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Passive Components

 

1.0  Introduction

 

In this chapter, we examine the properties of passive components commonly used in RF 
work. Because parasitic effects can easily dominate behavior at GHz frequencies, our 
focus is on the development of simple analytical models for parasitic inductance and 
capacitance of various discrete components.

 

2.0  Resistors

 

Even a component as simple as a resistor exhibits complex behavior at high frequencies. 
We may construct a very simple model by acknowledging first that current flows in both 
the connecting leads and the resistor proper. The energy stored in the magnetic field asso-
ciated with that current implies the presence of some series inductance (typically about 
0.5nH/mm for leads in axial packages, as a rough approximation

 

1

 

). In addition, there is 
necessarily some capacitance that shunts the resistor as well, since we have a conductor 
pair separated by a distance. The simplest (but by no means unique) RF lumped circuit 
model for a physical resistor might then appear as follows:

 

FIGURE 1. Simple lumped RF resistor model

 

The presence of parasitic inductance and capacitance causes the impedance to depart from 
a pure, frequency-independent resistance. Very low values of resistance suffer from an 
early impedance increase, starting approximately at a frequency where the reactance of the 
series inductance becomes significant compared with the resistance. Similarly, high resis-
tances suffer a premature impedance decrease from the shunt capacitance. The frequency 
range over which the impedance remains roughly constant (at least for our simple model) 
is maximized for some intermediate (and definite) resistance value. As one might suspect 
from transmission line theory, this magic value is simply given by

 

. (1)

 

1.  For various equations for inductance and capacitance, see Chapter 2 of T. Lee, 

 

The Design of CMOS 
Radio-Frequency Integrated Circuits

 

, Cambridge University Press, 1998.
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The formal derivation of Eqn. 1 (which we will not carry out here) begins by writing an 
expression for the impedance magnitude, and then solving for the condition of maximal 
flatness by maximizing the number of derivatives whose value is zero at zero frequency

 

2

 

. 
If the resistor value is smaller than 

 

Z

 

0

 

, the impedance of our model only rises, with a 
radian corner frequency given approximately by 

 

R

 

/

 

L

 

. If the resistance exceeds 

 

Z

 

0

 

, the 
impedance initially drops, with a corner frequency of roughly 1/

 

RC

 

. If the resistance 
equals 

 

Z

 

0

 

, the bandwidth 

 

f

 

max

 

 

 

over which the impedance remains approximately constant 
is given by the resonant frequency of the 

 

LC

 

 combination. The smaller the 

 

LC

 

 product, the 
greater the frequency range over which the resistor looks approximately resistive.

For reference, typical model parameter values for some representative resistors are given 
in the following table. Note that the maximally-flat impedance levels are in the range of 
100-200

 

Ω

 

. That is yet another reason why transmission line impedances tend not to be far 
removed from that range of values.

Note that the values for 

 

Z

 

0

 

 are all in excess of typical line impedances (such as 50

 

Ω

 

). If, 
for example, we are to provide terminations for a 50

 

Ω

 

 line, then the largest bandwidth is 
obtained with a parallel combination of several devices, rather than with a single 50

 

Ω

 

 
resistor. Four 1/4W resistors of 200 ohms each will do a very good job of providing a 50

 

Ω

 

 
termination over a bandwidth in excess of 1GHz. Similarly, a parallel combination of 
0805 surface mount resistors will provide an excellent termination over a bandwidth in 
excess of 10GHz. The table also shows why conventional resistors (particularly the 1/2W 
variety) are rarely used in microwave work. If higher power terminations are required, it is 
preferable to make them out of parallel combinations of lower-power, higher-frequency 
resistors for operation over the largest bandwidth.

As an aside, the numerical identifiers for surface mount components convey something 
about the physical dimensions. Within truncation errors, the first pair of numbers is four 

 

2.  Lee, op. cit. As mentioned there, it is often easier to carry out this procedure on the square of the magni-
tude.

 

TABLE 1. Approximate element values for simple lumped RF resistor model

 

Resistor type

 

L C Z

 

0

 

f

 

max

 

0.5W axial-lead (3cm total 
length)

15nH 0.5pF 170

 

Ω

 

1.8GHz

0.25W axial-lead (2cm 
total length)

10nH 0.25pF 200

 

Ω

 

3.2GHz

Type 0805 surface mount 1nH 0.06pF

 

130Ω

 

20GHz
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times the length in millimeters, while the second pair is four times the width. Some com-
mon sizes are shown in the following table, along with their power dissipation levels:

To convey an idea of the parasitics associated with these packages, consider the largest 
size listed in the table, the 2512, whose 6.4x3.2x3.2 dimensions are associated with 
~2.5nH parasitic inductance and ~0.18pF shunt capacitance. If measured values are 
unavailable, one may estimate the series inductance for the other packages with the aid of 
the following equation for the inductance of an infinitesimally thin flat sheet:

 

. (2)

 

This formula is appropriate because the resistive material is almost always a flat, thin layer 
deposited on the top surface of a much thicker insulating substrate (even for “thick film” 
resistors). For the aspect ratios typically encountered in low-power surface mount compo-
nents, the inductance is usually in the range of 0.2-0.5nH/mm.

One uses this formula twice to estimate the total parasitic inductance. One component of 
the total inductance is that of the main body, so its length and width are first plugged into 
the equation. To this (usually) dominant term, one must also add the inductance due to the 
flat vertical portions that contact the ends of component, with the height now replacing the 
width in Eqn. 2. The solder meniscus effectively thickens these vertical stubs, however, so 
it isn’t quite fair to use the full inductance of each vertical section. As an arbitrary choice, 
1/2 to 2/3 of the computed value of the vertical stubs is not an unreasonable factor. Using 
the former factor, we estimate an inductance of about 2.6-2.7nH for the 2512 package, in 
reasonably good agreement with measurements.

Note that the inductance per length here is considerably lower than the 1nH/mm rule of 
thumb that typically applies to round component leads. The reason is that the thick and 

 

TABLE 2. Some surface mount resistor packages and characteristics

 

Package
Dimensions 
(mm x mm)

P

 

diss

 

 (mW)
Approx. min. 
capacitance 

(pF)

 

0402 1x0.5 60 0.03

0603 1.6x0.8 60 0.05

0805 2x1.25 100 0.06

1206 3.2x1.6 125 0.09

1210 3.2x2.5 250 0.12

1812 4.5x3.2 500 0.16

2512 6.4x3.2 1W 0.18

Lsheet
µl

2π
0.5ln

2l

w 
  w

3l
+≈
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wide shape of the surface mount components spreads out the magnetic field lines, thereby 
reducing flux density and, hence, inductance.

Estimating the capacitance of this type of structure is somewhat complicated, both 
because of the dominance of fringing and because the value when mounted on a PC board 
will generally differ from that measured in isolation with no other dielectrics nearby. 
Compounding this difficulty is the variability of the dielectric material which forms the 
body of the resistor. Despite all of these issues, we can offer a cheesy approximation based 
on the formula for the capacitance per length of a dipole antenna made out of a cylindrical 
conductor (see the chapter on antennas for a derivation):

 

. (3)

 

This equation yields an estimate of the capacitance (per length) between ground and a 
conductor of length 

 

l

 

 and radius 

 

r

 

. Table 2 provides approximate minimum shunt capaci-
tance values based on this simple (and admittedly simple-minded) equation. These values 
are a rough lower bound, and assume (among other things) a unit dielectric constant and 
no additional metal pads, etc. The capacitances will be boosted by the dielectric constant 
of the package, as well as that of FR4. Even so, the values in Table 2 are not terribly far off 
from values typically observed experimentally (typically within a factor of 1.5), because 
external fringing dominates.

This approximate method may be used to estimate package parasitic capacitances of sur-
face mount inductors, as well as those of ordinary components of circular cross-section. 
Just remember that package parasitics may account for only a part of the total; some para-
sitics may arise internally (e.g., turn to turn winding capacitance in inductors). The com-
puted package capacitance is therefore an estimate of a lower bound on the parasitic 
capacitance.

As a final comment, note that many axial-lead resistors are based on a carbon composi-
tion, which consists of a resistive powder formed into a cylindrical shape. Unfortunately 
such resistors can exhibit significant 1/

 

f

 

 noise, with a power spectral density proportional 
to the dc bias current flowing through the resistor. Carbon film resistors are substantially 
better in this regard, while metal film resistors are even better. Although the 1/

 

f

 

 corners are 
generally well below the RF range, one must be aware that oscillators can upconvert low 
frequency noise into phase noise near the carrier.

 

3

 

 Thus, even though 1/

 

f

 

 noise is usually 
not an issue in circuits such as RF amplifiers, it cannot be completely neglected in all RF 
circuits. Fortunately, surface-mount resistors are generally of the film variety.

 

3.  Lee, op. cit.

C
1

c2
µ0

2π
ln

2l

r 
  0.75−

2πε0

ln
2l

r 
  0.75−

5.56
11−×10

ln
2l

r 
  0.75−

≈ ≈ ≈
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3.0  Capacitors

 

Many different dielectric materials are used in an effort to satisfy the numerous conflicting 
demands made on capacitor performance. Trade-offs among breakdown voltage, tempera-
ture coefficient, RF loss, and capacitance density inevitably lead to the many types of 
capacitors presently available. Space does not permit an encyclopedic review of all capac-
itor types, so we focus only on those that are commonly encountered in high frequency 
circuits.

The lowest-loss capacitors are made with air (or vacuum) as the dielectric. Higher densi-
ties with low loss may be obtained with mica (a naturally occurring mineral) and polysty-
rene. Although polystyrene has excellent electrical properties, it possesses an 
unfortunately low melting point, which limits use to temperatures below 85

 

°

 

C. One must 
consequently exercise great care in soldering. PTFE is also an exceptionally low loss 
dielectric, as noted earlier. Because of the expense of fabricating good thin films of PTFE, 
however, capacitors made with it tend to have rather large dielectric thicknesses, leading 
to low capacitance densities (but very high breakdown voltages).

Ceramic capacitors themselves come in a number of varieties, distinguished by the charac-
teristics of their dielectrics. To keep track of the many permutations, the Electronics Indus-
try Association has settled on a three-character nomenclature. The first character is a letter 
that indicates the minimum operating temperature. The second character is a number that 
indicates the maximum temperature, and the third character is a letter that conveys the 
maximum capacitance change over the entire operating temperature range. The particulars 
are shown in the following table:

For example, a capacitor with a designation of X7R exhibits at most a 

 

±

 

15% capacitance 
variation over an operating temperature range of –55

 

°

 

C to +125

 

°

 

C.

Although a zero temperature coefficient is most commonly desired, there are important 
instances in which one wants instead a nonzero TC of a specified value. Oscillators are 

 

TABLE 3. Capacitor codes (EIA)

 

Min. 
temp. (

 

°

 

C)
Max. 

temp. (

 

°

 

C)

Max. % cap. 
change over 
temp. range

Max. % cap. 
change over 
temp. range

 

X: –55 3: +45 A: 

 

±

 

1 P: 

 

±

 

10

Y: –30 4: +65 B: 

 

±

 

1.5 R: 

 

±

 

15

Z: +10 5: +85 C: 

 

±

 

2.2 S: 

 

±

 

22

6: +105 D: 

 

±

 

3.3 T: –33, +22

7: +125 E: 

 

±

 

4.7 U: –56, +22

F: 

 

±

 

7.5 V: –82, +22
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one example; inductors typically exhibit a positive TC

 

4

 

, so capacitors possessing a com-
pensating negative TC are needed to produce an oscillation frequency with an overall zero 
TC. The characteristics of capacitors with controlled TC are identified by the letter N (for 
“negative”) or, more rarely, the letter P (yes, for positive), followed by the maximum TC 
magnitude in ppm per degree C. A designation of N750 thus represents a capacitor with a 
–750ppm/

 

°

 

C temperature coefficient. Just to make things confusing, however, there is an 
alternate system of codes that conveys the same information. Designed to save space for 
printing on small components, the three-digit EIA code unfortunately does not directly 
convey numerical information about the actual TC. The following table provides the nec-
essary translation between the two labeling conventions:

The first letter in the 3-digit TC convention conveys information about the TC’s significant 
digits. The values are a subset of the values of standard resistors. For example, one can 
discern from the table that P = 1.5, R = 2.2, S = 3.3, T = 4.7, and U = 7.5. The middle digit 
of the code is the exponent. The NP0 designation (C0G) stands for “negative-positive-
zero” and refers to the characteristics of a composite of negative- and positive-TC materi-
als to yield a nominally zero TC (typically, a maximum of 

 

±

 

30ppm/

 

°

 

C).

 

5

 

 The capacitance 
thus stays within approximately 0.15% of the nominal value over the military temperature 
range (–55

 

°

 

C to 125

 

°

 

C). Capacitance values of up to about 10nF are available in the stan-
dard surface mount package sizes. The loss of NP0/C0G is the lowest of the standard 
types, with peak 

 

Q

 

 values in excess of 500-600 at low frequencies. This material also 
exhibits a low voltage coefficient.

Other commonly used materials include the somewhat less stable, but higher dielectric 
constant, X7R ceramic. Surface mount types with values up to about 100nF are available. 
As mentioned earlier the capacitance might vary as much as 

 

±

 

15% over the military tem-
perature range. Unlike C0G, the capacitance decreases (roughly linearly) with increasing 
DC bias, with up to an additional 30% drop at the rated voltage. This variation with volt-
age is associated with the piezoelectric nature of the dielectric, and the nonlinear behavior 

 

4.  Consider that inductance is dimensionally proportional to length, and that most materials expand when 
heated. Thus, most physical inductors possess positive TCs.
5.  Note that these designations contain the numeral 0 and not the letter O.

 

TABLE 4. Capacitor TC codes

 

Older 
designation

Three-
digit EIA

Older 
designation

Three-
digit EIA

 

NP0 C0G N330 S2H

N033 S1G N470 T2H

N075 U1G N750 U2J

N150 P2G N1500 P3K

N220 R2G N2200 R3L
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can generate significant distortion when these capacitors are used in the signal path. In 
addition, most X7R formulations are two orders of magnitude lossier than C0G materials.

High-K (high dielectric constant) ceramics, such as Y5V, give us capacitors that are phys-
ically the smallest, but which suffer from extremely high TCs (e.g., up to an astounding 
80% drop in capacitance at zero bias over a temperature range of –30

 

°

 

C to 85

 

°

 

C), and 
losses that are a third of X7R. The voltage coefficient is also strongly negative, and one 
may expect a capacitance drop of up to 75% at the rated voltage. Such capacitances actu-
ally make effective mixers, so beware (or exploit this behavior). Furthermore, such dielec-
trics are piezoelectric to a surprising degree. It is not unusual for a sharp mechanical shock 
to generate spikes of volts (sometimes many tens of volts). Even if the spike does not 
cause direct damage to delicate circuitry, it should be obvious that the microphonic behav-
ior of high-K capacitors can lead to a host of objectionable problems, especially if con-
nected to sensitive circuit nodes and subjected to vibration (as in mobile applications). The 
most common use of these capacitors is therefore as supply bypasses, rather than in the 
signal path. Values up to about 1

 

µ

 

F are available in the standard surface mount packages.

One should not overlook the option of making capacitors with the PC board as the dielec-
tric. It is frequently convenient for trimming purposes to realize some part of a desired 
capacitance in PC board form to permit adjustment after fabrication. In any case, it’s a 
good idea to be aware of how much capacitance is associated with a given area of conduc-
tor, if for no other reason than to estimate layout parasitics. With FR4, one can expect 
about 5pF/cm

 

2

 

 with a 1/32” (0.8mm) thick substrate, or roughly 2.5F/cm

 

2

 

 on a 1/16” 
(1.6mm) substrate. The loss of FR4 is quite tolerable, being modestly better than that of 
X7R or Y5V. Still lower loss (and somewhat lower capacitance), of course, is obtained 
with a higher-quality board material, such as PTFE or RO4003. More discussion on the 
use of PC board traces for realizing capacitances and inductances is found in the chapter 
on microstrip.

Capacitor values are encoded as three digits stamped somewhere on the body (if the digits 
fit), followed by a letter that identifies the tolerance (see Table 5). The first two digits are a 
mantissa, and the third is an exponent. The implicitly understood unit is the picofarad.

 

TABLE 5. Capacitor tolerance codes (EIA)

 

Identifier Tolerance (pF) Tolerance (%)

 

B

 

±

 

0.1

C

 

±

 

0.25

D

 

±

 

0.5

E

 

±

 

25

F

 

±

 

1

 

±

 

1

H

 

±

 

2

J

 

±

 

5
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Hence, “221K” stands for a 220pF capacitor with 

 

±

 

10% tolerance, and “105M” stands for 
a 1

 

µ

 

F, 

 

±

 

20% capacitor. Occasionally, some other conventions are used, but this scheme is 
by far the most widespread. If in doubt, one can always verify a conjecture with an actual 
measurement.

Just as with resistors, parasitic effects cannot be ignored at radio frequencies. The simplest 
lumped RF model for real capacitors includes lead or terminal inductance (as before, this 
may be estimated as roughly 1nH/mm for round wire leads), and a resistive term to 
account for losses:

 

FIGURE 2. Simple lumped capacitor model 

 

The inductance for surface-mount packages can be estimated using Eqn. 2, as before.

The resistive term of the model accounts for the effect of at least two distinct mechanisms. 
One is the loss of the dielectric, and the other is conductor loss (which is exacerbated at 
high frequencies by skin effect). Loss is often characterized by either a dissipation factor, 

 

D

 

 (or, equivalently, a loss tangent, tan

 

δ

 

). Dissipation factor is simply the reciprocal of 

 

Q

 

, 
while loss tangent is defined as the ratio of the imaginary and real parts of the dielectric 
constant. Strictly speaking, loss tangent applies only to the dielectric material, but it is 
often used to include all losses in a capacitor. In this latter case, loss tangent is the same as 
the capacitor dissipation factor. The reason for these multiple ways of describing loss is 
cultural. Power electronics folks tend to think in terms of power factor (the cosine of the 
phase angle between voltage and current, which angle is the same as that of the imped-
ance), RF engineers generally think in terms of 

 

Q

 

, and materials scientists tend to focus on 
loss tangent (dissipation factor, 

 

D

 

).

The definition of power factor means that it is equal to the cosine of the arctangent of 

 

Q

 

 
(the proof is left to you, because it is obvious that you don’t have enough fun). For suffi-
ciently large 

 

Q

 

, the power and dissipation factors converge. For example, a 

 

Q

 

 value in 
excess of 7 assures an error of less than about 1%. For all capacitors worth using in the 
signal path, 

 

Q

 

 will certainly be large enough that one may take loss tangent and power fac-
tor to be equal in practice.

Given these definitions, the component of effective series resistance (ESR) due to dielec-
tric loss is

 

K

 

±

 

10

M

 

±

 

20

 

TABLE 5. Capacitor tolerance codes (EIA)

 

Identifier Tolerance (pF) Tolerance (%)

L RC
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. (4)

 

This formula is valid only at frequencies well below the series resonance. Clearly, ESR is 
a frequency dependent quantity, especially when skin-effect conductor loss is considered 
as well.

At frequencies well above resonance, the resistance becomes proportional to frequency 
because the inductive reactance dominates, leading to the following approximation:

 

. (5)

 

We can deduce several important facts from the series 

 

RLC

 

 model. Above the resonant fre-
quency of the network, the combination appears inductive, and the impedance therefore 
increases with frequency. The minimum impedance is reached at the resonant frequency. 
If a capacitor is used, say, as a power supply bypass, it is important to recognize that the 
quality of the bypassing will diminish at higher frequencies because of series inductance. 
Simply exhibiting inductive behavior need not preclude use, however, since the most rele-
vant quantity is the magnitude of the impedance. If this is sufficiently low, the capacitor 
can still act satisfactorily as a bypass element, even when operating above the resonant 
frequency.

As a rough calibration on the magnitudes of these parasitic elements, consider the follow-
ing table of parameters (at 100MHz):

In the table, the disc capacitor is assumed to have a total length (measured from the tip of 
one lead, through the disc body, to the tip of the other lead) of about 10mm. The 100MHz 
test frequency considerably exceeds the 17MHz self-resonant frequency in this case, so 
the effective series resistance is due more to the lead inductance, rather than to the intrin-
sic capacitance. By exerting a little effort to shorten lead length, it is possible both to 
increase the self-resonant frequency and reduce 

 

R

 

 by modest amounts.

It should be reiterated that loss is a strong function of both frequency and dielectric com-
position. Thus, the resistance values in Table 6 cannot be treated as universal constants. 
Your mileage may vary.

 

TABLE 6. Representative capacitors and lumped model parameters at 100MHz

 

Type

 

C L R SRF

 

Ceramic disc (C0G/NP0) 10nF 10nH 0.

 

5Ω

 

17MHz

0805 C0G/NP0 10nF ~1nH 0.03

 

Ω

 

50MHz

0805 C0G/NP0 100pF ~1nH 0.

 

25Ω

 

500MHz

R
D

ωC
≈

R DωL≈
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4.0  Inductors

 

We have already incorporated inductance in many of the foregoing equations in a piece-
meal manner. We now present a number of additional formulas for commonly-encoun-
tered geometries. In all that follows, the equations strictly apply only at DC, unless stated 
otherwise. At high frequencies, inductance drops because the shrinking of skin depth 
causes the contribution of internal flux to diminish. Fortunately, internal flux generally 
accounts for only a small percentage (e.g., below 5%) of the total, so its reduction does not 
cause dramatic changes in the overall inductance. Nonetheless, it is worthwhile avoiding 
unpleasant surprises by knowing explicitly what assumptions have gone into the deriva-
tions of formulas.

 

4.1  Flat sheets

 

We’ve already presented a formula for the inductance of a current sheet. We repeat it here 
so that all the inductance formulas are in one place for easy reference:

 

. (6)

 

4.2  Wire inductors

 

It is frequently desirable to know the inductance of lengths of conductor, either because 
parasitics need to be quantified, or because one desires to use the inductance as a circuit 
element. If we may neglect the influence of nearby conductors (i.e., if we assume that the 
return currents are infinitely far away), the DC inductance of a round wire is given by:

 

6

. (7)

 

For a 2mm long standard IC bondwire, this formula yields 2.00nH, leading to an oft-cited 
rule of thumb that the inductance of thin, round conductors is approximately 1nH/mm. 
Notice that the inductance does grow faster than linearly with length because there is 
mutual coupling between parts of the wire (i.e., there is a weak transformer action) with a 
polarity that aids the inductance. From the logarithmic term, however, we see that this 
effect is minor. For example, going from 5mm to 10mm changes the DC inductance per 
mm from 1.19nH to 1.33nH (at least according to Eqn. 7). The inductance is similarly 
insensitive to the wire diameter, so even the larger conductors found in discrete circuits 
possess inductances of the same general order (e.g., 0.5 nH/mm).

If there is a conducting plane nearby, defined loosely as closer than a distance approxi-
mately equal to the length of the wire, then the inductance will be noticeably lower than 

 

6.  

 

The ARRL Handbook

 

, American Radio Relay League, 1992, p. 2-18. The proximity of conducting planes 
may be ignored as long as they are located a distance away equal to one or two lengths, at minimum.

Lsheet
µl

2π
0.5ln

2l

w 
  w

3l
+≈ 2

7−
×10 l 0.5ln

2l

w 
  w

3l
+=

L
µ

o
l

2π
ln

2l

r 
  0.75−≈ 2

7−
×10 l ln

2l

r 
  0.75−=
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that given by Eqn. 7. Intuitively, this reduction comes about as follows. Current flowing in 
the wire (which may be thought of, say, as positive charges moving in the x-direction) 
induces an image current in the ground plane (e.g., negative charges also moving in the x-
direction). Opposite charges moving in the same direction are equivalent to two currents 
flowing in 

 

opposite

 

 directions, so their magnetic fields tend to cancel somewhat, leading to 
a reduction in magnetic flux. The closer the plane, the more dramatic the reduction in flux 
(and, therefore, in inductance).

 

4.3  Air-core solenoids

 

Although our focus is on components that may be realized in a largely planar universe, 
more inductance per volume can be obtained with a classic 3-D textbook structure: the 
single-layer solenoid:

 

FIGURE 3. Single-layer solenoid

 

Assuming that, unlike the inductor shown in the figure, the turns are tightly packed 
(“close-wound”), the inductance in 

 

microhenries

 

 is given by a famous formula presented 
by Wheeler in the late 1920s:

 

, (8)

 

where 

 

r

 

 and 

 

l

 

 are in 

 

inches

 

.

 

7

 

 In SI units, the formula is:

 

, (9)

 

where a free-space permeability is assumed. These formulas provide remarkable accuracy 
(typically better than 1%) for close-wound single-layer coils as long as the length is 
greater than the radius.

 

8

 

7.  H. A. Wheeler, “Simple Inductance Formulas for Radio Coils,” 

 

Proceedings of the IRE

 

, v. 16, no. 10, 
October, 1928, pp 1398-1400.

8.  As discussed later, the best 

 

Q

 

 is generally obtained when the winding pitch is approximately twice the 
wire diameter.

l

2r

n turns

L
n2r2

9r 10l+
≈

L
µon2πr2

l 0.9r+
≈
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For those interested in the origin of this famous and very widely used equation, its deriva-
tion begins with the standard undergraduate physics equation for an infinitely long sole-
noid. For any segment of length 

 

l

 

 of this infinite structure, the inductance in SI units is 
given by

 

, (10)

 

where 

 

A

 

 is the cross-sectional area of the solenoid and 

 

n

 

 is the number of turns contained 
in the segment under consideration. The important thing to note is that the inductance 
drops as the solenoid lengthens, all other parameters held constant.

The magnetic field strength along a finite-length solenoid naturally diminishes near the 
ends. The inductance therefore drops; the solenoid acts as if it were longer than its physi-
cal length. If the solenoid is very much longer than its radius, the finiteness is not felt as 
acutely. Thus, the correction for end effects is a function of the length-to-radius ratio. A 
famous paper by Nagaoka provides a table and curves for the correction factor, and later 
work by Grover provides an infinite series which may be truncated as necessary for a 
given level of accuracy. From these works one may discern that, as a first approximation, a 
simple estimate for the effective electrical length is the physical length, augmented by the 
radius. This ad hoc correction is similar to that for the fringing term in capacitors, and 
turns out to be surprisingly good:

 

. (11)

 

This formula is perfectly respectable, but more rigorous analysis reveals that it does 
underestimate the inductance slightly

 

9

 

. Wheeler’s formula does a better job simply by 
adding 90%, rather than 100%, of the radius to the length.

The effective shunt capacitance across the inductor terminals depends on the boundary 
conditions to a significant degree. For example, if one terminal is grounded, the effective 
capacitance is largely independent of the capacitance between adjacent turns. Rather, it 
depends more on external fringing. This latter capacitance is somewhat difficult to com-
pute analytically. To the best of the author’s knowledge, no analytical solution has ever 
been published. Consequently, the best we can offer here is a semi-empirical formula 
which assumes that the wire insulation has a relative dielectric constant close to unity, in 
addition to one grounded terminal. Within the validity of these assumptions, the effective 
shunt capacitance is approximately

 

10

 

9.  Actually, for rather loosely wound coils, the ad hoc approximation actually tends to do a bit better than 
Wheeler’s formula, because flux density dips in the space between the windings. The consequent reduction 
in inductance is small, but may be accounted for by treating it as an additional effective increase in length.

10.  This equation is based loosely on data and a formula due to Medhurst, 

 

Wireless Eng.

 

, Feb., 1947, pp. 35-
43, and March, 1947, pp. 80-92. The coefficients have been chosen to improve accuracy and reduce com-
plexity over Medhurst’s formula, as well as to employ SI units.

L µon2 A

l

µon2πr2

l
= =

L
µon2πr2

l r+
=
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. (12)

 

This equation matches Medhurst’s data within 5% for 

 

l

 

/

 

D

 

 values ranging from 0.1 to 50.

 

11

 

 
Note that the primary dependence is on the coil diameter, with a weaker dependence on 
total length. Hence, for a given value of inductance, the highest self-resonant frequencies 
tend to be obtained with coils possessing the smallest radii. Regrettably, the resulting coil 
form factor is generally at odds with the goal of maximizing 

 

Q

 

.

To obtain accurate estimates of the total shunt capacitance, one must be careful to account 
also for the capacitance associated with any length of ungrounded lead. For this purpose, 
one may use the formula for the capacitance of an isolated wire, repeated here for conve-
nience:

 

. (13)

 

One problem with solenoid structures is that they are not self-shielding. Unwanted, and 
very troublesome, coupling can therefore occur between the inductor and other parts of a 
circuit, with attendant negative performance implications. Cylindrical shields are thus 
often placed over such inductors. However, such a shield is uncomfortably similar to 
(actually, the same as) a shorted single-turn secondary transformer winding. To avoid seri-
ous reduction of inductance and 

 

Q

 

 from induced image currents (also known as eddy cur-
rents), the shield’s diameter should be at least twice that of the coil (and preferably more) 
to place the image currents a reasonably large distance away and render their effects negli-
gible.

An alternative is to use a toroidal inductor. Such a structure is magnetically (but not elec-
trostatically) self-shielding if the core material is of sufficiently high permeability. The 
magnetic flux will then be concentrated in the core, leaving little to leak out. Sadly, all 
known magnetic core materials are rather lossy at high frequencies, so toroids are widely 
used only at lower frequencies (e.g., typically well below a few hundred MHz).

Most manufacturers of toroids specify the core’s “

 

A

 

L

 

” value, which they often cite as 
some number of mH per 1000 turns. Unfortunately, that convention implies a linear 
dependence of inductance on the number of turns, and this often trips up the uninitiated 
(or the sleepy). A more rigorous unit would be nH/turns

 

2

 

, which uses the same numerical 
value as 

 

A

 

L

 

.

In addition to the inductance value and parasitic shunt capacitance, effective series resis-
tance is of great importance. To estimate it, one would be tempted quite naturally to make 
use of the skin effect formula. Unfortunately, that formula assumes a uniformly illumi-
nated semi-infinite block of conductor. In a solenoid, however, the conditions are quite 

 

11.  Medhurst claims much better accuracy for his formula, but in fact his maximum error is as large as 8%.

C πε0 0.4
l

D
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different: the magnetic field of one turn affects the current distribution of neighboring 
turns, so that the boundary conditions (and consequently, the effective cross-sectional 
areas) are considerably modified. Use of the skin effect formula therefore usually leads to 
rather gross errors. In particular, it predicts that 

 

Q

 

 should ultimately increase as the square-
root of frequency, since the inductive reactance increases linearly with frequency, while 
the skin resistance grows as its square-root. In reality, 

 

Q

 

 does increase approximately in 
this fashion only at the lower frequencies, then generally reaches a roughly constant value 
over a reasonably broad frequency range, before plummeting as resonance is approached. 
The broad constant range is due to eddy current losses in one turn induced by the current 
flowing in nearby turns. These losses increase approximately linearly with frequency, 
causing the ratio of inductive reactance to effective resistance to approach a constant 
value

 

12

 

. Then, as one approaches resonance, the net reactance plunges, causing 

 

Q

 

 to do so 
as well.

Now, we know that interaction among turns must be considerable, for if it were not, induc-
tance would grow only linearly, rather than quadratically, with the number of turns. It is 
this interaction that also explains the loss behavior, as well as why the maximum 

 

Q

 

 occurs 
for a particular turn-to-turn spacing: If the turns are too close together, the interaction 
greatly reduces the effective cross-sectional area, thereby increasing resistance. If the 
turns are too far apart, the total wire length increases, again increasing total winding resis-
tance. At some intermediate value of spacing, 

 

Q

 

 is maximized. A number of studies have 
shown that using a winding pitch approximately equal to twice the wire diameter, setting 
the solenoid length at approximately twice the diameter, and using the largest practical 
diameter allowed by, say, self-resonance criteria, produces the maximum 

 

Q

 

 for typical 
solenoids

 

13

 

. Fortunately, the optimum conditions are relatively flat, so the 

 

Q

 

 value 
achieved is not overly sensitive to departures from the optimum conditions.

Given the foregoing observations, one may apparently use a skin-effect based calculation 
only to establish a lower bound on the series resistance. Sadly, there is no simple general 
formula to predict the effective RF resistance for an arbitrary coil design, despite a consid-
erable number of efforts dating back to the 1920s. Readers are invited, even encouraged, 
to take up this problem and solve it. The best that exists presently is still perhaps the com-
plicated formula, involving multiple lookup tables, found in Terman’s classic, 

 

Radio Engi-
neer’s Handbook

 

. 

 

14

 

The last bit of data that might be useful in designing these coils concerns the properties of 
wire. The conductivity of pure copper is about 5.7x10

 

7

 

S/m. The diameter of bare copper 
wire is usually presented in tabular form, but a simple (though approximate) formula is

 

12.  Dielectric loss behaves similarly, and may contribute significantly to 

 

Q

 

 degradation if the electric field 
of the inductor permeates lossy dielectric materials.

13.  For a review of some of these studies, see 

 

RCA Radiotron Handbook

 

, 2nd ed., 1942. See also F.E. Ter-
man, 

 

Radio Engineer’s Handbook

 

, first edition, McGraw-Hill, 1943. Terman shows that the optimum pitch 
is actually a weak function of the length-to-diameter ratio. Since the optimum 

 

Q

 

 is itself not a strong func-
tion of pitch, the rule of thumb given is usually adequate.

14.  McGraw-Hill, first edition, 1943, pp. 77-83. The equations presented there are based largely on the 
extensive work of Butterworth in the late 1920s and early 1930s.
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, (14)

 

where the diameter 

 

D

 

 is in 

 

inches

 

, and 

 

AWG

 

 is the (American) wire gauge. This formula 
yields values correct to within about 2% for wires between 10 and 40 gauge, a range that 
spans the most commonly used sizes. Note that it implies a decrease in diameter by a fac-
tor of ten for every wire gauge increase of 20, so the relative behavior of the wire gauge on 
diameter is the same as that of voltage expressed in dB.

There is no correspondingly simple formula for enameled wire, but adding an arbitrary 
0.0045” to the values for bare wire yields diameters that are typically correct to approxi-
mately 5% or better. It should be mentioned that insulator thicknesses vary somewhat 
from manufacturer to manufacturer, so values calculated from these equations must be 
verified in all cases where it matters. These formulas are presented mainly as guides for 
back-of-the-envelope types of calculations.

 

4.4  Single loop

 

Another useful formula is for the inductance of a single loop. Despite the simplicity of the 
structure, there is no exact, closed-form expression for its inductance (elliptic functions 
arise in the computation of the total flux). However, a useful “cocktail napkin” approxima-
tion is given by:

 

. (15)

 

This formula tells us that a loop of 1mm radius has an inductance of approximately 4nH. 

In deriving this approximation, the flux density in the center of the loop is arbitrarily 
assumed to be one-half the average value in the plane of the loop, then the inductance is 
computed as simply the ratio of total flux to the current. In view of the rather coarse 
approximation involved, it is remarkable that the formula does as well as it typically does.

Note that, for a single turn and in the limit of zero length, Wheeler’s formula (Eqn. 8 and 
Eqn. 11) converges to within about 11% of 

 

µ

 

o

 

π

 

r

 

.

Much better accuracy is provided by the following equation, which takes into account a 
nonzero wire diameter as well as magnetic coupling among infinitesimal wire segments

 

15

 

:

 

, (16)

 

where 

 

a

 

 is the radius of the wire. With this equation, we see that Eqn. 14 strictly holds 
only for an 

 

r

 

/

 

a

 

 ratio of about 20.

 

15.  Ramo, Whinnery and Van Duzer, 

 

Fields and Waves in Modern Radio

 

, Wiley, 1965, p. 311.
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To make a crude approximation even more so, Eqn. 14 can be extended to non-circular 
cases by arguing that all loops with equal area have about the same inductance, regardless 
of shape. Thus, we may also write:

 

, (17)

 

where 

 

A

 

 is the area of the loop. A closed contour of one square centimeter area has an 
inductance of about 7nH according to this formula. This equation, very approximate as it 
is, turns out to be quite handy in estimating the magnitude of various component and lay-
out parasitics, as well as in evaluating the likely efficacy of proposed layout changes.

We can check the reasonableness of these equations by considering the inductance of a 
loop of extremely large radius. Since we can treat any suitably short segment of such a 
loop as if it were straight, we can use the equation for the inductance of a loop to estimate 
the inductance of a straight piece of wire.

We’ve already computed that a circular loop of 1mm radius has an inductance of 4nH, so 
we have roughly 4nH per 6.3mm length (circumference), which is in the same range as the 
value given by the more accurate formulas.

 

4.5  Magnetically coupled conductors

 

The magnetic fields surrounding conductors drop off relatively slowly with distance. As a 
result, there can be substantial magnetic coupling between adjacent (and even more 
remote) conductors. A measure of this coupling is the 

 

mutual

 

 inductance between them. 
For two infinitesimally thin round wires of equal length, this inductance is given approxi-
mately by:

 

, (18)

 

where 

 

l

 

 is the length of the wires, and 

 

D

 

 is the distance between them.

 

16

 

 For a 10mm 
length and a spacing of 1mm, the mutual inductance works out to about 4nH. Since the 
inductance of each wire in isolation is about 10nH, the 4nH mutual inductance represents 
a coupling coefficient of 40%. The logarithmic dependence of 

 

M

 

 on spacing means that 
the coupling decreases rather slowly with distance, so one must be aware of the possibility 
of unwanted coupling between non-adjacent conductors.

One model for coupled inductors is an inductive T-network in cascade with an ideal trans-
former:

 

16.  This formula is adapted from Terman, op. cit.
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FIGURE 4. Coupled inductors and circuit model

 

In this model, 

 

L

 

1

 

 and 

 

L

 

2

 

 are the values each inductor has with no current flowing in the 
other. Resistive losses, as well as parasitic capacitances, are not shown in the ideal model 
of Figure 4, but should be taken into account in critical designs.

 

5.0  Summary

 

We’ve seen that seemingly ordinary components must be modeled in progressively more 
sophisticated ways as frequency increases. Nominally simple components are seen to have 
important behaviors that may be ignored only at low frequencies. Even resistors, capaci-
tors and inductors must be treated as complicated impedances for proper design of micro-
wave circuits. As an aid to developing appropriate models, this chapter has presented 
numerous equations and rules of thumb for estimating parasitic inductance and capaci-
tance.
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Time Domain Reflectometry

 

1.0  Introduction

 

Both time- and frequency-domain characterizations provide comprehensive information 
about a system. The latter require the ability to generate and measure sinusoidal voltages 
and currents over a broad frequency range. The network analyzer, in either scalar or vector 
incarnations, is an example of such an instrument.

An alternative is to use time-domain methods to characterize a system. The principal tool 
of this type is the time-domain reflectometer (TDR), which is in essence a miniature radar 
system. The TDR launches a pulse (“the main bang”) into the device under test, and 
observes any echoes. The timing of a reflection with respect to the main bang indicates the 
location of a discontinuity, and the shape of the reflected pulse conveys important infor-
mation about its nature. With a reflectometer, then, one can quickly locate and characterize 
both resistive and reactive discontinuities (and evaluate their fixes). A network analyzer 
can provide this information as well, but requires considerably more labor to do so.

In this chapter, we study how a TDR works, and then show how to build a simple pulse 
generator that is a handy instrument in its own right. A small modification of the pulse 
generator yields a fast risetime step generator which can be used in conjunction with a fast 
oscilloscope to construct a surprisingly inexpensive TDR with sub-nanosecond capability.

 

2.0  Applications of TDRs

 

There are two primary applications of TDRs: finding and characterizing impedance dis-
continuities. These capabilities translate directly into the ability to correct defects and 
evaluate the quality of any compensation performed.

 

2.1  Locating discontinuities

 

A TDR consists of just two main modules: a pulse generator, and an oscilloscope:

 

FIGURE 1. Time domain reflectometer
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A pulse generator applies a fast risetime step to the device under test (DUT). A portion of 
the signal is tapped off and fed to an oscilloscope, whose sweep is synchronized with the 
step. The synchronizing signal is timed to allow the display of the voltage both a bit before 
the rising edge and well after.

A pulse’s risetime determines its spectral content and, hence, the bandwidth over which 
the TDR can perform a useful characterization. Similarly, the oscilloscope’s bandwidth 
must be consistent with the desired characterization bandwidth. A common rule of thumb 
is that the –3dB bandwidth of a step is related inversely to the 10-90% risetime as follows:

 

(1)

 

This relationship, although strictly correct only for single-pole systems, allows us to esti-
mate the performance requirements of a TDR system. For example, suppose we wish to 
characterize a transmission line up to 10GHz. Using our rule of thumb, we find that the 
TDR’s risetime must be shorter than about 35ps. The fastest commercially available TDRs 
are capable of characterizing systems beyond 50GHz, implying risetimes of under 7ps.

 

1

 

The risetime of the incident pulse determines not only the bandwidth over which the sys-
tem is characterized, but also the spatial resolution of the characterization. If a pulse 
reflects off of a discontinuity some distance 

 

x

 

d

 

 from the source, the total time taken in the 
round trip back to the source is

 

(2)

 

so that

 

(3)

 

where 

 

v

 

prop

 

 is the propagation velocity. Clearly, if the pulse’s risetime is too slow, then 
reflections will be obscured during the rising edge. Roughly speaking, the spatial resolu-
tion is approximately equal to the distance traveled during the risetime. The first reflecto-
meters were developed to locate faults in very long cables, where the ability to pin down 
the location of an open or short to within 100 meters or so suffices. Given that the speed of 
light along a typical cable is about 60-80% of the free space value, the corresponding 
delay is about 4ns per meter.  Risetimes in the range of hundreds of nanoseconds, imply-
ing bandwidths in the low MHz range, therefore can be satisfactory for such cable fault-
finding applications. The far faster sub-10ps risetimes cited earlier for today’s leading 
edge gear correspond to the ability to locate discontinuities to a resolution of a few milli-
meters in free space. Such risetimes and their corresponding spatial resolutions are much 
more compatible with the size of typical microwave circuit elements and modules.

 

1.  Here we are excluding systems that employ cryogenics and superconductors.
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It is not necessary to know the propagation velocity to locate a discontinuity, despite the 
seeming implications of Eqn. 3. With microstrip, for example, just run a finger along the 
line while observing the TDR trace. When the bump produced by your finger coincides 
with the bump produced by the discontinuity you’re trying to investigate, you’ve found it: 
the discontinuity will be right underneath your finger. (Of course this method should not 
be used if the TDR pulse is of an unusually high power!)

 

2.2  Characterizing discontinuities

 

One reason that the TDR is so valuable is that it conveys much more information than 
merely the location of discontinuities. That this is so is most directly understood from the 
relationship between the reflection coefficient and the termination impedance:

 

(4)

 

where 

 

Z

 

Ln

 

 is the normalized load impedance:

 

(5)

 

Note that the reflection coefficient is a complex quantity in general, possessing both a 
magnitude and phase (or real and imaginary part). It thus contains information about how 
the spectral components of the step response are modified in reflecting off of the disconti-
nuity. Note also that 

 

Γ

 

 contains similarly complete information about the load impedance 
(Eqn. 4 may be solved for 

 

Z

 

Ln

 

 in terms of 

 

Γ

 

). Adding the assumption of linearity allows us 
to bring to bear on the problem all of the powerful tools of linear system theory. In partic-
ular, finding the step response is a moldy staple of system theory, and that is precisely 
what the TDR displays. Even though we’ll start with a formal mathematical approach, 
we’ll quickly examine a few representative cases to extract physical insight to see how 
one might guess the correct answer for these and many other cases of practical relevance.

The response to any input is the sum of the input excitation as well as any reflection that 
arises. The reflection is merely 

 

Γ

 

 times the incident signal. Hence the transfer function that 
relates the total output to the input is

 

(6)

 

When using this equation, it’s important to keep track of the fact that the inverse Laplace 
transform of Eqn. 6 is only valid for times greater than the roundtrip time-of-flight,
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Before this time, the response is just the value of the input alone (e.g., one volt if we have 
assumed a unit step excitation).

Using these relationships, it is straightforward to determine the TDR traces for several 
commonly encountered cases. For example, consider open- and short-circuit loads. In 
those two cases, the normalized load impedances are infinite and zero, respectively, with 
corresponding values of two and zero for 

 

H

 

(

 

s

 

). Keeping in mind that these values apply 
only after the time-of-flight delay, the unit step responses thus appear as follows:

 

FIGURE 2. Idealized TDR trace for open, shorted and resistive loads

 

For resistive loads in between these two extremes, the step response will jump to some 
level between zero and 2V. If the load resistance is less than the characteristic impedance, 
the final value will be below 1V. If greater, the final value will lie between 1V and 2V; and 
if equal to 

 

Z

 

0

 

, no discontinuity will be observed.

Now consider the step response when reactive loads terminate a line. If the load element is 
a capacitance, then

 

(8)

 

This is simply the transfer function of a single-pole low-pass filter, whose step response 
should be familiar:

 

FIGURE 3. Idealized TDR trace of capacitively terminated transmission line

 

In like manner, the step response for any number of discontinuities can be readily deter-
mined. Without providing detailed derivations (which are left as a pleasant exercise for the 
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reader), here is a short catalog of simple, but practically relevant, discontinuities and their 
corresponding TDR traces:

 

FIGURE 4. Idealized TDR traces for several discontinuities (incident amplitude = 1V in all cases)
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The shapes of the TDR traces can be anticipated from purely physical arguments with a 
minimum of mathematics. In all of the reactive examples, there is only one time constant 
because we have considered only single-reactance loads. A single time constant implies a 
single exponential factor. An inductive termination (case a) appears initially as an open 
circuit, but ultimately acts as a short. The time constant of the exponential transition 
between these two conditions is the ratio of inductance to the effective resistance it sees 
(here, 

 

Z

 

0

 

). In case c, the inductance sees a total resistance of 2

 

Z

 

0

 

 (one 

 

Z

 

0

 

 each to the left 
and right), and the final value is 1V.

In case b, that of a series resistive discontinuity, the step response must jump up because 
the effective load resistance is the resistance as viewed from the discontinuity to the right. 
Here, that is the sum of 

 

R

 

 and 

 

Z

 

0

 

. A simple voltage divider equation yields the result 
shown in the figure (just remember that the open-circuit step amplitude is 2V).

Arguments similar to the foregoing can be used to sketch the TDR traces for the rest of the 
examples given.

In practice, the observed TDR traces will differ (perhaps greatly) from the idealized ones 
shown in the figure. The main difference is due to the finite risetime of the step excitation. 
If one considers a practical step to be the result of low-pass filtering an infinitely fast one, 
the actual TDR traces may be deduced by low-pass filtering the ideal traces through a filter 
whose step response has the same risetime as that of the actual step. This filter will slow 
down rising edges and cause a rounding of sharp corners.

