

- The new file inherits the file ID of the closed file

dump -forceEvent

Enables or disables force dumping.

Syntax:

dump –forceEvent <on|off> [-fid <fid>]

Note:

- You must specify the file ID if multiple dump files are open, else
VCS issues an error message

- This command is not supported for the FSDB dump files

dump -filter

Sets a dump filter.

Syntax:

dump –filter <filter_list> [-fid <fid>]

Note:

- You must specify the file ID if multiple dump files are open, else
VCS issues an error message

- This command is supported only for VPD dump files. It is not
supported for the EVCD and FSDB dump files

 34-25

Integrating VCS with Verdi

dump -showfilter

Displays the current filter.

Syntax:

dump –showfilter [-fid <fid>]

Note:
- You must specify the file ID if multiple dump files are open, else

VCS issues an error message

- This command is supported only for VPD dump files. It is not
supported for the EVCD and FSDB dump files

dump -power

Globally enables or disables the dumping of the low power scopes
and nodes.

Syntax:

dump -power <on|off> [-fid <fid>]

You must specify the file ID if multiple dump files are open, else VCS
issues an error message.

For FSDB dumping, the dump -power on command uses the
$fsdbDumpvars +power system task. There is no corresponding
procedure used to stop FSDB dumping, that is, you cannot stop the
dumping of the power signals into the FSDB dump file after it has
started.

34-26

Integrating VCS with Verdi

dump -powerstate

Globally enables or disables the dumping of the low power domain
state signals, PST signals, and PST supply signals.

Syntax:

dump -powerstate <on|off> [-fid <fid>]

You must specify the file ID if multiple dump files are open, else VCS
issues an error message.

For FSDB dumping, the dump -powerstate on command uses
the $fsdbDumpvars +power system task. There is no
corresponding procedure used to stop FSDB dumping, that is, you
cannot stop the dumping of the power signals into the FSDB dump
file after it has started.

New UCLI Dump Options

This section describes the new UCLI dump options that support
FSDB dumping.

Following are the new UCLI dump options:

• dump -suppress_file

• dump -suppress_instance

• dump -enable

• dump -disable

• dump -glitch

• dump -opened

 34-27

Integrating VCS with Verdi

• dump -msv

dump -suppress_file

Specifies the scopes in file that are not be dumped into the FSDB file.

Syntax:

dump -suppress_file <file_name>

This command returns a string.

Note:

- You must use this command before dumping the file. VCS
issues an error message if this command is specified after the
dump -add command

- This command is supported only for the FSDB dump file, and
is global to all FSDB files. It is not supported for the VPD and
EVCD dump files

dump -suppress_instance

Specifies the list of instances that are not dumped into the FSDB file.

Syntax:

dump -suppress_instance <list_of_instances>

This command returns a string.

Note:

- You must use this command before dumping the file. VCS
issues an error message if this command is specified after the
dump -add command

34-28

Integrating VCS with Verdi

- This command is supported only for the FSDB dump file, and
is global to all FSDB files. It is not supported for the VPD and
EVCD dump files

dump -enable

Enables dumping again, if it is disabled.

Syntax:

dump -enable [-fid <fid>]

This command returns the state as on or off.

The functionality of the dump -enable command is similar to the
$fsdbDumpon system task.

Note:
- You must specify the file ID if multiple dump files are open, else

VCS issues an error message

- This command has more precedence over the
$fsdbDumpvars system task

dump -disable

Disables the dumping of all dumped signals.

Syntax:

dump -disable [-fid <fid>]

This command returns the state as on or off.

The functionality of the dump -disable command is similar to the
$fsdbDumpoff system task.

 34-29

Integrating VCS with Verdi

Note:
- You must specify -fid if multiple dump files are open, else

VCS issues an error message

- This command has more precedence over the
$fsdbDumpvars system task

dump -glitch

Enables or disables the dumping of glitches.

Following is the syntax of the dump -glitch command:

dump -glitch <on|off> [-fid <fid>]

This command returns the state as on or off. By default, it is set to
off.

The functionality of the dump -glitch command is similar to the
$fsdbDumpon(+glitch)system task.

Note:

You must set the environment variable
NOVAS_FSDB_ENV_MAX_GLITCH_NUM to 0 to enable dumping
of glitches in the FSDB file.

This command is supported only for the FSDB dump files. The VPD
dump files are not supported.

dump -opened

Displays all opened dump files and their file type.

Syntax:

dump -opened

34-30

Integrating VCS with Verdi

The output format of this command is FID Name.

Following is a sample output when three dump files of different types
are open:

VPD0 inter.vpd

FSDB1 novas.fsdb

EVCD2 verilog.dump

dump -msv

Enables dumping of the analog signals in the FSDB file.

Syntax:

dump -msv[=on|off]

dump -file analog_mixed_signal.fsdb -type fsdb

For more information, see “Dumping Analog Signals in FSDB File in
VCS-CustomSim Cosimulation Flow” section.

Limitations

FSDB Limitations

Following are the limitations for the FSDB file type:

• The dump -close command does not work on the specified
FSDB file ID. You can only close all the FSDB files

 34-31

Integrating VCS with Verdi

• The dump -power on and dump -powerstate on commands
use the $fsdbDumpvars +power system task for FSDB
dumping with no corresponding procedure to stop the dumping.
That is, you cannot stop the dumping of the power signals into the
FSDB dump file after it has started

• The dump -enable and dump -disable commands does not
support time unit arguments

VPD Limitations
• The dump -enable and dump -disable commands does not

support time unit arguments.

Dumping Analog Signals in FSDB File in VCS-
CustomSim Cosimulation Flow

UCLI dump command is enhanced to dump analog signals in the
FSDB file in the VCS-CustomSim cosimulation environment.

You can now use the –msv, UCLI dump option, to enable dumping of
the analog signals in the FSDB file.

With this enhancement, for an object specified in the design, the
UCLI dump command supports dumping of the hierarchy scope with
mixed digital and analog modules.

34-32

Integrating VCS with Verdi

Use Model

Use Model for FSDB Dumping

The following steps describe the use model for FSDB dumping:

1. Set the NOVAS_HOME variable as follows:

% setenv NOVAS_HOME <novas_path>

2. Compile your design with the -debug_access option, as follows:

% vcs -debug_access <file_name>

Enabling Dumping of the Analog/Digital Signals in the FSDB
File

The following steps describe the use model to dump the digital
signals, analog signals, or both analog and digital signals in the
FSDB file:

1. You can use one of the following ways to invoke Verdi dumper on
analog signals:

ucli% dump -msv[=on|off]

ucli% dump -file analog_mixed_signal.fsdb -type
fsdb

 OR

ucli% dump -file analog_mixed_signal.fsdb -type
fsdb -msv[=on|off]

 34-33

Integrating VCS with Verdi

Note:
- You can use the -msv option to enable (on) or disable (off)

dumping of analog signals throughout the simulation. By
default, this option is enabled if on or off is not specified.

- The analog targets are ignored if the -msv option is not
specified.

- Once an analog scope is enabled with the dump -msv on
command, it cannot be disabled for dumping throughout the
simulation using the dump -msv off command.

- If -type is not specified, you can use the following command
to set the default dump type as FSDB:

% setenv SNPS_SIM_DEFAULT_GUI verdi

2. Use the dump -add UCLI command to dump analog signals,
digital signals, or both analog and digital signals in the FSDB file.

Example-1: dump -msv on|off is not specified

The -msv option is enabled by default when on or off is not
specified. Consider the following example:

ucli% dump -msv -type fsdb -file
analog_mixed_signal.fsdb
ucli% dump -add top.a -fid FSDB0

This example dumps all the analog and digital signals of the
top.a scope.

Note:

You must specify the -fid argument if multiple dump files are
open, else VCS issues an error message.

34-34

Integrating VCS with Verdi

Example-2: dump -msv off is specified

ucli% dump -msv off -type fsdb -file
analog_mixed_signal.fsdb
ucli% dump -add top.U0 -fid FSDB0

This example dumps all the digital signals of the top.U0 scope
and all the hierarchies under it, excluding all analog signals in the
hierarchy.

For more information on the dump -add and dump -file UCLI
commands, see “Unified UCLI Dump Command” section.

Enabling Merge Dumping

Use the set_waveform_option CustomSim configuration file
command, as shown below, to enable merge dumping:

set_waveform_option -format fsdb -file merge

This command dumps all the digital and analog signals in the target
FSDB file. If the target FSDB file is not specified, then both analog
and digital signals are dumped in the default FSDB file
novas.fsdb.

If the -file merge option is not used in the
set_waveform_option command, the analog signals are
dumped in a separate file called xa.fsdb, digital signals are
dumped in the default FSDB file novas.fsdb.

Note:
If any CustomSim probe command is invoked on a SPICE signal,
its wave is dumped in the target FSDB file. For more information
on the CustomSim configuration commands, refer to the
CustomSim Command Reference User Guide.

 34-35

Integrating VCS with Verdi

Usage Example

If the -msv option is set to on, the dump -add a.b.c -type
command exhibits the following behavior:

• If a.b.c is an analog net, dumps its voltage

• If a.b.c is an analog sub-circuit, dumps all the ports and internal
nets of the sub-circuit

• If a.b.c is a digital net, dumps its digital value

• If a.b.c is a digital instance, dumps the signal inside this scope

• If a.b.c is a digital or analog instance where c contains mixed-
signal hierarchies, then both digital and analog signals of c and
its hierarchies will be dumped.

Support for Reverse Debug in UCLI

The reverse debug feature includes capability that supports
debugging with running the simulation backwards.

You can start debugging at the symptom of the problem and
systematically go back in time along the bug propagation cause-
effect chain. Divide-and-conquer debugging method is much more
efficient with reverse debugging.

For example, if the simulation is stopped before some function call
and you are not sure whether the function will return the correct
value or not, you can step over this function call and check the
returned result. If the result is wrong, you can perform “reverse next”
command (next –reverse), step into the function and investigate

34-36

Integrating VCS with Verdi

what causes the wrong result. Without reverse debugging, this would
require very costly restart of debugging and playing with breakpoints
to reach the same simulation state.

Following are the simulation control commands for reverse
executing simulation:

• run –reverse

• step -reverse

• step -reverse -thread

• step -reverse -tb

• next -reverse

• next -reverse -thread

• next -reverse -end

You can also easily reverse the simulation to the previous value
assignment of a signal or variable by setting a value change
breakpoint on this variable and executing the run -reverse
command.

Furthermore, you can keep the future (for example, while reversing
a simulation, the time and information generated from an active
point, Point A, to a previous point, Point B is termed as future) when
going back in simulation time during reverse debugging. The
following are the benefits to keep the future:

• Better performance during the rewinding operation and reverse
debugging.

 34-37

Integrating VCS with Verdi

• During the debugging, you can bookmark interesting points using
checkpoints and later quickly return to them even after reverse
executing to time before these checkpoints. The checkpoints (in
the future) are preserved, and you can easily go to the recorded
future checkpoint from the past.

Enabling Reverse Debug

You must use the -debug_access+reverse compile-time option,
as shown below, to enable reverse debug feature:

% vcs -sverilog example.sv -debug_access+reverse
<compilation_options>

% simv -ucli -ucli2Proc

You must run the config reversedebug on UCLI command, as
shown below, to use this feature in UCLI:

ucli% config reversedebug on

You must run the config reversedebug on command
immediately after the simulation start. If you run this command in the
middle of the simulation, reverse debug commands will go back only
until the point where config reversedebug on was executed.

34-38

Integrating VCS with Verdi

UCLI Commands for Reverse Debug

The following sections provide a detailed description of these
features:

Creating Checkpoints on Breakpoint Hits

The UCLI stop command is enhanced to create a checkpoint when
the specified breakpoint is hit during the simulation. The following
new option is added to the UCLI stop command to implement this
functionality:

-checkpoint <number>

Creates a new checkpoint for the specified breakpoint when it is
hit. This option creates the checkpoint label in the following format:

“BP <breakpoint_number> (breakpoint_hit_number)”
(breakpoint <breakpoint_number>, hits
<breakpoint_hit_number>)

For example, “BP 3 (4)” (breakpoint 3, hits 4)

Example:

ucli %> stop –in file.v –line 42
4
ucli %> stop –checkpoint 4
4

 34-39

Integrating VCS with Verdi

Using Reverse Simulation Control Commands

The new -reverse option is added to the step, next, and run
UCLI commands to provide the ability to move to an earlier
simulation state from the current simulation debug state. All
commands bring the simulation back in time to the completely
functional execution state.

Run/Continue Reverse Simulation Control Command

You can use the run –reverse command to allow the simulation
to go back in time (reverse the simulation) for the specified amount
of time. All the current breakpoints are respected and the simulation
stops at the most recent (considered back from the current execution
state) breakpoint hit.

Following are the various options you can use with the
run -reverse command:

run –reverse [time [unit]]

Specifies the time units for the simulation to go back in time.

run -reverse -absolute | relative <time>

Specifies the relative or absolute time units for the simulation to
go back in time.

run -reverse -line <line_number> [-file <file>] [-
instance <nid>] [-thread <thread_id>]

Specifies the source code line to which the simulation needs to
go back.

34-40

Integrating VCS with Verdi

Step and Next Reverse Simulation Control Commands

The following reverse commands are available to reverse the
simulation:

Command Description

step -reverse Goes back one SystemVerilog source code line.

step -reverse -thread Goes back one source code line in the current thread.

step -reverse -tb Goes back one source code line in the testbench code.

next -reverse Goes back one SystemVerilog line which steps over
task/function calls. Eventually, it might stop on a
breakpoint inside the task/function called at the
previous line.

next -reverse -thread Goes back one source code line in the current thread
which steps over task/function calls.

next -reverse -end Goes back to the source code line where the current
function has been called.

Limitations

The following are the limitations with Reverse Debugging feature:

• Reverse debug is not supported with DVE.

• VCS design level parallelism (DLP) is not supported.

• SystemC Debug is not available when reverse debug is activated.

• The following actions of PLI code are not supported:

- IPC communication using sockets, pipes or shared memory

- Multi-threading

 34-41

Integrating VCS with Verdi

- Performing the file seeking operations, and then writing at a
new position (that is, it is assumed that simulation only appends
data to the output files)

• Simulation with Specman is not supported.

• Analog-digital co-simulation (using NanoSim) is not supported.

• Save and Restore functions are not available to save and restore
checkpoints.

• The reverse debug commands are not supported for VHDL source
code. For example, using the step -reverse command will
move to previous Verilog source code line, ignoring all VHDL code
in between.

• Reverse debug is not supported when the design is compiled with
the -simprofile option for simulation profiling.

Optimized Performance of Gate Level Designs Using
FSDB Gates

For large gate-level designs, simulation is time consuming and the
size of the Fast Signal Database (FSDB) file is huge. Verification
Compiler offers the integration of VCS with the Verdi dumper to
optimize the FSDB gate-level dumping without Standard Delay
Format (SDF) information for the Verilog designs.

The FSDB gate acceleration feature helps to reduce the dumped
FSDB file size and optimizes the VCS simulation time for specific
coding styles and forced signal flows. This improves the simulation
performance. This feature can be enabled during simulation using a
simple runtime option.

34-42

Integrating VCS with Verdi

The FSDB gate acceleration feature directs VCS to analyze the
essential signals and the netlist information and uses the FSDB
Dumper to only dump the essential signals in an FSDB file.
Applications, such as, Waveform Viewer and FSDB Reader retrieve
the data stored in the FSDB file. The VCS computation engine uses
the retrieved data to generate the complete signal data during
debugging.

Note:

This feature is supported with FSDB Reader 5.2 (for user of FSDB
reader API). If the API libraries of the FSDB Reader are used to
read the FSDB file with new format, a Verdi license is required.

Use Model

If your design includes force events, you need to enable the FSDB
gate acceleration by enabling the VCS force capability along with the
-debug, -debug_all, or -debug_access+f+fwn options during
compilation.

Use the +fsdb+gate runtime option in the VCS simulation
command line to enable this feature.

For example,

%> ./simv +fsdb+gate

Alternatively, set the following environment variable before starting
the simulation:

%> setenv FSDB_GATE 1

Key Points to Note

• After simulation, a new format of the FSDB file is generated.

 34-43

Integrating VCS with Verdi

• Expect to see higher simulation speed in the SystemVerilog gate-
level design without SDF.

• FSDB reading performance (CPU or memory) when using Verdi
debug might be impacted.

Limitations

The following are the limitations with the FSDB-Gate feature:

• The +fsdb+gate option is disabled with a warning message, if
you add any of the following FSDB Dumper options in the
simulation command line or if you specify them using the setenv
command:

- +fsdb+glitch=<num> (corresponding environment variable
is NOVAS_FSDB_ENV_MAX_GLITCH_NUM or FSDB_GLITCH):
If the <num> argument is not equal to 1, the +fsdb+gate
option is disabled.

- +fsdb+dumpon_glitch+time and
+fsdb+dumpoff_glitch+time

- +fsdb+region (corresponding environment variable is
FSDB_REGION)

- +fsdb+sequential (corresponding environment variable is
NOVAS_FSDB_ENV_DUMP_SEQ_NUM)

- +fsdb+strength=on (corresponding environment variable
is NOVAS_FSDB_STRENGTH)

- +fsdb+esdb (corresponding environment variable is
FSDB_ESDB)

• If the +fsdb+gate option is enabled, the +strength option in
dumping tasks is ignored with a warning message.

34-44

Integrating VCS with Verdi

• The FSDB Gate acceleration does not support VCS MVSIM
Native flow to have the optimized performance.

• The FSDB utilities require many computations. The performance
slowdown is expected when using the FSDB utilities.

A-1

VCS Environment Variables

A
VCS Environment Variables A

This appendix covers the following topics:

• “Simulation Environment Variables”

• “Optional Environment Variables”

Simulation Environment Variables

To run VCS, you need to set the following basic environment
variables:

$VCS_HOME

When you or someone at your site installed VCS, the installation
created a directory that is called the vcs_install_dir
directory. Set the $VCS_HOME environment variable to the path
of the vcs_install_dir directory. For example:

A-2

VCS Environment Variables

setenv VCS_HOME /u/net/eda_tools/vcs2005.06

PATH

On UNIX, set this environment variable to $VCS_HOME/bin. Add
the following directories to your PATH environment variable:

set path=($VCS_HOME/bin\
 $VCS_HOME/‘$VCS_HOME/bin/vcs -platform‘/bin\
 $path)

Also, make sure the path environment variable is set to a bin
directory containing a make or gmake program.

LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE

The definition can either be an absolute path name to a license
file or to a port on the license server. Separate the arguments in
this definition with colons. For example:

setenv LM_LICENSE_FILE 7182@serveroh:/u/net/server/
eda_tools/license.dat

or

setenv SNPSLMD_LICENSE_FILE 7182@serveroh:/u/net/
server/eda_tools/license.dat

Note:

- You can use SNPSLMD_LICENSE_FILE environment
variable to set licenses explicitly for Synopsys tools.

-If you set the SNPSLMD_LICENSE_FILE environment
variable, then VCS ignores the LM_LICENSE_FILE
environment variable.

-

A-3

VCS Environment Variables

Optional Environment Variables

VCS also includes the following environment variables that you can
set in certain circumstances.

DISPLAY_VCS_HOME

Enables the display, at compile time, of the path to the directory
specified in the VCS_HOME environment variable. Specify a
value other than 0 to enable the display. For example:

setenv DISPLAY_VCS_HOME 1

PERSISTENT_FLAG

When set to 1, VCS disables the checks enabled by the
persistent specification in the tab file. It also disables similar
checks that are enabled by the -debug, -debug_all, or
-debug_pp options. See the section “PLI Table File” .

SYSTEMC_OVERRIDE

Specifies the location of the SystemC simulator used with the
VCS/SystemC co-simulation interface. See Using SystemC.

TMPDIR

Specifies the directory used by VCS and the C compiler to store
temporary files during compilation.

VCS_CC

A-4

VCS Environment Variables

Indicates the C compiler to be used. To use the gcc compiler
specify the following:

setenv VCS_CC gcc

VCS_COM

Specifies the path to the VCS compiler executable named vcs1,
not the compile script. If you receive a patch for VCS, you might
need to set this environment variable to specify the patch. This
variable is used for solving problems that require patches from
VCS and should not be set by default.

VCS_LIC_EXPIRE_WARNING

By default, VCS displays a warning message 30 days before a
license expires. You can specify that this warning message begin
fewer days before the license expires with this environment
variable, for example:

VCS_LIC_EXPIRE_WARNING 5

To disable the warning, enter the 0 value:

VCS_LIC_EXPIRE_WARNING 0

VCS_LOG

Specifies the runtime log file name and location.

VCS_NO_RT_STACK_TRACE

Tells VCS not to return a stack trace when there is a fatal error
and instead dump a core file for debugging purposes.

VCS_SWIFT_NOTES

A-5

VCS Environment Variables

Enables the printf PCL command. PCL is the Processor
Control Language that works with SWIFT microprocessor models.
To enable it, set the value of this environment variable to 1.

VCS_DIAGTOOL

Generates valgrind data for vcs1, if you set this environment
variable as shown below:

% setenv VCS_DIAGTOOL "valgrind --tool=memcheck"

Once you set this environment variable, any subsequent
invocation of vcs1 generates valgrind data.

A-6

VCS Environment Variables

B-1

Compile-Time Options

B
Compile-Time Options A

The vcs command performs compilation of your design and creates
a simulation executable. Compiled event code is generated and
used by default. The generated simulation executable, simv, can
then be used to run multiple simulations.

This section describes the vcs command and related options.

Syntax:

% vcs source_files [source_or_object_files] [options]

Here:

source_files

The Verilog or OVA source files for your design separated by
spaces.

B-2

Compile-Time Options

source_or_object_files

Optional C files (.c), object files (.o), or archived libraries (.a).
These are DirectC or PLI applications that you want VCS to link
into the binary executable file along with the object files from your
Verilog source files. When including object files include the -cc
and -ld options to specify the compiler and linker that generated
them.

options

Compile-time options that control how VCS compiles your design.

This appendix lists the following:

• "Option for Code Generation"

• "Options for Accessing Verilog Libraries"

• "Options for Incremental Compilation"

• "Options for Help"

• "Options for SystemVerilog Assertions"

• "Options to Enable Compilation of OVA Case Pragmas"

• "Options for Native Testbench"

• "Options for Different Versions of Verilog"

• "Option for Initializing Verilog Variables, Registers and Memories
with Random Values"

• "Option for Initializing Verilog Variables, Registers and Memories
in Selective Parts of a Design"

• "Options for Selecting Register or Memory Initialization"

B-3

Compile-Time Options

• "Options for Using Radiant Technology"

• "Options for Starting Simulation Right After Compilation"

• "Options for Specifying Delays and SDF Files"

• "Options for Compiling an SDF File"

• "Options for Specify Blocks and Timing Checks"

• "Options for Pulse Filtering"

• "Options for Negative Timing Checks"

• "Options for Profiling Your Design"

• "Options to Specify Source Files and Compile-time Options in a
File"

• "Options for Compiling Runtime Options into the Executable"

• "Options for PLI Applications"

• "Options to Enable the VCS DirectC Interface"

• "Options for Flushing Certain Output Text File Buffers"

• "Options for Simulating SWIFT VMC Models and SmartModels"

• "Options for Controlling Messages"

• "Option to Run VCS in Syntax Checking Mode"

• "Options for Cell Definition"

• "Options for Licensing"

• "Options for Controlling the Linker"

• "Options for Controlling the C Compiler"

B-4

Compile-Time Options

• "Options for Source Protection"

• "Options for Mixed Analog/Digital Simulation"

• "Options for Changing Parameter Values"

• "Checking for x and z Values in Conditional Expressions"

• "Options for Detecting Race Conditions"

• "Options to Specify the Time Scale"

• "Options to Exclude Environment Variables During Timestamp
Checks"

• "Options for Overriding Parameters"

• "Options for Overriding Parameters"

• "Option to Enable Bounds Check at Compile-Time"

• "Option to Enable Bounds Check at Runtime"

• "General Options"

Option for Code Generation

-mcg

Enables mixed code generation model in VCS backend. Part of
code is aggressively optimized by the available C compilers.

Options for Accessing Verilog Libraries

-v filename

B-5

Compile-Time Options

Specifies a Verilog library file. VCS looks in this file for definitions
of the module and UDP instances that VCS found in your source
code, but for which it did not find the corresponding module or
UDP definitions in your source code.

-y directory

Specifies a Verilog library directory. VCS looks in the source files
in this directory for definitions of the module and UDP instances
that VCS found in your source code, but for which it did not find
the corresponding module or UDP definitions in your source code.
VCS looks in this directory for a file with the same name as the
module or UDP identifier in the instance (not the instance name).
If it finds this file, VCS looks in the file for the module or UDP
definition to resolve the instance.

Note:

If multiple -y options are are on the vcs command line, VCS
starts searching the directory passed with the first -y option,
then second and so on.

For example:

If rev1/cell.v, rev2/cell.v and rev3/cell.v all exist
and define the module cell(), and you issue the following
command:

% vcs -y rev1 -y rev2 -y rev3 +libext+.v top.v

VCS picks cell.v from rev1.

However, if the top.v file has a `uselib compiler directive
as shown below, then `uselib takes priority:

//top.v

B-6

Compile-Time Options

`uselib directory = /proj/libraries/rev3
//rest of top module code
//end top.v

In this case, VCS will use rev3/cell.v when you issue the
following command:

% vcs -y rev1 -y rev2 +libext+.v top.v

Include the +libext compile-time option to specify the file name
extension of the files you want VCS to look for in these directories.

+libext+extension+

Specifies that VCS searches only for files with the specified file
name extensions in a library directory. You can specify more than
one extension, separating the extensions with the plus (+)
character. For example, +libext+.v+.V+ specifies searching
for files with either the .v or .V extension in a library. The order
in which you add file name extensions to this option does not
specify an order in which VCS searches files in the library with
these file name extensions.

+liborder

Specifies searching for module definitions for unresolved module
instances through the remainder of the library where VCS finds
the instance, then searching the next and then the next library on
the vcs command line before searching in the first library on the
command line.

+librescan

Specifies always searching libraries for module definitions for
unresolved module instances beginning with the first library on
the vcs command line.

B-7

Compile-Time Options

Note:
+liborder and +librescan switches on elaboration
command line will have impact only when the user specifies -
y/-v on elaboration command line.

+libverbose

Tells VCS to display a message when it finds a module definition
in a source file in a Verilog library directory that resolves a module
instantiation statement that VCS read in your source files, a library
file, or in another file in a library directory. The message is as
follows:

Resolving module "module_identifier"

By default, VCS does not display this message when it finds a
module definition in a Verilog library file that resolves a module
instantiation statement.

Options for Incremental Compilation

-Mdirectory=directory

Specifies the incremental compile directory. The default name for
this directory is csrc, and its default location is your current
directory. You can substitute the shorter -Mdir for
-Mdirectory.

-Mlib=dir

B-8

Compile-Time Options

This option provides VCS with a central place to look for the
descriptor information before it compiles a module and a central
place to get the object files when it links together the executable.
This option allows you to use the parts of a design that have been
already tested and debugged by other members of your team
without recompiling the modules for these parts of the design.

You can specify more than one place for VCS to look for descriptor
information and object files by providing multiple arguments with
this option.

Example:

vcs design.v -Mlib=/design/dir1 -Mlib=/design/
dir2

Or, you can specify more than one directory with this option, using
a colon (:) as a delimiter between them, as shown below:

vcs design.v -Mlib=/design/dir1:/design/dir2

-Mupdate[=0]

By default VCS overwrites the makefile between compilations. If
you wish to preserve the makefile between compilations, enter
this option with the 0 argument.

Entering this argument without the 0 argument, specifies the the
default condition, incremental compilation and updating the
makefile.

-Mmakep=make_path

Specifies the make path.

B-9

Compile-Time Options

-noIncrComp

Disables incremental compilation.

-parallel_compile_off

Turns off parallel compilation and uses serial compilation.

Options for Help

-h or -help

Lists descriptions of the most commonly used VCS compile and
runtime options.

Option for SystemVerilog

-sverilog

Enables SystemVerilog construcs specified in the IEEE Standard
of SystemVerilog, IEEE Std 1800-2009.

Options for SystemVerilog Assertions

-ignore keyword_argument

Suppresses warning messages depending on which keyword
argument is specified. The keyword arguments are as follows:

unique_checks

Suppresses warning messages about unique if and unique
case statements.

B-10

Compile-Time Options

priority_checks

Suppresses warning messages about priority if and
priority case statements.

all

Suppresses warning messages about unique if, unique
case, priority if and priority case statements.

You can tell VCS to report errors for both unique and priority
violations with the -error compile-time option as shown below:

-error=UNIQUE

VCS reports unique violations as error conditions.

-error=PRIORITY

VCS reports priority violations as error conditions.

-error=UNIQUE,PRIORITY

VCS reports unique and priority violations as error
conditions.

-assert keyword_argument

The keyword arguments are as follows:

enable_diag

Enables further control of results reporting with runtime options.
The runtime assert options are enabled only if you compile the
design with this option.

funchier

B-11

Compile-Time Options

Enables enhanced reporting for assertions in functions.

hier=file_name

You can use the -assert hier=file_name compile-time
option to specify the configuration file for enabling and disabling
SystemVerilog assertions. You can either enable or disable:

- Assertions in a module or in a hierarchy.

- An individual assertion.

Note:

Note:

If you pass an empty assert hier file at compile-time or
runtime, VCS generates the CM-ASHR-EF error, as shown
below:

Error-[CM-ASHR-EF] Empty file
 The file 'foo.txt' given to the assertion hier control
option was found, but
 it is empty.
 Please fix the file and try again.

You can convert this error message to a warning message,
as shown below, using the -error=noCM-ASHR-EF option
at compile-time or runtime:

Warning-[CM-ASHR-EFW] Empty file
 The file 'foo.txt' given to the assertion hier control
option was found, but
 it is empty.
 Please fix the file and try again.

B-12

Compile-Time Options

Note:
If the assertion filter used in assert hier file does not match
any assertion in the design, VCS generates the SVA-
FILTUNUSED warning message, as shown below, at
compile-time or runtime:

Warning-[SVA-FILTUNUSED] Unused filter in hier file
'-assert (.)*GLITCH_CBO_TAP_holdinreset' in hier file
cbo_basic_1213083628.hier does not match any module/
instance
hierarchy/assertion.

You can convert this warning message to an error message,
as shown below, using the -error=SVA-UNUSEDFLT option
at compile-time or runtime:

Error-[SVA-UNUSEDFLT] Unused filter in hier file
'-assert (.)*GLITCH_CBO_TAP_holdinreset' in hier file
cbo_basic_1213083628.hier does not match any module/
instance
 hierarchy/assertion.

The types of entries that you can specify in the file are as follows:

 -assert <assertion_name> or
-assert <assertion_hierarchical_name>

If assertion_name is provided, VCS disables the assertions
based on wildcard matching of the name in the full design. If
assertion_hierarchical_name is provided, VCS disables the
assertions based on wildcard matching of the name in the
particular hierarchy given.

Examples

-assert my_assert

B-13

Compile-Time Options

Disables all assertions with name my_assert in the full
design.

-assert A*

Disables all assertions whose name starts with A in the full
design.

-assert *

Disables all assertions in the full design.

-assert top.INST2.A

Disables all assertions whose names start with A in the
hierarchy top.INST2. If assertions whose name starts with
A exists in inner scopes under top.INST2, they are not
disabled. This command has affect on assertions only in
scope top.INST2.

 +assert <assertion_name> or
+assert <assertion_hierarchical_name>

If assertion_name is provided, VCS enables the
assertions based on wildcard matching of the name in the
full design. If assertion_hierarchical_name is
provided, then VCS enables the assertions based on
wildcard matching of the name in the given hierarchy.

Examples

+assert my_assert

Enables all assertions with name my_assert in the full
design.

B-14

Compile-Time Options

+assert A*

Enables all assertions whose name starts with A in the full
design.

+assert *

Enables all assertions in the full design.

+assert top.INST2.A

Enables assertion A in the hierarchy top.INST2.

 +tree <module_instance_name> or
+tree <assertion_hierarchical_name>

If module_instance_name is provided, VCS enables
assertions in the specified module instance and all module
instances hierarchically under that instance. If
assertion_hierarchical_name is provided, VCS enables
the specified SystemVerilog assertion. Wildcard characters
can also be used for specifying the hierarchy.

Examples

+tree top.inst1

Enables the assertions in module instance top.inst1 and
all the assertions in the module instances under this instance.

+tree top.inst1.a1

Enables the SystemVerilog assertion with the hierarchical
name top.inst1.a1.

B-15

Compile-Time Options

+tree top.INST*.A1

Enables assertion A1 from all the instances whose names
start with INST under module top.

 -tree <module_instance_name> or
-tree <assertion_hierarchical_name>

If module_instance_name is provided, VCS disables the
assertions in the specified module instance and all module
instances hierarchically under that instance. If
assertion_hierarchical_name is provided, VCS disables
the specified SystemVerilog assertion. Wildcard characters
can also be used for specifying the hierarchy.

Examples

-tree top.inst1

Disables the assertions in module instance top.inst1 and
all the assertions in the module instances under this instance.

-tree top.inst1.a1

Disables SystemVerilog assertion with the hierarchical name
top.inst1.a1.

-tree top.INST*.A1

Disables assertion A1 from all the instances whose names
start with INST under module top.

+module module_identifier

B-16

Compile-Time Options

VCS enables all the assertions in all instances of the specified
module, for example:

+module dev

VCS enables the assertions in all instances of module dev.

-module module_identifier

VCS disables all the assertions in all instances of the
specified module, for example:

-module dev

VCS disables the assertions in all instances of module dev.

The specifications are applied serially as they appear in file
file_name. The result of applying the specifications in this file
is that a group of assertions get excluded. The remaining
assertions are available for further exclusion by other means,
such as the $assertoff system task in the source code.
However, the following should be noted:

- The first specification denotes the default exclusion for
interpreting the file. If the first specification is a minus(-), then
all assertions are included before applying the first and the
following specifications. Conversely, if the first specification
is a plus(+), then all assertions are excluded prior to applying
the first and the following specifications.

- Unlike -/+module and -/+tree specifications, any
assertion excluded by applying –assert specification
cannot be included by the later specifications in the file.

enable_hier

B-17

Compile-Time Options

Enables the use of the runtime option -assert
hier=file.txt, which allows turning assertions on or off.

filter_past

For assertions that are defined with the $past system task,
ignore these assertions when the past history buffer is empty.
For instance, at the very beginning of the simulation, the past
history buffer is empty. Therefore, the first sampling point and
subsequent sampling points should be ignored until the past
buffer has been filled with respect to the sampling point.

offending_values

Enables the reporting of the values of all variables used in the
assertion failure messages. For more information, see
"Reporting Values of Variables in the Assertion Failure
Messages".

disable

Disables all SystemVerilog assertions in the design.

disable_cover

When you include the -cm assert compile-time and runtime
option, VCS includes information about cover statements in the
assertion coverage reports. This keyword prevents cover
statements from appearing in these reports.

disable_assert

Disables only the assert and assume directives without
affecting the cover directives. It complements the existing
control options which allows you to disable only cover directives
or all of the assertions such as assert/assume/cover.

B-18

Compile-Time Options

disable_rep_opt

Specifying a delay or a repetition value greater than 5000 in the
assertion expression will affect both compile-time and runtime
performance. Therefore, VCS optimizes expression and issues
a warning message as shown below:

 Warning-[LDRF] Large delay or repetition found.
 VCS will optimize compile time. However it may affect runtime.
 Use '-assert disable_rep_opt' to disable this optimization.
 "design.v", 156: (b_ce_idle [* 1:50000])

Use -assert disable_rep_opt to switch off the optimization
and disable this message.

dumpoff

Disables the dumping of SVA information in the VPD file during
simulation.

vpiSeqBeginTime

Enables you to see the simulation time that a SystemVerilog
assertion sequence starts when using Debussy.

vpiSeqFail

Enables you to see the simulation time that a SystemVerilog
assertion sequence doesn’t match when using Debussy.

+lint=PWLNT:<max_count>

Enables the PWLNT lint messages when $past is used in the code
with the number of clock ticks exceeding 5. You can restrict the
number of PWLNT lint messages for a particular compilation using
the max_count argument.

B-19

Compile-Time Options

For example, +lint=PWLNT:10 restricts the number of PWLNT
lint messages to a maximum of 10 for one compilation.

Options to Enable Compilation of OVA Case Pragmas

–ova_enable_case

Enables the compilation of OVA case pragmas only, when used
without –Xova or –ova_inline. All inlined OVA assertion
pragmas are ignored.

Options for Native Testbench

-ntb

Enables the use of the OpenVera testbench language constructs
described in the OpenVera Language Reference Manual: Native
Testbench.

-ntb_define macro

Specifies any OpenVera macro name on the command line. You
can specify multiple macro names using the plus (+) character.

The macro can also be defined to be a fixed number. For example,
in the following:

program test
{
 integer x;
 x =12345;
printf ("DEBUG===> my value = %d and x = %d\n", MYVALUE,
x);
}

When you compile and run:

B-20

Compile-Time Options

% vcs -ntb -ntb_define MYVALUE=10000 myprog.vr –R

This outputs are:

DEBUG===> my value = 10000 and x = 12345

-ntb_filext .ext

Specifies an OpenVera file name extension. You can specify
multiple file name extensions using the plus (+) character.

-ntb_incdir directory_path

Specifies the include directory path for OpenVera files. You can
specify multiple include directories using the plus (+) character.

-ntb_noshell

Tells VCS not to generate the shell file. Use this option when you
recompile a testbench.

-ntb_opts keyword_argument

The keyword arguments are as follows:

ansi

Preprocesses the OpenVera files in the ANSI mode. The default
preprocessing mode is the Kernighan and Ritchie mode of the
C language.

check

Does a bounds check on dynamic type arrays (dynamic,
associative, queues) and issues an error at runtime.

check=dynamic

B-21

Compile-Time Options

Same as check. Does a bounds check on dynamic type arrays
(dynamic, associative, queues) and issues an error at runtime.

check=fixed

Does a bounds check only on fixed size arrays and issues an
error at runtime.

check=all

Does a bounds check on both fixed size and dynamic type
arrays and issues errors at runtime.

The following error messages are displayed during runtime:

- ERROR-[DT-OBAE] Out-of-bound access for queues

This error message is displayed, if a queue element is
accessed with an out-of-bounds index condition.

For example,

module tb();
int temp; // temp signal
int int_queue[$] = { 1, 2, 3}; //Queue
initial
begin

//Queue
temp = int_queue[9];

end
endmodule

The following error message is displayed:

Error-[DT-OBAE] Out of bound access
test2.sv, 9

B-22

Compile-Time Options

Out of bound access on smart queue (size:3, index:9)
Simulation time = 0
Please make sure that the index is positive and less
than size.

- ERROR-[DT-OBAE] Out-of-bound access for dynamic
arrays

This error message is displayed, if a dynamic array element
is accessed with an out-of-bounds index condition.

For example,

module tb();
reg some_bit; // temp signal
reg nibble[]; // Dynamic array
int int_queue[$] = { 1, 2, 3}; //Queue
initial
begin

//Dynamic array
nibble = new[3]; // Create a 3-element array.
some_bit = nibble[3];

end
endmodule

The following error message is displayed:

Error-[DT-OBAE] Out of bound access
test2.sv, 11
Out of bound access on dynamic array (size:3,
index:3)
Simulation time = 0
Please make sure that the index is positive and less
than size.

- ERROR-[OBA] Out-of-bound access for fixed size
unpacked array

This error message is displayed, if a fixed size unpack array
is accessed with an out-of-bounds index condition.

B-23

Compile-Time Options

For example,

module tb();
reg [1:0] fifo_data[2:0]; // fifo memory
reg [1:0] some_signal; // temp signal
initial
begin

//Unpacked dimention
some_signal = fifo_data[3];

end
initial $display("some_signal = %0d",some_signal);
endmodule

The following error message is displayed:

Error-[OBA] Out of bound access
test2.sv, 9
Out of bound access on array (index value: 3)
Simulation time = 0

- ERROR-[DT-IV] Out-of-bound access for fixed size
unpacked array

This error message is displayed, if a fixed size unpacked
array element is accessed with an index value X or Z.

For example,

module tb();
reg [17:0] fifo_data[255:0]; // fifo memory
reg [7:0] rd_ptr = 8'bxxxxxxxx;
wire [7:0] some_signal; // temp signal

assign some_signal = fifo_data[rd_ptr];
initial $display("some_signal = %0d", some_signal);
endmodule

The following error message is displayed:

B-24

Compile-Time Options

Error-[DT-IV] Illegal value
test2.sv, 6
Illegal index value specified for array
Simulation time = 0
Please make sure that the value is properly
initialized with none of the bits set to x or z.

dep_check

Enables dependency analysis and incremental compilation.
Detects files with circular dependencies and issues an error
message when VCS cannot determine which file to compile
first.

no_file_by_file_pp

By default, VCS does file-by-file preprocessing on each input
file, feeding the concatenated result to the parser. This
argument disables this behavior.

print_deps

Tells VCS to display the dependencies for the source files on
the screen. Enter this argument with the dep_check argument.

rvm

Use rvm when RVM or VMM is used in the testbench. For more
information, refer to the "Using VMM with VCS" section.

sv_fmt
The default padding used in displayed or printed strings is right
padding. The sv_fmt option specifies left padding. For
example, when -ntb_opts sv_fmt is used, the result of

$display("%10s", "my_string");

is to put 10 spaces to the left of my_string.

B-25

Compile-Time Options

To specify right padding when -ntb_opts sv_fmt is used,
put a dash before the number of spaces. For example, the result
of

$display("%-10s", "my_string");

is to put 10 spaces to the right of my_string.

tb_timescale=value

Specifies an overriding timescale for the testbench, whenever
the required testbench timescale is different from that of the
design. It must be used in conjunction with the -timescale
option that specifies the timescale for the design.

If the required testbench timescale is different from the design
or DUT timescale, then both the testbench timescale and the
DUT timescale must be passed during VCS compilation.

Example:

The following command specifies a required testbench
timescale of 10ns/10ps and a design timescale of 1ns/1ps:

%> vcs -ntb_opts tb_timescale=1ns/1ps
 -timescale=10/10ns file.sv

tokens

Preprocesses the OpenVera files to generate two files,
tokens.vr and tokens.vrp. The tokens.vr contains the
preprocessed result of the non-encrypted OpenVera files, while
the tokens.vrp contains the preprocessed result of the
encrypted OpenVera files. If there is no encrypted OpenVera
file, VCS sends all the OpenVera preprocessed results to the
tokens.vr file.

B-26

Compile-Time Options

use_sigprop

Enables the signal property access functions. For example,
vera_get_ifc_name().

vera_portname

Specifies the following:

-The Vera shell module name is named vera_shell.

-The interface ports are named ifc_signal.

-Bind signals are named, for example, as: \if_signal[3:0].

-ntb_shell_only

Generates only a .vshell file. Use this option when compiling
a testbench separately from the design file.

 -ntb_sfname filename

Specifies the file name of the testbench shell.

-ntb_sname module_name

Specifies the name and directory where VCS writes the testbench
shell module.

-ntb_spath

Specifies the directory where VCS writes the testbench shell and
shared object files. The default is the compilation directory.

-ntb_vipext .ext

B-27

Compile-Time Options

Specifies an OpenVera encrypted-mode file extension to mark
files for processing in OpenVera encrypted IP mode. Unlike the
-ntb_filext option, the default encrypted-mode extensions
.vrp and .vrhp are not overridden and will always be in effect.
You can pass multiple file extensions at the same time using the
plus (+) character.

Options for Different Versions of Verilog

-v95

Specifies not recognizing Verilog 2001 keywords.

+systemverilogext+ext

Specifies a file name extension for SystemVerilog source files. If
you use a different file name extension for the SystemVerilog part
of your source code and you use this option, the –sverilog
option has to be omitted.

Note:

This compile-time option also works similar to the -sverilog
option in which it enables SystemVerilog LRM (IEEE Std 1800-
2012) rules for all the source files on the vcs command line and
not only the files with the specified extension.

+verilog2001ext+ext

Specifies a file name extension for Verilog 2001 source files.

+verilog1995ext+ext

B-28

Compile-Time Options

Specifies a file name extension for Verilog 1995 files. Using this
option allows you to write Verilog 1995 code that would be invalid
in Verilog 2001 or SystemVerilog code, such as using Verilog 2001
or SystemVerilog keywords, like localparam and logic, as
names.

Note:
Do not enter all three of these options on the same command line.

-extinclude

If a source file for one version of Verilog contains the ‘include
compiler directive, VCS by default compiles the included file for
the same version of Verilog, even if the included file has a different
filename extension. If you want VCS to compile the included file
with the version specified by its extension, enter this compile-time
option. The following code examples show using this option.

If source file a.v contains the following:

`include “b.sv”
module a();
reg ar;
endmodule

and if source file b.sv contains the following:

module b();
logic ar;
endmodule

VCS compiles b.sv for SystemVerilog with the following
command line:

vcs a.v +systemverilogext+.sv -extinclude

B-29

Compile-Time Options

Option for Initializing Verilog Variables, Registers and
Memories with Random Values

+vcs+initreg+random

Initializes all bits of the Verilog variables, registers defined in
sequential UDPs, and memories including multi-dimensional
arrays (MDAs) in your design to random value 0 or 1, at time zero.
The default random seed is used.

