
Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Mark D. Hill, University of Wisconsin

M
O

R
G

A
N

&
C

L
A

Y
P

O
O

L

CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis

Digital Library of Engineering and Computer Science. Synthesis Lectures

provide concise, original presentations of important research and development

topics, published quickly, in digital and print formats. For more information

visit www.morganclaypool.com

SYNTHESIS LECTURES ON
COMPUTER ARCHITECTURE

Mark D. Hill, Series Editor

ISBN: 978-1-60845-458-7

9 781608 454587

90000

Series ISSN: 1935-3235

SYNTHESIS LECTURES ON
COMPUTER ARCHITECTURE

D
Y

N
A

M
IC

 B
IN

A
R

Y
 M

O
D

IF
IC

A
T

IO
N

H
A

Z
E

L
W

O
O

D

Dynamic Binary Modification
Tools, Techniques, and Applications
Kim Hazelwood, University of Virginia

Dynamic binary modification tools form a software layer between a running application and the

underlying operating system, providing the powerful opportunity to inspect and potentially modify

every user-level guest application instruction that executes. Toolkits built upon this technology have

enabled computer architects to build powerful simulators and emulators for design-space exploration,

compiler writers to analyze and debug the code generated by their compilers, software developers to

fully explore the features, bottlenecks, and performance of their software, and even end-users to extend

the functionality of proprietary software running on their computers.

Several dynamic binary modification systems are freely available today that place this power into

the hands of the end user. While these systems are quite complex internally, they mask that complexity

with an easy-to-learn API that allows a typical user to ramp up fairly quickly and build any of a number

of powerful tools. Meanwhile, these tools are robust enough to form the foundation for software

products in use today.

This book serves as a primer for researchers interested in dynamic binary modification systems,

their internal design structure, and the wide range of tools that can be built leveraging these systems.

The hands-on examples presented throughout form a solid foundation for designing and constructing

more complex tools, with an appreciation for the techniques necessary to make those tools robust and

efficient. Meanwhile, the reader will get an appreciation for the internal design of the engines themselves.

Dynamic Binary
Modification
Tools, Techniques, and Applications

Kim Hazelwood

Dynamic Binary Modification
Tools, Techniques, and Applications

Synthesis Lectures on Computer
Architecture

Editor
Mark D. Hill, University of Wisconsin

Synthesis Lectures on Computer Architecture publishes 50- to 100-page publications on topics
pertaining to the science and art of designing, analyzing, selecting and interconnecting
hardwarecomponents to create computers that meet functional, performance and cost goals. The scope
will largely follow the purview of premier computer architecture conferences, such as ISCA, HPCA,
MICRO, and ASPLOS.

Dynamic Binary Modification: Tools, Techniques, and Applications
Kim Hazelwood
2011

Quantum Computing for Computer Architects, Second Edition
Tzvetan S. Metodi, Arvin I. Faruque, and Frederic T. Chong
2011

High Performance Datacenter Networks: Architectures, Algorithms, and Opportunities
Dennis Abts and John Kim
2011

Processor Microarchitecture: An Implementation Perspective
Antonio González, Fernando Latorre, and Grigorios Magklis
2010

Transactional Memory, 2nd edition
Tim Harris, James Larus, and Ravi Rajwar
2010

Computer Architecture Performance Evaluation Methods
Lieven Eeckhout
2010

Introduction to Reconfigurable Supercomputing
Marco Lanzagorta, Stephen Bique, and Robert Rosenberg
2009

iii

On-Chip Networks
Natalie Enright Jerger and Li-Shiuan Peh
2009

The Memory System: You Can’t Avoid It, You Can’t Ignore It, You Can’t Fake It
Bruce Jacob
2009

Fault Tolerant Computer Architecture
Daniel J. Sorin
2009

The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines
Luiz André Barroso and Urs Hölzle
2009

Computer Architecture Techniques for Power-Efficiency
Stefanos Kaxiras and Margaret Martonosi
2008

Chip Multiprocessor Architecture: Techniques to Improve Throughput and Latency
Kunle Olukotun, Lance Hammond, and James Laudon
2007

Transactional Memory
James R. Larus and Ravi Rajwar
2006

Quantum Computing for Computer Architects
Tzvetan S. Metodi and Frederic T. Chong
2006

Copyright © 2011 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

Dynamic Binary Modification: Tools, Techniques, and Applications

Kim Hazelwood

www.morganclaypool.com

ISBN: 9781608454587 paperback
ISBN: 9781608454594 ebook

DOI 10.2200/S00345ED1V01Y201104CAC015

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE

Lecture #15
Series Editor: Mark D. Hill, University of Wisconsin

Series ISSN
Synthesis Lectures on Computer Architecture
Print 1932-3235 Electronic 1932-3243

Dynamic Binary Modification
Tools, Techniques, and Applications

Kim Hazelwood
University of Virginia

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #15

CM& cLaypoolMorgan publishers&

ABSTRACT
Dynamic binary modification tools form a software layer between a running application and the
underlying operating system, providing the powerful opportunity to inspect and potentially modify
every user-level guest application instruction that executes. Toolkits built upon this technology have
enabled computer architects to build powerful simulators and emulators for design-space exploration,
compiler writers to analyze and debug the code generated by their compilers, software developers
to fully explore the features, bottlenecks, and performance of their software, and even end-users to
extend the functionality of proprietary software running on their computers.

Several dynamic binary modification systems are freely available today that place this power
into the hands of the end user. While these systems are quite complex internally, they mask that
complexity with an easy-to-learn API that allows a typical user to ramp up fairly quickly and build
any of a number of powerful tools. Meanwhile, these tools are robust enough to form the foundation
for software products in use today.

This book serves as a primer for researchers interested in dynamic binary modification systems,
their internal design structure, and the wide range of tools that can be built leveraging these systems.
The hands-on examples presented throughout form a solid foundation for designing and constructing
more complex tools, with an appreciation for the techniques necessary to make those tools robust
and efficient. Meanwhile, the reader will get an appreciation for the internal design of the engines
themselves.

KEYWORDS
dynamic binary modification, instrumentation, runtime optimization, binary transla-
tion, profiling, debugging, simulation, security, user-level analysis

To my husband Matthew
and our daughters Anastasia and Adrianna

for their patience and encouragement
while I worked on this project,

and for their ongoing love and support.

ix

Contents

Acknowledgments . xiii

1 Dynamic Binary Modification: Overview .1

1.1 Utility . 2
1.2 Functionality . 3
1.3 System Performance . 4
1.4 High-Level Summary . 5

2 Using a Dynamic Binary Modifier .7

2.1 Heavyweight vs. Lightweight Control . 7
2.1.1 JIT-Mode Execution . 7
2.1.2 Probe-Mode Execution . 8
2.1.3 Persistent Binary Modification . 8

2.2 Launching the System . 8
2.2.1 Complete Process Control . 9
2.2.2 Attaching to an Existing Process . 10

2.3 Programmable Instrumentation . 10
2.4 Platform-Specific Behaviors . 13
2.5 End-User Optimizations . 14
2.6 Debugging Your Plug-In Tool . 15

3 Program Analysis and Debugging . 17

3.1 Program Analysis Examples . 17
3.2 Parallel Program Analysis . 22
3.3 Deterministic Replay . 23
3.4 Customizable Debugging . 24

4 Active Program Modification . 25

4.1 Fine-Grained Instruction Modification . 25
4.2 Function Replacement . 26
4.3 Dynamic Optimization . 27
4.4 Sandboxing and Security Enforcement . 29

x

5 Architectural Exploration . 31

5.1 Simulation . 31
5.1.1 Trace Generation . 32
5.1.2 Functional Cache Simulation . 33
5.1.3 Functional Branch Prediction Simulation . 34
5.1.4 Timing Simulation . 34

5.2 Emulation . 35
5.2.1 Supporting New Instructions . 36
5.2.2 Masking Hardware Flaws . 36

5.3 Binary Translation . 37

5.4 Design-Space Exploration . 38

6 Advanced System Internals . 39

6.1 Modes of Execution . 39
6.1.1 Modified Copy on Demand . 39
6.1.2 Modification in Place . 39

6.2 A Shared Address Space . 40

6.3 Acquiring Control . 41

6.4 Maintaining Control: JIT Compilation . 42

6.5 Storing Modified Code: The Code Cache . 42
6.5.1 Forming Traces of Modified Code . 43
6.5.2 Code Cache Eviction and Replacement . 45
6.5.3 Code Cache Introspection . 46
6.5.4 Handling Self-Modifying Code . 47

6.6 The Emulator . 48

6.7 Multithreaded Program Support . 49
6.7.1 Thread-Shared Code Caches . 49
6.7.2 Generational Cache Replacement . 50

6.8 Windows Execution Support . 51

6.9 Masking Overhead with Parallelism . 52

6.10 Remaining Challenges . 53

7 Historical Perspectives . 55

8 Summary and Observations . 57

xi

Bibliography . 59

Author’s Biography . 67

Acknowledgments
Much of the content of this book would not be possible without some of the great innovators

in this field. Some people who stand out in my memory include Robert Cohn, Robert Muth,
Derek Bruening, Vas Bala, Evelyn Duesterwald, Mike Smith, Jim Smith, Vijay Janapa Reddi, Nick
Nethercote, Julian Seward, Wei Hsu, CK Luk, Greg Lueck, Artur Klauser, and Geoff Lowney. I
should also thank the countless contributors to Pin, as well as the contributors to the many projects
that preceded and formed the foundation for those projects listed throughout this book.

I would like to thank Mark Hill for approaching me and encouraging me to write this book,
as well as the feedback and support he has provided throughout the project. Additionally, I would
like to thank Michael Morgan for providing me the opportunity to contribute to this lecture series
and for doing his best to keep me on schedule.

I should also acknowledge the people who advised me against writing this book prior to tenure
(who shall remain nameless). Although I ultimately ignored that advice, I do know that it was well
intended, and I always appreciate those who take the time and express enough interest to offer advice
to others. Meanwhile, I always tend to fall back on the mantra to “Keep asking for advice until you
get the advice you want.”

Kim Hazelwood
March 2011

1

C H A P T E R 1

Dynamic Binary Modification:
Overview

Software developers, system designers, and end users all may have important reasons to observe
and potentially modify the runtime behavior of application software. Dynamic binary modification
systems provide this functionality, while hiding the complex engineering necessary to make the entire
process work. These systems provide access to every executed user-level instruction (including calls
through shared libraries, dynamically-generated code, and system call instructions themselves) while
providing the illusion that the application is running natively. Aside from any potentially observable
runtime or memory overhead, the application appears to behave identically to a native execution,
including instruction addresses, data addresses, and stack contents. Some of the more commonly
known dynamic binary modification tools today include Valgrind, Pin, and DynamoRIO.

From a high level, providing this high degree of control over a running guest application
requires interjecting a software layer between the application and the underlying operating system
at the process level. Contrast this notion with that of system virtualization tools, such as VMware or
VirtualPC, where an additional software layer lies beneath an operating system and virtualizes all
running applications including the operating system itself.By instead focusing on a single application,
providing the functionality at a per-process level allows for individual inspection or customization of
the application of interest, while allowing the overhead to be more easily amortized upon reaching
an application steady state.

Dynamic binary modification systems operate directly on program binaries with no need to
recompile, relink, or even to access the source code of the guest application.This is important in many
cases because it allows a user to analyze and manipulate legacy code, proprietary code, streaming
code, and large code bases in a straightforward and robust manner.

A dynamic binary system operates as the guest application executes (dynamically at runtime),
performing the required program modification on demand. Contrast this notion with a static ap-
proach where an application binary would be regenerated in its entirety either at the start of execution
or sometime prior to execution. Operating dynamically allows the system to be much more robust for
a variety of reasons. Unlike static approaches, a dynamic system can handle applications that generate
code dynamically, applications that contain self-modifying code, and it allows access and the poten-
tial to modify all shared libraries that an application may call. Furthermore, dynamic approaches can
handle the intricacies of an architecture like the x86, which has variable-sized instructions combined
with mixed code and data, making the task of static instruction decoding difficult if not impossible,

2 1. DYNAMIC BINARY MODIFICATION: OVERVIEW
��������	
� ��������	�

��������	�� �������

����� ����� �

��������	�! ��������	�"

#$��%&'(��)*+�	,-.��%/0 12�$�3�4��567

��������	89

:;<=>�?@ABCD<.EFGHIJK/LMNO?PQ=IRS�T�G�C�UOVWK/<.EXY�Z[Q

��������	
� ��������	�

��������	�� �������

����� ��������	M\

��������	�"]%&'(� �̂�_ ��������	�`

��������	�̀]%R'(� �̂�_ ��������	�9

�ab=c

:deM>=fghi<gh�GHI$K/LMNj?PQ=IRS�T�G�C�UkVWK/<.EXY�Z[Q

��������	�! �H"

�ab

��������	
�gl

mnopq�rstuvpw;x
y�z�{4|8x}~4�i�

�g��x}�
rso�x}v�tH��|pv�tH��vpq
� r�x���w�~&q�v

�i�2q���~�t
�p��r��po�{6v�o�x

Figure 1.1: The code-discovery problem that arises from variable instruction lengths, mixed code and
data, and indirect branches (Smith and Nair [2005]). On the left, we see the correct interpretation of the
binary as determined by dynamic analysis. On the right, we see an incorrect interpretation as determined
by static analysis.

as shown in Figure 1.1. Finally, by operating at runtime, the dynamic binary modifier only targets
the portions of the guest application code and program paths that actually execute.

1.1 UTILITY

Dynamic binary modifiers have been used for a wide variety of reasons, many of which the designers
of the original systems had never envisioned. Users now span the subfields of computer architecture,
compilers, program analysis, software engineering, and computer security. We’ll take a high-level
look at some of these motivating applications in the following sections, and we will follow up with
detailed examples in Chapters 3–5.

Utility For Application Developers Software engineers have a myriad of reasons to require a
detailed understanding of the software systems they develop. While this performance analysis can
be done in an ad-hoc manner, dynamic binary modification enables a more systematic approach
to software profiling. Rather than mining massive amounts of source code, potentially missing key
instances, developers may instead analyze the runtime behavior of their applications using a simple
API and minimal profiling code. For instance, they can analyze all of the branches in their program
(and all shared libraries it calls) using one or two API calls, or they can classify all of the instructions
executed using a small number of calls.

Developers may also wish to perform systematic debugging of their software. For instance,
they may wish to ensure that every dynamic memory allocation has a corresponding deallocation.
Using binary modification to dynamically record every allocation, this goal can be achieved with
very little developer effort.

1.2. FUNCTIONALITY 3

Utility For Hardware Designers An interesting application of dynamic binary modification is
emulating new instructions. Given that the binary modifier has access to every instruction before it
executes, it can recognize a new instruction that is currently unsupported by the hardware. Instead
of executing that instruction and causing an illegal instruction exception, the system can emulate the
new behavior while measuring the frequency of use of the new instruction. In fact, a similar approach
can be used to mask faulty implementations of machine instructions, by dynamically replacing those
instructions with a correct emulation of that instruction’s desired behavior.

A more general application of dynamic binary modification is to generate live traces for
driving simple simulators. For instance, a user can write a simple cache simulator by instrumenting
all memory accesses in a guest application. Memory access data can either be written to a file to
drive an offline simulator, or it can be piped directly to a running cache simulator. Similarly, a branch
prediction simulator can be written by instrumenting all branch instructions to record the source
address, target address, and branch outcome. Finally, a full-blown timing simulator can be written
by instrumenting all instructions to record any information necessary for driving a timing simulator,
though it is only possible to measure the overhead of committed instructions using this mechanism.
Committed instructions are all that are visible to a software-level binary modification tool.

Utility For System Software Designers Yet another application of dynamic binary modification
is the ability to add and enforce new security or privacy policies to existing applications. A user may
wish to enforce that applications do not overwrite instructions or jump to locations that have been
classified as data. The ability to observe and potentially modify every application instruction prior
to executing that instruction makes these tasks straightforward.

The motivating applications listed in this chapter attempt to demonstrate the wide variety of
possibilities that arise when a user is given the ability to observe or modify every executing instruction.
Each of these examples is described in deeper detail, with sample implementations and output, in
the later chapters. Meanwhile, all examples presented in this book simply serve to scratch the surface
of the potential of this technology.

1.2 FUNCTIONALITY

A user-level dynamic binary modification system is generally invoked in one of two ways. First, a
user may execute an entire application, start to finish, under the control of the system.This approach
is well suited for full system simulation, emulation, debugging tools, or security applications where
full control and complete code coverage are paramount. In the second invocation method, a user
may wish to attach a binary modification engine to an already running application, much in the
same way that a debugger can be attached to/detached from a running program. This method may
work well for profiling and locating bottlenecks, or simply to figure out what a program is doing at
a given instant.

Whatever the invocation method, most binary modifiers have three modes of execution:
interpretation-mode, probe-mode, and JIT-mode execution. In an interpretation-mode execution,

4 1. DYNAMIC BINARY MODIFICATION: OVERVIEW

the original binary is viewed as data, and each instruction is used as a lookup into a table of alternative
instructions that provide the corresponding functionality desired by the user. In a probe-mode
execution, the original binary is modified in-place by overwriting instructions with new instructions
or branches to new routines. While this mode results in lower runtime overhead, it is quite limited,
particularly on architectures such as x86, and therefore JIT-mode execution ends up being the more
common implementation. In a JIT-mode execution, the original binary is never modified or even
executed. Instead, the original binary is viewed as data, and a modified copy of the executed portions
of binary are regenerated in a new area of memory. These modified copies are then executed in lieu
of the original application. Both probe-mode and JIT-mode execution models are discussed in more
detail in Chapter 2, while their internal implementation is discussed in Chapter 6. Interpretation is
not discussed as the overhead of interpretation prevents it from being widely used in these systems.

Once the user of a dynamic binary modification tool has control over the execution of a
guest application, they then have the ability to incorporate programmable instrumentation into that
guest application. They can define the conditions under which to modify the application (e.g., upon
all taken branches) as well as the changes they wish to make (e.g., increment a counter or record
the target address). From there, the binary modifier will transparently inject the new code into the
running application, taking care to perform supporting tasks, such as freeing any registers necessary
to perform the function, but otherwise maintain the system state that the application expects. The
level of transparency may vary by system – e.g., some systems will avoid writing to the application
stack while others will borrow the application’s stack temporarily. Either way, most systems do ensure
that the observed state is as close as possible to that of a native run of the guest application.

1.3 SYSTEM PERFORMANCE

One of the most common questions that arises with respect to the notion of dynamic binary modi-
fication is the performance overhead of modifying running applications. Unfortunately, there is no
simple answer to this question. The overhead observed by a user is highly dependent on a large
number of factors, including the features of the guest application being observed and the particular
modifications that the user wishes to implement (Uh et al. [2006]).