 

2.3  Parameter extraction

 

Using our catalog of TDR traces, it is often possible to measure small inductances and 
capacitances, or even extract a more complex circuit model, from a measured step 
response. To do so requires that we consider explicitly how the limited bandwidth of all 
real systems affects the shape of the waveform. As a specific example, consider a shunt 
capacitive discontinuity:

 

FIGURE 5. Ideal and more realistic TDR traces for shunt capacitance
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(9)

 

The reflection coefficient is seen to have a pole at a frequency given by

 

(10)

 

Spectral components above this pole frequency are attenuated by the low-pass filter effec-
tively formed with the capacitor. This filtering is the reason for the change in shape shown 
in Figure 5. The sharp edge gets smeared out, resulting in the smooth bump shown in the 
bottom trace. If, as is usually the case, the capacitive discontinuity is small enough that 
this filtering effect may be neglected, then the reflection coefficient may be approximated 
by

 

(11)

 

The incident and reflected signals thus may be related approximately by a derivative:

 

(12)

 

The peak value of 

 

V

 

r

 

 is proportional to the peak value of the input slope, and thus 

 

C

 

 is 
approximately

 

(13)

 

where 

 

V

 

r,pk

 

 is as shown in Figure 5, 

 

V

 

i

 

 is the amplitude of the input step, and 

 

τ

 

 is the time 
constant of the input step. (We have used the fact that, for a single-pole system, the maxi-
mum slope of the step response is simply the amplitude of the step, divided by the time 
constant.) The 10%-90% risetime of a step is approximately equal to 2.2

 

τ

 

, so we could 
also write:

 

. (14)

 

An analogous derivation for the case of a series inductive discontinuity yields the follow-
ing estimate:
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, (15)

 

where a typical waveform is as follows:

 

FIGURE 6. Somewhat more realistic TDR trace for series inductance

 

This method can provide remarkable measurement resolution. Suppose, for example, that 
a given TDR system possessed the ability to resolve a voltage as small as 1mV, along with 
a 15ps risetime, 1V step. The smallest measurable capacitance and inductance would be 
about 0.3fF and 0.7pH! Needless to say, it is exceedingly difficult to make measurements 
of such small values using any other method. From this calculation, it is clear that even 
relatively insensitive, slow TDR systems are capable of impressive measurements of 
inductance and capacitance.

 

2.4  Compensation

 

By identifying the location and type of discontinuity, the TDR enables you to design com-
pensators, should that prove necessary. Because of the speed with which TDR character-
izations may be performed, the efficacy of any compensation scheme is rapidly evaluated. 
As a specific example, consider the mitered bend:

 

FIGURE 7. Mitered bend

 

The optimum amount of mitering is easily determined experimentally with a TDR. Pieces 
of the corner are sliced off until the reflections are minimized. To achieve this same result 
with, say, a vector network analyzer, or a slotted line SWR measurement would require 
more (and perhaps considerably more) work.

An important consideration is that a given discontinuity may mask the existence or size of 
other discontinuities further down the line. For example, a large series inductance (or a 
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large shunt capacitance) may reduce the bandwidth of the TDR pulse downstream of the 
discontinuity, reducing the ability to characterize discontinuities past the inductor. There-
fore, the proper method is to fix the discontinuity nearest the source first, retest with the 
TDR, fix the next discontinuity, and so forth until all problems are fixed.

 

3.0  Summary and Conclusions

 

The TDR is an indispensable complement to traditional frequency-domain equipment, 
permitting the characterization of microwave systems over a broad frequency range in a 
remarkably short time. The ability to locate discontinuities is a particularly valuable capa-
bility of TDRs, as is the related ability to evaluate expediently the quality of any compen-
sation methods over a broad band of frequencies.

 

4.0  Projects: Homegrown Fast Pulse and Step Generators

 

The art of fast pulse and step generation is highly specialized, and it is unrealistic to 
expect to generate pulses with risetimes competitive with state of the art instruments using 
what’s available in the typical home laboratory. However, you may be pleasantly surprised 
to find that it isn’t difficult to generate pulses with risetimes in the neighborhood of 200ps 
using components readily available to hobbyists. Such a pulse generator is especially valu-
able for evaluating the quality of oscilloscopes and particularly of scope probes. 

A trivial modification to the pulse generator converts it into a triggerable step generator 
with 200ps risetime. The risetime is short enough to locate discontinuities to a resolution 
of approximately 7cm in free space, or roughly 5cm in microstrip. When coupled with a 
suitably fast oscilloscope, the step generator enables the time-domain characterization of 
circuits up to approximately 2GHz, making it a good match with the homegrown focus of 
this book, with BNC connectors mated to microstrip on FR4.

 

4.1  Free-running sub-ns pulse generator

 

Of the possible ways to generate fast pulses, the most economical for hobbyists is unques-
tionably to make use of an abnormal mode of transistor operation:

 

 avalanche

 

 

 

breakdown

 

. 
In this type of breakdown, the collector voltage is high enough to rip electrons from their 
orbits, creating hole-electron pairs. The electrons accelerate toward the positive terminal 
(here assumed to be the collector), while the holes accelerate toward the base. As the freed 
carriers accelerate, some bash into other silicon atoms, creating still more hole-electron 
pairs, and so on, causing a rapid increase in collector current.

The following pulse generator circuit exploits this avalanching:
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FIGURE 8. Avalanche mode pulse generator

 

In this circuit, the collector supply voltage is chosen well above the transistor’s breakdown 
voltage, and its precise value is not at all critical. 

 

However, under no circumstances 
should you derive this voltage directly from the mains

 

; it is simply too dangerous to do 
so! Rather, a battery-operated circuit is highly recommended. A particularly handy source 
of high voltage is the xenon flash circuitry of disposable cameras. These often may be 
obtained at low cost (or even free) from neighborhood photo labs. Typically 200-300V 
may be found across the one large capacitor in those units, and this level of voltage is 
more than adequate to avalanche almost any transistor of interest. Exercise caution when 
removing the board from the camera case, and certainly while wiring it up. The main 
capacitor can store a dangerous amount of charge for quite some time.

The capacitor 

 

C

 

L

 

 may be made out of copper foil tape over ground plane on 1/16” FR4. A 
good starting value is a square strip approximately 0.75cm on a side. Foil may be added or 
trimmed as necessary to adjust pulse duration and amplitude.

Once avalanching begins, the collector current increases rapidly for two reasons. One is 
the direct effect of avalanche electron multiplication in the collector, and the other is the 
increase in base current produced by the avalanching holes. The increased base current 
increases the collector current through ordinary transistor action. This positive feedback 
mechanism is enhanced by biasing the base through a relatively large impedance to allow 
the hole current that comes 

 

out

 

 of the base to raise the base voltage significantly.

The collector load resistor 

 

R

 

L

 

 is quite large, so the collector current is actually supplied by 
the capacitor during the avalanche time. The large collector current quickly depletes the 
charge in the capacitor 

 

C

 

L

 

, dropping the collector voltage below the avalanche threshold, 
rapidly terminating the flow of current. The capacitor recharges slowly through the 

 

R

 

L

 

, 
and eventually causes another avalanche. The pulse repetition frequency is therefore 
determined by the product of 

 

R

 

L

 

 and 

 

C

 

L

 

, and is typically in the range of tens to hundreds 
of kHz with commonly used values.

The pulse width depends on the size of the collector capacitor (larger capacitances lead to 
taller and wider pulses) and the characteristics of the transistor. Low collector-base capac-
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itance is favored to allow the base and collector to move in opposite directions. A more 
critical parameter is the ratio of BV

 

CBO

 

 to BV

 

CEO

 

. The former is a measure of collector-
base breakdown voltage with the emitter open-circuited, while the latter is the breakdown 
voltage with the base open-circuited. The latter is always smaller than the former precisely 
because of the same positive feedback mechanism already described. For most small-sig-
nal transistors, the ratio of these two breakdown voltages falls within the range 1.5-2, but a 
few (such as the 2N2369 or Zetex FMMT-417) exceed 2.5 or so. Those few are the ones 
that are particularly well suited for making avalanche pulsers.

It is important to underscore that transistors are almost never specified by manufacturers 
for avalanche mode operation. Even if you do find a transistor that avalanches well, you 
should not expect all transistors of a given type to avalanche similarly. Consequently some 
hand selection will generally be necessary. That said, typically more than 75% of a given 
batch of 2N2369 transistors will avalanche well enough to provide a 5-10V peak pulse 
into 50

 

Ω

 

 with rise and fall times close to 200ps, speeds which were state of the art for 
expensive laboratory instruments in the mid-1960s. The ~1A/ns current slew rate is quite 
difficult to achieve through conventional means, so having to try a handful of transistors 
seems a modest price to pay indeed. This high a slew rate also underscores the importance 
of assiduously reducing parasitic inductance in series with the emitter circuit: just 1nH of 
stray inductance drops a volt!

The pulse generator is a versatile instrument with multiple uses in high-speed work. As 
one specific example, the bandwidth of a scope-probe combination can be rapidly evalu-
ated with such a generator by observing the displayed rise and fall times. Aberrations 
introduced by defective or improperly calibrated instruments and cables are also readily 
observed. Given that the typical alternative is to measure frequency response by sweeping 
a sinewave generator over a GHz range, the pulse generator is clearly an extremely inex-
pensive option.

 

4.2  Triggerable sub-ns step generator

 

Sometimes it is more convenient to generate fast pulses that possess widths significantly 
longer than the risetime, that is, we might wish to generate approximations to step wave-
forms. This is particularly so for TDR purposes, where we often desire to evaluate step 
responses directly. Fortunately, we can modify the pulse generator without too much trou-
ble and convert it into a step generator:
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FIGURE 9. Avalanche mode step generator

 

Here, the potentiometer is adjusted to place the transistor just below the threshold of spon-
taneous avalanching. A positive-going trigger pulse pushes the transistor over the edge, 
initiating the avalanche. The output pulse duration is a function of the size of the collector 
capacitance. For best results, the collector capacitance should be realized as the parallel 
combination of a microstrip and a chip capacitor. The pulse width should be chosen much 
longer than the full roundtrip time along the longest line you desire to characterize. The 
risetime determines the shortest distance away from the source where a discontinuity may 
be discerned. The shorter the risetime, the shorter the resolvable distance.

This circuit is a bit twitchy, and periodic adjustment of the potentiometer is generally nec-
essary to compensate for drift with temperature, and for changes in the actual value of the 
high voltage.

The need for a trigger can be removed by adjusting the potentiometer well above the ava-
lanche voltage. The circuit then free runs with a pulse repetition frequency determined by 
the collector load network. The circuit remains sensitive to the trigger, and synchroniza-
tion of the circuit to an external signal whose frequency is somewhat above the free-run-
ning frequency is possible.

 

5.0  Further Reading

 

An excellent applications note on the use of the TDR may be found in the February, 1964 
issue of the Hewlett-Packard Journal (vol. 15, no. 6).
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Network Analyzers

 

1.0  Introduction

 

The development of the automatic vector network analyzer (VNA, or simply 

 

network

 

 

 

ana-
lyzer

 

) has revolutionized the characterization of microwave circuits. By computing all of 
the s-parameters of a network over a broad frequency range, the network analyzer pro-
vides the designer with a comprehensive overview of circuit behavior that would be 
extremely cumbersome to obtain manually.

This chapter begins with a description of one instrument that the VNA has largely dis-
placed, the slotted line. There are several motivations for this retrospection. One is peda-
gogical, for the slotted line affords us an opportunity to investigate directly the 
quintessential wave phenomena of reflection and interference. Another is practical, 
because the slotted line exploits these phenomena to measure impedance at high frequen-
cies with comparatively inexpensive equipment. Yet another is that important calibration 
issues that also apply to the VNA are quite naturally introduced with the slotted line. 
Finally, the labor involved in making accurate measurements with a slotted line is large 
enough to explain what motivated development of the network analyzer.

A detailed description of the VNA follows, along with illustrative examples of how it is 
used. There is a focus on identifying and mitigating sources of error, along with a compre-
hensive description of calibration techniques, because much of the modern VNA’s power 
derives from its ability to characterize and remove its own errors.

The chapter concludes with instructions on how to build an inexpensive slotted line sys-
tem capable of measuring impedance over a 1-5GHz range.

 

2.0  The Old Days: Slotted Line Impedance Measurement

 

Prior to the development of the network analyzer, characterization of microwave systems 
was a cumbersome process. Consider first the basic problem of measuring impedance. At 
low frequencies, it is a relatively simple matter to use a bridge measurement technique, or 
to excite a network with, say, a voltage and measure the current that flows in response. 
Finding the ratio of voltage to current is straightforward, even if one must keep track of 
the relative phase between them in order to compute both the real and imaginary parts of 
the impedance:

 

(1)

 

As frequency increases, however, the situation gets progressively more complicated. Add-
ing to the usual difficulties associated with making instruments operate at high frequencies 

Z
V

I
Z ejφ= =
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are the very significant problems of fixturing: the impedance of a given length of conduc-
tor perturbs the measurement more and more significantly as frequency increases.

A recurring theme in good engineering is the conversion of a liability into an asset (“it’s 
not a bug, it’s a 

 

feature

 

”). In this case we acknowledge 

 

a priori

 

 the futility of trying to 
reduce fixturing impedances to insignificant levels. Rather than attempt to quantify and 
remove the effect of the fixturing on the measured impedance, we consider instead the 
effect of the load impedance on the fixturing. To understand why this change in viewpoint 
is so valuable, recall that voltage is independent of position only along a properly termi-
nated transmission line (or waveguide). Any mistermination gives rise to a reflection 
which periodically interferes constructively and destructively with the incident wave, pro-
ducing standing waves along the line. The amplitude and phase of the standing waves 
depend uniquely on the mismatch between the load impedance and the line’s characteristic 
impedance, 

 

Z

 

0

 

. Measurement of the standing waves, coupled with knowledge of 

 

Z

 

0

 

, thus 
allows computation of the load impedance 

 

Z

 

L

 

. The core of this impedance measurement 
method is therefore the bi-unique relationship between impedance and reflection coeffi-
cient:

 

(2)

 

where 

 

Z

 

Ln

 

 is the normalized load impedance,

 

, (3)

 

and the reflection coefficient is a complex quantity:

 

(4)

 

The mathematical basis for the measurement technique becomes clear by first expressing 
the voltage along a transmission line as the sum of forward and reflected components:

 

(5)

 

where 

 

z

 

 = 0 is defined as the location of the load, with 

 

z

 

 increasingly negative as one 
approaches the source, and 

 

β

 

 is the phase constant, 2

 

π

 

/

 

λ

 

.

The magnitude of the line voltage as a function of position is

 

(6)

 

where 

 

φ

 

 is the phase angle of the reflection coefficient. Note from Eqn. 6 that the voltage 
magnitude is periodic. These standing waves have a periodicity of 

 

λ

 

/2, so the distance 
between, say, minima corresponds to 

 

π

 

 radians of phase:

ZLn
1 Γ+
1 Γ−

=

ZLn

ZL

Z0

≡

Γ Γ ejφ=

V z( ) Vf Vr+ Vf e jβz− Γejβz+( ) Vfe
jβz− 1 Γej2βz+( )= = =

V z( ) Vfe
jβz− 1 Γej2βz+( ) Vf 1 Γej2βz+( ) Vf 1 Γ ej φ 2βz+( )+( )= = =



 

EE414 Handout #8: Spring 2001

 

Network Analyzers

 



 

1999 Thomas H. Lee, rev. April 6, 2001; All rights reserved Page 3 of 23

 

FIGURE 1. Typical plot of amplitude vs. position  for two values of 

 

Γ

 

The minimum and maximum voltages occur when the exponential factor is –1 and +1:

 

(7)

(8)

 

The 

 

standing wave ratio

 

 (SWR) is defined as the ratio of maximum to minimum voltage:

 

(9)

 

From Eqn. 9 it is clear that measurement of SWR allows the computation of |

 

Γ

 

|.

To complete the measurement, we need 

 

φ

 

, the phase of 

 

Γ

 

. The key is to note that the mini-
mum voltage occurs when 

 

(10)

 

or, equivalently,

 

(11)

 

where 

 

n

 

 is any integer. Therefore, the phase of

 

 Γ

 

 can be computed from:

 

(12)

 

where 

 

z

 

 is the location of the minimum (again, 

 

z

 

 is a negative quantity in our coordinate 
system).

 

1

 

A practical consideration is that the precise location of the 

 

electrical

 

 reference plane 

 

z

 

 = 0 
is not always obvious. As a consequence an experiment is generally required to determine 
this piece of information. The traditional (and simplest) method is simply to terminate the 
line in as good a short circuit as possible. Clearly, the minima will be nulls (ideally, any-

 

1.  In principle, one could also use the maxima in the measurement. However, the minima are sharper, so 
that a given amplitude measurement uncertainty translates into a smaller (perhaps much smaller) timing 
uncertainty than if the maxima were used.

|V(z)|

–z

|Γ| = 1

|Γ| < 1 λ/2

2 |Vf(z)|

Vmin Vf 1 Γ−( )=

Vmax Vf 1 Γ+( )=

SWR
Vmax

Vmin

1 Γ+
1 Γ−

= =

1 Γ ej φ 2βz+( )+ 1 Γ−=

φ 2βz+ 2n 1+( ) π=

φ 2n 1+( ) π 2βz−=
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way), again periodically disposed along the line. Any of these nulls may be taken as the 
location of the reference plane 

 

z

 

 = 0, although it is customary to choose the one closest to 
the short. Pick one and record its position. Also note the spacing between successive min-
ima (this is equal to 

 

λ

 

/2), so that you can readily compute the phase constant 

 

β

 

. Then 
replace the short with the impedance to be measured. Measure SWR to enable a calcula-
tion of |

 

Γ

 

|, and note the shift in the position of the minima relative to the zero reference 
established with the shorted load, counting shifts away from the load as having a negative 
sign. Plug that value into Eqn. 12 and solve for 

 

φ

 

. Then use Eqn. 4 in Eqn. 2 to find the 
(normalized) load impedance. The actual load impedance is found simply by multiplying 
this value by 

 

Z

 

0

 

.

The beauty of this technique is that the fixturing does not need to be short compared with 
a wavelength. In fact, the fixture’s length actually must exceed a half wavelength (and 
preferably be several half wavelengths) in order for standing waves to be characterized.

The measurement requires knowledge of the voltage as it varies along the line. In turn this 
requires that we have physical access to the line. A slotted-line system therefore consists 
of an air-dielectric transmission line (or waveguide) that is slit open to admit a probe 
(which is generally a simple high impedance diode detector capacitively coupled to the 
line). The slit and probe are carefully designed to minimize disturbance of the fields. In the 
case of a coaxial line, a lengthwise slit in the outer conductor has a minimal effect because 
no currents flow circumferentially. The primary effect of the slit is a small reduction in 
capacitance per unit length and a consequent small increase in characteristic impedance. A 
suitably narrow slit minimizes this effect to negligible levels and also ensures a minimum 
of radiation and its attendant losses.

 

2

 

The probe is mounted on a slider with a calibrated ruler so that its position along the line 
can be measured (a coaxial line is shown, but a slotted waveguide also works):

 

FIGURE 2. Coaxial slotted line

 

In most slotted lines, the probe’s depth into the line is adjustable, allowing a tradeoff 
between detector sensitivity and disturbance of the field pattern. Fortunately, the probe’s 

 

2.  As long as the slit is comparable to, or narrower than, the wall thickness, it will act much like a 
waveguide far beyond cutoff. As a result, it is almost always the case that radiation can be considered truly 
negligible, and many texts don’t even bother to mention the possibility of radiation at all.

Cross section

Detector

Side view (end connectors not shown)

Dielectric
support



 

EE414 Handout #8: Spring 2001

 

Network Analyzers

 



 

1999 Thomas H. Lee, rev. April 6, 2001; All rights reserved Page 5 of 23

 

presence does not affect the location of nulls (because the electric field is zero there), so 
the probe may be adjusted for high sensitivity for determining that data accurately. How-
ever, the probe will affect the shape of the standing waves, with distortion increasing with 
amplitude, leading to errors in measuring the value (and location) of the peaks. The 
amount of asymmetry in amplitude-vs.-position provides a qualitative assessment of probe 
disturbance.

 

2.1  An example

 

Having described the method and equipment, it’s helpful to go through an actual numeri-
cal example to elucidate the procedure.

 

Step 1

 

: Establish the location of the reference plane: Connect a short-circuit load and note 
the location of the minima (which should be nearly nulls if the short is reasonably good, 
and if line losses are negligible). Feel free to increase the probe depth for greater detector 
output to allow a more accurate pinpointing of the null locations.

Assume for our example that these minima occur at

 

 z

 

 = –1mm, –121mm, and –241mm. 
Note also that the wavelength is twice the distance between nulls, or 240mm.

 

Step 2

 

: Replace the short with the impedance to be measured. Withdraw the probe enough 
to reduce distortion of the pattern (as evaluated by symmetry), and also verify that the 
probe output is small enough to lie within its calibrated range. Readjust probe position if 
necessary to satisfy both requirements. Note both the voltage SWR and the new locations 
of the minima. If, as is generally the case, the probe produces an output voltage propor-
tional to power, don’t forget to compute the SWR by taking the square root of the ratio of 
the probe output at the maxima and minima.

Assume for our example that the measured SWR is 1.6 and that these new minima are 
located at 

 

z

 

 = –41mm, –161mm, and –281mm.

 

Step 3

 

: Choose one of the null positions from step 1 as the origin, and calculate the differ-
ence between this coordinate and the corresponding minimum observed with the load con-
nected.

Here, choose 

 

z

 

 = –1mm as the origin (it’s the closest to the load). Then the displacement 
we use in the calculation of 

 

φ

 

 is –41mm – (–1mm) = –40mm. Given a wavelength of 
240mm, we compute 

 

φ

 

 as

 

(13)

 

where we have arbitrarily chosen 

 

n

 

 = 0.

 

Step 4

 

: Compute 

 

Γ

 

.

First find 

 

|Γ

 

| from the SWR measurement:

φ 2n 1+( ) π 2βz− π 4π
240mm

40mm−( )− 5π
3

= = =
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(14)

 

Next, use the phase angle calculated in step 3 to complete the calculation of 

 

Γ

 

:

 

(15)

 

Step 5

 

: Use Eqn. 2 to compute the normalized impedance:

 

(16)

 

Then multiply by 

 

Z

 

0

 

 (here assumed to be 50

 

Ω

 

) to find the load impedance at last:

 

(17)

 

We see that the load impedance (at this frequency) is equivalent to a resistance in series 
with a moderate capacitance.

And that’s all there is to it (more or less).

From the foregoing example, it should be clear that the slotted line method involves a fair 
amount of effort to characterize impedance over a broad frequency range. This is one rea-
son that this method is used less frequently today, although it continues to live on in milli-
meter wave work where VNAs are either prohibitively expensive or simply unavailable, 
or where fixturing discontinuities may obscure measurement. It remains without question 
the best option for hobbyists or labs on a budget, as slotted line gear is readily available on 
the surplus market at low cost. As an even lower cost alternative, instructions on how to 
build a simple microstrip-based “slotted” line instrument are given in Section 5.0.

 

2.2  Error sources (and their mitigation)

 

Mechanical imperfections are one source of error. For example, if the center and outer 
conductors are not perfectly cylindrical and truly concentric, the impedance of the line 
won’t be independent of position. Similarly, if the probe carriage assembly does not main-
tain a constant distance from the center conductor, a position-dependent error will arise. 
Finally, the dielectric supports that are necessary for mechanical stability inevitably dis-
turb the field patterns as well. In Figure 2 the support is shown as continuous along the 
bottom, but periodically distributed posts, spaced as far apart as is consistent with provid-
ing adequate mechanical support, are also frequently used to minimize perturbations. In 
any case, the best slotted lines are superb examples of mechanical engineering, with near 
perfect concentricity. Many are equipped with verniers to allow position measurement 
with a precision of better than 25

 

µ

 

m.

Γ SWR 1−
SWR 1+

0.6

2.6
0.23≈= =

Γ Γ ejφ 0.23e
j5

π
3≈ 0.23

5π
3

cos j
5π
3

sin+ 0.115 j0.2−≈= =

ZLn
1 0.115 j0.2−( )+
1 0.115 j0.2−( )−

≈ 1.115 j0.2−( ) 0.885 j− 0.2( )

0.885
2

0.2
2+

1.15 j− 0.486≈=

ZL 57.5 j− 24.3≈
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Another (and generally dominant) source of error is associated with the characteristics of 
the probe. Most probes are simple diode circuits intended to behave approximately as 
square-law detectors. They thus generate an output voltage roughly proportional to power.

 

FIGURE 3. Schematic of typical probe

 

The resistor 

 

R

 

1

 

 is not a physical component of slotted-line probes. It is shown in the sche-
matic simply to remind us that the voltage being sampled by the probe is that of a trans-
mission line, whose impedance is about 

 

Z

 

0

 

 (assuming that mismatches are small).

To gain a crude understanding of the attributes and limitations of a diode as a power detec-
tor, assume that the load capacitor in Figure 3 appears as such a low impedance at RF that 
negligible voltage appears across it. Further assume that the diode continues to exhibit an 
exponential relationship between current and voltage, even in the RF regime:

 

(18)

 

Next, let the diode voltage (which is equal to the probe voltage with the given assump-
tions) be a sinusoid:

 

(19)

 

The diode current will consist of even and odd harmonics of the input frequency as a result 
of the nonlinearity. All of these harmonics have a zero time average, so the only contribu-
tion to a DC diode current is from the zero-frequency component. Only the even-order 
terms in the expansion of Eqn. 18 produce DC components, so

 

(20)

 

Clearly, the quadratic term is the one that provides an average diode current proportional 
to the square of the voltage, or proportional to power. All other terms contribute error, with 
an increasing prominence as the voltage increases. If we are arbitrarily willing to tolerate, 
say, a contribution from the cuartic term as large as 5% as that from the quadratic, then we 
must satisfy

 

(21)

 

or equivalently,
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. (22)

 

Therefore, as a very crude approximation we must limit peak diode voltage to values

 

. (23)

 

Although practical diode detectors vary considerably in their characteristics, it is generally 
the case that one should probably distrust output voltages readings when they exceed 
about 5-10mV (perhaps corresponding to input powers on the order of –20dBm or there-
abouts). Deviations from ideal behavior increase rapidly as the output voltage increases 
because the higher-order even terms rapidly increase in significance. The useful range can 
be extended through the use of a resistive load, at the expense of reduced output level. To 
understand why the simple trick of resistive loading should be effective, note that the peak 

 

open

 

-circuit output voltage approaches the input voltage at high amplitudes, behavior 
which is linear (and therefore clearly sub-quadratic). Loading the circuit with a resistor 
produces a condition intermediate between the short-circuit case (where the current grows 
too fast with large input amplitudes) and the open-circuit case (where the current doesn’t 
grow fast enough), leading to a significant range extension. Best results are typically 
found with a load within a factor of two of 470

 

Ω

 

, with the optimum found by experiment. 
With the proper load, the acceptable input power range can be extended another 10dB or 
more. The reduction of output level, however, produces a tradeoff between sensitivity and 
accuracy.

From the foregoing, it is clear that minimizing the peak voltages applied to the detector 
improves accuracy. However, for a given level of sensitivity, reducing the peak level 
implies a desire to minimize the voltage ratio to be measured by the detector. If we mea-
sure the minimum line voltage, as well as some voltage other than the maximum (as well 
as the position at which this other voltage is measured), we can accomplish precisely this 
reduction in the dynamic range required of the detector. This other voltage can be related 
mathematically to the maximum because the precise shape of the standing wave is known. 
Specifically it can be shown that the following relationship holds:

 

3

(24)

 

where the quantity 

 

∆

 

 is as defined in the following figure:

 

3.  See e.g. Terman and Pettit, 

 

Electronic Measurements

 

, McGraw-Hill, 2nd ed., 1952, p. 140. This method 
is described also in 

 

Microwave Measurements

 

, vol. XX of the MIT Radiation Laboratory Series, McGraw-
Hill, 1948.

qvD

kT 
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FIGURE 4. Alternate measurement method for high SWR

 

This method requires only that the probe accurately measure a voltage ratio of about 
1.41:1 (corresponding to a power ratio of 2:1). It is especially useful when attempting to 
measure very high SWR values, where the maximum-to-minimum voltage ratios are large.

One obvious way to improve accuracy is simply to calibrate the probe to determine explic-
itly the actual relationship between input and output. However engineers, being the lazy 
(oops, 

 

efficient

 

) lot they are, have devised clever workarounds that completely bypass the 
need to calibrate a probe altogether. Since all that is required is a ratiometric measurement, 
consider interposing a calibrated attenuator between the signal generator and the slotted 
line. The attenuation is set to its minimum value (say), the probe is slid along the line until 
a minimum is found, and the voltage there is noted. The probe is then moved to find the 
maximum, and the attenuation factor increased until the output is the same as at the mini-
mum. This attenuation factor is precisely the desired ratio 

 

V

 

max

 

/

 

V

 

min

 

. Note that this mea-
surement places essentially no demands on the probe at all, having replaced with a readily-
realized linear attenuator the need to characterize a nonlinear probe.

Finally, a considerable improvement in sensitivity is possible if the signal generator pro-
duces a modulated output. Rather than measuring the DC output of the probe, a demodula-
tor, followed by a bandpass amplifier, provides the output. Using a modulating frequency 
well above the 1/

 

f

 

 noise corner of the system improves SNR, allowing the use of higher 
post-detector gain and a consequent reduction in the required level of coupling of the 
probe to the line. The reduction in perturbation improves accuracy.

 

3.0  The Vector Network Analyzer

 

3.1  Background

 

Each data point with a slotted line requires setting the frequency to the desired value, 
locating the new reference null with a shorted load, and then measuring SWR and locating 
the minima with the DUT connected as load. The vector network analyzer (VNA) auto-
mates this process, and adds greater functionality as well, permitting a rapid and complete 
characterization of all of the s-parameters of a microwave system over an exceptionally 
broad frequency range (e.g., from 50MHz to 110GHz in one instrument!).

At the heart of the VNA is a device (e.g., a directional coupler) that miraculously resolves 
signals along a line into its forward and reflected components. This decomposition into the 

|V(z)|

|Vf(z)|

–z

∆

Vmin

√2Vmin
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two components is valuable because the measurement of impedance can be reduced to 
measurement of reflection coefficient, as we’ve seen with the slotted line measurement 
method. Similarly, measurement of power gain involves ratios of forward components, 
and so on. Thus a VNA can characterize the full set of s-parameters for a two-port.

A representative block diagram of a VNA reveals the central role of the directional cou-
pler (or equivalent):

 

FIGURE 5. Typical VNA core block diagram (simplified)

 

As can be seen in the figure, a frequency synthesizer provides the input to the network 
analyzer. Both the output power and frequency are controllable. A part of the synthesizer 
output is sampled as the incident signal, and the rest is steered by a pair of SPDT switches. 
When the switches are in the position marked “F,” the DUT is driven in the forward direc-
tion, and the top directional coupler provides an auxiliary output that corresponds to the 
signal reflected from port 1 of the DUT. At the same time, the lower directional coupler 
provides an output corresponding to the power coming out of port 2 of the DUT.

To make measurements of reverse characteristics, the switches are moved to position “R,” 
reversing the roles of ports 1 and 2 of the DUT.

The incident, reflected and transmitted signals are sent to a receiver/detector (not shown) 
whose job is to measure the magnitude and phase of these signals, followed by processing 
of the data and presentation in a display.

F

R

R

F

DUT

Directional
Coupler

Directional
Coupler

Incident F: Transmitted
R: (Reflected)

F: Reflected
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Synthesizer
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It is clear that a VNA comprises all of the building blocks of a complete transceiver, and 
more. Not only does the VNA have to cover an exceptionally wide range of frequencies 
(e.g., 50MHz to 110GHz in one instrument, albeit with degraded characteristics in the 
lower decade), but it must make measurements of signals spanning a wide dynamic range 
of amplitudes at the same time. Operation over such a wide range requires identifying and 
correcting as many sources of error, both external and internal, as possible. The modern 
VNA employs sophisticated computational means to accomplish this error reduction, but 
requires a knowledgeable operator to ensure that the calibration is performed correctly. 
Mistakes in calibration are an all too common source of anomalous results, so we will 
spend considerable time examining the error sources associated with the VNA’s various 
measurement modes.

 

3.2  Basic measurement modes and error sources

 

First consider making a transmission measurement (either in the forward or reverse direc-
tion). There will generally be some cable and fixturing external to the VNA. The total 
electrical length and loss of these external elements are variable. More to the point, they 
are beyond the control of the VNA because fixturing is a prerogative of the user.

 

FIGURE 6. Transmission measurement

 

One basic calibration step is therefore the measurement of fixturing loss and delay so that 
these can be subtracted from a subsequent measurement performed with the DUT in place. 
This step, called the 

 

through

 

 (often abbreviated as “thru”) measurement, involves remov-
ing the DUT and connecting the rest of the fixturing together directly. The VNA then mea-
sures the fixture’s phase shift and loss over the user-specified frequency range, storing the 
data for later subtraction.

After a through calibration, the DUT is inserted and the VNA is ready to measure its inser-
tion loss and phase shift. In many cases, one is interested in the time delay rather than 
phase. Since delay is simply (minus) the derivative of phase with respect to frequency, the 
VNA can readily compute the delay from phase data. There are some subtleties, however, 
that one must appreciate if correct measurements are to be made. One such consideration 
is that the instrument measures phase at a discrete set of frequencies, rather than continu-

DUT
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ously over the entire band. Hence, the derivative must be approximated by a ratio of finite 
differences:

 

(25)

 

The frequency interval in the denominator of Eqn. 25 is known as the frequency 

 

aperture

 

, 
and is controllable by the user. A narrow aperture provides fine resolution, but may be sen-
sitive to noise in the data. A wide aperture is less sensitive to noise because it effectively 
performs an averaging over the frequency interval, but can miss fine structure precisely 
because of this averaging. Modern instruments default to an aperture that is satisfactory 
for most applications, but which may be overridden by the user if desired.

Another subtlety is that the phase detector within a VNA functions over a finite interval, 
modulo some phase. A typical detector range is 

 

±

 

π

 

 radians, so the VNA cannot distinguish 
phase shifts outside of this range from those lying within it. Hence, a pure time delay’s 
phase appears as a periodic sawtooth when plotted against frequency in linear coordinates:

 

FIGURE 7. Phase shift vs. frequency, ideal vs. VNA display

 

The user must employ physical arguments or other knowledge to splice the various 
regions together properly; the VNA fundamentally lacks the information necessary to do 
so. There is an advantage to the sawtooth-like display however, when plotting, as it 
reduces the total vertical height for a given resolution.

A related consequence of the modulo-

 

φ

 

 behavior is that if a VNA’s computation of delay 
uses an aperture value that corresponds to a phase step in excess of 

 

π

 

 radians, the dis-
played delay will be in error. To guard against these types of problems, it is good practice 
to examine both the phase and delay curves, rather than just the delay. Simple checks of 

ωd

dφ ∆φ
∆ω
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reasonableness are carried out rapidly, so there is hardly an excuse for not performing 
them.

In addition to transmission measurements, the other basic VNA operating mode is mea-
surement of reflection. Just as with the slotted line, it is necessary to establish a reference 
plane. And, just as with the slotted line, a short-circuit load can be used for this purpose. 
So, in the simplest calibration for a reflection measurement, the best available short-circuit 
load is connected to the test port in place of the DUT. The VNA measures the magnitude 
and phase of the reflection over the specified frequency range and stores this data, using it 
to locate the reference plane and correct for fixturing losses (the VNA cannot use the 
information about fixturing losses from the through measurement because the latter does 
not identify the loss over the relevant fixturing path length). After this calibration step, a 
display of 

 

S

 

11

 

 with the short-circuit load should consist of data points tightly clustered 
about the –1 point:

 

FIGURE 8. VNA display after calibration with short

 

If other than a tight distribution is observed (e.g., an arc), carefully check the fixturing 
(particularly the connectors), correct any problems, and repeat the calibration. After re-
verification, the VNA is ready to perform one-port reflectance measurements. As we saw 
with the slotted line, such a measurement is equivalent to an impedance measurement. 
Depending on context, the user may wish the data to be displayed as reflection coefficient 
or impedance. The modern VNA can provide both a display of 

 

Γ 

 

in polar form, or imped-
ance on a Smith chart. The format is deliberately left unspecified in Figure 8 because for 
the special case of a shorted load, the data are located in the same spot.

A subtle issue is that the calibration with the shorted load establishes the reference plane at 
the physical location of the short within the calibration standard. The fixturing may add 
some physical length beyond that plane. One could correct for this by repeating the cali-
bration with a short at the actual DUT terminals. Another option is to make use of the 
“port extension” feature of modern VNAs in which the instrument algorithmically adds 
length, effectively moving the reference plane further away from the VNA connectors. 
The correct extension is determined by producing the best possible short at the DUT ter-
minals, and varying the extension value to minimize the size of the distribution near the –
1 point on the Smith chart.

The foregoing description focuses on how external fixturing errors can be removed. Using 
the through and short calibrations, the VNA can reduce by large amounts the errors in 
transmission and reflection measurements. For even greater accuracy, the VNA is capable 
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of characterizing its own internal errors with the aid of additional calibration steps. To 
appreciate how the VNA performs these additional corrections, it is necessary to identify 
the errors corrected in these various calibrations.

The VNA depends on directional couplers to decompose signals into incident and 
reflected components. As with everything else, practical directional couplers are imper-
fect. To quantify these imperfections, we need to define the various figures of merit which 
apply to the directional coupler as it is configured for use in a VNA:

 

FIGURE 9. Directional coupler port definitions

 

It should be noted that Figure 5 and Figure 9 use a simplified symbol for the directional 
coupler. One more commonly used symbol is

 

FIGURE 10. A more standard symbol for a directional coupler 

 

From both symbols, it is clear that the directional coupler is generally a 4-port device, but 
a VNA typically uses only three of them, terminating the fourth (the isolated output) in a 
matched load.

Initially assume that the through output is terminated properly. Most of the power supplied 
to the input port travels on to the through output, with a small portion coupled to the auxil-
iary output. One characteristic parameter is therefore the coupling factor, defined as the 
ratio of input power to auxiliary power:

 

(26)
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Typical values of coupling factor range from 3 dB up to a bit over 20dB. A larger coupling 
factor means that more power is coupled to the main (through) output, not to the auxiliary 
output. Therefore the lower the coupling factor, the greater the loss in going from the input 
to the through output.

If the directional coupler is operated in reverse, with power now supplied to the through 
output with the input terminated, ideally no signal should be measured at the auxiliary out-
put (that’s the reason for the “directional” nomenclature). Inevitably, though, some reverse 
power will leak through to the auxiliary output. A measure of how well the reverse leakage 
is suppressed is the isolation factor, defined as

 

(27)

 

Isolation factors of 30-60dB are not uncommon.

The two quantities are often combined to yield a figure of merit called the directivity, 

 

D

 

:

 

(28)

 

Thus directivity is a measure of how well the coupler discriminates between forward and 
reverse components. We desire an infinite directivity, but all real couplers fall short of the 
ideal. In practice, directivities of 20-40dB are typical. The lack of infinite directivity is a 
significant error source, and correcting for this deficiency is a major aim of VNA calibra-
tion.

To illustrate how directivity errors can corrupt measurements, first examine Figure 5 and 
Figure 9 to review how directional couplers are hooked up inside a VNA. Notice that the 
main input of each directional coupler is connected to a port of the DUT. Thus when per-
forming a reflectance measurement the synthesizer drives the through output. Power flows 
from the synthesizer, “backwards” through the coupler, to the DUT. Any power reflected 
by the DUT feeds back into the main input of the directional coupler, and a portion of the 
reflected power exits the auxiliary port for sampling and measurement.

If the directivity were infinite, the auxiliary port signal would be due entirely to the power 
reflected from the DUT, allowing direct measurement of the reflected power. However, a 
finite directivity implies that some of the power flowing from the synthesizer to the main 
input leaks out of the auxiliary port as well. The VNA would then measure an auxiliary 
port signal that is a weighted sum of both the forward and reflected power. Because these 
may add both in and out of phase over frequency, typical manifestations of imperfect 
directivity are ripples in, say, the measured reflection coefficient as a function of fre-
quency.
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A representative calculation illustrates the magnitude of the problem. Suppose we have a 
10dB coupler with 30dB directivity, and we attempt to measure the impedance of a load 
that has a 20dB return loss. That is, 

 

C

 

 = 10dB, 

 

D

 

 = 30dB, 

 

I

 

 = 

 

C

 

 + 

 

D

 

 = 40dB and 

 

RL

 

 = 
20dB. The signal reflected by the DUT is 

 

RL

 

 = 20dB below the incident power level, and 
the amount of the reflected signal surviving to the auxiliary output is 

 

C

 

 = 10dB below that, 
for a total of 30dB below incident. The unwanted signal at the auxiliary port is 

 

I

 

 = 40dB 
below incident. Thus we see that the error power is an unacceptable 10% of the signal 
power in this example. If we were to attempt to measure a return loss of 30dB, the situa-
tion would be even worse, for the error power would then equal the desired signal power.

Another error that behaves much like directivity error arises from reflections at interfaces 
with adapters, cables and fixturing. These reflections necessarily produce signals at the 
auxiliary output of the coupler and, as in the previous example, these parasitic signals can 
obscure the component of signal that is due to the actual reflection from the DUT.

Source mismatch is yet another potential source of error. Consider the flow of power from 
the source, through the coupler, and to the load. Some power reflects off of the load and 
returns to the source. If there is a mismatch in source impedance, there will be a subse-
quent re-reflection from the source back through the coupler. Some of that power reflects 
off the DUT, and finds its way out of the auxiliary port. From the qualitative description of 
this process, this error term is clearly most significant when the load has a high reflection 
coefficient.

A third type of error is related to one we’ve already examined: frequency response. The 
couplers, cables, adapters and the part of the system that actually measures magnitude and 
phase may all have frequency dependent characteristics.

The three types of one-port errors – directivity, source mismatch and frequency response –
can be removed by performing three experiments. For example, consider attaching a per-
fectly resistive matched load as the DUT. In this case, the auxiliary output of the direc-
tional coupler should have no signal. Any deviation from that condition indicates an 
effective directivity error, which can be measured and stored for later removal. The extent 
to which directivity errors are nulled out depends critically on the quality of the “perfect” 
load used in this step of the calibration sequence.

A common choice for the other two experiments is to use both a shorted and open load. As 
with the perfect load, the ultimate accuracy of VNA measurements depends on how close 
the impedance of the loads are to zero and infinity. It is particularly hard to implement a 
good open-circuit at high frequencies because stray capacitance is difficult to control. To 
underscore the difficulty involved, note that a 0.1pF stray capacitance (which is about the 
value of an open-circuited APC-7 connector) has an impedance of only about 16

 

0Ω

 

 at 
10GHz. Also, radiation from the open end is also an increasing problem as frequency 
increases, and this loss produces a real component of impedance in parallel with the para-
sitic shunt capacitance. This problem is mitigated by sliding a short along a line until it is 
positioned a quarter wavelength away from the reference plane. The shorted line is a 
closed structure which prevents radiation.
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When calibrating for two-port operation, the three experiments are augmented with a 
fourth: a through measurement to characterize the frequency response of the fixturing, as 
described earlier. Hence, the quartet of experiments is often known as the “short/open/
load/thru” (SOLT) two-port calibration method.

 

4

 

There are several minor variations on the SOLT technique, all aimed at solving the prob-
lem of imperfect impedance standards. One of these replaces the fixed matched load with 
a sliding load. Here, a movable load with a near-perfect match is slid along an air line, and 
the whole assembly used in place of the fixed load. As the load slides along the line, the 
small reflections combine with the incident signals in a periodic manner, alternately add-
ing and subtracting, leading to a data set that is distributed in a circle in the complex plane. 
The directivity vector is the center of that circle. Three points uniquely determine a circle, 
so in principle only three measurements are needed. In practice, a larger number is used to 
improve the error estimation. The sliding load is generally considered necessary above 
approximately 2-3 GHz.

Yet another variation replaces the sliding load with an offset load, which may be thought 
of as a sliding load in which the load no longer slides. If two points and the angle of the 
offset are known, the center of the circle can again be determined. These two points are 
obtained with two loads of different length. The sliding or offset loads are popular at milli-
meter wave frequencies where ideal loads are simply not available. At these frequencies, a 
shim of known thickness is inserted between mounting flanges to produce the second mea-
surement.

An alternative calibration suite is known as the thru-reflect-line (TRL) method. This 
method corrects for the same errors as the SOLT method, but depends less on the perfec-
tion of the impedance standards used as calibration loads. As the name of the method sug-
gests, the first step in the calibration is to connect the two ports of the external fixture 
together in a low reflectivity through configuration to characterize the fixturing. The next 
step is to connect a grossly mismatched load to each port of the fixture separately (hence 
the name “reflect”). The precise nature of the mismatch is irrelevant, and its magnitude 
need not be known. It just has to have the same high reflectance at both ports (a nominal 
short is frequently used). Finally, the two ports are again connected together through the 
low-reflectivity fixturing, but now with a different cable (or other fixturing) length than 
was used in the through measurement.

The TRL method is particularly attractive for non-coaxial systems such as microstrip, 
where impedance standards are difficult to realize (or are simply unavailable commer-
cially). It is also attractive for coaxial media because impedance standards are expensive, 
and the TRL procedure requires no expensive elements. However, the TRL calibration 
only works over an octave range for a given length of cable, owing to the periodicity of 
reflections. Progressively longer fixturing is needed to extend the TRL calibration to lower 
and lower frequencies.

 

4.  This is also known as SLOT, LOST, SOT-L and a variety of other permutations.
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4.0  Special Considerations for Microstrip

 

As implied in the preceding paragraph, microstrip environments pose some challenges for 
calibration. Consider, for example, a microstrip fixture for measuring the s-parameters of a 
transistor. It is not entirely obvious how to carry out, say, a SOLT calibration sequence for 
such a non-coaxial structure. Since one important aim of calibration is to null out fixturing 
artifacts, we evidently wish to implement and use a short, open, matched load, and a 
through line at various stages of the calibration, all at the physical location where the DUT 
(here, a transistor) would be placed. An open circuit sounds easy enough, and so does a 
through. The former can be approximated simply by not installing a DUT, and the latter 
can be approximated by a second fixture identical to the first, but in which the microstrip 
line extends all the way across. Implementing a reasonable approximation to a short is 
similarly straightforward, with a third fixture (again otherwise identical to the first) in 
which the ports are shorted to ground (e.g., through a nice line of vias). The tough one is 
implementing a good matched termination. A surface mount resistor at the end of the 
microstrip line, for example, might suffice for approximate work, for is unsatisfactory for 
accurate characterization. Its series inductance and shunt capacitance cause the impedance 
of the “matched” load to vary over frequency.

A reasonable solution to this problem becomes apparent when we re-examine what errors 
are being calibrated out with the matched load connected to the VNA. For the most part, 
internal VNA directivity errors are being nulled out at this step of a SOLT calibration, so 
there is no need for the rest of the fixturing to be involved at all. Hence, the ordinary coax-
ial matched impedance standard may be connected directly to the VNA port without wor-
rying at all about whether a microstrip test environment will eventually be used. We will 
call this method the modified SOLT technique.

The modified SOLT calibration unfortunately will not fix errors in effective directivity 
caused by a mismatch past the APC port. Hence, if that transition is poor, or if precise 
answers are necessary, then a TRL calibration should be performed. For exacting work, 
then, the TRL calibration method is better, but the modified SOLT is often good enough.

A final consideration is that the “open” condition with a microstrip is imperfect (as it is 
with all open structures) because of fringing capacitance (on the order of 50fF). A partial 
correction for this is possible through the use of software connector subtraction. Many 
VNAs have the ability to remove the effect of a connector through software means. Alas, 
microstrip is not one of the ordinary options. Of the options that are typically available, 
the best approximation is the APC, whose ~100fF fringing capacitance is reasonably close 
to that of a typical open line on FR4. A residual error remains, however, and one may use 
the variable port extension feature of many VNAs to reduce this residual error substan-
tially.

 

5.0  Summary of Calibration Methods

 

The foregoing section describes so many permutations that it is easy to get a bit confused 
(and to make things even more confusing, we haven’t covered all of the ones that exist). 
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Here is a summary of the calibration methods, along with some comments to remind you 
what their relative attributes and weaknesses are, allowing you to make an informed 
choice of calibration technique.

The simplest is the short-thru one- and two-port calibration, which only corrects for exter-
nal fixturing and detector frequency response errors. Errors from finite directivity and 
source mismatch are not corrected. This technique is also known as 

 

response calibration

 

.

