
HDL Compiler™

for Verilog
User Guide
Version D-2010.03, March 2010

HDL Compiler for Verilog User Guide, version D-2010.03 ii

Copyright Notice and Proprietary Information
Copyright © 2010 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Astro, Behavior Extracting Synthesis Technology, Cadabra, CATS, Certify, CHIPit, Design Compiler,
DesignWare, Formality, HDL Analyst, HSIM, HSPICE, Identify, Leda, MAST, ModelTools, NanoSim, OpenVera, PathMill,
Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL, SNUG, SolvNet, Syndicated, Synplicity, Synplify,
Synplify Pro, Synthesis Constraints Optimization Environment, TetraMAX, the Synplicity logo, UMRBus, VCS, Vera, and
YIELDirector are registered trademarks of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, BEST, Columbia, Columbia-CE, Confirma, Cosmos,
CosmosLE, CosmosScope, CRITIC, CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon Access, Discovery, Eclypse, Encore,
EPIC, Galaxy, Galaxy Custom Designer, HANEX, HAPS, HapsTrak, HDL Compiler, Hercules, Hierarchical Optimization

Technology, High-performance ASIC Prototyping System, HSIM
plus

, i-Virtual Stepper, IICE, in-Sync, iN-Tandem, Jupiter,
Jupiter-DP, JupiterXT, JupiterXT-ASIC, Liberty, Libra-Passport, Library Compiler, Magellan, Mars, Mars-Rail, Mars-Xtalk,
Milkyway, ModelSource, Module Compiler, MultiPoint, Physical Analyst, Planet, Planet-PL, Polaris, Power Compiler,
Raphael, Saturn, Scirocco, Scirocco-i, Star-RCXT, Star-SimXT, StarRC, System Compiler, System Designer, Taurus,
TotalRecall, TSUPREM-4, VCS Express, VCSi, VHDL Compiler, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
Saber is a registered trademark of SabreMark Limited Partnership and is used under license.
All other product or company names may be trademarks of their respective owners.

Contents

What’s New in This Release . xii

About This Manual . xii

Customer Support. xv

1. Introduction to HDL Compiler for Verilog

Reading Verilog Designs . 1-2

Reading Designs With Dependencies Automatically . 1-2
Reading, Analyzing, and Elaborating Designs . 1-3
Reading and Analyzing Designs Without Elaboration 1-3
File Dependency Support . 1-4
Supported Variables . 1-4
Examples . 1-5

Automatic Detection of RTL Language From File Extensions 1-5

Controlling the Verilog Version Used for Reading RTL Files 1-6

Elaboration Reports . 1-6

Reporting Elaboration Errors . 1-7

Methodology . 1-9

Example. 1-9

hdlin_elab_errors_deep FAQs . 1-15

Netlist Reader . 1-17

Automatic Detection of Input Type . 1-17

Reading Commands Summary. 1-18

Defining Macros . 1-18
iii

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Using analyze -define . 1-18

Predefined Macros . 1-19

Global Macro Reset: `undefineall . 1-20

Parameterized Designs. 1-20

Reading Large Designs . 1-22

Use of $display During RTL Elaboration. 1-23

Inputs and Outputs . 1-24

Input Descriptions . 1-24

Design Hierarchy . 1-26

Component Inference and Instantiation. 1-26

Naming Considerations . 1-26

Generic Netlists . 1-27

Inference Reports . 1-30

Error Messages . 1-30

Language Construct Support . 1-31

Licenses . 1-31

2. Coding Considerations

Coding for QoR. 2-2

Expose Constants to Reduce Hardware . 2-2

Size Variables Efficiently . 2-2

Creating Relative Placement in Hardware Description Languages 2-3

Directives for Specifying Relative Placement. 2-4

Creating Groups Using `rp_group and `rp_endgroup . 2-4

Specifying Subgroups, Keepouts, and Instances Using `rp_place 2-5

Placing Cells Automatically Using `rp_fill. 2-6

Specifying Placement for Array Elements Using `rp_array_dir 2-8

Specifying Cell Alignment Using rp_align . 2-8

Specifying Cell Orientation Using rp_orient. 2-9

Ignoring Relative Placement Using rp_ignore and rp_endignore 2-10

Relative Placement Examples . 2-11

General Coding Guidelines. 2-17

Separate Sequential and Combinational Assignments 2-17

Persistence of Values Across Calls to Tasks . 2-18
Contents iv

HDL Compiler for Verilog User Guide Version D-2010.03
defparam . 2-18

Function Placed Within a Module . 2-19

Interacting With Other Flows. 2-19

Synthesis Flows. 2-19
Controlling Structure With Parentheses . 2-19
Multibit Components . 2-20

Low-Power Flows. 2-20
Keeping Signal Names . 2-20

Verification Flows. 2-23
Simulation/Synthesis Mismatch Issues. 2-23

3. Modeling Combinational Logic

Synthetic Operators . 3-2

Logic and Arithmetic Expressions. 3-4

Basic Operators . 3-4

Carry-Bit Overflow . 3-5

Divide Operators . 3-6

Sign Conversions . 3-7

Multiplexing Logic . 3-12

SELECT_OP Inference . 3-13

One-Hot Multiplexer Inference . 3-14

MUX_OP Inference . 3-15

MUX_OP Inference Examples . 3-18

Considerations When Using If Statements to Code For MUX_OPs 3-22

MUX_OP Inference Limitations . 3-25

MUX_OP Components With Variable Indexing. 3-26

Modeling Complex MUX Inferences: Bit and Memory Accesses. 3-26

Bit-Truncation Coding for DC Ultra Datapath Extraction . 3-27

Latches in Combinational Logic . 3-30

4. Modeling Sequential Logic

Generic Sequential Cells (SEQGENs) . 4-2

Inference Reports for Registers . 4-5

Register Inference Guidelines. 4-6
Chapter 1: Contents
1-vContents v

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Multiple Events in an always Block . 4-6

Minimizing Registers . 4-7

Keeping Unloaded Registers . 4-8

Preventing Unwanted Latches: hdlin_check_no_latch. 4-11

Register Inference Limitations . 4-12

Register Inference Examples . 4-13

Inferring Latches . 4-13
Basic D Latch . 4-14
D Latch With Asynchronous Reset: Use async_set_reset 4-14
D Latch With Asynchronous Set and Reset:

Use hdlin_latch_always_async_set_reset . 4-15

Inferring Flip-Flops. 4-16
Basic D Flip-Flop . 4-17
D Flip-Flop With Asynchronous Reset Using ?: Construct 4-18
D Flip-Flop With Asynchronous Reset . 4-18
D Flip-Flop With Asynchronous Set and Reset . 4-19
D Flip-Flop With Synchronous Reset:

Use sync_set_reset . 4-20
D Flip-Flop With Synchronous and Asynchronous Load 4-20
D Flip-Flops With Complex Set/Reset Signals . 4-21
Multiple Flip-Flops With Asynchronous and

Synchronous Controls . 4-23

5. Modeling Finite State Machines

FSM Coding Requirements for Automatic Inference. 5-2

FSM Inference Variables . 5-3

FSM Coding Example. 5-4

FSM Inference Report . 5-6

Enumerated Types . 5-7

6. Modeling Three-State Buffers

Using z Values . 6-2

Three-State Driver Inference Report . 6-2

Assigning a Single Three-State Driver to a Single Variable 6-3

Assigning Multiple Three-State Drivers to a Single Variable. 6-4
Contents vi

HDL Compiler for Verilog User Guide Version D-2010.03
Registering Three-State Driver Data . 6-5

Instantiating Three-State Drivers . 6-6

Errors and Warnings . 6-6

7. HDL Compiler Synthesis Directives

async_set_reset . 7-3

async_set_reset_local . 7-3

async_set_reset_local_all. 7-3

dc_tcl_script_begin and dc_tcl_script_end . 7-4

enum . 7-6

full_case . 7-7

infer_multibit and dont_infer_multibit . 7-9

Using the infer_multibit Directive . 7-10

Using the dont_infer_multibit Directive . 7-11

Multibit Benefits . 7-11

Reporting Multibit Components . 7-12

Limitations of Multibit Inference . 7-13

infer_mux . 7-13

infer_onehot_mux . 7-14

keep_signal_name . 7-14

one_cold . 7-14

one_hot . 7-14

parallel_case . 7-15

preserve_sequential . 7-16

sync_set_reset . 7-16

sync_set_reset_local . 7-17

sync_set_reset_local_all. 7-18

template . 7-19

translate_off and translate_on (Deprecated) . 7-19
Chapter 1: Contents
1-viiContents vii

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
8. HDL Compiler Variables

HDL Compiler Reading-Related Variables . 8-2

Commands for Writing Out Verilog . 8-7

Variables for Writing Out Verilog . 8-8

Appendix A. Examples

Count Zeros—Combinational Version. A-2

Count Zeros—Sequential Version. A-3

Drink Machine—State Machine Version . A-5

Drink Machine—Count Nickels Version . A-7

Carry-Lookahead Adder . A-8

Coding for Late-Arriving Signals . A-13

Datapath Duplication . A-13

Moving Late-Arriving Signals Closer to the Output . A-15
Overview. A-16
Late-Arriving Data Signal . A-18
Recoding for Late-Arriving Data Signal: Case 1 . A-19
Recoding for Late-Arriving Data Signal: Case 2 . A-20
Late-Arriving Control Signal . A-23
Recoding for Late-Arriving Control Signal . A-24

Instantiation of Arrays of Instances . A-26

SR Latches . A-30

D Latch With Asynchronous Set: Use async_set_reset . A-31

Inferring Master-Slave Latches . A-31

Master-Slave Latch Overview . A-32

Master-Slave Latch With Single Master-Slave Clock Pair A-32

Master-Slave Latch With Multiple Master-Slave Clock
Pairs . A-33

Master-Slave Latch With Discrete Components . A-34

Inferring Flip-Flops . A-34

D Flip-Flop With Synchronous Set:
Use sync_set_reset . A-35
Contents viii

HDL Compiler for Verilog User Guide Version D-2010.03
JK Flip-Flop With Synchronous Set and Reset:
Use sync_set_reset . A-36

Appendix B. Verilog Language Support

Syntax . B-2

Comments . B-2

Numbers . B-2

Verilog Keywords . B-3

Unsupported Verilog Language Constructs . B-5

Construct Restrictions and Comments . B-6

always Blocks . B-6

generate Statements . B-7
Generate Overview. B-7
Restrictions. B-7

Conditional Expressions (?:) Resource Sharing . B-7

Case . B-8
casez and casex . B-8
Full Case and Parallel Case . B-9

defparam . B-10

disable . B-10

Blocking and Nonblocking Assignments . B-11

Macromodule . B-12

inout Port Declaration . B-12

tri Data Type. B-13

Compiler Directives . B-13
`define. B-13
`include . B-14
`ifdef, `else, `endif, `ifndef, and `elsif. B-15
`rp_group and `rp_endgroup . B-16
`rp_place. B-16
`rp_fill . B-17
`rp_array_dir . B-18
rp_align. B-18
rp_orient . B-18
rp_ignore and rp_endignore . B-19
`undef . B-19

reg Types . B-19
Chapter 1: Contents
1-ixContents ix

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Types in Busing . B-19

Combinational while Loops . B-20

Verilog 2001 Supported Constructs . B-24

Ignored Constructs . B-25

Simulation Directives . B-25

Verilog System Functions . B-26

Verilog 2001 Feature Examples . B-26

Multidimensional Arrays and Arrays of Nets . B-26

Signed Quantities . B-28

Comparisons With Signed Types. B-30

Controlling Signs With Casting Operators . B-31

Part-Select Addressing Operators ([+:] and [-:]) . B-31
Variable Part-Select Overview . B-31
Example—Ascending Array and -: . B-32
Example—Ascending Array and +:. B-33
Example—Descending Array and -: . B-34
Example—Descending Array and +:. B-35

Power Operator (**) . B-36

Arithmetic Shift Operators (<<< and >>>) . B-36

Glossary

Index
Contents x

Preface

This preface includes the following sections:

• What’s New in This Release

• About This Manual

• Customer Support
xi

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
What’s New in This Release

Information about new features, enhancements, and changes, along with known problems,
limitations, and resolved Synopsys Technical Action Requests (STARs), is available in the
HDL Compiler Release Notes in SolvNet.

To see the HDL Compiler Release Notes,

1. Go to the Download Center on SolvNet located at the following address:

 https://solvnet.synopsys.com/DownloadCenter

If prompted, enter your user name and password. If you do not have a Synopsys user
name and password, follow the instructions to register with SolvNet.

2. Select HDL Compiler, then select a release in the list that appears.

About This Manual

HDL Compiler translates a Verilog hardware language description into a generic technology
(GTECH) netlist that is used by the Design Compiler tool to create an optimized netlist. This
manual describes the following:

• Modeling combinational logic, synchronous logic, three-state buffers, and multibit cells
with HDL Compiler for Verilog

• Sharing resources

• Using directives in the RTL

Audience

The HDL Compiler for Verilog User Guide is written for logic designers and electronic
engineers who are familiar with Design Compiler. Knowledge of the Verilog language is
required, and knowledge of a high-level programming language is helpful.
Preface
What’s New in This Release xii

https://solvnet.synopsys.com/DownloadCenter

HDL Compiler for Verilog User Guide Version D-2010.03
Related Publications

For additional information about HDL Compiler, see Documentation on the Web, which is
available through SolvNet at the following address:

https://solvnet.synopsys.com/DocsOnWeb

You might also want to refer to the documentation for the following related Synopsys
products:

• Design Vision

• Design Compiler

• DesignWare

• Library Compiler

• Verilog Compiled Simulator (VCS)
Chapter 1: Preface
About This Manual 1-xiii
Preface
About This Manual xiii

https:/solvnet.synopsys.com/DownloadCenter

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Conventions

The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates command syntax.

Courier italic Indicates a user-defined value in Synopsys syntax,
such as object_name. (A user-defined value that is
not Synopsys syntax, such as a user-defined value
in a Verilog or VHDL statement, is indicated by
regular text font italic.)

Courier bold Indicates user input—text you type verbatim—in
Synopsys syntax and examples. (User input that is
not Synopsys syntax, such as a user name or
password you enter in a GUI, is indicated by regular
text font bold.)

[] Denotes optional parameters, such as
pin1 [pin2 ... pinN]

| Indicates a choice among alternatives, such as
low | medium | high
(This example indicates that you can enter one of
three possible values for an option:
low, medium, or high.)

_ Connects terms that are read as a single term by
the system, such as
set_annotated_delay

Control-c Indicates a keyboard combination, such as holding
down the Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as
opening the Edit menu and choosing Copy.
Preface
About This Manual xiv

HDL Compiler for Verilog User Guide Version D-2010.03
Customer Support

Customer support is available through SolvNet online customer support and through
contacting the Synopsys Technical Support Center.

Accessing SolvNet

SolvNet includes an electronic knowledge base of technical articles and answers to
frequently asked questions about Synopsys tools. SolvNet also gives you access to a wide
range of Synopsys online services including software downloads, documentation on the
Web, and “Enter a Call to the Support Center.”

To access SolvNet, go to the SolvNet Web page at the following address:

https://solvnet.synopsys.com.

If prompted, enter your user name and password. If you do not have a Synopsys user name
and password, follow the instructions to register with SolvNet.

If you need help using SolvNet, click HELP in the top-right menu bar or in the footer.

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the Synopsys Technical
Support Center in the following ways:

• Open a call to your local support center from the Web by going to
https://solvnet.synopsys.com (Synopsys user name and password required), then
clicking “Enter a Call to the Support Center.”

• Send an e-mail message to your local support center.

• E-mail support_center@synopsys.com from within North America.

• Find other local support center e-mail addresses at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

• Telephone your local support center.

• Call (800) 245-8005 from within the continental United States.

• Call (650) 584-4200 from Canada.

• Find other local support center telephone numbers at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
Chapter 1: Preface
Customer Support 1-xv
Preface
Customer Support xv

https://solvnet.synopsys.com
https://solvnet.synopsys.com
https://solvnet.synopsys.com
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Preface
Customer Support xvi

1
Introduction to HDL Compiler for Verilog 1

The Synopsys Design Compiler tool uses the HDL Compiler tool to read designs written in
the Verilog hardware description language.

Note:
This manual uses the default tool command language (Tcl) standard for most examples
and discussion.

This chapter introduces the main concepts and capabilities of HDL Compiler. It includes the
following sections:

• Reading Verilog Designs

• Elaboration Reports

• Reporting Elaboration Errors

• Netlist Reader

• Automatic Detection of Input Type

• Reading Commands Summary

• Defining Macros

• Parameterized Designs

• Reading Large Designs

• Use of $display During RTL Elaboration
1-1

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
• Inputs and Outputs

• Language Construct Support

• Licenses

Reading Verilog Designs

Design Compiler uses HDL Compiler to read in Verilog designs. When HDL Compiler reads
a design, it checks the code for correct syntax and builds a generic technology (GTECH)
netlist that Design Compiler uses to optimize the design. You can use the read_verilog
command to do both functions automatically, or you can use the analyze and elaborate
commands to do each function separately. You can use either command unless you have
parameterized designs; for these designs, you need to use elaborate to specify parameter
values. See “Parameterized Designs” on page 1-20.

For Verilog gate-level netlists, HDL Compiler automatically detects if your design is a netlist
and uses a specialized netlist reader to read in your design. See “Automatic Detection of
Input Type” on page 1-17.

HDL Compiler supports automatic linking of mixed language libraries. In Verilog, the default
library is the work directory, and you cannot have multiple libraries. In VHDL, however, you
can have multiple design libraries.

Reading Designs With Dependencies Automatically
HDL Compiler analyzes and can elaborate designs and any files dependent on them in the
correct order automatically when you use the -autoread option with the analyze or
read_file commands. The -autoread option reads in the source files of a design,
analyzes them, and, when you use the read_file command, it elaborates the design
starting at the specified top-level design. It retains the resulting GTECH representation in
memory. During sequential analyze -autoread and read_file -autoread calls, HDL
Compiler analyzes and elaborates only the files that were changed and the files that depend
on them. The -autoread option is cross language compatible.

You can specify the -autoread option with the read_file command or the analyze
command. Specifying read_file -autoread elaborates the top design, while specifying
analyze -autoread does not perform elaboration. The following sections describe how to
use the -autoread option. The sections also highlight required and recommended
arguments and variables. For a complete list of options, see the read_file and analyze
man pages.
Chapter 1: Introduction to HDL Compiler for Verilog
Reading Verilog Designs 1-2

HDL Compiler for Verilog User Guide Version D-2010.03
Reading, Analyzing, and Elaborating Designs
To automatically read a file with dependencies, analyze the files, and elaborate the design
starting at the specified top-level design, enter the following command at the tool prompt:

dc_shell> read_file -autoread file_or_dir_list -top design_name

You must specify the file_or_dir_list argument, which lists the files to be analyzed. The
-autoread option locates the source files by expanding each file or directory in the
file_or_dir_list list. You must specify the -top design_name argument, which
identifies the top design.

You can exclude a file by specifying the -exclude argument or the
hdlin_autoread_exclude_extensions variable. For more information about the
hdlin_autoread_exclude_extensions variable, see “Supported Variables” on page 1-4.

If a directory is used as an argument, the -autoread option collects the files from the
directory, and, if you specify the -recursive option, it also collects the files from its
subdirectories. The option then infers which files are RTL source files based on the file
extension. If you specify the -format option, only files with the specified extensions for that
format are collected. The default file extensions for VHDL are .vhd and .vhdl and the default
extension for Verilog is .v.

Reading and Analyzing Designs Without Elaboration
To automatically read a file with dependencies and analyze the files without elaborating the
design, enter the following command at the tool prompt:

dc_shell> analyze -autoread file_or_dir_list -top design_name

You must specify the file_or_dir_list argument, which lists the files to be analyzed. The
-autoread option locates the source files by expanding each file or directory in the
file_or_dir_list list. The -top option is not required. If you specify -top, HDL Compiler
analyzes only the RTL source files that the top design depends on. If you do not specify
-top, HDL Compiler analyzes all the RTL source files that the -autoread option finds.

You can exclude a file by specifying the -exclude argument or the
hdlin_autoread_exclude_extensions variable. For more information about the
hdlin_autoread_exclude_extensions variable, see “Supported Variables” on page 1-4.

If a directory is used as an argument, the -autoread option collects the files from the
directory, and, if you specify the -recursive option, it also collects the files from its
subdirectories. The option then infers which files are RTL source files based on the file
extension. If you specify the -format option, only files with the specified extensions for that
format are collected. The default file extensions for VHDL are .vhd and .vhdl and the default
extension for Verilog is .v.
Chapter 1: Introduction to HDL Compiler for Verilog
Reading Verilog Designs 1-3
Chapter 1: Introduction to HDL Compiler for Verilog
Reading Verilog Designs 1-3

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
File Dependency Support
A dependency occurs when a file, for example file A, requires or uses language constructs
that were defined in another file, for example file B. When you use the -autoread option,
HDL Compiler automatically analyzes and, when you use the read_file command,
elaborates the files with the following dependencies in the correct order:

• Analyze dependency

If file B defines entity E in VHDL and file A defines the architecture of entity E, file A
depends on file B. Therefore, file A must be analyzed after file B. This is known as an
analyze dependency. Entity and architecture definitions are exclusive language
constructions of VHDL. They do not exist in Verilog.

• Link dependency

If module X creates instances of module Y in Verilog, there is no need to analyze them in
a specific order. However, both must have been analyzed before elaborating and linking
the design. Otherwise, the missing module is considered a black box. This is known as a
link dependency. This is an exclusive language construction of Verilog. It does not exist
in VHDL.

• Include dependency

If a file X defines a macro that is used in file Y in Verilog, then file X and file Y must be
analyzed in the same unit of compilation and in that order, meaning that they must be
included with the same analyze command. The effect is the same as having included file
X in file Y. This is known as an include dependency. This is an exclusive language
construction of Verilog. It does not exist in VHDL.

HDL Compiler detects Verilog macro usage and definition and reorders files to ensure
that they are analyzed in the correct order. However, this is not always possible, for
example when a macro is defined several times in different files.

Supported Variables
 The following variables are available for the -autoread option for Verilog:

• hdlin_autoread_exclude_extensions

Defines which files to exclude from the analyze process, based on the file extension.

• hdlin_autoread_verilog_extensions

Defines which files to infer as Verilog files, based on the file extension. The default file
extension for Verilog is .v.

• hdlin_autoread_vhdl_extensions

Defines which files to infer as VHDL files, based on the file extension. The default file
extensions for VHDL are .vhd and .vhdl.
Chapter 1: Introduction to HDL Compiler for Verilog
Reading Verilog Designs 1-4

HDL Compiler for Verilog User Guide Version D-2010.03
Examples
In the following example, the current directory is the source directory. HDL Compiler reads
the source files, analyzes them, and elaborates the design starting at the specified top-level
design:

dc_shell> read_file {.} -autoread -recursive -top E1

The following example specifies extensions for Verilog files that are different than the default
(.v) and sets the -source list and the exclude list. Lastly, it runs read_file -autoread,
specifying the top-level design. HDL Compiler includes only files with Verilog extensions.

dc_shell> set hdlin_autoread_verilog_extensions {.ve .VE}
dc_shell> set my_sources {mod1/src mod2/src}
dc_shell> set my_excludes {mod1/src/incl_dir/ mod2/src/incl_dir/}
dc_shell> read_file $my_sources -recursive -exclude $my_excludes -autoread \

-f verilog -top TOP

Note that excluding directories explicitly is useful if files inside those directories have the
same extensions as the source files but you do not want HDL Compiler to use them.

Automatic Detection of RTL Language From File Extensions
You can specify a file format with the read_file command by using the -format option. If
you do not specify a format, read_file infers the format based on the file extension. If the
file extension in unknown, the format is assumed to be .ddc. The file extensions in Table 1-1
are supported for automatic inference:

The supported extensions are not case sensitive. All formats except .ddc can be
compressed in gzip (.gz) format.

If you specify a file format that is not supported, Design Compiler generates an error
message. For example, if you specify read_file test.vlog, Design Compiler issues the
following DDC-2 error message:

Error: Unable to open file 'test.vlog' for reading. (DDC-2)

Table 1-1 Supported File Extensions for Automatic Inference

Format File extensions

ddc .ddc

db .db, .sldb, .sdb, .db.gz, .sldb.gz, .sdb.gz

Verilog .v, .verilog, .v.gz, .verilog.gz
Chapter 1: Introduction to HDL Compiler for Verilog
Reading Verilog Designs 1-5
Chapter 1: Introduction to HDL Compiler for Verilog
Reading Verilog Designs 1-5

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Controlling the Verilog Version Used for Reading RTL Files
The hdlin_vrlg_std variable controls the Verilog language version that is used when
reading RTL files. The valid values for the hdlin_vrlg_std variable are 1995 and 2001,
corresponding to the 1995 and 2001 Verilog LRM releases. When you set the
hdlin_vrlg_std variable to 1995 or 2001, that version of the Verilog LRM features is
enabled when you specify the analyze command or the read_verilog command. By
default, the hdlin_vrlg_std variable is set to 2001.

Previously, the hdlin_vrlg_std variable also specified the SystemVerilog language
version. To control the SystemVerilog language version that is used when reading RTL files,
use the hdlin_sverilog_std variable. The valid values for the hdlin_sverilog_std
variable are 2005 and 2009, corresponding to the 2005 and 2009 SystemVerilog LRM
releases. When you set the hdlin_sverilog_std variable to 2005 or 2009, that version of
the SystemVerilog LRM features is enabled when you specify the analyze -f sverilog
command or the read_sverilog command. By default, the hdlin_sverilog_std variable
is set to 2005.

Elaboration Reports

You can control the type and the amount of information that is included in elaboration reports
by setting the hdlin_reporting_level variable to basic, comprehensive, verbose, or
none. Table 1-2 shows what is included in the report based on each setting. In the table, true
indicates that the information will be included in the report, false indicates that it will not be
included in the report, and verbose indicates that the report will include detailed information.
If you do not specify a setting, hdlin_reporting_level is set to basic by default.

Table 1-2 Basic hdlin_reporting_level Variable Settings

Information included in report none basic comprehensive verbose

floating_net_to_ground

Reports the floating net to ground
connections.

false false true true

fsm

Prints a report of inferred state variables.

false false true true

inferred_modules

Prints a report of inferred sequential
elements.

false true true verbose
Chapter 1: Introduction to HDL Compiler for Verilog
Elaboration Reports 1-6

HDL Compiler for Verilog User Guide Version D-2010.03
In addition to the basic settings, you can also specify the add (+) or subtract (-) options to
customize a report. For example, if you want a report to include floating net-to-ground
connections, synthetic cells, inferred state variables, and verbose information for inferred
sequential elements, but you do not want to include MUX_OPs or inferred three-state
elements, you can set the hdlin_reporting_level variable to the following setting:

set hdlin_reporting_level verbose-mux_op-tri_state

As another example, if you set the hdlin_reporting_level variable to the following
setting,

set hdlin_reporting_level basic+floating_net_to_ground+syn_cell+fsm

HDL Compiler issues a report that is equivalent to set hdlin_reporting_level
comprehensive, meaning that the elaboration report will include comprehensive
information for all the information listed in Table 1-2 on page 1-6.

Reporting Elaboration Errors

HDL Compiler elaborates designs in a top-down hierarchical order. The elaboration failure
of a top-level module prohibits the elaboration of all associated submodules. The
hdlin_elab_errors_deep variable allows the elaboration of submodules even if the
top-level module elaboration fails, enabling HDL Compiler to report more elaboration, link,
and VER-37 errors and warnings in a hierarchical design during the first elaboration run.

To understand how this variable works, consider the four-level hierarchical design in
Figure 1-1. This design has elaboration (ELAB) errors as noted in the figure.

mux_op

Prints a report of MUX_OPs.

false true true true

syn_cell

Prints a report of synthetic cells.

false false true true

tri_state

Prints a report of inferred three-state
elements.

false true true true

Table 1-2 Basic hdlin_reporting_level Variable Settings (Continued)

Information included in report none basic comprehensive verbose
Chapter 1: Introduction to HDL Compiler for Verilog
Reporting Elaboration Errors 1-7
Chapter 1: Introduction to HDL Compiler for Verilog
Reporting Elaboration Errors 1-7

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Figure 1-1 Hierarchical Design

Under default conditions, when you elaborate the design, HDL Compiler only reports the
errors in the first-level (ELAB-368 and ELAB-298 in module A). To find the second-level error
(ELAB-298 in submodule D), you need to fix the first-level errors and elaborate again.

When you use the hdlin_elab_errors_deep variable, you only need to elaborate once to
find the errors in A and the submodule D.

This section describes the hdlin_elab_errors_deep variable and provides methodology,
examples, and a list of frequently asked questions (FAQ) in the following subsections:

• Methodology

• Example

• hdlin_elab_errors_deep FAQs

TOP

B C

E

ELAB-360
ELAB-298
ELAB-368
ELAB-298

A

ELAB-298

D

F

G

Level 1

Level 2

Level 3

Level 4
Chapter 1: Introduction to HDL Compiler for Verilog
Reporting Elaboration Errors 1-8

HDL Compiler for Verilog User Guide Version D-2010.03
Methodology
Use the following methodology to enable HDL Compiler to report elaboration, link, and
VER-37 errors across the hierarchy during a single elaboration run.

1. Identify and fix all syntax errors in the design.

2. Set hdlin_elab_errors_deep to true.

When you set this variable to true, HDL Compiler reports the following:

 *** Presto compilation run in rtl debug mode. ***

Important:
 HDL Compiler does not create designs when you set hdlin_elab_errors_deep to
true. The tool reports warnings if you try to use commands that require a design. For
example, if you run list_design, the tool reports the message
“Warning: No designs to list. (UID-275).”

3. Elaborate your design using the elaborate command.

4. Fix any elaboration, link, and VER-37 errors. Review the warnings and fix as needed.

5. Set hdlin_elab_errors_deep to false.

6. Elaborate your error-free design.

7. Proceed with your normal synthesis flow.

The next section provides examples showing HDL Compiler reporting all errors across the
hierarchy, which reduces the need for multiple elaboration runs.

Example
This example uses a hierarchical Verilog design to demonstrate how the
hdlin_elab_errors_deep variable enables HDL Compiler to report errors across a design
hierarchy in a single elaboration run. Each design is read under default conditions
(hdlin_elab_errors_deep is false) and with hdlin_elab_errors_deep set to true.
Session logs provide the error reports.

This section uses a Verilog design to show HDL Compiler’s hierarchical error reporting
capability, which is made available through the hdlin_elab_errors_deep variable.
Figure 1-2 shows the block diagram for the Verilog design Top; Example 1-1 shows the RTL
code. The design errors are noted in the figure.
Chapter 1: Introduction to HDL Compiler for Verilog
Reporting Elaboration Errors 1-9
Chapter 1: Introduction to HDL Compiler for Verilog
Reporting Elaboration Errors 1-9

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Figure 1-2 Hierarchical Design

Example 1-1 Verilog RTL for Design Top
module top (clk, a, b, c, out, small_bus);
 parameter SMALL = 8;
 input clk, a, b;
 output c, out;
 output [SMALL-1:0] small_bus;

 sub1 sub1_inst (clk, a, b, c, out, small_bus);
 sub2 sub2_inst (a, b, c);
 sub3 sub3_inst(a, b, c);

endmodule

module sub1 (clk, a, b, c, out, small_bus);
 parameter SMALL = 8;
 input clk, a, b;
 output c, out;
 output [SMALL-1:0] small_bus;
 wire [1:0] r;

Top

Sub2
 LINK-3

Sub3

ELAB-360
ELAB-298
ELAB-368
ELAB-298

Sub1

ELAB-298

Foo

Bar

Phi

Sub2
Chapter 1: Introduction to HDL Compiler for Verilog
Reporting Elaboration Errors 1-10

HDL Compiler for Verilog User Guide Version D-2010.03
 wire temp;

 assign temp = c & out;
 assign temp = 1'b1; // ELAB-368 error
 assign a = r[2]; // ELAB-298 error

 foo foo_inst (a, b, c, small_bus, clk);

endmodule

module foo (a, b, c, small_bus, clk);
 parameter SMALL = 8;
 input a, b, clk;
 output c;
 output [SMALL-1:0] small_bus;
 wire [1:0] r;
 assign c = r[3]; // ELAB-298 error
 assign c = a & b;
 bar bar_inst (a, b, c, small_bus);

endmodule

module bar (a, b, c, small_bus);
 parameter SMALL = 8;
 input a, b;
 output [SMALL-1:0] small_bus;
 output c;
 phi #(SMALL) phi_ok(small_bus);
 assign c = ~b;
 endmodule
module phi(addr_bus);
 parameter SIZE = 1024;
 output [SIZE-1:0] addr_bus;
 assign addr_bus = 'b1;
endmodule // phi

module sub2 (a, b, c);
 input a, b;
 output c;
 assign c = a ^ b;
endmodule

module sub3 (a, b, c);
 input [3:0] a;
 input [3:0] b;
 output [3:0]c;
 assign c = a | b;
 sub2 sub2(a[2], b[3], c[0]); //LINK-3 error for a, b, c
endmodule // sub3
Chapter 1: Introduction to HDL Compiler for Verilog
Reporting Elaboration Errors 1-11
Chapter 1: Introduction to HDL Compiler for Verilog
Reporting Elaboration Errors 1-11

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
When you elaborate design Top with hdlin_elab_errors_deep set to false, the default
behavior, HDL Compiler reports first-level errors (ELAB-368 and ELAB-298 in sub1 and
LINK-3 in sub3) but does not report the ELAB-298 error in submodule foo. Example 1-2
shows the session log.

Example 1-2
Initializing...
Initializing gui preferences from file /.../.synopsys_dv_prefs.tcl
dc_shell> analyze -f verilog test.v
Running PRESTO HDLC
Searching for ./test.v
Compiling source file ./test.v
Warning: ./test.v:22: Port a of type input is being assigned.
(VER-1005)
Presto compilation completed successfully.
Loading db file '/.../libraries/syn/lsi_10k.db'
1
dc_shell> elaborate top
Loading db file '/.../libraries/syn/gtech.db'
Loading db file '/.../libraries/syn/standard.sldb'
 Loading link library 'lsi_10k'
 Loading link library 'gtech'
Running PRESTO HDLC
Presto compilation completed successfully.
Elaborated 1 design.
Current design is now 'top'.
Information: Building the design 'sub1'. (HDL-193)
Error: ./test.v:21: Net 'temp', or a directly connected net, is driven
by more than
one
source, and at least on
e source is a constant net. (ELAB-368)
Error: ./test.v:22: Array index out of bounds r[2], valid bounds are
[1:0].
(ELAB-298)
*** Presto compilation terminated with 2 errors. ***
Information: Building the design 'sub2'. (HDL-193)
Presto compilation completed successfully.
Information: Building the design 'sub3'. (HDL-193)
Presto compilation completed successfully.
Error: Width mismatch on port 'a' of reference to 'sub3' in 'top'.
(LINK-3)
Error: Width mismatch on port 'b' of reference to 'sub3' in 'top'.
(LINK-3)
Error: Width mismatch on port 'c' of reference to 'sub3' in 'top'.
(LINK-3)
Warning: Design 'top' has '1' unresolved references. For more detailed
information,
use
the "link" command. (UID-341)
1
dc_shell> current_design
Chapter 1: Introduction to HDL Compiler for Verilog
Reporting Elaboration Errors 1-12

HDL Compiler for Verilog User Guide Version D-2010.03
Current design is 'top'.
{top}
dc_shell> list_designs
sub2 sub3 top (*)
1

When you elaborate design Top with hdlin_elab_errors_deep set to true, HDL Compiler
reports errors across the hierarchy, as shown in Example 1-3.

Important:
HDL Compiler does not create designs when hdlin_elab_errors_deep is set to true. If
you run list_design, HDL Compiler reports
“Warning: No designs to list. (UID-275).”

Example 1-3
Initializing...
Initializing gui preferences from file /.../.synopsys_dv_prefs.tcl
dc_shell> set hdlin_elab_errors_deep TRUE
TRUE
dc_shell> analyze -f verilog test.v
Running PRESTO HDLC
Searching for ./test.v
Compiling source file ./test.v
Warning: ./test.v:22: Port a of type input is being assigned.
(VER-1005)
Presto compilation completed successfully.
Loading db file '/.../libraries/syn/lsi_10k.db'
1
dc_shell> elaborate top
Loading db file '/.../libraries/syn/gtech.db'
Loading db file '/.../libraries/syn/standard.sldb'
 Loading link library 'lsi_10k'
 Loading link library 'gtech'
Running PRESTO HDLC
*** Presto compilation run in rtl debug mode. ***
Presto compilation completed successfully.
Elaborated 1 design.
Current design is now 'top'.
Information: Building the design 'sub1'. (HDL-193)
*** Presto compilation run in rtl debug mode. ***
Error: ./test.v:21: Net 'temp', or a directly connected net, is driven
by more than
one
source, and at least one source is a constant net. (ELAB-368)
Error: ./test.v:22: Array index out of bounds r[2], valid bounds are
[1:0].
(ELAB-298)
*** Presto compilation terminated with 2 errors. ***
Information: Building the design 'sub2'. (HDL-193)
*** Presto compilation run in rtl debug mode. ***
Presto compilation completed successfully.
Information: Building the design 'sub3'. (HDL-193)
Chapter 1: Introduction to HDL Compiler for Verilog
Reporting Elaboration Errors 1-13
Chapter 1: Introduction to HDL Compiler for Verilog
Reporting Elaboration Errors 1-13

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
*** Presto compilation run in rtl debug mode. ***
Presto compilation completed successfully.
Error: Width mismatch on port 'a' of reference to 'sub3' in 'top'.
(LINK-3)
Error: Width mismatch on port 'b' of reference to 'sub3' in 'top'.
(LINK-3)
Error: Width mismatch on port 'c' of reference to 'sub3' in 'top'.
(LINK-3)
Information: Building the design 'foo'. (HDL-193)
*** Presto compilation run in rtl debug mode. ***
Error: ./test.v:32: Array index out of bounds r[3], valid bounds are
[1:0].
(ELAB-298)
*** Presto compilation terminated with 1 errors. ***
Information: Building the design 'bar'. (HDL-193)
*** Presto compilation run in rtl debug mode. ***
Presto compilation completed successfully.
Information: Building the design 'phi' instantiated from design 'bar'
with
 the parameters "8". (HDL-193)
*** Presto compilation run in rtl debug mode. ***
Presto compilation completed successfully.
1
dc_shell> current_design
Error: Current design is not defined. (UID-4)
dc_shell> list_designs
Warning: No designs to list. (UID-275)
0

The hdlin_elab_errors_deep variable is designed to save you time in finding design
elaboration and linking errors. For the Verilog design Top, under default conditions, only the
top-level errors are identified:

• ELAB-368 and ELAB-298 in sub1

• LINK-3 in sub3

To find the ELAB-298 error in submodule foo, you need to fix all the errors in sub1 and
elaborate again. However, if you set hdlin_elab_errors_deep to true, all errors across the
hierarchy are identified in one elaboration run. HDL Compiler reports

• ELAB-368 and ELAB-298 in sub1

• LINK-3 in sub3

• ELAB-298 in submodule foo
Chapter 1: Introduction to HDL Compiler for Verilog
Reporting Elaboration Errors 1-14

HDL Compiler for Verilog User Guide Version D-2010.03
hdlin_elab_errors_deep FAQs

1. Why should I use the hdlin_elab_errors_deep variable?

This variable enables HDL Compiler to report elaboration, linking, and VER-37 errors and
warnings across hierarchical designs in a single elaboration run.

2. Why isn’t the hdlin_elab_errors_deep variable set to true by default?

If the variable were true by default, no designs could be saved. To prevent designs with
errors from being propagated, HDL Compiler does not save designs when
hdlin_elab_errors_deep is set to true.

3. Why can’t HDL Compiler save only the designs that don’t have errors when
hdlin_elab_errors_deep is set to true?

When hdlin_elab_errors_deep is set to true, HDL Compiler elaborates lower-level
designs even if the top-level design has errors. Occasionally, errors in the top level cause
lower-level errors that are not reported; the lower-level appears to be error free, but isn’t.

4. What types of errors does hdlin_elab_errors_deep report?

ELAB errors and warnings, LINK errors and warnings, and the VER-37 internal error.

5. How does HDL Compiler handle parameterized designs that do not have parameters
specified?

HDL Compiler reports these as errors during analyze.

6. Why do I have to fix my syntax errors before elaborating?

After doing analyze, HDL Compiler creates an intermediate design that the elaborate
command uses to elaborate the design. This intermediate file is created only after all
syntax errors are fixed. If you do not fix all the syntax errors, there is no intermediate file
to elaborate.

7. I want to use the read_file command. What happens if I set
hdlin_elab_errors_deep to true and use read_file?

The read_file is not supported for use with hdlin_elab_errors_deep because The
read_file command does not include the functionality of the link command. The
elaborate command includes the functionality of the link command. The read_file
command does not allow command-line parameter specification; the elaborate
command allows this.

8. How much longer does elaboration take when I set hdlin_elab_errors_deep to true?

There is a very small increase in elaboration time.
Chapter 1: Introduction to HDL Compiler for Verilog
Reporting Elaboration Errors 1-15
Chapter 1: Introduction to HDL Compiler for Verilog
Reporting Elaboration Errors 1-15

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
9. Does capacity drop when I set hdlin_elab_errors_deep to true? Is there a
recommended number of errors I can tell HDL Compiler to stop at? If I have lots of errors,
will it hang?

No noticeable difference in performance has been observed.

10. Can I compile when hdlin_elab_errors_deep is true?

No design is created when hdlin_elab_errors_deep is true. Even if the design appears
to be error free, no design will be created. You cannot compile because there is no design
to compile.

11. When hdlin_elab_errors_deep is true, will all errors be valid?

In most cases, all reported errors are valid.

12. The hdlin_elab_errors_deep command seems like a very helpful feature. Why didn’t
you do it earlier?

Designs are getting bigger and to accommodate these larger designs, more hierarchy is
being created. Thus the need for the hdlin_elab_errors_deep command developed
over time.

13. Can I use the -clock_gate option with the elaborate command when
hdlin_elab_errors_deep is true?

No. You cannot create clock gating with the
elaborate -clock_gating command. The tool will error out.

14.Can I get incorrect logic when using hdlin_elab_errors_deep?

No, because a design is not created.

15. Is hdlin_elab_errors_deep a lint tool?

No, HDL Compiler does not include a lint tool. The Design Compiler tool provides the
check_design command, which provides the lint function.

16. What happens if I set hdlin_elab_errors_deep to true and analyze a design with
syntax errors?

The syntax errors are reported (same as default behavior).

17. What happens when I have multiple instances of erroneous designs when
hdlin_elab_errors_deep is true?

There is no behavior change. HDL Compiler reports ELAB errors when elaborating the
design (module declaration), not the instantiation. The error messages do not get
multiplied by the number of instances. This is the same as the default behavior.

18. Does HDL Compiler report all syntax errors when I use the analyze command? Are all
syntax errors reported at once, or do I need to do multiple analyze commands?
Chapter 1: Introduction to HDL Compiler for Verilog
Reporting Elaboration Errors 1-16

HDL Compiler for Verilog User Guide Version D-2010.03
One analyze command reports all the syntax errors.

19. What happens if I read in some designs and later set the hdlin_elab_errors_deep
variable to true?

Previously read in designs will still be in memory, but it is better to remove the designs
before setting hdlin_elab_errors_deep to true.

Netlist Reader

Design Compiler contains a specialized reader for gate-level Verilog netlists that has higher
capacity on designs that do not use RTL-level constructs, but it does not support the entire
Verilog language. The specialized netlist reader reads netlists faster and uses less memory
than HDL Compiler.

If you have problems reading a netlist with the netlist reader, try reading it with HDL Compiler
by using read_verilog -rtl or by specifying read_file -format verilog -rtl.

Automatic Detection of Input Type

By default, when you read in a Verilog gate-level netlist, HDL Compiler determines that your
design is a netlist and runs the specialized netlist reader.

Important:
For best memory usage and runtime, do not mix RTL and netlist designs into a single
read. The automatic detector chooses one reader—netlist or RTL—to read all files
included in the command. Mixed files default to the RTL reader, because it can read both
types; the netlist reader can read only netlists.

The following variables apply only to HDL Compiler and are not implemented by the netlist
reader:

• power_preserve_rtl_hier_names (default is false)

• hdlin_auto_save_templates (default is false)

If you set either of these variables to true (the nondefault value), automatic netlist detection
is disabled and you must use the -netlist option to enable the netlist reader.
Chapter 1: Introduction to HDL Compiler for Verilog
Netlist Reader 1-17
Chapter 1: Introduction to HDL Compiler for Verilog
Netlist Reader 1-17

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Reading Commands Summary

The recommended and alternative reading commands are summarized in Table 1-3.

Defining Macros

HDL Compiler provides the following support for macro definition.

Using analyze -define
When using -define with multiple analyze commands, you must remove any designs in
memory before re-analyzing the design. To remove the designs, use the
remove_design -all command.

