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As we continue to push operating speeds in electronic systems, timing jitter has emerged
as an increasingly important showstopper across a wide range of applications. Con-
sequently, pushing the envelope requires a thorough understanding of jitter from its
mathematical description, to its manifestation in circuits and its impact on systems. This
book delivers the most comprehensive treatment of this subject to date and provides
valuable content to jitter-plagued engineers at all levels of experience.

Boris Murmann, Stanford University

All components generate noise. They give rise to thermal and 1/f noise. All amplifiers
and filters have Signal-to-Noise ratio as one of their most important specifications. In
oscillators however, noise gives rise to jitter and phase noise. This is why this book is
so important. It provides unique insight in the origins and the analysis of these spec-
ifications. Many applications are highlighted in the field of data converters, wireless
and wireline systems, and a number of digital applications. Examples are the jitter in
a CMOS inverter, in a LC oscillator, in a ring oscillator, etc. As a result this book
is a necessity for all designers who have to know about noise and its performance
limitations.

Willy Sansen, KU Leuven

Phase noise is the primary source of performance deterioration in all wireless/wireline
communication systems – and yet, dedicated books have been conspicuously absent
to date. We are therefore very fortunate that two real experts – Dr. Da Dalt and Pro-
fessor Sheikholeslami – have finally decided to fill this gap, presenting us with what
will become standard reading for anyone desirous to understand the peculiar and often
elusive nature of phase noise.

Professor Pietro Andreani, Lund University

The rigorous mathematical description of jitter, its link to phase noise as well as its
practical impact on different classes of circuits (e.g. digital, wireline, wireless, data con-
verters) are all known as difficult and sometimes obscure topics even for experienced
designers. This is the only book that I know which covers all of these subjects, provid-
ing at the same time both the intuitive understanding, the Matlab codes are particularly
useful from this standpoint, and the appropriate mathematical rigour. The authors, that
are two leading experts in the field, have also done a significant effort also in discussing
the key findings available in both classical and more recent open literature, not just
presenting their own work. I highly recommend this book.

Carlo Samori, Politecnico di Milano

This excellent reference provides a wealth of material to satisfy both engineers new to
clocking and seasoned veterans that are experts in jitter and phase noise. The authors
address all the important aspects of these critical topics and provide great insights for
readers.

Samuel M Palermo, Texas A&M University
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Preface

This book provides a rigorous yet intuitive explanation of jitter and phase noise as they
appear in electrical circuits and systems. The book is intended for graduate students and
practicing engineers who wish to deepen their understanding of jitter and phase noise,
and their properties, and wish to learn methods of simulating, monitoring, and miti-
gating jitter. It assumes basic knowledge of probability, random variables, and random
processes, as taught typically at the third- or fourth-year undergraduate level, or at the
graduate level, in electrical and computer engineering.

The book is organized as follows: Chapter 1 provides a qualitative overview of the
book and its contents. Chapter 2 covers the basics of jitter, including formal definitions
of various types of jitter and the key statistical concepts, starting from jitter mean and
the standard deviation up to random and deterministic jitter. Phase noise will be first
introduced in Chapter 3, and its relation to jitter and to the voltage spectrum of the clock
signal will be extensively investigated. In particular, how to derive from phase noise the
values of the several jitter types introduced previously will be explained. Chapter 4 is
dedicated to the effects of jitter and phase noise in basic circuits and in basic building
blocks such as oscillators, frequency dividers, and multipliers. Chapters 5 to 8 discuss
the effects of jitter and phase noise in various circuit applications. Chapter 5 is dedi-
cated to the effects of jitter on digital circuits, Chapter 6 to data converters, Chapter 7
to wireline, and Chapter 8 to wireless systems. More advanced topics on jitter are cov-
ered in Chapter 9, followed by numerical methods for jitter in Chapter 10. This chapter
also explains how to generate jitter and phase noise, with various characteristics, for
simulation purposes. The corresponding Matlab code for producing jitter is included in
Appendix B.

As mentioned earlier, this book assumes the reader has a basic knowledge of random
variables and random processes. However, to refresh the reader’s memory of the defini-
tions of some key terms, Appendix A simply lists these key terms along with their basic
definitions.

Guidance for the Reader

The book does not require the reader to adhere strictly to the order in which the chapters
appear, nor to read all of them. Its structure and the content of each chapter allow differ-
ent paths to be followed, depending on the particular interests or learning objective of
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xiv Preface

the reader. The graph below summarizes the possible paths, with the solid boxes indi-
cating strongly recommended chapters and the dashed boxes the suggested additional
readings.

While Chapters 1 and 2 form the fundamentals, and thus should be read before
any other chapter, the remaining chapters are relatively independent from each other.
Chapter 3 introduces the concept of phase noise and its relation to jitter. Even though
this chapter constitutes, together with Chapter 8, a required path to the reader active in
the wireless field, its contents are relevant to a number of other application fields, among
them wireline and jitter testing. For this reason the authors suggest it should be included
independently of the particular focus. Chapter 4 is an important reading for analog IC
designers, while Chapter 5 addresses specifically the needs of custom digital designers.
The latter chapter does not require knowledge of phase noise; thus Chapter 3 could be
omitted. Both Chapters 4 and 5 can be skipped by readers interested exclusively in the
system or mathematical aspects of jitter and phase noise. Chapters 6 and 7 can be read
directly after the first three chapters by readers interested in data converters or wireline
communication systems respectively. For the reader whose interest lies in the mathe-
matical treatment of jitter and phase noise, the first three chapters plus Chapter 9 will
provide a complete path. Finally, Chapter 10 and Appendix B are suggested reading for
students or engineers who want to analyze the effect of jitter and phase noise on systems
of any nature by means of transient simulation. The book uses a number of terms from
probability and random processes. For ease of reference, we have included these key
terms and their brief definitions in Appendix A.
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1 Introduction to Jitter

Imagine a lunar eclipse is to occur later tonight at around 1:57 am when you are fast
asleep. You decide to set your camera to capture the event, but being uncertain of the
actual time, you would set the camera to start a few minutes before the nominal time
and run it for a few minutes after 1:57 am. In this process, you have included a margin
around the nominal time so as to minimize the risk of not capturing the event on your
camera.

Imagine you have an important meeting at 8:00 am sharp, but you are uncertain about
your watch being a bit too fast or too slow. Determined not to be late, you decide to
arrive by 7:55 am according to your watch, just in case your watch is a bit slow. This is
indeed a practical way to deal with uncertainty in time.

Imagine you have a ticket for the bullet train in Tokyo that leaves the train station at
1:12 pm sharp. You are at the station and on the right platform, and you take the train that
leaves the station at 1:12 pm sharp. But a few minutes later, you notice that your watch
is two minutes fast compared to the time being displayed on the train, and you realize
that you are on the 1:10 pm train and you are moving towards a different destination.

Missing an event, being late or early, and getting on the wrong train are all con-
sequences of timing uncertainties in our daily lives. In digital circuits, we deal with
very similar situations when we try to time events by a clock that has its own timing
uncertainty, called jitter, and in doing so we may miss an event, such as not captur-
ing critical data, or cause bit errors, e.g., capturing the wrong data. Our goal, however,
is to prevent such errors from occurring, or to minimize their probabilities. We do
this first by carefully studying the nature of these uncertainties and modeling their
characteristics.

This chapter provides a few concrete examples from electronic circuits and systems
where timing uncertainties have a profound impact on the accuracy of their operation.
Our goal here is to qualitatively introduce the concept of jitter and intuitively explain
how it should be characterized and dealt with. A formal definition of jitter, its types, and
its full characterization will be presented in Chapter 2.

1.1 What Is Clock Jitter?

This section provides an intuitive explanation of two fundamental jitter concepts: period
jitter and absolute jitter.
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2 Introduction to Jitter

1.1.1 Period Jitter

Most microprocessors (μP) and digital signal processing (DSP) units work with clock
signals to time the execution of instructions. A basic instruction such as a shift by one bit
may take a single clock cycle, whereas addition and subtraction instructions may take
three to four clock cycles, and more complex instructions, such as multiplication, may
take tens of clock cycles to complete. In all these cases, the underlying assumption is
that the clock is accurate; that is, the clock cycles are all identical in duration. In reality,
however, the cycles of a clock are only identical with a finite (not infinite) accuracy.
This is because the clock signals are generated using physical devices that inevitably
have some uncertainty or randomness associated with them. For example, a clock may
be generated by three identical CMOS inverters in a loop, as shown in Figure 1.1. If
we assume tpd is the propagation delay of each inverter in response to a transition at
the input, then it takes 3tpd for a state “0” at node vout to transition to state “1” and
another 3tpd to transition back to “0”. In total, it takes 6tpd for the clock to complete one
cycle, and therefore we can write Tnom = 6tpd where Tnom represents a nominal clock
cycle. However, strictly speaking, tpd is not constant, but rather a random variable that
results in a different propagation delay every time the inverter is used. This randomness
is inherent in any physical device that deals with the motion of electrons at temperatures
above zero degrees Kelvin.

If we accept that tpd is a random variable, then the clock period, which is the sum
of six random variables, is also a random variable that deviates from its nominal (or
expected) value. The good news is that these random variables may have tight distri-
butions and, as such, may not adversely affect the circuit operations, especially at low
clock frequencies where the period is much larger than the deviations. However, as we
increase the clock frequency, the same absolute deviation in period may compromise
circuit operation.

A typical clock frequency of 4GHz, for example, corresponds to a nominal period
of 250ps, but this period may have a normal (Gaussian) distribution with a standard

Figure 1.1 A simple ring oscillator and its voltage waveforms.
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1.1 What Is Clock Jitter? 3

deviation of σ = 1ps. This implies that a clock cycle is close to 250ps but may deviate
from this value with a probability that is a decreasing function of the deviation magni-
tude. For example, as we will see in Chapter 9 (Table 9.1), the probability of the period
being smaller than 243ps is about 10−12. What does this mean for designs using this
clock? A straightforward answer is that we must ensure that any task that is supposed
to complete in one clock cycle must do so assuming the worst-case clock cycle, that is,
243ps (not the nominal 250ps). This will ensure that, with a high probability (1−10−12),
all the tasks are completed within one clock cycle even when one clock cycle is 7ps
shorter than the nominal cycle. If we were to reduce the probability of failure (i.e., the
probability of failing to meet the timing), we could simply design for a 242ps mini-
mum cycle time while working with a nominal cycle time of 250ps. This reduces the
probability of failure to 6.22 × 10−16, which corresponds to one error in every 4.6 days
(assuming 4GHz operation).

The concept we just described, i.e., the deviation of a clock cycle from its nomi-
nal value, is referred to as clock period jitter, or period jitter for short. A concept
closely related to period jitter is N-period jitter, which is the deviation of a time interval
consisting of N consecutive periods of the clock from the time interval of N nominal
periods. We will formally define period jitter, N-period jitter, and other types of jitter
for a clock signal in Chapter 2. Let us now provide an intuitive explanation for absolute
jitter.

1.1.2 Absolute Jitter

Period jitter is only one method to characterize the timing uncertainties in a clock signal.
This method is particularly useful in digital circuits where we are concerned with the
time period we need to complete a task. In other applications, such as in clock and
data recovery, where the clock edge is used to sample (capture) data, we are concerned
with the instants of time, not with time durations! This is because sampling occurs at
an instant of time, not over a period of time. In this case, it is the absolute time of the
clock edge (at which sampling occurs) that matters, not the interval between the edges
(i.e., the clock period). In these applications, it is important for the clock’s edges to be
precise; i.e., for them not to deviate from their ideal locations by certain amount. Let us
elaborate on this further.

In an ideal clock, if we assume the first rising edge occurs at time t = 0, then the
subsequent rising edges will occur at exactly t = kT , where k is a positive integer and
T is the period of the ideal clock. In a non-ideal clock, the rising edges, tk, will deviate
from their ideal values kT . We refer to this deviation as the clock’s absolute jitter, with
the word absolute signifying the deviation in instants of time as opposed to deviations
in intervals of time, as in period jitter.

The reader notes that absolute jitter and period jitter are closely connected concepts.
Indeed, we will see in Chapter 2 how we can obtain one from the other.

Figure 1.2 shows an example of a jittery clock signal (CK) along with an ideal clock
signal (CKideal). The absolute jitter can be abstracted from the clock signal and shown
separately as a function of time. From this example, absolute jitter appears to be a
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4 Introduction to Jitter

Figure 1.2 Ideal clock versus jittery clock waveforms.

discrete-time random signal. We will see later in Chapter 2 that, similar to any random
signal, absolute jitter has a well-defined spectrum and, as such, may contain a continuous
range of frequency components.

1.1.3 Intentional Jitter

Jitter is not always an unwanted property of a clock signal. In some applications, such as
in spread-spectrum clocking, we intentionally add carefully controlled jitter to a clean
clock so as to shape its power spectral density.

It is well known that a clean clock, by virtue of being a periodic signal, has energy
peaks at its fundamental frequency and its second- and higher-order harmonics. At clock
frequencies in excess of 100MHz, some of the harmonics may have a wavelength that
is of the same order of magnitude as the length of the wire carrying the clock signal
between chips on the same board or between boards. If left unattenuated, the signal
energy of these harmonics may radiate and cause electromagnetic interference (EMI)
with neighboring electronic components (mostly the components on the same PCB).
For this reason, it is desirable to limit the amount of radiation a clock signal can pro-
duce. This radiation level is directly related to the peaks in the clock signal power
spectrum.

Spread-Spectrum Clocking is a technique that spreads the peak energy over a larger
frequency band, thereby reducing the peak values and their associated EMI. This is
accomplished by adding a controlled amount of jitter to the clock. The jitter profile
is typically in the form of a frequency offset that goes up and down linearly with time.
Figure 1.3 shows an example of a frequency offset which increases linearly over a certain
period of time (kT) and then decreases over the same period (kT). This increase in clock
frequency (assuming �f � f0) is equivalent to a decrease in the period by a factor of
2�f /f0.
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1.2 What Is Data Jitter? 5

Figure 1.3 Frequency offset (fOS) as a function of time.

Another example of using intentional jitter is in characterizing clock and data recov-
ery circuits for their robustness to jitter. In this application, we intentionally add jitter to
the incoming data and observe the system’s robustness (in terms of its bit error rate) as
a function of jitter frequency. We discuss this example in further detail in Chapter 7.

1.2 What Is Data Jitter?

Consider a D flip-flop with data input D, clock input CK, and output Q, where D is cap-
tured and transferred to Q at the rising edge of the clock. As a result, Q is synchronized
with the clock, and therefore the clock jitter directly affects the timing of the data at the
output. In clock and data recovery applications, it is common to refer to the duration of
one data bit as a unit interval or UI. An ideal clock results in a data stream that has a
fixed UI, where each UI is exactly equal to the clock period. We refer to this data stream
as ideal or clean (i.e., the data without jitter). A non-ideal clock results in a jittery data
stream where each UI is slightly different from the nominal UI. This situation is shown
in Figure 1.4, where jittery data is compared against an ideal data stream. Note that,
due to the random nature of the data sequence, data transitions do not occur at every UI
edge. As such, jitter is not observable from data when there is no transition. However, by
overlaying several UIs of data on top of each other, in what is known as an eye diagram,
we can observe the overall characteristics of data jitter.

1.2.1 Eye Diagram

In clock and data recovery applications, the clock samples a jittery data waveform at
instants that are one clock period (T) apart. These instants usually correspond to the
rising edges of a clean clock, i.e., a clock with little or no jitter. Since the act of sam-
pling repeats itself every T , we are interested in seeing how the data waveform looks
if we chop it into segments of length T and overlay all the segments on top of each
other. The resulting composite waveform, which resembles an eye, is known as an eye
diagram.

Figure 1.5 shows the process by which we generate an eye diagram. This is essentially
the data waveform as a function of time modulo 1T . The eye diagram clearly shows the
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6 Introduction to Jitter

Figure 1.4 Input data is retimed with a jittery clock.

Figure 1.5 (a) A sketch of a voltage waveform as a function of time, (b) an eye diagram with eight
traces, (c) an eye diagram with 500 traces, (d) an eye diagram showing two eyes (corresponding
to two periods).

time instants at which the data “0” and “1” are farthest apart. This is the instant at which
the eye height (also known as vertical eye opening) is at a maximum, and this is the
instant at which we strive to sample the data by the rising edge of the clock.

The eye diagram also reveals how jitter can accumulate over time so as to close the
eye in the horizontal direction (see Figure 1.6). Accordingly, the horizontal eye opening
is an indication of the timing margin left for error-free operation.

When the noise, interference, attenuation, and jitter are excessive in a design, the eye
may be completely closed: there is then no instant at which the data “1” and “0” can be

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316981238.002
https://www.cambridge.org/core
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Figure 1.6 (a) A sketch of a voltage waveform as a function of time, (b) an eye diagram centered
around the zero crossings (eight traces), (c) the same eye diagram using 500 traces.

consistently distinguished. These situations require equalization and jitter cleaning so as
to open an otherwise closed eye for data detection.

1.2.2 Random Versus Deterministic Jitter

Jitter, in general, refers to any timing deviations from an ideal clock. These deviations
may be random or deterministic depending on the underlying sources producing them.
We have already provided several examples where random jitter is produced. Let us
now consider an example that produces deterministic jitter. Consider a binary random
sequence (produced using an ideal clock) that travels the length of a wire on a PCB.
The wire acts as a low-pass filter and, as such, slows the data transitions, creating jitter.
The jitter produced in this way is considered deterministic because one can predict the
exact jitter if an accurate model of the wire is available. Note that this is in contrast with
the random jitter produced by random movement of electrons, as we cannot predict the
electron movement.

An easy way to characterize jitter is to look at its histogram or its probability den-
sity function (PDF). As shown in Figure 1.7, deterministic jitter is bounded (having a
histogram with limited range) whereas random jitter is unbounded (having a Gaussian-
like PDF). In most cases, several jitter sources are at work at the same time, producing
composite jitter that includes both deterministic and random jitter. We will discuss this
in depth in Chapters 2 and 7 and describe ways to decompose jitter into its components.
Independent of the type of jitter, however, one can always characterize jitter, which is
a discrete-time sequence, by its peak-to-peak or its root mean square (RMS) values.
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8 Introduction to Jitter

Figure 1.7 Eye diagrams and their corresponding jitter histograms (a) eye diagram with
deterministic jitter only, (b) corresponding jitter histogram, (c) eye diagram with random jitter
only, (d) corresponding jitter histogram.

1.3 Jitter in Measuring Time

We often measure time by observing the completion of a physical phenomenon or
event. For example, in an hourglass (also known as a sandglass), shown in Figure 1.8,
the event is the falling of sand from the top to the bottom compartment. The com-
pletion of this event marks one unit of time, which may be from a few minutes to
a few hours depending on the hourglass design. Note that an hourglass has limited
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1.3 Jitter in Measuring Time 9

Figure 1.8 An hourglass behaves similarly to a current source charging a capacitor.

accuracy and limited resolution. The accuracy relates to the variation in time measure-
ment as we repeat the same experiment. Depending on the size distribution of the grains
of sand and their random arrangement, we will actually experience a slightly differ-
ent time interval every time we use the hourglass. This variation (or uncertainty) is
considered the jitter in the hourglass. The resolution relates to the minimum time inter-
val (seconds or fractions of a second, for example) that could be measured using the
hourglass.

If we replace the grains of sand with electrons and the glass with a capacitor, then
we have an electronic version of an hourglass that can measure time with much better
accuracy and far better resolution. Figure 1.8 shows an ideal current source charging a
capacitor. The event in this case is defined as the time it takes for the capacitor to charge
from 0V (corresponding to an empty capacitor) to a threshold voltage, VTH (VDD/2,
for example). If the current source is ideal, having an amplitude of I0, this event takes
CVTH/I0 to complete. Accordingly, this advanced hourglass has several knobs to turn in
order to adjust its resolution. For example, one could reduce the capacitance, increase
the current, or lower the threshold voltage of the comparator. The accuracy, however is
limited by the current noise that is inherent in the methods by which we implement a
current source.

A very simple current source may be implemented using a PMOS transistor with
its gate connected to ground, as shown in Figure 1.9. This current source differs from
an ideal current source in two ways: first, the current it produces is not constant; it
becomes smaller as the capacitor is charged from 0 to VTH ; and second, the current
includes noise such as thermal noise due to the random movements of electrons. The
voltage dependency of the current slows down the process of charging the capacitor as
there is simply less current. This deviation in time, however, can easily be absorbed
by calibrating the time unit. The current noise, on the other hand, will result in different
measurements of time as we repeat the experiment. To see this, let us model our practical
current source as a constant current source in parallel with a noise current source, as
shown in Figure 1.9. The current is now the sum of the nominal current, I0, and the
noise current. The additional noise current will cause the voltage across the capacitor to
deviate from its ideal waveform, which is simply a ramp, and to arrive faster or slower at
VTH . This time deviation is a random process, which we call jitter, and is directly related
to the characteristics of the noise current (itself a random process).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316981238.002
https://www.cambridge.org/core


10 Introduction to Jitter

Figure 1.9 A simple PMOS current source charging a capacitor.

1.4 Jitter in a Ring Oscillator

The circuits we use to generate clock signals are called oscillators. One common type
of oscillator, called a ring oscillator, consists of three inverters in a closed loop (a ring),
as shown in Figure 1.1. We analyze this ring oscillator to explain intuitively how jitter is
generated. A more rigorous treatment of this topic will be presented later in Chapter 4,
once we mathematically define jitter and its characteristics.

As mentioned earlier in this chapter, the ring oscillator of Figure 1.1 produces oscilla-
tions (in voltage) with an expected period of 6tpd, where tpd is the expected value of the
propagation delay through each of the three stages. Let us now explore the properties of
the delay of a CMOS inverter.

1.4.1 Jitter in Delay of a CMOS Inverter

When the input of an inverter rises from 0 to VDD, its output falls from VDD to 0. The
high-to-low delay of an inverter (denoted by tphl) is defined as the time elapsed between
the input (at 50% of its swing) and the output (at 50% of its swing). The low-to-high
delay of an inverter (denoted by tplh) is defined similarly, as shown in Figure 1.10. If
we assume the input transitions from low to high and high to low occur instantaneously,
then tphl and tplh simply correspond to the time it takes for the output to reach 50% of
its full swing. With this simplifying assumption, during the low-to-high transition of
the output, only the PMOS transistor is ON, while during the high-to-low transition
of the output, only the NMOS transistor is ON. Accordingly, we have two equiva-
lent circuits to calculate tphl and tplh, as shown in Figure 1.11. In both circuits, two
current sources charge or discharge the load capacitor. Of the two current sources in
parallel, one is assumed to be deterministic and controlled by the gate voltage. The
other source provides a random current corresponding to the thermal movement of
electrons.

The deterministic parts of tphl and tplh are simply CLVTH/I0. We refer to these as the
base delays of the inverter. The remaining parts are two random variables which are also
functions of time. We refer to these as the excess delays, or jitter, of the inverter. Jitter
is random for the following reasons: if we measure two identical inverters at the same
time, they exhibit different noise currents and hence result in different measurements
of the delays. They are also time-dependent because if we attempt to measure tphl (for
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Figure 1.10 (a) A CMOS inverter, (b) propagation delays for non-ideal input, (c) propagation
delays for ideal input.

Figure 1.11 (a) A CMOS inverter, (b) the inverter model for high input, (c) the inverter model for
low input.

example) of the same inverter, but at two different times, we end up with two different
numbers, again due to the noise current changing with time. For these reasons, we say
jitter is a random process.

To summarize, we have intuitively explained that the delay of a CMOS inverter has
two components: the base delay and the excess delay, or jitter. The base delay is a
deterministic number whereas the jitter is a random process (i.e., a time-dependent ran-
dom variable). Accordingly, we can build a simple model of an inverter, as shown in
Figure 1.12, where the input and the output are simply the time delays of the input and
output signals with respect to a reference. Note that although we arrived at this model
assuming an ideal (jitter-less) input, this model is still valid if the input has its own jitter.
Since we are only concerned with jitter (i.e., the random part of any delay), we simply
assume that both the input and the output of this model are random processes, where the
output random process is the sum of the input random process and the random process
created by the noise current inside the inverter. If we consider the input to the inverter
to be an ideal clock, then the corresponding input to this model will simply be zero. We
will use this simple model in the next section to better understand the jitter produced in
a ring oscillator.
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12 Introduction to Jitter

Figure 1.12 A simple model of an inverter.

Figure 1.13 A simple model of a ring oscillator.

1.4.2 Modeling Jitter of the Ring Oscillator

Figure 1.13 shows a model to predict the absolute jitter of a three-stage ring oscillator.
In this model, Xi[n] represents the total excess delay introduced by inverter i in the n-th
cycle, where n is the discrete time index. Note that this is the sum of the high-to-low and
low-to-high excess delays of inverter i. The output (absolute) jitter is also described by
a random process identified as Y[n]. Let us now explore some characteristics of Y[n].

Given the model in Figure 1.13, one can clearly see that Y[n] is the sum of the excess
delays in each of the three inverters, plus the excess delay that was accumulated over all
the past cycles. In other words, we can write: Y[n] = Y[n − 1] + X1[n] + X2[n] + X3[n].
If we further assume all Xi[k]s are identical (Xi[k] = X for all i and k) and uncorrelated
with each other, then Y[n] would be a random walk process, which keeps a running
sum of successive trials of a discrete-time random variable (X). It is well known [1] that
the variance of a random walk process increases linearly with the number of trials, n.
Similarly, the absolute jitter variance of a ring oscillator output grows linearly with the
number of cycles, unless controlled by other means such as a phase-locked loop.

We can resort to the same model (Figure 1.13) to gain insight into the period jitter
produced by the ring oscillator. Since period jitter is essentially the excess delay pro-
duced in a single cycle, it would be equal to the sum of the three excess delays only, that
is X1[n] + X2[n] + X3[n]; it does not account for the excess delays of previous cycles.
As a result, the period jitter will have a finite variance, independent of the number of
cycles.

1.5 Jitter in Electronic Systems

The timing uncertainty that manifests itself in charging a capacitor or in the delay of
an inverter extends to all electronic systems, including digital circuits and systems,
data converters, wireline, and wireless applications. However, the consequences or the
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Figure 1.14 Block diagram of a wireline transceiver.

adverse effects of timing uncertainty are different among these applications. In digital
systems, we are mostly concerned with completing an operation (e.g., multiplication)
within a certain number of clock periods. In the presence of timing uncertainty, the time
to completion will become uncertain. In a digital-to-analog converter, as we will see
in Chapter 6, the timing uncertainty in the clock will result in voltage uncertainty at
the analog output, compromising the accuracy of the analog voltage. We highlight the
wireline application in this section to provide insight on how timing uncertainty can
propagate through various blocks in a system and influence its performance.

A wireline link, as shown in Figure 1.14, consists of a transmitter, a channel, and a
receiver. The transmitter, in its simplest form, sends digital “1” and “0” data on the rising
edge of the transmit clock (CKTX) to the channel. Since the transmit clock contains jitter,
even when it is produced by a phase-locked loop, it will transfer this jitter to data edges.
This is the first place in the link where the clock jitter is transferred directly to the data.
Let us now follow the data through the channel and the receiver to see how this jitter is
influenced by the channel and shaped by the receiver.

The channel is known to have a low-pass filter characteristic, caused mainly by the
capacitive nature of the interconnect and the dielectric loss of the board. Equivalently, we
can say that the channel has memory, i.e., the pulse corresponding to the previous bit (in
a non-return-to-zero signaling) does not vanish immediately as we send the current bit,
but partially interferes with the current and future bits. This interference, known as the
inter-symbol interference (ISI), adds to the current bit level, and, as such, moves its zero
crossings, creating jitter. This jitter is deterministic because it can be fully determined if
the input data pattern and the channel response are both known. This is the second place
in the link where jitter has been added to the data.

An equalizer (EQ) at the front end of the receiver is usually capable of reducing,
or, in an ideal case, eliminating the deterministic jitter of the received data. However,
the equalized data will still contain some random and some deterministic jitter. This
equalized data is then fed to the Clock and Data Recovery (CDR) unit.

CDR is a simple feedback loop that controls the frequency and phase of an internal
clock so as to minimize the phase error between the internal clock and the input data,
producing the recovered clock. However, in this process, the recovered clock will inherit
some of the input data jitter. In addition, other blocks in this control loop (such as a dig-
ital block that determines the phase difference between the input data and the recovered
clock) will contribute additional jitter to the recovered clock.
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14 Introduction to Jitter

The reader will appreciate that the jitter present in the recovered clock is influenced
by the data jitter and by all the building blocks within the CDR. An immediate question
that comes to mind is whether the recovered clock will have jitter characteristics similar
to those of the data. Another question is whether the timing uncertainty in the recovered
clock is reduced or increased compared to that of the data. To answer these questions,
we need to characterize and quantify jitter. We will do this in Chapter 2.
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2 Basics of Jitter

In the industry as well as in academia, the concept of jitter is sometimes treated using
approximations, leading to misunderstandings and possibly to systems which are not
optimally designed with respect to jitter performance. This chapter lays the foundation
for a thorough and clear understanding of jitter in practice.

The chapter starts by providing four fundamental definitions of jitter: absolute jitter,
relative jitter, period jitter and N-period jitter. It proceeds with an overview of other
jitter definitions commonly found in literature. It will be shown that these additional
definitions can be expressed in terms of the four fundamental jitter definitions.

A large part of the chapter handles the important topic of jitter statistics and the
estimation of key parameters such as root mean square (RMS) and peak or peak-peak
values. This will lead to the classification of jitter based on its distribution, and eventu-
ally to the introduction and explanation of the concepts of deterministic jitter, random
jitter and total jitter.

2.1 General Jitter Terminology and Definitions

A variety of terms are commonly used to express the concept of jitter, and several dif-
ferent definitions can be found in the open literature, mostly dependent on the particular
background of the author or on the specific application considered. A short and incom-
plete list of these terms includes period jitter, cycle jitter, cycle-to-cycle jitter, N-period
jitter, accumulated jitter, adjacent jitter and long-term jitter. It is not uncommon to find
the same term used with different meanings by different authors, leading to possible
misunderstandings and confusion.

In this chapter jitter will be defined according to the way it can be measured, at least in
principle. This will not result in jitter definitions that are different from the ones already
found in the literature; rather, it will put the existing definitions in a clear and solid
framework. These operative definitions of jitter turn out to be very intuitive, simple and
of high practical value. Since the definition is connected to a measurement process, it is
easier to relate it to a specific application. And, conversely, given a specific application,
this approach makes it is easier to find the relevant jitter definition.

Generally speaking, jitter is the deviation of the time instant at which a given event
occurs, relative to a reference time frame, which can be chosen arbitrarily. In the context
of this book, the event we consider is the edge of a clock signal, or, more specifically,
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the time when a signal crosses a given threshold. The choice of the reference time frame
can essentially be made in two ways: either the edges of the clock under investigation
are compared to the edges of another clock, or they can be compared to some previous
edges of the same clock (self-referenced). The first approach leads to the definition of
absolute and relative jitter, while the second leads to the definition of period jitter. These
three definitions of jitter, plus a fourth one, N-period jitter, which is an extension of
the concept of period jitter, constitute the main topic of the next sections. We believe
that most of the jitter aspects in modern electronic systems can be covered and properly
described using only these definitions.

To set the stage for the next sections, let us introduce a generic clock signal v(t) which
will be used to clarify some initial concepts:

v(t) = A(t) sin(ω0t + ϕ(t)). (2.1)

If we consider the quantity A(t) as constant (independent of time t) and ϕ(t) identical to
zero, this signal is a perfect sinusoid with period T = 2π/ω0. The signal crosses zero
with positive slope at equidistant times kT , with k any integer. We can consider this to be
an ideal clock, in the sense that its zero crossings define a very accurate, noise-free time
frame. Needless to say, this kind of signal does not exist in nature. In real applications,
both A(t) and ϕ(t) are nonzero and depend on time, thus changing the characteristics of
the signal.

The quantity A(t) affects primarily the amplitude of the signal and is the origin of
amplitude modulation, either intentionally, as in the case of AM data transmission, or
unintentionally, in which case it is generally called amplitude noise or amplitude distor-
tion. It is important to notice that, as long as A(t) is not zero, the zero crossing of the
signal are not perturbed and still occur at kT , so that this signal can still be used as ideal
clock. As this condition is met for all practical clock signals, we will consider A(t) to be
constant, unless otherwise noted.

By contrast, the quantity ϕ(t) added to the ideal phase ω0t in the argument of the sinu-
soid shifts the position of the zero crossings to deviate from the ideal instants kT , causing
the phenomenon of jitter. The quantity ϕ is given different names in the literature: excess
phase, phase deviation, phase noise or phase jitter. In order to avoid confusion, we will
refer to it by the name excess phase. Note that the terms phase noise and phase jitter in
particular might give rise to serious misunderstandings, as they are also used to describe
different concepts (as will become clear in the next chapters), so they should be used
with caution.

The signal shown in Equation 2.1 is just one particular case, in which the basic wave-
form is a sinusoid, but this is not the only possibility. Assume a generic waveform x(ω0t)
periodic in t with period T = 2π/ω0 and with only one positive zero crossing per period.
Such a waveform can be used to describe a generic clock signal as:

v(t) = A(t)x(ω0t + ϕ(t)) (2.2)

where the considerations above about A(t) and ϕ(t) can be exactly replicated.
In most of the practical applications in this book, the basic shape of the clock signal is

rectangular. Although it is not common to talk about “phase” for a periodic rectangular
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signal, this concept can profitably be used if we think of the rectangular clock as the
result of passing the signal 2.1 through a zero crossing comparator, with output A if the
input is positive, −A if negative and 0 if zero. This operation can be described with the
help of the sgn function, so that the rectangular clock can be expressed as:

v(t) = A sgn[sin(ω0t + ϕ(t))]. (2.3)

With this in mind, all considerations about phase and excess phase for a sinusoidal signal
can be transported to a rectangular signal.

2.1.1 Absolute Jitter

Assume the clock under investigation has a nominal period T . This means that the edges
are affected by jitter, and each period of the clock is different, but the mean period is
equal to T . One can think of comparing the position of each edge of the clock under
investigation with the edges of another clock (called the ideal clock in the following)
not affected by jitter and having exactly the same period T . The absolute jitter is defined
as a discrete time random sequence a, where the k-th element, denoted as ak, is the time
displacement of the k-th rising edge tk of the real clock with respect to the corresponding
edge of the ideal clock. This concept is explained in Figure 2.1.

Since the ideal clock is not jittery, its edges are spaced exactly by T . If the time axis
is chosen properly, the edges of the ideal clock occur at time kT , so that the definition
of absolute jitter can be given as:

ak := tk − kT . (2.4)

Since both the clock under investigation and the ideal clock have the same period, it
is always possible to choose the position of the ideal clock so that the mean value of
the absolute jitter is zero. If for any reason the position of the ideal clock is such that
the average value of the absolute jitter calculated with Equation 2.4 is equal to a certain
offset value tOS �= 0, the absolute jitter can be redefined as:

ak := tk − kT − tOS. (2.5)

In the rest of the book, we will assume, unless otherwise stated, that the time axis is
chosen so that tOS = 0.

Figure 2.1 Illustration of the definition of absolute jitter.
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18 Basics of Jitter

The name “absolute” is chosen because the edges are compared to the edges of an
ideal clock, which defines the time scale in an absolute manner, independent of any
particular implementation or further reference. The ideal clock defines the absolute time
scale to which the clock under investigation is compared.

2.1.2 Relative Jitter

In the previous section, the edges of the clock are compared to the edges of an ideal
clock. However, one can think of comparing the edges of the clock under investiga-
tion (ck1) to the edges of another real, non-ideal clock (ck2), having the same average
period T . This leads to the definition of relative jitter as a discrete-time random pro-
cess r, where the element rk is the time displacement of the k-th rising edge tck1

k of the
clock under investigation with respect to the corresponding edge tck2

k of the reference
clock (see Figure 2.2):

rk := tck1
k − tck2

k . (2.6)

It can easily be seen that the relative jitter can be expressed in terms of the absolute jit-
ter of each of the two clocks considered. Indeed, adding and subtracting kT in the second
term of Equation 2.6 and recalling Equation 2.4, the relative jitter can be rewritten as:

rk := ack1
k − ack2

k . (2.7)

As in the case of absolute jitter, this definition assumes that the average value of the
relative jitter is zero. If there is a fixed time offset between the edges of the two clocks,
this offset must be subtracted, as is done for the absolute jitter in Equation 2.5.

2.1.3 Period Jitter

The two jitter definitions above are based on comparing the edges of the clock under
investigation to the edges of another clock. Alternatively, one can think of comparing

Figure 2.2 Illustration of the definition of relative jitter.
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Figure 2.3 Illustration of the definition of period jitter. Each period of the clock is compared to the
nominal period (gray clock signals).

the position of one edge of the clock with respect to the position of the previous edge
of the same clock. Operatively, this corresponds to feeding the clock to an oscilloscope,
triggering on one edge of the clock and looking at how much the following edge moves
around its average position.

This procedure leads to the definition of period jitter as a discrete time random
process p, where the element pk is the variation around its nominal value of the
position of one clock edge with respect to the previous edge. It is clear that this is
equivalent to considering the variation of the actual clock period with respect to the
nominal period. Figure 2.3 illustrates the concept. Each period of the clock is com-
pared to the nominal period (gray clock signals). Any deviation contributes to period
jitter.

The k-th sample of the period jitter will be indicated as pk and can be mathematically
defined as:

pk := (tk+1 − tk) − T = Tk − T (2.8)

where tk and tk+1 are the time instants of two consecutive rising edges of the clock, T is
the nominal clock period, and Tk is the actual clock period (see Figure 2.3).

By adding and subtracting (k + 1)T to the right hand side of Equation 2.8, the period
jitter can be expressed in terms of absolute jitter as:

pk = ak+1 − ak. (2.9)

In many cases it is of interest to know the variation of one edge relative not to the edge
immediately preceding it, but to the N-th previous one. Consider for instance an ideal
(delay-free and noiseless) digital frequency divider by N. The flip-flops in the divider
are triggered by the rising edges of the incoming clock. Since the divider is noiseless
and introduces no delay, the edges of one period of the output clock are perfectly aligned
with the edges of the input clock spaced N periods apart. Therefore the period jitter of
the output clock is equal to the relative variation of two input clock edges spaced N
periods apart. This leads to the definition of N-period jitter, which is the subject of the
next section.
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2.1.4 N-Period Jitter

As mentioned in the previous section, it is possible to compare the position of one edge
of the clock relative to the position of an arbitrary previous edge of the same clock.
Operatively, this corresponds to connecting the clock to an oscilloscope, triggering on
one edge of the clock and looking at how much the following edges move around their
average position. This procedure leads to the definition of N-period jitter as the discrete
time random process, denoted by p(N), where the element pk(N) is the variation around
the nominal value of the position of one clock edge with respect to the N-th previous
edge.

