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Abstract—Several Miller compensation schemes using a cur-
rent buffer in series with the compensation capacitor to modify the
right-half-plane zero in fully differential two-stage CMOS opera-
tional amplifiers are analyzed. One scheme uses a current mirror
as a current buffer, while the rest use a common-gate transistor as
a current buffer. The gain transfer functions are derived for each
topology, and approximate transfer-function coefficients are found
that allow accurate estimation of the zero(s) and poles.

Index Terms—Compensation, operational amplifiers, poles and
zeros.

I. INTRODUCTION

TWO-STAGE operational amplifiers (op-amps) are often
used to achieve both high dc gain and large output voltage

swing. These op-amps require frequency compensation. When
conventional Miller compensation is used in a two-stage op-
amp, the compensation capacitor is connected between the input
and output of the second gain stage. The compensation capacitor
causes the two poles associated with the input and output nodes
of the second stage to split apart, giving dominant and nondom-
inant poles that are typically widely spaced. However, the ca-
pacitor also provides a feedforward signal path that introduces
a right-half-plane (RHP) zero in the op-amp transfer function
[1]. This feedforward reverses the polarity of the op-amp gain at
a finite frequency by passing the signal directly from the input
to the output of the second stage, avoiding the inversion from
that stage. This polarity reversal stems from the combination of
a phase shift from a left-half-plane (LHP) pole and an-
other phase shift from the RHP zero. The RHP zero is es-
pecially important in CMOS technologies that give low device
transconductance for a given bias current, causing the magni-
tudes of the RHP zero and the nondominant pole to be compa-
rable. The RHP zero can be eliminated by adding a resistor [2],
[3] or voltage buffer [4] in series with the compensation capac-
itor, or by adding a transconductance stage to cancel the feed-
forward signal [5].
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Alternatively, a current buffer can be connected in series
with the compensation capacitor to eliminate the RHP zero or
move the zero [6]–[10]. This paper analyzes and compares four
current-buffer compensation schemes for fully differential op-
amps. Some of these schemes have been analyzed previously
for single-ended op-amps. In [7], an ideal current buffer (with
zero input impedance and infinite output impedance) was
assumed to simplify the analysis. This assumption leads to
the conclusion that the zero is eliminated. An analysis using
a current buffer with nonzero input impedance shows that the
RHP zero is eliminated but a LHP zero exists [8]. The analysis
in this paper includes not only nonzero input impedance, but
also finite output impedance in the current buffer. A detailed
analysis of another configuration was carried out in [9]; however,
the transfer function of that single-ended circuit differs from
its fully differential counterpart due to the current-mirror load
in the input stage of the single-ended op-amp. A current mirror
was used as the current buffer in a single-ended folded-cascode
op-amp in [10], but the compensation topology used there
creates positive feedback when extended to fully differential
op-amps. The circuits considered in this paper are balanced and
fully differential. Common-mode feedback (CMFB) is ignored
for simplicity, but CMFB loading on the differential circuits can
be taken into account easily. To simplify the analyzes and the
resulting transfer functions, device and parasitic capacitors are
lumped into capacitors that connect from each circuit node to
ground, as is often done [1], [7], [8], [10]–[12]. In all the circuits,
the transistors operate in the saturation region. To simplify the
schematics, ideal current sources are shown instead of transistor
current sources; however, the effects of finite output impedance
in these current sources can be included as presented in the paper.

This paper is divided into four additional parts. Section II
analyzes the connection of the compensation capacitors to
common-gate stages acting as current buffers. The circuits in this
section are known, but the analyses here are new because they
consider nonzero input impedance and finite output impedance
for the current buffers and because these buffers are applied to
fully differential op-amps. Section III presents and analyzes the
use of a differential current mirror as a current buffer. Section IV
gives the conclusion. The appendices show the analysis details.

II. COMMON-GATE STAGES

This section analyzes the connection of the compensation
capacitors to three current buffers that use a common-gate con-
figuration.
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(a)

(b)

Fig. 1. (a) Two-stage op-amp with each C connected to a common-gate
transistor. (b) Small-signal DM half circuit. Expressions for R , C , R ,
C , R , and C in terms of transistor-model parameters are given in the
second column of Table I.

