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Preface

Software-defined radios (SDRs) have been around for more than a decade. The
first complete Global Positioning System (GPS) implementation was described
by Dennis Akos in 1997. Since then several research groups have presented their
contributions. We therefore find it timely to publish an up-to-date text on the sub-
ject and at the same time include Galileo, the forthcoming European satellite-
based navigation system. Both GPS and Galileo belong to the category of Global
Navigation Satellite Systems (GNSS).

SDR is a rapidly evolving technology that is getting enormous recognition and
is generating widespread interest in the receiver industry. SDR technology aims
at a flexible open-architecture receiver, which helps in building reconfigurable
SDRs where dynamic selection of parameters for individual modules is possible.
The receiver employs a wideband analog-to-digital (A/D) converter that captures
all channels of the software radio node. The receiver then extracts, downconverts,
and demodulates the channel waveform using software on a general-purpose pro-
cessor. The idea is to position a wideband A/D converter as close to an antenna
as is convenient, transfer those samples into a programmable element, and apply
digital signal processing techniques to obtain the desired result. An SDR is an
ideal platform for development, testing of algorithms, and possible integration of
other devices. We have chosen MATLAB® (version 7.x) as our coding language
because MATLAB is the de facto programming environment at technical univer-
sities, it is a flexible language, and it is easy to learn. Additionally, it provides
excellent facility for the presentation of graphical results.

The concepts of the present project crystallized nearly 10 years ago. At that
time the technology was not mature enough to be fully realized. Today the various
elements of this interactive book and companion DVD work, and work together:
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– The main text, which describes a GNSS software-defined radio;

– A complete GPS software receiver implemented using MATLAB as well
as sample data sets—available on the companion cross-platform DVD—
allowing readers to change various parameters and immediately see their
effects;

– A supplementary, optional USB GNSS front-end module, which eventually
converts analog signals to digital signals on a Windows or Linux system
(ordering instructions for this hardware can be found on the bundled DVD).
The signals are imported into MATLAB via the USB 2.0 port.

With all three elements, readers may construct their own GNSS receivers and will
be able to compute a position. Is this not exciting?

A GNSS software receiver is by no means a simple device. The one presented in
this book is a single-frequency receiver using the C/A code on L1 for GPS. This
choice has been made for various reasons. First, it keeps the receiver architecture
fairly simple. Second, with the orbital, clock and ionospheric corrections, as well
as the integrity provided by satellite-based augmentation systems (SBAS) such
as the European Geostationary Navigation Overlay System (EGNOS) and Wide
Area Augmentation System (WAAS), L1 accuracies rival that of dual frequency
GNSS receivers. Only future GNSS wideband signals or additional power will
offer performance improvements over the L1 band. Lastly, the forthcoming Euro-
pean Galileo system will offer an L1 component that will provide greater avail-
ability with its additional full constellation of satellites. We include a description
of the binary offset carrier (BOC) modulation, which is to be used in Galileo, to
allow readers to get acquainted with the new signal type.

The book considers the design of the front-end module, explaining how it is
possible to split the enormous amount of information contained in the antenna sig-
nal into parts related to the individually tracked satellites. Details on purchasing
the front-end module designed for this text can be found at: http://ccar.colorado.
edu/gnss.

A complete GPS software receiver was implemented in MATLAB. The receiver
is able to perform acquisition, code and carrier tracking, navigation bit extraction,
navigation data decoding, pseudorange estimation, and position computations. We
were told that nowadays a textbook comes with overheads prepared for the class-
room so that the lecturer’s job is minimized. Actually we have used most of the
present text for various courses during 2004 and 2005, and we are happy to make
this material readily available; it can be downloaded from: gps.aau.dk/softgps.

What follows here is a brief overview of the book’s contents and coverage of top-
ics. Chapter 1 contains a short introduction to deterministic and random signals.
All GNSS codes build on an elementary pulse signal. We investigate its amplitude
spectrum, autocorrelation function, and its Fourier transform, viz. the power spec-
trum. The important sampling process is described. Next, systems and especially
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linear time-invariant (LTI) systems are dealt with. This first chapter should give
the mathematically oriented reader a chance to follow the rest of the book. Gener-
ally, the book is written by signal processing people for signal processing people.

The signal structure and the navigation data for GPS are described in Chapter 2.
We deal with the pseudo random noise (PRN) sequences and their correlation
properties in great detail. Doppler frequency shift and code tracking is mentioned.
Finally the navigation data and their format are described.

Chapter 3 has a flow similar to the preceding chapter. We concentrate on the L1
OS signal and binary offset carrier (BOC) modulation, which is new in connec-
tion with navigation signals from satellites. Coherent adaptive subcarrier modula-
tion (CASM) as well as cyclic redundancy check (CRC), forward error correction
(FEC), and block interleaving are described in detail. Finally, the message struc-
ture and contents (navigation data) are dealt with.

Chapter 4 gives an introduction to the GNSS front-end module consisting of
an antenna, filter, amplifier, mixer, and analog-to-digital converter. The resulting
raw sampled data characteristics are described, and finally miniature GNSS front-
end designs, in the form of application specific integrated circuits (ASICs), are
discussed.

Chapter 5 provides an overview of the high-level signal processing within a
GNSS receiver from the most commonly used structure of a GNSS receiver. This
starts with a description of the functionality of an individual channel, as well as
a brief description of the required signal processing from acquisition all the way
through the position solution.

Chapter 6 describes in detail GPS signal acquisition, or identifying the signals
present in the collected data sets. The implementation of both serial and parallel
search acquisition methods are described.

Chapter 7 describes code and carrier tracking and data demodulation. Various
delay lock loops (DLL) discriminators are described. A phase lock loop (PLL) and
a frequency lock loop (FLL) are often used to track a carrier wave signal. These
elements are critical to refining the precise measurements provided in GNSS. A
special investigation is devoted to describing the envelope of multipath errors un-
der various conditions.

Chapter 8 recovers the navigation data and converts them to ephemerides. An
ephemeris makes the basis for computing a satellite position. Next we demon-
strate how to estimate the raw and fine parts of the transmit time. With these data
we introduce a computational model that delivers the receiver position. In order
to make the text more complete, we have added material about error sources, time
systems, and several relevant coordinate transformations. The concept of dilution
of precision (DOP) is studied as well as coordinate and time reference frames. Fi-
nally, a positioning procedure for a combined GPS and Galileo receiver is given.

Next follows a final chapter with problems. They are of different complexity;
we hope they will stimulate the reader to work with the comprehensive material
contained in this book. The ultimate goal of the authors will be achieved if the
reader is able to change key parameters (loop noise bandwidth and damping ra-
tio of DLL and/or PLL, correlator spacing, acquisition thresholds, sampling and
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intermediate frequencies, elevation mask, acquisition bandwidth) and study the
effect of those changes.

The book ends with two appendices. Appendix A gives an overall exposition
of the MATLAB program. The actual code is well documented, but we still find
it useful to add some general comments on the structure. Finally, we enumerate
the differences between GPS and Galileo signals in preparation for an eventual
software implementation of the Galileo L1 OS signal.

Appendix B contains a description of how to implement a simulation facility
for GPS signals. This is done in Simulink. Based on available literature, a Galileo
L1 OS signal generator is likewise described in Simulink. The generated spec-
trum resembles the received Galileo In-Orbit Validation Element A (GIOVE-A)
spectrum very well!

The contributions of Darius Plaušinaitis in making a total revision of the code,
reworking and creating of numerous figures, testing, coding the Galileo simulator,
and writing the USB driver for Windows cannot be underestimated. Henrik Have
Lindberg contributed to the clarification of certain aspects of the CASM. Troels
Pedersen improved the multipath description. Kristin Larson should also be rec-
ognized for her contribution and testing of the MATLAB algorithms. The folks
at SiGe Semiconductor, particularly Stuart Strickland and Michael Ball, should
be acknowledged for their efforts in helping to develop the available USB GNSS
front-end module. Additionally Stephan Esterhuizen and Marcus Junered should
be recognized for their Linux USB driver and application development associated
with the module.

All the constructive help from several reviewers is highly appreciated.
Substantial financial support from the Danish Technical Research Council for

Nicolaj Bertelsen, Darius Plaušinaitis, and Peter Rinder is acknowledged. A grant
from Det Obelske Familiefond has supported the development of the USB driver
for Windows.

We are grateful that Birkhäuser Boston is our publisher. Today we have mar-
velous production tools at our disposal like TEX. We know we are not the only
ones who appreciate this product. We used LATEX 2ε and AMS-TEX, and the book
is set in the 10/12 fonts Times and MathTime from Y&Y. The very competent
page layout and numerous intricate TEX solutions are due to Frank Jensen. John
D. Hobby’s MetaPost should also be mentioned. Twenty-five figures were cre-
ated in this environment, which is a mixture of Donald Knuth’s �������� and
PostScript from Adobe. Using it is sheer joy.

Aalborg, August 2006
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1
Signals and Systems

The concepts of a signal and a system are crucial to the topic of this book. We
will consider time as well as frequency domain models of the signals. We focus
on signals and system components that are important to study software-defined
GPS and Galileo receiver design. For a detailed treatment of signal and system
theory, we refer to the many standard signal processing textbooks on the market.

1.1 Characterization of Signals

In satellite positioning systems, we encounter two classes of signals referred to as
deterministic and random signals. Deterministic signals are modeled by explicit
mathematical expressions. The signals x(t) = 10 cos(100t) and x(t) = 5e50t are
examples of deterministic signals. A random signal, on the other hand, is a signal
about which there is some degree of uncertainty. An example of a random signal is
a received GPS signal: the received signal contains beside the information bearing
signal also noise from disturbances in the atmosphere and noise from the internal
circuitry of the GPS receiver; see Chapter 4 for more details.

Now some basic topics on deterministic and stochastic signal theory are re-
viewed and simultaneously we establish a notation.

A reader familiar with random processes knows concepts like autocorrelation
function, power spectral density function (or power spectrum), and bandwidth.
These concepts can be applied for deterministic signals as well, and that is ex-
actly what we intend to do in the following. There are several good sources about
random processes; see, for example, Strang & Borre (1997), Chapter 16.
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1.1.1 Continuous-Time Deterministic Signals

Let us consider a deterministic continuous-time signal x(t), real- or complex-
valued with finite energy defined as E = ∫∞

−∞ |x(t)| dt . The symbol |·| denotes the
absolute value, or magnitude, of the complex quantity. In the frequency domain
this signal is represented by its Fourier transform:

X (ω) =
∫ ∞

−∞
x(t)e− jωt dt, (1.1)

where j = √−1 and the variable ω denotes angular frequency. By definition
ω = 2π f and the units for ω and f are radian and cycle, respectively. In general,
the Fourier transform is complex:

X (ω) = �(X (ω)
) + j�(X (ω)

) = ∣∣X (ω)
∣∣e j arg(X (ω)). (1.2)

The quantity X (ω) is often referred to as the spectrum of the signal x(t) because
the Fourier transform measures the frequency content, or spectrum, of x(t). Sim-
ilarly, we refer to |X (ω)| as the magnitude spectrum of x(t), and to arg

(
X (ω)

) =
arctan

(�(X (ω))/�(X (ω))
)

as the phase spectrum of x(t). Moreover, we refer to
|X (ω)|2 as the energy density spectrum of x(t) because it represents the distribu-
tion of signal energy as a function of frequency. It is denoted E x (ω) = |X (ω)|2.

The inverse Fourier transform x(t) of X (ω) is

x(t) = 1

2π

∫ ∞

−∞
X (ω)e jωt dt . (1.3)

We say that x(t) and X (ω) constitute a Fourier transform pair:

x(t) ↔ X (ω).

The energy density spectrum Ex(ω) of a deterministic continuous-time signal
x(t) can also be found by means of the (time-average) autocorrelation function
(ACF) of the finite energy signal x(t). Let ∗ denote complex conjugation, and then
the ACF of x(t) is defined as

rx (τ ) =
∫ ∞

−∞
x∗(t)x(t + τ ) dt, (1.4)

and the energy density spectrum Ex(ω) of x(t) is defined as

Ex(ω) =
∫ ∞

−∞
rx (τ )e− jωτ dτ. (1.5)

Again, we say that rx (τ ) and Ex(ω) constitute a Fourier transform pair:

rx(τ ) ↔ Ex(ω).
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1.1.2 Discrete-Time Deterministic Signals

Let us suppose that x(n) is a real- or complex-valued deterministic sequence,
where n takes integer values, and which is obtained by uniformly sampling the
continuous-time signal x(t); read Section 1.2. If x(n) has finite energy E =∑∞

n=−∞ |x(n)|2 < ∞, then it has the frequency domain representation (discrete-
time Fourier transform)

X (ω) =
∞∑

n=−∞
x(n)e− jωn,

or equivalently

X ( f ) =
∞∑

n=−∞
x(n)e− j2π f n .

It should be noted that X ( f ) is periodic with a period of one and X (ω) is periodic
with a period of 2π .

The inverse discrete-time Fourier transform that yields the deterministic se-
quence x(n) from X (ω) or X ( f ) is given by

x(n) =
∫ 1/2

−1/2
X ( f )e j2π f n d f = 1

2π

∫ π

−π

X (ω)e jωn dω.

Notice that the integration limits are related to the periodicity of the spectra.
We refer to |X ( f )|2 as the energy density spectrum of x(n) and denote it as

Ex( f ) = ∣∣X ( f )
∣∣2.

The energy density spectrum Ex( f ) of a deterministic discrete-time signal x(n)

can also be found by means of the autocorrelation sequence

rx (k) =
∞∑

n=−∞
x∗(n)x(n + k)

via the discrete-time Fourier transform

Ex( f ) =
∞∑

k=−∞
rx (k)e− j2π f k .

That is, for a discrete-time signal, the Fourier transform pair is

rx (k) ↔ Ex ( f ).

1.1.3 Unit Impulse

In signal analysis a frequently used deterministic signal is the unit impulse. In
continuous time the unit impulse δ(t), also called the delta function, may be de-
fined by the following relation:∫ ∞

−∞
δ(t)x(t) dt = x(0),

where x(t) is an arbitrary signal continuous at t = 0. Its area is
∫∞
−∞ δ(t) dt = 1.
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time t

f (t)

(T/2, 1)

T/2−T/2

(−T/2, 1)

FIGURE 1.1. Rectangular pulse.

In discrete time the unit sample, also called a unit impulse sequence, is defined as

δ(n) =
{

1, n = 0,

0, n �= 0.

It follows that a continuous-time signal x(t) may be represented as

x(t) =
∫ ∞

−∞
x(τ )δ(t − τ ) dτ for all t .

Similarly, a sequence x(n) may be represented as

x(n) =
∞∑

k=−∞
x(k)δ(n − k) for all n. (1.6)

The Fourier transform of the unit impulse δ(t) is given by∫ ∞

−∞
δ(t)e− j2π f t dt = 1,

which gives us the following Fourier transform pair:

δ(t) ↔ 1.

The spectrum of the unit sample is obtained by

∞∑
n=−∞

δ(n)e− j2π f n = 1,

which gives us the following Fourier transform pair:

δ(n) ↔ 1.

1.1.4 Rectangular Pulse

Let us now consider a single rectangular pulse f (t) with amplitude 1 and pulse
width equal to T . In Figure 1.1 we have shifted the pulse −T/2 to place it sym-
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ω

T

|F(ω)|

(0, π)

(0, −π)

ω

arg
(
F(ω)

)
. . .

. . .

FIGURE 1.2. Top: Magnitude spectrum |F(ω)| of rectangular pulse. Notice that F(ω) has
zeros at ± 2π

T , ± 4π
T , . . . . Bottom: Phase spectrum arg(F(ω)) of rectangular pulse. Notice

that arg(F(ω)) has jumps equal to π at ± 2π
T , ± 4π

T , . . . .

metrically around t = 0. The equation for the pulse is

f (t) =
{

1, |t| ≤ T/2,

0, otherwise.
(1.7)

Let the frequency be f in Hz [cycle/s] and ω = 2π f [radian/s]. Then the
Fourier transform of f (t) is

F(ω) = T
sin ωT

2
ωT
2

= T sinc
(ωT

2

)
. (1.8)

The magnitude spectrum |F(ω)| and the phase spectrum arg
(
F(ω)

)
are depicted

in Figure 1.2. Notice that arg
(
F(ω)

)
of f (t) is linear for ω �= 2πn

T with jumps
equal to π for ω = 2πn

T , because of the change of sign of sin
(

ωT
2

)
at these points.

From (1.4) follows that the ACF r f (τ ) for a rectangular pulse has a triangular
waveform; see Figure 1.3,

r f (τ ) =
{

T
(
1 − |τ |

T

)
, for |τ | ≤ T ,

0, otherwise.
(1.9)
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r f (τ )

τT−T

(0, T )

FIGURE 1.3. Autocorrelation function r f (τ) of the rectangular pulse shown in Figure 1.1.

The energy density spectrum E f (ω) of f (t) is a real function because r∗
f (τ ) =

r f (− f ):

E f (ω) =
∫ ∞

−∞
r f (τ )e− jωτ dτ =

∫ ∞

−∞
r f (τ ) cos(ωτ) dτ. (1.10)

The energy density spectrum of the rectangular pulse f (t) is

E f (ω) =
∫ T

−T
(T − τ ) cos(ωτ) dτ = T 2

(
sin ωT

2
ωT
2

)2

= T 2 sinc2 ωT

2
. (1.11)

The energy density spectrum E f (ω) is depicted in Figure 1.4.
In discrete time the rectangular pulse takes on the form

f (n) =
{

1, 0 ≤ n ≤ N − 1,

0, otherwise,
(1.12)

where N is an integer. The Fourier transform of f (n) is

F( f ) =
N−1∑
n=0

e− j2π f n = sin(π f N)

sin(π f )
e− jπ f (N−1).

1.1.5 Random Signals

A random process can be viewed as a mapping of the outcomes of a random
experiment to a set of functions of time—in this context a signal X (t). Such a sig-
nal is stationary if the density functions p(X (t)) describing it are invariant under
translation of time t . A random stationary process is an infinite energy signal, and
therefore its Fourier transform does not exist. The spectral characteristics of a ran-
dom process is obtained according to the Wiener–Khinchine theorem [see, e.g.,
Shanmugan & Breipohl (1988)] by computing the Fourier transform of the ACF.
That is, the distribution of signal power as a function of frequency is given by

SX (ω) =
∫ ∞

−∞
rX (τ )e− jωτ dτ. (1.13)
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ω

T 2

E f (ω)

FIGURE 1.4. Energy density spectrum E f (ω) of the rectangular pulse shown in Figure 1.1.

Note that E f (ω) has zeros at ± 2π
T , ± 4π

T , ± 6π
T , . . . .

The ACF of the stationary process X (t) is defined as rX (τ ) = E{X (t)∗X (t + τ )}
with E{·} denoting the expectation operator and τ being the lag. The inverse
Fourier transform is given by

rX (τ ) =
∫ ∞

−∞
SX (ω)e jωτ dω. (1.14)

The quantity SX (ω) is called the power density spectrum of X (t).
A discrete-time random process (sequence) has infinite energy but has a finite

average power given by E
(
X2(n)

) = rX (0). According to the Wiener–Khinchine
theorem we obtain the spectral characteristic of the discrete-time random process
by means of the Fourier transform of the autocorrelation sequence rX (m):

SX ( f ) =
∞∑

m=−∞
rX (m)e− j2π f m .

The inverse Fourier transform is

rX (m) =
∫ 1/2

−1/2
SX ( f )e j2π f m d f.

1.1.6 Random Sequence of Pulses

In Section 1.1.4 we studied the characteristics of a single rectangular pulse f (t).
Next we want to become familiar with the same properties for a random sequence
of pulses with amplitude ±1; each pulse with duration T .
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rX (τ )

τT−T

(0, 1)

FIGURE 1.5. Autocorrelation function rX (τ) for random sequence of pulses with ampli-
tude ±1.

The ACF for the sample function x(t) of a process X (t) consisting of a random
sequence of pulses with amplitude ±1 and with equal probability for the outcome
+1 and −1 is [see, e.g., Forssell (1991) or Haykin (2000)]

rX (τ ) =
{ (

1 − |τ |
T

)
, for |τ | ≤ T ,

0, otherwise.
(1.15)

The ACF is plotted in Figure 1.5. It follows that the power spectral density is

SX (ω) =
∫ T

−T

(
1 − |τ |

T

)
e− jωτ dτ = T sinc2

(ωT

2

)
, (1.16)

which is plotted in Figure 1.6. The power spectral density of X (t) possesses a
main lope bounded by well-defined spectral nulls. Accordingly, the null-to-null
bandwidth provides a simple measure for the bandwidth of X (t).

Note that the power spectral density SX (ω) of a random sequence of pulses with
amplitude ±1 differs from the energy spectral density E f (ω), given in (1.11), of a
single rectangular pulse by only a scalar factor T .

1.2 Sampling

A crucial signal processing operation in a GPS or Galileo software-defined re-
ceiver is sampling. In the following we briefly review the sampling process.

Consider the signal x(t). Suppose that we sample this signal at a uniform rate—
say once every Ts seconds. Then we obtain an infinite sequence of samples, and
we denote this sequence by {x(nTs)}, where n takes on all integer values. The
quantity Ts is called the sampling period, and its reciprocal fs = 1/Ts the sam-
pling rate.

The sampling operation is mathematically described by

xδ(t) =
∞∑

n=−∞
x(nTs)δ(t − nTs),
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ω

T

SX (ω)

FIGURE 1.6. Power spectral density SX (ω) of a random sequence of pulses.

where x(t) is the signal being sampled, and xδ(t) is the sampled signal that con-
sists of a sequence of impulses separated in time by Ts . The term δ(t − nTs)

represents a delta function positioned at time t = nTs . The Fourier transform of
xδ(t) is

Xδ( f ) = fs

∞∑
n=−∞

X ( f − n fs).

Figures 1.7 and 1.8 show the sampling process in the time and frequency domain,
respectively.

Figure 1.8 reveals that if the sampling rate fs is lower that 2B , then the fre-
quency-shifted components of X ( f ) overlap and the spectrum of the sampled
signal is not similar to the spectrum of the original signal x(t). The spectral over-
lap effect is known as aliasing, and the sampling rate fs = 2B is called the
Nyquist rate.

To avoid the effects of aliasing, we may use a lowpass anti-aliasing filter to
attenuate frequency components above B , (see Figure 1.8), and sample the signal
with a rate higher than the Nyquist rate, i.e., fs > 2B . We return to the issue of
sampling in Chapter 4.

1.3 Characterization of Systems

In the continuous-time domain, a system is a functional relationship between the
input signal x(t) and the output signal y(t). The input–output relation of a system
may be denoted as

y(t0) = f
(
x(t)

)
, where − ∞ < t, t0 < ∞. (1.17)
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t

x(t)

t

xδ(t)

0 Ts 2Ts 3Ts 4Ts 5Ts

0

. . .. . .

FIGURE 1.7. Sampling operation shown in the time domain. Top: Signal x(t). Bottom:
Sampled signal xδ(t).

Figure 1.9 shows a block diagram of a system characterized by a function f and
with input signal x(t) and output signal y(t).

By means of the properties of the input–output relationship given in (1.17), we
can classify systems as follows:

Linear and nonlinear systems A system is said to be linear if superposition ap-
plies. That is, if

y1(t) = f
(
x1(t)

)
and y2(t) = f

(
x2(t)

)
,

then
a1y1(t) + a2y2(t) = f

(
a1x1(t) + a2x2(t)

)
.

A system in which superposition does not apply is termed a nonlinear sys-
tem.

Time-invariant and time-varying systems A system is said to be be time-invariant
if a time shift in the input results in a corresponding time shift in the output.
That is,

if y(t) = f
(
x(t)

)
, then y(t − t0) = f

(
x(t − t0)

)
for −∞ < t, t0 < ∞,

where t0 is any real number. Systems that do not meet this requirement are
called time-varying systems.
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B−B 0 f

X ( f )

f

xδ( f )

0

B fs − B fs + B−B

− fs−2 fs fs 2 fs

. . .. . .

FIGURE 1.8. Sampling operation shown in the frequency domain. Top: Signal X ( f ) with
bandwidth B. Bottom: xδ( f ) when fs > 2B.

Causal and noncausal systems A system is said to be causal if its response does
not begin before the input is applied, or in other words, the value of the out-
put at t = t0 depends only on the values of x(t) for t ≤ t0. In mathematical
terms, we have

y(t0) = f
(
x(t)

)
for t ≤ t0 and − ∞ < t, t0 < ∞.

Noncausal systems do not satisfy the condition given above. Moreover, they
do not exist in a real world but can be approximated by the use of time delay.

The classification of continuous-time systems easily carries over to discrete-
time systems. Here the input and output signals are sequences, and the system
maps the input sequence x(n) into the output sequence y(n).

A simple example of a discrete-time linear system is a system that is a linear
combination of the present and two past inputs. Such a system can in general be
described by

y(n) = x(n) + a1x(n − 1) + a2x(n − 2) (1.18)

and is illustrated in Figure 1.10.

Input System Output

x(t) y(t)
f

FIGURE 1.9. Block diagram representation of a system.
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Delay Delay

1 a1 a2

� �

x(n) x(n − 1) x(n − 2)

y(n)

FIGURE 1.10. Simple linear system with input–output relation y(n) = x(n)+a1x(n−1)+
a2x(n − 2).

1.4 Linear Time-Invariant Systems

Let us first consider a continuous-time, linear, time-invariant (LTI) system char-
acterized by an impulse response h(t), which is defined to be the response y(t)
from the LTI system to a unit impulse δ(t). That is,

h(t) ≡ y(t) when x(t) = δ(t).

The response to the input x(t) is found by convolving x(t) with h(t) in the time
domain:

y(t) = x(t) ∗ h(t) =
∫ ∞

−∞
h(λ)x(t − λ)dλ. (1.19)

Convolution is denoted by the ∗. Since h(t) = 0 for t < 0 for causal systems, we
can also write y(t) as

y(t) =
∫ ∞

−∞
x(λ)h(t − λ) dλ.

Define the continuous-time exponential signal x(t) = e j2π f t . From (1.19) we
then have

y(t) = h(t) ∗ x(t) = h(t) ∗ e j2π f t =
∫ ∞

−∞
h(λ)e j2π f (t−λ) dλ

= e j2π f t
[∫ ∞

−∞
h(λ)e− j2π f λ dλ

]
. (1.20)

The expression in brackets is the Fourier transform of h(t), which we denote
H ( f ).

Now define the discrete-time exponential sequence x(n) = e j2π f n = e jωn .
We can then characterize a discrete-time LTI system by its frequency response to
x(n). By means of the convolution sum formula, a discrete version of (1.20), we
obtain the response

y(n) =
∞∑

k=−∞
e jωkh(n − k) =

( ∞∑
k=−∞

h(k)e− jωk
)

e jωn. (1.21)

The expression in parentheses is the discrete-time Fourier transform of the im-
pulse response h(n), which we denote H (ω).
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FIGURE 1.11. Parameters of a filter.

The convolution in the time domain corresponds to the multiplication of Fourier
transforms in the frequency domain. Thus, for the system under consideration the
Fourier transforms of the input and output signals are related to each other by

Y ( f ) = H ( f )X ( f ). (1.22)

In general, the transfer function H ( f ) is a complex quantity and can be expressed
in magnitude and angle form as

H ( f ) = ∣∣H ( f )
∣∣e j arg(H( f )).

The quantity |H ( f )| is called the amplitude response of the system, and the quan-
tity arg(H ( f )) is called the phase response of the system. The magnitude response
is often expressed in decibels (dB) using the definition∣∣H ( f )

∣∣
dB = 20 log10

∣∣H ( f )
∣∣.

We mention in passing that in real systems h(t) is a real-valued function and hence
H ( f ) has conjugate symmetry in the frequency domain, i.e., H ( f ) = H ∗(− f ).

If the input and output signals are expressed in terms of power spectral density,
then the input–output relation is given by

Sy( f ) = ∣∣H ( f )
∣∣2Sx ( f ).

The equations above show that an LTI system acts as a filter. Filters can be classi-
fied into lowpass, bandpass, and highpass filters and they are often characterized
by stopbands, passband, and half-power (3 dB) bandwidth. These parameters are
identified in Figure 1.11 for a bandpass filter.
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W−W f0

|S̃( f )|

2|S( fc)|

f

|S( f )|

fc− fc

|S( fc)|

2W 2W

FIGURE 1.12. Magnitude spectrum of bandpass signal s(t) and complex envelope s̃(t).

1.5 Representation of Bandpass Signals

Signals can also be classified into lowpass, bandpass, and highpass categories de-
pending on their spectra. We define a bandpass signal as a signal with frequency
content concentrated in a band of frequencies above zero frequency. Bandpass sig-
nals arise in the GPS and Galileo systems where the information-bearing signals
are transmitted over bandpass channels from the satellite to the receiver.

Let us now consider an analog signal s(t) with frequency content limited to
a narrow band of total extent 2W and centered about some frequency ± fc; see
Figure 1.12. We term such a signal a bandpass signal and represent it as

s(t) = a(t) cos
(
2π fct + ϕ(t)

)
, (1.23)

where a(t) is called the amplitude or envelope of the signal and ϕ(t) is called
the phase of the signal. The frequency fc is called the carrier frequency. Equa-
tion (1.23) represents a hybrid form of amplitude modulation and angle modu-
lation and it includes amplitude modulation, frequency modulation, and phase
modulation as special cases. For more details on this topic we refer to Haykin
(2000).

By expanding the cosine function in (1.23) we obtain an alternative representa-
tion of the bandpass signal:

s(t) = a(t) cos
(
ϕ(t)

)
cos(2π fct) − a(t) sin

(
ϕ(t)

)
sin(2π fct)

= sI (t) cos(2π fct) − sQ(t) sin(2π fct), (1.24)



1.5 Representation of Bandpass Signals 15

where by definition

sI (t) = a(t) cos
(
ϕ(t)

)
, (1.25)

sQ(t) = a(t) sin
(
ϕ(t)

)
. (1.26)

Since the sinusoids cos(2π fct) and sin(2π fct) differ by 90◦, we say that they
are in phase quadrature. We refer to sI (t) as the in-phase component of s(t) and
to sQ(t) as the quadrature component of the bandpass signal s(t). Both sI (t) and
sQ(t) are real-valued lowpass signals.

Another representation of the bandpass signal s(t) is obtained by defining the
complex envelope

s̃(t) = sI (t) + j sQ(t) (1.27)

such that
s(t) = �(̃s(t)e j2π fct). (1.28)

Equation (1.27) can be seen as the Cartesian form of expressing the complex
envelope s̃(t). In polar form we may write s̃(t) as

s̃(t) = a(t)e jϕ(t), (1.29)

where a(t) =
√

s2
I (t) + s2

Q(t) and ϕ(t) = arctan
( sQ(t)

sI (t)

)
are both real-valued low-

pass signals. That is, the information carried in the bandpass signal s(t) is pre-
served in s̃(t) whether we represent s(t) in terms of its in-phase and quadrature
components as in (1.24) or in terms of its envelope and phase as in (1.23).

In the frequency domain the bandpass signal s(t) is represented by its Fourier
transform

S( f ) =
∫ ∞

−∞
s(t)e− j2π f t dt

=
∫ ∞

−∞
�(̃s(t)e j2π fct)e− j2π f t dt

= 1
2

∫ ∞

−∞

(̃
s(t)e j2π fct + s̃∗(t)e− j2π fct

)
e− j2π f t dt

= 1
2

∫ ∞

−∞
s̃(t)e− j2π( f − fc)t dt + 1

2

∫ ∞

−∞
s̃∗(t)e− j2π( f + fc)t dt . (1.30)

In the above derivation we used �(v) = 1
2 (v + v∗). If we denote the Fourier

transform of the signals s(t) and s̃(t) as S( f ) and S̃( f ), respectively, we may
write (1.30) as

S( f ) = 1
2

(
S̃( f − fc) + S̃∗(− f − fc)

)
. (1.31)

This relation is illustrated in Figure 1.12.



2
GPS Signal

In order to design a software-defined single frequency GPS receiver it is neces-
sary to know the characteristics of the signal and data transmitted from the GPS
satellites and received by the GPS receiver antenna. In this chapter an overview
of the GPS signal generation scheme and the most important properties of the
various signals and data are presented.

2.1 Signals and Data

The GPS signals are transmitted on two radio frequencies in the UHF band. The
UHF band covers the frequency band from 500 MHz to 3 GHz. These frequencies
are referred to as L1 and L2 and are derived from a common frequency, f0 =
10.23 MHz:

fL1 = 154 f0 = 1575.42 MHz, (2.1)

fL2 = 120 f0 = 1227.60 MHz. (2.2)

The signals are composed of the following three parts:

Carrier The carrier wave with frequency fL1 or fL2,

Navigation data The navigation data contain information regarding satellite or-
bits. This information is uploaded to all satellites from the ground stations
in the GPS Control Segment. The navigation data have a bit rate of 50 bps.
More details on the navigation data can be seen in Section 2.6.
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FIGURE 2.1. Generation of GPS signals at the satellites.

Spreading sequence Each satellite has two unique spreading sequences or codes.
The first one is the coarse acquisition code (C/A), and the other one is the
encrypted precision code (P(Y)). The C/A code is a sequence of 1023 chips.
(A chip corresponds to a bit. It is simply called a chip to emphasize that
it does not hold any information.) The code is repeated each ms giving a
chipping rate of 1.023 MHz. The P code is a longer code (≈ 2.35·104 chips)
with a chipping rate of 10.23 MHz. It repeats itself each week starting at
the beginning of the GPS week which is at Saturday/Sunday midnight. The
C/A code is only modulated onto the L1 carrier while the P(Y) code is
modulated onto both the L1 and the L2 carrier. Section 2.3 describes the
generation and properties of the spreading sequences in detail.

2.2 GPS Signal Scheme

In the following a detailed description of the signal generation is given. Figure 2.1
is a block diagram describing the signal generation; see Kaplan & Hegarty (2006),
page 124.

The block diagram should be read from left to right. At the far left, the main
clock signal is supplied to the remaining blocks. The clock signal has a frequency
of 10.23 MHz. Actually, the exact frequency is 10.22999999543MHz to adjust
for relativistic effects giving a frequency of 10.23 MHz seen from the user on
Earth. When multiplied by 154 and 120, it generates the L1 and L2 carrier signals,
respectively. At the bottom left corner a limiter is used to stabilize the clock signal
before supplying it to the P(Y) and C/A code generators. At the very bottom
the data generator generates the navigation data. The code generators and the
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TABLE 2.1.
Output of the exclusive OR operation

Input Input Output

0 0 0
0 1 1
1 0 1
1 1 0

TABLE 2.2.
Output of ordinary multiplication

Input Input Output

−1 −1 1
−1 1 −1

1 −1 −1
1 1 1

data generator are synchronized through the X1 signal supplied by the P(Y) code
generator.

After code generation, the codes are combined with the navigation data through
modulo-2 adders. The exclusive OR operation is used on binary sequences repre-
sented by 0’s and 1’s, and its properties are shown in Table 2.1.

If the binary sequences were represented by the polar non-return-to-zero rep-
resentation, i.e., 1’s and −1’s, ordinary multiplication could be used instead. The
corresponding properties of the multiplication with two binary non-return-to-zero
sequences are shown in Table 2.2.

