
NoC Design of a Video Encoder in a Multiprocessor System
on Chip Solution

Antoni Portero, Ramon Pla, Aitor Rodriguez, Jordi Carrabina
Universitat Aut6noma de Barcelona

Edifici Q, ETSE,
08193 Bellaterra, Spain

Abstract - Future multiprocessor system-on-a-chip (MPSoC)
will need high performance and low power requirements due
to user demand and limited battery life. In this paper, we take
advantage of the architecture flexibility allowed by Network-
on-Chip (NoC) to build a parameterizable MPEG
Compressor. MPEG compressor System has been developed
in synthetizable behavioural SystemC, as a flexible system
divided in different tiles. Each tile can be conflgured as a
functional block with different performance parameters in
terms of power/speed/area. NoC design implements a 2D
mesh with a parameterizable router implemented in high
level TLM SystemC. A QoS module takes decisions on packet
routing depending on macro-block encoded data
(corresponding to I, P and B frames) in real time in terms of
power or performance requirements.

1. INTRODUCTION

Currently, one of the most challenging issues in the
telecom market segment is to manage the growing
complexity of embedded multimedia systems and to
reduce their design productivity gap. These elements
stimulate a continuous development of industrial
methodologies and design flows exploiting reuse,
extended verification, and high level-synthesis.
SystemC [20] is a system-level design language that
allows modelling and verification of complex HW/SW
components. Starting from some tool-dependent HW
coding styles (e.g. Forte Design Systems Cynthesizer,
Synopsys SystemC Compiler,...), it is possible to reach
the silicon platforms out of an industrial design flow.
Furthermore, the emergence of high capacity
reconfigurable devices is starting a revolution in its use
for general-purpose computing applications. Many
coarse-grain reconfigurable architectures appeared as
reconfigurable coprocessors, structuires ASICs, etc.
considerably relieving the burden from the main
processor in many multimedia applications due to their
very high degree of parallelism. In addition, they
generally have wider flexibility than an application
specific circuit. These facts contribute to making them
better alternatives to traditionally used DSPs or ASICs.
Coarse-grain reconfigurable architectures are an
example of reconfigurable systems. They have identical
Processing Elements (PEs) richly connected through
programmable interconnections. The PE functionality

and connections is configured through context words
stored in an internal memory to allow dynamic
reconfiguration. Examples of such architectures are
MATRIX [1], MorphoSys [2] and REMARC [3].
Multimedia applications are fast becoming one of the
dominating workloads for reconfigurable system. Many
interactive virtual reality applications such as 3D
Games, virtual museum or virtual shop applications
have become feasible on reconfigurable systems [4].

1.1. Context and Motivation

Behavioural SystemC description permits a rapid
system development. Parts of the systems are locally
synchronized by a clock but globally there is a
handshaking or a shared-bus communication. When we
try to synthesize we do not know exactly the number of
resources and clock timing of each tile. Hence, GALS
philosophy (Globally Asynchronous Locally
Synchronous) independences computation and
communication. Any tile of the system can be
connected to another if they have the same protocol.
One-way handshake protocol is implemented in the
example developed here.
Computational systems dispose of higher computation
capacities usually limited due to the communication
restrictions. To solve this problem, scientific
community is beaten for communication based in
packet switched taking the idea from the platform based
communication between computers. Following SoC
evolution driven by the increase in integration density.
NoCs (Networks on a Chip) [12] are being used as a
communication infrastructure between tiles containing
IPs (Intellectual Properties blocks). OCP-IP
organization is leading a community trying to
standardize the communication protocols and promote
the development of tools to automate the NoC strategy
for multiprocessor System-on-Chip.

This paper shows an efficient use of NoCs to
-interconnect several replicated tiles with different
computation requirements. Whatever would be system
requirements; there will be a PE that can realize the
operation in the best way. This is possible, due to the
fact that different tiles will be available to realize the

0-7803-9262-0/05/$20.00O®2005 IEEEE1 198

same operation. The system will have a manager that
will decide the task to tile assignment according to
performance requirements, basically execution time
versus power consumption.
Paper is divided in seven parts; first section is an
introduction, a motivation. Second section is about our
example, an MPEG Video Encoder developed in
behavioural SystemC and their parts (Texture Coding
and Motion Coding). Third section explains SIMD
architectures. Fourth section, presents our power
consumption approximation. Fifth section is related to
communication in a mesh-NoC. Sixth section explains
our complete SoC. Finally, section seven there are some
results and conclusions.