A. Separate, Additional Stages

Fig. 1(a) shows a two-stage fully differential op-amp with a
pair of common-gate stages to block the feedforward current
through the compensation capacitors [7]. Since the circuit is bal-
anced, the characteristics of the entire circuit can be predicted
through analysis of one half of the circuit. Consider the right
half of the circuit, which contains , , , and . The

current source and transistor form a common-gate stage.
This stage uses components not shared by either the first or
second stage in the op-amp. Also, this stage is added to the sim-
plest two-stage op-amp configuration. Therefore, this stage is
referred to as a “separate, additional” stage here.

The compensation capacitor is connected from the op-amp
output to the source of . Common-gate transistor al-
lows the capacitor current to flow from the output back toward
the input of the second stage but effectively blocks the feed-
forward current path through the compensation capacitor. If the
common-gate stage is modeled as an ideal current-buffer stage
with zero input impedance ( ), the RHP zero is elim-
inated and the circuit has two poles and no zero [7]. In the fol-
lowing analysis, the current buffer is not assumed to be ideal.

A differential-mode (DM) half-circuit is shown in Fig. 1(b).
Expressions for , , , , and in terms of
transistor model parameters are given in the second column of
Table I. Here, and model the impedance at node in
Fig. 1(a), and and model the impedance at node . Ele-
ments and model the op-amp output impedance plus the
load impedance. Since the ideal current sources in Fig. 1(a) are
implemented with transistors in practice, an output resistance
and capacitance is associated with each current source. These
elements can be incorporated in the elements in the small-signal
models, as noted in Table I. An analysis of the circuit in Fig. 1(b)

is carried out in Appendix A. From (27), the op-amp gain has
one LHP zero [8] approximately given by

(1)

A physical interpretation of this result is that at the zero
in (1) because the impedance from the op-amp output to ground
through (ignoring and ) is zero at . That is,

at . A key point here is
that the RHP zero is eliminated even with finite .

The op-amp gain also has three poles. From (28), the domi-
nant real pole is the same as with conventional Miller compen-
sation

(2)

Poles and can be found exactly from (12) or approximately
from (29) if . In general, and could be
real or complex conjugates, and simple, general expressions for
these poles cannot be readily generated.

However, if , which is the case considered by
Ahuja [7], then from Appendix A, . With large ,

is approximately given by

(3)

[see (30) and the associated condition on in Appendix A].
If , which is typically true, the magnitude of non-
dominant pole here is larger than in a conventional Miller
compensated op-amp, where [1], [11].
The increase in with the current buffer arises because cur-
rent buffer eliminates the connection between the input of
the second op-amp stage (node ) and the compensation capac-
itor (and the associated loading). Therefore, to achieve the same
unity-gain frequency as with conventional Miller compensation,
a smaller and/or a smaller can be used here.

Because is part of a separate, additional stage, an ad-
vantage of this scheme is that it gives flexibility in choosing

, which affects the zero and pole , through the choice
of and the of . If desired, can be made large
so that the magnitudes of the zero and pole are well be-
yond the unity-gain frequency of the op-amp, in which case
the op-amp gain can be approximated by a two-pole transfer
function. Drawbacks of this approach are that extra devices and
dc current are needed to implement the common-gate stages in
Fig. 1(a), and mismatch between the current sources changes
the bias currents in the input stage and affects the input-offset
voltage of the op-amp. Also, these extra devices increase the
equivalent input noise of the op-amp.

B. Embedded in Cascoded First-Stage Loads

A variation of the above scheme is possible when the first-
stage loads are cascoded. Fig. 2 shows a schematic of this ap-
proach. Common-gate transistors and operate as a part
of the first-stage loads and are therefore considered to be “em-
bedded” in the first stage. These transistors also act as the cur-
rent buffers connected to the capacitors. The small-signal
DM half-circuit is the same as in Fig. 1(b). Expressions for ,
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TABLE I
APPROXIMATE EXPRESSIONS FOR ELEMENTS SHOWN IN THE DM HALF-CIRCUITS

Fig. 2. Two-stage op-amp with each C connected to the cascode node
in a cascoded active load. The small-signal DM half circuit is the same as
in Fig. 1(b). Expressions for R ;C ;R , C , R and C in terms of
transistor model parameters are given in the third column of Table I.

, , , , and in terms of transistor model param-
eters are given in the third column of Table I. Therefore, the
op-amp gain has one LHP zero and three poles, as given by the
exact or approximate expressions in Appendix A.