This concept is illustrated in Figure 2.4 for N = 5, where a clock with nominal period
T is shown affected by jitter. The k-th sample of the N-period jitter pk(N) can then be
expressed as the deviation of the time difference between the k-th and the k+N-th edges
from the nominal value NT:

pk(N) := (tk+N − tk) − NT . (2.10)

Considering that tk+N − tk is equal to the duration of the first N periods of the clock,
the expression for the N-period jitter can also be written as:

pk(N) =
(

i=k+N−1∑
i=k

Ti

)
− NT (2.11)

where Ti is used to indicate the i-th period of the clock.
By adding and subtracting (k + N)T to the right side of Equation 2.10, the N-period

jitter can be expressed in terms of absolute jitter as:

pk(N) = ak+N − ak. (2.12)

Following from the definition above, it is clear that the value of N-period jitter for
N = 1 corresponds to the period jitter defined in the previous section.

Figure 2.4 Illustration of the definition of N-period jitter.
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An important and easily derived relation exists between N-period jitter and period
jitter. Equation 2.11 can indeed be written as:

pk(N) =
i=k+N−1∑

i=k

(Ti − T) =
i=k+N−1∑

i=k

pi (2.13)

so that, recalling 2.8, the N-period jitter turns out to be equal to the sum of the period
jitter over N consecutive periods. In the literature, the N-period jitter is also called accu-
mulated jitter, since it originates from the accumulation of the jitter over consecutive
periods. In this book, the term N-period jitter is preferred, but the two identify the same
concept.

Before we proceed, one comment on notation: in a general context, the term N-period
jitter refers to jitter over multiple periods, and N does not represent any particular num-
ber. When addressing a more specific case, though, N can be replaced by the actual
number of periods being considered, or by the name of a variable or any other mathe-
matical symbol representing it. One can thus speak of 5-period jitter, m-period jitter, or
(k + 1)-period jitter, with m and k representing integer numbers.

2.1.5 Other Jitter Definitions

In addition to the jitter definitions given in the previous sections, the technical literature
often presents the reader with others. Some of them, like the Time Error (TE) or the
Time Interval Error (TIE), are well known, standardized, and used extensively in specific
applications. Others are used in papers, technical reports, application notes, and don’t
always share the same meaning.

This section will give a brief overview of the most popular among those additional
jitter definitions. This list is by no means exhaustive or complete.

Time Error (TE) and Time Interval Error (TIE)
In 1996 the Telecommunication Standardization Sector of the International Telecom-
munication Union (ITU-T), the agency of the United Nations which regulates the
interoperability of geographical communication networks worldwide, released the
Recommendation G.810 [2]. This Recommendation standardizes definitions and termi-
nology for telecommunication networks, among them the Time Error (TE) and the Time
Interval Error (TIE).

Given a generic clock signal of the form reported in Equation 2.2, the Recommenda-
tion defines a time function T(t) := φ(t)/(2π f0), where φ(t) := 2π f0t + ϕ(t) is the total
phase of the clock signal under investigation and ϕ(t) is the excess phase. Similarly it
defines a reference time function Tref (t) := φref /(2π f0) as the total phase of a reference
clock signal divided by its radian frequency. Typically, an ideal clock with no excess
phase (no jitter) is taken as reference signal, so that Tref (t) = t.

After giving those definitions, the Recommendation defines the Time Error (TE) at
time t as:

TE(t) := T(t) − Tref (t). (2.14)
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Based on the relations above and on the jitter definitions given in the previous sections,
it is easy to show (this is left as an exercise for the reader) that the Time Error at a time t
corresponding to the k-th edge of the clock under investigation is nothing other than the
absolute jitter at k:

TE(t) = ak. (2.15)

The Recommendation finally introduces the Time Interval Error (TIE) as a measure
of the accuracy in determining the duration of a time interval τ when using the clock
under investigation, as opposed to using the reference clock. It is defined as:

TIE(t, τ ) := [T(t + τ ) − T(t)] − [Tref (t + τ ) − Tref (t)]. (2.16)

From here it can be shown that TIE(t, τ ) = TE(t + τ ) − TE(t). Assuming that the times
t and t + τ correspond to the k-th and k + N-th edges of the clock, respectively, using
Equation 2.15 the Time Interval Error can be written as:

TIE(t, τ ) = ak+N − ak = pk(N). (2.17)

It is thus revealed that the TIE over a time interval τ is nothing other than the N-period
jitter, with N equal to the number of clock periods contained in τ .

A quantity connected to the TE and widely adopted by both the ITU-T and ANSI
standardization bodies is the Maximum Time Interval Error, MTIE [3], defined as the
maximum peak-to-peak value of TE(t) over a given interval τ :

MTIEt(τ ) := max
t≤t1≤t+τ

TE(t1) − min
t≤t1≤t+τ

TE(t1). (2.18)

The MTIE indicates the maximum error in the measure of any time interval in the time
range from t to t + τ when using the clock under test. Following from the discussion
above, the MTIEt(τ ) is simply equal to the peak-to-peak absolute jitter of the clock under
test over the interval [t, t + τ ].

Note that the name of Maximum Time Interval Error might be deceiving. Indeed
MTIEt(τ ) is not necessarily identical to the maximum TIE over the time period from t
to τ , as can be understood from the example in Figure 2.5.

Figure 2.5 Example of TE versus time, an illustration of TIE and MTIE concepts.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316981238.003
https://www.cambridge.org/core


2.1 General Jitter Terminology and Definitions 23

Cycle-to-Cycle Jitter
The cycle-to-cycle period jitter, mostly known simply as cycle-to-cycle jitter, is defined
in the JEDEC standard JESD65B [4] as the “variation in cycle time of a signal between
adjacent cycles, over a random sample of adjacent cycle pair.” It is construed as the
difference between two consecutive clock periods and it indicates how much one period
of the clock differs from the previous one. If we denote with Tk the k-th period of the
clock, the cycle-to-cycle jitter cck is:

cck := Tk+1 − Tk (2.19)

and can be easily expressed in terms of the period jitter as:

cck = pk+1 − pk (2.20)

or in terms of absolute jitter as:

cck = ak+2 − 2ak+1 + ak. (2.21)

This jitter definition is mainly used to characterize the stability of spread spectrum
clocks (SSC). To understand why this is a convenient approach, consider a triangularly
modulated SSC where the profile of frequency versus time is a ramp. The excess phase,
and thus the absolute jitter, is the integral of the frequency and follows a quadratic pro-
file t2. Since the period jitter is the first-order difference of the absolute jitter over time,
it is also a function of time and changes as t. The cycle-to-cycle jitter, on the other hand,
is the first-order difference of the period jitter over time and thus is ideally constant over
one full ramp. This property makes the concept of cycle-to-cycle jitter more useful in
the investigation of short-term jitter effects on SSC than either the period or the absolute
jitter.

Note that, even though the term cycle-to-cycle jitter has been defined in standards,
some authors have used it with a different meaning. For instance, before the release of
the JEDEC JESD65B standard, the authors in [5] and [6] used this term to refer to the
period jitter. It is worth mentioning that, in some contexts, the term adjacent period jitter
is used instead of cycle-to-cycle jitter.

Long-Term Jitter
Although the term long-term jitter is widely used, it is not officially defined by any stan-
dardization body. Nevertheless, almost all sources agree and refer to it as the value of the
N-period jitter for large values of N. The observation at the base of this definition is that
for many practical clock generation circuits, like PLLs, the N-period jitter increases for
small N, but then stabilizes around a value which is, in first approximation, independent
of N. The reason for this will be explained in Section 3.2.2.

How large N should be to consider it “long term” depends both on the application and
the clock generation unit. For instance, for a free-running oscillator, the N-period jitter
increases indefinitely with N, so it doesn’t make sense to speak of long-term jitter, since
there is no asymptotic value for it. In PLLs the value of N for which the N-period jitter
stops increasing depends on the PLL bandwidth (see Section 3.2.2). For a video system,
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where the line clock is synchronized at the beginning of one screen line, a large value of
N might be of the order of the number of pixels in one line.

Short-Term Jitter
As with long-term jitter, the term short-term jitter has also not been standardized;
however, unlike long-term jitter, different sources use it to mean different things. For
instance, [7] refers to it as the cycle-to-cycle jitter, while [8] uses it as a synonym for
period jitter. The reader is advised to take (and use) this term with caution and to make
sure its exact meaning is clear before proceeding further.

Phase-Jitter or Integrated Jitter
The terms phase-jitter and integrated jitter have also not been standardized, but there
seems to be a general consensus on their meanings. As in any other random process, the
absolute jitter process can be decomposed into its frequency components and displayed
in the frequency domain using its power spectral density as a function of frequency.
The phase-jitter or integrated jitter is basically the RMS value of the absolute jitter,
calculated considering only those frequency components of the power spectral density
which fall within a given frequency interval. To investigate this definition further we
need to introduce the concept of phase noise. This will be done in Section 3.1.5. It will
then be clear that the terms “phase” in phase-jitter and “integrate” in integrated jitter
come from the fact that this jitter is computed by integrating the phase noise over the
desired frequency range.

Adjacent Period Jitter
This term is neither standard nor widespread. It is mostly used to indicate the cycle-to-
cycle jitter (see, e.g., [9]).

Cycle Jitter
This term is sometimes used to indicate the jitter in one period or cycle of the clock (see,
e.g., [10]). It is therefore equivalent to the period jitter.

Aperture Jitter
Aperture jitter is a term used specifically in the context of analog-to-digital conversion.
In a sample and hold system, the time needed to disconnect the sampling capacitor from
the input buffer by opening a switch is called the aperture time. This time is normally
quite short, but not zero, and its effect can be modeled by introducing a small equiva-
lent delay in the sampling instant of the analog waveform. The noise generated by the
circuitry driving the switch introduces an uncertainty in the aperture time, which can
be mapped to a variation in the small equivalent delay. This variation is what is called
aperture jitter [11], [12]. Even though this type of jitter does not affect a clock or a
data stream directly, its effect is equivalent to a jitter on the sampling clock of the data
conversion system, which will be discussed in more depth in Chapter 6.
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Table 2.1 Summary of fundamental jitter definitions.

Jitter Symbol Definition vs. Edges’ Timing

Absolute ak deviation of the clock edge
position from the ideal one

tk − kT

Relative rk difference of the
corresponding edge positions
of two clocks (A and B)

tAk − tBk

Period pk deviation of the clock period
from its nominal value

tk+1 − tk − T

N-period pk(N) deviation of the duration of
N consecutive periods from
its nominal value

tk+N − tk − NT

Cycle-to-cycle cck difference between two
consecutive clock periods

tk+2 − 2tk+1 + tk

Table 2.2 Summary of fundamental jitter relationships.

Jitter vs. Absolute Jitter vs. Period Jitter

ak – N/A

rk aA
k − aB

k N/A

pk ak+1 − ak –

pk(N) ak+N − ak
∑k+N−1

i=k pi

cck ak+2 − 2ak+1 + ak pk+1 − pk

2.1.6 Summary of Jitter Definitions and Their Relationships

Tables 2.1 and 2.2 summarize the fundamental jitter definitions and their relations to
absolute and period jitter.

2.2 Statistics on Jitter

In the previous sections, we defined different types of jitter. Independent of their specific
definitions, all types are discrete time random processes. Absolute jitter, period jitter,
and relative jitter are all functions of the time index k, the ordinal number indicating
the clock edge which the jitter refers to. As such, each particular realization of a generic
jitter process (that will be indicated with jk) can be represented on a graph with the index
k as the horizontal axis and the value of jk as the vertical axis, as shown in Figure 2.6.1

1 Note that in this section the generic notation jk is used instead of ak or pk or any of the other specific types
of jitter, since the concepts explained in the following apply to all of them.
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Figure 2.6 Two different realizations of the same jitter process.

The issue with this kind of representation is that the particular sequence jk, as, for
instance, shown in Figure 2.6 with circles, is just one of the possible realizations of the
jitter process. Measured at another time, the same clock will display a jitter sequence
different from the first one, as shown in Figure 2.6 with squares.

It is therefore of fundamental importance to condense the information of the jitter
process jk into the smallest number of derived quantities which can capture all relevant
information for any possible realization of the process jk, and be profitably used in
system engineering.

One way to achieve this goal is to represent the sequence jk by means of its spectrum,
obtained via a Fourier transformation of its autocorrelation function, similar to what is
done for deterministic signals.

The other way is to consider the distribution of the amplitudes of jk on the y-axis by
means of either a histogram, or, more accurately, the probability density function (PDF)
and derive statistical data from it.

It must be noted that neither of these two approaches can fully replace the other. The
spectral approach gives information on how the sequence jk evolves over time, but is
not able to capture very rare events accurately. For instance, a strong tone in the spec-
trum reveals the presence of a sinusoidal component in the sequence jk, but a value
of jk very far from the average and happening very infrequently (an outlier) will have
almost no influence on the resulting spectrum and thus cannot be detected based on it.
The statistical approach, on the other hand, while being capable of capturing outliers, is
independent of the specific order of jk over the index k, and thus cannot be used for infer-
ring any behavior of the jitter process over time. As an example, Figure 2.7 shows two
different sequences jk leading to the same histogram (a uniform distribution between a
and b), but having a completely different time behavior, and, therefore, different spec-
tra.2 It is clear that a particular system can react very differently, depending on whether
the first or the second sequence is applied to it.

Both the frequency domain and the statistical approach therefore contain specific
information. Different applications may benefit from one or the other, but only the
combination of both gives a full picture of the jitter process.

This section will focus on the statistical approach while Chapter 3 will deal with the
frequency domain approach.

2 The reader should think of these sequences as deterministic signals for now. A more accurate definition of
the spectrum of random signals is given in Appendix A.
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Figure 2.7 Two different jitter process having both a uniform distribution between a and b, but
different time behaviors.

Figure 2.8 Generic jitter histogram.

2.2.1 Histograms and Probability Density Functions

The generic jitter process jk is defined only for integer values of the index k, but the jitter
amplitude – that is, the numerical value of the random variable jk for a given k – can in
principle assume any real value.

A common way to graphically represent the distribution of the amplitude of a random
variable is a histogram. The jitter process jk is measured and a number n of jitter samples
are stored, corresponding to n different values of the index k. A histogram is then built
by dividing the x-axis, representing the jitter amplitude, into a number of intervals of
equal extension (“bins”) and assigning to each bin a number equal to the number of
jitter samples falling into that specific interval (the occurrence). Finally, the histogram
is typically plotted as a bar chart, with the amplitude on the x-axis, and the occurrence
in each bin on the y-axis. Figure 2.8 shows the histogram of a jitter process where ten
thousand jitter samples were taken and binned into intervals of 1ps.

The histogram reveals a number of interesting properties of the jitter process under
investigation. As an example, from the histogram in Figure 2.8 it can be clearly seen
that the jitter amplitude is neither Gaussian nor symmetrical around its mean value – it
shows two bumps where jitter amplitude seems to be more frequent – and, finally, there
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are a few jitter events which fall on the left side far away from the main distribution,
hinting at some rare event corrupting the quality of the clock.

Although the histogram is a very well known and widespread graphical tool, it is, for
many reasons, more convenient to represent the distribution of jitter amplitude (or any
other random variable) by using a probability density function (PDF). For a continuous
random variable x the PDF is a real function of the possible values assumed by x, sat-
isfying the condition that the probability of x assuming values in any interval [a, b] is
equal to the integral of the PDF from a to b:

P [a < x < b] =
∫ b

a
fx(c)dc (2.22)

where P [U] indicates the probability of event U, and fx(.) is the PDF of the random
variable x. From this basic condition, it follows that the PDF is always positive or zero
and its integral from −∞ to +∞ is equal to one.

At this point an important observation on a fundamental difference between a his-
togram and the PDF must be considered. A histogram is derived from the data of one
particular realization of a random process, measured over time. For each instant of
time only one value of the process is recorded, and the statistics are built by record-
ing many samples of the same process realization over a given time span. A PDF, on
the other hand, is the description of the distribution of the values assumed by random
processes at one particular time instant. A PDF is equivalent to generating many par-
allel realizations of the same jitter process and considering the jitter value at some
specific moment in time (a possibility that is, however, normally not given in practice).
In other words, the PDF is a property of one point in time over all possible realiza-
tions, while the histogram is a property of one single realization over all instants of
time. The usual assumption is that the two descriptions are equivalent; that is, that
temporal averages over one realization give the same result as averages over the ensem-
ble of realizations. This assumption, although reasonable, is not always true. Processes
for which this assumption holds are called ergodic and are a subset of stationary pro-
cesses [1] (see also A.2.11 for a short review of ergodicity). Fortunately, in most of
the processes where jitter is involved, the ergodicity is given, so that we can use his-
tograms to infer statistical properties of the process in one specific point in time. In
the following discussion, we will assume that the processes we are dealing with are
ergodic.

Once the histogram of a random process is available, it is easy to derive the
corresponding PDF.

Assume the amplitude histogram (hj) of a jitter process jk is built on m bins of
extension �t, centered around the values ti, with i = 1 . . . m. Then, the value hj(ti)
of the histogram for the i-th bin is the number of jitter samples falling in the interval
[ti − �t/2, ti + �t/2]. From the way the histogram is built, the sum of all hj(ti) is equal
to the total number of jitter samples n:

m∑
i=1

hj(ti) = n. (2.23)
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Figure 2.9 Generic jitter probability density function.

If we define a function fj(ti) as the histogram scaled by the factor 1/(n�t):

fj(ti) := hj(ti)

n�t
(2.24)

by virtue of Equation 2.23 the following result can be obtained:

m∑
i=1

fj(ti)�t = 1. (2.25)

The left-hand side of this equation can be interpreted as the discrete version of the inte-
gral of the function fj(t) over the whole t-axis. Therefore the integral of the function
defined in Equation 2.24 sums to 1. It is left to the reader to prove that the integral of
fj(t) between any two values a and b is equal to the number of jitter samples falling
between a and b divided by the total number of samples, and thus equals the probability
P
[
a < jk < b

]
. The function fj(t) defined as in Equation 2.24 is thus the PDF of the

jitter process jk. Figure 2.9 shows the PDF of the jitter amplitude corresponding to the
histogram in Figure 2.8. As can be seen, moving from histogram to PDF implies only a
scaling of the y-axis, but no change in shape. Note also that, since the extension of the
PDF on the x-axis is normally in the range of picoseconds (10−12), the value of the PDF
of the y-axis is in the range of 10+12.

In practice, jitter in circuits can be caused by many different mechanisms and the
PDF can assume different shapes. Figure 2.10 illustrates some sample realizations of
the most typical jitter processes found in electronics and their PDFs: Gaussian, uni-
form, sinusoidal and Dirac. It can be seen how each process shows a typical signature
in the PDF. In general the opposite is not true, since a PDF shape can, in princi-
ple, be generated by sequences with very different time domain behaviors. However,
in many practical cases, the shape of the PDF can give a very good hint about the
underlying time domain sequence, if ergodicity is given. It must be noted that the
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Figure 2.10 Probability density functions for typical jitter distributions.

Dirac distribution is rarely found in practical cases, but it is a very useful abstrac-
tion for cases in which the jitter is concentrated around two or more discrete values.
The Dirac distribution with only two discrete values, also called Dual Dirac, plays
an important role in jitter decomposition, as will be seen in more detail in the next
sections.

For completeness, the expressions of these most common PDFs are reported here. For
a Gaussian jitter with RMS value σ and average value μ the PDF is given by:

fj(t) = 1

σ
√

2π
exp

(−(t − μ)2

2σ 2

)
. (2.26)

For a uniform jitter between two values A and B, the PDF is simply given by:

fj(t) = 1

B − A
(2.27)

for A ≤ t ≤ B, and zero otherwise. For a sinusoidal jitter with peak amplitude A and
average value μ the PDF is:

fj(t) = 1

πA

1√
1 − ((t − μ)/A)2

(2.28)
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for μ−A ≤ t ≤ μ+A and zero otherwise. Finally, for a Dirac jitter, assuming m discrete
values ti, with i = 1 . . . m, the PDF can be written as:

fj(t) =
m∑

i=1

Aiδ(t − ti) (2.29)

where
∑

Ai = 1 to ensure that the integral of the PDF sums to 1.
Each of the mechanisms generating jitter according to the PDFs described above

rarely occurs in isolation. In nature, multiple mechanism are at work simultaneously,
so that the PDF of the resulting jitter can assume more complicated shapes, as shown as
an example in Figure 2.9. Section 2.2.7 will explain how different PDFs combine into
one single resulting PDF.

Although the shape of the PDF already provides a great deal of information about
the jitter process, it is very useful to extract some basic statistical parameters from it.
In industrial contexts, the most commonly used parameters for describing jitter are: the
mean, the median, the variance and its square root, the standard deviation (also called
RMS, root mean square), the peak and the peak-peak. The next sections will go into the
details of each of them.

2.2.2 Jitter Mean

In many cases jitter is defined such that its mean is equal to zero. As an example, the
period jitter as defined in Equation 2.8 is intrinsically a zero mean process. In such
cases a nonzero mean value would imply that the nominal period T has been calculated
incorrectly. Absolute jitter is also another example where, if correctly extracted, the
mean value is intrinsically zero. However, there are cases where the mean might be
nonzero. One such case is the relative jitter as defined in Equation 2.6. If the two clocks
have a static timing skew between them, the average of the jitter is equal to the timing
skew.

When needed, the mean μj of a generic jitter process jk can be estimated based on n
samples by the so called sample mean:

μ̂j = 1

n

n∑
k=1

jk (2.30)

where the hat symbol indicates that this is an estimation.

2.2.3 Jitter Median

Similar to the mean, another measure of the central tendency of the jitter distribution is
the median. The median is defined as that particular value j such that 50% of the jitter
samples are smaller and 50% are larger than j, or, equivalently, a particular jitter sample
falls with 50% probability above j (and obviously also with 50% probability below it):

P[jk < j] = P[jk > j] = 0.5. (2.31)
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If the jitter PDF is symmetric, then the mean and median coincide, but in many cases the
PDF is skewed (e.g., there is a longer tail on one side than on the other) and the mean
and median are not the same.

Although the mean is the most commonly used measure of central tendency, there are
applications where the jitter median plays an important role. One notable example is in
CDRs (or PLLs) with binary phase detectors. In these systems the loop locks around
the median value of the relative jitter between data (or reference clock) and feedback
clock, not around its mean value. If the relative jitter distribution is very asymmetric,
the difference in locking point can be significant and close the eye more than would be
expected if the mean were considered.

2.2.4 Jitter Standard Deviation and Variance

One of the most widespread statistical parameters for characterizing jitter is the root
mean square (RMS) value. In statistics, the RMS is known as standard deviation, indi-
cated as σ , and is the square root of the variance σ 2. In this book we use the terms RMS
and standard deviation as synonyms.

The standard deviation is the main parameter for the characterization of Gaussian
distributions, but it can be computed for any kind of distribution. It is a measure of how
wide the jitter spreads around its average value, and plays an important role in the design
of many electronic systems.

The usual way of estimating the RMS value is first to estimate the variance of the
jitter and then extract its square root. The variance of a generic jitter process jk can be
estimated based on n samples by the so-called sample variance:

σ̂ 2
j = 1

n − 1

n∑
k=1

(jk − μj)
2 (2.32)

where μj is the mean of the process jk and the hat symbol indicates again that this is an
estimated value (see, e.g., [13]).

2.2.5 Jitter Peak and Peak-Peak

Many applications are affected by the extreme values that jitter can assume rather than
by the RMS value of jitter. For example, the error-free operation of a synchronous digital
circuit is guaranteed if the minimum duration of the clock period is still large enough
for the combinatorial logic to produce its output sufficiently in advance of the next clock
edge. In this case, the quantity that has to be characterized is the minimum duration of
the period, or, in other terms, the maximum value for the period jitter (Chapter 5 will
deal with this application case in detail).

In these cases, we speak of peak and peak-peak as a measure of the maximum and
maximum minus minimum values that jitter can assume. It should be noted that these
measures are mostly meaningless if they are not accompanied by additional information
about how they were performed. To understand this, imagine the very common case of
a jitter process with a Gaussian distribution. If 100 samples are measured, a histogram
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with a given extension is obtained. Due to the unboundedness of the Gaussian distri-
bution, though, it is very likely that if one thousand samples of the same process are
measured, the resulting histogram range, and therefore the peak or peak-peak values,
will be larger than in the case using a smaller sample size. The peak and peak-peak jitter
therefore must be defined more precisely.

The underlying concern when looking for the peak or peak-peak values is to deter-
mine the worst-case scenario, the worst jitter value that can be expected. Since circuits
are affected by thermal noise and thermal noise is Gaussian, the peak jitter should always
be infinite from a purely mathematical point of view. Of course, no system would work
if this were true, so there must be a way out of this dilemma. One approach is to ask the
following question: once a number for the peak value is given, what is the probability
that some jitter samples will be larger that this number? Or, alternatively, how can we
find a number such that the probability that jitter samples exceed this number is lower
than a predefined bound?

There are two ways of answering this question. The first, and probably the most
common, does not make any assumptions about the jitter distribution, while the second
leverages the knowledge of the distribution shape.

The first way is to define peak ρj and peak-peak ρρj jitter by taking n jitter samples
jk, k = 1 . . . n and finding the maximum and minimum values among the samples:

ρ+
j := max

k
(jk) − μj (2.33)

ρ−
j := μj − min

k
(jk) (2.34)

ρρj := max
k

(jk) − min
k

(jk) (2.35)

where μj is the jitter mean, as defined in Equation 2.30. Note that, for the peak values,
since some distribution might be asymmetric around the mean value, it is necessary to
distinguish between peak positive (ρ+), the range of the jitter on the right-hand side of
the mean, and peak negative (ρ−), the range of the jitter on the left-hand side of the
mean. Figure 2.11, illustrates these definitions with an example histogram.

It will be shown in Section 9.2.3 how the probability of finding jitter samples outside
the peak bounds defined in this way is essentially inversely proportional to the sample
size. For some applications, very small probabilities (of the order of 10−12 or lower)

Figure 2.11 Definition of peak positive jitter ρ+
j , peak negative jitter ρ−

j and peak-peak jitter ρρj.
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are specified, requesting the collection and processing of a prohibitively large amount
of data. Another issue connected with this procedure of finding the peak values is that
statistics based on finding the maximum (or minimum) values from a population are the
least robust. It can be understood that a single outlier in the set of measurements jk – due
to, e.g., a single measurement error or a glitch – can corrupt the whole result. Therefore,
the data set must be perfectly clean and free from erroneous outliers, before applying
the above-mentioned method.

For these reasons, a second, more robust approach is needed, which leverages prior
knowledge of the jitter distribution. Assuming that we have reason to believe that the jit-
ter distribution is Gaussian, or very close to Gaussian, there is a well-defined probability
of finding a jitter sample deviating from the mean more than Q times the RMS value σj.
The reader is referred to Section 9.2 for details about how to compute this probability.
Since the RMS value can be estimated by Equation 2.32, the peak (in this case, peak
positive and peak negative are the same) and peak-peak values can be defined as:

ρj := Q · σj (2.36)

ρρj := 2Q · σj. (2.37)

Using these definitions, the probability of finding jitter samples outside the peak or peak-
peak ranges are P(Q) and 2P(Q) respectively, with P(Q) defined in Equation 9.14 and
tabulated in Table 9.1 Note that these definitions allow us to find the peak values for very
low probabilities without the need to process huge amounts of data, and a few outliers
have a small impact on the estimation of the RMS, even for moderate sample sizes.

But what if the jitter distribution is non-Gaussian, as often happens in real applica-
tions? In this case, the estimated RMS cannot be correctly used to compute the marginal
probability of jitter outside given bounds. To illustrate this concept, Figure 2.12 shows
on the left-hand side the PDF of a real jitter distribution (solid line). The estimated RMS
using Formula 2.32 is 2.204ps and the dashed line shows a Gaussian distribution with
exactly this RMS value. With reference to these two curves, the right-hand side plots the

Figure 2.12 Example of non-Gaussian jitter distribution (left) and its corresponding probability
curve (right).
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probability of finding a jitter sample larger than x (the x-axis) for the real case (solid line)
and for the Gaussian approximation(dashed line). It is evident that predictions based on
the Gaussian approximation would be wrong.

For these reasons, a different methodology has been developed to extract meaningful
statistical values from distributions which are not Gaussian. This methodology requires
knowledge about deterministic jitter, which will be the topic of the next sections.

2.2.6 Taxonomy of Jitter Based on PDF

The methodology developed to cope with non-Gaussian jitter distributions is built on
the idea that the jitter on a clock, or data, in a complex system is the combined result
of multiple different mechanisms, each of which contributes one component of the
resulting jitter. For instance, as will be seen in Section 1.5, the jitter on data at the
receiver front of a wireline system end is the combination of the jitter produced by
the transmit PLL, plus the jitter introduced by the thermal noise of the off-chip driver,
plus the distortion of the edges due to the band limitation of the channel itself, among
others.

One erroneous bias is assuming that jitter is basically random only. This is not true;
jitter can manifest itself in a random as well as in a deterministic fashion. In analogy
to the more familiar case of amplitude modulated signals, deterministic jitter can be
thought of as the “horizontal” equivalent of distortion or cross-talk effects on the “verti-
cal” axis of an analog signal, while random jitter can be thought of as the equivalent of
the classical Gaussian amplitude noise.

More specifically, each jitter component encountered in real applications can be clas-
sified in one of two categories, based on the shape of its histogram or PDF: Deterministic
Jitter (DJ) and Random Jitter (RJ). Note that this classification can be applied to any
type of jitter as presented in the previous sections (period jitter, N-period jitter, absolute
jitter, . . . ).

Random Jitter (RJ)
The RJ includes all jitter components whose PDFs are unbounded, meaning that their
range grows indefinitely the more jitter samples are considered. In electronic systems,
RJ is produced by the electronic noise of the devices (thermal, flicker, and shot), and
manifests itself as a jitter with a Gaussian distribution.

It must be noted that the term RJ is generally used not only to describe the unbounded
nature of jitter, but also as a numerical value indicating the amplitude of the random jitter
component itself. There is no unified convention so far, though, so different standards
use the term RJ differently. For instance, in Serial-ATA, the RJ identifies the RMS value
multiplied by a factor which depends on the specified bit error rate (BER), e.g., for
a BER = 10−12, the factor is 14, as will be explained in the next sections. The PCIe
standard, on the other hand, uses RJ to indicate the RMS of the Gaussian distribution,
without multiplying it by the factor depending on the BER. In this book, we will stick
with the first convention, as it seems to be the most widely used. As an example, for a
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clock affected by Gaussian jitter with RMS 1ps, one can say that the clock has a random
jitter component and its RJ is equal to 14ps, if a probability of error of 10−12 is targeted.

Deterministic Jitter (DJ)
The DJ category includes all jitter components whose PDF is bounded. The most com-
mon causes of DJ are modulation of the clock due to supply noise, cross-talk from
other signals or channels, duty cycle distortion, channel bandwidth limitation, and
the like. Depending on the originating mechanism, the DJ can be divided in several
subcategories, the most important being:

• data-dependent jitter (DDJ): specific to jitter on serial digital data, it includes jitter
effects which are correlated with the transmitted data.

• duty-cycle-distortion jitter (DCD): jitter due to asymmetries in the duty cycle when
both rising and falling edges of the clock are used in the application.

• bounded-uncorrelated jitter (BUJ): jitter specifically in serial digital data, which is
bounded but bears no correlation with the transmitted data. It may be due to, e.g.,
crosstalk from adjacent channels and can be subdivided in periodic jitter (PJ) and
non-periodic jitter.

• sinusoidal jitter (SJ): jitter with a sinusoidal profile, usually used to test jitter tolerance
in high-speed interfaces.

Additionally, in the case of serial data transmission, jitter can also be divided into Cor-
related and Uncorrelated, depending on its relation to the transmitted data. There is no
standardized naming of those subcategories, and different authors often use different
terms to refer to the same concept. However the basic distinction to keep in mind is
between RJ, which is unbounded and mostly Gaussian distributed, and DJ, which is
bounded, with distributions of different shapes. Figure 2.13 illustrates this taxonomic
scheme. For an exhaustive list of the sub-categories see, e.g., [14].

It must be noted that the term DJ is generally used not only to describe the bounded
nature of jitter, but also as a numerical value indicating the peak-peak value of the jitter
component itself. As an example, for a clock affected by sinusoidally modulated jitter
with an amplitude of 1ps, the clock has a deterministic jitter component with a DJ equal
to 2ps.

Figure 2.13 Taxonomy of jitter terminology and their relationships.
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2.2.7 Combination of Jitter Components

The topic to investigate next is how the different jitter components combine to generate
the resulting jitter. As an example, take the wireline system described in Figure 1.14.
The data transitions at the input of the TX driver are already affected by jitter, mainly
produced by the PLL. The jitter introduced by the thermal noise in the driver shifts the
edges of the output data in a manner that is largely independent from how much jitter
is already present on them. In other words, the displacement of the data edges produced
by the noise of the driver is added to the displacement already present on the data at the
input. Generalizing this concept, it can be said that, in most cases, the resulting jitter jk
can be expressed as the sum of the several jitter components j1,k, . . . , jn,k:

jk = j1,k + j2,k + . . . + jn,k. (2.38)

It must be noted that the assumption that the amount of jitter introduced by each mech-
anism is independent from the jitter due to other mechanisms is not always true, and,
in some cases, the jitter already present on the clock does influence the amount of jit-
ter that another specific noise mechanism adds to the clock. However, in most cases,
Equation 2.38 holds.

Assuming that the jitter components are independent, a basic result of probability
theory states that the PDF of the resulting jitter, fj(t), is the convolution of the PDF of
the single components:

fj(t) = fj1(t) ∗ fj2(t) ∗ . . . ∗ fjn(t). (2.39)

It is very instructive to take a look at how the convolution process changes the shape
of the resulting jitter PDF in some exemplary cases. Figure 2.14 shows the result of the
convolution of a Gaussian distribution (RMS = 0.2) with DJs having a dual Dirac, a
sinusoidal, a uniform, and finally a triangular distribution, from top to bottom, respec-
tively. The original DJ distributions are shown with a dashed line, while the resulting
distributions are shown with a solid line. Note that the range of the bounded distribu-
tions is from −1 to +1 for all of them, meaning that their peak-peak value is 2. Note also
that for the sake of graphical clarity, the distributions have been normalized vertically to
a maximum value of one.

It is evident how the convolution process smooths out the hard borders of the DJ
distributions. It can be seen that the positions of the peaks, if there are any, or of the
maximum levels reached by the resulting distribution do not coincide with the positions
of the extremes of DJ; they are instead moved inwards. The only exception is when the
DJ is an ideal dual Dirac distribution. This shift inwards is more pronounced the more
tapered the DJ is. It is therefore not easy to determine the amplitude of the DJ by visual
inspection of the resulting PDF, as is evident in the case of the triangular DJ.

The Central Limit Theorem of probability states that the sum of multiple indepen-
dent random variables tends to resemble a Gaussian distribution. Thus, when multiple
DJ components are present, the resulting DJ will have a shape that is very close to
a Gaussian curve, with the only difference being that its tails will be bounded. Since
the convolution of two Gaussian distributions is still a Gaussian distribution, in this
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Figure 2.14 The solid lines are the PDF of the sum of Gaussian jitter (RMS=0.2) and DJ
components (DJ=2) with different distributions, shown dashed (from top to bottom: dual Dirac,
sinusoidal, uniform, and triangular). The distributions have been normalized vertically to a
maximum value of one for graphical clarity.

particular case the distribution of the sum of RJ and DJ will have a shape very close to
a Gaussian curve, and determining the DJ by visual inspection is simply not possible.

From Equations 2.38 and 2.39, it can be understood that when multiple uncorrelated
RJ or DJ components are present, the total RJ has a variance which is the sum of the
variances of the single RJ components:

σ 2
total = σ 2

j1 + σ 2
j2 + · · · + σ 2

jn (2.40)

while the total DJ is the linear sum of the single DJ components:

DJtotal = DJj1 + DJj2 + · · · + DJjn. (2.41)

The first equation above can also be derived from the fact that the sum of two uncor-
related Gaussian random variables is still Gaussian, with a variance given by the sum
of the variances. The second comes from the known property of the convolution of two
functions with bounded ranges: the range of the result is the sum of the ranges of the
convolved functions. In short, RJ adds quadratically while DJ adds linearly.

Since single RJ components in a system are the result of multiple thermal noise pro-
cesses which are by nature uncorrelated to each other, Equation 2.40 gives a very good
estimation of the total RJ.

For DJ, though, this assumption is not always true. To clarify this point, consider a
clock signal going through two cascaded buffering stages connected to two different
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noisy supplies. Assume now that the noise on each supply is sinusoidal with a given
frequency (the same for the two supplies), but with 90 degrees phase shift between the
two. In this case when the noise on the first buffer stage is at its maximum, the noise
on the second one is zero. It is clear that the DJ at the output of the buffer chain is less
than the arithmetic sum of the DJ produced by each of the supplies on the two buffering
stages separately. In general, if DJ components show a strong correlation the total DJ
can not be computed using Equation 2.39, and its range is less than, or, at most, equal
to the sum of the ranges of its single components. Therefore Equation 2.41 is an upper
bound to the total DJ, and can be taken as a worst case scenario when designing the
system. In some cases, though, simply summing linearly the DJ could lead to a very
pessimistic estimation and to an overly conservative designed system. In such cases, a
more in-depth analysis of the sources of DJ and their correlations must be done.

2.2.8 Jitter Decomposition

With the insight gained in the previous sections, we now go back to the original question
of how to derive meaningful statistical parameters from a jitter PDF which is not Gaus-
sian. Jitter decomposition is a methodology developed to tackle this problem. The basic
idea is to separate (decompose) the original jitter PDF into its RJ and DJ components
and derive the jitter statistics based on these two values.

There are several methods developed for this purpose. The two most popular among
them are the so-called independent-σ technique and the tail fitting.

The independent-σ technique relies on measurement in the frequency domain, specif-
ically on the phase noise of the clock under investigation, to extract the RMS value of
the RJ component, as will be seen in Chapter 3. With this information available, the DJ
is extracted either by deconvolution or by trying to fit the tails of the original distribution
with a Gaussian curve having an RMS value equal to the RJ and variable mean values.

The second technique, tail fitting, is far more popular. Since the jitter PDF is the result
of a convolution of a bounded DJ with a Gaussian RJ, it can be expected that the tails
of the jitter PDF are still very close to a Gaussian shape, especially for offsets very far
from the bounds of the DJ distribution. It therefore makes sense to try to fit the left and
right tails of the jitter distribution with Gaussian curves parametrized in terms of mean
μ, RMS value σ and amplitude A. The amplitude parameter A is a factor multiplying
the standard Gaussian PDF and is needed since the left- and right-fitted Gaussian curves
account only for a fraction of the whole PDF and thus have an area smaller than one.
The tail fitting is an attempt to find the best A, σ and μ fitting the left and right tails of
the original jitter distribution.

