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Abstract—Due to the presence of a binary phase detector (BPD)
in the loop, bang-bang phase-locked loops (BBPLLs) are hard non-
linear systems. Since the BPD is usually also the only nonlinear ele-
ment in the loop, in practical applications, BBPLLs are commonly
analyzed by first linearizing the BPD and then using the traditional
mathematical techniques for linear systems. To the author’s knowl-
edge, in the literature, the gain of the linearized BPD ( bpd) is
determined neglecting the effect of the BBPLL dynamics on the
effective jitter seen by the BPD. In this brief, we develop an ap-
proach to the determination of bpd which takes into consider-
ation also this effect. The approach is based on modeling the dy-
namics of a BBPLL as a Markov chain. This approach gives new
insights into the behavior of the BBPLL and leads to an expression
for the bpd, which is more general than the one currently known
in literature.

Index Terms—Bang-bang phase-locked loops (BBPLLs), binary
phase detector (BPD), Markov chains.

I. INTRODUCTION

THE use of bang-bang phase-locked loops (BBPLLs) has
become increasingly common in a lot of communications

system, in particular, but not only, in the area of clock-and-data
recovery (see, for instance, [1]–[4]). These systems are charac-
terized by the the presence of a binary phase detector (BPD) in
the loop, which quantizes the phase error between reference and
feedback clock with 1-bit resolution.

Since the BPD is usually also the only nonlinear element in
the loop, for practical applications BBPLLs are commonly an-
alyzed by linearizing the BPD and using the traditional mathe-
matical techniques for linear systems. It is known that the gain
of the BPD depends on the jitter between the reference
clock and the feedback clock, also sometimes known as un-
tracked jitter. To the author’s knowledge, the expressions for

, which can be found in literature (see e.g., [5]) are deter-
mined by considering only the jitter on the reference clock. In
this way, the BPD is characterized in principle as a stand-alone
component, neglecting the effect of the BBPLL dynamics on the
untracked jitter seen by the BPD. When the jitter on the refer-
ence clock is of the same order of magnitude of the jitter gener-
ated by the PLL, this assumption does not hold any longer.

By modeling the behavior of the BBPLL with the help of
basic Markov chain theory, we were able to derive a more gen-
eral analytical expression for , which takes into consider-
ation also the effect of the dynamics of the BBPLL. The anal-
ysis here is limited to the case of a first-order BBPLL or of a
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Fig. 1. Block diagram of the Type II architecture for the digital BBPLL.

second-order one where the loop filter proportional constant is
much bigger than the integral one.

It is interesting to note that a similar approach was considered
a long time ago in [6], but after writing the basic equations, the
authors resorted to extensive simulation to derive useful results.

The brief is organized as follows. Section II describes the
BBPLL architecture under study. Although this is a digital one,
all considerations in this brief apply to an analog architecture as
well. In Section III, it is explained how and why the de-
pends on the untracked jitter, while in Section IV, we will apply
Markov chain theory to derive the expression for the linearized
gain.

II. SECOND-ORDER BBPLL ARCHITECTURE

The block diagram of the architecture of the second-order
BBPLL is reported in Fig. 1.

The PLL consists of a BPD, a digital loop filter, a digitally
controlled oscillator (DCO), and a feedback divider. The func-
tion of the BPD is to provide an indication of the phase differ-
ence between the reference clock and the feedback clock in a
binary form. Its operation is logically identical to the operation
of an ideal sampling register, with the reference clock as data
input and the divided clock as sampling clock. The binary phase
information is fed to the digital loop filter, which consists of a
proportional and integral path. The constants in the two paths
will be indicated with and for the proportional and integral
path, respectively.

Differently from the architecture analyzed in [7], the pro-
portional path is not added to the integral path inside the loop
filter. Indeed, this summation can be electrically performed
rather easily inside the DCO. In this way, the latency of the
loop filter for the proportional path is reduced to the delay of a
few digital gates, which should be negligible compared to the
reference clock period. This kind of architecture has already
been implemented successfully on silicon (see [4]).
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Fig. 2. Centering of the pdf of �t.

Following the same approach as exposed in [7], the nonlinear
map describing the function of the BBPLL can be written as

(1)
where is the difference between the rising edges
instants of the reference and feedback clock , and

are the loop filter integral and proportional constants, is
the period gain of the DCO, is the feedback divider factor,

is the latency of the integral path in reference clock cycles
and finally is the numerical value of the loop filter integrator
output. The subscript denotes the value of these quantities at
the -th iteration (or clock cycle).