Better for one-port measurements is the short-open-load (SOL) suite of calibrations. As 
long as the impedance standards are perfect, this method is capable of nulling out errors 
from finite directivity, as well as source mismatch and detector frequency response errors.

A thru measurement may be added to yield a SOLT calibration which is a two-port method 
that corrects for all of the errors corrected by SOL, and also corrects for the remaining 
cabling of a two-port fixture.

Variations on the basic SOLT theme include replacing the load measurement with either a 
sliding load or a fixed offset load. The modified SOLT method employs an SOT sequence 
with a microstrip (or other non-coaxial) fixture to null out all but VNA directivity errors. 
Use of a standard coaxial matched load without the fixture completes the calibration by 
(almost) zeroing out directivity errors.

Finally, the thru-reflect-line (TRL) method eliminates the need for perfect impedance stan-
dards as calibration loads while correcting the same errors as the SOLT technique. The 
TRL method is particularly attractive in characterizing non-coaxial systems such as 
microstrip, but only functions over an octave of frequency for a given fixturing length.

With TRL calibration, it is possible to reduce directivity and source mismatch errors to 
levels as low as –60dB at 18GHz, and essentially eliminate frequency response errors. 
These values should be compared to –40dB directivity and –35dB source mismatch errors 
typically achieved with the SOLT method (fixed load). The sliding and offset load options 
improve the SOLT errors to levels in between those of fixed SOLT and TRL methods.

 

6.0  Other Measurements

 

Thanks to the extensive use of computation, the modern VNA is capable of more than a 
complete measurement of s-parameters. For example, once the s-parameters are measured 
over a broad frequency range, the frequency response data can be transformed to time 
response data. Step responses and TDR traces can be generated from VNA data. Although 
the time taken to perform all of the measurements and computations is substantially larger 
than it would take for a “real” TDR, this additional functionality is nonetheless welcome.

Because of the algorithmic nature of the transform, it is possible to perform a little mathe-
matical magic that would be impractical to carry out with actual time-domain instrumenta-
tion. For example, consider a case where a TDR trace contains reflections from multiple 
sources. The early discontinuities can mask the effect of subsequent ones in a real TDR 
measurement. A VNA, however, can remove the first discontinuity, allowing examination 
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of the previously masked reflections. The extent to which a VNA can perform this 
removal (called 

 

gated impedance

 

 or 

 

gated TDR

 

 measurements) depends on the accuracy 
and noise of the s-parameter measurements.

 

7.0  References

 

Aside from the sources cited in footnotes, the reader may also find useful 

 

Vector Measure-
ment of High Frequency Networks

 

 (Hewlett-Packard High Frequency Vector Measure-
ment Seminar notes, April 1989). These notes contain an excellent high-level summary of 
how a VNA is used, with a concise discussion of error sources and calibration methods. 
Another useful reference is the user manual of almost any VNA, such as the HP8720C (a 
130MHz to 20GHz instrument) or the HP8510C (capable of operating from 50MHz to 
over 100GHz).

 

8.0  Appendix: Microstrip “Slotted” Line Project

 

As we’ve seen, the modern network analyzer is a truly remarkable instrument, capable of 
extremely accurate characterizations of microwave networks over a broad frequency 
range. Unfortunately, this capability comes at a price: A typical GHz VNA costs more than 
the average sports utility vehicle, and the few that are available on the surplus market are 
rarely significantly discounted. Clearly, a VNA is generally priced out of the reach of most 
hobbyists (and even out of the reach of many academic laboratories), so the slotted line is 
the device of choice for those on a budget. On top of that, the slotted line is a superb peda-
gogical tool for teaching the principles of Smith chart manipulations (e.g., providing 
explicit explanations for phrases such as “wavelengths toward the generator” and so 
forth). As mentioned earlier, many slotted lines are available on the surplus market for 
quite reasonable prices, at least for lines designed for use in the low GHz frequency range.

This section describes a much cheaper, and much cheesier alternative: a microstrip “slot-
ted” line system capable of functioning to 5GHz and beyond. This instrument (and that is 
a loose use of the term, to be sure) has important attributes: it costs very little (the total 
parts and materials cost should not exceed $5-$10) and is extremely easy to make using 
ordinary tools and materials. The tradeoff is that the instrument’s accuracy is not particu-
larly good, and the shaky mechanicals are not terribly robust. However the performance is 
adequate for virtually any home project in the low-GHz range of frequencies.

The design presented here is based on FR4 material and right-angle mounted bulkhead 
BNCs of the type described in the chapter on microstrip, in keeping with a focus on mini-
mizing cost. In particular, a microstrip line is much easier to make than a slotted coaxial 
airline. Of course, better performance can be obtained by using lower loss PC board mate-
rial in tandem with better connectors, and the reader is certainly invited to improvise vari-
ations on the basic design as budget, patience and performance requirements dictate.

The first step is to get a piece of FR4 longer than the largest electrical wavelength of inter-
est, but not so long that the loss is excessive over the desired operating frequency range. 
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For a minimum operating frequency of 1GHz, a good compromise is about 25cm. A line 
of this length typically exhibits about 0.8dB of loss at 1GHz, and perhaps 4dB of loss at 
5GHz (compared with under 1dB for a true coaxial slotted line). If you are going to use 
the instrument only at the higher frequencies, performance will improve by shortening the 
line to reduce the loss (we only need the line to be long enough to contain a couple of min-
ima, and the loss 

 

per wavelength

 

 is roughly constant, at a value of a bit under 1dB per 

 

λ

 

).

Mount BNCs at the two ends, and then construct a 50

 

Ω

 

 microstrip line using copper foil 
tape. It is important that the foil be as smooth as possible. Next, affix a nonconductive 
metric ruler just below the line (if you don’t have a suitable ruler, use a photocopier to 
duplicate the following metric ruler at twice scale):

 

FIGURE 11. Metric ruler for microstrip line (drawn at half size)

 

Because photocopier accuracy varies considerably, verify that the enlargement hasn’t dis-
torted the scale factor of the ruler. Careful interpolation between the 5mm markings 
should allow a precision of ~1mm; accuracy is a different matter!

The next step is to construct the detector. Here we use a Schottky diode-based detector cir-
cuit capacitively coupled to the microstrip line. It’s a simple circuit, and the biggest chal-
lenge you’ll face is mechanical, to construct the slider while guaranteeing proper and 
consistent coupling of the detector to the line.

The probe is a common needle, such as the kind that comes with new clothes, carefully 
jammed into the bottom side of one part of the slider and cemented with a little epoxy, 
then clipped to length (see Figure 10). The probe is surrounded by a short length of insula-
tion (preferably Teflon) taken from a piece of hookup wire to act as the dielectric between 
the probe and the line, and also to provide a smooth rolling action. The probe motion (and 
the line itself) must be as smooth as possible to maintain a constant coupling as the probe 
slides along the line.

The slider assembly is made out of two pieces of FR4 that are bolted together. Teflon tape 
(or very smooth copper foil tape) may be affixed to the inner surface of the piece that’s on 
the line side of the unit to reduce sliding friction and abrasion. Its thickness needs to be 
carefully controlled to ensure that the probe makes good contact with the line.

The foil side of both pieces faces the main board. The foil that contacts the ground plane 
of the main board provides the ground contact for the probe circuitry.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 cm
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FIGURE 12. Bottom view of slotted line and side view of probe assembly (not to scale)

 

The slider contains the probe circuitry, which consists of a diode detector and a resistive 
load:

 

FIGURE 13. Schematic of probe assembly

 

The Schottky can be any low-capacitance, high-frequency unit (such as the HP 5082-2835 
or -2860), the anode lead of which is connected to the actual probe tip. The input signal 
amplitudes must be small enough that the diode acts approximately as a square-law detec-
tor, making the output voltage roughly proportional to power. The proportionality con-
stant, as long as it truly is a constant, is fortunately irrelevant since only ratios are used in 
computing SWR. However, the square-law behavior necessitates taking the square-root of 
the probe output voltages in order to compute SWR.

The resistive load is shown as 470

 

Ω

 

, but you are encouraged to experiment with its value 
to maximize the detector’s useful range. A surface mount chip resistor is used to keep par-
asitics small.

FR4

insulating tape on this piece only

4-40 hardware

pin with Teflon insulation

To generator To DUT

470Ω (see text)

to voltmeter or scopeto probe tip
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The capacitance of the slider, plus the input capacitance of most meters and scopes to 
which the output of the probe is connected, will generally be large enough not to require 
any additional capacitance. To maximize usefulness, the ability to measure sub-mV sig-
nals is desirable. Some amplification may be necessary to boost detector outputs to levels 
that are conveniently measurable with inexpensive instruments.

So, when all is said and done, how good is the microstrip slotted line? The lossiness of 
FR4 and the right-angle mounted BNCs, probe coupling irregularity, lack of probe calibra-
tion, and the hand-built nature of the line itself all conspire to make this impedance mea-
surement tool a rather crude one. As a rough rule of thumb, one can expect reasonable 
accuracy for impedances between about

 

 Z

 

0

 

/5 and 5

 

Z

 

0

 

. For the most common case, that of 
producing a good match to 

 

Z

 

0

 

, the tool works extremely well, allowing the attainment of 

 

S

 

11

 

 values below –15dB with ease. Results at 1GHz are generally surprisingly good, with 
progressive degradation as the frequency increases to 5GHz and beyond.

If the instrument is to be used only at the higher frequencies, there are several necessary 
refinements. Replace the right-angle BNCs with inline SMA connectors, use RO4003 
instead of FR4, and abandon the idea of handcrafting the line out of copper foil tape; it is 
insufficiently uniform, so conventional PC board manufacturing techniques are required. 
Finally, a better diode may have to be used (e.g., the M/A-COM MA4E2054, which is 
specified beyond 10GHz). If the line is shortened by a factor of 5 or so, satisfactory opera-
tion between 5 and 10GHz is possible when all of these refinements are combined.



 

EE414 Handout #9: Spring 2001

 

Derivation of Fringing Correction (Danger, Will Robinson – Integrals, Cheese and a Breeze Ahead!)

 



 

1999 Thomas H. Lee, rev. April 

 

Derivation of Fringing Correction (Danger, 
Will Robinson – Integrals, Cheese and a 

Breeze Ahead!)

 

1.0  Introduction

 

A rigorous calculation of fringing capacitance is rather difficult. Although there are many 
clever analytical methods, such as those based on Schwarz-Christoffel conformal mapping 
techniques, there are often numerous practical restrictions on their applicability. When 
precise answers are needed, or if the geometry is complex, often the best choice is to 
employ numerical methods. Unfortunately such an approach often obscures design 
insight. As a complement to those valuable approaches, we offer an analytical expression 
whose inaccuracy perhaps can be forgiven in view of its simplicity and near universality. 
And although its derivation may not exactly fit on a cocktail napkin, the final result cer-
tainly does, as will be clear shortly.

The approach we’ll take is inspired by one of the many wonderful chapters in Feynman’s 

 

Lectures on Physics

 

, in particular, The Principle of Least Action.

 

1

 

 There, Feynman points 
out that elegant and powerful minimum principles can frame novel solutions to old prob-
lems. For example, if you were to forget the current divider law for two parallel resistors, 
you could derive it using the principle that currents will distribute themselves in a way that 
minimizes the total power dissipation. Any other current distribution would result in a 
higher total dissipation (try it!).

Similarly, if our task is to deduce the electric field between two conductors, it is valuable 
to know that charges will distribute themselves to minimize the total energy stored in the 
system, and also to remember that a unique potential distribution is linked to the charge 
distribution. Since, for a given voltage, energy is proportional to capacitance we may infer 
from this minimum principle that the correct potential distribution is the one among all 
possible distributions that minimizes the computed capacitance.

 

2

 

 We use this observation 
by proposing a “reasonable” functional form for the potential distribution, computing the 
capacitance it implies, and then choosing parameters (if any) to minimize that capacitance. 
Feynman’s minimum principle then says that we will have generated the best possible 
approximation to the truth, for 

 

that 

 

particular guess (even if it is wrong). Furthermore, we 
will know that our approximation error will always be positive (our approximate formula 
will necessarily overestimate the true capacitance), so at least we’ll know the sign of the 
error.

To start, we equate two different formulas for the energy stored in a capacitor:

 

1.  Chapter 19, Volume II, (Addison-Wesley, 1964).
2.  The same minimum principle can be used to derive formulas for inductance.
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, (1)

 

where 

 

∇

 

V

 

 is the gradient of the potential 

 

V

 

 (recall that the electric field is equal to minus 
this gradient). The term on the left comes from ordinary circuit theory, that on the right 
from field theory.

Next (and this is the tricky part), guess a “reasonable” form for the potential. To aid in 
guessing, first look at our structure:

 

FIGURE 1. Very approximate field distribution for fringing capacitance estimation (side view)

 

The electric field lines are idealized as perfectly vertical until the very end of the line is 
reached, then progressively curving outward more and more until they are perfectly circu-
lar at a distance 

 

H

 

 beyond the end. Along the radial line shown in the figure, and at an 
angle 

 

θ

 

 with respect to the ground plane, assume that the potential increases in some fash-
ion as the radius 

 

r

 

 increases from 0 to 

 

H

 

. Further assume fancifully that, at a given 

 

r

 

, the 
potential increases linearly from 0 as the angle 

 

θ

 

 varies from 0 to 

 

π

 

/2. Assume also that 
negligible energy is stored in the electric field for 

 

r

 

 > 

 

H

 

. This latter assumption avoids an 
embarrassing prediction of potentials in excess of the applied voltage, 

 

V

 

0

 

, as the radius 
goes to infinity. It also causes us to underestimate the energy stored. This error is at least 
in the right direction to offset the systematic overestimation inherent in the method when 
used with any incorrect potential distribution (although there is the possibility of overcom-
pensation). Finally, assume that the plates are infinitesimally thin.

Given these assumptions (and they are just that), we may postulate an approximate poten-
tial function of the following form:

 

, (2)

 

where 

 

k

 

 is some parameter whose value is to be determined later. The tilde denotes that it 
is a postulated, and approximate, potential. You can verify that this equation satisfies the 
conditions stated above (but not necessarily all relevant boundary conditions; if it did, it 
would have to be the correct solution). Note that we neglect variations in the 

 

z

 

- direction 
(out of the plane of the page).

With that potential function in hand, the rest is just plugging and chugging:

1

2
CV0
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2
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∫=
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, (3)

 

and

 

. (4)

 

After combining these equations and evaluating the double integral as 

 

r

 

 ranges from 0 to 

 

H

 

, and as 

 

θ

 

 varies from 0 to 

 

π

 

/2, we get

 

, (5)

 

where 

 

W

 

 is the width of the line.

Now, we want to select 

 

k

 

 to minimize the estimated capacitance. Setting the first deriva-
tive of Eqn. 5 to zero yields

 

, (6)

 

which, given the approximate nature of this entire endeavor, may be treated as essentially 
unity (meaning that we could have just started with 

 

k

 

 = 1 and ended up with pretty much 
the same answer).

Substitution of this value of 

 

k

 

 into Eqn. 5 finally gives us an approximate equation for the 
per-width fringing capacitance:

 

. (7)

 

Note that this capacitance is 

 

independent

 

 of 

 

H

 

. To the extent that the approximations 
leading to its derivation are valid, it is therefore a 

 

universal

 

 fringing correction, whose 
value is very roughly 5fF/mm (assuming a vacuum dielectric; multiply this figure by the 
relative dielectric constant in general). That is, any open structure will contribute approxi-
mately this capacitance per length of edge, at least to cocktail napkin accuracy.

 

3

 

Since capacitance is proportional to the ratio of effective area 

 

WL

 

eff

 

 to plate spacing 

 

H

 

, the 
fringing capacitance is equivalent to an ideal fringing-free parallel plate capacitor whose 
dimensions are 

 

W

 

 by 

 

H

 

/ .

 

3.  This statement is true for a finite-length conductor over an infinite ground plane. For two equal-size 
plates, the universal correction is precisely half the value, or about 2.5fF/mm. But the length extension 
remains 

 

H

 

/  (or, after rounding, 

 

H

 

/2) per edge. Also remember that we have ignored field variations in the 

 

z

 

-direction, so the correction gets increasingly dubious as 

 

W

 

/

 

H

 

 diminishes.
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But wait, you say: Our correction has 

 

H

 

/2, not

 

 H

 

/ , in it. Here’s how we get 

 

H

 

/2: First, 
we know that our proposed functional form is wrong (consider its behavior at large radii). 
So, by the minimum principle we know that our estimate is probably too high (  is too 
low), if the field for 

 

r

 

 > 

 

H

 

 were truly negligible. But by how much? We don’t know (if we 
did, we could remove the error altogether). But under the assumption that the estimate 
isn’t too horribly wrong, we arbitrarily round the denominator upward a little bit to get to 
the closest convenient number, 2. Cheesy? You bet. Can we evaluate the amount of cheesi-
ness? Consider the following table, which presents correction factors for the capacitance 
between circular parallel plates of diameter 

 

D

 

 and spacing 

 

H

 

. We define a correction factor 
as the ratio of actual (or estimated) capacitance, to the value given by the simple fringing-
free undergraduate physics formula. Values in the second column are obtained from 
numerical field solutions, and the third from assuming that the capacitors act as if we 
extended the radius by an amount 

 

H

 

/2 (so that the effective diameter is 

 

D

 

 + 

 

H

 

).

 

TABLE 1.  Circular parallel-plate capacitance

 

As expected the correction factors are very close to unity for small spacings, so all three 
formulas yield answers that differ negligibly from each other. As 

 

H

 

/

 

D

 

 ratios grow, how-
ever, the fringing-free parallel plate formula underestimates the true capacitance by 
increasing amounts. The true capacitance is nearly 30% larger than the value computed by 
the fringing-free formula when the 

 

H

 

/

 

D

 

 ratio is 0.1. Application of the cheesy correction 
factor results in a residual error that is under 6% at that same spacing. This close tracking 
is encouraging, because the correction factor was derived for a rectangular structure, but 
applied successfully to a circular one. The assertion of a universal fringing correction thus 
seems less unreasonable.

As a final comment, if we use the 

 

H

 

/  factor actually derived, instead of the 

 

H

 

/2 arbi-
trarily substituted for it, the error improves a little bit in the particular case of Table 1, as 
can be seen in the last two columns.

 

4

 

 At a normalized spacing of 0.1, the correction factor 
becomes 1.24, reducing the error to almost a full order of magnitude below the fringing-
free estimate, to a little bit above 3%. So, which to use? Fortunately, the contribution by 

 

4.  A value of 2

 

H

 

/3 is even better for this particular data set, with almost no error at 

 

H

 

/

 

D

 

 = 0.1.

 

H

 

/

 

D

 

“Exact” 
correction 

factor

Cheesy 
correction 

factor 
(using 

 

H

 

/2)

Residual 
cheese 

error (%)

Cheesy 
correction 

factor 
(using H/

 

√

 

3)

Residual 
cheese 

error (%)

 

0.005 1.023 1.010 1.2 1.012 1.1

0.01 1.042 1.020 2.1 1.023 1.6

0.025 1.094 1.051 4.0 1.059 3.2

0.05 1.167 1.102 5.5 1.119 4.1

0.10 1.286 1.210 5.9 1.244 3.3

3

3

3
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fringing itself typically constitutes a second-order correction to first-order formulas, so 
small errors in those corrections result in very small overall errors. The choice of whether 
to use 

 

H

 

/2 or

 

 H

 

/  (or some other value) is therefore not one of critical import, and the 
selection can be made on the basis of other criteria. The slothful author uses the simpler 
value of 

 

H

 

/2 almost all the time, since it minimizes another kind of energy, his own.

3
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Noise Figure Measurement

 

1.0  Introduction

 

One of the most important performance metrics for low-level amplifiers is noise figure or 
noise factor.

 

 

 

The two terms are used interchangeably in the literature. In this text, we 
adopt the following arbitrary convention: We will denote noise figure by 

 

NF

 

, and define it 
as the decibel version of the noise factor, 

 

F

 

. We will be somewhat sloppy about using the 
terms (reflecting common usage), but context should make clear whether or not the deci-
bel version is being discussed.

The definition of noise factor now in use was first formally proposed by Harald Friis

 

1

 

 of 
Bell Labs. At its core, the definition involves signal-to-noise ratios (SNRs):

 

(1)

 

This definition shows that 

 

F 

 

is the factor by which an amplifier degrades the signal-to-
noise ratio of the input signal. As such, it is never smaller than unity. As simple and 
straightforward as the definition appears to be, numerous subtleties are buried in it, and the 
definition is incomplete as presented. Accurate measurement of noise figure depends on a 
full appreciation of all of these subtleties, and an understanding of how to identify and cor-
rect sources of measurement error. As we’ll soon see, automated noise figure instruments 
do not eliminate the need for a knowledgeable operator. As has been noted, “Automated 
equipment merely lets you produce more wrong answers per unit time.” The purpose of 
this chapter is to reduce the rate of erroneous answer generation.

 

2.0  Basic Definitions and Noise Measurement Theory

 

One important subtlety concerns the temperature at which the measurement of noise figure 
is made. Specifically, the temperature of the source has a profound effect on the noise fig-
ure. Intuitively, this temperature dependence may be understood as follows: The device 
under test (DUT) generates its own internal noise, independent of the source temperature. 
If the latter is very low, then the source noise will be correspondingly low, so the noise 
added by the DUT will have a comparatively greater effect. The measured noise figure 
will thus be higher than if the source were hotter. Because of this sensitivity, a meaningful 
comparison of noise figures requires that the measurements be made at a standard temper-
ature. Friis proposed a reference temperature, denoted 

 

T

 

0

 

, of 290 kelvins (about 62

 

°

 

F or 
17

 

°

 

C), a temperature which is considerably cooler than the interior of most laboratories. 
An oft-cited reason for this choice is the approximate equality of this temperature with 
that commonly seen by antennas used in terrestrial wireless communications. However, a 

 

1.  “Noise Figures of Radio Receivers,” 

 

Proc. of the IRE

 

, July 1944, pp. 419-422.

F
SNRi

SNRo

≡
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stronger motivation for its selection is simply that 

 

kT

 

0

 

 is then 4.00 x 10

 

-21

 

J, a round num-
ber with undeniable appeal in an era of slide rule computation, particularly to an eminently 
practical engineer like Friis.

The final statement on standard conditions, made by a committee of the Institute of Radio 
Engineers (a forerunner of the IEEE), is that the noise figure measurement is to be made 
with a source whose available noise power is the same as that of an input termination 
whose temperature is 290K. Recall that available power is defined as the power that 

 

could

 

 
be delivered to a (conjugately) matched load. Hence, even if the source does not in fact 
happen to drive a matched load, the power remains 

 

available

 

. Available power is precisely 
what the words imply: a potential power, independent of the actual load. Confusion about 
this definition is all too common, and can lead to serious errors, as will be made clear later 
in this chapter.

A second consideration is that determining input and output signal-to-noise ratios is by no 
means trivial. Since noise figure is an intrinsic property of the DUT alone (assuming lin-
earity), and therefore not of how you drive the DUT, it should be possible to devise a mea-
surement that does not involve the use of an explicit signal. To do so, it is helpful to note 
that the noise appearing at the output of the DUT results from two contributions. One is 
the amplified available source noise power (with the source at 

 

T

 

0

 

 = 290K), which has a 
value

 

, (2)

 

where 

 

B

 

 is the noise (brickwall) bandwidth and 

 

G

 

av

 

 is the available power gain of the 
DUT.

The other component of output noise is simply the noise added by the DUT itself. We call 
this noise contribution 

 

N

 

a

 

. The total available output noise power is therefore

 

. (3)

 

Now let’s revisit the noise figure definition of Eqn. 1:

 

. (4)

 

Interpreting all quantities as available powers, the ratio of output signal 

 

S

 

o

 

 to input signal 

 

S

 

i

 

 is the available gain, 

 

G

 

av

 

. The available input noise power is simply 

 

kT

 

0

 

B

 

, and the avail-
able output noise power is 

 

N

 

1

 

 as defined in Eqn. 3. So we may write

 

. (5)

 

The last expression on the right,

Nos kT0BGav=

N1 kT0BGav Na+=

F
SNRi

SNRo

≡
Si Ni⁄

So No⁄
=

F
Si Ni⁄

So No⁄
1

Gav

No

Ni
 
  1

Gav

N1

Ni
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, (6)

 

is the definition officially adopted by the IRE. It initially appears more attractive as a basis 
for measurement than Eqn. 1 because it contains no terms related to an explicit input or 
output signal. Using Eqn. 6, measurement of noise figure reduces to the measurement of 
noise, available gain and bandwidth. Unfortunately, there are still serious practical diffi-
culties associated with trying to base a measurement directly on this equation. In particu-
lar, it is not easy to measure the product of the effective noise bandwidth and available 
gain, 

 

BG

 

av

 

, with high accuracy. The experimental difficulties are best appreciated after 
comparing the various noise measurement methods discussed in Section 6.0.

One of these alternative noise figure evaluation methods, which is implemented in com-
mercial instruments such as the HP8970A, cleverly sidesteps the need to measure gain-
bandwidth by employing a ratio of noise measurements performed at two different source 
temperatures. As a general philosophy, it is always advantageous to replace absolute mea-
surements with ratiometric ones wherever dimensional considerations permit it. Fortu-
nately noise factor is a dimensionless quantity, so a purely ratiometric measurement is 
possible. Gain-bandwidth product is not dimensionless, so measuring it should not be fun-
damentally necessary here.

The basis for the ratiometric technique is that the use of a hot source increases the compo-
nent of output noise due to the source, without changing the noise added by the DUT. If 
the ratio of the source temperatures is accurately known, then measuring the output noise 
powers under the hot and cold conditions permits us to solve for the noise added by the 
DUT and, hence, compute the noise figure.

The following plot of output noise power as a function of source temperature illustrates 
how such a ratiometric measurement solves our problem:

 

FIGURE 1. Output noise power vs. source temperature

 

Comparing features of this drawing with Eqn. 6, note that the slope and y-intercept tell us 
everything we need to compute 

 

F

 

:

F
kT0BGav Na+

kT0BGav

=

0
TS (K)ThT0

Na

slope = kGavB
N1

N2

Tex

Available output
noise power (W)

–Te

Nos
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. (7)

 

Clearly, the need to measure gain-bandwidth has disappeared because two points deter-
mine a line. Despite the straightforward nature of this observation, engineers have devised 
a surprising number of different ways to use noise data from two points to determine noise 
figure. Just keep in mind that underlying the seeming complexity in what follows is the 
extremely simple geometric picture of Figure 1.

If we make a noise power measurement at a source temperature, 

 

T

 

h

 

, that is above the ref-
erence temperature by an amount 

 

T

 

ex

 

, then the available output noise power becomes

 

. (8)

 

Combining the hot measurement with the one at 

 

T

 

0

 

 (Eqn. 3), a little algebra allows us to 
find that the noise factor may be expressed as

 

. (9)

 

The ratio 

 

N

 

2

 

/

 

N

 

1

 

 is often called the “

 

Y

 

 factor” in the literature (why? because it comes after 

 

X

 

...). Figure 1 shows a cold temperature equal to the reference temperature, 

 

T

 

0

 

, but it 
should be clear that any temperature other than 

 

T

 

h

 

 

 

could be used to figure out the slope and 
intercept of the line. More generally, if the cold temperature 

 

T

 

c

 

 is not 

 

T

 

0

 

, the numerator 
changes, so that the noise factor is

 

. (10)

 

The ratio 

 

T

 

ex

 

/

 

T

 

0

 

 is a property of the noise source, and is information (almost) supplied by 
the manufacturer. The qualifier “almost” applies because the manufacturer actually speci-
fies a slightly different quantity called the 

 

excess noise ratio

 

 (ENR), which is defined as 
the ratio of noise powers actually delivered to a 50

 

Ω

 

 load (or occasionally some other 
standard impedance level). However the ratio 

 

T

 

ex

 

/

 

T

 

0

 

 results from a consideration of 

 

avail-
able

 

 powers (as does the 

 

Y

 

 factor). The two ratios are equivalent only in the special case 
where the noise source happens to have an impedance of precisely 50

 

Ω

 

. Despite the best 
efforts of manufacturers, this condition is not perfectly satisfied in practice, so substituting 
ENR for 

 

T

 

ex

 

/

 

T

 

0

 

 is one (generally small) potential source of error. Because it is much easier 
to determine ENR, however, that’s what the manufacturer measures and reports. 

In the “old days,” actual hot and cold sources were used, commonly with resistors at 77K 
(the boiling point of liquid nitrogen) and 373K (the boiling point of water). Clearly, the 
greater the temperature difference, the more accurately we can compute the slope and 

F
kT0BGav Na+

kT0BGav

= 1
Na

kT0BGav

+ 1
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+= =
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intercept, for a given uncertainty in the power measurement. A limitation on the hot side is 
the difficulty of accurately determining or controlling the temperature. And the higher the 
temperature, the more significant the problems of materials properties (e.g., melting).

Nowadays, it is common to use noise diodes (see the chapter on RF diodes) which can 
produce the noise of an exceptionally hot source (e.g., 10,000K, higher than the melting 
point of any known metal) while remaining at room temperature. The same diode can pro-
vide the cold reference as well, simply by turning it off, causing an internal resistive 
matching network to provide an available noise power that corresponds to the ambient 
temperature (RF choke RFC is simply an inductor large enough to be considered an open-
circuit at all frequencies of interest):

 

FIGURE 2. Typical noise diode

 

One drawback is that, unlike true hot and cold resistors, such diodes are not fundamental 
standards; their hot noise cannot be computed from first principles. Since ENR must be 
known to great accuracy to be useful, it is usually traceable to a primary noise standard 
maintained by national laboratories, such as the NIST (National Institute for Standards 
and Technology, formerly the National Bureau of Standards). This traceability accounts in 
part for the relatively high cost of noise diodes.

 

3.0  Noise Temperature

 

Noise temperature, 

 

T

 

e

 

, is an alternative figure of merit used in place of noise figure in 
some cases. As seen in Figure 1, noise temperature is (minus) the extrapolated intercept of 
the noise power curve with the temperature axis. An intuitively appealing meaning of 
noise temperature can be extracted by translating the noise power curve to the right by a 
temperature equal to the noise temperature: 

OUT
RFC DC block

DC bias current
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FIGURE 3. Noise temperature

 

The translated curve is that of a noiseless amplifier (because the noise at zero source tem-
perature is zero) with the same slope (= available gain-bandwidth product, times 

 

k

 

) as the 
original amplifier. As can be seen, this noiseless amplifier produces an available output 
noise power equal to the available output noise of the original amplifier, if the source is 
now heated to a temperature 

 

T

 

0

 

 + 

 

T

 

e

 

. The increase in available output noise power due to 
the hotter source is precisely equal to the available noise (

 

N

 

a

 

) added by the original DUT:

 

. (11)

 

Noise temperature is used most often in satellite communications systems for several rea-
sons. One is that objects in the sky generally don’t have an effective temperature any-
where near 290K, so choosing such a reference temperature has a weaker physical 
justification. The other is that space communication systems generally have exceptionally 
low noise figures, and noise temperature is a higher resolution measure of very low noise 
figure values. The following table compares noise figure, noise factor and noise tempera-
ture over a range generally considered very low noise:

 

TABLE 1.  Comparison of noise figure, noise factor and noise temperature

 

It is sometimes helpful to note that, in the very low noise figure regime (e.g., below about 
1dB), the noise figure in dB is approximately the noise temperature divided by 70-75. 
Stated alternatively, each tenth of a dB corresponds to roughly 7-7.5K.

 

NF

 

 (dB)

 

F T

 

e

 

 (kelvins)

 

0.5 1.122 35.4

0.6 1.148 43.0

0.7 1.175 50.7

0.8 1.202 58.7

0.9 1.230 66.8

1.0 1.259 75.1

1.1 1.288 83.6

1.2 1.318 92.3

0 TS (K)T0

Na

N1

N2

–Te T0 + Te

Available output
noise power (W)

Na kTeBGav=
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To relate noise temperature and noise factor, return again to the official IRE noise figure 
definition:

 

. (12)

 

Substituting Eqn. 11 for 

 

N

 

a

 

 yields

 

, (13)

 

which simplifies to

 

. (14)

 

If the noise added by the DUT equals the noise power of the source, the noise figure will 
be 3dB, corresponding to a noise temperature of 290K. Many LNAs with effective noise 
temperatures well below 100K (corresponding to noise figures below 1.3dB) are commer-
cially available.

The noise temperature may be found indirectly by relating Eqn. 14 to Eqn. 9, or directly 
from the hot and cold noise measurements of Figure 1. Pursuing the latter strategy, we 
may write

 

(15)

 

and

 

, (16)

 

so that

 

. (17)

 

Solving for 

 

T

 

e

 

 yields

 

. (18)

 

Another reason that noise temperature is used in some contexts is that the quantity 

 

F

 

 – 1 
recurs frequently in certain calculations (particularly of cascaded noise figure, as we shall 
see in Section 4.0). By rearranging Eqn. 14, it’s clear that noise temperature 

 

T

 

e

 

 is propor-
tional to 

 

F

 

 – 1, so its use simplifies such calculations.

F
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Because both noise figure and noise temperature fully convey the information of the other 
(as implied by Eqn. 14, for example), you may use either. The choice of which to use is 
made largely on the basis of culture and convenience.

 

3.1  Spot noise figure

 

In many cases, one is interested in the noise performance of an amplifier as a function of 
frequency. In those situations, the measurement bandwidth is restricted to some known 
value (e.g, 1MHz) and the noise figure for that bandwidth is reported at a specific fre-
quency. Since the parameter is a noise figure measured in a narrow band centered around a 
specific spot, it is known as the spot noise figure. The noise figures most often reported in 
the literature are usually spot noise figures.

 

4.0  Friis’ Formula for the Noise Figure of Cascaded Systems

 

Computing the noise figure of a cascade of systems is often carried out incorrectly. Once 
again, the problem is a failure to appreciate certain subtleties. One difficulty is that indi-
vidual noise figures do not combine in any simple way to yield the overall cascaded noise 
figure. Another is that each stage may see a different source impedance, and the noise fig-
ure of each stage must be computed with respect to that impedance. To understand these 
and other issues in detail, we now derive the correct equation for the cascaded noise fig-
ure, called Friis’ formula.

Consider a noisy system that is driven by yet another noisy system:

 

FIGURE 4. Cascaded systems

 

The first stage has a noise factor 

 

F

 

1

 

 and available power gain 

 

G

 

1

 

 measured with 

 

R

 

S

 

 as 
source resistance. The second stage has an available power gain

 

 G

 

2

 

 and a noise factor 

 

F

 

2

 

 
when these quantities are measured 

 

with the

 

 

 

output impedance of the previous stage as 
source resistance

 

. If there were additional stages, the available gain and noise figure of 
each one would be determined using the output impedance of the preceding stage as the 
source resistance. A common error is to use 

 

R

 

S

 

 as the source impedance for all stages, but 
this choice is correct only if the output impedances happen to be 

 

R

 

S

 

.

The easiest way to derive Friis’ formula is to make use of the concept of noise tempera-
ture. Because the available output noise power added by each DUT is 

 

kT

 

e

 

BG

 

av

 

, the avail-
able noise power at the output of the first DUT is

G1, F1 G2, F2
RS

DUT 1 DUT 2
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. (19)

 

The second stage takes this noise, amplifies it, and adds to it another 

 

kT

 

e

 

BG

 

av

 

 of its own:

 

. (20)

 

We could just as well regard the overall system as a single amplifier with available gain 

 

G

 

av

 

1

 

G

 

av

 

2

 

, driven by a source 

 

R

 

s

 

. Hence, we may also write

 

, (21)

 

where 

 

T

 

e

 

12

 

 is the overall noise temperature of the cascade. Equating Eqn. 20 and Eqn. 21 
yields

 

. (22)

 

The overall noise temperature is therefore the noise temperature of the first stage, plus the 
input-referred noise temperature of the second stage. This formula reflects the understand-
ing that the signal boost provided by the first stage diminishes the effect of noise of subse-
quent stages. Clearly, Eqn. 22 can be extended to an arbitrary number of stages, yielding 
one form of Friis’ formula:

 

. (23)

 

An alternative expression in terms of noise factors is readily derived by using Eqn. 14 to 
relate noise temperature and noise factor:

 

. (24)

 

From inspection of the last two equations, we see that the expression for cascaded noise 
temperature is somewhat simpler (none of those pesky –1 terms to clutter up the equation). 
The noise temperature contributed by the 

 

n

 

th stage can be computed simply by dividing 
through by the product of the available gains of the (

 

n – 1

 

) stages preceding it. For this 
reason, the noise temperature formulation is frequently favored when considering cas-
caded systems.

 

5.0  Noise Measure

 

From Friis’ formula, we see that if an amplifier has good noise figure but low gain, sup-
pression of noise from subsequent stages is poor. Unfortunately, classical noise optimiza-
tion design methods sometimes lead to an “optimum” amplifier design with precisely this 
combination of characteristics. Because both the noise figure and gain of an amplifier are 
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important in general, another figure of merit known as 

 

noise measure

 

 is sometimes used to 
guide engineers toward a balanced design. Its formal definition initially seems to combine 
these two quantities in a puzzling way:

 

(25)

 

The rationale for this definition becomes clear when we examine Friis’ formula for the 
special case of an infinite cascade of identical amplifiers:

 

, (26)

 

which ultimately simplifies to

 

. (27)

 

Therefore, this definition of noise measure is actually the normalized noise temperature of 
the infinite cascade:

 

. (28)

 

Just to keep you on your toes, though, noise measure is defined in some references as 

 

F

 

tot

 

, 
rather than as 

 

F

 

tot

 

 – 1. Be sure to identify which definition is being used, as the difference 
can introduce considerable error for low noise systems. Finally, note that this definition of 
noise measure has no particular relationship to the definition of noise measure for negative 
resistance devices, such as Gunn and tunnel diodes (see chapter on RF diodes).

 

6.0  Typical Noise Figure Instrumentation

 

Having derived multiple expressions for noise figure, we’re now in a position to examine 
several different methods for carrying out an actual measurement. As usual, we start with 
a little history, partly for entertainment, but partly because methods that were used long 
ago tend to be ones that hobbyists can implement economically today.

 

6.1  The (good?) old days

 

From Figure 1 we see that measuring noise figure is equivalent to determining the equa-
tion of the noise power-vs.-source temperature line. Measuring two points along the line is 
sufficient, but so is knowing a single point and the line’s slope. The former method is the 
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modern way, but it is worthwhile discussing the latter. Even though it poses nontrivial 
experimental challenges, the equipment required is within the reach of most RF hobbyists, 
so a description of this technique merits inclusion here.

Prior to the development of calibrated hot and cold sources, the only noise source avail-
able was one at room temperature. With that limitation, one can determine the available 
output noise only at that one (perhaps inaccurately known and poorly controlled) tempera-
ture. So immediately, we see one error source: the noise source is probably at a tempera-
ture higher than 290K, unless the laboratory is also used for storing beer. Even so, this 
error source is usually not the dominant one.

The tricky part is that of determining the slope of the line, 

 

kG

 

av

 

B

 

. Boltzmann’s constant is 
pretty solid, but measuring the product of available power gain and noise bandwidth 
(which generally does not equal the –3dB bandwidth) is fraught with difficulty. The exper-
imental setup for doing so is straightforward in principle; it’s just the practice that’s hard.

To measure 

 

G

 

av

 

B

 

, simply connect a signal generator to the DUT and sweep the frequency 
to plot the power gain-vs.-frequency curve:

 

2

 

FIGURE 5. Signal generator method for noise figure measurement

 

In most cases, no provisions are made to ensure a conjugate match (because it is exceed-
ingly tedious to do so at each of many test frequencies), so the power gain that is measured 
differs from the available gain, leading to potential errors. The power frequency response 
curve is integrated (e.g., graphically, or by measuring the –3dB bandwidth and multiply-
ing by some fudge factor between 1 and 1.57) to find the product 

 

GB

 

.

To complete the experiment, the output power 

 

N

 

1

 

 is measured with the noise source (e.g., 
a simple resistor of value 

 

R

 

s

 

) connected to the input. The noise factor is then

 

. (29)

 

This measurement method requires simple apparatus: a signal generator, calibrated power 
meter (or oscilloscope; see the appendix for eyeball methods of estimating noise) and a 
resistor (which might be provided by simply turning off the generator). Figuring out the 

 

2.  If the signal generator’s output is not constant over the band, it is necessary to measure its output to per-
form a proper gain calculation. Failure to do so is a common source of error.
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gain-bandwidth product from the measured frequency response is rather labor-intensive, 
but if you don’t want to have to choose between buying a car and buying an automated 
noise figure meter, the traditional method is the best choice. That said, it is quite difficult 
to reduce noise figure uncertainties below about 1-2dB with this method, so characteriza-
tion of very low noise amplifiers with this technique is generally out of the question, prac-
tically speaking.

Another issue is that the measurement time per frequency point is large, so that it is cum-
bersome to make real-time evaluations of tweaks made to improve noise figure. It takes 
patience to use the signal generator method.

There is one case (at least, this is the only one the author can think of) where the signal 
generator method is favored, however. Consider the problem of measuring accurately the 
noise figure of an exceptionally noisy system. In particular, suppose that the DUT is so 
noisy that the noise temperature greatly exceeds the reference temperature. In this case, it 
is possible for the output noise powers under the hot and cold conditions to be rather simi-
lar, leading to a 

 

Y

 

 factor close to unity. Because the formula for noise factor with a hot/
cold measurement method contains a term (

 

Y

 

 – 1) in the denominator, the measurement 
can be quite sensitive to small errors in 

 

Y

 

 when 

 

Y

 

 is nearly unity. The signal generator 
method, on the other hand, does not suffer from this sensitivity because it does not infer 
slope from measuring noise at two temperatures; there are no subtractions along the way. 
So it may be said that, for low noise amplifiers, the hot/cold method is better, and for 
extremely noisy systems, the signal generator method may be better.

 

6.2  On to the modern era...

 

When a calibrated hot noise source is available, it becomes considerably easier to make 
accurate noise figure determinations. As mentioned previously, early sources used actual 
resistors heated or cooled to easily determined or controlled temperatures, such as the 
boiling points of water and liquid nitrogen. A hot source at the temperature of boiling 
water is entirely feasible for the home experimenter (just be careful not to burn yourself or 
start a fire), and highly accurate as long as the water is reasonably pure and corrections are 
made for boiling point shifts with altitude.

Many commercial cold loads operate at 77K, but not many hobbyists happen to have a 
Dewar full of LN

 

2

 

 about the house. Perhaps a more practical choice for the weekend 
experimenter is to use a room temperature cold source, but accurate measurements 
demand knowledge of the actual room temperature. A modest improvement is possible by 
using ice in water to provide a 273K cold temperature. If you have access to acetone and 
dry ice, an equilibrium mixture of those two substances will have a temperature of about 
203K (–70

 

°

 

C). However, acetone is quite flammable, so if you do choose this mixture, be 
sure to observe all appropriate safety precautions (in particular, keep the acetone well 
away from whatever makes the hot source hot). Also, it is important to keep in mind that 
acetone is a powerful solvent for most plastics, so you can’t put the mixture in a styrofoam 
cup! Additionally, its fumes are toxic as well as flammable, so use only in a well ventilated 
room. Except for the possibility of death by fire, asphyxiation or cancer, this mixture is 
ideal for realizing the cold source at home.
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Once you have both a hot and cold source, there are several measurement options from 
which to choose. One method, called the “

 

Y

 

-factor method” for reasons that will become 
clear, avoids the need for a calibrated power meter, replacing it instead with a more easily 
realized calibrated adjustable attenuator:

 

FIGURE 6. 

 

Y

 

-factor measurement technique (simplified)

 

This measurement technique relies on the fact that the ratio of output powers with the hot 
and cold source (= 

 

Y

 

), plus knowledge of the hot and cold temperatures, is sufficient to 
compute noise figure. To carry out a measurement with this method, set the attenuation 
factor to unity, connect the cold load, and note the output power reading on the meter. The 
absolute value is completely unimportant. Then connect the hot load and adjust the attenu-
ator until you obtain the same power reading as before. Since the attenuation factor is 
therefore the value that reduces a power 

 

N

 

2

 

 to a value 

 

N

 

1

 

, the attenuation factor is pre-
cisely equal to 

 

Y

 

. 

 

The noise factor is then computed from Eqn. 10:

 

. (30)

 

The accuracy achieved depends on the accuracy of the 

 

Y

 

 factor determination, as well as 
on the knowledge of the hot and cold temperatures. With assiduous attention to controlling 
all error sources, this technique can provide accuracies that are on a par with what can be 
achieved with commercial instrumentation. The tradeoff is again one of time per measure-
ment.

Actual 

 

Y

 

 factor noise determinations are usually carried out with a slightly different con-
figuration to permit measurement of spot noise figure as a function of frequency, rather 
than a gross noise figure over the entire bandwidth of the amplifier. The typical setup mod-
ifies the one shown in Figure 6 by adding a mixer, local oscillator and intermediate-fre-
quency (IF) amplifier, just as in a superheterodyne receiver:

 

3

 

3.  An LO, mixer and IF amplifier can also be added to the setup of Figure 5 to improve the signal generator 
method, readily permitting evaluation of spot noise figure with that system. The noise bandwidth of the IF 
filter determines the width of the spot, and its value needs to be known to calculate spot noise figure cor-
rectly.
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FIGURE 7. 

 

 

 

More typical 

 

Y

 

-factor measurement setup

 

Here, the LO frequency is swept to sample the noise from the DUT at different frequen-
cies. The IF amplifier/filter combination ensures that this noise is measured over some nar-
row, controlled bandwidth centered about the frequency determined by the LO setting. In 
many implementations, a filter is additionally interposed between the DUT and the instru-
mentation to limit bandwidth (perhaps to attenuate image response, for example).

If a spectrum analyzer is used as the power meter in any of these methods, it is necessary 
to precede it with a high-gain, low-noise preamplifier because spectrum analyzers gener-
ally have rather high noise figures (e.g., 30dB), as a result of design trade-offs made in 
favor of good large signal linearity. The gain of the preamp must be large compared with 
the noise figure of the analyzer in order to effect a substantial reduction in 

 

NF

 

. The overall 
noise figure will then be close to that of the preamp alone. Even so, the noise figure of the 
preamp-spectrum analyzer combination will generally remain high enough that it cannot 
be ignored, and Friis’ formula for cascaded noise figure should be used to correct the mea-
sured values. As a concrete numerical example, assume that the preamp has a noise figure 
and available power gain of 3dB and 40dB, respectively, and that the analyzer has a noise 
figure of 30dB. The combination has a noise factor given by Friis’ formula,

 

, (31)

 

or 3.2dB, a large improvement over 30dB and now only slightly greater than the preamp’s 
inherent noise figure. Friis’ formula will ultimately be used again, once the DUT is con-
nected to the combination, with 3.2dB now considered the second stage’s noise figure, and 
the DUT’s available gain used in the denominator. If the noise figure of the preamp is not 
known, connect the hot and cold sources directly to its input, and make a measurement of 
noise figure. Once the combination has been characterized in this manner, it may be used 
to determine the noise figure of the DUT.

When making spot noise figure measurements with the spectrum analyzer, set the analyz-
er’s resolution bandwidth equal to the desired width of the spot. Choose a video band-
width (much) narrower than the resolution bandwidth to reduce noise in the displayed data 
(recall that video bandwidth controls the averaging of the 

 

output

 

 signal, after the detector).