The supported data types are:

- reg

- bit

- integer

- int

- logic

For Example:

% vcs +vcs+initreg+random [other_vcs_options] file1.v
 file2.v file3.v

The initialization option may expose an infinite simulation loop at
time zero in combinational logic with a feedback loop, as shown
in Figure B-1.

B-30

Compile-Time Options

Figure B-1 Combinational Logic With a Feedback Loop

in1

in2

A

B out

In Figure B-1, the reg variables in1, in2, A and B have the
default initial values x. Assigning value 0 or 1 to in1 or in2 does
not alter the value of A, B and out. The feedback loop is stabilized
and the simulation advances. Some combinations of initial values
assigned to these reg variables trigger a continuous re-
evaluation of the combinational logic which results in an infinite
simulation loop.

When the initialization option is used, the initialized values of
variables may conflict with the initial variable assignments
specified in a design.

The following are steps to prevent potential race conditions:

- Avoid assigning initial values to reg variables in the variable
declarations when the assigned values are different from the
values specified with the +vcs+initreg+random option.

For example:

reg [7:0] r1=8’b01010101;

B-31

Compile-Time Options

- Avoid assigning values to registers or memory elements at
simulation time 0 when the assigned values are different from
the values specified with the +vcs+initreg+random option.

For example:

reg [7:0] mem [7:0][15:0];

initial
begin
 mem[1][1]=8’b00000001;

- Avoid initializing state variables to an unknown, x, state.

- Avoid inconsistent states in the design due to randomization.

The initialization option can potentially be used to reduce the
amount of time spent on initialization related issues in gate-level
simulations. At time 0, all uninitialized reg variables are assigned
the default value x, which is a non-deterministic and unknown
state of a design. The value x can propagate during a gate-level
simulation and cause unexpected behaviors. You can use the
+vcs+initreg+random option to initialize all bits of Verilog
variables, registers and memories to prevent propagation of x
values in a gate-level simulation.

Note:

The initialization option is targeted for initializing variables in
gate level simulations (including UDP variables). Initialization
of variables in RTL constructs such as named blocks,
structures, or in user-defined tasks or functions is not
supported.

The +vcs+initreg+0 and +vcs+initreg+1 compile-time
options are no longer supported. You must use the
+vcs+initreg+random option at compile-time.

B-32

Compile-Time Options

Option for Initializing Verilog Variables, Registers and
Memories in Selective Parts of a Design

+vcs+initreg+config+config_file

Specifies a configuration file for initializing Verilog variables,
registers defined in sequential UDPs, and memories including
multi-dimensional arrays (MDAs) in your design, at time zero. In
the configuration file, you can define the parts of a design to apply
the initialization and the initialization values of the variables.

The syntax of the configuration file entries are:

defaultvalue x|z|0|1|random|random seed_value

instance instance_hierarchical_name [x|z|0|1|random|
random seed_value]

tree instance_hierarchical_name depth [x|z|0|1|random|
random seed_value]

module module_name [x|z|0|1|random|random seed_value]

modtree module_name depth [x|z|0|1|random|
random seed_value]

The defaultvalue entry

defaultvalue x|z|0|1|random|random seed_value

B-33

Compile-Time Options

A defaultvalue entry starts with the keyword defaultvalue
and should be the first entry in a configuration file. This entry
specifies the default values for all Verilog variables, registers and
memories in a design. The keyword random specifies initializing
with random values. You can specify a seed value for the VCS
random value generator. Only one defaultvalue entry is
allowed in a configuration file.

The instance entry

instance instance_hierarchical_name [x|z|0|1|random|
random seed_value]

An instance entry starts with the keyword instance. This entry
specifies a module instance and the initial values for the Verilog
variables, registers and memories in this instance. The x value
is to exclude an instance from the initial values specified by a
different entry for a sub-hierarchy that includes this instance.

The tree entry

tree instance_hierarchical_name depth [x|z|0|1|random|
random seed_value]

A tree entry starts with the keyword tree. This entry specifies
a sub-hierarchy and the initial values for the Verilog variables,
registers and memories in this sub-hierarchy. When a hierarchical
name of a module instance is specified, the initialization applies
to the specified instance and the module instances that are
hierarchically beneath the specified instance. You can specify a
depth value to limit the levels down the hierarchy for applying the
initialization.

Depth Value Level of Initialization

0 Initialize all levels down the sub-hierarchy to the leaf level instances.

B-34

Compile-Time Options

The module entry

module module_name [x|z|0|1|random|random seed_value]

A module entry starts with the keyword module. This entry
specifies initial values for all instances of the specified module.

The modtree entry

modtree module_name depth [x|z|0|1|random|
random seed_value]

A modtree entry starts with the keyword modtree. This entry
specifies initial values for all instances of the specified module
and all instances that are hierarchically beneath those instances.

Configuration File Example

Figure B-2 is a hierarchical diagram of a small design.

1 Initialize only the specified instance

2 and up Initialize the specified number of levels down the sub-hierarchy from the
specified instance

B-35

Compile-Time Options

Figure B-2 Design Hierarchy for Initializing from a Configuration File

module top

module dev
instance top.d1

module gizmo
instance top.d1.g1

module gizmo
instance top.d1.g2

module gizmo
instance top.d2.g3

module gizmo
instance top.d2.g4

module dev
instance top.d2

The following are example entries in a configuration file for the
small design shown in Figure B-2.

instance top.d1 0

Initializes the variables, registers and memories in the instance
top.d1 to value 0.

tree top 0 0
tree top.d1 0 x

The first entry initializes all variables, registers and memories
in the design to value 0. The second entry changes the initial
values from 0 to x for the variables, registers and memories in
the instance top.d1 and all instances beneath top.d1,
namely top.d1.g1 and top.d1.g2.

module gizmo 1

B-36

Compile-Time Options

Initializes the variables, registers and memories in all instances
of the module gizmo to value 1, namely top.d1.g1,
top.d1.g2, top.d2.g3, and top.d2.g4.

modtree dev 0 random

Initializes the variables, registers and memories in both
instances of module dev and all four instances beneath those
instances with random values. Module top is not initialized.

modtree dev 0 random
instance top.d1.g2 x

The first entry is described in the previous example. The second
entry changes the initial values from random values to x for the
variables, registers and memories in the instance top.d1.g2.

Options for Selecting Register or Memory Initialization

+vcs+initreg+random+nomem

Disables initialization of memories or multi-dimensional arrays
(MDAs). This option allows initialization of variables that do not
have a dimension. This option can only be used when the
+vcs+initreg+random or
+vcs+initreg+config+config_file option is specified at
compile-time.

+vcs+initreg+random+noreg

B-37

Compile-Time Options

Disables initialization of variables that do not have a dimension.
This option allows initialization of memories or MDAs. This option
can only be used When the +vcs+initreg+random or
+vcs+initreg+config+config_file option is specified at
compile-time.

Options for Using Radiant Technology

+rad

Performs Radiant Technology optimizations on your design.

Note:

These optimizations are also enabled for SystemVerilog part of
the design.

+optconfigfile+filename

Specifies a configuration file that lists the parts of your design you
want to optimize (or not optimize) and the level of optimization for
these parts. You can also use the configuration file to specify ACC
write capabilities. See "Compiling With Radiant Technology".

Options for Starting Simulation Right After Compilation

-R

Runs the executable file immediately after VCS links it together.

Options for Specifying Delays and SDF Files

-sdf min|typ|max:instance_name:file.sdf

B-38

Compile-Time Options

Enables sdf annotation. Minimum, typical or maximum values
specified in file.sdf will be annotated on the instance,
instance_name.

+allmtm

Specifies compiling separate files for minimum, typical, and
maximum delays when there are min:typ:max delay triplets in SDF
files. If you use this option, you can use the +mindelays,
+typdelays, or +maxdelays options at runtime to specify
which compiled SDF file VCS uses. Do not use this option with
the +maxdelays, +mindelays, or +typdelays compile-time
options.

+charge_decay

Enables charge decay in trireg nets. Charge decay will not work
if you connect the trireg to a transistor (bidirectional pass)
switch such as tran, rtran, tranif1, or rtranif0.

+delay_mode_path

Uses only the delay specifications in module path delays in specify
blocks. Overrides all the delay specifications on all gates,
switches, and continuous assignments to zero.

+delay_mode_zero

Overrides all the delay specifications in module path delays in
specify blocks to zero delays. Overrides all the delay
specifications on all gates, switches, and continuous assignments
to zero.

+delay_mode_unit

B-39

Compile-Time Options

Overrides all the delay specifications in module path delays in
specify blocks to zero delays. Overrides all the delay
specifications on all gates, switches, and continuous assignments
to the shortest time precision argument of all the ‘timescale
compiler directives in the source code. The default time unit and
time precision argument of the ‘timescale compiler directive is
1s.

+delay_mode_distributed

Overrides all the delay specifications in module path delays in
specify blocks to zero delays. Uses only the delay specifications
on all gates, switches, and continuous assignments.

-add_seq_delay

Use the -add_seq_delay option to set the delays of the
sequential UDPs (user-defined primitives) without delays. Below
is the syntax:

-add_seq_delay <n>

Where, n is the delay specification argument. It can be a real
number or a real number followed by a time unit. The time unit
can be fs, ps, ns, us, ms, or s. If no time unit is specified, then the
simulation time_unit is used. For example, if simulation
time_unit/time_precision is 1ns/1ps, then -
add_seq_delay 3 means 3ns.

The delay specification argument is applied to all sequential UDPs
(without delays) in the design.

Examples

B-40

Compile-Time Options

For example, consider that the simulation time_unit/
time_precision is 1ns/1ps.

- The following option assigns a 1ns delay to all sequential UDP
paths.

-add_seq_delay 1ns

- The following option assigns a 0.7ns delay to all sequential
UDP paths.

-add_seq_delay 0.7

-add_seq_delay 0.7ns

-add_seq_delay 700ps

Key Points to Note

- If sequential UDPs already have delay specified (#(delay),
including #0), then -add_seq_delay is ignored. That is,
-add_seq_delay only supports sequential UDPs without
delays.

- The -add_seq_delay option does not affect IOPATH delay
such as:

 specify
 (posedge ck => q +: d) = (10,11);
 endspecify

The above IOPATH delay (10,11) remains the same even
when -add_seq_delay <n> is specified.

B-41

Compile-Time Options

- If you use +delay_mode_zero and -add_seq_delay on the
same command-line, then the UDP is considered, as
mentioned below:

With +delay_mode_zero: The +delay_mode_zero option
takes precedence.

Without +delay_mode_zero: The -add_seq_delay option
takes precedence if IOPATH delay is smaller than it.

- The -add_seq_delay option overrides
+delay_mode_unit. For example, if you specify -
add_seq_delay 15ps +delay_mode_unit, then still you
will see 15ps delay.

- The -add_seq_delay option overrides
+delay_mode_distributed. For example, if you specify
-add_seq_delay 15ps +delay_mode_distributed,
then still you will see 15ps delay.

+maxdelays

Specifies using the maximum timing delays in min:typ:max delay
triplets when compiling the SDF file. The mtm_spec argument to
the $sdf_annotate system task overrides this option.

+mindelays

Specifies using the minimum timing delays in min:typ:max delay
triplets when compiling the SDF file. The mtm_spec argument to
the $sdf_annotate system task overrides this option.

+typdelays

Specifies using the typical timing delays in min:typ:max delay
triplets when compiling the SDF file. The mtm_spec argument to
the $sdf_annotate system task overrides this option.

B-42

Compile-Time Options

+multisource_int_delays

Enables the multisource INTERCONNECT feature, including
transport delays with full pulse control.

+nbaopt

Removes all intra-assignment delays in all the nonblocking
assignment statements in the design. Many users enter a #1 intra-
assignment delay in nonblocking procedural assignment
statements to make debugging in the Wave window easier. For
example:

reg1 <= #1 reg2;

These delays impede the simulation performance of the design,
so after debugging, you can remove these delays with this option.

Note:

The +nbaopt option removes all intra-assignment delays in all
the nonblocking assignment statements in the design, not just the
#1 delays.

+sdf_nocheck_celltype

For a module instance to which an SDF file back-annotates delay
data, disables comparing the module identifier in the source code
with the CELLTYPE entry in the SDF file.

+transport_int_delays

Enables transport delays for delays on nets with a delay back-
annotated from an INTERCONNECT entry in an SDF file. The
default is inertial delays.

+transport_path_delays

B-43

Compile-Time Options

Enables transport delays for module path delays.

-sdfretain

Enables timing annotation as specified by a RETAIN entry on
IOPATH delays. By default, VCS ignores RETAIN entries with
the following warning message:

Warning-[SDFCOM_RCI] RETAIN clause ignored
SDF_filename, line_number
module: module_name, "instance: hierarchical_name"
 SDF Warning: RETAIN clause ignored, but IOPATH
 annotated,
 Please use -sdfretain switch to consider RETAIN

The syntax for RETAIN entries are as follows:

(IOPATH port_spec port_instance (RETAIN
delval_list)* delval_list)

 For example:

(IOPATH RCLK DOUT[0] (RETAIN (40)) (100.1)
(100.2))

-sdfretain=warning

If the RETAIN entry values are larger than the delay values, VCS
displays the following warning message at runtime:

Warning-[SDFRT_IRV] RETAIN value ignored
 RETAIN value is ignored as it is greater than IOPATH
 delay

If you want to see a warning message at compile-time, enter this
option along with the -sdfretain option. The following is an
example of this warning message:

B-44

Compile-Time Options

Warning-[SDFCOM_RLTPD] RETAIN value larger than IOPATH
delay
SDF_filename, line_number
module: module_name, "instance: hierarchical_name"
SDF Warning: RETAIN value (value) is larger than IOPATH
delay, RETAIN will be ignored at runtime

+iopath+edge+sub-option

This option is used when edge sensitivity is used in IOPATH SDF
file entries. The different sub-options used with
+iopath+edge+option and their descriptions are as follows:

+iopath+edge+strict

This option is used for LRM compliance. When edge sensitivity
is specified for the input port in the SDF file and corresponding
arc is not found in Verilog model, VCS by default does not give
the warning message, you should use the switch
+iopath+edge+strict to display the warning message.
After the warning message is displayed, the data from SDF will
not be back-annotated to the Verilog model.

+iopath+edge+ignore

This option can be used to make the annotation work by ignoring
the edge in SDF.

+iopath+edge+max

This option is used for annotating higher delays.

+iopath+edge+min

 This option is used for annotating smaller delays.

B-45

Compile-Time Options

Options for Compiling an SDF File

+csdf+precompile

Precompiles your SDF file into a format that VCS can parse when
it compiles your Verilog code. See "Precompiling an SDF File".

Options for Specify Blocks and Timing Checks

+pathpulse

Enables the search for PATHPULSE$ specparam in specify
blocks.

+nospecify

Suppresses module path delays and timing checks in specify
blocks. This option can significantly improve simulation
performance.

+notimingcheck

Tells VCS to ignore timing check system tasks when it compiles
your design. This option can moderately improve simulation
performance. The extent of this improvement depends on the
number of timing checks that VCS ignores. You can also use this
option at runtime to disable these timing checks after VCS has
compiled them into the executable. However, the executable
simulates faster if you include this option at compile-time so that
the timing checks are not in the executable. If you need the
delayed versions of the signals in negative timing checks but want
faster performance, include this option at runtime. The delayed
versions are not available if you use this option at compile-time.

B-46

Compile-Time Options

Note:
- VCS recognizes +notimingchecks to be the same as
+notimingcheck when you enter it on the vcs or simv
command line.

- The +notimingcheck option has higher precedence than any
tcheck command in UCLI.

+no_notifier

Disables toggling of the notifier register that you specify in some
timing check system tasks. This option does not disable the
display of warning messages when VCS finds a timing violation
that you specified in a timing check.

+no_tchk_msg

Disables display of timing violations, but does not disable the
toggling of notifier registers in timing checks. This is also a runtime
option.

Options for Pulse Filtering

 +pulse_e/number

Displays an error message and propagates an x value for any
path pulse whose width is less than or equal to the percentage of
the module path delay specified by the number argument, but is
still greater than the percentage of the module path delay specified
by the number argument to the +pulse_r/number option.

+pulse_r/number

Rejects any pulse whose width is less than number percent of
the module path delay. The number argument is in the range of
0 to 100.

B-47

Compile-Time Options

+pulse_int_r

Same as the existing +pulse_r option, except it applies only to
INTERCONNECT delays.

+pulse_int_e

Same as the existing +pulse_e option, except it applies only to
INTERCONNECT delays.

+pulse_on_event

Specifies that when VCS encounters a pulse shorter than the
module path delay, VCS waits until the module path delay elapses
and then drives an x value on the module output port and displays
an error message. It drives that x value for a simulation time equal
to the length of the short pulse or until another simulation event
drives a value on the output port.

+pulse_on_detect

Specifies that when VCS encounters a pulse shorter than the
module path delay, VCS immediately drives an x value on the
module output port, and displays an error message. It does not
wait until the module path delay elapses. It drives that x value until
the short pulse propagates through the module or until another
simulation event drives a value on the output port.

Options for Negative Timing Checks

-negdelay

Enables the use of negative values in IOPATH and
INTERCONNECT entries in SDF files.

B-48

Compile-Time Options

To consider a negative INTERCONNECT delay, one of the
following should be true:

- Sum of INTERCONNECT and PORT delays should be greater
than zero

- Sum of INTERCONNECT and IOPATH delays should be
greater than zero

- Sum of INTERCONNECT and DEVICE delays should be
greater than zero

Otherwise, the negative INTERCONNECT delay will be ignored,
and a warning message is generated for the same.

Similarly, to consider a negative IOPATH delay, the sum of
IOPATH and DEVICE delays should be greater than zero.
Otherwise, the negative IOPATH delay will be ignored, and a
warning message is generated for the same.

Limitations

This option is not supported in the following scenarios:

- RETAIN on negative IOPATH

- INCREMENT delay

+neg_tchk

Enables negative values in timing checks.

+old_ntc

Prevents the other timing checks from using delayed versions of
the signals in the $setuphold and $recrem timing checks.

B-49

Compile-Time Options

+NTC2

In $setuphold and $recrem timing checks, specifies checking
the timestamp and timecheck conditions when the original data
and reference signals change value instead of when their delayed
versions change value.

Options for Profiling Your Design

-simprofile time | mem

Specifies the type of simulation profiling you want done, see The
Unified Simulation Profiler.

Options to Specify Source Files and Compile-time
Options in a File

-f filename

Specify a file that contains a list of source files and compile-time
options, including C source files and object files.

The following are the features of -f option:

- You can use Verilog comment characters such as // and
/* */ to comment out entries in the file.

- You can use this option inside the file to point to another file.

- You can specify all compile-time options that begin with a plus
(+) character. However, you can only specify the following
compile-time options that begin with a minus (-) character:

-f -y -l -u -v

B-50

Compile-Time Options

-file filename

Specify a file that contains a list of source files and VCS compile-
time options, including C source files and object files.

You can use this option to overcome the limitation of the -f
compile-time option.

-F filename

This compile-time option is similar to the -f option, but you can
also specify a file list and a path to search for the files. Following
is the syntax:

%vcs top.v -F <path_to_file>/filelist

When you specify this option, the path to the file list gets added
as a prefix to the content of the file list.

Consider that the <filelist> consisting of files a.v and b.v
exists in the previous directory of the current working directory.
With the following syntax, the path to the <filelist> is added
as a prefix to the content of the <filelist>.When parsed, VCS
searches for files ../a.v and ../b.v.

%vcs top.v <source_files> -F ../<filelist>

You can also specify an absolute path name using the following
syntax:

%vcs top.v -F <absolute_path>/filelist

The syntax allows you to search for files <absolute_path>/
a.v and <absolute_path>/b.v.

B-51

Compile-Time Options

The following are the features of -F option:

- You can use Verilog comment characters such as // and
/* */ to comment out entries in the file.

- You can use this option inside the file to point to another file.

- You can specify all compile-time options that begin with a plus
(+) character. However, you can only specify the following
compile-time options that begin with a minus (-) character:

-CC -f -F -gen_asm -gen_obj -l -line

-P -u -v -y

Limitations of -f, -file and -F options
• These options do not support the -full64 option in the file. You

must enter that option on the vcs command-line.

• You cannot specify escape characters in the file.

• You cannot use meta characters in the file, except * and $.

• The -f option does not support UUM flow.

Options for Compiling Runtime Options into the
Executable

+plusarg_save

Some runtime options must be preceded by the +plusarg_save
option for VCS to compile them into the executable.

+plusarg_ignore

B-52

Compile-Time Options

Tells VCS not to compile the following runtime options into the
simv executable. This option is used to counter the
+plusarg_save option on a previous line.

Options for PLI Applications

+acc+level_number

Enables PLI ACC capabilities for the entire design. The level
number can be any number between 1 and 4:

+acc or +acc+1

Enables all capabilities except breakpoints and delay
annotation.

+acc+2

Above, plus breakpoints.

+acc+3

Above, plus module path delay annotation.

+acc+4

Above, plus gate delay annotation.

+applylearn+filename

Recompiles your design to enable only the ACC capabilities that
you needed for the debugging operations you did during a
previous simulation of the design.

-e new_name_for_main

B-53

Compile-Time Options

Specifies the name of your main() routine. You write your own
main() routine when you are writing a C++ application or when
your application does some processing before starting the simv
executable.

Note:

Do not use the -e option with the VCS/SystemC Cosimulation
Interface.

-P pli.tab

Compiles a user-defined PLI definition table file.

+vpi

Enables the use of VPI PLI access routines.

+vpi+1

Allows you to reduce the runtime memory by reducing the
information storage for VPI interface at runtime. This option limits
the behavioral information at compile-time, but preserves the
structural information.

This option allows you to:

- Browse the design hierarchy and read the values of variables.
This facilitates debugging.

- Write over or force values on variables using
vpi_put_value(). This allows a foreign language testbench
to drive a stimulus to a Verilog design.

B-54

Compile-Time Options

- Register VPI callbacks. This facilitates the waveform dumping
features. However, certain advance debugging features (such
as Line stepping, Driver/Loads information, and so on) will not
be available.

Limitations:

- You cannot use this option to browse, enable, or disable SV
and RT assertions.

Note:

The +vpi+1+assertion option allows you to browse, enable,
and disable SV and RT assertions to the base features of
+vpi+1.

- If you use +vpi+1 with any debug option (-debug_all, -
debug_pp, or -debug), and try to use UCLI commands, then
some of the commands may fail. No diagnostics or error
messages will be generated to suggest that those commands
are failing due to existence of +vpi+1 option.

+vpi+1+assertion

Allows you to browse, enable, and disable SV and RT assertions
to the base features of +vpi+1.

-load shared_library:registration_routine

Specifies the registration routine in a shared library for a VPI
application.

Options to Enable the VCS DirectC Interface

+vc+[abstract+allhdrs+list]

B-55

Compile-Time Options

The +vc option enables extern declarations of C/C++ functions
and calling these functions in your source code. See the VCS
DirectC Interface User Guide. The optional suffixes to this option
are as follows:

+abstract

Enables abstract access through vc_handles.

+allhdrs

Writes the vc_hdrs.h file that contains external function
declarations that you can use in your Verilog code.

+list

Displays all the C/C++ functions that you called in your Verilog
source code.

Options for Flushing Certain Output Text File Buffers

When VCS creates a log, VCD, or text file specified with the $fopen
system function, VCS writes the data for the file in a buffer and
periodically dumps the data from the buffer to the file on disk. The
frequency of these dumps varies depending on many factors
including the amount of data that VCS has to write to the buffer as
simulation or compilation progresses. If you need to see or use the
latest information in these files more frequently than the rate at which
VCS normally flushes this data, these options tell VCS to flush the
data more often during compilation or simulation.

+vcs+flush+log

Increases the frequency of flushing both the compilation and
simulation log file buffers.

B-56

Compile-Time Options

+vcs+flush+dump

Increases the frequency of flushing all VCD file buffers.

+vcs+flush+fopen

Increases the frequency of flushing all the buffers for the files
opened by the $fopen system function.

+vcs+flush+all

Shortcut option for entering all three of the +vcs+flush+log,
+vcs+flush+dump and +vcs+flush+fopen options.

These options do not increase the frequency of dumping other text
files, including the VCDE files specified by the $dumpports system
task or the simulation history file for LSI certification specified by the
$lsi_dumpports system task.

These options can also be entered at runtime. Entering them at
compile-time modifies the simv executable so that it runs as if these
options were always entered at runtime.

Options for Simulating SWIFT VMC Models and
SmartModels

-lmc-swift

Includes the LMC SWIFT interface.

-lmc-swift-template

Generates a Verilog template for a SWIFT Model.

B-57

Compile-Time Options

Options for Controlling Messages

-error

Revises the +lint and +warn options, to control error and
warning messages. With them you can:

- disable the display of any lint, warning or error messages

- disable the display of specific messages

- limit the display of specific messages to a maximum number
that you specify

See "Error/Warning/Lint Message Control".

Note:

The -error option is also a runtime option. However, only the
following feature is supported at runtime:

-error=[no]message_ID[:max_number],...

-nc

Suppresses the Synopsys copyright message.

-suppress

Disables the display of error and warning messages, see "Error/
Warning/Lint Message Control".

+libverbose

Tells VCS to display a message when it finds a module definition
in a source file in a Verilog library directory that resolves a module
instantiation statement that VCS read in your source files, a library
file, or in another file in a library directory. The message is:

B-58

Compile-Time Options

Resolving module "module_identifier"

VCS does not display this message when it finds a module
definition in a Verilog library file that resolves a module
instantiation statement.

+lint=[no]ID|none|all

Enables messages that tell you when your Verilog code contains
something that is bad style, but is often used in designs.

Here:

no

Specifies disabling lint messages that have the ID that follows.
There is no space between the keyword no and the ID.

none

Specifies disabling all lint messages. IDs that follow in a comma
separated list are exceptions.

all

Specifies enabling all lint messages. IDs that follow preceded
by the keyword no in a comma separated list are exceptions.

The following examples show how to use this option:

- Enable all lint messages except the message with the GCWM
ID:

+lint=all,noGCWM

B-59

Compile-Time Options

- Enable the lint message with the NCEID ID:

+lint=NCEID

- Enable the lint messages with the GCWM and NCEID IDs:

+lint=GCWM,NCEID

- Disable all lint messages. This is the default.

+lint=none

The syntax of the +lint option is very similar to the syntax of the
+warn option for enabling or disabling warning messages.
Additionally, these options have in common that some of their
messages have the same ID. This is because when there is a
condition in your code that causes VCS to display both a warning
and a lint message, the corresponding lint message contains more
information than the warning message and can be considered
more verbose.

The number of possible lint messages is not large. They are as
follows:

Lint-[IRIMW] Illegal range in memory word

Lint-[NCEID} Non-constant expression in delay

Lint-[GCWM] Gate connection width mismatch

Lint-[CAWM] Continuous Assignment width mismatch

Lint-[IGSFPG] Illegal gate strength for pull gate

Lint-[TFIPC] Too few instance port connections

Lint-[IPDP] Identifier previously declared as port

B-60

Compile-Time Options

Lint-[PCWM] Port connect width mismatch

Lint-[VCDE] Verilog compiler directive encountered

-no_error ID+ID

Changes the error messages with the UPIMI and IOPCWM IDs
to warning messages with the -no_error compile-time option.
You include one or both IDs as arguments, for example:

-no_error UPIMI+IOPCWM

This option does not work with the ID for any other error message.

-q

Quiet mode; suppresses messages such as those about the C
compiler VCS is using, the source files VCS is parsing, the
top-level modules, or the specified timescale.

-V

Verbose mode; compiles verbosely. The compiler driver program
prints the commands it executes as it runs the C compiler,
assembler, and linker. If you include the -R option with the -V
option, the -V option is also passed to runtime executable, just as
if you had entered simv -V.

-Vt

Verbose mode; provides CPU time information. Like -V, but also
prints the amount of time used by each command. Use of the -Vt
option can cause the simulation to slow down.

+warn=[no]ID|none|all

B-61

Compile-Time Options

Uses warning message IDs to enable or disable display of warning
messages. In the following warning message:

Warning-[TFIPC] Too few instance port connections

The text string TFIPC is the message ID. The syntax of this option
is as follows:

+warn=[no]ID|none|all,...

Where:

no Specifies disabling warning messages with the ID that follows. There is
no space between the keyword no and the ID.

none Specifies disabling all warning messages. IDs that follow, in a
comma-separated list, specify exceptions. VCS treats all SDF error
messages as warning messages so including +warn=none disables
SDF error messages.

all Specifies enabling all warning messages, IDs that follow preceded by
the keyword no, in a comma separated list, specify exceptions.

The following are examples that show how to use this option:

+warn=noIPDW Enables all warning messages except the warning
with the IPDW ID.

+warn=none,TFIPC Disables all warning messages except the warning
with the TFIPC ID.

+warn=noIPDW,noTFIPC Disables the warning messages with the IPDW and
TFIPC IDs.

+warn=all Enables all warning messages. This is the default.

B-62

Compile-Time Options

In cases where both -error and +warn for the same ID are used
on the command line in order to downgrade the error to warning
and at the same time suppress warning, the order in which they
are specified on the command line also impact the
compilation.VCS processes the options based on the order they
are specified in the command line. If the +warn=no<ID> option
follows the -error=no<ID> option, then the +warn=no<ID>
option can take effect because the -error=no<ID> has already
downgraded it to warning. Otherwise, the option has no use. So,
if -error=no<ID> follows the +warn=no<ID>, you might not
see the error and the warning is suppressed.

To suppress an error, always use -suppress=ID, which actually
combines the functionality of -error=no<ID> and
+warn=no<ID> together.

Option to Run VCS in Syntax Checking Mode

VCS runs in multiple stages, such as parsing, and compilation/
elaboration stage.

To make sure VCS quits normally before all syntax and semantic
issues are checked, you need to enable the parsing stage using the
option -parse_only.

% vcs -parse_only <other options>

This enables the VCS to run only during the parsing stage to check
for syntax errors. Any syntax errors found is reported. Regardless of
whether any syntax error is reported or not, VCS stops at the end of
the parsing stage. The link or elaboration stages are not run. Hence,
no link or elaboration errors are reported when the -parse_only
option is used. Also, simv executable is not generated.

B-63

Compile-Time Options

For example, consider the following the testcase test.v:

module top;

task one(input string fldName, input int bus = 0,input string
fldName2);

$display("In one");
endtask

task two(input int bus = 0,input string fldName);
$display("In two");

endtask

initial
begin

one(.bus(1));
one(,1);
two(.bus(1));

end
endmodule

If there are errors, VCS exits with the following error message:

Parsing design file 'test.v'

Error-[TFAFTC] Too few arguments to function/task call
error.v, 9
"one(.bus(1));"
The above function/task call is not done with sufficient
arguments.

If there are no errors, then VCS exits normally as follows:

Parsing design file 'test.v'
Top Level Modules:
top
No TimeScale specified

Note-[PARSE-ONLY] VCS Parse-Only Mode
No syntax or semantic error detected after parsing the

B-64

Compile-Time Options

complete design, VCS exits normally without generating
executable.

Limitations

The option has the following limitations:

• When -error=<Warn_ID> option is used, VCS quits prior to the
normal quit point because VCS upgrades the warning to error.
Also, when -error=<Warn_ID> option is used, VCS may still
complete compilation and quit normally even if the specified error
exists, as the error is downgraded to warning.

Options for Cell Definition

+nolibcell

Does not define as a cell modules defined in libraries unless they
are under the `celldefine compiler directive.

+nocelldefinepli+0

Enables recording in VPD files, the transition times and values of
nets and registers in all modules defined under the ‘celldefine
compiler directive or defined in a library that you specify with the
-v or -y options. This option also enables full PLI access to these
modules.

+nocelldefinepli+1

B-65

Compile-Time Options

Disables recording in VPD files, the transition times and values
of nets and registers in all modules defined under the
‘celldefine compiler directive. This option also disables full PLI
access to these modules. Modules in a library file or directory are
not affected by this option unless they are defined under the
‘celldefine compiler directive.

+nocelldefinepli+2

In VPD files, disables recording the transition times and values of
nets and registers in all modules defined under the ‘celldefine
compiler directive or defined in a library that you specify with the
-v or -y options, whether the modules in these libraries are
defined under the ‘celldefine compiler directive or not. This
option also disables PLI access to these modules.

Disabling recording of transition times and values of the nets and
registers in library cells can significantly increase simulation
performance.

Note:

Disabling recording transitions in library cells is intended for
batch simulation only and not for interactive debugging with
DVE. Any attempt in DVE to access a part of your design for
which VPD has been disabled may have unexpected results.

+nocelldefinepli+1+ports

Removes the PLI capabilities from `celldefine modules but
allows PLI access to port nodes and parameters.

+nocelldefinepli+2+ports

Removes the PLI capabilities from library and ‘celldefine modules
and allows PLI access to port nodes and parameters.

B-66

Compile-Time Options

Options for Licensing

+vcs+lic+vcsi

Checks out three VCSi licenses to run VCS.

+vcsi+lic+vcs

Checks out a VCS license to run VCSi when all VCSi licenses are
in use.

+vcs+lic+wait

Tells VCS to wait for a network license if none is available.

+vcsi+lic+wait

Tells VCSi to wait for a network license if none is available.

-licwait timeout

Enables license queuing, where timeout is the time in minutes
that VCS waits for a license before finally exiting.

-licqueue

Tells VCS to wait for a network license if none is available.

VCS_LICENSE_WAIT

Enables license queuing in a FIFO queue format, so that the first
job to enter the queue gets the license when the license is
available.

-ID

B-67

Compile-Time Options

Returns useful information about a number of things: the version
of VCS that you have set the VCS_HOME environment variable
to, the name of your work station, your workstation’s platform, the
host ID of your workstation (used in licensing), the version of the
VCS compiler (same as VCS) and the VCS build date.

Options for Controlling the Linker

-ld linker

Specifies an alternate front-end linker. Only applicable in
incremental compile mode, which is the default.

-LDFLAGS options

Passes flag options to the linker. Only applicable in incremental
compile mode, which is the default.

-c

Tells VCS to compile the source files, generate the intermediate
C, assembly, or object files, and compile or assemble the C or
assembly code, but not to link them. Use this option if you want
to link by hand.

-lname

Links the name library to the resulting executable. Usage is the
letter l followed by a name (no space between l and name). For
example: -lm (instructs VCS to include the math library).

-Marchive=number_of_module_definitionst

B-68

Compile-Time Options

By default, VCS compiles module definitions into individual object
files and sends all the object files in a command line to the linker.
Some platforms use a fixed-length buffer for the command line,
and if VCS sends too long a list of object files, this buffer overflows
and the link fails. A solution to this problem is to have the linker
create temporary object files containing more than one module
definition so there are fewer object files on the linker command
line. With this option, you enable creating these temporary object
files and specify how many module definitions are in these files.

Using this option briefly doubles the amount of disk space used
by the linker because the object files containing more than one
module definition are copies of the object files for each module
definition. After the linker creates the simv executable, it deletes
the temporary object files.

-picarchive

VCS can fail during linking due to the following two reasons:

- Huge size of object files: VCS compiles the units of your design
into object files, then calls the linker to combine them together.
Sometimes the size of a design is large enough that the size of
text section of these object files exceeds the limit allowed by
the linker. If so, the linker fails and generates the following error:

relocation truncated to fit:....

- Large number of object files: By default, VCS compiles module
or entity definitions into individual object files and sends this list
of object files in a single command line to the linker. Some
platforms use a fixed-length buffer for the command line. If VCS
sends a long list of object files, this buffer overflows and the link
fails, generating errors such as:

B-69

Compile-Time Options

make: execvp: gcc: Argument list too long

make: execvp: g++: Argument list too long

You can use the -picarchive option to deal with the above
linker errors. The –picarchive option does the following:

1. Enables Position Independent Code (PIC) object file
generation along with linking the shared object version of VCS
libraries.

2. Archives generated PIC code into multiple shared objects
inside simv.daidir or simv.db.dir directory.

3. Links the Shared objects at runtime to the final executable,
instead of linking all the objects statically into final executable
in a single step at compile-time.

Options for Controlling the C Compiler

-cc compiler

Specifies an alternate C compiler.

-CC options

Passes options to the C compiler or assembler.

-CFLAGS options

Passes options to C compiler. Multiple -CFLAGS are allowed.
Allows passing of C compiler optimization levels. For example, if
your C code, test.c, calls a library file in your VCS installation
under $VCS_HOME/include, use any of the following CFLAGS
option arguments:

B-70

Compile-Time Options

%vcs top.v test.c -CFLAGS "-I$VCS_HOME/include"

or

%setenv CWD ‘pwd‘
%vcs top.v test.c -CFLAGS "-I$CWD/include"

or

%vcs top.v test.c -CFLAGS "-I../include"

Note:

The reason to enter "../include" is because VCS creates
a default csrc directory where it runs gcc commands. The
csrc directory is under your current working directory.
Therefore, you need to specify the relative path of the include
directory to the csrc directory for gcc C compiler. Further, you
cannot edit files in the csrc because VCS automatically
creates this directory.

-cpp

Specifies the C++ compiler.

Note:

If you are entering a C++ file or an object file compiled from a
C++ file on the vcs command line, you must tell VCS to use
the standard C++ library for linking. To do this, enter the
-lstdc++ linker flag with the -LDFLAGS elaboration option.

For example:

 vcs top.v source.cpp -P my.tab \
-cpp /net/local/bin/c++ -LDFLAGS -lstdc++

-jnumber_of_processes

B-71

Compile-Time Options

Specifies the number of processes that VCS forks for parallel
compilation. There is no space between the "j" character and the
number. You can use this option when generating intermediate C
files (-gen_c) and their parallel compilation.

-C

Stops after generating the C code intermediate files.

-O0

Suppresses optimization for faster compilation (but slower
simulation). Suppresses optimization for how VCS both writes
intermediate C code files and compiles these files. This option is
the uppercase letter "O" followed by a zero with no space between
them.

-Onumber

Specifies an optimization level for how VCS both writes and
compiles intermediate C code files. The number can be in the 0-4
range; 2 is the default, 0 and 1 decrease optimization, 3 and 4
increase optimization. This option is the uppercase letter "O"
followed by 0, 1, 2, 3 or 4 with no space between them. See above,
for additional information regarding the -O0 variant.

-override-cflags

Tells VCS not to pass its default options to the C compiler. By
default, VCS has a number of C compiler options that it passes
to the C compiler. The options it passes depends on the platform,
whether it is a 64-bit compilation and other factors. VCS passes
these options and then passes the options you specify with the
-CFLAGS compile-time option.

B-72

Compile-Time Options

Options for Source Protection

For information about source protection options, see chapter
Encrypting Source Files.

Options for Mixed Analog/Digital Simulation

-ad=[initfile]

Enables the mixed-signal feature. If “-ad” is used alone, the
mixed-signal control file name is vcsAD.init, by default. If the
file name is different, it must be given with the =initFile option.

The mixed-signal simulation control file contains all the
commands to configure mixed-signal simulation.

Note:

The -ad option is supported in VCS 2009.06 and later releases,
and replaces the old +ad option. Although the +ad option is still
supported, it will be phased out in a future release.

-ams_discipline discipline_name

Specifies the default discrete discipline in VerilogAMS.

-ams_iereport

If information on auto-inserted connect modules (AICMs) is
available, displays this information on the screen and in the log file.

 +bidir+1

Tells VCS to finish compilation when it finds a bidirectional
registered mixed-signal net.

B-73

Compile-Time Options

 +print+bidir+warn

Tells VCS to display a list of bidirectional, registered, mixed signal
nets.

+verilogamsext+vams

To avoid keyword conflicts between Verilog-AMS and
SystemVerilog, it is preferable that Verilog-AMS and
SystemVerilog code each get parsed separately using their own
language parsers. Create all Verilog-AMS and SystemVerilog files
with distinct extensions.

For example "*.vams" can be used for Verilog-AMS files and
"*.v", "*.sv", or "*.svh" for SystemVerilog. And then the
following VCS switches can be used to identify those file
extensions as the differentiation between SystemVerilog and
Verilog-AMS contexts:

% vcs -ams -ad +verilogamsext+vams \
+systemverilogext+sv+v+svh ...

Options for Changing Parameter Values

-pvalue+parameter_hierarchical_name=value

Changes the specified parameter to the specified value.

-parameters filename

Changes parameters specified in the file to values specified in the
file. The syntax for a line in the file is as follows:

assign value path_to_parameter

B-74

Compile-Time Options

The path to the parameter is similar to a hierarchical name, except
that you use the forward slash character (/) instead of a period as
the delimiter.

Checking for x and z Values in Conditional Expressions

-xzcheck [nofalseneg]

Checks all the conditional expressions in the design and displays
a warning message every time VCS evaluates a conditional
expression to have an x or z value.

nofalseneg

Suppress the warning message when the value of a conditional
expression transitions to an x or z value and then to 0 or 1 in
the same simulation time step.

Options for Detecting Race Conditions

-race

Specifies that VCS generate a report of all the race conditions in
the design and write this report in the race.out file during
simulation. For more information, see "The Dynamic Race
Detection Tool".

Note:

The -race compile-time option supports dynamic race
detection for both pure Verilog and SystemVerilog data types.

-racecd

B-75

Compile-Time Options

Specifies that during simulation, VCS generate a report of the race
conditions in the design between the ‘race and ‘endrace
compiler directives and write this report in the race.out file. For
more information, see "The Dynamic Race Detection Tool".

Note:

The -racecd compile-time option supports dynamic race
detection for both pure Verilog and SystemVerilog data types.

+race=all

Analyzes the source code during compilation to look for coding
styles that cause race conditions. For more information, see "The
Static Race Detection Tool".

Note:

The +race=all option supports only pure Verilog constructs.

Options to Specify the Time Scale

-timescale=time_unit/time_precision

Occasionally, some source files contain the ‘timescale
compiler directive and others do not. In this case, if you specify
the source files that do not contain the ‘timescale compiler
directive on the command line before you specify the ones that
do, this is an error condition and VCS halts compilation, by default.
This option enables you to specify the timescale for the source
files that do not contain this compiler directive and precede the
source files that do. Do not include spaces when specifying the
arguments to this option.

-unit_timescale[=<default_timescale>]

B-76

Compile-Time Options

The -unit_timescale option enables you to specify the default
time unit for the compilation-unit scope. You must not include
spaces when specifying arguments to this option.

The IEEE Standard 1800-2005 LRM, topic 19.10, page 340
explains the time unit declaration, as follows:

"The time unit of the compilation-unit scope can only be set by a
time unit declaration, not a ‘timescale directive. If it is not
specified, then the default time unit shall be used."

Since the -timescale option does not affect the compilation-
unit scope, you must use the -unit_timescale option to
specify the default time unit for the compilation-unit scope.

The default_timecale value should be in the same format as
the ̀ timescale directive. If the default timescale is not specified,
then 1s/1s is taken as the default timescale of the compilation-unit.

-override_timescale=time_unit/time_precision

Overrides the time unit and precision unit for all the ‘timescale
compiler directives in the source code, and, similar to the
-timescale option, provides a timescale for all module
definitions that precede the first ‘timescale compiler directive.
Do not include spaces when specifying the arguments to this
option.

Options to Exclude Environment Variables During
Timestamp Checks

-vts_ignore_env=ENV1,ENV2,...

B-77

Compile-Time Options

You can use the -vts_ignore_env=ENV1,ENV2,... compile-
time option to exclude certain environment variables from
incremental compilation during VCS timestamp checks.

Consider the following testcase test.v:

module test
endmodule

Run the following commands:

%setenv myenv1 1
%setenv myenv2 2
% vcs test.v -vts_ignore_env=myenv1,myenv2

//Incremental compilation: There are no source code changes.
Only the environment variables “myenv1” and “myenv2” are
changed

%unsetenv myenv1
%unsetenv myenv2

% vcs test.v -vts_ignore_env=myenv1,myenv2

Following is the output:

The design hasn't changed and need not be recompiled.
If you really want to, delete file simv.daidir/.vcs.timestamp
and run VCS again.

Note:
The -vts_ignore_env=ENV1,ENV2,... option is not
supported in three-step (UUM) flow. It is only supported in two-
step flow.

B-78

Compile-Time Options

Options for Overriding Parameters

-gfile

You can use the -gfile compile-time option, to override
parameter values through a file.

You need to specify the file name, which contains the list of all
parameters that should be overridden, with the -gfile option.

The syntax for -gfile option is as follows:

vcs top_level_module -gfile
parameters_or_generics_file other_options

The syntax for the parameters_or_generics_file is as
follows:

assign val path

Each option In the above syntax is described below:

val: The value that overrides the Specified parameter.

path: Specifies the absolute hierarchical path to the parameter
value which is to be overridden.

Note:

The –gfile supports only VHDL syntax for hierarchical path
representation.

All escaped identifiers in the Verilog path must be converted into
VHDL extended identifiers. If the escaped identifier contains ‘\’
characters, they must be escaped with another ‘\’ character.

B-79

Compile-Time Options

For example, consider the following Verilog hierarchical path for
the parameter ‘P1’.

top.dut.\inst1_\cpu .inst2.P1

The corresponding generics_file entry is as follows:

assign ‘hffffffff /top/dut/\inst1_\\cpu\/
inst2/P1

All ‘for-generate’ and ‘instance-array’ parentheses must be round
parentheses, and the path delimiter must be ‘/’. All instance paths
must start with ‘/’.

Example:

You can override the parameter and generic values using the
-gfile option as follows:

vcs test.v –gfile overrides.txt

where, overrides.txt contains the following entries:

assign ‘hffffffff /top/dut/\inst1_\\cpu\/
inst2/P1

assign “DUMMY” /top/dut/\inst1_\\cpu\/inst2/
P2

assign 10.34 /top/dut/\inst1_\\cpu\/inst2/P3

Supported Data Types:

The following data types are supported in -gfile option:

B-80

Compile-Time Options

- Integer

- Real

- String

The -gfile option ignores other data types with a suitable
warning message.