First, let’s focus on the internal system overhead for acquiring and maintaining control of the
guest application. Unlike a standard interpreter, the internal engine of a dynamic binary modification
system will use a variety of techniques to leverage previous work. For instance, if a user wishes to
modify a loop, the system will modify the loop once at the start of the program, and then it will
execute the modified loop from that point forward. Therefore, nearly all of the system overhead can
be amortized over a long-running stable application that has a small code base (i.e., primarily, loop-
based codes). The worst relative performance would come from an application that runs for only a
few seconds or less since there would insufficient time to amortize any start-up costs of modifying the
code. Another challenging guest application would be one that contains a large number of features
that are expensive to manage, such as indirect branches or self-modifying code. For these reasons,
the baseline overhead (with no actual changes made to the application) can vary from nearly zero for

1.4. HIGH-LEVEL SUMMARY 5

some SPEC benchmarks, up to several orders of magnitude for some synthetic benchmarks. If we
focus on the SPEC2006 reference inputs in isolation, overheads tend to hover around 30% with one
order of magnitude range in each direction. Chapter 6 provides a look into the internal workings of
the system to provide more insights into the specific sources of system overhead.

However, for most uses of dynamic binary modification, the majority of the overhead comes
from the modifications requested by the end user. If a user wishes to perform invasive, detailed
analysis of each and every instruction that executes, the overhead of performing this task will be
quite high, and it would be mostly dependent on their particular implementation of their desired
feature. Therefore, helping a user understand how to optimize their implementation is often much
more helpful than helping them understand the internal workings of the system itself. As a result,
Chapter 2 highlights the common pitfalls that an untrained user may inadvertently experience and
provides the background information necessary for solving those problems.

1.4 HIGH-LEVEL SUMMARY
Dynamic binary modification systems provide a conceptually simple but powerful platform for
building a wide variety of useful tools. These systems are in use today by numerous researchers
to understand or change program or system behaviors. Operating at a user level, these software
systems focus on a single guest application at a time and perform all essential tasks at runtime as the
guest application executes. Effectively using these systems requires an understanding of the various
execution modes available, and the impact of each choice in terms of functional limitations and
resulting performance.

7

C H A P T E R 2

Using a Dynamic Binary
Modifier

This chapter is intended to provide the basic knowledge and terminology necessary to get started
using a dynamic binary modification system. The content is geared toward potential users of these
systems, be they computer architects, software engineers, or systems researchers. Advanced details
about the internal implementation of these systems will not be covered until Chapter 6, and it will be
geared toward those wishing to do research or development on binary modification systems directly.
Instead, the discussion in this chapter will remain high level and system independent whenever
possible. Specific systems, such as Pin, DynamoRIO, or Valgrind, will be discussed as necessary,
always from a system usability perspective.

2.1 HEAVYWEIGHT VS. LIGHTWEIGHT CONTROL

One of the first decisions that a user of a binary modifier will need to make is the amount of code
coverage required for their intended application and the amount of performance overhead they can
tolerate. These decisions will lead them to the choice between modification-in-place (probe-mode
execution) or modified-copy (just-in-time code regeneration), which are two modes of execution
available in most systems. This choice has many implications both on the performance and the
functionality fronts.

2.1.1 JIT-MODE EXECUTION
The most common execution mode (and the default on most systems) is to use a just-in-time compiler
to regenerate a modified copy of a small chunk of instructions, immediately prior to executing those
instructions.The modified instructions are then cached in a memory-based software code cache1 from
where they can be reused for the remainder of the execution time. Therefore, in the ideal case of
an unlimited cache, each static instance of an instruction is only modified once, but the resulting
modified code is leveraged from that point forward.

JIT-mode execution is the most robust execution model, and it performs best on guest appli-
cations that experience a great deal of code reuse (loop-based codes) as the overhead of regenerating
the cached copy can then be amortized throughout the execution time of the program. For very

1The software code cache is also called a translation cache in some sources.

8 2. USING A DYNAMIC BINARY MODIFIER

short-running programs and/or programs with few iterations, it becomes difficult to amortize the
overhead of just-in-time code regeneration.

2.1.2 PROBE-MODE EXECUTION
One of the lesser known execution modes is that in which the original binary is patched in memory
and, therefore, the modified version is used for the duration of that execution time, rather than
a cached copy. The overhead of this technique is much lower since the bulk of execution time
is spent executing native code. However, there are a number of restrictions to using this mode,
particularly on the x86 architecture, and therefore many dynamic binary modifiers do not support
this mode at all. The main restriction is a result of the variable-instruction-length nature of the x86
architecture. Adding new functionality generally involves overwriting an existing instruction with a
branch instruction that jumps to a new routine. However, not all instructions can be overwritten by
a branch, because the x86 branch instruction is at least 5-bytes long (longer if the branch target is
beyond a certain distance away). Therefore, all instructions that are shorter than 5-bytes cannot be
modified without also affecting part of the subsequent instruction. Overwriting two instructions at
once is unsafe for two reasons. If any other branch targets that second instruction, it would now jump
into the middle of a branch instruction, and it could crash. Second, for multithreaded applications,
the system cannot guarantee that another thread is not stalled between the two instructions, and it
would resume in the middle of the newly modified instruction. To circumvent these architectural
features, the systems that do support probe-mode execution only allow the application to be modified
at a small set of locations, namely function call boundaries and user-level code. These restrictions
do not exist for architectures with fixed-length instructions, such as ARM, MIPS, or Alpha, as any
arbitrary instruction can cleanly be overwritten by a branch to an instrumentation routine.

2.1.3 PERSISTENT BINARY MODIFICATION
Regardless of the execution mode employed, the code modifications that occur during one execution
of a program are discarded and are regenerated during subsequent runs. Researchers have explored
the notion of code persistence – saving the modified code generated during one execution for use in
subsequent executions (Bruening and Kiriansky [2008], Hazelwood and Smith [2003], Reddi et al.
[2007]). However, in most cases, the general process was deemed too fragile and complicated for
widespread implementation and use, and it is therefore not supported on most systems. More details
on persistent code modifications are available in Chapter 6.

2.2 LAUNCHING THE SYSTEM

There are two fundamental methods for taking control of a guest application. First, the user can
specify that the entire program will run under the control of the dynamic binary modification system,
from the first to the last instruction. And second, the user can attach the system to an already running
application and later detach from that application, allowing it to continue to run natively.The specific

2.2. LAUNCHING THE SYSTEM 9

execution mode that the user chooses will depend on the functionality they wish to implement, and
whether that functionality is conducive to relinquishing control of the guest application.

2.2.1 COMPLETE PROCESS CONTROL
The standard way to instrument or modify a program is to run the entire program under the control of
the dynamic binary modifier. The system will take control before the first guest application executes
and will maintain control until the guest application terminates. From a user standpoint, launching
a dynamic binary modifier is very straightforward. Below are the necessary commands for launching
Pin, DynamoRIO, and Valgrind on Linux.

//Launching Pin on Linux (JIT mode)
pin <pinargs> -t <pintool>.so <pintoolargs> -- <app> <appargs>

//Launching DynamoRIO on Linux (JIT mode)
drrun -client <client>.so 0 "" <app> <appargs>

//Launching Valgrind on Linux (JIT mode)
valgrind <valgrind_args> --tool=<toolname> <app> <appargs>

The commands demonstrate that there are three facets to the binary modification system:
(1) the system engine itself, (2) a user-specified plug-in tool, and (3) the guest application and its
arguments. Furthermore, other than prepending its command with two additional commands, the
guest application is launched the same way it would have launched natively, including all paths, flags,
and arguments.

On Windows, binary modifiers are often launched from the command line of the cmd utility
in a similar fashion to Linux. The specific commands are shown below:

//Launching Pin on Windows (JIT mode)
pin.exe <pinargs> -t <pintool>.dll <pintoolargs> -- <app> <appargs>

//Launching DynamoRIO on Windows (JIT mode)
drrun.exe -client <client>.dll 0 "" <app> <appargs>

Meanwhile, some tools ship with graphical user interfaces that allow the user to launch
applications using icons rather than command lines. These GUIs are generally intuitive to use (by
design).

The above examples demonstrated the commands necessary to launch a system using JIT-
mode execution. If the user wishes to use probe-mode execution instead, they must make some
changes to their plug-in routines, and then the following commands can be invoked:

//Launching Pin (Probe mode)
pin -probe -t <pintool>.so <pintoolargs> -- <app> <appargs>

10 2. USING A DYNAMIC BINARY MODIFIER

//Launching DynamoRIO on Windows (Probe mode)
drrun.exe -mode probe -client <client>.dll 0 "" <app> <appargs>

As can be inferred from all of the command lines above, the guest application is not actually
launched at the command line, but it is simply passed as an argument to the dynamic binary mod-
ification system. The system will then initialize itself before launching the guest application under
its control, modifying the application as dictated by the plug-in tool. (The means for acquiring and
maintaining control are beyond the scope of this chapter and are discussed in Chapter 6 which
focuses on the internal system implementation).

In addition to the arguments passed on the command line,many other arguments may be set via
external files and/or environment variables. For instance, DynamoRIO accesses several environment
variables including DYNAMORIO_OPTIONS where dozens of additional parameters may be set.

2.2.2 ATTACHING TO AN EXISTING PROCESS
Rather than running the entire execution time under the control of the dynamic binary modifier on
some systems, it is also possible to attach the system to an already-running program, much like a
debugger. This allows the application to run natively until the user performs the attach operation.
The command below demonstrates using the attach model in Pin.

//Attaching to a running process in Pin
pin <pinargs> -t <pintool>.so <pintoolargs> -pid <app_pid>

Pin allows the user to detach from a program as well, allowing it to be run natively for the
duration of the execution time. This can be useful for those ephemeral tasks where full coverage
is unnecessary. Detaching is performed within the user-defined plug-in instrumentation tool by
making an API call to PIN_Detach().

2.3 PROGRAMMABLE INSTRUMENTATION

Now that we’ve seen how to launch an application under the control of a binary modification
system, it’s important to understand how a user defines the modifications that they wish to apply to
the running guest application.

One thing to note from the command lines used to invoke Pin, DynamoRIO, and Valgrind
in the previous section was that some of the command-line arguments referred to a user-defined
plug-in tool. On Pin, this was called a pintool, on DynamoRIO it was a client, and on Valgrind it
was simply a tool. Regardless of the terminology, each dynamic binary modifier provides convenient
abstractions and API’s that a user can use to specify how and when to modify the guest application.
These abstractions are then used together with standard code (often written in C or C++) to form a
plug-in program that will be weaved into the running application by the dynamic binary modifier
where it will run in the same address space as the guest application, as shown in Figure 2.1.Therefore,
aside from understanding how to launch the system, a user must understand how to write a plug-in

2.3. PROGRAMMABLE INSTRUMENTATION 11

Hardware
Operating System

Dynamic Binary
Modifier Engine

Guest
Application

Plug-in
Tool

������������	
���

Figure 2.1: The binary modification engine, the guest application, and the user’s plug-in tool all execute
in the same address space.

specification for the changes they wish to make, which is really a matter of understanding the system’s
exported API.

Because these APIs differ greatly between system, we will focus on the Pin API for the
purposes of this and the next few chapters, before moving back to a system-agnostic view when
covering the internal implementations of dynamic binary modification systems in Chapter 6 and
beyond. This chapter is by no means an extensive user manual defining the Pin API; the goal is to
provide an intuitive sense of the power available to the user and the overall intent of the API. The
interested reader is encouraged to visit the project website for each system to access the complete
user guide.

API Overview From the highest level, the API allows a user to iterate over the instructions that
are about to execute, in order to have the opportunity to add, remove, change, or simply observe
the instructions prior to executing them. The changes can be as simple as inserting instructions to
gather dynamic profiling information, or as complex as replacing a sequence of instructions with an
alternate implementation.

The most basic APIs provide common functionalities like determining instruction details,
determining control-flow changes, or analyzing memory accesses. In Pin, most of the API routines
are call-based. The user can register a callback to be notified when key events occur, and the user can
make calls from their plug-in tool into the Pin engine to gather relevant information. (Note that
in many cases, Pin will automatically inline these calls to improve performance, as will be discussed
later. Meanwhile, some tools always assume that analysis code will be inlined, and they will leave it
to the user to ensure that inlining is safe by saving and restoring any needed registers or state.)

Instrumentation vs. Analysis At this point, it’s important to provide a bit of terminology to
distinguish the opportunities available for observing and modifying the guest application. Most

12 2. USING A DYNAMIC BINARY MODIFIER

systems provide two types of opportunities to observe the application – a static opportunity and a
dynamic (runtime) opportunity.The static opportunity allows every distinct instruction that executes
to be observed or modified once, and more specifically, the first time that instruction is seen. From
that point forward, any of the static changes that were made to those instructions will persist
for the duration of the execution time. We call the routines that provide this static opportunity
instrumentation code. Instrumentation routines focus on specific code locations.

Alternatively, dynamic opportunities arise every time a single instruction executes at runtime.
Measuring a dynamic event involves inserting code that will execute over and over for any given
instruction. We call the routines that provide this dynamic view analysis code. Analysis code focuses
on events that occur at some point within the execution of an application.

To summarize, instrumentation routines define where to insert instrumentation. Analysis
routines define what to do when the instrumentation is activated. Instrumentation routines execute
once per instruction. Analysis can execute millions of times for each instruction, depending on how
deeply nested in loop code that one instruction lies.This terminology becomes particularly important
when thinking about how to implement a desired goal. For instance, if the user wishes to gather the
frequency of using a particular register, they will have to distinguish the static frequency (how often
the register appears in the binary) from the dynamic frequency (how often the register is accessed
at runtime). It is also important to distinguish these opportunities so that the user is not adding
unnecessary dynamic overhead when some fixed amount of static overhead would suffice.

Instrumentation Points, Granularity, and Arguments The system permits the user’s plug-in tool
to access every executed instruction. The tool can then choose to modify the particular instruction,
or insert code before or after that instruction. For branch instructions, new code can be inserted on
either the fall-through or taken path.The tool designer must be sure that the particular location they
choose to insert code will actually execute. For instance, inserting new code after an unconditional
jump is probably not a good idea.

The APIs of Pin, DynamoRIO, and Valgrind all allow the user or tool to iterate over and
inspect several distinct granularities of the guest application.The user can choose to iterate over single
instructions just before each instruction executes, entire basic blocks2 (a straight-line sequence of
non-control flow instructions followed by a single control flow instruction, such as a branch, jump,
call, or return), entire traces3 (a series of basic blocks), or the entire program image.

It is important to understand that the basic blocks and traces that the system presents to the
tool represent a single-entry dynamic path. That is, control can only enter the top of the sequence
(not the sides), but control can exit through any side exit that exists. If later, control enters the
side of an existing sequence, then a new structure (basic block or trace) will be formed starting
at the side entry point. Therefore, there can be duplication between basic blocks and traces when
performing static analysis! This fact is important for users to understand if their results depend on all

2Technically, what is commonly called a basic block in the dynamic binary modification world is actually an extended basic block
in the literature, as the system cannot tell whether any of the straight-line instructions are targets of other branches.

3What is called a trace in the dynamic binary modification world is called a superblock in the static compiler world.

2.4. PLATFORM-SPECIFIC BEHAVIORS 13

Table 2.1: Common Dynamic Binary Modification Systems. The table
lists the supported architectures, supported operating systems, operating
modes, and websites of each system.
System Name Architectures OSes Features

Pin x86,x86-64, Linux,Windows, JIT,Probe,
(pintool.org) Itanium,ARM MacOS Attach
DynamoRIO x86,x86-64 Linux,Windows JIT,Probe

(dynamorio.org)
Valgrind x86,x86-64, Linux,MacOS JIT

(valgrind.org) ppc32,ppc64,ARM

statically-reported instruction sequences being distinct, such as gathering a static instruction count.
In practice, the duplication affects a very small proportion of instructions. For situations where this
matters, the user can distinguish unique instances of static instructions using the original memory
address of an instruction as an indicator of uniqueness, rather than assuming that all instructions
reported at instrumentation time are unique.

2.4 PLATFORM-SPECIFIC BEHAVIORS

The Pin API (like that of other systems) provides both architecture-independent and architecture-
dependent abstractions about the running application’s instructions. The most basic APIs provide
common functionalities like determining control-flow changes or memory accesses. For instance, the
boolean API IsBranch() for determining whether a given instruction can potentially change the
control flow is architecture independent from the user’s perspective. Clearly, the internal implemen-
tation must use an architecture-specific decoder to determine whether the instruction is a branch,
but this complexity is masked from the user. Meanwhile, when a user wants to access information
about specific opcodes or operands, such as whether the target operand in an instruction matches
the register %eax, they may then access the architecture-specific APIs. The idea behind most APIs
is to hide the unnecessary complexity while still providing the power to perform essential tasks and
analyses.

Many dynamic binary modifiers support more than one operating system. For instance, Pin
and DynamoRIO support both Windows and Linux. For the most part, the system developers
have designed the API to abstract away the differences between operating systems, and the main
implementation differences occur behind the scenes. There are platform-specific APIs, such as
the PIN_GetWindowsExceptionCode() routine, for instances when it makes sense to expose the
details of the particular operating system. See Table 2.1 for the various platforms supported by
the three systems discussed in this chapter. Note that not all architecture/OS combinations listed
exist for each system. For instance, Pin for ARM only supports Linux, not Windows or MacOS
(Hazelwood and Klauser [2006]).

14 2. USING A DYNAMIC BINARY MODIFIER

���������	�
�

����������	�
���

���
����

������	�

��	���
��

���
����

������	�

�������������

�	��
�����	���
��

���
��

���������������

��������	���
��

���
��

�����
���
����

�����	��
�
������

��	���
��
���
��

���������������

���
�������

��	���
��
���
��

�

××××

�

Figure 2.2: Understanding the Sources of Overhead in Your Plug-In Tool.

2.5 END-USER OPTIMIZATIONS

Pin and other dynamic binary modifiers will analyze the code changes requested by the user and will
automatically handle all of the necessary setup code required. For instance, if the user wishes to insert
a new profiling instruction, that instruction will undoubtedly require registers to operate. However,
the user should not have to analyze the surrounding code to determine whether free registers exist.
Instead, the system will perform this task; it will determine whether free registers exist, and it will
generate any necessary spill and fill code if necessary. On systems such as Pin, any new functions
generated by the user will be analyzed to determine whether they can be inlined into the guest
application code, or whether they are best left as function calls. Finally, all other preparation work
for ensuring that the guest application will otherwise appear to behave identically to a native run is
handled automatically by the system.These tasks all carry overhead but are generally not responsible
for the bulk of the overhead experienced by users.

As discussed in Section 1.3, the overhead experienced by the user of a dynamic binary modifier
depends on a number of factors. The baseline overhead of most systems is quite low, so the largest
contributor to the overhead is that of the user-defined tool itself, which is in many ways manageable
by the informed user.

