
538 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

High-Level Macro-Modeling and Estimation
Techniques for Switching Activity

and Power Consumption
Anand Raghunathan, Sujit Dey, and Niraj K. Jha

Abstract—We present efficient techniques for estimating
switching activity and power consumption at the register-transfer
level (RTL), using a combination of macro-modeling for datapath
blocks, and control logic analysis techniques based on partial delay
information. Previous work on estimating switching activity and
power at the RTL has ignored the presence of glitches at various
datapath and control signals. We demonstrate that glitches can
form a significant component of the switching activity at signals
in typical RTL circuits. In particular, for control-flow intensive
designs, we show that the controller substantially affects the ac-
tivity and power consumption in the datapath due to the presence
of glitches at control signals. Since the final implementation of
the controller is not available during high-level design iterations,
we develop techniques that estimate glitching activity at control
signals using control expressions and partial delay information.
For datapath blocks that operate on word-level data, we construct
piecewise linear models that capture the variation of output
glitching activity and power consumption with various word-level
parameters like mean, standard deviation, spatial and temporal
correlations, and glitching activity at the block’s inputs. For RTL
blocks that operate on bit vectors that need not have an associated
word-level value, we present accurate bit-level modeling tech-
niques for glitching activity as well as power consumption. This
allows us to perform accurate power estimation for control-flow
intensive circuits, where most of the power consumed is dissipated
in non-arithmetic components like multiplexers, registers, vector
logic operators, etc. Experimental results on several RTL designs
demonstrate the accuracy of the proposed estimation techniques.
Our RTL power estimator produced estimates that were within
7% of those produced by an in-house power analysis tool on the
final gate-level implementation, while being over 50 faster than
its gate-level counterpart.

Index Terms—Control logic, datapath, glitching, low-power de-
sign, macromodels, micro-architecture, power estimation, register
transfer level.

I. INTRODUCTION

T ECHNIQUES for evaluating a design for various met-
rics like area, delay, and power consumption at all levels

of the design hierarchy are an important part of the design
process. While it is typically the case that lower level estima-
tion tools offer higher estimation accuracy, their use to explore
architectural tradeoffs during higher-level design tends to be

Manuscript received May 9, 2001; revised December 20, 2001.
A. Raghunathan is with NEC Laboratories America, Princeton, NJ 08540

USA (e-mail: anand@ccrl.nj.nec.com).
S. Dey is with the Department of Electrical and Computer Enigeering, Uni-

versity of California San Diego, La Jolla, CA 92093 USA.
N. K. Jha is with the Department of Electrical Engineering, Princeton Uni-

versity, Princeton, NJ 08544 USA.
Digital Object Identifier 10.1109/TVLSI.2003.812295

prohibitively time-consuming. Several efficient techniques for
estimating area and delay during high-level design have been
proposed [1]–[4]. In this paper, we focus on the problem of
estimating power consumption from RTL descriptions. Un-
like previous approaches to high-level power estimation, our
techniques are well-suited to control-flow intensive designs,
which, as we show in this paper, have significantly different
power consumption characteristics.

Recognizing the importance of power estimation, several
researchers have investigated power estimation techniques
ranging from the circuit level up to the system level. Circuit
simulators like SPICE offer one of the most accurate ways of
estimating power consumption but are also the most compu-
tationally expensive, which limits their use to only very small
circuits. Transistor-level event-driven simulation techniques
based on piecewise linear transistor models have been used
to provide accurate full-chip power analysis much faster than
SPICE [5]. However, they are still too expensive to use during
each iteration of a design/synthesis loop. A large body of work
has been devoted to logic-level power estimation for CMOS
circuits. Logic-level techniques can be broadly classified
as: 1) direct simulation-based techniques, which simulate
the circuit response to specific input stimuli from which the
power consumed can be computed; 2) techniques that compute
signal value and transition probabilities at all the signals in the
circuit, given the probabilities at the primary inputs, and use
the computed probabilities to estimate power consumption;
and 3) statistical or Monte-Carlo techniques that simulate
generated input samples to the circuit till the monitored value
of power consumption converges to within user-defined error
and confidence levels. Power estimation techniques at the logic
level are described in detail in [6]–[9].

With the trend toward designs starting at higher and higher
levels of abstraction, researchers have devoted some attention
to power estimation and optimization at the earlier stages of
the design cycle, such as the register-transfer and behavior
levels. Several studies have shown that the power optimization
opportunities are significantly larger at the higher levels [6],
[10]. Power analysis tools are required in order to:

1) validate that power budgets are met by the different parts
of the design, and if not, identify the hot-spots in the de-
sign;

2) evaluate the effect of various optimizations and design
modifications on power.

The use of high-level power analysis tools for the above pur-
pose helps to greatly reduce the design cycle [9], [11], [12]. In

1063-8210/03$17.00 © 2003 IEEE

RAGHUNATHAN et al.: HIGH-LEVEL MACRO-MODELING AND ESTIMATION TECHNIQUES 539

the absence of high-level power analysis tools, a power analysis
iteration (e.g., to evaluate a design modification or alternative
architecture) requires the designer to first synthesize and vali-
date a lower level netlist, and then run a logic- or transistor-level
power analysis tool to report power consumption. The large
run times required by lower level power analysis tools, and to
synthesize and validate a gate- or transistor-level netlist make
this methodology highly inefficient for exploring high-level de-
sign tradeoffs, and infeasible for use in automatic high-level and
system-level synthesis and optimization tools. In a design flow
that uses high-level power analysis tools, tradeoffs at each level
of the design hierarchy are supported by corresponding power
analysis tools at the same level, leading to fewer and faster de-
sign iterations [11], [12].

In general, estimation techniques at higher levels of design
abstraction tend to be more efficient due to the associated re-
duction in complexity (size) of the design, and sometimes due
to the easy availability of functional information which may be
difficult to extract at the lower levels.

The reduced complexity of power analysis at the higher levels
does not come without a penalty. The absolute accuracy of high-
level power analysis tools tends to be lower than analysis tools
at the lower levels of the design hierarchy. However, high-level
power analysis tools are still very useful to guide high-level de-
sign tradeoffs, if their results provide relative accuracy (i.e., they
are able to correctly predict whether a design modification will
result in an increase or decrease in power consumption) and
monotonicity (i.e., they are able to properly rank order a set of
candidate designs in terms of power consumption) [11], [12].
With the use of high-level power analysis tools for exploring
design tradeoffs, the role of lower level power analysis tools is
limited to supporting lower level optimizations, and verifying
that the power budgets are met with a high level of confidence.

II. RELATED WORK

In this section, we briefly describe the previous work on
RTL/architectural power estimation techniques. We classify
all the previous work into three broad approaches to power
estimation, namelyanalytical models, characterization-based
macro-modeling, and control logic analysis techniques. It is
important to note that it is often necessary to use different
estimation techniques for different parts of a design (such as
arithmetic macro blocks, control logic, memory, clock network,
and I/O).

Analytical power modeling techniques attempt to correlate
power consumption to measures of design complexity, using
very little information from the functional specification. For
example, the chip estimation system [13] computes the power
consumed in a logic block based on its estimated gate count,
the average switching energy and load capacitance per gate,
the clock frequency, and the average switching activity factor.
The user is required to provide estimates for each of these
parameters, leaving a lot to his/her judgment. While such
techniques are error-prone in general, they may be accurate
for some parts of a chip for which the complexity parameters
are easy to estimate (e.g., memories and clock networks [14]).
A recently proposed class of analytical techniques, called

information-theoretic approaches, estimate average activity and
capacitance factors for logic blocks based on the entropy of
their input and output signals [15]–[19].

In characterization-based macro-modeling, the idea is to
obtain and characterize a lower level implementation of cir-
cuit macro-blocks (that may be already available in the case of
“hard” or “firm” macro blocks, or may need to be synthesized in
the case of “soft” macro blocks). A gate-level or transistor-level
tool is used to estimate the power consumption of the macro
block for various input sequences, calledtraining sequences.
Based on this data, a macro-model or “black-box” model is con-
structed, which describes the power consumption of the block
as a function of various parameters, e.g., the signal statistics
of the block inputs and outputs. Characterization-based macro-
models are best suited for bottom-up and meet-in-the-middle
design methodologies [20], such as high-level synthesis based
design flows, where hard or firm macro blocks can be instan-
tiated from a component library. The accuracy of characteriza-
tion-based macro-models stems from the fact that a lower level
implementation is used to construct the macro-models. How-
ever, the training sequences used to construct the macro-model
cannot be exhaustive due to efficiency considerations. Hence, a
macro-model may be “biased” by the training sequences used
during the characterization process. In addition to the above
problem, macro-models may introduce inaccuracies since the
results of the characterization experiments are fit into a pre-de-
termined function template or model, resulting in some errors
due to interpolation or extrapolation.

One of the early architecture-level power estimation tech-
niques, the PFA technique [21], characterized architectural
blocks by simulating their implementations with random input
sequences. The inability of the PFA technique to account for the
dependency of power on input signal statistics was addressed in
the dual bit-type (DBT) method [22]. Activity-sensitive power
models [22]–[32] alleviate the above deficiency by constructing
and utilizing a model for power consumption that is a function
of the signal statistics at a macro block’s boundaries.

Control logic analysis techniquesdeal with the control
or random logic parts of a design. The activity-based control
(ABC) model [24] is an example of a controller power esti-
mation technique. Since the control logic is typically small
in size compared to the datapath, several approaches perform
a fast synthesis of the controller, followed by a gate-level
simulation to estimate its power consumption [33]. In addition
to computing the power consumed in the control logic, it is
also very important to take into account its impact on the
power consumption of the rest of the design. The importance of
considering spatial and temporal correlations between control
signals was demonstrated in [34]. It is also important to take
into account the glitching activity at the control signals since it
can have a significant impact on the power consumption in the
rest of the design [28].

III. PAPEROVERVIEW AND SUMMARY OF CONTRIBUTIONS

The aim of this paper is to provide high-level switching
activity and power estimation techniques that are sufficiently

540 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

accurate and efficient to drive various high-level design opti-
mizations, e.g., high-level synthesis subtasks such as module
selection, scheduling, clock selection, resource sharing, etc.
Our estimation techniques work at the structural RTL, where
we assume that the circuit is a network of datapath components
(macro blocks) and control logic. We present improvements
over the state-of-the-art in the areas of characterization-based
macro block power estimation, and fast control logic analysis
during high-level design.

Even though it is known that glitching can account for
a significant part of a circuit’s power consumption and that
estimating glitching power is necessary for obtaining even
relative accuracy at the RTL, previous work on estimating
switching activity at the RTL has ignored the presence of glitches
at various datapath and control signals. For example, known
characterization-based macro-modeling techniques for datapath
blocks consider glitching within RTL blocks, but assume that
the inputs to the blocks are glitch-free. We demonstrate that
glitches form a significant component of the switching activity
in typical RTL circuits, and present techniques to estimate
the glitching activity at control as well as datapath signals
in RTL circuits. We also develop glitching-activity-sensitive
power models for various RTL blocks.