Because the common-gate transistors here are embedded in
the first-stage loads, the topology in Fig. 2 avoids the extra dc
current required to bias the common-gate transistors in Fig. 1(a).
However, the choice of is less flexible than in Fig. 1(a)
because is part of the input stage here.

C. Embedded in Cascoded Differential Pairs

When the first stage of the op-amp uses a cascoded differen-
tial pair (or a folded-cascode configuration), each compensation
capacitor can be connected to the source of a common-gate
(cascode) transistor. Fig. 3(a) shows an example of this case
[6], [9]. Common-gate transistors and form cascodes
with the differential pair and are therefore considered to be

(a)

(b)

Fig. 3. (a) Two-stage op-amp with each C connected to the cascode node of
a cascoded input transistor. (b) Small-signal DM half circuit. Expressions for
R ;C ;R , C , R and C in terms of transistor model parameters are
given in the fourth column of Table I.

“embedded.” In the previous schemes, the feedforward current
path that causes the RHP zero was eliminated by the common-
gate transistors. In contrast, the feedforward path is eliminated
in Fig. 3(a) only when the common-gate transistors have
infinite transconductance ( ). This condition gives
zero impedance and zero voltage swing at the sources of the
common-gate devices in Fig. 3(a). Under this condition, all the
current from the input transistors flows into the sources of the
common-gate transistors, eliminating the feedforward current
through . In practice, the transconductance is finite, and
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some feedforward occurs. However, the impedance and swing
at the source of the cascode device are smaller than at its drain.
As a result, this connection reduces the feedforward current
through when compared to connecting to the gate of .

A small-signal DM half circuit is shown in Fig. 3(b). Ex-
pressions for , , , and in terms of transistor
model parameters are given in the fourth column of Table I.
The analysis of the gain for this circuit in Appendix B gives
three poles and two zeros. Dominant pole is the same as with
conventional Miller compensation. The nondominant poles can
be found exactly or approximately using the equations in Ap-
pendix B. In general, and could be real or complex conju-
gates, and general expressions for these poles cannot be readily
generated. Approximations for real and that are valid for
this circuit when is large are given in Appendix A. (See (30)
and (31) and the associated condition on .)

The two zeros are real; one is in the RHP and the other is in the
LHP. Exact and approximate expressions for the zeros are given
in Appendix B. In all cases, . In
most cases, the assumptions leading to (56) and (57) are true,
and the zeros have magnitudes that are about equal. The reason
for the two zeros can be explained intuitively as follows. Two
currents that depend on the voltage at node flow at the
op-amp output node in Fig. 3(b). The first current is the feed-
forward current flowing through the compensation capacitor
into the output node, which is

(4)

The second current is the current flowing in the con-
trolled source for ; . At high frequencies,

. Therefore

(5)

The currents and depend on . When , the
output voltage is zero, and a zero exists in the op-amp gain.
Substituting the last two equations into and solving
for the zeros gives

(6)

which agrees with (56) and (57).
With nonzero capacitances, this topology does not eliminate

the RHP zero unless and/or . With infinite
and finite , nonzero feedforward occurs. However, the

gain through the main signal path is infinite at all frequencies
and cannot be canceled at any finite frequency by the remaining
feedforward. Hence, the RHP zero is eliminated. On the other
hand, infinite eliminates the RHP zero by eliminating the
feedforward. The key is to observe that nonzero feedforward
causes a RHP zero with finite transconductances.

An advantage of the circuit in Fig. 3(a) is that it avoids the
extra devices, extra bias current, and mismatch problems in
Fig. 1(a). A disadvantage is that it does not eliminate the RHP
zero in practice, as described above. However, it introduces
a LHP zero, and it increases the RHP zero, when compared
to simple Miller compensation (where ), if

.

(a)

(b)

(c)

Fig. 4. (a) Two-stage op-amp with eachC connected to a DM current mirror.
(b) Small-signal DM half circuit for (a) when M and M are matched.
(c) Small-signal DM half circuit for (a) when the differential current mirror
gain is m [that is, (W=L) = m(W=L) ] and when the compensation
capacitor is scaled by 1=m. Expressions for R ;C ;R , C , R and C
in terms of transistor model parameters are given in the fifth column of Table I.

