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FPGA-Based Prototyping Methodology Manual v 

Foreword 
We are grateful to Helena Krupnova of STMicroelectronics for sharing her insight 
and experience of FPGA-based prototyping in this foreword. 

 

Grenoble – December 2010 

 

In this book are introduced the “Three Laws of Prototyping.” 

For the last ten years here at STMicroelectronics in Grenoble, France, I’m working 
within a hardware-based verification team providing FPGA-based prototyping 
solutions for the use of software development teams worldwide and we have learnt 
that there are many steps and obstacles for the unwary prototyper. This book covers 
most of them, but they all distil down to these three “laws”: 

• SoCs are larger than FPGAs 

• SoCs are faster than FPGAs 

• SoC designs are FPGA-hostile 

And yet, FPGAs provide a platform for SoC development and verification unlike 
any other and their greatest value is in their unique ability to provide a fast and 
accurate model of the SoC in order to allow pre-silicon validation of the embedded 
software. 

Like all leading-edge developers, we at STMicroelectronics use a wide range of 
different tools and platforms during SoC design and verification. There is a 
prototyping community within ST, including several teams belonging to different 
divisions and addressing different design environments with a variety of prototyping 
approaches – real-time prototyping, commercial solutions, and custom machines. 
We use FPGA-based prototypes because they are often more than ten-times faster 
than emulators and this allows us to respond to the needs for a fast platform for 
interactive testing of new SoC software by a large number of developers on different 
sites. 

 Embedded software has become the dominant part of the effort in modern SoC 
design. We need to start earlier in our project just to allow enough time for the 
completion of the software and this means running it on the SoC “pre-silicon.” It is 
very clear to me that the main benefit from FPGA-based prototyping is precisely for 
the software teams. Prototyping is the hardware team’s answer to the software 
team’s problems. 

It is simply the only type of technology that offers realism to pre-silicon software 
developers by, for example, giving instantaneous response from JTAG debuggers, 
allowing operating system booting in near real-time and allowing real-time 
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vi Foreword  

interfaces to the system peripherals. I could go on but you can read for yourselves 
the benefits that others have obtained from using FPGA-based prototyping in the 
introductory chapters of this book. 

This book discusses different possible board and system architectures and I believe 
that learning from previously available architectures is mandatory for everybody 
building high-speed prototypes. The make versus buy decision criteria, both 
technical and commercial, are also to be found in this book reinforcing in my mind 
my belief that the only reason to build a custom platform in-house is when a high 
number of replicated platforms need to be built. How many is a “high number?” 
There is help in these pages for the reader to work this out for themselves, but in 
general only dozens of copies of the board will allow users to get the return on the 
engineering cost invested for the board’s development. Certainly, for any single 
usage, buying a commercial solution is much more economical! 

The obstacles to FPGA-based prototyping that I mentioned in my opening make it 
daunting for some. However, there are also a number of steps in overcoming those 
three laws of prototyping that can be taken by us all. These are outlined in this 
comprehensive book and if you read this before embarking on your project, 
especially the Design-for-Prototyping guidelines, then you are more likely to 
succeed. 

The book ends with a discussion of linking prototypes to simulation tools via 
transaction-level interfaces and leads into a glimpse of future directions. I believe 
that we will see more integration of FPGA-based prototyping with ESL modeling to 
create transaction-based platforms which will extend the benefit to software 
developers from before RTL right through FPGA-based prototyping to first silicon.  

This book, and its companion web-based forum, will attract managers’ attention to 
the importance of prototyping and I expect it will be a great support to the 
prototyping community! 

 

Helena Krupnova 

Prototyping Team Leader 
ST Microelectronics 
Grenoble, France 
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FPGA-Based Prototyping Methodology Manual vii 

The aim of this book 
This book is a seed. 

It is a seed around which the sum knowledge of FPGA-based prototyping can 
crystallize.  

We have gathered input from far and wide in order to present a snapshot of best 
practices in the field of FPGA-based prototyping. We hope that there is something 
in this manual for everyone but undoubtedly, owing to time and space constraints, 
there is probably something missing for everyone too.  

The book in your hand (or the eBook on your screen) represents a first edition of the 
FPMM. From an early stage, we have been planning that this book will have a 
parallel on-line component, in which we can add or correct information, provide 
download pdf copies and build upon each reader’s experience to build further 
editions as required. In this way, the FPMM will thrive on feedback and in turn can 
provide even more in-depth education for prototypers around the world. Using new 
media we can help to unite otherwise isolated and outnumbered prototyping experts 
into a respected forum of real value. This value will not just benefit the prototypers 
but also the SoC teams of which they will be an increasingly important part, 
promoting FPGA-based prototyping into its rightful place as a serious verification 
and validation methodology. 

We hope you like the book and we look forward to seeing you on the FPMM on-line 
community soon (go to www.synopsys.com/fpmm). 

 
Austin, Doug and René 
January,  2010  

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



viii This book’s organization 

A note from the publisher 
Thank you for your interest in this technical series book from Synopsys and our 
partners. We at Synopsys Press are excited to introduce the FPGA-Based 
Prototyping Methodology Manual (FPMM), which, like our previous successful 
Methodology Manuals (e.g., Verification Methodology Manual for Low Power 
(VMM-LP), aims not only to educate practitioners but also inform leaders. 

We are particularly pleased that so many experts were involved in the creation of 
the contents and for the extensive peer review. At the end of each chapter we 
acknowledge to those who made a significant contribution to its content. 

To learn more about this Synopsys Press book and the others in both the technical 
and business series, please visit www.synopsys.com/synopsys_press. 

We hope you enjoy the book, 

 

Phil Dworsky 

Publisher,  
Synopsys Press,  
February, 2011 
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FPGA-Based Prototyping Methodology Manual ix 

The book’s organization 
The book is organized into chapters which are roughly in the same order as the tasks 
and decisions which are performed during an FPGA-based prototyping project.  

Readers will be approaching this book from a number of directions. Some will be 
experienced with many of the tasks involved in FPGA-based prototyping but are 
looking for new insights and ideas; others will be relatively new to the subject but 
experienced in other verification methodologies; still others may be project leaders 
who need to understand if the benefits of FPGA-based prototyping apply to their 
next SoC project. So, depending on your starting point you may need to start 
reading the book in a different place. In anticipation of this, we have tried to make 
each subject chapter relatively standalone, or where necessary, make numerous 
forward and backward references between subjects, and provide recaps of certain 
key subjects 

Chapters 1&2: We start by analyzing the complexity of the problem of validating 
an SoC and the software embedded within it. We introduce a number of different 
prototyping methods, not just FPGA. We then go on to describe the benefits of 
FPGA-based prototyping in general terms and give some real-life examples of 
successful projects from some leading prototypers in the industry. 

Chapter 3: This is a primer on FPGA technology and the tools involved, giving a 
new perspective on both in the context of FPGA-based prototyping. Experienced 
FPGA users may feel that they can skip this chapter but it is still recommended as a 
way to look at FPGAs from possibly a new viewpoint.  

Chapter 4: Every journey begins with a single step. After hopefully whetting the 
reader’s appetite for FPGA-based prototyping, this chapter brings together sufficient 
information to get us started, allowing us to gauge the effort, tools and time needed 
to create a prototype. 

Chapters 5 and 6: The hardware component of a prototype should be chosen early 
in the project. These chapters give guidance on how to best create a platform in 
house, or how to choose between the many commercial platforms and how to make 
an informed comparison between them (see also Appendix B) 

Chapter 7, 8, 9 and 10: Key information on manipulating a design to make it ready 
for implementation in FPGA hardware, with special focus on RTL changes, 
partitioning and IP handling. There is also guidance on how a Design-for-Prototype 
SoC design style can be adopted to make designs more suitable for FPGA-based 
prototyping team. 

Chapters 11&12: The board is ready; the design is ready; what happens when the 
two are put together? These chapters cover how to bring up the prototype in the lab 
and then go on to debug the RTL and software on the system and make fast 
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x This book’s organization 

iterations of the design. There is also a discussion of the deployment of the 
prototype outside the lab. 

Chapter 13: We have a working FPGA-based prototype; what else can be done 
with such a useful platform? This chapter shows the benefit of tailoring the 
prototype to be used within wider verification environments including RTL 
simulators and SystemC™-based virtual models. 

Chapter 14: Here we perform some future-gazing on FPGA-based prototyping and 
beyond into a hybrid prototyping, taking concepts from chapter 13 and other places 
to some new conclusions. 

Chapter 15: This then leads into some conclusions and re-iteration of key rules and 
suggestions made throughout the manual. 

Appendix A: Here is an instructive worked example of a recent FPGA-based 
prototype project performed at Texas Instruments giving details of the various steps 
taken and challenges overcome.  

Appendix B: There is also an economic and business comparison between making 
prototype hardware in-house ‘v’ obtaining them commercially. 

 

NOTE: the majority of the FPMM contents are intended to be generic and 
universally applicable, however, where examples are given, we hope that readers 
will forgive us for using tool and platforms best known to us at Synopsys® and 
Xilinx® (i.e., our own). 
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CHAPTER 1 INTRODUCTION: THE 
CHALLENGE OF 
SYSTEM 
VERIFICATION 

This chapter will establish some definitions and outline the challenges we are trying 
to overcome with FPGA-based prototyping. We will explore the complexity of SoC-
based systems and the challenges in their verification. We will also compare and 
contrast FPGA-based prototyping with other prototyping methods including system-
level virtual modeling. After this chapter we will be ready to dive deeper into the 
ways that FPGA-based Prototyping has benefited some real projects and give some 
guidance on what is possible with FPGA-based prototyping technology.  

1.1. Moore was right! 

Since Gordon E. Moore described the trend of how many transistors can be placed 
inexpensively on an integrated circuit, electronic design enabled by semiconductor 
design has grown at a hard-to-imagine pace. The trend of transistors doubling every 
two years has already continued for more than half a century and is not expected to 
stop for a while despite repeated predictions that it would end soon. 

A detailed review of the major trends driving chip design later in this chapter will 
make it clear why prototyping has grown in adoption, and is even considered 
mandatory in many companies. To further understand this trend, typical project 
dynamics and their effort distributions need to be understood. 

1.1.1. SoC: A definition . . . for this book at least 
Let’s start with a definition. For the purposes of this book, we define system on chip 
(SoC) as a device which is designed and fabricated for a specific purpose, for 
exclusive use by a specific owner. Some might think of SoC as a particular form of 
an ASIC (application specific integrated circuit) and they would be correct, but for 
the purposes of this book, we will refer only to SoCs. We will stick to the definition 
that an SoC always includes at least one CPU and runs embedded software. In 
comparison, an ASIC does not necessarily include a CPU and to that extent, SoCs 
can be considered to be a superset of ASICs. 
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We do not mean to imply that those who are creating an ASIC, ASSP 
(application-specific silicon product) or silicon produced by COT (customer’s own 
tooling) or by third-party foundries should read another book. Technologies are not 
mutually unique for FPGA-based prototyping purposes and in fact, many FPGA-
based prototyping projects are of an ASSP or even just pieces of IP that may be 
used in many different SoC designs.  

As far as FPGA-based prototyping is concerned, if it works for SoC then it will 
work for any of the above device types. The reason for this book’s focus on SoC is 
that the greatest value of FPGA-based prototyping is in its unique ability to provide 
a fast and accurate model of the SoC in order to allow validation of the software.  

1.2. The economics of SoC design 

SoC designs are all around us. We can find them in all the new headline-grabbing 
consumer electronics products as well as in the most obscure corners of pure 
research projects in places like CERN, and in the guidance systems of interstellar 
probes. 

For consumer products in particular, there is a seemingly insatiable hunger for 
maximum intelligence and functionalities in devices such as smart phones, cameras 
or portable media players. To meet these requirements a typical SoC design will 

Figure 1: The relationship of IC design to the electronics market 
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include several microprocessors, one or more digital signal processors and some 
different interfaces such as Bluetooth™ or WLAN, high resolution graphics and so 
on. That all adds up to a lot of software.  

Considering the IC development and manufacture as a whole, it appears in Figure 1 
as an inverted triangle. The figures shown are for 2009, and we see that chip 
development was a market of about $85.4 billion and was enabled by a $8.6 billion 
market for EDA tools, design services, IP and embedded software tools. Supported 
by this semiconductor design and manufacture is a huge $1.116 billion market for 
electronic systems, which contain for example all the consumer gadgets, wireless 
devices and electronics we crave as end consumers.  

EDA tools, which include various types of prototyping for different stages within a 
design, are recently focusing to specifically enabling the design chain from IP 
providers, semiconductor providers, integrators and OEMs. Prototyping plays a key 
role in those interactions as early prototypes enable communication of requirements 
from customers to suppliers and early software development and verification for 
customers from suppliers. 

Figure 2: Hardware-software teardown of a consumer device 

 

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



    

4 Chapter 1: Introduction: the challenge of system verification 

To understand the impact that prototyping in its many forms can achieve, let’s 
consider a typical complex SoC design. Figure 2 shows the tear down of a typical 
smartphone. The end user experience is largely influenced by the applications with 
which they are presented. Good old hardware, analog and antenna design is 
obviously still important but the user only really notices them when they go wrong! 
User applications are enabled by a software stack of middleware, operating system 
and drivers; all of which are specifically design to make the software as independent 
of the hardware as possible.  

For example, application developers do not have direct access to the device’s 
hardware memory, timing or other low-level hardware aspects. The stack of 
software is matched by a stack of hardware elements. The end device uses several 
boards, comprised of several peripherals and chips, which contain various blocks, 
either reused as IP or specifically developed by chip providers to differentiate their 
hardware. 

The dependencies of hardware and software result in an intricate relationship 
between different company types. IP providers sell to semiconductor providers, who 
sell to integrators who sell to OEMs, all of whom are enabling software developers. 
Enablement of these interactions has arguably become the biggest problem to be 
addressed by tool vendors today.  

The main challenges for this enablement have become today: 

(a) The enablement of software development at the earliest possible time. 

(b) Validation of hardware / software in the context of the target system. 

(c) Design and reuse of the basic building blocks for chips 

• processors 

• accelerators 

• peripherals 

• interconnect fabrics (e.g., ARM AMBA® interconnect) 

(d) Architecture design of the chips assembled from the basic building blocks. 

1.2.1. Case study: a typical SoC development project 
Considering the bottom three layers of the hardware stack in Figure 2, let’s analyze 
a specific chip development project and the potential impact of prototyping. The 
chosen example is a wireless headset design by a large semiconductor company, 
performed in a mainstream 65nm technology. The chip is targeted for a high 
volume, fast moving market and has an expected production run of 27 months with 
an average volume of 1.5 million units per month and average selling price of 
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$5.50. Things go well during development and only one metal mask spin is required 
allowing six months of customer and field evaluations after first silicon is available. 
In total the development cost for the project is estimated as $31,650,000 based on a 
development cost model described in an International Business Systems study with 
scaling factors for mainstream applications.  

Let’s now consider Figure 3, which illustrates how chip development cost is spread 
over the typical 12-month hardware design cycle, from complete specification to 
final verified RTL, ready for layout. Indeed, RTL verification consumes the 
majority of the effort and is the critical element in determining the project length of 
12 months. Another portion of the design with significant impact is the overall 
design management accompanying the actual development of code. Physical design 
is finished about 15 months into the project (i.e., three months after RTL is verified) 
and then masks are prepared by month 17. The post silicon validation ramps up with 
engineering samples available in month 19 and takes several months. 

As Figure 3 further illustrates, software development ramps up in this project when 
RTL is largely verified and stable. It is split here between OS support and porting, 
low-level software development and high-level application software development. 
All the software development effort here is still the responsibility of the chip 
provider, rather than third-party providers. Overall, software development consumes 
40% of the total cost for this design and extends the project schedule to a total of 27 
months. 

When amortizing development and production cost onto expected sales, this project 
reaches break even after about 34 months, i.e., seven months after product launch 
but almost three years after starting product development. The challenge in this 
example is that we have to predict nearly three years in advance what is going to 
sell in high-volumes in order to specify our chip. How can this almost intolerable 
situation be made easier? The answer is to “start software sooner.”  

Figure 3: Project effort for a 65nm wireless headset design 
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Using the calculator for return on investment (ROI) developed by the Global 
Semiconductor Association (GSA), it can be calculated that if software 
development and validation started seven months earlier in our example project, 
production could have started three months earlier and subsequently the time to 
break even would have been reduced by five months. In addition a $50 million 
revenue gain could have been expected over the production volume due to extra 
first-to-market design-wins for the chip. 

This is exactly what prototyping in its many forms can achieve. The earlier start to 
software development and validation provided by prototyping means that its impact 
on ROI can be very significant.  

For a deeper understanding of requirements and benefits of prototyping, let’s look at 
the different types of prototyping available today from virtual to FPGA-based. 

1.3. Virtual platforms: prototyping without hardware 

There are various forms of prototyping which we can employ in our projects. 
Available earliest in a project are virtual prototypes. They represent fully functional 
but loosely-timed software models of SoCs, boards, virtualized IOs and user 
interfaces, all running on a host-based simulation. Virtual prototypes can execute 
unmodified production software code on processor instruction set simulators and 
they run close to real-time. Being fully host-based virtual prototypes they can also 
offer good system visibility and control, which is especially useful for debug on 
multicore CPUs. Virtual prototypes can also have virtual user interfaces, allowing 
real-time interaction with us slow humans. The screenshot excerpts shown in Figure 
4 are from a virtual prototype of an OMAP design running on the Synopsys 
Innovator tool. Here we see not only recognizable simulation windows but also the 
representation of key controls on the board and input from a virtual camera, in this 
case linked to a webcam on the host PC running the simulation, all done without 
hardware. We shall come back to Innovator in chapter 13 when we discuss the 
linking of an FPGA-based prototype with a virtual simulation. 

While virtual prototypes offer very high speed (multiple tens of MIPS) when using 
loosely-timed models they do not offer the timing accuracy preferred by hardware 
design teams. More timing-accurate software models can be added to a virtual 
prototype but then their simulation speed will degrade to the single-digit MIPS 
range or even lower depending on the mix of cycle-accurate versus loosely-timed 
models. 

However, virtual prototypes are available earliest in the flow, assuming models are 
available, so they are perfect for early software debugging. Virtual prototypes 
provide almost complete insight into the behavior of the system and they are also 
easy to replicate for multiple users.  
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Finally, because they are created before the RTL, virtual prototypes allow co-
development of hardware architecture along with early software. For example, extra 
or different CPUs might be added if the virtual prototype shows that there is not 
enough processing bandwidth for the product’s concurrent applications. 

1.3.1. SDK: a very common prototyping environment 
Related to virtual prototypes are so-called software development kits, or SDKs, of 
which a very common example is the SDK for developing applications for the 
Apple iPhone®. This SDK was downloaded more than 100,000 times in the first 
couple of days of its availability and so we can consider this a very widely available 
prototyping platform. Although simple in comparison, SDKs offer many of the 
advantages of full virtual prototypes, however, their accuracy is often more limited 
because they may not represent the actual registers as accurately as virtual 
prototypes.  

Their aim is to have “just enough accuracy” in order to fool the application into 
thinking that it is running on the final platform. SDKs allow programming and 
interfacing over a higher-level application programming interface (API) into the 
platform. The developed software is usually compiled for the host machine on 

Figure 4: Pre-Silicon virtual prototype of OMAP design 
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which the SDK executes and then requires re-compilation to the actual target 
processor after programmers have verified functionality on the SDK. 

Figure 5 shows a screenshot of an Android™ SDK. Programming of applications is 
done in high-level languages like C using higher-level operating system APIs. The 
programming is done completely independent of the actual target hardware, so 
when actually targeting the final device, recompilation is necessary. User interfaces 
of the target device – as shown in Figure 5, can be modeled so that the end-user 
environment can be experienced virtually. 

1.3.2. FPGA: prototyping in silicon . . . but pre-silicon  
Available later in the design flow, but still well before real silicon, an FPGA-based 
prototype also serves as a vehicle for software development and validation. FPGA-
based prototypes are fully functional hardware representations of SoCs, boards and 
IOs. Because they implement the same RTL code as the SoC and run at almost real-
time speed with all external interfaces and stimulus connected, they are very 
accurate. They offer higher system visibility and control than the actual silicon will 
provide when available but do not match the debug and control capabilities of 

Figure 5: Android™ SDK screenshot showing GUI emulation 
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virtual platforms, or any other simulator, so they are not the first platforms we 
would choose on which to debug all of our RTL. 

The key advantage of FPGA-based prototypes is their ability to run at high speed, 
yielding tens of MIPS per modeled CPU, while maintaining RTL accuracy. They 
are typically available later in the design flow than virtual prototypes because RTL 
needs to be available and relatively mature. Due to the complexity and effort of 
mapping the RTL to FPGA-based prototypes, it is not really feasible to use them 
before RTL verification has stabilized. For the same reason, FPGA-based 
prototypes are not intended for use as hardware/software co-development platforms 
because at this point in the SoC design flow, the hardware (i.e., the RTL) is pretty 
much fixed and partially verified. Design teams will be very hesitant to change the 
hardware architecture by the time the FPGA-based prototype is running, unless 
some major architectural bottlenecks have been discovered. 

Finally, once stable and available, the cost of replication and delivery for FPGA-
based prototypes is higher than for software-based virtual platforms, however still 
considerably cheaper than emulators, which we shall discuss next. 

1.3.3. Emulators: prototyping or verification? 
Emulation provides another hardware-based alternative to enable software 
development but differs from FPGA-based prototyping in that it aims at lower 
performance but with more automation. Emulators have more automated mapping 
of RTL into the hardware together with faster compile times, but the execution 
speed will be lower and typically drop to below the single-MIPS level. The cost of 
emulation is also often seen as a deterrent to replicating it easily for software 
development despite the fact that emulators are popular with software engineers 
because of their ease of use. 

As with FPGA-based prototypes, emulators are not realistic platforms for hardware-
software co-development because they require the RTL to be available. A more 
likely use for emulators is as an accelerator for normal RTL simulation and so many 
consider emulation not as a prototyping platform but as an extension to the normal 
verification environment; a kind of go-faster simulator. An emulator can actually be 
used for software development, however, only when the software needs cycle-
accuracy and high-visibility into the RTL and can tolerate very slow run speed. 
Software would need to be limited to short duration runs, such as the boot ROM 
code, because the slow running speed will mean that runtimes can be very long; 
certainly too long for long software tasks, such as user applications or OS bring-up. 
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1.3.4. First silicon as a prototype platform 
Finally, after the actual silicon is available, early prototype boards using first silicon 
samples can enable software development on the actual silicon. Once the chip is in 
production, very low-cost development boards can be made available. At this point, 
the prototype will run at real-time speed and full accuracy. Software debug is 
typically achieved with specific hardware connectors using the JTAG interface and 
connections to standard software debuggers. While prototype boards using the 
actual silicon are probably the lowest-cost option, they are available very late in the 
design flow and allow almost no head start on software development. In addition, 
the control and debug insight into hardware prototypes is very limited unless 
specific on-chip instrumentation (OCI) capabilities are made available. In 
comparison to virtual prototypes, they are also more difficult to replicate – it is 
much easier to provide a virtual platform for download via the internet then to ship 
a board and deal with customs, bring-up and potential damages to the physical 
hardware. 

As can be seen by this overview, prototyping is focused on providing early 
representations of hardware, specifically of chips and their surrounding peripherals. 
Prototypes are applicable for different use models, which in exchange have an 
impact on requirements. 

1.4. Prototyping use models 

As indicated earlier, prototyping is done today using different execution engines. 
Once a chip development project has started, project managers are asked almost 
immediately to provide early representations – prototypes – of the “chip-to-be” for 
various purposes, such as:  

• Marketing needs material and basic documentation to interact with early 
adopters.  

• Software developers would like executable representations of the design 
under development to allow them to start porting operating systems  

• Hardware developers would also like executable specifications to validate 
that their implementations are correct.  

• Prototypes are in high demand from day one! The need is driven by three 
main use models: architecture exploration, software development and 
verification. 
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1.4.1. Prototyping for architecture exploration 
At the beginning of a project, architecture exploration allows chip architects to 
make basic decisions with respect to the chip topology, performance, power 
consumption and on-chip communication structures. For example, information 
gathered early on cache utilization, performance of processors, bus bandwidth, burst 
rates and memory utilization drives basic architecture decisions.  

In an ideal world, chip architects would love to get prototypes with fully accurate 
models – representing all internals of the design – while running at full speed. 
Unfortunately, both characteristics typically cannot be achieved by the same model. 
Fully accurate data cannot be gathered until the final chip comes back from 
fabrication or at least until late in the design cycle, when RTL is available and 
verified. At that point, FPGA prototypes can be used to execute the design close to 
real time.  

Chip architects also interact with “early adopter” customers and ideally would like 
executable specifications to demonstrate key features of the design. However, in 
reality, chip architects mostly rely on tools like Microsoft Excel™ for basic, static 
architectural analysis. Often they have to rely on their experience and back of the 
envelope assessments. As a result, interaction with early adopter customers happens 
based on written specifications and lots of joint discussions at white boards. 

1.4.2. Prototyping for software development 
Software developers would ideally like to start their porting of legacy code and 
development of new software functionality from the get go, i.e., when the hardware 
development kicks off. They would like to receive an executable representation of 
the chip, which runs at real-time and accurately reflects all the software related 
interfaces with the hardware (like register images). Depending on the type of 
software being developed, users may require different accuracy from the underlying 
prototype. The type of software to be developed directly determines the 
requirements regarding how accurately hardware needs to be executed: 

• Application software can often be developed without taking the actual 
target hardware accuracy into account. This is the main premise of SDKs, 
which allow programming against high-level APIs representing the 
hardware. 

• For middleware and drivers, some representation of timing may be 
required. For basic cases of performance analysis, timing annotation to 
caches and memory management units may be sufficient, as they are often 
more important than static timing of instructions when it comes to 
performance. 
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• For real-time software, high-level cycle timing of instructions can be 
important in combination with micro-architectural effects. 

• For time-critical software – for example, the exact response behavior of 
interrupt service routines (ISRs) – fully cycle-accurate representations are 
preferred. 

Often still today, developers will start software development “blindly,” based on 
register specifications, but are then plagued by not being in sync with changes the 
hardware team still may make to the register specifications. For derivative product 
families, application software is often developed using high-level APIs, which can 
be executed on a previous generation chip. The underlying drivers, OS and 
middleware, which become available later, make sure that the APIs remain the same 
and do not break legacy software. 

1.4.3. Prototyping for verification 
Early on, the chip environment is represented using traces and traffic generators. 
Early test benches essentially define the use model scenarios for the chip under 
development.  

In a typical design, just as many bugs hide in the test bench as in the actual design 
itself. Therefore, it is important to start with the development of test benches for 
verification as early as possible. Ideally, verification engineers would like an 
executable representation of the “device under test” (DUT) to be available from the 
start. Similar to software development’s need for different models, verification has 
requirements for different levels of accuracy as well.  

High level models of the DUT will enable development of verification scenarios. 
Models of the DUT with accurate registers and pure functional representation of the 
DUT’s behavior satisfy a fair share of test bench development. For verification of 
timing and detailed pipeline latencies, timing approximation may initially be 
sufficient but eventually a cycle-accurate representation at the register transfer level 
(RTL) will be required.  

An important trend in hardware verification is the move of functional verification 
into software, which executes on processors embedded in the design. In answer to 
the recent survey question “Do you use software running on the embedded 
processors in your design for verification of the surrounding hardware?”, more than 
50% of the respondents answered that they are already using embedded software for 
verification, and one in ten of them also use it with a focus on post-silicon 
validation. 

The advantage of this CPU-based approach is verification reuse:  
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• Tests are executed on processors and developed initially using fast 
instruction-accurate processor models interacting with transaction-level 
models (TLM) of the DUT, accessing it through its register interface.  

• Later the tests can be reused in mixed TLM/RTL simulations as well as in 
pure RTL simulations for which the processor is mapped into RTL.  

• The tests can still be used for hardware prototypes with the processor 
executing as TLM on the workstation, connected to the hardware via high-
speed TLM interfaces.  

• Processors executing the tests can also run as RTL in the FPGA prototype 
or can be brought as chip on a plug-in board into the FPGA prototype.  

• Finally, when the chip is back from fabrication, software-based tests can be 
used for post-silicon verification as well. 

1.5. User priorities in prototyping 

With all of those trends combined, prototyping of chips is becoming a clear 
requirement for successful chip design. However, different user priorities lead 
towards different prototyping options as the best solution. We can list them in a 
number of ways but in our case, we chose to highlight twelve different priorities, as 
listed below. 

• Time of availability: once the specifications for our design are frozen, 
delays in delivery of our software validation environment directly impacts 
how quickly we can start and progress in the software part of our SoC 
project.  

• Execution speed: ideally the chosen development method provides an 
accurate representation of how fast the real hardware will execute. For 
software regressions, execution that is faster than real-time can be 
beneficial.  

• Accuracy: the type of software being developed determines how accurate 
the development methods have to be in order to represent the actual target 
hardware, ensuring that issues identified at the hardware/software 
boundary are not introduced by the development method itself. 

• Capacity: can the prototype handle the largest SoC designs or is it not 
required to do so? How does performance and cost alter with increased 
design size? Can the platform be upgraded for larger designs in the future? 

• Development cost: the cost of a development method is comprised of both 
the actual cost of production, as well as the overhead cost of bringing up 
hardware/software designs within it. The production cost determines how 
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easy a development method can be replicated to furnish software 
development teams. 

• Bring-up cost: any required activity needed to enable a development 
method outside of what is absolute necessary to get to silicon can be 
considered overhead. Often the intensity of the pressure that software 
teams face to get access to early representations of the hardware 
determines whether or not the investment in bring-up cost is considered in 
order to create positive returns. 

• Deployment cost: if we are to create multiple copies of our prototype then 
we need to be aware of how much each will cost to create, deploy, 
maintain and support in the labs of our end users and beyond.  

• Debug insight: the ability to analyze the inside of a design, i.e., being able 
to access signals, registers and the state of the hardware/software design.  

• Execution control: during debug, it is important to stop the representation 
of the target hardware using assertions in the hardware or breakpoints in 
the software, especially for designs with multiple processors in which all 
components have to stop in a synchronized fashion. 

• System interfaces: if the target design is an SoC, it is important to be able 
to connect the design under development to real-world interfaces. For 
example, if a USB interface is involved, the software will need to connect 
to the real USB protocol stacks. Similarly, for network and wireless 
interfaces, connection to real-world software is a priority.  

• Turnaround time: from a new set of source files, be they SystemC™ 
models or raw RTL, how long does it take to create a new version of the 
prototype? Is it measured in minutes, hours, days or weeks and what is 
required for the project in any case? 

• Value links to low power and verification: prototypes do not have to be 
stand-alone platforms and it may add value if they can be linked to other 
parts of the SoC design team, particularly for verification. Prototyping 
before and after insertion of various implementation steps, for example 
modifications to reduce power, would also be valuable.  

Probably no user has ever cared about all of these decision criteria at the same time 
and for any given SoC project, some will override others. We shall revisit most of 
these criteria as we progress through this book.  

At the end of the book we will look to the future of prototyping as a whole and the 
place of FPGA-based prototyping in that future. On looking to the future we need to 
be aware of the recent past and trends that are emerging within the SoC user-base 
and wider industry. Let us look at those trends now. 
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1.6. Chip design trends 

We will want to use our prototyping environment for future SoC projects but what 
will those projects look like? Understanding the eight major trends for chip design 
will lead to better readiness for future projects and a more flexible in-house 
prototyping methodology.  

The eight major trends driving requirements for semiconductor design are: 

• Further miniaturization towards smaller technology nodes. 
• A decrease in overall design starts. 
• Programmability combined with a rapid increase of embedded software 

content. 
• IP reuse. 
• Application specificity. 
• Adoption of multicore architectures. 
• Low power. 
• An increase in the analog/mixed signal portion of chips.  

All of these have profound impact on prototyping requirements and we shall quickly 
look at each and the supporting trend data in turn. 

1.6.1. Miniaturization towards smaller technology nodes 
In processor design the number of transistors has increased from 29,000 transistors 
defining the X86 in 1979 to 1.72 billion transistors by 2005 defining the Dual Core 
Itanium. That was an almost 60,000 fold increase over the time frame of 26 years. 
This trend has continued since and is likely to continue in the future and the number 
of design starts at smaller technology nodes will increase as outlined in Figure 6. 
This diagram (courtesy of the industry analyst, International Business Strategies Inc. 
(IBS) of Los Gatos, CA) shows each node as a percentage of all ASIC and SoC 
design starts.  

Designs at the 65nm and 45nm nodes started in 2007 and have now become 
mainstream. As a result the size of designs to be prototyped has steadily increased, 
requiring more and more capacity for both software- and hardware-based 
prototypes.  

Software-based prototypes are naturally limited in speed by the traditional serial 
execution of software. This has further increased the pressure to improve the speed 
of software simulation, especially for processor models. 
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While fast simulation models have been available since the late 1990s using 
proprietary techniques, standardization has now enabled the combination of models 
from various sources into SystemC-based simulations without significant speed 
degradation using the open TLM-2.0 APIs. 

For hardware-based prototypes this trend has further increased the pressure to adopt 
higher-density FPGAs for prototyping. Given that the capacity of FPGA 
prototyping is limited by the capacities of the available FPGAs, the only alternative 
is to divide and conquer and to only prototype smaller parts of the designs. To 
address this situation, FPGA prototypes have become more scalable using standard 
interfaces for stacking and expansion. Finally, in situations in which a prototype is 
to be tested within the system context of the chip under development, partitioning of 
the design can be difficult. Given that the number of FPGAs per prototyping board 
will increase to allow for sufficient capacity, the requirements on automatically 
partitioning the design across FPGAs has also increased.  

1.6.2. Decrease in overall design starts 
On the flip side of the trend towards miniaturization is the reduced number of 
design starts. As indicated in Figure 7, the overall number of design starts for SoCs 

Figure 6: Design starts per technology node (Source: IBS) 
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is expected to decrease significantly. On first sight the development cost of modern 
designs is simply so high that fewer companies can afford SoC development.  

However, in reality, the biggest drop will be in design starts for the older 
technologies, i.e., 130nm and above. Design teams will continue to design for 
leading-edge processes where software content, and the need for prototyping, is 
greatest.  

As a direct result of this trend the risk per design increases dramatically and more 
and more companies are already mandating prototyping of their designs prior to 
tape out to verify correctness and to avoid expensive re-spins. Prototyping can 
happen at various points in the design flow using a variety of different techniques. 
Overall, the decrease in design starts will only increase the risk per project even 
further and as a result prototyping will become even more important. 

1.6.3. Increased programmability and software 
The vast majority of electronic systems and products now include some element of 
programmability, which is in essence deferred functionality, which comes in several 
forms. First of all, estimates of the relative number of design starts for ASIC, ASPP 
and FPGAs show that the overwhelming number of design starts are in FPGAs and 
other Programmable Logic Devices; this clearly counts a programmable hardware. 

Figure 7: Overall number of design starts per year (Source: IBS) 
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Second, the number of FPGA design starts that include microprocessor units is 
growing very fast as well. This adds software programmability to programmable 
hardware. 

In addition, a fair percentage of the ASIC and ASSP design starts contain embedded 
processors as well. As a result, the software adds programmability even dedicated 
SoC chips. As a result software is gaining significantly in importance, even in SoC 
projects. 

Figure 8 illustrates the projected software effort as percentage of R&D expense over 
technology nodes. At 65nm the expected R&D expense for software has surpassed 
that of hardware development.  

Overall, software has become the critical path for chip development and its effort is 
surpassing that of hardware. In traditional serial design flows software development 
starts late, i.e., when hardware is well underway or even after final prototype chips 
are available. As a result software availability can hold up chip developments from 
reaching mainstream production.  

From a prototyping perspective this represents yet another driver towards starting 
prototyping for software development as early as possible during a project. With 
software largely determining the functionality of a design, it is destined to also 
change verification flows. Software verification on prototypes will further gain in 
importance, as well as software becoming a driver for hardware verification too. As 
an alternative to classical verification using test benches coded in VHDL or 
SystemVerilog, directed tests using software have recently found more adoption. 

Figure 8: Software effort as percentage of R&D expense (Source: IBS) 
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Incidentally, this allows a new form of verification reuse across various phases of 
the development as described earlier.  

To support this type of verification reuse, prototyping of the hardware as early as 
possible becomes mandatory. Given the seamless reuse of verification across 
various stages of the development, interfaces between different prototyping 
techniques have become more critical too. Virtual prototypes today can be 
connected to hardware-based prototypes to allow a mix of hardware- and software-
based execution, offering a variety of advantages: 

• First, avoiding having to re-model parts of the design which are already 
available in RTL reduces the development effort and enables hardware-
assisted virtual platforms.  

• Second, hardware prototypes can be brought up faster, because test 
benches – which traditionally can contain 50% of the overall defects – are 
already verified and stable as they have been applied to virtual prototypes 
before.  

• Third, with a mix of hardware- and software-based techniques, trade-offs 
between accuracy, speed and time of availability of prototypes can be 
managed more flexibly.  

• Finally, validation of the hardware/software prototype within the system 
context requires interfaces to the environment of the chip under 
development. Interfaces from hardware prototypes can execute close to, or 
even at, real-time. Interfaces using virtual prototypes can be made 
available even prior to actual hardware availability. For instance, USB 3.0 
drivers were already developed on transaction-level models in virtual 
platforms, even before the actual cables were available. 

1.6.4. Intellectual property block reuse 
Another important trend is the reuse of IP blocks. With growing chip complexity, IP 
reuse has become an essential way to maintain growth of design productivity. 
Figure 9 shows that the percentage of reuse continues to increase and although not 
shown on this graph, since 2007 the reuse of blocks has increased from 45% to 55% 
i.e., most blocks are now reused in other designs. 

At the same time until the average number of IP blocks per chip has grown from 28 
to 50, as shown in Figure 10. Both of these data points come from a study by 
Semico Research Corporation. Taking these IP trends into consideration, chip 
design itself is becoming a task of assembling existing blocks via interconnect 
fabrics. Chip differentiation can be achieved with custom blocks, custom co-
processors and, of course, with software.  
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There are various effects of increased IP reuse on prototyping. First, pre-defined IP 
models are pre-mapped and pre-verified in FPGA prototypes to decrease bring-up 
time and reduce unnecessary duplication of work. Users of IP also increasingly 

request model libraries at different stages of the project and at different levels of 
abstraction as part of the IP delivery itself. This is already very common in the area 
of processors, for which IP providers like ARM®, MIPS®, ARC® and Tensilica® are 
asked by their users to provide processor models which can be used for early 
software development and verification.  

 

Figure 10:  IP instances in SoC designs (Source: Semico Research Corp.) 

 

Figure 9: Percentage of reuse of IP blocks (Source: Semico Research Corp.) 
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While in the past, development of those models was a challenge because they had to 
interface to various proprietary simulation environments, the development of such 
models has recently become commercially feasible. 

With the advent of standards like OSCI SystemC TLM-2.0, the models for 
processors, peripherals and interconnect have become interoperable across different 
SystemC-compliant simulation engines. Standardization implies the transition from 
an early adopter phase to mainstream, and as such availability of IP models has 
greatly improved. 

1.6.5. Application specificity and mixed-signal design 
The target application markets for which chips are developed have a profound 
impact on the chip development itself. Figure 11 summarizes some of the defining 
characteristics of different target applications, according to the International 
Technology Roadmap for Semiconductors (ITRS). 

ITRS differentiates between four major categories of chip design – SoCs, 
microprocessor units (MPUs), mixed-signal design and embedded memory. Each of 
the categories has specific requirements. To keep the die area constant while 
increasing performance is important for MPUs. Decreasing supply voltages are a 
key issue for mixed signal. Within the SoC domain the ITRS separates networking 
applications from consumer portable and consumer stationary, with various sub-
requirements as shown in Figure 11. 

  

Figure 11: Application specific requirements (Source: ITRS) 
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Overall, the end application has become more important for chip design 
requirements across the board and for SoCs specifically. As a result, prototyping in 
the different application domains requires application-specific analysis as well as 
application specific system interfaces, most of which have significant mixed signal 
content.  

Besides other characteristics, the speed of external interfaces determines whether a 
prototype can be used directly or will need to be slowed down. 

1.6.6. Multicore architectures and low power 
While for decades, the scaling of processors in speed has served the ever-increasing 
appetite of software applications for performance, the industry has run into limits 
around 4GHz for CPUs and 1GHz for embedded processors. The reason for that 
limitation lies in power consumption, which simply exceeds power envelopes when 
just scaled higher. This real and hard limitation has led to a trend to switch to 
multicore architectures. Simply put, more cores at lower frequency will result in less 
power consumption than simply scaling one core. The graphs in Figure 12 confirm 
this trend in CPU and data processing engines (DPE) usage for consumer 
applications, portable and non-portable.  

We can see that the average number of DPEs, for example, has almost tripled from 
2007 to 2011 and is expected to increase further. While this is a good solution on 
the hardware side, the challenge has now been transferred to the software side.  

Traditionally, sequential software now needs to be distributed across multiple cores. 
For prototyping this means that debugging (the ability to look into the 
hardware/software execution) has become more important as well as the ability to 
start, pause, resume and stop hardware/software execution.  

Today’s virtual prototypes already offer intelligent techniques to un-intrusively 
debug design and they can be started and stopped at any given time. Demands on 
debug and control for hardware-based prototypes have also increased, but debug 
capabilities in FPGA-based prototypes still trail those of virtual prototypes. 
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1.7. Summary 

Prototyping, in all its forms, provides powerful methods for verifying the design of 
hardware and validating the software in models, which to a greater or lesser degree, 
mimic the target environment. FPGA-based prototyping is especially beneficial 
during the crucial later stages of the project when hardware and software are 
integrated for the first time. Users have several prototyping options and depending 

Figure 12: CPU requirements for consumer applications (source: ITRS) 
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on their main requirements can choose between various software- and hardware-
based techniques to prototype their designs.  

Owing to the fact that design verification and software development now dominate 
SoC development effort, the use of prototyping has never been more important in 
reducing project duration and design costs. The various IC trends mentioned above 
lead us also to only one conclusion: prototyping has become a necessary element of 
chip design and will become only more crucial in the future, as we shall see in the 
final chapter of this book. 

In this chapter, we have introduced a lot of terminology and some quite different 
types of prototyping. How widespread are each of them in real life? To answer this 
we refer to Figure 14 which summarizes 116 responses to a usage survey made 
during the SoC Virtual Conference in August 2009. When asked the question “What 
method(s) do/will you use to develop hardware dependent software (e.g., drivers, 
firmware) for your design project?”, the results show that users do indeed recognize 
a variety of distinct prototyping solutions. The results indicate that all the 
prototyping techniques described earlier are in active use – a clear result of the 
different priorities as discussed above – favoring different prototyping options. 

In the following chapter we will zoom in on the benefits of FPGA-based 
prototyping in particular to software teams and to the whole SoC project.  

The authors gratefully acknowledge significant contribution to this chapter from 

Frank Schirrmeister of Synopsys, Mountain View 

Figure 13: Users recognizing a variety of prototyping options 
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CHAPTER 2 WHAT CAN FPGA-
BASED 
PROTOTYPING DO 
FOR US? 

As advocates for FPGA-based prototyping, we may be expected to be biased 
towards its benefits while being blind to its deficiencies, however, that is not our 
intent. The FPMM is intended to give a balanced view of the pros and cons of 
FPGA-based prototyping because, at the end of the day, we do not want people to 
embark on a long prototyping project if their aims would be better met by other 
methods, for example by using a SystemC-based virtual prototype. 

This chapter will provide the aims and limitations of FPGA-based prototyping. 
After completing this chapter, readers should have a firm understanding of the 
applicability of FPGA-based prototyping to system-level verification and other 
aims. As we shall see in later chapters, by staying focused on the aim of the 
prototype project, we can simplify our decisions regarding platform, IP usage, 
design porting, debug etc. Therefore we can learn from the different aims that 
others have had in their projects by examining some examples from prototyping 
teams around the world. 

2.1. FPGA-based prototyping for different aims 

Prototyping is not a push-button process and requires a great deal of care and 
consideration at its different stages. As well as explaining the effort and expertise 
during the next few chapters, we should also give some incentive as to why we 
should (or maybe should not) perform prototyping during our SoC projects.  

In conversation with prototypers over many years leading up to the creation of this 
book, one of the questions we liked to ask is “why do you do it?” There are many 
answers but we are able to group them into general reasons shown in Table 1. So for 
example, “real-world data effects” might describe a team that is prototyping in order 
to have an at-speed model of a system available to interconnect with other systems 
or peripherals, perhaps to test compliance with a particular new interface standard. 
Their broad reason to prototype is “interfacing with the real world” and prototyping 
does indeed offer the fastest and most accurate way to do that in advance of real 
silicon becoming available. 
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A structured understanding of these project aims and why we should prototype will 
help us to decide if FPGA-based prototyping is going to benefit our next project. 

Let us, therefore, explore each of the aims in Table 1 and how FPGA-based 
prototyping can help. In many cases we shall also give examples from the real 
world and the authors wish to thank in advance those who have offered their own 
experiences as guides to others in this effort. 

Table 1: General aims and reasons to use FPGA-based prototypes 

Project Aim Why Prototype? 

Test real-time dataflow High performance and accuracy 

Early hardware-software integration 

Early software validation 

Test real-world data effects Interfacing with the real world 

Test real-time human interface 

Debug rare data dependencies 

Feasibility (proof of concept) In-lab usage 

Testing algorithms 

Public exhibitions Out-of-lab demonstration 

Encourage investors 

Extended RTL test and debug Other aims 

2.1.1. High performance and accuracy 
Only FPGA-based prototyping provides both the speed and accuracy necessary to 
properly test many aspects of the design, as we shall describe. 

We put this reason at the top of the list because it is the most likely underlying 
reason of all for a team to be prototyping, despite the many different given 
deliverable aims of the project. For example, the team may aim to validate some of 
the SoC’s embedded software and see how it runs at speed on real hardware, but the 
underlying reason to use a prototype is for both high performance and accuracy. We 
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could validate the software at even higher performance on a virtual system, but we 
lose the accuracy which comes from employing the real RTL. 

2.1.2. Real-time dataflow 
Part of the reason that verifying an SoC is hard is because its state depends upon 
many variables, including its previous state, the sequence of inputs and the wider 
system effects (and possible feedback) of the SoC outputs. Running the SoC design 
at real-time speed connected into the rest of the system allows us to see the 
immediate effect of real-time conditions, inputs and system feedback as they 
change.  

A very good example of this is real-time dataflow in the HDMI™ prototype 
performed by the Synopsys IP group in Porto, Portugal. Here a high-definition (HD) 
media data stream was routed through a prototype of a processing core and out to an 
HD display, as show in the block diagram in Figure 14. We shall learn more about 
this design in chapter 10 when we consider IP usage in prototyping, but for the 
moment, notice that across the bottom of the diagram there is audio and HD video 
dataflow in real-time from the receiver (from an external source) through the 
prototype and out to a real-time HDMI PHY connection to an external monitor. By 

Figure 14: Block diagram of HDMI prototype 
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using a pre-silicon prototype, we can immediately see and hear the effect of 
different HD data upon our design, and vice versa. Only FPGA-based prototyping 
allows this real-time dataflow, giving great benefits not only to such multimedia 
applications but to many other applications where real-time response to input 
dataflow is required. 

2.1.3. Hardware-software integration 
In the above example, readers may have noticed that there is a small MicroBlaze™ 
CPU in the prototype along with peripherals and memories, so all the familiar 
blocks of an SoC are present. In this design the software running in the CPU is used 
mostly to load and control the AV processing, however, in many SoC designs it is 
the software that requires most of the design effort. 

Given that software has already come to dominate SoC development effort, it is 
increasingly common that the software effort is on the critical path of the project 
schedule. It is software development and validation that governs the actual 
completion date when the SoC can usefully reach volume production. In that case, 
what can system teams do to increase the productivity of software development and 
validation? 

To answer this question, we need to see where software teams spend their time, 
which we will explore in the next sections. 

2.1.4. Modeling an SoC for software development 
Software is complex and hard to make perfect. We are all familiar with the software 
upgrades, service packs and bug fixes in our normal day-to-day use of computers. 
However, in the case of software embedded in an SoC, this perpetual fine tuning of 
software is less easily achieved. On the plus side, the system with which the 
embedded software interacts, its intended use modes and the environmental 
situation are all usually easier to determine than for more general-purpose computer 
software. Furthermore, embedded software for simpler systems can be kept simple 
itself and so easier to fully validate. For example, an SoC controlling a vehicle sub-
system or an electronic toy can be fully tested more easily than a smartphone which 
is running many apps and processes on a real-time operating system (RTOS). 

If we look more closely at the software running in such a smartphone, for example 
the Android™ software shown in Figure 15, then we see a multi-layered 
arrangement, called a software stack. This diagram is based on an original by 
software designer Frank Abelson in his book “Unlocking Android.” 
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Taking a look at the stack, we should realize that the lowest levels i.e., those closest 
to the hardware, are dominated by the need to map the software onto the SoC 
hardware. This requires absolute knowledge of the hardware to an address and 
clock-cycle level of accuracy. Designers of the lowest level of a software stack, 
often calling themselves platform engineers, have the task of describing the 
hardware in terms that the higher levels of the stack can recognize and reuse. This 
description is called a BSP (board support package) by some RTOS vendors and is 
also analogous to the BIOS (basic input/output system) layer in our day-to-day PCs. 

The next layer up from the bottom of the stack contains the kernel of the RTOS and 
the necessary drivers to interface the described hardware with the higher level 
software. In these lowest levels of the stack, platform engineers and driver 
developers will need to validate their code on either the real SoC or a fully accurate 
model of the SoC. Software developers at this level need complete visibility of the 
behavior of their software at every clock cycle. 

Figure 15: The Android™ stack (based on source: “Understanding Android”) 
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At the other extreme for software developers, at the top layer of the stack, we find 
the user space which may be running multiple applications concurrently. In the 
smartphone example these could be a contact manager, a video display, an internet 
browser and of course, the phone sub-system that actually makes calls. Each of 
these applications does not have direct access to SoC hardware and is actually 
somewhat divorced from any consideration of the hardware. The applications rely 
on software running on lower levels of the stack to communicate with the SoC 
hardware and the rest of the world on its behalf.  

We can generalize that, at each layer of the stack, a software developer only needs a 
model with enough accuracy to fool his own code into thinking it is running in the 
target SoC. More accuracy than necessary will only result in the model running 
more slowly on the simulator. In effect, SoC modeling at any level requires us to 
represent the hardware and the stack up to the layer just below the current level to 
be validated and optimally, we should work with just enough accuracy to allow 
maximum performance.  

For example, application developers at the top of the stack can test their code on the 
real SoC or on a model. In this case the model need only be accurate enough to fool 
the application into thinking that it is running on the real SoC, i.e., it does not need 
cycle accuracy or fine-grain visibility of the hardware. However, speed is important 
because multiple applications will be running concurrently and interfacing with 
real-world data in many cases. 

This approach of the model having “just enough accuracy” for the software layer 
gives rise to a number of different modeling environments being used by different 
software developers at different times during an SoC project. It is possible to use 
transaction-level simulations, modeled in languages such as SystemC™, to create a 
simulator model which runs with low accuracy but at high enough speed to run 
many applications together. If handling of real-time, real-world data is not 
important then we might be better considering such a virtual prototyping approach.  

However, FPGA-based prototyping becomes most useful when the whole software 
stack must run together or when real-world data must be processed.  

2.1.5. Example prototype usage for software validation 
Only FPGA-based prototyping breaks the inverse relationship between accuracy 
and performance inherent in modeling methodologies. By using FPGAs we can 
achieve speeds up to real-time and yet still be modeling at the full RTL cycle 
accuracy. This enables the same prototype to be used not only for the accurate 
models required by low-level software validation but also for the high-speed models 
needed by the high-level application developers. Indeed, the whole SoC software 
stack can be modeled on a single FPGA-based prototype. A very good example of 
this software validation using FPGAs is seen in a project performed by Scott 
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Constable and his team at Freescale® Semiconductor’s Cellular Products Group in 
Austin, Texas. 

Freescale was very interested in accelerating SoC development because short 
product life cycles of the cellular market demand that products get to market 
quickly not only to beat the competition, but also to avoid quickly becoming 
obsolete. Analyzing the biggest time sinks in its flow, Freescale decided that the 
greatest benefit would be achieved by accelerating their cellular 3G protocol testing. 
If this testing could be performed pre-silicon, then Freescale would save 
considerable months in a project schedule. When compared to a product lifetime 
that is only one or two years this is very significant indeed. 

Protocol testing is a complex process that even at high real time speeds require a 
day to complete. Using RTL simulation would take years and running on a faster 
emulator would still have taken weeks, neither of which was a practical solution. 
FPGAs were chosen because that was the only way to achieve the necessary clock 
speed to complete the testing in a timely manner.  

Protocol testing requires the development of various software aspects of the product 
including hardware drivers, operating system, and protocol stack code. While the 
main goal was protocol testing, as mentioned, by using FPGAs all of these software 
developments would be accomplished pre-silicon and greatly accelerate various end 
product schedules.  

Freescale prototyped a multichip system that included a dual core MXC2 baseband 
processor plus the digital portion of an RF transceiver chip. The baseband processor 
included a Freescale StarCore® DSP core for modem processing and an ARM926™ 
core for user application processing, plus more than 60 peripherals.  

A Synopsys HAPS®-54 prototype board was used to implement the prototype, as 
show in Figure 16. The baseband processor was more than five million ASIC gates 
and Scott’s team used Synopsys Certify® tools to partition this into three of the 
Xilinx® Virtex®-5 FPGAs on the board while the digital RF design was placed in 
the fourth FPGA. Freescale decided not to prototype the analog section but instead 
delivered cellular network data in digital form directly from an Anritsu™ protocol 
test box.  

Older cores use some design techniques that are very effective in an ASIC, but they 
are not very FPGA friendly. In addition, some of the RTL was generated 
automatically from system-level design code which can also be fairly unfriendly to 
FPGAs owing to over-complicated clock networks. Therefore, some modifications 
had to be made to the RTL to make it more FPGA compatible but the rewards were 
significant. 
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Besides accelerating protocol testing, by the time Freescale engineers received first 
silicon they were able to: 

• Release debugger software with no major revisions after silicon. 

• Complete driver software. 

• Boot up the SoC to the OS software prompt. 

• Achieve modem camp and registration.  

The Freescale team was able to reach the milestone of making a cellular phone call 
through the system only one month after receipt of first silicon, accelerating the 
product schedule by over six months.  

To answer our question about what FPGA-based prototyping can do for us, let’s 
hear in Scott Constable’s own words: 

“In addition to our stated goals of protocol testing, our FPGA system 
prototype delivered project schedule acceleration in many other areas, 
proving its worth many times over. And perhaps most important was the 
immeasurable human benefit of getting engineers involved earlier in the 
project schedule, and having all teams from design to software to 
validation to applications very familiar with the product six months before 

Figure 16: The Freescale® SoC design partitioned into HAPS®-54 board 
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silicon even arrived. The impact of this accelerated product expertise is 
hard to measure on a Gantt chart, but may be the most beneficial.  

“In light of these accomplishments using an FPGA prototype solution to 
accelerate ASIC schedules is a “no-brainer.” We have since spread this 
methodology into the Freescale Network and Microcontroller Groups and 
also use prototypes for new IP validation, driver development, debugger 
development, and customer demos.” 

This example shows how FPGA-based prototyping can be a valuable addition to the 
software team’s toolbox and brings significant return on investment in terms of 
product quality and project timescales. 

2.2. Interfacing benefit: test real-world data effects 

It is hard to imagine an SoC design that does not comply with the basic structure of 
having input data upon which some processing is performed in order to produce 
output data. Indeed, if we push into the SoC design we will find numerous sub-
blocks which follow the same structure, and so on down to the individual gate level. 

Verifying the correct processing at each of these levels requires us to provide a 
complete set of input data and to observe that the correct output data are created as a 
result of the processing. For an individual gate this is trivial, and for small RTL 
blocks it is still possible. However, as the complexity of a system grows it soon 
becomes statistically impossible to ensure completeness of the input data and initial 
conditions, especially when there is software running on more than one processor. 

There has been huge research and investment in order to increase efficiency and 
coverage of traditional verification methods and to overcome the challenge of this 
complexity. At the complete SoC level, we need to use a variety of different 
verification methods in order to cover all the likely combinations of inputs and to 
guard against unlikely combinations.  

This last point is important because unpredictable input data can upset all but the 
most carefully designed critical SoC-based systems. The very many possible 
previous states of the SoC coupled with new input data, or with input data of an 
unusual combination or sequence, can put an SoC into a non-verified state. Of 
course that may not be a problem and the SoC recovers without any other part of the 
system, or indeed the user, becoming aware.  

However, unverified states are to be avoided in final silicon and so we need ways to 
test the design as thoroughly as possible. Verification engineers use powerful 
methods such as constrained-random stimulus and advanced test harnesses to 
perform a very wide variety of tests during functional simulations of the design, 
aiming to reach an acceptable coverage. However, completeness is still governed by 
the direction and constraints given by the verification engineers and the time 
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available to run the simulations themselves. As a result, constrained-random 
verification is never fully exhaustive but it will greatly increase confidence that we 
have tested all combinations of inputs, both likely and unlikely.  

In order to guard against corner case combinations we can complement our 
verification results with observations of the design running on an FPGA-based 
prototype running in the real world. By placing the SoC design into a prototype, we 
can run at a speed and accuracy point which compares very well with the final 
silicon, allowing “soak” testing within the final ambient data, much as would be 
done with the final silicon.  

One example of this immersion of the SoC design into a real-world scenario is the 
use made of FPGA-based prototyping at DS2 in Valencia, Spain. 

2.2.1. Example: prototype immersion in real-world data 
Broadband-Over-Powerline (BPL) technology uses normally undetectable signals to 
transmit and receive information over electrical mains powerlines. A typical use of 
BPL is to distribute HD video around a home from a receiver to any display via the 
mains wiring, as shown in Figure 17.. 

At the heart of the DS2's BPL designs lay sophisticated algorithms in hardware and 
embedded software which encode and retrieve the high-speed transmitted signal 
into and out of the powerlines. These powerlines can be very noisy electrical 
environments so a crucial part of the development is to verify these algorithms in a 
wide variety of real-world conditions, as shown in Figure 18.  

Figure 17: BPL technology used in WiFi Range Extender  
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Javier Jimenez, ASIC Design Manager at DS2 explains what FPGA-based 
prototyping did for them . . . 

 “It is necessary to use a robust verification technology in order to develop 
reliable and high-speed communications. It requires very many trials using 
different channel and noise models and only FPGA-based prototypes allow 
us to fully test the algorithms and to run the design’s embedded software 
on the prototype. In addition, we can take the prototypes out of the lab for 
extensive field testing. We are able to place multiple prototypes in real 
home and workplace situations, some of them harsh electrical 
environments indeed. We cannot consider emulator systems for this 
purpose because they are simply too expensive and are not portable.” 

This usage of FPGA-based prototyping outside of the lab is instructive because we 
see that making the platform reliable and portable is crucial to success. We explore 
this further in chapters 5 and 12. 

2.3. Benefits for feasibility lab experiments 

At the beginning of a project, fundamental decisions are made about chip topology, 
performance, power consumption and on-chip communication structures. Some of 
these are best performed using algorithmic or system-level modeling tools but some 
extra experiments could also be performed using FPGAs. Is this really FPGA-based 
prototyping? We are using FPGAs to prototype an idea but it is different to using 
algorithmic or mathematical tools because we need some RTL, perhaps generated 
by those high-level tools. Once in FPGA, however, early information can be 

Figure 18: DS2 making in situ tests on real-world data (source: DS2) 
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gathered to help drive the optimization of the algorithm and the eventual SoC 
architecture. The extra benefit that FPGA-based prototypes bring to this stage of a 
project is that more accurate models can be used which can run fast enough to 
interact with real-time inputs.  

Experimental prototypes of this kind are not the main subject of this book but are 
worth mentioning as they are another way to use FPGA-based prototyping hardware 
and tools in between full SoC projects, hence deriving further return on our 
investment. 

2.4. Prototype usage out of the lab 

One truly unique aspect of FPGA-based prototyping for validating SoC design is its 
ability to work standalone. This is because the FPGAs can be configured, perhaps 
from a flash EEPROM card or other self-contained medium, without supervision 
from a host PC. The prototype can therefore run standalone and be used for testing 
the SoC design in situations quite different to those provided by other modeling 
techniques, such as emulation, which rely on host intervention.  

In extreme cases, the prototype might be taken completely out of the lab and into 
real-life environments in the field. A good example of this might be the ability to 
mount the prototype in a moving vehicle and explore the dependency of a design to 
variations in external noise, motion, antenna field strength and so forth. For 
example, the authors are aware of mobile phone baseband prototypes which have 
been placed in vehicles and used to make on-the-move phone calls through a public 
GSM network. 

Chip architects and other product specialists need to interact with early adopter 
customers and demonstrate key features of their algorithms. FPGA-based 
prototyping can be a crucial benefit at this very early stage of a project but the 
approach is slightly different to the mainstream SoC prototyping.  

Another very popular use of FPGA-based prototypes out of the lab is for pre-
production demonstration of new product capabilities at trade shows. We will 
explore the specific needs for using a prototype outside of the lab in Chapter 12 but 
for now let’s consider a use of FPGA-based prototyping by the Research and 
Development division of The BBC in England (yes, that BBC) which illustrates 
both out-of-lab usage and use at a trade-show. 

2.4.1. Example: A prototype in the real world 
The powerful ability of FPGAs to operate standalone is demonstrated by a BBC 
Research & Development project to launch DVB-T2 in the United Kingdom. DVB-
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T2 is a new, state-of-the-art open standard, which allows HD television to be 
broadcast from terrestrial transmitters. 

The reason for using FPGA-based prototyping was that, like most international 
standards, the DVB-T2 technical specification took several years to complete, in 
fact 30,000 engineer-hours by researchers and technologists from all over the world. 
Only FPGAs gave the flexibility required in case of changes along the way. The 
specification was frozen in March 2008 and published three months later as a DVB 
Blue Book on 26 June 2008. 

Because the BBC was using FPGA-based prototyping, in parallel with the 
specification work, a BBC implementation team, led by Justin Mitchell from BBC 
Research & Development, was able to develop a hardware-based modulator and 
demodulator for DVB-T2.  

The modulator, shown in Figure 19, is based on a Synopsys HAPS®-51 card with a 
Virtex-5 FPGA from Xilinx. The HAPS-51 card was connected to a daughter card 
that was designed by BBC Research & Development. This daughter card provided 
an ASI interface to accept the incoming transport stream. The incoming transport 
stream was then passed to the FPGA for encoding according to the DVB-T2 
standard and passed back to the daughter card for direct up-conversion to UHF. 

The modulator was used for the world’s first DVB-T2 transmissions from a live TV 
transmitter, which were able to start the same day that the specification was 
published. 

Figure 19: DVB-T2 prototype at BBC Research and Development (Source: BBC) 
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The demodulator, also using HAPS as a base for another FPGA-based prototype, 
completed the working end-to-end chain and this was demonstrated at the IBC 
exhibition in Amsterdam in September 2008, all within three months of the 
specification being agreed. This was a remarkable achievement and helped to build 
confidence that the system was ready to launch in 2009. 

BBC Research & Development also contributed to other essential strands of the 
DVB-T2 project including a very successful "PlugFest" in Turin in March 2009, at 
which five different modulators and six different demodulators were shown to work 
together in a variety of modes. The robust and portable construction of the BBC’s 
prototype made it ideal for this kind of PlugFest event.  

Justin explains what FPGA-based prototyping did for them as follows: 

“One of the biggest advantages of the FPGA was the ability to track late 
changes to the specification in the run up to the transmission launch date. It 
was important to be able to make quick changes to the modulator as changes 
were made to the specification. It is difficult to think of another technology that 
would have enabled such rapid development of the modulator and demodulator 
and the portability to allow the modulator and demodulator to be used 
standalone in both a live transmitter and at a public exhibition.” 

2.5. What can’t FPGA-based prototyping do for us? 

We started this chapter with the aim of giving a balanced view of the benefits and 
limitations of FPGA-based prototyping, so it is only right that we should highlight 
here some weaknesses to balance against the previously stated strengths. 

2.5.1. An FPGA-based prototype is not a simulator 
First and foremost, an FPGA prototype is not an RTL simulator. If our aim is to 
write some RTL and then implement it in an FPGA as soon as possible in order to 
see if it works, then we should think again about what is being bypassed. A 
simulator has two basic components; think of them as the engine and the dashboard. 
The engine has the job of stimulating the model and recording the results. The 
dashboard allows us to examine those results. We might run the simulator in small 
increments and make adjustments via our dashboard, we might use some very 
sophisticated stimulus – but that’s pretty much what a simulator does. Can an 
FPGA-based prototype do the same thing? The answer is no.  

It is true that the FPGA is a much faster engine for running the RTL “model,” but 
when we add in the effort to setup that model (i.e., the main content of this book) 
then the speed benefit is soon swamped. On top of that, the dashboard part of the 
simulator offers complete control of the stimulus and visibility of the results. We 
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shall consider ways to instrument an FPGA in order to gain some visibility into the 
design’s functionality, but even the most instrumented design offers only a fraction 
of the information that is readily available in an RTL simulator dashboard. The 
simulator is therefore a much better environment for repetitively writing and 
evaluating RTL code and so we should always wait until the simulation is mostly 
finished and the RTL is fairly mature before passing it over to the FPGA-based 
prototyping team. We consider this hand-over point in more detail in chapter 4. 

2.5.2. An FPGA-based prototype is not ESL 
As we described in our introduction, electronic system-level (ESL) or algorithmic 
tools such as Synopsys’s Innovator or Synphony, allow designs to be entered in 
SystemC or to be built from a library of pre-defined models. We then simulate these 
designs in the same tools and explore their system-level behavior including running 
software and making hardware-software trade-offs at an early stage of the project. 

To use FPGA-based prototyping we need RTL, therefore it is not the best place to 
explore algorithms or architectures, which are not often expressed in RTL. The 
strength of FPGA-based prototyping for software is when the RTL is mature enough 
to allow the hardware platform to be built and then software can run in a more 
accurate and real-world environment. There are those who have blue-sky ideas and 
write a small amount of RTL for running in an FPGA for a feasibility study, as 
mentioned previously in section 2.3. This is a minor but important use of FPGA-
based prototyping, but is not to be confused with running a system-level or 
algorithmic exploration of a whole SoC. 

2.5.3. Continuity is the key 
Good engineers always choose the right tool for the job, but there should always be 
a way to hand over work-in-progress for others to continue. We should be able to 
pass designs from ESL simulations into FPGA-based prototypes with as little work 
as possible. Some ESL tools also have an implementation path to silicon using high-
level synthesis (HLS), which generates RTL for inclusion in the overall SoC 
project. An FPGA-based prototype can take that RTL and run it on a board with 
cycle accuracy but once again, we should wait until the RTL is relatively stable, 
which will be after completion of the project’s hardware-software partitioning and 
architectural exploration phase. 

In chapter 13, we shall explore ways that FPGA-based prototypes can be linked into 
ESL and RTL simulations. The prototype can supplement those simulations but 
cannot really replace them and so we will focus in this book on what FPGA-based 
prototyping can do really well. 

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



    

40 Chapter 2: What can FPGA-based prototyping do for us? 

2.6. Summary: So why use FPGA-based prototyping? 

Today’s SoCs are a combination of the work of many different experts from 
algorithm researchers, to hardware designers, to software engineers, to chip layout 
teams and each has their own needs as the project progresses. The success of an 
SoC project depends to a large degree on the hardware verification, hardware-
software co-verification and software validation methodologies used by each of the 
above experts. FPGA-based prototyping brings different benefits to each of these 
experts:  

For the hardware team, the speed of verification tools plays a major role in 
verification throughput. In most SoC developments it is necessary to run through 
many simulations and repeated regression tests as the project matures. Emulators 
and simulators are the most common platforms used for that type of RTL 
verification. However, some interactions within the RTL or between the RTL and 
external stimuli cannot be recreated in a simulation or emulation owing to long 
runtime, even when TLM-based simulation and modeling is used.. FPGA-based 
prototyping is therefore used by some teams to provide a higher performance 
platform for such hardware testing. For example, we can run a whole OS boot in 
relatively real-time, saving days of simulation time to achieve the same thing.  

For the software team, FPGA-based prototyping provides a unique pre-silicon 
model of the target silicon, which is fast and accurate enough to enable debug of the 
software in near-final conditions.  

For the whole team, a critical stage of the SoC project is when the software and 
hardware are introduced to each other for the first time. The hardware will be 
exercised by the final software in ways that were not always envisaged or predicted 
by the hardware verification plan in isolation, exposing new hardware issues as a 
result. This is particularly prevalent in multicore systems or those running 
concurrent real-time applications. If this hardware-software introduction were to 
happen only after first silicon fabrication then discovering new bugs at that time is 
not ideal, to put it mildly. 

An FPGA-based prototype allows the software to be introduced to a cycle-accurate 
and fast model of the hardware as early as possible. SoC teams often tell us that the 
greatest benefit of FPGA-based prototyping is that when first silicon is available, 
the system and software are up and running in a day. 

The authors gratefully acknowledge significant contribution to this chapter from 

Scott Constable of Freescale Semiconductor, Austin, Texas 
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CHAPTER 3 FPGA TECHNOLOGY 
TODAY: CHIPS AND 
TOOLS 

This chapter’s focus is on the available technology, both hardware and software, 
for FPGA-based prototyping. It describes the main features of FPGAs as core 
technology and associated synthesis software technology as they pertain to FPGA-
based prototyping. Following chapters describe how to use these technologies in 
greater detail. Firstly, describing current FPGA technology in general but focusing 
on the Xilinx® Virtex®-6 family. We will highlight the utility of each feature for 
FPGA-based prototyping, which depends not only on its functionality but also on its 
support in the relevant EDA tool. 

3.1. FPGA device technology today 

FPGAs devices are at the heart of the FPGA-based prototyping physical 
implementation. It is where the SoC design is going to be mapped and realized, so 
we really should take a close look at them and at the tools we use to work with 
them.  

FPGAs have evolved over the years from modest (by today’s standard) 
programmable logic devices to very large logic arrays with versatile architectural 
features, running at impressive clock rates. A glimpse at Figure 20 shows in 
particular, the inexorable progress of FPGA capacity as architectures have improved 
and silicon technology has evolved in accordance with Moore’s Law. Indeed, those 
fabrication lines associated with producing FPGA devices for the main FPGA 
vendors, all of whom are fabless, have benefited from the experience of producing 
very large FPGA die and have been able to tune their processes accordingly. It 
should therefore be no surprise that FPGA progress has been in lockstep with the 
progress of silicon technology as a whole and we should expect it to at least 
continue to do so. In fact, at the time of writing, some exciting new developments 
are taking place with the use of 3D IC technology to allow some FPGAs to leap 
beyond Moore’s Law.  
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Investing in an FPGA-based prototyping approach should not be seen as involving 
any risk because of a scarcity of FPGA technology itself.  

Let’s take a close look at a leading edge technology today; the Virtex®-6 family 
from Xilinx. 

3.1.1. The Virtex®-6 family: an example of latest FPGAs 
As our example in this chapter, we shall focus on Xilinx® FPGAs, since as of the 
writing of this chapter they are the most popular choice for FPGA-based 
prototyping across a wide section of the industry. The Xilinx® Virtex-6 family is 
currently the latest FPGA family from Xilinx, evolving from the Xilinx® Virtex®-5 
architecture, but with enhanced features, greater capacity, improved performance 
and better power consumption.  

As seen in Table 2, fabrication in a smaller CMOS process geometry enables more 
than doubling of logic capacity between the largest Virtex-5 and Virtex-6 devices 
but in addition, the ratio of FF (flip-flop) to logic resources has more than doubled, 
enabling better support for pipelined designs.  

 

 

Figure 20: The evolution of FPGA technology  

 
Copyright © 2011 Xilinx, Inc. 

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



    

FPGA-Based Prototyping Methodology Manual 43 

Table 2: Comparing largest Xilinx® Virtex®-5 and Virtex®-6 devices 

Feature Virtex®-5 Virtex®-6 

Logic Cells 360,000 760,000 

FFs 207,000 948,000 

BlockRAM  18 MB  38 MB 

 

Complete details of the devices and architectures is available by using some of the 
resources in the bibliography and appendices of this book, but let us spend some 
time now understanding each part of the FPGA technology, starting with the basic 
logic blocks and how helpful each may be towards our task of FPGA-based 
prototyping. 

3.1.2. FPGA logic blocks 
Sequential and combinatorial logic is implemented in logic blocks called slices. 
Slices contain look-up tables (LUTs), storage elements, and additional cascading 
logic. 

Far more detail about FPGA technology is available in the references, but since the 
LUT is the fundamental building block in large FPGAs, it is worth a short 
examination here.  

A typical 4-input LUT is at its heart a 16x1 RAM. Any particular bit of the RAM 
will be routed to the LUT’s output depending upon the 4-bit address. Now consider 
filling the 16 bits of RAM with various 1s and 0s so that when the address changes, 
so will the LUT output. We have created a logic function of four inputs and one 
output. All that remains is to so order the 16 bits of RAM to mimic a useful logic 
function. In fact, we can consider the 16 bits of RAM as a Karnaugh map and in the 
very early days, that was actually an option for programming them. 

Thus logic functions, such as parity, XOR, AND, OR, and so forth, may be 
efficiently packed into the smallest number of LUTs to perform the desired 
function. Arithmetic functions may also be placed in LUTs, and there is also 
hardwired carry look-ahead logic in the device so that performance may be 
improved over the use of LUTs alone.  

Nowadays, we have up to 6-input LUTs (hence 64 bits of RAM) and it is all 
“programmed” via synthesis, which creates the LUT contents for us from a high-
level description as required. Then the LUT RAM is loaded upon device 
configuration to create a complex 6-input function from just 64 bits of RAM. LUTs 
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are embedded into other structures which include FFs, carry chains, arithmetic, 
memories and other sophisticated structures.  

In a Xilinx® Virtex-6 device, LUTs are used to implement function generators of six 
independent inputs. Each six-input LUT has two outputs. These function generators 
can implement any arbitrarily defined boolean function of up to six inputs for the 
first output, and up to five inputs for the second output of the same LUT.  

Two slices are combined into a configurable logic block (CLB). CLBs are arranged 
in the FPGA in an array, and are connected to each other and to other types of block 
via interconnect resources. 

In Virtex-6 devices there are two types of slices:  

• SLICEM - a slice in which its LUTs can be used to implement either 
combinatorial functions, a small RAM block or a shift register. 

• SLICEL - a slice in which its LUTs can be used to implement 
combinatorial logic only.  

Figure 21 shows the SLICEM block diagram in which we can see that each slice 
contains four 6-input LUTs (on the left), eight storage elements (four FFs and four 
FF/Latches), and cascading logic. The various paths in the CLB can be programmed 
to connect or by-pass various combinations of the LUTs and FFs. Closer inspection 
also shows additional logic gates for particular carry and cascading functions which 
link resources within and outside the CLBs.  

SLICEL is similar with the exception that the LUTs have only six input and two 
output signals. These resources can be configured for use as memory, most 
commonly RAM, and this is described briefly in section 3.1.3 below. 

If the tools can make optimal use of the CLB in order to implement the design then 
the prototype will probably use less FPGA resources and run faster. This means that 
the tools must understand all the ways that the slice can be configured, and also 
what restrictions there may be on the use of the slice. For example, if the four 
FF/LAT storage elements are configured as latches, then the other four FFs cannot 
be used, hence designs which do not use latches are preferred. Also, control signals 
to the registers are shared so packing of design registers into slices becomes a 
complex task for the place & route tools if there are many different unrelated 
control signals in the design.  
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As prototypers, we typically do not concern ourselves with the final usage of the 
various features of the slice because the implementation tools should automatically 
use an appropriate configuration in order to meet timing constraints. Having 
expertise to that level of detail may sometimes be necessary, however, so we 
recommend the references at the end of this book for further information. 

Figure 21: The Xilinx® Virtex®-6 SLICEM block diagram 

 
Copyright © 2011 Xilinx, Inc. 
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Prototyping utility: very high, the essential building block. Synthesis will make 
good use of all the above features either automatically or under the direction of 
optional attributes and directives in the RTL and/or constraint files.  

3.1.3. FPGA memory: LUT memory and block memory 
SoC designs include multiple memories of various types, e.g., RAM, ROM, 
content-addressable. In the vast majority of cases, these will instantiated memories 
either from a cell library or from a memory generator utility. It is important that the 
FPGA can represent these memories as efficiently as possible. A selection of 
memory types are available in most high-end FPGAs, from small register files and 
shift registers, up to large scale RAMs. As we saw in section 3.1.2, the LUT in a 
Xilinx® Virtex-6 SLICEM logic block may be employed as a small local memory, 
for example, as a 32-bit bit-wide RAM. This allows significant freedom to 
implement the function of small memories found in many places in SoC designs.  

Figure 22: Xilinx® Virtex®- 6 BlockRAM 

 
Copyright © 2011 Xilinx, Inc. 
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For the largest SoC memories, external memory resources are required. The 
FPGA’s own block memory resources will be very useful for smaller memories, and 
from a prototyping perspective, they are the second most critical resource in an 
FPGA. In the case of the Virtex-6 family, this memory resource is called 
BlockRAM and there are between 156 and 1064 BlockRAMs distributed throughout 
a Virtex-6 FPGA device. 

A diagram of the Xilinx® Virtex-6 BlockRAM is shown in Figure 22 

BlockRAMs have the following main features: 

• Configurability: each block is a dedicated, dual-ported synchronous 36 
Kbits RAM block that can be configured as 32K × 1, 16K × 2, 8K × 4, 
4K × 9 (or 8), 2K × 18 (or 16), 1K × 36 (or 32), or 512 x 72 (or 64). Each 
port can be configured independently of the other.  

• Synchronous operation: BlockRAMs can implement any single or dual 
ported synchronous memory. When configured as dual-ported RAM, each 
port can operate at a different clock rate. 

• FIFO logic: dedicated – yet configurable – FIFO logic can be used in 
combination with BlockRAMs to implement address points and 
handshaking flags. FIFO logic’s depth and width can be configurable but 
both write and read sides must be the same width. 

• ECC: when configured to 64-bit wide, each BlockRAM can store and 
utilize eight additional Hamming-code bits and perform single-bit error 
correction and double-bit error detection (ECC) during the read process. 
The ECC logic can also be used when writing to, or reading from external 
64/72-bit wide memories. 

BlockRAMs in the FPGA can be combined to model either deeper or wider memory 
SoC memories. This is commonly performed by the synthesis tools, which 
automatically partition larger memories into the multiple BlockRAMs. Some 
manipulation of the design from the SoC instantiation into the final FPGA 
BlockRAMs will be required and this is covered in detail in chapter 7. 

Prototyping utility: BlockRAMs are major building blocks, inferred automatically 
by synthesis tools. At the time of writing, however, FIFO logic is not automatically 
supported by synthesis tools but can be included via core instantiation. For more 
details on memory implementation, refer to chapter 7. 

3.1.4. FPGA DSP resources 
SoC designs often contain arithmetic functions, such as multipliers, accumulators 
and other DSP logic. High-end FPGAs, such as the Xilinx® Virtex-6 devices address 
these needs by providing a finite number of dedicated DSP blocks; in the Virtex-6 
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family these are called DSP48E1 blocks. These are dedicated, configurable and 
low-power DSP slices combining high speed with small size, while retaining system 
design flexibility. Figure 23 shows a block diagram of the DSP48E1 in detail. 

As shown in the block diagram, each DSP48E1 slice consists of a dedicated 25 × 18 
bit two's-complement multiplier and a 48-bit accumulator, both capable of operating 
at 600 MHz throughput. The multiplier can be dynamically bypassed, and two 48-
bit inputs can feed a single-instruction-multiple-data (SIMD) arithmetic unit (dual 
24-bit add/subtract/accumulate or quad 12-bit add/subtract/accumulate), or a logic 
unit that can generate any one of 10 different logic functions of the two operands. 

The DSP48E1 includes an additional pre-adder, typically used in symmetrical 
filters. This feature improves performance in densely packed designs and helps 
reduce the number of logic slices that would be required before or after the DSP 
block to complete a specific topology. 

The DSP48E1 slice provides extensive pipelining and extension capabilities such as 
wide dynamic bus shifters, memory address generators, wide bus multiplexers, and 
memory-mapped IO register files. The accumulator can also be used as a 
synchronous up/down counter. The multiplier can perform logic functions (AND, 
OR) and barrel shifting. 

Prototyping utility: very high, a major building block. Most features are inferred 
automatically by synthesis tools, with the exception of pattern detect which can be 
included via core instantiation. 

Figure 23: Xilinx® Virtex®-6 DSP48E1 Slice 
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3.1.5. FPGA clocking resources 
Clock resources and clock networks are a major differentiator between the FPGA 
and SoC technologies. Whereas SoC designers have almost complete freedom to 
specify as many clock networks as they can imagine of many varieties, there is a 
real and finite limit on how many of these can be implemented in an FPGA. The 
mapping of SoC clocks into FPGA clock resources can be the cause of significant 
project delays if not catered for properly by the SoC team, for example by providing 
a simplified version of the SoC clocking. 

Prototyping is best performed on the RTL of the design before any clock tree 
synthesis, before tree segmentation for test and before clock manipulation for power 
reduction. Nevertheless, even the raw RTL from an SoC design may include some 
very sophisticated clock networks and the FPGA device will need to handle these. 
Indeed, in some designs, it is the finite number of clock resources in an FPGA that 
is the limiting factor, rather the device capacity or performance. It is therefore 
necessary to find a way to match FPGA clock resources to those of the SoC. This 
may be achieved by simplifying the original clock network (see Design-for-
Prototyping recommendations in chapter 9) or by maximizing use of available 
FPGA clocks (see chapter 7).  

Clocking resources can be divided into clock generation and clock distribution. 

3.1.5.1. FPGA clock generation 
Clocks are generated in configurable unit called CMT (clock management tile) 
which, in the Xilinx® Virtex-6 family, includes two mixed-mode clock managers 
(MMCMs). The MMCM is a multi-output frequency synthesizer based around a 
phase-locked loop (PLL) architecture with enhanced functions and capabilities. 
Each MMCM within the CMT can be treated separately; however, there exists a 
dedicated routing between MMCMs to allow more complex frequency synthesis. A 
diagram of the CMT is shown in Figure 24, giving a high-level view of the 
connection between the various clock input sources and the MMCM-to-MMCM 
connections. 

The voltage controlled oscillator (VCO) in the PLL is capable of running in the 
400MHz to 1600MHz range and minimum input frequency is as low as 10MHz, and 
has programmable frequency dividers and phase selection registers to provide 
output taps at 45° intervals. 

Other programmable features include PLL bandwidth selection, fractional counters 
in either the feedback path (enabling the PLL to act as a clock multiplier) or in one 
output path, and fixed or dynamic phase shift in small increments. 
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All this adds up to a very capable clock generation block and there are up to nine of 
these in each FPGA. We should therefore not be short of options when it comes to 
mapping SoC clock networks into the prototype. 

Prototyping utility: very high, major building block. Many clock features are not 
inferred automatically and must be instantiated into an FPGA version of the RTL. 

3.1.5.2. FPGA clock distribution 
FPGA vendors, for decades, have put a great deal of effort into producing devices 
with as many clocks as possible yet without being wasteful of area resources. As a 
result, FPGAs are very good for implementing regular synchronous circuits with a 
finite number of clock networks. For efficiency, there is a hierarchy of different 
clock resources on most devices from global low-skew clocks down to local low-
fanout clocks. Once again it is the task of synthesis and place & route to ensure 
good usage of these resources but also, manual intervention may be sometimes 
required to ease the task, as will be discussed in chapter 7.  

In the case of the Xilinx® Virtex-6 family, each FPGA provides five different types 
of clock lines to address the different clocking requirements of high fanout, short 
propagation delay, and accomplish low skew across the device.  

Figure 24: Xilinx® Virtex®-6 Clock Management Tile (CMT) 
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Xilinx® Virtex -6 clock distribution resources include: 

• Global clock lines: each Virtex-6 FPGA has 32 global, high fanout clock 
lines that can reach every FF clock, clock enable, set/reset, as well as many 
logic inputs. There are 12 global clock lines within any region. Global 
clock lines can be driven by global clock buffers, which can also perform 
glitch-less clock multiplexing and the clock-enable function. Global clocks 
are often driven from the CMT, which can completely eliminate the basic 
clock distribution delay. 

• Regional clocks: can drive all clock destinations in their region as well as 
the region above and below. A region is defined as any area that is 40 IOs 
and 40 CLBs high and half the chip wide. Virtex-6 FPGAs have between 
six and 18 regions. There are six regional clock tracks in every region. 
Each regional clock buffer can be driven from either of four clock-capable 
input pins and its frequency can optionally be divided by any integer from 
one to eight. 

• IO clocks: especially fast clocks that serve only IO logic and 
serializer/deserializer (SERDES) circuits. Virtex-6 devices have a high-
performance direct connection from the MMCM to the IO directly for low-
jitter, high-performance interfaces. 

Prototyping utility: very high, major building block, automatically inferred by 
synthesis tools. If regional clocks are required, then location constraints are often 
necessary in order to associate clock load with specific regions.  

3.1.6. FPGA input and output 
As we shall see later as we discuss multi-FPGA-based prototyping hardware, the 
ability to pass synchronous signals between FPGA devices, even to the point of 
multiplexing different signals onto the same wire, depends on the presence of fast 
and flexible IO pins and clocking resources at the FPGA boundaries. As with 
clocking, the finite number of IO pins can often be a more limiting factor than 
device capacity or internal performance. 

In Xilinx® Virtex-6 devices there are 240 to 1200 IO pins depending on device and 
package size. Each IO pin is configurable and can comply with numerous IO 
standards, using up to 2.5V. With the exception of supply pins and a few dedicated 
configuration pins, all other package pins have the same IO capabilities, constrained 
only by certain banking/grouping rules. 

All IO pins are organized in banks, with 40 pins per bank. Each bank has one 
common VCCO output supply-voltage pin, which also powers certain input buffers. 
Some single-ended input buffers require an externally applied reference voltage 
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(VREF). There are two VREF pins per bank (except configuration bank 0). A single 
bank can have only one VREF voltage value. 

Characteristics: single-ended outputs use a conventional CMOS push/pull output 
structure driving high towards VCCO or low towards ground, and can be put into 
high-Z state. In addition, the slew rate and the output strength are also 
programmable. The input is always active but is usually ignored while the output is 
active. Each pin can optionally have a weak pull-up or a weak pull-down resistor. 
Further details of the IO pins’ single-ended operation are: 

• IO logic: each IO pin has an associated logic block in which a number of 
options can be selected: 

• Configuration: all inputs and outputs can be configured as either 
combinatorial or registered. Double data rate (DDR) is supported by all 
inputs and outputs.  

• Delay: any input or output can be individually delayed by up to 32 
increments of ~78ps each. This is implemented as IODELAY. The number 
of delay steps can be set by configuration and can also be incremented or 
decremented dynamically while in use. IODELAY works with a frequency 
close to 200MHz. Each 32-tap total IODELAY is controlled by that 
frequency, thus unaffected by temperature, supply voltage, and processing 
variations. 

• Drive current: the FPGAs might be required to interface to a wide variety 
of peripherals, some mounted on daughter cards that have yet to be created. 
Virtex-6 FPGA IO pins can be configured to support different drive 
strengths from 2mA up to 24mA . 

Any pair of IO pins can be configured as differential input pair or output pair. 
Differential input pin pairs can optionally be terminated with a 100Ω internal 
resistor. All Xilinx® Virtex-6 devices support differential standards beyond LVDS: 
HT, RSDS, BLVDS, differential SSTL, and differential HSTL. 

• ISERDES and OSERDES: SERDES blocks reside inside the IO structure. 
Each input has access to its own deserializer (serial-to-parallel converter) 
with programmable parallel width of 2, 3, 4, 5, 6, 7, 8, or 10 bits and each 
output has access to its own serializer (parallel-to-serial converter) with 
programmable parallel width of up to 8-bits wide for single data rate 
(SDR), or up to 10-bits wide for double data rate (DDR). We shall see in 
chapter 8 how the SERDES blocks can be used to great effect in enabling 
high-speed time-division multiplexing of signals between FPGAs. 

There are other more complex IO blocks, such as gigabit transceivers and PCIe 
blocks and there are references in the bibliography where the reader can find out 
more about using these blocks for specific purposes in an FPGA-based prototype. 
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There is also discussion in chapter 10 about the use of built-in IP in the FPGA to 
mimic the IP in the SoC under test. 

Prototyping utility: IOs are major building blocks for design top-level IO and for 
inter-FPGA connection. Default single ended and DDR IOs are automatically 
inferred. Different IO types are selected by attributes assignments in the synthesis 
constraint manager and then are passed to the place and route tools. IODELAYs, 
and IO SERDES can be included only via core instantiation.  

3.1.7. Gigabit transceivers 
Increasingly common in ASIC and SoC designs are fast serial communication 
channels, used to connect ICs over a backplane, or over longer distances. These are 
always instantiated as black boxes in the RTL design with references to physical IO 
elements in the final silicon layout. We shall see in later chapters how this might be 
handled in an FPGA-based prototype. To model these ultra-fast serial transceivers 
in an FPGA requires specialized and dedicated on-chip circuitry, including 
differential IO capable of coping with the signal integrity issues at these high data 
rates. 