For blocks that operate on word-level data, we present sys-
tematic procedures to construct piecewise linear models that
capture the variation of output glitching activity and power con-
sumption with word-level signal statistics like mean, standard
deviation, spatial and temporal correlations, and glitching ac-
tivity at the block’s inputs. We believe that these word-level
modeling techniques improve on the state-of-the-art because
they enable us to exploit efficient word-level simulation tech-
niques for macro blocks, do not constrain the glitching activity
or power function (e.g., to a linear or quadratic function), and do
not require an understanding of the internals of a macro block
during the characterization process. For RTL blocks that operate
on data that may not have an associated word-level value, we
present accurate bit-level modeling techniques for glitching ac-
tivity as well as power consumption. This allows us to perform
accurate power estimation for control-flow intensive circuits, in
which a large fraction of the total power consumed is dissipated
in non-arithmetic components like multiplexers, vector logic op-
erators, etc., and where the effects of bit-level statistics may not
be well reflected by word-level signal statistics.

While the control logic itself may often consume only a small
fraction of the total power (e.g., 5%), it has a significant bearing
on the power consumption in the datapath. Thus, it is impor-
tant to accurately estimate signal statistics, including glitching
activities, at control signals. A significant bottleneck to control
logic analysis is the lack of complete delay information and in-
terdependence of datapath and control logic timing. We present
novel techniques that use partial delay information to identify
and utilize timing relationships between control logic signals
(at the RTL) that will hold with a high degree of confidence at
the lower levels as well.

Experimental results on several RTL designs demonstrate the
accuracy of the proposed estimation techniques. The RTL esti-
mates obtained are within 7% of those produced by an in-house

Fig. 1. GCD RTL circuit.

power analysis tool on the final gate-level implementation,
while switching activity estimates are typically within 10% of
an accurate gate-level estimation. Hence, we believe that our
techniques can be used to efficiently assess the power tradeoffs
involved in making various high-level design decisions.

IV. M OTIVATION

We illustrate some of the important features of control-flow
intensive designs through the analysis of an example RTL cir-
cuit shown in Fig. 1, which computes the greatest common di-
visor of two numbers. The RTL blocks used in the
datapath are one subtracter, three comparators [one less-than

and two equal-to], registers, and multiplexers. The con-
troller is subdivided into the state register, the next state logic,
and the decode logic that generates the control signals for the
datapath. The control expressions implemented by the decode
logic are also given in Fig. 1. The variables in the
control expressions represent the decoded state variables, i.e.,

is 1 when the controller is in state. The control expressions
also involve status signals generated from the datapath like the
outputs of comparators. While the datapath typically consists of
several predesigned macro blocks, the control logic is often sub-
ject to logic synthesis optimizations before it is mapped to the
technology library.

The RTL circuit was mapped to NEC’s CMOS6 tech-
nology library [35], and NEC’s in-house simulation-based
gate-level power estimation tool, CSIM [36], was used to
monitor the switching activity, both including and excluding
glitches, at selected datapath and control signals.1 It bears men-
tioning at this point that since CSIM is a commercial tool, it has
been calibrated with SPICE and benchmarked within 10% of

1The simulator models each0 ! 1 or 1 ! 0 transition as half a transition,
leading to fractional numbers used in examples throughout this paper. The sim-
ulator uses an inertial delay model to capture the effect of glitch attenuation at
gates.

RAGHUNATHAN et al.: HIGH-LEVEL MACRO-MODELING AND ESTIMATION TECHNIQUES 541

TABLE I
ACTIVITIES WITH/WITHOUT GLITCHES FOR VARIOUS

SIGNALS OF THEGCD CIRCUIT

SPICE. The power and delay models for individual library cells
used in CSIM were constructed using SPICE. It incorporates
several state-of-the-art gate-level power simulation techniques,
including state-dependent power modeling, accurate glitch
filtering using inertial delay model, etc. The results are reported
in Table I. The numbers shown in the table demonstrate that
switching activity estimates that ignore glitches can be quite
inaccurate for data as well as control signals.

Conventional RTL power estimation techniques would
compute the power consumed in each of the RTL blocks in
the circuit using only zero-delay activity information
at the block inputs. The inaccuracies in switching activity
estimates in turn lead to inaccuracies in RTL estimates for
power consumption. In order to explore the ramifications of the
above assumption, we performed the following experiments.
First, the entire circuit implementation was simulated
using CSIM and several typical input sequences, to estimate
its average power consumption. The power consumption was
reported to be 1.64 mW. This figure includes the effect of glitch
propagation across RTL blocks, since the entire circuit was
used in the simulation. Next, we performed an RTL simulation2

using the same input trace, and collected traces at the inputs of
each embedded circuit block. The implementation of each RTL
block in the circuit was simulated separately (the controller
was considered as a single block) using the zero-delay traces
derived in the previous step, and the individual power estimates
were accrued to yield a power estimate of 1.32 mW for the
entire circuit (an under estimate of 19.5%).

As mentioned in Section I, glitches generated at the control
signals (outputs of the controller) themselves have a significant
impact on the datapath power consumption. In order to study
this effect, we performed another experiment with the RTL
circuit. The circuit was partitioned into two separate subcircuits,
the datapath, and the controller. Zero-delay traces were col-
lected at the inputs of each subcircuit using RTL simulation, and
used to simulate implementations of the controller and datapath
separately. Thus, the effects of glitches at: 1) the datapath out-
puts (status signals) that feed the controller; and 2) the controller
outputs (control signals) that feed the datapath were ignored for

2The RTL simulation results in zero-delay traces (that do not include glitches)
at various datapath and control signals.

Fig. 2. Overview of our RTL power estimation tool flow.

this experiment, while glitch proliferation within each subcir-
cuit was considered. The sum of the individual power estimates
for the controller and datapath was 1.45 mW, indicating that it
is important to consider the effects of glitches on the status and
control signals during switching activity and power estimation
for the datapath. In comparison, when we applied the glitching
activity and power estimation techniques presented in this paper
to the circuit, we obtained an estimate of 1.53 mW, that
corresponds to an error of 6.7% compared to running gate-level
power estimation on the entire gate-level circuit.

V. RTL POWER ESTIMATION METHODOLOGY

The flowchart shown in Fig. 2 provides an overview of our
RTL power estimation technique, which consists of three sepa-
rate phases. The aim of the first phase is to obtain the zero-delay
statistics at various signals in the RTL circuit. We use RTL
cycle-based simulation for this purpose. The given RTL circuit
description is simulated using a test bench containing a long
sequence of typical input sequences, created using an under-
standing of the design’s functionality and interface. However,
these test benches could also be automatically generated in order
to conform to given primary input statistics. During the sim-
ulation run, we collect a variety of word- and bit-level signal
statistics that are used during the later phases of our technique.
The advantages of using simulation to calculate zero-delay sta-
tistics are its flexibility (it is relatively straightforward to use
the procedure for mixed-level descriptions, e.g., logic-RTL and
RTL-behavioral descriptions), and the high speed of RTL cycle-
based simulation. However, it is also possible to easily inte-
grate other techniques of calculating zero-delay statistics (e.g.,
entropy based techniques, or Monte-Carlo techniques) into our
power estimation methodology.

As mentioned in Section IV, switching activity estimates
for various datapath and control signals can be highly un-
derestimated if glitch generation and propagation in the RTL
circuit are ignored. The second phase of our tool augments
the zero-delay signal statistics derived in the first phase by

542 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

estimating glitching activity for signals in the RTL circuit. As
we illustrate later, glitching activity at the output of an RTL
block depends on the zero-delay signal statistics as well as
glitching activity at the block’s inputs. Hence, the glitching
activity estimation procedure traverses the RTL circuit starting
at primary inputs/register outputs, which are assumed to be
glitch-free, and “propagates” glitching activity information for-
ward through RTL circuit blocks until we reach primary out-
puts/register inputs. The glitching activity estimation phase is
explained in more detail in Sections VI and VII.

In the third phase, the zero-delay signal statistics and
glitching activity estimates derived in the first two phases are
used to calculate power consumption in each RTL module. For
this purpose, we develop and use power models for various
RTL blocks like functional units, comparators, multiplexers,
and registers. The power model captures the variation of power
consumption as a function of zero-delay as well as glitching
activity at the block’s inputs. Our procedure for the generation
and use of power models differs from those presented in [22]
by accounting for glitches, and the fact that we use bit-level
models for RTL blocks that operate on bit-vectors that may
not be associated with a word-level value (e.g., multiplexers,
registers, bit-vector concatenation and splitting, bitwise logic
operations, etc.). Our power modeling techniques are explained
in detail in Section VIII.

VI. ESTIMATING GLITCHING ACTIVITY IN THE CONTROLLER

In this section, we develop techniques to estimate glitch gen-
eration and propagation through the controller, which can sig-
nificantly affect the total power consumption as shown in the
previous section. The controller’s inputs are the status signals
from the datapath (possibly including outputs of functional units
such as comparators, or data register values), while its outputs
are the control signals that feed the datapath. Clearly, glitch gen-
eration and propagation in the control logic can be exactly esti-
mated only if detailed information regarding the structure of the
controller implementation and delays are provided. However,
the final implementation of the controller is typicallynot avail-
able during high-level design iterations. Moreover, the timing
properties of signals within the control logic depend on timing
information of the status signals (controller inputs), which in
turn may transitively depend on timing information at other
datapath signals. Thus, deriving accurate timing information at
control signals could require synthesizing the entire controller
and datapath, which is often prohibitively expensive to perform
within high-level design iterations. We propose techniques to
compute the switching activity at control signals by combining
zero-delay activity estimates derived from RTL simulation, with
glitching activity estimates derived fromcontrol expressions, as
explained in this section.

The control logic is typically represented ascontrol expres-
sionsduring the high-level synthesis process. These control ex-
pressions are expressed in the form

(1)

where represents a decoded controller state variable (corre-
sponding to controller state), represents a status signal
(e.g., the output, or inverted output, of a comparator from the
datapath), represents the BooleanOR operation, and and
represent the BooleanAND operation. Each product term in the
control expression is derived to flag the occurrence of a partic-
ular combination of values at the status signals when the con-
troller state is . Note, that, the representation for the control
logic described above assumes that the encoding used for the
controller state is known. However, there is no restriction on the
encoding itself, i.e., any desired state encoding can be used for
the controller.

In general, glitching activity may be present at a control signal
due to the following reasons. The status signals and de-
coded state signals may themselves carry glitches, which prop-
agate through the control logic, causing the control signals to be
glitchy. On the other hand, the control logic can also generate a
significant amount of glitches. Our glitching activity estimation
procedure is based on separately estimating and summing, for
each gate in the control logic, the glitching activity generated in
the gate and the glitching activity propagated through the gate
from its inputs.