-pvalue

You can use the -pvalue compile-time option for changing the
parameter values from the vcs command line.

You specify a parameter with the -pvalue option. It has the
following syntax:

vcs -pvalue+hierarchical_name_of_parameter=
value

 Example:

vcs source.v -pvalue+test.d1.param1=33

Note:

The -pvalue option does not work with a localparam or a
specparam.

Option to Enable Bounds Check at Compile-Time

-boundscheck

Enables the compile-time check for two-dimensional or three-
dimensional arrays with packed dimensions. The following warning
message is displayed during compile-time:

B-81

Compile-Time Options

• Warning-[SIOB] Select index out of bounds

Warning-[SIOB] Select Index Out of Bounds

This compile-time warning message is displayed in case of out-of-
bounds condition.

Example
module tb();

reg [1:0][1:0] fifo_data[2:0]; // FIFO memory
reg some_bit; // temp signal

reg nibble[]; // Dynamic array

initial
 begin
 //Packed dimention
 some_bit = fifo_data[1][1][2];

 end
endmodule

The following warning message is displayed:

Warning-[SIOB] Select index out of bounds
test2.sv, 11 "fifo_data[1][1][2]"
The select index is out of declared bounds : [1:0] in module
: tb.

Option to Enable Bounds Check at Runtime

-boundscheck

B-82

Compile-Time Options

Enables the runtime checks for out-of-bounds and intermediate
index access of fixed size and variable size unpacked arrays,
dynamic arrays and queues. Warning messages are generated for
fixed size arrays and error messages are generated for variable size
arrays.

The following error messages or warning messages are displayed
during runtime out-of-bounds index access:

• Error-[DT-OBAE] Out of bound access for queues

• Error-[DT-OBAE] Out of bound access for dynamic arrays

• Warning-[AOOBAW] Out of bound access for fixed size
unpacked arrays

• Warning-[AOOBAW] Out of bound access for fixed size packed
arrays

Error-[DT-OBAE] Out of Bounds Access for Queues

This runtime error message is displayed, if a queue element is
accessed with an out-of-bound index.

Example
module tb();

int temp; // temp signal
int int_queue[$] = { 1, 2, 3}; //Queue

initial
 begin
 //Queue
 temp = int_queue[9];
 end
endmodule

B-83

Compile-Time Options

The following error message is displayed:

Error-[DT-OBAE] Out of bound access
test2.sv, 9
Out of bound access on smart queue (size:3, index:9).
Simulation time = 0
Please make sure that the index is positive and less than
size.

Error-[DT-OBAE] Out of Bounds Access for Dynamic
Arrays

This runtime error message is displayed, if a dynamic array element
is accessed with an out-of-bound index.

Example
module tb();

reg some_bit; // temp signal
reg nibble[]; // Dynamic array
int int_queue[$] = { 1, 2, 3}; //Queue

initial
 begin
 //Dynamic array
 nibble = new[3]; // Create a 3-element array.
 some_bit = nibble[3];
 end
endmodule

The following error message is displayed:

Error-[DT-OBAE] Out of bound access
test2.sv, 11
Out of bound access on dynamic array (size:3, index:3).
Simulation time = 0
Please make sure that the index is positive and less than
size.

B-84

Compile-Time Options

Warning-[AOOBAW] Array Out of Bounds Access

This runtime warning message is displayed, if a fixed size unpacked
array element is accessed with an out-of-bound index.

Example
module tb();

reg [1:0] fifo_data[2:0]; // fifo memory
reg [1:0] some_signal; // temp signal

initial
 begin
 //Unpacked dimention
 some_signal = fifo_data[3];
 end
initial $monitor("some_signal = %b ",some_signal);
endmodule

The following warning message is displayed:

Warning-[AOOBAW] Array out of bounds access
test2.sv, 7
Array read "fifo_data[3]" is out of bounds.
Simulation time = 0
Please make sure index is within range. To disable this error
message, please remove '-boundscheck' at compile time.

Warning-[AOOBAW] Array Out of Bounds Access

This runtime warning message is displayed, if a fixed size packed
array element is accessed with an out-of-bound index.

Example
module tb();
reg [7:0] rd_ptr;
reg [29:0]nibble;

B-85

Compile-Time Options

reg some_signal3;
initial
 begin
 rd_ptr = 40;

#1 $finish();
 some_signal3 = nibble[rd_ptr];
 end
assign some_signal3 = nibble[rd_ptr];
initial $monitor("some_signal3 = %b",some_signal3);
endmodule

The following warning message is displayed:

Warning-[AOOBAW] Array out of bounds access
test2.sv, 11
Array read "nibble[40]" is out of bounds.
Simulation time = 0
Please make sure index is within range. To disable this error
message, please remove '-boundscheck' at compile time.

The following error messages or warning messages are displayed
during indeterminate index access, where array index has value X or
Z:

• Error-[DT-OBAE] Intermediate access for dynamic arrays

• Warning-[AAIIW] Array access with intermediate index

• Warning-[AAIIW] Array access with intermediate index for
fixed size packed arrays

Error-[DT-OBAE] Intermediate Access for Dynamic
Arrays

This runtime error message is displayed, if a dynamic array element
is accessed with an index value X or Z.

B-86

Compile-Time Options

Example
module tb();
reg [7:0] rd_ptr = 8'bxxxxxxxx;
reg nibble[]; // Dynamic array
reg some_signal3; // temp signal

initial
 begin
 //Dynamic array
 nibble = new[3]; // Create a 3-element array.
 some_signal3 = nibble[rd_ptr];
 end
endmodule

The following error message is displayed:

Error-[DT-OBAE] Out of bound access
test2.sv, 10
Out of bound access on dynamic array (size:3, index:255)
Simulation time = 0
Please make sure that the index is positive and less than
size.

Warning-[AAIIW] Array Access with Intermediate Index

This runtime warning message is displayed, if fixed size unpacked
array element is accessed with an index value X or Z.

Example
module tb();
reg [17:0] fifo_data[255:0]; // fifo memory
reg [7:0] rd_ptr;
wire [7:0] some_signal; // temp signal
initial begin
 rd_ptr = 8'dx;
 #1 $finish();
end

assign some_signal = fifo_data[rd_ptr];

B-87

Compile-Time Options

initial $monitor("some_signal = %b",some_signal);

endmodule

The following warning message is displayed:

Warning-[AAIIW] Array access with indeterminate index
test2.sv, 9
Index value bits set to x or z. The array read
"fifo_data[1'bx]" has indeterminate index value.
Simulation time = 0
To disable this warning message, please remove '-boundscheck'
at compile time. To upgrade this warning to error, add "-
error=AAII" to simv runtime command.

Warning-[AAIIW] Array Access with Intermediate Index
for Fixed Size Packed Arrays

This runtime warning message is displayed, if fixed size packed
array element is accessed with an index value X or Z.

Example
module tb();
reg [7:0] rd_ptr;
reg [29:0]nibble;
reg some_signal3;
initial
 begin
 rd_ptr = 8'bxxxxxxxx;

#1 $finish();
 end
assign some_signal3 = nibble[rd_ptr];
initial $monitor("some_signal3 = %b",some_signal3);
endmodule

The following warning message is displayed:

Warning-[AAIIW] Array access with indeterminate index

B-88

Compile-Time Options

test2.sv, 10
Index value bits set to x or z. The array read "nibble[1'bx]"
has indeterminate index value.
Simulation time = 0
To disable this warning message, please remove '-boundscheck'
at compile time. To upgrade this warning to error, add "-
error=AAII" to simv runtime command.

General Options

Specifying Directories for ‘include Searches

+incdir+directory+

Specifies the directory or directories in which VCS searches for
include files used in the `include compiler directive.

Files to be included and specified with the ‘include compiler
directive are called included files. VCS searches for included files
in the following order:

1. in the current directory

2. in the directories specified with this +incdir compile-time
option.

You can specify more than one directory, separated by the plus
(+) character, for example:

+incdir+dir1+dir2

In this example subdirectories dir1 and dir2 are in the current
directory.

+incdir+/file_sys/server/design_group/design_lib

B-89

Compile-Time Options

You can also specify an absolute path name.

Enable the VCS/SystemC Cosimulation Interface

-sysc

Enables SystemC cosimulation engine.

-sysc=adjust_timeres

Determines the finer time resolution of SystemC and HDL in case
of a mismatch, and sets it as the simulator’s timescale. VCS may
be unable to adjust the time resolution if you elaborate your HDL
with the -timescale option or use the
sc_set_time_resolution() function call in your SystemC
code. In such cases, VCS reports an error and does not create
simv.

Note:

You must use this option along with the -sysc option.

The -sysc=adjust_timeres option is not supported in two-
step flow. It is only supported in three-step (UUM) flow.

TetraMAX

+tetramax

Enables simulation of TetraMAX’s testbench in zero delay mode.

Suppressing Port Coersion to inout

+noportcoerce

B-90

Compile-Time Options

Prevents VCS MX from coercing ports to inout ports, which is the
default condition. This option is the equivalent of the
‘noportcoerce compiler directive.

Allow Inout Port Connection Width Mismatches

+noerrorIOPCWM

Changes the error condition, when a signal is wider or narrower
than the inout port to which it is connected, to a warning condition,
thus allowing VCS to create the simv executable after displaying
the warning message.

Allow Zero or Negative Multiconcat Multiplier

-noerror ZONMCM

Changes the following errors to a warning condition, thus allowing
VCS to create the simv executable after displaying the warning
message:

Error-[ZMMCM] Zero multiconcat multiplier cannot be used in this context
 A replication with a zero replication constant is considered to have
 a size of zero and is ignored. Such a replication shall appear
 only within a concatenation in which at least one of the
 operands of the concatenation has a positive size.
 target : {0 {1'bx}}

 Error-[NMCM] Negative multiconcat multiplier
 target : {(-1) {1'bx}}
 "my_test.v", 6

VCS errors out if you use "0" or a negative number as a
multiconcat multiplier. You can change that error to a warning
message using this option.

B-91

Compile-Time Options

Specifying a VCD File

+vcs+dumpvars

A substitute for entering the $dumpvars system task, without
arguments, in your Verilog code.

Enabling Dumping

+vcs+vcdpluson

A compile-time substitute for the $vcdpluson system task, the
+vcs+vcdpluson option enables recording in the VPD file
transition times and values for the entire design (except
SystemVerilog memories and multi-dimensional arrays (MDAs)
that have unpacked dimensions). This option also requires the
-debug_pp option.

Enabling Identifier Search

You can use the following elaboration options to enable and control
the Search Identifiers feature:

• -genid_db

• -nogenid_db

• Any debug option (-debug, -debug_all, -debug_pp)

Use the -genid_db option in combination with a debug option, for
example, as shown below, to enable Search Identifiers feature and
prepare the internal search database.

 % vcs -genid_db -debug top.v

B-92

Compile-Time Options

If you use -genid_db without a debug option, then VCS generates
a warning message saying that the feature is not enabled.

If you elaborate your design with -debug_all, but without
-genid_db, then VCS creates the database during the first search
query. This postpones most of the disk space and CPU overhead.

Specify -nogenid_db, if you want to completely avoid any disk
space and CPU time overhead caused by Search Identifiers. You
must use this option in combination with -debug_all.

Memories and Multi-Dimensional Arrays (MDAs)

+memcbk

Enables callbacks for memories and multi-dimensional arrays
(MDAs). Use this option if your design has memories or MDAs
and you are doing any of the following:

- Writing a VCD or VPD file during simulation. For VCD files, at
runtime, you must also enter the +vcs+dumparrays runtime
option. For VPD files, you must also enter the $vcdplusmemon
system task. VCD and VPD files are used for post-processing
with DVE.

- Using the VCS/SystemC Interface.

- Writing an FSDB file for Debussy.

- Using any debugging interface application - VCSD/PLI (acc/vpi)
that needs to use value change callbacks on memories or
MDAs. APIs like acc_add_callback,
vcsd_add_callback and vpi_register_cb need this
option if these APIs are used on memories or MDAs.

B-93

Compile-Time Options

Note:
The +memcbk option is enabled by default when any one of the
following debug options is used at compile-time:

-debug -debug_pp -debug_all

Specifying a Log File

-l filename

Specifies a file where VCS records compilation messages. If you
also enter the -R option, VCS records messages from both
compilation and simulation in the same file.

-a logFilename

Captures simulation output and appends the log information in
the existing log file. If the log file doesn’t exist, then this option
would create a log file.

Changing Source File Identifiers to Upper Case

-u

Changes all the characters in identifiers to uppercase. It does not
change identifiers in quoted strings such as the first argument to
the $monitor system task. You do not see this change in the DVE
Source window, but you do see it in all the other DVE windows.

Defining a Text Macro

+define+macro=value+

B-94

Compile-Time Options

Defines a text macro in your source code to a value or character
string. You can test for this definition in your Verilog source code
using the ‘ifdef compiler directive. If there are blank spaces in
the character string, then you must enclose it in quotation marks.
For example:

vcs design.v +define+USELIB="dir=dir1 dir=dir2"

The macro is used in a ‘uselib compiler directive:

‘uselib ‘USELIB libext+.v

Option for Macro Expansion

-p1800_macro_expansion

This option is used for LRM compliance to support macro
expansion. The option produces results that is more LRM-
compliant and accurate especially for SystemVerilog macros.

The syntax is:

% vcs [elab_options] t.sv -sverilog
-p1800_macro_expansion

For example, consider the following testcase test.sv:

module top;
logic [3:0] addr0_for_bank0='d10;
`define VAR(ANUM,BNUM) addr``ANUM``_for_bank``BNUM
`define NAME(STR) $display(`"`\`"STR`\`" is %d\n`",STR);
`define ARG addr0_for_bank0

 initial begin
 `NAME(`VAR(0,0));
 `NAME(`ARG)
 end
endmodule

B-95

Compile-Time Options

If you run the testcase without -p1800_macro_expansion
option, VCS generates the following output:

"`VAR(0,0)" is 10

"addr0_for_bank0" is 10

If you run the testcase with -p1800_macro_expansion option,
VCS generates the following output:

"addr0_for_bank0" is 10

"addr0_for_bank0" is 10

Specifying the Name of the Executable File

-o name

Specifies the name of the executable file. In UNIX, the default is
simv.

Returning The Platform Directory Name

-platform

Returns the name of the platform directory in your VCS
installation directory. For example, when you install VCS on a
Solaris version 5.4 workstation, VCS creates a directory named,
sun_sparc_solaris_5.4, in the directory where you install
VCS. In this directory are subdirectories for licensing, executable
libraries, utilities, and other important files and executables. You
need to set your path to these subdirectories. You can do so by
using this option:

B-96

Compile-Time Options

set path=($VCS_HOME/bin\
$VCS_HOME/‘$VCS_HOME/bin/vcs -platform‘/bin\$path)

Enabling Loop Detect

+vcs+loopreport+number

It is mandatory to include the +vcs+loopreport+number
option at compile-time, though the threshold number can be
overridden at runtime.

When +vcs+loopreport+number is specified at compile time,
VCS does the following based on the option specified at runtime:

- If number is not specified at runtime, VCS checks if the
simulation event loops for 2,000,000 times (by default) in the
same simulation time tick, and issues a runtime warning
message. VCS also terminates the simulation and generates a
report when a zero delay loop is detected.

- If +vcs+loopreport+N is specified at runtime, VCS checks
if the simulation event loops for 'N' times instead of 2,000,000.
VCS will then issue a runtime warning message, and terminates
the simulation.

For information about using the +vcs+loopreport+number
option during runtime, see Section "Enabling Loop Detect"in
Chapter “Simulation Options”.

+vcs+loopdetect+number

When +vcs+loopdetect+number is specified at compile time,
VCS does the following based on the option specified at runtime:

B-97

Compile-Time Options

- If number is not specified at runtime, VCS checks if the
simulation event loops for 2,000,000 times (by default) in the
same simulation time tick, and issues a runtime error message.
VCS also terminates the simulation.

- If +vcs+loopdetect+N is specified at runtime, VCS checks
if the simulation event loops for 'N' times instead of 2,000,000.
VCS will then issue a runtime error message, and terminates
the simulation.

For information about using the +vcs+loopdetect+number
option during runtime, see Section "Enabling Loop Detect"in
Chapter “Simulation Options”.

Changing the Time Slot of Sequential UDP Output
Evaluation

-nonbaudpsched

By default, VCS evaluates the output terminals of the sequential
UDP (user-defined primitive) in the NBA region. If the design is
compiled with this switch, the output of sequential UDPs is
scheduled in the active region of the scheduler.

Gate-Level Performance

-hsopt=gates

Improves runtime performance on gate-level designs (both
functional and timing simulations with SDF).You may see some
compile-time degradation when you use this switch.

Option to Omit Compilation of Code Between Pragmas

-skip_translate_body

B-98

Compile-Time Options

Tells VCS to omit compilation of Verilog or SystemVerilog code
between the following:

the //synopsys translate_off or
/* synopsys translate_off */ pragma

and

the //synopsys translate_on or
/* synopsys translate_on */ pragma

The following code example shows what this option can do:

module test;
initial begin
$display("\n before translate_off");
//synopsys translate_off
$display("\n after translate_off before translate_on");
//synopsys translate_on
$display("\n after translate_on before translate_off");
//synopsys translate_off
$display("\n 2nd after translate_off before translate_on");
//synopsys translate_on
$display("\n after translate_on\n");
end
endmodule

Without the -skip_translate_body option, VCS displays the
following:

before translate_off

 after translate_off before translate_on

 after translate_on before translate_off

 2nd after translate_off before translate_on

B-99

Compile-Time Options

 after translate_on

VCS compiles and executes all the $display system tasks.

With the -skip_translate_body option, VCS displays the
following:

 before translate_off

 after translate_on before translate_off

 after translate_on

VCS does not compile and execute the $display system tasks
between the //synopsys translate_off and
//synopsys translate_on pragmas.

Generating a List of Source Files

-bom top-level_module -bfl filename

Generates a file that contains a list of absolute path names to the
source files of all the module definitions in a design or IP block.

The -bom option must be accompanied by the -bfl option.

The argument to the -bom option is the module name of the top-
level module in the design or IP block.

The argument to the -bfl option is the filename that contains the
list. VCS adds the .bfl extension to the filename you specify.

If a module definition is in a Verilog source file in a Verilog library
directory, the name of the directory and source file is included in
the path names. If a module definition is in a Verilog library file,
the pathname of the library file is included in the list.

B-100

Compile-Time Options

The following is an example of the output pathname file:

/file_system/design_group/LIBDIR/dev.v
/file_system/user_name/design1/top.v
/file_system/design_group/libfile

Option for Dumping Environment Variables

-diag env

Enables you to dump all environment variables that are set before
starting the compilation and the simulation process. The list of
environment variables that are set in the terminal is stored in the
log file, which can be used to debug the environment related
issues when the verification setup is complex and multiple and
when nested scripts are used.

To dump all the environment variables, use the -diag env option
with vlogan/vcs command line or simv command line.

Syntax

The following is the syntax for -diag env option:

% vlogan -diag env

Dumps all the environment variables in the
vlogan_env_diag_<pid>.log log file that is generated in the
AN.DB directory.

% vcs -diag env

Dumps all the environment variables in the
vcs_env_diag_<pid>.log log file that is generated in the
simv.daidir directory.

B-101

Compile-Time Options

% simv -diag env

Dumps all the environment variables in the
simv_env_diag_<pid>.log log file that is generated in the
current working directory.

B-102

Compile-Time Options

C-1

Simulation Options

C
Simulation Options A

This appendix describes the options and syntax associated with the
simv executable. These runtime options are typically entered on the
simv command line but some of them can be compiled into the
simv executable at compile-time.

This appendix describes the following runtime options:

• “Options for Simulating Native Testbenches”

• “Options for SystemVerilog Assertions”

• “Options to Control Termination of Simulation”

• “Options for Enabling and Disabling Specify Blocks”

• “Options for Specifying When Simulation Stops”

• “Options for Recording Output”

• “Options for Controlling Messages”

C-2

Simulation Options

• “Options for VPD Files”

• “Options for VCD Files”

• “Options for Specifying Delays”

• “Options for Flushing Certain Output Text File Buffers”

• “Options for Licensing”

• “Option to Specify User-Defined Runtime Options in a File”

• “Option for Initializing Verilog Variables, Registers and Memories
at Runtime”

• “Option for Initializing Verilog Variables, Registers and Memories
in Selective Parts of a Design at Runtime”

• “General Options”

Options for Simulating Native Testbenches

-cg_coverage_control

Enables/disables the coverage data collection for all the coverage
groups in your NTB-OV or SystemVerilog testbench.

Note:

The system task $cg_coverage_control has precedence
over this option.

Syntax: -cg_coverage_control=value

The valid values for -cg_coverage_control are 0 and 1. A
value of 0 disables coverage collection and a value of 1 enables
coverage collection.

C-3

Simulation Options

Note:
You can also use this runtime option with the
coverage_control() system task. The
coverage_control() system task enables/disables data
collection for one or more coverage groups at the program level.
The runtime option takes precedence over the system task. For
more information on this system task, refer to the OpenVera
Language Reference Manual: Native Testbench.

+ntb_cache_dir

Specifies the directory location of the cache that VCS maintains
as an internal disk cache for randomization.

+ntb_delete_disk_cache=value

Specifies whether VCS deletes the disk cache for randomization
before simulation. The valid values are:

0 - do not delete (the default condition)

1 - delete the disk cache

+ntb_disable_cnst_null_object_warning[=value]

VCS produces the following warning when a null object handle is
encountered in an object being randomized. Allowed values are
0 and 1.

0 - Do not disable null object warning (this is the default)

1 - Disable null object warning

Here is an example of the null object warning:

C-4

Simulation Options

Warning-[CNST-PPRW] Constraint randomize NULL
object warning test.sv, <line number>. Null
object found during randomization. Please make
sure all random variables/arrays/function calls
being randomized are allocated fully and
properly.

The null handle may be intentional or the result of an oversight.
If you want to randomize objects which contain null handles, you
can use this switch to disable the runtime warning.

+ntb_enable_checker_trace=0|1

In-line constraint checker using randomize(null) returns 1 if
all constraints are satisfied and 0 otherwise. This option controls
whether the constraint checker trace is enabled or not. The valid
arguments are as follows:

0 - do not display the constraint checker trace (default)

1 - displays the constraint checker trace

If +ntb_enable_solver_trace is specified without an
argument, the default value is 1. If it is not specified, the default
value is 0.

+ntb_enable_checker_trace_on_failure[=value]

Enables a mode that prints trace information only when the
randomize returns 0. Allowed values are 0, 1, and 2.

0 Disables tracing

1 Enables tracing

2 Enables more verbose message in trace

C-5

Simulation Options

If ntb_enable_checker_trace_on_failure is specified
without an argument, the default value is 1. If the
ntb_enable_checker_trace_on_failure is not specified
on the command line, then the default value is 0.

+ntb_enable_solver_trace_on_failure[=0|1|2|3]

Displays trace information when the VCS constraint solver fails
to compute a solution. The valid argument values are as follows:

0 Disables displaying trace information

1 Enables displaying trace information

2 Enables more verbose trace information

3 In addition to the more verbose trace information
specified with 2, the solver reports all the earlier
solved constraints, which could have lead to the
current failing constraint.

+ntb_exit_on_error[=value]

Causes VCS to exit when the value is less than 0. The value can
be:

0 - continue

1 - exit on first error (default value)

N - exit on nth error

3 In addition to the message in trace with option 2, the
checker reports all the earlier solved constraints,
which could have lead to the current failing constraint.

C-6

Simulation Options

When the value is 0, the simulation finishes regardless of the
number of errors.

+ntb_random_seed=value

Sets the seed value to be used by the top-level random number
generator at the start of simulation. The srandom(seed) system
function call overrides this setting. The value can be any integer.
The default random seed value is 1.

+ntb_random_seed_automatic

Picks a unique value to supply as the first seed used by a
testbench. The value is determined by combining the time of day,
host name and process id. This ensures that no two simulations
have the same starting seed.

The +ntb_random_seed_automatic seed appears in both the
simulation log and the coverage report. When you enter both
+ntb_random_seed_automatic and +ntb_random_seed
VCS MX displays a warning message and uses the
+ntb_random_seed value.

+ntb_random_reseed

Enables the re-seeding of the value the top-level random number
generator uses after a save and restore of the simulation.

You enter this option with the +ntb_random_seed_automatic
or +ntb_random_seed=value options. The seed value after
the restore is the same as the one specified or generated by these
other options.

if you omit these other options VCS ignores the
+ntb_random_reseed option and displays the following
informational message:

C-7

Simulation Options

Info-[RNG-SEED-MISSING] New seed was not specified for
reseeding.
 Please use runtime option +ntb_random_seed= or
+ntb_random_automatic to specify new seed.

The srandom(seed) system function overrides this re-seeding.

+ntb_solver_array_size_warn=value

Specifies the array size warning limit (default is 10000) for
constrained array sizes.

+ntb_solver_debug=keyword_argument

Tells VCS to give you more information so you can debug the
constraints for the randomize() calls in batch mode. The
keyword arguments are as follows:

extract

Tells VCS to extract a standalone test case in SystemVerilog
for the specified randomize() call(s). To use this keyword
argument also enter the +ntb_solver_debug_filter
runtime option.

profile

Enables constraint profiling in VCS . You can view the constraint
profile report in simv.cst/html/profile.xml using a web
browser (simv is the default name of the VCS simv
executable).

This keyword argument also writes a file with a listing of the top
randomize calls in simv.cst/serial2trace.txt (simv is
the default name of the VCS simv executable).

serial

C-8

Simulation Options

Displays the randomize serial number at the end of each
randomize() completion.

trace

Displays the solver trace to show how VCS solved the
constraints for the random variables in specified randomize()
call(s). To use this argument also enter the
+ntb_solver_debug_filter runtime option.

trace_all

Displays the solver trace for all randomize() calls.
+ntb_solver_debug=trace_all is the equivalent of
entering the following options and arguments together:
+ntb_solver_debug=trace
+ntb_solver_debug_filter=all

You can enter multiple the keyword arguments using a plus (+)
as a delimiter, for example:

vcs source.sv +ntb_solver_debug=serial+extract+profile \
+ntb_solver_debug_filter=12

You cannot enter multiple +ntb_solver_debug options.

+ntb_solver_debug_dir=pathname

Directs VCS to place profiles and extracted testcases in the
specified directory. The default directory name is simv.cst, after
the simv executable with the .cst extension.

+ntb_solver_debug_filter=
serial_num [.partition_num] | file[:filename] |
all

C-9

Simulation Options

Specifies a list of randomize() calls that VCS displays debug
information about. You can specify this list in the following ways:

- a comma separated list, for example:

 +ntb_solver_debug_filter=1.5,4,20

This example specifies: the 5th partition of 1st call, and all
partitions of the 4th and 20th call.

- in a file. The default filename is:
simv.cst/serial2trace.txt.
You just need to enter the keyword argument file if the file is
the default file name and location.

- the keyword all as in:
+ntb_solver_debug_filter=all

Specifying all means you want debug information about all
randomize() calls.

Note:
The all argument can result in a large amount of solver trace
information or extracted test cases.

+ntb_solver_mode=value

Allows you to choose between one of two constraint solver modes.
When set to 1, the solver spends more preprocessing time in
analyzing the constraints during the first call to randomize() on
each class. Therefore, subsequent calls to randomize() on that
class are very fast. When set to 2, the solver does minimal
preprocessing, and analyzes the constraint in each call to
randomize(). The default is 2.

+ntb_stop_on_constraint_solver_error=0|1

C-10

Simulation Options

Specifies whether VCS continues or exits after a constraint
solver failure due to constraint inconsistency.

Options for SystemVerilog Assertions

-assert keyword_argument

Note:
- All -assert keyword_argument runtime options, except the
-assert maxfail and -assert finish_maxfail
options, are enabled only when the -assert enable_diag
option is used at compile-time.

- To enable the -assert maxfail and -assert
finish_maxfail options at runtime, you must use the -
assert enable_hier option at compile time.

The keyword arguments are as follows:

dumpoff

Disables the dumping of SVA information in the VPD file during
simulation.

finish_maxfail=N

Terminates the simulation if the number of failures for any
assertion reaches N. You must supply N, otherwise no limit is
set.

global_finish_maxfail=N

0 VCS to continues to run after a constraint solver
failure (default).

1 VCS exits on the first constraint solver error

C-11

Simulation Options

Terminates the simulation when the total number of failures,
from all SystemVerilog assertions, reaches N.

maxcover=N

Disables the collection of coverage information for cover
statements after the cover statements are covered N number
of times. N must be a positive integer; it cannot be 0.

maxfail=N

Limits the number of failures for each assertion to N. When the
limit is reached, VCS disables the assertion. You must supply
N, otherwise no limit is set.

maxsuccess=N

Limits the total number of reported successes to N. You must
supply N, otherwise no limit is set. VCS continues to monitor
assertions even after the limit is reached.

nocovdb

Tells VCS not to write the program_name.db database file for
assertion coverage.

nopostproc

Disables the display of the SystemVerilog assert and cover
statement summary at the end of simulation.

This begins with the assert and cover statements that started
but did not finish, in the following format:

"source_filename.v", line_number:
assert_or_cover_statement_hierarchical_name:
started at simulation_time not finished

C-12

Simulation Options

If the assert or cover statement doesn’t start, this summary
also reports this in the following format::

**** Following assertions did not fire at all
during simulation. *****
"source_filename.v", line_number:
assert_or_cover_statement_hierarchical_name:
No attempt started

This is followed by a cover statement summary in the following
format:

"source_filename.v", line_number:
cover_statement_hierarchical_name, number
attempts, number match

no_fatal_action

Excludes failures on SVA assertions with fail action blocks for
computation of failure count in the –assert
[global_]finish_maxfail=N runtime option.

no_default_msg[=SVA|OVA|PSL]

Disables the display of default failure messages for SVA
assertions that contain a fail action block, and OVA and PSL
assertions that contain user messages.

quiet

Disables the display of messages when assertions fail.

quiet1

C-13

Simulation Options

Disables the display of messages when assertions fail, but
enables the display of summary information at the end of
simulation. For example:

Summary: 2 assertions, 2 with attempts, 2 with
failures

report[=path/filename]

- Generates a report file in addition to printing results on your
screen. By default, the report file name and location is
./assert.report, but you can change it by entering the
path/filename argument. The report file name can start with
a number or letter.

- Generates a report of all assertions that are disabled using any
one of the following mechanisms:

- System tasks $asserton/off/kill

- assert hier at compile/runtime

 The report is categorized based on:

- Disabled assertions on a module level (compile-time)

- Assertions disabled through the -assert hier option

- Disabled assertions at End-of-Simulation

Note:

- If the file name is specified by the user, it is dumped as
 <user_file>.disablelog.

C-14

Simulation Options

- If the file name is not specified by the user, it is dumped as
 assert.report.disablelog

The following special characters are acceptable in the file name:
%, ̂ , and @. Using the following unacceptable special characters:
#, &, *, [], $, (), or ! has the following consequences:

- A file name containing # or & results in a file name truncation
to the character before the # or &.

- A file name containing * or [] results in a No match message.

- A file name containing $ results in an Undefined variable
message.

- A file name containing () results in a Badly placed ()’s
message.

- A file name containing ! results in an Event not found
message.

success

Enables reporting of successful matches, and successes on
cover and assert statements respectively, in addition to
failures. The default is to report only failures.

vacuous

Enables reporting of vacuous successes on assert
statements in addition to the failures. By default, VCS reports
only failures.

verbose

Adds more information to the end of the report specified by the
report keyword argument, and a summary with the number
of assertions present, attempted, and failed.

C-15

Simulation Options

hier=file_name

Specifies a file to enable and disable SystemVerilog assertions
when you simulate your design. This feature enables you to
control which assertions are active and VCS records in the
coverage database, without having to recompile your design.

The types of entries you can make in the file are as follows:

 -assert <assertion_name> or
-assert <assertion_hierarchical_name>

If assertion_name is provided, VCS disables the assertions
based on wildcard matching of the name in the full design. If
assertion_hierarchical_name is provided, VCS disables the
assertions based on wildcard matching of the name in the
particular hierarchy given.

Examples

-assert my_assert

Disables all assertions with name my_assert in the full
design.

-assert A*

Disables all assertions whose name starts with A in the full
design.

-assert *

Disables all assertions in the full design.

-assert top.INST2.A

C-16

Simulation Options

Disables all assertions whose names start with A in the
hierarchy top.INST2. If assertions whose name starts with
A exists in inner scopes under top.INST2, they are not
disabled. This command has affect on assertions only in
scope top.INST2.

 +assert <assertion_name> or
+assert <assertion_hierarchical_name>

If assertion_name is provided, VCS enables the
assertions based on wildcard matching of the name in the
full design. If assertion_hierarchical_name is
provided, then VCS enables the assertions based on
wildcard matching of the name in the given hierarchy.

Examples

+assert my_assert

Enables all assertions with name my_assert in the full
design.

+assert A*

Enables all assertions whose name starts with A in the full
design.

+assert *

Enables all assertions in the full design.

+assert top.INST2.A

Enables assertion A in the hierarchy top.INST2.

C-17

Simulation Options

 +tree <module_instance_name> or
+tree <assertion_hierarchical_name>

If module_instance_name is provided, VCS enables
assertions in the specified module instance and all module
instances hierarchically under that instance. If
assertion_hierarchical_name is provided, VCS enables
the specified SystemVerilog assertion. Wildcard characters
can also be used for specifying the hierarchy.

Examples

+tree top.inst1

Enables the assertions in module instance top.inst1 and
all the assertions in the module instances under this instance.

+tree top.inst1.a1

Enables SystemVerilog assertion with the hierarchical name
top.inst1.a1.

+tree top.INST*.A1

Enables assertion A1 from all the instances whose names
start with INST under module top.

 -tree <module_instance_name> or
-tree <assertion_hierarchical_name>

If module_instance_name is provided, VCS disables the
assertions in the specified module instance and all module
instances hierarchically under that instance. If
assertion_hierarchical_name is provided, VCS disables
the specified SystemVerilog assertion. Wildcard characters
can also be used for specifying the hierarchy.

C-18

Simulation Options

Examples

-tree top.inst1

Disables the assertions in module instance top.inst1 and
all the assertions in the module instances under this instance.

-tree top.inst1.a1

Disables the SystemVerilog assertion with the hierarchical
name top.inst1.a1.

-tree top.INST*.A1

Disables assertion A1 from all the instances whose names
start with INST under module top.

+module module_identifier

VCS enables all the assertions in all instances of the specified
module.

For example, +module dev. VCS enables the assertions in
all instances of module dev.

-module module_identifier

VCS disables all the assertions in all instances of the
specified module.

For example, -module dev. VCS disables the assertions
in all instances of module dev.

-assert assertion_block_identifier

C-19

Simulation Options

VCS disables the assertion with the specified block identifier.
You can use wildcard characters in specifying the block
identifier to specify more than one assertion.

You can enter more than one keyword using the plus (+)
separator. For example:
-assert maxfail=10+maxsucess=20+success+filter.

-cm assert

Specifies monitoring for SystemVerilog assertions coverage.
When enabled, the option -cm assert does the following:

- Generates the number of attempts, pass, fail, and incomplete
data.

- Generates vacuous and non-vacuous coverage.

- Irrespective of type of assert statement, reports coverage.

- Covers immediate and deferred assertions.

- Does not cover Expect statement.

- Affects SVA and OVA as well.

-uniq_prior maxfail=integer

Specifies the maximum number of unique or priority
violations (see -error=UNIQUE and -error=PRIORITY in
“Options for SystemVerilog Assertions”) before VCS ends the
simulation.

The kinds of error messages that this option controls are as
follows:

RT Error: No condition matches in unique case statement
“dev.v”, line 17, for top.dev, at time 0

C-20

Simulation Options

RT Error: More than one conditions match in ‘unique case’
statement
“dev.v”, line 18, for top.dev,
Line 19 & 20 are overlapping at time 0.

This runtime option is enabled by the -error=UNIQUE,
-error=PRIORITY, or -error=UNIQUE,PRIORITY compile-
time option and keyword arguments.

Options to Control Termination of Simulation

–ova_enable_case_maxfail

Includes OVA case violations in computation of global failure
count for the –assert global_finish_maxfail=N option.

Options for Enabling and Disabling Specify Blocks

+no_notifier

Suppresses the toggling of notifier registers that are optional
arguments of system timing checks. The reporting of timing check
violations is not affected. This is also a compile-time option.

+no_tchk_msg

Disables the display of timing violations, but does not disable the
toggling of notifier registers in timing checks. This is also a
compile-time option.

+notimingcheck

C-21

Simulation Options

Disables timing check system tasks in your design. Using this
option at runtime can improve the simulation performance of your
design, depending on the number of timing checks that this option
disables.

You can also use this option at compile time. Using this option at
compile time tells VCS to ignore timing checks when it compiles
your design so that the timing checks are not compiled into the
executable. This results in a faster simulating executable than one
that includes timing checks, which are disabled by this option at
runtime.

If you need the delayed versions of the signals in negative timing
checks, but want faster performance, include this option at
runtime.

Note:

The +notimingcheck option has higher precedence than any
tcheck command in UCLI.

Options for Specifying When Simulation Stops

+vcs+stop+time

Stop simulation at the time value specified. The time value must

be less than 232 or 4,294,967,296.

+vcs+finish+time

Ends simulation at the time value specified. The time value

must be also less than 232. For example, you can specify the
following:

+vcs+finish+9001us

C-22

Simulation Options

For both of these options, there is a special procedure (See
“Specifying a Long Time Before Stopping The Simulation”) for

specifying time values larger than 232.

Options for Recording Output

-l filename

Specifies writing all messages from simulation to the specified file
as well as displaying these messages on the standard output.

Options for Controlling Messages

-error

Revises the +lint and +warn options, to control error and
warning messages. With them you can:

- disable the display of any lint, warning or error messages

- disable the display of specific messages

- limit the display of specific messages to a maximum number
that you specify

Only the following feature is supported at runtime.

-error=[no]message_ID[:max_number],...

For more information on the option, see “Error/Warning/Lint
Message Control” .

C-23

Simulation Options

Note:
The -error option is also a compile-time option.

-q

Quiet mode; suppresses display of VCS header and summary
information. Suppresses the proprietary message at the
beginning of simulation and suppresses the VCS Simulation
Report at the end (time, CPU time, data structure size, and date).
Suppresses SystemC BMI warnings and notes at the start of
simulation.

-V

Verbose mode; displays VCS version and extended summary
information. Displays VCS compile and runtime version numbers,
and copyright information, at the start of simulation.

+no_pulse_msg

Suppresses pulse error messages, but not the generation of StE
values at module path outputs when a pulse error condition
occurs.

You can enter this runtime option on the vcs command line. You
cannot enter this option in the file you use with the -f compile-time
option.

+sdfverbose

By default, VCS displays no more than ten warning and ten error
messages about back-annotating delay information from SDF
files. This option enables the display of all back-annotation
warning and error messages.

C-24

Simulation Options

This default limitation on back-annotation messages applies only
to messages displayed on the screen and written in the simulation
log file. If you specify an SDF log file in the $sdf_annotate
system task, this log file receives all messages.

+vcs+nostdout

Disables all text output from VCS including messages and text
from $monitor and $display and other system tasks for only
the Verilog portion of the design. VCS still writes this output to the
log file if you include the -l option.

Options for VPD Files

-vpd_bufsize number_of_megabytes

To gain efficiency, VPD uses an internal buffer to store value
changes before saving them on disk. This option modifies the size
of that internal buffer. The minimum size allowed is what is
required to share two value changes per signal. The default size
is the size required to store 15 value changes for each signal, but
not less than 2 megabytes.

Note:

VCS automatically increases the buffer size as needed to
comply with this limit.

+vpdfile+file_name

Specifies the name of the output VPD file (default is
vcdplus.vpd). You must include the full file name with the .vpd
extension.

+vpdfilesize+number_of_megabytes

C-25

Simulation Options

Creates a VPD file that has a moving window in time while never
exceeding the file size specified by number_of_megabytes.
When the VPD file size limit is reached, VPD continues saving
simulation history by overwriting older history.

File size is a direct result of circuit size, circuit activity, and the
data being saved. Test cases show that VPD file sizes will likely
run from a few megabytes to a few hundred megabytes. Many
users can share the same VPD history file, which may be a reason
for saving all time value changes when you do simulation. You
can save one history file for a design and overwrite it on each
subsequent run.

+vpdfileswitchsize+number_in_MB

Specifies a size for the vpd file. When the vpd file reaches this
size, VCS closes this file and opens a new one with the same
hierarchy as the previous vpd file. There is a number suffix added
to all new vpd file names to differentiate them. For example:
simv +vpdfile+test.vpd +vpdfileswitchsize+10.
The first vpd file is named test.vpd. When its size reaches
10MB, VCS starts a new file test_01.vpd, the third vpd file is
test_02.vpd, and so on.

+vpdignore

Tells VCS to ignore any $vcdplusxx system tasks and license
checking. By default, VCS checks out a VPD PLI license if there
is a $vcdplusxx system task in the Verilog source. In some
cases, this statement is never executed and VPD PLI license
checkout should be suppressed. The +vpdignore option
performs the license suppression.

+vpdports

C-26

Simulation Options

Causes VPD to store port information, which is then used by the
Hierarchy Browser to show whether a signal is a port, and if so,
its direction. This option to some extent affects simulation
initialization time and memory usage for larger designs.

+vpdportsonly

Dumps only the port type information.

+vpdnoports

Dumps only the signal not the ports (input/output).

+vpddrivers

Stores data for changes on drivers of resolved nets.

+vpdupdate

Enables VPD file locking.

+vpdnocompress

Disables the default compression of data as it is written to the
VPD file.

+vpdnostrengths

Disables the default storage of strength information on value
changes to the VPD file. Use of this option may lead to slight
improvements in VCS performance.

Options for VCD Files

+vcs+dumpfile+filename

C-27

Simulation Options

Sets the name of the $dumpvars output file to filename. The
default file name is verilog.dump. A $dumpfile system task
in the Verilog source code overrides this option.

+vcs+dumpoff+t+ht

Turns off value change dumping ($dumpvars) at time t. ht is
the high 32 bits of a time value greater than 32 bits.

+vcs+dumpon+t+ht

Suppresses the $dumpvars system task until time t. ht is the
high 32 bits of a time value greater than 32 bits.

+vcs+dumparrays

Enables recording memory and multi-dimensional array values in
the VCD file. You must also have used the +memcbk compile-time
option.

+vcs+flush+dump

Increases the frequency of dumping all VCD files.

Options for Specifying Delays

+maxdelays

Specifies using the maximum delays in min:typ:max delay triplets
in module path delays and timing checks, if you compiled your
design with the +allmtm compile-time option. Also specifies
using the maximum timing delays in min:typ:max delay triplets in
an uncompiled SDF file.

C-28

Simulation Options

If you compiled the SDF file with the +allmtm compile-time
option, the +maxdelays option specifies using the compiled SDF
file with the maximum delays.

Another use for this runtime option is to specify timing for SWIFT
VMC and SmartModels when you also include the
+override_model_delays runtime option.

+mindelays

Specifies using the minimum delays in min:typ:max delay triplets
in module path delays and timing checks, if you compiled your
design with the +allmtm compile-time option. Also specifies
using the minimum timing delays in min:typ:max delay triplets in
an uncompiled SDF file.

If you compiled the SDF file with the +allmtm compile-time
option, the +mindelays option specifies using the compiled SDF
file with the minimum delays.

Another use for this runtime option is to specify timing for SWIFT
VMC and SmartModels when you also include the
+override_model_delays runtime option.

+typdelays

Specifies using the typical delays in min:typ:max delay triplets in
module path delays and timing checks, if you compiled your
design with the +allmtm compile-time option. Also specifies
using the typical timing delays in min:typ:max delay triplets in an
uncompiled SDF file.

If you compiled the SDF file with the +allmtm compile-time
option, the +typdelays option specifies using the compiled SDF
file with the typical delays.

C-29

Simulation Options

This is a default option. By default, VCS uses the typical delay in
min:typ:max delay triplets in your source code and in uncompiled
SDF files unless you specify otherwise with the mtm_spec
argument to the $sdf_annotate system task. Also, by default,
VCS uses the compiled SDF file with typical values.

Another use for this runtime option is to specify timing for SWIFT
VMC and SmartModels when you also include the
+override_model_delays runtime option.

Options for Flushing Certain Output Text File Buffers

When VCS creates a log file, VCD file, or a text file specified with the
$fopen system function. VCS writes the data for the file in a buffer
and periodically dumps the data from the buffer to the file on disk.
The frequency of these dumps varies depending on many factors
including the amount of data that VCS has to write to the buffer as
simulation or compilation progresses. If you need to see or use the
latest information in these files more frequently than the rate at which
VCS normally dumps this data, these options tell VCS to dump the
data more frequently. The amount of frequency also depends on
many factors, but the increased frequency will always be significant.

+vcs+flush+log

Increases the frequency of dumping both the compilation and
simulation log files.

+vcs+flush+dump

Increases the frequency of dumping all VCD files.

+vcs+flush+fopen

C-30

Simulation Options

Increases the frequency of dumping all files opened by the
$fopen system function.

+vcs+flush+all

Increases the frequency of dumping all log files, VCD files, and
all files opened by the $fopen system function.