Because elaborated designs in memory have no timestamps, the tool cannot determine if
the analyzed file that the elaborated design is based on has been updated or not. The tool
may assume that the previously elaborated (out-of-date) design is up-to-date and reuse it.

Table 1-3 Reading Commands

Type of input Reading method

RTL For parameterized designs,
analyze -format verilog { files }
elaborate <topdesign>
is preferred because it does a recursive elaboration of the entire design and
lets you pass parameter values to the elaboration. The read method
conditionally elaborates all designs with the default parameters.

To enable macro definition from the read, use
read_file -format verilog { files }

Alternative reading methods:
read_verilog -rtl { files }
read_file -format verilog -rtl { files }

 Gate-level netlists Recommended reading method:
read_verilog { files }

Alternative reading methods:
read_verilog -netlist { files }
read_file -format verilog -netlist { files }
Chapter 1: Introduction to HDL Compiler for Verilog
Reading Commands Summary 1-18

HDL Compiler for Verilog User Guide Version D-2010.03
Predefined Macros
HDL Compiler predefines the following macros:

• SYNTHESIS—Used to specify simulation-only code, as shown in Example 1-4.

Example 1-4 Using SYNTHESIS and `ifndef ... `endif Constructs
module dff_async (RESET, SET, DATA, Q, CLK);
 input CLK;
 input RESET, SET, DATA;
 output Q;
 reg Q;
 // synopsys one_hot "RESET, SET"

 always @(posedge CLK or posedge RESET or posedge SET)
 if (RESET)
 Q <= 1'b0;
 else if (SET)
 Q <= 1'b1;
 else Q <= DATA;
 `ifndef SYNTHESIS
 always @ (RESET or SET)
 if (RESET + SET > 1)
 $write ("ONE-HOT violation for RESET and SET.");
 `endif
 endmodule

In this example, the SYNTHESIS macro and the `ifndef ... `endif constructs enclose the
simulation-only code that checks if reset and set are asserted at the same time. The main
always block is both simulated and synthesized; the block that checks—at simulation
time—if what the designer assumed to be true is actually true, is wrapped in the `ifndef
... `endif constructs.

• VERILOG_1995—For running without the Verilog 2001 features.

• VERILOG_2001—For running the conditional inclusion of Verilog 2001 features.
Supported Verilog 2001 features are listed in “Verilog 2001 Supported Constructs” on
page B-24. To disable Verilog 2001 features, set hdlin_vrlg_std to 1995; the default is
2001, which enables Verilog 2001 features.
Chapter 1: Introduction to HDL Compiler for Verilog
Defining Macros 1-19
Chapter 1: Introduction to HDL Compiler for Verilog
Defining Macros 1-19

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Global Macro Reset: `undefineall
The `undefineall directive is a global reset for all macros that causes all the macros
defined earlier in the source file to be reset to undefined.

Parameterized Designs

There are two ways to build parameterized designs. One method instantiates them, as
shown in Example 1-5.

Example 1-5 Instantiating a Parameterized Design
module param (a,b,c);

input [3:0] a,b;
output [3:0] c;

foo #(4,5,4+6) U1(a,b,c); // instantiate foo

endmodule

In Example 1-5, the code instantiates the parameterized design foo, which has three
parameters. The first parameter is assigned the value 4, the second parameter is assigned
the value 5, and the third parameter takes the value 10.

The second method builds a parameterized design with the elaborate command. The
syntax of the command is

elaborate template_name -parameters parameter_list

The syntax of the parameter specifications includes strings, integers, and constants using
the following formats `b,`h, b and h.

You can store parameterized designs in user-specified design libraries. For example,

analyze -format verilog n-register.v -library mylib

This command stores the analyzed results of the design contained in file n-register.v in a
user-specified design library, mylib.

To verify that a design is stored in memory, use the report_design_lib work command.
The report_design_lib command lists designs that reside in the indicated design library.

When a design is built from a template, only the parameters you indicate when you
instantiate the parameterized design are used in the template name. For example, suppose
the template ADD has parameters N, M, and Z. You can build a design where N = 8, M = 6,
Chapter 1: Introduction to HDL Compiler for Verilog
Parameterized Designs 1-20

HDL Compiler for Verilog User Guide Version D-2010.03
and Z is left at its default value. The name assigned to this design is ADD_N8_M6. If no
parameters are listed, the template is built with default values, and the name of the created
design is the same as the name of the template. If no default parameters are provided, an
error occurs.

The model in Example 1-6 uses a parameter to determine the register bit-width; the default
width is declared as 8.

Example 1-6 Register Model
module DFF (in1, clk, out1);
 parameter SIZE = 8;
 input [SIZE-1:0] in1;
 input clk;
 output [SIZE-1:0] out1;
 reg [SIZE-1:0] out1;
 reg [SIZE-1:0] tmp;

 always @(clk)
 if (clk == 0)
 tmp = in1;
 else //(clk == 1)
 out1 <= tmp;
endmodule

If you want an instance of the register model to have a bit-width of 16, use the elaborate
command to specify this as follows:

elaborate DFF -param SIZE=16

The list_designs command shows the design, as follows:

DFF_SIZE16 (*)

Using the read_verilog command to build a design with parameters is not recommended
because you can build a design only with the default value of the parameters.

You also need to either set the hdlin_auto_save_templates variable to true or insert the
template directive in the module, as follows:

module DFF (in1, clk, out1);
 parameter SIZE = 8;
 input [SIZE-1:0] in1;
 input clk;
 output [SIZE-1:0] out1;
 // synopsys template
...

The following three variables control the naming convention for templates:
hdlin_template_naming_style, hdlin_template_parameter_style, and
hdlin_template_separator_style. For details, see Chapter 8, “HDL Compiler Variables.
Chapter 1: Introduction to HDL Compiler for Verilog
Parameterized Designs 1-21
Chapter 1: Introduction to HDL Compiler for Verilog
Parameterized Designs 1-21

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Reading Large Designs

To easily read designs containing several HDL source files and libraries, use the analyze
command with the -vcs option. VCS-style analyze provides better compatibility with VCS
command options and makes it easier to read in large designs. This feature enables
automatic resolution of instantiated designs by searching for the referenced designs in
user-specified libraries and then loading these designs. Use the following options with -vcs:

 [-sverilog|-verilog]
 [-y <directory_path>]
 [+libext+<extension1>+...]
 [-v <library_file>]
 [-f <command_file>]
 [+define+<macro_name>+...]
 [+incdir+<directory_path>+...]

For example, to read in a design containing Verilog modules and SystemVerilog modules
and interfaces, execute the following commands:

analyze -vcs "-verilog -y mylibdir1 +libext+.v -v myfile1
+incdir+myincludedir1
 -f mycmdfile2" top.v
analyze -vcs "-sverilog -y ./mylibdir2 +libext+.sv -v ./myfile2
+define+SYNOPSYS "
top.sv

elaborate top

Limitations:

When using the analyze -vcs feature, you need to be aware of the following limitations:

1. Language elements other than modules, such as interfaces and structures, cannot be
picked up from libraries or files using the -y and -v options.

2. A macro can be defined, but a value cannot be assigned to it. The value definition with
+define is not supported.

These options follow the VCS command line syntax. For more details, see the VCS
documentation and the analyze man page.
Chapter 1: Introduction to HDL Compiler for Verilog
Reading Large Designs 1-22

HDL Compiler for Verilog User Guide Version D-2010.03
Use of $display During RTL Elaboration

The $display system task is usually used to report simulation progress. In synthesis, HDL
Compiler executes $display calls as it sees them and executes all the display statements on
all the paths through the program as it elaborates the design. It usually cannot tell the value
of variables, except compile-time constants like loop iteration counters.

Note that because HDL Compiler executes all $display calls, error messages from the
Verilog source can be executed and can look like unexpected messages.

Using $display is useful for printing out any compile-time computations on parameters or the
number of times a loop executes. A $display example follows:

module F (in, out, clk);
 parameter SIZE = 1;
 input [SIZE-1: 0] in;
 output [SIZE-1: 0] out;
 reg [SIZE-1: 0] out;
 input clk;
 // ...
 `ifdef SYNTHESIS
 always $display("Instantiating F, SIZE=%d", SIZE);
 `endif
endmodule

module TOP (in, out, clk);
 input [33:0] in;
 output [33:0] out;
 input clk;

 F #(2) F2 (in[1:0] ,out[1:0], clk);
 F #(32) F32 (in[33:2], out[33:2], clk);
endmodule

HDL Compiler reports the following during elaboration:

dc_shell> elaborate TOP
Running PRESTO HDLC
Presto compilation completed successfully.
Elaborated 1 design.
Current design is now 'TOP'.
Information: Building the design 'F' instantiated from design 'TOP' with
 the parameters "2". (HDL-193)
$display output: Instantiating F, SIZE=2
Presto compilation completed successfully.
Information: Building the design 'F' instantiated from design 'TOP' with
 the parameters "32". (HDL-193)
$display output: Instantiating F, SIZE=32
Presto compilation completed successfully.
Chapter 1: Introduction to HDL Compiler for Verilog
Use of $display During RTL Elaboration 1-23
Chapter 1: Introduction to HDL Compiler for Verilog
Use of $display During RTL Elaboration 1-23

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Inputs and Outputs

This section contains the following topics:

• Input Descriptions

• Design Hierarchy

• Component Inference and Instantiation

• Naming Considerations

• Generic Netlists

• Inference Reports

• Error Messages

Input Descriptions
Verilog code input to HDL Compiler can contain both structural and functional (RTL)
descriptions. A Verilog structural description can define a range of hierarchical and
gate-level constructs, including module definitions, module instantiations, and netlist
connections.

The functional elements of a Verilog description for synthesis include

• always statements

• Tasks and functions

• Assignments

• Continuous—are outside always blocks

• Procedural—are inside always blocks and can be either blocking or nonblocking

• Sequential blocks (statements between a begin and an end)

• Control statements

• Loops—for, while, forever

The forever loop is only supported if it has an associated disable condition, making the
exit condition deterministic.

• case and if statements

Functional and structural descriptions can be used in the same module, as shown in
Example 1-7.
Chapter 1: Introduction to HDL Compiler for Verilog
Inputs and Outputs 1-24

HDL Compiler for Verilog User Guide Version D-2010.03
In this example, the detect_logic function determines whether the input bit is a 0 or a 1.
After making this determination, detect_logic sets ns to the next state of the machine. An
always block infers flip-flops to hold the state information between clock cycles. These
statements use a functional description style. A structural description style is used to
instantiate the three-state buffer t1.

Example 1-7 Mixed Structural and Functional Descriptions
// This finite state machine (Mealy type) reads one
// bit per clock cycle and detects three or more
// consecutive 1s.

module three_ones(signal, clock, detect, output_enable);
input signal, clock, output_enable;
output detect;
// Declare current state and next state variables.
reg [1:0] cs;
reg [1:0] ns;
wire ungated_detect;
// Declare the symbolic names for states.
parameter NO_ONES = 0, ONE_ONE = 1,

 TWO_ONES = 2, AT_LEAST_THREE_ONES = 3;
// ************* STRUCTURAL DESCRIPTION ****************
// Instance of a three-state gate that enables output
three_state t1 (ungated_detect, output_enable, detect);

// ************* FUNCTIONAL DESCRIPTION ****************
// always block infers flip-flops to hold the state of
// the FSM.
always @ (posedge clock) begin

 cs = ns;
end
// Combinational function
function detect_logic;

input [1:0] cs;
input signal;

begin
detect_logic = 0; //default value
if (signal == 0) //bit is zero

ns = NO_ONES;
else //bit is one, increment state
case (cs)

NO_ONES: ns = ONE_ONE;
ONE_ONE: ns = TWO_ONES;
TWO_ONES, AT_LEAST_THREE_ONES:

begin
ns = AT_LEAST_THREE_ONES;
detect_logic = 1;
end

endcase
end

endfunction
assign ungated_detect = detect_logic(cs, signal);

endmodule
Chapter 1: Introduction to HDL Compiler for Verilog
Inputs and Outputs 1-25
Chapter 1: Introduction to HDL Compiler for Verilog
Inputs and Outputs 1-25

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Design Hierarchy
HDL Compiler maintains the hierarchical boundaries you define when you use structural
Verilog. These boundaries have two major effects:

• Each module specified in your HDL description is synthesized separately and maintained
as a distinct design. The constraints for the design are maintained, and each module can
be optimized separately in Design Compiler.

• Module instantiations within HDL descriptions are maintained during input. The instance
name you assign to user-defined components is carried through to the gate-level
implementation.

Note:
HDL Compiler does not automatically create the hierarchy for other, nonstructural Verilog
constructs such as blocks, loops, functions, and tasks. These elements of an HDL
description are translated in the context of their design. After reading in a Verilog design,
you can use the group -hdl_block command to group the gates in a block, function, or
task. HDL Compiler supports only the top-level always block. For information on how to
use the group command with Verilog designs, see the man page.

Component Inference and Instantiation
There are two ways to define components in your Verilog description:

• You can directly instantiate registers into a Verilog description, selecting from any
element in your ASIC library, but the code is technology dependent and the description is
difficult to write.

• You can use Verilog constructs to direct HDL Compiler to infer registers from the
description. The advantages are these:

• The Verilog description is easier to write and the code is technology independent.

• This method allows Design Compiler to select the type of component inferred, based
on constraints.

If a specific component is necessary, use instantiation.

Naming Considerations
The bus output instance names are controlled by the following variables:
bus_naming_style (controls names of elements of Verilog arrays) and
bus_inference_style (controls bus inference style). To reduce naming conflicts, use
caution when applying nondefault naming styles. For details, see the man pages.
Chapter 1: Introduction to HDL Compiler for Verilog
Inputs and Outputs 1-26

HDL Compiler for Verilog User Guide Version D-2010.03
Generic Netlists
After HDL Compiler reads a design, it creates a generic netlist consisting of generic
components, such as SEQGENs (see “Generic Sequential Cells (SEQGENs)” on page 4-2.)

For example, after HDL Compiler reads the my_fsm design in Example 1-8 on page 1-27, it
creates the generic netlist shown in Example 1-9 on page 1-28.

Example 1-8
module my_fsm (clk, rst, y);
 input clk, rst;
 output y;
 reg y;
 reg [2:0] current_state;
 parameter
 red = 3'b001,
 green = 3'b010,
 yellow = 3'b100;
 always @ (posedge clk or posedge rst)
 if (rst)
 current_state = red;
 else
 case (current_state)
 red:
 current_state = green;
 green:
 current_state = yellow;
 yellow:
 current_state = red;
 default:
 current_state = red;
 endcase
 always @ (current_state)
 if (current_state == yellow)
 y = 1'b1;
 else
 y = 1'b0;
 endmodule

After HDL Compiler reads in the my_fsm design, it outputs the generic netlist shown in
Example 1-9.
Chapter 1: Introduction to HDL Compiler for Verilog
Inputs and Outputs 1-27
Chapter 1: Introduction to HDL Compiler for Verilog
Inputs and Outputs 1-27

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Example 1-9 Generic Netlist
module my_fsm (clk, rst, y);
 input clk, rst;
 output y;
 wire N0, N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14,
N15,
 N16, N17, N18;
 wire [2:0] current_state;

 GTECH_OR2 C10 (.A(current_state[2]), .B(current_state[1]), .Z(N1));
 GTECH_OR2 C11 (.A(N1), .B(N0), .Z(N2));
 GTECH_OR2 C14 (.A(current_state[2]), .B(N4), .Z(N5));
 GTECH_OR2 C15 (.A(N5), .B(current_state[0]), .Z(N6));
 GTECH_OR2 C18 (.A(N15), .B(current_state[1]), .Z(N8));
 GTECH_OR2 C19 (.A(N8), .B(current_state[0]), .Z(N9));
 SEQGEN \current_state_reg[2] (.clear(rst), .preset(1'b0),
 .next_state(N7), .clocked_on(clk), .data_in(1'b0), .enable(1'b0),
.Q(
 current_state[2]), .synch_clear(1'b0), .synch_preset(1'b0),
 .synch_toggle(1'b0), .synch_enable(1'b1));
 SEQGEN \current_state_reg[1] (.clear(rst), .preset(1'b0),
 .next_state(N3), .clocked_on(clk), .data_in(1'b0), .enable(1'b0),
.Q(
 current_state[1]), .synch_clear(1'b0), .synch_preset(1'b0),
 .synch_toggle(1'b0), .synch_enable(1'b1));
 SEQGEN \current_state_reg[0] (.clear(1'b0), .preset(rst),
 .next_state(N14), .clocked_on(clk), .data_in(1'b0),
.enable(1'b0), .Q(
 current_state[0]), .synch_clear(1'b0), .synch_preset(1'b0),
 .synch_toggle(1'b0), .synch_enable(1'b1));
 GTECH_NOT I_0 (.A(current_state[2]), .Z(N15));
 GTECH_OR2 C47 (.A(current_state[1]), .B(N15), .Z(N16));
 GTECH_OR2 C48 (.A(current_state[0]), .B(N16), .Z(N17));
 GTECH_NOT I_1 (.A(N17), .Z(N18));
 GTECH_OR2 C51 (.A(N10), .B(N13), .Z(N14));
 GTECH_NOT I_2 (.A(current_state[0]), .Z(N0));
 GTECH_NOT I_3 (.A(N2), .Z(N3));
 GTECH_NOT I_4 (.A(current_state[1]), .Z(N4));
 GTECH_NOT I_5 (.A(N6), .Z(N7));
 GTECH_NOT I_6 (.A(N9), .Z(N10));
 GTECH_OR2 C68 (.A(N7), .B(N3), .Z(N11));
 GTECH_OR2 C69 (.A(N10), .B(N11), .Z(N12));
 GTECH_NOT I_7 (.A(N12), .Z(N13));
 GTECH_BUF B_0 (.A(N18), .Z(y));
endmodule

The report_cell command lists the cells in a design. Example 1-10 shows the
report_cell output for my_fsm design.
Chapter 1: Introduction to HDL Compiler for Verilog
Inputs and Outputs 1-28

HDL Compiler for Verilog User Guide Version D-2010.03
Example 1-10
dc_shell> report_cell
Information: Updating design information... (UID-85)

**
Report : cell
Design : my_fsm
Version: B-2008.09
Date : Tue Jul 15 07:11:02 2008
**

Attributes:
 b - black box (unknown)
 c - control logic
 h - hierarchical
 n - noncombinational
 r - removable
 u - contains unmapped logic

Cell Reference Library Area
Attributes

B_0 GTECH_BUF gtech 0.000000 u
C10 GTECH_OR2 gtech 0.000000 u
C11 GTECH_OR2 gtech 0.000000 c, u
C14 GTECH_OR2 gtech 0.000000 u
C15 GTECH_OR2 gtech 0.000000 c, u
C18 GTECH_OR2 gtech 0.000000 u
C19 GTECH_OR2 gtech 0.000000 c, u
C47 GTECH_OR2 gtech 0.000000 u
C48 GTECH_OR2 gtech 0.000000 u
C51 GTECH_OR2 gtech 0.000000 u
C68 GTECH_OR2 gtech 0.000000 c, u
C69 GTECH_OR2 gtech 0.000000 c, u
I_0 GTECH_NOT gtech 0.000000 u
I_1 GTECH_NOT gtech 0.000000 u
I_2 GTECH_NOT gtech 0.000000 u
I_3 GTECH_NOT gtech 0.000000 u
I_4 GTECH_NOT gtech 0.000000 u
I_5 GTECH_NOT gtech 0.000000 u
I_6 GTECH_NOT gtech 0.000000 u
I_7 GTECH_NOT gtech 0.000000 c, u
current_state_reg[0] **SEQGEN** 0.000000 n, u
current_state_reg[1] **SEQGEN** 0.000000 n, u
current_state_reg[2] **SEQGEN** 0.000000 n, u

Total 23 cells 0.000000
1

Chapter 1: Introduction to HDL Compiler for Verilog
Inputs and Outputs 1-29
Chapter 1: Introduction to HDL Compiler for Verilog
Inputs and Outputs 1-29

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Inference Reports
HDL Compiler generates inference reports for the following inferred components:

• Flip-flops and latches, described in “Inference Reports for Registers” on page 4-5.

• MUX_OP cells, described in “MUX_OP Inference” on page 3-15.

• Three-state devices, described in “Three-State Driver Inference Report” on page 6-2.

• Multibit devices, described in “infer_multibit and dont_infer_multibit” on page 7-9.

• FSMs, described in “FSM Inference Report” on page 5-6.

Error Messages
If the design contains syntax errors, these are typically reported as ver-type errors; mapping
errors, which occur when the design is translated to the target technology, are reported as
elab-type errors. An error will cause the script you are currently running to terminate; a fatal
error will terminate your Design Compiler session. Warnings are errors that do not stop the
read from completing, but the results might not be as expected.

The suppress_errors variable allows you to supress warning messages when reading
Verilog source files. If this variable is set to true, warnings are not issued; if false, warnings
are issued. The default is false. This variable has no effect on fatal error messages, such as
syntax errors, that stop the reading process.

You can also use this variable to disable specific warnings: set suppress_errors to a
space-separated string of the error ID codes you want suppressed. Error ID codes are
printed immediately after warning and error messages. For example, to suppress the
warning

Warning: Assertion statements are not supported. They are
ignored near symbol "assert" on line 24 (HDL-193).

set the variable to

suppress_errors = "HDL-193"
Chapter 1: Introduction to HDL Compiler for Verilog
Inputs and Outputs 1-30

HDL Compiler for Verilog User Guide Version D-2010.03
Language Construct Support

HDL Compiler supports only those constructs that can be synthesized, that is, realized in
logic. For example, you cannot use simulation time as a trigger, because time is an element
of the simulation process and cannot be realized in logic. See Appendix B, “Verilog
Language Support.”

Licenses

Reading and writing license requirements are listed in Table 1-4.

Table 1-4 License Requirements

Reader
Reading
license required

Writing
license required

RTL Netlist RTL Netlist

HDL Compiler Yes Yes No No

UNTI-Verilog
(netlist reader)

Not
applicable

No Not applicable No

Automatic detection
(read_verilog)

Yes Yes Not applicable Not applicable
Chapter 1: Introduction to HDL Compiler for Verilog
Language Construct Support 1-31
Chapter 1: Introduction to HDL Compiler for Verilog
Language Construct Support 1-31

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Chapter 1: Introduction to HDL Compiler for Verilog
Licenses 1-32

2
Coding Considerations 2

This chapter describes HDL Compiler synthesis coding considerations in the following
sections:

• Coding for QoR

• Creating Relative Placement in Hardware Description Languages

• General Coding Guidelines

• Interacting With Other Flows
2-1

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Coding for QoR

The goal of HDL Compiler is to provide the best QoR independent of coding style. However,
the tool is limited to implementing your design based on the information (context) available
at the time. The following strategies can be used to ensure the tool has enough information
to make good optimization decisions.

• Expose Constants to Reduce Hardware

• Size Variables Efficiently

Expose Constants to Reduce Hardware
HDL Compiler cannot determine if a module input is a constant even if the upper-level
module connects it to a constant value. To expose it as a constant, use a parameter instead
of an input port for that value. Constant propagation is the compile-time evaluation of
expressions that contain constants. HDL Compiler uses constant propagation to reduce the
amount of hardware required to implement complex operators. When you know that a
variable is a constant, specify it as a constant. For example, a + operator with a constant of
1 as one of its arguments causes an incrementer, rather than a general adder, to be built. If
both arguments of an operator are constants, no hardware is constructed, because HDL
Compiler can calculate the expression’s value and insert it directly into the circuit.

Comparators and shifters also benefit from constant propagation. When you shift a vector
by a constant, the implementation requires only a reordering (rewiring) of bits, so no logic is
needed.

Size Variables Efficiently
Use design knowledge to size variables efficiently. In Example 2-1, the adder sums the 8-bit
value of input a with the lower 4 bits of temp. Although temp is declared as an 8-bit value,
the upper 4 bits of temp are always 0, so only the lower 4 bits of temp are needed for the
addition.

You can simplify the addition by changing temp to temp [3:0], as the shows. Now, instead of
using eight full adders to perform the addition, four full adders are used for the lower 4 bits
and four half adders are used for the upper 4 bits. This yields a significant savings in circuit
area.

Example 2-1 Reducing Adders by Using temp [3:0] Bit-Width
module all (a,b,y);
 input [7:0] a,b;
 output [8:0] y;
 function [8:0] add_lt_10;
Chapter 2: Coding Considerations
Coding for QoR 2-2

HDL Compiler for Verilog User Guide Version D-2010.03
 input [7:0] a,b;
 reg [7:0] temp;

begin
if (b < 10)

temp = b;
else

temp = 10;
add_lt_10 = a + temp [3:0]; // use [3:0] for temp

end
 endfunction
 assign y = add_lt_10(a,b);
endmodule

Creating Relative Placement in Hardware Description Languages

Relative placement allows you to create structures in which you specify the relative column
and row positions of instances. During placement and optimization, these structures are
preserved and the cells in each structure are placed as a single entity.

Relative placement is usually applied to datapaths and registers, but you can apply it to any
cells in your design, controlling the exact relative placement topology of gate-level logic
groups and defining the circuit layout. You can use relative placement to explore QoR
benefits, such as shorter wire lengths, reduced congestion, better timing, skew control,
fewer vias, better yield, and lower dynamic and leakage power.

Relative placement information embedded within the Verilog or VHDL description allows you
to specify and modify relative placement information with greater flexibility, no longer
requiring you to update the location of many of the cells in the design. Using embedded
compiler directives, these relative placement constraints can be placed in an RTL design, a
GTECH netlist, or a mapped netlist. The following sections describe how to specify relative
placement data for RTL designs, GTECH netlists, or mapped netlists.

Relative placement constraints can also be added inside the shell using Tcl commands. For
more information, see the “Using Design Compiler Topographical Technology” chapter in the
Design Compiler User Guide.
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-3
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-3

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Directives for Specifying Relative Placement
You can specify relative placement information by using the following compiler directives:

• `rp_group and `rp_endgroup

See “Creating Groups Using `rp_group and `rp_endgroup” on page 2-4.

• `rp_place

See “Specifying Subgroups, Keepouts, and Instances Using `rp_place” on page 2-5.

• `rp_fill

See “Placing Cells Automatically Using `rp_fill” on page 2-6.

• `rp_array_dir

See “Specifying Placement for Array Elements Using `rp_array_dir” on page 2-8.

• rp_align

See “Specifying Cell Alignment Using rp_align” on page 2-8.

• rp_orient

See “Specifying Cell Orientation Using rp_orient” on page 2-9.

• rp_ignore and rp_endignore

See “Ignoring Relative Placement Using rp_ignore and rp_endignore” on page 2-10.

Creating Groups Using `rp_group and `rp_endgroup
The `rp_group and `rp_endgroup directives allow you to specify a relative placement
group. The directives are available for RTL designs and netlist designs. For netlist designs,
you must place all cell instances between the directives to declare them as members of the
specified group. For RTL designs, you must specify the directives inside the always block for
leaf-level relative placement groups. However, higher-level hierarchical groups do not have
to be attached to an always block.

The Verilog syntax for RTL designs is as follows:

`rp_group (group_name {num_cols num_rows})
`rp_endgroup ({group_name})

Use the following syntax for netlist designs:

//synopsys rp_group (group_name {num_cols num_rows})
//synopsys rp_endgroup ({group_name})
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-4

HDL Compiler for Verilog User Guide Version D-2010.03
You can determine the size of the group by using the num_cols and num_rows optional
arguments to specify the number of rows and columns. If you specify the size, HDL Compiler
checks the location of the instances that are placed in the group to verify that none of the
instances are placed beyond the group’s size limits; HDL Compiler generates an error
message if a size violation occurs.

The following example shows that the inferred registers belong to a relative placement group
named rp_grp1:

...
always @ (posedge CLK)
 ‘rp_group (rp_grp1)
 ...
 ‘rp_endgroup (rp_grp1)

Q1 <= DATA1;
...

Specifying Subgroups, Keepouts, and Instances Using `rp_place
The `rp_place directive allows you to specify a subgroup at a specific hierarchy, a keepout
region, or an instance to be placed in the current relative placement group. When you use
the `rp_place directive to specify a subgroup at a specific hierarchy, you must instantiate
the subgroup’s instances outside of any group declarations in the module. This directive is
available for RTL designs and netlist designs.

The Verilog syntax for RTL designs is as follows:

‘rp_place (hier group_name col row)
‘rp_place (keep keepout_name col row width height)
‘rp_place ({leaf} [inst_name] col row)

Use the following syntax for netlist designs:

//synopsys rp_place (hier group_name col row)
//synopsys rp_place (hier group_name [inst_name] col row)
//synopsys rp_place ({leaf} [inst_name] col row)
//synopsys rp_place (keep keepout_name col row width height)

You can use the col and row optional arguments to specify absolute row or column
locations in the group’s grid or locations that are relative to the current pointer value. To
represent locations relative to the current pointer, enclose the column and row values in
angle brackets (<>), as shown in the following example:

`rp_place (my_group_1 0 0)
`rp_place (my_group_2 0 <1>)

The example shows that group my_group_1 is placed at location (0,0) in the grid, and group
my_group_2 is placed at the next row position (0,1).
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-5
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-5

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
If you do not specify the col and row arguments, objects are automatically placed in the
current group’s grid, filling empty slots. Each time a new instance is declared that is not
explicitly placed, it is inserted into the grid at the location indicated by the current value of
the pointer. After the instance is placed, the pointer is updated and the process is ready to
be repeated.

The following Verilog example shows a relative placement group named my_reg_bank that
includes four subgroups that are placed at the following locations, respectively: (0,0), (0,1),
(1, *), and (1, *) The wildcard character (*) indicates that HDL Compiler can choose any
value.

`rp_group (my_reg_bank)
`rp_place (hier rp_grp1 0 0)
`rp_place (hier rp_grp4 0 1)
`rp_place (hier rp_grp2 1 *)
`rp_place (hier rp_grp3 1 *)
`rp_endgroup (my_reg_bank)

Placing Cells Automatically Using `rp_fill
The `rp_fill directive automatically places the cells at the location specified by a pointer.
Each time a new instance is declared that is not explicitly placed, it is inserted into the grid
at the location indicated by the current value of the pointer. After the instance is placed, the
pointer is updated incrementally and the process is ready to be repeated. This directive is
available for RTL designs and netlist designs.

The `rp_fill arguments define how the pointer is updated. The col and row parameters
specify the initial coordinates of the pointer. These parameters can represent absolute row
or column locations in the group’s grid or locations that are relative to the current pointer
value. To represent locations relative to the current pointer, enclose the column and row
values in angle brackets (<>). For example, assume the current pointer location is (3,4). In
this case, specifying rp_fill <1> 0 initializes the pointer to (4,0) and that is where the next
instance is placed. Absolute coordinates must be non-negative integers; relative
coordinates can be any integer.

The pattern option determines how the pointer is incrementally updated. The option’s pat
argument is a string that provides the following symbols to control placement:

Symbol Definition

U up

D down

R right
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-6

HDL Compiler for Verilog User Guide Version D-2010.03
The control string is read one character at a time, and the pointer is adjusted based on the
symbols that are defined. If HDL Compiler reads an X in the string, the instance placement
is complete and the next instance can be placed in the grid. When HDL Compiler reaches
the end of the control string, the pattern interpretation continues at the first character. For
example, the pattern UX inserts cells one after another up a column; this is the default
pattern. The pattern UUX creates a column of instances with an empty grid cell between
each pair of instances, and the pattern RX fills a row with instances.

In addition to the symbols that control placement, the pattern option’s pat argument can
include integers and square brackets. Square brackets around the argument, [pat], create
a control string. When an integer is included in the string, it applies to the next control
symbol or control string in the current pattern. For example, the pattern 4UX fills every fourth
cell of a column. The pattern 31[UX]31DRX fills a 32-cell high column and then advances
one column to the right and resumes filling from the bottom of the column.

If no pattern is specified, the incremental operation uses the last pattern string that is
defined, beginning with the first character in the string. If the row and column parameters are
not specified, HDL Compiler does not initialize the fill pointer, and it keeps the value it had
before the ‘rp_fill directive was read. If HDL Compiler encounters a group declaration,
the fill pointer is initialized to (0,0) and the pattern is set to UX.

When an array of instantiations is encountered in Verilog, the cells are enumerated to match
the pattern using the left-hand index first and iterating toward the right-hand index, as shown
in the following example:

and a[0:2] (); // generates a[0], a[1], a[2]

The Verilog syntax for RTL designs is as follows:

‘rp_fill ({col row} {pattern pat})

Use the following syntax for netlist designs:

//synopsys rp_fill (col row} {pattern pat})

The following example for netlist designs shows the R and U patterns:

//rp_group (group_x)
//rp_fill (0 0 UX)
Cell C1 (...);

L left

X stop

Symbol Definition
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-7
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-7

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Cell C2 (...);
Cell C3 (...);
//rp_fill (0 <1> RX) // move up a row to the far left, fill to R
Cell c4 (...);
Cell C5 (...);
Cell C6 (...);
//rp_endgroup (group_x)

Specifying Placement for Array Elements Using `rp_array_dir
Note:

This directive is available for creating relative placement in RTL designs but not in netlist
designs.

The `rp_array_dir directive specifies whether the elements of an array are placed
upward, from the least significant bit to the most significant bit, or downward, from the most
significant bit to the least significant bit.

The Verilog syntax for RTL designs is as follows:

`rp_array_dir (up|down)

The following Verilog example shows array elements that are placed upward, from the least
significant bit to the most significant bit:

...
always @ (posedge CLK)

‘rp_group (rp_grp1/
‘rp_fill (0 0 UX)
‘rp_array_dir (up)
‘rp_endgroup (rp_grp1)

Q1 <= DATA1 ;
...

Specifying Cell Alignment Using rp_align
Note:

This directive is available for creating relative placement in netlist designs only.

The rp_align directive explicitly specifies the alignment of the placed instance within the
grid cell when the instance is smaller than the cell. If you specify the optional inst instance
name argument, the alignment applies only to that instance; however, if you do not specify
an instance, the new alignment applies to all subsequent instantiations within the group until
HDL Compiler encounters another rp_align directive. If the instance straddles cells, the
alignment takes place within the straddled region. The alignment value is sw (southwest) by
default. The instance is snapped to legal row and routing grid coordinates.
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-8

HDL Compiler for Verilog User Guide Version D-2010.03
Use the following syntax for netlist designs:

//synopsys rp_align (n|s|e|w|nw|sw|ne|se|pin=name { inst })

You must specify either the alignment value or the pin name. In the following example, the
rp_align directive causes the cell C1 to be placed at the north-east corner.

// synopsys rp_group (group_x)
// synopsys rp_fill (0 0 RX)
//synopsys rp_align (NE C1)
Cell C1 ...
Cell C2 ...
Cell C3 ...
//synopsys rp_fill (0 <1> RX)
Cell C4 ...
Cell C5 ...
Cell C6 ...
// synopsys rp_endgroup (group_x)

Specifying Cell Orientation Using rp_orient
Note:

This directive is available for creating relative placement in netlist designs only.

The rp_orient directive allows you to control the orientation of library cells placed in the
current group. When you specify a list of possible orientations, HDL Compiler chooses the
first legal orientation for the cell.

Use the following syntax for netlist designs:

//synopsys rp_orient ({N|W|S|E|FN|FW|FS|FE}* { inst })
//synopsys rp_orient ({N|W|S|E|FN|FW|FS|FE}* { group_name inst }))

If you specify an instance value using the inst argument shown in the first (nonhierarchical)
syntax format, the orientation applies only to that instance. If you do not specify an instance,
the orientation applies to all subsequent instances until another orientation is specified.

If you specify the group_name inst syntax format, HDL Compiler applies the orientation to
the specified instance, and the rest of the group remains unchanged. The default orientation
for a group declaration is N, which stands for noflip nomirror, where flip refers to a rotation at
the horizontal axis and mirror is a rotation at the vertical axis. The F value stands for flip;
therefore, FN, FW, FS, and FE refer to flip north, flip west, flip south, and flip east, respectively.

In the following example, cell C1 is oriented westwards:

// synopsys rp_group (group_x)
...
// synopsys rp_orient (W C1)
Cell C0 ...
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-9
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-9

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Cell C1 ...
...

Ignoring Relative Placement Using rp_ignore and rp_endignore
Note:

This directive is available for creating relative placement in netlist designs only.

The rp_ignore and rp_endignore directives allow you to ignore specified lines in the input
file. Any lines between the two directives are omitted from relative placement. The include
and define directives, variable substitution, and cell mapping are not ignored.

The rp_ignore and rp_endignore directives allow you to include the instantiation of
submodules in a relative placement group close to the rp_place hier group(inst)
location to place relative placement array.

Use the following syntax for netlist designs:

//synopsys rp_ignore
//synopsys rp_endignore

In the following example, the directive //synopsys rp_fill (0 <1> RX) is ignored.
However, the other directives are included:

// synopsys rp_group (group_x)
// synopsys rp_fill (0 0 RX)
Cell C1 ...
Cell C2 ...
Cell C3 ...
 // synopsys rp_ignore
//synopsys rp_fill (0 <1> RX)
 // synopsys rp_endignore
Cell C4 ...
Cell C5 ...
Cell C6 ...
// synopsys rp_endgroup (group_x)
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-10

HDL Compiler for Verilog User Guide Version D-2010.03
Relative Placement Examples
Example 2-2 shows how Verilog relative placement directives are applied to several register
banks in a design.

Example 2-2 Relative Placement Using ‘rp_group, ‘rp_place, ‘rp_fill, and ‘rp_array_dir Directives
module dff_async_reset (input [7:0] DATA1, DATA2, DATA3, DATA4,
 input CLK, RESET,
 output logic [7:0] Q1, Q2, Q3, Q4);
`rp_group (my_reg_bank)
`rp_place (hier rp_grp1 * 0)
`rp_place (hier rp_grp2 * 0)
`rp_endgroup (my_reg_bank)

always @(posedge CLK or posedge RESET)
 begin
 `rp_group (rp_grp1)
 `rp_fill (0 0 UX)
 `rp_array_dir(up)
 `rp_endgroup (rp_grp1)
 if (RESET)
 Q1 <= 8'b0;
 else
 Q1 <= DATA1;
 end

always @(posedge CLK or posedge RESET)
 `rp_group (rp_grp2)
 `rp_fill (0 0 UX)
 `rp_array_dir(down)
 `rp_endgroup (rp_grp2)
 if (RESET)
 Q2 <= 8'b0;
 else
 Q2 <= DATA2;

always @(posedge CLK or posedge RESET)
 if (RESET)
 Q3 <= 8'b0;
 else
 Q3 <= DATA3;

always @(posedge CLK or posedge RESET)
 if (RESET)
 Q4 <= 8'b0;
 else
 Q4 <= DATA4;

endmodule
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-11
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-11

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Figure 2-1 shows the layout of Example 2-2 after running Design Compiler topographical.
Note that the register banks that were controlled with relative placement directives have a
well structured layout, while the register banks that were not controlled with relative
placement directives are not placed together.

Figure 2-1 Layout With Relative Placement Specified on Several Register Banks

In Example 2-3, each relative placement group consists of one array, and each group is
placed vertically. Relative placement groups rp_grp2 and rp_grp4 are placed downwards:
The cells start from the last element of the array (7), which is placed at row 0, and are
decremented up to the first element (0). This is because the array direction is specified as
down. The array direction is specified as up for relative placement groups rp_grp1 and
rp_grp3. Therefore, the first element (0) is placed first at row 0 and the array is incremented
until the last element (7) is reached.

Example 2-3 Relative Placement Groups Placed Vertically
module dff_async_reset (input [7:0] DATA1, DATA2, DATA3, DATA4,
 input CLK, RESET,
 output logic [7:0] Q1, Q2, Q3, Q4);
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-12

HDL Compiler for Verilog User Guide Version D-2010.03
`rp_group (my_reg_bank)
`rp_place (hier rp_grp1 * 0)
`rp_place (hier rp_grp2 * 0)
`rp_place (hier rp_grp3 * 0)
`rp_place (hier rp_grp4 * 0)
`rp_endgroup (my_reg_bank)

always @(posedge CLK or posedge RESET)
 begin
 `rp_group (rp_grp1)
 `rp_fill (0 0 UX)
 `rp_array_dir(up)
 `rp_endgroup (rp_grp1)
 if (RESET)
 Q1 <= 8'b0;
 else
 Q1 <= DATA1;
 end

always @(posedge CLK or posedge RESET)
 `rp_group (rp_grp2)
 `rp_fill (0 0 UX)
 `rp_array_dir(down)
 `rp_endgroup (rp_grp2)
 if (RESET)
 Q2 <= 8'b0;
 else
 Q2 <= DATA2;

always @(posedge CLK or posedge RESET)
 `rp_group (rp_grp3)
 `rp_fill (0 0 UX)
 `rp_array_dir(up)
 `rp_endgroup (rp_grp3)
 if (RESET)
 Q3 <= 8'b0;
 else
 Q3 <= DATA3;

always @(posedge CLK or posedge RESET)
 `rp_group (rp_grp4)
 `rp_fill (0 0 UX)
 `rp_array_dir(down)
 `rp_endgroup (rp_grp4)
 if (RESET)
 Q4 <= 8'b0;
 else
 Q4 <= DATA4;
endmodule
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-13
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-13

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Figure 2-2 shows the layout generated from Example 2-3. Each relative placement group
consists of one array, and each group is placed vertically.

Figure 2-2 Relative Placement Groups Placed Vertically

In Example 2-4, each relative placement group consists of one array, and each group is
placed horizontally based on the ‘rp_fill directive set to RX, which specifies that the
pointer for placing the cells is incremented to the right of the initial value. Relative placement
groups rp_grp2 and rp_grp4 are placed downwards: The cells start from the last element
of the array (7), which is placed at column 0 and are decremented up to the first element (0).
This is because the array direction is specified as down. The array direction is specified as
up for relative placement groups rp_grp1 and rp_grp3. Therefore, the first element (0) is
placed first at the column 0 and the array is incremented until the last element (7) is reached.

Example 2-4 Relative Placement Groups Placed Horizontally
module dff_async_reset (input [7:0] DATA1, DATA2, DATA3, DATA4,
 input CLK, RESET,
 output logic [7:0] Q1, Q2, Q3, Q4);

`rp_group (my_reg_bank)
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-14

HDL Compiler for Verilog User Guide Version D-2010.03
`rp_place (hier rp_grp1 0 *)
`rp_place (hier rp_grp2 0 *)
`rp_place (hier rp_grp3 0 *)
`rp_place (hier rp_grp4 0 *)
`rp_endgroup (my_reg_bank)

always @(posedge CLK or posedge RESET)
 begin
 `rp_group (rp_grp1)
 `rp_fill (0 0 RX)
 `rp_array_dir(up)
 `rp_endgroup (rp_grp1)
 if (RESET)
 Q1 <= 8'b0;
 else
 Q1 <= DATA1;
 end

always @(posedge CLK or posedge RESET)
 `rp_group (rp_grp2)
 `rp_fill (0 0 RX)
 `rp_array_dir(down)
 `rp_endgroup (rp_grp2)
 if (RESET)
 Q2 <= 8'b0;
 else
 Q2 <= DATA2;

always @(posedge CLK or posedge RESET)
 `rp_group (rp_grp3)
 `rp_fill (0 0 RX)
 `rp_array_dir(up)
 `rp_endgroup (rp_grp3)
 if (RESET)
 Q3 <= 8'b0;
 else
 Q3 <= DATA3;

always @(posedge CLK or posedge RESET)
 `rp_group (rp_grp4)
 `rp_fill (0 0 RX)
 `rp_array_dir(down)
 `rp_endgroup (rp_grp4)
 if (RESET)
 Q4 <= 8'b0;
 else
 Q4 <= DATA4;
endmodule
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-15
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-15

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Figure 2-3 shows the layout generated from Example 2-4. Each relative placement group
consists of one array, and each group is placed horizontally.

Figure 2-3 Relative Placement Groups Placed Horizontally
Chapter 2: Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-16

HDL Compiler for Verilog User Guide Version D-2010.03
General Coding Guidelines

The following sections provide general coding guidelines:

• Separate Sequential and Combinational Assignments

• Persistence of Values Across Calls to Tasks

• defparam

• Function Placed Within a Module

Separate Sequential and Combinational Assignments
To compute values synchronously and store them in flip-flops, set up an always block with a
signal edge trigger. To let other values change asynchronously, make a separate always
block with no signal edge trigger. Put the assignments you want clocked in the always block
with the signal edge trigger and the other assignments in the other always block. This
technique is used for creating Mealy machines, such as the one in Example 2-5. Note that
out changes asynchronously with in1 or in2.