In a simplified approach, the amplitude A is assumed constant and equal to one.
Although easier from an algorithmic perspective, it tends to underestimate the DJ com-
ponent and overestimate the RJ one, as will be shown in the next section. Thus the
predictions on the probability of error using this approach are not very accurate.

A more advanced approach considers also the amplitude A as a optimization parame-
ter. The result is six parameters: AL, σL, and μL for the left tail and AR, σR, and μR for
the right tail. Figure 2.15 shows the result of the tail fitting applied to the distribution of
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Figure 2.15 Non-Gaussian jitter distribution with Gaussian tail fitting (left) and corresponding
probability curves (right). Left hand side: the original jitter PDF (solid line) and the two fitted
Gaussian curves (dashed lines). Right hand side: probability of finding a jitter sample larger or
smaller than a given value x, based on the real jitter PDF (markers) and based on the fitted
Gaussians (lines).

Figure 2.12. It can be seen that tail fitting provides a very good description of the tail
behavior in terms of probability. Note also how this approach focuses only on the behav-
ior of the extremes of the jitter distribution, and does not attempt to describe accurately
the central part, which is normally DJ-dominated. For most applications, this fact does
not represent a real limitation, since the critical part of the jitter PDF lies in the tails.

While the parameters A and μ can be different for the left and for the right tails,
σL and σR should typically converge to the same numerical value for a real electronic
system.

Note how the tail fitting approach applies a Dual-Dirac model to the PDF under inves-
tigation, since it essentially approximates the original PDF with the convolution of a
Gaussian jitter with a Dual-Dirac jitter, where the two Dirac impulses are centered at μL

and μR and have amplitudes AL and AR.

2.2.9 Total Jitter and Probability of Error

Based on the parameters derived from the tail fitting procedure, the values of peak left,
peak right and peak-peak can be defined for any jitter distribution as:

ρ− = μL − Q · σL (2.42)

ρ+ = μR + Q · σR (2.43)

ρρ = μR − μL + Q(σR + σL) (2.44)

where Q is a factor that determines the probability of finding a jitter sample outside of
the so-defined extremes. Note that, since the fitted Gaussians are weighted by the scale
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factors AL and AR, the probability of finding jitter higher than ρ+, lower than ρ−, or
outside ρρ are:

P
[
jk > ρ+] = AR · P(Q) (2.45)

P
[
jk < ρ−] = AL · P(Q) (2.46)

P
[
jk outside ρρ

] = (AR + AL) · P(Q) (2.47)

where P(Q) is the expression reported in Equation 9.14 and tabulated in Table 9.1.
In Equation 2.44 the quantity μR − μL accounts for the effect of the DJ components

on the jitter distribution and is often referred to as Dual-Dirac DJ and indicated with
DJδδ or DJdd:

DJδδ := μR − μL (2.48)

while Q(σR + σL) takes into account the random jitter component and is indicated as
usual by RJ. Note that the value of RJ depends on the chosen Q factor, thus on the
chosen level of probability of jitter exceeding the peak bounds. In the context of jitter
decomposition, the peak-peak value ρρ is often referred to as Total Jitter and indicated
with TJ. From Equation 2.44 the relationship between TJ, DJ, and RJ can be written as:

TJ = DJδδ + RJ(Q) (2.49)

where we emphasize that RJ is a function of the factor Q.
It is important to underline that a value of TJ without the specification of the probabil-

ity level assumed, or of the Q-factor used, is meaningless. The specification of TJ must
always be accompanied by the probability value for which that TJ has been calculated.

EXAMPLE 1 In the case shown in Figure 2.15, the DJδδ is equal to 1.9ps − (−3.4ps) =
5.3ps. The RJ part, taking factor Q = 7, is equal to 7·(1+1)ps = 14ps. The peak positive
ρ+ = 1.9 + 7 = 8.9ps and the peak negative ρ− = −3.4 − 7 = −10.4ps. The corre-
sponding TJ is thus 19.3ps and is associated to a probability of (0.19+0.45)·1.28·10−12

= 0.82·10−12 of finding a jitter sample outside the peaks. Note that if Q = 3, then RJ
= 6ps, ρ+=4.9ps, ρ− = −6.4ps and TJ = 11.3ps, which is much lower than the previ-
ous value, but, in this case, the probability associated with this numbers would be only
0.86·10−3.

The reader may ask why the concept of dual Dirac DJ (DJδδ) must be introduced in
addition to the “regular” DJ. The fact is that these two quantities rarely coincide. The
DJδδ is an abstraction whose purpose is to model correctly the TJ. It is derived purely
mathematically from the tail-fitting algorithm as the distance between the center of the
two fitted Gaussian curves, and does not represent a real jitter component present in the
system. As shown in Figure 2.14, due to the convolution process of RJ with DJ, the roll-
off points of the resulting jitter are moved inwards with respect to the DJ peak values.
As a result, the available algorithms commonly used to extract the DJ tend to move
the centers of the Gaussian curves fitting the tails inwards, underestimating the DJ. In
this sense, the algorithms optimizing also the amplitude A are much more accurate than
those assuming A = 1, but still tend to underestimate the DJ component. Therefore
DJδδ is always less than or equal to DJ, and equality is reached mostly only when the
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real DJ jitter component is a perfect Dual Dirac. Using DJ instead of DJδδ in Formula
2.49 yields an incorrect TJ value for the desired probability level.

A final note on the tail-fitting approach is in order. Although the concept is straight-
forward, its practical implementation faces severe challenges. The main difficulty lies in
the fact that the tail region of the PDF to be fitted must be far out enough so as not to be
significantly perturbed by DJ components, which could cause erroneous estimations of
the RJ parameters. These extreme parts of the histogram tails are also the parts with the
lowest number of hits. Variability on the tails due to the limited number of hits, as well
as outliers due to perturbed measurements, create very difficult conditions for a reliable
and robust fit. Several algorithms have been developed in the last decade to enhance
the accuracy and reliability of tail fitting and their detailed descriptions go beyond the
scope of the book. Section 10.4 briefly outlines the basic method used in the most popu-
lar approaches, involving the concept of Q-scale and normalized Q-scale. The interested
reader is invited to see [15–23] for further information.
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3 Jitter and Phase Noise

This chapter recalls the definitions and the insights introduced in Chapter 2 and elabo-
rates on them in mathematical terms. It gives the reader a more complete understanding
of the subject from a mathematical point of view, and provide tools and techniques to
analyze quantitatively jitter issues in real systems. The mathematical foundations are
reviewed in Appendix A.

In the main part of the chapter, the relation between phase noise and jitter is treated in
depth. Examples of phase noise profiles are taken from those most common in practice,
and their corresponding jitter is derived. The effect of spectral spurious tone on jitter is
also considered and analyzed.

3.1 Basic Relationship Between Jitter and Excess Phase

In the following sections, the jitter concepts presented in the previous chapter will be
related to the excess phase. Unless otherwise noted, we will assume a clock signal as
described by Equation 2.2, and we refer the reader to Section 2.1 for a more generic
discussion of the concept of an ideal clock and excess phase.

3.1.1 Excess Phase and Absolute Jitter in the Time Domain

The theory of phase noise is based on the assumption that the excess phase due to noise
in electronic systems is a continuous-time process. This assumption is very well justified
in practice. Indeed, even though the ultimate sources of noise – the charge carriers in the
devices – are intrinsically quantized, noise events normally involve such a large number
of particles and occur at such a high frequency that, for all practical purposes, even on a
very small time scale, their effects can be considered continuous.

Jitter, on the other hand, can be defined and measured only when a clock transition
is occurring, so it is intrinsically a discrete-time process. In this section we clarify the
dependencies of the two processes.

If we assume a generic clock, represented by x(ω0t) periodic in T0 = 2π/ω0, where
the term ω0t is the total phase of the signal, the time instants of the clock transitions can
be defined as the time when the signal crosses a given constant threshold value with,
e.g., positive slope. By properly choosing the origin of the time axis, the k-th clock
transition occurs when the total phase is equal to 2πk. In the ideal, noiseless case, these
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Figure 3.1 Excess phase versus time. At the bottom, an ideal clock signal and a jittered one are
illustrated. The corresponding total phases are shown in the graph at the top. The voltage signals
toggle as the total phase crosses multiples of π .

instants are such that ω0t = 2πk, so that t = kT0. In presence of noise the total phase
of the signal can be modeled as ω0t + ϕ(t), where ϕ(t) is the excess phase. Under these
conditions, the real clock transitions will occur at the instants tk such that:

ω0tk + ϕ(tk) = 2πk (3.1)

as shown in Figure 3.1. Since the absolute jitter ak is defined as tk − kT0 (see Equation
2.4), dividing both sides of the equation by ω0 and rearranging the terms, ak can be
expressed as:

ak = −ϕ(tk)

ω0
. (3.2)

The value of ϕ(tk) can be calculated by expanding the function ϕ(t) in Taylor’s series
around kT0. Replacing the distance tk − kT0 by ak, we obtain:

ϕ(tk) = ϕ(kT0) + akϕ̇(kT0) + a2
k

2
ϕ̈(kT0) + · · · (3.3)

Assuming that the terms of order two or above are negligible compared to the first-
order term, and combining the last two equations, the absolute jitter can be expressed as:

ak = −ϕ(kT0)

ω0 + ϕ̇(kT0)
. (3.4)

Finally, if the excess phase is sufficiently well behaved, meaning that its change rate is
much smaller than the change rate of the unperturbed phase (ϕ̇(kT0) � ω0), the absolute
jitter can be expressed as:

ak = −ϕ(kT0)

ω0
. (3.5)
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From the expression above, the absolute jitter is the discrete-time random pro-
cess obtained by sampling the continuous-time excess phase random process ϕ(t) at
equidistant instants T0 and scaling it by the radian frequency ω0.

3.1.2 Excess Phase and Absolute Jitter in the Frequency Domain

The previous section addressed the relationship between absolute jitter and excess phase
in the time domain. In this section we will look at the same topic but from a frequency
domain perspective.

An important concept in the analysis of random processes in the frequency domain
is the Power Spectral Density (PSD). Here we will summarize the main concept of the
PSD. A thorough discussion of the PSD can be found in many textbooks (see, e.g., [1])
and a very brief summary is presented in Appendix A.

The PSD is, for random processes, what the spectrum is for deterministic signals. It
tells us how the power of the random process is distributed over the frequency axis.
A flat PSD means that all frequency components are equally present in the process.
This is the case for the thermal noise produced by a resistor, for instance, which turns
out to be flat up to very high frequencies. If a process has a flat PSD it is also called
white, since all frequencies (colors) are contributing equally to the total process. Pass-
ing a white noise through a low-pass filter, e.g., by connecting a capacitor in parallel
to the resistor, dampens the high frequency components of the noise. In this case, the
PSD turns out to be still flat below the bandwidth of the filter, and rolls off at higher
frequencies. By integrating the PSD between two frequencies, we obtain the amount
of power contributed to the process by those frequencies. Integrating the PSD over the
whole frequency axis gives the total power of the process, which is equal to its vari-
ance. From a mathematical standpoint, the PSD is obtained as the Fourier transform of
the autocorrelation of the process; it is an even function of frequency and can assume
only positive real values. As an example, a flat PSD implies that the autocorrelation
is a Dirac function, meaning that the samples of the process are completely uncorre-
lated, no matter how close in time they are. In what follows we will apply the concept
of PSD to find a relation between absolute jitter and excess phase in the frequency
domain.

As explained in Section 3.1.1, the jitter is a sampled and scaled version of the excess
phase. From the basic theory of random processes, it follows that the autocorrelation of
jitter Ra is obtained by sampling the autocorrelation of the excess phase Rϕ :

Ra(kT0) = Rϕ(kT0)

ω2
0

(3.6)

and, finally, the PSD of the jitter can be obtained by folding and scaling the PSD of the
excess phase:

Sa(f ) = 1

ω2
0

+∞∑
n=−∞

Sϕ(f + nf0) (3.7)

and is defined in the frequency range −f0/2 < f < +f0/2 (see Figure 3.2).
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Figure 3.2 Relationship between PSD of the excess phase and PSD of jitter.

Note that if Sϕ(f ) is zero outside the interval [−f0/2, +f0/2], there is no superposition
of the replicas. This is often the case in many applications, where the power of the
excess phase due to thermal or flicker noise decreases with increasing frequencies, due
to intrinsic low-pass or integration effects. In such cases the residual power at frequency
higher than f0/2 can be neglected. For these cases, Equation 3.7 simplifies to:

Sa(f ) =
⎧⎨
⎩

Sϕ(f )

ω2
0

for
−f0
2

≤ f ≤ +f0
2

0 otherwise
(3.8)

so that the PSD of jitter is identical to the PSD of the excess phase, apart from a scaling
factor.

On the other hand, if excess phase at frequencies larger than f0/2 is present, it will
manifest itself as jitter at a frequency between 0 and f0/2. This phenomenon is equivalent
to the aliasing of analog signals in a sampling process in which the Nyquist criterion is
not satisfied. In the case of jitter, this makes physical sense, since noise components
separated in frequency by multiples of f0 cannot be distinguished when observing the
signal at time multiples of T0 = 1/f0. Figure 3.3 illustrates this concept with an example.
It can be seen, that, since jitter can be measured only at the clock rising edges, the
noise component at 5f0/8 has exactly the same effect on the signal as a component at
3f0/8. Looking at Figure 3.3, it might appear that the two noise components superimpose
linearly, so that the total noise power at 3f0/8 should be four times higher that the noise
of a single component, assuming both have the same power. However, we are dealing
here with random noise processes, so that the position of the second component on the
time axis is randomly distributed with respect to the position of the first. On average,
therefore, the jitter PSD at frequency 3f0/8 is just the sum of the two noise powers,
as correctly described by the folding function. The proof is left as an exercise for the
reader.

3.1.3 Voltage to Excess Phase Transformations: Random Noise

In the previous section, it was shown that the PSD of the jitter can be derived from
the PSD of the excess phase. The excess phase, however, is not an easily measurable
quantity like a voltage or a current. The question then is how to obtain the PSD of the
excess phase from measurements of the clock signal, which is normally a voltage signal.
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Figure 3.3 Excess phase aliasing. The clock signal is shown as a rectangular signal, and two
excess phase sinusoidal components at frequencies 5f0/8 (dashed) and 3f0/8 (solid) are shown
superimposed.

Let us represent the voltage signal as a sinusoid having a nominal radian frequency
ω0 = 2π f0 = 2π/T0:

v(t) = A(t) sin(ω0t + ϕ(t)). (3.9)

We are only interested in the excess phase, therefore we will assume that the amplitude
A(t) is constant.

This signal can be also written as:

v(t) = A [sin(ω0t) cos ϕ(t) + cos(ω0t) sin ϕ(t)] (3.10)

and, under the assumption that ϕ(t) � 1 (also called narrow angle assumption), as:

v(t) ≈ A sin(ω0t) + Aϕ(t) cos(ω0t). (3.11)

The phase modulated sinusoid has been decomposed into the sum of an undisturbed
carrier plus additive noise modulated by a quadrature carrier, so that the additive noise
is at its maximum where the carrier is near zero. It is left as an exercise for the reader to
prove that the time deviation from the nominal crossing point is consistent with Equation
3.5.

Based on this approximation, the autocorrelation of the voltage signal v(t) can be
calculated as:

Rv(t, τ ) = A2

2

{
cos(ω0τ ) − cos(2ω0t + ω0τ ) + [cos(2ω0t + ω0τ )

+ cos(ω0τ )] Rϕ(τ )
}

(3.12)

Rv(t, τ ) is periodic in t with a period of π/ω0 (cyclostationary process) and its average
value over one period is:

R̄v(τ ) = ω0

π

∫ π/ω0

0
Rv(t, τ )dt = A2

2
cos(ω0τ )

[
1 + Rϕ(τ )

]
. (3.13)

Applying a Fourier transformation, the two-sided PSD can be calculated as:

Sv(f ) = A2

4

[
δ(f − f0) + δ(f + f0) + Sϕ(f − f0) + Sϕ(f + f0)

]
(3.14)
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Figure 3.4 Relation between voltage spectrum and PSD of excess phase.

thus the one-sided PSD, defined for f ≥ 0, is:

S′
v(f ) = A2

2

[
δ(f − f0) + Sϕ(f − f0)

]
(3.15)

as shown in Figure 3.4.1 This equation reveals that, due to the modulation process
described by Equation 3.9, the baseband spectrum of the excess phase at a given fre-
quency f is up-converted to the frequency f0 + f and appears then as sideband around
the oscillation frequency f0. By reversing these equations and denoting now with f the
frequency offset from the carrier, the two-sided PSD of the excess phase can be derived
(for f �= 0) from the one-sided or two-sided voltage PSD as:

Sϕ(f ) = Sv(f0 + f )

A2/4
= S′

v(f0 + f )

A2/2
. (3.16)

In other words, the PSD of the excess phase at a given frequency f can be obtained as
the power of the voltage signal within 1Hz band at an offset f from the carrier divided
by the power of the carrier itself.

The considerations above assume a pure sinusoidal signal. In practical applications,
however, the clock signal is not a pure sinusoid and its spectrum contains harmonics at
multiple frequencies of the fundamental one. If we assume a generic periodic signal x(t),
choose the time origin so that x(0) = 0, and, for the sake of simplicity, assume that the
signal is odd-symmetrical about the origin (meaning x(−t) = −x(t)), it can be expanded
in Fourier series as:

x(t) =
+∞∑
n=1

cn sin(nω0t). (3.17)

If the signal is affected by absolute jitter ak changing the instants of the zero crossings
but not the shape of the signal itself, the term t in the expression above can be replaced
by t − a(t) (note that the minus sign is introduced for consistency with the definitions of
absolute jitter and excess phase):

x(t − a(t)) =
+∞∑
n=1

cn sin (nω0t − nω0a(t)) . (3.18)

1 For definitions of one-sided and two-sided PSD, refer to Section A.2.8.
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Figure 3.5 Rigid shift of the harmonic components of a period signal affected by jitter j.

The auxiliary continuous time function a(t) is introduced as an extension of the concept
of absolute jitter in the continuous time domain, and is equal to ak at the zero crossings.
This function has no real physical meaning, but is helpful in deriving the considerations
in the present section.

It can be recognized that −nω0a(t) is the excess phase ϕn affecting the n-th harmonic.
Since −ω0a(t) is the excess phase affecting the fundamental frequency, indicated by ϕ

in the case of the pure sinusoid above, it follows that:

ϕn = nϕ (3.19)

the excess phase of the n-th harmonic is n times larger than the excess phase of the
fundamental.

This can be understood intuitively considering that the excess phase is a measure of
jitter relative to the period of the signal. Since the jitter affects the zero crossing point
but not the shape of the signal, the waveform is rigidly shifted on the time axis, so that
all frequency components are shifted by the same amount regardless of their periods
(see Figure 3.5). The amount of shift affecting a frequency component with a period n
times smaller must therefore lead to an excess phase n times larger.

For the PSD, this means:

Sϕn (f ) = n2Sϕ(f ). (3.20)

This expression shows that the PSD of the excess phase around the n-th harmonic in
n2 times larger than the one around the fundamental. Following the same approach as in
the case of a pure sinusoid, Sϕn (f ) can be derived from measurements as the power in a
1Hz bandwidth at an offset f from the n-th harmonic divided by the energy of the n-th
harmonic. However, this result has to be further divided by n2 to obtain Sϕ(f ). Figure 3.6
shows graphically the relationship between the PSD of the excess phase and the voltage
spectrum of a non-sinusoidal periodic signal.

3.1.4 Voltage to Excess Phase Transformations: Modulation

In the previous section, the excess phase ϕ(t) has been considered to be a random process
having a given PSD Sϕ(f ). It is also important to consider cases when the excess phase
is a deterministic periodic signal, since such situations are often encountered in practice,
for instance in a clock distribution network with periodic disturbance on the supply, or in
a PLL, due to the periodic nature of the phase comparison and VCO voltage adjustments.
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Figure 3.6 Relationship between PSD of excess phase and spectrum of signal with harmonics.

Let us assume then that the excess phase is a sinusoidal signal with a frequency ωm �
ω0 and amplitude �m, ϕ(t) = �m sin(ωmt). The voltage signal in Equation 3.9 is then:

v(t) = A sin[ω0t + �m sin(ωmt)] (3.21)

where the amplitude A(t) is again assumed to be time-independent. For a small angle
modulation �m � 1, this can be expanded in series by use of Bessel functions of the
first kind Jn as:

v(t) = AJ0(�m) sin(ω0t) + AJ1(�m) [sin(ω0t + ωmt) − sin(ω0t − ωmt)]

+ AJ2(�m) [sin(ω0t + 2ωmt) − sin(ω0t − 2ωmt)] + · · · (3.22)

It can be seen that the modulation of the excess phase at frequency ωm translates into
discrete tones at offset multiples of ωm around the carrier ω0. The level of the side-
band tones with respect to the carrier can be calculated easily. Using the small angle
assumption, the first three Bessel functions can be approximated by J0(�m) ≈ 1,
J1(�m) ≈ �m/2 and J2(�m) ≈ �2

m/8. For small �m, the tones at frequencies 2ωm

or higher are much weaker than those at ωm and can normally be ignored. Applying
these expressions to Equation 3.22, the difference in power level between the first tone
and the carrier is called Spurious to Carrier Ratio (SCR) and typically expressed in dBc
(dB from carrier):

SCRdBc = 10 log

(
�m

2

)2

dB. (3.23)

Conversely, from spectrum measurements, the excess phase modulation amplitude can
be derived from the SCRdBc as:

�m = 2 · 10(SCRdBc/20). (3.24)

Figure 3.7 summarizes the voltage to excess phase transformations for the case of ran-
dom noise (Equation 3.16) as well as for a deterministic modulation (Equations 3.23
and 3.24).

EXAMPLE 2 It is useful to get a sense of the order of magnitude of the SCR typically
found in modern clock generation circuits and the corresponding excess modulation
amplitude. An SCR of −60dB represents an excellent value, normally obtainable only
with ad hoc techniques, aimed at reducing the deterministic periodical disturbances.
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Figure 3.7 Overview of voltage to excess phase transformations.

Using the equation above, it can be seen that this value corresponds to an excess phase
modulation of �m = 2 mrad. Every 6dB added to the SCR multiplies the modulation
amplitude by two.

3.1.5 Definition of Phase Noise

Although the concept of phase noise is broadly used, its definition was subject to dis-
cussion in recent years. In this book, phase noise will be indicated with the symbol L,
in accordance with the common usage in the literature. Given a voltage periodic signal
with frequency f0, power P, one-sided voltage PSD S′

v and affected by random excess
phase modulation ϕ, the phase noise is traditionally defined as the ratio of the power
of the signal in 1Hz bandwidth at offset f from the carrier, divided by the power of the
carrier:

L(f ) := S′
v(f0 + f ) in 1Hz bandwidth

P
. (3.25)

Note that L(f ) is defined over positive frequencies only (f ≥ 0). In 1999 the IEEE
released the Standard 1139, revised in 2008 [24], in which the phase noise is defined as
the two-sided PSD Sϕ , or half of the one-sided PSD S′

ϕ , of the excess phase ϕ:

L(f ) := Sϕ(f ) = S′
ϕ(f )

2
. (3.26)

This standard seems not to have been widely adopted by industry or academia, but we
report it for completeness. It was proven in Section 3.1.3 that, using the narrow angle
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assumption, the two definitions above are equivalent (see Equation 3.16). If the narrow
angle condition is not satisfied, however, the two definitions differ. Following Section
3.1.3, the phase noise of a signal can also be derived from the voltage spectrum of the
n-th harmonic as:

L(f ) := 1

n2

S′
v(nf0 + f ) in 1Hz bandwidth

power of the n-th harmonic
. (3.27)

Note that in this section we referred to one-sided and two-sided PSD, and we avoided
the use of the terms single sideband and double sideband. The use of these terms is often
a source of misunderstanding, so they should be treated with caution. A discussion of
the different engineering definitions of PSD and their usage in this book is reported in
Appendix A.2.8.

Also note that in this section, as well as in the following ones, the symbol f denotes
the frequency offset from the carrier, and not the absolute frequency. In general, the
argument of the phase noise L(·) represents always the frequency offset from the carrier,
independent of the symbols used for it. Some authors use the symbol fm for it, but for
simplicity we keep f , unless there is risk of misunderstanding.

3.2 From Phase Noise to Jitter

The following sections will illustrate how to compute absolute, period and N-period
jitter starting from the phase noise profile.

3.2.1 Absolute Jitter

Using the Wiener–Khinchin theorem (see Section A.2.7) it is possible to easily derive
the variance of the absolute jitter via integration of the corresponding PSD:

σ 2
a =

∫ +f0/2

−f0/2
Sa(f ) df . (3.28)

It has been shown in Section 3.1.2 that Sa(f ) is a scaled and folded version of the PSD
Sϕ(f ), so that the area of Sa from −f0/2 to +f0/2 is equal to the area of Sϕ(f ) over
the frequency range from −∞ to +∞, scaled by 1/ω2

0. Since, using the narrow angle
assumption, Sϕ(f ) is equal to the phase noise L(f ), the RMS absolute jitter can then be
calculated as:

σa =
√

2

ω2
0

∫ +∞

0
L(f ) df (3.29)

where the integral is carried out only over positive frequencies and multiplied by two,
considering that phase noise is normally symmetrical about the zero frequency. It must
be remembered that, in the expression above, and in all expressions that follow, the
numerical value of the phase noise in the integral must be expressed in linear units, not
in logarithmic ones (L[linear] = 10(L[dBc/Hz]/10).
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Figure 3.8 Voltage spectrum of a noisy periodic signal with multiple harmonics (top) and
corresponding phase noise plot (bottom). The upper noise sideband of the carrier superimposes
with the lower sideband of the second harmonic.

There are two inherent problems with the expression above, both related to the inte-
gration limits. The first one concerns the integration towards +∞. As shown in Section
3.1.3, the phase noise is calculated as the ratio of sideband noise power over carrier
power. In most of the practical cases, the signal under investigation is not a perfect sinu-
soid, so the spectrum presents multiple harmonics. The upper noise sideband of the first
harmonic at f0 will then overlap with the lower noise sideband of the second harmonic
at 2f0, as illustrated in Figure 3.8.

The degree of superposition depends on the shape of the signal, but we can expect
that, starting from frequencies above 1.5f0, the noise of the second harmonic will start
to dominate over the noise of the first. We have shown in Figure 3.6 that the phase noise
around the various waveform harmonics is the scaled replica of the phase noise around
the fundamental, and that each of these replicas alone account for the total jitter. For this
reason, to compute the jitter correctly we can focus solely on the phase noise around
one of these harmonic and thus limit the upper integral of Equation 3.29 to an offset of
about f0/2 from the carrier f0.

The second concern is related to the lower integration limit equal to zero. All physi-
cally implementable oscillators and signal sources show a 1/f 2 or even 1/f 3 behavior of
the phase noise versus frequency f for offsets very close to the carrier (see Figure 3.8).
It is well known from elementary analysis that the integrals of such functions down to
zero diverge to infinity. This result is indeed in accordance with physics: if the oscilla-
tor output is observed for an infinite time, the absolute jitter will increase indefinitely.
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Fortunately, observation time is limited in practical situations and, additionally, almost
all electronic systems of practical use are insensitive to jitter fluctuations at very low
frequencies, so that at least two approaches can be used to overcome this issue.

In the first approach, a minimum frequency fmin can be defined based on the analysis
of how jitter affects the electronic system under investigation or the maximum observa-
tion time. It is probably the most common way of solving the problem, although not the
most correct one. In this case Equation 3.29 can be written as:

σa =
√

2

ω2
0

∫ +f0/2

fmin

L(f ) df . (3.30)

The alternative, and more exact, way is to analyze how jitter at different frequen-
cies affects the performance of the system. This can be expressed in terms of a jitter
transfer function Hsys(f ) in the frequency domain, which weights the jitter components
according to their impact. The RMS value of the absolute jitter can then be calculated
by integrating the phase noise filtered by this transfer function:

σa =
√

2

ω2
0

∫ f0/2

0
L(f )

∣∣Hsys(f )
∣∣2 df . (3.31)

Typically Hsys(f ) shows a high-pass-like behavior, so that the integral in the expres-
sion above will not diverge for integration down to zero. Figure 3.9 illustrates this
concept in the case of a phase noise profile growing as 1/f 2 for low frequencies and
Hsys(f ) having a first-order high-pass characteristic. In this case, the filtered phase noise
exhibits a flat profile for low frequencies, and can be integrated without problems down
to very low frequency offsets. An example of the application of this method will be
given in Section 7.2.3.

We will now apply the previous expressions to four of the most common phase noise
profiles: flat, 1/f 2, PLL-like, and 1/f 3.

Flat Phase Noise Profile
In this section, the RMS absolute jitter corresponding to a flat phase noise is derived
(see Figure 3.10). Assuming:

L(f ) =
{ L0 if 0 < f < fmax

0 otherwise
(3.32)

Figure 3.9 Filtering of the phase noise before integration to obtain the RMS absolute jitter.
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Figure 3.10 Flat phase noise profile.

and substituting this expression into Equation 3.29, the absolute jitter can be found
using:

σa = 1

ω0

√
2L0 fmax . (3.33)

If the white phase noise band extends to fmax = f0/2, then, due to the repetition of the
spectrum in the frequency domain, the PSD of the jitter random process j is flat for
−∞ < f < +∞. In such a case, a very simple expression for the ratio of the RMS
absolute jitter to the clock period is found:

σa

T0
=

√L0 f0
2π

· (3.34)

EXAMPLE 3 For f0 = 1GHz and L0=10−13 (corresponding to a value in dB of
−130dBc/Hz), the RMS absolute jitter is equal to 0.16% of the clock period, namely
1.6 ps.

1/f 2 Phase Noise Profile
Neglecting the presence of flicker noise and of the flat region for very high frequen-
cies, to a first approximation the phase noise profile of a free-running oscillator can
be described as a constant 20dB/dec frequency roll-off (see [25], [26]), as shown in
Figure 3.11:

L(f ) = L1f 2
1

f 2
. (3.35)

As explained before, this profile cannot be integrated down to zero, so that Equation
3.30 must be used, yielding the absolute jitter normalized to the period:

σa

T0
=
√
L1f 2

1

2π2

(
1

fmin
− 1

fmax

)
(3.36)

where the upper integration limit in Equation 3.30 has been replaced by fmax for more
flexibility. Note that fmin is related to the observation time, as stated above. The longer
we observe the device under test, the smaller fmin must be. Note that the final value
mainly depends on fmin, if fmax is at least 10 times larger than fmin.
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Figure 3.11 Simplified phase noise profile of a free-running oscillator.

Figure 3.12 Simplified phase noise profile of a PLL.

Simplified PLL Phase Noise Profile
To a first approximation, the phase noise profile of a PLL can be described as a flat
region at level L0 at low frequencies and a 20dB/dec roll-off for frequencies above the
loop bandwidth f3dB, as shown in Figure 3.12:

L(f ) = L0

1 + (f /f3dB)2
. (3.37)

In PLL design, the flat L0 region up to f3dB is called in-band phase noise and is mainly
due to noise on the reference clock, in circuits in the forward path before the loop-filter,
and in the feedback path. The 1/f 2 part is a combination of all possible noise sources of
the PLL, including loop filter and VCO. Typically, however, a high-performance PLL is
designed so that the phase noise in this region is limited by the VCO noise.

The expression above can be easily integrated over the whole frequency range. Apply-
ing Equation 3.29 and remembering that

∫
1/(1 + a2)da = arctan(a), the RMS value

relative to the clock period can be written as:

σa

T0
=
√
L0 f3dB

4π
(3.38)

which is a fairly simple expression to remember. The same result can be obtained by
remembering that the area below a profile like the one shown in Figure 3.12 can be
calculated by multiplying L0 by f3dBπ/2, where f3dBπ/2 is the so-called equivalent
noise bandwidth. It is left as an exercise for the reader to prove this equivalence.
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EXAMPLE 4 In paper [27], the authors present a high-performance digital PLL with
programmable bandwidth. The phase noise profile is measured at an output frequency
of 3.61GHz for three different bandwidth values: 300kHz, 1MHz and 2MHz. The in-
band phase noise for the three cases is −100dBc/Hz, −102dBc/Hz and −104dBc/Hz
respectively. The phase noise of this design is particularly smooth and doesn’t show
significant peaking, so that it is easy to calculate the corresponding absolute jitter with
great accuracy by applying Equation 3.38. The result is 428fs, 621fs, and 697fs for the
three cases, respectively: very close to the published numbers (440fs, 660fs, and 680fs
respectively).

EXAMPLE 5 Paper [28] presents a 3GHz digital PLL with bandwidth of 1.8MHz and
an in-band phase noise of −102.5dBc/Hz. In this case, though, the phase noise profile is
not completely flat, showing a peaking of about 3dB around 1.2MHz frequency offset.
By applying Expression 3.38 with L0 = −102.5, the RMS absolute jitter turns out to
be 0.95ps. If L0 = −99.5 is used instead, the result is 1.34ps. One might think that by
numerically integrating the exact phase noise profile, the result should be between these
two numbers. In reality, and maybe a bit surprisingly, the result is 0.86ps. The reason for
this difference is that the out of band phase noise for this PLL is dominated not by the
VCO, but by other blocks. The noise produced by those blocks is filtered by a low pass
transfer function of second order due to the particular design of the loop filter, so that the
out of band phase noise profile decreases with −40dB/dec, instead of the −20dB/dec
assumed in deriving Equation 3.38.

It is instructive to investigate which parts of the phase noise profile shown in Figure
3.12 contribute the most to the resulting absolute jitter. To do so, the absolute jitter
is calculated by integrating the phase noise from 0 to a moving upper limit fmax. The
result is:

σa(fmax)

T0
=
√
L0f3dB

2π2
arctan

(
fmax

f3dB

)
. (3.39)

Except for a constant multiplicative factor, the behavior of this function is described by
the function: √

2

π
arctan

(
fmax

f3dB

)
. (3.40)

Figure 3.13 shows a plot of this function versus log(fmax/f3dB). It is interesting to note
that the maximum slope is reached around the bandwidth of the PLL f3dB. Therefore,
when looking at the phase noise profile on a logarithmic frequency axis, most of the
absolute jitter is coming from frequencies around the PLL bandwidth. From Figure 3.13
it can be seen that 60% of the absolute jitter comes from frequencies between one tenth
and two times the PLL bandwidth. This point deserves to be highlighted further. Phase
noise profiles are usually plotted on logarithmic frequency scales, so quick glances at
them can be deceiving. One would naturally think that frequency intervals of similar
“visual” length on the x-axis would yield the same amount of jitter, and that all parts
of the in-band phase noise spectrum are equally important. But this ignores the nature
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58 Jitter and Phase Noise

Figure 3.13 Normalized absolute jitter for a simplified PLL phase noise profile, as function of the
upper integration limit fmax normalized to the PLL bandwidth f3dB.

of logarithmic scales: a frequency interval of a given visual length around a certain
frequency f is actually ten times larger that an interval of the same visual length around
a frequency a decade further left on the x-axis, f /10. Therefore each logarithmic unit to
the right contributes ten times more jitter than the one before it.2 As a consequence, most
of the effort in PLL design to reduce absolute jitter should be devoted to controlling the
phase noise around the PLL bandwidth. Any noise contributors around this area, as well
as any peaking in the phase noise profile, are particularly harmful.

1/f 3 Phase Noise Profile
Here we derive the absolute jitter corresponding to a 1/f 3 characteristic of the phase
noise. This phase noise profile is typical for the low frequency behavior of a free-running
oscillator with internal flicker noise sources. Assuming

L(f ) = L1f 3
1

f 3
(3.41)

and integrating this function down to zero would lead to non-convergence of the result,
consistent with the physical reality, in which flicker noise processes have infinite vari-
ance. However, in practical applications, the process is observed only for a limited
amount of time, and we can define a lower bound frequency fmin for the integration
of the process. Substituting Expression 3.41 into Equation 3.29 and limiting the integral
from fmin to fmax we obtain for the ratio of the RMS absolute jitter to the clock period:

σa

T0
=
√√√√L1f 3

1

4π2

(
1

f 2
min

− 1

f 2
max

)
. (3.42)

2 The same is of course true for classic noise; looking at noise on a logarithmic scale is misleading. To fully
appreciate its frequency distribution, noise must be viewed on a linear scale.
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3.2 From Phase Noise to Jitter 59

It is interesting to note that if fmax is even only one decade higher than fmin, the second
term in the round parentheses contributes only 1%. So, in many practical applications,
it makes sense to neglect the limit for higher frequencies and obtain a simplified
expression:

σa

T0
=
√
L1f 3

1

2π fmin
. (3.43)

3.2.2 N-Period and Period Jitter

In several practical applications, the N-period jitter determines the performance of the
system under consideration. We have already seen that the N-period jitter on the clock
at the input of a frequency divider determines the period jitter at its output, and thus, for
instance, the maximum achievable speed of a digital synchronous system working on
that clock. This topic will be addressed further in Chapter 5. Another example is found
in line synchronization in video applications. In filling up the pixels of a display, the
video clock is synchronized to a master clock only at the beginning of each line. The
last pixel of each line is thus affected by N-period jitter with N equal to the number of
pixels in a line.

Due to its importance, this section is dedicated to deriving the relation between phase
noise and N-period jitter.

Recalling its definition as given in Equation 2.1, N-period jitter is a discrete time
random process, whose value pk(N) is equal to ak+N − ak.

The variance of the N-period jitter can be expressed in the following way:

σ 2
p(N) = E[(ak+N − ak)2] = Ra(0) − 2Ra(N) + Ra(0) = 2[Ra(0) − Ra(N)]. (3.44)

Using Equation 3.6 we obtain, as reported in [25]:

σ 2
p(N) = 2

ω2
0

[Rϕ(0) − Rϕ(NT0)]. (3.45)

From this formula is clear that the RMS N-period jitter is completely determined by
the autocorrelation function of the excess phase ϕ(t).

In many practical cases, the value of the excess phase bears less and less relation
to its previous values the further back in time these values lie. In other words, the
excess phase process has asymptotically no memory; it is asymptotically uncorrelated.
In mathematical terms this means that limN→+∞ Rϕ(NT0) = 0, so that:

lim
N→+∞ σ 2

p(N) = 2

ω2
0

Rϕ(0) = 2

ω2
0

· Area[L(f )] = 2σ 2
a . (3.46)

Note that this is the long-term jitter as defined in Section 2.1.5, so that σlt = √
(2)σa.