2. MPEG 4-VOB Example

The reference model is based in the behavioural SystemC
specification of a MPEG 4 VOB encoder. It can process any king
of GOP (Group of Pictures). In our case we are focused on IBBP
type of GOPS since they include all kind of coding styles (intra-
picture and inter-picture)[13].
We structured our System in different tiles. Each tile has
asynchronous communications because behavioural synthesis
does not permit to know exactly the number of clocks needed to
realize a task. This feature permits orthogonalize communication
from computation.
Two basic tiles that can be implemented in this system are:
Texture Coding (TC) tile and Motion Coding (MC) tile. TC
module is based on the implementation of the Discrete Cosinus
Transform (DCT), quantization and zig-zag modules that work on
pixels structured as blocks or macro blocks. There is also an
inverse Texture Coding (iTC) module that allows retrieving the
original image without having to fetch data again from external
memory (L2 memory in figure 1). These computed pixel data are
re-used to obtain P and B frames. The Motion Coding algorithm
implements the inter frame compressor part. MC produces the
image differences between frames that will be later codified using
a TC module. Data is then passed through a tile that implements
the Huffman algorithm for Variable Length Coding (VLC) and
finally a video stream is produced according to the MPEG
stanidard [7][8]. There is also a module that controls the whole
system function and is the responsible for producing any kind of
GOP. This module can change functional parameters of the
different tiles in real time.
Figure 1 shows a basic structure containing the functional blocks
that will later be mapped to tiles in an interconnected structure.

L2 E

t Bus

RTOS

(Control)

I I ~TC IT

VLC + Video Stream

Output Stream

Figure. I Schema of an MPEG encoder

2.1 Texture Coding Computation

The basic computation for Texture Coding (TC) of a Video
Object (VOB) is the DCT that it is the transformation of a NxM
image block from the spatial domain to the real part of the
frequencial domain. For the image compression standards, usual
values are N =M= 8 or 16.
The DCT is an orthogonal transformation. The DCT output can
be represented as Y=TXTt. The transformation matrix T
(commonly referred to as the forward DCT or simply DCT) can
be developed as:

C(U)C(v- 7 (2x+1)ut (2y+ I)xi
(l)DCTD(u,v)= 4 , f(xy)co 16 co

4x=Ovwii 16 16~~~~UV=
u.v=0. 1 7and C(u), C(v) -|

otherwise

An important property of the 2D-DCT transform is its
separability. So, the lD-DCT can be computed as

(2)DCTD(u)= 16f(x)co_ u=0,1'.
2 1 6

1 otherwise
This equation can also be expressed in vector - matrix form as Z
= TXt, where T is an NxM matrix whose elements are the cosine
function values defined in (2), x = {x0,xl, ..., x7} is a row vector,
and Z is a column vector. From (1), the output of the 2-D DCT
can be expressed as (3):

(3)DC2Ju,y)--X=%J o
2 t-{2 r_- 16 j 16

(4)Dq7gx,v)=-(f(xy)co2), x=0911-1
2 y=o 16

The equation (4) denotes the output of the lD-DCT of the rows
of f(x,y). The above equations imply that the 2D-DCT can be
obtained by performing first the ID-DCT of the rows of f(x,y),
followed by ID-DCT of the columns of Z(x,v). The output of the
DCT is then quantized by a matrix of values Q and then a scan-
zigzag is realized (both defined in the MPEG standard).

2.2. Motion Coding Computation

The computation to get P-VOBs or B-VOBs frames is based on
two algorithms: Motion Estimation and Motion Compensation.
The search algorithms that we have developed for block
matching between images are FSME, logarithmic Motion
Estimation (logME), and Spiral Motion Estimation [9].

A. Full Search Motion Estimation FSME
In FSME each block of pixels is shifted the whole search area for
comparison, as shown figure 2, a. For full-search block-
matching, the current MB is shifted to every integer-pe motion
vector position. Fast motion estimation techniques, however,
employ search strategies which performs a sub-sampling of the
motion displacement space. Generally, these search strategies
have to cope with the problem of eventually falling into local
minimum of the distance criteria function. Search strategies can
be regarded as a hierarchical level above the distance calculation.

B. 2DLog: 2D logarithmic Search. TSS: Three Step Search
Fast motion estimation techniques such 2D logarithmic Search
(2DLOG) or TDL (two-dimensional logarithmic search) was

199

proposed by [9]. 2DLOG is a fast search algorithm based on
minimum distortion, in which the distortion metric MSE (Mean
Square Error Function) is only calculated for a sparse sub
sampling of the full search area. The step size qf the search area
is reduced by n/2 with every search step. TSS kwas proposed by
[9] using a similar structure of 2DLOG, but with the use ofMAD
(Mean Absolute Difference) instead of the MSE. It can be seen in
figure 2b.