Example 2-5 Mealy Machine
module mealy (in1, in2, clk, reset, out);

input in1, in2, clk, reset;
output out;
reg current_state, next_state, out;

always @(posedge clk or negedge reset)
// state vector flip-flops (sequential)

if (!reset)
current_state = 0;

else
current_state = next_state;

always @(in1 or in2 or current_state)
// output and state vector decode (combinational)

case (current_state)
0: begin

next_state = 1;
out = 1'b0;

 end
1: if (in1) begin

next_state = 1'b0;
out = in2;

end
else begin

next_state = 1'b1;
Chapter 2: Coding Considerations
General Coding Guidelines 2-17
Chapter 2: Coding Considerations
General Coding Guidelines 2-17

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
out = !in2;
end

endcase

endmodule

Persistence of Values Across Calls to Tasks
In Verilog simulation, a local variable in a function or task has a static lifetime by default,
which means that the memory for it is allocated only once, at the beginning of simulation,
and the value most recently written to it is preserved from one call to the next. In synthesis,
HDL Compiler assumes by default that functions and tasks do not depend on these previous
values and reinitializes all static variables in functions and tasks to unknowns at the
beginning of each call.

Verilog code that does not conform to this synthesis assumption can yield a synthesis and
simulation mismatch. It is recommended that you declare all functions and tasks using the
automatic keyword, which tells the simulator to allocate new memory for local variables at
the beginning of each call.

defparam
Usage of defparam is highly discouraged in synthesis because of ambiguity problems.
Because of these problems, in synthesis defparam is not supported inside generate blocks.
For details, see the Verilog LRM.
Chapter 2: Coding Considerations
General Coding Guidelines 2-18

HDL Compiler for Verilog User Guide Version D-2010.03
Function Placed Within a Module
You can place a function within a module during a function call. However, you cannot place
a function before or after a module. Placing it before or after the module generates error
messages because HDL Compiler cannot see the function when analyzing the design.

Interacting With Other Flows

The design structure created by HDL Compiler can impact commands that are applied to the
design at later steps. To enable these flows, some considerations are required during the
HDL Compiler analyze and elaborate steps. The following sections provide information and
guidelines to help enable later flows.

• Synthesis Flows

• Low-Power Flows

• Verification Flows

Synthesis Flows

• Controlling Structure With Parentheses

• Multibit Components

Controlling Structure With Parentheses
You can use parentheses to force the synthesis of parallel hardware. For example, (A + B) +
(C + D) builds an adder for A + B, an adder for C + D, and an adder to add the result. Design
Compiler preserves the subexpressions dictated by the parentheses, but this restriction on
Design Compiler optimizations might lead to less-than-optimum area and timing results.

Parentheses can also be helpful in coding for late-arriving signals. For example, if you are
adding three signals—A, B, and C—and A is late arriving, then A + (B + C) can be useful in
handling the late-arriving signal A. Note that Design Compiler will also try to create a
structure to allow the late-arriving signal to meet timing. Any restriction on Design Compiler
optimizations might lead to less-than-optimum area and timing results.
Chapter 2: Coding Considerations
Interacting With Other Flows 2-19
Chapter 2: Coding Considerations
Interacting With Other Flows 2-19

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Multibit Components
HDL Compiler can infer multibit components. If your technology library supports multibit
components, they can offer several benefits, such as reduced area and power or a more
regular structure for place and route. For details about inferring multibit components, see
“infer_multibit and dont_infer_multibit” on page 7-9.

Low-Power Flows
The following section provides HDL Compiler guidelines for keeping a signal name.

Keeping Signal Names
By default, HDL Compiler performs optimizations, such as dead code elimination,
unconnected logic, and so on, that remove nets defined in the RTL. If your downstream flow
requires that you use one of these removed nets, you can give HDL Compiler guideline
information for keeping a signal name by using the hdlin_keep_signal_name variable
(default is all_driving) and the keep_signal_name directive. Table 2-1 describes the
variable options.

Table 2-1 hdlin_keep_signal_name Variable Options

Option Description

all HDL Compiler attempts to preserve a signal if the signal isn’t removed by
optimizations. Both dangling and driving nets are considered. This option does not
guarantee a signal is kept.

Note: this option might cause the check_design command to issue LINT-2 and LINT-3
warnings:
Warning: In design '...', net '...' has no drivers. Logic 0 assumed.
(LINT-3)
Warning: In design '...', net '...' driven by pin ' (no pin) ' has no
loads. (LINT-2)

all_driving
(default)

HDL Compiler attempts to preserve a signal if the signal isn’t removed by
optimizations and the signal is in an output path. Only driving nets are considered.
This option does not guarantee a signal is kept.

user This option works with the keep_signal_name directive. HDL Compiler attempts to
preserve a signal if the signal isn’t removed by optimizations and that signal is labeled
with the keep_signal_name directive. Both dangling and driving nets are considered.
Although not guaranteed, HDL Compiler typically keeps the specified signal for this
configuration.
Chapter 2: Coding Considerations
Interacting With Other Flows 2-20

HDL Compiler for Verilog User Guide Version D-2010.03
Note:
When a signal has no driver, the tool assumes logic 0 (ground) for the driver.

Consider the signals test1, test2, test3, syn1, and syn2, in Example 2-6. By default, HDL
Compiler attempts to preserve the test1 and test2 signals because they are in output paths.
HDL Compiler does not attempt to keep the test3 signal because it is not in an output path.
HDL Compiler optimizes away the syn1 and syn2 signals.

Example 2-6
module test12 (in1, in2, in3, in4, out1,out2);
 input [3:0] in1;
 input [7:0] in2;
 input in3;
 input in4;
 output reg [7:0] out1,out2;

 wire test1,test2, test3, syn1,syn2;

//synopsys async_set_reset "in4"

 assign test1= (in1[3] & ~in1[2] & in1[1] & ~in1[0]);
 //test1 signal is in an input and output path
 assign test2= syn1+syn2;
 //test2 signal is in a output path, but it is not in an input path
 assign test3= in1 + in2;
 //test3 signal is in an input path, but it is not in an output path
 always @(in3 or in2 or in4 or test1)
 out2=test2+out1;
 always @(in3 or in2 or in4 or test1)
 if (in4)
 out1 = 8'h0;
 else
 if (in3 & test1)
 out1 = in2;
endmodule

To keep the test3 signal, set hdlin_keep_signal_name to user and place the
keep_signal_name directive on test3, as shown in Example 2-7.

user_driving This option works with the keep_signal_name directive. HDL Compiler attempts to
preserve a signal if the signal is not removed by optimizations, the signal is in an
output path, and the signal is labeled with the keep_signal_name directive. Only
driving nets are considered. Although not guaranteed, HDL Compiler typically keeps
the specified signal for this configuration.

none HDL Compiler does not attempt to keep any signals. This option overrides the
keep_signal_name directive.

Table 2-1 hdlin_keep_signal_name Variable Options (Continued)

Option Description
Chapter 2: Coding Considerations
Interacting With Other Flows 2-21
Chapter 2: Coding Considerations
Interacting With Other Flows 2-21

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Example 2-7
// set the hdlin_keep_signal_name variable to user
module ksn2 (in1, in2, in3, in4, out1,out2);
 input [3:0] in1;
 input [7:0] in2;
 input in3;
 input in4;
 output reg [7:0] out1,out2;

 wire test1,test2, test3, syn1,syn2;
//synopsys keep_signal_name "test1 test2 test3"
//synopsys async_set_reset "in4"

 assign test1= (in1[3] & ~in1[2] & in1[1] & ~in1[0]);
 //test1 signal is in an input and output path
 assign test2= syn1+syn2;
 //test2 signal is in a output path, but it is not in an input path
 assign test3= in1 + in2;
 //test3 signal is in an input path, but it is not in an output path
 always @(in3 or in2 or in4 or test1)
 out2=test2+out1;
 always @(in3 or in2 or in4 or test1)
 if (in4)
 out1 = 8'h0;
 else
 if (in3 & test1)
 out1 = in2;
 endmodule

Table 2-2 shows how the variable settings affect the preservation of signals test1, test2, and
test3, with and without the directive applied to it. Asterisks indicate that HDL Compiler does
not attempt to keep the signal and might remove it.

Table 2-2 Variable and Directive Matrix for Signals test1, test2, and test3

hdlin_ keep_signal_name = all none user user_driving all_driving

keep_signal_name is
not set on test1

attempts to
keep

* * * attempts to
keep

keep_signal_name is
set on test1

attempts to
keep

* attempts to
keep

attempts to
keep

attempts to
keep

keep_signal_name is
not set on test2

attempts to
keep

* * * attempts to
keep

keep_signal_name is
set on test2

attempts to
keep

* attempts to
keep

attempts to
keep

attempts to
keep
Chapter 2: Coding Considerations
Interacting With Other Flows 2-22

HDL Compiler for Verilog User Guide Version D-2010.03
Verification Flows
The following section provides simulation-related coding information and information about
simulation and synthesis mismatch issues.

Simulation/Synthesis Mismatch Issues
Simulation/synthesis mismatch issues are described in the following sections:

• one_hot and one_cold Directives

• full_case and parallel_case Directives

• D Flip-Flop With Synchronous and Asynchronous Load

• Variable Part-Select Operator

• Sets and Resets

• Three-State Inference

• Asynchronous Design Verification

• Comparisons to x or z Values

• Timing Specifications

• Sensitivity Lists

• Initial States for Variables

one_hot and one_cold Directives
A simulation/synthesis mismatch can occur if you use the one_hot and one_cold directives
in your RTL but your design does not meet the requirements for their usage. See “one_hot”
on page 7-14 and “one_cold” on page 7-14.

keep_signal_name is
not set on test3
(Example 2-6)

attempts to
keep

* * * *

keep_signal_name is
set on test3
(Example 2-7)

attempts to
keep

* attempts to
keep

* *

Table 2-2 Variable and Directive Matrix for Signals test1, test2, and test3 (Continued)

hdlin_ keep_signal_name = all none user user_driving all_driving
Chapter 2: Coding Considerations
Interacting With Other Flows 2-23
Chapter 2: Coding Considerations
Interacting With Other Flows 2-23

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
full_case and parallel_case Directives
A simulation/synthesis mismatch can occur if you use the full_case and parallel_case
directives in your RTL but your design does not meet the requirements for their usage. See
“full_case” on page 7-7 and “parallel_case” on page 7-15.

D Flip-Flop With Synchronous and Asynchronous Load
A simulation/synthesis mismatch can occur when inferring D flip-flops with synchronous and
asynchronous loads. To reduce mismatches, use the recommended coding style. See “D
Flip-Flop With Synchronous and Asynchronous Load” on page 4-20.

Variable Part-Select Operator
A simulation/synthesis mismatch can occur if you select bits from an array that are not valid.
See “Part-Select Addressing Operators ([+:] and [-:])” on page B-31.

Sets and Resets
A simulation/synthesis mismatch can occur if the set/reset signal is masked by an X during
initialization in simulation. To reduce mismatches, use the sync_set_reset directive to
label set/reset signals. See “sync_set_reset” on page 7-16.

Three-State Inference
When inferring three-state devices, do not use multiple always blocks. Multiple always
blocks cause a simulation/synthesis mismatch because the reg data type is not resolved.
See “Assigning Multiple Three-State Drivers to a Single Variable” on page 6-4.

Asynchronous Design Verification
In synchronous designs, all registers use the same clock signal, and the design has no
combinational feedback paths, one-shots, or delay lines. If you use asynchronous design
techniques, synthesis and simulation results might not agree. Because Design Compiler
does not issue warning messages for asynchronous designs, you are responsible for
verifying the correctness of your circuit.

The following examples show two approaches to the same counter design: Example 2-8 is
synchronous, and Example 2-9 is asynchronous.

Example 2-8 Fully Synchronous Counter Design
module COUNT (RESET, ENABLE, CLK, Z);
input RESET, ENABLE, CLK;
output [2:0] Z;
reg [2:0] Z;
 always @(posedge CLK)
 begin
 if (RESET)
 begin
 Z = 3'b0;
Chapter 2: Coding Considerations
Interacting With Other Flows 2-24

HDL Compiler for Verilog User Guide Version D-2010.03
 end
 else if (ENABLE)
 begin
 Z = Z + 1'b1;
 end
 end
endmodule

Example 2-9 Asynchronous Counter Design
module async_counter(enableCount, countOut);
input enableCount;
output [3:0] countOut;
reg [3:0] countOut;

wire ready, increment;
wire [9:0] tmp;

assign increment = enableCount & ready;

always @(increment or countOut)
begin
 if (increment)
 begin
 countOut = countOut + 1;
 end
end

// pulse generator
genvar i;
generate
 for (i=0; i<9; i=i+1) begin: delay_chain
 IV delInv(tmp[i], tmp[i+1]); // lsi_10k.db library invert
 end
endgenerate
assign tmp[0] = increment;
assign ready = tmp[9];

endmodule

Some forms of asynchronous behavior are not supported in an RTL coding style. For
example, you might expect X = ~(A & (~(~(~A)))), a circuit description of a one-shot signal
generator, to generate three inverters (an inverting delay line) and a NAND gate. However,
this circuit description is optimized to X = A ~& (~ A) and then to X = 1.

If special care is not taken when synthesizing the design, the instantiated inverter chain will
be optimized and the synthesized design will not function the same way as the RTL
simulates because the timing relationship between ready and increment will not be
preserved. In this case, dont_touch constraints on the inverters and manual timing checks
will be required to ensure the functionality of the circuit.
Chapter 2: Coding Considerations
Interacting With Other Flows 2-25
Chapter 2: Coding Considerations
Interacting With Other Flows 2-25

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Comparisons to x or z Values
HDL Compiler always evaluates comparisons to an x or a z as false. This behavior is
different from simulation behavior and might cause a synthesis/simulation mismatch. To
prevent such a mismatch, do not use don’t care values in comparisons.

To a simulator, an x or a z value is a distinct value, different from a 1 or a 0. In synthesis,
however, an x or a z value becomes a 0 or a 1. When used in a comparison, HDL Compiler
always evaluates the comparison to false. Because of this difference in treatment, the
potential for a simulation/synthesis mismatch exists whenever a comparison is made with a
don't care value.

For example,

if (a == 1'bx)
...

is synthesized as

if FALSE

The following case statement causes a synthesis/simulation mismatch because the
simulator evaluates 2'b1x to match 11 and 10, but the synthesis tool evaluates 2'b1x to false;
the same holds true for the2'b0x- evaluation.

case (A)
 2'b1x:... -- you want 2'b1x to match 11 and 10 but
 -- Presto always evaluates this comparison
 -- to false
 2'b0x: -- you want 2'b0x to match 00 and 01 but
 -- Presto always evaluates this comparison
 -- to false
 default :
endcase

HDL Compiler issues a warning similar to the following when it synthesizes such
comparisons:

Warning: Comparison against '?', 'x', or 'z' values is always false. It
may
cause simulation/synthesis mismatch. (ELAB-310)

In Example 2-10, HDL Compiler always assigns 1 to B (and issues an ELAB-310 warning),
because if (A == 1'bx) is always evaluated to false.

Example 2-10 Comparison to x Ignored
module test(A, B);
 input A;
 output reg B;
 always begin
Chapter 2: Coding Considerations
Interacting With Other Flows 2-26

HDL Compiler for Verilog User Guide Version D-2010.03
 if (A == 1'bx)
 B = 0;
 else
 B = 1;
 end
endmodule

Timing Specifications
HDL Compiler ignores all timing controls because these controls cannot be realized in logic.
In general, you can safely include timing control information in your description if it does not
change the value clocked into a flip-flop. That is, the delay must be less than the clock
period; otherwise, synthesis might disagree with simulation.

You can assign a delay value in a wire or wand declaration, and you can use the Verilog
keywords scalared and vectored for simulation. HDL Compiler accepts the syntax of these
constructs, but they are ignored when the circuit is synthesized.

Sensitivity Lists
If all the signals read within the always block are not listed in the sensitivity list, HDL
Compiler generates a warning similar to the following:

Warning: Variable ’foo’ is being read in block ’bar’ declared
on line 88 but does not occur in the timing control of the
block.

The circuit synthesized by HDL Compiler is sensitive to all signals within the block, even if
they are not listed in the sensitivity list. This differs from simulator behavior, which relies on
the list. To prevent synthesis/simulation mismatches, follow these guidelines when
developing the sensitivity list:

• For sequential logic, include the clock signal and all asynchronous control signals in the
sensitivity list.

• For combinational logic, be sure that all inputs are in the sensitivity list.

HDL Compiler supports the Verilog 2001 construct, always @*, which provides a convenient
way to ensure that all variables are listed.

HDL Compiler ignores sensitivity lists that do not contain an edge expression, and builds the
logic as if all variables within the always block were contained in the sensitivity list. When
any edge expressions are listed in the sensitivity list, no nonedge expressions can be listed.
HDL Compiler issues an error message if you try to mix edge expressions and ordinary
variables in the sensitivity list.

When the sensitivity list does not contain an edge expression, combinational logic is usually
generated, although latches might be generated if the variable is not fully specified, that is,
if the variable is not assigned on every path through the block.
Chapter 2: Coding Considerations
Interacting With Other Flows 2-27
Chapter 2: Coding Considerations
Interacting With Other Flows 2-27

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Note:
The statements @ (posedge clock) and @ (negedge clock) are not supported in
functions or tasks.

Initial States for Variables
For functions and tasks, any local reg variables are initialized to 0, and values of output ports
are not preserved across calls. In simulators, values are typically preserved. This difference
in behavior often causes a synthesis/simulation mismatch. See “Persistence of Values
Across Calls to Tasks” on page 2-18.
Chapter 2: Coding Considerations
Interacting With Other Flows 2-28

3
Modeling Combinational Logic 3

Logic circuits can be divided into two general classes:

• Combinational–The value of the output depends only on the values of the input signals.

• Sequential–The value of the output depends only on the values of the input signals and
the previous condition on the circuit.

This chapter discusses combinational logic synthesis in the following sections:

• Synthetic Operators

• Logic and Arithmetic Expressions

• Multiplexing Logic

• MUX_OP Components With Variable Indexing

• Modeling Complex MUX Inferences: Bit and Memory Accesses

• Bit-Truncation Coding for DC Ultra Datapath Extraction

• Latches in Combinational Logic
3-1

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Synthetic Operators

Synopsys provides a collection of intellectual property (IP), referred to as the DesignWare
Basic IP Library, to support the synthesis products. Basic IP provides basic implementations
of common arithmetic functions that can be referenced by HDL operators in your RTL source
code.

The DesignWare paradigm is built on a hierarchy of abstractions. HDL operators (either
built-in operators like + and *, or HDL functions and procedures) are associated with
synthetic operators, which are bound in turn to synthetic modules. Each synthetic module
can have multiple architectural realizations, called implementations. When you use the HDL
addition operator in a design description, HDL Compiler infers the need for an adder
resource and puts an abstract representation of the addition operation into your circuit
netlist. The same holds true when you instantiate a DesignWare component. For example,
an instantiation of DW01_add will be mapped to the synthetic operator associated with it.
See Figure 3-1 on page 3-3.

A synthetic library contains definitions for synthetic operators, synthetic modules, and
bindings. It also contains declarations that associate synthetic modules with their
implementations.

To display information about the standard synthetic library that is included with a Design
Compiler license, use the report_synlib command:

report_synlib standard.sldb

For more information about DesignWare synthetic operators, modules, and libraries, see the
DesignWare documentation.
Chapter 3: Modeling Combinational Logic
Synthetic Operators 3-2

HDL Compiler for Verilog User Guide Version D-2010.03
Figure 3-1 DesignWare Hierarchy

Implementations

Bindings

map_to_operator directive

 HDL operator HDL operator definition

Synthetic operator

Synthetic modules

Implementation

declarations

ADD_UNS_OP

proprietarycarry-lookaheadripple

ALUADDADD_SUB

Synthetic library

Design library

Z <= X + Y
Chapter 3: Modeling Combinational Logic
Synthetic Operators 3-3
Chapter 3: Modeling Combinational Logic
Synthetic Operators 3-3

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Logic and Arithmetic Expressions

The following sections discuss logic and arithmetic expression synthesis:

• Basic Operators

• Carry-Bit Overflow

• Divide Operators

• Sign Conversions

Basic Operators
When HDL Compiler elaborates a design, it maps HDL operators to synthetic (DesignWare)
operators that appear in the generic netlist. When Design Compiler optimizes the design, it
maps these operators to DesignWare synthetic modules and chooses the best
implementation, based on constraints, option settings, and wire load models.

A Design-Compiler license includes a DesignWare-Basic license that enables the
DesignWare synthetic modules listed in Table 3-1. These modules support common logic
and arithmetic HDL operators. By default, adders and subtracters must be more than 4 bits
wide to be mapped to these modules. If they are smaller, the operators are mapped to
combinational logic.

Table 3-1 Operators Supported by a DesignWare-Basic License

HDL operator Linked to DesignWare synthetic module

Comparison (> or <) DW01_cmp2

Absolute value (abs) DW01_absval

Addition (+) DW01_add

Subtraction (-) DW01_sub

Addition or subtraction (+ or -) DW01_addsub

Incrementer (+) DW01_inc

Decrementer (-) DW01_dec
Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions 3-4

HDL Compiler for Verilog User Guide Version D-2010.03
Carry-Bit Overflow
When Design Compiler performs arithmetic optimization, it considers how to handle the
overflow from carry bits during addition. The optimized structure is affected by the bit-widths
you declare for storing intermediate results. For example, suppose you write an expression
that adds two 4-bit numbers and stores the result in a 4-bit register. If the result of the
addition overflows the 4-bit output, the most significant bits are truncated. Example 3-1
shows how overflow characteristics are handled.

Example 3-1 Adding Numbers of Different Bit-Widths
t <= a + b; // a and b are 4-bit numbers
z <= t + c; // c is a 6-bit number

In Example 3-1, three variables are added (a + b + c). A temporary variable, t, holds the
intermediate result of a + b. Suppose t is declared as a 4-bit variable, so the overflow bits
from the addition of a + b are truncated. HDL Compiler determines the default structure,
which is shown in Figure 3-2.

Figure 3-2 Default Structure With 4-Bit Temporary Variable

Now suppose the addition is performed without a temporary variable (z = a + b + c). HDL
Compiler determines that 5 bits are needed to store the intermediate result of the addition,
so no overflow condition exists. The results of the final addition might be different from the

Incrementer or decrementer
(+ or -)

DW01_incdec

Multiplier (*) DW02_mult

Table 3-1 Operators Supported by a DesignWare-Basic License (Continued)

HDL operator Linked to DesignWare synthetic module

a[4] b[4]

c[6]

z[6]

t[4]
Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions 3-5
Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions 3-5

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
first case, where a 4-bit temporary variable is declared that truncates the result of the
intermediate addition. Therefore, these two structures do not always yield the same result.
The structure for the second case is shown in Figure 3-3.

Figure 3-3 Structure With 5-Bit Intermediate Result

Now suppose the expression is optimized for delay and that signal a arrives late. Design
Compiler restructures the expression so that b and c are added first. Because c is declared
as a 6-bit number, Design Compiler determines that the intermediate result must be stored
in a 6-bit variable. The structure for this case, where signal a arrives late, is shown in
Figure 3-4. Note how this expression differs from the structure in Figure 3-2.

Figure 3-4 Structure for Late-Arriving Signal

Divide Operators
HDL Compiler supports division where the operands are not constant, such as in
Example 3-2, by instantiating a DesignWare divider, as shown in Figure 3-5. Note that when
you compile a design that contains an inferred divider, you must have a DesignWare license
in addition to the DesignWare-Basic license.

a[4] b[4]

c[6]

z[6]

[5]

a[4]

b[4] c[6]

z[6]

[6]
Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions 3-6

HDL Compiler for Verilog User Guide Version D-2010.03
Example 3-2 Divide Operator
module divide (a, b, z);
 input [9:0] a, b;
 output [8:0] z;
 assign z= a / b;
endmodule

Figure 3-5 DesignWare Divider

Sign Conversions
When reading a design that contains signed expressions and assignments, HDL Compiler
warns you when there are sign mismatches by outputting a VER-318 warning.

Note that HDL Compiler does not issue a signed/unsigned conversion warning (VER-318) if
all of the following conditions are true:

• The conversion is necessary only for constants in the expression.

• The width of the constant would not change as a result of the conversion.

• The most significant bit (MSB) of the constant is zero (nonnegative).

Consider Example 3-3. Even though HDL Compiler implicitly converts the type of the
constant 1, which is signed by default, to unsigned, the VER-318 warning is not issued
because these three conditions are true. Integer constants are treated as signed types by
default. Integers are considered to have signed values.

Example 3-3 Mixed Unsigned and Signed Types
input [3:0] a, b;
output [5:0] z;
assign z = a + b + 1;

The VER-318 warning indicates that HDL Compiler has implicitly converted

• An unsigned expression to a signed expression

• A signed expression to an unsigned expression

or, it has assigned

divide_DW_div_uns_10_10_
Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions 3-7
Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions 3-7

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
• An unsigned right side to a signed left side

• A signed right side to an unsigned left side

For example, in this code,

 reg signed [3:0] a;
 reg [7:0] c;

a = 4'sb1010;
c = a+7'b0101011;

an implicit signed/unsigned conversion occurs—the signed operand a is converted to an
unsigned value, and the VER-318 warning “signed to unsigned conversion occurs” is
issued. Note that a will not be sign-extended. This behavior is in accordance with the Verilog
2001 standard.

When explicit type casting is used, conversion warnings are not issued. For example, in the
preceding code, to force a to be unsigned, you assign c as follows:

c = $unsigned(a)+7'b0101011;

no warning is issued.

Consider the following assignment:

reg [7:0] a;

a = 4'sb1010;

A VER-318 warning “signed to unsigned assignment occurs” is issued when this code is
read. Although the left side is unsigned, the right side will still be sign-extended—in other
words, a will have the value 8'b11111010 after the assignment.

If a line contains more than one implicit conversion, such as the expression assigned to c in
the following example, only one warning message is issued.

reg signed [3:0] a;
reg signed [3:0] b;
reg signed [7:0] c;

c = a+4'b0101+(b*3'b101);

In this example, a and b are converted to unsigned values, and because the whole right side
is unsigned, assigning the right side value to c will also result in the warning.

The code in Example 3-4 generates eight VER-318 warnings. The eight VER-318 warnings
generated by the code in Example 3-4 are shown in Example 3-5.
Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions 3-8

HDL Compiler for Verilog User Guide Version D-2010.03
Example 3-4 Modules m1 Through m9
 1module m1 (a, z);
 2 input signed [0:3] a;
 3 output signed [0:4] z;
 4 assign z = a;
 5endmodule
 6
 7
 8module m2 (a, z);
 9 input signed [0:2] a;
 10 output [0:4] z;
 11 assign z = a + 3'sb111;
 12endmodule
 13
 14
 15module m3 (a, z);
 16 input [0:3] a;
 17 output z;
 18 reg signed [0:3] x;
 19 reg z;
 20 always begin
 21 x = a;
 22 z = x < 4'sd5; /* note that x is signed and compared to 4'sd5,
which is also signed, but the result of the comparison is put into z, an
unsigned reg. This appears to be a sign mismatch; however, no VER-318
warning is issued for this line because comparison results are always
considered unsigned. This is true for all relational operators. */
 23 end
 24endmodule
 25
 26
 27module m4 (in1, in2, out);
 28 input signed [7:0] in1, in2;
 29 output signed [7:0] out;
 30 assign out = in1 * in2;
 31endmodule
 32
 33
 34module m5 (a, b, z);
 35 input [1:0] a, b;
 36 output [2:0] z;
 37 wire signed [1:0] x = a;
 38 wire signed [1:0] y = b;
 39 assign z = x - y;
 40endmodule
 41
 42
 43module m6 (a, z);
 44 input [3:0] a;
 45 output z;
 46 reg signed [3:0] x;
 47 wire z;
 48 always @(a) begin
Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions 3-9
Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions 3-9

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
 49 x = a;
 50 end
 51 assign z = x < -4'sd5;
 52endmodule
 53
 54module m7 (in1, in2, lt, in1_lt_64);
 55 input signed [7:0] in1, in2; // two signed inputs
 56 output lt, in1_lt_64;
 57 assign lt = in1 < in2; // comparison is signed
 58
 59 // using a signed constant results in a signed comparison
 60
 61 assign in1_lt_64 = in1 < 8'sd64;
 62endmodule
 63
 64
 65module m8 (in1, in2, lt);
 66
 67// in1 is signed but in2 is unsigned
 68
 69 input signed [7:0] in1;
 70 input [7:0] in2;
 71 output lt;
 72 wire uns_lt, uns_in1_lt_64;
 73
 74/* comparison is unsigned because of the sign mismatch; in1 is
signed
but in2 is unsigned */
 75
 76 assign uns_lt = in1 < in2;
 77
 78/* Unsigned constant causes unsigned comparison; so negative values
of
in1 would compare as larger than 8'd64 */
 79
 80 assign uns_in1_lt_64 = in1 < 8'd64;
 81 assign lt = uns_lt + uns_in1_lt_64;
 82
 83endmodule
 84
 85
 86
 87module m9 (in1, in2, lt);
 88 input signed [7:0] in1;
 89 input [7:0] in2;
 90 output lt;
 91 assign lt = in1 < $signed ({1'b0, in2});
 92endmodule
 93
 94
Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions 3-10

HDL Compiler for Verilog User Guide Version D-2010.03
The eight VER-318 warnings generated by the code in Example 3-4 are shown in
Example 3-5.

Example 3-5 Sign Conversion Warnings for m1 Through m9
Warning: /usr/00budgeting/vhdl-mr/warn-sign.v:11: signed to unsigned
assignment
occurs. (VER-318)
Warning: /usr/00budgeting/vhdl-mr/warn-sign.v:21: unsigned to signed
assignment
occurs. (VER-318)
Warning: /usr/00budgeting/vhdl-mr/warn-sign.v:21: ’a’ is read but does
not
appear in the sensitivity list of this ’always’ block. (ELAB-292)
Warning: /usr/00budgeting/vhdl-mr/warn-sign.v:37: unsigned to signed
assignment
occurs. (VER-318)
Warning: /usr/00budgeting/vhdl-mr/warn-sign.v:38: unsigned to signed
assignment
occurs. (VER-318)
Warning: /usr/00budgeting/vhdl-mr/warn-sign.v:39: signed to unsigned
assignment
occurs. (VER-318)
Warning: /usr/00budgeting/vhdl-mr/warn-sign.v:49: unsigned to signed
assignment
occurs. (VER-318)
Warning: /usr/00budgeting/vhdl-mr/warn-sign.v:76: signed to unsigned
conversion
occurs. (VER-318)
Warning: /usr/00budgeting/vhdl-mr/warn-sign.v:80: signed to unsigned
conversion
occurs. (VER-318)
Presto compilation completed successfully.
Current design is now ’/usr/00budgeting/vhdl-mr/m1.db:m1’
m1 m2 m3 m4 m5 m6 m7 m8 m9

Table 3-2 describes what caused the warnings listed in Example 3-5.

Table 3-2 Causes of Sign Mismatch Warnings (VER-318)

Module Cause of warning

m1, m4, and m7 These modules do not have any sign conversion warnings because the signs are
consistently applied.

m9 This module does not generate a VER-318 warning because, even though in1
and in2 are sign mismatched, the casting operator is used to force the sign on in2.
When a casting operator is used, no warning is returned when sign conversion
occurs.
Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions 3-11
Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions 3-11

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Multiplexing Logic

Multiplexers are commonly modeled with case statements. If statements are occasionally
used and are usually more difficult to code. To implement multiplexing logic, HDL Compiler
uses SELECT_OP cells which Design Compiler maps to combinational logic or multiplexers
in the technology library. If you want Design Compiler to preferentially map multiplexing logic
to multiplexers—or multiplexer trees—in your technology library, you must infer MUX_OP
cells.

 The following sections describe multiplexer inference:

• SELECT_OP Inference

• One-Hot Multiplexer Inference

• MUX_OP Inference

m2 In this module, a is signed and added to 3'sb111, which is signed and has a value
of -1. However, z is not signed, so the value of the expression on the right, which
is signed, will be converted to unsigned when assigned to z. The VER-318
warning “signed to unsigned assignment occurs” is issued.

m3 In this module, a is unsigned but put into the signed reg x. Here a will be
converted to signed, and a VER-318 warning “unsigned to signed assignment
occurs” is issued. Note that in line 22 (z = x < 4'sd5) x is signed and compared to
4'sd5, which is also signed, but the result of the comparison is put into z, an
unsigned reg. This appears to be a sign mismatch; however, no VER-318 warning
is issued for this line because comparison results are always considered
unsigned. This is true for all relational operators.

m5 In this module, a and b are unsigned but they are assigned to x and y, which are
signed. Two VER-318 warnings “unsigned to signed assignment occurs” are
issued. In addition, y is subtracted from x and assigned to z, which is unsigned.
Here the VER-318 warning “signed to unsigned assignment occurs” is also
issued.

m6 In this module, a is unsigned but put into the signed register x. The VER-318
warning “unsigned to signed assignment occurs” is issued.

m8 In this module, in1 is signed and compared with in2, which is unsigned, and
8‘d64, which is an unsigned value.

For each expression, the VER-318 warning “signed to unsigned conversion
occurs” is issued.

Table 3-2 Causes of Sign Mismatch Warnings (VER-318) (Continued)

Module Cause of warning
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-12

HDL Compiler for Verilog User Guide Version D-2010.03
• MUX_OP Inference Examples

• MUX_OP Inference Limitations

SELECT_OP Inference
By default, HDL Compiler uses SELECT_OP components to implement conditional
operations implied by if and case statements. An example of a SELECT_OP cell
implementation for an 8-bit data signal is shown in Figure 3-6.

Figure 3-6 SELECT_OP Implementation for an 8-bit Data Signal

SELECT_OPs behave like one-hot multiplexers; the control lines are mutually exclusive, and
each control input allows the data on the corresponding data input to pass to the output of
the cell. To determine which data signal is chosen, HDL Compiler generates selection logic,
as shown in Figure 3-7.

output

DATA7

DATA6

DATA5

DATA4

DATA3

DATA2

CONT

DATA8

CONT

CONT

CONT

CONT

CONT

CONT

CONT

For an 8-bit data signal, 8 selection bits are needed.
This is called a one-hot implementation.

data signals

select signals

DATA1
z_
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-13
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-13

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Figure 3-7 HDL Compiler Output—SELECT_OP and Selection Logic

Depending on the design constraints, Design Compiler implements the SELECT_OP with
either combinational logic or multiplexer cells from the technology library.

One-Hot Multiplexer Inference
As mentioned in the previous section, Design Compiler implements SELECT_OPs with
either combinational logic or multiplexer cells from the technology library. You can force
Design Compiler to map the SELECT_OP cell to a one-hot multiplexer in the technology
library by using the infer_onehot_mux directive and the coding style shown in Example 3-6
or Example 3-7.

Example 3-6 One-Hot Multiplexer Coding Style One
case (1'b1) //synopsys full_case parallel_case infer_onehot_mux
sel1 : out = in1;
sel2 : out = in2;
sel3 : out = in3;

Example 3-7 One-Hot Multiplexer Coding Style Two
case({sel3, sel2, sel1}) //synopsys full_case parallel_case
infer_onehot_mux
3'b001: out = in1;
3'b010: out = in2;
3'b100: out = in3;
default: out = 1'b0;
endcase

Note that the parallel_case and full_case directives are required.

Selection logicSelect signals
SELECT_OP

Data signals Output
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-14

HDL Compiler for Verilog User Guide Version D-2010.03
For optimization details and library requirements, see the Design Compiler User Guide.

MUX_OP Inference
If you want Design Compiler to preferentially map multiplexing logic in your RTL to
multiplexers—or multiplexer trees—in your technology library, you need to infer MUX_OP
cells. These cells are hierarchical generic cells optimized to use the minimum number of
select signals. They are typically faster than the SELECT_OP cell, which uses a one-hot
implementation. Although MUX_OP cells improve design speed, they also might increase
area. During optimization, Design Compiler preferentially maps MUX_OP cells to
multiplexers—or multiplexer trees—from the technology library, unless the area costs are
prohibitive, in which case combinational logic is used. For information on how Design
Compiler maps MUX_OP cells to multiplexers in the target technology library, see the
Design Compiler Reference Manual: Optimization and Timing Analysis.

Figure 3-8 shows a MUX_OP cell for an 8-bit data signal. Notice that the MUX_OP cell
needs only three control lines to select an output; compare this with the SELECT_OP cell,
which needed eight control lines.

Figure 3-8 MUX_OP Generic Cell for an 8-bit Data Signal

The MUX_OP cell contains internal selection logic to determine which data signal is chosen;
HDL Compiler does not need to generate any selection logic, as shown in Figure 3-9.

data signals

select signals

For an 8-bit word, only 3 selection bits
are needed.

DATA7

DATA6

DATA5

DATA4

DATA3

DATA2

DATA1

S0

DATA8

S1

z_0

S2
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-15
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-15

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Figure 3-9 HDL Compiler Output—MUX_OP Generic Cell for 8-Bit Data

Use the following methods to infer MUX_OP cells:

• To infer MUX_OP cells for a specific case or if statement, use the infer_mux directive.
Additionally, you must use a simple variable as the control expression; for example, you
can use the input “A” but not the negation of input “A”. If statements have special coding
considerations, for details “Considerations When Using If Statements to Code For
MUX_OPs” on page 3-22.

 always@(SEL) begin
 case (SEL) // synopsys infer_mux
 2'b00: DOUT <= DIN[0];
 2'b01: DOUT <= DIN[1];
 2'b10: DOUT <= DIN[2];
 2'b11: DOUT <= DIN[3];
 endcase

Note that the case statement must be parallel; otherwise, a MUX_OP is not inferred and
an error is reported. The parallel_case directive does not make a case statement truly
parallel. This directive can also be set on a block to direct HDL Compiler to infer
MUX_OPs for all case statements in that block. Use the following syntax:

// synopsys infer_mux block_label_list

• To infer MUX_OP cells for all case and if statements, use the hdlin_infer_mux variable.
Additionally, your coding style must use a simple variable as the control expression; for
example, you can use the input “A” but not the negation of input “A”.

By default, if you set the infer_mux directive on a case statement that has two or more
synthetic (DesignWare) operators as data inputs, HDL Compiler generates an ELAB-370
warning and does not infer a MUX_OP because you would lose the benefit of resource
sharing.

Select signals
MUX_OP

Data signals Output
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-16

HDL Compiler for Verilog User Guide Version D-2010.03
You can further customize your MUX_OP implementation with the following variables:
hdlin_mux_size_limit, hdlin_mux_size_min, and hdlin_mux_oversize_ratio.

To ensure that MUX_OP cells are mapped to MUX technology cells, you must apply a
size_only attribute to the cells to prevent logic decomposition in later optimization steps.
You can set the size_only attribute on each MUX_OP manually or allow the tool to set it
automatically. The automatic behavior can be controlled by the hdlin_mux_size_only
variable. The following options are valid for hdlin_mux_size_only:

• 0

Specifies that no cells receive the size_only attribute.

• 1 (the default)

Specifies that MUX_OP cells that are generated with the RTL infer_mux pragma and
that are on set/reset signals receive the size_only attribute.

• 2

Specifies that all MUX_OP cells that are generated with the RTL infer_mux pragma
receive the size_only attribute.

• 3

Specifies that all MUX_OP cells on set/reset signals receive the size_only attribute: for
example, MUX_OP cells that are generated by the hdlin_infer_mux variable set to all.

• 4

Specifies that all MUX_OP cells receive the size_only attribute: for example, MUX_OP
cells that are generated by the hdlin_infer_mux variable set to all.

By default, the hdlin_mux_size_only variable is set to 1, meaning that MUX_OP cells that
are generated with the RTL infer_mux pragma and that are on set/reset signals receive the
size_only attribute.

Note:
If you want to use the multiplexer inference feature, the target technology library must
contain at least a 2-to-1 multiplexer.

For detailed information about MUX_OP components, see the Design Compiler Reference
Manual: Optimization and Timing Analysis.
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-17
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-17

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
MUX_OP Inference Examples
In Example 3-8, two MUX_OPs and one SELECT_OP are inferred, as follows:

• For the first always block, the infer_mux directive is set on the case statement, which
causes HDL Compiler to infer a MUX_OP.

• For the second always block, there are two case statements.

• For the first case statement, a SELECT_OP is inferred. This is the default inference.

• However, the second case statement has the infer_mux directive set on it, which
causes HDL Compiler to infer the MUX_OP cell.

Example 3-8 Two MUX_OPs and One SELECT_OP Inferred
module test_muxop_selectop (DIN1, DIN2, DIN3, SEL1, SEL2,
SEL3, DOUT1,DOUT2, DOUT3); input [7:0] DIN1, DIN2; input
[3:0] DIN3; input [2:0] SEL1, SEL2; input [1:0] SEL3;

output DOUT1, DOUT2, DOUT3;

reg DOUT1, DOUT2, DOUT3;

always @ (SEL1 or DIN1)
begin
 case (SEL1) //synopsys infer_mux
 3'b000: DOUT1 <= DIN1[0];
 3'b001: DOUT1 <= DIN1[1];
 3'b010: DOUT1 <= DIN1[2];
 3'b011: DOUT1 <= DIN1[3];
 3'b100: DOUT1 <= DIN1[4];
 3'b101: DOUT1 <= DIN1[5];
 3'b110: DOUT1 <= DIN1[6];
 3'b111: DOUT1 <= DIN1[7];

 endcase
end

always @ (SEL2 or SEL3 or DIN2 or DIN3)
begin
 case (SEL2)
 3'b000: DOUT2 <= DIN2[0];
 3'b001: DOUT2 <= DIN2[1];
 3'b010: DOUT2 <= DIN2[2];
 3'b011: DOUT2 <= DIN2[3];
 3'b100: DOUT2 <= DIN2[4];
 3'b101: DOUT2 <= DIN2[5];
 3'b110: DOUT2 <= DIN2[6];
 3'b111: DOUT2 <= DIN2[7];

 endcase
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-18

HDL Compiler for Verilog User Guide Version D-2010.03
 case (SEL3) //synopsys infer_mux
 2'b00: DOUT3 <= DIN3[0];
 2'b01: DOUT3 <= DIN3[1];
 2'b10: DOUT3 <= DIN3[2];
 2'b11: DOUT3 <= DIN3[3];

 endcase
end

endmodule

Example 3-9 shows the MUX_OP inference report for the code in Example 3-8. Figure 3-10
on page 3-20 shows a representation of the HDL Compiler implementation. The tool
displays inference reports by default. If you do not want these reports displayed, you can
turn them off using the hdlin_reporting_level variable. For more information about the
hdlin_reporting_level variable, see “Elaboration Reports” on page 1-6.

Example 3-9 MUX_OP Inference Report
Statistics for case statements in always block at line 31 in file ...
===
| Line | full/ parallel |
===
| 33 | auto/auto |
===
Statistics for MUX_OPs
===
| block name/line | Inputs | Outputs | # sel inputs | MB |
===
| test_muxop_selectop/13 | 8 | 1 | 3 | N |
| test_muxop_selectop/47 | 4 | 1 | 2 | N |
===

The first column of the MUX_OP report indicates the block that contains the case statement
for which the MUX_OP is inferred. The line number of the case statement in Verilog also
appears in this column. The remaining columns indicate the number of inputs, outputs, and
select lines on the inferred MUX_OP.
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-19
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-19

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Figure 3-10 HDL Compiler Implementation

Example 3-10 uses the infer_mux directive for a specific block.

Example 3-10 MUX_OP Inference for a Block
module muxtwo(DIN1, DIN2, SEL1, SEL2, DOUT1, DOUT2);
 input [7:0] DIN1;
 input [3:0] DIN2;
 input [2:0] SEL1;
 input [1:0] SEL2;
 output DOUT1, DOUT2;
 reg DOUT1, DOUT2;

//synopsys infer_mux "blk1"

always @(SEL1 or SEL2 or DIN1 or DIN2)
begin: blk1
 // this case statement infers an 8-to-1 MUX_OP
 case (SEL1)
 3'b000: DOUT1 <= DIN1[0];
 3'b001: DOUT1 <= DIN1[1];
 3'b010: DOUT1 <= DIN1[2];
 3'b011: DOUT1 <= DIN1[3];
 3'b100: DOUT1 <= DIN1[4];
 3'b101: DOUT1 <= DIN1[5];
 3'b110: DOUT1 <= DIN1[6];
 3'b111: DOUT1 <= DIN1[7];
 endcase

MUX_OP

MUX_OP

SELECT_OP

DIN1

DIN2

DIN3

SEL2

SEL1

SEL3

DOUT3

DOUT2

DOUT1

selection logic
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-20

HDL Compiler for Verilog User Guide Version D-2010.03
 // this case statement infers a 4-to-1 MUX_OP
 case (SEL2)
 2'b00: DOUT2 <= DIN2[0];
 2'b01: DOUT2 <= DIN2[1];
 2'b10: DOUT2 <= DIN2[2];
 2'b11: DOUT2 <= DIN2[3];
 endcase
end
endmodule

Example 3-11 uses the infer_mux directive for a specific case statement. This case
statement contains eight unique values, and HDL Compiler infers an 8-to-1 MUX_OP.