The basic arrangement shown in Figure 6 is also quite close to what lies at the core of 
most modern automatic noise figure instruments. The HP8970, for example, contains all 
of those components, with the addition of a filter and preamplifier (as in the spectrum ana-
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lyzer example) and a collection of attenuators at the input and output. With these addi-
tional elements, the instrument is able to measure (and correct for) insertion gain (loss) of 
the DUT and fixturing during the noise figure measurement. Additionally, the noise figure 
of the meter circuitry must also be known in order to complete an accurate noise figure 
measurement. What follows is a typical sequence of operations for making a noise figure 
measurement with a commercial instrument (specifically, the 8970B).

1) Read off the ENR calibration values for the hot/cold noise source, and enter those num-
bers into the instrument’s memory. The 8970B has a list of the common calibration fre-
quencies already in ROM, so the user normally only has to enter the ENR values.

2) Select the start frequency, stop frequency and frequency increment (step size).

3) Connect the noise source to the instrument in order to permit measurement of the 
meter’s noise figure, set frequency to the desired value, and press the “calibrate” key to 
initiate the calibration sequence. The meter successively activates and deactivates the 
noise source to compute the meter’s

 

 

 

hot and cold noise powers:

 

(32)

. (33)

 

The ratio of these two powers is completely insensitive to gain-bandwidth product and has 
only the noise temperature of the meter as an unknown:

 

. (34)

 

The 8970 allows the results of several calibration runs to be averaged. The number of runs 
is controlled with the “increase” key. Hold it down until the desired number of runs is dis-
played. This step precedes activation of the “calibrate” mode.

4) Insert the DUT between the noise source and the instrument and select “noise figure 
and gain.” To the maximum practical extent, avoid cables. The shorter the fixturing, the 
better, to minimize pre-DUT loss (and thus any errors introduced by uncertainties in its 
subsequent subtraction). The instrument then measures the hot and cold powers of the cas-
cade (DUT + meter):

 

(35)

. (36)

 

The ratio of these two powers is also insensitive to gain-bandwidth product and has only 
the noise temperature of the DUT/meter combination as an unknown:
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(37)

 

The ratio of the differences of noise powers enables computation of the DUT’s gain:

 

. (38)

 

The gain of the meter has dropped out completely, so its value is theoretically irrelevant. 
Having computed the gain of the DUT, the noise temperature of the meter, and the noise 
temperature of the meter and DUT combination, Friis’ formula can be used to solve for the 
noise figure of the DUT alone:

 

. (39)

 

Note that the resulting calculation is correct only if 

 

G

 

DUT

 

 is equal to the available gain. 
Mismatches may make these unequal and thereby introduce error.

The 8970 also allows the user to enter the cold temperature. The default is 296.5K, which 
is closer to typical room temperatures.

A separate measurement of fixturing loss (e.g., with a network analyzer) enables correc-
tion for any pre-DUT fixturing attenuation. Most instruments allow the user to enter loss 
values (via the “loss compensation” feature of the 8970, for example), and automatically 
perform the subtraction of the loss factor. The instrument converts noise temperature into 
noise figure, and displays both 

 

NF

 

 and 

 

G

 

DUT

 

. It takes you much longer to read this 
description than it does for the instrument to carry out the measurement.

 

7.0  Error Sources

 

There are several ways in which noise figure measurements can go awry. Understanding 
what these are is a key to making accurate measurements. What follows is a short list of 
common problems, mistakes and their fixes.

 

7.1  External noise

 

More than occasionally, external interference couples into the test setup. This interference 
can be noise radiated by RF sources ranging from TV and radio, to digital equipment (par-
ticularly computers and their monitors). Noise figure measurements are best carried out in 
a shielded screen room to prevent this interference from injecting into the system. If this 
option is not available, the next best choice is to make a spot noise measurement at a fre-
quency removed from the interference, assuming that it is narrowband enough to enable 
this strategy. Many noise figure measurement systems provide for an oscilloscope connec-
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tion to monitor the spectrum (generally at the output of the noise figure meter’s IF stage). 
If such an output is not available, a normal spectrum analyzer may be used instead. With 
the aid of a monitor, discrete peaks caused by interference can be identified quite easily, 
and the measurement frequency moved appropriately away from the interference.

 

7.2  Fixturing loss

 

Fixturing anomalies are an endless source of errors. For example, a proper measurement 
of noise figure requires accurate characterization of any loss  (e.g., from cable attenuation) 
that precedes the DUT proper. This loss (in dB) is subtracted from the measured overall 

 

NF

 

 to yield the DUT’s true 

 

NF

 

. If the loss is large, however, the uncertainty in the final 
answer can be considerable because the instrument will have subtracted two nearly equal 
numbers. For example, suppose that the pre-DUT fixturing power loss is 20dB (this is 
frighteningly large), and the DUT itself has a 2dB noise figure. The noise figure meter will 
measure a 22dB noise figure, but within some error (say, optimistically, 0.5dB). Assume 
for now that the error results in a composite measured 

 

NF

 

 of 21.5dB. A separate measure-
ment of the fixturing loss might have a similar uncertainty of 0.5dB; suppose we measure 
20.5dB in this case. After subtraction, we compute a DUT 

 

NF

 

 of 1dB, instead of the cor-
rect value of 2dB, a huge error. In fact, for amplifiers with very low noise figure, it is 
entirely possible to compute negative values! Therefore, be suspicious of noise figure 
measurements in which a large attenuation has been mathematically removed. As a gen-
eral rule, it is desirable to limit any such pre-DUT attenuation to values smaller than the 
anticipated noise figure. The lower this loss, the better. 

 

7.3  Second stage contribution

 

Another common error is a failure to take into account the noise of stages that follow the 
DUT (the “second stage contribution”). A related consideration is that all commercial 
noise figure meters assume that the measured DUT gain is the same as the available gain. 
If the DUT has a large output impedance mismatch with that of the noise figure meter’s 
input port, this assumption will be a poor one, and the calculation of the second stage con-
tribution will be in error, as can be seen from Eqn. 39.

Impedance mismatch between the output of the noise source

 

 

 

and the input of the DUT is 
also a concern. Reflections off of the DUT input travel back to the noise source where any 
mismatch there causes a re-reflection back toward the DUT. The superposition of the inci-
dent power and this reflected power can cause the noise power from the source to differ 
from what it would be with a matched load. Complicating the situation is that the noise 
source may have a different impedance in the hot and cold modes, compounding the error.

Correction for all of these errors requires knowledge of all three of the mismatches, as can 
be seen from the following formula:

 

4

 

4.  

 

Fundamentals of RF and Microwave Noise Figure Measurements

 

, HP Application Note 57-1, July 1983.
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. (40)

 

Here, 

 

K

 

G

 

 is the factor by which the measured insertion gain should be multiplied in order 
to yield the correct value of available gain. The reflection coefficients are referred to vari-
ous ports as follows: 

 

Γ

 

1

 

 is defined looking into the input of the noise measurement instru-
mentation, 

 

Γ

 

2

 

 into the output of the DUT, and 

 

Γ

 

s

 

 into the output of the noise source. Note 
that if these reflection coefficients are zero, 

 

K

 

G

 

 is unity. Note also that knowledge of the 
both the magnitude and phase of the reflection coefficients is necessary to perform the cor-
rection. If only the magnitudes of the reflection coefficient are known, the best one can do 
is bound the error. As a specific example of the latter, assume that the magnitudes of 

 

Γ

 

1

 

, 

 

Γ

 

2

 

, and 

 

Γ

 

s

 

 are 0.33, 0.33, and 0.11, respectively. Then the true available gain could be any-
where between about 0.95 and 1.3 times the measured insertion gain.

 

7.4  Noise source calibration uncertainty

 

Uncertainty in the ENR of the noise source is an additional error source. As stated earlier, 
noise diodes must be calibrated against a standard. Calibrations are never perfect, and 
noise diodes are not perfectly stable (although good ones are remarkably good). One may 
typically expect instrument-grade noise diodes (such as the popular HP346B) to possess 
uncertainties in ENR on the order of 0.1dB at low frequencies (e.g., 10MHz), increasing to 
perhaps 0.2dB at higher frequencies (e.g., 18GHz). The percentage error represented by 
these uncertainties gets progressively more significant as the noise figure of the DUT 
diminishes.

Because a noise diode’s output is not perfectly constant over the operating frequency 
range, nor follows any other simple functional law, noise source calibrations are made at a 
number of discrete frequencies (10 or 20 is a typical number). In between the calibration 
points, you (or the noise figure meter) has to perform interpolations. The actual noise out-
put may differ from the interpolated value, adding another error term.

 

7.5  Cold temperature 

 

≠

 

 

 

T

 

0

 

Yet another common problem is that the cold noise source temperature is rarely 290K. A 
diode noise source has a cold temperature equal to that of the ambient, and most laborato-
ries are 4-5

 

°

 

C warmer than 

 

T

 

0

 

. As a rough rule of thumb, the measured noise temperature 
is too low by one degree for each degree the noise source is above 

 

T

 

0

 

. Thus it is typical to 
underestimate the noise figure of a DUT because of the warm laboratory problem. For 
more rigorous corrections, an accurate measurement of the cold temperature must be 
made, and Eqn. 10 used to compute the adjustment. This correction is most important in 
the case of very low noise figures.
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7.6  Failure of linearity: diode detectors

 

The straight line of Figure 1 underlies both the definition and measurement of noise figure. 
If the device under test is nonlinear, noise figure can’t be uniquely defined. A relevant 
example is that of diodes used as square-law detectors (frequently known as video detec-
tors for historical reasons). In cases such as these, a different figure of merit is used to con-
vey information about noise performance.

One such figure of merit is 

 

tangential signal sensitivity

 

 (TSS). Its original definition is a 
highly subjective evaluation of noise: An operator observes the noisy output of the detec-
tor on an oscilloscope in the absence of any signal and notes the position of the positive 
noise peaks. Then the signal is turned on, and the operator adjusts the amplitude until the 
negative-going noise peaks with signal present appear just to touch the positive-going 
noise peaks noted earlier with the signal absent. TSS is defined as the level of input signal 
that produces this condition. The problem with this definition is that noise, being random, 
has theoretically unbounded peaks. So, the operator has to make an arbitrary judgment 
when an equality of peaks occurs, and different operators may guess differently (the same 
operator may also make different determinations at different times). To eliminate this sub-
jectivity, most diode manufacturers now define TSS as the available input signal power 
that causes an output power SNR of 8dB. A typical value of TSS for diodes might be –
60dBm.

Another figure of merit is the 

 

nominal detectable signal

 

 (NDS) which is defined as the 
available input power that results in an output SNR of unity. Both TSS and NDS are gen-
erally functions of frequency and bias current, so these must be specified to make TSS and 
NDS values meaningful.

 

8.0  Special considerations for mixers

 

When the DUT is a mixer, there is a question of whether one should perform a single-side-
band (SSB) or double sideband (DSB) noise figure measurement. In most cases, the SSB 
noise figure is the appropriate choice, as few communications systems transmit the same 
signal in both the main and image bands. The only two exceptions the author is aware of 
are direct-conversion (homodyne) receivers, in which the main signal occupies the same 
spectrum as its image, and in deep-space radiometry where noise (that of the universe) 

 

is 

 

the signal. Because DSB noise figure is lower by 3dB (assuming equal conversion gains 
for the two sidebands), “specmanship” games are all too frequent, and this figure is often 
reported instead of SSB.

To place the DSB-SSB issue on a firm foundation, consider that the IRE (now IEEE) noise 
figure definition has in its numerator all output noise, but has in the denominator only sig-
nal-related noise. If the signal is contained in only one sideband, then the relevant spectra 
appear roughly as follows:
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FIGURE 8. Spectrum of SSB input to mixer

 

Here the signal exists only within bandwidth 

 

B

 

2

 

. From this picture the correct definition of 
noise factor is:

 

. (41)

 

Note that the formula allows for the possibility of unequal receiver bandwidths and 
unequal conversion gains for the two bands.

In the rarer DSB case, the desired signal resides in both bands:

 

FIGURE 9. Spectrum of DSB input to mixer

 

The corresponding noise factor is:

 

. (42)

 

If the bandwidths are equal, and the conversion gains are equal, the DSB 

 

NF

 

 will be 3dB 
lower than the SSB value, as stated earlier. More generally, allowing for unequal conver-
sion gains (but still assuming equal bandwidths),

 

. (43)
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In many cases, a mixer is preceded by an image-suppression filter. In this commonly 
occurring situation, it is appropriate to characterize the combination of the filter and mixer 
as a unit. Because the job of the filter is to produce unequal conversion gains to the two 
sidebands, there will no longer be a 3dB difference between the SSB and DSB 

 

NF

 

.

Another important subtlety concerns the nature of terminations on the several mixer ports. 
Because a mixer has three ports – RF, IF and LO – misterminations on any of the ports can 
result in complicated reflections capable of corrupting measurements. A particularly com-
mon error is to terminate the IF port of a passive mixer in a load that is matched only at, 
say, the difference frequency, exhibiting a highly reactive impedance at the sum frequency. 
Even though we might only wish to use the difference component, the sum component 
nonetheless exists also. Reflections at the sum frequency can cause pathological behavior 
of both noise figure and conversion gain.

Finally, the gain and noise characteristics of mixers typically vary with LO power. For the 
measurements to be meaningful, then, the LO power must be specified. Preferably, the 
noise figure (and conversion gain) should be presented as a function of LO power over a 
range that spans practical values.

 

9.0  References

 

Various applications notes from Hewlett-Packard (now Agilent Technologies) are excel-
lent sources of information about noise measurement. Some that are of particular interest 
include:

 

Accurate and Automatic Noise Figure Measurements

 

, HP Application Note 64-3, June 
1980.

 

Fundamentals of RF and Microwave Noise Figure Measurements

 

, HP Application Note 
57-1, July 1983.

Another good source of information is the documentation for the HP8970B noise figure 
meter, which describes in detail the theory underlying the operation of this instrument.

 

10.0  Appendix: Two Cheesy Eyeball Methods

 

For very quick assessments of relatively large amounts of noise, a crude measurement is 
sometimes acceptable. In those cases, an oscilloscope and your eyeball may be the only 
instruments you need. If we assume that the noise is Gaussian, then the peak-to-peak val-
ues very rarely exceed about 5-7 times the rms value. So, the level zero eyeball measure-
ment is to connect the noisy DUT to the oscilloscope, make some judgment about what 
the displayed peak-to-peak value seems to be, then divide by about six to develop an esti-
mate of the rms value.

This method is 

 

very

 

 crude, of course, and in no small measure because of the difficulty in 
determining what the “true” peak-to-peak value happens to be. The situation is further 
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complicated by the fact that the oscilloscope brightness setting affects what appear to be 
the peaks; the brighter the trace, the taller the apparent peaks. And, as with TSS, the same 
operator may also make significantly different determinations at different times, as a func-
tion of sleep deprivation, emotional state, and caffeine levels.

A clever extension of the eyeball technique removes much of this uncertainty by convert-
ing the measurement into a differential one.

 

5

 

 Here, the noisy signal drives both channels 
of a dual-trace oscilloscope. With a sufficiently large initial position difference, there will 
be a dark band between these two traces. The operator adjusts the position controls until 
the dark band just disappears, with the two traces merging into a single blurry mess with a 
monotonically decreasing brightness from the center outward. Note that this description 
implies an independence of the result on the absolute intensity. The noisy signals are then 
removed, and the distance between the two baselines measured. The resulting value is 
twice the rms voltage to a good approximation. Absolute accuracies of about 1dB are pos-
sible with this simple method.

The basis of this technique is that a sum of two identical gaussian distributions has a max-
imally flat top when the two distributions are separated by exactly twice the rms value.

Because the eye is an imperfect judge of contrast, it is not possible to establish with infi-
nite precision when the dark band disappears. When following the procedure as outlined, 
most people will perceive the band to have disappeared a little before it actually does. The 
error resulting from this uncertainty is on the order of 1dB for most people. Thus, perhaps 
0.5dB should be subtracted from the measurement if you are very fussy. An alternative is 
to measure the noise two different ways, one using the procedure given, and another with 
the two traces initially on top of each other. With the latter initial condition, adjust the 
spacing until the darker area first seems to appear. Use the average of the two readings to 
compute your noise estimate, and also compute the difference between the two readings to 
provide an estimate of your measurement uncertainty. With care and a little practice, sub-
1dB repeatability is readily achievable.

 

5.  G. Franklin and T. Hatley, “Don’t Eyeball Noise,” 

 

Electronic Design

 

 24, Nov. 22, 1973, pp. 184-187.
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Narrowband LNA Design Lab

 

1.0  Introduction

 

In this lab experiment, you will design, construct and test a low noise amplifier for use at 
1GHz. The design goals are: NF of ~2dB (if you can achieve 1.XdB, I want to see it), 
power gain of 10dB or more, and return loss greater than 10dB (both input and output). 
The 2SC3302 should be barely capable of the noise figure and power gain specified, so 
you can’t be too terribly sloppy. The noise figure is competitive with what is achieved by 
many cell phones, by the way (although to be fair, they have more junk between the 
antenna and the amplifier). The return loss specifications are pretty generous, and you 
should be able to do substantially better than 10dB without much trouble.

 

2.0  Summary of Bipolar Noise Model

 

Be sure to read the handout on LNA design. Excerpted figures and equations are provided 
here to cut down on the amount of paper you have to haul around:

 

FIGURE 1.  Model for noise figure calculation

 

. (1)

. (2)
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FIGURE 2. Narrowband LNA biasing details

 

Notice that the figure shows no input impedance transformer. In general, you will need 
one, so don’t forget to design it in. The input capacitor (not shown in the notes) is needed 
to prevent the output of the generator from fighting the bias of your amplifier.

Other hints: Power attenuation ahead of the amplifier adds directly to noise figure, dB for 
dB. Since the minimum NF for the transistor is already around 1.7dB, you can’t afford to 
throw away very much before you exceed the 2dB specification. So mount your transistor 
reasonably close to the input BNC, because you will be picking up close to 0.1dB of loss 
for every inch of line leading up to your amplifier. Leave enough room for your matching 
network, certainly, but not a whole lot more.

The collector bypass capacitor may have to be a parallel combination of two capacitors. 
Put a small-value capacitor as close to the line as possible (and with as short a path to 
ground as possible) for best high-frequency bypassing. Then parallel that with a higher 
value capacitor (say, 10 to 100nF) to take care of any lower frequency junk. That second 
capacitor can have longer path lengths to the collector circuit and ground.

Finally, the noise of the bias resistors will have the least effect if you can connect their 
common point (the junction of 

 

R

 

1

 

 and 

 

R

 

2

 

) to the lower impedance side of your matching 
transformer network. Of course, this only works if your transformer has a DC path to the 
base! (And make sure it doesn’t short the base to ground at DC!)

Le

vIN

RS Lb?
Q1

R3

R2

R1
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Narrowband LNA Design

 

1.0  Introduction

 

The first stage of a receiver is typically a low-noise amplifier (LNA), whose main function 
is to provide enough gain to overcome the noise of subsequent stages (typically a mixer). 
Aside from providing this gain while adding as little noise as possible, an LNA should 
accommodate large signals without distortion, and frequently must also present a specific 
impedance, such as 50

 

Ω

 

, to the input source. This last consideration is particularly impor-
tant if a filter precedes the LNA, since the transfer characteristics of many filters (both pas-
sive and active) are quite sensitive to the quality of the termination.

We will see that one can obtain the minimum noise figure from a given device by using a 
particular magic source impedance whose value depends on the characteristics of the 
device. Unfortunately this source impedance generally differs, perhaps considerably, from 
that which maximizes power gain. Hence it is possible for poor gain and a bad input match 
to accompany a good noise figure. One aim of this chapter is to place this tradeoff on a 
quantitative basis to assure a satisfactory design without painful iteration.

We will focus on a single narrowband LNA architecture that it is capable of delivering 
near-minimum noise figures, along with an excellent impedance match and reasonable 
power gain. The narrowband nature of the amplifier is not necessarily a liability, as many 
applications require filtering anyway. The LNA we’ll study thus exhibits a balance of 
many desirable characteristics.

 

2.0  Derivation of a Bipolar Noise Model

 

Before we can appreciate the attributes (and limitations) of the narrowband LNA topol-
ogy, it’s necessary first to derive an appropriate noise model for a bipolar transistor. To 
make the analysis tractable and facilitate the acquisition of design insight, we’ll need to 
make a number of simplifying assumptions. These assumptions are not seriously errone-
ous as long as the device is operated at frequencies well below (say, at least a factor of five 
below) 

 

f

 

T

 

. At still higher frequencies, rapid degradation of other device characteristics 
(such as gain) militates against the use of the device in the first place, and therefore obvi-
ates the need for analysis, accurate or otherwise.

Each of the two junctions in a bipolar transistor produces 

 

shot

 

 

 

noise

 

, modeled by a shunt 
current source whose mean-square spectral density is 2

 

qI

 

DC

 

, where 

 

I

 

DC

 

 is the value of the 
bias current through the junction. The shot noise currents from the two junctions may be 
treated as uncorrelated for most practical purposes, so we will ignore correlations in all 
that follows. This neglect will allow us to add noise 

 

powers

 

 directly. That is, a funny (and 
very useful) kind of superposition is enabled by invoking statistical independence of noise 
sources.
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In addition to the shot noise components (which are in a sense fundamental, because no 
cleverness in device design can eliminate them), there is also a source of thermal noise: 
series base resistance, 

 

r

 

b

 

. This noise is represented by a series voltage source whose mean-
square density is 4

 

ktr

 

b

 

. In modern devices its noise usually dominates (by a good margin) 
over that due to any series emitter or collector resistance, so we will neglect these. As 
we’ll see, 

 

r

 

b

 

 is highly undesirable. Aside from generating noise (and thereby degrading 
noise figure), its presence often raises to inconvenient values the source resistance that 
yields minimum noise figure (as we’ll see).

Although it is tempting to attribute thermal noise to all resistors appearing in a transistor 
model (e.g., 

 

r

 

π

 

), doing so can amount to double counting. For example, 

 

r

 

π

 

 results from lin-
earizing junction behavior, and junction noise is already modeled by shot noise. There is 
thus a difference between resistances that result from such linearization, and those that are 
simply ordinary resistors. The former do not generate thermal noise, while the latter do.

Finally, the collector-emitter output resistance is usually (but not always) large enough to 
be neglected at high frequencies, so we will omit it in all subsequent analyses.

 

1

 

A small-signal transistor model based on these considerations appears as follows:

 

FIGURE 1.  Noise model for bipolar transistor

 

This model, simple as it is, nonetheless captures the most important effects for calculating 
the noise figure of a bipolar amplifier. In fact we now have enough information to derive a 
usefully accurate expression for the noise figure of an amplifier, as well as to discover the 
value of the optimum source resistance.

Of the many possible ways to express noise factor, one that is especially useful here is:

 

, (1)

 

where, as usual, the source temperature is 290K.

 

1.  The collector-emitter resistance models the Early effect, and is not thermally noisy because it is the result 
of linearizing the effect of junction-width variations. Finally, there is a collector-base feedback resistance 
that also arises from basewidth modulation. Its effect can almost always be completely ignored at RF.
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To calculate the noise factor using Eqn. 1, connect a (thermally noisy) source resistance to 
the circuit of Fig. 1 and calculate away:

 

FIGURE 2.  Model for noise figure calculation

 

Note that the circuit is terminated in a short. In an actual circuit, of course, the output 
would be loaded with a resistor of some nonzero value, unless the goal is to make a high-
tech space heater. However it should be clear from Eqn. 1 that a collector load resistance 
appears as a multiplier in both the numerator and denominator. As a consequence, it ulti-
mately cancels out and any value is okay for our purposes. We have therefore chosen a 
zero load resistance, a particularly convenient value.

A considerably sleazier trick is that we have arbitrarily eliminated the collector-base 
capacitance. Its presence complicates the analysis enough that its removal is necessary 
simply for clarity. As long as the collector load is a low impedance, this neglect is usually 
not too serious. In the general case, however, where arbitrary collector loads are to be con-
sidered, omitting 

 

C

 

µ

 

 can result in significant error. The largest error is in computing the 
source resistance that leads to the minimum noise figure. Depending on the detailed nature 
of the load impedance, the optimum source resistance could go up or down. Fortunately, 
the actual value of that minimum noise figure is usually not greatly affected, so we will 
proceed to derive the noise figure with a full awareness of the several assumptions that 
underlie its development.

Given those assumptions, and the use of a short-circuit load, then the noise factor is sim-
ply a ratio of short-circuit currents flowing in the collector branch labeled with 

 

i

 

n

 

. The 
numerator is the sum of the mean-square short circuit currents due to all noise sources, and 
the denominator is the mean-square short circuit current due only to the source noise. 
Hence, we get

 

, (2)

 

where the simple additions of terms in the numerator are a direct consequence of neglect-
ing any correlations among the noise generators.
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It’s a good idea to study this equation one term at a time to try to make some sense of it. In 
the denominator, the mean-square voltage spectral density of the source resistor noise, 
4

 

kTR

 

S

 

, is first multiplied by the square of a voltage divide factor magnitude to find the 
mean-square voltage across 

 

r

 

π

 

. That squared voltage in turn is multiplied by the square of 
the transconductance, 

 

g

 

m

 

, to find the squared collector current and thus complete the 
denominator.

Examining the terms in the numerator from right to left, note that the noise voltage gener-
ator of resistor 

 

r

 

b

 

 is in series with that of 

 

R

 

S

 

. It therefore undergoes precisely the same 
transformations, explaining why the last of the three additive terms in the numerator has 
the form shown.

The base shot noise current sees a total impedance that is a parallel combination of 

 

z

 

π

 

 
(which, in turn, is 

 

r

 

π

 

 in parallel with 

 

C

 

π

 

)

 

 and the sum (

 

r

 

b

 

 + 

 

R

 

S

 

). Multiplying the mean-
square shot noise current by the squared magnitude of that impedance gives us the mean-
square voltage across 

 

r

 

π

 

. Again multiplying that factor by the square of 

 

g

 

m

 

 yields the base 
shot noise contribution to the mean-square collector current.

Finally, the collector shot noise undergoes no scaling or other transformations at all, and 
so it adds directly to all of the other contributions in the numerator.

The equation can be simplified by cancelling some common terms, yielding (after a little 
re-ordering)

 

, (3)

 

which simplifies still further to

 

. (4)

 

We can continue to cancel common terms to obtain an even simpler form:

 

. (5)

 

In getting to this last expression, we have made use of the fact that the transconductance of 
a bipolar transistor is 

 

qI

 

C

 

/

 

kT

 

, and that the ratio of collector to base current is 

 

β

 

F

 

.

Note that the second term accounts for noise caused directly by the base resistance, the 
third term is due to collector shot noise, and the last term is the base current shot noise 
term. This is the last form of the equation that allows us to make these identifications.
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Note also that Eqn. 5 contains three classes of terms (when everything is multiplied out). 
One is independent of 

 

R

 

S

 

, another is proportional to 

 

R

 

S

 

, and the third is inversely propor-
tional to 

 

R

 

S

 

. At very small source resistance the inversely proportional term dominates, 
and at very large values the proportional term dominates. Somewhere between “very 
small” and “very large” there is an optimum value that minimizes the sum (and, therefore, 
the noise figure). Before computing the optimum itself, let’s understand intuitively why an 
optimum 

 

R

 

S

 

 should exist at all.

At very low source resistances, the contribution by the base resistance is more significant 
compared to that of the source itself, and noise figure therefore suffers.

At very high source resistances, the contribution to the output noise by the base shot noise 
is greater (because the impedance it faces is larger, generating a greater voltage across 

 

r

 

π

 

, 
resulting in a greater current out of the collector). At the same time, the output noise due to 
the source itself is smaller, because of the harsher voltage divider seen by 

 

R

 

S

 

. The magni-
tude of the collector shot noise does not change, but its size 

 

relative

 

 to the contribution by 

 

R

 

S

 

 is worse, so noise figure degrades further still. The optimum balances the contribution 
of the base resistance against the effects of base and collector shot noise.

The noise factor equation we will use is a slightly expanded version of Eqn. 5:

 

. (6)

 

Let’s now do the math to derive the optimum value for 

 

R

 

S

 

.

 

2.1  Optimum source resistance

 

The procedure for finding this optimum is straightforward enough: Take the first deriva-
tive with respect to the source resistance, set it equal to zero, and hope for a minimum:

 

. (7)

 

Grinding inexorably toward the answer generates the following sequence of equations:
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where, in this last equation, we have taken out  terms that are independent of 

 

R

 

S

 

 and there-
fore whose derivative is zero (we already took out the unity additive factor in getting to 
Eqn. 5, in case you were wondering where it went). (If you simply want to use the final 
answer, rather than follow each step of this derivation, feel free to skip ahead!)

Separating terms that are proportional to 

 

R

 

S

 

 from those that are inversely proportional to it 
leads us to the following:

 

. (10)

 

Taking the derivative at last, and setting it to zero yields

 

, (11)

 

so that the optimum source resistance (squared) is

 

, (12)

 

which reduces a bit to

 

. (13)

 

This last equation is the last form that is traceable directly to our noise model without 
additional approximations. However, further simplification is possible if we allow one or 
two very reasonable approximations. One is that the operational frequency is well above 
1/
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 (= 
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β

 

), and the other is that the bias current is high enough that 
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 is dominated 
by the diffusion capacitance. With these assumptions,
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. (14)

 

If, as is often the case, the last term in the numerator is small compared to the term preced-
ing it, we may write

 

. (15)

 

As a specific numerical example, consider using a 2SC3302 microwave transistor at 
1GHz. Assume that the collector bias current is 10mA, at which the transconductance is 
400mS, 

 

β

 

 = 80, and 

 

ω

 

T

 

 is 10

 

π

 

Gr/s. The remaining unknown is the value of 

 

r

 

b

 

, which 
might remain unknown because it is rarely given in data sheets (the 2SC3302 is no excep-
tion). Fortunately, however, a plot of input impedance over frequency 

 

is

 

 given, and shows 
a resonance at approximately 800MHz when the bias current is 20mA (at which we may 
estimate 

 

C

 

π

 

 to be about 23pF, using other data sheet information). This resonance is the 
result of package and lead inductance interacting with 

 

C

 

π

 

. Under that resonant condition, 
the input resistance is about midway on the Smith chart between the 25

 

Ω

 

 and 50

 

Ω

 

 con-
tours, so we’ll estimate the total resistance as 3

 

7−38Ω

 

. This resistance is the sum of 

 

r

 

b

 

 and 
a real term produced by the series emitter inductance associated with the packaging and 
leads. As is shown in the next section, this induced resistance has a value

 

 ω

 

T

 

L

 

e

 

. The para-
sitic inductance is not easily estimated but one can calculate from the resonance that the 
total inductance is approximately 1.7nH. This value is also quite believable from the phys-
ical dimensions of the package. Assuming that this total inductance splits evenly between 
base and emitter (even if it doesn’t) allows us to estimate that the contribution by the 
induced resistance to the total is approximately 30

 

Ω

 

. Because this value is so close to the 
total estimated input resistance, our uncertainty in 

 

r

 

b

 

 is large. However, we’ll press on, 
and use a value of 7-8

 

Ω

 

 

 

for

 

 r

 

b

 

.

Under these conditions, the optimum source resistance is ~35

 

Ω

 

 (at which the noise figure 
is 2dB at 1GHz), a value close enough to 5

 

0Ω

 

 that only a modest NF penalty (of a bit 
greater than 0.1dB) is incurred in this case if one performs no impedance transformation. 
At a bias current of 5mA, both the noise figure and the penalty for operating at 50

 

Ω

 

 
increase (the latter to about 0.2dB), for an overall minimum noise figure of about 3dB 
(again, this value is for operation at 1GHz).
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As a check on our derivations, compare the calculated noise figure of 2dB to the minimum 
value of 1.7dB given in the data sheet for 1GHz operation. Repeating our calculation for 
500MHz operation yields a 1.6dB noise figure (at 5mA), compared with a data sheet value 
of 1.5dB for that condition. Considering the crude nature of the approximations and 
parameter extractions, the overall level of agreement is satisfactory.

Finally, remember to keep in mind that an amplifier has to amplify. Achieving a low noise 
figure is important, but it is only half the battle. For this reason, selection of a suitable bias 
must take into account gain as well as noise figure. In the specific case of the 2SC3302, 
somewhat higher gain is obtained at the larger bias current, mainly because 

 

f

 

T

 

 is near its 
maximum value there. Since the minimum achievable noise figure does not change dra-
matically over the bias current range considered, there is considerable freedom, so other 
factors (such as implementation issues) may be taken into account as well.

 

3.0  The Narrowband LNA

 

The derivations of the previous section show that the source impedance that yields mini-
mum noise factor is generally unrelated to the conditions that maximize power transfer. 
Furthermore, the input impedance of a bipolar transistor is intrinsically capacitive, so pro-
viding a good match to a 50

 

Ω

 

 real source without degrading noise performance would 
appear difficult. Since presenting a known resistive impedance to the external world is 
almost always a critical requirement of LNAs, we will impose this requirement on our 
design as well.

A particularly good method for producing a real input impedance without degrading noise 
is to employ inductive emitter degeneration. With such an inductance, base current under-
goes an additional phase shift beyond the ordinary quadrature relationship expected of a 
capacitor, causing the appearance of a resistive term in the input impedance. An important 
advantage of this method is that one has control over the value of the real part of the 
impedance through choice of inductance, as is clear from computing the input resistance 
of the following circuit:

 

FIGURE 3. Inductively-degenerated common-emitter amplifier

L
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To simplify the analysis, consider a device model that includes only a transconductance 
and a base-emitter capacitance. In that case, it is not hard to show that the input impedance 
has the following form:

 

. (16)

 

Hence, the input impedance is that of a series 

 

RLC

 

 network, with a resistive term that is 
directly proportional to the inductance value.

More generally, an arbitrary source degeneration impedance 

 

Z

 

 is modified by a factor 
equal to 

 

[β

 

(

 

j

 

ω

 

) + 1] when reflected to the gate circuit, where 

 

β

 

(

 

j

 

ω

 

) is the current gain:

 

. (17)

 

The current gain magnitude goes to unity at 

 

ω

 

T

 

 as it should, and has a capacitive phase 
angle because of 

 

C

 

π

 

. Hence, for the general case,

 

. (18)

 

Note that capacitive degeneration contributes a 

 

negative

 

 resistance to the input imped-
ance.

 

2

 

 Hence, any parasitic capacitance from emitter to ground offsets the positive resis-
tance from inductive degeneration. It is important to take this effect into account in any 
actual design (or use it to your advantage).

Whatever the value of this resistive term, it is important to emphasize that it does not bring 
with it the thermal noise of an ordinary resistor because a pure reactance is noiseless. We 
may therefore exploit this property to provide a specified input impedance without degrad-
ing the noise performance of the amplifier.

The form of Eqn. 16 clearly shows that the input impedance is purely resistive at only one 
frequency (at resonance), however, so this method can only provide a narrowband imped-
ance match. Fortunately, there are numerous instances when narrowband operation is not 
only acceptable, but desirable, so inductive degeneration is certainly a valuable technique. 
The LNA topology we will examine for the rest of this chapter is therefore as follows:

 

2.  Capacitively-loaded source followers are infamous for their poor stability. This negative input resistance 
is fundamentally responsible, and explains why adding some positive resistance in series with the gate cir-
cuit helps solve the problem.
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FIGURE 4. Narrowband LNA with inductive emitter degeneration (biasing not shown)

 

The inductance 

 

L

 

e

 

 is chosen to provide the desired input resistance (equal to 

 

R

 

s

 

, the source 
resistance). Since the input impedance is purely resistive only at resonance, an additional 
degree of freedom, provided by inductance

 

 L

 

b

 

, is needed to guarantee this condition.

 

3

 

 
Now, at resonance, the base-to-emitter voltage is 

 

Q

 

 times as large as the input voltage. The 
overall stage transconductance 

 

G

 

m

 

 under this condition is therefore:

 

, (19)

 

where we have used the approximation that 

 

ω

 

T

 

 is the ratio of 

 

g

 

m

 

1

 

 to 

 

C

 

π

 

.

The design procedure is thus reasonably straightforward. First select a bias current consis-
tent with the gain and noise figure targets. Then compute the optimum source resistance to 
minimize noise figure. Next add enough emitter degeneration inductance to produce an 
input impedance whose real part is equal to the optimum source resistance, and then add 
enough of the right kind of impedance (e.g., more inductance) in the base circuit to 
remove any residual reactive input component and thereby bring the input loop into reso-
nance. Finally, interpose a lossless matching network (if necessary) between the actual 
source and the amplifier to transform from 50

 

Ω

 

 (or other source value) to the optimum 
value of 

 

R

 

S

 

. This matching network often can be merged with whatever inductance (for 
example) is needed to resonate the input loop.

This particular procedure is attractive because it balances all parameters of interest. An 
excellent match is guaranteed by the inductive degeneration, while providing nearly the 
lowest noise figure possible at the given bias conditions. The resonant condition at the 
input also assures good gain at the same time, since the effective stage transconductance is 
proportional to 

 

ω

 

T

 

 /

 

ω

 

.

 

3.  It can be the case that package and other parasitic inductance provides more than this value. In those 
cases, a series 

 

capacitance

 

 may be needed to resonate the input loop at the desired frequency.
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4.0  A Few Practical Details

 

4.1  Realizing the emitter degeneration inductance

 

The narrowband LNA depends on inductive emitter degeneration to produce a real term in 
the input impedance. Quite often at microwave frequencies, the needed value is quite 
small, and therefore difficult to produce. For example, continuing with a 2SC3302 biased 
at 10mA, we would require ~2nH to produce 50

 

Ω

 

, and perhaps 2-3 times that inductance 
if the bias were reduced to 5mA (the increase in the impedance target for minimum noise 
figure, plus the reduction in 

 

ω

 

T

 

, causes the needed inductance to increase faster than you 
might otherwise expect). However 2nH is not far from as small as one can expect to 
achieve without extreme measures, particularly since a fair fraction of this amount is 
already included in the packaging. Controlling the exact value is therefore challenging. In 
cases where the packaging and lead inductance already exceed the value you need, the 
input impedance will actually appear inductive, and thus require a capacitance to resonate 
the input loop. To avoid this necessity, extreme care in layout and construction is essential.

 

4.2  Collector load

 

It is generally the case that a resonant collector load is desired. Such a load increases gain 
by resonating out any output capacitance. Furthermore, the additional filtering of 
unwanted signals is highly desirable.

There are several practical options for realizing such a load. One is to use a discrete induc-
tor of some appropriate value. A preferable one for our purposes is to implement the 
inductor out of a suitable length of microstrip, because of its versatility:

 

FIGURE 5. Narrowband LNA with microstrip load  (biasing not shown)

 

The length is adjusted to produce resonance. And, if needed, a downward impedance 
transformation is readily obtained by merely tapping the output off of some intermediate 
position along the line. Clearly, the impedance is a minimum (zero) at the 

 

V

 

CC

 

 end of the 

Le

vS
RS Lb

Q1
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line, and a maximum at the collector end. To a first (and crude) approximation, the imped-
ance varies quadratically along the line.

The sharpness of the resonance can be adjusted by varying the width of the line. The width 
controls the 

 

L

 

/

 

C

 

 ratio of the line, and therefore controls 

 

Q

 

.

The other attractive attribute of the line is that it makes biasing relatively simple, as will 
be seen in the next section.

 

4.3  Biasing

 

There are numerous ways to bias a single-ended amplifier at low frequencies. Our options 
narrow somewhat at microwave frequencies because we cannot always tolerate the imped-
ances that necessarily attend discrete implementations of bias networks. For example, it is 
very common at lower frequencies to bias the base through a voltage divider, and then 
insert a stabilizing emitter degeneration resistor. To buy back signal gain, a bypass capaci-
tor is placed across this resistor.

In our case, it is probably not practical to use this approach because any “junk” in the 
emitter circuit only makes our job of implementing tiny inductances tougher. However, 
since the goal of resistive emitter degeneration is to reduce DC gain through negative 
feedback, we can seek alternative ways of accomplishing the same net goal. We can apply 
negative feedback to the base from the collector:

 

FIGURE 6. Narrowband LNA biasing details

 

The details of operation are left as an exercise for the reader, but a quick qualitative 
description is that the voltage across 

 

R

 

2

 

 is a multiplied-up version of the voltage across 

 

R

 

1

 

. 
The latter, in turn, is the base emitter voltage of the transistor. Since 

 

V

 

BE

 

 is temperature 
sensitive, so is the output voltage. However, the variation is small enough for our purposes 
that it is still a useful circuit.
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The collector load resistor, 

 

R

 

3

 

, is bypassed by a capacitor to keep the top of the microstrip 
load a reasonable signal ground. This bypassing need not be perfect, however, because 
additional inductance here only forces us to shorten the load a little bit. Moving the bias 
feedback takeoff point from the emitter to the collector thus solves a thorny problem.

As a final note on this bias method, the resistors have to be chosen small enough so that 
the current flowing through them is large compared with 

 

variations

 

 in transistor base cur-
rent, if the bias point is to remain roughly insensitive to base current. This requirement is 
somewhat at odds with the desire to keep the resistors large to minimize their contribution 
to thermal noise. Fortunately, it is usually not difficult to find an acceptable compromise, 
and net degradations in noise figure can be kept to the level of tenths of a dB or less.

 

5.0  Linearity and Large-Signal Performance

 

In addition to noise figure, gain and input match, linearity is also an important consider-
ation because an LNA must do more than simply amplify signals without adding much 
noise. It must also remain linear even when strong signals are being received. In particu-
lar, the LNA must maintain linear operation when receiving a weak signal in the presence 
of a strong interfering one, otherwise a variety of pathologies may result. These conse-
quences of intermodulation distortion include desensitization (also known as blocking) 
and cross-modulation. Blocking occurs when the intermodulation products caused by the 
strong interferer swamp out the desired weak signal, while cross-modulation results when 
nonlinear interaction transfers the modulation of one signal to the carrier of another. Both 
effects are undesirable, of course, so another responsibility of the LNA designer is to miti-
gate these problems to the maximum practical extent.

The LNA design procedure described in this chapter does not address linearity directly, so 
we now develop some methods for evaluating the large-signal performance of amplifiers, 
with a focus on the acquisition of design insight. As we’ll see, although the narrowband 
LNA topology achieves its good noise performance somewhat at the expense of linearity, 
the trade-off is not serious enough to prevent the realization of LNAs with more than 
enough dynamic range to satisfy demanding applications.

While there are many measures of linearity, the most commonly used are third-order inter-
cept (IP3) and 1dB compression point (P

 

1dB

 

).

 

4

 

 To relate these measures to readily calcu-
lated circuit and device parameters, suppose that the amplifier’s output signal may be 
represented by a power series.

 

5

 

 Furthermore, assume that we will evaluate these measures 
with signals small enough that truncating the series after the cubic term introduces negligi-
ble error:

 

, (20)

 

4.  In direct-conversion (homodyne) receivers, the second-order intercept is more important.

5.  We are also assuming that input and output are related through an anhysteretic (memoryless) process. A 
more accurate method would employ Volterra series, for example, but the resulting complexity obscures 
much of the design insight we are seeking.

i VDC v+( ) c0 c1v c2v2 c3v3+ + +≈
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where Eqn. 20 describes the specific case of a transconductance.

Now consider two equal-amplitude sinusoidal input signals of slightly different frequen-
cies:

 

. (21)

 

Substituting Eqn. 21 into Eqn. 20 allows us, after simplification and collection of terms, to 
identify the components of the output spectrum.

 

6

 

 The DC and fundamental components 
are as follows:

 

. (22)

 

Note that the quadratic factor in the expansion contributes a DC term that adds to the out-
put bias. The cubic factor augments the fundamental term, but by a factor proportional to 
the cube of the amplitude, and thus contributes more than a simple increase in gain. In 
general, DC shifts come from even powers in the series expansion, while fundamental 
terms come from odd factors.

There are also second- and third-harmonic terms, caused by the quadratic and cubic fac-
tors in the series expansion, respectively:

 

. (23)

 

In general, 

 

n

 

th harmonics come from 

 

n

 

th-order factors. Harmonic distortion products, 
being of much higher frequencies than the fundamental, are usually attenuated enough in 
tuned amplifiers so that other nonlinear products dominate.

The quadratic term also contributes a second-order intermodulation (IM) product, as in a 
mixer (see next chapter):

 

. (24)

 

As with the harmonic distortion products, these sum and difference frequency terms are 
effectively attenuated in narrowband amplifiers if 

 

ω

 

1

 

 and 

 

ω

 

2

 

 are nearly equal, as assumed 
here.

Finally, the cubic term gives rise to third-order intermodulation products:

 

. (25)

 

6.  This derivation makes considerable use of the following trigonometric identity: 
(cosx)(cosy) = [cos(x+y) + cos(x-y)]/2.

v A ω1t( )cos ω2t( )cos+[ ]=

c0 c2A2+ c1A
9

4
c3A3+ ω1t( )cos ω2t( )cos+[ ]+

c2A2

2
2ω1t( )cos 2ω2t( )cos+[ ]
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4
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3
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Note that these products grow as the cube of the drive amplitude. In general, the amplitude 
of an 

 

n

 

th-order IM product is proportional to the 

 

n

 

th-power of the drive amplitude.

The sum frequency third-order IM terms are of diminished importance in tuned amplifiers 
because they typically lie far enough out of band to be significantly attenuated. The differ-
ence frequency components, however, can be quite troublesome since their frequencies 
may lie in band if 

 

ω

 

1

 

 and 

 

ω

 

2

 

 differ by only a small amount (as would be the case of a sig-
nal and an adjacent-channel interferer, for example). It is for this reason that the third-
order intercept is an important measure of linearity.

It is straightforward from the foregoing sequence of equations to compute the input-
referred third-order intercept (IIP3) by setting the amplitude of the IM3 products equal to 
the amplitude of the fundamental:

 

, (26)

 

where we have assumed only a weak departure from linearity in expressing the fundamen-
tal output amplitude. It is important to emphasize that the intercept is an extrapolated 
value because the corresponding amplitudes computed from Eqn. 26 are almost always so 
large that truncating the series after the third-order term introduces significant error. In 
both simulations and experiment, the intercept is evaluated by extrapolating trends 
observed with relatively small amplitude inputs.

Since Eqn. 26 yields the square of the voltage amplitude, dividing by twice the input resis-
tance 

 

R

 

s

 

 gives us the power at which the extrapolated equality of IM3 and fundamental 
terms occurs:

 

. (27)

 

The following figure summarizes the linearity definitions:

c1A
3

4
c3A3 A2→ 4

3
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FIGURE 7. Illustration of LNA performance parameters

 

In this figure, it is customary to plot the output powers as a function of the power of each 
of the two (equal amplitude) input tones, rather than their sum.

Since third-order products grow as the cube of the drive amplitude, they have a slope that 
is three times that of the first-order output when plotted on logarithmic scales, as in the fig-
ure. Note that, in the figure, the 1dB compression point occurs at a lower input power than 
IIP3. This general relationship is nearly always the case (by a healthy margin) in practical 
amplifiers.

Having defined the linearity measures, we now consider ways to estimate IIP3, with and 
without the aid of Eqn. 27.

 

5.1  Methods for Estimating IP3

 

One way to find IP3 is through a transient simulation in which two sinusoidal input signals 
of equal amplitude and nearly equal frequency drive the amplifier. The third-order inter-
modulation products of the output spectrum are compared with the fundamental term as 
the input amplitude varies and the intercept computed.

While simple in principle, there are several significant practical difficulties with the 
method. First, since the distortion products may be several orders of magnitude smaller 
than the fundamental terms, numerical noise of the simulator can easily dominate the out-
put unless exceptionally tight tolerances are imposed.

 

7

 

 A closely related consideration is 
that the time steps must be small enough and 

 

equally spaced

 

 not to introduce artifacts in 
the output spectrum.

 

8

 

 When these conditions are satisfied, the simulations typically exe-
cute quite slowly, and generate large output files.