In the Xilinx® Virtex-6 family this high-speed serial IO is enabled by the presence 
of gigabit transceiver blocks, or GTX blocks for short. A detailed schematic of a 
GTX block is shown in Figure 25, which shows that as well as the physical transmit 
and receive buffers, the GTX blocks also have the ability to implement the physical 
media attachment (PMA) and physical coding sub-layer (PCS). Each GTX 
transceiver also has a large number of user-configurable features and parameters. 

Each transceiver is a combined transmitter and receiver capable of operating at a 
data rate between 155Mb/s and 6.5Gb/s. Both the transmitter and receiver are 
independent circuits that use separate PLLs to multiply the reference frequency 
input by certain programmable numbers between two and 25, to become the bit-
serial data clock. 

Considering first the transmitter, this is fundamentally a parallel-to-serial converter 
with a conversion ratio of 8, 10, 16, 20, 32, or 40. The transmitter output drives the 
PC board with a single-channel differential current-mode logic (CML) output 
signal. 

In its turn, the receiver is fundamentally a serial-to-parallel converter, converting 
the incoming bit-serial differential signal into a parallel stream of words, each 8, 10, 
16, 20, 32, or 40-bits wide. The receiver takes the incoming differential data stream, 
feeds it through a programmable equalizer – to compensate for PC board and other 
interconnect characteristics – and uses the FREF input to initiate clock recognition.  
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The different members of the Xilinx® Virtex-6 family have between 8 and 36 (GTX) 
circuits each with the exception of the largest device, the LX760, which does not 
have GTX capability. Therefore, if we need to prototype high-speed serial IP in our 
designs then some mix of FPGAs may be required and we shall explore this in 
chapter 5.  

Prototyping utility: while a very powerful capability, due to their complexities and 
configurable options, GTX and their associated logic are not automatically inferred 
by synthesis tools. These blocks however, can be included via core instantiation.  

3.1.8. Built-in IP (Ethernet, PCI Express®, CPU etc.) 
Typically, many networking and communications SoC designs include Ethernet or 
PCI Express channels, so how would these be modeled in an FPGA-based 
prototype? FPGAs become ever more capable in their ability to implement standard 
interfaces at the MAC (Media Access Controller) and PHY (Physical interface 
transceiver). If the chosen FPGA has these capabilities built-in, then these can be 
used to substitute for those physical IP blocks which will eventually be embedded in 
the SoC but which probably appear as black boxes in the RTL. There is more 
information on this substitution in chapter 10.  

Figure 25: Xilinx® Virtex®-6 GTX block schematic 
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In the case of Virtex-6 FPGAs, PCIe and Ethernet MAC and PHY are integrated 
into the FPGA fabric.  

For Ethernet, there are up to four tri-Mode (10/100/1000 Mb/s) Ethernet MAC 
(TEMAC) blocks designed to the IEEE Std 802.3-2005. These can be connected to 
the FPGA logic, the GTX transceivers, and the IO resources and support speeds up 
to 2.5Gbit/sec. 

For PCIe, all Xilinx® Virtex-6 LXT and SXT devices include an integrated interface 
block for PCI Express technology that can be configured as an endpoint or root port, 
designed to the PCIe base specification revision 2.0. This block is highly 
configurable to system design requirements and can operate 1, 2, 4, or 8 lanes at the 
2.5Gbit/s data rate and the 5.0Gbit/s data rate. 

Some FPGAs include CPU hard cores, often an ARM IP core of some kind. These 
are optimized for FPGA and will run at much higher speed than the RTL of the SoC 
equivalent when synthesized into FPGA, often by a factor of 10:1. Their usefulness 
for prototyping can be very high but only if the FPGA’s core matches the actual 
cores built into the SoC. In addition, most SoC designs today are running multiple 
CPU cores, often with different capabilities or configurations. With a single, hard 
CPU core in each FPGA, the partitioning criteria will be driven by the need to split 
the design with one CPU in each FPGA. This may not be ideal for running the bus 
and other common design elements so the advantage gained in CPU speed may not 
translate to significant gain in overall prototype speed.  

If there is much compromise in replacing the SoC core with a limited subset in the 
FPGA, then we might be better off using an external test chip or compromising on 
CPU speed rather than functionality. There is more discussion on IP in prototyping 
in chapter 10. In any case, if the CPU core is available in the largest FPGA in the 
family so that we do no compromise total resources, then it does not harm us to 
have the CPU present and we might be able to use it in a future design. In some 
cases, where Design-for-Prototyping procedures have been adopted by a team, the 
SoC CPU might even be chosen because it has a very close equivalent available in a 
FPGA. Our manifesto for Design-for-Prototyping procedures, of which this is 
admittedly an extreme example, is included in chapter 9. 

Prototyping utility: while very powerful capability, hard IP blocks are not 
automatically inferred by synthesis tools. These blocks however, can be included via 
core instantiation as replacement for SoC blocks.  

3.1.9. System monitor 
Prototype designs can exercise a large proportion of an FPGA at high speed, so 
power dissipation, heating, voltage rails etc. may come under stress, especially if the 
design is not performing as expected, or under the influence of a bug. As we shall 
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see in the chapters about choosing or building FPGA platforms, a built-in monitor 
of the FPGAs in the working prototype can be crucial in avoiding damage due to 
incorrect operation.  

Each Xilinx® Virtex-6 FPGA contains a system monitor circuit providing thermal 
and power supply status information. Sensor outputs are digitized by a 10-bit 200k 
sample-per-second analog-to-digital converter (ADC). This ADC can also be used 
to digitize up to 17 external analog input channels. The system monitor ADC 
utilizes an on-chip reference circuit. In addition, on-chip temperature and power 
supplies are monitored with a measurement accuracy of ±4°C and ±1% respectively. 

By default, the system monitor continuously digitizes the output of all on-chip 
sensors. The most recent measurement results together with maximum and 
minimum readings are stored in dedicated registers for access at any time through 
the DRP or JTAG interfaces. Alarms limits can automatically indicate over 
temperature events and unacceptable power supply variation. A specified limit (for 
example: 125°C) can be used to initiate an automatic power down. 

The system monitor does not require explicit instantiation in a design. Once the 
appropriate power supply connections are made, measurement data can be accessed 
at any time, even before configuration or during power down, through the JTAG 
test access port (TAP). 

We will see in chapter 5 how the system monitor can be used on a prototype board. 

Prototyping utility: this block is primarily a “house-keeping” monitor, usually 
external to the actual design, and typically used via the JTAG chain to read the 
device and system’s health. It does however offer a unique opportunity to include 
ADC in the design and if desired can be included via core instantiation. For more 
details on core instantiation, refer to Chapter 10. 

3.1.10. Summary of all FPGA resource types 
Before we move on to the tools and flows in FPGA-based prototyping, let us 
summarize the different FPGA resources that we have highlighted so far and their 
usefulness for prototyping.  

Table 3 summarizes the different blocks found in most large-scale FPGAs today. 
All FPGA resources are useful or indeed they would not be there in the first place, 
however, they are aimed at a wide range of users who employ their FPGAs in real 
world production applications. Their usefulness in prototyping SoCs will depend 
upon the ease with which the SoC elements can be mapped into them and the 
compromise which may be required to do so. Let us now look closely, then, at the 
tools which enable us to use these FPGA resources to our best ability during an 
FPGA-based prototyping project. 
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3.2. FPGA–based Prototyping process overview 

Figure 26 shows the basic flow that we follow in the FPGA-based prototyping 
process: Let’s quickly look at each of these steps in turn. 

 

• Synthesis: may e performed before or after partitioning. The process of 
converting RTL into an FPGA netlist. The synthesis process generates an 
FPGA netlist for the device of choice, and the implementation constraints 
to be used by the FPGA back-end tools. In addition, some synthesis tools 
provide early estimation of the expected performance, which allows the 

Table 3: Summary of usefulness of various FPGA resources 

Resource Utility for prototyping Inferred? 

Logic Blocks Very high, the essential 
building block 

Always 

RAM Blocks High major building block Usually 

DSP Blocks High, major building block.  Usually 
(some IP instantiation) 

Clock 
Generation 

Very high, an essential but 
limited resource 

Often 
(may need RTL change) 

Clock 
Distribution 

Very high, global nets are 
precious resource 

Usually 

General IO  Very high, an essential and 
precious resource 

Always 
(type set by attribute) 

Fast Serial IO High, useful for prototyping 
standard IP blocks 

Seldom 
(requires IP instantiation) 

Hard IP Very powerful blocks but 
utility is design dependent.  

Never 
(requires IP instantiation) 

System 
Monitor 

High, will protect investment 
in FPGA hardware 

Never 
(requires design in) 
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user to make changes to the design or constraints before spending any time 
in the potentially lengthy back-end process.  

• Design adaptation for FPGA: in this step, the SoC RTL design is 

modified to better fit the FPGA technology and the specific prototyping 
platform. Typical modifications to the SoC RTL include the removal of 
blocks not to be prototyped, replacing some SoC-specific structures with 
FPGA structures like clock generation and other IP, and resizing blocks 
like memories to better fit in FPGA. 

• Partitioning: the process in which the FPGA-ready version of the SoC 
RTL design is divided into blocks that map into individual FPGAs. This 
step is needed for designs that do not fit into a single FPGA. Partitioning 

Figure 26 Basic FPGA-based Prototyping flow 

 

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



    

FPGA-Based Prototyping Methodology Manual 59 

can be done manually or using partitioning tools. A number of approaches 
to partitioning were explored in chapter 3.  

• Constraint generation: this is a convenient point in the flow to enter the 
various implementation constraints such as timing and pin placements. 
Although constraints may be generated and applied to the back-end tools 
after synthesis, doing so prior to the synthesis step allows synthesis to 
produce an FPGA netlist that is more optimized to meet the area/speed 
constraints after place & route.  

• Place & route: the process of converting the FPGA netlist and the user 
constraints into an FPGA bit stream which will be loaded into the FPGA to 
provide it with the design functionality. This is often simply referred to as 
place & route, but in fact involves a number of steps such as mapping, 
place & route and timing analysis.  

We will take a closer look in particular at all of the implementation steps but we do 
not plan to cover the verification stages in this book except to recommend that as 
much as possible of the existing SoC verification framework is maintained for use 
during the prototyping project. 

At all points in the flow it is important to have ways to verify our work to that point. 
Re-using the original RTL testbenches and setup may require some adaptation to 
match the partitioned design. For example, after partitioning, a top-level netlist is 
required to link the partitioned FPGA netlists into a whole SoC design; often this 
top-level can be generated by the partitioning tools themselves.  

Even if not for the whole design but for only sub-functions, maintaining a 
verification framework will pay us back later when we need to check functional 
issues seen in the design on the bench.  

3.3. Implementation tools needed during prototyping 

We have now explored the capability of the FPGA devices in some detail but these 
are of little interest if they cannot be readily employed in our prototype project. In 
the prototyping utility boxes above we have already mentioned that some resources 
are automatically employed whereas others will need some particular consideration. 
The ability of EDA tools for FPGA to make good use of the device resources is 
equally important as the resources themselves. We will now give an overview of the 
main EDA tools in the FPGA flow today, namely synthesis tools, partitioning tools, 
place & route tools and debug tools. We aim to keep the explanations as generic as 
possible and in each case give only small examples of tools from our own 
companies. More specific detail on tools available from Synopsys® and Xilinx® is 
available via the references. There is also more detail on the use of the tools in other 
chapters, particularly in chapters 7, 8 and 11. 
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3.3.1. Synthesis tools 
As with almost every EDA tool flow, at the heart we find synthesis. For FPGA-
based prototyping, we find synthesis converting the SoC RTL into a number of 
FPGA netlists to be used by the back-end tools, which then finally place and route 
the FPGA. However, at the same time the synthesis process is expected to infer 
regular structures from the RTL, optimize them and efficiently map them into the 
FPGA, meeting both space and performance goals.  

As a brief illustration of this process, Figure 27 shows a screenshot of a Synopsys 
FPGA synthesis tool, and three views of the same small ALU design. In the bottom 
left is a text editor showing the RTL and the behavior extracted from that during the 
first stage of synthesis is shown above it. We can see a mux selecting the result of 
three different operations upon the inputs dependent upon an opcode and its output 
passing to a register. On the right of the screenshot we see a part of the final logic 
created by the synthesis, in particular note the use of LUTs for the multiplexing, FFs 
for the register and a DSP48 block used by default to implement the multiplier.  

In the above example, we might decide that we do not want to waste such a 
powerful resource as a DSP48 block to implement a simple multiplier, so we could 

Figure 27: Synplify Pro® FPGA synthesis screenshot 
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add an extra command, called an attribute, into the RTL or a parallel constraint file 
in order to override the default mapping. This is exactly the kind of control that a 
synthesis user has upon the way that the RTL is interpreted and implemented. 

Let us a look a little more closely at the way that synthesis maps RTL to FPGA 
resources. 

3.3.2. Mapping SoC design elements into FPGA  
This section describes the tool’s features that support mapping of the SoC design 
into an FPGA, making use of our example FPGA devices from the Xilinx® Virtex-6 
family. Many of the FPGA’s resources are supported transparently to the user 
because the synthesis tool automatically infers FPGA structures to implement user’s 
RTL with minimal or no intervention by the user. 

3.3.2.1. Logic mapping 
As logic is the primary resource for logic prototyping, mapping RTL into CLBs is 
an elementary function. For example, for the Xilinx® Virtex-6 architecture, 
synthesis should be able to do the following: 

• Infer LUT6 where up to six input functions are needed. LUTs will be 
cascaded or split when more or less inputs are needed. For example, dual 
LUT5s will be inferred automatically when two functions sharing up to 
five common inputs can occupy the same CLB. 

• Memory usage in SLICEM type slices will be inferred to implement 
distributed RAM and fast shift registers. 

• Clock enables will be inferred, with the ability to re-wire low-fanout clock 
enable to LUTS to maximize slice utilization. 

• Set/reset, synchronous or asynchronous will be inferred including 
prevention/arbitration of simultaneous set/reset assertion, avoiding 
unpredictable behavior in silicon. For example, Synplify Pro detects such a 
possibility, issues a warning and then generates a logically equivalent 
single asynchronous reset logic. 
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3.3.2.2. Memory block mapping 
SoC designs include many and varied memory elements and we need to map these 
efficiently to avoid wasting our FPGA resources. Synthesis should be able to 
perform the following: 

• Automatically infer single and dual ported memory structures into block 
RAMs.  

• Pack adjacent input and output registers of pipeline stages into the 
BlockRAMs automatically. 

• Make use of BlockRAM operational modes including read-first, write-first 
and no-change: preserving the initial value of either of the RAM’s input or 
output ports – as required to match the SoC’s behavior. 

• Automatically split larger memories beyond the capacity of a BlockRAM 
into multiple blocks and add the necessary logic to split and merge address 
and data as required. The topology of the split (i.e., optimized for speed or 
area) should also be controllable. 

3.3.2.3. DSP block mapping 
Many SoC designs include blocks which make extensive use of arithmetic and 
algorithmic function. If the tools can map these into the DSP blocks in the FPGA by 
default then a significant proportion of the FPGA resources can be liberated for 
other purposes. 

• Adders/subtractors: FPGA logic elements have simple gate structures or 
configuration modes which more efficiently map carry functions enabling 
good implementation of basic arithmetic. Synthesis will automatically use 
these structures. 

• Multipliers: Synplify automatically infers the use of DSP blocks for 
multiply and accumulate functions and operators in the RTL (see section 
3.3.1 above for an example). 

• Pre-adder: synthesis should infer an optional 25-bit adder before the 
multiplier in a DSP48 in a Xilinx® Virtex-6 device. 

• DSP Cascading: for wider arithmetic in the RTL, synthesis should 
automatically infer multiple DSP blocks using dedicated cascading 
interconnect between the DSP blocks when present, for example the ports 
between the DSP48E blocks in a Xilinx® Virtex-6 device. 
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• Pipelining support: if pipeline registers are present in an arithmetic 
datapath then these will automatically be packed into the DSP blocks if 
appropriate.  

As we can see above, the FPGA synthesis tools have intimate knowledge of the 
FPGA architecture and so as prototypers, we can rely on most of our SoC RTL 
being mapped automatically and efficiently without having to carve out swathes of 
RTL and replace it with FPGA-equivalent code. 

3.3.3. Synthesis and the three “laws” of prototyping 
So far we have seen that synthesis tools have the task of mapping the SoC design 
into available FPGA resources. The more this can be automated, the easier and 
faster will be the process of building an FPGA-based prototype.  

In effect, the synthesis has the task of confronting the so-called “three laws of 
prototyping” as seen in Table 4 below. 

The clear ramifications of these “laws” are that: 

a) the design will probably need partitioning, 

b) the design may not be able to run at full SoC speed, and 

c) the design may need some rework in order to be made FPGA-ready.  

Admittedly, these are really more challenges than laws and they are sometimes 
broken, for example, some SoC designs do indeed need only one FPGA to 
prototype, thus breaking the first law. However, the three laws are a good reminder 
of the main problems to be overcome when using FPGA-based prototyping, and of 
the steps required in making the design ready for FPGA. 

The following sections describe the main features available in synthesis tools, with 
some reference to Synopsys tools, but for further information on these, please see 
the references.  

One of the most important reasons to perform prototyping is to achieve the highest 
possible performance compared with other verification methods such as emulation; 
however, poor synthesis (or poor use of synthesis) can jeopardize this aim. It is 
tempting to use a quick-pass low-effort synthesis, or to reduce the target for 
synthesis in order to achieve faster runtime and indeed, some synthesis tools allow 

Table 4: The three “laws” of prototyping 

 Law 1: SoCs are larger than FPGAs 

 Law 2: SoCs are faster than FPGAs 

 Law 3: SoC designs are FPGA-hostile 
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for exactly this kind of trade-off. In some design blocks, however, the best possible 
synthesis results are essential in order to meet the overall performance target for the 
prototype.  

The most important requirement for the synthesis is to overcome the implications of 
the third law of prototyping i.e., the removal or neutralization of the FPGA-hostile 
elements in the SoC design. Only then can we map the design efficiently into the 
target FPGA’s resources and we will explain these fully in chapter 7. 

There are a number of features of synthesis tools which are often beneficial to 
prototype developers. These include: 

• Fast synthesis: a mode of operation in which the synthesis tool ignores 
some opportunities for complete optimization in order to complete the 
synthesis sooner. In this way it is possible for runtime to be made 2x – 3x 
faster than normal at the expense of FPGA performance. If a synthesis 
runtime is measured in hours, then this fast mode will save many days or 
weeks of waiting over the duration of a prototyping project. Fast synthesis 
runtime is also useful during initial partitioning and implementation trials, 
where only estimated design size and rough performance are required.  

• Incremental synthesis: a feature in which the tool collaborates with the 
incremental implementation of the place & route tool (described below). In 
this mode of operation, the design is considered as blocks or sub-trees 
within each FPGA. The synthesis tool maintains a historical version of 
each sub-tree and can notice if new RTL changes impact each of the sub-
trees. If the incremental synthesis recognizes that a sub-tree has not 
changed then it will avoid re-synthesis and instead use the historical 
version of that sub-tree, thus saving a great deal of time. The decisions of 
the incremental synthesis engine are forward annotated to the back-end 
place & route tools as placement constraints so that previous logic 
mapping and placement is maintained. A considered use of incremental 
synthesis can dramatically reduce the turn-around time from small design 
changes to final implemented design on the FPGA boards. Further details 
of incremental flows are given in chapter 11. 

• Physical synthesis: a feature in which the synthesis is optimized for 
physical implementation where the tool accounts for actual routing delays 
and produces logic placement constraints to be used by the place & route 
tools. This feature generally yields a faster and a more accurate timing 
closure for the designs. This may seem contradictory to our consideration 
of fast synthesis above but it is often the case where one particular FPGA 
in a prototype struggles to reach full speed and so selective use of physical 
synthesis is one way that an FPGA can be brought more swiftly to timing 
closure. 
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Synthesis tools are available from third-party EDA vendors and also from FPGA 
vendors. We will focus on Synopsys’ synthesis tools as necessary for our examples 
in this chapter but not to any great detail. For specific information on Synopsys 
FPGA synthesis, please note the references at the back of this book. 

3.3.4. Gated clock mapping 
One function of synthesis beyond mapping to FPGA resources is the ability to 
manipulate the design automatically in order to avoid RTL changes. The most 
significant example of this is the removal of clock gating in the SoC design in order 
to simplify the mapping to FPGA. 

Clock gating is common in SoC designs but is not a good choice for FPGA 
technology where dedicated low-skew clock distribution nets deliver un-gated clock 
to all registers on the die. Instead of gating clocks found in the RTL, the Synopsys 
Synplify® tool removes the combinatorial gating from the clock nets and applies the 
gating logic to the clock enable pin available on most sequential elements in the 
FPGA.  

Figure 28 shows a few examples of clock-gating translations but there will be much 
more description of the manipulation of gated clocks in chapter 7. Synthesis needs 
to be guided in which clocks to preserve, how sequential elements, including 
RAMs, can handle clock enables and even how black-box items can be 
manipulated. This is all achieved without altering the RTL. 

The resulting implementation after clock gate removal is logically equivalent to the 
input logic, but is more resource efficient and virtually eliminates setup and hold 
time violations due to the low skew clock distribution.  

Finally, the synthesis is only part of the flow and an important consideration is how 
well the synthesis can collaborate with the other parts of the flow, particularly the 
place & route back-end in order to ensure that all tools work towards common 
goals. Let’s look now at the important subject of tools that perform design 
partitioning. 
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3.4. Design partitioning flows 

Even though FPGA capacity has increased in line with Moore’s Law, the SoC 
designs themselves have also increased in size and complexity so SoC designs are 
still usually larger than today’s largest FPGA devices. As a result, the first law of 
prototyping is as true now as it was when first proposed at the start of the 
millennium and the prototyper is faced with the task of partitioning the SoC design 
into multiple, smaller FPGA devices. 

There are two main approaches to partitioning: pre-synthesis or post-synthesis. We 
will consider each in turn here along with a less common approach of partitioning 
the actual SoC netlist. 

Figure 28: Examples of gated-clock removal performed by synthesis. 
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3.4.1. Pre-synthesis partitioning flow 
When the partitioning is performed on the design before synthesis, the input format 
is the RTL of the SoC design. The partitioning task is a process of creating FPGA-
sized sub-designs from the overall design tree and can be automated to some degree. 
Figure 29 shows the steps in a pre-synthesis partitioning tool flow. 

 
The flow is often performed top-down, which requires that the partitioning tools and 
the workstations upon which they run have the capacity to accommodate the whole 
SoC design, which can amount to gigabytes of data. Therefore, tool efficiency and 
runtime can become important factors and consideration needs to be given to the 

Figure 29: Pre-synthesis partitioning flow 
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turn-around time from RTL changes to having a new version of the design 
partitioned and running on the prototype board. 

Originally, the pre-synthesis partitioning approach dictated that compilation and 
synthesis occurred on the whole design, potentially resulting in long runtimes and 
demanding large server resources. However, recent advances mean that the FPGA 
synthesis is performed on all FPGAs in parallel. This requires that the partitioning 
makes an estimate of final results for each FPGA in order to infer timing budgets 
for the IO on each device. The benefit is that total runtime is greatly improved by 
running multiple synthesis tools in parallel. Turn-around time for each RTL change 
and bug fix is reduced accordingly, especially if incremental synthesis and place & 
route techniques are used. More detail of incremental flows is given in chapter 11. 

The drawback of this flow is that it is actually a two-pass flow. To make a correct 
partition, some knowledge of final FPGA resources required by each RTL module 
is required. If possible, and if timing-driven partitioning is our aim, then a timing 
knowledge at each module boundary would also be useful. This accurate knowledge 
of resources and timing can only come from synthesis (or preferably from place & 
route). We therefore need to skip ahead and pre-run synthesis before feeding back 
the results to the partitioner. In the Certify® tool, that is precisely what is done. The 
synthesis is run in a quick-pass automated mode in order to estimate resources and 
timing. Thus, although a two-pass flow, the pre-synthesis in effect seems like an 
extra “estimate” step in a single-pass flow. 

The case where top-down pre-synthesis partitioning can be most powerful is when 
performance, especially inter-FPGA performance, is crucial. By working top-down 
and using the system-level constraints, a pre-synthesis partitioning flow allows for 
timing to be budgeted and constrained across multiple FPGAs at the same time. The 
synthesis is also more able to account for board-level delays and pin-multiplexing in 
order to correctly constrain the individual FPGAs later in their respective flows. 

3.4.2. Post-synthesis partitioning flow 
As the name suggests, post-synthesis partitioning takes place after synthesis at the 
netlist level. Figure 30 shows how individual modules are synthesized and mapped 
into FPGA elements individually, resulting in numerous gate-level netlists. The 
netlists are combined into a hierarchy and then re-grouped into FPGA-sized 
partitions. At the same time, the netlists are conditioned for FPGA (e.g., gated 
clocks are changed to enables) and wrappers are created for modules which will be 
modeled externally (e.g., RAMs). We will discuss wrappers in detail in chapter 7. 

The main advantage of post-synthesis partitioning is that only those RTL source 
files which have changed are re-synthesized, the results of the other RTL files being 
adopted without change. The resultant netlists are merged and the partitioning 
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results are also likely to be reusable except in cases where module boundaries have 
altered. This lends itself to easier automation and scripting as a flow. 

Figure 30: Post-synthesis partitioning flow  
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Another advantage of post-synthesis partitioning comes from the flow being a 

natural single-pass flow. That means that by the partitioning stage, the design is 
already mapped into FPGA resources and timing information is accurate enough to 
allow more accurate partitioning decisions. There is therefore no need for a pre-run 
on the synthesis in order to estimate resources. 

Table 5 makes a short comparison between pre-synthesis and post-synthesis 
partitioning flows based on the discussions above.  

The choices are between a faster turn-around time and more automation on the one 
hand, and best results on the other hand. 

3.4.3. Alternative netlist-based partitioning flow 
There are some teams that advocate an alternative flow for FPGA-based prototyping 
in which the synthesis is performed by the normal SoC synthesis tools and it is the 
resultant gate-level netlist, or hierarchy of netlists, that becomes the input for the 
rest of the flow. Figure 31 shows this netlist-level flow. Here we note that normal 
SoC synthesis is used and the design is mapped into the same cell library as for the 
final SoC. The task of mapping the design into FPGA elements is performed at a 
cell-by-cell level, via an intermediate format where the .lib cells are replaced with 
their functional equivalent. During the SoC synthesis, netlists may be manipulated 
using built in group and ungroup style commands to do the job of partitioning. The 
same top-level tasks still need to be performed as in the other partitioning flows i.e., 

Table 5: Comparing partitioning flows 

 Pre-synthesis Post-synthesis 

QoR Best Sub-optimal 

Set-up Top-down Simpler 

Turn-around Needs incremental synthesis 
and place & route  

Naturally 
block-based 

Debug advantage Multi-FPGA instrumentation Name preservation 

Full runtime Slightly slower Slightly faster 
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objects unsuitable for FPGA implementation need to be isolated and doing this at a 
netlist level might be too complex for many users.  

Nevertheless, netlist editors exist that allow very powerful manipulation of the 
design under the control of scripted netlist editor commands. Some find this 
preferable to changing RTL in order to do the same thing. We should understand 
that a netlist-based approach is likely to achieve lower performance and use more 
FPGA resources than the other flows because FPGA synthesis is limited to mapping 
a very fragmented design into FPGA low-level cells, missing many chances for 
optimization. All possibility of automatically inferring the high-level resources, 
such as DSP blocks or SRL functions of the logic elements from such a low-level 
netlist is lost. 

Figure 31: Alternative SoC netlist-based flow 
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We shall cover more about our uses of partitioning tools in chapter 8 but let us now 
move on from the front-end steps in our FPGA-based prototyping tool flow and 
consider the remaining steps in the flow that take our partitioned synthesized design 
into the FPGAs themselves. 

3.4.4. Partitioning tool example: Certify® 
Usually provided by third-party EDA vendors, these tools are used to automate and 
accelerate the partitioning of a single RTL code into multiple FPGAs. While 
partitioning can be done manually, for example by using group and ungroup 
commands and selective net-listing of subsets of the design, dedicated EDA tools 
significantly simplify and speed-up the initial partitioning and allow subsequent 
partitioning modification with ease.  

Figure 32: Screenshot of Certify partitioning environment 
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Partitioning tools such as Synopsys’ Certify, pictured in Figure 32, perform a mix of 
automatic, interactive (drag-and-drop) or scripted partitioning. These kinds of tools 
allow what-if exploration of the partitioning options which is important because 
some designs will not appear to have obvious partition boundaries to begin with. 
Tools that allow quick trials and provide immediate visibility of utilization and 
connectivity can guide the users to better partitioning decisions than working 
completely manually at the netlist level.  

For example, in the Certify screen shot we can see an interactive partitioning 
session is in progress. The top-level of the RTL is shown schematically in the centre 
panel. Here we see the core of the design and a simple chip-support block alongside, 
in this case just clock and reset (we shall explain more about top-level partitioning 
in chapter 8). At the top panel, we see a representation of the board resources into 
which we can partition. In this case, a simple board with two FPGAs, a RAM, 
external IO connectors and a clock source. On the left of this panel we can also see 
the board’s resources in a nested-list view, common to many EDA tools. In that list 
view and in the top-level diagram and other places we can see our progress as we 
assign various design elements to relevant board resources. We can also see other 
assignments into each FPGA, such as our debug instrumentation (in this case, 
Xilinx® ChipScope tools).  

At each step, we get immediate feedback on how we are doing, for example, in this 
shot, the FPGAs have histograms showing proportion of logic, memory and IO used 
so far. Another useful guide for interactive partitioning is the connectivity matrix, 
showing the inter-block connections at this level of the design; this shot shows that 
there are 128 connections between the core of the design and the system-level 
interface (i.e., external IO). 

Some further detail of the use of Certify tools, including pin multiplexing, fine-grain 
partitioning by logic replication and clock domain rationalization is given in chapter 
7 and 8.  

3.5. FPGA back-end (place & route) flow 

Whether or not the pre-synthesis or post-synthesis partitioning is used, the results 
are a mapped netlist ready for each FPGA, plus the associated constraints for 
timing, pin-locations etc. At the end of the tool flow is a tool or rather a set of tools, 
provided by the FPGA vendors which can be considered the “back-end” of the flow, 
using common SoC terminology. These back-end tools take the netlist and 
constraints provided by the synthesis tools and implement the logic into the desired 
FPGAs.  

A simplified flow diagram of the FPGA back-end is shown in Figure 33, where we 
see that the first step is to re-map this netlist into the most appropriate FPGA 
resources as optimally as possible. If synthesis has been correctly constrained and 
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itself has good knowledge of the target FPGA technology then the netlist will need 
little remapping in the back-end.  

The mapped resources are then placed into available blocks in the FPGA and routed 
together. The place & route runtime and results will depend on many factors, but 
mostly the quality of the constraints and the utilization of the device.  

The final step is to generate the bitstream which will be programmed into the FPGA 
devices themselves (with RAM-based FPGAs such as the Xilinx® Virtex® families, 
we call this configuration rather than programming).  

Throughout the back-end we can control and analyze the results of the various steps 
including timing analysis, floorplanning and even estimate the final power 
consumption.  

These tools are generally available through a graphical design environment such as 
the Xilinx® Integrated Software Environment (ISE® tools) which is shown in Figure 
34. Here we see the summary for a small design targeted at a Xilinx® Spartan®--3 
device but the same approach is scalable up to the largest Xilinx® Virtex-6 FPGA, 
although the platform upon which the tool is run, especially the place & route tool, 
must be very much more capable. For this reason, most large prototyping projects 
run their tools on Linux-based workstations with maximum ram resources, which 
are generally widely available within SoC development labs. 

Figure 33: Xilinx place & route tool flow 
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Many users will run each of the above steps in an automatic flow, started by 
clicking a single “button” in ISE. However, it is also common to find that each step 
is launched individually with the appropriate arguments in a scripted flow or 
through a command-line interface. This allows unsupervised implementation of the 
FPGA in a semi-automated fashion which is beneficial when the runtime is many 
hours.  

In that case, conditional branching or termination tests would be inserted at various 
points of the script to ensure that time is not wasted running tools after earlier steps 
had failed for any reason.  

A useful way to get started with place & route scripts is to use the “generate script” 
command in the ISE Project Navigator. This generates a tool control language 
(TCL) script that contains all the necessary commands to create, modify, and 
implement the single-FPGA project from a TCL command prompt.  

3.5.1. Controlling the back-end  
At the top of Figure 33, we see alongside the edif netlist (.edn) a file called .ucf. 
This is the user constraints file (UCF) format file which is generated by synthesis 
and/or manually entered by the user and which is used to control the back-end flow.  

Figure 34: Xilinx® ISE® tools screenshot 

 
Copyright © 2011 Xilinx, Inc. 
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The two most important parts of the UCF are the controls for constraining the 
timing and the placement of the back-end results. Here is where constraints such as 
clock periods, IO timing, RAM placement, logic grouping and even fine-grained 
logic placement can be enforced on the back-end. For a FPGA-based prototyping 
flow, the most useful part is the placement constraint for package pins. Figure 35 
shows a short excerpt of a UCF which was automatically generated by a 
configuration tool for the HAPS® FPGA boards, called Hapsmap. This UCF is 
controlling some pin locations for a Xilinx® Virtex-5 FPGA on a HAPS-51 board 
and is setting their voltage levels to 3.3V. The UCF is also setting a control for one 
of the digital clock manager (DCM) blocks as well as defining some clock 
constraints using TIMESPEC commands understood by the Xilinx® back-end tools. 
There is more information about UCF in the references and we shall take a closer 
look at constraining FPGA designs during chapter 7 and chapter 8. 

An important role for the UCF file is to act as a link between synthesis and the 
back-end in order to ensure that both tools are working towards the same goals. It is 
a common error amongst some FPGA designers to neglect the constraints for either 
part; for example, to provide only the most rudimentary clock constraints to the 
synthesis and but to then spend a great deal of time and effort tweaking controls for 

Figure 35: Example lines extracted from typical user constraints file (UCF) 

# Date: Tue Feb 17 16:02:12 2009                    
# Main board: haps-51                          
# Signal mapping for device A (FPGA A)                 
                                    
 NET "CTI_HCLK_DBG"  LOC="B29" | IOSTANDARD = LVDCI_33 ;   
 NET "BIO1_WRITEDATA"  LOC="T36" | IOSTANDARD = LVDCI_33 ;   
 NET "BIO1_READ_SH"  LOC="P35" | IOSTANDARD = LVDCI_33 ;   
 NET "BIO1_READDATA"  LOC="T34" | IOSTANDARD = LVDCI_33 ;   
 NET "BIO1_CLK"  LOC="U33" | IOSTANDARD = LVDCI_33 ;   
 NET "BIO1_WRITE_LD"  LOC="R35" | IOSTANDARD = LVDCI_33 ;   
 NET "RESET_N"   LOC="L14" ;               
                                    
 # DCM phase shift                           
 INST "dcm_base_1" PHASE_SHIFT="-40";                  
                                    
 #Begin clock constraints for 32 MHz input clock            
 NET "HCLK_BUFG" TNM_NET = "HCLK_intern";                
 TIMESPEC "TS_clk" = PERIOD "HCLK_intern" 31.000 ns HIGH 50.00%;    
 #End clock constraints                         
                                    
 # Misc timing constraints                       
 NET "CTI_HCLK_DBG_c" TNM = "cti_hclk";                 
 NET "clk_fx" TNM = "fx_clk";                      
 TIMESPEC "TS_01" = FROM "cti_hclk" TO "fx_clk" TIG;          
 TIMESPEC "TS_02" = FROM "fx_clk" TO "cti_hclk" TIG;          
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place & route in order to meet timing goals. Passing UCF forward from synthesis 
ensures that both synthesis and place & route play their part in optimizing the 
design and meeting design targets. 

3.5.2. Additional back-end tools 
Beyond the core flow outlined above, there are a number of other useful tools in the 
back-end suite which may increase our productivity during our prototyping projects. 
These additional tools include: 

• Core generation: a tool which generates specially constructed and 
optimized design elements or IP cores. Such IP cores may be part of the 
original design or cores that may be used to replace special RTL structures 
with FPGA equivalent structures. Read in chapter 10 how we can use the 
Xilinx® CORE Generator™ to help with SoC IP prototyping. 

• Floor planning: a tool that allows the user to create placement constraints 
to any design element. Typically used for IO placements but can also be 
used to place logic when performance is critical and the tools cannot meet 
performance requirements. 

• Incremental implementation: tools that allow incremental design 
implementation only on parts of the design that were changed since the last 
run. Depending on the extent of changes, incremental implementation can 
significantly reduce the implementation time, compared to a complete re-
implementation. Read more about incremental flows in chapter 11. 

• FPGA editing: an editing tool that allows modification of the FPGA after 
place & route. Such tools (Xilinx® FPGA Editor) allow engineers to 
perform low-level editing of the design (more detail in debugging tools 
section below). 

• In-circuit debugging: tools that allow capturing and viewing of internal 
design nodes. Debugging tools will probably be used more than any other 
in the flow and so we will consider them in more detail next. 

3.6. Debugging tools  

Some thought needs to be given to how the prototype is to be used in the lab. What 
debug or test tools will be needed in order to provide the necessary visibility? There 
are a number of tools which provide debugging capabilities such as access to the 
design’s internal nodes for probing, event triggers etc.  
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The debugging tools add some logic to the FPGA’s design that captures selected 
signals into unused memory blocks based on programmable events. After capture, 
the signals are read out from the FPGA using the JTAG utility and are displayed in 
a variety of ways such as waveforms or showing values in the source code. While 
some tools require the user to instantiate the capture logic in the RTL prior to 
synthesis, other tools add the instrumentation logic at the netlist level during the 
FPGA implementation phase leaving the RTL intact. In addition, some of the tools 
allow quick tool configuration changes without needing to go through the often 
lengthy place & route process. 

3.6.1. Design instrumentation for probing and tracing 
During the prototype bring-up process, often the design does not work right away 
and there is a need to diagnose its state and understand its behavior. Even after the 
initial bring-up, during active use of the working prototype, the design may exhibit 
unexpected behavior. In either case, the visibility provided by the FPGA and other 
component IO pins is not likely to be sufficient to properly debug the situation.  

The prototype debug process requires visibility beyond that available only at the IO 
pins and this section describes common techniques that help instrument the FPGAs 
that comprise the FPGA-based prototype. We will also give an overview of some 
tools which can greatly aid the debug process and further tool detail is offered in the 
appendices. 

Techniques for probing internal signals of a design implemented in FPGA fall into 
two general categories: real-time signal probing and non-real time trace capture. 

3.6.2. Real-time signal probing: test points 
Viewing nodes in real-time is a common debugging practice, as in addition to 
signals states, real-time probing can uncover race conditions and unexpected “runt” 
signals. In real-time probing, signals from the design are taken to bench instruments 
such as logic analyzer or an oscilloscope for design analysis. Probed signals are 
either normally available at FPGA boundaries, or specifically brought from the 
design’s internal nodes to FPGA test pins.  
In this simplest method of probing designs’ internal nodes, the user directly 
modifies the design and brings internal nodes to FPGA pins for real-time probing. 
This method consumes little or no logic resources and only a few routing resources 
plus, of course, the actual IO pins that bring the probed signals to the outside world. 

In general, the RTL would need to be altered in order to add test points to the 
design, so this may simply not be an option for many projects. However, some tools 
support the inference of test points without changing the code. For example, 
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Synopsys FPGA synthesis tools support an attribute called syn_probe which will do 
exactly that. 

If RTL changes do become necessary (and are allowed) then we should at least try 
to minimize the impact and scope of the changes. Thankfully, both major HDL 
languages support remote linking between different parts of a design hierarchy. This 
is achieved in VHDL using global signals and in Verilog-HDL using XMRs (cross 
module reference). More information and examples of using remote referencing is 
given in chapter 7. 

One disadvantage of making RTL changes to bring out test points is the long 
turn-around time to view a different signal or set of signals. To view a new signal, 
the FPGA design RTL source would need to be modified and then the design is 
passed through the synthesis and place & route process. To mitigate this process, 
which might be rather long, it is recommended to consider in advance a superset of 
those signals that might be required for probing and bring as many to visibility 
points as possible. However, FPGA IO pins are a precious resource in most FPGA-
based prototyping projects so the number of spare IO pins on the FPGA available to 
act as test points is likely to be low.  

One simple and low-cost method for increasing the visibility into internal signals is 
to create in the design a “test header” port at the top-level to which we might 
connect the various signals and make changes with ease. To further minimize 
potential design spins or when the number of pins for signal viewing is limited, a 
slightly more sophisticated scheme where signals are multiplexed as shown in the 
following drawing: 

 

Figure 36: Test pin muxing 
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As shown in Figure 36, an eight-signal wide 4-to-1 multiplexer (MUX1) is added to 
the design and is statically controlled with two select bits from outside the FPGA. 
Such a multiplexer allows probing of eight signals at the time selected from a set of 
32 signals.  

A second eight-signal wide 4-to-1 multiplexer (MUX2) is shown but this is 
controlled by an internal processor or state-machine. This arrangement saves the 
two select pins and simplifies the multiplexer control in some situations. If possible, 
we should use XMRs or global signals to connect lower-level signals for 
observation to the multiplexer inputs (more about the use of XMRs in chapter 7). 

3.6.2.1. Note: probing using Xilinx® FPGA Editor 
Another method of modifying the design quickly is to edit the design at the netlist 
level using FPGA tools such as the Xilinx® FPGA Editor. Using this tool the user 
can add design elements such as pins, and connect them to the nodes that need 
probing. It’s important to note that a tool such as Xilinx® FPGA Editor is very 
powerful but complicated to use and requires a very detailed knowledge of the 
FPGA’s resources. We therefore only recommend the use of Xilinx® FPGA Editor 
for experts only. There is further information in the references. 

3.6.3. Real-time signal probing: non-embedded 
This method of probing real-time signals is often provided as part of a commercial 
prototyping system, such as the CHIPit® systems from Synopsys, but could also be 
provided by in-house boards. The idea is to reserve a fixed number of pins from 
each FPGA and to route them on the board to a probing header, which acts as a 
debug port to which we can connect our logic analyzer. We can select the signals to 
be viewed on each FPGA, perhaps using a hierarchical design browser. The tool 
then directly modifies the already implemented FPGA netlist using one of the back-
end sub-tools called Xilinx® FPGA Editor, which then connects the desired signals 
to the probing header.  

It takes only a short time to implement the connection from internal FPGA logic to 
the debug port. This is possible using a tool like Xilinx® FPGA Editor because we 
do not need to re-run synthesis or place & route. 

Care should be taken with interpreting the information given with such an approach 
because it is possible that signals may take widely different times to reach the debug 
port from their sources inside the different FPGAs. As this is all taking place on a 
completely implemented FPGA, the signals must take whatever paths remain 
available inside the FPGAs. Therefore, some of these paths will be long and via 
non-optimal interconnect resources, especially if the FPGA utilization is high. As a 
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result, the timing relationship observed between the signals will not necessarily 
represent the real relationship at the sources. However, it is possible to use Xilinx® 

FPGA Editor to measure the time delay of the path for any particular signal and 
then to use some logic analyzers to compensate for the known delay. 

In a perfect environment, the design modification process and any timing 
compensation is transparent to the user but even in the lab, it is very useful to be 
able to quickly extract a signal and observe it on a scope. 

3.6.4. Non real-time signal tracing 
A shortcoming of direct FPGA signal probing is the limited number pins available 
for probing. A non real-time signal tracing uses a different probing mechanism and 
gets around this limitation. The non real-time design probing and debugging tools 
are available from FPGA and other EDA vendors. These tools comprise a mix of 
hardware and software, and provide a logic analyzer style capture in the FPGA 
where FPGA resources are used to implement and add to the design modules to 
monitor and capture a set of signals selected by the user.  

Using the vendor’s software tools, the user then configures the trigger condition and 
capture type relative to the trigger condition. Leveraging the FPGA “read back” 
feature, in which each FF and embedded memory in the FPGA can be read through 
the JTAG port. The content of the captured signal values are then transferred from 
the capture buffer in the FPGA to the software application running on a host 
computer using the FPGA JTAG pod, usually the same one used to configure the 
FPGA in the first place. The capture buffer content can either be displayed on the 
vendor’s application or by other waveform display tools. 

JTAG has some speed limitations, however, so some tools will make use of a faster 
FPGA configuration channel, if available. For example, Xilinx® devices have a 
facility called SelectMap which is used for fast parallel configuration. Synopsys’ 
CHIPit debug tools use SelectMap to quickly read back the captured register 
information in this way. 

These tools are extremely useful for an individual FPGA debug, and in addition to 
their use as an “after the fact” analysis, some tools have ways to cross-trigger in 
order to synchronize external bench tools such as signal generators or software 
debuggers and this helps to correlate captured events across the system.  

While there are a number of similar tools available in the market place, the most 
common FPGA probing tools for the Virtex FPGAs are the Xilinx® ChipScope 
series of tools from Xilinx and the Identify® tools from Synopsys and we shall give 
an overview of these in the following paragraphs before moving on to a debug 
strategy. 
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3.6.5. Signal tracing at netlist level 
The ChipScope tool is an FPGA debugging tool from Xilinx for general purpose 
use, but with some special-purpose analysis versions available, for example for 
linking to embedded CPUs or analyzing fast serial IO. ChipScope tool works by 
adding extra instrumentation resources to the design in the device for the purpose of 
communication, triggering and trace capture. The instrumentation is synchronous to 
the design and uses the same system clocks as the logic being sampled, thus 
avoiding setup and hold issues. It should be noted that the trace capture is in 
actuality a sample of activity on an internal node of the FPGA. The timing 
resolution is of the trace data will be only the same as the capturing clock, therefore 
this is not a tool for analyzing absolute timing of internal signals.  

Figure 37 describes the ChipScope tool implementation flow, showing two ways to 
add the instrumentation items to an FPGA design.  

Of these two methods, the typical implementation flow is: 

• Using Xilinx’s CORE Generator™ tool the user defines and 
generates the communication core and logic analysis cores to be 
embedded into the FPGA. 

• The user then combines the cores with the FPGA design, either by 
instantiation into the RTL or directly into the synthesized design 
where the cores are merged at the netlist level so there is no need 
to modify the RTL design. 

• Design must go through the synthesis place & route process 
before the tool is ready to be used. 

The alternative is to insert the instrumentation at the netlist level: 

• Use the ChipScope tool core inserter to open the netlist (either the edif 
from synthesis or Xilinx internal netlist, ngc). 

• Select the clocks(s) and signals to be traced. 

• The core inserter builds a new netlist and there is no need to use the CORE 
Generator™ tool.  

• Pass results to place & route. 

• In either case, once the instrumented design is downloaded into the FPGA, 
the use for debug is the same. The user communicates with the logic 
analysis cores via the FPGA’s JTAG download cable in order to set up the 
trigger conditions, capture mode etc. When the trigger and capture 
conditions are met, the tool transfers the captured data from the FPGA and 
displays it in the tool’s application running on the host PC.  
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As shown in Figure 38, multiple ILAs can be instantiated in one FPGA while using 
only one communication core (ICON). An interesting feature available with ILA is 
the ability to generate a trigger output signal. This configurable signal reflects the 
trigger condition and can be routed to an FPGA pin and used to trigger other bench 
instruments. Although there is latency of ten clocks between the trigger event and 
the trigger output, it can be still used to correlate the trigger events with other parts 
of the system. 

Figure 37: ChipScope tools design flow 

 
Copyright © 2011 Xilinx, Inc. 
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To view signals captured with LA1, Xilinx provides a custom graphical signal 
browser as part of the ChipScope™ software, a screenshot is shown in Figure 39.  

Here we can see in the central horizontal panel an area for setting trigger values, 
which can be simple events or combinations of events over time using counters. 
There are two ways shown for viewing captured samples, one is showing a 
traditional logic analyzer style of view while the view to the bottom right is of the 
variation of a bus value over time, represented as an analog waveform. These signal 
viewers also allow a variety of features such as signal renaming, regrouping, 
reordering etc. so we are in a very familiar environment like a logic analyzer or 
scope, even though the “engine” of it all is embedded in the FPGA. 

Figure 38: ChipScope™ Pro system block diagram 

 
Copyright © 2011 Xilinx, Inc. 
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In addition to displaying captured data using the signal browser, ChipScope™ 
software can export the captured data in a variety of formats, including VCD (Value 
Change Dump), ASCII and Agilent’s FBDF (Fast Binary Data Format). Exported 
data can then be further viewed or analyzed by user scripts or by a wide variety of 
third-party tools.  

3.6.6. Signal tracing at RTL 
Identify® is a tool supplied by Synopsys which works in a similar way to the 
Xilinx® ChipScope tool except that instrumentation takes place at the source RTL 
rather than at the netlist level. Like ChipScope software, Identify instruments the 
design by the inclusion of signal monitoring logic, trace capture and buffering, and 
communications to a host PC. In addition, Identify tools provide signal selection 
and monitoring mechanisms which enable the user to more easily trigger the trace 
capture and to correlate the captured information back to the source RTL. 

Identify tool is comprised of two sub-tools, called the RTL Instrumentor and the 
RTL Debugger: The key part of the instrumentation logic itself is called an IICE 
(pronounced “eye-ice”) or intelligent in-circuit emulator, which is embedded into 
the user’s design. The IICE contains the probing logic, the trigger logic and trace 
buffers plus the runtime communication to the host running the RTL debugger. 

Figure 39: Screenshot of ChipScope™ debug tool 

 
Copyright © 2011 Xilinx, Inc. 
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Figure 40 gives an overview of the concept behind an RTL debugger. This is 
actually a screen shot and block diagram of the Synopsys Identify tool in its basic 
configuration. The tool inserts an IICE probing block that samples internal node 
information and gathers it together into a sample buffer, generally using one or 
more of the available FPGA BlockRAMs. 

 
The IICE also includes triggering and sequencing logic for deciding when samples 
are captured. The IICE communicates over JTAG to the application where 
breakpoints and the state of the captured signals are shown and highlighted in the 
design’s RTL source.  

Figure 41 describes the general usage flow for Identify, showing a two-pass strategy 
to focus in quickly to “zoom in” on data required for a specific debug task. As 
shown in the left process (first pass), Identify cores are added to the design before 
synthesis, followed with the place & route processes, but subsequent changes 
(second pass) to the instrumented signals are implemented incrementally where the 
synthesis and place & route steps are by-passed.  

Figure 40: Synopsys Identify® tool overview 
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The following describes in more detail Identify’s main usage flow: 

• Using Identify’s Instrumentor, the user selects signals to monitor and 
trigger conditions directly in the design from a hierarchical RTL source 
viewer.  

• Instrumentation automatically generates the IICE core. 

• After synthesis and place & route, the IICE core is controlled by the 
Identify Debugger where the user sets the trigger condition and arms and 
monitors the running hardware via the FPGA JTAG facility. 

• After trigger, data captured in FPGA memory is uploaded to the Identify 
Debugger application software over the FPGA JTAG facility. 

• Captured data can be displayed in a variety of ways: either directly 
annotated into the RTL code, or using common third-party waveform 
viewing tools.  

• Small changes to the signal list and trigger conditions can be quickly made 
incrementally without going through the synthesize place and route 
processes.  

Figure 41: Identify use model and flow 
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A design can contain multiple IICEs, each configured in different clock domains 
and allowing different trace and trigger conditions. IICEs can cross-trigger between 
themselves so as to track a complex sequence of events. Multiple IICEs in an FPGA 
share the same communication mechanism with the JTAG interface. 

In addition, the IICE provides the option of exporting the trigger condition, where a 
copy of the trigger signal is brought to the design top level and used to sync to 
bench instruments or software debuggers for enhanced system-level debugging. 
Linking to a software debugger is covered in more detail in chapter 11. 

The Identify RTL Instrumentor is a sub-tool running on the host by which the user 
browses the design RTL in order to select the signals to be traced and if desired 
added to various cones of trigger logic. During instrumentation, the IICE is 

configured and added. The most useful aspect of making such instrumentation at the 
RTL is that we can easily keep track of what visibility we are adding. Figure 42 is 
an excerpt from an Identify screen shot which shows the RTL source code appears 
during an instrumentation process. The available signals for sampling are 
underlined and the cartoon spectacles change color if that signal is sampled, or part 
of the trigger logic, or both. The sphere icons on the left show where breakpoints 
might be inserted adding a useful feature to allow us to trap when the design reaches 
a certain line of code in much the same way as software engineers might debug their 
code.  

Let us now look at the in-lab debugger part of Identify. The RTL Debugger is the 
sub-tool that provides an interactive interface that we use in the lab to control the 
triggering, capture, and various flow-control features such as breakpoints. The 
debugger also provides the interface to waveform viewers.  

Like ChipScope software, the Identify debugger provides a number ways to view 
the captured sample data and signals including: 

• State annotation: when using break points, it annotates the signals’ state 
directly into the source code using the supplied design navigator tool. 
Figure 43 shows a screen shot of Identify RTL Debugger displaying the 
RTL source annotated with breakpoints and captured data states. In reality, 

Figure 42: RTL Instrumentor source code view 
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the captured data is overlaid on the source code, highlighted in yellow and 
users can scroll through sampled data and see the values on the source code 
screen change. This is roughly analogous to the stepping through a 
software debugging tool. 

• Waveforms: in addition to state annotation, Identify Debugger can 
interface with popular waveform viewers such as the freeware GTKWave 
viewer or the DVE environment provided with Synopsys simulators. The 
trace samples can also dump the signals into a standard VCD (Value 
Change Dump) file that can also be displayed on a wide variety of 
available waveform viewers. 

FPGA resources used by Identify consist of the capture logic and the capture buffer 
that is usually implemented in on FPGA BlockRAM. The size of the analysis 
resources depend on the number of signals to be captured, the trigger condition and 
to a greater extent, the desired capture buffer depth.  

3.6.7. Summarizing debugging tool options 
One of the traditional complaints against FPGA-based prototyping was that 
visibility into the design once inside FPGAs was very poor and that debug was non-
intuitive because even when we had visibility, we didn’t really know what we were 
seeing. After this section, we have seen many different ways to add debug visibility 
into our prototype and there are many other tools available which are variations on 
the instrumentation approach taken by Identify and ChipScope software. We have 
summarized the approaches in Table 6. 

Figure 43: RTL debugger source code view showing sampled data 
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3.7. Summary 

In this chapter we have aimed to give an overview of FPGA devices and tools today 
from our unique prototyper’s perspective. We described the main features of FPGAs 
themselves with specific reference to Xilinx® Virtex-6 family, discovering that the 
usefulness of each FPGA feature depends not only on its functionality but also on 
its support by the relevant EDA tools. 

Regarding the EDA tools, we considered the need to address the so-called “three 
laws of prototyping” and the tools that enable us to do that, including synthesis, 
partitioning and place & route.  

There are many more details available in our references but, now that we have a 
good understanding of the FPGA technologies involved, in the next chapter we shall 
get started in our FPGA-based prototyping project. 

The authors gratefully acknowledge significant contribution to this chapter from  

Joe Marceno of Synopsys, Mountain View 

Table 6: Comparing debugging technique and tools explored in this chapter 

Technique/Tool Time 
span 

Entry Point for 
instrumentation Depth of Capture Time to 

add signal 

Add test points 
to RTL 

Real-
time 

RTL or FPGA 
editor Immediate long 

Non-embedded 
debug port 

Real-
time 

Add ports directly 
into FPGA using 

editor tool 
Immediate short 

Signal tracing: 
netlist level 

Non real-
time 

Insertion into 
FPGA netlist using 

debug tool 

1000s of 128 
signal samples medium 

Signal tracing: 
RTL 

Non real-
ime 

Insertion into RTL 
using debug tool 

1000s of 128 
signal samples long 
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CHAPTER 4 GETTING STARTED 
So far we have explored the basic technology of FPGA devices and tools. For a 
first-time user of FPGA-based prototyping, it may seem a long leap to get from the 
fine-grain details of the target technology, to understanding how it may be 
employed to build a prototype. Later chapters will give all the necessary low-level 
technical details but first, it may be useful to answer the question “where do I 
start?” This chapter is intended to do precisely that. We will first look at the steps 
required and help the reader to ascertain the necessary resources, time and tooling 
required to get from first steps to a completed prototype project. At the end of this 
chapter, the reader should be able to know whether or not FPGA-based prototyping 
of an SoC design can be successful. 

4.1. A getting-started checklist 

To set the scene, Table 7 has a framework of the main tasks and considerations 
during the project, broken into two main phases; set-up phase and the usage phase.  

It may be obvious that most of the effort comes during the set-up phase but most of 
the benefit is reaped during the use phase. 

The steps in the checklist follow the same order as the chapters and subjects in this 
book and both reflect the decision tree through which the reader should already be 
traversing. In FPGA-based prototyping, the SoC design is mapped into a single or 
multiple FPGAs, emulating the SoC behavior at, or close to, the intended SoC 
speed. Each subject area will be explored in detail later, but first, let us look more 
closely at the tool and process flow at the heart of an FPGA-based prototyping 
project. 
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Table 7: A getting-started checklist 
Phase  Tasks  Considerations  

Set-Up  Choose FPGAs  How much capacity, speed, IO? 

 Build boards or buy boards  What expertise exists in-house? 
How much time is there? 
Does total cost fit in the budget? 

 Get the design into FPGA The “three laws of prototyping” 
How to minimize design changes 
How to track builds and revisions 

Usage Bring-up prototype and find 
bugs  

What instrumentation do we need? 
Can prototypes be shared? 
Is remote debug or configuration 
needed?  

 Run software  Will the software team use it 
standalone? 
How to link with software debugger? 

 Run in real world How to ensure portability and 
robustness? 
Any special encasement needs? 

 

4.2. Estimating the required resources: FPGAs 

The authors have seen situations in the past where novice prototypers have badly 
underestimated the FPGA resources required to map their designs. As a result, the 
platform, which had been designed and built in house, had to be scrapped, resulting 
in many weeks of delay in the project. This is an extreme example, but even if we 
do not overflow our available resources, we do not want to find ourselves in a 
situation where the FPGAs are too full, resulting in longer runtimes and lower 
performance.  

At the start of the project, we need to establish what resources we need to 
implement the design and then allow for overhead. It is nevertheless important to 
establish an early and relatively accurate estimate for the required FPGA and other 
resources that we shall need. First, however, we need to decide how much of the 
SoC design will be prototyped and for this, we need to have early access to the SoC 
design itself. But how mature does the SoC design need to be in order to be useful? 
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4.2.1. How mature does the SoC design need to be? 
We would like to have our FPGA-based prototype ready as soon in the project as 
possible in order to maximize the benefit to our end users e.g., software team and IP 
verification people. However, it is quite possible to start our prototyping effort too 
early and be wasting our time tackling RTL code which is too immature or 
incomplete. It is not an efficient use of prototyping time, skill and equipment only to 
find obvious RTL errors which are more easily found using RTL simulation. So 
how do we decide when is the optimum time to start our prototype? 

There are probably as many answers to that question as there are prototype teams in 
the world and each team may have developed a procedure which they believe best 
suits their needs. For example, the prototyping team lead by David Stoller at TI in 
Dallas, USA, requires that the project RTL is complete and passing tests at a 
coverage of 80% or more before the RTL will be placed into a prototype. There are 
others who advocate that preliminary deliveries of RTL are usable when the code is 
only 75% complete. Whatever metric is used, in each case it is recommended that 
the release of RTL for prototyping is built into the overall SoC verification plan, 
like any other milestone.  

All SoC teams will hold a plan for verification of all aspects of the design at various 
stages of the project. The aim of the plan is always 100% verification of the SoC 
and self-confirmation that this has been achieved. Some verification teams follow 
sophisticated methodology, such as the UVM (universal verification methodology), 
which is primarily intended for use with complex test-environments written in 
System Verilog. A verification plan records where verification engineers have 
decided to make certain tests and also the current state of the design with respect to 
each test. It will include various milestones for the maturity of the project and 
especially its RTL. For good integration of FPGA-based prototyping into the whole 
SoC project, the verification plan should also include milestones for the prototype 
itself. Basic milestones might be when RTL is ready for check-out, when the 
FPGA-ready RTL has passed the original test bench or when basic register access 
on the board is running etc. Integration of FPGA-based prototyping into verification 
plans is part of Design-for-Prototyping, which is covered in chapter 9. 

To come back to our question of when the RTL is ready for prototyping, a good 
general guide is to sync the first delivery of RTL with the point in the SoC project 
where trial implementation of the ASIC flow is started. This is typically where the 
RTL has been tested at each block level and has been assembled enough to run 
some basic, early tests. Some teams call this the “hello world” test i.e., the RTL is 
assembled into a simulator and a test bench is able to run vectors in order to load 
and read certain registers, see ports and pass data around the SoC etc. If the design 
is passing such tests in the simulator then it should also be at least able to pass this 
in the prototype, which is a good indication that the prototype is ready to make its 
contribution to the validation effort. For more information about use of “hello 
world” tests and prototype bring-up, see chapter 11. 
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4.2.2. How much of the design should be included? 
Early in the prototyping effort, we need to establish the scope of the prototyping. 
The considerations are usually a mix of the architecture and scale of the design to be 
prototyped, and the available prototyping options. Before we consider the 
partitioning between multiple FPGAs we need to apportion which parts of the SoC 
design will be placed into FPGA and which may be better placed elsewhere, or even 
left out altogether. 

Figure 44 shows an overview of the top level of a typical SoC. Most of the SoC 
digital blocks can be placed inside FPGA resources but other blocks will be better 
placed in external resources, particularly memories. The analog sections of the SoC 
might be modeled on-board but some may choose to leave the analog out and 
prototype only the digital portion. The IO Pad ring is normally left out from the 
prototype along with the test circuitry as the prototype is focused upon functional 
test of the digital RTL and creating a working model for the software, which does 
not typically interface with the test system. 

Figure 44: Coarse partition of design into FPGA or external devices. 
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When evaluating the design intended for prototyping, the design can generally 
divided into two categories: what can go into FPGA, and what cannot go into 
FPGA. 

4.2.3. Design blocks that map outside of the FPGA 
While FPGA is the main prototyping resource in a typical prototyping system, 
typical SoCs are likely to have blocks that either do not map into FPGA, or blocks 
for which better prototyping resources are available. Such blocks are typically either 
analog circuits or fixed digital IP blocks for which neither source code nor FPGA 
netlist is available. In either case, we need to consider resources other than FPGA to 
prototype them.  

For evaluation purposes, IP suppliers typically provide evaluation boards with the 
IP implemented in fixed silicon. In other cases, the prototyping team may design 
and build boards that are functionally equivalent to the IP blocks that do not map 
into FPGA. In yet other cases, existing or legacy SoCs may be available on boards 
as part of the prototyping project and can be added to and augment the FPGA 
platform. The advantage of using such hard IP resources is their higher performance 
as compared to FPGA implementation and their minor FPGA footprint. 

To accommodate for the inclusion of these external hardware options, we need to 
verify/perform the following: 

• Electrical connectivity: provide connectivity in the RTL to modules that 
are external to the FPGA.  

• Signaling: make sure the IO signaling levels between FPGA and external 
hardware modules are compatible with each other. Also, make sure the 
signal integrity of the external hardware is acceptable to both FPGA and 
hardware module. Typical FPGA IOs have a number of options such as 
signaling levels, edge speed and drive strengths. We should be familiar 
with these options and how to best use them in the particular prototyping 
environment. 

• Clocking and timing: provide the needed clocking, account for the clock 
delays and calculate the interconnect timing between FPGA system and 
external hardware. 

• Logic synchronization: cold start-up time of fixed hardware is likely to be 
much shorter than that of the FPGA system as the FPGAs need to be 
loaded before they become functional. Early start can result in 
synchronization problems between the hardware modules and the FPGA 
system. We need to understand these issues and account for synchronous 
and asynchronous resets, and pulse durations for all cold and warm 
restarting conditions. 
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• Physical/mechanical: plan how the external blocks will physically 
connect to the FPGA system and how power is supplied. Care must be paid 
to cabling and repeated connection to the FPGA system to protect both the 
FPGA and the hardware module. A good mechanical plan will make it 
easier when the prototyping needs to be shipped to a remote lab or a 
customer. 

Clearly only design elements that can map into FPGA may be included so, for 
example, analog elements will need to be handled separately. When evaluating the 
scale of prototyping there are some trade-offs that must be considered. Specifically, 
design size, clock rates and design processing times are inter-related and will 
mutually affect each other. While there are examples to the contrary, for a given 
platform, smaller designs generally run at faster clock rates and take less time to 
process than larger designs. We should therefore be wary of including more of the 
SoC design into the prototype than is useful. In which ways can we reduce the scale 
of the prototype without overly reducing its usefulness or accuracy? 

To reduce the size of the design and to ease the capacity limitations, the following 
options can be considered: 

• Permanent logic removal: when blocks in the SoC design have a 
hardware equivalent (physical SoC, evaluation platform etc.) that can be 
added to the FPGA platform, then it is a good candidate for removal from 
the logic that will map into the FPGA. In addition to space relief, these 
blocks can run at faster speeds than the attainable speed in the FPGA 
platform. Typical examples for such blocks are third-party IPs such as a 
processor, or special purpose controller. 

• Temporary logic removal: when the amount of logic exceeds the feasible 
space in the FPGA platform, temporary removal of some blocks may be 
considered. This can work when parts of the SoC can be prototyped at the 
time. For example, if an SoC has multiple possible memory interfaces but 
only one will be used in the actual application, then prototyping them one 
at a time, while the others are removed, will verify each one in isolation of 
the other. 

• Block scaling: when the size of blocks in the SoC will exceed the 
available feasible space in the whole FPGA platform, scaling them down 
may be considered. For example, SoC memory block may be scaled down 
to run subsets of the code at any given time, or alternatively, one channel 
of a multichannel design might be sufficient to represent enough 
functionality for the purposes of prototyping the channel-driver software. 

Each of these recommendations is discussed in greater detail in chapter 7  

Once the portion of the design to be prototyped has been selected, it is important to 
estimate up-front how well the remaining design will fit into FPGA technology. To 
do this estimation, it is obviously important to understand the FPGA’s resources 
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available in our prototype platform. A too-simple early estimate that such-and-such 
FPGA contains n million gates will often lead to difficulties later in the project 
when it appears that the design is taking more FPGA resources than expected.  

4.2.4. How big is an FPGA? 
As covered in detail in chapter 3, an FPGA is an excellent resource for prototyping. 
Not only does it contain copious amounts of combinatorial and sequential logic but 
it also contains additional resources such as various types of memory and arithmetic 
blocks, and special IO and interconnect elements that further increase the scope of 
FPGA technology for prototyping. 

The heterogeneous nature of modern FPGAs makes the answer to the question “how 
big is an FPGA?” rather difficult. The generic answer might be “it depends.” We 
will give some idea of the raw capacity of various parts of an FPGA below, but in 
fact, their use in an FPGA-based prototype will depend on the requirements of the 
design, the power of the tools employed and the amount of effort put in by the 
prototyping team. Let us consider the raw capacity of different resources in an 
FPGA. We use a Xilinx® 6VLX760 (or just LX760 for short) as an example and 
will provide a capacity figure for each resource in SoC gates. 

• Logic: FPGA implements logic in highly configurable cells combining 
look-up tables with optional output FFs, carry logic and other special 
elements for efficiently mapping logic.  

• The LX760 has approximately 750,000 look-up tables and 950,000 FFs. 
This is sufficient to map approximately four million SoC logic gates if 
fully utilized, or approximately 2.5 million gates at reasonable utilization. 

• Memory : in addition to the look-up tables, which can be configured as 
small memories, dedicated memory blocks are also distributed throughout 
the device, which can be used as single- or dual-ported R/W synchronous 
memory blocks. These memory blocks can be connected together and form 
deeper or wider memory blocks and with additional built-in logic can be 
used to implement specialized memories such as single- or dual-clock 
FIFOs. These are often configured from a library of specialist memory IP 
available from the vendor. 

• The LX760 has 720 memory blocks which can provide approximately 
26Mbits of memory in various configurations (ROM, RAM, FIFO). In 
addition if logic cells are used as memory then a maximum 8.3Mbits of 
extra memory is available, but this would reduce the amount of logic 
available accordingly. 

• DSP resources: it is also common for the latest FPGAs to have dedicated 
DSP blocks distributed throughout the device, which include MAC 
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(multiply/accumulate) blocks, barrel shifting, magnitude comparators and 
pattern detection. In addition, DSP blocks have cascading capabilities that 
allow them to be connected together to form wider math functions such as 
DSP filters without the use of logic FPGA resources.  

• The LX760 has 864 DSP blocks. These are very dense blocks and many 
hundreds of equivalent gates of logic can be implemented in each one. For 
those designs which have significant arithmetic content, good use of DSP 
blocks will liberate many thousands of logic elements for other purposes. 

• IO: FPGAs’ IOs can be configured in many ways to comply with a variety 
of standards, drive strengths, differential pairs, dynamically controlled 
impedances etc. 

• The LX760 has 1200 usable IO pins which can be combined to produce up 
to 600 differential pairs. Signaling between FPGAs is often a more critical 
resource than the logic or memory capacity.  

• Interconnect resources: possibly the most important resource in an FPGA 
is the means to interconnect between the various blocks. With the 
exception of some special buffers, these resources are generally not 
explicitly controllable by the user but rather, they are used implicitly by 
place & route and some advanced physical synthesis tools in order to 
implement a design’s connectivity on the FPGA. 

• Clocking resources: a subset of the interconnect is dedicated to 
implementing the design’s clock. These are dedicated programmable clock 
generators including PLLs, and global and regional clock buffers and low-
skew distribution networks. 

• The LX760 has 18 very sophisticated multi-mode clock managers 
(MMCM) blocks providing global or regional low-skew clocks.  

• Special purpose blocks: finally, some devices have hard-macro blocks 
which implement specific functions such as Ethernet MACs, PCI Express 
interface blocks, selected CPU cores or high-speed serial transceivers (e.g., 
SERDES). These macros help implement industry standard peripheral 
interfaces such as PCI Express or Ethernet. 

Recommendation: given the dedicated nature of the special-purpose resources, 
SoC logic will probably not map transparently into these resources. In order to use 
the special purpose resource, some SoC design blocks may need to be swapped with 
FPGA equivalents. When such design changes are made, it should be understood 
that the functional behavior of the new block may not be identical to the original.  

For more FPGA resources details refer back to chapter 3.  

For more information on replacing SoC design blocks with equivalent (or near 
equivalent) FPGA cores see chapter 10 on handling IP. 
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4.2.5. How big is the whole SoC design in FPGA terms? 
This estimate may be critical to the scale of system to be used. The largest of FPGA 
currently available at time of writing this manual is the Virtex®-6 LX760 from 
Xilinx. As we have noted above, this device has a variable mix of over 4 million 
SoC-equivalent logic gates, approximately 25Mbits of memory, and over 850 48-bit 
multiply/accumulate blocks. As we write this, that resource list seems impressive 
but if the history of FPGA has taught us anything it is that the FPGA which invokes 
awe today will be commonplace tomorrow. Therefore if this manual is being read 
some years after its initial publication, please scale up the figures to whichever 
behemoth FPGA is under consideration. 

How will the FPGA’s impressive resource list be able to handle the SoC design? 
The answer, of course, is that it is design-dependent. Given the “flip-flop rich” 
FPGA architecture, highly pipelined designs with a high ratio of FFs to 
combinatorial logic will map better into FPGA than designs with lower ratios. It 
will also most likely run at a faster clock rate. We do not always have the luxury of 
receiving an SoC design which is conveniently FPGA-shaped and so there are a 
number of steps which are usually required in order to make the design FPGA-
ready. These are detailed in chapter 7.  

The mix of the different resources varies device to device, as some devices have 
more of one type of resources at the expense of others. A casual use of gate-count 
metrics may lead to misunderstanding and the safest way to estimate the necessary 
FPGA resources for the design is to use FPGA synthesis upon the design to gain an 
estimate of total FFs, logic cells and memories. This requires the RTL to be 
available, of course, and also usable by the FPGA synthesis tool of choice.  

It’s important to note that in terms of gate-count metrics, FPGA technology and 
SoC technology do not compare well, and FPGA gate counts are given as a rough 
approximation.  

Even if all SoC logic may be mapped into FPGA, the utilization may be limited 
owing to one or more of the following reasons:  

• The design: some designs map more effectively into FPGA resources than 
other designs due to how well they fit FPGA architecture and resources. As 
described above, since FPGA technology is flip-flop rich, designs with a 
higher FF to combinatorial logic ratio are likely to achieve higher effective 
gate count levels than designs having a lower ratio. 

• Clock resources: while having multiple clock regions/zones, FPGAs have 
a finite resource of PLL, clock multiplexers and on-chip clock routes (refer 
back to chapter 3). A closer look at the available clocking resources and 
clock zones restrictions in the selected FPGA is necessary for multi-clock 
designs. 
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• FPGA routing resources: FPGA’s useable logic may be limited by the 
availability of routing resources which may vary from design to design. 
“Highly connected” designs may exhaust FPGA routing resources in some 
areas and restrict access to FPGA resources in that area, possibly rendering 
them unusable. In addition, such designs are likely to run at reduced clock 
rates as compared to “lightly-congested” designs.  

• FPGA IO pins: it is very common with modern SoC designs for the 
FPGAs in a multi-FPGA partitioned design to run out of pins before they 
run out of logic or memory. Intelligent partitioning, which balances 
resources between FPGAs, may still need to use multiplexing to route all 
signals between the FPGAs (see chapter 8). 

 

Recommendation: FPGA designs with high utilization levels are less likely to run 
at the peak clock rates. Also, highly utilized designs run the risk of exceeding 
available resources if or when the design grows because of mid-project design 
changes. While FPGA utilization levels of over 90% are possible, it is 
recommended to limit initial utilization levels to 50%.  

4.2.6. FPGA resource estimation 
In estimating the FPGA resources used in a given SoC design, the resources that 
need estimation are: FPGA IO, random logic, FFs, memory blocks, arithmetic 
elements and clocks. Manually estimating resources such as memory blocks, 
multipliers and high-speed IO is fairly straight forward and fairly accurate but 
estimating random logic and FFs is more difficult and the margin for error is 
greater. Therefore it is advised to first establish if the design will fit in an FPGA 
based on the special resources and as soon as the design is synthesizable run it 
through the synthesis tool for an accurate FPGA resources usage estimate. If the 
design is synthesizable, it is recommended to use a quick synthesis evaluation that 
will indicate expected resource utilization.  

Once the FPGA resources utilization levels for a given design are available, we 
need to establish the utilization level target for the maturity level of design. As a 
general rule, the higher the FPGA utilization level the longer it will take to process 
the design (synthesis, place & route etc.) and the slower the system clock will run 
due to greater routing delays. In addition, during the prototyping project the design 
is likely to change and some diagnostics logic may be added in the future, so the 
number of FPGAs in the system should be considered conservatively.  

On the other hand, distributing the design to many FPGAs adds cost and 
implementation complexity. While design size and performance can vary from 
design to design, it’s recommended the utilization levels should initially be below 
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50%. Even lower utilization is recommended for partial designs that are expected to 
grow. It is always recommended to overestimate resources because project delays 
caused by underestimation can be more costly than the price of unused FPGA 
devices purchased based on overestimation.  

The synthesis tool will then provide a resource list for the design as a whole, for 
example, Synplify® Premier FPGA synthesis tools provide a list such as the one 
shown in Figure 45 . We see the results for a large design mapping “into” a single 
Xilinx® 6VLX760 and even though the report may show that the resource utilization 
is far in excess of 100%, this is not important. Synplify Premier’s Fast Synthesis 
mode is particularly useful for this first-pass resource estimation.  

In addition, some thought should be given to how much of the FPGA resources it is 
reasonable to use. Can the devices be filled to the brim, or should some headroom 
be allowed for late design changes or for extra debug instrumentation? 
Remembering that a key aim of FPGA-based prototyping is to reduce risk in the 
SoC project as a whole, it follows that squeezing the last ounce of logic into the 
FPGAs may not be the lowest risk approach. In addition to leaving no margin for 
expansion, it is also true that FPGA place & route results degrade and runtimes 
increase greatly when devices are too full. A guideline might be to keep to less than 
the 75% utilization, which is typical for production FPGA designs and for 
prototyping projects, 60% or even 50% being not unreasonable. This will make 
design iteration times shorter and make it easier to meet target performance. 

From the results in Figure 45 we can see that the limiting resources are the LUTs 
(Look-up-Tables). For this design to fit into Virtex-6 technology on our prototyping 
board with 50% utilization, we will need a number of FPGAs calculated as follows: 

Figure 45: Resource usage report from first-pass FPGA synthesis 

IOIO Register bits:         426 
Register bits not including IOIOs:  1877990 (198%) 
 
RAM/ROM usage summary 
Single Port Rams (RAM32X1S): 110 
Dual Port Rams (RAM32X1D): 21 
Simple Dual Port Rams (RAM32M): 307 
Block Rams : 1339 of 720 (186%) 
 
DSP48s: 657 of 864 (76%) 
 
Global Clock Buffers: 6 of 32 (18%) 
 
Mapping Summary: 
Total LUTs: 1919724 (253%) 
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Total LUTs required / LUTs in one device x 50% 

   = 1919724 / 758784 x 0.5 

   = approximately five 6VLX760 FPGAs. 

 

Therefore, our approximation tells us that our project will need five FPGAs. 

4.2.6.1. Size estimates for some familiar SoC blocks 
It may help to get a feel for the resource in an FPGA by considering the sizes given, 
in FPGA terms, for some familiar blocks in Table 8. 

These are only rules of thumb as each of these IP or processor examples have a 
number of configurations, memory sizes and so forth. However, we can see that 
even as FPGAs continue to get bigger, the first law of prototyping still holds true. 

Recommendation: To manually estimate the required FPGA resources can be 
difficult, time consuming and may be quite inaccurate. It’s often more effective to 
run preliminary synthesis and quickly find out the FPGA resource usage levels and 
have initial performance estimation. 

4.2.7. How fast will the prototype run? 
Performance estimation is tightly coupled to the resource utilization levels and the 
FPGA performance parameters. Similar to FPGA resource estimation, performance 

Table 8: FPGA resources taken by familiar SoC functions 

IP / SoC function FPGA resources required 

ARM Cortex®-A5 (small configuration) Two Virtex-5 LX330 at 50% 

ARM Cortex®-A9 One Virtex-5 LX330 at 80% 

ARM Mali™-400 w/3 pixel processors Four Virtex-5 LX330 at 50%  

ARC AS221 (audio processor)  One Virtex-5 LX330 at 10%  

ARC AV 417V (video processor)   One Virtex-5 LX330 at 60% 
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estimation for the special blocks is easily extracted from the timing information in 
FPGA datasheets. Estimating the overall performance is much harder. However, a 
fairly good performance estimation of the whole design is easy to obtain from the 
synthesis tool. Although the synthesis tool takes in account routing delays, the 
actual timing depends on the FPGA place & route process and it may differ from 
the synthesis tool’s estimation. While the difference can be significant with higher 
utilization levels as routing can become more difficult, the initial timing estimation 
is quite a useful guide.  

FPGA performance greatly depends on the constraints provided to the synthesis 
tool. These constraints direct the synthesis tool and subsequently the place & route 
tools how to best accomplish the desired performance. For more details on how 
constraints affect the FPGA implementation, refer to chapter 7. 

There are a number of factors affecting the clock rate of a design mapped into a 
multi-FPGA system, as described below: 

• Design type: highly pipelined designs that map well into FPGA 
architecture and leverage their abundant FFs are likely to run faster than 
designs that that are less pipelined. 

• Design internal connectivity: designs with complex connectivity, where 
many nodes have high fan-out, will run slower than designs with lower 
fan-out connectivity due to the likely longer routing delays. It will also be 
harder to find places in the design where a partitioning solution is possible 
with few enough IO to fit within an FPGA footprint. Higher interconnected 
designs will more likely require multiplexing of multiple signals onto the 
same IO pins. 

• Resource utilization levels: typically the higher the utilization levels, the 
more congested the design, resulting in longer internal delays and a slower 
clock rate. Below, we explore the recommendations for device utilization. 

• FPGA performance: the raw performance of the FPGA itself. Even with 
the most tailored and optimized design, we will eventually hit an upper 
limit for the FPGA fabric. In most cases, however, the non-optimized 
nature of the design and the efficiency of the tool flow will be seen as a 
limit long before the absolute internal clock rates of the FPGA. 

• Inter-FPGA timing: in a multi-FPGA system, FPGA-to-FPGA clock 
skews and connectivity delays can limit the system clock rate. While 
FPGAs can theoretically run internal logic at clock rates of hundreds of 
megahertz, their standard IO speed is significantly slower and is often the 
prevailing factor limiting the system clock rates.  

• External interfaces: as we shall explain later, SoC designs mapped into 
prototyping systems are likely to run at a slower clock rate than the SoC’s 
target clock. Other than the expected performance penalty, this is not a big 
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issue for a closed system running with no external stimuli, or a system for 
which the stimuli can run at a slower rate to match the system’s clock rate. 
There may well be situations where the prototyping system must interface 
with stimuli that cannot be slowed down. 

• Inter-FPGA connectivity: when all inter-FPGA connectivity is exhausted, 
pin multiplexing can be used. In time-domain multiplexing a number of 
signals share a single pin by running at a faster clock than the data rate of 
the individual signals multiplexed together. For example, when 
multiplexing four signals each running at the rate of 20MHz the combined 
signal will need to run at least at the rate of 80MHz and actually more, in 
order to allow for timing for first and last signals sampled. Since FPGA-to- 
FPGA data rate is limited by the physical FPGA pins and the board 
propagation delays, the effective data rate of the individual signals in this 
example will only be less than a quarter of the maximum inter-FPGA data 
rate. 

Recommendation: pin multiplexing can severely limit systems’ clock, so it’s 
critical to evaluate the effect of partitioning on inter-FPGA connectivity during the 
early feasibility stage of the prototyping project. More detail on pin multiplexing is 
given in chapter 8. 

4.3. How many FPGAs can be used in one prototype? 

When designs are too large to fit into a single FPGA and still remain within 
recommended utilization levels, we must partition the SoC design over multiple 
FPGAs. While there is no theoretical limit to the number of FPGAs in a system – 
and some designs will map well into large multiple FPGA systems – the eventual 
limit on the number of FPGAs in a prototyping system will depend upon both the 
design itself and the limitations of the prototyping platform.  

In general, the following points will limit the number of FPGAs in a system:  

• FPGA-to-FPGA connectivity: as designs are split into more FPGAs, 
inter-FPGA connectivity typically grows, and depending on the design and 
how it’s partitioned, it may exceed the available connectivity in a given 
system. Inter-FPGA connectivity is bounded by the available inter-FPGA 
connectivity in a given system. Depending on the systems, the inter-FPGA 
connectivity may be either fixed or programmable to some extent. A 
common technique to overcome inter-FPGA connectivity bottlenecks is to 
use high-speed pin multiplexing schemes in which multiple signals “time-
share” a single connection. The time-domain pin multiplexing, however, 
requires a high-speed clock which may limit the system clock rate due to 
the timing limitation of the physical connection between the FPGAs. 
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• Signal propagation: since propagation delays to and from an FPGA’s IO 
pads are typically longer than propagation delays within the FPGA, signal 
propagation among FPGAs is typically the timing critical path and directly 
affects the system clock rate. Excessive FPGA-to-FPGA delays on the 
board (including long signal-settling times) will reduce timing margins and 
may limit the system’s clock rate. Signal propagation issues are more 
significant with greater number of FPGAs in the system due to the physical 
implementation, especially when connecting multiple boards together 
where signals go through multiple connectors and connection media 
(cables, other boards) and ground returns and reference may become 
marginal. 

• Clock distribution: proper clock distribution in a synchronous multi-
FPGA system is critical to its proper operation. Specifically, the clocks 
driving signals out from one FPGA and the clocks used to clock-in signals 
from other FPGAs must have minimal skew between the FPGAs 
exchanging data as to not violate setup and hold times. As systems grow 
larger with more FPGAs, the physical clock distribution may become 
harder to implement with an acceptable skew especially in scalable 
systems where multiple boards are connected together. 

• Manual design partitioning: as the number of FPGAs in a system grows, 
partitioning becomes increasingly more complex, and manual partitioning 
may be impractical altogether. This may prove especially difficult if the 
partitioning needs to be modified often as the design changes. 

• Managing multiple FPGAs: while not a technical barrier, the more 
FPGAs there are in a system, the more cumbersome the overall process is 
requiring a greater management effort. Specifically, a number of FPGAs 
may need to be re-processed (synthesis, place & route) with each design 
iteration, and processing multiple FPGAs in parallel requires multiple tool 
licenses for the software tools, otherwise the process becomes serial, taking 
longer to complete. In addition, each FPGA needs to be managed in terms 
of pin assignments, timing constraints, implementation files, revision 
control etc., which adds to the overall project engineering administration 
overhead. 

When considering large multi-FPGA systems, it’s important to evaluate how well 
they address the above issues, and how well they scale. When either making boards 
in-house or buying in ready-made systems, such as Synopsys’ HAPS® and CHIPit®, 
the same FPGAs may be used but it is the way that these can be combined and 
interconnected that may be the limiting factor as projects grow or new projects are 
considered. The next three chapters aim to cover the ways that platforms can be 
built and configured to meet the needs of the specific project and/or subsequent 
projects. 
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Recommendation: early discovery of the design’s mapping and implementation 
issues is critical to the effectiveness of the prototyping effort. Using a partitioning 
tool such as Synopsys’ Certify® can simplify and speed up the partitioning process.  

4.4. Estimating required resources 

The various implementation and debug tools were described in chapter 3 but as a 
recap, a number of software tools are needed to map and implement the SoC into 
FPGAs. All tools come with their respective design environment or GUI, but can 
also be invoked from a command line or a script so that the whole implementation 
sequence can then be more efficiently run without supervision, for example, 
overnight. 

The time taken to run the design through the tools will vary according to a number 
of factors including complexity, size and performance targets as we shall see below 
but runtime will always benefit from using more capable workstations and multiple 
tools in parallel. Readers may have some experience of FPGA design from earlier 
years, where a PC running Microsoft Windows® would suffice for any project. 
Today, however, our EDA tools used for prototyping are almost exclusively run on 
Linux-based workstations with more than 16Gbytes of RAM available for each 
process. This is mostly driven by the size of designs and blocks being processed and 
in particular, FPGA place & route is generally run on the whole design in one pass. 
With today’s FPGA databases having some millions of instances, this becomes a 
large processing exercise for a serious workstation.  

In addition, we can increase our productivity by running multiple copies of a tool in 
parallel, running on separate workstation processors. For example, the synthesis and 
place & route on the different FPGAs after partitioning could be run in parallel so 
that the total runtime of the implementation would be governed only by that FPGA 
with the longest runtime. 

4.5.  How long will it take to process the design? 

As a general rule, the higher the utilization level the lower the achievable clock rate 
and the longer the FPGA processing time. As we saw in chapter 3, the 
implementation process consists of the front-end and the back-end. Between them 
they perform five main tasks of logic synthesis, logic mapping, block placement, 
interconnect routing, finally, generation of the FPGA bit-stream. These tasks are 
summarized in Table 9. 

Depending upon the tool flow, these tasks will be performed by different tools, the 
proportion of the runtime for each step will vary. For example, the traditional back-
end dominated flow has most of these tasks performed by an FPGA vendor’s 
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dedicated place & route tools, hence the runtime is mostly spent in the placement 
and routing phases. 

However, it is also possible to employ physical synthesis for the FPGA in which the 
front-end also performs the majority of the placement task. Consequently, more of 
the overall runtime would be spent in the front end. 

Table 10 shows the physical and non-physical flows side-by-side and gives the 
proportion of time typically spent in each step. These are only typical numbers of 
the relative time taken for each part of the process; real time will depend on the 
device utilization levels and timing requirements.  

 As we can see, placement and routing generally take longer than synthesis and as 
designs become larger and timing constraints more demanding, this becomes even 
more apparent. For example, a large FPGA at 90% utilization might easily take 24 
hours or more to complete the whole flow; three quarters of that time being spent in 
place & route. When prototyping, this long runtime may be a large penalty to pay 
just to avoid using another, admittedly expensive, FPGA device. It may be better in 
the long run to use three FPGAs at 50% utilization, rather than two FPGAs at 75% 
each.  

Table 10: Tool runtime as proportion of whole flow (typical average) 

Task Proportion of runtime 
Flow 1 

Proportion of runtime 
Flow 2 

Logic synthesis Front-end 10% Front-end 
“physical 
synthesis” 

10% 

Mapping 

Back-end 

20% 35% 

Placement 30% 35% 

Routing 35% 
Back-end 

15% 

Bitstream generation 5% 5% 

 

Table 9: Front-end and Back-end tasks for each FPGA 

 Task Description 

Front-end Logic synthesis RTL to behavior/gates 

Mapping Gates to FPGA resources 

Back-end Placement Allocate specific resources  

Routing Connect resources 

Bitstream generation Final FPGA “programming” 
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In general, FPGA physical synthesis is used for FPGA designs that are intended for 
mainstream production and require the best possible results. For FPGA-based 
prototyping, physical synthesis might be focused on one particular FPGA on the 
board which needs more help to reach the target performance.  

Recommendation: FPGA designs with high utilization levels will take longer to 
process so while FPGA utilization levels of over 90% are possible, it is 
recommended to limit initial utilization levels to 50% in order to allow faster turn-
around time on design iterations.  