III. LINEARIZATION OF THE BPD

Consider the time difference between the rising edges of the
reference and of the feedback clock . Due to the noise gen-
erated by the blocks of the BBPLL and present on the reference
clock, can be described as a random variable with a given
cumulative distribution function (cdf)
and probability density function (pdf) ,
where the operator indicates the probability of event [8].

When the BBPLL is not locked, has most of its area con-
centrated far away from zero (see Fig. 2). During the locking
process, the value of converges to zero, meaning that the pdf
is gradually centered around the origin. In locked condition, the
average value of the BPD output must be zero, (the
operator indicates the expectation of the random variable

). If this condition was not satisfied, the output of the integral
path of the loop filter would gradually drift in one direction,
modifying the output frequency and contradicting the assump-
tion that the BBPLL is locked. Since can have
only value 1, the condition translates into

which can be rewritten as

so that in locked condition the distribution of is such that

(2)

Fig. 3. BPD linearized model.

Assume that for any reason (for instance due to the intrinsic
BBPLL dynamics) the pdf of is shifted away from its equi-
librium point by a small amount in the positive direction. In
this case there will be more iterations with and less with

, so that the average value of will be slightly positive.
The BBPLL will react to this situation and center the pdf again.

Following this considerations, it possible to define a gain of
the BPD around the locked condition as rate of change
in due to a small shift of the pdf around the locked con-
dition. In formulas

(3)

where is the conditional expectation of given the
event . In a first-order approximation, if the shift is small
enough, the probability that is increased by the quantity

, while by the probability that is decreased
by the same quantity. The net change in is thus ,
so that .

This result can be derived more formally in the following
way. Expression (3) can be rewritten as

The probability that given that the pdf has been shifted
by some quantity is equal to the probability that
without any shift. Thus

and finally

(4)

From this expression, the gain of the BPD depends only on the
value of the pdf of the time difference at the point where the
BBPLL is locked, which is defined by (2). This result agrees
with what reported in [5], though derived in a different way.
Fig. 3 illustrates the BPD and the resulting linearized model. It
has to be noted that this derivation is valid under the assumption
that the dynamic of the BBPLL during the re-centering of the
pdf is slow enough, so that the probabilistic approach based on
expectations makes sense.

In the next section, the value of the gain will be com-
puted.

IV. EXPRESSION FOR

The equivalent gain of the BPD cannot be fixed inde-
pendently from the other parameters of the BBPLL (as it is nor-
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Fig. 4. The pdf of �t as weighted superposition of the pdfs of t .

mally done in the literature [5]), since it depends on , which
in turn depends on the dynamics of the BBPLL itself. In this
derivation, we will assume . The nonlinear map (1) in
presence of jitter on the reference clock can be written as

(5)

Indicating with the value of in case of unjittered refer-
ence, can assume values only on discrete states:

, with . When the BBPLL is locked, the integral path
will have centered the dynamics so that we can assume
and , .

Every time is in a given state , the jitter on the
reference distributes the actual probabilistically on a range
around , replicating the pdf of .

Therefore, the pdf of , , will be given by the super-
position of the pdfs of , , shifted by an amount equal
to each occupied state and weighted by the probability that in
steady-state will occupy that state (see Fig. 4). Indicating
with the state and with the stationary probability
of occupancy of the state

then

so that

(6)

In order to find the stationary probabilities , the BBPLL can
be modeled as a Markov chain (see [8]). From a given state ,

must go either to state or to state . The transition
probabilities are

which can be expressed in terms of the cdf of , , as

and, similarly

Fig. 5. Markov chain representing the BBPLL.

The Markov chain representing the BBPLL is illustrated in
Fig. 5, where . It is actually a random walk
with nonuniform transition probabilities. Define the transition
probability matrix , such that its element is the proba-
bility to go from state to state in one step

. . .
...

...
. . .

In this brief we ignore the problem of cycle slips, so that the
number of possible states is in principle infinite and is a square
matrix with infinite dimension. The superscript in the matrix
elements denotes the element (0, 0).

If is symmetrical around 0 then (in partic-
ular and the transition matrix has center symmetry
around the (0, 0) element

. . .
...

...
. . .