Example 3-11 MUX_OP Inference for a Specific case Statement
module mux8to1 (DIN, SEL, DOUT);
 input [7:0] DIN;
 input [2:0] SEL;
 output DOUT;
 reg DOUT;
 always@(SEL or DIN)
 begin: blk1
 case (SEL) // synopsys infer_mux
 3'b000: DOUT <= DIN[0];
 3'b001: DOUT <= DIN[1];
 3'b010: DOUT <= DIN[2];
 3'b011: DOUT <= DIN[3];
 3'b100: DOUT <= DIN[4];
 3'b101: DOUT <= DIN[5];
 3'b110: DOUT <= DIN[6];
 3'b111: DOUT <= DIN[7];
 endcase
 end
endmodule

In Example 3-12 a MUX_OP is inferred by using an if-else statement. This coding style
requires the control expression to be a simple variable. If statements have special coding
considerations, for details see “Considerations When Using If Statements to Code For
MUX_OPs” on page 3-22.

Example 3-12 MUX_OP Inference Using if-else Statement
module test (input sel,a,b, output reg dout);
 always @(*)
 if(sel) //synopsys infer_mux
 dout = a;
 else
 dout = b;
endmodule

In Example 3-13 a MUX_OP is inferred by using a “?:” operator. This coding style requires
you to place the infer_mux directive just after “?” construct.
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-21
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-21

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Example 3-13 MUX_OP Inference for a Specific case Statement
module test (sig, A, B, C);
 input A, B, C;
 output sig;
 assign sig = A ? /* synopsys infer_mux */ B :C ;
endmodule

Considerations When Using If Statements to Code For MUX_OPs
In general, good coding practice is to use case statements when coding multiplexing logic
because the if statement coding style can result in potentially slower, larger designs and
reduce coding flexibility. These issues are described in this section.

In order for HDL Compiler to infer MUX_OPs through if-else statements, you must use very
simple expression(s), such as those shown in Example 3-14. From this code, the tool can
infer a 4-to-1 MUX_OP cell.

Example 3-14 Tool Infers MUX_OP From If-Else Statements
module mux41 (a, b, c, d, sel, dout);
 input a, b, c, d;
 input [1:0] sel;
 output reg dout;

 always@(*) begin
 if (sel == 2'b00) /* synopsys infer_mux */
 begin
 dout <= a;
 end
 else if (sel == 2'b01) begin
 dout <= b;
 end
 else if (sel == 2'b10) begin
 dout <= c;
 end
 else if (sel == 2'b11) begin
 dout <= d;
 end

 end

endmodule

In Example 3-14, the code specifies all possible conditions and the tool builds the most
efficient logic, a 4-to-1 MUX_OP cell. However, when your if statements don't cover all
possible conditions, as in Example 3-15, the tool does not infer optimum logic. Instead, it
infers a 4-to-1 multiplexer even though there are only two branches. In this case, the
optimum logic is a 2-to-1 MUX_OP cell, but the tool builds a 4-to-1 MUX_OP.
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-22

HDL Compiler for Verilog User Guide Version D-2010.03
Example 3-15 Tool Infers Inefficient 4:1 MUX_OP From If-Else Statements
module mux21 (a, b, sel, dout);
 input a, b;
 input [1:0] sel;
 output reg dout;

 always@(*) begin
 if (sel == 2'b00) /* synopsys infer_mux */
 begin
 dout <= a;
 end
 else begin
 dout <= b;
 end
 end

endmodule

In order to infer a 2-to-1 MUX_OP cell, you must re-code the design in Example 3-15 to the
style shown in Example 3-16.

Example 3-16 Tool Infers 2:1 MUX_OP From If-Else Statements
module mux21 (a, b, sel, dout);
 input a, b;
 input [1:0] sel;
 output reg dout;

 reg tmp;

 always@(*) begin
 tmp = (sel == 2'b11) ? 1'b1 : 1'b0;
 if (tmp) /* synopsys infer_mux */
 begin
 dout <= a;
 end
 else begin
 dout <= b;
 end
 end

endmodule

Another difficulty with using if statements is limited coding flexibiliy. Expressions like the one
used in Example 3-17 are too complex for HDL Compiler to handle. In Example 3-17, HDL
Compiler does not infer a MUX_OP cell even when the infer_mux directive is used.
Instead, the tool infers a SELECT_OP to build the multiplexing logic. In order to infer a 2-to-1
MUX_OP cell, you must re-code to extract the expression of the if statement and assign it to
a variable so that the behavior is like a case statement.

Example 3-17 Tool Cannot Infer MUX_OP From Complex Expressions
module mux21 (a, b, c, d, sel, dout);
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-23
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-23

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
 input a, b, c, d;
 input [1:0] sel;
 output reg dout;

 always@(*) begin
 if (sel[0] == 1'b0) /* synopsys infer_mux */
 begin
 dout <= a & b;
 end
 else begin
 dout <= d & c;
 end
 end
endmodule

To further illustrate the expression coding requirements, consider Example 3-18. From the
code in Example 3-18, the tool infers a SELECT_OP even though the infer_mux directive
is used. To enable the tool to infer a MUX_OP cell, you must re-code the design in
Example 3-18 to the style shown in Example 3-19.

Example 3-18 Tool Infers SELECT_OP for Multiplexing Logic From Complex Expressions
module mux41 (a, b, c, d, dout);
 input a, b, c, d;
 output reg dout;

 always@(*) begin
 if (a == 1'b0 && b == 1'b0) /* synopsys infer_mux */
 begin
 dout <= c & d;
 end
 else if (a == 1'b0 && b == 1'b1) begin
 dout <= c | d;
 end
 else if (a == 1'b1 && b == 1'b0) begin
 dout <= !c & d;
 end
 else if (a == 1'b1 && b == 1'b1) begin
 dout <= c | !d;
 end
 end

endmodule

Example 3-19 Tool Infers MUX_OP for Multiplexing Logic
module mux41 (a, b, c, d, dout);
 input a, b, c, d;
 output reg dout;
 reg [1:0] tmp;
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-24

HDL Compiler for Verilog User Guide Version D-2010.03
 always@(*) begin
 tmp = {a, b};
 if (tmp == 2'b00) /* synopsys infer_mux */
 begin
 dout <= c & d;
 end
 else if (tmp == 2'b01) begin
 dout <= c | d;
 end
 else if (tmp == 2'b10) begin
 dout <= !c & d;
 end
 else if (tmp == 2'b11) begin
 dout <= c | !d;
 end
 end

endmodule

A good practice, whenever possible, is to use case statements instead of if-else statements
when you want to infer MUX_OP cells.

MUX_OP Inference Limitations
HDL Compiler does not infer MUX_OP cells for

• case statements in while loops

• case statements embedded in an always block

• case or if statements that use complex control expressions

You must use a simple variable as the control expression; for example, you can use the
input “A” but the not the negation of input “A.”

MUX_OP cells are inferred for incompletely specified case statements, such as case
statements that

• Contain an if statement that covers more than one value

• Have a missing case statement branch or a missing assignment in a case statement
branch

• Contain don’t care values (x or "-")

In these cases, the logic might not be optimum, because other optimizations are disabled
when you infer MUX_OP cells under these conditions. For example, HDL Compiler
optimizes default branches. If the infer_mux attribute is on the case statement, this
optimization is not done.
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-25
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-25

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
When inferring a MUX_OP for an incompletely specified case statement, HDL Compiler
generates the following ELAB-304 warning:

Warning: Case statement has an infer_mux attribute and a
default branch or incomplete mapping. This can cause
nonoptimal logic if a mux is inferred. (ELAB-304)

MUX_OP Components With Variable Indexing

HDL Compiler generates MUX_OP components to implement indexing into a data variable,
using a variable address. For example,

 module E(data, addr, out);
 input [7:0] data;
 input [2:0] addr;
 output out;
 assign out = data[addr];
 endmodule

In this example, a MUX_OP is used to implement data[addr] because the subscript, addr, is
not a known constant.

Modeling Complex MUX Inferences: Bit and Memory Accesses

In addition to inferring multiplexers from case statements, you can infer them for bit or
memory accesses. See Example 3-20 through Example 3-21 for templates. By default, HDL
Compiler uses a MUX_OP for bit and memory access.

Example 3-20 MUX Inference for Bit Access
module mux_infer_bit (x, a, y);
 input [15:0] x;
 input [3:0] a;
 output y;
 reg y;
 always @(x,a)
 begin

y = x[a];
 end
endmodule
Chapter 3: Modeling Combinational Logic
MUX_OP Components With Variable Indexing 3-26

HDL Compiler for Verilog User Guide Version D-2010.03
Example 3-21 MUX Inference for Memory Access
module mux_infer_memory (rw, addr, data);
 input rw;
 input [3:0] addr;
 inout [15:0] data;
 reg [3:0] x [15:0];

 assign data = (rw) ? x[addr] : 16'hz ;

 always @(rw, data)
 if (!rw) x[addr] = data ;

endmodule

Bit-Truncation Coding for DC Ultra Datapath Extraction

Datapath design is commonly used in applications that contain extensive data manipulation,
such as 3-D, multimedia, and digital signal processing (DSP). Datapath extraction
transforms arithmetic operators into datapath blocks to be implemented by a datapath
generator.

The DC Ultra tool enables datapath extraction after timing-driven resource sharing and
explores various datapath and resource-sharing options during compile.

Note:
This feature is not available in DC Expert. See the Design Compiler documentation for
datapath optimization details.

As of release 2002.05, DC Ultra datapath optimization supports datapath extraction of
expressions containing truncated operands unless both of the following two conditions exist:

• The operands have upper bits truncated. For example, if d is 16-bits wide, d[7:0]
truncates the upper eight bits.

• The width of the resulting expression is greater than the width of the truncated operand.
For example, in the following statement, if e is 9-bits wide, the width of e is greater than
the width of the truncated operand d[7:0]:

assign e = c + d[7:0];

Note that both conditions must be true to prevent extraction. For lower-bit truncations, the
datapath is extracted in all cases.
Chapter 3: Modeling Combinational Logic
Bit-Truncation Coding for DC Ultra Datapath Extraction 3-27
Chapter 3: Modeling Combinational Logic
Bit-Truncation Coding for DC Ultra Datapath Extraction 3-27

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Bit truncation can be either explicit or implicit. Table describes both types of truncation.

To see how bit truncation affects datapath extraction, consider the code in Example 3-22.

Example 3-22 Design test1: Truncated Operand Is Extracted
module test1 (a,b,c,e);
 input [7:0] a,b,c;
 output [7:0] e;
 wire [14:0] d;
 assign d = a * b; // <--- implicit upper-bit truncation
 assign e = c + d; // width of e is less than d
endmodule

In Example 3-22, the upper bits of the a * b operation are implicitly truncated when assigned
to d, and the width of e is less than the width of d. This code meets the first condition on
page 27 but does not meet the second. Because both conditions must be met to prevent
extraction, this code is extracted.

Consider the code in Example 3-23. Here bit truncation prevents extraction.

Truncation type Description

Explicit bit truncation An explicit upper-bit truncation is one where the user specifies the bit range
for truncation.

The following code indicates explicit upper-bit truncation of operand A:

wire [i : 0] A;

out = A [j : 0]; // where j < i

Implicit bit truncation An implicit upper-bit truncation is one that occurs through assignment. Unlike
with explicit upper-bit truncation, here the user does not explicitly define the
range for truncation.

The following code indicates implicit upper-bit truncation of operand Y:

input [7 : 0] A,B;

wire [14:0] Y = A * B;

Because A and B are each 8 bits wide, their product will be 16 bits wide.
However, Y, which is only 15 bits wide, is assigned to be the 16-bit product,
when the most significant bit (MSB) of the product is implicitly truncated. In
this example, the MSB is the carryout bit.
Chapter 3: Modeling Combinational Logic
Bit-Truncation Coding for DC Ultra Datapath Extraction 3-28

HDL Compiler for Verilog User Guide Version D-2010.03
Example 3-23 Design test2: Truncated Operand Is Not Extracted
module test2 (a,b,c,e);
 input [7:0] a,b,c;
 output [8:0] e; // <--- e is 9-bits wide
 wire [7:0] d; // <--- d is 8-bits wide
 assign d = a * b; // <---implicit upper-bit truncation
 assign e = c + d; // <---width of e is greater than d
endmodule

In Example 3-23, the upper bits of the a * b operation are implicitly truncated when assigned
to d, and the width of e is greater than the width of d. This code meets both the first and
second conditions; the code is not extracted.

Consider the code in Example 3-24. Here bit truncation prevents extraction.

Example 3-24 Design test3: Truncated Operand Is Not Extracted
module test3 (a,b,c,e);
 input [7:0] a,b,c;
 output [8:0] e;
 wire [15:0] d; // <--- d is 16-bits wide
 assign d = a * b; // <--- d is not truncated
 assign e = c + d[7:0]; // <--- explicit upper-bit truncation of d
 // width of e is greater than d[7:0]
endmodule

In Example 3-24, the upper bits of d are explicitly truncated, and the width of e is greater
than the width of d. This code meets both the first and second conditions; the code is not
extracted.

Consider the code in Example 3-25. Here bit truncation does not prevent extraction.

Example 3-25 Design test4: Truncated Operand Is Extracted
module test4 (a,b,c,e);
 input [7:0] a,b,c;
 output [9:0] e;
 wire [15:0] d;
 assign d = a * b; // <--- No implicit upper-bit truncation
 assign e = c + d[15:8]; // <---"explicit lower" bit truncation of d
endmodule

In Example 3-25, the lower bits of d are explicitly truncated. For expressions involving
lower-bit truncations, the truncated operands are extracted regardless of the bit-widths of
the truncated operands and of the expression result; this code is extracted.
Chapter 3: Modeling Combinational Logic
Bit-Truncation Coding for DC Ultra Datapath Extraction 3-29
Chapter 3: Modeling Combinational Logic
Bit-Truncation Coding for DC Ultra Datapath Extraction 3-29

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Latches in Combinational Logic

Sometimes your Verilog source can imply combinational feedback paths or latches in
synthesized logic. This happens when a signal or a variable in a combinational logic block
(an always block without a posedge or negedge clock statement) is not fully specified. A
variable or signal is fully specified when it is assigned under all possible conditions.

When a variable is not assigned a value for all paths through an always block, the variable
is conditionally assigned and a latch is inferred for the variable to store its previous value. To
avoid these latches, make sure that the variable is fully assigned in all paths. In
Example 3-26, the variable Q is not assigned if GATE equals 1’b0. Therefore, it is
conditionally assigned and HDL Compiler creates a latch to hold its previous value.

Example 3-26 Latch Inference Using an if Statement
always @ (DATA or GATE) begin
 if (GATE) begin
 Q = DATA;
 end
end

Example 3-27 and Example 3-28 show Q fully assigned—Q is assigned 0 when GATE
equals 1’b0. Note that Example 3-27 and Example 3-28 are not equivalent to Example 3-26,
in which Q holds its previous value when GATE equals 1’b0.

Example 3-27 Avoiding Latch Inference—Method 1
always @ (DATA, GATE) begin
 Q = 0;
 if (GATE)
 Q = DATA;
end

Example 3-28 Avoiding Latch Inference—Method 2
always @ (DATA, GATE) begin
 if (GATE)
 Q = DATA;
 else
 Q = 0;
end

The code in Example 3-29 results in a latch because the variable is not fully assigned. To
avoid the latch inference, add the following statement before the endcase statement:

default: decimal= 10’b0000000000;
Chapter 3: Modeling Combinational Logic
Latches in Combinational Logic 3-30

HDL Compiler for Verilog User Guide Version D-2010.03
Example 3-29 Latch Inference Using a case Statement
always @(I) begin
 case(I)
 4'h0: decimal= 10'b0000000001;
 4'h1: decimal= 10'b0000000010;
 4'h2: decimal= 10'b0000000100;
 4'h3: decimal= 10'b0000001000;
 4'h4: decimal= 10'b0000010000;
 4'h5: decimal= 10'b0000100000;
 4'h6: decimal= 10'b0001000000;
 4'h7: decimal= 10'b0010000000;
 4'h8: decimal= 10'b0100000000;
 4'h9: decimal= 10'b1000000000;
 endcase
end

Latches are also synthesized whenever a for loop statement does not assign a variable for
all possible executions of the for loop and when a variable assigned inside the for loop is not
assigned a value before entering the enclosing for loop.
Chapter 3: Modeling Combinational Logic
Latches in Combinational Logic 3-31
Chapter 3: Modeling Combinational Logic
Latches in Combinational Logic 3-31

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Chapter 3: Modeling Combinational Logic
Latches in Combinational Logic 3-32

4
Modeling Sequential Logic 4

This chapter describes latch and flip-flop inference in the following sections:

• Generic Sequential Cells (SEQGENs)

• Inference Reports for Registers

• Register Inference Guidelines

• Register Inference Examples

Synopsys uses the term register to refer to a 1-bit memory device, either a latch or a flip-flop.
A latch is a level-sensitive memory device. A flip-flop is an edge-triggered memory device.
4-1

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Generic Sequential Cells (SEQGENs)

When HDL Compiler reads a design, it uses a generic sequential cell (SEQGEN), as shown
in Figure 4-1, to represent an inferred flip-flop or latch.

Figure 4-1 SEQGEN Cell and Pin Assignments

To illustrate how HDL Compiler uses SEQGENs to implement a flip-flop, consider
Example 4-1. This code infers a D flip-flop with an asynchronous reset.

Example 4-1 D Flip-Flop With Asynchronous Reset
module dff_async_set (DATA, CLK, RESET, Q);
 input DATA, CLK, RESET;
 output Q;
 reg Q;
 always @(posedge CLK or negedge RESET)
 if (~RESET)
 Q <= 1'b1;
 else
 Q <= DATA;
endmodule

Figure 4-2 shows the SEQGEN implementation.

SEQGEN

synch_toggle

QN

synch_preset

synch_enable

synch_clear

preset

next_state

enable

data_in

clocked_on

clear

Q

Chapter 4: Modeling Sequential Logic
Generic Sequential Cells (SEQGENs) 4-2

HDL Compiler for Verilog User Guide Version D-2010.03
Figure 4-2 SEQGEN Implementation

Example 4-2 shows the report_cell output. Here you see the that HDL Compiler has
mapped the inferred flip-flop, Q_reg cell, to a SEQGEN.

Example 4-2 report_cell Output
**
Report : cell
Design : dff_async_set
Version: V-2003.12
Date : Wed Sep 15 11:17:48 2004
**

Attributes:
 b - black box (unknown)
 h - hierarchical
 n - noncombinational
 r - removable
 u - contains unmapped logic

Cell Reference Library Area Attributes

I_0 GTECH_NOT gtech 0.000000 u
Q_reg **SEQGEN** 0.000000 n, u

Total 2 cells 0.000000
1

Example 4-3 shows the GTECH netlist.

synch_toggle

synch_preset

synch_enable

synch_clear

preset

next_state

enable

data_in

clocked_on

clear

Q

RESET

CLK

DATA

Q

Logic 0

Logic 1

SEQGEN
Chapter 4: Modeling Sequential Logic
Generic Sequential Cells (SEQGENs) 4-3
Chapter 4: Modeling Sequential Logic
Generic Sequential Cells (SEQGENs) 4-3

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Example 4-3 GTECH Netlist
module dff_async_set (DATA, CLK, RESET, Q);
 input DATA;
 input CLK;
 input RESET;
 output Q;
 wire *Logic1* , *Logic0* , N0;

 SEQGEN Q_reg (.clear(1’b0), .preset(N0), .next_state(DATA),
 .clocked_on(CLK), .data_in(1’b0), .enable(1’b0), .Q(Q),
.synch_clear(
 1’b0), .synch_preset(1’b0), .synch_toggle(1’b0),
.synch_enable(1’b1)
);
 GTECH_NOT I_0 (.A(RESET), .Z(N0));
endmodule

After Design Compiler compiles the design, the SEQGEN is mapped to the appropriate
flip-flop in the technology library. Figure 4-3 shows an example of an implementation after
compile.

Figure 4-3 Design Compiler Implementation

Note:
If the technology library does not contain the inferred flip-flop or latch, Design Compiler
creates combinational logic for the missing function, if possible. For example, if you infer
a D flip-flip with a synchronous set but your target technology library does not contain this
type of flip-flop, Design Compiler will create combinational logic for the synchronous set
function. Design Compiler cannot create logic to duplicate an asynchronous preset/reset.
Your library must contain the sequential cell with the asynchronous control pins. See
“Register Inference Limitations” on page 4-12.

Q_reg

data_in

clocked_on

clear
Q

RESET

CLK
Q

DATA
Chapter 4: Modeling Sequential Logic
Generic Sequential Cells (SEQGENs) 4-4

HDL Compiler for Verilog User Guide Version D-2010.03
Inference Reports for Registers

HDL Compiler provides inference reports that describe each inferred flip-flop or latch. You
can enable or disable the generation of inference reports by using the
hdlin_reporting_level variable. By default, hdlin_reporting_level is set to basic.
When hdlin_reporting_level is set to basic or comprehensive, HDL Compiler
generates a report similar to Example 4-4. This basic inference report shows only which
type of register was inferred.

Example 4-4 Inference Report for a D Flip-Flop With Asynchronous Reset
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Flip-flop | 1 | N | N | Y | N | N | N | N |
==

In the report, the columns are abbreviated as follows:

• MB represents multibit cell

• AR represents asynchronous reset

• AS represents asynchronous set

• SR represents synchronous reset

• SS represents synchronous set

• ST represents synchronous toggle

A “Y” in a column indicates that the respective control pin was inferred for the register; an
“N” indicates that the respective control pin was not inferred for the register. For a D flip-flop
with an asynchronous reset, there should be a “Y” in the AR column. The report also
indicates the type of register inferred, latch or flip-flop, and the name of the inferred cell.

When the hdlin_reporting_level variable is set to verbose, the report indicates how
each pin of the SEQGEN cell is assigned, along with which type of register was inferred.
Example 4-5 shows a verbose inference report.

Example 4-5 Verbose Inference Report for a D Flip-Flop With Asynchronous Reset
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Flip-flop | 1 | N | N | Y | N | N | N | N |
==
Sequential Cell (Q_reg)

Cell Type: Flip-Flop
Multibit Attribute: N
Clock: CLK
Async Clear: RESET
Async Set: 0
Chapter 4: Modeling Sequential Logic
Inference Reports for Registers 4-5
Chapter 4: Modeling Sequential Logic
Inference Reports for Registers 4-5

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Async Load: 0
Sync Clear: 0
Sync Set: 0
Sync Toggle: 0
Sync Load: 1

If you do not want inference reports, set hdlin_reporting_level to none. For more
information about the hdlin_reporting_level variable, see “Elaboration Reports” on
page 1-6.

Register Inference Guidelines

When inferring registers, restrict each always block so that it infers a single type of memory
element and check the inference report to verify that HDL Compiler inferred the correct
device.

Register inference guidelines are described in the following sections:

• Multiple Events in an always Block

• Minimizing Registers

• Keeping Unloaded Registers

• Preventing Unwanted Latches: hdlin_check_no_latch

• Register Inference Limitations

Multiple Events in an always Block
HDL Compiler supports multiple events in a single always block, as shown in Example 4-6.

Example 4-6 Multiple Events in a Single always Block
module test(data, clk, sum) ;
 input [7:0]data;
 input clk;
 output [7:0]sum;
 reg [7:0]sum;

 always
 begin
 @ (posedge clk)
 sum = data;
 @ (posedge clk)
 sum = sum + data;
 @ (posedge clk) ;
 sum = sum + data;
 end
endmodule
Chapter 4: Modeling Sequential Logic
Register Inference Guidelines 4-6

HDL Compiler for Verilog User Guide Version D-2010.03
Minimizing Registers
An always block that contains a clock edge in the sensitivity list causes HDL Compiler to
infer a flip-flop for each variable assigned a value in that always block. It might not be
necessary to infer as flip-flops all variables in the always block. Make sure your HDL
description builds only as many flip-flops as the design requires.

Example 4-7 infers six flip-flops: three to hold the values of count and one each to hold
and_bits, or_bits, and xor_bits. However, the values of the outputs and_bits, or_bits, and
xor_bits depend solely on the value of count. Because count is registered, there is no
reason to register the three outputs.

Example 4-7 Inefficient Circuit Description With Six Inferred Registers
module count (clock, reset, and_bits, or_bits, xor_bits);
 input clock, reset;
 output and_bits, or_bits, xor_bits;
 reg and_bits, or_bits, xor_bits;

 reg [2:0] count;

always @(posedge clock) begin
if (reset)
 count = 0;
else
 count = count + 1;

and_bits = & count;
or_bits = | count;
xor_bits = ^ count;

end
endmodule

Example 4-8 shows the inference report which contains the six inferred flip-flops.

Example 4-8 Inference Report
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
or_bits_reg	Flip-flop	1	N	N	N	N	N	N	N
count_reg	Flip-flop	3	Y	N	N	N	N	N	N
xor_bits_reg	Flip-flop	1	N	N	N	N	N	N	N
and_bits_reg	Flip-flop	1	N	N	N	N	N	N	N
===

To avoid inferring extra registers, you can assign the outputs from within an asynchronous
always block. Example 4-9 shows the same function described with two always blocks, one
synchronous and one asynchronous, that separate registered or sequential logic from
combinational logic. This technique is useful for describing finite state machines. Signal
Chapter 4: Modeling Sequential Logic
Register Inference Guidelines 4-7
Chapter 4: Modeling Sequential Logic
Register Inference Guidelines 4-7

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
assignments in the synchronous always block are registered, but signal assignments in the
asynchronous always block are not. The code in Example 4-9 creates a more area-efficient
design.

Example 4-9 Circuit With Three Inferred Registers
module count (clock, reset, and_bits, or_bits, xor_bits);
 input clock, reset;
 output and_bits, or_bits, xor_bits;
 reg and_bits, or_bits, xor_bits;

 reg [2:0] count;

always @(posedge clock) begin//synchronous block
if (reset)

count = 0;
else

count = count + 1;
end
always @(count) begin//asynchronous block

and_bits = & count;
or_bits = | count;
xor_bits = ^ count;

end
endmodule

Example 4-10 shows the inference report, which contains three inferred flip-flops.

Example 4-10 Inference Report
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| count_reg | Flip-flop | 3 | Y | N | N | N | N | N | N |
===

Keeping Unloaded Registers
HDL Compiler does not automatically keep unloaded or undriven flip-flops or latches in a
design. These cells are determined to be unnecessary and are removed during
optimization. You can use the hdlin_preserve_sequential variable to control which cells
to preserve:

• To preserve unloaded/undriven flip-flops and latches in your GTECH netlist, set
hdlin_preserve_sequential to all.

• To preserve all unloaded flip-flops only, set hdlin_preserve_sequential to ff.

• To preserve all unloaded latches only, set hdlin_preserve_sequential to latch.
Chapter 4: Modeling Sequential Logic
Register Inference Guidelines 4-8

HDL Compiler for Verilog User Guide Version D-2010.03
• To preserve all unloaded sequential cells, including unloaded sequential cells that are
used solely as loop variables, set hdlin_preserve_sequential to
all+loop_variables.

• To preserve flip-flop cells only, including unloaded sequential cells that are used solely as
loop variables, set hdlin_preserve_sequential to ff+loop_variables.

• To preserve unloaded latch cells only, including unloaded sequential cells that are used
solely as loop variables, set hdlin_preserve_sequential to latch+loop_variables.

If you want to preserve specific registers, use the preserve_sequential directive as shown
in Example 4-11 and Example 4-12.

Important:
To preserve unloaded cells through compile, you must set
compile_delete_unloaded_sequential_cells to false. Otherwise, Design Compiler
will remove them during optimization.

Example 4-11 uses the preserve_sequential directive to save the unloaded cell, sum2,
and the combinational logic preceding it; note that the combinational logic after it is not
saved. If you also want to save the combinational logic after sum2, you need to recode
design foo as shown in Example 4-12 on page 4-10.

Example 4-11 Retains an Unloaded Cell (sum2) and Two Adders
module foo (in1, in2, in3, out, clk);
 input [0:1] in1, in2, in3;
 input clk;
 output [0:3] out;
 reg sum1, sum2 /* synopsys preserve_sequential */;
 wire [0:4] save;
 always @ (posedge clk)
 begin
 sum1 = in1 + in2;
 sum2 = in1 + in2 + in3; // this combinational logic
 // is saved
 end
 assign out = ~sum1;
 assign save = sum1 + sum2; // this combinational logic is
 // not saved because it is after
 // the saved reg, sum2
endmodule

 Example 4-12 preserves all combinational logic before reg save.
Chapter 4: Modeling Sequential Logic
Register Inference Guidelines 4-9
Chapter 4: Modeling Sequential Logic
Register Inference Guidelines 4-9

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Example 4-12 Retains an Unloaded Cell (save) and Three Adders
module foo (in1, in2, in3, out, clk);
 input [0:1] in1, in2, in3;
 input clk;
 output [0:3] out;
 reg sum1, sum2, save /* synopsys preserve_sequential */;
 always @ (posedge clk)
 begin
 sum1 = in1 + in2;
 sum2 = in1 + in2 + in3; // this combinational logic
 // is saved
 end
 assign out = ~sum1;
 always @ (posedge clk)
 begin
 save = sum1 + sum2; // this combinational logic is saved
 end
endmodule

The preserve_sequential directive and the hdlin_preserve_sequential variable
enable you to preserve cells that are inferred but optimized away by HDL Compiler. If a cell
is never inferred, the preserve_sequential directive and the
hdlin_preserve_sequential variable have no effect because there is no inferred cell to
act on. In Example 4-13, sum2 is not inferred, so preserve_sequential does not save
sum2.

Example 4-13 preserve_sequential Has No Effect on Cells Not Inferred
module foo (in1, in2, out, clk);
 input [0:1] in1, in2;
 input clk;
 output [0:3] out;
 reg sum1, sum2 /* synopsys preserve_sequential */;
 wire [0:4] save;
 always @ (posedge clk)
 begin
 sum1 = in1 + in2;
 end
 assign out = ~sum1;
 assign save = sum2; // even though the preserve_sequential
 // directive was placed on sum2
 // it is not saved by HDL Compiler
 // because sum2 was never inferred
endmodule

Note:
By default, the hdlin_preserve_sequential variable does not preserve variables used
in for loops as unloaded registers. To preserve such variables, you must set
hdlin_preserve_sequential to ff+loop_variables.
Chapter 4: Modeling Sequential Logic
Register Inference Guidelines 4-10

HDL Compiler for Verilog User Guide Version D-2010.03
In addition to preserving sequential cells with the hdlin_preserve_sequential variable
and the preserve_sequential directive, you can also use the hdlin_keep_signal_name
variable and the keep_signal_name directive. For details, see “Keeping Signal Names” on
page 2-20.

Note:
The tool does not distinguish between unloaded cells (those not connected to any output
ports) and feedthroughs. See Example 4-14 for a feedthrough.

Example 4-14
module test(input clk, input in, output reg out);
 reg tmp1;
 always@(posedge clk)
 begin : storage
 tmp1 = in;
 out = tmp1;
 end
endmodule

With hdlin_preserve_sequential set to ff and
compile_delete_unloaded_sequential_cells set to false, the tool builds two registers;
one for the feedthrough cell (temp1) and the other for the loaded cell (temp2) as shown in
the following memory inference report:

Example 4-15 Feedthrough Register temp1
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| tmp1_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
| out_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
==

For details about the hdlin_preserve_sequential variable, see the man page.

Preventing Unwanted Latches: hdlin_check_no_latch
HDL Compiler infers latches when you do not fully specify a signal or a variable in a
combinational logic block. (See “Latches in Combinational Logic” on page 3-30.) If you want
the tool to issue a warning when it creates a latch, set hdlin_check_no_latch to true. The
default is false. Consider the declarations in Example 4-16:

Example 4-16
reg [1:0] Current_State;
reg [1:0] Next_State;

parameter STATE0 = 00, STATE1 = 01, STATE2 = 10, STATE3 = 11;

These declarations are used in state machine coding in Example 4-17.
Chapter 4: Modeling Sequential Logic
Register Inference Guidelines 4-11
Chapter 4: Modeling Sequential Logic
Register Inference Guidelines 4-11

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Example 4-17
always @(Current_State)
 begin
 case (Current_State)
 STATE0:

 begin
 Next_State = STATE1;
 Data_Out = 2'b00;
 end

 STATE1:
 begin
 Next_State = STATE2;
 Data_Out = 2'b01;
 end

 STATE2:
 begin
 Next_State = STATE3;
 Data_Out = 2'b10;
 end

 STATE3:
 begin
 Next_State = STATE0;
 Data_Out = 2'b11;
 end

 endcase

 end

If you accidently omit the base and bit-width, so 10 is viewed as ten and 11 as eleven, HDL
Compiler generates latches instead of combinational logic. When the
hdlin_check_no_latch variable is set to true, HDL Compiler generates a warning alerting
you to the unwanted latches. This warning is the last statement HDL Compiler reports after
reading in the design.

Register Inference Limitations
Note the following limitations when inferring registers:

• The tool does not support more than one independent if-block when asynchronous
behavior is modeled within an always block. If the always block is purely synchronous,
multiple independent if-blocks are supported by the tool.

• HDL Compiler cannot infer flip-flops and latches with three-state outputs. You must
instantiate these components in your Verilog description.
Chapter 4: Modeling Sequential Logic
Register Inference Guidelines 4-12

HDL Compiler for Verilog User Guide Version D-2010.03
• HDL Compiler cannot infer flip-flops with bidirectional pins. You must instantiate these
components in your Verilog description.

• HDL Compiler cannot infer flip-flops with multiple clock inputs. You must instantiate these
components in your Verilog description.

• HDL Compiler cannot infer multiport latches. You must instantiate these components in
your Verilog description.

• HDL Compiler cannot infer register banks (register files). You must instantiate these
components in your Verilog description.

• Although you can instantiate flip-flops with bidirectional pins, Design Compiler interprets
these cells as black boxes.

• If you use an if statement to infer D flip-flops, the if statement must occur at the top level
of the always block.

The following example is invalid because the if statement does not occur at the top level:

 always @(posedge clk or posedge reset) begin
 temp = reset;
 if (reset)
 .
 end

HDL Compiler generates the following message when the if statement does not occur at
the top level:

 Error: The statements in this ’always’ block are outside the
 scope of the synthesis policy (%s). Only an ’if’ statement
 is allowed at the top level in this ’always’ block. (ELAB-302)

Register Inference Examples

The following sections describe register inference examples:

• Inferring Latches

• Inferring Flip-Flops

Inferring Latches
HDL Compiler synthesizes latches when variables are conditionally assigned. A variable is
conditionally assigned if there is a path that does not explicitly assign a value to that variable.

HDL Compiler can infer D and SR latches. The following sections describe their inference:
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-13
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-13

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
• Basic D Latch

• D Latch With Asynchronous Reset: Use async_set_reset

• D Latch With Asynchronous Set and Reset: Use hdlin_latch_always_async_set_reset

Basic D Latch
When you infer a D latch, make sure you can control the gate and data signals from the
top-level design ports or through combinational logic. Controllable gate and data signals
ensure that simulation can initialize the design. Example 4-18 shows a D latch.

Example 4-18 D Latch Code
module d_latch (GATE, DATA, Q);
 input GATE, DATA;
 output Q;
 reg Q;
 always @(GATE or DATA)
 if (GATE)
 Q = DATA;
endmodule

HDL Compiler generates the inference report shown in Example 4-19.

Example 4-19 Inference Report
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Latch | 1 | N | N | N | N | - | - | - |
===

D Latch With Asynchronous Reset: Use async_set_reset
Example 4-20 shows the recommended coding style for an asynchronously reset latch
using the async_set_reset directive.

Example 4-20 D Latch With Asynchronous Reset: Uses async_set_reset
module d_latch_async_reset (RESET, GATE, DATA, Q);
 input RESET, GATE, DATA;
 output Q;
 reg Q;
//synopsys async_set_reset "RESET"
 always @ (RESET or GATE or DATA)
 if (~RESET)
 Q = 1'b0;
 else if (GATE)
 Q = DATA;
endmodule
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-14

HDL Compiler for Verilog User Guide Version D-2010.03
HDL Compiler generates the inference report shown in Example 4-21.

Example 4-21 Inference Report for D Latch With Asynchronous Reset
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Latch | 1 | N | N | Y | N | - | - | - |
===

D Latch With Asynchronous Set and Reset:
Use hdlin_latch_always_async_set_reset
To infer a D latch with an active-low asynchronous set and reset, set the
hdlin_latch_always_async_set_reset variable to true and use the coding style shown
in Example 4-22.

Note:
This example uses the one_cold directive to prevent priority encoding of the set and
reset signals. Although this saves area, it may cause a simulation/synthesis mismatch if
both signals are low at the same time.

Example 4-22 D Latch With Asynchronous Set and Reset: Uses
hdlin_latch_always_async_set_reset

// Set hdlin_latch_always_async_set_reset to true.

module d_latch_async (GATE, DATA, RESET, SET, Q);
 input GATE, DATA, RESET, SET;
 output Q;
 reg Q;
 // synopsys one_cold "RESET, SET"
 always @ (GATE or DATA or RESET or SET)
 begin : infer
 if (!SET)
 Q = 1'b1;
 else if (!RESET)
 Q = 1'b0;
 else if (GATE)
 Q = DATA;
 end
 endmodule

 Example 4-23 shows the inference report.

Example 4-23 Inference Report D Latch With Asynchronous Set and Reset
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Latch | 1 | N | N | Y | Y | - | - | - |
===
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-15
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-15

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Inferring Flip-Flops
Synthesis of sequential elements, such as various types of flip-flops, often involves signals
that set or reset the sequential device. Synthesis tools can create a sequential cell that has
built-in set and reset functionality. This is referred to as set/reset inference. For an example
using a flip-flop with reset functionality, consider the following RTL code:

module m (input clk, set, reset, d, output reg q);
always @ (posedge clk)

if (reset)
q = 1'b0;

else
q = d;

endmodule

There are two ways to synthesize an electrical circuit with a reset signal based on the
previous code. You can either synthesize the circuit with a simple flip-flop with external
combinational logic to represent the reset functionality, as shown in Figure 4-4, or you can
synthesize a flip-flop with built-in reset functionality, as shown in Figure 4-5.

Figure 4-4 Flip-Flop with External Combinational Logic to Represent Reset

Figure 4-5 Flip-Flop With Built-In Reset Functionality

The intended implementation is not apparent from the RTL code. You should specify HDL
Compiler synthesis directives or Design Compiler variables to guide the tool to create the
proper synchronous set and reset signals.

Q

Clock

0

D

MUX Flip-Flop

Reset

Q

Clock

D

Flip-Flop

Reset
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-16

HDL Compiler for Verilog User Guide Version D-2010.03
The following sections provide examples of these flip-flop types:

• Basic D Flip-Flop

• D Flip-Flop With Asynchronous Reset Using ?: Construct

• D Flip-Flop With Asynchronous Reset

• D Flip-Flop With Asynchronous Set and Reset

• D Flip-Flop With Synchronous Reset: Use sync_set_reset

• D Flip-Flop With Synchronous and Asynchronous Load

• D Flip-Flops With Complex Set/Reset Signals

• Multiple Flip-Flops With Asynchronous and Synchronous Controls

Basic D Flip-Flop
When you infer a D flip-flop, make sure you can control the clock and data signals from the
top-level design ports or through combinational logic. Controllable clock and data signals
ensure that simulation can initialize the design. If you cannot control the clock and data
signals, infer a D flip-flop with an asynchronous reset or set or with a synchronous reset or
set.

Example 4-24 infers a basic D flip-flop.

Example 4-24 Basic D Flip-Flop
module dff_pos (DATA, CLK, Q);
 input DATA, CLK;
 output Q;
 reg Q;
 always @(posedge CLK)
 Q <= DATA;
endmodule

HDL Compiler generates the inference report shown in Example 4-25.

Example 4-25 Inference Report
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
==
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-17
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-17

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
D Flip-Flop With Asynchronous Reset Using ?: Construct
Example 4-26 uses the ?: construct to infer a D flip-flop with an asynchronous reset. Note
that the tool does not support more than one ?: operator inside an always block.

Example 4-26 D Flip-Flop With Asynchronous Reset Using ?: Construct
module test(input clk, rst, din, output reg dout);
 always@(posedge clk or negedge rst)
 dout <= (!rst) ? 1'b0 : din;
endmodule

HDL Compiler generates the inference report shown in Example 4-27.

Example 4-27 D Flip-Flop With Asynchronous Reset Inference Report
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| dout_reg | Flip-flop | 1 | N | N | Y | N | N | N | N |
==

D Flip-Flop With Asynchronous Reset
Example 4-28 infers a D flip-flop with an asynchronous reset.

Example 4-28 D Flip-Flop With Asynchronous Reset
module dff_async_reset (DATA, CLK, RESET, Q);
 input DATA, CLK, RESET;
 output Q;
 reg Q;
 always @(posedge CLK or posedge RESET)
 if (RESET)
 Q <= 1'b0;
 else
 Q <= DATA;
endmodule

HDL Compiler generates the inference report shown in Example 4-29.

Example 4-29 D Flip-Flop With Asynchronous Reset Inference Report
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Flip-flop | 1 | N | N | Y | N | N | N | N |
==
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-18

HDL Compiler for Verilog User Guide Version D-2010.03
D Flip-Flop With Asynchronous Set and Reset
Example 4-30 infers a D flip-flop with asynchronous set and reset pins. The example uses
the one_hot directive to prevent priority encoding of the set and reset signals. If both SET
and RESET are asserted at the same time, the synthesized hardware will be unpredictable.
To check for this condition, use the SYNTHESIS macro and the `ifndef ... `endif constructs
as shown. See “Predefined Macros” on page 1-19.

Example 4-30 D Flip-Flop With Asynchronous Set and Reset
module dff_async (RESET, SET, DATA, Q, CLK);
 input CLK;
 input RESET, SET, DATA;
 output Q;
 reg Q;
 // synopsys one_hot "RESET, SET"

 always @(posedge CLK or posedge RESET or posedge SET)
 if (RESET)
 Q <= 1'b0;
 else if (SET)
 Q <= 1'b1;
 else Q <= DATA;
 `ifndef SYNTHESIS
 always @ (RESET or SET)
 if (RESET + SET > 1)
 $write ("ONE-HOT violation for RESET and SET.");
 `endif
endmodule

Example 4-31 shows the inference report.

Example 4-31 D Flip-Flop With Asynchronous Set and Reset Inference Report
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Flip-flop | 1 | N | N | Y | Y | N | N | N |
==
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-19
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-19

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
D Flip-Flop With Synchronous Reset:
Use sync_set_reset
Example 4-32 infers a D flip-flop with synchronous reset. The sync_set_reset directive is
applied to the RESET signal.

Example 4-32 D Flip-Flop With Synchronous Reset: Use sync_set_reset
module dff_sync_reset (DATA, CLK, RESET, Q);
 input DATA, CLK, RESET;
 output Q;
 reg Q;
 //synopsys sync_set_reset "RESET"
 always @(posedge CLK)
 if (~RESET)
 Q <= 1'b0;
 else
 Q <= DATA;
endmodule

HDL Compiler generates the inference report shown in Example 4-33.

Example 4-33 D Flip-Flop With Synchronous Reset Inference Report
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Flip-flop | 1 | N | N | N | N | Y | N | N |
==

D Flip-Flop With Synchronous and Asynchronous Load
Use the coding style in Example 4-34 to infer a D flip-flop with both synchronous and
asynchronous load signals.

Example 4-34 Synchronous and Asynchronous Loads
module dff_a_s_load (ALOAD, SLOAD, ADATA, SDATA, CLK, Q);
 input ALOAD, ADATA, SLOAD, SDATA, CLK;
 output Q;
 reg Q;
 wire asyn_rst, asyn_set;

 assign asyn_rst = ALOAD && !ADATA;
 assign asyn_set = ALOAD && ADATA;

//synopsys one_cold "ALOAD, ADATA"

 always @ (posedge CLK or posedge asyn_rst or posedge asyn_set)
 begin
 if (asyn_set)
 Q <= 1'b1;
 else if (asyn_rst)
 Q <= 1'b0;
 else if (SLOAD)
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-20

HDL Compiler for Verilog User Guide Version D-2010.03
 Q <= SDATA;
 end

HDL Compiler generates the inference report shown in Example 4-35.

Example 4-35 D Flip-Flop With Synchronous and Asynchronous Load Inference Report
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Flip-flop | 1 | N | N | Y | Y | N | N | N |
==

Sequential Cell (Q_reg)
 Cell Type: Flip-Flop
 Multibit Attribute: N
 Clock: CLK
 Async Clear: ADATA' ALOAD
 Async Set: ADATA ALOAD
 Async Load: 0
 Sync Clear: 0
 Sync Set: 0
 Sync Toggle: 0
 Sync Load: SLOAD

D Flip-Flops With Complex Set/Reset Signals
While many set/reset signals are simple signals, some include complex logic. To enable
HDL Compiler to generate a clean set/reset (that is, a set/reset signal attached only to the
appropriate set/reset pins), use the following coding guidelines:

• Apply the appropriate set/reset pragma (//synopsys sync_set_reset or //synopsys
async_set_reset) to the set/reset signal.

• Use no more than two operands in the set/reset logic expression conditional.

• Use the set/reset signal as the first operand in the set/reset logic expression conditional.