 

7.  The tolerances must be

 

 much

 

 tighter, in fact, than the “accurate” default options commonly offered.
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Pure frequency-domain simulators (e.g., harmonic balance tools) can compute IP3 in 
much less time, but are currently less widely available than time-domain simulators such 
as SPICE.

Eqn. 27 offers a simple expression for the third-order intercept in terms of the ratio of two 
of the power series coefficients, and thus suggests an alternative method that might be 
suitable for hand calculations. While one is rarely given these coefficients directly, it is a 
straightforward matter to determine them if an analytical expression for the transfer char-
acteristic is available. Even without such an expression, there is an extremely simple pro-
cedure, easily implemented in “ordinary” simulators such as SPICE, that allows rapid 
estimation of IP3. This technique, which we’ll call the three-point method, exploits the 
fact that knowing the incremental gain at three different input amplitudes is sufficient to 
determine the three coefficients 

 

c

 

1

 

, 

 

c

 

2

 

 and 

 

c

 

3

 

.

 

9

 

To derive the three-point method, start with the series expansion that relates input and out-
put:

 

. (28)

 

The incremental gain (transconductance) is the derivative of Eqn. 20:

 

. (29)

 

While any three different values of 

 

v

 

 would suffice in principle, particularly convenient 
ones are 0, 

 

V

 

 and -

 

V

 

, where these voltages are interpreted as deviations from the DC bias 
value. With those choices, one obtains the following expressions for the corresponding 
incremental gains:

 

, (30)

, and (31)

. (32)

 

Solving for the coefficients yields

 

, (33)

, and (34)

 

8.  This requirement stems from the assumption, made by all FFT algorithms used by practical simulators, 
that the time samples are uniformly spaced.

9.  This method is an adaptation of a classic technique from the vacuum tube era which allows estimation of 

 

harmonic

 

 distortion.

i VDC v+( ) c0 c1v c2v2 c3v3+ + +≈
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. (35)

 

Substituting into Eqn. 27 these last three equations for the coefficients then gives us the 
desired expression for IIP3 in terms of the three incremental gains:

 

10

. (36)

 

Finding IIP3 with Eqn. 36 is much faster than through a transient simulation because 
determining the incremental gains involves such little computation for either a simulator 
or a human. The three-point method is thus particularly valuable for rapidly estimating 
IIP3 in the early stages of a design.

 

6.0  Spurious-Free Dynamic Range (SFDR)

 

So far, we have identified two general limits on allowable input signal amplitudes. The 
noise figure defines a lower bound, while distortion sets an upper bound. Loosely speak-
ing, then, amplifiers can accommodate signals ranging from the noise floor to some linear-
ity limit. Using a dynamic range measure helps designers avoid the pitfall of improving 
one parameter (e.g., noise figure) while inadvertently destroying another.

This idea has been put on a quantitative basis through a parameter known as the spurious-
free dynamic range (SFDR). The term “spurious” means “undesired,” and is often short-
ened to “spur.”

 

11

 

 In the context of LNAs, it usually refers to the third-order products, but 
may occasionally apply to other undesired output spectral components.

To understand the rationale behind using SFDR as a specific measure of dynamic range, 
define as a more general measure the lesser of signal-to-noise or signal-to-distortion ratio, 
and evaluate this measure as one varies the amplitude of the two tones applied to the 
amplifier. As the input amplitude increases from zero, the first-order output initially has a 
negative signal-to-noise ratio but eventually emerges from the noise floor. Because third-
order distortion depends on the cube of the input amplitude, IM3 products will be well 
below the noise floor at this point for any practical amplifier. Hence, the dynamic range 
improves for a while as the input signal continues to increase, since the desired output 
increases while the undesired output (here, the noise) stays fixed. Eventually, however, the 
third-order IM terms also emerge from the noise floor. Beyond that input level, the 
dynamic range decreases, since the IM3 terms grow three times as fast (on a dB basis) as 
the first-order output.

 

10.  Having determined all of the coefficients in terms of readily measured gains, it is easy to derive similar 
expressions for harmonic and second-order intermodulation distortion. The latter quantity is especially rele-
vant for direct-conversion receivers.

11.  Occasionally (and erroneously), “spurii” is used for the plural of “spurious,” even though “spurious” is 
not a Latin word. “Spurs” is the preferred plural.
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The SFDR is defined as the signal-to-noise ratio corresponding to the input amplitude at 
which an undesired product (here, the third-order IM power) just equals the noise power, 
and is therefore the maximum dynamic range that an amplifier exhibits in the foregoing 
experiment, as is clear from the following figure:

 

FIGURE 8. Spurious-free dynamic range (third-order)

 

To incorporate explicitly the noise figure and IIP3 in an expression for SFDR, first define 

 

N

 

oi

 

 as the input-referred noise power in decibels. Then, since the third-order IM products 
have a slope of three on a dB scale, the input power below IIP3 at which the input-referred 
IM3 power equals 

 

N

 

o

 

 is given by (again, all powers are expressed in decibels):

 

. (37)

 

The SFDR is just the difference between the input power implied by Eqn. 37 and 

 

N

 

oi

 

:

 

, (38)

 

where, again, all power quantities are in decibels.

Note that the input-referred noise power (in watts this time) is simply the noise factor 

 

F

 

 
times the noise power 

 

kT

 

∆

 

f

 

. Note also that output-referred quantities may be used in 
Eqn. 38 because the same gain factor scales both terms.

It is satisfying that SFDR is indeed bounded on one end by IIP3, and on the other by the 
noise floor, as argued qualitatively at the beginning of this section. The factor 2/3 comes 
into play because of the particular way in which the limits are defined.
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7.0  Summary

 

We’ve seen that an inductively degenerated LNA achieves simultaneously an excellent 
impedance match, nearly minimum noise figure, and reasonable gain.

The three-point method was also introduced, permitting an approximate, but quantitative, 
assessment of linearity in much less time than is possible with straightforward time-
domain simulators. Even though the method neglects dynamics, measurements on practi-
cal amplifiers usually reveal reasonably good agreement with predictions. Reasonable 
agreement may generally be expected as long as the device is operated well below 

 

ω

 

T

 

.

If better linearity is required, either power consumption or gain must degrade in exchange 
for the improved linearity. The bias conditions can be altered to decrease input 

 

Q

 

, or nega-
tive feedback employed, for example. Finally, combining the signal amplitude limitations 
implied by the noise and distortion figures of merit yields a measure of the maximum 
dynamic range of an amplifier, the spurious-free dynamic range.

 

8.0  Appendix: Noise Figure Equations

 

Repeated here are the equations for optimum source resistance (both “exact” and approxi-
mate), and the corresponding noise factor:

 

, (39)

, and (40)

. (41)

 

It might also be helpful to have the following expressions related to the impedance 
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 and (42)

. (43)
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Antennas

 

1.0  Introduction

 

It is important to remember that conventional lumped circuit theory results from approxi-
mating the way the universe behaves (in particular, from setting to zero some terms in 
Maxwell’s equations, effectively making the speed of light infinite). The much vaunted 
“laws” of Kirchhoff

 

1

 

 are not really laws at all; they are consequences of these approxima-
tions and, therefore, ultimately break down.

 

2

 

 It turns out that the lumped descriptions of 
circuit theory, in which it is possible to identify elements as individual resistances, capaci-
tances and inductances, are allowable only when the elements are small relative to a wave-
length. Although a rigorous proof of this length criterion is somewhat outside of the spirit 
of a volume allegedly devoted to practical matters, perhaps a brief plausibility argument 
might suffice for the present.

If you are willing to accept as an axiom that the finiteness of the speed of light is not 
noticeable when the propagation delay 

 

T

 

D

 

 along a circuit element of length 

 

∆

 

l

 

 is a small 
fraction of the shortest period of interest 

 

T

 

min

 

, then we would require

 

, (1)

 

where 

 

v

 

 is the propagation velocity and 

 

f

 

max

 

 is the maximum frequency of interest. When 
rewritten, the inequality above may be expressed as

 

. (2)

 

The wavelength 

 

λ

 

min

 

 is that of the highest frequency of interest.

Conventional circuit analysis is thus valid as long as circuit elements are “very small” 
compared to the shortest relevant wavelength. You might be tempted to argue that the 
restriction to “small” elements is not a serious practical constraint, because we may 
always subdivide a large structure into suitably small elements, each of which might be 
described accurately by a lumped approximation. However the problem with such an 
approach is that it quietly assumes that all the energy in the network is confined to the 
space occupied by the circuit elements themselves. In this chapter, we remove that 
assumption by allowing for the possibility of radiation of electromagnetic energy. In so 
doing, we identify the conditions which must be satisfied for significant radiation to occur. 
We shall see that radiation is theoretically possible from conductors of any length, but is 

 

1.  Please, two 

 

h

 

’s and two 

 

f

 

’s, and pronounced “keerk off” rather than “kirtch off.”

2.  Failure to acknowledge this fact is the source of an infinite variety of false conundrums, many of which 
are debated ad nauseam on various internet chat sites (“proof that physics is broken” and that sort of thing, 
written by folks who are often wrong, but never in doubt).
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facilitated by structures whose dimensions are at least a significant fraction of a wave-
length. Understanding this length dependency explains why we may almost always 
neglect radiation at low frequencies, and why practical antennas are as big as they are.

As with filters, the subject of antennas is much too vast for comprehensive treatment in 
just one chapter, of course.

 

3

 

 The main goal here is to develop intuitive insights that are 
infrequently provided by (or perhaps difficult to extract from) rigorous mathematical treat-
ments found in some texts, and to supplement the brief explanations commonly offered by 
many “how-to” books. Because this chapter is thus intended to complement, rather than 
replace, existing descriptions, be forewarned that we will sometimes (actually, often) sac-
rifice some rigor in favor of the development of design insight. In fact, there may be so 
much handwaving that you will occasionally need a windbreaker.

Aside from a refreshing breeze, the most important tangible product of such an approach 
is the development of simple analytical circuit models for antennas, and an appreciation of 
why there are so many different antenna configurations.

Although the book’s focus is on planar circuits, we will begin with a study of the (electric) 
dipole antenna, not only because it is so widely used, but also because its analysis eluci-
dates many issues common to all antennas. A clear understanding of a dipole’s limitations 
explains why certain modifications, such as the addition of “capacity hats” or loading 
coils, can greatly improve the radiation properties of short dipoles. As will be shown, this 
same understanding reveals a relationship among normalized length, efficiency and 
achievable bandwidth that is reminiscent of the gain-bandwidth tradeoffs found in many 
amplifiers.

Equations describing the dipole also lead directly to a description of the magnetic loop 
antenna because they are duals; the loop antenna is a magnetic dipole antenna. In keeping 
with our planar viewpoint, the chapter spends a fair amount of time examining the micros-
trip patch antenna, which has become extremely popular in recent years because it is eas-
ily made with the same low-cost mass-production techniques that are used to make printed 
circuit boards. As will be seen, the intuitive foundations established during a study of the 
dipole serve well in understanding the patch antenna.

Because our preoccupation will be with equivalent circuit models for antennas, other 
important characteristics, such as radiation patterns, directivity and gain are sadly omitted 
here. The interested reader is directed to the references cited in Footnote 3 for excellent 
treatments of these topics.

 

3.  Three excellent texts on this topic are 

 

Antenna Theory and Design

 

, by Stutzman and Thiele (Wiley), the 
classic 

 

Antennas

 

, by Kraus, and 

 

Antenna Theory

 

 (2nd ed.), by Constantine A. Balanis (Wiley). Much practi-
cal information on antenna construction for amateur radio work may be found in 

 

The ARRL Antenna Hand-
book

 

 and numerous other books by the ARRL (American Radio Relay League).
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2.0  Poynting’s Theorem, Energy and Wires

 

To develop a unified viewpoint that explains when a wire is a wire, and when it’s an 
antenna, it is critically important to discard the mental imagery of electricity-as-a-fluid 
traveling down wires-as-pipes, that is consciously implanted in students before and during 
their undergraduate education. Instead understand that ideal wires, strictly speaking, 

 

do 
not carry electromagnetic energy

 

 

 

at all

 

. Many (perhaps most) students and engineers, to 
say nothing of lay people, find this statement somewhat controversial. Nevertheless, the 
statement that wires do not carry energy is correct, and it is easy to show.

To do so, start with the formula for power from ordinary low frequency circuit theory:

 

. (3)

 

In simple words, delivery of real power requires voltage, current, 

 

and

 

 the right phase rela-
tionship between them (the asterisk in Eqn. 3 denotes complex conjugation). If either 

 

V

 

 or 

 

I

 

 is zero, no power can be delivered to a load. Furthermore, even if both are nonzero, a 
pure quadrature (90

 

°

 

 phase) relationship still results in an inability to deliver real power.

The corresponding field theoretical expression of the same ideas is Poynting’s theorem, 
which states that the (real) power associated with an electromagnetic wave is proportional 
to the vector cross product of the electric and magnetic fields:

 

. (4)

 

To deliver real power, one must have 

 

E

 

, 

 

H

 

, and the right phase between them. If either 

 

E

 

 or 

 

H

 

 is zero, or if they are in precise quadrature, no power can be delivered. Now, the electric 
field inside a perfect conductor is zero. So, by Poynting’s theorem, no (real) energy flows 
inside such a wire; if there is to be any energy flow, it must take place entirely in the space 

 

outside

 

 of the wire.

 

4

 

 Many students who comfortably and correctly manipulate Poynting’s 
theorem to solve advanced graduate problems in field theory nonetheless have a tough 
time when this particular necessary consequence is expressed in words, for it seems to 
defy common sense and ordinary experience (“I get a shock only when I 

 

touch

 

 the wire”).

The resolution to this seeming paradox is that conductors 

 

guide

 

 the flow of electromag-
netic energy. This answer may seem like semantic hair-splitting, but it is actually a pro-
found insight that will help us to develop a unified understanding of wires, antennas, 
cables, waveguides, and even optical fibers. So for the balance of this text (and of your 
professional careers), retain this idea of conductors as guides, rather than conduits, for the 
electromagnetic energy that otherwise pervades space. Then many apparently different 

 

4.  This argument changes little when real conductors are considered. In that case, all that happens is the 
appearance of a small tangential component of electric field, which is just large enough to account for ohmic 
loss.

P
1

2
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P
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ways to deliver electromagnetic energy will be properly understood simply as variations 
on a single theme.

 

3.0  The Nature of Radiation

 

More than a few students have caught on to the fact that electrodynamic equations, rife 
with gradient, divergence and curl, are a devious invention calculated to torment hapless 
undergraduates. And from a professor’s perspective, that is unquestionably the most valu-
able attribute of E&M (S&M?) theory.

But perhaps understandably, the cerebral hemorrhaging associated with this trauma fre-
quently causes students to overlook important questions: What is radiation, exactly? How 
does a piece of wire know when and when not to behave as an antenna? What are the ter-
minal electrical characteristics of an antenna? How are these affected by proximity to 
objects? Who invented liquid soap, and why?

 

5

 

Let’s begin with a familiar example from lumped circuit theory. Without loss of generality, 
consider driving a pure reactance (e.g. a lossless capacitor or inductor) with a sinusoidal 
source. If we examine the relationship between voltage and current, we find that they are 
precisely in time quadrature (“ELI the ICE man” and all that).

 

6

 

 The 

 

average

 

 power deliv-
ered by the source to any pure reactance is zero because energy simply flows back and 
forth between the source and the reactance. In one quarter cycle, say, some amount of 
energy flows to the reactance, and in the next, that entire amount returns to the source. To 
deliver nonzero average power requires that there be an in-phase component of voltage 
and current. Adding a resistance across, or in series with, a reactance produces a shift in 
phase from a pure 90

 

°

 

 relationship, producing just such an in-phase component and an 
associated power dissipation.

The question of power flow in electromagnetic fields involves precisely the same consid-
erations. Whenever the electric and magnetic fields are in precise time quadrature, there 
can be no real power flow. If we define radiation as the conveyance of power to a remotely 
located load, lack of real power flow therefore implies a lack of radiation. We already 
know from lumped circuit theory that quadrature relationships prevail in nominal reac-
tances at frequencies where all circuit dimensions are very short compared with the short-
est wavelength of interest. For example, we treat as an inductance a short length of wire 
connected to ground, and as a capacitance a conductor suspended above a ground plane. 
These treatments are possible because the fields surrounding the conductors are changing 
“slowly.”

 

5.  John Cusack in

 

 The Sure Thing

 

, Embassy Films Associates, Rob Reiner, director, 1985.

6.  Just in case this mnemonic is unfamiliar to you, it is a way of keeping track of the impedance phase rela-
tions in inductors and capacitors. “ELI” tells us that 

 

E

 

 comes before (leads) 

 

I

 

 in inductors, and “ICE” tells us 
that 

 

I

 

 leads 

 

E

 

 in capacitors.
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Just as with those lumped reactance examples, real power delivery requires other than a 
pure 90

 

°

 

 phase relationship between the electric and magnetic fields. To produce such a 
departure requires only the assistance of the finite speed of light to add extra delay.

 

7

 

To understand concretely how the finite speed of light helps produce (actually, enables) 
radiation, consider a finite length of conductor driven at one end, say, by a sinusoidal volt-
age source. Near the source, the magnetic and electric fields may be well approximated as 
in quadrature. However, because it takes nonzero time for the signal to propagate along 
the conductor, the voltage (and, hence, the electric field) at the tip of the conductor is 
somewhat delayed relative to the voltage and electric field at the driven end. The currents 
(and their associated magnetic fields) at the two ends are similarly shifted in time. Thus 
the electric field at the far end is no longer precisely 90

 

°

 

 out of phase with the magnetic 
field at the source end, and nonzero average power is consequently delivered by the driv-
ing source. A lumped circuit analogy that exhibits qualitatively similar features is the fol-
lowing network in which a capacitance is driven by two sinusoidal generators of equal 
frequency:

 

FIGURE 1.  Capacitance driven by two isochronous sources

 

From a casual inspection of this particular network, one might be tempted to assert that 
there can be no power dissipation because a capacitor is a pure reactance. In fact, this is 
the most common answer given by prospective Ph.D. candidates during qualifying exami-
nations. Let’s directly evaluate the correctness of this assertion by computing the imped-
ance seen by, say, the left source. The current through the capacitor is simply the voltage 
across it, divided by the capacitive impedance. So,

 

. (5)

 

The constant 

 

k

 

 is any real value (it is not meant to represent Boltzmann’s constant). Notice 
that the factor in brackets has a purely real value whenever the phase angle 

 

φ

 

 is either zero 
or 180

 

°

 

. Under those conditions, the phase angle of the impedance is 

 

±

 

90

 

°

 

, implying zero 
dissipation. Energy is simply stored in the capacitor in one quarter cycle, then returned to 
the sources in the next. 

 

Any

 

 other phase angle produces the equivalent of a real component 
to the impedance as seen by the sources. Despite the presence of a pure reactance, dissipa-
tion is nonetheless possible. The capacitor certainly continues to dissipate zero power, but 
there are still two sources to consider. A nonzero average power transfer between these 

 

7.  Of course, this departure from quadrature also occurs when a real resistance is in the circuit. Our focus 
here is on radiation, so we will not consider dissipative mechanisms any further.
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isochronous (i.e., equal frequency) sources is possible. That is, one source can perform 
work on the other.

Analogous ideas apply to the radiation problem. Because of the finiteness of propagation 
velocity, the electric and magnetic field components that normally simply store energy in 
the space around the conductors, suddenly become capable of delivering real power to 
some remotely located load; this is radiation. As a consequence, the signal source that 
drives the conductor must see the equivalent of a resistance, in addition to any reactance 
that might be present. One way to think about it is that this resistance, and radiation,

 

 result 
from work performed by moving charges in one part of the antenna on charges in other 
parts of the antenna

 

.

 

8

 

 The fields associated with radiation are actually present all the time 
(energy isn’t in the conductors, it’s in space), but radiation results only when the proper 
phase relationships exist.

From the foregoing description of radiation, it is also not difficult to understand why the 
length of an antenna is important. If the conductor (antenna) is very short, the time delay 
will be very short, leading to negligible departure from quadrature. More precisely, when 
the length of the conductor is very small 

 

compared to a wavelength

 

, the resistive compo-
nent of the antenna impedance will be correspondingly small. Normalization by the wave-
length makes sense because a given length produces a fixed amount of time delay, and this 
time delay in turn represents a linearly increasing phase shift as frequency increases 
(wavelength decreases).

Now that we have deduced that radiation is a necessary consequence of a lack of pure 
quadrature, let us see if we can deduce the distance dependency of the radiation. Recalling 
that the electric field of an isolated, stationary charge in free space falls as the inverse 
square of distance, we might be tempted to argue that radiation must also exhibit an 
inverse square law.

 

9

 

 To test this idea (again with a minimum of field theory), suppose we 
have a source of electromagnetic energy (it is completely unnecessary at this point to be 
more specific). Let’s follow the outward flow of energy from the source through two suc-
cessive (and concentric) spheres. If there is to be radiation, the total energy passing 
through the two spherical shells must be equal, or else the total energy would increase or 
decrease with distance, implying destruction or creation of energy.

 

10

 

 We may therefore 
write:

 

, (6)

 

where 

 

P

 

 is the areal power density, and 

 

A

 

 is the area. Now, because the surface area of a 
sphere is proportional to the square of the radius, constancy of total energy implies that the 

 

8.  Richard Feynman, the late Caltech physics Nobelist, described the process most succinctly of all: “If you 
shake an electron, light comes out.” That is, radiation not only results from the fields of accelerated charges 
acting on the fields of other charges (either in the antenna or in surrounding media), but also may result from 
the action of an accelerated charge acting on its own field.

9.  Because there’s no such thing as absolute velocity, we may anticipate from elementary relativity consid-
erations that radiation cannot result from a uniform motion of charge; acceleration is required.
10.  Or a monotonically increasing storage of energy in free space, which we also disallow.

Energy P1A1 P2A2= =
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power density must decrease with the inverse distance squared. In free space, the electric 
and magnetic fields are proportional to each other. Coupling this fact with Poynting’s the-
orem, we know that the power density is proportional to the square of the field strength,

 

. (7)

 

Hence, we see that there must exist a component of electric or magnetic field whose 
amplitude falls as the 

 

first

 

 power of distance in order for radiation to be possible.

 

11

 

 This 
development is remarkable, for if we had to depend solely on fields with an inverse-square 
spatial dependence (such as that of an isolated stationary charge), long-distance communi-
cations would be very difficult indeed (a 1/

 

r

 

4

 

 power rolloff would be a catastrophe). Fortu-
nately, a miracle of electrodynamics produces components of time-varying electric and 
magnetic fields that roll off much less dramatically (again, in free space). These radiation 
components are what make wireless communications practical. Although we certainly 
have not derived the precise form of the fields, we have nonetheless deduced important 
facts about them from very elementary arguments.

In addition to allowing us to associate radiation with the existence of inverse-distance 
fields, the foregoing tells us that the radiation of energy must be indistinguishable from 
energy dissipated in a resistor, from the point of view of the source. Correspondingly, we 
shall see that radiation contributes a resistive component to an antenna’s driving point 
impedance, as asserted earlier.

Note also that the foregoing development actually makes a rather strong statement: 

 

no

 

 dis-
tance dependency other than inverse-distance can be associated with free space radiation. 
For example, if the fields were to fall off more rapidly, energy would have to accumulate 
in the space between two successive concentric spheres. If the fields decayed more slowly, 
energy would have to be supplied by that space. Since neither of these two conditions is 
compatible with the steady state, we conclude that such field components cannot support 
radiation. Instead, those other components must represent, at best, stored (reactive) 
energy, which flows back and forth between the source and the surrounding volume. Thus, 
their effect is accounted for with either inductive or capacitive elements in an antenna’s 
circuit model, the development of which we will turn to shortly.

Having extracted about as much insight as is possible without resorting to any higher 
mathematics, we now turn to the practical problem of constructing and modeling real 
antennas.

 

4.0  The Dipole Antenna

 

The most common antenna is without question the dipole:

 

11.  It is important to keep in mind that this conclusion depends on the assumption of free space propagation. 
If this assumption is violated (for example, by the presence of lossy media), then other conclusions may 
apply.

P E 2 H 2 1

r2
∝ ∝ ∝
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FIGURE 2. Short center-fed dipole antenna

 

Countless millions of dipoles in the form of “rabbit ears” have sat on top of television sets 
for decades, and countless millions more are presently found in cell phones and on auto-
mobiles. As we’ll see, the dipole operates on principles that follow directly the description 
of radiation we’ve given.

 

4.1  Radiation resistance

 

As one might suspect, the resistive equivalent of radiation is an extremely important 
parameter for an antenna. This radiation resistance determines, for example, how effec-
tively energy from a source can be coupled into radiated energy. At the same time, by the 
principle of reciprocity, an antenna’s circuit model as a transmitter is the same as when the 
antenna is used as a receiver.

To derive the radiation resistance of a dipole from first principles is difficult enough that 
such antennas were used for a long time before such a derivation was actually carried out. 
An extremely useful engineering approximation is readily derived, however, by simply 

 

assuming

 

 a current distribution along the antenna. Theorists were guided toward a reason-
able assumption by thinking about the dipole as approximately a two-wire transmission 
line (okay, it’s a bent one, but why be so picky?) that is terminated in an open circuit. Then 
an approximately sinusoidal current distribution results, with a boundary condition of 
nearly zero current at the open end of the wire.

 

12

 

Using this assumed current distribution, and the assumption that the antenna is made of 
infinitesimally thin superconductors, one can derive the following approximation of the 
radiation resistance of a short dipole:

 

. (8)

 

The formula provides reasonably accurate answers for 

 

l

 

/

 

λ

 

 up to about 0.3. At a half-wave-
length, the formula predicts a radiation resistance of about 50

 

Ω

 

, compared to an actual 

 

12.  The current doesn’t quite go to zero at the end because there is some nonzero fringing capacitance, but 
assuming that it does go to zero incurs a small enough error that the subsequent derivation is usefully accu-
rate.

l

Rr 20π2 l

λ 
  2

≈
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value of about 73

 

Ω

 

.

 

13

 

 This value is a good match for the 75

 

Ω

 

 world of video equipment, 
but some sort of matching network is needed for use in 50

 

Ω

 

 systems.

The accuracy of the formula can be improved a little bit if one treats the antenna as 
slightly longer than its physical length. This effective extension results from the fact that 
the current along the antenna doesn’t quite go to zero at the tip because of fringing field. 
We will later purposefully enhance this effect to improve (increase) the radiation resis-
tance of short dipoles. In any event, a more accurate set of formulas is given in Table 1.

The length correction factor is a somewhat complicated, but rather weak, function of the 
radius-to-wavelength ratio, and is commonly taken as approximately 5% for typical dipole 
antennas. That is, the physical length should be multiplied by roughly 1.05, and that prod-
uct inserted into Eqn. 8.

One of Marconi’s key inventions is a valuable variation on the dipole antenna, in which 
image charges induced in the earth (or other conducting plane) effectively double the 
length of the antenna. For such a vertical monopole antenna over an ever-elusive perfect 
ground plane, the radiation resistance will be precisely double the value given by 
Eqn. 8.

 

14

 

 

 

FIGURE 3. Short monopole antenna over ground plane

 

The doubling of effective length contributes a quadrupling of the radiation resistance. 
However, only the real vertical monopole (not the image) actually radiates, halving that 
quadrupling (got that?). The radiation resistance of a short monopole antenna is thus:

 

. (9)

 

This equation is reasonably accurate for 

 

l

 

/

 

λ

 

 values up to about 0.15-0.2. A quarter wave-
length monopole will have an impedance of approximately 37

 

Ω

 

, compared to the formu-
la’s prediction of 25

 

Ω

 

. The length correction is again ~5%.

 

13.  With conductors of finite diameter, the impedance is typically about 5% lower than this value.

14.  A monopole is often also called a dipole antenna, because their operating principles and current distribu-
tion are fundamentally the same. In this text, we will use both terms, with the precise meaning to be inferred 
from context.

l

Rr 40π2 l

λ 
  2

≈
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As does an open-circuited transmission line, both the monopole and dipole exhibit peri-
odic resonances. The functional form of the radiation resistance varies somewhat as a 
function of resonant mode. For the center-fed dipole, approximate equations for the radia-
tion resistance are presented in the following table:

 

15

 

The formulas of this table apply equally well to monopoles by doubling the constant mul-
tiplicative factor, and for normalized lengths that are half the values given in the first col-
umn. Again, the length is that of the actual conductor, not including the image.

 

4.2  Reactive components of antenna impedance

 

As noted earlier, radiation carries energy away, so its effect is modeled with a resistance. 
In general, however, some energy also generally remains in the vicinity of the antenna, 
flowing back and forth between the source and the surrounding volume. This near-field 
non-radiative component represents stored energy, and therefore contributes an imaginary 
component to the terminal impedance.

To derive highly approximate expressions for the effective reactance (inductance and 
capacitance) of short antennas, we again use the idea that a dipole antenna behaves much 
like an open-circuited transmission line. If we assume TEM propagation and unit values of 
relative permittivity and permeability, then the speed of light is expressed as

 

, (10)

 

where 

 

L

 

 and 

 

C

 

 here are the inductance and capacitance 

 

per length

 

. Now, we already have 
the following equation for the approximate inductance per length of a wire with circular 
cross-section (see the chapter on passive components):

 

15.  Stutzman and Thiele, 

 

op. cit

 

, page 171.

 

TABLE 1. Approximate radiation resistance for short and medium-length center-fed dipoles

 

Normalized
 conductor 
length, 

 

l

 

/

 

λ

 

R

 

rad

 

0 – 0.25

0.25 – 0.5

0.5 – 0.64

20 π l

λ 
  2

24.7 π l

λ 
  2.4

11.1 π l

λ 
  4.17

c
1

LC
=
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. (11)

 

The capacitance per unit length (in farads per meter) is thus very approximately:

 

. (12)

 

For typical dimensions, the capacitance per length is 

 

very

 

 roughly of the order of 10pF/m. 
For example, a 10cm length of 18 gauge conductor (about 1mm in radius) has a capaci-
tance of almost exactly 1pF, according to the formula. Note that the inductance grows 
somewhat faster, and the capacitance somewhat more slowly, than linearly with length. 
Thus the capacitance per length is not a constant, but the 10pF/m estimate serves well for 
back-of-the-envelope calculations.

Again treating the dipole antenna as an open-circuited transmission line, we expect short 
dipoles to exhibit a primarily capacitive reactance, changing to a pure resistance as we 
lengthen the line toward resonance (at half wavelength), then to an inductance as we pass 
resonance. This general trend is periodic, repeating every wavelength, but the peak-to-
peak variation in impedance diminishes because of the increasing loss.

The foregoing equations apply to the case of a short center-fed dipole. For a short end-fed 
monopole over a ground plane, the capacitance will be precisely double this amount. This 
result may be understood by recognizing that there exists a plane of symmetry between the 
two dipole segments. Interposing a grounded conducting plane at this location thus 
changes nothing. The capacitance of a center-fed dipole may thus be considered the result 
of two capacitances in series. Since each of these connects to ground, each series capaci-
tance is in fact the value of the monopole capacitance. A similar argument allows us to 
deduce that the inductance of a monopole is one-half that for the center-fed dipole. Finally, 
we may also infer that the driving-point impedance of a monopole changes periodically 
every 

 

half

 

 wavelength.

 

16

 

As a final comment, it must be reiterated that all of these equations assume that the 
antenna is in free space, without any other objects nearby (except for a ground plane in the 
case of the monopole). Measurements on real antennas often show significant deviations 
from the predictions of these simple equations, partly because of the simplemindedness 
underlying their derivation, but mainly because one is rarely able in practical circum-
stances to arrange for all objects to be very far removed from the antenna. Objects less 
than a few wavelengths away from the antenna can have an important influence on both 
the reactance and the radiation resistance. Loosely and unreliably speaking, antenna reac-
tance is primarily sensitive to the proximity of dielectric substances (if the antenna is pri-

 

16.  Again, loss due to radiation and any other dissipative mechanism causes the variation in impedance to 
diminish.

L
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marily dependent on electric field) or of magnetic substances (if the antenna is primarily 
dependent on the magnetic field). The real term is generally most sensitive to nearby lossy 
substances.

Summarizing the results of this section, simple lossless dipoles may be modeled by the 
following simple circuit:

 

FIGURE 4. Circuit model for dipole antenna (one mode only)

 

In this model the generator represents the voltage induced by a received signal. When the 
antenna is used as a transmitter, the generator is set to zero value (a short). Any loss (aris-
ing, say, from skin effect), would be modeled by an additional resistance in series with the 
radiation resistance.

 

4.3  Capacitively loaded dipole

 

We’ve seen that the radiation resistance of a short dipole varies as the square of normal-
ized length. Hence, good radiation requires a dipole to be a reasonable fraction of a wave-
length, or else the radiation resistance will be too low to permit coupling energy into (or 
out of) it with high efficiency. Unfortunately, it is not always practical to lengthen an 
antenna arbitrarily to satisfy this requirement, particularly at low frequencies (remember, 
the free space wavelength at 1MHz is 300 meters). Sometimes an important constraint is 
imposed by a mechanical engineering problem, that of supporting a tall, skinny thing.

One way to finesse the problem is to bend the antenna (it’s easier to support a long hori-
zontal thing than a tall vertical thing). To understand why this is potentially beneficial, 
recall the observation that the fringing field of a straight dipole causes the antenna to act 
somewhat longer than its physical length. The capacitance associated with the fringing 
field prevents the current from going all the way to zero at the end, increasing the average 
current along the antenna, thus raising the radiation resistance. Although the effect is nor-
mally small, resulting in a length correction of only ~5% for ordinary dipole antennas, 
fringing can be purposefully enhanced to make short dipoles act significantly longer.

 

17

 

 In 
applications where longer dipoles are not permitted because of space limitations in the 
vertical dimension, one can employ capacitive loading, using what are known as 

 

capacity 
(or capacitive) hats

 

, to increase both the current at the end as well as the average current 
over the length of the dipole. Various conductor arrangements may be, and have been, 

 

17.  It may be shown that the absolute theoretical maximum impedance boost factor is four, corresponding to 
a constant amplitude current all along the dipole. In practice, the boost factors achieved are considerably 
smaller than allowed by theory.

Rrad L C
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used, including flat disks, spherical balls, and horizontal wires (the latter is used in the L-
and T-antenna). Alas, accurate equations for these different cases are not easily derived.

 

FIGURE 5. L-antenna

 

In the special case of an L-antenna, however, we can derive an approximate formula by 
making the following assumption (windbreaker required here): Pretend that the current 
distribution along a straight conductor is only moderately perturbed when the antenna is 
bent into an L-shape. If this cheesy assumption holds, then we have already derived the 
relevant formula:

 

, (13)

 

where 

 

l

 

 and 

 

d

 

 are as defined in the figure, and the total length is assumed short compared 
to a wavelength. This equation is so approximate that one should expect the need to trim 
the antenna to the proper length. However, it is a reasonable guide to establish rough 
dimensions for an initial design.

If the primary value of the horizontal segment is in boosting capacitance, then further 
improvements might be enabled by using more segments. Commonly 2 (for a T-antenna), 
3 and 4 horizontal conductors are used, symmetrically arranged about the vertical portion. 
The capacity hat may be considered the limit of using an infinite number of radial conduc-
tors:

 

FIGURE 6. Antenna with capacity hat

 

Other capacitive structures, such as spheres and spheroids, have also been used in place of 
the flat disk shown in Figure 6.

l

d

Rr 40π2 l d+
λ 

  2

≈
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4.4  Inductively loaded dipole

 

After all the discussion about how radiation is generally insignificant until conductor 
dimensions are some reasonable fraction of a wavelength, it may be somewhat surprising 
that the signal power available from a dipole antenna at any single frequency is actually 
independent of its length. This invariance can be understood by observing first that shorter 
dipoles deliver lower 

 

voltages

 

. To first order, one may take the open-circuit voltage as 
equal to the product of antenna length and received electric field strength, so voltage 
scales linearly with length for short dipoles (up to a point). At the same time, we’ve seen 
that the radiation resistance varies as the square of length. Hence the ratio of voltage 
squared to resistance is independent of length. As the dipole length diminishes, the lower 
voltage is delivered from lower Thévenin resistances (the radiation resistances), such that 
the available power remains constant. For a lossless monopole, for example, the available 
power is

 

. (14)

 

Clearly, the available power is independent of length, and instead depends only on the 
field strength and wavelength. Thus, for the lossless dipole assumed, theory says that we 
could make antennas out of infinitesimally short segments. This conclusion is seemingly 
at odds with ordinary experience, where radiation from ordinary wires is routinely ignored 
with impunity in low frequency circuit analysis, and where AM radio stations use antennas 
of such a size that they must be supported by very tall towers. The resolution to this appar-
ent paradox is that the radiation resistance forms a voltage divider with the Thévenin 
equivalent resistance of the driving source, augmented by ever present resistive losses in 
any circuit. In fact it is precisely this implicit impedance mismatch that allows us to glibly 
ignore radiation from short wires used as interconnect. Any wire is capable of radiating at 
any time, but if it’s short, the impedance mismatch is typically so great that very little 
energy is delivered to the radiation resistance.

 

 That’s

 

 how a wire knows when and when 
not to act as an antenna in ordinary circuits.

Suppose, though, that we were able to avoid this impedance mismatch. After all, imped-
ance transformers are readily designed. Could we then make antennas arbitrarily short? 
The answer is a qualified Yes. One qualification can be appreciated after recognizing that 
bandwidth and normalized antenna length are actually coupled. Because short dipoles 
have a capacitive reactive component, addition of a suitable inductance will permit the 
antenna circuit to be brought into resonance at a given desired frequency of operation. 
Electrically speaking, the antenna acts longer insofar as the disappearance of a reactive 
term is concerned. These loading inductances are usually placed either at the base of the 
dipole (i.e., at the feedpoint), or near the center of the dipole. However, as the antenna 
shrinks, so does its capacitance. To maintain resonance, the compensating (loading) induc-
tance must increase. Recalling that the 

 

Q

 

 of a series resonant circuit is

Pav

Epkl( ) 2 8⁄

40π2 l

λ 
  2

Epkλ( ) 2

320π2
= =



 

EE414 Handout #13: Spring 2001

 

Antennas

 



 

1999 Thomas H. Lee, rev. April 27, 2001; All rights reserved Page 15 of 22

 

, (15)

 

it should be clear that 

 

Q

 

 increases as the antenna shortens (assuming no losses), because 
both inductance and capacitance are roughly proportional to length, and the radiation 
resistance is proportional to the square of the length. The bandwidth is therefore propor-
tional to the first power of length. As a result allowable reductions in antenna length are 
limited by the desired communication bandwidth. Furthermore, the narrower the band-
width, the more sensitive the antenna’s center frequency to the proximity of objects. Pur-
poseful addition of series resistance to mitigate this sensitivity and also improve 
bandwidth is accompanied by an unfortunate increase in loss. Even if no additional resis-
tance is provided intentionally, there is always some loss. If efficiency is to remain high, 
the additional series resistance representing this loss must be small compared with the 
radiation resistance. To underscore the practical difficulties involved, consider a monopole 
antenna that is 1% of a wavelength. The radiation resistance is then about 0.04

 

Ω

 

. Needless 
to say, it is exceedingly difficult to arrange for all RF losses to be small compared to resis-
tances of forty milliohms! The fundamental tradeoff between efficiency and bandwidth 
thus tightly constrains the practical extent to which a dipole may be shortened. The cou-
pling among bandwidth, normalized length and efficiency drives most antenna designs to 
at least as long as about 10% of wavelength. Practical dipole antennas are rarely much 
shorter than this value, except for applications where the available signal power is so large 
that inefficient antennas are acceptable.

Occasionally, one will encounter antennas that employ both capacitive and inductive load-
ing (e.g., capacity hat plus loading coil). The additional degree of freedom can permit one 
to relax the tradeoff to a certain extent.

 

4.5  Magnetic loop

 

The dual of an electric dipole is the magnetic dipole formed by a loop of current. Just as 
the dipole antenna is sensitive primarily to the electric field, the loop antenna is sensitive 
mainly to the magnetic field component of an incoming wave. We’ll see momentarily that 
this duality makes the loop antenna attractive in many situations where the dipole antenna 
suffers from serious problems. In particular, at low frequencies, a loop antenna design is 
frequently more practical than its electric dipole counterpart, explaining why loop anten-
nas are almost universally used in portable AM radios and in many pagers, for example.

Q
L C⁄
R

=
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FIGURE 7. Loop antenna

 

The following equation for the effective radiation resistance of a circular loop antenna 
assumes that the diameter is very short compared to a wavelength, and that no magnetic 
materials are used.

 

18

, (16)

 

where 

 

n

 

, 

 

d

 

, and 

 

l

 

 are the number of turns, loop diameter and loop length, respectively.

Just as the short electric dipole antenna produces a net capacitive reactance, the magnetic 
loop antenna has a net inductive reactance. Wheeler’s famous formula can be used to pre-
dict the inductance of an air-core loop:

 

, (17)

 

which assumes dimensions and inductance in SI units, unlike Wheeler’s original formula-
tion, which uses dimensions in inches.

It is important to take note of a new degree of freedom not present in the dipole case: one 
can add more turns to increase radiation resistance. This improvement comes about in the 
same way as does the impedance transformation of a conventional transformer. The 
changing magnetic field of the incoming wave induces the same voltage in each turn, so 
we get 

 

n

 

 times the per-turn voltage at the antenna terminals. Since energy must be con-
served, the current must drop by this same factor 

 

n

 

, so that the resistance (the ratio of volt-
age to current, says Professor Ohm) increases by 

 

n

 

2

 

. 

We may now appreciate how the loop antenna can solve the thorny problem of AM radio 
reception. Signals at the lower end of the AM band possess a wavelength of almost 600 
meters. The maximum allowable dimensions of any portable device will necessarily be an 

 

18.  H. A. Wheeler, 

 

Fundamental Limitations of Small Antennas

 

, Proc. IRE, Dec. 1947, pp. 1479-1488. If 
magnetic materials are used, then the radiation resistance is multiplied by a factor that is a function of the 
permeability and the geometry.

Rrad
80π5n2d2

l4
≈

L
10πµon2r2

9r 10l+
≈
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absurdly small fraction of this wavelength. A standard dipole antenna of any human-sized 
dimensions would thus have an infinitesimal radiation resistance, making efficient opera-
tion practically impossible. The loop antenna offers a welcome alternative. It is chiefly for 
this reason that loop antennas are the only type of antenna used in portable AM radios. 
Further improvements are provided by winding the antenna around a ferrite core, whose 
large permeability concentrates the magnetic field. These “loopstick” antennas dominate 
portable applications up to frequencies where the lossiness of ferrites negates their useful-
ness (perhaps as high as the VHF range)

 

. 

 

Loop antennas are also the choice in pagers, 
where the desire for a very small form factor makes it difficult to realize an efficient 
dipole. The loop is conveniently shaped as a rectangle and mounted inside the case of the 
pager.

 

5.0  The Microstrip Patch Antenna

 

We’ve seen that whenever a conductor is an appreciable fraction of a wavelength, radia-
tion becomes practical. This effect is not always wanted; for example, radiation losses 
increase the attenuation of microstrip lines. While undesirable in that context, such radia-
tion is of course precisely what is required to make antennas. When built out of microstrip, 
these radiators are known as patch antennas. They have become extremely popular 
because of their planar nature, making them amenable to inexpensive batch fabrication, 
just as any other printed circuit. Despite a number of important limitations (

 

excessive

 

 

 

Q

 

 or, 
equivalently, excessively narrow bandwidth, and a tendency to radiate from the feed), the 
convenience and compactness more than compensate in many applications.

To first order, the patch antenna can be considered the limiting case of connecting a planar 
array of thin dipoles in parallel so that they form a sheet. As such, the primary radiation is 
normal to the surface of the patch. The precise nature of the radiation pattern can be 
adjusted within fairly wide limits by controlling how one feeds the antenna. Typically, 
patches are fed at one end, at the center of an edge (see figure). However, one may also use 
off-center feeds (offset feeds) to excite other than linear polarizations. This ability is 
highly valuable, for many microwave communications systems employ polarizations to 
provide a measure of multipath mitigation.

 

19

 

19.  Reflection off of an object reverses the sense of polarization, changing a counterclockwise polarization 
into a clockwise one, for example. Using an antenna that selectively rejects one of these thus reduces a com-
munications link’s susceptibility to troublesome reflections.
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FIGURE 8. Halfwave patch antenna (conductor pattern and perspective view)

 

For the antenna in Figure 8, assume that the length 

 

L

 

 is chosen equal to a half wavelength. 
In that case, the current is zero at 

 

x 

 

= 0 and 

 

x

 

 = 

 

L

 

, with a maximum at 

 

L

 

/2, as in a classic 
dipole antenna. At the same time, the voltage is a minimum at 

 

L

 

/2, and a maximum at the 
source and far end, again just as in a classic dipole.

One important characteristic of a patch antenna is its relatively narrow bandwidth (typi-
cally ranging from a fraction of a percent to a few percent). This quality is a double-edged 
sword; it endows the patch with an ability to filter off-frequency signals, but it also 
demands more of manufacturing precision and material stability. The variability of FR4 is 
large enough that a certain amount of cutting-and-trying is to be expected, generally limit-
ing its use to prototyping and hobbyist applications.

Numerous design equations have appeared in the literature, spanning a broad range of 
complexity. In the interest of preserving the maximum level of intuitive value consistent 
with usefulness, the equations presented here are simple. They are typically in error by an 
amount similar to that caused by parameter variation in general-purpose PC board materi-
als and manufacture. That’s just a fancy way of saying that one should still expect the need 
to perform some trimming, whether you use the following equations or not.

As suggested earlier, the classic patch antenna is designed as a half-wave radiator, so its 
electrical length is chosen equal to a half wavelength:

 

. (18)

 

In relating electrical and physical lengths, it’s important to consider both fringing field and 
the effective dielectric constant:

 

, (19)

L

W

y

x

Leff
λ
2

=

Leff εr eff, L 2
H

2
+ 

 ≈ εr eff, L H+( )=



 

EE414 Handout #13: Spring 2001

 

Antennas

 



 

1999 Thomas H. Lee, rev. April 27, 2001; All rights reserved Page 19 of 22

 

where 

 

H

 

 is the thickness of the dielectric, and the length correction per edge, 

 

H

 

/2, is the 
same as derived in the appendix of the chapter on microstrip.

The effective dielectric constant is given by

 

, (20)

 

which is the same formula as used for ordinary microstrip lines (as is the correction for 
fringing in Eqn. 19). Marginally easier to remember is the following alternative approxi-
mation:

 

. (21)

 

Since the width 

 

W 

 

of a typical patch antenna is so much greater than the dielectric thick-
ness 

 

H

 

, the effective dielectric constant is usually quite close to the dielectric constant of 
the material (say, only 5% below it). For that reason, design formulas presented in many 
references do not make a distinction between these two dielectric constants.

We need to perform a similar accommodation of fringing effects on the effective width:

 

. (22)

 

Continuing with our design equations, we obtain:

 

, (23)

 

and

 

. (24)

 

Notice that one way to control the impedance of a patch antenna is to choose an appropri-
ate ratio of length to width. For patches made on FR4 with an effective relative dielectric 
constant of 4.2, this formula says that a ~50

 

Ω

 

 feedpoint impedance results from a 

 

W

 

/

 

L

 

 
ratio of about 3, whereas a square patch typically presents an impedance of about 500

 

Ω

 

.