The C/A code ⊕ data and the P(Y) code ⊕ data signals are supplied to the
two modulators for the L1 frequency. Here the signals are modulated onto the
carrier signal using the binary phase shift keying (BPSK) method. Note that the
two codes are modulated in-phase and quadrature with each other on L1. That is,
there is a 90◦ phase shift between the two codes. We return to this issue shortly.
After the P(Y) part is attenuated 3 dB, these two L1 signals are added to form the
resulting L1 signal. The so-called standard positioning service (SPS) is based on
C/A code signals alone.

It follows that the signal transmitted from satellite k can be described as

sk(t) = √
2PC

(
Ck(t) ⊕ Dk(t)

)
cos(2π fL1t)

+
√

2PPL1
(
Pk(t) ⊕ Dk(t)

)
sin(2π fL1t)

+ √
2PPL2

(
Pk(t) ⊕ Dk(t)

)
sin(2π fL2t), (2.3)

where PC , PPL1, and PPL2 are the powers of signals with C/A or P code, Ck is the
C/A code sequence assigned to satellite number k, Pk is the P(Y) code sequence
assigned to satellite number k, Dk is the navigation data sequence, and fL1 and
fL2 are the carrier frequencies of L1 and L2, respectively.

Figure 2.2 shows the three parts forming the signal on the L1 frequency. The
C/A code repeats itself every ms, and one navigation bit lasts 20 ms. Hence for
each navigation bit, the signal contains 20 complete C/A codes.

Figure 2.3 shows the Gold code C , the navigation data D, the modulo-2 added
signal C ⊕ D, and the carrier. The final signal is created by binary phase-shift key-
ing (BPSK) where the carrier is instantaneously phase shifted by 180◦ at the time
of a chip change. When a navigation data bit transition occurs (about one third
from the right edge), the phase of the resulting signal is also phase-shifted 180◦.
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Carrier f (t)

Code C(t)

Data D(t)

0 1 2 20 21

Time [ms]

FIGURE 2.2. L1 signal structure: f (t) is the carrier wave and C(t) is the discrete C/A code
sequence. As seen, this signal repeats itself every ms. D(t) is the discrete navigation data
bit stream. One navigation bit lasts 20 ms. The three parts of the L1 signal are multiplied to
form the resulting signal. This figure is not to scale but is only used for illustrative purpose.

The GPS C/A spectrum is illustrated in Figure 3.4.
In summary: For GPS the code length is 1023 chips, 1.023 MHz chipping rate

(1 ms period time), 50 Hz data rate (20 code periods per data bit), ∼ 90% of signal
power within ∼ 2 MHz bandwidth.

2.3 C/A Code

In this section, the spreading sequences used in GPS are described. We restrict
ourselves to the C/A code sequences, as we deal only with L1 signals in this book.
The spreading sequences used as C/A codes in GPS belong to a unique family of
sequences. They are often referred to as Gold codes, as Robert Gold described
them in 1967; see Gold (1967). They are also referred to as pseudo-random noise
sequences, or simply PRN sequences, because of their characteristics.

2.3.1 Gold Sequence

The pseudorandom noise (PRN) codes transmitted by the GPS satellites are deter-
ministic sequences with noiselike properties. Each C/A code is generated using
a tapped linear feedback shift register (LFSR); cf. Strang & Borre (1997), Sec-
tion 14.1. It generates a maximal-length sequence of length N = 2n −1 elements.

A Gold code is the sum of two maximum-length sequences. The GPS C/A
code uses n = 10. The sequence p(t) repeats every ms so the chip length is
1 ms/1023 = 977.5 ns ≈ 1 µs, which corresponds to a metric length of 300 m
when propagating through vacuum or air. For further details on the generation of
the Gold codes, we refer to Section 2.3.3. The ACF for this C/A code is

rp(τ ) = 1

NTc

∫ NTc

0
p(t)p(t + τ ) dt .
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FIGURE 2.3. The effect of BPSK modulation of the L1 carrier wave with the C/A code
and the navigation data for one satellite. The resulting L1 signal is the product of G, N ,
and the carrier signals. The plot contains the first 25 chips of the Gold code for PRN 1.

The sequence would have 512 ones and 511 zeros, and these would appear to be
distributed at random. Yet the string of chips so generated is entirely deterministic.
The sequence is pseudorandom, not random. Outside the correlation interval the
ACF of p(t) is −1/N . For the C/A code the constant term is −1/N = −1/1023,
which is shown in Figure 2.4.

The ACF can be expressed as the sum of this constant term and an infinite series
of the triangle function rX (τ ) defined in (1.15). This infinite series is obtained
by the convolution of rX (τ ) with an infinite series of impulse functions that are
phase-shifted by m NTc :

rP (τ ) = − 1

N
+ N + 1

N
rX (τ ) ∗

∞∑
m=−∞

δ(τ + m NTc), (2.4)

where ∗ denotes convolution. The power (line) spectrum of this periodic PRN
sequence is derived from the Fourier transform of (2.4):

SP (ω) = 1

N2

(
δ(ω) +

∞∑
m=−∞

m �=0

(N + 1) sinc2
(mπ

N

)
δ
(
ω + m2π

NTc

))
(2.5)

for m = ±1,±2,±3, . . . ; see Kaplan & Hegarty (2006), page 119.

2.3.2 Gold Sequence Generation—Overview

The generation of the Gold codes is sketched in Figure 2.5. The C/A code gener-
ator contains two shift registers known as G1 and G2. These shift registers each
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FIGURE 2.4. Stem plot of an ACF for a Gold sequence. The left stem has correlation value
rp(0) = 1; all other correlation values are 63

1023 , −1
1023 , or −65

1023 . Only the first 50 lags out
of 1023 are shown.

have 10 cells generating sequences of length 1023. The two resulting 1023 chip-
long sequences are modulo-2 added to generate a 1023 chip-long C/A code, only
if the polynomial is able to generate code of maximum length.

Every 1023rd period, the shift registers are reset with all ones, making the code
start over. The G1 register always has a feedback configuration with the polyno-
mial

f (x) = 1 + x3 + x10, (2.6)

meaning that state 3 and state 10 are fed back to the input. In the same way, the
G2 register has the polynomial

f (x) = 1 + x2 + x3 + x6 + x8 + x9 + x10. (2.7)

To make different C/A codes for the satellites, the output of the two shift reg-
isters are combined in a very special manner. The G1 register always supplies its
output, but the G2 register supplies two of its states to a modulo-2 adder to gen-
erate its output. The selection of states for the modulo-2 adder is called the phase
selection. Table 2.3 shows the combination of the phase selections for each C/A
code. It also shows the first 10 chips of each code in octal representation.

As the generation of the C/A codes are of immense importance, we outline in
detail the principle of operation of the C/A code generator in the next section.

2.3.3 Gold Sequence Generation—Details

A shift register is a set of one bit storage or memory cells. When a clock pulse
is applied to the register, the content of each cell shifts one bit to the right. The
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TABLE 2.3. C/A code phase assignment. The selection of different states for the code
phase generates the different C/A codes for the GPS satellites.

Satellite GPS PRN Code phase Code First
ID signal selection delay 10 chips

number number G2 chips octal

1 1 2 ⊕ 6 5 1440
2 2 3 ⊕ 7 6 1620
3 3 4 ⊕ 8 7 1710
4 4 5 ⊕ 9 8 1744
5 5 1 ⊕ 9 17 1133
6 6 2 ⊕ 10 18 1455
7 7 1 ⊕ 8 139 1131
8 8 2 ⊕ 9 140 1454
9 9 3 ⊕ 10 141 1626

10 10 2 ⊕ 3 251 1504
11 11 3 ⊕ 4 252 1642
12 12 5 ⊕ 6 254 1750
13 13 6 ⊕ 7 255 1764
14 14 7 ⊕ 8 256 1772
15 15 8 ⊕ 9 257 1775
16 16 9 ⊕ 10 258 1776
17 17 1 ⊕ 4 469 1156
18 18 2 ⊕ 5 470 1467
19 19 3 ⊕ 6 471 1633
20 20 4 ⊕ 7 472 1715
21 21 5 ⊕ 8 473 1746
22 22 6 ⊕ 9 474 1763
23 23 1 ⊕ 3 509 1063
24 24 4 ⊕ 6 512 1706
25 25 5 ⊕ 7 513 1743
26 26 6 ⊕ 8 514 1761
27 27 7 ⊕ 9 515 1770
28 28 8 ⊕ 10 516 1774
29 29 1 ⊕ 6 859 1127
30 30 2 ⊕ 7 860 1453
31 31 3 ⊕ 8 861 1625
32 32 4 ⊕ 9 862 1712
— 33 5 ⊕ 10 863 1745
— 34 4 ⊕ 10 950 1713
— 35 1 ⊕ 7 947 1134
— 36 2 ⊕ 8 948 1456
— 37 4 ⊕ 10 950 1713
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FIGURE 2.5. C/A code generator. The code generator contains two shift registers, G1 and
G2. The output from G2 depends on the phase selector. The different configurations of the
phase selector makes the different C/A codes.

content of the last cell is “read out” as output. The special properties of such shift
registers depend on how information is “read in” to cell 1.

For a tapped linear feedback shift register, the input to cell 1 is determined by
the state of the other cells. For example, the binary sum from cells 3 and 10 in a
10-cell register could be the input. If cells 3 and 10 have different states (one is 1
and the other 0), a 1 will be read into cell 1 on the next clock pulse. If cells 3 and
10 have the same state, 0 will be read into cell 1. If we start with 1 in every cell, 12
clock pulses later the contents will be 0010001110. The next clock pulse will take
the 1 in cell 3 and the 0 in cell 10 and place their sum (1) in cell 1. Meanwhile, all
other bits have shifted cell to the right, and the 0 in cell 10 becomes the next bit in
the output. A shorthand way of denoting this particular design is by the modulo-2
polynomial f (x) = 1+x3+x10. Such a polynomial representation is particularly
useful because if 1/ f (x) = h0 + h1x + h2x2 + h3x3 + · · · , then the coefficients
h0, h1, h2, . . . form the binary output sequence.

The C/A code is generated by two 10-bit LFSRs of maximal length 210 − 1.
One is the 1 + x3 + x10 register already described and is referred to as G1. The
other has f (x) = 1 + x2 + x3 + x6 + x8 + x9 + x10. Cells 2, 3, 6, 8, 9, and 10
are tapped and binary-added to get the new input to cell 1. In this case, the output
comes not from cell 10 but from a second set of taps. Various pairs of these second
taps are binary-added. The different pairs yield the same sequence with different
delays or shifts (as given by the “shift and add” or “cycle and add” property: a
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chip-by-chip sum of a maximal-length register sequence and any shift of itself is
the same sequence except for a shift). The delayed version of the G2 sequence is
binary-added to the output of G1. That becomes the C/A code. The G1 and G2
shift registers are set to the all-ones state in synchronism with the epoch of the
X1 code used in the generation of the P code (see ahead). The various alternative
pairs of G2 taps (delays) are used to generate the complete set of 36 unique PRN
C/A codes. These are Gold codes, Gold (1967), Dixon (1984), and any two have
a very low cross correlation (are nearly orthogonal).

There are actually 37 PRN C/A codes, but two of them (34 and 37) are identical.
A subset of the first 32 codes are assigned to (nominally 24) satellites and recycled
when old satellites die and new satellites are launched. Codes 33 through 37 are
reserved for other uses, including ground transmitters.

The P code generation follows the same principles as the C/A code, except that
4 shift registers with 12 cells are used. Two registers are combined to produce the
X1 code, which is 15,345,000 chips long and repeats every 1.5 seconds; and two
registers are combined to produce the X2 code, which is 15,345,037 chips long.
The X1 and X2 codes can be combined with 37 different delays on the X2 code
to produce 37 different one-week segments of the P code. Each of the first 32
segments is associated with a different satellite.

2.3.4 Correlation Properties

The Gold codes are selected as spreading sequences for the GPS signals because
of their characteristics. The most important characteristics of the C/A codes are
their correlation properties. These properties are described now.

The two important correlation properties of the C/A codes can be stated as
follows:

Nearly no cross correlation All the C/A codes are nearly uncorrelated with each
other. That is, for two codes Ci and Ck for satellites i and k, the cross
correlation can be written as

rik (m) =
1022∑
l=0

Ci (l)Ck(l + m) ≈ 0 for all m. (2.8)

Nearly no correlation except for zero lag All C/A are nearly uncorrelated with
themselves, except for zero lag. This property makes it easy to find out
when two similar codes are perfectly aligned. The autocorrelation property
for satellite k can be written as

rkk(m) =
1022∑
l=0

Ck(l)Ck(l + m) ≈ 0 for |m| ≥ 1. (2.9)

Figure 2.6 shows an example of the auto- and cross-correlation properties of the
C/A code. As expected, the figure shows high correlation at lag 0 when correlating
with the same C/A code, and low correlation when correlating with another C/A
code.
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FIGURE 2.6. Correlation properties of the C/A codes. Left: Autocorrelation rkk(n) of the
C/A code for PRN 1. Right: Cross correlation rik (n) of the C/A codes for PRNs 1 and 2.

The autocorrelation shown in the left part of Figure 2.6 has a peak of magnitude

rkk,peak = 2n − 1 = 1023, (2.10)

where n is the number of states in the shift registers. In this case, n equals 10. The
remaining values satisfy the following inequality, Gold (1967):

|rkk | ≤ 2(n+2)/2 + 1. (2.11)

For n = 10, we get

|rkk | ≤ 65. (2.12)

The cross correlation in the right part of Figure 2.6 also satisfies the inequality
in (2.11).

2.4 Doppler Frequency Shift

In GPS we are faced with a Doppler frequency shift caused by the motion of the
transmitter (satellite) relative to the GPS receiver. The Doppler frequency shift
affects both the acquisition and tracking of the GPS signal. For a stationary GPS
receiver the maximum Doppler frequency shift for the L1 frequency is around
±5 kHz and for a GPS receiver moving at high speed it is reasonable to assume
that the maximum Doppler shift is ±10 kHz.
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FIGURE 2.7. The two triangles indicate the early and the late ACF. In the left part the two
triangles are separated by d = 1 chip (classical wide correlator), and the right part shows
a separation of d = 0.5 chip (narrow correlator). Both discriminators have the same slope
close to the origin.

The Doppler frequency shift on the C/A code is small because of the low
chip rate of the C/A code. The C/A code has a chip rate of 1.023 Mhz, which
is 1575.42/1.023 = 1540 times lower than the L1 carrier frequency. It follows
that the Doppler frequency on the C/A code is 3.2 Hz and 6.4 Hz for the stationary
and the high-speed GPS receiver, respectively.

The Doppler frequency on the C/A code can cause misalignment between the
received and the locally generated codes and the values of the Doppler frequency
are important for the tracking method. We return to this topic in Chapters 6 and 7.

2.5 Code Tracking

GPS signal receiving involves a classical problem, namely that one of code track-
ing which can be solved by means of the delay-locked loop (DLL) scheme based
on an early–late discriminator. For more detail on this topic we refer to Chapter 7.
This loop-error detector or loop discriminator is—in its simplest version—based
on a two-correlator structure. Each correlator is set with a small time offset rela-
tive to the promptly received signal code timing phase, both producing early and
late signals. Combining the early and late signals provides an error signal, driving
the loop toward elimination of the delay-tracking error.

The code tracking loop can be designed as a

– coherent delay lock loop (DLL), or a

– noncoherent DLL.

The coherent DLL requires the phase lock loop to be in lock, i.e., it is tracking the
carrier phase and the navigation data bits have been removed from the signal. The
noncoherent DLL is able to track the code with the navigation data bit present and
the PLL is not necessarily in lock. The noncoherent design is the preferred one;
see Winkel (2000).
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FIGURE 2.8. Coherent (full line) and noncoherent (dashed line) discriminator functions.

The input signal is split into two paths and correlated with two versions, an early
and a late, of a locally generated PRN code. The two versions are equally spaced,
typically ±0.5 chip, about the prompt PRN code. This is done for both the in-
phase I branch and the quadrature Q branch. The estimation of the ACF in all six
signals IE , IL , IP , QE , QL , Q P , where E denotes early, L denotes late, and P
denotes promptly, is based on a summation of the respective signals over an inter-
val of time T . Often T equals 1

50 s corresponding to the bit duration of the navi-
gation bits. In this time interval the data bit is constant. The GPS signal structure
implies that the duration of one navigation data bit divided by one chip duration
is an integer (20,460).

The ACF for the signals discussed above can be used to set up the correspond-
ing code discriminators. The early minus late discriminator is obtained by sub-
tracting a late copy of the correlation function from an early copy. The correlator
spacing d between the early and the late code is set to 0.5 chip; see Figure 2.7.

The code tracking loop is a device that estimates the signed time difference be-
tween the received and the reference code. The zero of this detector is the pseu-
dorange or code phase observation. Null tracking is enabled by subtracting the
late correlation from the early correlation. The resulting difference is called the
discriminator function. For a coherent DLL we have

D(t) = R
(
t + d

2

) − R
(
t − d

2

)
.

For a noncoherent DLL, the discriminator function is

D(t) = R2(t + d
2

) − R2(t − d
2

);
see Figure 2.8.

2.6 Navigation Data

The navigation data are transmitted on the L1 frequency with the earlier men-
tioned bit rate of 50 bps. This section describes the structure and contents of the
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FIGURE 2.9. GPS navigation data structure. Each subframe containing 300 bits lasts 6 s.
Subframes 1, 2, and 3 repeat every 30 s while subframes 4 and 5 have 25 versions before re-
peating. That is, the entire navigation message repeats after 12.5 minutes. Courtesy: Frank
van Diggelen.

navigation data. Figure 2.9 shows the overall structure of an entire navigation
message.

The basic format of the navigation data is a 1500-bit-long frame containing 5
subframes, each having length 300 bits. One subframe contains 10 words, each
word having length 30 bits. Subframes 1, 2, and 3 are repeated in each frame. The
last subframes, 4 and 5, have 25 versions (with the same structure, but different
data) referred to as page 1 to 25. With the bit rate of 50 bps, the transmission of
a subframe lasts 6 s, one frame lasts 30 s, and one entire navigation message lasts
12.5 minutes.

2.6.1 Telemetry and Handover Words

The subframes of 10 words always begin with two special words, the telemetry
(TLM) and handover word (HOW) pair.

TLM is the first word of each subframe and it is thus repeated every 6 s. It
contains an 8-bit preamble followed by 16 reserved bits and parity. The preamble
should be used for frame synchronization.

HOW contains a 17-bit truncated version of the time of week (TOW), followed
by two flags supplying information to the user of antispoofing, etc. The next three
bits indicate the subframe ID to show in which of the five subframes in the current
frame this HOW is located.
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2.6.2 Data in Navigation Message

In addition to the TLM and HOW words, each subframe contains eight words of
data. This will only be a cursory description of the data in the different words and
not a complete description of all bits.

Subframe 1 – Satellite Clock and Health Data The first subframe contains first
of all clock information. That is information needed to compute at what
time the navigation message is transmitted from the satellite. Additionally,
subframe 1 contains health data indicating whether or not the data should
be trusted.

Subframes 2 and 3 – Satellite Ephemeris Data Subframes 2 and 3 contain the
satellite ephemeris data. The ephemeris data relate to the satellite orbit and
are needed to compute a satellite position.

Subframes 4 and 5 – Support Data As mentioned, the last two subframes repeat
every 12.5 minutes, giving a total of 50 subframes. Subframes 4 and 5 con-
tain almanac data. The almanac data are the ephemerides and clock data
with reduced precision. Additionally, each satellite transmits almanac data
for all GPS satellites while it only transmits ephemeris data for itself. The
remainder of subframes 4 and 5 contain various data, e.g., UTC parameters,
health indicators, and ionospheric parameters.

For a more in-depth description of the contents of the navigation data, see SPS
(1995).
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Galileo Signal

The Galileo system offers several services, a few are free of charge and the rest
are commercial. In this book we deal only with the L1 OS signal (OS for open
service).

The L1 OS signal alone is expected to guarantee a horizontal accuracy better
than 15 m, a vertical accuracy better than 35 m, a velocity accuracy better than
50 cm/s, and a timing accuracy better than 100 ns.

The augmentation from a single-frequency to a dual-frequency Galileo receiver
naturally includes the E5a signal. For a dual frequency receiver the corresponding
accuracies are 7 m, 15 m, 20 cm/s, and 100 ns.

All Galileo satellites use the same frequency bands and make use of code divi-
sion multiple access (CDMA) technique. Spread spectrum signals will be trans-
mitted including different ranging codes per signal, per frequency, and per satel-
lite. All signals are transmitted in a right-hand circular polarization.

In this chapter we rely on Anonymous (2005). For more details the reader is
referred to this document; also note that all information is to be considered pre-
liminary.

3.1 Signal Theoretical Considerations

Today when designing the Galileo signals the situation is very different from the
days when the GPS signals were designed. Nowadays applications with difficult
signal reception set the specifications for GNSS; the receiver may be used in the
woods or indoors. This puts the most demanding efforts on the signal design.
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Additionally, the wealth of digital signal processing experience over that time
means many hands to the pump. The following considerations are based on Mattos
(2004).

The L1 OS signal is transmitted on the frequency f1 = 1575.42 MHz. The signal
is composed of three channels, called A, B, and C. L1-A is identical to L1 PRS
(PRS for public regulated service), which is a restricted access signal. Its ranging
codes and navigation data are encrypted. The data signal is L1-B (meaning the
B channel within L1) and the data-free signal is L1-C (meaning the C channel
within L1). A data-free signal is also called a pilot signal. It is made of a ranging
code only, not modulated by a navigation data stream.

The L1 OS signal has a 4092 code length with a 1.023 MHz chipping rate giving
it a repetition rate of 4 ms; on the pilot signal a secondary code of length 25 chips
extends the repetition interval to 100 ms.

Under some circumstances it may be difficult to separate the wanted signal
from the unwanted ones and the unwanted one is often a cross correlation from
another satellite as the inherent CDMA isolation of the codes is only around
21 dB. The cross-correlation problem is solved by using very long codes. How-
ever, longer codes also delay the acquisition process. In most cases the processor
must search at half-chip offsets; thus, 8184 possibilities for the L1 OS code. To
search the very long code lengths proposed for the new signals would be impracti-
cal, so the codes have been designed with escape routes. The most common one is
called a tiered code. This means it is built in layers so that when you have a strong
signal you can acquire on a simple layer, with less time-domain possibilities, only
switching to the full-length code when required.

The minimum bandwidth is generally twice the chipping rate for simple codes,
while for BOC codes it is twice the sum of chipping rate and offset code rate.
Thus, the minimum practical bandwidth for the Galileo L1 OS is 8 MHz. For pre-
cise tracking of the code a bandwidth wider than the minimum is generally used.

Within this 4 ms period the signal-to-noise ratio (SNR) prevents the download-
ing of data for signals weaker than 25 dB/Hz. The data-download situation is im-
proved by using forward error correction codes (FEC), and block interleave also
covers for burst errors. FEC convolutional codes spread the information from one
user data bit over many transmitted symbols. If some of these are lost, the data
bit can be recovered from the others. However, a burst error may destroy all the
relevant symbols. Interleaving, which transmits the symbols in a scrambled se-
quence, means that a single burst error cannot destroy all the symbols relevant to
a single user data bit. The downside is that it adds latency to the message, to allow
for the interleaving/de-interleaving process. However, on the Galileo signal with
1 s packets this is not a problem.

The 4 ms repetition rate is ideal because there is one symbol per code epoch.
When the code is synchronized, we know that we will not hit a data bit edge
because these always occur at the start of a code sequence.

The signal is the product of carrier, spreading code, BOC, and data. Tradition-
ally, the RF hardware removes the carrier, the correlators remove the BOC(1,1)
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code, leaving the data and the residual Doppler to be removed/measured by a
processor. With the BOC(1,1) codes, the BOC component should have been con-
sidered part of the spreading code for tracking and positioning; but it is equally
viable to consider it part of the carrier during the acquisition phase, and remove it
prior to the empirical correlation of acquisition.

The ACF of a BOC(1,1) code has three peaks, not just one, so care must be
taken to ensure that the correct one has been found.

3.2 Galileo L1 OS Signal

In the following we describe and combine all elements necessary to generate the
Galileo L1 OS signal.

The transmitted bandwidth is 40 × 1.023 MHz = 40.92 MHz. The minimum
received power for the L1 OS signal is −157 dBW for elevation angles between
10◦ and 90◦. The chip length of the ranging code is

Tc,L1-B = Tc,L1-C = 1/1.023 Mchip/s = 977.5 ns. (3.1)

The actual chips for the individual satellites are likely to be generated as a trun-
cated Gold code. Higher chipping rates provide better accuracy. Longer codes
reduce cross correlation to more acceptable levels, although acquisition time is
longer.

The corresponding ranging code rates are

Rc,L1-A = 2.5 × 1.023 Mchip/s,

Rc,L1-B = 1/Tc,L1-B = 1.023 Mchip/s,

Rc,L1-C = 1/Tc,L1-C = 1.023 Mchip/s,

and subcarrier rates

Rsc,L1-B = Rsc,L1-C = 1.023 MHz.

Channel C uses both a primary and a secondary code of length NP = 4092 chips
and NS = 25 chips, respectively. The primary code is a truncated Gold sequence,
so when the number of 4092 chips is reached, the register is reset to its initial state.
We remember a Gold sequence is obtained as modulo-2 addition of the output
from two shift registers. The initial state for the first register consists of mere ones
while the second register depends on the specific subcarrier and satellite.

The secondary code modulates 25 specific repetitions of the primary code. For
each subcarrier all satellites transmit the same secondary code: the octal sequence
34,012,662. The resulting code length is 4092×25. In Galileo lingo the final code
is called a tiered code.

Let the primary code generator work with chip rate RP . The secondary code
generator has chip rate RS = RP/NP , where NP is the length in chips of the
primary code. In all signal modulations the logical levels 1 and 0 are defined as
signal levels −1 and 1 (polar non-return-to-zero representation).
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FIGURE 3.1. Galileo modulation scheme. The scheme is based on the modulation principle
coherent adaptive subcarrier modulation (CASM).

Now we have information for defining the binary signal components for chan-
nels B and C. However, information on channel A is not available. Based on this
information and the modulation scheme depicted in Figure 3.1, we will describe
the Galileo signal L1 OS.

The signal component for channel B results from the modulo-2 addition of the
navigation data stream dL1−B , the PRN code sequence cL1−B , and the B subcar-
rier scL1−B . The final component is called eB . Likewise, the C channel results
from the modulo-2 addition of the C channel PRN code sequence cL1−B with the
C channel subcarrier scL1−C . The component is eC . The binary signal compo-
nents are as follows:

eA(t) = not available, (3.2)

eB(t) =
+∞∑

i=−∞

(
cL1−B,(i mod 4 092)dL1−B,(i mod 4) rectTc,L1−B (t − i Tc,L1−B)

× sign
(
sin(2π Rc,L1−Bt)

))
, (3.3)

eC(t) =
+∞∑

i=−∞

(
cL1−C,(i mod 4 092) rectTc,L1−C (t − i Tc,L1−C)

× sign
(
sin(2π Rc,L1−Ct)

))
. (3.4)

3.2.1 Signal Generation

Signal expressions are given for the power normalized complex envelope (i.e.,
baseband version) s(t) of a modulated bandpass signal S(t). Both are described
in terms of its in-phase I and quadrature Q components by the following generic
expressions:

SL1(t) = √
2PL1

(
sL1−I (t) cos(2π fL1t) − sL1−Q(t) sin(2π fL1t)

)
(3.5)
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and normalized baseband signal

s(t) = sL1−I (t) + j sL1−Q(t). (3.6)

3.2.2 Coherent Adaptive Subcarrier Modulation

The three channel signals eA(t), eB(t), and eC(t) of the L1 OS signal are multi-
plexed using coherent adaptive subcarrier modulation (CASM), (see Figure 3.1),
which is a multichannel modulation scheme also known as tricode hexaphase
modulation (or interplex modulation).

CASM is used to ensure that the signal transmitted from the satellite has a
constant power envelope, i.e., the total transmitted power does not vary over time.
Thus, the transmitted information is not contained in the signal amplitude and
the transmitted signal amplitude becomes less critical. This is a very desirable
property of the signal since it allows the use of efficient “class C”-like power
amplifiers.

The L1 OS data and pilot signals are modulated onto the carrier in-phase compo-
nent while the L1 PRS signal is modulated onto the quadrature component. The
combined signal is

S(t) = (
αeB(t)−αeC (t)

)
cos(2π f1t)−(

βeA(t)+γ eA(t)eB(t)eC (t)
)

sin(2π f1t).
(3.7)

In this expression α, β, and γ are amplification factors that determine the distri-
bution of useful power among the channels A, B , and C . We assume B and C
have equal power.

For given relative signal powers we want to solve for these variables. So let us
assume a relative signal power of 50% for A, and 25% for both B and C .

The first condition expresses that the norm of the I and the Q part of the sig-
nal S must be unity: √

(α − α)2 + (β + γ )2 = 1.

The condition of equal power for both I and Q channels leads to

α2 + α2 = β2.

Finally, the condition that the combined power equals one leads to

α2 + α2 + β2 + γ 2 = 1.

In total, we have three equations in three unknowns:

β + γ = 1,

2α2 = β2,

2α2 + β2 + γ 2 = 1.
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TABLE 3.1. Combination of three binary signals in CASM

L1 PRS L1 OS D L1 OS P �(
S(t)

) �(
S(t)

) |S(t)|
1 1 1 0 1 1
1 1 −1 0.9428 0.3333 1
1 −1 1 −0.9428 0.3333 1
1 −1 −1 0 1 1

−1 1 1 0 −1 1
−1 1 −1 0.9428 −0.3333 1
−1 −1 1 −0.9428 −0.3333 1
−1 −1 −1 0 −1 1

The useful solution is

α =
√

2

3
, β = 2

3
, γ = 1

3
. (3.8)

The given choice of relative signal powers defines the following signal:

S(t)=
√

2

3

(
eB(t)−eC(t)

)
cos(2π f1t)−1

3

(
2eA(t)+eA(t)eB(t)eC (t)

)
sin(2π f1t).

(3.9)
The product eA(t)eB(t)eC(t) is the intermodulation product L1 Int in CASM,
which ensures the constant envelope property of the transmitted signal. The trans-
mitted power is distributed as follows:

L1 OS, data α2 = (√
2

3

)2 = 22.22%,

L1 OS, pilot α2 = (√
2

3

)2 = 22.22%,

L1 P β2 = ( 2
3

)2 = 44.44%,

L1 Int γ 2 = ( 1
3

)2 = 11.11%.

This means that only 88.88% of the total transmitted power is useful. The power
offered for the L1 Int signal is wasted; apparently this waste is the price we must
pay to obtain a constant envelope for the signal S(t).

The L1 modulation scheme is specifically designed to allow independent process-
ing of the L1 OS signal and the L1 PRS signal in the Galileo receiver. Only the
quadrature component needs to be considered when the PRS signal is received.
The in-phase part does not contain information about the PRS signal, as seen in
Figure 3.1. Since the intermodulation product transmitted on the quadrature com-
ponent does not carry any information, only the in-phase component is useful for
reception of the L1 OS signals.
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FIGURE 3.2. I Q plot of CASM output.

Table 3.1 shows the eight possible signal combinations of the three binary sig-
nals eA, eB , and eC . Also shown are the real and imaginary parts of S(t) (corre-
sponding to the in-phase and quadrature signal components) as well as the norm
of the I Q vector.

It is observed that the length of the I Q vector of S(t) is always 1. This is also
seen from the I Q plot in Figure 3.2 where the unit circle is included for reference.

From Table 3.1 it also appears that the three binary signals are combined to a
representation with six possible phases, thus the name tricode hexaphase. It is seen
from the table that the transmitted PRS code is equal to the sign of the quadrature
component. It is also seen that the in-phase component can only assume three
different values, so unambiguous mapping from received in-phase signal to trans-
mitted signal is not possible. The table shows that the data channel is equal to the
sign of the in-phase component when the data and pilot channels are not equal,
and that the in-phase component is zero when the data channel is equal to the
pilot channel. This means that all the transmitted power is concentrated in the
quadrature channel whenever the data and pilot signals are equal.

3.2.3 Binary Offset Carrier Modulation

The Galileo signals and the planned modernized GPS signals inherit improved
performance compared to the existing GPS signals. One of the improvements is
the introduction of the binary offset carrier (BOC) modulation. BOC modulations
offer two independent design parameters

– subcarrier frequency fs in MHz, and

– spreading code rate fc in Mchip/s.
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FIGURE 3.3. Spreading code, subcarrier, carrier, and signal as result of the BOC modula-
tion principle. This figure does not show the navigation data.

These two parameters provide freedom to concentrate signal power within spe-
cific parts of the allocated band to reduce interference with the reception of other
signals. Furthermore, the redundancy in the upper and lower sidebands of BOC
modulations offers practical advantages in receiver processing for signal acquisi-
tion, code tracking, carrier tracking, and data demodulation; see Betz (2002).

Most Galileo signals come in pairs: a data signal and a data-free signal. They
are aligned in phase and consequently have the same Doppler frequency.

A BOC(m, n) signal is created by modulating a sine wave carrier with the prod-
uct of a PRN spreading code and a square wave subcarrier having each binary ±1
values, see Figure 3.3. The parameter m stands for the ratio between the subcarrier
frequency and the reference frequency f0 = 1.023 MHz, and n stands for the ratio
between the code rate and f0. Thus, BOC(10, 5) means a 10.23 MHz subcarrier
frequency and a 5.115 MHz code rate.

The result of the subcarrier modulation is to split the classical BPSK spectrum
in two symmetrical components with no remaining power on carrier frequency;
see Martin et al. (2003).

The product is a symmetric split spectrum with two main lobes shifted from the
carrier frequency by the amount equal to the subcarrier frequency; see Figure 3.4.
We concentrate on BOC(m, n) = BOC(1, 1) as this is likely to be used by the L1
signal transmitted by Galileo.

The ACF of BOC signals has a profile with more peaks that may be tracked.
For BOC signals it is important to make sure the channel is tracking the main peak
of the correlation pattern. So additional correlators are needed for measuring the
correlation profile at half a subcarrier phase from prompt correlator at either side.
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FIGURE 3.4. GPS C/A and Galileo BOC(1,1) sharing L1 spectrum. Center frequency is
1575.42 MHz.

If one of the output values of these so-called very early and very late correlators
is higher than the punctual correlation, the channel is tracking a side peak and
corrective action is taken.

According to Nunes & Sousa & Leitão (2004), the ACF for BOC(pn, n) with
p = 1, 2, . . . and k = ⌈ 2p|τ |

Tc

⌉
is given as

r(τ ) =
{

(−1)k+1
( 1

p (−k2 + 2kp + k − p) − (4 p − 2k + 1)
|τ |
Tc

)
, for |τ | ≤ Tc,

0, otherwise.
(3.10)

This ACF is plotted in Figure 3.5. For p = 1 this is

r(τ ) =
{

(−1)k+1
(−k2 + 3k − 1 − (5 − 2k)

|τ |
Tc

)
, for |τ | ≤ Tc,

0, otherwise.