These options do not increase the frequency of dumping other text
files including the VCDE files specified by the $dumpports system
task or the simulation history file for LSI certification specified by the
$lsi_dumpports system task.

You can also enter these options at compile time. There is no
performance gain to entering them at compile time.

Options for Licensing

+vcs+lic+vcsi

Checks out three VCSi licenses to run VCS.

+vcsi+lic+vcs

Checks out a VCS license to run VCSi when all VCSi licenses are
in use.

+vcs+lic+wait

Waits for a network license if none is available when the job starts.

-licwait timeout

Enables license queuing, where timeout is the time in minutes
that VCS waits for a license before finally exiting.

C-31

Simulation Options

-licqueue

Tells VCS to wait for a network license if none is available.

Option to Specify User-Defined Runtime Options in a
File

-f filename

You can use the -f runtime option to specify user-defined
plusargs in a file. The user-defined plusargs are the plus
arguments on the simv command line defined using
$test$plusargs or $value$plusargs system tasks in RTL
code as per IEEE Standard 1364-2001 17.10 Command line input.
All other VCS runtime options should be specified on the simv
command line.

Option for Initializing Verilog Variables, Registers and
Memories at Runtime

+vcs+initreg+0|1|random|seed_value

Initializes all bits of the Verilog variables, registers defined in
sequential UDPs, and memories including multi-dimensional
arrays (MDAs) in your design to the specified values, at time zero.
The default seed is used when no random seed is specified. This
option can only be used when the +vcs+initreg+random
option is specified at compile-time.

The supported data types are:

- reg

- bit

C-32

Simulation Options

- integer

- int

- logic

The following table describes the initialization options at runtime.

Syntax of Runtime Option Description

+vcs+initreg+0 Initializes all variables, registers and memories to
value 0.

+vcs+initreg+1 Initializes all variables, registers and memories to
value 1.

+vcs+initreg+random Initializes all variables, registers and memories to
random value 0 or 1, with the default seed.

+vcs+initreg+100 Initializes all variables, registers and memories to
random value 0 or 1, with the user-defined seed 100.

Note: The seed_value cannot be 1 or 0. Those
values have special meanings.

The initialization options may cause potential race conditions due to
the initialized values specified. For more information on race
condition prevention, see “Option for Initializing Verilog Variables,
Registers and Memories with Random Values” .

Option for Initializing Verilog Variables, Registers and
Memories in Selective Parts of a Design at Runtime

+vcs+initreg+config+config_file

C-33

Simulation Options

Specifies a configuration file for initializing Verilog variables,
registers defined in sequential UDPs, and memories including
multi-dimensional arrays (MDAs) in your design, at time zero. In
the configuration file, you can define the parts of a design to apply
the initialization and the initialization values of the variables.

This option can only be used at runtime when either the
+vcs+initreg+random option or the
+vcs+initreg+config+config_file option is specified at
compile-time.

If the +vcs+initreg+config+config_file option is
specified at both compile-time and runtime, the configuration file
specified at runtime overrides the configuration file at compile-
time.

The +vcs+initreg+seed_value option can be specified with
the +vcs+initreg+config+config_file option at runtime
to select a random seed for generating random initial values as
defined in the configuration file.

If the +vcs+initreg+0|1|random and
+vcs+initreg+config+config_file options are both
specified at runtime, the +vcs+initreg+0|1|random option is
ignored and a warning message is issued.

The following table describes the initialization options at runtime.

Syntax of Runtime Options Description

+vcs+initreg+config+config_file Runtime configuration file overrides compile-
time configuration file

+vcs+initreg+config+config_file
+vcs+initreg+seed_value

Uses specified seed for generating random initial
values as defined in runtime configuration file

C-34

Simulation Options

For more information on the configuration file, see “Option for
Initializing Verilog Variables, Registers and Memories in Selective
Parts of a Design”

General Options

Viewing the Compile-Time Options

-E program

Starts the program that displays the compile-time options that
were on the vcs command line when you created the simv (or
simv.exe) executable file.

For example: simv -E echo

You cannot use any other runtime options with the -E option.

+vcs+initreg+config+config_file
+vcs+initreg+random

Issues a warning message, ignores
+vcs+initreg+random

+vcs+initreg+config+config_file
+vcs+initreg+0

Issues a warning message, ignores
+vcs+initreg+0

+vcs+initreg+config+config_file
+vcs+initreg+1

Issues a warning message, ignores
+vcs+initreg+1

Syntax of Runtime Options Description

C-35

Simulation Options

Recording Where ACC Capabilities are Used

+vcs+learn+pli

ACC capabilities enable debugging operations, but they have a
performance cost so you only want to enable them where you
need them. This option keeps track of where in your design you
use them for debugging operations so that you can recompile your
design, and in the next simulation, enable them only where you
need them. When you use this option VCS writes the
pli_learn.tab secondary PLI table file. You input this file with
the +applylearn compile-time option when you recompile your
design.

Suppressing the $stop System Task

+vcs+ignorestop

Tells VCS to ignore the $stop system tasks in your source code.

Enabling User-defined Plusarg Options

+plus-options

User-defined runtime options to perform some operation when
the option is on the simv command line. The $test$plusargs
system task can check for such options.

Enabling Overriding the Timing of a SWIFT SmartModel

+override_model_delays

C-36

Simulation Options

Instead of using the DelayRange parameter definition in the
template file, this option enables the +mindelays, +typdelays,
and +maxdelays runtime options to specify the timing used by
SWIFT SmartModels.

Enabling Loop Detect

+vcs+loopreport+number

It is mandatory to include the +vcs+loopreport+number
option at compile-time, though the threshold number can be
overridden at runtime.

When +vcs+loopreport+number is specified at compile time,
VCS does the following based on the option specified at runtime:

- If +vcs+loopreport is specified at runtime, VCS checks if a
simulation event loops for 2,000,000 times (by default) in the
same simulation time tick, and issues a runtime warning
message. VCS also terminates the simulation and generates a
report when a zero delay loop is detected.

- If +vcs+loopreport+N is specified at runtime, VCS checks
if the simulation event loops for 'N' times and issues a runtime
warning message. VCS also terminates the simulation.

For information about using the +vcs+loopreport+number
option during compile time, see Section “Enabling Loop Detect”
in Chapter “Compile-Time Options”.

+vcs+loopdetect+number

When +vcs+loopdetect+number is not specified at compile
time, VCS does the following based on the option specified at
runtime:

C-37

Simulation Options

- If +vcs+loopdetect is specified at runtime, VCS checks if a
simulation event loops for 2,000,000 times (by default) in the
same simulation time tick, and issues a runtime error message.
VCS also terminates the simulation.

- If +vcs+loopdetect+N is specified at runtime, VCS checks
if the simulation event loops for 'N' times and issues a runtime
error message. VCS also terminates the simulation.

For information about using the +vcs+loopdetect+number
option compile time, see Section “Enabling Loop Detect” in
Chapter “Compile-Time Options”

Specifying acc_handle_simulated_net PLI Routine

+vcs+mipd+noalias

For the acc_handle_simulated_net PLI routine, aliasing of
a loconn net and a hiconn net across the port connection is
disabled if MIPD delay annotation happens for the port. If you
specify ACC capability: mip or mipb in the pli.tab file, such
aliasing is disabled only when actual MIPD annotation happens.

If during a simulation run, acc_handle_simulated_net is
called before MIPD annotation happens, VCS issues a warning
message. When this happens you can use this option to disable
such aliasing for all ports whenever mip, mipb capabilities have
been specified. This option works for reading an ASCII SDF file
during simulation and not for compiled SDF files.

Loading DPI Libraries Dynamically at Rutime

-sv_lib library_path_name

-sv_root library_path_name

C-38

Simulation Options

-sv_liblist library_path_name

The procedure for loading a DPI library at runime isas follows:

1. Compile the Verilog or SystemVerilog code, for example:

%> vcs -sverilog other_options test.v

2. Compile the C code and create a shared object, for example:

%> gcc -fPIC -Wall ${CFLAGS} -I${VCS_HOME}/include \
–I other_libraries -c test.c

%> gcc -fPIC -shared ${CFLAGS} -o test.so test.o

3. Load the shared object at runtime using one of the following
runtime options for this purpose:

-sv_lib -sv_root -sv_liblist

Loading PLI Libraries Dynamically at Runtime

-load library_path_name

Loads a PLI library dynamically at runtime. Enter a -load option
for each library you are dynamically loading, for example:

% simv -load ./pli1.so -load ./pli2.so

To use this runtime option, when you compile the design include
the PLI table file for the PLI libraries with the -P compile-time
option:

% vcs -P pli.tab design_source_files

D-1

Compiler Directives and System Tasks

D
Compiler Directives and System Tasks A

This appendix describes:

• “Compiler Directives”

• “System Tasks and Functions”

Compiler Directives

Compiler directives are commands in the source code that specify
how VCS compiles the source code that follows them, both in the
source files that contain these compiler directives and in the
remaining source files that VCS subsequently compiles.

Compiler directives are not effective down the design hierarchy. A
compiler directive written above a module definition affects how VCS
compiles that module definition, but does not necessarily affect how

D-2

Compiler Directives and System Tasks

VCS compiles module definitions instantiated in that module
definition. If VCS has already compiled these lower-level module
definitions, it does not recompile them. If VCS has not yet compiled
these module definitions, the compiler directive does affect how VCS
compiles them.

Note:

Compile-time options override compiler directives.

Compiler Directives for Cell Definition

`celldefine

Specifies that the modules under this compiler directive be tagged
as “cell” for delay annotation. See IEEE Std 1364-2001 page 350.
Syntax: `celldefine

`endcelldefine

Disables `celldefine. See IEEE Std 1364-2001 page 350.
Syntax: `endcelldefine

Compiler Directives for Setting Defaults

`default_nettype

Sets default net type for implicit nets. See IEEE Std 1364-2001
page 350.

Syntax:‘default_nettype wire | tri | tri0 | wand
| triand | tri1 | wor | trior | trireg |none

D-3

Compiler Directives and System Tasks

`resetall

Resets all compiler directives. See IEEE 1364-2001 page 357.
Syntax: `resetall

Compiler Directives for Macros

`define

Defines a text macro. See IEEE Std 1364-2001 page 351. Syntax:
`define text_macro_name macro_text

`else

Used with ̀ ifdef. Specifies an alternative group of source code
lines that VCS compiles if the text macro specified with an ̀ ifdef
compiler directive is not defined. See IEEE Std 1364-2001 page
353. Syntax: `else second_group_of_lines

`elseif

Used with ̀ ifdef. Specifies an alternative group of source code
lines that VCS compiles if the text macro specified with an ‘ifdef
compiler directive is not defined, but the text macro specified with
this compiler directive is defined. See IEEE Std 1364-2001 page
353.Syntax: `elseif text_macro_name
second_group_of_lines

`endif

Used with ̀ ifdef. Specifies the end of a group of lines specified
by the ̀ ifdef or ̀ else compiler directives. See IEEE Std 1364-
2001 page 353. Syntax: `endif

D-4

Compiler Directives and System Tasks

`ifdef

Specifies compiling the source lines that follow if the specified text
macro is defined by either the ̀ define compiler directive or the
+define compile-time option.
Syntax: `ifdef text_macro_name
 group_of_lines
 ‘endif

‘ifdef VCS

The character string VCS is a predefined text macro in VCS. The
Verilog or SystemVerilog code that follows ‘ifdef VCS is code
you want compiled by VCS and the code that follows a
corresponding ‘else compiler directive is source code that VCS
ignores.

You can insert source code after the ‘else compiler directive that
you intend for a third party tool.

In the following source code, VCS compiles and executes the
first block of code and ignores the second block, even when you
do not include `define VCS or +define+VCS:

`ifdef VCS
 begin
 // Block of code for VCS

 end
`else
 begin
 // third party code

 end
`endif

D-5

Compiler Directives and System Tasks

When you encrypt source code, VCS inserts ‘ifdef VCS before
all encrypted parts of the code.

`ifndef

Specifies compiling the source code that follows if the specified
text macro is not defined. See IEEE Std 1364-2001 page 353.
Syntax: `ifndef text_macro_name group_of_lines

`undef

Undefines a macro definition. See IEEE Std 1364-2001 page 351.
Syntax: `undef text_macro_name

Compiler Directives for Delays

`delay_mode_path

Ignores the delay specifications on all gates and switches in all
those modules under this compiler directive that contain specify
blocks. Uses only the module path delays and the delay
specifications on continuous assignments. Syntax:
`delay_mode_path

`delay_mode_distributed

Ignores the module path delays specified in specify blocks in
modules under this compiler directive and uses only the delay
specifications on all gates, switches, and continuous
assignments. Syntax: `delay_mode_distributed

`delay_mode_unit

D-6

Compiler Directives and System Tasks

Ignores the module path delays. Changes all the delay
specifications on all gates, switches, and continuous assignments
to the shortest time precision argument of all the ‘timescale
compiler directives in the source code. The default time unit and
time precision argument of the ‘timescale compiler directive is
1 ns. Syntax: `delay_mode_unit

`delay_mode_zero

Changes all the delay specifications on all gates, switches, and
continuous assignments to zero and changes all module path
delays to zero. Syntax: `delay_mode_zero

Compiler Directives for Backannotating SDF Delay
Values

`vcs_mipdexpand

This compiler directive enables the runtime back-annotation of
individual bits of a port declared in an ASCII text SDF file. This is
done by entering the compiler directive over the port declarations
for these ports. Similarly, entering this compiler directive over port
declarations enables a PLI application to pass delay values to
individual bits of a port.

As an alternative to using this compiler directive, you can use the
+vcs+mipdexpand compile-time option, or you can enter the
mipb ACC capability. For example:

$sdf_annotate call=sdf_annotate_call
acc+=rw,mipb:top_level_mod+

D-7

Compiler Directives and System Tasks

When you compile the SDF file, which Synopsys recommends,
you do not need to use this compiler directive to back-annotate
the delay values for individual bits of a port.

`vcs_mipdnoexpand

Turns off the enabling of back-annotating delay values on
individual bits of a port as specified by a previous
`vcs_mipdexpand compiler directive.

Compiler Directives for Source Protection

For information about compiler directives for source protection, see
chapter Encrypting Source Files.

General Compiler Directives

Compiler Directive for Including a Source File

`include

Includes (also compiles as part of the design) the specified source
file. See IEEE Std 1364-1995 pages 224-225. Syntax:
`include "filename"

Note:

If the included file is a different version of Verilog from the source
file that contains the ‘include compiler directive, and you want
VCS to compile the included file for the version specified by its
filename extension, enter the -extinclude compile-time option,
see “Options for Different Versions of Verilog”

D-8

Compiler Directives and System Tasks

Compiler Directive for Setting the Time Scale

`timescale

Sets the timescale. See IEEE Std 1364-2001 page 357. Syntax:
`timescale time_unit / time_precision

In VCS, the default time unit is 1 s (a full second) and the default
time precision is also 1 s.

Compiler Directive for Specifying a Library

`uselib file | directory

Searches the specified library for unresolved modules. You can
specify either a library file or a library directory. Syntax: ‘uselib
file = filename

or

`uselib dir = directory_name libext+.ext |
libext=.ext

Enter path names if the library file or directory is not in the current
directory. For example:

`uselib file = /sys/project/speclib.lib

If specifying a library directory, include the libext+.ext
keyword and append to it the extensions of the source files in the
library directory, similar to the +libext+.ext compile-time
option, for example:

`uselib dir = /net/designlibs/project.lib
libext+.v

D-9

Compiler Directives and System Tasks

To specify more than one search library, enter additional dir or
file keywords, for example:

`uselib dir = /net/designlibs/library1.lib dir=/
net/designlibs/library2.lib libext+.v

Here, the libext+.ext keyword applies to both libraries.

Compiler Directive for File Names and Line Numbers

`line line_number "filename" level

Maintains the file name and line number. See IEEE Std 1364-2001
page 358.

Unimplemented Compiler Directives

The following compiler directives are IEEE Std 1364-1995 compiler
directives that are not yet implemented in VCS.

`unconnected_drive

`nounconnected_drive

D-10

Compiler Directives and System Tasks

System Tasks and Functions

This section describes the system tasks and functions that are
supported by VCS and then lists the system tasks that it does not
support.

System tasks are described in the IEEE Std 1364-2001 or see the
VCS SystemVerilog LRM for more information.

System Tasks for SystemVerilog Assertions Severity

$fatal

Generates a runtime fatal assertion error.

$error

Generates a runtime assertion error.

$warning

Generates a runtime warning message.

$info

Generates an information message.

System Tasks for SystemVerilog Assertions Control

$assertoff

Tells VCS to stop monitoring any of the specified assertions that
start at a subsequent simulation time.

D-11

Compiler Directives and System Tasks

$assertkill

Tells VCS to stop monitoring any of the specified assertions that
start at a subsequent simulation time, and stop the execution of
any of these assertions that are now occurring.

$asserton

Tells VCS to resume the monitoring of assertions that it stopped
monitoring due to a previous $assertoff or $assertkill
system task.

These system tasks provide file name and line number from where
these system tasks are called which would otherwise be difficult to
track in the absence of this information.

Note:
- The runtime option -assert old_ctrl_msg reverts the

messaging to the old style for backward compatibility.

- It is recommended to use the $assertoff system task with
arguments, as shown below, to turn off reporting of assertions
globally for the entire design:

$assertoff (0,”top_level_module”)

You may not be able to enable assertions on the desired
hierarchies, if you use $assertoff without arguments to turn
off assertions.

System Tasks for SystemVerilog Assertions

$onehot

Returns true if only one bit in the expression is true.

D-12

Compiler Directives and System Tasks

$onehot0

Returns true if, at the most, one bit of the expression is true (also
returns true if none of the bits are true).

$isunknown

Returns true if one of the bits in the expression has an X value.

$countx(expression)

Returns the number of expression bits set to X.

$countz(expression)

Returns the number of expression bits set to Z.

$countunknown(expression)

Returns the number of expression bits set to either X or Z.

$onedriven

Returns true if only one bit of the expression is not Z, and its value
is defined (not X).

$onedriven0

Returns true if at most one bit of the expression is not Z, and if
such a bit exists, its value is defined (not X).

D-13

Compiler Directives and System Tasks

System Tasks for VCD Files

VCD files are ASCII files that contain a record of a net or register’s
transition times and values. There are a number of third-party
products that read VCD files to show you simulation results. VCShas
the following system tasks for specifying the names and contents of
these files. They require the $dumpvars system task.

$dumpall

Creates a checkpoint in the VCD file. When VCS executes this
system task, VCS records the current values of all specified nets
and registers into the VCD file, whether there is a value change
at this time or not.

$dumpoff

Stops recording value change information in the VCD file.

$dumpon

Starts recording value change information in the VCD file.

$dumpfile

Specifies the name of the VCD file you want VCS to record.
Syntax: $dumpfile("filename");

$dumpflush

Empties the VCD file buffer and writes all this data to the VCD file.

$dumplimit

Limits the size of a VCD file.

$dumpvars

D-14

Compiler Directives and System Tasks

Specifies the nets and variables whose transition times and values
you want VCS to record in the VCD file.

Syntax: $dumpvars(level_number,module_instance |
net_or_var);

You can specify individual nets or variables, or specify all the nets
and variables, in an instance.

The $dumpvars system task enables the other VCD system tasks
like $dumpon and $dumpfile.

$dumpchange

Tells VCS to stop recording transition times and values in the
current dump file and to start recording in the specified new file.
Syntax: $dumpchange("filename");

Code example: $dumpchange("vcd16a.dmp");

$fflush

VCS stores VCD data in the operating system’s dump file buffer
and as simulation progresses, reads from this buffer to write to
the VCD file on disk. If you need the latest information written to
the VCD file at a specific time, use the $fflush system task.
Syntax: $fflush("filename");

Code example: $fflush("vcdfile1.vcd");

$fflushall

If you are writing more than one VCD file and need VCS to write
the latest information to all these files at a particular time, use the
$fflushall system task. Syntax: $fflushall;

D-15

Compiler Directives and System Tasks

$gr_waves

Produces a VCD file with the name grw.dump. In this system
task, you can specify a display label for a net or register whose
transition times and values VCS records in the VCD file. Syntax:
$gr_waves(["label",]net_or_reg,...);

Code example: $gr_waves("wire w1",w1, "reg r1",r1);

System Tasks for LSI Certification VCD and EVCD Files

$lsi_dumpports

For LSI certification of your design, this system task specifies
recording a simulation history file that contains the transition times
and values of the ports in a module instance. This simulation
history file for LSI certification contains more information than the
VCD file specified by the $dumpvars system task. The
information in this file includes strength levels and whether the
test fixture module (test bench) or the Device Under Test (the
specified module instance or DUT) is driving a signal’s value.
Syntax:
$lsi_dumpports(module_instance,"filename");

Code example:
$lsi_dumpports(top.middle1,"dumpports.dmp");

If you would rather have the $lsi_dumpports system task
generate an extended VCD (EVCD) file instead, include the
+dumpports+ieee runtime option.

$dumpports

D-16

Compiler Directives and System Tasks

Creates an EVCD file as specified in IEEE Std. 1364-2001 pages
339-340. You can, for example, input a EVCD file into TetraMAX
for fault simulation. EVCD files are similar to the simulation history
files generated by the $lsi_dumpports system task for LSI
certification, but there are differences in the internal statements
in the file. Further, the EVCD format is a proposed IEEE standard
format, whereas the format of the LSI certification file is specified
by LSI.

In the past, the $dumpports and $lsi_dumpports system
tasks both generated simulation history files for LSI certification
and had identical syntax except for the name of the system task.

Syntax of the $dumpports system task is now:
$dumpports(module_instance,[module_instance,]
"filename");

You can specify more than one module instance.

Code example: $dumpports(top.middle1,top.middle2,
"dumpports.evcd");

If your source code contains a $dumpports system task, and
you want it to generate simulation history files for LSI certification,
include the +dumpports+lsi runtime option.

$dumpportsoff

Suspends writing to files specified in $lsi_dumpports or
$dumpports system tasks. You can specify a file to which VCS
suspends writing or specify no particular file, in which case VCS
suspends writing to all files specified by $lsi_dumpports or
$dumpports system tasks. See IEEE Std 1364-2001 page 340-
341. Syntax: $dumpportsoff("filename");

D-17

Compiler Directives and System Tasks

$dumpportson

Resumes writing to the file after writing was suspended by a
$dumpportsoff system task. You can specify the file to which
you want VCS to resume writing or specify no particular file, in
which case VCS resumes writing to all files to which writing was
halted by any $dumpportsoff or $dumpports system tasks.
See IEEE Std 1364-2001 page 340-341. Syntax:
$dumpportson("filename");

$dumpportsall

By default, VCS writes to files only when a signal changes value.
The $dumpportsall system task records the values of the ports
in the module instances, which are specified by the
$lsi_dumpports or $dumpports system task, whether there
is a value change on these ports or not. You can specify the file
to which you want VCS to record the port values for the
corresponding module instance or specify no particular file, in
which case VCS writes port values in all files opened by the
$lsi_dumpports or $dumpports system task. See IEEE Std
1364-2001 page 341. Syntax:
$dumpportsall("filename");

$dumpportsflush

VCS stores simulation data in a buffer during simulation from
which it writes data to the file. If you want VCS to write all
simulation data from the buffer to the file or files at a particular
time, execute this $dumpportsflush system task. You can
specify the file to which you want VCS to write from the buffer or
specify no particular file, in which case VCS writes all data from
the buffer to all files opened by the $lsi_dumpports or
$dumpports system task. See IEEE Std 1364-2001 page 342.
Syntax: $dumpportsfush("filename");

D-18

Compiler Directives and System Tasks

$dumpportslimit

Specifies the maximum file size of the file specified by the
$lsi_dumpports or $dumpports system task. You specify the
file size in bytes. When the file reaches this limit, VCS no longer
writes to the file. You can specify the file whose size you want to
limit or specify no particular file, in which case your specified size
limit applies to all files opened by the $lsi_dumpports or
$dumpports system task. See IEEE Std 1364-2001 page 341-
342.

Syntax: $dumpportslimit(filesize,"filename");

System Tasks for VPD Files

VPD files are files that store the transition times and values for nets
and registers but they differ from VCD files in the following ways:

• You can use the DVE to view the simulation results that VCS
recorded in a VPD file. You cannot actually load a VCD file directly
into DVE; when you load a VCD file, DVE translates the file to
VPD and loads the VPD file.

• They are binary format and therefore take less disk space and
load much faster.

• They can also record the order of statement execution so that you
can use the Source Window in DVE to step through the execution
of your code if you specify recording this information.

VPD files are commonly used in post-processing, where VCS writes
the VPD file during batch simulation, and then you review the
simulation results using DVE.

D-19

Compiler Directives and System Tasks

There are system tasks that specify the information that VCS writes
in the VPD file.

Note:

To use the system tasks for VPD files, you must compile your
source code with the -debug_pp option.

$vcdplusautoflushoff

Turns off the automatic “flushing” of simulation results to the VPD
file whenever there is an interrupt, such as when VCS executes
the $stop system task. Syntax: $vcdplusautoflushoff;

$vcdplusautoflushon

Tells VCS to “flush” or write all the simulation results in memory
to the VPD file whenever there is an interrupt, such as when VCS
executes a $stop system task or when you halt VCS using the
UCLI stop command, or the Stop button on the DVE Interactive
window. Syntax: $vcdplusautoflushon;

$vcdplusclose

Tells VCS to mark the current VPD file as completed, and close
the file. Syntax: $vcdplusclose;

$vcdplusdeltacycleon

The $vcdplusdeltacycleon task enables reporting of delta
cycle information from the Verilog source code. It must be followed
by the appropriate $vcdpluson/$vcdplusoff tasks.

D-20

Compiler Directives and System Tasks

Glitch detection is automatically turned on when VCS executes
$vcdplusdeltacycleon unless you have previously used
$vcdplusglitchon/off. Once you use
$vcdplusglitchon/off, DVE allows you explicit control of
glitch detection.

Syntax

$vcdplusdeltacycleon;

Note:

Delta cycle collection can start only at the beginning of a time
sample. The $vcdplusdeltacycleon task must precede the
$vcdpluson command to ensure that delta cycle collection
will start at the beginning of the time sample.

$vcdplusevent

The $vcdplusevent task allows you to record a unique event
for a signal at the current simulation time unit.

Syntax

$vcdplusevent(net_or_reg,"event_name",
"<E|W|I><S|T|D>");

A symbol is displayed in DVE on the signal’s waveform and in the
Logic Browser. The event_name argument appears in the status
bar when you click on the symbol.

E|W|I — Specifies severity.

- E for error, displays a red symbol.

- W for warning, displays a yellow symbol.

- I for information, displays a green symbol.

D-21

Compiler Directives and System Tasks

S|T|D — Specifies the symbol shape.

- S for square.

- T for triangle.

- D for diamond.

Do not enter space between the arguments E|W|I and S|T|D.
Do not include angle brackets < >. There is a limit of 244 unique
events.

$vcdplusfile

Specifies the next VPD file that DVE opens during simulation, after
it executes the $vcdplusclose system task and when it
executes the next $vcdpluson system task. Syntax:
$vcdplusfile("filename");

$vcdplusglitchon

Turns on checking for zero delay glitches and other cases of
multiple transitions for a signal at the same simulation time.
Syntax: $vcdplusglitchon;

$vcdplusflush

Tells VCS to “flush” or write all the simulation results in memory
to the VPD file at the time VCS executes this system task. Use
$vcdplusautoflushon to enable automatic flushing of
simulation results to the file when simulation stops. Syntax:
$vcdplusflush;

$vcdplusmemon

D-22

Compiler Directives and System Tasks

Records value changes and times for memories and multi-
dimensional arrays. Syntax: system_task(Mda [, dim1Lsb
[, dim1Rsb [, dim2Lsb [, dim2Rsb [, ... dimNLsb
[, dimNRsb]]]]]]);

Mda

This argument specifies the name of the multi-dimensional
array (MDA) to be recorded. It must not be a part select. If no
other arguments are given, then all elements of the MDA are
recorded to the VPD file.

dim1Lsb

This is an optional argument that specifies the name of the
variable that contains the left bound of the first dimension. If no
other arguments are given, then all elements under this single
index of this dimension are recorded.

dim1Rsb

This is an optional argument that specifies the name of variable
that contains the right bound of the first dimension.

Note:

The dim1Lsb and dim1Rsb arguments specify the range of
the first dimension to be recorded. If no other arguments are
given, then all elements under this range of addresses within
the first dimension are recorded.

dim2Lsb

This is an optional argument with the same functionality as
dim1Lsb, but refers to the second dimension.

dim2Rsb

D-23

Compiler Directives and System Tasks

This is an optional argument with the same functionality as
dim1Rsb, but refers to the second dimension.

dimNLsb

This is an optional argument that specifies the left bound of the
Nth dimension.

dimNRsb

This is an optional argument that specifies the right bound of
the Nth dimension.

Note that MDA system tasks can take 0 or more arguments, with
the following caveats:

- No arguments: The whole design will be traversed and all
memories and MDAs will be recorded. Note that this process
may cause significant memory usage and simulator drag.

- One argument: If the object is a scope instance, all memories/
MDAs contained in that scope instance and its children will be
recorded. If the object is a memory/MDA, that object will be
recorded.

$vcdplusmemoff

Stops recording value changes and times for memories and multi-
dimensional arrays. Syntax is the same as the $vcdplusmenon
system task.

$vcdplusmemorydump

Records (dumps) a snapshot of the values in a memory or
multi-dimensional array into the VPD file. Syntax is the same as
the $vcdplusmenon system task.

D-24

Compiler Directives and System Tasks

$vcdplusoff

Stops recording, in the VPD file, the transition times and values
for the nets and registers in the specified module instance or
individual nets or registers. Syntax:
$vcdplusoff[(level_number,module_instance |
net_or_reg)];

Where:

level_number

Specifies the number of hierarchy scope levels for which to stop
recording signal value changes (a zero value records all scope
instances to the end of the hierarchy; default is all).

module_instance

Specifies the name of the scope for which to stop recording
signal value changes (default is all).

net_or_reg

Specifies the name of the signal for which to stop recording
signal value changes (default is all).

$vcdpluson

Starts recording, in the VPD file, the transition times and values
for the nets and variables in the specified module instance or
individual nets or variable. This system task does not enable
recording memories or multi-dimensional arrays (MDAs) with an
unpacked dimension. Syntax:
$vcdpluson[(level_number,module_instance |
net_or_variable)];

where:

D-25

Compiler Directives and System Tasks

level_number

Specifies the number of hierarchy scope levels for which to
record signal value changes (a zero value records all scope
instances to the end of the hierarchy; default is all).

module_instance

Specifies the name of the scope for which to record signal value
changes (default is all).

net_or_variable

Specifies the name of the signal for which to record signal value
changes (default is all).

System Tasks for SystemVerilog Assertions

Important:

Enter these system tasks in an initial block. Do not enter them in
an always block.

$assert_monitor

Analogous to the standard $monitor system task; it continually
monitors specified assertions and displays what is happening with
them (you can only have it display on the next clock of the
assertion). The syntax is as follows:

$assert_monitor([0|1,]assertion_identifier...);

Where:

0

D-26

Compiler Directives and System Tasks

Specifies reporting on the assertion if it is active (VCS checks
for its properties) and if not, reporting on the assertion or
assertions, whenever they start.

1

Specifies reporting on the assertion or assertions only once,
the next time they start.

If you specify neither 0 or 1, the default is 0.

assertion_identifier...

A comma separated list of assertions. If one of these assertions
is not declared in the module definition containing this system
task, specify it by its hierarchical name.

$assert_monitor_off

Disables the display from the $assert_monitor system task.

$assert_monitor_on

Re-enables the display from the $assert_monitor system
task.

System Tasks for Executing Operating System
Commands

$system

Executes operating system commands. Syntax:
$system("command");

Code example: $system("mv -f savefile savefile.1");

D-27

Compiler Directives and System Tasks

$systemf

Executes operating system commands and accepts multiple
formatted string arguments. Syntax: $systemf("command %s
...","string",...);

Code example: int = $systemf("cp %s %s", "file1",
"file2");

The operating system copies the file named file1 to a file named
file2.

System Tasks for Log Files

$log

If a filename argument is included, this system task stops writing
to the vcs.log file or the log file specified with the -l runtime
option and starts writing to the specified file. If the file name
argument is omitted, this system task tells VCS to resume writing
to the log file after writing to the file was suspended by the $nolog
system task. Syntax: $log[("filename")];

Code example: $log("reset.log");

$nolog

Disables writing to the vcs.log file or the log file specified by
either the -l runtime option or the $log system task. Syntax:
$nolog;

System Tasks for Data Type Conversions

$bitstoreal[b]

D-28

Compiler Directives and System Tasks

Converts a bit pattern to a real number. See IEEE std 1364-2001
page 310.

$itor[i]

Converts integers to real numbers. See IEEE std 1364-2001 page
310.

$realtobits

Passes bit patterns across module ports, converting a real number
to a 64-bit representation. See IEEE std 1364-2001 page 310.

$rtoi

Converts real numbers to integers. See IEEE std 1364-2001 page
310.

System Tasks for Displaying Information

$display[b|h|0];

Display arguments. See IEEE std 1364-2001 pages 278-285.

$monitor[b|h|0]

Display data when arguments change value. See IEEE Std 1364-
2001 page 286.

$monitoroff

Disables the $monitor system task. See IEEE std 1364-2001
page 286.

$monitoron

D-29

Compiler Directives and System Tasks

Re-enables the $monitor system task after it was disabled with
the $monitoroff system task. See IEEE std 1364-2001 page
286.

$strobe[b|h|0];

Displays simulation data at a selected time. See IEEE 1364-2001
page 285.

$write[b|h|0]

Displays text. See IEEE std 1364-2001 pages 278-285.

System Tasks for File I/O

$fclose

Closes a file. See IEEE std 1364-2001 pages 286-288.

$fdisplay[b|h|0]

Writes to a file. See IEEE std 1364-2001 pages 288-289.

$ferror

Returns additional information about an error condition in file I/O
operations. See IEEE Std 1364-2001 pages 294-295.

$fflush

Writes buffered data to files. See IEEE Std 1364-2001 page 294.

$fgetc

Reads a character from a file. See IEEE Std 1364-2001 page 290.

$fgets

D-30

Compiler Directives and System Tasks

Reads a string from a file. See IEEE Std 1364-2001 page 290.

$fmonitor[b|h|0]

Writes to a file when an argument changes value. See IEEE std
1364-2001 pages 287-288.

$fopen

Opens files. See IEEE std 1364-2001 pages 286-288.

$fread

Reads binary data from a file. See IEEE Std 1364-2001 page 293.

$fscanf

Reads characters in a file. See IEEE Std 1364-2001 pages 290-
293.

$fseek

Sets the position of the next read or write operation in a file. See
IEEE Std 1364-2001 page 294.

$fstrobe[b|h|0]

Writes arguments to a file. See IEEE std 1364-2001 pages 288-
289.

$ftell

Returns the offset of a file. See IEEE Std 1364-2001 page 294.

$fwrite[b|h|0]

Writes to a file. See IEEE Std 1364-2001 pages 88-289.

D-31

Compiler Directives and System Tasks

$rewind

Sets the next read or write operation to the beginning of a file.
See IEEE Std 1364-2001 page 294.

$sformat

Assigns a string value to a specified signal. See IEEE Std
1364-2001 pages 289-290.

$sscanf

Reads characters from an input stream. See IEEE Std 1364-2001
pages 290-293.

$swrite

Assigns a string value to a specified signal, similar to the
$sformat system function. See IEEE Std 1364-2001 pages
289-290.

$ungetc

Returns a character to the input stream. See IEEE Std 1364-2001
page 290.

System Tasks for Loading Memories

$readmemb

Loads binary values in a file into memories. See IEEE std 1364-
2001 pages 295-296.

$readmemh

Loads hexadecimal values in a file into memories. See IEEE std
1364-2001 pages 295-296.

D-32

Compiler Directives and System Tasks

$sreadmemb

Loads specified binary string values into memories. See IEEE std
11364-2001 page 744.

$sreadmemh

Loads specified string hexadecimal values into memories. See
IEEE std 1364-2001 page 744.

$writememb

Writes binary data in a memory to a file. Syntax: $writememb
("filename",memory [,start_address]
[,end_address]);

Code example: $writememb ("testfile.txt",mem,0,255);

$writememh

Writes hexadecimal data in a memory to a file. Syntax:
$writememh ("filename",memory [,start_address]
[,end_address]);

System Tasks for Time Scale

$printtimescale

Displays the time unit and time precision from the last
‘timescale compiler directive that VCS has read before it reads
the module definition containing this system task. See IEEE std
1364-2001 pages 297-298.

$timeformat

Specifies how the %t format specification reports time
information. See IEEE std 1364-2001 pages 298-301.

D-33

Compiler Directives and System Tasks

System Tasks for Simulation Control

$stop

Halts simulation. See IEEE std 1364-2001 pages 301-302.

$finish

Ends simulation. See IEEE std 1364-2001 page 301.

System Tasks for Timing Checks

$disable_warnings

Disables the display of timing violations and toggling of notifier
registers. Syntax:
$disable_warnings[(module_instance,...)];

An alternative syntax is:

$disable_warnings("timing"[,module_instance,...]);

If you specify a module instance, this system task disables timing
violations for the specified instance and all instances
hierarchically under this instance. If you omit module instances,
this system task disables timing violations throughout the design.
Code example: $disable_warnings(seqdev1);

$enable_warnings

Re-enables the display of timing violations after the execution of
the $disable_warnings system task. This system task does
not enable timing violations during simulation when you used the
+no_tchk_msg compile-time option to disable them. Syntax:
$enable_warnings[(module_instance,...)];

D-34

Compiler Directives and System Tasks

An alternative syntax is:

$enable_warnings("timing"[,module_instance,...]);

If you specify a module instance, this system task enables timing
violations for the specified instance and all instances
hierarchically under this instance. If you omit module instances,
this system task enables timing violations throughout the design.

Timing Checks for Clock and Control Signals

$hold

Reports a timing violation when a data event happens too soon
after a reference event. See IEEE Std 1364-2001 pages 241-242.

$nochange

Reports a timing violation if the data event occurs during the
specified level of the control signal (the reference event). See
IEEE Std 1364-2001 pages 256-257.

$period

Reports a timing violation when an edge triggered event happens
too soon after the previous matching edge triggered an event on
a signal. See IEEE Std 1364-2001 pages 255-256.

$recovery

Reports a timing violation when a data event happens too soon
after a reference event. Unlike the $setup timing check, the
reference event must include the posedge or negedge keyword.
Typically the $recovery timing check has a control signal, such
as clear, as the reference event, and the clock signal as the data
event. See IEEE 1364-2001 pages 245-246.

D-35

Compiler Directives and System Tasks

$recrem

Reports a timing violation if a data event occurs less than a
specified time limit before or after a reference event. This timing
check is identical to the $setuphold timing check except that
typically the reference event is on a control signal and the data
event is on a clock signal. You can specify negative values for the
recovery and removal limits. The syntax is as follows:
$recrem(reference_event, data_event,
recovery_limit, removal_limit, notifier,
timestamp_cond, timecheck_cond, delay_reference,
delay_data);

See IEEE Std 1364-2001 pages 246-248.

$removal

Reports a timing violation if the reference event, typically an
asynchronous control signal, happens too soon after the data
event, the clock signal. See IEEE Std 1364-2001 pages 244-245.

$setup

Reports a timing violation when the data event happens before
and too close to the reference event. See IEEE Std 1364-2001
page 241. This timing check also has an extended syntax like the
$recrem timing check. This extended syntax is not described in
IEEE Std 1364-2001.

$setuphold

D-36

Compiler Directives and System Tasks

Combines the $setup and $hold system tasks. See IEEE Std
1364-1995 page 189 for the official description. There is also an
extended syntax that is in IEEE Std 1364-2001 pages 242-244.
This extended syntax is as follows:
$setuphold(reference_event, data_event,
setup_limit, hold_limit, notifier,
timestamp_cond, timecheck_cond, delay_reference,
delay_data);

$skew

Reports a timing violation when a reference event happens too
long after a data event. See IEEE std 1364-2001 pages 249-250.

$width

Reports a timing violation when a pulse is narrower than the
specified limit. See IEEE std 1364-2001 pages 254-255. VCS
ignores the threshold argument.

System Tasks for PLA Modeling

$async$and$array to $sync$nor$plane

See IEEE Std 1364-2001 page 302.

System Tasks for Stochastic Analysis

$q_add

Places an entry on a queue in stochastic analysis. See IEEE Std
1364-2001 page 307.

D-37

Compiler Directives and System Tasks

$q_exam

Provides statistical information about activity at the queue. See
IEEE Std 1364-2001 page 307.

$q_full

Returns 0 if the queue is not full, returns a 1 if the queue is full.
See IEEE Std 1364-2001 page 307.

$q_initialize

Creates a new queue. See IEEE Std 1364-2001 page 306-307.

$q_remove

Receives an entry from a queue. See IEEE Std 1364-2001 page
307.

System Tasks for Simulation Time

$realtime

Returns a real number time. See IEEE Std 1364-2001 pages 309-
310.

$stime

Returns an unsigned integer that is a 32-bit time. See IEEE Std
1364-2001 page 309.

$time

Returns an integer that is a 64-bit time. See IEEE Std 1364-2001
pages 308-309.

D-38

Compiler Directives and System Tasks

System Tasks for Probabilistic Distribution

$dist_exponential

Returns random numbers where the distribution function is
exponential. See IEEE std 1364-2001 page 312.

$dist_normal

Returns random numbers with a specified mean and standard
deviation. See IEEE Std 1364-2001 page 312.

$dist_poisson

Returns random numbers with a specified mean. See IEEE Std
1364-2001 page 312.

$dist_uniform

Returns random numbers uniformly distributed between
parameters. See IEEE Std 1364-2001 page 312.

$random

Provides a random number. See IEEE Std 1364-2001 page 312.
Using this system function in certain kinds of statements might
cause simulation failure.

$get_initial_random_seed

Returns the integer number used as the seed for a simulation run,
if the seed was set by +ntb_random_seed=value or by
+ntb_random_seed_automatic, or returns the default
random seed value if the seed was not set using one of those two
options. The default random seed value is 1.

D-39

Compiler Directives and System Tasks

System Tasks for Resetting VCS

$reset

Resets the simulation time to 0. See IEEE Std 1364-2001 pages
741-742.

$reset_count

Keeps track of the number of times VCS executes the $reset
system task in a simulation session. See IEEE std 1364-2001
pages 741-742.

$reset_value

System function that you can use to pass a value from, before or
after VCS executes the $reset system task, that is, you can
enter a reset_value integer argument to the $reset system
task, and after VCS resets the simulation, the $reset_value
system function returns this integer argument. See IEEE std 1364-
2001 pages 741-742.

General System Tasks and Functions

Checks for a Plusarg

$test$plusargs

Checks for the existence of a given plusarg on the runtime
executable command line. Syntax:
$test$plusargs("plusarg_without_the_+");.

D-40

Compiler Directives and System Tasks

SDF Files

$sdf_annotate

Tells VCS to back-annotate delay values from an SDF file to your
Verilog design.

Counting the Drivers on a Net

$countdrivers

Counts the number of drivers on a net. See IEEE std 1364-2001
page 738-739.

Depositing Values

$deposit

Deposits a value on a net, or variable, or cross-module references
(XMRs). This deposited value overrides the value from any other
driver of the net, or variable, or XMRs. The value propagates to
all loads of the net, or variable, or XMRs. A subsequent simulation
event can override the deposited value. You cannot use this
system task to deposit values to part-selects.

Syntax: $deposit(net_or_variable_or_xmr, value);

The deposited value can be the value of another net, or variable,
or XMRs. VCS also supports $deposit on array bit-select with
non-constant index in behavioral context only.

Fast Processing Stimulus Patterns

$getpattern

D-41

Compiler Directives and System Tasks

Provides for fast processing of stimulus patterns. See IEEE std
1364-2001 page 739.

Saving and Restarting The Simulation State

$save

Saves the current simulation state in a file. See IEEE std 1364-
2001 pages 742-743.

$restart

Restores the simulation to the state that you saved in the check
file with the $save system task. See IEEE std 1364-2001 pages
742-743.

Checking for X and Z Values in Conditional Expressions

$xzcheckon

Displays a warning message every time VCS evaluates a
conditional expression to have an X or Z value.

Syntax: $xzcheckon(level_number,hierarchical_name)

level_number (Optional)

Specifies the number of hierarchy scope levels from the
specified module instance to check for X and Z values. If the
number is 0 or not specified, implies to check all scope
instances to the end of the hierarchy.

hierarchical_name (Optional)

Hierarchical name of the module instance, that is, the top-level
instance of the subhierarchy for which you want to enable
checking.

D-42

Compiler Directives and System Tasks

$xzcheckoff

Suppress the warning message every time VCS evaluates a
conditional expression to have an X or Z value.

Syntax:
$xzcheckoff(level_number,hierarchical_name)

level_number (Optional)

Specifies the number of hierarchy scope levels from the
specified module instance, for which X and Z value check is
disabled. If the number is 0 or not specified, implies to disable
the check on all scope instances to the end of the hierarchy.

hierarchical_name (Optional)

Hierarchical name of the module instance, that is, the top-level
instance of the subhierarchy for which you want to disable
checking.

Calculating Bus Widths

$clog2

Use this system function to calculate bus widths from, for example,
parameters. The following illustrates its use:

integer result;
result = $clog2(n);

D-43

Compiler Directives and System Tasks

Note:
If the argument has x or z values then that bit will be considered
as 1or 0 respectively by VCS. The argument could be a vector
with a few bits having x or z values.