4.5.1. Really, how long will it take to process the design? 
Avoiding answers that involve pieces of string, we should expect runtime in hours 
and not days. The aim should be a turn-around time such that we can make 
significant design changes and see the results running on the board within a day. 
Indeed, many prototyping teams settle into a routine of making changes during the 
day and starting a re-build script to run overnight and see new results the next 
morning. Automating such a script and building in traps and notifications will 
greatly help such an approach. 

Long runtime is not fatal as long as we are careful and we get a good result at the 
end. Runtime becomes a problem when careless mistakes render our results useless, 
for example pin locations omitted or we iterate for only small changes. 

If runtimes are too long to allow such a turn-around time, then we recommend 
taking some steps to reduce runtime. These might include some of the following: 

• Add more workstations and licenses: this allows greater parallel 
processing and balancing of runtime tasks. 

• Lower FPGA utilization: repartition design into more FPGAs. This may 
take some time but it may be an investment worth making. Total runtime 
can vary widely as a function of utilization level of the device.  

• Note: It may be preferable to process six devices at 50% each rather than 
four devices at 75% each. 

• Relax timing constraints: on less critical parts of the design it is possible 
to lower the timing goals to reduce tool runtime. Place & route runtime 
depends not only on utilization and other factors can have an even greater 
effect, including applied constraints, number of global clocks, and the 
number of clocks driving BlockRAMs. Basically, the more complex the 
task given to place & route, the longer the runtime. 

• Use incremental flows: both synthesis and place & route have built-in 
incremental flows which reduce runtime by not re-processing parts of the 
design that are unchanged.  
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• Use quick-pass flows: some tools have options for turning off some 
optimization steps at the cost of lower quality of results. For example, the 
Fast Synthesis option in Synopsys FPGA synthesis tools. 

• Relax timing model: in extreme cases, the timing model for the FPGA can 
be relaxed on the assumption that the device will not be used outside the 
lab and therefore temperature of voltage extremes built into the timing 
model will not apply.  

Recommendation: To speed the implementation cycles, it is recommended to relax 
the timing constraints where possible as to minimize implementation times. Once 
the initial issues are resolved, and the implementation cycles are not as often, the 
more strict timing constraints can be applied. 

4.5.2. A note on partitioning runtime 
Somewhere along the way, it is probably going to be necessary to partition the 
design into multiple FPGAs. As we saw in chapter 3, partitioning could occur 
before logic synthesis i.e., by manually splitting the design into multiple FPGA 
projects, or after logic synthesis, by some database manipulation prior to mapping.  

The runtime of partitioning tools is a relatively small part of the runtime for the 
whole flow and is not as greatly impacted by increased design capacity or 
constraint, as it is by the IO limitations. However, the automation of a partitioning 
flow may impact the success or otherwise of a scripted flow. We need a robust and 
tolerant methodology in the partitioning tool that can cope with changes in the 
design and, for example, not terminate when a new gate has appeared in the design 
because of a recent RTL change. The partitioner should be able to assume that if the 
new gate’s source and destination are in a given FPGA, then that gate itself should 
be automatically partitioned into that same FPGA. It would be rather frustrating to 
arrive at the lab in the morning after starting an overnight build script to discover a 
message on our screen asking where we want to put gate XYZ. So a partitioner’s 
runtime is less important than its automation and flexibility. 

4.6. How much work will it be? 

Implementation effort is divided here into the initial implementation effort, which 
are mostly performed only once in the prototyping project, and the subsequent 
implementation efforts which are repeated in each design iteration or “turn.” 
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4.6.1. Initial implementation effort 
Initial activities for setting up the prototype mostly take place the first time the 
design is implemented where the infrastructure and implementation process are 
created and are then reused in subsequent design turns. The initial implementation 
efforts include the following: 

• SoC design modifications: modifications done to the SoC design to better 
map it into FPGAs. This typically includes design optimization for 
performance (pipelining), trimming parts of the design not needed for 
prototyping, and replacing SoC structures with available FPGA structures, 
such as clocking circuits, memory structures etc. 

• Partitioning: the process of dividing the SoC design into multiple FPGAs 
per the platform of choice. 

• Design constraints generation: the process in which FPGA design 
implementation constraints are created. Typical constraints are pin 
placement, timing constraints and inserting synthesis directives. 

• Debugging features: the process of configuring debugging features that 
will go into the design. This is an optional effort but is commonly used and 
typically repeated in subsequent design turns as needed. 

• Physical design implementation: a series of processes necessary to 
implement the design. They include synthesis, mapping, place & route, 
timing analysis and bitmap generation. These activities are typically 
combined in implementation scripts that can be used in subsequent design 
turns. 

The time it takes to accomplish the initial prototyping effort is usually the most 
significant in prototyping projects, especially for the first-time prototyper. This 
effort may involve learning new technologies and tools and acquiring platform and 
components, so overall effort may vary on a case-by-case basis. There is also the 
significant effort of adapting the SoC design for use in the FPGA, which is 
obviously design dependent.  

 

Recommendation: To set expectations correctly, the initial implementation effort 
(excluding the platform and tool evaluation and training), for a four-FPGA system 
with each device resource utilization around 50% and a relaxed clock rate, might 
take ten to 16 engineer-weeks of effort, which is five to eight weeks for a typical 
two-engineer team. 
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4.6.2. Subsequent implementation effort 
After the design has been successfully implemented once in the FPGA system and 
only small design modifications are needed, such as a result of bug discoveries, we 
will need to make design changes. Typically these will only have a small impact on 
partitioning and design constraining and therefore mostly involve the design 
implementation phase once the whole implementation process is set up. Assuming 
the design implementation is scripted into “build” or a “make” files, this effort is 
fairly small and is limited to implementing the design changes, running the 
implementation scripts and reviewing various report files. 

Recommendation: where possible, use the incremental design features through the 
implementation chain to minimize implementation time for minor design changes. 

The time for subsequent implementation depends on the extent of design 
modification compared to the previous run: 

• Minor modifications: for minor changes, such as changing debug probes 
or small logic changes to the design itself, re-implementation of the design 
requires only synthesis, place & route. Implementation tools can be 
configured to operate in an incremental mode where only blocks that have 
changed require re-synthesis and place & route, which translate into 
significant processing time savings. For such cases implementation time 
can typically be one to four hours per FPGA. 

• Moderate modifications: at this point the design may have grown beyond 
the initial 50% utilization levels target, and the timing requirements may be 
harder to accomplish. If the design changes are significant then 
implementation may involve partition changes. Therefore, such iteration 
may take as much as a couple of days.  

4.6.3. A note on engineering resources 
First-time prototypers should not make the mistake of thinking that making an 
FPGA-based prototype is a summer job for the intern. For a successful and 
productive prototyping project there needs to be a good understanding of the design 
to be prototyped, of the FPGA technology, of the tools necessary and prototyping 
optimization techniques. Since prototyping is often critical to the overall SoC 
project schedule, it is recommended to dedicate at least one engineer with a good 
RTL knowledge, a good understanding of FPGA technology and tools, and good 
hardware and at-the-bench debugging skills. These are not skills typically found in 
SoC verification teams and so some consideration of building and maintaining such 
expertise in-house should be undertaken.  
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Larger corporations with multiple prototyping projects typically retain a team of 
engineers specifically for FPGA-based prototyping tasks. Such a valuable expert 
resource has a high return-on-investment, as SoCs, and the software running on 
them, benefit from better verification. 

In some cases it is possible to share some of the tasks among multiple engineers. 
For example, to identify multi-cycle paths to relax the timing constraints or to make 
RTL changes to improve timing, the SoC engineers may be a good choice to 
implement these tasks since they are most familiar with the design and can resolve 
these issues more effectively. 

Recommendation: for a first-time prototyping project, it is recommended to make 
use of consultants who can provide the necessary front-to-back prototyping 
expertise. Employing and learning from such experts is a very productive way to get 
up to speed with prototyping in general while also benefiting the current project. 

4.7. FPGA platform 

After estimating the logic resources needed, the size of the system should become 
evident. Specifically, the type of FPGAs to use, the number of FPGAs needed, the 
interconnect requirements, and additional hardware such as external memories, 
controllers, analog circuitry etc., that will be added to the FPGA system. At this 
point in time, the decision whether to buy an off-the-shelf FPGA system or to 
develop it in-house must be made. Some of the important considerations are how 
well the system scales with design size changes and the potential reuse of the 
system for future prototyping projects, where the more “generic” the platform is, the 
more re-usable it will be in future projects. 

As an example of the types of ready-made FPGA platforms available, Figure 46 
shows a platform from a Synopsys HAPS® (High-Performance ASIC Prototyping 
System) family of boards. 

This example shows a HAPS board which has four Virtex-6 LX760 FPGAs, plus a 
smaller fifth FPGA, which is used to configure the board and also holds the 
supervisor and communications functions. There are other HAPS boards which 
have one or two LX760 devices each but with the same level of infrastructure as the 
board with four FPGAs. So we have the same resource in effect in three 
configurations i.e., single, double and quadruple FPGA modules which can operate 
independently or be combined into larger systems. The HAPS approach also 
includes different connectivity options and separate add-on boards for various hard 
IP, memory, and IO options.  
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The importance of such flexibility becomes apparent when platforms are to be 
reused across multiple prototyping projects. The options and the trade-offs between 
making project-specific boards and obtaining third-party ready-made boards like 
HAPS are described in more detail in the “Which platform?” chapters (5 and 6) so 
we shall not cover in any more detail here. 

4.8. Summary 

We have now covered all the reasons why we might use FPGA-based prototyping 
and which types, device, tools and boards might be most applicable in given 
situations. We have decided which parts of the design would most suitable for 
prototyping and how we can get started on our project. 

The most important point to be re-iterated from this chapter is that there is an effort 
‘vs’ reward balance to be considered in every project. With enough time, effort and 
ingenuity, any SoC design can be made to work to some degree in an FPGA-based 
prototype. However, if we start with realistic and achievable expectations for device 
usage and speed, and omit those design elements which bring little benefit to the 
prototype but would take a great deal of effort (e.g., BIST) then we can increase the 
usefulness of the prototype to most end-users.  

 

 

Figure 46: Example of a ready-made FPGA platform, HAPS®-64 
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CHAPTER 5 WHICH PLATFORM? 
(1) BUILD-YOUR-
OWN 

It is important to explore the different options for target FPGA platforms at an early 
stage. The most obvious choice from the start is whether to design and make your 
own specific boards or to obtain boards from an external supplier. The next two 
chapters will discuss technical aspects of the platform choice, starting with this 
chapter, in which we will focus on making your own boards in-house. There is also 
some detail in Appendix B on making an informed comparison from an economical 
and business perspective. 

5.1. What is the best shape for the platform?  

In earlier chapters we explored the many possible aims for an FPGA-based 
prototyping project; by the time we get to choose the platform, the basic needs for 
the project will probably be well understood. On the other hand, there may be a 
whole series of projects for which a platform is intended, requiring a more forward-
looking and generic solution to multiple needs. The platform’s topology, that is, the 
physical and electrical arrangement of its resources will need to meet those needs.  

Let us consider the topology needs as divided into the following areas: 

• Size and form factor 

• Modularity 

• Interconnect 

• Flexibility 

each of which we will now give further consideration. 

5.1.1. Size and form factor 
Clearly, an FPGA-based prototype will take more space in the final product than 
that occupied by the intended SoC, but in most cases we are not looking for an exact 
physical replacement of one by the other. How close to final form-factor does the 
FPGA-based prototype need to be?  
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In many cases, umbilical cable may be used to connect the FPGA platform to the in-
system socket of the intended SoC. In that case, electrical and timing considerations 
would need to be understood. For example, do the FPGA IO pins have the electrical 
characteristics required to drive the cable load as well as the final SoC load. Would 
the cable require high-drive buffers to make this possible? If so, we should also then 
account for the buffer delays as part of the IO constraints for the implementation 
tool flow.  

The advantage of having an umbilical cable to a final SoC socket is that the 
platform may be more easily used as a demonstration model for external suppliers, 
partners or investors. If this is an important aim then it might also be worth 
considering the use of a complimentary virtual prototype for early demonstrations, 
potentially linking this to part of the FPGA platform in a combined hybrid prototype 
environment.  

It is not common to find these umbilical topologies in real-life FPGA-based 
prototyping projects. In fact, a more widespread approach is almost the opposite 
with the SoC first sample silicon being more often plugged into a pre-prepared 
location on the FPGA-based prototype platform, rather than the other way round as 
discussed above. This requires a hardware topology in which there is a physical 
partition at the SoC pins; that is, between the contents of the SoC (i.e., pins-in) and 
the rest of the system (i.e., pins-out). That may seem natural and obvious but in-
house boards can often mix everything together, especially when the boards are 
intended to be used only for a single project.  

Figure 47: FPGA-based Prototyping platform employing a personality board 
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A diagram of this pins-in/pins-out hardware topology is shown in Figure 47. Here 
we see a personality board for the pins-out portion of the prototype, including 
peripherals which represent the interface for the SoC with its final target product. 
The personality board is connected via a header to the pins-in portion of the design 
which is modeled on an FPGA board. Upon receipt, the first silicon is mounted on a 
substrate board and fitted onto the header in place of the FPGA board.  

User often tell us that when first-silicon is introduced into a previously working 
prototype platform in this way then software can be up and running in only a matter 
of hours. This is an excellent example of how some forethought regarding the 
topology of the FPGA-based prototyping platform can greatly improve productivity 
later in the project. 

5.1.2. Modularity 
The specific case of a pins-in/pins-out topology partition leads into a more general 
discussion of modularity. When building an FPGA-based Prototyping platform, 
should all components be placed onto one board to potentially increase FPGA-to-
FPGA performance or should different types of component (e.g., FPGAs, 
peripherals, memories) be placed on separate boards, to potentially increase 
flexibility? Or is there perhaps some hybrid arrangement of the two? There is no 
one right way for all cases but in general, what starts as a question of flexibility 
versus performance, becomes more a matter of cost, yield and manufacture, as we 
shall discuss later. 

Considering just the flexibility versus performance question for the moment, an 
arrangement of mother-board and daughter-boards may be a good compromise. If 
the boards are intended for multiple projects, it makes sense to group components 
into those which will always be required for every project and those which are only 
required occasionally. Ever-present components may then be placed on a 
motherboard along with the FPGAs and other global resources. Those components 
which are specific to a given project may then be added as daughter boards as 
required. For follow-on projects, the hardware re-design will then be limited to one 
or two daughter boards rather than an entire platform.  

5.1.2.1. Mother and daughter cards vs. “all-on-board” 
It is often tempting to make one large single board to fit the whole design and 
indeed, this can be good for a very targeted or application-specific solution, 
especially if it does not require a large number of FPGAs and has a well defined set 
of peripherals. For example, if we are always expecting to prototype video graphics 
designs, then we might always add an on-board VGA or other screen driver port. If 
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we are in a networking design team, then an Ethernet/IP port would probably 
always be necessary.  

However, as a note of caution, peripherals on an FPGA motherboard are likely to be 
connected directly to FPGA pins, as shown in Figure 48. 

If the peripheral is not used for a particular design, then the FPGA IO pins would 
still be connected to the unused peripheral and therefore not available for any other 
purpose, limiting the overall capacity of the motherboard. In addition, effort must be 
made to ensure that the unused peripheral remains dormant or at least does not 
interrupt the operation of the rest of the board. 

The common solution to avoid this compromise is to place the peripheral on a 
separate daughter card so that it can be connected into the system when necessary 
and otherwise removed. If we have an attitude to on-board peripherals of “if in 
doubt, put it on” then we may severely limit the most valuable resource on the 
motherboard, i.e., the IO pins of the FPGAs themselves.  

Figure 48: Inefficient use of FPGA IO pins owing to dedicated peripherals 
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5.1.3. Interconnect 
As mentioned, the FPGA IO pins and the connections between the FPGAs should 
be considered the most valuable resources on the platform. This is because they are 
the most likely to be 100% used, especially when a non-optimal partition is 
employed. What is the best Interconnect topology for a given design and partition 
(or for a given set of designs, assuming reuse is desirable)?  

Given that in-house platforms will often be designed and built with a specific SoC 
project in mind, the connectivity between the FPGAs will tend to resemble the 
connectivity between major blocks at the top-level of the SoC design. This is 
especially likely if the SoC has been designed with the platform in mind. This may 
seem a circular argument but it is not. This is because many designs are derivative 
of previous versions and also because Design-for-Prototyping methods will tend to 
group the SoC’s top-level hierarchy into FPGA-sized blocks. With the platform 
interconnect being fixed and matching the SoC top-level connectivity the 
partitioning of the design becomes easier. The downside is that the reuse of the 
board for follow-on projects becomes harder, as will be seen in the next section. 

For a platform to be more generic and therefore more likely to be re-usable across 
multiple projects, the interconnect resource should be as design-independent as 
possible, although perhaps constrained by some ever-present design elements such 
as the width and number of buses in the SoC or a particular data-path arrangement 
between the SoC and system-level elements. If projects are always standardized 
around a specific bus specification, for example, then inter-FPGA connection needs 
can be anticipated to some degree.  

For example, if a 64-bit AHB™ bus is always employed then connectivity on the 
board can be provided to carry the bus between all FPGAs. It should always be 
remembered, of course, that an AHB bus and other standardized bus systems require 
many more pins than may be inferred by their nominal width. For example, a 64-bit 
bus might have 64 bits of address, 64 bits of write data, 64 bits of read data and 10 
or 20 or more control and status signals, e.g., rd, ale, rdy etc. This would total over 
200 or more connections at each FPGA that resides on the bus, which is a sizeable 
proportion of the total inter-FPGA IO connections available. Even if the address and 
data were multiplexed, the number of global pins and traces would be over 130. 

Consider the example in Figure 49, which shows a simple 64-bit multiplexed 
address-data bus connection between a CPU and two peripherals.  

It is quite possible that a situation would arise where this circuit were mapped to 
three FPGAs as shown in Figure 49 with a fourth FPGA on the same board not 
required to house a bus peripheral, but instead some other part of the design. 
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Without care and foresight, wider buses and datapaths can run out of 
interconnections on a given board. It is necessary to fully understand the top-level 
topology and interconnections at the SoC top-level but it is also recommended to 
build flexibility into the board interconnect resources. This could be done using 
cables or switch matrices rather than using fixed traces in the PCB itself. 

 

If the board has fixed global resources routing the bus to every FPGA then the 
fourth FPGA (FPGA D in the example shown in Figure 50 ) would not be able to 
use 130+ of its precious IO pins. These would need to be set to high-impedance, 
non-driving mode so as not to drive or excessively load the traces being used to 
route the bus between the remaining FPGAs. We shall revisit this example in 
chapter 6 when we consider commercially sourced boards and how the limitations 
of interconnect can become a very critical factor. 

Figure 49 : Multiplexed address-data bus before partitioning (compare with 
Figure 50 ) 
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5.1.4. Flexibility 
How flexible does the platform need to be? It may be decided from the start of the 
project that the platform will only ever be used for one prototype; follow-on reuse 
would be a bonus but is not necessary to justify the project or its budget. This 

Figure 50: Multiplexed address-data bus from Figure 49 after partitioning

 

 

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



    

122 Chapter 5: Which platform? (1) build-your-own 

simplifies matters considerably and is the most common compromise when 
designing in-house platforms. Indeed, in the authors’ experience, most in-house 
platforms are never reused for follow-on projects. Not only because that was never 
the intent (as above) but also because, even when intended for reuse, the boards 
themselves do not have the resource or interconnect to allow it. In those cases where 
in-house board development was only funded by management based on a multi-
project return-on-investment, if this turns out not to be possible then we might 
jeopardize use of FPGA-based prototyping in future projects. We can see then that 
building in flexibility can be highly beneficial, despite the necessary extra 
complexity. 

For maximum re-usability, flexibility is needed in the following areas: 

• Total FPGA resources 

• Peripheral choice 

• Interconnect 

• On-board clock resources 

• Voltage domains 

The first three points have been considered already in this chapter so let us consider 
clocking and voltage flexibility. Clock network needs are very different for SoC and 
FPGA designs and manipulation and compromise of the SoC clocks may be 
required in order to make an FPGA-based prototype work in the lab (see chapter 7). 
Our aim should be to use platforms and tools which minimize or eradicate these 
manipulations and compromises.  

5.2. Testability 

In chapter 11 we shall explore the process of bringing up our boards in the lab and 
applying the SoC design to the board for the first time. At that point, we shall rely 
on having confidence that the board itself is working to spec before we introduce 
the design. The task of the board designer is not only to provide ways to test the 
functionality of the boards during manufacture and initial test, but also to provide 
extra visibility to enable the board functionality to be tested once deployed in the 
lab. This is a different subject to the use of instrumentation to add visibility inside 
the FPGAs to the design itself.  

Testability is of course a consideration for in-house platform development. The 
ability to test all interconnect, especially for modular systems with many 
connectors, is essential. There are third-party tools that allow you to develop 
continuity suites to confirm that connectivity is complete. The ability to test 
continuity when platforms go down by users more than pays for itself. This also 
helps to diagnose blown FPGA pins during operation. 
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5.3. On-board clock resources 

Using a modern FPGA fabric as an example, we see a remarkable variety of clock 
resources inside the device as shown in chapter 3. If the SoC design is small enough 
to be placed inside a single FPGA then as long as the FPGA has the required 
number of clock domains then the SoC clock network will probably be 
accommodated by the sophisticated clocking networks in the FPGA, including PLL, 
clock scaling and synchronization between local clocks and global clocks.  

Having claimed that, if SoC clock networks are small enough they can be 
accommodated by a single FPGA, once the SoC design must be partitioned across 
multiple FPGAs then an extra layer of complexity is involved. In effect, the top-
layer of the clock network hierarchy needs to be accommodated by the board, rather 
than inside the FPGA devices. One useful approach is to consider the board as a 
“Super-FPGA” made from the individual FPGAs plus top-level resources joining 
them together into the overall platform.  

To replicate an FPGA’s full hierarchy of clock functionality at board level would 
require similar resources to those found inside each FPGA. So, for example, we 
would need board-level PLLs, clock multiplexing, clock dividers and multipliers, 
clock synchronization circuits and so forth. 

In many cases, we can simplify this requirement by using tools to simplify the SoC 
clocking into something that we can handle on our boards. For example, converting 
some of the SoC design’s gated clocks into equivalent global FPGA clocks, plus 
relevant clock enables, in order to reduce the total number of clock domains. This 
gated-clock conversion can be automated without altering the RTL as will be shown 
in detail in chapter 7. 

Building fully flexible clock resources into a board to meet the requirements of a 
variety of SoC designs requires a great deal of experience and expertise and so it 
may be tempting to create our board for a single project only. The board would be 
made with only those top-level clock and other resources necessary to map the 
specific SoC design. This is certainly much easier than planning for a fully flexible 
arrangement for all possible future FPGA-based prototypes. However, a board with 
inadequate flexibility in the clock resources will place greater constraint on the 
partition decisions should the design change to some degree during the project. It 
will also heavily reduce the ability for the board to be used across multiple projects 
because the top-level clock resources for one SoC project may not closely match 
those for subsequent projects. In the authors’ experience, it is limitation of the top-
level clock resources that is a common reason that in-house boards are not often re-
usable across many projects.  
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5.3.1. Matching clock delays on and off board 
A clocked sub-system in the SoC will be implemented in silicon with tight control 
and analysis of clock distribution delays. When such a sub-system is split across 
multiple FPGAs, we must not introduce skew into our clock networks. The 
partitioning of an SoC design into multiple FPGAs will require control of inter-
FPGA delays and especially inter-board delays, if multiple boards are to be used. 
Some of this can be done by properly constraining the FPGA tools and the task 
might be made easier by reducing the overall target clock speed for the prototype. 
However, regardless of the clock speed the best way to ease this task is to design 
our boards with matched and predictable clock distribution resources. 

As an example of delay matching, we look no further than the Synopsys® HAPS® 
family of boards. These are laid out with quanta of delay which are repeated at key 
points in clock distribution paths. In the example in Figure 51, we see two quanta of 

delay, X and Y, which are used as fundamental values during the board design. Y is 
the delay of typical clocks along a particular standard length co-axial cable with 
high-quality shielding and co-axial connectors which is mass produced and used 
widely in HAPS-based platforms. Having a single type and length of cable with 
relatively constant delay meant that the on-board traces can be designed to the same 

Figure 51: Delay matching on and off board 
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value Y. It is a small matter for PCB designers to delay match traces on the board, 
although the zig-zag trace routing employed may increase the need for extra board 
routing layers. The other quantum of delay, X, is the stub delay to and from FPGA 
pins and nearby connectors and is relatively simple to keep constant. The values for 
X and Y will be characteristic for a given family of boards, for example, for one 
family of boards, X= 0.44ns and Y = 1.45ns. With care, the values of X and Y can 
be maintained across new board designs in order to allow easier mixing of legacy 
and new boards in the same prototype. 

We can now see from the diagram that clock delay between the clock source and 
any of the FPGA clock pins will be the same value, 2X+Y, i.e., 2.33ns for our 
HAPS example, and thus we have minimized clock skew across the partition.  

Note, however, that the received FPGA clocks, although mutually synchronized, 
will not be in sync with the master clock input, F. If we wish to use F and its 
distributed derivatives, then we will need to employ phase-locked loops, which we 
will now discuss. 

5.3.2. Phase-locked loops (PLL) 
PLLs are extremely useful for removing insertion delay in cross-board clock 

networks, for example, to reduce clock skew between different parts of the 
prototype. Figure 52 shows a board-level PLL driving four FPGAs. As above, with 
the use of trace-length matching, the stubs at each FPGA clock input and the stubs 
at the PLL outputs can be made equal to the value X. Over many board 

Figure 52: PLL used to re-align FPGA clocks 
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manufacturing runs, the absolute value of X may vary but will be consistent enough 
for any given board.  

We see also that the FPGAs are linked to the PLL outputs by equal length cables or 
delay Y. Co-axial cables and high-fidelity clock connections are highly 
recommended for best reliability and performance. We can see that the on-board 
delays from PLL to each FPGA are matched.  

For providing the necessary clock resources at the top-level of the “Super-FPGA,” 
the board should include PLL capabilities, which are useful for a number of tasks. 
Although the FPGAs used may include their own PLL features, the boards should 
include discrete PLL devices such as those available commercially from numerous 
vendors.  

5.3.3. System clock generation 
The clock generation and its flexibility are critical to the reliable operation of a 
multi-FPGA Prototyping system. Some of these capabilities must be implemented at 
the board level, but others must make use of the available clock resources within the 
FPGAs. It is therefore important that from the beginning we understand the 
available clocking resources on the chosen FPGA. As mentioned in chapter 3, 
FPGA devices today have very capable clocking capabilities including DLLs, PLLs, 
clock multiplexers and numerous global and regional clocks across various regions 
of the FPGA fabric. 

Once the available clocking resources in the FPGAs are understood, we should 
determine what additional external clock sources and routing will properly exploit 
them and maintain the most flexibility for all future applications. 

The following is a list of recommended considerations: 

• Where is the clock sourced?  

o Generated locally on main board. 

o External source to the main board. 

o Generated in FPGA. 

• What clock rates are required?  

o Estimate the range of possible FPGA clock frequencies. 

o Plan to generate an arbitrary clock rate, with fine granularity. 

• What clock skew can be tolerated? 

o Inter-FPGA synchronization: make sure all FPGAs receive the 
clock sources at an acceptable skew. 
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o Inter-board synchronization: in large systems, make sure all 
clocks arrive at all FPGAs with an acceptable skew. 

In addressing the above considerations, an in-house board might typically include 
most or all of the following elements: 

• On-board clock synthesis: typically a PLL driven by a crystal oscillator 
reference with configurable parameters to select the desired clock 
frequency. To increase the flexibility the crystal oscillator may be 
removable. Multiple clocks generators may be needed to support systems 
with multiple clocks. 

• Input clock source selector: given the multiple sources from which clocks 
can be sourced e.g., local (on board, FPGAs), or external, a clock source 
multiplexer should be implemented. Management of the multiplexer could 
be by manual switches or programmed by a separate software utility (see 
section 5.4 below).  

• Clock distribution: regardless of the clock source, clock distribution must 
ensure the clock is distributed to local and external consumers with an 
acceptable skew. Excessive skew may result in improper logic propagation 
and decrease the timing margins between two or more entities passing 
synchronous signals to each other. On-board and connector delays must be 
accounted for and equalized while maintaining acceptable signal quality. 

• External clock source: propagation delay from one board to another must 
be accounted for and propagation delays should be equalized by 
appropriate phase shifting. Special attention must be paid to a situation 
where multiple PLLs are cascaded between the source and destination of 
the clock path, as instability and loss of lock may occur if not properly 
designed.  

• Special high-speed clocks: in addition to the application clocks, there may 
be a need for high-speed clocks to multiplex multiple signals on one pin. 
This is typically used when the number of signals between two FPGAs is 
greater than the number available pins between them. Using a high-speed 
clock the signals can be time-multiplexed over a single pin at the source 
and are then de-multiplexed at the receiving end. For this scheme to work 
properly both sides of the interface must have the same high-speed clock 
with minimal skew. Some prototyping tools such as Synopsys’ CPM 
(Certify Pin Multiplier) assist the use of this technique. 

• Clock scaling: Flexibility in clocking requires that the top-level clocks can 
be scaled to the correct frequencies for various parts of the design. 
Although dividers and other logic resources can be used for this inside the 
FPGA devices, PLLs also have their role to play.  
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5.4. Clock control and configuration 

With the options discussed above, it is clear that the clock configuration of our 
board could become rather complicated. A large number of switches may be 
necessary to fully cover all the clocking options on a sophisticated multi-FPGA 
board. Nevertheless, with good documentation and the correct training, a board with 
such clocking flexibility would be more likely to be re-usable over multiple 
projects.  

Alternatively, we might use programmable switches under the control of an on-
board hosted microcontroller, or a utility running on an external host PC, as we shall 
explore in chapter 6. 

5.5. On-board Voltage Domains 

SoC designs use an increasingly complex collection of voltages both for interfacing 
with external components and in an internal hierarchy of voltage islands in order to 
reduce power (see the ARM®-Synopsys Low-Power Methodology Manual, LPMM, 
in the bibliography for further detail). The internal voltage islands are usually 
inferred by EDA tools, based on the power-intent captured in side-files written in 
formats like the universal power format (UPF). Internal voltage islands therefore do 
not generally appear in the design RTL and do not get mapped onto the FPGA-
based prototype. If the RTL delivered to the prototyping team already has voltage 
control logic, retention registers etc. then these will need to be tied to inactive state 
(see chapter 7). It is very unlikely that the voltage regions on the FPGA board will 
correspond with the regions within the SoC itself.  

External voltage needs must still be mapped correctly, however. FPGA IO pins are 
arranged in banks that support different voltage thresholds and are powered by 
different voltage rings. It is important that the platform can supply any of the 
required voltages and route them to the relevant FPGA power pins. Voltage 
inflexibility additionally constrains IO usage and placement so that voltage rather 
than performance or connectivity sometimes governs partitioning choices with the 
result of compromising other priorities. Indeed, new voltage requirements can be a 
reason that existing boards cannot be reused in new projects, so building in 
flexibility is a good investment for helping to ensure longer life of the boards across 
multiple projects. 
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Figure 53 shows a screenshot from a utility which is used to remotely set-up the 
voltage of different regions on a HAPS-64 board. 

Here we can see that the FPGA pins and daughter-card connectors are grouped the 
into different regions which can be set to chosen voltages (in reality, there is good 
use of color to clarify the user interface). The region voltage is slected by use of 
pull-down menus and we can see that “OFF” is also a valid option.  

This configuration tool then configures programmable switches on the board which 
setup the reference and rail voltage for the FPGA devices themselves. Although this 
is an example from a commercial board, it is possible to create such utilities in-
house and might be worth the effort if many copies of a board are to be made and 
used in a wide variety of projects. 

5.6. Power supply and distribution 

When considering the power supply scheme, we need to consider the system’s 
scalability, worst-case power budget, and planned modularity. For example, a multi- 
board system allows greater flexibility but the arrangement of the boards and sub-
systems is impacted by their power requirements. 

Figure 53: On-board IO voltage configuration 
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During system assembly to support daughter boards which draw power from the 
main board, as shown in the simple example of Figure 54, careful power budgeting 
for the additional boards must be done. If the combined current consumption on the 
daughter boards will exceed the available power on the main board, separate power 
must be supplied to the daughter board from the main external power supply as to 
not damage the main board supply circuit and possibly the board traces. In addition, 
to prevent damage to the main board from accidental power short on the daughter 

board, a current limiting circuit, or a “resettable fuse” should be considered at every 
power exit point. The connector pins supplying the current should also be properly 
sized to the expected current draw for reliable and long-term system reliability.  

It is bad practice for major sub-system boards to be powered from a host board, 
especially sub-system boards which mount their own FPGAs. It may be tempting to 

Figure 54: Example of non-recommended power distribution 

 

Figure 55: Example of centralized power distribution 
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have voltage regulation and distribution from the host board onto all secondary 
boards, however, the latter may require current which exceeds the capability of 
board-to-board connectors carrying the voltage rails. This may be especially 
apparent during FPGA power-up and configuration, or even during live reset. 
Momentary brown-out of voltage rails, because of some particular activity of the 
FPGA, can be a hard problem to diagnose late in the prototyping project. 

Far more preferable is that each board be specified with its own power input, and 
voltage regulation and distribution are managed locally. Each board then draws its 
input power from a common external power supply that is large enough to power all 
boards in the system as described in Figure 55.. 

As shown in the diagram, one power supply provides power to each of the boards in 
the system so it must be capable of sourcing power to all boards combined under 
worst-case scenario. Estimating the total power consumption is covered in the next 
section. 

5.6.1. Board-level power distribution 
Each FPGA board will need a number of voltages depending on the FPGA 
specifications and user selections:  

• Core voltage: used to power the FPGA internal logic, is typically lower 
than the IO voltage and determined by the FPGA vendor. 

• IO voltage: used to power the FPGA pins, and can vary depending on the 
signaling levels used in the system. IO voltages are typically grouped in 
banks that share the same IO voltage, so there is a potential to have 
multiple IO voltages across all IO pins. However, using multiple IO 
voltages will require multiple “power islands” in the PCB which will 
complicate the layout design. When selecting signaling levels, we need to 
consider the implication on IO speed, noise margin and possible interface 
constraints. All inter-FPGA connectivity can easily use the same signaling 
standard, but we need to make sure the signaling level on the FPGA side 
will be compatible with external devices to which the system may be 
connected. 

• IO current: if the requirement of the externally connected device cannot 
be met using the FPGAs programmable output pin drives of up to 24mA, 
then we will need to add external buffers between the FPGA IOs and 
external components, probably mounted on daughter cards. It may only be 
necessary to add these buffers to a subset of the FPGA pins, if any. 

On each board, the power may be supplied by single or multiple voltages, and then 
lower voltages are generated using power generation circuitry, such as DC/DC 
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converters. Given the multiple possible signaling standards, we may want to allow a 
certain degree of programmability of the IO voltages.  

In estimating the power consumption, we should consider worst-case scenarios as 
the actual consumption depends on a number factors that may vary and are 
unknown for any arbitrary design in the future. Specifically, the power needed for 
each FPGA depends mostly on the switching rate and the number of internal FFs 
used in a design, so an estimation of these two factors must be made. In addition, IO 
switching and static current consumption should also be accounted for.  

We must take into account initial power up requirements of the system because high 
current spikes often occur when powering up FPGAs (see chapter 11 for more 
details). Including all the above considerations, we can see that estimating total 
power is somewhat statistical but in all cases we should be conservative. To help 
estimate the power consumption for a given FPGA, vendors typically provide power 
estimation tools that make it easier to predict the power consumption for each 
FPGA. 

Since core and some IO voltages are considerably lower than device voltages used 
in the past, the tolerance to variations is proportionately smaller as well. For proper 
FPGA operation, it is strongly recommended to employ some power monitoring 
circuits. Such devices will change state when voltage drops below a certain level, 
often programmable. When power faults occur, an alarm circuit should be triggered 
to alert the user to them. More about power faults management is described below.  

In addition to the FPGA power needs, we should consider making provisions for 
additional programmable voltage level supplies to be used as reference voltages for 
auxiliary analog circuits such as ADC and DACs and other auxiliary circuits to be 
added to the FPGA system.  

Recommendation: when connecting multiple boards together, it is safer to allocate 
a separate power distribution to each rather than have secondary boards which 
piggy-back onto a prime board. Piggy-back boards, sometimes called daughter 
boards or mezzanine boards, must meet a limited power spec in order not to 
overload the power supply of the host board.  

5.6.2. Power distribution physical design considerations 
The physical delivery of power to FPGAs is very critical to system stability and 
reliability. Since the FPGAs are the main power consumers, high-speed clocking 
and large numbers of FFs switching simultaneously will result in large current 
spikes at the clock edge where most logic changes take place. These current spikes, 
if not properly supplied, will cause power level drop or noise on the power lines at 
FPGA power pins and can result in unreliable operation. 
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To mitigate this potential problem, good low-impedance power planes should be 
used with adequate amount of continuous copper between the power supply circuit 
and the FPGA’s power pins. Equally important is the power return path, or ground, 
so a low-impedance ground to the power supply is also necessary. In addition, large 
reservoir (100μF) and high-frequency small (.1μF) low-ESR, capacitors should be 
placed as close as possible to the power pins of the FPGAs in order to smooth the 
effects of both the slow and fast current surges. 

In addition, special attention must be paid to IO power and grounding. Adequate 
power distribution should be implemented as mentioned above, but also care must 
be paid to signal groupings and ground pins. Typically, there is a ground pin per a 
number of IO pins. The number of IO pins per ground pin varies depending on the 
FPGA. Many pins switching at the same time to/from the same logic levels can 
result in a large return current through the ground pin. This may cause a “ground 
bounce,” where the ground reference rises momentarily and may cause incorrect 
logic interpretation in input pins associated with this ground pin. To mitigate this 
risk, it is advised to provide an adequate low impedance ground for the ground pins 
that are between the IO pins, and carefully follow the FPGA manufacturer’s board 
layout recommendations. In addition, to minimize the return current it is 
recommended to configure the FPGA IO such that they use the least amount of 
current drive on output pins rather than full 24mA on all pins by default. This will 
reduce current while maintaining adequate drive and signal quality.  

5.7. System reliability management  

As with any other design and test equipment, the reliability of the prototyping 
system is of critical importance to the user. A reliable system should have built-in 
protection from faults to the greatest extent possible and provide the user with 
warnings, should a fault occur. The types of faults typical to such large systems 
relate to power supply and thermal management.  

5.7.1. Power supply monitoring 
Proper operating voltage should be supplied to all FPGA and other components by 
design. However, power supply faults still may occur for variety of reasons, such as 
main power supply failure, unintended excessive current draw, or even accidental 
shorts on the power lines. 

While such faults cannot be automatically repaired, it’s important the user is aware 
if such a fault has occurred. Therefore it is recommended that each power supply 
circuit has a power monitor circuit that continuously measures the voltage level and 
asserts a fault signal when the voltage is outside the monitoring range.  
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In addition to the on-board power monitoring, current generation FPGAs have a 
built-in system monitor circuit that can monitor all on-chip voltages and external 
voltages, as we shall see below. Since such voltage monitoring circuits are available 
“for free” in the FPGA it is recommended to use them.  

Once a power failure is detected, the system management circuit can do one or all of 
the following: 

• Set a visible indication of the fault, such as an LED. A more sophisticated 
system may have the fault monitoring circuit linked to a host computer, 
such that its status can be read by a program available to the user. Such a 
feature is critical when the system is housed in an enclosure, or located at a 
remote location away from the user. 

• Assert a global reset signal to reduce operating current draw. 

• De-configure all FPGAs, to ensure they consume the least amount of 
power. This will also serve the purpose of alerting a remote user that a 
system fault has occurred. 

5.7.2. Temperature monitoring and management 
As FPGA devices became larger and faster, so did their appetite for power, despite 
the shrinking node geometries. Current generation FPGAs with high utilization 
levels, running at high clock rates, may generate more heat than their package can 
dissipate to free air. Overheating die may result in malfunction and may cause 
irreversible damage to the FPGA and the PCB. In addition, when the prototyping 
system is enclosed in a box where the ventilation is marginal, FPGA temperature 
can rise to damaging levels. In either case thermal management circuitry should be 
considered and thermal requirements must take into account these worst case 
scenarios. 

As introduced above, the FPGA’s system monitor” is highly programmable and has 
multiple modes of operation, but importantly it can also monitor the FPGA die’s 
average junction temperature. Monitored data is available at the JTAG port and also 
via the FPGA-resident design if the system monitor module is instantiated in the 
design. This could be a part of the FPGA-specific chip support block mentioned in 
chapter 4. 

Figure 56 shows the system monitor circuit available at the core of the Virtex®-5 
FPGA. As shown, in addition to the voltage monitoring, the system monitor has a 
temperature sensor with an associate alarm signal that is activated when the junction 
temperature exceeds its acceptable level. Such a signal can be used to implement a 
system-level power and temperature monitoring circuit, and alert the user to a fault 
in the system. 
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Once an over-temperature alarm is set, the system management circuit may do some 
or all of the following: 

• Set a visible alarm, like an LED. 

• Turn on fans to remove the excess heat. 

• Put the system in reset condition. 

• De-configure all FPGAs, to make sure they will consume the smallest 
amount of power. 

• An example of how temperature could be monitored from a host is shown 
in Figure 57 . This is a screen shot of a PC-hosted utility called CONFPRO 
which is connected to a supervisor microcontroller running locally on a 
HAPS board (actually running on a Microblaze CPU embedded in an 
FPGA on the board). The screen shows the values read from the system 
monitors of six Virtex®-6 devices and any mitigation steps in progress e.g., 
controlling fans mounted on each FPGA. The same microcontroller also 
controls the FPGA clocks, resets and configuration so each of the above 
mitigation techniques can be automated locally or under control of the 
user. 

In addition to the on-chip temperature monitoring, it’s recommended the system 
also includes a number of temperature sensors placed close to where temperature is 
expected to be higher than other parts of the system, typically close to the FPGAs. 
Such devices are typically programmable and can produce an alarm signal when 
temperature is higher than their programmed value. Connecting these devices 

Figure 56: FPGA System Monitor 

 
Copyright © 2011 Xilinx, Inc. 
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together and combining them with the on-chip temperature sensors/alarms will 
create a well monitored system. 

5.7.3. FPGA cooling  
To improve heat dissipation, it’s recommended to install a heat sink to each FPGA. 
There are many such heat sinks that come with self-adhesive film, so installation is 
fairly simple. If a heat sink alone is not adequate enough to remove the heat from 
the FPGAs, a small fan over the heat sink or a fan with a heat sink combination can 
be placed on each FPGA to significantly improve the heat dissipation. To 
accommodate these fans, the necessary power supply and connectors should be 
incorporated into the main board. The fans need not be on all the time but could be 
controlled by a small loop making use of the FPGA’s temperature monitor.  

In the long run, boards run with FPGAs having not heat sink or fan cooling might 
receive temperature stress and prove to be less reliable.  

Figure 57: monitor in CONFPRO 
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5.8. FPGA configuration 

FPGA configuration is the process in which the FPGAs are programmed with a bit 
stream and take on our intended functionality. Configuration data, which can range 
in the tens of Mbits per FPGA, is generated by the FPGA tools after place & route is 
completed. 

Since FPGAs are SRAM-based volatile devices, the configuration process must take 
place after each power-up, but can also be performed an unlimited number of times 
after initial configuration. 

There are a number of methods to configure FPGAs that can be broadly described 
as parallel or serial, master or slave, and JTAG. The mode is determined by 
hardwiring dedicated configuration mode signals. The following list describes the 
major characteristics of the different configuration modes: 

• In the master modes, the FPGA is controlling the configuration upon 
power-up or when triggered by a configuration pin. 

• In slave modes an external device controls the configuration interface. 

• Serial configuration is slower than parallel but uses less signals, therefore 
leaving more signals to be used for the application itself. 

• JTAG interface overrides and other configuration modes. 

Configuration data can reside in a non-volatile memory or at a host computer. 
Multiple bit streams can be placed sequentially in the storage device and all FPGAs 
are configured in order in a sequence determined by hardwiring each FPGA.  

The most common configuration mode is via JTAG and this is usually how the 
download cables form host PC’s communicates with the devices. However, it would 
be non-intuitive for those not familiar with FPGAs to make use of that download 
cable approach. 

For non-FPGA experts, we can employ some added dedicated circuitry and 
common CompactFLASH™ (CF) cards. Commercial CF devices are readily 
available and of high enough capacity to hold the configuration data of even the 
largest FPGA devices. In fact, multiple configurations can be stored in the same 
card and the end-users can choose which one is loaded on the board by a simple 
setting of switches or even by remote control from a utility running on a host PC in 
the lab. There would still be room left over in the CF memory to hold other data, for 
example, documentation and user guides. This approach is very popular with those 
creating multiple copies of the FPGA platform for distribution to remote end-users. 
Removable CF cards provide the flexibility to transport the systems configuration to 
remote locations.  

To enable the use of CF cards, a dedicated circuit called the Xilinx® System ACE™ 
controller is typically implemented in a separate small FPGA on the board. System 
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ACE technology is a piece of Xilinx® IP which reads the CF card and then emulates 
a JTAG interface memory for the FPGAs to be configured. Figure 58 shows a 
multi-mode configuration approach centered upon the System ACE controller.  

More information about System ACE and for a full description of FPGA 
configuration modes, refer to Xilinx® documentation listed in the references. 

5.9. Signal integrity 

As mentioned above, clock skew should be minimized to an acceptable level. The 
main contributors to clock skew are jitter in the source signal, and noisy power 
supply and signal environment. To minimize these negative effects, special care 
must be paid to the signal propagation on the boards and across boards including 

• Consistent impedance of all clock signals is critical.  

Figure 58: CompactFLASH™ based configuration via System ACE™ 
technology 

 

Copyright © 2011 Xilinx, Inc. 
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• Proper routing on the board will reduce cross-talk with other signals. 

• Well regulated power supplies with low-impedance paths to all loads. 

• Trace length and delay matching for most likely parallel data and clock 
paths e.g., from an FPGA to its dedicated IO connector. 

• There are other sources for understanding the issues on board layout and 
signal integrity (see references). This is not a manual for PCB layout and 
design and we only mention it here as a reminder that creating a large 
multi-FPGA board is a challenging problem, although not insurmountable 
with access to the right PCB-layout expertise. 

5.10. Global start-up and reset 

 Once a system clock generation and distribution scheme is designed, we need to 
consider the effects of integrating the clocking circuits with the FPGA system. In a 
multi-FPGA prototype in particular, it is essential that all FPGAs become 
operational at the same time i.e., have their resets de-asserted on the same clock 
edge. 

When PLLs are used either on the board and/or inside the FPGAs, the system start-
up must be delayed from after power-up until all timing circuits (PLLs) are stable 
and phase locked to their respective sources. 

In this case, we employ a global reset circuit that holds the whole system at the reset 
state until all PLLs in the system are locked. There is more detail on this in chapter 
8, however, during board development, it is important to make external PLL device 
locked an reset signals available at the pins of at least one FPGA so that they might 
be gated into an overall reset condition tree. 

5.11. Robustness 

As mentioned in chapter 2, one excellent reason to use FPGA-based prototypes 
during SoC verification is to allow the design to be taken out of the lab. To enable 
such use, platforms must be first of all reliable but that is also true of in-lab 
platforms. For portability, the platform must also be robust enough to survive non-
lab conditions. It is important that the platform is able to work as well and as error-
free as any other piece of field test equipment.  

The platform may be made more robust by using strengthening struts to add rigidity 
to the board itself, by securing daughter cards using spacers, pillars and screws. The 
whole assembly may also be held in a strong case or rack but if so, then 
consideration should be given to maintaining the necessary access to test points, 
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extension card sites and peripheral ports. The case should also provide for the full 
power and cooling needs of the platform in the field. Early consideration of these 
points may avoid frequent remedial action when the platforms are in the field or 
used by others outside the lab, such as software developers, for whom the platform 
is just a box under their desk and should be as simple and reliable as possible. 

We will revisit the subject of robustness in more detail in chapter 12 where we 
consider how we might take our prototype out of the lab and into the field for 
various reasons. 

5.12. Adopting a standard in-house platform  

So far, we have given long consideration of the topology of the platform and its 
potential for reuse in follow-on projects. R&D centers where FPGA-based 
prototyping is widely used tend to adopt a standardized connectivity and 
modularity. Various experienced prototyping teams have adopted a tile-based 
approach where each new board, at whichever R&D site it was developed, is 
designed and built to a common form-factor and using common connectors and pin-
out. This allows the potential for each board to be reused by other sites, increasing 
the potential return on that investment. Such a standardized approach does however 
take considerable co-ordination and management and can lead to constraints on new 
platforms in order to fit in with the legacy of the standard. As new boards are 
developed, the choice will often arise between staying within the standard and 
making a specific departure in order to better meet the needs of the current project. 
For example, should a given IO socket be added to the platform, even though it 
would prevent or limit physical connections to other standard modules?  

Legacy can also be a significant obstacle during step-changes of in-house design 
practice, for example, when switching to a new wider SoC bus which may overflow 
the standard connector interface between boards.  

An important part of an in-house standard is the physical connectivity. Tile-based or 
stack-based arrangements have allowed boards built on the standard to be connected 
together in a multitude of three-dimensional arrangements. Some of these standard 
tiles do not have FPGA resources at all but instead hold peripherals or bespoke 
external interfaces and connecters, for example SCART sockets or IO standard 
interfaces. This meets the modularity guidelines mentioned earlier in this chapter 
and aids reuse but distributing components over a large area can have an effect upon 
overall performance. The authors have seen a number of examples of stacking 
modular systems where performance and reliability have proved inadequate so the 
connectors between modules become a critical part of any in-house standard 
platform. The connectors must not only carry enough signals, they must also have 
good electrical characteristics, be high-quality and physically robust. Choosing 
connectors on price will prove to be a false economy in the long run. 
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Nevertheless, the advantages of an in-house standard are significant when matched 
with a suitable infrastructure for continued development, distribution, 
documentation and support. Let’s quickly consider each of these in turn: 

• Development: to prevent duplicate development effort, for example 
multiple but similar boards containing the same FPGA, it is necessary to 
coordinate FPGA-based prototyping specialists over a number of sites and 
projects towards supporting and growing the in-house standard. An 
infrastructure is required which includes a catalog of available boards, their 
specifications, technical documentation and the roadmap/schedule for new 
board development.  

• Distribution: those entering into new FPGA-based prototyping projects 
need to be able to specify, source and assemble the required platform 
quickly from available boards. Only if boards are not immediately or 
quickly available should a new board development be considered. To make 
that possible, board developers and manufacturing sources need to have 
visibility of forthcoming projects so that the necessary boards can be 
created and put into stock. The management of the in-house standard 
becomes a sophisticated business within a business. It will take 
considerable resources to maintain but will reduce reliance on single 
contributors and help to protect the investment on previous in-house 
platform development. 

• Documentation: the standard itself must be documented and an arbiter 
appointed to certify the compliance of any new board. Then each 
individual board should have sufficient documentation to firstly allow 
other users to decide its suitability for a project but then to fully describe 
every aspect of its final use. It may also be beneficial to create training 
material and reference design examples to shorten the learning curve for 
new users, some of whom will be remote from the original board 
designers. Insufficient documentation will not only result in delayed 
projects and inefficient use of the board but also require more help from 
support personnel.  

• Support: the in-house standard will need personnel to support the use of 
boards within FPGA-based prototyping platforms, often in many sites and 
projects at the same time. Modern intranet and other internal media make 
this more possible than even a few years ago but it may still require that 
large installations of platforms would require accompanying on-site 
support personnel, depending on platform reliability and ease-of-use. The 
support infrastructure might be centralized or distributed but must certainly 
have continuous availability and expertise, minimizing the risk to 
individual projects of key support resources becoming unavailable. A 
natural extension of support for the platform is the creation of a central lab 
for FPGA-based prototyping, offering not only the platform but also the 
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design services, expertise, scheduling and management for the entire 
project. An SoC team may then choose to outsource the entire FPGA-based 
prototype as a package of work within the overall SoC project budget and 
schedule. This has become a popular option for many FPGA-based 
prototyping projects and falls under the normal rules for economy of scale. 
It is interesting that there are such centralized design service teams who do 
not actually make their own boards but instead assemble platforms from 
ready-made boards from external suppliers. 

To summarize, the establishment of an in-house standard platform can require a 
large investment in time, expertise and personnel. Historically, the scale of this 
infrastructure has meant that in-house standards were generally only adopted by 
larger multi-site corporations, performing regular prototyping projects. However, as 
we shall see in chapter 6, the growth of commercial platform suppliers has meant 
this infrastructure can be largely outsourced and now reuse and standardization is 
available to all teams, whether at a corporation or a start-up. 
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CHAPTER 6 WHICH PLATFORM? 
(2) READY-MADE 

Having spent chapter 5 exploring the detailed considerations in creating an FPGA-
based hardware platform for an FPGA-based prototyping project, we will now 
consider the other side of the so called “make versus buy” argument. When does it 
make more sense to use a ready-made FPGA board or even a more sophisticated 
FPGA-based system instead of designing a bespoke board? What interconnect or 
modularity scheme is best for our needs? What are our needs anyway, and will they 
remain the same over many projects? The authors hope that this short chapter will 
compliment chapter 5 and allow readers to make an informed and confident choice 
between the various platform options. 

6.1. What do you need the board to do? 

The above subtitle is not meant to be a flippant, rhetorical question. When 
investigating ready-made boards or systems, it is possible to lose sight of what we 
really need the board to do; in our case, the boards are to be used for FPGA-based 
prototyping.  

There are so many FPGA boards and other FPGA-based target systems in the 
market at many different price and performance points. There are also many reasons 
why these various platforms have been developed and different uses for which they 
may be intentionally optimized by their developers. For example, there are FPGA 
boards which are intended for resale in low-volume production items, such as the 
boards conforming to the FPGA mezzanine card (FMC) standard (part of VITA 57). 
These FMC boards might not be useful for SoC prototyping for many reasons, 
especially their relatively low capacity. On the other hand, there are boards which 
are designed to be very low-cost target boards for those evaluating the use of a 
particular FPGA device or IP; once again, these are not intended to be FPGA-based 
prototyping platforms as we describe them in this book but may nevertheless be 
sold as a “prototyping board.”  

Before discriminating between these various offerings, it is important to understand 
your goals and to weigh the strengths and weaknesses of the various options 
accordingly. 
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As discussed in chapter 2, the various goals of using an FPGA board might include: 

• Verification of the functionality of the original RTL code 

• Testing of in-system performance of algorithms under development 

• Verification of in-system operation of external IP 

• Regression testing for late-project engineering change orders (ECO) 

• In-system test of the physical-layer software and drivers 

• Early integration of applications into the embedded operating system 

• Creation of stand-alone target platforms for software verification 

• Provision of evaluation or software development platforms to potential 
partners 

• Implementing a company-wide standard verification infrastructure for 
multiple projects 

• Trade-show demonstrations of not-yet realized products 

• Participation of standards organization’s “plugfest” compatibility events  

Each of these goals place different constraints on the board and it is unreasonable to 
expect any particular board to fulfill optimally all goals listed above. For example, a 
complex board assembly with many test points to assist in debugging RTL may not 
be convenient or robust enough for use as a stand-alone software target. On the 
other hand, an in-house board created to fit the form factor and price required for 
shipment to many potential partners may not have the flexibility for use in 
derivative projects. 

6.2. Choosing the board(s) to meet your goals 

The relative merits of the various prototyping boards are subjective and it is not the 
purpose of this chapter to tell the reader which board is best. Acknowledging this 
subjectivity, Table 11 offers one specific suggestion for the weighting that might be 
applied to various features based on the above goals. For example, when creating a 
large number of evaluation boards, each board should be cheap and robust. On the 
other hand, when building a standard company infrastructure for multiple SoC 
prototyping projects, flexibility is probably more important.  

We do not expect everybody to agree with the entries in the table, but the important 
thing is to assess each offering similarly when considering our next board 
investment. There are a large number of boards available, as mentioned, and we can 
become lost in details and literature when making our comparisons. Having a 
checklist such as that in table 11 may help us make a quicker and more appropriate 
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choice. The column for cost may seem unnecessary (i.e., when is cost NOT 
important?) but we are trying to warn against false economy while still recognizing 
that in some cases, cost is the primary concern. 

Readers may find it helpful to recreate this table with their own priorities so that all 
stakeholders can agree and remain focused upon key criteria driving the choice 

 

Table 11: Example of how importance of board features depends on intended use 

 Intended 
use 

Degree of Criticality of Various Board Factors 

Key: +++ very critical, - - - irrelevant, = depends on other factors 

  Flexibility Speed Debug Robustness Capacity Cost Delivery 

1 RTL 
debug 

++ ++ +++ = = = ++ 

2 Algorithm 
research 

+ = ++ = - = = 

3 IP 
evaluation 

= ++ + = = = = 

4 Regressio
n test for 
ECO 

+ ++ = + + = ++ 

5 Driver test = ++ + + - = = 

6 App/OS 
integration 

= + - ++ ++ = = 

7 Software 
verification 

- + - ++ + + = 

8 Eval 
boards 

- - = + +++ - - ++ ++ 

9 Standard 
infrastruct
ure 

+++ + ++ + ++ = + 

For the rest of this chapter we will explore the more critical of the decision criteria 
listed as column headings in Table 11. 
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6.3. Flexibility: modularity  

One of the main contributors towards system flexibility is the physical arrangement 
of the boards themselves. For example, there are commercial boards on the market 
which have 20 or more FPGAs mounted on a single board. If you need close to 20 
FPGAs for your design, then such a monster board might look attractive. On the 
other hand, if you need considerably fewer FPGAs for this project but possibly 
more for the next one, then such a board may not be very efficient. A modular 
system that allows for expansion or the distribution of the number of FPGAs can 
yield greater return on investment because it is more likely that the boards will be 
reused over multiple projects. For example, an eight-FPGA prototype might fit well 
onto a ten-FPGA board (allowing room for those mid-project enhancements) but 
using a modular system of two four-FPGA boards would also work assuming extra 
boards can be added. The latter approach would allow a smaller follow-on project to 
use each of the four-FPGA boards autonomously and separately whereas attempting 
to reuse the former ten-FPGA board would be far less efficient. 

This exact same approach is pertinent for the IO and peripherals present in the 
prototype. Just because a design has four USB channels, the board choice should 
not be limited only to boards that supply that number of channels. A flexible 
platform will be able to supply any number up to four and beyond. That also 
includes zero i.e., the base board should probably not include any USB or other 
specific interfaces but should readily allow these to be added. The reason for this is 
that loading the base-board with a cornucopia of peripheral functions not only 
wastes money and board area, most importantly it ties up FPGA pins which are 
dedicated to those peripherals, whether or not they are used.  

In particular, modular add-ons are often the only way to support IP cores because 
either the RTL is not available or because a sensitive PHY component is required. 
These could obviously not be provided on a baseboard so either the IP vendor or the 
board vendor must support this in another way. In the case of Synopsys®, where 
boards and IP are supplied by the same vendor, some advantage can be passed on to 
the end user because the IP is pre-tested and available for a modular board system. 
In addition, as IP evolves to meet next-generation standards, designers may 
substitute a new add-on IP daughter card for the new standards without having to 
throw away the rest of the board. 

An important differentiator between FPGA boards, therefore, is the breadth of 
available add-on peripheral functions and ease of their supply and use. An example 
of a library of peripheral boards can be seen at the online store of daughter cards 
supplied by Synopsys to support FPGA baseboards. The online store can be seen at 
www.synopsys.com/apps/haps/index . 

In general, end-users should avoid a one-size-fits-all approach to selecting an 
FPGA-based prototyping vendor because in the large majority of cases, this will 
involve design, project and commercial compromise. Customers should expect their 
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vendors to offer a number of sizes and types of board; for example, different 
numbers of FPGAs, different IO interfaces etc. but it is important that they should 
be as cross-compatible as possible so that choosing a certain board does not 
preclude the addition of other resources later. The approach also requires that 
modules are readily available from the vendor’s inventory, as the advantage of 
modularity can be lost if it takes too long to obtain the modules with which to build 
your platform.  

A critical issue with such a modular approach is the potential for loss of 
performance as signals cross between the various components and indeed, whether 
or not the components may even be linked together with enough signals. We should 
therefore now look closely at the interconnect issues involved in maintaining 
flexibility and performance. 

6.4. Flexibility: interconnect 

As experienced prototypers will know, the effective performance and capacity of a 
FPGA-based prototype is often limited by the inter-FPGA connections. There is a 
great deal of resource inside today’s FPGAs but the number of IO pins is limited by 
the package technology to typically around 1000 user IO pins. The 1000 pins need 
then be linked to other FPGAs or to peripherals on the board to make an 
interconnect network which is as universally applicable as possible, but what should 
that look like? Should the pins be daisy-chained between FPGAs in a ring 
arrangement or should all FPGA pins be joined together in a star? Should the 
FPGAs be linked only to adjacent FPGAs, or should some provision be made to link 
to more distant devices? These options are illustrated in Figure 59. 

There are advantages and disadvantages to each option. For example, daisy-chained 
interconnect requires that signals be passed through FPGAs themselves in order to 
connect distant devices. Such pass-though connections not only limit the pin 
availability for other signals, but they also dramatically increase the overall path 
delay. Boards or systems that rely on pass-through interconnections typically run 
more slowly than other types of board. However, such a board might lend itself to a 
design which is dominated by a single wide datapath with little or no branching. 

On the other hand, use of a star-connection may be faster because any FPGA can 
drive any other with a direct wire, but star-connection typically makes the least 
efficient use of FPGA pins. This can be seen by reconsidering the example we saw 
earlier in chapter 5, shown here again in Figure 60. Here we see how three design 
blocks on a simple multiplexed bus are partitioned into three out of the four FPGAs 
on a board, where the board employs star-based fixed interconnect.  
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The connections between the three blocks are going to be of high-speed, owing to 
the direct connections, but many pins on the fourth FPGA will be wasted. 
Furthermore, these unused pins will need to be configured as high-impedance in 
order to not interfere with the desired signals. If the fourth FPGA is to be used for 
another part of the design, then this pin wastage may be critical and there may be a 
large impact on the ability to map the rest of the design into the remaining 
resources.  

Figure 59: Examples of fixed interconnect configurations found on FPGA boards 
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In the case that a board is designed and manufactured in house, we can arrange 
interconnect exactly as required to meet the needs of the prototype project. The 
interconnection often resembles the top-level block diagram of the SoC design, 
especially when a Design-for-Prototype approach has been used to ease the 
partitioning of top-level SoC blocks into FPGAs. This freedom will probably 
produce an optimal interconnect arrangement for this prototyping project but is 
likely to be rather sub-optimal for follow-on projects. In addition, fixing 
interconnect resources at the start of a prototyping project may lead to problems if, 
or when, the SoC design changes as it progresses.  

In the same way, a commercial board with fixed interconnect is unlikely to match 
the exact needs of a given project and compromise will be required. A typical 

Figure 60: Multiplexed bus partitioned into a star-based interconnect. 
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solution found on many commercial boards is a mix between the previously 
mentioned direct interconnect arrangements, but what is the best mix and therefore 
the best board for our design? 

6.5. What is the ideal interconnect topology? 

This brings us back to our decision criteria for selecting boards. Perhaps we are 
seeking as flexible interconnect arrangement as possible, but with high-performance 
and one that can also be tailored as closely as possible to meet the interconnect 
needs of a given prototyping project. Board vendors should understand the 
compromise inferred by these apparently contradictory needs and they should try to 
choose the optimal interconnect arrangement which will be applicable to as many 
end-users’ projects as possible. 

The most flexible solution is to use some form of indirect interconnect, the two 
most common examples of which are shown in Figure 61. The two examples are 
deferred interconnect and switched interconnect.  

In a deferred interconnect topology, there are relatively few fixed connections 
between the FPGAs but instead each FPGA pin is routed to a nearby connector. 
Then other media, either connector-boards of some kind or flexible cables are used 
to link between these connectors as required for each specific project. For example, 
in Figure 61 we see a connector arrangement in which a large number of 
connections could be made between FPGA1 and FPGA4 by using linking cables 
between multiple connectors at each FPGA. Stacking connectors would still allow 
star-connection between multiple points if required 

Figure 61: Two examples of Indirect Interconnect 
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One example of such a deferred interconnect scheme is called HapsTrak® II and is 
universally employed on the HAPS® products, created by the Platform Design 
Group of Synopsys at its design centre in Southern Sweden.  

A diagram and photograph of a HAPS-based platform is seen in Figure 62, showing 
local and distant connections made with mezzanine connector boards and ribbon 
cables. 

The granularity of the connectors will have an impact on their flexibility, but 
deferred interconnect offers a large number of possibilities for connecting the 
FPGAs together and also for connecting FPGAs to the rest of the system. 
Furthermore, because connections are not fixed, it is easy to disconnect the cables 
and connector boards and reconnect the FPGAs in a new topology for the next 
prototyping project.  

The second example of indirect interconnect is switched interconnect, which relies 
on programmable switches to connect different portions of interconnect together. Of 
course, it might be possible to employ manual switches but the connection density is 
far lower and there is an increased chance of error. In the Figure 61 example, we 
have an idealized central-switched routing matrix which might connect any point to 
any point on the board. This matrix would be programmable and configured to meet 
the partitioning and routing needs for any given design. Being programmable, it 
would also be changed quickly between projects or even during projects to allow 
easy exploration of different design options. For remote operation, perhaps into a 
software validation lab at another site, a design image can be loaded into the system 
and the switched interconnect configured without anybody needing to touch the 
prototype itself.  

Figure 62: Synopsys HAPS®: example of deferred interconnect  
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In reality, such a universal cross-connect matrix as shown in Figure 61 is not likely 
to be used because it is difficult to scale to a large number of connections. Vendors 
will therefore investigate the most flexible trade-off between size, speed and 
flexibility in order to offer attractive solutions to potential users. This will probably 
involve some cascading of smaller switch matrices, mixed with some direct 
interconnections.  

Another significant advantage of a switched interconnect approach is that it is very 
quick and easy to change, so that users need not think of the interconnect as static 
but something rather more dynamic. After the design is configured onto the 
board(s), it is still possible to route unused pins or other connections to other points, 
allowing, for example, quick exploration of workarounds or debug scenarios, or 
routing of extra signals to test and debug ports. In sophisticated examples, it is also 
possible to add debug instrumentations and links to other verifications technologies, 
such as RTL simulation. These latter ideas are discussed later in this section.  

One further advantage of switched interconnect is that the programming of the 
switches can be placed under the control of the design partitioning tool. In this case, 
if the partitioner realizes that, to achieve an optimum partition, it needs more 
connections between certain FPGAs, it can immediately exercise that option while 
continuing the partitioning task with these amended interconnect resources. In these 
scenarios, a fine-grain switch fabric is most useful so that as few as necessary 
connections are made to solve the partitioning problem, while still allowing the rest 
of the local connections to be employed elsewhere.  

Examples of such a switched interconnect solution are provided by the CHIPit® 
systems created in the Synopsys Design Centre in Erfurt, Germany. A CHIPit 
system allows the partitioner to allocate interconnections in granularity of eight 
paths at a time. An overview diagram of a CHIPit system switch-fabric topology is 

Figure 63: Switched interconnect matrix in CHIPit prototyping system 
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shown in Figure 63. Here we can see that in addition to fixed traces between the 
FPGAs on the same board, there are also programmable switches which can be used 
to connect FPGAs by additional traces. Similar switches can link memory modules 
into the platform or link to other boards or platforms, building larger systems with 
more FPGAs. Not all combinations of switches are legal and they are too numerous 
to control manually in most cases, therefore they are configured automatically by 
software, which is also aware of system topology and partition requirements  

6.6. Speed: the effect of interconnect delay  

It should be mentioned that the disadvantage of either of the indirect interconnect 
methods mentioned above is that the path between FPGA pins is less than ideal for 
propagating high-speed signals. In general, the highest performance path between 
two pins will be that with the lowest number of discontinuities in the path. Every 
additional transition such as a connector, solder joint and even in-board via adds 
some impedance which degrades the quality of the signal and increases its overall 
opportunity for crosstalk between signals. Upon close analysis, however, we find 
that this is not such a large problem as may be thought.  

For the fastest connections, flight time is low and the majority of interconnect delay 
is in the FPGA pins themselves. It takes longer for signals to get off-chip and then 
on-chip than it takes them to travel across the relevant board trace. As prototype 
boards and the designs running on them become faster, however, this path delay 
between FPGAs will need to be mitigated in some way to prevent it from becoming 
critical. For that reason, Synopsys has introduced an automated method for using 
the high-speed differential signaling between FPGAs, employing source-
synchronous paths in order to allow faster speed between FPGAs. We will discuss 
this technology a little further later in chapter 8. 

Each of the indirect interconnect approaches adds some delay to the path between 
the FPGA pins compared to direct interconnect, but how significant is that? If we 
analyze the components of the total delay between two points in separate FPGAs, 
using three types of interconnect, then we discover paths resembling those in Figure 
64. 
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Readers may argue that the FFs should be implemented in the IO pads of the FPGA. 
This is true, however, it is often not possible to do this for all on-chip/off-chip paths 
and so the worst-case path between two FPGAs may be non-ideal and actually 
starting and/or ending at internal FFs.  

In this analysis, the path delay is given by the expression shown also in Figure 64. 
Common to each of the interconnect methods is a component of delay which is the 
total of all in-chip delays and on-chip/off-chip delays, expressed as: 

 

where . . . 

FFTOC is the clock-to-output delay of the launching FF 

FFTSU is the set-up time of the catching FF 

Onchip1,2 are the routing delays inside the relevant FPGAs 

Obuf is the output pad delay of the first FPGA 

Ibuf is the input pad delay on the second FPGA 

Using figures from a modern FPGA technology, such as the Xilinx® Virtex®-6 
family, these delays can be found to total around 4.5ns. This time will be common 
to all the interconnect arrangements so we now have a way to qualify the impact of 
the different interconnects on overall path delay i.e., how do the different on-board 
components of the paths compare to this common delay of 4.5ns? 

Firstly, direct interconnection on a well-designed high-quality board material results 
in typical estimates for delayonboard, of approximately 1ns. We can consider this as 

Figure 64: Comparing path delays for different interconnect examples 

 

∑ IbufObufOnchipOnchipFFFF TSUTOC ,,,,, 21
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the signal “flight time” between FPGA pins. So already we see that even in direct 
interconnect, the total delay on the path is dominated by factors other than its flight 
time. Nevertheless, maximum performance could be as high as 250MHz if 
partitioning can be achieved which places the critical path over direct interconnect.  

Deferred interconnect via good-quality cables or other connecting media, using 
highest quality sockets, results in typical flight time of approximately 4ns, which is 
now approximately the same as the rest of the path. We might therefore presume 
that if we use deferred interconnect and the critical path of a design traverses a 
cable, then the maximum performance of the prototype will be approximately half 
that which might be achieved with direct interconnect, i.e., approximately 125MHz 
instead of 250MHz.  

However, raw flight time is seldom the real limiting factor in overall performance. 

Supporting very many real-life FPGA-based prototyping projects over the years at 
Synopsys, we have discovered that there are performance-limiting factors beyond 
simple signal flight time. Commonly the speed of a prototype is dependent on a 
number of other factors as summarized below: 

• The style of the RTL in the SoC design itself and how efficiently that can 
be mapped into FPGA 

• Complexity of interconnection in the design, especially the buses 

• Use of IP blocks which have no FPGA equivalent 

• Percentage utilization of each FPGA 

• Multiplexing ratio of signals between FPGAs 

• Speed at which fast IO data can be channeled into the FPGA core 

Completing our analysis by considering switched interconnect, we see that the delay 
for a single switch element is very small, somewhere between 0.15ns and 0.25ns, 
but the onboard delays to get to and from the switch must also be included, giving a 
single-pass flight time of approximately 1.5ns, best-case. In typical designs, 
however, flight time for switched interconnect is less easy to predict because in 
order to route the whole design, it will be necessary for some signals to traverse 
multiple segments of the matrix, via a number of switch elements. On average there 
are two switch traversals but this might be as high as eight in extreme case of a very 
large design which is partitioned across up to 20 FPGA devices. To ensure that the 
critical path traverses as few switches as possible, the board vendor must develop 
and support routing optimization tools. Furthermore, if this routing task can be 
under the control of the partitioner then the options for the tools become almost 
infinitely wider. Such a concurrent partition-and-route tool would provide the best 
results on a switched interconnect-based system so once again we see the benefit of 
a board to be supplied with sophisticated support tools. 
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Returning to our timing analysis, we find that a good design partition onto a 
switched interconnect board will provide typical flight times of 4ns, or 
approximately the same as a cable-based connection on a deferred interconnect 

board, once again providing a top-speed performance over 100MHz. The results of 
the above analysis are summarized in Table 12. 

6.6.1. How important is interconnect flight time? 
In each of the above approximations, the performance of a prototype is assumed to 
be limited by the point-to-point connection between the FPGAs, but how often is 
that the case in a real project? 

Certainly, the performance is usually limited by the interconnect, but the limit is 
actually in its availability rather than its flight time. In many FPGA-based 
prototyping projects, partitioning requires more pins than are physically provided by 
any FPGA and so it becomes necessary to use multiplexing in order to provide 
enough paths. For example, if the partition requires 200 connections between two 
particular FPGAs when only 100 free connections exist, then it doesn’t matter if 
those 100 are direct or via the planet Mars; some compromise in function or 
performance will be necessary. This compromise is most commonly achieved by 
using multiplexing to place two signals on each of the free connections (as is 
discussed below). A 2:1 multiplexing ratio, even if possible at maximum speed on 
the 100 free connections, will in effect half the real system performance as the 
internal logic of the FPGAs will necessarily be running at half the speed of the 
interconnect, at most. 

An indirect interconnect board will provide extra options and allow a different 
partition. This may liberate 100 or more pins which can then be used to run these 
200 signals at full speed without multiplexing. This simple example shows how the 
flexibility of interconnect can provide greater real performance than direct 
interconnect in some situations and this is by no means an extreme example. 
Support for multiplexing is another feature to look for in an FPGA board; for 
example, clock multipliers for sampling the higher-rate multiplexed signals. 

Table 12: Comparing raw path speed for different interconnect schemes. 

Interconnect Flight Time Total Path approx. Fmax 

Direct 1ns 5.5ns 180MHz 

Deferred 4ns 9.5ns 105MHz 

Switched 4ns 9.5ns 105MHz 
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In the final case above, real-time IO is an important benefit of FPGA-based 
prototyping but the rest of the FPGA has to be able to keep up! This can be 
achieved by discarding some incoming data, or by splitting a high-speed input data 
stream into a number of parallel internal channels, For example, splitting a 400MHz 
input channel into eight parallel streams sampled at 50MHz. Fast IO capability is 
less valuable if the board or its FPGAs are sub-performance. 

These limiting factors are more impacted by interconnect flexibility than by flight 
time, therefore, in the trade-off between speed and flexibility, the optimum decision 
is often weighted towards flexibility. 

Summarizing our discussion on interconnect, the on-chip, off-chip delays associated 
with any FPGA technology cannot be avoided, but a good FPGA platform will 
provide a number of options so that critical signals may be routed via direct 
interconnect while less critical signals may take indirect interconnect. In fact, once 
non-critical signals are recognized, the user might even choose to multiplex them 
onto shared paths, increasing the number of pins available for the more critical 
signals. Good tools and automation will help this process. 

6.7. Speed: quality of design and layout 

As anyone that has prototyped in the past will attest, making a design run at very 
high speed is a significant task in itself, so we must be able to rely on our boards 
working to full specification every time. If boards delivered by a vendor show 
noticeable difference in performance or delay between batches, or even between 
boards in the same batch, then this is a sign that the board design is not of high 
quality.  

For example, for an interface to run at speeds over 100MHz, required for native 
operation of interfaces such as PCIe or DDR3, the interface must have fast pins on 
its FPGAs and robust design and layout of the PCB itself. To do this right, 
particularly with the latest, high pin-count FPGAs, requires complex board designs 
with very many layers. Very few board vendors can design and build 40-layer 
boards for example. The board traces themselves must be length and impedance 
matched to allow good differential signaling and good delay matching between 
remote synchronous points. This will allow more freedom when partitioning any 
given design across multiple FPGAs.  

This need for high-quality reproducible board performance is especially true of 
clock and reset networks, which must not only be flexible enough to allow a wide 
variety of clock sources and rates, they must also deliver good clock signal at every 
point in a distributed clock network.  

Power supply is also a critical part of the design, and low impedance, high-current 
paths to the primary FPGA core and IO voltage rail pins are fundamental to 
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maintaining low noise, especially on designs which switch many signals between 
FPGAs on every clock cycle.  

On first inspection, two boards that use the same FPGAs might seem to offer 
approximately the same speed and quality but it is the expertise of the board vendor 
that harnesses the raw FPGA performance and delivers it reliably. For example, 
even device temperature must be monitored and controlled in order to maintain 
reliability and achieve highest performance possible within limits of the board 
fabric. Let us look at another aspect of performance, that of trading off interconnect 
width versus speed using multiplexing. 

6.8. On-board support for signal multiplexing 

The concept of time division multiplexing (TDM) and its ability to increase 
effective IO between FPGAs is well understood and it is not difficult to see how 
two or more signals may share the same interconnect path between FPGA pins. The 
TDM approach would need mux and de-mux logic inside the FPGA and would need 
a way to keep the two ends synchronized. It is also necessary to run the TDM paths 
at a higher rate than the FPGA’s internal logic, and also ensure that signals arriving 
at the mux or leaving the de-mux both meet the necessary timing constraints. This 
would be a complex task to perform manually, so EDA tools have been developed 
that can insert TDM logic automatically, analyze timing and even choose which 
signals to populate the muxes with. The prime example of such an EDA tool is the 
Certify® tool from Synopsys, which supports a number of different asynchronous 
and asynchronous models for TDM.  

Whichever tool is used, the problem still exists that with muxing employed, either 
the overall FPGA-based prototype must run at a lower speed or the on-board paths 
must be able to run at a higher speed. TDM ratios of 8:1 or higher are not 
uncommon, in those cases, a design which runs at 16MHz inside the FPGAs must 
be either scaled back to 2MHz (which is hardly better than an emulator!) or the 
external signals must be propagated between the FPGAs at 128MHz or greater, or 
some compromise between these two extremes. With the need for high multiplexing 
ratios in some FPGA-based prototypes, the overall performance can be limited by 
the speed at which TDM paths can be run. A good differentiator between boards is 
therefore their ability to run external signals at high speed and with good reliability; 
a noisy board will possibly introduce glitches into the TDM stream and upset the 
synchronizations between its ends.  

Beyond simple TDM, it is becoming possible to use the LVDS (low voltage 
differential signaling) capability of modern FPGA pins in order to run on-board 
paths at speeds up to 1GHz. This full speed requires very good board-level 
propagation characteristics between the FPGAs. Figure 65 gives a non-detailed 
example of a serial TDM arrangement, which allows eight signals to be transferred 
across one pair of differential signals (further detail in chapter 8).  
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At a high transmission speed of 800MHz and a multiplexing ratio of 8:1, 
the128MHz speed in our previous example could easily be supported, and even 
increased to a ratio of 40:1, as long as the board is good enough. The possibility to 
run much higher mux ratios gives a large increase in the usable connectivity 
between FPGAs. For example, a TDM ratio of 64:2 (2 rather than 1 because of the 
differential pins required) could be supported on prototypes running at 30MHz or 

more, making it much easier for the EDA tools to partition and map any given 
design. There is more on the discussion of TDM in chapter 8.  

So, once again, a good differentiator between FPGA boards is their ability to 
support good quality LVDS signaling for higher overall performance and to supply 
the necessary voltage and IO power to the FPGAs to support LVDS. It is also 
important that designers and indeed the tools they employ for partitioning 
understand which board traces will be matched in length and able to carry good 
quality differential signals. A good board will offer as many of such pairs as 
possible and will offer tool or utility support to allocate those pairs to the most 
appropriate signals. For example, the HAPS-60 series boards from Synopsys have 
been designed to maximize opportunity for LVDS-based TDM. Details of LVDS 
capability in each Virtex-6 device and signal routing on the HAPS-60 board is built 
into the Certify tools to provide an automated HSTDM (high-speed TDM) 
capability. This example again underlines the benefit of using boards and tools 
developed in harness. 

6.9. Cost and robustness 

Appendix B details the hidden costs in making a board vs. using a commercial 
off-the-shelf board including discussions about risk, wastage, support, 

Figure 65: High Speed TDM using differential signaling between FPGAs 
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documentation and warranty. The challenges of making our own boards will not be 
repeated here but it is worth reminding ourselves that these items apply to a greater 
or lesser degree to our choice of commercial boards too, albeit, many are outsourced 
to the board provider.  

We should recall that total cost of ownership of a board and its initial purchase price 
are rather different things. Balanced against initial capital cost is the ability to reuse 
across multiple projects and the risk that the board will not perform as required. It 
may not be sensible to risk a multi-year, multi-million dollar SoC project on an 
apparently cheap board. 

Of particular note is the robustness of the boards. It is probable that multiple 
prototype platforms will be built and most may be sent to other end-users, possibly 
in remote locations. Some FPGA-based prototyping projects even require that the 
board be deployed in situ in an environment similar to the final silicon e.g., in-car or 
in a customer or field location. It is important that the prototyping platform is both 
reliable and robust enough to survive the journey.  

 

Recommendation: boards which have a proven track record of off-site deployment 
and reliability will pay back an investment sooner than a board that is in constant 
need of attention to keep it operational. The vendor should be willing to warranty 
their boards for immediate replacement from stock if they are found to be unreliable 
or unfit for use during any given warranty period.  

6.9.1. Supply of FPGAs governs delivery of boards 
Vendors differentiate their boards by using leading-edge technology to ensure best 
performance and economies of scale. However, these latest generation FPGAs are 
typically in short supply during their early production ramp-up, therefore, a 
significant commercial difference between board vendors is their ability to secure 
sufficient FPGA devices in order to ensure delivery to their customers. While some 
board vendors may have enough FPGAs to make demonstrations and low volume 
shipments, they must generally be a high-volume customer of the FPGA vendors 
themselves in order to guarantee their own device availability. This availability is 
particularly important if a prototyping project is mid-stream and a new need for 
boards is recognized, perhaps for increased software validation capability. 

6.10. Capacity 

It may seem obvious that the board must be big enough to take the design but there 
is a good deal of misunderstanding, and indeed misinformation, around board 
capacity. This is largely driven by various capacity claims for the FPGAs employed. 
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The capacity claimed by any vendor for its boards must be examined closely and 
questions asked regarding the reasoning behind the claim. If we blindly accept that 
such-and-such a board supports “20 million gates,” but then weeks after delivery 
find that the SoC design does not fit on the board, then we may jeopardize the 
whole SoC and software project.  

Relative comparison between boards is fairly simple, for example, a board with four 
FPGAs will hold twice as much design as a board with two of the same FPGAs. 
However, it is when the FPGAs are different that comparison becomes more 
difficult, for example, how much more capacity is on a board with four Xilinx® 
XC6VLX760 devices compared with a board with four XC6VLX550T devices? 
Inspecting the Xilinx® datasheets, we see the figures shown in Table 13. 

We can see that, in the case of logic cells, the LX760-based board has 38% more 
capacity than the LX550T-based board, but with regard to DSP blocks, they are the 
same. There is another obvious difference in that the 550T includes 36 GTX blocks 
but the LX760 does not have the GTX feature at all.  

Which is more important for a given design, or for future expected designs? The 
critical resource for different designs may change; this design may need more 
arithmetic but the next design may demand enormous RAMs. Readers may be 
thinking that visibility of future designs is limited by new project teams often not 
knowing what’s needed beyond perhaps a 12-month window. For this reason, it is 
very helpful for prototypers to have a place at the table when new products are 
being architected in order to get as much insight into future capacity needs as 
possible. This is one of the procedural recommendations given in our Design-for-
Prototyping manifesto in chapter 9. 

Getting back to current design, we should always have performed a first-pass 
mapping of the SoC design into the chosen FPGA family, using the project’s 

Table 13: Comparing FPGA Resources in different Virtex®-6 devices 

FPGA Resource XCE6VLX550T XC6VLX760 Ratio 
760:550 

logic cells 549,888 758,784 138% 

FF 687,360 948,480 138% 

BlockRAM (Kbit) 22,752 25,920 114% 

DSP 864 864 100% 

GTX Transceivers 36 0 n/a 
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intended synthesis tool in order to get a “shopping list” of required FPGA resources 
(as discussed in chapter 4). 

Project success may depend on other design factors but at least we will be starting 
with sufficient total resources on our boards. We may still be tempted to use 
partitioning tools and our design knowledge in order to fit the design into four 
FPGAs at higher than 50% utilization, but we should beware of false economies. 
The advice that some find difficult to accept is that economizing on board capacity 
at the start of a project can waste a great deal of time later in the project as a 
growing design struggles to fit into the available space. 

Recommendation: in general, ignore the gate count claims of the board vendor and 
instead run FPGA synthesis to obtain results for real resource requirements. We 
should add a margin onto those results (a safe margin is to double the results) and 
then compare that to the actual resources provided by the candidate board. 

6.11. Summary 

Choosing FPGA boards is a critical and early decision in any FPGA-based 
prototyping project. 

A wrong decision will add cost and risk to the entire SoC project. On the face of it, 
there are many vendors who seem to offer prototyping boards based on identical 
FPGAs. How might the user select the most appropriate board for their project? The 
checklist list in Table 14 summarizes points made during this chapter and can help.  
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It is important to remember that a prototyping project has many steps and choosing 
the board, while important, is only the first of them.  

 

 

 

 

 

Table 14: A top-10 checklist for assessing FPGA prototyping boards 

1 What range of base boards is 
available? 

Are they mutually compatible and 
additive?  

2 What is the range of add-on 
boards and daughter cards? 

Which IP, microprocessor, and 
connectivity standards? 

3 How flexible is the interconnect? Can it meet performance needs of 
multiple projects? 

4 Does the board have proven 
record of quality and reliability? 

Are reference customers able to 
verify the board vendor’s claims? 

5 Will the board be supported 
locally? 

Is training available? How 
complete is documentation? 

6 What performance has been 
achieved by other users of the 
board? 

Are reference customers able to 
verify claims? 

7 Is the board portable and robust 
enough to be re-usable for future 
projects?  

Can this be demonstrated? 

8 What is the on-board debug 
capability? 

Can the board be debugged 
remotely? 

9 What links to other debug and 
verification tools can be 
provided? 

Has it been proven to work with 
existing verification tools? 

10 Does the vendor offer an extended 
warranty? 

Is a quick replacement option 
available? 
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CHAPTER 7 GETTING THE 
DESIGN READY FOR 
THE PROTOTYPE 

This chapter describes the main prototyping challenges, common practices and the 
process of taking an SoC design into the FPGA-based prototyping system. It covers 
SoC design-related issues, techniques to make the design prototyping friendly and 
how to use FPGA special-purpose resources. We cover SoC library cells, memories 
and clock gating in depth. We also revisit the implementation process and common 
tools outlined in chapter 3 in order to accomplish the best system performance. 

7.1. Why “get the design ready to prototype?” 

While the aim is always to prototype the SoC source RTL in its original form, early 
on in the prototyping effort it typically becomes evident that the SoC design will 
have to be modified for it to fit into the prototyping system. The design variations 
are typically due to design elements found in the SoC technology which are not 
available in, or suitable for FPGA technology. Design variations are also caused by 
limitations in the prototyping platform, tweaking for higher performance and debug 
instrumentation. The typical design variations, and examples of how to best handle 
them, are discussed in more detail later in this chapter. 

To facilitate the SoC design modifications, we may make copies of affected source 
files, edit them and then simply replace the originals for the duration of the 
prototyping project. Obviously care and revision control methods should be 
employed to avoid error but in the end, we are probably going to be changing the 
RTL at some time.  
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7.1.1. RTL modifications for prototyping 

The most common elements in SoC designs that need to be modified during 
prototyping include those listed in Table 15. 

In addition, there are other reasons why we might need to alter the original RTL, 
including test-point insertion, tie-off of unused inputs, instantiation of FPGA-
specific clocks etc. Each of these types of RTL change will be explained in the 
following pages and we will give some practical ways to implement them.  

Table 15: SoC design elements that might require RTL changes 

Top-level pads Instantiations of SoC pads will not be understood 
by the FPGA tool flow. 

Gate-level netlists The design is not available in RTL form, but only 
as a mapped netlist of SoC library cells. These 
will not be understood by the FPGA tool flow. 

SoC cell instantiations Leaf cells from the SoC library are instantiated 
into the RTL, for whatever reason, and they will 
also not be understood by the FPGA tool flow. 

SoC memories Instantiations of SoC memory will not be 
understood by the FPGA tool flow. 

SoC-specific IP From simple DesignWare macros up to full CPU 
sub-systems, if the source RTL for the IP is not 
available then we will need to insert an 
equivalent.  

BIST Built-in self test (BIST) and other test-related 
circuitry is mostly inferred during the SoC flow 
but some is also instantiated directly into the RTL. 
This is not required for the prototype and may not 
be understood by the tools. 

Gated clocks As with BIST, clock gating can be inferred by 
SoC tools but is often written directly into the 
RTL. This generally overflows the clock 
resources available in the FPGAs. 