This coding style supports usage of the negation operator on the set/reset signal and the
logic expression. The logic expression can be a simple expression or any expression
contained inside parentheses. However, any deviation from these coding guidelines will not
be supported. For example, using a more complex expression other than the OR of two
expressions, or using a rst (or ~rst) that does not appear as the first argument in the
expression is not supported.

Examples

 //synopsys sync_set_reset "rst"
 always @(posedge clk)
 if (rst | logic_expression)
 q = 0;

 else ...
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-21
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-21

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
 else ...
 ...

 //synopsys sync_set_reset "rst"
 assign a = rst | ~(a | b & c);
 always @(posedge clk)
 if (a)
 q = 0;
 else ...;
 else ...;
 ...

 //synopsys sync_set_reset "rst"
 always @(posedge clk)
 if (~ rst | ~ (a | b | c))
 q = 0;
 else ...
 else ...
 ...

 //synopsys sync_set_reset "rst"
 assign a = ~ rst | ~ logic_expression;
 always @(posedge clk)
 if (a)
 q = 0;
 else ...;
 else ...;
 ...
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-22

HDL Compiler for Verilog User Guide Version D-2010.03
Multiple Flip-Flops With Asynchronous and
Synchronous Controls
In Example 4-36, the infer_sync block uses the reset signal as a synchronous reset and the
infer_async block uses the reset signal as an asynchronous reset.

Example 4-36 Multiple Flip-Flops With Asynchronous and Synchronous
Controls

module multi_attr (DATA1, DATA2, CLK, RESET, SLOAD, Q1, Q2);
 input DATA1, DATA2, CLK, RESET, SLOAD;
 output Q1, Q2;
 reg Q1, Q2;

 //synopsys sync_set_reset "RESET"
 always @(posedge CLK)
 begin : infer_sync
 if (~RESET)
 Q1 <= 1'b0;
 else if (SLOAD)
 Q1 <= DATA1; // note: else hold Q1
 end
 always @(posedge CLK or negedge RESET)
 begin: infer_async
 if (~RESET)
 Q2 <= 1'b0;
 else if (SLOAD)
 Q2 <= DATA2;
 end
endmodule

Example 4-37 shows the inference report.

Example 4-37 Inference Report
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q1_reg | Flip-flop | 1 | N | N | N | N | Y | N | N |
==

===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q2_reg | Flip-flop | 1 | N | N | Y | N | N | N | N |
===
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-23
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-23

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Chapter 4: Modeling Sequential Logic
Register Inference Examples 4-24

5
Modeling Finite State Machines 5

HDL Compiler automatically infers finite state machines (FSMs). For FSM optimization
details, see the Design Compiler Reference Manual: Optimization and Timing Analysis.

This chapter describes FSM inference in the following sections:

• FSM Coding Requirements for Automatic Inference

• FSM Inference Variables

• FSM Coding Example

• FSM Inference Report

• Enumerated Types
5-1

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03

t
o

t

s
FSM Coding Requirements for Automatic Inference

To enable HDL Compiler to automatically infer an FSM, follow the coding guidelines in
Table 5-1.

Table 5-1 Code Requirements for FSM Inference

 Item Description

 Registers To infer a register as an FSM state register, the register

- Must never be assigned a value other than the defined state values.

- Must always be inferred as a flip-flop (and not a latch).

- Must never be a module port, function port, or task port. This would make the encoding
visible to the outside.

Inside expressions, FSM state registers can be used only as an operand of "==" or "!="
comparisons, or as the expression in a case statement (that is, "case (cur_state) ...") tha
is, an implicit comparison to the label expressions. FSM state registers are not allowed t
occur in other expressions—this would make the encoding explicit.

 Function There can be only one FSM design per module. State variables cannot drive a port.
State variables cannot be indexed.

 Ports All ports of the initial design must be either input ports or output ports. Inout ports are no
supported.

 Combinational
 feedback loops

Combinational feedback loops are not supported although combinational logic that does
not depend on the state vector is accurately represented.

 Clocks FSM designs can include only a single clock and an optional synchronous or asynchronou
reset signal.
Chapter 5: Modeling Finite State Machines
FSM Coding Requirements for Automatic Inference 5-2

HDL Compiler for Verilog User Guide Version D-2010.03
FSM Inference Variables

Finite state machine inference variables are listed in Table 5-2.

For more information about these variables, see the man pages.

Table 5-2 Variables Specific to FSM Inference

Variable Description

hdlin_reporting_level Default is basic.
Variable enables and disables FSM inference reports. When set to
comprehensive, FSM inference reports are generated when HDL Compiler
reads the code. By default, FSM inference reports are not generated. For
more information, including valid values, see “Elaboration Reports” on
page 1-6.

fsm_auto_inferring Default is false.
Variable determines whether or not Design Compiler automatically extracts
the FSM during compile. This option controls Design Compiler extraction. In
order to automatically infer and extract an FSM, fsm_auto_inferring
must be true. See the Design Compiler Reference Manual: Optimization and
Timing Analysis for additional information.
Chapter 5: Modeling Finite State Machines
FSM Inference Variables 5-3
Chapter 5: Modeling Finite State Machines
FSM Inference Variables 5-3

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
FSM Coding Example

HDL Compiler infers an FSM for the design in Example 5-1. Figure 5-1 shows the state
diagram for fsm1.

Example 5-1 Finite State Machine fsm1
module fsm1 (x, clk, rst, y);
 input x, clk, rst;
 output y;

 parameter [3:0]
 set0 = 4'b0001, hold0 = 4'b0010, set1 = 4'b0100, hold1 = 4'b1000;

 reg [3:0] current_state, next_state;

 always @ (posedge clk or posedge rst)
 if (rst)
 current_state = set0;
 else
 current_state = next_state;

 always @ (current_state or x)
 case (current_state)
 set0:
 next_state = hold0;
 hold0:
 if (x == 0)
 next_state = hold0;
 else
 next_state = set1;
 set1:
 next_state = hold1;
 hold1:
 next_state = set0;
 default :
 next_state = set0;
 endcase
 assign y = current_state == hold0 & x;
endmodule
Chapter 5: Modeling Finite State Machines
FSM Coding Example 5-4

HDL Compiler for Verilog User Guide Version D-2010.03
Figure 5-1 State Diagram for fsm1

Table 5-3 shows the state table for fsm1.

Table 5-3 State Table for fsm1

Current state Input (x) Next state Output (Y)

0001 (set0) 0 0010 (hold0) 0

0001 (set0) 1 0010 (hold0) 0

0010 (hold0) 0 0010 (hold0) 0

0010 (hold0) 1 0100 (set1) 1

0100 (set1) 0 1000 (hold1) 0

0100 (set1) 1 1000 (hold1) 0

1000 (hold1) 0 0001 (set0) 0

1000 (hold1) 1 0001 (set0) 0

set0

hold1 hold0

y = 0

x != 0 / y = 1

y = 0

x == 0 / y = 0

set1
y = 0
Chapter 5: Modeling Finite State Machines
FSM Coding Example 5-5
Chapter 5: Modeling Finite State Machines
FSM Coding Example 5-5

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
FSM Inference Report

HDL Compiler creates a finite state machine inference report when you set
hdlin_reporting_level to comprehensive. The default is basic, meaning that an FSM
inference report is not generated. For more information about the hdlin_reporting_level
variable, see “Elaboration Reports” on page 1-6.

Consider the code in Example 5-2.

Example 5-2 FSM Code
module fsm (clk, rst, y);
 input clk, rst;
 output y;
 parameter [2:0]
 red = 3'b001, green = 3'b010, yellow = 3'b100;
 reg [2:0] current_state, next_state;

 always @ (posedge clk or posedge rst)
 if (rst)
 current_state = red;
 else
 current_state = next_state;

 always @(*)
 case (current_state)
 yellow:
 next_state = red;
 green:
 next_state = yellow;
 red:
 next_state = green;
 default:
 next_state = red;
 endcase
 assign y = current_state == yellow;
endmodule // fsm

Example 5-3 shows the FSM inference report.

Example 5-3 FSM Inference Report
statistics for FSM inference:
 state register: current_state
 states
 ======
 fsm_state_0:100
 fsm_state_1:010
 fsm_state_2:001
 total number of states: 3
Chapter 5: Modeling Finite State Machines
FSM Inference Report 5-6

HDL Compiler for Verilog User Guide Version D-2010.03
Enumerated Types

HDL Compiler simplifies equality comparisons and detection of full cases in designs that
contain enumerated types. A variable has an enumerated type when it can take on only a
subset of the values it could possibly represent. For example, if a 2-bit variable can be set to
0, 1, or 2 but is never assigned to 3, then it has the enumerated type {0, 1, 2}. Enumerated
types commonly occur in finite state machine state encodings. When the number of states
needed is not a power of 2, certain state values can never occur. In finite state machines
with one-hot encodings, many values can never be assigned to the state vector. For
example, for a vector of length n, there are n one-hot values, so there are (2**n - n) values
that will never be used.

HDL Compiler infers enumerated types automatically; user directives can be used in other
situations. When all variable assignments are within a module, HDL Compiler usually
detects if the variable has an enumerated type. If the variable is assigned a value that
depends on an input port or if the design assigns individual bits of the variable separately,
HDL Compiler requires the /* synopsys enum */ directive in order to consider the variable
as having an enumerated type.

When enumerated types are inferred, HDL Compiler generates a report similar to
Example 5-4.

Example 5-4 Enumerated Type Report
===
| Symbol Name | Source | Type | # of values |
===
| current_state | auto | onehot | 4 |
===

This report tells you the source of the enumerated type,

• user directive (user will be listed under Source)

• HDL Compiler inferred (auto will be listed under Source)

It also tells you the type of encoding—whether onehot or enumerated (enum). HDL Compiler
recognizes a special case of enumerated types in which each possible value has a single bit
set to 1 and all remaining bits set to zero. This special case allows additional optimization
opportunities. An enumerated type that fits this pattern is described as onehot in the
enumerated type report. All other enumerated types are described as enum in the report.

To enable HDL Compiler to perform simplification of equality comparisons, set
hdlin_optimize_enum_types to true (default is false). This implementation typically leads
to a smaller and faster design.
Chapter 5: Modeling Finite State Machines
Enumerated Types 5-7
Chapter 5: Modeling Finite State Machines
Enumerated Types 5-7

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Example 5-5 is a combination of both FSM and enumerated type optimization. The first case
statement infers an FSM; the second case statement uses enumerated type optimization.
These are two independent processes.

Example 5-5 Design: my_design
module my_design (clk, rst, x, y);
 input clk, rst;
 input [5:0] x;
 output [5:0] y;

 parameter [5:0]
 zero = 6'b000001, one = 6'b000010, two = 6'b000100, three = 6'b001000, four
 = 6'b010000, five = 6'b100000;

 reg [5:0] tmp;
 reg [5:0] y;

 always @ (posedge clk or posedge rst)
 if (rst)

tmp = zero;
 else

case (x)
 one : tmp = zero;
 two : tmp = one;
 three : tmp = two;
 four : tmp = three;
 five : tmp = four;
 default : tmp = five;

 endcase

 always @ (tmp)
 case (tmp)
 five : y = 6'b100110;
 four : y = 6'b010100;
 three : y = 6'b001001;
 two : y = 6'b010010;
 one : y = 6'b111111;
 zero : y = 6'b100100;
 default : y = 6'b110101;
 endcase

endmodule
Chapter 5: Modeling Finite State Machines
Enumerated Types 5-8

6
Modeling Three-State Buffers 6

HDL Compiler infers a three-state driver when you assign the value z (high impedance) to a
variable. HDL Compiler infers 1 three-state driver per variable per always block. You can
assign high-impedance values to single-bit or bused variables. A three-state driver is
represented as a TSGEN cell in the generic netlist. Three-state driver inference and
instantiation are described in the following sections:

• Using z Values

• Three-State Driver Inference Report

• Assigning a Single Three-State Driver to a Single Variable

• Assigning Multiple Three-State Drivers to a Single Variable

• Registering Three-State Driver Data

• Instantiating Three-State Drivers

• Errors and Warnings
6-1

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Using z Values

You can use the z value in the following ways:

• Variable assignment

• Function call argument

• Return value

You can use the z value only in a comparison expression, such as in

if (IN_VAL == 1'bz) y=0;

This statement is permissible because IN_VAL == 1'bz is a comparison. However, it always
evaluates to false, so it is also a simulation/synthesis mismatch. See “Comparisons to x or z
Values” on page 2-26.

This code,

OUT_VAL = (1'bz && IN_VAL);

is not a comparison expression. HDL Compiler generates an error for this expression.

Three-State Driver Inference Report

The hdlin_reporting_level variable determines whether HDL Compiler generates a
three-state inference report. If you do not want inference reports, set
hdlin_reporting_level to none. The default is basic, meaning that a report will be
generated. Example 6-1 shows a three-state inference report:

Example 6-1 Three-State Inference Report
===
| Register Name | Type | Width | MB |
===
| T_tri | Tri-State Buffer | 1 | N |
===

The first column of the report indicates the name of the inferred device. The second column
indicates device type. The third column indicates if the inferred device is a multibit device.
The verbose report (set hdlin_reporting_level to verbose) is the same as the default
(basic) report. For more information about the hdlin_reporting_level variable, see
“Elaboration Reports” on page 1-6.
Chapter 6: Modeling Three-State Buffers
Using z Values 6-2

HDL Compiler for Verilog User Guide Version D-2010.03
Assigning a Single Three-State Driver to a Single Variable

Example 6-2 infers a single three-state driver and shows the associated inference report.

Example 6-2 Single Three-State Driver
module three_state (ENABLE, IN1, OUT1);
 input IN1, ENABLE;
 output OUT1;
 reg OUT1;
always @(ENABLE or IN1) begin
 if (ENABLE)
 OUT1 = IN1;
 else
 OUT1 = 1'bz; //assigns high-impedance state
end
endmodule

Inference Report
===
| Register Name | Type | Width | MB |
===
| OUT1_tri | Tri-State Buffer | 1 | N |
===

Example 6-3 infers a single three-state driver with MUXed inputs and shows the associated
inference report.

Example 6-3 Single Three-State Driver With MUXed Inputs
module three_state (A, B, SELA, SELB, T);
 input A, B, SELA, SELB;
 output T;
 reg T;
 always @(SELA or SELB or A or B) begin
 T = 1'bz;
 if (SELA)
 T = A;
 if (SELB)
 T = B;
 end
endmodule

Inference Report
===
| Register Name | Type | Width | MB |
===
| T_tri | Tri-State Buffer | 1 | N |
===
Chapter 6: Modeling Three-State Buffers
Assigning a Single Three-State Driver to a Single Variable 6-3
Chapter 6: Modeling Three-State Buffers
Assigning a Single Three-State Driver to a Single Variable 6-3

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Assigning Multiple Three-State Drivers to a Single Variable

When assigning multiple three-state drivers to a single variable, as shown in Figure 6-1,
always use assign statements, as shown in Example 6-4.

Figure 6-1 Two Three-State Drivers Assigned to a Single Variable

Example 6-4 Correct Method
module three_state (A, B, SELA, SELB, T);
 input A, B, SELA, SELB;
 output T;
 assign T = (SELA) ? A : 1'bz;
 assign T = (SELB) ? B : 1'bz;
endmodule

Do not use multiple always blocks (shown in Example 6-5). Multiple always blocks cause a
simulation/synthesis mismatch because the reg data type is not resolved. Note that the tool
does not display a warning for this mismatch.

Example 6-5 Incorrect Method
module three_state (A, B, SELA, SELB, T);
 input A, B, SELA, SELB;
 output T;
 reg T;
 always @(SELA or A)
 if (SELA)
 T = A;
 else
 T = 1'bz;
 always @(SELB or B)
 if (SELB)
 T = B;
 else
 T = 1'bz;
endmodule

T

SELB

B

SELA

A

Chapter 6: Modeling Three-State Buffers
Assigning Multiple Three-State Drivers to a Single Variable 6-4

HDL Compiler for Verilog User Guide Version D-2010.03
Registering Three-State Driver Data

When a variable is registered in the same block in which it is defined as a three-state driver,
HDL Compiler also registers the driver’s enable signal, as shown in Example 6-6. Figure 6-2
shows the compiled gates and the associated inference report.

Example 6-6 Three-State Driver With Enable and Data Registered
module ff_3state (DATA, CLK, THREE_STATE, OUT1);
 input DATA, CLK, THREE_STATE;
 output OUT1;
 reg OUT1;
always @ (posedge CLK) begin
 if (THREE_STATE)
 OUT1 = 1'bz;
 else
 OUT1 = DATA;
end
endmodule

Inference reports:

===
|Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
|OUT1_reg |Flip-flop | 1 | N | N | N | N | N | N | N |
|OUT1_tri_enable_reg |Flip-flop | 1 | N | N | N | N | N | N | N |
===

===
| Register Name | Type | Width | MB |
===
| OUT1_tri | Tri-State Buffer | 1 | N |
===

Figure 6-2 Three-State Driver With Enable and Data Registered
Chapter 6: Modeling Three-State Buffers
Registering Three-State Driver Data 6-5
Chapter 6: Modeling Three-State Buffers
Registering Three-State Driver Data 6-5

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Instantiating Three-State Drivers

The following gate types are supported:

• bufif0 (active-low enable line)

• bufif1 (active-high enable line)

• notif0 (active-low enable line, output inverted)

• notif1 (active-high enable line, output inverted)

Connection lists for bufif and notif gates use positional notation. Specify the order of the
terminals as follows:

• The first terminal connects to the output of the gate.

• The second terminal connects to the input of the gate.

• The third terminal connects to the control line.

Example 6-7 shows a three-state gate instantiation with an
active-high enable and no inverted output.

Example 6-7 Three-State Gate Instantiation
module three_state (in1,out1,cntrl1);

input in1,cntrl1;
output out1;

bufif1 (out1,in1,cntrl1);
endmodule

Errors and Warnings

When you use the coding styles recommended in this chapter, you do not need to declare
variables that drive multiply driven nets as tri data objects. But if you don’t use these coding
styles, or you don’t declare the variable as a tri data object, HDL Compiler issues an
ELAB-366 error message and terminates. To force HDL Compiler to warn for this condition
(ELAB-365) but continue to create a netlist, set
hdlin_prohibit_nontri_multiple_drivers to false (the default is true). With this
variable false, HDL Compiler builds the generic netlist for all legal designs. If a design is
illegal, such as when one of the drivers is a constant, HDL Compiler issues an error.

The following code generates an ELAB-366 error message (OUT1 is a reg being driven by
two always@ blocks):
Chapter 6: Modeling Three-State Buffers
Instantiating Three-State Drivers 6-6

HDL Compiler for Verilog User Guide Version D-2010.03
 module three_state (ENABLE, IN1, RESET, OUT1);

 input IN1, ENABLE, RESET;
 output OUT1;
 reg OUT1;

always @(IN1 or ENABLE)
 if (ENABLE)
 OUT1 = IN1;

always@ (RESET)
 if (RESET)
 OUT1 = 1'b0;
endmodule

The ELAB-366 error message is

Error: Net '/...v:14: OUT1' or a directly connected net is
driven by more than one source, and not all drivers are
three-state. (ELAB-366)
Chapter 6: Modeling Three-State Buffers
Errors and Warnings 6-7
Chapter 6: Modeling Three-State Buffers
Errors and Warnings 6-7

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Chapter 6: Modeling Three-State Buffers
Errors and Warnings 6-8

7
HDL Compiler Synthesis Directives 7

HDL Compiler synthesis directives are special comments that affect the actions of HDL
Compiler and Design Compiler. These comments are ignored by other tools. HDL Compiler
synthesis directives begin with //synopsys or /*synopsys. The //$s or //$S notation can
be used as a shortcut for //synopsys. The simulator ignores these directives. The syntax
descriptions in this chapter primarily show the //synopsys notation.

Note:
HDL Compiler reports a syntax error if you use //synopsys in a regular comment.

The following sections describe the HDL Compiler synthesis directives:

• async_set_reset

• async_set_reset_local

• async_set_reset_local_all

• dc_tcl_script_begin and dc_tcl_script_end

• enum

• full_case

• infer_multibit and dont_infer_multibit

• infer_mux

• infer_onehot_mux
7-1

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
• keep_signal_name

• one_cold

• one_hot

• parallel_case

• preserve_sequential

• sync_set_reset

• sync_set_reset_local

• sync_set_reset_local_all

• template

• translate_off and translate_on (Deprecated)
Chapter 7: HDL Compiler Synthesis Directives
7-2

HDL Compiler for Verilog User Guide Version D-2010.03
async_set_reset

When you set the async_set_reset directive on a single-bit signal, HDL Compiler
searches for a branch that uses the signal as a condition and then checks whether the
branch contains an assignment to a constant value. If the branch does, the signal becomes
an asynchronous reset or set. Use this directive on single-bit signals.

The syntax is

// synopsys async_set_reset "signal_name_list"

See Example A-20 on page A-30, Example A-22 on page A-31, and Example 4-20 on
page 4-14.

async_set_reset_local

When you set the async_set_reset_local directive, HDL Compiler treats listed signals in
the specified block as if they have the async_set_reset directive set.

Attach the async_set_reset_local directive to a block label using the following syntax:

// synopsys async_set_reset_local block_label "signal_name_list"

async_set_reset_local_all

When you set the async_set_reset_local_all directive, HDL Compiler treats all listed
signals in the specified blocks as if they have the async_set_reset directive set. Attach the
async_set_reset_local_all directive to a block label using the following syntax:

// synopsys async_set_reset_local_all "block_label_list"

To enable the async_set_reset_local_all behavior, you must set
hdlin_ff_always_async_set_reset to false and use the coding style shown in
Example 7-1.

Example 7-1
// To enable the async_set_reset_local_all behavior, you must set
// hdlin_ff_always_async_set_reset to false in addition to coding per the
below template.

module m1 (input rst,set,d,d1,clk,clk1, output reg q,q1);

// synopsys async_set_reset_local_all "sync_rst"
 always @(posedge clk or posedge rst or posedge set) begin :sync_rst
Chapter 7: HDL Compiler Synthesis Directives
async_set_reset 7-3
Chapter 7: HDL Compiler Synthesis Directives
async_set_reset 7-3

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
 if (rst)
 q <= 1'b0;
 else if (set)
 q <= 1'b1;
 else q <= d;
end

 always @(posedge clk1 or posedge rst or posedge set) begin :
default_rst
 if (rst)
 q1 <= 1'b0;
 else if (set)
 q1 <= 1'b1;
 else
 q1 <= d1;
end

endmodule

dc_tcl_script_begin and dc_tcl_script_end

You can embed Tcl commands that set design constraints and attributes within the RTL by
using the dc_tcl_script_begin and dc_tcl_script_end directives, as shown in
Example 7-2 and Example 7-3.

Example 7-2 Embedding Constraints With // Delimiters
...
// synopsys dc_tcl_script_begin
// set_max_area 0.0
// set_max_delay 0.0 port_z
// synopsys dc_tcl_script_end
...

Example 7-3 Embedding Constraints With /* and */ Delimiters
/* synopsys dc_tcl_script_begin
 set_max_area 10.0
 set_max_delay 5.0 port_z
*/

Design Compiler interprets the statements embedded between the dc_tcl_script_begin
and the dc_tcl_script_end directives. If you want to comment out part of your script, use
the # comment character.

The following items are not supported in embedded Tcl scripts:

• Hierarchical constraints

• Wildcards
Chapter 7: HDL Compiler Synthesis Directives
dc_tcl_script_begin and dc_tcl_script_end 7-4

HDL Compiler for Verilog User Guide Version D-2010.03
• List commands

• Multiple line commands

Observe the following guidelines when using embedded Tcl scripts:

• Constraints and attributes declared outside a module apply to all subsequent modules
declared in the file.

• Constraints and attributes declared inside a module apply only to the enclosing module.

• Any dc_shell scripts embedded in functions apply to the whole module.

• Include only commands that set constraints and attributes. Do not use action commands
such as compile, gen, and report. The tool ignores these commands and issues a
warning or error message.

• The constraints or attributes set in the embedded script go into effect after the read
command is executed. Therefore, variables that affect the read process itself are not in
effect before the read. For example, if you set the hdlin_no_latches variable to true in
the embedded script, this variable does not influence latch inference in the current read.

• Error checking is done after the read command finishes. Syntactic and semantic errors
in dc_shell strings are reported at this time.

• You can have more than one dc_tcl_script_begin / dc_tcl_script_end pair per file or
module. The compiler does not issue an error or warning when it sees more than one
pair. Each pair is evaluated and set on the applicable code.

• An embedded dc_shell script does not produce any information or status messages
unless there is an error in the script.

• If you use embedded Tcl scripts while running in dcsh mode, Design Compiler issues the
following error message:

Error: Design 'MID' has embedded Tcl commands which are
ignored in EQN mode. (UIO-162)

• Usage of built-in Tcl commands is not recommended.

• Usage of output redirection commands is not recommended.
Chapter 7: HDL Compiler Synthesis Directives
dc_tcl_script_begin and dc_tcl_script_end 7-5
Chapter 7: HDL Compiler Synthesis Directives
dc_tcl_script_begin and dc_tcl_script_end 7-5

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
enum

Use the enum directive with the Verilog parameter definition statement to specify state
machine encodings.

The syntax of the enum directive is

// synopsys enum enum_name

Example 7-4 shows the declaration of an enumeration of type colors that is 3 bits wide and
has the enumeration literals red, green, blue, and cyan with the values shown.

Example 7-4 Enumeration of Type Colors
parameter [2:0] // synopsys enum colors
red = 3'b000, green = 3'b001, blue = 3'b010, cyan = 3'b011;

The enumeration must include a size (bit-width) specification. Example 7-5 shows an invalid
enum declaration.

Example 7-5 Invalid enum Declaration
parameter /* synopsys enum colors */
red = 3'b000, green = 1;
// [2:0] required

Example 7-6 shows a register, a wire, and an input port with the declared type of colors. In
each of the following declarations, the array bounds must match those of the enumeration
declaration. If you use different bounds, synthesis might not agree with simulation behavior.

Example 7-6 enum Type Declarations
reg [2:0] /* synopsys enum colors */ counter;
wire [2:0] /* synopsys enum colors */ peri_bus;
input [2:0] /* synopsys enum colors */ input_port;

Even though you declare a variable to be of type enum, it can still be assigned a bit value that
is not one of the enumeration values in the definition. Example 7-7 relates to Example 7-6
and shows an invalid encoding for colors.

Example 7-7 Invalid Bit Value Encoding for Colors
counter = 3'b111;

Because 111 is not in the definition for colors, it is not a valid encoding. HDL Compiler
accepts this encoding, but issues a warning for this assignment.

You can use enumeration literals just like constants, as shown in Example 7-8.

Example 7-8 Enumeration Literals Used as Constants
if (input_port == blue)
 counter = red;
Chapter 7: HDL Compiler Synthesis Directives
enum 7-6

HDL Compiler for Verilog User Guide Version D-2010.03
If you declare a port as a reg and as an enumerated type, you must declare the enumeration
when you declare the port. Example 7-9 shows the declaration of the enumeration.

Example 7-9 Enumerated Type Declaration for a Port
module good_example (a,b);

 parameter [1:0] /* synopsys enum colors */
green = 2'b00, white = 2'b11;

 input a;
 output [1:0] /* synopsys enum colors */ b;
 reg [1:0] b;
.
.
endmodule

Example 7-10 declares a port as an enumerated type incorrectly because the enumerated
type declaration appears with the reg declaration instead of with the output declaration.

Example 7-10 Incorrect Enumerated Type Declaration for a Port
module bad_example (a,b);

 parameter [1:0] /* synopsys enum colors */
green = 2'b00, white = 2'b11;

 input a;
 output [1:0] b;
 reg [1:0] /* synopsys enum colors */ b;
.
.
endmodule

full_case

This directive prevents HDL Compiler from generating logic to test for any value that is not
covered by the case branches and creating an implicit default branch. Set the full_case
directive on a case statement when you know that all possible branches of the case
statement are listed within the case statement. When a variable is assigned in a case
statement that is not full, the variable is conditionally assigned and requires a latch.

Caution:
Marking a case statement as full when it actually is not full can cause the simulation to
behave differently from the logic HDL Compiler synthesizes because HDL Compiler does
not generate a latch to handle the implicit default condition.

The syntax for the full_case directive is

// synopsys full_case
Chapter 7: HDL Compiler Synthesis Directives
full_case 7-7
Chapter 7: HDL Compiler Synthesis Directives
full_case 7-7

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
In Example 7-11, full_case is set on the first case statement and parallel_case and
full_case directives are set on the second case statement.

Example 7-11 // synopsys full_case Directives
module test (in, out, current_state, next_state);
 input [1:0] in;
 output reg [1:0] out;
 input [3:0] current_state;
 output reg [3:0] next_state;

 parameter state1 = 4'b0001, state2 = 4'b0010,state3 = 4'b0100, state4 =
 4'b1000;
always @* begin
case (in) // synopsys full_case
0: out = 2;
1: out = 3;
2: out = 0;
endcase
case (1) // synopsys parallel_case full_case
current_state[0] : next_state = state2;
current_state[1] : next_state = state3;
current_state[2] : next_state = state4;
current_state[3] : next_state = state1;
endcase
end
endmodule

In the first case statement, the condition in == 3 is not covered. However, the designer
knows that in == 3 will never occur and therefore sets the full_case directive on the case
statement.

In the second case statement, not all 16 possible branch conditions are covered; for
example, current_state == 4’b0101 is not covered. However,

• The designer knows that these states will never occur and therefore sets the full_case
directive on the case statement.

• The designer also knows that only one branch is true at a time and therefore sets the
parallel_case directive on the case statement.

In the following example, at least one branch will be taken because all possible values of sel
are covered, that is, 00, 01, 10, and 11:
Chapter 7: HDL Compiler Synthesis Directives
full_case 7-8

HDL Compiler for Verilog User Guide Version D-2010.03
module mux(a, b,c,d,sel,y);
 input a,b,c,d;
 input [1:0] sel;
 output y;
 reg y;
 always @ (a or b or c or d or sel)
 begin
 case (sel)
 2'b00 : y=a;
 2'b01 : y=b;
 2'b10 : y=c;
 2'b11 : y=d;
 endcase
 end
endmodule

In the following example, the case statement is not full:

module mux(a, b,c,d,sel,y);
 input a,b,c,d;
 input [1:0] sel;
 output y;
 reg y;
 always @ (a or b or c or d or sel)
 begin
 case (sel)
 2'b00 : y=a;
 2'b11 : y=d;
 endcase
 end
endmodule

It is unknown what happens when sel equals 01 and 10. In this case, HDL Compiler
generates logic to test for any value that is not covered by the case branches and creates an
implicit “default” branch that contains no actions. When a variable is assigned in a case
statement that is not full, the variable is conditionally assigned and requires a latch.

infer_multibit and dont_infer_multibit

The following sections describe how to use the multibit inference directives to infer multibit
components from the RTL:

• Using the infer_multibit Directive

• Using the dont_infer_multibit Directive

• Multibit Benefits

• Reporting Multibit Components
Chapter 7: HDL Compiler Synthesis Directives
infer_multibit and dont_infer_multibit 7-9
Chapter 7: HDL Compiler Synthesis Directives
infer_multibit and dont_infer_multibit 7-9

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
• Limitations of Multibit Inference

To create multibit components after layout, use the Design Compiler create_multibit
command. See the Design Compiler documentation for usage.

Note:
The term multibit component refers, for example, to a 16-bit register in your HDL
description. The term multibit library cell refers to a library macrocell, such as a flip-flop
cell.

Using the infer_multibit Directive
To direct HDL Compiler to infer specific cells as multibit components, set the
infer_multibit directive on specific components in the Verilog code. This directive gives
you control over individual wire and register signals. Example 7-12 shows usage.

Example 7-12
module mux4to1_6 (select, a, b, c, d, z);
 input [1:0] select;
 input [5:0] a, b, c, d;
 output [5:0] z;
 reg [5:0] z;
 //synopsys infer_multibit "z"

always@(select or a or b or c or d)
begin

case (select) // synopsys infer_mux
2'b00: z <= a;
2'b01: z <= b;
2'b10: z <= c;
2'b11: z <= d;
endcase

end
endmodule

Example 7-13 shows the multibit inference report.

Example 7-13
Statistics for MUX_OPs
===
| block name/line | Inputs | Outputs | # sel inputs | MB |
===
| mux4to1_6/10 | 4 | 6 | 2 | Y |
===

Example 7-13 indicates which cells are inferred as multibit components. The column MB
indicates if the component is inferred as a multibit component.
Chapter 7: HDL Compiler Synthesis Directives
infer_multibit and dont_infer_multibit 7-10

HDL Compiler for Verilog User Guide Version D-2010.03
Using the dont_infer_multibit Directive
If you set hdlin_infer_multibit to default_all, which infers as multibit all bused
registers, three-states, and MUX_OPs, but you do not want specific components as multibit,
you can prevent specific multibit inference by using the dont_infer_multibit directive, as
shown in Example 7-14.

Example 7-14
module mux4to1_6 (select, a, b, c, d, z);
 input [1:0] select;
 input [5:0] a, b, c, d;
 output [5:0] z;
 reg [5:0] z;
 //synopsys dont_infer_multibit "z"

always@(select or a or b or c or d)
begin

case (select) // synopsys infer_mux
2'b00: z <= a;
2'b01: z <= b;
2'b10: z <= c;
2'b11: z <= d;

endcase
end

endmodule

Multibit Benefits
Multibit inference allows you to map registers, multiplexers, and three-state cells to regularly
structured logic or multibit library cells. Multibit library cells (the macrocells, such as a 16-bit
banked flip-flop, in the library) have these advantages:

• Smaller area and delay, due to shared transistors (as in select or set/reset logic) and
optimized transistor-level layout

• Reduced clock skew in sequential gates, because the clock paths are balanced internally
in the hard macro implementing the multibit component

• Lower power consumption by the clock in sequential banked components, due to
reduced capacitance driven by the clock net

• Better performance, due to the optimized layout within the multibit component

• Improved regular layout of the datapath
Chapter 7: HDL Compiler Synthesis Directives
infer_multibit and dont_infer_multibit 7-11
Chapter 7: HDL Compiler Synthesis Directives
infer_multibit and dont_infer_multibit 7-11

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Reporting Multibit Components
The report_multibit command reports all multibit components in the current design. The
report, viewable before and after compile, shows the multibit group name and what cells
implement each bit.

Example 7-15 shows a multibit component report.

Example 7-15
**
Report : multibit
Design : mux4to1_6
Version: B-2008.09
Date : Wed Jul 30 08:57:37 2008
**

Attributes:
 b - black box (unknown)
 h - hierarchical
 n - noncombinational
 r - removable
 s - synthetic operator
 u - contains unmapped logic

Multibit Component : C13_multibit
Cell Reference Library Area Width
Attributes

C13 *MUX_OP_4_2_6 0.00 6 s, u

Total 1 cells 0.00 6

Total 1 Multibit Components
1

For registers and three-state cells, the multibit group name is set to the name of the bus. In
the cell names of the multibit registers with consecutive bits, a colon separates the outlying
bits.

If the colon conflicts with the naming requirements of your place and route tool, you can
change the colon to another delimiter by using the bus_range_separator_style variable.
Chapter 7: HDL Compiler Synthesis Directives
infer_multibit and dont_infer_multibit 7-12

HDL Compiler for Verilog User Guide Version D-2010.03
For multibit library cells with nonconsecutive bits, a comma separates the nonconsecutive
bits. This delimiter is controlled by the bus_multiple_separator_style variable. For
example, a 4-bit banked register that implements bits 0, 1, 2, and 5 of bus data_reg is
named data_reg [0:2,5].

For multiplexer cells, the name is set to the cell name of the MUX_OP before optimization.

Limitations of Multibit Inference
Multibit components may not be efficient in the following instances:

• As state machine registers

• In small bused logic that would benefit from single-bit design

Multibit inference of combinational multibit cells occurs only during sequential mapping of
multibit registers. Multibit sequential mapping does not pull in as many levels of logic as
single-bit sequential mapping. Thus, Design Compiler might not infer a complex multibit
sequential cell, such as a JK flip-flop, which could adversely affect the quality of the design.

You can infer as multibit components only register, multiplexer, and three-state cells that
have identical structures for each bit. For more information about how Design Compiler
handles multibit components, see the Design Compiler Reference Manual: Optimization and
Timing Analysis.

infer_mux

The infer_mux directive enables you to infer MUX_OP cells for a specific case or if
statement, as shown:

always@(SEL) begin
case (SEL) // synopsys infer_mux
 2'b00: DOUT <= DIN[0];
 2'b01: DOUT <= DIN[1];
 2'b10: DOUT <= DIN[2];
 2'b11: DOUT <= DIN[3];
endcase

You must use a simple variable as the control expression; for example, you can use the input
"A" but not the negation of input "A". If statements have special coding considerations. For
more information, see “MUX_OP Inference” on page 3-15 and “Considerations When Using
If Statements to Code For MUX_OPs” on page 3-22.
Chapter 7: HDL Compiler Synthesis Directives
infer_mux 7-13
Chapter 7: HDL Compiler Synthesis Directives
infer_mux 7-13

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
infer_onehot_mux

The infer_onehot_mux directive enables you to map combinational logic to one-hot
multiplexers in the technology library. For details, see “One-Hot Multiplexer Inference” on
page 3-14.

keep_signal_name

Use the keep_signal_name directive to provide HDL Compiler with guidelines for
preserving signal names.

The syntax is

// synopsys keep_signal_name "signal_name_list"

Set the keep_signal_name directive on a signal before any reference is made to that signal;
for example, one methodology is to put the directive immediately after the declaration of the
signal.

For examples, see “Keeping Signal Names” on page 2-20.

one_cold

A one-cold implementation indicates that all signals in a group are active-low and that only
one signal can be active at a given time. Synthesis implements the one_cold directive by
omitting a priority circuit in front of the flip-flop. Simulation ignores the directive. The
one_cold directive prevents Design Compiler from implementing priority-encoding logic for
the set and reset signals. Attach this directive to set or reset signals on sequential devices,
using the following syntax:

// synopsys one_cold signal_name_list

See Example 4-22 on page 4-15.

one_hot

A one-hot implementation indicates that all signals in a group are active-high and that only
one signal can be active at a given time. Synthesis implements the one_hot directive by
omitting a priority circuit in front of a flip-flop. Simulation ignores the directive. The one_hot
Chapter 7: HDL Compiler Synthesis Directives
infer_onehot_mux 7-14

HDL Compiler for Verilog User Guide Version D-2010.03
directive prevents Design Compiler from implementing priority-encoding logic for the set and
reset signals. Attach this directive to set or reset signals on sequential devices, using the
following syntax:

// synopsys one_hot signal_name_list

See Example 4-30 on page 4-19 and Example A-32 on page A-36.

parallel_case

Set the parallel_case directive on a case statement when you know that only one branch
of the case statement will be true at a time. This directive prevents HDL Compiler from
building additional logic to ensure the first occurrence of a true branch is executed if more
than one branch were true at one time.

Caution:
Marking a case statement as parallel when it actually is not parallel can cause the
simulation to behave differently from the logic HDL Compiler synthesizes because HDL
Compiler does not generate priority encoding logic to make sure that the branch listed
first in the case statement takes effect.

The syntax for the parallel_case directive is

// synopsys parallel_case

Use the parallel_case directive immediately after the case expression. In Example 7-16,
the states of a state machine are encoded as a one-hot signal; the designer knows that only
one branch is true at a time and therefore sets the synopsys parallel_case directive on
the case statement.

Example 7-16 parallel_case Directives
reg [3:0] current_state, next_state;
parameter state1 = 4’b0001, state2 = 4’b0010,

state3 = 4’b0100, state4 = 4’b1000;
case (1)//synopsys parallel_case
 current_state[0] : next_state = state2;
 current_state[1] : next_state = state3;
 current_state[2] : next_state = state4;
 current_state[3] : next_state = state1;
endcase

When a case statement is not parallel (more than one branch evaluates to true), priority
encoding is needed to ensure that the branch listed first in the case statement takes effect.
Chapter 7: HDL Compiler Synthesis Directives
parallel_case 7-15
Chapter 7: HDL Compiler Synthesis Directives
parallel_case 7-15

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Table summarizes the types of case statements.

preserve_sequential

The preserve_sequential directive allows you to preserve specific cells that would
otherwise be optimized away by HDL Compiler. See “Keeping Unloaded Registers” on
page 4-8.

sync_set_reset

Use the sync_set_reset directive to infer a D flip-flop with a synchronous set/reset. When
you compile your design, the SEQGEN inferred by HDL Compiler will be mapped to a
flip-flop in the technology library with a synchronous set/reset pin, or Design Compiler will
use a regular D flip-flop and build synchronous set/reset logic in front of the D pin. The
choice depends on which method provides a better optimization result.

It is important to use the sync_set_reset directive to label the set/reset signal because it
tells Design Compiler that the signal should be kept as close to the register as possible
during mapping, preventing a simulation/synthesis mismatch which can occur if the set/reset
signal is masked by an X during initialization in simulation.

Case statement description Additional logic

Full and parallel No additional logic is generated.

Full but not parallel Priority-encoded logic:
HDL Compiler generates logic to ensure that the branch
listed first in the case statement takes effect.

Parallel but not full Latches created:
HDL Compiler generates logic to test for any value that is
not covered by the case branches and creates an implicit
“default” branch that requires a latch.

Not parallel and not full Priority-encoded logic:
HDL Compiler generates logic to make sure that the branch
listed first in the case statement takes effect.

Latches created:
HDL Compiler generates logic to test for any value that is
not covered by the case branches and creates an implicit
“default” branch that requires a latch.
Chapter 7: HDL Compiler Synthesis Directives
preserve_sequential 7-16

HDL Compiler for Verilog User Guide Version D-2010.03
When a single-bit signal has this directive set to true, HDL Compiler checks the signal to
determine whether it synchronously sets or resets a register in the design. Attach this
directive to single-bit signals. Use the following syntax:

//synopsys sync_set_reset "signal_name_list"

For an example of a D flip-flop with a synchronous set signal that uses the sync_set_reset
directive, see Example A-30 on page A-35. For an example of a JK flip-flop with
synchronous set and reset signals that uses the sync_set_reset directive, see
Example A-32 on page A-36.

For an example of a D flip-flop with a synchronous reset signal that uses the
sync_set_reset directive, see Example 4-32 on page 4-20. For an example of multiple
flip-flops with asynchronous and synchronous controls, see Example 4-36 on page 4-23.

sync_set_reset_local

The sync_set_reset_local directive instructs HDL Compiler to treat signals listed in a
specified block as if they have the sync_set_reset directive set to true.

Attach this directive to a block label, using the following syntax:

 //synopsys sync_set_reset_local block_label "signal_name_list"

Example 7-17 shows the usage.

Example 7-17
module m1 (input d1,d2,clk, set1, set2, rst1, rst2, output reg q1,q2);

// synopsys sync_set_reset_local sync_rst "rst1"
//always@(posedge clk or negedge rst1)
 always@(posedge clk)
 begin: sync_rst
 if(~rst1)
 q1 = 1'b0;
 else if (set1)
 q1 = 1'b1;
 else
 q1 = d1;
 end

 always@(posedge clk)
 begin: default_rst
 if(~rst2)
 q2 = 1'b0;
 else if (set2)
 q2 = 1'b1;
 else
Chapter 7: HDL Compiler Synthesis Directives
sync_set_reset_local 7-17
Chapter 7: HDL Compiler Synthesis Directives
sync_set_reset_local 7-17

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
 q2 = d2;
 end

endmodule

sync_set_reset_local_all

The sync_set_reset_local_all directive instructs HDL Compiler to treat all signals listed
in the specified blocks as if they have the sync_set_reset directive set to true.

Attach this directive to a block label, using the following syntax:

// synopsys sync_set_reset_local_all "block_label_list"

Example 7-18 shows usage.

Example 7-18
module m2 (input d1,d2,clk, set1, set2, rst1, rst2, output reg q1,q2);

// synopsys sync_set_reset_local_all sync_rst
//always@(posedge clk or negedge rst1)
 always@(posedge clk)
 begin: sync_rst
 if(~rst1)
 q1 = 1'b0;
 else if (set1)
 q1 = 1'b1;
 else
 q1 = d1;
 end

 always@(posedge clk)
 begin: default_rst
 if(~rst2)
 q2 = 1'b0;
 else if (set2)
 q2 = 1'b1;
 else
 q2 = d2;
 end

endmodule
Chapter 7: HDL Compiler Synthesis Directives
sync_set_reset_local_all 7-18

HDL Compiler for Verilog User Guide Version D-2010.03
template

The template directive saves an analyzed file and does not elaborate it. Without this
directive, the analyzed file is saved and elaborated. If you use this directive and your design
contains parameters, the design is saved as a template. Example 7-19 shows usage.

Example 7-19 template Directive
module template (a, b, c);
 input a, b, c;
 // synopsys template
 parameter width = 8;
.
.
.
endmodule

For more information, see “Parameterized Designs” on page 1-20.

translate_off and translate_on (Deprecated)

The translate_off and translate_on directives are deprecated. To suspend translation
of the source code for synthesis, use the SYNTHESIS macro and the appropriate conditional
directives (`ifdef, `ifndef, `else, `endif) rather than translate_off and
translate_on.