The stationary probabilities are defined by the stationary
Chapman–Kolmogorov equation

(7)

where is the row vector .
Although, technically speaking, this kind of Markov chain

has period 2 and the theory would request to calculate first
and then solve (see [8]), we take the short way and
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solve (7). Indeed if satisfies (7), then it is also a solution for
.
Since the states describe all possible events and they are dis-

joint, must satisfy the normalization equation

(8)

Equation (7) translates into a infinite set of linear equations

(9)

Since is symmetrical, and it is enough to con-
sider . Rewriting (9) for ,
so that;

(10)

Taking the sum of the first terms of (9) and using the
result (10)

so that

(11)

In order to find the normalization (8) is used

and finally

(12)

Equations (6), (11), and (12) allow the exact computation of the
BPD linearized gain .

If is Gaussian with variance then

where

Fig. 6 reports the plot of versus for the case of a
Gaussian reference jitter using (6) (11) and (12) (thick solid
line). For this computation the Markov chain has been limited
to 101 states and has been normalized to 1.

The asymptote for small values of can be derived as fol-
lows. On the assumption that , in the Markov
chain the states with occur with a probability which
is negligibly small. The infinite Markov chain simplifies then to

Fig. 6. Plot of K versus � (Gaussian jitter, N�K normalized to
1): K computed with a 101 states Markov chain (thick solid), K
approximated with a 3-state Markov chain (thick dashed), asymptote
K = 1=(

p
2�� ) (thin solid), asymptote K = 2=(

p
2�� ) (thin

dashed).

Fig. 7. Markov chain approximating the BBPLL.

a three state chain with perfectly reflecting barriers (see Fig. 7)
and it is easy to show that , .

Applying (6) an approximate expression for is found

(13)

and for we find .
The asymptote for large values of can be understood by

considering that in this case the dynamic of the BBPLL has
little influence on the pdf of , since the displacement of the
sampling point at multiples of is negligible compared to
the jitter on the reference clock. Therefore, going back to (4), we
can say , which is the expression
usually found in literature (see [5]).

Note that this result, if used in the case of small , would
be wrong by a factor of 2.

Fig. 6 reports the plots of (13) and of the two asympotes. In-
terestingly, although derived under the assumption of small ,
(13) gives a good approximation (error is smaller than 25%) of
the real on the whole axis.

V. VERIFICATION

The validity of the linearized expression for has been
verified through behavioral simulations of the BBPLL described
in Fig. 1. The reference clock has been jittered with a random
Gaussian white noise and the power-spectral density (PSD) of
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Fig. 8. PSD of the simulated feedback clock jitter compared to the
linear model for three differen values of K : expression (13) (solid),
K = 1=(

p
2�� ) (dash-dotted) and K = 2=(

p
2�� ) (dashed).

the jitter on the feedback clock has been computed and com-
pared with the results of the BBPLL linear model. Considering
as input and output signals the time instants of the rising edges
of the reference and feedback clock respectively, the z-domain
open-loop transfer function of the BBPLL is

where , with the period of the reference
clock. The closed-loop transfer function from the reference to
the feedback clock is

The closed-loop transfer function has a low-pass characteristic,
the bandwith of which is determined also by . A com-
parison between the bandwidths of the PSD of the simulated
feedback clock jitter and of the linear model provides evidence
of the accuracy of the linearization of . In all performed
simulations a very good agreement has been found between

simulation results and the linearized model, where the expres-
sion (13) has been used. In Fig. 8 an example is reported. In
this case the BBPLL has been simulated with the following
normalized parameters : period of the reference ,

, , , , and
. The figure shows the PSD of the feedback clock jitter

together with the results of the linear model using three different
values for : expression (13), and

. Note that, the PSD curve has been verti-
cally shifted to allow a better comparison of the bandwidths. It
can be clarly seen that expression (13) predicts very well the be-
havior of the system, while the other two expressions are quite
inaccurate.

VI. CONCLUSION

In this brief, the basic theory of Markov chains has been used
to model the behavior of a first-order BBPLL. This approach
has proven to be fruitful, since it allowed us to derive easily an
analytical expression for the linearized gain of the BPD, taking
into account the dynamics of the PLL in presence of Gaussian
input jitter. This expression reduces to that found in literature
for the case that the jitter of the reference clock is much bigger
than the BB correction step. The accuracy of the derivation has
been verified with behavioral simulations.
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