A. Estimating Glitch Generation in the Controller

Glitch generation occurs when a gate’s input signals satisfy
certain logic (values assumed by the gate’s inputs) and tem-
poral (timing relationship between events at the gate’s inputs)
conditions. While the logic conditions can be easily monitored
during functional simulation, the interdependence of datapath
and control logic timing makes it difficult to estimate control
logic timing accurately without synthesizing the complete cir-
cuit. In this section, we describe a novel technique to estimate
glitch generation that is based on extracting and usingpartial
delay informationin the form of timing relationships between
signals in the control logic.

In general, thelogic conditionsnecessary for glitch genera-
tion at a gate during an interval of time are as follows:

• there should be at least one rising and at least one falling
transition at the gate’s inputs;

• no input should assume a steady controlling3 logic value
throughout the interval under consideration.

Assuming an inertial delay model, the temporal condition for
glitch generation in anAND gate is as follows:

• the earliest falling transition arrives after the latest rising
transition by an interval that is greater than the gate’s in-
ertial delay.

Similar conditions can be derived for glitch generation in other
types of gates.

Given a control expression in a sum-of-products form, as
shown in (1), the logic conditions for glitch generation for each
product term (conjunctive orAND expression) and the disjunc-
tive (OR) expression combining the product terms can be easily
monitored during the first phase of our RTL power estimation
procedure, i.e., zero-delay RTL simulation. Checking whether

3A controlling input value for a gate uniquely determines the value at the gate
output, irrespective of values at the gate’s other inputs.

RAGHUNATHAN et al.: HIGH-LEVEL MACRO-MODELING AND ESTIMATION TECHNIQUES 543

the temporal conditions for glitch generation are satisfied in an
accurate manner, however, is not as straightforward. Accurately
predicting the generation of glitches at a gate requires a knowl-
edge of the exact times at which each of the gate’s inputs makes
a transition, if any, in each clock cycle. One possible approach
that has been suggested in other contexts in power estimation to
tackle the lack of accurate delay information is to make a pes-
simistic assumption, i.e., assume that glitches are generated at
a gate whenever the logic conditions for glitch generation are
satisfied [37]. However, in practice, this pessimistic assumption
often leads to substantial over-estimates of glitches at control
signals, as shown in the following example.

Example 1: Consider the control signal in the
RTL circuit of Fig. 1. The control expression for is

. We would like to estimate the glitching
activity at control signal , given the traces for each of the
decoded state and comparator output signals that were captured
during the zero-delay RTL simulation phase. In this case, signals

, , , were found to be glitch-free,4 simplifying the
problem to that of estimating glitchgenerationat .

For the time being, let us make pessimistic assumptions to
tackle the lack of availability of complete temporal information,
i.e., we conclude that glitches are generated whenever the logic
conditions for glitch generation are satisfied. Clearly, the first
product term cannot generate any glitches. From the simu-
lation traces, we computed the statistics for logic conditions for
glitch generation at the second and third product terms

In the above equations, the symbolsand denote the
rising and falling transitions, respectively. The expression

represents the number of instances
(consecutive pairs of cycles) in the simulation trace where
makes a falling transition, while simultaneously makes a
rising transition. Since these numbers refer to counts of events
that occur at different points in time (clock cycles), they can be
added. Thus, we conclude that the glitching activity generated
due to the second and third product terms is 35 and 65, respec-
tively. The glitches generated at each product term propagate
to the output unmitigated, since the decoded state variables are
mutually exclusive. In addition, for the given simulation traces,
it was observed that the logic conditions for glitch generation
wereneversatisfied for the disjunctive (OR) term. Hence, the
glitching activity at control signal was estimated to be
100 transitions over the entire simulation period. A comparison
with the glitching activity observed using CSIM for the same
input traces and reported in Table I shows
that the glitching activity at was over-estimated by the
pessimistic approach by as much as 92.3%!

4In general, we do not make any assumptions about the absence of glitching
at the status inputs or decoded state variables—any subset of them could be
glitchy.

Although exact arrival time information at various signals is
not available, it is often possible to derivepartial information
about delays from RTL descriptions or during high-level syn-
thesis. For example, the outputs of comparators can often be
assumed to arrive later than the decoded present state signals,
even when we do not have any knowledge of their exact arrival
times. In general, inputs to each gate in the control logic can be
divided intoearlyarriving signals,latearriving signals, and sig-
nals whose arrival time information is assumed to beunknown.
Even a small set of relative timing relationships between inputs
to a gate can be used to refine glitch generation estimates, as
shown in the following example.

Example 2: Let us revisit control signal in the
circuit that was used for the discussions in Example 1. Sup-
pose we are allowed to make the assumption that the comparator
output signals, and , arrive after the decoded state vari-
ables, , , and . Consider Case 1 (,) in the
equations presented above. Since the rising transition arrives
later than the falling transition in this case, the temporal con-
ditions for glitch generation arenot satisfiedfor this case. Sim-
ilarly, it can be seen that Case 3 does not satisfy the temporal
conditions for glitch generation in the third product term. The
revised glitching activity estimate for is 50, which rep-
resents an error of only 4% with respect to the number reported
by CSIM.

The explanations used in the above example can be gen-
eralized as follows. RTL timing analysis techniques [1], [2],
[4] have been proposed for controller/datapath circuits, which
can provide an estimate of the minimum clock period of the
implementation. These techniques can identify the longest
topological as well as sensitizable (true) paths using bit-level
delay models for datapath macro blocks and gate delay models
for control logic. For our subsequent explanations, we as-
sume that we have two procedures, RTL_MAX_DELAY_EST()
and RTL_MIN_DELAY_EST(), which compute the latest and
earliest arrival times (i.e., the longest and shortest path),
respectively, for each signal in the control logic. Suppose
that this information is pre-computed and stored in two
arrays and , as indicated
by procedure DERIVE_RTL_DELAY_INFORMATION shown in
Fig. 3. Consider two signals and in the control logic for
which transitions have been detected in a cycle of zero-delay
simulation. If ,
we can conclude that the transition at signalarrives after the
transition at signal with an error margin of . The larger
the value of , the larger the confidence we have that the
above conclusion will hold at the lower levels. Fig. 3 shows a
procedure GATE_GLITCH_GENERATION which, when invoked
on each gate in the control logic after each cycle of zero-delay
simulation, will determine whether glitch generation occurred
at the gate output. A user-specified parameter,Thresh, that is
passed to this procedure selects an appropriate safety factor
or error margin used for inferring partial delay relationships.
SettingThreshto be equal to a value larger than the longest
path in the RTL circuit will result in the use of the pessimistic
approach (without any delay information) for estimating glitch
generation. Lower values ofThresh naturally provide less

544 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

Fig. 3. Procedure for estimating glitch generation at a gate in the control logic using partial delay information.

pessimistic estimates, however, very low values ofThreshwill
make the estimate more sensitive to variations introduced by
interconnect between RTL components, effects of random
logic synthesis, clock skew, etc. From our experiments, we
found that settingThreshto 15% of the circuit’s longest path
produced consistent and reasonable results.

B. Glitch Propagation Through the Control Logic

We next explain our procedures for estimating glitch propa-
gation through the control logic, i.e., from the inputs of the con-
trol logic or internal signals to the controller’s outputs. We use a
procedure based on the gate-level activity estimation technique
proposed in [38] for this purpose. The procedure is illustrated
below.

Consider again the generic control expression given in (1).
Consider a particular comparator output, , which we have
predicted to be glitchy based on our datapath glitching activity
models. Let us rewrite the control expression by separating the
product terms into terms in which appears, terms in which

appears, and terms that do not depend on

(2)

In order for glitches at to propagate to the control signal, at
least one of the product terms it is involved in must have noncon-
trollingsideinputs(i.e.,1),andtheresultofallotherproduct terms
shouldevaluateto0.Hence, thefollowingequationcanbeutilized
to estimate the propagation of glitches to the control signal

OR AND

(3)

In (3), represents the glitching activity at . The term
in (3) can be thought of as the probability that the control

signal will be “sensitized” to glitches at . This probability can
be computed easily during the zero-delay RTL simulation phase.
The same technique can be applied to model the propagation of
glitches from other controller inputs and internal signals (i.e.,
outputs of each product term) to a controller output.

RAGHUNATHAN et al.: HIGH-LEVEL MACRO-MODELING AND ESTIMATION TECHNIQUES 545

The following example illustrates a potential inaccuracy of
the above procedure for estimating glitch propagation, and pro-
poses a new technique to address the problem.

Example 3: Consider control signal of the RTL
circuit. The control expression for is

. For this example, we focus on the prop-
agation of glitches from to through the product
term . Using (3), and the observation that the product
terms are mutually exclusive, we can establish the contribution
of the product term of interest to be . From
the RTL simulation traces, we calculated the value of
to be 0.647. Combining this number with the estimated glitching
activity at , we obtain an estimate of 27.3 (cumulative ac-
tivity for the entire simulation run) for the glitching activity due
to the term . However, the glitching activity reported
by CSIM for the entire simulation run was only 1.0! Upon fur-
ther investigation into this discrepancy, it was observed that the
conditions for glitch generation at signal werenegatively
correlatedto the conditions for glitch propagation through the
chosen product term. In other words, in consecutive pairs of cy-
cles in which the controller made a state transition into state

, the data inputs of the comparator were actually unchanged,
leading to no propagation of glitches from through the
product term .

We resolve the above problem by predicting the glitches at
separatelyfor each controller state. For example, in order

to predict the glitch propagation for the product term ,
we estimate the glitching activity at for only those consec-
utive pairs of cycles where the final controller state is. Since
we are decomposing the glitches at into separate estimates
for each state, we refer to this technique asglitching activity de-
composition. In general, the process of glitching activity decom-
position involves identifying a set of disjoint conditions whose
probabilities add up to 1, and estimating glitching activity sep-
arately under each condition. For example, the set of conditions

satisfies
this requirement. In our work, we only use the controller state
as the basis for glitching activity decomposition (since the con-
troller state often determines whether the data values at the in-
puts to the comparators change, and since we empirically found
it to yield satisfactory results). The benefit of glitching activity
decomposition is that it exposes any correlations between the
conditions required for glitch generation and those required for
glitch propagation, leading to an improvement in the accuracy
of the glitch estimates. Note, that in order to compute a separate
figure for glitching activity at in state , we must in turn
compute separate figures in statefor the zero-delay statis-
tics and glitching activity at the inputs of the comparator that
generates . However, in practice we did not observe any
computational bottlenecks due to decomposition, since 1) the
decomposition of statistics by state was limited to only the tran-
sitive fanins of those comparators that were found to generate
glitches and 2) separate statistics were computed only for those
states that were related to a glitchy comparator output through
a product term. In the current example, we found that when the
controller made a state transition to state, the temporal cor-
relation at the inputs of the comparator was very high, leading

Fig. 4. Scatter plot of switching activity at control signals. RTL estimate versus
CSIM.

to minimal generation of glitches in . The predicted glitching
activity at the output of theAND gate implementing now
becomes 3.0, which is much closer to the number reported by
CSIM.