C. SpiraiSME: Spiral Search Motion Estimation
This is an adapfive data dependent algorithm. The search moves
in spiral in all position similar to FSME and stops when the
present threshold is passed (Dmin < Threshold value). This
algorithm takes into account that solution is near the centre where
it starts searching (see fig 2c).

f- 7.1 17 '71

Fig. 2: a) FSME b) TSS(3 Step Search) c)SpiralSME

Definition: MAD- Mean Absolute Difference.

Matching Criterion
M-1 N-1

MAD(i,j) = 1/MN.Y1/CP[fx+k][v+I]-RP[x+i+k][ytj+l]/
k=O 1=0

-p .i.p, -p . .,
MV: Motion Vector (u,v) = Minimum MAE

These algorithms permit to obtain the motion vectors and the
blocks with the pixel difference values can be compensated with
the motion compensation algorithm.

3. SIMD ARCHITECTURES

Concurrent components are those with the ability to process
several data in the same way or in different manners at a time. It
is convenient to distinguish between the two. The parallelism
with elements that treat data with distinct processes is explicitly
resolved in the very specification, relying on the SystemC
semantics. On the other hand, the parallelism with components
that include several copies of the same PE can be described in a
more efficient form without explicit detail in the component
specification, thus making the refinement procedure simpler. As a
result, in this section we shall deal about the specification and
synthesis of single instruction, multiple data (SIMD)
architectures.
Generally, it is quite easy to deduce a SIMD structure from afor
loop. It is possible to use the behavioural synthesizer capacity of
behavioural synthesis tools to get a parallel architecture from an
unrolled loop. Taking into account the SIMD model, input and
output data must be stored in vector arrays whose access would
be controlled by the control loop variables. Note that, in this case,
there are two nested loops and there is also a carry variable
(s_.reg) that is directly transmitted to successor PE in the unrolled
version.
Directive in unrolling loops permit to get a PE with different
performance. For example unrolling two inner loops permit to
create a parallel structure with 64 MAC (multiplier adders).

Putting sequentially waito statements after each loop; the
structure is completely different with just 2 MACs.

4. Power Consumption
Power consumption can be divided in three kinds of power:
switching power, short circuit power and leakage power. In our
approximation, as usual when considering functional design
approaches, just the switching power of a CMOS is take into
account. Although leakage power can not be neglected for deep-
submicron technologies, it is a constant contribution independent
on switching activity of the system. Switching power of a
CMOS gate: p = I where VDD is power supplied, f

clock frequency, C output load capacitance and 11switching
activity factor.
High level power estimation is based in how many times LI
memories are transmitting data to other memory structures or
registers [17][18][19]. Taking into account that execution time to
load and store data is where system spends more energy, it is
possible to count the number of times that this processes are
needed to carry out the algorithmn. By executing the algorithm
using a high level model (in this case SystemC) that includes the
implemented concurrence, these numbers can be obtained and
stored in a file. Afterwards, we use cacti 3.2 [10] to get
estimation results about power consumption together with the
execution time to process data. Cacti power estimations are not
very accurate but we consider them good enough for a high level
knowledge about the system power behaviour. Figure 3 shows
the macro #sim_Power that obtains the number of load-store
information in memories.
Another advantage of a SystemC description is that it is platfonn
independent as is C++ code. The model can be changed to fit in
different embedded PE and allow using it processor Instruction
Set Simulators (ISS) to get information about execution time and
other power models.

MAIN DATA STRUCTURES
sc_int <bus-length> dummyfBLOCK+1];
sc_int (bus_length> X[BLOCK] [BLOCK];
sc-int <bus-length> DCT [BLOCK] [BLOCK];

#define power._SIM 1
#define Synth 0
A1gorithm

j = 0;
#ifdef Synth PIPELINE #endif
DCTlj: while(j < N)

DCTli: for] i - 0; i < N; ++i {
#ifdef Synth MACRO_FOR_UNROLL_LOOPl #elseif

wait () ;#endif
s_reg = 0;
MACS1 for(k = 0; k < N; ++k
#ifdef Synth MACRO_FOR_U1NROLL_LOOP2 #elseif

wait]);#endif
dummy[k] = X[i][k] * dct[j][k];
s_reg = dummy[k] + s-reg;