The SYNTHESIS macro replaces the DC macro (DC is still supported for backward
compatibility). See “Predefined Macros” on page 1-19.
Chapter 7: HDL Compiler Synthesis Directives
template 7-19
Chapter 7: HDL Compiler Synthesis Directives
template 7-19

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Chapter 7: HDL Compiler Synthesis Directives
translate_off and translate_on (Deprecated) 7-20

8
HDL Compiler Variables 8

This chapter describes the Verilog reading and writing variables in the following sections:

• HDL Compiler Reading-Related Variables

• Commands for Writing Out Verilog

• Variables for Writing Out Verilog
8-1

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
HDL Compiler Reading-Related Variables

Reading-related variables are described in Table 8-1. For more information about these
variables, see the man pages.

Table 8-1 Reading-Related Variables

Name Default Description

bus_inference_style "" Specifies the pattern used to infer individual bits
into a port bus.

bus_naming_style {%s[%d]} Controls the naming of elements in an array.

hdlin_auto_save_templates false Controls whether designs containing parameters
are read in as templates. See “Reading Verilog
Designs” on page 1-2. When set to true, the
automatic netllist reader is disabled.

hdlin_build_selectop_for_
var_index

false Specifies if SELECT_OPS should be built for
variable indexing on rhs.

hdlin_check_no_latch false Controls whether a warning message is issued if a
latch is inferred from a design. See “Preventing
Unwanted Latches: hdlin_check_no_latch” on
page 4-11.

hdlin_elab_errors_deep false Allows the elaboration of submodules even if the
top-level module elaboration fails, enabling HDL
Compiler to report more elaboration, link, and
VER-37 errors and warnings in a hierarchical
design during the first elaboration run. See
“Reporting Elaboration Errors” on page 1-7.

hdlin_ff_always_async_set_
reset

true When this variable is true, HDL Compiler attempts
to infer asynchronous set and reset conditions for
flip-flops.

hdlin_ff_always_sync_set_
reset

false When this variable is true, HDL Compiler attempts
to infer synchronous set and reset conditions for
flip-flops.

hdlin_infer_enumerated_
types

false Controls enumerated types inference. See “enum”
on page 7-6.

hdlin_infer_function_local_
latches

false Allows latches to be inferred for function- and
task-scope variables. See “Persistence of Values
Across Calls to Tasks” on page 2-18.
Chapter 8: HDL Compiler Variables
HDL Compiler Reading-Related Variables 8-2

HDL Compiler for Verilog User Guide Version D-2010.03
hdlin_infer_multibit default
_none

Controls multibit inference for signals that have the
infer_multibit directive in the Verilog
description.

Options:
• default_none (default)—Infers multibit

components for signals that have the
infer_multibit directive in the Verilog
description.

• default_all—Infers multibit components for all
bused registers, multiplexers, and three-state
cells that are larger than 2 bits. If you want to
implement as single-bit components all buses
that are more than 4 bits, use
set_multibit_options -minimum_width 4. This
sets a minimum_multibit_width attribute on the
design. (Use the dont_infer_multibit directive to
disable multibit mapping for certain signals.)

• never—Does not infer multibit components,
regardless of the attributes or directives in the
HDL source.

See “Multibit Components” on page 2-20.

hdlin_infer_mux default Controls MUX_OP inference.

To infer a MUX_OP, the case statement must
actually be parallel, or an error is reported.

Options:
• default—Infers MUX_OPs for parallel case

and if statements that have the infer_mux
directive attached.

• none—Does not infer MUX_OPs, regardless of
the directives set in the RTL description. HDL
Compiler generates a warning if
hdlin_infer_mux = none and infer_mux are
used in the RTL.

• all—Infers MUX_OPs for every parallel case
and if statement in your design. This can
negatively affect QoR, because it might be
more efficient to implement the MUX_OPs as
random logic instead of using a specialized
multiplexer structure.

 See “MUX_OP Inference” on page 3-15.

Table 8-1 Reading-Related Variables (Continued)

Name Default Description
Chapter 8: HDL Compiler Variables
HDL Compiler Reading-Related Variables 8-3
Chapter 8: HDL Compiler Variables
HDL Compiler Reading-Related Variables 8-3

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
hdlin_keep_signal_name all_
driving

Controls the preservation of nets and their
respective net name.

Options:
• all—Trys to preserve all signal names.

• user—Trys to preserve a signal name only
when you label it with the keep_signal_name
directive.

• all_driving (default)—Trys to preserve all
signal names that lead to outputs (no dangling
nets).

• user_driving—Trys to preserve a signal
name only when you label it with the
keep_signal_name directive and it leads to an
output (no dangling nets).

• none—Does not try to preserve any signal
name; overrides and ignores the
keep_signal_name directive.

See “Keeping Signal Names” on page 2-20.

hdlin_latch_always_async_
set_reset

false When this variable is true, HDL Compiler attempts
to infer asynchronous set and reset conditions for
latches. See “D Latch With Asynchronous Set and
Reset: Use hdlin_latch_always_async_set_reset”
on page 4-15.

hdlin_module_arch_name
_splitting

true Splits Verilog module names into entity/
architecture portions by two subsequent
underscores.

hdlin_mux_oversize_ratio 100 Defined as the ratio of the number of MUX_OP
inputs to the unique number of data inputs. When
this ratio is exceeded, a MUX_OP will not be
inferred and the circuit will be generated with
SELECT_OPs. See “MUX_OP Inference” on
page 3-15.

Table 8-1 Reading-Related Variables (Continued)

Name Default Description
Chapter 8: HDL Compiler Variables
HDL Compiler Reading-Related Variables 8-4

HDL Compiler for Verilog User Guide Version D-2010.03
hdlin_mux_size_limit 32 Sets the maximum size of a MUX_OP that HDL
Compiler can infer. If you set this variable to a
value greater than 32, HDL Compiler may take an
unusually long elaboration time.

If the number of branches in a case statement
exceeds the maximum size specified by this
variable, HDL Compiler generates the following
message:

Warning: A mux was not inferred because
case statement %s has a very large
branching factor. (HDL-383)

See “MUX_OP Inference” on page 3-15.

hdlin_mux_size_min 2 Sets the minimum number of data inputs for a
MUX_OP inference. See “MUX_OP Inference” on
page 3-15.

hdlin_no_sequential_mapping false Prevents sequential mapping.

hdlin_one_hot_one_cold_on true Optimizes according to one_hot and one_cold
attributes. See “one_cold” on page 7-14" and
“one_hot” on page 7-14."

hdlin_optimize_array_
references

true Optimizes constant offsets in array references.

hdlin_optimize_enum_types false Simplifies comparisons based on enumerated type
information.

Table 8-1 Reading-Related Variables (Continued)

Name Default Description
Chapter 8: HDL Compiler Variables
HDL Compiler Reading-Related Variables 8-5
Chapter 8: HDL Compiler Variables
HDL Compiler Reading-Related Variables 8-5

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
hdlin_preserve_sequential none Preserves unloaded sequential cells (latches or
flip-flops) that would otherwise be removed during
optimization by HDL Compiler. The following
options are supported:
• none or false—No unloaded sequential cells

are preserved. This is the default behavior.

• all or true—All unloaded sequential cells are
preserved, excluding unloaded sequential cells
that are used solely as loop variables.

• all+loop_variables or
true+loop_variables—All unloaded
sequential cells are preserved, including
unloaded sequential cells that are used solely
as loop variables.

• ff—Only flip-flop cells are preserved,
excluding unloaded sequential cells that are
used solely as loop variables.

• ff+loop_variables—Only flip-flop cells are
preserved, including unloaded sequential cells
that are used solely as loop variables.

• latch—Only unloaded latch cells are
preserved, excluding unloaded sequential cells
that are used solely as loop variables.

• latch+loop_variables—Only unloaded latch
cells are preserved, including unloaded
sequential cells that are used solely as loop
variables.

Important: To preserve unloaded cells through
compile, you must set
compile_delete_unloaded_sequential_cells
to false.

See “Keeping Unloaded Registers” on page 4-8.

hdlin_prohibit_nontri_
multiple_drivers

true Issues an error when a non-tri net is driven by
more than one processes or continuous
assignment.

hdlin_reporting_level false Enables and disables the finite state machine
inference report. For details, see “FSM Inference
Report” on page 5-6.

hdlin_signed_division_use_
shift

false Enables HDL Compiler to use shift to implement
signed division.

Table 8-1 Reading-Related Variables (Continued)

Name Default Description
Chapter 8: HDL Compiler Variables
HDL Compiler Reading-Related Variables 8-6

HDL Compiler for Verilog User Guide Version D-2010.03
Commands for Writing Out Verilog

Any design, regardless of initial format (equation, netlist, and so on), can be written out as a
Verilog design using the change_names -rules verilog -hier command and the write
-format verilog command. The change_names command must be used before the write
command.

hdlin_subprogram_default_
values

false Reads tick-LEFT as default for variables instead of
0s.

hdlin_support_subprogram_
var_init

false Controls whether HDL Compiler honors the initial
value given to a variable. When this variable is set
to false, the default value, HDL Compiler issues a
warning that the initial value given to a variable is
being ignored.

hdlin_template_naming_style "%s_%p" Master variable for naming a design built from a
template. The %s field is replaced by the name of
the original design, and the %p field is replaced by
the names of all the parameters.

hdlin_template_parameter_
style

"%s%d" Determines how each parameter is named. The
%s field is replaced by the parameter name, and
the %d field is replaced by the value of the
parameter.

hdlin_template_separator_
style

"_" Contains a string that separates parameter names.
This variable is used only for templates that have
more than one parameter.

hdlin_upcase_names false Converts all Verilog names to uppercase.

hdlin_vrlg_std 2001 Specifies the Verilog standard to enforce (1995,
2001, or 2005). When set to 2005, HDL Compiler
uses the generate construct definition added to the
LRM in 2005. See “generate Statements” on
page B-7.

Table 8-1 Reading-Related Variables (Continued)

Name Default Description
Chapter 8: HDL Compiler Variables
Commands for Writing Out Verilog 8-7
Chapter 8: HDL Compiler Variables
Commands for Writing Out Verilog 8-7

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Variables for Writing Out Verilog

The variables listed in Table 8-2 affect how designs are written out as Verilog files. To
override the default settings, set these variables before you write out the design.

To list the current values of the variables that affect writing out Verilog, enter

list -variables hdl

For more information about writing out designs, see the Design Compiler documentation.

Table 8-2 Verilogout Variables

Variable Description

verilogout_equation When this is set to true, Verilog assign statements (Boolean
equations) are written out for combinational gates instead of for
gate instantiations. Flip-flops and three-state cells are left
instantiated. The default is false.

verilogout_higher_designs
_first

When this is set to true, Verilog modules are ordered so that
higher-level designs come before lower-level designs, as defined by
the design hierarchy. The default is false.

verilogout_no_tri When this is set to true, three-state nets are declared as Verilog
wire instead of tri. This variable eliminates assign primitives and
tran gates in your Verilog output, by connecting an output port
directly to a component instantiation. The default is false.

verilogout_single_bit When this variable is set to true, vectored ports (or ports that use
record types) are bit-blasted; if a port’s bit vector is N bits wide, it is
written out to the Verilog file as N separate single-bit ports. When it
is set to false, all ports are written out with their original data types.
The default is false.

verilogout_time_scale This variable determines the ratio of library time to simulator time
and is used only by the write_timing command. The default is 1.0.
Chapter 8: HDL Compiler Variables
Variables for Writing Out Verilog 8-8

A
Examples A

This appendix presents examples that demonstrate basic concepts of HDL Compiler. It also
describes coding techniques for late-arriving signals and includes examples for SR latches,
an asynchronously set D latch, master-slave latches, a D flip-flop with a synchronous set
signal, and a JK flip-flop with synchronous set and reset signals. This appendix has the
following sections:

• Count Zeros—Combinational Version

• Count Zeros—Sequential Version

• Drink Machine—State Machine Version

• Drink Machine—Count Nickels Version

• Carry-Lookahead Adder

• Coding for Late-Arriving Signals

• Instantiation of Arrays of Instances

• SR Latches

• D Latch With Asynchronous Set: Use async_set_reset

• Inferring Master-Slave Latches

• Inferring Flip-Flops
A-1

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Count Zeros—Combinational Version

Using this circuit is one possible solution to a design problem. Given an 8-bit value, the
circuit must determine two things:

• The presence of a value containing exactly one sequence of zeros

• The number of zeros in the sequence (if any)

The circuit must complete this computation in a single clock cycle. The input to the circuit is
an 8-bit value, and the two outputs the circuit produces are the number of zeros found and
an error indication.

A valid value contains only one series of zeros. If more than one series of zeros appears, the
value is invalid. A value consisting of all ones is a valid value. If a value is invalid, the count
of zeros is set to zero. For example,

• The value 00000000 is valid, and the count is eight zeros.

• The value 11000111 is valid, and the count is three zeros.

• The value 00111110 is invalid.

A Verilog description is shown in Example A-1.

Example A-1 Count Zeros—Combinational
module count_zeros(in, out, error);
 input [7:0] in;
 output [3:0] out;
 output error;
 function legal;
 input [7:0] x;
 reg seenZero, seenTrailing;
 integer i;
 begin : _legal_block
 legal = 1; seenZero = 0; seenTrailing = 0;
 for (i=0; i <= 7; i=i+1)
 if (seenTrailing && (x[i] == 1'b0)) begin
 legal = 0;
 disable _legal_block;
 end
 else if (seenZero && (x[i] == 1'b1))
 seenTrailing = 1;
 else if (x[i] == 1'b0)
 seenZero = 1;
 end
 endfunction

 function [3:0] zeros;
 input [7:0] x;
 reg [3:0] count;
Appendix A: Examples
Count Zeros—Combinational Version A-2

HDL Compiler for Verilog User Guide Version D-2010.03
 integer i;

 begin
 count = 0;
 for (i=0; i <= 7; i=i+1)
 if (x[i] == 1'b0) count = count + 1;
 zeros = count;
 end
 endfunction
 wire is_legal = legal(in);
 assign error = ! is_legal;
 assign out = is_legal ? zeros(in) : 1'b0;
endmodule

This example shows two Verilog functions: legal and zeros. The function legal determines if
the value is valid. It returns a 1-bit value: either 1 for a valid value or 0 for an invalid value.
The function zeros cycles through all bits of the value, counts the number of zeros, and
returns the appropriate value. The two functions are controlled by continuous assignment
statements at the bottom of the module definition. This example shows a combinational
(parallel) approach to counting zeros; the next example shows a sequential (serial)
approach.

Count Zeros—Sequential Version

Example A-2 shows a sequential (clocked) solution to the “count zeros” design problem.
The circuit specification is slightly different from the specification in the combinational
solution and needs an initial reset signal to start the operation. The circuit now accepts the
8-bit string serially, 1 bit per clock cycle, using the data and clk inputs. The other two inputs
are

• reset, which resets the circuit

• read, which causes the circuit to begin accepting data

The circuit’s three outputs are

• is_legal, which is true if the data is a valid value

• data_ready, which is true at the first invalid bit or when all 8 bits have been processed

• zeros, which is the number of zeros if is_legal is true
Chapter A: Examples
Count Zeros—Sequential Version A-3
Appendix A: Examples
Count Zeros—Sequential Version A-3

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Example A-2 Count Zeros—Sequential Version
module count_zeros(data,reset,read,clk,zeros,is_legal,
 data_ready);

 parameter TRUE=1, FALSE=0;

 input data, reset, read, clk;
 output is_legal, data_ready;
 output [3:0] zeros;
 reg [3:0] zeros;

 reg is_legal, data_ready;
 reg seenZero, new_seenZero;
 reg seenTrailing, new_seenTrailing;
 reg new_is_legal;
 reg new_data_ready;
 reg [3:0] new_zeros;
 reg [2:0] bits_seen, new_bits_seen;

always @ (data or reset or read or is_legal
 or
data_ready or seenTrailing or
 seenZero or zeros
or bits_seen) begin
 if (reset) begin
 new_data_ready = FALSE;
 new_is_legal = TRUE;
 new_seenZero = FALSE;
 new_seenTrailing = FALSE;
 new_zeros = 0;
 new_bits_seen = 0;
 end
 else begin
 new_is_legal = is_legal;
 new_seenZero = seenZero;
 new_seenTrailing = seenTrailing;
 new_zeros = zeros;
 new_bits_seen = bits_seen;
 new_data_ready = data_ready;
 if (read) begin
 if (seenTrailing && (data == 0))
 begin
 new_is_legal = FALSE;
 new_zeros = 0;
 new_data_ready = TRUE;
 end
 else if (seenZero && (data == 1‘b1))
 new_seenTrailing = TRUE;
 else if (data == 1'b0) begin
 new_seenZero = TRUE;
 new_zeros = zeros + 1;
 end
Appendix A: Examples
Count Zeros—Sequential Version A-4

HDL Compiler for Verilog User Guide Version D-2010.03
if (bits_seen == 7)
 new_data_ready = TRUE;
 else
 new_bits_seen = bits_seen+1;
 end
 end
 end

always @ (posedge clk) begin
 zeros = new_zeros;
 bits_seen = new_bits_seen;
 seenZero = new_seenZero;
 seenTrailing = new_seenTrailing;
 is_legal = new_is_legal;
 data_ready = new_data_ready;
end
endmodule

Drink Machine—State Machine Version

The next design is a vending control unit for a soft drink vending machine. The circuit reads
signals from a coin input unit and sends outputs to a change dispensing unit and a drink
dispensing unit.

Input signals from the coin input unit are nickel_in (nickel deposited), dime_in (dime
deposited), and quarter_in (quarter deposited).

The price of a drink is 35 cents. The Verilog description for this design, shown in
Example A-3, uses a state machine description style.

Example A-3 Drink Machine—State Machine Version
`define vend_a_drink {D,dispense,collect} = {IDLE,2‘b11}

module drink_machine(nickel_in, dime_in, quarter_in,
 collect, nickel_out, dime_out,
 dispense, reset, clk) ;
 parameter IDLE=3'd0, FIVE=3'd1, TEN=3'd2, TWENTY_FIVE=3'd3,
 FIFTEEN=3'd4, THIRTY=3'd5, TWENTY=3'd6, OWE_DIME=3'd7;

 input nickel_in, dime_in, quarter_in, reset, clk;
 output collect, nickel_out, dime_out, dispense;

 reg collect, nickel_out, dime_out, dispense;
 reg [2:0] D, Q; /* state */

always @ (nickel_in or dime_in or quarter_in or reset or Q)
 begin
 nickel_out = 0;
 dime_out = 0;
 dispense = 0;
 collect = 0;
Chapter A: Examples
Drink Machine—State Machine Version A-5
Appendix A: Examples
Drink Machine—State Machine Version A-5

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
 if (reset) D = IDLE;
 else begin
 D = Q;

 case (Q)
 IDLE:
 if (nickel_in) D = FIVE;
 else if (dime_in) D = TEN;
 else if (quarter_in) D = TWENTY_FIVE;
 FIVE:
 if(nickel_in) D = TEN;
 else if (dime_in) D = FIFTEEN;
 else if (quarter_in) D = THIRTY;
 TEN:
 if (nickel_in) D = FIFTEEN;
 else if (dime_in) D = TWENTY;
 else if (quarter_in) ‘vend_a_drink;
 TWENTY_FIVE:
 if(nickel_in) D = THIRTY;
 else if (dime_in) ‘vend_a_drink;
 else if (quarter_in) begin

 `vend_a_drink;
 nickel_out = 1;
 dime_out = 1;
 end

 FIFTEEN:
 if (nickel_in) D = TWENTY;
 else if (dime_in) D = TWENTY_FIVE;
 else if (quarter_in) begin
 `vend_a_drink;
 nickel_out = 1;
 end

 THIRTY:
 if (nickel_in) ‘vend_a_drink;
 else if (dime_in) begin
 `vend_a_drink;
 nickel_out = 1;
 end
 else if (quarter_in) begin
 `vend_a_drink;
 dime_out = 1;
 D = OWE_DIME;
 end

 TWENTY:
 if (nickel_in) D = TWENTY_FIVE;
 else if (dime_in) D = THIRTY;
 else if (quarter_in) begin
 `vend_a_drink;
 dime_out = 1;
 end

 OWE_DIME:
 begin
Appendix A: Examples
Drink Machine—State Machine Version A-6

HDL Compiler for Verilog User Guide Version D-2010.03
 dime_out = 1;
 D = IDLE;
 end
 endcase
 end
end

always @ (posedge clk) begin
 Q = D;
end
endmodule

Drink Machine—Count Nickels Version

Example A-4 uses the same design parameters as Example A-3, with the same input and
output signals. In this version, a counter counts the number of nickels deposited. This
counter is incremented by 1 if the deposit is a nickel, by 2 if it’s a dime, and by 5 if it’s a
quarter.

Example A-4 Drink Machine—Count Nickels Version
module drink_machine(nickel_in,dime_in,quarter_in,collect,
 nickel_out,dime_out,dispense,reset,clk);

input nickel_in, dime_in, quarter_in, reset, clk;
output nickel_out, dime_out, collect, dispense;

reg nickel_out, dime_out, dispense, collect;
reg [3:0] nickel_count, temp_nickel_count;
reg temp_return_change, return_change;

 always @ (nickel_in or dime_in or quarter_in or
 collect or temp_nickel_count or
 reset or nickel_count or return_change) begin

nickel_out = 0;
dime_out = 0;
dispense = 0;
collect = 0;
temp_nickel_count = 0;
temp_return_change = 0;

// Check whether money has come in
if (! reset) begin

temp_nickel_count = nickel_count;
if (nickel_in)
 temp_nickel_count = temp_nickel_count + 1;
else if (dime_in)
 temp_nickel_count = temp_nickel_count + 2;
else if (quarter_in)
 temp_nickel_count = temp_nickel_count + 5;

// correct amount deposited?
if (temp_nickel_count >= 7) begin

temp_nickel_count = temp_nickel_count - 7;
dispense = 1;
Chapter A: Examples
Drink Machine—Count Nickels Version A-7
Appendix A: Examples
Drink Machine—Count Nickels Version A-7

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
collect = 1;
end
// return change
if (return_change || collect) begin

if (temp_nickel_count >= 2) begin
 dime_out = 1;
 temp_nickel_count = temp_nickel_count - 2;
 temp_return_change = 1;
end

if (temp_nickel_count == 1) begin
 nickel_out = 1;
 temp_nickel_count = temp_nickel_count - 1;
end

end
end

end
always @ (posedge clk) begin

nickel_count = temp_nickel_count;
return_change = temp_return_change;

end
endmodule

Carry-Lookahead Adder

Figure A-1 on page A-10 and Example A-5 on page A-11 show how to build a 32-bit
carry-lookahead adder. The adder is built by partitioning of the 32-bit input into eight slices
of 4 bits each. The PG module computes propagate and generate values for each of the
eight slices.

Propagate (output P from PG) is 1 for a bit position if that position propagates a carry from
the next-lower position to the next-higher position. Generate (output G) is 1 for a bit position
if that position generates a carry to the next-higher position, regardless of the carry-in from
the next-lower position.

The carry-lookahead logic reads the carry-in, propagate, and generate information
computed from the inputs. It computes the carry value for each bit position. This logic makes
the addition operation an XOR of the inputs and the carry values.

The following list shows the order in which the carry values are computed by a three-level
tree of 4-bit carry-lookahead blocks (illustrated in Figure A-1):

1. The first level of the tree computes the 32 carry values and the 8 group propagate and
generate values. Each of the first-level group propagate and generate values tells if that
4-bit slice propagates and generates carry values from the next-lower group to the
next-higher. The first-level lookahead blocks read the group carry computed at the
second level.
Appendix A: Examples
Carry-Lookahead Adder A-8

HDL Compiler for Verilog User Guide Version D-2010.03
2. At the second level of the tree, the lookahead blocks read the group propagate and
generate information from the four first-level blocks and then compute their own group
propagate and generate information. They also read group carry information computed
at the third level to compute the carries for each of the third-level blocks.

3. At the third level of the tree, the third-level block reads the propagate and generate
information of the second level to compute a propagate and generate value for the entire
adder. It also reads the external carry to compute each second-level carry. The carry-out
for the adder is 1 if the third-level generate is 1 or if the third-level propagate is 1 and the
external carry is 1.

The third-level carry-lookahead block can process four
second-level blocks. Because there are only two second-level blocks in Figure A-1, the
high-order 2 bits of the computed carry are ignored, the high-order 2 bits of the generate
input to the third-level are set to 00 (zero), and the propagate high-order bits are set to
11. This causes the unused portion to propagate carries but not to generate them.

Figure A-1 shows the three levels of a block diagram of the 32-bit carry-lookahead adder.
Example A-5 shows the code for the adder.
Chapter A: Examples
Carry-Lookahead Adder A-9
Appendix A: Examples
Carry-Lookahead Adder A-9

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Figure A-1 Carry-Lookahead Adder Block Diagram

CIN COUT 27:24

P
G

GP
GG

CLA

CIN COUT 23:20

P
G

GP
GG

CLA

CIN COUT 19:16

P
G

GP
GG

CLA

CIN COUT 31:28

P
G

GP
GG

CLA

0

A 27:24
B 27:24

P
G

PG

A 31:28
B 31:28

P
G

PG

A 23:20
B 23:20

P
G

PG

A 19:16
B 19:16

P
G

PG

CIN

P
G

COUT

GP
GG

CLA

CIN

P
G

COUT

GP
GG

CLA

7
7

4
4

6
6

5
5

1

CIN COUT 11:8

P
G

GP
GG

CLA

CIN COUT 7:4

P
G

GP
GG

CLA

CIN COUT 3:0

P
G

GP
GG

CLA

CIN COUT 15:12

P
G

GP
GG

CLA

A 11:8
B 11:8

P
G

PG

A 15:12
B 15:12

P
G

PG

A 7:4
B 7:4

P
G

PG

A 3:0
B 3:0

P
G

PG

CIN

P
G

COUT

GP
GG

CLA

3
3

0
0

2
2

1
1

0

1

GGGG or (GGGP and CIN)

GC 7:4

GC 3:0
GGGP

GGGG

GGC

CIN
B A

XOR

S

"00"

3:2
"11"

3:2

third-level

second-level

first-level

1

0

COUT

GP 7:4

GP 3:0

GG 7:4

GG 3:0

GGP

GGG

7

6

5

4

1

2

3

0

 blocks

 blocks

 block
Appendix A: Examples
Carry-Lookahead Adder A-10

HDL Compiler for Verilog User Guide Version D-2010.03
Example A-5 Carry-Lookahead Adder
`define word_size 32
`define word [‘word_size-1:0]

`define n 4
`define slice [‘n-1:0]

`define s0 (1*‘n)-1:0*‘n
`define s1 (2*‘n)-1:1*‘n
`define s2 (3*‘n)-1:2*‘n
`define s3 (4*‘n)-1:3*‘n
`define s4 (5*‘n)-1:4*‘n
`define s5 (6*‘n)-1:5*‘n
`define s6 (7*‘n)-1:6*‘n
`define s7 (8*‘n)-1:7*‘n

module cla32_4(a, b, cin, s, cout);
input `word a, b;
input cin;
output `word s;
output cout;

 wire [7:0] gg, gp, gc; // Group generate, propagate,
// carry

 wire [3:0] ggg, ggp, ggc;// Second-level gen., prop.
 wire gggg, gggp; // Third-level gen., prop.

 bitslice i0(a[`s0], b[`s0], gc[0], s[`s0], gp[0], gg[0]);
 bitslice i1(a[`s1], b[`s1], gc[1], s[`s1], gp[1], gg[1]);
 bitslice i2(a[`s2], b[`s2], gc[2], s[`s2], gp[2], gg[2]);
 bitslice i3(a[`s3], b[`s3], gc[3], s[`s3], gp[3], gg[3]);

 bitslice i4(a[`s4], b[`s4], gc[4], s[`s4], gp[4], gg[4]);
 bitslice i5(a[`s5], b[`s5], gc[5], s[`s5], gp[5], gg[5]);
 bitslice i6(a[`s6], b[`s6], gc[6], s[`s6], gp[6], gg[6]);
 bitslice i7(a[`s7], b[`s7], gc[7], s[`s7], gp[7], gg[7]);

 cla c0(gp[3:0], gg[3:0], ggc[0], gc[3:0], ggp[0], ggg[0]);
 cla c1(gp[7:4], gg[7:4], ggc[1], gc[7:4], ggp[1], ggg[1]);

 assign ggp[3:2] = 2'b11;
 assign ggg[3:2] = 2'b00;
 cla c2(ggp, ggg, cin, ggc, gggp, gggg);
 assign cout = gggg | (gggp & cin);
endmodule

// Compute sum and group outputs from a, b, cin

module bitslice(a, b, cin, s, gp, gg);
input `slice a, b;
input cin;
output `slice s;
output gp, gg;

 wire `slice p, g, c;
 pg i1(a, b, p, g);
 cla i2(p, g, cin, c, gp, gg);
 sum i3(a, b, c, s);
Chapter A: Examples
Carry-Lookahead Adder A-11
Appendix A: Examples
Carry-Lookahead Adder A-11

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
endmodule

// compute propagate and generate from input bits

module pg(a, b, p, g);
input `slice a, b;
output `slice p, g;

 assign p = a | b;
 assign g = a & b;
endmodule

// compute sum from the input bits and the carries

module sum(a, b, c, s);
input `slice a, b, c;
output `slice s;

 wire `slice t = a ^ b;
 assign s = t ^ c;
endmodule

// n-bit carry-lookahead block

module cla(p, g, cin, c, gp, gg);
input `slice p, g;// propagate and generate bits
input cin; // carry in
output `slice c; // carry produced for each bit
output gp, gg; // group generate and group propagate

 function [99:0] do_cla;
 input `slice p, g;
 input cin;

 begin : label
 integer i;
 reg gp, gg;
 reg `slice c;
 gp = p[0];
 gg = g[0];
 c[0] = cin;
 for (i = 1; i < `n; i = i+1) begin
 gp = gp & p[i];
 gg = (gg & p[i]) | g[i];
 c[i] = (c[i-1] & p[i-1]) | g[i-1];
 end
 do_cla = {c, gp, gg};
 end
 endfunction

 assign {c, gp, gg} = do_cla(p, g, cin);
endmodule
Appendix A: Examples
Carry-Lookahead Adder A-12

HDL Compiler for Verilog User Guide Version D-2010.03
Coding for Late-Arriving Signals

The following sections discuss coding techniques for late-arriving signals:

• Datapath Duplication

• Moving Late-Arriving Signals Closer to the Output

Note that these techniques apply to HDL Compiler output. When this output is constrained
and optimized by Design Compiler, your structure might be changed, depending on such
factors as your design constraints and option settings. See the Design Compiler
documentation for details.

Datapath Duplication
The following examples illustrate how to duplicate logic to improve timing. In Example A-6,
CONTROL is a late-arriving input signal that selects between two inputs. The selected input
drives a chain of arithmetic operations and ends at the output port COUNT. Note that
CONTROL is needed to complete the first operation. In Example A-6, notice that there is a
SELECT_OP next to a subtracter. (For more information about SELECT_OP, see
“SELECT_OP Inference” on page 3-13.) When you see a SELECT_OP next to an operator,
you can usually move it to after the operator by duplicating the logic in the branches of the
conditional statement that implied the SELECT_OP. Example A-7 shows this datapath
duplication.

When you duplicate the operations that depend on the inputs PTR1 and PTR2, the
assignment to COUNT becomes a selection between the two parallel datapaths. The signal
CONTROL selects the datapath. The path from CONTROL to the output port COUNT is no
longer the critical path, but this change comes at the expense of duplicated logic.

In Example A-7, the entire datapath is duplicated, because CONTROL arrives late. Had
CONTROL arrived earlier, you could have duplicated only a portion of the logic, thereby
decreasing the area expense. The designer controls how much logic is duplicated.

Example A-6 Code and Structure
module BEFORE (ADDRESS, PTR1, PTR2, B, CONTROL, COUNT);
 input [7:0] PTR1,PTR2;
 input [15:0] ADDRESS, B;

// CONTROL is late arriving

 input CONTROL;
 output [15:0] COUNT;
 parameter [7:0] BASE = 8'b10000000;
 wire [7:0] PTR, OFFSET;
 wire [15:0] ADDR;
 assign PTR = (CONTROL == 1'b1) ? PTR1 : PTR2;
Chapter A: Examples
Coding for Late-Arriving Signals A-13
Appendix A: Examples
Coding for Late-Arriving Signals A-13

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
 // Could be any function f(BASE,PTR)

 assign OFFSET = BASE - PTR;
 assign ADDR = ADDRESS - {8'h00, OFFSET};
 assign COUNT = ADDR + B;
endmodule

Example A-7 Datapath Duplicated Code and Structure
module PRECOMPUTED (ADDRESS, PTR1, PTR2, B, CONTROL, COUNT);
 input [7:0] PTR1, PTR2;
 input [15:0] ADDRESS, B;
 input CONTROL;
 output [15:0] COUNT;
 parameter [7:0] BASE = 8'b10000000;
 wire [7:0] OFFSET1,OFFSET2;
 wire [15:0] ADDR1,ADDR2,COUNT1,COUNT2;
 assign OFFSET1 = BASE - PTR1; // Could be f(BASE,PTR)
 assign OFFSET2 = BASE - PTR2; // Could be f(BASE,PTR)
 assign ADDR1 = ADDRESS - {8'h00 , OFFSET1};
 assign ADDR2 = ADDRESS - {8'h00 , OFFSET2};
 assign COUNT1 = ADDR1 + B;
 assign COUNT2 = ADDR2 + B;
 assign COUNT = (CONTROL == 1'b1) ? COUNT1 : COUNT2;
endmodule

SELECT_OP

2

PTR1

PTR2

CONTROL

SUBTRACTER SUBTRACTER

ADDERBASE

8
00000000

16
COUNT

16

B
16

8

8

16ADDRESS
Appendix A: Examples
Coding for Late-Arriving Signals A-14

HDL Compiler for Verilog User Guide Version D-2010.03
The amount of datapath duplication is proportional to the number of branches in the
conditional statement. For example, if there were four PTR signals in Example A-6 instead
of two (PTR1 and PTR2), the area penalty would be larger, because you would have two
more duplicated datapaths.

In general, the improved design with the datapath duplicated is better with respect to timing
but the area is larger. Note that logic duplication also increases the load on the input pins.

Moving Late-Arriving Signals Closer to the Output
Designers usually know which signals in a design are late-arriving. This knowledge can be
used to structure HDL so that the late-arriving signals are close to the output. The following
sections give examples of if and case statements for late-arriving signals:

• Overview

• Late-Arriving Data Signal

• Recoding for Late-Arriving Data Signal: Case 1

• Recoding for Late-Arriving Data Signal: Case 2

• Late-Arriving Control Signal

• Recoding for Late-Arriving Control Signal
Chapter A: Examples
Coding for Late-Arriving Signals A-15
Appendix A: Examples
Coding for Late-Arriving Signals A-15

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Overview
Sequential if statements allow you to create a priority-encoded implementation that can help
in handling late-arriving signals. Assignment priority is from bottom to top, that is, the last if
statement in your code translates to the data signal in the last SELECT_OP in the chain of
SELECT_OPs as shown in Example A-8.

Example A-8
module mult_if(a, b, c, d, sel, z);
 input a, b, c, d;
 input [3:0] sel;
 output z;
 reg z;
 always @(a or b or c or d or sel)
 begin

z = 0;
if (sel[0]) z = a;
if (sel[1]) z = b;
if (sel[2]) z = c;
if (sel[3]) z = d;

 end
endmodule

In Example A-8, sel[0] and a have the longest delay to the output z; sel[3] and d have the
shortest delay to the output.

If you use the if-else-begin-if construct to build a priority encoded MUX, you must use
named begin blocks in the code, as shown in Example A-9.

SELECT_OP
SELECT_OP

SELECT_OP
SELECT_OP

z
d

sel[3]

c

b
a

0 sel[2]

sel[1]
sel[0]
Appendix A: Examples
Coding for Late-Arriving Signals A-16

HDL Compiler for Verilog User Guide Version D-2010.03
Example A-9
module m1 (p, q, r, s, a, x);
 input p, q, r, s;
 input [0:4] a;
 output x;
 reg x;
 always @(a or p or q or r or s)
 if (p)
 x = a[0];
 else begin :b1
 if (q)
 x = a[1];
 else begin :b2
 if (r)
 x = a[2];
 else begin :b3
 if (s)
 x = a[3];
 else
 x = a[4];
 end
 end
 end
endmodule

SELECT_OP SELECT_OP SELECT_OPSELECT_OP

a[0:4]

s

r

p

q

x

Chapter A: Examples
Coding for Late-Arriving Signals A-17
Appendix A: Examples
Coding for Late-Arriving Signals A-17

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Late-Arriving Data Signal
Example A-10 shows code designed to accommodate the late-arriving data signal,
b_is_late. This code has b_is_late as close as possible to the output z.

Example A-10
module mult_if_improved(a, b_is_late, c, d, sel, z);

input a, b_is_late, c, d;
input [3:0] sel;
output z;
reg z, z1;

always @(a or b_is_late or c or d or sel)
begin

z1 = 0;
if (sel[0])
z1 = a;
if (sel[2])

z1 = c;
if (sel[3])

z1 = d;
if (sel[1] & ~(sel[2]|sel[3]))

z = b_is_late;
else

z = z1;
end

endmodule

SELECT_OP
SELECT_OP

SELECT_OP
SELECT_OP

zd

sel[3]

c

b_is_late

a

0 sel[3]
2sel[2]

2sel[0]
2

sel[2]
sel[1]

sel[3]

Control
Logic

2

Appendix A: Examples
Coding for Late-Arriving Signals A-18

HDL Compiler for Verilog User Guide Version D-2010.03
Recoding for Late-Arriving Data Signal: Case 1
Example A-11 shows code that contains operators in the conditional expression of an if
statement; Figure A-2 shows the structure implied by the code. The signal A in the
conditional expression is a late-arriving signal, so you should move the signal closer to the
output.

Example A-11 Input A Is Late-Arriving
module cond_oper (A, B, C, D, Z);
 parameter N = 8;

 // A is late arriving

 input [N-1:0] A, B, C, D;
 output [N-1:0] Z;
 reg [N-1:0] Z;
 always @(A or B or C or D)
 begin
 if (A + B < 24)
 Z <= C;
 else
 Z <= D;
 end
endmodule

Figure A-2 Original Structure

Example A-12 restructures the code to do this; Figure A-3 shows the resulting
implementation.

ADDER
A

B COMPARATOR

SELECT_OP
C

D
Z

24

2

Chapter A: Examples
Coding for Late-Arriving Signals A-19
Appendix A: Examples
Coding for Late-Arriving Signals A-19

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Example A-12 Improved Verilog With Operator in Conditional Expression

module cond_oper_improved (A, B, C, D, Z);
 parameter N = 8;

// A is late arriving

 input [N-1:0] A, B, C, D;
 output [N-1:0] Z;
 reg [N-1:0] Z;
 always @(A or B or C or D)
 begin
 if (B < 24 && A < 24 - B)
 Z <= C;
 else
 Z <= D;
 end

Figure A-3 Recoded Structure

Recoding for Late-Arriving Data Signal: Case 2
Example A-13 shows a case statement nested in an if statement. The data signal
DATA_is_late_arriving is late-arriving.

Appendix A: Examples
Coding for Late-Arriving Signals A-20

HDL Compiler for Verilog User Guide Version D-2010.03
Example A-13 Original Code
module case_in_if_01(A, DATA_is_late_arriving, C, sel, Z);

input [8:1] A;
input DATA_is_late_arriving;
input [2:0] sel;
input [5:1] C;
output Z;
reg Z;

always @ (sel or C or A or DATA_is_late_arriving)
begin
if (C[1])

Z = A[5];
else if (C[2] == 1'b0)

Z = A[4];
else if (C[3])

Z = A[1];
else if (C[4])

case (sel)
3'b010: Z = A[8];
3'b011: Z = DATA_is_late_arriving;
3'b101: Z = A[7];
3'b110: Z = A[6];
default: Z = A[2];

endcase
else if (C[5] == 1'b0)

Z = A[2];
else

Z = A[3];
end

endmodule

Figure A-4 shows the structure implied by the code in Example A-13.

Figure A-4 Structure Implied by Original Code in Example A-13

A [2]
A [6]
A [7]

A [8]

SELECT_OP

Control
Logic 5

DATA_is_late_arriving

sel

A [3]
A [2]

A [1]
A [4]
A [5]

z

SELECT_OP

6Logic
ControlC
Chapter A: Examples
Coding for Late-Arriving Signals A-21
Appendix A: Examples
Coding for Late-Arriving Signals A-21

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
The late-arriving signal, DATA_is_late_arriving, is an input to the first SELECT_OP in the
path. To improve the startpoint for synthesis, modify the HDL to move DATA_is_late_arriving
closer to the output Z.

You can do this by moving the assignment of DATA_is_late_arriving out of the nested case
statement into a separate if statement. This makes DATA_is_late_arriving an input to
another SELECT_OP that is closer to the output port Z.

Example A-14 shows the improved version of the code shown in Example A-13.

Example A-14 Improved Code
module case_in_if_01_improved(A,DATA_is_late_arriving,C,sel,Z);

input [8:1] A;
input DATA_is_late_arriving;
input [2:0] sel;
input [5:1] C;
output Z;
reg Z;
reg Z1, FIRST_IF;

always @(sel or C or A or DATA_is_late_arriving)
begin
if (C[1])

Z1 = A[5];
else if (C[2] == 1'b0)

Z1= A[4];
else if (C[3])

Z1 = A[1];
else if (C[4])

case (sel)
3'b010: Z1 = A[8];

//3'b011: Z1 = DATA_is_late_arriving;
3'b101: Z1 = A[7];
3'b110: Z1 = A[6];
default: Z1 = A[2];

endcase
else if (C[5] == 1'b0)

Z1 = A[2];
else

Z1 = A[3];

FIRST_IF = (C[1] == 1'b1) || (C[2] == 1'b0) || (C[3] == 1'b1);

if (!FIRST_IF && C[4] && (sel == 3'b011))
Z = DATA_is_late_arriving;

else
Z = Z1;

end
endmodule

The structure implied by the modified HDL in Example A-14 is given in Figure A-5.
Appendix A: Examples
Coding for Late-Arriving Signals A-22

HDL Compiler for Verilog User Guide Version D-2010.03
Figure A-5 Structure Implied by Improved HDL in Example A-14

Late-Arriving Control Signal
If you have a late-arriving control signal, code it close to the output, as shown in
Example A-15. Figure A-6 shows the structure. Note that CTRL_is_late_arriving is as close
to the output as possible.

Example A-15
module single_if_improved(A, C, CTRL_is_late_arriving, Z);

input [6:1] A;
input [5:1] C;
input CTRL_is_late_arriving;
output Z;
reg Z;
reg Z1;
wire Z2, prev_cond;

always @(A or C)
begin

if (C[1] == 1'b1) begin: b1
Z1 = A[1];

end else if (C[2] == 1'b0) begin: b2
Z1 = A[2];

end else if (C[3] == 1'b1) begin: b3
Z1 = A[3];

// remove the branch with the late-arriving control signal
end else if (C[5] == 1'b0)begin: b4
Z1 = A[5];//
end else
Z1 = A[6];

end

assign Z2 = A[4];
assign prev_cond = (C[1] == 1'b1) || (C[2] == 1'b0) || (C[3] == 1'b1);

always @(C or prev_cond or CTRL_is_late_arriving or Z1 or Z2)

A [2]
A [6]
A [7]
A [8]

SELECT_OP

4

DATA_is_late_arriving

sel [2:0]

A [3]
A [2]

A [1]
A [4]
A [5]

SELECT_OP

6
C [5:1]

z

SELECT_OP

2

sel [2:0]
C [4:1] Logic

ControlLogic
Control

Logic
Control
Chapter A: Examples
Coding for Late-Arriving Signals A-23
Appendix A: Examples
Coding for Late-Arriving Signals A-23

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
begin
if (C[4] == 1'b1 && CTRL_is_late_arriving == 1'b0)

if (prev_cond)
Z = Z1;

else
Z = Z2;

else
Z = Z1;

end
endmodule

Figure A-6 Late-Arriving Control Signal

Recoding for Late-Arriving Control Signal
Example A-16 shows an if statement nested in a case statement. This example assumes
that sel[1] is a late-arriving signal.

A [6]
A [5]
A [3]
A [2]
A [1]

SELECT_OP

Control
Logic 5

C[1:3,5]

SELECT_OP
SELECT_OP

A [4] z

C[1:3]
2

C[4]
CTRL_is_late_arriving 2

Control
Logic

Control
Logic
Appendix A: Examples
Coding for Late-Arriving Signals A-24

HDL Compiler for Verilog User Guide Version D-2010.03
Example A-16 Original Code
module if_in_case(sel, X, A, B, C, D, Z);
input [2:0] sel; // sel[1] is late arriving
input X, A, B, C, D;
output Z;
reg Z;

always @(sel or X or A or B or C or D)
begin

case (sel)
3'b000: Z = A;
3'b001: Z = B;
3'b010: if (X == 1'b1)

Z = C;
else

Z = D;
3'b100: Z = A ^ B;
3'b101: Z = !(A && B);
3'b111: Z = !A;
default: Z = !B;

endcase
end
endmodule

In Example A-16, you know that sel[1] is a late-arriving input. Therefore, you should
restructure the code in Example A-16 to get the best startpoint for synthesis.