In order to get a feel for the accuracy of our switching activity
estimation techniques for control signals, we provide results
comparing our estimates to the switching activity measured
after a complete gate-level implementation using CSIM, for all
distinct control signals in the RTL circuit (except ,
which is not glitchy). The scatter plot shown in Fig. 4 shows
the results of our experiment. The-coordinate represents
the total switching activity reported by CSIM for the control
signal, while the -coordinate represents the switching activity
estimated using our RTL activity estimation procedure. As a
reference, the plot also shows a solid line for the equation

, i.e., points in the scatter plot close to this line indicate
a high accuracy in the RTL estimates. The figure indicates
that our control signal switching activity estimation techniques
produce estimates that are quite close to the activity numbers
obtained using CSIM after a time-consuming implementation
of the complete controller and datapath.

Webelieve thatourcontrol expressionbasedglitchinganalysis
techniques work satisfactorily for control logic in RTL circuits
generated through high-level synthesis tools, as opposed to arbi-
trary logic circuits. Also, note that while each individual control
expression is represented as a two-level expression, that is not the
same as flattening the entire cone of logic driving the control sig-
nals into two-levels. If we trace back the cone of logic driving a
control signal until we reach registers, it may contain several cas-
caded components, including datapath components (arithmetic
units, comparators), and control expressions. Thus, the accuracy
of the control logic switching activity estimates should be at-
tributed to a combination of various techniques, and not just the
control expression based techniques.

VII. M ODELING GLITCH GENERATION AND PROPAGATION

IN DATAPATH BLOCKS

For datapath blocks which operate on multibit input signals
that are associated with a word-level value (e.g., adders, sub-
tracters, multipliers, and various comparators), previous work

546 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

[22] has shown that it is possible to construct activity-sensitive
power models that utilize the statistics (mean, standard devia-
tion, etc.) of the word-level value associated with each multibit
input signal, rather than consider signal statistics for each
input bit. Several datapath blocks, however, do not associate
any word-level value to their multibit input signals. Common
examples of such blocks are multiplexers, registers, vector
logic operations, logic shift units, etc. We model each bit-slice
of such units separately.

A. Bit-Level Glitch Generation and Propagation Models

Bit-level modeling allows us to build more accurate glitching
activity models, and to consider the effects of bit-level statistics
that may not be well reflected by word-level signal statistics
in certain situations. For instance, if a bit-vector signal,
consisting of bits, is split into two smaller bit-vectors
and that consist of and bits, respectively, we would
like to estimate the glitching activity at and separately.
The extra computational effort spent here is well justified for
control-flow intensive designs where the total circuit power
consumption may be dominated by power consumption in
multiplexers, registers, and bit-manipulation operators. Note,
that bit-level models are constructed only for modules where
different bit-slices do not have any dependency. By dependency,
we mean that the output of one bit-slice is an input to another
bit-slice. The case, where different bit-slices share an input,
is handled by our approach, as illustrated in the following
example using a multiplexer. In addition, the efficiency of
bit-level modeling derives from the fact that each bit-slice
depends on a reasonably small number of input bits. In the
case of, say, a barrel shifter (with variable bidirectional shift),
each output bit can depend on all the input bits. Such a
block would be subject to word-level macro-modeling in our
approach.

We illustrate bit-level glitching activity models through the
example of a 2-to-1 multiplexer. We first develop a simple model
for the generation of glitches in a multiplexer when its inputs
are glitch free. A multiplexer bit-slice has two data input bits
and , and one select input . The number of distinct input
vector pairs that can be applied at, , and is .
Since the above number is small, it is possible to simulate the
implementation of a 1-bit multiplexer for the exhaustive set of
64 input vector pairs, and build a look-up table that stores the
glitches generated at the output for each vector pair. The lookup
table can be thought of as a six-dimensional array ,
and the entry of the table corresponding to present and previous
input values , , , , ,
is written as

. During the zero-delay RTL simulation phase, we
compute the glitch generation at each bit-slice of a multiplexer
by looking up the appropriate entry of the table.

The output of a multiplexer can also be glitchy due to the
propagation of glitches from the data and select inputs. We
model the propagation of glitches from a data input to the
multiplexer output as being “regulated” by the probability that
the glitchy data input is selected. For a 1-bit slice, assuming

is selected when , the glitching activity at the
multiplexer output due to propagation from is given by

Fig. 5. Modeling propagation of glitches from a multiplexer select signal.

Fig. 6. Circuit used to compute the coefficientsD ,D , andD .

. A similar explanation holds for the
propagation of glitches from . The glitches from the select
signal of a multiplexer may propagate to the output through
multiple reconvergent paths, depending on the values of the
data inputs, as shown in the following example.

Example 4: Consider the gate-level implementation of an
embedded multiplexer bit-slice that is shown in Fig. 5. The
table shown in Fig. 5 reports the glitches at the multiplexer
output for all possible values of the data signal bits and

. In the case, glitches on select signal are killed
at AND gates and due to controlling side inputs. When
data inputs are , glitches on propagate through
gates and (and). Finally, when data inputs
are , glitches on propagate through gates and

. The output of the multiplexer is glitchy as a result of
the interaction of the glitchy signal waveforms at and .
The exact manner in which the waveforms interact depends
on the propagation and inertial delays of the various wires
and gates in the implementation. We conclude that the glitch
propagation from the select input of a multiplexer to its output
is affected by thespatial correlationbetween the data inputs.
Hence, simply measuring the signal probabilities at each data
input bit to a multiplexer will not suffice.

Our model for glitch propagation from the select signal of the
multiplexer to its output is given by the following:

The probabilities , ,
and are monitored for each multiplexer
bit-slice during the zero-delay simulation phase. The constants

, , and depend on the exact implementation of the
multiplexer, and are computed by performing experiments using
the circuit configuration shown in Fig. 6. The comparator is
used to generate glitches at the select input to the multiplexer
by feeding appropriate vector sequences at its inputs. In order
to calculate , the multiplexer’s data inputs are fixed to

and . CSIM reports the values of
and for each . Note that also includes
the effects of glitch generation in the multiplexer. Hence, we use
the zero-delay traces at the multiplexer inputs to estimate glitch

RAGHUNATHAN et al.: HIGH-LEVEL MACRO-MODELING AND ESTIMATION TECHNIQUES 547

generation in the multiplexer using the look-up table based pro-
cedure described earlier. We subtract the estimated glitch gen-
eration from , average the resulting difference over
all , and divide by the value of to obtain the value of

. The coefficients and are calculated similarly.
In summary, the glitching activity at the output of an-bit

multiplexer with data inputs and , select input and
output is calculated using the following:

(4)

Note that the glitch generation model is dependent on the
implementation of the multiplexer. However, since we are
simulating the lower level netlist of the multiplexer when con-
structing the model, we will take this effect into account when
constructing the glitch generation and propagation models.
The example in Fig. 5 uses a simple implementation as an
example. However, our models do not assume or require that a
multiplexer is always implemented in this way. For example, in
the case of a pass-transistor implementation, constant in
the multiplexer glitch propagation model will be zero.

B. Word-Level Models for Glitching Activity

We next focus on datapath blocks that operate on multibit
input signals that are associated with a word-level value (e.g.,
adders, subtracters, multipliers, and various comparators). As
shown in [22], for such units it is possible to utilize the statistics
(mean, standard deviation, etc.) of the word-level value associ-
ated with each multibit input signal rather than consider signal
statistics for each input bit. The glitching activity at the output
of an embedded datapath block depends on its functionality as
well as its implementation details, zero-delay statistics at the
input signals (e.g., mean, standard deviation, spatial and tem-
poral correlations in the case of signals with a numeric value),
and glitching activity at the inputs themselves.

It is possible to also use the signal statistics of the module
outputs as parameters in the glitching and power macro models.
For any input vector, the value at the output of a combinational
macro block is completely determined by the values at the inputs
of the module. However, the same property does not hold in the
statistical domain. Since a specific set of signal statistics is only
a “partial specification” of an input sequence, the input signal
statistics may not completely determine the output signal sta-
tistics. Indeed, subsequent work has explored this possibility in
a slightly different context [30], and shown that good accuracy
can be obtained while employing a small number of variables in
the macro model.

Our decision to use only input signal statistics was due to
the fact that, in a statistical sense, we cannot really consider
the statistical properties (mean, standard deviation, temporal
correlation) of the output signal of a macro block as indepen-
dent variables with respect to the statistical properties of its
inputs. This has implications for both generation of patterns
for characterization as well as the statistical analysis tests used
(e.g.,ANOVA5). However, with additional effort to address the
above issues, we believe it is quite possible to extend the
overall approach presented in this paper to consider output
signal statistics.

We construct glitch models for various library components
through a process of characterization using a lower (gate-)level
implementation of the block, and a gate-level power simulation
tool. The characterization process consists of constructing con-
trolled experiments (simulation runs) by selectively varying one
or more of the controllable variables (zero-delay statistics and
glitching activities at the block inputs), and observing the value
of the dependent variable (glitching activity at the block output).
Given a set of sample data points obtained from the character-
ization experiments (observations), there are several statistical
regression techniques [39] that can be used to build a model that
predicts the output glitching activity. One possible approach is
to attempt to fit a particular function (e.g., a linear function) to
the observed data points, by tuning the function’s parameters
or constants in such a way that some metric (e.g., the sum of
error squares) is minimized. However, it is often the case that
the observed dependency of glitches at the output of an RTL
block on some of the controllable variables is not well modeled
by such simple relationships. An alternative approach, that we
have found to be much more flexible and suited to automation
is the use of one or morepiecewise linear modelsfor capturing
the relationship between glitches and the various controllable
variables.

We illustrate the process of deriving the glitching activity
models for the case of an 8-bit subtracter with inputs named

and , and output . In general, the glitching activity at
can be written as

(5)

The first seven parameters of represent the zero-delay
signal statistics at and . represents the mean or
expected word-level value represented by signal, rep-
resents its standard deviation, is the temporal correlation
coefficient that represents the correlation between consecutive
values that appear at signal, is the spatial correlation
coefficient of and [40]. represents the glitching
activity at . Parameters with subscripts have a similar
meaning. The brute-force approach for building a model for

would involve discretizing the range of variation of each
of the parameters with a desired granularity, generating input
sequences that correspond to each possible set of values for the
parameters, and simulating the implementation of the subtracter
to observe the glitching activity at the subtracter’s output for

5ANOVA stands for Analysis Of VAriance, which is a popular technique
used for statistical inference and testing.

548 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

each case. Assuming that each parameter can assumepos-
sible values, the above approach will require simulations,
where is the number of parameters or independent variables
considered. In the case of the subtracter, , and even
assuming leads to 1.95 million simulation runs! Clearly,
the brute-force approach is undesirable, in spite of the fact that
building the models is a one-time cost for a given component
library. We use two techniques to avoid the combinatorial
explosion in the number of simulation runs required.

The first technique, calledvariable elimination, attempts to
reduce the number of independent variables in the glitching ac-
tivity model by identifying those variables whose variations af-
fect the dependent variable (output glitches) minimally. We use
techniques from multivariable data analysis for this purpose.
Given a set of samples (each sample consists of a set of values
for the independent variables , and the corresponding
observed value that the dependent variableassumes), we can
use theANOVAtest to check whether the null hypothesis for any
given variable is true, i.e., whether different values of had
any impact on the observed sample values of[39]. We used
a commercial statistical analysis package, StatPlan IV [41] for
performing ANOVA tests on our samples.