The ACF for the BOC(n, n) signal with bandwidth b is given as [see Winkel
(2000), Equation (2.68)]

rBOC(τ )=
n−1∑

k=−n+1

(n−|k|)
(
2rBL(τ/Tc−2k)−rBL(τ/Tc−2k−1)−rBL(τ/Tc−2k+1)

)
,

(3.11)
where

rBL(t) = 1
π
(t + 1) Si

(
2πb(t + 1)

) + 1
2π2b

cos
(
2πb(t + 1)

)
+ 1

π
(t − 1) Si

(
2πb(t − 1)

)+ 1
2π2b

cos
(
2πb(t − 1)

)
− 2t

π
Si
(
2πbt

)− 1
π2b

cos
(
2πbt

)
(3.12)
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FIGURE 3.5. ACF for the BOC(pn, n) signal as function of delay τ and p.

and the sine integral is defined as

Si(x) =
∫ x

0

sin(y)

y
dy.

If we plot the function rBOC(n, n), we get a result similar to the one in Figure 3.5
for n = 1, 2, 4.

The BOC ACF profile results in a DLL discriminator curve that is a bit more
complicated than that of GPS. Figure 3.6 shows the ideal band-unlimited corre-
lation function for both a C/A code signal and a BOC(1,1) signal. Shown as well
are early minus late discriminator curves for a chip spacing of 0.5 chip.

We observe various facts. Both discriminator curves are linear around the cen-
ter of the ACF. In both cases the linear region extends from −0.25 to 0.25 chip
code offset. The slope of the BOC discriminator in the linear region is three times
the slope of the C/A discriminator. The C/A code discriminator output is used
to adjust the code NCO to align the code phase better with the incoming signal;
this adjustment will succeed for tracking errors less than 1.25 chips. The C/A dis-
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FIGURE 3.6. C/A code and BOC(1,1) ACF and early minus late discriminator curves.
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FIGURE 3.7. ACF for bandlimited BOC(1,1) signal. The normalized bandlimit is b = 0.5,
1, and ∞. The function for b = ∞ is identical to BOC(1,1) in Figure 3.5.

criminator is stable in the entire region where the discriminator curve is non-zero
and the DLL will converge. The BOC discriminator has stable regions next to the
linear region as well, but tracking errors in the outer regions (absolute errors less
than 1.25 and greater than 0.625 chip) will cause the DLL to diverge and lose lock.

Figure 3.4 is a nice illustration of the fact that the GPS C/A code and the Galileo
BOC(1,1) modulation share the L1 spectrum. Still it is possible to separate the two
signals.

According to Betz (2002), the power spectral density of the BOC( fs/ fo, fc/ fo)
centered at the origin is

S(ω) = fc

( tan
(

πω
2 fs

)
sin

(
πω
fc

)
πω

)2

,
2 fs

fc
= n even, (3.13)

S(ω) = fc

( tan
(

πω
2 fs

)
cos

(
πω
fc

)
πω

)2

,
2 fs

fc
= n odd. (3.14)

The number of negative and positive peaks is 2n − 1 in the ACF separated in
delay by Ts = 1/2 p.

For the Galileo BOC(1,1) data-carrying signal, the code length is 4092 chips,
1.023 MHz band frequency (4 ms period time), 250 Hz symbol rate (1 code period
per symbol), ∼ 85% of signal power within ∼ 4 MHz bandwidth.

Figure 3.7 shows the ACF for bandlimited BOC(1,1) signals. For limited band-
width the peak value is less than one; this reflects the fact that not all power
is available in the signal. Part of the power is blocked by the bandlimiting. For
b = 1 the bandlimiting results in a slight rounding off at the edges of the ACF.
For b = 0.5 the frequencies lower than twice the square wave frequency are
stopped by the filter. This results in oscillations outside the chip length region.
This could lead to undesirable side-lobe effects in case of multipath.
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FIGURE 3.8. Navigation message structure. CRC is computed over the data field.

3.3 Message Structure

This section outlines the Galileo message structure.

3.3.1 Frames and Pages

The message is composed of frames, see Figure 3.8. The frame is composed of
several subframes, and each subframe again is composed of several pages. The
page is the basic structure for the navigation message and contains the following
fields:

– a synchronization word (SW),

– a data field,

– a cyclic redundancy check (CRC) bits for error detection, and

– tail bits for the forward error correction (FEC) encoder containing all zeros.

CRC and data encoding are used to provide better signal and data integrity. For
L1 OS the synchronization word is a fixed 10-bit sequence.

All data are encoded using the following bit and byte ordering:

– for numbering, the most significant bit/byte is numbered as bit/byte 0,

– for bit/byte ordering, the most significant bit/byte is transmitted first.

In Figure 3.9 the most significant bit is placed left, the less significant bit is
placed to the right, the most significant items at the top, and the less significant
items at the bottom.

3.3.2 Cyclic Redundancy Check

The CRC algorithm accepts a binary data frame, corresponding to a polyno-
mial M , and appends a checksum of r bits, corresponding to a polynomial C .
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The concatenation of the input frame and the checksum then corresponds to the
polynomial T = Mxr + C since multiplying by xr corresponds to shifting the
input frame r bits to the left. The algorithm chooses the checksum C such that
T is divisible by a predefined polynomial P of degree r , called the generator
polynomial.

The algorithm divides Mxr by P and sets the checksum equal to the binary
vector corresponding to the remainder. That is, if Mxr = Q P + R, where R is a
polynomial of degree less than r , then C = R and the checksum is the binary vec-
tor corresponding to R. If necessary, the algorithm preceds zeros to the checksum
so that it has length r .

The MATLAB CRC generator does the following:

1. Left-shift the input frame by r bits and divide the corresponding polynomial
by P .

2. Set the checksum equal to the binary vector of length r corresponding to
the remainder from step 1.

3. Append the checksum to the input data frame. The result is the output
frame.

The CRC algorithm uses binary vectors to represent binary polynomials, in
descending order of powers. For example, the vector [ 1 1 0 1 ] represents the
polynomial x3 + x2 + 1.

Example 3.1 Suppose the input frame is [ 1 1 0 0 1 1 0 ]T, corresponding to
the polynomial M = x6 + x5 + x2 + x , and the generator polynomial is P =
x3 + x2 +1, of degree r = 3. By polynomial division Mx3 = (x6 + x3 + x)P + x .
Remember that any binary number added to itself in a modulo-2 field yields zero.
The remainder is R = x so that the checksum is then [ 0 1 0 ]T. Note that an
extra 0 is added on the left to make the checksum have length 3.

3.3.3 Forward Error Correction and Block Interleaving

The starting point is a digital information source (transmitter) that sends a data
sequence comprising k bits of data to an encoder. Employing forward error-
correction coding, the encoder inserts redundant bits, thereby outputting a longer
sequence of n code bits called a codeword. At the receiving end, codewords are
used by a suitable decoder to extract the original data sequence.
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FIGURE 3.10. Viterbi convolutional coding scheme.

In general, codes are designated with the notation (n, k) according to the num-
ber of n output code bits and k input data bits. The ratio k/n is called the rate of
the code and is a measure of the fraction of information contained in each code bit.

Figure 3.10 describes the Viterbi convolutional coding scheme used for Galileo.
The Viterbi convolutional coding of all data channels is characterized by the fol-
lowing values: coding rate = 1/2, constraint length 7, generator polynomials
G1 = 171 (octal), G2 = 133 (octal), and encoding sequence G1 and then G2.
That is, there are taps at seven points along the encoder shift register, and it gen-
erates two encoded channel symbols for each input data bit. Note that G1 = 171
(octal) is 001111001 in binary and G2 = 133 (octal) is 001011011 in binary.

We observe that for G1 the taps 1, 4, 5, 6, and 7, numbered from right to left, are
connected to modulo-2 adders and for G2 the taps 1, 2, 4, 5, and 7 are connected
to modulo-2 adders. The error-correcting power is related to the constraint length,
increasing with longer lengths of shift register.

After the Viterbi convolutional encoding block follows an interleaving proce-
dure. The purpose of interleaving is to increase the efficiency of the convolutional
coding by spreading the burst errors in order to improve the correction capacity
of the specific convolutional decoding algorithm applied in the receiver.

Normally interleaving is implemented by using a two-dimensional buffer ar-
ray. The data enter the buffer array row by row and are then read out column
by column. The result of the interleaving process is ideal if a burst of errors in
the communication channel after de-interleaving becomes spaced single-symbol
errors, which are easier to correct than consecutive ones.

Example 3.2 Below we illustrate how an input data stream is read, column by
column, into an array and then read out, row by row, to achieve the bit interleaving
operation:

– Data input

x16 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1

– Interleaving array
x1 x5 x9 x13
x2 x6 x10 x14
x3 x7 x11 x15
x4 x8 x12 x16
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TABLE 3.2. Galileo ephemeris parameters

Parameter No. of Bits Scale Factor Unit

µ0 32 2−31 semicircle
�n 16 2−43 semicircle/s
e 32 2−33 dimensionless√
a 32 2−19 m1/2

0 32 2−31 semicircle
i0 32 2−31 semicircle
ω 32 2−31 semicircle
̇ 24 2−43 semicircle/s
i̇ 14 2−43 semicircle/s

Cuc 16 2−29 radian
Cus 16 2−29 radian
Crs 16 2−6 m
Crc 16 2−6 m
Cic 16 2−29 radian
Cis 16 2−29 radian
toe 14 60 s

IODnav 9 — —

– Interleaved data output for transmission

x16 x12 x8 x4 x15 x11 x7 x3 x14 x10 x6 x2 x13 x9 x5 x1

This block interleaving has interleaving depth 4. In this simple example three
consecutive errors in the transmitted data, let us say x1, x5, x9, are translated into
three isolated, single errors in the de-interleaved data.

3.4 Message Contents

The freely accessible navigation message on L1 OS contains all parameters nec-
essary to compute the position of a Galileo satellite, clock correction parameters,
parameters for conversion of Galileo System Time (GST) to UTC and GPS Time
(GPST), and service parameters including an almanac.

A Galileo ephemeris contains 17 parameters as defined in Table 3.2. The unit
semicircle is converted to radian by multiplication with π .

A Galileo ephemeris is valid for four hours. Every three hours a new ephemeris
is uploaded. Hence an overlap of one hour occurs. And four ephemerides cover a
12-hour orbit prediction.
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The geocentric coordinates (Xk, Y k, Zk) of satellite k (the superscript k denotes
satellite k, and not the power k) at time tj are given as⎡⎢⎣Xk(tj )

Y k(tj )

Zk(tj )

⎤⎥⎦ = R3(−k
j )R1(−i k

j )R3(−ωk
j )

⎡⎢⎣rk
j cos f k

j

r k
j sin f k

j

0

⎤⎥⎦ . (3.15)

For a definition of the parameters , i , ω, and f , see Figure 8.5. The quantities
rk

j = ‖r(tj )‖, a, e, and E are evaluated for t according to the following procedure:

Time elapsed since toe tj = t − toe

Mean anomaly at time tj µj = µ0 +
(√

GM/a3 + �n
)

tj

GM = 3.986 005 · 1014 m3/s2

Iterative solution for Ej Ej = µj + e sin Ej

True anomaly fj = arctan

√
1 − e2 sin Ej

cos Ej − e

Longitude for ascending node j = 0 + (̇ − ωe)tj − ωetoe

ωe = 7.292 115 147 · 10−5 rad/s

Argument of perigee ωj = ω + fj + Cωc cos 2(ω + fj ) + Cωs sin 2(ω + fj )

Radial distance rj = a(1 − e cos Ej ) + Crc cos 2(ω + fj )

+ Crs sin 2(ω + fj )

Inclination i j = i0 + i̇ tj + Cic cos 2(ω + fj ) + Cis sin 2(ω + fj ).

As usual the mean Earth rotation rate is denoted ωe. This algorithm is similar to
the one for GPS and is coded as the M-file satpos. The function computes the
position of any Galileo satellite at any time. It is fundamental to every position
calculation.

3.4.1 Time and Clock Correction Parameters

As for GPS, Galileo has its own system time, called Galileo System Time (GST).
Its starting epoch still has to be determined. GST consists of two parts: week
number, WN, and time of week, TOW. The WN covers 4096 weeks and is then
reset to zero. A week has 604,800 s and is reset at midnight between Saturday and
Sunday. Hence GST is described as a 32-bit binary number split into the two parts
just mentioned. Table 3.3 shows these parameters.

Let a signal be transmitted at time tk,Gal from satellite k, and let the same signal
be received at time tGal

i at receiver i . Then the travel time is

τ k
i = tGal

i − tk,Gal. (3.16)
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TABLE 3.3. Galileo system time parameters

Parameter No. of bits Scale factor Unit

WN 12 — week
TOW 20 1 s

TABLE 3.4. Galileo clock correction parameters

Parameter No. of bits Scale factor Unit

toc 14 60 s
ao 28 2−33 s
a1 18 2−45 s/s
a2 12 2−65 s/s2

Knowing the travel time τ k
i this quantity can be converted to the so-called pseu-

dorange Pk
i by multiplication with the speed of light c:

Pk
i = cτ k

i . (3.17)

However, clocks do not work perfectly. So we introduce the receiver clock off-
set dti and the satellite clock offset dtk :

ti = tGal + dti

tk = (t − τ k
i )Gal + dtk .

The receiver clock offset has to be estimated from the observed pseudoranges
while the satellite clock offset can be computed from

dtk = a0 + a1(t − t0c) + a2(t − t0c)
2, (3.18)

where t is the transmit time. The constants a0, a1, and a2 are parameters transmit-
ted according to Table 3.4.

The basic computational equations for time are

tk,Gal = tGal
i − Pk

i /c (3.19)

(t − τ k
i )Gal = tk − (

a0 + a1(t − t0c) + a2(t − t0c)
2). (3.20)

Additionally, a signal in space accuracy (SISA) parameter is planned. It is en-
coded as 8 bits.

An ionospheric correction service is planned. An effective ionization-level pa-
rameter is computed from three broadcast coefficients.
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TABLE 3.5. GST to UTC conversion

Parameter No. of bits Scale factor Unit

A0 32 2−30 s
A1 24 2−50 s/s

�tLS 8 1 s
t0t 8 3600 s

WNt 8 1 week
WNLSF 8 1 week

DN 3 1 . . . 7 day
�tLSF 8 1 s

3.4.2 Conversion of GST to UTC and GPST

Compared to the present GPS, Galileo offers some advantages for the timing com-
munity. For example, data for real-time estimation of Universal Time Coordinated
(UTC) are available. Likewise for the difference between GST and GPST. How-
ever, in case the user disposes over a combined GPS and Galileo receiver, it is
likely that an estimate based on Equation (8.45) turns out to be more accurate.

The relation between GST and UTC is established via the time scale Temps Atom-
ique International (TAI). UTC and TAI differ by an integer number of seconds.
On January 1, 2003, the difference was

TAI − UTC2003 = +32 s.

UTC is a uniform time scale, and it tries to follow variations in the Earth’s ro-
tation rate; this is accommodated for by introducing leap seconds in the UTC.
Consequently, this changes the difference between UTC and GST in steps of 1 s
(see Table 3.5).

Let the estimated epoch time in GST, relative to the start of the week, be de-
noted by tE . Let A0 denote the offset between GST and TAI at the time tE . The
time derivative of A0 is called A1. Let the difference between TAI and UTC
be �tLS, and the validity time t0t for the UTC offset parameters.

Leap seconds are always introduced on January 1 or/and July 1. The day num-
ber in the week in which the leap second is introduced is called DN. Days are
counted from 1 to 7 (Sunday is 1) and is rounded to an integer.

The week number, modulo 256, in which DN falls is denoted WNLSF. Fi-
nally, the offset due to the introduction of a leap second at WNLSF and DN is
called �tLSF.

The following equations are in unit of s. We start by introducing the correction

�tUTC = �tLS + A0 + A1
(
tE − t0t + 604,800(WN − WNt )

)
. (3.21)
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TABLE 3.6. GST to GPST conversion

Parameter No. of bits Scale factor Unit

A0G 16 2−35 s
A1G 12 2−51 s/s
t0G 8 3600 s

We need to distinguish among three different cases:

– When tE > WNLSF and tE > DN and DN + 3
4 < tE and tE < DN + 5

4 ,
then

tUTC = mod(tE − �tUTC, 86,400), (3.22)

– when DN + 3
4 < tE < DN + 5

4 , then

W = mod(tE − �tUTC − 43,200, 86,400) + 43,200 (3.23)

tUTC = mod(W, 86,400 + �tLSF − �tLS), (3.24)

– when WNLSF < tE and DN > tE , then

tUTC = mod(tE − �tUTC, 86,400). (3.25)

The difference between GST and GPST is determined as follows. Let tGal be GST
estimated by the user receiver; then the offset between GST and GPST at time tGal
is

�tsystems = A0G + A1G(tGal − t0G). (3.26)

Table 3.6 describes the parameters concerned.

3.4.3 Service Parameters

The satellite identification SVID is a number between 1 and 128. A parameter,
issue of data (IOD), identifies the set of data. This allows a receiver to compare
batches of data received from different satellites. IOD is transmitted in each page
of ephemeris and clock correction (9 bits) and almanac (2 bits).

Signal and data health status referring to the transmitting satellite is planned as
well.

The six Keplerian elements (a, e, ω,, i, µ) of any active satellite are con-
tained in the almanac. The elements are given with less precision than the ephe-
meris. Clock correction parameters are given for computation of satellite clock
offset

dkk = af0 + af1(t − t0a). (3.27)

The almanac reference time t0a refers to the almanac reference week WNa .
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TABLE 3.7. Almanac parameters

Parameter No. of Bits Scale Factor Unit

SVID 7 1 dimensionless√
a 24 2−11 m1/2

e 16 2−21 dimensionless
i0 (relative to 56◦) 16 2−19 semicircle

0 24 2−23 semicircle
̇ 16 2−38 semicircle/s
ω 24 2−23 semicircle
µ 24 2−23 semicircle

af0 15 2−20 s
af1 11 2−38 s/s

SVSHS 5 — dimensionless
SVDHS 3 — dimensionless
DataID 2 — dimensionless
IODA 2 — dimensionless

t0a 8 4096 s
WNa 8 1 week

Two parameters tell the satellite’s signal component health SVSHS and the satel-
lite’s navigation data health SVDHS. In the almanac the applicable navigation data
structure for each satellite is defined by DataID. The IODA identifies an almanac
batch unambiguously. The update rate being slow, two bits are sufficient. All pa-
rameters are described in Table 3.7.

3.5 The Received L1 OS Signal

Let the total received power be P , the transmission delay (traveling time) be τ ,
the carrier frequency offset be � f (Doppler), and the received phase be θ . Then
the received L1 OS signal can be written as

ϕ(t) = 0.89

√
2P

3

(
sd(t − τ ) − sp(t − τ )

)
cos

(
2π( f − � f )(t − τ ) + θ

)
. (3.28)

The data channel and the pilot channel are denoted by d and p, respectively. The
coefficients sd and sp are products of code sequences and subcarriers with sine
phasing.

From the observation ϕ(t) we want to estimate τ , � f , and θ . The first step is
to find global approximate values of τ and � f , which is called signal acquisition.
The second step is a local search for τ , � f , and possibly θ . If θ is estimated,
the search is called coherent signal tracking. If the carrier phase θ is ignored, the
search is called noncoherent signal tracking.
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The purpose of code tracking is to estimate the travel time τ and is done by
means of a delay lock loop (DLL). For a coherent DLL we have θ = 0.

To demodulate the navigation data, a carrier wave replica must be generated.
To track a carrier wave signal, a phase lock loop (PLL) often is used.

A final remark. This chapter exposed most of the material relevant to code the
L1 OS Galileo signal. However, GPS is also under continuous development—
a very fortunate situation for the user. The planned civilian L5 GPS signal is
described in ICD-GPS-705 (2002). Comparing the present chapter, which is based
on Anonymous (2005), with ICD-GPS-200 (1991) you realize that the European
and American satellite navigation communities are each using their own lingos.



4
GNSS Antennas and Front Ends

4.1 Background
Although the focus of this text is on the algorithms for software signal process-
ing of the Global Navigation Satellite System (GNSS) signals, it is important to
consider the source of that data stream to be processed. Since “software” signal
processing is stated, it implies an input digital data stream. Thus, the purpose of
this chapter is to provide some insight into how the satellite signals propagat-
ing through space result in this digital data stream. This is done, of course, via
a GNSS antenna/front end. There are numerous books completely devoted to the
topics of antenna and others to front-end design; see Balanis (1996) and Tsui
(2000). The purpose of this chapter is to illustrate functional designs for GNSS,
discuss the tradeoffs associated with different designs, and provide a basic un-
derstanding of the source of the digital data to be processed. The focus is on the
narrowband GNSS L1 signals, primarily the Global Positioning System (GPS)
Coarse/Acquisition (C/A) code, but references are made to the Galileo BOC(1,1)
code where appropriate. At the end of the chapter, multiple-band GNSS front ends
are introduced.

The process begins with the GNSS signal, propagating through space, which
is incident on a user’s GNSS antenna. This, in turn, induces a voltage within the
element. That voltage is extremely weak, corresponding to a guaranteed signal
power of −160 dBW in the case of the Global Positioning System (GPS) [see
ICD-GPS-200 (1991)] and has a carrier frequency of 1575.42 MHz. Considering
a bandwidth of 2 MHz (the approximate null-to-null bandwidth the GPS C/A code
signal), the received GPS signal power is actually below that of the thermal noise
floor, as defined by Equation (4.1) with a simplified illustration in Figure 4.1.

Amin
Highlight
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FIGURE 4.1. Frequency domain depiction of the GPS signal and thermal noise power.
Remember that 30 dBm = 1 dBW. Center frequency 1575.42 MHz.

Let the Boltzmann’s constant be denoted by k = 1.38 ·10−23 J/◦K, the absolute
temperature by t in ◦ K, and the equivalent noise bandwidth by B in Hz, then

PThermal Noise = kt B. (4.1)

For the GPS C/A code signal PThermal Noise can be approximated by 1.38 ·10−23×
290 × 2 · 106 = 8.004 · 10−15 or more conveniently expressed in dB as 10 ×
log10(8.004 · 10−15) = −140.97 dBW = −110.97 dBm.

This is quite unique in the field of radio transmission. For example, if you
connected a traditional GPS antenna to a spectrum analyzer and searched for the
presence of the GPS signal, then any such characteristics of the signal would
be hidden as the observation would be dominated by the thermal noise. This is
a feature of the code division multiple access (CDMA) spread spectrum signal
and requires the appropriate signal processing to acquire and process the signal.
This also implies that the design of the front end is based more on the level of
the thermal noise rather than the received L1 band navigation signal. Thus, the
voltage induced within the GNSS antenna element results from the thermal noise,
which dominates, as well as the GNSS signals from the satellites in view. Given
that that L1 GNSS band is a designated Aeronautical Radio Navigation Service
frequency band, no other signals should be present within the frequency span.

The analog voltage that results from the incident GPS signal and thermal noise
remains much too weak and at too high a frequency for most analog-to-digital
converters (ADCs) to operate. In order to overcome this, the front end will utilize a
combination of amplifier(s), mixer(s), filter(s), and its own oscillator to condition
the incident voltage on the antenna to the resulting digital samples.

A fully functional GNSS L1 front end is depicted in Figure 4.2. In the coming
sections, the function of each of the elements within the figure will be discussed
using this implementation as a case study, Gromov et al. (2000), pages 447–457.
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FIGURE 4.2. GNSS L1 front end.

4.2 GNSS L1 Front-End Components

4.2.1 GNSS Antenna

The antenna is typically not considered part of the front-end design, but since it
is the first component in the signal path and dictates elements that follow, it is
important to summarize when describing the GNSS front end. There are numer-
ous texts on antenna theory and design, e.g., Balanis (1996), Straw (2003). Also
the trade publication GPS World, over the past four years, has published a GPS
Antenna Survey that lists all GPS antennas and their features. All of these are
excellent references for additional information on GNSS antennas.

As is the case with most of the components associated with analog signal con-
ditioning, there is an extensive set of parameters associated with an antenna that
describe its performance. Three fundamental parameters to be discussed here are
the frequency/bandwidth, polarization, and gain pattern.

The antenna will be designed to induce a voltage from radio waves propagating
at the GNSS L1 frequency or 1575.42 MHz. In addition, the design should ac-
commodate the appropriate bandwidth of the desired signal. This is usually spec-
ified using two additional antenna parameters: the Voltage Standing Wave Ratio
(VSWR) and impedance. Practically all GNSS front-end components utilize an
impedance of 50 , which is typical for a majority of radio frequency design.
VSWR is a measure of impedance mismatch or the measure of how much of the
incident power will be absorbed and how much will be reflected. And, of course,
this is a function of frequency. The VSWR is typically on the order of 2.0:1, which
equates to 90% power absorption across the bandwidth of desired frequencies.

Polarization refers to the orientation of the electric field from the radio fre-
quency transmission. Received GNSS signals are right-hand circularly polarized
(RHCP), and the antenna should be designed as such. The decision to employ
RHCP for GNSS was definitely not arbitrary. One of the most difficult error
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sources to mitigate for GNSS is multipath. When the GNSS signal is reflected
off an object, an undesirable situation for a system attempting to measure time-
of-flight, the polarization will flip to left-hand circular polarization (LHCP). An
RHCP antenna is quite effective in suppressing the LHCP reflection and mini-
mizing this error source. Of course, a second reflection will reestablish the RHCP
polarization, but the signal power is also likely diminished as a result of the multi-
ple reflections. Thus, the polarization of the GNSS antenna provides a significant
level of suppression from erroneous multipath reflection.

The antenna pattern describes the directivity of the antenna. The most basic
idea for the antenna pattern would be one that receives signals equally from all
directions—this is known as an isotropic antenna. However, such a uniform gain
pattern does not make sense for GNSS. Since the signal source, GNSS satellites,
are overhead for most applications the preferred antenna pattern would be hemi-
spherical, designed to receive signal from only positive elevation angles from all
azimuth directions. Given the problem of multipath and that most multipath rays
arrive from low elevation angles, the antenna pattern could be crafted such that it
was designed to receive signals only above 10◦–20◦ elevation. Such an approach
is definitely bound to further reduce multipath reflections, but as a consequence,
the low elevation satellite signals would also be neglected, decreasing the avail-
ability of satellite measurements. A promising research area within GNSS an-
tennas is that of antenna arrays, or a combination of individual antenna elements
combined in such a way to shape distinct antenna pattern beams and nulls. Such an
implementation should provide significant performance enhancement for GNSS.

Probably two of the most popular GNSS L1 antenna implementations are the
patch and helix approaches but others also exist. These refer to the actual con-
struction of the antenna element itself. Yet the parameters above should provide a
measure of comparable performance between antennas.

The last topic in regard to antennas refers to the choice of an active or passive
antenna. An antenna will often be integrated with other front-end components
that improve their performance or are necessitated by the environment in which
the antennas will operate.

One important parameter in front-end design is the overall noise figure Fn of
the system. This parameter quantifies the noise added as a result of the analog
signal conditioning. Of course, any additive noise or decrease in signal-to-noise
ratio (SNR) is undesirable and should be minimized.

Denoting the resulting system noise figure by Fsystem, the noise figure Fn of the
nth element in cascade, and the gain of the nth element in cascade Gn the formula
for noise figure is

Fsystem = F1 + F2 − 1

G1
+ F3 − 1

G1G2
+ F4 − 1

G1G2G3
+· · ·+ Fn − 1

G1G2G3 · · · Gn−1
. (4.2)

What this equation indicates is that the first element in the RF cascade dominates
the resulting noise figure for the system. This indicates that all passive compo-
nents (cables and filters) prior to the first amplifier will have a negative impact
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on the noise figure. Likewise, components that follow a high gain amplifier in the
cascade will have a minimal effect on the overall noise figure.

For example, consider working with a GNSS receiver in a laboratory environ-
ment. The optimal position for the GNSS antenna will be on the rooftop, clear of
any obstructions. In most cases, this will require a lengthy cable run to the GNSS
receiver with its self-contained front end. This RF cable from the antenna to the
front end will be the first component within the cascade of components. Since all
RF cables have some degree of attenuation, or noise figure, and no gain, the sys-
tem noise figure will be severely degraded. This can be improved if an amplifier
can be incorporated within the antenna itself prior to the long cable. This imple-
mentation is the norm in many GNSS antennas, and such a design is known as an
active antenna and is characterized by the gain of the amplifier.

This active antenna approach complicates things slightly as the antenna itself
is now considered an active element and requires power for the internal amplifier.
This is accomplished in most cases using a bias-tee. The bias-tee component has
three ports: RF, RF+DC, and DC. This component injects DC power onto the
antenna cable from the front end to power the amplifier within the antenna. Thus,
the antenna cable is utilized to pass the GNSS signal from the antenna to the bulk
of the analog signal conditioning and then also to provide a DC voltage from
the analog signal conditioning to the amplifier within the antenna. This is the
approach outlined in Figure 4.2.

A passive antenna is practical in those designs that have the antenna in close
proximity to the analog signal conditioning and, in particular, the first amplifier.
This is commonly the case in the handheld GNSS receivers or for configurations
employing expensive low-loss RF cables.

4.2.2 Filter

The first component within the RF path is a filter. A filter is a frequency selective
device that allows only certain frequencies to pass and attenuates others.

The treatment of the filter as well as the following individual components will
be kept terse. It is expected the reader has a basic background in signal processing;
this will allow the focus to be on the overall GNSS front-end design.

This first filter in Figure 4.2 is a bandpass filter, as opposed to a lowpass or
highpass filter, and its purpose is to provide additional frequency selectivity. Ide-
ally, the antenna would only induce voltages for precisely the frequency band of
interest. However, the antenna, like practical filters, is not ideal. The ideal compo-
nent would pass a range of frequencies and completely eliminate those frequency
components outside that range. Unfortunately, such a filter does not exist, and
the transition between those frequencies that are passed and removed is a grad-
ual transition. Further, even signals at frequencies within the passband typically
experience some level of attenuation.

Typical antennas have fairly poor frequency selectivity. When this is consid-
ered, along with the received signal power levels (and the amplification that will
be required), it is important to try to eliminate any high-power, out-of-band signal
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sources that could enter the front end and saturate later-stage components. For
this reason, a bandpass filter typically is the first component following the an-
tenna. The other filters within Figure 4.2 serve specific roles, as will be discussed
in the following sections, but all are used to perform the primary role of a filter:
pass selective frequencies and attenuate others.

Filters can be characterized by their insertion loss, or the attenuation of the
desired frequency components. Ideally, there would be no insertion loss, but alas
that is not the case for practical components, and the lower this value the better.
Note that this filter insertion loss will result in a system noise figure penalty when
it is placed prior to the first amplifier. Yet this is still very often the case to mini-
mize any issues from adjacent frequency bands given the limited selectivity of the
antenna itself. If the receiver will be operated in an environment that will not have
high-power adjacent frequency band transmitters in close proximity, then this fil-
ter may not be necessary and the position of the first amplifier and filter can be
switched. Or the impact to the noise figure can be minimized by selecting a filter
with a low insertion loss.

The second filter parameter is the bandwidth. Again, since no filter is ideal,
typically a 3 dB bandwidth is specified. This indicates at which frequency(s) the
attenuation will be 3 dB (or 50% of the signal power). However, these two param-
eters cannot completely describe most filters but only provide some insight into
their performance, as shown in Figure 4.3.

A goal in filter design is to provide sharp transitions between the desired (pass-
band) and undesired (cutoff) frequencies while maintaining a minimal insertion
loss. Depending on the practical implementation of the filters [options include
cavity, surface acoustic wave (SAW), ceramic, or lumped elements (resistors, ca-
pacitors, and filters)], this can be done by increasing the number of sections/ele-
ments within the design.
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4.2.3 Amplifier

Amplification is the process that increases the signal magnitude. Thus, an ampli-
fier is a component that does just that. Unlike most filters, an amplifier is an active
component and requires power to accomplish its function. Note that the ideal am-
plifier would only increase the amplitude of the signal. However, any commercial
amplifier will not only increase the amplitude but also add noise to the resulting
signal. The goal, of course, is to have a component that amplifies the signal and
adds minimal noise.

The fundamental parameters used to describe an amplifier are

1. gain, usually expressed in dB, and often assumed constant over a

2. specified frequency range; and a

3. noise figure, again usually expressed in dB, and indicative of the amount of
noise that will be added to the signal being amplified.

Note that this discussion simplifies the practical amplifier. We are assuming the
amplifier is a packaged device, ignoring the actual fabrication. Further, parameters
such as the third-order intercept point, power requirements, and maximum power
handling are all additional factors that could be considered but are neglected to
simplify the discussion.

Also the amplification shown in Figure 4.2 shows a single amplifier capable
of 50 dB gain. It would be unusual to have a single amplifier capable of such
gain. What is represented as a single amplifier in Figure 4.2 can be constructed of
cascaded multistage amplifiers.

The goal of the amplifier is to raise the extremely weak incident signal to a
level practical for analog-to-digital conversion. Thus, the amount of amplification
is based on the specific ADC and will be discussed in that section. Further, there
is typically a distribution of amplification or gain across different frequencies for
reasons that will become obvious in the next subsection.

4.2.4 Mixer/Local Oscillator

The basic function of the mixer/local oscillator combination is to translate the
input 1575.42 MHz RF carrier to a lower intermediate frequency (IF) and preserve
the modulated signal structure. The most obvious reason for this is to bring the
frequency to usable ranges in which to operate on the signal, in particular perform
the analog-to-digital conversion. However, there are fewer obvious reasons for the
frequency translation, as is discussed within this subsection.

The design illustrated in Figure 4.2 utilizes a single stage of analog frequency
translation. However, it is possible to utilize multiple stages of analog frequency
translation in a single front-end design. The choice is a design trade-off based
on the components available and their individual specifications. The focus of this
section is to illustrate the functionality of the single-stage approach shown in Fig-
ure 4.2.
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First, it is important to discuss the individual components. The local oscillator
for GNSS front-end designs is typically a combination of components. Most crys-
tal oscillators, either standalone or temperature compensated/ovenized for greater
stability, are not capable of generating the desired local oscillator frequency for
the L1 GNSS signal. Thus, a phase lock loop (PLL) is combined with the crys-
tal to achieve the desired higher frequency of the local oscillator. In addition, it is
common practice that the local oscillator be divided down to serve as the sampling
clock, as shown in Figure 4.2. This is an important aspect as a single frequency
source, and any associated frequency error/drift, will serve as the basis for the
receiver.

The mixer operates through the trigonometric identity expressed as

cos(ω1t) cos(ω2t) = 1
2 cos

(
(ω1 − ω2)t

) + 1
2 cos

(
(ω1 + ω2)t

)
. (4.3)

It is possible to use the front-end design in Figure 4.2 as an example of the mix-
ing process. In this case ω1 equals the GNSS L1 center frequency 1575.42 MHz
and the desired IF is 47.74 MHz, then the desired local oscillator frequency ω2
would be (1575.42 − 47.74) MHz = 1527.68 MHz. Any modulation, such as the
GNSS spreading codes and navigation data, can be simply expressed as a time-
varying multiplier:

d(t) cos(ω1t) cos(ω2t) = d(t)
2 cos

(
(ω1 − ω2)t

) + d(t)
2 cos

(
(ω1 + ω2)t

)
. (4.4)

In this case it is obvious that the output of the mixer will be the sum and difference
frequencies. Of interest here is the difference frequency, which is at the desired
IF. The sum frequency is simply a consequence in this case, and the second filter
depicted in the cascade of Figure 4.2, which follows the mixer, is used to select
only the desired difference frequency.