#ifdef power-SIM
counter_Mult_X_dct ++;
counter_DCT_X_dct ++;
#endi f

} // for MACS1
} // for DCTli
++j ;
/// while DCTlj

Example 1 SIMD Architecture

Figure 3. 1-DIM DCT SIMD Architecture

4. COMMUNICATION

Since behavioural hardware descriptions use handshaking for the
communication between modules, it is possible to insert a router

200

inside each tile of our system [12]. Hence, a 2D mesh network is
implemented based on XY-Routing algorithm.
The router is based on the one proposed in SoCIN[5] and
RaSoc[6]. It is a router composed by five channels: L (Local), N
(North), S (South), E (East) and W (West), where each one of
them has both an input and an output. Each channel is composed
by two unidirectional opposite channels, each one with its
channel data and two control signals (val and ack) for
handshaking.
In our case, N, S, E and W are scfifo channels and L is a
sc_signal channel. In spite of the fact that the scfifo channel is a
not in the SystemC synthesisable subset, it let us to implement a
fast simulation of the system and determine the First In First Out
(FIFO) sizes for a future synthesis of the system. Sc_fifo is a
SystemC channel that may contain any data type and it is used to
manage data flow (therefore being a high-level software model).
The router has five SC_CTHREAD processes (clocked thread
process), one for each input channel. SC_CTHREAD is the only
process of the three that has SystemC (SC_METHOD,
SC_THREAD and SC CTHREAD) which let to use the
wait_untilO call. This instruction let us to implement the
handshaking communication. At the system starts working, each
thread is waiting for a val event, which means that there is some
data in the channel to be read.
With five independent processes in the same router we can
address simultaneously different information coming from
different channels that goes to different destinations. For
example, one router may address data that comes from S and goes
to L and at the same time data that comes from E goes to N.
In cases N, S, E and W, when their respective threads are
activated, the wrapper will check the routing information of the
header of the incoming block and, if it is not the destination, it
will update the RIB (Routing Information Bits) from the header
(decreasing the Xmod or Ymod fields) and it will address it to the
output channel. If the router that reads the block is at the
destination address, the wrapper will extract the NxM block data
information, but not the header, and send it to the resource
connected to the L port, used by the tile.
The router has a wrapper that generates the header of the packet
(block). This wrapper has the routing table depending on the xy
coordinates of the router in the network. Table I shows the
general routing table.
The packet data contains one header and one NxM (normally
N=M = 8 or 16) pixel data block. The image type determines the
block image size, that is composed of an integer multiple of
NxM. Consequently, according to the image type, it may be
necessary to do a transition of packet structures with image
blocks ofNxM size.
For example, the transmission of an I-image will require the next
steps: first to pack the information (NxM). Secondly to indicate
in the header that it is an I-block and the routing information of
the RIB. Finally, it will be send to the next router according to the
RIB information.
However, in cases of B and P blocks, the block images size is 2P
x 2P (P = Search Region from 16 to 64). Each one of these 16
blocks is packed by the corresponding header. All 16 packet
headers will have the same RIB information because they belong
to the same image, which goes to the same destination tile.

TABLE 1. ROUTING TABLE
Macro Block Resource Next Resource
Type

S
TC
ITC
MC

TC
TS, ITC**
MC
TS

B
B
B
B
P
P
P
P

S MC
TC TS
ITC *
MC TC
S MC
TC TS
ITC *
MC TS

* Images P and B do not need ITC processing. In these cases the
resource attached to the router do not operate and the router only
addresses the block.

** In case of Image I; afterwards, to get image P and B macro-
blocks, we also need previous original image.

In the router declaration we specify the name, type and
coordinates x and y. In this way, each router can calculate for
each packet their RIB. The resource coordinates are shared in a

_lE_tI L*_U

Figure 4: Sequence routing waveform trace of an image I inside
our NoC. Just relevant signals are showed for better
understanding. From each router, only two pixels data are
showed from all NxM pixels.

The waveform trace obtained after simulating the texture coding
(TC) of an image block is shown in figure 4 together with the
routing paths in spatial compression ofan I image.
The numbers on the waveforms correspond to the steps that data
follow in the network shown in figure 4. In step 1, data leaves the
source tile with routing information in the header, indicating that
the destination tile has 01 xy coordinates. Router 01, after
receiving and checking header information and image type
information, passes data to the TC2 resource connected to the L
port. Afterwards, when TC2 has finished, router 01 calculates the
new header according to data image type. As the image type is 1,
the resulting data must be sent to VLC-VS module. According to
the xy routing algorithm, to go to the VLC-VS tile (with
coordinates 22), the routing is done first in the x direction (steps
11 and 111) and fmally in the y direction (step IV).
Steps III and IV are faster than step I because information is not
processed in the intermediate routers. Routers 11 and 21 only
update the header and address the information from the incoming
port to the outcome port. That is from port W to E, in case router
11, and fromW to N, in case router 21.
Furthermore, marked with circles, we can see how the header
information changes at each step but not the data, which only
changes after the TC2 in step 11.