III. CURRENT MIRRORS

Section II describes the use of common-gate stages as current
buffers connected to the compensation capacitors to allow feed-
back current but to block or reduce the feedforward current. Al-
ternatively, current mirrors can be used to implement the current
buffers [10]. Unlike common-gate transistors, however, current
mirrors form inverting current buffers, and the extra inversion
would introduce positive feedback in a straightforward connec-
tion. To overcome this problem, the two current-mirror outputs
can be cross coupled in a fully differential op-amp. Fig. 4(a)
shows the schematic. The differential current mirror consists of
transistors - . Since the sources of - operate at
a small-signal ground for DM signals, , and ,
act as current mirrors for DM signals. The behavior of these mir-
rors for common-mode (CM) signals is considered at the end of
this section.

Initially, assume - are identical. A simplified DM
small-signal circuit is shown in Fig. 4(b). The DM small-signal
relationship has been used here, along with

. If in Fig. 1(b) and
in Fig. 1(b) is set equal to in Fig. 4(b), the circuit
in Fig. 4(b) is the same as that in Fig. 1(b). Letting
eliminates the resistance between nodes and that models
the output resistance of the common-gate transistor in
Fig. 1(a). In Fig. 4(b), the output resistances of the current
mirror transistors are included in and . (See Table I.)
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Therefore, the results in Appendix A can be applied here if
and . Letting has no effect on

the approximate results in Appendix A. Therefore, the op-amp
gain has one LHP zero given approximately by

(7)

As in Fig. 1(a), the LHP zero occurs where the impedance from
the op-amp output to ground through is zero.

The op-amp gain has three poles. The poles can be found from
the equations in Appendix A, with the substitutions
and . Here, the elements in the first column of
Table I are associated with the transistor small-signal parameters
in the last column of Table I.

If , , , and are identical, this topology is
functionally equivalent to Fig. 1. However, the current-mirror
topology in Fig. 4 requires more dc bias current than the
topology in Fig. 1 because the current mirrors use four
branches while the common-gate transistors in Fig. 1 use only
two branches. Also, the current-mirror topology has a larger
parasitic capacitance than the topology in Fig. 1 because
each side of the differential current mirror has two transistors
that contribute a gate-source capacitance to while in
Fig. 1 is dominated by the gate-source capacitance of only one
common-gate transistor. In addition, the output resistance of
the , current mirror is lower than the output resistance
of common-gate in Fig. 1; therefore, the loading of the
first stage by the current buffer is worse here than in Fig. 1.
Also, mismatches between the dc drain currents in and

change the bias currents in the input stage and affect
the input-offset voltage of the op-amp. For these reasons, the
topology in Fig. 1 would be favored over Fig. 4 when -
are identical.

However, the transistors in each current mirror do not have
to be identical. The mirrors provide current gain if

and with . With a
current gain greater than unity, the DM current fed back to
the input of the second gain stage through the current mirror is
times the current flowing through the compensation capacitor.
Hence, if the compensation capacitance is decreased by a factor
of , the dominant pole will be unchanged because the cur-
rent fed back through each compensation capacitor to the input
of the second stage, which determines the dominant pole, is un-
changed. This scaling provides a degree of design flexibility that
does not exist in the other topologies. Being able to reduce
is potentially useful when the op-amp is driving a large DM ca-
pacitive load, which requires a dominant pole with a very small
magnitude for compensation and would require a large compen-
sation capacitor in Figs. 1–3. Here, that compensation capacitor
can be decreased by a factor equal to the current mirror gain.
Also, if a CMOS process does not have a thin-oxide-capacitor
option, the area required for the compensation capacitor might
be large even for a moderate-sized compensation capacitor, so
the capacitor area (and hence the op-amp area) may be reduced
by using Fig. 4(a) with gain in the current mirrors.

Fig. 4(c) shows the DM small-signal model for the circuit
in Fig. 4(a) with a current-mirror gain of and with the com-
pensation capacitor scaled by . With a current-mirror gain

Fig. 5. Circuit in Fig. 4 showing small-signal CM currents, for the general case
where the current mirrors have a gainm.

of , the dc currents and the ’s of and are ra-
tioed by , so . Equations similar to those in
Appendix A could be derived for this circuit when .
Alternatively, the case can be handled with the ex-
isting equations in Appendix A by making one modification.
Ignoring the compensation capacitors, the circuits in Fig. 4(b)
and (c) are the same except the resistance from node to ground
stemming from diode-connected changes from

in Fig. 4(b) to in Fig. 4(c). Note that
is in parallel with these resistances. Therefore, the resis-

tance from node to ground in Fig. 4(b) can be increased from
to by changing to

where

(8)

With this change along with , , and
, the equations in Appendix A hold for Fig. 4 for any value

of . Approximations for the transfer function coefficients, and
equations for the poles and zero based on those coefficients (and
other simplifying assumptions) are given in Appendix C.