Complex generated 
clocks 

As with gated clocks, generated clocks might 
require simplification or otherwise handling in 
order to fit into the FPGA. 
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7.2. Adapting the design’s top level 

We asked ourselves a rhetorical question in chapter 4 which was: “how much of the 
design should we prototype?” and it is time to answer that question in more detail. 
We will find a number of technology-specific elements that will not work in our 
FPGAs, usually at the top level of an SoC design hierarchy. These are the chip 
support elements and the top-level IO pad instantiations. A rough diagram of an 
SoC top-level is shown in Figure 66 where we see the SoC-specific chip support 
alongside the majority of the SoC logic in the core block, which is the top of the rest 
of the design hierarchy. 

To introduce this design into FPGA, we will need to either replace the chip support 
and IO pads with FPGA equivalents, or simply remove the top level entirely and 
wrap the design core with a new FPGA-specific top level. We will address the chip 
support block in a moment, but first, how do we handle the IO?  

Figure 66: Simplified view of SoC top-level 
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7.2.1. Handling the IO pads 
FPGA synthesis does not need to have IO pad instantiations in the RTL because it is 
able to infer an FPGA pad and even configure it in most cases, using only the 
defaults or simple attributes attached to the top-level signal. We could therefore 
simply leave the pads out and tie the dangling connections inactive or to the top-
level boundary as required.  

An alternative approach is to leave the IP pad ring in place and to replace each IO 
pad instance with a synthesizable model of its FPGA equivalent.  

A typical IO pad from a silicon technology library may have 20 or more 
connections at its boundary, including the main input and output plus voltage and 
slew controls and scan test. Some of these connections will link to the package 
pins/balls while others connect into the core of the design or directly to adjacent 
pads.  

For the purposes of prototyping, we need only model the logical connection from 
the design core to the “outside” world. Therefore, we need only a simpler form of 
the pad which makes that logical connection, omitting the scan etc. We can easily 
make a small RTL file which fits into the IO pad instantiation in the SoC RTL but 
contains the FPGA subset equivalent. This converts a black box pad instantiation 
into something that the FPGA synthesis can use.  

Although there may be over a thousand pads in the SoC, there may be only ten or so 
different types of pad. Replacing each type with an FPGA equivalent will be 
relatively simple, especially if our SoC designs use the same pad library over 
multiple projects and we can build up a small library of equivalents. 

7.2.2. Handling top-level chip support elements 
The block in Figure 66, labeled “Chip Support,” contains those elements in the 
design that are generally target specific, often seen as secondary to the main 
function of the RTL, and yet are essential to its correct operation. This might 
include such functions as clock generation and distribution, reset control and 
synchronization, power-gating control and test and debug control. How much of this 
is relevant for our prototype or is even needed for an FPGA implementation? 

Some teams recommend simply replacing the chip support block with another, 
simpler block which takes care of those elements needed for the FPGAs. This 
means that, in effect we have a new FPGA-compatible version of the top-level of 
the SoC. The top-level RTL file for the SoC can be used as the basis for the new 
FPGA top-level and an example of what the new top-level might look like is shown 
in the block diagram in Figure 67.  
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Here we see the clock generation and synchronization circuits at the top level 

supporting the existing design core. The creation of the equivalent FPGA chip 
support block is a relatively simple FPGA design task involving dividers, clock 
buffers and synchronizers, as shown in Figure 68.  

The use of the FPGA clock networks becomes more complex when the prototype 
uses multiple FPGAs so we shall revisit the top-level again in chapter 8, where we 
explore partitioned designs. 

Let’s look now more closely at how we handle clock gating, one of the most 
important tasks in making a design FPGA-ready. 

Figure 67: New design top-level for prototype  
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7.3. Clock gating 

Clock gating is a methodology of turning off the clock for a particular block when it 
is not needed and is used by most SoC designs today as an effective technique to 
save dynamic power. In SoC designs clock gating may be done at two levels: 

• Clock RTL gating is designed into the SoC architecture and coded as part 
of the RTL functionality. It stops the clocks for individual blocks when 
those blocks are inactive, effectively disabling all functionality of those 
blocks. Because large blocks of logic are not switching for many cycles it 
saves substantial dynamic power. The simplest and most common form of 
clock gating is when a logical “AND” function is used to selectively 
disable the clock to individual blocks by a control signal, as illustrated in 
Figure 69. 

Figure 68: Simple illustration of top-level chip support block for FPGA 
implementation 
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• During synthesis, the tools identify groups of FFs which share a common 
enable control signal and use them to selectively switch off the clocks to 
those groups of flops. 

Both of these clock-gating methods will eventually introduce physical gates in the 
clock paths which control their downstream clocks. These gates could introduce 
clock skew and lead to setup and hold-time violations even when mapped into the 
SoC, however, this is compensated for by the clock-tree synthesis and layout tools 
at various stages of the SoC back-end flow. Clock-tree synthesis for SoC designs 
balances the clock buffering, segmentation and routing between the sources and 
destinations to ensure timing closure, even if those paths include clock gating.  

This is not possible in FPGA technology, so some other method will be required to 
map the SoC design if it contains a large number of gated clocks or complex clock 
networks. 

7.3.1. Problems of clock gating in FPGA 
As we saw in chapter 3, all FPGA devices have dedicated low-skew clock tree 
networks called global clocks. These are limited in number, but they can clock all 

Figure 69: RTL clock gating in SoC to reduce dynamic power 
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sequential resources in an FPGA at frequencies of many hundreds of megahertz. 
Owing to diligent chip design by the FPGA vendors, the clock networks also have 
skew of only a few tens of picoseconds between any two destinations in the FPGA. 
Therefore, it is always advisable to use these global clocks when we target a design 
into FPGAs. 

However, FPGA clock resources are not suited to creating a large number of 
relatively small clock domains, such as we commonly find in SoCs. On the 
contrary, an FPGA is better suited to implementing a small number of large 
synchronous clock networks which can be considered global across the device. 

Global clock networks are very useful, but may not be flexible enough to represent 
the clocking needs of a sophisticated SoC design, especially if the clock gating is 
performed in the RTL. This is because physical gates are introduced into the clock 
paths by the clock-gating procedure and the global clock lines cannot naturally 
accommodate these physical gates. As a consequence, the place & route tools will 
be forced to use other on-chip routing resources for the clock networks with inserted 
gates, usually resulting in large clock skews between different paths to destination 
registers.  

A possible exception to this happens when architecture-level clock gating is 
employed in the SoC, for example when using coarse-grained on-off control for 
clocks in order to reduce dynamic power consumption. In those cases it may be 
possible to partition all the loads for the gated clock into the same FPGA and drive 
them from the same clock driver block. The clock driver blocks in the latest FPGAs, 
for example, the clock management tiles (CMT) in Virtex-6 devices with their 
mixed-mode clock managers (MMCMs) have different controls to allow control of 
the clock output. Some clock-domain on-off control could be modeled using this 
coarse-grained capability of the CMT. 

In some SoC designs there may also be paths in the design with source and 
destination FFs driven by different related clocks e.g., a clock and a derived gated 
clock created by a physical gate in the clock path, as shown in Figure 70. It is quite 
possible that the data from the source FF will reach the destination FF quicker/later 
than the gated clock, and this race condition can lead to timing violations. 

7.3.2. Converting gated clocks 
The solution to the above race condition is to separate the base clock and gating 
from the gated clock. Then route the separated base clock to the clock and gating to 
the clock enables of all the sequential elements. When the clock is to be switched 
“on,” the sequential elements will be enabled and when the clock is to be switched 
“off,” the sequential elements will be disabled. Typically, many gated clocks are 
derived from the same base clock, so separating the gating from the clock allows a 
single global clock line to be used for many gated clocks. This way the functionality 
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is preserved and logic gates present in the clock path are moved into the datapath, 
which eliminates the clock skew as illustrated in Figure 70.  

This process is called gated clock conversion. All the sequential elements in an 
FPGA have dedicated clock-enable inputs so in most of the cases, the gated clock 
conversion could use this and not require any extra FPGA resource. However, 
manually converting gated clocks to equivalent enables is a difficult and error-prone 
process, although it could be made a little easier if the clock gating in the SoC 
design were all performed at the same place in the design hierarchy, rather than 
scattered throughout various sub-functions.  

Figure 70: Gated clock conversion and how it eliminates clock skew 
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As we saw in Figure 66 earlier, the chip support block at the top level could include 
all the clock generation and clock gating necessary to drive the whole SoC. Then, 
during prototyping, this chip support block can be replaced with its FPGA 
equivalent. At the same time, we can manually replace the clock gates, either 
instantiated or inferred, with an enable signal which can routed throughout the 
device. This would then perform the role of enabling only a single edge of the 
global clock at each time that the original gated clock would have risen. 

In most cases, manual manipulation is not possible owing to complexity, for 
example, if clocks are gated locally at many different always or process blocks in 
the RTL. In that case, and probably as the default in most design flows, automated 
gated-clock conversion can be employed. 

7.4. Automatic gated-clock conversion 

Modern FPGA synthesis tools perform this gated-clock conversion process 
automatically without us having to change the RTL, however, we may need to guide 
the synthesis tools appropriately to perform the gated-clock conversion. It should be 
noted that some tools are more capable than others in this task. 

Here are some of the guidelines to make the synthesis tools convert the gated clocks 
successfully.  

• Identify the base clocks and define them to the synthesis tool by adding 
frequency or period constraints. 

• Do not define the downstream gated clocks as clocks. Remove any period 
or frequency constraints on the gated clocks, which may have been 
specified during the SoC flow. 

• Set any necessary controls in the synthesis tools to enable gated-clock 
conversion. 

• Identify any black boxes in the design which are driven by gated clocks. 
To fix gated clocks that drive black boxes, the clock and clock-enable 
signal inputs to the black boxes must be identified. Synthesis tool specific 
directives should be used to identify them.  

• If there are combinatorial loops in the clock-gating logic then the 
combinatorial loops should be broken. This can be done by inserting a 
feed-through black box, which is a black box with one input and one 
output and is placed in the combinatorial loop paths as shown in Figure 71. 
We can then create a separate netlist for the black box with the output 
simply connected to input. And the created netlist for the black box must 
then be added to the design during place and route. 
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When all the above guidelines are followed then the synthesis tools can 
automatically convert all the convertible gated clocks.  

The gated clock is convertible when all of the following conditions are met.  

• For certain combinations of the gating signals, the gated-clock output must 
be capable of being disabled. 

• For the remaining combinations of the gating signals, the gated-clock 
output should equal either the base clock or its inverted value. 

• The gated clock is derived based on only one base clock.  

Figure 71: Interrupting combinatorial loops to enable clock gating 
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In order to illustrate these guidelines, Figure 72 gives some examples of simple 
convertible and non-convertible gates.  

FPGA synthesis tools report all the converted and non-converted sequential 
components in its log files. The tools also list the reasons why the conversion did 
not happen for the non-converted sequential components. It is always advisable to 
look at these reports to make sure that the gated-clock conversion had happened for 
all the necessary sequential components. 

7.4.1. Handling non-convertible gating logic 
For an SoC design to work reliably on an FPGA-based prototype, all the gated 
clocks in the design should be converted. If the gated clock is derived based on 
multiple clocks, or the gating logic is complex, then synthesis tools cannot do the 
gated-clock conversion. However, these scenarios are sometimes common in SoC 
designs which can lead to many setup and hold-time violations. Here are some of 
the ways in which these scenarios can be handled. Use all these methods 
collectively as applicable.  

• If there are no paths between the sequential elements driven by the base 
clocks and the unconverted gated clock, then the latter will not create any 
cross-domain timing violations. However, their routing in the FPGA may 
need to be carefully controlled to avoid the races described above. 

An intermediate node in the design can be identified and defined as a base clock 
such that the gating logic present, driven by that node, is convertible. Usually, SoC 
designs will have a clock-generation logic block with complicated logic to generate 

Figure 72: Examples of convertible and non-convertible clock gates  

Convertible

 

When the value of Gate input is 0, the 
Gated CLK output is disabled. When the 
value of Gate is 1, the Gated CLK follows 
the Base CLK. This satisfies all the 
conditions. So AND logic is convertible. 

Non Convertible

 

Gated CLK output cannot be disabled for 
either of the values of the Gate input. This 
violates the first condition and hence XOR 
is not convertible. 

Non-convertible

 

Gated CLK is derived based on two base 
clocks. This violates the third condition 
and hence MUX is not automatically 
convertible. 
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a glitch free, fail-safe and error-free clock. This clock will be created based on 
switching between many different clocks. And this generated clock will be used as 
the base clock for the rest of the blocks in the design with individual gating logic. 
Defining the clock on the output of the clock-generation logic block will make sure 
that all the gated clocks created, based on this clock, will be converted by the 
synthesis tool as shown in  

• Figure 73. 

 
• If there are valid timing paths between one base clock and its complex 

gated clock, then try to manually balance the clock paths between these 
paths. It can be balanced by introducing feed-through LUTs, clock buffers, 
PLLs and digital clock managers in one of the clock paths.  

 

Figure 73: Handling complex clock gating 
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• If there are still some gated clocks which are not converted, and there are 
huge valid timing violations, then try to run all the sequential elements in 
the FPGA at very high frequency – around 10x the fastest clock in the 
design. Insert rising-edge detectors with respect to the faster clock for all 
the gated clocks in the design. This rising-edge detector can be designed by 
double registering (say clk_reg1 and clk_reg2) the gated-clock signals 
using the faster clock and then forming a logic to detect the change from 
LOW to HIGH (NOT(clk_reg2) AND clk_reg1) as shown in  

• Figure 74. If the original clock drives FFs which operate on a negative 
edge also, then negative-edge detector circuits will also be required. 

care must be taken in the layout of these edge detectors during place and 
route to avoid introducing differential delay between the paths clk_reg1 
and clk_reg2. Use the outputs of these edge detectors as enables on all the 
sequential elements which were originally driven by the corresponding 
gated/generated clocks. 

In this way, the whole of the FPGA is driven by a single faster clock 
source as shown in Figure 75. This clock will use the dedicated global 
routing resources in the FPGA and therefore the associated clock skew will 
be very minimal and the timing can be easily met. 

 

Figure 74: Rising edge detector 
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7.4.2. Clock gating summary 
Clock gating is common in SoC designs and gated clocks should be handled with 
care to successfully prototype the SoC designs on FPGA. Contemporary FPGA 
synthesis tools automatically take care of most of these gated clocks when properly 
constrained. By following the guidelines in this chapter, SoC designs with complex 
clock gating can also be handled and successfully prototyped in FPGAs.  

Figure 75: Handling complex clock gating with global clock 
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7.5. Selecting a subset of the design for prototyping 

Most SoC designs include SoC technology elements that are not available in FPGA 
technology such as PLL, analog circuitry, BIST, SoC primitives and third-party IP. 
The following paragraphs describe some options to deal with SoC design elements 
that do not map into FPGA. 

7.5.1. SoC block removal and its effect 
In the cases where SoC design elements are not available in FPGA technology, or 
where there is no desire to prototype certain blocks, these blocks need to be 
removed from the design. The removal may be as simple as removing a complete 
RTL design file from the project, leaving an unpaired module definition which 
might be inferred automatically as a black box. Alternatively, the RTL design file 
may need to be replaced with a dummy file which explicitly includes the necessary 
directive to set the module as a black box for synthesis.  

In less tidy arrangements, the element to be removed may be buried in an RTL file 
alongside other logic that we wish to keep. In that case it may be necessary to alter 
the RTL, but a better approach, as we shall see in chapter 9, would be to predict at 
the time that the RTL was written that the element might need to be removed. 

Figure 76: removing a block from the design using `ifdef 

/* defining the compiler macro for prototyping only*/ 
`define FPGA;  
 
  <other rtl code>  
 
/* soc_block is not instantiated when FPGA macro is defined 
(leaving the commented instantiation line helps others to 
understand what has been done. Proper documentation would also be 
helpful ) */  
 
`ifdef FPGA 
// soc_block block1 (signals...); 
 
/* instantiating soc_block only when FPGA macro is not defined*/  
 
`else 
soc_block block1 (signals...); 
`endif 
 
  <other rtl code>  
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Taking this approach, a conditional branch may have been placed into the original 
RTL code, based on a single macro. The example in Figure 76 shows the condition 
removal of a module using `define and `ifdef. 

The rest of the design that would normally connect with the removed logic may be 
handled in different ways by different synthesis tools. Some tools will simply flag 
the condition as an error error-out because there are dangling connections, but other 
tools will also remove downstream logic which is not driven as a result of the 
change; either up to a block boundary or other synthesis-invariant point, up to and 
including the entire cone of downstream logic. Upstream, that logic which 
previously drove the removed block will also be pruned as far as any upstream 
sources which also drive other, non-pruned, cones of logic.  

To illustrate this effect, let us consider the small excerpt from a design shown in 
Figure 77. 

Let us suppose that Block A is not required in the prototype so we intend to simply 
remove it and allow the synthesis to prune out the unnecessary logic. The ripple-out 
effect of Block A’s removal upstream and downstream will depend upon the 
synthesis tool’s defaults and configuration. In Figure 78 we see that for a specific 
synthesis tool set-up, the upstream and downstream logic is mostly pruned as we 
might expect. Block A is removed along with all mutually exclusive upstream logic. 

Figure 77: Typical excerpt of logic before block removal 
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The AND gate is the point at which pruning stops because it is also driving other 
logic.  

Downstream, two effects are instructive. Firstly, the downstream blocks receiving 
inputs from the removed block will be removed in turn unless they also receive data 
inputs from other parts of the design (clock or reset inputs are not sufficient). So in 
our example, Block B is completely removed, probably causing further pruning of 
ITS downstream logic. Block C will undergo pruning because some internal logic 
will not be driven when Block A is removed, while some other logic will remain 
because it is driven from other sources.  

The second item of note is that the black box may not be removed by default and 
neither will its downstream logic, with the consequence that back-end tools will 
need to handle the lack of inputs, which may or may not be possible. This can 
manifest itself in some very subtle ways, for example, an instantiated BlockRAM 
may survive until place and route and then prevent completion because of non-
driven inputs. Even worse may be the setting of non-driven inputs to unexpected 
values and the BlockRAM remains in circuit. 

Thus, we should take care with simple removal of blocks as a method for reducing 
the size of our prototype. Trimming of upstream logic which is unique to the 
removed block is not usually a problem; however, pruning of downstream logic 
may have widespread and unpredictable effects. 

Figure 78: Effect of removing Block A from Figure 77 and resultant pruning 
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Synthesis tool settings for cross-boundary optimizations will have an effect to 
promote or prevent the ripple-out of logic removal. There may also be tool-specific 
directives and attributes within the design or project files or the tool itself which 
control logic pruning. Readers are encouraged to explore their own FPGA synthesis 
tools in order to understand their behavior in these circumstances. For the 
Synopsys® example, Synplify Pro® synthesis tools have a directive called 
syn_noprune which, as the name suggests, prevents pruning of non-terminated or 
non-driven signals.  

However, even if such a directive is used in synthesis, it may be that the place & 
route tools will have their own default operation which overrides the setting when 
dangling signals are found in the input netlist. It is good practice to ensure that 
every system or toolset used for the project is explicitly given a predictable setup 
rather than rely on defaults. If the members of our SoC and/or prototyping project 
teams are running different tools installations and seeing different results in their 
respective labs, then tool defaults and settings are a good place to start looking for 
the reasons.  

So, block removal is a quick and powerful way to remove unwanted logic but may 
have unforeseen results. A better approach may be to replace the block with a 
simple set of constant values called stubs, which leave no room for ambiguity of 
tool dependence. There is more detail on the use of stubs in the next section.  

7.5.2. SoC element tie-off with stubs 
To remove possible ambiguity between tool-flows as a result of element removal, as 
discussed above, a simple step is to add a dummy design file which explicitly ties-
off unused ports to desired values. Amending the example in section 7.5.1 
aboveabove, we arrive at the following code: 

We see that the code is altered to call a different version of the SoC block that 
included the stubs which tie off outputs to specific values, controlling downstream 
pruning. Inputs to the stub block can be ignored with the upstream pruning taking 
place as normal, alternatively, dummy registers or other logic might be used to sink 
the input signals or bring to an external test point using global signal (see next 
section). Another advantage of using stubs is that it more fully defines the design 
for simulation purposes. Simulators have a much more particular requirement for 
complete RTL code and will often error-out on signals etc. by default.  
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Therefore, stubs are a useful way to ensure repeatable pruning results, regardless of 
which tool we use or its setup. 

7.5.3. Minimizing and localizing RTL changes 
In previous examples,`define and `ifdef are used to control the synthesis branching 
between the FPGA and SoC code at compile time. In some cases, original RTL 
designers prefer to keep their code free of implementation-specific alterations. This 
fits within their team’s style guidance of separation and modularity. It is seen to be 
“cleaner” to keep as much target-specific code out of as much of the RTL as 
possible. In general, this also leads to a more adaptable design. There are a couple 
additional options that avoid unwanted ifdef’s but still improve the design’s 
adaptability.  

As suggested in a few of the examples, one option is to create “libraries” for each 
target, for example, by isolating a sub-list of the source files that is target-specific 
and only including the relevant sub-list for a given target. The good points of this 

Figure 79: Substituting stub block using `ifdef 

 /* defining the compiler macro */ 
`define FPGA;  
 
// define stub block (preferably in separate file used only for 
prototype)  
 
module SoC_block1_stub (signals… ) 
 input …; 
 output …; 
 
// elsewhere in the SoC design 
<other rtl code>  
 
/* replacing the SoC_block instance with stub equivalent */  
`ifdef FPGA 
 SoC_block SoC_block1_stub (signals...); 
 
/* instantiating SoC module SoC_block when FPGA macro is not 
defined*/  
`else 
 SoC_block SoC_block1 (signals...); 
`endif 
 
<other rtl code>  
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approach are that it allows us to quickly compare the two lists and discern where 
there are differences between the two databases. The strong disadvantage is that 
there are still two databases, and notwithstanding the naturally higher level of 
separation as compared to some of the other common approaches, maintaining 
multiple databases means more work and frequently leads to negligence of the 
secondary database.  

This disadvantage is minimized if the target-specific code is kept as isolated as 
possible from the remaining code. For example, if several SoC library primitives are 
instantiated directly in a large module, two copies of the large module would have 
to be maintained. On the other hand, if the instantiation is of the library component 
(containing in one case the SoC primitive and in another case the synthesizable, 
behavioral equivalent), there is more chance that the code can change locally, 
without having to implement the change in multiple files.  

Some users find that the use of XMRs (cross-module references) in Verilog or 
Global signals, the VHDL equivalent, helps to decrease the scope of RTL changes. 
In Figure 80 we see an example of bringing an internal node out to a test pin using a 
VHDL Global signal. In this way we need change only three files and the only 
boundary change is at the top-level block in order to add the test pin itself.  

Another good use of XMRs is to inject signals into a lower level. For example, one 
of the common needs in making a design FPGA-ready is to simplify clocking. To 

Figure 80: Use of VHDL Global Signal to extract signal to a test point 

# Globals Package 
package globals_pkg is 
signal observe_1 : std_logic; 
end globals_pkg; 
 
# Low Level Arch 
use WORK.globals_pkg.all; 
architecture bhv of deep_down is 
 signal what_to_watch : std_logic; 
. . . 
Begin 
 observe_1 <= what_to_watch; 
End Bhv; 
 
# Top Level Arch 
use WORK.globals_pkg.all; 
architecture Bhv of top_design is 
. . . 
Begin 
 trace_pin <= observe_1; 
End; 
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make this easier, SoC RTL writers are asked to keep clock generators, gates etc. in a 
common block at the top level. Their reason for not doing so is often that it would 
complicate the hierarchy boundaries to push the clocks down to the low-level 
modules where the clocks are used. XMRs can overcome that objection. XMRs may 
also be used retrospectively by the prototyping team to achieve much the same goal. 

7.5.3.1. Note: netlist editing instead of RTL changes 
Another approach is to use a netlist editing utility which may accompany some 
synthesis or partitioning tools. We explicitly specify the differences between the 
original database and any modifications required for the prototype directly in the 
synthesis netlist. The netlist editor would be run after each synthesis run, usually 
from a common script. This approach can be thought of as a series of overlays on 
the original RTL with the target-specific library compiled in parallel with the design 
and then stitched into the design using the netlist editor. This has all the advantages 
of the multiple filelist approach, maintains and utilizes the original golden SoC RTL 
without changes, and eliminates most issues associated with keeping RTL databases 
in sync.  

Other approaches include using code generators and project generators. These are 
frequently written in Perl, C, etc., or using makefiles, or combinations thereof. In 
practice, most projects use combinations of approaches. For example, a project 
could use ifdef’s for the library selection, or include them in the library itself.  

However it is done, the target-specific code should be architected so that it is tightly 
bound to local sections of the design. Keeping the effect close to the cause avoids 
confusion. The best approach is the one that minimizes the impact on the design and 
maximizes the ease and simplicity of switching between targets. 

7.5.4. SoC element replacement with equivalent RTL 
In the cases where a non-synthesizable SoC design element is needed in the FPGA-
based prototyping effort, it may be replaced with synthesizable RTL code. In Figure 
81 we see an example of an SoC primitive SoC_mux being replaced with RTL 
code: 

It is obviously important to verify that the RTL is functionally equivalent to the SoC 
module it’s replacing. Therefore some simulation of the replacement alongside the 
original, perhaps with assertions checking for differences, would be very useful. We 
discuss such an approach with respect to memories in section 7.7.3 below. 
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Recommendation: It’s important to note that if the remaining design is not 
properly terminated after removal of some blocks then the synthesis tool may 
optimize out (i.e., remove) any logic that is not driven by, or is not driving, other 
logic as a result. Therefore additional design modifications or synthesis directives 
may be necessary, such as creating stub designs. 

In many cases the SoC element which requires replacement is an instantiated leaf 
cell from the technology library. A good source of equivalent functionality for such 
an instantiated SoC element can be found in the actual technology library used for 
the SoC.  

Figure 81: Replacing instantiation with behavioral code 

/* defining the compiler macro */ 
`define FPGA true;  
 
module SoC_top (…inputs, outputs…);  
input ……;  
output ……; 
 
//some internal signals definitions 
wire sel; 
wire in1; 
wire in2; 
wire mux_out; 
 
/* replacing the SoC_mux instance with RTL */  
`ifdef FPGA 
 assign mux_out = sel ? in1 : in2; 
  
/* instantiating SoC module SoC_mux when FPGA macro is not 
defined*/  
`else 
SoC_mux SoC_mux1 ( 
 .input1(in1), 
 .input1(in1), 
 .select(sel), 
 .output(mux_out) 
 ); 
 
‘endif 
endmodule 
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The liberty (.lib) format for technology libraries includes an equation for the 
functionality for each leaf cell. We can see such a function for a basic cell in the 
small excerpt from a .lib file shown in  

Figure 82 and we can see the function of the output pin Y in logical terms of the 
inputs. It is a simple matter to convert this “function” equation into equivalent RTL, 
although there are EDA utilities which can perform the same task quickly and 
without error.  

As an example, FPGA synthesis tools from Synopsys have the ability to read the .lib 

file directly and refer to the cell description in order to resolve instantiations of leaf 
cells in the RTL.  

Figure 83 shows part of an RTL view of a gate-level netlist after being compiled 
into FPGA synthesis. Note that the blocks are leaf-cell elements from the 
technology library used for the SoC synthesis.  

As noted previously, each of these cells would normally be interpreted by FPGA 
synthesis as a black box. Luckily, the source .lib file for the technology is available 
to the prototyping team and we can add this to our synthesis project as any other 
design file. The tools then automatically extract the functionality as mentioned, 
mapping it to FPGA resources during synthesis as normal. 

 

Figure 82: Excerpt from an AND-OR cell description in .lib file 

cell (AOI22XL) { 
 cell_footprint : aoi22; 
 area : 10.1844; 
 pin(A0) { 
  direction : input; 
 } 
 pin(A1) { 
  direction : input; 
 } 
 pin(B0) { 
  direction : input; 
 } 
 pin(B1) { 
  direction : input; 
 } 
 pin(Y) { 
  direction : output; 
  function : "(!((A0 A1) | (B0 B1)))"; 
   
 

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



  

FPGA-Based Prototyping Methodology Manual 189 

If the .lib file is not available, or we are not using a synthesis tool that supports this 
flow, then a colleague supporting the SoC tool flow might be able to create a 
Verilog file from the .lib to add into the FPGA project. That Verilog file would only 
be a set of module definitions, which could be created using a utility such as 
Synopsys lib2syn, or even by a script which extracts the function from the .lib file 
and transcribes it into a Verilog module declaration. 

7.5.5. SoC element replacement by inference 
In some cases SoC elements can be substituted by equivalent FPGA design 
elements or “cores.” These FPGA cores are special-purpose FPGA entities used to 
optimize FPGA implementation for area and or performance. Common examples of 
FPGA primitives are memory blocks or shift register functions.  

Usually, we do not need to simply replace an SoC element with an FPGA 
equivalent but instead we replace it with an RTL description and allow the synthesis 
tools to map it into FPGA elements by inference. The example in  

Figure 84 shows an 8x4 synchronous RAM module soc_ram being replaced by RTL 
code. In this case, the FPGA memory block will be inferred by the synthesis tool 
during synthesis. 

Figure 83: Excerpt of graphical view of SoC gate-level netlist  
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The RTL enabled by the FPGA macro will be interpreted by the FPGA synthesis as 
RAM and mapped into the relevant resource in the FPGA(s). 

 

Figure 84: Instantiated RAM replaced by inferred equivalent 

/* defining the compiler macro */ 
`define FPGA true;  
 
module soc_top (…inputs, outputs…);  
input ……;  
output ……; 
 
//some internal signals definitions 
wire [3:0] mem_out; 
wire [3:0] mem_in; 
wire [2:0] addr; 
wire we; 
wire clk; 
 
/* replace soc_ram instance with RTL when compiling for FPGA */  
`ifdef FPGA 
 
reg [3:0] mem [7:0]; 
assign mem_out = mem[addr]; 
always @(posedge clk)  
if(we) mem[addr]= mem_in; 
 
/* instantiating SoC module soc_ram when compiling for SoC */  
`else 
soc_ram soc_ram1 ( 
.mem_do(mem_out), 
.mem_di(mem_in), 
.mem_addr(addr), 
.mem_clk(clk), 
.mem_we(we) 
); 
`endif 
endmodule 
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7.5.6. SoC element replacement by instantiation 
In addition to memory blocks, FPGAs have some special-purpose blocks that may 
be needed for the prototyping effort. Examples of such blocks are high-speed serial 
interface blocks (also known as SERDES), DDR memory interfaces and FIFOs. 
Since these special-purpose blocks are highly programmable, they are not always 
inferred by the synthesis tools and instead they must be instantiated directly into the 
design.  

The process of including such elements is as follows:  

• Create an FPGA element using the FPGA vendor’s supplied tools (such as 
the Xilinx® CORE Generator™ tool, Memory Interface Generator etc.) 
Typically the user selects the core type, the target technology and defines 
the various parameters’ initial state values etc.  

• The FPGA tool generates the desired core’s FPGA netlist and initialization 
file –where applicable – that are used in the place & route stage, and a 
template file used to instantiate the generated core into the main design.  

• In addition, the tool generates a wrapper file containing functional 
simulation customization data that, combined with the primitive model 
used in the core, can be used for functional simulation. 

• We then instantiate the template file in the design and connects the module 
to the design. 

Figure 85 shows an instantiation of a FIFO template generated by the Xilinx® 
CORE Generator tool: 

Figure 85: Instantiation template created by Xilinx® CORE Generator tool 

//----------- Begin Cut here for INSTANTIATION Template ---//  
// INST_TAG 
fifo_generator_v5_1 YourInstanceName ( 
 .clk(clk), 
 .din(din), // Bus [17 : 0]  
 .rd_en(rd_en), 
 .rst(rst), 
 .wr_en(wr_en), 
 .dout(dout), // Bus [17 : 0]  
 .empty(empty), 
 .full(full)); 
 
// INST_TAG_END ------ End INSTANTIATION Template --------- 

Copyright © 2011 Xilinx, Inc. 
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The FIFO template would be instantiated in place of SoC FIFO module as shown in 
Figure 86, once again using the FPGA macro to branch between implementations. 

In the example, the synthesis tool will generate a netlist with an FPGA equivalent 
black box in place of the SoC black box. The contents are added in when the design 

Figure 86: use of FIFO module in defined using the template in Figure 85 

/* instantiating the above FIFO module in the design “top”; 
 
module top (input… outputs…);  
 
/* defining the compiler macro */ 
`define FPGA true;  
 
module top (input… outputs…);  
. 
<other RTL code> 
. 
`ifdef FPGA 
/* instantiation of FPGA FIFO */ 
fifo_generator_v5_1 MyFIFO( 
 .clk(Myclk), 
 .din(Mydin),  
 .rd_en(Myrd_en), 
 .rst(Myrst), 
 .wr_en(Mywr_en), 
 .dout(Mydout),  
 .empty(Myempty), 
 .full(Myfull)); 
 
`else 
//original SoC primitive instance 
 
soc_FIFO MyFIFO ( 
.clk(Myclk), 
 .soc_din(Mydin), 
 . soc_rd_en(Myrd_en), 
 . soc_rst(Myrst), 
 . soc_wr_en(Mywr_en), 
 . soc_dout(Mydout),  
 . soc_empty(Myempty), 
 . soc_full(Myfull)); 
 ‘endif 
 
endmodule 
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reaches the back-end and the association is made by the model name in the 
template. 

When instantiating a core for which an FPGA netlist exists, the synthesis tool 
usually applies timing constraints to the core. Furthermore, depending on the 
synthesis tool, it may also be possible to include the FPGA netlist during synthesis 
so that further optimization may occur. In this case, we refer to the module as a gray 
box. 

7.5.7. Controlling inference using directives 
There may be situations where within the same design the use of special-purpose 
FPGA resources is desired for some instances, but not desired for other instances. 
Such situations can happen due to the finite number of available resources or the 
locations of these resources and the way they are connected into the design. For 
example, in some Xilinx® FPGA families, dedicated 48-bit multiplier blocks are 
available in fixed columns on the die. By default, the FPGA synthesis should map to 
dedicated resources but we also need to be able to override the default decisions in 
some situations. For example, when routing delays to a multiplier from the rest of 
the design placement would outweigh the performance gain in using it.  

In that case it would be better instead to implement the multiply function in 
general-purpose distributed logic. So there is a need to selectively direct the 
synthesis tool to infer the dedicated multipliers for some multiply functions and to 

Figure 87: RTL excerpt showing control of DSP48 mapping using synthesis 
directive  

  <other RTL statements> 
. . . 
Reg [7:0] x1_in1, x1_in2; //inputs to multiplier 1 
Reg [7:0] x2_in1, x2_in2; //inputs to multiplier 2 
 
wire [15:0] mult_out1 /* synthesis syn_dspstyle = “dsp48” */; 
wire [15:0] mult_out2 /* synthesis syn_dspstyle = “logic” */; 
 
/* a DSP48 will be inferred for the multiplier driving mult_out1 
*/ 
/* a DSP48 will not be inferred for the multiplier driving 
mult_out2 */ 
 
Assign mult_out1 <=x1_in1 * x1_in2; 
Assign mult_out2 <=x2_in1 * x2_in2; 
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map to logic in other cases. A synthesis attribute should be available to control these 
kinds of decisions and override the default.  

In the RTL in Figure 87 we see the use in Synopsys FPGA synthesis of an attribute 
called syn_dspstyle. This attribute can take one of two values: “logic” or “dsp48” 
and it is used to direct the synthesis to infer or not to infer the 48-bit fixed 
multiplier. 

Note that this attribute also applies to other entities that can be mapped into the 
DSP48 block such as adders and registers.  

In some cases, this process can be done automatically when synthesis infers the use 
of DSP and RAM blocks. The inference is timing-driven and often paths are retimed 
to get better DSP and RAM packing, but also a running count of DSP and RAM 
usage is maintained so that if the resource limit for the target FPGA is overflowed. 
Then some of the design that might otherwise infer DSP and RAM blocks will be 
automatically mapped into other logic resources instead. 

7.6. Handling RAMs 

Memory is the most common SoC element that requires some manipulation to be 
FPGA-ready. We will focus now on RAM in particular and consider other types of 
memory later. 

We have seen in section 7.5.5 that RAM can be described behaviorally in RTL and 
then inferred by FPGA synthesis into the correct FPGA memory elements. 
Unfortunately, SoC synthesis tools do not handle memory in the same way, and 
instead they are instantiated as black boxes in the RTL. Various views, such as 
functional behavior and physical layout, are used to “fill” the black box later in the 
SoC verification and implementation flows.  

These various views of the memory are often automatically created and 
parameterized by a generator such as the coreConsultant from Synopsys or Custom 
Touch Memory Compilers from Virage Logic. The SoC team will be familiar with 
these types of tools and use them to generate very sophisticated memories, 
optimized for the SoC design. In an ideal world, the FPGA synthesis would 
recognize the black box as the output from a particular memory generator and 
automatically replace it with an equivalent FPGA view. However, there are a large 
number of possible memory configurations, as can be seen in Table 16, and the 
synthesis would need to infer the functionality of each of them with only the 
reference of the black box name from external library as a guide. 
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Maintaining a cross-reference of all possible SoC memories from all possible 
generators to their closest FPGA equivalent would not be productive and typically 
yields non-optimal results. Instead we focus on the specific RAMs in the SoC 
(which will be a small subset of the overall range of possible configurations) and 
create optimized replacements only for them.  

Some help can be offered by the memory generator tools and memory IP developers 
themselves and some do indeed generate FPGA equivalent views for use by 
prototypers. In an ideal world our SoC team will have chosen their RAM for exactly 
that reason, but in most cases we need to consider how we can replace an SoC RAM 
with the FPGA equivalent. 

7.7. Handling instantiated SoC RAM in FPGA 

FPGA tools don’t understand any instantiated RAMs used in the SoC design. In 
addition, there are limits imposed by the memory architectures available in the 
FPGA device itself, so there is no guarantee that all types of SoC RAMs can be 
directly mapped into BlockRAMs or distributed RAMs that are supported in the 
FPGA device. Before exploring that further, here is a quick recap on FPGA RAMs 
(more details are in chapter 3). 

7.7.1. Note: RAMs in Virtex®-6 FPGAs 
In FPGAs, there are two different groups of RAMS; Block RAMs and distributed 
RAMs.  

Table 16: Examples of the wide range of RAMs in use in SoC designs 

RAM types Configuration Read/Write port details 

Synchronous SRAM  Single-port  1RW 

Dual-port 2RW 

Synchronous register 
file SRAM 

One-port 1RW 

Two-port 1R,1W 

Multi-port nR,mW 

Asynchronous SRAM Single-port 1RW 

 Dual-port 2RW 
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• BlockRAM: The Virtex®-6 block RAM stores up to 36K bits of data and 
can be configured as either two independent 18-Kbit RAMs, or one 36-
Kbit RAM. Each 36-Kbit BlockRAM can be configured in a number of 
ways e.g., 32K x 1, 16K x 2 etc. they can also be cascaded to create a 
64Kx1 RAM. Each 18Kb BlockRAM can be configured as a 16K x 1, 8K 
x2, 4K x 4, 2K x 9, or 1K x 18 memory. 

• Write and read are synchronous operations. The two ports are symmetrical 
and totally independent, sharing only the stored data. Each port can be 
configured in one of the available widths, independent of the other port. 
The memory content can be initialized or cleared by the configuration 
bitstream so that contents are already present when the device comes out of 
reset. During a write operation the memory can be set to have the data 
output either remain unchanged, reflect the new data being written or the 
previous data now being overwritten. 

• The BlockRAMs may be configured as single-port, simple dual-port and 
true dual-port. Furthermore, embedded dual-port or single-port RAM 
modules, ROM modules, synchronous FIFOs, and data width converters 
are easily implemented from BlockRAMs using the Xilinx® CORE 
Generator™ module generator tool. 

• Distributed RAM: The look-up tables in the FPGA can also be configured 
as RAM and because these are spread throughout the device, we call them 
distributed RAMs. With the use of surrounding logic, there is great 
flexibility in how distributed RAM can be used.  

• In cases where the SoC RAM topology is not compatible with BlockRAM 
(e.g., quad-port or bit-addressable RAM) then distributed RAMs can be 
used. In any case, if the size of the RAM is small (e.g., 16x8, 36x2) then 
distributed RAMs are generally a better choice than BlockRAM. 

• Interfaces to external RAM: FPGAs have a growing amount of internal 
RAM but it is inefficient to use up whole FPGAs just to map a few 
Megabytes of RAM from an ASIC. Furthermore, most SoC designs 
contain much larger RAMs than a few Megabytes, so for these reasons it 
will probably be necessary to map some of the SoC memory to external 
RAM components on the boards. FPGAs have the ability to interface 
through fast IO to external memories and even built-in support for 
interfacing to standard external RAMs, such as DDR2 and DDR3.  

When mapping SoC RAMs it is necessary to adapt the RTL so that the FPGA tool 
flow can map it into the appropriate resource. We can do this without changing the 
existing RTL, but instead we add extra RTL files to act as an adaptor between the 
black-box RAM instantiations in the SoC RTL and the necessary FPGA or external 
equivalent. We call these adapters “wrappers” and we shall spend some time 
exploring their use next. 
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7.7.2. Using memory wrappers 
A wrapper is a small piece of RTL that contains an item to be implemented in the 
FPGA, but which has a top-level boundary that maps to the component/module 
instantiation in the SoC RTL. Experienced prototypers will be very familiar with 
wrappers and may indeed have built up their own libraries of wrappers for use in 
various situations.  

The diagram in Figure 88 shows the basic arrangement, in this case two wrappers 
used in the same level of hierarchy. Good practice in RTL would suggest that this 
would be at the lowest level of hierarchy of the SoC design but in the prototype, a 
wrapper adds levels below the logic already in place in the SoC. Strictly speaking 
this may break the style guide for the SoC project as a whole but may be preferable 
to editing the RTL in situ to add the new RAMs.  

The simplest way to start creating a wrapper is to copy the component/module 
declaration from the SoC RTL and paste into a new RTL file. We shall later see 
what other items we might put in the wrapper body. 

The first aim of a wrapper is to link the ports on the SoC RTL instantiation to the 
relevant ports on a module/component which the FPGA synthesis will understand as 
FPGA or external elements. This module/component may be a different black-box 
instantiation, for example a Xilinx® RAM macro or an external memory black box, 

Figure 88: Basic concept of a wrapper for memory 
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or it may be another layer of hierarchy in which some new RTL infers an FPGA 
RAM. 

7.7.2.1. Wrappers to instantiate equivalent FPGA RAMs 
Figure 89 shows a schematic generated as an “RTL view” by Synopsys FPGA 
synthesis.  

Note that the port names of the top level, shown as page connectors in the 
schematic, are the same as the ports on the wrapper. This is not strictly necessary 
but careful choice of port names will make it easier for others to understand the 
intent and also some tools will be able to make additional associations by name. For 
example, during partitioning, the Certify® tool can associate the port names of an 
instantiated black box within the wrapper, with the pin names of the external 
memory as described on the board description (see chapter 8) 

However, a wrapper can be more sophisticated and can be used to manipulate the 
SoC top-level ports into something that connects with rather different FPGA or 
external resources. For example, a wrapper might be written to merge input and 
output buses on an SoC RAM instantiation, into a common tri-state bus for 
connection to an external SRAM, as shown in Figure 90.   

Figure 89: Typical wrapper for instantiate FPGA RAM as seen in Synplify® RTL 
View 
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Here a 1Mx32 SoC RAM cell is being modeled with a small external memory 
device, using the RTL shown in Figure 91. Again, the top-level ports correspond 
with the RAM instantiation in the SoC RTL, the lower pin on “extram” correspond 
with the pin names on the RAM device as they appear in the board description. 

In this case both the RAM in the SoC and in the external device are named 
explicitly. We shall see later how we can make generic wrappers which allow 
parameterization and allow wider reuse for our wrappers. 

Figure 90: Wrapper merging SoC RAM data ports onto bidir port on external 
RAM 
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Figure 91: VHDL code for wrapper shown in Figure 90 above 

-- entity matches ram cell instantiation in ASIC design  
entity UMC1048576x32S is -- 1Mx32 RAM  
port  (  
  ADR : in std_logic_vector(19 downto 0);  
  DI : in std_logic_vector(31 downto 0);  
  DOUT : out std_logic_vector(31 downto 0);  
  CK : in std_logic;  
  WEN : in std_logic;-- active low  
  CEN : in std_logic;-- active low  
  OEN : in std_logic -- active low  
  );  
end UMC1048576x32S;  
architecture wrap of UMC1048576x32S is  
component extram is  
port (  
   A : in   std_logic_vector(19 downto 0) ;  
   IO : inout std_logic_vector(31 downto 0) ;  
  CEn : in   std_logic ;   
  CE2 : in   std_logic ;   
  CE2n: in   std_logic ;  
  GWn : in   std_logic ;   
  Gn : in   std_logic ;   
  CLK : in   std_logic  );  
end component;  
 
signal extrambus : std_logic_vector (31 downto 0);  
signal regdi   : std_logic_vector (31 downto 0);  
begin  
process (CK)  
 begin  
 if rising_edge (CK) then  
  regdi <= DI;  
  end if;  
 end process;  
-- wrapper logic to combine/split input and output data onto bidir on external ram  
 
extrambus <= regdi when WEN ='1' else (others=>'Z');  
DOUT <= extrambus;  
 
-- ram declaration matches ram chip on prototype board  
UPD44322321: extram -- instance of external 1Meg x 32 Sync SRAM  
port map  (  
  A => ADR,  
  IO=> extrambus,  
  CEn=> CEN,  
  CE2=> '1',  
  CE2n=> '0',  
  GWn=> WEN,  
  Gn=> OEN,  
  CLK=> CK  
  );  
end wrap; 
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7.7.2.2. Tools for generating replacement memories 
There are a number of tools which help to generate RAM and other memories for 
use in FPGA and we can use these for creating part of the contents for our wrapper. 
These tools are extensively used by FPGA designers for everyday production 
designs but can be equally useful for those using FPGAs only for prototyping. We 
will mention in particular two tools; CORE Generator tool from Xilinx and 
SYNCore from Synopsys.  

CORE Generator tool creates memory models for implementation only in Xilinx® 
FPGA, the flow is typically to use the black box instantiation of the memory as 
created by CORE Generator tool and then the implementation is added-in 
automatically during place and route. The implementation of the memory (i.e., to 
fill the black box) is in a Xilinx-specific object format, called ngc, and might even 
be encrypted. The contents may be used by the synthesis tool if they can understand 
the ngc format. The FPGA elements can then be inspected for timing or physical 
information, which are both useful during FPGA synthesis.  

Figure 92: Synopsys SYNCore memory compiler 
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As an alternative to CORE Generator tool, Synplify Pro from Synopsys includes a 
sub-tool called the SYNCore IP Wizard. SYNCore generates portable parameterized 
RTL for IP elements including RAMs in different configurations such as single-port 
RAM, dual-port RAM and byte-enabled RAMs. Figure 92 shows a screenshot of 
SYNCore showing a dual-port RAM being created to target a Virtex-6 FPGA. In 
this case, the output is human readable Verilog RTL and so fully useable during all 
stages of FPGA synthesis and place and route.  

Tools such as SYNCore and CORE Generator tool allow us to quickly generate the 
necessary internal FPGA RAMs and other memories for modeling the SoC 
instantiated memories, via the use of suitable wrappers. 

7.7.2.3. Wrappers to infer equivalent RAMs 
So far we have used wrappers to instantiate equivalent memories in place of the 
SoC instantiated memory. The memories generated by SYNCore, however, are 
actually in RTL from which FPGA synthesis can infer the required FPGA memory. 
This approach can be expanded to allow the creation of a small library of RTL 
descriptions which can be parameterized by the wrapper to create a large variety of 
different memories, for example, corresponding with the different types that we 
listed earlier in Table 16 (see page 195). 

An RTL example for a paramaterized RAM is shown in Figure 93 on the next page. 
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This example is a single-write and multiple-read RAM but the number of read ports 
can be changed by the NUM_RDPORTS parameter. Notice that the defaults in this 
example are used to set the number of read ports to two, but this would be 
overridden by a new parameter passed into the RTL from the hierarchy layer above. 
Synplify Pro would synthesize the above RTL into the RAM structure shown in 
Figure 94. 

Figure 93: Example of paramaterized generic RAM 

module gen_ram #  
(   
parameter  
D_WIDTH   = 8, 
A_WIDTH   = 10, 
NUM_RDPORTS = 2 ) 
(   
input wrclk, 
input wren, 
input [A_WIDTH-1:0] wraddr,  
input [D_WIDTH-1:0] wrdata, 
input rdclk, 
input [(NUM_RDPORTS*A_WIDTH) -1:0] rdaddr,       
output reg [(NUM_RDPORTS*D_WIDTH)-1:0] rddata  ); 
 
reg [D_WIDTH-1:0] mem [(1<<A_WIDTH)-1:0]; 
integer i; 
 
always @ (posedge wrclk) 
 begin 
  if(wren) 
   mem[wraddr] <= wrdata; 
 end 
 
always @ (posedge rdclk) 
 begin 
  for(i=0;i<NUM_RDPORTS;i=i+1) 
   rddata[i*D_WIDTH +: D_WIDTH] <= mem[rdaddr[i*A_WIDTH +: 
A_WIDTH]]; 
 end 
  
endmodule         
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When mapped into BlockRAM in a Virtex-6 device, the rddata register bank would 
also be packed into the BlockRAM. 

 

7.7.3. Advanced self-checking wrappers 
We have so far considered two different kinds of wrappers. We have seen that some 
SoC designs do not use wrappers and instead instantiate the SoC memory directly 
into the surrounding RTL. In those cases, we need to use the SoC memory 
instantiation itself to define the top of the wrapper and place the FPGA or external 
equivalent in that. 

The second (and best) way to use memory in an SoC design is to put a wrapper 
around each instantiation, as shown in Figure 96. This requires that some foresight 
has been given to the needs of the prototypers and falls under the heading of 
Design-for-Prototyping, as we shall see in chapter 9.  

Figure 94: RAM structure inferred by RTL in Figure 93 
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In normal prototype usage, we would replace the wrapper contents that instantiate 
the SoC memory with wrapper contents that instantiate or infer an FPGA 
equivalent, or an external chip, as shown in Figure 95. 

Figure 96: Preferred wrapper in SoC design using Design-for-Prototyping  

 

Figure 95: Switching between wrappers using `define fpga macro  
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Let’s now consider a special case where we have a wrapper which instantiates both 
the SoC memory and the FPGA memory at the same time.  
An overview of this arrangement is shown in Figure 97 where we can see that both 
wrappers are present throughout the verification process and we only choose one 
during synthesis using the branching macro again. During verification runs, both the 
FPGA memory model and the SoC memory model are evaluated and assertions are 
used to compare the output of each, which should be functionally identical. Only the 
SoC memory’s result is passed to the rest of the logic. Within reasonable limits this 
should not drastically increase the simulation runtime but we do get the benefit that 
the FPGA memory is thoroughly tested in all SoC verification runs before being 
used in the prototype. 

Using this approach, any discrepancies involved with assumptions on the RAM 
models between the SoC and FPGA versions can be found early in the design cycle, 
in fact even before synthesizing the design.  

This methodology will require flow changes in the setup, and would definitely 
require that the SoC team embrace Design-for-Prototyping methods. Even if this 
requires some additional effort, we gain the advantage that memory modeling 
defects are found early in the design cycle. 

We could also envisage a generic memory library in which for each memory used in 
SoC designs company-wide, we have a single file which encapsulates the RAM 

Figure 97: Self-checking RAM model   
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from ASIC Library, the equivalent RAM using FPGA resources and the 
equivalency check. If we maintain such a generic memory library then we would 
not need to make any RTL changes for most memories when it comes to 
prototyping.  

7.8. Implementing more complex RAMs 

What if the RAMs instantiated in the SoC design are too complex to be mapped to 
dedicated BlockRAMs? Do not despair. With some ingenuity we can usually find a 
way to use the FPGA memories and other resources to mimic the behavior that we 
require. We can do this in extra RTL that resides inside the wrappers and therefore 
does not need a change to the SoC RTL. We cannot possible explore all the 
possibilities here so we shall use two examples. 

7.8.1. Example: implementing multiport RAMs 
 

In the first case, let’s consider a register files used in an SoC design, configured 
with one write port and four read ports. To implement this in an FPGA, the 
synthesis tools would map this register file into normal FFs in the FPGA logic 

Figure 98: Four BlockRAMs used to implement a quad-port register file 
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fabric. It would also use some LUT-based logic to perform decoding logic on the 
write port and for four multiplexers for the read ports. This may work very well for 
small register files but if such a structure were large enough, this could consume 
considerable amounts of logic.  

Alternatively, we could envisage an implementation where four BlockRAMs are 
used in parallel, as shown in the schematic in Figure 98.  

Whether or not this is really a better use of resources depends upon which resource 
we have most to spare, logic or BlockRAMs. However, there is an approach we can 
take which uses only a single BlockRAM as shown in Figure 99. 

The BlockRAM and input and output multiplexers are clocked four times faster than 
the system clock. We then cycle a multiplexer at the higher clock rate to drive the 
four read ports using a four-to-one mux.  

There would be a little extra logic overhead for muxing the read address and for 
generating the select signal for the output mux, but the overall resource usage would 
be lower than for either of the above implementations. 

Figure 99: Single BlockRAM used to implement a quad-port register file 
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7.8.2.  Example: bit-enabled RAMs 
FPGA block memory resources are typically structured for byte-enabled writes so 
writing to a single bit would seem to be out of the question. However, there are a 
few techniques to build bit-enabled memories. One feature is to infer single-port 
and dual-port memories using the synthesis tool to map the bit-enables into the 
BlockRAM byte enables.  

Figure 100, shows the paramaterized model for a single-port memory with a 

parameter to set the write size. We can see that parameters can be passed into the 
model for setting all the usual dimensions of the RAM, with their default values in 
case of omission. 

Figure 100: Excerpt from paramaterized module to infer single-port RAM 

module mem_sp_wren  
 #(parameter MEM_SIZE  = 512, 
  parameter DATA_WIDTH = 15, 
  parameter WR_SIZE  = 1, 
  parameter SYNC_OUT  = 1'b1, 
  parameter PIPELINED = 1'b0, 
  parameter RAM_STYLE = "")  
  (input                  a_clk,   
  input   [DATA_WIDTH/WR_SIZE-1:0]  a_wr_en,  
  input                   a_rd_en,  
  input                   a_reg_en,  
  input   [clogb2(MEM_SIZE)-1:0]   a_addr,   
  input   [DATA_WIDTH-1:0]      a_din,   
  output   [DATA_WIDTH-1:0]      a_dout  
  );   
 
reg [DATA_WIDTH-1:0] mem[0:MEM_SIZE-1]; 
reg [clogb2(MEM_SIZE)-1:0] a_addr_r;  
reg [DATA_WIDTH-1:0]    a1_dout; 
wire [DATA_WIDTH-1:0]    a2_dout; 
reg [DATA_WIDTH-1:0]    a3_dout;  
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Figure 101 shows a wrapper for a bit-enabled single-port memory which either 
instantiates the model above with relevant parameters or instantiates the SoC RAM 
cell depending upon the value of the FPGA macro. The parameters for the model 
can often be extracted from the original SoC memory name, which usually follows 
some logical pattern. In this case, 256X10 is the memory depth and data width, 
H1M8S10 defines a single-port bit-enabled memory.  

We can see from the port map that there is a parameter called RAM_STYLE for 
specifying the FPGA memory type to which the RAM will be mapped, taking the 
possible values: BlockRAM, distributed RAM or registers. If left unspecified, as in 
this example, the synthesis tool will pick the most efficient style at the time that the 
RAM is inferred. Typically, if the memory size is less than 256 it will infer 
distributed memories.  

Figure 102 shows the RTL to handle the configurable write enables which could be 
of any width write. We can work through the RTL to see how the write enabling on 
less than the full BlockRAM width is performed.  

Figure 101: Wrapper for single-port RAM inference of SoC instantiation 

module M256X10H1M8S10_wrapper (Q ,ADR ,D ,WEM ,WE ,ME ,CLK); 
output [9:0] Q; 
input [7:0] ADR; 
input [9:0] D; 
input [9:0] WEM; 
input WE; 
input ME; 
input CLK 
`ifdef FPGA 
  mem_sp_wren 
#(.MEM_SIZE(256),.DATA_WIDTH(10),.SYNC_OUT(1).PIPELINED(0))  
      umem ( 
        .a_clk(CLK), 
        .a_addr(ADR), 
        .a_wr_en({10{WE}} & WEM), 
        .a_rd_en(ME), 
        .a_reg_en(1'b0), 
        .a_din(D), 
        .a_dout(Q)  
      ); 
`else 
M256X10H1M8S10 u_mem ( .Q31(Q[31]), .Q30(Q[30]), .Q29(Q[29]),…….); 
`endif  
endmodule  
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When we come to bit-enabled dual-port and multi-port memories, these cannot be 
directly inferred into FPGA memory structures but once again, with some ingenuity 
when creating wrapper contents, we can find techniques for creating equivalent 
functionality.  

Our solution is a variation on the same technique used for standard multi-port 
memories that we described in section 7.6.1. Using a double-speed clock, a write 
cycle now consists of two fast clock cycles. On the first cycle, data is read from port 

B using the same address to which we wish to write. This read-back data is 
presented to a gating structure which will mix it with the new data to be written. 
Then, on the second cycle, the write data to put into the RAM is chosen dependent 
on the bit-write enable mask. There is another variation on this idea shown in Figure 
103 but here a 1W 2R port memory is used to construct a single-port bit-enabled 
memory, but instead of a high-speed clock, it uses both edges of the clock, falling 
for reads, rising for writes. 

There are very many RAM topologies in use in modern SoC devices and the FPGA 
devices and tools infer many, but by no means all of them automatically. With our 
examples, we hope that we have illustrated that by good engineering we can always 

Figure 102: Excerpt of port logic within the model showing variable width 
write enable  

 
integer i;  
// A_PORT 
 always @(posedge a_clk) begin 
  for (i=0; i<=DATA_WIDTH/WR_SIZE-1; i=i+1) begin :inst 
   if (a_wr_en[i] == 1'b1) begin 
    mem[a_addr][(i*WR_SIZE)+:WR_SIZE] <= 
a_din[(i*WR_SIZE)+:WR_SIZE]; 
   end  
  end  
  a_addr_r <= a_addr;            //register read add     
  if (a_rd_en == 1'b1 && SYNC_OUT) begin   // if sync out  
   a1_dout <= mem[a_addr];         // read is on input 
  end     
  if (a_reg_en == 1'b1 && PIPELINED) begin  
   a3_dout <= a2_dout; 
  end 
 end 
  
 assign a2_dout = SYNC_OUT ? a1_dout : mem[a_addr_r];  
 assign a_dout = PIPELINED ? a3_dout : a2_dout; 
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find a way to model the SoC RAM in the FPGA fabric, or by using external 
components on the board. 

7.8.3. NOTE: using BlockRAM as ROMs 
One feature of RAMs supported in the FPGA architecture is that they can be 
configured as ROMs because the RAM can be pre-loaded with desired values. This 
can be done at configuration time so that the FPGA comes out of reset with the 
RAM contents already defined. So for all intents, we have a ROM. Since the RAM 
is a synchronous element, any ROM created from it will have the same restrictions. 

So any function that requires a look-up list of values needs to also have its outputs 
registered. If these restrictions are met, then the function can be mapped into a 
BlockRAM, saving LUT resources in the logic fabric of the FPGA. In many cases 
the synthesis tool can infer the use of ROM in this way from a suitable RTL 
description.  

7.9. Design implementation: synthesis 

Once the design is made FPGA-ready, on the assumption that it fits into a single 
FPGA then we can move on to FPGA implementation, which as we saw in chapter 
3, is comprised of synthesis and place and route (we shall deal in the next chapter 
about partitioning into multiple FPGAs, should that be necessary). 

Figure 103: Bit-enabled dual-port memory using both edges of write clock  
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To recap, FPGA synthesis primarily compiles the RTL, checks for synthesis errors, 
accepts implementation constraints and generates FPGA netlists that are forwarded 
to the place & route tools along with further constraints.  

To prepare our FPGA-ready design for synthesis, we must also enter the 
implementation constraints. These can be entered either in the design RTL itself or 
in the synthesis constraints files that can either be created directly by the user or by 
using a GUI provided by some tools.  

The following are the most common implementation constraints: 

• Device properties: these basic constraints direct the synthesis and 
subsequently the place & route tools to the FPGA family, specific device, 
speed grade and physical package.  

• Pin locations and properties: this constraint maps each logical IO pin to a 
physical FPGA pin. The selection of pins is usually related to the 
prototyping platform architecture. If pin locations are not locked at this 
time then the pin assignment will change in subsequent synthesis runs and 
the design will not work in the FPGA. In addition to the physical pin 
location, we can specify IO properties such as signaling levels, slew rate, 
drive strengths etc.  

• Timing constraints: this type of constraint is one of the most critical to 
the success of the prototyping effort. These constraints drive the synthesis 
and are passed on to the place & route tools to drive each towards the 
desired timing, balancing resource utilization and implementation effort. 
Timing constraints are usually entered in a synthesis constraints file, either 
manually or by using a GUI. Effective timing constraints will guide the 
implementation tools to put the effort where it is most needed. The most 
common timing constraints are: clock period, from/to delays, and multi-
cycle paths.  

• Other constraints: there are many other constraints and attributes that 
guide the synthesis and place & route tools, such as synthesis styles, state 
machine implementation styles etc. Good knowledge of the available 
attributes and how to apply them will help us to best leverage the tool and 
device capabilities to meet our prototyping goals. 

7.9.1. Note: using existing constraints for the SoC design 
In some cases the timing constraints for the original SoC design might be reusable 
to some degree in the FPGA-based prototyping flow. SoC synthesis tools, such as 
Design Compiler® (DC), will usually be configured in their project scripts to 
perform a bottom-up synthesis and so constraints are applied at each block level. 
However, there may often be top-level constraints which give at least the IO 
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constraints for the device. There may even be a top-down flow employed in smaller 
designs, in which case the top-level timing constraints may be all that are available. 
In either case, the constraints will usually be written in a format called standard 
design constraint or SDC for short.  

Advanced FPGA synthesis tools can make use of common timing constraints in the 
SDC format, thus allowing direct reuse of the same SoC constraints for the FPGAs 
in the prototype. 

As an example, the following common design constrains are supported in Synopsys 
FPGA synthesis tools: 

create_clock 
create_generated_clock 
set_clock_groups 
set_input_delay 
set_output_delay 
set_false_path 
set_multicycle_path 
set_max_delay 
 
These are the common set of timing constraints used in SoC designs and are fairly 
self explanatory from their names. Other unsupported constraints should either be 
manually translated (if a corresponding constraint is present in the FPGA synthesis 
tools) or ignored, depending upon importance. The tool documentation will give 
guidelines of the level of SDC support provided. 

The SoC SDC will usually include much more than top-level timing constraints, for 
example “report” generation commands. Typically these are not directly supported 
or have a different syntax in the FPGA tools, so equivalent reports must be 
generated by using the timing analyzer capability within the FPGA synthesis and 
place & route tools manually.  

To use the SDC timing constraints for FPGA synthesis in Synopsys FPGA synthesis 
tools, we need to take care of the naming rules employed. Names may change or be 
ambiguous between different tools, so some mismatch might occur between 
common naming conventions. All naming rules are configurable in Design 
Compiler and there are a wide variety of styles adopted by different SoC teams. For 
example, in the notation of hierarchy separators, naming of bus signals, 
multidimensional arrays, structures, records and generated signals and identifiers. If 
the naming conventions in the Design Compiler SDC do not match the default 
naming conventions followed in the FPGA synthesis tools, then we can explicitly 
add the appropriate command specifying the naming conventions in the beginning 
of the SDC file.  
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7.9.2. Tuning constraints 
Tools will often have a constraint checker to allow a quick-pass analysis of 
coverage and legality of the constraints before running synthesis or place & route. 
The results are presented in a report which provides information on how the 
constraints will be interpreted by the tool, without having to wait for the tool to 
complete a full run. Based on the report, we can quickly edit the constraint file 
rather than wade through messages in a synthesis log file, which might run into 
many thousands of lines. 

When synthesis is complete, the tools will provide reports giving details of 
utilization and estimated timing. These reports can give an early warning of design 
issues such as inter-FPGA critical paths, unexpected utilization levels and missing 
components. Although all timing is based only on estimates, synthesis reports 
should be carefully examined before proceeding to the place & route process as the 
design or constraints that may need to be modified. To ease this process, the reports 
can be examined automatically, either using the tool’s built-in report features or 
using scripts which search and manipulate the report files directly.  

7.10. Prototyping power-saving features  

In most cases, the power mitigation of an SoC is implemented by the use of scripts 
and control files outside of the RTL, in a language such as universal power format 
(UPF). The result of running UPF controls with SoC synthesis and back-end are that 
the RTL is modified and/or supplemented with extra circuitry. Generally, the 
prototyping team receives the RTL before this power mitigation work has taken 
place and it is still a pure description of the SoC function for prototyping purposes. 

However, with the growth in sophistication of SoC power mitigation techniques, 
prototypers are sometimes asked if there is a way to test the RTL after the UPF and 
similar controls have inserted power-down modes, data retention and clock control. 

Power modeling in FPGA is an interesting problem and not something that is easily 
implemented. Some functions obviously do not make sense in the FPGA, for 
example, the modeling of switching off the power to certain parts of the chip, but 
there is merit in prototyping some of the other properties.  

It is possible to use the clock-gating features of synthesis tools to model some of the 
behavior, and careful use of PLLs can allow the frequency scaling features to be 
implemented, but adjustment of the supply voltage would not give any benefit, nor 
would the power monitoring of the core supply to the FPGA to determine power 
consumption as this would not be representative, and even worse give misleading 
results 
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However, it may be beneficial to use our prototype to model the power-control 
system itself and for this we would need to create some extra RTL, which would 
fool the power controls and the software into believing that the silicon was 
responding as expected. We can indeed dynamically adjust the frequency via 
internal or external PLLs. We could also mimic the expected responses of a voltage 
change or the effects of turning-off sections of the design. This might be useful for 
validating the software that controls such things but the complexity might far out 
way the benefit. 

The model in its simplest mode would mimic the registers and interfaces seen in the 
real world and implement the time delays we would expect for the real system. 
However power gating sections of the design is more difficult as we would need to 
generate the impression that a section is powered down when the FPGA silicon 
cannot actually be powered down. For example, we would need to implement clock 
gating or other features to ensure that a section does not respond when it is meant to 
be switched off. It would also be impossible to represent the random values that 
might appear in SoC registers that are powered down because the FPGA registers 
would not actually have been powered down and will still hold valid values, perhaps 
masking an effect that would be very important to witness in the real sislicon. In 
these examples we see that perhaps, modeling SoC power-down feature s in FPGA 
might be more misleading than helpful. 

To implement these features would either require RTL modification to the real SoC 
design (which is not ideal and should only be considered if really necessary) or the 
use of the ability of the Xilinx® FPGA device to be reconfigured (partial bitstreams 
with different INIT values may be loaded while the devices are operating, to 
determine if the changes in the values affect the design). It is not the aim of this 
book to explain partial reconfiguration, but further information can be found in the 
references. 

Recommendation: prototyping is intended for creating a functional model of an 
SoC for software validation and system-level integration of software and hardware, 
pre-silicon. It performs this task best upon RTL which is delivered before it is 
manipulated for power saving or test purposes. 

7.11. Design implementation: place & route 

Place & route tools take the FPGA-level netlist, implementation constraints, and 
tool-specific directives generated by the synthesis tool, and perform mapping, and 
place & route to produce a bitfile to download into the FPGA on the board. If the 
design was properly constrained in the synthesis phase all implementation 
constraints will flow from the synthesis tool to the place and route tools. The user 
can provide a number of tool directives such as operational modes, effort levels, and 
reporting details to optimize its operation and reporting.  
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During the place & route process, the tools provide various intermediate status 
reports. Since for large designs the place & route process can take hours to 
complete, it is recommended that we review these intermediate reports as they 
become available and determine if the process is progressing as expected or if an 
intervention is needed. The following is a list of the critical reports typically 
generated through the place & route process: 

• Mapping and utilization reports: these reports provide an account of the 
resources found in the design. These reports may indicate problems in the 
design if logic was unexpectedly removed etc. This can happen due to 
improper inclusion of cores as black boxes, or a cascading effect due to the 
removal of other blocks. To rectify such situations we should go back to 
the design and verify that the removed blocks are properly connected to the 
design after synthesis, that all cores are properly instantiated and all cores’ 
netlist files are available to the place & route tools.  

• Preliminary timing report: usually before the full place & route process 
takes place, the tools estimate if the timing constraints are possible for the 
design. If for example, the number of combinatorial logic levels between 
two FFs is such that the time it will take to propagate through them is 
greater than the requested clock period, even with minimal routing delays, 
the tool may stop processing the design. In such case we need to 
understand the critical timing violations and determine if paths can be 
multi-cycle paths or make design changes to shorten them.  

• Final timing report: this is the ultimate timing report for the design after 
the place & route process is complete. This report should be used to 
determine if the design meets the desired timing. If the timing results do 
not meet the requirements, the prototyping engineer needs to understand 
which paths are too long and rectify the issues either through tools’ 
performance parameters, tighter constraints, or design changes. It’s 
important to note that the timing reports are for each FPGA in isolation, 
and external timing analysis needs to be done, such as FPGA to FPGA and 
FPGA to other hardware. As mentioned in the “Design modifications due 
to prototyping system” section in this chapter, inserting FFs at all FPGA 
IOs will significantly optimize and simplify board-level timing 
calculations.  

There are other manuals regarding the place and route of FPGA designs, 
including those in the references. In general, the default operation of place 
and route may suffice for some projects but as with all tool flows, 
exceptions will occur that require us to “roll up our sleeves” and become 
expert in some aspects of some tools. As discussed in chapter 4, FPGA-
based prototyping is most successful when performed by FPGA experts.  
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7.12. Revision control during prototyping 

As we have seen, although we try to minimize the impact of FPGA-based 
prototyping on the SoC source, we will probably need to make changes to the 
design files. As with all engineering tasks it is crucial to track and document these 
changes. In addition there may be changes to the embedded software running in our 
prototype or in simulation testbenches and of course, the prototyping tool set-up, 
scripts and so forth will need to be recorded in order to be repeatable. For all these 
reasons, the use of a revision-control system during prototyping will greatly assist 
us in recreating the prototype across platforms, sites and future derivative projects.  

Undoubtedly, our labs already use revision control for hardware and software 
projects, and tools such as Perforce are widely used at Synopsys and Xilinx. When 
delivering RTL for use by the prototyping team, this is no less important to track 
than any other branching of the code. In parallel, the embedded software branches 
to run on the prototype may be very similar to that which will eventually run on the 
SoC (we certainly hope so) but there will be small changes, for example, a time 
constant in a header file to account for a slower clock. These small software 
changes must also be controlled and only the appropriate changes used for a 
particular prototype build. 

This becomes exponentially more difficult to control when multiple engineers are 
working on the prototype and time is short. If we make changes to our branch of the 
SoC source code to enable prototyping or debug, then these will probably not be 
wanted back in the mainline SoC code repository. However, a change in an RTL file 
to fix a bug discovered during prototyping must obviously be fed back into the 
mainline code. Only good revision control will enable us to keep track and 
discriminate between these two cases.  

We must resist the temptation to make quick and temporary changes during 
prototyping even though FPGAs offer great freedom to make exactly these kinds of 
quick changes. If we work with the mindset that anything we do can impact the final 
silicon, even though we are not working on the mainline of the code (either RTL or 
software), then we can avoid much unnecessary, inefficient and perhaps ultimately 
costly confusion.   
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7.13. Summary 

In this chapter we have covered the bulk of the tasks we undertake n order to 
overcome the third law of prototyping. We have used a number of techniques to 
remove or at least neutralize elements of the SoC design which would not have 
worked as they are in FPGA. We hope that we have not discouraged readers from 
starting because even the most pathologically FPGA-hostile design can eventually 
be mapping onto an FPGA board. 

Successful SoC prototyping demands a good understanding of FPGA technology 
and implementation tools, but most of all, we need to recognize which parts of the 
design will best respond to one or other of the above techniques.  
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CHAPTER 8 PARTITIONING AND 
RECONNECTING 

After following the guidelines in chapter 7, our design will be ready for FPGA, or 
should we say, ready for one FPGA. What if our design does not fit into a single 
FPGA? This chapter explains how to partition the FPGA-targeted part of our SoC 
design between multiple FPGAs. Partitioning can be done either automatically or 
by using interactive, manual methods and we shall consider both during this 
chapter. We shall also explain the companion task of reconnecting the signals 
between the FPGAs on the board to match the functionality of the original non-
partitioned design.  

8.1. Do we always need to partition across FPGAs? 

Many FPGA-based prototypes will use a single FPGA device, either because the 
design is relatively small or because as prototypers, we have purposely limited the 
scope of our project to fit in a single FPGA. As explained in chapter 3, FPGA 
capacity keeps increasing in line with Moore’s law, so one might assume that 
eventually all prototypes will fit into a single device. However, SoC designs are also 
getting larger and typically already include multiple CPUs and other large-scale 
application processors such as video graphics and DSPs, so they will still overflow 
even the largest FPGA.  

As we shall see in chapter 9 on Design-for-Prototyping, an SoC design can be 
created to pre-empt the partitioning stage of an FPGA-based prototyping project. 
The RTL is already pre-conditioned for multiple devices and we can consider the 
SoC design to consist of a number of separate FPGA projects. By planning in 
advance we can ensure that each significant function of the SoC design is small 
enough to fit within a single very large FPGA, or otherwise easy to split into two at 
a boundary with minimal cross-connectivity.  

However, some designs do not have such a natural granularity and do not obviously 
divide into FPGA-sized sections so for the foreseeable future, therefore, we should 
usually expect to partition the design into more than one FPGA and for some 
designs this may be a significant challenge. In addition, not only do we need to 
partition the design but we also need to reconnect the signals across the FPGA 
boundaries and ensure that the different FPGAs are synchronized in order to work 
the same as they will have in a single SoC. Let’s look in turn at partitioning, 
reconnection and design synchronization. 
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8.1.1. Do we always need EDA partitioning tools? 
If we have not designed our SoC expressly for multiple FPGA prototyping, it is 
unlikely that we will be successful without using EDA tools to either aid or 
completely automate the partitioning tasks. There are a number of EDA tools that 
aid in the partitioning effort and greatly simplify it. Generally, these tools take as 
their inputs the complete design and a system resource description, including the 
FPGAs, their interconnections, and other significant components in the prototyping 
system. Some are completely script driven based on a command file, while others 
are more interactive and graphical. Interactive tools display the design hierarchy and 
the available resources and allow us to drag-and-drop design elements of sub-trees 
“into” specific FPGAs. Advanced tools will dynamically show the impact of logic 
placement on utilization and connectivity.  

The following list depicts the advantages of using EDA tools to perform 
partitioning: 

• Global implementation constraints are possible and the tools 
transparently propagate these constraints to the place & route tools for 
each FPGA. 

• The partitioning tools will optionally insert pin multiplexing and employ 
logic replication as needed. 

• Some partitioning tools are tightly integrated with FPGA synthesis tools 
allowing resource and timing information to be generated by one and 
used by the other. This integration further simplifies the partitioning and 
synthesis processes. 

8.2. General partitioning overview 

The quality of the partitioning can significantly affect the resulting system size and 
performance, especially for large and complex SoC designs. 

As we saw in chapter 3, there are a number of approaches to partitioning giving us 
the general choices of partitioning at the RT level before synthesis or at netlist-level 
after synthesis. In either case, the same general guides for success apply. 
Partitioning is performed in a number of stages and requires some advance 
planning. The prime goal of partitioning is to organize blocks of the SoC design into 
FPGAs in such a way as to balance FPGA utilization and minimize the interconnect 
resources. Therefore we need to know details of both the size of the different design 
blocks and also the interconnections between them. We shall consider that in a 
moment. 
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8.2.1. Recommended approach to partitioning 
Let’s now look at the recommended order in which we should partition the FPGA-
ready part of the design. Table 17 summarizes the steps to be taken during an 
interactive approach. We will consider each in detail in the coming sections and 
then go on to consider automated partitioning. 

Table 17: Major steps in interactive manual partitioning 

Task Main reasons 

Describe target 
resources 

Basic requirement for all EDA partitioning tools. 
(even a manual approach needs pin location list). 

Estimate area Avoids overuse of resources during partitioning. 

Assign SoC 
top-level IO 

Ensures connectivity to external resources. 
Directs the choice of FPGA IO voltage regions.  

Assign highly 
connected blocks  

Minimizes inter-FPGA connectivity for large buses. 
Groups related blocks together for higher speed. 

Assign largest 
blocks 

Gives early feedback on likely resource balancing. 
Leaves smaller blocks for filling in gaps. 

Assign remaining 
blocks 

Allows manageable use of replication and pruning. 
Allows manageable working at lower levels.  

Replicate essential 
resources 

Reduces required amount of RTL modification 
Sync clock and reset elements in each FPGA. 

Multiplex excessive 
FPGA interconnect 

Frees up FPGA IO for critical paths.  
May be only way to link all inter-FPGA connections.  

Assign traces Assigning inter-FPGA signals fixes pin locations. 
Every FPGA pin location must be correct.  

Iterate to improve 
speed and fit 

Initial partition can usually be improved upon. 
Target speed can often be raised as project matures. 
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8.2.2. Describing board resources to the partitioner 
In the meantime, we will already have an understanding of the board resources onto 
which we will need to map the design. We know the size of the FPGAs and have a 
complete list of the interconnection between them on our board. The partitioning 
tool will need to have this information presented in the correct format and in the 
case of the Synopsys Certify® tool, this is called a board description file and is 
written in Verilog. An excerpt from a board description file is shown in Figure 104, 
in which we can see clock traces, other traces and an instantiation of a Xilinx® 
LX760 FPGA.  

It is not necessary to describe parts of the board that do not affect signal 
connectivity, so items such as power rails, pull-up resistors, decoupling capacitors 

Figure 104: Excerpt from typical board description for partitioning purposes 

. . . . 

. . . . 
//wire [11:1]       A_GCLKO;          // board traces 
//wire [11:1]       B_GCLKO;          // board traces 
//wire [11:1]       C_GCLKO;          // board traces 
//wire [11:1]       D_GCLKO;          // board traces 
 
// wire [32:1]  SMAP_A, SMAP_B, SMAP_C, SMAP_D; 
// board traces to each device 
 
wire [1:1]     A_RESET_n, B_RESET_n, C_RESET_n, D_RESET_n, RESET_n; 
wire [1:1]     A_RESET_INT_n, B_RESET_INT_n, C_RESET_INT_n, 
D_RESET_INT_n; 
  
// Inter-FPGA traces 
wire [44:1]      AB; 
wire [29:1]      AC; 
wire [62:1]      AD; 
wire [62:1]      BC; 
wire [29:1]      BD; 
wire [65:1]      CD; 
. . . . 
. . . . 
// Device A Virtex-6 LX760 
  
 XC6VLX760FF1760 uA ( 
.pin_AR8  ( A1_A[1] ),   
.pin_AT7  ( A1_A[2] ), 
.pin_AM11  ( A1_A[3] ), 
.pin_AN10  ( A1_A[4] ), 
. . . . 
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or FPGA configuration pins need not be included. It is most important that the 
connectivity information is absolutely correct and if possible, the Verilog board 
description should be obtained directly from the original board layout tool. A script 
can be used to remove unwanted board items and to ensure correlation between the 
traces on the board and the wires in the Verilog. 

Some boards and systems will have methods for generating this board description 
automatically, reflecting any configurable features on the board or daughter cards 
connected. For example, some systems have deferred interconnect or switched 
interconnect, as discussed in chapter 6, and so the board description will need to 
reflect the actual configuration of the board in our project. We will come back to 
consider adjustable interconnect in a moment. 

Considering the area and interconnect requirements for the design as a logical 
database, and the board description as a physical database, then our partitioning task 
becomes a matter of mapping one onto the other and then joining up the pieces. If 
we take a step-by-step approach to this, we should achieve maximum performance 
in the shortest time. 

8.2.3. Estimate area of each sub-block 
In chapter 4 we used FPGA synthesis very early in the project in order to ascertain 
how many FPGAs we need for our platform. For partitioning, we need to know the 
size of each block to be partitioned in terms of the FPGA resources. We can do this 
by analyzing the area report for the first-pass synthesis either manually or by using 
grep and a small formatting script to create a block-by-block report. However, 
partitioning tools usually make this process more productive, and provide a number 
of ways to estimate the block area for LUTs, FFs and specific resources (e.g., RAM, 
DSP blocks). Most importantly, the tools should also estimate the boundary IO for 
each block and its connectivity to all other blocks.  

Rather than running the full synthesis and mapping to achieve area estimates, we 
can optionally perform a quick-pass run of the synthesis or a specific estimation 
tool. For example the runtime vs accuracy trade-offs for the Certify tools are shown 
in Table 18.  

The Certify tool can make these estimates, but more importantly, will also display 
and use those estimates during the partitioning procedures, as we shall see in a 
moment. 
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The result of estimation will yield values which are general very accurate for IO 
count, but the area will probably be an over-estimate. However, a good by-product 
of this over-estimation is that it encourages us to leave more room in our FPGAs. 
The results of a quick-pass estimation may be displayed in many formats, including 
text files which can be manipulated and sorted using scripts to extract important 
information. However the most useful time and place to see the results is during the 
partitioning, in order to prevent us making poor assignment decisions which cause 
problems later in the flow. 

8.2.4. Assign SoC top-level IO 
Certain external resources or connectors on the board may need to connect with 
specific blocks of the design, for example a RAM daughter card will need to 
connect with the DDR drivers in the design. This will dictate that the RAM sub-
system will need to be partitioned into that FPGA which is connected to the RAM 
daughter board. Other pins of this kind may be connected to external PHY chips, or 
to test points or logic analyzer header on the board that will monitor certain internal 
activity. 

The location of these kinds of fixed resources should be assigned first, since they 
are forced upon us anyway. Depending on how flexible your platform may be, it 
might be possible to alter which FPGA pins connect to these external resources by 
rearranging the board topology, for example, by placing daughter cards in a 
different place on the motherboard.  

Some teams find that it helps to configure the platform so that one FPGA drives as 
much of the external SoC IO as possible. This may seem to over-constrain one 

Table 18: Options for resource estimation in the Certify tool 

Effort 
Level 

Estimation 
Mode 

Description 

Low  Model based  Uses netlist manipulator to write estimation 
(.est) file; provides fastest execution time. 

Medium  Model based  Uses netlist manipulator to write estimation 
file; improved estimation of registers over low 
effort but longer execution time. 

High 
(default) 

Architecture 
based 

Uses FPGA mapper to write estimation file; 
requires longest execution time. 
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FPGA but the freedom it gives to assignments in the remaining FPGAs is very 
helpful. 

8.2.4.1. Note: take care over FPGA IO voltage regions 
In a typical SoC there will be ports that run at different voltage levels in order to 
connect to external resources. Consequently in our prototype, we need to configure 
our FPGA pins so that they can interface at the same voltages. FPGA pins are very 
flexible and can be set to different voltage standards but they must be configured in 
banks or regions of the same voltage rather than by individual pin, as we learned in 
chapter 3 

We therefore do not have complete freedom in our FPGA pin placement, so we 
should assign SoC ports that require specific voltage pins next, although it will still 
be possible later to move pins within the given voltage region if necessary. For 
example, in the Virtex®-6 family there are 40 pins in a voltage bank. It is very 
useful if the partitioning tool gives guidance and feedback on voltage regions and 
required voltages of the IO while we are partitioning and warns against incorrect IO 
placements or configuration,  

8.2.5. Assign highly connected blocks  
We can now start assigning the blocks of the SoC design into specific FPGAs. This 
first partitioning operation will steer all remaining decisions. As in most projects, it 
is important to make a good start. We begin with those blocks which share the most 
interconnect with other blocks, but how do identify those?  

It is useful before and during partitioning to compare notes with the SoC back-end 

Figure 105: Immediate indication of resource and IO usage in each FPGA 

 

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



    

228 Chapter 8: Partitioning and reconnecting 

engineers who floorplan and layout the IC itself. They will probably be working 
through a trial implementation of the chip around the same time as the prototype is 
being created (see chapter 4). Both teams face the same partitioning challenges, 
especially if there are areas of congestion and high-connectivity in the RTL.  

The RTL designers or back-end team may also provide connectivity information, 
but in many cases we have to ascertain this by inspecting the block-level 
interconnect information ourselves. This is where some tools can help by displaying 
or ordering this information for easy inspection, for example, by overlaying the 
block-level area and interconnect information onto other design views. For example, 
Figure 105, shows a board view from the Certify partitioning environment where 
we can see indicators of IO and Logic usage for each FPGA. Interconnect 
information is also crucial and Figure 106 shows the Certify tool’s display of block-
level interconnect data at a particular level of the design hierarchy.  

Here we can immediately see that blocks b2v_inst1 and b2v_inst2 share 82 mutual 
connections but that b2v_inst3 has the most connections (106) to the block’s top-
level IO.  

The important task when partitioning multiple blocks with large numbers of 
mutually connected signals is to ensure that these blocks are placed in the same 
FPGA. If highly connected blocks are placed in different FPGAs then we will need 
a large number of FPGA IO pins to reconnect them. For example, when using 64 bit 
and larger buses, it is quite possible that two blocks assigned into different FPGAs 
can require hundreds of extra FPGA IO. So in our example above, we might try to 
assign b2v_inst3 first into one FPGA while b2v_inst1 and b2v_ins2 can be assigned 
together into a different FPGA because they are mutually connected, but share little 
connectivity with b2v_inst3.  

If it is not possible to put highly-interconnected blocks together because they 
overflow the resources of one FPGA, then we will need to step down a level of 
hierarchy and look for blocks at the next level which are less connected and extract 
those to be assigned in a different FPGA. In this way we may still increase the 
number of required FPGA IO, but by less than would be the case if the higher-level 
block were assigned elsewhere. If there is no such partition at this lower level then 

Figure 106: Mutual interconnect between blocks displayed as a matrix 
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we might go even lower, but specifying partitioning at finer and finer logic 
granularity makes it more likely that the partition will be affected by design 
iterations as these finer grains are optimized differently or renamed. If we find 
ourselves having to go deep into a hierarchy to find a solution then it may be better 
to go back and restart at the top-level with a different coarse partitioning. 

Recommendation: try different starting points and partially complete the 
assignments to “get a feel” for the fit into the FPGAs and interconnect. If a 
partitioning effort quickly becomes hard to balance then they are unlikely to 
complete satisfactorily. 

In cases of IO overflow or resource overflow, it is useful to have immediate 
feedback that this is happening as we proceed through our partitioning tasks. As an 
example, when block assignments are made to FPGAs in Certify partitioner, we see 
immediate feedback on IO and resources usage in a number of ways, including the 
“thermometer” indicators on the FPGAs of the board view, as shown in Figure 105. 
Here we can see a graphical representation of the four FPGAs on a HAPS® board 
and in each FPGA, there are three fields showing the proportion of the internal logic 
resources and the IO pins used in this partition so far. As we assign blocks to each 
FPGA we will see these thermometers change up, and sometimes down. A glance at 
this display tells us that the IO and logic usage is well within limits. 

8.2.6. Assign largest blocks 
Using our estimation for the area of each block, we can assign the rest of the design 
blocks to FPGA resources, starting with the largest of the blocks. We start with the 
larger block because this naturally leaves the smaller blocks for later in the 
partitioning process. Then, with the FPGA resources perhaps becoming over-full 
(remember 50% to 70% utilization is a good target) we have more freedom in the 
placement of smaller blocks of finer granularity and lower number of inputs and 
outputs. 

As we partition, we look to balance the resource usage of the FPGAs while keeping 
the utilization within tolerable limits i.e., less than 70% recommendation. This will 
help avoid long place & route runtimes and make it easier to reach required timing.  

Recommendation: if there is a new block of RTL which is likely to be updated 
often or to have its instrumentation altered frequently, then keeping utilization low 
for its FPGA will speed up design iterations for that RTL and save us time in the 
lab. 

As each block is assigned, we may find that the available IO for a given FPGA is 
exceeded. The remedy for this is to go back and find a different partition or replicate 
some blocks (see below) or consider the use of time-division multiplexing of signals 
onto the same IO pin (see also below). At all stages the feedback on current 
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utilization and IO usage will help us to make immediate decisions regarding all the 
above items. 

8.2.6.1. Note: help assigning blocks 
Having selected a candidate block for partitioning we might make trial assignments 
until we find the best solution, however, that is inefficient in a prototype with many 
FPGAs. We have seen how useful it is to have immediate feedback on our 
assignment decisions. In fact, it is even more useful to have the feedback before the 
assignment is made. This allows us to see in advance what would be the effect on 
IO and resources if a selected block were to be placed in such-and-such FPGAs. 
This kind of pre-warning is called impact analysis.  

In the case of Certify, impact analysis can instantly make the trial assignment to all 
FPGAs on our behalf and then show us the impact in a graphical view, as shown in 
Figure 107. 

Here we can see that our selected block has an area of 672 logic elements, extracted 
from a previous resource estimate. If we choose to assign our block to mb.uB, we 
will increase that FPGA’s area by 672 logic elements (out of a total of 478080) and 
we will increase the IO count by 137, bringing it to a total of 150. We can also see 
that if we assign our block to mb.uA, then the area will still increase by the same 
amount but the IO requirement will fall by 83 pins, presumably because our block 
connects to some logic already assigned to mb.uA. We can select mb.uA based on 
this quick analysis and then click assign. 