The step IV header signal is null because at the last step, data
arrives to destination (Xmod and Ymod values are 0), and it
comes out from port N (Xdir value is 0).

201

Il

Figure 6. Time execution in clock cycles.

Higher Power consumption values are in majority due to
computation in FSME and SpiraISME because they are sharing
the same data memory transfer structures.
Power consumption in Spiral (low power) is reduced 10 times
without losing to much Quality. In case of logME, power

decreases a higher factor but loosing more Quality [13].

Figure 5. Mesh 3x3 NoC topology

6. SoC design

Our proposal is to dispose in the same system on chip different
tiles specialised in different performance power balance. With
this different cost/performance tiles, the routing assignment will
be implemented according to the system level requirement, so
that for low power implementation we will prefer to move first to
low power implementations (lower right or x direction in figure
5) whereas for high speed we will prefer the corresponding high
speed implementations (upper left ofY direction in figure 5). The
resources distribution in this network is symmetric, so that the
RIB calculation will be the same in both cases with the difference
that the coordinates xy of a high performance implementation
will be translated to yx (x4y and y-x) coordinates for low
power implementation.

7. Results

All the values shown are relative to the reference case (figure 1)
with high performance encoder implementation. In Figure 5, the
reference case, High performance FSME corresponds to the
computational part (in dark) of the bars 4 to 6, whereas the
communication part due to NoC (in clear). Complete bars
correspond to the final implementation including NoC routing.
Low power implementations has always higher execution time
that the high performance ones due to the lower parallelism of
their computation. The use of logME or SpiralSME (with Dmin
<16) let to a factor 7 for P Macro-block and almost 10 for B
macro-block in gain respect reference case. Remember that in
case of SpiralSME execution time is completely dependent on the
similarity of images; so, computation can decrease a lot if no-

movement is perceived between images whereas worst case of
SpiralSME is approaching to FSME when images are completely
different.

I I
Routng BErgyCost

45

40
35

=3

:, 25
20
15
10

5

0

300000 5000 10000 15000 20000 25000

Clock Cicles

||+IVOB 19bcroblock - PVOBMacroblock -*-BVOPMecrobbock
Figure 8. Power consumption and NoC latency for different
macro-blocks.

In figure 8, it is shown the power consumption versus clock
latency for I, P and B macro-blocks due routing through the NoC
structure.
This high performance description has been synthesized with
CoCentric System Studio in a Stratix FPGA EPIS30896C5
device, resulting in a 27 MHz for high performance MC tile. Low
power solution without loop and any loop unrolling has been
synthesized, resulting a 57 MHz solution with just using two
DSP blocks. Complete synthesis results are shown in table II and
Ill.

TABLE 11
SYNTHESYS HW SUBSYSTEMS

High Perf.
Motion Coding Device EPIS30896C5
Block_ME Total logic El. 24634 (76%/o)

Total Mem. bit 540672 (16%)
Block-MC Total logic El. 412 (<1%)

Total Mem. bit 16.896(<l%)
Texture Coding Total logic El. 32,438 (99%)
(DCT + Q+ Zig-za Total pins 23 (3%)

Total Mem. bit 0

Low Power
EPI S30896C5
1537/32470 (5%)
16.896/3317184
412/25660 (<1%)
16.896/3317184
3,167/32470 (10%)
23/692(3 %/6)
5604(<l%)

202

Figure 7. Power Consumption in nJ related with Fig. 1.

Power Consunmption

10

0.11 3 l 911' 13 15

IooRhhh1 1..IIUU111 1I
0,0D1: | 11| M110,001r

P B P B I P H P B P B IP B
LowPow gh. P. Lw Pow. High, P. Low Pow Hgh. P.