Figure 2.2 shows the breakdown of contributors to the overhead of the user’s tool. The bulk
of the overhead comes from the analysis routines, as they execute much more frequently than the
static instrumentation routines. Therefore, if any of the work can be relocated from analysis to
instrumentation routines, the user will notice significant speedups. For instance, address calculations

2.6. DEBUGGING YOUR PLUG-IN TOOL 15

or data structure locations may not change dynamically, and if this is the case, the calculations
should be performed once, in the instrumentation routine, and then the calculated address can be
passed directly to the analysis routine (rather than recalculating it upon every dynamic occurrence).
From there, if the user can reduce the frequency at which the analysis routines are called, this will
reduce overhead as well. This can often be accomplished by operating at larger granularities of the
application’s code. For instance, counting instructions can safely be performed one instruction at a
time, or one basic block at a time, but the latter will have significantly lower overhead.

Finally, there are a few tricks that the user can perform to reduce the amount of work done
inside the analysis routine if they understand that part of that overhead comes in transitioning to
the analysis routine and if they understand what choices can affect that transition overhead. For
example, as mentioned earlier, systems like Pin will analyze any new analysis code to determine
whether it can be inlined directly into the surrounding instructions or whether it should be con-
verted to a function call. The main metric Pin uses for making this decision is the simplicity of
the new code, and specifically, whether or not control-flow changes or calls exist within the new
code. Therefore, any conditional code is better implemented by escalating the condition checking
routine to instrumentation time, if possible, rather than checking the condition inside every dynamic
instance. Pin provides some special conditional instrumentation routines that the user can leverage
to aid the system to perform inlining in the presence of simple conditional statements. Meanwhile,
systems like Valgrind will allow the tool author to either inline analysis code or to generate calls to
separate analysis functions (written in C).

2.6 DEBUGGING YOUR PLUG-IN TOOL

Assuming a correctly implemented guest application, and a correctly implemented binary modifi-
cation engine, the final task that a user of a binary modifier is likely to require is a way to debug
their custom plug-in tool. The fact that three applications are actually running in the same address
space (the binary modifier, the guest application, and the user’s plug-in tool) means that standard
debugging methodologies will not apply. Instead, documentation for each system provides specific
details about the best way to debug plug-in tools on that system.

On Pin, for example, it is possible to use gdb to debug a user plug-in tool on Linux. However,
the process involves using two different shells, one to run the debugger, and one to run the application
under the control of Pin. The three step process is shown below:

Step 1 In one window, invoke gdb with Pin:

prompt% gdb pin
(gdb)

Step 2 In a second window, launch your Pintool with the -pause_tool flag, which takes the
number of seconds to pause as an argument.

16 2. USING A DYNAMIC BINARY MODIFIER

prompt% pin -pause_tool 5 -t myPinTool.so -- <guestApp>
Pausing to attach to pid 32017

Step 3 Back in the gdb window, attach to the paused process. You may now use gdb in the standard
fashion, setting breakpoints as usual, and running cont to continue execution.

(gdb) attach 32017
(gdb) break main
(gdb) cont

Other systems will have their own tricks for debugging the variety of execution modes on the
variety of supported platforms in their user manuals.

Summary At this point, we now understand the high-level applications and necessary terminology
for using dynamic binary modification systems. We will therefore move on to specific examples and
use cases in the following chapters.

17

C H A P T E R 3

Program Analysis and
Debugging

A fundamental motivation for developing dynamic binary modification systems, initially, was that
they would provide a simple yet robust way to instrument and analyze the behavior and bottlenecks
of guest programs. In fact, a variety of industrial products have been developed that use dynamic
binary modification as the technological foundation. For instance, the Pin dynamic instrumentation
system forms the base of a number of Intel products, including Parallel Inspector, Parallel Amplifier,
which are parallel program analysis tools, and TraceCollector and SDE, which are simulation and
emulation tools. In addition, DynamoRIO formed the foundation of the Determina Vulnerability
Protection Suite, which is a set of security tools.

Therefore, this chapter provides some concrete examples of the application of dynamic binary
modification to the area of program analysis. We incorporate several sample applications from the
Pin sample plug-in tool library, and we analyze the source code and outputs from each example.
These sample tools can easily form the foundation for similar yet more sophisticated tools.

3.1 PROGRAM ANALYSIS EXAMPLES

In this section, we will cover four simple program analysis Pintools that demonstrate the ease of
analyzing a running program using dynamic binary modification.

Generating a Dynamic Instruction Trace with PrintPC Perhaps one of the simplest plug-in
tools that can be written is one that performs the task of printing the machine’s program counter
throughout the execution of an application. Such a tool can be useful for gathering a statistical
view of where the execution time is spent. Figure 3.1 demonstrates the entire program necessary
to implement this functionality as a plug-in to the Pin dynamic instrumentation system, and it
demonstrates some of the basic APIs provided to the user.

The easiest way to understand PrintPC is to start from the bottom of Figure 3.1 and focus
on the main() routine. Here we see that the user makes some calls to initialize their data structures,
open any necessary output files, and initialize Pin. Next, they register an instrumentation routine
that will be executed for every static instruction seen at runtime (line 26). Finally, they register
another routine that will execute immediately prior to exiting at the end of the execution time
(line 27), before instructing Pin to launch the guest application (line 28). Nothing after the call

18 3. PROGRAM ANALYSIS AND DEBUGGING

to PIN_StartProgram() will ever execute. (The call to return 0 is only present to make the
compiler happy.)

The PrintPC Tool
1 ofstream TraceFile;
2

3 // This analysis call is invoked for every dynamic instruction executed
4 VOID PrintPC(VOID *ip)
5 {
6 TraceFile << ip << endl;
7 }
8

9 // This instrumentation routine is invoked once per static instruction
10 VOID Instruction(INS ins, VOID *v)
11 {
12 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)PrintPC, IARG_INST_PTR, IARG_END);
13 }
14

15 // This fini routine is called after the guest program terminates, just prior to exiting Pin
16 VOID Fini(INT32 code, VOID *v)
17 {
18 TraceFile.close();
19 }
20

21 // This main routine is invoked to initialize Pin, prior to starting the guest application
22 int main(int argc, char * argv[])
23 {
24 TraceFile.open("pctrace.out"); // Open an output file
25 PIN_Init(argc, argv); // Initialize Pin
26 INS_AddInstrumentFunction(Instruction, 0); // Register a routine to be called to instrument instructions
27 PIN_AddFiniFunction(Fini, 0); // Register Fini to be called when the application exits
28 PIN_StartProgram(); // Start the program; this call never returns
29 return 0;
30 }

Figure 3.1: This program analysis tool prints the address of every instruction that executes to a file. It
demonstrates the use of static instruction-level instrumentation routines and dynamic analysis routines.

Next, let’s look at the instrumentation and analysis routines. The instrumentation routine is
called Instruction() (line 10), and it will be called every time an instruction is encountered for the
first time. When that occurs, we tell the system to insert a new routine before that instruction, which
will be called (immediately prior to) when the instruction executes (line 13). The new routine we
insert before every instruction is called PrintPC() (line 4). It takes the current instruction pointer
(program counter) as an argument, then prints that PC to a file.

If we compile PrintPC, link it to Pin’s libraries, and execute a guest application using this
plug-in, the output will be a (large) trace file. The file will contain a list of program addresses that
executed, in the order that they executed, including all executed addresses within shared libraries.
Since the plug-in will run in user space alongside the guest application, no kernel addresses will
appear in the trace file.

This simple tool can easily be extended to sample the program counter, rather than to print
every single address. It can further be optimized to use conditional instrumentation to reduce the
overhead of PC sampling. Finally, it can be extended to print not only the instruction addresses, but

3.1. PROGRAM ANALYSIS EXAMPLES 19
The CallTrace Tool

1 // One of the two following analysis routines will be invoked for every dynamic call
2 VOID do_call(const string *s)
3 {
4 TraceFile << *s << endl;
5 }
6 VOID do_call_indirect(ADDRINT target, BOOL taken)
7 {
8 if(!taken) return;
9 do_call(Target2String(target));

10 }
11

12 // This instrumentation routine is invoked once per static trace
13 VOID Trace(TRACE trace, VOID *v)
14 {
15 for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl)) {
16 INS tail = BBL_InsTail(bbl);
17 if(INS_IsCall(tail)) {
18 if(INS_IsDirectBranchOrCall(tail)) {
19 const ADDRINT target = INS_DirectBranchOrCallTargetAddress(tail);
20 INS_InsertPredicatedCall(tail, IPOINT_BEFORE, AFUNPTR(do_call),
21 IARG_PTR, Target2String(target), IARG_END);
22 }
23 else INS_InsertCall(tail, IPOINT_BEFORE, AFUNPTR(do_call_indirect),
24 IARG_BRANCH_TARGET_ADDR, IARG_BRANCH_TAKEN, IARG_END);
25 }
26 }
27 }
28

29 // This fini routine is called after the guest program terminates, just prior to exiting Pin
30 VOID Fini(INT32 code, VOID *v)
31 {
32 TraceFile.close();
33 }
34

35 // This main routine is invoked to initialize Pin, prior to starting the guest application
36 int main(int argc, char *argv[])
37 {
38 PIN_InitSymbols();
39 PIN_Init(argc,argv);
40 TraceFile.open(); // Opens the output file
41 TRACE_AddInstrumentFunction(Trace, 0); // Will gather the call trace as the program runs
42 PIN_AddFiniFunction(Fini, 0); // Closes the output file prior to exiting
43 PIN_StartProgram(); // Launches the program and never returns
44 return 0;
45 }

Figure 3.2: The CallTrace program analysis tool records all function calls that occur during execution.
This is a simplified version of the tool available in SimpleExamples/calltrace.cpp of the Pin distribution,
originally written by Robert Muth.

the actual instructions, including opcodes and operand values. We leave these tasks as an exercise
for the interested reader.

Call-Graph Generation with CallTrace Another simple profiling tool is one that analyzes the
function calls made while a program runs. Such a tool could be used for analyzing code coverage or
for detecting inefficiencies in the call stream. Figure 3.2 demonstrates a simple call trace generation
tool. Unlike the previous example, this tool instruments entire traces at once, rather than individual

20 3. PROGRAM ANALYSIS AND DEBUGGING

instructions. Working at larger granularities makes for a more efficient design that has a lower run-
time overhead. We see a difference in the implementation first on line 43, where we use the TRACE
API rather than the INS API. Next, within the instrumentation routine Trace() on line 13, we
iterate over all instructions within the trace to search for a call, rather than handling one instruction
at a time. We also see a few more query APIs that are available, such as the boolean INS_IsCall()
query on line 19 and the INS_IsDirectBranchOrCall() query on line 20. This allows the tool
to distinguish between direct and indirect calls statically, and to insert the corresponding specialized
analysis calls for each case.This also demonstrates a subtle point, which is that any query that can be
done once statically should be done at that time. While we could have embedded the query function
for determining whether an instruction is a branch or call into the dynamic stream, this trait does
not change at runtime, and it would therefore be inefficient to query the same instruction multiple
times.

If we execute CallTrace as a plug-in to Pin while running a guest application, we will get a
log of all of the function calls that were made (by name) throughout execution. Again, we will see
only user-level behavior, which includes calls to shared and dynamically-loaded libraries and even
system calls, but no calls made from within the kernel. We can also extend the CallTrace example in
a number of ways. We can modify the tool to print the arguments to each call, to focus exclusively
on system calls, or to focus on one particular call, such as malloc(). Finally, we can write a more
sophisticated tool to generate a call graph, rather than simply a log of all calls.

Memory-Leak Detection with MallocTrace Rather than focusing on all dynamic calls, a natural
extension is focus in on a few calls of interest, such as those relating to memory allocations. Such
a tool can be used to easily detect memory leaks within applications by comparing the amount of
memory allocated to the amount deallocated.

The tool shown in Figure 3.3 shows a simple way to modify one or more particular functions of
interest. In this case, the tool instruments any application call to malloc() or free() by modifying
the contents of the functions themselves. We accomplish this by performing instrumentation on the
entire image at load time, as is demonstrated on line 39 of the tool.The instrumentation routine itself
searches for the two routines of interest (the malloc() and free() routines) on lines 17 and 25,
respectively. This search is performed once. If either routine is located, the system inserts the new
functionality shown in the two analysis routines calledBeforeMallocFree() andAfterMalloc(),
which simply prints some information about the size and location of the allocation or deallocation by
analyzing the inputs to the calls themselves from within the function body. Since the details of each
call to malloc() and free() will vary at run-time as different amounts of memory are requested
or released, we must track the arguments and return values to/from each call. We accomplish this
in Pin by specifying a set of arguments that can be captured at runtime and passed to the plug-
in analysis routines. The arguments themselves are specified on lines 20-21, 22, and 28-29. The
arguments of interest are already captured by the Pin API, which allows the user to access the
FUNCARG_ENTRYPOINT_VALUE (the inputs to a function) and/or the FUNCRET_EXITPOINT_VALUE
(the return value from a function).These values are then passed to the analysis routines to be printed

3.1. PROGRAM ANALYSIS EXAMPLES 21
The MallocTrace Tool

1 #define MALLOC "malloc"
2 #define FREE "free"
3

4 // The following analysis calls are invoked before/after every call to malloc and free
5 VOID BeforeMallocFree(CHAR * name, ADDRINT size)
6 {
7 cout << name << "(" << size << ")" << endl;
8 }
9 VOID AfterMalloc(ADDRINT ret)

10 {
11 cout << " returns " << ret << endl;
12 }
13

14 // This image routine is invoked once, prior to executing the program
15 VOID Image(IMG img, VOID *v)
16 {
17 RTN mallocRtn = RTN_FindByName(img, MALLOC); // Finds malloc()
18 if (RTN_Valid(mallocRtn)) {
19 RTN_Open(mallocRtn);
20 RTN_InsertCall(mallocRtn, IPOINT_BEFORE, (AFUNPTR)BeforeMallocFree, IARG_ADDRINT, MALLOC,
21 IARG_FUNCARG_ENTRYPOINT_VALUE, 0, IARG_END);
22 RTN_InsertCall(mallocRtn, IPOINT_AFTER, (AFUNPTR)AfterMalloc, IARG_FUNCRET_EXITPOINT_VALUE, IARG_END);
23 RTN_Close(mallocRtn);
24 }
25 RTN freeRtn = RTN_FindByName(img, FREE); // Finds free()
26 if (RTN_Valid(freeRtn)) {
27 RTN_Open(freeRtn);
28 RTN_InsertCall(freeRtn, IPOINT_BEFORE, (AFUNPTR)BeforeMallocFree, IARG_ADDRINT, FREE,
29 IARG_FUNCARG_ENTRYPOINT_VALUE, 0, IARG_END);
30 RTN_Close(freeRtn);
31 }
32 }
33

34 // This main routine is invoked to initialize Pin, prior to starting the guest application
35 int main(int argc, char *argv[])
36 {
37 PIN_InitSymbols(); // Initialize Pin’s symbols for RTN instrumentation
38 PIN_Init(argc,argv); // Initialize Pin
39 IMG_AddInstrumentFunction(Image, 0); // Register a routine to be called to instrument the image
40 PIN_StartProgram(); // Start the program; this call never returns
41 return 0;
42 }

Figure 3.3: The MallocTrace program analysis tool instruments the malloc() and free() functions.
It prints the arguments to each function, and the return value from malloc().

out a runtime. The net result of applying the MallocTrace tool is that we have an application that,
rather than calling the native malloc and free routines, will instead call a new version of malloc
and free. The new versions are, otherwise, identical to the old, but they will be amended to contain
new code that prints the arguments to these routines and the return values.This corresponding log of
memory allocations and deallocations can subsequently be analyzed to detect memory leaks. While
the log itself is generated as the guest application executes, the task of detecting memory leaks can
be performed either online during execution, or offline after the guest application completes, and
the log has been written to a file. These are good starting points for realistic memory leak tools.

22 3. PROGRAM ANALYSIS AND DEBUGGING
The InsMix Tool

1 // This analysis call is invoked for every dynamic instruction executed
2 VOID PIN_FAST_ANALYSIS_CALL docount(COUNTER * counter)
3 {
4 (*counter)++;
5 }
6

7 // This instrumentation routine is invoked once per static trace. It inserts the analysis routine.
8 VOID Trace(TRACE trace, VOID *v)
9 {

10 for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl)) {
11 // Insert instrumentation to count the number of times the bbl is executed
12 BBLSTATS * bblstats = new BBLSTATS(stats, INS_Address(BBL_InsHead(bbl)), rtn_num, size, numins);
13 INS_InsertCall(BBL_InsHead(bbl), IPOINT_BEFORE, AFUNPTR(docount), IARG_FAST_ANALYSIS_CALL, IARG_PTR,
14 &(bblstats->_counter), IARG_END);
15 }
16 }
17

18 // This image routine is invoked once, prior to executing the program
19 VOID Image(IMG img, VOID * v)
20 {
21 for (SEC sec = IMG_SecHead(img); SEC_Valid(sec); sec = SEC_Next(sec)) {
22 for (RTN rtn = SEC_RtnHead(sec); RTN_Valid(rtn); rtn = RTN_Next(rtn)) {
23 // A RTN is not broken up into BBLs, it is merely a sequence of INSs
24 RTN_Open(rtn);
25 for (INS ins = RTN_InsHead(rtn); INS_Valid(ins); ins = INS_Next(ins)) {
26 for(UINT16 *start=array; start<end; start++) GlobalStatsStatic[*start]++;
27 }
28 RTN_Close(rtn); // to preserve space, release data associated with RTN after processing
29 }
30 }
31 }

Figure 3.4: Snippet of the InsMix program analysis tool, which categorizes the static and dynamic
instruction stream. The complete tool is available in Insmix/insmix.cpp of the Pin distribution and was
originally written by Robert Muth.

Instruction Profiling and Code Coverage with InsMix Our final program analysis example
focuses on the general case of instruction profiling. There are a number of reasons that developers
may wish to profile the static and dynamic instruction stream of their applications.The InsMix tool
shown in Figure 3.4 serves as the foundation for a number of such profiling tools. This tool can
be used to group instructions by class to determine the most frequently used and most frequently
executed instruction classes for a given program. Such a tool can be used for code coverage analysis,
which can be done by comparing the static and dynamic instruction stream. Interestingly, this same
tool can be used for compiler bug detection. By comparing the code generated by one compiler
to that generated by another compiler, we can easily detect inefficiencies in the code generation
routines, such as unnecessary spills and fills.

3.2 PARALLEL PROGRAM ANALYSIS

Developers can use dynamic binary modification to analyze parallel program performance and cor-
rectness. Many tools can be written to find memory and threading errors, such as memory leaks,

3.3. DETERMINISTIC REPLAY 23

references to uninitialized data, data races, and deadlocks. These tools can use the binary modifi-
cation engine to instrument the running program and collect the information necessary to detect
these errors.