Finally, the compensation scheme in Fig. 4 is considered for
CM signals in the general case where the current mirrors ,

and , have a gain of . Fig. 5 shows the key small-
signal CM currents; represents the ac CM current flowing
through the compensation capacitors. The current mirrors force
the CM ac currents flowing into the drains of and
to be . Because is constant, the sum of the small-signal
currents flowing through and , , must flow
into the source (and out of the drain) of . Similarly,
flows out of the drain of . Therefore, the net CM feedback
current flowing back to node is equal to the current flowing
through the compensation capacitor; it is not affected by the gain

of the current mirror. As a result, the CM current gain of this
differential current-mirror topology in Fig. 4 is unity.

In contrast, if conventional current mirrors were used (i.e., if
the sources of - were connected to ), the polarity
of the CM current gain would be negative and the magnitude of
the gain would be . Hence, the CM feedback would be posi-
tive. The positive polarity of the CM gain through the differen-
tial current-mirror connection in Fig. 4 is important because it
causes the polarity of the CM feedback to be negative. Since the
magnitude of the CM current gain through the differential cur-
rent mirror is unity, the effective compensation capacitance for



280 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 2, FEBRUARY 2004

Fig. 6. Two-stage op-amp in Fig. 4, modified to eliminate the connection
between the sources of M -M and the sources of M -M .

the CM loop is equal to the actual compensation capacitance.
Thus, the effective compensation capacitance is smaller for the
CM loop than the DM loop when . This situation will be
acceptable in cases where the CM loop does not require as large
a compensation capacitor as the DM loop. For instance, the DM
load capacitance might be greater than the CM load capacitance.
Alternatively, the dc gain in the CM loop might be lower than
the dc gain in the DM loop, thus the CM loop may not require
as large a compensation capacitor as the DM loop.

One drawback of the circuit in Fig. 4 is that the parasitic ca-
pacitance at the common-source node of the - differential
pair is increased due to the connections to - there. In-
creasing this parasitic capacitance increases the CM gain at high
frequencies. To eliminate the extra capacitance at that node due
to - , the circuit in Fig. 6 can be used. Here, - still
form a DM current mirror. and are common-gate de-
vices that set the dc bias at the sources of - and provide
a path for the CM currents that flow in - . This current is
analogous to the CM current that flows in and in Fig. 5
[i.e., ]. However, and carry no DM ac cur-
rent because the sources of - are an ac ground for DM
signals.

In some cases, the effective CM compensation capacitance
in Figs. 5 and 6 may not be large enough to compensate

the CM loop. In such cases, the CM compensation could be
augmented, perhaps by adding capacitor(s) in the CMFB circuit.

Another option would be to compensate the CM loop in-
dependently from the DM loop, which is compensated by the

capacitors. The effect of these capacitors on the CM
gain of the op-amp can be eliminated in at least two ways.
First, the following changes can be made to Fig. 6. Transis-
tors and are each split into two parallel transistors
that are ratioed by [e.g., and with

]. Then, the drains of and
are connected to . Fig. 7(a) shows the modified cur-

rent mirror. Its response to ac CM input current (the CM cur-
rent flowing through the compensation capacitors) is labeled.
With these changes, the CM ac drain current in (or )
is equal in amplitude and opposite in polarity from the CM ac
drain current that flows in (or ) because is constant.
As a result, the CM current gain of the modified current mirror
is zero, and the capacitors do not affect the CM gain of

(a)

(b)

Fig. 7. Differential current mirror in Fig. 6 modified to reduce CM gain:
(a) using matching; (b) using degeneration. The responses to ac CM input
currents i are labeled.

the op-amp. Since CM gain reduction is achieved here through
matching, mismatch will increase the magnitude of the CM cur-
rent gain.

Fig. 7(b) shows a second modification of the current mirror in
Fig. 6. This circuit eliminates and . It also separates
the sources of and from those of and and bi-
ases each of these source-coupled pairs with its own tail current
source. The CM current gain is reduced by degeneration from

. In practice, finite output resistance causes nonzero CM cur-
rent gain. Also, nonzero capacitance at the source of and

causes increasing CM current gain as a function of fre-
quency.