This result can be derived more directly by using Equation 2.9 and expressing the N-
period jitter as the difference of two absolute jitter values N periods apart. If the excess
phase is asymptotically uncorrelated, so are the two absolute jitter values on the right-
hand side. Therefore, the variance of their difference for very large N is equal to the sum
of their variances, leading to the result in Equation 3.46.
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The RMS period jitter corresponds to the N-period jitter for N = 1 and can be
expressed as:

σ 2
p = 2

ω2
0

[Rϕ(0) − Rϕ(T0)]. (3.47)

To express the N-period jitter as a function of the phase noise L we use Equation 3.26
and the fact that the autocorrelation is the inverse Fourier transform of the PSD. Starting
from Equation 3.45 it is easy to show that:

σ 2
p(N) = 2

ω2
0

∫ +∞

−∞
Sϕ(f )(1 − ej2π fNT0 ) df . (3.48)

Since the excess phase PSD is an even function of the frequency offset, we can fur-
ther simplify the expression. As the integration interval is symmetrical around zero,
we can remove the odd term in the complex exponential ej 2π fNT0 = cos(2π fNT0) +
j sin(2π fNT0). Replacing Sϕ(f ) with L(f ), finally the result is:

σ 2
p(N) = 4

ω2
0

∫ +∞

0
L(f )[1 − cos(2π fN/f0)] df

= 8

ω2
0

∫ +∞

0
L(f ) sin2(π fN/f0) df . (3.49)

For the cases where the integral is diverging, the integration interval can be limited
from fmin to f0/2, as explained in Equation 3.2.1. Note, however, that since sin2(f ) goes
as f 2 for small f , the integration down to frequency zero of phase noise profiles of type
1/f −α with α ≤ 2 does not lead to diverging results. For these cases it is not necessary
to limit the integral to fmin.

In the following sections this expression will be applied to the most common phase
noise profiles.

Flat Phase Noise Profile
In this section we derive the RMS N-period and period jitter corresponding to a flat
phase noise, as described by Equation 3.32 and repeated here for convenience:

L(f ) =
{ L0 if 0 < f < fmax.

0 otherwise
(3.50)

Substituting this expression into Equation 3.49, the following expression for the N-
period jitter can be found:

σ 2
p(N) = 4L0

ω2
0

[
fmax − sin(2π fmaxN/f0)

2πN/f0

]
. (3.51)

If the white noise band extends to fmax = f0/2, we can express the ratio of the RMS
N-period jitter to the clock period as:

σp(N)

T0
=

√
2L0f0
2π

. (3.52)
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The RMS value of the N-period jitter is independent of N, and is equal to the RMS
period jitter and the RMS long-term jitter. This should not be surprising because the flat
spectrum of the phase noise corresponds to an absolute jitter with an auto-correlation
function that is a delta function. As a result, all sub-sampled sequences of the original
absolute jitter sequence will be uncorrelated and, since they are stationary, will have
the same statistical properties. Note also that the N-period jitter is

√
2 larger than the

absolute jitter.

EXAMPLE 6 For f0 = 1GHz and L0 = −130dBc/Hz, the RMS N-period jitter is
independent of N and equal to 2.25ps.

1/f 2 Phase Noise Profile
In this section, the N-period jitter corresponding to a 1/f 2 characteristic of the phase
PSD is derived. This corresponds to the phase noise of a free-running oscillator with
internal white noise sources. Assuming

L(f ) = L1f 2
1

f 2
(3.53)

as shown in Figure 3.11 and substituting the expression of the phase noise into Equation
3.49, the N-period jitter is:

σ 2
p(N) = 8L1f 2

1

ω2
0

∫ +∞

0

sin2(π fN/f0)

f 2
df = 2L1f 2

1 N

π f 3
0

∫ +∞

0

sin2(v)

v2
dv. (3.54)

This integral can be calculated per parts, and, using the definite integral
∫ +∞

0
sin(v)

v dv =
π/2, we find finally the following expressions for the N-period and period jitter:

σp(N) =
√
L1f 2

1

f 3
0

N (3.55)

σp =
√
L1f 2

1

f 3
0

. (3.56)

It can be seen that, for a 1/f 2 phase noise, the RMS N-period jitter increases indefi-
nitely with the square root of the number of cycles N, and the long-term jitter is infinite.
An experimental proof of Equation 3.56 has been provided in [29]. Note also that, as
stated above, even though the phase noise has infinite power at low frequencies, the
computation of the N-period jitter leads to a finite result even if the integration is carried
out down to zero frequency offset.

EXAMPLE 7 For an oscillator running at f0=1GHz, having a 1/f 2 spectrum with
−130dBc/Hz at 1MHz from the carrier, the RMS period jitter is equal to 10fs.

Simplified PLL Phase Noise Profile
We now reconsider a phase noise profile approximating a PLL spectrum such as the one
shown in Figure 3.12 and expressed in Equation 3.37, repeated here for convenience:

L(f ) = L0

1 + (f /f3dB)2
. (3.57)
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Figure 3.14 N-period jitter profile for a simplified PLL spectrum.

By taking the inverse Fourier transform:

Rϕ(τ ) = L0π f3dB e−2π f3dB|τ |. (3.58)

From here, and using Equation 3.45 the following expression can be derived for the
N-period jitter:

σp(N) =
√
L0 f3dB

2π f 2
0

(1 − e−2π f3dBN/f0 ). (3.59)

The shape of σ 2
p(N) versus N presents two asymptotes, one for low values of N and

one for large values of N, as illustrated in Figure 3.14 in a log–log scale. Note that, in
this graph, N essentially represents time.

For large N values, the N-period jitter is independent for N and equal to:

lim
N→+∞ σp(N) = σlt =

√
L0 f3dB

2π f 2
0

. (3.60)

For small values of N, a simple expression can be found considering that in real
PLLs the bandwidth must be smaller – usually at least 10 times smaller – than the
input reference frequency. Therefore, also in case of low feedback divider ratios, we can
assume f3dB to be much smaller than the output frequency f0. Starting from Equation
3.59 and using the approximation e−x = 1 − x for small x, the N-period jitter can be
written as:

σp(N) =
√
L0 f 2

3dB

f 3
0

N (3.61)

showing that the RMS N-period jitter initially grows with the square root of the number
of cycles N. It can be also seen that this expression is identical to Equation 3.55 obtained
in the case of a pure 1/f 2 phase noise profile.

This result indicates that the noise on the edges produced by the locked VCO is equal
to that of a free-running VCO until the PLL feedback kicks in and takes control. At
this point, the jitter is limited by the loop with an RMS value of σlt. In the absence of
feedback, σp(N) would grow indefinitely according to the initial slope.
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By setting N = 1 in Equation 3.61, the period jitter is obtained as:

σp =
√
L0 f 2

3dB

f 3
0

. (3.62)

While the long-term jitter depends on the carrier frequency f0 and on the total area
of the phase noise, the period jitter depends on the carrier frequency and on the posi-
tion of the 1/f 2 slope in the PSD, which, in PLLs, is determined mainly by the noise
performance of the VCO.

It is interesting to investigate the relation between period and long term jitter. Taking
Equations 3.60 and 3.62, the ratio between the RMS values of long term and period
jitter is:

σlt

σp
=
√

f0
2π f3dB

=
√

τloop

T0
(3.63)

where τloop, defined as 1/(2π f3dB), is the time constant of the PLL loop. It can be seen
that the difference between long-term and period jitter grows larger the more slowly the
PLL loop reacts to changes in the excess phase at its input. Since the period jitter is
mainly determined by the noise performance of the VCO, Equation 3.63 says that, for a
given VCO, the long-term jitter increases with the square root of the loop time constant.
Reducing the loop time constant by two, meaning doubling the PLL bandwidth, reduces
the long-term jitter by a factor of

√
2. Note that this is valid only if the VCO is the main

contributor to the output noise of the PLL. If this is not the case, increasing the PLL
bandwidth might even degrade the long term jitter, by allowing more noise from the
other blocks to reach the output.

Another interesting expression of the long-term jitter can be obtained starting from
Equation 3.60:

σlt =
√

L0 f 2
3dB

2π f3dBf 2
0

(3.64)

where it becomes clear that, in a first approximation, for a given VCO (fixed L0f 2
3dB),

the RMS long-term jitter improves with the square root of the bandwidth of the PLL.

EXAMPLE 8 For a PLL with output frequency f0 = 200MHz, an in-band phase noise
of −120dBc/Hz and 1MHz bandwidth, we have an RMS period jitter of 350fs and an
RMS long-term jitter of 2ps. If the bandwidth is reduced to 100kHz, keeping the same
VCO, the in-band noise level increases to −100dBc/Hz, in this case the RMS period
jitter is 353fs (almost no change) and the RMS long-term jitter increase to 6.3ps (

√
10

increase).

1/f 3 Phase Noise Profile
In this section the N-period jitter corresponding to a 1/f 3 characteristic of the phase
noise is derived. This phase noise profile is typical of the low frequency behavior of a
free-running oscillator with internal flicker noise sources. Assuming
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L(f ) = L1f 3
1

f 3
(3.65)

and substituting the expression into Equation 3.49:

σ 2
p(N) = 8L1f 3

1

ω2
0

∫ +∞

0

sin2(π fN/f0)

f 3
df . (3.66)

For small values of f , the integrand varies as 1/f , which would lead to a non-converging
integral. Therefore we assume that the flicker noise extends towards low frequencies
only down to a positive frequency fmin. For f < fmin the phase noise PSD is assumed to
be zero. The integral in Equation 3.66 can be expressed as:∫ +∞

fmin

sin2(π fN/f0)

f 3
df = (πN/f0)2

2

[
sin2(fminπN/f0)

(fminπN/f0)2

+ sin(2fminπN/f0)

fminπN/f0
− 2Ci(2fminπN/f0)

]
(3.67)

where the function Ci is the cosine integral defined as:

Ci(x) := −
∫ +∞

x

cos(t)

t
dt = γ + ln(x) +

∫ x

0

cos(t) − 1

t
dt (3.68)

where ln is the natural logarithm and γ ≈ 0.5772 is the Euler–Mascheroni constant (see
[30])3. Substituting these expressions in Equation 3.66 and assuming fminπN/f0 � 1,
the following expression for the N-period jitter can be found:

σ 2
p(N) = L1f 3

1 N2

f 4
0

[3 − 2Ci(2fminπN/f0)]. (3.69)

For x tending to zero, the function Ci(x) can be approximated by ln(x) + γ , therefore,
for values of N � f0/(2π fmin):

σ 2
p(N) = L1f 3

1 N2

f 4
0

[3 − 2γ − 2 ln(2π fminN/f0)]. (3.70)

Since ln(x) is a very weak function of x, the expression above predicts that the RMS
N-period jitter increases almost linearly with the number of cycles N. The same expres-
sion has also been derived in [31] with a different approach, and a very similar one can
be found in [32], albeit with different notation.

It is important to note that, in practice, the assumption N � f0/(2π fmin) holds very
well, so that it does not limit the validity of the formulas derived here. Indeed, to mea-
sure the N-period jitter and have significant statistics on it, it is necessary in practice to
observe the clock for a time much longer than N periods. It can be argued that the lowest
frequency component detectable in this experiment, the fmin in the expressions above, is
the reciprocal of the observation time. Combining these two considerations, it follows
that 1/fmin  N/f0, which is identical to the assumption before, apart from an irrelevant
factor 2π .
3 The function Ci is named “cosint” in Matlab.
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Figure 3.15 1/f 3 phase noise profile and corresponding N-period jitter. The circles are values
derived from simulation, the dashed line is the RMS N-period jitter obtained using Equation
3.67, the solid line is the simplified Expression 3.70, and the dash-dotted line represents a linear
dependency.

The formulas derived in this section have been verified with numerical simulation.
Using the methods that will be described in Chapter 10, one million clock cycles of a
10MHz clock have been numerically generated, with a phase noise of −120dBc/Hz at
1kHz and pure 1/f 3 profile (see Figure 3.15, top). The corresponding N-period jitter
has been computed based on the time domain samples of the jitter and compared to the
analytical expressions found above, where fmin has been chosen as the reciprocal of the
total observation time (in this particular case fmin = 10e6/1e6 =10Hz). As can be seen
in Figure 3.15, the agreement between the simulation and the analytical expression is
very good up to a lag of about one tenth of the total number of cycles. The dash-dotted
line represents a pure linear relationship between RMS jitter and number of cycles N
and shows that the increase of the RMS value is slower than linear, due to the effect of
the logarithm in Equation 3.70.

3.3 Spectral Spurious Tones and Jitter

Recalling Section 3.1.4, the presence of symmetrical tones at frequency fm from the
carrier f0 in the voltage spectrum of a clock signal indicates a deterministic modulation
of the excess phase of the form:

ϕ(t) = �m sin(2π fmt + φ0) (3.71)
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where �m = 2 · 10(SCR/20), with SCR the difference between tones and carrier levels in
dB (see Section 3.1.4), and φ0 a random initial phase. From here it is quite straightfor-
ward to compute the jitter associated with discrete tones in the spectrum. From Equation
3.5 the absolute jitter is:

ak = −�m

ω0
sin

(
2π fmk

f0
+ φ0

)
. (3.72)

The peak values of the absolute jitter are:

ρ+
a = ρ−

a = max
k

|ak| = �m

ω0
(3.73)

ρρa = 2
�m

ω0
. (3.74)

The RMS value of the absolute jitter is equal to the amplitude of the sinusoid divided by√
2. The result is:

σa = 1√
2

�m

ω0
. (3.75)

With an expression for the absolute jitter, the N-period jitter can be easily computed
using Equation 2.12. After some algebra, the result can be expressed as:

pk(N) = −2
�m

ω0
cos

(
2π fmk

f0
+ φ0 + π fmN

f0

)
sin

(
π fmN

f0

)
. (3.76)

The peak values are:

ρ+
p(N) = ρ−

p(N) = max
k

|pk(N)| = 2
�m

ω0

∣∣∣∣sin
(

π fmN

f0

)∣∣∣∣ (3.77)

ρρp(N) = 4
�m

ω0

∣∣∣∣sin
(

π fmN

f0

)∣∣∣∣ (3.78)

and the RMS value:

σp(N) = √
2
�m

ω0

∣∣∣∣sin
(

π fmN

f0

)∣∣∣∣ · (3.79)

Note how the RMS and peak N-period jitter have a periodical behavior in N, with
period equal to f0/fm.

3.4 Superposition of Different Spectral Components

In this section it will be demonstrated that, in the case of a phase noise PSD made up
of different components, the total RMS N-period jitter is the square root of the sum of
the squared RMS N-period jitter of each component. In other words, the RMS N-period
jitter adds quadratically.

Assume the phase noise profile L can be expressed as the sum of k different
components L1(f ), . . . ,Lk(f ), then:

L(f ) =
k∑

i=1

Li(f ). (3.80)
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Table 3.1 General relationships between variance of jitter and phase noise.

Jitter Symbol As a Function of L(f )

Absolute σ 2
a

2

ω2
0

∫ +∞
0

L(f ) df

Period σ 2
p

8

ω2
0

∫ +∞
0

L(f ) sin2(π f /f0) df

N-period σ 2
p(N)

8

ω2
0

∫ +∞
0

L(f ) sin2(π fN/f0) df

Allan Deviation σ 2
�y

(
N

f0

) (
2

πN

)2 ∫ +∞
0

L(f ) sin4(π fN/f0) df

Table 3.2 Variance of jitter for specific phase noise profiles. The variance of the period jitter σ 2
p can be

obtained from σ 2
p(N) with N = 1.

L(f ) σ 2
a σ 2

p(N)

Flat L0
L0

4π2f0

L0

2π2f0

1/f2
L1f 2

1

f 2

L1f 2
1

2π2f 2
0 fmin

L1f 2
1

f 3
0

N

1/f3
L1f 3

1

f 3

L1f 3
1

(2π f0fmin)2
L1f 3

1 N2

f 4
0

[3 − 2γ − 2 ln(2π fminN/f0)]

Simple PLL
L0

1 + (f /f3dB)2
L0f3dB

4π f 2
0

L0f3dB

2π f 2
0

(1 − exp(−2π f3dBN/f0))

Table 3.3 Relationship between jitter and SCR.

Jitter Symbol As a Function of SCR

RMS Absolute σa

√
2

ω0
10(SCRdBc/20)

RMS Period σp 2σa| sin(π fm/f0)|
RMS N-Period σp(N) 2σa| sin(π fmN/f0)|
peak Absolute ρa

√
2σa

peak Period ρp
√

2σp

peak N-Period ρp(N)
√

2σp(N)
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Due to the linearity of the Fourier transform:

Rϕ(τ ) =
k∑

i=1

Rϕ,i(τ ), (3.81)

therefore we can write:

Rϕ(0) − Rϕ(τ ) =
k∑

i=1

[Rϕ,i(0) − Rϕ,i(τ )], (3.82)

and, finally, using Equation 3.45:

σ 2
p(N) =

k∑
i=1

σ 2
p(N),i. (3.83)

3.5 Summary of Mathematical Relationships Between Jitter and Phase Noise

In this section, the most important formulas that relate jitter to phase noise or Spurious
to Carrier Ratio (SCR) (see Section 3.1.4) are summarized in tabular form. Table 3.1
reports the general formulas used to calculate the variance of absolute, period and N-
period jitter, as well as the Allan Deviation (see Section 9.3.4), starting from the phase
noise L(f ). Table 3.2 shows the results for the special cases of phase noise having a
flat, a 1/f 2, a 1/f 3 and a low-pass profile. Finally Table 3.3 lists the formulas used to
calculate RMS and peak values of absolute, period and N-period jitter in the case of
discrete tones in the spectrum, starting from the SCR.
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4 Jitter and Phase Noise in Circuits

This chapter will offer an introduction to how jitter and phase noise are generated in
the most common oscillator topologies. Starting with the treatment of basic circuits like
a current charging a capacitor, or an inverter, we will continue by analyzing jitter and
phase noise generation in ring, relaxation, and LC oscillators. Both linear time invariant
and linear time variant approaches will be illustrated.

The chapter will finish with an overview of how jitter is “transformed” by two of the
most common frequency processing circuits: a digital frequency divider and an ideal
frequency multiplier.

4.1 Jitter in Basic Circuits

The next sections provide an explanation, both qualitative and quantitative, of how jitter
manifests itself in basic oscillator circuits.

4.1.1 Noisy Current Charging a Capacitor

As mentioned already in Section 1.3, in integrated circuit design a central element is
a current loading a capacitor. Digital gates, clock buffers, delay elements of relaxation
and ring oscillators are just few examples of where this element can be found. Due to its
ubiquity and importance, it is worth analyzing in some detail from the standpoint of jitter
generation. In the following we will revisit the example provided in Section 1.3, and
treat it with a complete mathematical analysis. The case of a PMOS transistor charging
a capacitor is shown in Figure 4.1. The case of an NMOS discharging the capacitor is
identical.

The goal of this analysis is to derive an expression for the variation of the time instant
at which the charging voltage crosses a given threshold V0 (see Figure 4.1). The first
step is to recognize that the resulting time deviation is due to two different components.
The first is the effect of the noise current in injected into the capacitor by the PMOS
during the charging transient. The second is due to the fact that, even if the capacitor
is considered discharged at time zero, there is voltage noise present on it due to the
circuitry which is used to keep it discharged. This noise can be considered as a random
initial vertical offset which will affect the threshold crossing time.
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Figure 4.1 PMOS current source charging a capacitor.

Starting with the first component, the voltage noise due to the noisy current is
given by:

vn1(t) = 1

C

∫ t

0
in(τ )dτ . (4.1)

It is well known from the theory of stochastic processes (see [1]) that the integral over
time of stationary white noise is the so-called Wiener process, which belongs to the cat-
egory of random walks and is not stationary. Indeed the distance traveled by the voltage
vn1(t) from the starting point is zero on average, but its variance increases linearly with
time t. For t going to infinity, the voltage vn1(t) will show an infinite variance. Fortu-
nately, in the case under discussion here, the process of integration of the noisy current
is limited to a finite observation time, which is the time td taken by the voltage ramp to
reach the threshold V0. What happens after this time is not of interest. By considering
the integration only over a finite observation time [0, td], the result is again a stationary
process and the classic theory of stationary processes in linear systems can be used.

To derive an expression for the variance of vn1(t) at time td, it can be observed that
the integral in Equation 4.1 can be written as a convolution (see [33]):

vn1(td) = 1

C

∫ +∞

−∞
in(τ )w(td − τ )dτ (4.2)

where w(·) is a window function, assuming value 1 in the interval [0, td] and zero outside,
and vn1 indicates the voltage noise at the end of the observation time [0, td]. This is the
integral form of a linear filter with impulse response w(t) applied to the noisy current.
Therefore the relation between the PSD of the current noise and of the voltage noise is:

Svn1 (f ) = Sin (f )

C2
|W(f )|2 = Sin (f )

C2

sin2(π ftd)

(π f )2
(4.3)

where W(f ) is the Fourier transform of w(t). From the PSD, the variance can be com-
puted by integration over the whole frequency axis. Assuming that the current in is a
white noise with Sin (f ) = Sin independent of f , the variance of the noise voltage is:1

σ 2
vn1

=
∫ +∞

−∞
Svn1 (f )df = Sin

C2
td. (4.4)

1 Note that in [33] the result has a 2 at the denominator. The reason is that here the PSD is considered
two-sided, while [33] considers it one-sided.
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Starting from this expression, if the PMOS is in saturation, the PSD of the current noise
is Sin = 2kTγ gm and the variance of the noise voltage is:

σ 2
vn1

= 2kTγ gmtd
C2

. (4.5)

To a first approximation, the timing error (jitter) is obtained by dividing the amplitude
error by the slope of the signal. In this case, the slope is I/C so that the variance of the
jitter can be written as:

σ 2
j1 = 2kTγ gmtd

I2
. (4.6)

Note how the variance of jitter grows linearly with the observation time, for a given
current I.

Since V0 = Itd/C, the jitter at the instant td can be finally expressed as:

σ 2
j1 = 4kTγ t2d

V0C(VGS − Vth)
(4.7)

where for gm the expression 2I/(VGS − Vth) has been used assuming the PMOS is in
saturation, with VGS and Vth the gate-source and threshold voltage respectively. Note that
if the device is in weak-inversion gm = I/(nkT/q) (n is the subthreshold slope factor,
typically between 1 and 2) which is higher than in saturation, for the same current I.

The second jitter component is due to the initial voltage noise present on the capacitor.
It is well known that, independent of the output impedance of the circuit used to keep
the capacitor in a discharged state, the voltage noise has a variance given by:

σ 2
vn2

= kT

C
. (4.8)

This initial voltage noise represents an amplitude offset which is carried unchanged
along the whole charging transient. To get to the corresponding jitter, it must be divided
by the by the slope of the signal, so that:

σ 2
j2 = kT t2d

V2
0 C

. (4.9)

Since the mechanisms generating the two jitter contributions are uncorrelated, the
variance of the total jitter is the sum of the variances of the two components. This leads
to the following final expression for the RMS of the jitter relative to the delay td:(

σj

td

)2

= kT

V0C

(
4γ

VGS − Vth
+ 1

V0

)
. (4.10)

EXAMPLE 9 Consider the case of an inverter in 1V CMOS technology charging a 10fF
capacitor. If we set V0 at half supply (0.5V), consider a moderate overdrive VGS −Vth =
200mV, and take for γ the common value of 2/3, at 300 degree Kelvin, the relative jitter
is σj/td = 0.11% of the delay. If td=100ps, the RMS value of the jitter introduced by this
inverter is about 0.11ps. Note also that the contribution due to the initial noise voltage
level is much smaller than the contribution of the device.
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It is worth summarizing the assumptions that have been made to get to this simple
expression. First, the charging current has been considered to be constant over the whole
time (not generally true due to the finite output resistance of the PMOS). Second, the
noise of the circuit driving the gate of the PMOS and the flicker noise of the PMOS itself
have been neglected. Third, the formulas for the gm and the noise current are based on a
first-order MOS model in saturation and strong inversion.

Despite all these assumptions, Equation 4.10 can be used for a first-order assess-
ment, suggesting a few ways to improve jitter performance of this kind of current
driving stages for a given delay td. First, the overdrive voltage of the current source
VGS − Vth should be maximized. Second, the threshold V0 should be as large as
possible, which, for a given delay, requires increasing the nominal current. Third,
the load capacitor C should be made as big as possible, which again leads to an
increase in the charging current. Apart from the last technique, the first two are con-
strained by the technology used. The overdrive and the threshold can not be made
larger than the supply of the circuit (VDD), so that the following lower bound on
achievable relative jitter can be found (4γ has been approximated with the num-
ber 3):

σj

td
≥ 2

VDD

√
kT

C
. (4.11)

4.1.2 Jitter of a CMOS Inverter

A very fundamental element in modern integrated systems is the CMOS inverter, shown
in Figure 4.2. This element is used not only in the context of digital processing, but
also as part of clock distribution trees in digital systems or as a delay element in a
delay line or ring oscillator. It is thus of great relevance to derive an expression for
the jitter introduced by it. A qualitative introduction was given in Section 1.4. Here we
will analyze it from a more quantitative perspective. Assuming that the inverter input
voltage has infinite slope, each charge or discharge of the load capacitor is essentially
performed by the either PMOS or NMOS device only, respectively. The other device
is instantaneously turned off and does not contribute any current. Therefore, the simple
model derived in the previous section can be applied as a first approximation. By using
Equation 4.10 with VGS = VDD and assuming that the switching threshold is at half

Figure 4.2 CMOS inverter and input–output waveforms in the approximation leading to
Equation 4.12.
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supply, V0 = VDD/2, the variance of the jitter relative to the inverter delay can be
written as (see also [33]):(

σj

td

)2

= 4kT

CV2
DD

(
1 + 2γ VDD

VDD − Vth

)
. (4.12)

It can be seen that, for a given supply and a given capacitive load, the RMS value of the
jitter is proportional to the inverter delay. The stronger the inverter, the smaller the jitter.
Note that Equation 4.12 does not take into account the effect of the finite input slope,
which might further degrade the jitter. It also assumes that the MOS device is in satura-
tion at least till the switching threshold is reached. This assumption is a simplification
of the real behavior, where the MOS device, depending on technology and supply volt-
age values, might enter the linear region and charge or discharge the output load with a
non-constant current.

EXAMPLE 10 Consider the case of a CMOS inverter in 1V technology driving a 10fF
load. If we take γ = 2/3 and a MOS threshold voltage of 0.4V, at 300 degrees Kelvin
the relative jitter is σj/td = 0.23% of the delay. If the inverter is dimensioned to give a
td=100ps, the RMS value of the jitter introduced is about 0.23ps.

In addition to the thermal noise of the MOS devices, supply noise is also a major
cause of jitter in a CMOS inverter, since this single-ended structure has a very low
power supply rejection. In the context of a complex chip with a lot of switching activity
on the supplies, this source of noise can be dominant and the corresponding jitter be
much larger than the thermal one.

Considering the expression for the delay td = V0C/I, the effect of a varying supply
is twofold. First, the inverter threshold voltage V0 changes, since it is normally propor-
tional to the supply. Second, the change in supply also causes a change in the charging
current I. A simple first-order expression for the jitter due to supply noise can be easily
derived. Assuming that V0 is proportional to VDD, the change in the delay, �td, can be
decomposed in the contribution of the change of V0 and of I in the following way:

�td
td

= �V0

V0
− �I

I
= �VDD

VDD
− �I

I
. (4.13)

Noting that VDD is the gate-source voltage of the MOS device charging (or discharg-
ing) the load capacitor, the change in current due to the change in VDD is given by the
transconductance gm of the MOS device, �I = gm�VDD. To obtain a simple expression,
we will assume that the device is in saturation at least till the output voltage reaches the
switching threshold, an assumption which might not always hold. Using Equation 4.13
with VGS = VDD and gm = 2I/(VDD − Vth) then, the delay variation can be written as:

�td
td

= −
(

VDD + Vth

VDD − Vth

)
· �VDD

VDD
. (4.14)

EXAMPLE 11 Consider the case of the previous example, a change of 1% in supply
voltage results in a change of (1 + 0.4)/(1 − 0.4) · 1% = 2.3% of the delay, which is
much larger than the RMS jitter induced by the self-generated thermal noise.
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Two observations can be made about the factor relating the relative change in VDD to
the relative change of the delay in Equation 4.14. First, this factor is negative, meaning
that, in case of a positive �VDD, the increased delay due to an increase in the threshold
level is more than compensated for by the increase in charging current. Secondly, the
absolute value of the factor approaches 1 only for VDD  Vth. For VDD approaching
Vth the factor increases asymptotically, indicating a severe degeneration of the jitter
performance of the inverter. In this case, however, the MOS devices enter weak inversion
and another transistor model should be used (see, e.g., [34]).

In modern technologies, very short channel length devices enter velocity saturation
for large overdrive voltage VGS − Vth, as in the case of a minimum length inverter with
fast switching signal at its input. The dependence of the drain current on the overdrive
voltage tends to be more linear, rather than quadratic, so that gm can be expressed as
αI/(VGS − Vth), with 1 < α < 2. Using this expression, Equation 4.14 is modified as
follows:

�td
td

= −
[

(α − 1)VDD + Vth

VDD − Vth

]
· �VDD

VDD
. (4.15)

For α = 2 (quadratic dependence of drain current on overdrive voltage) this equation
reduces to Equation 4.14. If VDD is affected by deterministic noise, such as modulation,
IR drop, or switching noise, the resulting jitter is DJ and its peak value ρj is related to
the peak value ρVDD of VDD by:

ρj

td
= −

[
(α − 1)VDD + Vth

VDD − Vth

]
· ρVDD

VDD
. (4.16)

If VDD is affected by random thermal noise with PSD SVDD(f ), the jitter is RJ with
PSD:

Sj(f ) =
[

(α − 1)VDD + Vth

VDD − Vth

]2 ( td
VDD

)2

· SVDD(f ) (4.17)

and an equation similar to Equation 4.16 will relate the RMS values of the VDD noise
and of the jitter:

σj

td
=
[

(α − 1)VDD + Vth

VDD − Vth

]
· σVDD

VDD
. (4.18)

It must be understood that the previous equations are first-order approximations and
are subject to the same assumptions as those made in Section 4.1.1 to compute the
charging of the capacitor. Additionally, Equation 4.13 and all those derived from it are
obtained by linearization around the nominal value, and therefore are valid only if the
relative change of VDD and current I are small. Finally, the effect of the finite output
resistance and of the parasitic capacitances of the MOS devices are neglected. For a
deeper discussion, see specific papers such as, e.g., [35] and [36].

4.1.3 Jitter of a CMOS Differential Stage

Another basic building block is the CMOS differential stage with resistive load shown
in Figure 4.3. Since this block is also widely used in differential clock distribution
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Figure 4.3 Resistive loaded differential pair and input–output waveforms in the approximation
leading to expression 4.19. Vid(t) and Vod(t) are the input and output differential voltages.

networks, ring oscillators or delay lines, it is of relevance to compute an expression
of the jitter due to the thermal noise of the devices. In practical implementations, the
load resistor R is often implemented using a combination of MOS devices biased in
the linear region, but this is not essential for jitter analysis. A thorough analysis of the
variation of the delay of this stage due to thermal noise has been carried out in [37]
and [33]. The time delay td is in this case defined as the time difference between the
zero crossing points of the differential input and output voltages. The general approach
is the same as for the single-ended CMOS inverter. The differential amplitude noise at
the zero crossing point is computed first, and then divided by the slope of the output
signal to derive the timing error. The three sources of noise are the load resistors, the
devices of the differential pair and the tail device. The thermal noise of the resistors
and of the differential pair devices of the left and right half circuits are uncorrelated,
therefore clearly contributing to the noise on the differential output. The tail current
noise is injected into a common mode node and it could be erroneously argued that
its contribution to the noise at the differential output must be zero. In reality its con-
tribution is not zero. Indeed, with reference to Figure 4.4, assuming the tail current to
be initially completely switched to the left branch (Phase 1), the left output node is
pulled down and its noise voltage is the contribution of the noise from the load resis-
tor and from the tail current. Assuming, for simplicity, an instantaneous switching of
the current into the right branch (Phase 2), the left output starts moving up, carrying
the memory of the tail current noise previously accumulated. The right branch starts
to be pulled down by the tail current, and the noise of the tail is integrated into the
load capacitor. Therefore the noise on the left and the noise on the right branches
at the time they cross is due to the contribution of the tail noise current over two
distinct time intervals, and therefore are not correlated, yielding a net nonzero noise
voltage.

Omitting the math, it can be shown (for the details refer to [33]) that the time delay is
given by td = RC ln 2 and the variance of the jitter of the delay is given by:(

σj

td

)2

= 2kT

(ln 2)2

1

CV2
op

[
1 + γ Vop

(
1

(VGS − Vth)t
+ 3/4

(VGS − Vth)d

)]
(4.19)
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Figure 4.4 Schematic representation of the conversion of noise from the tail current source into
jitter. In the bottom picture, the gray dashed line shows the ideal noiseless behavior, while the
black solid shows the real noisy behavior.

where I is the tail current, Vop is the peak-peak single ended output swing (Vop = IR),
Vth denotes the threshold voltage, and (VGS − Vth)t and (VGS − Vth)d are the effective
voltages of the tail and differential pair devices in balanced conditions.

It is interesting to note the similarities between Equations 4.19 and 4.12. For a given
delay, both are inversely proportional to the loading capacitor and to the square of the
single ended output swing (VDD in the case of the CMOS inverter), and proportional to
the ratio of the output swing to the effective voltage of a MOS device. Since the output
swing of the differential pair is smaller than VDD and VGS < VDD, it is easy to prove
(left as an exercise for the reader) that for the same delay and the same load a CMOS
inverter has superior jitter performance than the differential stage.

The advantage of the use of a differential stage lies in its high differential mode power
supply rejection. If VDD is modulated, both single-ended outputs move up or down by
the same amount, in a first approximation, cancelling the effect of the supply noise on
the zero crossing time of the differential output. The cost for this is a higher power
consumption at lower frequencies (apart from the higher thermal noise jitter), since, in
a differential stage, the tail current is always flowing, while in a CMOS inverter, current
is drained only during the switching phase.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316981238.005
https://www.cambridge.org/core


4.2 Jitter in Oscillators 77

4.2 Jitter in Oscillators

4.2.1 Ring Oscillators

The delay stages discussed in the previous sections can be used in an inverting ring con-
figuration to obtain a ring oscillator. Ring oscillators are very common building blocks,
widely used as voltage controlled oscillators in phase-locked loops. A qualitative expla-
nation of the mechanism of jitter accumulation in ring oscillators was given in Section
1.4. This section provides the reader with a more quantitative analysis, following the
approach in [37] and [33].

Starting from the jitter produced by each delay stage, it is easy to derive an expression
for the output N-period jitter of a ring oscillator. The first observation is that, in a ring
composed of M delay stages, each with delay td, a clock edge needs to go twice through
the whole ring in order to come back to the same location with the same direction (rising
or falling) it had at the beginning. Therefore, the nominal period of oscillation is given
by the sum of 2M consecutive delays td(1), td(2), . . . , td(2M):

T0 =
2M∑
k=1

td(k) = 2Mtd. (4.20)

The variation of the period around its nominal value is given by the contribution of the
variations (jitter) of the 2M consecutive delays. The variations in each delay stage are
uncorrelated with each other so that the variance of the sum is given by the sum of the
variances. As a result, the variance of T0, that is, the variance of the period jitter, σ 2

p is
given by:

σ 2
p = 2Mσ 2

j (4.21)

where σ 2
j is the variance of the propagation delay of each stage. Using Equations 4.12

and 4.19 it is now possible to obtain an expression for the period jitter of the ring
oscillator. For an inverter-based ring oscillator, the result is:

σ 2
p = 2kT

f0ItotVDD

(
1 + 2γ VDD

VDD − Vth

)
(4.22)

while for a differential stage-based ring oscillator it is:

σ 2
p = 2

ln 2
kT

M

f0ItotVop

[
1 + γ Vop

(
1

(VGS − Vth)t
+ 3/4

(VGS − Vth)d

)]
(4.23)

where f0 = 1/T0 is the nominal oscillation frequency, and Itot is the total current con-
sumption of the complete ring oscillator. Note that for a CMOS inverter-based ring
oscillator, Itot is equal to the current of the single stage I, since only one inverter is
switching at a time. For a differential stage ring oscillator, though, each delay stage
draws a constant current I independent whether it is switching or not, so that Itot = MI.
Equation 4.22 is in agreement with the expression found in [38], a paper analyzing
the minimum achievable phase noise in oscillators. From Equations 4.22 and 4.23 it is
evident that the inverter-based ring has superior jitter performance compared with the
differential-based ring, as long as only the thermal noise contribution is considered. A
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more detailed comparison is presented in Section 4.5. As mentioned before, though, the
inverter-based ring has a very high sensitivity to noise on the supply and, in most cases,
requires the use of a low noise voltage regulator. It can be also seen how the period
jitter of the inverter-based ring is independent of the number of stages M, for a given
frequency f0 and total power consumption Itot, while that of a differential stage ring
increases with M. Therefore, a simple guideline to minimize jitter in an inverter-based
ring is to increase VDD as much as possible and draw as much current as the budget
allows. The number of stages determines the oscillation frequency. To lower jitter in a
differential stage ring oscillator, the output swing and the current consumption should
be maximized, and the minimum possible number of stages M should be used.

As already shown in Equation 2.13, the N-period jitter is the sum of the jitter over
N consecutive periods. If we assume that the dominant noise sources in ring oscillators
are white, the jitter values over any of the N periods are uncorrelated and identically
distributed, so that the variances add up to give the variance of the N-period jitter. As a
result, the RMS value grows with the square root of the number of periods N:

σp(N) = √
Nσp. (4.24)

When flicker noise is present, however, the slope of jitter versus N changes. Flicker
noise is highly correlated and most of its energy is at low frequencies. For this reason,
the assumption that the jitter in consecutive periods is uncorrelated does not hold. If a
delay stage has a significant flicker noise component, a part of the variation in its delay
during one period of oscillation – the one due to flicker noise – is likely to be very
similar to the variation in the previous one. For this case, the accumulation of jitter in
consecutive periods is approximately a simple linear process, so that the RMS values,
rather than the variances, add together. The result is that the RMS value of the N-period
jitter grows linearly with N:

σp(N) = Nσp. (4.25)

Therefore, the typical plot of σp(N) versus N for an oscillator (see Figure 4.5) shows
an initial increase with

√
N, which turns into a slope of N as soon as the observation

interval, and, therefore N, is large enough for the flicker noise energy to be dominant
with respect to the white thermal noise. This topic is discussed also in Section 3.2.2 in
the context of phase noise.

4.2.2 Relaxation Oscillators

For low-frequency, low-power clock generation applications, a relaxation oscillator is
often the preferred choice. Although the particular topology of the circuit might change
from implementation to implementation, all relaxation oscillators are based on the same
principle. With reference to Figure 4.6, in the relaxation phase, a capacitor, which can be
floating or grounded, is charged by a constant current. The capacitor voltage is contin-
uously sensed by a comparator. Once the voltage hits a reference voltage (VH in Figure
4.6), the comparator triggers a regenerative circuit, normally a simple set–reset flip-flop,
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Figure 4.5 Plot of N-period jitter versus N for a free-running oscillator affected by white and
flicker noise.