As with all tools driven by an interactive user interface it is good to be able to use 
scripts and command line once we are familiar with the approach. In the case of 
Certify’s impact analysis, a set of TCL commands is available to return the 

Figure 107: View of impact analysis in Certify tool 
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requested calculation results on the specified instances for the indicated devices. 
Results can be displayed on the command line or written to a specified file for 
analysis. 

This semi-automated approach to block assignment leads us to ask why a fully 
automated partitioning would not be able to perform the same analysis and then act 
upon the result. We shall look at automated partitioning in a later section. 

8.2.7. Assign remaining blocks 
After the major hierarchical blocks have been placed, we can simply fill in the gaps 
with smaller blocks using the same approach. The order is not so important with the 
smaller blocks and we can be guided by information such as connectivity and 
resource usage. Some tools also offer on-screen guidance such as “rats-nest” lines 
of various weights based on required connections which appear to pull the selected 
block towards the best FPGA to choose.  

Having made their key assignments manually, some teams will switch to using 
automated partitioning at this stage. If this can operate in the same environment as 
the manual partitioner then that is more efficient. We simply get to a point where we 
are satisfied that we have controlled our crucial assignments and push a button for 
the rest to be completed. For example, Certify’s quick partitioning technology 
(QPT) can be invoked from within the partitioning environment at any time. 

8.2.8. Replicate blocks to save IO 
While partitioning a system as large as a complex SoC we are likely at some time to 
reach a point where a block needs to be in two places at once.  

For example, the next block we wish to partition needs to drive a wide bus to two 
blocks which were previously partitioned into different FPGAs, as shown in Figure 
108. 
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 Which FPGA is the right place to put our next block? Either choice will cause 
thereto be a large number of IO which need to leave the chosen FPGA to connect 
the bus across to the un-chosen one, as shown in Figure 109. 

The answer is to put the block into both FPGAs as shown in Figure 110. In this way 
each downstream block has its own copy of the new block inside its FPGA and so 

Figure 108: A partitioning task; where to place the next block? 
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Figure 109: Partitioning into either FPGA requires 136 extra IO pins 
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no IO is required except for that which feeds the new block, IO requirement drops 
from 136 to 16.  

Our partitioning tool should allow us to make multiple copies of the same block for 
partitioning into different FPGAs. If not, then it might mean a lot of rewriting of 
RTL, which may not be practical, even with the use of XMRs and other short cuts. 

Partitioning tools will have different ways to achieve this replication but in the case 
of Certify it is simply a matter of assigning a block to multiple destinations. The 
multiple assignments will infer additional logic and interconnections, splitting the 
original blocks fanout into local sub-trees for each FPGA if possible.  

Because we are making two copies of our new block, the end use of resources will 
increase, although maybe not as much as first anticipated. Part of the replicated 
block placed in the second FPGA may not be required to drive logic there while that 
part of the original is already driving the logic in the first FPGA. Hence parts of the 
replicant and original will be pruned out during synthesis. 

Replication can also be used to reduce the number of IO for a high-fanout block 
driving multiple FPGAs. The simple, albeit unlikely scenario of an address decoder 
driving three FPGAs is a good illustration of how we can reduce the number of 
required on-board traces by using replication to create extra decoders, and then 
allowing the synthesis to remove unnecessary logic in each FPGA.  

Figure 110: Replication and partitioning into both FPGAs requires only 16 extra 
pins 
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Replication is such a helpful trick that, when we are partitioning, or preferably 
before, we should be on the look-out for replication opportunities to lower the IO 
requirement. 

Replication is also very useful for distributing chip support items such as clock and 
reset across the FPGAs, as we shall see in section 8.5. 

8.2.9. Multiplex excessive FPGA interconnect 
As mentioned, large SoCs with wide buses may not partition into a number of 
FPGAs without overflowing the available IO resources, even when using replication 
and other techniques. In that case we can resort to using time-division multiplexing 
of more than one signal onto the same trace.  

Multiplexing is a large subject, so in order not to break the flow of our discussion 
here, we shall defer the detail until section 8.6 below. 

Let us assume for the moment that and necessary signal multiplexing has been 
added and that the interconnect between the FPGAs has been defined. We are now 
ready to fix the FPGA pin locations. We do this directly by assigning signals to 
traces. 

8.2.10. Assign traces 
We have reached the stage in our project where we have partitioned all the SoC into 
FPGAs, but before running synthesis and place & route, we need to fix the pinout of 
our FPGAs. All along we have been considering the number of FPGA IO pins as 
being limited. However, really we should be talking about the connections between 
those pins on the different FPGAs. The number of traces on the board or the width 
of cables and routing switches which are able to connect between those FPGA IO 
pins are the real limitation. 

In a well-designed platform, every FPGA IO pin will be connected to something 
useful and accurately represented in the board description file. Then the partitioning 
tools will know exactly, and without error, which traces are available and to which 
FPGA pins they connect. If the board description is accurate then the pin 
assignments will be accurate as a result.  

This section of the chapter is called “Assign traces,” rather than “Assign FPGA 
pins,” because that is what we are doing. We should not think that we are assigning 
the signals at the top of each FPGA to a pin on that FPGA, but rather we should 
think of it as assigning signals to traces so that these propagate to fix all FPGA pins 
to which the trace runs. 
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EDA tools such as Certify automate the trace assignment process while keeping 
track of available traces on the board and permissible voltage regions and allowing 
automatic signal assignment. The trace assignment environment should help us 
recognize clock, resets and other critical signals. It should also help us to sort traces 
by their destinations and fanout and filter suitable candidates for assignment of 
particular traces. One view of Certify’s trace assignment window is shown in Figure 
111, in which we can see the signals which require assignment listed on the left. 
Here we can see that the user has selected a bus of eight signals called aluout which, 
as the adjacent list shows, needs to connect to logic which has been partitioned into 
devices mb.uA, mb.uB and mb.uC. Once a signal or group of signals is selected, at 
the bottom right there appears a filtered list of candidate traces on the board i.e., 
those which are available and which connect to at least the required FPGAs (or 
other board resources should that be the case). We then pick our candidate and 
confirm the assignment with the relevant button.  

The recommended order to assign our signals to traces is as follows: 

• Assign clock, reset and other global inputs if any. 

• Assign test points or probe outputs to match the on-board connections. 

• Assign top-level ports which connect to dedicated resources or connectors. 

• Assign rest of inter-device signals, being aware of voltage-level 
requirements. 

In each case, there will probably be more than one candidate trace for any selected 
signal. We choose from candidate traces in the following preference order: 

Figure 111: Certify tool’s trace assignment environment 
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• Any available trace that has the same end-points as the signal. 

• If no trace meets the criteria in 1, then a trace with the same end-points as 
the signal, plus minimum number of superfluous end-points. Superfluous 
end-points mean that FPGA pins will be wasted.  

• If no trace meets the criteria in 2, then we must split the signal onto two 
traces using two output pins at the signal’s source FPGA, as seen in Figure 
112. 

When there is no trace including at least the end-points required by the signal, then 
multiple traces between the driving FPGA and each of the receiving FPGAs can be 
used. 

Our EDA tools should be able to split the output onto two FPGA pins automatically 
without a change to the RTL. This is achieved in Certify by simply assigning the 
signal to more than one trace. Then the tool increments the pin count on the driving 
FPGA and the signal is replicated onto the extra trace, or traces. 
In general, while following the above recommended preference order there may be 
multiple equivalent candidate traces to which a signal can be applied and in those 
cases it is irrelevant which one we choose. This reinforces the notion that for many 
signals it is not important which FPGA pins we use, as long as they are all 
connected together on the same trace.  

8.2.10.1. Note: automatic trace assignment 
Given that the above procedure is fairly methodical, it is relatively simple for EDA 
tools to make automated assignment following the same rules. In fact, we can take a 
hybrid approach by making the most important connections manually and allowing 
the tools to automatically complete the assignments for less critical signals. 

Figure 112: Splitting signal onto two FPGA pins, using two traces to reach 
destination pins 
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Automatic tools will follow a similar order of assignment as we would ourselves. 
We can minimize the manual assignment steps by giving guidance to the automated 
tool when it is assigning traces from FPGA to other resources. By naming the 
signals and the resource pins using the same naming convention, the tools can then 
recognize, for example, that signal addr1 connects to ram addr1 and its associated 
trace, rather than any other candidate.  

In this way we can methodically step through the trace assignments and guided by 
our tools, we can quickly assign thousands of FPGA pins without error.  

8.2.10.2. Note: trace assignment without EDA tools 
The authors are aware of at least one team that has developed its own pin 
assignment scripts over many projects. These scripts extract the top-level signal 
names from the log file of dummy FPGA synthesis runs and put them into a simple 
format that can be imported into the usual desktop spreadsheet applications. The 
team then uses the spreadsheet to text search the signal names and assigns them to 
correct FPGA pins. A bespoke board description which includes all the FPGA 
connections of note is also imported into the spreadsheet. The spreadsheet would 
then generate pin lists which can be exported and scripted again into the correct 
UCF format for place & route. 

This approach is rare because not only is there the effort of developing and 
supporting the scripts, spreadsheet and so forth, but it may not also be the core 
competency of the prototyping team and the best use of its time. In addition, we are 
introducing another opportunity for error in the project. However, this example does 
underline the point that we can do FPGA-based prototyping without specialist EDA 
tools if we are skilled and determined. This might be a “make vs buy” decision that 
most would avoid, and instead default to using the commercially tried and tested 
partitioning tools available on the market today. 

8.2.11. Iterate partitioning to improve speed and fit 
Our first aim, as stated at the start of this chapter, was to organize blocks of the SoC 
design into FPGAs in such a way as to balance FPGA utilization and minimize the 
interconnect resources. Once this is achieved, we might want to step back and tweak 
the partition to improve it, possibly to improve performance.  

Recommendation: Take a number of different approaches to partitioning, perhaps 
with different team members working in parallel, because the starting point can 
make a big difference to the final outcome The initial block assignment in particular 
has such a strong impact on later partitioning decisions, so even just having a 
number of tries at the initial partition may bring some reward.  
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For example, the major blocks might be split differently and partitioned so that 
multiplexing is required on a different set of signals, over a different set of traces. 
The multiplexed paths often become the most critical in the design, so if we can 
perform multiplexing in a less critical part of the design, then this might raise the 
overall system performance. 

Similarly, replicating larger blocks early in the partitioning, rather than smaller 
blocks later on, might yield better overall results. If we can make a collection of 
different coarse partitioning decisions at the start and then explore these as far along 
the flow as is practical then we can pick the most promising for first completion but 
perhaps revisiting others when we have learned from our first attempts.  

It is often rewarding to discuss partitioning strategies with the SoC back-end layout 
team as they may have partitioning ideas to share which yield lower routing 
congestion. 

Once we have a finished partition for taking on to the rest of the flow and 
downloading onto the boards, we can split our efforts and while the FPGA is being 
brought up and debugged in the lab, we can spare some time in parallel to explore 
improved results.  

During the partitioning task, not only does the design need to be split into individual 
sub-designs but also consideration must be given to the overall system-level 
performance of the prototype in the lab. Let us look now at general methods for 
improving performance in a prototype.  

8.2.11.1. Note: explore non-obvious partitions 
As we explore different partition ideas, we should try to look beyond the natural 
functional boundaries within the design. For example, a prime reason why an 
acceptable partition cannot be found at first might be that a large interconnected 
block takes up too much FPGA resource. Looking into the next-level hierarchy we 
find a similar situation, but taking a different view on the blocks might show a 
datapath structure or a regular channel arrangement which can be split along its 
length rather than across its block boundaries.  

Another alternative partitioning strategy might be to identify all logic within a 
particular clock domain and then assign it all into the same FPGA. Partitioning tools 
should have a scripting or graphical method for selecting all logic that is driven by a 
specific clock. This may also increase performance in a design because the critical 
path within a domain would avoid traversing an inter-FPGA path. This ideal 
situation may not arise often in practice, however, owing to other constraints, and in 
particular, the natural tendency to partition by functionality, rather than by clock 
domain.  
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8.3. Automated partitioning 

We touched upon impact analysis earlier and considered that it might be possible to 
automate partitioning based on a similar approach.  

Generally, automatic partitioning tools work towards the same prime goals as we 
would ourselves, namely to minimize IO connectivity between FPGAs and balance 
resource utilization inside the FPGAs, but they do not have the intelligence to 
replace an experienced prototyper in finding an optimal solution. What they can do 
very well, however, is to try very many strategies until something works. An ideal 
combination may be to use our skill and knowledge to assign an initial set of blocks 
and then allow the automatic tool to complete the rest.  

At the very least we will need to guide the tools. Here are some tasks which should 
be done manually in order to assist an automatic partitioner: 

• Group pins together that need to be connected to an off-FPGA resource 
(e.g., memory or external interface). If there are no constraints to keep pins 
together the partitioner may split the pins across all FPGAs. This would be 
a problem because a typical external resource like a memory is normally 
connected to only one FPGA. 

• Constrain resource usage per device: the automatic partitioner may have 
a default, but in any case, the available resources (gates, logic, memory) 
inside an FPGA should be constraint to a maximum of 50 to 70%. 

• Populate black boxes or manually assign a resource count so that even 
the black boxes appear to have some size and then the partitioner will 
reserve space for that black box. Autopartitioners cannot split black boxes. 

• Assign clocks and reset manually: as we would for manual partitioning, 
special components like the clocks, resets and startup should be replicated 
into all FPGA and this must usually be done manually (see next section). 

• Group blocks together for peak performance: an example here is the 
manual partitioning of blocks which should stay in one FPGA to get 
highest performance. 

• Allow automatic partitioner to perform multiplexing: the quality of the 
results will vary from tool to tool, but in those designs which need IO 
multiplexing, the automated tool may be able to find a solution which 
allows a lower multiplexing ratio and hence higher system performance.  

There are a number of commercially available automated partitioning tools, each 
with a different approach. However, we must not think of these tools as a push-
button or optimal solution. The only partitioning tools which come close to this 
push-button ideal are aimed at quick-pass, low utilization and low performance 
results, best suited to emulator platforms. For FPGA-based prototyping, where high-
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performance is our main aim, this kind of fully automated partitioning is not 
feasible and it will always be both necessary and beneficial for us humans to stay 
involved in the process.  

8.4. Improving prototype performance 

The timing for signals to travel between FPGAs is typically longer than signals that 
remain inside a given FPGA, therefore inter-FPGA timing is likely to become the 
limiting factor of the system clock rate, especially in cases where multiplexing is 
used. We will have a greater impact upon prototype performance if we focus on IO 
timing and critical inter-FPGA paths. This is done using timing constraints. 

SoC top-level constraints apply to the FPGAs down to the level of the individual 
FFs in their respective clock domains and also between them if cross-domain timing 
is defined. This is particularly powerful when we can ensure that each FPGA 
boundary has an IO FF which aligns with a sequential element in the SoC, as we 
shall see in a moment.  

Recommendation: after partitioning, the constraints act upon FPGA synthesis and 
place & route back-end on each FPGA in isolation so we also need to generate 
implementation constraints for each FPGA to ensure maximum performance.  

We will not give details here of timing constraints in FPGA tools because the 
references, including the tool vendor’s user guides, are the best source of such 
information but here are some short notes most relevant to this discussion: 

• Synthesis uses estimated timing and maximum delay models for the 
FPGA. 

• Place & route uses exact timing models for maximum timing and statistical 
estimates for minimum timing. 

• The synthesis and place & route tools are timing driven so all paths in the 
FPGA are constrained, even if only by the global defaults unless explicitly 
given relaxed timing using false path constraints or other methods to break 
a timing path.  

• Black boxes break a timing path so it is recommended to provide timing 
information for any black boxes in order to constrain any connected paths. 

• FPGA IO pins are considered constrained by the applicable clock 
constraint. 

In general, any FPGA design benefits from plentiful and accurate timing constraints 
but sometimes designers may not have enough understanding of the final 
environment or clock domain relationships to create them and this is particularly 
true for IO constraints. In FPGA-based prototyping we have an advantage in that we 
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have a good understanding of the boundary and external conditions for every FPGA 
pin. For example, we know the board trace performance, the exact route taken 
across the board and even the logic in the source FPGA which is driving the signal. 
These boundary conditions can be automatically translated into the timing 
constraints necessary for driving both synthesis and place & route for each FPGA in 
isolation. This process is called time budgeting. 

8.4.1. Time budgeting at sequential boundaries 
We can improve the timing of any inter-FPGA path by ensuring that there are FFs at 
the FPGA pins on the path. This is because the clock-to-output delay on the source 
FPGA output pin and the set-up time on the destination FPGA input pin(s) are 
minimized.  

As we saw in chapter 3, every FPGA IO pad has multiple embedded FFs and these 
are available to us “free-of-charge,” so why not use them? If we can use these IO 
FFs in our prototype then they will also provide an additional benefit that the SoC 
top-level constraints will apply by default to all FFs.  

FPGA-to-FPGA timing using the above ideal mapping is constrained by the top-
level constraints which automatically propagate to the FFs at each end of any path, 
internal or external, unless overridden locally. Therefore, the constraints applying to 
SoC FFs mapped into IO FF are simplified and the FPGAs can be more easily 
constrained in isolation. This helps in our EDA tool flow because top-level 
constraints will be automatically reapplied to the FPGAs during each design 
iteration. 

If the partition or the SoC design does not provide FFs which can be placed readily 
in the FPGA’s IO FF, then is it feasible to add these manually or via scripted netlist 
editing? The addition of extra FFs into an SoC path just so that they can be mapped 
into IO FFs would, of course, introduce pipeline delays into that path, altering its 
system-level scheduling. For prototyping purposes we cannot arbitrarily add such 
extra FFs, tempting as this may be for the improved performance, without checking 
with the original designers and probably adding compensating FFs elsewhere in 
order to maintain scheduling across the design.  

Recommendation: addition of pipeline FFs can improve prototype performance but 
must be acceptable to the SoC design team and a re-run of system-level simulation 
is recommended. 

It is therefore preferable to have FFs at every SoC block boundary and to only 
partition at those block boundaries and these are indeed recommendations of a 
possible project-wide Design-for-Prototyping approach that we explore further in 
chapter 9. 

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



    

242 Chapter 8: Partitioning and reconnecting 

8.4.2. Time budgeting at combinatorial boundaries 
If the insertion of FFs at FPGA boundaries or movement of the existing FFs to those 
boundaries is not possible for all signals, then careful timing constraints for the 
combinatorial paths across the FPGA boundaries must take place. In this case, we 
need to evaluate and divide the timing budget between the FPGAs based on the 
complexity of each section of the path.  

Considering a typical path origination in an internal FF on one FPGA that ends at an 
internal FF in a different FPGA, we would need to break the applicable FF-to-FF 
constraint, perhaps derived from the top-level SoC constraints mentioned above. 
Since only the total path is controlled by the system-level constraint we need to 
determine how much of that constraint should be applied to the two parts of the path 
as mapped into the two FPGAs. The resulting IO constraints would then be passed 
on to subsequent synthesis and place & route for each FPGA.  

This is especially important for designs which require highest performance because 
the presence or absence of accurate IO constraints will drive quite different results 
in the place & route tool. By default, both synthesis and place & route working on 
the isolated FPGA after partitioning will assume that a whole period of the 
respective clock is available for propagating the signal to/from the IO pin to/from 
the internal FF. However, this assumption will almost certainly not be correct.  

For example, if the signal has come from an internal FF in another FPGA, then the 
data will have to traverse that FPGA’s internal routing, its output pad delay plus the 
board trace delay before arriving at the receiving FPGA’s pin. The receiving FF’s 
clock will probably have been generated internally in the receiving FPGA. We can 
therefore see that considerably less than the whole clock period would be available 
for propagating the signal through the input pad to the receiving FF in order to meet 
its set-up timing requirement. Relying on the default is risky and so we need to give 
better IO constraints at combinatorial boundaries, but what should those values be? 

It is worth noting that a semi-manual approach could be taken: extracting delay 
information from a first-pass FPGA timing analysis and then using a spreadsheet to 
calculate more accurate IO constraints. However, creating IO constraints for many 
hundreds or even thousands of signals at combinatorial partition boundaries would 
be a long and potentially error-prone approach. It would also need to be repeated for 
every design iteration. 

Another workaround would be to apply a default of a half-clock cycle of the 
receiving FF’s clock and this coarse value may be adequate for a low performance 
target. 

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



  

FPGA-Based Prototyping Methodology Manual 243 

The good news is that automatic and accurate timing budgeting at combinatorial 
partition boundaries is possible. The Certify tool, for example, uses a simple 
algorithm to budget IO constraints based on the slack of the total FF to FF. The 
synthesis is run in a quick-pass mode to estimate the timing of a path accounting for 
IO pad delays and even the trace delay. Multiple FPGA boundaries and different 
clock domains in a path are also incorporated in the timing calculation. The result is 
a slack value for every multi-FPGA path and we can see the proportion of the path 
delay shared between the FPGAs. An example of this is shown in Figure 113 with 
exaggerated numbers just to make the sums easy. We see that the timing budgeting 
synthesis has estimated that 40ns of the total clock constraint of 100ns is spent 
traversing the first FPGA and 10ns is spent in the second FPGA. There is also a 
time allowance for the “flight time” on the trace between the FPGAs. 

The total permitted path delay (usually the clock period) is budgeted between the 
devices in proportion to each FPGA’s share of the total path delay. Therefore if 
either the launching or catching FPGA has a larger share of the total path delay, 
then the place & route for that FPGA will also have received a more relaxed IO 
timing constraint i.e., the path is given more time. This is a relatively simple process 
for an EDA tool to perform but can only be done if the tool has top-down 
knowledge of the whole path. 

This all assumes an ideal clock relationship between the source and destination 
FPGAs on our boards and we may need to take extra steps to ensure that this is 
really so, as we shall see in section 8.5.1. 

Figure 113: Time budgeting at combinatorial partition boundaries 
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8.5. Design synchronization across multiple FPGAs 

Our SoC design started as a single chip and will end up the same way in silicon but 
for now, it is spread over a number of chips and the contiguity of the design suffers 
as a result. We have discussed some of these ways we can compensate for the on-
chip/off-chip boundary to improve performance and later we shall discuss 
multiplexing of signals.  

There are three particular aspects of having our design spread over multiple chips 
that we need to concentrate upon. These are the clocks, the reset and the start-up 
conditions. For complete fidelity between the prototype and the final SoC, then the 
clock, reset and start-up should behave as if the hard inter-FPGA boundaries did not 
exist. Let’s consider each of these in turn. 

8.5.1. Multi-FPGA clock synchronization 
We saw in chapter 5 how the FPGA platform can be created with clock distribution 
networks, delay-matched traces and PLLs in order to be as flexible as possible in 
implementing SoC clocks. Now is the time to make use of those features.  

There are two potential problems that occur when synthesizing a clock network on a 
multi-FPGA design:  

• Clock skew and uncertainty: a common design methodology uses the 
board’s PLLs to generate the required clocks and distribute them as 
primary inputs to each FPGA. The on-board traces and buffers can 
introduce some uncertainty and clock skew between related clocks due to 
the different paths taken to arrive at the FPGAs. If ignored, this skew can 
cause hold-time violations on short paths between these related clocks.  

• The back-end place & route tools can typically resolve hold-time violations 
within the FPGA but cannot currently import skew and uncertainty 
information that is forward-annotated from synthesis. To address this 
problem, the FPGAs own PLLs (part of the MCMMs in a Virtex®-6 FPGA 
) can be used for clock generation in combination with, or instead of the 
board’s PLLs,. The back-end tools understand the skew and uncertainty of 
an MCMM and can account for them during layout. However this use of 
distributed MCMMs can introduce the second of our potential problems 
mentioned above. 

• Clock synchronization: When related clocks are regenerated locally on 
each FPGA there is a potential clock-synchronization problem that does 
affect the original SoC design, where clocks are generated and distrusted 
from a common source. The problem becomes particularly apparent when 
multiple copies of a divide-by-N clock are derived from a base clock but 
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are not in sync because of reset or initial conditions and just unlucky 
environmental glitches.  

Partitioned designs have their clock networks distributed across the FPGAs and 
other clock components on the board. Spanning a large number of different clocks 
across all FPGAs can be made easier by successful clock-gate conversion (see 
chapter 7), reducing the number and complexity of the clocks. However, there will 
still be a number of clock drivers which need to be replicated in multiple FPGAs. It 
is important that these replicated clocks remain in sync and that any divided clocks 
are generated on the correct edge of the master clock. This is dependent upon the 
application of reset on the same clock edge at each FPGA as we shall describe in the 
next section. 

We therefore have a generic approach to clock distribution as shown in Figure 114, 

in which we see the source clock generated on a board while the local MMCMs are 
used in each FPGA to resynchronize and then redistribute the clocks via the BUFG 
global buffers. In many cases this small FPGA-clock tree will need to be inserted 
into the design manually. The latest partitioning tools are introducing features which 
automatically insert common clocking circuitry into each FPGA.  

Figure 114: Clock distribution across FPGAs 
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Our earlier recommendation to design the SoC with all clock management in a top-
level block will really help now. We only need to make changes at that one top-
level block and then use replication to partition the same structure into each FPGA. 
Even if the clocking in the SoC RTL is distributed throughout the design then 
replication will help us restrict the changes to fewer RTL files than might otherwise 
be necessary.  

Replication of clock buffers might be avoided if we use a technique discussed in 
section 8.2.11.1 above for partitioning by clock domain. Success of this approach 
will depend on relative fanout of the different clocks and the number of paths 
between domains. 
Whatever the partitioning strategy, each FPGA is a discrete entity and for clock 
synchronization, each must have its own clock generation rather than relying on 
clocks arriving from a generator in another FPGA. Therefore a clock generator must 
be instantiated in each FPGA even if only a small part of the SoC design is 
partitioned there.  

Let’s look a little more closely at the clock generator and how it helps us during 
prototyping. The MMCM’s PLL has a minimum frequency at which it can lock and 
so the input clock to the FPGA must drive at least at that rate. Virtex®-6 MCMMs 
have a minimum lock frequency of 10MHz, compared to 30MHz or higher for 
previous technologies, which makes them particularly useful for our purposes. They 
are able to generate much slower clocks than they can accept as inputs. Our task is 
therefore to assemble a clock tree across the prototype where we maintain a higher 
frequency outside of the FPGAs and then divide internally while keeping the 
internal clocks in sync. 

We achieve this as follows: 

• If the SoC has clock generator at the top-level as recommended then 

• Create a clock generator block in RTL to replace the equivalent part of the 
SoC generator. We use a global base clock to drive MCMMs which 
generate slower derivatives via its divide-by-n outputs.  

• Select any one global system clock generated on board; its frequency must 
be above the minimum MMCM lock frequency.  

• Drive the input to the new RTL clock tree with the global clock. 

• In the new clock generator RTL, create a tree of MMCM and BUFG 
instantiations to create all necessary sub-clocks.  

• During partitioning, replicate the MMCM and BUFGs into each FPGA as 
required to drive logic assigned there.  

• During trace assignment, the global clock must be assigned to the global 
clock inputs for the FPGA.  

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



  

FPGA-Based Prototyping Methodology Manual 247 

• If clock gating and generation is more distributed then we may need to 
instantiate BUFG and MMCM components directly into different RTL 
files, but we should always be on the lookout for how replication can make 
this process easier. 

For multi-board prototypes, we may need an extra level of hierarchy in the clock 
tree. We should use the on-board PLLs to drive the master clock to each board and 
resynchronize using PLLs at each board, using the board’s local PLL output to drive 
each FPGA locally as described above. Skew between boards is avoided by using 
PLLs and matched-delay clock traces and cables as described in section 5.3.1. 

Because multiple PLLs and MCMMs may be used, the local slow clocks must be 
synchronized to the global clock. This is achieved by using the base clock as the 
feedback clock input at each MMCM. 

We might ask why we do not generate all clocks using the on-board global clock 
resources. After all, we might have placed specialist PLL devices on the board with, 
for example, even lower minimum lock frequencies. The issue to be aware of here is 
that, depending upon the board, there may be some skew between the arrival times 
of the clocks at each FPGA, especially for less sophisticated boards not specifically 
designed and laid out for this purpose. This effect will be magnified in a larger 
system and could lead to issues of hold-time violations on signals passing between 
FPGAs. 

8.5.2. Multi-FPGA reset synchronization 
There will be “global” synchronous resets in the SoC which will fan out to very 
many sequential elements in the design and assert or release each of them 
synchronously, on the same clock edge. As those sequential elements are partitioned 
across multiple FPGAs it is obviously critical to ensure that each still receives reset 
in the same way, and at the same clock edge. This is not a trivial problem but 
distributing a reset signal across several FPGAs in a high-speed design can be 
achieved with some additional lines of code in the RTL design and a partitioning 
tool that allows easy replication of logic.  

The enabling factor in this approach is that it is unlikely that the global reset needs 
to be asserted or released at a specific clock edge, as long as it is the SAME clock 
edge for every FPGA. Therefore, we can add as many pipeline stages into the reset 
signal path as we need and we shall use that to our advantage in a moment.  

Another factor to consider is that the number of board traces which connect to every 
FPGA is often limited so the good news is that we do not need any for routing 
global resets. Instead we create a reset tree structure which routes through the 
FPGAs themselves and then uses ordinary point-to-point traces between the FPGAs.  
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Considering the design example in Figure 115 in which a pipelined reset drives 
sequential elements in four different FPGAs, it is clear that the elements in FPGA 4 
will receive the reset long after those in FPGA 1.  

Notice also that the input could be an asynchronous reset, so the first stage acts as a 
synchronizer (with double clocking if necessary for avoiding metastability issues). 
Routing through the FPGAs in this way is not acceptable except for very low clock 
rates, so to overcome this we will replicate part of the pipeline in each of the FPGAs 
as shown in Figure 117.  

Readers using Certify will find further instructions on the correct order for 
replication in the apnote listed in this book’s references. 

The first stage is not replicated because the synchronization of the incoming reset 
signal has to be done in only one place. There is still a possibility that the pipeline 
stage in each FPGA would introduce delay because if there is one FF in each stage, 
then it might be placed near the input pad, the output pad or anywhere in between; 
this might also be different in each FPGA. The answer is to use three FFs for each 
pipeline stage, as shown in Figure 116.  

Figure 115: Pipelined synchronous reset driving elements in 4 FPGAs 

 

 

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



  

FPGA-Based Prototyping Methodology Manual 249 

This allows the first and third FF to be placed in an IO FF at the FPGA’s edge. Then 
there is a whole clock period for the reset to propagate to the internal FF and on to 
the output FF, greatly relaxing the timing constraint on place & route. Once again, 
these pipe stages only introduce an insignificant delay compared to the effect of the 
global reset signal itself. 

Figure 117: Tree pipeline created by logic replication 

 

 

Figure 116: A three-FF pipeline stage gives more freedom to place & route  
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Note: the synthesis might try to map the pipeline FFs into a single shift register 
LUT (SRL) feature in the FPGA, which would defeat the object of the exercise so 
the relevant synthesis directive may be required to control the FF mapping. In the 
case of Synopsys FPGA synthesis, this would be syn_srlstyle and for good measure 
syn_useioff would be used to force the two FFs into the IO FF blocks, although that 
is the default.  

8.5.3. Multi FPGA start-up synchronization 
Using the above technique we can ensure that all FPGAs emerge from start-up 
simultaneously. But this is of little use if the clocks within a given FPGA are not 
running correctly at that time. We must also ensure that all FPGA primary clocks 
are running before reset is released. This is important because, owing to analog 
effects, not all clock generation modules (MMCMs, PLLs) may be locked and ready 
at the same time. We must therefore build in a reset condition tree. This can be 
accomplished by adding a small circuit like the one shown in Figure 118 which 
would be distributed across the FPGAs.  

Here we see a NAND function in each FPGA to gate the LOCKED signals from 
only those MCMMs which are active in our design. This would be a combinatorial 
function or otherwise registered only by a free-running clock that is independent of 
the MMCM’s outputs.  

Each FPGA then feeds its combined all_ LOCKED signal to the master FPGA in 
which it is ORed to drive the reset distribution tree described in the previous 
section. The locked signals of any on-board PLLs used in this prototype must also 
be gated into the master reset and there may other conditions not related to clocks 

Figure 118: Example reset condition tree 
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which also have to be true before reset can be released, for example, a signal that 
external instrumentation is ready and, of course, user’s “push-button” reset should 
also be included. Our example shows that these are all active high but of course the 
reset gate can handle any combination. The whole tree would be written in RTL 
which is added into the FPGA’s version of the chip support block at the top level 
and we can use replication to simplify its partitioning. 

The global reset is only released when all system-wide ready conditions are 
satisfied. The reset will also then release all clock dividers in the various FPGAs on 
the same clock edge so that all divide-by-n clocks will be in sync across all FPGAs. 

8.6. More about multiplexing 

The partitioning is done. The resource utilization of all FPGAs is well balanced and 
within the suggested range. Furthermore, the design IOs per FPGA are minimized 
but after such good work, there is still a chance that there are not enough FPGA pins 
available to connect all design IOs, or to be more accurate, there are not enough on-
board traces between some of the FPGAs. As mentioned in section 8.2.9 above, the 
solution is to multiplex design signals between FPGAs in question. Multiplexing 
means that multiple compatible design signals are assembled and serialized through 
the same board trace and then de-multiplexed at the receiving FPGA. We shall now 
go into more detail on how this is done and also compare different multiplexing 
schemes. We shall also explain the criteria for selecting compatible signals for 
multiplexing and give guidance on timing constraints. 

8.6.1. What do we need for inter-FPGA multiplexing? 
To multiplex signals between FPGAs we need a number of elements including a 
multiplexer (mux), demultiplexer (dmux), clock source and a method for keeping all 
of these mutually synchronous. All of these elements are seen in the in Figure 119 
(see next section for full explanation). 

If we have freedom to alter our RTL then theoretically, these elements could be 
manually added at each FPGA boundary. We would need to add the multiplexing 
elements after partitioning or add the elements into the RTL from the start, therefore 
pre-supposing the locations for partition boundaries. In both cases, the rest of the 
SoC team might see this as stepping too far away from the original SoC RTL and 
introducing too many opportunities for error. 
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Most teams would not contemplate such widespread changes to the SoC RTL and 
instead they rely on automated ways to add the multiplexing, either by scripted 
direct editing of the post-synthesis netlists or by inference during synthesis, based 
on direction given by the partitioning process. We shall explain more about this in a 
moment. 

Whatever the method for introducing the muxing, the basic requirement of the 
scheme is to transfer IO data values from one FPGA to another within one design 
clock. To achieve this, the serial transfer clock (also named multiplexing clock or 
fast clock) must sample those data values faster than the design clock to guarantee 
that all the data is available in the receiving FPGA before the next active design 
clock edge. 

As an example, let’s assume that we have four IO data values to transfer between 
two FPGAs which are multiplexed on a single on-board connection i.e., a mux ratio 
of 4:1. If this part of the design is running at 20MHz then, to transfer the four design 
IOs within a design clock cycle, we need a transfer clock which is at least four times 
faster than the design clock. Therefore the transfer clock must be 80MHz at 
minimum. In practice it needs to more than four times faster for a multiplexing of 
4:1 because we need to ensure that we meet the setup and hold times between the 
data arriving on the transfer clock and then being latched into the downstream logic 
on the design clock. 

In most of the cases where multiplexing is used, it decreases the overall speed of the 
design and is often the governing factor on overall system speed. The serial transfer 
speed is limited by the maximum speed through the FPGA IOs and the flight time 
through the on-board traces. Therefore, with these physical limits the multiplexing 
scheme needs to be optimized to allow the prototype to be run at maximum speed. 

Figure 119: Basic time-division multiplexing of inter-FPGA signals 
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Multiplexing is typically supported by partitioning tools which insert the mux and 
dmux elements and populate them with suitable signals. For example, in the Certify 
tool there are two different types of scheme called certify pin multiplier (CPM) or 
high speed time domain multiplexing (HSTDM). 

Based on the relationship of the transfer clock and design clock, we can differentiate 
between two types of multiplexing. Asynchronous multiplexing, where the transfer 
clock has no phase relation to the design clock, and synchronous multiplexing, 
where the transfer clock is phase aligned to the design clock, and probably even 
derived from it. 

8.7. Multiplexing schemes  

The partitioning tools insert multiplexing based on built-in proprietary multiplexing 
IP elements. We normally do not know, or probably need to know, every detail of 
these elements but we shall explore some typical implementations in the rest of this 
section. At the end of the section a comparison of the different schemes is shown. 

8.7.1. Schemes based on multiplexer 
The simplest scheme is a mux in the sending FPGA and a dmux on the receiving 
FPGA, much as we saw in Figure 119 but with the source FFs omitted. In the source 
FPGA there is a 100MHz transfer clock which drives a small two-bit counter which 
cycles through the select values for the mux. Every 10ns a fresh data value starts to 
traverse the mux, over the board trace and into the dmux in time to be clocked into 
the correct destination FF. Meanwhile, the dmux is switched in sync with the mux 
as both are driven by a common clock, or more likely two locally generated clocks 
which are synchronized as mentioned in section 8.5.3 above. 

On each riding edge of the transfer clock, new data ripples through to the mux 
output and propagates across the trace from the source FPGA to the destination 
FPGA in time for the receiving register to capture it. This is an extra FF driven by 
the transfer clock rather than the design FF that would have captured the signal if no 
multiplexing scheme had been in place. 

To use this simple scheme, we need to select candidate signals that will propagate 
across the mux and dmux in order to meet the set-up timing requirement of the 
receiving FF. If the timing of the direct inter-FPGA (i.e., non-multiplexed) path was 
already difficult for the receiving FF to meet, then this is not a good candidate for 
multiplexing. In normal usage, we would select signals with a good positive slack 
and these can be estimated after a trial non-partitioned synthesis.  

Best candidate IOs for this simplest kind of multiplexing scheme are those directly 
driven by a FF, which normally could map into IO FFs in the FPGA if there were 
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enough pins available. These would have the maximum proportion of the clock 
period available to propagate to the destination, assuming that the transfer clock is 
in synchronization with the design clock driving those FFs. Using IO FFs, the 
timing of inter-FPGA connections is more predictable and generally faster. 
Therefore a multiplexing scheme should use IO FFs if possible and we should use 
synthesis attributes to ensure that a boundary FF is mapped into an IO FF if 
physically possible.  

Another multiplexing scheme, which is very similar to the one described above, has 
additional sampling FFs in the source FPGA driven by the transfer clock exactly as 
seen in Figure 119. Now the whole mux-dmux arrangement is in sync with the 
transfer clock and it is easier to guarantee timing. In fact we need not even have a 
transfer clock that is synchronous with the design clock but double-clocking 
synchronizers may be necessary to avoid metastability issues. 

8.7.2. Note: qualification criteria for multiplexing nets 
There are different types of signal in the SoC design, on different kinds of FPGA 
interconnections. Some types are suitable for multiplexing and other types should 
not be multiplexed. Table 19 summarizes these different types and their suitability 
for multiplexing. 

To get the highest performance in case of multiplexing the user should carefully 
select the FPGA interconnection which should be multiplexed. For designs with 
different design clocks the user should multiplex signals coming from a low-speed 
clock with a higher ratio than signals from a high-speed clock. This keeps the 
performance of the design high.  
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8.7.3. Schemes based on shift-registers 
Another solution is based on shift-registers, as seen in Figure 120. Here the data 
from the design is loaded in parallel into the shift-register on the rising edge of the 
transfer clock and shifted out with the same clock.  

In the receiving FPGA, a shift-register samples the incoming data on the transfer 
clock and provides the data in parallel to the design. The first sample (in this case 
sig 4) is available at the shift register output from the sample clock edge but an extra 
edge of the transfer clock may be necessary in some versions of this scheme in 
order to latch in the data after it has been fully shifted into the destination registers 
for finally clocking into the design FFs in the destination FPGA. Once again, the 
sending and receiving shifters need to start up and then remain in sync.  

Table 19: Which nets are suitable candidates for multiplexing? 

Net topology Suitable? Notes 

Nets starting and ending at 
sequential element. 

YES If possible put sequential 
element in IO FF. 

Nets starting at combinational 
element and but ending on 
sequential element.  

YES It could be difficult to meet 
the timing between design 
clock and multiplexing clock. 

Nets between FPGAs which are 
also top-level design IO ports. 

NO Connected external hardware 
cannot perform dmux. 

Nets starting and ending at 
sequential element but in 
different clock domains. 

NO This has unpredictable 
behavior owing to setup and 
hold. 

Nets starting and ending at 
sequential elements but feeding 
through* intermediate FPGA. 

NO/(YES) In theory it’s possible to 
multiplex such a net but it 
decreases the design 
performance and timing is 
hard to estimate. 

Nets crucial to the clocking, 
reset, start-up and 
synchronization of the prototype. 

NO Crucial nets should be 
assigned to traces before mux 
population is decided.  

* feed-through means that there is a path through an FPGA without sequential elements. 
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This type of scheme is well suited for boards with longer than average flight time on 
the inter-FPGA traces because there is no extra combinatorial delay in the path and 
we obtain maximum use of the transfer clock period. In particular, it is not 
acceptable to have new data being sampled onto the trace if the previous sample has 
not yet been clocked into the receiving logic. In some lab situations we can get 
lucky, but in others, the transmission line characteristic of the trace or a slight 
discontinuity in a connection can make the transfer unreliable. Therefore we have 

an upper physical limit on transfer clock speed and if we hit that then the only way 
to increase multiplexing ratio further is by reducing the overall system speed. 
Having done so, then even when using mux ratios of 10:1 or higher, we just have to 
operate the prototype at a lower clock rate.  

8.7.4. Worked example of multiplexing 
It is important to understand mux timing so here is a worked example of a 
multiplexing solution that uses a mux followed by a sampling FF.  

Figure 120: Basic time-division multiplexing based on shift registers 
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Considering the Figure 121, in FPGA A we have a design with some flip-flops 
which we call FFs followed in this example by some combinatorial design logic (in 
some other examples it might also be possible that there are only design flip-flops). 
The values are fed to the send stage which contains a multiplexer which selects each 
design signal in turn and an output FF, which we shall call FFMO. FFMO could be 
placed into an IO FF of FPGA A in order to improve the output timing as mentioned 
above. 

Between the two FPGAs we use a single-ended connection for the multiplexed 
signals (shown as mux on our diagram). As mentioned above, to guarantee signal 
integrity we must ensure that a multiplexed sample is received and latched into the 
destination FF within one transfer clock cycle between the sending FFMO and the 
receiving FF, which we shall call FFMI.  

As the multiplexed samples are clocked one by one into FFMI in FPGA B, they are 
stored in a bank of capture FFs, which we call FFMC. These capture FFs ensure that 
the samples are all stable before the next clock edge of the design clock. Our 
example also shows some combinatorial design logic in the receive side (but again, 
this might only be design FFs). The aim is to show that TDM can be used on a wide 
variety of candidate signals. 

Figure 121: Example time-division multiplexing based on sample register 
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Now let’s see how we can calculate the maximum transfer frequency and the ratio 
between transfer clock and design clock.  

Our constraint is to transfer a data value within on period of the transfer clock cycle 
between FFMO and FFMI. The delays on the path are as follows: 

• The delay through the output buffer of FPGA A (𝑇𝑜𝑢𝑡)  

• The delay on board (𝑇𝑏𝑜𝑎𝑟𝑑) 

• The delay of the input buffer at FPGA B (𝑇𝑖𝑛) 

The maximum delay on the multiplexing connection is therefore: 

𝑇𝑀𝑈𝑋𝑚𝑎𝑥 = 𝑇𝑜𝑢𝑡 + 𝑇𝑏𝑜𝑎𝑟𝑑 + 𝑇𝑖𝑛  
 
If we assume typical values of 𝑇𝑜𝑢𝑡 = 5𝑛𝑠, 𝑇𝑏𝑜𝑎𝑟𝑑 = 2𝑛𝑠 and 𝑇𝑖𝑛 = 1 𝑛𝑠 we get a 
maximum delay of: 
 

𝑇𝑀𝑈𝑋𝑚𝑎𝑥 = 5𝑛𝑠 + 2𝑛𝑠 +  1𝑛𝑠 = 8𝑛𝑠 
 
This sets the upper limit on transfer clock frequency of: 
 

𝐹𝑀𝑈𝑋𝑚𝑎𝑥 =
1

𝑇𝑀𝑈𝑋𝑚𝑎𝑥
=  

1
8 𝑛𝑠

= 125𝑀𝐻𝑧 

 
That’s the theoretical rate that signals can pass between the FPGAs, but we should 
also respect that we are using single-ended signaling and that there can be some 
clock uncertainty, or jitter, between the FPGAs and we should also give some room 
for tolerances. Therefore, based on our experiences, we should add 𝑇𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒𝑠 =
1 − 2𝑛𝑠 to provide some safety margin, depending how confident we are in the 
quality of the clock distribution on our boards. For our example let’s assume that 
𝑇𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒𝑠 = 2𝑛𝑠. This results in the following calculation: 
 

𝑇𝑀𝑈𝑋𝑚𝑎𝑥 = 𝑇𝑜𝑢𝑡 + 𝑇𝑏𝑜𝑎𝑟𝑑 + 𝑇𝑖𝑛 + 𝑇𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒𝑠  
 
If we assume the same values as above for the other delays we get: 
 

𝑇𝑀𝑈𝑋𝑚𝑎𝑥 = 5𝑛𝑠 + 2𝑛𝑠 +  1𝑛𝑠 +  2𝑛𝑠 = 10𝑛𝑠 
 
and a maximum transfer clock frequency of: 

𝐹𝑀𝑈𝑋𝑚𝑎𝑥 =
1

𝑇𝑀𝑈𝑋𝑚𝑎𝑥
=  

1
10 𝑛𝑠

= 100𝑀𝐻𝑧 
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The maximum clock frequency of 100MHz (or period of 10ns) must be given as a 
constraint on the transfer clock during FPGA synthesis and place & route.  

Let’s now consider a little more closely how the mux and dmux components are 
working in order to calculate the ratio between transfer clock and design clock. We 
have to consider two possible use cases. The first case is that that the transfer clock 
and the design clock are mutually synchronous i.e., they are derived from one clock 
source and they are phase aligned. The second case is that the transfer clock and the 
design clock are asynchronous, in which case, we don't know on which transfer 
clock cycle the transfer of the data values starts and we have to set the right 
constraints to make sure that it works. 

Starting with the synchronous case, we see from the block diagram that there are 
some transfer clock cycles required to bring the data from the sending design FFS 
through the multiplexing registers FFMO, FFMI, FFMC to the receiving design register 
FFR.  

In addition, even though the two clocks are synchronous, we have to respect the 
delays between the design clock and the transfer clock on the sending and receiving 
side. These delays are marked in the block diagram with Tdesign−to−mux  for the 
sending side and Tdmux−to−design  for the receiving side. For the following 
calculation of the clock ratios we assume that these delays have a constant value and 
we have to give these assumptions as constraints to synthesis and place & route. For 
our example here we shall assume that these delays are a maximum of one transfer 
clock cycle, which is extreme, and a maximum of 10ns. 

Table 20 shows how the design signals are transferred through the multiplexing 
based on our assumptions above.  

Consider new data DA, which is valid in the design registers FFS. One transfer clock 
cycle later, the first bit, DA1, is captured into FFMO. This is using our assumption 
that the delay between the design and transfer clocks is a maximum one transfer 
clock cycle and that the clocks are phase synchronous.  

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



    

260 Chapter 8: Partitioning and reconnecting 

 

The shaded entries in the table show how the captured data bit is transported 
through the mux and dmux and is clocked into the receiving FFR. We have 
highlighted in capitals where each FF in the chain has new data.  

As we can see from the first column of our tab, the ratio between the design clock 
and transfer clock is seven, which means that the design clock has to be seven times 
slower than the transfer clock to guarantee correct operation.  

Table 20: How data is transferred during multiplexing 

Clock 
cycle 

design/ 
transfer FFS FFMO FFMI FFMC0 FFMC1 FFMC2 FFMC3 FFR 

1 / 1 DA X X X X X X ` 

1 / 2 DA DA1 X X X X X X 

1 / 3 DA DA2 DA1 X X X X X 

1 / 4 DA DA3 DA2 DA1 X X X X 

1 / 5 DA DA4 DA3 DA1 DA2 X X X 

1 / 6 DA DA1 DA4 DA1 DA2 DA3 X X 

1 / 7 DA DA2 DA1 DA1 DA2 DA3 DA4 X 

2 / 1 DB DA3 DA2 DA1 DA2 DA3 DA4 DA 

2 / 2 DB DB4 DA3 DA1 DA2 DA3 DA4 DA 

2 / 3 DB DB1 DB4 DA1 DA2 DA3 DA4 DA 

2 / 4 DB DB2 DB1 DA1 DA2 DA3 DB4 DA 

2 / 5 DB DB3 DB2 DB1 DA2 DA3 DB4 DA 

2 / 6 DB DB4 DB3 DB1 DB2 DA3 DB4 DA 

2 / 7 DB DB1 DB4 DB1 DB2 DB3 DB4 DA 

3 / 1 DC DB2 DB1 DB1 DB2 DB3 DB4 DB 

3 / 2 DC DC3 DB2 DB1 DB2 DB3 DB4 DB 

3 / 3 DC DC4 DC3 DB1 DB2 DB3 DB4 DB 

3 / 4 DC DC1 DC4 DB1 DB2 DC3 DB4 DB 
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Now it is trivial to calculate the maximum design clock frequency for our 
synchronous multiplexing example: 
 

𝐹𝐷𝐸𝑆𝐼𝐺𝑁𝑚𝑎𝑥𝑆𝑌𝑁𝐶 =
𝐹𝑀𝑈𝑋𝑚𝑎𝑥

𝑅𝐴𝑇𝐼𝑂
=  

100𝑀𝐻𝑧
7

= 14.28𝑀𝐻𝑧 

 
So for this design, which multiplexes signals using a 4:1 mux ratio at 100MHz, we 
can run our design at over 14.28 MHz worst case, not the 25MHz that we might 
have guessed from the 4:1 ratio. 

We have now seen the case where the transfer clock and the design clock are 
synchronous but let us consider the difference in an asynchronous multiplexing 
scheme where the design clock and the transfer clock are not phase aligned. The 
maximum transfer clock frequency is the same but we don’t know the skew 
between the active edges of the design and transfer clock. Therefore we have to add 
additional synchronization time on the send and receive sides to guarantee that we 
meet set-up and hold time between design and transfer clocks. This adds an 
additional transfer clock cycle on both send and receive sides. The calculation of the 
maximum design frequency for the asynchronous multiplexing is: 
 

𝐹𝐷𝐸𝑆𝐼𝐺𝑁𝑚𝑎𝑥𝐴𝑆𝑌𝑁𝐶 =
𝐹𝑀𝑈𝑋𝑚𝑎𝑥

𝑅𝐴𝑇𝐼𝑂 + 2
=  

100𝑀𝐻𝑧
7 + 2

= 11.11𝑀𝐻𝑧 

 
We can see that the asynchronous case runs with a lower design frequency but the 
advantage of asynchronous multiplexing is that we don’t need to synchronize the 
design and transfer clock and we have greater freedom from where to source the 
transfer clock. 

To summarize the example, the important things we should keep in mind to 
constrain a design with multiplexing are: 

• Calculate the correct maximum frequency of the transfer clock based on 
FPGA IO technologies, delays on board and tolerances. 

• Calculate the correct ratio between design and transfer clock, respecting 
the difference between synchronous or asynchronous multiplexing. 

• Give correct constraints in synthesis and FPGA place & route for the 
transfer clock and the design clock. 

• Give correct clock-to-clock constraints in synthesis and FPGA place & 
route for the delay between transfer clock and design clock. 

Having considered different kinds of multiplexing using normal single-ended 
signaling between the FPGAs, what can we do to have higher mux ratios but still 
maintain a high system speed? The answer lies in raising the maximum transfer 
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clock speed, using the FPGA’s built-in serial IP and a more robust signaling 
technology.  

8.7.5. Scheme based on LVDS and IOSERDES 
We can further improve the transfer of data by sending the clock on a parallel path 
to the data. This method of sending clock and data together is called a source-
synchronous interface. This makes it easier to meet timing because the clock has the 
same off-chip/on-chip skew as the data, especially if a well-designed board is used 
upon which there are matched delay traces with the same flight time.  

Having the clock travel from the source, rather than be generated locally and kept in 
sync, would not work for driving partitioned logic in general but it is very useful for 
unidirectional serial data transfer.  

Trace flight time works in our favor but it still places a physical limit on the 
maximum system speed and the way to overcome this is to use differential signaling 
between the FPGAs.  

In this advanced case, we use the FPGA’s built-in support for LVDS, which can 
increase transfer rates up to 1GHz. This allows much higher mux ratios without 
having to reduce the overall prototype clock speed. Certify’s HSTDM scheme, 
briefly mentioned earlier, supports LVDS signaling but also uses another of the 
FPGA’s built-in resources, the IOSERDES blocks. 

As introduced in chapter 3, modern FPGAs have dedicated serial-to-parallel 
converters called IOSERDES which have specific clocking and logic features for 
implementing high-speed serial transfers. Using IOSERDES avoids the timing and 
layout complexities of implementing the similar functionality within the FPGA 
fabric.  

We can also double our transmitted data rate by using both edges of the transfer 
clock using the FPGA’s built-in support for double data rate (DDR) operation of the 
IOSERDES blocks. Figure 122 gives an overview of the implementation of a high- 
speed TDM scheme which combines all of these advanced built-in features of a 
Virtex-6 FPGA. 

LVDS guarantees the highest transfer speed on-board but the slight disadvantage is 
that there are two pins required for each serialized data stream. So, while a single-
ended multiplexing scheme with a ratio of 8:1 needs only one inter-FPGA trace to 
transfer eight data signals, a differential IO standard needs two, so we call this a 
mux ratio of 8:2. Therefore the differential solution reduces the interconnections 
only by factor four and not by factor eight. However, when the significantly higher 
speed of LVDS is taken into account then multiplexing ratios of 128:2 can be 
considered, which gives a far greater data transfer bandwidth than is possible with a 
single-ended scheme. 
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As shown in the diagram, this IOSERDES is being run at a transfer rate of 400MHz 

and needs two clocks for operation. The clocks are generated from a PLL within the 
source FPGA based on a 100MHz clock arriving from an external source. The 
OSERDES is configured as an 8:1 ratio but because it operates in DDR mode, we 
need only have a transfer clock of 400MHz rather than 800MHz. This means that 
the 400MHz clock transfers 8 bits during one 100MHz period. To provide 
multiplexing ratios higher than eight we can use an additional mux at the input of 
the OSERDES but this only needs to work at the slower internal clock rate. 

The data and the transfer clock are both passed to the destination FPGA via LVDS 
signaling but at the destination FPGA only the data goes through an IODELAY 
element to adjust its timing relative to the clock. The data and the transfer clock 
then drive the ISERDES block. Received clock is passed through BUFR block to 
divide it by four to create the local version of the 100MHz, which is also required 
for the ISERDES and the dmux control. 

The diagram gives only an overview and implementations may be more complex 
and include so-called link training of all HSTDM multiplexing channels in order to 
guarantee optimal alignment between clock and data. It is important that user data is 
not transferred over the link while training occurs and it would be lost in any case, 
so only after the link training is complete is a ready signal generated. This should be 

Figure 122: Advanced multiplexing scheme using LVDS and IOSERDES 
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included as another input to the reset condition tree discussed in section 8.5 above. 
If such a training is not implemented the user has to manually adjust the IDELAY 
components to achieve highest speed and to guarantee the right operation. 

8.7.6. Which multiplexing scheme is best for our design? 
Given the number of options, it may be difficult to decide which multiplexing 
scheme is the best to use in our prototyping project. To help us, Table 21 shows a 
comparison of the multiplexing schemes described in the above sections.  

The comparisons are shaded with the least preferable under each criterion shaded 
darker. As we can see in the comparison, the shift register solution is a flexible, easy 
to handle solution and can be used on all prototyping platforms. However, let’s not 

Table 21: High-level comparison between multiplexing schemes 

 Multiplexer Shift register IOSERDES 

Performance LOW – the multiplexer 
solution can’t guarantee 
IO FF and this limits 
the speed. 

MEDIUM – the shift 
register implemented in 
the FPGA fabric can 
limit the speed. 

HIGH – best usage 
of FPGA resources 
to implement 
serialization. 

Effort timing 
constraining 

IO delay constraints are 
required for the 
multiplexing nets. 
Furthermore it’s 
difficult to meet the 
constraints based on 
missing IO FF. 

There are only clock 
constraints required for 
the multiplexing clock 
and constraints for 
design to multiplexing 
clock delays. 

There are only clock 
constraints required 
for the multiplexing 
clock and 
constraints for 
design to 
multiplexing clock 
delays. 

Complexity LOW – only a simple 
multiplexer and some 
control logic is 
required. 

LOW – only a simple 
shift register and some 
control logic is 
required. 

HIGH – The 
multiplexing IP has 
a high complexity 
but it should be not 
a problem if 
provided by the 
partitioning tool. 

Usability On all prototyping 
platforms. 

On all prototyping 
platforms. 

Only usable on 
boards which 
support high-speed 
serial connections 
(differential IOs are 
required!) 
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lose sight of our goal of enabling the highest transfer speed so that the prototype 
speed is not compromised too much. Therefore the IOSERDES solution may be 
offer a greater reward, but the effort may be higher and the board/system needs to 
support LVDS signaling across matched-delay traces. 

8.8. Timing constraints for multiplexing schemes 

If multiplexing is used then we need to add timing constraints for the mux and 
interconnects so that the implementation tools will consider them along with those 
for the rest of the design.  

The most obvious constraint is the clock constraint for the mux clock. Based on the 
multiplexing scheme used and the required performance of the prototyping system, 
it should be possible to analyze the maximum possible transfer clock speed and then 
work backwards to calculate the optimum constraint accordingly. Some partitioning 
tools can perform timing estimation if they can be given information about the 
board trace delays. The derived clock constraint for the transfer clock can then be 
used during synthesis and place & route.  

We can calculate the maximum design speed based on the maximum transfer clock 
speed. Remember that the mux transfers exactly one set of its inputs to the 
destination FPGA within a design clock period but the ratio of mux clock to design 
clock depends not only on the multiplexing ratio but also on the multiplexing 
scheme used and any skew and jitter margin added between design clock and 
transfer clock. The clock-to-clock ratio, rather than just the mux ratio, should be 
provided by the designer of the multiplexing scheme in use. 

Other required constraints are the maximum delay constraints between the design 
clock domain and the transfer clock domain. As we have seen before, the ratio 
between design clock and transfer clock depends on the delay between design and 
the multiplexing components. If we assume that there is a defined delay like 10ns 
we have to give a constraint to the place & route tools to ensure that all multiplexed 
connections are within this range. This kind of constraint is often missing but it is 
important to guarantee full functionality. See the worked example above for how to 
calculate the correct constraint.  

If we perform multiplexing correctly, all timing will be met, a high performance 
will be achieved and the end user of the prototype should not even be aware that 
multiplexing has been used.  
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8.9. Partitioning and reconnection: summary 

For many FPGA-based prototyping teams, the first law of prototyping, that “SoC’s 
are larger than FPGAs,” drives the whole project. As we have seen, if a design has 
not been intended at all for prototyping and has a large and complex internal 
structure, then partitioning it into our board’s FPGA resources can present quite a 
challenge, and if we cannot partition our design then the project will fail. However, 
even with such pathologically FPGA-hostile designs, a way for it to be partitioned 
onto a board can be found with the question only being a matter of time allowed 
versus how much performance is required.  

By following an FPMM-based approach and the steps given in this chapter, we give 
ourselves every chance of not only fitting the design onto the board but also of 
running it at maximum speed, even if we need to use multiplexing between the 
FPGAs. 

There is an old joke about a lost driver stopping to ask a local pedestrian how to 
find his way to London, to which the local replied, “Oh, you don’t want to start 
from here!” 

We would all prefer a more predictable partitioning outcome so we can make an 
earlier delivery of our working prototypes to the end users. Therefore we don’t want 
to start from an SoC design that is complex, interconnected with multiple wide 
buses and many inter-dependent functions. But how do we get these better starting 
places? How can we make prototyping more productive? 

What if prototypers could take part in more of the upstream decisions of the SoC 
project team and guide the design towards something less hostile to FPGA, thus 
breaking the third law of prototyping at its source? That is the aim of the discussion 
in chapter 9, Design-for-Prototyping, where we consider some small procedural and 
technical changes in the SoC flow which will bring benefits to the whole team, not 
just to us prototypers. . . honest! 

The authors gratefully acknowledge significant contribution to this chapter from  

Pradeep Gothi of Synopsys, Bangalore 
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CHAPTER 9 DESIGN-FOR-
PROTOTYPING 

Having spent the previous chapters covering ways to account for the three laws of 
prototyping to configure an SoC design for a prototype, we shall now discuss ways 
that we might have avoided a lot of that work in the first place.  

Some of the “Design-for-Prototyping” ideas in this chapter are purely technical in 
scope, from general and specific styles for writing our original SoC RTL up to 
architecture-level decisions, all with the intent of making the design more “FPGA-
friendly.” Other ideas are more organizational or procedural and will hopefully 
provoke useful discussion amongst verification and implementations teams alike.  

By employing these Design-for-Prototyping guidelines, the prototype will be easier 
and its verification benefits derived sooner. In effect, we are trying to obsolete the 
third law of prototyping, i.e., that SoC designs are FPGA-hostile. 

9.1. What is Design-for-Prototyping? 

Design-for-Prototyping is the art of considering the prototype early in the design 
process, and establishing procedural and design specific techniques to ease the 
development of the prototype in conjunction with all other program goals. 

There’s an old expression which says that “if a job is worth doing, it is worth doing 
well.” If we are to employ FPGA-based prototyping in our SoC projects then we 
should help the prototypers to do the best job possible. We can do that by making 
some small changes in the SoC design style and overall project procedures, all of 
which are at least low impact on the rest of the SoC design flow and in fact, many 
are good design practice for the SoC anyway. 

It should be clear from the earlier discussions that putting an SoC design into a 
prototyping system requires some planning in order to best accomplish the 
prototyping goals with minimal effort. The aim of this chapter is to help collect 
many of the recommendations mentioned throughout this book into a single 
manifesto on how we might make the prototyping tasks simpler and the project 
more successful. As a result, newcomers to FPGA-based prototyping will better 
understand how to modify their design style and development procedures to 
incorporate this methodology. This chapter will present some guiding principles for 
that change; perhaps best described as a “manifesto for Design-for-Prototyping”.  

The decision to add FPGA-based prototyping to the chip design flow should be seen 
as a change from previous practices rather than a “bolt-on” parallel step. We should 
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expect some impact to all groups in the design team, including SoC designers, 
verification engineers, software development teams and FPGA platform specialists. 
Earlier chapters have presented the positive returns expected to the design project as 
the team embraces this new methodology. Consider Design-for-Prototyping as the 
investment made to maximize those returns. 

The following sections focus on specific RTL coding style practices and 
organizational (or procedural) guidelines to achieve this overarching goal. 

9.1.1. What’s good for FPGA is usually good for SoC 
FPGA designs tend to require clean architectures and generic logic for effective 
synthesis and mapping to the target technology. SoC design processes allow the 
flexibility of more ad hoc design styles, which may be used inappropriately by some 
designers to the detriment of subsequent rework.  

The need to share a single RTL design for both FPGA and SoC technologies can 
motivate designers to follow cleaner design styles for simple functionality and 
reserve unusual coding style for odd cases where it is justified. This path is really 
the least work for everyone and should benefit the on-going maintenance of the SoC 
design as a by-product of supporting the FPGA prototype. 

The next sections expand on this point with specific coding style suggestions, like 
FFs at block boundaries, isolation of clock management, and so forth. The whole 
SoC project should stick to these coding styles, reinforced through formal design 
reviews and informal organizational behavior. It should be the aim of management 
and other senior team members who realize the benefits of FPGA-based prototyping 
to fully embrace the methodology. A “bolt-on” approach to prototyping without a 
proper integration into the SoC design flow will not yield as great a return on the 
investment. 

9.2. Procedural guidelines 

In this section, we outline several important organizational considerations for the 
prototyping program. There are, of course, many options as to the organizational 
reporting structure of the prototyping team, however, there should be careful 
consideration in how the prototyping team’s integration into the organization (and 
other procedural decisions) affects communication between the design, software, 
verification, and prototyping teams. Moreover, every effort should be made to 
integrate and formalize the dataflow and unify the databases, regression, and 
engineering changes.  
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Table 22 gives a short summary of the key procedural guidelines that we will cover 
during this chapter. 

The guidelines focus on managing the communication between the different teams 
during the whole project, including the prototypers as core members of the project 
from the start of the project (when architectural trade-offs design goals are first being 
considered). 

9.2.1. Integrate RTL team and prototypers 
The success of the overall project is going to be improved if everyone can embrace 
the idea that there is one design with two target technologies. In addition to FPGA 
skills, the engineers assigned to the prototype will likely be creating supplemental 
design RTL and making or recommending changes to the original RTL as well. As 
such, they need to be integrated in the SoC design team or the organization will 
likely experience duplication of effort and schedule delays. Project management 
must strive to create a shared responsibility and avoid the behavior of “throwing the 
design over the fence” at schedule milestones. It is important to have the 

Table 22: Procedural recommendations in Design-for-Prototyping 

Recommendation Comment 

Integrate RTL team and prototypers. Have prototyping team be part of RTL design team, 
trained on same tools and if possible co-located. 

Prototypers work with software 
team. 

The software engineers are most common end-
users for working prototypes. 

Have prototype progress included in 
verification plan. 

Branch RTL for prototype use only at pre-agreed 
milestones avoiding many incremental RTL dumps. 

Keep prototype-compatible 
simulation environment. 

At various points in the prototyping project it helps 
to compare results with original SoC simulations.  

Clear documentation and combined 
revision control. 

Track software and RTL changes for prototyping 
together using same source control. 

Adopt company-wide standard for 
hardware and add-ons. 

Common hardware approach avoids waste and 
encourages reuse. 

Include Design-for-Prototyping in 
company RTL coding standards. 

Most RTL style changes which make prototyping 
easier are also good for SoC design in general.  
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prototyping team as part of RTL design team, , trained on same tools, using same 
RTL coding standards, and having access to same design validation suite (i.e., 
testbenches and scripts). Involving the SoC design team in the early prototyping 
effort will also make the prototyping easier.  

There are design teams known to the authors in which each SoC designer takes 
responsibility for the retargeting of their own blocks into FPGA and this is a sure 
fire way to have those blocks beat the third law of prototyping. 

9.2.1.1. Note: FPGA education for SoC RTL team  
If management thinks that the design team cannot accommodate an initial prototype 
implementation, management should strive to cross-train the design engineers to 
understand both SoC and FPGA technology. By increasing common skill levels it 
will be easier for engineers to create new logic blocks or introduce engineering 
changes that will work for both technologies. When technology specific coding is 
necessary then we should plan it in advance rather than try to redo our design after 
the event, risking delay in the project.  

SoCs and FPGA-based prototypes share many of the same design issues, By 
developing FPGA skills within the SoC design group we will allow common 
solutions to these design issues to be established quickly without excessive 
iterations. 

9.2.2. Define list of deliverables for prototyping team 
At the start of a prototyping project, the prototyping team needs more than just the 
RTL. It is important to have a hand-off list of deliverables so that we can check it 
before the start of the project, or at least understand early on what is missing.. In 
this way the prototyping team will not waste time later in the project.  

Table 23 shows a typical list from a major semiconductor prototyping lab where a 
design-for-prototyping methodology is being pioneered. 
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9.2.2.1. Reuse file-lists and scripts 
It may seem like a simple idea but all scripts and file lists should be kept as part of 
the source control of the project. By capturing more than just the RTL code it will 
be possible for others to recreate the build process if needed in the future. The best 
solution is to create common project make-files for SoC and FPGAs with macro-
driven branching for different targets. In this way, the design team captures all key 
details involved in a “run-able specification.” Ideally, most target specific 
differences will be isolated to independent modules that can be used as a library for 
a given target. The alternative of laboring to write lengthy instructions may still fail 
to document all important setup details and discarding key build scripts is asking for 

Table 23: Example of design hand-over checklist before prototyping project starts 
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trouble later. By just establishing simple procedures and “mindset,” this important 
chore can become routine activity. 

The key point that must be addressed by the team is that a single RTL description 
will be implemented in two target technologies (FPGA and SoC). A conscious 
effort should be made to separate technology specifics from the intended functional 
definition. It is important to create clean architectural interfaces with identical 
behavior in both implementations. Design practices incorporating this idea during 
engineering change (EC) activity and quickly communicating design impact in a 
predictable manner to all team members will increase the effectiveness of the 
project.  

9.2.3. Prototypers work with software team  
Some organizations building complex systems with new hardware and embedded 
software struggle with communication problems between the hardware and software 
groups. Because of the high software content in a modern SoC, it is critical that the 
FPGA prototype group regards the software group as its customer. Part of the ROI 
for the prototype is giving software developers early access to functioning hardware 
and the two groups must have good working relationship to achieve this goal.  

A process to track software changes alongside RTL changes will minimize 
confusion and wasted effort due to compatibility issues. All changes to RTL code 
should be tracked by a source code control system (like Perforce or SCCS), 
probably the same one that is used by the SoC and software developers.  

Since the prototype will run slower than the final SoC implementation, some areas 
of the software may need to be rewritten for error-free operation running on the 
FPGA prototype. Also the designers of the prototype hardware need to consult with 
the software developers to consider establishing extra probing points, resets or other 
capabilities that can help in software debug and which are not possible in the SoC 
implementation. The important point is that early interaction between the two 
groups can establish extra requirements on both the software design and the 
prototype design that will help the project achieve it goals and can be included in 
schedules at the front-end of the planning cycle. 

9.3. Integrate the prototype with the verification plan 

The decision to use an FPGA prototype needs to be reflected in all aspects of the 
chip design project plans. This is particularly important in the verification flow. The 
project should create branches at RTL maturity points for prototype use. Avoid 
frequent and incremental RTL dumps on prototype designers. The goals for 
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prototype use in the organization should be clearly stated and reflected in testing 
plans and project milestones. 

Many of the issues concerning planning of the tasks to develop a prototype design 
are discussed in section 4.2 

9.3.1.1. Optimize scheduling of prototype development 
The prototype is intended to be a surrogate for the final SoC chip to demonstrate 
functionality at near-SoC speeds for software developers and others to gain 
confidence in the correctness of the design. The prototype is not an RTL debug tool 
– that is the role of the software simulator. We should be careful to wait for the RTL 
design to reach a pre-agreed level of maturity before starting the prototype 
development.  

There often is a milestone in the design project plan where the team considers the 
RTL complete enough to issue “hello world” in the simulator. This often coincides 
with the project milestone when the RTL is ready for a “trial implementation” to 
identify problem areas in the backend path to silicon. By developing the prototype 
based on this key RTL milestone will minimize disruption to the prototyping effort 
from RTL debugging changes and maximize the organization’s use of the prototype. 

9.3.1.2. Keep simulation scripts for prototypers to use 
As the SoC design and FPGA-based prototype evolve in different directions, we 
should try to maintain the working simulation models. Then, at key points in 
prototype bring-up and debug, odd behavior can be checked against working 
testbenches for the real soC design. Block-level testbenches in particular, are useful 
for checking RTL modifications and it is best if the SoC verification team shares 
key testbenches with the prototyping team.  

The goal is to leverage everyone’s experience and avoid needless duplication of 
effort. Identifying a set of “golden” testbenches will build confidence that everyone 
is working on the same version of the design.  

Assuming that the verification team has been busy while the FPGA-based prototype 
has been developed, there is a chance that they have already expanded their 
testbench beyond that running when the RTL was delivered for prototype. It is 
worth having a procedure in house where simulation results are available for 
inspection by the prototype team or, better still, the verification team can offer 
insight into faults seen in the prototype. It could be that the same fault has already 
been detected and possibly even cured in their RTL already. Regular comparison of 
prototype and SoC simulation results is recommended. 
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9.3.2. Documentation well and use revision control 
Designers should always strive to write clear, self-documenting code. However in 
any large design there will be some areas where the intended behavior may be 
subtle and obvious to the creator but not easily understood by others. In these cases, 
even a few in-line comments around curious design elements will help. This is 
especially important for late design fixes to avoid wasted effort due to 
misunderstandings about assumed code behavior. 

The larger organization needs to instill the importance of these efforts across all 
members of the design team so individuals will take the time to use appropriate 
coding style with comments when first entering the code. Judgment needs to be 
used to know when simple code can stand on its own and when naturally complex 
algorithms or unavoidably tricky code will require extra comments to capture the 
intended behavior for later maintainers of the code. 

On top of this, changes that are made by the prototyping team themselves should be 
recorded in the same revision control system (RCS) as the rest of the project. We 
should avoid the prototyping team seeming isolated as “those hackers with the 
boards” about whom nobody has a clear understanding. 

9.3.3. Adopt company-wide standard for hardware 
As mentioned in chapters 5 and 6, the choice of hardware platform is crucial to 
ongoing prototype success. If we are looking to do many prototype projects then it 
will save a lot of time and money to adopt a standard platform. If boards are in stock 
or readily available from a standard board supplier then inventory issues need not 
occur, even when boards become damaged and a quick replacement is required. 

If boards and add-ons are compatible across multiple labs and sites then a 
company-wide knowledge base and expertise can be built up around the chosen 
platforms. Add-on cards might be developed to attach to the standard base platform 
for a certain project but would then be reusable across the team and wider company. 

The worst-case scenario can be that each team obtains or builds a new and 
incompatible board for every prototyping project, involving risk and high 
development costs. Further information about this can be found in Appendix B.  

9.3.4. Include Design-for-Prototyping in RTL standards 
Most RTL style changes for FPGA-based prototyping are also good practices for 
SoC design in general (e.g., clear functional architecture, FFs at block boundaries, 
etc.). Specific guidelines should be incorporated in the company RTL coding 
standards for future projects. Perhaps just enforcing some existing “motherhood” 
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standards is now possible with the requirement to map the generic RTL design into 
two target technologies so there is less temptation to “cut corners” in design 
specifications. 

As experience with prototypes is gained over time designing similar SoCs, it should 
be possible to find commonality in the prototypes. Consider creating company 
standards for prototype hardware to encourage reuse and facilitate common add-on 
devices.  

Although the prototype systems are not usually customer-ready products, they 
should be built to proper engineering standards as they can serve as a reference 
design for later work and in some cases become the basis of follow-on product 
designs. In this way the ROI for the original prototype design may be increased 
several times over.  

Even for the original SoC product, if market opportunity creates the need for a 
slightly modified product, the existence of a reusable prototype system can greatly 
accelerate development of the new product and reduce risk in verification of the new 
functionality.  

It is a mistake to think of the prototype as a “throw away” step in the process to get 
to final silicon of the SoC part. Should a major problem be identified in the field, the 
prototype can be used again to fully verify the engineering changes (EC) that may 
have caused it.. Following well-documented conventions and practices will enable 
subsequent design teams to leverage the earlier prototypes when needed. 

Examples of coding standards that will benefit the prototype include naming 
standards for target-specific design elements (such as clock generation, clocks, 
memories, and analog blocks), check-in regression and linting requirements, and the 
careful maintenance and enforcement of a concise coding standard document. 

9.4. Design guidelines 

So far we have explored how procedure can improve the success rate of FPGA-
based prototyping with the various teams. Let’s now summarize more technical 
recommendations, many gathered from other places in this book but some 
introduced here in this overview for the first time. The following table, which is 
split across two pages, summarizes the main technical recommendations for the 
whole SoC project team to follow in order make FPGA-based prototyping a more 
productive part of the project. 
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Table 24: Summary of technical recommendations in Design-for-Prototyping 

Recommendation Comment/Detail 

Avoid latches Latch-based designs allow lower power SoC but are hard 
to time when mapped into FPGA. 

Avoid combinatorial loops Sometimes not seen in SoC RTL because of bottom-up 
design flow. 

Pre-empt RTL changes with 
`define 

`define and `ifdef included in source style guide to 
include/remove prototyping changes. Use single define 
for all RTL changes. Used to isolate BIST, memory 
instantiations, etc. 

Low-impact source changes Always use wrappers and make changes inside those. 
Replace files, rather than edit them. Back-annotate 
changes to real source.  

Write pure RTL  Allow SoC tool flow to infer clock gating, insert test, 
apply low-power mitigation etc. avoid instantiating such 
measures directly into RTL source. 

Isolate RTL changes Make changes inside library elements (RAM, IO library 
etc.) rather than outside of them in the RTL structure. 
This improves portability, and places the prototyping 
code close to the original code it is replacing. 

Reuse file-lists/scripts Common project make-files for SoC and FPGAs with 
macro-driven branching for different targets. 

Memory compatibility For each new memory generated for SoC, generate 
FPGA-compatible version. This could be alongside and 
options controlled with `define. 

PHY compatibility PHY blocks in SoC will need modeling in FPGA, or in 
off-chip test chip, if available. Keep this in mind when 
choosing PHY components for the SoC. 

Design synchronously Avoid asynchronous loops, double-edge clocking and 
other structures which do not map easily to FPGA. 

Avoid long combinatorial paths Use pipelining in RTL to break up very long chains of 
gates which will run much more slowly in FPGA. 

Isolate clock sources in own 
block 

Keep clock gating and switching in own block, preferably 
at top level. allows easy and complete replacement by 
FPGA equivalent. 
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9.4.1. Follow modular design principles 
Modular design is an architectural approach to design wherein special attention is 
given to creating simple, reusable, and individually distinct functional units to more 
effectively address the goals of the project. Modular design can and should be 
utilized from early in the project specification all the way through design and even 
in the prototyping flow itself. Good modularity in the original RTL structure will 
affect the prototyping effort. 

One example of a modular approach (which has bearing on the prototyping effort) is 
the specification and design of multiple modular channels. These could be scaled up 
or down to more or fewer channels, and enable single-core operation of a multi-core 
(or multi-processor) design. Another example is enabling culling of logic that is not 
conducive to FPGA adaptation, and considering how this might be accomplished in 
a way that is simple for the prototype designer without interrupting other project 
goals. 

Synchronize resets  Resync reset at each clock domain boundary. Helps avoid 
race conditions between clocks and reset after 
partitioning. 

Simplify clock networks for 
FPGA 

SoC clock networks are very complex. If possible, 
implement only a subset of full clocking options for 
prototyping, use `define/`ifdef to do this. 

Synchronize block boundaries FFs at block inputs and outputs add latency but 
dramatically simplify timing constraints and increase 
performance  

Synchronize at clock domain 
crossings 

Generally good practice to use synchronizers.  

Document any design 
strangeness 

Even a few in-line comments around curious design 
elements will help. Especially key for late design fix. 

Keep simulation environment 
available 

During prototype project, odd behavior can be checked 
against working testbench. Block-level testbench useful 
for checking modifications. 

Think at architectural level 
about slow running design 

Allows core and peripherals to run at different rates. 
Allows deep data buffering between slower running 
FPGA and external data at full speed. 

Consider network-on-chip 
communication vs. wide buses 

Industry trend towards “locally synchronous, globally 
asynchronous” designs will help prototyping. 
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There are almost always test modes, experimental clock modes, and atypical clock 
modes that are not required by the prototype. Frequently, it is reasonable to remove 
them using stub files, or by replacing registers with constants, etc., and then 
allowing synthesis to cull the coupled logic. The implementation in the flow might 
utilize ifdef’s, libraries, code generators, or constraint files (via RTL modification 
tools which enable the designer to preserve the purity of the original RTL, but 
maintain the flexibility to better accommodate the prototyping flow). 

The creation of stub files can also be very helpful to the prototyping effort as well as 
other aspects of the design process when implemented on other functional units. 
Typically a stub file will consist of whatever interface logic is required to enable the 
function of the rest of the SoC. In many cases, this may just be a set of constants 
and pass-through signals to appropriately drive the default values of outputs.  

Recommendation: use modular coding style with technology-independent logic 
elements. Introduce target technology elements only at leaf level or at well-defined 
functional blocks. 

9.4.1.1. Create simple modules  
Beyond just using generic logic, it is important to keep the design modules simple 
and small. Try to avoid making the code excessively general purpose. An RTL 
design can have excessive complexity when designers attempt to make a module so 
flexible that it becomes virtually unusable in any specific context. The design of 
state machines is another example where keeping it simple can be helpful. Some 
state machine designs span across many pages of case/if statements. This type of 
design is indecipherable to anyone but the original designer, weak for reuse, prone 
to error, and difficult to modify. If these machines also include the write-address 
mechanism for a large register file, it will be very difficult to modify the code in a 
way that will make the most efficient use of FPGA memory.  

Refactoring is another important concept to consider in the SoC design process. 
Refactoring simplifies code through small redesigns when problems are discovered 
with the architecture, interfaces, etc. This can include reorganizing functional 
blocks or dataflow, redefining interfaces or bus protocols, and so on. Refactoring 
frequently includes extracting common code from one or more blocks and 
implementing it with more singularity of purpose (often in a single block or 
function).  

9.4.2. Pre-empt RTL changes with ‘define and macros 
The RTL code will need to be modified in some areas for the target technology 
implementations and this needs to be done in a manner to isolate the change while 
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preserving the original structure. A good method to pre-empt prototyping changes is 
to use `define and `ifdef macros. Standard macro names could be adopted and these 
should be listed in the company-wide source style guide along with guidelines for 
their usage. In that way a single macro definition at the top-level or in synthesis 
scripts can be used to allow or mask a large number of RTL changes made to the 
prototype. Example uses of a macro could be for isolating BIST or memory 
instantiations. 

9.4.3. Avoid latches 
While latches can be implemented in the FPGA, they can be inefficient and cause 
complications in timing analysis. For example, latch-based designs can be used to 
achieve a lower power SoC but will not be correctly processed by the synthesis 
FPGA technology mapping tools because the power-saving behavior is not fully 
modeled in the original RTL. 

If latches or FFs could be used to the same effect in the SoC then we should try to 
use FFs instead of latches; it will simplify the adaptation of the RTL for 
prototyping. One way to accommodate this type of design is to automate the 
implementation of latches after the synthesis of a gate-level netlist based on FFs. 
This may be done on the entire chip, or on an as-needed basis for specialized blocks 
that require latches. In the later case, it may simplify the task if steps are taken to 
isolate or otherwise mark the sequential elements requiring conversion. 

9.4.4. Avoid long combinatorial paths 
If the SoC is designed to be used with the latest technology library then it is very 
possible that there might be 30 or more levels of logic in some combinatorial paths 
between sequential elements. This may be perfectly permissible in SoC designs 
where these levels can be placed very close together and have intrinsically low 
delay in any case. In an FPGA the logic in these paths will be rationalized as much 
as possible and mapped into look-up tables (LUTs) but nevertheless, some ten or 
more LUTs may be needed to create the same critical path. The delay of the LUT is 
not such a problem as that of the interconnect between them, which might be 
difficult for the place & route tool to keep short, especially if there are many such 
paths or the FPGA utilization is too high.  

If long paths are expected in the SoC design then it would be preferable if these 
could be broken into sub-paths by the use of pipelining, which would require some 
rescheduling in the design. 
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9.4.5. Avoid combinatorial loops 
Combinatorial loops can cause unpredictable behavior in general. Intentional loops 
to create oscillators or state elements should be replaced with black boxes that can 
be mapped to technology specific implementations later in the flow. 

Unintentional loops can result from incomplete RTL, for example, when not all 
values are specified in case statement or else statements are missing from if trees or 
even if default conditions are missing inside always blocks. These would all be 
caught by even the most superficial simulations, but synthesis tools may generate 
logic with unintended behavior in these situations.  

Loops are sometimes not seen in SoC RTL because of bottom-up design flow and 
the loops are only completed when the whole design is assembled top-down. 
Potentially, this first top-down assembly may only occur at the start of a prototyping 
project. (Note that synchronizing block boundaries eliminates this and many other 
pitfalls.) 

The behavior of circuits containing feedback loops is dependent upon propagation 
delays through gates and interconnections. Due to process variation and temperature 
effects, such circuits may be unstable in a given technology and should be avoided.  

By carefully re-specifying the logic definition to clearly state the desired function 
will usually eliminate the combinatorial loop. 

9.4.6. Provide facility to override FFs with constants 
Consider the possibility of overriding registers with constants wherever possible to 
increase the adaptability of the SoC design. Examples include configuration 
registers, such as those used for test modes, experimental clock modes, and atypical 
clock modes.  

These can be implemented with `ifdef macros, code generators, stub files, or 
constraint files. The synthesis tool will then propagate the constants-eliminating 
logic that can cause difficulties in the prototyping flows. This can be useful for 
ATPG flows that are not based on post processing a gate-level netlist and the 
elimination of clock muxes tied to unused clock configurations, etc. An approach to 
constant forcing should be taken which leaves the RTL source intact for later use in 
SoC implementation. 
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9.5. Guidelines for isolating target specificity 

An important modularity concept is the object-oriented notion of “hiding” 
extraneous levels of definition details from the usage. Using wrappers and other 
isolation techniques to locally contain or group design elements will help preserve 
interesting functional reference points in the prototyping flow.  

9.5.1. Write pure RTL code 
A disciplined effort should be made to create the full RTL description of the chip in 
terms of generic logic elements or Synopsys DesignWare® components which are 
well supported by most FPGA vendors. The SoC designer must avoid calling any 
low-level primitives directly from the target technology library or introduce an 
explicit clock in the design. Allow the SoC tool flow to infer clock gating, insert 
test, apply low-power mitigation, etc. Avoid instantiating such measures directly 
into RTL source. 

Designers generally follow top-down design methods owing to successive 
refinements for implementation, technology-specific details become entangled into 
the RTL and it is no longer “pure.” For many design teams, that means modifying 
the RTL description over time so that the actual RTL passed to the prototyping team 
contains many low-level technology library primitives intermixed with pure RTL 
elements. This practice will needlessly complicate an FPGA-based prototype and 
lead to potential errors.  

Recommendation: keep the reference RTL design pure and carefully introduce 
technology specific details only at the leaf level so alternative FPGA and SoC 
definitions can co-exist in the design database.  

By maintaining a pure RTL description of the design it will be possible to isolate all 
target technology specific details. This is essential to allow sharing of the base RTL 
code while providing supplemental detail for the FPGA implementation and the 
SoC implementation separately. 

9.5.2. Make source changes as low-impact as possible 
Once the generic RTL design has been established, further changes should be done 
locally without introducing new modularity. Always use wrappers and make 
changes inside those design elements. Replace files, rather than edit them. Back-
annotate changes to real source files. 

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



    

282 Chapter 9: Design-for-Prototyping 

Make changes inside library elements (RAM, IO library etc.) rather than outside of 
them in the RTL structure. This improves portability, and places the prototyping 
code close to the original code it is replacing. 

9.5.3. Maintain memory compatibility 
Specialized elements or “cores” with optimized implementations are used in FPGAs 
for bulk memories. It follows that each memory element in the RTL design must be 
assigned alternative technology specific definitions for FPGA and SoC mapping. 
This approach will result in the most efficient use of chip resources and insures that 
some thought will be given to proper modeling of each memory element. For each 
new memory generated for SoC, just supply a FPGA-compatible version using 
vendor technology macros. The necessary code for each technology could be side-
by-side in the RTL source file and the selection between options controlled with 
`define. 

For the most part, synthesis tools are familiar with the target technology and can 
map RTL code into FPGA elements in a process known as inference. Whenever 
possible, having RTL synthesizable behavioral models will improve the FPGA 
adaptability of our code. There are examples of the use of wrappers and 
synthesizable memories in chapter 7. 

This approach relies on technology mapping algorithms in the synthesis inference 
tool, however a better implementation may be possible using the library or manual 
design-file replacement mechanism. One way to do this would be to create a special 
target direct (perhaps with “_fpga” or a similar prefix) and keep files of the same 
name as those they are replacing in that directory. With some tools, you can add this 
list to the end of a current file list, and they will thereby override the original RTL 
higher in the file list. With others, you may need to create a second file list. There 
are scripts available from Synopsys that help automate the file list management. 
This flow should maintain as high a level of target isolation as possible, and avoid 
having any miscellaneous logic not unique to the SoC/FPGA border. 

9.5.4. Isolation of RAM and other macros 
It is good practice to introduce an enclosing block or “wrapper” around every 
technology-dependent element of the design. This includes configured RAMs and 
other specialized macros in the technology library, which are not generally available 
in other technologies. Wrappers are allowed break rules about only having logic on 
lowest levels of RTL as they create a well-defined unit which is replaced with 
functionally equivalent logic in the SoC design. 

The process of including such elements is as follows:  
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• Create the FPGA element using the tools supplied by the FPGA vendor 
(such as the Xilinx® CORE Generator™ tool, Memory Interface Generator, 
etc.). Typically we specify the core type, the target technology, defines the 
various parameters’ initial-states values, etc.  

• The FPGA tool generates the desired core’s FPGA netlist 
and initialization file, where applicable. 

• The netlists are used in the place & route stage, and the 
template file is used to instantiate the generated core into 
the main design.  

• In addition, the tool generates a wrapper file containing 
functional simulation customization data that, combined 
with the primitive model used in the core, can be used for 
functional simulation. 

• Add RTL code to instantiate the template file in the design, 
and connect the module to the design. 

Recommendation: use optimized FPGA macros and RAMs to improve FPGA 
resource utilization and speed, enclosing technology dependent code within a 
wrapper block to facilitate substitution of SoC implementation and creation of 
functional test point for verification. 

9.5.4.1. Note: handling RAM in formal verification 
As we approach the issue of how to implement SoC RAMs in the prototype, we 
should also address the question of “how do I verify that the behavior of my FPGA 
RAMs are equivalent to my SoC RAMs?” 