For instance, a data race occurs when two threads access the same data, at least one access is
a write, and there is no synchronization (for example, locking) between accesses (see Banerjee et al.
[2006]). Unsynchronized variable writes usually are a programming error and can cause nondeter-
ministic behavior. To detect data races, the Intel Parallel Inspector product uses Pin to instrument
all machine instructions in the program that reference memory and records the effective addresses.
It also instruments calls to thread synchronization APIs. By examining the effective addresses, it is
possible to detect when multiple threads access the same data. Meanwhile, by instrumenting calls
to thread synchronization APIs, it is possible to determine whether the memory accesses were syn-
chronized. Finally, to help the programmer identify the cause of the data race, the system APIs can
be used to trace back to source code lines leading to the problematic memory references.

Another useful parallel program analysis tool is called LocksAndWaits, and it is part of
the Intel Parallel Amplifier toolset. LocksAndWaits measures the time multithreaded programs
spend waiting on locks, attributing time to synchronization objects and source lines. Identifying
locks responsible for wait time and the associated source lines helps programmers improve a parallel
program’s CPU utilization. The LocksAndWaits analysis uses Pin’s probe mode to replace calls to
synchronization APIs with wrapper functions. The wrapper functions call the original synchroniza-
tion function and record the wait time, synchronization object, and call stack.

Even state-of-the-art compilers miss many parallelization opportunities in C/C++ programs,
and as a result, programmers are forced to manually parallelize applications. The success of manual
parallelization relies on execution profiler quality. Unfortunately, popular execution profilers operate
at function or instruction granularity, which is insufficient for parallel programming because many
programs are parallelized at the loop level. Therefore, developers created the Pin-based Prospector
tool which discovers potential parallelism in serial programs by profiling loops and data depen-
dences. Prospector provides information such as loop trip counts and the number of instructions
executed inside loops. It also dynamically detects loop-carried data dependencies, which must be
preserved during the parallelization process. Programmers then receive reports on candidate loops
for parallelization. In addition to the profiler, Prospector provides several tools for visualizing and
interpreting the profiling results.

A gentle introduction to the potential applications of one dynamic binary modifier to the area
of parallel program analysis is presented by Bach et al. [2010], while more details on Prospector is
presented by Kim et al. [2009].

3.3 DETERMINISTIC REPLAY

Debugging and analyzing parallel programs is difficult because their execution is not deterministic.
The threads’ relative progress can change in every run of the program, possibly changing the results.

24 3. PROGRAM ANALYSIS AND DEBUGGING

Even single-threaded program execution is not deterministic because of behavior changes in certain
system calls (for example, gettimeofday()) and stack and shared library load locations.

Using dynamic binary modification, it is possible to perform user-level capture and determin-
istic replay of multithreaded programs. PinPlay is one such tool, based on Pin. The program first
runs under the control of a logging tool, which captures all the system call side effects and inter-
thread shared-memory dependencies. Another tool replays the log, exactly reproducing the recorded
execution by loading system call side effects and possibly delaying threads to satisfy recorded shared-
memory dependencies.

Replaying a previously captured log by itself is not very useful. Instead, a captured log can
be used to ensure that other program analysis tools see the same program behavior on multiple
runs, making the analysis deterministic. The tool can also replay a PinPlay log while connected to a
debugger, making multithreaded program debugging deterministic. As long as the PinPlay logger
can capture a bug once, the behavior can be precisely replicated multiple times with replay under
a debugger. More details of PinPlay are presented by Patil et al. [2010], while more details on the
logging operating system effects is presented by Narayanasamy et al. [2006].

3.4 CUSTOMIZABLE DEBUGGING
Given that debuggers likegdb are used for interactively querying program state, combining a dynamic
binary modifier with a debugger can provide powerful opportunities to extend the functionality of
the debugger itself, or often even provide debugging capabilities at significantly improved speeds.
Yet, combining these tools can be a challenge without explicit support since the debugger expects
to see unaltered program state while the binary modifier will alter that state significantly. Therefore,
systems such as Pin have built-in support for extensible, customizable debugging through an ad-
vanced debugging interface.This interface enables seamless integration with off-the-shelf debuggers
on Windows and Linux by providing the illusion of unmodified guest program state that the de-
bugger expects. Meanwhile those debuggers can then operate with new, customizable, user-defined
functionalities.

One example of new functionality that a user may wish to implement is the ability to use
a standard debugger to debug applications that feature new emulated instructions or explore the
use of new registers. Users have combined the Intel Software Development Emulator (SDE) with
the Pin Advanced Debugger Extensions (PinADX) to debug emulated programs as if they are
debugging them natively, where new instructions and registers are seamlessly emulated and visible
to the debugger.

Another example of integrating a dynamic binary modifier with a standard debugger has been
done in the context of deterministic record-and-replay. A multi-threaded program’s execution with a
thread-order specific bug can be recorded with PinPlay’s logger tool while PinPlay’s replayer tool can
repeat the buggy behavior as many times as needed. When PinADX is combined with the PinPlay
replayer tool, the user can perform a series of debugger sessions with a guarantee of replaying the
bug each time, improving the ease of isolating its cause.

25

C H A P T E R 4

Active Program Modification
While the previous chapter showed several examples of using dynamic binary modification systems
to analyze or debug programs, all such examples were passive in that they inserted new code to
observe behaviors of the guest application, but not modify those behaviors. By contrast, this chapter
focuses on tools that actively modify the original functionality of an application. Modifications can
be fine grained, such as changing register or memory values of individual instructions, or modifying
the control flow of a program. They can also be coarse grained, such as adding or deleting relevant
functionality, replacing entire procedures, or applying optimizations or security features to an entire
guest application.

4.1 FINE-GRAINED INSTRUCTION MODIFICATION

Dynamic binary modifiers allow for the instructions of the guest application to be altered in a variety
of ways. Entire instructions can be inserted or deleted, or various operands can be independently
modified within existing instructions, such as register values, memory addresses, or control flow.
Some examples of the pertinent APIs in the Pin system that allow individual instructions to be
modified include the following:

// Deleting an Arbitrary Instruction
void INS_Delete (INS ins)

// Inserting New Control-Flow Instructions
void INS_InsertDirectJump (INS ins, IPOINT ipoint, ADDRINT tgt)
void INS_InsertIndirectJump (INS ins, IPOINT ipoint, REG reg)

// Modifying the Operands of Existing Instructions
void INS_RewriteMemoryOperand (INS ins, UINT32 memopIdx, REG newBase)

To demonstrate the use of one such API in a real scenario, Figure 4.1 shows a snippet of a tool
that locates instructions containing operands that read from or write to memory. The tool iterates
through these memory operands on line 4, and systematically rewrites them to reference a new
virtual memory location (where the new location is contained in the register specified on line 10).

Through the use of these and the other APIs available in the various binary modification
systems, a user can essentially make any arbitrary fine-grained modification they can imagine. The
APIs provide the flexibility to decide whether to modify an instruction in place or to delete the
instruction and create one or more completely new instructions in its place.

26 4. ACTIVE PROGRAM MODIFICATION
Rewriting Memory Operands

1 // Map the original effective address (originalEa) to a translated address
2 static ADDRINT ProcessAddress(ADDRINT originalEa, ADDRINT size, UINT32 access);
3 ...
4 for (UINT32 op = 0; op<INS_MemoryOperandCount(ins); op++) {
5 UINT32 access = (INS_MemoryOperandIsRead(ins,op) ? 1 : 0) |
6 (INS_MemoryOperandIsWritten(ins,op) ? 2 : 0);
7 INS_InsertCall(ins, IPOINT_BEFORE, AFUNPTR(ProcessAddress),
8 IARG_MEMORYOP_EA, op, IARG_MEMORYOP_SIZE, op,
9 IARG_UINT32, access, IARG_RETURN_REGS, REG_INST_G0+i, IARG_END);

10 INS_RewriteMemoryOperand(ins, i, REG(REG_INST_G0+i));
11 }
12 ...

Figure 4.1: Snippet of a tool for rewriting the memory operations in a guest application.

4.2 FUNCTION REPLACEMENT

Often, the desired program modification may be much more coarse grained, such that inserting,
modifying, or deleting individual instructions would be far too tedious. It is fairly straightforward to
replace an entire routine in a guest application or shared library with a custom routine even without
access to the source code of that routine. This type of function replacement is a typical example of
active program modifications that are possible in a dynamic binary modification system.

The ReplaceMalloc Tool
1 void MyNewMalloc()
2 {
3 // Get a handle to the original malloc so we can call it
4 typeof(MyNewMalloc) * original = (typeof(MyNewMalloc)*)PIN_RoutineWithoutReplacement();
5

6 cerr << "In replacement" << endl;
7 original();
8 cerr << "After replacement" << endl;
9 }

10

11 VOID ImageLoad(IMG img, VOID *v)
12 {
13 RTN mallocRtn = RTN_FindByName(img, "malloc");
14 if (RTN_Valid(mallocRtn))
15 {
16 RTN_ReplaceProbed(mallocRtn, AFUNPTR(MyNewMalloc));
17 cout << "Inserted probe for malloc:" << endl;
18 }
19 }
20

21 int main(int argc, CHAR *argv[])
22 {
23 PIN_InitSymbols();
24 PIN_Init(argc,argv);
25 IMG_AddInstrumentFunction(ImageLoad, 0);
26 PIN_StartProgramProbed();
27 return 0;
28 }

Figure 4.2: This tool replaces calls to malloc() with calls to a custom memory allocation routine.

4.3. DYNAMIC OPTIMIZATION 27

Figure 4.2 shows an example of function replacement. In this case, the user would like to
replace all calls to malloc() on Linux with a call to a custom memory allocation routine. The
custom routine, called MyNewMalloc, begins on Line 1. Note that, in this case, the custom routine
simply acts as a wrapper function that calls the standard malloc(), routine after printing a custom
message. Yet, there is no restriction in place that a new routine must call the routine it has replaced,
so a truly custom memory allocator could be implemented and deployed, and in fact, this example
code would serve as a solid template for doing so.

The function replacement plug-in shown in Figure 4.2 also demonstrates two key features
of dynamic binary modification systems. First, when deployed, the tool will replace all calls to
malloc(), including those made by the shared libraries invoked by the application – not just the
calls contained within the guest application itself. Second, the tool demonstrates the use of probe-
based instrumentation where the calls to malloc are overwritten prior to executing the application, at
load time, rather than on-the-fly as the calls are executed.

4.3 DYNAMIC OPTIMIZATION

Some of the earlier dynamic binary modifiers were designed to perform optimizations on running
applications with the goal of a net performance improvement. One example system was Dynamo
from Hewlett-Packard (Bala et al. [1999, 2000]), which optimized PA-RISC applications running
on the HPUX operating system. Dynamo applied a series of optimizations designed to leverage
the fact that at runtime, the program inputs are known; example optimizations included constant
propagation and dead-code elimination. Since the goal of Dynamo was optimization, the system
had the ability to “bail out” and execute the application natively if the act of binary modification was
seen to be causing a performance degradation. Most of the modern dynamic binary modifiers do not
support this feature as they are intended to provide comprehensive control over a guest application.

The DynamoRIO project from MIT spawned out of the original Dynamo project at HP
(albeit ported to x86 on Linux and Windows rather than PA-RISC on HPUX), so DynamoRIO’s
goal has been one of dynamic optimization from the very beginning. Many of the design decisions
within DynamoRIO reflect this emphasis, as DynamoRIO provides for fine-grained control over
the internal behavior of its code generation engine and therefore the resulting performance of a
modified guest application. Given this fact, it seems logical that our example demonstration of
dynamic optimization will use DynamoRIO as the binary modification engine.

Figure 4.3 presents one of the standard demonstrations of dynamic optimization within
DynamoRIO. The optimization leverages a processor-specific feature that would otherwise be too
processor specific to implement in a static optimization framework. The optimization developer
made the keen observation that when performing x86 assembly instruction selection for the high-
level language statement i++, there are two choices which perform differently on two different
processors. Specifically, the assembly instruction inc (for increment) is faster on the Pentium-III
processor, while the addi (for add immediate where the constant operand is the value 1) is faster on

28 4. ACTIVE PROGRAM MODIFICATION
The IncVsAdd DynamoRIO Client

1 EXPORT void dr_init() {
2 if (proc_get_family() == FAMILY_PENTIUM_IV) dr_register_trace_event(event_trace);
3 }
4 static void event_trace(void *drcontext, app_pc tag, instrlist_t *trace, bool xl8) {
5 instr_t *instr, *next_instr; int opcode;
6 for (instr = instrlist_first(bb); instr != NULL; instr = next_instr) {
7 next_instr = instr_get_next(instr);
8 opcode = instr_get_opcode(instr);
9 if (opcode == OP_inc || opcode == OP_dec) replace_inc_with_add(drcontext, instr, trace);

10 }
11 }
12 static bool replace_inc_with_add(void *drcontext, instr_t *instr, instrlist_t *trace) {
13 instr_t *in; uint eflags; int opcode = instr_get_opcode(instr);
14 bool ok_to_replace = false;
15 for (in = instr; in != NULL; in = instr_get_next(in)) {
16 eflags = instr_get_arith_flags(in);
17 if ((eflags & EFLAGS_READ_CF) != 0) return false;
18 if ((eflags & EFLAGS_WRITE_CF) != 0) {
19 ok_to_replace = true;
20 break;
21 }
22 if (instr_is_exit_cti(in)) return false;
23 }
24 if (!ok_to_replace) return false;
25 if (opcode == OP_inc) in = INSTR_CREATE_add (drcontext, instr_get_dst(instr, 0), OPND_CREATE_INT8(1));
26 else in = INSTR_CREATE_sub(drcontext, instr_get_dst(instr, 0), OPND_CREATE_INT8(1));
27 instr_set_prefixes(in, instr_get_prefixes(instr));
28 instrlist_replace(trace, instr, in);
29 instr_destroy(drcontext, instr);
30 return true;
31 }

Figure 4.3: This DynamoRIO client tool determines whether the underlying processor is Pentium-IV,
and if so, it replaces each increment instruction with an add instruction dynamically.

the Pentium-IV. Therefore, the client tool determines the specific underlying processor at runtime,
and dynamically converts the instruction selections when appropriate.

Digging deeper into the source code shown in Figure 4.3, we see that the client tool begins
by registering an event that will be invoked upon initialization if the underlying processor is a
Pentium-IV (shown on lines 1–3). Next, the system walks through the various instructions as they
are encountered, searching for instances of the increment or decrement instructions (line 9). When
found, the system invokes the routine replace_inc_with_add on that instruction. This particular
routine is then shown on lines 12–31, where it begins by determining whether the instruction
replacement is safe to perform. Next, it creates a new instruction that adds or subtracts the immediate
value 1, and inserts it into the instruction stream before deleting the existing increment or decrement
instruction. For the remainder of the current execution, the modified code sequence will persist, and,
therefore, the act of replacing the instruction only occurs once per static instance of the increment
or decrement instruction.

Many additional dynamic optimizations can also be envisioned and explored using dynamic
binary modification systems. The ideal optimization candidates are those that cannot be performed

4.4. SANDBOXING AND SECURITY ENFORCEMENT 29

statically because they are either too aggressive, too processor specific, or input specific, but that can
be safely applied once the runtime environment is known.

4.4 SANDBOXING AND SECURITY ENFORCEMENT
A number of research groups have noted and leveraged the potential of dynamic binary modification
for enforcing runtime security features on existing applications.The fact that the binary modification
software layer can essentially act as a sandbox, allowing the system to observe potentially malicious
or atypical behavior and actively prevent any repercussions on the running applications, is a powerful
opportunity.

Perhaps the earliest work to note and leverage the security application was the work termed
program shepherding by Kiriansky et al. (Kiriansky et al. [2002]) from MIT. The authors observe the
control-flow transfers in running applications and subsequently apply three runtime security policies
to prevent execution of malicious code (rather than preventing the code from being generated). First,
they restrict execution privileges on code that is located on the stack, to prevent execution of malicious
code masquerading as data. Second, they leverage the fact that dynamic binary modification systems
observe not only application code, but also shared library code, by ensuring that shared library code
is only entered at known entry points. Finally, they guarantee robust sandboxing by ensuring that
the various inserted checks are never bypassed. Each of these capabilities was implemented in the
DynamoRIO system with little to no observed overhead.

The commercial potential of the program shepherding system quickly led the authors to
found the company Determina, which provided system-wide security policies to be applied to all
applications running on a given network. Determina was later acquired by VMware.

A variety of other research groups have since explored several other security applications
of dynamic binary modification systems. Various efforts have explored dynamic taint analysis and
information flow tracking.

31

C H A P T E R 5

Architectural Exploration
Computer architects have found great utility in dynamic binary modification systems as an en-
abling technology for fast exploratory studies of novel architectural algorithms or features. These
exploratory applications have taken the form of simulation tools, instruction emulation features, and
general design-space exploration. Furthermore, dynamic binary modification systems can be used
for complete binary translation functionality, to enable a smooth transition from one instruction-
set architecture to another, otherwise incompatible architecture. In fact, several corporations have
leveraged this precise technology to support industrial strength and widely circulated binary trans-
lation (Apple, Dehnert et al. [2003]). The wide variety of opportunities and applications within the
computer architecture community will be discussed in this chapter.

5.1 SIMULATION

For the purposes of simulating new or existing architectures, computer architects typically have
two options for employing binary modification tools. First, they can build plug-in tools that gather
runtime data and feed their custom simulator in real time. Alternatively, they can record runtime
data as instruction traces, which can be saved for later use. Figure 5.1 demonstrates the former case
of online simulation, while Figure 5.2 depicts the latter case of offline, or trace-driven simulation.
Both cases gather the relevant data to drive simulation during an actual run of the guest application.
This allows designers to validate that their modifications will not affect the correctness of the guest
application, or that the traces they generate represent a valid execution of the user-level code.

Simulator
Simulation
Results

Binary Modifier

Guest
Application Application

Output

Streaming

Trace Data

Figure 5.1: Streaming Traces for Online Simulation.

Unlike traditional simulators that can be prohibitively slow, simulators based on dynamic
binary modification technology can be on the order of native execution times,allowing more extensive
testing than is typically possible. In fact, the robust nature of binary modification systems means that
complex applications, such as Oracle database applications, or the user-level components of large

32 5. ARCHITECTURAL EXPLORATION

Simulator

Binary Modifier

Guest
Application

Trace
Data File

Application
Output

Simulation
Results

S
t
e
p

1

S
t
e
p

2

Trace
Data File

Streaming

Trace Data

Figure 5.2: Trace Generation for Offline Simulation.

parallel data-mining applications, can be characterized in addition to the small, toy applications, or
benchmarks that are commonplace.