Figure 4.6 Principle block diagram of a relaxation oscillator and relevant waveforms (dashed:
ideal; solid: noisy).

which inverts the sign of the charging current (the regenerative phase). The capaci-
tor is then discharged linearly until the voltage hits a lower reference voltage (VL). At
this point, the regenerative circuit is triggered again and reverses the current direction,
starting the cycle from the beginning. Figure 4.6 shows a principle block diagram of a
relaxation oscillator together with the relevant waveforms. In this simplified model, the
period jitter can be computed as follows. The uncertainty over the period is given by the
sum of the uncertainties over the duration of the rising and falling ramps. Each of these
is, in turn, given by two components. The first one is due to the noise on the charging
current, as already explained in Section 4.1.1, and the second is the noise present on the
reference voltages. The contribution by the noisy current is equal to the amplitude noise
on the ramp at time td divided by the slope of the ramp itself I/C. Using Equation 4.4,
therefore, the jitter contribution due to the ramp noise is:

σ 2
j,ramp = Si

C2
td

/(
I

C

)2

= Si

I2
td (4.26)

where Si is the PSD of the current source, assumed to be white. This contribution has
to be counted twice, since there are two ramps and we are assuming that the noise is
uncorrelated. The contribution due to noise on the references can be calculated similarly,
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as reference noise divided by the slope. Assuming that the capacitances connected to the
high and low references are CH and CL respectively, the jitter is given by:

σ 2
j,thrH = kT

CH

/(
I

C

)2

(4.27)

and

σ 2
j,thrL = kT

CL

/(
I

C

)2

. (4.28)

The variance of the period jitter is given by the sum of the variances so calculated, with
the ramp variance counted twice. After some manipulation, finally the variance of the
period jitter can be written as:

σ 2
p = 1

(2f0�V)2

[
kT

(
1

CH
+ 1

CL

)
+ Si

f0C2

]
(4.29)

with �V as the difference between the two thresholds (the peak-peak value of the ramp)
and f0 = I/(2C�V) as the oscillation frequency. If the charging current is generated
with MOS current mirrors in saturation, then Si = 2kTγ gm = 4kTγ I/(VGS − Vth) and
Equation 4.29 can be rewritten as:(

σp

T0

)2

= kT

(2�V)2

(
1

CH
+ 1

CL
+ 8γ

C

�V

VGS − Vth

)
(4.30)

where the variance has been normalized to the oscillation period T0 = 1/f0.

EXAMPLE 12 Consider the case of a 100MHz relaxation oscillator with a ramp swing
of 0.5V, 100fF capacitance C, a current mirror with VGS −Vth = 0.3V and where the two
thresholds of the comparator are blocked with 50fF each. Applying Equation 4.30, the
RMS value of the period jitter equals 7.3ps.

The derivation above did not consider the contributions to the period jitter coming
from the comparators and from the set–reset flip-flop. While they certainly introduce
some additional jitter, the regenerative phase, with fast switching and steep edges, is
extremely short compared to the ramp time. For this reason its contribution to the total
period jitter should be negligible. For more detailed analyses, which consider particular
circuit topologies and also other noise sources, see [39], [40], [41], and [42].

Regarding the N-period jitter in relaxation oscillators, the same considerations as for
the ring oscillators hold true and can be repeated.

4.3 Phase Noise in Oscillators

4.3.1 Leeson’s Model

One of the first publications addressing the modeling of phase noise in oscillators
appeared in 1966 [43]. The model proposed is generally known as Leeson’s model,
after the author, and, despite its limitations, it is still a reference for all recent works on
phase noise modeling.
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Figure 4.7 Simplified linear system with resonant feedback network β(ω) (left) and
corresponding phase response (right).

Leeson’s paper considers a linear feedback system as shown in Figure 4.7, where an
ideal gain block A is closed in feedback through a resonant network β(ω). The condition
for self-sustained oscillation is given by the Barkhausen criterion, stating that the open
loop transfer function Aβ(ω) must be equal to 1. Since A is assumed to be real, the open
loop phase φ(ω) = ∠Aβ(ω) is determined solely by β, and the system oscillates at the
frequency ω0 for which φ(ω0) = 0.

Figure 4.7 shows the typical phase plot of the resonant network β(ω). The quality
factor Q of an oscillator is usually defined as the ratio of the energy stored in the reactive
elements to the energy loss per oscillation cycle, multiplied by 2π . In terms of the open
loop phase φ this definition is equivalent to:

Q = ω0

2

∣∣∣∣ ∂φ

∂ω

∣∣∣∣ . (4.31)

Following Leeson’s approach, noise generated by passive (resistors) or active circuit
elements (transistors) disturbs the loop by introducing an additional phase shift θ (t). Let
us assume that θ (t) is a sinusoidal perturbation at frequency ω0 + ωm. For small ωm,
that is, for perturbation frequencies close to resonance, the loop can sustain oscillation
only if the instantaneous frequency of oscillation changes by an amount �ω so that the
condition φ(ω0 +�ω) = 0 is still satisfied. Figure 4.7 shows that the required change in
oscillation frequency �ω is inversely proportional to the slope of the phase curve, thus,
recalling Equation 4.31, inversely proportional to the quality factor:

�ω(t) = ω0

2Q
θ (t). (4.32)

The phase change ϕ(t) at the output of the oscillator is the integral of the frequency
change �ω, so that θ (t) contributes to the output phase multiplied by the factor
ω0/(2Qωm), and the PSD of ϕ(t) can be written as:

Sϕ(ωm) = Sθ (ωm)

(
ω0

2Qωm

)2

. (4.33)

The larger the quality factor and the offset frequency ωm, the smaller the change in the
output phase of the oscillator due to internal noise sources.
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If the frequency ωm is large enough so that ω0 + ωm is outside the resonant region,
the value of the feedback branch β is essentially zero and the output phase change ϕ is
equal to θ itself. Combining this observation with Equation 4.33, a suitable expression
for the total PSD is:

Sϕ(ωm) = Sθ (ωm)

[
1 +

(
ω0

2Qωm

)2
]

. (4.34)

In his paper, Leeson further assumes that the spectrum of the phase perturbation θ (t) is
composed of a white noise floor and a 1/f profile at low offset frequencies according to:

Sθ (ωm) = 2kTF

P

(
1 + ωf

ωm

)
(4.35)

where P is the power consumption of the oscillator, ωf is the frequency below which the
flicker noise component becomes dominant, and F is a noise factor grouping all noise
contributors in the loop. Note that if the major part of the power is dissipated in the tank,
P can be written as:

P = V2
tank

2R
(4.36)

where Vtank is the tank oscillation amplitude and R is the parallel resistance modeling
all tank losses.

Since Sϕ(ωm) is the output phase noise of the oscillator L(ωm), combining Equations
4.34 and 4.35, the final model for the phase noise is:

L(ωm) = 2kTF

P

(
1 + ωf

ωm

)[
1 +

(
ω0

2Qωm

)2
]

(4.37)

as can be seen in Figure 4.8. It is worth pointing out that the Q factor in Leeson’s model
is the “effective” quality factor of the complete oscillator, not of the tank only. Indeed
the Q of a resonator tank disconnected form any other circuitry, also called the unloaded
Q, is degraded by the losses and parasitic capacitances of the circuitry needed to start
and sustain the oscillation. The resulting Q, also called the loaded Q, can be much lower
than the unloaded one.

EXAMPLE 13 Consider the case of a 1GHz oscillator with loaded Q = 5, consuming
1mW in the tank, at room temperature. Assuming realistically F = 2, Leeson’s model

Figure 4.8 Phase noise profile of an oscillator according to Leeson’s model.
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predicts a phase noise of about −128dBc/Hz at a frequency offset of 1MHz from the
carrier, and a floor of −168dBc/Hz starting at about 100MHz offset from the carrier

In the derivation of this model, [43] assumes that the resulting excess phase mod-
ulation ϕ is much smaller than 1 (small angle modulation) and that the amplitude
perturbations due to noise components are negligible in comparison to the phase pertur-
bations. Aside from these assumptions, there are two issues connected to this approach.
The first is that it does not explain the up-conversion of low-frequency noise or the
down-conversion of high-frequency noise to frequencies around ω0. Indeed, Equation
4.35 contains the offset frequency ωm and not ω, thus postulating that the flicker noise
component is present at frequencies around ω0, which is generally not true if ωo is above
some tens of MHz. The second is that F and ωf are essentially empirical parameters,
which have to be fitted to the measured phase noise profile. It also gives no indication of
how to compute them based on actual circuit topology. Despite these limitations, Lee-
son’s model correctly points out the two fundamental parameters influencing the phase
noise of any oscillator the most, namely, the power consumption and the tank quality
factor.

4.3.2 Oscillator Figure of Merit

It has become of widespread usage in the literature to compare different oscillators by
summarizing their performance in one single number: the figure of merit (FOM). The
most common and widely used FOM normalizes the phase noise number to the power
consumption, the oscillation frequency, and, of course, the offset frequency at which the
phase noise is measured. It is defined as:

FOM = L(ωm)

(
ωm

ω0

)2 ( P

1mW

)
(4.38)

where L is the phase noise expressed in linear scale, P is the power of the oscillator in
W, and ωm is an offset frequency from the carrier within the 1/f 2 phase noise region.2

Note that the FOM is usually expressed in dB, in which case it can be written as:

FOM = L(ωm) + 20 log

(
ωm

ω0

)
+ 10 log

(
P

1mW

)
(4.39)

with L expressed in dBc/Hz.

EXAMPLE 14 In the GSM cellular standard, the receiver specifications require a
local oscillator having a phase noise better than −138dBc/Hz at 3MHz offset from
a 900MHz carrier. Using the formula above, the FOM of this oscillator is equal to
−138 + 20 log(3/900) + 10 log(P/1mW) = −188 + 10 log(P/1mW). Best in class
LC-VCOs consume a few milliwatts of power. If, for instance 4mW are consumed, then
FOM = −182dBc/Hz.

2 Some authors define the same FOM to be the inverse of the expression reported here, but we will stick to
the most widespread usage.
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It is interesting to understand what is the real meaning of the FOM if we assume that
the oscillator follows Leeson’s model. By replacing Equation 4.37 limited to the 1/f 2

region (that is removing the floor and the flicker components) in 4.38 it is straightforward
to see that the FOM becomes:3

FOM = 103kTF

2Q2
. (4.40)

Thus the FOM is basically a combined measure of the quality factor of the loaded tank
and of the noise factor of the active devices. State of the art integrated LC oscillators
for wireless applications display a FOM between −180dBc/Hz and −190dBc/Hz, while
ring oscillators are definitely inferior in this respect, with typical FOMs ranging from
−150dBc/Hz to −160dBc/Hz for well-designed VCOs. Applying Equation 4.40 to these
numbers and realistically assuming F = 2, it turns out that the effective quality factor
of state of the art LC-VCOs (in terms of Leeson’s model Q) is in the range of 2 to 6, a
significant degradation from the quality factor of a pure LC tank, which might well be
in the range of 10 to 15. Even though the concept of tank quality factor does not apply
to a ring oscillator, since there is usually no inductor or tank as such, by applying the
same procedure the value of an “equivalent” effective quality factor for a ring oscillator
is of the order of 0.05 to 0.2.

It has to be observed that this FOM does not consider many other aspects of an oscil-
lator’s performance as for instance tuning range, supply rejection, area, susceptibility to
cross talk and others. As an example, a ring oscillator VCO can easily cover a tuning
range of several octaves, while the tuning range of an integrated LC oscillator is typically
limited to +/− 20% of the center frequency. In choosing the right kind of oscillator and
the right topology for a given application, the phase noise is just one of the many factors
to consider, and sometimes is not even the most important, so the indication given by
the FOM has to be taken with a grain of salt.

4.3.3 LC Oscillators

Following Leeson’s approach it is relatively easy to compute an expression for the phase
noise of a generic LC oscillator as shown in Figure 4.9. The noise sources are the parallel
resistor R and the active transconductor G. Both of them inject a noise current into the
LC tank, and, since the two are uncorrelated, the two-sided PSD of the noise current is
equal to:

Sin = 2kT

R
+ SiG (4.41)

where SiG is the PSD of the noise current of the transconductor. It is customary to
combine the two components in one single term and to write:

Sin = 2kTF

R
(4.42)

where F ≥ 1 is a noise factor considering the increase in current noise due to active
elements in the loop, relative to the resistor noise alone.

3 Since the power in the FOM is normalized to 1mW, a factor 103 needs to be introduced in the numerator.
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Figure 4.9 Generic LC oscillator (left) and equivalent circuit for noise calculation (right).

The PSD of the voltage noise on the tank can be calculated as Svn(ω) = |Z(ω)|2Sin ,
where Z(ω) is the impedance seen by the noise current source. At this point, it is impor-
tant to note that, in steady state oscillation, the tank losses R are exactly compensated
for by the transconductor G, so that the impedance seen by the noise current is that of
the pure LC tank (see Figure 4.9, right):

Z(ω) = jωL

1 − ω2LC
. (4.43)

Considering ω = ω0 + ωm, where ω0 = 1/
√

LC is the oscillation frequency and ωm is
a small frequency offset (ωm � ω0), the impedance can be approximated as:

Z(ω0 + ωm) = −j

2ωmC
(4.44)

and the PSD of the output voltage noise close to the carrier can be written as:

Svn (ω0 + ωm) = 2kTF

R

(
1

2ωmC

)2

. (4.45)

Introducing the Q factor of the tank Q = ω0RC, the voltage noise becomes:

Svn(ω0 + ωm) = 2kTFR

(
ω0

2ωmQ

)2

. (4.46)

From thermodynamic considerations, the noise power is equally split into amplitude and
phase of the oscillation, so that the PSD effectively contributing to phase noise is half of
the previous expression. The phase noise can then finally be computed by dividing one
half of the two-sided Svn by the two-sided power of the carrier V2

tank/4, with Vtank the
oscillation amplitude. The result is:

L(ωm) = 2kTFR

V2
tank/2

(
ω0

2ωmQ

)2

. (4.47)

This result is Leeson’s formula (see Equation 4.37) derived in the previous section.
Note how this approach, based on a linear time-invariant model, works as long as

the only relevant noise sources are white, and fails to capture the up-conversion of low-
frequency current noise or the down-conversion of high-frequency current noise into the
sidebands of oscillation.
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Figure 4.10 Generic LC oscillator with individual reactive element losses (left) and equivalent
circuit where the losses have been lumped in one single parallel resistor (right).

The authors of [44] extended the previous approach to account for the individual
losses of the reactive elements in the tank (see Figure 4.10). The current noise produced
by each resistor, multiplied by its transfer function to the output voltage, are added
together in an uncorrelated fashion to give the total output noise. The same result can be
obtained in a much easier way by replacing each branch of a reactive element in series
with a resistor by the parallel combination of the same reactive element and a proper
conductance.

It can be shown that the series of a capacitor C and a resistor RC is to a first approx-
imation equivalent to the parallel arrangement of the capacitor C and a conductance
GC = (ωC)2RC. In a similar way, the series of an inductor L and a resistor RL is
to a first approximation equivalent to the parallel arrangement of L and a conduc-
tance GL = RL/(ωL)2. Therefore, the tank in Figure 4.10 is equivalent to the tank
in Figure 4.9, provided that the parallel resistor R is replaced by an effective parallel
resistor Re:

1

Re
= GL + GC = C

L
(RL + RC). (4.48)

All considerations and formulas derived previously can be repeated, with R replaced
by Re. It is interesting to note how, according to this expression, to minimize the phase
noise due to losses of the reactive elements of the tank for a given oscillation frequency
and given RC and RL, the inductance has to be maximized and the capacitance mini-
mized. Of course the values of RC and RL depend on C and L, too; for instance, a larger
inductance needs more windings and thus produces a larger RL, so that the trade-off is
not so straightforward. Additionally, a large L might push the oscillator into the voltage-
limited region of operation already at relatively low value of current [45] [46], resulting
in a degradation of phase noise. This might lead to a design which is for sure very low
power, but which might not be able to meet the target phase noise specifications.

4.3.4 Crystal and Other Oscillators

Crystal oscillators are circuits that exploit the piezoelectric properties of crystal quartz
to generate very precise and stable clock references. The generic block diagram of a
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Figure 4.11 Generic crystal oscillator with crystal tank (left) and equivalent RLC circuit for the
tank at parallel resonance.

crystal oscillator is shown on the left in Figure 4.11. A transconductor G pumps current
into the equivalent circuit of the crystal and the voltage generated by the impedance of
the tank is fed back to the input of the transconductor, closing the loop. The quartz is
essentially a mechanical element, but its operation in the context of electrical oscillators
can be modeled by a lumped equivalent circuit featuring a capacitor C0 in parallel to
a branch made of an inductor L1 a capacitor C1 and resistor R1 in series. These ele-
ments are called the motional inductance, capacitance, and resistance, and model the
mechanical behavior of the crystal in equivalent electrical terms. It is important to note
that these elements, as well as the currents and voltages of the intermediate nodes, are
nowhere to be found in the quartz; they just serve the goal of providing an equivalent
electrical model. The parallel capacitor C0, to the contrary, is a real capacitor, summing
up the capacitances due to the quartz packaging and those placed on the board or on the
integrated circuit to allow oscillation.

The tank shown in Figure 4.11 (left) has two resonant modes. In series resonance,
the motional inductor L1 resonates with the motional capacitance C1 providing a low
impedance path in the series branch and a phase shift from −π/2 to +π/2. In paral-
lel resonance, L1 resonates with the series of C0 and C1, providing a high impedance
load to the transconductor and a phase shift back from +π/2 to −π/2. Since the phase
crosses the zero twice, in both series and parallel resonance, considering the Barkhausen
criterion, the circuit could oscillate at both frequencies. In the simplified configuration
shown in Figure 4.11, the series resonant mode is not stable, since, from the point of
view of the phase shift, it has positive feedback to the transconductor input. The parallel
resonance is stable, though, and the crystal will oscillate in this mode at a frequency
given by:

ω0 = 1√
LC01

(4.49)

where C01 = C0C1/(C0 + C1) is the equivalent series capacitance of C0 and C1. How-
ever, in practical implementations like the very widespread Pierce configuration, the
crystal is connected between the gate and the drain of an active element and usually
additional load capacitors are inserted between each of the two crystal terminals and
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Figure 4.12 Magnitude and phase plot of the impedance of a crystal tank (solid) and
approximation (dashed) at parallel resonance.

ground. Also, efforts are made to reduce any capacitance in parallel to the crystal, which
would make the oscillation condition harder. In this configuration, the crystal oscillates
at a frequency between the series and the parallel resonant frequencies, where its behav-
ior is inductive. The larger the values of the load capacitors, the closer the oscillation
frequency will be to the series resonance. For an overview of the physical properties
of quartz crystals and a complete analysis of oscillator circuits the reader is referred to
[47], [48], and [34].

It is instructive to get a feeling for the values of the electrical components involved in
a fundamental tone crystal. Typically, C0 is in the range of few pF. C1, to the contrary, is
very small, in the range of some fF, about one thousandth of C0. The motional inductor
L1 is huge, in the range of few mH (though this is only a model; there is no such inductor
in the quartz), and the motional resistance R1, modeling the losses in the tank, is a few
Ohms. Figure 4.12 shows the magnitude and phase plots of the impedance seen by
the transconductor for typical values of C0 = 10pF, C1 = 10fF, L1 = 10mH, and
R1 = 10Ohm. The two resonant frequencies are clearly visible and are quite close to
each other (due to the fact that C1 is very small compared to C0).

In order to understand the phase noise of a crystal oscillator and reuse the results
derived before in the case of the LC tank, we seek to approximate the behavior of the
impedance at resonance with a parallel RLC network. The admittance of the crystal tank
is given by:

Y(s) = s[C0 + C1 + sC0C1(R1 + sL1)]

1 + sC1(R1 + sL1)
. (4.50)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316981238.005
https://www.cambridge.org/core


4.3 Phase Noise in Oscillators 89

For frequencies around resonance, the denominator can be approximated as:

1 + sC1(R1 + sL1) ≈ C1

C0 + C1
s2C1L. (4.51)

Replacing this expression in Equation 4.50 and after some easy algebra, the tank
admittance can be written as:

Y(s) =
(

C0 + C1

C1

)2 ( 1

sL1
+ R1C01

L1
+ sC01

)
(4.52)

which turns out to be the parallel of an equivalent inductor Le, capacitor Ce, and resistor
Re according to:

Le = L1

(
C1

C0 + C1

)2

(4.53)

Ce = C01

(
C0 + C1

C1

)2

(4.54)

Re = R1Q2
(

C1

C0 + C1

)2

(4.55)

with Q = 1/(R1ω0C01) the quality factor of the tank. The equivalent circuit is shown
on the right in Figure 4.11 and the corresponding Bode diagram is shown in Figure 4.12
with dashed line. At this point, it is straightforward to derive an expression for the phase
noise of the oscillator, following the very same steps as in Section 4.3.3. The result
is exactly equal to Equation 4.47, where Vtank is the oscillation amplitude across the
equivalent resistor Re.

The difference between a crystal oscillator and an integrated LC oscillator, from the
phase noise point of view, is exclusively in the value of the quality factor Q. While
integrated LC tanks have quality factors typically ranging from 5 to 20, mainly limited
by the losses in the substrate and series resistance of the windings, a crystal has a Q in
the range of thousands to a few millions. A typical value of Q = 105 leads to the plot in
Figure 4.12. Another advantage of the crystal is that, due to the extremely low losses, it is
very suitable for ultra-low power clock generation. On the other hand, due to fabrication
and robustness issues, the sizes of the quartz crystal cannot be made too small; thus, the
devices are bulky, cannot be integrated on silicon, and have frequency ranges limited to
about 50MHz. Overtone crystals can work at frequencies above 100MHz but they are
quite delicate and costly, so that they are not used in typical high-volume commercial
applications.

The framework outlined in this section can be used to investigate not only the phase
noise of crystal oscillators, but also of all those oscillators which can be modeled by a
lumped electrical network as shown in Figure 4.11 (left), such as, for instance, MEMS,
SAW, and BAW oscillators.

Note that in all high-Q oscillators, the phase noise performance is typically limited
by the noise produced by the sustaining circuitry, rather than by the intrinsic losses of
the tank. In this sense the factor F in Equation 4.47 plays a very fundamental role and
can be quite large, depending on the specific circuit implementation.
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Figure 4.13 Simplified waveforms showing how noise injected in the same node at different times,
for instance in a CMOS inverter-based ring oscillator, have different effects on the output jitter.

4.4 Linear Time-Variant Analysis

The analysis of jitter and phase noise carried out in the previous sections treats the
circuits under investigation as linear time-invariant systems, ignoring the fact that every
oscillator is actually a periodic time-variant system.

Indeed, noise injected into a given node of the oscillator at different times might
affect the output jitter to different degrees. For example, take a simple CMOS inverter-
based ring oscillator: the noise current injected by a MOS device when the respective
output node is saturated to ground, or VDD, will be “absorbed” by the power and ground
supplies and will not significantly change the following shape of the voltage waveform.
Therefore its effect on the output jitter will be minimal. On the other hand, the same
amount of noise injected in the same node during a charging or discharging phase will
definitely impact the voltage waveform, and will produce jitter at the output (see Figure
4.13).

Based on this observation, Hajimiri and Lee developed a theory of noise in oscillators,
which takes into consideration the time-varying nature of the response of the circuit to
noise injected into its nodes [49], [50], [51], [52]. They introduced the concept of the
impulse sensitivity function (ISF), a periodic function which describes the relationship
between an impulse of noise current injected at a given time on a given node, and the
jitter at the output of the oscillator. By elaborating further on this concept, they set a
framework for the time variant analysis of any kind of oscillator, which led to numerous
valuable insights into the conversion of amplitude noise into jitter.

4.4.1 The Impulse Sensitivity Function

Although a detailed analysis of ISF theory is not the focus here, it is instructive to
understand the mechanism behind it. A small packet of charge injected into a specific

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316981238.005
https://www.cambridge.org/core


4.4 Linear Time-Variant Analysis 91

node of the circuit at time τ is assumed to affect the output absolute jitter a(t) over time
t in a proportional way. The proportionality is given by a function hj(t, τ ) defined as:

hj(t, τ ) = −�(τ )

ω0qmax
u(t − τ ) (4.56)

where ω0 is the oscillation frequency, qmax is the peak amount of charge due to the
oscillation on the capacitance of the node, u(t) is the unity step function and �(τ ) is the
ISF. In terms of excess phase, the defining equation of the ISF is obtained by using the
relation in Equation 3.5, and assumes the better known form:

hϕ(t, τ ) = �(τ )

qmax
u(t − τ ). (4.57)

The ISF depends, of course, on the circuit topology, but investigations show that it has
a strong correlation with the shape of the oscillation waveform itself. The total output
jitter due to a current noise in(τ ), injected into the specific node, is given by the sum
of the small noise charge packets injected at each time instant τ , multiplied by hj(t, τ ).
Expressing this as an integral:

a(t) =
∫ +∞

−∞
hj(t, τ )in(τ )dτ = −1

ω0qmax

∫ t

−∞
�(τ )in(τ )dτ (4.58)

or, in terms of excess phase:

ϕ(t) =
∫ +∞

−∞
hϕ(t, τ )in(τ )dτ = 1

qmax

∫ t

−∞
�(τ )in(τ )dτ . (4.59)

The first key observation is that, due to the periodic nature of the oscillation, the same
amount of charge injected into the same node at two time instants one or more oscillation
periods apart must have the same effect on the output jitter. Therefore, the ISF function
is periodic in ω0 and can thus be expressed in a Fourier series as:

�(τ ) = c0

2
+

+∞∑
n=1

cn cos(nω0τ + θn). (4.60)

The second key observation is that we are interested in behavior of a(t) (or of ϕ(t))
versus time t at frequencies much lower than the oscillation period. Higher frequency
components are not significant here since they are averaged out over a number of periods
of the oscillation. Due to the integrals in Equations 4.58 and 4.59, which are in effect a
mixing product, and considering Equation 4.60, only those noise frequency components
which are close to zero or to multiples of ω0 will have a significant contribution to the
jitter or excess phase at frequencies close to zero. The others are averaged out by the
integral.

To clarify this point, we follow the approach in [49]. Considering only the n-th
harmonic component of the ISF function cn cos(nω0τ + θn) and assuming the noise
current to be located at an offset frequency ωm from nω0, expressed as in(τ ) =
in cos((nω0 + ωm)τ ), the integral 4.59 can be written as:

ϕ(t) = cnin
2qmax

∫ t

−∞
(cos(2nω0τ + ωmτ + θn) + cos(ωmτ − θn))dτ (4.61)
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where the trigonometric formula for the multiplication of two cosines has been used.
The first term in the integral results in an excess phase component at double the oscilla-
tion frequency and can be dropped, since we are interested in excess phase variations at
frequencies much lower than the carrier. The second term, on the contrary, is at low fre-
quency and is relevant for the computation of the phase noise. Working out the integral,
the result is:

ϕ(t) = cnin
2qmaxωm

sin(ωmt − θn). (4.62)

From this expression, it can be understood that the excess phase PSD at frequency ωm is
proportional to the superposition of the noise current PSD at frequencies nω0 + ωm, for
each n, multiplied by the corresponding squared Fourier coefficient of the ISF function
c2

n. Note also that another effect of the integral in Equation 4.59 is that of generating a
factor ωm, the offset of the noise component from the nearest multiple of the oscillation
frequency, in the denominator of the result. For this reason, a white (flat) current noise
PSD is converted into a 1/f 2 PSD at low frequencies and flicker noise PSD is converted
into a 1/f 3 PSD This mechanism is depicted in Figure 4.14.

One notable result of this analysis is that low-frequency noise, in particular flicker
noise, is converted into jitter by the multiplication of its PSD with the coefficient c2

0.
Since c0 is the DC (average) value of the ISF, according to this theory, the conversion
of flicker noise into jitter can be greatly reduced or even eliminated by making the
oscillation more symmetric, such that the DC value of the ISF is zero.4 From Figure
4.14 it can also be noted that, if c0 is small enough, the 1/f 3 corner of the jitter PSD can
be significantly lower than the 1/f corner of the device noise.

Figure 4.14 Conversion of current noise into low-frequency jitter according to the ISF theory. In
the bottom plot, the thin lines are the individual contributions, while the thick line is the resulting
total.

4 Note that, strictly speaking, the 1/f noise waveform, assumed to be cyclostationary, must be symmetrical
too with respect to the ISF.
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If the current noise source is white and stationary, then the resulting PSD is propor-
tional to the sum of all Fourier coefficients squared. By virtue of Parseval’s theorem,
that value is also equal to the square of the RMS value of the ISF. A detailed analysis
shows that under this conditions the phase noise can be expressed as [49], [50]:

L(ωm) = �2
rmsSi

(ωmqmax)2
(4.63)

where Si is the two-sided PSD of the current noise sources (assumed to be white), and
�2

rms is the RMS value of the ISF:

�2
rms := 1

T0

∫ T0

0
�2(τ ) dτ = 1

2

(
c2

0

2
+

∞∑
n=1

c2
n

)
(4.64)

with T0 = 2π/ω0 the period of the oscillation. Thus, in order to minimize jitter or excess
phase due to white noise sources, the RMS value of the ISF should also be minimized.
Note that in the original paper [50], the equation corresponding to Equation 4.63 has an
additional factor 2 in the denominator, since there the one-sided current noise PSD S′

i
was considered instead of the two-sided.5

In many practical cases the current noise sources are not stationary, though. The noise
produced by active devices depends on the biasing point of the device itself, which, in
an oscillator, is typically not constant; rather, it is periodic with the same period as the
oscillation. The noise sources are thus essentially cyclostationary in nature. Equation
4.63 can be extended to the case of a cyclostationary PSD Si(τ ) by observing that the
cyclostationary noise source can be modeled as a stationary noise source multiplied
by a periodic modulation function. The effective ISF is then the product of the orig-
inal ISF and the modulating function itself [49]. With easy mathematical derivation,
replacing the ISF in Equation 4.63 with the effective ISF, the phase noise in presence of
cyclostationary noise sources can be written as:

L(ωm) = �2(τ )Si(τ )

(ωmqmax)2
(4.65)

where:

�2(τ )Si(τ ) := 1

T0

∫ T0

0
�2(τ )Si(τ ) dτ . (4.66)

4.4.2 Application to Ring Oscillators

In [51] this theory is applied to the case of inverter-based and differential stage ring
oscillators. The result for the phase noise of an inverter based ring is:

L(f ) = 8

3η

kT

P

γ VDD

�V

f 2
0

f 2
(4.67)

5 For a detailed discussion on one-sided versus two-sided PSD, refer to Appendix A.2.8.
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where P is the total power consumption and η is a “form” factor, typically close to 1,
which depends on the shape of the oscillation waveforms. The parameter �V is a charac-
teristic overdrive voltage, defined as �V = VDD/2 − Vth if the transistor is in quadratic
current operation region (long channel devices), and as �V = EcL for transistors in
velocity saturation (a possible condition for short channel devices), with Ec the critical
electric field. For a differential stage ring, the work in [51] neglects the noise coming
from the tail current and obtains the result:

L(f ) = 8

3η
kT

M

ItotVop

[
1 + γ Vop

(�V)d

]
f 2
0

f 2
(4.68)

where in this case �V is equal to VGS − Vth for quadratic current operation region, and
to EcL for velocity saturation. By using Equation 3.56 the period jitter can be calculated
to be:

σ 2
p = 8

3η

kT

f0P

γ VDD

�V
(4.69)

for the inverter-based ring, and:

σ 2
p = 8

3η
kT

M

f0ItotVop

[
1 + γ Vop

(�V)d

]
(4.70)

for the differential ring. These expressions may be compared to Equations 4.22 and
4.23 obtained with a more classical analysis. The main differences among these equa-
tions, apart from the presence of the factor η, is to be found in the expression for
the inverter-based ring for quadratic current regime. While the classical analysis leads
to a variance inversely proportional to VDD − Vth, in the time variant one the vari-
ance is inversely proportional to VDD/2 − Vth. The reason for this discrepancy is that
[51] considers a finite transition time of the input slope, thus identifying the over-
drive voltage of the inverter as VDD/2 − Vth, while [37] and [33] assume an infinite
input slope, leading to an overdrive voltage of VDD − Vth. For advanced CMOS tech-
nologies, where the ratio of supply voltage to threshold voltage is lower, and not
minimum length devices, the two expressions might lead to significantly different
results.

4.4.3 The ISF of an LC Tank

To apply the linear time-variant analysis to LC oscillators, it is necessary first to derive
the expression for the ISF of an LC tank. With reference to Figure 4.15, let’s assume
that a lossless LC tank is sustaining an oscillation at amplitude Vtank and frequency ω0

as in:

v0(t) = Vtank sin(ω0t). (4.71)

To derive the ISF, we inject a small packet of charge �q at time τ into the tank, and
find out what is the resultant change in the timing of the rising edge of the oscillation.
Since the LC is a linear system, its total response is the sum of the existing oscillation
(Equation 4.71) and the oscillation that would be generated by the charge injection at
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Figure 4.15 Injection of a charge packet into an ideal LC tank.

zero initial conditions. At zero initial conditions, injecting a charge �q in the tank results
in voltage step on the capacitor equal to �q/C, which triggers an oscillation �v(t) at
frequency ω0 with maximum voltage at time τ . From these considerations, the total
response of the LC tank can be written as:

v1(t) = Vtank sin(ω0t) + �q

C
cos(ω0t − ω0τ ). (4.72)

The rising edges of the unperturbed oscillation occur at time t1 such that sin(ω0t1) = 0
and cos(ω0t1) = 1. By replacing these conditions in 4.72, where the cosine term has
been expanded by using the usual trigonometric formulas for the sum and difference of
angles, the amplitude of the perturbed oscillation at t1 is found to be:

v1(t1) = �q

C
cos(ω0τ ). (4.73)

Assuming a small perturbation (�q/C � Vtank), the change in the rising edge timing
can be derived by dividing the amplitude value at t1 by the slope of the signal at t1:

�t ≈ −
(

v1(t)

/
∂v0

∂t

)∣∣∣∣
t=t1

= − �q

CVtankω0
cos(ω0τ ) (4.74)

and finally, converting time difference into phase difference using Equation 3.5, the
change in the phase of the signal is:

�ϕ = −�t · ω0 = �q

qmax
cos(ω0τ ) (4.75)
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where qmax = CVtank is the maximum charge in the LC tank. By comparing this expres-
sion to the defining equation of the ISF, Equation 4.57, which assumes a current impulse
of amplitude 1 and thus �q = 1, the ISF for an LC tank assumes the very simple form:

�(τ ) = cos(ω0τ ). (4.76)

The ISF is in quadrature with the oscillation waveform: noise injected when the signal
has its maximum amplitude has no impact on the excess phase, while noise injected
around the zero amplitude has a maximum effect. Note also that the ISF is simply the
time derivative of the original oscillation. This is not a mere coincidence, since it has
been proven that the ISF is strictly linked to the derivative of the oscillation voltage for
a wide class of oscillating systems [49].

4.4.4 A General Result on Leeson’s Noise Factor F for LC Oscillators

The analysis of LC oscillators in Sections 4.3.3 and following was carried out assum-
ing a linear time-invariant system, but the result in Equation 4.76 proves that the noise
injected in an LC tank has a time-dependent effect on the excess phase of the system,
therefore a time-variant approach is needed. The application of the ISF theory to LC-
based oscillator leads, under very general assumptions, to the surprising and remarkable
result that the noise factor F is largely independent of the specific nature and operation
conditions of the active device, independent of the shape of the current, and depends
mainly on the tank losses and the topology of the oscillator. In this section we follow the
approach used by [53], leveraging the ISF theory. The same result, although with differ-
ent notations, is obtained also by [54], with a more general approach using descriptive
functions, and by [55], extending the phasor-based analysis pioneered by [56].

Equating the general Equation 4.65 for phase noise obtained by using the ISF
approach to Leeson’s descriptive formula in Equation 4.37, limited to the 1/f 2 portion:

�2(t)Si(t)

(ωmqmax)2
= 2kTF

P

(
ω0

2Qωm

)2

(4.77)

where qmax = CVtank, Vtank is the voltage across the tank, P = V2
tank/(2R), Q = ω0CR,

and R is the total loss in parallel to the tank, the following expression for the noise factor
F as a function of the ISF can be found:

F = R

kT
· �2(t)Si(t). (4.78)

In the following, we will apply Equation 4.78 to calculate the factor F for the gen-
eral LC oscillator shown in Figure 4.16, considering noise generated by the tank losses
and by the transconductor active devices. Note that in this generic topology, it is not
assumed that the voltage across the tank is equal to the voltage either at the input of the
transconductor or at its output. It has indeed been amply well shown in the literature that
in the most efficient high-purity LC oscillators, these quantities are generally different.
For instance, the current generated by the transconductor can be injected into only part
of the tank, and the tank voltage can in general be transformed by means of a lossless
network before being fed back to the transconductor.
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Figure 4.16 Generic LC harmonic oscillator.

The corresponding two-sided PSD of the current noise is given by:

Si,R = 2kT

R
(4.79)

and applying Equation 4.66 it can be easily shown that:

�2(t)Si,R = 1

T0

∫ T0

0
cos(ω0t)2 2kT

R
dt = kT

R
. (4.80)

Note that this expression, combined with Equation 4.78, returns F = 1, which is exactly
the result obtained in the time-invariant approach when the noise of the transconductor
is neglected. With this approach, though, there is no need to invoke thermodynamics
and the equal splitting of the power in amplitude noise and phase noise. The factor 1/2
descends naturally from the form of the ISF. An intellectually very pleasing result.

In evaluating the effect of the noise of the transconductor, it will be assumed that the
oscillation waveform is sinusoidal, that the noise of the transconductor is proportional
to the transconductance of the active devices, and that the transconductor devices oper-
ate as transistors. The first assumption generally holds if the oscillator is operated in
the current limited regime [45], and the second and third are true if the active devices
are operated in saturation. Both of these assumptions are very reasonable, since they
both lead to a maximally efficient LC design in terms of better phase noise and lower
power. With reference to Figure 4.16, the PSD of the current noise generated by the
transconductor is:

Si,G(t) = 2kTγ gm(t) (4.81)

where the transconductance gm(t) can be expressed as function of the input voltage vin(t)

and output current iout as:

gm(t) = ∂iout

∂vin
= ∂iout

∂t

/
∂vin

∂t
. (4.82)

The input voltage is assumed to be sinusoidal:

vin(t) = Vin sin(ω0t) (4.83)

while the output current, periodic in T0, is expressed without loss of generality as Fourier
series:
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iout(t) =
∞∑

n=0

In sin(nωot + φn) (4.84)

so that Equation 4.82 becomes:

gm(t) =
∑∞

n=1 nIn cos(nωot + φn)

Vin cos(ω0t)
. (4.85)

As can be seen, the transconductance is periodic in T0 and the noise generated is
cyclostationary. Applying Equation 4.66 we obtain:

�2(t)Si,G(t) = 2kTγ

Vin

∞∑
n=1

[
nIn
T0

∫ T0

0
cos(ω0t) cos(nωot + φn) dt

]
. (4.86)

The integral above is nonzero only for n = 1, and considering that φ1 = 0 since at
resonance the fundamental harmonic of the current is in phase with the voltage, the
expression can be simplified to:

�2(t)Si,G(t) = 2kTγ

Vin
· I1

2
= kTγ

R
· Vout

Vin
(4.87)

where I1 is the fundamental harmonic of the current and:

Vout = RI1 (4.88)

is the amplitude of the voltage at the output of the transconductor, considering that all
other harmonics are eliminated by the LC selective filtering.