The second technique, calledmodel decomposition, attempts
to decompose the function into multiple subfunctions by
partitioning the set of parameters into smaller groups of vari-
ables such that the effects of variables from different groups on
the dependent variable interact minimally. Again, it is possible
to use ANOVA techniques to obtain a quantitative evaluation of
the interaction of the effects of two independent variables on the
dependent variable from a given set of samples, as follows:

• for each pair of independent variablesand , we com-
pute the correlation coefficient that determines the effect
of the interdependence of and on the dependent
variable;

• we construct an edge-weighted undirected graph, called
themodel decomposition graph, in which vertices repre-
sent the independent model variables and an edge, whose
weight equals the appropriate correlation coefficient de-
termined in the previous step, exists between every pair
of vertices; note that the model decomposition graph is a
complete graph;

• we partition the model decomposition graph into cliques
such that the sum of the clique weights is maximized
(the weight of a clique is defined as the sum of its edge
weights).

Each clique obtained in the last step represents a subfunction.
The sum of the clique weights is an indicator of the quality of
the decomposition. We impose a limit on the size of any clique
in order to restrict the size of the resulting model subfunctions.
Although the problem of minimum weight clique partitioning is

-hard [42], the sizes of the graphs we encountered in prac-
tice were quite smallnumber of vertices . Hence, we em-
ployed an exact branch-and-bound algorithm.

In the case of the subtracter, for example, the basic model of
(5) can be decomposed into the following:

(6)

The independent variables have been partitioned in (6) into
the groups, , , ,

, and . The above partition was based on
the observation that variables within each group have a signifi-
cant interaction in their effect on the dependent variable, while
the variables in distinct groups are relatively independent in
their effects. We investigated both additive (equivalently, sub-
tractive) and multiplicative (equivalently, divisive) relationships
between the subfunctions. The multiplicative relationship was
chosen intuitively due to the property that a wider range of vari-
ation is possible in the product through a given variation of one
of the multiplicands. In practice, it also resulted in better models
in terms of mean square error or average absolute error at the
fitting points. As before, assuming we discretize the domain for
each parameter into five distinct regions, we would need to per-
form simulations for different
sets of parameter values, which can be performed much more
efficiently compared to the approach of building a single huge
piecewise linear model from (5).

Having partitioned the set of independent variables into
smaller groups as shown in (6), we proceed to build piecewise
linear models for each of the subfunctions .
Note that the subfunctions are composed using a multiplicative
relationship. Hence, we can view one of the subfunctions, say

, as abase power model, and the remaining subfunctions
as multiplicative correction factors. The base glitch model in
the form of a contour plot is shown in Fig.7 (a). Consider the
subfunction . In order to construct the model
for this subfunction, we perform controlled experiments where
we first discretize the range of variation of and into
a finite number of uniformly spaced points. For each point
that corresponds to distinct values for and , we
construct long vector sequences that have the desired values
for and . Well-known algorithms exist to generate
sequences whose means, standard deviations, and spatial and
temporal correlations conform to desired values [43]. These
methods assume a particular distribution (we used Gaussian
or normal distributions for our experiments) that has zero
mean and unit standard deviation, scale them to the desired
mean and standard deviation, and then transform them so as
to introduce the desired spatial and temporal correlations. The
subtracter implementation is simulated using CSIM and the
values of glitching activity at the output are recorded. The plot
in Fig.7 (b) shows the results in the form of a contour plot.
Note that the values in the plot are normalized to the case of

, since represents a multiplicative
correction factor to the base power model , which was
derived assuming and to be fixed to 25.6. Given the
values of and for an embedded subtracter, the value
of is estimated from the values at the four points nearest
to it in the discretized space, using standard linear
interpolation techniques. The models for are
provided in Fig.7 (c)–(e).

In order to generate the model for , we needed to
generate input sequences to the subtracter that have varying
glitching activitiesat and . In order to do that, we used
the circuit configuration shown in Fig. 6. We added two
multiplexers to feed the inputs of the subtracter, and connected

RAGHUNATHAN et al.: HIGH-LEVEL MACRO-MODELING AND ESTIMATION TECHNIQUES 549

Fig. 7. Glitching activity models for an 8-bit subtracter.

their select input to the output of a comparator. Given a
sequence of input vectors to the comparator that is known
to generate glitches, we can control the glitches at the outputs
of the multiplexers through the spatial correlations at their
inputs, as illustrated earlier in this section.

VIII. RTL POWER MODELS

Given the zero-delay and glitching activity estimates obtained
from the first two phases of our tool, the third phase uses several
word- and bit-level power models that we have developed for
various RTL blocks, which we discuss in this section.

A. Word-Level Power Modeling Techniques

Our word-level black-box models and the procedures used
to derive them differ from those presented in [22], the main
conceptual difference being that our models also account for
glitching activity at the inputs of a block. The process of de-
riving power models is similar to that of deriving glitching ac-
tivity models, except that the dependent variable now becomes
the total power consumption as opposed to the glitching activity
at the output of the block. As explained in Section VII, we at-
tempt to simplify the modeling process by using the techniques
of variable elimination and model decomposition.

As an example, consider an 8-bit less-than comparator.
The power model for the comparator is decomposed into
subfunctions, and the model for each subfunction is illustrated
by the plots in Fig. 8. Note that glitchy inputs can cause a sub-
stantial increase in the power consumption of the comparator,
as shown in Fig.8 (e), confirming the importance of considering
glitching activity at the inputs of various RTL blocks during
estimation.

B. Bit-Level Power Models

For datapath blocks which do not associate any word-level
value to their multibit input signals, we derive bit-level models
for power consumption. The power models use the bit-level
signal and zero-delay transition probabilities, correlations and
glitching activity to calculate power consumption in each bit-
slice of the block separately. For example, the power consump-
tion in an -bit multiplexer is modeled as follows:

(7)

The term represents the power consumption in
the multiplexer ignoring glitching activity at its inputs. The
remaining three terms are additive correction factors used to
capture the effect of glitches at the select and data inputs. As
with the case of the glitch generation model, we apply all 64

550 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

Fig. 8. Word-level power models for a less-than(<) comparator.

possible vector pairs to a 1-bit multiplexer, measure the power
consumption using CSIM, and store the results in the form
of a table called . During the RTL zero-delay
simulation phase, we look up the entries of this table using the
present and previous values at the inputs of each multiplexer
bit-slice to determine its power consumption. The presence
of glitches at the select input can significantly increase the
power consumption in the multiplexer. We model the power
consumption separately for the cases when the data inputs are
00, 01, 10, and 11. The coefficients are
obtained by performing controlled experiments with the circuit
configuration shown in Fig. 6 by fixing the multiplexer data
inputs to 00, 01, 10, and 11, feeding an input sequence to the
comparator that causes it to generate glitches, observing the
power consumption for the multiplexer reported by CSIM, and
subtracting the base power factor to avoid double counting.
Note that even when glitches at do not propagate to the
output, they could cause power consumption internal to the
multiplexer. Hence, we have a separate term in the
expression for , even though such a term
was not used in the corresponding glitching activity model
for multiplexers. The purpose of and

is to similarly account for the effect of
glitching activity at and .

The power model for an-bit register that has a data input,
a clock input , and output , is given by the following:

(8)

The first term accounts for the power dissipated due to the
clock line switching. The value of is measured by

simulating the implementation of a register while holding
constant the value of . The second term accounts for the
power dissipated due to the zero-delay activity ator ,
i.e., when the value stored in the register changes. Note that

. The value
of is determined by simulating the register under a
long, glitch-free input sequence, subtracting the contribution
of the clock transitions, and dividing the residual power per
bit-slice by the average bit-level activity at the output of the
register. The last term models the effect of glitches at the input
of a register. The value of is determined by simulating
the register under a glitchy input sequence and subtracting
estimates for the effect of the first two terms. Note that usually

for all , .

C. Controller Power Estimation

In order to obtain an estimate for the total RTL circuit power
consumption, we must also estimate the power consumption
in the controller. As mentioned previously, the complete con-
troller implementation is typically not available until logic syn-
thesis optimizations have been performed. Hence, it is difficult
to obtain an accurate estimate of the controller power. In [22],
models for controller power were proposed based on the target
implementation style (e.g., PLA, ROM, standard cell), and the
number of states, inputs, and outputs of the controller. The con-
troller consists of a state register, next state logic, and decode
(or output) logic. Control expressions are typically used to rep-
resent the functionality of the next-state logic and decode logic
during high-level synthesis. For the purposes of estimating con-
troller power, we assume that the next state and decode logic are
implemented in a straightforward manner from their control ex-
pressions. The zero-delay switching activity at various signals
in the controller is monitored during the RTL simulation. Later,

RAGHUNATHAN et al.: HIGH-LEVEL MACRO-MODELING AND ESTIMATION TECHNIQUES 551

we estimate glitching activity using the control expressions, as
explained in Section VI. We multiply the total (zero-delay
glitching) activity at the output of each gate in the controller
with approximate values for gate output capacitance (we as-
sume typical values for a 2-inputAND gate, 2-inputORgate, and
INVERTER) to yield a power consumption estimate for the con-
troller. The power consumption in the state register is estimated
using the model for register power presented earlier.

IX. THE POWER ESTIMATION PROCEDURE

We next give some details of our activity and power anal-
ysis procedures. We first parse and compile the RTL hardware
description language (HDL) description into an RTL data struc-
ture that is described below. An RTL circuit is represented
using a directed graph data structure, . Each
vertex represents a circuit component, and each arc

represents an interconnection between components. Each
vertex has a distinct type that can assume one of five values:

, , , , . nodes repre-
sent primary inputs (primary outputs), nodes represent
registers, nodes represent instances of operators from the
RTL component library (including arithmetic and bit-vector
operators, multiplexers, etc.), and nodes repre-
sent the logic that generates a control signal to the datapath.
Note that the above classification is not restrictive, since
nodes may represent arbitrary operators. As explained later,

nodes represent the control logic using two-level
sum-of-products expressions calledcontrol expressions. The
RTL library is represented as a collection of library components.
Each library component contains, among other information, a
reference to its area, delay, and power models. Library com-
ponents are assumed to have an annotation as to whether they
are bit-level macro blocksor word-level macro blocks. This
classification of library components intobit-level blocksand
word-level blocksis performed a priori on the basis of their
functionality. For example, an adder, subtracter, or multiplier is
classified as a word-level block, while a multiplexer or vector
Boolean operator is classified as a bit-level block. Note that
once this straightforward classification is performed, the appro-
priate glitching and power models are automatically invoked.
As explained below, computation of bit-level and word-level
signal statistics is performed automatically for each signal.
Also, note that each RTL circuit block has a reference to
its library component, which in turn contains the appropriate
glitching and power models.