5.1.1 TRACE GENERATION
The most straightforward method for leveraging dynamic binary modification to enable simulation is
to gather an offline trace that can later be fed into an existing trace-driven simulator, as was depicted
in Figure 5.2. The top half of the figure (step 1) involves the use of a dynamic binary modifier to
observe execution while recording key events into a trace file. These key events may be as detailed
or as high level as necessary, or they can conform to the requirements of the simulator that will be
driven by these events. The key events can then be stored in an external file, which can later be used
by a simulator, as illustrated in step 2 of the diagram. The simulator can be any arbitrary existing
infrastructure or any custom simulator that the user wishes to construct.

While Figure 5.2 depicted a methodology for recording a complete execution trace, it is also
possible (and straightforward) to record a representative sample of execution. In fact, tools currently
exist to do just this. For instance, the PinPoints system (Patil et al. [2004]) uses Simpoint to locate
representative code regions during execution, then uses Pin to record those representative traces for
later analysis.

In general, the upside of trace-driven simulation is that it provides a repeatable view of the
execution on a guest application. Yet there are two main drawbacks. The first drawback is that it
eliminates the possibility of simulating wrong-path execution as the outcome of every branch is pre-
determined and stored in the trace file, and the result of taking other paths may not be discernible.
A second drawback of trace-driven simulation is the need to store the execution trace on disk.
These traces can become particularly large, especially for long-running and complex applications,
often occupying tens or hundreds of gigabytes of storage, depending on the level of detail recorded.
Therefore, streaming this data into a simulator online may be the only practical solution for some ap-

5.1. SIMULATION 33

plications. The next few sections demonstrate examples of execution-driven simulation that, among
other things, will obviate the need for storing traces on disk.

5.1.2 FUNCTIONAL CACHE SIMULATION
While it is possible to simulate a full system, it is also straightforward to provide functional simulation
of key components of interest within a computer system, such as the cache and memory system or the
branch predictor. Figure 5.3 demonstrates the ease at which a user may develop an execution-driven
cache simulator using Pin.

The DataCache Tool
1 VOID MemRef(int tid, ADDRINT addrStart, int size, int type) {
2 for(addr=addrStart; addr<(addrStart+size); addr+=LINE_SIZE)
3 LookupHierarchy(tid, FIRST_LEVEL_CACHE, addr, type);
4 }
5 VOID LookupHierarchy(int tid, int level, ADDRINT addr, int accessType){
6 result = cacheHierarchy[tid][cacheLevel]->Lookup(addr, accessType);
7 if(result == CACHE_MISS) {
8 if(level == LAST_LEVEL_CACHE) return;
9 LookupHierarchy(tid, level+1, addr, accessType);

10 }
11 }
12 VOID Instruction(INS ins, VOID *v)
13 {
14 if(INS_IsMemoryRead(ins))
15 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) MemRef, IARG_THREAD_ID, IARG_MEMORYREAD_EA,
16 IARG_MEMORYREAD_SIZE, IARG_UINT32, ACCESS_TYPE_LOAD, IARG_END);
17 if(INS_IsMemoryWrite(ins))
18 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) MemRef, IARG_THREAD_ID, IARG_MEMORYWRITE_EA,
19 IARG_MEMORYWRITE_SIZE, IARG_UINT32, ACCESS_TYPE_STORE, IARG_END);
20 }
21 int main() {
22 PIN_Init();
23 INS_AddInstrumentationFunction(Instruction, 0);
24 PIN_StartProgram();
25 return 0;
26 }

Figure 5.3: This figure depicts a snippet of a data cache simulator Pintool, similar to the dcache.cpp tool
distributed with Pin.

As Figure 5.3 indicates, cache simulation only requires the dynamic binary modifier to instru-
ment the memory operations present in the guest application. Lines 14 and 17 determine whether
a given instruction accesses memory, and if so, whether it is a read or write. This (and only this)
information is then forwarded on to the cache simulation engine that runs alongside the guest ap-
plication. Note that the only memory accesses observed are those accesses by the guest application,
and neither the binary modifier itself nor the cache simulator will affect the order or location of the
accesses. The cache simulator can then emulate the behavior of the proposed cache hierarchy, deter-
mine whether a given read or write would have resulted in a cache miss, and update the simulated
cache state accordingly.

34 5. ARCHITECTURAL EXPLORATION

A more extensive cache simulator called CMP$im is loosely based on the example above and
is presented by Jaleel et al. [2008]. CMP$im simulates multicore caches as well as single core caches.

5.1.3 FUNCTIONAL BRANCH PREDICTION SIMULATION
A similar tactic can be used to simulate the behavior of new branch prediction hardware. The
dynamic binary modifier can record branch addresses, targets, and outcomes while running a guest
application, and this information can drive a branch prediction simulator. Figure 5.4 illustrates such
a simulator.

The BrPred Tool
1 BranchPredictor myBPU;
2

3 VOID ProcessBranch(ADDRINT PC, ADDRINT targetPC, bool BrTaken) {
4 BP_Info pred = myBPU.GetPrediction(PC);
5 if(pred.Taken != BrTaken) {
6 // Direction Mispredicted
7 }
8 if(pred.predTarget != targetPC) {
9 // Target Mispredicted

10 }
11 myBPU.Update(PC, BrTaken, targetPC);
12 }
13 VOID InstrumentBranches(INS ins, VOID *v)
14 {
15 if(INS_IsDirectBranchOrCall(ins) || INS_HasFallThrough(ins))
16 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) ProcessBranch, ADDRINT, INS_Address(ins),
17 IARG_UINT32, INS_DirectBranchOrCallTargetAddress(ins), IARG_BRANCH_TAKEN, IARG_END);
18 }
19 int main() {
20 PIN_Init();
21 INS_AddInstrumentationFunction(InstrumentBranches, 0);
22 PIN_StartProgram();
23 return 0;
24 }

Figure 5.4: Branch Prediction Simulator.

As Figure 5.4 indicates, the dynamic binary modifier focuses only on the branches present
in the guest application. It then streams the branch address, target address, and outcome to the
branch prediction simulator. The simulator can then emulate the new prediction policy, and it can
record the hit/miss rate of the new design. Again, since only branches from the guest application
are analyzed, there is no risk of polluting the results with information from the binary modification
engine or the simulator itself. And just like the previous simulator, the branch predictor simulation
can be performed both online or offline.

5.1.4 TIMING SIMULATION
Finally, a series of small targeted simulators can be combined into a larger functional or even timing
simulator. The dynamic binary modifier has the ability to stream any user-level information about
the running application to a simulator, so this information can then drive any arbitrary simulator.The

5.2. EMULATION 35

user would simply need to know the pertinent information that is necessary to calculate performance
and the timing overheads of each performance characteristic.

5.2 EMULATION

Our previous discussions of dynamic binary modification as a driver for architectural simulation
emphasized observing execution and demonstrated how the observations could then drive various
simulators. Another important application of dynamic binary modification is its utility for modify-
ing applications and allowing a user to emulate entirely new functionalities in lieu of the existing
functionality that would have occurred otherwise on the underlying machine.

Figure 5.5 shows an example application of emulation. Let’s say that a user wishes to replace
the normal operation that occurs when loading data from memory with a new implementation.That
user could essentially replace all instances where data is loaded with a custom implementation. In
Figure 5.5, that custom implementation simply augments the load with a logging functionality that
also prints out what data was loaded. Yet, the same principle can be applied to replace a load with
an entirely new implementation that, for instance, loads all data from a new area of memory.

The EmuLoad Tool
1 // Moves from memory to register for every executed instruction
2 ADDRINT DoLoad(REG reg, ADDRINT * addr)
3 {
4 cout << "Emulate loading from addr " << addr << " to " << REG_StringShort(reg) << endl;
5 ADDRINT value;
6 PIN_SafeCopy(&value, addr, sizeof(ADDRINT));
7 return value;
8 }
9

10 // This instrumentation routine is invoked once per static instruction
11 VOID EmulateLoad(INS ins, VOID* v)
12 {
13 if (INS_Opcode(ins) == XED_ICLASS_MOV && INS_IsMemoryRead(ins) &&
14 INS_OperandIsReg(ins, 0) && INS_OperandIsMemory(ins, 1)) {
15 // op0 <- *op1
16 INS_InsertCall(ins, IPOINT_BEFORE, AFUNPTR(DoLoad), IARG_UINT32, REG(INS_OperandReg(ins, 0)),
17 IARG_MEMORYREAD_EA, IARG_RETURN_REGS, INS_OperandReg(ins, 0), IARG_END);
18

19 INS_Delete(ins);
20 }
21 }
22

23 int main(int argc, char * argv[])
24 {
25 PIN_Init(argc,argv);
26 INS_AddInstrumentFunction(EmulateLoad, 0);
27 PIN_StartProgram();
28 return 0;
29 }

Figure 5.5: Emulating Loads.

36 5. ARCHITECTURAL EXPLORATION

Line 2 of Figure 5.5 begins the new implementation of the load operation, which is inserted
as a function call in the guest application. Meanwhile, Line 19 deletes the old implementation of
load. All other instructions in the guest application are left untouched.

5.2.1 SUPPORTING NEW INSTRUCTIONS
New processors often come with extensions to the instruction set architecture. This presents a series
of challenges to both ISA designers and software vendors. First, ISA designers need an effective way
to measure the utility of any new instructions they propose,prior to committing to the actual hardware
changes. For instance, it is often helpful to design and optimize the compiler algorithms that would
be used to generate the new instructions before committing to building the hardware to support
those new instructions. Unfortunately, having a compiler actually generate the new instructions
in a binary means that binary cannot be executed until the hardware is available. Otherwise, any
attempts to run the program will result in an illegal instruction fault. This catch 22 situation can be
resolved using a dynamic binary modifier, which can recognize and emulate the behavior of any new
instructions in a binary that are unsupported by the underlying hardware. Meanwhile, the dynamic
binary modification engine can measure the dynamic instruction count and other metrics of the new
instructions, providing valuable feedback to the ISA architecture and compiler teams.

Once new instructions have been approved and introduced to the ISA, a second challenge
is faced by software vendors, who must now decide whether to include those instructions in their
shipped applications. Including the instructions can significantly improve performance on systems
that have hardware support for those instructions. Yet, illegal instruction faults will occur on systems
that do not support the instructions. Dynamic binary modification provides an elegant solution
to these challenges. First, it can provide backward compatibility, allowing application binaries that
contain new instructions to execute on older hardware that does not support those instructions.
Meanwhile, it also provides an opportunity for forward compatibility by introducing new instructions
to existing binaries on-the-fly, improving the performance of applications running on newer hardware
that features extensions to the ISA.

5.2.2 MASKING HARDWARE FLAWS
Many may recall the ordeal in 1994 when a flaw was discovered in the floating-point divide unit
of the Pentium processor. This flaw eventually led to a recall of the processor at a cost of several
hundred million dollars. A modern day stop-gap solution to such a hardware flaw could be to emulate
the correct behavior of the instruction in a software-based virtualization layer, rather than directly
executing certain instructions on flawed hardware.

Figure 5.6 demonstrates a simple Pintool that would perform the task of emulating two
types of divide instructions that may appear in a guest program. The first case, which is isolated
on line 26, finds divide instructions where the operands are both stored in registers. The second
case, isolated on line 32, finds divide instructions where one operand is stored in memory. The two
replacement routines are found on lines 2 and 10, and each routine emulates the functionality of

5.3. BINARY TRANSLATION 37
The EmuDiv Tool

1 // Analysis routines to emulate divide
2 VOID EmulateIntDivide(ADDRINT * pGdx, ADDRINT * pGax, ADDRINT divisor, CONTEXT * ctxt, THREADID tid)
3 {
4 UINT64 dividend = *pGdx;
5 dividend <<= 32;
6 dividend += *pGax;
7 *pGax = dividend / divisor;
8 *pGdx = dividend % divisor;
9 }

10 VOID EmulateMemDivide(ADDRINT * pGdx, ADDRINT * pGax, ADDRINT * pDivisor, unsigned int opSize,
11 CONTEXT * ctxt, THREADID tid)
12 {
13 ADDRINT divisor = 0;
14 PIN_SafeCopy(&divisor, pDivisor, opSize);
15

16 UINT64 dividend = *pGdx;
17 dividend <<= 32;
18 dividend += *pGax;
19 *pGax = dividend / divisor;
20 *pGdx = dividend % divisor;
21 }
22

23 // Instrumentation routine to replace divide instruction
24 VOID InstrumentDivide(INS ins, VOID* v)
25 {
26 if ((INS_Mnemonic(ins) == "DIV") && (INS_OperandIsReg(ins, 0))) {
27 INS_InsertCall(ins, IPOINT_BEFORE, AFUNPTR(EmulateIntDivide), IARG_REG_REFERENCE, REG_GDX,
28 IARG_REG_REFERENCE, REG_GAX, IARG_REG_VALUE, REG(INS_OperandReg(ins, 0)),
29 IARG_CONTEXT, IARG_THREAD_ID, IARG_END);
30 INS_Delete(ins);
31 }
32 if ((INS_Mnemonic(ins) == "DIV") && (!INS_OperandIsReg(ins, 0))) {
33 INS_InsertCall(ins, IPOINT_BEFORE, AFUNPTR(EmulateMemDivide), IARG_REG_REFERENCE, REG_GDX,
34 IARG_REG_REFERENCE, REG_GAX, IARG_MEMORYREAD_EA, IARG_MEMORYREAD_SIZE,
35 IARG_CONTEXT, IARG_THREAD_ID, IARG_END);
36 INS_Delete(ins);
37 }
38 }
39

40 int main(int argc, char * argv[])
41 {
42 PIN_Init(argc, argv);
43 INS_AddInstrumentFunction(InstrumentDivide, 0);
44 PIN_StartProgram(); // Never returns
45 return 0;
46 }

Figure 5.6: Emulating Divide

the respective divide operation. The ability to easily locate and replace arbitrary instructions from
a guest application is a powerful application of dynamic binary modification systems as it enables
software solutions to hardware problems.

5.3 BINARY TRANSLATION

The previous section discussed situations where a user wished to replace a small number of key
instructions in a shipped binary as it runs. Yet this simple idea can be extended to provide com-

38 5. ARCHITECTURAL EXPLORATION

plete binary translation capabilities. An entire binary, designed to be run on one ISA, can be run
on an entirely different and incompatible ISA by replacing every instruction encountered with a
corresponding instruction or set of instructions. In fact, the translation caching capabilities of most
dynamic binary modification systems will result in order of magnitude performance improvements
over pure interpretation. This is because sequences of instructions would be translated as a group,
and those translated instructions would then be reused throughout the execution time of the guest
program.

While most of the widespread binary translation systems of the past, such as Transmeta’s
Code Morphing Software (Dehnert et al. [2003]),Transitive’s Rosetta Software (Apple), or QEMU
(Bellard [2005]) have operated below the operating system at the system virtualization level, in
principle, there is nothing that prevents a dynamic binary modifier from providing program-at-a-
time binary translation capabilities. This approach would require emulation of system libraries and
kernel functions, but this has been successfully implemented in products such as Digital’s FX!32
(Hookway and Herdeg [1997]).

5.4 DESIGN-SPACE EXPLORATION
Throughout this chapter, we have explored a series of applications of dynamic binary modification
technologies within the domain of computer architecture research. The central theme of all of the
applications is that the dynamic binary modification system provided for rapid prototyping and
design-space exploration. The design process is expedited in two dimensions. First, the high level
of abstraction provided by the dynamic binary modifier allows for quick solutions to be designed
and built. Meanwhile, the order of magnitude performance improvements over many standard
simulators means that designers can explore more dimensions and execute more realistic and longer
guest applications than was traditionally possible.

39

C H A P T E R 6

Advanced System Internals
Most users of dynamic binary modification systems do not need to worry about the internal structure
and implementation of binary modification engine. In fact, one can argue that the need for under-
standing of the system itself signifies a weakness of the user-exposed API. Therefore, the content
of this chapter is primarily geared toward the researchers and developers of dynamic binary modi-
fiers themselves, while it may also be a useful resource for users who are doing particularly novel or
atypical instrumentation tasks.

6.1 MODES OF EXECUTION
There are two fundamental approaches to implementing a dynamic binary modification system -
one that is faster but more restrictive, and one that is slower but more robust. In this section, we
discuss the main differences between an engine that modifies code in place (probe-mode) versus one
that forms a modified copy on demand (JIT-mode).

6.1.1 MODIFIED COPY ON DEMAND
In the most common execution mode, a JIT compiler modifies and recompiles small chunks of
binary instructions immediately prior to executing them. Those modified instructions are stored
in a software code cache where they are executed in lieu of the original application instructions.
Software code caches allow the code regions to be modified once and then reused for the remainder
of program execution, helping to amortize the costs of compilation. Most tools use the JIT-based
instrumentation since it comes with fewer limitations regarding how and where you can instrument
the code.

6.1.2 MODIFICATION IN PLACE
In a probe-based execution mode, the original binary is modified in place (Buck and Hollingsworth
[2000], Hunt and Brubacher [1999]). The system overwrites original application instructions with
jumps (called probes) to dynamically-generated routines. This code can invoke analysis routines or
a replacement routine. Probe-based approaches have near zero execution and memory overhead, but
they have a more restrictive API, mainly limiting tools to interposing wrapper routines for global
functions while the JIT-based approach allows fine-grained modification down to the instruction
level. The reason for the restrictions in probe-mode is obvious in retrospect. On x86, instructions
vary in length, and, therefore, not all instructions can be cleanly overwritten by jump instructions.
If a branch were to overwrite multiple instructions, then problems would arise if another jump

40 6. ADVANCED SYSTEM INTERNALS

��������	
��

��
��	�����	�
�
��
�
�
�
�
�
	

�	����
�����	�������

����������

�
����������

�
�
	
�
�

�
�
�
��
�
�
�
��
�

������	��� !����

"���#���

�������	
�����	�
������

������������		��
���

�
�
	

�
��
�
�
��

�
�
�
�

Figure 6.1: Internal organization of a JIT-based dynamic binary modification system. Three programs
run in the same address space (the guest application, the plug-in, and the modification engine itself).
Within the modification engine, there is a JIT compiler that creates a modified copy of every guest
application instruction, a code cache for storing previously translated code, and an emulation unit for
maintaining control at system call points.

instruction were to target the second overwritten instructions, as that address would now contain
the second half of the new jump instruction.

6.2 A SHARED ADDRESS SPACE

The dynamic binary modifier itself runs in the same address space as both the guest application and
the plug-in functionality that the user wishes to add to the guest application, as shown in Figure 6.1.
This means that special care must be taken to ensure correctness, isolation, and transparency since
the guest application was not designed to share an address space with other applications. If the binary
modifier overwrites memory or registers used by the application, then the application could behave
differently or incorrectly. Meanwhile, the binary modifier itself requires registers and memory to
execute, and, therefore, it must internally manage the process of context switching between itself and
the guest application. Most systems will attempt to optimize this process, as saving and restoring
all state at each of the frequent context switches would be prohibitively expensive. Achieving the
various goals (control, isolation, transparency) in a robust manner is nontrivial. The next section
describes how these systems acquire control, while later sections discuss isolation and transparency.