Combining Equations 4.78, 4.79, and 4.87, finally the following surprisingly simple
expression can be obtained for the noise factor F:

F = 1 + γ
Vout

Vin
. (4.89)

As stated before, this remarkable result shows that the noise factor only depends on the
ratio of output voltage to input voltage of the transconductor and does not depend on any
specific property of the transconductor itself, except for γ . Note that the application of
the time-invariant approach to the noise of the transconductor would have led to a noise
factor F erroneously dependent on gm. It has to be understood that the ratio Vout/Vin

is greatly determined by the topology of the oscillator, and has little or no dependency
on other parameters like, e.g., the nature of the transconductance element or the shape
of the current. Referring to Leeson’s formula, Equation 4.37, it can be understood that
the biggest lever to obtain lower phase noise at lower power is in the right choice of
the oscillator topology, aside from the obvious criteria of reducing the tank losses and
increasing the oscillation amplitude as much as possible. This aspect will be illustrated
in the next section.

4.4.5 Application to Some Common LC Oscillator Topologies

In this section we will apply the general result obtained in Section 4.4.4 to some of the
most common LC oscillator topologies, namely the single-switch (SS) cross coupled,
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Figure 4.17 Common Single-Switch (left) and Double-Switch (right) LC oscillator topologies.

the double-switch (DS) cross coupled and the Colpitts. Additionally we will apply it
also to the Class-C LC oscillator, a topology which has been shown able to achieve
excellent phase noise performance at low power (see [53]).

Figure 4.17 shows the topologies for the classical SS and the DS LC oscillators. From
an inspection of the figure it is immediate to understand that the voltage at the output of
the transconductance element is equal to the voltage at its input and is equal also to the
voltage across the tank. The fact that one topology has only one cross-coupled pair and
the other has two does not change the fact that Vin = Vout for both of them. Therefore,
the noise factor for these topologies is the same and equal to:

FSS = FDS = 1 + γ . (4.90)

This result tells us that the four transistors in the DS topology produce the same effec-
tive noise as the two transistors in the SS topology. The reason for that is that in the
DS topology the switching of the cross-coupled pair is faster than in the SS, therefore
the fraction of time when the devices produce effective noise is less in the DS then in
the SS [57]. It has to be noted, though, that this does not mean that the two topologies
have the same phase noise. Indeed the amplitude of oscillation Vtank is different in the
two cases. In the SS, the tail bias current flows into only half of the tank, due to the
supply tap in the middle of the inductor, while in the DS, because of the complemen-
tary PMOS switches at the top, it flows into the whole tank. The oscillation amplitude
is therefore double in the DS than it is in the SS topology. A precise analysis shows
that:

Vtank,SS = 2

π
IbR (4.91)

and

Vtank,DS = 4

π
IbR. (4.92)
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Figure 4.18 Colpitts (left) and Class-C (right) LC oscillator topologies.

Since the tank voltage is double in the DS compared with the SS, the DS topology shows
6dB better phase noise than the SS, when the oscillators are operated in the current-
limited region. This result has been proven experimentally in [57]. Note, however, that
the supply voltage of the SS switch can in general be half of that of the DS, so the
efficiency of the two oscillators in term of phase noise over power is the same. A more
detailed analysis, which is beyond the scope of this book, shows that the parasitic caps
to ground in the two branches of the oscillator tilt the scale again in favor of the SS
topology. The interested reader is referred to [57] and [55] for more details.

Figure 4.18 shows on the left the classical topology of a Colpitts oscillator. Consider-
ing that for this topology Vin is the gate-source voltage of the transistor, and Vout is the
drain-source voltage, an elementary analysis of the capacitive divider C1 and C2 leads
to the result that Vout/Vin = C2/C1, so that:

FColpitts = 1 + γ
C2

C1
. (4.93)

A thorough analysis shows that the voltage across the tank is given by:

Vtank,Colpitts ≈ 2IbR
C2

C1 + C2
(4.94)

so that the resulting phase noise depends on the ratio of the capacitors C1 and C2: a
large C2 improves the output voltage, but it increases the noise factor, while a small C2

is good for the noise factor, but is bad for the oscillation amplitude. It can be shown that
for values of γ ≈ 2/3 the ratio C2/C1 giving the lowest phase noise is very close to
2. However, also with this optimum setting, it turns out that the phase noise of a Col-
pitts oscillator is slightly worse than that of a cross-coupled LC oscillator. A complete
analysis of this oscillator can be found in [58].

Figure 4.18 shows on the right a differential Class-C oscillator [53]. This topology
can be thought of as being derived from a differential Colpitts oscillator by reducing the
capacitor C1 to zero and inserting a feedback network from the output to the input of the
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transconductor. The characteristics of this topology are the capacitance in parallel to the
tail current source, the fact that the active devices are biased to be always in saturation,
and that the output voltage is fed back to the input of the transconductors by means of a
lossless passive network with gain k. This network can be a simple capacitive coupling,
in which case k ≈ 1 or a transformer-based feedback, in which case k can also be larger
than one. Note that in this last case the biasing of the devices can be provided using the
center tap of the secondary circuit of the transformer. By inspection of the topology it is
immediate to see that:

FClassC = 1 + γ

k
(4.95)

therefore, by making k > 1, we can obtain an advantage in term of noise factor with
respect to the traditional SS and DS cross coupled topologies. Besides that, the key
aspect of this topology is the high efficiency in converting bias current into oscillation
amplitude. The combination of the large tail capacitance6 and of the devices in saturation
for all the period of the oscillation, leads to a class-C operation, with narrow and large
pulses of current injected into the tank. The resulting tank voltage is:

Vtank,ClassC = IbR (4.96)

which is higher than that of the SS cross-coupled, even if both feature an inductor with
center tap connected to the supply. The combination of these factors makes in principle
the Class-C differential oscillator a very efficient topology in terms of phase noise over
power consumption. However note that in Class-C, the active transistor must be kept in
saturation. This may eat up a non-negligible fraction of the supply, therefore reducing
the oscillation amplitude and thus the advantages compared to other topologies. Other
CMOS oscillators that show very high efficiency can be found in [59], [60], [61], [62],
and [63].

4.5 Comparison of Best Achievable FOM

In this section we will compare the FOM for the oscillator topologies previously
described in this chapter. The intent is to investigate the best FOM theoretically achiev-
able for ring, relaxation, and LC oscillators, assuming realistic conditions for the
technology and design parameters. The result will give the reader useful insight into
the performance of each topology, and a metric to evaluate the quality of any particular
design.

As a starting point we derive an equation relating the period jitter to the FOM, assum-
ing that the oscillator is dominated by white thermal noise and thus has a 1/f 2 phase
noise profile. Combining Equations 3.56 and 4.38, it is easy to find that the FOM can be
expressed as a function of the RMS period jitter σp, oscillation frequency f0 and power
consumption P as:

FOM = 103f0Pσ 2
p (4.97)

6 The reader should be warned though that there is an upper limit to the size of this capacitor, to avoid the
instability phenomenon known as squegging [53].
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where the factor 103 is due to the fact that the power P in the FOM is expressed in
milliwatts, while in the formula above it is considered expressed in watts.

For the case of a inverter-based ring oscillator, using Equation 4.22 obtained in the
Linear Time-Invariant analysis, the best FOM achievable at room temperature (T =
300K) is:

FOM = 103 · 2kT · (1 + 4γ ) = −165dB (4.98)

where it has been assumed that VDD − Vth = VDD/2. The factor γ is set equal to its
classical value 2/3 in this whole section. This result agrees with that published in [38]. It
is interesting to note that, if the Linear Time-Variant analysis result of Equation 4.69 is
used, realistically assuming η = 1 and �V = VDD/4, we obtain FOM = 103 ·2kT ·5.3γ ,
yielding the same numerical result of −165dB.

For the case of a differential stage based ring oscillator, using Equation 4.23, the FOM
is:

FOM = 103 · 2kT · (1 + 3.5γ ) · 1.9M = −160dB (4.99)

with the assumptions that the overdrive VGS − Vth = VDD/4, the number of stages is the
minimum for a differential structure M = 2, and the voltage swing is Vop = 3VDD/4,
already an extreme value for a differential stage which could be obtained with nonlinear
loads. Comparing the two previous equations, it is evident how the differential stage ring
oscillator is intrinsically inferior to the inverter-based one, and the difference in FOM is
directly related to the number of stages M.

For the relaxation oscillator topology analyzed in Figure 4.6, the RMS period jitter is
given by Equation 4.30. The best achievable noise performance can be derived by mak-
ing the reference voltage capacitors CL and CH very large, so that the noise contribution
for the reference voltage is negligible compared to the noise coming from the current
source. The minimum power consumption P = C�Vf0VDD is given by the amount of
charge needed to charge the capacitor C between the two threshold levels VL and VH ,
given by C�V , divided by the oscillator period 1/f0 to obtain the average current, and
finally multiplied by the supply voltage VDD. With this information, combining Equa-
tions 4.30 and 4.97, and again assuming VGS − Vth = VDD/4, the best achievable FOM
results in:

FOM = 103 · 2kT · 4γ = −166dB. (4.100)

Interestingly, this number is essentially the same as the one obtained for inverter based
ring oscillators. Indeed the two oscillators share the same basic principle, which is a
MOS device charging a capacitor with a constant current. The authors in [38] analyze
a relaxation oscillator topology where the charging and discharging of the capacitor is
obtained via a resistor alternatively connected to supply and to ground, and arrive at
a FOM which is about 3dB better than this one. However, note that both analyses do
not consider other important noise sources, like the bias circuits needed to generate the
currents and the noise of comparators and latches. In practice, relaxation oscillators are
normally used as auxiliary clock sources. As such they have to be cheap, both in terms
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of area and in terms of power, so that often their FOM is much worse than the limit
reported here.

For LC oscillators we will use Equation 4.40, which expresses the FOM as a function
of the noise factor F and of the quality factor Q. The analysis of Section 4.4.4 states
that under reasonable assumptions the noise factor is largely dominated by the circuit
topology, and is in expressed by Equation 4.89. Using the widespread Single-Switch or
Double-Switch topologies as a reference, where the quality factor F = 1 + γ , the FOM
can be expressed as:

FOM = 103 · 2kT · (1 + γ ) · 1

(2Q)2
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−175dB if Q = 1
−189dB if Q = 5
−195dB if Q = 10
−198dB if Q = 15
−201dB if Q = 20.

(4.101)

From this expression it is evident how the advantage of an LC oscillator with respect to
a ring or relaxation oscillator is given by the quality factor of the tank. The difference
in FOM, depending on the specific value of Q, can easily reach 30dB. At a very high
level, this should not be surprising. In a ring or relaxation oscillator, the current used
to charge the capacitors of the oscillating nodes is directly taken from the supply, and
subsequently dumped to ground during the discharge phase. So essentially the current is
used only once per oscillation period. In a LC with reasonably high Q, the current is
constantly exchanged between the inductor and the capacitor, and only a small part
is lost in thermal dissipation and needs to be replaced by the supply. The current is
thus reused over multiple oscillation periods, hence the dramatic difference in energy
efficiency for the same noise performance.

Figure 4.19 offers an overview of the FOM achieved by oscillators published in the
last two decades in main international journals and conferences. It shows that the limits
calculated above, shown as dashed lines, hold true. In particular, notice how the FOM of
relaxation oscillators is still very far from the theoretical limit, and how the performance
of ring oscillators is hard limited around −160dB. Also it is evident that LC oscillators
outperform any other category. The best in class oscillators, with respect to FOM, are
indicated in black, and refer to the publications [53], [64], [65], [66], [67], [68], [69],
and [70].

4.6 A Note on Flicker Noise

The reader has probably noticed that in the previous sections we were deriving for-
mulas for jitter or phase noise in the presence of white noise sources in the circuit
and we did not consider flicker noise components. While the mechanisms that convert
low-frequency 1/f noise into 1/f 3 phase noise around the carrier are well understood
and agreed upon, the derivation of explicit formulas for the computation of phase
noise affected by flicker noise is still controversial. Different authors provide differ-
ent expressions, and also different recipes for how to reduce its effects. The interested
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Figure 4.19 State of the art oscillator FOM vs. frequency: relaxation (crosses), differential pair
based ring (circles), inverter-based ring (diamonds) and LC (squares). The best-in-class
oscillators are indicated in black (see text for the references). The dashed lines are the theoretical
FOM limits.

reader is referred to the papers cited in this chapter to have an overview of the differ-
ent approaches to treat flicker noise conversion. We believe that the current status is
not yet sufficiently consolidated to be inserted in this book at this time. On the other
hand, in Section 9.4 we give a broad overview on the topic of 1/f noise in general,
and some of the mathematical and conceptual difficulties connected to it. Flicker noise
still remains to date an intriguing phenomenon, challenging the very mathematical tools
on which our knowledge as engineers is built. The lack of a unified set of formulas to
compute the effect flicker noise on oscillator phase noise might be, at least partly, due
to it.

4.7 Ideal Frequency Divider

In this section we analyze how jitter of the output clock of an ideal frequency divider by
N relates to the jitter of the input clock. In doing it, we will assume that the divider does
not introduce jitter by itself, and that there is no delay between input and output clocks.
The analysis of jitter and phase noise in differential CML-type frequency dividers has
been thoroughly carried out in [71] and largely follows the same steps outlined to com-
pute the jitter of a differential stage ring oscillator presented before. We will omit this
analysis here and refer the reader to the original publication. Under the above-stated
assumptions, the position of each output edge is perfectly aligned with that of the input
edge which caused that specific transition in the output clock (see Figure 4.20, where
N = 4 has been chosen). Since an output edge occurs every N input edges, the k-th
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Figure 4.20 Ideal divider (N = 4).

output edge position tok is aligned to the kN-th input edge: tok = tikN , where the indexes
“i” and “o” denote input and output clocks respectively.

Following on from this simple observation, the position of the k-th output edge rela-
tive to the edge of an arbitrary reference clock, whether ideal or non-ideal, is identical to
the position of the kN-th input edge relative to the same reference edge. This leads to the
conclusion that the absolute (relative) jitter of the output clock is equal to the absolute
(relative) jitter of the input clock, downsampled by the factor N:

ao
k := ai

kN (4.102)

ro
k := ri

kN . (4.103)

Since the absolute jitter is not affected by the divider but the clock period is multiplied
by N, the output excess phase is equal to the input excess phase divided by N (refer to
Equation 3.5). In terms of PSD, this leads to the conclusion that the output phase noise
is N2 times smaller than the input phase noise. Expressed in dB:

Lo(f ) := Li(f ) − 20 log(N). (4.104)

For instance, dividing by 2 lowers the phase noise profile by 6dB.
As far as the M-period jitter is concerned, following the same argument as above, the

jitter between two output edges spaced M periods apart is equal to the jitter between
the input edges which triggered them. The input edges, though, are spaced M times N
input periods apart, so that the relation between input and output M-period jitter can be
written as:

po
k(M) = pi

kN(NM). (4.105)

This relation can be also formally derived as follows:

po
k(M) := tok+M − tok = ti(k+M)N − tikN =: pi

kN(NM). (4.106)

Therefore, as for absolute and relative jitter, the output N-period jitter is obtained by
downsampling the input N-period jitter by a factor equal to the divider factor.
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As a particular but very important case, the period jitter of the clock at the output of
a divider by N is equal to the N-period jitter of the clock at the divider input:

po
k = pi

kN(N). (4.107)

As will be shown in the following chapters, in many typical applications, for instance
a clock coming from a free-running oscillator or from a PLL, the M-period jitter is an
increasing function of M. Combined with the equation above, this leads to the fact that
the output period jitter is typically larger than the input period jitter.

The fact that an ideal frequency divider by N actually downsamples the input jitter by
a factor of N has interesting consequences, analogous to those found in signal processing
when decimating a discrete time signal.

The most prominent effect is connected to the case of an input jitter sequence exhibit-
ing a repetitive, periodic behavior. This situation occurs often in practice, for instance,
when the circuit producing the clock is disturbed by a periodic noise source, e.g., a rip-
ple on the supply. In this case, the jitter will show the same periodicity as the periodic
noise source.

Let us assume that the input clock is affected by absolute jitter periodic in five clock
cycles, as shown in Figure 4.21 (top). If we divide this clock by 5, the output edges of
the divided clock will be affected by an absolute jitter which is equal to the input jitter
downsampled by a factor of 5. The bottom of Figure 4.21 shows the downsampling
process. It can be seen that, independent of when the divider starts, the output jitter
will be constant, and, thus, indistinguishable from a time offset. As a result the jitter is
completely eliminated from the output clock.

Figure 4.21 Jitter downsampling in an ideal frequency divider by N = 5.
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4.7 Ideal Frequency Divider 107

Generally speaking, if a clock with absolute jitter containing a component periodic
in P clock cycles is fed to a divider by kP, k being any integer, this jitter component is
perfectly removed from the output clock.

If the divider factor is not equal to the periodicity of the jitter, the result is not imme-
diate and is better analyzed in the frequency domain. If we denote the frequency of the
input clock as f0, and assume the jitter is sinusoidal with a periodicity of P clock cycles,
then the spectrum of the jitter sequence (obtained via DFT, [72]) is given by two Dirac
functions at ±f0/P, plus their repetitions around all integer multiples of f0, and can be
expressed as nf0 ± f0/P, with n any integer. The spectrum of the jitter sequence down-
sampled by N is given by shifting the original spectrum by if0/N, with i = 0, 1, . . . , N−1
and summing up all the shifted versions. Therefore the spectrum of the downsampled
jitter is composed of Dirac functions centered at:

nf0 ± f0
P

+ i
f0
N

, n ∈ Z, i = 0, 1, . . . , N − 1. (4.108)

Depending on the values of N and P, the original tone at f0/P can alias into unwanted
and unexpected jitter components. Figure 4.22 illustrates this behavior with three cases.

Figure 4.22 Jitter sequences and corresponding spectra for ideal dividers. For each case, the top
graph shows the jitter sequence and the bottom graph the corresponding spectrum. The circles
(crosses) indicate the values for the input (output) clock. The divider factor is: (a) N = 2, (b)
N = 3, (c) N = 7.
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The clock frequency f0 is 1GHz and the absolute jitter is a sinusoid with period
P = 5. The divider factor N is chosen to equal 2, 3, and 7, respectively. The figure
shows the original jitter sequence and the downsampled one together with the corre-
spondent spectra, obtained by applying a DFT to the jitter sequence. It can be seen that
while the tone of the undivided jitter sequence is at f0/P = 200MHz, the jitter of the
divided sequence can show components at other frequency, as a result of the aliasing.
For the first case (N = 2) the Nyquist criterion7 is satisfied, so that the divided clock
shows jitter at 200MHz. In the other two cases, Nyquist is not satisfied and tones are
created at lower frequencies. For N = 3 the tone is at −f0/P + f0/N =133.33MHz,
while for N = 7 the tone is at −f0 + f0/P + 6f0/N = 57.149MHz.

It is left as an exercise for the reader to prove that, depending on the value of the ratio
N/P, the frequency of the jitter component at the output of the divider is given as:

ftone =

⎧⎪⎨
⎪⎩

f0
P if N

P <= 1
2

− f0
P + �N

P � f0
N if frac(N

P ) ∈ [0.5, 1]
−f0 + f0

P + �N − N
P � f0

N if N
P > 1

2 and frac(N
P ) ∈ [0, 0.5]

(4.109)

where �x� denotes the smallest integer greater or equal to x and frac(x) the fractional
part of x.

4.8 Ideal Frequency Multiplier

While frequency division (at least at not-too-high frequencies) can be implemented with
very simple circuits based on flip-flops, the same is not true for frequency multiplication.
There is no easy or simple way of performing this operation, and more complicated
circuits like PLLs or DLLs must be used, the descriptions of which are beyond the
intended scope of this section. Here we will assume the existence of a machine capable
of receiving a given jittered clock signal as input and providing at its output a clock
defined such that each N-th edge of the output clock coincides with one edge of the
input clock, and, between two such edges, N − 1 additional uniformly spaced edges
are placed. In other terms, the edges of the multiplied clock are a linear interpolation
of the edges of the input clock. The resulting clock output thus has a frequency which
is N times the input frequency (see Figure 4.23). Even though this is an abstraction,
it is essentially equivalent to the operation of a PLL, if bandwidth limitation issues,
influencing the speed at which the output clock adapts to the input clock, are neglected.

Let us now consider how period, absolute and M-period jitter are transformed by such
an ideal machine. Based on the mechanism described above, the relationship between
output and input clock edge positions can be readily expressed as:

tokN+l = tik + l

N
(tik+1 − tik) (4.110)

7 The Nyquist criterion states that a signal with limited bandwidth B can be sampled without loss of
information only if the sampling frequency is larger than 2B. In the context discussed in this section, a
clock affected by a jitter component periodic in P and then divided by N, the Nyquist criterion holds if
P > 2N.
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4.8 Ideal Frequency Multiplier 109

Figure 4.23 Time waveform for an ideal frequency multiplier by N = 4.

where tok and tik denote the k-th edges of the output and input clocks, respectively, and
l = 0, . . . , N − 1 is a running index. Based on this, it is easy to derive the expressions
for jitter. The absolute jitter is indeed defined as:

ao
kN+l = tokN+l − (kN + l)

T

N
(4.111)

where T is the nominal input clock period and therefore T/N is the nominal output
clock period. By using Equation 4.110, the output absolute jitter can be expressed as a
function of the absolute input jitter as:

ao
kN+l = (1 − l

N
)ai

k + l

N
ai

k+1 (4.112)

and the period jitter, obtained as the difference between two consecutive absolute jitter
samples, simply becomes:

po
kN+l = pi

k

N
(4.113)

that is, the output period jitter is one N-th of that of the input.
In terms of phase noise, a similar argument as for the frequency divider applies, but

with the opposite result. Since the absolute jitter is not affected by the multiplier but the
clock period is divided by N, the output excess phase is equal to the input excess phase
multiplied by N (refer to Equation 3.5). The output phase noise is thus N2 times larger
than the input phase noise. Expressed in dB:

Lo(f ) := Li(f ) + 20 log(N). (4.114)

For instance, an ideal multiplier by 2 increases the phase noise profile by 6dB.
As far as the M-period jitter is concerned, we can argue that the jitter over M con-

secutive periods can be decomposed into the sum of the jitter over the first N�M/N�
periods and the jitter over the remaining M − N�M/N� periods. The operator �·� indi-
cates the largest integer smaller than or equal to the operand. Since N�M/N� periods of
the output clock coincide with �M/N� periods of the input clock, the first contribution
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Figure 4.24 M-period jitter for an ideal frequency multiplier by N for the input (squares) and for
the output (circles) clock.

is equal to the �M/N�-period jitter of the input clock. By virtue of Equation 4.113, the
second contribution is equal to (M − N�M/N�) times the input period jitter divided by
N. Combining these two contributions, the equation for the output M-period jitter can
be written as (note that in the following formula the brackets in the first term on the
right-hand side are the argument of the N-period jitter; it is not a multiplication):

po(M) = pi
(⌊

M

N

⌋)
+
(

M

N
−
⌊

M

N

⌋)
· pi(1). (4.115)

Seen from a different perspective, every N-th output edge coincides with one input edge,
and therefore the kN-period jitter on the output clock is equal to the N-period jitter of
the input one, with k an integer between 1 and N − 1. Since the edges in between are
the result of a linear interpolation, the other samples of the output M-period jitter will
be the linear interpolation between two adjacent samples of that of the input (see Figure
4.24).
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5 Effects of Jitter in Synchronous
Digital Circuits

In this chapter we analyze the effect of jitter on synchronous digital systems. We will
first introduce the register (also known as flip-flop) as the central element of the design,
its associated timing requirements, and the standard configuration for edge-triggered
digital design. After analyzing the effect of jitter on the standard configuration, the
reader will be introduced to the case of divided clock systems, enabled systems and
multicycle systems. Finally, a section is dedicated to latch-based digital design and the
effect of jitter on it.

5.1 Edge-Triggered Synchronous Design

In modern integrated systems, the vast majority of the digital functions are implemented
in edge-triggered synchronous design. The central element of these systems is the regis-
ter, a circuit which transfers to its output the digital value of its input, on the occurrence
of the edge of a clock signal. Shown in Figure 5.1 is the symbol of a register and the
corresponding timing waveforms. In an ideal register, when the rising edge of the clock
signal CK occurs, the output Y assumes immediately the value of the input X at that
particular instant. In practice, a register behavior differs from the ideal in at least three
aspects. First, in order to be able to capture the input data correctly, the input data has to
be stable some time before the rising edge of CK. This time is called setup time and is
indicated by τsu. Second, the input data is not allowed to change its value for some time
after the rising edge of CK. This time is called the hold time and is indicated by τho.
Third, even if setup and hold time constraints are satisfied, there is a propagation delay
from input to output, so that the new data appears at the output Y some time after the
rising edge of CK. This time is typically called the clock-to-Q, and is indicated by τcq.

Figure 5.2 illustrates the typical configuration encountered in synchronous edge-
triggered designs. A first register, or bank of registers, samples the incoming data X1
with the clock CK and produces the output Y1. This output is processed by a combina-
torial logic network, and its result X2 is fed to the input of a second register, or bank of
registers. The second register samples the processed data X2 with the same clock CK,
and produces the output Y2.

Let us analyze this configuration from the point of view of the setup time constraint.
Once the data X1 is sampled on one edge of CK, the output Y1 changes after τcq.
The new Y1 data goes through the combinatorial logic and X2 changes after a time
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Figure 5.1 Illustration of basic register timing.

Figure 5.2 Timing diagram of clocking in a edge-triggered synchronous design.

which depends on the delay introduced by the combinatorial logic. To avoid errors in
the second register, X2 must be stable at least τsu before the next CK edge. The worst
case scenario occurs when the delay of the combinatorial logic is maximum, τLmax.
Collecting all terms, the condition on timing for proper operation of the system can be
written as:

T > τcq + τLmax + τsu (5.1)

imposing a bound on the minimum duration (maximum frequency) of the clock
period T .

Regarding the hold time constraint, the data at the input of the second register is not
allowed to change for at least τho after the rising edge of CK. If we assume for now that
the rising edges on the first and second register are perfectly synchronous, the data X2
will change τcq +τLmin after the CK edge, where for the worst case scenario we assumed
the minimum combinatorial delay τLmin. Translating this into equations, the condition
for the hold time to be satisfied is:

τcq + τLmin > τho. (5.2)
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Figure 5.3 Illustration of skew in synchronous design.

It can be seen that the hold time does not impose any constraints on the frequency of
the clock, only on the minimum delay of the combinatorial logic. This is because the
hold time refers to the same edge of CK, while the setup time involves two consecutive
edges of CK.

There are two main factors which affect the ideal scenario depicted above: clock
skew and clock jitter. Clock skew occurs when the clock distribution to the registers is
not perfectly balanced and the CK edge arrives at slightly different instants at different
registers. This phenomenon is typical in big digital cores, due to extremely large and
complex clock distribution networks, and is one of the most important performance
degradation factors. Figure 5.3 illustrates the issue in a simplified manner. The clock CK
is distributed to the registers using a clock tree made of buffers. Even though modern
tools try to balance the delay of CK from the common source to each single register,
there are always some residual delay differences. In the case in figure, if τd1 does not
match τd2, the two registers experience a clock skew. Indicating with τsk the skew delay
τd2 − τd1, it is easy to prove that the timing constraints for setup and hold time translate
into:

T > τcq + τLmax + τsu − τsk (5.3)

τLmin > τho − τcq + τsk. (5.4)

In the following, we analyze the effects of jitter on the timing constraints of the system
shown in Figure 5.3. We assume that the clock distribution network does not introduce
any jitter in addition to the one on clock CK. Starting from the case of the setup time,
the relevant aspect is the position in time of the clock edge sampling the second register,
with respect to the previous clock edge sampling the first register. These two clock edges
are consecutive so that the relevant jitter is the period jitter. It can be understood that if
the period jitter is too high (in absolute value), the clock period might be much shorter
than expected, leading to a violation of the setup time constraint. In a more formal way,
we can replace the period T with the sum of the nominal period Tnom and the period
jitter p in Equation 5.3, so that the constraint on the period jitter becomes:

p > τcq + τLmax + τsu − τsk − Tnom. (5.5)

In a properly working design, the right-hand side of this equation is a negative number,
so that the equation above impose a minimum limit to the period jitter. Recalling the
definition of negative peak period jitter in Equation 2.34, the constraint on jitter can be
written as:
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ρ−
p < Tnom + τsk − (τcq + τLmax + τsu). (5.6)

For the hold time case, since the clock edge involved in the timing constraint is the
very same for the first and the second register, and we assumed that no additional jitter
is introduced by the clock distribution network, jitter on the clock will have no net effect
on the timing margin. In other words, the hold time does not impose any constraint on
the clock jitter.

When p has a random jitter component, its distribution is Gaussian and Equation 5.6
cannot be satisfied. If the random jitter RMS value is small compared to the nominal
timing margin, the probability of a setup time violation will be small, but can never
be zero and the register experiences what is called a metastable state. In this state,
the internal circuitry of the register does not have enough gain to sample correctly
the input data and to transfer it to the output in a predictable time. It could happen
that either the wrong data is produced at the output, or, even if the correct data is
sampled, the output reaches a usable voltage level only after a very long time, intro-
ducing errors in the following logic. The analysis of the effect of metastability on the
performance of digital systems involves statistical and probabilistic considerations and
ultimately leads to the concept of mean time between failures (MTBF). The MTBF
is an indication of how often errors in digital systems occur because of metastability
and, for a single register with asynchronous relation between data and clock, can be
expressed as:

MTBF = e(tr/τBW )

fDfCKTw
. (5.7)

In this equation, fD is the frequency of the input data, fCK is the frequency of the clock,
Tw and τBW are two parameters determined by the specific implementation of the register
(the first is the metastability window, the second is the inverse of the gain-bandwidth
product of the register), and finally tr is the time (called the resolution time) allowed by
the system to bring the output to a valid level.

The rate of tolerable violations in a specific system depends, among other factors, on
the number of registers, on the availability of recovery mechanisms, on how sensitive
each subsystem is to synchronization error. A discussion of the effects of metastability
on systems is beyond the scope of this book, and the interested reader can refer to [73],
[74], [75], and [76] for a deeper insight and further references.

5.2 Gated Clock, Divided Clock, Enabled Systems

In digital designs, not all registers are always clocked at the same frequency. Figure
5.4 illustrates in a simplified manner three of the most common cases. In one particu-
lar implementation, some parts of the design may be allowed to run at a lower speed,
with registers clocked by a divided version of the main clock, as shown in Figure 5.4 A.
In other implementations, data are clocked in a discontinuous and almost “on demand”
fashion, rather than in a continuous mode. In such cases, either the clock is gated, allow-
ing transitions to reach the register only when data need to be sampled, as shown in
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5.2 Gated Clock, Divided Clock, Enabled Systems 115

Figure 5.4 Timing diagram of clocking in a system with: (A) gated clock, (B) divided clock, and
(C) enable signal.

Figure 5.4 B, or a signal enables the registers only in specific moments (Figure 5.4 C).
Note that the cases A and B are to be considered mutually exclusive. They are depicted
in the same figure just for illustration purposes. It is important to note that, independent
of which scheme has been used, the result is that the registers are clocked every N cycles
of the input clock, rather than on consecutive edges.

Let’s now analyze the effects of jitter on clock CK on the timing constraints of the
system shown in Figure 5.4, assuming that the divider does not introduce additional
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skew.1 This case is very similar to the previous one, with the only difference being
that the registers are clocked every N-th period of the input clock CK, instead of every
clock. Repeating the consideration of the previous case we can conclude that the hold
time closure does not set any constraints on the jitter of the divided or gated clocks
(CKD and CKG respectively), or on the clock CK. As far as the setup time is concerned,
from the previous section it follows that the constraint is on the peak period jitter of the
divided or gated clocks (for divided or gated clock systems), or on the displacement of
one edge of the clock CK with respect to the N-th previous edge (for enabled systems).
Translating these requirements in terms of jitter on the original clock CK, they all imply
a bound on the peak N-period jitter of the clock CK. Recalling Equation 5.6, we can
then write the following for the systems under investigation:

ρ−
p(N) < NTnom + τsk − (τcq + τLmax + τsu). (5.8)

It is important to note that N-period jitter is typically larger than period jitter. As shown
in Section 3.2.2, in the case of a clock generated by a free-running oscillator or by a PLL
with sufficiently low bandwidth, the N-period jitter is about

√
N larger than the period

jitter, so that the equation above can be rewritten as:

ρ−
p <

NTnom + τsk − (τcq + τLmax + τsu)√
N

. (5.9)

If the digital system is designed to pack as much logic as possible between any two
registers, the timing margin at the numerator of this equation is of the same order as
the timing margin available between two registers clocked by the undivided clock. This
results in

√
N more stringent conditions on the period jitter of the undivided clock,

compared to a system where no divided clock is used.

5.3 Multicycle Paths

In complex designs, some combinatorial logic may take longer than one clock period
to produce its result. If the function of the system can tolerate a delay of more than
one clock cycles on these paths, there is no need to change the architecture of the
design, and this path can be treated as a multicycle path. A multicycle path over N clock
cycles is a combinatorial path which is expected to produce its results between the next
(N − 1)-th and N-th edge of the clock. The diagram of Figure 5.5 illustrates an example
of multicycle path for N = 3. It is important to note that, unlike in divided or gated clock
systems, in multicycle paths the second register is always enabled and clocked at every
edge of the clock CK. We will see that this makes a difference in constraining for jitter.

We want now to analyze the effects of clock jitter on the timing constraints of the
system shown in Figure 5.5. Starting from the analysis of setup time, the data at the
output of the combinatorial logic must be stable at the input X2 of the second register

1 In practical cases the divider will introduce a static, deterministic skew between the divided and the
non-divided clocks. This skew has to be taken into account in the timing budget of the timing arcs
preceding and following those clocked by the divided clock.
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Figure 5.5 Timing diagram of clocking in a synchronous system with multicycle paths.

τsu before the N-th edge of clock CK. From this point of view there is no difference
between this system and a divided or gated clock system, and Equation 5.8, constraining
the peak N-period jitter, applies.

An additional bound on jitter is in this case determined by the hold time requirements.
Indeed, the data at the output of the combinatorial logic must arrive at the input X2 τho

after the (N − 1)-th edge of clock CK. If this is not guaranteed, the data might appear
at the output Y2 one clock cycle too early. Following the steps outlined in the previous
cases it is left as an easy exercise for the reader to prove that this condition impose a
bound on the maximum positive peak (N − 1)-period jitter:

ρ+
p(N−1) < τcq + τLmin − τho − [(N − 1)Tnom + τsk] (5.10)

where τLmin is the minimum propagation delay of the combinatorial logic.

5.4 Latch-Based Synchronous Design

A latch is a basic digital circuit often used in full custom digital systems instead of
a register. While a register samples the input data on the edge of the clock, a latch is
sensitive to the level of the clock. When the clock is high, the output is equal to the
input. If during the high clock phase the input changes, the output changes accordingly.
In this phase the latch is said to be transparent. When the clock goes low, the output data
retains the latest value assumed. In this phase, if the input changes, the output doesn’t,
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Figure 5.6 Illustration of basic latch timing.

and the latch acts as an isolation element between input and output. The use of latches
in a digital design can potentially give rise to dangerous race conditions, difficult to spot
in a complex system, and is therefore not recommended in an automated RTL digital
flow. Nevertheless, for full custom digital logic, the use of latches allows substantial
gain in terms of maximum speed at which the system can work, and is therefore used
for high-speed designs.

Figure 5.6 illustrates the symbol for a latch (note the difference between the symbols
of the register and of the latch in correspondence of the clock input), together with its
timing diagram. There are four main timing parameters associated with a latch. The
setup and hold times (τsu and τho) are associated with the falling edge of the clock
CK, rather than with the rising edge, as was the case with a register. In analogy to the
register, the time it takes for the output to change when the latch goes into transparent
mode is called clock-to-Q, τcq. When the latch is already in transparent mode and the
input changes, the output changes after a propagation delay called data-to-Q, τdq.

In Figure 5.7 the basic structure of a latch-based synchronous logic is sketched. A
first latch, transparent on the high level of clock CK, is followed by a first combina-
torial logic block. This logic block is followed by a second latch which is clocked by
the inverted clock CK, symbolized by a circle on the clock input pin. Therefore this
latch is transparent during the low level of CK. A second combinatorial logic block
follows, and a third latch, transparent on the high level of the clock as the first one,
concludes the stage. Note how the use of latches in logic paths is nothing more than
inserting combinatorial logic between the master and the slave stages of a master–slave
register.

We will now analyze the effects of clock jitter on the timing constraints of the system
shown in Figure 5.7. Starting from the setup time, let us assume that the first latch has
no timing issues, so that data X1 is stable at least τsu before the falling edge of CK. If
this condition is satisfied, the output Y1 changes τdq after X1. The first combinatorial
block processes this data and produces its result at the input X2 after the worst case
propagation delay τLmax1. In order to be properly latched by the second latch, the data
must be stable at X2 at least τsu before the next rising edge of CK (remember that the
second latch has an inverted clock input). Collecting all this information and with the
help of Figure 5.7, the following equation can be written for the setup constraining of
the second latch:
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Figure 5.7 Timing diagram of clocking in a latch-based synchronous design.

0 − τsu + τdq + τLmax1 < Tlow − τsu (5.11)

where time zero has been chosen to correspond to the first falling edge of CK, and Tlow

indicates the duration of the low phase of CK. Note how in this case the setup time τsu

appears on both sides of the equation with the same sign, and thus can be eliminated
from the timing budget. This is a significant difference with respect to edge-triggered
systems. A second important observation is that the timing is sensitive to the duration of
the low phase of clock CK and thus to the duty-cycle of the clock CK. Indicating with
δ the duty-cycle of CK, with Tnom the nominal period, and with p(1/2) the (1/2)-period
jitter, the duration of the low phase can be expresses as (1− δ)Tnom +p(1/2). Replacing
this expression in the previous equation, the constraints on the jitter of one half-period
can be expressed as:

ρ−
p(1/2) < (1 − δ)Tnom − (τdq + τLmax1). (5.12)

The analysis of the path going from the second register to the third register is identical
to the one above, with the only difference being that in this case the CK is negated.
Therefore, instead of the low phase, the high phase of CK must appear in the equation,
which can be thus written as:

ρ−
p(1/2) < δTnom − (τdq + τLmax2). (5.13)
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120 Effects of Jitter in Synchronous Digital Circuits

Depending on the sign of the duty-cycle distortion (δ − 0.5) and on difference between
the delays of the two combinatorial logic blocks, one of the two equations above is the
most stringent.