FSME bg.ME SPIoISME

L

I I I

DSP block 9-bi 64196 (67%) 2/96 (2%)
El.
Max Freq 26.99 MHz 57,47 MHz

TABLE Ill
SYNTHESYS TS (TRANSPORT STREAM MODULE) ON A
RISC PROCESSOR (VLC + HEADER BUILDER)
Device EPI S30896C5
Total logic elements 3863 / 32470 (12 %)
Total pins 215 /692 (31 %)
Total memory bits 421888 / 3317184 (13 %)
DSP block 9-bit elements 2 / 96 (2 %)
Total PLLs 0/6 (0 %)
Total DLLs 0 /2 (0 %)

Conclusions

This paper presents a Video Encoder divided in tiles that are
connected to a NoC. Usually System on Chip developers work
designing for worst case implementation. In the proposed work, a
computation replica specialized in low power or high
performance is designed and connected to a mesh-NoC. Adding
the commtunication time in the NoC, and in a very dynamic way
(macro block level), several working points are added. Hence,
computation is realized depending on multiple targets: low-power
higher time consuming, higher performance but high power
consuming, macro-block type, kind of computation, quality of the
image etc.

[11] Wayne Burleson, Prashant Jain, Subramanian Venkatraman,
"Dynamically Parametrized Architectures for Power Aware
Video Coding: Motion Estimation and DCT", ...

[12] David Bertozzi et al, "NoC Synthesis Flow for Customized
Domain Specific Multiprocessor Systems-on-Chip ", IEEE
Transactions on Parallel and Distributed Systems, vol 16,
No.2, Feb.2005.

[13] V. Bhaskaran and K. Konstantinides, "Image and Video
Compression Standards-Algorithms and Architectures",
Kluwer Academics Publishers, Second Edition, 1997.

[14] L. Nachtergaele et al. "Optimization of Memory
Organization and hierarchy for decreased size and power in
video processing systems", in Proc. Int. Workshop on Memory
Tech. Aug. 1995.

[15] Blind review
[16] Blind review
[1 7] F.Rivera et al, "Efficient Mapping of Hierarchical Trees on

Coarse-Grain Reconfigurable Architectures", CODES-ISSS
Set. 2004.

[18] Francky Catthoor, "Data Access and Storage Management
for Embedded Programmable Processors", Kluwer Academic
Publishers, 2002.

[19] Andy Lambrechts, et Al. "Design Style Case Study for
Embedded Multimedia Compute Nodes", The 25th IEEE Real-
Time System SymposiumRTSS Dec. 2004.

[20] SystemC Organization www.systemc.org

REFERENCES

[I] E. Mirsky, A.DeHon, et al. "MATRIX: A Reconfigurable
Computijng Architecture with Comfigurable Instruction
Distribution and Deployable Resources", Proc. IEEE
Symposium FCCM, Apr. 1996.

[2] H. Singh, M.Lee,G.Lu et al. "MorphoSys: An Integrated
Reconfigurable System for Data-Parallel and Computation-
Initensive Applications", IEEE Transactions on
Computers,Vol.49,No5, May 2000.

[3] T.Miyamira and K.Olukoton, "REMARC: Reconfigurable
Multimedia Array Coprocessor", Proc. ACM/SIGDA
International Symposium FPGAs, Feb 1998.

[4] M. Meissner, S.Grimm, W.Strasser, J.Packer and D. Latimer,
"Parallel Volume Rendering on a Single-Chip SIMD
architecture", Proc. IEEE Symposium Parallel and large Data
Visualization and Graphics, pp.1.07-157,Oct 200:1.

[5] C. A. Zeferino, A. A. Susin. "SoCIN: A Parametric and
Scalable Network-on-Chip", IEEE Proceedings of the 16th
Synmposium on Integrated Circuits and System Design
(SBCC'03).

[6] C. A. Zeferino, M. E. Kreutz, A. A. Susin, "RaSoC: A Router
Soft-Core for Network on Chip ", IEEE Proceedings of the
Design, Automation and Test in Europe Conference and
Exhibition Designers Forum (DATE 0'4).

[7] ISO/IEC 13818: 'Generic coding of moving pictures and
associated audio (MPEG-2) ITU-T Rec. H.262, ISO/IEC 13818-
2, Standard, Oct. 1994. 8. ISO/IEC 14496-2: 'Information

Technology-coding of Audio-Visual Objects' (MPEG-4) ITU-
T, Standard, Dec 2001.

[8] Forte-Cynthesizer www.forteDS.com
[9] Peter Kuhn, "Algorithms, complexity analisi and VLSI

architectures for MPEG4 Motion Estimation", Kluwer
Academics, 1999.

[10] Cacti 3.2. Power Models
http://research.compaq.com/wrl/people/jouppi/CACTl.html

203