6.3. ACQUIRING CONTROL 41

6.3 ACQUIRING CONTROL

The dynamic binary modifier will inject itself into the address space of the guest application, much
like a debugger, either at the start of program execution, or in some cases, when the user requests it.
The former situation is typically called injection while the latter situation is called attach and detach.

Injection is the procedure for loading the dynamic binary modifier into the address space of
an application, allowing the system to gain control of execution and then modify and execute the
application. It is desirable to perform injection as early as possible so that tools can observe the
execution of all guest application instructions. The manner in which injection is achieved varies by
modification engine and by operating system.

On Linux, for example, programs are invoked by a fork system call, which creates a process,
followed by an exec system call, which loads a program and starts execution. A process always starts
with a single thread of control. When a program executes a clone system call, the kernel creates
another thread (called a kernel thread), and it appears as though both the original thread and the
newly created thread return from the clone system call. Threads typically end by executing an exit
system call, which can kill one or all threads.

The Pin dynamic binary instrumentation system intercepts all system calls. When it observes
an application clone system call, it does the clone on behalf of the application, and it allows the
parent thread to resume execution in the code cache. Pin increments the number of threads and
allocates a thread-local data structure for the new thread. Pin uses a callback to notify the Pintool
when new threads are created. Finally, the new thread resumes executing in the code cache. Pin also
intercepts exit system calls. It notifies the user’s plug-in tool that a thread is exiting and adds the
system thread ID to the pending dead list. If this is the only thread or the exit requests to kill all
threads, then it also notifies the user’s tool that the program is exiting. Finally, it executes the exit
system call on behalf of the thread, destroying the kernel thread.

Other systems, such as DynamoRIO, gain control using the LD_PRELOAD environment vari-
able on Linux, which informs the dynamic loader to load a shared library into the address space.
This is a clean and simple approach that works with dynamically-linked binaries, though not with
statically-linked binaries. In addition, some instructions execute before the LD_PRELOAD takes effect,
and, therefore, it doesn’t provide the full coverage that some applications require.

Finally, some systems, such as Pin, support attaching to or detaching from an already running
process. The internal methodology is similar to that used by a debugger to attach or detach from
running processes.

The Windows operating system presents additional challenges for acquiring control of a
guest application. For instance, Pin creates the guest application process in a suspended state and
attaches to it using the Win32 debugger APIs (Skaletsky et al. [2010]). The debugger waits for
kernel32.dll to complete its initialization routines, and then detaches from the debugged process.
Pin saves the application’s context and changes the instruction pointer to a small boot routine that
is copied to target process memory. The boot routine loads pinvm.dll and calls its main procedure.
Pinvm.dll initializes itself and loads the tool DLL. Using this method, tools miss the opportunity

42 6. ADVANCED SYSTEM INTERNALS

to instrument the initialization of the ntdll.dll, kernel32.dll, and kernelbase.dll system libraries, but
see every executed instruction of the program binary and DLLs.

DynamoRIO uses a Windows registry key that causes user32.dll to load DLLs listed in the
key (Bruening et al. [2001]). This approach works well for programs that load user32.dll. For those
programs that do not, they support a backup method which acquires control at the entry point of
the application.

6.4 MAINTAINING CONTROL: JIT COMPILATION

Once the dynamic binary modifier has acquired control over the guest application, it maintains
control by generating a modified copy of the next few application instructions, and executing those
instructions in lieu of the original instructions. The mechanism for doing so is very similar to just-
in-time code generation used by Java. However, in a dynamic binary modification system, the input
language is binary code, rather than an intermediate format such as Java bytecode. The system
decodes the binary instructions to locate branches that will need to be modified while copying all
other instructions without changes unless requested by the plug-in tool.All of the branch instructions
must be modified to reflect the new location of the modified code, and the fact that the compiler
will need to be invoked for any branch targets that have not yet been generated.

Modifications to the guest application are performed on demand as the application executes.
Therefore, the run time is spent alternating between (a) generating modified application code and
inserting it in the code cache, (b) executing modified application code out of the code cache, (c) tran-
sitioning between the two modes, or (d) performing maintenance tasks, such as removing stale code
from the code cache or updating the corresponding directories.

6.5 STORING MODIFIED CODE: THE CODE CACHE

In working to reduce overall system overhead, a significant observation is that the single largest
performance improvement results from the use of code caches. Software-managed code caches serve
the role of storing the modified application code to enable reuse. They improve the overall system
performance by amortizing the cost of expensive transformations over the entire program execution
time.

The code cache consists of a directory that contains a mapping from original to translated
instructions, a set of data structures that keep track of any patched branches in the code cache, and a
code area that contains instrumented, translated code as well as auxiliary code to maintain control of
execution. The maintenance of the various code cache structures is critical for both correctness and
performance (Hazelwood and Smith [2006]). Figure 6.2 shows the space occupied by the translated
code, auxiliary code for maintaining control, and the directory data structure needed to track the
code cache contents.

6.5. STORING MODIFIED CODE: THE CODE CACHE 43

auxiliary
code
41%

data
structures

36%

translated
code
23%

Figure 6.2: Memory distribution of the contents of the software code cache. Contents include translated
code, auxiliary code, and data structures.

6.5.1 FORMING TRACES OF MODIFIED CODE
On most systems, the guest application is recompiled one trace at a time. A trace is a sequence of
extended basic blocks that either reflect the dynamic program path, or the physical adjacency of
the original code in memory. In the literature, traces may also be termed superblocks. Some systems,
such as Valgrind, will recompile traces by raising the binary code into an intermediate format before
lowering the instructions back down to binary. At the other extreme, Pin will perform the minimum
decoding necessary to locate branches and instructions of interest. And finally, DynamoRIO takes a
hybrid approach that allows the user to determine the level of abstraction they wish to manipulate,
whether it is a full conversion to intermediate format or somewhere in between.

Stitching together basic blocks into traces is intended to improve the spatial locality of the
resulting code in memory, and to enable a series of optimizations that can be applied to the larger
code regions. Trace selection refers to the act of determining which basic blocks should be included
in a trace, and the goal is to capture hot paths – the most frequently-executed sequences of basic
blocks in the application.

Duesterwald and Bala [2000] studied the balance between accurate runtime profiling and
prediction delays when choosing a trace. They saw that some accuracy could be sacrificed when
selecting traces if the trace could be generated sooner because the benefits of forming traces would
be gained quicker and leveraged longer.They proposed techniques to reduce the profiling overhead by
limiting profiling counters to so-called trace heads – the targets of backward branches and the targets
of exits from other traces. When those profiling counters reached a certain threshold, they simply
formed a trace by following the path of execution during that Nth execution of the instructions.
Their trace selection algorithm was termed the Next-Executing Tail (NET) algorithm, and they
demonstrated empirically that it outperformed path-profiling based trace selection. This algorithm
became the default implementation on the Dynamo dynamic optimizer from Hewlett-Packard, and
it remains the algorithm in use by DynamoRIO (a descendent of Dynamo).

Since then, several additional researchers have explored trace selection in dynamic binary
modification systems. Berndl and Hendren [2003] and Joshi et al. [2004] explored ways to reduce
the overhead of path profiling to make it feasible in a dynamic optimizer. Hiniker et al. [2005]

44 6. ADVANCED SYSTEM INTERNALS

proposed an alternative to the Next-Executing Tail algorithm called LEI (Last-Executed Iteration),
which uses a history buffer during profiling in order to better capture entire loops in a single trace.
Meanwhile, Davis and Hazelwood [2011] proposed another alternative to the NET trace selection
algorithm (called NETPlus) to better capture loops in traces, which uses a static search to find
loop bodies, rather than incurring the persistent overhead of maintaining a history buffer as in the
LEI algorithm. Finally, Merrill and Hazelwood [2008] explored the idea of applying trace-selection
algorithms to method-based JVMs.

Since the traces stored in the code cache are often formed when the first block in the sequence
executes, all subsequent blocks may be speculative. A memory-performance trade-off exists when
considering the number of basic blocks to include in a trace. The speculative nature of traces means
that various basic blocks that never execute may be compiled and included in a trace. However,
when speculation is correct, there are fewer context switches into the VM and the compilation time
is well spent. Guha et al. [2010b] explored the delicate balance between trace selection algorithms
and memory footprints in the context of embedded systems and other memory-constrained devices,
but the same issues persist in general-purpose machines as well.

All of the off-trace paths in the code cache require exit stubs (or trampolines) to maintain con-
trol and return execution to the VM for on-the-fly compilation of the target. Interestingly, limiting
traces to a single basic block results in many more exit stubs (and hence a higher memory footprint)
than allowing multi-block traces.This is because a single basic block may end in a conditional branch,
which has two potential targets and thus requires two exit stubs. However, forming a contiguous
trace would only require one exit stub since the fall through path would remain on trace, obviating
the need for us to catch the otherwise off-trace path (Guha et al. [2007]).

When control is transferred from the cached application code, through an exit stub, and back
to the binary modifier, then a context switch is required to save the register state of the suspended
application and set up the register state of the binary modifier. This is an expensive operation, and,
therefore, the binary modifier will link together traces that execute in succession.This is accomplished
by directly patching the cached branch that used to point to an exit stub to now point to the target
trace in the cache, obviating the need for a context switch. This act provides a significant speedup
and is straightforward for direct branches whose target never changes at runtime. Indirect branches,
whose target is a register or memory location that changes at runtime, are quite challenging to handle,
however, and much of the slowdown of dynamic binary modifiers result from the liberal use of indirect
branches in the guest binary. For instance, the perlbmk benchmark from SPECint2006 has one of
the highest slowdowns on a dynamic binary modifier, and not coincidentally, it also has the largest
number of indirect branches encountered at runtime. Hiser et al. [2007] investigated the impact of
indirect branch handling in dynamic binary modifiers, while Dhanasekaran and Hazelwood [2011]
proposed new mechanisms for improving indirect branch handling in Pin.

Trace linking within the code cache can be performed on-demand (the first time the path is
traversed) or proactively (as soon as the source and target are inserted into the code cache). Early
(proactive) linking of translated code may create links that are never traversed, and allocate data

6.5. STORING MODIFIED CODE: THE CODE CACHE 45

structures for recording such links. Late (on-demand or lazy) linking does not allocate unnecessary
data structures but requires more functionality in the exit stubs, and it also results in more context
switches. The three dynamic binary modification systems discussed in throughout the text each
take different approaches to linking. Pin links traces proactively; DynamoRIO links traces lazily;
Valgrind does not link traces at all, and instead provides a fast context switch which is incurred on
every transition between cached traces.

A downside of trace linking is that it requires special care when evicting modified code from
the code cache. For instance, if a trace is invalidated, the system also needs to locate all other traces
that have patched branches to jump directly to that target trace, and it must restore those branches
back to the appropriate exit stubs. Otherwise, control may jump to an invalid location in memory.

6.5.2 CODE CACHE EVICTION AND REPLACEMENT
Many dynamic binary modifiers, such as DynamoRIO and Strata (Scott et al. [2003]), allow their
software code caches to grow without bound, as their design highlights performance at the expense
of memory footprint. However, when scaling to large applications, unbounded code caches are
beneficial neither from the performance nor the memory footprint perspective. In fact, even the
simple, single-threaded application perlbench from SPEC2006 exhibits a speedup when the cache
is bounded. Similar trends can be observed on larger enterprise applications that exhibit little code
reuse. Intuitively, those applications have no need to maintain the translated code sequences that are
a part of an initialization sequence, and meanwhile, those sequences take up valuable memory and
hardware cache resources.

Aside from bounding the size of the code cache, there are numerous reasons that translated
code must be removed from the code cache. Dynamically unloaded code will need to be invalidated
as other application code may be loaded at the same address. Users may request invalidation of
cached code to remove instrumentation or to re-optimize regions of code. Finally, self-modifying
code must also trigger invalidation and regeneration of the corresponding cached code.

The most straightforward code cache replacement algorithm is to flush the entire code cache
when the free space is depleted.This approach is superior to other intuitive algorithms, such as LRU
replacement, given that the stored traces vary considerably in size, and, therefore, individual trace
deletions will lead to fragmentation.

However, full cache flushes are not possible for systems that support multithreaded guest
applications where the various threads share a single underlying code cache and since it is expensive
to determine whether any of the inactive threads are currently executing the code that is to be deleted.
The issue of multithreading and code caches is discussed in more detail in Section 6.7.

Meanwhile, there are many granularities of code cache eviction algorithms that span the spec-
trum from full cache flushes to individual trace deletions (Guha et al. [2010a],Hazelwood and Smith
[2004]). Traces can be grouped into large, fixed-sized cache blocks, and entire cache blocks can be
flushed at once. This approach reduces the number of cache misses compared to a full flush, without

46 6. ADVANCED SYSTEM INTERNALS

�������

�������

�������

���������

���������

�������

�������

���������

��������	�
��

�

��������	�
�� ��������	�
�

��	
��
���

��
��
�

�

�

�	��������

Figure 6.3: Organization of a software code cache that supports medium-grained evictions. The traces
are grouped into larger, fixed-sized cache blocks, which can be deleted as a whole, avoiding fragmentation.

suffering the fragmentation issues that hinder fine-grained evictions. Figure 6.3 presents a code
cache organization that supports medium-grained evictions.

For the interested reader, a much more detailed discussion of code cache replacement
issues and policies is available in the Ph.D. thesis by Hazelwood [2004] or in the papers
by Hazelwood and Smith [2006] or Bruening and Amarasinghe [2005].

6.5.3 CODE CACHE INTROSPECTION
Most frameworks have gone to great lengths to mask the presence of a code cache from the user by
converting cached instruction addresses to their corresponding addresses in the original application
before presenting the addresses to the user. However, providing researchers access to the contents
of the code cache enables many powerful opportunities. A user can manipulate the code cache
contents to investigate run-time optimizations or security policies; they can instrument and compare
applications across several architectures; they can even investigate the code cache implementation
itself and develop and compare custom code cache replacement policies.

Several dynamic binary modification systems provide a glimpse into, or even permit control
of, the code cache and its operation. For instance, DynamoRIO provides logging capabilities that
allow a user to observe the code cache contents during program execution. In addition, DynamoRIO
users can modify the code cache algorithms in place since source code is available for the internal
engine. Meanwhile, the Pin system provides a wide API that provides four categories of code cache
introspection. Callbacks will notify the Pin user when various events occur within the code cache,
such as trace insertion, deletion, or execution. The callbacks give the user tool an opportunity to

6.5. STORING MODIFIED CODE: THE CODE CACHE 47
Self-Modifying Code Handler

void InsertSmcCheck () {
traceAddr = (VOID *)TRACE_Address(trace);
traceSize = TRACE_Size(trace);
traceCopyAddr = malloc(traceSize);
if (traceCopyAddr != 0) {

memcpy(traceCopyAddr, traceAddr, traceSize);

// Insert DoSmcCheck call before every trace
TRACE_InsertCall(trace, IPOINT_BEFORE, (AFUNPTR)DoSmcCheck, IARG_PTR, traceAddr,

IARG_PTR, traceCopyAddr, IARG_UINT32, traceSize, IARG_CONTEXT, IARG_END);
}

}
VOID DoSmcCheck(VOID * traceAddr, VOID * traceCopyAddr, USIZE traceSize, CONTEXT * ctxP) {

if (memcmp(traceAddr, traceCopyAddr, traceSize) != 0) {
smcCount++;
free(traceCopyAddr);
CODECACHE_InvalidateTrace((ADDRINT)traceAddr);
PIN_ExecuteAt(ctxP);

}
}
void main (int argc, char **argv) {

PIN_Init(argc, argv);
TRACE_AddInstrumentFunction(InsertSmcCheck,0);
PIN_StartProgram(); // Never returns

}

Figure 6.4: A code cache introspection tool that detects and handles self-modifying code.

perform custom actions, such invalidating a single trace, or even flushing the entire code cache. The
lookup API provide access to Pin’s internal data structures that keep track of the code cache’s contents,
and finally, the statistics API gives the user access to aggregated data about the various actions that
have taken place at any given point in time. More details about the potential applications of cache
introspection is discussed by Hazelwood and Cohn [2006].

6.5.4 HANDLING SELF-MODIFYING CODE
Self-modifying code is a challenge to handle efficiently in a dynamic binary modifier
(Bruening and Amarasinghe [2005], Dehnert et al. [2003]). The problem occurs when an appli-
cation executes some code, modifies it, and then executes the new code at the same address. After
the first execution, a dynamic binary modifier will save a copy of the code in its code cache. When
the modified code is executed, the system translator must detect that the code it has in its cache is
no longer valid. Without any detection, it will continue to execute the old code, and the program
will eventually fail.

Several mechanisms have been proposed to detect self-modifying code such as write-
protecting code pages, checking store addresses, and inserting extra code to check that instruction
memory has not changed. A straightforward (but admittedly inefficient) solution can be written in
15 lines of code using the code cache introspection API described in the previous section. Figure 6.4
shows a simple self-modifying code handler. The function InsertSmcCheck is the instrumenta-
tion function which is passed a list of instructions in the trace. While an instrumentation function

48 6. ADVANCED SYSTEM INTERNALS

typically inserts calls to count basic block executions or record the effective address for a memory
reference, this particular function makes a copy of the original instructions in the trace and inserts
a call to DoSmcCheck, passing it the address in memory of the instructions and the saved copy.
When the trace is executed, it calls DoSmcCheck.This function compares the current contents of the
instruction memory against the saved copy. If it has changed, it invalidates the cached copy of the
trace and uses PIN_ExecuteAt (Pan et al. [2005]) to re-invoke the trace. Note that this example
does not handle a trace that overwrites its own code (after the check) or multithreaded guest ap-
plications. It is also possible to use page protection by instrumenting memory management system
calls. Mechanisms that watch store addresses can be implemented by instrumenting memory store
instructions.

6.6 THE EMULATOR

System calls are triggered by instructions that transition from executing an application in user mode
to executing the kernel in system mode. They are used to request system services like file I/O and
process creation. Since a dynamic binary modifier operates at the process level, it has full control
of everything that executes in user mode, but it loses control in kernel mode. It must manage the
execution of system calls to ensure to regain control when the system resumes execution in user
mode. There are three steps to managing system calls. First, the binary modifier must detect when
the application is about to execute a system call, and instead redirect control to the compilation
engine. Second, it must be able to execute the system call on behalf of the application. Third, it
must be able to regain control after an interrupted system call; when a system call is interrupted,
the kernel may cause the application to continue execution elsewhere. The system must intercept
execution after an interrupted system call to direct control back to its code cache. Meanwhile, at all
points during the execution of a system call, the binary modifier must be able to construct a precise
state reflecting the application register values without the effects of instrumentation.