Note that in Figure 4.2 a bandpass filter is used for this process. However, given
the fact that the goal is to simply remove the sum component, a lowpass filter
should be more than sufficient. In many cases this is true; however, Equations
(4.3) and (4.4) present a simplified model of a mixer, which in reality is more
complicated. Mixer parameters include conversion loss, isolation, dynamic range,
and intermodulation. In this case the bandpass filter is selected to minimize any
complications from intermodulation products that result from the mixing. For this
simplified discussion, only the straightforward model of the mixer is presented.

With the combination local oscillator/mixer it is now possible to translate the
RF carrier to a lower IF. It has been eluded to above that this is required for
the analog-to-digital conversion process, but is that the only reason? Are there
other reasons as to why frequency translation is important in GNSS receivers?
The answer is “yes” with two immediate additional justifications for the frequency
translation.

The first is the quality and cost of the component. The goal of this text is to de-
velop software GNSS receivers for the narrowband L1 signals, with the definition
of narrowband being 2–8 MHz (see Problem 7). It is important to recognize that
it can be quite difficult to fabricate narrowband filters at high frequency.
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Denote the quality factor of the filter by Q, the center frequency of the filter
(1575.42 MHz for GNSS L1) by fcenter, and the bandwidth of that filter by BW.
Then the quality of a filter is defined by

Q = fcenter

BW
. (4.5)

If we assume a 3 dB bandwidth and desire a filter to capture the main lobe of the
GPS spectrum (2.046 MHz wide), the Q factor for such a filter comes out to be
770—an extremely high value. To put things in perspective, fabrication of most
commercial filters (although it does depend on the technology) sets a minimal
bandwidth of 2% of the center frequency. This corresponds to a Q value of 50,
significantly less than the 770 computed above.

However, perform the same computation at the resulting 47.74 MHz IF from the
design in Figure 4.2. That Q factor is 47.74/2.046 or 23.33, which is a much more
realizable filter. Thus, the frequency translation to IF allows higher frequency
selectivity with less costly/complex components.

The second additional factor motivating frequency translation is feedback. The
amount of amplification in the RF chain is tremendous; over 100 dB of gain is
applied. If this is all attempted at a single frequency, then it is highly likely that
feedback will become an issue unless meticulous shielding and spatial separa-
tion across the RF chain is implemented. Otherwise, if the 100+ dB of gain were
applied all within the 1575.42 MHz band even with quality RF cabling between
components, it is unlikely to prevent feedback within the amplification stages in
the RF chain. Utilizing multiple stages within a front-end design allows the gain
to be distributed across frequency. For example, in the single-stage downconver-
sion depicted in Figure 4.2 the gain within the RF chain is split between the RF
and IF paths. Thus the level of shielding and potential for feedback are reduced
as the output of the lower-frequency amplifiers cannot feedback into the input of
the higher-frequency amplifiers.

4.2.5 Analog-to-Digital Converter

The final component in the front-end path is the analog-to-digital converter. This
device is responsible for the conversion of the analog signal to digital samples.
There is a wide variety of ADCs available on the market, with a dizzying set of
parameters for each. Consider, for example, the Texas Instruments ADS830 ADC,
see focus.ti.com/lit/ds/symlink/ads830.pdf. Such an ADC has an overwhelming
number of parameters, the majority of which are not discussed here. An applica-
tion note can help users sort out the various parameters associated with ADCs;
see Anonymous (2000).

The key parameters to consider for this discussion are the number of bits, the
maximum sampling frequency, the analog input bandwidth, and the analog input
range.

The CDMA nature of the GNSS signal requires very little dynamic range from
the sampled signal. It has been shown that if single bit sampling is used, then
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degradation in the resulting processing is less than 2 dB; see Bastide et al. (2003).
Further, if conservative 2- or more bit sampling is utilized with proper quanti-
zation, the degradation is less than 1 dB. The minimum number of bits on most
commercial ADCs is 8 as is the case for the ADS830. Thus, in designing a GNSS
front end, it is most convenient to either utilize a hard limiter to obtain a single
bit or use a commercial ADC taking all or just a subset of the resulting bits of
each sample. It is also important to recognize that if multibit sampling is em-
ployed, then some form of gain control must be implemented to provide proper
quantization.

One might ask if the penalty for using single bit sampling is less than 2 dB, why
any front end would utilize multibit sampling and then incorporate the overhead
associated with automatic gain control? The key point to remember is that the
less-than 2 dB penalty is for the ideal case. If, for example, there exists narrow-
band interference within the GNSS L1, then single bit sampling will be captured
by the interference source and prevent GNSS processing. Thus, although the theo-
retical penalty for single-bit sampling is less than 2 dB, the nature of the operating
environment may dictate the need for multibit sampling.

The maximum sampling frequency is an interesting parameter. This frequency
needs to accommodate the bandwidth of the desired signal. Continuing to use the
ADS830 part as an example, the maximum sampling frequency is 60 MHz and
thus can provide a resulting sampling bandwidth of 30 MHz, more than sufficient
for the narrowband L1 navigation signals. However, recognize that the IF in Fig-
ure 4.2 is at 47.74 MHz, which is greater than the resulting [0–30] MHz sampled
information bandwidth. In this case, the sampling process acts as a second fre-
quency translation stage.

Although the ADC has a sampling frequency that provides an upper limit of
30 MHz on the resulting sampling bandwidth, then analog input bandwidth of this
ADC really determines what signals will be captured. For the ADS830, this value
is an impressive 300 MHz. What this means is that any frequency component
input to the ADC up to 300 MHz will be aliased according the sampling theorem.

Should the analog input bandwidth have been as high as 1.6 GHz, which is not im-
possible (see pdfserv.maxim-ic.com/en/ds/MAX104.pdf), then it would be pos-
sible to directly sample and alias the original RF signal. Such an implementation
has been demonstrated [Akos (1997) and Akos et al. (1999)] yet there remain
many technical hurdles to overcome with such an approach. The approach out-
lined does provide the means to compute an appropriate sampling frequency and
the resulting sampling IF.

Based on the preceding discussion, the role of the final filter in the RF chain be-
comes clear. It must be a bandpass filter and limit the band to only those frequen-
cies to be preserved through the sampling process. Recognize that the aliasing
does not only occur for the desired IF, but all frequencies within the analog in-
put bandwidth of the ADC. Thus, it is critical for minimal noise that the last filter
prior to the ADC allows only those frequencies of interest and attenuates all others
within the analog input bandwidth.
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FIGURE 4.4. Time domain. Representation of 1000 samples.

Referring to the design in Figure 4.2, a sampling frequency of 38.192 MHz
is used for the 47.74 MHz IF, and this provides a final digital frequency trans-
lation to an IF of 9.548 MHz. The resulting sampled information bandwidth of
[0–38.192/2] MHz provides more.

The final ADC parameter to be discussed is the analog input range. This range
defines the voltage range for which the quantization will be distributed across.
In the case of the ADS830 part, the minimum analog input range is 1 V peak-to-
peak. Assuming a 50  load, which is traditional in radio frequency design, a 1 V
signal corresponds to −17 dBW. Thus, it should now be clear why the amplifica-
tion within the RF chain is needed. It had been mentioned that it was to provide
suitable signal levels. The combination of thermal noise and received signal will
be simply too weak to exercise the bits in this or any ADC. So a goal of the am-
plifiers is to increase the received signal level, which again is dominated by the
thermal noise, to exercise the full range of the ADC.

Although not depicted in Figure 4.2, the final amplifier in many GNSS front-
end designs will be a variable gain with a feedback signal resulting from pro-
cessing implemented after the ADC. This is implemented and known within most
GNSS receivers as automatic gain control (AGC). The goal of the front end is
to exercise all available bits with the ADC. Thus, if the gain is insufficient to do
so and this is determined by monitoring the sampled data stream, the gain can be
increased. Alternatively, if the gain is too high such that the outer ADC bins have
an overwhelming number of samples, then the gain can be decreased. Lastly, as
will be discussed when the sampled data are presented, the AGC can be steered by
the expected distribution of the sample bins. In this way, the front end can attempt
to minimize the impact of narrowband interference.

In summary, the object of the bulk of the components within the front end is to
condition the voltage incident on the antenna for sampling by the ADC. In order to
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FIGURE 4.5. Histogram of 1,048,576 data samples.

accomplish this for most ADCs there are three basis functions which must be ac-
complished. These are amplification, frequency translation/downconversion, and
filtering. These prepare the signal for analog-to-digital conversion, which results
in the samples to be processed within the software receiver.

4.3 Resulting Sampled Data

Now that the operation/functionality of the GNSS front end has been described,
it is worthwhile to highlight the resulting data that have been collected from the
front-end design depicted in Figure 4.2 and have been included on the media with
the book.

Again, the important parameters for the signal processing are

– Sampling frequency: 38.192 MHz

– Intermediate frequency: 9.548 MHz, and

– Four-bit samples.

The above parameters provide all the necessary information for the operation
of the signal processing algorithms. Some other items, such as the time and date
and approximate location of the data collection, can speed the acquisition as will
be discussed, but are not required.

What can be done is to show the resulting digital samples in typical representa-
tions. Thus, in Figures 4.4, 4.5, and 4.6, a time domain, histogram, and frequency
domain depiction of the collected data are illustrated, respectively.

In the time domain depiction, no discernable structure is visible despite the
9.548 MHz IF for the collected GPS data. In the histogram, it is obvious that all
four bits of the ADC are being triggered based on the 16 levels present within
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FIGURE 4.6. Frequency domain. Representation of 1,048,576 samples of GPS L1 data.

the histogram. Also the histogram bears a strong resemblance to the probability
density function for a Gaussian random variable, which would be expected for
white thermal noise. These plots follow what would be expected based on the fre-
quency domain depiction in Figure 4.1 where the thermal noise would dominate
the resulting samples.

However, the frequency domain depiction does not resemble Figure 4.1; rather
some obvious structure is present. This structure is best explained by building on
Figure 4.1, as shown in Figure 4.7.

In this figure, obvious changes have been made to better correspond to the
frequency domain depiction of the collected data file.

First, the “noise level” is not white, or flat and uniform as a function of fre-
quency, but has some definite structure. This is a result of the final bandpass filter
prior to sampling. This 6 MHz-wide bandpass filter shapes the spectrum of the
analog signal to be sampled. Thus, the filter shape has been added within Fig-
ure 4.7.

Second, there is an obvious “bulge” within the center of the passband right at
the resulting IF of the GPS translated signal. This actually appears to be the main
2.046 MHz lobe of the sinc spectrum of the signal itself. With the specified re-
ceived signal power level so much lower than the expected thermal noise, how can
there be any discernable structure from the satellite signal from a data set collected
with a traditional hemispherical antenna? The explanation has two components:

– the individual received satellite signal power is currently higher than the
minimum specified (as shown in Figure 4.7); and

– the CDMA nature of the GPS system has all the satellite signal power over-
laid at the resulting IF; thus, the spectrum shows the summation of all the
visible satellite signal power.
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These two factors bring about some, although minimal, structure from the satel-
lite signal spectrum into the frequency domain representation of the collected
data.

For the most part, the data indeed resemble thermal noise, and all the traditional
GNSS signal processing is required to acquire, track, and utilize the navigation
transmission.

4.4 GNSS Front-End ASIC

The final section of this chapter presents the current state of the art for GNSS
front-end designs. The implementation in Figure 4.2 has been built from expen-
sive discrete components. Although this provides a high-quality front-end suitable
for a lab instrument or environment, the cost for such an implementation can ap-
proach $5000. With the cost of handheld GPS receivers now well below $100, an
alternative to such a design must exist.

The solution comes in the form of an integrated circuit. The bulk of the func-
tionality of Figure 4.2 has been incorporated by multiple vendors into an ASIC
that is typically smaller than 5×5 mm packages and utilizes less than 50 mW; see
SiGe SE4110L, Nemerix NJ1006, and Texas Instruments TRF5101 data sheets.
Such components strive to be as completely self-contained as possible, requiring
only a minimal number of external components.

For example, consider the block diagram for the SiGe SE4110L component
shown in Figure 4.8. This is an excellent example of a GPS front-end ASIC com-
ponent. The complete data sheet for the SE4110L is included on the bundled
DVD.
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FIGURE 4.8. Block diagram of the SE4110L front-end ASIC. Reproduced with permission
of SiGe Semiconductor, Inc.

Based on the discussion within the chapter, the underlying design of the compo-
nent should be somewhat familiar. A single-frequency translation stage is utilized
along automatic gain control functionality to support multiple bit sampling.

It is quite impressive to see the level of integration within such a component.
It utilizes a traditional antenna input (although a passive antenna can be used
with an internal LNA with noise figure of less than 2.5 dB) and provides 2-bit
digital samples supporting a number of different clock frequencies for a variety
of applications. This particular part is only 4 × 4 mm and draws less than 10 mA
from a nominal 2.7–3.3 V supply. Such integration is even more impressive when
one considers the gain required for processing the received signal power of the
GPS and potential feedback issues.

Such development even further facilitates the wide scale deployment of satellite
navigation technology at a relatively low cost.

The ASIC-based front end is just one of multiple options for converting the sig-
nal in space to a digital format suitable for the software based signal processing.
The goal of this chapter is to provide some insight into the source of that data.



5
GNSS Receiver Operation Overview

5.1 Receiver Channels

The signal processing for satellite navigation systems is based on a channelized
structure. This is true for both GPS and Galileo. This chapter provides an overview
of the concept of a receiver channel and the processing that occurs. In later chap-
ters the specifics of the signal and data processing are outlined.

Figure 5.1 gives an overview of a channel. Before allocating a channel to a
satellite, the receiver must know which satellites are currently visible. There are
two common ways of finding the initially visible satellites. One is referred to as
warm start and the other is referred to as cold start.

Warm start In a warm start, the receiver combines information in the stored al-
manac data and the last position computed by the receiver. The almanac
data is used to compute coarse positions of all satellites at the actual time.
These positions are then combined with the receiver position in an algo-
rithm computing which satellites should be visible. The warm start has at
least two downsides. If the receiver has been moved far away since it was
turned off (e.g., to another continent), the receiver position cannot be trusted
and the found satellites do not match the actual visible satellites. Another
case is that the almanac data can be outdated, so they cannot provide good
satellite positions. In either case, the receiver has to make a cold start.

Cold start In a cold start, the receiver does not rely on any stored information. In-
stead it starts from scratch searching for satellites. The method of searching
is referred to as acquisition and it is described in the following section.
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FIGURE 5.1. One receiver channel. The acquisition gives rough estimates of signal param-
eters. These parameters are refined by the two tracking blocks. After tracking, the naviga-
tion data can be extracted and pseudoranges can be computed.

An acquisition search through all possible satellites is quite time-consuming. That
is, in fact, the reason why a warm start is preferred if possible.

5.1.1 Acquisition

The purpose of acquisition is to identify all satellites visible to the user. If a satel-
lite is visible, the acquisition must determine the following two properties of the
signal:

Frequency The frequency of the signal from a specific satellite can differ from
its nominal value. In case of downconversion, the nominal frequency of the
GPS signal on L1 corresponds to the IF. However, the signals are affected
by the relative motion of the satellite, causing a Doppler effect. The Doppler
frequency shift can—in the case of maximum velocity of the satellite com-
bined with a very high user velocity—approach values as high as 10 kHz;
see Tsui (2000), page 39. For a stationary receiver on Earth, the Doppler
frequency shift will never exceed 5 kHz.

Code Phase The code phase denotes the point in the current data block where the
C/A code begins. If a data block of 1 ms is examined, the data include an
entire C/A code and thus one beginning of a C/A code.

Many different methods have been used: they are all in one way or another
based on the GPS signal properties. The C/A code correlation properties are es-
pecially important; see Section 2.3.4.

The received signal s is a combination of signals from all n visible satellites

s(t) = s1(t) + s2(t) + · · · + sn(t). (5.1)

When acquiring satellite k, the incoming signal s is multiplied with the local
generated C/A code corresponding to the satellite k. The cross correlation be-
tween C/A codes for different satellites implies that signals from other satellites
are nearly removed by this procedure. To avoid removing the desired signal com-
ponent, the locally generated C/A code must be properly aligned in time, that is,
have the correct code phase.
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FIGURE 5.2. Acquisition plot for PRN 21. Signals originating from PRN 21 are present in
the received signal. This is seen from the significant peak in the acquisition plot. The peak
location is related to a C/A code phase and a frequency of the signal.

After multiplication with the locally generated code, the signal must be mixed
with a locally generated carrier wave. This is done to remove the carrier wave
of the received signal. To remove the carrier wave from the signal, the frequency
of the locally generated signal must be close to the signal carrier frequency. As
mentioned earlier, the frequency can change up to ±10 kHz from the nominal
frequency, so different frequencies within this area must be tested. To identify
whether or not a satellite is visible, it is sufficient to search the frequency in steps
of 500 Hz resulting in 41 different frequencies in case of a fast-moving receiver
and 21 in case of a static receiver; see Akos (1997), page 85.

After mixing with the locally generated carrier wave, all signal components are
squared and summed providing a numerical value.

The acquisition procedure works as a search procedure. For each of the dif-
ferent frequencies 1023 different code phases are tried. When all possibilities for
code phase and frequency are tried, a search for the maximum value is performed.
If the maximum value exceeds a determined threshold, the satellite is acquired
with the corresponding frequency and phase shift. Figure 5.2 shows a typical ac-
quisition plot performed for a visible satellite. The plot shows a significant peak,
which indicates high correlation.

Figure 5.3 shows a typical acquisition plot, performed for a satellite that is not
currently visible at the GPS receiver. In this plot, all values are nearly identical,
indicating low correlation.

5.1.2 Tracking

The main purpose of tracking is to refine the coarse values of code phase and
frequency and to keep track of these as the signal properties change over time.
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FIGURE 5.3. Acquisition plot for PRN 19. Signals originating from PRN 19 are clearly
not present in the received signal as there is no sign of a peak in the acquisition plot.

The accuracy of the final value of the code phase is connected to the accuracy of
the pseudorange computed later on. The tracking contains two parts, code tracking
and carrier frequency/phase tracking:

Code tracking The code tracking is most often implemented as a delay lock
loop (DLL) where three local codes (replicas) are generated and correlated
with the incoming signal. These three replicas are referred to as the early,
prompt, and late replica, respectively. The three codes are often separated
by a half-chip length.

Carrier frequency/phase tracking The other part of the tracking is the carrier
wave tracking. This tracking can be done in two ways: either by tracking
the phase of the signal or by tracking the frequency.

The tracking is running continuously to follow the changes in frequency as a
function of time. If the receiver loses track of a satellite, a new acquisition must
be performed for that particular satellite.

5.1.3 Navigation Data Extraction

When the signals are properly tracked, the C/A code and the carrier wave can
be removed from the signal, only leaving the navigation data bits. The value of a
data bit is found by integrating over a navigation bit period of 20 ms. After reading
about 30 s of data, the beginning of a subframe must be found in order to find the
time when the data was transmitted from the satellite.

When the time of transmission is found, the ephemeris data for the satellite
must be decoded. This is used later on to compute the position of the satellite at
the time of transmission.



5.2 Computation of Position 73

FIGURE 5.4. The basic principle of GNSS positioning. With known position of four satel-
lites SVNi and signal travel distance ρi , the user position can be computed.

The last thing to do before making position computations is to compute pseu-
doranges. The pseudoranges are computed based on the time of transmission from
the satellite and the time of arrival at the receiver. The time of arrival is based on
the beginning of the subframe.

5.2 Computation of Position

The final task of the receiver is to compute a user position. The position is com-
puted from pseudoranges and satellite positions found from ephemeris data. Fig-
ure 5.4 gives an impression of the method of position computation using GPS.

Section 8.5 gives a detailed description of the computational algorithm.
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Acquisition

The present and the following chapters are based on signals recorded according
to parameters described in Section 4.3. The theory can be applied similarly to
records with a different selection of parameters.

6.1 Motivation

The purpose of acquisition is to determine visible satellites and coarse values of
carrier frequency and code phase of the satellite signals.

The satellites are differentiated by the 32 different PRN sequences. The sec-
ond parameter, code phase, is the time alignment of the PRN code in the current
block of data. It is necessary to know the code phase in order to generate a local
PRN code that is perfectly aligned with the incoming code. Only when this is the
case, the incoming code can be removed from the signal. PRN codes have high
correlation only for zero lag. That is, the two signals must be perfectly aligned to
remove the incoming code. The third parameter is the carrier frequency, which in
case of downconversion corresponds to the IF. The IF should be known from the
L1 carrier frequency of 1575.42 MHz and from the mixers in the downconverter.
However, the frequency can deviate from the expected value. The line-of-sight
velocity of the satellite (with respect to the receiver) causes a Doppler effect re-
sulting in a higher or lower frequency. In the worst case, the frequency can deviate
up to ±10 kHz. It is important to know the frequency of the signal to be able to
generate a local carrier signal. This signal is used to remove the incoming carrier
from the signal. In most cases it is sufficient to search the frequencies such that
the maximum error will be less than or equal to 500 Hz; see Akos (1997).
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FIGURE 6.1. Block diagram of the serial search algorithm.

In an ordinary receiver, the acquisition is usually performed in an application-
specific integrated circuit (ASIC). In a software receiver, it is implemented in soft-
ware. The following sections describe the theory behind three standard methods
of acquisition to demonstrate the possibility of implementing an efficient method
in a software receiver.

6.2 Serial Search Acquisition

Serial search acquisition is an often-used method for acquisition in code-division
multiple access systems (CDMA). GPS is a CDMA system. Figure 6.1 is a block
diagram of the serial search algorithm.

As seen in Figure 6.1, the algorithm is based on multiplication of locally gener-
ated PRN code sequences and locally generated carrier signals. The PRN genera-
tor generates a PRN sequence corresponding to a specific satellite. The generated
sequence has a certain code phase, from 0 to 1022 chips. The incoming signal
is initially multiplied by this locally generated PRN sequence. After multiplica-
tion with the PRN sequence, the signal is multiplied by a locally generated carrier
signal. Multiplication with the locally generated carrier signal generates the in-
phase signal I , and multiplication with a 90◦ phase-shifted version of the locally
generated carrier signal generates the quadrature signal Q.

The I and Q signals are integrated over 1 ms, corresponding to the length of
one C/A code, and finally squared and added. Ideally, the signal power should be
located in the I part of the signal, as the C/A code is only modulated onto that.
However, in this case the I signal generated at the satellite does not necessarily
correspond to the demodulated I . This is because the phase of the received signal
is unknown. So to be certain that the signal is detected, it is necessary to investi-
gate both the I and the Q signal. The output is a value of correlation between the
incoming signal and the locally generated signal. If a predefined threshold is ex-
ceeded, the frequency and code phase parameters are correct, and the parameters
can be passed on to the tracking algorithms.
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The serial search algorithm performs two different sweeps: a frequency sweep
over all possible carrier frequencies of IF ±10 kHz in steps of 500 Hz and a code
phase sweep over all 1023 different code phases. All in all, this sums up to a total
of

1023︸ ︷︷ ︸
code phases

(
2

10,000

500
+ 1︸ ︷︷ ︸

frequencies

)
= 1023 · 41 = 41,943 combinations. (6.1)

Obviously, this is a very large number of combinations. This exhausting search
routine also tends to be the main weakness of the serial search acquisition.

The implementation of the serial search acquisition method is very straight-
forward. The algorithm can be implemented directly based on the block diagram
of the method as shown in Figure 6.1.

6.2.1 PRN Sequence Generation

Figure 6.1 shows that the first task in the serial search acquisition method is to
multiply the incoming signal with the locally generated PRN sequence. This of
course involves the generation of this PRN sequence. Instead of generating PRN
sequences every time the algorithm is executed, all possible PRN sequences are
generated offline. The 32 different PRN sequences are generated by the PRN gen-
erator implemented according to Figure 2.5.

The PRN code generator is implemented using the binary values 0 and 1. How-
ever, in the signal processing algorithms it is more convenient to represent the
codes with a polar non-return-to-zero representation.

With 32 generated PRN sequences, all possible sequences originating from
GPS satellites are created. However, as mentioned in the theory of serial search
acquisition, the method involves multiplication with all possible shifted versions
of the PRN codes. That is, besides saving the 32 possible PRN codes all possible
shifted versions should also be saved. This sums up to a total of 32,736 different
PRN codes. To make the multiplication between one of the generated PRN codes
and the incoming signal possible, the code has to be sampled with 38.192 MHz,
like the received signal. This sampling converts the length of a PRN sequence
from 1023 to 38,192.

6.2.2 Carrier Generation

The second step is multiplication with a locally generated carrier wave. The car-
rier generator must generate two carrier signals with a phase difference of 90◦,
corresponding to a cosine and a sine wave. The carrier must have a frequency cor-
responding to the IF ± the frequency step according to the examined frequency
area. It must be sampled with the sampling frequency of 38.192 MHz and have
a length of 1 ms. A complex signal is generated using the natural exponential
function e j2π f .
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FIGURE 6.2. Locally generated cosine (a) and sine (b) waves.

In MATLAB the 38,192 sample-long sequence, corresponding to 1 ms, is gen-
erated as carrier = exp(j * 2 * pi * fc * ts * nn); where fc is the IF plus current fre-
quency offset, ts is the sampling period ts = 1/ fs , and nn is an array with num-
bers from 0 to 38,191. Now the sine and cosine waves are generated as cosine =
real(carrier); and sine = imag(carrier);.

Figure 6.2 shows the first 20 samples of the resulting cosine and sine waves
when using a sampling frequency fs = 38.192 MHz and letting fc = 9.548 MHz.

6.2.3 Integration and Squaring

The last parts of the serial search algorithm involve an integration and a squaring
of the two results of the multiplications with the cosine and sine signals, respec-
tively. The squaring is introduced to obtain the signal power. The integration is
simply a summation of all 38,192 points corresponding to the length of the pro-
cessed data. The squaring is then performed on the result of the summation. The
final step is to add the two values from the I arm and the Q arm. If the locally
generated code is well aligned with the code in the incoming signal, and the fre-
quency of the locally generated carrier matches the frequency of the incoming
signal, the output will be significantly higher than if any of these criteria were not
fulfilled. Figure 6.3 shows the output from the serial search acquisition method.
Figure 6.3a is the output when performing the acquisition on a satellite that is
not visible and Figure 6.3b when performing the acquisition on a satellite that is
visible. PRN 19 is arbitrarily chosen as a nonvisible satellite.

6.3 Parallel Frequency Space Search Acquisition

The serial search acquisition method showed that it is a very time-consuming
procedure to search sequentially through all possible values of the two parameters
frequency and code phase. If any of the two parameters could be eliminated from
the search procedure or if possible implemented in parallel, the performance of
the procedure would increase significantly.
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(a) (b)

FIGURE 6.3. Output from serial search acquisition. (a) PRN 19 is not visible so no peak
is present. (b) PRN 21 is visible so a significant peak is present. The peak occurs at C/A
code phase = 359 chips and frequency = 9.5475 MHz.

As the name parallel frequency space search acquisition implies, this second
method of acquisition parallelizes the search for the one parameter. This method
utilizes the Fourier transform to perform a transformation from the time domain
into the frequency domain. Figure 6.4 is a block diagram of the parallel frequency
space search algorithm.

The incoming signal is multiplied by a locally generated PRN sequence, with
a code corresponding to a specific satellite and a code phase between 0 and 1022
chips. The resulting signal is transformed into the frequency domain by a Fourier
transform. The Fourier transform could be implemented as a discrete Fourier
transform (DFT) or a fast Fourier transform (FFT). The FFT is the faster of the
two; but it requires an input sequence with a radix-2 length, that is, 2n , where n
takes positive integer value.

Figure 6.5 illustrates the result of multiplying the incoming signal with a per-
fectly aligned locally generated PRN sequence. The result is a continuous wave
signal. Of course, this only happens when the locally generated PRN code is per-
fectly aligned with the code in the incoming signal. If the incoming signal contains
signal components from other satellites, these components will be minimized as
a result of the cross-correlation properties of the PRN sequences.

In parallel frequency space search acquisition, the upper signal in Figure 6.5 is
the input to the Fourier transform function. With a perfectly aligned PRN code,
the output of the Fourier transform will show a distinct peak in magnitude. The

Incoming

signal
Output

PRN code

generator

Fourier

transform |  |2

FIGURE 6.4. Block diagram of the parallel frequency space search algorithm.
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FIGURE 6.5. PRN code demodulation. At the top the PRN code is modulated onto the
carrier wave. In the middle is a perfectly aligned PRN sequence. At the bottom we recover
the continuous wave after multiplying the incoming signal with the perfectly aligned PRN
sequence.

peak will be located at the frequency index corresponding to the frequency of the
continuous-wave signal and thereby the frequency of the carrier wave signal.

The accuracy of the determined frequency depends on the length of the DFT.
The length corresponds to the number of samples in the analyzed data. If 1 ms of
data is analyzed, the number of samples can be found as 1/1000 of the sampling
frequency. That is, if the sampling frequency is fs = 10 MHz, the number of
samples is N = 10,000.

With a DFT length of 10,000, the first N/2 output samples represent the fre-
quencies from 0 to fs

2 Hz. That is, the frequency resolution of the output is

� f = fs/2

N/2
= fs

N
. (6.2)

With a sampling frequency of fs = 10 MHz the resulting frequency resolution is

� f = 10 MHz

10,000
= 1 kHz. (6.3)

In this case, the accuracy of the estimated carrier frequency is 1 kHz compared
to the accuracy of 500 Hz in serial search acquisition.

Figure 6.6 shows the output as two power spectral density (PSD) plots. The
PSD algorithm is using FFT for the acquisition. Figure 6.6a is the output of the
Fourier transform with a perfectly aligned code phase. This can be noticed from
the peak in the plot. Figure 6.6b shows the PSD plot for a not aligned code phase.
Note the absence of a peak in the plot.

Where the serial search acquisition method steps through possible code phases
and carrier frequencies, the parallel frequency space search acquisition only steps
through the 1023 different code phases. This comes with the cost of a frequency
domain transformation with each code phase. Depending on the implementation
of the frequency domain transformation, it should be possible to make a faster
implementation of this method compared to the serial search acquisition method.
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FIGURE 6.6. PSD plot of the incoming signal multiplied by a locally generated PRN code
sequence. (a) When multiplying with a perfectly aligned PRN code, the output will show
a peak at the carrier frequency. (b) When multiplying with a nonaligned code, the output
will not show any peaks. The IF is 9.548 MHz. The Doppler frequency is the same on IF
and RF, and thus also the difference between the IF and the peak frequency.

Like the serial search acquisition method, the implementation of the parallel
frequency space search method is straightforward. The algorithm can be imple-
mented directly based on the block diagram of the method shown in Figure 6.4.

The first part of this method is identical to the first part of the serial search
method. That is, a locally generated PRN code must be multiplied with the in-
coming signal. After the code multiplication, the signal is transformed into the
frequency domain through Fourier transform. An efficient tool for that is the fast
Fourier transform (FFT). See Oppenheim & Schäfer (1999) for details on the FFT.

After transforming the signal into the frequency domain by means of the FFT
algorithm, it becomes a complex signal. If the locally generated code is well
aligned with the code in the incoming signal, the output from the FFT will have a
peak at the IF plus Doppler offset frequency. To find the possible peak frequency
the absolute value of all components are calculated. Figure 6.7 shows the output
from the parallel frequency space search method.

6.4 Parallel Code Phase Search Acquisition

As seen from Equation (6.1), the amount of search steps in the code phase dimen-
sion is significantly larger than that of the frequency dimension (1023 compared to
41). The previous method parallelized the frequency space search eliminating the
necessity of searching through the 41 possible frequencies. If the acquisition could
be parallelized in the code phase dimension, only 41 steps should be performed
compared to the 1023 in the parallel frequency space search acquisition algorithm.

A recent method in GPS signal acquisition utilizes the before-mentioned ad-
vantage of parallelizing the code phase search. This method is simply referred to
as parallel code phase search acquisition. In the following we describe the theory
behind this method.
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(a) (b)

FIGURE 6.7. Output from parallel frequency space search acquisition. The figure only
includes the first 500 chip shifts and the frequency band from 5–15 MHz. (a) PRN 19 is
not visible so no significant peaks are present in the spectrum. (b) PRN 21 is visible so a
significant peak is present in the spectrum. The peak is situated at code phase 359 chips
and frequency 9.548 MHz.

The goal of the acquisition is to perform a correlation with the incoming signal
and a PRN code. Instead of multiplying the input signal with a PRN code with
1023 different code phases as done in the serial search acquisition method, it is
more convenient to make a circular cross correlation between the input and the
PRN code without shifted code phase. In the following, a method of performing
circular correlation through Fourier transforms will be described; see Oppenheim
& Schäfer (1999), page 746, and Tsui (2000), page 140.

The discrete Fourier transforms of the finite length sequences x(n) and y(n)

both with length N are computed as

X (k) =
N−1∑
n=0

x(n)e− j2πkn/N and Y (k) =
N−1∑
n=0

y(n)e− j2πkn/N . (6.4)

The circular cross-correlation sequence between two finite length sequences x(n)

and y(n) both with length N and with periodic repetition is computed as

z(n) = 1

N

N−1∑
m=0

x(m)y(m + n) = 1

N

N−1∑
m=0

x(−m)y(m − n). (6.5)

In the following we will omit the scaling factor 1
N .

The discrete N-point Fourier transform of z(n) can be expressed as

Z(k) =
N−1∑
n=0

N−1∑
m=0

x(−m)y(m − n)e− j2πkn/N

=
N−1∑
m=0

x(m)e j2πkm/N
N−1∑
n=0

y(m + n)e− j2πk(m+n)/N = X∗(k)Y (k), (6.6)

where X∗(k) is the complex conjugate of X (k).
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FIGURE 6.8. Block diagram of the parallel code phase search algorithm.

When the frequency domain representation of the cross correlation is found,
the time-domain representation can be found through inverse Fourier transform.

Figure 6.8 is a block diagram of the parallel code phase search algorithm. The
incoming signal is multiplied by a locally generated carrier signal. Multiplication
with the signal generates the I signal, and multiplication with a 90◦ phase-shifted
version of the signal generates the Q signal. The I and Q signals are combined to
form a complex input signal x(n) = I (n) + j Q(n) to the DFT function.

The generated PRN code is transformed into the frequency domain and the
result is complex conjugated.

The Fourier transform of the input is multiplied with the Fourier transform of
the PRN code. The result of the multiplication is transformed into the time domain
by an inverse Fourier transform. The absolute value of the output of the inverse
Fourier transform represents the correlation between the input and the PRN code.
If a peak is present in the correlation, the index of this peak marks the PRN code
phase of the incoming signal.

Compared to the previous acquisition methods, the parallel code phase search
acquisition method has cut down the search space to the 41 different carrier fre-
quencies. The Fourier transform of the generated PRN code must only be per-
formed once for each acquisition. For each of the 41 frequencies we perform
one Fourier transform and one inverse Fourier transform, so the computational
efficiency of the method depends on the implementation of these functions. The
accuracy of the parameters estimated by this acquisition method regards the fre-
quency similar to the serial search method. The PRN code phase, however, is
more accurate compared to the other methods as it gives a correlation value for
each sampled code phase. That is, if the sampling frequency is 10 MHz, a sampled
PRN code has 10,000 samples, so the accuracy of the code phase can have 10,000
different values instead of 1023.