As for the hold time closure, the same arguments as for the edge-triggered logic hold.
The hold time on the second latch refers to how fast the data at its input changes after
the falling edge of the clock CK. The falling edge on the second latch is generated by the
same rising CK edge on the first latch, which releases the data to the second latch. Any
jitter present on the rising edge of CK thus cancels out from the timing budget, exactly
as for the case of edge-triggered logic, and Equation 5.4 holds.
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6 Effects of Jitter on Data Converters

By virtue of being clocked, all data converters are susceptible to clock jitter. This chapter
provides several case studies that include current DACs, Nyquist data converters, time-
interleaved ADCs, and oversampling data converters. In each case, we first provide a
brief background of the area to clearly define the problem we are trying to solve, then
demonstrate how the concepts and techniques introduced in previous chapters could be
used to analyze the effect of jitter and phase noise on circuit performance.

6.1 Effects of Jitter on Current DACs

6.1.1 Background

A binary current DAC (IDAC), as shown symbolically in Figure 6.1, takes a discrete-
time input signal x[k] and produces a continuous-time current signal y(t) as its output.
In addition to the input signal, the IDAC also receives a clock signal with frequency fs,
ideally with no jitter, and a reference current IR. Accordingly, an ideal IDAC converts
binary data, −1 or +1, to a current pulse with Ts duration and −IR or +IR amplitude,
respectively. The relationship between the input and output of a binary IDAC can be
written as:

y(t) = IR

∑
k

x[k](u(t − kTs) − u(t − (k + 1)Ts)) (6.1)

where Ts represents the ideal clock period and u(t) represents the unit step function.
A simplified circuit diagram for a binary IDAC is shown in Figure 6.2. Since the D
input of the latch is assumed to be constant with sufficient margin beyond the setup
and hold times of the latch, the sampling process is not influenced by the clock jitter.
For this reason, the continuous-time input x(t) could be represented by the discrete-time
sequence x[k] ∈ {−1, +1}. A +1 results in a positive current +IR at the output (for the
duration of one clock cycle) and a −1 results in a negative current −IR.

We now consider the relationship between the clock jitter and the noise it will add to
the output of the DAC.

6.1.2 Non-Return-to-Zero (NRZ) IDAC

Consider a non-ideal binary IDAC, as shown in Figure 6.2, with a jittery clock CK. We
are interested in deriving an expression for the noise power at the output of the IDAC
due to the clock jitter.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316981238.007
https://www.cambridge.org/core
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Figure 6.1 Block diagram of an IDAC along with a sketch of its input and output signals.

Figure 6.2 A simplified circuit diagram of a unit element along with its input and output
waveforms.

As shown in Figure 6.3, the output yid(t) of an ideal IDAC consists of a waveform
that is either +IR or −IR. Therefore, the output signal power is I2

R. The output y(t) of a
non-ideal IDAC deviates from that of an ideal IDAC only at output transition times. If
we denote by ak the absolute jitter of the jittery clock, then the difference between the
two outputs, which we define as the error, can be written as:

e(t) = y(t) − yid(t) =
∑

k

ek(t) (6.2)

where

ek(t) = −2IR
x[k] − x[k − 1]

2
sgn(ak) (u(t − kTs) − u(t − kTs − ak)) (6.3)

where sgn(·) represents the sign function, which produces −1, +1, or 0, depending on
whether its argument is negative, positive, or zero, respectively. If we further define
�k = (x[k] − x[k − 1])/2, then �k ∈ {+1, −1, 0} represents a positive transition, a
negative transition, or no transition in the input data sequence. We can then write:

ek(t) = −2IR �k sgn(ak) (u(t − kTs) − u(t − kTs − ak)). (6.4)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316981238.007
https://www.cambridge.org/core


6.1 Effects of Jitter on Current DACs 123

Figure 6.3 (a) An IDAC with an ideal clock along with its output waveform, (b) an IDAC with
jittery clock along with its output waveform, (c) a model of a DAC with jittery clock.

To find the power of the error signal, σ 2
e , we first find the average power of ek(t) over

one period as a function of k and then find the expected value of this average power.

e2
k(t) = 4 I2

R�2
k(u(t − kTs) − u(t − kTs − ak)) (6.5)

e2
k = 1

Ts

∫
Ts

e2
k(t)dt = 4 I2

R�2
k

|ak|
Ts

(6.6)

σ 2
e = E[e2

k] = 4 I2
R σ 2

�

E[|ak|]
Ts

. (6.7)

For a random binary sequence x[k] ∈ {+1, −1}, σ 2
� = 0.5. Also, for a Gaussian

random jitter ak with a mean of zero and a standard deviation of σa, it can be shown

easily that E[|ak|] =
√

2
π
σa. As a result, Equation 6.7, can be simplified to:

σ 2
e =

√
8

π
I2
R

σa

Ts
. (6.8)

It is common to write the noise power in dBFS, which is defined as the noise power
in dB relative to the power of the full-scale signal (I2

R in this case). Therefore, we can
write:

σ 2
e = 10 log

(√
8

π

σa

Ts

)
[dBFS]. (6.9)

It may appear odd that the error variance at the output of the DAC is proportional to
the standard deviation of the jitter, and not to the variance of the jitter. The error variance
as shown in this equation represents the total noise power due to jitter including both
the in-band and the out-of-band noise. As we will see later in this section, the in-band
portion of this noise power is proportional to the jitter variance.
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Figure 6.4 (a) A DAC followed by a low-pass filter, (b) a sketch of an error waveform, and (c) the
error waveform approximated by delta functions.

6.1.3 NRZ IDAC Followed by a Linear Filter

Assume the DAC is followed by a linear filter as shown in Figure 6.4(a). We are inter-
ested in deriving an expression for the noise at the output of the linear filter due to clock
jitter.

If we denote by h(t) and s(t) respectively the impulse response and the step response
of the linear filter, we can write the following expression for the error at the output of
the linear filter, eh(t):

eh(t) = −2IR
∑

k

�k sgn(ak) (s(t − kTs) − s(t − kTs − ak)). (6.10)

If we assume |ak| << Ts, and note that h(t) = ds(t)/dt, we can use the Taylor
expansion of s(t) in the vicinity of t = kTs, and write:

eh(t) = −2IR
∑

k

�kakh(t − kTs)

= h(t) ∗ −2IR
∑

k

�kakδ(t − kTs). (6.11)

Note that this expression is valid only when the DAC is followed by a linear filter
whose impulse response h(t) is continuous at t = 0. If we now define ê(t) as:

ê(t) := −2IR
∑

k

�kakδ(t − kTs) (6.12)

then we can write:

eh(t) = h(t) ∗ ê(t). (6.13)

This equation implies that, as far as eh(t) is concerned, we can substitute e(t), as
shown in Figure 6.4(b), with ê(t), as shown in Figure 6.4(c). This substitution, as we
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will see shortly, will simplify the derivation of the noise power at the output of the
filter. ê(t) is a cyclostationary process since its statistical properties repeat every Ts. The
autocorrelation function of ê(t) can be written as follows:

Rê(t1, t2) = 4I2
R

∑
j

∑
k

E[aj�jak�k]δ(t1 − jTs)δ(t2 − kTs)

= 4I2
R

∑
n

Ra[n]R�[n]
∑

k

δ(t1 − (n + k)Ts)δ(t2 − kTs) (6.14)

where we have assumed that ak and �k are independent, and defined n = j−k. Rewriting
this equation for t1 = t + τ and t2 = t, will result in:

Rê(t + τ , t) = 4I2
R

∑
n

Ra[n]R�[n]
∑

k

δ(t + τ − (n + k)Ts)δ(t − kTs) (6.15)

This equation clearly shows that the autocorrelation is a function of both t and τ , as
is the case for any cyclostationary process. However, if we define ē(t) = ê(t −φ), where
φ is a uniformly distributed random phase in (0, Ts), then it can be shown [1] that:

Rē(τ ) = 1

Ts

∫ Ts

0
Rê(t + τ , t)dt (6.16)

where autocorrelation is a function of τ only. Using ē(t) instead of ê(t) to represent the
error is justified because the phase difference between the input and the clock is not
known at time zero. Substituting Equation 6.15 in Equation 6.16 results in:

Rē(τ ) = 4I2
R

Ts

∑
n

Ra[n]R�[n]δ(τ − nTs). (6.17)

Taking the Fourier transform of both sides, we now find the power spectral density
(PSD) of the error signal at the DAC output:

Sē(f ) = 4I2
R

Ts

∑
n

(Ra[n]R�[n])e−jωnTs . (6.18)

If we further assume that ak and �k are white, then their autocorrelation functions
will be zero except when n = 0. Therefore, we can write:

Sē(f ) = 4I2
R

Ts
σ 2

a σ 2
�. (6.19)

Note that this equation approximates the spectral density of the error under the
assumption that ak � Ts, where error pulses could be approximated by delta func-
tions. For a jitter that does not satisfy this condition, the above equation is only valid at
lower frequencies.

To find the total error power at the output of the filter, we must multiply this spectral
density by |H(jω)|2 and integrate over all frequencies. If we assume the linear filter is an
ideal low-pass filter with a flat frequency response for −f0 < f < f0, and zero outside
its passband, we can write:

σ 2
ēh

= 2f0Sē(f ) = 4I2
Rσ 2

�

(
σa

Ts

)2 1

OSR
(6.20)
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where OSR is the oversampling ratio, and is defined as OSR = fs/2f0. This expression
provides the in-band noise power due to jitter and is indeed proportional to the jitter
variance.

6.1.4 NRZ IDAC Followed by an Integrating Capacitor

Assume the IDAC is followed by an integrating capacitor as shown in Figure 6.5. We are
interested in deriving an expression for the power of the current noise that is delivered
to the capacitor as result of DAC clock jitter.

The charge error provided to the capacitor in the k-th cycle can be written as:

Qe(kTs) = 2IR�kak. (6.21)

Since this charge is delivered every Ts seconds, the average error current per cycle
can be written as:

ē(kTs) = 2IR�k

(
ak

Ts

)
. (6.22)

Again, assuming �k and ak are uncorrelated, we can find the following for the error
power:

σ 2
ē = 4I2

Rσ 2
�

(
σa

Ts

)2

. (6.23)

To express this power in dBFS, we will divide it by I2
R. As before, we further assume

σ 2
� = 0.5. Therefore, we can write:

σ 2
ē = 10 log

(
2

(
σa

Ts

)2
)

[dBFS]. (6.24)

This result is consistent with Equation 6.20 if OSR = 1.

Figure 6.5 (a) An IDAC followed by an integrating capacitor, (b) a sketch of an error waveform,
and (c) the per-cycle average error waveform.
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6.1.5 Return-to-Zero IDAC

A Return-to-Zero (RZ) binary IDAC, as shown in Figure 6.6, receives as its input a
binary sequence and produces as its output a CT current according to the following
equation:

y(t) = IR
∑

k

x[k](u(t − kTs − α − ak) − u(t − (k + 1)Ts − β − bk)) (6.25)

where α and β (both less than Ts) represent the nominal edge locations of the DAC
pulse and ak and bk represent two independent random processes corresponding to the
absolute jitter of the two edges. We are interested in finding the power of the error
produced by jitter.

As shown in Figure 6.6, an ideal output, yid(t) corresponds to the case where ak =
bk = 0. As a result, the error signal, defined as e(t) = y(t) − yid(t) = ∑

k ek(t), where
ek(t) can be written as follows:

ek(t) = −IR[(u(t − kTs − α) − u(t − kTs − α − ak))

+ (u(t − kTs − β) − u(t − kTs − β − bk)). (6.26)

This error waveform is different from that of the NRZ DAC in two ways: first, there
are always two transitions per DAC cycle, irrespective of whether the input data has a
transition. This eliminates the need to include �k as defined for the case of NRZ DAC.
Second, the magnitude of the error waveform is now IR instead of 2IR. The procedure to
find the power of error in case of RZ DAC is similar to the NRZ case and can be derived
easily by the reader. Here, we suffice to include the final results corresponding to each

Figure 6.6 (a) An RZ IDAC with an ideal clock along with its output waveform, (b) an RZ IDAC
with a jittery clock along with its output waveform, (c) a model of an RZ DAC with a jittery
clock.
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of the three cases we discussed earlier. In all three cases, we assume α = 0.25Ts and
β = 0.75Ts, corresponding to a DAC pulse that is half of the clock period.

Corresponding to Equation 6.9, the error power in dBFS at the output of an RZ DAC
is given by:

σ 2
e = 10 log

(√
2

π

σa + σb

Ts

)
[dBFS]. (6.27)

Corresponding to Equation 6.20, the total power of error (due to jitter) at the output
of an RZ IDAC is given by:

σ 2
ēh

= 2f0Sē(f ) = I2
R

(
σ 2

a + σ 2
b

T2
s

)
1

OSR
. (6.28)

And, corresponding to Equation 6.24, the error power of an RZ DAC followed by an
integrator and an ideal sampler can be written in dBFS as:

σ 2
ē = 10 log

(
σ 2

a + σ 2
b

T2
s

)
[dBFS]. (6.29)

Finally, for a fair comparison between the noise power of the RZ and the NRZ DACs,
we must take into account the size of their full-scale currents. While we have denoted
with IR the full-scale current for both, the full-scale current of the RZ DAC should be
considered larger than that of the NRZ DAC so as to produce the same full-scale voltage
at the DAC output, assuming the same load capacitance. For the case of a RZ DAC with
α = 0.25Ts and β = 0.75Ts, the RZ full-scale current amplitude should be twice as
large as that of the NRZ DAC.

6.2 Effects of Jitter on Nyquist Data Converters

6.2.1 Background

An ADC samples a continuous-time analog signal, x(t), at constant time intervals, Ts,
to produce a corresponding discrete-time digital output signal, y[k]. Due to limited res-
olution of the ADC, we expect y[k] = x(kTs) + q[k] where q[k] is a discrete-time signal
that represents the quantization error signal, also known as the quantization noise, of the
ADC.

Quantization noise is generally assumed to be a discrete-time random sequence with
a white spectrum that goes from DC to fs/2, where fs = 1/Ts.

One way to characterize an ADC and its accuracy in converting an analog to a digital
signal is by measuring its output signal-to-quantization-noise ratio (SQNR), defined as:

SQNR = 10 log

(
signal power

quantization noise power

)
= 20 log

(
σx

σq

)
(6.30)

where σx and σq represent the standard deviations of the input signal and the quantization
noise, respectively. SQNR is directly related to the ADC resolution (N), which is the
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Figure 6.7 (a) ADC symbol, (b) a simple model of an ADC.

number of bits in the digital output of the ADC. Assuming a sinusoidal input, and a
uniformly distributed quantization noise, it can be shown that:

SQNR = 6.02N + 1.76 [dB]. (6.31)

This equation states that, given the same full-scale input, the higher the N, the lower the
quantization noise power and the higher the SQNR.

For example, a 10-bit ADC is expected to have an SQNR of around 62dB whereas
a 14-bit ADC is expected to have an SQNR of around 88dB. Also, note that every
additional bit of resolution adds 6dB to the SQNR.

6.2.2 ADC Timing Error

The finite resolution (N) of an ADC is only one contributor to its noise power at the out-
put. Another important contributor is the error caused by the jitter in the sampling clock
[77], referred to as the timing error. Figure 6.8 models the ADC as a sampler followed
by a quantizer. Even though in reality the functions of sampling and quantizing occur
within a single block, separating the two is helpful in distinguishing the two contributors
to the noise at the output. The sampler is expected to sample the input data at Ts inter-
vals, but due to jitter, the samples are taken at kTs + ak where ak represents the absolute
jitter in the clock edge. As a result, the analog sample s(k) that is fed to the quantizer
is different from the intended input sample x(kTs) by e[k]. The quantizer, in turn, adds
quantization error to s[k] to produce the digital output, y[k]. Since these two errors, e[k]
and q[k], in our model simply add to the output signal, there is no way to distinguish
between the two; they both appear as noise at the output and degrade the SNR (we use
SNR to refer to the ratio of signal to the total noise, including the quantization noise and
the jitter noise, that is the output noise due to clock jitter). For this reason, it is common
to define the effective number of bits (ENOB) of an ADC as follows:

ENOB = SNR − 1.76

6.02
. (6.32)
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Figure 6.8 ADC is modeled as a sampler followed by a quantizer.

Note that, in general, the noise power comes from thermal noise, jitter noise, non-
linearity, and quantization noise. If we ignore thermal noise, jitter noise, and the
nonlinearity, then SNR = SQNR, and the above equation simply produces ENOB = N,
that is, the nominal resolution of the ADC. On the other hand, in the presence of jit-
ter, thermal noise, and nonlinearity, the total noise will be higher than the quantization
noise, and therefore, SNR < SQNR, which results in an ENOB less than N. Clearly, a
higher jitter will increase the total noise and therefore reduces ENOB. We are interested
in quantifying the effect of jitter on ENOB. In particular, we are interested in knowing
the jitter level at which the jitter noise becomes equal to the quantization noise. Also,
we are interested in knowing what jitter levels will have no significant impact on ENOB.

Analysis: Based on the simplified model shown in Figure 6.8, the ADC output can be
written as:

y[k] = x(kTs) + e[k] + q[k] (6.33)

where e[k] and q[k] are the jitter noise and the quantization noise, respectively. In this
simplified model, we have assumed that the jitter noise and the quantization noise are
independent of each other, and simply add up at the output of the ADC. Accordingly,
the total noise power at the output of the ADC is equal to the sum of their powers.
Let us now derive an expression for the jitter noise power while assuming q[k] = 0
(i.e., assuming an infinite resolution for the quantizer). Referring to Figure 6.9, we can
approximate the output value at the k-th clock edge, y[k], based on the Taylor expansion
of the input signal, x(t), at t = nTs:

y[k] = x(kTs + ak) = x(kTs) + dx

dt

∣∣∣
t=kTs

ak (6.34)

where an represents the absolute jitter sequence at the n-th clock edge, and the higher-
order terms in the Taylor expansion are assumed to be negligible compared to the first-
order term. Accordingly, the error in the output due to jitter can be written as:

e[k] = dx

dt

∣∣∣
t=kTs

ak. (6.35)
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Figure 6.9 Jitter in a sampling clock contributes to the output quantization noise.

Note that, in general, both x(t) and ak are random processes, and so are dx/dt and
e[k]. This equation simply states that the jitter is multiplied by the signal derivative to
contribute to the total noise. The higher the signal derivative, the greater the impact
of jitter on the total noise and the higher the deterioration of the SNR. For example,
jitter will have little or no impact if the input is a DC or low-frequency signal. But
the same jitter will have a strong impact on signals with higher frequencies. To show
this mathematically, let us first consider the case where the input is a sinusoid with
a full-scale amplitude A and a random uniformly distributed phase φ. In other words,
x(t) = A sin(ω0t+φ). The assumption of random phase makes sense because we assume
no phase relationship between the input and the sampling clock. One can easily verify
that:

E[x(t)] = E[dx/dt] = 0 (6.36)

σ 2
x = E[x2(t)] = A2/2 (6.37)

σ 2
dx/dt = E[(dx/dt)2] = A2ω2

0/2. (6.38)

Hence, we can write (if we assume dx/dt and ak are uncorrelated):

σ 2
e = E[e2[k]] = A2ω2

0

2
σ 2

a (6.39)

where σ 2
a represents the jitter variance and σ 2

e is the noise power due to jitter. It is
common to write the noise power in dBFS, which is defined as the noise power in dB
relative to the power of the full-scale signal (A2/2). Therefore, we can write:

σ 2
e = 10 log(

A2ω2
0σ

2
a /2

A2/2
) = 20 log(2π f0σa) [dBFS] (6.40)

In contrast, the quantization noise power can be written in dBFS as follows:

σ 2
q = V2

LSB/12

A2/2
= −1.76 − 6.02N [dBFS] (6.41)
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Figure 6.10 Noise power due to jitter as a function of signal frequency.

where VLSB represents the change in voltage that corresponds to the least-significant bit
(LSB), and the peak-to-peak amplitude of the signal, 2A, represents the ADC full-scale
input, i.e., 2A = 2NVLSB.

Equations 6.40 and 6.41 show that, while the quantization noise power is not a func-
tion of the input frequency, the jitter noise power increases with frequency. This is
plotted in Figure 6.10 for an ADC with N = 12. The quantization noise in this case
is −74dBFS. The jitter noise, however, increases with both the RMS jitter and the input
signal frequency. For a fixed RMS jitter, such as σa = 2ps, the jitter noise will increase
with frequency until it is equal to the quantization noise at ω0 = 100Mrad/s. If the signal
frequency increases beyond this value, then the output noise power will be dominated
by jitter, and not by the quantization noise. Similarly, for a fixed input frequency, such
as 1Grad/s, the jitter noise increases linearly with RMS jitter. At σa = 0.2ps, the jitter
noise will be equal to the quantization noise. Any increase in the jitter RMS will make
the jitter noise dominant in this design.

Example: A 10-bit ADC is designed to work with a sampling clock with an RMS
jitter of 1ps. (a) Find the input frequency at which the quantization noise power equals
the jitter noise. (b) Calculate ENOB at this frequency. (c) Find the input frequency at
which the jitter noise power is 10% of the quantization noise power.

Solution: (a) For N = 10, using Equations 6.41 and 6.40, and equating σ 2
q and σ 2

e , we

will have −61.96 = 20 log(2π f0 × 10−12). Hence f0 = 127MHz. (b) At this frequency,
the total noise power will be twice the quantization noise power, i.e., 3dB higher than
−61.96 [dBFS], or −58.96 [dBFS]. Using Equation 6.32, we will have ENOB = 9.5.
(c) 10% is equivalent to 10dB. Therefore, the jitter noise will be −71.96[dBFS]. Using
Equation 6.40, we will have f0 = 40.2MHz.

We now consider the general case where x(t) is a random process in Equation 6.34,
and derive an expression for the output noise power due to sampling clock jitter. Taking
the autocorrelation function of both sides of Equation 6.34 results in:

Ry(mTs) = Rx(mTs) + Re(mTs). (6.42)
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It can also be shown [77] that:

Re(mTs) = −R
′′
x(mTs) Ra(mTs). (6.43)

Evaluating this equation at m = 0 results in:

Re(0) = −R
′′
x(0) Ra(0). (6.44)

Recognizing that Re(0) = σ 2
e and Ra(0) = σ 2

a , we can write:

σ 2
e = −R

′′
x(0) σ 2

a . (6.45)

This equation states that the output noise power is the product of the jitter power
and a constant that depends only on the input signal autocorrelation around zero. This
constant, for the case of a sinusoidal input with a random phase, turns out to be A2ω2

0/2,
as found in Equation 6.39. Also note that the jitter noise power is independent of the
shape of the jitter spectral density; instead, it is a function of the total jitter power σ 2

a
[77].

For further insight, let us take the Fourier transform of both sides of Equation 6.43.
We will have:

Se(f ) = [(2π f )2Sx(f )] ∗ Sa(f ) (6.46)

where ∗ denotes convolution, and Se(f ), Sx(f ), and Sa(f ) represent the power spectral
densities of the error signal due to jitter, the input signal, and the clock jitter, respectively.
This equation clearly shows that the higher frequencies contribute more to noise power
than the low frequencies due to the factor (2π f )2 in the equation.

6.2.3 Design Considerations

In designing ADCs, depending on the availability of a low-jitter clock (from a PLL, for
example), and the target resolution, it is easy to find out if the SNR is limited by the
quantization noise or by the jitter. Given Equations 6.40 and 6.41, it is easy to compare
the two noise powers. If the total SNR design is limited by the quantization noise – that
is, when the quantization noise is an order of magnitude larger than the jitter noise –
then reducing the clock jitter will not improve the SNR. If, on the other hand, the total
SNR is limited by the jitter noise – that is, when the jitter noise is comparable to or
higher than the quantization noise – an effort should be made to improve the clock jitter.
If the jitter noise is several orders of magnitude higher than the quantization noise and
cannot be improved, then perhaps the design could use a smaller resolution (N) without
sacrificing the overall SNR. This should reduce the ADC power consumption.

6.3 Effects of Timing Skew in Time-Interleaved ADCs

To accommodate sampling rates beyond what a typical ADC can handle, we can sam-
ple the input signal with N ADCs (also called sub-ADCs) by using N phases of the
clock in an architecture known as N-way time-interleaved (T/I) ADC. This architecture
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increases the sampling rate by a factor of N at the cost of increasing the area by N while
maintaining a good power efficiency. As an example, to build an ADC that could sample
the input at 10GS/s, [78] uses four time-interleaved flash ADCs where each ADC sam-
ples the input at 2.5GS/s. To accommodate 90GS/s with 8-bit resolution, [79] uses 64
T/I SAR ADCs, each operating at 1.4GS/s. In this section, we study the effect of timing
skew on a general N-way T/I ADCs, where N is typically less than 64.

6.3.1 Background

Figure 6.11 shows a block diagram of a four-way T/I ADC, which consists of four flash
ADCs, each clocked with one of four phases of the clock. Due to interleaving, each sub-
ADC samples the input at fs/4 for an aggregate sampling frequency of fs. Under ideal
conditions, i.e., where the four phases are exactly Ts = T/4 apart, it may not be possible
to distinguish between this ADC and an ADC that samples the input directly at fs, i.e.,
without interleaving. However, as we will see next, any skew among the clock phases
will introduce error to the output, degrading its SQNR.

6.3.2 Effects of Timing Skew

There are several non-idealities that can impact the performance of a T/I ADC. These
include sub-ADC offsets and gain errors, which may be different among the sub-ADCs,
and timing skew among the clock phases. We concentrate here only on the effects of
timing skew on performance degradation of the ADCs.

In an ideal N-way T/I ADC, the N phases of the clock are expected to be exactly Ts

apart in time. However, due to timing skew caused mainly by layout asymmetries, the
N phases usually deviate from their ideal times, say by τ0 to τN−1. These deviations are
usually constant over time and hence they are referred to as skew, not jitter. Nevertheless,
their impact on the ADC output will appear as high-frequency jitter, as we will see next.

Figure 6.11 Block diagram of a 4-way time-interleaved ADC.
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Assume the input of the ADC is a stationary process denoted by x(t). Under ideal sam-
pling conditions, i.e., no skew, the output of the ADC can be represented as x(kTs + τ̂ ),
where τ̂ represents a fixed delay for all samples. Due to skew, however, the output of the
ADC will be of the form y[k] = x(kTs + τk) where τk = τ(k mod N) ∈ {τ0, τ1, . . . , τN−1}.
As a result, the error due to skew can be written as:

e[k] = x(kTs + τk) − x(kTs + τ̂ ). (6.47)

Note that e[k] is a cyclostationary process whose properties repeat every N cycles.
This makes intuitive sense because e[k] and e[k + N] correspond to the output of the
same ADC in the N-way T/I system, and hence have the same statistical properties. To
find the average power of e[k], we first find the average power of e[k] over N consecutive
cycles to create a new stationary process denoted by e2:

e2 = 1

N

N−1∑
k=0

e2[k] = 1

N

N−1∑
k=0

(x(kTs + τk) − x(kTs + τ̂ ))2. (6.48)

We now determine the expected value of this stationary process as follows:

E[e2] = 1

N

N−1∑
k=0

E[x2(kTs + τk) + x2(kTs + τ̂ ) − 2x(kTs + τk)x(kTs + τ̂ )]. (6.49)

The first two terms in this equation are equal to Rx(0) since x(t) is stationary, while
the last term is equal to 2Rx(τk − τ̂ ). Therefore, we can write:

E[e2] = 2Rx(0) − 2

N

N−1∑
k=0

Rx(τk − τ̂ ). (6.50)

This equation relates the power of error due to skew to the statistical properties of the
input signal x(t) and to the skew sequence τk. Since the input signal power is Rx(0), we
can write an expression for SNR due to skew alone as follows:

SNRτ = Rx(0)

2(Rx(0) − 1
N

∑N−1
k=0 Rx(τk − τ̂ ))

. (6.51)

The error power, as found in Equation 6.50, is a function of τ̂ . This power can be
minimized if we set its derivative with respect to τ̂ to zero. In other words, to minimize
E[e2], we must have:

∂

∂τ̂

N−1∑
k=0

Rx(τk − τ̂ ) = 0. (6.52)

To solve this equation for τ̂ , we expand Rx(τk − τ̂ ) using the first three terms in the
Taylor series:

Rx(τk − τ̂ ) ≈ Rx(0) + R′
x(0)(τk − τ̂ ) + R′′

x (0)

2
(τk − τ̂ )2. (6.53)

Using this equation and assuming R′
x(0) = 0 (we will return to this assumption later),

we can rewrite Equation 6.52 as follows:
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N−1∑
k=0

R′′
x (0)(τk − τ̂ ) = 0 (6.54)

and hence:

τ̂ = 1

N

N−1∑
0

τk. (6.55)

This equation simply states that the minimum error power occurs when the ideal
ADC delays the input signal by the average of all the skews prior to sampling them.
The resulting SNRτ in this case is still obtained from Equation 6.51 with the value of τ̂

calculated from Equation 6.55.
To provide further insight into the expression for SNRτ , let us substitute Rx(·) in Equa-

tion 6.51 with its Taylor expansion in Equation 6.53. After some manipulation, we can
write:

SNRτ = Rx(0)

−R′′
x (0) 1

N

∑N−1
k=0 (τk − τ̂ )2

= Rx(0)

−R′′
x (0)σ 2

τ

(6.56)

where σ 2
τ represents the skew variance. This equation shows that the noise power due to

skew is given by −R′′
x (0)σ 2

τ , which is identical in form to the noise power due to jitter
as found in Equation 6.40 for Nyquist ADCs.

In deriving Equation 6.51, we assumed a scaling factor of unity for the output of the
an ideal ADC. It has been shown [80], however, that an optimal scaling factor, which
may be different than 1, due to gain mismatch for example, will result in the following
expression for SNRτ :

SNRτ = Rx(0)

Rx(0) − 1
N

∑N−1
k=0 Rx(τk − τ̂ )

· Rx(0)

Rx(0) + 1
N

∑N−1
k=0 Rx(τk − τ̂ )

. (6.57)

This expression reduces to the one in Equation 6.51 if we approximate
1
N

∑N−1
k=0 Rx(τk − τ̂ ) by Rx(0) in the second fraction in Equation 6.57. This approxi-

mation makes sense if Rx(τ ) is flat around 0; in other words, if R′
x(0) = 0. When this is

not true for Rx(τ ), we must resort to Equation 6.57 without any approximation.

6.3.3 Alternative Approach

When the input to the ADC is a sinusoid with a random phase, the expression for the
SNRτ can be found more intuitively. Let us assume the input to the ADC is a sinusoid
with random phase, x(t) = A sin(ω0t + φ). Then the error signal caused by skew can be
written as:

e[k] = dx/dt|kTs τk = τkAω0 cos(ω0kTs + φ)) (6.58)

where e[k] is a product of two random processes: τk and cos(ω0kTs + φ). Without a
loss of generality, we can assume E[τk] = 0. If we also assume the two processes are
uncorrelated, we can write:

σ 2
e = A2ω2

0E[τ 2
k ]E[cos2(ω0kTs + φ)] = A2ω2

0σ
2
τ /2 (6.59)
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where σ 2
τ represents the variance of the timing skew among all the clock phases. If we

express this power relative to the power of the input signal, we will have:

σ 2
e = 10 log

(
A2ω2

0σ
2
τ /2

A2/2

)
= 20 log (2π f0στ ) [dBFS]. (6.60)

This equation is identical in form to Equations 6.60 and 6.40, implying that both clock
jitter and clock skew have similar impacts on noise power and in limiting the SNR. In
other words, a clock jitter and a clock skew with the same RMS will produce the same
noise level [80], [81], [82].

6.3.4 Design Considerations

Unlike clock jitter, clock skews are generally constant over time, and hence it is possible
to correct them or calibrate them. The effects of clock skew can be corrected by digital
signal processing following the sub-ADCs, as shown in Figure 6.12. In this scheme,
the clock skews are left uncorrected, but their effects are removed through adaptive
filters. The filters are often fractionally spaced so as to provide interpolation between
the sampled values in the digital domain. However, this approach can be power- and
area-hungry, as the filters often require several taps. For example, [83] uses a 33-tap FIR
filter for skew correction of a 12-way T/I SAR ADC, operating at 1.62GS/s.

In contrast to this approach, the effects of skew can be observed, for example at the
output of the sub-ADCs, in order to calibrate the skew by analog means. This approach,
as shown in Figure 6.13, attempts to minimize the clock skew (στ ) through a control
loop.

One example of this approach is shown in Figure 6.14 for a 10GS/s 4-way T/I ADC,
used in a 10Gb/s wireline receiver application. In this example, the input to the receiver
is a 10Gb/s random binary signal that is subjected to frequency-dependent attenuation
by the channel. The attenuated signal needs to be sampled, converted to digital, and
equalized to compensate for the channel attenuation. However, due to the speed limits of

Figure 6.12 Removing the effects of clock skew with adaptive filters.
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Figure 6.13 Block diagram implementation of a skew detection and correction technique.

Figure 6.14 Skew calibration using FFE outputs for a four-way time-interleaved ADC. c© 2013
IEEE. Reprinted, with permission, from [78].

the process, the cascade of ADC and feed-forward equalizer (FFE) is time-interleaved
to work at 2.5GS/s. The time-interleaved FFEs are four replicas of the full-rate FFE,
except that they work on 1/4 of the full data rate. As such, the FFEs are expected to have
identical coefficients to those of a full-rate FFE. However, due to the skew in the four
phases of the clock, the four ADC outputs will contain errors, and this will force the
optimum coefficient values to be different among the four FFEs. For example, assume
that the first phase of the clock is slightly off from its ideal time while all other phases are
at their ideal times. In other words, assume τ0 �= 0, τ1 = τ2 = τ3 = 0. To compensate
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for this error, the main tap of FFE0 should be changed slightly while its remaining taps
should be at their original values since other ADCs have no errors. In FFE1, FFE2,
and FFE3, the second, third, and fourth taps should be changed, respectively, as they
correspond to the inputs from ADC0, while all their other taps should remain at their
original values. An adaptive engine in this design monitors the filter coefficients and
attempts to minimize their spread by adjusting the skew of the clock phases.

6.4 Effects of Jitter on Continuous-Time �� Modulators

6.4.1 Background

A Nyquist ADC samples its input at twice the input bandwidth so as to avoid aliasing.
In contrast, an oversampling ADC samples its input at a rate that is several times higher
than twice the bandwidth. If we assume the input bandwidth is f0 and the sampling
frequency is fs, then we define the oversampling ratio (OSR) as follows:

OSR = fs
2f0

. (6.61)

Accordingly, the Nyquist rate (i.e., fs = 2f0), corresponds to OSR = 1, whereas a
typical OSR in an oversampling ADC could be 8, 16, or higher. We will review the
basics of an oversampling continuous-time �� ADC here, and analyze its performance
degradation due to jitter. [84] provides a complete background review of this topic.

Figure 6.15 shows a block diagram of a first-order continuous-time �� modulator
(CT-DSM) along with its linear model. The modulator consists of a feedback loop
that includes a flash ADC, or simply a quantizer, and a DAC, both clocked at fs, and
a continuous-time integrating filter. As we mentioned in relation to Figure 6.8, the flash
ADC can be modeled as a summer that adds to the input both the quantization error, q[k],
and the error due to non-ideal timing such as jitter, eF[k]. As we saw in Section 6.1, the
DAC can also be modeled as a summer that adds to its input the static error eS[k] due
to mismatch among its elements, and the dynamic errors due to timing eD[k]. Since the
effects of timing errors in the ADC and the DAC are captured by their respective error
sources, the switch in Figure 6.15(b) is assumed to operate at fs with no timing error.

The impulse response of the DAC in Figure 6.15(a) is represented by hD(t) in Figure
6.15(b). For an NRZ DAC, hD(t) = u(t) − u(t − Ts), and its corresponding Laplace
transform will be HD(s) = (1 − e−sTs )/s. Note that in the model of Figure 6.15(b),
there is only one signal source, which is x(t), while there are four sources of error: q[n],
eF[n], eS[n], and eD[n]. For a basic calculation of the output SQNR, let us first ignore
all the error sources except for the quantization noise of the ADC, q[n]. In this case, the
signal transfer function (STF) and the noise transfer function (NTF), can be expressed
as follows:

STF = HD(s)z−1 = 1 − e−sTs

s
e−sTs (6.62)

NTF = 1 − z−1 = 1 − e−sTs (6.63)
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Figure 6.15 (a) Block diagram of a continuous-time �� modulator, (b) linear model of the
modulator.

The power spectral density of the output, Sy(f ), then can be written as:

Sy(f ) = Sx(f ) |STF|2 + Sq(f ) |NTF|2 (6.64)

where Sx(f ) and Sq(f ) represent the power spectral densities of the input and the quan-
tization error, respectively. In the signal band of interest (0 to f0), |STF(jω)|2 ≈ 1 and
|NTF(jω)|2 ≈ ω2. Since the total quantization noise power is constant at V2

LSB/12 (see
Equation 6.41), the frequency-dependent NTF allocates less of this power to the signal
band and more to the out-of-band frequencies, as depicted in Figure 6.16. As a result, the
input signal arrives at the output unaltered whereas the quantization noise arrives atten-
uated in the signal band. This is the major advantage of this modulator over the Nyquist
ADC as the loop shapes (filters) the quantization noise before contributing to the total
noise level at the output. It can be shown [84] that SQNR of a first-order modulator for
a sinusoidal input can be written as:

SQNR =
∫ f0

0 Sx(f ) |STF|2df∫ f0
0 Sq(f ) |NTF|2df

= 6.02N + 1.76 − 5.17 + 30 log(OSR). (6.65)

This equation states that the SQNR of an oversampling ADC improves by 6dB for
every extra bit of resolution and 9dB for every doubling of OSR. In other words, every
doubling of OSR is equivalent to adding 1.5 bits of resolution to the ADC.

It can be shown [84] that for a second- and third-order DSM, the SQNR improves by
15dB (equivalent to 2.5 bits) and 21dB (equivalent to 3.5 bits), respectively, for every
doubling of OSR.
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Figure 6.16 Power spectral density of quantization noise at the output of a �� modulator.

6.4.2 Effects of Flash ADC Timing Error on SNR

Figure 6.15(b) models the timing error associated with the flash ADC as eF[k]. We are
interested in finding the degradation in SNR associated with this timing error. For this
purpose, we assume all other error sources, including the quantization error, is zero.