Because the length is set by the desired center frequency, increasing the width to provide a 
lower driving point impedance sometimes results in patches of inconveniently large size. 
In those situations, one may use alternative impedance transformation techniques. A clas-
sical one is to interpose a quarter-wavelength segment of line between the source and the 

εr eff, 1 0.63 εr 1−( ) W

H 
  0.1255

W H⁄ 0.6>( ),⋅ ⋅+≈

εr eff, 1
5

8
εr 1−( ) W

H 
 

1

8
W H⁄ 0.6>( ),⋅ ⋅+≈

Weff εr eff, W 2
H

2
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antenna. If the transforming line’s characteristic impedance is made equal to the geometric 
mean of the source and load impedances, a match results.

As a specific numerical example, suppose we need to design a 50

 

Ω

 

 patch antenna for use 
in a portable application in the 2.5GHz ISM (industrial, scientific and medical) frequency 
band. Using FR4, a rectangular patch would have dimensions of about 27mm by 80mm. 
The length of just a bit over an inch is reasonable, but the width isn’t quite compatible 
with most portable form factors. Suppose that we choose a square patch instead, whose 
impedance is 500

 

Ω

 

. A 160

 

Ω

 

 quarter-wavelength line would perform the necessary trans-
formation. Realizing such an impedance generally requires a very narrow line, and manu-
facturing tolerances are consequently critical in such a case.

Yet another impedance transformer option is available with patches (indeed, with any res-
onant antenna). Because of the standing wave set up in the antenna, voltages and currents 
vary along the patch. In the half-wave case we’ve been studying, the boundary conditions 
force the current to be a minimum at the feedpoint and at the far end of the patch, with a 
maximum in the middle. At the same time, the voltage is a minimum in the middle, and at 
a maximum at the source and far end. The impedance, being the ratio of voltage to current, 
therefore varies along the antenna, from a minimum at the normal feedpoint, to a maxi-
mum at the middle of the patch. One may exploit this impedance variation by using an 
inset feed, as shown in the following figure:

 

FIGURE 9. Halfwave patch antenna with impedance-transforming inset feed (top view)

 

To a first approximation, the standing waves (voltage and current) vary sinusoidally along 
the length of the patch (these assumptions are the same as those used in deriving the radia-
tion resistance of an ordinary dipole). The current is nearly zero at both ends of the patch, 
increasing roughly sinusoidally as one moves toward the center. At the same time, the 
voltage is a peak at the ends, sinusoidally decaying toward zero in the center. Therefore, as 
one moves the feedpoint toward the center, the ratio of voltage to current varies approxi-
mately quadratically because voltage decreases sinusoidally at the same rate that the cur-
rent increases. The impedance therefore gets multiplied by the following factor:

 

, (25)

 

where 

 

Z

 

edge

 

 is the driving point impedance in the absence of an inset feed.

∆L

Z Zedge( ) π∆L

L
cos 

  2

=
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For our example, we need to transform downward by the comparatively large factor of 
about 10.8, implying that

 

. (26)

 

Note that the inset is nearly all the way to the middle. Because the change in voltage with 
distance is large near the middle

 

20

 

, the precise value of the impedance is a sensitive func-
tion of distance in the vicinity of this inset’s location. That, plus the uncertainty inherent in 
our approximations, means again that some empirical adjustment will probably be neces-
sary to obtain the correct impedance.

One convenient method for trimming such an inset patch is first to use a deeper-than-nom-
inal inset. Then, upward impedance adjustments are easily effected by placing a shorting 
strip across some portion of the inset:

 

FIGURE 10. Adjustment method for inset patch (top view)

 

This particular method avoids the need for precision cutting, and also facilitates multiple 
iterations. Soldering (and unsoldering) a piece of copper foil tape is much easier than 
gouging out segments of copper cladding.

A disadvantage of the inset feed is that it perturbs the field distributions, with the amount 
increasing with the depth of the inset. The three impedance matching methods (controlling 

 

W

 

/

 

L

 

, quarter-wave transformer and inset feed) provide important degrees of freedom for 
trading off parameters of interest. For example, one may use a rectangular patch with 
dimensions that produce a 200

 

Ω

 

 impedance, combine it with an inset feed to drop it to 
100

 

Ω

 

, then finish with a quarterwave match (whose line impedance is 71

 

Ω

 

) to get to 50

 

Ω

 

. 
Since the impedance transformations at each step along the way involve relatively small 
ratios, a more practical, robust design results.

 

21

 

20.  The voltage is a minimum in the center, but its spatial derivative is a 

 

maximum

 

 there.

21.  Of course, one could also use a sequence of quarterwave transformers, or some other variations. There 
are many ways to accomplish the needed transformation, and the reader is invited to explore alternatives 
independently.

∆L
L

π
1

10.8 
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6.0  Summary

 

We’ve seen that radiation is fundamentally the result of the finite propagation speed of 
light. The need for a reasonably large phase shift to produce a reasonably high radiation 
resistance explains why real antennas are a reasonable fraction of a wavelength in extent, 
at minimum.

Not only are elementary dipole antennas (both balanced and grounded) quite commonly 
used, they serve as an important basis for understanding more complex antennas. Short 
dipoles have low radiation resistances and are primarily capacitive. Capacity hats can be 
used to increase radiation resistance, and inductances can be used to tune out any capaci-
tance. Such measures are effective up to a limit imposed by the need to provide a given 
minimum bandwidth or efficiency, and to produce an antenna whose characteristics are 
not overly sensitive to small changes in dimensions or environmental conditions. The 
tradeoffs are such that antennas much shorter than about a tenth of a wavelength are fre-
quently regarded as unsatisfactory.

The magnetic loop antenna may be viewed as the dual of the electric dipole. Unlike the 
dipole, the radiation resistance depends on the number of turns, endowing it with an addi-
tional degree of freedom that makes it possible to realize compact antennas.

Finally the patch antenna can be considered a continuous parallel connection of an infinite 
number of infinitesimally thin dipoles. Although its excessive 

 

Q

 

 is a definite disadvantage 
in many situations its other attributes, such as amenability to batch manufacturing, often 
more than compensate.
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Filters

 

1.0  Introduction

 

The subject of filter design is so vast that we have to abandon any hope of doing justice to 
it as a subset of a textbook. Indeed, even though we have chosen to present this material 
over two chapters, the limited aim here is to focus on important qualitative ideas and prac-
tical information about filters, instead of attempt a comprehensive review of all possible 
filter types and supply complete mathematical details of their underlying theory. For those 
interested in the rigor that we will tragically neglect, we will be sure to provide pointers to 
the relevant literature. And for those who would rather ignore the small amount of rigor 
that we do provide, the reader is invited to skip directly to the appendices, which summa-
rize filter design information in “cookbook” form.

Although our planar focus would normally imply a discussion limited to microstrip imple-
mentations, many such filters derive directly from lower frequency lumped prototypes. 
Because so many key concepts may be understood by studying those prototypes, we will 
follow a roughly historical path and begin with a discussion of lumped filter design. It is 
definitely the case that certain fundamental insights are universal, and it is these that will 
be emphasized in this chapter, despite differences in implementation details between 
lumped and distributed realizations.

Only passive filters will be considered here, partly to limit the length of the chapter to 
something manageable. Another reason is that, compared to passive filters, active filters 
generally suffer from higher noise and nonlinearity, limited operational frequency range, 
higher power consumption, and relatively high sensitivity to parameter variations, particu-
larly at the GHz frequencies with which we are concerned in this textbook.

 

2.0  Background

 

2.1  A quick history

 

The use of frequency selective circuits certainly dates back at least to the earliest research 
on electromagnetic waves. In his classic experiments of 1887-1888 Hertz himself used 
dipole and loop antennas (ring resonators) to clean up the spectrum generated by his spark 
gap apparatus and thereby impart a small measure of selectivity to his primitive receivers. 
Wireless pioneer Sir Oliver Lodge of the U.K. coined the term “syntony” to describe the 
action of tuned circuits, showing a conscious appreciation of the value of such tuning, 
despite the hopelessly broadband nature of spark signals.

 

1

 

 At nearly the same time, Nikola 
Tesla and Guglielmo Marconi developed tuned circuits (Marconi’s patent #7777 was so 

 

1.  See H. Aitken’s excellent book, 

 

Syntony and Spark

 

, Princeton, 1987, for a technically detailed and fasci-
nating account of early work in wireless.
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valuable that it became the subject of bitter and protracted litigation)

 

2

 

 for the specific pur-
pose of rejecting unwanted signals, anticipating the advent of sinusoidal carrier based 
communications.

Despite that foundation, however, modern filter theory does not trace directly back to 
those early efforts in wireless. Rather the roots go back even further in time: it is research 
into the properties of transmission lines for telegraphy and telephony that primarily inform 
early filter theory. In 1854 William Thomson (who would later become Lord Kelvin), car-
ried out the first analysis of a transmission line, considering only the line’s distributed 
resistance and capacitance. His work, inspired by what was to be the 3000-kilometer 
Atlantic Cable Project, established a relationship between practical transmission rates and 
line parameters. A bit over 20 years later, Oliver Heaviside and others augmented Kelvin’s 
analysis by including distributed inductance, thereby extending greatly the frequency 
range over which transmission line behavior could be described accurately.

 

3

 

 Following up 
on one particular implication of Heaviside’s work, both George Ashley Campbell of the 
American Bell Company and Michael Idvorsky Pupin of Columbia University suggested 
around 1900 the insertion of lumped inductances at regularly spaced intervals along tele-
phone transmission lines to reduce dispersion (the smearing out of pulses).

 

4

 

 This sugges-
tion is relevant to the filter story because Heaviside recognized that a lumped line differs 
from a continuous one in possessing a definite cutoff frequency. Campbell and Pupin pro-
vided design guidelines for guaranteeing a certain minimum bandwidth.

 

5

 

In true engineering fashion, the apparent liability of a lumped line’s limited bandwidth 
was quickly turned into an asset, and thus was established the main evolutionary branch of 
filter design. The first published formalism is Campbell’s, whose classic 1922 paper 
describes in fuller detail ideas he had developed and patented during WWI.

 

6

 

 Karl Willy 
Wagner also developed these ideas at about the same time, but German military authorities 
delayed publication, giving Campbell priority.

 

7

 

 It is now acknowledged that credit should 
be shared by these two pioneers, who independently and nearly simultaneously hit upon 
the same great idea.

 

2.  The U.S. Supreme Court eventually ruled it invalid (in 1943) because of prior work by Lodge, Tesla and 
others.
3.  For additional background on this story, see Paul J. Nahin’s excellent book, 

 

Oliver Heaviside: Sage in 
Solitude

 

, IEEE Press, 1987.

4.  As with many key ideas of great commercial import, a legal battle erupted over this one. It is a matter of 
record that the Bell System was already experimenting with loading coils developed by Campbell well 
before publication of Pupin’s 1900 paper. Pupin’s self-promotional abilities were superior, though, and he 
was able to obtain a patent nonetheless. He eventually earned royalties of over $400,000 from Campbell’s 
employer (at a time when there was no U.S. income tax) for his “invention.” To add to the insult, Pupin’s 
Pulitzer-prize winning autobiography of 1924 shamefully fails to acknowledge Campbell and Heaviside.

5.  A. T. Starr, 

 

Electric Circuits and Wave Filters

 

, 2nd ed., Pitman and Sons, 1948.
6.  G. A. Campbell, “Physical Theory of the Electric Wave-Filter,” 

 

Bell System Technical Journal

 

, vol. 1, no. 
2, pp. 1-32, Nov. 1922. See also his U. S. Patent #1,227,113, May 22, 1917.

7.  “Spulen- und Kondensatorleitungen” (Inductor and Capacitor Lines), 

 

Archiv für Electrotechnik

 

, vol. 8, 
July 1919.
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Campbell’s colleague, Otto J. Zobel, published a much-referenced extension of Camp-
bell’s work, but which was still limited to filters derived from transmission line ideas.

 

8

 

 In 
the developments of subsequent decades one sees an evolving understanding of how 
closely one may approach in practice the theoretical ideal of a perfectly flat passband, con-
stant group delay, and an infinitely steep transition to an infinitely attenuating stopband. 
Conscious acknowledgment that this theoretical ideal is unattainable leads to the impor-
tant idea that one must settle for approximations. Some of the more important, practical 
and well-defined of these approximations are the Butterworth, Chebyshev and Cauer 
(elliptical) filter types we’ll study in this chapter.

Shortly after WWII, the subject of filter design advanced at an accelerated pace. Investiga-
tion into methods for accommodating finite-

 

Q

 

 elements in lumped filters offered hope for 
improved predictability and accuracy. In the microwave domain, filter topologies based 
directly on lumped prototypes came to be supplemented by ones that exploit, rather than 
ignore, distributed effects. Many of these are readily implemented in microstrip form, and 
are the ultimate focus of this chapter.

The advent of transistors assured that the size of active devices no longer dominated that 
of a circuit. Numerous active filter topologies evolved to respond to a growing demand for 
miniaturization, replacing bulky passive inductor-capacitor circuits in many instances. 
Aside from enabling dramatic size reductions, some active filters are also electronically 
tunable. However, these attributes do come at a price: active filters consume power, suffer 
from nonlinearity and noise, and possess diminished upper operational frequencies 
because of the need to realize gain elements with well-controlled characteristics at high 
frequencies. These tradeoffs become increasingly serious as microwave frequencies are 
approached. This statement should not be taken to mean that microwave active filters can 
never be made to work well enough for some applications (because successful examples 
certainly abound), but it remains true that the best filters at such frequencies continue to be 
passive implementations. It is for this reason that this chapter considers passive filters 
exclusively.

The arrival of transistors also coincided with (and helped drive) a rapidly decreasing cost 
of computation.

 

9

 

 No longer limited to considering only straightforward analytical solu-
tions, theorists were free to pose the filter approximation problem much more generally, 
e.g., “Place the poles and zeros of a network to minimize the mean-square error (or maxi-
mum error, or some other performance metric) in a particular frequency interval, relative 
to an ideal response template.” Of great practical importance is that a numerical approach 
readily accommodates lossy inductors and capacitors, something that is difficult with ear-
lier analytical approaches. The resulting filters are optimum in the sense that one cannot 
do better (as evaluated by whatever design criteria were imposed in the first place) for a 
given filter order. The tradeoff is that the resulting design may not be as easily understood 

 

8.  O. J. Zobel, “Theory and Design of Uniform and Composite Electric Wave-filters,”  

 

Bell System Techni-
cal Journal

 

, vol. 2, no. 1, pp. 1-46, Jan. 1923.

9.  Regrettably, space limitations force us to neglect here the fascinating story of electrolytic tanks and other 
analog computers used to design filters based on potential theory.
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as those based on analytical approaches. In many cases, element values are best obtained 
from tables that summarize the results of extensive computations.

The same philosophical approach of numerical optimization is also how most modern 
microwave filters are designed. And again, solutions for the more complex types are best 
extracted from tables. The main purpose here is to provide an intuitive explanation for 
how these filters work, leaving many of the mathematical details to published theoretical 
treatments.

 

3.0  Filters from Transmission Lines

 

We start with the “electric wave filters” of Campbell, Zobel and Wagner. As mentioned, 
these derive from lumped approximations to transmission lines, so we begin by examining 
such “artificial” lines to see how a limited bandwidth arises.

 

3.1  Constant-

 

k

 

 filters

 

For convenience, we repeat here some of the calculations from the chapter on distributed 
systems. Recall that we first consider the driving point impedance, 

 

Z

 

in

 

, of the following 
infinite ladder network:

 

FIGURE 1. Infinite ladder network as artificial line

 

In this drawing, the resistor symbols represent generalized impedances (

 

Z

 

) and admit-
tances (

 

Y

 

).

To simplify the derivation, it is helpful to note that the impedance looking to the right of 
point 

 

A

 

 also equals 

 

Z

 

in

 

, this being an infinite network. We can then collapse the infinite 
network into a much simpler finite one:

 

FIGURE 2. Conversion of infinite line into finite network

 

Solving for the 

 

Z

 

in

 

 of this simple network yields:

Z

Y

Z Z Z

Y YZin

A B C

Z

YZin Zin
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, (1)

 

where one would generally disallow negative values and thus choose only the sum solu-
tion.

As a specific (but typical) case, consider a low-pass filter in which 

 

Y

 

 = 

 

j

 

ω

 

C

 

 and 

 

Z

 

 = 

 

j

 

ω

 

L

 

. 
Then, the input impedance of the infinite artificial line is:

 

. (2)

 

At very low frequencies, the factor under the radical is negative and large in magnitude, 
making the term within the brackets almost purely imaginary. The overall 

 

Z

 

in

 

 in that fre-
quency range is therefore largely real, with 

 

. (3)

 

Because the ratio 

 

Z

 

/

 

Y

 

 is a constant here, such filters are often known as constant-

 

k

 

 filters.

 

10

 

As long as the input impedance has a real component, nonzero average power will couple 
into the line from the source. Above some particular frequency, however, the input imped-
ance becomes purely imaginary, as can be seen from inspection of Eqn. 2. Under this con-
dition, no real power can be delivered to the network, and the filter thus attenuates 
heavily.

 

11

 

 For self-evident reasons the frequency at which the input impedance becomes 
purely imaginary is called the cutoff frequency which, for this low-pass filter example, is 
given by:

 

. (4)

 

Any practical filter must employ a finite number of sections, of course, leading to the 
question of the relevancy of any analysis that assumes an infinite number of sections. Intu-
itively, it seems reasonable that a “sufficiently large” number of sections would lead to 
acceptable agreement. Based on lumped network theory, we also expect the ultimate rate 
of rolloff to be determined by the filter order, and hence by the number of sections to 
which the network is truncated (we’ll have more to say on this subject later). The greater 

 

10.  Campbell used the symbol 

 

k

 

 in precisely this context, but it was Zobel (op. cit.) who apparently first 
used the actual term “constant-

 

k

 

.”
11.  Attenuation without dissipative elements might initially seem intuitively unpalatable. However, consider 
that a filter might also operate by 

 

reflecting

 

 energy, rather than by dissipating it. That is, a filter can function 
by producing a purposeful impedance mismatch over some band of frequencies. In fact, many filter design 
approaches are based directly on manipulation of the reflection coefficient as a function of frequency.

Zin
Z Z2 4 Z Y⁄( )+±

2

Z

2
1 1

4

ZY
+±= =

Zin
jωL

2
1 1

4

ω2LC
−±=

Zin
Z

Y
≈ L

C
k= =

ωh
2

LC
=
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the number of sections, the greater the rate of rolloff. As we’ll see, there is also some (but 
practically limited) flexibility in the choice of 

 

Z

 

 and 

 

Y

 

, permitting a certain level of trade-
off among passband, transition band, and stopband characteristics. However, it remains 
true that one limitation of filters based on artificial-line concepts is the inability to specify 
these characteristics in detail, if at all. Note, for example, the conspicuous absence of any 
discussion about how the filter behaves near cutoff. We don’t know if the transition from 
passband to stopband is gradual or abrupt, monotonic or oscillatory. We also don’t know 
the precise shape of the passband. Finally, we don’t have any guide how to modify the 
transition shape should we find it unsatisfactory. As we’ll see, these shortcomings lead us 
to consider other filter design approaches.

Once the filter order is chosen (by whatever means), the next problem is one of termina-
tion. Note that the foregoing analysis assumes that the filter is terminated in an impedance 
that behaves as described by Eqn. 2. That is, our putative finite filter must be terminated in 
the impedance produced by the prototype 

 

infinite

 

 ladder network: It must have a real 
impedance at low frequencies, then become purely imaginary above the cutoff frequency. 
Stated another way, rigorous satisfaction of the criteria implied by Eqn. 2 absurdly 
requires that we supply a load element which itself is the filter we desire! We should there-
fore not be too surprised to discover that a practical realization involves compromises, all 
intimately related to the hopeless task of mimicking the impedance behavior of an infinite 
structure with a finite one. For example the near-universal choice is to terminate the fol-
lowing with a simple resistance 

 

R

 

 equal to 

 

k

 

:

 

FIGURE 3. Low-pass constant

 

-k 

 

filter example using two cascaded T-sections

 

A source with a Thévenin resistance also of value 

 

k

 

 is assumed to drive this filter. Note 
that this example uses two complete T-sections (shown in the boundaries), with a 

 

half

 

-sec-
tion placed on each end. Termination in half sections is the traditional way to construct 
such filters. The series-connected inductors, shown individually to identify clearly the sep-
arate contributions of the unit T-sections, are combined into a single inductance in prac-
tice. Alternatively one may implement the filter with 

 

π

 

-sections. With those, one uses 
terminating half-sections that are mirror images of the ones shown. The choice of which 
implementation to employ is often determined in practice by the nature of the parasitics 
that dominate the input and output interfaces. If these parasitics are primarily capacitive in 
nature, the T-section implementation shown is favored, since the parasitics may be 
absorbed into the capacitances at the ends of the filter. Similarly, inductive parasitics are 
most readily accommodated by a filter using internal 

 

π

 

-sections.

The design equations for this filter are readily derived from combining Eqn. 3 and Eqn. 4:

C/2 C/2C C

L/2 L/2 L/2 L/2 L/2 L/2
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, (5)

 

and

 

. (6)

 

Thus, once one specifies the characteristic impedance, 

 

R

 

, the desired cutoff frequency, and 
the total number of sections, the filter design is complete.

Regrettably, deducing the number of sections required is a bit of a cut and try affair in 
practice. There are equations that can provide guidance, but they are either cumbersome or 
inaccurate enough that one typically increases the number of sections until simulations 
reveal that the filter behaves as desired. Furthermore the unsophisticated termination of a 
simple resistance leads to degradation of important filter characteristics, often resulting in 
a hard-to-predict insertion loss and passband flatness, as well as reduced stopband attenu-
ation (relative to predictions based on true, infinite-length lines). These difficulties are 
apparent from an inspection of the following table, which shows the attenuation at the cut-
off frequency, as well as the –3dB and –6dB bandwidths (expressed as a fraction of the 
cutoff frequency), of constant-

 

k

 

 filters (both T- and 

 

π

 

-implementations) as a function of 
order. In the table, 

 

n

 

 is the number of complete T- (or 

 

π

 

-) sections in the central core of the 
filter. The filter order is therefore 2

 

n

 

 + 3.

Note that the attenuation at the nominal cutoff frequency, as well as the bandwidth, are 
both dependent on the number of filter sections. Further note that the cutoff frequency (as 
computed by Eqn. 4) equals the –3dB bandwidth only for 

 

n

 

 = 0, and is as much as 10% 
beyond the –3dB bandwidth in the worst case. In critical applications, the cutoff frequency 
target may have to be altered accordingly to achieve a specified bandwidth.

 

TABLE 1. Characteristics of ideal constant-

 

k

 

 filters

 

n

Attenuation
 at cutoff 
frequency 

 

(

 

dB

 

)

 

Normalized
 –3dB 

Bandwidth

Normalized
 –6dB 

Bandwidth

Normalized
 –60dB 

Bandwidth

Normalized
 –10dB S

 

11

 

 
Bandwidth

 

0 3.0 1.000 1.201 10.000 0.693

1 7.0 0.911 0.980 3.050 0.810

2 10.0 0.934 0.963 1.887 0.695

3 12.3 0.954 0.969 1.486 0.773

4 14.2 0.967 0.976 1.302 0.696

5 15.7 0.976 0.981 1.203 0.756

C
2

ωh
 
  1

R
=

L
2

ωh
 
  R=
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The following figure is a frequency response plot for a constant-

 

k

 

 filter which consists of 
five full sections, and a terminating half-section on each end. Note that the frequency axis 
is linear, not logarithmic:

 

FIGURE 4. Response of six-section low pass constant-

 

k

 

 filter (

 

n

 

 = 5)

 

Aside from the ripple evident in the figure, it is also unfortunate that the bandwidth over 
which the return loss exceeds 10dB is typically only ~70-80% of the cutoff frequency. A 
considerable improvement in performance is possible by using filter sections whose 
impedance behavior better approximates a constant resistance over a broader frequency 
range. One example, developed by Zobel, uses “

 

m

 

-derived” networks, either as terminat-
ing structures, or as filter sections:

 

FIGURE 5. Low-pass 

 

m

 

-derived filter using cascaded T-sections

 

As with the prototype constant-

 

k

 

 filter of Figure 5, this structure is both driven and termi-
nated with a resistance of value 

 

k

 

 ohms. The 

 

m

 

-derived filter, which itself is a constant-

 

k

 

 
structure, is best understood by noting that the prototype constant-

 

k

 

 filter previously ana-
lyzed has a response that generally attenuates more strongly as the cutoff frequency 

 

ω

 

1

 

 is 

2L2

C/2

L1/2

2L2

C/2

L2

C

L2

C

L1/2 L1/2 L1/2 L1/2 L1/2
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approached. At small fractions of the cutoff frequency, the response is fairly flat, so it 
should seem reasonable that increasing the cutoff frequency to some value 

 

ω

 

2

 

 should pro-
duce a more constant response within the original bandwidth 

 

ω

 

1

 

. The first step in design-
ing an 

 

m

 

-derived filter, then, consists simply of increasing the cutoff frequency of a 
prototype constant-

 

k

 

 filter. In the absence of inductor 

 

L

 

2

 

, we see that scaling the values of 

 

L

 

1

 

 and 

 

C

 

 each, say, by a factor 

 

m

 

 (with 

 

m

 

 ranging from 0 to 1) increases the cutoff fre-
quency by a factor of 1/

 

m

 

, from a value 

 

ω

 

1

 

, to 

 

ω

 

2

 

 = 

 

ω

 

1

 

/

 

m

 

. The characteristic impedance 
remains unchanged at 

 

k

 

 because the 

 

ratio

 

 of 

 

L

 

1

 

 to 

 

C

 

 is unaffected by this scaling.

Now to restore the original cutoff frequency, add an inductance 

 

L

 

2

 

 to produce a series res-
onance with 

 

C

 

. At the resonant frequency, this series arm presents a short circuit, creating 
a notch in the filter’s transmission. If this notch is placed at the right frequency (just a bit 
above the desired cutoff frequency), the filter’s cutoff frequency can be brought back 
down to 

 

ω

 

1

 

. However, be aware that the filter response does pop back up above the notch 
frequency (where the resonant branch then looks like a simple inductance). This character-
istic needs to be taken into account when using the 

 

m

 

-derived filter.

An alternative to a series resonance in the shunt arm of each filter section is a parallel res-
onance in the series arm(s) of a filter section. Both types of 

 

m

 

-derived filters will provide 
the same behavior. The choice of topology in practice is often determined by which imple-
mentation uses more easily realized components, or which more gracefully accommodates 
parasitic elements.

Following a procedure exactly analogous to that used in determining the cutoff frequency 
of ordinary constant-

 

k

 

 filters, we find that the cutoff frequency of an 

 

m

 

-derived filter may 
be expressed as

 

. (7)

 

To remove 

 

L

 

1

 

 from the equation, note that the cutoff frequency may also be expressed as

 

, (8)

 

while the characteristic impedance is given by

 

. (9)

 

Combining these last three equations allows us to solve for 

 

L

 

2

 

:

ω1

2 R L1⁄( )

4
L2

L1

1+

=

ω1
2m

L1C
=

R
L1

C
=
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. (10)

 

Solving Eqn. 8 and Eqn. 9 for 

 

L

 

1

 

 and 

 

C

 

 yields

 

(11)

 

and

 

. (12)

 

Use of the foregoing equations requires that the designer have an idea of what value of 

 

m

 

 
is desirable. As 

 

m

 

 approaches unity the response exhibits a monotonic rolloff (and there-
fore an increasing passband error), while passband peaking increases as 

 

m

 

 approaches 
zero. In practice a rather narrow range is encountered (say, within 25-30% of 0.5) as a 
compromise between these two behaviors, and the parameter 

 

m

 

 is commonly chosen equal 
to 0.6. This value yields a reasonably broad frequency range over which the transmission 
magnitude remains roughly constant. The following table enumerates (to more significant 
digits than are practically significant) some of the more relevant characteristics of 

 

m

 

-
derived filters, for the specific value of 

 

m

 

 = 0.6. As with Table 1, the parameter 

 

n

 

 is the 
number of complete T- (or 

 

π

 

-) sections used in the filter. The column labeled “minimum 
stopband attenuation” gives the worst-case value of attenuation above the transmission 
notch frequency, where the filter response pops back up.

 

TABLE 2. Characteristics of ideal 

 

m

 

-derived filters (

 

m

 

 = 0.6)

 

Note that the cutoff frequency and –3dB bandwidth are much more nearly equal than for 
the prototype constant-

 

k

 

 case (the worst-case difference here is about 3%). The bandwidth 

 

n

Attenuation
 at cutoff 
frequency 

(dB)

Normalized
 –3dB 

Bandwidth

Normalized
 –6dB 

Bandwidth

Normalized
 –10dB S

 

11

 

 

 

Bandwidth

Minimum 
stopband 

attenuation 
(dB)

 

0 1.34 1.031 1.063 0.965 8.21

1 3.87 0.993 1.013 0.956 21.24

2 6.27 0.988 0.999 0.969 34.25

3 8.30 0.989 0.996 0.979 47.09

4 10.00 0.991 0.995 0.954 59.81

5 11.44 0.993 0.996 0.961 72.43

L2

1 m2−( ) R

2mω1

=

C
2m

ω1
 
  1

R
=

L1
2m

ω1
 
  R=
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over which the return loss exceeds 10dB is also a much greater fraction of the cutoff fre-
quency (above 95%, in fact). Note also that the minimum stopband attenuation increases 
by about 12-13dB per increment in 

 

n

 

 for this range of values.

The following figure illustrates how the use of 

 

m

 

-derived sections can improve the magni-
tude response (note that the vertical axis now spans 80dB, rather than 50dB):

 

FIGURE 6. Frequency response of six-section 

 

m

 

-derived low pass filter (

 

m

 

 = 0.6, 

 

n

 

 = 5)

 

Compared with Figure 4, this response shows significantly less passband ripple, as well as 
a much faster transition to stopband, owing to the stopband notch.

On the frequency scale of Figure 6, the characteristic notch is invisible, as is the popping-
up of the response at higher frequencies. The following plot shows these features more 
clearly:
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FIGURE 7. Frequency response of 

 

m

 

-derived low pass filter, plotted over wider range

 

Aside from the potential for improved flatness over the passband, the notches that are 
inherent in 

 

m

 

-derived filters can be used to null out interfering signals at a specific fre-
quency (or frequencies, if sections with differing values of 

 

m

 

 are used). Later, we will see 
that judiciously distributed notches can be combined with passband ripple to produce what 
are known as elliptic or Cauer filters whose responses exhibit even more dramatic transi-
tions from passband to stopband.

If the precise location of a notch is of importance, it is helpful to know that the frequency 
of the null 

 

ω

 

∞

 

 

 

is related to 

 

m

 

 as follows:

 

, (13)

 

so that the value of 

 

m

 

 needed to produce a notch at a specified frequency 

 

ω

 

∞

 

 is

 

. (14)

 

A value of 0.6 for 

 

m

 

 corresponds to a notch frequency that is a factor of 1.25 times the cut-
off frequency.

Table 3 summarizes the design of constant-

 

k

 

 and 

 

m

 

-derived low pass filters. Component 
values (again, to many more digits than are practically relevant) are for the specific case of 
a termination (and source) resistance of 50

 

Ω

 

 and a cutoff frequency of 1GHz. The left two 

ω∞

ω1

1

1 m2−
=

m 1
ω1

ω∞
 
 

2

−=
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columns are for the simple constant-

 

k

 

 case, and the last three columns give values for the 
specific 

 

m

 

-derived case where 

 

m

 

 = 0.6.

For filters with a cutoff frequency other than 1GHz, simply multiply all component values 
by the ratio of 1GHz to the desired cutoff frequency. For a different characteristic imped-
ance, multiply all component 

 

impedances

 

 by the ratio of the desired impedance to 50

 

Ω

 

.

One may also combine ordinary constant-

 

k

 

 and 

 

m

 

-derived sections because the individual 
sections for both are constant-

 

k

 

 in nature. Such a 

 

composite

 

 filter may be desirable, for 
example, to effect a compromise between flatness and the production of notches at specific 
frequencies. Unfortunately, design of such a filter is very much an ad hoc affair. One sim-
ply mixes and matches sections as seems sensible, then simulates to verify if the design 
indeed functions satisfactorily.

 

3.1.1  High-pass, bandpass and bandstop shapes

 

At least in principle, a high-pass constant-

 

k

 

 filter is readily constructed from the low pass 
constant-

 

k

 

 prototype simply by swapping the positions of the inductors and capacitors; the 
values remain the same. Thus one may design, say, a 1GHz constant-

 

k

 

 low-pass filter 
using the values of Table 3, then interchange the 

 

L

 

s and 

 

C

 

s to synthesize a 1GHz high-
pass filter.

The reason for the qualifier “at least in principle” is that high-pass filters typically exhibit 
serious deviations from desired behavior. These deviations motivate microwave filter 
designers to avoid high-pass filters based on lower frequency prototypes. Although there 
are many ways – too numerous to mention, in fact – in which a practical filter of any kind 
can fall short of expectations, perhaps the following lumped high pass filter example will 
suffice to illustrate the general nature of the problem. Specifically, consider:

 

FIGURE 8. High pass filter?

 

Every practical inductor is shunted by some capacitance, and thus exhibits a resonance of 
its own. Above the resonant frequency, the “inductor” actually appears as a capacitance. 
Similarly every practical capacitance has in series with it some inductance. Above the cor-

 

TABLE 3. Component values for 1GHz constant-

 

k

 

 and 

 

m

 

-derived filters (

 

Z

 

 = 50

 

Ω

 

 

 

m

 

 = 0.6)

 

L C L

 

1

 

C L

 

2

 

15.9155nH 6.3662pF 9.5493nH 3.8197pF 4.2441nH
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responding series resonance, the capacitor actually appears inductive. Hence, at suffi-
ciently high frequencies, our high pass filter actually acts as a low pass filter.

A complementary effect afflicts low pass filters where, at high frequencies, it is possible 
for the response to pop back up.

As a practical workaround, it is traditional to employ a bandpass filter with a sufficiently 
wide passband to approximate the desired filter shape. Of course, that solution presup-
poses knowledge of how to construct bandpass filters. Fortunately, the constant-

 

k

 

 structure 
works here, too (we’ll later examine alternative bandpass implementations as well). As a 
general strategy for deriving a bandpass filter from a low-pass prototype, replace the 
inductance of a low-pass prototype with a series 

 

LC

 

 combination, and the capacitance with 
a parallel 

 

LC

 

 combination:

 

FIGURE 9. Bandpass constant

 

-k 

 

filter example using two cascaded T-sections

 

Unlike our previous figures, the individual T-sections are not shown, in order to simplify 
the schematic.

Note that this structure continues to exhibit the correct qualitative behavior even if induc-
tors ultimately become capacitors and vice-versa. This property is fundamental to the 
potentially reduced sensitivity of this topology to parasitic effects.

The formula for the inductance 

 

L

 

1

 

 of the series resonator is the same as that for the induc-
tance in the prototype low pass filter, except that the 

 

bandwidth

 

 (defined by the difference 
between the upper and lower cutoff frequencies) replaces the cutoff frequency. The capac-
itance 

 

C

 

1

 

 is then chosen to produce a series resonance at the center frequency (defined 
here as the geometric mean of the two cutoff frequencies

 

12

 

). Hence

 

(15)

 

and

 

12.  In some of the literature, it is unfortunately left unclear as to what sort of mean should be used. For the 
common case of small fractional bandwidths, this ambiguity is acceptable, for there is then little difference 
between an arithmetic and geometric mean. Practical component tolerances make insignificant such minor 
differences. However, the discrepancy grows with the fractional bandwidth, and the error can become quite 
noticeable at large fractional bandwidths if the arithmetic mean is used.

C1L1 L1 L1
C1 C1

L2 C2 L2 C2 C2/22L22L2 C2/2

L1
2

ω2 ω1−( )
R=
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. (16)

 

Similarly, the equation for the capacitance of the low-pass prototype is modified for the 
bandpass case by replacing the cutoff frequency with the bandwidth. The resonating 
inductance is again chosen to produce a resonance at the center frequency:

 

(17)

 

and

 

. (18)

 

Values for a constant-

 

k

 

 bandpass filter with cutoff frequencies of 950MHz and 1.05GHz 
(corresponding to a center frequency of approximately 998.75MHz) are given in the fol-
lowing table:

As is its low-pass counterpart, the bandpass filter is terminated in half-sections. Each half-
section consists of components of value 

 

L

 

1

 

/2, 2

 

C

 

1

 

, 2

 

L

 

2

 

 and 

 

C

 

2

 

/2. The resulting filters have 
the same characteristics enumerated in Table 1, where the bandwidth normalizations con-
tinue to be performed, sensibly enough, with respect to the bandwidth, rather than the cen-
ter frequency.

The following figure shows the frequency response of a bandpass filter derived from a 
low-pass constant-

 

k

 

 filter with six sections (

 

n

 

 = 5). The design bandwidth is 100MHz, cen-
tered at 1GHz. Not surprisingly, the behavior at the passband edges resembles that of the 
low-pass prototype.

 

TABLE 4. Component values for a 100MHz bandwidth, constant-

 

k

 

 bandpass filter at 1GHz

 

L

 

1

 

C

 

1

 

L

 

2

 

C

 

2

 

159.15nH 0.15955pF  0.39888nH 63.662pF

C1

ω2 ω1−( )

2ω0
2

1

R
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FIGURE 10. Frequency response for bandpass filter derived from six-section constant-

 

k

 

 (

 

n

 

 = 5)

 

For a different bandwidth, multiply 

 

C

 

1

 

 and 

 

L

 

2

 

 by the ratio of the new bandwidth to 
100MHz, and reduce 

 

L

 

1

 

 and 

 

C

 

2

 

 by the same factor. For a different center frequency, 
reduce 

 

C

 

1

 

 and 

 

L

 

2

 

 each by the square of the ratio of the new center frequency to 1GHz. 
Finally, for a different characteristic impedance, increase the impedance of all four com-
ponents by the ratio of the new impedance to 50

 

Ω

 

.

The bandpass filter can be converted into a bandstop (also known as a band-reject) filter 
simply by swapping the positions of the series and parallel resonators. As in the conver-
sion from low pass to high pass, the values remain unchanged.

From the tables and examples given, it is clear that the constant-

 

k

 

 and 

 

m

 

-derived filters are 
extremely simple to design, since they consist of identical iterated sections (plus a termi-
nating half-section on each end). This simplicity is precisely their greatest attribute. In 
exchange for this ease of design, however, the foregoing procedures neglect certain details 
(such as passband ripple) because they do not incorporate any specific constraints on 
response shape. It is clear from the tables, for example, that the cutoff frequency doesn’t 
correspond to a certain fixed attenuation value, such as –6dB, and monotonicity is far from 
guaranteed. Stopband behavior is similarly mysterious. Finally, because the source and 
load terminations are assumed equal in value, any necessary impedance transformations 
have to be provided separately. It should seem reasonable, however, to expect that a more 
advanced synthesis technique might, on occasion, accommodate impedance transforma-
tion as a natural accompaniment to the filtering operation. Shortcomings such as these 
explain why there are alternative filter design approaches. Because the relative merits of 
these alternatives are best appreciated after identification and definition of key filter per-
formance metrics, we now consider a brief sidebar and introduce these parameters.
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4.0  Filter Classifications and Specifications

 

Filters may be classified broadly by their general response shapes – e.g., low-pass, band-
pass, band reject and high-pass – and further subdivided according to bandwidth, 

 

shape 
factor

 

 (or skirt selectivity), and amount of ripple (in either the phase or magnitude 
response, and in either the passband, stopband, or both). This subdivision is an acknowl-
edgment that ideal, brickwall filter shapes are simply unrealizable (not merely impracti-
cal). Different approaches to approximating ideal characteristics result in different 
tradeoffs, and the consequences of these compromises require characterization.

Bandwidth is perhaps the most basic descriptive parameter, and is conventionally defined 
using –3dB points in the response. However, it is important to recognize that 3dB is quite 
an arbitrary choice (there is nothing fundamental about the half-power point, after all), and 
we will use other bandwidth definitions that may be more appropriate from time to time. It 
is certainly an incomplete specification, because there are infinitely many filter shapes that 
share a common –3dB bandwidth. 

 

Shape factor

 

 is an attempt to convey some information 
about the filter’s response at frequencies well removed from the –3dB point. It is defined 
as the ratio of bandwidths measured at two different attenuation values (i.e., values at two 
different points on the 

 

skirt

 

). As an arbitrary example a “6/60” shape factor specification is 
defined as the bandwidth at –60dB attenuation, divided by the bandwidth at –6dB attenua-
tion:

 

FIGURE 11. Illustration of 6/60 shape factor

 

Clearly from the definition of shape factor, values approaching unity imply response 
shapes that approach infinitely steep transitions from passband to stopband. A single-pole 
lowpass filter (or a standard single-

 

LC

 

 bandpass resonator) has a 6/60 shape factor of 
roughly 600, a value generally regarded as pathetically large.

 

13

 

 This trio of numbers is 
easily remembered, though, because of the decimal progression.

 

13.  The actual number is closer to 577, but has less of a mnemonic value than 600.

–6dB

–60dB

∆ω6

∆ω60

S6 60⁄

∆ω60

∆ω6

≡
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Because the relevance of a given shape factor depends very much on context, there cannot 
be a single, universally relevant definition. Thus although 6/60 happens to be a common 
one, other specifications are often encountered.

As stated earlier, the inability of practical filters to provide perfectly flat passbands and 
infinitely steep transitions to infinitely attenuating stopbands implies that we must always 
accept approximations to the ideal. In the best case we have the opportunity to quantify 
and specify bounds on the approximation error. The traditional way of doing so is to spec-
ify the following parameters:

 

FIGURE 12. General filter response template (shown for the low pass case)

 

Note that the square of the magnitude is plotted in the figure, rather than the magnitude 
itself, because it is proportional to power gain. This convention isn’t universally followed, 
but it is quite common because of the RF engineer’s typical preoccupation with power 
gain.

Note also the pervasiveness of reciprocal quantities on the vertical axis. This annoying 
feature is avoided by plotting attenuation, rather than gain, as a function of frequency, 
explaining why many treatments present data in precisely that manner.

Note further that the filter response template accommodates some amount of variation 
within the passband (whose upper limit is denoted 

 

ω

 

p

 

), with a maximum permitted devia-
tion of 1/(1+

 

ε

 

2

 

). Additionally, a finite transition between the passband and stopband 
(whose lower frequency limit is denoted 

 

ω

 

s

 

) is also permitted, with a minimum allowed 
power attenuation of 

 

A

 

2

 

 in the stopband. Specification of these parameters thus allows the 
design of real filters. We now consider several important classes of approximations which 
make use of these parameters.

 

5.0  Modern Filters: Common Approximations

 

The constant-

 

k

 

 filter’s limitations ultimately derive from a synthesis procedure which 
ignores the control over filter response afforded by direct manipulation of the pole (and 
zero) locations. This limitation is a natural consequence of the transmission-line theoreti-
cal basis for constant-

 

k

 

 filters; because transmission lines are infinite-order systems, con-

1

ωp ωs

1/(1+ε2)

|H(jω)|2

1/A2

Passband

Stopband

Transition
Band



 

EE414 Handout #14: Spring 2001

 

Filters

 



 

1999 Thomas H. Lee, rev. April 27, 2001; All rights reserved Page 19 of 38

 

sideration of pole locations there would be unnatural, and in any case would lead to 
numerous analytical difficulties.

However if one no longer insists on treating filters from a transmission line viewpoint, 
these difficulties disappear (but are replaced by new ones). Additional, and highly power-
ful, techniques then may be brought to bear on the filter analysis and synthesis problem. In 
this section, we underscore this point by following a synthesis procedure not possible with 
the constant-

 

k

 

 filter: starting from a specification of a desired frequency response, compute 
a corresponding pole-zero constellation, and then synthesize a lumped network that exhib-
its the prescribed characteristics.

 

5.1  Butterworth filters

 

Some applications are entirely intolerant of ripple, limiting the number of options for 
response shape. As do all practical filters, the Butterworth seeks to approximate the ideal 
rectangular brickwall shape. The Butterworth filter’s monotonic response shape mini-
mizes the approximation error in the vicinity of zero frequency by maximizing the number 
of derivatives whose value is zero there. For a filter of order 

 

n

 

, that maximum number hap-
pens to be 2

 

n

 

 – 1. As the filter order approaches infinity, the filter shape progressively 
approximates better the ideal brickwall shape.

A natural, but potentially undesirable consequence of a design philosophy which places 
greater importance on the approximation error at low frequencies is that the error grows as 
the cutoff frequency is approached. If this characteristic is indeed undesirable, one must 
seek shapes other than the Butterworth. Some of these alternatives are discussed in subse-
quent sections.

 

14

 

The Butterworth’s response magnitude (squared) as a function of frequency is given for 
the low pass case by the following expression:

 

, (19)

 

where 

 

ω

 

c

 

 is the frequency at which the power gain has dropped to 0.5.

 

15

 

 The parameter 

 

n

 

 
is the order of the filter, and equals the number of independent energy storage elements, as 
well as the power of 

 

ω

 

 with which the response magnitude ultimately rolls off. From the 
equation, it is straightforward to conclude that the response is indeed monotonic.

 

14.  As will be discussed later, one of these alternatives, the Type II Chebyshev, actually achieves better 
passband flatness than the Butterworth (making it flatter than maximally flat), by permitting stopband ripple, 
while preserving a monotonic passband response.

15.  Although not rigorously correct (because of the possibility of unequal input and output impedances), we 
will frequently use the term “power gain” interchangeably with the more cumbersome “response magnitude 
squared.”

H jω( ) 2 1

1
ω
ωc

 
 

2n

+

=
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In designing a Butterworth filter, one may specify 

 

ω

 

c

 

 directly, but to maintain consistency 
with the template of Figure 12, let us 

 

derive

 

 

 

ω

 

c

 

 from the other filter parameters. First we 
may express the power gain at the passband and stopband edges as follows:

 

(20)

 

and

 

. (21)

 

Solving these two equations for the required filter order, 

 

n

 

, yields

 

. (22)

 

Thus, once the attenuation at the passband edge, minimum attenuation at the stopband 
edge, and the frequencies of those edges are specified, the required filter order is immedi-
ately determined. Because Eqn. 22 generally yields non-integer values, one must choose 
the next higher integer as the filter order. In that case, the resulting filter will exhibit char-
acteristics that are superior to those originally sought. One way to use the “surplus” per-
formance is to retain the original 

 

ω

 

p

 

, in which case the filter will exhibit greater 
attenuation at 

 

ω

 

s

 

 than required. Alternatively, one may instead retain the original 

 

ω

 

s

 

, in 
which case the filter exhibits smaller attenuation (i.e. smaller error) at the passband edge 
than originally targeted. Or, one may elect a strategy that is intermediate between these 
two choices.

Pursuing the strategy of retaining the originally sought performance at the passband edge, 
the –3dB corner frequency 

 

ω

 

c

 

 may be computed from the foregoing equations as

 

. (23)

 

Alternatively, Eqn. 21 may be solved for a (generally different) 

 

ω

 

c

 

 derived from a specifi-
cation of 

 

ω

 

s

 

.

Because its approximation error is very small near DC, the Butterworth shape is also 
described as maximally flat.

 

16

 

 However it is important to recognize that 

 

maximally 

 

flat 
does not imply 

 

perfectly

 

 flat.

 

17

 

 Rather, it implies the flattest passband that can be 

1

1 ε2+

1

1
ωp

ωc
 
 

2n

+

=

1
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1

1
ωs
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 
 
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achieved, subject to the constraint of monotonicity (later, we will see that it is possible to 
have an even flatter passband response if we are willing to permit ripple in the stopband).