Also, the prototype builder should be considering how to verify equivalency 
through the entire process of converting the SoC design to FPGAs. Doing so will 
save time later.  

The process of using formal verification (FV) on the designs would be much easier 
if equivalency checking were considered early in the prototyping phase. If we can 
plan for FV from the beginning with a methodology for verifying the RAMs using 
testbenches and then plan to formally verify the remainder of the design by black 
boxing the RAMs, then FV can be a more useful tool. This should be consistent 
with the use of FV in a general SoC design methodology. 
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9.5.5. Use only IP that has an FPGA version or test chip  
While FPGAs are the main prototyping resource in a typical prototyping system, 
some SoCs may have a few blocks that either do not map into FPGAs, or blocks for 
which better prototyping resources are available. Such blocks are typically analog 
circuits, or fixed digital IP blocks for which neither source code nor FPGA netlist is 
available. In these cases, we will need to consider solutions outside the FPGA to 
model the block in the prototype.  

IP suppliers typically provide evaluation boards with the IP implemented in fixed 
silicon. In other cases, the prototyping team may design and build boards that are 
functionally equivalent to the IP blocks that do not map well into FPGA technology. 
In still other cases, existing or legacy SoCs may be available on boards as part of 
the prototyping project and can be added to and augment the FPGA platform.  

By using separate hard IP resources for these blocks we will benefit from higher 
performance (compared to FPGA implementation) and will use less of the FPGA’s 
resources.. 

Recommendation: use plug-in hard IP “evaluation” devices on the prototype board 
when available to improve prototype speed and reduce complexity of FPGA logic. 

9.5.5.1. Note: PHY compatibility 
Embedded IP blocks in the SoC that are provided from the vendor as a physical 
block without detail RTL description will require special coding in the RTL. If a 
test chip is available for the IP it should be connected to the prototype board as an 
external plug-in and the RTL written to use this off-chip connection. Otherwise the 
IP will need to be modeled with a generic RTL functional definition of the 
algorithm to be mapped to the FPGA. Keep this in mind when choosing PHY 
components for the SoC and planning overall architecture of the FPGA prototype. 
For more information about IP in FPGA-based prototyping see chapter 10. 

9.6. Clocking and architectural guidelines 

The complexity of today’s SoC designs require specific attention be given to overall 
RTL design architecture related to clocking and managing major synchronous 
blocks in the system. FPGA technologies are more constrained in the available 
resources for managing multiple clock domains than custom SoC technology. There 
will typically be multiple FPGA parts needed to fully model the SoC design, 
imposing some board-level clocking requirements. Our goal is to abstract some 
notion of a global clock architecture that can be shared in the RTL description 
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between both the FPGA and SoC implementations. The following guidelines will 
help manage this complexity. 

9.6.1. Keep clock logic in its own top-level block 
If the clock generation logic is kept independent of the rest of the design, it will be 
more adaptable. Likewise, we should strive to keep unrelated or loosely related 
design logic out of the clock generation block. Moreover, the independent 
functional aspects of the clock generation should also be separated into easily 
recognizable modules. Frequently, there are many more options in the clock-
generation logic than are required for the FPGA or even for SoC for that matter. If a 
block is well separated from other unrelated logic, the block can be replaced by a 
prototype-specific block that simply drives a few clocks at constant frequencies.  

In many cases we may be importing IP with its own internal clocking structure. 
There may be some value in hard-coding (or at least optionally hard coding) clock 
selection logic, or otherwise simplifying the clock modules in the IP, if the 
complexity is no longer required for the specific use model. It may even be possible 
to completely remove certain components of the clock-generation logic and thereby 
greatly simplify one of the most involved tasks associated with prototyping. 

Keep clock gating and switching in their own blocks, preferably at the top level. 
This will allow easy and complete replacement by FPGA-equivalent structures.  

9.6.2. Simplify clock networks for FPGA 
SoC clock networks are often very complex. In general, an SoC has much greater 
clock flexibility than does an FPGA. If possible, implement only a subset of the full 
clocking options for prototyping, Use `define/`ifdef to control RTL expansion while 
retaining the full complexity for SoC synthesis. 

Simplifying the clock structure is key to the adaptability of the design. Even if your 
SoC clock structure is thoroughly documented, it may be difficult to implement in 
the FPGA if it’s extremely complicated. One of the biggest contributors to clocking 
complexity is test logic. Often automatic test pattern generation (ATPG) circuitry 
inserts logic to multiplex clocks. Note that an FPGA, being reprogrammable, ships 
fully tested. There is almost never a reason to include ATPG logic in the FPGA 
prototype. Including it introduces unnecessary complexity to the FPGA clocking 
structure. If the insertion is automated it can easily be disabled for the FPGA 
implementation.  

However, some test logic may be required in the FPGA prototype. For example, 
almost all microprocessor designs include some sort of serial debug interface that 
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works through a JTAG clock. This is absolutely necessary for doing software 
development on the FPGA. It is helpful to partition the test logic into that which is 
necessary for only the SoC and that which is necessary for the FPGA. At a 
minimum include comments in the code to indicate which is which. Also indicate in 
the comments how signals should be tied off to disable test logic that’s unnecessary 
for the FPGA. Ideally, insert “`ifdef FPGA … `else … `endif” pre-processor 
commands to separate functionality required for the FPGA prototype from that 
required for the SoC. In the “`ifdef FPGA” clause, tie off unnecessary test logic 
inputs to their disabled values so that this logic is pruned in FPGA synthesis. 

9.6.3. Design synchronously 
Avoid asynchronous loops, double-edge clocking and other structures that do not 
map easily to FPGA. Limit the overall design to conventional synchronous design 
methods. If unusual structures are required in the SoC design then isolate those 
circuits to local blocks, which can be replaced with equivalent functions in the 
FPGA design.  

Maximizing the use of conventional synchronous design style will greatly simplify 
the effort required to develop the FPGA prototype. 

Minimize the portions of the design running on clocks required for external 
interfaces, and use asynchronous FIFOs whenever possible to transfer data to and 
from these interfaces to the system clock domain. 

9.6.4. Synchronize resets 
Remember that the FPGA configuration process initializes every block RAM, 
distributed RAM, SRL, and FF to a defined state even if no reset is specified in 
RTL, so explicit code is not required as it is in the SoC. Depending on how the 
resets and presets are defined, they can have a significant impact on what can be 
inferred and therefore how much of the FPGA’s special resources can be 
automatically used. The key point is to spend more time earlier considering the reset 
strategy, and write the reset logic in a way that is simple, consistent, and flexible. If 
some of these FPGA considerations can be accommodated it will enable many 
creative solutions.  

9.6.5. Synchronize block boundaries 
Use FFs at all block inputs and outputs. This practice will add latency and require 
rescheduling of modified paths with respect to the rest of the design, but it 
dramatically helps to apply timing constraints and to meet timing targets. It also 
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assists in chip layout and FPGA partitioning. Certainly we should already be 
synchronizing at clock domain crossings. 

Often it is not practical to modify the design scheduling specifically for the FPGA. 
However, if the common design practice of inserting FFs at the boundaries of each 
designer’s block is observed, the likelihood of having FFs between partitions is 
substantially higher. If we follow the practice of synchronizing boundaries then we 
should have far fewer exceptions to handle when it comes to constraining the FPGA 
prototype. 

9.6.6. Think how the design might run if clocked slowly 
Prototypes are constructed from multiple FPGAs, a printed circuit board, custom IP 
core plug-ins, and other components. The design architecture of this mixed-
technology solution must allow the cores and peripherals to run at different rates. 
Thought must be given to the interfaces between all of the elements and whether we 
need to provide deep data buffering between slower running FPGAs and external 
data that is running at full speed.  

If addressed at the architectural level, the expected speed differences between SoC 
and prototype implementations can be cleanly isolated and managed properly. For 
example, in many cases rate adapters are required for the FPGA prototype. Often, if 
considered early in the architectural phases of the design, major functional modules’ 
bus interfaces can be designed such that speed bridges are not required. Because of 
the independence afforded by this architectural style, resultant designs tend to be 
more robust, adaptable, and readable as well. 

9.6.7. Enable bottom-up design flows 
The ability to easily implement a bottom-up design flow can be very advantageous 
to the implementation of the prototype. Many of the design and architectural 
recommendations already mentioned will naturally enable bottom-up design flows. 
(The concepts of synchronicity, simplicity, and isolation all typically provide 
benefits to these flows.) We can enhance bottom-up flows further by considering 
how synthesis tools create automated enhancements. 

If high-level modules are kept free of parameters and generics, a bottom-up flow 
will require less effort from the tools or engineers attempting to pre-process and 
uniquify the modules. 
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An exception to the preference of keeping clock logic in its own top-level block 
may also be considered to more easily enable clock conversion in bottom-up flows. 
If gated-clock conversion is being implemented, we may want to consider moving 
the final on/off gating to the module which is being selectively disabled, so that this 
type of conversion can be automatically handled by the synthesis tool without error-
prone manual hierarchical modifications. 

9.7. Summary 

The main point of our Design-for-Prototyping manifesto is that the use of FPGA 
prototype reshapes the development task by providing a confidence-building 
“executable specification” which, through its speed and RTL clarity, empowers the 
individual groups within the design team to work more effectively to achieve the 
SoC design project goal.  

The key proposals of Design-for-Prototyping are: 

• Development of FPGA prototype is a key element in the overall SoC 
design project and so needs to be included in plans and schedules. 

• The RTL design needs to follow a robust coding style to effectively 
represent both FPGA and SoC technologies, both in first coding and on-
going refinements. The resulting quality of RTL definition will pay 
dividends throughout the life of the design. 

• Use modular coding styles including clean separation of prototype-specific 
components from the rest of the design, independent dataflow, and 
isolation of clock domains. 

• Expand design documentation to identify as early as possible challenging 
parts of the design to the prototyping team. 

• The SoC Team might need to realign slightly in order to integrate 
prototyping in their processes and staff skill sets to maximize the possible 
benefit. 

The end result of these seemingly obvious but perhaps arduous changes will be that 
FPGA-based prototyping benefits will be derived earlier in the project, enabling 
earlier software validation and pre-silicon integration. 

 

The authors gratefully acknowledge significant contribution to this chapter from  

Mark Nadon of Synopsys, Austin 

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



  

FPGA-Based Prototyping Methodology Manual 289 

CHAPTER 10 IP AND HIGH-SPEED 
INTERFACES 

So far we have explored the tasks involved in porting an SoC design onto an FPGA 
equivalent form and how following some Design-for-Prototyping rules, these tasks 
can be made easier. A significant part of the porting effort will be put towards 
handling pre-existing intellectual property (IP), and particularly peripheral IP for 
interfaces in the design and so it is deserving of its own chapter. In this chapter we 
shall explore the two most popular groups of IP, namely CPU and interfaces and 
how we can model these in an FPGA-based prototype given that we may or may not 
have access to hard models, to RTL or even to an equivalent IP already available in 
FPGA-compatible form. 

10.1. IP and prototyping 

Almost all SoC designs today include some form of IP, which we shall define as 
design blocks not originating with the project but instead brought in from “outside.” 
We are limiting this discussion to digital IP because analog or mixed-signal IP will 
clearly not function in an FPGA and will need external support (see chapter 4). 

From our prototyping perspective, it is valuable to know that the IP components are 
pre-tested and should work as specified. If so, then our prototyping task becomes 
somewhat easier, however, the prototype is an excellent platform for testing the 
combination of the IP blocks and their interconnection. Our SoC design is probably 
the first platform in which a particular combination of IP blocks has ever been used 
together. As we shall see below, enabling our prototype to properly model the 
combination of IP blocks may require different approaches depending upon the 
format in which the IP is supplied. Some will be modeled inside the FPGA while 
others may require external test chips. In each case, the IP supplier should be 
willing and able to support its modeling in an FPGA-based prototyping 
environment. It is of great value in SoC design to know that the IP block is tried and 
tested on silicon but this should also be true for the prototyping options, such as a 
test chip or a working FPGA image. The SoC team should ask its IP supplier what 
help they can offer to the prototyping team. 

Our challenge in linking from IP in our FPGA-based prototype to other forms of IP 
outside of the device is to remain functionally equivalent to the original SoC design. 
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10.2. IP in many forms 

Digital IP may take many forms and originate from many sources, internal and 
external. The obvious examples would be a CPU core from third-party suppliers 
such as ARM®, or peripheral IP from Synopsys. Smaller elements such as the 
DesignWare® Building Blocks from Synopsys or generated by the Xilinx® CORE 
Generator™ tool are also examples of IP and have very widespread use in SoC and 
FPGA respectively. Even the reuse of another designer’s block can be considered IP 
as long as it is packaged with all the documents, infrastructure and support 
necessary to bring the IP through the whole SoC tool flow. However, that is where 
we draw the line for the purposes of this discussion – just using somebody else’s 
RTL in our design does not qualify as IP. 

IP is delivered in a number of forms, each of which presents us with a different 
challenge. The main formats are listed in Table 25 and most methods of IP delivery 
will fall into one of the listed categories. 

Any mix of these types of IP may be found in any given SoC design. Sooner or later 
we may need to address all of them in our prototyping projects. Let’s look closer at 
each of these forms of IP in turn and explain how each can be handled in an FPGA-
based prototype.  

Table 25: Formats for IP delivery to SoC Team 

RTL source code Whole source code in Verilog HDL or VHDL, either 
under vendor license or from open-source provider. 

Encrypted source code RTL is protected and must be decrypted either 
explicitly or as part of the tool flow. Once decrypted, 
it behaves as any other RTL source. 

Soft IP Delivered in an intermediate form, sometimes 
encrypted, but requiring back-end processing. 

Netlist IP delivered as a pre-synthesized netlist of either 
SoC library elements or generic gate-level elements, 
such as Synopsys GTECH. 

Physical IP Also known as hard IP. Pre laid-out by a silicon 
foundry. Would be represented by models or test 
chips during development and prototyping. 
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10.2.1. IP as RTL source code 
When we have the RTL source code for an IP block, our task would seem to be no 
different than it would be for any other RTL in the SoC design. There are, however, 
some differences in how much we can understand or alter the RTL within an IP 
block. For example, it may be that the RTL is delivered under a license that governs 
that it may not be altered without voiding any warranty or support agreements. In 
that case, the IP vendor could be asked for a separate license or consulting contract 
for support of prototyping.  

Alternatively, the IP vendor may already have an FPGA-ready form of the IP but 
that may require an extra license agreement, possibly at extra cost. When choosing 
IP for the original SoC design, some thought might be given to the availability of 
FPGA versions of the IP from the vendor. 

Licensing and support agreements aside, as long as the RTL is complete and well 
documented, there is no fundamental reason why we might not successfully 
prototype it along with the rest of our SoC design. Although the functionality of the 
IP will be the same in the FPGA, as with other SoC-targeted RTL, we should lower 
our expectations regarding performance. RTL that is developed and tailored for a 
leading edge SoC process will run considerably slower in even the fastest FPGA 
today. 

10.2.2. What if the RTL is not available? 
One of the issues with supplying IP as RTL to large numbers of people within a 
company or to any third-party developers is IP pollution and even theft. IP pollution 
is the accidental or even deliberate alteration of the IP for a design-specific purpose 
without the knowledge of the IP vendor, leading to licensing and support issues. IP 
theft needs no explanation and is a key issue for to all IP vendors and RTL supply is 
something that is very carefully monitored and protected between supplier and 
customer. 

As RTL is so valuable, many IP providers and users minimize their exposure by 
using a secure method of delivery, limiting the spread of the RTL and the possibility 
of “reverse engineering.” Methods used for this include supplying the IP in more 
abstracted formats such as simulation models, encrypted netlists, encrypted FPGA 
bitstreams and full-silicon test chips. The advantages and limitations of each are 
listed in Table 26. 
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A model is really only a representation of the IP for the purposes of simulation. 
Whether written in RTL or in a higher-level format such as SystemC, it is not 
intended for synthesis or implementation in FPGA or any other physical form. 
Models are nevertheless required, not only for simulation but also because they 
recover some of the visibility otherwise lost by using an encrypted or test chip form 
of the IP. For example, a test chip of some IP may be delivered with a transaction-
level model (TLM) for inclusion in a high-level testbench but we should not 
synthesize the TLM into silicon. A good measure of the maturity of an IP block 
(and indeed a good measure of the IP vendor) is the amount of extra support, such 
as models, provided with the IP. 

In the case of CPU IP, models may also be provided for instruction set simulators 
which have very limited knowledge of the cycle accuracy of the IP but are very fast 
and ideal for use in software development before RTL is available. As we shall 
explore in chapter 13, models running on functional, virtual or instruction-set 
simulators can be interfaced to real hardware using standards like SCE-MI to give a 
solution partitioned between models and the real SoC RTL. 

Let us now consider how we can prototype with these forms of IP for which we do 
not receive the raw RTL. 

10.2.3. IP as encrypted source code 
Beyond the relatively trivial example of including IP as RTL source code we find 
the first degree of difficulty is in RTL which is delivered only in an encrypted form. 
This means that we need the license to use the IP and the decryption mechanism to 

Table 26: Advantages and limitations of IP delivery formats in place of RTL 

IP format Advantage Limitation Security 

Model  Great for 
simulation. 

Performance limited 
by simulator. Cannot 
be used for prototype 

“Secure” since 
it is not the real 
IP. 

Encrypted 
FPGA 
netlist 

Harder to reverse 
engineer than raw 
RTL. 

No visibility for 
simulation 

Security only 
as good as 
encryption. 

Encrypted 
FPGA 
bitstream 

Faster than 
simulation. 

Less flexible and may 
involve compromise 

Very secure. 

Test chip Highest 
performance.  

Lowest flexibility. 
Long development.  

Very secure. 
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access it. IP vendors will each have their own approach to encryption and 
decryption, including common public domain methods such as PGP (“pretty good 
privacy”) as well as proprietary methods. If the protection is only used for shipping 
the source code then after decryption we will be in possession of the RTL, and, as 
above, fully able to proceed with our prototyping work. 

However, some RTL is not only shipped encrypted but remains encrypted 
throughout the tools flow, automatically decrypted “on-the-fly” at each step as 
required. This is only possible if each tool has built-in understanding of the required 
decryption and the necessary keys. Two common examples of such an approach are 
the synenc encryption flow from Synopsys® and the encrypted ngc files generated 
by Xilinx® tools.  

The overall aim is to get the source code for the IP of possible, or create some route 
where the IP instantiation black box can be filled. This is an exercise that we will 
not go into in any further here except to say that the industry will eventually move 
towards an IEEE standard for IP encryption and encapsulation. 

10.2.4. Encrypted FPGA netlists 
Encrypted netlists can be supplied to companies for inclusion into their own FPGA 
designs but offer a low level of security since they are inevitably decrypted in the 
design flow. The resulting output from the design flow is encrypted again to ensure 
the final image file can only be used in a deterministic way in the target FPGA 
hardware. 

FPGA vendors offering encrypted IP (from third parties) for their products rely on 
different techniques to limit the use in the target FPGA hardware, this can range 
from IP that will only work for a limited time when programmed into an FPGA 
and/or requires the use of the download/debug hardware and software used to 
configure the FPGA. These are special netlist designs with additional logic to 
perform checking and security. They still rely on a legal agreement to ensure the 
final level of protection of the IP. 

10.2.5. Encrypted FPGA bitstreams 
Some FPGAs have built-in encryption keys which are used to decrypt an encrypted 
FPGA bitstream on the fly as it is read in by the FPGA and configured. The latest -6 
devices and the largest Xilinx® Spartan®-6 devices all use AES 256-bit 
encryption/decryption. The decryption key is stored in battery-backed key memory, 
or it may also be stored in a less secure poly eFUSE key. The battery-backed key is 
the most secure, as there are no known means to obtain the key from a device. 
Powering the key memory off causes the key to be lost completely. The eFUSE key 
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is less secure, as destructive tear-down of the device may be used to read the value 
of the eFUSE bits. However, even then the eFUSE bits are not easy to read since 
there are three times as many bits used than are strictly required for the security key, 
further confusing the would-be key-copier.  

This encryption methodology was originally intended to stop design cloning of 
FPGA-based products, but it is also a useful way to secure IP blocks supplied in 
FPGAs. Since all the decryption is performed within the FPGA and only the 
encrypted FPGA image is visible outside then the security of this is very good and 
an excellent method for vendors to deliver high value IP. 

Figure 123 (courtesy of ARM) shows how the FPGA image would replicate the 
integration (top) level of an IP block design. This would effectively be the same 

interfaces that would be exposed when using a hardened macro from the silicon 
provider or when we have hardened an IP block to our requirements. Due to the 
high number of signals that are normally associated with this level of the design, 
there may be a requirement to multiplex these signals to and from the FPGA. This 
then requires the opposite logic to reconstruct the signals to join them to the rest of 
the design. The vendor supplying the FPGA image should also provide the 
application notes and support to enable us to do that.  

Figure 123: Top-level of IP used as encrypted FPGA image (source: ARM Ltd.) 

 
Copyright © 2011 ARM Ltd. 
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A useful feature of IP delivered in this form is that the clocks in the FPGA do not 
make use of the internal MMCM and such elements. This allows the system to be 
clocked at speeds below that minimum limit that would have been imposed had they 
been present. Indeed, this approach may even support clock stopping and single 
stepping in the IP block. 

As users then, we would need to provide the clocks for the different domains in the 
FPGA’s internal logic and the pin multiplexing and so forth for our prototyping 
system in order to ensure proper clock alignment.  

This approach is used by ARM in its software macro models, or SMMs, which are 
encrypted FPGA images. ARM feels that the omission of clock infrastructure gives 
the SMM a greater operational flexibility, which supports a more end-user 
applications without the need for altering, or even viewing, the RTL. 

10.2.6. Test chips 
Probably the most secure method of delivery for the IP vendor is for the design to 
be pre-implemented in silicon, as it is very hard to reverse engineer. However, it is 
also the most costly to create, maintain and support, especially if the vendor has to 
build a new test chip for each revision of its IP. Test chips are usually available for 
higher value IP blocks with wide usage, for example, most ARM CPU cores have 
test chips. It is less likely that a test chip would be available for either a new block 
(e.g., supporting a very new communications standard) or for a specialized IP block 
which is customized by the vendor for each user. 

Test chips may require associated components to support their operation (e.g., 
memory controllers) but the combination of external test chip and support will allow 
the FPGA-based prototype as a whole to run at the highest speed possible. 
However, to achieve these higher speeds we often need to compromise on features 

The biggest limitation of the test chip is its lack of flexibility, owing to pre-defined 
interfaces and configuration options. This may impose restrictions on usage, for 
example memory maps or interrupt structures which may not match the expected 
use of the IP in the final SoC. Compromises to IP in order to allow its use in test 
chips include selective adherence to cycle accuracy, use of asynchronous bridges 
between the test chip and the FPGA, multiplexing of signals to accommodate the 
high pin count buses and even limiting the features of the implementation to meet 
the prototyper’s needs or silicon limitations (e.g., disabled test modes, less 
interrupts, merging buses on chip to bring a single bus to the pins, etc.). 

Software or system settings would need to be altered to match the test chip’s 
capability, rather than the other way around and it may be that a more flexible RTL 
or FPGA-based delivery is required. This might mean that we need to obtain extra 
licenses from the IP vendor compared to a test-chip and model approach, but it may 
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be worth the investment if it means that the FPGA-based prototype is going to be 
more useful with it. 

Figure 124 (courtesy of ARM) gives an example test chip implemented for the same 
ARM processor example shown earlier in Figure 123. Here we can see the use of 
the SMC (static memory controller) and DMC (dynamic memory controller) to 
access to boot memory and peripherals, together with the DMC for run the time 
memory.  

Test chips are able to support benchmarking and OS development in the early stages 
of a design ensuring that we can make an early start on the software. However 
having all these features does limit the flexibility of the test chip in the hardware 
prototyping system (due to memory map, interrupt and fixed configurations). The 
test chip of the kind illustrated is generally best placed to support OS development, 
benchmarking activities and development of extension IP blocks which will be 
connected via the AXI™ bus (in the case of the ARM). 

Figure 124: Top-level of test chip equivalent to Figure 123 (source: ARM Ltd.) 

 
Copyright © 2011 ARM Ltd. 
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10.2.7. Extra FPGA pins needed to link to test chips 
As we saw in chapter 5, we recommend avoiding permanently linking FPGA pins to 
peripheral or other external components on the board. Instead we should keep such 
connections flexible in order to increase the chances for their reuse in future 
prototyping projects. In the case of IP test chips, we may need to connect our 
FPGA(s) to a great number of external pins on the test chip or a board/module upon 
which the test chip is mounted. We should try to make such connections via 
deferred or switched interconnect (see chapter 6) and this may involve adaptors or 
vendor-specific connectors.  

An example of an ARM test chip mounted on a CoreTile and its associated adaptor 
with which it would communicate with a Synopsys HAPS® FPGA board is shown 
in Figure 125. 

Figure 125: ARM test chip on a CoreTile with associated adaptor for Synopsys 
HAPS® 

 

Core Tile for the 
ARM11 test chip 

Test chip 

Adaptor 
Board for 

HAPS
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The use of wide buses in SoCs normally means that the connections between FPGA 
and test chip need to be multiplexed in order to reduce the number of FPGA pins 
required or to simply fit within the number of pins of the connector. This however, 
will also introduce extra delay of the interconnect IO pads and boards, probably 
reducing the overall system speed. More discussion of multiplexing and its impact 
on timing can be found in chapter 8. This can be mitigated to some degree by using 
high-speed serial signaling techniques and higher speed multiplexing rates (see 
HSTDM discussion in chapter 8). 

Having discussed the different formats in which IP can be delivered, we shall 
explore the handling of soft IP and hard IP in more detail and also explain how 
these can be included in our FPGA-based prototype. 

10.3. Soft IP 

Soft IP can be any form of IP for which physical implementation is decided upon by 
the end-user. For example, IP delivered as RTL can be considered “soft” because 
we are at complete liberty to compile, synthesize and lay-out the IP in any way that 

Figure 126: Example of soft IP: datasheet of a MAC from a DesignWare library 
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we choose. Therefore, in our earlier discussion of the various RTL delivery, with 
our without encryption, we were in fact exploring soft IP.  

However, any form of IP for which we do not receive layout or any other physical 
information should be considered “soft.” For example, netlists or binary forms of 
the IP, or IP that is pre-compiled into an intermediate library. Relatively low value 
IP or IP for which performance and area targets are reasonably easy to achieve are 
often be delivered as soft IP. 

A very common example soft IP is the DesignWare Building Block library from 
Synopsys. DesignWare is an extensive library of infrastructure IP for design and 
verification including arithmetic and datapath components, AMBA interconnect IP 
and microcontrollers. The datasheet for an example DesignWare component is 
shown in Figure 126 where we see an excerpt from the datasheet of a multiply-
accumulate function, or MAC. 

SoC designers will make use of such a soft IP block in one of three ways: 
instantiation, inference or operator replacement. Instantiation is the simplest, with 
the block’s module described and instantiated in the normal way. The descriptions 
would be available from a library or directly in the RTL. An example instantiation 
only is shown in the code excerpt in Figure 127. 

DesignWare IP may also be inferred as function calls. This relies upon the inclusion 
of support references in the RTL (via and `include statement in Verilog or library 
reference in VHDL). In the example shown in Figure 128, the tool must also be set 
up so that a search path points to the files to be included. Here we see that one of 
two different functions are included each inferring either a two’s complement or an 

Figure 127: Instantiation of DesignWare® MAC IP in Verilog HDL 

module DW02_mac_inst( inst_A, inst_B, inst_C, inst_TC, MAC_inst ); 
 
 parameter A_width = 8; 
 parameter B_width = 8; 
 
 input [A_width-1 : 0] inst_A; 
 input [B_width-1 : 0] inst_B; 
 input [A_width+B_width-1 : 0] inst_C; 
 input inst_TC; 
 output [A_width+B_width-1 : 0] MAC_inst; 
 
 // Instance of DW02_mac 
 DW02_mac #(A_width, B_width) 
  U1 ( .A(inst_A), .B(inst_B), .C(inst_C), .TC(inst_TC), 
.MAC(MAC_inst) ); 
 
endmodule 
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unsigned version of the MAC. The synthesis combines these together into a 
common MAC with configurable least-significant-bit. Different forms of the IP may 
have been created, for example a power-optimized or a performance-optimized 
version of a multiplier. The user or the tools would have the ability to choose the 
most appropriate version in the context of the design at compile time. 

Some tools may even infer soft macros synthetically during operator replacement or 
during a sub-function of synthesis called module compilation. For example, a 
multiplier soft IP macro would be inferred by the code simple code c<=a*b with 
the result that the gate-level netlist would have an extra level of hierarchy 
containing gates optimized for the target constraint. 

Considering the value of soft IP, it is not surprising that most SoC designs today 
include such elements and so we need to be able handle them during FPGA-based 
prototyping. Continuing with DesignWare as an example of soft IP, each of the 
above three methods for including the IP in the SoC design will require different 
solutions for their correct operation in FPGA. 

Figure 128: Inference of DesignWare® MAC by function call 

module DW02_mac_func (func_A, func_B, func_C, func_TC, MAC_func);  
parameter func_A_width = 8;  
parameter func_B_width = 8;  
 
// Pass the widths to the multiplier-accumulator function  
parameter A_width = func_A_width;  
parameter B_width = func_B_width;  
 
`include "DW02_mac_function.inc"  
/* requires search path to point to file */ 
 
input [func_A_width-1 : 0] func_A;  
input [func_B_width-1 : 0] func_B;  
input [func_A_width+func_B_width-1 : 0] func_C;  
input func_TC;  
output [func_A_width+func_B_width-1 : 0] MAC_func;  
 
assign MAC_func = (func_TC) ? DWF_mac_tc(func_A, func_B, func_C) :
     DWF_mac_uns(func_A, func_B, func_C); 
endmodule 

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



  

FPGA-Based Prototyping Methodology Manual 301 

10.3.1. Replacing instantiated soft IP 
An IP instantiation may not be understood by the FPGA synthesis in the same way 
as the SoC synthesis, if at all. In most cases, the IP instantiation would appear as a 
black box, requiring contents at some point in the FPGA flow. If we are able to 
advise the SoC designers during their initial choice of IP, then we should ask them 
to ensure that only IP with an available and proven FPGA equivalent is chosen. In 
this way the original SoC design could have `ifdef branching between two 
instantiations, based on a single `define variable.  

Perhaps even more preferable would be a single instantiation which serves both SoC 
and FPGA purposes, with the tools in the two different flows providing the 
appropriate contents for the instantiation. In that case the SoC designers would not 
be required to make any special provision in their RTL, except to choose only from 
a supported library of soft IP for which FPGA equivalents are available. 

One way to provide this in the FPGA flow is for the prototyping team to write an 
additional RTL file with the same functionality as the soft IP. To enable this more 
easily, we would use wrappers in the original SoC design, as we did for memories 
in chapter 7. We could ask the SoC team that each time they instantiate a soft IP 
element that it is placed in a wrapper so that it can easily be replaced with the FPGA 
equivalent. This is another example of good Design-for-Prototyping practice as 
discussed in chapter 9. 

A more automated approach may require some investment in time and effort, but if 
a particular soft IP library is to be used often, then it would be worth the investment. 
For example, at Synplicity®, Bangalore, before the acquisition by Synopsys, each 
DesignWare building block was analyzed and functionally equivalent RTL was 
created for use in the Certify® tool. In that case, all properly instantiated 
DesignWare elements would be automatically interpreted, not as a black box but as 
a new bottom-level of the RTL hierarchy. This was not particularly optimized for 
FPGA, but during FPGA synthesis was interpreted in the same way as any other 
piece of RTL. 

More recently, Synopsys has modified its FPGA synthesis tools to allow native use 
of the DesignWare blocks for FPGA designers. In addition the DesignWare IP 
developers themselves have also performed some optimization for the blocks to 
better operate in FPGA. Any instantiation or inference of a DesignWare building 
block element in an SoC design will also be automatically interpreted correctly by 
the FPGA synthesis tools. 

10.3.2. Replacing inferred soft IP 
The result for inferred soft IP is very similar to that for instantiated, however, now it 
is not a matter of “filling” an empty black box but of the FPGA tools inferring the 
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same functionality as the original SoC synthesis for a given piece of RTL. In both 
cases, the library references and/or `include statements must be resolved to the 
respective target’s implementation. In the example RTL in Figure 128, the SoC 
synthesis tool (Design Compiler®) has its search path set up to include the path to 
the functions for all the DesignWare used in the design. When this same RTL is 
passed to the FPGA tool during the prototyping project, the equivalent path variable 
needs to be set to point to a set of functions for the DesignWare used. Alternatively, 
if the DesignWare elements are few in number and rarely used, then the required 
extra function definitions could be placed in a local include file.  

The function definitions included will not be identical to the design blocks used to 
fill the instantiations mentioned in section 10.3.1, however, we refer to other 
sources for how to use functions in Verilog HDL.  

Referring back to our dw02_mac example in Figure 128, if we synthesize that in 
FPGA synthesis then the resultant logic created is show in Figure 129 and it is 
simple to see how this would be mapped into FPGA.  

10.3.3. Replacing synthetic soft IP 
In SoC synthesis, an RTL operator – whether built into the language, like +, -, and 
*; or user-defined, like functions and procedures – can be linked to a synthetic 
operator. A synthetic operator is an abstraction that makes it possible for the 
synthesis tools to perform arithmetic and resource-sharing optimizations before 
binding the operation to a particular synthetic module.  

The linking mechanism will vary from tool to tool but in Design Compiler it is a 
recognized HDL comment called a pragma. When the compiler sees the pragma, the 
map_to_operator as a comment in the RTL, then the logic is used in place of the 
operator. Operator inference occurs when the synthesis tool encounters an HDL 
operator whose definition contains a map_to_operator pragma. The tool finds the 

Figure 129: Logic automatically included for DW02_MAC functional inference 
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specified synthetic operator, inserts it into the user’s design, and performs high-
level optimizations on the resulting netlist. In fact, this is the mechanism used for 
the functions in the example of inferring the dw02_mac in Figure 128.  

Table 27, taken from the DesignWare Developers Guide, lists the HDL operators 
that are mapped to synthetic operators in the Synopsys standard synthetic 
library for Design Compiler (for more information in the references). 

When soft IP is inferred by the SoC synthesis tools in the above way from generic 

RTL then its replacement for prototyping is an almost trivial task. The same RTL 
which infers the soft IP in the SoC synthesis will be automatically interpreted by the 
FPGA synthesis tool and mapped into relevant FPGA resources. For example, the 
SoC synthesis might employ a synthetic operator bound to a dw02_mult block in 
order to represent the * in a simple statement c<= a*b; . The exact same * will be 
inferred as a multiplier by the FPGA synthesis and mapped to a dedicated FPGA 
multiplier resource by default. 

Because of this automation and simplicity, SoC teams should try to employ 
synthetic operators as often as possible rather than instantiate the soft IP directly 
into the RTL. 

Table 27: Synthetic soft IP mapped to operators 
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10.3.4. Other FPGA replacements for SoC soft IP 
Xilinx has a large variety of IP which are licensed for use only within their own 
FPGAs. We can look at the functionality of the soft IP in the SoC design and find a 
close, or maybe even exact, equivalent in the FPGA library. Of course its use would 
be only temporary for the sake of prototyping but it may be that we can use a 
wrapper in the same way that we do for RAM. The more complex the IP, the more 
useful that this would be, but also the less likely that a match can be found between 
the SoC IP and the FPGA IP. The one exception to this is in the area of standards-
based peripheral IP. Let’s look at that more closely now. 

10.4. Peripheral IP  

So far we have discussed handling of small elements or blocks of IP embedded in 
our RTL. For relatively low-level elements such as the DesignWare Building 
Blocks, the creation of an FPGA equivalent is a reasonable task but what of the sub-
system level IP or whole CPU cores or peripheral functions, such as PCIe or USB? 
In some cases, we may need to spend a substantial effort replacing this kind of core 
IP with an FPGA equivalent or external component so before we do, we should be 
sure of our purpose.  

There are a number of reasons high-speed IO needs to be prototyped and we 
summarize these in Table 28.  

Table 28: Reasons and considerations in using peripheral IP in a prototype. 

Use Model  Speed  Accuracy  

Prototyping IP itself  Highest speed  Cycle accurate  

Prototyping IP as part of 
larger SoC  

Scaled speed  Cycle accurate  

Software validation  “Enough speed”  Functional 
equivalence  
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10.4.1. Use mode 1: prototype the IP itself  
The prototype project is mainly performed in order to verify the IP design itself. In 
that case, our task is actually a small-scale version of a normal SoC prototyping 
project. We would prefer as high a speed as possible up to the full expected speed of 
the IP in its final use in silicon. We would also prefer to make the prototype as 
accurate as possible and to interface with real-world peripherals. This is the use 
model for most of the prototyping performed within the Synopsys IP groups, for 
example in Figure 130 (as previously mentioned in chapter 2) from Synopsys IP 
design group in Porto, Portugal, we see the IP under test at the bottom of the FPGA 
block diagram while the rest of the FPGA is used to create a validation environment 
for the IP under test. 

The channel from the HDMI Rx IC through the audio/visual processing out into an 
external PHY transmitter is what we want to prototype. However, we also need 
support elements for control and integration with the AV channel. This would be 
performed differently in each SoC implementation but for the purposes of running 
some software to test the HDMI channel, we pull together an infrastructure inside 
the FPGA using IP readily available from Xilinx and standard external memory 
components. The two halves are linked together using standard Synopsys IP for the 
ARM AMBA® interconnect. 

Figure 130: FPGA IP augmenting a test rig for SoC IP 
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In this chapter, we shall focus not so much on this use mode as, in many ways, 
prototyping a specific piece of IP is really a subset of the tasks involved in SoC 
prototyping in general. In fact, IP prototyping is probably easier than for a whole 
SoC because many IP designs will fit into a single FPGA and thus we avoid 
partitioning. Let us move on to the more general case, then, of including peripheral 
IP into a larger SoC prototype.  

10.4.2. Use mode 2: prototype the IP as part of an SoC 
The second use model, and the one most relevant to this chapter, is the use of an IP 
within a larger SoC. In that case, although we would indeed prefer to run at full-
silicon speed, we will probably find that our overall system speed is limited by the 
performance of the SoC RTL when mapped into the FPGA core. In that case our 
task becomes a matter of providing a method for scaling the overall system speed in 
order to more closely match the peripheral IP speed with the SoC core. This may 
involve data buffering or splitting an input stream into parallel processing channels. 

10.4.2.1. Rate adapting between core and peripheral IO 
What can we do when the peripheral data is arriving too fast for the FPGA to be 
able to handle? A common way to remedy clock differences between the FPGA 
system and an external interface is to add “rate adapter” circuits between the 
external stimuli and the SoC. These circuits are logically FIFOs that “absorb” (and 
drive) the external stimuli at the full external speed, although probably at its lowest 
acceptable rate to still meet the standard. The adaptor then only processes a subset 
of the stimuli that the FPGAs can process with its reduced clock rate, and it then 
drives the stimuli to the external interface at the reduced clock rate.  

For example, if an FPGA-based prototype runs at one-third the speed of the SoC 
then, to properly emulate the SoC’s performance, the FPGAs should be driven by 
one-third the amount of stimuli.  

Another alternative is to predict the maximum amount of data that will arrive in a 
burst at the full peripheral rate. We can then implement a shift-register first-in-first-
out (FIFO) buffer to receive it at full rate and then pass forward to the FPGA 
prototype at the reduced rate after all data is received. The same approach is used in 
the other direction to step up the rate from the FPGAs to the external interface. 
Some designs will not tolerate this approach but for many others this rate-adapting 
is adopted with great success.  

The FIFO can be implemented in external components, in another FPGA, as in the 
example in Figure 131 or in the receiving FPGA itself, depending in speed and size 
requirement. In the example, designed by Synopsys consultants in New England, we 
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see two external USB2.0 channels being run at 125MHz, and asynchronous FIFOs 
being used in each case to buffer incoming and outgoing packets. Complete packets 
themselves are recognized by the “sniffer” circuit and signaled to the rest of the 
prototype as being ready to read in at one-tenth speed. 

This kind of rate adaption works very well for regular packets of data and can 
handle reasonable rates as long as data is in bursts. It can also handle deep data if 
enough FIFO memory is available but, obviously, continuous data traffic would 
overflow the FIFO and packets would be lost or would need to be discarded until 
the rest of the prototype is ready to receive. 

This area of prototype design requires some additional engineering beyond that 
already in the SoC, but many find that to be the most interesting part of a 
prototyping project. The best time to consider buffering between internal and 
external data streams is when the SoC is originally being designed. Having the 
prototyping team involved at this early stage will allow rate-scaling design to be 
completed in time and for software teams to pre-empt the necessary scaling changes 
in their code. 

10.4.3. Use mode 3: prototype IP for software validation 
The third common use case in Table 28 (on page 304) is when we want only to run 
applications software on a platform and our task is to provide data to the software 
and receive results as if we were running on the final system. From a software 
viewpoint we do not have to be cycle accurate as long as the channels run with 
“enough speed” to keep the channels in sync and provide approximately the 
required functionally. For example, as long as that the software thinks that it is 

Figure 131: Rate adapter concept for 10x USB reduction 
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receiving video data from an HDMI source, then the transceiver channel for that 
video data might be quite different from that instantiated in the SoC design itself. In 
fact, we could even completely replace the SoC IP with an FPGA version. We could 
also consider replacing the HDMI channel with a transactor that performs the same 
job, as we shall see in chapter 13. 

10.5. Use of external hard IP during prototyping 

As mentioned in section 10.2, the only form of IP available in some cases is an 
external test chip or hard IP. There are many reasons why we would want to use a 
hard IP block alongside our FPGAs, some of which may be forced upon us, for 
example, the RTL is not available or not supported by the IP vendor for external 
usage. 

The most common hard IP blocks found in prototypes are CPU cores and standard 
bus interfaces using PHY, including Ethernet, USB, PCI/PCI-X/PCIe and memory 
interfaces such as DDR2. Many vendors offer their IP as hard macros pre-
implemented by various semiconductor partners and as end users we might choose a 
hard IP which most closely reflects our final silicon usage.  

A good by product of using test chips and external hard IP is that they free-up 
FPGA resources. These are then freed up for other uses or left unused, lowering the 
device utilization and therefore decreasing runtime and potentially increasing 
performance. We should note that the FPGA resources required for large IP blocks 
such as DSPs or processor sub-systems could easily consume a whole FPGA or 
even multiple FPGAs. In the latter case the cost and performance impact of splitting 
IP across multiple FPGAs might be too high, especially if we do not have intimate 
visibility of the internal workings of the IP. In these cases, it would make sense to 
use an external hard IP or test chip, accepting the limitations this may impose 
compared to the effort required to develop a larger multi-FPGA solution. These are 
amongst the decisions to be made in the early stages of the project (see chapter 4). 

10.6. Replacing IP or omitted structures with FPGA IP 

There are situations where we may need to include logic modules in the design for 
which there is no RTL available, but the same functionality is available from 
another source. FPGA vendors, including Xilinx, offer a wide range of IP cores that 
can be placed into the design in place of the core instantiated in the SoC. These 
cores are often optimized for FPGA and should give better performance and area 
results than would have been achieved by simply porting the RTL of the original 
SoC IP. Note that these Xilinx® IP cores may not be used in the SoC (Xilinx only 
licenses its IP for use in its own devices). 
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Some examples for such IP are specialized memories, processors, communication 
controllers, multi-gigabit controllers and many more. The cores are in the form of a 
low-level FPGA netlist, either generated with a Xilinx supplied tool (CORE 
Generator tool) or from previous FPGA implementation. The IP is instantiated into 
the RTL source before synthesis which supports the inclusion of FPGA IP blocks in 
the following ways:  

• Plain text netlist: the preferred method for including IP in the design, 
where synthesis reads the core’s FPGA-level netlist, optimizes it as 
necessary and includes the results in the output netlist. It also passes down 
timing constraints to the place & route tools if supplied by the user.  

• White box: usually used when secured IP is included in the design and 
synthesis reads the core’s netlist to obtain timing information for the IP 
boundary, but does not optimize the core’s logic.  

• Black box: usually used when secured IP is included in the design, and the 
black box attribute is specified. Modules defined as black boxes are treated 
by synthesis as “space holders,” where it does not read the core’s netlist 
(hence won’t optimize it). The IP/core will be included in the design at the 
place & route stage, when the associated pre-generated netlist will fill in 
the “black box” space. The tool however will pass to the place & route 
timing constraints if specified by the user. 

10.6.1. External peripheral IP example: PCIe and SATA  
The example we shall use is a PCIe-to-SATA bridge that was developed at the 
Synopsys IP development lab near Dublin, Ireland. Synopsys IP teams have used 
FPGA-based prototyping extensively to validate IP and its connectivity with 
external systems. In order to do so, demonstration and early-adopter platforms are 
created which need to closely resemble as many of the eventual targets for the IP as 
possible. The references give more details but the block diagram of the design is 
shown in Figure 132. 

This example used the Virtex®-5 LS330 device on a HAPS-51 board to implement 
both the PCIe and SATA interfaces and the bridge between them; another testimony 
to the scale of modern FPGA devices. The interfaces use the built-in fast serial 
transceivers on the FPGAs and have bespoke blocks to drive from the cores to the 
FPGA-specific hardware, we can see the special FPGA-ready modifications labeled 
as pipe2v5gtp and sata2v5gtp. Pipe is an intermediate interface between the PHY of 
a PCIe interface and the rest. 
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This arrangement allowed the prototypers to fully test the two sub-systems with real 
world data and realistic speeds. 

10.6.2. Note: speed issues, min-speed 
In an ideal world we would want to be able to clock IP at any chosen speed, from 
DC to 1GHz+ to allow us to fully validate the systems features and enhance debug 
and development. However, we know that a crossover point normally occurs at 
about 20-100MHz when we need to migrate from a simple clocked design to 

Figure 132: Top-level implementation of PCIe-to-SATA bridge design 
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something that requires internal clock generation and de-skew logic as mentioned in 
chapter 8. This requires the use o PLL and MMCM type blocks but this will enforce 
a minimum operation speed on test chips and FPGAs alike. This is limited by the 
PLL/MMCM operating specification and it is risky to try to go slower than that, 
even if it may seem to work in the lab. 

On another related note, the PLL in the SoC and the replacement in the FPGA may 
have different jitter, duty cycle, and even different frequencies of operation, drift, 
and accuracy, Therefore we need to be sure that the use of the MMCM or other 
clock circuitry is accurate and close enough to the SoC infrastructure give 
meaningful results. That is not usually in doubt for regular digital prototypes 
running within spec. 

10.7. Summary 

One of the biggest challenges for a new prototyping team is the inclusion of IP, 
especially high-speed peripheral IP. Third-party IPs are often provided without 
source code, so they cannot be synthesized as part of the RTL and an alternative 
must be found. This could be a netlist in the SoC library or pre-mapped to FPGA 
elements. It could also be an external testchip or an encrypted version of the RTL. 

All of these forms of the IP can be used but we should not lose sight of the purpose 
which is not to verify the IP; that should have been guaranteed already. The reason 
to model the IP is so we do not leave a hole in the design. Having the IP present in 
some form allows us to validate the rest of the hardware and especially the software 
running upon it. 
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CHAPTER 11 BRING UP AND 
DEBUG: THE 
PROTOTYPE IN THE 
LAB 

We have come a long way. We have chosen or built our FPGA platform; we have 
manipulated our design to make it compatible with FPGA technology and we are 
ready with bitstreams to load into the devices on the board. Of course, we will find 
bugs, but how do we separate the real design bugs from those we may have 
accidentally introduced during FPGA-based prototyping? This chapter introduces a 
methodical approach to bringing up the board first, followed by the design, in order 
to remove the classic uncertainty between results and measurement.  

We can then use instrumentation and other methods to gain visibility into the design 
and quickly proceed to using our proven and instrumented platform for debugging 
the design itself. 

During debug we will need to find and fix bugs and then re-build the prototype in as 
short an iteration time as possible. We will therefore also explore in this chapter 
more powerful bus-based debug and board configuration tools and running 
incremental synthesis and place & route tools to save runtime. 

11.1. Bring-up and debug–two separate steps? 

It is worth reminding ourselves of the benefits of prototyping our designs on FPGA. 
We use prototypes in order to apply high-speed, real-world stimulus to a design, to 
verify its functionality and then to debug and correct the design as errors are 
discovered. The latter debug-and-correct loop is where the value of a prototyping 
project is realized and so we would prefer to spend the majority of our time there. It 
is tempting to jump straight to applying the whole FPGA-ready design into the 
prototyping platform, but this is often a mistake because there are many reasons 
why the design may not run first time, as will be discussed later in this chapter. It is 
very difficult in this situation to determine what prevents a design from running first 
time, so a more methodical approach is recommended. 

When the design does not work on a prototyping board, it could be because of two 
broad reasons. It could be because of problems related to the prototyping board 
setup, or due to problems in the design that is run on the board. Separating the 
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debugging process for these two separate problems will lessen the whole debugging 
time.  

For effective debug-and-correct activity it is critical to make sure that the bugs we 
see are real design issues and not manifestations of a faulty FPGA board or mistakes 
in the prototyping methodology. We therefore should bring up our design step-by-
step in order to discover bugs in turn as we test first the board, then the 
methodology and finally the completed design in pieces and as a whole. This will 
take more time than rushing the whole design onto the boards, but in the long run 
will save time and help prevent wasted effort. 

These bring-up steps can be summarized as follows: 

• Test the base board 

• Test the base plus the add-on boards 

• Apply a small reference design to single FPGA 

• Apply reference design to multiple FPGAs 

• Inspect SoC design for implementation issues 

• Apply real design in functional subsets in turn 

• Apply whole design 

So, it is always necessary to make sure that the FPGA board setup is correct before 
testing the real design on board. The next step is to bring up the design on board by 
making sure that the clock and reset signals are correctly applied to the design. 
After the initial bring up, the actual design validation stage would start. In this 
design validation stage, debugging the issues becomes easy when there is enough 
visibility to the design internals. The necessary visibility can be brought into the 
design using different instrumentation methodologies which will be discussed in 
detail in the later part of this chapter. 

11.2. Starting point: a fault-free board 

We should like to start this chapter from the assumption that the FPGA board or 
system itself does not have any functional errors, but is that a safe assumption in 
real life? As mentioned in chapter 5, this book is not intended to be a manual on 
high-speed board design and debug so we are not intending on going into depth on 
board fault finding. We assume that those who have developed their own FPGA 
boards in house will know their boards very well and would have advanced to the 
point where the boards are provided, fully working to the lab.  

There is an advantage at this time for those using commercial boards because these 
would have already been through a full-production test and sign-off at the vendor’s 
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factory. For added confidence, board vendors should also supply user-executable 
test utilities or equipment in order to repeat much of the factory testing in the lab. 
For example, a special termination connector or automatic test program to run either 
on the board or on a connected host. It is not paranoid to recommend that these 
bare-board tests are repeated from time-to-time in order to reinforce confidence, 
especially when the prototype is showing some new or unexpected behavior. A few 
minutes running self-test might save many hours of misdirected analysis.  

As well as self-test, board vendors will often provide small test designs for checking 
different parts of the base boards. Even if in-house boards are in use, it is still 
advisable to create and collect a library of small test designs in order to help 
commission all the parts of the boards before starting the real design debugging 
work. 

The kinds of tests applicable to a base board vary a great deal in their sophistication 
and scope. As an example of the low-end tests, the Synopsys® HAPS® boards have 
for many years employed a common interconnect system, called HapsTrak®. Each 
board is supplied with a termination block, called a STB2_1x1 and is pictured in 
Figure 133. The STB2_1x1 can be placed on each HapsTrak connector in turn in 
order to test for open and short circuits and signal continuity.  

 
Testing the board from external connectors in this way would be a minimum 
requirement. Beyond this, we might also want to use any available built-in scan 
techniques, additional test-points, external host-based routines etc. All of these are 
vendor- and board-specific and apart from the simple above example, we leave it to 
the reader to explore the particular capability of their chosen platform. For the 
purpose of this manual, we will start form the previously mentioned assumption that 

Figure 133 : STB2_1x1. An example of a test header for FPGA Boards 
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the board itself is functional before we introduce the design. However, there are 
other aspects of the board and lab set-up that may be novel and worth checking 
before the design itself is introduced.  

Typical issues that would present in the prototyping board setup are problems in the 
main prototyping board and daughter boards themselves, connection between these 
different boards through connectors and cables, or issues related to external sources 
like clock and reset sources. These all come down to good lab practice and we do 
not intend to cover those in detail here. 

11.3. Running test designs 

The best way to check whether the FPGA board setup is correct is to run different 
test designs on the board and check the functionality. By running a familiar small 
design which has well-known results, the correct setup of the boards can be 
established. Experienced prototypers can often reuse small test designs in this way 
and in a matter of hours know that the boards are ready for the introduction of the 
real SoC design.  

Board vendors may also be able to supply small designs for this purpose but in-
house boards will require their own tests and be tested separately before delivery to 
the prototypers. Use of custom-written test designs to test these boards in the 
context of the overall prototype can then be performed. This also applies to custom 
daughter boards for mounting onto a vendor-supplied baseboard. For example, if a 
custom board is made to drive a TFT display then a simple design might be written 
to display some text or graphics on a connected display in order to test the custom 
board’s basic functionality and its interface with the main board. 

In either case, it is recommended to connect all the parts of the prototype platform 
including the main board, daughter boards, power supply, external clocks, resets, 
etc. as they will be used during the rest of the project. Then configure the assembled 
boards to the exact setting with which the actual design will employ during runtime, 
including any dip switches and jumpers. Sometimes these items can be controlled 
via a supervisory function which will access certain dedicated registers on the board 
under command of a remote-host program. It is especially important to configure 
any VCO or PLL settings and the voltage settings for each of the different IO banks 
of the FPGAs. Off-the-shelf prototyping boards like the HAPS board provide an 
easy way of configuring this using dip switches and on-board supervisory programs.  

We are then ready to run some pre-design tests to ensure correct configuration and 
operation of the platform. Here are some typical test designs and procedures which 
the authors have seen run on various prototyping boards. 

• Signs-of-life tests are very simple. Reading or writing to registers from an 
external port can confirm that the FPGA itself is configuring correctly.  
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• Counter test to test clocks and resets are connected and working correctly. 
Write a simple counter test-design with the clock and reset as inputs and 
connect the outputs to LEDs or FPGA pins which connect to test points in 
the board, or read the counter register using an external host program. 

• Daughter board reference designs provided by vendors or equivalent 
user-written test designs can be used to check the functionality of the add-
on daughter boards. Testing with these designs would test the proper 
functionality of the daughter boards and the interface between the main 
board and the daughter boards and links to external ports, such as network 
analyzers.  

• High-speed IO test: If the prototyping project makes use of advanced 
inter FPGA connectivity features like pin multiplexing or high-speed time 
division multiplexing (HSTDM), it is advisable to run simple test designs 
to test this on the board. Owing to the environmental dependency of LVDS 
and other high-speed serial media the test designs should employ the same 
physical connections in order to properly replicate the final paths to be use 
in the SoC prototype. 

• Multi-FPGA test designs: If the design is partitioned across multiple 
FPGAs, then it is advisable to test the prototyping board with a simple test 
design which is easily partitioned across all the devices. One example of 
this would be an FIR filter with each tap partitioned in a different FPGA. 
Let’s look at that example in a little more detail.  

11.3.1. Filter test design for multiple FPGAs 
One example of a simple-to-partition design which tests many aspects of a multi-
FPGA design configuration is the FIR shown in Figure 134 which would serve to 
test four FPGAs on a board.  

 

Figure 134 : A 4-tap pre-loadable transposed FIR filter test design 
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An FIR, being a fully synchronous single-clock design helps to check that reset 
timing is correct and that clock skew is within an acceptable range. 

The RTL for this design is seen in Figure 135 and this may be synthesized and then 
split across four FPGAs either manually or by using one of the automated 
partitioning methods discussed earlier. The values of the coefficients, although 
arbitrary, should all be different.  

Figure 135 : RTL code for FIR filter test design 

module TransposedFIRFilter (  
    input Clock, Reset,  
    input signed [17:0] Input,  
    output reg signed [35:0] Output  
    );  
      
    reg signed [17:0] InputReg1, InputReg2, InputReg3, InputReg4;  
    reg signed [35:0] TempOutput2, TempOutput3, TempOutput4;  
    parameter signed 
 Coeff1 = 18'd87256, 
 Coeff2 = 18'd1256, 
 Coeff3 = 18'd7344, 
 Coeff4 = 18'd32353; 
      
    always@(posedge Clock) begin  
        if(Reset == 1'b1) begin  
            InputReg1<= 0; InputReg2<= 0; InputReg3<= 0; InputReg
4<= 0;  
        end  
        else begin  
            InputReg1 <= Input; InputReg2 <= Input; InputReg3 <= 
Input; InputReg4 <= Input;  
        end  
    end 
      
    always@(posedge Clock) begin  
        if(Reset == 1'b1) begin  
            TempOutput4 <= 0; TempOutput3 <= 0; TempOutput2 <= 0; 
Output <= 0;  
        end  
        else begin  
            TempOutput4 <= InputReg4*Coeff4 + 0;  
            TempOutput3 <= InputReg3*Coeff3 + TempOutput4;  
            TempOutput2 <= InputReg2*Coeff2 + TempOutput3;  
            Output <= InputReg1*Coeff1 + TempOutput2;  
        end  
    end     
endmodule 
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The design is partitioned so that each tap (i.e., multiplier with its coefficient and 
adder) is partitioned into its own FPGA, as shown in Figure 136. Care should be 

taken with FPGA pinout and use of on-board traces to ensure that connectivity 
between the FPGAs is maintained.  

A logic analyzer is connected at the output and a pattern generator is connected at 
the input. Once the design is configured into the FPGAs then it can be tested by 
applying an impulse input as shown in Figure 137. The pattern generator can be 
used to apply the impulse input. An impulse input consists of a "1" sample followed 
by many "0" samples. i.e., for 8-bit positive integer values, then the input would be 
01h for one clock followed by 00h for every clock thereafter. As an alternative to 
using an external pattern generator, a synthesizable “pattern generator” can be 
designed in one of the FPGA partitions to apply the impulse input. This is a simple 
piece of logic to provide a logic ‘1’ on the least significant bit of the input bus for a 
single clock period after reset. 

The expected output from FPGA4 should be the same as the chosen filter 
coefficients and they should appear sequentially at FPGA4’s output pins as the 
pulse has been clocked through the filter (i.e., one clock after impulse input has 
applied in this 4-tap example), as shown in Figure 137. 

11.3.2. Building a library of bring-up test designs 
As the team becomes more familiar with FPGA-based prototyping, common test 
designs will be reused for different prototypes. It is advisable to create a way to 
share test designs amongst team members and across different projects. Creating a 
reusable test infrastructure with a library of known good tests usable on different 
boards is an investment that will benefit multiple prototyping projects and increase 
efficiency of our FPGA-based prototyping. This library could be considered in 
advance, or gradually built up with each new prototyping project. 

Figure 136 : FIR filter test design partitioned across 4 FPGAs 
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By running such simple designs on the prototyping board setup, the whole setup is 
tested for its basic functionality and we get comfortable with the FPGA-based 
prototyping flow. After running few designs on the board, we would know how to 
partition a design, synthesize and place & route them, create bit files, program the 
FPGAs with the bit files and do some basic debugging on the board. This 
knowledge would help us while debugging the real design on the board setup.  

By testing this design on board, we become familiar with the complete flow of 
partitioning a design across multiple FPGAs, managing the connections between 
them and running them on board. In fact, during early adoption of FPGA-based 
prototyping by any project team, this type of simple design is good for pipe-
cleaning methods to be used in the whole SoC design later. 

11.4. Ready to go on board? 

At this stage, some teams will decide to introduce the SoC design onto the FPGA 
board. It may have seemed like a long time to finally reach this stage but an 
experienced prototyping team will perform these test steps discussed in section 10.1 
in a few hours or days at most. As mentioned, a piecemeal approach to bring-up 
may save us a great deal of false debug effort.  

There is one further step which is recommended for first-time prototypers or any 
team using a new implementation flow and that is to inspect the output of the 
implementation flow back in the original verification environment. Our SoC design 
has probably undergone a number of changes in order to make it FPGA-ready, not 
least, partitioning into multiple devices. There may be other more subtle changes 
that may have crept in during the kind of tasks described in chapter 7 of this book. 
How can we check that the design is still functionally the same as the original SoC, 

Figure 137 : Expected FIR behavior across four FPGAs 
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or at least only includes intentional changes? The answer is to reuse the verification 
environment already in use for the SoC design itself. 

11.4.1.  Reuse the SoC verification environment 
As mentioned in chapter 4, the RTL should have been verified to an acceptable 
degree using the simulation methods and signed off as ready for prototyping by the 
RTL verification team. Their “Hello World” test will probably have already been 
run upon the RTL and it is very helpful if this same test harness can be reused on 
the FPGA-ready version of the design.  

We have seen that by reusing the existing SoC test bench we can identify 
differences between the behavior of the design before and after the design is made 
ready for the prototype. It is important that any functional differences between the 
SoC RTL and the FPGA-ready version can be accounted for as either intentional or 
expected. Unexpected differences should be investigated as they may have been 
introduced while we were preparing the prototype, often in the implementation 
process.  

11.4.2. Common FPGA implementation issues 
Despite all our best efforts, initial FPGA implementations can be different to the 
intended implementation. The following list describes common issues with initial 
FPGA implementations: 

• Timing violations: timing analysis built into synthesis and place & route 
tools operates upon each FPGA in isolation. Timing violations across 
multiple FPGAs, for example, on paths routed through FPGAs or between 
clock domains in different FPGAs, would not be highlighted during normal 
synthesis and place & route.  

• Unintended logic removal: it may not be obvious at first, but modules and 
IO seem to “disappear” from the resulting FPGA implementation due to 
minimization during synthesis. The common cause is improper 
connectivity or improper modules and core instantiations that result in un-
driven logic, which is subsequently minimized. Early detection of 
accidental logic removal can save valuable FPGA implementation time and 
bench debug time. A review of warnings and the FPGA resource 
utilization, especially IO, after design completion will indicate unintended 
logic removal, for example if there is a sudden unexplained drop in IO.  

• Improper inter-FPGA connectivity: despite all efforts, due to improper 
pin location constraints, the place & route process will assign IO to 
unintended pins resulting in unintended and incorrect inter-FPGA 
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connectivity. This often happens the first time a design is implemented or 
drastically modified. The remedy for this issue is to carefully examine the 
pin location report generated by the place & route tools for each FPGA and 
compare against the intended pin assignments. 

Let’s consider each of these types of implementation issues in more detail. 

11.4.3. Timing violations 
The design may have timing violations within an FPGA or between FPGAs. It is 
always advisable to run the static timing analysis with proper constraints on the post 
place & route netlist and make sure that all timing constraints are met. Even though 
FPGA timing reports consider worst case process, voltage and temperature (PVT) 
conditions, if timing constraints as reported by the timing analysis are not met, there 
is no guarantee the design will work on board.  

Here are some common timing issues we might face while analyzing timing on a 
design and some tips on how to handle them: 

• Internal hold time: if we are prototyping the design at a very slow clock 
rate then we might be tempted to think that there cannot be timing 
violations on today’s fast FPGAs. As a result we might not choose to run 
full timing analysis. However even in such scenarios, there can be hold 
time violations which will prevent the design from working on board. So, 
even if the timing requirements are very relaxed, FPGA internal timing 
should be analyzed with appropriate constraints and with the use of 
minimum timing models. 

• Inter-FPGA delays: careful analysis of inter-FPGA timing, taking in 
account board delays, should be made to ensure inter-FPGA setup and hold 
times are met. For this we need to know the appropriate board and cable 
delays to account for these either within the timing model or by setting 
appropriate constraints for whole-board timing analysis. If off-the-shelf 
standard prototyping boards and their associated standard cables are used 
for inter-FPGA connection then the expected board and cable delays 
should be available from the vendors. For example, the Synopsys HAPS 
series boards are designed to have track delays matched across the boards 
and between boards and delays are specified in terms of two constants, X 
and Y. We referred to these X and Y delay specs in the PLL discussion in 
section 5.3.1 and for a HAPS-54 boards for example the nominal values 
are X=0.44ns and Y=1.45ns. These values can be used to add delays into 
calculations for inter-FPGA delays.  

• It is an advantage if the boards are pre-characterized for use in timing 
analysis tools, as is the case for HAPS boards in the Certify® built-in 
timing analyzer. If a custom-made board or manual partitioning is used 
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then whole-board timing analysis would be more complex but could still 
be done as long-delay data could be provided by the PCB development and 
fabrication tools. 

• Timing complexity of TDM: If the prototype uses pin multiplexing to 
share one connection between FPGAs for carrying multiple signals, then 
the effect of this optimization on the inter-FPGA timing should be 
analyzed carefully. See chapter 7 for more consideration of the timing 
effects of signal multiplexing. 

• Input and output timing: constraints on all the FPGA ports through 
which the design interacts with the external world should not be neglected. 
Without proper IO constraints, the interface with the external peripherals 
may not work reliably. Timing is easier to meet if the local FF features of 
the FPGA’s IO buffers are used to their full extent, thus removing a 
potentially long routing delay from an internal FF to reach the IO Blocks 
(IOBs). As was shown in chapter 3, all the IOBs of the FPGAs have 
dedicated FFs for data input, output and tri-state enables. These FFs should 
be used by default by the synthesis and place & route tools, but may 
require some intervention using the tool-specific attributes.  

If the FFs have not been used properly during the implementation flow 
then timing problems may be introduced. For example, consider the 
simplified view of a typical FPGA IOB shown in Figure 138 and its use as 

Figure 138 : Typical FF arrangement in an FPGA IO cell 

 

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



    

324 Chapter 12: Breaking out of the lab: the prototype in the field 

a tri-state output pin. The recommendation is to use the FFs available in 
IOB for both the tristate control path and the output datapath.For tristate 
signals, timing advantage of using the IOB FF can be realized by using 
both the tri-state FF and output data FF. If neither FF is used then the extra 
routing delay in that path will nullify the timing advantage obtained in the 
other path.  

For example, if the output path uses its IOB FF and the tristate control path 
does not use its FF then the output data may indeed arrive sooner at the tri-
state buffer. The output data would only reach the PAD after the tri-state 
control reaches the tri-state buffer and after that buffer’s switch-on delay. 
In effect, the timing advantage produced by using the IOB FF in the 
datapath is offset by the non-optimal delay in the tri-state control path. 

Similarly, if the tri-state control path uses the IOB FF and output datapath 
does not use its FF then the tri-state buffer will put the previous output FF 
data at the output PAD when the tri-state control is asserted and after a 
little while the new data will arrive at the output PAD. This skew in the 
arrival time of tri-state control and data may introduce glitches at the PAD 
output which may or may not be tolerable at the external destination. 

• Inter-clock timing: as is true for all logic design, we should take special 
care with multi-clock systems when signals traverse between FFs running 
in different clock domains. If the two clocks are asynchronous to each 
other then there can be setup and hold issues leading to metastability 
(check references for more background on metastability). Avoiding 
metastability between domains is as much a problem in FPGA as it is in 
SoC design so similar care should be taken. In fact, the measures taken in 
the SoC RTL to avoid or tolerate metastability (e.g., double-latching using 
two FFs in series on the receiving clock) can be transferred directly into 
the FPGA but we should also apply all the timing constraints used for 
ASIC to the FPGA.  

• We can ensure that the probability of meta-stable states is within reason or 
otherwise take counter-measures. In either case we should reassure 
ourselves that the problem is under control before going onto the board. 
Timing analysis for each FPGA may indicate where metastability can 
occur. For example, Synopsys FPGA synthesis tools generate specific 
warning messages for signals traversing clock domain boundaries and 
these messages can be checked manually or by a script. This becomes more 
complex when analyzing multiple FPGAs. One suggestion is to avoid 
setting partition boundaries so that the sending FPGA and receiving FPGA 
are on different asynchronous clocks.  

• Gated clock timing: if there are gated clocks in the design which are not 
converted then there is potential for hold-time violations to occur inside the 
FPGAs, caused by clock skew and possibly even glitches on poorly 
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constructed clock gates (although the latter is a real bug and good to feed 
back to the SoC team). Preferably all gated clocks will have been 
converted using techniques discussed in chapter 7, but it is possible that 
some have been omitted or not converted correctly leading to timing issues 
after place & route. Close inspection of the synthesis tools report files for 
messages regarding the success or failure of gated-clock conversion can 
often give clues to the cause of unexpected timing violations. 

• Internal clock skew and glitches: we should be using the built-in global 
and regional clock networks which are inherently glitch free. Check for 
low-fanout clocks that have been accidentally mapped to non-global 
resources.  

• Timing on multiplexed interconnect: as we saw in chapter 8, the timing 
of TDM connections between FPGAs can be crucial. We need to ensure 
that the timing constraints on both the design clock and the transfer clock 
are correct and confirm that they are met by performing the post place & 
route timing analysis. It is especially important to re-confirm that the time 
delay between design and transfer clock is within limits, that the on-board 
flight time is not longer than expected, and that, if asynchronous TDM is in 
use, synchronization has been included between the design and transfer 
clock domains. 

We can see from these examples above that thorough timing analysis of the whole 
board is very useful and can discover many possible causes of non-operation of a 
prototype before we get to the stage of introducing the design onto the board. Any 
of these timing problems might manifest themselves obscurely on the board itself 
and potentially take days to uncover in the lab.  

11.4.4. Improper inter-FPGA connectivity 
Another difficult-to-find problem is improper connectivity between the FPGAs on 
the board. That is, signals between FPGAs which are misplaced so that the source 
and destination pins are not on the same board trace. Keeping correct contiguity 
between FPGA pins should be a matter of disciplined specification and automation. 
However, as the excerpt from a top-level partition view in Figure 139 shows us (or 
rather scares us), there will be thousands of signal-carrying pins on the FPGAs in a 
typical sized SoC prototype. If any one of these pins is misplaced (i.e., the signal is 
placed on the wrong pin) then the design will probably not behave as expected in 
the lab and the reason might prove very hard to find.  

If this happens then it is most likely during a design’s first implementation pass or 
after major RTL modification or addition of new blocks of RTL at the top level. 
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Pin location constraints are passed through different tools in the flow, usually from 
the partition tool to the synthesis tool to the place & route tool. If any of the 
different tools in the flow drops a pin location constraint for some reason then the 
place & route tool will randomly assign a pin location with only low probability that 
it will be in the correct place. The idea of pin placements being “lost” might seem 
unlikely but when a design stops working, especially after only a small design 
change, then this is a good place to look first.  

Possible reasons for pin misplacement include accidentally setting a tool control to 
not forward annotate location constraints. Another mistake is to rely on defaults that 
change from time-to-time or over tool revisions. A further example happens when 
we add some new IO functionality but neglect to add all of the extra pin locations. 
In every case, however, we will notice the missing pin constraints if we look at the 
relevant reports.  

We should carefully examine the pin location report generated by the place & route 
tools for each FPGA and compare against the intended pin assignments. In the case 
of the Xilinx® place & route tools, this is called a PAD report. Human inspection of 
such reports, which can be many thousands of lines long, might eventually lead to 
an error so some scripting is recommended. The script would open and read the pin 
location reports and look for messages of unplaced pins but while doing so, could 
also be looking for other key messages, for example, missed timing constraints or 
over-used resources. In the case of the pin locations, we might maintain a “golden” 
pin location reference for all the FPGAs so that the script can automatically 

Figure 139 : Certify® Partition View illustrating complexity of signals between 
FPGAs 
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compare this against the created PAD reports after each design iteration. This would 
add an extra layer of confidence on top of looking for the relevant “missing 
constraint” message. In addition, we could set up other scripted checks in order to 
compare any pin location information at intermediate steps in the flow, for example, 
between the location constraints passed forward by partition/synthesis to the place 
& route, and those present in the final PAD files. 

It is worth noting that if a commercial partitioning tool is used then inter-FPGA pin 
location constraints should be generated automatically and consistently by the tool, 
perhaps on top of any user-specific locations. In the case of Certify, if the 
connectivity in the raw board description files are correct and the assignments of all 
the inter FPGA signals to the board traces are complete then there is a very minimal 
risk that the pin locations will be lost of misplaced by the end of the flow.  

On the other hand, if we manually partition the design, then we need to carefully 
assign the pin location constraints for all the individual inter-FPGA connections as 
well as make sure that these are propagated correctly to the place & route stage, 
which can become a tedious and therefore error-prone task if not scripted or 
otherwise automated. 

If all this attention to setting and checking pin locations seems rather paranoid then 
it is worth remembering that there might be thousands of signals crossing between 
FPGAs. In the final SoC, these signals will be buried within the SoC design and the 
verification team will go to great lengths to ensure continuity both in the netlist and 
in the actual physical layout. A single pin location misplacement on one FPGA 
would be as damaging as a single broken piece of metallization in an SoC device 
and perhaps harder to find (albeit easier to fix). Therefore it pays to be confident of 
our pin locations before we load the design into the FPGAs on the board. 

11.4.5.  Improper connectivity to the outside world  
As well as between FPGAs, we need the proper connectivity between the FPGAs 
and any external interfaces. Some of the simplest but most crucial external 
interfaces are clock and reset sources, configuration ports and debug ports. The 
more sophisticated connections would be interfaces to external components like 
DDR SDRAM, FLASH and other external interfaces.  

Once again, the implementation tools rely on there being correct and complete 
information about physical on-board traces between the FPGAs and from the 
FPGAs to the external daughter cards which may house the DDR etc. On a modular 
system, with different boards being connected together, the board description will 
be a hierarchy of smaller descriptions of the sub-systems and with a little care, we 
can easily ensure that the hierarchy is consistent and that the sub-boards are 
themselves correctly described. It may be worthwhile to methodically step through 
the board description and compare it to the physical connection of the boards, 
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however, some systems will also allow this to be done automatically using scan 
techniques to interrogate each device on the boundary scan chain and check that 
they appear where they should, according to the board description.  

A commercial board vendor will be able to provide complete connection 
information for the FPGA boards and for their connection to daughter boards for 
this purpose. In such a board description, inter-FPGA connections on the board will 
be labeled generically because they might conceivably carry any signal (or signals) 
in the design.  

For connections to dedicated external interfaces, however, the signal on each 
connection is probably fixed e.g., a design signal called “acknowledge” must go to 
the “ack” pin on the daughter card’s test chip. In those cases, it can help to also give 
the traces in the board description the same meaningful name to make it is easier to 
verify the connectivity to external interfaces and match signals to traces. So for 
example, we can easily check that a trace called “ack” on the board is connected to 
a pin called “ack” on the daughter card and is carrying a signal called “ack” from 
the design. This naming discipline is especially useful for designs with wide bus 
signals.  

Some advanced partitioning tools will be able to recognize that signals and traces, 
or signals and daughter-card pins, have the same name and therefore quickly make 
an automatic assignment of the signal to the correct trace, which if the board 
description is correct, will automatically also assign the signal to the correct FPGA 
pin(s). All of our pin assignments would therefore be correct by construction. 

11.4.6.  Incorrect FPGA IO pad configuration 
When connecting various components at the board level, care must be paid to the 
logic levels of all interconnecting signals and be sure they are all compatible at the 
interface points. As well as having the correct physical connection, the inter-FPGA 
signals and those between the FPGAs and other components must be swinging 
between the correct voltage levels. As we saw in chapter 3, FPGA cores run at a 
common internal voltage but their IO pins have great flexibility and can support 
multiple voltage standards. The required IO voltage is configured at each FPGA pin 
(or usually for banks of adjacent pins) to operate with required IO standards and is 
controlled by applying the correct property or attribute during synthesis or place & 
route.  

This degree of flexibility must be controlled because a pin driving to one voltage 
standard may be misinterpreted if interfacing with a pin set to receive in a different 
standard. This may seem obvious but as with the physical connection of the pins, 
the scale of dealing with voltage standards on thousands of signals adds its own 
challenge. For all the inter-FPGA connections, the IO standards of the driving 
FPGA pin and the driven FPGA pin should be the same.  
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The partition tools should automatically take care of assigning the same IO 
standards for connected pins, or warning when they are not. The default IO standard 
for the synthesis and place & route may also suffice for inter-FPGA connections but 
it is not recommended to rely only on default operation. In addition, care should be 
taken when the design is manually partitioned.  

The board-level environment may also constrain the voltage requirement and we 
will need to move away from the default IO voltage settings. Then there are special 
considerations for differential signals compared with single-ended.  

 Let’s look at some of these board-level voltage issues here: 

• The correct IO standard for differential signals: on a prototyping board, 
it is likely that only a subset of traces can be used in differential mode. Not 
only must pin location constraints be correct to bring signals to the correct 
FPGA pins to use these traces but also the pin’s IO standard must be set 
correctly. It is a subtle mistake to have a differential signal standard at one 
end and single-ended standard at the other, so that even though the pins are 
physically connected, the signal will not pass correctly between FPGAs. 

• Voltage requirements for peripherals: for all the connections with 
external chips and IOs, we should first identify the IO standard of the pins 
of the external chips and IOs and then apply the same IO standards for the 
corresponding FPGA pin connected. 

• IO voltage supply to FPGA: while configuring a certain IO standard for a 
certain pin in an FPGA, we should connect the necessary voltage source to 
the VCCO pins and VREF pins of the FPGA’s corresponding IO bank. As 
discussed in chapters 5 and 6, the boards must have the flexibility to be 
able to switch different voltage supplies to different banks. We must then 
make sure that proper supply voltages are connected to all the VCCO pins 
according to the chosen IO standards. This is usually a task of setting 
jumpers or switches or, in some cases, of using a supervisor program to 
control on-board programmable switches, as seen in chapter 5. 

• Termination settings: some of the IO standards require appropriate 
termination impedance at the transmitting and receiving ends. The FPGA’s 
IO pads can be configured for different kinds of terminations and different 
impedances, for example using the digitally controlled impedance (DCI) 
feature in Xilinx® FPGAs. Once again, it is worth a quick check at the end 
of the flow to make sure that these are configured as expected. 

• Drive current: the ports in the FPGA which interact with external chipsets 
should be able to source or sink the required amount of drive current as 
specified in the data sheets of the external chipsets. The FPGA’s IOs can 
be configured to source and sink different currents, for example on normal 
LVCMOS pins on a Virtex®-6 FPGA, this can be programmed to be 
between 2mA and 24mA. This would have already been considered during 
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the early stages of the prototyping project but it is important that the FPGA 
pins be configured to supply the current or else inconsistent performance 
will result. This is one of those user-errors that can remain hidden for much 
of the project as in lab conditions we might be lucky while the peripheral is 
not running at full spec or otherwise does not demand full current from the 
FPGA pin. However, at other times the behavior of the design might 
become inconsistent for no apparent reason because the software might be 
using a feature of the peripheral not previously enabled.  

• Poor signal integrity: commercial prototyping boards typically have 
acceptable point-to-point signal integrity at the board level. the same board 
design will probably have been previously used for multiple designs 
worldwide. However, first time we use a custom-built boards we may need 
some careful analysis and debug for such issues. Even off-the-shelf 
systems can exhibit poor signal quality with “exotic” connectivity, for 
example, when creating buses shared by multiple FPGAs or cables that are 
too long or not properly terminated. It is always best to identify and fix the 
root causes when possible before programming the board with the real 
DUT. For marginal noise or signal quality issues, we can sometimes 
change the programmable slew rate and drive strength at the FPGA IO pin. 

11.4.6.1. NOTE: run scripts to check IO consistency 
Although most of the inter-FPGA IO considerations above will be managed by the 
partitioning tools and therefore consistent by construction, we should maintain a 
“golden” reference for IO standard, voltage, drive current and placement for the 
critical pins on the FPGA and certainly between the FPGAs and external 
peripherals. We can then compare the golden reference against the created PAD 
report for each FPGA, however, it is wrong to have to make repetitive manual 
checks on every iteration of the design, so it is worth taking the time to script these 
kinds of checks.  

We have mentioned how scripts can be used to automate these post-implementation, 
pre-board checks. Tools will have their own commands for generating reports on a 
large number of details, including top-level ports. A script can make multiple 
checks on such reports in the same pass, for example verifying that the IO standards 
could be combined with the pin location constraints, checking that every top-level 
port or partition boundary signal has an equivalent entry in the FPGA location 
constraints. Automatically running these scripts in a larger makefile process will 
prevent running on into long tool passes using data that is incomplete, and wasting a 
lot of time as a result. 
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11.5. Introducing the design onto the board 

Once we are confident that the platforms/boards are functional and we are confident 
of the results of our implementation flow then we can focus on introducing the 
FPGA-ready version of the SoC design onto the board. 

This first introduction should be done in stages because it is unlikely that every 
aspect of the design’s configuration will be correct first time. Some configuration 
errors have an effect of masking others and so bringing up the prototype in stages 
helps to reduce the impact of such masking errors.  

After checking the prototyping board setup with some test designs and verifying 
that there are no FPGA implementation issues, the actual design to be prototyped 
can be taken to the board. Here are some useful steps to follow: 

• Confirm that the prototyping board setup is properly powered up before 
programming the FPGAs. Then we can program all the FPGAs with the 
corresponding generated bit files. Please refer to FPGA configuration in 
the chapter 3 and external references noted in the appendices for further 
details on configuring the FPGAs. There are dedicated “DONE” pins in all 
Xilinx® FPGAs which get asserted when the FPGAs are programmed 
successfully. In off-the-shelf prototyping boards like HAPS boards, these 
DONE pins are connected to LEDs on the boards so that the LEDs glow 
when the FPGAs are programmed successfully. It is advisable to check and 
make sure that all these LEDs glow to indicate the success of programming 
all the FPGAs. During configuration, some FPGAs can draw their peak 
current, owing to the large number of elements switching inside the device 
fabric. This peak may be high enough to overload the board’s power 
supply. This is not to say the power distribution to the devices which 
should have been considered by the board developers long before its use in 
the lab. A more common power supply error during configuration is to 
have current limit on the lab power source set too low, leading to voltage 
rail brown-out during configuration. 

• After programming the FPGAs and releasing the reset, it is worth doing a 
simple check to see that voltage rails are sound while the FPGAs are 
running. Some power supplies can power the bare prototyping boards but 
not when a real design is running on the FPGAs. Some commercial 
prototyping boards such as HAPS have built-in “power good” indicators 
and voltage sensing components which can be read by a supervisory 
program to help in this task.  

• Initial checks can be performed at the inputs and outputs of the FPGAs and 
external components. Checking the inputs first makes sense and if these are 
valid, then move on to the FPGA outputs. Some of the inputs which need 
to be checked first are the clock and reset inputs, especially those which 
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are derived inside other the FPGAs. The inputs which are driven by any 
external chipsets should also be checked. Sometimes there are circular 
dependencies which can prevent start-up of the SoC design in FPGA. For 
example, the reset for one FPGA is driven by logic in another which 
depends upon a signal driven from the first FPGA. 

• If all the inputs are valid then we can check all the outputs from the FPGAs 
and this leads us onto the subject of probing the FPGA. This is covered in 
depth in the next section. 

• If the design spans multiple FPGAs, then start the debugging by checking 
the functionality of the parts of the design which reside in a single FPGA. 
This will eliminate the possibilities of problems in the inter-FPGA 
connections, complex pin multiplexing schemes, cables, connectors and 
traces on the prototyping boards.  

• If the design has lot of interactions with external chip sets and IOs, then 
test all the parts of the design which reside only inside the FPGAs initially. 
This will eliminate the possibilities of problems in the external chipsets 
and problems occurring in the interactions. 

11.5.1. Note: incorrect startup state for multiple FPGAs 
A common issue with multi-FPGA systems is the improper startup state. In 
particular, if the FPGAs do not all start operating at the same time, even if they are 
only one clock edge apart, then the design is very unlikely to work.  

Consider the simple case of a register-to-register path sharing a common clock. If 
the source and destination registers are partitioned into separate FPGAs and the 
receiving FPGA becomes operational just one clock cycle after the sending FPGA, 
then the first register-to-register transmission will be lost. Conversely, if the sending 
FPGA becomes operational one clock later than the receiving register, then the first 
register-to-register data may be random and yet still be clocked through the 
receiving FPGA as valid data. This simple example shows how there might be 
coherency problems across FPGA boundaries right from the start. These startup 
problems can also occur between FPGAs and external components such as 
synchronous memories or sequenced IOs.  

A number of factors determine the time it takes for an FPGA to become operational 
after power up or after an external hard reset is applied, and it can vary from one 
FPGA to another. Prime examples are clocking circuitry (PLL/DCM) that use an 
internal feedback circuit and can take a variable amount of time to lock and provide 
a stable clock at the desired frequency. In addition, any hard IO such as Ethernet 
PHY or other static hardware typically becomes operational much sooner than the 
FPGAs as they do not need to be configured.  
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When the design shows signs of life but not as we know it, then one place to look is 
at this startup synchronization.  

The remedy for the synchronized startup condition issue is a global reset 
management, where all system-wide “ready” conditions are brought to a single 
point and are used to generate a global reset. This is covered in detail in chapter 8. 

11.6. Debugging on-board issues 

After giving ourselves confidence that the FPGA board is fully functional and 
configured correctly, and also having checked the implementation and timing 
reports for common errors, we can consider that our platform is implemented 
correctly. From here on, any functional faults in the operation of the design will 
probably be bugs in the design itself that are becoming visible for the first time. The 
prototype is starting to pay us back for all our hard work. 

The severity and number of the bugs discovered will depend upon the maturity of 
the RTL and how much verification has already been performed upon it. We shall 
explore in the remainder of this chapter some common sources of faults. 

11.6.1. Sources of faults 
Every design is different and we cannot hope to offer advice in this manual on 
which parts of the design to test first or which priority to place on their debug. 
However, we can offer some guidance on ways to gain visibility into the behavior 
and some often-seen on-board problems. 

Assuming the design was well verified before its release to use, we should be 
looking for new faults to become evident because the design on the bench is 
exposed to new stimulus, not previously provided by the testbench during 
simulation. The cause of such faults can be found in three main areas, as listed in 
Table 29. 

Table 29: Three main kinds of SoC bug discovered by FPGA-based Prototyping 

1.  Logic bugs Undiscovered  RTL errors in the SoC design 
 (e.g., real world data-dependency) 

2. Interface bugs Unforeseen external interface issues 
 (e.g., drive, standards) 

3. Software bugs First seen during software-hardware integration 
 (e.g., hard-to-find bugs in the software) 
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Type 1 bugs should be caught by the normal RTL verification plan and as 
mentioned previously, an FPGA-based prototype is not the most efficient way to 
discover RTL bugs, especially when compared to an advanced verification 
methodology like VMM. Nevertheless, RTL bugs do creep into the prototype either 
because there is an unforeseen error exposed by real-world data or because the RTL 
issued to the prototyping team is not fully tested. 

Type 2 bugs are related to the SoC’s interface with external hardware. All SoC’s are 
specified to be used in a final product or system but there is a diminishing return on 
making specifications ultra-complete. Eventually there may be some combination of 
external components that do not fit within the spec and the design needs to be 
altered to compensate. This is often the case when extensive use of IP means that 
the SoC is the first platform in which a certain combination of IP has ever been used 
together. Alternatively, the design itself may be an IP block that is being specified 
to run in a number of different SoC designs for different end-users. Predicting every 
possible use of the IP is hard and corner cases are often discovered during the 
prototyping stage. 

Type 3 bugs are the most valuable for the prototyping team to find. The prototype is 
the first place where the majority of the embedded software runs on the hardware. 
The interface between software and hardware is very complex having time 
dependency, data dependency and environmental dependency. These dependencies 
are difficult to model properly in the normal software development and validation 
flows, therefore on introduction to real hardware running at (or near) real-speed, the 
software will tend to display a whole new set of behaviors. 

Any particular fault may be a combination of any two or indeed all three types of 
bug, so where do we start in debugging the source of a fault?  

11.6.2. Logical design issues 
Assuming that our newly found bug is not a known RTL problem, already 
discovered by the verification team since delivering the RTL for our prototype 
(always worth checking), we now need to capture the bug. We need to trace enough 
of the bug-induced behavior in order to inform the SoC designers of the problem 
and guide their analysis. This means progressively zeroing-in on the fault to isolate 
it in an efficient and compact form for analysis, away from the prototype if 
necessary.  

The first step in identifying the fault is to isolate it to the FPGA level. To 
accomplish this, we need visibility into the design as it is running in the FPGAs. As 
mentioned in chapters 5 and 6, it is good practice to provide physical access to as 
many FPGA pins as possible so that they can be probed with normal bench 
instruments such as scopes and logic analyzers. Test points or connectors at key 
pins will hopefully have been provided by the board’s designers for checking key 
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signals, resets, clocks, etc. However, most FPGA pins will usually be unreachable, 
being obscured as they are by the FPGAs ball grid array (BGA) package and 
therefore we need some other form of instrumentation. 

The simplest type of instrumentation is to sample the pins of the FPGA using their 
built-in boundary scan chains, often referred to by the name of the original industry 
body that developed boundary scan techniques, JTAG (Joint Test Action Group). 
FPGAs have included JTAG chains for many years, primarily to assist test during 
manufacture and ensuring sound connection for BGAs. JTAG is most commonly 
known to FPGA users as one of the means for configuring the FPGA devices via a 
download cable. JTAG allows the FPGA’s built-in scan chains to be used to drive 
values from the FPGA pins internally to the device and externally to the 
surrounding board. Through intelligent use of the JTAG chains and intelligent 
triggering of the sample by visible on-board events, a JTAG chain can capture a 
series of static snapshots of the pin values, helping to add some visibility to a debug 
process. 