For more information on this system function, see section named
“Integer math functions” in the IEEE Std-1800-2009 SystemVerilog
LRM.

Displaying the Method Stack

$stack();

Displays stack information of lines in your code that trigger the
execution of an entry of this system task. Multiple stacks are
displayed for multiple entries of this system task. You can use this
system task for debugging and back tracing.

You can enter this system task in modules and SystemVerilog
programs, classes, packages, and interfaces; in user defined
tasks and functions, and in initial, always, and final blocks
(Synopsys recommends naming begin-end blocks in these initial,
always, and final blocks).

The following code example illustrates an entry of this system task
in a file named test.sv:

program test;

 class C;
 static function f3();
 $stack(); // line 5
 endfunction
 endclass

 function f1();
 f2(); // line 10

D-44

Compiler Directives and System Tasks

 endfunction

 function f2();
 C::f3(); // line 14
 endfunction

 task t();
 f1(); // line 18
 endtask

 task t1();
 t(); // line 22
 endtask

 initial begin :B0
 t1(); // line 26
 end

endprogram

module top;
 test p();
endmodule

At runtime VCS displays the following method stack information:

#0 in \C::f3 at test.sv:5
#1 in f2 at test.sv:14
#2 in f1 at test.sv:10
#3 in t at test.sv:18
#4 in t1 at test.sv:22
#5 in B0 at test.sv:26
#6 in top.p

In this method stack:

#0 is always the line containing the $stack system task. In this
example it is in class C, user defined function named f3, at line
number 5 is test.sv.

D-45

Compiler Directives and System Tasks

#1 is a call of function f3 in user defined function f2 at line
number 14. VCSexecuting f2 causes VCSto execute f3.

#2 is a call of function f2 in user defined function f1 at line
number 10. VCSexecuting f1 causes VCSto execute f2.

#3 is a call of function f1 in user defined task t at line number
18. VCSexecuting t causes VCSto execute f1.

#4 is a task enabling statement for task t in user defined task
t1 at line number 22. VCSexecuting t1 causes VCSto execute t.

#5 is a task enabling statement for t1 in the begin-end block
named B0. VCSexecuting B0 causes VCSto execute t1.

#6 is the instance of program test. VCSdoes not include the
line number because this instantiation is in the top level module.

If debug mode is enabled, you can call the $stack system task
from DVE or UCLI. For example:

ucli% step
in program p 3 1 4
mda_stack.v, 17 : $stack();

ucli% stack
0 : -line 14 -file mda_stack.v -scope
{test.P1.unnamed$$_4}
1 : -line 14 -file mda_stack.v -scope
{test.P1.unnamed$$_4.unnamed$$_3}
2 : -line 17 -file mda_stack.v -scope
{test.P1.unnamed$$_4.unnamed$$_3.unnamed$$_1}

If the $stack system task is called inside a function that is
exported to DPI, the name “DPI function” is displayed. The line
number and details of the C code are not displayed. For example:

D-46

Compiler Directives and System Tasks

#0 in int_from_sv at dpi_test.v:14
#1 in DPI function
#2 in int_test

In mixed-language simulations, the $stack() system task call
displays only information about the hierarchy. For example:

#0 in \top.r1.U1.d1.XOR2_INST at xor.v:6
#0 in top.xor_i at xor.v:6
#0 in \top.r1.U1 at t_ff_using_xor.v:11

In simulations with System-C at the top level, the $stack()
system task call displays hierarchical information similar to the
following:

#0 in \c::f at adder.v:5
#1 in \c::t at adder.v:9
#2 in unnamed$$_1 at adder.v:18
#3 in sYsTeMcToP.sc_top.adder_inst.p1
#0 in \c::f at adder.v:5
#1 in unnamed$$_1 at adder.v:19
#2 in sYsTeMcToP.sc_top.adder_inst.p1

In the OpenVera-SystemVerilog interoperability flow, the
$stack() system task call displays both SystemVerilog and
OpenVera information similar to the following:

#0 in f1 at fn_rt_sv.vr:14
#1 in \C::vera_method2 at fn_rt_sv.vr:7
#2 in unnamed$$_2 at fn_rt_sv.v:36
#3 in p

$psstack();

Returns a SystemVerilog string. The string provides hierarchical
information of the scopes from where a system function is being
called.

D-47

Compiler Directives and System Tasks

For example:

program test;

 function f();
 $display("psstack = %s",$psstack());
 endfunction

 task t2();
 f();
 endtask

 initial begin:psstack
 t2();
 end

endprogram

At runtime VCS displays the following hierarchial information:

psstack = test.psstack.t2.f

IEEE Standard System Tasks Not Yet Implemented

The following Verilog system tasks are included in the IEEE Std
1364-2001 standards, but are not yet implemented in VCS:

• $dist_chi_square

• $dist_erlang

• $dist_t

D-48

Compiler Directives and System Tasks

E-1

PLI Access Routines

E
PLI Access Routines B

VCS includes a number of access routines. This appendix describes
these access routines in the following sections:

• “Access Routines for Reading and Writing to Memories”

• “Access Routines for Multidimensional Arrays”

• “Access Routines for Probabilistic Distribution”

• “Access Routines for Returning a Pointer to a Parameter Value”

• “Access Routines for Extended VCD Files”

• “Access Routines for Line Callbacks”

• “Access Routines for Source Protection”

• “Access Routine for Signal in a Generate Block”

• “VCS API Routines”

E-2

PLI Access Routines

Access Routines for Reading and Writing to Memories

VCS includes a number of access routines for reading and writing to
a memory.

These access routines are as follows:

acc_setmem_int

Writes an integer value to specific bits in a Verilog memory word.
See “acc_setmem_int” for details.

acc_getmem_int

Reads an integer value from specific bits in a Verilog memory
word. See “acc_getmem_int” for details.

acc_clearmem_int

Clears a memory, that is, writes zeros to all bits. See
“acc_clearmem_int” for details.

acc_setmem_hexstr

Writes a hexadecimal string value to specific bits in a Verilog
memory word. See “acc_setmem_hexstr” for details.

acc_getmem_hexstr

Reads a hexadecimal string value from specific bits in a Verilog
memory word. See “acc_getmem_hexstr” for details.

acc_setmem_bitstr

Writes a string of binary bits (including x and z) to a Verilog memory
word. See “acc_setmem_bitstr” for details.

E-3

PLI Access Routines

acc_getmem_bitstr

Reads a bit string from specific bits in a Verilog memory word.
See “acc_getmem_bitstr” for details.

acc_handle_mem_by_fullname

Returns the handle used by acc_readmem. See
“acc_handle_mem_by_fullname” for details.

acc_readmem

Reads a data file and writes the contents to a memory. See
“acc_readmem” for details.

acc_getmem_range

Returns the upper and lower limits of a memory. See
“acc_getmem_range” for details.

acc_getmem_size

Returns the number of elements (or words or addresses) in a
memory. See “acc_getmem_size” for details.

acc_getmem_word_int

Returns the integer of a memory element. See
“acc_getmem_word_int” for details.

acc_getmem_word_range

Returns the least significant bit of a memory element and the
length of the element. See “acc_getmem_word_range” for
details.

E-4

PLI Access Routines

acc_setmem_int

You use the acc_setmem_int access routine to write an integer
value to specific bits in a Verilog memory word.

Table 0-1.

acc_setmem_int

Synopsis: Writes an integer value to specific bits in a memory word.

Syntax: acc_setmem_int (memhand, value, row, start, length)

Type Description

Returns: void

Type Name Description

Arguments: handle memhand Handle to memory

int value The integer value written in binary format to
the bits in the word.

int row The memory array index.

int start Bit number of the leftmost bit in the memory
word where this routine starts writing the
value.

int length Starting with the start bit, specifies the total
number of bits this routine writes to.

Related
routines:

acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_clearmem_int
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

E-5

PLI Access Routines

acc_getmem_int

You use the acc_getmem_int access routine to return an integer
value for certain bits in a Verilog memory word.

Table 0-1.

acc_getmem_int

Synopsis: Returns an integer value for specific bits in a memory word.

Syntax: acc_getmem_int (memhand, row, start, length)

Type Description

Returns: int Integer value of the bits in the memory word.

Type Name Description

Arguments: handle memhand Handle to memory

int row The memory array index

int start Bit number of the leftmost bit in the memory
word where this routine starts reading the
value.

int length Specifies the total number of bits this routine
reads starting with the start bit.

Related
routines:

acc_setmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_clearmem_int
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

E-6

PLI Access Routines

acc_clearmem_int

You use the acc_clearmem_int access routine to write zeros to all
bits in a memory.

Table 0-1.

acc_clearmem_int

Synopsis: Clears a memory word.

Syntax: acc_clearmem_int (memhand)

Type Description

Returns: void

Type Name Description

Arguments: handle memhand Handle to memory

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

Examples

The following code examples illustrate how to use
acc_getmem_int, acc_setmem_int, and acc_clearmem_int:

• Example E-1 shows C code that includes a number of functions
to be associated with user-defined system tasks.

E-7

PLI Access Routines

• Example E-2 shows the PLI table for associating these functions
with these system tasks.

• Example E-3 shows the Verilog source code containing these
system tasks.

Example E-1 C Source Code for Functions Calling acc_getmem_int,
acc_setmem_int, and acc_clearmem_int

#include <stdio.h>
#include "acc_user.h"
#include "vcs_acc_user.h"

void error_handle(char *msg)
{
 printf("%s",msg);
 fflush(stdout);
 exit(1);
}

void set_mem()
{
 handle memhand = NULL;
 int value = -1;
 int row = -1;
 int start_bit = -1;
 int len = -1;

 memhand = acc_handle_tfarg(1);
 if(!memhand) error_handle("NULL MEM HANDLE\n");
 value = acc_fetch_tfarg_int(2);
 row = acc_fetch_tfarg_int(3);
 start_bit = acc_fetch_tfarg_int(4);
 len = acc_fetch_tfarg_int(5);

 acc_setmem_int(memhand, value, row, start_bit, len);
}

void get_mem()
{
 handle memhand = NULL;

E-8

PLI Access Routines

 int row = -1;
 int start_bit = -1;
 int len = -1;
 int value = -1;

 memhand = acc_handle_tfarg(1);
 if(!memhand) error_handle("NULL MEM HANDLE\n");
 row = acc_fetch_tfarg_int(2);
 start_bit = acc_fetch_tfarg_int(3);
 len = acc_fetch_tfarg_int(4);
 value = acc_getmem_int(memhand, row, start_bit, len);
 printf("getmem: value of word %d is : %d\n",row,value);
 fflush(stdout);
}

void clear_mem()
{
 handle memhand = NULL;

 memhand = acc_handle_tfarg(1);
 if(!memhand) error_handle("NULL MEM HANDLE\n");

 acc_clearmem_int(memhand);
}

The function with the set_mem identifier calls the IEEE standard
acc_fetch_tfarg_int routine to get the handles for arguments
to the user-defined system task that you associate with this function
in the PLI table file. It then assigns the handles to local variables and
calls acc_setmem_int to write to the specified memory in the
specified word, start bit, for the specified length.

Similarly, the function with the get_mem identifier calls the
acc_fetch_tfarg_int routine to get the handles for arguments
to a user-defined system task and assign them to local variables. It
then calls acc_gtetmem_int to read from the specified memory in

E-9

PLI Access Routines

the specified word, starting with the specified start bit for the
specified length. It then displays the word index of the memory and
its value.

The function with the clear_mem identifier likewise calls the
acc_fetch_tfarg_int routine to get a handle and then calls
acc_clear_mem_int with that handle.

Example E-2 PLI Table File

$set_mem call=set_mem acc+=rw:*
$get_mem call=get_mem acc+=r:*
$clear_mem call=clear_mem acc+=rw:*

Here the $set_mem user-defined system task is associated with the
set_mem function in the C code, as are the $get_mem and
$clear_mem with their corresponding get_mem and clear_mem
function identifiers.

Example E-3 Verilog Source Code Using These System Tasks

module top;
// read and print out data of memory
parameter start = 0;
parameter finish =9 ;
parameter bstart =1 ;
parameter bfinish =8 ;
parameter size = finish - start + 1;
reg [bfinish:bstart] mymem[start:finish];
integer i;
integer len;
integer value;

initial
 begin
 // $set_mem(mem_name, value, row, start_bit, len)
 $clear_mem(mymem);

 // set values

E-10

PLI Access Routines

 #1 $set_mem(mymem, 8, 2, 1, 5);
 #1 $set_mem(mymem, 32, 3, 1, 6);
 #1 $set_mem(mymem, 144, 4, 1, 8);
 #1 $set_mem(mymem,29,5,1,8);

 // print values through acc_getmem_int
 #1 len = bfinish - bstart + 1;
 $display();
 $display("Begin Memory Values");
 for (i=start;i<=finish;i=i+1)
 begin
 $get_mem(mymem,i,bstart,len);
 end
 $display("End Memory Values");
 $display();

 // display values
 #1 $display();
 $display("Begin Memory Display");
 for (i=start;i<=finish;i=i+1)
 begin
 $display("mymem word %d is %b",i,mymem[i]);
 end
 $display("End Memory Display");
 $display();
end
endmodule

In this Verilog code, in the initial block, the following events occur:

1. The $clear_mem system task clears the memory.

2. Then the $set_mem system task deposits values in specified
words, and in specified bits in the memory named mymem.

3. In a for loop, the $get_mem system task reads values from the
memory and displays those values.

E-11

PLI Access Routines

acc_setmem_hexstr

You use the acc_setmem_hexstr access routine for writing the
corresponding binary representation of a hexadecimal string to a
Verilog memory.

Table 0-1.

acc_setmem_hexstr

Synopsis: Writes a hexadecimal string to a word in a Verilog memory.

Syntax: acc_setmem_hexstr (memhand, hexStrValue, row, start)

Type Description

Returns: void

Type Name Description

Arguments: handle memhand Handle to memory

char * hexStrValue Hexadecimal string

int row The memory array index

int start Bit number of the leftmost bit in the memory
word where this routine starts writing the
string.

Related
routines:

acc_setmem_int
acc_getmem_int
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_clearmem_int
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

This routine takes a value argument which is a hexadecimal string of
any size and puts its corresponding binary representation into the
memory word indexed by row, starting at the bit number start.

E-12

PLI Access Routines

Examples

The following code examples illustrates the use of
acc_setmem_hexstr:

• Example E-4 shows the C source code for an application that calls
acc_setmem_hexstr.

• Example E-5 shows the contents of a data file read by the
application.

• Example E-6 shows the PLI table file that associates the
user-defined system task in the Verilog code with the application.

• Example E-7 shows the Verilog source that calls the application.

Example E-4 C Source Code For an Application Calling
acc_setmem_hexstr

#include <stdio.h>
#include "acc_user.h"
#include "vcsuser.h"
#define NAME_SIZE 256
#define len 100
pli()
{
 FILE *infile;
 char memory_name[NAME_SIZE] ;
 char value[len];
 handle memory_handle;
 int row,start;

infile = fopen("initfile","r");
while (fscanf(infile,"%s %s %d %d ",
 memory_name,value,&row,&start) != EOF)
 {
 printf("The mem= %s \n value= %s \n row= %d \n start= %d \n ",
 memory_name,value,row,start);
 memory_handle=acc_handle_object(memory_name);
 acc_setmem_hexstr(memory_handle,value,row,start);

E-13

PLI Access Routines

 }
}

Example E-4 shows the source code for a PLI application that:

1. Reads a data file named initfile to find the memory identifiers
of the memories it writes to, the hexadecimal string to be
converted to its bit representation when written to the memory,
the index of the memory where it writes this value, and the starting
bit for writing the binary value.

2. Displays where in the memory it is writing these values

3. Calls the access routine to write the values in the initfile.

Example E-5 The Data File Read by the Application

testbench.U2.cmd_array 5 0 0
testbench.U2.cmd_array a5 1 4
testbench.U2.cmd_array a5a5 2 8
testbench.U1.slave_addr a073741824 0 4
testbench.U1.slave_addr 16f0612735 1 8
testbench.U1.slave_addr 2b52a90e15 2 12

Each line lists a Verilog memory, followed by a hex string, a memory
index, and a start bit.

Example E-6 PLI Table File

$pli call=pli acc=rw:*

Here the $pli system task is associated with the function with the
pli identifier in the C source code.

Example E-7 Verilog Source Calling the PLI Application

module testbench;
 monitor U1 ();
 master U2 ();
 initial begin

E-14

PLI Access Routines

 $monitor($stime,,,
 "sladd[0]=%h sladd[1]=%h sladd[2]=%h load=%h
 cmd[0]=%h cmd[1]=%h cmd[2]=%h",
 testbench.U1.slave_addr[0],
 testbench.U1.slave_addr[1],
 testbench.U1.slave_addr[2],
 testbench.U1.load,
 testbench.U2.cmd_array[0],
 testbench.U2.cmd_array[1],
 testbench.U2.cmd_array[2]);
 #10;
 $pli();
 end
endmodule

module master;
 reg[31:0] cmd_array [0:2];
 integer i;
initial begin //setup some default values
 for (i=0; i<3; i=i+1)
 cmd_array[i] = 32’h0000_0000;
end
endmodule

module monitor;
 reg load;
 reg[63:0] slave_addr [0:2];
 integer i;
initial begin //setup some default values
 for (i=0; i<3; i=i+1)
 slave_addr[i] = 64’h0000_0000_0000_0000;
 load = 1’b0;
end
endmodule

In Example E-7 module testbench calls the application using the
$pli user-defined system task for the application. The display string
in the $monitor system task is on two lines to enhance readability.

E-15

PLI Access Routines

acc_getmem_hexstr

You use the acc_getmem_hexstr access routine to get a
hexadecimal string from a Verilog memory.

Table 0-1.

acc_getmem_hexstr

Synopsis: Returns a hexadecimal string from a Verilog memory.

Syntax: acc_getmem_hexstr (memhand,hexStrValue,row,start,len)

Type Description

Returns: void

Type Name Description

Arguments: handle memhand Handle to memory

char * hexStrValue Pointer to a character array into which the
string is written

int row The memory array index

int start Bit number of the leftmost bit in the memory
word where this routine starts reading the
string.

int length Specifies the total number of bits this routine
reads starting with the start bit.

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_clearmem_int
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

E-16

PLI Access Routines

acc_setmem_bitstr

You use the acc_setmem_bitstr access routine for writing a
string of binary bits (including x and z) to a Verilog memory.

Table 0-1.

acc_setmem_bitstr

Synopsis: Writes a string of binary bits to a word in a Verilog memory.

Syntax: acc_setmem_bitstr (memhand, bitStrValue, row, start)

Type Description

Returns: void

Type Name Description

Arguments: handle memhand Handle to memory

char * bitStrValue Bit string

int row The memory array index

int start Bit number of the leftmost bit in the memory
word where this routine starts writing the
string.

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_getmem_bitstr
acc_clearmem_int
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

This routine takes a value argument that is a bit string of any size,
which can include the x and z values, and puts its corresponding
binary representation into the memory word indexed by row, starting
at the bit number start.

E-17

PLI Access Routines

acc_getmem_bitstr

You use the acc_getmem_bitstr access routine to get a bit string,
including x and z values, from a Verilog memory.

Table 0-1.

acc_getmem_bitstr

Synopsis: Returns a hexadecimal string from a Verilog memory.

Syntax: acc_getmem_bitstr (memhand,bitStrValue,row,start,len)

Type Description

Returns: void

Type Name Description

Arguments: handle memhand Handle to memory

char * hexStrValue Pointer to a character array into which the
string is written

int row The memory array index

int start Bit number of the leftmost bit in the memory
word where this routine starts reading the
string.

int length Specifies the total number of bits this routine
reads starting with the start bit.

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_clearmem_int
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

E-18

PLI Access Routines

acc_handle_mem_by_fullname

Returns a handle to a memory that can only be used as a parameter
to acc_readmem.

Table 0-1.

acc_handle_mem_by_fullaname

Synopsis: Returns a handle to be used as a parameter to acc_readmem only

Syntax: acc_handle_mem_by_fullname (fullMemInstName)

Type Description

Returns: handle Handle to the instance

Type Name Description

Arguments: char* fullMemInstName Hierarchical name for a memory

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

acc_readmem

You use the acc_readmem access routine to read a data file into a
memory. It is similar to the $readmemb or $readmemh system tasks.

E-19

PLI Access Routines

The memhandle argument must be the handle returned by
acc_handle_mem_by_fullname.

Table 0-1.

acc_readmem

Synopsis: Reads a data file into a memory

Syntax: acc_readmem (memhandle, data_file, format)

Type Description

Returns: void

Type Name Description

Arguments: handle memhandle Handle returned by
acc_handle_mem_fullname

const char* data_file Data file this routine reads

int format Specify a character that is promoted to
int. ’h’ for hexadecimal data, ’b’ for binary
data.

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

Examples

The following code examples illustrate the use of acc_readmem and
acc_handle_mem_by_fullname.

E-20

PLI Access Routines

Example E-8 C Source Code Calling Tacc_readmem and
acc_handle_mem_by_fullname

#include "acc_user.h"
#include "vcs_acc_user.h"
#include "vcsuser.h"

int test_acc_readmem(void)
{
 const char *memName = tf_getcstringp(1);
 const char *memFile = tf_getcstringp(2);
 handle mem = acc_handle_mem_by_fullname(memName);

 if (mem) {
 io_printf("test_acc_readmem: %s handle found\n",
memName);
 acc_readmem(mem, memFile, 'h');
 }
 else {
 io_printf("test_acc_readmem: %s handle NOT found\n",
 memName);
 }
}

Example E-9 The PLI Table File

$test_acc_readmem call=test_acc_readmem

Example E-10 The Verilog Source Code

module top;
reg [7:0] CORE[7:0];
initial $acc_readmem(CORE, "CORE");
initial $test_acc_readmem("top.CORE", "test_mem_file");
endmodule

E-21

PLI Access Routines

acc_getmem_range

You use the acc_getmem_range access routine to access the
upper and lower limits of a memory.

Table 0-1.

acc_getmem_range

Synopsis: Returns the upper and lower limits of a memory

Syntax: acc_getmem_range (memhandle, p_left_index,p_right_index)

Type Description

Returns: void

Type Name Description

Arguments: handle memhandle Handle to a memory

int* p_left_index Pointer to int

int p_right_index Pointer to int

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

E-22

PLI Access Routines

acc_getmem_size

You use the acc_getmem_size access routine to access the
number of elements in a memory.

Table 0-1.

acc_getmem_size

Synopsis: Returns the number of elements in a memory

Syntax: acc_getmem_size (memhandle)

Type Description

Returns: int The number of elements in a memory

Type Name Description

Arguments: handle memhandle Handle to a memory

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_word_int
acc_getmem_word_range

E-23

PLI Access Routines

acc_getmem_word_int

You use the acc_getmem_word_int access routine to access the
integer value of an element (or word, address, or row).

Table 0-1.

acc_getmem_word_int

Synopsis: Returns the integer value of an element

Syntax: acc_getmem_word_int (memhandle,row)

Type Description

Returns: int The integer value of a row

Type Name Description

Arguments: handle memhandle Handle to a memory

int row The element (word address, or row)
in the memory

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_range

E-24

PLI Access Routines

acc_getmem_word_range

You use the acc_getmem_word_range access routine to access
the least significant bit of an element (or word, address, or row) and
the length of the element.

Table 0-1.

acc_getmem_word_range

Synopsis: Returns the least significant bit of an element and the length of the element

Syntax: acc_getmem_word_range (memhandle,lsb,len)

Type Description

Returns: void

Type Name Description

Arguments: handle memhandle Handle to a memory

int* lsb Pointer to the least significant bit

int* len Pointer to the length of the element

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int

Access Routines for Multidimensional Arrays

The type for multi-dimensional arrays is defined in the
vcs_acc_user.h file. Its name is accMda.

E-25

PLI Access Routines

You also have the following tf and access routines for accessing data
in a multi-dimensional array:

tf_mdanodeinfo and tf_imdanodeinfo

Returns access parameter node information from a multi-
dimensional array. See “tf_mdanodeinfo and tf_imdanodeinfo” for
details.

acc_get_mda_range

Returns all the ranges of the multi-dimensional array. See
“acc_get_mda_range” for details.

acc_get_mda_word_range

Returns the range of an element in a multi-dimensional array. See
“acc_get_mda_word_range()” for details.

acc_getmda_bitstr

Reads a bit string, including X and Z values, from an element in
a multi-dimensional array. See “acc_getmda_bitstr()” for details.

acc_setmda_bitstr

Writes a bit string, including X and Z values, from an element in
a multi-dimensional array. See “acc_setmda_bitstr()” for details.

E-26

PLI Access Routines

tf_mdanodeinfo and tf_imdanodeinfo

You use these routines to access parameter node information from
a multi-dimensional array.

Table 0-1.

tf_mdanodeinfo(), tf_imdanodeinfo()

Synopsis: Returns access parameter node information from a multi-dimensional array.

Syntax: tf_mdanodeinfo(nparam, mdanodeinfo_p)
tf_imdanodeinfo(nparam, mdanodeinfo_p, instance_p)

Type Description

Returns: mdanodeinfo_p * The value of the second argument if successful; 0 if an
error occurs

Type Name Description

Arguments: int nparam Index number of the multi-
dimensional array parameter

struct
t_tfmdanodeinfo *

mdanodeinfo_p Pointer to a variable declared as
the t_tfmdanodeinfo
structure type

char * instance_p Pointer to a specific instance of a
multi-dimensional array

Related
routines:

acc_get_mda_range
acc_get_mda_word_range
acc_getmda_bitstr
acc_setmda_bitstr

Structure t_tfmdanodeinfo is defined in the vcsuser.h file as
follows:

typedef struct t_tfmdanodeinfo
{
 short node_type;
 short node_fulltype;
 char *memoryval_p;
 char *node_symbol;
 int node_ngroups;

E-27

PLI Access Routines

 int node_vec_size;
 int node_sign;
 int node_ms_index;
 int node_ls_index;
 int node_mem_size;
 int *node_lhs_element;
 int *node_rhs_element;
 int node_dimension;
 int *node_handle;
 int node_vec_type;
} s_tfmdanodeinfo, *p_tfmdanodeinfo;

acc_get_mda_range

The acc_get_mda_range routine returns the ranges of a multi-
dimensional array.

Table 0-1.

acc_get_mda_range()

Synopsis: Gets all the ranges of the multi-dimensional array.

Syntax: acc_get_mda_range(mdaHandle, size, msb, lsb, dim, plndx,
prindex)

Type Description

Returns: void

Type Name Description

Arguments: handle mdaHandle Handle to the multi-dimensional
array

int * size Pointer to the size of the multi-
dimensional array

int * msb Pointer to the most significant bit
of a range

E-28

PLI Access Routines

If you have a multi-dimensional array such as the following:

reg [7:0] my_mem[255:0][255:0][31:0];

And you call a routine, such as the following:

handle hN = acc_handle_by_name(my_mem);
acc_get_mda_range(hN, &size, &msb, &lsb, &dim, &plndx,
&prndx);

It yields the following result:

size = 8;
msb = 7, lsb = 0;
dim = 4;
plndx[] = {255, 255, 31}
prndx[] = {0, 0, 0}

int * lsb Pointer to the least significant bit
of a range

int * dim Pointer to the number of
dimensions in the multi-
dimensional array

int * plndx Pointer to the left index of a range

int * prndx Pointer to the right index of a range

Related
routines:

tf_mdanodeinfo and tf_imdanodeinfo
acc_get_mda_word_range
acc_getmda_bitstr
acc_setmda_bitstr

Table 0-1.

E-29

PLI Access Routines

acc_get_mda_word_range()

The acc_get_mda_word_range routine returns the range of an
element in a multi-dimensional array.

Table 0-1.

acc_get_mda_word_range()

Synopsis: Gets the range of an element in a multi-dimensional array.

Syntax: acc_get_mda_range(mdaHandle, msb, lsb)

Type Description

Returns: void

Type Name Description

Arguments: handle mdaHandle Handle to the multi-dimensional
array

int * msb Pointer to the most significant bit
of a range

int * lsb Pointer to the least significant bit of
a range

Related
routines:

tf_mdanodeinfo and tf_imdanodeinfo
acc_get_mda_range
acc_getmda_bitstr
acc_setmda_bitstr

If you have a multi-dimensional array such as the following:

reg [7:0] my_mem[255:0][255:0][31:0];

And you call a routine, such as the following:

handle hN = acc_handle_by_name(my_mem);
acc_get_mda_word_range(hN, &left, &right);

It yields the following result:

E-30

PLI Access Routines

left = 7;
right = 0;

acc_getmda_bitstr()

You use the acc_getmda_bitstr access routine to read a bit
string, including x and z values, from a multi-dimensional array.

Table 0-1.

acc_getmda_bitstr()

Synopsis: Gets a bit string from a multi-dimensional array.

Syntax: acc_getmda_bitstr(mdaHandle, bitStr, dim, start, len)

Type Description

Returns: void

Type Name Description

Arguments: handle mdaHandle Handle to the multi-dimensional
array

char * bitStr Pointer to the bit string

int * dim Pointer to the dimension in the
multi-dimensional array

int * start Pointer to the start element in the
dimension

int * len Pointer to the length of the string

Related
routines:

tf_mdanodeinfo and tf_imdanodeinfo
acc_get_mda_range
acc_get_mda_word_range
acc_setmda_bitstr

If you have a multi-dimensional array such as the following:

reg [7:0] my_mem[255:0][255:0][31:0];

And you call a routine, such as the following:

E-31

PLI Access Routines

dim[]={5, 5, 10};
handle hN = acc_handle_by_name(my_mem);
acc_getmda_bitstr(hN, &bitStr, dim, 3, 3);

It yields the following string from my_mem[5][5][10][3:5].

acc_setmda_bitstr()

You use the acc_setmda_bitstr access routine to write a bit
string, including x and z values, into a multi-dimensional array.

Table 0-1.

acc_setmda_bitstr()

Synopsis: Sets a bit string in a multi-dimensional array.

Syntax: acc_setmda_bitstr(mdaHandle, bitStr, dim, start, len)

Type Description

Returns: void

Type Name Description

Arguments: handle mdaHandle Handle to the multi-dimensional
array

char * bitStr Pointer to the bit string

int * dim Pointer to the dimension in the
multi-dimensional array

int * start Pointer to the start element in the
dimension

int * len Pointer to the length of the string

Related
routines:

tf_mdanodeinfo and tf_imdanodeinfo
acc_get_mda_range
acc_get_mda_word_range
acc_getmda_bitstr

If you have a multi-dimensional array such as the following:

reg [7:0] my_mem[255:0][255:0][31:0];

E-32

PLI Access Routines

And you call a routine, such as the following:

dim[]={5, 5, 10};
bitstr="111";
handle hN = acc_handle_by_name(my_mem);
acc_setmda_bitstr(hN, &bitStr, dim, 3, 3);

It writes 111 in my_mem[5][5][10][3:5].

Access Routines for Probabilistic Distribution

VCS includes the following API routines that duplicate the behavior
of the Verilog system functions for probabilistic distribution:

vcs_random

Returns a random number and takes no argument. See
“vcs_random” for details.

vcs_random_const_seed

Returns a random number and takes an integer argument. See
“vcs_random_const_seed” for details.

vcs_random_seed

Returns a random number and takes a pointer to integer
argument. See “vcs_random_seed” for details.

vcs_dist_uniform

Returns random numbers uniformly distributed between
parameters. See “vcs_dist_uniform” for details.

E-33

PLI Access Routines

vcs_dist_normal

Returns random numbers with a specified mean and standard
deviation. See “vcs_dist_normal” for details.

vcs_dist_exponential

Returns random numbers where the distribution function is
exponential. See “vcs_dist_exponential” for details.

vcs_dist_poisson

Returns random numbers with a specified mean. See
“vcs_random” for details.

These routines are declared in the vcs_acc_user.h file in the
$VCS_HOME/lib directory.

vcs_random

You use this routine to obtain a random number.

Table 0-1.

vcs_random()

Synopsis: Returns a random number.

Syntax: vcs_random()

Type Description

Returns: int Random number

Type Name Description

Arguments: None

Related
routines:

vcs_random_const_seed vcs_random_seed vcs_dist_uniform
vcs_dist_normal vcs_dist_exponential vcs_dist_poisson

E-34

PLI Access Routines

vcs_random_const_seed

You use this routine to return a random number and you supply an
integer constant argument as the seed for the random number.

Table 0-1.

vcs_randon_const_seed

Synopsis: Returns a random number.

Syntax: vcs_random_const_seed(integer)

Type Description

Returns: int Random number

Type Name Description

Arguments: int integer An integer constant.

Related
routines:

vcs_random vcs_random_seed vcs_dist_uniform vcs_dist_normal
vcs_dist_exponential vcs_dist_poisson

vcs_random_seed

You use this routine to return a random number and you supply a
pointer argument

Table 0-1.

vcs_random_seed()

Synopsis: Returns a random number.

Syntax: vcs_random_seed(seed)

Type Description

Returns: int Random number

Type Name Description

Arguments: int * seed Pointer to an int type.

Related
routines:

vcs_random vcs_random_const_seed vcs_dist_uniform vcs_dist_normal
vcs_dist_exponential vcs_dist_poisson

.

E-35

PLI Access Routines

vcs_dist_uniform

You use this routine to return a random number uniformly distributed
between parameters.

Table 0-1.

vcs_dist_uniform

Synopsis: Returns random numbers uniformly distributed between parameters.

Syntax: vcs_dist_uniform(seed, start, end)

Type Description

Returns: int Random number

Type Name Description

Arguments: int * seed Pointer to a seed integer value.

int start Starting parameter for distribution range.

int end Ending parameter for distribution range.

Related
routines:

vcs_random vcs_random_const_seed vcs_random_seed vcs_dist_normal
vcs_dist_exponential vcs_dist_poisson

vcs_dist_normal

You use this routine to return a random number with a specified
mean and standard deviation.

Table 0-1.

vcs_dist_normal

Synopsis: Returns random numbers with a specified mean and standard deviation.

Syntax: vcs_dist_normal(seed, mean, standard_deviation)

Type Description

Returns: int Random number

E-36

PLI Access Routines

vcs_dist_exponential

You use this routine to return a random number where the
distribution function is exponential.

Table 0-1.

vcs_dist_exponential

Synopsis: Returns random numbers where the distribution function is exponential.

Syntax: vcs_dist_exponential(seed, mean)

Type Description

Returns: int Random number

Type Name Description

Arguments: int * seed Pointer to a seed integer value.

int mean An integer that is the average value of the
possible returned random numbers.

Related
routines:

vcs_random vcs_random_const_seed vcs_random_seed vcs_dist_uniform
vcs_dist_normal vcs_dist_poisson

Type Name Description

Arguments: int * seed Pointer to a seed integer value.

int mean An integer that is the average value of the
possible returned random numbers.

int standard_
deviation

An integer that is the standard deviation from
the mean for the normal distribution.

Related
routines:

vcs_random vcs_random_const_seed vcs_random_seed vcs_dist_uniform
vcs_dist_exponential vcs_dist_poisson

Table 0-1.

E-37

PLI Access Routines

vcs_dist_poisson

You use this routine to return a random number with a specified
mean.

Table 0-1.

vcs_dist_poisson

Synopsis: Returns random numbers with a specified mean.

Syntax: vcs_dist_poisson(seed, mean)

Type Description

Returns: int Random number

Type Name Description

Arguments: int * seed Pointer to a seed integer value.

int mean An integer that is the average value of the
possible returned random numbers.

Related
routines:

vcs_random vcs_random_const_seed vcs_random_seed vcs_dist_uniform
vcs_dist_normal vcs_dist_exponential

Access Routines for Returning a Pointer to a Parameter
Value

The 1364 Verilog standard states that for access routine
acc_fetch_paramval, you can cast the return value to a
character pointer using the C language cast
operators(char*)(int). For example:

str_ptr=(char*)(int)acc_fetch_paramval(...);

In 64-bit simulation, you should use long instead of int:

str_ptr=(char*)(long)acc_fetch_paramval(...);

E-38

PLI Access Routines

For your convenience, VCS provides the
acc_fetch_paramval_str routine to directly return a string
pointer.

acc_fetch_paramval_str

Returns the value of a string parameter directly as char*.

Table 0-1.

acc_fetch_paramval_str

Synopsis: Returns the value of a string parameter directly as char*.

Syntax: acc_fetch_paramval_str(param_handle)

Type Description

Returns: char* string pointer

Type Name Description

Arguments: handle param_handle Handle to a module parameter or specparam.

Related
routines:

acc_fetch_paramval

Access Routines for Extended VCD Files

VCS provides the following routines to monitor the port activity of a
device:

acc_lsi_dumpports_all

Adds a checkpoint to the file. See “acc_lsi_dumpports_all” for
details.

acc_lsi_dumpports_call

E-39

PLI Access Routines

Monitors instance ports. See “acc_lsi_dumpports_call” for details.

acc_lsi_dumpports_close

Closes specified VCDE files. See “acc_lsi_dumpports_close” for
details.

acc_lsi_dumpports_flush

Flushes cached data to the VCDE file on disk. See
“acc_lsi_dumpports_flush” for details.

acc_lsi_dumpports_limit

Sets the maximum VCDE file size. See “acc_lsi_dumpports_limit”
for details.

acc_lsi_dumpports_misc

Processes miscellaneous events. See “acc_lsi_dumpports_misc”
for details.

acc_lsi_dumpports_off

Suspends VCDE file dumping. See “acc_lsi_dumpports_off” for
details.

acc_lsi_dumpports_on

Resumes VCDE file dumping. See “acc_lsi_dumpports_on” for
details.

acc_lsi_dumpports_setformat

Specifies the format of the VCDE file. See
“acc_lsi_dumpports_setformat” for details.

acc_lsi_dumpports_vhdl_enable

E-40

PLI Access Routines

Enables or disables the inclusion of VHDL drivers in the
determination of driver values. See
“acc_lsi_dumpports_vhdl_enable” for details.

acc_lsi_dumpports_all

Syntax

int acc_lsi_dumpports_all(char *filename)

Synopsis

Adds a checkpoint to the file.

This is a PLI interface to the $dumpportsall system task. If the
filename argument is NULL, this routine adds a checkpoint to all
open VCDE files.

Returns

The number of VCDE files that matched.

Example E-11 Example of acc_lsi_dumpports_all

#include "acc_user.h"
#include "vcs_acc_user.h"

handle instance = acc_handle_by_name("test_bench.device",
0);
char *outfile = "device.evcd";

/* use IEEE format for this file */
acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_IEEE);
if (acc_lsi_dumpports_call(instance, outfile)) {
/* rut-roh, error ... */
}
acc_lsi_dumpports_limit(100000, outfile);
...

E-41

PLI Access Routines

if (time == yada_yada)
 acc_lsi_dumpports_off(outfile);
 ...

if (time == yada_yada_yada) {
 /* add checkpoint (no need to enable dumping) */
 acc_lsi_dumpports_all(outfile);
 acc_lsi_dumpports_flush(outfile);
}
 ...

if (resume_dumping_now)
 acc_lsi_dumpports_on(outfile);
 ...

Caution

This routine may affect files opened by the $dumpports and
$lsi_dumpports system tasks.

acc_lsi_dumpports_call

Syntax

int acc_lsi_dumpports_call(handle instance, char *filename)

Synopsis

Monitors instance ports.

This is a PLI interface to the $lsi_dumpports task. The default file
format is the original LSI format, but you can select the IEEE format
by calling the routine acc_lsi_dumpports_setformat()
prior to calling this routine. Your tab file will need the following acc
permissions:

acc=cbka,cbk,cbkv:[<instance_name>|*].

E-42

PLI Access Routines

Returns

Zero on success, non-zero otherwise. VCS displays error messages
through tf_error(). A common error is specifying a file name also
being used by a $dumpports or $lsi_dumpports system task.

Example E-12 Example of acc_lsi_dumpports_all

#include "acc_user.h"
#include "vcs_acc_user.h"

handle instance = acc_handle_by_name("test_bench.device",
0);
char *outfile = "device.evcd";

acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_IEEE);

if (acc_lsi_dumpports_call(instance, outfile)) {
 /* error */
}

Caution

Multiple calls to this routine are allowed, but the output file name
must be unique for each call.

For proper dumpports operation, your task’s miscellaneous function
must call acc_lsi_dumpports_misc() with every call it gets.
This ensures that the dumpports routines sees all of the simulation
events needed for proper update and closure of the dumpports
(extended VCD) files. For example, your miscellaneous routine
would do the following:

my_task_misc(int data, int reason)
 {
 acc_lsi_dumpports_misc(data, reason);
 ...
 }

E-43

PLI Access Routines

acc_lsi_dumpports_close

Syntax

int acc_lsi_dumpports_call(handle instance, char *filename)

Synopsis

Closes specified VCDE files.

This routine reads the list of files opened by a call to the system tasks
$dumpports and $lsi_dumpports or the routine
acc_lsi_dumpports_call() and closes all that match either the
specified instance handle or the filename argument.

One or both arguments can be used. If the instance handle is
non-null, this routine closes all files opened for that instance.

Returns

The number of files closed.

Example E-13 Example of acc_lsi_dumpports_close

#include "acc_user.h"
#include "vcs_acc_user.h"

handle instance = acc_handle_by_name("test_bench.device",
0);
char *outfile1 = "device.evcd1";
char *outfile2 = "device.evcd2";

acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_LSI);

acc_lsi_dumpports_call(instance, outfile1);
acc_lsi_dumpports_call(instance, outfile2);
 ...
acc_lsi_dumpports_close(NULL, outfile1);
 ...
acc_lsi_dumpports_close(NULL, outfile2);

E-44

PLI Access Routines

Caution

A call to this function can also close files opened by the
$lsi_dumpports or $dumpports system tasks.

acc_lsi_dumpports_flush

Syntax

int acc_lsi_dumpports_flush(char *filename)

Synopsis

Flushes cached data to the VCDE file on disk.

This is a PLI interface to the $dumpportsflush system task. If the
filename is NULL all open files are flushed.

Returns

The number of files matched.

Example E-14 Example of acc_lsi_dumpports_flush

#include "acc_user.h"
#include "vcs_acc_user.h"

handle instance = acc_handle_by_name("test_bench.device",
0);
char *outfile = "device.evcd";

/* use IEEE format for this file */
acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_IEEE);
if (acc_lsi_dumpports_call(instance, outfile)) {
 /* rut-roh */
}
acc_lsi_dumpports_limit(100000, outfile);
...

E-45

PLI Access Routines

if (time == yada_yada)
 acc_lsi_dumpports_off(outfile);
...

if (time == yada_yada_yada) {
 /* add checkpoint (no need to enable dumping) */
 acc_lsi_dumpports_all(outfile);
 acc_lsi_dumpports_flush(outfile);
}
...

if (resume_dumping_now)
 acc_lsi_dumpports_on(outfile);
...

acc_lsi_dumpports_limit

Syntax

int acc_lsi_dumpports_limit(unsigned long filesize, char
*filename)

Synopsis

Sets the maximum VCDE file size.

This is a PLI interface to the $dumpportslimit task. If the
filename is NULL, the file size is applied to all files.

Returns

The number of files matched.

Example E-15 Example of acc_lsi_dumpports_limit

#include "acc_user.h"
#include "vcs_acc_user.h"

handle instance = acc_handle_by_name("test_bench.device",
0);
char *outfile = "device.evcd";

E-46

PLI Access Routines

/* use IEEE format for this file */
acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_IEEE);
if (acc_lsi_dumpports_call(instance, outfile)) {
 /* rut-roh */
}
acc_lsi_dumpports_limit(100000, outfile);
...

if (time == yada_yada)
 acc_lsi_dumpports_off(outfile);
...

if (time == yada_yada_yada) {
 /* add checkpoint (no need to enable dumping) */
 acc_lsi_dumpports_all(outfile);
 acc_lsi_dumpports_flush(outfile);
}
...

if (resume_dumping_now)
 acc_lsi_dumpports_on(outfile);
...

Caution

This routine may affect files opened by the $dumpports and
$lsi_dumpports system tasks.

acc_lsi_dumpports_misc

Syntax

void acc_lsi_dumpports_misc(int data, int reason)

Synopsis

Processes miscellaneous events.

This is a companion routine for acc_lsi_dumpports_call().

E-47

PLI Access Routines

For proper dumpports operation, your task’s miscellaneous function
must call this routine for each call it gets.

Returns

No return value.

Example E-16 Example or acc_lsi_dumpports_misc

#include "acc_user.h"
#include "vcs_acc_user.h"

void my_task_misc(int data, int reason)
{
 acc_lsi_dumpports_misc(data, reason);
 ...
}

acc_lsi_dumpports_off

Syntax

int acc_lsi_dumpports_off(char *filename)

Synopsis

Suspends VCDE file dumping.

This is a PLI interface to the $dumpportsoff system task. If the
file name is NULL, dumping is suspended on all open files.

Returns

The number of files that matched.

Example E-17 of acc_lsi_dumpports_offExample

#include "acc_user.h"
#include "vcs_acc_user.h"

E-48

PLI Access Routines

handle instance = acc_handle_by_name("test_bench.device",
0);
char *outfile = "device.evcd";

/* use IEEE format for this file */
acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_IEEE);
if (acc_lsi_dumpports_call(instance, outfile)) {
 /* rut-roh */
}
acc_lsi_dumpports_limit(100000, outfile);
...

if (time == yada_yada)
 acc_lsi_dumpports_off(outfile);
...

if (time == yada_yada_yada) {
 /* add checkpoint (no need to enable dumping) */
 acc_lsi_dumpports_all(outfile);
 acc_lsi_dumpports_flush(outfile);
}
...

if (resume_dumping_now)
 acc_lsi_dumpports_on(outfile);
...