In the same way as with the other acquisition methods, the implementation of
this one is straightforward, as it can be implemented directly based on the block
diagram shown in Figure 6.8.
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(a) (b)

FIGURE 6.9. Output from parallel code phase search acquisition. (a) PRN 19 is not visible
so no peak is present. (b) PRN 21 is visible so a significant peak is present. The peak is at
code phase 13404 samples and frequency 9.5475 MHz.

As seen in Figure 6.8, this method involves almost no new blocks compared
to the previous two. As a result of that, many elements can be reused in the im-
plementation. One difference in this method is that only one PRN code should
be generated for each acquisition. That is, it is not necessary to take the 1023
different code phases into account.

The first step is to multiply the incoming signal with a locally generated cosine
and sine carrier wave, respectively, giving an I and a Q signal component. These
two are combined as a complex input to the Fourier transform. The result of the
Fourier transform is multiplied with the result of the lower branch of the block
diagram in Figure 6.8. This signal is created as follows.

The PRN generator generates a code with no code phase. As in the implementa-
tion of the other acquisition algorithms, the code generation is performed off-line.
The next step performs a Fourier transform of the PRN code, and the result is
complex conjugated.

The result of the before-mentioned multiplication is given as input to an inverse
Fourier transform implemented as the built-in function IFFT in MATLAB. This
function has properties similar to the FFT function regarding execution time.

As mentioned in implementation of the parallel frequency space search acqui-
sition method above, the output from an FFT is complex. This is also the case
for the IFFT, so the output needs the same processing as in that case. That is, the
absolute value is computed for all components. Figure 6.9 shows the output from
the parallel code phase space search method.

6.5 Data Size

The selection of data size used for acquisition can be based on different criteria.
The first issue to consider is the effect of navigation data bit transitions. None of
the described algorithms ignores these transitions if they occur during the period
of acquisition. So to guarantee optimal performance of the acquisition algorithms,
it must be ensured that no data transitions occur in the analyzed data sequence.
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TABLE 6.1. Execution time for each of the three implemented acquisition algorithms

Algorithm Execution Repetitions Complexity
time

Serial search 87 41,943 Low
Parallel frequency space search 10 1023 Medium
Parallel code phase search 1 41 High

As mentioned earlier, the navigation data are transmitted with a rate of 50 bps.
This results in possible data bit transitions every 20 ms. If, for instance, 10 ms of
data is used for the acquisition algorithm, it might include a bit transition. In fact,
there is almost a 50% possibility that it does include a bit transition. (Not exactly
50% because two consecutive data bits might have identical values.) However, if
acquisition is performed on two consecutive sequences, each with the length of
10 ms, at least one of the sequences will not include a data transition.

The second issue to consider when selecting the data size used for acquisition
is the probability of making a successful acquisition. This issue can be discussed
from the idea that the probability of detecting the correct parameters for a certain
satellite increases with the amount of analyzed data.

The third issue is the computational demands as a function of the length of
data to be analyzed. This is actually the counterpart to the previous issue, as the
computations get slower when the sequence gets longer.

The choice of data size used for acquisition has to be a compromise based
on the three issues just described. If the issue with data transitions have to be
considered it might be necessary to run the acquisition algorithm twice for each
acquisition. To ensure good probability of successful acquisition, the data length
cannot be too short. However, it cannot be too long because this will cause the
computations to be too heavy and time-consuming.

A compromise that will be used involves a data length of 1 ms for the acquisi-
tion algorithms. One ms corresponds exactly to the length of one complete C/A
code, so it also simplifies the algorithm, making it unnecessary to duplicate the
code. The data length can hardly be shorter, because this would involve correlation
with an incomplete code. It could be longer, but as mentioned this would decrease
the computational performance of the algorithm. To ensure that satellites will be
acquired even though a data bit transition occurs in the analyzed data sequence,
the algorithm can be run a second time if the first acquisition is unsuccessful.

6.6 Execution Time

As mentioned in the theory behind the acquisition methods, the theoretical per-
formance regarding the computational demands are different between the three
methods. So the execution time for each of the three implemented methods will
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TABLE 6.2. Results of acquisition of PRN 21 with the three different acquisition algo-
rithms; see captions of Figures 6.3, 6.7, and 6.9.

Search algorithm Frequency [MHz] Code phase

Serial 9.5475 359 chips
Parallel frequency space 9.548 359 chips
Parallel code phase 9.5475 13,404 samples

be measured to be used as a parameter for choosing the right algorithm in the
receiver. The execution time is measured using the tic and toc functions in MAT-
LAB. An average PC (Pentium 4, 2.8 GHz) was used for execution time measure-
ments, all measurements are made 10 times, and the mean of these is computed.
So the absolute value of the execution times is only approximate as none of these
is optimized to run in realtime. The relative measures, however, should indicate
which one will have the biggest potential for being implemented in realtime.

The results of the execution-time measurements can be seen in Table 6.1. The
table also includes the number of repetitions or combinations the algorithm has to
perform and the computational complexity of each of these repetitions.

Note that all relative measures are based on MATLAB performance. Implemen-
tation in other languages/environments may change the performance drastically.

6.7 Parameter Estimation

Another parameter that could be used for choosing between the three algorithms
is the performance regarding precision of the result. The results from acquisition
of satellite 25 using the three acquisition algorithms are shown in Table 6.2.

From Table 6.2 it is evident that all algorithms find the right frequency of the
signal. The parallel frequency space search algorithm, however, estimates the fre-
quency to be 9.548 MHz compared to 9.5475 MHz estimated by the other two.
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Carrier and Code Tracking

7.1 Motivation

The acquisition provides only rough estimates of the frequency and code phase
parameters. The main purpose of tracking is to refine these values, keep track, and
demodulate the navigation data from the specific satellite (and provide an estimate
of the pseudorange). A basic demodulation scheme is shown in Figure 7.1.

The figure shows the scheme used to demodulate the input signal to obtain the
navigation message. First, the input signal is multiplied with a carrier replica. This
is done to wipe off the carrier wave from the signal. In the next step, the signal
is multiplied with a code replica, and the output of this multiplication gives the
navigation message. So the tracking module has to generate two replicas, one for
the carrier and one for the code, to perfectly track and demodulate the signal of
one satellite. In the following, a detailed description of the demodulation scheme
is conducted.

7.2 Demodulation

Let fL1 and fL2 be the carrier frequencies of L1 and L2 for the signal transmitted
from satellite k with powers PC , PPL1, and PPL2 for C/A or P code. The C/A code
sequence is Ck(t) and the P(Y) code sequence is Pk(t). If the navigation data
sequence is called Dk(t), the total signal is given as

sk(t) = √
2PCCk(t)Dk(t) cos(2π fL1t) +√

2PPL1 Pk(t)Dk(t) sin(2π fL1t)

+√
2PPL2 Pk(t)Dk(t) sin(2π fL2t). (7.1)
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Carrier wave replica PRN code replica

Incoming
signal

Navigation data

FIGURE 7.1. Basic demodulation scheme. This scheme is used to demodulate the naviga-
tion message.

The output from the front end including filtering and downconversion can be de-
scribed as

sk(t) = √
2PCCk(t)Dk (t) cos(ωIFt) +

√
2PPL1 Pk(t)Dk(t) sin(ωIFt), (7.2)

where ωIF is the intermediate frequency to which the front end has downconverted
the carrier frequency. Equation (7.2) describes the output of the front end from one
satellite.

This signal is then sampled by the A/D converter. Because of the narrow band-
pass filter around the C/A code, the P code is distorted. In this way the last term
in Equation (7.2) is filtered out and cannot be demodulated and is in the following
described as noise e(n). The signal from satellite k after the A/D conversion can
be described as

sk(n) = Ck(n)Dk(n) cos(ωIFn) + e(n) (7.3)

with n in units of 1/ fs s; n indicates that the signal is discrete in time.
To obtain the navigation data Dk(n) from the above signal, the signal has to be

converted down to baseband. The carrier removal is done by multiplying the input
signal with a replica of the carrier as shown in Figure 7.1. If the carrier replica
is identical to the incoming carrier in both frequency and phase, the product of
both is

sk(n) cos(ωIFn) = Ck(n)Dk(n) cos(ωIFn) cos(ωIFn)

= − 1
2 Ck(n)Dk(n) − 1

2 cos(2ωIFn)Ck(n)Dk(n), (7.4)

where the first term is the navigation message multiplied with the PRN code and
the second term is a carrier with the double intermediate frequency. The latter
part of the signal can be removed by applying a lowpass filter. The signal after the
lowpass filter is

1
2 Ck(n)Dk(n). (7.5)

The next step is to remove the code Ck(n) from the signal. This is done by
correlating the signal with a local code replica. If the code replica is exactly the
same as the code in the signal, the output of the correlation is

N−1∑
n=0

Ck(n)Ck(n)Dk(n) = N Dk (n), (7.6)

where N Dk (n) is the navigation message multiplied by the amount of points in
the signal N .
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FIGURE 7.2. Linearized digital second-order PLL model.

The above description of the demodulation is only for a signal with one satel-
lite. This is done to reduce the complexity of the equations and to give a simpler
idea of the demodulation scheme. In the real signal there is a signal contribution
from each visible satellite resulting in larger noise terms in the equations; see
Haykin (2000), page 95.

In the demodulation scheme seen in Figure 7.1, two local signal replicas are
required. To produce the exact replica some kind of feedback is needed. The feed-
back loop to produce the carrier replica is referred to as the carrier tracking loop,
and the feedback loop to produce the exact code replica is referred to as the code
tracking loop.

7.3 Second-Order PLL

Both the carrier tracking (Costas loop) and code tracking [delay lock loop (DLL)]
have an analytic linear phase lock loop model that can be used to predict perfor-
mance. This linear model has been derived by Ziemer & Peterson (1985) and is an
extremely powerful tool to predict the performance of the tracking loop. Another
excellent reference, once the fundamental models for Costas and DLL have been
derived, for linear phase lock loop and its parameters and performance is by Best
(2003).

Extending the linear PLL model has been derived by Chung et al. (1993). This
approach will be followed by the implementation of both the Costas loop and
DLL, yet the linear model references earlier can still be the basis of performance
prediction and analysis.

The second-order PLL system contains a first-order filter and a voltage con-
trolled oscillator (VCO). Note that the transfer function of an analog loop filter
and a VCO are

F(s) = 1

s

τ2s + 1

τ1
, (7.7)

N(s) = Ko

s
, (7.8)

where F(s) and N(s) are the transfer functions of the filter and NCO, respectively.
Ko is the NCO gain. The transfer function of a linearized analog PLL is [refer to
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FIGURE 7.3. Second-order phase lock loop filter.

Chung et al. (1993)]

H (s) = Kd F(s)N(s)

1 + Kd F(s)N(s)
, (7.9)

where Kd is the gain of the phase discriminator. Substituting Equations (7.7) and
(7.8) into the transfer function (7.9) yields

H (s) = 2ζωns + ω2
n

s2 + sζωns + ω2
n
, (7.10)

where the natural frequency ωn = √
(Ko Kd )/τ1, and the damping ratio ζ =

(τ2ωn)/2. The above transfer functions are analog versions and to convert the
transfer functions to digital form, the bilinear transformation is used on (7.10).
This yields the following digital transfer functions for the PLL model:

H1(z)=
(
4ζωnT +(ωn T )2

)+2(ωnT )2z−1+(
(ωn T )2−4ζωnT

)
z−2(

4+4ζωnT +(ωn T )2
)+(

2(ωn T )2−8
)
z−1+(

4−4ζωnT +(ωn T )2
)
z−2

.

(7.11)
The linearized digital second-order PLL model is shown in Figure 7.2, where Kd

is the discriminator gain, F(z) is the transfer function of the filter, and N(z) is the
transfer function of NCO. The transfer functions for the digital filter and NCO are

F(z) = (C1 + C2) − C1z−1

1 − z−1 , (7.12)

N(z) = Koz−1

1 − z − 1
, (7.13)

where F(z) is the transfer function of the filter and N(z) is the transfer function
of the NCO. Figure 7.3 shows the phase lock filter F(z).

The goal is to find the coefficients C1 and C2 in the second-order PLL. This
is done by comparing the transfer function for the digital PLL and the transfer
function for the analog PLL. The transfer function for the digital version can be
found as

H (z) = θo(z)

θi (z)
= Kd F(z)N(z)

1 + Kd F(z)N(z)
. (7.14)
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FIGURE 7.4. Phase error as function of different damping ratios ζ . A larger settling time
results in a smaller overshoot of the phase.

By substituting (7.12) and (7.13) into (7.14), we obtain the following:

H2(z) = Ko Kd(C1 + C2)z−1 − Ko KdC1z−2

1 + (
Ko Kd (C1 + C2) − 2

)
z−1 + (1 − Ko Kd C1)z−2

. (7.15)

To find an equation for the two coefficients C1 and C2, (7.11) and (7.15) are
compared. This yields the following two equations:

C1 = 1

Ko Kd

8ζωnT

4 + 4ζωnT + (ωn T )2
, (7.16)

C2 = 1

Ko Kd

4(ωnT )2

4 + 4ζωnT + (ωn T )2 , (7.17)

where Ko Kd is the loop gain, ζ is the damping ratio, ωn is the natural frequency,
and T is the sampling time; see Chung et al. (1993).

The natural frequency can be found as

ωn = 8ζ BL

4ζ 2 + 1
, (7.18)

where BL is the noise bandwidth in the loop; see Parkinson & Spilker Jr. (1996),
volume 1, page 371.

The damping ratio and noise bandwidth are computed for a particular signal
case. But in some cases an engineer would like to change these values for specific
applications or implementations. Therefore, a more thorough explanation is given
about these parameters.
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FIGURE 7.5. Frequency offsets from an acquired frequency offset 20 Hz and for PLL noise
bandwidths of 10, 30, and 60 Hz. There are negative peaks in the first 2 ms due to transition
phase in the loop filter.

7.3.1 Damping Ratio

The damping ratio controls how fast the filter reaches its settle point. The damping
ratio also controls how much overshoot the filter can have. A smaller settling time
results in a larger overshoot. This can be seen in Figure 7.4.

The choice of damping ratio is a compromise between overshoot and settling
time. The damping is chosen to ζ = 0.7 resulting in a filter that converges rea-
sonably fast and does not make a high overshoot.

7.3.2 Noise Bandwidth

The second parameter in the PLL filter is the noise bandwidth BL . The noise
bandwidth controls the amount of noise allowed in the filter. This parameter can
also, as the damping ratio, control the settling time. As the tracking loop starts
to track a signal the start frequency is the frequency found by the acquisition al-
gorithm. (This phase is sometimes called the pull-in phase in the literature. It is
in this phase the filter is trying to converge to the correct frequency and phase.)
The start frequency from the acquisition algorithm can be off by some Hz. The
tracking loop is then going to lock onto the correct frequency. To see the impact
of various noise bandwidths, a real GPS signal is used where the acquisition algo-
rithm found a frequency that is about 21 Hz off. Figure 7.5 shows the offset from
the start frequency for three different noise bandwidths.

From the figure, it follows that if the noise bandwidth is 60 Hz, the tracking
loop immediately finds the correct frequency offset of about 21 Hz. It can also be
seen that a lot of noise in the tracking frequency is allowed. In the second case,
where the noise bandwidth is 30 Hz, the tracking loop also locks on the signal
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FIGURE 7.6. Basic GPS receiver tracking loop block diagram.

quite fast. It can be seen that the noise on the tracking frequency is much smaller
than with a noise bandwidth of 60 Hz. In the third case where the noise bandwidth
is 10 Hz, the tracking loop is not fast enough to reach the real frequency before
a phase shift occurs. Therefore, it is not likely to converge to the proper value.
A large noise bandwidth implies that the tracking loop quickly locks to the real
frequency but has a relatively large frequency noise in the locked state. A smaller
noise bandwidth implies that it can take some time before the tracking loop can
be locked to the frequency, but after the lock the frequency is stable. Some imple-
mentations split the PLL into two filters, often called pull-in and tracking filters.

For land applications, a typical value for noise bandwidth is about 20 Hz.

7.4 Carrier Tracking

To demodulate the navigation data successfully an exact carrier wave replica has
to be generated. To track a carrier wave signal, phase lock loops (PLL) or fre-
quency lock loops (FLL) are often used.

Figure 7.6 shows a basic block diagram for a phase lock loop. The two first
multiplications wipe off the carrier and the PRN code of the input signal. To wipe
off the PRN code, the Ip output from the early–late code tracking loop described
above is used. The loop discriminator block is used to find the phase error on
the local carrier wave replica. The output of the discriminator, which is the phase
error (or a function of the phase error), is then filtered and used as a feedback to
the numerically controlled oscillator (NCO), which adjusts the frequency of the
local carrier wave. In this way the local carrier wave could be an almost precise
replica of the input signal carrier wave.

The problem with using an ordinary PLL is that it is sensitive to 180◦ phase
shifts. Due to navigation bit transitions, a PLL used in a GPS receiver has to be
insensitive to 180◦ phase shifts.

Figure 7.7 shows a Costas loop. One property of this loop is that it is insensitive
for 180◦ phase shifts and hereby a Costas loop is insensitive for phase transitions
due to navigation bits. This is the reason for using this carrier tracking loop in
GPS receivers. The Costas loop in Figure 7.7 contains two multiplications. The
first multiplication is the product between the input signal and the local carrier
wave and the second multiplication is between a 90◦ phase-shifted carrier wave
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FIGURE 7.7. Costas loop used to track the carrier wave.

and the input signal. The goal of the Costas loop is to try to keep all energy in the
I (in-phase) arm. To keep the energy in the I arm, some kind of feedback to the
oscillator is needed. If it is assumed that the code replica in Figure 7.7 is perfectly
aligned, the multiplication in the I arm yields the following sum:

Dk(n) cos(ωIF n) cos(ωIF n + ϕ) = 1
2 Dk(n) cos(ϕ) + 1

2 Dk(n) cos(2ωIF n + ϕ),

(7.19)
where ϕ is the phase difference between the phase of the input signal and the phase
of the local replica of the carrier phase. The multiplication in the quadrature arm
gives the following:

Dk(n) cos(ωIF n) sin(ωIF n + ϕ) = 1
2 Dk(n) sin(ϕ) + 1

2 Dk(n) sin(2ωIF n + ϕ).

(7.20)
If the two signals are lowpass filtered after the multiplication, the two terms with
the double intermediate frequency are eliminated and the following two signals
remain:

I k = 1
2 Dk(n) cos(ϕ), (7.21)

Qk = 1
2 Dk(n) sin(ϕ). (7.22)

To find a term to feed back to the carrier phase oscillator, it can be seen that the
phase error of the local carrier phase replica can be found as

Qk

I k
=

1
2 Dk(n) sin(ϕ)

1
2 Dk(n) cos(ϕ)

= tan(ϕ), (7.23)

ϕ = tan−1
(

Qk

I k

)
. (7.24)

From Equation (7.24), it can be seen that the phase error is minimized when the
correlation in the quadrature-phase arm is zero and the correlation value in the in-
phase arm is maximum. The arctan discriminator in Equation (7.24) is the most
precise of the Costas discriminators, but it is also the most time-consuming. Ta-
ble 7.1 describes other possible Costas discriminators.
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TABLE 7.1. Various types of Costas phase lock loop discriminators

Discriminator Description

D = sign(I k)Qk The output of the discriminator is proportional to sin(ϕ).

D = I k Qk The discriminator output is proportional to sin(2ϕ).

D = tan−1
( Qk

I k

)
The discriminator output is the phase error.

Figure 7.8 shows the responses corresponding to the different discriminators.
The phase discriminator outputs in this figure are computed using expressions in
Table 7.1 for all possible phase errors. In the same figure it can be seen that the
discriminator outputs are zero when the real phase error is 0 and ±180◦. This is
why the Costas loop is insensitive to the 180◦ phase shifts in case of a navigation
bit transition.

The behavior of the Costas loop when a 180◦ phase shift occurs is more clearly
illustrated in Figure 7.9. In this figure the vector sum of I k and Qk is shown as
the vector in the coordinate system. If the local carrier wave were in phase with
the input signal, the vector would be aligned to the I -axis, but in the present case
a small phase error is illustrated. When the signal is tracked correctly the vector
sum of I k and Qk tends to remain aligned with the I -axis. This property ensures
that if a navigation bit transition occurs, the vector on the phasor diagram will
flip 180◦ (showed by the dashed vector in the figure). If a navigation bit transition
occurs, the Costas loop will still track the signal and nothing will happen. This
property does make Costas loop the commonly chosen phase lock loop in GPS
receivers; see Kaplan & Hegarty (2006), pages 166–170.

The output of the phase discriminator is filtered to predict and estimate any
relative motion of the satellite and to estimate the Doppler frequency.
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FIGURE 7.8. Comparison between the common Costas phase lock loop discriminator re-
sponses.



96 7. Carrier and Code Tracking

I

Q

ϕ
ϕ

FIGURE 7.9. Phasor diagram showing the phase error between the phase of the input
carrier wave and the phase of the local carrier wave replica.

7.5 Code Tracking

The goal for a code tracking loop is to keep track of the code phase of a specific
code in the signal. The output of such a code tracking loop is a perfectly aligned
replica of the code. The code tracking loop in the GPS receiver is a delay lock loop
(DLL) called an early–late tracking loop. The idea behind the DLL is to correlate
the input signal with three replicas of the code seen in Figure 7.10.

The first step in Figure 7.10 is converting the C/A code to baseband, by multi-
plying the incoming signal with a perfectly aligned local replica of the carrier
wave. Afterwards the signal is multiplied with three code replicas. The three
replicas are nominally generated with a spacing of ± 1

2 chip. After this second
multiplication, the three outputs are integrated and dumped. The output of these
integrations is a numerical value indicating how much the specific code replica
correlates with the code in the incoming signal.

The three correlation outputs IE , IP , and IL are then compared to see which one
provides the highest correlation. Figure 7.11 shows an example of code tracking.
In Figure 7.11a the late code has the highest correlation, so the code phase must
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FIGURE 7.10. Basic code tracking loop block diagram.
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FIGURE 7.11. Code tracking. Three local codes are generated and correlated with the
incoming signal. (a) The late replica has the highest correlation so the code phase must be
decreased, i.e., the code sequence must be delayed. (b) The prompt code has the highest
correlation, and the early and late have similar correlation. The loop is perfectly tuned in.

be decreased. In Figure 7.11b the highest peak is located at the prompt replica,
and the early and late replicas have equal correlation. In this case, the code phase
is properly tracked.

The DLL with three correlators as in Figure 7.10 is optimal when the local
carrier wave is locked in phase and frequency. But when there is a phase error on
the local carrier wave, the signal will be more noisy, making it more difficult for
the DLL to keep lock on the code. So instead the DLL in a GPS receiver is often
designed as in Figure 7.12.
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FIGURE 7.12. DLL block diagram with six correlators.
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FIGURE 7.13. Output of the six correlators in the in-phase and quadrature arms of the
tracking loop. Acquisition frequency offset is 20 Hz and PLL noise bandwidth is 15 Hz
(for demonstration purpose).

The design in Figure 7.12 has the advantage that it is independent of the phase
on the local carrier wave. If the local carrier wave is in phase with the input signal,
all the energy will be in the in-phase arm. But if the local carrier phase drifts
compared to the input signal, the energy will switch between the in-phase and the
quadrature arm. For demonstration purposes, Figure 7.13 shows such a situation
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FIGURE 7.14. Output of the six correlators in the in-phase and quadrature arms of the
tracking loop. The local carrier wave is in phase with the input signal.
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TABLE 7.2. Various types of delay lock loop discriminators and a description of them

Type Discriminator D Characteristics

Coherent IE − IL Simplest of all discriminators.
Does not require the Q branch
but requires a good carrier
tracking loop for optimal
functionality.

(I 2
E + Q2

E ) − (I 2
L + Q2

L) Early minus late power. The
discriminator response is nearly
the same as the coherent dis-
criminator inside ± 1

2 chip.

Noncoherent
(I 2

E + Q2
E ) − (I 2

L + Q2
L)

(I 2
E + Q2

E ) + (I 2
L + Q2

L)
Normalized early minus late
power. The discriminator has
a great property when the chip
error is larger than a 1

2 chip;
this will help the DLL to keep
track in noisy signals.

IP (IE−IL)+Q P(QE−QL) Dot product. This is the only
DLL discriminator that uses all
six correlator outputs.

where the phase of the carrier replica drifts compared to the phase of the incoming
signal. The upper plot shows the output of the three correlators in the in-phase
arm, and the lower plot shows the correlation output in the quadrature arm of
the DLL with six correlators. This situation is a result of different frequencies
for the signal and the replica; it results in a constantly changing phase difference
(misalignment). There are a few reasons why this can happen, for example, the
PLL could be not in a lock state.

Figure 7.14 shows a case when the PLL is in a lock state. Because of the precise
carrier replica from the PLL, it is seen in Figure 7.14 that the correlators are
constant over time. This would not be the case if the carrier replica is not adjusted
to match the frequency and phase of the incoming signal.

If the code tracking loop performance has to be independent of the performance
of the phase lock loop, the tracking loop has to use both the in-phase and quadra-
ture arms to track the code.

The DLL now needs a feedback to the PRN code generators if the code phase
has to be adjusted. Some common DLL discriminators used for feedback are listed
in Table 7.2.

The table shows one coherent and three noncoherent discriminators. The re-
quirements of a DLL discriminator is dependent on the type of application and the
noise in the signal. The discriminator function responses are shown in Figure 7.15.
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FIGURE 7.15. Comparison between the common DLL discriminator responses.

Figure 7.15 shows the coherent discriminator and three noncoherent discrimi-
nators using a standard correlator. The figure is produced from ideal ACFs, and
the space between the early, prompt, and late is ± 1

2 chip. The space between the
early, prompt, and late codes determines the noise bandwidth in the delay lock
loop. If the discriminator spacing is larger than 1

2 chip, the DLL would be able to
handle wider dynamics and be more noise robust; on the other hand, a DLL with a
smaller spacing would be more precise. In a modern GPS receiver the discrimina-
tor spacing can be adjusted while the receiver is tracking the signal. The advantage
from this is that if the signal-to-noise ratio suddenly decreases, the receiver uses
a wider spacing in the correlators to be able to handle a more noisy signal, and
hereby a possible code lock loss could be avoided; see Kaplan & Hegarty (2006),
page 175.

The implemented tracking loop discriminator is the normalized early minus
late power. This discriminator is described as

D = (I 2
E + Q2

E ) − (I 2
L + Q2

L)

(I 2
E + Q2

E ) + (I 2
L + Q2

L)
, (7.25)

where IE , QE , IL , and QL are output from four of the six correlators shown
in Figure 7.13. The normalized early minus late power discriminator is chosen
because it is independent of the performance of the PLL as it uses both the in-
phase and quadrature arms. The normalization of the discriminator causes that
the discriminator can be used with signals with different signal-to-noise ratios
and different signal strengths.

The tracking loop generates three local code replicas. In this section, the chip
space between the early and prompt replicas is half a chip.

As was described, the DLL can be modeled as a linear PLL and thus the perfor-
mance of the loop can be predicted based on this model. In other words the loop
filter design is the same, just the parameter values are different.
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FIGURE 7.16. Constructive and destructive multipath interference. The solid thin line rep-
resents the original triangular correlation function; the dashed line the multipath correlation
function, and the third line is the sum of the two.

7.6 Multipath

Of the multiple error sources associated with GNSS signal processing, multipath
directly impacts the code tracking performance. With the prior description of how
code tracking is implemented, it makes sense to investigate how multipath impacts
the code tracking loop.

The signal observed at the receiver is a distorted version of the one transmitted.
One distortion effect is called multipath propagation or, for short, multipath.

If the receiver can directly see the satellite, a part of the received signal has
propagated via the direct path from the satellite to the receiver. This signal com-
ponent is delayed according to the distance between the satellite transmitter and
the receiver. The signal component propagated via the direct path usually is by far
the strongest part of the received signal.

In addition to the direct signal, the receiver may observe other signals propa-
gating via other and longer paths. This can happen if the radio wave reaches the
receiver after interaction with one or more objects/obstacles in the environment.
Different kinds of interactions between radio waves and objects exist, but in the
context of GNSS it suffices to think of an interaction as a reflection altering the
direction of propagation, amplitude, polarity, and phase of the radio wave.

First we consider the simple case where the transmitted signal reaches the re-
ceiver via two paths. Thus, the received signal consists of two components: a
direct component and a signal component reaching the receiver via a reflection on
a nearby building. In this case the reflected signal component is a delayed, phase-
shifted, and attenuated version of the line-of-sight signal component. Due to the
change in phase and delay, the two signal components interfere. In case the re-
flected and the direct signals are in phase, the amplitude of the sum is larger than
the amplitude of each of the components. This we call constructive interference;
see Figure 7.16. On the other hand, if the direct and reflected signals are out of
phase, the amplitude of the sum signal decreases and we talk about destructive
interference. In case the relative phase between the direct and reflected signals
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rapidly changes the amplitude of the sum signal, we say that the received signal
is fading. A signal component reaching the receiver via a different path than the
direct path is called a multipath component.

In general, the received signal x(t) is composed of the direct signal and M − 1
multipath components. Let Ai (t) denote the amplitude of the i th multipath com-
ponent, let D denote the navigation message, let C denote the code, let τ denote
the multipath error, let the frequency change be vi , the phase offset be ϕi , and,
finally, add a noise term n(t); then the signal can be described as

x(t) =
M∑

i=1

Ai (t)D
(
t − τi (t)

)
C
(
t − τi (t)

)
cos

(
2π( f0 + vi (t))t + ϕi (t)

) + n(t).

To simplify the discussion we consider a two-path scenario (M = 2) and make
the following assumptions:

A1(t) = A1; A2(t) = A2;
τ1(t) = τ1; τ2(t) = τ2;
v1(t) = v1; v2(t) = v2;
n(t) = 0.

In other words we have assumed that the parameters (amplitudes, delays, and
Doppler shifts) are constant over the time period we consider. In this case, x(t)
can be reduced to

x(t) = A1 D(t − τ1)C(t − τ1) cos
(
2π( f0 + v1)t + ϕ1

)
+ A2 D(t − τ2)C(t − τ2) cos

(
2π( f0 + v2)t + ϕ2

)
. (7.26)

We now exploit cos(ϕ) = �(exp( jϕ)
)

to rewrite (7.26) as

x(t) = �
{

A1 D(t − τ1)C(t − τ1) exp
[

j
(
2π( f0 + v1)t + ϕ1

)]
+ A2 D(t − τ2)C(t − τ2) exp

[
j
(
2π( f0 + v2)t + ϕ2

)]}
= �

{
A1 D(t − τ1)C(t − τ1) exp

[
j
(
2π( f0 + v1)t + ϕ1

)]
+ A2 D(t − τ2)C(t − τ2) exp

[
j
(
2π(v2 − v1)t + (ϕ2 − ϕ1)

)]
× exp

[
j
(
2π( f0 + v1)t + ϕ1

)]}
= �

{(
A1 D(t − τ1)C(t − τ1)

+ A2 D(t − τ2)C(t − τ2) exp
[

j
(
2π(v2 − v1)t + (ϕ2 − ϕ1)

)])
× exp

[
j
(
2π( f0 + v1)t + ϕ1

)]}
.

Defining the instantaneous phase difference between the two signal components
ψ(t) = 2π(v2 − v1)t + (ϕ2 − ϕ1), the output of the integrators in the DLL can be
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FIGURE 7.17. Multipath error envelope for noncoherent early/late detector for C/A code,
α = 0.5. The positive multipath error corresponds to constructive interference while nega-
tive multipath error corresponds to destructive interference.

approximated as

y±(t) ≈ A1 RC(τ1 − τ̂ ± δ)D(t − τ1) + A2 RC (τ2 − τ̂ ± δ) exp
(

jψ(t)
)
D(t − τ2)

≈
[

A1 RC(τ1 − τ̂ ± δ) + A2 exp
(

jψ(t)
)
RC (τ2 − τ̂ ± δ)

]
D(t − τ1).

With ε = τ1 − τ̂ , the envelope of y±(t) is

|y±(t)| =
∣∣∣A1 RC(ε ± δ) + A2 exp

(
jψ(t)

)
RC

(
ε + (τ2 − τ1) ± δ

)∣∣∣. (7.27)

The output of the envelope discriminator is

ε(t) = |y−(t)| − |y+(t)|. (7.28)

As mentioned before, the amplitude of the sum signal depends on the relative
phase ψ(t) between the direct and the reflected signal components. We consider
the two special cases of constructive and destructive interference:

Constructive interference In this case exp
(

jψ(t)
) = 1 and

|y±(t)| = A1 RC (ε ± δ) + A2 RC (ε + τ2 − τ1 ± δ). (7.29)

Destructive interference Here, exp
(

jψ(t)
) = −1 and, therefore,

|y±(t)| = A1 RC (ε ± δ) − A2 RC (ε + τ2 − τ1 ± δ). (7.30)

If the receiver is moving, it is very likely that v1 �= v2 and the relative phase
changes over time. Therefore, the envelope of the received signal will fluctuate
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FIGURE 7.18. Multipath error envelope for noncoherent early/late detector for BOC(1,1).
Negative ranging error corresponds to destructive interference.

over time as the two signal components interfere. As a measure of the magnitude
of the fluctuations we define the relative amplitude as

α = A2

A1
.

In practice, the amplitude of the direct component is larger than the reflected
component and thus α is somewhat less than one.

Equation (7.29) is graphed as the upper half of Figure 7.17 for α = 0.5 and for
three values of the correlator spacing d = 0.1, 0.5, and 1.0. The upper part of the
figure corresponds to constructive interference while the lower part corresponds
to destructive interference; see Equation (7.30). All actual multipath errors lie
within the combined envelope!

In Figure 7.17 the initial slope is a function of multipath amplitude and delay δ

only. It is independent of correlator and PRN chipping rate fc. We recall the C/A-
code pseudorange multipath error can approach 147 m, theoretically. However,
errors of 10 m or less are far more common. Large errors can be encountered in
urban environments.

Our investigation assumes infinite GPS signal bandwidth. Bandwidths of 10–
20 MHz yield results that are similar to those for the infinite bandwidth case.
For short-delay multipath (small δ), the finite bandwidth effects are much less
significant.

In conclusion: Multipath propagation deforms the ideal correlation peak because
the received signal is a sum of signal components. The multipath components
arrive later at the receiver and contribute additional correlation peaks. Thus, the
early–late correlator samples may not be centered on the true arrival time of the
direct path.
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FIGURE 7.19. Block diagram of the combined DLL and PLL tracking loops.

We note that in MATLAB the ACF can be coded as

R = (1 – abs(tau)) * heaviside(1 – abs(tau));

Next we determine the multipath error envelope for Galileo BOC(1,1). The result
is plotted in Figure 7.18. Comparing Figures 7.17 and 7.18 for correlator spacing
d = 0.1 we see that the C/A code multipath error envelop is sensitive for multipath
signals with a relative path delay up to 300 m. The resulting range errors τ are
between ±4 m. For BOC(1,1) the corresponding value is 150 m and range errors
of ±4 m. This demonstrates that BOC(1,1) signals are better to handle multipath
signals than C/A code signals!