Greater visibility at FPGA boundaries or at critical internal nodes is provided by 
instrumentation tools such as ChipScope and Identify as described in chapter 3. As 
with any of these tools, there is an inverse correlation between how selective we are 
in our sampling ‘vs’ the amount of sample data. Since data is usually kept in any 
unused RAM resources available in the FPGA, we should expect that we will not be 
able to capture more than a few thousand samples of a few thousand nodes in the 
FPGA. Therefore we need to use some of our own intelligence and debug skills in 
order focus the instrumentation on the most likely sites of the fault and its causes.  

A good Design-for-Prototyping technique is for the RTL writers to create a list of 
the key nodes in their part of the design i.e., a “where would you look first” list. 
This list would be a useful starting point for applying our default instrumentation. 

11.6.3.  Logic debug visibility 
There is a traditional perception that FPGA-based prototyping has low productivity 
as a verification environment because it is hard to see what is happening on the 
board. Furthermore, the perception has been that even when we can access the 
correct signals, it is difficult to relate that back to the source design.  

It is certainly true that FPGA-based prototypes have far lower visibility than a pure 
RTL simulator, however, that may be the wrong comparison. The prototype is 
acting in place of the final silicon and as such it actually offers far greater visibility 
into circuit behavior than can be provided from a test chip or the silicon itself. 
Furthermore the focus of any visibility enhancement circuits can be changed, 
sometimes dynamically. 
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As a short recap on the debug tools explored in chapter 3, we can gain visibility into 
the prototype in a number of ways; by extracting internal signals in real-time and 
also by collecting samples for later extraction and analysis.  

Real-time signal probing: in this simplest method of probing designs’ 
internal nodes, we directly modify the design in order to bring internal 
nodes to FPGA pins for real-time probing on bench instruments such as 
logic analyzers or oscilloscopes. This is a common debugging practice and 
offers the benefit that, in addition to viewing signals’ states, it is also easier 
to link signal behavior with other real-time events in the system.  

Embedded trace extraction: This approach generally requires EDA tool 
support to add instrumentation logic and RAM in order to sample internal 
nodes and store them temporarily for later extraction and analysis. This 
method consumes little or no logic resource, very little routing resource 
and only those pins that are used to probe the signals.  

We shall also look at two other ways of expanding upon debug capability, 
especially for software: 

Bus-based instrumentation: some teams instantiate instrumentation 
elements into the design in order to read back values from certain key areas 
of the design, read or load memory contents or even to drive test stimulus 
and read back results. These kinds of approaches are often in-house 
proprietary standards but can also be built upon existing commercial tools. 

Custom debuggers: parts of the design are “observed” by extra elements 
which are added into the design expressly for that purpose. For example, a 
MicroBlaze™ embedded CPU is connected onto the SoC internal bus in 
order to detect certain combinations of data or error conditions. These are 
almost always user-generated and very application-specific.  

11.6.4. Bus-based design access and instrumentation 
The most commonly requested enhancements to standard FPGA-based prototyping 
platforms are to increase user visibility and access to the system, including remote 
access. We have seen how tools like Identify® and Xilinx® ChipScope tools offer 
good visibility into the prototype but these communicate with their PC-hosted 
control and analysis programs via the FPGA’s JTAG port. As mentioned, the 
bandwidth of the JTAG channel can limit the maximum rate that information can be 
passed into or out of the prototype. If we had a very high bandwidth channel into 
the prototype, what extra debug capability would that give us? 
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Debug situations where higher bandwidth would be useful include: 

• High speed FPGA configuration  

• High performance memory access 

• High speed download and upload of software images  

• On-the-fly capture and pre-setting of memories 

• High-performance data streaming 

• Remote configuration and management 

We can provide a higher bandwidth interface by using a faster serial connection or 
by using a parallel interface, or even a combination of the two. Very fast serial 
interfaces from a host directly into FPGA pins on a board is a difficult proposition 
but we could envisage a USB 2.0 connection and embedded USB IP in the design 
which might be used for faster communication, replacing the standard JTAG 
interface.  

A simpler approach used by a number of labs is the instantiation in the design of 
blocks which can receive data in a fast channel and distribute it directly into parts of 
the design via dedicated fast buses. The instantiated block could be a simple register 
bank into which values can be written which then override existing signals in the 
design. Another use of a bus-based debug block might be to act as an extra port into 
important RAMs in the design, for example, changing a single-port RAM into a 
dual-port RAM so that the extra port can be used to pre-load the RAM. 

The advantages of this kind of approach are clear, but even with the use of our 
chosen hardware description language’s cross-module references this might mean 
some changes to the RTL. However, much of this change could be automated, or 
inserted after synthesis by a netlist editor. It might even be adopted as a company-
wide default standard, much as certain test or debug parts are added into SoC design 
for other purposes during silicon fabrication. 

These advanced communication and debug ports are traditionally the reserve of 
tools which work on emulator systems but are starting to become more common in 
FPGA-based prototypes as well. One example of this is the Universal Multi 
Resource bus (UMRBus®) interface originally developed by one of the authors of 
this book, René Richter, along with his development director at Synopsys, Heiko 
Mauersberger (in fact, their names were the original meaning of the M and the R of 
UMRBus). 

UMRBus, as the new name suggests, is a multi-purpose channel for high-bandwidth 
commutation with the prototype. It works by placing extra blocks into the design 
and linking them together via a bus-based protocol which also communicates back 
to PC-host. There are a number of blocks and other details which we will not cover 
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here, but at the heart of the UMRBus is a simple block called a client application 
interface module, or CAPIM, a schematic of which is shown in Figure 140. 

As we can see in the diagram, a CAPIM appears as a node on a ring communication 
channel, the UMRBus itself, which carries up to 32 bits of traffic at a time. We can 
choose a width which best suits the amount of traffic we want to pass. For example, 
for fast upload of a many megabytes of software image, we might use a wider bus 
but for setting and reading status registers in the design a 4-bit bus might suffice, 
saving FPGA resources. Each CAPIM is connected into the design, often using 
XMRs to save boundary changes, to any point of interest. 

In Figure 141, we can see the use of three CAPIMs on the same UMRBus, each 
offering access and control of a different part of the prototype. In this example, 
UMRBus is allowing read and load of a RAM, of some simple registers and test 
points or to allow reprogramming of the book code in the design.  

These functions might all be in the same FPGA or spread across the board across 
different segments of a UMRBus. Similar in-house proprietary bus-based access 
systems should also be designed to allow for multi-chip access and cross-triggering. 

Figure 140 : Client application interface module (CAPIM) for UMRBus® 
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11.6.5. Benefits of a bus-based access system 
Some labs have developed their own variations on this bus-based approach and each 
will have its own details of operation, however, the general aims and benefits are 
the same as those listed above, so let’s explore how this extra capability can help the 
FPGA-based prototyping project. 

• High speed FPGA configuration: higher bandwidth access to the 
prototype significantly speeds up the speed at which designs can be 
downloaded onto the board compared to serial methods typically used. 
This is especially valuable early in the design cycle when hardware-related 
design changes most often occur and we are debugging the design’s first 

Figure 141 : UMRBus with three CAPIMs connected into various design blocks 
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runs on the board. The use of a GUI or a command-line interface for 
configuration and programming benefits greatly from “instant” access and 
fast configuration, avoiding those irritating delays for a few minutes 
configurations time. 

• An example of a configuration approach which uses a proprietary bus-
based interface is the CONFPRO unit from Synopsys which uses the 
UMRBus protocol to send large amounts of data over USB to an embedded 
supervisor on the FPGA board which configures the FPGAs in one of their 
faster parallel modes (see chapter 3) rather than via a JTAG cable. 

• High performance memory access: the ability to read and write directly 
to the memory on the FPGA-based prototype can dramatically reduce 
bring-up time. On a prototype there can be many megabytes of the FPGA’s 
internal RAM in use at any time. Memory pre-load and read-back 
functions can be more easily implemented if an extra bus is placed into the 
prototype for that purpose rather than trying to employ the SoC’s own 
CPUs and buses to achieve the same result. We can avoid software rework 
or scheduling issues involved in having the SoC CPUs simply listen to a 
host-controlled port and pass data to a RAM. 

• Direct access to memory via something like the UMRBus enables us to 
view memory contents and also rapidly download, upload and compare 
large quantities of memory content under script control or via TCL 
commands. A lab library of pre-defined interface objects might be 
available for connection to our debug bus, such as memory wrappers, 
which provide a second port into a RAM. This minimizes the need for on-
the-spot modeling of many components and speeds access to the system 
during debug. For example, Synopsys keeps pre-defined IP in the form of a 
UMRBus-to-SDRAM component, which enables direct access to SDRAM 
for programming, pre-load and read-back without re-synthesis and/or place 
& route changes. 

• High speed upload of software images: a specific use of the fast-memory 
access is for loading software images. Since the major use of the prototype 
may be for enabling a fast and direct platform for the software team, we 
should enable their normal fast and iterative working methodology. A 
software image ready for loading into the CPU might be very quickly 
generated using the normal compile and linking tools. It would then be 
irritating if it took far longer to load the result into the platform in order to 
run in. Estimates by colleagues using JTAG-based interfaces tell of 30 
minutes to upload a typical software image. This could be cut to 
considerably less than a minute using a higher-bandwidth interface. 

• High-performance data streaming: another use of the faster access into 
the prototype might be to input data streams from the host at a rate fast 
enough to fool the SoC design into thinking that it is coming from the real 
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world. Some types of data input might not be suitable for this approach, for 
example, interactive data or data with a high-rate of delivery such as raw 
network traffic. Other data, such as imaging or audio data would fit 
particularly well into this approach. We could, for example, deliver 
recorded video to the SoC from the host via a bus-based interface to test 
the software’s capability in a certain video processing task. 

• It is a short step from this proprietary data delivery to adopting an industry 
standard for passing data and even transactions into and out of the 
prototype. We shall explore this area further in chapter 13. 

• Remote configuration and management: with advanced bus-based 
access, we can remotely access and program the prototype via a host 
workstation. Board types and configurations could be scanned and their 
setup requirements automatically detected. Board initialization, 
configuration and monitoring could then be handled remotely, lightening 
the burden for a non-expert end-user. For this, it may be necessary to drive 
the bus-based access from a standard interface port, such as USB. This 
could be performed via a hardware adaptor which runs the bridge from 
PCIe (in this case) to the on-board bus access. In the HAPS-60 series of 
boards, a hardware interface module called CONFPRO connects the PCIe 
interface on the host workstation to the UMRBus interface on the 
prototyping system.  

In very advanced cases, the bus-based access can become a transport medium for 
protocol layers but this might be a large investment for most project-based labs, 
therefore we might expect these types of advanced use modes to be bought in as 
proven solutions from commercial board and tool vendors. 

Once we start to employ the most sophisticated methods for debug and 
configuration of the system, we might begin to explore other use modes including: 

• Direct link to RTL simulator 

• Support for transaction-based interface via SCE-MI  

• Hybrid system prototyping with virtual platforms 

We shall explore these in chapter 13. 

11.6.6. Custom debug using an embedded CPU 
Most of the SoC designs which have embedded processors would also have built-in 
custom debuggers. These custom debuggers would be used to connect to the 
processor bus present in the SoC designs, usually to load software programs to be 
run on the processor, debug the software programs by single stepping or breakpoints 
and access all the memory space of the processor bus. These custom debuggers will 
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be present inside the design which will be connected to the external world through 
some dedicated IO ports. Usually a debugging software utility running on a laptop 
will be connected to these FPGA IO ports using some hardware connected through 
USB or other IO ports as shown in Figure 142. Using the software utility we can 
load programs into the program memory, debug the software and access the 
memory space in the SoC.  

If the design to be prototyped has this debugger, then it can be used to debug the 
design if it doesn’t work on the board. We should take the dedicated IO ports 
coming from the inbuilt debugger out of the prototyping board using IO boards or 
test points. Then the debugging software utility can be connected to these IO ports. 
After programming the FPGAs, the software utility can be asked to connect to the 
internal debugger present in the design. Upon successful connection to the internal 
debugger, we can try to read and write to all the different memory spaces in the 
processor bus. Then a simple program can be loaded and run on the processor 
present in the design. Finally the actual software debugging can happen over the 
real design running on the prototyping board.  

11.7. Note: use different techniques during debug 

Some might say that on-the-bench debug of any design, not just FPGA-based 
prototypes, is more intuition that invention. Debug skills certainly are hard to 
capture in a step-by-step methodology, however, it is a good start to put a range of 
tools in the hands of experienced engineers. On the bench, it is common to find a 
combination of these different debug tools in use, such as real-time probing, non 
real-time signal tracing and customer debuggers.  

Figure 142: Software debugger linked into FPGA-based prototype 
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For example, if a certain peripheral like a TFT display driver in a mobile SoC chip 
is functioning improperly then we might try to debug the design though the custom 
debugger first. We could read and write a certain register embedded in the specific 
peripheral through the customer debugger to check basic access to the hardware. 
Then we can try to tap onto the internal processor bus through Identify instrumentor 
and debugger by setting the trigger point as the access to the address corresponding 
to the register. With the traced signals we can identify whether proper data is read 
and written into the register. Then we can connect the oscilloscope or logic analyzer 
on the signals which are connected to the TFT display to check whether the signal 
are coming appropriately when a certain register is read and written. Of course, all 
of these steps might be performed in a different order as long as we are successful. 
With this combined debug approach we can debug most of the problems in the 
design. 

11.8. Other general tips for debug  

One of the aims of the FPMM web forum which accompanies this book is to share 
questions and answers on the subject. The authors fully expect some traffic in the 
area of bug hunting in the lab and to get us started, here is a miscellaneous list, in no 
particular order, of some short but typical bug scenarios and their resolutions.  

Many thanks to those who have already contributed to this list. 

• Divide and conquer: if there are multiple interfaces to the external 
chipsets, we can test them one by one. Start with the obvious and visible 
before moving to the obscured and invisible. For example, taking one non-
working interface at a time, the interface signals can be probed to see 
whether the protocol is followed as per the expectations. If they were not 
followed, we can probe the internal part of the design flow (may be a state 
machine) which produces those external signals inside the FPGA using 
Identify or ChipScope, to check whether the flow is proper inside the 
design. By this way we can test and make sure all the individual interfaces 
are operating as expected.  

• Check external chipsets: the problem may not be in the FPGAs at all. If 
an external chipset is showing unexpected behavior, then we can try to test 
the design on the board using synthesizable model of such chipsets 
implemented temporarily in an FPGA instead. If the synthesizable model is 
not available for the chipsets then we can consider creating such models 
themselves or use a close equivalent available as open source. If the 
functionality is very complex, then at least a model which takes care of the 
interface part giving some dummy data would be sufficient to test the main 
design. The open source website www.opencores.org is a good source for 
synthesizable RTL. Some chipsets have data such as vendor ID or release 

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



    

344 Chapter 12: Breaking out of the lab: the prototype in the field 

version hardcoded within them, which can be read through the standard 
interface. The testing of those external chipsets can be started by reading 
and verifying such hardcoded data first. This way we can make sure that 
the interface between the external chipset and the design on the prototyping 
board works correctly.  

• Tweak IO delays: if the input and output delay requirements are not met 
then the sampling of data inside the FPGA and external chipset will be 
affected, which can cause data corruption. If this is suspected, then we can 
try to introduce IODELAY elements present in Xilinx® FPGAs in the data 
and clock path. IODELAYs are programmable absolute delay elements 
which can be applied in primary IO paths inside FPGAs. By varying the 
delay in these blocks, we can make sure that the inputs and outputs are 
sampled correctly. 

• Tweak clock rate: clock rate can be suspected when the design on board is 
not dead but the operation of the design is not as expected. For example, 
reading and writing to a memory space might be working but the data read 
might not be consistent with the written data. If timing issues are suspected 
(and the PLLs etc. allow running at reduced rates) then we may try to run 
the system temporarily at reduced clock rate. Often the system can show 
more signs of life at the reduced clock. 

• Understand critical set-up needs: for the design to behave properly, 
internal blocks might have to be configured in a certain way but some are 
more critical than others. We should like to be able to rely on 
documentation sent from the SoC team which highlights the most critical 
setup. For example, there could be an internal register controlling the 
software reset of the entire design which might have to be written with a 
valid value initially to make the design work. As a further example, there 
could be a mode register which, by default, could be in sleep mode that 
needs to be written with a valid value to make it active. Similarly some of 
the external chips might have to be configured in a certain way to make the 
whole prototyping system work. For example, to make a camera image 
sensor to send proper images to the FPGA, the internal gain registers in the 
sensor might have to be configured to a certain non-default value. 

• Check built-in security: documentation should record any necessary 
security or lock cells in the design or external IP. For example, a security 
code which checks for certain values in an internal ID register, but omitting 
it means that the prototype will seem alive but unresponsive. As another 
example, the boot code running the internal process might expect a key 
bitstream to be present in a flash memory or an external ROM in order to 
proceed. In such scenarios, it is worth asking again if any such keys are 
required in the SoC design, just in case documentation has not kept up with 
the RTL. 
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• Challenge basic assumptions: one obstacle to debug can be an 
assumption that the obvious is already correct. We are not asking to check 
if the power cable is connected (there is a limit) but some basic 
assumptions should be re-checked, such as little endian-ness and big 
endian-ness between the buses on FPGAs and any external chipsets or 
logic analyzers added for prototyping purposes. Another example is to 
check if any transmit and receive ports in the design should be connected 
to the external chipsets directly or with crossed wires. 

• Terminations: many interface formats such as I2C or PCI or SPI, etc. need 
the physical lines on the board to be terminated in a certain way. We could 
check if those lines are terminated as required, if connectors are 
intermittent or if there are local voltage rails issues preventing correct 
termination.  

• Check IP from the outside-in: while testing the IPs, test the interfaces to 
the IPs and not the functionality of the IPs themselves. After all, the IPs 
should have been tested exhaustively by the IP vendor themselves so at 
least we can initially assume that the IP should work as expected on the 
FPGA. However, if the IP has been delivered as RTL and not supported for 
use on FPGA by the vendor/author then we might need to challenge this 
assumption. IP interfaces can be probed out through logic analyzers or 
embedded debuggers like Identify or ChipScope. 

• Reusing boards allows shortcuts: we could start a debug process from the 
IPs or design blocks which were known to be working well on the board in 
a previous project. For example, if the design has a processor and many 
peripherals we might start with a USB IP which was successfully 
prototyped earlier. By making sure that the USB IP works fine along with 
the processor, we can get assurance that at least some software code and 
the bus through which processor and peripherals communicate is also 
functioning properly. Then we can debug the new peripherals from a good 
foundation.  

• Test GTX pins first, test protocol second: if the design uses any high 
speed gigabit transceivers then we can use the integrated bit error ratio 
tester (IBERT) built into the Xilinx® ChipScope tools. IBERT helps to 
evaluate and monitor the health of the transceivers prior to testing the real 
communications through that channel on the board. Only when we are sure 
about the physical layer should we move on to use our protocol analyzers 
or bus-traffic monitors.  

• Use sophisticated analyzers: these analyzers can offer real-time protocol 
checks, bus performance statistics and can monitor bus latencies. We can 
also add external bus exercisers to more easily force behavior on the 
system buses so interference or other de-rating is taking place on the bus 
inside the prototype. If external equipment is not available, then custom-
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written synthesizable bus exercisers and bus analyzers might be used. We 
could consider adding a known, simple checker into the design in order to 
later use it for checking good bus behavior or forcing traffic. 

These are a few of the ideas that Synopsys support staff and end-users have shared 
over many years of successful prototyping and at time of writing, the authors look 
forward to hearing many more as the FPMM website goes live. 

11.9. Quick turn-around after fixing bugs 

Debugging can become an iterative process and given that the time taken to process 
a large SoC design through synthesis and place & route might be many hours, if we 
find ourselves wasting a lot of time just waiting for the latest build in order to test a 
fix, then we are probably doing something wrong. 

Here are three approaches we recommended in order to avoid this kind of painful 
“debug-by-iteration.” 

• Stick to a debug plan 

• Use incremental tool flows 

• Both of the above 

A debug plan for a prototype is much like a verification plan for the SoC design as a 
whole. As a full rerun of the prototype tool chains for large designs might take more 
than a whole day, we need to have clear objectives for the build, which we should 
aim to meet before re-running the next build. A debug plan sets out the parts of the 
design which will be exercised for each build and also a schedule of forthcoming 
builds. This is particularly useful when multiple copies of the prototype are created 
and used in parallel. Revision control for each build and documentation of included 
bug fixes and other changes are also critical. This is all good engineering advice, of 
course, but a little discipline when chasing bugs, especially when time is short, can 
sometimes be a rare commodity. With a good debug plan in place and a firm 
understanding of the aims and content of each build, a regime of daily builds can be 
very productive. 

A day’s turn-around is an extreme example and in some cases it would be much less 
than that. For example, a bug fix that requires a change to only one FPGA will not 
require the entire flow to be rerun. The partitioner may work on the design top-
down, but for small changes, the previous partition scripts and commands will still 
be valid. As mentioned in chapter 4, a pre-synthesis partitioning approach helps to 
decrease runtime in this case because synthesis and place & route take place only on 
the FPGA that holds the bug fix. 

To achieve a faster turn-around on small changes we can use incremental flows and 
we shall take a closer look at these now. 
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11.9.1. Incremental synthesis flow 
As mentioned in chapter 3, both synthesis and place & route tools have the ability to 
reuse previous results and only process new or changed parts of the design. 
Considering synthesis first, the incremental flow in most tools was created to reduce 
the overall runtime taken to re-synthesize a design when only a small portion of the 
design is modified. The synthesis will compare parts of the design to the same parts 
during the previous run. If they are identical then the tools will simply read in the 
previous results rather than recreate them. The tool then maps any remaining parts 
of the design into the FPGA elements instead of the entire design, combining the 
results with those saved from the previous runs of the unchanged parts in order to 
complete the whole FPGA. This incremental approach can save a great deal of time 
and takes relatively small effort to set up. 

In Synopsys FPGA tools, incremental synthesis is supported by the compile point 
synthesis flow. In the compile point flow, we manually divide the design into a 
number of smaller sub-designs or compile points (CPs) that can be processed 
separately. This does not require any RTL changes but is controlled by small 
changes in the project and constraint files only, and can even be driven from a GUI.  

A CP covers the subtree of the design from that point down although CPs can also 
be nested as we can see in Figure 143. 

Figure 143: possible arrangement for Compile Points during FPGA Synthesis  
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The design can have any number of compile points, and we do not have to place 
everything into CPs because the tool makes the top-level a CP by default. Therefore 
the simplest approach might be to define CPs on all the modules which are frozen or 
are not expected to change, allowing the tools to simply reuse the previous results 
for that CP. 

Since each CP will be synthesized separately, we must define a separate constraint 
file for each one which will include many of the same clock and boundary 
constraints that we would need if the CP block was being assembled in a bottom-up 
flow, or as a standalone FPGA. Details are of constraints available in the references 
but the aim is that for a small up-front effort in time budgeting or by limiting our CP 
boundaries to registered signals, we can dramatically reduce our turn-around time. 

The tool needs to be able to spot when the contents of a CP have changed it 
achieves this by noticing when the CP’s RTL source code logic or its constraints 
have changed. Changes to some implementation options (such as retiming) will also 
trigger all CPs to be re-synthesized.  

There is no such thing as a free lunch, however, and in the case of incremental flows 
the downside is that there may be a negative impact on overall device performance 
and resource usage. This is because cross-boundary optimizations may be arrested 
at CP boundaries and so some long paths may not be as efficiently mapped as they 
would have been had the whole design been synthesized top-down. In Synopsys 
FPGA synthesis this can be mitigated to some degree and the amount of boundary 
optimizations across the CP boundary can be controlled by setting the CP’s type as 
either “soft,” “hard” or “locked.” 

Another reason that incremental flows might not yield the highest performance 
results is that the individual timing constraints for each CP may not be accurate as 
they rely on estimated timing budgeting or user intervention. Conversely, this might 
be seen as an advantage since we might purposely choose to tighten or relax the 
constraints for each CP in order to focus the tool’s effort on more difficult-to-
achieve results for certain parts of the design, while relaxing others to save area or 
runtime. 

Readers might be struck by the similarity between CP incremental synthesis and 
traditional bottom-up synthesis of a design block-by-block. However, the scripting, 
partitioning and resource management involved in a traditional bottom-up flow is 
sometimes seen as too much of an investment for a prototyping team. There is also 
the problem of tracking exactly which files are to be re-synthesized in the new 
build. In a design of thousands of RTL files, automation is very desirable. 
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11.9.2. Automation and parallel synthesis 
If the workstation upon which the FPGA synthesis is running has multiple 
processors then the synthesis task can be spread across the available processors, as 
shown in Figure 144.  

With such multiprocessing enabled, multiple CPs can be synthesized simultaneously 
further reducing the overall runtime of synthesis even for the first run or complete 

re-builds when all CPs are re-synthesized. By using the automatic CPs and 
multiprocessing options together, we can reduce the overall runtime of the synthesis 
during the first time as well as the subsequent incremental iterations.  

A typical SoC design would need a number of CPs to be defined with individual 
constraint files in order to achieve a significant reduction in the synthesis runtime. 
Again, if the up-front investment for an incremental flow is too great or requires too 
much maintenance (e.g., in scripts) then the flow becomes less attractive. Indeed, 
defining a large number of CPs and creating constraints files for each may even be 
seen as too time consuming. To overcome this apparent hurdle, Synopsys FPGA 
synthesis is able to create and use CPs automatically.  

When automatic CPs are used, the tool can analyze a design and identify modules 
that can be defined as CPs. The CP’s timing constraints can also be automatically 
budgeted from the top-level constraints. This eliminates the need for us to define a 
separate constraint file for each defined CP. 

Figure 144: Automatic compile points and synthesis on multiple CPUs 
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This is a relatively new technology and is a useful weapon for trading off runtime 
against overall performance. 

11.9.3. Incremental place & route flow 
Incremental flow in place & route can be achieved using design preservation flow in 
the Xilinx® back-end tool, the flow for which is seen in Figure 145. 

Design preservation is one of the hierarchical design flows supported in the Xilinx® 
back-end tool. In the design preservation flow, the designs are broken into blocks 
referred to as partitions. Partitions are the building blocks of all the hierarchical 
design flows supported in the Xilinx® back-end tool. Partitions create boundaries 

around the hierarchical module instances so that they are isolated from other parts 
of the design. 

A partition can either be implemented (mapped, placed and routed) or its previous 
preserved implementation can be retained, depending on the current state of the 

Figure 145: Design preservation flow in Xilinx® ISE® tools 
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partition. If a partition’s state is set as “implement,” then the partition will be 
implemented by force. And if the partition’s state is set as “import,” then the 
implementation of that partition from the previous preserved implementation will be 
retained.  

When a design with multiple partitions is implemented in the Xilinx® back-end tool 
for the first time, the state of all the partitions must be set to “implement.” For the 
subsequent iterations, the state of the partition should be set either to “import” if the 
partition has not changed or “implement” if it has changed. This way, only the 
changed modules are re-implemented and the implementations of all the partitions 
that have not changed are retained. This saves significant time in the 
implementation of the entire design. 

11.9.4. Combined incremental synthesis and P&R flow 

By combining incremental flows for synthesis and for place & route we can gain 
our maximum runtime reduction. In fact, since place & route runtime is typically 

Figure 146: Combined synthesis and place & route incremental flow 
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much longer than synthesis runtime, setting up incremental synthesis without 
incremental place & route would not really improve turn-around time that much. 

With this in mind, Synopsys FPGA synthesis has been created to interleave its 
compile point flow automatically with the Xilinx® design preservation flow, as 
shown in Figure 146. In this integrated flow, the type of CP in the synthesis flow 
should be set to “locked, partition,” so that it will be marked as a partition during 
the place & route stage. When the integrated flow is enabled, the Synplify® Premier 
software automatically writes the states of the partitions as “implement” or ‘import” 
as appropriate.  

By using this integrated flow, as summarized in Figure 146, the overall turnaround 
time to synthesis, place & route and design can be significantly reduced.  

11.10. A bring-up and debug checklist 

We have covered a lot of ground in this chapter but there will be very many on-the-

Table 30: A step-by-step approach to bring-up and debug of the prototype in the 
lab 

1 Check all power rails  Are voltages stable, connections good, 
current limits inactive?  

2 Check all input clocks Frequency, quality and correct phase 
relationships 

3 Check FPGA configuration 
 and reset 

Do FPGAs come out of reset on the 
same clock edge?  

4 Load small RTL design Checks all the above, confirms  board 
hardware ready  

5 Add instrumentation Get familiar with working debugger 
using small RTL design 

6 Load small self-running 
 program into internal CPU 

Test write and read of key registers 
and internal RAM.  

7 Test external RAM Interface to RAMs may have been 
made especially. Debug separately.  

8 Load “Hello World” program 
 into internal CPU 

Tests CPU-to-host comms. Test 
comms to external IP. 

9 Load whole SoC prototype Including internal IP and memories 

10 Load real software image Prototype is now useful to end-users; 
open the Champagne! 
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bench debug scenarios not covered here. Every design and lab setup is different and 
we can only attempt to cover the more common patterns in the projects that we 
know.  

We hope that there will be a great deal of discussion and “I found this, try that…” 
experience swapped between prototypers on the FPMM online forum, from which 
we can all learn to become better debuggers. In the meantime, Table 30 gives a 
rough checklist of tasks in the lab during bring-up and debug. 

11.11. Summary 

After giving ourselves confidence that the FPGA board is fully functional and 
configured correctly and also having checked the implementation and timing reports 
for common errors, we can consider that functional faults in the operation of the 
prototype might actually be bugs in the design itself that are becoming visible for 
the first time. 

As we find and correct bugs and move towards a fully functional prototype we are 
being paid back with interest for all our hard work in getting this far. The prototype 
has also become an extraordinarily powerful tool for validating the integration of 
the software with the SoC. Replicating the prototype for use by a wider community 
of software engineers is relatively quick and simple at this stage. 

 

The authors gratefully acknowledge significant contribution to this chapter from  

Ramanan Sanjeevi Krishnan of Synopsys Bangalore 
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CHAPTER 12 BREAKING OUT OF 
THE LAB: THE 
PROTOTYPE IN THE 
FIELD  

There are situations in which taking a prototyping system outside the development 
lab can benefit the development and the overall success of the product. Having a 
portable prototyping system can provide developers with the ability to interact with 
other parts of the system not available in the lab, and showcase the product before 
silicon is available. This chapter describes the issues and effort that it takes to make 
a hardware prototyping system portable, so it can be used outside the R&D lab as 
well . 

12.1. The uses and benefits of a portable prototype 

The hardware prototyping system is usually considered very close the final SoC as 
far as its functionality and performance, however, its form-factor is often so far 
from the final SoC package that it isn’t even funny. Try as we might to keep things 
tidy and regular, a typical on-the-bench prototype often looks like the result of 
barely controlled chaos . . . but it only looks that way.  

As we assemble our rig on the bench, such as the typical one shown in Figure 147, 
we of course know exactly why each piece of equipment is present and how it 
contributes to the overall success of the project. In fact, the project shown in the 
photo is a Synopsys® lab test of our latest PCIe Gen3 IP design, which at time of 
writing was proceeding very well and providing unique feedback on the 
performance of the IP as only an FPGA-based prototype can. 

What if the prototype could be constructed small and robust enough so that we 
could take it to out of the lab? What extra benefits, which may prove critical to the 
overall success of the SoC project, could be derived? 
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Before we proceed to explore how we might achieve portability, let us revisit those 
benefits of prototyping that we listed in chapter 2 in order to highlight the main 
reasons why we might want to take our prototype out of the lab.  

• Field tests: our application may have functions which require field tests under 
real-world conditions that are not available in the lab. A good example is a 
mobile radio transceiver which needs to communicate with a base station 
under many and varied ambient conditions.  

• Local compliance tests: wireless standards evolve at different speeds and 
may have variations for different geographies. For compliance we often 
require that air interface tests are performed in that geography. 

• Early customer demo: a portable prototyping system at a potential customer 
site can show off the product’s capabilities and readiness for market. 

• Partner co-development: early pre-silicon access to the system prototype 
enables product development and test that spans multiple geographies, often 
involving a number of companies in partnership.  

• Exhibition demo: being first to demonstrate a new functionality or new 
standard implementation can gain great momentum in a market..  

Figure 147: A typical bench-bound prototype! 
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• Investor status check: a portable prototyping system can be used to 
demonstrate a product’s capabilities to a board of directors or potential 
investors alike. Our audience can quickly and effectively evaluate our progress 
when presented with a live demo of the final product’s prototype. 

Each of the above may be good reasons for any particular team creating a more 
portable prototype than the bench-bound example above. In fact, the Synopsys IP 
team responsible for that prototype did package it up for demonstration out of the 
lab. Torrey Lewis, IP developer at Synopsys, Hillsboro Oregon, explains why they 
did that extra work: 

“It is definitely a benefit to be able to travel with the prototype. For our PCIe 
Gen3 setup, we’ve been able to travel to some conferences for display in the 
Synopsys booth. The PCIe Gen3 spec is not yet finalized, so even more 
interesting for me as an engineer has been the opportunity to do early testing 
on-site with industry leaders. This has been mutually beneficial for all 
concerned.” 

Let us now go on to see how we can make a prototype which is able to break its 
bonds to the bench. 

12.2. Planning for portability 

The best time to plan for portability is when we start our prototyping project. It is 
best to plan for prototyping system portability at the project start and make 
provisions for it as the system and the SoC is developed. For example, if we are 
aiming at a multi-board system comprising one main board with additional daughter 
boards then we must ensure that our arrangement can be made robust when 
necessary.  

Javier Jimenez of DS2 also feels that reliability is important in their out-of-lab trials 
of their Broadband-over-Powerline prototypes, as he explains below: 

“Some of our field trials are performed by engineers from different 
disciplines, for example, protocol experts or software engineers. These are 
not hardware experts and so they could not be expected to perform on-the-
spot fixes to circumvent any board failures. Therefore the FPGA boards, 
and indeed the whole prototype must be of high quality and have high 
mechanical reliability.” 

You can read more about DS2’s project in chapter 2. Meanwhile, the following 
sections explore the critical items for building a prototyping system that is portable. 
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12.2.1. Main board physical stiffness 
The obvious first concern is that the board itself should have inherent stiffness and 
not flex in out-of-lab situations. The main board should be stiff enough as to not 
flex either lengthways or crossways. Since today’s FPGAs are most useful for 
prototyping in ball-grid array packages, the strength and quality of the FPGAs 
solder-ball connections to the motherboards is critical to the overall system 
reliability. Little or no flexing of the board can be tolerated unless these ball 
connections are broken. 

Typical prototyping boards with multiple high-pin count FPGAs will end up having 
over 20 layers and become fairly stiff on their own. However, it is still 
recommended to make space for stiffeners in both board’s length and width so that 
they may be mounted when necessary. Alternatively, the board might be slipped 
into a frame which hold the board at its edges, however, this is not as mechanically 
sound as on-board mounted stiffeners. 

12.2.2. Daughter board mounting 
Daughter boards are added to the main board for a variety of reasons such as adding 
fixed hardware to the FPGA system. When these boards are designed to work with 
the main FPGA board, we must consider the mechanical, electrical and thermal 
aspect of the combined assembly as described in the following paragraphs: 

• Stacked configuration: in this configuration, the daughter board is 
mounted over the main board and its footprint overlaps the main boards. 
The advantage of such configuration is the smaller overall footprint. The 
disadvantages are the possibility of restricted probing access on the main 
board and the risk of restricted air flow over the FPGAs. Both main and 
daughter boards must be designed for solid mounting of the two. 

• Lateral configuration: in this configuration, the daughter board is 
mounted next to the main board. This is typically the case when the 
daughter board is not designed in house, rather purchased or provided by a 
third-party IP vendor and its mechanical configuration is unrelated to the 
main board. The advantage of such configuration is having unrestricted 
access on the main board. The disadvantage is the greater overall footprint 
and tendency to be less robust. 

12.2.3. Board mounting holes 
Main board should have sufficient mounting holes to allow a secure and solid 
mounting to a chassis. It is recommended provide for mounting holes no more than 
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10cm apart from each other in either direction. Special attention should be paid to 
areas where the board is subjected to connector insertions. It is recommended to 
place mounting holes such that the mounting studs will absorb most of the 
connector’s insertion and extraction forces that are typically perpendicular to the 
board. If additional daughter boards are to be added on top the main board, there 
should be allowance for mounting the daughter boards to the main board. This is 
discussed in more detail in the section below. 

12.2.4. Main board connectors 
Connectors are often a common point of failure in the prototyping system’s 
reliability due to wear and improper mount and dismount cycles in a typical lab 
environment. Addressing the connectors’ issues in advance can minimize this risk 
especially when we need to move the combined system. Connectors are typically 
made to mate with either in only one axis, so twisting or skewed removal or 
insertion may cause damage. We recommend adding adequate strain relief and 
retention in the insertion-removal axis; in fact, many connector schemes have an 
option for such retention clips already and it is a false economy not to install these 
by default. 

Cables that exit the system’s enclosure must be retained to the system’s chassis 
rather than rely on the retention by the connector itself, which adds further strain 
onto the connectors and cables alike. 

12.2.5. Enclosure 
The enclosure is where all the pieces fit together for convenient transportation but at 
the same time some level of access and visibility is needed. When selecting an 
enclosure, the following items are typically considered: 

• Mechanical configuration: even if the system is intended to be 
placed on the bench, many of the shelf enclosures are available in 
industry standard sizes so they can also be mounted into a 
standard rack. The additional rack mounting hardware can easily 
be removed if found to be undesired. 

• Main board mounting: it should be mounted with as many 
screws/spaces as available. 

• Daughter boards: as mentioned above, should be secured either 
to the main board (if stacked) or to the chassis with no mechanical 
stress between the daughter board and main board.  
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• Power supply: should be placed away from the main board to 
allow good clearance for main board cabling and cooling for the 
power supply. If the system is expected to travel to countries 
where AC is different than the country of origin, the power supply 
must be multi-voltage. If power supply has its own exhaust fan, 
it’s important to mount it to the chassis in a way that does not 
obstruct the cold air inflow to the power supply module.  

• Internal cables: should be retained on the boards they mount to. 

• External cables: should also be retained to the chassis. 

• Access: Most access to the system is done via the system’s 
interface cables. However, some provision may be needed for 
debugging, so critical signals may be brought to debug connectors 
for added visibility. These debug connectors should be mounted 
on the chassis wall so opening the chassis will be not necessary.  

• Miscellaneous items such as FPGA download module, or 
debugger modules should also be retained to the chassis. 

12.2.6. Cooling 
When in the bench, the FPGAs and other components are generally exposed to 
ambient airflow and may not require extra cooling. However, even on the bench, it 
is recommended that each FPGA should have its own heat sink and fan 
arrangement. This can be linked to a temperature system monitor in a feedback loop 
to ensure that the fans are only used when necessary (see chapter 5).  

Even if on the bench we do not employ any cooling, when the prototype is encased 
and isolated from ambient air movements, the temperature can rise rapidly. It is 
recommended to equip the enclosure with cooling fans that will draw hot air from 
the enclosure and blow it to the outside. The key to effective cooling is the 
positioning the enclosure fan and cold air intake such that cold air is drawn from the 
intake holes and forced over the hot spots and out the enclosure via the enclosure 
fan. This is usually accomplished when the exhaust fan and the cold air intake holes 
are on opposite sides of the enclosure. It’s recommended to block any openings that 
may be next to the enclosure fan so as to not “short circuit” the air flow over the 
“hot spots.” It is still necessary to provide local heat-sinks and fans for the system’s 
hot spots, such as FPGAs or power supply circuits. 
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12.2.7. Look and feel 
For some out-of-lab uses, it is important that the prototype looks less like a school 
science project and more like a finished product. This can be achieved by, in effect, 
hiding away much of the hardware inside a professional looking case. This has the 
added bonus of making the prototype more tamper-proof and probably more reliable 
as a result. 

Some commercial FPGA platforms are designed to be more robust and portable 

than a typical open board. Examples of this type of system are the CHIPit® Platinum 
and CHIPit Iridium platforms, both of which have sophisticated FPGA boards 
encased in robust enclosures. The Iridium, shown in Figure 148, is a particularly 
interesting example because it is clearly still a prototyping platform, you can see the 
boards and chips in place, but by replacing the sides on the enclosure, the unit 
becomes much more like a finished product. This simple trick may count for a lot in 
a demonstration scenario. 

The best places to go and see how teams overcome the portability challenges are so-
called “plug-fest” events. These are organized by special interest groups, often 
representing a new industry interconnection or graphics standards. The aim is to 
bring together those teams which have hardware for driving the new standard so 
that they cam physically plug their equipment together. Of course, all teams would 
have already been working to the standard specifications but there is nothing like 
the confidence given when the pre-silicon prototype actually works with another 
team’s prototype. Even if it doesn’t work straight away, this is a much better place 
to find out than after the product is released.  

Figure 148: CHIPit® Iridium, an encased prototyping system 
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Critical to the success of plug-fests is the reliability of the equipment and even 
though much of it is in FPGA-based prototype form, we will see platforms carried 
between table-top lab set-ups or moved around on trolleys in order to perform as 
many experiments as possible. Turning up at a plug-fest with a “rats nest” of 
unreliable boards would not be making best use of the opportunity.  

12.2.8. Summary 
This has been a short chapter exploring the use of FPGA-based prototypes outside 
of the normal lab environment. It has hopefully given some more glimpses of the 
possibilities of prototyping as a whole, but the aim is really to ensure that we think 
ahead to create a more reliable and portable prototype. This will make it more 
tamper proof when used remotely by, say, software engineers and more likely that 
the prototype will survive the project and be useable for subsequent projects. 

The out-of-lab use of prototypes can often be decided upon well into the project, for 
example at an exhibiton opportunity that it just too good to miss, but the first silicon 
is still months away. Being ready for these kinds of events may be recognised by 
senior management as another reason to adopt FPGA-based prototyping in all SoC 
projects. 
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CHAPTER 13 PROTOTYPING + 
VERIFICATION = 
THE BEST OF BOTH 
WORLDS 

Having decided to invest in building an FPGA-based prototype, we should 
understand its full potential. This chapter shows how the prototype can become a 
part of a larger verification environment by linking it to simulators, emulators or 
virtual models in SystemC™. In other sections of this book we have focused on how 
to create FPGA prototypes. This chapter looks at how design teams benefit from 
integrating their prototypes into hybrid verification systems. We also look at the 
enabling technologies for hybrid verification solutions, including the verification 
interfaces themselves. 

13.1. System prototypes 

System prototypes are hybrid verification solutions that incorporate elements of 
hardware (including FPGA-based systems), software (virtual) models, and 
traditional EDA simulators. Bringing these technologies together enables designers 
to mix and match modeling solutions to get the best out of their resources, and to 
meet their design and verification needs. 

There are two core technologies that underpin most system prototyping solutions 
and enable them to communicate. Co-simulation typically brings together RTL 
simulation and hardware at the cycle level. The simulator and hardware work in 
lock-step and communicate through signal-level links. Design teams use 
transaction-based communication to connect virtual models and hardware using 
abstracted messaging.  

Figure 149 compares co-simulation, transaction-based verification and in-circuit 
prototyping in terms of relative performance and autonomy. Linking the prototype 
to a simulator allows the testbench to control the hardware, but at the expense of 
reduced performance compared with the free-running prototype. 
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Figure 149 Comparing three approaches to linking FPGA prototypes 

 

 

13.2. Required effort 

Unfortunately, we cannot just plug a prototype into a simulator and expect it to 
work. Getting a hybrid verification system to work is not always a push-button 
exercise, although tool environments will automatically generate some of the code 
that is needed. On top of having code for interfaces, designers have to perform some 
design conditioning to enable co-simulation and transaction-based verification. 

If a design team knows that it will use its prototype in a hybrid verification 
environment before we start to implement it, the incremental effort required is not 
that great. It’s difficult to quantify the extra design work needed because it depends 
on many variables. Preparing a design for co-simulation is a question of setting a 
few constraints within the tool environment. The effort required to enable a design 
for transaction-based verification depends on whether transactors are already 
available or need to be created. It is probably reasonable to add 10% to 15% to the 
“time to prototype” effort in order to ready the FPGA for transaction-based 
verification. 

In order to decide whether the incremental effort is worth it, designers need to know 
what they can achieve with a hybrid verification environment.  
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13.3. Hybrid verification scenarios 

There are several use scenarios for hybrid verification. We have checked that the 
scenarios mentioned here are real, not hypothetical. Synopsys engineers have talked 
to many design teams about their prototyping plans, and this is what they are 
already doing, or planning to do in upcoming projects. 

Design teams often have pre-existing RTL from legacy projects, or have acquired 
RTL IP for parts of their systems. Reusing existing RTL and targeting it to an 
FPGA prototype, then combining the FPGA prototype with a virtual model, enables 
design teams to quickly create a full system model.  

Using a pre-existing virtual model for a complex processor core, while using 
FPGAs to model peripherals, enables design teams to accommodate complex 
processors and have them run faster than if they were implemented in an equivalent 
FPGA model. 

Sometimes, design teams start out with a virtual model of the whole system. As 
RTL becomes available or matures, they can replace parts of the virtual model with 
the new RTL and re-run the tests. If runtimes are short, the design team will re-test 
the RTL using a normal simulator. Otherwise they will use the hardware. 

Using FPGAs with daughter cards or plug-in boards enables the hybrid model to 
access real-world IO. For certain repetitive tasks it may be beneficial to replace real 
IO with virtual IO – for example, when it is important to replicate exact inputs for 
regression tests. This removes any uncertainty to do with using real-world data, 
since it guarantees an absolute repeat of previous stimulus conditions.  

By keeping the FPGA prototype remote and providing software developers with 
access via their desktops, they can have all the benefits of access to real-world IO, 
but within a familiar development environment (i.e., keyboard and screen).  

For many design teams, the benefits of some or all of these use modes make the 
investment in enabling their FPGA prototypes for hybrid verification more than 
worthwhile. We will look again at each of these scenarios in more detail later in this 
chapter. 

13.4. Verification interfaces  

To enable the use scenarios outlined above, we need to interface the various parts of 
a hybrid verification solution and bring together simulators, physical hardware and 
virtual models. We shall now explore some of those interfaces. 
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13.4.1. Interfaces for co-simulation 
To enable co-simulation, we need to provide a cycle-accurate bi-directional link 
between a high-performance RTL simulator and an FPGA-based prototyping 
system  

Ideally, we want the link between the technologies to be easy to set up and require 
no changes to the design itself. Performance of the interface is important, and 
ideally the link will offer good debug features. 

To avoid confusion, it is worth comparing the use of FPGA hardware linked to 
simulators and a similar technology, known as “hardware in the loop” or HIL. HIL 
replaces a block in a simulation model with a faster piece of hardware, usually 
implemented in an FPGA. The aim is to use the FPGA to speed up simulation of the 
algorithmic model. The FPGA is programmed with some automatically generated 
code, which is often only functionally equivalent to the simulation model that it 
replaces and will not be cycle-accurate. The initial design in an HIL approach is 
often an algorithm modeled in a simulation tool, such as Matlab® or Simulink® and 
there is no reference to the RTL that will be used in the SoC implementation. 

In contrast to HIL, the aim of linking FPGA-based prototyping to simulation is to 
use the same RTL as the SoC implementation in order to check the validity of the 
FPGA implementation, possibly with some speed-up of runtime, or to allow system-
wide prototyping before the whole RTL is available.  

13.4.1.1. Example: HDL Bridge 
It is useful to look at an actual co-simulation interface by way of example. HDL 
Bridge is Synopsys’ proprietary co-simulation link. It provides a bi-directional 
interface between Synopsys’ RTL simulator (VCS®), and the FPGA-based 
prototyping system (Synopsys CHIPit® or HAPS® prototyping system). The CHIPit 
tool can automatically prepare the infrastructure to communicate between the 
simulator and hardware based on the RTL provided by the user. CHIPit creates 
wrappers without disturbing the original design – a synthesizable wrapper for the 
hardware (either Verilog or VHDL) and a separate wrapper for the software 
simulator.  

This environment is easy to set up and allows seamless integration with VCS 
simulation. Once constrained, generating the wrappers is very fast as we need only 
provide the top-level design description, define the clock and reset polarity. 

The interface enables comprehensive debug by allowing the simulator to monitor all 
internal registers of the design under test (DUT) in the FPGA.  

Figure 150 shows how the HDL Bridge is partitioned so that the non-synthesizable 
part of the interface remains in the simulator, while the synthesizable code is 
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implemented in hardware. The wrappers get data from the hardware and software 
and give it to the simulator’s PLI interface as it makes PLI calls. The simulator 
testbench controls the design.  

 

Figure 150: HDL Bridge co-simulation partitioning 

 
 

 

Figure 151 shows the overall design flow for the Synopsys environment and 
highlights the user-defined inputs and the automatically generated code. 

Co-simulation suffers from a fundamental limitation: because the simulator is only 
capable of running at a speed of a few kilohertz, and the hardware runs in lock-step, 
it is not possible to use real-time interfaces or components that have a minimum 
frequency such as technology-dependent primitives including PLLs, DCMs and IP 
PHYs. We have covered the issue of addressing FPGA minimum frequency in 
chapters 7 and 9, which readers should consult for recommended design strategies.  

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



    

368 Chapter 13: Prototyping + Verification = The best of both worlds 

Figure 151 HDL Bridge co-simulation design flow 

 

Recommendation: design teams can save themselves time by thinking ahead and 
anticipating issues. Planning the clock structure to support a low-frequency clock 
will make the task of setting up for co-simulation easier 

Another issue that designers must watch out for is the trade-off between debug and 
performance. HDL Bridge allows designers to monitor the internal registers in the 
FPGA, as they increase the number of signals to monitor, the performance of the 
interface decreases. 

In summary, co-simulation can take advantage of any simulator’s API in order to 
push stimulus to the hardware and receive its responses. It is easy to set up and no 
design changes are necessary. The tool takes care of preparing the infrastructure to 
communicate between the simulator and hardware once we have created a top-level 
description and defined the clock and reset signals. 

13.4.2. Interfaces for transaction-based verification 
In co-simulation, the simulator is controlling the design in hardware, while in 
transaction-based verification, the DUT (in hardware) and simulator (or software 
application running on a host machine) communicate by passing messages or 
transactions. This requires an abstracted bi-directional link between virtual models 
and the FPGA-based prototyping system.  

Communicating through transactions and the use of transaction-level models enable 
faster simulation and easier debugging than co-simulation. Using transactions, 
design teams can focus on the function and behavior of their systems and get that 
right before they concern themselves with implementation. They can also define the 
verification scenarios that they want to cover more quickly and easily, because they 
are using software running on the processor.  
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13.4.3. TLMs and transactors 
The SystemC transaction-level modeling standard (TLM-2.0) defines two coding 
styles: loosely timed (LT) and approximately timed (AT). TLM-2.0 models, which 
themselves include transactors, enable efficient message-based communication for 
exploring the system at a high level of abstraction when written in an LT coding 
style. A model that includes an LT transactor is relatively fast to develop because 
the transactor simply deals with reads and writes to memory locations. 

However, in the hardware world we cannot ignore timing forever. That is why 
TLM-2.0 allows designers to create transactors with timing annotations by writing 
models using AT coding styles. Using these, design teams can perform tasks such as 
estimating software performance and analyzing different architectures. Developers 
can create AT models relatively quickly. 

As designers refine their systems down to real hardware, they need to add even 
more timing detail. To enable this we need transactors that can convert from the 
function level to and from the signal level. For example, taking TLM-2.0 
transactions to, for instance, AMBA® AHB/APB/AXI™ interconnect signals, and 
also handling side-band signals such as reset inputs and interrupt request outputs. 
These transactors have a cycle-accurate interface to RTL on one side, and a 
transaction-level interface on the other side. 

Design teams can achieve high-speed transaction-based verification by processing 
the compute-intensive part of the transactor in hardware, rather than using software 
on the host workstation. This is possible if the transactor is coded as a synthesizable 
state machine, or bus functional model (BFM), which receives messages and 
converts them into signals that are connected to the design ports or internal buses. 
Developing transactors for complex interfaces such as AXI can be time-consuming, 
so reuse is extremely desirable.  

The transaction-level interface between the synthesized and simulated parts of the 
design is made up of fixed-width unidirectional input and output ports. An input 
port sends messages carrying transaction-level information from the simulated 
testbench layers to the hardware-assisted layer. An output port sends messages from 
the hardware-assisted layer to the simulated layers. There can be any number of 
input and output ports. However, the hardware platform may place some restrictions 
on their number, width or total width. 

13.4.4. SCE-MI  
The Accellera standards organization approved version 2.0 of the Standard Co-
Emulation Modeling Interface (SCE-MI) in 2007. SCE-MI provides a multi-channel 
message-passing environment for transaction-based verification. The standard 
defines how messages can be sent between software and hardware. 
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SCE-MI enables design teams to link transaction-level models to hardware 
accelerators, emulators and rapid prototyping platforms by interconnecting untimed 
software models to structural hardware transactor and DUT models (Figure 152). It 
provides a transport infrastructure between the emulator and host workstation sides 
of each channel, which interconnects transactor models in an emulator to 
C/C++/SystemC (untimed or RTL) models on a workstation. 

  

Figure 152 High-level view of runtime components in SCE-MI based co-modeling 

 
 

In SCE-MI version 1.1, the transport infrastructure provides interconnections in the 
form of message channels that run between the software side and the hardware side 
of the SCE-MI infrastructure. Each message channel has two ends. The end on the 
software side is called a message port proxy, which is a C++ object that gives API 
access to the channel. The end on the hardware side is a message port macro, which 
is instantiated inside a transactor and connected to other components in the 
transactor. 

A message channel is unidirectional – either an input or an output channel with 
respect to the hardware side. However, a message channel is not a unidirectional or 
bidirectional bus in the sense of hardware signals, but resembles a network socket 
that uses a message-passing protocol. The transactors are responsible for translating 
the message-passing protocol into a cycle-based protocol at the DUT interface. 
They decompose messages arriving on input channels from the software side into 
sequences of cycle-accurate events which can be clocked into the DUT. In the 
opposite direction of information flow, transactors recompose sequences of events 
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coming from the DUT back into messages to be sent via output channels to the 
software side. 

Furthermore, the SCE-MI 1.1 infrastructure provides clock (and reset) generation 
and shared-clock control using handshake signals with the transactors. This way the 
transactors can freeze controlled time (by suspending the clocks) while performing 
message composition and decomposition operations.  

SCE-MI 2.0 adopts SystemVerilog’s direct programming interface (DPI) function-
call model and adds additional features to enable transfer of bi-directional variable-
length data between the DUT and the software testbench using just four functions 
and pipes.  

Table 31: SCE-MI 2.0 hardware and software calls 

 Hardware call 
(h/w to s/w) 

Software call 
(s/w to h/w) 

Data transfer Import function Export function 

Streamed data transfer Send pipe Receive pipe 

 

In case of SCE-MI 2.0, the clock delivered to the SCE-MI transactors is controlled 
by the infrastructure and therefore user intervention is not required to stop and start 
these clock signals. 

13.4.5. SCE-MI 2.0 implementation example  
In this example, illustrated in Figure 153, the transactor and infrastructure 
communicates with hardware through the UMRBus®. Synopsys’ CHIPit tool uses 
the user-defined transactor description to create the hardware infrastructure for the 
DUT, and also writes out C/C++ files for the software environments. The 
communication between software and hardware uses its own clock domain (SCE-
MI clock), which is independent of the DUT’s clock domain. During data transfer 
between the host software application and hardware via SCE-MI, the SCE-MI 
controlled clocks are stopped on the hardware. SCE-MI infrastructure releases the 
controlled clocks once the data transfer is complete. Users do not need to take any 

Recommendation: if there is a huge amount of data to be sent, then it is 
necessary to use pipes. We can use data transfer functions if there are only 
control signals or small amounts of data to be sent. If data transfer functions are 
used for large amounts of data the handshake overhead can exceed the size of 
the packet sent. 
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special steps to manage this – the control clock handling procedure is part of the 
SCE-MI 2.0 infrastructure. 

 

Figure 153: SCE-MI 2.0 co-emulation overview for CHIPit®/HAPS®  

 
 

 

Another way to use SCE-MI is to communicate with a simulator incorporating 
SystemVerilog testbenches. The SCE-MI 2.0 standard defines a way to 
communicate between software and hardware. If users need to communicate with a 
simulator within a SCE-MI 2.0 environment, Figure 154 shows how the simulator’s 
SystemVerilog testbench can talk via SystemVerilog’s DPI calls to a C-
environment, and the very same C software can talk to the connected hardware via 
DPI-like SCE-MI 2.0 function calls.  
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Figure 154: SCE-MI communication through DPI 

 
 

Figure 154 shows, on the right, a hardware system with a SCE-MI DPI function. 
The simulator executable (left) includes a C-wrapper file which has SCE-MI DPI 
functions, as well as a pure SystemVerilog communication channel that enables 
communication between the C software and the SystemVerilog testbench. The 
VMM hardware abstraction layer (VMM HAL), which is described below, is an 
example of this approach. 

13.4.6. VMM HAL 
The Verification Methodology Manual (VMM) defines a methodology for 
verification that has become widely adopted by design teams. The VMM HAL is a 
VMM application that includes a class library to support transaction-level co-
emulation between a hardware-accelerated design and a VMM-compliant testbench 
running on a SystemVerilog simulator, such as Synopsys’ VCS functional 
verification simulator.  

The hardware abstraction layer enables designers to use different hardware 
acceleration platforms with the same constrained-random testbench that is used in 
simulation-only environments. Testcases and DUT can target different hardware 
platforms without any modifications. Figure 155 gives a very brief overview of the 
VMM approach and we see that there is a verification loop driven by high-level, 
often object-oriented code which hardly resembles a testbench in the traditional 
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sense. The loop would normally continue via transaction-level drivers into the DUT 
and out through transaction-level monitors to complete the loop with some 
comparisons and a scoreboard of results passed.  

With the HAL, the transaction-level drivers and monitors are replaced with SCE-
MI2.0 transactors and the DUT is the FPGA-based prototype containing a version 
of the SoC design. 

The VMM HAL application also contains a purely simulated implementation of the 
hardware abstraction layer that allows the testbench and testcases to be developed 
and debugged with the DUT entirely within the same simulation, without 
modifications, and without access to the hardware emulator. 

Figure 155 HAL-compliant transaction-level testbench 

 
 

The VMM HAL environment can target hardware or simulation at runtime by using 
a simple simulator command-line switch. The environment includes drivers and 
monitors, which are software-software transactors in a normal VMM environment. 
VMM HAL transactors for hardware must be synthesizable. 

Some companies are starting to build up VMM HAL transactor libraries. A key 
benefit of the VMM HAL is that it maximizes reuse of testbench code. A designer 
does not need to modify the top layers of the verification environment (such as tests, 
generators and transactors), only the lower-layer monitors and drivers need to be 
made HAL-compliant. 
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13.4.7. Physical interfaces for co-verification 
Physical interfaces for co-verification are those implemented in the prototyping 
environment to support communication between a host system and hardware. The 
physical layer can use any transport mechanism, and design teams can opt to use a 
standard PC interface like PCIe. Whatever physical interface they settle on, ideally 
it should offer ease of use for faster validation of the hardware prototype, better 
design debugging and easy prototype configuration. Support for advanced use 
modes will also be beneficial, especially support of: standard APIs; RTL-based co-
simulation and debugging; accelerated transaction-based verification; and 
connecting to and co-simulating with virtual prototypes. Interfaces that enable rapid 
initialization of the system and remote access and management of the FPGA-based 
prototype allow design teams to get the most use from their prototypes. 

Synopsys has designed the UMRBus physical interface specifically to provide high-
performance, low-latency communications between a host and Synopsys’ FPGA-
based prototype platforms. We previously introduced UMRBus in chapter 11 in the 
context of debugging. To recap, UMRBus is a high-speed connection between the 
host workstation and the prototype that provides parallel access to all FPGAs, 
board-level control infrastructure and memories (internal and external) on the 
Synopsys FPGA-based prototyping platforms.  

13.5. Comparing verification interface technologies  

In order to compare different verification interfaces, Synopsys has created a 
demonstration benchmark based on an image processing sub-system. The 
demonstration system uses a JPEG algorithm to compress an image, which is stored 
on a host computer. We first simulated the RTL in VCS running on the host 
computer before moving the DUT from simulation to a synthesized target running 
on an FPGA prototype, which enabled us to compare co-simulation with HDL 
Bridge, SCE-MI and UMRBus.  

The comparisons and performance data are summarized in Table 34 later but in the 
meantime, Table 32 summarizes the comparison between the four different 
modeling techniques. 

 

 

 

 

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



    

376 Chapter 13: Prototyping + Verification = The best of both worlds 

Table 32: Summary of performance and benefits of four interface implementations 

 RTL 
simulation 

Co-simulation SCE-MI UMRBus 

Need to change the 
HDL? 

No No Yes Yes 

Need to generate 
wrappers? 

No Yes: HDL Bridge Yes, tool 
generated 

No 

Clock mode Host 
controlled 

Host controlled SCE-MI 
controlled 

Free 
running 

Signal visibility All Registers and 
DUT ports 

All All 

Trace resolution  Cycle-
accurate/event 

Variable Variable 

Trigger support  Yes Yes Yes 

Runtime for JPEG 
image processing 

700s 50s 160mS 70mS 

 

For this particular task, we can see that UMRBus is the fastest implementation. 
SCE-MI, implemented on top of UMRBus is second fastest thanks to its use of 
transaction-based communication. Co-simulation using cycle-based interfaces for 
this task is about 300x slower than SCE-MI, and RTL simulation is over 4000x 
slower than SCE-MI. While this data helps us to compare the different approaches, 
it is not possible to generalize. Performance depends on many different parameters, 
for example, how much computation is happening on hardware and how much is in 
the simulator, also, what is the amount of data that is being exchanged between 
different sides of the transactors, and what transport mechanism is used? Of course 
we will also get different results for different kinds of design. 

The UMRBus channel is for the sole use of the co-simulation and SCE-MI 
implementations. Using an alternative bus standard, such as PCIe, may deliver 
worse performance as the channel is not a dedicated interface and it may have to 
handle other traffic as well as the co-simulation data. 

As well as considering performance, it is worth comparing the debug capabilities of 
each approach. UMRBus enables users to interact directly with the design from the 
software world. Intensive debug activity in HDL Bridge or SCE-MI may reduce 
overall performance. The number of signals that we can capture in HDL Bridge may 
be limited. 
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It is also possible to perform debug by physically connecting to the FPGA using a 
logic analyzer and physical probes. This allows probing of internal FPGA signals, 
and it is useful for tracing free-running designs. There are a couple of potential 
drawbacks with this approach to debugging – there may be a delay on debug traces, 
and probe signal names may not exactly match the original RTL names. 

13.6. Use models – more detail 

Having gained a better understanding of the types of interfaces available for co-
simulation and transaction-based verification, we look in more detail at the use 
models we summarized earlier in this chapter. 

13.6.1. Virtual platform re-using existing RTL 
In this case (Figure 156) the project team wants to use a virtual platform, although 
they are concerned about the overall modeling effort required. Because they need 
good performance, they decide to instantiate the RTL in the FPGA rather than a 
simulator. It may be that they are developing a new architecture, so they want to 
start to develop software before all the RTL is available.  

In this case we can provide a virtual platform with, for instance, the latest ARM® 
core, which will probably be available before ARM has actually introduced it as 
RTL or physical IP. The core could be modeled in the virtual platform but we may 
need to integrate it with a high-performance sub-system for which we do not have a 
system-level model. For example, that might be a high-definition video codec for an 
imaging sub-system for which we have RTL code from a previous design. We can 
decide to implement the codec in the FPGA, gaining accuracy and performance, but 
keep the rest of the design in the virtual prototype, at least until that RTL also 
becomes available.  

It might take two to three months to bring up a new prototype from fresh RTL but to 
create a virtual platform model from scratch might take even longer but it would 
still be quicker than waiting for the new RTL. By mixing virtual models and legacy 
RTL we can have a better chance of bringing up a hybrid system in the quickest 
time. The other benefit of a hybrid system is that at least part of the design will have 
cycle accuracy. 
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Figure 156: Virtual platform re-using existing RTL 

 

13.7. Virtual platform for software 

FPGAs are not optimized for processor implementation, so a design team that wants 
to use a complex processor, such as an ARM Cortex®-A8 or similar, will find it 
difficult to instantiate the core in the FPGA and achieve the performance they are 
looking for.  

One option (Figure 157) is to partition the design so that they have a fast ISS 
running within the virtual platform. They have to partition the design sensibly so 
that they can perform most of the transactions in software, and only when accessing 
peripherals should the system access the FPGA. They should ensure that all the 
local memory (e.g., L3 memory) is also within the virtual platform; otherwise they 
would see no performance benefit as a result of going across the SCE-MI interface 
to fetch instructions and data. 
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Figure 157: Embedded software executed on host 

 
 

In this example the design team performs native execution of the embedded 
software on the host PC. Executing software on a workstation with a virtual model 
processor is often faster than in FPGA prototype. The design team can use the 
FPGA to maintain the accuracy of accelerators and peripherals. 

13.7.1. Virtual platform as a testbench 
Design teams tend to use this approach (Figure 158) when they have kicked off the 
project with some pre-RTL software development. They may have actually started 
to write test cases to verify some of the blocks in the virtual platform. This is an 
approach that we have used within Synopsys to verify USB software. 

When the RTL becomes available, they can replace the TLMs with the RTL 
instantiated in the FPGA and re-run the same software verification tests against the 
RTL to check that they pass, or otherwise refine the test cases. While some of the IP 
blocks that they have modeled may have only partial functionality, they will have 
full accuracy (including the introduction of cycle-accurate timing) in the RTL. By 
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abstracting some of the accuracy at the outset, the developers can get started on the 
software development sooner.  

Figure 158: Virtual platform acts as a testbench for RTL in FPGA 

 
Using the virtual platform as a testbench for the FPGA prototype avoids duplication 
of effort by making better use of the work that went into system-level development. 
It also enables a design team to compare results in simulation against results in 
hardware, to verify the flow into hardware by repeating a set of known stimuli, to 
provide feedback to the verification plan for quality assurance purposes and to run 
regression tests very efficiently. 

13.7.2. Virtual and physical IO (system IO) 
In this scenario (Figure 159) the design team has a certain amount of virtual real-
world IO that it can support from the virtual platform, but this situation is not as 
good as having a real physical interface. To reduce risk, we need to verify the 
design in the context of the system it lives in, by connecting it to the real world. 
Any new interface standard would benefit from this approach.  
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Design teams want to implement standards before silicon is available. We can 
support this requirement by using a plug-in board (physical hardware) that would 
confer the ability to use a standard virtual platform to bring up an OS, like Linux. In 
this case we would have a new IP block and would be able to interface it to the real 
world for test purposes.  

Take the example of integrating a camera in a phone applications processor chip. 
Taking this approach we could link the baseband design to a camera on a 
workstation and make the software believe that information is coming from the real 
camera in the phone. This allows the use of real-world stimuli when appropriate. 

For some applications it may be useful to create a GUI or some other interface to 
allow the design team to interact more naturally with the virtual environment. For 
example, “Can the phone receive a call while playing a game and downloading 
email?” is the kind of scenario that using a GUI will help to verify. 

Figure 159: Virtual platform with a physical connection to the real world 

 

13.7.3. Virtual ICE 
Sometimes software developers do not want or need to see a board on their desks, 
yet they do need access to the functionality that the DUT provides in order to write 
code. This approach (Figure 160) provides a virtual hardware capability and helps 
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to keep software engineers out of the lab and in the comfort of their familiar 
development environment – at a PC. 

With a virtual ICE the design team can give remote access to the software 
developers – virtual ICE is the remote desktop solution. They can have a very small 
element of a virtual platform running on each of the software developer’s desktops.  

The idea is that the design team has an FPGA model that includes interfaces like 
LCD and UART. They direct those interfaces back up to a virtual platform on a PC 
so that they can have an LCD instantiated on the user’s desktop. They would 
redirect the hardware traffic back across SCE-MI, giving a software virtual interface 
to the hardware. Rather than connecting the FPGA to a physical LCD or physical 
UART, they would model those interfaces within the virtual platform. They 
implement the majority of the system in FPGAs, and provide virtual interfaces to 
some of the physical hardware ports. 

Figure 160: Platform provides links to designers at their desks 

  
This approach is especially beneficial if the prototype has to remain in the lab 
because of its size or fragility. The disadvantage is that simulation performance will 
be worse over the network than having a high-speed connection direct to the 
prototype.  
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13.8. System partitioning 

Getting the hardware-software partition in the right place is critical to achieving 
good system performance. There are a number of issues that designers must 
consider, as well as some practical guidance to follow. 

First, there are certain fixed constraints. Some parts of the system – for example, the 
testbench – may just not be synthesizable, so the design team cannot place them in 
hardware. They may also be constrained by design size and need to map the design 
to multiple FPGAs. Remember that high utilization of the available gates leads to 
longer implementation times, especially because of place & route.  

For parts where they have choice, design teams need to decide where to put the 
bridge between hardware and software. They can only make a cut where they can 
use a transactor that already exists, or that they can easily obtain. This tends to favor 
inserting the partition at well-defined industry standards, such as on an AHB™ bus 
interface. Making a cut at some arbitrary point means that the design team has to 
come up with a way of modeling it, which can create problems. 

Once they have considered the constraints, the design team must analyze the design 
to understand where they can make the cut in order to reduce the communication 
between the simulator and the hardware. To maximize the chances of having the 
FPGA accelerate the design, ideally they need to have computation in the hardware 
dominate communication between the simulator and hardware. 

Whether a design team will see their design accelerated depends predominantly on 
the traffic across the interface between hardware and software. If the traffic is 
characterized by a few control signals, the design team will likely see a huge speed-
up. On the other hand, heavy interaction between the simulator and DUT may yield 
a small speed-up, or none at all. Table 33 shows how applying Amdahl’s law helps 
to predict simulation acceleration. 

 

 

 

 

Recommendation: if the aim is simulation acceleration, consider where 
computation is happening. Move more and more components into the DUT, if 
possible synthesize the testbench so that everything runs in the DUT. 
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Table 33: Ahmdahl’s law predicts simulation acceleration 

 Share of simulation effort 

Testbench 90% 10% 

DUT 10% 90% 

Maximum acceleration factor 10% 900% 

 

Sometimes, design teams choose to successively refine their partitions by moving 
more and more into the DUT, as the RTL becomes mature. Not committing untested 
code to the FPGA helps them to manage risk. For maximum performance they can 
move across all synthesizable parts of the testbench.  

13.9. Case study: USB OTG 

This case study shows how Synopsys combined a virtual platform and FPGA 
prototype to create a system prototype for a USB on-the-go (OTG) core. 

13.9.1. USB OTG System overview 
The system (  

Figure 161) consists of a virtual platform modeling a Samsung system-on-chip 
supporting LCD, touchscreen, DMA, and physical Ethernet, running an unmodified 
hardware Linux image. The virtual platform connects via an AHB bus with 
transactors over the SCE-MI 2.0 interface to the USB 2.0 OTG core running in the 
FPGA prototype.  

We can connect a USB memory stick containing pictures to the system prototype by 
using a daughter card. The virtual platform controls the memory stick which 
provides access to the images. Users can debug at the hardware-software interface 
with the software debugger and the hardware debug environment.  

Recommendation: if the DUT uses multiple FPGAs, dedicating the simulator 
interface to just one of the FPGAs will help improve performance. 
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Figure 161: CHIPit Innovator system prototype 

13.9.2. Integration use models 
The system prototype enables various use models. One of the key benefits is 
achieving a significant speed-up over pure RTL simulation – in this case by a factor 
of 6x. The debug insight and controllability at the hardware-software interface also 
boosts productivity. The environment supports features such as hardware break-
pointing, including the ability to pause and single-step the entire simulation. System 
visibility and logging is only constrained by the host PC memory and storage 
capacities. 

13.9.3. Innovator and VCS 
We can integrate the Innovator model with VCS through SystemC by using PLI 
TLMs. We can partition the system so that the USB OTG RTL description runs 
within VCS. The disadvantage of this configuration is that VCS cannot physically 
control the memory stick. However, we can work around this by reflecting the 
accesses back up to the software (the virtual prototype), and then connecting to the 
USB stick.  
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Figure 162: Innovator and VCS  

 
 

 

In practice, because the RTL is running much slower than the FPGA it is very 
difficult to control a physical memory stick. That is why most design teams would 
choose to use an FPGA prototype rather than co-simulation. There are, however, 
advantages of using a VCS solution, including its superior analysis capabilities and 
having better insight into the behavior of the core running on VCS – more so than a 
designer would have with CHIPit, for instance.  

13.9.4. Innovator and CHIPit or HAPS 
This use case ( 

Figure 163) consists of Innovator connected to CHIPIt or HAPS via SCE-MI.  

On the software side is a library that allows us to send transactions (which may just 
be reads or writes) across SCE-MI. In the physical prototype we have a 
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synthesizable transactor that we have implemented in an FPGA, which can then 
interact with the RTL for the USB OTG.  

Figure 163: Innovator and CHIPit (or HAPS) 

 
 

The advantage of having the transactor instantiated on CHIPit is that we can have a 
plug-in card for the physical USB interface, so we can control a physical memory 
stick or some other physical real-world device. Because the function is in hardware, 
it is fast enough to do that. In some cases, this may also differentiate this use case 
from the pure virtual prototype use case. 

 

13.9.5. Virtual platform 
The advantage of the pure software virtual prototype is that at the pre-RTL 
development stage, there may not be any RTL available, so there is no other easy 
way to do co-simulation or transaction-based verification. That is basically why 
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software virtual prototyping complements the hybrid or hardware approaches: 
developers can start to develop their software, pre-RTL, on a software virtual 
prototype assuming that they have access to models. It will take a certain amount of 
time to develop new IP blocks. Despite that, typically we can have customers 
engaged in software development some 9-18 months before tape-out. 

 

Figure 164: Pure software virtual platform 

 

 

Performance Comparison Table 34 shows performance figures for booting the 
system and for performing the mount, copy and unmount operations. 
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Table 34: Summary performance and characteristics for USB OTG example  

The pure virtual platform performance was actually faster than the system prototype 
because in this particular design there was a lot of traffic going across from the 
virtual prototype to the RTL, in order to process interrupts. USB is not the best 
example to demonstrate performance acceleration via hardware because of the 
number of interrupts that the core generates and the processor needs to service. In 
fact, the USB generates a start-of-frame interrupt in high-speed mode every eighth 
of a millisecond.  

We had to look at ways of optimizing this design to stop the interrupts swamping 
the bandwidth, with the consequence of a decline in performance. We did quite a lot 
of work to boost the performance of the virtual platform. Partitioned properly, 
something like a video codec would see better performance with the system 
prototype than with the virtual platform. 

 

The authors gratefully acknowledge significant contribution to this chapter from  
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  RTL RTL + Virtual 
Platform 

Virtual 
Platform 

System 
Prototype 

Pure 
Hardware 

Accuracy Cycle 
accurate 

Adjustable, 
depending 
on partition 

Transaction 
functionally 
accurate 

Adjustable, 
depending 
on partition 

Cycle 
accurate 

Availability During RTL 
development 

Prior to RTL, 
supports 
legacy 

Prior to RTL 
depending 
on models 

Prior to new 
RTL, 
supports 
legacy 

At end of 
RTL 
development 

Linux boot - 86s 29s 43s 12s 
Modprobe - 702s 23s (31x) 61s (12x) 10s (70x) 
Mount - - 15s 22s < 1s 
Copy - - 4s 3s <1s 
Umount - - <1s 9s <1s 
Scaled 0.03125x 1x 225x ~30x 625x 
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CHAPTER 14 THE FUTURE OF 
PROTOTYPING 

This chapter will try to predict how chip and system design will look like five years 
from now and how prototyping will be impacted, and vice versa. We will again 
consider prototyping in its many forms and FPGA-based prototyping within that 
framework. 

14.1. If prediction were easy. . . 

. . . then flip-flops wouldn’t need set-up time ( pardon our little engineering joke).  

As they say, predictions are difficult, especially about the future. However, in the 
case of prototyping, the general direction for the next few years can be predicted 
pretty well. We can look back at chapter 1 and recall the industry trends for 
semiconductor design and our 12 prototyping selection criteria. We can then use 
these insights to predict how our need for prototyping might evolve in the coming 
years. Of course, different SoC designs in various application areas have different 
needs, so we shall start by examining the specific needs of three important 
application areas. 

14.2. Application specificity 

When looking into the crystal ball it becomes clear that chip development needs are 
highly application-specific. The application areas targeted by a design will, to some 
extent, govern its development methods and timescales. However, the common 
denominator will always be the software, which increasingly determines system 
functionality and changes the very way that hardware is designed in order to 
efficiently run that software. 

Today – in late 2010 - we have already reached a point at which the application 
domains significantly determine chip design requirements, most importantly on the 
path from idea to implementable RTL combined with software, and subsequently its 
verification. Given that different application domains use different IP and 
interconnect fabrics as well as have different software development requirements, 
design flows are increasingly become even more tailored to particular application 
domains.  
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Let’s compare the trends in three typical domains, specifically wireless/consumer, 
networking and automotive. 

14.3. Prototyping future: mobile wireless and consumer  

The user experience in wireless and consumer applications is today already mainly 
determined by applications running in higher-level, hardware-independent 
development platforms like Java™ and specific SDKs. Figure 165 shows the trend 
from proprietary operating systems towards open operating systems, which 
encourage application developments mostly from third-party developers. Since the 
introduction of online application stores, some consumer hardware has become the 

delivery vehicle for distribution of applications, which are controlled by the 
operating system that enables them. Application developers are offered a 
distribution vehicle and in exchange they pay a percentage back to the 
environment’s proprietor. The result is that, in a unique way, the OS providers have 
found a vehicle to monetize the end applications rather than hardware platforms.  

In the past, the operating systems themselves used to be quite profitable licensing 
businesses then in 2008 there were some sudden changes with handset operating 
systems being acquired by major vendor, while conversely we saw the release of the 
Android operating system. Several handset providers also released their own 
proprietary operating system platforms. At the time of writing in 2010, Microsoft® 

Figure 165: The shift from proprietary operating systems to application driven 
design 
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Windows Mobile™ has become the only widely-used operating system that still 
charges license fees to mobile handset manufacturers.  

Instead of making the OS a “licensable product,” the new model is that the handsets 
and the embedded OSs running on them have now become a channel to provide 
applications of astonishing depth and variety. We estimate that users have a choice 
of more than 500,000 different applications across the various operating systems 
and platforms, accessible though various online application stores. For mobile 
applications this defines a fundamental shift in where the business value lies and it 
is unlikely to be reversed.  

What does all this mean for chip design and prototyping? The effect on 
development is that because the value is moving into applications, software will 
increase even further in importance and its development needs will take precedence. 
In effect, the software will increasingly govern how the hardware is designed. In the 
case of mobile wireless and consumer applications this means that hardware 
developers need to provide fairly generic execution engines as early as possible and 
independent from the actual hardware. For our 12 prototyping selection criteria, this 
means that replication cost and time of availability will be of highest importance. 
The sheer number of application developers will require a very inexpensive way to 
develop applications, which will push more capabilities into SDKs. Time of 
availability will be important and in a sense hardware and software development 
will increasingly be done upside down – with the software being available before 
the hardware and the hardware designed to execute OS-based software in the most 
efficent way. 

While the trend to isolate software development from hardware effects using 
hardware abstraction layers and OSs will strengthen even further, user expectations 
for high quality applications will grow and as such application verification will also 
gain importance.  

Future SDKs will have to provide some of the application verification capabilities 
which already exist today for other software development environments like virtual 
platforms and host development environments. For example, software memory 
checking is a well-known technique in the host workstation space and quality 
verification tools such as Valgrind, Purify, BoundsChecker, Insure++, or GlowCode 
are part of any industry-strength software design flow. However, these types of 
tools are not generally available or widely used in the embedded world. SDKs and 
virtual platforms are the appropriate prototyping areas to which these capabilities 
should be added. 

There will still be a need for FPGA-based prototyping for the lowest levels of the 
software stack where speed and accuracy are needed at the same time. In addition, 
the needs of the hardware platform do not become any more relaxed. For example, 
the leading platforms will be low power and high capacity while providing highest 
quality multimedia, versatile interfaces and all in a reliable, low-cost and small 
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format package. This means very advanced SoC designs and many overlapping 
projects in order to introduce new models at the rate that market leadership 
demands. Relentless and accelerated SoC project development demands reuse of 
FPGA-based prototyping methodology. We simply will not have time to re-invent 
wheels and methods or create large-scale prototyping hardware for every design. An 
in-house standard platform strategy and Design-for-Prototyping methodology will 
be required to keep all those software-dominated projects on schedule. 

14.4. Prototyping future: networking 

In contrast to the mobile wireless and consumer application spaces, networking is 
not determined by end-user applications but completely driven by data rates and 
per-packet processing requirements. Nevertheless, given the need for product 
flexibility and configuration options, software is once again used to determine 
processing functionality and the hardware is increasingly designed to prioritize the 
efficient execution of the software.  

As already outlined in chapter 1, the networking application domain is moving 
towards architectures using multiple CPU cores and underlying flexible 
interconnect fabrics. As predicted by ITRS and shown in chapter 1, the die area will 
remain constant, the number of processors per design is predicted to grow by 1.4x 
every year, on average. This will have a profound impact on the future of 
prototyping given that the application partitioning between the processors has to be 
properly tested and verified prior to silicon production.  

Considering multimedia applications briefly, a fair amount of the tasks to be 
distributed between processors can be pre-scheduled. Proper execution can be 
verified using virtual prototypes as they allow very efficient control of execution as 
well as the necessary debug visibility into hardware and software co-dependencies. 
For a networking application, however, incoming traffic is distributed to packet 
processors and on-chip accelerators. Given the inherently parallel nature of packet 
processing, the choice of compute resources is done at runtime, which means that 
less pre-scheduling is required. Nevertheless, the various options of runtime 
scheduling will need to be prototyped prior to committing to silicon, at as realistic 
speed as possible. FPGA-based prototypes and virtual prototypes will be enhanced 
to collect appropriate performance and debug data to optimize scheduling 
algorithms. 

How the packet rates increase for different transfer rates and how packet processing 
times get shorter is illustrated in Figure 166. 
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As an example for 10Gb Ethernet, 14.9 million packets have to be processed every 
67 nanoseconds. To allow any kind of prototyping, both capacity and execution 
speed of prototypes will have to improve. For virtual prototypes it is likely that this 
can only be achieved using parallel, distributed simulation. FPGA prototypes will 
have to overcome capacity limitations using improved scheduling and partitioning 
algorithms as well as intelligent stacking of prototypes themselves. 

Figure 167 illustrates how the different functions performed in the networking 
control and data plane have evolved over time as processors have become more 
capable. It also shows that the complexity of processing demands has been 
outpacing the development of new processors. Developers have therefore moved to 
multiple processor cores and the most complex challenge has become to efficiently 
partition tasks across them.  

In the control plane, the “in-band control traffic” is handled with the actual 
connection processing for routing/session establishment of the network protocol in 
use. 

Figure 166 : Packet rates and processing times (Source: AMCC) 
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Taking into account the underlying multi-processing nature of the hardware, task 
distribution is important. Each “task” within the control processing is complex and 
offers limited internal parallelism. The tasks themselves are fairly independent and 
can be assigned individually to dedicated CPUs.  

Unfortunately, network applications have processing loads that come in bursts, 
which leads to CPUs that are powerful enough to handle the peak load, but 
otherwise underused. As a result, these very capable processors are not an optimally 
efficient use of silicon. Given the dependency of the processing requirements on the 
actual networking traffic it is difficult, if not impossible, to assign tasks at compile 
time to different processors. 

The data plane functionality is focused on forwarding packets and translates 
information from control traffic into device-specific data structures. The data plane's 
code is packet-processing code and easy to run on multiple cores operating in 
parallel. This code can be more easily partitioned across multiple cores, because 
packets can be processed in parallel as multiple cores run identical instances of the 
packet-processing datapath code. 

Again, much like for control code, the actual assignment of processing units to tasks 
is highly dependent in the actual network traffic and should be done at runtime. 
Assignment of tasks to processors at compile time is, again, difficult if not 
impossible. 

We predict that prototyping of networking systems will largely continue to be done 
in a hierarchical fashion. The individual processing units will continue to be tested 
against their packet-processing requirements but, given the increased complexity of 

Figure 167 : Functionality distribution in Data and Control Plane (Source: AMCC) 
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those requirements, it will become too risky to commit to hardware without proper 
prototyping.  

As discussed earlier, in contrast to mobile wireless and consumer applications the 
assignment of processing tasks to processing units is not done at compile time and is 
also not separated as a set of user applications from the hardware through operating 
systems. The type of software used in networking applications is much more “bare 
metal” and tightly coupled to the processors upon which it runs. Hardware 
dependency in software is difficult to model without the hardware being present in 
some form. Hence software debug is posing different challenges, i.e., requires 
debug at runtime and is also driving requirements for redundancy, all of which will 
make prototyping of all types even more compelling than it is today already. 

14.5. Prototyping future: automotive 

Automotive is a very dynamic application area and particularly interesting in that it 
has complexity trends increasing in two different directions.  

First, the overall complexity of a car as a combined device is already well exceeding 
that of wireless and consumer devices. Modern mid-range cars have at least 30 
electrical/electronic systems with up to 100 microprocessors and well above 100 
sensors. These processors will be combined into a network of so called engine 
control units (ECUs). With increased trends towards security and safety, as well as 
more and more video processing to assist driving, the number of ECUs and network 
complexity will grow much further and at an even faster pace. 1 

Second, in automotive applications the complexity grows beyond just electronics, 
meaning the combination of electrical hardware and software. Automotive systems 
will also have to be developed which take into account mechanical effects and their 
interaction with electronics, so-called “mechatronics.” Clearly, any software in such 
a mechatronic system is very hardware-dependent indeed, once again increasing the 
need for prototyping. 

  

As in many other application areas, software plays a crucial role so that hardware is 
increasingly developed with the aim of optimizing the software’s efficiency. Figure 
168 shows the V-Cycle often used to represent the automotive design flow as a 
design starts from the left and progresses to the right.  
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The V-cycle diagram is a simple way to illustrate the interaction between the 
original equipment manufacturers (OEMs) who eventually produce the complete 
vehicle and the so-called tier 1 suppliers who design and deliver the ECUs for the 
various vehicle sub-systems. We can see on the right that a vehicle requirement is 
developed and is modeled at the system level until ECU-level specifications can be 

produced. Then the ECU supplier develops their product based on the specification 
and delivers units for test in the overall vehicle prototype for validation alongside 
all the other ECU being developed for the new vehicle.  

Obviously communication and excellent project management is required between 
these two groups, and in the diagram above we can see two transitions at which 
communication between the various parties involved is crucial. However, growing 
complexity of electronic vehicle content is stressing traditional methods and it will 
be increasingly valuable for the communication between OEM and supplier to be 
more sophisticated in order to reinforce and illustrate the specification and 
deliverables.  

Replacing paper specifications with executable virtual prototypes and FPGA-based 
prototypes will become mandatory to increase quality of communication and avoid 
costly turnarounds due to defects found to late in the design flow.  

For example, if the specifications from OEMs to their ECU suppliers is imprecise 
then bugs are found during the integration phase, illustrated on the right side of the 
diagram, the development will have to go back all the way to the drawing board if 
defects cannot be corrected.  

Figure 168 : The automotive V-Cycle and its relation to prototyping 
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In addition, ECU developers need to be able to validate design trade-offs and 
efficiently interact with their suppliers and other ECU developers. Late changes in 
the specification can cause significant cost for correcting issues. The safety-critical 
nature of some of these vehicle functions is also demanding ever-more rigid and 
provable design and verification methodology, for software a well as hardware. 

Figure 168 also illustrates the various stages at which prototyping would 
complement written or verbal communication with executable models of the 
systems, sub-systems and chips under development: 

Before specifications are distributed to tier 1 suppliers, OEMs want to model the 
software applications and their effect on the system. Applications have to be 
modeled at high enough abstractions so that they can be mapped into early 
prototypes of hardware to be developed and effects like bus utilization, ECU and 
CPU utilization can be analyzed. 

ECUs as sub-systems in themselves need to be prototyped to improve software 
development schedules by starting software development prior to hardware 
availability. The resulting prototypes (virtual, FPGA-based or using first silicon) 
can be used for hardware verification and system validation itself. 

In the software world, once sub-systems are available and integrated, they are used 
for software testing as well. Hardware prototypes of the ECUs and sub-systems of 
ECUs are made available in complex test racks which are used for software 
development and testing.  

Due to their networked nature, automotive systems are at least one order of 
magnitude more complex than, for example, consumer applications. Distributed 
simulation of virtual prototypes as well as increased capacity and scalability for 
FPGA prototypes will be key requirements to address the resulting capacity and 
speed issues. With the further increasing complexity and pressure on schedule 
timelines, more and more of these prototypes will become virtualized and already, 
hardware in the loop systems (HILS) are being used in conjunction with software 
simulation.  

We can envisage completely virtualized systems in widespread use for high-level 
software validation, complementing FPGA-based or silicon-based prototypes which 
are located in main sites in smaller numbers, used for lower-level software 
validation. 

Capacity, speed and early availability will be important selection criteria for the 
various prototyping options. Cost requirements will also drive further use of virtual 
prototypes for software development given that they have a lower cost point per seat 
than hardware-based prototypes, making them available in larger numbers. 