The dynamic binary modifier needs to detect and intercept system call instructions at a point
where it can capture the arguments and system call number, and then transfer control to the com-
pilation engine. Since all user-mode instructions are inspected and placed into the code cache, this
becomes the logical place to intercept system calls as the system can easily detect the instructions
that transfer control from user mode to the kernel.

On Linux, system calls are straightforward to detect.The int 0x80,sysenter, and syscall
instructions will transfer control to the kernel after placing the system call number into the eax
register.

On Windows, the sysenter or int 0x2e instructions are used to transfer control from user
mode to the kernel on 32-bit systems, and the syscall instruction is used for 64-bit processes.
When a 32-bit Windows process runs on 64-bit Windows, it uses the jmp far instruction to enter
the kernel through the WOW64 layer. This instruction is located at a well-known address that is
stored in the Thread Environment Block (TEB) of each thread, so it can be easily recognized. While
it is also possible to intercept system calls using the Win32 API, most dynamic binary modifiers

6.7. MULTITHREADED PROGRAM SUPPORT 49

will not operate at this level since the Win32 API can be (and often is) easily bypassed, causing the
system to miss events and lose control of the executing application.

Unix signals also present a challenge to a dynamic binary modifier. Allowing the guest appli-
cation to simply handle signals natively would present three problems. First, the application’s signal
handler escapes from the control of the dynamic binary modifier and would therefore be executed
without the opportunity for modification. Second, if the application’s handler inspects the inter-
rupted register context, it sees the interrupted state of the binary modifier, not the pure application
state. Finally, the signal might interrupt the user’s plug-in functionality and cause reentrancy prob-
lems. For these reasons, the emulator must intercept the application’s signal handlers and emulate
signal delivery. In Pin, for example, when a signal arrives, Pin catches the signal and places it on
a queue of pending signals. Execution then resumes until any tool instrumentation completes and
control reaches the end of the next code cache trace. At the end of the trace, control jumps to the Pin
signal emulator, which builds an emulated signal context frame using the values of the application’s
registers. Finally, the Signal Emulator starts translating code at the PC of the application’s handler.

6.7 MULTITHREADED PROGRAM SUPPORT

Much of the literature describing the internal architecture and performance of dynamic binary
modifiers has focused on executing single-threaded guest applications. This section discusses the
specific design decisions necessary for supporting large, multithreaded guest applications. While
implementing a working solution for multithreading is straightforward, providing a system that
scales in terms of memory and performance is much more intricate.

6.7.1 THREAD-SHARED CODE CACHES
It is fairly straightforward to implement a code cache in such a way that each guest application thread
has its own code cache. This approach avoids many of the synchronization and deletion headaches
that arise when multiple threads share a cache. For instance, the task of deleting a single trace from
the code becomes fairly complicated to do efficiently, since the system must ensure that no other
threads are executing or stalled within the candidate trace. In addition, patching a branch within a
trace so that it will jump directly to another trace must be done in an atomic manner, such that other
threads do not inadvertently execute partially-modified code.

Despite the complexity of thread-shared code caches, researchers have demon-
strated (Bruening et al. [2006]) that thread-private code caches do not scale beyond a very small
number of threads. Therefore, it is worth the development effort to employ a single, shared code
cache across all threads. For the applications where several threads perform similar tasks, the shared
cache contains all of the common code, and thus the memory footprint is smaller, and more scal-
able with the number of threads. Figure 6.5 demonstrates the code expansion that occurs when the
SPEC OMP 2001 benchmarks are executed using thread-private code caches and eight application
threads. The figure shows that the code can expand well over 500% if we allow each thread to have

50 6. ADVANCED SYSTEM INTERNALS

���

� �����

�������

�������

	 �����

 �����

�������

�
����������� ������� ������� ! "��#��$%� �&"#$'�&�($ �)*��+"�,�� "��-�.� �&"/0123�45 0��
"67)! "#�45 "#�8�8�

9:;<
=>
? >
@A; B
C:D
=;><
E>

����������	
���
�����������
�����
��

Figure 6.5: Code expansion resulting from thread-private code caches. The SPEC OMP 2001 bench-
marks were run as 8 application threads.

its own private cache. This memory scalability issue justifies the use of a shared code cache across
threads.

6.7.2 GENERATIONAL CACHE REPLACEMENT
One fundamental observation is that code cache maintenance becomes much more complex when
executing a multithreaded application. For instance, a complete flush of the code cache is no longer
possible. The problem is each thread is in one of two states – executing code in the code cache, or
generating new code in the compilation engine. In fact, many threads will be stalled in one of these
two states. The system may not delete a trace that another thread is currently executing or stalled in,
but it is also extremely difficult to determine where each thread is executing without employing very
expensive techniques like having every thread log every trace it enters. While an easy alternative is
to stall the flush until all threads are executing inside the modification engine code (and thus not
executing cached, modified application code), this stall can take an indefinite amount of time, and
meanwhile threads are not able to make forward progress.

The standard solution is to employ a generational code cache deletion algorithm,demonstrated
in Figure 6.6. The code cache is partitioned into multiple blocks, and each block is marked with
a generation number. Initially, all threads execute in generation 1. When a code cache flush needs
to occur, we can simply clear the cache lookup table (so that no threads enter the cache blocks for
the current generation), advance the generation counter, and create a new cache block tagged with
the new cache generation. As each thread enters the modification engine, it will only find the new
traces present in the new generation since the old traces will have been removed from the look-up

6.8. WINDOWS EXECUTION SUPPORT 51

���

���

�����

�����

��� �	
��
���

��� �	
��
���

�����

�����

��� ����� ��� �����

�	����������������

!"#$% �

!"#$% �

!"#$%&'

()*+,-./*0123456789�:&;<= (>?&,&@A5BCD5BEF*8GHI�JKCD*
9L789�:&;<=

���

���

�����

�����

���

���

�����

�����

��� ����� ��� �����

Figure 6.6: Timeline comparing a naïve code cache flush to a thread-safe generational flush. The naïve
implementation stalls until all threads return to the VM, while the generational implementation makes
forward progress as it waits for threads to return to the VM.

table, and thus the thread will never re-enter code from the old generation. Threads may also move
forward with generating new code for the new generation. Finally, when the last thread leaves the
old generation, we flush the cache blocks for that generation.This scheme allows threads to continue
to generate and execute new code while other threads are potentially stalled and/or in the process
of leaving the old generation.

More details about the support necessary for handling multithreaded applications can be
found in a paper by Hazelwood et al. [2009].

6.8 WINDOWS EXECUTION SUPPORT

Analyzing the behavior of Windows applications is an important challenge because the guest appli-
cation source code is not typically available, and the Windows kernel interface cannot be adapted to
support observability. The fact that a dynamic binary modifier can instrument unmodified binaries
means that it becomes possible to analyze the performance of proprietary Windows applications
in realistic scenarios. This section identifies the Windows-specific obstacles for implementing a
dynamic binary modifier.

The first challenge involves getting initial control of the process. This is called injection, and
it was discussed earlier in Section 6.3.To provide the maximum observability, the system must inject
itself into a new process as early as possible. Some systems depend on some basic Windows services,
so it is preferable from an implementation perspective to delay injection until various services are
initialized. However, late injection provides less observability. Aside from injecting into the parent
process, it is important to inject into any child process that gets spawned at run time. An issue
on Windows is that processes can be 32-bit, 64-bit, or even a combination of both, so the system
needs to be aware of and support both modes. Creating a child process usually requires a sequence
of three system calls: NtCreateProcess, NtCreateThread, and NtResumeThread. The dynamic
binary modifier can choose any point in that sequence to take control. For instance, Pin alters
the child process state immediately before NtResumeThread while DynamoRIO alters it during
NtCreateThread.

52 6. ADVANCED SYSTEM INTERNALS

The second challenge is maintaining control during transitions between the application and
kernel (e.g., handling system calls). The Windows kernel interface is not designed to have an in-
dependent agent interposed between the kernel and application, so designing a robust method for
managing the transitions is a challenge. It becomes necessary to venture outside of the standard
Windows API to get the job done. Below the covers, there are many ways to provide support for
Windows applications. The low-level details of supporting system calls, interrupts, exceptions, and
system library calls on Windows are detailed in papers by Skaletsky et al. [2010] for Pin, and by
Bruening et al. [2001] for DynamoRIO.The PhD thesis by Bruening [2004] also provides additional
details on the DynamoRIO implementation.

6.9 MASKING OVERHEAD WITH PARALLELISM

When looking at the overhead of leveraging a dynamic binary modifier to perform a given task, it
is important to note that the observed overhead comes from three different sources: (1) the baseline
overhead of the native guest application; (2) the overhead added by executing under the control
of a dynamic binary modifier, which can cause slowdowns on the order of 1X - 10X depending
on the features of the guest application and the binary modifier chosen; and (3) the overhead of
the additional functionality injected by the user, such as performing program analysis or running
simulations, which can cause slowdowns on the order of 1000X or more. So far, the techniques
discussed in this chapter have focused on the second form of overhead incurred by the binary
modifier itself. However, an opportunity exists to mask the overhead of the third form of overhead
by leveraging the available parallelism available on the underlying hardware.

Normally, dynamic binary modifiers execute one copy of the instrumented application in a
serial fashion, alternating between the three sources of overhead discussed above. However, another
alternative is to separate the tasks of instrumentation and analysis into separate threads and to
routinely fork off the task of analyzing a portion of the guest application. These analyses can then
be overlapped in time by leveraging separate processing resources. Depending on the number of
available processor cores and memory, and the size of each slice, it is possible to approach the native,
uninstrumented execution speed of the application, even for complex analysis tasks or simulations.
Meanwhile, it is never possible to execute faster than native since one thread is always the native,
uninstrumented application running serially.

Three different sets of researchers have explored this general notion, and the three approaches
taken have subtle but important differences.Wallace and Hazelwood [2007] implemented SuperPin,
which runs the guest application without instrumentation, then uses ptrace to routinely spawn off
instrumented slices of the application that represents a set of distinct, non-overlapping portions
of the execution time. Special care must be taken to ensure that it is safe to execute the two copies of
the guest application (one native and one instrumented) without affecting correctness, and this is all
handled transparently by SuperPin. As expected, the overall solution came with a large set of design
and implementation challenges. Design decisions included the granularity and frequency at which
the instrumented slices should be spawned. Less frequent (longer) slices minimized the overhead

6.10. REMAINING CHALLENGES 53

caused by using fork, but it meant that a lower degree of parallelism could be achieved. Furthermore,
synchronizing multiple instrumentation slices, handling system calls, and merging results from the
various instrumentation slices were but a few of the challenges that had to be tackled during the
implementation phase.

While SuperPin tried to be a general solution, the reality was that a major impediment was the
dependencies between the various slices. For instance, at any time, a cache simulation will depend on
the result of previous cache activity, and some of that activity will be unknown if the instrumentation
slices are executed in a pipelined manner. As a result, Moseley et al. [2007] focused on the goal of
sampling runtime performance features of a guest application, which is a common use of a dynamic
binary modifier. In this case, full coverage of the guest application is not necessary, and, therefore,
there are no inter-slice dependencies. They were able to explore the trade-off between accuracy and
overhead when using parallelism to hide the sampling overhead.

Finally, Zhao et al. [2010] used DynamoRIO to instrument a guest application, and then
manually pipelined the analysis routines to hide their overhead. Again, the final overhead depended
on how well balanced the various pipeline stages were,but it was never faster than native performance.
This was true for all three bodies of work discussed in this section.

6.10 REMAINING CHALLENGES
Getting a dynamic binary modifier to “work” is actually fairly straightforward. The bulk of the
challenge lies in getting the system to “work well” - both in handling all of the various corner cases,
and in doing so efficiently. The goal of improving the performance of the overall system will always
be a standing challenge, as the chosen solutions for trace selection, cache management, and handling
of user-defined analysis routines will always be able to be further refined and optimized. Most of the
solutions thus far have focused on optimizing the systems on stock hardware. However, more work
should be done to propose new hardware features that will greatly reduce the overhead of the more
expensive tasks performed, such as context switching between the various forms of runtime overhead,
handling indirect branches, handling self-modifying code, and handling the modified code cache.

55

C H A P T E R 7

Historical Perspectives
The dynamic binary modification systems detailed in this text are by no means the first of their kind
(nor are they likely to be the last). The three systems were chosen as the focus of this book because
at the time of its writing, they were widely used and readily available.

In the 1990’s, several other dynamic binary modifiers were developed, including
Shade for SPARC/Solaris (Cmelik and Keppel [1994]), DynInst for a variety of platforms
(Buck and Hollingsworth [2000]), Vulcan for x86/Windows (Edwards et al. [2001]), Wig-
gins/Redstone for Alpha (Deaver et al. [1999]), and Dynamo for HPUX/PA-RISC (Bala et al.
[1999]).

Later on, numerous other dynamic binary instrumentation frameworks appeared, including
Strata (Scott et al. [2003]), DELI (Desoli et al. [2002]), which is a descendent of Dynamo for the
LX architecture, DIOTA for x86/Linux (Maebe et al. [2002]), Mojo for x86/Windows (Chen et al.
[2000]), Walkabout for SPARC/Solaris (Cifuentes et al. [2002]), and HDTrans (Sridhar et al.
[2006]). In addition, the three focus systems from this book (Pin, DynamoRIO, and Valgrind)
appeared during that first decade of 2000.

Other tools served a similar purpose to one of more of the applications of dynamic binary
modification, such as simulation or dynamic translation. Hardware simulators or emulators in-
clude Embra (Witchel and Rosenblum [1996]) and Simics (Magnusson et al. [2002]). Dynamic
binary translators include DAISY (Ebcioğlu and Altman [1997]), Crusoe (Dehnert et al. [2003]),
and Rosetta (Apple).

Outside of dynamic binary modification, there are a wide variety of static instrumentation tools
dating back several decades. For instance, the ATOM toolkit from Digital (Srivastava and Eustace
[1994]) formed the basis for the look-and-feel of the Pin API, and indeed there were several
developers in common. Meanwhile, other systems included Etch (Romer et al. [1997]), EEL
(Larus and Schnarr [1995]), and Morph (Zhang et al. [1997]).

57

C H A P T E R 8

Summary and Observations
The “compile once, run anywhere” philosophy has imposed a number of stumbling blocks for modern
systems and software. As computer architectures have evolved and software has become significantly
more complex, the need to completely understand and potentially modify the runtime behavior of
modern software has become paramount. Unfortunately, the standard software distribution model
hinders this goal as software is often distributed in binary form, with relevant information necessary
for analyzing or modifying the application permanently removed. Fortunately, dynamic binary mod-
ification has emerged as a means for bypassing the restrictions of binary code, and accomplishing a
series of tasks that were never envisioned and perhaps deemed impossible by the initial designers of
computer systems and software.

Since their introduction many years ago, dynamic binary modifiers have gained significant
popularity due to their robustness, ease-of-use, and widespread utility – which spans several subdis-
ciplines within computer science and engineering. Users have discovered that these systems can be
leveraged for fast and detailed program analysis, arbitrary runtime modification, and architectural
design space exploration to name a few. As a result, the use of dynamic binary modifiers has become
ubiquitous. In fact, in many recent technical conferences focusing on computer systems, roughly
two-thirds of the published papers have used some form of dynamic binary modification to explore
and evaluate their proposed solutions1.

Modern dynamic binary modifiers are quite robust, and they can correctly execute and modify
nearly every application in use today. This is an impressive feat, given the internal design complexity
as well as the complexity of the various tasks that each system supports. For instance, transparently
handling complex, but common cases such as observing and modifying dynamically-loaded and
shared libraries or dynamically generated code requires a significant engineering effort within the
modification engine itself. Meanwhile, all of this complexity is masked from the end user, allowing
them to perform complex and invasive tasks with very little effort. A user can get up to speed and
build useful tools in a matter of hours. Learning to use the system in the most effective manner
takes some additional understanding, however, and the goal of this text was to provide that firm
foundation of knowledge for the end user.

The bulk of the researchers interested in dynamic binary modification see it as a useful tool for
their own research goals and are therefore focused on the end-user view and applications. However,
a growing community of advanced users and system software developers are interested in under-
standing and/or potentially optimizing the internal design of dynamic binary modification systems

1This claim is based on informal observations made at MICRO 2009, HPCA 2010, ASPLOS 2010, CGO 2010, and ISCA 2010.

58 8. SUMMARY AND OBSERVATIONS

themselves. The book’s coverage of the internal structures and algorithms is intended to meet that
goal. While many of the individual components have been covered in one form or another through-
out the body of literature in place today, the goal of this text was to provide a comprehensive and
up-to-date view of the relevant structures and algorithms in place in some of the most commonly
used dynamic binary modification systems today.

Above all, the subfield of dynamic binary modification is still evolving. New applications,
new challenges, and new internal algorithms are regularly surfacing. One of the luxuries of an
electronically-based textbook series is that the text itself can and should evolve as well. As such, I
hope to include your own breakthroughs in future editions. Stay tuned!

ADDITIONAL RESOURCES
This book provides detailed coverage of one of many topics covered in the virtual machines textbook
by Smith and Nair [2005].The reader can refer to their book to get an understanding of how dynamic
binary modification fits into the bigger virtualization picture.

For the most part, one seminal paper exists for each of the three dynamic binary modi-
fication systems covered in this book. For Valgrind, that seminal paper appeared in PLDI 2007
(Nethercote and Seward [2007]), for Pin, it appeared in PLDI 2005 (Luk et al. [2005]), and for
DynamoRIO, it appeared in CGO 2003 (Bruening et al. [2003]). Readers interested in one partic-
ular system should start by focusing on the seminal work before moving on to the large number of
followup papers that have appeared since then. The interested reader should also consider reading
the Ph.D. theses of some of the developers of the three systems highlighted in this text. In particular,
Bruening [2004] presents an in-depth look at the internal workings of DynamoRIO. Meanwhile,
Nethercote [2004] presents the internal workings of Valgrind, as well as a nice historical perspective
on similar systems.