The RTL circuit is levelized from primary input/register
output to primary output/register input. Simulation and
glitching analysis are performed by traversing the RTL circuit
in levelized order. In addition, an RTL delay estimator [4] is
used to derive partial delay information in the form of timing
relationships between signals that feed the same
node.

Cycle-based simulation is performed on the input trace.
The primary input values from the next vector of the input
trace are applied at the nodes. nodes contain values
that were written into them at the end of the previous clock
cycle. The RTL simulation uses a hybrid of bit-level and

word-level simulation techniques for the nodes to improve
simulation efficiency. For example, a 32-bit adder may be
simulated using just one native instruction. This involves
bit-to-word and word-to-bit conversion, which is automatically
performed by our cycle-based simulation procedure. Note that
any cycle-based simulator which allows us to access the values
at each internal signal in the RTL circuit may be used in our
power estimation procedure.

During the cycle-based simulation process, zero-delay signal
statistics are collected for each arc. The statistics collected for
an arc differ depending on the type of its sink vertex, and the
library component it represents an instance of, as follows.

• For arcs feeding , , and nodes that
represent bit-level blocks, we store bit-level signal statis-
tics. Bit-level statistics for an arc representing a bit-vector
include:signal probabilities and (rising and falling) tran-
sition probabilities for each bit.

• For arcs feeding nodes that represent word-level
blocks, we store word-level signal statistics. Word-level
statistics for an arc include:mean, standard deviation,
and (word-level) temporal correlation coefficient. Note
that a single wire (signal) in the RTL circuit may fan out
to multiple blocks of different types. Thus, each signal
in the RTL circuit may correspond to multiple arcs in
the graph representation, and some of those arcs may
have bit-level statistics while others may have word-level
statistics computed during simulation.

In addition to the above, for each vertex that has more than
one incoming arc, we store thespatial correlationsamong its
inputs. For and nodes that represent bit-level
blocks, we store the complete spatial correlations for each
input bit-slice. For example, for a node that represents
a multiplexer, we store for each bit-slice the probability of
occurrence of each of the input combinations. For

nodes, we only store correlations between inputs
that feed the same product term. It bears mentioning at this
point that our signal statistics calculation procedure only
computes second-order temporal correlations, and separates
spatial and temporal correlations.6 These assumptions are
reasonable since we are decomposing/partitioning the RTL
circuit into registers and combinational components and we
are concerned only with the relevant correlations between the
inputs of combinational circuit blocks. Global (and multicycle)
correlations are automatically accounted for since our estima-
tion methodology is simulation-based.

The glitch analysis procedure traverses the levelized RTL cir-
cuit, and at each node, computes the glitching activity at its
output using the zero-delay signal statistics, as well as glitching
activities, at its inputs. Again, depending on the node type, we

6For a macro-block with two input signals a and b, we may need an arbitrarily
long history of input values, i.e.,a(t); a(t� 1); . . ., andb(t);b(t� 1); . . . to
determine its power consumption. In order to capture the statistical properties
of the input history of lengthk(t . . . t�k+1), we need to store the correlation
between all pairs of variables infa(t) . . . a(t�k+1);b(t) . . . b(t�k+1)g,
i.e., order-k statistics. For combinational blocks and registers, it is sufficient to
store order-2 statistics, i.e.,fa(t);a(t� 1)g, fb(t);b(t� 1)g, fa(t);b(t)g,
fa(t);b(t�1)g, andfa(t�1);b(t)g. The approximation we make is that we
only store the first three terms, and ignore the last two terms, which we found
to be reasonable for RTL power estimation.

552 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

TABLE II
STATISTICS OFRTL CIRCUITS USED FOR THEEXPERIMENTS

apply the appropriate bit-level or word-level glitching activity
model. In the case of a node, we use the (func-
tional bit-level) signal statistics and glitching activities at its in-
puts, together with the timing relationships between its inputs,
to estimate glitching activity at its output, as explained in Sec-
tion VI.

The power estimation procedure also traverses the levelized
RCG, and applies the appropriate power model to compute the
power consumed in each component.

X. EXPERIMENTAL RESULTS

We performed experiments in order to evaluate the proposed
RTL power estimation techniques using the following RTL
circuits: the circuit shown in Fig. 1, a barcode preprocessor
circuit , a circuit implementing a part of the
communications protocol , a vending machine controller

, a line-drawing procedure from a graphics controller
, the dealer process in an implementation of a

Blackjack card game player , and a fourth-order
polynomial . All the RTL circuits were obtained by
synthesizing them from behavioral specifications using the
SECONDS high-level synthesis system [44], [45]. Table II
presents various statistics for the RTL circuits used in our
experiments, including the number of datapath macro blocks of
each type, the number of states and control signals (an indicator
of the controller complexity), the maximum number of levels
of chaining in the RTL circuit, and the number of transistor
pairs and flip-flops (FFs) in the gate-level implementation
of the complete circuit derived after logic synthesis. Each of
the following is counted as a single level for computing the
maximum chaining level: a 2-input functional unit, a 2-to-1
multiplexer, a comparator, and a cone of control logic. The
gate-level implementations vary in complexity from about
2,000 transistors to about 16 000 transistors, and from 28 FFs
to 309 FFs. Since these examples do not represent highly
arithmetic-intensive computations, most bit-vector signals in
the datapaths had 8 bits, and hence most datapath macro-blocks

were 8-bit components. The datapaths are characterized by
an abundance of multiplexers to perform conditional signal
assignments, and contain significant amounts of both data and
control chaining. The controllers vary from 4 to 14 states, and
the number of their outputs (control signals) varies from 10 to
50.

Characterization details. The RTL circuits instantiate
blocks from an in-house RTL library. We built glitching
activity as well as power models for relevant library blocks.
For components characterized using word-level macro-models,
we constructed separate macro-models for bit-widths of 2, 4, 8,
12, 16, 24, 32, and 64. The piecewise linear models used for
characterizing glitching activity and power consumption at the
word-level are represented as lookup tables, with interpolation
performed dynamically upon access. For our experiments, we
implemented two different approaches to perform characteri-
zation for each point (entry) in the lookup table of a module.
The first was to use a fixed-length characterization or training
set of 10 000 pseudo-random input vectors for each entry. The
second was to continue the simulation until convergence, i.e.,
the observed mean did not change by more than a prespecified
percentage upon further simulation of a prespecified number
of additional input vectors. In all cases, convergence occurred
before simulating 10 000 input vectors. Hence, we chose the
results of the fixed-length characterization experiment. Note
that it is also possible to use more complex sampling and stop-
ping criteria when determining each entry in the lookup tables.
However, since the circuits being simulated during characteri-
zation are relatively small (just individual RTL components),
we do not believe that more complex techniques are necessary
in this context. This was also borne out by our characterization
experiments as mentioned above. The characterization run for
an RTL library containing around 300 modules required around
six hours of CPU time on a SPARCstation 20 with 128 MB
main memory. Most of this time was spent in file I/O, and by
the gate-level power estimation tool in simulating the module
netlists for the characterization patterns. The file I/O overhead
can be significantly reduced by source code integration of

RAGHUNATHAN et al.: HIGH-LEVEL MACRO-MODELING AND ESTIMATION TECHNIQUES 553

the various tools as opposed to the scripting language based
integration that is employed in our current implementation.
Running the ANOVA tests was quite efficient, and took less
than five seconds for each module.

For the first phase of our power estimation tool (zero-delay
RTL simulation), we used a long test bench of typical input
stimuli that were derived using knowledge of the functionality
of the design and its environment. As the simulation proceeded,
zero-delay statistics for various signals were collected. The
zero-delay statistics were then used to predict glitching activity
at various datapath and control signals using the models
presented in the previous sections. Thereafter, zero delay and
glitch statistics were used to calculate a number for power
consumption for each datapath block and for the controller.
Note that, in these experiments, since the vectors that are
applied to the various embedded blocks are determined by the
remaining circuitry, and are not part of the characterization
vectors, these results reflect the out-of-sample accuracy of the
various glitching and power macro-models.

In order to evaluate the accuracy of our RTL power estimation
tool, we performed logic synthesis optimizations on the RTL cir-
cuit, mapped the controller and datapath to NEC’s CMOS6 tech-
nology library [35], and estimated power consumption using the
tool CSIM [36]. It bears mentioning that CSIM has been cali-
brated with SPICE and benchmarked within 10% of SPICE. As
mentioned before, it incorporates several state-of-the-art gate-
level power simulation techniques, including state-dependent
power modeling, accurate glitch filtering using inertial delay
models, etc. The power models for individual library cells used
in CSIM were constructed using SPICE. Thus, we believe that
CSIM is a reasonable reference point to compare against for
RTL power estimation.

We attempted to perform experiments to demonstrate the
following: 1) the accuracy of our RTL power estimation tool
compared to estimates obtained using CSIM; and 2) the impor-
tance of estimating glitching activity and using it to enhance
the accuracy of power estimates for the various RTL circuit
blocks. Table III reports the power estimates obtained using
CSIM after a complete gate-level implementation of the RTL
circuit (columnCSIM), RTL power estimates obtained using
our tool (columnRTL Est.), and RTL estimates obtained by
ignoring the effects of glitching activity at the inter-RTL-com-
ponent control and datapath signals (columnRTL Est. W/O
Inter-Comp. Gl.). In order to obtain RTL power estimates
ignoring the effects of glitches, we used our tool but instructed
it not to perform the second phase of glitching activity estima-
tion. Note that, the estimates thus obtained do not represent
a zero-delay power estimate, since they do include the ef-
fects of glitching internal to each RTL component. For the
second and third cases, the table reports the power estimate
as well as the percentage error with respect to CSIM. The
results indicate that the presented RTL switching activity and
power estimation techniques result in power estimates that
range from within 3.61% to within 6.71% of those obtained
after the final gate-level implementation of the circuit. The re-
sults also demonstrate the importance of considering glitching
activity at control and datapath signals during RTL power
estimation.

TABLE III
POWER ESTIMATION RESULTS

Fig. 9. Scatter plot of RTL versus gate-level power estimates for individual
RTL components.

A. Instance-by-Instance Estimation Accuracy

The results presented in Table III demonstrate the accuracy
of our tool in the context of estimated power consumed in the
entire RTL circuit. While that in itself is a useful end applica-
tion, there may be several scenarios where the designer or an
optimization tool may require estimates of power consumption
for individual components in the circuit. In such scenarios, the
accuracy of the instance estimates are also important. In order
to evaluate the accuracy of power estimates generated by our
tool for individual RTL components, we have provided in Fig. 9,
a scatter plot of the RTL power estimate versus the gate-level
power estimate, for all components in all the seven RTL cir-
cuits considered in Tables II and III. The line in the figure indi-
cates the ideal line, i.e., points that lie on this line rep-
resent components for which the RTL and gate-level power es-
timates exactly match. We computed themean absolute error
andmedian absolute errorover all points in the scatter plot to
be 8.96% and 6.31%, respectively. Note that since we are using
absoluteerrors, positive and negative errors do not cancel out.
The mean and median errors (allowing positive and negative er-
rors to cancel out) were2.11% and 2.03%, respectively. The
maximum absolute error was 32.50%. The maximum error was
caused due to very few outliers. By excluding four outliers out
of the set of 340 points in the scatter plot, the maximum abso-
lute error dropped to 18.1%.