The multipath error envelopes are computed from equations like (7.29) and
(7.30). Figures 7.17 and 7.18 are plotted by using the powerful ezplot command.
With correlator spacing d = 0.1 and multipath delays δ in the range 0–157 m
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FIGURE 7.20. The block diagram of a complete tracking channel on the GPS receiver.

we obtain ranging errors τ in the interval ±7.5 m; for δ in the range 157–317 m
the delay τ is within ±2.5 m. Obviously the delay range τ strongly depends on
the correlator spacing d; some papers even mention d = 1/25. See also Winkel
(2005).

7.7 Complete Tracking Block

In the previous sections, the code tracking loop and the carrier tracking loop are
described in detail. The following describes how the code tracking loop and the
carrier tracking loop can be joined to minimize the computational load.

Figure 7.19 shows the code tracking loop and the carrier tracking loop com-
bined. It can be seen from the figure that the PRN code replica used to wipe off
the PRN code in the carrier tracking loop is coming from the code tracking loop.
It can also be seen that the two local carrier replicas used to wipe off the carrier
wave in the code tracking loop are coming from the carrier tracking loop. The
block diagram in Figure 7.19 contains 11 multiplications. These multiplications
are the most time-consuming operations on the block diagram.

Figure 7.20 shows an optimized version of the combined tracking loops. Here
the I and Q inputs to the phase discriminator are the Ip and Qp correlation from
the code tracking loop. In this way the three multiplications in the Costas loop are
eliminated, and hereby the computation time is reduced.
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FIGURE 7.21. The delay between the time of transmission at the satellite and time of
reception at the receiver.

7.8 Pseudorange Computations

Precise estimation of the pseudorange from a satellite to the receiver is crucial for
a modern C/A code GPS receiver. The relationship between the standard devia-
tion of the observations and that of the coordinates of the receiver position (see
page 131) is

σpos =
√

σ 2
e + σ 2

n + σ 2
u = PDOP σ0, (7.31)

where σpos is the standard deviation of the receiver position, σ0 is the standard de-
viation of unit weight. PDOP is the position dilution of precision, which depends
on the geometry of the satellite constellation. Optimal accuracy of the position is
obtained when the standard deviation of unit weight is as small as possible.

A pseudorange measurement is computed as the travel time from the satellite
to the receiver multiplied by the speed of light in vacuum. The receiver has to
estimate exactly when the start of a frame arrives at the receiver. This is done by
adding the code phase to the time when the frame entered the receiver.

In Figure 7.21, the satellite transmits the start of the C/A code at t = 0 ms. This
signal is received by the receiver approximately 70 ms after it is transmitted from
the satellite. A range from the satellite to the receiver of 21,000 km corresponds to
a travel time of 70 ms. As described before, the receiver is using block processing.
That is, to calculate an accurate pseudorange and hereby an accurate position, the
exact start of the C/A code in frame 71 in Figure 7.21 has to be found.

Figure 7.22 shows the first 700 samples of frame 71 in detail. The receiver has
a time tag for the start of the frame. The problem is then to determine exactly
where the start of the code is in the frame of data. In Figure 7.22, the start of the
C/A code is at sample number 605, which is the correct code start in the simulated
data used in this section.

Since the sampling frequency of the reference data set is at 38.192 MHz, each
sample corresponds to

�p = c

38.192 MHz
= 7.86 m.
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FIGURE 7.22. Close-up of frame 71 from Figure 7.21. In this case, the beginning of the
C/A code is at sample 605 of the total of 38,192.

Since the prompt code is precisely aligned with the incoming signal to the nearest
sample, the maximum error as a result of the discrete samples will be half that or
< 5 m, which is sufficient for C/A code-type signals. If the sampling frequency is
lower, a higher precision is required. Then it is possible to use the residual code
phase at the end of each ms period to further refine that accuracy.



8
Data Processing for Positioning

8.1 Navigation Data Recovery

The output from the tracking loop is the value of the in-phase arm of the tracking
block truncated to the values 1 and −1. Theoretically we could obtain a bit value
every ms. However, we deal with noisy and weak signals, so a mean value for
20 ms is computed and truncated to −1 or 1. One navigation bit durates 20 ms.

The bit rate of the navigation data is 50 bps. The sample rate of the output
from the tracking block is 1000 sps corresponding to a value each ms. Before
the navigation data can be decoded, the signal from the tracking block must be
converted from 1000 sps to 50 bps. That is, 20 consecutive values must be replaced
by only 1. This conversion procedure is referred to as bit synchronization.

8.1.1 Finding the Bit Transition Time and the Bit Values

The first task of the bit synchronization procedure is to find the time in a sequence
where bit transitions occur. First, a zero crossing is detected. A zero crossing is
where the output changes from 1 to −1, or vice versa. When a zero crossing is
located, the time of a bit transition is located. When the time of one bit transition
is known, it is possible to find all bit transition times. These are located 20 ms
apart beginning from the first detected bit transition. Figure 8.1 shows how all
bit transition times are found in a 200-ms sequence. The bit transition times are
marked by the arrows.

When the bit transition times are located, the 1000-bps signal must be converted
to a bit rate of 50 bps. To do this, 20 samples must be replaced by only 1 value.
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FIGURE 8.1. The figure shows output from the tracking block as dots. The dotted lines
mark the bit transitions 20 ms apart. The actual signal is very strong, as a weaker one will
have dots closer to zero.

8.2 Navigation Data Decoding

The navigation data encoding follows a scheme defined in the GPS Interface Con-
trol Document, ICD-GPS-200 (1991). The encoding scheme for Galileo is not
available at the moment of writing.

When the GNSS navigation bits have been obtained through the bit synchro-
nization, they must be decoded. The GPS ephemeris parameters are described
below, while the tentative Galileo scheme is described in Section 3.4.

8.2.1 Location of Preamble

The first problem in the GPS navigation data decoding is to determine the location
of the beginning of a subframe. The beginning of a subframe is marked by an
8-bit-long preamble. The pattern of the preamble is 10001011. Because of the
Costas loop’s ability to track the signal with a 180◦ phase shift, this preamble
can occur in an inverted version 01110100. Naturally, these two bit patterns can
occur anywhere in the received data so an additional check must be carried out
to authenticate the preamble. The authentication procedure checks if the same
preamble is repeated every 6 s corresponding to the time between transmission of
two consecutive subframes.

The preamble search is implemented through a correlation. The first input to
the correlation function is the incoming sequence of navigation data bits. This
sequence is represented with −1’s and 1’s. The second input to the correlation
function is the 8-bit preamble also represented with −1’s and 1’s. When using
values −1 and 1 instead of 0 and 1, the output of the correlation function is 8
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FIGURE 8.2. Correlation between 33 s of navigation data and the 8-bit preamble. The
peaks indicate the location of the beginning of a subframe.

when the preamble is located and −8 when an inverted preamble is located. An
example of the correlation between a navigation data sequence and the preamble
can be seen in Figure 8.2.

As seen from Figure 8.2, the correlation function gives maximum correlation
of 8 several times in this 33-s-long sequence. It should give only six maximum
correlation values as the sequence should contain six subframes. In addition to the
large number of maximum correlation values, it also gives a minimum correlation
value of −8 several times. As mentioned earlier, this means that an inverted in-
stance of the preamble has been located. The method for distinguishing which of
the maximum correlation values that really is a beginning of a subframe includes
the determination of the delay between consecutive maximum correlation values.
Only if the delay between the maximum correlation values is exactly 6 s and the
parity checks do not fail is the beginning of a subframe indicated.

When the correct preambles are located, the data from each subframe can be
extracted. If the correlation shows that the preamble is inverted, the entire naviga-
tion sequence must be inverted.

Due to the Doppler effect the length of the navigation bit can deviate from the
exact value of 20 ms. Over a short time this length difference even may accumu-
late to a significant value. Therefore, a better solution is to look for a preamble in
the original 1000-sps output from the tracking. The algorithm remains the same,
but each bit in the reference preamble pattern is converted to 20 values (samples).
Now the correlation peak will have a maximum value of 8 × 20 = 160 instead of
8. Simultaneously, this modified algorithm also finds bit transition time.

8.2.2 Extracting the Navigation Data

Every correct preamble marks the beginning of a navigation data subframe. Each
of the subframes contains 300 bits divided into 10 30-bit words. The structure of
the first two words of a subframe is shown in Figure 8.3.
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FIGURE 8.3. The first two words of each subframe. These words are referred to as the
telemetry (TLM) word and the hand over word (HOW).

Parity Check Besides 24 bits of data, every 30-bit word contains a 6-bit parity.
The parity is used to check for misinterpreted bits in the navigation data. The par-
ity is computed through the equations in Table 8.1. Here ⊕ denotes the modulo-2
or exclusive OR operation.

D1 − D24 are the 24 data bits in a word, while D25 − D30 are the 6 parity bits
in a word. The two bits denoted D∗

29 and D∗
30 are the last two parity bits from

the previous word. When the navigation data are received, a parity check must be
performed to test if the received data are interpreted correctly.

Time of Transmission When the parity check has been performed successfully,
the contents of the navigation data sequence can be decoded. The decoding is fol-
lowing the scheme from, ICD-GPS-200 (1991), which gives details of every word
similar to what is shown in Figure 8.3. The first important issue is to determine
the time when the current subframe was transmitted from the GPS satellite.

TABLE 8.1. Parity encoding equations

D1 = d1 ⊕ D∗
30

D2 = d2 ⊕ D∗
30

D3 = d3 ⊕ D∗
30

.

.

.
.
.
.

D24 = d24 ⊕ D∗
30

D25 = D∗
29 ⊕ d1 ⊕ d2 ⊕ d3 ⊕ d5 ⊕ d6 ⊕ d10 ⊕ d11 ⊕ d12 ⊕ d13 ⊕ d14 ⊕ d17 ⊕ d18 ⊕ d20 ⊕ d23

D26 = D∗
30 ⊕ d2 ⊕ d3 ⊕ d4 ⊕ d6 ⊕ d7 ⊕ d11 ⊕ d12 ⊕ d13 ⊕ d14 ⊕ d15 ⊕ d18 ⊕ d19 ⊕ d21 ⊕ d24

D27 = D∗
29 ⊕ d1 ⊕ d3 ⊕ d4 ⊕ d5 ⊕ d7 ⊕ d8 ⊕ d12 ⊕ d13 ⊕ d14 ⊕ d15 ⊕ d16 ⊕ d19 ⊕ d20 ⊕ d22

D28 = D∗
30 ⊕ d2 ⊕ d4 ⊕ d5 ⊕ d6 ⊕ d8 ⊕ d9 ⊕ d13 ⊕ d14 ⊕ d15 ⊕ d16 ⊕ d17 ⊕ d20 ⊕ d21 ⊕ d23

D29 = D∗
30 ⊕ d1 ⊕ d3 ⊕ d5 ⊕ d6 ⊕ d7 ⊕ d9 ⊕ d10 ⊕ d14 ⊕ d15 ⊕ d16 ⊕ d17 ⊕ d18 ⊕ d21 ⊕ d22 ⊕ d24

D30 = D∗
29 ⊕ d3 ⊕ d5 ⊕ d6 ⊕ d8 ⊕ d9 ⊕ d10 ⊕ d11 ⊕ d13 ⊕ d15 ⊕ d19 ⊕ d22 ⊕ d23 ⊕ d24
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FIGURE 8.4. The relation between GPS time, Z-count, and the truncated Z-count in the
HOW of the navigation data.

The second word of every subframe is the so-called HOW that includes a trun-
cated version of the TOW. This number is referred to as the Z-count. The Z-
count is the number of seconds passed since the last GPS week rollover in units
of 1.5 s. The rollover happens at midnight between Saturday and Sunday. The
maximum value of the Z-count is 403,199 as one week contains 604,800 s and
604,800 s/1.5 = 403,200 s. The Z-count value in the HOW is a truncated version
containing only the 17 most significant bits (MSB). This truncation makes the
Z-count increase in 6-s steps corresponding to the time between transmission of
two consecutive navigation subframes. Figure 8.4 shows the relation between the
three time measures: GPS time, Z-count, and truncated Z-count.

TABLE 8.2. Decoding scheme for GPS ephemeris parameters in the navigation data.
n∗ means that the current n bits should be decoded using the two’s-complement.

Parameter No. of bits Scale factor (LSB) Unit

IODE 8
Crs 16∗ 2−5 m
�n 16∗ 2−43 semicircle/s
µ0 32∗ 2−31 semicircle
Cuc 16∗ 2−29 radian

e 32 2−33 dimensionless
Cus 16∗ 2−29 radian√

a 32 2−19 m1/2

toe 16 24 s
Cic 16∗ 2−29 radian
0 32∗ 2−31 semicircle
Cis 16∗ 2−29 radian
i0 32∗ 2−31 semicircle

Crc 16∗ 2−5 m
ω 32∗ 2−31 semicircle
̇ 24∗ 2−43 semicircle/s
i̇ 14∗ 2−43 semicircle/s
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TABLE 8.3. Ephemeris parameters

IODE issue of data, ephemeris
�n mean motion correction
µ0 mean anomaly at toe

e eccentricity√
a square root of semi-major axis

toe reference epoch of ephemeris
0 longitude of ascending node at toe

i0 inclination at toe

ω argument of perigee
̇ rate of 0

i̇ rate of i
Crs , Crc correction coefficients for sine and cosine terms of r
Cis , Cic correction coefficients for sine and cosine terms of i
Cus, Cuc correction coefficients for sine and cosine terms of ω

The truncated Z-count value in the HOW corresponds to the time of transmis-
sion of the next navigation data subframe. To get the time of transmission of the
current subframe, the truncated Z-count should be multiplied by 6 and 6 s should
be subtracted from the result.

Remaining Parameters The remaining parameters of the navigation data are also
decoded according to ICD-GPS-200 (1991), e.g., the ephemeris parameters are
decoded according to Table 8.2. In the two’s-complement, the sign bit (+ or −)
occupies the MSB. The unit semicircle is multiplied with π to be converted into
the unit radian.

The parameter IODE is short for Issue of Data Ephemerides. IODE is an eight-
bit number that uniquely identifies the data set. All parameters are listed in Ta-
ble 8.3 and explained in Section 8.3.

8.3 Computation of Satellite Position

This section connects Earth-centered and Earth-fixed (ECEF) coordinates X , Y ,
Z to a satellite position described in space by Keplerian orbit elements. First we
recall the orbit elements a, e, ω, , i , and µ listed in Figure 8.5. The six Keplerian
orbit elements constitute an important description of the orbit, so they are repeated
in schematic form in Table 8.4.

The rest of this section is unavoidably somewhat mathematical; many readers
will proceed, assuming ECEF coordinates are found.

The X-axis points toward the intersection between equator and the Greenwich
meridian. For our purpose this direction can be considered fixed. The Z -axis co-
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X (in Greenwich meridian)

Z (Earth spin axis)

Y

S

orbit plane

a, e

P

C

equator
i

K



ω

f

FIGURE 8.5. The Keplerian orbit elements: semi-major axis a, eccentricity e, inclina-
tion of orbit i , right ascension  of ascending node K , argument of perigee ω, and true
anomaly f . Perigee is denoted P. The center of the Earth is denoted C .

incides with the spin axis of the Earth. The Y -axis is orthogonal to these two
directions and forms a right-handed coordinate system.

The orbit plane intersects the Earth equator plane in the nodal line. The di-
rection in which the satellite moves from south to north is called the ascending
node K . The angle between the equator plane and the orbit plane is the inclina-
tion i . The angle at the Earth’s center C between the X-axis and the ascending
node K is called ; it is a right ascension. The angle at C between K and the
perigee P is called argument of perigee ω; it increases counterclockwise viewed
from the positive Z -axis.

Figure 8.6 shows a coordinate system in the orbital plane with origin at the
Earth’s center C . The ξ -axis points to the perigee and the η-axis toward the de-
scending node. The ζ -axis is perpendicular to the orbit plane. From Figure 8.6 we

TABLE 8.4. Keplerian orbit elements: Satellite position

a semi-major axis
size and shape of orbit

e eccentricity

ω argument of perigee
 right ascension of ascending node

the orbital plane in
the apparent system

i inclination

µ mean anomaly position in the plane
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perigee P
(a(1 − e), 0)

η
r

ξ

S′

S

v0

(−ae, b)

(−ae, a)

E f

center of circle
(−ae, 0)

center of Earth C
(0, 0)

• • • ξ

circle

η

FIGURE 8.6. The elliptic orbit with (ξ, η) coordinates. The true anomaly f at C .

read the eccentric anomaly E and the true anomaly f . Also, immediately we have

ξ = r cos f = a cos E − ae = a(cos E − e),

η = r sin f = b
a a sin E = b sin E = a

√
1 − e2 sin E .

Hence the position vector r of the satellite with respect to the center of the Earth C
is

r =
⎡⎢⎣ξ

η

ζ

⎤⎥⎦ =
⎡⎢⎣ a(cos E − e)

a
√

1 − e2 sin E

0

⎤⎥⎦ . (8.1)

Simple trigonometry leads to the following expression for the norm:

‖r‖ = a(1 − e cos E). (8.2)

In general, E varies with time t while a and e are nearly constant. (There are
long and short periodic perturbations to e, only short for a.) Recall that ‖r‖ is the
geometric distance between satellite S and the Earth center C = (0, 0).

For later reference we introduce the mean motion n, which is the mean angular
satellite velocity. If the period of one revolution of the satellite is T , we have

n = T

2π
=
√

GM

a3 . (8.3)

The product GM was introduced on page 46 with the value 3.986 005·1014 m3/s2.
This value shall be used for computation of satellite positions (based on broadcast
ephemerides), although more recent values of GM are available; see Section 8.10.
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Let t0 be the time the satellite passes perigee, so that µ(t) = n(t − t0). Kepler’s
famous equation relates the mean anomaly µ and the eccentric anomaly E :

E = µ + e sin E . (8.4)

From Equation (8.1) we finally get

f = arctan
η

ξ
= arctan

√
1 − e2 sin E

cos E − e
. (8.5)

By this we have connected the true anomaly f , the eccentric anomaly E , and
the mean anomaly µ. These relations are basic for every calculation of a satellite
position.

It is important to realize that the orbital plane remains fairly stable in relation
to the geocentric X, Y, Z -system. In other words, seen from space, the orbital
plane remains fairly fixed in relation to the equator. The Greenwich meridian
plane rotates around the Earth spin axis in accordance with Greenwich apparent
sidereal time (GAST), that is, with a speed of approximately 24 h/day. A GPS
satellite performs two revolutions a day in its orbit having a speed of 3.87 km/s.

In the orbital plane the Cartesian coordinates of satellite S are given as⎡⎢⎣rk
j cos f k

j

r k
j sin f k

j

0

⎤⎥⎦ ,

where rk
j = ‖r(tj )‖ comes from (8.2) with a, e, and E evaluated for t = tj ; refer

to Figure 8.5.
This vector is rotated into the X, Y, Z -coordinate system by the following se-

quence of 3D rotations:

R3(−k
j )R1(−i k

j )R3(−ωk
j ).

The matrix that rotates the XY -plane by ϕ, and leaves the Z -direction alone, is

R3(ϕ) =
⎡⎣ cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

⎤⎦ (8.6)

and similarly for a rotation about the X-axis:

R1(ϕ) =
⎡⎣1 0 0

0 cos ϕ sin ϕ

0 − sin ϕ cos ϕ

⎤⎦ . (8.7)

Finally, the geocentric coordinates of satellite k at time tj are given as⎡⎢⎣Xk(tj )

Y k(tj )

Zk(tj )

⎤⎥⎦ = R3(−k
j )R1(−i k

j )R3(−ωk
j )

⎡⎢⎣rk
j cos f k

j

r k
j sin f k

j

0

⎤⎥⎦ . (8.8)
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However, GPS satellites do not follow the presented normal orbit theory. We have
to use time-dependent, more accurate orbit values. They come to us as the socalled
broadcast ephemerides; see Section 8.2.2. We insert those values in a procedure
given below and finally we get a set of variables to be inserted into (8.8).

Obviously, the vector is time-dependent, and one speaks about the ephemeris
(plural: ephemerides, emphasis on “phem”) of the satellite. These are the param-
eter values at a specific time. Each satellite transmits its unique ephemeris data.

The parameters chosen for description of the actual orbit of a GPS satellite
and its perturbations are similar to the Keplerian orbital elements. The broadcast
ephemerides are calculated using the immediate previous part of the orbit and they
predict the following part of the orbit. The broadcast ephemerides are accurate to
1–2 m. For geodetic applications, better accuracy is needed. One possibility is to
obtain post-processed precise ephemerides, which are accurate at the dm-level.

An ephemeris is intended for use from the epoch toe of reference counted in
seconds of the GPS week. It is nominally at the center of the interval over which
the ephemeris is useful. The broadcast ephemerides are intended for use during
this period. However, they describe the orbit to within the specified accuracy for
2 hours afterward. The broadcast ephemerides include the parameters in Table 8.2.
The coefficients Cω, Cr , and Ci correct argument of perigee, orbit radius, and
orbit inclination due to inevitable perturbations of the theoretical orbit caused by
variations in the Earth’s gravity field, albedo and sun pressure, and attraction from
sun and moon.

Given the transmit time t (in GPS time), the following procedure gives the
necessary variables to use in (8.8):

Time elapsed since toe tj = t − toe

Mean anomaly at time tj µj = µ0 +
(√

GM/a3 + �n
)

tj

Iterative solution for Ej Ej = µj + e sin Ej

True anomaly fj = arctan

√
1 − e2 sin Ej

cos Ej − e

Longitude for ascending node j = 0 + (̇ − ωe)tj − ωetoe

ωe = 7.2921151467 · 10−5 rad/s

Argument of perigee ωj = ω + fj + Cωc cos 2(ω + fj ) + Cωs sin 2(ω + fj )

Radial distance rj = a(1 − e cos Ej ) + Crc cos 2(ω + fj )

+ Crs sin 2(ω + fj )

Inclination i j = i0 + i̇ tj + Cic cos 2(ω + fj ) + Cis sin 2(ω + fj ).

The mean Earth rotation is denoted ωe. This algorithm is coded as the M-file
satpos. The function calculates the position of any GPS satellite at any time. It is
fundamental to every position calculation.
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FIGURE 8.7. Correlation of 12 s data with the preamble.

To avoid under- or overflow at the beginning or end of a week, we use the
M-file check_t.

8.4 Pseudorange Estimation

Pseudorange estimations can be divided into two sets of computations. The first
computational method is to find the initial set of pseudoranges, and the second
computational method is to keep track of the pseudoranges after the first set is
estimated. Two computational methods are described below.

8.4.1 The Initial Set of Pseudoranges

To find the initial set of pseudoranges between the receiver and the tracked satel-
lites, at least 12 s of data are needed. When the receiver has collected more than
12 s of data, the data are correlated with the preamble from the TLM word. The
TLM word is located at the start of each subframe. Such a correlation is shown in
Figure 8.7.

The length of the preamble is 8 samples, so if the TLM word is present in
the data, there will be a correlation value of 8. It can be seen in Figure 8.7 that
there is a correlation value corresponding to the preamble twice in the 12 s of
data. This is used to check if it really is a subframe that is found or it were just a
bit combination similar to the preamble. The correlation is carried out for all the
tracked satellites.

After the preamble is identified, the start of a subframe is found for all the
available satellites. In Figure 8.8, the start of the subframes is plotted for four
channels.

It is known that the travel time from the satellites to the Earth is 65–83 ms.
This is used to set the initial pseudorange. The satellite closest to the Earth is
the satellite with the earliest arriving subframe. In this case the satellite in chan-
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Channel 4
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Channel 2

Channel 1

409,807 Time [s]

68 ms

FIGURE 8.8. The transmit time and start of the subframe for four channels.

nel 1 has a travel time of 68 ms. The travel time of the remaining channels is then
computed with respect to channel 1. In the example this leads to travel times and
pseudoranges for the four channels as listed in Table 8.5.

In the present example, the time resolution is 1 ms, which corresponds to a
pseudorange of 300,000 m. To make the pseudorange more useful, the tracking
loop needs to find the start of the C/A code in the specific frame. This means that
the time resolution is the sampling time, and in this case the sampling frequency
is 38.192 MHz. This sampling frequency leads to a pseudorange accuracy of 8 m.

With the initial pseudoranges the receiver position can be computed. The output
of that computation is a receiver position (X, Y, Z) and a receiver clock offset dt .
The clock offset can be used to adjust the travel time of the reference satellite. In
this case it was channel 1 with the travel time of 65 ms. And with this procedure
the receiver can estimate the actual pseudoranges after two computations.

8.4.2 Estimation of Subsequent Pseudoranges

Section 8.4.1 describes how the initial pseudoranges are estimated. This subsec-
tion describes how the subsequent pseudoranges are computed.

TABLE 8.5. Initial pseudoranges for all tracked satellites

Channel Travel time Pseudorange
[ms] [m]

1 65 19,486,509.8
2 74 22,184,641.9
3 81 24,283,189.1
4 69 20,685,679.6
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When computing the subsequent pseudoranges, keep track of two issues. The
first issue is the difference in ms between the start of the subframe compared to
the reference satellite. The second issue is the start of the C/A code, which gives
the exact pseudorange for the channel.

When the receiver is computing the subsequent pseudoranges, the receiver
moves all the indexes 100 ms. (The receiver moves the indexes 100 ms if the re-
ceiver is set up to compute positions 10 times per s.) Then the start of the C/A
code is found for all the new indexes for all the tracked channels. In this way it
is possible to produce pseudoranges every millisecond and the receiver computes
positions 1000 times per s.

8.5 Computation of Receiver Position

8.5.1 Time

The traveling time between satellite k and receiver i is denoted τ k
i . Let c denote

the velocity of light in vacuum, and the pseudorange Pk
i is defined as

ti − tk = τ k
i = Pk

i /c. (8.9)

Let any epoch in GPS time (GPST) be called tGPS. The clock at satellite k and the
clock at receiver i do not run perfectly aligned with GPST. Thus, we introduce
clock offsets defined as

ti = tGPS + dti , (8.10)

tk = (ti − τ k
i )GPS + dtk . (8.11)

In the latter equation we substitute dtk = a0 + a1(tk − toe) + · · · as given from
the ephemeris:

(ti − τ k
i )gps = tk − (

a0 + a1(t
k − toe) + · · · ). (8.12)

The left term is used as argument when computing the satellite position. Rear-
ranging Equation (8.9), we get

tk = ti − Pk
i /c. (8.13)

One way of using this equation is to consider ti as given. That is the epoch time
as defined in terms of the receiver clock. The pseudorange Pk

i is likewise known
as an observable. Hence tk can be computed, and after correcting for the satellite
clock offset dtk we obtain the transmit time in GPST. This is the procedure used
for hardware receivers.

For software receivers the situation is a little different. The time tcommon com-
mon to all pseudorange observations is defined as the time of transmission at the
satellites. Hence the computation of position of satellite k is done at

tk = tcommon − dtk . (8.14)
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The only “receiver time” used is the relative time of reception from each of the
satellites and which makes the individual pseudorange.

A consequence of this time definition is that the computed satellite coordinates
immediately refer to the ECEF system, and therefore satellite coordinates are not
to be rotated about the Z -axis by an angle equal to the travel time times the Earth’s
rotation rate.

8.5.2 Linearization of the Observation Equation

The most commonly used algorithm for position computations from pseudoranges
is based on the least-squares method. This method is used when there are more
observations than unknowns. This section describes how the least-squares method
is used to find the receiver position from pseudoranges to four or more satellites.

Let the geometrical range between satellite k and receiver i be denoted ρk
i , let c

denote the speed of light, let dti be the receiver clock offset, let dtk be the satellite
clock offset, let T k

i be the tropospheric delay, let I k
i be the ionospheric delay, and

let ek
i be the observational error of the pseudorange. Then the basic observation

equation for the pseudorange Pk
i is

Pk
i = ρk

i + c(dti − dtk) + T k
i + I k

i + ek
i . (8.15)

The geometrical range ρk
i between the satellite and the receiver is computed as

ρk
i =

√
(Xk − Xi )2 + (Y k − Yi )2 + (Zk − Zi )2. (8.16)

Inserting (8.15) into (8.16) yields

Pk
i =

√
(Xk − Xi )2 + (Y k − Yi )2 + (Zk − Zi )2 + c(dti − dtk) + T k

i + I k
i + ek

i .

(8.17)
From the ephemerides—which include information on the satellite clock offset
dtk—the position of the satellite (Xk , Y k, Zk) can be computed. (The M-file sat-
pos does the job.)

The tropospheric delay T k
i is computed from an a priori model that is coded

as tropo; the ionospheric delay I k
i may be estimated from another a priori model,

the coefficients of which are part of the broadcast ephemerides. The equation
contains four unknowns Xi , Yi , Zi , and dti ; the error term ek

i is minimized by
using the least-squares method. To compute the position of the receiver, at least
four pseudoranges are needed.

Equation (8.17) is nonlinear with respect to the receiver position (Xi , Yi , Zi ),
so the equation has to be linearized before using the least-squares method.

We analyze the nonlinear term in (8.17)

f (Xi , Yi , Zi ) =
√

(Xk − Xi )2 + (Y k − Yi )2 + (Zk − Zi )2. (8.18)

Linearization starts by finding an initial position for the receiver: (Xi,0, Yi,0, Zi,0).
This is often chosen as the center of the Earth (0,0,0).
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The increments �X , �Y , �Z are defined as

Xi,1 = Xi,0 + �Xi ,

Yi,1 = Yi,0 + �Yi , (8.19)

Zi,1 = Zi,0 + �Zi .

They update the approximate receiver coordinates. So the Taylor expansion of
f (Xi,0 + �Xi , Yi,0 + �Yi , Zi,0 + �Zi ) is

f (Xi,1, Yi,1, Zi,1) = f (Xi,0, Yi,0, Zi,0) + ∂ f (Xi,0, Yi,0, Zi,0)

∂ Xi,0
�Xi

+ ∂ f (Xi,0, Yi,0, Zi,0)

∂Yi,0
�Yi + ∂(Xi,0, Yi,0, Zi,0)

∂ Zi,0
�Zi .

(8.20)

Equation (8.20) includes only first-order terms; hence the function determines an
approximate position. The partial derivatives in Equation (8.20) are

∂ f (Xi,0, Yi,0, Zi,0)

∂ Xi,0
= − Xk − Xi,0

ρk
i

,

∂ f (Xi,0, Yi,0, Zi,0)

∂Yi,0
= −Y k − Yi,0

ρk
i

,

∂ f (Xi,0, Yi,0, Zi,0)

∂ Zi,0
= − Zk − Zi,0

ρk
i

.

Let ρk
i,0 be the range computed from the approximate receiver position; the first-

order linearized observation equation becomes

Pk
i = ρk

i,0 − Xk − Xi,0

ρk
i,0

�Xi − Y k − Yi,0

ρk
i,0

�Yi − Zk − Zi,0

ρk
i,0

�Zi

+ c(dti − dtk) + T k
i + I k

i + ek
i , (8.21)

where we explicitly have

ρk
i,0 =

√
(Xk − Xi,0)2 + (Y k − Yi,0)2 + (Zk − Zi,0)2. (8.22)

8.5.3 Using the Least-Squares Method

A least-squares problem is given as a system Ax = b with no solution. A has
m rows and n columns, with m > n; there are more observations b1, . . . , bm

than free parameters x1, . . . , xn . The best choice, we will call it x̂, is the one that
minimizes the length of the error vector ê = b − A x̂. If we measure this length in
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the usual way, so that ‖e‖2 = (b − Ax)T(b − Ax) is the sum of squares of the m
separate errors, minimizing this quadratic gives the normal equations

AT A x̂ = ATb or x̂ = (AT A)−1 ATb (8.23)

and the error vector is
ê = b − A x̂. (8.24)

The covariance matrix for the parameters x̂ is

�x̂ = σ̂ 2
0 (AT A)−1 with σ̂ 2

0 = êTê
m − n

. (8.25)

The linearized observation equation (8.21) can be rewritten in a vector formula-
tion

Pk
i = ρk

i,0+
[
− Xk−Xi,0

ρk
i,0

−Y k−Yi,0

ρk
i,0

− Zk−Zi,0

ρk
i,0

1
]⎡⎢⎢⎣

�Xi

�Yi

�Zi

c dti

⎤⎥⎥⎦−c dtk +T k
i + I k

i +ek
i .

(8.26)
We rearrange this to resemble the usual formulation of a least-squares problem
Ax = b:

[
− Xk−Xi,0

ρk
i,0

−Y k−Yi,0

ρk
i,0

− Zk−Zi,0

ρk
i,0

1
]⎡⎢⎢⎣

�Xi

�Yi

�Zi

c dti

⎤⎥⎥⎦ = Pk
i −ρk

i,0+c dtk −T k
i − I k

i −ek
i .

(8.27)
A unique solution cannot be found from a single equation. Let bk

i = Pk
i − ρk

i,0 +
c dtk − T k

i − I k
i − ek

i . Then the final solution comes from

Ax =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− X1−Xi,0

ρ1
i,0

−Y 1−Yi,0

ρ1
i,0

− Z1−Zi,0

ρ1
i,0

1

− X2−Xi,0

ρ2
i,0

−Y 2−Yi,0

ρ2
i,0

− Z2−Zi,0

ρ2
i,0

1

− X3−Xi,0

ρ3
i,0

−Y 3−Yi,0

ρ3
i,0

− Z3−Zi,0

ρ3
i,0

1

...
...

...
...

− Xm−Xi,0

ρk
i,0

−Y m−Yi,0
ρm

i,0
− Zm−Zi,0

ρm
i,0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣
�Xi,1

�Yi,1

�Zi,1

c dti,1

⎤⎥⎥⎦ = b − e. (8.28)

If m ≥ 4, there is a unique solution: �Xi,1, �Yi,1, �Zi,1. This has to be added to
the approximate receiver position to get the next approximate position:

Xi,1 = Xi,0 + �Xi,1,

Yi,1 = Yi,0 + �Yi,1,

Zi,1 = Zi,0 + �Zi,1.

(8.29)
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TABLE 8.6. Typical standard deviations for pseudorange measurement

Error source σ [m]

Satellite clock and orbit 1–2
Atmospheric modeling 4
Multipath and receiver noise 1

The next iteration restarts from (8.26) to (8.29) with i,0 substituted by i,1. These
iterations continue until the solution �Xi,1, �Yi,1, �Zi,1 is at meter level. Often
two to three iterations are sufficient to obtain that goal; refer to Strang & Borre
(1997).

If the observations (pseudoranges) and ephemerides are stored for later post-
processing, a popular storage format is RINEX. A description of this can be found
at http://www.ngs.noaa.gov/CORS/instructions2/.

When starting from RINEX format, the following M-files can be used for com-
putation of the receiver position: easy3, get_eph, anheader, fepoch_0, fobs_typ,
recpo_ls, find_eph, check_t, satpos, e_r_corr, topocent, tropo, and frgeod.

8.5.4 Real-Time Positioning Accuracy

A pseudorange observation on L1 is typically influenced by several error sources:
the broadcast orbits and the satellite clock offsets are not exact, the signal prop-
agation through the atmosphere may only partly be modeled correctly, and the
receiver adds some noise, and finally, signal multipath plays a role.