In both of these circuits, CM compensation can be done else-
where, perhaps by adding capacitor(s) in the CMFB circuit.
With the changes to and as described above, another
option is to change the second stage of the op-amp to a differ-
ential stage (configure and as a differential pair with
a tail current source) and use local CMFB around each stage
[13], [14]; local CMFB may not require additional capacitance
for compensation. Also, it may be possible to use a simple cur-
rent mirror (with the sources connected to a supply) in series
with each compensation capacitor in such an op-amp. The CM
feedback current through the current mirrors would not be a lim-
itation here because the magnitude of the CM gain of the second
stage would be small, due to the tail current source in the second
stage.

Some disadvantages of using the current mirrors are that extra
dc current is needed to bias the added transistors; loading of
the first stage of the op-amp by the current mirrors reduces the
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DM gain, and the CM loop is not affected by the compensation
capacitors that compensate the DM loop. Also, these current
mirrors increase the equivalent input noise of the op-amp.

IV. CONCLUSION

Four fully differential op-amp topologies that use a cur-
rent buffer in series with each compensation capacitor have
been considered. Exact and approximate expressions for the
op-amp DM gain were given, which can be solved for the
poles and zero(s). Also, approximate expressions for the poles
and zero(s), which are valid under certain assumptions, were
presented. These approximate expressions yield real values
for poles and ; however, complex nondominant poles
can occur in practice and can be calculated from the quadratic
equation in (29), using the approximate or exact transfer
function coefficients presented in this paper.

The exact and approximate expressions for the transfer func-
tion coefficients presented in each appendix were verified for
a number of different sets of component values. For each case,
the transfer function coefficients were calculated using the for-
mulas in the appendices, the poles and zero(s) were found by
factoring the numerator and denominator of the transfer func-
tion, and those results were compared to the poles and zero(s)
from a HSPICE [15] pole–zero analysis of the same small-signal
circuit.

The gain expressions for the topologies in Sections II-A, II-B
and III have a LHP zero but do not have a RHP zero. The RHP
zero was eliminated because added circuitry blocks feedforward
through the compensation capacitor, but the added circuitry in
series with the compensation capacitor introduces a LHP zero.
The topology in Section II-C gives a LHP and RHP zero. The
RHP zero was not eliminated here because a feedforward path
through the compensation capacitor remains in this case. How-
ever, the RHP zero is different (typically larger) than the value
of the RHP zero with conventional Miller compensation.

All the topologies presented could be used in low-supply-
voltage applications, since the current buffer stages do not re-
quire bias voltages that exceed the supply and they do not limit
the output voltage swing. However, Figs. 1(a) and 4(a) have
fewer transistors stacked between the supplies than do Figs. 2
and 3, so the former circuits may be more attractive in very
low-voltage applications. On the other hand, Figs. 1(a) and 4(a)
require extra bias current that is not required in Figs. 2 and 3.
When comparing Figs. 2 and 3, the former has two potential
advantages. First, the RHP zero has been eliminated in Fig. 2
but not in Fig. 3. Second, large is desirable in both circuits,
and realizing a large transconductance will be easier with the
NMOS cascode device in Fig. 2 than the PMOS cascode tran-
sistor in Fig. 3.

The topology in Fig. 4(a) offers one unique degree of design
flexibility, since its current buffers are current mirrors that can
have a current gain greater than unity. Increasing the gain in
the current mirror allows the compensation capacitor to be
decreased by the factor that the gain was increased without
changing the dominant pole of the DM gain; such scaling can
potentially save silicon area. However, this scheme has some
significant disadvantages: extra dc current is needed to bias the
added transistors; loading of the first stage of the op-amp by

the current mirrors reduces the DM gain, and the compensation
capacitors that compensate the DM loops do not affect the
CM loops in the same way as the DM loops. Also, these current
mirrors increase the equivalent input noise of the op-amp.
These disadvantages may limit the use of current mirrors to
special applications.

The common-gate and current-mirror stages in Figs. 1(a) and
4(a) require extra bias current. If these stages are not used, this
current could instead be used in other stages to change op-amp
parameters such as the dc gain and/or pole and zero locations.