Caution

This routine may suspend dumping on files opened by the
$dumpports and $lsi_dumpports system tasks.

acc_lsi_dumpports_on

Syntax

int acc_lsi_dumpports_on(char *filename)

E-49

PLI Access Routines

Synopsis

Resumes VCDE file dumping.

This is a PLI interface to the $dumpportson system task. If the
filename is NULL, dumping is resumed on all open files.

Returns

The number of files that matched.

Example E-18 Example of acc_lsi_dumpports_on

#include "acc_user.h"
#include "vcs_acc_user.h"

handle instance = acc_handle_by_name("test_bench.device",
0);
char *outfile = "device.evcd";

/* use IEEE format for this file */
acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_IEEE);
if (acc_lsi_dumpports_call(instance, outfile)) {
 /* rut-roh */
}
acc_lsi_dumpports_limit(100000, outfile);
...

if (time == yada_yada)
 acc_lsi_dumpports_off(outfile);
...

if (time == yada_yada_yada) {
 /* add checkpoint (no need to enable dumping) */
 acc_lsi_dumpports_all(outfile);
 acc_lsi_dumpports_flush(outfile);
}
...

if (resume_dumping_now)
 acc_lsi_dumpports_on(outfile);

E-50

PLI Access Routines

...

Caution

This routine may resume dumping on files opened by the
$dumpports and $lsi_dumpports system tasks.

acc_lsi_dumpports_setformat

Syntax

int acc_lsi_dumpports_setformat(lsi_dumpports_format_type
format)

Where the valid lsi_dumpports_format_types are as follows:

USE_DUMPPORTS_FORMAT_IEEE

USE_DUMPPORTS_FORMAT_LSI

Synopsis

Specifies the format of the VCDE file.

Use this routine to specify which output format (IEEE or the original
LSI) should be used. This routine must be called before
acc_lsi_dumpports_call().

Returns

Zero if success, non-zero if error. Errors are reported through
tf_error().

Example E-19 Example of acc_lsi_dumpports_setformat

#include "acc_user.h"
#include "vcs_acc_user.h"

E-51

PLI Access Routines

handle instance = acc_handle_by_name("test_bench.device",
0);
char *outfile1 = "device.evcd1";
char *outfile2 = "device.evcd2";

/* use IEEE format for this file */
acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_IEEE);
if (acc_lsi_dumpports_call(instance, outfile1)) {
 /* error */
}

/* use LSI format for this file */
acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_LSI);
if (acc_lsi_dumpports_call(instance, outfile2)) {
 /* error */
}
...
Caution

The runtime plusargs +dumpports+ieee and +dumpports+lsi
have priority over this routine.

The format of files created by calls to the $dumpports and
$lsi_dumpports tasks are not affected by this routine.

acc_lsi_dumpports_vhdl_enable

Syntax

void acc_lsi_dumpports_vhdl_enable(int enable)

The valid enable integer parameters are as follows:

1 enables VHDL drivers

0 disables VHDL drivers

E-52

PLI Access Routines

Synopsis

Use this routine to enable or disable the inclusion of VHDL drivers in
the determination of driver values.

Returns

No return value.

Example E-20 Example of acc_lsi_dumpports_vhdl_enable

#include "acc_user.h"
#include "vcs_acc_user.h"

handle instance = acc_handle_by_name("test_bench.device",
0);
char *outfile1 = "device.evcd1";
char *outfile2 = "device.evcd2";

/* Include VHDL drivers in this report */
acc_lsi_dumpports_vhdl_enable(1);
acc_lsi_dumpports_call(instance, outfile1);

/* Exclude VHDL drivers from this report */
acc_lsi_dumpports_vhdl_enable(0);
acc_lsi_dumpports_call(instance, outfile1);

...

Caution

This routine has precedence over the +dumpports+vhdl+enable
and +dumpports+vhdl+disable runtime options.

Access Routines for Line Callbacks

VCS includes a number of access routines to monitor code
execution. These access routines are as follows:

E-53

PLI Access Routines

acc_mod_lcb_add

Registers a line callback routine with a module so that VCS calls
the routine whenever VCS executes the specified module. See
“acc_mod_lcb_add” for details.

acc_mod_lcb_del

Unregisters a line callback routine previously registered with the
acc_mod_lcb_add() routine. See “acc_mod_lcb_del” for
details.

acc_mod_lcb_enabled

Tests to see if line callbacks is enabled. See
“acc_mod_lcb_enabled” for details.

acc_mod_lcb_fetch

Returns an array of breakable lines. See “acc_mod_lcb_fetch”
for details.

acc_mod_lcb_fetch2

Returns an array of breakable lines. See “acc_mod_lcb_fetch2”
for details.

acc_mod_sfi_fetch

Returns the source file composition for a module. See
“acc_mod_sfi_fetch” for details.

acc_mod_lcb_add

Syntax

void acc_mod_lcb_add(handle handleModule,
 void (*consumer)(), char *user_data)

E-54

PLI Access Routines

Synopsis

Registers a line callback routine with a module so that VCS calls the
routine whenever VCS executes the specified module.

The prototype for the callback routine is:

void consumer(char *filename, int lineno, char *user_data,
 int tag)

The tag field is a unique identifier that you use to distinguish between
multiple ‘include files.

Protected modules cannot be registered for callback. This routine
will just ignore the request.

Returns

No return value.

Example E-21 Example of acc_mod_lcb_add

#include <stdio.h>
#include "acc_user.h"
#include "vcs_acc_user.h"

/* VCS callback rtn */
void line_call_back(filename, lineno, userdata, tag)
char *filename;
int lineno;
char *userdata;
int tag;
{
 handle handle_mod = (handle)userdata;

 io_printf("Tag %2d, file %s, line %2d, module %s\n",
 tag, filename, lineno,
 acc_fetch_fullname(handle_mod));
}

E-55

PLI Access Routines

/* register all modules for line callback (recursive) */
void register_lcb (parent_mod)
handle parent_mod;
{
 handle child = NULL;

 if (! acc_object_of_type(parent_mod, accModule)) return;

 io_printf("Registering %s\n",
 acc_fetch_fullname (parent_mod));

 acc_mod_lcb_add (parent_mod, line_call_back, parent_mod);

 while ((child = acc_next_child (parent_mod, child))) {
 register_lcb (child);
 }
}

acc_mod_lcb_del

Syntax

void acc_mod_lcb_del(handle handleModule,
 void (*consumer)(), char *user_data)

Synopsis

Unregisters a line callback routine previously registered with the
acc_mod_lcb_add() routine.

Returns

No return value.

Example E-22 Example of acc_mod_lcb_del

#include <stdio.h>
#include "acc_user.h"
#include "vcs_acc_user.h"

E-56

PLI Access Routines

/* VCS 4.x callback rtn */
void line_call_back(filename, lineno, userdata, tag)
char *filename;
int lineno;
char *userdata;
int tag;
{
 handle handle_mod = (handle)userdata;

 io_printf("Tag %2d, file %s, line %2d, module %s\n",
 tag, filename, lineno,
 acc_fetch_fullname(handle_mod));
}

/* unregister all line callbacks (recursive) */
void unregister_lcb (parent_mod)
handle parent_mod;
{
 handle child = NULL;

 if (! acc_object_of_type(parent_mod, accModule)) return;

 io_printf("Unregistering %s\n",
 acc_fetch_fullname (parent_mod));

 acc_mod_lcb_del (parent_mod, line_call_back, parent_mod);

 while ((child = acc_next_child (parent_mod, child))) {
 register_lcb (child);
 }
}

Caution

The module handle, consumer routine, and user data arguments
must match those supplied to the acc_mod_lcb_add() routine for
a successful delete.

E-57

PLI Access Routines

For example, using the result of a call such as acc_fetch_name()
as the user data will fail, because that routine returns a different
pointer each time it is called.

acc_mod_lcb_enabled

Syntax

int acc_mod_lcb_enabled()

Synopsis

Test to see if line callbacks is enabled.

By default, the extra code required to support line callbacks is not
added to a simulation executable. You can use this routine to
determine if line callbacks have been enabled.

Returns

Non-zero if line callbacks are enabled; 0 if not enabled.

Example E-23 Example of acc_mod_lcb_enabled

if (! acc_mod_lcb_enable) {
 tf_warning("Line callbacks not enabled. Please recompile
with -line.");
}
else {
 acc_mod_lcb_add (...);
 ...
}

acc_mod_lcb_fetch

Syntax

p_location acc_mod_lcb_fetch(handle handleModule)

E-58

PLI Access Routines

Synopsis

Returns an array of breakable lines.

This routine returns all the lines in a module that you can set
breakpoints on.

Returns

The return value is an array of line number, file name pairs.
Termination of the array is indicated by a NULL file name field. The
calling routine is responsible for freeing the returned array.

typedef struct t_location {
int line_no;
char *filename;

} s_location, *p_location;

Returns NULL if the module has no breakable lines or is source
protected.

Example E-24 Example of acc_mod_lcb_fetch

#include <stdio.h>
#include "acc_user.h"
#include "vcs_acc_user.h"

void ShowLines(handleModule)
handle handleModule;
{
 p_location plocation;

 if ((plocation = acc_mod_lcb_fetch(handleModule)) != NULL)
{
 int i;

 io_printf("%s:\n", acc_fetch_fullname(handleModule));

 for (i = 0; plocation[i].filename; i++) {

E-59

PLI Access Routines

 io_printf(" [%s:%d]\n",
 plocation[i].filename,
 plocation[i].line_no);
 }
 acc_free(plocation);
 }
}

acc_mod_lcb_fetch2

Syntax

p_location2 acc_mod_lcb_fetch2(handle handleModule)

Synopsis

Returns an array of breakable lines.

This routine returns all the lines in a module that you can set
breakpoints on.

The tag field is a unique identifier used to distinguish ‘include
files. For example, in the following Verilog module, the breakable
lines in the first ‘include of the file sequential.code have a
different tag than the breakable lines in the second ‘include. (The
tag numbers will match the vcs_srcfile_info_t-
>SourceFileTag field. See the acc_mod_sfi_fetch()
routine for details.)

module x;
initial begin
 ‘include sequential.code
 ‘include sequential.code
 end
endmodule

E-60

PLI Access Routines

Returns

The return value is an array of location structures. Termination of the
array is indicated by a NULL filename field. The calling routine is
responsible for freeing the returned array.

typedef struct t_location2 {
 int line_no;
 char *filename;
 int tag;
} s_location2, *p_location2;

Returns NULL if the module has no breakable lines or is source
protected.

Example E-25 Example of acc_mod_lcb_fetch2

#include <stdio.h>
#include "acc_user.h"
#include "vcs_acc_user.h"

void ShowLines2(handleModule)
handle handleModule;
{
 p_location2 plocation;

 if ((plocation = acc_mod_lcb_fetch2(handleModule)) !=
NULL) {
 int i;

 io_printf("%s:\n", acc_fetch_fullname(handleModule));

 for (i = 0; plocation[i].filename; i++) {
 io_printf(" file %s, line %d, tag %d\n",
 plocation[i].filename,
 plocation[i].line_no,
 plocation[i].tag);
 }
 acc_free(plocation);
 }
}

E-61

PLI Access Routines

acc_mod_sfi_fetch

Syntax

vcs_srcfile_info_p acc_mod_sfi_fetch(handle handleModule)

Synopsis

Returns the source file composition for a module. This composition
is a file name with line numbers, or, if a module definition is in more
than one file, it is an array of vcs_srcfile_info_s struct entries
specifying all the file names and line numbers for the module
definition.

Returns

The returned array is terminated by a NULL SourceFileName field.
The calling routine is responsible for freeing the returned array.

typedef struct vcs_srcfile_info_t {
 char *SourceFileName;
 int SourceFileTag;
 int StartLineNum;
 int EndLineNum;
} vcs_srcfile_info_s, *vcs_srcfile_info_p;

Returns NULL if the module is source protected.

Example E-26 Example of acc_mod_sfi_fetch

#include <stdio.h>
#include "acc_user.h"
#include "vcs_acc_user.h"

void print_info (mod)
handle mod;
{
 vcs_srcfile_info_p infoa;

E-62

PLI Access Routines

 io_printf("Source Info for Module %s:\n",
 acc_fetch_fullname(mod));

 if ((infoa = acc_mod_sfi_fetch(mod)) != NULL) {
 int i;
 for (i = 0; infoa[i].SourceFileName != NULL; i++) {
 io_printf(" Tag %2d, StartLine %2d, ",
 infoa[i].SourceFileTag,
 infoa[i].StartLineNum);
 io_printf("EndLine %2d, SrcFile %s\n",
 infoa[i].EndLineNum,
 infoa[i].SourceFileName);
 }
 acc_free(infoa);
 }
}

Access Routines for Source Protection

The enclib.o file provides a set of access routines that you can
use to create applications which directly produce encrypted Verilog
source code. Encrypted code can only be decoded by the VCS
compiler. There is no user-accessible decode routine.

Note that both Verilog and SDF code can be protected. VCS knows
how to automatically decrypt both.

VCS provides the following routines to monitor the port activity of a
device:

vcsSpClose

This routine frees the memory allocated by
vcsSpInitialize(). See “vcsSpClose” for details.

vcsSpEncodeOff

E-63

PLI Access Routines

This routine inserts a trailer section containing the
’endprotected compiler directive into the output file. It also
toggles the encryption flag to false so that subsequent calls to
vcsSpWriteString() and vcsSpWriteChar() will NOT
cause their data to be encrypted. See “vcsSpEncodeOff” for
details.

vcsSpEncodeOn

This routine inserts a trailer section containing the ’protected
compiler directive into the output file. It also toggles the encryption
flag to false so that subsequent calls to vcsSpWriteString()
and vcsSpWriteChar() will have their data encrypted. See
“vcsSpEncodeOn” for details.

vcsSpEncoding

This routine gets the current state of encoding. See
“vcsSpEncoding” for details.

vcsSpGetFilePtr

This routine just returns the value previously passed to the
vcsSpSetFilePtr() routine. See “vcsSpGetFilePtr” for
details.

vcsSpInitialize

Allocates a source protect object. See “vcsSpInitialize” for details.

vcsSpOvaDecodeLine

Decrypts one line. See “vcsSpOvaDecodeLine” for details.

vcsSpOvaDisable

E-64

PLI Access Routines

Switches to regular encryption. See “vcsSpOvaDisable” for
details.

vcsSpOvaEnable

Enables the OpenVera assertions (OVA) encryption algorithm.
Tells VCS’s encrypter to use the OVA IP algorithm. See
“vcsSpOvaEnable” for details.

vcsSpSetDisplayMsgFlag

Sets the DisplayMsg flag. See “vcsSpSetDisplayMsgFlag” for
details.

vcsSpSetFilePtr

Specifies the output file stream. See “vcsSpSetFilePtr” for details.

vcsSpSetLibLicenseCode

Sets the OEM license code. See “vcsSpSetLibLicenseCode” for
details.

vcsSpSetPliProtectionFlag

Sets the PLI protection flag. See “vcsSpSetPliProtectionFlag” for
details.

vcsSpWriteChar

Writes one character to the protected file. See “vcsSpWriteChar”
for details.

vcsSpWriteString

Writes a character string to the protected file. See
“vcsSpWriteString” for details.

E-65

PLI Access Routines

Example E-27 outlines the basic use of the source protection
routines.

Example E-27 Using the Source Protection Routines

#include <stdio.h>
#include "enclib.h"
void demo_routine()
{
 char *filename = "protected.vp";
 int write_error = 0;
 vcsSpStateID esp;
 FILE *fp;

 /* Initialization */

 if ((fp = fopen(filename, "w")) == NULL) {
 printf("Error: opening file %s\n", filename);
 exit(1);
 }

 if ((esp = vcsSpInitialize()) == NULL) {
 printf("Error: Initializing src protection
routines.\n");
 printf(" Out Of Memory.\n");
 fclose(fp);
 exit(1);
 }

 vcsSpSetFilePtr(esp, fp); /* tell rtns where to write */

 /* Write output */

 write_error += vcsSpWriteString(esp,
 "This text will *not* be encrypted.\n");

 write_error += vcsSpEncodeOn(esp);
 write_error += vcsSpWriteString(esp,
 "This text *will* be encrypted.");
 write_error += vcsSpWriteChar(esp, ’\n’);

 write_error += vcsSpEncodeOff(esp);

E-66

PLI Access Routines

 write_error += vcsSpWriteString(esp,
 "This text will *not* be encrypted.\n");

 /* Clean up */

 write_error += fclose(fp);
 vcsSpClose(esp);

 if (write_error) {
 printf("Error while writing to ’%s’\n", filename);
 }
}

Caution

If you are encrypting SDF or Verilog code that contains include
directives, you must switch off encryption (vcsSpEncodeOff),
output the include directive and then switch encryption back on. This
ensures that when the parser begins reading the included file, it is in
a known (non-decode) state.

If the file being included has proprietary data it can be encrypted
separately. (Don’t forget to change the ‘include compiler directive
to point to the new encrypted name.)

vcsSpClose

Syntax

void vcsSpClose(vcsSpStateID esp)

Synopsis

This routine frees the memory allocated by vcsSpInitialize().
Call it when source encryption is finished on the specified stream.

E-67

PLI Access Routines

Returns

No return value.

Example E-28 Example of vcsSpClose

vcsSpStateID esp = vcsSpInitialize();
...
vcsSpClose(esp);

vcsSpEncodeOff

Syntax

int vcsSpEncodeOff(vcsSpStateID esp)

Synopsis

This function performs two operations:

1. It inserts a trailer section that contains some closing information
used by the decryption algorithm into the output file. It also inserts
the `endprotected compiler directive in the trailer section.

2. It toggles the encryption flag to false so that subsequent calls to
vcsSpWriteString() and vcsSpWriteChar() will NOT
cause their data to be encrypted.

Returns

Non-zero if there was an error writing to the output file, 0 if
successful.

Example E-29 Example of vcsSpEncodeOff

vcsSpStateID esp = vcsSpInitialize();
FILE *fp = fopen("protected.file", "w");
int write_error = 0; *
if (fp == NULL) exit(1);

E-68

PLI Access Routines

vcsSpSetFilePtr(esp, fp);

if (vcsSpWriteString(esp, "This text will *not* be encrypted.

 ++write_error;

if (vcsSpEncodeOn(esp)) ++write_error;
if (vcsSpWriteString(esp, "This text *will* be encrypted.

 ++write_error;

if (vcsSpEncodeOff(esp)) ++write_error;
if (vcsSpWriteString(esp, "This text will *not* be encrypted.

 ++write_error;

fclose(fp);
vcsSpClose(esp);

Caution

You must call vcsSpInitialize() and vcsSpSetFilePtr()
before calling this routine.

vcsSpEncodeOn

Syntax

int vcsSpEncodeOn(vcsSpStateID esp)
Synopsis

This function performs two operations:

1. It inserts a header section which contains the ‘protected
compiler directive into the output file. It also inserts some initial
header information used by the decryption algorithm.

E-69

PLI Access Routines

2. It toggles the encryption flag to true so that subsequent calls to
vcsSpWriteString() and vcsSpWriteChar() will have
their data encrypted.

Returns

Non-zero if there was an error writing to the output file, 0 if
successful.

Example E-30 Example of vcsSpEncodeOn

vcsSpStateID esp = vcsSpInitialize();
FILE *fp = fopen("protected.file", "w");
int write_error = 0;

if (fp == NULL) exit(1);

vcsSpSetFilePtr(esp, fp);

if (vcsSpWriteString(esp, "This text will *not* be
encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOn(esp)) ++write_error;
if (vcsSpWriteString(esp, "This text *will* be
encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOff(esp)) ++write_error;
if (vcsSpWriteString(esp, "This text will *not* be
encrypted.\n"))
 ++write_error;
fclose(fp);
vcsSpClose(esp);

Caution

You must call vcsSpInitialize() and vcsSpSetFilePtr()
before calling this routine.

E-70

PLI Access Routines

vcsSpEncoding

Syntax

int vcsSpEncoding(vcsSpStateID esp)

Synopsis

Calling vcsSpEncodeOn() and vcsSpEncodeOff() turns
encoding on and off. Use this function to get the current state of
encoding.

Returns

1 for on, 0 for off.

Example E-31 Example of vcsSpEncoding

vcsSpStateID esp = vcsSpInitialize();
FILE *fp = fopen("protected.file", "w");

if (fp == NULL) { printf("ERROR: file ..."); exit(1); }

vcsSpSetFilePtr(esp, fp);
...

if (! vcsSpEncoding(esp))
 vcsSpEncodeOn(esp)
...

if (vcsSpEncoding(esp))
 vcsSpEncodeOff(esp);

fclose(fp);
vcsSpClose(esp);

E-71

PLI Access Routines

vcsSpGetFilePtr

Syntax

FILE *vcsSpGetFilePtr(vcsSpStateID esp)

Synopsis

This routine just returns the value previously passed to the
vcsSpSetFilePtr() routine.

Returns

File pointer or NULL if not set.

Example E-32 Example of vcsSpGetFilePtr

vcsSpStateID esp = vcsSpInitialize();
FILE *fp = fopen("protected.file", "w");
if (fp != NULL)
 vcsSpSetFilePtr(esp, fp);
else
 /* doh! */

...

if ((gfp = vcsSpGetFilePtr(esp)) != NULL) {
 /* Add comment before starting encryption */
 fprintf(gfp, "\n// TechStuff Version 2.2\n");
 vcsSpEncodeOn(esp);
}

Caution

Don't use non-vcsSp* routines (like fprintf) in conjunction with
vcsSp* routines, while encoding is enabled.

E-72

PLI Access Routines

vcsSpInitialize

Syntax

vcsSpStateID vcsSpInitialize(void)

Synopsis

This routine allocates a source protect object.

Returns a handle to a malloc’d object which must be passed to all the
other source protection routines.

This object stores the state of the encryption in progress. When the
encryption is complete, this object should be passed to
vcsSpClose() to free the allocated memory.

If you need to write to multiple streams at the same time (perhaps
you’re creating include or SDF files in parallel with model files), you
can make multiple calls to this routine and assign a different file
pointer to each handle returned.

Each call mallocs less than 100 bytes of memory.

Returns

The vcsSpStateID pointer or NULL if memory could not be
malloc’d.

Example E-33 Example of vcsSpStateID

vcsSpStateID esp = vcsSpInitialize();
if (esp == NULL) {
 fprintf(stderr, "out of memory\n");
 ...
}

E-73

PLI Access Routines

Caution

This routine must be called before any other source protection
routine.

A NULL return value means the call to malloc() failed. Your
program should test for this.

vcsSpOvaDecodeLine

Syntax

vcsSpStateID vcsSpOvaDecodeLine(vcsSpStateID esp, char
*line)

Synopsis

This routine decrypts one line.

Use this routine to decrypt one line of protected IP code such as OVA
code. Pass in a null vcsSpStateID handle with the first line of code
and a non-null handle with subsequent lines.

Returns

Returns NULL when the last line has been decrypted.

Example E-34 Example of vcsSpOvaDecodeLine

#include "enclib.h"

if (strcmp(linebuf, "‘protected_ip synopsys\n")==0) {
 /* start IP decryption */
 vcsSpStateID esp = NULL;
 while (fgets(linebuf, sizeof(linebuf), infile)) {
 /* linebuf contains encrypted source */
 esp = vcsSpOvaDecodeLine(esp, linebuf);
 if (linebuf[0]) {
 /* linebuf contains decrypted source */

E-74

PLI Access Routines

 ...
 }
 if (!esp) break; /* done */
 }
 /* next line should be ‘endprotected_ip */
 fgets(linebuf, sizeof(linebuf), infile);
 if (strcmp(linebuf, "‘endprotected_ip\n")!=0) {
 printf("warning - expected ‘endprotected_ip\n");
 }
}

vcsSpOvaDisable

Syntax

void vcsSpOvaDisable(vcsSpStateID esp)

Synopsis

This routine switches to regular encryption. It tells VCS’s encrypter
to use the standard algorithm. This is the default mode.

Returns

No return value.

Example E-35 Example of vcsSpOvaDisable

#include "enclib.h"
#include "encint.h"

int write_error = 0;
vcsSpStateID esp;

if ((esp = vcsSpInitialize()) printf("Out Of Memory");

vcsSpSetFilePtr(esp, fp); /* previously opened FILE* pointer
*/

/* Configure for OVA IP encryption */
vcsSpOvaEnable(esp, "synopsys");

E-75

PLI Access Routines

if (vcsSpWriteString(esp, "This text will NOT be
encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOn(esp)) ++write_error;

if (vcsSpWriteString(esp, "This text WILL be encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOff(esp)) ++write_error;

if (vcsSpWriteString(esp, "This text will NOT be
encrypted.\n"))
 ++write_error;
/* Switch back to regular encryption */
vcsSpOvaDisable(esp);

if (vcsSpEncodeOn(esp)) ++write_error;

if (vcsSpWriteString(esp, "This text WILL be encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOff(esp)) ++write_error;

vcsSpClose(esp);

vcsSpOvaEnable

Syntax

void vcsSpOvaEnable(vcsSpStateID esp, char *vendor_id)

Synopsis

Enables the OpenVera assertions (OVA) encryption algorithm. Tells
VCS’s encrypter to use the OVA IP algorithm.

Returns

No return value.

E-76

PLI Access Routines

Example E-36 Example of vcsSpOvaEnable

#include "enclib.h"
#include "encint.h"

int write_error = 0;
vcsSpStateID esp;

if ((esp = vcsSpInitialize()) printf("Out Of Memory");

vcsSpSetFilePtr(esp, fp); /* previously opened FILE* pointer
*/

/* Configure for OVA IP encryption */
vcsSpOvaEnable(esp, "synopsys");

if (vcsSpWriteString(esp, "This text will NOT be
encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOn(esp)) ++write_error;

if (vcsSpWriteString(esp, "This text WILL be encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOff(esp)) ++write_error;

if (vcsSpWriteString(esp, "This text will NOT be
encrypted.\n"))
 ++write_error;
/* Switch back to regular encryption */
vcsSpOvaDisable(esp);

if (vcsSpEncodeOn(esp)) ++write_error;

if (vcsSpWriteString(esp, "This text WILL be encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOff(esp)) ++write_error;

vcsSpClose(esp);

E-77

PLI Access Routines

vcsSpSetDisplayMsgFlag

Syntax

void vcsSpSetDisplayMsgFlag(vcsSpStateID esp, int enable)

Synopsis

This routine sets the DisplayMsg flag. By default, the VCS compiler
does not display decrypted source code in its error or warning
messages. Use this routine to enable this display.

Returns

No return value.

Example E-37 Example of vcsSpSetDisplayMsgFlag

vcsSpStateID esp = vcsSpInitialize();
vcsSpSetDisplayMsgFlag(esp, 0);

vcsSpSetFilePtr

Syntax

void vcsSpSetFilePtr(vcsSpStateID esp, FILE *fp)

Synopsis

This routine specifies the output file stream. Before using the
vcsSpWriteChar() or vcsSpWriteString() routines, you must
specify the output file stream.

Returns

No return value.

Example E-38 Example of vcsSpSetFilePtr

vcsSpStateID esp = vcsSpInitialize();

E-78

PLI Access Routines

FILE *fp = fopen("protected.file", "w");
if (fp != NULL)
 vcsSpSetFilePtr(esp, fp);
else
 /* abort */

vcsSpSetLibLicenseCode

Syntax

void vcsSpSetLibLicenseCode(vcsSpStateID esp, unsigned int
code)

Synopsis

This routine sets the OEM library license code that will be added to
each protected region started by vcsSpEncodeOn().

This code can be used to protect library models from unauthorized
use.

When the VCS parser decrypts the protected region, it verifies that
the end user has the specified license. If the license does not exist
or has expired, VCS exits.

Returns

No return value.

Example E-39 Example of vcsSpSetLibLicenseCode

unsigned int lic_code = MY_LICENSE_CODE;
vcsSpStateID esp = vcsSpInitialize();
 ...

/* The following text will be encrypted and licensed */
vcsSpSetLibLicenseCode(esp, code); /* set license code */
vcsSpEncodeOn(esp); /* start protected region */
vcsSpWriteString(esp, "this text will be encrypted and

E-79

PLI Access Routines

licensed");
vcsSpEncodeOff(esp); /* end protected region */

/* The following text will be encrypted but unlicensed */
vcsSpSetLibLicenseCode(esp, 0); /* clear license code */
vcsSpEncodeOn(esp); /* start protected region */
vcsSpWriteString(esp, "this text encrypted but not
licensed");
vcsSpEncodeOff(esp); /* end protected region */

Caution

The rules for mixing licensed and unlicensed code is determined by
your OEM licensing agreement with Synopsys.

The code segment in Example E-39 shows how to enable and
disable the addition of the license code to the protected regions.
Normally you would call this routine once, that is, after calling
vcsSpInitialize() and before the first call to
vcsSpEncodeOn().

vcsSpSetPliProtectionFlag

Syntax

void vcsSpSetPliProtectionFlag(vcsSpStateID esp, int
enable)

Synopsis

This routine sets the PLI protection flag. You can use it to disable the
normal PLI protection that is placed on encrypted modules. The
output files will still be encrypted, but CLI and PLI users will not be
prevented from accessing data in the modules.

This routine only affects encrypted Verilog files. Encrypted SDF files,
for example, are not affected.

E-80

PLI Access Routines

Returns

No return value.

Example E-40 Example of vcsSpSetPliProtectionFlag

vcsSpStateID esp = vcsSpInitialize();
vcsSpSetPliProtectionFlag(esp, 0); /* disable PLI protection
*/

Caution

Turning off PLI protection will allow users of your modules to access
object names, values, etc. In essence, the source code for your
module could be substantially reconstructed using the CLI
commands and ACC routines.

vcsSpWriteChar

Syntax

void vcsSpSetPliProtectionFlag(vcsSpStateID esp, int
enable)

Synopsis

This routine writes one character to the protected file.

If encoding is enabled (see “vcsSpEncodeOn”) the specified
character is encrypted as it is written to the output file.

If encoding is disabled (see “vcsSpEncodeOff”) the specified
character is written as-is to the output file (no encryption.)

Returns

Non-zero if the file pointer has not been set (see “vcsSpSetFilePtr”)
or if there was an error writing to the output file (out-of-disk-space,
etc.)

E-81

PLI Access Routines

Returns 0 if the write was successful.

Example E-41 Example of vcsSpWriteChar

vcsSpStateID esp = vcsSpInitialize();
FILE *fp = fopen("protected.file", "w");
int write_error = 0;

if (fp == NULL) exit(1);

vcsSpSetFilePtr(esp, fp);

if (vcsSpWriteChar(esp, ’a’)) /* This char will *not* be
encrypted.*/
 ++write_error;

if (vcsSpEncodeOn(esp))
 ++write_error;

if (vcsSpWriteChar(esp, ’b’)) /* This char *will* be
encrypted. */
 ++write_error;
if (vcsSpEncodeOff(esp))
 ++write_error;

fclose(fp);
vcsSpClose(esp);

Caution

vcsSpInitialize() and vcsSpSetFilePtr() must be called
prior to calling this routine.

vcsSpWriteString

Syntax

int vcsSpWriteString(vcsSpStateID esp, char *s)

E-82

PLI Access Routines

Synopsis

This routine writes a character string to the protected file.

If encoding is enabled (see “vcsSpEncodeOn”) the specified string
is encrypted as it is written to the output file.

If encoding is disabled (see “vcsSpEncodeOff”) the specified string
will be written as-is to the output file (no encryption.)

Returns

Non-zero if the file pointer has not been set (see “vcsSpSetFilePtr”)
or if there was an error writing to the output file (out-of-disk-space,
etc.)

Returns 0 if the write was successful.

Example E-42 Example of vcsSpWriteString

vcsSpStateID esp = vcsSpInitialize();
FILE *fp = fopen("protected.file", "w");
int write_error = 0;

if (fp == NULL) exit(1);

vcsSpSetFilePtr(esp, fp);

if (vcsSpWriteString(esp, "This text will *not* be
encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOn(esp)) ++write_error;
if (vcsSpWriteString(esp, "This text *will* be
encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOff(esp)) ++write_error;
if (vcsSpWriteString(esp, "This text will *not* be
encrypted.\n"))

E-83

PLI Access Routines

 ++write_error;

fclose(fp);
vcsSpClose(esp);

Caution

vcsSpInitialize() and vcsSpSetFilePtr() must be called
prior to calling this routine.

Access Routine for Signal in a Generate Block

There is only one access routine for signals in generate blocks.

acc_object_of_type

Syntax

bool acc_object_of_type(accGenerated, sigHandle)

Synopsis

This routine returns true if the signal is in a generate block.

Returns

1 - if the signal is in a generate block.

0 - if the signal is not in a generate block.

VCS API Routines

Typically VCS controls the PLI application. If you write your
application so that it controls VCS, you need these API routines.

E-84

PLI Access Routines

Vcsinit()

When VCS is run in slave mode, you can call this function to
elaborate the design and to initialize various data structures,
scheduling queues, etc. that VCS uses. After this routine executes,
all the initial time 0 events, such as the execution of initial blocks, are
scheduled.

Call the vmc_main(int argc, char *argv) routine to pass
runtime flags to VCS before you call VcsInit().

VcsSimUntil()

This routine tells VCS to schedule a stop event at the specified
simulation time and execute all scheduled simulation events until it
executes the stop event. The syntax for this routine is as follows:

VcsSimUntil (unsigned int* t)

Argument t is for specifying the simulation time. It needs two words.

The first [0] is for simulation times from 0 to 232 -1, the second is for
simulation times that follow.

If any events are scheduled to occur after time t, their execution
must wait for another call to VcsSimUntil.

If t is less than the current simulation time, VCS returns control to
the calling routine.

IN-1

Index

runtime information message generating
D-10

Symbols
 B-97, C-8
-a filename B-93
-ams_discipline B-72
-ams_iereport B-72
-assert 15-39, B-10

svaext 15-39
-bfl and -bom B-99
-bom and -bfl B-99
-C B-71
-c B-67
-CC B-69
-cc B-69
-CFLAGS B-69
-cm assert B-17
-cpp B-70
-debug 23-33, B-93
-debug_all B-93
-debug_pp B-93
-e name_for_main B-52
-E program runtime option C-34
-error 4-44, 4-45, 4-46, 4-50, B-10, B-57, C-22
-error=PRIORITY C-20

-error=UNIQUE C-20
-extinclude B-28, D-7
-f filename B-49
-gui 2-6, 5-8
-h 2-3, B-9
-help 2-3, B-9
-ID 2-3, B-66
-jnumber_of_CPUs B-70
-l C-24
-l filename 2-7, B-93, C-22
-ld linker B-67
-LDFLAGS B-67
-lmc-swift B-56
-lmc-swift-template B-56
-lname B-67
-load 4-20, 23-39, B-54, C-38
-Makep B-8
-Mdir B-7
-Mdirectory B-7
-Mlib=dir B-7
-msg_config 4-44, 4-62
-Mupdate B-8
-nc B-57
-negdelay B-47
-noIncComp B-9
-ntb B-19
-ntb_define B-19
-ntb_filext B-20

IN-2

-ntb_incdir B-20
-ntb_opts B-20
-ntb_sfname B-26
-ntb_vipext B-26
-o name B-95
-O number B-71
-O0 B-71
-ova_enable_case B-19
-override_timescale B-76
-P pli.tab B-53
-parameters 2-7, 4-27, B-73
-platform B-95
-PP D-19
-pvalue 2-7, 4-27, B-73
-q 2-7, B-60, C-23
-R 2-6, B-37, B-93
-simprofile B-49
-simprofile_dir_path 6-7
-suppress 4-44, B-57
-sysc B-89
-u B-93
-ucli 5-6
-uniq_prior maxfail=integer C-19
-V 2-7, B-60, C-23
-v 2-4, B-4
-Vt B-60
-Xman 25-22
-Xmangle 25-22
-Xnoman 25-23
-Xnomangle 25-23
-Xova B-19
-y 2-4, B-5
assert hier=file.txt B-17
‘celldefine B-64, B-65, D-2, D-3
‘default_nettype D-2
‘define D-3
‘delay_mode_distributed D-5
‘delay_mode_path D-5
‘delay_mode_unit D-5
‘delay_mode_zero D-6
‘else D-3

‘elseif D-3
‘endcelldefine D-2
‘endif D-3
‘endprotect 25-16
‘endprotected 25-16
‘endprotected128 25-16
‘endrace B-75
‘ifdef D-4
‘ifdef VCS D-4
‘ifndef D-5
‘include B-28, D-7

specifying the search directories B-88
with a different verion of Verilog B-28

‘line D-9
‘nounconnected_drive D-9
‘protect 25-16, 25-21
‘protect128 25-16
‘protected 25-16
‘race B-75
‘resetall D-3
‘timescale B-76, D-8
‘unconnected_drive D-9
‘undef D-5
‘uselib D-8
‘vcs_mipdexpand D-6
"A" specifier of abstract access 23-57
"C" specifier of direct access 23-57
**NC 3-15
/*synopsys translate_off*/ pragma B-98
/*synopsys translate_on*/ pragma B-98
//synopsys translate_off pragma B-98
//synopsys translate_on pragma B-98
%CELL 23-14, 23-19
%TASK 23-14
+abstract 23-132
+acc+2 B-52
+acc+3 B-52
+acc+4 B-52
+acc+level_number 23-23, B-52
+allhdrs 23-132
+allmtm B-38, C-28

IN-3

+applylearn 23-28–23-36, C-35
+applylearn+filename B-52
+auto2protect 25-21
+auto3protect 25-21
+autoprotect 25-21
+charge_decay B-38
+define+macro=value 2-8, B-93
+delay_mode_distributed 12-36, B-39
+delay_mode_path 12-35, B-38
+delay_mode_unit 12-36, B-38
+delay_mode_zero 12-36, B-38
+deleteprotected 25-21
+fsdb+gate 34-42
+incdir 2-5, B-88
+iopath+edge B-44
+libext 2-5, B-6
+liborder 2-5, B-6
+librescan B-6
+libverbose B-7, B-57
+lint 4-44, B-58
+lint=PWLNT

 B-18
+lint=sva 20-37
+list 23-132
+maxdelays B-38, B-41, C-27, C-36
+memcbk B-92
+mindelays B-38, B-41, C-28, C-36
+module module_identifier C-18
+multisource_int_delays B-42
+nbaopt B-42
+neg_tchk 12-57, 12-64, B-48
+no_notifier 12-57, B-46, C-20
+no_pulse_msg C-23
+no_tchk_msg 12-57, B-46, C-20
+nocelldefinepli+0 B-64
+nocelldefinepli+1 B-64
+nocelldefinepli+2 B-65
+noerrorIOPCWM B-90
+nolibcell B-64
+noportcoerce B-89
+nospecify 12-58, B-45

+notimingcheck 12-58, B-45, C-20
+ntb_cache_dir C-3
+ntb_delete_disk_cache C-3
+ntb_disable_cnst_null_object_warning C-3
+ntb_enable_checker_trace C-4
+ntb_enable_checker_trace_on_failure C-4
+ntb_enable_solver_trace_on_failure C-5
+ntb_enable_solver_trace_on_failure=value
C-5
+ntb_exit_on_error C-5
+ntb_random_seed C-6
+ntb_random_seed_automatic C-6
+ntb_solver_array_size_warn C-7
+ntb_solver_debug 17-29, C-7

extract 17-35, 17-38
profile 17-34, 17-38
serial 17-37
trace 17-30, 17-33, 17-37

+ntb_solver_debug_dir C-8
+ntb_solver_debug_filter 17-30, 17-33, 17-35,
C-8
+ntb_solver_mode C-9
+ntb_solver_mode=value C-9
+NTC2 12-63, B-49
+object_protect 25-33
+old_ntc B-48
+optconfigfile 10-6, B-37
+override_model_delays C-28, C-29, C-35
+pathpulse B-45
+pli_unprotected 25-21
+plusarg_ignore B-51
+plusarg_save B-51
+plus-options C-35
+protect file_suffix 25-21
+pulse_e/number 12-22, 12-24, 12-26, 12-31,
12-32, B-46
+pulse_int_e 12-21, 12-22, 12-24, 12-26, B-47
+pulse_int_r 12-21, 12-22, 12-24, 12-26, B-47
+pulse_on_detect 12-32, B-47
+pulse_on_event 12-31, B-47
+pulse_r/number 12-22, 12-24, 12-26, 12-31,
12-32, B-46

IN-4

+putprotect+target_dir 25-21
+race=all 3-20, 3-21, B-75
+rad 10-6, B-37
+sdf_nocheck_celltype B-42
+sdfprotect file_suffix 25-22
+sdfverbose C-23
+systemverilogext B-27
+tetramax B-89
+timopt 12-38
+transport_int_delays 12-21, 12-24, 12-26,
B-42
+transport_path_delays 12-21, 12-24, 12-26,
B-42
+typdelays B-38, B-41, C-28, C-36
+UVM_LOG_RECORD 33-8
+UVM_TR_RECORD 33-8
+vc 23-131, B-54
+vcs+dumpfile+filename C-26
+vcs+dumpoff+t+ht C-27
+vcs+dumpon+t+ht C-27
+vcs+finish 5-27, C-21
+vcs+flush+all B-56, C-30
+vcs+flush+dump B-56, C-27, C-29
+vcs+flush+fopen B-56, C-29
+vcs+flush+log B-55, C-29
+vcs+ignorestop C-35
+vcs+initreg

restricting initialization to either registers or
memories" 4-26

+vcs+initreg+0|1|random| C-31
+vcs+initreg+0|1|random|seed_value C-31
+vcs+initreg+config 4-23, B-32, C-32
+vcs+initreg+config+config_file C-33
+vcs+initreg+random| C-33
+vcs+learn+pli ??–23-33, C-35
+vcs+lic+vcsi B-66, C-30
+vcs+lic+wait C-30
+vcs+loopdetect+number B-96, C-36
+vcs+loopreport+number B-96, C-36
+vcs+mipd+noalias C-37
+vcs+mipdexpand D-6

+vcs+nostdout C-24
+vcs+stop 5-27, C-21
+vcs+vcdpluson B-91
+vcsi+lic+vcs B-66, C-30
+vcsi+lic+wait B-66
+verilog1995ext B-27
+verilog2001ext B-27
+vpddrivers C-26
+vpdfile 5-8
+vpdfileswitchsize 5-8
+vpdfileswitchsize+number_in_MB C-25
+vpdnoports C-26
+vpdportsonly C-26
+vpdupdate C-26
+vpi B-53
+vpi+1 B-53
+vpi+1+assertion B-54
+warn 3-49, 4-44, B-60
$assert_category_start 20-18, 20-22
$assert_category_stop 20-17
$assert_monitor 20-11, D-25
$assert_monitor_off 20-11, D-26
$assert_monitor_on 20-11, D-26
$assert_set_category 20-15, 20-18
$assert_set_severity 20-15
$assert_severity_stop 20-18
$assertcontrol 20-51
$assertkill D-11
$assertoff D-10
$asserton D-11
$async$and$array D-36
$bitstoreal D-27
$countdrivers D-40
$countunknown(expression) D-12
$countx(expression) D-12
$countz(expression) D-12
$deposit D-40
$disable_warnings D-33
$display D-28
$dist_exponential D-38
$dist_normal D-38

IN-5

$dist_poisson D-38
$dist_uniform D-38
$dumpall D-13
$dumpfile D-13
$dumpflush D-13
$dumplimit D-13
$dumpoff D-13
$dumpon D-13
$dumpports D-15
$dumpports system task C-30
$dumpportsall D-17
$dumpportsflush D-17
$dumpportslimit D-18
$dumpportsoff D-16
$dumpportson D-17
$dumpvars D-13
$enable_warnings D-33
$error 20-44, D-10
$fatal 20-30, D-10
$fclose D-29
$fdisplay D-29
$ferror D-29
$fflush D-14, D-29
$fflushall D-14
$fgetc D-29
$fgets D-29
$finish D-33
$fmonitor D-30
$fopen B-55, D-30

increasing the frequency of flushing B-56
$fopen system function C-30

increasing the frequency of $fopen file, log
file, and VCD file dumping C-30

increasing the frequency of dumping to files
opened by $fopen C-29

$fread D-30
$fscanf D-30
$fseek D-30
$fstobe D-30
$ftell D-30
$fwrite D-30

$get_initial_random_seed D-38
$getpattern D-40
$gr_waves D-15
$hold D-34
$info D-10
$isunknown D-12
$itor D-28
$log D-27
$lsi_dumpports 3-49–3-54, D-15
$lsi_dumpports system task C-30
$monitor D-28
$monitoroff D-28
$monitoron D-28
$nolog D-27
$onedriven D-12
$onedriven0 D-12
$onehot0 D-12
$past

ignoring B-17
$period D-34
$printtimescale D-32
$q_add D-36
$q_exam D-37
$q_full D-37
$q_initialize D-37
$q_remove D-37
$random 3-48, D-38
$read_lib_saif 24-5
$readmemb 5-33, D-31
$readmemh 5-33, D-31
$realtime D-37
$realtobits D-28
$recovery D-34
$recrem D-35

checking timestamp and timecheck
conditions B-49

diabling delayed versions of signals in other
timing checks B-48

$removal D-35
$reset D-39
$reset_count D-39

IN-6

$reset_value D-39
$restart D-41
$rtoi D-28
$save D-41
$sdf_annotate D-40
$set_gate_level_monitoring 24-4
$set_toggle_region 24-6
$setup D-35
$setuphold D-35

checking timestamp and timecheck
conditions B-49

diabling delayed versions of signals in other
timing checks B-48

$skew D-36
$sreadmemb D-32
$sreadmemh D-32
$stime D-37
$stop D-33

ignoring C-35
$strobe D-29
$sync$nor$plane D-36
$system D-26
$systemf D-27
$test$plusargs C-35, D-39
$time D-37
$timeformat D-32
$ungetc D-31
$uniq_prior_checkoff system task 15-99
$uniq_prior_checkon system task 15-99
$value$plusargs 5-22
$vcdplusautoflushoff D-19
$vcdplusautoflushon D-19
$vcdplusclose D-19
$vcdplusdeltacycleoff 9-18
$vcdplusdeltacycleon 9-18, D-19
$vcdplusevent D-20
$vcdplusfile D-21
$vcdplusflush D-21
$vcdplusglitchon D-21
$vcdplusmemoff 9-8, D-23
$vcdplusmemon 9-8, D-21