As a design example, let us continue the exercise that we began with the constant-

 

k

 

 topol-
ogy. We now have the ability to specify more filter parameters than in that case, so we’ll 
do so. Here, arbitrarily allow a 1dB loss (gain of 0.794) at the passband edge of 1GHz, and 
require a 30dB factor of minimum attenuation at a 3GHz stopband edge.

From the passband specification, we find that 

 

ε

 

 is approximately 0.5088. From the stop-
band specification, we see that 

 

A

 

2

 

 is 1000. As a result, the minimum filter order required to 
meet the specifications is

 

, (24)

 

which we round upward to four. Choosing to meet precisely the specification at the pass-
band edge, we find that the corresponding value of 

 

ω

 

c

 

 is approximately

 

. (25)

 

From this point, we would typically consult a table of component values for a fourth-order 
filter, scaling the values for the desired cutoff frequency (and, possibly, impedance 
level).

 

18

 

 As a final check, it is always wise to simulate the proposed filter, just to make 
sure that no computational errors (or typographical errors – some published tables have 
incorrect entries!) have corrupted the design. In demanding applications, simulation is 
also valuable for assessing the sensitivities of the filter to practical variations in compo-
nent values, or to other imperfections (such as finite 

 

Q

 

 or parasitics).

 

5.2  Chebyshev (equiripple or minimax) filters

 

Although monotonicity certainly has an esthetic appeal, insisting on it constrains other 
valuable filter shape properties. These include the steepness of transitions from passband 
to stopband, as well as the stopband attenuation for a given filter order. Alternative filters, 
based on non-monotonic frequency response, are named after the folks who invented 
them, or who developed the underlying mathematics. The Chebyshev filter, an example of 

 

16.  This term was evidently introduced by V. D. Landon in his paper, “Cascade Amplifiers with Maximal 
Flatness,” 

 

RCA Review

 

, vol. 5, pp. 347-362, January 1941. Coining of the term thus follows by more than a 
decade Butterworth’s own exposition of the subject in “On the Theory of Filter Amplifiers,” 

 

Wireless Engr.

 

, 
vol. 7, pp. 536-541, Oct. 1930. Although others published similar results earlier, 

 

Butterworth

 

 and 

 

maximal

 

 

 

flatness

 

 are now seemingly linked forever.

17.  In this way, “maximally flat” is used a bit like “creme filling” in describing the ingredients of an Oreo

 



 

 
cookie; it means something a little different from how it initially sounds.
18.  Later, we will present a synthesis method that allows computation of component values directly.

n
ln( 0.5088 999⁄ )
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the latter, allows a reduction in filter order precisely by relaxing the constraint of monoto-
nicity.

 

19

 

 In contrast with the Butterworth approximation, which is preoccupied with mini-
mizing error at low frequencies, the Chebyshev minimizes the maximum approximation 
error (relative to the ideal brickwall shape) throughout the entire passband. The resulting 

 

minimax

 

 response shape thus exhibits some ripple, the amount of which may be specified 
by the designer. For a given order, the Chebyshev filter shape offers a more dramatic tran-
sition from passband to stopband than a Butterworth offers. The steepness of the transition 
is also a function of the passband ripple one allows; the greater the permissible ripple, the 
steeper the transition.

A consequence of minimizing the maximum error is that the ripples of a Chebyshev 
response are all of equal amplitude. A rigorous proof of the minimax optimality of an 
equiripple shape is surprisingly involved, so we won’t attempt one here. However, it 
should seem intuitively reasonable that equiripple behavior would be optimal in the mini-
max sense for, if any one error peak were larger than the others, a better approximation 
could probably be produced by reducing it, at the cost of increasing the size of one or 
more of the others. Such tradings-off would proceed until all error peaks were equal, 
because nothing would then be left to trade for anything else.

Similar advantages also accrue if the stopband, rather than the passband, is allowed to 
exhibit ripple. The inverse Chebyshev filter (also known as a Type II Chebyshev filter) is 
based on this idea, and actually combines a flatter-than-Butterworth passband with an 
equiripple stopband.

To understand how the simple act of allowing either stopband or passband ripple provides 
these advantages, we need to review the properties of a complex pole pair. First recall that 
one standard (and perfectly general) form for the transfer function of such a pair is:

 

, (26)

 

where 

 

ω

 

n

 

 is the distance to the poles from the origin, and 

 

ζ

 

 (zeta) is the damping ratio:

 

19.  Pafnuti L’vovich Chebyshev (1821-1894) did no work on filters at all. In fact he developed his equations 
during a study of mechanical linkages used in steam engines (see his posthumously published “Théorie des 
mécanismes connus sous le nom de parallélogrammes,” (Theory of mechanisms known under the name of 
parallelograms)), 

 

Oeuvres

 

, vol. I, St. Petersburg, 1899. “Parallelograms” translate rotary motion into an 
approximation of rectilinear motion. By the way, the spelling of his name here is just one of many possible 
transliterations of 

 

Pafnutiy L¡voviq Qeb[wev

 

.

H s( ) 1

s2

ωn
2

2ζ s

ωn

1+ +

=



 

EE414 Handout #14: Spring 2001

 

Filters

 



 

1999 Thomas H. Lee, rev. April 27, 2001; All rights reserved Page 23 of 38

 

FIGURE 13. Two-pole constellation

 

A zero damping ratio corresponds to purely imaginary poles, and a damping ratio of unity 
corresponds to a pair of poles coincident on the real axis. The former condition applies to 
an oscillator, and the latter defines critical damping. Above a damping ratio of unity the 
two poles split, with one moving toward the origin, the other toward minus infinity, all the 
while remaining on the real axis. Whatever the value of damping, the frequency 

 

ω

 

n

 

 always 
equals the geometric mean of the pole frequencies.

The property that is most relevant to the subject of filter design is the dependency of the 
frequency response shape on the damping ratio. While it is true that all zero-free two pole 
systems have a frequency response that ultimately rolls off as 

 

ω

 

-2

 

, the frequency response 
magnitude, and the slope, 

 

in the vicinity of the peak

 

 are very much functions of the damp-
ing ratio, increasing as 

 

ζ

 

 decreases (Figure 14b). For damping ratios above , the fre-
quency response exhibits no peaking. Below that value of 

 

ζ

 

, peaking increases without 
bound as the damping ratio approaches zero. For small values of 

 

ζ

 

, the peak gain is 
inversely proportional to damping ratio. Stated alternatively, lower damping ratios lead to 
greater ultimate attenuation, relative to the peak gain, and to slopes that are normally asso-
ciated with higher (and perhaps much higher) order systems.

Now consider ways a filter might exploit this 

 

ζ

 

-dependent behavior. Specifically, suppose 
we use a second-order section to improve the magnitude characteristics of a single-pole 
filter. If we arrange for the peak of the second-order response to compensate (boost) the 
response of the first-order section beyond where the latter has begun a significant rolloff, 
the frequency range over which the magnitude of the cascade remains roughly constant 
can be increased. At the same time, the rolloff beyond the compensation point can exhibit 
a rather high initial slope, providing an improved transition from passband to stopband. 
Clearly, additional sections may be used to effect even larger improvements, with each 
added section possessing progressively smaller damping ratios. This latter requirement 
stems from the need to provide larger boosts to compensate for ever larger attenuations.

ωn

–ζωn

jωn 1 ζ2−

1 2⁄
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FIGURE 14. Step- and frequency-response of second-order lowpass transfer characteristic

 

Having developed this understanding, we may revisit the Butterworth and Chebyshev 
approximations. The Butterworth condition results when the poles of the transfer charac-
teristic are arranged so that the modest amount of frequency response peaking of a com-
plex pole pair offsets, to a certain extent, the rolloff of any real pole present. The resulting 
combination exhibits roughly flat transmission magnitude over a broader frequency range 
than that of either the real pole or complex pair alone. The result is that all of the poles lie 
on a semicircle in the 

 

s

 

-plane, distributed as if there were twice as many poles disposed at 
equal angles along the circumference, the right half-plane poles being ignored.

 

20

 

 A third-

time

Vout

a) Step response

b) Frequency response

log ω
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order Butterworth, for example, has a single pole on the real axis, and a complex conju-
gate pair at 60

 

°

 

 angles with the real axis. The distance from the origin to the poles is the 
3dB cutoff frequency.

 

FIGURE 15. Pole constellation for third order Butterworth low pass filter

 

The element values, normalized to a 1

 

Ω

 

 impedance level, and to a 1 rad/sec passband 
edge, for an 

 

n

 

th-order Butterworth low-pass filter are given by the following set of equa-
tions:

 

(27)

 

and

 

, (28)

 

where 

 

k

 

 ranges from 1 to 

 

n

 

, and

 

. (29)

 

Conversion into a bandpass filter is easily achieved using the same transformations used in 
the constant-

 

k

 

 case.

The Chebyshev filter goes further by allowing passband (or stopband) ripple. Continuing 
with our third-order example, the response of the real pole is allowed to drop below the 
low-frequency value by some specified amount (the permissible ripple) before the com-
plex pair’s peaking is permitted to bring the response back up. The damping ratio of the 
complex pair must be lower than that in the Butterworth case to produce enough addi-
tional peaking to compensate for the greater attenuation of the real pole. A side effect of 

 

20.  Okay, perhaps it isn’t quite “intuitively obvious,” it is true, but finding the roots of Eqn. 19 to discover 
the factoid about Butterworth poles lying on a circle isn’t all that bad.

ωc

g0 1=
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this lower damping is that there is a more dramatic rolloff beyond the cutoff frequency. In 
this manner the Chebyshev filter permits the designer to trade passband flatness for better 
stopband attenuation.

Although it is even less intuitively obvious, the poles of a Chebyshev low pass filter are 
located along a (semi)ellipse, remarkably with imaginary parts that are equal to those of a 
corresponding Butterworth low pass filter.

 

21

 

 Increasing the eccentricity of the ellipse 
increases the ripple.

Inverse Chebyshev filters have poles located at the reciprocals of the “normal” Chebyshev, 
and purely imaginary zeros distributed in some complicated fashion. The resulting pole-
zero constellation roughly resembles the Greek letter 

 

Ω

 

 rotated counter-clockwise by 90

 

°

 

.

 

FIGURE 16. Third order Butterworth and Chebyshev low pass filter pole constellations

 

Mathematically, the Chebyshev response is of the general form

 

, (30)

 

where 

 

ω

 

p

 

 once again is the frequency at which the response magnitude squared has 
dropped to a value

 

, (31)

 

as in the Butterworth case. For self-evident reasons 

 

ε

 

 is known as the ripple parameter, and 
is specified by the designer. The function 

 

C

 

n

 

(

 

x

 

) is known as a Chebyshev polynomial of 

 

21.  There are many references that provide excellent derivations of the Butterworth and Chebyshev condi-
tions. A particularly enlightening derivation may be found in chapters 12 and 13 of R. W. Hamming’s vol-
ume, 

 

Digital Filters

 

, Prentice-Hall, 2nd ed., 1983.
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order 

 

n

 

. The most relevant property of such polynomials is that they oscillate between –1 
and +1 as the argument 

 

x

 

 varies over the same interval. Outside of this interval the magni-
tude grows rapidly (as 

 

x

 

n

 

 in fact). The filter’s (power) response thus varies between 1 and 
1/(1+ 

 

ε

 

2

 

) as the frequency increases from DC to 

 

ω

 

p

 

. That entire frequency interval is often 
called the ripple passband, and the parameter 

 

ω

 

p

 

 the ripple bandwidth (or ripple cutoff fre-
quency). In general the ripple passband differs from the more conventional –3dB band-
width.

There are a couple of ways of generating Chebyshev polynomials algorithmically. One is 
through a recursion formula,

 

, (32)

 

where 

 

C

 

0

 

 = 1 and 

 

C

 

1

 

 = 

 

x

 

 (just to get you started). As can be seen from the recursion for-
mula, the leading coefficient of Chebyshev polynomials is 2

 

n

 

-1

 

, a fact we shall use later in 
comparing Chebyshev and Butterworth polynomials.

Another method for generating the Chebyshev polynomials is in terms of some trigono-
metric functions, from which the oscillation between –1 and +1 (for |

 

x

 

| < 1) is directly 
deduced:

 

. (33)

 

For arguments larger than unity, the formula changes a little bit:

 

. (34)

 

Although it is probably far from obvious at this point, these functions are likely familiar to 
you as Lissajous figures, formed and displayed when sinewaves drive both the vertical and 
horizontal deflection plates of an oscilloscope. That is, suppose that the horizontal deflec-
tion plates are driven by a signal

 

, (35)

 

so that

 

. (36)

 

Further suppose that the vertical plates are simultaneously driven by a signal

 

. (37)

 

Substituting Eqn. 36 into Eqn. 37 to remove the time parameter yields

 

, (38)

Cn x( ) 2xCn 1− x( ) Cn 2− x( )−=

Cn x( ) ncos 1− x( ) for |x| < 1cos  =

Cn x( ) ncosh 1− x( )cosh  for |x| > 1 =

x tcos=

t cos 1− x=

y ntcos=

y ncos 1− x( )cos=
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which is seen to be the same as Eqn. 33. That is, what’s displayed on an oscilloscope 
driven in this fashion is in fact the Chebyshev polynomial for that order 

 

n

 

, for values of |

 

x

 

| 
up to one. Over that interval the function displayed looks very much like a sinusoid 
sketched on a piece of paper, wrapped around a cylinder, and then viewed from a distance.

A few Chebyshev polynomials are sketched crudely in the following figure, and expres-
sions for the first ten Chebyshev polynomials are listed in Table 5:

 

FIGURE 17. Rough sketches of some Chebyshev polynomials

 

TABLE 5. First ten Chebyshev polynomials

 

Order, 

 

n

 

Polynomial

 

0 1

1

 

x

 

2 2

 

x

 

2

 

 – 1

3 4

 

x

 

3

 

 – 3

 

x

 

4 8

 

x

 

4

 

 – 8

 

x

 

2

 

 + 1

5 16

 

x

 

5

 

 – 20

 

x

 

3

 

 + 5

 

x

 

6 32

 

x

 

6

 

 – 48

 

x

 

4

 

 + 18

 

x

 

2

 

 – 1

+1

–1

+1–1

+1

–1

+1–1

+1

–1

+1–1

+1

–1

+1–1

+1

–1

+1–1

+1

–1

+1–1

C1 C2 C3

C4 C5 C6
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From the foregoing equations, we may derive an expression for the filter order required to 
satisfy the specified constraints:

 

. (39)

 

As with the Butterworth case, the order as computed by Eqn. 39 should be rounded 
upward to the next integer value. Again, the resulting “excess” performance can be used to 
improve some combination of passband and stopband characteristics.

One way in which the Chebyshev is superior to a Butterworth is in the ultimate stopband 
attenuation provided. At high frequencies, the Butterworth provides an attenuation that is 
approximately

 

. (40)

 

Compare that asymptotic behavior with that of a Chebyshev (with 

 

ε

 

 = 1 so that the –3dB 
frequency of the Butterworth corresponds to the passband edge of the Chebyshev):

 

22

. (41)

 

Clearly the Chebyshev filter offers higher ultimate attenuation, by an amount equal to 
3dB(2

 

n

 

 – 2), for a given order. As a specific example, a 7th-order Chebyshev ultimately 
provides 36dB more stopband attenuation than does a 7th order Butterworth.

As another comparison, the relationship between the poles of a Butterworth and those of a 
Chebyshev of the same order can be put on a quantitative basis by normalizing the two fil-
ters to have precisely the same –3dB bandwidth. It also may be shown (but not by us) that 
the –3dB bandwidth of a Chebyshev may be reasonably well approximated by

 

23

 

22.  This comparison should not mislead you into thinking that such large ripple values are commonly used. 
In fact, Chebyshev filters are typically designed with ripple values below 1dB.
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TABLE 5. First ten Chebyshev polynomials

 

Order, 

 

n
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. (42)

 

Since the diameter of a Butterworth’s circular pole constellation is the –3dB bandwidth, 
we normalize the Chebyshev’s ellipse to have a major axis defined by Eqn. 42. The imagi-
nary parts of the poles of a Chebyshev filter are the same as for the Butterworth, while the 
real parts of the Butterworth prototype are merely scaled by the factor

 

(43)

 

to yield the real parts of the poles of a Chebyshev filter. Thus design of a Chebyshev filter 
is quite straightforward because it requires only a prototype Butterworth, and it’s trivial to 
design the latter. Clearly, the Butterworth may be considered merely a special case of a 
Chebyshev, one for which the ripple parameter is zero.

There is one subtlety that requires discussion, however, and this concerns the source and 
termination impedances of a passive Chebyshev filter. From both the sketches and equa-
tions, it’s clear that only odd-order Chebyshev polynomials have a zero value for zero 
arguments. Hence, the DC value of the filter transfer function will be unity for such poly-
nomials (that is, the passband hits its ripple extremum at some frequency above DC). For 
even-order Chebyshev filters, however, the filter’s transfer function starts off at a ripple 
extremum, with a DC power transmission value of 1/(1+ 

 

ε

 

2

 

), implying a termination resis-
tance that is less than the source resistance. If, as is usually the case, such an impedance 
transformation is undesired, one must either use only odd-order Chebyshev filters, or add 
an impedance transformer to an even-order Chebyshev filter. As the former is less com-
plex, it is the near universal choice to use only odd-order Chebyshev realizations in prac-
tice.

Finally, recognize that the elliptical pole distribution implies that the ratio of the imaginary 
to real parts of the poles, and hence the 

 

Q

 

s of the poles, are higher for Chebyshevs than for 
Butterworths of the same order. As a result, Chebyshev filters are more strongly affected 
by the finite 

 

Q

 

 of practical components. The problem increases rapidly in severity as the 
order of the filter increases. This important practical issue must be kept in mind when 
choosing a filter type.

Element values for the Chebyshev filter are given by the following sequence of equations. 
First, compute four auxiliary quantities, whose significance may initially seem mysteri-
ous:

 

24

, (44)

 

23.  See, for example, M. E. Van Valkenburg, 

 

Introduction to Modern Network Synthesis

 

, Wiley, 1960, pp. 
380-381.

24.  After close examination, these remain mysterious. Sorry. At least I can tell you that the 17.372 factor is 
40log

 

10

 

e, as if that helps.

1

n
sinh 1− 1
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where 

 

L

 

Ar

 

 is in dB;

 

; (45)

; (46)

 

and

 

. (47)

 

Once the values of the auxiliary parameters are known, the following equations yield the 
normalized element values:

 

; (48)

; (49)

; (50)

; (51)

 

and

 

. (52)

 

5.3  Type II (Inverse) Chebyshev filters

 

We have alluded several times to the possibility of realizing a flatter-than-maximally flat 
transfer characteristic. The Type II (also known as an inverse or reciprocal) Chebyshev fil-
ter achieves such flatness by permitting ripple in the stopband, while continuing to insist 
on passband monotonicity.

The Type II filter derives from the Type I (ordinary) Chebyshev through a pair of simple 
transformations. In the first step, the Type I Chebyshev response is simply subtracted from 
unity, leading to the conversion of a low-pass filter into a high-pass one. Note that the 
resulting response is monotonic in the new passband. The second step replaces 

 

ω

 

 by 1/

 

ω

 

. 
Since high frequencies are thus mapped into low ones, and vice-versa, this second trans-
formation converts the filter shape back into a low-pass response, but in a way that 
exchanges the ripple at low frequencies with ripple at high frequencies. This transforma-
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tion thus restores a monotonic passband, and also happens to map the Type I passband 
edge into the stopband edge. Furthermore the larger the permissible stopband ripple, the 
flatter the passband response.

Mathematically, these transformations ultimately result in the following power response 
for a Type II filter:

 

. (53)

 

Although the Type II filter is not encountered as often as the Butterworth, its relative rarity 
should not be taken to imply a corresponding lack of utility. Despite the superior flatness 
provided by the inverse Chebyshev, it appears that, for purely cultural reasons, the Butter-
worth filter continues to dominate in those applications where passband uniformity is 
allegedly prized.

 

5.4  Elliptic (Cauer) filters

 

Having seen that allowing ripple in the passband or stopband confers desirable attributes, 
perhaps it should not be surprising that the elliptic or Cauer filter further improves transi-
tion steepness by allowing ripple in both the passband and stopband simultaneously.

 

25

 

 Just 
as a complex pole pair provides peaking, a complex zero pair provides notching. We’ve 
seen this behavior already, where the purely imaginary zeros of an 

 

m

 

-derived filter provide 
notches of infinite depth. Cauer filters exploit this notching to create a dramatic transition 
from passband to stopband, at the expense of a stopband response that bounces back up 
beyond the notch frequency (again, just as in an 

 

m

 

-derived filter, and for the same rea-
sons). The name 

 

elliptic

 

 comes from the appearance of elliptic functions in the mathemat-
ics, and should not be confused with the elliptic pole distribution of a Chebyshev filter.

Elliptic filters have the following power transmission behavior:

 

, (54)

 

where 

 

U

 

n

 

 (

 

x

 

) is a 

 

Jacobian elliptic function

 

 of order 

 

n

 

:

 

26

 

25.  These are also sometimes known as Darlington or Zolotarev filters. Sidney Darlington (of “Darlington 
pair” fame in bipolar circuits) made major contributions in the field of network synthesis. Igor Ivanovich 
Zolotarev independently studied Chebyshev functions a decade or so before Chebyshev did.

26.  These are named for the mathematician Karl Gustav Jacob Jacobi (1804-1851), who began studying 
these functions in the 1820s, at the start of his career.
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. (55)

 

These functions are messy enough that quantitative information about them is generally 
presented in tabular form (but not here, though; see, e.g., the oft-cited work by G.W. Spen-
cely and R. M. Spencely, “Smithsonian Elliptic Function Tables,” Publication 3863, 
Smithsonian Institution, Washington, D. C., 1947). Suffice it to say that, just as Chebyshev 
polynomials do, these elliptic functions oscillate within narrow limits for arguments |

 

x

 

| 
smaller than unity, and rapidly grow in magnitude for arguments outside of that range. 
However, unlike Chebyshev polynomials, whose magnitudes grow monotonically outside 
of that range, these elliptic functions oscillate in some fashion between infinity and a spec-
ified finite value. Hence the filter response exhibits stopband ripples, with a finite number 
of frequencies at which the filter transmission is (ideally) zero. The following figure shows 
crude sketches of the first several Jacobian elliptic functions, from which this behavior 
may be discerned:

 

FIGURE 18. Rough sketches of some Jacobian elliptic functions
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The attenuation poles correspond to transmission zeros (notches), in the proximity of 
which the filter response changes rapidly. Thus, perhaps you can see how permitting such 
ripples in the stopband allows for a much more dramatic transition from passband to stop-
band, and thus allows one to combine the attributes of ordinary and inverse Chebyshev fil-
ters.

Wilhelm Cauer is the inventor whose deep physical insights (and intimate familiarity both 
with the notches of Zobel’s 

 

m

 

-derived filters, and with elliptic functions in general) 
allowed him first to recognize that this additional degree of freedom existed, and then to 
exploit it, even though he did not offer a formal mathematical proof of the correctness of 
his ideas.

 

27

 

 At a time when minimizing component count was an obsession, Cauer was 
able to use fewer inductors than the best filters that were then in use. According to lore, 
publication of his patent reportedly sent Bell Labs engineers and mathematicians scurry-
ing off to the New York City Public Library to bone up on the then-obscure (okay, still-
obscure) literature on elliptic functions.

 

28

 

6.0  Coupled Resonator Bandpass Filters

 

Up to now we’ve focused mainly on low pass filters, having derived other filter shapes 
from low pass prototypes. It is worthwhile to develop additional insights, however, so that 
we don’t always have to return to the low pass case whenever we wish to design, say, a 
bandpass filter. This freedom, in turn, allows us to analyze and synthesize filter types that 
are not readily related to lumped networks at all.

We’ve seen that the poles, say, of a “good” filter aren’t all coincident; they’re distributed 
in some manner. Viewed from a broad perspective, then, the goal of filter design is to dis-
tribute the transfer function poles and zeros in some manner to achieve a desired response 
shape. This important idea is the basis for essentially all lumped filters, bandpass or other-
wise. A particularly simple way to synthesize bandpass filters with a variety of response 
shapes is to exploit the 

 

mode splitting

 

 that occurs when two or more resonant systems 
interact. That is, when two identical resonators are connected together in some fashion, the 
poles of the resulting coupled system generally differ from those of the resonators in isola-
tion. By controlling the degree of interaction (coupling) the pole locations can be adjusted 
to produce a desired response shape.

 

27.  Cauer (1900-1945) became familiar with elliptic functions while studying at the University of Göttingen 
with the mathematician David Hilbert. Hilbert was as well known for his absentmindedness as for his math-
ematics. Once he suddenly asked a close friend, physicist James Franck, “Is your wife as mean as mine?” 
Though taken aback, Franck managed to respond, “Why, what has she done?” Hilbert answered, “I discov-
ered today that my wife does not give me an egg for breakfast. Heaven only knows how long this has been 
going on.”
It is unfortunate that stories about Cauer are not as lighthearted. Tragically, he was shot to death during the 
Soviet occupation of Berlin in the closing days of WWII, in a manner sadly reminiscent of the death of 
Archimedes (see http://www-ft.ee.tu-berlin.de/geschichte/th_nachr.htm).
28.  M. E. Van Valkenburg, 

 

Analog Filter Design

 

, Harcourt Brace Jovanovich, 1982, p. 379.
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To illustrate this important idea, consider two simple 

 

LC

 

 resonators whose inductors are 
magnetically coupled to each other. Such a system may be modeled by representing the 
coupled inductors with a transformer. The transformer in turn is modeled as a T-connec-
tion of three inductors:

 

FIGURE 19. Coupled 

 

LC

 

 resonators

 

The inductance 

 

L

 

 is that which is present in each resonator in isolation. The mutual induc-
tance 

 

M

 

 is a fraction of 

 

L

 

, and depends on the magnitude of the coupling. The latter is cap-
tured in the coupling coefficient 

 

k

 

, which ranges from zero to unity as the flux linkage of 
the magnetic fields of the two inductors increases from zero to 100%.

To find the resonant frequencies of the resulting 4th-order system

 

29

 

 one can always 
employ a brute-force approach: Find the transfer function (first, one needs to define the 
input and output terminals), then solve for the roots of the denominator polynomial. This 
method is quite general, but also quite cumbersome, particularly for networks of order 
higher than two or three. Here, the network happens to be symmetrical, a situation that 
almost demands exploitation to simplify analysis by bypassing uninspired routes to the 
answer.

First recall what poles are. Yes, they are the roots of the denominator of the transfer func-
tion, but a deeper significance is that they are the natural frequencies of a network. That is, 
if the system is given some initial energy, the evolution of the system state 

 

in the absence 
of any further input 

 

takes place with characteristic frequencies whose values are those of 
the poles. Cleverly chosen initial conditions may excite only a subset of all possible 
modes at a time, thus converting a difficult high-order problem into a collection of more 
simply solved low-order ones. 

 

Very

 

 clever (or lucky) choices can even result in the excita-
tion of a single mode at a time.

We may use this understanding to devise a simple method for finding the poles of our cou-
pled resonator system. First, provide a common-mode excitation by depositing, say, an 
equal amount of initial charge on the two capacitors. Regardless of what the network does 
subsequently, we know by symmetry that the capacitor voltages must evolve the same 
way. Because the two capacitor voltages are thus always equal, we may short the capaci-
tors together with impunity, resulting in the following network:

 

29.  Despite there being five energy storage elements in the network, the system is nonetheless of the fourth 
order, because not all of the elements are independent. Note, for example, that specifying the currents in two 
of the inductors automatically determines that flowing in the third, by Kirchhoff’s current law. Thus, the 
three inductors actually contribute only two degrees of freedom, diminishing by one the order of the overall 
network.

L – M L – M

M k
M

L
=C C
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FIGURE 20. Equivalent network of coupled 

 

LC

 

 resonators for common-mode initial conditions

 

The common-mode resonant frequency is thus that of a simple parallel 

 

LC

 

 network:

 

. (56)

 

There are two conjugate imaginary poles of this frequency, so we only need to find the 
other two poles of this fourth-order network.

Since a common-mode initial condition is so fruitful in discovering two of the poles, it 
seems reasonable to try a differential initial condition next. Specifically, if one capacitor 
voltage is initially made equal to some voltage 

 

V

 

, and the other to –

 

V

 

, (anti)symmetry 
allows to assert that, however the system state evolves from this initial condition, it must 
do so in a manner that guarantees zero voltage across the common shunt inductance of 
value 

 

M

 

. Consequently, no current flows through it, and the shunt inductance may be 
removed (either by open- 

 

or

 

 short-circuiting it; both actions will lead to the same answer). 
Removing that inductance yields the following differential-mode resonant frequency:

 

. (57)

 

Now that we’ve found the pole frequencies, let’s see what intuition may be extracted from 
the exercise. First consider extremely loose coupling, i.e., values of 

 

k

 

 very near zero. In 
that situation the two mode frequencies are nearly the same, because we have two nearly 
independent and identical tanks. As 

 

k

 

 increases, however, one resonant frequency 
decreases, while the other increases; 

 

mode splitting

 

 occurs. The stronger the coupling, the 
wider the separation in resonant frequencies.

As an illustration that mode-splitting is an extremely general consequence of coupling res-
onators together, consider the use of capacitive coupling:

 

FIGURE 21. Capacitively coupled resonators
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Here, the individual resonator capacitances are arbitrarily expressed as a function of the 
coupling capacitance. One could just as well have labeled the resonator capacitances sim-
ply as 

 

C

 

, but the choice shown simplifies the analytical expressions somewhat, as will be 
seen.

Following an approach analogous to that used to analyze the magnetically coupled case, 
we find that the two mode frequencies are given by:

 

(58)

 

and

 

. (59)

 

For these equations, an explicit expression for the coupling coefficient, 

 

k

 

, is found to be

 

. (60)

 

As with the magnetic case, the coupling coefficient cannot exceed unity (if negative ele-
ment values are disallowed) when expressed in this manner. As we can see, both magnetic 
and capacitive coupling give rise to the same splitting of modes. This mechanism is so 
general that it explains a host of phenomena, such as the formation of energy bands in sol-
ids (here, the initially identical mode frequencies – energy levels – of free atoms split as 
the atoms are brought closer together to form a solid).

From Eqn. 58 and Eqn. 59, it should be clear that one may use a measurement of the two 
mode frequencies to determine 

 

k

 

 experimentally. Indeed, for small values of coupling, the 
difference in mode frequencies (normalized to their geometric mean) is approximately 
equal to 

 

k

 

.

The mode splitting that accompanies coupling permits placement of poles to produce 
response shapes such as Butterworth and Chebyshev. Simply adding an input and output 
port to the basic structure of Figure 21, for example, readily produces a bandpass filter 
which may be extended to any number of stages:

 

FIGURE 22. Coupled resonator filter
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From the analysis of mode splitting, it should seem reasonable that small amounts of cou-
pling (small values of coupling capacitance in this particular example) produce narrow-
band filters, and that relatively large amounts of coupling produce broadband filters. When 
this idea is placed on a quantitative basis, it is possible to express the bandpass filter 
design problem entirely in terms of coupling coefficients, uncoupled resonant frequencies, 
and tank loading. This reformulation in terms of invariant parameters (e.g., resonant fre-
quency, impedance levels, bandwidth) facilitates the design of microstrip filters where, 
owing to their distributed nature, it is not always possible to identify individual lumped 
elements.
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Microstrip Filters

 

1.0  Background

 

There are two broad classes of distributed filters. One derives from lumped prototypes, 
and the other doesn’t.

 

1

 

 For the former class, a straightforward synthesis recipe developed 
for some of the earliest microwave filters still works well for many applications: Simply 
replace the discrete inductors and capacitors of a lumped prototype with transmission line 
sections.

 

2

 

 As discussed in the chapter on microstrip, transmission lines approximate well 
the behavior of lumped elements if the sections are a suitably small fraction of an electri-
cal wavelength in extent. A short section of open-circuited line functions well as a capaci-
tor, while a short piece of shorted line behaves as an inductor.

One important consideration to keep in mind, however, is that there is always a frequency 
above which these pieces of line cease to be very short relative to a wavelength. The atten-
dant impedance variation alters the filter response. For example, a microstrip low-pass fil-
ter may have a response that pops back up again above the nominal stopband. Since such 
spurious responses are hardly unique to low-pass filters, one must evaluate carefully any 
proposed realization to assure that all spurious responses are benign in magnitude or loca-
tion.

To see how distributed filters may derive from lumped prototypes, recall that the input 
impedance of a short piece of open-circuited line is approximately

 

, (1)

 

so that its equivalent capacitance is

 

. (2)

 

One can expect about 1.3pF/cm with 50

 

Ω

 

 lines on FR4.

Similarly, for the inductance of a short line terminated in a short circuit, we have

 

. (3)

 

1.  U. S. President Ulysses S. Grant is said to have quipped, “I know two tunes. One is ‘Yankee Doodle,’ and 
the other isn’t.”

2.  See, e.g., Chapter 10 of 

 

Microwave Transmission Circuits

 

, MIT Radiation Laboratory Series, vol. 9, 
McGraw-Hill, 1948.
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As we’ve often cited, a typical value for inductance is 1nH/mm for narrow (high imped-
ance) lines.

Keep in mind that these equations also apply approximately even when these line seg-
ments are not terminated in perfect open or short circuits. The foregoing equations remain 
reasonably accurate as long as the segments are terminated in impedances that approxi-
mate opens or shorts in comparison with the characteristic impedance of the lines. Hence 
we would want to choose 

 

Z

 

0

 

 as low as possible (or practical) to make a capacitor, and 

 

Z

 

0

 

 
as high as possible to make an inductor.

One cannot specify arbitrarily high characteristic impedances, of course, because there is 
always a lower bound on the width of lines that may be fabricated reliably. Assuming a 
typical manufacturing tolerance of 2mils (50

 

µ

 

m), and supposing that this variation is 
allowed to represent at most 20% of the total width, one may assume a minimum practical 
linewidth of about 10mils (250

 

µ

 

m). Hence, on 1/16” FR4, practical line impedances 
rarely exceed about 200

 

Ω

 

.

There are also practical bounds on the maximum width of the lines because, again, all lin-
ear dimensions of a microstrip element must be small compared to a wavelength at all fre-
quencies of interest for close approximation to lumped element behavior. The associated 
implicit lower bound on impedance depends on the operational frequency range, but as a 
general rule, characteristic impedances below approximately 10-15

 

Ω

 

 are rarely used. In 
realizing microstrip filters, then, it’s important to keep in mind that practical impedance 
levels are thus generally within about a factor of four of 50

 

Ω

 

.

 

2.0  Stepped-impedance filters

 

One extremely simple method for transforming discrete prototypes into microstrip form 
uses only the narrowest and widest lines that may be comfortably (or repeatably) accom-
modated. The narrow lines implement series inductors, and the wide lines implement 
shunt capacitors. Lengths are adjusted to produce the desired component values. As one 
might expect, the fundamentally approximate nature of the transformation limits its utility. 
Stepped-impedance filters are thus used in applications where one may tolerate relatively 
large errors relative to the lumped filter prototype’s response. These errors generally 
increase in significance as one moves higher in frequency. At and below the design cutoff 
frequency, the stepped impedance and lumped-parameter filters might behave similarly. 
Beyond cutoff, however, the stepped impedance filter generally fails to roll off as quickly 
as the prototype and, indeed, the attenuation may never exceed a certain level. Further-
more, the filter’s response may exhibit numerous spurious passbands.

That said, let’s examine how we may produce a low pass filter using the stepped imped-
ance architecture. As a specific example, assume that we desire a cutoff frequency of 
1GHz, and that we use a constant-

 

k

 

 prototype as the basis for the microstrip filter. If the 
prototype has two complete T-sections, the stepped impedance filter will have seven seg-
ments. Assume further that the minimum and maximum line impedances are 15

 

Ω

 

 and 
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200

 

Ω

 

. To match the lumped element values of the prototype, we require an inductance of 
15.915nH, which we implement with the narrowest available line, of a length given by

 

, (4)

 

which works out to a normalized length for the inductor of about 28.647

 

°

 

 at the cutoff fre-
quency.

 

3

 

 Similarly the main 6.3662pF capacitors should have a length

 

, (5)

 

which corresponds to a normalized length of about 28.742

 

°

 

.The half-section terminating 
capacitors are exactly half that length.

The layout of the filter appears approximately as follows:

 

FIGURE 1. Stepped impedance filter example (not drawn exactly to scale)

 

Simulations of this filter show 3.9dB of attenuation at the design cutoff frequency, and a 
normalized –3dB bandwidth of 0.989. Compare those values with the constant-

 

k

 

 proto-
type’s 10dB attenuation at the cutoff frequency, and normalized –3dB bandwidth of 0.934. 
Perhaps more important than those differences is the existence of spurious passbands at 
around 5.4 and 5.8GHz for this particular implementation. The constant-

 

k

 

 filter, of course, 
theoretically exhibits no such spurious passbands, and this difference in behavior must be 
taken into account in any practical implementation of distributed filters, stepped imped-
ance or otherwise.

 

3.0  Commensurate-line filters

 

From Eqn. 2 and Eqn. 3, we see that both the line length and characteristic impedance may 
be varied to produce a desired inductance or capacitance. The stepped impedance filter 
arbitrarily uses just two fixed values of line impedance, and varies the length as necessary. 
An alternative method that is frequently used, but which is ultimately no less arbitrary, 
involves the use of 

 

commensurate

 

 

 

lines

 

.

 

4

 

 The term refers to the equality of line lengths 
used to implement the filter elements. As with the stepped impedance filter, short segments 
of shorted line implement inductors, and short pieces of open-circuited line act as capaci-

 

3.  Matching the impedances at the cutoff frequency is an arbitrary, but good, choice since behavior in the 
vicinity of cutoff is often of great importance.
4.  P. I. Richard, “Resistor-Transmission Line Circuits,” 

 

Proc. IRE

 

, v. 36, pp. 217-220, Feb 1948.

l
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tors. In Richard’s original description of the method (see Footnote 2), “short” is specifi-
cally taken to mean an eighth of a wavelength at the cutoff frequency. That is, each 
inductor or capacitor of a lumped prototype is replaced by a 

 

λ

 

/8 length of transmission 
line whose characteristic impedance is varied to produce the desired component value. For 
this particular choice the resulting filter response is periodic in frequency, and may be con-
sidered the result of aliasing the lumped prototype’s response.

One practical consideration is that following Richard’s prescription precisely requires the 
use of shorted lines to implement inductances. However it is often inconvenient to imple-
ment shorts in microstrip, because one would generally like to avoid the use of grounding 
vias if at all possible. Fortunately, we may again use transmission line behavior to trans-
form inductors into capacitors, and thus avoid the need for shorted sections. Specific 
examples of how to exploit this idea will be presented in a future note.

 

4.0  Bandpass filters

 

4.1  Half-wave filters

 

The halfwave bandpass filter is actually a low-pass filter, in which what would normally 
be considered a spurious passband is used as the main filter band. It resembles the stepped 
impedance filter in some superficial ways, but the element lengths are no longer con-
strained to small fractions of a wavelength. Indeed, the element lengths are specifically 
selected to equal a half wavelength at the center of the intended passband:

 

FIGURE 2. Half wavelength bandpass filter

 

Recall that a transmission line reproduces at its input the load impedance, whenever the 
line is an integer multiple of a half-wavelength in extent. For the structure shown, this 
condition implies a driving point impedance that is equal to 

 

Z

 

0

 

, implying maximum power 
transfer into the filter and, ultimately, to the load. At frequencies where the electrical 
length of the filter sections differs significantly from the half wavelength condition, power 
is coupled into (and out of) the filter less efficiently. From this description, it is clear that 
the filter behaves essentially as a bandpass filter, with periodically disposed passbands. 
Note that zero is an integer, so the lowest-order passband is actually centered about zero 
frequency. Inspection of the physical structure leads to the same conclusion, that the filter 
indeed passes DC, as asserted at the beginning of this section.

Z0 Z0

λ/2

Z0
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The quality of off-center rejection depends on a mismatch of impedances between the line 
and the filter section. This observation implies that better stopband rejection should be 
obtainable if each half-wavelength section is made as wide as possible. Furthermore, the 
stopband rejection increases with the number of half wavelength sections.

The width of the passband is also a function of the lengths of the line between the filter 
sections. 

 

4.2  Coupled resonator filters

 

We’ve already seen that both electrostatic and magnetic coupling are equally effective for 
splitting modes. This observation forms the basis for a class of bandpass filters known as 
coupled-line filters. The underlying idea can be, and has been, implemented in a great 
many forms, and it is simply impossible to do more than survey a small number of them. 
The comprehensive work in this field is by Matthaei, Young and Jones (simply referred to 
by microwave cognoscenti as MYJ), and is a must for anyone who is serious about the 
subject of microwave filters and impedance matching.

 

5

 

 Unfortunately, this tome exists 
only in one edition, and thus does not cover advances made in the last several decades. In 
particular, microstrip implementations are not extensively covered, so key quantitative 
design information is often absent.

A good conceptual (but not necessarily practical) starting point is a simple structure based 
on the lumped prototype bandpass filter, in which the coupling capacitances are imple-
mented by simple gaps in a line:

 

FIGURE 3. Capacitively coupled microstrip bandpass filter

 

The segments of line act as half-wave resonators (to avoid the grounded connections that 
quarter-wave sections would require), and the widths of the interline gaps control the cou-
pling between the resonators. Note, as implied in the figure, the resonator sections are laid 
out shorter than a half-wavelength, as a consequence of fringing. The larger capacitance of 
smaller gaps leads to greater coupling, and thus larger bandwidths. For typical FR4, each 
resonator section is generally on the order of 3” long at 1GHz.

Aside from the difficulty of computing the dimensions required to produce a given level of 
coupling, there is an additional problem: The required gaps are generally quite small for 
typical filters. As a result, reproducible filter behavior demands tight control of dimen-
sions.

 

5.  G. L. Matthaei, L. Young and E. M. T. Jones, 

 

Microwave Filters, Impedance-Matching Networks and 
Coupling Structures

 

, McGraw-Hill, New York, 1964. It should be mentioned that this work also contains 
important contributions by Seymour Cohn, who did extensive work on coupled line filters, among others.

≈ λ/2



 

EE414 Handout #15: Spring 2001

 

Microstrip Filters

 



 

1996 Thomas H. Lee; All rights reserved Page 6 of 7

 

Coupling the resonators laterally, rather than simply end-on enables considerable relax-
ation of dimensional tolerances. Although the increased overlap may imply that the cou-
pling is no longer necessarily purely capacitive, we’ve already seen that both electrostatic 
and magnetic coupling mechanisms are equally effective at producing the desired mode 
splitting. Thus even though the quantitative analysis of coupled lines is somewhat compli-
cated, the intuitive ideas underlying their operation is straightforward.

A simple (as well as simplified), but practical implementation of this idea is shown in the 
following figure. As seen, the resonators are nominally a half wavelength in extent, and 
overlap each other by a quarter wavelength.

 

6

 

 The detailed response shape is controlled by 
properly choosing the amount of overlap and the characteristic impedances of the lines 
(for simplicity, all lines are shown of equal impedance level in the figure). To achieve the 
same effective coupling as in the capacitively coupled case, the greater overlap must be 
compensated by a larger line-to-line spacing, easing the tolerances as advertised.

 

FIGURE 4. Coupled line microstrip bandpass filter

 

This type of bandpass filter works quite well, and is quite widely used as a result. One crit-
icism, however, is that the filter occupies a relatively large area (or at least it occupies an 
irregularly shaped region), especially if the filter uses many sections. In many cases, the 
layout of the resonator array is rotated, and the input/output couplings suitably bent, to fill 
better a rectangular space.

A popular alternative modification instead folds each individual resonator into a hairpin 
shape, producing a more compact design:

 

6.  The physical line lengths must be adjusted downward in practice to accommodate end fringing, just as in 
the filter of Figure 3.

≈ λ/4
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FIGURE 5. Hairpin bandpass filter

 

Note that, as in other bent transmission lines, the resonator sections all use mitered bends 
to minimize unwanted discontinuities.

Aside from the difficulty of tuning individual stages properly, spurious modes are the bane 
of filter designers. Many practical filters may exhibit poor attenuation to certain signals 
that are nominally in the stopband. These spurious responses may be a fundamental prop-
erty of the filter architecture (e.g., the natural periodicity of the impedance of a piece of 
terminated line, or the excitation of surface or higher-order modes in a microstrip section), 
or may result from parasitic elements associated with components used to build the filter.

 

5.0  Summary

 

We’ve seen that modern filters trace their lineage all the way back to Heaviside’s hundred-
year old analysis of telegraph transmission lines, with important contributions by Camp-
bell, Wagner and Zobel shortly thereafter. The inability to specify detailed response shapes 
of such wave filters motivated the development of the Butterworth, Chebyshev and Cauer 
approximations.

Sensibly enough, coupled low-pass sections are used to make low-pass filters, and coupled 
resonators can be used to make bandpass filters. These observations hold even when the 
individual sections are realized with distributed (or quasi-distributed) elements, leading to 
a host of filter implementations that are amenable to realization in planar form. Examples 
of these include the parallel-coupled, interdigitated, and hairpin microstrip filters.

≈ λ/4
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Antenna and Filter Design Lab

 

1.0  Introduction

 

In this lab experiment, you will design, construct and test two types of antennas intended 
for use at 1GHz. The two kinds you will build are an ordinary monopole and a patch 
antenna. It is particularly important to play around with them and see how sensitive the 
impedance characteristics are to proximity to objects. Also pay attention to the accuracy of 
the formulas presented. Do the lab’s physical characteristics satisfy the assumptions that 
implicitly underlie the equations?

You will also build and test a simple bandpass filter.

Reading assignment: Handouts #13-15 (Antennas, Filters and Microstrip Filters); due 
date: Friday, May 4. This is a lot of reading if you try to understand every word, so don’t 
do that. Instead, do a quick skim to see what’s there, then focus on the parts that are rele-
vant for this lab.

 

2.0  Monopole

 

The key design equation for a monopole over a ground plane is:

 

. (1)

 

In this experiment, the ground plane will be imperfect (as is generally the case). Specifi-
cally, you will continue to use the pre-cut pieces of FR4 as the ground plane (yes, very 
cheesy; in general, one would like a ground plane that extends at least a quarter wave-
length away from the antenna in all directions). The antenna itself is just a stiff piece of 
wire jammed into a BNC mounted on your board. If we can obtain some unassembled 
male BNCs in time, you may be able to build the antenna with one of those. However, 
don’t count on this happening.

Do NOT jam this wire into any connector attached to the network analyzer. Also, because 
it will be altogether too easy to poke your (or someone else’s) eye with such an antenna, 
put a ball of black electrical tape (or some other such contrivance) on the end. 

 

***Email 
Sergei that you have read and understood both of these instructions.***

 

 We want to 
make sure that everyone finishes EE414 with as many functioning eyeballs as at the begin-
ning of the term, and that the network analyzer suffers a minimum of additional trauma.

You will face a small mechanical engineering challenge (this is part of the experiment), 
deciding where to mount the connectors, as well as choosing the length of the microstrip 
feedline that goes from one connector to the other. Note that zero is a possible length.

Rr 40π2 l

λ 
  2

≈
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Cut the monopole to produce a good match at 1GHz. Plot out S11 over both a broad fre-
quency range (e.g., octaves), and over a narrow one (below an octave, centered about 
1GHz). Report the “impedance bandwidth,” which we will define here as the frequency 
range over which the SWR is under 2. This is a common, arbitrary and very generous 
specification. Because such a large SWR is intolerable in many applications, also report 
the range over which the SWR is below 1.5 and 1.2.

You will note a sensitivity to the proximity of objects, so you will have to decide on stan-
dard test conditions (e.g., monopole pointing up, partner facing east, you lying supine, 
precisely 

 

π

 

 meters away).