APPENDIX A

The transfer function of the small-signal circuit in Fig. 1(b) is
analyzed here. With appropriate substitutions, the results of this
analysis can be applied to the circuits in Figs. 1(a), 2, and 4(a).
Applying Kirchhoff’s Current Law at the two internal nodes and
at the output node gives three equations

(9)

(10)

(11)

These equations can be manipulated into the desired op-amp
gain . The gain transfer function is

(12)

where the exact expressions for the coefficients are

(13)

(14)

(15)

(16)

(17)

(18)

(19)

Assuming that , ;
; ; and
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, an approximate, simplified set of coefficients for the
transfer function in (12) is

(20)

(21)

(22)

(23)

(24)

(25)

(26)

Using the approximate expressions and for the numerator
coefficients, the zero is given by

(27)

The dominant real pole is given by (assuming )

(28)

Assuming a dominant pole and considering , in
(12) is negligible and the dominator in (12) becomes approxi-
mately . Therefore,
approximate values of the poles and are the roots of

(29)

These poles can be real or complex, depending upon the ele-
ment values. Poles and will be real and widely spaced if

[1]. One way this condition can be satisfied is
with large [i.e.,

], where . Also, if
, . Under

these assumptions, the widely spaced nondominant poles are
given by

(30)

(31)

As , .
If the approximations above for , , and are valid,

since , and the pole–zero diagram will be as
shown in Fig. 8. As a result, the phase shift of the op-amp gain
will never reach 180 . Therefore, the op-amp will be stable in
a feedback circuit if no additional poles or zeros are introduced
by the feedback circuit.

APPENDIX B

The transfer function of the small-signal circuit in Fig. 3(b)
is analyzed here. Applying Kirchhoff’s Current Law at the two
internal nodes and at the output node gives three equations

(32)

Fig. 8. Pole–zero diagram based on the approximate expressions for the poles
and zero in Appendix A.

(33)

(34)

where

(35)

(36)

(37)

These equations can be used to find the transfer function

(38)

(39)

(40)

(41)
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(42)

(43)

(44)

(45)

(46)

where

(47)

(48)

(49)

Assuming that , ;
; ; ; and

, the approximate denominator coefficients
are given by the expressions for - in Appendix A, and the
other transfer-function coefficients are approximately given by

(50)

(51)

(52)

(53)

Using the numerator coefficients , and , the zeros are

(54)

(55)

The zeros are real, with . If
, the expressions for the

zeros simplify to

(56)

(57)

Since the approximate expressions for the denominator coef-
ficients in Appendix A apply here, the approximate expressions
for the dominant real pole and for the other poles also apply
here. If and are not real, the magnitudes of these complex
poles can be approximated from (29) as

(58)

where the second approximation is valid if , , .
If , the magnitude of these poles is about equal to the

Fig. 9. Pole–zero diagram based on the approximate expressions for the zeros
and dominant pole in Appendix B, when the nondominant poles are complex
and near the LHP zero.

magnitude of the LHP zero in (56). Since complex and
will typically be positioned close to the real axis to avoid high-
frequency peaking in the op-amp gain [9], the complex poles
and LHP zero will be clustered as shown in Fig. 9. If the effect
of this cluster can be approximately modeled by one pole, then
from a macroscopic viewpoint, the op-amp gain will resemble
a transfer function with two LHP poles and one RHP zero.

APPENDIX C

The small-signal circuit in Fig. 4(c) models Fig. 4(a) with a
current-mirror gain of (i.e, ) and with the
compensation capacitor scaled by . The transfer function of
this circuit is given by (12) and the coefficients in Appendix A,
with those coefficients modified by the variable changes in
Section III. When , many terms in - are elimi-
nated. Assuming that , ;

; ; ;
and , simple, approximate expressions for
the coefficients in the transfer function are (after multiplying
the numerator and denominator coefficients by )

(59)

(60)

(61)

(62)

(63)

(64)

(65)

Using the approximate expressions and for the numerator
coefficients, the zero is given by

(66)

The dominant real pole is given by (assuming )

(67)
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Assuming a dominant pole and considering ,
approximate values of the poles and are the
roots of (29). Poles and will be real and widely
spaced if . One way this condition can
be satisfied is by making sufficiently large [i.e.,

and ]. Under these as-
sumptions, the widely spaced nondominant poles are given by

(68)

(69)

where . As , . However,
making large enough to satisfy both inequalities above
may be difficult in practice; therefore, and may be real
and closely spaced or complex conjugate in many cases.

While the dominant pole is approximately independent of ,
the other poles and zero are affected by .
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