$vcdplusmemorydump 9-8, D-23
$vcdplusoff D-24
$vcdpluson B-91, D-24
$vcdplusxx system tasks

ignoring C-25
$warning D-10
$width D-36
$write D-29
$writememb 5-33, D-32
$writememh 5-33, D-32

A
-a filename B-93
"A" specifier of abstract access 23-57
+abstract 23-132
abstract access for C/C++ functions

access routines for 23-82–23-126
enabling with a compile-time option 23-132
using 23-80–23-126

+acc+level_number 23-23, B-52
ACC capabilities 23-31, B-52

applying in the design only where they are
needed C-35

cbk 23-12, 23-21
cbka 23-12
enabling debugging B-52
frc 23-12, 23-21
gate 23-12
mip 23-12, C-37
mipb 23-13
mipd C-37
mp 23-12
prx 23-12
r 23-11, 23-20
recording where in the design they are

needed C-35
rw 23-11, 23-20
s 23-12
specifying 23-9–23-22
tchk 23-12

acc_handle_simulated_net C-37

IN-7

access routines for abstract access of C/C++
functions 23-82–23-126
Active time slot

changing UDP output evaluation to the NBA
time slot 3-5

-ad B-72
AICMs

information messages B-72
+allhdrs 23-132
+allmtm B-38, C-28
alt_retain 12-5
-ams_discipline B-72
-ams_iereport B-72
ansi argument to -ntb_opts B-20
ANSI mode

in OpenVera files B-20
aop

advice
before/after/around 16-16

dominates 16-7
extends directive 16-3
placement element

after 16-11
around 16-11

 C-35
+applylearn 23-28–23-36
arb.v 14-5
args PLI Specificaction 23-8
array

output and inout argument type 23-73
array index 17-50
array members 17-70
assembler

passing options to B-69
-assert 15-39, 20-44, B-10, C-10

svaext 15-39
-assert assertion_block_identifier C-18
-assert failonly 20-39
-assert funchier 20-25
-assert hier=file.txt B-17
-assert no_default_msg 20-28
–assert no_default_msg 20-27

–assert no_fatal_action 20-29
-assert quiet 20-28
-assert report 20-28
-assert success 20-10
-assert svvunit 20-43
$assert_monitor 20-11, D-25
$assert_monitor_off 20-11, D-26
$assert_monitor_on 20-11, D-26
assertion failure messages

controlling 20-26
assertion waring messages

suppressing B-9
Assertions

SystemVerilog
enabling or disabling a module or a

hierarchy B-11
assertions

fatal error generating D-10
OpenVera B-19

blind signals B-26
bounds check in dynamic arrays B-20
bounds check in fixed-size arrays B-21
circular dependency check B-24

display on screen B-24
disabling default failure messages C-12
encrypted IP mode

filename extension B-26
encryption

tokens file B-25
file name extension B-20
file-by-file preprocessing

disabling B-24
include directory path B-20
including case violations in the global

failure count C-20
interface ports named ifc_signal B-26
left padding in strings B-24
RVM enabling B-24
shell module name vera_shell

specifying B-26
signal property access funtions

enabling B-26
teshbench shell

filename specifying B-26

IN-8

generating only B-26
not generating B-20

teshbench shell and shared object files
specifying the directory B-26

timescale B-25
VMM enabling B-24

Openvera
ANSI mode B-20

PSL
disabling default failure messages C-12

resume monitoring D-11
returning true if one bit is true D-11
returning true if one bit is X D-12
returning true if only one bit is true or no bits

are true D-12
runtime error generating D-10
runtime information message generating

D-10
runtime warning generating D-10
SystemVerilog

cover statements
disabling B-17

disabling B-17
disabling assertion failure messages C-12

but enabling summary information C-12
disabling default failure messages C-12
disabling from a file

specifying assertion block C-18
specifying module definitions C-18

disabling information in a VPD file B-18
dumping SVA in VPD file

disabling C-10
enabling and disabling from a file C-15
enabling assertion match (success)

messages C-14
enabling from a file

specifying module definitions C-18
enabling runtime options B-10
enabling the -assert hier=file.txt runtime

option for turning assertions off B-16
enabling vacuous success messages C-14
enhsnce reporting for assertions in

functions B-10
excluding assertion failures with fail action

blocks C-12
failure simulation time in Debussy B-18

generationg a report file C-13
adding more information C-14

ignoring $past B-17
maximum number of cover statement

specifying the total number of cover
statements in the assertion coverage
information C-11

monitoring for assertion coverage C-19
no match simulation time in Debussy B-18
not displaying the assert or cover

statement summary C-11
not writing the program_name.db database

file C-11
specifying configuration file B-11
specifying the maximum number of failures

for each assertion C-11
specifying the maximum number of

successes for each assertion C-11
specifying the number of failures for an

assertion C-10
specifying the rotal number of assertion

failures C-10
starting simulation time in Debussy B-18

turning off monitoring D-10, D-11
$assertkill D-11
$assertoff D-10
$asserton D-11
assert.report file C-13

adding more information C-14
assume 20-34
$async$and$array D-36
+auto2protect 25-21
+auto3protect 25-21
auto-inserted connect modules (AICMs)

displaying information about B-72
+autoprotect 25-21
avoid using +verilogamsext+vams B-73

B
Backward SAIF File 24-5
-bfl and -bom B-99
bidirectional registered mixed-signal net

dispalying a list of B-73

IN-9

finishing compilation at B-72
bit

C/C++ function argument type 23-60
C/C++ function return type 23-59
input argument type 23-72
output and inout argument type 23-73
reg data type in two-state simulation 23-55

$bitstoreal D-27
-bom and -bfl B-99
BoM file

list of source files B-99
bounds check

in OpenVera dynamic arrays B-20
in OpenVera fixed-sise arrays B-21

buffer
emptying into VCD files D-13

C
-C B-71
C 17-50
-c 14-5, B-67
C code generating

halt before compiling the generated C code
B-71

passing options to the compiler B-69
specifying another compiler B-69
specifying the optimization level B-71
suppressing optimization for faster

compilation B-71
C compiler

not passing default options B-71
optimization levels B-69
passing options to B-69
specifying B-69

C compiler, environment variable specifying
the A-4
"C" specifier of direct access 23-57
C/C++ functions

argument direction 23-57, 23-59
argument type 23-58, 23-60
calling 23-62–23-64
declaring 23-56–23-62
extern declaration 23-57

in a Verilog environment 23-55–23-56
return range 23-57
return type 23-57, 23-59
using abstract access 23-80–23-126

access routines for 23-82–23-126
using direct access 23-71–23-80

examples 23-73–23-78
C++ compiler

specifying B-70
call PLI specification 23-7
callbacks for memories and multi-dimensional
arrays

enabling B-92
calling C/C++ functions in your Verilog code
23-62–23-64
case pragmas

enabling B-19
cbk ACC capability 23-12, 23-21
cbka ACC capability 23-12
-CC B-69
-cc B-69
cell

for delay annotation
disabling D-2
specifying D-2

cell modules
excluding from compilation B-64

‘celldefine B-64, B-65, D-2, D-3
CELLTYPE entries in SDF files

disabling B-42
-CFLAGS B-69
-cg_coverage_control C-2
char*

direct access for C/C++ functions
formal parameter type 23-71

char**
direct access for C/C++ functions

formal parameter type 23-71
charge decay

enabling B-38
+charge_decay B-38
check argument to -ntb_opts B-20
check PLI specification 23-7

IN-10

check=all B-21
check=fixed B-21
checkers

clocking 20-48
instantiating 20-48

checkpoint
in VCD files

recording current values D-13
start recording current values D-13
stop recording current values D-13

circular dependency check check
in OpenVera B-24

display on screen B-24
class 17-68
classes

inheritance between 17-70
clock signals 12-38–12-42
-cm 13-3, C-19
-cm assert B-17
code generation

mixed code generation B-4
compiler directives D-1–D-9

resetting D-3
compile-time options B-1–??

displaying at runtime C-34
specifying in a file B-49

compiling
incremental compilation

triggering ??–10-3
omitting compilation between pragmas B-97
verbose messages 2-7, B-60
with ‘include and -extinclude B-28

compression
disasbling for VPD files C-26

conditional expressions
warning when evaluate to X or Z B-74

filtering out false negatives B-74
configuration file

for Radiant technology B-37
consistent behavior of class static properties
15-47
constraint solver

array size warning C-7

OpenVera
trace information C-5

constraints
conflicts 17-65
constraint profiling 17-34, 17-38
debugging C-7, C-8
partitions 17-26
strings in 17-64
test case extraction 17-35, 17-38
unique 17-81

copyright information
displaying C-23

copyright message
suppressing B-57

$countdrivers D-40
coverage groups

OpenVera
enabling C-2

-cpp B-70

D
data PLI specification 23-7
-debug 23-33, B-93
-debug_access+classdbg 4-8
-debug_access+dmptf 4-13
-debug_all B-93
debug_all, option 5-7, 5-8
-debug_pp 5-6, B-91, B-93
debug_pp, option 5-6
-debug_region 4-6
-debug_region=encrypt 4-11
-debug_region=stdpkg 4-7
-debug_region=tb 4-10
debug, option 5-7
Debussy B-92

assertions
failure simulation time B-18
no match simulation time B-18
stating simulation time B-18

declaring C/C++ functions in your Verilog code
23-56–23-62
default discrete discipline

IN-11

in VerilogAMS B-72
default net data type

specifying D-2
‘default_nettype D-2
‘define D-3
+define+macro=value 2-8, B-93
delay mode distributed behavior B-39
delay mode path behavior B-38
delay mode unit behavior B-38
delay mode zero behavior B-38
delay values

back annotating to your design D-40
‘delay_mode_distributed D-5
+delay_mode_distributed 12-36, B-39
‘delay_mode_path D-5
+delay_mode_path 12-35, B-38
‘delay_mode_unit D-5
+delay_mode_unit 12-36, B-38
‘delay_mode_zero D-6
+delay_mode_zero 12-36, B-38
delays C-27, C-28

changing all delays to zero D-6
changing all to 0 B-38
ignoring all delays except gate, switch, and

continuous assignment delays D-5
ignoring all delays except module path

delays D-5
ignoring all module path delays and using for

all other delay specifications the shortest
time precision argument D-5

ignoring module path delays and changing
gate, switch, and continuous assignment
delays to time precision B-38

ignoring module path delays and using gate,
switch, and continuous assignment
delays B-39

module path delays
X value B-47

with error message B-47
on gates and switches

ignoring B-38
specifies using max of min|typ|max delays

B-41

specifies using min of min|typ|max delays
B-41

specifies using typ of min|typ|max delays
B-41

transport delays B-42
+deleteprotected 25-21
delta cycle information D-19
Denali 29-1
dep_check argument to -ntb_opts B-24
$deposit D-40
Design Description 14-6
-diag run_env B-100
-diag sys_task_mem 5-32, 5-34
diagnostics 6-111
direct access for C/C++ functions

examples 23-73–23-78
formal parameters

types 23-71
rules for parameter types 23-71–23-73
using 23-71–23-131

DirectC
abstract access

specifying B-55
enabling B-54
listing the C/C++ functions B-55
using pass by reference 23-70
vc_hdrs.h file B-55

direction of a C/C++ function argument 23-59
directory for constraint solver profiles and
testcases C-8
disable B-17
disable soft 17-78
disable_cover B-17
$disable_warnings D-33
$display D-28
DISPLAY_VCS_HOME A-3
$dist_exponential D-38
$dist_normal D-38
$dist_poisson D-38
$dist_uniform D-38
dmptf 4-5
double*

direct access for C/C++ functions

IN-12

formal parameter type 23-71
DPI 17-50
$dumpall D-13
$dumpfile D-13
$dumpflush D-13
$dumplimit D-13
$dumpoff D-13
dumpoff B-18, C-10
$dumpon D-13
$dumpports D-15
$dumpportsall D-17
$dumpportsflush D-17
$dumpportslimit D-18
$dumpportsoff D-16
$dumpportson D-17
$dumpvars D-13
-dve_opt 34-10
dynamic race detection B-75

E
-e name_for_main B-52
-E program C-34
echo C-34
edge operator 20-48
edge sensitivity

in SDF file IOPATH entries B-44
elaboration system tasks 15-39
‘else D-3
‘elseif D-3
enable_diag 20-10, B-10
enable_hier B-16
$enable_warnings D-33
enabling C-2

only where used in the last simulation 23-31
enabling writing initialized values to a file 4-27
encryption

all modules 25-21
but not the module header 25-21
but not the module header and parameter

declarations 25-21

enabling overwriting of existing files 25-21
enabling PLI and UCLI access 25-21
OpenVera

tokens file B-25
SDF files 25-22
specifying the directory for encrypted files

25-21
specifying with ‘protect ‘endprotect 25-21

‘endcelldefine D-2
‘endif D-3
ending simulation at a specified time C-21
‘endprotect 25-16
‘endprotected 25-16
‘endprotected128 25-16
Environment variables 1-7–1-8, A-1–??
-error 4-44, 4-45, 4-46, 4-50, B-10, B-57, C-22
$error D-10
error messages

changing to warning B-60
error_default_action_block 20-44
-error=PRIORITY C-20
-error=UNIQUE C-20
EVCD files D-15

flushing the buffer D-17
recording all port values D-17
resume recording D-17
specifying the file size D-18
suspending D-16

executable
specifying the name of B-95

-exitstatus 5-32
extended summary information

displaying C-23
extends directive

advice 16-4
introduction 16-4

extern declaration 23-57
extern declarations 23-78
-extinclude B-28, D-7

F
-F B-50

IN-13

-f filename B-49
fail action blocks C-12
fail-only 20-39
$fatal D-10
fatal assertion error generating D-10
$fclose D-29
$fdisplay D-29
$ferror D-29
$fflush D-14, D-29
$fflushall D-14
$fgetc D-29
$fgets D-29
-file 2-6, B-50
file

for runtime options C-31
file name extension in Verilog library directories

specifying B-6
files

grw.dump file D-15
tokens.v 25-22
VCD files

specifying the filename D-13
VPD

specifying at compile-time B-91
start recording D-24

filter_past B-17
$finish D-33
finish_maxfail=N C-10
$fmonitor D-30
$fopen B-55, D-30

increasing the frequency of flushing B-56
-force_list 5-9
foreach loops 17-55
four state Verilog data

stored in vec32 23-65
frc ACC capability 23-12, 23-21
$fread D-30
$fscanf D-30
FSDB files B-92
$fseek D-30
$fstobe D-30

$ftell D-30
function calls

context 17-52
DPI 17-50
non-pure 17-51
pure 17-51

$fwrite D-30

G
gate ACC capability 23-12
gate-level

improving runtime performance B-97
gd_pulsewarn 12-7
generics

overriding with the -gfile elaboration option
B-78

-genid_db B-91
$get_initial_random_seed D-38
$getpattern D-40
-gfile B-78
global_finish_maxfail=N C-10
globalDirective 20-22
gmake A-2
$gr_waves D-15
grw.dump file D-15
-gui 2-6, 5-8
-gui=dve 34-10
-gui=verdi 34-10

H
-h 2-3, B-9
hard constraint 17-66
header and summary

suppressing C-23
-help 2-3, B-9
help with compile-time options, runtime
options, and environment variables B-9
hier=file_name C-15
$hold D-34
-hsopt=gates B-97

IN-14

I
-ID 2-3, B-66
ifc_signal

OpenVera interface ports named B-26
‘ifdef D-4
‘ifndef D-5
-ignore B-9
+incdir 2-5, B-88
‘include D-7

specifying the search directories B-88
including one source file in another D-7
incremental compilation B-7–B-9

central place for descriptor information and
object files B-7

disabling B-9
specifying the make path B-8
updating the makefile B-8

incremental compile directory
specifying B-7

$info D-10
information messages

about finding module definitrions in a library
B-57

lint B-58
-ignore B-9
initializing Verilog memories and variables

in only parts of the design 4-21, 4-23
inout

C/C++ function argument direction 23-59
input

C/C++ function argument direction 23-59
int

C/C++ function argument type 23-60
C/C++ function return type 23-59
direct access for C/C++ functions

formal parameter type 23-71
input argument type 23-72
output and inout argument type 23-73

int*
direct access for C/C++ functions

formal parameter type 23-71
INTERCONNECT delays

rejecting B-47

SDF files B-42
changing to transport delays B-42
negative values enabling B-47

interface 14-7

self() 15-104
Interface Description 14-14
internal disk cache for randomization

delete before simulation C-3
location C-3

intra-assingment delays
removing B-42

IOPATH delays
SDF files

negative values enabling B-47
+iopath+edge B-44
Isolate

Cost of Garbage Collection 6-112
$isunknown D-12
$itor D-28

J
-jnumber_of_CPUs B-70

K
-kdb 34-3
key word conflicts B-73
keywords

after 16-11
around 16-11
before 16-11
extends 16-3
virtuals 16-31

L
-l C-24
-l filename 2-7, B-93, C-22
-ld linker B-67
-LDFLAGS options B-67

IN-15

let operator 20-49
+libext 2-5, B-6
-libmap 4-34
+liborder 2-5, B-6
+librescan B-6
+libverbose B-7, B-57
licenses

enabling license queuing C-30
running VCS with three VCSi licenses C-30
running VCSi with a VCS license C-30
waiting for a license C-30
waiting for a network license C-30, C-31

licensing
using VCS licenses for VCSi B-66
using VCSi licenses for VCS B-66
wait for a license B-66

specifying the wait time B-66
wait for a network license B-66
wait for a VCSi license B-66

-licqueue B-66
-licwait timeout B-66
‘line D-9
Line-Based CPU Time Profiler 6-105
linker

linking a library to the executable B-67
linking by hand B-67
passing flags to B-67
specifying B-67
temporary object files B-67

linking
linking a specified library to the executable

B-67
linking by hand B-67
passing options to the linker B-67
specifying another linker B-67

+lint 4-44, B-58
lint messages B-58
+list 23-132
LMC SWIFT interface

including B-56
-lmc-swift B-56
-lmc-swift-template B-56
-lname B-67

-load 4-20, 23-39, B-54, C-38
$log D-27
log file

appending to B-93
simulation

specifying C-22
log file buffers

increasing the frequency of flushing B-55
log file, environment variable specifying the
A-4
log files

increasing the frequency of log file dumping
C-29, C-30

increasing the frequency of log file, VCD file,
and $fopen file dumping C-30

specifying compilation log file 2-7, B-93
specifying with a system task D-27

loops
specifying the maximum number of loops

B-96, C-36
LSI certification D-15

EVCD files D-15
flushing the buffer D-17
icluding strength levels in the VCD file D-15
recording all port values D-17
resume recording D-17
specifying the file size D-18
suspends recording D-16

$lsi_dumpports 3-49–3-54, D-15

M
macros

text macro defining B-93
text macros

defining D-3
else defining D-3
else if end D-3
elseif defining D-3
if defining D-4
if not defined D-5
undefining D-5

main() routine
specifying for PLI B-52

IN-16

maintaining filename and line number D-9
make A-2
makefile

updating B-8
mangled file source protection 25-22

except module and port identifiers 25-23
-Marchive B-7, B-67
maxargs PLI specification 23-8
maxcover=N C-11
 C-36
+maxdelays B-38, B-41, C-27
maxfail=N C-11
maxsuccess=N C-11
-mcg B-4
MDAs 17-56
-Mdir B-7
-Mdirectory B-7
mem_pli 6-16
mem_solver

argument to the profrpt -view option 6-12,
6-79

+memcbk B-92
memories

sparse memory models 3-40
Memory Constraint Solver view

in profiler reports 6-12, 6-79, 6-89
Memory Modeler - Advanced Verification
(MMAV) 29-1
memory size limits 3-39
message control

by module definition 4-68
by source file 4-68
by sub-hierarchy 4-69
downgrading error messages 4-66
error messages 4-65
lint messages 4-63
suppressing messages 4-67
upgrading lint and warning messages 4-66
warning messages 4-64

messages
about finding module definitions in a library

B-57
changing error to warning B-60

copyright message
suppressing B-57

lint B-58
quiet mode B-60
verbose mode B-60

including CPU time information B-60
warning

disabling B-60
-metadump 4-70
minargs PLI specification 23-8
 C-36
+mindelays B-38, B-41, C-28
mip ACC capability 23-12
mipb ACC capability 23-13, D-6
MIPDs C-37

disabling connection upon MIPD delay
annotation C-37

misc PLI specification 23-7
mixed analog/digital simulation

specifying B-72
mixed code generation B-4
mixed signal simulation

specifying B-72
-Mlib=dir B-7
-Mmakep B-8
module description , Verilog 14-15
-module module_identifier C-18
module path delays

allowing
in specific module instances 12-37

changing to tranport delays B-42
disabling B-45
disabling for an instance 12-37
suppressing

in specific module instances 12-37
X value B-47
X value with error message B-47

$monitor D-28
$monitoroff D-28
$monitoron D-28
mp ACC capability 23-12
-msg_config 4-44, 4-62
Multicore Technology ALP 8-1–8-5

IN-17

multiple packed dimensions 17-56
+multisource_int_delays B-42
-Mupdate B-8

N
+nbaopt B-42
-nbaudpsched B-97
**NC 3-15
-nc B-57
+neg_tchk 12-57, 12-64, B-48
negative multiconcat multiplier

allowing B-90
negative timing checks B-47
-negdelay B-47
nets

specifung defult data type D-2
no_default_msg C-12
-no_error ID+ID B-60
no_fatal_action C-12
no_file_by_file_pp argument to -ntb_opts B-24
+no_identifier C-20
+no_notifier 12-57, B-46
+no_pulse_msg C-23
+no_tchk_msg 12-57, B-46, C-20
+nocelldefinepli+1 B-64
nocelldefinepli PLI specification 23-8
+nocelldefinepli+0 B-64
+nocelldefinepli+2 B-65
nocovdb C-11
-noerror UPIMI+IOPCWM B-60
-xzcheck B-74
-nogenid_db B-91
-noIncrComp B-9
+nolibcell B-64
$nolog D-27
nonblocking assignments

removing intra-assignment delays B-42
+noportcoerce B-89
nopostproc C-11

+nospecify 12-58, B-45
-notice 2-7
notifier register

in timincheck system tasks
disabling B-46

notifier registers, suppressing the toggling of
C-20
+notimingcheck 12-58, B-45, C-20
‘nounconnected_drive D-9
-ntb B-19
+ntb_cache_dir C-3
-ntb_define B-19
+ntb_delete_disk_cache C-3
+ntb_enable_solver_trace_on_failure C-5
+ntb_exit_on_error C-5
-ntb_filext B-20
-ntb_incdir B-20
-ntb_noshell B-20
-ntb_opts B-20

print_deps B-24
rvm B-24
sv_fmt B-24

-ntb_opts no_file_by_file_pp 14-26
+ntb_random_seed C-6
+ntb_random_seed_automatic C-6
-ntb_sfname B-26
-ntb_shell_only B-26
-ntb_sname B-26
+ntb_solver_array_size_warn C-7
+ntb_solver_debug 17-29, C-7

extract 17-35, 17-38
profile 17-38
serial 17-37
trace 17-30, 17-37

+ntb_solver_debug_dir C-8
+ntb_solver_debug_filter 17-30, 17-33, 17-35,
C-8
+ntb_solver_mode C-9
-ntb_spath B-26
-ntb_vipext 14-26, B-26
+NTC2 12-63, B-49

IN-18

O
-o name B-95
-O number B-71
-O0 B-71
object files

enabling position independent code B-68
specifying temporary B-67

+object_protect 25-33
+old_ntc B-48
$onehot

$onehot D-11
$onehot0 D-12
OpenVera

constraint solver mode C-9
coverage groups C-2
diagnostics

when randomize() method called C-4
enabling debugging

when randomize() method called C-4
exit on error C-5
internal disk cache C-3

delete before simulation C-3
on null object handle of object randomized

C-3
trace information

when randomize() returns 0 C-4
trace information when constraint solver fails

C-5
operating system commands, executing D-26
+optconfigfile 10-6, B-37
optimization

suppresssing for faster compilation B-71
options for macro expansion B-94
output

C/C++ function argument direction 23-59
OVA 20-26
–ova_enable_case 20-32, B-19
-ova_enable_case_maxfail C-20
–ova_enable_case_maxfail 20-30, C-20
-ova_inline B-19
–ova_inline 20-32, B-19
+override_model_delays C-28, C-29, C-35

-override_timescale B-76
-override-cflags B-71
Overriding Parameter Values

Through Configuration File 15-89

P
-P pli.tab 23-22, B-53
-p188_macro_expansion B-94
packed constraints 17-55
packed dimensions 17-55
-parallel 8-2
parallel compilation B-9, B-71

disabling B-9
specifying the number of forks B-70

-parallel_compile_off B-9
-parameters 2-7, 4-27, B-73
parameters

overriding B-73, B-80
overriding with the -gfile elaboration option

B-78
partition compile

limitations 8-5
partitions

in constraints 17-26
pass by reference in DirectC 23-70
+pathpulse B-45
PATHPULSE$ specparam, enabling B-45
performance

improving for gate-level designs B-97
$period D-34
PERSISTENT_FLAG A-3
-picarchive B-68
placement element

after 16-11
around 16-11

-platform B-95
platform directory in the VCS installation

returning B-95
PLI

ACC capabilities B-52
enabling debugging B-52

IN-19

allowing access to ports and parameters
B-65

disabling capabilities for ‘celldefine and
library modules B-65

disabling capabilities for ‘celldefine modules
B-65

enabling in encrypted files 25-21
specifying the name of your main() routine

B-52
PLI library

loading dynamically at runtime 4-19, C-38
PLI specifications

args 23-8
call 23-7
check 23-7
data 23-7
maxargs 23-8
minargs 23-8
misc 23-7
nocelldefinepli 23-8
size 23-7

PLI table file 23-6–23-23, C-35
specifying B-53

pli_learn.tab C-35
+pli_unprotected 25-21
pli.tab file 23-6–23-23, C-37

specifying B-53
+plusarg_ignore B-51
+plusarg_save B-51
plusargs, checking for on the simv command
line D-39
+plus-options C-35
pointer

C/C++ function argument type 23-60
C/C++ function return type 23-59
input argument type 23-72
output and inout argument type 23-73

port coercion
disabling B-89

position independent code
enabling B-68

-PP D-19
print_deps argument to -ntb_opts B-24
$printtimescale D-32

priority keyword 15-92
PRIORITY violations

limiting the number of C-19
procedure_prototype

example 16-28, 16-29
profile database

specifying the pathname 6-6
profiler

simulation 6-1
Profiler Report

Third-Party Shared Library 6-114
profiling B-49
profprt 6-18
profrpt 6-19
program_name.db database file

not writing C-11
proprietary message

suppressing C-23
‘protect 25-16, 25-21
+protect file_suffix 25-21
‘protect128 25-16
‘protected 25-16
prx ACC capability 23-12
PSL 20-26, 20-43
pulse error messages

suppressing C-23
+pulse_e/number 12-22, 12-24, 12-26, 12-31,
12-32, B-46
+pulse_int_e 12-21, 12-22, 12-24, 12-26, B-47
+pulse_int_r 12-21, 12-22, 12-24, 12-26, B-47
+pulse_on_detect 12-32, B-47
+pulse_on_event 12-31, B-47
+pulse_r/number 12-22, 12-24, 12-26, 12-31,
12-32, B-46
pulses

filtering out narrow pulses B-46
and flag as error B-46

on INTERCONNECT delays

INTERCONNECT delays
filtering out

SDF files
INTERCONNECT

IN-20

delays
filtering out

B-47
rejecting narrow pulses B-46

on SDF INTERCONNECT delays B-47
X value B-47

+putprotect+target_dir 25-21
-pvalue 2-7, 4-27, B-73, B-80

Q
-q 2-7, B-60, C-23
$q_add D-36
$q_exam D-37
$q_full D-37
$q_initialize D-37
$q_remove D-37
queue=blocking|nonblocking 31-4
quiet mode - suppressing

header and summary information C-23
proprietary message C-23
simulation report at the end of simulation

C-23

R
-R 2-6, B-37, B-93
r ACC capability 23-11, 23-13, 23-14, 23-20
-race B-74
race conditions

avoiding 3-2–3-7
continuous assignment evaluations 3-5
generating a report of B-74
in counting events 3-6
in flip-flops 3-4
setting a value twice at the same time 3-3
time zero 3-7
using and setting a value at the same time

3-2
+race=all 3-20, 3-21, B-75
-racecd B-74
race.out file B-75

+rad 10-6, B-37
Radiant techology

configuration file B-37
enabling B-37

rand members 17-68
rand_mode() method 15-68
$random 3-48, D-38
random number generator

re-seeding C-6
random values

setting the seed C-6
after restore C-6

randomize() method 15-68
randomize() serial number 17-37
randomize()solver trace 17-29
randomized objects in a structure 17-59
$readmemb D-31
$readmemh D-31
real

C/C++ function argument type 23-60
input argument type 23-72
output and inout argument type 23-73

$realtime D-37
$realtobits D-28
$recovery D-34
$recrem D-35

checking timestamp and timecheck
conditions B-49

diabling delayed versions of signals in other
timing checks B-48

reg
C/C++ function argument type 23-60
C/C++ function return type 23-59
input argument type 23-72
output and inout argument type 23-73

reporting debug capabilities for each module
6-100
$reset D-39
$reset_count D-39
$reset_value D-39
‘resetall D-3
resetting

keeping track of the number of resets D-39

IN-21

passing a value from before to after a reset
D-39

resetting VCS to simulation time 0 D-39
Resolving message upon instance resolution
B-7
resolving module instances D-8
$restart D-41
restrict 20-34
RETAIN entries

SDF files
enabling B-43

return range of a C/C++ function 23-57
return type of a C/C++ function 23-57, 23-59
RTL Verilog example 14-7
$rtoi D-28
runtime assertion error generating D-10
runtime assertion warning generating D-10
runtime options

compiling into the executable B-51
prevent compiling into the executable B-51
specifying in as file C-31

RVM B-24
rvm B-24
rw ACC capability 23-11, 23-13, 23-20

S
s ACC capability 23-12
SAIF file dumping

in Multicore ALP 8-3
$save D-41
scalar

direct access for C/C++ functions
formal parameter type 23-71

scalar*
direct access for C/C++ functions

formal parameter type 23-71
scope randomize method 15-68
SDF 12-5

optimistic mode 12-5
SDF backannotating

enabling more than 10 warning and error
messages C-23

SDF delay back-annotation
disabling back-annotation to individual bits of

an input port D-7
to individual bits of an input port D-6

SDF files
compiling separate files for min|typ|max

delays B-38
disabling CELLTYPE entries B-42
encryption 25-22
INTERCONNECT delays B-42

changing to transport delays B-42
negative values enabling B-47
rejecting B-47

INTERCONNECT entries
negative values enabling B-47

IOPATH delays
negative values enabling B-47

IOPATH entries
edge sensitivirty B-44
negavive values enabling B-47

min|typ|max delays
specified in a file B-37

RETAIN entries
enabling B-43

-sdf min|typ|max
instance_name

file.sdf B-37
$sdf_annotate D-40
+sdf_nocheck_celltype B-42
+sdfprotect file_suffix 25-22
-sdfretain 12-5, B-43
-sdfretain=warning B-43
SDFRT_IRV

wanring B-43
+sdfverbose C-23
search order of Verilog library directories B-6

rescan B-6
sequential devices

inferring 3-31–3-35, 12-38–12-42
sequential UDPs

changing output evaluation to the active
region B-97

changing output evaluation to the NBA tile
slot 3-5

IN-22

serial2trace.txt file 17-34
$setup D-35
$setuphold D-35

checking timestamp and timecheck
conditions B-49

diabling delayed versions of signals in other
timing checks B-48

signal port mismatch
changing from an error to a warning condition

B-90
signal property access funtions

OpenVera
enabling B-26

-simBin 34-11
-simdir 34-5, 34-12
-simflow 34-4, 34-11
-simprofile 6-17, B-49
-simprofile compile-time option 6-5
-simprofile runtime option 6-5
-simprofile compile-time option 6-5
-simprofile mem 6-19
-simprofile runtime option 6-5
-simprofile time 6-18
simprofile_dir 6-18
-simprofile_dir_path 6-7
simulation

immediately after compilation B-37
simulation report at the end of simulation

suppressing C-23
simulation state

saving D-41
simulation time slice based profiler 6-108
simv executable

specifying a deifferent name B-95
single class 17-67
single packed dimension 17-55
size PLI specification 23-7
$skew D-36
-skip_translate_body B-97
soft constraint 17-66
soft constraints 17-65, 17-78

disabling 17-65

prioritization 17-67
soft keyword 17-66
solver trace reporting

for the specified randomize() calls 17-37
SOMA 29-2
souce protection

enabling overwriting of existing files 25-21
enabling PLI and UCLI access 25-21
encrypting all modules 25-21

but not the module headers 25-21
but not the module headers and parameter

declarations 25-21
specifying the directory for protected files

25-21
specifying with ‘protect ‘endprotect 25-21

source file
specifying in a file B-49

source files
generating a list of B-99

source protection
mangling 25-22

except module and port identifiers 25-23
SDF files 25-22
specifying the end of the code to be

protected 25-16
specifying the end of the protected code

25-16
specifying the start of the code to be

protected 25-16
specifying the start of the protected code

25-16
sparse memory models 3-40
specify blocks

allowing
in specific module instances 12-37

disabling for an instance 12-37
suppressing B-45

in specific module instances 12-37
srandom(seed) system function C-6, C-7
$sreadmemb D-32
$sreadmemh D-32
state variables 17-49
Static Race Detection Tool B-75
std

IN-23

randomize() method 15-68
$stimen D-37
 C-35
$stop D-33
stopping simulation at a specified time C-21
strength information

disabling in VPD files C-26
string

C/C++ function argument type 23-60
C/C++ function return type 23-59
input argument type 23-72
output and inout argument type 23-73

strings
in constraints 17-64

$strobe D-29
-suppress 4-44, B-57
SV and RT assertions

browse, enable, and disable B-54
sv_fmt argument to -ntb_opts B-24
SVA 20-26, 20-43
-sverilog B-9
SWIFT SmartModels C-36

generating a template B-56
replaying DelayRange parameter definition

with +mindelay, +typdelay, or +maxdelay
C-35

$sync$nor$plane D-36
/*synopsys translate_off*/ pragma B-98
//synopsys translate_off pragma B-98
/*synopsys translate_on*/ pragma B-98
//synopsys translate_on pragma B-98
-sysc B-89
$system D-26
System Function Call

$size() 17-87
system tasks D-10–D-47, ??–D-47

disabling text output from C-24
IEEE standard system tasks not

implemented D-47
SystemC

cosimulating with Verilog 1-2, 22-1
SystemC cosimulation B-92

enabling B-89
time resolution B-89

SYSTEMC_OVERRIDE A-3
$systemf D-27
SystemVerilog 17-65, 20-43

enabling B-9
randomized objects in a structure 17-59
specifying the filename extension B-27
unpacked dimensions B-91, D-24

SystemVerilog assertions 20-1–??
in Multicore ALP 8-3

SystemVerilog LRM 17-50
+systemverilogext B-27

T
-t 14-5
tb_timescale argument to -ntb_opts B-25
tchk ACC capability 23-12
temporary object files B-67
$test$plusargs D-39
testbench

OpenVera
enabling B-19
macro on command line B-19
timescale B-25

testbench template 14-7
+tetramax B-89
TetraMAX testbench simulation in zero delay
mode B-89
text macros

defining B-93, D-3
else defining D-3
else if end D-3
elseif defining D-3
if defining D-4
if not defined D-5
undefining D-5

text output display from system tasks
disabling C-24

$time D-37
Time Constraint Solver view

in profiler reports 6-11, 6-79, 6-81

IN-24

time precision
as delay specification D-5

time scale
for the compilation-unit scope B-75
overrideing the ‘timescale compiler directive

f4rom the vcs command line B-76
specifying on the vcs command line B-75

time scale for time units and time precision D-8
time_pli 6-16, 6-18
time_solver

argument to the profrpt -view option 6-79
$timeformat D-32
-timescale B-75
‘timescale D-8
timescale

OpenVera testbench B-25
timing check system tasks

checking timestamp and timecheck
conditions B-49

disabling B-45
in specific module instances 12-37

disabling delayed versions of signals B-48
disabling display of timing violations B-46
disabling toggling the notifier register B-46
enabling

in specific module instances 12-38
negative values enabling B-48

timing check system tasks, disabling B-45
timing checks

disabling C-20
disabling for an instance 12-37
suppressing the toggling of notifier registers

C-20
timing violations

disabling B-46
disabling the display of C-20

timming checks
disabling the display of timing violations C-20

Timopt
the timing optimizer 12-38–12-42

+timopt 12-38
TMPDIR A-3
toggle coverage

in Multicore ALP 8-3
tokens argument to -ntb_opts B-25
tokens.v file 20-17, 25-22
-top 4-39
top-level Verilog Module 14-7
transport delays B-42
+transport_int_delays 12-21, 12-24, 12-26,
B-42
+transport_path_delays 12-21, 12-24, 12-26,
B-42
 C-36
+typdelays B-38, B-41, C-28

U
U

direct access for C/C++ functions
formal parameter type 23-71

-u B-93
U*

direct access for C/C++ functions
formal parameter type 23-71

UB*
direct access for C/C++ functions

formal parameter type 23-71
UCLI

enabling in encrypted files 25-21
-ucli 5-6, 5-8
UCLI Commands for X-Propagation Control
Tasks 11-29
UDPs

sequential UDPs
changing output evaluation to the active

region B-97
changing output evaluation to the NBA time

slot 3-5
unaccelerated

definitions and declarations 3-29–3-30
structural instance declarations 3-30

‘unconnected_drive D-9
‘undef D-5
$ungetc D-31
unified profiler

IN-25

ALL
argument to the profrpt -view option 6-13

caller-callee views 6-30
dynamic_mem

argument to the profrpt -view option 6-12
dynamic_mem+stack

argument to the profrpt -view option 6-12
mem_all

argument to the profrpt -view option 6-12
mem_callercallee

argument to the profrpt -view option 6-12
mem_const

argument to the profrpt -view option 6-12
mem_inst

argument to the profrpt -view option 6-12
mem_mod

argument to the profrpt -view option 6-12
mem_summary

argument to the profrpt -view option 6-11
time_all

argument to the profrpt -view option 6-11
time_callercallee

argument to the profrpt -view option 6-11
time_const

argument to the profrpt -view option 6-11
time_inst

argument to the profrpt -view option 6-11
time_mod

argument to the profrpt -view option 6-11
time_solver

argument to the profrpt -view option 6-11
time_summary

argument to the profrpt -view option 6-10
unified simulation profiler 6-1
-uniq_prior maxfail=integer C-19
uniq_prior_final compiler switch 15-92
unique constraints 17-81
unique keyword 15-92
UNIQUE violations

limiting the number of C-19
uniquifying identifier codes in VCD files 9-27
-unit_timescale B-75
unpacked D-24
unpacked dimensions B-91, D-24

-upf 34-13
uppercase

changing Verilog identifiers to B-93
use_sigprop B-26
use_sigprop argument to -ntb_opts B-26
‘uselib D-8
user-defined plusarg enabling C-35
utility, vcsplit 9-53

V
-V 2-7, B-60, C-23
-v 2-4, B-4, B-64
vacuous success message enabling C-14
$value$plusargs 5-22
+vc 23-131, B-54
vc_2stVectorRef() 23-102
vc_4stVectorRef() 23-100
vc_argInfo() 23-124
vc_arraySize() 23-90
vc_FillWithScalar() 23-121
vc_get2stMemoryVector() 23-117
vc_get2stVector() 23-106
vc_get4stMemoryVector() 23-115
vc_get4stVector() 23-104
vc_getInteger() 23-100
vc_getMemoryInteger() 23-112
vc_getMemoryScalar() 23-111
vc_getPointer() 23-98
vc_getReal() 23-95
vc_getScalar() 23-90
vc_handle

definition 23-80
using 23-81–23-82

vc_hdrs.h file 23-78–23-79
in DirectC B-55

vc_Index() 23-125
vc_Index2() 23-126
vc_Index3() 23-126
vc_is2state() 23-87
vc_is2stVector() 23-89

IN-26

vc_is4state() 23-86
vc_is4stVector() 23-88
vc_isMemory() 23-85
vc_isScalar() 23-83
vc_isVector() 23-84, 23-127
vc_mdaSize() 23-126
vc_MemoryElemRef) 23-109
vc_MemoryRef() 23-106
vc_MemoryString() 23-119
vc_MemoryStringF() 23-120
vc_put2stMemoryVector() 23-117
vc_put2stVector() 23-106
vc_put4stMemoryVector() 23-117
vc_put4stVector() 23-104
vc_putInteger() 23-100
vc_putMemoryInteger() 23-114
vc_putMemoryScalar() 23-112
vc_putMemoryValue() 23-118
vc_putMemoryValueF() 23-118
vc_putPointer() 23-98
vc_putReal() 23-95
vc_putScalar() 23-91
vc_putValue() 23-95
vc_putValueF() 23-96
vc_StringToVector() 23-99
vc_toChar() 23-91
vc_toInteger() 23-91
vc_toString() 23-93
vc_toStringF() 23-94
vc_VectorToString() 23-100
vc_width() 23-90
vcat utility 9-39
VCD file

specifying on the vcs command line B-91
VCD files

checkpoint
recording current values D-13
start recording current values D-13
stop recording current values D-13

emptying or flushing the buffer D-13

enabling VCD dumping for memories and
multi-dimensional arrays C-27

flushing the latest data to all open VCD files
D-14

flushing the latest data to the VCD file D-14
for LSI certification D-15
grw.dump file D-15
including strength levels D-15
increasing the frequency of flushing B-56
increasing the frequency of VCD file dumping

C-27, C-29
LSI certification

flushing the buffer D-17
recording all port values D-17
resume recording D-17
specifying the file size D-18
suspending D-16

recording in another VCD file D-14
specifing the time to turn on VCD dumping

C-27
specifying a limit to the VCD file size D-13
specifying the filename D-13
specifying the name of the VCD file C-26
specifying the nets and variables recorded in

the file D-13
specifying the time to turn off VCD dumping

C-27
VCD+ 9-2

Advantages 9-2
System Tasks

$vcdplusdeltacycleoff 9-18
$vcdplusdeltacycleon 9-18
$vcdplusmemoff 9-8
$vcdplusmemon 9-8
$vcdplusmemorydump 9-8

vcdiff utility 9-29
syntax 7-26, 9-30

$vcdplusautoflushoff D-19
$vcdplusautoflushon D-19
$vcdplusclose D-19
$vcdplusdeltacycleon D-19
$vcdplusevent D-20
$vcdplusfile D-21
$vcdplusflush D-21

IN-27

$vcdplusglitchon D-21
$vcdplusmemoff D-23
$vcdplusmemon D-21
$vcdplusmemorydump D-23
$vcdplusoff D-24
$vcdpluson D-24
vcdpost utility 9-26

syntax 9-28
VCS 4-33

predefined text macro D-4
VCS MX V2K Configurations and Libmaps
4-33
VCS_CC A-3
VCS_COM A-4
VCS_HOME B-67
VCS_LIC_EXPIRE_WARNING A-4
VCS_LICENSE_WAIT B-66
VCS_LOG A-4
‘vcs_mipdexpand D-6
VCS_NO_RT_STACK_TRACE A-4
VCS_PRINT_INITREG_INITIALIZATION
environment variable 4-27
VCS_SWIFT_NOTES A-4, A-5
+vcs+dumpoff+t+ht C-27
+vcs+dumpfile+filename C-26
+vcs+dumpon+t+ht C-27
+vcs+finish 5-27, C-21
+vcs+flush+all C-30
+vcs+flush+dump C-27, C-29
+vcs+flush+fopen C-29
+vcs+flush+log C-29
+vcs+ignorestop C-35
+vcs+initreg+config 4-23, B-32, C-32
+vcs+learn+pli ??–23-33, C-35
+vcs+lic+vcsi C-30
+vcs+lic+wait C-30
+vcs+mipd+noalias C-37
+vcs+mipdexpand D-6
+vcs+nostdout C-24
+vcs+stop 5-27, C-21
+vcs+vcdpluson B-91

vcsfind 1-10
+vcsi+lic+vcs C-30
+vcsi+lic+wait B-66
vcsplit utility 9-53
$vcdpluson B-91
vec32

storing four state Verilog data 23-65
vec32*

direct access for C/C++ functions
formal parameter type 23-71

vera_portname argument to -ntb_opts B-26
vera_shell

Vera shell module name B-26
verbose mode - displaying

compile-time and runtime numbers C-23
copyright information C-23
version and extended summary information