It is difficult to give precise estimates for the various errors; however, Table 8.6
indicates typical standard deviations for the said contributions.

8.6 Time Systems Relevant for GPS

The fundamental time interval unit is one SI second. The SI second was defined
at the 13th general conference of the International Committee of Weights and
Measures in 1967, as the “duration of 9,192,631,770 periods of the radiation cor-
responding to the transition between the two hyperfine levels of the ground state
of the cesium 133 atom.” The SI day is defined as 86,400 seconds and the Julian
century as 36,525 days.

Since the apparent revolution of the sun about the Earth is nonuniform (this
follows from Kepler’s second law) a fictitious mean sun is defined that moves
along the equator with uniform velocity. The hour angle of this fictitious sun is
called Universal Time (UT).

The time epoch denoted by the Julian Date (JD) is expressed by a certain num-
ber of days and fraction of a day after a fundamental epoch sufficiently in the past
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TABLE 8.7. Date for introduction of leap seconds to be added to UTC to get GPST

Total number Date introduced
of leap seconds

1 1 July 1981
2 1 July 1982
3 1 July 1983
4 1 July 1985
5 1 Jan. 1988
6 1 Jan. 1990
7 1 Jan. 1991
8 1 July 1992
9 1 July 1993

10 1 July 1994
11 1 Jan. 1996
12 1 July 1997
13 1 Jan. 1999
14 1 Jan. 2006

to precede the historical record, chosen to be at 12h UT on January 1, 4713 BC.
The Julian day number denotes a day in this continuous count, or the length of
time that has elapsed at 12h UT on the day designated since this epoch. The JD of
the standard epoch of UT is called J2000.0, where

J2000.0 = JD 2,451,545.0 = 2000 January 1.5d UT.

The astronomic year commences at 0h UT on December 31 of the previous year
so that 2000 January 1.5d UT = 2000 January 1 12h. JD is a large number, so often
it is replaced by the Modified Julian Date MJD:

MJD = JD − 2,400,000.5.

Hence J2000.0 = MJD 51,544.5. Note an MJD starts at midnight.
Because GPS Time (GPST) is a continuous-time scale, it does not maintain

synchronization with the solar day since the Earth’s rotation rate is slowing by an
average of about 1 s per year. This problem is solved by defining Universal Time
Coordinated (UTC), which runs at the same rate as GPST but is incremented
by leap seconds periodically. Leap seconds are introduced by the IERS so that
UTC does not vary from UT1 by more than 0.9 s. UT1 is UT corrected for polar
motion. (IERS is an acronym for the International Earth Rotation Service. This
service is also responsible for maintaining continuity with earlier data collected
by optical instruments.) First preference is given to the end of June and December,
and second preference to the end of March and September.

The time signals broadcast by the GPS satellites are synchronized with the
atomic clock at the GPS Master Control Station in Colorado. GPST was set to 0h
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FIGURE 8.9. Conversion between (ϕ, λ, h) and Cartesian (X, Y, Z).

UTC on January 6, 1980, but is not incremented by UTC leap seconds. According
to Table 8.7 there has been a total of 14 leap seconds since January 6, 1980, so
that in early 2006

GPST = UTC + 14 s.

GPS week numbers and seconds of week Along with GPST, from the very be-
ginning was introduced the GPS week numbers. Since January 6, 1980, any week
has been designated its own number. At the time of writing we have week number
1315. To identify a given epoch within the week, the concept of seconds of week
(SOW) is used. This number counts from midnight between Saturday and Sunday,
which is also the beginning of the GPS week.

Furthermore, for convenience the individual days of the week are numbered:
Sunday 0, Monday 1, Tuesday 2, Wednesday 3, Thursday 4, Friday 5, and Satur-
day 6.

Professional GPS softwares use the day of week for numerical reasons. SOW
may be as large as 7×24×60×60 = 604,800 s. In order to keep track of the mm
in a point position we have to know time at the level of 0.01 nanosecond. Using
seconds of week with 12 decimals is beyond the limits of most computers. So
either you may split the real number holding the seconds of week into an integer
part and a decimal part or you may compute time in terms of GPS week number,
day of week, and seconds of day.

8.7 Coordinate Transformations

The immediate result of a satellite positioning is a set of X-, Y -, Z -values, which
we most often want to convert to latitude ϕ, longitude λ, and height h, refer to
Figure 8.9. We start by introducing the relation between Cartesian (X, Y, Z) co-
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ordinates and geographical (ϕ, λ, h) coordinates:

X = (Nϕ + h) cos ϕ cos λ, (8.30)

Y = (Nϕ + h) cos ϕ sin λ, (8.31)

Z = (
(1 − f )2 Nϕ + h

)
sin ϕ. (8.32)

The reference ellipsoid is the surface given by X2 + Y 2 + ( a
b

)2
Z2 = a2. The

radius of curvature in the prime vertical (which is the vertical plane normal to the
astronomical meridian) is given as

Nϕ = a√
1 − f (2 − f ) sin2 ϕ

. (8.33)

In spherical approximation, i.e., f = 0, the unit vector u normal to the surface is

u =
⎡⎣cos ϕ cos λ

cos ϕ sin λ

sin ϕ

⎤⎦ . (8.34)

The tangent n and binormal e unit vectors are derivatives of u (n alludes to nor-
thing, e to easting, and u to up, i.e., the normal direction to the surface):

n = ∂u
∂ϕ

=
⎡⎣− sin ϕ cos λ

− sin ϕ sin λ

cos ϕ

⎤⎦ and e = 1

cos ϕ

∂u
∂λ

=
⎡⎣ − sin λ

cos λ

0

⎤⎦ .

(8.35)
Verify that e = n × u.

The unit vectors n, e, u provide the natural coordinate frame at a point on the
reference ellipsoid; see Figure 8.10. For reasons of reference we collect the three
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unit vectors e, n, u into the orthogonal matrix

F = [
e n u

] =
⎡⎣− sin λ − sin ϕ cos λ cos ϕ cos λ

cos λ − sin ϕ sin λ cos ϕ sin λ

0 cos ϕ sin ϕ

⎤⎦ . (8.36)

Example 8.1 Let P be given by the coordinates (ϕ, λ, h) in the WGS 84 system:

ϕ = 40◦ 07′ 04.595 51′′,

λ = 277◦ 01′ 10.221 76′′,

h = 231.562 m.

The longitude λ runs eastward, from 0◦ to 360◦.
We seek the (X, Y, Z) coordinates of P . The result is achieved by the M-file

g2c:

X = 596,915.961m,

Y = −4,847,845.536m,

Z = 4,088,158.163m.

The reverse problem—compute (ϕ, λ, h) from (X, Y, Z)—requires an iteration
for ϕ and h. Directly λ = arctan(Y/X). There is quick convergence for h � Nϕ ,
starting at h = 0:

ϕ from h (8.32): ϕ = arctan

(
Z√

X2 + Y 2

(
1 − (2 − f ) f Nϕ

Nϕ + h

)−1
)

,

(8.37)

h from ϕ (8.30)–(8.31): h =
√

X2 + Y 2

cos ϕ
− Nϕ . (8.38)

For large h (or ϕ close to π/2) we recommend the procedure given in the M-file
c2gm.

8.8 Universal Transverse Mercator Mapping

The geographical coordinates (ϕ, λ) locate a point on the reference ellipsoid. For
many practical purposes it is useful to have a coordinate representation in the two-
dimensional plane. The mapping of an ellipsoid into a plane may be done by a
conformal mapping. Conformity leaves the shape of small figures while distances
must be scaled.

The most widely spread conformal mapping was introduced by the Department
of Defense in United States shortly after the Second World War. It is called the
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Universal Transverse Mercator Grid System (UTM). The reference ellipsoid is
the International Ellipsoid of 1924. The mapping is defined for the whole Earth.
It was a desire to limit the variation of the scale m so the total mapping of the
Earth is divided into 60 sections that are named zones. Each zone covers 6◦ in
longitude, and they are numbered from 1 to 60. Number 1 covers 180◦–174◦ West,
number 2 covers 174◦–168◦ West, and so on. The scale at the central meridian is
m0 = 0.9996. The UTM system is limited by the parallels 84◦ North and 80◦
South. The polar regions are mapped stereographically.

The coordinates are called northing N and easting E . Each zone has its own
coordinate system. The central meridian has a false easting (FE) of 500,000 m and
the equator has a false northing (FN) of 0 m for points on the northern hemisphere
and a false northing of 10,000,000m for points on the southern hemisphere. This
simple arrangement leaves all coordinates positive.

The transformation of geographical coordinates (ϕ, λ) into UTM coordinates
(N, E) and reversely appears often in practice. We point to the M-files geo2utm
and utm2geo:

[N, E] = geo2utm(phi, lambda, zone)
[phi, lambda] = utm2geo(N, E, zone)

8.9 Dilution of Precision

The covariance matrix �x̂ as described in (8.25) contains information about the
geometric quality of the position determination. It is smaller (and x̂ is more accu-
rate) when the satellites are well spaced.

The covariance matrix �x̂ is a 3 by 3 matrix in case we estimate (X, Y, Z) and
a 4 by 4 matrix in case we estimate (X, Y, Z , c dt). It is positive definite, so its
inverse exists and is likewise positive definite. We introduce a local coordinate
system with origin at (X̂ , Ŷ , Ẑ) and with axes parallel to the original ones. In
the local system, let the point x = (x, y, z)T lie on a surface described by the
quadratic form

xT�−1
x̂ x = c2 (8.39)

or equivalently, if �−1
x̂ is diagonal,

x2

c2σ 2
x

+ y2

c2σ 2
y

+ z2

c2σ 2
z

= 1. (8.40)

If �−1
x̂ is nondiagonal, it can be brought on diagonal form in a rotated coordinate

system.
The surface is an ellipsoid because �−1

x̂ is positive definite. It is the confidence
ellipsoid of the point. Let 1 − α be the probability that the correct position falls
within the ellipsoid. With 1−α = 0.95, c2 is given as χ2

3,1−α = 7.81. In MATLAB
this number is computed as chi2inv(0.95,3). The magnification factor c of the
confidence ellipsoid is c = √

7.81 = 2.80.
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If we want to improve the likelihood that a new sample lies within the ellipsoid,
we may increase the probability 1 − α, the axes of the confidence ellipsoid, the
c-value, or all of them.

We start from the covariance matrix of the least-squares problem (8.28):

�ECEF =

⎡⎢⎢⎢⎢⎣
σ 2

X σXY σX Z

σY X σ 2
Y σY Z

σZ X σZY σ 2
Z

σX,c dt

σY,c dt

σZ ,c dt

σc dt,X σc dt,Y σc dt,Z σ 2
c dt

⎤⎥⎥⎥⎥⎦ . (8.41)

The law of covariance propagation transforms �ECEF into the covariance ma-
trix expressed in a local system with coordinates (e, n, u). The interesting 3 by 3
submatrix S of �ECEF is shown in (8.41). After the transformation with F , the
submatrix becomes

�enu =
⎡⎢⎣σ 2

e σen σeu

σne σ 2
n σnu

σue σun σ 2
u

⎤⎥⎦ = FTSF. (8.42)

In practice we meet several forms of the dilution of precision (abbreviated
DOP):

Geometric: GDOP =
√

σ 2
e + σ 2

n + σ 2
u + σ 2

c dt

σ 2
0

=
√

tr(�ECEF)

σ 2
0

,

Horizontal: HDOP =
√

σ 2
e + σ 2

n

σ 2
0

,

Position: PDOP =
√

σ 2
e + σ 2

n + σ 2
u

σ 2
0

=
√

σ 2
X + σ 2

Y + σ 2
Z

σ 2
0

=
√

tr(�enu)

σ 2
0

,

Time: TDOP = σc dt/σ0,

Vertical: VDOP = σU /σ0.

Note that all DOP values are dimensionless. They multiply the range errors to
give the position errors (approximately). Furthermore, we have

GDOP2 = PDOP2 + TDOP2 = HDOP2 + VDOP2 + TDOP2.

Some satellite constellations are better than others and the knowledge of the
time of best satellite coverage is a useful tool for anybody using GPS. Experience
shows that good observations are achieved when PDOP < 5 and measurements
come from at least five satellites.
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Example 8.2 To emphasize the fundamental impact of the matrix F in (8.36) we
shall determine the elevation angle for a satellite. The local topocentric system
uses three unit vectors (e, n, u) = (east, north, up). Those are the columns of F .
The vector r between satellite k and receiver i is

r = (
Xk − Xi , Y k − Yi , Zk − Zi

)
.

The unit vector in this satellite direction is ρ = r/‖r‖. Then Figure 8.10 gives

ρTe = sin α sin z,

ρTn = cos α sin z,

ρTu = cos z.

From this we determine α and z. Especially we have sin h = cos z = ρTu for the
elevation angle h. The above formulas are the basis for the M-file topocent.

The angle h or rather sin h is an important parameter for any procedure calcu-
lating the tropospheric delay, cf. the M-file tropo.

Furthermore, the quantity sin h has a decisive role in planning observations:
when is h larger than 15◦, say? Those are the satellites we prefer to use in GPS.
Many other computations and investigations involve this elevation angle h.

Often we want to transform topocentric coordinate differences (x, y, z) to local
coordinates (e, n, u). This transformation is achieved by FT:⎡⎣ e

n
u

⎤⎦ = FT

⎡⎣x
y
z

⎤⎦ . (8.43)

This transformation is implemented in the M-file cart2utm. Correspondingly, the
covariance matrix �enu is given as

�enu = FT�x̂ F. (8.44)

Example 8.3 A receiver position is (3,435,470.80, 607,792.32, 5,321,592.38)
with the following covariance matrix, unit m2:

�x̂ =
⎡⎣ 25 −7.970 18.220

−7.970 4 −6.360
18.220 −6.360 16

⎤⎦ .

We know the point has ϕ = 56◦ 55′, λ = 10◦ 02′, and we get

FT =
⎡⎣−0.1742 0.9847 0
−0.8252 −0.1460 0.5457

0.5374 0.0951 0.8380

⎤⎦ ;
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hence the covariance matrix for the local coordinates is according to (8.44):

�enu =
⎡⎣ 7.37 4.14 −13.96

4.14 4.56 −9.38
−13.96 −9.38 33.07

⎤⎦ .

From this we get σe = 2.7 m, σn = 2.1 m, and σu = 5.7 m.

8.10 World Geodetic System 1984

The ellipsoid in WGS 84 is defined through four parameters; see Anonymous
(1997):

1. the semi-major axis a = 6,378,137 m,

2. the Earth’s gravitational constant (including the mass of the Earth’s atmo-
sphere) GM = 3,986,004.418 × 108 m3/s2,

3. the flattening f = 1/298.257223563,

4. the Earth’s rotational rate ω = 7,292,115 × 10−11rad/s.

The International Astronomical Union uses ωe = 7,292,115.1467 × 10−11rad/s,
with four extra digits, together with a new definition of time, and this value for ωe

is used for GPS. The speed of light in vacuum is taken as

c = 299,792,458m/s.

Conceptually, WGS 84 is a very special datum as it includes a model for the
gravity field. The description is given by spherical harmonics up to degree and
order 180. This adds 32,755 more coefficients to WGS 84 allowing for determi-
nation of the global features of the geoid. A truncated model (n = m = 18) of the
geoid is shown in Figure 8.11. For a more detailed description; see Anonymous
(1997).

In North America the transformation from NAD 27 to WGS 84 is given as⎡⎣XWGS 84
YWGS 84
ZWGS 84

⎤⎦ =
⎡⎣ XNAD 27 + 9 m

YNAD 27 − 161 m
ZNAD 27 − 179 m

⎤⎦ .

A typical datum transformation into WGS 84 only includes changes in the semi-
major axis of the ellipsoid and its flattening and three translations of the origin of
the ellipsoid.

WGS 84 is a global datum, allowing us to transform between regions by means
of GPS. The importance of WGS 84 is undoubtedly to provide a unified global
datum.
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FIGURE 8.11. The WGS 84 geoid computed for a spherical harmonics expansion includ-
ing terms with degree and order 18. The contour interval is 20 m.

8.11 Time and Coordinate Reference Frames for GPS
and Galileo

GPS uses a time reference frame called GPS Time (GPST), which is steered by a
real-time representation of Coordinated Universal Time (UTC) produced by the
U.S. Naval Observatory. For Galileo an independent time scale, Galileo System
Time (GST) will be established. The offset �t between GPST and GST will prob-
ably be in the order of tens of ns.

A combined GPS and Galileo receiver will correct Galileo pseudoranges to
GST and GPS pseudoranges to GPST. The offset �t between GST and GPST can
be estimated as an additional unknown in the position solution. Or equivalently
we estimate the receiver clock offset dt to GPST and the receiver clock offset δt
to GST. Now �t = dt − δt .

The linearized system of observation equations for three GPS pseudoranges
and two Galileo pseudoranges is as follows (the proposed RINEX version 3 uses
the letter G for GPS and the letter E for Galileo):

Ax =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− X G1−Xi,0

ρG1
i

−Y G1−Yi,0

ρG1
i

− Z G1−Zi,0

ρG1
i

1 0

− X G2−Xi,0

ρG2
i

−Y G2−Yi,0

ρG2
i

− Z G2−Zi,0

ρG2
i

1 0

− X G3−Xi,0

ρG3
i

−Y G3−Yi,0

ρG3
i

− Z G3−Zi,0

ρG3
i

1 0

− X E1−Xi,0

ρE1
i

−Y E1−Yi,0

ρE1
i

− Z E1−Zi,0

ρE1
i

0 1

− X E2−Xi,0

ρE2
i

−Y E2−Yi,0

ρE2
i

− Z E2−Zi,0

ρE2
i

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
�Xi,1

�Yi,1

�Zi,1

c dti,1
c δti,1

⎤⎥⎥⎥⎥⎥⎦ = b − e.

(8.45)
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The coordinate reference frame for GPS is WGS 84. In fact, it is a realization
of an International Terrestrial Reference Frame. It is realized through Cartesian
coordinates and velocities of a global set of sites; these are identical to the tracking
stations for GPS. Occasionally, the tracking stations are recoordinated. The latest
modification was implemented in GPS week number 1150.

In a similar way, Galileo will use another independent realization (GTRF). In
practice, both frames will be the same, but the difference is still a few centimeters,
which may be significant for very precise applications.



Problems

1. Let the Fourier transform of f (t) be given by

F(ω) = 1

α + jω
= α

α2 + ω2 − j
ω

α2 + ω2 = 1√
α2 + ω2

exp
(
− j arctan

(
ω
α

))
.

Plot the Fourier transform (for different values of α) by

(a) the real and imaginary part of the Fourier transform,

(b) the amplitude and phase of the Fourier transform.

2. A pseudonoise sequence is generated using a feedback shift register of length
m = 10. The chip rate is 1.023 Mchip/s. Find the following parameters:

(a) the pseudonoise sequence length,

(b) the chip duration of the pseudonoise sequence, and

(c) the pseudonoise sequence period.

3. The GPS signal transmitted from satellite k is defined by (2.3).

(a) Show how under ideal conditions we can obtain the in-phase I and quadra-
ture Q signals from (2.3).

(b) Show how under ideal conditions we can obtain the navigation data Dk(t)
from the in-phase I and quadrature Q signals obtained in (a).
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4. Within Chapter 4, the thermal noise power was computed for a 2 MHz band-
width (approximate null-null bandwidth of the GPS C/A code signal) at 290◦ K
(typically considered to be ambient temperature).

(a) What would the noise power be for a temperature of 100◦K?

(b) What would the noise power be if the two primary lobes of the Galileo L1
BOC (1,1) signal were utilized to define the bandwidth while maintaining
the 290◦K temperature?

Comment on the dependence of the resulting noise power from changes in tem-
perature and bandwidth.

5. What is the noise figure of the system depicted in Figure 4.2? What would
it be if a passive antenna were utilized (move the filter and amplifier within the
antenna to after the RF cable)?

6. Assuming the received GPS signal power from each satellite is −160 dBW,
how many satellites must be a collected data set where the front end has a 2 dB
noise figure and the C/A code sinc spectrum appears 2 dB above the filter shape
in the collected data? Now redo the computation assuming the same 2 dB above
the filter shape but now all the power results from a single satellite?

7. Assume it is possible to implement an ideal bandpass filter. Further assume
that the transmitted signal has infinite bandwidth.

(a) What filter bandwidth is required to capture 98% of the GPS C/A code
power? 98% of the Galileo L1 BOC(1,1) power?

(b) If the filter was designed to capture the first main spectrum lobe [lobes for
the Galileo BOC(1,1) signal] what percent of the total power would that
provide for the GPS C/A code signal? the Galileo L1 BOC(1,1)?

8. The collected data from the front end are represented as 8-bit samples (signed
char format). Develop an M-file to convert this to

(a) 1 bit (±1) values,

(b) 2 bit (±1,±3).

9. The M-file codegen generates any of the 32 PRN codes used in GPS. Com-
pute the autocorrelation function for PRN 1 and notice the maximum and mini-
mum values. Plot the resulting correlation function.

Hint: The correlation function between two sequences can be computed as

Rxy(n) =
1022∑
l=0

x(l) y(l + n),

or you may use the M-function xcorr.
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10. Compute the cross-correlation function between PRN1 and PRN2, and no-
tice the maximum and minimum values.

Plot the resulting correlation function.

11. Load the M-file unknown_prn.mat, and examine which of the 32 GPS
satellites transmitted this code.

Hint: Use correlation! Determine the code phase (code phase is the location of
the beginning of the PRN code in a sequence) of the unknown code.

12. Create an M-function that generates a GPS C/A code. The function should
have the PRN as input and should return the 1023-long sequence. The code gen-
erator should be based on the block diagram in Figure 2.5. Compare the results to
the codes in Problems 9 and 10.

Hint: Use the following procedure:

– Select the G2 code phase selectors S1 and S2 based on the input PRN and
the code phase selector column in Table 2.3.

– Initialize G1 and G2 registers (set all values to 1).

– Make a loop that runs until the registers have changed state to their initial
value (all ones):

– generate XOR output from G1;

– generate XOR output from G2;

– create the output value of the generator;

– shift the values of the registers;

– change all values to −1’s and 1’s.

13. Write an M-script that generates sine and cosine carriers. Generate two 1 ms
sequences with

– sampling frequency fs = 10 MHz,

– carrier frequency fc = 1.2 MHz.

Plot the first 50 samples of the sequences and notice the discrete-time signals.

14. Make a serial search algorithm based on the block diagram in Figure 6.1.
Use the M-file data.mat, which is real GPS data sampled at a frequency of
38.192 MHz. The signal is downconverted to a nominal carrier frequency of 9.548
MHz. Use the sampled C/A codes for satellites 1, 3, and 6 from the M-files
gold1.mat, gold3.mat, and gold6.mat. These M-files each contain a 1023 ×
38,192 array corresponding to 1023 different versions of the C/A code with differ-
ent code phases each of them with a length of 38,192 corresponding to the length
of a complete code (1 ms with a sampling frequency of 38.192 MHz). Let the
algorithm search for satellites 1, 3, and 6. Plot the result using the surf function.
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Hint: Use the fastest computer available because the computations are heavy.
Start MATLAB with matlab – nojvm – nosplash to increase performance. Load
the data with

load data.mat;
x = double(data’);

Load the C/A sequences with

load gold1.mat;
code = double(code);

15. Run the same scenario with the parallel code phase search algorithm found
in the M-file acquisitionConvolution.m. Compare the results and performance of
the two algorithms.

16. Tracking only the C/A-code in the signal. Load the M-file data_long.mat.
This M-file contains the same data sequence as data.mat, except it is just about
30 s long. Use the block diagram in Figure 7.12 to track the code in the incoming
signal data_long.mat.

Keep the frequency of the “Local Oscillator” constant at the frequency at which
you have acquired the signal. This means that the phase of the local carrier is not
locked, which implies that if the frequency is not 100% correct, the signal power
will be switching between the In-phase and Quadrature arm.

The “PRN Code Generator” from Problem 12 should be used to produce three
local code replicas. There should be 1 chip between the early and prompt replica.
One chip corresponds to about 38 samples at 38.192 MHz.

– Make an acquisition on the first 1 ms of data_long.mat.

– Track the first 1 ms by using the scheme above, and use the “frequency”
and “code phase” from the acquisition.

– After the first ms, construct the Code Lock Loop discriminator from the six
outputs as

D = IP (IE − IL) + Q P (QE − QL).

– Use the output of the discriminator to adjust the “code phase” in the PRN
Code Generator and continue to track the signal in 1-ms blocks.

Hints: When the code tracking is working, the sum of the squared prompt out-
puts is higher than the sum of the early and late outputs. This means that the local
prompt code replica has a larger correlation value than the other two replicas.

17. Load the M-file navigation.mat. It contains synchronized navigation data
bits represented by [ −1 1 ]. Find the first beginning of a subframe in the navi-
gation data sequence.

Hint: Use correlation with the preamble [ 1 −1 −1 −1 1 −1 1 1 ]. No-
tice that the sequence can be inverted!
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18. Find the bits representing the Z -count and determine the time of week in
days, hours, minutes, and seconds.

Hint: Look in the GPS Interface Control Document (icd200c.pdf) on page 65+
for a complete description of navigation data contents. Check if the sequence is
inverted compared to the result of Problem 17.

19. We load the data file data_long2.mat. This M-file contains data collected
from a local antenna and the sampling frequency is 38.192 MHz. Compute a po-
sition based on the data in the M-file.

Hints:

– make acquisition on the first ms of data,

– track all the available satellites,

– decode the navigation messages on all the satellites,

– compute pseudoranges to all the available satellites,

– compute the satellite positions at transmit time,

– compute the position based on the pseudoranges and the satellite positions.

20. Given a point with (ϕ, λ, h) = (40◦N, 277◦E, 231 m) in WGS 84, find the
Cartesian coordinates (X, Y, Z). Hint: Use geo2cart.

21. Given a point with the (X, Y, Z) from Problem 20, find the geographical
coordinates of the point in WGS 84. Hint: Use cart2geo.

22. Given X = 3,429,122.662, Y = 604,646.845, and Z = 5,325,950.420,
convert (X, Y, Z) into (N, E) in UTM, zone 32. Hint: Use cart2utm.

23. Convert N = 6,318,036.28, E = 560,828.13 into geographical coordinates
(ϕ, λ). Hint: Use utm2geo.

24. Convert ϕ = 57◦N, λ = 10◦E into (N, E) in UTM, zone 32. Hint: Use
geo2utm.

25. Convert the UTM coordinates N = 6,317,972.081, E = 560,749.622 into
geographical coordinates. Hint: Use utm2geo.

26. Compute GDOP for a constellation of four satellites:

– one at zenith and three equally spread along the horizon;

– consider a constellation of four satellites equally spread at an elevation an-
gle of 45◦.

27. Convert the epoch 8h on 29 March 2005 to Modified Julian Date and GPS
weeks and seconds of week. Hint: Use julday and gps_time.
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A.1 Structure of the Code

The generic one-channel receiver is shown in Figure 5.1. The actual data flow and
the MATLAB functions used by the software receiver are depicted in Figure A.1.

Below we mention a short description of the single structures of the receiver
and the variables that conduct the behavior of the software receiver.

First, a small section (few ms) at the start of the data file is read and is passed
to the acquisition M-file. The acquisition M-file looks for any presence of GPS
signals. It estimates the frequency and the C/A code phase for every present GPS
signal. The results are stored in the structure acqResults.

Next, the function preRun reads the acquisition results and initializes all soft-
ware channels. If the number of available satellites is less than the number of
channels, the unused channels are disabled. The same function also clears all pro-
cessing results from possible previous runs. Thus, it prepares a clean environment
for the following run.

After initialization of channels, a block of signal samples is read from the
recorded file and is passed to the tracking function track. The tracking function
tracks signals for all enabled channels, detects bit boundaries, stores bits of the
navigation data, and decodes the data. Decoded ephemerides are stored in the
structure eph. Tracking results (outputs from correlators, discriminators, etc.) are
stored in the structure trackResults. In settings one may specify for how long the
tracking should proceed.

After the tracking is finished, the function postNavigation is launched to pro-
cess the signal. It identifies the start of a subframe, determines the signal trans-
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FIGURE A.1. GNSS software receiver flow diagram.

mission time, and estimates all pseudoranges. Then the M-file computes ECEF
coordinates of the software antenna and the ECEF coordinates are converted to a
specified coordinate system, say UTM or WGS84.

Finally, the results of acquisition, tracking, and positioning are plotted.

A.2 The settings Structure

All variables common to all receiver blocks, and block-specific variables are
stored in one structure named settings. This approach enables a centralized and
flexible management of the software. For instance, sampling frequency-based pa-
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rameters are used by many files—from acquisition to pseudorange computation.
Once the parameters are updated in the variable settings, all files will use the
changed values.

One more advantage is that the function parameter list does not depend on how
many parameters the function actually is using. Changes inside the function will
not affect the calling function code.

The most commonly used variables are

IFfrequency Intermediate frequency of the GPS signal, Hz

samplingFrequency Frequency at which the GPS signal is sampled, Hz

msToProcess This variable is set to 37,000 to ensure all five 6-s subframes are
processed and included in the output, the first 1000 ms can be excluded for
any transient response

processBlockSize Size of the block to be processed by the tracking function

numberOfChannels Sets the number of channels of the software receiver.

The function initSettings creates the structure settings. The very first time this
function is executed by the script init. The function should be executed every time
variables are changed. An experienced user might change some of the variables
directly in the settings structure. However, care must be taken as some variables
have internal dependencies and are recomputed automatically. So it is safest to
change variables in the function initSettings, which must be re-executed after-
ward.

The block-dependent variables are described in the following sections.

A.3 Acquisition Function

The function acquisition employs the parallel code phase search acquisition al-
gorithm described in Section 6.4. The purpose is to find signal parameters for all
available satellites in a few-ms-long data record. The implementation is based on
the block diagram shown in Figure 6.8. The flow diagram for the actual code is
shown in Figure A.2.

The acquisition function looks for a GPS signal in frequency steps of 0.5 kHz.
For each frequency step, a parallel code search is performed. The correlation re-
sults are saved and the function proceeds with the next frequency step. Thus, the
function steps through all frequency bands (user-defined Doppler space). Next the
function looks for a maximum correlation value (correlation peak) in results from
all frequency bins. After the peak is detected, the function looks for the second-
highest correlation peak in the same frequency bin of the highest peak. Then the
ratio of the two peaks is used for the signal detection rule. The ratio is compared
to the value preset in the receiver variable acq_threshold.

The detector does not depend on sampling frequency and therefore is not de-
pendent on the size of peak and noise level.
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FIGURE A.2. Flow diagram of the parallel code phase acquisition algorithm.

If the value of the peak ratio is larger than a specified value, the fine carrier
frequency is found via a postcorrelation FFT approach. This must be done to help
the PLL in the tracking loop to start tracking the signal. A frequency accuracy of
0.5 kHz is too coarse for the PPL to start tracking.

The function parameters are an initial data record, a table with pregenerated
C/A codes, and the settings structure.

The list of acquisition-specific variables contained in the structure settings is

acq_satelliteList A set of satellite PRNs can be specified. Acquisition will be
performed only for the specified satellites. An empty list (default) starts
a search for all available satellites 1–32.
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FIGURE A.3. GNSS tracking flow diagram.

acq_searchBand Specifies the frequency band in which to search for satellite sig-
nals, kHz integer. It is centered around the IF. While searching for available
signals the acquisition function uses steps of 0.5 kHz.

acq_threshold Determines the threshold of the signal detector.

The output is an array structure acqResults containing search results for all
satellites specified in acq_satelliteList. If a satellite signal is detected, the field
signalDetected is set to 1 for that particular satellite.

A.4 Tracking Function

This function tracks the GPS signals allocated to each channel; see Figure A.3.
The function takes the following parameters: a block of the recorded signal

from the front end, structure channel, sine, cosine, and C/A code tables. The
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function processes the block of the samples and returns two structures: tracking
results trackResults and an updated structure channel.

Structure channel is used to pass initial information for each channel and is
also used to store information on the current channel. The second purpose of
this structure is to make the tracking continuous. In this way, processing of two
or more signal blocks can be made continuous. The structure contains current
(from last processed ms) information on the carrier frequency, code phase, PRN
number of the track satellite, temporal values for the loop filters, and local signal
generators.

The parameters for carrier tracking are contained in the settings structure

PLL_dampingRatio Damping ratio.

PLL_noiseBandwidth Noise bandwidth of the PLL.

The list below is the code tracking specific variables contained in the settings
structure:

DLL_CACorrelatorSpacing Spacing between the early and late correlators, unit
of chip.

DLL_dampingRatio Damping ratio for the delay lock loop.

DLL_noiseBandwidth Noise bandwidth of the delay lock loop.

The structure trackResults is the main output from tracking function. It con-
tains results for all channels and for each ms of the processed block: information
about signal properties (carrier frequency and code phase) and outputs from all
six correlators and the loop discriminator.

The output from the tracking code is used as input for the postNavigation func-
tion. Additional information is used to plot tracking results and to analyze per-
formance of the receiver. Execute command plotTracking to plot results for any
individual channel.

A.5 Function postNavigation

The function starts by finding bit transitions and preamble locations. Then the bit
values are obtained. The ephemerides are decoded. This involves only information
from subframes 1, 2, and 3. Also decoding of subframes 4 and 5 may be included;
see Figure A.4.

Next the function calls the pseudorange measurement function and computes
position coordinates. Pseudorange and position computations are done covering a
specified period described in the receiver settings.

The input for the function is the tracking results and settings structure and the
output is pseudoranges and receiver coordinates.

The function postNavigation reads the following variables:

navSolPeriod Tells the software how often pseudoranges and position should be
computed.
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FIGURE A.4. Flow diagram for the position computation.

elevationMask Satellite elevation mask. Sets the minimum elevation angle for
a satellite to be included in the computation of the position solution. Sig-
nals from satellites at low elevation angles are contaminated by large atmo-
spheric errors.

UTMzone UTM Zone to be used for the coordinate transformation (ECEF to
UTM). This is an integer that depends on the location of the receiver.

truePosition If an accurate position of the receiver antenna is known, then the
Easting, Northing, and Upping coordinates of the antenna can be specified.
These coordinates will be subtracted from the ones computed by the soft-
ware receiver, and the result will be plotted.

You may enter (E, N, U) either as approximate coordinates or as zeros.

A.5.1 Pseudorange Computation

This function computes pseudoranges for all tracked satellites. Pseudoranges are
not computed for nontracking channels, for channels that have undetected pream-
ble, or for channels that have detected a parity error in the navigation data; see
Figure A.5.

The input for the function is the output of the in-phase prompt correlator. The
function also needs precise code-phase information. Typically, both inputs are
read from the structure trackResults.
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FIGURE A.5. Flow diagram for computing pseudoranges.

The output of the function is a set of pseudoranges and the signal transmission
time (SOW) for all measured pseudoranges.

A.5.2 Position Computation

The function leastSquaresPos computes the position of the receiver from the mea-
sured pseudoranges. If for some reason the entire ephemeris for a satellite is not
available, the pseudorange is excluded from the computation (see Figure A.6).