Example A-17 shows modified code that shifts the dependency on sel[1] closer to the
output; that is, it moves sel[1] closer to the output and the nested if statement is removed
and placed outside the case statement. This code computes two possible values for z into
new variables z1 and z2. These represent what the final value of z will be if sel[1] is 0 and 1,
respectively. Then, a final if statement checks the actual value of sel[1] to select between z1
and z2. Because sel[1] is closer to the output, it improves timing if sel[1] is late.
Chapter A: Examples
Coding for Late-Arriving Signals A-25
Appendix A: Examples
Coding for Late-Arriving Signals A-25

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Example A-17 Improved Code
module if_in_case_improved(sel, X, A, B, C, D, Z);

input [2:0] sel; // sel[1] is late arriving
input X, A, B, C, D;
output Z;
reg Z;
reg Z1, Z2;
reg [1:0] i_sel;

always @ (sel or X or A or B or C or D)
begin
i_sel = {sel[2],sel[0]};
case (i_sel) // for sel[1]=0

2'b00: Z1 = A;
2'b01: Z1 = B;
2'b10: Z1 = A ^ B;
2'b11: Z1 = !(A && B);
default: Z1 = !B;

endcase

case (i_sel) // for sel[1]=1
2'b00:if (X == 1'b1)

Z2 = C;
else

Z2 = D;
2'b11: Z2 = !A;
default: Z2 = !B;

endcase
if (sel[1])

Z = Z2;
else

Z = Z1;
end

endmodule

Instantiation of Arrays of Instances

This feature enables instantiations of modules that contain a range specification, which, in
turn, allows an array of instances to be created. In Example A-18, the my_pipeline module
creates a single pipeline with two stages, as shown in Figure A-7.

Example A-18 Module Test
module my_pipeline (D, CK, Q);
 input D, CK;
 output Q;
 reg Q0, Q;
 always @ (posedge CK)
 begin

Q0 <= D;
Appendix A: Examples
Instantiation of Arrays of Instances A-26

HDL Compiler for Verilog User Guide Version D-2010.03
Q <= Q0;
 end
endmodule

Figure A-7 my_pipeline Design

In Example A-19, the array_inst module instantiates the my_pipeline module to make three
pipelines three stages deep, as shown in Figure A-8.

Example A-19 Arrays of Instances
module array_inst (clk, din, dout);
 parameter N=3;
 input clk;
 input [N-1:0] din;
 output [N-1:0] dout;
 reg [N-1:0] dout;
 wire [N-1:0] idout;
 my_pipeline my_pipeline1[N-1:0] (.D(din), .CK(clk), .Q(idout));
 always @ (posedge clk)
 begin
 dout <= idout;
 end
endmodule

module my_pipeline (D, CK, Q);
 input D, CK;
 output Q;
 reg Q0, Q;
 always @ (posedge CK)
 begin

Q0 <= D;
Q <= Q0;

 end
endmodule

D
Q

CLK
Chapter A: Examples
Instantiation of Arrays of Instances A-27
Appendix A: Examples
Instantiation of Arrays of Instances A-27

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Figure A-8 array_inst Design

In the following example of array instantiation, the inputs and outputs do not match.

module dff (d, ck, q);
 input d, ck;
 output q;
.
.
.
input ck;
input [0:3] d;
output [0:3] q;

dff ff[0:3] (d, ck, q);
.
.
.

Here, four copies of the dff module are instantiated. HDL Compiler unrolls the array
instantiation as follows:

input ck;
input [0:3] d;
output [0:3] q;

dff ff_0 (d[0], ck, q[0]);
dff ff_1 (d[1], ck, q[1]);
dff ff_2 (d[2], ck, q[2]);
dff ff_3 (d[3], ck, q[3]);
Appendix A: Examples
Instantiation of Arrays of Instances A-28

HDL Compiler for Verilog User Guide Version D-2010.03
Note that ck is connected to each instance, whereas d and q have one bit connected to each
instance.

In this next example of array instantiation, x exactly matches the width of d on the
submodule, so its full width is connected to each instantiated module.

module submod (d, ck, q);
 input [0:3] d;
 input ck;
 output q;
.
.
.
input ck;
input [0:3] x;
output [0:3] y;

submod ff[0:3] (x, ck, y);

HDL Compiler unrolls the array instantiation as follows:

input ck;
input [0:3] d;
output [0:3] q;

submod M_0 (x, ck, y[0]);
submod M_1 (x, ck, y[1]);
submod M_2 (x, ck, y[2]);
submod M_3 (x, ck, y[3]);

In this next example of array instantiation, note that the declared ordering of bits [3:0] of y
does not affect the instantiation of submod (compare it to the previous example). Bits are
connected by position, not by number.

module submod (d, ck, q);
 input [0:3] d;
 input ck;
 output q;
.
.
.
input ck;
input [0:3] x;
output [3:0] y;

submod ff[0:3] (x, ck, y);

HDL Compiler unrolls the array instantiation as follows:

input ck;
input [0:3] d;
Chapter A: Examples
Instantiation of Arrays of Instances A-29
Appendix A: Examples
Instantiation of Arrays of Instances A-29

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
output [0:3] q;

submod M_0 (x, ck, y[0]);
submod M_1 (x, ck, y[1]);
submod M_2 (x, ck, y[2]);
submod M_3 (x, ck, y[3]);

SR Latches

Use SR latches with caution because they are difficult to test. If you decide to use SR
latches, verify that the inputs are hazard-free (that they do not glitch). During synthesis,
Design Compiler does not ensure that the logic driving the inputs is hazard-free.

Example A-20 shows the Verilog code that implements an inferred SR latch whose truth
table is described in Table A-1. Example A-21 shows the inference report.

Example A-20 SR Latch Code
module sr_latch (SET, RESET, Q);
 input SET, RESET;
 output Q;
 reg Q;

//synopsys async_set_reset"SET,RESET"
 always @(RESET or SET)
 if (~RESET)
 Q = 0;
 else if (~SET)
 Q = 1;
endmodule

Table A-1 SR Latch Truth Table (NAND Type)

set reset y

0 0 Not stable

0 1 1

1 0 0

1 1 y
Appendix A: Examples
SR Latches A-30

HDL Compiler for Verilog User Guide Version D-2010.03
Example A-21 SR Latch Inference Report
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Latch | 1 | N | N | Y | Y | - | - | - |
===

D Latch With Asynchronous Set: Use async_set_reset

Example A-22 shows the recommended coding style for an asynchronously set latch using
the async_set_reset directive.

Example A-22 D Latch With Asynchronous Set: Uses async_set_reset
module d_latch_async_set (GATE, DATA, SET, Q);
 input GATE, DATA, SET;
 output Q;
 reg Q;

//synopsys async_set_reset "SET"
 always @(GATE or DATA or SET)
 if (~SET)
 Q = 1'b1;
 else if (GATE)
 Q = DATA;
endmodule

HDL Compiler generates the inference report shown in Example A-23.

Example A-23 Inference Report for D Latch With Asynchronous Set
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Latch | 1 | N | N | N | Y | - | - | - |
===

Inferring Master-Slave Latches

Master-slave latches are described in the following sections:

• Master-Slave Latch Overview

• Master-Slave Latch With Single Master-Slave Clock Pair

• Master-Slave Latch With Multiple Master-Slave Clock Pairs

• Master-Slave Latch With Discrete Components
Chapter A: Examples
D Latch With Asynchronous Set: Use async_set_reset A-31
Appendix A: Examples
D Latch With Asynchronous Set: Use async_set_reset A-31

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Master-Slave Latch Overview
Design Compiler infers master-slave latches by using the clocked_on_also attribute. This
is a special signal-type attribute that must be applied using an embedded dc_script.

In your RTL description, describe the master-slave latch as a flip-flop, using only the slave
clock. Specify the master clock as an input port, but do not connect it. In addition, set the
clocked_on_also attribute on the master clock port.

This coding style requires that cells in the target technology library contain slave clocks
defined with the clocked_on_also attribute. The clocked_on_also attribute defines the
slave clocks in the cell’s state declaration. For more information about defining slave clocks
in the target technology library, see the Library Compiler User Guide.

Design Compiler does not use D flip-flops to implement the equivalent functionality of the
cell.

Note:
Although the vendor’s component behaves as a master-slave latch, Library Compiler
supports only the description of a master-slave flip-flop.

Master-Slave Latch With Single Master-Slave Clock Pair
Example A-24 provides the template for a master-slave latch.

See “dc_tcl_script_begin and dc_tcl_script_end” on page 7-4 for more information on the
dc_tcl_script_begin and dc_tcl_script_end compiler directives. HDL Compiler
generates the verbose inference report shown in Example A-25.

Example A-24 Master-Slave Latch
module mslatch (SCK, MCK, DATA, Q);
 input SCK, MCK, DATA;
 output Q;
 reg Q;

//synopsys dc_tcl_script_begin
//set_attribute -type string MCK signal_type clocked_on_also
//set_attribute -type boolean MCK level_sensitive true
//synopsys dc_tcl_script_end

always @ (posedge SCK)
 Q <= DATA;
endmodule
Appendix A: Examples
Inferring Master-Slave Latches A-32

HDL Compiler for Verilog User Guide Version D-2010.03
Example A-25 Inference Report for a Master-Slave Latch
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
===

Master-Slave Latch With Multiple Master-Slave Clock
Pairs
If the design requires more than one master-slave clock pair, you must specify the
associated slave clock in addition to the clocked_on_also attribute. Example A-26
illustrates the use of the clocked_on_also attribute with the associated_clock option.

Example A-26 Inferring Master-Slave Latches With Two Pairs of Clocks
module mslatch2 (SCK1, SCK2, MCK1, MCK2, D1, D2, Q1, Q2);
 input SCK1, SCK2, MCK1, MCK2, D1, D2;
 output Q1, Q2;
 reg Q1, Q2;

// synopsys dc_tcl_script_begin
// set_attribute -type string MCK1 signal_type clocked_on_also
// set_attribute -type boolean MCK1 level_sensitive true
// set_attribute -type string MCK1 associated_clock SCK1

// set_attribute -type string MCK2 signal_type clocked_on_also
// set_attribute -type boolean MCK2 level_sensitive true
// set_attribute -type string MCK2 associated_clock SCK2
// synopsys dc_tcl_script_end

always @ (posedge SCK1)
 Q1 <= D1;

always @ (posedge SCK2)
 Q2 <= D2;
endmodule

Example A-27 shows the inference reports.

Example A-27 Inference Reports
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q1_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
===

===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q2_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
===
Chapter A: Examples
Inferring Master-Slave Latches A-33
Appendix A: Examples
Inferring Master-Slave Latches A-33

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Master-Slave Latch With Discrete Components
If your target technology library does not contain master-slave latch components, you can
infer two-phase systems by using D latches. Example A-28 shows a simple two-phase
system with clocks MCK and SCK.

Example A-28 Two-Phase Clocks
module latch_verilog (DATA, MCK, SCK, Q);
 input DATA, MCK, SCK;
 output Q;
 reg Q;

 reg TEMP;

always @(DATA or MCK)
 if (MCK)
 TEMP <= DATA;

always @(TEMP or SCK)
 if (SCK)
 Q <= TEMP;
endmodule

Example A-29 shows the inference reports.

Example A-29 Inference Reports
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| TEMP_reg | Latch | 1 | N | N | N | N | - | - | - |
===

===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Latch | 1 | N | N | N | N | - | - | - |
===

Inferring Flip-Flops

HDL Compiler can infer D flip-flops and JK flip-flops. The following sections provide
examples of these flip-flop types:

• D Flip-Flop With Synchronous Set: Use sync_set_reset

• JK Flip-Flop With Synchronous Set and Reset: Use sync_set_reset
Appendix A: Examples
Inferring Flip-Flops A-34

HDL Compiler for Verilog User Guide Version D-2010.03
D Flip-Flop With Synchronous Set:
Use sync_set_reset
Example A-30 infers a D flip-flop with a synchronous set.

The sync_set_reset directive is applied to the SET signal. If the target technology library
does not have a D flip-flop with synchronous set, Design Compiler infers synchronous set
logic as the input to the D pin of the flip-flop. If the set logic is not directly in front of the D pin
of the flip-flop, initialization problems can occur during gate-level simulation of the design.
The sync_set_reset directive ensures that this logic is as close to the D pin as possible.

Example A-30 D Flip-Flop With Synchronous Set: Uses sync_set_reset
module dff_sync_set (DATA, CLK, SET, Q);
 input DATA, CLK, SET;
 output Q;
 reg Q;
 //synopsys sync_set_reset "SET"
 always @(posedge CLK)
 if (SET)
 Q <= 1'b1;
 else
 Q <= DATA;
endmodule

HDL Compiler generates the inference report shown in Example A-31.

Example A-31 D Flip-Flop With Synchronous Set Inference Report
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Flip-flop | 1 | N | N | N | N | N | Y | N |
==
Chapter A: Examples
Inferring Flip-Flops A-35
Appendix A: Examples
Inferring Flip-Flops A-35

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
JK Flip-Flop With Synchronous Set and Reset:
Use sync_set_reset
When you infer a JK flip-flop, make sure you can control the J, K, and clock signals from the
top-level design ports to ensure that simulation can initialize the design.

Example A-32 infers the JK flip-flop described in Table A-2. In the JK flip-flop, the J and K
signals act as active-high synchronous set and reset signals. Use the sync_set_reset
directive to indicate that the J and K signals are the synchronous set and reset signals (the
JK function). Use the one_hot directive to prevent priority encoding of the J and K signals.

Example A-32 JK Flip-Flop
module JK(J, K, CLK, Q);
 input J, K;
 input CLK;
 output Q;
 reg Q;

// synopsys sync_set_reset "J, K"
// synopsys one_hot "J, K"

 always @ (posedge CLK)
 case ({J, K})
 2'b01 : Q = 0;
 2'b10 : Q = 1;
 2'b11 : Q = ~Q;
 endcase
endmodule

Table A-2 Truth Table for JK Flip-Flop

J K CLK Qn+1

0 0 Rising Qn

0 1 Rising 0

1 0 Rising 1

1 1 Rising QnB

X X Falling Qn
Appendix A: Examples
Inferring Flip-Flops A-36

HDL Compiler for Verilog User Guide Version D-2010.03
Example A-33 shows the inference report generated by HDL Compiler.

Example A-33 Inference Report
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Flip-flop | 1 | N | N | N | N | Y | Y | N |
==
Chapter A: Examples
Inferring Flip-Flops A-37
Appendix A: Examples
Inferring Flip-Flops A-37

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Appendix A: Examples
Inferring Flip-Flops A-38

B
Verilog Language Support B

The following sections describe the Verilog language as supported by HDL Compiler:

• Syntax

• Verilog Keywords

• Unsupported Verilog Language Constructs

• Construct Restrictions and Comments

• Verilog 2001 Supported Constructs

• Ignored Constructs

• Verilog 2001 Feature Examples
B-1

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Syntax

Synopsys supports the Verilog syntax as described in the IEEE STD 1364-2001.

The lexical conventions HDL Compiler uses are described in the following sections:

• Comments

• Numbers

Comments
You can enter comments anywhere in a Verilog description, in two forms:

• Beginning with two slashes //

HDL Compiler ignores all text between these characters and the end of the current line.

• Beginning with the two characters /* and ending with */

HDL Compiler ignores all text between these characters, so you can continue comments
over more than one line.

Note:
You cannot nest comments.

Numbers
You can declare numbers in several different radices and bit-widths. A radix is the base
number on which a numbering system is built. For example, the binary numbering system
has a radix of 2, octal has a radix of 8, and decimal has a radix of 10.

You can use these three number formats:

• A simple decimal number that is a sequence of digits in the range of 0 to 9. All constants
declared this way are assumed to be 32-bit numbers.

• A number that specifies the bit-width as well as the radix. These numbers are the same
as those in the previous format, except that they are preceded by a decimal number that
specifies the bit-width.
Appendix B: Verilog Language Support
Syntax B-2

HDL Compiler for Verilog User Guide Version D-2010.03
• A number followed by a two-character sequence prefix that specifies the number’s size
and radix. The radix determines which symbols you can include in the number. Constants
declared this way are assumed to be 32-bit numbers. Any of these numbers can include
underscores (_), which improve readability and do not affect the value of the number.
Table B-1 summarizes the available radices and valid characters for the number.

Example B-1 shows some valid number declarations.

Example B-1 Valid Verilog Number Declarations
391 // 32-bit decimal number
’h3a13 // 32-bit hexadecimal number
10’o1567 // 10-bit octal number
3’b010 // 3-bit binary number
4’d9 // 4-bit decimal number
40’hFF_FFFF_FFFF // 40-bit hexadecimal number
2’bxx // 2-bits don’t care
3’bzzz // 3-bits high-impedance

Verilog Keywords

Table B-2 lists the Verilog keywords. You cannot use these words as user variable names
unless you use an escape identifier.

Important:
Configuration-related keywords are not treated as keywords outside of configurations.
HDL Compiler does not support configurations at this time.

Table B-1 Verilog Radices

Name Character prefix Valid characters

Binary ’b 0 1 x X z Z _ ?

Octal ’o 0–7 x X z Z _ ?

Decimal ’d 0–9 _

Hexadecimal ’h 0–9 a–f A–F x X z Z _ ?

Table B-2 Verilog Keywords

always and assign automatic begin buf

bufif0 bufif1 case casex casez cell

cmos config deassign default defparam design
Chapter B: Verilog Language Support
Verilog Keywords B-3
Appendix B: Verilog Language Support
Verilog Keywords B-3

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
disable edge else end endcase endconfig

endfunction endgenerate endmodule endprimitive endspecify endtable

endtask event for force forever fork

function generate genvar highz0 highz1 if

ifnone incdir include initial inout input

instance integer join large liblist library

localparam macromodule medium module nand negedge

nmos nor noshowcan
celled

not notif0 notif1

or output parameter pmos posedge primitive

pull0 pull1 pulldown pullup pulsestyle_
onevent

pulsestyle
_ondetect

rcmos real realtime reg release repeat

rnmos rpmos rtran rtranif0 rtranif1 scalared

showcancelled signed small specify specparam strong0

strong1 supply0 supply1 table task time

tran tranif0 tranif1 tri tri0 tri1

triand trior trireg unsigned use vectored

wait wand weak0 weak1 while wire

wor xnor xor

Table B-2 Verilog Keywords (Continued)
Appendix B: Verilog Language Support
Verilog Keywords B-4

HDL Compiler for Verilog User Guide Version D-2010.03
Unsupported Verilog Language Constructs

HDL Compiler does not support the following constructs:

• Configurations

• Unsupported definitions and declarations

• primitive definition

• time declaration

• event declaration

• triand, trior, tri1, tri0, and trireg net types

• Ranges for integers

• Unsupported statements

• initial statement

• repeat statement

• delay control

• event control

• forever statement (The forever loop is only supported if it has an associated disable
condition, making the exit condition deterministic.)

• fork statement

• deassign statement

• force statement

• release statement

• Unsupported operators

• Case equality and inequality operators (=== and !==)

• Unsupported gate-level constructs

• nmos, pmos, cmos, rnmos, rpmos, rcmos

• pullup, pulldown, tranif0, tranif1, rtran, rtrainf0, and rtrainf1 gate types

• Unsupported miscellaneous constructs

• hierarchical names within a module
Chapter B: Verilog Language Support
Unsupported Verilog Language Constructs B-5
Appendix B: Verilog Language Support
Unsupported Verilog Language Constructs B-5

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
If you use an unsupported construct, HDL Compiler issues a syntax error such as

event is not supported

Construct Restrictions and Comments

Construct restrictions and guidelines are described in the following section:

• always Blocks

• generate Statements

• Conditional Expressions (?:) Resource Sharing

• Case

• defparam

• disable

• Blocking and Nonblocking Assignments

• Macromodule

• inout Port Declaration

• tri Data Type

• Compiler Directives

• reg Types

• Types in Busing

• Combinational while Loops

always Blocks
The tool does not support more than one independent if-block when asynchronous behavior
is modeled within an always block. If the always block is purely synchronous, the tool
supports multiple independent if-blocks. In addition, the tool does not support more than one
?: operator inside an always block.
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-6

HDL Compiler for Verilog User Guide Version D-2010.03
generate Statements
Synopsys support of the generate statement is described in the following sections:

• Generate Overview

• Restrictions

Generate Overview
HDL Compiler supports both the 2001 and the 2005 generate standards. The default is the
2001 standard. To enable the 2005 standard, set the hdlin_vrlg_std variable to 2005. For
details on generate naming styles, see the SolvNet article 022167 “Verilog Generate
Construct: 2001 and 2005 Naming Styles” and the LRM.

Restrictions
• Hierarchical Names (Cross Module Reference)

HDL Compiler supports hierarchical names or cross-module references, if the
hierarchical name remains inside the module that contains the name and each item on
the hierarchical path is part of the module containing the reference.

In the following code, the item is not part of the module and is not supported.

 module top ();
 wire x;
 down d ();
 endmodule

 module down ();
 wire y, z;
 assign t = top.d.z;
// not supported:
// hier. ref. starts outside current module
 endmodule

• Parameter Override (defparam)

The use of defparam is highly discouraged in synthesis because of ambiguity problems.
Because of these problems, in synthesis, defparam is not supported inside generate
blocks. For details, see the Verilog 1800 LRM.

Conditional Expressions (?:) Resource Sharing
HDL Compiler supports resource sharing in conditional expressions such as

 dout = sel ? (a + b) : (a + c);
Chapter B: Verilog Language Support
Construct Restrictions and Comments B-7
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-7

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
In such cases, HDL Compiler marks the adders as sharable; Design Compiler determines
the final implementation during timing-drive resource sharing.

The tool does not support more than one ?: operator inside an always block. For more
information, see “always Blocks” on page B-6.

Case
The case construct is discussed in the following sections:

• casez and casex

• Full Case and Parallel Case

casez and casex
HDL Compiler allows ? and z bits in casez items but not in expressions; that is, the z bits
are allowed in the branches of the case statement but not in the expression immediately
following the casez keyword.

casez (y) // y is referred to as the case expression

2’b1z: //2’b1z is referred to as the item

Example B-2 shows an invalid expression in a casez statement.

Example B-2 Invalid casez Expression
casez (1’bz) //illegal testing of an expression
 ...
endcase

The same holds true for casex statements using x, ?, and z. The code

casex (a)
2’b1x : // matches 2’b10 and 2’b11
endcase

does not equal the following code:

b = 2’b1x;
casex (a)
b: // in this case, 2’b1x only matches 2’b10
endcase

When x is assigned to a variable and the variable is used in a casex item, the x does not
match both 0 and 1 as it would for a literal x listed in the case item.
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-8

HDL Compiler for Verilog User Guide Version D-2010.03
Full Case and Parallel Case
Case statements can be full or parallel. HDL Compiler can usually determine automatically
whether a case statement is full or parallel. Example B-3 shows a case statement that is
both full and parallel.

Example B-3 A case Statement That Is Both Full and Parallel
input [1:0] a;
always @(a or w or x or y or z) begin

case (a)
2’b11:
 b = w ;
2’b10:
 b = x ;
2’b01:
 b = y ;
2’b00:
 b = z ;

endcase
end

In Example B-4, the case statement is not parallel or full, because the values of inputs w and
x cannot be determined.

Example B-4 A case Statement That Is Not Full and Not Parallel
always @(w or x) begin

case (2’b11)
w:
 b = 10 ;
x:
 b = 01 ;

endcase
end

However, if you know that only one of the inputs equals 2’b11 at a given time, you can use
the parallel_case directive to avoid synthesizing an unnecessary priority encoder.

If you know that either w or x always equals 2’b11 (a situation known as a one-branch tree),
you can use the full_case directive to avoid synthesizing an unnecessary latch. A latch is
necessary whenever a variable is conditionally assigned. Marking a case as full tells the
compiler that some branch will be taken, so there is no need for an implicit default branch. If
a variable is assigned in all branches of the case, HDL Compiler then knows that the variable
is not conditionally assigned in that case, and, therefore, that particular case statement does
not result in a latch for that variable.

However, if the variable is assigned in only some branches of the case statement, a latch is
still required as shown in Example B-5. In addition, other case statements might cause a
latch to be inferred for the same variable.
Chapter B: Verilog Language Support
Construct Restrictions and Comments B-9
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-9

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Example B-5 Latch Result When Variable Is Not Fully Assigned
reg a, b;
reg [1:0] c;
case (c) // synopsys full_case
 0: begin a = 1; b = 0; end
 1: begin a = 0; b = 0; end
 2: begin a = 1; b = 1; end
 3: b = 1; // a is not assigned here
endcase

 For more information, see “parallel_case” on page 7-15 and “full_case” on page 7-7.

defparam
Use of defparam is highly discouraged in synthesis because of ambiguity problems.
Because of these problems, in synthesis defparam is not supported inside generate blocks.
For details, see the Verilog LRM.

disable
HDL Compiler supports the disable statement when you use it in named blocks and when it
is used to disable an enclosing block. When a disable statement is executed, it causes the
named block to terminate. You cannot disable a block that is not in the same always block or
task as the disable statement. A comparator description that uses disable is shown in
Example B-6.

Example B-6 Comparator Using disable
begin : compare

for (i = 7; i >= 0; i = i - 1) begin
 if (a[i] != b[i]) begin
 greater_than = a[i];
 less_than = ~a[i];
 equal_to = 0;
 //comparison is done so stop looping
 disable compare;
 end

end

// If you get here a == b
// If the disable statement is executed, the next three
// lines will not be executed
 greater_than = 0;
 less_than = 0;
 equal_to = 1;
end

You can also use a disable statement to implement a synchronous reset, as shown in
Example B-7.
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-10

HDL Compiler for Verilog User Guide Version D-2010.03
Example B-7 Synchronous Reset of State Register Using disable in a forever Loop
always

begin: foo
@ (posedge clk)
if (Reset)

begin
z <= 1’b0;
disable foo;

end
z <= a;

end

The disable statement in Example B-7 causes the foo block to terminate immediately and
return to the beginning of the block.

Blocking and Nonblocking Assignments
HDL Compiler does not allow both blocking and nonblocking assignments to the same
variable within an always block.

The following code applies both blocking and nonblocking assignments to the same variable
in one always block.

always @(posedge clk or negedge reset) begin
 if (~ reset)
 q = 1’b0;
 else
 q <= d;
end

HDL Compiler does not permit this and generates an error message.

During simulation, race conditions can result from blocking assignments, as shown in
Example B-8. In this example, the value of x is indeterminate, because multiple procedural
blocks run concurrently, causing y to be loaded into x at the same time z is loading into y.
The value of x after the first @ (posedge clk) is indeterminate. Use of nonblocking
assignments solves this race condition, as shown in Example B-9.

In Example B-8 and Example B-9, HDL Compiler creates the gates shown in Figure B-1.

Example B-8 Race Condition Using Blocking Assignments
always @(posedge clk)
 x = y;
always @(posedge clk)
 y = z;
Chapter B: Verilog Language Support
Construct Restrictions and Comments B-11
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-11

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Example B-9 Race Solved With Nonblocking Assignments
always @(posedge clk)
 x <= y;
always @(posedge clk)
 y <= x;

Figure B-1 Simulator Race Condition—Synthesis Gates

If you want to switch register values, use nonblocking assignments, because blocking
assignments will not accomplish the switch. For example, in Example B-10, the desired
outcome is a swap of the x and y register values. However, after the positive clock edge, y
does not end up with the value of x; y ends up with the original value of y. This happens
because blocking statements are order dependent and each statement within the
procedural block is executed before the next statement is evaluated and executed. In
Example B-11, the swap is accomplished with nonblocking assignments.

Example B-10 Swap Problem Using Blocking Assignments
always @(posedge clk)
begin
 x = y;
 y = x;
end

Example B-11 Swap Accomplished With Nonblocking Assignments
always @(posedge clk)
 x <= y;
 y <= z;

Macromodule
HDL Compiler treats the macromodule construct as a module construct. Whether you use
module or macromodule, the synthesis results are the same.

inout Port Declaration
HDL Compiler allows you to connect inout ports only to module or gate instantiations. You
must declare an inout before you use it.
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-12

HDL Compiler for Verilog User Guide Version D-2010.03
tri Data Type
The tri data type allows multiple three-state devices to drive a wire. When inferring
three-state devices, you need to ensure that all the drivers are inferred as three-state
devices and that all inputs to a device are z, except the one variable driving the three-state
device which will have a 1.

Compiler Directives
Compiler directives are discussed in the following sections:

• `define

• `include

• `ifdef, `else, `endif, `ifndef, and `elsif

• `rp_group and `rp_endgroup

• `rp_place

• `rp_fill

• `rp_array_dir

• rp_align

• rp_orient

• rp_ignore and rp_endignore

• `undef

`define
The `define directive can specify macros that take arguments. For example,

`define BYTE_TO_BITS(arg)((arg) << 3)

The `define directive can do more than simple text substitution. It can also take arguments
and substitute their values in its replacement text.

Macro substitution assigns a string of text to a macro variable. The string of text is inserted
into the code where the macro is encountered. The definition begins with the back quotation
mark (`), followed by the keyword define, followed by the name of the macro variable. All
text from the macro variable until the end of the line is assigned to the macro variable.
Chapter B: Verilog Language Support
Construct Restrictions and Comments B-13
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-13

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
You can declare and use macro variables anywhere in the description. The definitions can
carry across several files that are read into Design Compiler at the same time. To make a
macro substitution, type a back quotation mark (`) followed by the macro variable name.

Some sample macro variable declarations are shown in Example B-12.

Example B-12 Macro Variable Declarations
`define highbits 31:29
`define bitlist {first, second, third}
wire [31:0] bus;
`bitlist = bus[‘highbits];

The analyze command -define option allows macro definition on the command line. Only
one -define per analyze command is allowed but the argument can be a list of macros, as
shown in Example B-13.

When using -define with multiple analyze commands, you must remove any designs in
memory before re-analyzing the design. To remove the designs, use
remove_design -all.

Because elaborated designs in memory have no timestamps, the tool cannot determine if
the analyzed file that the elaborated design is based on has been updated or not. The tool
may assume that the previously elaborated (out-of-date) design is up-to-date and reuse it.

Curly brackets are not required to enclose one macro, as shown in Example B-14. However,
if the argument is a list of macros, curly brackets are required.

Example B-13 analyze Command With List of Defines
analyze -f verilog -define { RIPPLE, SIMPLE } mydesign.v

Example B-14 analyze Command With One Define
analyze -f verilog -define ONLY_ONE mydesign.v

Note:
In the dctcl mode, the read_verilog command does not accept the -define option.

`include
The `include construct in Verilog is similar to the #include directive in the C language.
You can use this construct to include Verilog code, such as type declarations and functions,
from one module in another module. Example B-15 shows an application of the `include
construct.
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-14

HDL Compiler for Verilog User Guide Version D-2010.03
Example B-15 Including a File Within a File
Contents of file1.v
`define WORDSIZE 8

function [`WORDSIZE-1:0] fastadder;
 input [`WORDSIZE-1:0] fin1, fin2;
 fastadder = fin1 + fin2;
endfunction

Contents of file2.v
module secondfile (clk, in1, in2, out);

`include "file1.v"
. . .
wire [`WORDSIZE-1:0] temp;
assign temp = fastadder (in1,in2);
. . .
endmodule

Included files can include other files, with up to 24 levels of nesting. You cannot use the
`include construct recursively.

When your design contains multiple files for multiple sub-blocks and include files for
sub-blocks, in their respective sub directories, you can elaborate the top-level design without
making any changes to the search path. The tool will automatically find the include files. For
example, if your structure is as follows:

Rtl/top.v
Rtl/sub_module1/sub_module1.v
Rtl/sub_module2/sub_module2.v
Rtl/sub_module1/sub_module1_inc.v
Rtl/sub_module2/sub_module2_inc.v

You do not need to add Rtl/sub_module1/ and Rtl/sub_module2/ to your search path to
enable the tool to find the include files sub_module1_inc.v and sub_module2_inc.v when
you elaborate top.v.

`ifdef, `else, `endif, `ifndef, and `elsif
These directives allow the conditional inclusion of code.

• The `ifdef directive executes the statements following it if the indicated macro is
defined; if the macro is not defined, the statements after `else are executed.

• The`ifndef directive executes the statements following it if the indicated macro is not
defined; if the macro is defined, the statements after `else are executed.

The ̀ elsif directive allows one level of nesting and is equivalent to the ̀ else ̀ ifdef ...
`endif directive sequence.
Chapter B: Verilog Language Support
Construct Restrictions and Comments B-15
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-15

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
The macros that are arguments to the `ifdef directive can be defined by the `define
directive. See “`define” on page B-13. Example B-16 shows a design that uses the
`ifdef...`else...`endif directives.

Example B-16 Design Using `ifdef...`else...`endif Directives
`ifdef SELECT_XOR_DESIGN
module selective_design(a,b,c);
 input a, b;
 output c;
 assign c = a ^ b;
endmodule

`else

module selective_design(a,b,c);
 input a, b;
 output c;
 assign c = a | b;
endmodule
`endif

`rp_group and `rp_endgroup
The `rp_group and `rp_endgroup directives allow you to specify a relative placement
group. All cell instances declared between the directives are members of the specified
group. These directives are available for RTL designs and netlist designs.

The Verilog syntax for RTL designs is as follows:

`rp_group (group_name {num_cols num_rows})
`rp_endgroup ({group_name})

Use the following syntax for netlist designs:

//synopsys rp_group (group_name {num_cols num_rows})
//synopsys rp_endgroup ({group_name})

For more information and an example, see “Creating Groups Using `rp_group and
`rp_endgroup” on page 2-4.

`rp_place
The `rp_place directive allows you to specify a subgroup at a specific hierarchy, a keepout
region, or an instance to be placed in the current relative placement group. When you use
the `rp_place directive to specify a subgroup at a specific hierarchy, you must instantiate
the subgroup’s instances outside of any group declarations in the module. This directive is
available for RTL designs and netlist designs.
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-16

HDL Compiler for Verilog User Guide Version D-2010.03
The Verilog syntax for RTL designs is as follows:

‘rp_place (hier group_name col row)
‘rp_place (keep keepout_name col row width height)
‘rp_place ({leaf} [inst_name] col row)

Use the following syntax for netlist designs:

//synopsys rp_place (hier group_name col row)
//synopsys rp_place (hier group_name [inst_name] col row)
//synopsys rp_place ({leaf} [inst_name] col row)
//synopsys rp_place (keep keepout_name col row width height)

For more information and examples, see “Specifying Subgroups, Keepouts, and Instances
Using `rp_place” on page 2-5.

`rp_fill
The `rp_fill directive automatically places the cells at the location specified by a pointer.
Each time a new instance is declared that is not explicitly placed, it is inserted into the grid
at the location indicated by the current value of the pointer. After the instance is placed, the
pointer is updated incrementally and the process is ready to be repeated. This directive is
available for RTL designs and netlist designs.

The `rp_fill arguments define how the pointer is updated. The col and row parameters
specify the initial coordinates of the pointer. These parameters can represent absolute row
or column locations in the group’s grid or locations that are relative to the current pointer
value. To represent locations relative to the current pointer, enclose the column and row
values in angle brackets (<>). For example, assume the current pointer location is (3,4). In
this case, specifying rp_fill <1> 0 initializes the pointer to (4,0) and that is where the next
instance is placed. Absolute coordinates must be non-negative integers; relative
coordinates can be any integer.

The Verilog syntax for RTL designs is as follows:

‘rp_fill ({col row} {pattern pat})

Use the following syntax for netlist designs:

//synopsys rp_fill (col row} {pattern pat})

For more information and an example, see “Placing Cells Automatically Using `rp_fill” on
page 2-6.
Chapter B: Verilog Language Support
Construct Restrictions and Comments B-17
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-17

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
`rp_array_dir
Note:

This directive is available for creating relative placement in RTL designs but not in netlist
designs.

The `rp_array_dir directive specifies whether the elements of an array are placed
upward, from the least significant bit to the most significant bit, or downward, from the most
significant bit to the least significant bit.

The Verilog syntax for RTL designs is as follows:

`rp_array_dir (up|down)

For more information and an example, see “Specifying Placement for Array Elements Using
`rp_array_dir” on page 2-8.

rp_align
Note:

This directive is available for creating relative placement in netlist designs only.

The rp_align directive explicitly specifies the alignment of the placed instance within the
grid cell when the instance is smaller than the cell. If you specify the optional inst instance
name argument, the alignment applies only to that instance; however, if you do not specify
an instance, the new alignment applies to all subsequent instantiations within the group until
HDL Compiler encounters another rp_align directive. If the instance straddles cells, the
alignment takes place within the straddled region. The alignment value is sw (southwest) by
default. The instance is snapped to legal row and routing grid coordinates.

Use the following syntax for netlist designs:

//synopsys rp_align (n|s|e|w|nw|sw|ne|se|pin=name { inst })

For more information and an example, see “Specifying Cell Alignment Using rp_align” on
page 2-8.

rp_orient
Note:

This directive is available for creating relative placement in netlist designs only.

The rp_orient directive allows you to control the orientation of library cells placed in the
current group. When you specify a list of possible orientations, HDL Compiler chooses the
first legal orientation for the cell.
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-18

HDL Compiler for Verilog User Guide Version D-2010.03
Use the following syntax for netlist designs:

//synopsys rp_orient ({N|W|S|E|FN|FW|FS|FE}* { inst })
//synopsys rp_orient ({N|W|S|E|FN|FW|FS|FE}* { group_name inst }))

For more information and an example, see “Specifying Cell Orientation Using rp_orient” on
page 2-9.

rp_ignore and rp_endignore
Note:

This directive is available for creating relative placement in netlist designs only.

The rp_ignore and rp_endignore directives allow you to ignore specified lines in the input
file. Any lines between the two directives are omitted from relative placement. The include
and define directives, variable substitution, and cell mapping are not ignored.

The rp_ignore and rp_endignore directives allow you to include the instantiation of
submodules in a relative placement group close to the rp_place hier group(inst)
location to place relative placement array.

Use the following syntax for netlist designs:

//synopsys rp_ignore
//synopsys rp_endignore

For more information and an example, see “Ignoring Relative Placement Using rp_ignore
and rp_endignore” on page 2-10.

`undef
The `undef directive resets the macro immediately following it.

reg Types
The Verilog language requires that any value assigned inside an always statement must be
declared as a reg type. HDL Compiler returns an error if any value assigned inside an
always block is not declared as a reg type.

Types in Busing
Design Compiler maintains types throughout a design, including types for buses (vectors).
Example B-17 shows a Verilog design read into HDL Compiler containing a bit vector that is
NOTed into another bit vector.
Chapter B: Verilog Language Support
Construct Restrictions and Comments B-19
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-19

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Example B-17 Bit Vector in Verilog
module test_busing_1 (a, b);
 input [3:0] a;
 output [3:0] b;

 assign b = ~a;
endmodule

Example B-18 shows the same description written out by HDL Compiler. The description
contains the original Verilog types of ports. Internal nets do not maintain their original bus
types. Also, the NOT operation is instantiated as single bits.

Example B-18 Bit Blasting
module test_busing_2 (a, b);
 input [3:0] a;
 output [3:0] b;
 assign b[0] = ~a[0];
 assign b[1] = ~a[1];
 assign b[2] = ~a[2];
 assign b[3] = ~a[3];
endmodule

Combinational while Loops
To create a combinational while loop, write the code so that an upper bound on the number
of loop iterations can be determined. The loop iterative bound must be statically
determinable; otherwise an error is reported.

HDL Compiler needs to be able to determine an upper bound on the number of trips through
the loop at compile time. In HDL Compiler, there are no syntax restrictions on the loops;
while loops that have no events within them, such as in the following example, are
supported.

input [9:0] a;
//
i = 0;
while (i < 10 && !a[i]) begin
 i = i + 1;
 // loop body
end

To support this loop, HDL Compiler interprets it like a simulator. The tool stops when the loop
termination condition is known to be false. Because HDL Compiler can’t determine when a
loop is infinite, it stops and reports an error after an arbitrary (but user defined) number of
iterations (the default is 1024).

To exit the loop, HDL Compiler allows additional conditions in the loop condition that permit
more concise descriptions.
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-20

HDL Compiler for Verilog User Guide Version D-2010.03
for (i = 0; i < 10 && a[i]; i = i+1) begin
 // loop body
end

A loop must unconditionally make progress toward termination in each trip through the loop,
or it cannot be compiled. The following example makes progress (that is, increments i) only
when !done is true and will not terminate.

while (i < 10) begin
 if (! done)
 done = a[i];
 // loop body
 i = i + 1;
 end
end

The following modified version, which unconditionally increments i, will terminate. This code
creates the desired logic.

while (i < 10) begin
 if (! done) begin
 done = a[i];
 end// loop body
 i = i + 1;
end

In the next example, loop termination depends on reading values stored in x. If the value is
unknown (as in the first and third iterations), HDL Compiler assumes it might be true and
generates logic to test it.

x[0] = v; // Value unknown: implies “if(v)”
x[1] = 1; // Known TRUE: no guard on 2nd trip
x[2] = w; // Not known: implies “if(w)”
x[3] = 0; // Known FALSE: stop the loop

i = 0;
while(x[i]) begin
 // loop body
 i = i + 1;
end

This code terminates after three iterations when the loop tests x[3], which contains 0.

In Example B-19, a supported combinational while loop, the code produces gates, and an
event control signal is not necessary.
Chapter B: Verilog Language Support
Construct Restrictions and Comments B-21
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-21

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Example B-19 Supported while Loop Code
module modified_s2 (a, b, z);
parameter N = 3;
input [N:0] a, b;
output [N:1] z;
reg [N:1] z;
integer i;
always @(a or b or z)
 begin
 i = N;
 while (i)
 begin
 z[i] = b[i] + a[i-1];
 i = i - 1;
 end
 end
endmodule

In Example B-20, a supported combinational while loop, no matter what x is, the loop will run
for 16 iterations at most because HDL Compiler can keep track of which bits of x are
constant. Even though it doesn't know the initial value of x, it does know that x >> 1 has a
zero in the most significant bit (MSB). The next time x is shifted right, it knows that x has two
zeros in the MSB, and so on. HDL Compiler can determine when x becomes all zeros.

Example B-20 Supported Combinational while Loop
module while_loop_comb1(x, count);
 input [7:0] x;
 output [2:0] count;
 reg [7:0] temp;
 reg [2:0] count;
 always @ (x)
 begin
 temp = x;
 count = 0;
 while (temp != 0)
 begin
 count = count + 1;
 temp = temp >> 1;

end
 end
endmodule

In Example B-21, a supported combinational while loop, HDL Compiler knows the initial
value of x and can determine x+1 and all subsequent values of x.
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-22

HDL Compiler for Verilog User Guide Version D-2010.03
Example B-21 Supported Combinational while Loop
module whil_loop_comb2(y, count1, z);
 input [3:0] y, count1;output [3:0] z;
 reg [3:0] x, z, count;
 always @ (y, count1)
 begin
 x = 2;
 count = count1;
 while (x < 15)
 begin
 count = count + 1;
 x = x + 1;
 end
 z = count;
 end
endmodule

In Example B-22, HDL Compiler cannot detect the initial value of i and so cannot support
this while loop. Example B-23 is supported because i is determinable.

Example B-22 Unsupported Combinational while Loop
module my_loop1 #(parameter N=4) (input [N:0] in, output reg [2*N:0] out);
 reg [N:0] i;
 always @* begin
 i = in;
 out = 0 ;
 while (i>0) begin
 out = out + i;
 i = i - 1;
 end
end
endmodule

Example B-23 Supported Combinational while Loop
module my_loop2 #(parameter N=4) (input [N:0] in, output reg [2*N:0] out);
 reg [N:0] i;
 reg [N+1:0] j;
 always @*
 for (j = 0 ; j < (2<<N) ; j = j+1)
 if (j==in) begin
 i = j;
 out = 0 ;
 while (i>0) begin
 out = out + i;
 i = i - 1;
 end
 end
endmodule
Chapter B: Verilog Language Support
Construct Restrictions and Comments B-23
Appendix B: Verilog Language Support
Construct Restrictions and Comments B-23

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Verilog 2001 Supported Constructs

Table B-3 lists the Verilog 2001 features implemented by HDL Compiler. For additional
information on these features, see IEEE Std 1364-2001.

Table B-3 Supported Verilog 2001 Constructs

Feature Description

Automatic tasks and functions Fully supported

Constant functions Fully supported

Local parameter Fully supported

generate statement Limited support. See “generate Statements” on page B-7.