Fig. 10 provides a similar scatter plot of the normalized
switching activity estimate of each control and datapath signal
in all the RTL circuits considered (the plot contains a total of

554 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

Fig. 10. Scatter plot of RTL versus gate-level switching activity estimates at
individual signals.

511 points). In order to best represent the control signals as well
as datapath signals in the same plot, the activity numbers for
multibit signals are per-bit. Note that, for signals with higher
switching activity, the activity estimated by our RTL tool is
somewhat pessimistic, due to the partial delay assumptions
made in the control logic analysis procedure of Section VI. The
mean and median absolute errors for all points in Fig. 10 were
5.67% and 4.51%, respectively. The maximum absolute error
was 22.91%.

B. In-Sample Versus Out-of-Sample Accuracy

Characterization-based macro-modeling techniques, in-
cluding the ones used in this paper, are constructed using
specific input sequences. For such macro models, it is impor-
tant to systematically evaluate accuracy on input sequences
that are dissimilar to those used for characterization (referred
to as out-of-sample accuracy). As described in Sections VII
and VIII, our macro-modeling procedure is based on charac-
terizing the input signals to a macro block using parameters
that represent their signal statistics (mean, standard deviation,
spatial and temporal correlations, and glitching activity). These
parameters can be thought of as constituting a multidimen-
sional characterization space. A point in the characterization
space corresponds to a specific assignment of values to the
macro-model parameters. Macro modeling is performed by
generating a uniform grid that covers this parameter space,
and characterizing the power (or output switching activity)
of a macro block at all points that lie on the grid. With that
background, in our context, we define in-sample accuracy as
the accuracy of our macro models for input sequences whose
signal statistics lie at the characterization grid points, and
out-of-sample accuracy as the accuracy of our macro models
for input sequences whose signal statistics lie at points that are
not on the characterization grid.

Table IV summarizes the results of testing the power macro
models using pseudo-randomly generated in-sample and out-of-
sample sequences. To generate the in-sample sequences, we ran-
domly chose 100 points from the characterization grid. For each

point, we generated a test sequence of 10 000 vectors that had
signal statistics corresponding to the values given by the chosen
point. We initialized our test sequence generator with different
seeds to ensure that the sequences generated had similar sta-
tistical properties as, but were not identical to, the sequences
used for characterization. To generate out-of-sample sequences,
a similar procedure was used, except that we started with points
that did not lie on the characterization grid. For comparison, we
also include the accuracy of the power macro- models when
they are used in the context of the RTL circuits described in
Tables II and III. Table V presents similar results to compare
the in-sample and out-of-sample accuracy of our switching ac-
tivity estimation techniques. In both tables, the error represents
the difference between the average power or switching activity
reported by the gate-level power estimator and the proposed
macro models.

Fig. 11 presents a histogram of error distributions for the per-
formance of our model on out-of-sample input traces. The figure
indicates that most of the out-of-sample test cases resulted in er-
rors within [6%, 4%].

C. Computational Efficiency

The CPU times required for gate-level power simulation
varied from 23 s (for an input trace of 5280 clock cycles for
example circuit) to 273 s (15 300 clock cycles for example
circuit). The CPU times required for RTL power
estimation were all under five seconds. All experiments were
performed on a SPARCstation 20 with 128 MB main memory.
The experiments indicated a speedup of 10to 50 for our
RTL power estimator compared to CSIM for the example
circuits shown in Table III. It is important to note in this context
that the time required to obtain power estimates through lower
level (e.g., gate-level) estimation tools depends on two factors:
1) the time taken to synthesize a complete gate-level netlist
from the RTL circuit and 2) the time required to run the
gate-level power estimation tool. Our comparison of CPU times
only considers the second component for gate-level power
estimation. The time required to synthesize a gate-level netlist
can vary significantly depending on the optimization effort
used during synthesis (e.g., fast synthesis versus synthesis with
full optimization). Thus, it is clearly difficult to present a single
number to represent the synthesis time for a given circuit. For
the logic synthesis tool used in our experiments, the time taken
to run a fast synthesis script (RTL HDL compilation, simple
macro-block expansion and one-to-one technology mapping of
generic gates) varied from 77 to 571 s. The time required to run
a typical optimizing logic synthesis script (that also included
technology independent delay optimization with area recovery)
varied from 185 to 1181 s. Clearly, even fast synthesis followed
by gate-level power simulation is infeasible for use in exploring
RTL design tradeoffs that involve comparison of a large number
of candidate circuits, or variants of the same design. Another
scenario where more efficient power estimation is needed is
high-level synthesis for low power, where hundreds of different
RTL implementations may be compared for a given behavioral
specification [46]–[49]. In such situations, clearly there is a

RAGHUNATHAN et al.: HIGH-LEVEL MACRO-MODELING AND ESTIMATION TECHNIQUES 555

TABLE IV
IN-SAMPLE AND OUT-OF-SAMPLE ACCURACY OF THEPROPOSEDPOWER MACRO-MODELING TECHNIQUES

TABLE V
IN-SAMPLE AND OUT-OF-SAMPLE ACCURACY OF THEPROPOSEDSWITCHING ACTIVITY MACRO-MODELING TECHNIQUES

Fig. 11. Error histogram for the proposed macro-models under out-of-sample
test sequences.

need for faster power estimation, which can only be provided
by RTL power estimation techniques. As can be seen from the
above numbers, our RTL power estimator offers one to two
orders of magnitude improvement in total power estimation
time compared to synthesizing a gate-level netlist and running
a gate-level power estimator.

XI. CONCLUSIONS

We presented techniques for switching activity analysis
and power estimation at the register transfer level. The sig-
nificant features of our techniques are the following: 1) we
consider the generation and propagation of glitches through the
controller and datapath while performing power estimation;
2) we combine the use of word-level modeling for datapath
blocks that associate a word-level value to their operands, and
accurate bit-level modeling for other datapath blocks; and 3) we
demonstrate that our techniques are well suited for estimating
power consumption in control-flow intensive designs that
have significantly different power-consumption characteristics
from dataflow intensive designs. We believe that our power
estimation techniques will be useful in assisting a designer or
a high-level synthesis tool to evaluate the impact of various
design decisions on switching activity and power consumption.

The techniques presented in this paper could be extended
along several directions. The word-level macro-modeling

techniques we employ perform quite well even when the
“power function” is nonlinear, (since piece-wise linear models
can be used to approximate arbitrary functions, provided the
characterization granularity is sufficiently small). Nevertheless,
it may be possible to further improve the accuracy of such
macro models or reduce the number of gate-level simulation
runs needed for characterization, by using more sophisticated
interpolation techniques. As mentioned in Section VII, it may
be possible to construct more efficient or more accurate macro
models by including the output signal statistics as parameters.
In general, in the case of more complex predesigned RTL
components, it may also be necessary to include statistics
of signals internal to the macro block as parameters in the
macro model. The control expression based switching activity
analysis techniques presented in our work have been shown to
work very well for the control logic in circuits generated by
high-level synthesis tools. For arbitrary random logic (e.g., flat
gate-level descriptions of subcircuits), it may be possible to
draw upon gate-level activity estimation techniques to improve
the accuracy of activity and power analysis. Finally, for deep
submicron technologies, accurate RTL power estimation
requires an estimate of power consumed in the interconnect.
This can be achieved by coupling our activity estimation
techniques with design planning technologies that can estimate
interconnect capacitance.

REFERENCES

[1] C. Ramachandran, F. J. Kurdahi, D. D. Gajski, A. C. H. Wu, and V.
Chaiyakul, “Accurate layout area and delay modeling for system level
design,” in Proc. Int. Conf. Computer-Aided Design, Oct. 1992, pp.
355–361.

[2] A. Kuehlmann and R. Bergamaschi, “Timing analysis in high-level
synthesis,” inProc. Int. Conf. Computer-Aided Design, Nov. 1992, pp.
349–354.

[3] P. K. Jha and N. D. Dutt, “Rapid estimation for parameterized com-
ponents in high-level synthesis,”IEEE Trans. VLSI Syst., vol. 1, pp.
296–303, Sept. 1993.

[4] S. Bhattacharya, S. Dey, and F. Brglez, “Provably correct high-level
timing analysis without path sensitization,” inProc. Int. Conf. Com-
puter-Aided Design, Nov. 1994, pp. 736–742.

[5] A. C. Deng, “Power analysis for CMOS/B1CMOS circuits,” inProc.
Int. Workshop Low-Power Design, Apr. 1994, pp. 3–8.

[6] J. Rabaey and M. Pedram, Eds.,Low-Power Design Methodolo-
gies. Norwell, MA: Kluwer, 1996.

556 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

[7] J. Monteiro and S. Devadas,Computer-Aided Design Techniques for
Low Power Sequential Logic Circuits. Norwell, MA: Kluwer, 1996.

[8] M. Pedram, “Power minimization in IC design: principles and applica-
tions,” ACM Trans. Design Automation Electronic Systems, vol. 1, pp.
3–56, Jan. 1996.

[9] E. Macii, M. Pedram, and F. Somenzi, “High level power modeling,
estimation, and optimization,” inProc. Design Automation Conf., June
1997, pp. 504–511.

[10] A. R. Chandrakasan and R. W. Brodersen,Low-Power Digital CMOS
Design. Norwell, MA: Kluwer, 1995.

[11] J. Frenkil, “Tools and methodologies for low power design,” inProc.
Design Automation Conf., June 1997, pp. 76–81.

[12] W. Nebel, J. Sproch, and S. Malik, “Power analysis and optimization:
spanning the levels of abstraction,” inTutorial Notes, Int. Symp. Low-
Power Electronics and Design, Aug. 1997.

[13] K. D. Müller-Glaser, K. Kirsch, and K. Neusinger, “Estimating essen-
tial design characteristics to support project planning for ASIC design
management,” inProc. Int. Conf. Computer-Aided Design, Nov. 1991,
pp. 148–151.

[14] D. Liu and C. Svensson, “Power consumption estimation in CMOS
VLSI chips,” IEEE J. Solid-State Circuits, vol. 29, pp. 663–670, June
1994.

[15] D. Marculescu, R. Marculescu, and M. Pedram, “Information theoretic
measures for energy consumption at the register-transfer level,” inProc.
Int. Symp. Low-Power Design, Apr. 1995, pp. 81–86.

[16] F. N. Najm, “Toward a high-level power estimation capability,” inProc.
Int. Symp. Low-Power Design, Apr. 1995, pp. 87–92.

[17] M. Nemani and F. N. Najm, “High level power estimation and the area
complexity of Boolean functions,” inProc. Int. Symp. Low-Power Elec-
tronics and Design, Aug. 1996, pp. 329–334.

[18] C.-H. Chen and C.-Y. Tsui, “Toward the capability of providing power-
area-delay tradeoff at the register transfer level,” inProc. Int. Symp. Low-
Power Electronics and Design, Aug. 1998, pp. 24–29.