C-23
-verdi 34-10
-verdi_opts 34-10
Verilog

different versions
filename extension B-27

different versions‘include
filename extension B-28

Verilog 1995
specifying the filename extension B-27

Verilog 2001
specifying the filename extension B-27

Verilog identifiers
changing to uppwecase B-93

Verilog library
resolving module instances D-8

Verilog library directories
displaying a message upon instance

resolution B-7
file name extensions

specifying B-6
specifying B-5
specifying the search order B-6

rescan B-6
Verilog library files

specifying B-4

IN-28

Verilog model, example 14-7
Verilog module 14-7
Verilog module description 14-15
Verilog parameters

overriding B-73, B-80
overriding with the -gfile elaboration option

B-78
+verilog1995ext B-27
+verilog2001ext B-27
VerilogAMS

defaule discrete discipline B-72
version number

returning B-66
VHDL generics

overriding with the -gfile elaboration option
B-78

VHDL two state objects in Xprop 11-31
virtual interface

self instance 15-104
VMM B-24
void

C/C++ function return type 23-59
void*

direct access for C/C++ functions
formal parameter type 23-71

void**
direct access for C/C++ functions

formal parameter type 23-71
VPD file

specifying on the vcs command line B-91
VPD files D-18

buffer for
specifying the size of C-24

disable recording values for memories and
MDAs D-23

disabling file compression C-26
disabling recording in transition times an

values defined under ‘celldefine B-64
disabling recording in transition times an

values defined under ‘celldefine or in a
library B-65

disabling recording strength information
C-26

enabling recording in transition times an
values defined under ‘celldefine B-64

enabling VPD file locking C-26
ignoring $vcdplusxx system tasks C-25
marking as completed and closing D-19
record a unique event for a signal D-20
recording changes on the drivers of resolved

nets C-26
recording delta cycle information D-19
recording only ports and their direction C-26
recording ports and their direction C-25
recording signals but not ports C-26
recording values for memories and MDAs

D-21
records a snapshot of memories and MDAs

D-23
specifying the name C-24
specifying the next VPD file D-21
specifying the size of C-24
start recording D-24
stop recording D-24
switching to record another VPD file C-25
turning off automatic flushing D-19
turning on automatic flushing D-19
turning on zero delay glitches D-21
write simulation results to the VPD file D-21

+vpdfile 5-8
+vpdfileswitchsize 5-8
VPI 17-53

specifying the registration routine in a shared
library B-54

SV and RT assertions
browse, enable, and disable B-54

+vpi B-53
VPI PLI access routines

enabling B-53
vpiSeqBeginTime B-18
vpiSeqFail B-18
-Vt B-60
-vts_ignore_env=ENV1,ENV2,... B-76
vunit 20-43

IN-29

W
+warn 3-49, 4-44, B-60
$warning D-10
warning messages

disabling B-60
sover array size warning C-7

$width D-36
with expression in streaming 15-52
wn ACC capability 23-11
$write D-29
$writememb D-32
$writememh D-32

X
-xlrm 12-5
-xlrm alt_retain 12-5
-xlrm gd_pulseprop 12-6

-xlrm gd_pulsewarn 12-7
-xlrm uniq_prior_final compile switch 15-92
-Xman 25-22
-Xmangle 25-22
XMR 17-48
-Xnoman 25-23
-Xnomangle 25-23
-Xova 20-32
–Xova B-19

Y
-y 2-4, B-5, B-64

Z
zero multiconcat multiplier

allowing B-90

IN-30

	Contents
	Getting Started
	Simulator Support with Technologies
	Simulation Preemption Support
	Setting Up the Simulator
	Verifying Your System Configuration
	Obtaining a License
	Setting Up Your Environment
	Setting Up Your C Compiler

	Using the Simulator
	Basic Usage Model

	Default Time Unit and Time Precision
	Searching Identifiers in the Design Using UNIX Commands
	Examples

	VCS Flow
	Compilation
	Using vcs
	Commonly Used Options

	Simulation
	Interactive Mode
	Batch Mode
	Commonly Used Runtime Options

	Modeling Your Design
	Avoiding Race Conditions
	Using and Setting a Value at the Same Time
	Setting a Value Twice at the Same Time
	Flip-Flop Race Condition
	Continuous Assignment Evaluation
	Counting Events
	Time Zero Race Conditions

	Race Detection
	The Dynamic Race Detection Tool
	Introduction to the Dynamic Race Detection Tool
	Read - Write Race Condition
	Read
	Write
	Write - Write Race Condition
	Write-Write

	Enabling Race Detection
	The Race Detection Report
	Races of No Consequence

	Post Processing the Report
	Modifying the PostRace.pl Script

	Debugging Simulation Mismatches
	Method 1: If the Number of Unique Race Conditions is Small
	Method 2: If the Number of Unique Races is Large
	Method 3: An Alternative When the Number of Unique Race Conditions is Large

	The Static Race Detection Tool

	Optimizing Testbenches for Debugging
	Conditional Compilation
	Enabling Debugging Features At Runtime
	Combining the Techniques

	Creating Models That Simulate Faster
	Unaccelerated Data Types, Primitives, and Statements
	Inferring Faster Simulating Sequential Devices
	Modeling Faster always Blocks
	Using Verilog 2001 Constructs

	Case Statement Behavior
	Precedence in Text Macro Definitions
	Memory Size Limits in the Simulator
	Using Sparse Memory Models
	Obtaining Scope Information
	Scope Format Specifications
	Returning Information About the Scope

	Avoiding Circular Dependency
	Designing With $lsi_dumpports for Simulation and Test
	Dealing With Unassigned Nets
	Code Values at Time 0
	Cross Module Forces and No Instance Instantiation
	Signal Value/Strength Codes

	Compiling the Design
	Compiling or Elaborating the Design in Debug Mode
	Compiling or Elaborating the Design in Optimized Mode
	Optimizing Simulation Performance for Desired Debug Visibility with the -debug_access Option
	Use Model
	Key Points to Note

	Specifying Design Regions for -debug_access Capabilities
	Examples
	Key Points to Note

	Enabling Additional Debug Capabilities
	Driver/Load Debug Capability
	Statement Debug Capability
	Value Change Debug Capability
	Object Debug Capability
	Class Debug Capability

	Reduction in the Objects Being Dumped
	Testbench (TB) Definition
	Differences Between -debug_pp and -debug_access
	Using -debug_access with Tab Files
	Using -debug_access with -ucli/-gui at Compile-Time
	Unused Tab File Calls
	Including Tab Files
	Dumping FSDB

	Interaction with Other Debug Options

	Dynamic Loading of DPI Libraries at Runtime
	The Use Model

	Dynamic Loading of PLI Libraries at Runtime
	Key Compilation or Elaboration Features
	Initializing Verilog Variables, Registers and Memories
	Initializing Verilog Variables, Registers and Memories in an entire Design
	Initializing Verilog Variables, Registers and Memories in Selective Parts of a Design
	Selections for Initialization of Registers or Memories
	Reporting the Initialized Values of Variables, Registers and Memories

	Overriding Parameters
	Checking for x and z Values In Conditional Expressions
	Enabling the Checking
	Filtering Out False Negatives

	VCS V2K Configurations and Libmaps
	Library Mapping Files
	Resolving ‘include Compiler Directives

	Configurations
	Configuration Syntax

	Hierarchical Configurations
	The -top Compile-time Option
	Limitations of Configurations

	Lint Warning Message for Missing ‘endcelldefine
	Error/Warning/Lint Message Control
	Controlling Error/Warning/Lint Messages Using Compile-Time Options
	Controlling Error Messages
	Upgrading Lint and Warning Messages to Error Messages
	Controlling Warning Messages
	Upgrading Lint Messages to Warning Messages
	Controlling Lint Messages
	Suppressing Lint, Warning, and Error Messages
	Error Conditions and Messages That Cannot Be Disabled
	Using Message Control Options Together
	Message Control Examples

	Controlling Error/Warning/Lint Messages Using a Configuration File
	Controlling Lint Messages
	Controlling Warning Messages
	Controlling Error Messages
	Upgrading Lint and Warning Messages to Error Messages
	Downgrading Error Messages to Warning Messages
	Suppressing All Types of Messages
	Enabling and Disabling by Source File
	Enabling and Disabling by Module Definition
	Enabling and Disabling by Subhierarchy

	Extracting the Files Used in Compilation
	XML File Format
	Example
	For any tool that is capable of parsing the Verilog file and substitute the `include directive, non-include files are sufficient to work.

	Simulating the Design
	Using DVE
	Using UCLI
	ucli2Proc Command

	Options for Debugging Using DVE and UCLI
	Reporting Forces/Injections in a Simulation
	Use Model
	Reporting Force/Deposit/Release Information
	Handling Forces on Bit/Part Select and MDA Word
	Handling Forces on Concatenated Codes
	Output Format
	Header Section
	Event List Section

	Usage Example
	Limitations

	Key Runtime Features
	Passing Values from the Runtime Command Line
	Save and Restart The Simulation
	Save and Restart Example
	Save and Restart File I/O
	Save and Restart With Runtime Options

	Specifying a Long Time Before Stopping The Simulation
	How VCS Prevents Time 0 Race Conditions
	Supporting Simulation Executable to Return Non-Zero Value on Error Results
	Use Model
	Limitations

	Supporting Memory Load and Dump Task Verbosity
	Use Model

	The Unified Simulation Profiler
	The Use Model
	Omitting Profiling at Runtime
	Omitting the -simprofile Runtime Option
	Omitting Profile Report Writing after Runtime
	Specifying a Directory for the Profile Database

	Post Simulation Profile Information
	Specifying the Name of the Profile Report

	Running the profrpt Profile Report Generator
	Specifying Views
	The Snapshot Mechanism
	Specifying Timeline Reports
	Recording and Viewing Memory Stack Traces
	Reporting PLI, DPI, and DirectC Function Call Information
	Compiling and Running the Profiler Example
	Profiling Time Used by Various Parts of the Design
	Profiling Memory Used by Various Parts of the Design

	The Output Directories and Files
	The Enhanced Accumulative Views
	The Comparative View
	The Caller-Callee Views

	HTML Profiler Reports
	Display of Parameterized Class Functions and Tasks in Profiling Reports
	Hypertext Links to the Source Files
	Single Text Format Report
	Stack Trace Report Example
	SystemC Views

	Constraint Profiling Integrated in the Unified Profiler
	Changes to the Use Model for Constraint Profiling
	The Time Constraint Solver View
	The Memory Constraint Solver View

	Performance/Memory Profiling for Coverage Covergroups
	Use Model
	Example
	HTML Profiler Reports
	Default Summary View
	Time/Memory Summary View
	Time/Memory Module View
	Time/Memory Construct View
	Time/Memory Covergroup View

	Limitations
	Reporting Debug Capabilities for Each Module
	Use Model
	HTML Reports
	Text Reports
	Limitations

	Supporting Line-Based CPU Time Profiler
	Use Model
	Limitations

	Supporting Simulation Time Slice Based Profiler
	Use Model
	Diagnostics
	Limitations

	Isolating the Cost of Garbage Collection
	Use Model

	Isolating the Cost of Loading Design Database
	Use Model

	Support for Third-Party Shared Library Profiler Report
	Use Model

	Diagnostics
	Using Diagnostics
	Using –diag Option
	Syntax

	Using Smartlog

	Compile-time Diagnostics
	Libconfig Diagnostics
	Timescale Diagnostics
	Example
	Example 1: Module has `timescale
	Example 2: Passing -timescale from vcs command-line

	Runtime Diagnostics
	Diagnostics for VPI PLI Applications
	Keeping the UCLI/DVE Prompt Active After a Runtime Error
	UCLI Use Model
	Automating User Actions on Failure

	DVE Use Model
	UCLI Usage Example
	Limitations

	Diagnosing Quickthread Issues
	Diagnosing Quickthread Issues in DPI
	Diagnosing Quickthread Issues in SystemC
	Limitations
	Simulation Runs Out of Memory Due to Quickthread Stacks
	Reducing or Turning Off Redzones

	Post-processing Diagnostics
	Using the vpdutil Utility to Generate Statistics
	The vpdutil Utility Syntax
	Options
	Options for VPD File Information
	Options for Design Information
	Options for Value Change Information

	VCS Multicore Technology Application Level Parallelism
	Enabling Multicore Technology Application Level Parallelism
	Multicore SAIF File Dumping

	Limitations

	VPD, VCD, and EVCD Utilities
	Advantages of VPD
	Dumping a VPD File
	Using System Tasks
	Enable and Disable Dumping
	Override the VPD Filename
	Dump Multi-dimensional Arrays and Memories
	Syntax for Specifying MDAs
	Examples

	Using $vcdplusmemorydump
	Capture Delta Cycle Information

	Dumping an EVCD File
	Using $dumpports System Task
	EVCD File for Mixed Designs Using UCLI dump Command
	Use Model
	Use Model for Dumping CCN Driver Through INOUT

	Limitations
	Unsupported Port Types
	Unsupported DUT Types
	Unsupported Driver Types
	SystemC Support

	Post-processing Utilities
	The vcdpost Utility
	Scalarizing the Vector Signals
	Uniquifying the Identifier Codes
	The vcdpost Utility Syntax

	The vcdiff Utility
	The vcdiff Utility Syntax
	The vcdiff Utility Output Example

	The vcat Utility
	The vcat Utility Syntax
	Generating Source Files From VCD Files
	Writing the Configuration File

	The vcsplit Utility
	The vcsplit Utility Syntax

	The vcd2vpd Utility
	Options for specifying EVCD options

	The vpd2vcd Utility
	The Command File Syntax
	Limitations

	The vpdmerge Utility
	Restrictions
	Limitations
	Value Conflicts

	The vpdutil Utility

	Performance Tuning
	Compile-time Performance
	Incremental Compilation
	Compile Once and Run Many Times
	Parallel Compilation

	Runtime Performance
	Using Radiant Technology
	Compiling With Radiant Technology
	Applying Radiant Technology to Parts of the Design
	The Configuration File Syntax
	Configuration File Statement Examples
	Known Limitations
	Potential Differences in Coverage Metrics
	Compilation Performance With Radiant Technology

	Improving Performance When Using PLIs
	Usage Model

	Enabling TAB File Capabilities in UCLI Using -debug_access
	Use Model
	Example

	Impact on Performance
	Obtaining VCS Consumption of CPU Resources
	Use Model
	Compile time
	Simulation Time

	Using X-Propagation
	Introduction to X-Propagation
	Guidelines for Running X-Propagation Simulations

	Using the X-Propagation Simulator
	Specifying X-propagation Merge Mode
	Compile Time Diagnostic Report
	Querying X-Propagation at Runtime
	X-Propagation Instrumentation Report
	Automatic Hardware Inference of Flip-Flops Enabled by Default

	X-Propagation Configuration File
	X-Propagation Configuration File Syntax
	X-Propagation Instrumentation Definition
	X-Propagation Merge Mode Specification

	Xprop Instrumentation Control
	Process Based X-Propagation Exclusion
	Bounds Checking
	Changing $uniq_prior_checkoff/on Usage Model
	Time Zero Initialization
	Handling Non-pure Functions Due to Static Lifetime
	Supporting UCLI Commands for X-Propagation Control Tasks
	Use Model
	UCLI Command to Specify the Merge Mode
	UCLI Command to Control Error Messages or Warning Messages

	X-Propagation Code Examples
	If Statement
	Verilog Example

	Case Statement
	Verilog Example

	Edge Sensitive Expression
	Verilog Example

	Latch
	Verilog Example

	Support for Active Drivers in X-Propagation
	Combinational Logic
	Latches
	Flip-flops
	Key points to Note

	Limitations

	Gate-Level Simulation
	SDF Annotation
	Using Unified SDF Feature
	Using $sdf_annotate System Task
	Using -xlrm Option for SDF Retain, Gate Pulse Propagation, and Gate Pulse Detection Warning
	Using Optimistic Mode in SDF
	Using Gate Pulse Propagation
	Generating Warnings During Gate Pulses

	Precompiling an SDF File
	Creating the Precompiled Version of the SDF file
	Precompiling SDF alone Without Compiling Design Files
	Writing Precompiled SDF to a Different Directory

	SDF Configuration File
	Delay Objects and Constructs
	SDF Configuration File Commands
	approx_command
	mtm_command
	scale_command
	SDF Example with Configuration File

	Delays and Timing
	Transport and Inertial Delays
	The Inertial Delay Implementation
	Enabling Transport Delays

	Pulse Control
	Pulse Control with Transport Delays
	Pulse Control with Inertial Delays
	Specifying Pulse on Event or Detect Behavior

	Specifying the Delay Mode

	Using the Configuration File to Disable Timing
	Using the timopt Timing Optimizer
	Editing the timopt.cfg File
	Editing Potential Sequential Device Entries
	Editing Clock Signal Entries

	Using Scan Simulation Optimizer
	ScanOpt Config File Format
	ScanOpt Assumptions
	Combinational Path Delays
	Length of Test Cycles

	Negative Timing Checks
	The Need for Negative Value Timing Checks
	The $setuphold Timing Check Extended Syntax
	Negative Timing Checks for Asynchronous Controls
	The $recrem Timing Check Syntax

	Enabling Negative Timing Checks
	Other Timing Checks Using the Delayed Signals
	Checking Conditions
	Toggling the Notifier Register
	SDF Back-annotation to Negative Timing Checks
	How VCS Calculates Delays

	Coverage
	Code Coverage
	Functional Coverage
	Options For Coverage Metrics

	Using OpenVera Native Testbench
	Usage Model
	Example
	Usage Model
	Using Template Generator
	Example
	Design Description
	Generating the Testbench Template, the Interface, and the Top- level Verilog Module from the Design
	Testbench Development and Description
	Interface Description
	Interface for SRAM, sram.if.vrh
	Top-level Verilog Module Description
	Compiling Testbench With the Design And Running

	Key Features
	Multiple Program Support
	Configuration File Model
	Configuration File
	Usage Model for Multiple Programs
	NTB Options and the Configuration File

	Class Dependency Source File Reordering
	Circular Dependencies
	Dependency-based Ordering in Encrypted Files

	Using Encrypted Files
	Functional Coverage
	Using Reference Verification Methodology
	Limitations

	Using SystemVerilog
	Usage Model
	Using UVM With VCS
	Update on UVM-1.2
	Natively Compiling and Elaborating UVM-1.1d
	Natively Compiling and Elaborating UVM-1.2
	Compiling the External UVM Library
	Using the -ntb_opts uvm Option
	Specifying External uvm_dpi.cc Source

	Explicitly Specifying UVM Files and Arguments

	Accessing HDL Registers Through UVM Backdoor
	Generating UVM Register Abstraction Layer Code
	Recording UVM Transactions
	Debugging UVM Testbench Designs Using DVE
	Recording UVM Phases
	UVM Template Generator (uvmgen)
	Using Mixed VMM/UVM Libraries
	Migrating from OVM to UVM
	Where to Find UVM Examples
	Where to Find UVM Documentation
	UVM-1.1d Documentation
	UVM-VMM Interop Documentation

	Using VMM with VCS
	Using OVM with VCS
	Native Compilation and Elaboration of OVM 2.1.2
	Compiling the External OVM Library
	Using the -ntb_opts ovm Option
	Explicitly Specifying OVM Files and Arguments

	Recording OVM Transactions

	Debugging SystemVerilog Designs
	Functional Coverage
	SystemVerilog Constructs
	Extern Task and Function Calls through Virtual Interfaces
	Modport Expressions in an Interface
	Limitations

	Interface Classes
	Difference Between Extends and Implements
	Cast and Interface Class
	Name Conflicts and Resolution
	Name Conflicts During Implementation
	Name Conflicts During Inheritance

	Interface Class and Randomization

	Package Exports
	Severity System Tasks as Procedural Statements
	Width Casting Using Parameters
	The std::randomize() Function
	Syntax
	Description
	Example

	SystemVerilog Bounded Queues
	wait() Statement with a Static Class Member Variable
	Support for Consistent Behavior of Class Static Properties
	Parameters and Localparams in Classes
	SystemVerilog Math Functions
	Streaming Operators
	Packing (Used on RHS)
	Primitive Operation
	Streaming Concatenation

	Unpacking (Used on LHS)
	Primitive operation
	Streaming Concatenation

	Packing and Unpacking
	Propagation and force Statement
	Error Conditions
	Structures with Streaming Operators
	Support for with Expression
	Semantics

	Constant Functions in Generate Blocks
	Support for Aggregate Methods in Constraints Using the “with” Construct
	Debugging During Initialization SystemVerilog Static Functions and Tasks in Module Definitions
	Example

	Explicit External Constraint Blocks
	Using an Empty Constraint Block

	Generate Constructs in Program Blocks
	Error Condition for Using a Genvar Outside of its Generate Block
	Randomizing Unpacked Structs
	Using the Scope Randomize Method std::randomize()
	Using the Class Randomize Method randomize()
	Disabling and Re-enabling Randomization
	Using In-line Random Variable Control
	Limitation

	Making wait fork Statements Compliant with the SV LRM
	Making disable fork Statements Compliant with the SV LRM
	Using a Package in a SystemVerilog Module, Program, and Interface Header

	Support for Overriding Parameter Values through Configuration
	Example
	Precedence Override Rules
	Limitations

	Extensions to SystemVerilog
	Unique/Priority Case/IF Final Semantic Enhancements
	Using Unique/Priority Case/If with Always Block or Continuous Assign
	Using Unique/Priority Inside a Function
	System Tasks to Control Warning Messages

	Single-Sized Packed Dimension Extension
	Covariant Virtual Function Return Types
	Self Instance of a Virtual Interface
	UVM Example

	Aspect Oriented Extensions
	Aspect-Oriented Extensions in SV
	Processing of AOE as a Precompilation Expansion
	Weaving advice into the target method

	Pre-compilation Expansion details
	Precedence
	Adding of Introductions
	Weaving of advices
	Symbol Resolution Details:
	Examples:
	hide_list details
	Examples

	Using Constraints
	Support for Array Slice in Unique Constraints
	Support for Object Handle Comparison in Constraint Guards
	Support for Pure Constraint Block
	Support for SystemVerilog Bit Vector Functions in Constraints
	$countones Function
	$onehot Function
	$onehot0 Function
	$countbits Function
	$bits Function

	Inconsistent Constraints
	Constraint Debug
	Partition
	Randomize Serial Number
	Solver Trace
	Constraint Profiler
	Test Case Extraction
	Using multiple +ntb_solver_debug arguments
	Summary for +ntb_solver_debug
	+ntb_solver_debug=serial
	+ntb_solver_debug=trace
	+ntb_solver_debug=profile
	+ntb_solver_debug=extract

	Constraint Debug Using DVE
	Constraint Guard Error Suppression
	Error Message Suppression Limitations
	Flattening Nested Guard Expressions
	Pushing Guard Expressions into Foreach Loops

	Array and XMR Support in std::randomize()
	Error Conditions

	XMR Support in Constraints
	XMR Function Calls in Constraints

	State Variable Index in Constraints
	Runtime Check for State Versus Random Variables
	Array Index

	Using DPI Function Calls in Constraints
	Invoking Non-pure DPI Functions from Constraints

	Using Foreach Loops Over Packed Dimensions in Constraints
	Memories with Packed Dimensions
	Single Packed Dimension
	Multiple Packed Dimensions

	MDAs with Packed Dimensions
	Single Packed Dimension
	Multiple Packed Dimensions
	Just Packed Dimensions

	The foreach Iterative Constraint for Packed Arrays

	Randomized Objects in a Structure
	Support for Typecast in Constraints
	Syntax
	Description
	Examples

	Strings in Constraints
	SystemVerilog LRM P1800-2012 Update
	Using Soft Constraints in SystemVerilog
	Using Soft Constraints
	Soft Constraint Prioritization
	Within a Single Class

	Soft Constraints Defined in Classes Instantiated as rand Members in Another Class
	Soft Constraints Inheritance Between Classes
	Soft Constraints in AOP Extensions to a Class
	Soft Constraints in View Constraints Blocks
	Discarding Lower-Priority Soft Constraints
	Limitation

	Unique Constraints

	Enhancement to the Randomization of Multidimensional Array Functionality
	Limitations

	Supporting Random Array Index
	Limitation

	Supporting $size() System Function Call
	Supporting Foreach Loop Iteration over Array Select

	Extensions for SystemVerilog Coverage
	Support for Reference Arguments in get_coverage()
	get_inst_coverage() method
	get_coverage() method

	Functional Coverage Methodology Using the SystemVerilog C/C++ Interface
	SystemVerilog Functional Coverage Flow
	Covergroup Definition
	SystemVerilog (Covergroup for C/C++): covg.sv
	C Testbench: test.c
	Approach #1: Passing Arguments by Reference
	Approach #2: Passing Arguments by Value
	Compile Flow
	Runtime

	C/C++ Functional Coverage API Specification
	Parameters
	Description
	Parameters
	Description
	Parameters
	Description

	OpenVera-SystemVerilog Testbench Interoperability
	Scope of Interoperability
	Importing OpenVera types into SystemVerilog
	Data Type Mapping
	Mailboxes and Semaphores
	Events
	Strings
	Enumerated Types
	Integers and Bit-Vectors
	Arrays
	Structs and Unions

	Connecting to the Design
	Mapping Modports to Virtual Ports
	Virtual Modports
	Importing Clocking Block Members into a Modport

	Semantic Issues with Samples, Drives, and Expects

	Notes to Remember
	Blocking Functions in OpenVera
	Constraints and Randomization
	Functional Coverage

	Usage Model
	Limitations

	Using SystemVerilog Assertions
	Using SVAs in the HDL Design
	Using VCS Checker Library
	Instantiating SVA Checkers in Verilog

	Binding SVA to a Design
	Compilation
	Simulation

	Inlining SVAs in the Verilog Design
	Usage Model

	Number of SystemVerilog Assertions Supported in a Module

	Controlling SystemVerilog Assertions
	Compilation and Runtime Options
	Concatenating Assertion Options
	Assertion Monitoring System Tasks
	Using Assertion Categories
	Using System Tasks
	Using Assertion System Tasks

	Using Attributes
	Stopping and Restarting Assertions By Category
	Starting and Stopping Assertions Using Assertion System Tasks

	Viewing Results
	Using a Report File

	Enhanced Reporting for SystemVerilog Assertions in Functions
	Introduction
	Usage Model
	Name Conflict Resolution
	Checker and Generate Blocks

	Controlling Assertion Failure Messages
	Introduction
	Options for Controlling Default Assertion Failure Messages
	Options to Control Termination of Simulation
	Option to Enable Compilation of OVA Case Pragmas

	Reporting Values of Variables in the Assertion Failure Messages
	Limitations

	Reporting Messages When $uniq_prior_checkon/ $uniq_prior_checkoff System Tasks are Called
	Enabling Lint Messages for Assertions
	Fail-Only Assertion Evaluation Mode
	Key Points to Note
	Limitations

	Using SystemVerilog Constructs Inside vunits
	Limitations

	Calling $error Task when Else Block is Not Present
	Disabling Default Assertion Success Dumping in -debug_pp
	List of supported IEEE Std. 1800-2009 Compliant SVA Features
	Enabling IEEE Std. 1800-2009 Compliant Features
	Limitations

	Supported IEEE Std. 1800-2012 Compliant SVA Features
	Support for $countbits System Function
	Support for Real Data Type Variables
	Support for $assertcontrol Assertion Control System Task
	Limitations

	SystemVerilog Assertions Limitations
	Debug Support for New Constructs
	Note on Cross Features

	Using Property Specification Language
	Including PSL in the Design
	Examples

	Usage Model
	Examples

	Using SVA Options, SVA System Tasks, and OV Classes
	Limitations

	Using SystemC
	C Language Interface
	Using PLI
	Writing a PLI Application
	Functions in a PLI Application
	Header Files for PLI Applications
	PLI Table File
	Syntax
	Specifying Access Capabilities for PLI Functions
	Usage Example
	Specifying Access Capabilities for VCS Debugging Features

	Using the PLI Table File

	Enabling ACC Capabilities
	Globally
	Using the Configuration File
	Selected ACC Capabilities
	Learning What Access Capabilities are Used
	Compiling to Enable Only the Access Capabilities You Need
	Limitations

	PLI Access to Ports of Celldefine and Library Modules
	Example
	Visualization in DVE
	Limitations

	Using VPI Routines
	Support for VPI Callbacks for Reasons cbForce and cbRelease
	Support for the vpi_register_systf Routine
	Integrating a VPI Application With VCS
	PLI Table File for VPI Routines
	Virtual Interface Debug Support
	Example
	Limitations

	Unimplemented VPI Routines
	Modified VPI Features
	Example
	Error Message
	Solution
	Example
	Warning Message
	Solution
	Backwards Compatibility

	Diagnostics for VPI PLI Applications
	Using DirectC
	Using Direct C/C++ Function Calls
	How C/C++ Functions Work in a Verilog Environment
	Declaring the C/C++ Function
	Calling the C/C++ Function
	Storing Vector Values in Machine Memory
	Converting Strings
	Avoiding a Naming Problem
	Using Pass by Reference

	Using Direct Access
	Using the vc_hdrs.h File
	Access Routines for Multi-Dimensional Arrays
	UB *vc_arrayElemRef(UB*, U, ...)
	U vc_getSize(UB*,U)

	Using Abstract Access
	Using vc_handle
	Using Access Routines
	int vc_isScalar(vc_handle)
	int vc_isVector(vc_handle)
	int vc_isMemory(vc_handle)
	int vc_is4state(vc_handle)
	int vc_is2state(vc_handle)
	int vc_is4stVector(vc_handle)
	int vc_is2stVector(vc_handle)
	int vc_width(vc_handle)
	int vc_arraySize(vc_handle)
	scalar vc_getScalar(vc_handle)
	void vc_putScalar(vc_handle, scalar)
	char vc_toChar(vc_handle)
	int vc_toInteger(vc_handle)
	char *vc_toString(vc_handle)
	char *vc_toStringF(vc_handle, char)
	void vc_putReal(vc_handle, double)
	double vc_getReal(vc_handle)
	void vc_putValue(vc_handle, char *)
	void vc_putValueF(vc_handle, char *, char)
	void vc_putPointer(vc_handle, void*) void *vc_getPointer(vc_handle)
	void vc_StringToVector(char *, vc_handle)
	void vc_VectorToString(vc_handle, char *)
	int vc_getInteger(vc_handle)
	void vc_putInteger(vc_handle, int)
	vec32 *vc_4stVectorRef(vc_handle)
	U *vc_2stVectorRef(vc_handle)
	void vc_get4stVector(vc_handle, vec32 *) void vc_put4stVector(vc_handle, vec32 *)
	void vc_get2stVector(vc_handle, U *) void vc_put2stVector(vc_handle, U *)
	UB *vc_MemoryRef(vc_handle)
	UB *vc_MemoryElemRef(vc_handle, U indx)
	scalar vc_getMemoryScalar(vc_handle, U indx)
	void vc_putMemoryScalar(vc_handle, U indx, scalar)
	int vc_getMemoryInteger(vc_handle, U indx)
	void vc_putMemoryInteger(vc_handle, U indx, int)
	void vc_get4stMemoryVector(vc_handle, U indx, vec32 *)
	void vc_put4stMemoryVector(vc_handle, U indx, vec32 *)
	void vc_get2stMemoryVector(vc_handle, U indx, U *)
	void vc_put2stMemoryVector(vc_handle, U indx, U *)
	void vc_putMemoryValue(vc_handle, U indx, char *)
	void vc_putMemoryValueF(vc_handle, U indx, char, char *)
	char *vc_MemoryString(vc_handle, U indx)
	char *vc_MemoryStringF(vc_handle, U indx, char)
	void vc_FillWithScalar(vc_handle, scalar)
	char *vc_argInfo(vc_handle)
	int vc_Index(vc_handle, U, ...)
	U vc_mdaSize(vc_handle, U)

	Summary of Access Routines

	Enabling C/C++ Functions
	Mixing Direct And Abstract Access
	Specifying the DirectC.h File

	Extended BNF for External Function Declarations

	SAIF Support
	Using SAIF Files
	SAIF System Tasks
	The Flows to Generate a Backward SAIF File
	Generating an SDPD Backward SAIF File
	Generating a Non-SPDP Backward SAIF File

	SAIF Support for Two-Dimensional Memories in v2k Designs
	UCLI SAIF Dumping
	Criteria for Choosing Signals for SAIF Dumping

	Encrypting Source Files
	IEEE Verilog Standard 1364-2005 Encryption
	The Protection Header File
	Unsupported Protection Pragma Expressions

	Other Options for IEEE Std 1364-2005 Encryption Mode
	How Protection Envelopes Work
	The VCS Public Encryption Key
	Creating Interoperable Digital Envelopes Using VCS - Example
	Discontinued -ipkey Option

	128-bit Advanced Encryption Standard
	Compiler Directives for Source Protection
	Using Compiler Directives or Pragmas
	-protect128
	Example
	-putprotect128 <Dir-name>

	Automatic Protection Options
	Using Automatic Protection Options
	-autoprotect128
	-auto2protect128
	-auto3protect128
	+protect option
	+putprotect+<Dir-name>
	+autoprotect[file_suffix]
	+auto2protect[file_suffix]
	+auto3protect[file_suffix]
	+deleteprotected
	+pli_unprotected

	Protecting ‘include File Directive
	+autoincludeprotect

	Enabling Debug Access to Ports and Instance Hierarchy
	+autobodyprotect

	Debugging Partially Encrypted Source Code

	Skipping Encrypted Source Code

	Integrating VCS With Certitude
	Introduction to Certitude
	VCS and Certitude Integration
	Loading Designs Automatically in Verdi with Native Certitude
	Use Model
	Points to Note

	Dumping and Comparing Waveforms in Verdi for SystemC Designs
	Use Model
	Points to Note

	Integrating VCS with Vera
	Setting Up Vera and VCS
	Using Vera with VCS
	Usage Model

	Integrating VCS with Specman
	Type Support
	Usage Flow
	Setting Up The Environment
	Specman e Code Accessing Verilog

	Using specrun and specview
	Adding Specman Objects To DVE
	Version Checker for Specman
	Use Model
	Through Command-line Options

	Integrating VCS with Denali
	Setting Up Denali Environment for VCS
	Integrating Denali with VCS
	Usage Model
	Usage Model for Verilog Memory Models
	Execute Denali Commands at UCLI Prompt

	Integrating VCS with Debussy
	Using the Current Version of VCS with Novas 2010.07 Version
	Setting Up Debussy
	Usage Model to Dump fsdb File
	Using Verilog System Tasks
	Using UCLI

	Examples

	VCS and CustomSim Cosimulation
	Integrating VCS with CustomSim
	Setting up the Environment
	Licenses
	Required UNIX Paths and Variable Settings

	Use Model

	Scheduling Analog-to-Digital Events in the NBA Region
	Use Model

	Integrating VCS with MVSIM Native Mode
	Introduction to MVSIM
	MVSIM Native Mode in VCS
	References

	Unified UVM Library for VCS and Verdi
	Transaction/Message Recording in Verdi/DVE with VCS
	Compilation
	Enabling FSDB or DVE Transaction Recording
	Recommended Use Model for FSDB Transaction Dumping

	Simulation
	Dumping Transactions or Messages in Verdi Flow
	Dumping Transactions or Messages in DVE Flow

	Integrating VCS with Verdi
	Introduction
	Unified Compile Front End
	Generating Verdi KDB with Unified Compile Front End
	Reading Compiled Design with Verdi
	Notes
	Limitations

	Interactive and Post Simulation Debug
	Prerequisites
	Interactive Simulation Debug Flow
	Key Points to Note

	Post Simulation Debug Flow
	Limitations

	Unified UCLI Dump Command
	Default Dump File
	Default Dump Type
	Use Model
	Use Model for FSDB Dumping
	Use Model for VPD Dumping
	Key Points to Note

	Enhanced UCLI Dump Options
	dump -file
	dump -add
	dump -close
	dump -deltaCycle
	dump -flush
	dump -autoflush
	dump -interval
	dump -switch
	dump -forceEvent
	dump -filter
	dump -showfilter
	dump -power
	dump -powerstate

	New UCLI Dump Options
	dump -suppress_file
	dump -suppress_instance
	dump -enable
	dump -disable
	dump -glitch
	dump -opened
	dump -msv

	Limitations
	FSDB Limitations
	VPD Limitations

	Dumping Analog Signals in FSDB File in VCS- CustomSim Cosimulation Flow
	Use Model
	Use Model for FSDB Dumping
	Enabling Dumping of the Analog/Digital Signals in the FSDB File
	Enabling Merge Dumping

	Usage Example

	Support for Reverse Debug in UCLI
	Enabling Reverse Debug
	UCLI Commands for Reverse Debug
	Creating Checkpoints on Breakpoint Hits
	Using Reverse Simulation Control Commands
	Run/Continue Reverse Simulation Control Command
	Step and Next Reverse Simulation Control Commands

	Limitations

	Optimized Performance of Gate Level Designs Using FSDB Gates
	Use Model
	Key Points to Note
	Limitations

	VCS Environment Variables
	Simulation Environment Variables
	Optional Environment Variables

	Compile-Time Options
	Option for Code Generation
	Options for Accessing Verilog Libraries
	Options for Incremental Compilation
	Options for Help
	Option for SystemVerilog
	Options for SystemVerilog Assertions
	Options to Enable Compilation of OVA Case Pragmas
	Options for Native Testbench
	Options for Different Versions of Verilog
	Option for Initializing Verilog Variables, Registers and Memories with Random Values
	Option for Initializing Verilog Variables, Registers and Memories in Selective Parts of a Design
	Options for Selecting Register or Memory Initialization
	Options for Using Radiant Technology
	Options for Starting Simulation Right After Compilation
	Options for Specifying Delays and SDF Files
	Options for Compiling an SDF File
	Options for Specify Blocks and Timing Checks
	Options for Pulse Filtering
	Options for Negative Timing Checks
	Options for Profiling Your Design
	Options to Specify Source Files and Compile-time Options in a File
	Limitations of -f, -file and -F options

	Options for Compiling Runtime Options into the Executable
	Options for PLI Applications
	Options to Enable the VCS DirectC Interface
	Options for Flushing Certain Output Text File Buffers
	Options for Simulating SWIFT VMC Models and SmartModels
	Options for Controlling Messages
	Option to Run VCS in Syntax Checking Mode
	Limitations

	Options for Cell Definition
	Options for Licensing
	Options for Controlling the Linker
	Options for Controlling the C Compiler
	Options for Source Protection
	Options for Mixed Analog/Digital Simulation
	Options for Changing Parameter Values
	Checking for x and z Values in Conditional Expressions
	Options for Detecting Race Conditions
	Options to Specify the Time Scale
	Options to Exclude Environment Variables During Timestamp Checks
	Options for Overriding Parameters
	Option to Enable Bounds Check at Compile-Time
	Warning-[SIOB] Select Index Out of Bounds
	Example

	Option to Enable Bounds Check at Runtime
	Error-[DT-OBAE] Out of Bounds Access for Queues
	Example

	Error-[DT-OBAE] Out of Bounds Access for Dynamic Arrays
	Example

	Warning-[AOOBAW] Array Out of Bounds Access
	Example

	Warning-[AOOBAW] Array Out of Bounds Access
	Example

	Error-[DT-OBAE] Intermediate Access for Dynamic Arrays
	Example

	Warning-[AAIIW] Array Access with Intermediate Index
	Example

	Warning-[AAIIW] Array Access with Intermediate Index for Fixed Size Packed Arrays
	Example

	General Options
	Specifying Directories for ‘include Searches
	Enable the VCS/SystemC Cosimulation Interface
	TetraMAX
	Suppressing Port Coersion to inout
	Allow Inout Port Connection Width Mismatches
	Allow Zero or Negative Multiconcat Multiplier
	Specifying a VCD File
	Enabling Dumping
	Enabling Identifier Search
	Memories and Multi-Dimensional Arrays (MDAs)
	Specifying a Log File
	Changing Source File Identifiers to Upper Case
	Defining a Text Macro
	Option for Macro Expansion
	Specifying the Name of the Executable File
	Returning The Platform Directory Name
	Enabling Loop Detect
	Changing the Time Slot of Sequential UDP Output Evaluation
	Gate-Level Performance
	Option to Omit Compilation of Code Between Pragmas
	Generating a List of Source Files
	Option for Dumping Environment Variables

	Simulation Options
	Options for Simulating Native Testbenches
	Options for SystemVerilog Assertions
	Options to Control Termination of Simulation
	Options for Enabling and Disabling Specify Blocks
	Options for Specifying When Simulation Stops
	Options for Recording Output
	Options for Controlling Messages
	Options for VPD Files
	Options for VCD Files
	Options for Specifying Delays
	Options for Flushing Certain Output Text File Buffers
	Options for Licensing
	Option to Specify User-Defined Runtime Options in a File
	Option for Initializing Verilog Variables, Registers and Memories at Runtime
	Option for Initializing Verilog Variables, Registers and Memories in Selective Parts of a Design at Runtime
	General Options
	Viewing the Compile-Time Options
	Recording Where ACC Capabilities are Used
	Suppressing the $stop System Task
	Enabling User-defined Plusarg Options
	Enabling Overriding the Timing of a SWIFT SmartModel
	Enabling Loop Detect
	Specifying acc_handle_simulated_net PLI Routine
	Loading DPI Libraries Dynamically at Rutime
	Loading PLI Libraries Dynamically at Runtime

	Compiler Directives and System Tasks
	Compiler Directives
	Compiler Directives for Cell Definition
	Compiler Directives for Setting Defaults
	Compiler Directives for Macros
	Compiler Directives for Delays
	Compiler Directives for Backannotating SDF Delay Values
	Compiler Directives for Source Protection
	General Compiler Directives
	Compiler Directive for Including a Source File
	Compiler Directive for Setting the Time Scale
	Compiler Directive for Specifying a Library
	Compiler Directive for File Names and Line Numbers

	Unimplemented Compiler Directives

	System Tasks and Functions
	System Tasks for SystemVerilog Assertions Severity
	System Tasks for SystemVerilog Assertions Control
	System Tasks for SystemVerilog Assertions
	System Tasks for VCD Files
	System Tasks for LSI Certification VCD and EVCD Files
	System Tasks for VPD Files
	System Tasks for SystemVerilog Assertions
	System Tasks for Executing Operating System Commands
	System Tasks for Log Files
	System Tasks for Data Type Conversions
	System Tasks for Displaying Information
	System Tasks for File I/O
	System Tasks for Loading Memories
	System Tasks for Time Scale
	System Tasks for Simulation Control
	System Tasks for Timing Checks
	Timing Checks for Clock and Control Signals
	System Tasks for PLA Modeling
	System Tasks for Stochastic Analysis
	System Tasks for Simulation Time
	System Tasks for Probabilistic Distribution
	System Tasks for Resetting VCS
	General System Tasks and Functions
	Checks for a Plusarg
	SDF Files
	Counting the Drivers on a Net
	Depositing Values
	Fast Processing Stimulus Patterns
	Saving and Restarting The Simulation State
	Checking for X and Z Values in Conditional Expressions
	Calculating Bus Widths
	Displaying the Method Stack

	IEEE Standard System Tasks Not Yet Implemented

	PLI Access Routines
	Access Routines for Reading and Writing to Memories
	acc_setmem_int
	acc_getmem_int
	acc_clearmem_int
	Examples

	acc_setmem_hexstr
	Examples

	acc_getmem_hexstr
	acc_setmem_bitstr
	acc_getmem_bitstr
	acc_handle_mem_by_fullname
	acc_readmem
	Examples

	acc_getmem_range
	acc_getmem_size
	acc_getmem_word_int
	acc_getmem_word_range

	Access Routines for Multidimensional Arrays
	tf_mdanodeinfo and tf_imdanodeinfo
	acc_get_mda_range
	acc_get_mda_word_range()
	acc_getmda_bitstr()
	acc_setmda_bitstr()

	Access Routines for Probabilistic Distribution
	vcs_random
	vcs_random_const_seed
	vcs_random_seed
	vcs_dist_uniform
	vcs_dist_normal
	vcs_dist_exponential
	vcs_dist_poisson

	Access Routines for Returning a Pointer to a Parameter Value
	acc_fetch_paramval_str

	Access Routines for Extended VCD Files
	acc_lsi_dumpports_all
	acc_lsi_dumpports_call
	acc_lsi_dumpports_close
	acc_lsi_dumpports_flush
	acc_lsi_dumpports_limit
	acc_lsi_dumpports_misc
	acc_lsi_dumpports_off
	acc_lsi_dumpports_on
	acc_lsi_dumpports_setformat
	acc_lsi_dumpports_vhdl_enable

	Access Routines for Line Callbacks
	acc_mod_lcb_add
	acc_mod_lcb_del
	acc_mod_lcb_enabled
	acc_mod_lcb_fetch
	acc_mod_lcb_fetch2
	acc_mod_sfi_fetch

	Access Routines for Source Protection
	vcsSpClose
	vcsSpEncodeOff
	vcsSpEncodeOn
	vcsSpEncoding
	vcsSpGetFilePtr
	vcsSpInitialize
	vcsSpOvaDecodeLine
	vcsSpOvaDisable
	vcsSpOvaEnable
	vcsSpSetDisplayMsgFlag
	vcsSpSetFilePtr
	vcsSpSetLibLicenseCode
	vcsSpSetPliProtectionFlag
	vcsSpWriteChar
	vcsSpWriteString

	Access Routine for Signal in a Generate Block
	acc_object_of_type

	VCS API Routines
	Vcsinit()
	VcsSimUntil()

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