In addition, safety requirements will change software development processes and 
make prototyping mandatory. Greater software content in vehicles means that 
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software validation becomes very widespread, beyond pure development into areas 
of certification and safety compliance. For instance, let’s consider the development 
of the sub-system which angles the rear wheels depending on the vehicle speed 
around a curve. In the past it was based on pure mechanics and hydraulics and the 
safety of those components were well understood and could be verified by the 
appropriate testing authorities. Any attempt of replacing such a system with 
software on an ECU would require a great deal of software validation tests to be 
passed in order to pass safety certification, such as the emerging standards for 
software verification (MISRA) and predictable software development (ISO 26262). 
In such a validation-rich design environment as automotive, prototyping becomes a 
key factor as a means of early verification in repeatable design flows and an enabler 
for safety-critical software development. 

14.6. Summary: software-driven hardware development 

As outlined in the previous sections, the needs are different in the various 
application domains, but the overarching commonality is the trend towards more 
software development. In the future the actual system behavior in the majority 
application domains is mostly defined by software; that is certainly the case for 
those we explored in this chapter. As a result, hardware development will be driven 
to optimize the software’s execution.  

Depending on the specifics of the application domains this has different effects. In 
mobile wireless and consumer, the underlying digital hardware is fairly generic, 
enabling software platforms like Google Android™, Apple® Mobile OS or 
Windows Mobile™ 7 to execute most efficiently and decouple the ecosystem of 
application developers from the actual hardware. 

In contrast, in the networking application domain, the software still defines system 
behavior but it is much more hardware-dependent, embedded in the networking 
software stacks on Linux and other operating systems. However, software is still the 
key differentiator of a combined hardware/software platform. 

Similarly, in automotive, due to the overall complexity, developers of hardware- 
dependent software often reside in independent companies. They need access to 
representations of the hardware for which they are developing software and this 
increases the need for virtual and FPGA-based prototypes. 

There is no question that software will gain even more importance and that we are 
on cusp of quite significant changes in development methodologies as well as 
responsibilities within the design chains. How exactly the changes will manifest 
themselves, very much depends on the application domains. It is safe to assume that 
in all of them prototyping will play a key role. 
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14.7. Future semiconductor trends 

Having considered the future from the viewpoint of certain key application areas, 
let’s cross-reference those predictions by taking a look at the trends in 
semiconductor development and production.  

In chapter one we outlined the various semiconductor trends that have impacted 
SoC and other chip design up until now. We saw how these trends have increased 
the need for prototyping up until the present time. In this section we will complete 
that task and try to predict how those trends will continue over the next five years 
and what effect this will have on prototyping. 

• Miniaturization: there is no clear end in sight to the miniaturization of 
silicon to achieve smaller silicon technology nodes. As a result, the 
complexity of the projects at the leading-edge technology nodes will be so 
complex that it is simply too risky to tape out without prototyping early 
and often. FPGA-based prototyping will support increased complexity as 
FPGA devices get larger, benefiting, and to some extent, driving those 
technology trends.  

• Embedded CPUs: as the latest generations of FPGAs have family 
members which include embedded processors, it will be interesting to see 
if they will be used to run the embedded software in the system, rather than 
use a test chip of the CPU core(s) which the FPGA is prototyping. Perhaps 
the choice of CPU in the SoC might even be driven by its availability or 
otherwise in an FPGA format for prototyping. 

• Decrease in overall design starts: this trend is widely expected to 
continue as the SoC production costs will make smaller technology nodes 
less accessible and will likely cause further consolidation in the 
semiconductor industry. With less design starts the remaining designs need 
to address more designs in order to re-coup the investment through more 
end applications. Virtual and FPGA-based prototyping will become even 
more necessary in order to mitigate risk of potential re-spins.  

• Programmability: in the mobile wireless and consumer application 
domains the desire to de-couple software development from hardware 
dependencies will further increase. Virtual prototyping will also gain in 
importance as it allows software development to commence even earlier. 
SDKs will contain greater capabilities for software verification previously 
only accessible to host development. 

• IP reuse: IP usage continues to increase, which is an easy prediction to 
make. The semiconductor analyst Gartner confirmed its most recent 
predictions that the amount of IP reuse will again double between 2010 and 
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2014. In addition, the trend to licensing complete sub-systems will grow 
and open a new area of prototyping for complete sub-systems containing 
an assembly of pre-defined hardware and software IP.  

• Multicore processing: Adoption of multicore architectures will cause 
more pressure on analyzing and optimizing software parallelization. Today 
parallelization has been solved in specific application domains, such as 
graphics, but it is likely that different application-specific solutions will be 
required in other areas, such as networking and automotive electronics. 

• Low power: today’s methods for reducing power in semiconductors are 
focused on implementation and silicon-level engineering. Future 
requirements will be better addressed by moving the focus of low-power 
design to the architectural design level. As a result virtual and FPGA-based 
prototypes will be instrumented to allow low-power analysis for early 
feedback on some aspects of the power design. For example, for activity 
capture and average dissipation over certain software functions. 

• AMS design: an increase in the analog/mixed signal portion of chips will 
create even more demand to allow in-system validation. Virtual IO for 
virtual platforms and interfaces of FPGA-based prototypes to its 
environment will become more critical. 

14.8. The FPGA’s future as a prototyping platform 

As well as the previously mentioned trends which demand greater prototype 
adoption, there are trends in device and tool capability which allow us to keep up 
with that demand. FPGA devices are a classic illustration of Moore’s Law, as we 
mentioned before. New research will allow the use of multi-die packages and 3D 
technology to greatly increase the capacity of our leading-edge FPGA devices 
beyond Moore’s Law. However, this leap in capacity brings new challenges in 
connectivity. The ratio between internal resource and external IO will continue to 
cause visibility and connectivity issues for prototyping, accelerating novel solutions 
for multiplexing and debug tools.  

The complexity of creating reliable and flexible FPGA boards using these new 
devices in ever-shorter project cycles will reduce the proportion of in-house boards 
compared to commercial boards. In-house boards will still be used for specific 
needs or to support very large numbers of platforms, or to support a large company 
in-house standard. However, we shall see most other deigns complete their current 
migration to ready-made boards, which itself will probably create a healthy and 
competitive market from which prototypers can select.  

The future of FPGAs as the hardware prototyping platform of choice is secure and 
will be complemented with growing use of virtual prototypes. These will 
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increasingly be combined into hybrid arrangements and we can expect a merging of 
the two approaches into a more continuous prototyping methodology from system 
to silicon in the future. 

14.9. Summary 

Given the analysis of the previous sections in this chapter, prototyping will become 
even more of a key element for future design flows. Interesting times are in store for 
providers of prototypes at all levels. Eventually both the hardware and software 
development worlds will grow closer together with prototypes – virtual, FPGA 
based and hybrid – being the binding element between both disciplines.  

 

The authors gratefully acknowledge significant contributions to this chapter from:  
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CHAPTER 15 CONCLUSIONS 
We have come to that point that occurs in every book; the end. With a technical 
book, such as the FPMM, we also need to summarize the lessons learned in the 
book and reach some conclusions. In this very short chapter we shall endeavor to 
capture the essence of the previous 400 pages in a short take-away form. 

15.1. The FPMM approach to FPGA-based prototyping  

Table 35 gives a summary of the various steps and main considerations in running 
an FPGA-based prototyping project. 

 
  

Table 35: Summary of steps in FPGA project 

Start from the 
beginning 

Get involved at the earliest stage of the SoC project; not after lots of 
FPGA-hostility has already been introduced into the design.  

Understand the 
goal 

How much to prototype? What speed? How many platforms? How 
many versions? What deadlines? 

Choose platform Speed and capacity are important but flexibility is critical. Maintain 
high quality and reliability. 

Modify RTL Remove FPGA-hostility and add necessary items for FPGA operation. 
Keep revision control. 

Partition Aim at balancing resource usage and minimizing number of 
interconnect signals. 

Reconnect Fix IO and multiplex between FPGAs as required. Use high-speed 
differential signaling as required. 

Bring-up Incrementally introduce design onto boards while checking for signs of 
life and correct operation.  

Debug Start using the prototype to debug the design and the software which 
runs upon it. Have a debug plan. Use incremental tool flows. 

Replicate and 
use 

Make enough copies for every end-user and support these to success. 
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We have addressed each of these steps throughout the chapters of this book and 
taken one step at a time, and using external pre-made sources as often as possible, 
we can quickly gather the expertise and tools required to create a successful 
prototype. Let’s reconsider our three laws of prototyping as reprised in Table 36. 

Considering each law in turn, we can summarize the main FPMM conclusions that 
we found in each case.  

15.2. SoCs are larger than FPGAs 

Despite, or perhaps because of, 25 years of progress, the first law of prototyping is 
still pertinent. It is true that many FPGA-based prototyping projects require only 
one FPGA and this is usually true for IP block verification and in-lab feasibility 
projects. However, SoC projects are by their nature large and getting larger and 
while FPGA devices are at the leading edge of silicon development and also getting 
larger year-on-year, we will probably still need multiple of the largest FPGA 
devices to prototype a full SoC.  

This means partitioning of the SoC design into multiple FPGAs for which we 
recommend using specialist EDA tools. These will allow us to partition interactively 
or automatically, the former giving the better results but taking longer.  

The typical size of a prototype is between one and ten devices but with sophisticated 
automated partitioning and programmable interconnectivity, prototypes up to 20 
devices are possible. As each device is already just over four million ASIC gates, 
this represents a design up to 80 or 90 million SoC gates which is way above the 
size of the majority of SoC designs today. 

When the SoC design is partitioned over multiple FPGAs, we will need to perform 
some extra design work in order to maintain the design connectivity, the clock 
networks, and the reset and start–up synchronization. These are all explained in 
chapter 8. 

Table 36: The three “laws” of prototyping revisited 

 Law 1: SoCs are larger than FPGAs 

 Law 2: SoCs are faster than FPGAs 

 Law 3: SoC designs are FPGA-hostile 
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15.3. SoCs are faster than FPGAs 

The second law is true when comparing the core speed of both types of device, 
where the fine-grained and infinitely versatile architecture of an SoC customer chip 
means that it can outpace an FPGA, with its coarse-grained programmable 
architecture. So we should expect the RTL from an SoC design with a core speed of 
many hundreds of megahertz to run in an FPGA with core speeds in the region of 
20MHz to 100MHz.  

However, this speed is reduced if the design’s critical path crosses the FPGA 
boundary and especially if multiplexing is used between the FPGAs. Both of these 
situations are common so the typical performance of a prototype in most cases is 
between 10MHz and 25MHz. Nevertheless, this prototype speed represents by far 
the fastest pre-silicon platform possible for exercising the RTL of an SoC design.  

So the core speed of an FPGA is relatively fast but the first law holds true. At the IO 
the FPGA is just as fast as the SoC silicon in most regards and is able to support 
very much the same standardized peripheral interfaces as the SoC. Indeed, the 
ability of the FPGA IO to reproduce fast peripheral interfaces is one of their most 
valuable advantages over slower verification technologies. In addition we can use 
external PHY devices as well as those built into the FPGA. 

All this means that it is common to find FPGA-based prototypes USB at 125MHz, 
or HD video running at full 72MHz rates. For the IO, therefore, with care and the 
right IP, we can break the second law of prototyping even if it still holds true for the 
core logic.  

15.4. SoCs designs are FPGA-hostile 

After reading chapter 7 we might be forgiven to think that FPGA-based prototyping 
involves quite a few changes to the SoC RTL but that does not always need to be 
the case. That chapter covered many possible scenarios and it would be a 
pathological design indeed that needs all of them to be fixed but, nevertheless, a 
good prototyping team will not be daunted by even the most FPGA-hostile SoC 
design. Armed with the best tools, IP, boards and devices and most importantly the 
right expertise and approach, we can tackle any SoC design and create an FPGA-
ready version of at least the majority subset of the design.  

However, that is only the minimum acceptable result of a FPGA-based prototyping 
project and far more is achievable. As we outlined in chapter 9, a Design-for-
Prototyping approach will ensure that the SoC design does not arrive as FPGA-
hostile in the first place.  
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We do not have to accept the third law of prototyping as a simple fact of life. A 
Design-for-Prototyping approach means that we can break the third law and make 
our SoC designs, if not FPGA-friendly, then at least FPGA-tolerant!  

15.5. Design-for-Prototyping beats the three laws 

Design-for-Prototyping guidelines fall into two groups; procedural guidelines and 
design guidelines.  

We summarize the procedural guidelines in Table 37 and the design guidelines are 
not repeated here but instead are included in full in chapter 9.  

It is hard to imagine that we will be fully successful if we only follow one set of the 

guidelines, however. If we had to choose just one, then it is the procedural 
guidelines that are probably the more important set. 

The secret of success in many prototyping projects is in this integration of the 
prototypers with the rest of the SoC design team. This must lead to the inclusion of 
the prototypers’ needs and their feedback at the early stages of the SoC project. 
Then, with only small changes to procedure and design style, the success of FPGA-

Table 37: Summary of procedural recommendations in Design-for-Prototyping 

Recommendation Comment 

Integrate RTL team and prototypers. Same tool training. Shared knowledge of 
FPGA and SoC 

Prototypers must work closely with 
software team. 

Software team are the prototypers best 
“customer” 

Include prototype in the verification 
plan. 

Branch RTL at pre-agreed milestones of 
maturity 

Keep prototype-compatible 
simulation environment. 

To compare results with original SoC 
simulations  

Keep combined documentation and 
revision control. 

Track software and RTL changes for 
prototype 

Adopt company-wide standard for 
hardware and add-ons. 

Avoids waste and encourages re-use 

Include Design-for-Prototyping in 
RTL coding standards. 

Design-for-Prototyping  RTL style is 
also good for SoC. 
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based prototyping can be guaranteed. In return, the software and RTL parts of the 
SoC are introduced at the earliest possible opportunity with minimum effort, 
addressing the critical development effort of most SoC projects today, the 
embedded software. 

15.6. So, what did we learn? 

The main lesson might be to tackle complexity one step at a time but make sure that 
each step is in the right direction and not into a dead end. When starting an FPGA-
based prototyping project, our success will come from a combination of preparation 
and effort; the more we have of the former, the less we should need of the latter.  

Having read through most of this book, we will enjoy a significant head start to our 
prototyping projects. We hope that our methodical approach to FPGA-based 
prototyping will allow anybody to tackle the complexity of their next SoC project 
with more confidence and achieve even more successful results. 
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APPENDIX A. WORKED EXAMPLE: 
TEXAS 
INSTRUMENTS 

It is always instructive to learn from those who have gone before us. This appendix 
provides details of an FPGA-based prototyping project performed by a team in the 
Dallas DSP Systems division of Texas Instruments under the management of David 
Stoller. David is an applications engineer who has completed the RTL and systems 
verification of numerous IP modules and sub-systems integrated in cable and DSL 
modems, IP phones, and other networking-based products from Texas Instruments. 

A1. Design background: packet processing sub-system 

This case study examines the FPGA prototyping efforts within Texas Instruments of 
a complex packet processing sub-system as seen in Figure 169. 

Figure 169: Packet processing sub-system block diagram (source: Texas 
Instruments) 
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This particular sub-system consists of the following IP subcomponents each of 
which are tested individually or as part of the complete sub-system: 

• DMA engine and packet-processing sub components 

• Third-party IP 

• 3-port gigabit Ethernet switch 

• Firmware-based RISC processors 

• Proprietary bus infrastructure 

Within Texas Instruments, a typical IP design and verification cycle consists of the 
following steps: 

1. The IP design team defines the feature set of the IP to meet the 
application requirements, then specifies the IP and implements the 
design in RTL. 

2. The IP design team performs basic functional “smoke” testing to 
ensure that the RTL exhibits basic functionality.  

3. The IP design verification (DV) team then performs comprehensive 
simulation verification by implementing and running a large suite of 
test cases. When the IP is passing approximately 80% of the 
planned test cases, the design is considered robust enough for FPGA 
implementation. 

4. The IP prototyping team integrates the IP RTL into FPGA RTL, 
compiles the design for the targeted FPGA platform, and brings up 
the platform to begin FPGA testing. 

5. When the simulation and FPGA verification are complete, the IP 
module is released to the chip team, where it is integrated into the 
chip RTL.  

6. Chip-level verification is performed on the entire chip SoC through 
both SoC simulation verification and the use of a commercial 
emulator platform. 

A2. Why does Texas Instruments do prototyping? 

Each and every step in the design and verification flow is critical to the success of 
an IP block but the goal of the FPGA-based prototyping step is to perform pre-
silicon verification of a complex IP block. FPGA-based prototyping allows the 
prototyping team to target conditions that are not easily replicated by alternate 
verification methods, including: 
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• Higher frequency RTL clocking, yielding very large numbers of test 
cycles. 

• Memory transactions with real memory devices and other external 
peripherals. 

• Networking protocol checking with actual networking equipment 
(USB, Ethernet, PCIe, etc.)  

• Simultaneous interactions between multiple masters and peripherals 
or memory controller. 

• Complete sub-system running at scaled clock frequency with heavy 
loading of interconnect buses to determine maximum throughput of 
logic and interfaces. 

• Channel setup and teardown operations with and without traffic 
present. 

• Testing IP running with actual asynchronous clock boundaries. 
• Running real software applications which involve actual CPU 

instruction and data cache operations as well as management of 
peripherals through interrupt servicing. 

 

Owing to the sheer number of gates present in the complete chip, the prototyping 
team did not intend for the FPGA prototyping platform to encompass the entire 
SoC. Instead, the primary goal was to map a part of the SoC that spanned 1-4 of the 
largest available FPGAs and could be run at approximately 10MHz. This allowed 
for a reasonable compromise between size and frequency to allow for useful FPGA 
prototype testing. 

A3. Testing the design using an FPGA-based prototype 

The IP DUT was tested by integrating the DUT RTL into an ARM® processor based 
sub-system which was then mapped onto the FPGA platform. This was previously 
illustrated in Figure 169. 

The ARM processor served as the test host for the FPGA prototyping verification. 
Test applications written in “C” were run on the ARM to exercise the DUT with 
various scenarios that were defined in the FPGA test plan. In most cases, the 
memory map and infrastructure of the ARM sub-system were matched to that of the 
targeted chip. This allowed the FPGA platform to be used for software application 
and driver development before silicon was available. Additionally, having the 
FPGA test sub-system architecture match or resemble the architecture of the actual 
chip allowed for more meaningful performance measurements on the FPGA DUT. 
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The packet processing testing scenarios were broken up into two major classes.  

Loopback tests were implemented by the ARM test application generating packets, 
sending them into the packet processing sub-system, receiving packets back from 
the hardware, and then checking the packets for data integrity. The packet loopback 
was performed at the boundary of the system (in the Ethernet PHY). Loopback tests 
were specifically designed for testing various packet configurations and extensive 
checking of all received packets through the ARM software. 

Echo tests were implemented by sending packets from the Ethernet test equipment 
into the packet processing sub-system. The DUT routed the packets through its 
various hardware blocks, and then the packets were transmitted back to the Ethernet 
test equipment where they were checked for errors. Echo tests were specifically 
designed to maximize the packet throughput through the DUT, exercising the 
various parallel data paths, and provide minimal checking of errors among received 
packets. 

Figure 170 provides an overview of the FPGA prototyping platform that was 
assembled for this project. 

In this example, the DUT ARM processor executed a simple bootloader/OS out of 
flash memory in the same manner that the processor will on the final silicon. Test 

Figure 170: FPGA prototyping hardware used in the lab (source: Texas 
Instruments) 
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applications were loaded onto the flash or DDR SDRAM daughter board using 
either the serial port or ARM JTAG debugger on the LAB_1x1 board. The ARM 
executed the test application out of SDRAM and configured the DUT in preparation 
for running the tests. Ethernet packet streams were configured on the Ethernet 
packet generator which sourced them to the hardware platform on 10/100/1Gb 
interfaces to be processed by the hardware in echo tests. The Ethernet test 
equipment also served as a packet “checker” and verified that all expected packets 
were received, had no errors, and maintained the expected throughput rate. 

A4. Implementation details 

The entire packet processing RTL spanned four Xilinx® Virtex®-5 LX330 FPGAs 
(on two HAPS®-52 platforms or a single HAPS-54 platform). The final partitioning 
consisted of the following FPGA utilizations: 

FPGA A 60% LUTs used 

FPGA B 92% LUTs used 

FPGA C 83% LUTs used 

FPGA D 20% LUTs used 

The FPGA implementation of the DUT was configured for two different clocking 
scenarios; “high-speed” and “low-speed” scenario. 

The initial clock “high-speed” frequency targets were: 

Packet Processing IP:  37.0MHz 

Ethernet IP:   12.5MHz 

DDR SDRAM:  50MHz 

 

Following the partition across 4 FPGAs using pin multiplexing techniques, the 
operating frequencies were lowered as follows in order to overcome some clocking 
limitations: 

Packet Processing IP:  7.0MHz 

Ethernet IP:   12.5MHz 

DDR SDRAM:  50MHz 

Both scenarios yielded useful results and each shall be explained in detail, starting 
with the high-speed scenario. 
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A5. High-speed scenario  

In order to properly test the packet throughput and pushback, specifically at the 
boundary between the 3-port gigabit Ethernet switch and the rest of the packet 
processing sub-system, it was necessary to set up the DUT to run at 1/10 of the 
clock speeds of the actual chip. By allowing the silicon clock ratio to be maintained 
on the FPGA platform, it ensured that each of the DUT components see the same 
level of transaction activity as the actual chip. For a silicon chip operating with a 
gigabit stream of Ethernet traffic running at 125MHz and the packet processing sub-
system running at 370MHz, the corresponding FPGA-prototyped sub-system 
operated with a 100Mbit stream of Ethernet traffic running at 12.5MHz and the 
packet processing sub-system running at 37MHz. 

While this scenario satisfied the particular goal of testing the asynchronous 
boundary, it did present several challenges, including: FPGA interconnect pin 
limitations, FPGA capacity limitations, and the FPGA DCM minimum clock 
frequency. Both the interconnect and capacity limitations of the hardware platform 
drove a need for the platform to be implemented at these clock frequencies with a 
reduced DUT sub-system with some modules removed. 

The clocks in this high-speed scenario were generated from a number of DCMs 
placed in the clock control block in Figure 171. However, by using the Virtex-5 
DCMs to generate all of the required system clocks, the platform was limited to the 
combinations of clock division and phase shifting that could be achieved due to the 
32MHz minimum clock input to the DCM.  

This factor created issues with generating divided down or phase-shifted clocks 
which prevented certain IP modules from being included in this phase. Additionally, 

Figure 171: Clocking structure for high-speed scenario (source: Texas 
Instruments) 
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divided down clocks from the DCMs could not easily be used on multiple FPGAs, 
as it was difficult to ensure that they are synchronous and in phase.  

A6. Low-speed scenario  

The low-speed configuration was implemented in order to address the FPGA pin 
interconnect and capacity limitations of the hardware platform. By eliminating the 
requirement of implementing a packet processing IP/Ethernet IP clock ratio of 
37/12.5, the FPGA RTL was reconfigured to include all of the DUT IP components 
(transitioning from two to four FPGAs) and to allow all of the resulting IP 
interconnect to be routed using the Synopsys® HSTDM pin multiplexing scheme. 

In 
order to resolve the limitations presented by the original clocking structure in the 
high- speed scenario shown above, the clocking structure in Figure 172 was 
implemented.  

The low-speed clock scenario consisted of a central clock control module 
instantiated on one of the four FPGAs that generated all necessary system clocks 
using a simple FF counter clock divider scheme. This allowed the ability to generate 
unlimited divided and phase-shifted clocks from a single clock input fed through a 
DCM. These generated clocks were then fed out of the FPGA’s clock outputs, 
where they were routed back into each of the FPGAs on the platform.  

Figure 172: Clocking structure for low-speed scenario (source: Texas 
Instruments) 
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This clocking structure had several advantages. First of all, this scheme allowed for 
a lower operating clock frequency that did not rely on the input requirements of the 
FPGA DCM. This low speed was necessary to implement pin multiplexing 
(HSTDM) between the FPGAs and therefore overcome any interconnect limitations. 
The low clock frequency also significantly reduced the FPGA synthesis and place & 
route runtimes. By having all of the generating clocks exit the FPGA outputs and 
then re-enter each of the FPGAs on their clock input pins, the FPGA compile tools 
could effectively ignore any of the clock generation circuitry in their analysis. This 
clock structure also provided much more flexibility when prototyping an IP that 
required a set of divided or phase-shifted synchronous clocks. 

A7. Interesting challenges 

The biggest challenges faced during the FPGA prototyping testing of the packet 
processing sub-system involved overcoming limitations of both FPGA capacity and 
FPGA pin interconnect.  

FPGA capacity limitations were addressed by proper partitioning of the DUT RTL 
using manual methods as well as the Synopsys Certify® tool. This resulted in 
spreading out the DUT across two or four FPGAs. When done manually, this was a 
labor-intensive step which involved attempting various partitioning scenarios until 
the partition is successful. Using Certify eased much of the overhead involved in 
performing the complex partitioning.  

FPGA capacity limitations were also addressed by constructing several 
configurations of the DUT RTL in which various sub-modules were removed in 
order to reduce the overall size of the sub-system. This was successful particularly 
when the IP contained several distinct functions, each of which could be separately 
tested. In some cases this allowed the DUT (with reduced resources) to be mapped 
across two FPGAs, allowing more efficient usage of multiple FPGA platforms by 
the team. However, this solution was entirely manual and added significantly to the 
time- and effort-resources spent on the FPGA implementation portion of the testing 
project.  

When the packet processing RTL was partitioned across multiple FPGAs, there was 
often a conflict between how many pins were available between the FPGAs and 
how many were required by the internal signals within the DUT. Additionally, there 
was a trade-off between using the FPGA pins for external daughterboard 
connections and reserving the pins to accommodate FPGA-to-FPGA interconnect.  

Initially, pin interconnect limitations were addressed by adding bus-width adapting 
bridges to internal buses within the DUT (i.e.128 bit adapted down to 32 bit). This 
solution shown in Figure 173, allowed for the FPGA operating frequencies of the 
sub-system to remain in the high-speed clocking scenario, although with a side 
effect, as it did modify the architecture (and possibly the functionality) of the DUT.  
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In order to implement and test the DUT without the presence of the bus width 
adaption bridges, the HSTDM pin multiplexing scheme within the Synopsys Certify 
tool was utilized. The HSTDM methodology was implemented using a 16:1 
multiplexing ratio which allowed for all of the internal nets to be connected when 
the entire packet processing IP was partitioned across four FPGAs, as shown in 
Figure 174. 

The trade-off with this methodology was that the HSTDM required a lower 
operating frequency and this was the overall driving factor in switching to the low-
speed clocking scenario. 

Figure 173: Block diagram of bus-width adaption (source: Texas Instruments) 
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Figure 174: Block diagram of partitioned sub-system (source: Texas Instruments) 
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Summary of results 

The FPGA-based prototyping team at Texas Instruments was able to construct a 
complete configuration of the packet processing sub-system and fully load it with 
multiple Ethernet streams to prove that the throughput and latency met the chip 
specifications. Once the DUT was up and running on the FPGA platform, hundreds 
of tests were run, uncovering multiple issues including several system-architecture 
problems that were impossible to replicate on a simulation or emulation platforms. 

The FPGA platform was also used as a software development station for multiple 
engineers to perform software driver testing and firmware-based testing and 
development. The platform was operated in a time-sharing mode between the local 
hardware verification engineers and the remote software-verification engineers. 
Software engineers at a remote site were able to remote login to the host PC, which 
would allow them to access the ARM and RISC processor debuggers, to reset the 
platform when needed, and to perform their testing. They were able to load system-
level tests and drivers onto the ARM processor and verify software applications 
prior to silicon being available.  

Additionally, the software engineers were able to verify the firmware targeted for 
the various RISC processors in the packet-processing IP and demonstrate full 
functionality prior to silicon being available.  

In addition to its hardware-verification advantages, the FPGA-based prototyping 
platform was demonstrated as a much more efficient software development platform 
than the emulator, providing a lower-cost solution, delivering many more test cycles 
and also having the ability to interface with a software debugger and real-time 
Ethernet test equipment. 
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APPENDIX B. ECONOMICS OF 
MAKING PROTOTYPE 
BOARDS 

In chapter 5 and chapter 6 of this manual we explored the details of both making 
and buying a suitable FPGA platform. We tried to avoid making any value 
judgments between these two approaches because in any given situation one or the 
other may be most appropriate. This appendix is provided as a guide to help 
readers examine the business reasons for choosing between “make” and “buy.” 

B1. Prototyping hardware: should we make or buy? 

A wrong decision regarding the exact FPGA platform may have great impact on the 
cost and overall success of the whole prototyping project. The relative costs of 
various options might be the overriding consideration, but it is essential that the 
whole argument is considered. After all, if we have to compromise our prototyping 
goals to meet a budget, then let us at least be sure we understand all the cost factors 
involved.  

The typical questions that arise when considering the best way to implement an 
FPGA prototype include “do I have enough time or expertise to create and 
manufacture a fully custom board?” or “will commercially-available boards cause 
me to compromise my goals too much?” 

This section aims to expose the most significant factors to consider when choosing 
to develop or purchase prototyping hardware. Costs, development time, and effort 
are considered in detail; including the obvious direct factors of bill-of-materials 
(BoM) cost, manufacturing time and test yield as well as some related business 
issues, such as engineering opportunity cost, and return on investment (ROI). 

Some time ago, the authors created a cost comparison spreadsheet (CCS) which is 
helpful in arranging all the cost and time factors involved. In the hands of a project 
manager in position of the ambient facts, the CCS allows us to explore the 
arguments based on our own situation. The references at the end of this book give 
details on how to obtain a copy of the CCS. 
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B2. Cost: what is the total cost of a prototyping board? 

An FPGA-based prototype board is worth considerably more than the sum of its 
components. Comparison should not be made by simply comparing BoM cost of an 
in-house board vs. the purchase price of a finished commercial board. Many other 
costs beyond BoM should be amortized across the in-house board before cost 
comparison is made realistic. These costs can be grouped into direct and related 
business costs as shown in Figure 175.  
The following sections discuss each of these costs in depth. 

B3. Direct cost: personnel 

Design setup cost: prototyping requires specific FPGA expertise to perform set-up 
tasks which are independent of the target board, as explained in depth in chapter 7. 
Engineering effort will be expended on this kind of design manipulation regardless 
of our choice of board. A typical project might take four to six weeks to be set up by 
such experts. Using our CCS and entering typical data for engineering costs and 
overheads, we find that this set-up cost could typically be $20,000 per project 
(apologies to those reading in other countries but all cost examples in this appendix 
will be in $). For novice teams, the set-up time would be longer and costs would be 
proportionately higher. 

Board engineering cost: there is an obvious difference in engineering cost between 
developing in-house boards and buying them ready-made. In the former case, the 
cost of development, manufacture and test must be borne by the project. In the latter 
case, it is the capital cost of buying in the board(s) that must be borne. Managers 
will understand that there is a difference between the visibility of project costs and 
visibility of capital costs at most corporations. Whereas the capital cost of 
purchasing ready-made boards is fairly obvious, the engineering cost of in-house 

Figure 175: Main costs associated with custom board development 

Direct costs Related business costs 
• Personnel • Time 

• Equipment and expertise • Risk 

• Material and components • Opportunity 

• Yield and wastage  

• Support and documentation  
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development must also be fully understood in order to make an accurate 
comparison. 

We must therefore have a figure for the development cost for the boards and then 
amortize this across the total number of boards in order to reach a per-unit 
development cost. To calculate a per-unit cost we should consider all relevant 
engineering costs, including: 

• Development engineering 

• PCB layout 

• Manufacture engineering 

• Test engineering 

Once again, readers are urged to make calculations using their own figures; you will 
need to enter your company standard overhead and opportunity cost multipliers 
(e.g., overhead adds 50% cost on top of salary), and also estimate the time taken by 
each of the engineers to complete their tasks (e.g., PCB layout might take 40 days). 
The model used in the CCS includes these factors. 

For example, 40 days is not unreasonable for a complex four-FPGA board with 
large BGA packages, trace-length matching, and 25+ layers. Using typical 
information entered into the CCS, cost for a 40-day PCB layout task may be 
estimated as $40,000, which is then amortized across the quantity of boards that are 
built and used in the project. 

B4. Direct cost: equipment and expertise 

General equipment is accounted for in the overhead multiplier on the personnel 
calculation above. However, in addition, there will be specific capital equipment 
employed to perform some of the design tasks. For example, a PCB layout station, 
manufacturing equipment, or test equipment. If there are production projects 
queuing up for the equipment while it is being used to create prototype boards, then 
there will be an opportunity cost associated with that. It is difficult to quantify that 
material opportunity cost and so they are not included in the CCS but you should 
consider where potential bottlenecks may be in your own capacity to design, build, 
and test boards. 
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In the CCS, you can choose to factor equipment opportunity cost into the 
opportunity cost of the design personnel themselves. In any case, equipment 
opportunity cost should not be ignored. The CCS does, however, differentiate 
between in-house assembly costs and outsourced costs, including any non-recurring 
engineering (NRE) costs. 

Engineering cost example 
Figure 176 shows how typical data can be entered into the CCS. In this case we are 
making broad assumptions for salaries, overheads, and ROI. 
To clarify, the overhead of 50% means that for each dollar paid to the engineer, 
there is another 50 cents of extra cost (e.g., equipment, employment taxes, benefits 
etc.). The ROI figure attempts to model the opportunity cost; a figure of 125% 
means that the company would normally expect a return of 125 dollars of revenue 
for every 100 dollars paid in salary plus overhead for these engineers. 

These figures are used for the calculations and for the purposes of this example are 
deliberately underestimating the real engineering costs. At risk of being repetitive, 
you may work with the CCS to enter your own information. 

The engineering cost also depends upon how long these engineers are employed on 
the board development. We therefore have a section in the CCS in which we enter 
the estimated time required for the development. 

Estimates for time are difficult so we recommend using real data from a recent 
prototyping project rather than estimates for a future project. The CCS example in 
Figure 177 shows estimates based on real board designs known to Synopsys®. As is 
good practice for project management, there is a spread of estimates for each figure, 
which is given in resource-days. The CCS takes into account elsewhere how many 
engineers in each discipline are available for the project. 

Figure 176: Engineering costs as entered into CCS 
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We will see later how these figures impact the results of the CCS. 

B5. Direct cost: material and components 

Now that the board has been designed, it has to be built and this requires BoM 
management and component purchase effort. Simplistic analysis of “make vs. buy” 
decisions might only compare the component cost of the in-house board with the 
purchase price of the off-the-shelf board. As we have already seen, this ignores 
many significant costs. 

Your own purchasing professionals will be very efficient in managing BoM costs 
for your own products in volume. This efficiency may not be fully transferable to 
very low volume runs such as prototyping boards. The extra effort to purchase and 
manage the BoM for a few FPGA-based prototype builds may not be a good use of 
their time or your component management system. The numbers are hard to 
measure but it is estimated by volume manufacturers that annual costs for 
maintaining items for production may be over $500 per different component type. 
When we consider that a four-FPGA board may have over 100 different component 
types, we can see that this becomes significant. This annual cost would be relevant 
if you are planning to use the boards in more than one project over a number of 
years. This is modeled as part of the board’s cost-of-ownership in the CCS. 
Regardless of cost, the extra time and effort involved in managing a BoM purchase 
compared to the purchase of a single off-the-shelf board is worth considering. 

There are also economies of scale from which mass producers of commercial FPGA 
boards are able to benefit, resulting in lower prices for each final user. For example, 
the cost per device of the FPGAs will be lower to an external mass producer 

Figure 177: Estimates for engineering effort entered into CCS 
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compared to buying them yourself in low-volume from your local distributor. In the 
CCS we can enter all material and component cost as a single overall sum which 
will then be used for other calculations. 

Finally, for the bare-base PCB, assuming your manufacture is out-sourced, there 
will be a non-recurring engineering (NRE) or tooling cost for the board. In addition, 
the cost for the bare PCB is also significant enough for both to warrant separate 
entries in the CCS. As an illustration, a typical bare board cost for a four-FPGA 
board is approximately $2,000 in low volume with a further $2,000 to $3,000 NRE 
which should also be amortized. 

Component and NRE example 
We enter the approximate cost for the components including the PCB manufacture, 
the board itself, the FPGAs, and other components. The full BoM will be well 
understood for your own boards but for this example, we have estimated full 
component and board costs as shown in Figure 178. 

Total BoM price will vary depending upon the number of devices bought, minimum 
order quantities and discounts negotiated with vendors of the more important 
components on the board, for example the FPGAs and connectors. Of the $32,000 
shown in our example, nearly half of that would be the cost of the four FPGA 
components themselves. 
These components will need to be assembled onto the board and whether or not this 
assembly is performed in-house or contracted out, there is an associated cost to its 
setup. This may be an NRE at the external assembly house, or a less tangible in-
house personnel/equipment cost. The CCS makes different calculations depending 
on your choice. In our example, we calculate an assembly cost per board of between 
$1,100 and $1,700 depending upon time during which in-house machinery is 
employed or external outsourcing is used. 

Figure 178: Estimates for material costs entered into CCS 
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These costs do not include board functional testing, which are accounted for 
elsewhere. 

B6. Direct cost: yield and wastage 

FPGA prototype boards are very complex and it is probable that the PCB design 
will require some rework, so the CCS takes account of possible re-spin costs and 
delays. Commercial board providers are able to amortize such re-spin costs over 
their entire production volume, whereas, in-house re-spin cost is borne by the 
awaiting SoC project. 

In addition to board re-spin, it is also highly unlikely that there will be 100% yield 
of the boards after manufacture and assembly. Prototype boards are very 
sophisticated and have a large number of components and complex surface mount 
packages. Boards which do not initially work must have their failure diagnosed and 
remedial action must be taken. Automated production test methodology is often not 
economical for the very small volume builds and so the test and rework is usually 
performed by hand, often by the same experts that originally created the design. It is 
common to overbuild boards so that adequate boards pass initial test with minimal 
delay. 

It is an unnecessary risk to build exactly as many boards as required and delay the 
prototyping project because engineers are occupied reworking the in-house boards 
rather than using the finished boards to verify the SoC. To put some figures on this, 
a typical yield after board population and initial test is 70%; so this is mitigated by 
building ten boards in order to quickly yield seven working boards. Commercial 
board vendors may have such rates for early production runs but they make 
incremental design and manufacture tweaks in order to remove recurrent faults, 
eventually raising the yield closer to 100%.  

Additionally, the vendor has time for remedial rework on non-yielding boards as 
projects are not delayed and all boards will eventually be able to reach working 
stock. Finally, commercial board vendors have the production volume which allows 
more automation and faster yield to stock time. All yield improvement reduces 
wastage and cost. 

We may find that delivery from working stock vs. bespoke manufacture and test is 
the most important differentiator in our make vs. buy discussion. 

B7. Direct cost: support and documentation 

One obvious way to reduce the above costs per board is to build enough boards so 
that they may be used for more than one project, thus reducing the cost per board 
per project. This may require a more flexible design and more robust fabrication in 
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order to allow storage and re-deployment. Before the rise of today’s commercial 
board vendors, major users of FPGA prototyping had already built up their own 
internal board standards for reuse across multiple projects. Along with common 
hardware and interfaces made possible by this approach, the prototyping 
engineering expertise is also centralized and made available as a design service 
within the organization. 

An extra task in such centralized organizations is the support and documentation of 
the boards for remote deployment. For example, the board may have been designed 
for use in an SoC project in the USA but reused for a quite different project by a 
team in Asia. Documentation must be adequate to allow such reuse and the original 
board designers should be available to support regular reuse as required. For this 
reason, it is normally only very large multi-national design teams that can afford 
such an investment in company-wide standards. Once established, prototyping 
teams may offer their valuable experience widely within their companies, however, 
it does not matter if the boards are developed in-house or sourced externally for this 
prototyping expertise to be valuable. 

We have now considered the direct costs in producing or sourcing FPGA 
prototyping boards. Let us go on to discuss the previously mentioned business costs 
in turn. Some readers might say that these business costs are intangible and less 
under the control of Engineering department, however, they are often the deciding 
factor in the success or otherwise of a prototyping project. 

B8. Business cost: time 

How long does it take to design and make an FPGA prototype board? A typical 25 
layer board with four large FPGAs in BGA packages, having maximum 
interconnect and necessary ancillary circuits (e.g., configuration and supervision 
functions) is a significant engineering challenge in its own right. Approaching this 
challenge with inadequate resources or insufficient experience often results in delay 
or failure; this is not a part-time job! 

However, assuming we have the experience and sufficient access to the resources 
(e.g., PCB layout department) then we may estimate the time required. The estimate 
is broken into discrete tasks as follows: 

Task 1: Circuit design 
Task 2: PCB layout 
Task 3: PCB manufacture 
Task 4: Assembly set-up time including BoM purchase 
Task 5: Assembly time 
Task 6: Test time 
Task 7: Rework time 
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Some of these tasks may be done in parallel, for example tasks 5, 6 and 7 would be 
like a “production” line with different boards at each stage at any one time. Other 
tasks are clearly sequential by necessity. It is also possible that task 4 might be 
started soon after task 1 is complete, assuming, of course, that the same people are 
not performing both tasks. 
Allowing for parallel work, we arrive at the best-case project dependency shown in 
Figure 179. 

Once again, readers are encouraged to use their own in-house data, but for 
illustration, the authors are aware of typical design times of four weeks, PCB layout 
of eight weeks, manufacture two weeks, and test of one week. It is necessary to 
justify the PCB layout figure of eight weeks so let us consider this in particular. 

High-performance FPGA prototyping boards are not simple. We are aiming to run 
very many traces between the FPGAs and other resources (connectors, memories 
etc.). The FPGAs are shipped in BGA packages with approximately 1,700 pins 
each, which lead to many thousands of traces being required on the board. It soon 
becomes apparent that a many-layered board is necessary which is pushing the 
limits of some automated PCB place & route tools. We also consider that, to 
maximize performance, clocks and resets must be cleanly distributed to all parts of 
the boards with minimal corruption or crosstalk. There is also the problem of delay 

Figure 179: Typical critical path for in-house board project 
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matching on the board traces in order to balance the effect of signal distribution 
between FPGAs. Considering these criteria and other constraints, a layout in eight 
weeks is very reasonable. 

Using the above approximations, we arrive at a best-case estimate of 15 weeks for 
in-house FPGA board development. How does this compare with a typical duration 
of an SoC prototyping project? 

Analyzing survey data provided during users’ group meetings and dedicated on-line 
surveys, the authors have collated some typical information regarding the duration 
of FPGA projects. For example, Table 38 shows data summarized from a FPGA 
users’ survey performed in October 2007. 

Within the granularity limits of this data, we can calculate that the average duration 
of a prototyping project is between 15 to 27 weeks. It is clear that the 15-weeks 
board development time estimated above does not fit well with our survey results. If 
the board were taken as the first task in a prototyping project, then the length of the 
project could double. If there are enough engineers available then board 
development and some of the design preparation can be performed in parallel. 
However, there is added risk if the board design is fixed before the SoC RTL is first 
mapped to FPGAs. We will consider this and other risks in the next section. 

Example: time estimates 

All of the above figures are used to calculate the cost but they also provide a coarse 
project timeline. Of course, the CCS must only be used as a rough rule-of-thumb 
before entering into proper timeline analysis as part of correct project management. 
In Figure 180 we see the CCS time estimates based on all the above data entered for 
our example. The spread of best-case and worst-case results is very wide.  

Table 38: Comparing prototyping and non-prototyping FPGA project durations 
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Unfortunately, the time allowed for completion of the prototype project is a 

constant. In our example, we can already see that if the project is started with in-
house board development, then the useful time for actually using the prototype to 
verify the SoC can quickly disappear. In this example, there is a risk that the boards 
will not be available until well after the planned end of the project. 

B9. Business cost: risk 

The aim of our FPGA-based prototyping methodology is to reduce risk in an SoC 
project; therefore we should not be adding further risk or delays by cutting corners 
on verification. 

Delays in the prototype causes delays in the SoC verification overall and/or delay in 
the SoC sign off and follow-on delays in the product’s final introduction. It is 
widely accepted that release postponement will reduce a product’s total revenue in 
the end-market so risk is counted as a related business cost in this section i.e., raised 
risk means that market-reducing delays are more likely to happen. 

For this analysis we will compare the risk in building in-house boards vs. buying 
off-the-shelf. For example, delays may occur because of limited supply of off-the-
shelf boards or because of a longer than expected development or manufacture time 
of in-house boards. On the other hand, external board suppliers must also be able to 
deliver to their quoted schedules so this is not a one-sided consideration. Let us 
consider how risk might be reduced. 

Excess capacity reduces risk: let us continue the previous discussion about saving 
time by designing the board and preparing the SoC design in parallel. It is possible 
that the FPGA capacity or interconnect requirements might be incorrectly estimated 
too early in the project; for example prior to partitioning. Of course the SoC design 

Figure 180: Comparison of estimated useful lifetime of boards (from CCS) 
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itself may also change as the SoC project matures but this would be a risk in either 
the in-house board or off-the-shelf board. More realistic estimates would yield even 
higher per-project costs for the in-house boards. 

The risk in starting the in-house FPGA board design early may be mitigated by 
making the board design as flexible as possible. This contradicts the natural 
temptation to design the board with topology to match the top-level blocks of the 
SoC, e.g., “this big block in that big FPGA; this smaller block in that smaller 
FPGA.” 

Instead, we should try to provide some margin in the available FPGA resources on 
board. A good rule of thumb is to place twice as much FPGA resource on the board 
as the initial synthesis and place & route runs suggest. Skimping on the FPGAs used 
is a false economy compared the increased risk placed into the SoC project by doing 
so. 

Interconnect flexibility reduces risk: the interconnect traces between the FPGAs 
should be ample and general rather than guided by the top-level signal buses in the 
SoC design. Top-level design interconnect can change if new top-level functions are 
added to the design so the board-level interconnect must be able to follow suit. If it 
cannot, then unnecessary project delay may occur while a new partition of the 
design is found, perhaps requiring that signals be multiplexed onto the same 
interconnect. 

Whether or not the interconnect resource needs to be performed remotely using 
programmable links, or locally and manually altered by using physical connectors, 
depends on the requirement for the boards. If it is to be used almost simultaneously 
for multiple projects, perhaps like some kind of “prototyping farm,” then it would 
need to be remotely programmable, probably using some kind of in-line signal 
switching between FPGAs. 

Alternatively, it may be that the platform will be configured once per project with 
the right FPGA resources with the interconnect established and the necessary 
peripherals in place. In this case, the interconnect “switching” can be manual which 
simplifies the board design and may allow higher performance. 

Peripheral de-coupling reduces risk (and increases reuse): as mentioned 
previously, in-house boards may be designed for a single project or might be 
expected to be used across multiple projects. In the former case, it is tempting to 
place all the necessary hardware peripherals needed to match the functions 
instantiated inside the SoC, for example, the RAM, PCI, video, and co-processor 
cores in chip form, mounted and connected into the board in the same way that they 
are in the SoC. The risk introduced is the same as for the capacity and interconnect 
cases mentioned above. If the SoC topography or peripheral content is changed (for 
example, a second PCI port is added) then it may take many weeks to rework the 
board to add the new function. A modular approach is clearly advisable, so that 
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daughter cards may be mounted on the main FPGA boards in order to provide the 
necessary extra peripheral functions. 

Those expert teams providing many in-house boards across multiple projects 
universally adopt a modular arrangement of motherboards and separate peripherals 
which may be designed quickly and with less error. 

If the peripheral boards are connected together with a motherboard using a standard 
connector arrangement then this greatly increases the options for their reuse in other 
projects. Some commercially available FPGA prototyping systems follow this 
modular approach as well and have built up a large selection of optional peripheral 
functions available as daughter boards. This allows us to select and assemble the 
required resources for the project and then reassemble and augment for the next 
project. This also reduces the risk that late changes in the SoC design cannot be 
quickly accommodated by the prototype board. 

Expert advice reduces risk: if this is your first prototyping project, then it is 
advisable to employ an external consultant or allocate your best staff FPGA experts 
to help with SoC design preparation. They will be able to give early appraisal of the 
necessary resources, interconnect, and flexibility required and ensure that late 
project changes do not render the entire prototype unusable. They should not only 
be able to provide high-quality guidance to the FPGA board designers, but also 
appraise whether commercially available boards will meet the project requirements. 

B10. Business cost: opportunity 

Having considered time and risk, we should also include the opportunity cost for 
developing boards in-house. Opportunity cost can be defined as that benefit which 
has not been realized elsewhere because resources (i.e., engineers in this case) are 
allocated to a given project. In the CCS, opportunity cost is expressed as a missed 
ROI. You can enter the normally expected revenue (or other output) generated by 
the engineers as a percentage of their cost. For example, each engineer may 
otherwise generate $2.00 of final revenue for each $1.00 of cost (i.e., salary etc.) 
resulting in an ROI of 200%. This is realistic because design of FPGA prototype 
boards takes a great deal of FPGA design expertise which would also be very 
valuable elsewhere. 

B11. CCS worked example results 

Given the variables and constants we have used in our example throughout this 
section, the main result from the CCS will be the cost comparison. The result panel 
for the CCS is shown in Figure 181. 
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The cost is either per board, such as test, or per project, such as the PCB layout 

which then has to be amortized across the total number of boards in order to arrive 
at a per board amount; obviously, the larger the number of boards, the smaller the 
cost of each board. Commercial board vendors can take advantage of this “economy 
of scale” and to pass on these economies to customers. We should expect that for 
low volumes, it is cheaper to buy boards than to make them in-house. 

The example prototyping project calls for low volume (only three boards) and with 
the previously mentioned costs, we see that the best-case cost for each board would 
be around $82,000 or as much as $96,000 if it took a little longer for each task and a 
PCB re-spin was required. We have purposely used low estimates and values in this 
example; more realistic estimates would yield even higher per-project costs for the 
in-house boards. 

If you work with a spreadsheet like the CCS or a much more sophisticated project 
management tool, you can alter any of the variables to see what effect this will have 
on the real board costs. However, it is important to keep the board cost in 
perspective to the other costs and risks and how that fits into the overall SoC project 
timescales. 

Figure 181: Design example cost results given by CCS 
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B12. Summary 

For any given project there is a threshold of board volume beyond which it will be 
more economical to make boards in-house. Beyond the economic arguments there 
may be technical merit in making boards in house, for example to meet a certain 
form factor or topology requirement. Using a spreadsheet like the CCS, we can be 
sure to expose all the cost and timescale implications but the technical requirements, 
as explored during this chapter, may be a deciding factor. Most important of all, in 
the end, is time. It is critical to FPGA-based prototyping that the SoC project does 
not depend upon early delivery of new in-house boards.  

Generally, the minimum-risk approach does not involve making boards in-house, 
however, the alternative of finding the right commercially available boards to meet 
the same need in doing so may be very high. 
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Glossary of key terms 
ASIC  Application Specific Integrated Circuit. A chip which is 

custom designed for a specific use and purpose. 
ASSP Application Specific Standard Product. A chip designed 

for a specific application but meant for use in multiple 
applications. 

BGA Ball Grid Array. A surface-mount packing technique. 
BIST Built-in-Self-Test. Usually for testing memories and 

other regular structures 
BitGen The command-line used for configuration step 

performed by Xilinx ISE 
Bitstream A bitstream is used to program an FPGA device. It 

contains information to configure the FPGA routing and 
logic resources as designed by designer. 

Block RAM A block of random-access memory built into the device, 
as distinguished from distributed, LUT-based random-
access memory. 

BUFGCE A Xilinx® primitive which is basically used for clock 
management. Global clock buffer is gated with a clock-
enable signal. If clock enable is disabled the clock will 
also be disabled. 

BUFGMUX Used to switch between clocks without glitches. 
Carry logic Mainly used to implement arithmetic logic functions and 

exists in each slide and runs along each column of CLBs 
as well as the top and bottom CLBs. 

Certify® Name of the Synopsys FPGA-based prototyping and 
partitioning software tools. 

ChipScope™  ChipScope is the integrated logic analyzer add-on to the 
Xilinx® ISE® software. 

Core A colloquial name for a complex block of IP. 
DCM Digital Clock Manager. A design element which 

provides multiple functions. It can implement a clock-
delay locked loop, a digital frequency synthesizer, 
digital phase shifter, and a digital spread spectrum. 

DDR Double Data Rate uses both edges of a clock to capture 
data. 

EDIF Electronic Design Interchange Format. An industry-
standard netlist format. 
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Footprint The shape, pin names, and functionality of a library 
macro or component. 

Foundry A silicon wafer fabrication facility which offers 
production services to other parties.  

Gate Array An early and still common form of ASIC chip. This 
requires the use of bespoke masks for the last few stages 
of chip fabrication to be tailored to a specific design.  

Global Buffers  Low-skew, high-speed buffers that drive large fanout 
signals, usually clocks, across an FPGA. 

HDL Hardware Description Language. A language used for 
modeling designing and simulating hardware. The two 
most common HDL languages are VHDL and Verilog.  

IO blocks The input/output logic of the device containing pin 
drivers, registers and latches, and 3-state control. 

IO pads Input/output pads that interface the silicon device with 
the pins of the device package. 

IBUF A circuit which acts as a protection for the chip, 
shielding it from eventual current overflows. 

ICE In-circuit Emulation. 
ISE® Integrated Software Environment, the overall name for 

Xilinx® FPGA tools, including project management, 
place & route, bitstream generation and debug. 
Pronounced as 'ice' 

ISERDES Input Serializer/Deserializer. A dedicated source 
synchronous IO architecture. 

JTAG Joint Test Action group is an IEEE 1149.1 standard test 
access port and boundary scan architecture. 

LOC Location constraint. Used to lock pin locations or to 
place logic in specific locations in the FPGA. 

LVDS Low Voltage Differential Signaling. Differential 
signaling is a method of transmitting information 
electrically by means of two complementary signals sent 
on two separate wires. This offers better immunity to 
ambient noise and faster signal propagation.  

Macro (1) A slightly out-of-date term for a component made of 
nets and primitives, FFs, or latches that implement mid-
level functions, such as add, increment and divide. Soft 
macros and relationally placed macros (RPMs) are types 
of macros. 

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



  

FPGA-Based Prototyping Methodology Manual 449 

Macro (2) A universal control embedded into the RTL and visible 
from any point during compilation. Often defined in 
Verilog using `define command. 

MMCM Mixed-Mode Clock Manager. Multi-output configurable 
block which includes PLL and phase shifters to give 
fine-grain control of clocks within a Xilinx® FPGA. 

NCD A Native Generic Database file describes the logical 
design reduced to Xilinx® primitives. 

Netlist A text description of the circuit connectivity. It is 
basically a list of connectors, a list of instances, and, for 
each instance, a list of the signals connected to the 
instance terminals. In addition, the netlist contains 
attribute information. 

Pad-to-pad 
delay 

A combinatorial path which starts at an input of the chip 
and ends at an output of the chip. The pad-to-pad path 
time is the maximum time required for the data to enter 
the chip, travel through logic and routing, and leave the 
chip. It is not controlled or affected by any clock signal. 

PCIe Peripheral Component Interconnect - Express: An 
international standard for fast serial interconnection. 

Pin locking Process by which a signal is given a location on a 
specific FPGA package pin.  

Place & route Two major processes involved in back-end tools 
deciding which resources on an FPGA will be used to 
implement each part of the netlist. and then routing the 
signals between them.  

PLL Phase locked Loop is an analog clock-locking circuit. 
Compares two clock signals and aligns the two. Used 
for synchronizing and zero-delay buffering plus division 
and multiplication of frequency. 

Primitives The most fundamental design elements in the Xilinx® 
libraries, sometimes referred to as BELs, or Basic 
Elements. Primitives are the design element "atoms" and 
can be combined to create macros. Examples of Xilinx® 
primitives are the simple buffer, BUF, and the D FF 
with clock enable and clear, FDCE. 

RLOC Relative Location Constraints . Used to group logic 
elements together to reduce routing delays in the design. 
Logic elements with RLOC can be moved but must 
maintain the same relative placement. This prevents 
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routing delays appearing between the elements. RLOCs 
are used to create (relatively placed macros (RPMs). 

RTL The short name given to hardware description code 
written at the Register Transfer Level, rather than at a 
system level or gate level. Often used colloquially to 
denote the source for a design. 

Skew Delay introduced differentially into one signal with 
respect to another.  

TRACE The Timing Reporter And Circuit Evaluator. A 
command-line utility for performing static timing 
analysis of a design based on input timing constraints. 

UCF User Constraints File. A format for feeding constraints 
and other controls into the Xilinx® ISE® tools. 
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Index 
 
access system 

bus-based, 339 
accuracy, 13 
ADC, 56 
adders/subtractors, 62 
adopting standard boards, 140 
alarms limits, 56 
Amdahl’s law, 383 
AMS design, 402 
analog 

auxiliary circuit, 132 
blocks outside FPGA, 95 
design elements, 96 
model on-board, 94 

analog IP, 289 
Analog-to-Digital Converter. See 

ADC 
analyzers, 345 
Android 

SDK, 8 
software, 28 

application software, 11 
application specificity, 391 
architectural exploration, 39 
architecture exploration, 10 
arithmetic functions, 43 
assign clocks, 239 
assign signal traces, 234 
assign signals to traces, 235 
assigning blocks 

impact analysis, 230 
asynchronous loops, 286 
asynchronous multiplexing, 261 
automatic partitioner 

multiplexing, 239 
automatic partitioning, 239 
automatic trace assignment, 236 
automotive, 397 
auxiliary circuits, 132 
back-end, 107 
back-end flow, 75 

back-end tools, 73, 77 
BBC, 36 
BFM, 369 
bit-write enable mask, 211 
black box, 309 

FPGA synthesis, 188 
inferred soft IP, 301 
IP instantiation, 293 
loops, 280 
partition space, 239 
prototyping, 168 
RTL design, 53 
SoC, 192 
soft IP instantiation, 301 
timing information, 240 
verification, 283 

block 
IP, 19 
wrapper, 282 

block scaling, 96 
BlockRAM, 47 

read only memory, 212 
BlockRAM configurability, 47 
BlockRAMs, 47 
board 

physical stiffness, 358 
board connectors, 359 
board enclosure, 359 
Board engineering cost, 424 
board mounting, 358 

holes, 358 
board routing, 138 
board support package. See BSP 
board-level environment, 329 
boards 

mother - daughter, 117 
power distribution, 130 

branching macro, 206 
break even 

return of investment (ROI), 6 
bring-up cost, 13 
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bring-up design 
guidelines, 314 

BSP, 29 
BUFG global buffers, 245 
built-in IP, 54 
built-in security, 344 
bus functional model. See BFM 
bus-based design access, 336 
bus-based instrumentation, 336 
cable 

umbilical, 116 
cables 

download, 137 
external, 360 
internal, 360 
system access, 360 

capacitors 
power surges, 133 

capacity, 13 
CAPIM, 338 
CAPIMs 

UMRBus, 338 
CCS, 423 
Certify, 224 

assign block destinations, 233 
partitioning - port names, 198 
partitioning tool, 72 
resource estimation, 225 
trace placement, 235 

Certify Pin Multiplier) assist. See 
CPM 

check external chipsets, 343 
chip design 

building blocks, 4 
chip design requirements, 21 
chip development 

software, 18 
chip differentiation, 19 
chip support 

block, 168 
clock, 174 
elements, 167 
top level elements, 168 

CHIPit 
debug tool, 81 

interconnect platform, 152 
prototyping system, 80 

ChipScope, 73 
debug, 82 
debug tool, 84 
implementation flow, 82 

circuit 
auxiliary, 132 

CLB, 44 
clock 

distribution delays, 124 
gating, 65 
generation logic, 285 
generation modules, 250 
global lines, 51 
logic mapping, 61 
MCMM, 98 
network, 122 
synchronization, 244 

clock delays 
matching, 124 

clock distribution, 105, 127 
clock generator, 246 
clock management tile. See CMT 
clock networks, 285 

partitioned, 245 
clock rate, 344 
clock rate factors, 103 
clock resources 

on-board, 123 
SoC design, 99 

clock RTL gating, 170 
clock scaling, 127 
clock skew and uncertainty, 244 
clock synchronization, 244 
clock tree, 246 
clocking 

elements, 127 
recommendations, 126 

clocking and timing, 95 
clocking guidelines, 284 
clocking resources, 98 
clocks 

IO, 51 
regional, 51 
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clock-tree synthesis, 171 
coarse partitioning., 229 
code generators, 186 
coding standards, 275 
combinatorial boundaries, 242 
combinatorial loops 

guidelines, 280 
combinatorial paths, 279 
commercial partitioning tool, 327 
common control signal, 171 
compile point. See CP 
compile point flow, 347 
complex memory, 207 
configurable logic block. See CLB 
configuration 

high speed, 339 
IO, 52 
IO pins, 51 
remote management, 341 
timing constraints, 45 

configuration methods 
FPGA, 136 

configuration modes, 137 
configuration tool 

Hapsmap, 76 
CONFPRO 

interface, 341 
transport data, 340 

connectivity 
issues, 327 

consistent impedance, 138 
constrain resource usage, 239 
constraint 

example, 76 
generation, 59 
logic placement, 64 
placement, 64 
system-level, 68 

constraints 
floor planning, 77 
FPGA performance, 103 
legacy standard, 140 
pin location, 326 
relax timing, 109 
system partitioning, 383 

TIMESPEC commands, 76 
tool capabilities, 213 

conversion 
gated clock, 172 

cooling, 136, 360 
core and peripheral IO, 306 
core generation, 77 
core voltage, 131 
Coregen, 201 
co-simulation, 366 
cost 

development, 5 
FPGA resource, 100 

cost comparison spreadsheet, 423 
cost estimate 

time estimates, 432 
cost example 

component and NRE, 428 
counter test, 317 
co-verification 

physical interfaces, 375 
CP, 347 

boundary, 348 
incremental synthesis, 348 
nested, 347 
simultaneous synthesis, 349 

CPM, 127, 253 
CPU 

cores, 55 
critical set-up, 344 
cross module reference). More. See 

XMR 
cross-connect matrix, 152 
cross-module references. See XMR 
cross-trigger, 81 
current surges, 133 
custom debuggers, 336 
data plane functionality, 396 
data streaming, 340 
dataflow 

real-time, 27 
daughter board mounting, 358 
daughter board reference designs, 

317 
daughter boards, 359 
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daughter card 
peripheral, 118 

dc. See Design Compiler 
DDR 

configuration, 52 
IOSERDES blocks, 262 

debug 
checklist, 352 
embedded hardware, 334 
external interface, 327 
fault source, 333 
FPGA connectivity, 325 
hardware interface, 334 
hardware-software interface, 384 
higher bandwidth, 337 
instrumentation - ChipScope, 73 
interaction, 346 
IO pad configuration, 328 
lab prototype, 353 
multicore CPUs, 6 
plan, 346 
real-time signal analysis, 336 
RTL verification, 334 
software debugger, 342 
startup state, 332 
test points, 342 
tips, 343 
tool options, 89 
visibility, 134 

debug insight, 14 
debug techniques, 342 
debug tool 

ChipScope, 84 
debugger 

custom, 341 
embedded CPU, 341 
processor, 421 
software interface, 421 
software utility, 342 

debugging tools, 77 
decryption, 294 
deferred interconnect, 155 
delay 

IO, 52 
deliverables, 270 

deployment cost, 14 
derived gated clock, 172 
design 

board-level environment, 329 
clock tree, 246 
FPGA resources, 99 

design access 
bus-based, 336 

design adaptation for FPGA, 58 
design capacity, 16 
Design Compiler, 213 

naming rules, 214 
synthesis tool, 302 

design constraints 
SoC design, 110 

design example 
BBC, 36 
bit-enabled RAM, 209 
compare verification interfaces, 

375 
external peripheral IP, 309 
FPGA prototype, 36 
HD data stream, 27 
HDL Bridge, 366 
monitor temperature, 135 
multiplexing and sampling FF, 

256 
multiport RAM, 207 
packet processing sub-system, 411 
parameterizable RAM, 202 
partitioning tool - Certify, 72 
pipelined synchronous elements, 

248 
prototyping real world data, 34 
RTL macros, 279 
SCE-MI 2.0, 372 
SoC constraint files, 213 
SoC memory, 194 
soft IP, 299 
soft IP block, 299 
synchronous multiplexing, 261 
TI - Texas Instruments, 411 
wireless headseat, 4 

design flow, 287 
design issues, 334 
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design iteration, 101, 105, 109, 241, 
242, 327 

design preservation, 350 
design setup cost, 424 
design start 

embedded processors, 18 
design starts, 16, 401 
DesignWare, 281 

function calls, 299 
soft IP, 300 

development 
coordinate, 141 

development cost, 5, 13 
device properties, 213 
device under test. See DUT 
differential signals IO standards, 329 
direct cost, 427 
direct interconnect, 154 
distributed RAM, 196 
distribution 

development, 141 
divide and conquer 

debug, 343 
documentation, 274 

development, 141 
double data rate. See DDR 
drive current, 52, 329 
DSP cascading, 62 
DSP resource blocks, 97 
DSP48E1, 48 
DSP48E1 slice, 48 
DUT, 12 
DVB 

technical specification, 37 
early customer demo, 356 
ECC, 47 
echo tests, 414 
EDA 

partitioning, 222 
electrical connectivity, 95 
electronic system-level. See ESL 
element 

replacement by inference, 189 
elements 

process of including, 191 

embedded CPUs, 401 
embedded software, 17 
embedded trace extraction, 336 
emulator 

IICE, 85 
slow run speed, 9 

emulators, 9 
enclosure, 359 
encrypted 

FPGA bitstream, 293 
FPGA images, 295 
keys, 293 
netlist, 293 
RTL, 311 

encryption methodology, 294 
engineering cost example, 426 
engineering costs, 425 
engineering resources, 111 
error detection. See ECC 
ESL, 39 
estimating 

performance, 103 
required resources, 106 
resources, 92 

ethernet channels, 54 
execution control, 14 
execution speed, 13 
exhibition demo, 356 
external components, 327 
external hardware options, 95 
external interfaces 

prototyping, 103 
fabrication, 42 
Fast Binary Data Format. See FBDF 
fast synthesis, 64 
FBDF, 85 
feasibility 

lab experiments, 35 
field tests, 356 
FIFO logic, 47 
file list, 271 
filter 

DSP, 98 
FIR, 317 
suitable candidates, 235 
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symmetrical, 48 
final timing report, 217 
FIR filter, 317 
flexibility 

clock resources, 123 
floor planning, 77 
formal verification, 283 
FPGA 

clock distribution, 50 
clock generation, 49 
clock resources, 49 
DSP resources, 47 
IO, 51 
logic blocks, 43 
logic elements, 62 
memory types, 46 
partitioning, 221 
prototype board, 424 

FPGA board 
guidelines, 144 

FPGA boundaries 
coherence, 332 
speed, 407 
visibility, 335 

FPGA boundaries. 
multiplexing signals, 51 

FPGA capacity, 160 
FPGA clock resources, 172 
FPGA clocking resources, 49–51 
FPGA editing, 77 
FPGA implementations 

common issues, 321 
FPGA IO 

current drive, 133 
FPGA IO pad configuration 

issues, 328 
FPGA IO pins 

SoC design, 100 
FPGA IP, 308 
FPGA mapping 

external design blocks, 95 
FPGA performance, 103 
FPGA pins 

clock constraint, 240 
FPGA platform, 361 

flexibility, 121 
hybrid prototype, 116 
in-house standard, 142 
interconnect, 119 
modularity, 117 
routing power, 128 
set-up, 362 
size and form, 115 
topology, 115 

FPGA platforms 
ready-made available, 112 

FPGA project 
guidelines, 405 

FPGA prototyping 
board capacity, 16 

FPGA resources, 56 
FPGA routing resources 

SoC design, 100 
FPGA synthesis 

configure IO pad, 168 
FPGA synthesis tool, 188 
FPGA utilization, 108 
FPGA utilization limits, 100 
FPGA-to-FPGA connectivity, 104 
FPMM website, 346 
front-end, 107 
FV. See formal verification 
Gartner, 401 
gated clock 

convertible conditions, 175 
derived, 172 

gated clock conversion, 172 
automated, 174 
guidelines, 174 

gated clock mapping, 65 
gated clock timing, 324 
gate-level netlist, 70 
gating logic 

non-convertible, 176 
generate memory, 201 
getting started 

place and route scripts, 75 
getting-started 

checklist, 91 
gigabit transceiver blocks. See GTX 
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gigabit transceivers, 53 
global clock, 246 
global clock lines, 51 
global clocks, 171 
global reset, 134, 139 
global start-up, 139 
golden reference, 330 
gray box, 193 
group blocks, 239 
group pins together, 239 
GTECH, 290 
GTX block, 53 
handling chip support elements, 168 
handling the IO pads, 168 
HAPS 

60 series boards, 159 
connectivity options, 112 
delay matchings, 124 
Hapsmap configuration tool, 76 
prototyping systems, 112 

HapsTrak II, 151 
hard IP 

external, 308 
formats, 298 
resources, 95, 284 

hardware 
AT models, 369 
external options, 95 
programmable, 17 

hardware stack, 4 
hardware-software 

development, 9 
integration, 28 
verification, 40 

HDL 
operators, 303 
pragma, 302 
Verilog XMR, 79 

HDL bridge, 366 
HDMI 

dataflow prototype, 27 
PHY, 27 
Rx IC, 305 
video data source, 308 

heat 

dissipation, 136 
sink, 136 

heat sinks, 136 
high-definition. See HD 
high-level synthesis. See HLS 
High-Performance ASIC Prototyping 

System. See HAPS 
high-speed IO test, 317 
high-speed TDM. See HSTDM 
histograms, 73 
HLS, 39 
HSTDM 

multiplexing channels, 263 
pin multiplexing, 417 

hybrid prototype, 116 
hybrid verification environment, 364 
I/O clocks, 51 
Identify 

signal tracing, 85 
Identify tools, 81 
IICE, 85 
image processing, 375 
impact 

board arrangement, 129 
connector flexibility, 151 
design changes, 111 
interconnects, 154 
IO limitations, 109 
logic placement, 222 
map resources, 148 

impact analysis, 230 
Certify tool, 230 

implementation constraints, 213 
implementation effort, 110, 111 
improper inter-FPGA connectivity, 

321 
in-circuit debugging, 77 
incremental flow 

runtime, 347 
Incremental flow 

place & route, 350 
incremental flows, 108 

CP boundaries, 348 
incremental implementation, 77 
incremental synthesis, 64 
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place & route flow, 351 
incremental synthesis flow, 347 
inference, 282 

directives, 193 
operator, 302 
SoC element, 189 
test points, 78 

inferred soft IP, 301 
Innovator 

CHIPit, 386 
HAPS, 386 
system prototype, 385 
VCS, 385 

Innovator tool, 6 
input and output timing, 323 
input clock source selector, 127 
instantiated memories, 46 
instantiated soft IP, 301 
instantiation 

library component, 185 
replace with RTL code, 186 
SoC element replacement, 191 
template, 191 

instrumentation 
bus-based, 336 

integration use models, 385 
inter-clock timing, 324 
interconnect 

deferred, 155 
direct, 154 
flexibility, 157 
flight time, 156 
schemes, 156 
topology, 150 

interconnect configuration, 147 
interconnect delay, 153 
interconnect resources, 98 
interface 

co-verifcation, 375 
interfaces to external RAM, 196 
inter-FPGA connections, 328 
inter-FPGA connectivity, 104 
inter-FPGA delays, 322 
inter-FPGA multiplexing, 251 
inter-FPGA timing, 103 

internal clock skew and glitches, 325 
internal connectivity design, 103 
Internal hold time, 322 
International Technology Roadmap 

for Semiconductors. See ITRS 
interrupt service routines, 11 
investor status check, 357 
IO 

configuration, 52 
core and peripheral, 306 
delay, 52 
FPGA configurations, 98 
logic, 52 

IO Block. See IOB 
IO blocks, 52 
IO constraints, 242 
IO current, 131 
IO delays, 344 
IO pins, 52 
IO voltage, 131 
IO voltage supply to FPGA, 329 
IO voltages, 132 
IOB, 323 
IP 

delivery formats, 290 
encrypted source code, 292 
forms and origins, 290 
model representation, 292 
peripheral, 304 
pre-defined models, 19 
prototyping, 305 
RTL source code, 291 
test chip, 284 
Xilinx, 137 

IP from the outside-in, 345 
IP instantiation, 293, 301 
IP reuse, 401 
ISE 

back-end tool, 351 
ISE Project Navigator, 75 
isolation 

block or wrapper, 282 
ISRs, 11 
ITRS, 21 
Joint Test Action Group. See JTAG 
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JTAG, 335 
configuration, 137 
read back, 81 

JTAG chain, 56, 335 
junction 

temperature, 135 
latches, 279 

storage element configuration, 44 
lateral configuration, 358 
leaf-cell elements, 188 
Linux 

EDA tools, 106 
local compliance tests, 356 
logic, 97 

IO, 52 
logic block 

clock generate, 176 
configurable - CLB, 44 
FPGA, 43 

logic functions, 43 
logic mapping, 61 
logic pruning, 183 
logic removal 

permanent, 96 
temporary, 96 

logic replication 
tree pipeline, 248 

logic synchronization, 95 
look-up table. See LUT 
loopback tests, 414 
low power, 402 
low voltage differential signaling). 

See LVDS 
LUT, 61 
LUTs 

logic functions, 43 
LVCMOS pins, 329 
LVDS, 158 
macro 

implementations, 192 
instantiate cell, 210 
remove RTL element, 181 

main board mounting, 359 
manage multiple FPGAs, 105 
manual design partitioning, 105 

mapping 
DSP block, 62 
logic, 61 
memory block, 62 
SoC design info FPGA, 61 

mapping and utilization reports, 217 
master modes, 137 
mechanical configuration, 359 
memory 

bit-enabled, 209 
bit-write enable, 211 
block mapping, 62 
BlockRAMs, 47 
configuration, 44 
external resources, 47 
FPGA block, 47 
high performance access, 340 
instantiated, 46 
instantiation, 194 
IP, 97 
logic blocks, 43 
self-checking model, 206 
single-port, 209 
SLICEM, 61 
SoC designs, 194 
wrappers, 197 

memory address generators, 48 
memory architecture, 195 
memory blocks, 97 

LX760, 97 
memory compatibility, 282 
memory generator, 194, 195 
memory model, 206 
memory modules 

link, 153 
memory topologies, 211 
memory types, 46 
message channel, 370 
microprocessor units. See MPUs 
miniaturization, 15, 401 
minor modifications, 111 
mixed-mode clock managers. See 

MMCMs, See MMCM 
MMCM, 98 

clock generation, 49 
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MMCMs, 172 
moderate modifications, 111 
modular design principles, 277 
modularity, 117 
monitor 

power, 134 
temperature, 134 

Moore’s Law, 41, 66, 402 
MPUs, 21 
multicore 

architectures, 22 
systems, 40 

multicore CPU requirements, 22 
multicore processing, 402 
multi-FPGA 

filter test design, 317 
multi-FPGA test designs, 317 
multi-mode clock managers. See 

MCMM 
multiple cores 

sequential software, 22 
multiple FPGAs 

startup state issues, 332 
multiple modular channels., 277 
multiplex 

LVDS, 158 
multiplexing, 253 

asynchronous, 261 
clock lines, 51 
design guidelines, 261 
partitioning, 253 
ratio, 159 
schemes, 253 

comparison, 264 
single-ended, 262 
synchronous, 261 
time-domain, 104 
timing constraints, 265 
using LUTs, 60 

multiplexing nets 
criteria, 255 

multipliers, 62 
multiport memory, 207 
mux. See multiplexing 
netlist 

gate-level, 70 
partitioning, 70 

netlist editing, 186 
networking 

application domain, 394 
design team, 118 

non-convertible gating logic, 176 
guidelines, 176 

non-embedded probing, 80 
OCI, 10 
OEM, 398 
on-board clock synthesis, 127 
on-board delays, 126 
on-board traces, 124, 233 
on-chip 

temperature monitoring, 135 
on-chip instrumentation. See OCI 
operator inference, 302 
original equipment manufacturer. See 

OEM 
packet checker, 415 
PAD report, 326 
parallel synthesis, 349 
parallel-to-serial converter, 53 
partitioning 

automated, 239 
automated tools, 239 
automatic, 47 
block size, 225 
clock networks, 245 
coarse, 229 
guidelines, 223 
HDL Bridge, 366 
interconnect board, 156 
iteration, 237 
netlist, 59 
performance, 240 
post-synthesis, 68 
power, 128 
pre-synthesis, 67, 68 
SoC design, 110 

partitioning flow, 66 
netlist, 70 

partitioning runtime, 109 
partitioning strategy 
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clock domain, 238 
partitioning tools 

replicate, 233 
partner co-development, 356 
path 

daisy-chained, 147 
source-synchronous, 153 
star-connection, 147 

PCIe, 54 
external peripheral, 309 

PCIe blocks, 52 
PCIe-to-SATA, 309 
PCIexpress channels, 54 
performance 

system characteristics, 388 
performance analysis, 11 
performance and accuracy, 26 
performance estimation, 102 
peripheral voltage requirements, 329 
permanent logic removal, 96 
personality board, 117 
phase-locked loop. See PLL 
PHY compatibility, 284 
physical connectivity., 140 
physical synthesis, 64, 107 
physical/mechanical, 96 
pin 

location constraints, 326 
location report, 326 

pin locations and properties, 213 
place & route, 59 

reports, 217 
plain text netlist, 309 
platform 

FPGA, 112 
PLL, 125 

clock multiplier, 49 
on-board, 126, 247 
timing circuits, 139 
VCO, 49 

plugfest, 144 
PlugFest, 38 
point of failure 

board connectors, 359 
populate black boxes, 239 

portability, 282, 357 
advandtages, 356 
robustness, 139 

portable prototype, 355 
post-synthesis partitioning flow, 68 
power distribution, 132 

board-level, 131 
boards, 132 
FPGA design, 132 

power modeling, 215 
power monitoring, 134 
power monitoring circuits., 132 
power planes, 133 
power supply, 129, 360 
pre-adder, 62 
pre-defined IP models, 19 
preliminary timing report, 217 
probing 

limited pins, 81 
non-embedded, 80 
real-time signal, 80, 336 
test header, 79 
test points, 78 
tools, 81 

processor design 
transistors, 15 

programmability, 401 
IO voltages, 132 

project generators, 186 
prototype 

hardware, 16 
portable, 355 
software, 16 

prototype platform, 9 
prototypes 

FPGA-based, 26 
prototyping 

architecture, 10 
automotive, 397 
board cost, 424 
board power, 331 
capacity, 13 
capacity limitations, 16 
check board setup, 331 
checklist, 162 
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clock tree, 246 
coding standards, 275 
compatible compatible simulation 

environment, 273 
contstraint, 59 
criteria, 13 
design adaptation, 58 
design maturity, 93 
design trends, 14 
development schedule, 273 
enable design flows, 287 
external components, 94 
feasibility study, 39 
FPGA- based, 40 
FPGA platform requirements, 143 
FPGA resources. See 
future designs, 392 
hand-over checklist, 270 
hard IP, 308 
implementation tools, 59 
interconnect configuration, 147 
IO pad instantiation, 168 
IP, 289, 305 
IP as part of SoC, 306 
IP reuse, 19 
models, 10 
network designs, 394 
overview, 57 
partitioning, 58 
peripheral IP guidelines, 304 
physical implementation, 41 
place and route, 59 
power reduction, 215 
power-control system, 216 
pre-silicon, 8 
priorities, 13 
procedural guidelines, 268 
project schedule, 111 
real-time dataflow, 28 
revision control, 218 
RTL coding standards, 274 
runtime, 63 
SDK environment, 7 
size and form factor, 115 
SoC design, 4 

SoC elements, 166 
software development, 11 
standards, 274 
stub files, 278 
synthesis, 57, 63 
system clock, 126 
three laws, v 
validate SoC design, 36 
verification, 12 
verification plan, 272 
virtual, 6 
voltage rails, 331 

prototyping board, 143 
prototyping boards 

features, 144 
prototyping design 

guidelines, 288, 408 
prototyping IP 

software validation, 307 
prototyping limitation 

ESL, 39 
simulator, 38 

prototyping platform 
hardware, 414 

prototyping platforms 
remote access, 336 

prototyping team, 215 
prototyping utility, 48 
protoype speed 

checklist, 155 
protyping 

virtual platform, 10 
pruning, 181 

downstream logic, 182 
signals, 183 
upstream, 183 

pruning results 
stubs, 184 

PVT, 322 
quick-pass flows, 109 
RAM. See memory 
RAM topologies, 211 
rate adapter circuits, 306 
RCS. See revision control system 
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real-time operating system. See 
RTOS 

real-time signal probing, 336 
real-time software, 11 
real-world data 

speed, 30 
receiver, 53 
reduce risk 

excess capacity, 433 
expert advice, 435 
interconnect flexibility, 434 
peripheral de-coupling, 434 

regional clocks, 51 
regulated power supplies, 138 
relax timing constraints, 108 
relax timing model, 109 
remote access 

virtual ICE, 382 
replication 

blocks, 238 
clock domain, 246 
clock functionality, 123 
cost, 9 
logic, 247 
partitioning, 234 
reduce IO, 233 
regression tests, 365 
simplify partitioning, 251 
top level, 246 

reset synchronization, 247 
return on investment. See ROI 
reusing boards, 345 
revision control 

debug plan, 346 
prototype, 218 
self-documenting code, 274 

revision control system, 274 
risk 

board connectors, 359 
company standards, 274 
per design, 17 
physical IO, 380 
reusable prototype, 275 
support, 141 

risk reduction 

FPGA prototyping, 101 
ROI, 6 
RTL 

debugger, 86 
signal tracing, 85 
track software changes, 272 

RTL coding, 268 
RTL coding standards, 274 
RTL Debugger, 88 
RTL file 

soft IP functionality, 301 
RTL simulator 

VCS, 366 
RTOS, 28 

kernel, 29 
runtime 

CPs, 349 
guidelines, 108 
incremental flow, 347 
pre-synthesis partitioning, 68 
synthesis, 63 
test script, 75 

SATA, 309 
SCE-MI, 370 

simulation, 376 
SDC, 214 

design constraints, 214 
SDK, 7 
SDR 

ISERDES and OSERDES, 52 
self-checking wrappers, 204 
semiconductor design 

trends, 15 
semiconductor trends, 401 
sequential boundaries, 241 
sequential elements, 65 
sequential software 

multiple cores, 22 
SERDES blocks, 52 
serial 

high-speed IP, 54 
interface, high speed, 191 
transfer clock, 252 
ultra-fast transceivers, 53 

serial configuration, 137 
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serial-to-parallel converter, 53 
set/reset, 61 
signal integrity, 138, 330 

data rates, 53 
signal multiplexing, 158 
signal probing 

real-time, 78 
signal propagation, 105 

boards, 138 
signal tracing 

non real-time, 81 
signaling, 95 
signals 

assign traces, 235 
signs-of-life tests, 316 
silicon miniaturization, 401 
SIMD, 48 
simulation 

acceleration, 383 
host-based, 6 
SCE-MI, 376 
testbenches, 218 

single-ended 
input buffers, 51 
IO pin, 52 
multiplexed signals, 257 
outputs, 52 

single-ended signaling, 258, 261 
single-instruction-multiple-data. See 

SIMD 
single-pass flow, 70 
size and form factor, 115 
slave modes, 137 
slice 

low power DSP, 48 
Virtex-6, 44 

SLICEL, 44 
memory configuration, 44 

SLICEM, 44 
slow clocking, 287 
smartphone, 4 
SoC, 1 

block mapping, 62 
block removal, 180 
clock networks, 285 

design, 2 
memory elements, 62 
stubs, 183 

SoC design, 99 
constraint files, 213 
FPGA resource estimate, 100 

SoC design elements, 166 
SoC design modifications, 110 
SoC logic 

FPGA mapping, 99 
SoC synthesis tool, 302 
soft IP, 298 
software 

running on chips, 18 
software development, 11 

SoC modeling, 28 
software development kits. See SDK 
software drivers, 11 
software stack, 28 
software validation 

prototype IP, 307 
source changes 

library elements, 281 
source-synchronous paths, 153 
special purpose blocks, 98 
speed 

design layout, 157 
speed performance 

interconnect schemes, 156 
stacked configuration, 358 
standard design constraint. See SDC 
star-connection, 147 
start-up synchronization, 250 
state annotation, 88 
sub-block area, 225 
supply of FPGAs, 160 
support 

development standards, 141 
synchronization 

multi-FPGA, 250 
synchronize block boundaries, 286 
synchronize resets, 286 
Synchronous operation 

BlockRAM, 47 
SYNCore, 201 
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Synplify, 101 
synthesis 

transfer clock, 259 
synthesis, 57 

control branching, 184 
fast mode, 64 
guidelines, 62 
implementation constraints, 213 
incremental, 64 
mapping, 61 
physical, 64 
prototyping guidelines, 63 

synthesis 
incremental flow, 347 

synthesis 
incremental, 347 

synthesis constraints 
naming rules, 214 

synthesis tools, 60 
synthesizable RTL. 

www.opencores.org, 343 
synthetic operators, 302 
synthetic soft IP, 302 
System ACE 

Xilinx IP, 137 
system interfaces, 14 
system IO, 380 
system management circuit, 135 
system monitor, 55 
system prototype, 385 
TAP, 56 
TCL, 75 
TDM, 158 
TDM approach 

signal multiplexing, 158 
team organization, 16, 40, 272 
temperature 

alarm, 135 
die junction, 135 
monitor and manage, 134 
monitor loop, 360 
sensor, 135 
stress, 136 

temperature control, 360 
temporary logic removal, 96 

termination settings, 329 
terminations, 345 
test access port. See TAP 
test chip 

IP, 295 
limitation, 295 
link to FPGA, 297 

test chips, 308 
test design 

filter for multi-FPGAs, 317 
guidelines, 316 
library, 319 

test designs, 316 
test example 

high-speed, 416 
low-speed, 417 

test GTX pins, 345 
test points, 78 
test real-world data, 33 
testability, 122 
testbench 

block-level, 273 
design validation, 270 
partitioned design, 59 
simulation, 218 
virtual platform, 379 

Texas Instruments, 411 
three laws of prototyping, v, 406 
time budgeting 

combinational boundaries, 242 
sequential boundaries, 241 

time of availability, 13 
time-critical software, 11 
TIMESPEC, 76 
timing calculation, 243 
timing complexity of TDM, 323 
timing constraints, 213 

guidelines, 240 
timing on multiplexed interconnect, 

325 
timing violations, 321, 322 
TLM 

transactors, 369 
tool control language. See TCL 
tools 
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generate replacement memory, 
201 

infer soft macros, 300 
partitioning, 222 

trace assignment, 235 
global clock, 246 
without EDA tools, 237 

trace data 
timing resolution, 82 

trace matching, 139 
track software changes, 272 
transaction-level models. See TLM 
transceivers 

gigabit, 53 
transfer clock, 252, 253, 255, 258, 

260, 261, 262, 325 
transmitter, 53 
trends 

semiconductor design, 15 
tristate control path, 324 
tristate signals, 324 
tuning constraints, 215 
turnaround time, 14 
UCF, 75 
umbilical topologies, 116 
UMRBus, 337, 375 

CAPIM, 338 
IP, 340 
memory contents, 340 

unintended logic removal, 321 
Universal Multi Resource bus. See 

UMRBus 
universal power format. See UPF 
universal verification methodology. 

See UVM 
UPF, 128 
USB 

drivers, 19 
interface, 14 

USB OTG, 384 
user constraints. See UCF 
utilization levels, 103 
UVM, 93 
Value Change Dump. See VCD 
value links, 14 

VCD, 85 
VCS, 366 

functional verification simulator, 
373 

verification 
hybrid, 365 
interface, 365 
interface technologies, 375 
reuse, 12 
transaction-based, 368 

Verification Methodology Manual. 
See VMM 

VHDL 
global signals, 79 

Virtex-6 
arithmetic, 47 
blockRam, 196 
BlockRam, 47 
board utilization, 101 
clock distribution resources, 51 
clock generation, 49 
clock line types, 50 
CMT, 49 
drive current, 329 
DSP blocks, 47 
FPBA fabric, 55 
FPGA, 195 
FPGA regions, 51 
GTX, 53 
IO current drive, 52 
IO pin banks, 51 
LX760 FPGAs, 112 
memory, 195 
PCI Express, 55 
serial IO, 53 
slice, 44 
status information, 56 
synthesis architecture, 61 
Xilinx, 90 

virtual 
protoype, 6 

virtual ICE, 381 
remote access, 382 

virtual platform, 387 
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real-world physical connection, 
381 

RTL, 377 
RTL testbench, 380 
software, 378 
testbench, 379 

virtual platforms 
hardware assisted, 19 

virtual prototype 
RTL, 377 

virtual prototypes 
advantages, 19 
timing, 6 

visibility 
logic debug, 335 

VMM, 373 
VMM-HAL, 373 
voltage and temperature. See PVT 
voltage controlled oscillator. See 

VCO 
voltage domains, 128 

waveforms, 89 
white box, 309 
workstations and licenses, 108 
wrapper, 197 

block, 282 
wrappers 

instantiate FPGA memory, 198 
instantiated memory, 202 
self-checking, 204 

Xilinx 
back-end tool, 351 
Core Generator, 191 
CORE Generator, 196 
ISE tool, 351 

XMR, 185 
CAPIM, 338 
inject signals, 185 

yield, 117 
multiple projects, 146 
replicating blocks, 238 
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