[19] M. Nemani and F. Najm, “High-level area and power estimation for
VLSI circuits,” IEEE Trans. Computer-Aided Design, vol. 18, pp.
697–713, June 1999.

[20] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin,High-level
Synthesis: Introduction to Chip and System Design. Norwell, MA:
Kluwer, 1992.

[21] S. R. Powell and P. M. Chau, “Estimating power dissipation of VLSI
signal processing chips: the PFA technique,” inProc. VLSI Signal Pro-
cessing IV, Sept. 1990, pp. 250–259.

[22] P. Landman and J. M. Rabaey, “Architectural power analysis: the dual bit
type method,”IEEE Trans. VLSI Syst., vol. 3, pp. 173–187, June 1995.

[23] P. F. Landman and J. M. Rabaey, “Black-box capacitance models for ar-
chitectural power analysis,” inProc. Int. Workshop Low-Power Design,
Apr. 1994, pp. 165–170.

[24] P. Landman and J. M. Rabaey, “Activity-sensitive architectural power
analysis for the control path,” inProc. Int. Symp. Low-Power Design,
Apr. 1995, pp. 93–98.

[25] T. Sato, Y. Ootaguro, M. Nagamatsu, and H. Tago, “Evaluation of archi-
tecture-level power estimation for CMOS RISC processors,” inProc.
Symp. Low-Power Electronics, Oct. 1995, pp. 44–45.

[26] H. Mehta, R. M. Owens, and M. J. Irwin, “Energy characterization
based on clustering,” inProc. Design Automation Conf., June 1996, pp.
702–707.

[27] L. Benini, A. Bogliolo, M. Favalli, and C. De Micheli, “Regression
models for behavioral power estimation,” inProc. Int. Workshop Power
and Timing Modeling, Optimization, and Simulation, 1996.

[28] A. Raghunathan, S. Dey, and N. K. Jha, “Register-transfer level estima-
tion techniques for switching activity and power consumption,” inProc.
Int. Conf Computer-Aided Design, Nov. 1996, pp. 158–165.

[29] C. T. Hsieh, Q. Wu, C. S. Ding, and M. Pedram, “Statistical sampling and
regression analysis for RT-level power evaluation,” inProc. Int. Conf.
Computer-Aided Design, Nov. 1996, pp. 583–588.

[30] S. Gupta and F. N. Najm, “Power macromodeling for high level power
estimation,” inProc. Design Automation Conf., June 1997, pp. 365–370.

[31] Z. Chen and K. Roy, “A power macromodeling technique based on
power sensitivity,” inProc. Design Automation Conf., June 1998, pp.
678–683.

[32] M. Barocci, L. Benini, A. Bogliolo, B. Ricco, and G. De Micheli,
“Lookup table power macro-models for behavioral library com-
ponents,” in Proc. IEEE Alessandro Volta Memorial Workshop on
Low-Power Design, Mar. 1999, pp. 173–181.

[33] R. P. Llopis and F. Goossens, “The Petrol approach to high-level power
estimation,” inProc. Int. Symp. Low-Power Electronics and Design,
Aug. 1998, pp. 130–132.

[34] D. I. Cheng, K.-T. Cheng, D. C. Wang, and M. Marek-Sadowska, “A new
hybrid methodology for power estimation,” inProc. Design Automation
Conf., June 1996, pp. 439–444.

[35] CMOS6 Library Manual: NEC Electronics, Inc., Dec. 1992.
[36] CSIM Version 5 Users Manual: Systems LSI Division, NEC Corp.,

1993.
[37] F. N. Najm and M. Y. Zhang, “Extreme delay sensitivity and the

worst-case switching activity in VLSI circuits,” inProc. Design
Automation Conf., June 1995, pp. 623–627.

[38] F. N. Najm, “Transition density, a stochastic measure of activity in digital
circuits,” in Proc. Design Automation Conf., June 1991, pp. 642–649.

[39] G. Casella and R. L. Berger,Statistical lnference. Belmont, CA:
Duxbury, 1990.

[40] S. M. Ross,Introduction to Probability and Statistics for Engineers and
Scientists. New York: Wiley, 1987.

[41] StatPlan IV Program Manual: The Futures Group, 1989.
[42] M. R. Carey and D. S. Johnson,Computers and Intractability: A Guide to

the Theory of NP-Completeness. San Francisco, CA: Freeman, 1979.
[43] D. E. Knuth,The Art of Computer Programming, Vol 2: Seminumerical

Algorithms. Reading, MA: Addison-Wesley, 1980.
[44] S. Bhattacharya, S. Dey, and F. Brglez, “Performance analysis and opti-

mization of schedules for conditional and loop-intensive specifications,”
in Proc. Design Automation Conf., June 1994, pp. 491–496.

[45] , “Clock period optimization during resource sharing and assign-
ment,” inProc. Design Automation Conf., June 1994, pp. 195–200.

[46] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R.
Brodersen, “Optimizing power using transformations,”IEEE Trans.
Computer-Aided Design, vol. 14, pp. 12–31, Jan. 1995.

[47] A. Raghunathan and N. K. Jha, “SCALP: an iterative-improvement-
based low-power datapath synthesis system,”IEEE Trans. Computer-
Aided Design, vol. 16, pp. 1260–1277, Nov. 1997.

[48] J. M. Chang and M. Pedram, “Register allocation and binding far low
power,” inProc. Design Automation Conf., June 1995, pp. 29–35.

[49] K. S. Khouri, C. Lakshminarayana, and N. K. Jha, “High-level synthesis
of low-power control-flow intensive circuits,”IEEE Trans. Computer-
Aided Design, vol. 18, pp. 1715–1729, Dec. 1999.

Anand Raghunathan (S’93–M’97–SM’00) received the B.Tech. degree in
electrical and electronics engineering from the Indian Institute of Technology,
Madras, India, in 1992, and the M.A. and Ph.D. degrees in electrical engineering
from Princeton University, Princeton, NJ, in 1994 and 1997, respectively.

He is currently a Senior Research Staff Member at NEC Laboratories
America, Princeton, NJ, where he leads several projects related to the research
and development of system-on-chip architectures, design methodologies, and
design tools with emphasis on high-performance, low power, and testable
designs. He has coauthoredHigh-Level Power Analysis and Optimization
(Norwell, MA: Kluwer, 1998), and a book chapter inSystem-Level Power
Optimization For Wireless Multimedia Communications(Norwell, MA:
Kluwer, 2002). He has presented full-day and embedded conference tutorials
on low-power design, wireless communication system design, and considering
testability during high-level design. He holds or has filed for 14 U.S. patents
in the areas of advanced system-on-chip architectures, design methodologies,
and VLSI CAD.

Dr. Raghunathan has served as a Member of the technical program commit-
tees of several IEEE and ACM conferences. He is a Member of the organizing
committee of the VLSI Test Symposium (1998–2003), where he is currently the
Program Chair. He has served as Associate Editor of the IEEE TRANSACTIONS

ON VLSI SYSTEMS, and as a Member of the Editorial Board of IEEE Design
& Test of Computers. He is currently Vice-Chair of the Tutorials & Education
Group at the IEEE Computer Society’s Test Technology Technical Council. He
received Best Paper Awards at the IEEE International Conference on VLSI De-
sign (1998 and 2003) and at the ACM/IEEE Design Automation Conference
(1999 and 2000), and two Best Paper Award nominations at the ACM/IEEE
Design Automation Conference (1996 and 1997). He received the Patent of the
Year Award (an award recognizing the invention that has achieved the highest
impact) from NEC in 2001. He was the recipient of an IEEE Meritorious Ser-
vice Award, and was elected as a Golden Core Member of the IEEE Computer
Society in 2001.

RAGHUNATHAN et al.: HIGH-LEVEL MACRO-MODELING AND ESTIMATION TECHNIQUES 557

Sujit Dey received the Ph.D. degree in computer science from Duke University,
Durham, NC, in 1991.

He is currently a Professor in the Department of Electrical and Computer
Engineering, University of California, San Diego (UCSD), where his research
group is developing configurable platforms, consisting of adaptive wireless
protocols and algorithms, and deep submicron adaptive system-on-chips,
for next-generation wireless appliances as well as network infrastructure
devices. He is affiliated with the California Institute of Telecommunications
and Information Technology, the UCSD Center for Wireless Communications,
and the DARPA/MARCO Gigascale Silicon Research Center. Prior to joining
UCSD in 1997, he was a Senior Research Staff Member at the NEC Computer
and Communications Research Laboratories (CCRL), Princeton, NJ. He has
coauthored more than 100 publications, including journal and conference
papers, a book on low-power design, and several book chapters. He is a
coinventor of 9 U.S. patents, and has two other patents pending. He has
presented numerous tutorials and invited talks, and participated in panels, in the
topics of low-power wireless systems design, hardware–software embedded
systems, and deep-submicron system-on-chip design and test.

Dr. Dey has been the General Chair, Program Chair, and Member of orga-
nizing and program committees of several IEEE conferences and workshops.
He received Best Paper awards at the Design Automation Conferences in 1994,
1999, and 2000, and the 11th VLSI Design Conference in 1998, and several best
paper nominations.

Niraj K. Jha (S’85–M’85–SM’93–F’98) received the B.Tech. degree in elec-
tronics and electrical communication engineering from the Indian Institute of
Technology, Kharagpur, India, in 1981, the M.S. degree in electrical engineering
from the State University of New York (SUNY) at Stony Brook in 1982, and the
Ph.D. degree in electrical engineering from the University of Illinois, Urbana,
IL, in 1985.

Currently, he is a Professor in the Department of Electrical Engineering
at Princeton University, Princeton, NJ. He is coauthor of two books,Testing
and Reliable Design of CMOS Circuits(Norwell, MA: Kluwer, 1990) and
High-Level Power Analysis and Optimization(Norwell, MA: Kluwer, 1998).
He has authored or coauthored more than 200 technical papers. He has
coauthored four papers which have won the Best Paper Award at ICCD’93,
FTCS’97, ICVLSID’98, and DAC’99. His research interests include low-power
hardware and software design, computer-aided design of integrated circuits,
digital system testing, and distributed computing. He is currently an Editor
for the Journal of Electronic Testing: Theory, and Applications(JETTA). He
has served as the Guest Editor for the JETTA special issue on high-level test
synthesis. He has also served as the Program Chairman of the 1992 Workshop
on Fault-Tolerant Parallel and Distributed Systems. He is the Director of
the Center for Embedded system-on-a-chip Design funded by New Jersey
Commission on Science and Technology.

Dr. Jha has served as an Associate Editor of IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS II: A NALOG AND DIGITAL SIGNAL PROCESSINGand of
IEEE TRANSACTIONS ONVLSI SYSTEMS. He is currently serving as an Editor
of IEEE TRANSACTIONS ONCOMPUTER-AIDED DESIGN. He is the recipient of
the AT&T Foundation Award and the NEC Preceptorship Award for research
excellence.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