59

Bibliography

Apple. Rosetta. http://www.apple.com/rosetta/. 31, 38, 55

Moshe (Maury) Bach, Mark Charney, Robert Cohn, Elena Demikhovsky, Tevi Devor, Kim Hazel-
wood, Aamer Jaleel, Chi-Keung Luk, Gail Lyons, Harish Patil, and Ady Tal. Analyzing parallel
programs with Pin. IEEE Computer, 43(3):34–41, March 2010. DOI: 10.1109/MC.2010.60 23

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Transparent dynamic optimization. Tech-
nical Report HPL-1999-77, Hewlett Packard, June 1999. 27, 55

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a transparent dynamic op-
timization system. In Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’00, pages 1–12, Vancouver, BC, Canada, June 2000.
DOI: 10.1145/349299.349303 27

Utpal Banerjee, Brian Bliss, Zhiqiang Ma, and Paul Petersen. A theory of data race detection.
In Proceedings of the 2006 Workshop on Parallel and Distributed Systems: Testing and Debugging,
PADTAD ’06, pages 69–78, Portland, ME, USA, July 2006. DOI: 10.1145/1147403.1147416
23

Fabrice Bellard. Qemu: a fast and portable dynamic translator. In Proceedings of the USENIX Annual
Technical Conference, ATEC ’05, pages 41–46, Anaheim, CA, USA, 2005. USENIX Association.
38

Marc Berndl and Laurie Hendren. Dynamic profiling and trace cache generation. In Proceedings of
the 1st Annual IEEE/ACM International Symposium on Code Generation and Optimization, CGO
’03, pages 276–288, San Francisco, CA, USA, March 2003. DOI: 10.1109/CGO.2003.1191552
43

Derek Bruening and Saman Amarasinghe. Maintaining consistency and bounding capacity of
software code caches. In Proceedings of the 3rd Annual IEEE/ACM International Symposium on
Code Generation and Optimization, CGO ’05, pages 74–85, San Jose, CA, USA, March 2005.
DOI: 10.1109/CGO.2005.19 46, 47

Derek Bruening and Vladimir Kiriansky. Process-shared and persistent code caches. In Proceedings
of the 4th Annual ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, VEE ’08, pages 61–70, Seattle, WA, USA, March 2008. DOI: 10.1145/1346256.1346265
8

60 BIBLIOGRAPHY

Derek Bruening, Evelyn Duesterwald, and Saman Amarasinghe. Design and implementation of
a dynamic optimization framework for windows. In Proceedings of the 4th ACM Workshop on
Feedback-Directed and Dynamic Optimization, FDDO-4, Austin, TX, USA, December 2001. 42,
52

Derek Bruening,Timothy Garnett,and Saman Amarasinghe. An infrastructure for adaptive dynamic
optimization. In Proceedings of the 1st Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’03, pages 265–275, San Francisco, CA, USA, March 2003.
DOI: 10.1109/CGO.2003.1191551 58

Derek Bruening, Vladimir Kiriansky, Timothy Garnett, and Sanjeev Banerji. Thread-shared soft-
ware code caches. In Proceedings of the 4th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, CGO ’06, pages 28–38, New York, NY, USA, March 2006.
DOI: 10.1109/CGO.2006.36 49

Derek L. Bruening. Efficient, Transparent and Comprehensive Runtime Code Manipulation. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, September 2004. 52, 58

Bryan Buck and Jeffrey K. Hollingsworth. An api for runtime code patching. Interna-
tional Journal of High Performance Computing Applications, 14(4):317–329, November 2000.
DOI: 10.1177/109434200001400404 39, 55

Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David Gillies. Mojo: A dynamic optimization
system. In Proceedings of the 4th ACM Workshop on Feedback-Directed and Dynamic Optimization,
FDDO-4, pages 81–90, Austin, TX, USA, December 2000. 55

Cristina Cifuentes, Brian Lewis, and David Ung. Walkabout: A retargetable dynamic binary trans-
lation framework. Technical Report SMLI TR-2002-106, Mountain View, CA, USA, 2002.
55

Bob Cmelik and David Keppel. Shade: A fast instruction-set simulator for execution profiling.
In Proceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of Com-
puter Systems, SIGMETRICS ’94, pages 128–137, Nashville, TN, USA, May 1994. ACM.
DOI: 10.1145/183018.183032 55

Derek Davis and Kim Hazelwood. Improving region selection through loop completion. In Pro-
ceedings of the ASPLOS Workshop on Runtime Environments/Systems, Layering, and Virtualized
Environments, RESoLVE ’11, Newport Beach, CA, USA, March 2011. 44

Dean Deaver, Rick Gorton, and Norm Rubin. Wiggins/redstone: An on-line program specializer.
In IEEE Hot Chips XI, 1999. 55

James C. Dehnert, Brian K. Grant, John P. Banning, Richard Johnson, Thomas Kistler, Alexander
Klaiber, and Jim Mattson. The transmeta code morphing software: Using speculation, recov-
ery, and adaptive retranslation to address real-life challenges. In Proceedings of the 1st Annual

BIBLIOGRAPHY 61

IEEE/ACM International Symposium on Code Generation and Optimization, CGO ’03, pages 15–
24, San Francisco, CA, USA, March 2003. DOI: 10.1109/CGO.2003.1191529 31, 38, 47, 55

Giuseppe Desoli, Nikolay Mateev, Evelyn Duesterwald, Paolo Faraboschi, and Joseph A. Fisher.
Deli: A new run-time control point. In Proceedings of the 35th Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, MICRO-35, pages 257–268, Istanbul, Turkey, 2002.
DOI: 10.1109/MICRO.2002.1176255 55

Balaji Dhanasekaran and Kim Hazelwood. Improving indirect branch translation in dynamic binary
translators. In Proceedings of the ASPLOS Workshop on Runtime Environments/Systems, Layering,
and Virtualized Environments, RESoLVE ’11, Newport Beach, CA, USA, March 2011. 44

Evelyn Duesterwald and Vasanth Bala. Software profiling for hot path prediction: Less is more. In
Proceedings of the 12th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’00, pages 202–211, Cambridge, MA, USA, October 2000.
DOI: 10.1145/356989.357008 43

Kemal Ebcioğlu and Erik R. Altman. Daisy: dynamic compilation for 100% architectural compat-
ibility. In Proceedings of the 24th Annual International Symposium on Computer Architecture, ISCA
’97, pages 26–37, Denver, CO, USA, 1997. ACM. DOI: 10.1145/384286.264126 55

Andrew Edwards, Amitabh Srivastava, and Hoi Vo. Vulcan: Binary transformation in a distributed
environment. Technical Report MSR-TR-2001-50, Microsoft Research, April 2001. 55

Apala Guha, Kim Hazelwood, and Mary Lou Soffa. Reducing exit stub memory consumption
in code caches. In Proceedings of the International Conference on High-Performance Embed-
ded Architectures and Compilers, HiPEAC ’07, pages 87–101, Ghent, Belgium, January 2007.
DOI: 10.1007/978-3-540-69338-3_7 44

Apala Guha, Kim Hazelwood, and Mary Lou Soffa. Balancing memory and performance through
selective flushing of software code caches. In Proceedings of the International Conference on Com-
pilers, Architectures and Synthesis for Embedded Systems, CASES ’10, pages 1–10, Scottsdale, AZ,
USA, October 2010a. DOI: 10.1145/1878921.1878923 45

Apala Guha,Kim Hazelwood,and Mary Lou Soffa. Dbt path selection for holistic memory efficiency
and performance. In Proceedings of the 6th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, VEE ’10, pages 145–156, Pittsburgh, PA, USA, March 2010b.
DOI: 10.1145/1837854.1736018 44

Kim Hazelwood. Code Cache Management in Dynamic Optimization Systems. PhD thesis, Harvard
University, Cambridge, MA, USA, May 2004. 46

62 BIBLIOGRAPHY

Kim Hazelwood and Robert Cohn. A cross-architectural framework for code cache manipulation.
In Proceedings of the 4th Annual IEEE/ACM International Symposium on Code Generation and Opti-
mization, CGO ’06, pages 17–27, New York, NY, USA, March 2006.DOI: 10.1109/CGO.2006.3
47

Kim Hazelwood and Artur Klauser. A dynamic binary instrumentation engine for the arm
architecture. In Proceedings of the International Conference on Compilers, Architectures, and
Synthesis for Embedded Systems, CASES ’06, pages 261–270, Seoul, Korea, October 2006.
DOI: 10.1145/1176760.1176793 13

Kim Hazelwood and James E. Smith. Exploring code cache eviction granularities in dynamic
optimization systems. In Proceedings of the 2nd Annual IEEE/ACM International Symposium on
Code Generation and Optimization, CGO ’04, pages 89–99, Palo Alto, CA, USA, March 2004.
DOI: 10.1109/CGO.2004.1281666 45

Kim Hazelwood and Michael D. Smith. Characterizing inter-execution and inter-application op-
timization persistence. In Proceedings of the Workshop on Exploring the Trace Space for Dynamic
Optimization Techniques, pages 51–58, San Francisco, CA, USA, June 2003. 8

Kim Hazelwood and Michael D. Smith. Managing bounded code caches in dynamic binary op-
timization systems. Transactions on Code Generation and Optimization, 3(3):263–294, September
2006. DOI: 10.1145/1162690.1162692 42, 46

Kim Hazelwood, Greg Lueck, and Robert Cohn. Scalable support for multithreaded applica-
tions on dynamic binary instrumentation systems. In Proceedings of the ACM International
Symposium on Memory Management, ISMM ’09, pages 20–29, Dublin, Ireland, June 2009.
DOI: 10.1145/1542431.1542435 51

David J.Hiniker,Kim Hazelwood,and Michael D.Smith. Improving region selection in dynamic op-
timization systems. In Proceedings of the 38th Annual International Symposium on Microarchitecture,
MICRO-38,pages 141–154,Barcelona,Spain,November 2005.DOI: 10.1109/MICRO.2005.22
43

Jason D. Hiser, Daniel Williams, Wei Hu, Jack W. Davidson, Jason Mars, and Bruce R. Childers.
Evaluating indirect branch handling mechanisms in software dynamic translation systems. In
Proceedings of the 5th Annual IEEE/ACM International Symposium on Code Generation and Opti-
mization, CGO ’07, pages 61–73, San Jose, CA, USA, March 2007. DOI: 10.1109/CGO.2007.10
44

Raymond J. Hookway and Mark A. Herdeg. Digital FX!32: Combining emulation and binary
translation. Digital Technical Journal, pages 3–12, February 1997. 38

Galen Hunt and Doug Brubacher. Detours: Binary interception of win32 functions. In Proceedings
of the 3rd USENIX Windows NT Symposium, pages 135–143, Seattle, WA, USA, July 1999. 39

BIBLIOGRAPHY 63

Aamer Jaleel, Robert S. Cohn, Chi-Keung Luk, and Bruce Jacob. Cmp$im: A Pin-based on-the-fly
single/multi-core cache simulator. In Proceedings of the 2008 Workshop on Modeling, Benchmarking
and Simulation, MOBS ’08, Beijing, China, June 2008. 34

Rahul Joshi, Michael D. Bond, and Craig Zilles. Targeted path profiling: Lower overhead path
profiling for staged dynamic optimization systems. In Proceedings of the 2nd Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO ’04, pages 239–250, Palo
Alto, CA, USA, March 2004. 43

Minjang J. Kim, Chi-Keung Luk, and Hyesoon Kim. Prospector: Discovering parallelism via dy-
namic data-dependence profiling. Technical Report TR-2009-001, Georgia Institute of Tech-
nology, 2009. 23

Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure execution via program shep-
herding. In Proceedings of the 11th USENIX Security Symposium, pages 191–206, San Francisco,
CA, USA, August 2002. 29

James R. Larus and Eric Schnarr. Eel: machine-independent executable editing. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’95,
pages 291–300, La Jolla, CA, USA, 1995. ACM. DOI: 10.1145/223428.207163 55

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven
Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building customized program analysis
tools with dynamic instrumentation. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’05, pages 190–200, Chicago, IL, USA, June
2005. DOI: 10.1145/1065010.1065034 58

Jonas Maebe, Michiel Ronsse, and Koen De Bosschere. Diota: Dynamic instrumentation, optimiza-
tion, and transformation of applications. In Proceedings of the 4th Workshop on Binary Translation,
WBT ’02, Charlottesville, VA, USA, September 2002. 55

Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav Hållberg,
Johan Högberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner. Simics: A full system
simulation platform. IEEE Computer, 35(2):50–58, February 2002. DOI: 10.1109/2.982916 55

Duane Merrill and Kim Hazelwood. Trace fragment selection within method-based JVMs.
In Proceedings of the 4th Annual ACM SIGPLAN/SIGOPS International Conference on Vir-
tual Execution Environments, VEE ’08, pages 41–50, Seattle, WA, USA, March 2008.
DOI: 10.1145/1346256.1346263 44

Tipp Moseley, Alex Shye, Vijay Janapa Reddi, Dirk Grunwald, and Ramesh V. Peri. Shadow profil-
ing: Hiding instrumentation costs with parallelism. In Proceedings of the 5th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO ’07, San Jose, CA, USA,
March 2007. DOI: 10.1109/CGO.2007.35 53

64 BIBLIOGRAPHY

Satish Narayanasamy, Cristiano Pereira, Harish Patil, Robert Cohn, and Brad Calder. Auto-
matic logging of operating system effects to guide application-level architecture simulation.
In Proceedings of the Joint International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’06/Performance ’06, pages 216–227, Saint Malo, France, June 2006.
DOI: 10.1145/1140103.1140303 24

Nicholas Nethercote. Dynamic Binary Analysis and Instrumentation. PhD thesis, University of
Cambridge, Cambridge, U.K., November 2004. 58

Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic binary
instrumentation. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’07, pages 89–100, San Diego, CA, USA, June 2007.
DOI: 10.1145/1273442.1250746 58

Heidi Pan, Krste Asanovic, Robert Cohn, and Chi-Keung Luk. Controlling program execution
through binary instrumentation. In Proceedings of the Workshop on Binary Instrumentation and
Applications,WBIA ’05, St. Louis, MO, USA, September 2005. DOI: 10.1145/1127577.1127587
48

Harish Patil, Robert Cohn, Mark Charney, Rajiv Kapoor, Andrew Sun, and Anand Karunanidhi.
Pinpointing representative portions of large intel itanium programs with dynamic instrumenta-
tion. In Proceedings of the 37th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-37, pages 81–92, Portland, OR, USA, December 2004.
DOI: 10.1109/MICRO.2004.28 32

Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie. PinPlay: A
framework for deterministic replay and reproducible analysis of parallel programs. In Proceedings
of the 8th Annual IEEE/ACM International Symposium on Code Generation and Optimization,CGO
’10, pages 2–11, Toronto, Ontario, Canada, April 2010. DOI: 10.1145/1772954.1772958 24

Vijay Janapa Reddi, Dan Connors, Robert Cohn, and Michael D. Smith. Persistent code caching:
Exploiting code reuse across executions and applications. In Proceedings of the 5th Annual Inter-
national IEEE/ACM Symposium on Code Generation and Optimization, CGO ’07, pages 74–88,
San Jose, CA, USA, March 2007. DOI: 10.1109/CGO.2007.29 8

Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank Levy, Brian Bershad,
and Brad Chen. Instrumentation and optimization of win32/intel executables using etch. In
Proceedings of the USENIX Windows NT Workshop,Seattle,WA,USA,1997.USENIX Association.
55

Kevin Scott, Naveen Kumar, Siva Velusamy, Bruce Childers, Jack W. Davidson, and Mary Lou
Soffa. Retargetable and reconfigurable software dynamic translation. In Proceedings of the 1st
Annual IEEE/ACM International Symposium on Code Generation and Optimization, CGO ’03,
pages 36–47, San Francisco, CA, USA, March 2003. DOI: 10.1109/CGO.2003.1191531 45, 55

BIBLIOGRAPHY 65

Alex Skaletsky, Tevi Devor, Nadav Chachmon, Robert S. Cohn, Kim Hazelwood, Vladimir
Vladimirov, and Moshe Bach. Dynamic program analysis of microsoft windows applications.
In Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Soft-
ware, ISPASS ’10, pages 2–12, White Plains, NY, USA, March 2010.
DOI: 10.1109/ISPASS.2010.5452079 41, 52

James E. Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems and Processes. Morgan
Kaufmann, June 2005. 2, 58

Swaroop Sridhar, Jonathan S. Shapiro, Eric Northup, and Prashanth P. Bungale. HDTrans: An
open source, low-level dynamic instrumentation system. In Proceedings of the 2nd Annual ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, VEE ’06, pages
175–185, Ottawa, Ontario, Canada, June 2006. DOI: 10.1145/1134760.1220166 55

Amitabh Srivastava and Alan Eustace. Atom: a system for building customized program anal-
ysis tools. In Proceedings of the ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’94, pages 196–205, Orlando, FL, USA, June 1994. ACM.
DOI: 10.1145/989393.989446 55

Gang-Ryung Uh, Robert Cohn, Bharadwaj Yadavalli, Ramesh Peri, and Ravi Ayyagari. Analyzing
dynamic binary instrumentation overhead. In Proceedings of the Workshop on Binary Instrumentation
and Applications, WBIA ’06, San Jose, CA, USA, October 2006. 4

Steven Wallace and Kim Hazelwood. SuperPin: Parallelizing dynamic instrumentation for real-
time performance. In Proceedings of the 5th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, CGO ’07, pages 209–217, San Jose, CA, USA, March 2007.
DOI: 10.1109/CGO.2007.37 52

Emmett Witchel and Mendel Rosenblum. Embra: Fast and flexible machine simulation. In
Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’96, pages 68–79, Philadelphia, PA, USA, 1996. ACM.
DOI: 10.1145/233008.233025 55

Xiaolan Zhang, Zheng Wang, Nicholas Gloy, J. Bradley Chen, and Michael D. Smith. System
support for automatic profiling and optimization. In Proceedings of the Sixteenth ACM Sympo-
sium on Operating Systems Principles, SOSP ’97, pages 15–26, Saint Malo, France, 1997. ACM.
DOI: 10.1145/268998.266640 55

Qin Zhao, Ioana Cutcutache, and Weng-Fai Wong. Pipa: Pipelined profiling and analysis on
multicore systems. ACM Transactions on Architecture and Code Optimization, 7(3):13:1–13:29,
December 2010. DOI: 10.1145/1880037.1880038 53

67

Author’s Biography

KIM HAZELWOOD
Kim Hazelwood is an Assistant Professor of Computer Science
at the University of Virginia and a faculty consultant for Intel
Corporation. She works at the boundary between hardware and
software, with research efforts focusing on computer architecture,
run-time optimizations, and the implementation and applications
of process virtualization systems. She received the Ph.D. degree
from Harvard University in 2004. Since then, she has become
widely known for her active contributions to the Pin dynamic in-
strumentation system, which allows users to easily inject arbitrary
code into existing program binaries at run time (www.pintool.
org). Pin is widely used throughout industry and academia to
investigate new approaches to program introspection, optimiza-

tion, security, and architectural design. It has been downloaded over 50,000 times and cited in over
800 publications since it was released in July 2004. Kim has published over 40 peer-reviewed articles
related to computer architecture and virtualization. She has served on over two dozen program com-
mittees, including ISCA,PLDI,MICRO,OSDI,and PACT,and was a program chair of CGO 2010.
Kim is the recipient of numerous awards, including the FEST Distinguished Young Investigator
Award for Excellence in Science and Technology, an NSF CAREER Award, a Woodrow Wilson
Career Enhancement Fellowship, the Anita Borg Early Career Award, an MIT Technology Re-
view “Top 35 Innovators under 35 Award”, and research awards from Microsoft, Google, NSF, and
the SRC. Her research has been featured in MIT Technology Review, Computer World, ZDNet,
EE Times, and Slashdot.