 SYNTHESIS macro Fully supported

Implicit net declarations for continuous
assignments

Fully supported

`line directive Fully supported

ANSI-C-style port declarations Fully supported

Casting operators Fully supported

Parameter passing by name (IEEE
12.2.2.2)

Fully supported

Implicit event expression list (IEEE
9.7.5)

Fully supported

ANSI-C-style port declaration (IEEE
12.3.3)

Fully supported

Signed/unsigned parameters (IEEE
3.11)

Fully supported

Signed/unsigned nets and registers
(IEEE 3.2, 4.3)

Fully supported

Signed/unsigned sized and based
constants
(IEEE 3.2)

Fully supported
Appendix B: Verilog Language Support
Verilog 2001 Supported Constructs B-24

HDL Compiler for Verilog User Guide Version D-2010.03
Ignored Constructs

The following sections include directives that HDL Compiler accepts but ignores.

Simulation Directives
The following directives are special commands that affect the operation of the Verilog HDL
simulator:

'accelerate
'celldefine
'default_nettype
'endcelldefine
'endprotect
'expand_vectornets
'noaccelerate
'noexpand_vectornets
'noremove_netnames
'nounconnected_drive
'protect

Multidimensional arrays an arrays of
nets (IEEE 3.10)

Fully supported

Part select addressing ([+:] and [-:]
operators)
(IEEE 4.2.1)

Fully supported

Power operator (**) (IEEE 4.1.5) Fully supported

Arithmetic shift operators (<<< and >>>)
(IEEE 4.1.12)

Fully supported

Sized parameters (IEEE 3.11.1) Fully supported

`ifndef, `elsif, `undef (IEEE 19.4,19.3.2) Fully supported

`ifdef VERILOG_2001 and `ifdef
VERILOG_1995

Fully supported

Comma-separated sensitivity lists (IEEE
4.1.15 and 9.7.4)

Fully supported

Table B-3 Supported Verilog 2001 Constructs (Continued)

Feature Description
Chapter B: Verilog Language Support
Ignored Constructs B-25
Appendix B: Verilog Language Support
Ignored Constructs B-25

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
'remove_netnames
'resetall
'timescale
'unconnected_drive

You can include these directives in your design description; HDL Compiler accepts but
ignores them.

Verilog System Functions
Verilog system functions are special functions that Verilog HDL simulators implement. Their
names start with a dollar sign ($). All of these functions are accepted but ignored by HDL
Compiler with the exception of $display, which can be useful during synthesis elaboration.
See “Use of $display During RTL Elaboration” on page 1-23.

Verilog 2001 Feature Examples

This section provides examples for Verilog 2001 features in the following sections:

• Multidimensional Arrays and Arrays of Nets

• Signed Quantities

• Comparisons With Signed Types

• Controlling Signs With Casting Operators

• Part-Select Addressing Operators ([+:] and [-:])

• Power Operator (**)

• Arithmetic Shift Operators (<<< and >>>)

Multidimensional Arrays and Arrays of Nets
HDL Compiler supports multidimensional arrays of any variable or net data type. This added
functionality is shown in examples B-24 through B-27.
Appendix B: Verilog Language Support
Verilog 2001 Feature Examples B-26

HDL Compiler for Verilog User Guide Version D-2010.03
Example B-24 Multidimensional Arrays
module m (a, z);
 input [7:0] a;
 output z;
 reg t [0:3][0:7];
 integer i, j;
 integer k;
 always @(a)
 begin
 for (j = 0; j < 8; j = j + 1)
 begin
 t[0][j] = a[j];
 end
 for (i = 1; i < 4; i = i + 1)
 begin
 k = 1 << (3-i);
 for (j = 0; j < k; j = j + 1)
 begin
 t[i][j] = t[i-1][2*j] ^ t[i-1][2*j+1];
 end
 end
 end
 assign z = t[3][0];
endmodule

Example B-25 Arrays of Nets
module m (a, z);
 input [0:3] a;
 output z;
 wire x [0:2] ;
 assign x[0] = a[0] ^ a[1];
 assign x[1] = a[2] ^ a[3];
 assign x[2] = x[0] ^ x[1];
 assign z = x[2];
endmodule

Example B-26 Multidimensional Array Variable Subscripting
reg [7:0] X [0:7][0:7][0:7];

assign out = X[a][b][c][d+:4];

Verilog 2001 allows more than one level of subscripting on a variable, without use of a
temporary variable.

Example B-27 Multidimensional Array
module test(in, en, out, addr_in, addr_out_reg, addr_out_bit, clk);

 input [7:0] in;
 input en, clk;
 input [2:0] addr_in, addr_out_reg, addr_out_bit;
Chapter B: Verilog Language Support
Verilog 2001 Feature Examples B-27
Appendix B: Verilog Language Support
Verilog 2001 Feature Examples B-27

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
 reg [7:0] MEM [0:7];
 output out;

 assign out = MEM[addr_out_reg][addr_out_bit];

 always @(posedge clk) if (en) MEM[addr_in] = in;
endmodule

Signed Quantities
HDL Compiler supports signed arithmetic extensions. Function returns and reg and net data
types can be declared as signed. This added functionality is shown in examples B-28
through B-33.

Example B-28 results in a sign extension, that is, z[0] connects to a[0].

Example B-28 Signed I/O Ports
module m1 (a, z);
 input signed [0:3] a;
 output signed [0:4] z;
 assign z = a;
endmodule

In Example B-29, because 3’sb111 is signed, the tool infers a signed adder. In the generic
netlist, the ADD_TC_OP cell denotes a 2’s complement adder and z[0] will not be logic 0.

Example B-29 Signed Constants: Code and GTECH Gates
module m2 (a, z);
 input signed [0:2] a;
 output [0:4] z;
 assign z = a + 3’sb111;
endmodule

In Example B-30, because 4’sd5 is signed, a signed comparator (LT_TC_OP) is inferred.

Example B-30 Signed Registers: Code and GTECH Gates
 module m3 (a, z);
 input [0:3] a;
 output z;
 reg signed [0:3] x;
 reg z;
 always begin
 x = a;
 z = x < 4’sd5;
 end
endmodule
Appendix B: Verilog Language Support
Verilog 2001 Feature Examples B-28

HDL Compiler for Verilog User Guide Version D-2010.03
In Example B-31, because in1, in2, and out are signed, a signed multiplier
(MULT_TC_OP_8_8_8) is inferred.

Example B-31 Signed Types: Code and Gates
module m4 (in1, in2, out);
 input signed [7:0] in1, in2;
 output signed [7:0] out;
 assign out = in1 * in2;
endmodule

The code in Example B-32 results in a signed subtracter (SUB_TC_OP).

Example B-32 Signed Nets: Code and Gates
module m5 (a, b, z);
 input [1:0] a, b;
 output [2:0] z;
 wire signed [1:0] x = a;
 wire signed [1:0] y = b;
 assign z = x - y;
endmodule

In Example B-33, because 4’sd5 is signed, a signed comparator (LT_TC_OP) is inferred.

Example B-33 Signed Values
module m6 (a, z);
 input [3:0] a;
 output z;
 reg signed [3:0] x;
 wire z;
 always @(a) begin
 x = a;
 end
 assign z = x < -4’sd5;
endmodule

Verilog 2001 adds the signed keyword in declarations:
reg signed [7:0] x;

It also adds support for signed, sized constants. For example, 8'sb11111111 is an 8-bit
signed quantity representing -1. If you are assigning it to a variable that is 8 bits or less,
8'sb11111111 is the same as the unsigned 8'b11111111. A behavior difference arises
when the variable being assigned to is larger than the constant. This difference occurs
because signed quantities are extended with the high-order bit of the constant, whereas
unsigned quantities are extended with 0s. When used in expressions, the sign of the
constant helps determine whether the operation is performed as signed or unsigned.

HDL Compiler enables signed types by default.
Chapter B: Verilog Language Support
Verilog 2001 Feature Examples B-29
Appendix B: Verilog Language Support
Verilog 2001 Feature Examples B-29

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Note:
If you use the signed keyword, any signed constant in your code, or explicit type casting
between signed and unsigned types, HDL Compiler issues a warning.

Comparisons With Signed Types
Verilog sign rules are tricky. All inputs to an expression must be signed to obtain a signed
operator. If one is signed and one unsigned, both are treated as unsigned. Any unsigned
quantity in an expression makes the whole expression unsigned; the result doesn’t depend
on the sign of the left side. Some expressions always produce an unsigned result; these
include bit and part-select and concatenation. See IEEE P1364/P5 Section 4.5.1.

You need to control the sign of the inputs yourself if you want to compare a signed quantity
against an unsigned one. The same is true for other kinds of expressions. See
Example B-34 and Example B-35.

Example B-34 Unsigned Comparison Results When Signs Are Mismatched
module m8 (in1, in2, lt);
// in1 is signed but in2 is unsigned
 input signed [7:0] in1;
 input [7:0] in2;
 output lt;
 wire uns_lt, uns_in1_lt_64;
/* comparison is unsigned because of the sign mismatch, in1
is signed but in2 is unsigned */
 assign uns_lt = in1 < in2;
/* Unsigned constant causes unsigned comparison; so negative
values of in1 would compare as larger than 8’d64 */
 assign uns_in1_lt_64 = in1 < 8'd64;
 assign lt = uns_lt + uns_in1_lt_64;
endmodule

Example B-35 Signed Values
module m7 (in1, in2, lt, in1_lt_64);
 input signed [7:0] in1, in2; // two signed inputs
 output lt, in1_lt_64;
 assign lt = in1 < in2; // comparison is signed
 // using a signed constant results in a signed comparison
 assign in1_lt_64 = in1 < 8'sd64;
endmodule
Appendix B: Verilog Language Support
Verilog 2001 Feature Examples B-30

HDL Compiler for Verilog User Guide Version D-2010.03
Controlling Signs With Casting Operators
Use the Verilog 2001 casting operators, $signed() and $unsigned(), to convert an unsigned
expression to a signed expression. In Example B-36, the casting operator is used to obtain
a signed comparator. Note that simply marking an expression as signed might give
undesirable results because the unsigned value might be interpreted as a negative number.
To avoid this problem, zero-extend unsigned quantities, as shown in Example B-36.

Example B-36 Casting Operators
module m9 (in1, in2, lt);
 input signed [7:0] in1;
 input [7:0] in2;
 output lt;
 assign lt = in1 < $signed ({1’b0, in2});
 //Cast to get signed comparator.
 //Zero-extend to preserve interpretation of unsigned value as positive

number.

Part-Select Addressing Operators ([+:] and [-:])
Verilog 2001 introduced variable part-select operators. These operators allow you to use
variables to select a group of bits from a vector. In some designs, coding with part-select
operators improves elaboration time and memory usage.

Variable part-select operators are discussed in the following sections:

• Variable Part-Select Overview

• Example—Ascending Array and +:

• Example—Ascending Array and -:

• Example—Descending Array and -:

• Example—Descending Array and +:

Variable Part-Select Overview
A Verilog 1995 part-select operator requires that both upper and lower indexes be constant:
a[2:3] or a[value1:value2].

The variable part-select operator permits selection of a fixed-width group of bits at a variable
base address and takes the following form:

• [base_expr +: width_expr] for a positive offset

• [base_expr -: width_expr] for a negative offset
Chapter B: Verilog Language Support
Verilog 2001 Feature Examples B-31
Appendix B: Verilog Language Support
Verilog 2001 Feature Examples B-31

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
The syntax specifies a variable base address and a known constant number of bits to be
extracted. The base address is always written on the left, regardless of the declared
direction of the array. The language allows variable part-select on the left-hand side (LHS)
and the right-hand side (RHS) of an expression. All of the following expressions are allowed:

• data_out = array_expn[index_var +: 3]
(part select is on the right-hand side)

• data_out = array_expn[index_var -: 3]
 (part select is on the right-hand side)

• array_expn[index_var +: 3] = data_in
 (part select is on the left-hand side)

• array_expn[index_var -: 3] = data_in
(part select is on the left-hand side)

Table shows examples of Verilog 2001 syntax and the equivalent Verilog 1995 syntax.

The original HDL Compiler tool allows nonconstant part-selects if the width is constant; HDL
Compiler permits only the new syntax.

Example—Ascending Array and -:
The following code uses the -: operator to select bits from Ascending_Array.

reg [0:7] Ascending_Array;
...
 Data_Out = Ascending_Array[Index_Var -: 3];

Verilog 2001 syntax Equivalent Verilog 1995 syntax

a[x +: 3]
for a descending array

{ a[x+2], a[x+1], a[x] } a[x+2 : x]

a[x -: 3]
for a descending array

{ a[x], a[x-1], a[x-2] } a[x : x-2]

a[x +: 3]
for an ascending array

{ a[x], a[x+1], a[x+2] } a[x : x+2]

a[x -: 3]
for an ascending array

{ a[x-2], a[x-1], a[x] } a[x-2 : x]
Appendix B: Verilog Language Support
Verilog 2001 Feature Examples B-32

HDL Compiler for Verilog User Guide Version D-2010.03
The value of Index_Var determines the starting point for the bits selected. In the following
figure, the bits selected are shown as a function of Index_Var.

Ascending_Array[Index_Var -: 3] is functionally equivalent to the following non-computable
part-select:

 Ascending_Array[Index_Var - 2 : Index_Var]

Example—Ascending Array and +:
The followinf code uses the +: operator to select bits from Ascending_Array.

reg [0:7] Ascending_Array;
...
 Data_Out = Ascending_Array[Index_Var +: 3];

The value of Index_Var determines the starting point for the bits selected. In the following
figure, the bits selected are shown as a function of Index_Var.

Ascending_Array [0 1 2 3 4 5 6 7
]

Index_Var = 0 not valid, synthesis/simulation mismatch

Index_Var = 1 not valid, synthesis/simulation mismatch

Index_Var = 2 • • • • • • • •

Index_Var = 3 • • • • • • • •

Index_Var = 4 • • • • • • • •

Index_Var = 5 • • • • • • • •

Index_Var = 6 • • • • • • • •

Index_Var = 7 • • • • • • • •

Ascending_Array [0 1 2 3 4 5 6 7
]

Index_Var = 0 • • • • • • • •
Chapter B: Verilog Language Support
Verilog 2001 Feature Examples B-33
Appendix B: Verilog Language Support
Verilog 2001 Feature Examples B-33

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Note:

• Ascending_Array[Index_Var +: 3] is functionally equivalent to the following
noncomputable part-select: Ascending_Array[Index_Var : Index_Var + 2]

• Noncomputable part-selects are not supported by the Verilog language.
Ascending_Array[7 +:3] corresponds to elements Ascending_Array[7 : 9] but elements
Ascending_Array[8] and Ascending_Array[9] do not exist. A variable part-select must
always compute to a valid index; otherwise, a synthesis elaborate error and a runtime
simulation error will result.

Example—Descending Array and -:
The following code uses the -: operator to select bits from Descending_Array.

reg [7:0] Descending_Array;
...
 Data_Out = Descending_Array[Index_Var -: 3];

The value of Index_Var determines the starting point for the bits selected. In the following
figure, the bits selected are shown as a function of Index_Var.

Index_Var = 1 • • • • • • • •

Index_Var = 2 • • • • • • • •

Index_Var = 3 • • • • • • • •

Index_Var = 4 • • • • • • • •

Index_Var = 5 • • • • • • • •

Index_Var = 6 not valid, synthesis/simulation mismatch; see note below.

Index_Var = 7 not valid, synthesis/simulation mismatch; see note below.

Descending_Array
[

7 6 5 4 3 2 1 0]

Index_Var = 0 not valid, synthesis/simulation mismatch

Index_Var = 1 not valid, synthesis/simulation mismatch

Ascending_Array [0 1 2 3 4 5 6 7
]

Appendix B: Verilog Language Support
Verilog 2001 Feature Examples B-34

HDL Compiler for Verilog User Guide Version D-2010.03
Descending_Array[Index_Var -: 3] is functionally equivalent to the following noncomputable
part-select:

 Descending_Array[Index_Var : Index_Var - 2]

Example—Descending Array and +:
The code below uses the +: operator to select bits from Descending_Array.

reg [7:0] Descending_Array;
...
 Data_Out = Descending_Array[Index_Var +: 3];

The value of Index_Var determines the starting point for the bits selected. In the following
figure, the bits selected are shown as a function of Index_Var.

Index_Var = 2 • • • • • • • •

Index_Var = 3 • • • • • • • •

Index_Var = 4 • • • • • • • •

Index_Var = 5 • • • • • • • •

Index_Var = 6 • • • • • • • •

Index_Var = 7 • • • • • • • •

Descending_Array
[

7 6 5 4 3 2 1 0]

Index_Var = 0 • • • • • • • •

Index_Var = 1 • • • • • • • •

Index_Var = 2 • • • • • • • •

Index_Var = 3 • • • • • • • •

Descending_Array
[

7 6 5 4 3 2 1 0]
Chapter B: Verilog Language Support
Verilog 2001 Feature Examples B-35
Appendix B: Verilog Language Support
Verilog 2001 Feature Examples B-35

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Descending_Array[Index_Var +: 3] is functionally equivalent to the following noncomputable
part-select:

 Descending_Array[Index_Var + 2 : Index_Var]

Noncomputable part-selects are not supported by the Verilog language.
Descending_Array[7 +:3] corresponds to elements Descending_Array[9 : 7] but elements
Descending_Array[9] and Descending_Array[8] do not exist. A variable part-select must
always compute to a valid index; otherwise, a synthesis elaborate error and a runtime
simulation error will result.

Power Operator (**)

This operator performs yx, as shown in Example B-37.

Example B-37 Power Operators
module m #(parameter b=2, c=4) (a, x, y, z);
 input [3:0] a;
 output [7:0] x, y, z;

 assign z = 2 ** a;
 assign x = a ** 2;
 assign y = b ** c; // where b and c are constants

endmodule

Arithmetic Shift Operators (<<< and >>>)
The arithmetic shift operators allow you to shift an expression and still maintain the sign of
a value, as shown in Example B-38. When the type of the result is signed, the arithmetic shift
operator (>>>) shifts in the sign bit; otherwise it shifts in zeros.

Index_Var = 4 • • • • • • • •

Index_Var = 5 • • • • • • • •

Index_Var = 6 not valid, synthesis/simulation mismatch

Index_Var = 7 not valid, synthesis/simulation mismatch

Descending_Array
[

7 6 5 4 3 2 1 0]
Appendix B: Verilog Language Support
Verilog 2001 Feature Examples B-36

HDL Compiler for Verilog User Guide Version D-2010.03
Example B-38 Shift Operator Code and Gates
module s1 (A, S, Q);
 input signed [3:0] A;
 input [1:0] S;
 output [3:0] Q;
 reg [3:0] Q;
 always @(A or S)
 begin

// arithmetic shift right,
// shifts in sign-bit from left

 Q = A >>> S;
 end
endmodule
Chapter B: Verilog Language Support
Verilog 2001 Feature Examples B-37
Appendix B: Verilog Language Support
Verilog 2001 Feature Examples B-37

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Appendix B: Verilog Language Support
Verilog 2001 Feature Examples B-38

Glossary GL

anonymous type
A predefined or underlying type with no name, such as universal integers.

ASIC
Application-specific integrated circuit.

behavioral view
The set of Verilog statements that describe the behavior of a design by using
sequential statements. These statements are similar in expressive capability to those
found in many other programming languages. See also the data flow view, sequential
statement, and structural view definitions.

bit-width
The width of a variable, signal, or expression in bits. For example, the bit-width of the
constant 5 is 3 bits.

character literal
Any value of type CHARACTER, in single quotation marks.

computable
Any expression whose (constant) value HDL Compiler can determine during
translation.

constraints
The designer’s specification of design performance goals. Design Compiler uses
constraints to direct the optimization of a design to meet area and timing goals.

convert
To change one type to another. Only integer types and subtypes are convertible, along
with same-size arrays of convertible element types.

data flow view
The set of Verilog statements that describe the behavior of a design by using
concurrent statements. These descriptions are usually at the level of Boolean
equations combined with other operators and function calls. See also the behavioral
view and structural view.
GL-1

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Design Compiler
The Synopsys tool that synthesizes and optimizes ASIC designs from multiple input
sources and formats.

design constraints
See constraints.

flip-flop
An edge-sensitive memory device.

HDL
Hardware Description Language.

HDL Compiler
The Synopsys Verilog synthesis product.

identifier
A sequence of letters, underscores, and numbers. An identifier cannot be a Verilog
reserved word, such as type or loop. An identifier must begin with a letter or an
underscore.

latch
A level-sensitive memory device.

netlist
A network of connected components that together define a design.

optimization
The modification of a design in an attempt to improve some performance aspect.
Design Compiler optimizes designs and tries to meet specified design constraints for
area and speed.

port
A signal declared in the interface list of an entity.

reduction operator
An operator that takes an array of bits and produces a single-bit result, namely the
result of the operator applied to each successive pair of array elements.

register
A memory device containing one or more flip-flops or latches used to hold a value.

resource sharing
The assignment of a similar Verilog operation (for example, +) to a common netlist cell.
Netlist cells are the resources—they are equivalent to built hardware.

RTL
Register transfer level, a set of structural and data flow statements.

sequential statement
A set of Verilog statements that execute in sequence.
Glossary GL-2

HDL Compiler for Verilog User Guide Version D-2010.03
signal
An electrical quantity that can be used to transmit information. A signal is declared with
a type and receives its value from one or more drivers. Signals are created in Verilog
through either wire or reg declarations.

signed value
A value that can be positive, zero, or negative.

structural view
The set of Verilog statements used to instantiate primitive and hierarchical
components in a design. A Verilog design at the structural level is also called a netlist.
See also behavioral view and data flow view.

subtype
A type declared as a constrained version of another type.

synthesis
The creation of optimized circuits from a high-level description. When Verilog is used,
synthesis is a two-step process: translation from Verilog to gates by HDL Compiler and
optimization of those gates for a specific ASIC library with Design Compiler.

technology library
A library of ASIC cells available to Design Compiler during the synthesis process. A
technology library can contain area, timing, and functional information on each ASIC
cell.

translation
The mapping of high-level language constructs onto a lower-level form. HDL Compiler
translates RTL Verilog descriptions to gates.

type
In Verilog, the mechanism by which objects are restricted in the values they are
assigned and the operations that can be applied to them.

unsigned
A value that can be only positive or zero.
Chapter GL:
GL-3Glossary GL-3

HDL Compiler for Verilog User Guide D-2010.03HDL Compiler for Verilog User Guide Version D-2010.03
Glossary GL-4

Index

Symbols
$display 1-23
** (power operator) B-36
+: (variable part-select operator) B-31
-: (variable part-select operator) B-31
<<< (arithmetic shift operator) B-36
>>> (arithmetic shift operator) B-36
” - ” operator 3-4
” + ” operator 3-4
”<” operator 3-4
”>” operator 3-4
‘define B-13
‘else B-15
‘elsif B-15
‘endif B-15
‘ifdef VERILOG_1995 B-25
‘ifdef VERILOG_2000 B-25
‘ifdef, ‘else, ‘endif, ‘ifndef, and ‘elsif B-15
‘ifndef B-15
‘include B-14
‘undefineall 1-20

A
adders 2-2

carry bit overflow 3-5

carry-lookahead adder A-8
always block

edge expressions 2-27
always construct 1-19, 1-24, 2-24, 3-30, 6-1,

6-4, B-10, B-11
arithmetic shift operators B-36
Arrays of nets B-25
assign 8-8
assignments

always construct 1-19, 1-24, 2-24, 3-30, 6-1,
6-4, B-10, B-11

blocking B-11, B-12
continuous 8-6, A-3, B-24
initial B-4, B-5
nonblocking 1-24, B-11, B-12

Asynchronous Designs 2-24
asynchronous processes 2-27

B
binary numbers B-2
bit accesses 3-26
bit and memory accesses 3-26
bit-blasting B-19
bit-truncation

explicit 3-28
bit-width
IN-1
IN-1

HDL Compiler for Verilog User Guide Version D-2010.03
prefix for numbers B-2
specifying in numbers B-2

blocking and nonblocking B-11
blocking assignments B-11, B-12
bus_multiple_separator_style 7-13
bus_naming_style variable 1-26
bus_range_separator_style 7-12
Busing B-19

C
carry-lookahead adder A-8
case statements

casex,casez B-8
hdlin_infer_mux 8-3
hdlin_mux_size_limit 8-5
in while loops 3-25
missing assignment in a case statement

branch 3-25
SELECT_OP Inference 3-13
used in multiplexing logic 3-12

casex B-8
casez B-8
casting operators B-31
coding for QoR 2-2
coding guidelines 2-17
coding guidelines for DC Ultra datapath

optimization
bit-truncation

implicit 3-28
combinational logic 3-1
Comma-separated sensitivity lists B-25
compiler directives B-13
conditional assignments

if-else A-16
conditional inclusion of code

‘ifdef, ‘else, ‘endif, ‘ifndef, and ‘elsif Directives
B-15

constant propagation 2-2
continuous assignments 8-6, A-3, B-24

hdlin_prohibit_nontri_multiple_drivers 8-6
controlling signs B-31

D
D flip-flop, see flip-flop
Data-Path Duplication A-13
dc_script_end directive 7-4, 7-5
decimal numbers B-2
declaration requirements

tri data type B-13
deprecated features 7-19
Design Compiler 1-17, 1-26, 2-24, 3-5, 5-3,

7-14, 7-15, A-30
directives

‘define B-13
‘else B-15
‘endif B-15
‘include B-14
‘undef B-19
‘undefineall 1-20
dc_script_begin 7-4
dc_script_end 7-4
dont_infer_multibit 7-11
full_case 7-7
infer_multibit 7-10, 7-11
infer_mux 3-16, 7-13
infer_onehot_mux 3-14, 7-14
multibit inference 7-9
one_cold 4-15, 7-14
one_hot 7-14
parallel_case 7-15
parallel_case used with full_case 7-8
rp_align 2-8, B-18
rp_array_dir 2-8, B-18
rp_endgroup 2-4, B-16
rp_endignore 2-10, B-19
rp_fill 2-6, B-17
rp_group 2-4, B-16
rp_ignore 2-10, B-19
rp_orient 2-9, B-18
IN-2
Index IN-2

HDL Compiler for Verilog User Guide Version D-2010.03
rp_place 2-5, B-16
see also hdlin_ for variables
simulation B-25

disable B-10
don’t care 3-25
don’t cares

in case statements 3-25
simulation/synthesis mismatch 2-26

E
ELAB-292 3-11
ELAB-302 4-13
ELAB-366 6-6, 6-7
elaboration errors, reporting 1-7
elaboration reports 1-6
embedded 3-25
embedding constaints and attributes

dc_script_end 7-4
embedding constraints and attributes

dc_script_begin 7-4
enum directive 7-6
enumerated type inference report 5-7
enumerated types 5-7
errors 1-23, 3-16, 6-2, 6-7, 7-5, 8-3, 8-6, B-6,

B-19, B-20
ELAB-302 4-13
ELAB-366 6-6
ELAB-900 B-20

Explicit bit-truncation 3-28
expression tree

optimized for delay 3-6

F
file format, automatic detection of 1-5
finite state machine 5-3

automatic detection 5-1
fsm_auto_inferring 5-3

inference report 5-6
finite state machines

automatic detection 5-1
flip 4-4
flip-flop

asynchronous set and reset conditions for
flip-flops 8-2, 8-4

clocked_on_also attribute A-32
control register inference

hdlin_ff_always_async_set_reset 8-2
hdlin_ff_always_sync_set_reset 8-2

D-flip-flop
D flip-flop with a synchronous load and an

asynchronous load 4-20
D flip-flop with an asynchronous reset 4-18
D flip-flop with an asynchronous set 4-18
D flip-flop with synchronous reset 4-20
D flip-flop with synchronous set A-35
rising-edge-triggered D flip-flop 4-17

hdlin_ff_always_async_set_reset 8-2, 8-4
hdlin_ff_always_sync_set_reset 8-2
infer as multibit 7-11
master-slave latches A-32
SEQGENs 4-2
synchronous set and reset conditions for flip-

flops 8-2
used to describe the master-slave latch A-32

flows
interacting with low-power flows 2-20
interacting with other flows 2-19
interacting with Synthesis flows 2-19
interacting with verification flows 2-23

for loop 3-31
FSM inference variables 5-3
fsm_auto_inferring 5-3
full_case 7-7
functional description

function declarations in 1-24
functions 1-26, 2-28, 5-2, 6-2, 7-5, B-4, B-14,

B-26, B-28, GL-1
IN-3
Index IN-3

HDL Compiler for Verilog User Guide Version D-2010.03
G
gate-level constructs 1-24

H
hdlin_build_selectop_for_var _index 8-2
hdlin_check_no_latch 8-2
hdlin_elab_errors_deep 1-7
hdlin_ff_always_async_set_reset 8-2, 8-4
hdlin_ff_always_async_set_reset directive 8-2
hdlin_ff_always_sync_set_reset 8-2
hdlin_infer_enumerated_types 8-2
hdlin_infer_function_local _latches 8-2
hdlin_infer_mux 8-3
hdlin_keep_signal_name variable 2-20
hdlin_module_arch_name_split 8-4
hdlin_mux_oversize_ratio 8-4
hdlin_mux_size_limit 8-5
hdlin_mux_size_min 8-5
hdlin_mux_size_only 3-17
hdlin_no_sequential_mapping 8-5
hdlin_one_hot_one_cold_on 8-5
hdlin_optimize_array_references 8-5
hdlin_optimize_enum_types 5-7, 8-5
hdlin_preserve_sequential variable 4-8, 8-6
hdlin_prohibit_nontri_multiple _drivers 8-6
hdlin_prohibit_nontri_multiple_drivers 6-6
hdlin_reporting_level directive 5-3
hdlin_reporting_level variable 1-6, 4-5, 6-2
hdlin_subprogram_default_values 8-7
hdlin_upcase_names 8-7
hdlin_vrlg_std 1-6
hexadecimal numbers B-2
hierarchical

boundaries 1-26
constructs 1-24

I
If 4-4
if statements

hdlin_infer_mux 8-3
in case statements 3-25
infer MUX_OP cells 3-16

ifdef VERILOG_1995 B-25
ifdef VERILOG_2001 B-25
if-else A-16
ignored functions B-26
implicit bit-truncation 3-28
include B-14
incompletely specified case statement 3-26
infer_multibit 7-10
infer_mux 3-16
infer_mux directive 7-13
infer_onehot_mux directive 3-14, 7-14
inference report

description 6-2
inference reports 4-5

enumerated types 5-7
finite state machine 5-6
multibit components 7-10

inferring flip-flops 4-16
initial assignment B-4, B-5
inout

connecting to gate B-12
connecting to module B-12

instantiations 1-24, 1-26, 6-6, 8-8, A-26, A-28,
A-29, B-12

L
latches

avoiding unintended latches 3-30
clocked_on_also A-32
D latch 4-14
D latch with an active-low asynchronous set

and reset 4-15
generic sequential cells (SEQGENs) 4-2
IN-4
Index IN-4

HDL Compiler for Verilog User Guide Version D-2010.03
master-slave latches A-32
resulting from conditionally assigned

variables 4-13
SR latches A-30

late-arriving signals
 A-13
datapath duplication solution A-13
moving late-arriving signal close to output

solution A-13
lexical conventions B-2
license requirements 1-31
limitations

multibit inference 7-13
loops

case statements
in while loops 3-25

M
macro substitution B-13
macromodule B-12
macros B-16

global reset
‘undefineall 1-20

local reset
‘undefineall B-19

macro definition on the command line B-14
PRESTO 1-19
specifing macros

‘define B-13
specifying macros that take arguments B-13
SYNTHESIS 1-19
VERILOG_1995 1-19
VERILOG_2001 1-19

memory accesses 3-26
mismatch 6-2

full_case usage 7-7
parallel_case usage 7-15
simulator/synthesis 6-2
three-states 2-24, 6-4
z value 6-2

z value comparison 6-2
module

connecting to inout B-12
multibit components

advantages 7-10
benefits 6-1
bus_multiple_separator_style 7-13
bus_range_separator_style 7-12
described 6-1
directives

dont_infer_multibit 7-10
infer_multibit 7-10

inference limitations 7-13
multibit inference report 7-10
report_multibit command 7-12

multibit inference directives 7-9
multidimensional arrays B-26
multiplexer

cell size 3-17, 3-21
MUX_OP 3-19
see also multiplexing logic

multiplexers 3-26
multiplexing logic

case statements embedded in if-then-else
statements 3-25

case statements in while loops 3-25
case statements that contain don’t care

values 3-25
case statements that have a missing case

statement branch 3-25
Design Compiler implementation 3-14
for bit or memory accesses 3-26
hdlin_infer_mux variable 3-16
hdlin_mux_size_limit 8-5
if-else-begin-if constructs A-16
implement conditional operations implied by

if and case statements 3-13
incompletely specified case statement 3-26
infer MUX_OP cells 3-15
infer_mux 3-16
MUX_OP cells 3-12
MUX_OP Inference Limitations 3-25
IN-5
Index IN-5

HDL Compiler for Verilog User Guide Version D-2010.03
preferentially map multiplexing logic to
multiplexers 3-12

SELECT_OP cells 3-12
sequential if statements A-16
warning message 3-26
with if and case statements 3-12

MUX_OP cells
setting size_only attribute 3-17

MUX_OP inference 3-15

N
nonblocking assignments 1-24, B-11, B-12
number

binary B-2
decimal B-2
formats B-2
hexadecimal B-2
octal B-2
specifying bit-width B-2

O
octal numbers B-2
one 7-14
one_cold directive 4-15, 7-14
one_hot directive 7-14
one-hot multiplexer 3-14
operators

casting B-31
power B-36
shift B-36
variable part-select B-31

optimization 5-1
fsm_auto_inferring 5-3

P
parallel_case 7-7, 7-15
parameterized design 1-20

parameters 1-18, 1-20, 1-23, 2-2, 7-6, 7-19,
B-4, B-24

Part-Select Addressing B-31
ports

inout port requirements B-12
Power B-36
power operator (**) B-36
pragma, see directives
processes

asynchronous 2-27
synchronous 2-27

R
radices B-2
read_file -format command 1-5
reading designs

analyze -f verilog { files } elaborate 1-18
automatic structure detector 1-17
netlists 1-17
parameterized designs 1-17
read -f verilog -netlist { files } (dcsh) 1-18
read_file -f verilog -netlist { files } (tcl) 1-18
read_file -f verilog -rtl { files } 1-18
read_verilog 1-18
read_verilog -netlist { files } (tcl) 1-18
read_verilog -rtl { files } (tcl) 1-18
RTL 1-17

register inference
variables that contol inference 8-2

register inference examples 4-13
relative placement 2-3

compiler directives 2-4, B-13
creating groups 2-4, B-16
examples 2-11
figures 2-12
ignoring 2-10, B-19
placing cells automatically 2-6, B-17
specifying cell alignment 2-8, B-18
specifying cell orientation 2-9, B-18
specifying placement 2-8, B-18
IN-6
Index IN-6

HDL Compiler for Verilog User Guide Version D-2010.03
specifying subgroups, keepouts, and
instances 2-5, B-16

remove_design 1-18
removing designs 1-18
report_multibit 7-12
report_multibit command 7-12
resets

global reset
‘undefineall 1-20

local reset
‘undef B-19

S
SELECT_OP 3-13
sensitivity list 2-27
Sequential if statements A-16
set and reset conditions for flip-flops 8-2, 8-4
shift operators B-36
Sign Conversion Warnings 3-7
sign rules B-30
signal names, keeping 2-20
signed arithmetic extensions B-28
Signed Constants B-28
Signed I/O Ports B-28
signed keyword B-29
Signed Registers B-28
Signed Types B-29
signs

casting operator B-31
controlling signs B-31
sign conversion warnings B-31

simulation
directives B-25

simulator/synthesis mismatch
full_case usage 7-7
parallel_case usage 7-15

slow reads 1-17
standard macros

macro definition on the command line B-14

PRESTO 1-19
see also macros
SYNTHESIS 1-19
VERILOG_1995 1-19
VERILOG_2001 1-19

structural description
elements of 1-24

synchronous
processes 2-27

SYNTHESIS macro B-24
synthetic comments.See directives
system functions, Verilog B-26

T
tasks 1-23, 1-24, 1-26, 2-27, 2-28, 5-2, 8-2,

B-4, B-10
template

directive 7-19
See also parameterized designs

three-state buffer
hdlin_prohibit_nontri_multiple_drivers 6-6
tri data type B-13

tri Data Type declaration requirement B-13
two-phase design A-34

U
unloaded registers, keeping 4-8

V
variable

conditionally assigned 4-13
reading 4-13

variable part-select operators B-31
variables, (see hdlin_)
VER 3-7
VER-318 3-7, 3-8, 3-9, 3-11, 3-12
Verilog

keywords B-3
IN-7
Index IN-7

HDL Compiler for Verilog User Guide Version D-2010.03
system function B-26
Verilog 2001 features B-24

‘ifndef, ‘elsif, ‘undef B-25
ANSI-C-style port declaration B-24
arithmetic shift operators B-25
casting operators B-24
comma-separated sensitivity lists B-25
disabling features 1-19
hdlin_vrlg_std = 1995 1-19
hdlin_vrlg_std = 2001 1-19
implicit event expression list B-24
multidimensional arrays B-25
parameter passing by name B-24
power operator (**) B-25
signed/unsigned nets and registers B-24
signed/unsigned parameters B-24
signed/unsigned sized and based constants

B-24

sized parameters B-25
SYNTHESIS macro B-24

Verilog language version, controlling 1-6
verilogout_ variables 8-8
verilogout_no_tri variable 8-8
vrlg_std 8-7

W
warnings

asynchronous designs 2-24
encodings 7-6
hdlin_unsigned_integers B-30
sign conversion 3-8
VER-318 3-8

while loop B-20, B-21, B-22, B-23
write_timing command 8-8
IN-8
Index IN-8

	Preface
	Introduction to HDL Compiler for Verilog
	Reading Verilog Designs
	Reading Designs With Dependencies Automatically
	Reading, Analyzing, and Elaborating Designs
	Reading and Analyzing Designs Without Elaboration
	File Dependency Support
	Supported Variables
	Examples

	Automatic Detection of RTL Language From File Extensions
	Controlling the Verilog Version Used for Reading RTL Files

	Elaboration Reports
	Reporting Elaboration Errors
	Methodology
	Example
	hdlin_elab_errors_deep FAQs

	Netlist Reader
	Automatic Detection of Input Type
	Reading Commands Summary
	Defining Macros
	Using analyze -define
	Predefined Macros
	Global Macro Reset: `undefineall

	Parameterized Designs
	Reading Large Designs
	Use of $display During RTL Elaboration
	Inputs and Outputs
	Input Descriptions
	Design Hierarchy
	Component Inference and Instantiation
	Naming Considerations
	Generic Netlists
	Inference Reports
	Error Messages

	Language Construct Support
	Licenses

	Coding Considerations
	Coding for QoR
	Expose Constants to Reduce Hardware
	Size Variables Efficiently

	Creating Relative Placement in Hardware Description Languages
	Directives for Specifying Relative Placement
	Creating Groups Using `rp_group and `rp_endgroup
	Specifying Subgroups, Keepouts, and Instances Using `rp_place
	Placing Cells Automatically Using `rp_fill
	Specifying Placement for Array Elements Using `rp_array_dir
	Specifying Cell Alignment Using rp_align
	Specifying Cell Orientation Using rp_orient
	Ignoring Relative Placement Using rp_ignore and rp_endignore
	Relative Placement Examples

	General Coding Guidelines
	Separate Sequential and Combinational Assignments
	Persistence of Values Across Calls to Tasks
	defparam
	Function Placed Within a Module

	Interacting With Other Flows
	Synthesis Flows
	Controlling Structure With Parentheses
	Multibit Components

	Low-Power Flows
	Keeping Signal Names

	Verification Flows
	Simulation/Synthesis Mismatch Issues

	Modeling Combinational Logic
	Synthetic Operators
	Logic and Arithmetic Expressions
	Basic Operators
	Carry-Bit Overflow
	Divide Operators
	Sign Conversions

	Multiplexing Logic
	SELECT_OP Inference
	One-Hot Multiplexer Inference
	MUX_OP Inference
	MUX_OP Inference Examples
	Considerations When Using If Statements to Code For MUX_OPs
	MUX_OP Inference Limitations

	MUX_OP Components With Variable Indexing
	Modeling Complex MUX Inferences: Bit and Memory Accesses
	Bit-Truncation Coding for DC Ultra Datapath Extraction
	Latches in Combinational Logic

	Modeling Sequential Logic
	Generic Sequential Cells (SEQGENs)
	Inference Reports for Registers
	Register Inference Guidelines
	Multiple Events in an always Block
	Minimizing Registers
	Keeping Unloaded Registers
	Preventing Unwanted Latches: hdlin_check_no_latch
	Register Inference Limitations

	Register Inference Examples
	Inferring Latches
	Basic D Latch
	D Latch With Asynchronous Reset: Use async_set_reset
	D Latch With Asynchronous Set and Reset: Use hdlin_latch_always_async_set_reset

	Inferring Flip-Flops
	Basic D Flip-Flop
	D Flip-Flop With Asynchronous Reset Using ?: Construct
	D Flip-Flop With Asynchronous Reset
	D Flip-Flop With Asynchronous Set and Reset
	D Flip-Flop With Synchronous Reset: Use sync_set_reset
	D Flip-Flop With Synchronous and Asynchronous Load
	D Flip-Flops With Complex Set/Reset Signals
	Multiple Flip-Flops With Asynchronous and Synchronous Controls

	Modeling Finite State Machines
	FSM Coding Requirements for Automatic Inference
	FSM Inference Variables
	FSM Coding Example
	FSM Inference Report
	Enumerated Types

	Modeling Three-State Buffers
	Using z Values
	Three-State Driver Inference Report
	Assigning a Single Three-State Driver to a Single Variable
	Assigning Multiple Three-State Drivers to a Single Variable
	Registering Three-State Driver Data
	Instantiating Three-State Drivers
	Errors and Warnings

	HDL Compiler Synthesis Directives
	async_set_reset
	async_set_reset_local
	async_set_reset_local_all
	dc_tcl_script_begin and dc_tcl_script_end
	enum
	full_case
	infer_multibit and dont_infer_multibit
	Using the infer_multibit Directive
	Using the dont_infer_multibit Directive
	Multibit Benefits
	Reporting Multibit Components
	Limitations of Multibit Inference

	infer_mux
	infer_onehot_mux
	keep_signal_name
	one_cold
	one_hot
	parallel_case
	preserve_sequential
	sync_set_reset
	sync_set_reset_local
	sync_set_reset_local_all
	template
	translate_off and translate_on (Deprecated)

	HDL Compiler Variables
	HDL Compiler Reading-Related Variables
	Commands for Writing Out Verilog
	Variables for Writing Out Verilog

	Examples
	Count Zeros-Combinational Version
	Count Zeros-Sequential Version
	Drink Machine-State Machine Version
	Drink Machine-Count Nickels Version
	Carry-Lookahead Adder
	Coding for Late-Arriving Signals
	Datapath Duplication
	Moving Late-Arriving Signals Closer to the Output
	Overview
	Late-Arriving Data Signal
	Recoding for Late-Arriving Data Signal: Case 1
	Recoding for Late-Arriving Data Signal: Case 2
	Late-Arriving Control Signal
	Recoding for Late-Arriving Control Signal

	Instantiation of Arrays of Instances
	SR Latches
	D Latch With Asynchronous Set: Use async_set_reset
	Inferring Master-Slave Latches
	Master-Slave Latch Overview
	Master-Slave Latch With Single Master-Slave Clock Pair
	Master-Slave Latch With Multiple Master-Slave Clock Pairs
	Master-Slave Latch With Discrete Components

	Inferring Flip-Flops
	D Flip-Flop With Synchronous Set: Use sync_set_reset
	JK Flip-Flop With Synchronous Set and Reset: Use sync_set_reset

	Verilog Language Support
	Syntax
	Comments
	Numbers

	Verilog Keywords
	Unsupported Verilog Language Constructs
	Construct Restrictions and Comments
	always Blocks
	generate Statements
	Generate Overview
	Restrictions

	Conditional Expressions (?:) Resource Sharing
	Case
	casez and casex
	Full Case and Parallel Case

	defparam
	disable
	Blocking and Nonblocking Assignments
	Macromodule
	inout Port Declaration
	tri Data Type
	Compiler Directives
	`define
	`include
	`ifdef, `else, `endif, `ifndef, and `elsif
	`rp_group and `rp_endgroup
	`rp_place
	`rp_fill
	`rp_array_dir
	rp_align
	rp_orient
	rp_ignore and rp_endignore
	`undef

	reg Types
	Types in Busing
	Combinational while Loops

	Verilog 2001 Supported Constructs
	Ignored Constructs
	Simulation Directives
	Verilog System Functions

	Verilog 2001 Feature Examples
	Multidimensional Arrays and Arrays of Nets
	Signed Quantities
	Comparisons With Signed Types
	Controlling Signs With Casting Operators
	Part-Select Addressing Operators ([+:] and [-:])
	Variable Part-Select Overview
	Example-Ascending Array and -:
	Example-Ascending Array and +:
	Example-Descending Array and -:
	Example-Descending Array and +:

	Power Operator (**)
	Arithmetic Shift Operators (<<< and >>>)

	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