After you’ve made these measurements, experiment with moving your hand near the 
antenna, observing how the impedance changes. Feel free to bring other objects near the 
antenna. Try conductors and dielectrics. Can you say anything ~quantitative about how 
close an object must get before it has a “significant” effect on the impedance? How does 
this measured distance compare with a wavelength? Can you explain this distance in terms 
of physics? Can you say anything about the nature of the perturbation (i.e., whether it 
increases capacitance or inductance)?

 

3.0  Microstrip Patch Antenna

 

A half-wave patch antenna at 1GHz is a little too long to implement using our pre-cut FR4 
boards. However, a quarter-wave antenna is not out of the question. Using the formulas for 
effective electrical length, compute the physical length of the antenna (it should work out 
roughly to about 1.4-1.5 inches). If you lay this out along one of the long edges of the 
board, it will be easy to produce an excellent ground by merely folding a length of copper 
foil tape over the edge and soldering.

As to width, you will have to experiment to find the value that result in a good match. 
Given the development in the notes, one might expect the width to be between 2 and 3 
times the length. However, your mileage may vary.

After achieving a good match, fool around with it in the same way as the monopole. Char-
acterize the impedance bandwidth and sensitivity to nearby objects.

 

4.0  Capacitively Coupled Bandpass Filter

 

Design a simple bandpass filter centered at 1GHz, of the following type:

 

FIGURE 1. Capacitively coupled microstrip bandpass filter

≈ λ/2



 

EE414 Handout #16: Spring 2001

 

Antenna and Filter Design Lab

 



 

1997 Thomas H. Lee, rev. April 27, 2001; All rights reserved Page 3 of 3

 

To simplify things, use only one half-wave section of 50

 

Ω

 

 impedance. Initially cut it to 
your best estimate of exactly half a wavelength, knowing that you’ll have to cut some 
pieces off to bring the center frequency to 1GHz.

The –3dB bandwidth target here is about 200MHz. It should be no less than 100MHz, and 
no greater than 300MHz. This is a loose enough range that you should not have to spend 
an inordinate amount of time to achieve satisfactory performance. The main trickiness 
here is simply getting the coupling gaps to the right value to produce the desired response.

Once you’ve designed the filter, note the insertion loss (i.e., the loss at the center of the 
passband), and compare to the 0.08dB/inch attenuation figure of a pure line. Also, note the 
location and severity of several spurious passbands. In particular, note that the filter acts 
like a bandpass filter at lower frequencies, but like a high pass filter at high frequencies. 
You should be able to explain, with a minimum of mathematics, why you see what you 
see.
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Narrowband PA Design Lab

 

Due date: May 11, 2000

 

1.0  Introduction

 

In this lab experiment, you will design, construct and test a single-transistor power ampli-
fier for use at 1GHz. The design goals are: Output power at 1GHz into 50

 

Ω

 

 > 50mW 
(17dBm), power gain >8dB, input and output return losses greater than 10dB, and the 
highest collector efficiency you can achieve while satisfying these conditions. Even 
though the 2SC3302 is far from a high power device, it is the transistor you are to use. 
Because the power is limited, any RF-related biohazards are similarly limited. Despite 
what you might think, we really do care about your health and safety!

Also, 

 

UNDER NO CIRCUMSTANCES ARE YOU TO GENERATE MORE THAN 
200mW OF OUTPUT POWER. 

 

You can actually get these wimpy transistors to produce 
more than this on a short-term basis, but I don’t want you even to try. Furthermore, the 
network analyzers have an input power limit beyond which they distort, and another 
beyond which they are damaged. Be sure to observe these limits.

 

Reading assignment:

 

 Chapter 13 (on power amplifiers) in the textbook. If you also feel 
the need for more knowledge about bipolar transistors, another handout will be made 
available on request.

 

2.0  Issues

 

You have several design degrees of freedom. First, you are free to choose any topology. 
There is no linearity specification here, so you have more freedom than in most real life 
PA designs. Another important set of decisions concerns the impedance level seen by the 
collector. Although 50

 

Ω

 

 is the ultimate load impedance, there may be an advantage to pro-
viding an impedance transformation. The supply voltage is a variable you should exploit. 
The decision will be constrained by a knowledge of the maximum voltage and current that 
the 2SC3302 can tolerate reliably.

Often, producing an input match is a challenge with bipolar power amplifiers. The reason 
is simple: Power amplifiers are large-signal beasts, and the input diode of a bipolar transis-
tor is a highly nonlinear element under large-signal conditions. In many practical bipolar 
amplifiers, this problem is handled in a shockingly brute-force fashion: Shunt the base-
emitter diode with a suitably low value resistor. With a sufficiently small resistor, the 
impedance of the parallel combination will be dominated by the linear resistor, at the cost 
of gain. The small-signal trick of inductive emitter degeneration is inadequate for power 
amplifiers of any reasonable power level. For the modest specifications you are to meet in 
this lab experiment, you might be able to get away with some combination of small-signal 
tricks and resistive shunting.
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Synthesizer Design Lab

 

1.0  Introduction

 

In this lab experiment, you will design, construct and test a frequency synthesizer-based 
local oscillator. This is by far the longest and most complicated lab exercise of the entire 
course, and you have ~2 weeks in which to do everything. Do not wait until a week has 
gone by to begin the lab, for the amount of material to read and understand is large, as is 
the amount of labor, even though we are going to provide you with a fair amount of pre-
fabricated items so that you don’t have to derive everything from first principles. But there 
is still a lot of reading.

There will be only one more lab exercise in the course, in which you will integrate all of 
the blocks into a transceiver, so we’re getting to the really exciting stuff! A mixer and filter 
will be added at that final phase, but the design of these will involve minimal additional 
labor.

The synthesizer consists of two main modules: A VCO and the rest of the PLL. It is advis-
able for each partner to take ownership of one block’s design, so that you may work in 
parallel. Close collaboration with other groups is also 

 

strongly

 

 encouraged.

The specifications are these: VCO frequency range of <900MHz to >1GHz for the receive 
LO synthesizer (in the final lab, you will replicate your design for the transmitter, with a 
slightly different tuning range of <950MHz to >1.05GHz; if you can get enough tuning 
range, then you will only have to copy a single design); output power of 0dBm at absolute 
minimum (and preferably 5-7dBm max) for driving a diode ring mixer. All spurs with the 
loop closed should be at least 30dB below the carrier. 

In your writeup, show your linearized PLL loop model, describe how you chose the loop 
bandwidth, and give component values for your loop filter. Be sure to include a tuning 
curve for your VCO (i.e., frequency vs. control voltage), and report the nominal, mini-
mum, and maximum values of VCO gain constant over the specified frequency range. 
Design the PLL to possess a phase margin of at least 45

 

°

 

 over the tuning range. In your 
loop calculations, make sure that you don’t confuse radians per second with hertz!

Measure the phase noise at 100kHz and 1MHz offsets from the carrier. Also report the size 
of the 

 

f

 

ref

 

 spur, relative to the carrier. Is this the biggest spur? If not, what is, and how big 
is it? Can you relate the frequency of this spur to “other periodic” signals in the loop?

 

Reading assignment:

 

 Check the relevant sections of the textbook chapters on oscillators, 
PLLs and synthesizers (Chapters 15 and 16). Those of you with a weak background on 
feedback may wish to skim the chapter on feedback systems (Chapter 14), or else much of 
the material on PLL loop filter design will be completely incomprehensible. Please also 
read the handout on phase noise measurement.

 

Due date

 

: Friday, May 18, 2001.
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2.0  VCO

 

I 

 

strongly

 

 recommend a Colpitts topology for the VCO, but you are certainly free to use 
any topology you wish. If you do use something else, I would be very interested in seeing 
the results of any such efforts. This handout will focus on a Colpitts implementation, but a 
“negative resistance” oscillator will also be described briefly in class.

The Colpitts oscillator is just a positive feedback system with a capacitively tapped reso-
nator. Many topological variations fit within that verbal description, but not all are equally 
amenable to convenient biasing or provide good tuning range. For example, you could 
ground the collector, or tie it to some positive 

 

V

 

cc

 

. Or you could ground the base. Each of 
these choices leads to a different collection of bias headaches and sensitivities to parasitic-
induced problems. You are therefore encouraged to investigate these alternatives some 
day, after the course has ended and you have a lot of free time.

The following Colpitts implementation has worked well for me (and, perhaps more impor-
tant, for previous EE414 students). It is offered free, but without warranty (you get what 
you pay for!):

 

FIGURE 1.  Slightly simplified schematic of VCO (read text!)

 

First note one significant feature of the circuit: the collector’s DC potential is ground;

 

 neg-
ative

 

 voltages are used to bias the transistor. 

 

Be sure that you understand this and hook 
things up right, or else you will blow up parts, and have to re-do enormous amounts 
of work! 

 

This choice of polarity is driven by several considerations: Returning the tank to 
ground is nice because it avoids having to bypass a collector supply (with either chokes or 
BFCs), and also eliminates an output coupling capacitor. All of these simplifications make 
it easy to terminate one end of the inductor in an excellent short (locate the inductor close 
to the edge of the board to take full advantage of this topology). Furthermore, the control 
voltage from the PLL is ground-referenced, so annoying biasing gymnastics are avoided 
by connecting the varactor to the ground-referenced load structure.

In this configuration, a suitable length of line acts as an inductor (kinda sorta; more on this 
later). That inductance resonates with a capacitance formed by the series combination of 

vOUT

100pF

~22-33pF

vctrl

C2

1k
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the varactor, and the sum of 

 

C

 

2

 

 and the emitter capacitance. The tuning range is therefore 
a function of the varactor capacitance versus that other total capacitance. Fortunately, with 
the particular arrangement shown, it is possible to design things so that the total capaci-
tance is dominated by that of the varactor. This condition is readily produced by choosing 
a 

 

large

 

 enough 

 

C

 

2

 

, and is what we want in order to maximize tuning range. Unlike some 
other Colpitts arrangements, then, parasitic capacitances across 

 

C

 

2

 

 are relatively benign. 
We can’t make 

 

C

 

2

 

 arbitrarily large, however, because it is also part of the feedback voltage 
divider. If it is too large, the feedback may diminish to the point where oscillation ceases. 
Here, we have arbitrarily chosen 

 

C

 

2

 

 equal to the maximum capacitance of the varactor. 
What is this maximum? The PLL chip produces a control voltage that nominally swings 
from 0.5V up to 4.5V. The MV105 varactors nominally tune 8 to 18pF over that range. I’d 
have preferred a 4pF to 9pF range, but these are the varactors we have in stock. Many past 
EE414 students achieved excellent results by using the 2SC3302 emitter-base junction 
capacitor in place of the MV105, so you may wish to consider this option in your design. 
If you do, it is advantageous to short the collector to the base (doing so removes an 
antenna for noise injection, and reduces series resistance somewhat).

Another important consideration is to keep the base bypass path as short as possible. Any 
inductance in series with the base can result in oddball parasitic oscillations at frequencies 
you never imagined could exist!

 

2.1  Load inductor design

 

Assuming a net capacitance of 8pF at the center of the tuning range (calculated by using 
the geometric mean of what you get when you look at 8pF, then 18pF, in series with 
22pF+4pF of emitter cap and strays

 

1

 

), you’d want an inductance of about 3nH. This is 
going to be a little tricky, but not impossible, to implement. You’ll need to lay things out 
rather carefully. In particular, the stray inductance of the varactor connection must be 
absolutely minimized! If you succeed, the calculated tuning range will be about 

 

±

 

15% 
about the nominal frequency, comfortably in excess of the 

 

±

 

5% that you are asked to pro-
vide. Inevitably some other factors conspire to reduce the range below the calculated 
value, but you should still end up with enough margin here.

To ease the inductor design problem and simultaneously increase tuning range, you can 
increase the voltage swing across the varactor to reduce its minimum capacitance. How-
ever, this means that you will have to design and build an amplifier to take the control 
voltage from the PLL chip, and gain it up appropriately. So, you trade complexity in one 
domain for complexity in another. Pick your poison.

 

2.2  Bias

 

From the chapter on oscillators, you know that the oscillation amplitude is a function of 
bias current and losses (which include the action of the load resistance). The last item is 

 

1.  This is a pessimistic estimate of total “other” capacitance; your mileage may vary, especially if you use a 
transistor in place of the varactor.
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under your control to a certain extent through choice of output tap location. The shortness 
of the load inductor limits the ease with which you can select and vary the tap location, so 
bias current will be an important design variable for you. Depending on where you end up 
tapping the output, a 0 to 7dBm output will probably result with bias currents in the range 
of low to medium numbers of milliamps. Be sure that, in laying out the bias network, you 
avoid stray capacitance where it would affect the frequency of the tank, or tuning range 
could degrade severely. As with the tapped LNA tank, this load structure doesn’t guaran-
tee control over both the real and imaginary parts of the output impedance, so additional 
matching may be required.

Another consideration is that the anode of the varactor may see a zero DC voltage, but 
there will also be an AC component, too. The control voltage needs to be sufficiently 
larger than the peak anode voltage to avoid forward-biasing the varactor. Oscillation might 
even cease if this problem occurs, causing the loop to get confused. There is therefore a 
constraint on the tank amplitude. So, don’t just apply a zillion amps to the oscillator think-
ing that bigger is automatically better.

The simplified schematic shows no values for the biasing components; these are left for 
you to design. Bias stability is not specified in this lab, but choose values that lead to “rea-
sonable” stability, just as for the LNA design. As a starting point, try dropping a volt or 
two across the emitter resistor, and selecting the base bias dividers to carry a current of 
approximately the collector current divided by 10. Fortunately, biasing this oscillator 
involves less work than biasing the LNA, because we don’t have to arrange for feedback 
from the collector. Here, we’re allowed to put junk into the emitter with relative impunity.

 

2.3  “It doesn’t work; now what do I do (after weeping uncontrollably)?”

 

The tank inductor can be the source of difficulties because of its shortness. You might have 
reasoned that, the narrower the line, the better the tuning range, because a shorter line 
could then be used for a given impedance, leading the line to act more like a pure inductor 
than a quasi-resonator. After all, resonator loss is only a second-order function of width 
because most of the loss in FR4 is due to the dielectric, as mentioned in the notes on 
microstrip, so using narrow lines may not be so unattractive here.

However, shortness is a problem for largely mechanical reasons. To allow a somewhat 
longer line to be used, you might consider a wider line than you might normally try. Just 
make sure that all dimensions remain well below a quarter wavelength, or else strong dis-
tributed effects will throw off your calculations. It is preferable in real designs to choose a 
length that will not produce high impedances at some multiple(s) of the oscillation fre-
quency, because those distortion products will not be filtered out by the tank (remember, 
the “inductor” you’ve made is in reality a transmission line that is terminated in a short). 
In this lab experiment, however, there is no distortion specification, so you don’t have to 
obsess about this issue here. It’s just mentioned here so that when you go out into “the real 
world,” you can’t rightly complain that some ivory tower academic never told you about 
this issue.
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Another mildly tricky issue is that the tuning range is narrow enough, and the varactor tol-
erances loose enough, so that the center frequency of the VCO may not be quite the value 
you want. If you’re close to the right frequency, you may not have to rip out the inductor 
and start over. To raise the frequency a little bit, add some copper near the ground end of 
the line to decrease inductance. To decrease frequency a tiny bit, add a solder blob (the 
closer to the collector, the greater the effect), or narrow up the line by slicing a little piece 
out of it. To decrease frequency further, solder a short length of wider foil onto the line to 
increase capacitance (again, the closer to the collector, the larger the effect).

If your output power level is too low, the main cure is more bias current. If your power 
varies wildly over the tuning range, the cure is to tap the output from a point closer to the 
collector end of the line. Why? The loss of the line, and hence its effective resistance, var-
ies with frequency. If this frequency dependent loss dominates, then the amplitude will 
vary significantly with frequency. Tapping the output closer to the collector loads down 
the tank more severely, but at least the load is more constant. An increase in bias current 
can compensate for the drop in average output power. The tradeoff is one of loop gain vs. 
output power flatness vs. filtering quality (heavier loading implies degraded 

 

Q

 

).

Careful thought given to layout issues 

 

before

 

 beginning construction will greatly increase 
your chances of a successful design.

Stay tuned to the class website for additional hints and tips as they develop.

 

3.0  PLL Synthesizer

 

3.1  Overview

 

The overall transceiver uses frequency modulation and a 100MHz IF. You have the option 
of modulating either the reference oscillator or the VCO inside the transmit PLL itself. If 
you choose the former, remember that the frequency deviation corresponding to your 
modulation will be multiplied upward by the same factor as the base reference frequency. 
Also, you will need to select the PLL bandwidth to exceed the highest modulation fre-
quency you wish to employ, or the synthesizer will filter out the modulation.

On the other hand, if you employ direct FM, in which you modulate the transmit VCO’s 
control voltage directly, you will need to choose the PLL bandwidth well 

 

below

 

 the lowest 
modulation frequency of interest. You should understand, and be able to explain, why the 
requirements on loop bandwidth are completely opposite for these two choices. Also note 
that no multiplication accompanies the use of direct FM. You should be able to explain the 
consequences of multiplication (or lack thereof) on the received or demodulated signal.

Those preceding two paragraphs apply to the transmitter but, here, you are only asked to 
design the receiver synthesizer. Those issues are raised here simply to orient your thinking 
a little bit in advance of final integration.
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We are very fortunate that Motorola makes a chip that contains most of the circuitry for 
building a synthesizer, otherwise you would never finish the lab (you’d spend all of your 
time designing and wiring up a hulking mass of flip-flops, op-amps and still end up with 
smoke-emitting semiconductors). The MC12181 contains crystal oscillator circuitry 
(which will be used to generate a low frequency reference that the chip subsequently mul-
tiplies upward by a user-defined value), a four-bit digitally-controlled frequency divider, a 
phase detector, and a charge pump. The user just has to provide power, a crystal, a VCO 
and a loop filter to complete the synthesizer. This portion of the lab, then, mainly concerns 
designing the loop filter, with a little crystal oscillator design thrown in.

The data sheet and applications notes for the MC12181 are attached to this handout. We 
will provide you with a pre-made PC board that allows you to solder the 12181 and its 
auxiliary components into “the right places” to save you enormous amounts of time in lay-
out and fabrication. 

 

Be sure

 

 to thank your TA, Moon Kim, for procuring parts, prototyp-
ing the synthesizer design, and laying out the PC board artwork! Without her efforts (all 
performed under quite extreme time pressure), there is no chance that you would have any 
hope at all of completing the design in finite time.

The schematic of the synthesizer you will build is almost exactly as shown in Figure 2 on 
page 3 of the data sheet. Exceptions: Vp and Vcc will be tied together, so you can elimi-
nate one pair of bypass capacitors (either the one on pin 3 or 4); and 

 

C

 

1

 

 is replaced by a 
slightly more complicated 

 

LC

 

 circuit.

As you can see from the data sheet, the four-bit programming nibble allows you to control 
the multiplication factor from 25 to 40 (control bit D on pin 13 is the MSB, and the signals 
are active high). The control pins have weak internal pullup resistors (~ 50-100 kilohms), 
so you don’t have to add any external pullups. Grounding the pins to produce a logic zero 
is perfectly acceptable, as these pins were meant to be driven by standard CMOS gates.

 

3.2  Reference crystal oscillator

 

The reference frequency that is multiplied upward by the programmable factors is con-
trolled by the crystal connected across pins 1 and 2, and is allowed to be as high as 
25MHz. The minimum guaranteed upper frequency of operation is therefore 1GHz, which 
is just barely enough for our purposes. Naturally, we have procured a quantity of 25MHz 
crystals. The oscillator topology inside the 12181 is a traditional Pierce circuit, in which 
the crystal is placed across the gate and drain of a common-source FET amplifier. The 
resistor between pins 1 and 2 biases the FET into the active region, and the two capacitors 
provide additional phase shift beyond what the crystal provides, to satisfy the conditions 
for oscillation. As mentioned in the textbook, the crystal in a Pierce thus operates at a fre-
quency somewhat above its series resonance, so that it presents a net inductive impedance 
under normal operation. The exact oscillation frequency depends on both the crystal 

 

and

 

 
the two capacitors, although it is much more sensitive to the crystal’s resonant frequency 
(because of the vastly steeper reactance-vs.-frequency curve of crystals, relative to that of 
capacitors). Each crystal intended for use in a Pierce is specially cut to oscillate on fre-
quency only with a specified capacitive load. We will be using 15pF capacitors.
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As mentioned in the textbook, high frequency crystals are very thin, making them fragile 
and difficult to manufacture. The designers of the 12181 know this, and consequently 
specify a 25MHz upper frequency, which corresponds to about the maximum frequency at 
which crystal manufacturers will provide an inexpensive fundamental-mode crystal. 
Unfortunately, 25MHz is high enough that many manufacturers (including many of our 
suppliers) prefer to make an 8.33MHz crystal to save cost, and expect the user to operate it 
on the third overtone. An ordinary Pierce circuit (such as the one in the 12181), unfortu-
nately, may satisfy conditions for oscillation at both the fundamental and overtone fre-
quencies, so a modification must be made to poison the loop conditions at the fundamental 
mode frequency or else some very weird and undesirable effects may result. The easiest 
way to accomplish this feat is to add an inductance in series with one of the capacitors to 
produce a series resonance at the fundamental. This resonance produces a short to ground 
that reduces loop gain to zero, preventing oscillation at that frequency. To restore proper 
operation at the third overtone, a capacitor in shunt with the added inductor would have to 
be provided. For our circuit, the necessary inductance is around 24

 

µ

 

H, which is a some-
what large value. We may be able to obtain some physically small inductors of this value 
in time for the lab, but if not (and this is a distinct possibility), you can always wind your 
own (it’s fun, and good for you besides). There is plenty of enamel-covered “magnet” wire 
in the lab, and you can use Wheeler’s formula for inductance. Just be sure to scrape off the 
translucent insulation on the ends of the wire (many students mistake the copper-colored 
insulation for copper itself, and are disappointed at the infinite resistance). Sandpaper is 
ideal for this purpose, and is provided. If the ends accept solder, then you have success-
fully removed the insulation.

Moon’s inductor design uses 30 turns on a 25mm diameter form (an empty sample-size 
plastic shampoo bottle in this case). The length of the inductor is about 20mm. After wind-
ing the coil, the form may be left in place if it is not conductive or otherwise too lossy. The 
winding capacitance is large enough that no additional capacitance across it is necessary 
to make the reference oscillator operate on the third overtone. However, the frequency 
might not be 1GHz to as many significant digits as is stamped on the crystal. We will not 
worry about a ~100-200 ppm error in frequency in this lab, but you would have to worry 
about it in a real product. [The capacitance of a small surface mount inductor may be too 
small, so you might end up having to add some!]

The feedback biasing resistor across the crystal should be 50 kilohms, according to the 
data sheet (47k and 56k are the nearest standard 10% values). Its value isn’t critical, but 
higher values yield higher 

 

Q

 

, and lower ones yield better bias stability.

 

3.3  Loop filter design

 

As discussed in the textbook, the loop filter’s purpose is to remove the “teeth” produced 
by the phase detection process (which, if you recall, is fundamentally a sampled system in 
digital implementations, such as this one). Since the control voltage directly modulates the 
frequency of the VCO, any AC component of control voltage results in a frequency modu-
lation of the oscillator. If these components are periodic, they produce stationary side-
bands (spurs). One obsession of synthesizer designers is the systematic eradication of 
spurs. Spurs unfortunately arise very easily from noise injected into the control line from 
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supply noise or from external fields (computer monitors are a notorious source of spur-
inducing noise). Your VCOs may possess tuning sensitivities of tens of MHz per volt, so 
even a few millivolts of noise will generate noticeable spectral artifacts.

For a given loop bandwidth, a higher order filter provides more attenuation of out-of-band 
components. However, the higher the order, the more poles there are, and the more poles 
there are, the harder it is to make the loop stable. For this reason, many cheesy synthesizer 
loops are second order, but these rarely provide competitive performance.

Note that the data sheet circuit suggests a loop filter that contains three capacitors. 
Remembering that the VCO adds another pole (at the origin), we see that the resulting 
loop dynamics are fourth order (two too many for cheesy engineers!). In the past, design-
ing such a filter involved staring at lots of plots since no simple closed-form design 
method existed. The result was that most designs were suboptimal because the labor 
required to find an optimum was simply too great. Luckily this situation has changed quite 
recently, thanks to the Ph.D. work of Stanford student Hamid Rategh. The following cook-
book procedure for a near-optimal loop filter design are those of Hamid.

Step 1: Specify a phase margin. Once this value is chosen, it sets a constraint on 
capacitor values. Specifically,

 

, (1)

 

where “atan” is Framespeak for “arctangent,” and

 

. (2)

 

Choosing a phase margin of 50

 

°

 

 to provide a little breathing room above the specified 
value of 45

 

°

 

 minimum, we find that 

 

b

 

 should be about 6.5.

Step 2: Select loop crossover frequency. Combined with the results of Step 1, we 
find the location of the loop stabilizing zero as follows:

From the textbook discussion, we know that maximizing loop bandwidth maximizes the 
frequency range over which the presumably superior phase noise characteristics of the 
crystal oscillator are conferred on the output. Unfortunately, the loop is a sampled data 
system, and we can only push up the crossover frequency to about a tenth of the phase 
comparison frequency before we start to degrade phase margin seriously. In the 12181, the 
phase comparison frequency is one-eighth the reference frequency because the reference 
oscillator’s output is first divided by a fixed factor of eight before feeding the phase detec-
tor. Assuming operation at 1GHz with a reference frequency of 25MHz, we find that the 
phase comparison frequency is therefore 3.125MHz. Choosing a crossover frequency of 
100kHz is well below the danger point, so let’s use that value in what follows (you are free 
to choose some other value, within limits). Hamid says that

PM b 1+( )atan
1

b 1+ 
 atan−≈

b
C0

CA CX+
=
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. (3)

 

For our numbers, 

 

τ

 

z

 

 works out to 4.38

 

µ

 

s.

Step 3: Calculate 

 

C

 

0

 

, the value of the zero-making capacitor.

 

, (4)

 

where 

 

I

 

P

 

 is the charge pump current (nominally 2.2mA for this part) and 

 

K

 

0

 

 is the VCO 
gain constant in radians per second per volt.

Step 4: Calculate 

 

R

 

0

 

 =

 

 

 

τ

 

z

 

/

 

C

 

0

 

. This completes the design of the main part of the loop 
filter.

Step 5: Select 

 

τ

 

x

 

 = 

 

R

 

X

 

C

 

X

 

 within the following range:

 

. (5)

 

Within these wide limits is considerable freedom of choice. You can choose to design for 
the arithmetic mean, or the geometric mean, or some other kind of mean. Typically, one 
selects 

 

τ

 

x

 

 to be  1/30 to 1/20of 

 

τ

 

z

 

. A bigger time constant results in somewhat better filter-
ing action, but tends to be associated with lower stability. Since loop constants aren’t con-
stant, it is prudent to design for some margin.

Step 6: Complete the remaining calculations.

Back in Step 1, we developed a constraint on the capacitance ratios. Having found one of 
the capacitances, we now know the sum of 

 

C

 

A

 

 and 

 

C

 

X

 

. You are free to select the individual 
values over a quite wide range, as long as they sum to the correct value. Arbitrarily setting 
them equal is a common choice.

 

2

 

 Having done so then allows us to determine their abso-
lute values, which subsequently allows us to determine the value of 

 

R

 

X

 

.

This completes the design of the loop filter.

As with the VCO, be sure to check the website and email frequently for updates and hints.

 

2.  The noise generated by the resistors in the filter will produce broadband modulation of the VCO, result-
ing in phase noise. Minimizing the phase noise would impose additional constraints on the loop filter design, 
but complicates the situation enough that the cookbook procedure offered here is all we’ll consider.

ωc
b 1+
τz

≈ b 1+
R0C0

=

C0
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2π
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+
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The MC12181 is a monolithic bipolar synthesizer integrating a high
performance prescaler, programmable divider, phase/frequency detector,
charge pump, and reference oscillator/buffer functions. The device is
capable of synthesizing a signal which is 25 to 40 times the input reference
signal. The device has a 4–bit parallel interface to set the proper total
multiplication which can range from 25 to 40. When combined with an
external passive loop filter and VCO, the MC12181 serves as a complete
PLL subsystem.

• 2.7 to 5.5 V Operation

• Low power supply current of 4.25 mA typical

• On chip reference oscillator/buffer supporting wide frequency operating
range from 5 to 25 MHz

• 4–bit parallel interface for programming divider (N = 25 .... 40)

• Wide 125 – 1000 MHz frequency of operation

• Digital phase/frequency detector with linear transfer function

• Balanced Charge Pump Output

• Space efficient 16 lead SOIC package

• Operating Temperature Range of –40 to 85°C
• > 1000 V ESD Protection (I/O to Ground, I/O to VCC)

The device is suitable for applications where a fixed local oscillator (LO)
needs to be synthesized or where a limited number of LO frequencies need
to be generated. The device also has auxiliary open emitter outputs (Pout
and Rout) for observing the inputs to the phase detector for verification
purposes. In normal use the pins should be left open. The Reset input is
normally LOW. When this input is placed in the HIGH state the reference
prescaler is reset and the charge pump output (Do) is placed in the OFF
state.

The 4–bit programming interface maps into divider states ranging from 25
to 40. A is the LSB and D is the MSB. The data inputs (A,B,C, and D) are
CMOS compatible and have pull–up resistors. The inputs can be tied directly
to Vcc or Ground for programming or can be interfaced to an external data
latch/register. Table 1 below has a mapping of the programming states.

Table 1. Programming States

D C B A Divider

L L L L 25
L L L H 26
L L H L 27
L L H H 28
L H L L 29
L H L H 30
L H H L 31
L H H H 32
H L L L 33
H L L H 34
H L H L 35
H L H H 36
H H L L 37
H H L H 38
H H H L 39
H H H H 40

 Motorola, Inc. 1997 Rev 2
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Figure 1. MC12181 Programmable Synthesizer

PROGRAMMABLE
DIVIDER (25 – 40)

DIVIDE BY 8
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DECODE
LOGIC

Fin

Fin

Reset

OSCin

OSCout

Pout

Rout

Do

A B C D

DIVIDE
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PIN NAMES

Pin No. Pin Function

1 OSCin An external parallel resonant, fundamental crystal is connected between OSCin and OSCout to form an internal
reference crystal oscillator. External capacitors C1 and C2 are required to set the proper crystal load capacitance
and oscillator frequency (Figure 2). For an external reference oscillator, a signal is ac–coupled into the OSCin pin.
In either mode a 50 kΩ resistor MUST be connected between OSCin and OSCout.

2 OSCout Oscillator output, for use with an external crystal as shown in Figure 2.

3 VP Positive power supply for charge pump. VP MUST be greater than or equal to VCC. Bypassing should be placed
as close as possible to this pin and be connected directly to the ground plane.

4 VCC Positive power supply. Bypassing should be placed as close as possible to this pin and be connected directly to
the ground plane.

5 Do Single ended phase/frequency detector output. Three–state current sink/source output for use as a loop error
signal when combined with an external low pass filter. The phase/frequency detector is characterized by a linear
transfer function.

6 GND Ground. This pin should be directly tied to the ground plane.

7 Fin Prescaler input – The VCO signal is ac–coupled into the Fin Pin.

8 Fin Complementary prescaler input – This pin should be capacitively coupled to ground.

9 GND Ground. This pin should be directly tied to the ground plane.

10 Rout Open emitter test point used to verify proper operation of the reference divider chain. In normal operation this pin
should be left OPEN.

11 Reset Test pin used to clear the prescalers (Reset = H). When the Reset is in the HIGH state, the charge pump output
is disabled. The Reset input has an internal pulldown. In normal operation it can be left open or tied to ground.

12 Pout Open emitter test point used to verify proper operation of the programmable divider chain. The output is a
divide–by–2 version of the programmable input to the phase/frequency detector. In normal operation this pin
should be left OPEN.

13
14
15
16

D
C
B
A

Digital control inputs for setting the value of the programmable divider. A is the LSB and D is the MSB. In normal
operation these pins can be tied to VCC and/or ground to program a fixed divide or they can be driven by a CMOS
logic level when used in a programmable mode. There is an internal pull–up resistor to VCC on each input.
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Figure 2. Typical Applications Example

161 OSCin A

152 OSCout B

143 VP C

134 VCC D

125 Do Pout

116 GND Reset

107 Fin Rout

98 Fin GND

R1

C2

C1

0.1 µF 100 pF
VP

0.1 µF 100 pF
VCC

1000 pF

Passive
Filter

VCO

1000 pF

NC

NC

CMOS Logic
Levels or VCC
and/or GND

R1 is 50 kΩ (Nominal)
C1/C2 depend on crystal selected

Figure 3. Typical Passive Loop Filter Topology

Do

RO

CO

CA CX

RX
VCO Input

RECOMMENDED OPERATING CONDITIONS

Parameter Symbol Min Max Unit

Supply Range VCC 2.7 5.5 VDC

Maximum Supply Range VCCmax – –6.0 VDC

Maximum Charge Pump Voltage VPmax – VCC to +6.0 VDC

Temperature Ambient TA –40 85 °C

Storage Temperature TSTG –65 150 °C

Maximum Input Signal (Any Pin) Vinmax – VCC+0.5 V VDC
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ELECTRICAL CHARACTERISTICS  (VCC = 2.7 to 5.5 V; VP = VCC to 6.0 V; TA = –40 to +85°C, unless otherwise noted.)

Characteristic Symbol Min Typ Max Unit Condition

Supply Current for VCC ICC – 4.0 5.5 mA Note 1

Supply Current for VP IP – 0.25 0.5 mA Note 1

Input Frequency Range OSCin 5 – 25 MHz Note 2

RF Input Frequency Range Fin 125 – 1000 MHz Note 3

Fin Input Sensitivity Vin 100 – 1000 mVpp Note 4

OSCin Input Sensitivity VOSC 500 – 2200 mVpp Note 4

Output Source Current (Do) IOH –2.8 –2.2 –2.0 mA Note 5

–2.4 –2.0 –1.6 Note 6

Output Sink Current (Do) IOL 2.0 2.4 2.8 mA Note 5

1.6 2.0 2.4 Note 6

Output Leakage Current (Do) IOZ – 0.5 10 nA VCC=5.5; VP = 6.0 V;
VDo=0.5 to 5.5 V

Charge Pump Operating Volt VDo 0.5 – VP–0.5 V

Input HIGH Voltage Reset, A, B, C, D VIH 0.7 VCC – – V

Input LOW Voltage Reset, A, B, C, D VIL – – 0.3 VCC V

Input HIGH Current A, B, C, D IIH – – +1 µA

Reset – – +100

Input LOW Current A, B, C, D IIL –100 – – µA

Reset –1 – +1

Output Amplitude (Pout, Rout) Vout 250 400 – mVpp Note 7

NOTES: 1. VCC and VP = 5.5 V; Fin = 1.0 GHz; OSCin = 25 MHz; Do open.
2. Assumes C1 and C2 (Figure 2) limited to ≤30 pF each including stray capacitance in crystal mode, ac coupled input for external reference mode.
3. AC coupling, Fin measured with a 1000pF capacitor.
4. Signal ac coupling in input.
5. VCC = 5.5 V; VP = 6.0 V; VDO = 3.0 V.
6. VP = VCC = 3.0 V; VDO = 1.5 V.
7. Minimum resistor value of 25 kΩ to ground.
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APPLICATIONS INFORMATION

The MC12181 is intended for applications where a fixed
LO, or a limited number of local oscillator frequencies is
required to be synthesized. The device acts as a x25 – 40
PLL. The 4–bit parallel interface allows 1 of 16 divide ratios to
be selected. Internally there are fixed divide by 8 prescalers
in the reference and programmable paths of the PLL. The
MC12181 operates from 125 MHz to 1000 MHz which makes
the part ideal for FCC Title 47; Part 15 applications in the 260
MHz to 470 MHz band and the 902 to 928 MHz Band.
Figure 4 shows a typical block diagram of the application.

Figure 4. Typical Block Diagram of Complete PLL
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As can be seen from the block diagram, with the addition
of a VCO, a loop filter, and either an external oscillator or
crystal, a complete PLL sub–system can be realized. Since
most of the PLL functions are integrated into the 12181, the
users focus is on the loop filter design and the crystal
reference oscillator circuit.

Crystal Oscillator Design
The PLL is used to transfer the high stability characteristic

of a low frequency reference source to the high frequency
VCO within the PLL loop. To facilitate this, the device
contains an input circuit which can be configured as a crystal
oscillator or a buffer for accepting an external signal source.

In the external reference mode, the reference source is
ac–coupling into the OSCin input pin. The level of this signal
should be between 500 – 2200 mVp–p. An external low noise
reference should be used when it is desired to obtain the best
close–in phase noise performance for the PLL. In addition the
input reference amplitude should be close to the upper
amplitude specification. This maximizes the slew rate of the
input signal as it switches against the internal voltage
reference.

In the crystal mode, an external parallel–resonant
fundamental mode crystal should be connected between the
OSCin and OSCout pins. This crystal must be between 5 and
25 MHz. External capacitors C1 and C2, as shown in
Figure 2, are required to set the proper crystal load
capacitance and oscillator frequency. The values of the
capacitors are dependent on the crystal choosen and the
input capacitance of the device as well as stray board
capacitance.

Since the MC12181 is realized with an all–bipolar ECL
style design, the internal oscillator circuitry is different from
more traditional CMOS oscillator designs which realize the
crystal oscillator with a modified inverter topology. These
CMOS designs typically excite the crystal with a rail–to–rail
signal which may overdrive the crystal resulting in damage or
unstable operation. The MC12181 design does not exhibit
this phenomena because the swing out of the OSCout pin is
less than 600 mVp–p. This has the added advantage of

minimizing EMI and switching noise which can be generated
by rail–to–rail CMOS outputs. The OSCout output should not
be used to drive other circuitry.

The oscillator buffer in the MC12181 is a single stage, high
speed, differential input/output amplifier; it may be
considered to be a form of the Pierce oscillator. A simplified
circuit diagram is seen in Figure 5.

Figure 5. Simplified Crystal Oscillator/Buffer Circuit

OSCin

Bias
Source

VCC

OSCout
To Phase/
Frequency
Detector

OSCin drives the base of one input of an NPN transistor
differential pair. The non–inverting input of the differential pair
is internally biased. OSCout is the inverted input signal and is
buffered by an emitter follower with a 70 µA pull–down
current and has a voltage swing of about 600mVp–p. Open
loop output impedance is approximately 425 Ω. The opposite
side of the differential amplifier output is used internally to
drive another buffer stage which drives the phase/frequency
detector. With the 50 kΩ feedback resistor in place, OSCin
and OSCout are biased to approximately 1.1 V below VCC.
The amplifier has a voltage gain of about 15dB and a
bandwidth in excess of 150 MHz. Adherence to good RF
design and layout techniques, including power supply pin
decoupling, is strongly recommended.

A typical crystal oscillator application is shown in Figure 2.
The crystal and the feedback resistor are connected directly
between OSCin and OSCout, while the loading capacitors, C1
and C2, are connected between OSCin and ground, and
OSCout and ground respectively. It is important to understand
that as far as the crystal is concerned, the two loading
capacitors are in series (albeit through ground). So when the
crystal specification defines a specific loading capacitance,
this refers to the total external (to the crystal) capacitance
seen across its two pins.

This capacitance consists of the capacitance contributed
by the amplifier (IC and packaging), layout capacitance, and
the series combination of the two loading capacitors. This is
illustrated in the equation below:

CI� CAMP� CSTRAY�
C1�C2
C1�C2

Provided the crystal and associated components are
located immediately next to the IC, thus minimizing the stray
capacitance, the combined value of CAMP and CSTRAY is
approximately 5pF. Note that the location of the OSCin and
OSCout pins at the end of the package, facilitates placing the
crystal, resistor and the C1 and C2 capacitors very close to
the device. Usually, one of the capacitors is in parallel with an
adjustable capacitor used to trim the frequency of oscillation.
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It is important that the total external (to the IC) capacitance
seen by either OSCin or OSCout, be no greater than 30pF.

In operation, the crystal oscillator will start up with the
application of power. If the crystal is in a can that is not
grounded it is often possible to monitor the frequency of
oscillation by connecting an oscilloscope probe to the can;
this technique minimizes any disturbance to the circuit. If this
is not possible, a high impedance, low capacitance, FET
probe can be connected to either OSCin or OSCout. Signals
typically seen at those points will be very nearly sinusoidal
with amplitudes of roughly 300–600mVp–p. Some distortion
is inevitable and has little bearing on the accuracy of the
signal going to the phase detector.

Loop Filter Design
Because the device is designed for a non–frequency agile

synthesizer (i.e., how fast it tunes is not critical) the loop filter
design is very straight forward. The current output of the
charge pump allows the loop filter to be realized without the
need of any active components. The preferred topology for
the filter is illustrated in Figure 6.

Figure 6. Loop Filter
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The Ro/Co components realize the primary loop filter. Ca is
added to the loop filter to provide for reference sideband
suppression. If additional suppression is needed, the Rx/Cx
realizes an additional filter. In most applications, this will not
be necessary. If all components are used, this results in a 4th
order PLL, which makes analysis difficult. To simplify this, the
loop design will be treated as a 2nd order loop (Ro/Co) and
additional guidelines are provided to minimize the influence
of the other components. If more rigorous analysis is needed,
mathematical/system simulation tools should be used.

Component Guideline

Ca <0.1 × Co

Rx >10 × Ro

Cx <0.1 × Co

The focus of the design effort is to determine what the
loop’s natural frequency, ωo, should be. This is determined by
Ro, Co, Kp, Kv, and Nt. Because Kp, Kv, and Nt are given, it is
only necessary to calculate values for Ro and Co. There are
3 considerations in selecting the loop bandwidth:

1) Maximum loop bandwidth for minimum tuning speed

2) Optimum loop bandwidth for best phase noise
performance

3) Minimum loop bandwidth for greatest reference sideband
suppression

Usually a compromise is struck between these 3 cases,
however, for a fixed frequency application, minimizing the
tuning speed is not a critical parameter.

To specify the loop bandwidth for optimal phase noise
performance, an understanding of the sources of phase
noise in the system and the effect of the loop filter on them is
required. There are 3 major sources of phase noise in the
phase–locked loop – the crystal reference, the VCO, and the
loop contribution. The loop filter acts as a low–pass filter to
the crystal reference and the loop contribution. The loop filter
acts as a high–pass filter to the VCO with an in–band gain
equal to unity. The loop contribution includes the PLL IC, as
well as noise in the system; supply noise, switching noise,
etc. For this example, a loop contribution of 15dB has been
selected, which corresponds to data in Figure NO TAG.

The crystal reference and the VCO are characterized as
high–order 1/f noise sources. Graphical analysis is used to
determine the optimum loop bandwidth. It is necessary to
have noise plots from the manufacturers of both devices.
This method provides a straightforward approximation
suitable for quickly estimating the optimal bandwidth. The
loop contribution is characterized as white–noise or
low–order 1/f noise given in the form of a noise factor which
combines all the noise effects into a single value. The phase
noise of the Crystal Reference is increased by the noise
factor of the PLL IC and related circuitry. It is further
increased by the total divide–by–N ratio of the loop. This is
illustrated in Figure 7.

The point at which the VCO phase noise crosses the
amplified phase noise of the Crystal Reference is the point of
the optimum loop bandwidth. In the example of Figure 7, the
optimum bandwidth is approximately 15 KHz.

Figure 7. Graphical Analysis of Optimum Bandwidth
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Figure 8. Closed Loop Frequency Response for ζ = 1
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To simplify analysis further a damping factor of 1 will be
selected. The normalized closed loop response is illustrated
in Figure 8 where the loop bandwidth is 2.5 times the loop
natural frequency (the loop natural frequency is the
frequency at which the loop would oscillate if it were
unstable). Therefore the optimum loop bandwidth is
15 kHz/2.5 or 6.0 kHz (37.7 krads) with a damping coefficient,
ζ ≈ 1. T(s) is the transfer function of the loop filter.

T(s) �
RoCos� 1

�NCo
KpKv
�s2�RoCos� 1

�
�2�
�o
�s� 1

� 1
�o2
�s2��2�

�o
�s� 1

�NCo
KpKv
� � � 1

�o2
� � �o �

KpKv
NCo
� � Co � �KpKv

N�o2
�

RoCo � �2��o
� � �� ��oRoCo

2
� � Ro � � 2�

�oCo
�

where Nt = Total PLL Divide Ratio — 8×N where (N = 25...40)
Kv = VCO Gain — Hz/V
Kp = Phase Detector/Charge Pump Gain — A
     = ( |IOH| + |IOL| ) / 2

Technically, Kv and Kp should be expressed in Radian
units [Kv (RAD/V), Kp (A/RAD)]. Since the component
design equation contains the Kv × Kp term. the 2π
cancels and the values can be epressed as above.

Figure 9. Design Equations for the 2nd Order System

In summary, follow the steps given below:

Step 1: Plot the phase noise of crystal reference and the
VCO on the same graph.

Step 2: Increase the phase noise of the crystal reference by
the noise contribution of the loop.

Step 3: Convert the divide–by–N to dB (20log 8 × N) and
increase the phase noise of the crystal reference by
that amount.

Step 4: The point at which the VCO phase noise crosses the
amplified phase noise of the Crystal Reference is the
point of the optimum loop bandwidth. This is
approximately 15 kHz in Figure 7.

Step 5: Correlate this loop bandwidth to the loop natural
frequency per Figure 8. In this case the 3.0 dB
bandwidth for a damping coefficient of 1 is 2.5 times
the loop’s natural frequency. The relationship
between the 3.0 dB loop bandwidth and the loop’s
“natural” frequency will vary for different values of ζ.
Making use of the equations defined in Figure 9, a
math tool or spread sheet is useful to select the
values for Ro and Co.

Appendix: Derivation of Loop Filter Transfer Function
The purpose of the loop filter is to convert the current from

the phase detector to a tuning voltage for the VCO. The total
transfer function is derived in two steps. Step 1 is to find the
voltage generated by the impedance of the loop filter. Step 2
is to find the transfer function from the input of the loop filter to
its output. The “voltage” times the “transfer function” is the
overall transfer function of the loop filter. To use these
equations in determining the overall transfer function of a PLL
multiply the filter’s impedance by the gain constant of the
phase detector then multiply that by the filter’s transfer
function (Figure 10 contains the transfer function equations
for 2nd, 3rd and 4th order PLL filters.)
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Figure 10. Overall Transfer Function of the PLL
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Figure 11. Typical Charge Pump Current versus Temperature
(VCC = 5.5 V; VP = 6.0 V)
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D SUFFIX
PLASTIC PACKAGE

CASE 751B-05
(SO–16)
ISSUE J

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE

MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)

PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.

1 8

16 9

SEATING
PLANE

F

JM

R X 45
�

G

8 PLP–B–

–A–

M0.25 (0.010) B S

–T–

D

K

C

16 PL

SBM0.25 (0.010) A ST

DIM MIN MAX MIN MAX
INCHESMILLIMETERS

A 9.80 10.00 0.386 0.393
B 3.80 4.00 0.150 0.157
C 1.35 1.75 0.054 0.068
D 0.35 0.49 0.014 0.019
F 0.40 1.25 0.016 0.049
G 1.27 BSC 0.050 BSC
J 0.19 0.25 0.008 0.009
K 0.10 0.25 0.004 0.009
M 0  7  0  7  
P 5.80 6.20 0.229 0.244
R 0.25 0.50 0.010 0.019

� � � �

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein.  Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages.  “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time.  All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts.  Motorola does not convey any license under its patent rights nor the rights of
others.  Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur.  Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and        are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.
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