At the first computation, the elevation angles of all satellites are set to the max-
imum. This is necessary to estimate the receiver position and to compute the true
elevation angles of all satellites. All subsequent computations of position will
exclude pseudoranges from satellites with elevation angles lower than elevation-
Mask.

The function postNavigation uses several other functions that are slightly mod-
ified versions of functions from the Easy Suite; see Borre (2003).

At the end of the postNavigation function, the ECEF coordinates are trans-
formed to UTM and geodetic coordinate systems. The results are stored in struc-
ture navSolutions.
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FIGURE A.6. Least-squares position computation flow diagram.



B
GNSS Signal Simulation

B.1 GPS Signal Simulation

When implementing the signal processing parts of the GPS receiver, it is neces-
sary to have some data available for testing their functionality. The final goal is to
have a GPS receiver working in real time on data obtained from a GPS antenna
through an RF front end and an ADC. In the phase of developing the signal pro-
cessing algorithms, however, it is not optimal to use real sampled data. The main
reason for this is that it is impossible to control the properties of the received and
sampled GPS signals. It is not only impossible to control the received signals, it
is also impossible to know all the properties of the received signals.

The solution to this problem is to use simulated data. In lack of a suitable GPS
signal simulator, it may be necessary to implement one.

A useful L1 GPS signal simulator should include the following global parame-
ters associated with the downconversion and sampling of the signal:

Intermediate Frequency It should be possible to input the value of the IF. The
IF will then be the reference frequency to which the Doppler shift of the
satellite signals should be compared.

Sampling Frequency It should be possible to input the value of the sampling fre-
quency used to sample the GPS signals.

With the possibility of setting these parameters, it would be possible to test the
algorithms with simulated data with the same properties as the data sampled from
a GPS antenna through an RF front end.
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Below we list the properties of a GPS signal from one satellite—see Chapter 2
for additional details about the satellite signals:

PRN The pseudorandom noise number corresponding to the satellite. This num-
ber indicates which of the C/A codes should be used.

Doppler The Doppler count is the frequency deviation from the IF. The Doppler
count is directly associated with line-of-sight dynamics between the satel-
lite and the receiver.

Code Phase The code phase is the time alignment of the PRN code in the received
data.

P(Y) Code In addition to the C/A code, the L1 signal contains the P(Y) code. This
code is modulated onto the carrier wave as a quadrature component while
the C/A code is present in the in-phase component.

Data Bits The navigation data bits are phase-modulated onto the carrier wave
with a frequency of 50 Hz.

Signal Strength Due to the long signal path from the satellite to the receiver in
combination with a low power transmitter at the satellite, the received signal
is very weak. An additional property of the GPS signal is the signal-to-noise
ratio (SNR), the ratio between the signal and the noise originating from the
signal path.

The signal simulator should meet the above description of the global parame-
ters and the GPS signal properties. For each satellite it should be possible to define
PRN, Doppler, and code phase. The P(Y) code is not relevant to the acquisition
and tracking algorithms. As a result of that, this component is simplified in the
simulator. The P(Y) code is simulated as a digital signal alternating between −1
and 1 with the P(Y) code rate of 10.23 MHz. In most cases, the navigation data are
not relevant to the acquisition and tracking algorithms. So by default the naviga-
tion data signal is also simulated as a digital signal alternating between −1 and 1
with the navigation data rate of 50 Hz. This gives a data bit transition each 20 ms.
If a real navigation data sequence is needed it should be possible to provide it to
the simulator.

B.2 Simulink Implementation

The GPS signal simulator could be implemented in any software development
tool. The only demands to the program, except the possibility of implementing
the needed functionalities, are

– It should be easy to change parameters of a simulation.

– It should be possible to save the simulated data in a file that can be read by
MATLAB.
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FIGURE B.1. The complete GPS signal simulator for one satellite implemented in
Simulink. Part A generates the C/A code, Part B contains the navigation data generation,
and Part C generates the simplified P(Y) code.

The MATLAB tool Simulink was chosen as the development tool for the GPS
signal simulator. The main reason for this choice is that Simulink has a very in-
tuitive user interface combined with its numerous features. One important feature
in this case is that Simulink works perfectly together with ordinary M-files.

The Simulink implementation is a two-level design. The upper level is where
each satellite contributing to the resulting signal is initialized. This is also where
the data file in which the data should be saved is defined. The lower level is the
implementation of each satellite. This is where the signal originating from each
satellite is generated. The signals should include the following four components:

– C/A code

– Navigation data

– P(Y) code

– Noise.

Figure B.1 shows a screen shot of the lower level of the Simulink implementa-
tion representing the signal generation in a satellite.

The following will describe the four above-mentioned parts of the signal gen-
erator.

B.2.1 C/A Code Generation

The generation of the C/A code component of the GPS signal is marked with A
in Figure B.1. Beginning from the left side of the figure, the source of the C/A
code generator is the oscillator. This oscillator produces a squared pulse with a
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FIGURE B.2. C/A code counter output. (a) A complete cycle through all indexes of the
code. (b) The first samples of the counter output. The initial value of the counter is the
PRN code phase. In this case, the code phase is 51.

frequency of 1.023 MHz corresponding to the chipping rate of the C/A code. This
pulse is used as input to a counter.

This counter is designed to count from 0 to 1022, referring to the 1023 chips in
one PRN sequence. The counter increases its value each time a falling edge occurs
in the pulse signal, that is, with a frequency of 1.023 MHz. The initial value of the
counter is set by the PRN code phase, which is provided to the simulation as a
parameter. The PRN code phase shifts the time alignment of the PRN code. Fig-
ure B.2 shows the output from the counter. These plots are made from a simulation
with a sampling frequency of 12 MHz. A sampling frequency of 12 MHz causes
12,000 samples to last 1 ms, corresponding to one complete PRN code period.

Figure B.2a shows the output of the counter in a complete PRN code period. At
sample zero the output of the counter corresponds to the PRN code phase. When
the output reaches 1022 at approximately sample 11,000, the output is reset to its
initial value 0. Figure B.2b is a close-up on the first samples of the output from
the counter. The code phase is the initial value of the output, which in this case
is 51. This figure shows the step function of the counter. Every time a chip period
has passed the output, the counter increases by 1. When sampling with 12 MHz,
a chip period of 1 ms/1023 lasts approximately 12 samples.

The output from the counter is provided as input to the next block of the C/A
code generation part. This block is a so-called look-up table which is actually just
an array indexed by the input to the block. In this case, the look-up table is a
two-dimensional array containing the 32 possible PRN codes; see Section 2.3 for
details on PRN codes. The first dimension indicates which of the 32 PRN codes
should be used. This is the satellite supplied to the simulation. The second dimen-
sion indicates which of the 1023 chips that should be accessed. This is the input to
the look-up table block. In this case, the array is input to the simulation from the
MATLAB workspace. That is, before starting the simulation, the array with the
PRN codes has to be generated. The implementation of the PRN code generator
is described in Section 6.2. The resulting C/A code signal is shown in Figure B.3.
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FIGURE B.3. C/A code. (a) A complete cycle through a complete PRN code period. (b)
The first samples of the C/A code.

The sampled C/A code is multiplied with the sampled navigation data in the
next block. The navigation data is also a binary data sequence consisting of −1’s
and 1’s. The sampled navigation data generation will be described in the following
section.

When the C/A code is combined with the navigation data, it must be modulated
onto a carrier. This carrier is generated as a cosine wave in a voltage-controlled
oscillator (VCO). The VCO has an input from a ramp block. This block simulates
the change in frequency as a function of the Doppler rate. If the Doppler rate is
zero, the frequency of the VCO remains constant.

The BPSK modulation of the C/A code and data signal is implemented as a
multiplication of the signal with the generated carrier wave.

B.2.2 Navigation Data Generation

The generation of the navigation data component of the GPS signal is indicated
within part B in Figure B.1. As mentioned earlier, the bit rate of the binary naviga-
tion data sequence is 50 Hz. In the simulator, the generator signal to the navigation
data sequence is obtained from the output of the counter in the C/A part. As seen
in Figure B.2a, the counter resets after running through a complete PRN code se-
quence. As mentioned, this period is 1 ms corresponding to a rate of 1 kHz. To
obtain a 50 Hz signal from the signal supplied by the C/A counter, the first block
in the navigation data part is a counter, which increases its value on every falling
edge of the input signal. The counter resets when it reaches 20, that is, every 20 ms
corresponding to 50 Hz. That is, the output from the first counter in the navigation
data part of the simulator supplies a 50 Hz signal to the next block.

The next block is also a counter. This counter works in the same way as the
counter in the C/A part. That is, it increases its output value with every falling
edge of the input signal, and it resets at the end of a period. In this case, the period
is set to be one navigation data frame corresponding to 1500 bits.
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The next block is a look-up table much similar to that of the C/A part of the
simulator. In this case the look-up table contains a two-dimensional array, where
the first dimension selects whether or not there should be any navigation data tran-
sitions in the data. The second dimension is the index of the navigation bit to be
the output from the look-up table. In case no navigation bit transitions are wanted,
the look-up table always outputs the value 1. In the other case where navigation
bit transitions are wanted, the look-up table outputs alternating −1’s and 1’s.

The output from the navigation data part is provided to the C/A and the P code
part through a multiplicator.

B.2.3 P Code Generation

The generation of the P code component of the GPS signal is indicated within
Part C in Figure B.1. As mentioned before, the P code component is not relevant
to the acquisition and tracking algorithms and should thus only be simulated as a
squared pulse alternating between −1 and 1. In the GPS signal simulator this sig-
nal is implemented as a squared pulse generator with a frequency corresponding
to the chipping rate of the P code, which is 10.23 MHz.

In the second block of the P code part, this signal is combined with the naviga-
tion data sequence. This is done in a similar way as the C/A part by multiplication
of the two signals.

The carrier generation part in the lower left corner is also almost similar to the
carrier generation part in the C/A part. The only difference here is that the VCO
has a 90◦ phase shift compared to the other VCO. The result of this is that the P
code VCO generates a sine wave compared to the C/A VCO’s cosine wave. The
combined P code and navigation data signal is BPSK modulated onto the carrier
in the multiplication block.

The final block of the P code part is a gain block. This block decreases the mod-
ulated P code signal by 3 dB in the same way as it is done in the signal generator
in the GPS satellites.

B.2.4 Combining the Signal Components

The last part of the GPS signal simulator is located at the right-most part of
Figure B.1. Here, the two modulated codes are combined, resulting in a com-
plete GPS signal. The two components are simply added together as in-phase and
quadrature components of the final signal.

The last part of the signal simulator is the addition of noise. This noise gener-
ator block is indicated with green in Figure B.1. The amount of noise is selected
from an input to the simulation. The resulting noise from the noise generator is
added to the GPS signal.

B.2.5 Upper-Level Implementation

When the lower level of the Simulink implementation of the GPS signal genera-
tor has been implemented, the upper-level implementation can be designed. The
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FIGURE B.4. The GPS signal simulator implemented in Simulink. This simulation in-
cludes four different satellites and saves the data in a file. The other window pops up when
one of the signal simulator boxes are double-clicked. This window is used to set all values
for one of the satellites in the simulation.

upper-level implements the different satellites needed in the simulation and se-
lects the file in which the simulated data should be saved. Figure B.4 shows an
example of how the upper level of the signal simulator could be implemented.
In this case, the simulator contains four different satellites. Each of the satellites
has different values of PRN, PRN code phase, Doppler shift, and Doppler rate
that are typed into a window that pops up when one of the boxes in Part A is
double-clicked.

B.3 Galileo Signal Generator

In order to further study the Galileo signals, we have implemented a simple signal
simulator in Simulink.

Figure B.5 shows the Simulink model of the Galileo signal simulator. The
present version is made of standard Simulink blocks, and it does not have any
custom blocks (called subsystems in Simulink). The gray blocks in the model are
part of the generator, and the white blocks are used to visualize the generated sig-
nal. The white blocks do not contribute in any way to the signal generation. The
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FIGURE B.5. The Simulink model that generates the L1 signal. The gray blocks generate
the Galileo signal, and the white blocks are used to visualize the signal.

generator directly implements the BOC, CASM, and other steps described earlier
in this chapter. It is easy to see CASM constants and math operations in the model
that correspond to (3.2)–(3.4).

The model can be divided into three parts from left to right (excluding the white
blocks). The first part consists of the generators of PRN, BOC signal, and random
bits of navigation messages. This is the left part of the model. It makes all three
navigation signals at the baseband (from the top to the bottom): data channel, pilot
channel, and restricted access channel.

The center part of the diagram converts binary signals of the left side to bipolar
±1 signals. Simulink PRN generators are generating binary data and the bipolar
signals are required for the CASM algorithm.

The CASM part is implemented on the right side of the model. The output of
the model is Galileo L1 signal at the L1 frequency. The zero-order hold blocks are
used to sample continuous signal. The sampling frequency is 110.5 MHz, and the
result of sampling the IF is about 28 MHz. The signal spectrum after sampling is
shown in Figure B.6. It clearly shows the two main lobes of BOC(1,1) at the center
of the spectrum. The two OS signals are sharing this part of the spectrum. The two
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FIGURE B.6. Spectrum for generated Galileo L1 signal.

wide lobes at the sides of the spectrum originate from the restricted access signal
BOC(15,2.5).

Our model does not save the signal from the generator. The output of the gener-
ator must be sampled and directed to a file or a variable in MATLAB workspace.
The technique is similar to the implementation of the FFT plot visible at the top
right corner of the diagram. A zero-order hold block is needed to sample the sig-
nal. Then one of the signal sinks must be inserted from the Simulink block library
depending on whether it has to be a file or a variable. The Additive White Gaus-
sian Noise (AWGN) block is used to add noise to the signal.

The current model only generates the signal for one satellite at a time. It can be
used as a subsystem in Simulink. So several such generators must be connected to
generate signals of a constellation of satellites. Section B.2.5 describes how that
can be implemented.

The current model is very basic and must be updated comprehensively in order
to account for properties and propagation environment of the real signals. First
a more complicated signal propagation model must be added which accounts for
signal amplification at the satellite, signal losses in free space, atmosphere, an-
tennas, and the front end. Next the model must be modified to include Doppler
effects. The rate of all generators (data, PRN, subcarriers, and the carrier) must
be controlled simultaneously and all intersignal phases must be preserved. This
requires custom implementations of these blocks. An excellent example of an ad-
vanced generator is explained in the Mathworks webinar “Implementing a GPS
Receiver with DSP and FPGA Hardware Using Simulink and Related Tools.”

B.4 Differences in Processing GPS and Galileo
Signals

Originally this text was planned to deal with both GPS and Galileo on equal
terms. It soon became clear that this ideal goal had to be modified. It turned out
to be difficult to get reliable detailed information about Galileo signals; in addi-
tion, the necessary testing of the software implementation also became difficult to
carry out.
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We therefore decided to list the differences between GPS and Galileo signals
and next mention how to deal with them in a future software implementation.

B.4.1 Signal Differences

This listing only considers Galileo L1 OS and GPS C/A on L1. First the signal
differences are analyzed. The following paragraphs outline the differences in the
receiver signal processing.

Signal Types GPS has one public signal and one encrypted, restricted access sig-
nal. Galileo will have three signals: two public signals, called Open Service
(OS) signals, and one encrypted, called a Public Regulated Service (PRS)
signal. Only the OS signals will be considered in the following. One of the
OS signals, the data channel, will contain navigation data (ephemerides,
almanac, and additional information). The pilot channel will not be modu-
lated with navigation data. It will only be modulated with a short sequence
of bits (a secondary code with a code length of 25 chips), which will be
repeated all times.

Spreading Codes GPS uses a spreading code with 1023 chips, whereas Galileo
will use spreading codes with lengths of 4096 chips. The chipping rate is the
same for GPS and the Galileo OS signals, 1.023 MHz, but all Galileo codes
on L1 are combined with a subcarrier signal (BOC signals). The subcarrier
rate is 1.023 MHz for both the L1 OS data and pilot signals. It is expected
that a similar type of signal will be used in the modernized GPS (most likely
by the GPS III program). The transmitted GPS L1 signals are bandwidth
limited to 20 × 1.023 MHz whereas the Galileo L1 signals are limited to
40 × 1.023 MHz.

The Galileo PRN codes are not yet published. Depending on the final choice
of codes, two techniques exist to generate the PRN codes. One is to use lin-
ear feedback shift register generators similar to those used in GPS, but with
longer registers. The second is to use memory codes that may be pregener-
ated and stored in memory.

Recent Galileo signal developments indicate that additional codes may be
used on top of BOC coding to improve signal properties and signal tracking
performance; see Hein et al. (2005).

Data Modulation The data modulation process is the same in GPS and Galileo.
The BOC signal is multiplied by the data signal (the XOR operation is the
equivalent for binary logic signals). The pilot signal is using the same tech-
nique to modulate the BOC signal by the secondary code. The navigation
data rate on the data channel is 250 Hz. It is likely that the data rate of the
secondary code on the pilot channel will be similar to this.

Data Structure The Galileo system will use a superframe, frame, subframe con-
struction similar to GPS. Subframes will have a unique word facilitate syn-
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chronization to the start of the subframe (similar to the preamble in GPS).
The unique synchronization word is followed by the data part, a checksum
field, and tail bits. It is expected that the construction of the data part will
be different from that of the GPS messages.

Ephemerides and Almanac The satellite orbit parameters have the same field size
and scale in both systems. The time parameters have different field size and
scales (except clock correction coefficients in the almanac).

Synchronization Word (Preamble) GPS is using an 8-bit (symbol) pattern. Galileo
is likely to use a 10-symbol pattern.

Error Detection Galileo will use cyclic redundancy check (CRC) to detect data
corruptions inside subframes. It is expected that the CRC will be computed
over the 24 data bits in the subframe. The specification does not indicate
that any bits from the previous subframe should be used in computation of
the CRC.

Channel Coding In addition to CRC, Galileo will use forward error correction
(FEC) to detect data corruptions and correct corruptions to a certain ex-
tent. This will facilitate correction of a much larger amount of corruptions
compared to GPS where only one bit per subframe can be corrected. Block
interleaving will be used to make the Galileo data even more corruption
resistant.

FEC is used already in WAAS and EGNOS signals.

Data Authentication Galileo is likely to use a data authentication technique to
make the GNSS signal tracking secure. The purpose of the data authentica-
tion is to provide means for the user to distinguish genuine Galileo signals
from simulated signals (the technical term is signal spoofing). Signal spoof-
ing is an intentional malicious provision of faulty signals that can lead to
malicious location spoofing.

Only certified receivers will be able to decode authentication information,
but the authentication will be provided by the OS signals. P(Y) code en-
cryption is the means of signal authentication in GPS.

Modulation Galileo uses BOC(1,1) modulation (which in effect perform man-
chester encoding of the data and pilot channel) and the CASM multiplexing
scheme to combine three signals into a hexaphase representation whereas
GPS uses BPSK.

Time Reference Galileo will use a reference time called Galileo System Time
(GST) whereas GPS uses GPS Time (GPST). GPS Time is a composite
clock; the average of a number of GPS clocks computed in a Kalman filter.
Galileo System Time is a master clock; the output of a steered active H-
maser. Galileo System Time will be steered to International Atomic Time
(TAI) at the Galileo Precise Time Facility (PTF). GPS Time is steered to
a real-time representation of Coordinated Universal Time (UTC) by the
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U.S. Naval Observatory (USNO). The offset between TAI and UTC is an
integer number of seconds.

Satellite Constellation The GPS baseline system is specified for 24 satellites;
however, the system currently consists of more than 24 satellites. The con-
stellation contains 6 orbital planes inclined 55◦ to the equator. Each plane
contains 4–5 active satellites. The satellite orbit altitude is 20,183 km from
mean surface of the Earth and the satellites have an orbital period of 11
hours 58 minutes.

The Galileo space segment will comprise 30 satellites in a Walker constel-
lation with 3 orbital planes inclined 56◦ to the equator. Each plane will con-
tain 9 operational satellites (for a total of 27 active satellites) equally spaced
40◦ apart plus 1 inactive spare. The satellite orbit altitude is 23,222 km.
This corresponds to a constellation repeat cycle of 10 days during which
each satellite has completed 17 revolutions.

B.5 Differences in Signal Processing

The following is an outline of the receiver signal processing differences.

Signal at IF The Galileo OS signals require two times wider signal bandwidth for
the main lobes, i.e., 2×2.046 MHz, compared to 1×2.046 MHz for GPS. In
practical applications it might be prudent to use at least twice this minimum
bandwidth to ensure less distortion of the ACF of the received signals. Thus,
a GPS front end with narrow bandwidth might need an update to be ideal
for Galileo reception.

If modifying a GPS front end to increase reception bandwidth, care should
be taken not to let mixer spectrum mirrors overlap the original signal spec-
trum. Thus, the IF frequency might need adjustments. This in turn means
that the ranges of possible sampling frequencies might be affected since
care should be taken to avoid aliasing occuring at falias = fsampling− fsignal.

Otherwise there should be no need for changes at the radio/IF receiver part
since both GPS and Galileo signals share the L1 carrier frequency and are
transmitted at comparable signal power levels. Front ends for Galileo sig-
nals will not need any modifications to receive GPS signals.

Differences Common to Acquisition and Tracking The main difference between
GPS and Galileo, which is common to acquisition and tracking, is the dif-
ferent spreading codes. It is hard to outline the precise differences, because
the Galileo PRN generator details are not published yet. But in any case
there will have to be two different PRN generators for GPS and Galileo.
For Galileo the output of the PRN generators must be modulated onto a
square wave to make the BOC signal. The Galileo codes are 4 times longer
than the GPS codes. Since the chipping rate is the same, this specifies a
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FIGURE B.7. Generic L1 OS tracking architecture.

minimum correlation time (dwell time) of 4 ms for a complete code period
of correlation for both acquisition and tracking.

The Galileo acquisition and tracking might need additional techniques to
acquire/track the right peak of the ACF if the L1 OS signals will use the
proposed CBCS coding scheme, confer Hein et al. (2005). Depending on
the configuration of the CBCS coding scheme, ACFs with multiple, local
extreme might occur.

A relatively simple false lock detection consisting of checking the ACF
signal power in the vicinity of the tracked point could be implemented. This
could be done with either extra correlator arms, situated “very early” and
“very late” with respect to the early, prompt, and late arms, or it could be
done by periodically jumping to neighboring code phases with the existing
early, prompt, and late correlators.

Acquisition of Galileo Signals The acquisition of Galileo signals can be carried
out as with GPS signals except from the differences mentioned in the pre-
vious subsection. In the case of the multiple peak correlation function, the
local extremes could be ignored in the acquisition process due to the lim-
ited code phase resolution. The check for false locks should then be carried
out when the handover from acquisition to tracking has taken place and the
DLL has converged.

The dwell time dictates the maximum step for the frequency search. For the
minimum length of 4 ms the maximum frequency step is 250 Hz (was 1 kHz
for the 1 ms dwell time). For an improved performance a 125 Hz would be
a better choice.

Tracking The high level architecture of the tracking block is almost exactly the
same in the basic BOC(1,1) case as in GPS. The main differences are the
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new code generators (BOC, PRN, and secondary code) and longer mini-
mum dwell times. A generic L1 OS tracking architecture is shown in Fig-
ure B.7.

The downconversion from IF to baseband is done with the usual carrier
NCO and mixer. A separate PRN code generator (or look-up table depend-
ing on the final implementation) is used for the local data and pilot channel
PRN code replicas. Both local codes are combined with the BOC subcar-
rier. The pilot channel code is combined with the slow varying secondary
code. All code generators are controlled by the strobe signal from the code
NCO, although the secondary code generator uses a divided version of this
timing signal. Suitable discriminators and loop filters provide the control
signals for both NCOs as usual.

Both the data and pilot signals must be tracked together (combined track-
ing) to maximize receiver performance.

Data Demodulation and Decoding The demodulation will need an updated pre-
amble search function. The code will have to employ a deinterleaver to put
the received symbols (FEC encoded bits) in the right order. The MATLAB
communication toolbox has built-in functions for interleaving and deinter-
leaving.

A Viterbi decoder must be used to decode the symbol stream encoded by
the FEC algorithm. The MATLAB communication toolbox has a built-in
function vitdec to decode the FEC stream. The subframes have 6 tail bits set
to zero to “initialize” the Viterbi decoder at the start of the next subframe.
Therefore, the decoding can commence at the start of any subframe without
prior knowledge of the navigation data stream.

The CRC check must be computed to detect any errors. The algorithm is
very similar but not identical with that of GPS.

The actual locations of all transmitted data parameters in the data messages
will be different. Also, some data will be transmitted in the Galileo sys-
tem that is not transmitted in GPS. Therefore, new code must be written to
decode navigation messages.

Decoding of ephemerides and almanac data is very similar to that of GPS
once the data fields are read from the data messages. Decoding of time-
related fields will need minor changes due to new width of the data fields
and scale factors.

Position Computation The position computation is exactly the same as in GPS
once the time-related data and ephemerides are decoded. There is a small
difference in the coordinate systems (few centimeters) between GPS and
Galileo. Care must be taken to handle this properly in case of very precise
measurements.
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A/D converter, 54, 59, 61, 64, 88
ACF, 2, 5, 7, 21, 26, 28, 33, 39, 41
acquisition, 70, 71, 75, 143, 144, 165

data size for, 84, 85
execution time, 85
parallel code phase search, 81, 83
parallel frequency space search,

78, 81
serial search, 76, 77

acquisition function, 147
aliasing, 9
almanac, 30, 49
amplifier, 54, 57, 59, 63
amplitude

relative, 104
amplitude of signal, 14
amplitude response, 13
analog input bandwidth, 61
analog input range, 61, 63
angular frequency, 2
antenna, 53, 55

active, 56, 57
directivity of, 56
helix, 56
isotropic, 56

passive, 56
path, 56

antenna array, 56
argument of perigee, 45
ascending node, 46, 115, 118
ASIC, 66, 76
attenuation, 57
autocorrelation function, 2
autocorrelation sequence, 3, 25
automatic gain control, 63, 67
azimuth, 128

bandlimited signal, 41
bandpass filter, 62
bandpass signal, 34
bandwidth, 32, 55, 58
baseband signal, 35
binary phase-shift keying, see BPSK
binary sequence, 19
bipolar signal, 160
bit ordering, 42
bit synchronization, 109
block de-interleaving, 45
block interleaving, 32, 43, 44
BOC, 32, 33, 37–41, 162
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BPSK, 19, 38, 157
broadcast ephemeris, 118
byte ordering, 42

C/A code, 18, 20, 25, 155, 156
carrier frequency, 14, 75, 148
carrier frequency drift, 99
carrier generation, 77
carrier tracking, 93, 148
carrier tracking loop, 89, 106
carrier wave, 17
cascaded multistage amplifier, 59
CASM, 35, 36, 163
CDMA, 31, 32, 61, 76
channel, 32, 143
checksum, 42
chip, 18
chip duration, 20
chip length, 20, 33
chipping rate, 32, 156
circular correlation, 82
code

locally generated, 71
code generator, 24
code phase, 70, 71, 75, 148, 154
code phase resolution, 165
code synchronization, 32
code tracking, 27, 72
code tracking loop, 89, 99, 106
codeword, 43
coordinate

geocentric, 46
geographical, 128
position, 148

correlation, 96, 111
early, 28
late, 28
narrow, 27
prompt, 28
wide, 27

correlator, 148
Costas discriminator, 94
Costas PLL, 93, 95
counter, 156, 157
CRC, 42, 43, 163, 166

cross correlation, 25, 26, 79, 82
cyclic redundancy check, see CRC

damping ratio, 91, 92, 148
data

sampled, 63, 64
data authentication, 163
data demodulation, 166
data field, 42
data modulation, 162
data record, 145
data structure, 162
datum, 133
decibel, 13
delay lock loop, see DLL
delta function, 3
digital data stream, 53
dilution of precision, 107, 130, 131
direct sampling, 62
discrete-time Fourier transform, 12
discriminator

coherent, 99
noncoherent, 99

discriminator function, 28
discriminator gain, 90
DLL, 27, 28, 51, 96, 97, 100, 102

coherent, 27
noise bandwidth, 100
noncoherent, 27

DLL discriminator, 40, 99
Doppler shift, 26, 70, 75, 95, 99, 154,

157, 159

Earth rotation rate, 46
easting, 130
Easy Suite, 150
eccentric anomaly, 116, 117
ECEF, 114, 122, 149, 150
EGNOS, 163
elevation angle, 150
elevation mask, 149
enu system, 128
envelope discriminator, 103
envelope of signal, 14
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ephemeris, 30, 45, 46, 73, 118, 163,
166

estimation
frequency, 86

exclusive OR operator, 112
execution time, 86

FEC, 32, 42, 43, 163
feedback, 61
FFT, 81
filter, 54, 57, 63

bandpass, 13, 57, 60, 65
highpass, 13
lowpass, 13

forward error correction code, see FEC
Fourier transform, 79, 83

discrete, 79, 80, 82, 83
inverse, 83

Fourier transform pair, 2, 4
frame, 42
frequency, 5, 55

Doppler, 38
intermediate, 64, 145, 153
sampling, 64, 145, 153

frequency domain, 64
frequency offset, 92
frequency search, 71
front end, 53

gain, 59
gain pattern, 55
Galileo receiver

dual-frequency, 31
Galileo signal, 162
Galileo System Time, 45, 46, 48, 49
GAST, 117
geocentric coordinates, 117
geoid, 133
Gold code, 20, 21, 25, 26, 33
GPST, 48, 49, 121, 134

handheld receiver, 57
handover word, 29, 113
health indicator, 30
histogram, 64

hour angle, 125

I signal, 15, 76, 78, 84, 94, 95, 106,
109

IF, 59, 60
impedance, 55
impulse function, 21
inclination, 45, 46, 115, 118
input–output relation, 10
insertion loss, 58
integrated circuit, 66
integration and squaring, 78
intercept point, 59
interference

constructive, 101, 103
destructive, 101, 103

intermediate frequency, see IF
intermodulation, 60
intermodulation product, 36
International Earth Rotation Service,

126
ionospheric correction, 47
issue of data, 49
iteration, 125

Julian century, 125

Kepler’s equation, 117
Keplerian elements, 114, 115

L1 OS signal, 31, 32, 50
L1 spectrum, 38
lag, 7
law of covariance propagation, 131
leap second, 48, 126
LFSR, 20, 24
linear feedback shift register, see LFSR
linearization, 122
local code replica, 87, 88
local oscillator, 59, 60
look-up table, 158
loop gain, 91
lowpass filter, 88, 94

main lobe, 61
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mapping
stereographic, 130

matrix
covariance, 133

maximum sampling frequency, 61, 62
mean anomaly, 45, 46, 115, 117, 118
mean motion, 116
method of least squares, 124
misalignment, 27
mixer, 54, 59, 60, 75
Modified Julian Date, 126
modulation

amplitude, 14
frequency, 14
phase, 14

modulo-2, 112
modulo-2 adder, 19, 22, 34, 44
multibit sampling, 62
multipath, 56, 101, 105
multipath error envelope, 103, 104

narrow bandpass filter, 88
narrowband, 53
narrowband interference, 63
natural frequency, 91
navigation data, 17, 19, 28, 30, 45, 72,

87, 95, 110, 111, 143, 149,
154, 157

navigation data decoding, 110
NCO, 40, 90, 93, 166
noise bandwidth, 92
noise figure, 56, 57
noise loss, 58
northing, 130
number of bit, 61
Nyquist rate, 9

observation equation, 122, 124
open service signal, 162
orbit, 114
oscillator

crystal, 60

P code, 25
page, 42

passband, 13
PDOP, 131
peak, 78, 81, 83, 84
perigee, 46, 115, 117, 118
phase lock loop, see PLL
phase quadrature, 15
phase selection, 22
phase tracking, 72
PLL, 51, 90, 92, 93, 100, 148

second-order, 89, 90
polar form, 15
polar motion, 126
polarization, 31, 55
polynomial generator, 43
position, 144
position computation, 73, 166
power envelope, 35
power spectral density, 8, 41
preamble, 163
preamble search, 110
primary code, 33
PRN code, 20, 34, 38, 76, 77, 82–84,

106, 154, 156, 159
PRN code demodulation, 79, 87
probability density, 65
pseudorandom noise, see PRN
pseudorange, 28, 47, 121, 144, 148,

149
initial, 119
subsequent, 120

pseudorange accuracy, 107
pseudorange estimation, 107
pulse

rectangular, 6

Q signal, 15, 76, 78, 84, 95, 106
quality factor of filter, 61

random process, 1
ranging code, 33
rate of code, 44
receiver clock offset, 47
receiver position, 122

initial, 122
rectangular pulse, 4
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reference ellipsoid, 128
reference frame, 135
reflection, 101
relativistic effect, 18
right circularly polarization, 55
RINEX, 125, 134

sampling, 8
sampling period, 8
sampling rate, 8
sampling theorem, 62
satellite

nonvisible, 71, 78
visible, 71, 78

satellite clock offset, 47, 49
satellite constellation, 164
secondary code, 33
seconds of week, 127, 150
semicircle, 45, 114
sequence

finite length, 82
shift register, 21, 44
signal

bandpass, 14, 15
clock, 18
continuous-time, 2
data free, 38
deterministic, 1
discrete-time, 3
early, 27
exponential, 12
GPS, 17
late, 27
pilot, 32, 38
random, 1, 6
stationary, 6
transmitted, 19

signal conditioning, 55
signal detector, 147
signal frequency, 70
signal generation, 18, 19
signal generator, 161
signal in space, 67
signal in space accuracy, 47
signal power, 35, 36, 41

received, 67
signal simulator, 153–155, 158
signal strength, 154
signal to noise ratio, 56, 154
signal transmission time, 143
Simulink, 155, 159
specified frequency range, 59
spectrum

energy density, 2, 3, 6
magnitude, 2, 5
phase, 2, 5
power, 7

speed of light, 133
spreading code, 18, 20, 162
spreading code rate, 37
standard positioning service, 19
start

cold, 69
warm, 69

stopband, 13
strobe signal, 166
subcarrier frequency, 37, 38
subcarrier phase, 38
subcarrier rate, 33
subcarrier wave, 38
subframe, 29, 30, 73, 110, 111, 119
subframe ID, 29
summation time, 28
sun

mean, 125
symbol rate, 41
symbol stream, 166
synchronization word, 42
system

causal, 11
linear, 10, 11
linear time-invariant, 12
noncausal, 11
nonlinear, 10
time-invariant, 10
time-varying, 10

TAI, 48
telemetry word, 29, 119
thermal noise, 63, 65
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thermal noise floor, 53
tiered code, 32, 33
time domain, 64
time of revolution, 116
time of transmission, 72
time of week, 29, 46, 113
time reference, 163
tracking, 71, 144, 165

coherent, 50
indoor, 31
noncoherent, 50

tracking function, 143
tracking loop, 146
transfer function, 13, 89
traveling time, 121
true anomaly, 45, 46, 116, 118
two’s complement, 113

UHF band, 17
unit impulse, 3
UT, 125

UTC, 30, 45, 48, 126
UTM, 130, 149, 150

zone, 130

Viterbi convolution, 44
voltage, 53

analog, 54
incident, 54

voltage standing wave ratio, 55

WAAS, 163
waveform

triangular, 5
week

GPS, 18
week number, 46, 48, 49, 127
WGS 84, 133
Wiener–Khinchine theorem, 6, 7

Z-count, 113
zenith distance, 128
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