The power spectral density of the output can be written in terms of the power spectral
densities of the input and the flash ADC timing error as follows:

Sy(f ) = Sx(f ) |STF|2 + SeF(f ) |NTF|2 (6.66)

where SeF(f ) represents the PSD of the flash ADC’s timing error under open-loop con-
ditions. This PSD is filtered by the |NTF|2, similar to quantization noise, as in Equation
6.64. Accordingly, the total noise at the output of the modulator (due to timing error
only) will be:

Output Noise Power =
∫ f0

0
SeF(f ) |NTF|2df (6.67)

In general, SeF(f ) takes the form of Equation 6.46. However, if we assume SeF(f ) to
be flat in the 0 to fs region, then the output noise power is suppressed by first limiting
the in-band noise to 1/OSR of the corresponding Nyquist ADC, and second, by shaping
the PSD of the in-band noise by |NTF|2. The latter will render this noise insignificant
compared to the corresponding noise from the DAC timing error as we will see next.

6.4.3 Effects of DAC Timing Error on SNR

The DAC timing error is modeled as eD[k] in Figure 6.15(b). Following a similar proce-
dure to the previous section, we can write an expression for the power spectral density
of the output in terms of the power spectral densities of the input and the DAC timing
error:

Sy(f ) = Sx(f ) |STF|2 + SeD(f ) |STF|2. (6.68)

This equation shows that the DAC timing error is shaped by |STF|2, which is expected
to be unity in the signal band. This is in contrast with the flash ADC timing error that is
heavily attenuated by the NTF in the signal band. It is for this reason that the SNR of a
�� modulator is often determined by the timing error of its DAC, not of its flash ADC.
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Finally, we expect the noise due to DAC timing error to have an average power as
derived in Equation 6.20. However, we note that in the case of �� modulators, the
DAC input is expected to have a higher transition density (σ�), and this will further
increase the noise due to DAC timing errors.
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7 Effects of Jitter in Wireline
Applications

A wireline communication system sends and receives data based on precise timing. Any
deviation from the ideal timing, i.e., jitter, has a direct impact on the bit error rate (BER)
at the receiver. Figure 7.1 shows a generic block diagram of a wireline transceiver that
consists of a transmitter, a channel, and a receiver. The role of the transmitter is to
serialize N binary sequences, generated by the core logic, into one binary sequence
DTX , and send it reliably over the channel to the receiver. If we assume, for example,
that the core logic produces 16 data sequences (i.e., N = 16), each at 500Mb/s, then
the transmitter will produce a single binary sequence at 8Gb/s. The channel could be a
few meters of cable (e.g., between a computer and a peripheral), a few inches of PCB
trace (e.g., between a microprocessor and a memory module on the same board), or a
few millimeters of an interconnect in a multi-chip module. In all these cases, the channel
tends to attenuate the high-frequency components of the signal, and degrade the received
eye both in the voltage domain (vertical axis) and in the time domain (horizontal axis).
The received signal timing is further degraded due to the jitter in the transmitter clock
(CKTX), which in turn may be caused by thermal noise in the clock generation circuit
or by power supply noise. In the presence of all these jitter components, the receiver
must be designed so as to recover the transmit bits reliably, e.g., at a BER better than
10−12 or 10−15. In this chapter, we first review various sources of the jitter that limits
the BER, and then provide techniques for jitter characterization, jitter monitoring, and
jitter mitigation.

As mentioned in Chapter 1, jitter does not always work against performance; there
are cases where we can use jitter to improve system performance. We provide two such
examples later in this chapter.

7.1 Basic Concepts in Wireline Signaling

A wireline transmitter, in its simplest form, sends a non-return-to-zero (NRZ) binary
signal to the receiver. The wireline receiver first equalizes the received signal so as to
compensate for the channel loss (or equivalently to remove the channel ISI) and then
samples the equalized signal, using a recovered clock at the center of the data eye to
see whether the sampled value is above or below a threshold. If the sample is above the
threshold, the data bit is considered a 1, and if below the threshold, it is considered a 0.
Let us assume for simplicity that the equalized data at the receiver is ideal, i.e., it has no
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Figure 7.1 Block diagram of a wireline transceiver.

Figure 7.2 (a) Gaussian jitter in clock edge results in data decision error, (b) probability of error
as a function of Q.

jitter, but that the recovered clock has some jitter. We are interested in calculating the
probability of error in data decisions. In other words, we are interested in estimating the
BER of this system.

Figure 7.2(a) shows a sketch of the equalized data at the receiver, where a lone 1
appears among neighboring zeros. Clearly if we sample this data bit in the center of
the bit as shown, we will have no error. However, assume the clock edge sampling the
data contains Gaussian jitter as depicted in the figure. Since the jitter is Gaussian, it
is unbounded, and, therefore, there is a probability, however small, that the clock edge
may move by more than 0.5UI either to the right or to the left so as to miss sampling the
current bit. If either of the two events occurs, we will record a 0 instead of a 1, causing
an error.

The probability of error is equal to the shaded area under the tails of the Gaussian
curve. As we will see in Section 9.2, this probability will depend on Q, which is defined
as the ratio of 0.5UI, in this case, to the jitter standard deviation, σ . Accordingly, we can
write:

P [error] = erfc(
Q√
2

) (7.1)

where erfc(x) is the complementary error function, as defined in Equation 9.16.
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Figure 7.3 Block diagram of clock and data recovery (CDR).

A graph of the error probability versus Q is shown in Figure 7.2(b). The probability
of error decreases exponentially as Q is increased, corresponding either to a reduction
in the standard deviation of the jitter or to a reduction in the data rate. For example,
a transceiver at 2.5Gb/s may exhibit a BER of 10−12. If we increase the data rate to
5Gb/s (assuming all the components work at 5Gb/s, and assuming jitter remains constant
irrespective of the data rate), Q will decreases by a factor of 2 (because 1UI is now half
as long) and this will increase the BER by several orders of magnitude to 10−4.

7.2 Jitter in Analog CDR

Figure 7.3 shows a block diagram of an analog clock and data recovery (CDR) unit that
consists of a phase detector (PD), a charge pump (CP), a loop filter (LF), and a voltage-
controlled oscillator (VCO), all in a single loop. This block diagram is equivalent of the
combined clock recovery and decision circuit blocks in Figure 7.1, with the decision cir-
cuit now embedded in the PD block. The PD has two inputs: the equalized data DIN and
the recovered clock CKREC, and one output which represents the phase error between
the two input signals. The PD output is then integrated (via the CP and LF) and fed as
a control voltage to the VCO so as to influence its phase and frequency. When the CDR
reaches steady state, i.e., when the average PD output becomes zero, the VCO frequency
stays constant. The VCO output forms the recovered clock CKREC which can be used to
retime the equalized data, using a flip-flop, to produce the recovered data DREC.

The VCO in the CDR may be a ring or an LC oscillator, but in either case its output
contains random jitter. Therefore, when we sample and retime the equalized data, we are
retiming it with a jittery clock, although the jitter in this clock is shaped by the feedback
loop, as we see later in this section.

Let us now create an equivalent block diagram of the CDR with a focus on jitter.

7.2.1 Linear Model of the CDR

Figure 7.4 shows a linear model of the CDR in a frequency lock condition, that is, when
the recovered clock frequency is equal to the data rate (in a full-rate system), but it has
yet to achieve phase lock; that is, for the recovered clock phase to be driven towards
the input data phase. Under these conditions, the clock frequency (and hence the data
rate) is fixed, say, at f0, and, as such it does not appear explicitly in the model, instead,
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Figure 7.4 A linear model of a CDR takes data jitter as its input and provides the recovered clock
jitter as its output.

the model is only concerned with the excess phase of the input data, denoted by ϕin, the
phase of the VCO, denoted by ϕVCO, and the phase of the recovered clock ϕout. Since
the frequency is fixed, these three phase variables, if expressed in terms of UI, also
represent the jitter corresponding to the input data, the VCO, and the recovered clock,
respectively. For example, a recovered clock phase instance of 0.4π radians is equivalent
to a jitter instance of 0.4π/(2π f0) = 0.2UI. In other words, depending on whether we
express ϕout in terms of radians or UI, we can view it as either excess phase or jitter. For
simplicity, and as is common in wireline applications, we express all signals in terms of
UI, and, as such, view ϕin as the input data jitter, ϕVCO as the VCO jitter, and ϕout as
the recovered clock jitter. Also, we assume ϕin and ϕVCO are uncorrelated as they come
from independent sources.

Using this model, the power spectral density (PSD) of jitter in the recovered clock
Sout(f ) is a linear combination of the PSDs of the input data jitter Sin(f ) and the VCO
jitter SVCO(f ), shaped by two transfer functions. We can write:

Sout(f ) = |HT (f )|2Sin(f ) + |HG(f )|2SVCO(f ) (7.2)

where |HT (f )|2, known as the jitter transfer function, can be written as:

|HT (f )|2 =
∣∣∣∣ KPDKVCOHLF(f )

j2π f + KPDKVCOHLF(f )

∣∣∣∣
2

(7.3)

and |HG(f )|2, known as the jitter generation function, can be written as:

|HG(f )|2 =
∣∣∣∣ j2π f

j2π f + KPDKVCOHLF(f )

∣∣∣∣
2

. (7.4)

We will discuss these two functions and their significance in more detail in the following
sections.

7.2.2 Jitter Transfer

Equation 7.2 shows that the PSD of the recovered clock jitter is a linear combination
of the PSDs of the input jitter and the VCO jitter. In the absence of VCO jitter, i.e.,
when the VCO circuit does not contribute any jitter to its own output, SVCO = 0, and
hence the PSD of the recovered clock is the product of the PSD of the input jitter and
|HT (f )|2. For convenience, we also refer to HT (f ), not squared, as the jitter transfer
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Figure 7.5 A linear model of a CDR with an RC loop filter.

function with the understanding that the ratio of the PSD of the output jitter to the PSD
of the input jitter is |HT (f )|2. Note that HT (f ) would represent the signal transfer function
from the input to the output of CDR under the assumption that the input is a deterministic
signal. For a random input signal, such as jitter, we typically use |HT (f )| when we deal
with the jitter amplitude and |HT (f )|2 when we deal with the PSD of jitter.

We can illustrate a typical HT (f ) by considering a CDR with a linear model, as shown
in Figure 7.5.

Here, we have assumed the output quantity produced by the combined PD and CP
(refer to Figure 7.3) is current and the loop filter is implemented using a series RC
circuit with HLF(s) = R + 1/(sC). We can easily verify that

HT (s) = ϕout(s)

ϕin(s)

∣∣∣∣
ϕVCO=0

= KPDKVCORs + KPDKVCO
C

s2 + KPDKVCORs + KPDKVCO
C

. (7.5)

If we define K = KPDKVCO/C and τ = RC, we can write:

HT (s) = K(τ s + 1)

s2 + Kτ s + K
. (7.6)

Alternatively, to write this equation in a canonical form, we define:

ω2
n := KPDKVCO

C

ξ := KPDKVCOR

2ωn

(7.7)

where ωn and ξ are known as the natural frequency and the damping factor, respectively.
Using this notation, we can rewrite Equation 7.5 as follows:

HT (s) = 2ξωns + ω2
n

s2 + 2ξωns + ω2
n

. (7.8)

Replacing s with jω (= j2π f ), we can derive the jitter transfer function as a function
of jitter frequency:

|HT (f )|2 = 4ξ2ω2
nω

2 + ω4
n

(ω2
n − ω2)2 + 4ξ2ω2

nω
2
. (7.9)

A Bode plot of |HT (f )| is shown in Figure 7.6, corresponding to three different values
of ξ ∈ {0.5, 1, 2}. In all three cases, the jitter transfer represents a low-pass filter whose
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Figure 7.6 Jitter transfer function for three different values of ξ .

magnitude is around 1 (0 dB) for low jitter frequencies and drops at 20 dB/decade for
frequencies above ωn. In other words:

|HT (f )|2 =
⎧⎨
⎩

1 if f << fn

4ξ2(
fn
f

)2 if f >> fn.
(7.10)

In simple terms, the first line of Equation 7.10 says the recovered clock tracks the low-
frequency jitter of the input data. In other words, if the data transitions move slowly
around their nominal locations, the CDR control loop would be able to track these move-
ments such that the error between the data and clock edges would be zero (on average).
This is, in fact, the characteristic of any control loop with at least one integration in
the loop. The second line of this equation shows that the jitter transfer magnitude is
less than unity, meaning that the recovered clock does not track the high-frequency data
jitter as well as it tracks low-frequency data jitter. At the limit, the jitter transfer from
input to the recovered clock is zero, and the recovered clock does not track the data jit-
ter at all. This means that the recovered clock does not suffer from high-frequency jitter
even though the input signal may contain high-frequency jitter. As we will discuss later,
this characteristic of the recovered clock will limit the CDR tolerance to high-frequency
jitter.

Jitter Peaking in Jitter Transfer Function
The jitter transfer function, as shown in Figure 7.7, has a peak that is slightly larger
than 1 (0dB). This peaking could be anywhere from 0.07dB to 0.4dB when we vary ξ

from 5 to 2. The peaking implies that jitter will be amplified at some frequencies in the
CDR, producing a jitter amplitude in the recovered clock, and thus also in the recovered
data, that is slightly larger than the jitter amplitude in the input data. This is certainly
undesirable, especially in applications such as repeaters where the recovered data from
one CDR may be launched onto a channel and subsequently become the input of another
CDR. In this case, the jitter will keep increasing following each repeater, contributing to
an increase in BER. For this reason, we wish to reduce, or possibly eliminate, the jitter
peaking. First, let us examine what causes this peaking and then how to reduce it.
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Figure 7.7 Jitter transfer function for three different values of ξ .

The jitter transfer function HT (s), as shown in Equation 7.6 has one zero sz and two
poles, sp1 and sp2, all on the left-half plane:

sz = −1/τ

sp1 = −Kτ

2
+
√

(
Kτ

2
)2 − K

sp2 = −Kτ

2
−
√

(
Kτ

2
)2 − K.

(7.11)

A sketch of this pole-zero location is shown in Figure 7.8 for different values of K. The
zero always lies on the negative real axis. The poles, also, lie on the left-half plane but
may or may not lie on the real axis, depending on whether K is above or below 4/τ 2,
respectively. By design, we choose K so as to restrict the poles on the real axis, reducing
the jitter peaking. However, as depicted in Figure 7.8, even in this case, the zero lies
closer to the jω axis than either of the two poles. This zero will cause the magnitude of
the jitter transfer function to rise before it begins to fall, and this unavoidably creates
peaking. As we further increase K, Sp1 gets closer to sz, effectively canceling sz, leaving
HT (s) with only one pole, sp2, which is much farther away from the jω axis. To see
this, we will derive approximate expressions for sp1 and sp2 when K >> 4/τ 2. Using
Equation 7.11, we can write:

sp1 = −Kτ
2 + Kτ

2

(
1 − 4

Kτ 2

)1/2

≈ −Kτ
2 + Kτ

2

(
1 − 2

Kτ 2

)
= −1/τ = sz

sp2 ≈ −Kτ .

(7.12)

Due to the cancellation (or near cancellation) of the first pole by the zero, the second
pole, sp2 defines the bandwidth of the jitter transfer function. This can be observed
in Figure 7.6, in which the jitter transfer bandwidth increases with increasing ξ or,
equivalently, K.
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Figure 7.8 Pole-zero locations of the jitter transfer function for two values of ξ .

It has been shown [85] that the peaking can be eliminated if we are able to move the
zero to the feedback path. Since the loop gain will remain the same, the loop stability
will not be affected by this change; however, the jitter transfer function will no longer
have a zero, which will eliminate peaking altogether.

7.2.3 Jitter Generation

If the input data to the CDR is clean with no jitter, i.e., ϕIN = 0, the jitter of the recovered
clock comes directly from the VCO jitter. The transfer function that relates the VCO
jitter to the recovered clock jitter is known as jitter generation. For the CDR model
shown in Figure 7.5, and using the notation introduced earlier, this transfer function can
be written as:

HG(s) = ϕout

ϕVCO

∣∣∣∣
ϕin=0

= s2

s2 + Kτ s + K
(7.13)

or, in canonical form, using the notation introduced in Equation 7.7:

HG(s) = ϕout

ϕVCO

∣∣∣∣
ϕin=0

= s2

s2 + 2ξωns + ω2
n

. (7.14)

Replacing s with jω (= j2π f ), we can derive the jitter generation function as follows:

|HG(f )|2 = ω4

(ω2
n − ω2)2 + 4ξ2ω2

nω
2
. (7.15)

Referring to Equation 7.13, jitter generation is a high-pass filter with two zeros, at
zero frequency, and two poles identical to those of the jitter transfer function (see Equa-
tion 7.11). A Bode plot of jitter generation, as shown in Figure 7.9, clearly reveals two
changes of slope (from +40dB/dec to +20dB/dec, and then to 0dB/dec) in the jitter
generation magnitude, corresponding to its two poles. In contrast, we do not observe a
40dB/dec slope in the jitter transfer function simply because its first pole is cancelled
(or almost cancelled) by its zero and it is considered a single-pole system. Nevertheless,
we observe that the corner frequency (or the 3dB frequency) of both functions corre-
spond to the same second pole. A smaller second pole will reduce jitter transfer, which
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Figure 7.9 Jitter transfer and jitter generation curves.

is desirable, but at the same time, it increases jitter generation, which is not desirable.
To decouple the two transfer functions, we can resort to the CDR architecture discussed
in the previous section where the zero in the feed-forward path is moved to the feedback
path [85].

7.2.4 Jitter Tolerance

An important figure of merit for a CDR is its tolerance to input jitter, that is, the maxi-
mum allowable amplitude of input jitter that keeps the bit error rate (BER) of the CDR
below a target value, say 10−12 or 10−15. To quantify jitter tolerance, we often apply a
sinusoidal jitter of a fixed frequency to the CDR input data and observe the BER of the
CDR. As we increase the amplitude of this sinusoidal jitter while keeping its frequency
constant, there will be an amplitude at which the BER increases beyond an acceptable
value. We refer to this particular jitter amplitude the jitter tolerance at the corresponding
jitter frequency. As we repeat this experiment for different jitter frequencies, we can plot
jitter tolerance as a function of jitter frequency. This plot is known as jitter tolerance.

In the past few sections, we have emphasized that jitter is a random signal and needs
to be treated as such. However, in the definition of jitter tolerance, we are applying
“sinusoidal” jitter. Clearly, this is not a random signal, and hence the jitter tolerance
curve does not capture a CDR’s true tolerance to random jitter. We note, however, that
we can treat sinusoidal jitter as a deterministic signal, so that we do not need to evoke
the PSD of the jitter, but instead deal only with the jitter’s amplitude and frequency.
Given this, let us now derive a formula for jitter tolerance, which we will represent as
JTOL(f ). Referring to Figure 7.4, we can write:

JTOL(f ) = |ϕin(f )|pp−max for a fixed BER (7.16)

where the subscript pp−max indicates the maximum peak-to-peak amplitude. We can
further expand this equation as follows:

JTOL(f ) =
∣∣∣∣ϕin(f )

ϕe(f )

∣∣∣∣ · |ϕe(f )|pp−max (7.17)
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Figure 7.10 Relative jitter must be less than 1UIpp for error-free operation under all
circumstances, (a) ideal data with jittery clock, (b) jittery data with ideal clock, (c) jittery data
and jittery clock.

Figure 7.11 An ideal jitter tolerance curve for a second-order CDR.

In an ideal CDR, the maximum peak-to-peak amplitude of |ϕe(f )| is 1UI. This can
be seen with the aid of Figure 7.10, where in (a), the relative jitter is applied to the
clock edge while the data edge is kept jitter free, and in (b), the situation is reversed. In
(a), the clock edge may only move by 1UIpp around its nominal location or else a bit
error would occur. Similarly, in (b), the data edge may only move by 1UIpp around its
nominal location or else wrong data is sampled by the clock edge.

Accordingly, jitter tolerance can be expressed in terms of the number of UIs as:

JTOL(f ) =
∣∣∣∣ϕin(f )

ϕe(f )

∣∣∣∣ [UI]. (7.18)

Given the CDR loop shown in Figure 7.4, we can write:

JTOL(f ) =
∣∣∣∣1 + KPDKVCOHLF(f )

j2π f

∣∣∣∣ [UI] (7.19)

where the second term inside the brackets is the loop gain of the CDR. If we now expand
HLF(f ) for the CDR of Figure 7.5, we can write:

JTOL(f ) =
∣∣∣∣∣1 − 2ξ j

(
fn
f

)
−
(

fn
f

)2
∣∣∣∣∣ [UI] (7.20)

A plot of the jitter tolerance as a function of jitter frequency is shown in a log–log
scale for three different values of ξ in Figure 7.11.
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At frequencies far below and above the natural frequency, the jitter tolerance can be
approximated by the following:

JTOL(f ) =
{ (

fn
f

)2
if f << fn

1 if f >> fn.
(7.21)

Equation 7.21 states that the jitter tolerance at very high jitter frequencies is limited to
1UIpp. This is consistent with our observation earlier that the recovered clock does not
track the high-frequency jitter, limiting the maximum peak-to-peak deviation of the data
edge from its nominal position to 1UI. Any further deviation will result in the recovered
clock missing a bit, increasing the BER. On the other end of the spectrum, for jitter
frequencies below fc, the jitter tolerance is increased at 40dB/decade (corresponding to
the f 2 term) as we reduce the jitter frequency. Again, this is consistent with our obser-
vation earlier that the recovered clock better tracks data jitter at lower jitter frequencies
or, equivalently, that the data edge and the clock edge move together in the same direc-
tion. As a result, the relative jitter between the data and the clock remains small (i.e.,
below 1UI peak-to-peak) even when the data jitter amplitude is much larger than 1UI.
Around the corner frequency, the jitter tolerance dips below the 1UIpp for underdamped
systems, i.e., when ξ < 1. Figure 7.11 shows the minimum jitter tolerance (in UIpp) for
four distinct values of ξ .

The jitter tolerance as shown in Figure 7.11 is under ideal conditions. For example, it
assumes that the input data has no jitter other than the sinusoidal jitter, that there are zero
jitter contributions from the VCO, and that the circuit elements in the CDR are ideal.
In reality, none of these conditions is met: the input data often contains some residual
ISI jitter, i.e., the jitter that remains after the receiver equalization, in addition to some
crosstalk-induced jitter due to the interference with data from adjacent channels, and
some random jitter from the transmitter clock. The VCO will undoubtedly generate fur-
ther random jitter, and finally there will be noise from various elements in the circuits,
such as from the RC filter and from the power supply. These non-idealities will reduce
the jitter tolerance at all frequencies, but their effect is more observable at high frequen-
cies where the jitter tolerance is below 1UIpp. A typical value for the high-frequency
jitter tolerance can be any number between 0.2UIpp to 0.7UIpp. A design that can tol-
erate a higher jitter may have been over-designed, e.g., consuming too much power, and
a design whose jitter tolerance is below 0.2UIpp may be too risky, i.e., does not have
enough jitter margin to be used in a product.

Effect of Limited VCO Tuning Range
In the derivation of the equations for the jitter tolerance, we have assumed the VCO
to have an unlimited tuning range. In other words, we have characterized the VCO by
fVCO = fnom + KVCOVcntl, where Vcntl is the control voltage of the VCO in Figure 7.5
and fnom is the nominal VCO frequency corresponding to Vcntl = 0. We now consider
the case where the VCO frequency is limited to ±�fp around fnom, i.e.,

fnom − �fp < fVCO < fnom + �fp. (7.22)
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If we represent the input phase with ϕin and the sinusoidal jitter as Amsin(ωmt), then
we can write:

ϕin(t) = 2π fnomt + Amsin(ωmt). (7.23)

Taking the derivative of both sides provides the instantaneous input frequency, fin:

fin(t) = 1

2π

d

dt
ϕin(t) = fnom + Amfmcos(ωmt). (7.24)

And, therefore, the range of fin is limited to:

fnom − Amfm < fin < fnom + Amfm. (7.25)

Comparing Equations 7.25 and 7.22, a necessary condition for CDR locking is
Amfm ≤ �fp, where Am is expressed in radians. Therefore, the peak-to-peak jitter
amplitude, which would be 2Am in radians, can be written in UIs as follows:

JTOL(f ) ≤ �fp
π f

(7.26)

where we have replaced fm with f to be consistent with the notation used earlier in
JTOL(f ). According to Equation 7.21, for a VCO with an unlimited tuning range, the
jitter tolerance increases by 40dB/decade as the jitter frequency decreases. This equa-
tion, however, states that if the VCO has a limited tuning range, the jitter tolerance can
increase only at 20dB/decade as jitter frequency decreases. If we superimpose these two
functions, as shown in Figure 7.12, we can see that Equation 7.26 provides a lower limit
to jitter tolerance.

This limit is due only to the limited tuning range of the VCO and can increase with
the tuning range.

Jitter Tolerance Measurement
A basic setup for jitter tolerance measurement is shown in Figure 7.13. A sinusoidal
signal whose amplitude and frequency can be adjusted modulates the frequency of the
clock waveform, effectively adding jitter with adjustable amplitude and frequency to the

Figure 7.12 Jitter tolerance is limited at low jitter frequencies by the limited tuning range of the
VCO.
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Figure 7.13 A basic measurement setup for jitter tolerance.

clock edges. This jittery clock is then applied to a pseudo random bit sequence (PRBS)
generator to produce jittery data and test the CDR. To plot jitter tolerance as a function
of jitter frequency, we increase the sinusoidal jitter amplitude in small steps until the
bit-error-rate tester (BERT) indicates a BER higher than the target BER, say 10−12. We
then record the highest jitter amplitude that meets the BER target as the jitter tolerance
at that particular jitter frequency. Obviously, we need to repeat this measurement for
various jitter frequencies in order to plot the function. Since jitter frequency can span
several decades, this measurement is performed for a few jitter frequencies (say 5–6)
per frequency decade.

7.3 Effect of Jitter on Bang-Bang CDR

In the previous section, we explained how jitter is shaped as it goes through a CDR. In
this section, we show how jitter can affect the system dynamics of a bang-bang CDR
and, in particular, how jitter can be used to improve system stability.

7.3.1 Background

A bang-bang CDR is similar to a linear CDR as shown earlier in Figure 7.3 except for
the implementation of its phase detector, which is called a bang-bang phase detector
(BB-PD). A typical implementation of a BB-PD, followed by a charge pump and an
RC loop filter, is shown in Figure 7.14(a). The bang-bang phase detector samples the
incoming data twice per UI, as shown in Figure 7.14(b), once with the rising edge and
once with the falling edge of the recovered clock (assuming a full-rate clock, i.e., a
clock with the period equal to 1UI), producing two bits in every clock cycle. The bit
corresponding to the rising edge of the clock is called the data bit (or the center bit)
and the bit corresponding to the falling edge of the clock is called the edge bit (or the
boundary bit). By comparing the edge bit against its two adjacent data bits, one can
conclude if the recovered clock is early, corresponding to the edge bit matching the
current data bit, or late, corresponding to the edge bit matching the next data bit. When
the clock is early, the PD asserts its Early output, causing the charge pump to pull charge
from the control node of the VCO, effectively reducing the VCO frequency. When the
clock is late, the PD asserts its Late output, causing the charge pump to push charge
to the control node of the VCO, effectively increasing the VCO frequency. Given the
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Figure 7.14 (a) A bang-bang PD followed by a charge pump and an RC loop filter, (b) bang-bang
PD operation, (c) bang-bang PD logic, (d) bang-bang PD characteristics.

feedback loop, the VCO will adjust its phase over time so that the falling edge of the
recovered clock is eventually aligned with the data edge, and thus the rising edge is the
center of the data bit. This is when the CDR achieves phase lock.

BB-PD operation is summarized in the table shown in Figure 7.14(c). Note that the
PD output, defined as Late minus Early, assumes 1 or −1 when the clock is late or early,
respectively. When there is no transition in the input data, corresponding to the last row
of the table, none of the Early or Late signals will be asserted. In this case, the PD output
will be zero, leaving the VCO control voltage and frequency intact. In summary, the PD
output can be defined as follows:

PDout = sgn(ϕe) =
⎧⎨
⎩

−1 if ϕe < 0
1 if ϕe > 0
0 if ϕe = 0 (no data transition)

(7.27)

where ϕe represents the phase error and is defined as the data phase minus the clock
phase if there is data transition, and is assigned 0 otherwise.

If we assume the data transition density is αT , then the expected value of the PDout

for a late or early clock will be +αT or −αT , respectively. In other words, we can write:

E [PDout] = αTsgn(ϕe). (7.28)
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Figure 7.15 BB-PD characteristics under various jitter PDF. (a) BB-PD data and clock waveforms,
(b) no jitter in phase error, (c) Gaussian jitter in phase error, and (d) uniform jitter in phase error.

An input–output characteristic of a BB-PD is shown in Figure 7.14(d). Clearly, the
BB-PD has a nonlinear characteristic, with an infinite gain at the locking phase, and, as
such, cannot use the linear model introduced in Figure 7.4. However, as we will show
in this section, the relative jitter between the input data and the recovered clock will
linearize the BB-PD characteristics around the locking phase, and this will allow us to
use a linear model to gain insight into bang-bang CDR operation.

7.3.2 Effect of Jitter on BB-PD Gain

Figure 7.15 illustrates how the BB-PD gain varies as a function of both the jitter PDF
and its standard deviation. Figure 7.15(a) repeats the nominal data and clock waveforms
for when the clock is early. If there is no jitter in ϕe, the clock will always be early by
the same amount, corresponding to a ϕe characterized by a delta function centered at a
constant μe. In this case, the BB-PD will have an infinite gain around ϕe = 0. On the
other hand, if we assume a nonzero jitter, say in the clock edge, then a nominally early
clock may actually arrive late and vice versa. Figure 7.15(c) and (d) show this scenario
for a ϕe with Gaussian and uniform PDF, respectively. In both cases, the expected value
of ϕe is denoted by μe. ϕe is mostly negative, as its PDF is shifted to the left by μe, but
there is a probability that ϕe can become positive, corresponding to the clock being late.
This probability is equal to the area of the shaded region and its value depends on μe

and the σe of the PDF. In other words:
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P(PDout = 1) = ∫∞
0 fe(ϕe)dϕe = F(−μe)

P(PDout = −1) = ∫ 0
−∞ fe(ϕe)dϕe = 1 − F(−μe)

(7.29)

where fe(·) and Fe(·) represent the PDF and the Cumulative Distribution Function (CDF)
of ϕe, respectively, and F(·) represents the CDF of the same distribution when centered
around zero. The expected PD output can be calculated as:

E [PDout] = αTP(PDout = 1) − αTP(PDout = −1)

= αT (2F(−μe) − 1).
(7.30)

This equation represents the BB-PD characteristics under an arbitrary jitter distribu-
tion. As depicted in Figures 7.15(c) and (d), the characteristics no longer have the sharp
edge in the vicinity of the locking phase, but instead there is a finite slope which is a
function of the jitter PDF alone. This slope can be easily derived as follows:

KPD = d

dμe
E [PDout]

= 2αT f (−μe).
(7.31)

The PD gain at locking point (i.e., when μe = 0), KPD0, can be written as:

KPD0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2

π

αT

σe
for Gaussian distribution√

1

3

αT

σe
for uniform distribution.

(7.32)

Equation 7.32 clearly shows that jitter properties such as the PDF and the standard
deviation determine the PD gain and, as we will see later in this section, will affect the
dynamic behavior of the BB-CDR.

7.3.3 Added Jitter due to BB-PD

The BB-PD and its linear model are equivalent in the sense that, for the same input jitter
ϕe, their outputs will have the same expected values. However, they are not equivalent in
terms of their output jitter variances. To correct for this, we need to put back additional
jitter ϕPD into our model as shown in Figure 7.16. This jitter plays the same role as that of
the quantization error in an ADC linearization process. Given ϕPD = sgn(ϕe)−KPD0ϕe,
let us now find the expected value and the standard variation of ϕPD with Gaussian
distribution.

E [ϕPD] = E
[
sgn(ϕe)

]− E [KPD0ϕe] = 0. (7.33)

This is in fact consistent with our definition of KPD0 as derived in Equation 7.32.
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Figure 7.16 (a) Block diagram of a BB-PD, (b) linear equivalent model of a BB-PD.

σ 2
PD := E

[
ϕ2

PD

]
= E

[
sgn2(ϕe)

]+ E
[
K2

PD0ϕ
2
e

]− 2KPD0E
[
ϕesgn(ϕe)

]
= αT + K2

PD0σ
2
e − 2KPD0E

[
ϕesgn(ϕe)

]
= αT − K2

PD0σ
2
e

= αT − 2
π
α2

T

(7.34)

where we have used Equation 7.32 corresponding to Gaussian distribution, and
E
[
ϕesgn(ϕe)

] = √
2/παTσe, to derive the final expression for σ 2

PD.
An alternative method to find KPD0 and σPD is to begin from ϕPD = sgn(ϕe)−KPD0ϕe

and try to minimize E
[
ϕ2

PD

]
. This method as described in [86], [87] results in the same

set of equations as we derived here.

7.3.4 Effect of Jitter on BB-CDR Stability

Our linear model of the CDR (Figure 7.5) neglected the effect of the VCO’s input
capacitance in derivations of various transfer functions. As this parasitic capacitance
introduces a new pole into the system, it plays an important role in CDR stability. We
now derive an expression for the loop gain of the CDR in order to study its stability.

Let us denote by Cp the parasitic capacitance at the VCO input. This capacitor appears
in parallel with the series RC circuit of the loop filter as shown in Figure 7.5. Taking Cp

into account, we can write an equation for the loop gain as follows:

LG(s) = K
1 + τ s

s2(1 + τps)
(7.35)

where K is now defined as KPDKVCO/(Cp + C) and τp = RCCp(C + Cp). The loop gain
has a zero at −1/τ , two poles at zero, and one nonzero pole due to the VCO parasitic
capacitance at −1/τp. We will show that, depending on K, which is directly influenced
by the jitter PDF and its standard deviation σ (as shown in Equation 7.32), the system
may lose or gain phase margin, and, as such, move away from or towards stability.

Let us denote the unity-gain frequency of the loop gain with ωu. Then we can write
an expression for the phase margin PM of this system as follows:

PM = tan−1(τωu) − tan−1(τpωu). (7.36)

Note that τ and τp in this equation are set by design. ωu, however, is directly influ-
enced by K, which in turn is influenced by the jitter PDF and its σ . To illustrate this,
Figure 7.17 shows the Bode plots of three loop gains, each for a different jitter PDF
and σ .
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Figure 7.17 Bode plot of the CDR loop gain illustrating an increase in phase margin RMS jitter
increases.

7.4 Jitter in the Received Eye

A taxonomy of jitter was presented earlier in Section 2.2.6. In this section, we illus-
trate the jitter components in wireline applications as they manifest themselves in eye
diagrams. Figure 7.18 shows four different eye diagrams associated with the same link
but under different jitter conditions. To begin, Figure 7.18(a) shows an ideal eye dia-
gram with almost no jitter. The corresponding jitter histogram shows a single peak that
corresponds to the expected zero crossing location.

Figure 7.18(b) shows an eye diagram with Gaussian random jitter where jitter is
“spread” in time and disappears gradually as we move away from the nominal zero-
crossing position. This jitter is unbounded and attributed mainly to thermal noise and
flicker noise in the circuits, but can also be attributed to the combined characteristics of
several uncorrelated noise sources.

In contrast with unbounded jitter, we have bounded jitter, which includes period jitter,
sinusoidal jitter, data-dependent jitter, and ISI jitter. As an example of bounded jitter,
Figure 7.18(c) shows the histogram of sinusoidal jitter and its impact on the eye diagram.
The sinusoidal jitter could be due to power-supply noise or it may have been injected
intentionally for the purpose of measuring of jitter tolerance.

ISI will cause the zero crossings to move as a function of the bit sequence and limited
channel bandwidth, resulting in several zero crossings, creating discrete peaks. Figure
7.18(d) shows an example of an eye under the influence of ISI only.

Jitter can also be caused by the clock’s duty cycle distortion in double-data-rate
(DDR) systems. Figures 7.19(a) and 7.19(b) show two versions of the same eye dia-
gram at different zoom levels, with (a) showing the jitter distribution at zero crossings
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Figure 7.18 Received eye diagrams illustrating various jitter components, (a) no jitter,
(b) Gaussian jitter, (c) sinusoidal jitter, (d) ISI-induced jitter.

over one UI and (b) showing the corresponding distributions of several zero crossings
over four UIs. Different rise and fall times, or a receiver voltage threshold that is not
centered, will create a jitter similar to that of a DCD, as shown in Figure 7.19(c). Note
that, in this figure, the voltage threshold level of the receiver is assumed to be centered,
creating a distribution of zero-crossings on the two sides of the crossing shown in the
eye. A similar eye would occur if the rise and fall times were the same, but the voltage
threshold were not centered.

In real systems, two or more noise sources may affect the eye diagram. Figure 7.19(d)
shows the effects of random jitter and DCD at the same time. The resulting jitter distri-
bution is the convolution of the distributions of the two jitter sources. For further review,
refer to Section 2.2.7.

7.5 Jitter Amplification by Passive Channels

As mentioned earlier, a typical channel in a wireline system attenuates the
high-frequency components of the transmit signal. However, if the channel is used to
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Figure 7.19 Received eye diagrams illustrating DCD combined with random jitter, (a)
DCD-induced jitter, (b) DCD-induced jitter over four UIs, (c) jitter due to rise/fall time
asymmetry, (d) jitter due to the combined effect of DCD and random jitter.

transmit a clock, such as in a clock-forwarding architecture, the clock jitter at the end
of the channel (received clock) is typically higher than the jitter in the transmit clock.
We refer to the ratio σRCK/σTCK as the jitter amplification factor where σRCK and σTCK

refer to the standard deviation of the jitter in the received clock and the transmit clock,
respectively.

Jitter amplification may seem counterintuitive at first because passive channels are
not expected to amplify any signal, as they are simply made up of wires with no active
elements. This becomes more intuitive, however, if we distinguish between the signal
transfer function of a channel and its jitter transfer function. While the signal (typically
voltage) transfer function of a wireline channel is a low-pass filter and never amplifies
any signal, at any frequency, the jitter transfer function of the same channel becomes
a high-pass filter and could amplify jitter. While several papers have discussed the
topics of jitter amplification [88], [89], [90], [91], both in the time domain and fre-
quency domain, and included measured results, simulations, and theoretical analyses,
we will mainly follow the procedure in [88] to explain this concept in the frequency
domain.
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Consider a simplified waveform for the transmit clock contaminated by a sinusoidal
jitter (or excess phase):

vTCK(t) = A cos
(
2π fct + Aj sin(2π fjt)

)
(7.37)

where fc is the clock frequency, Aj is the excess phase amplitude (or jitter amplitude in
radians), and fj is the jitter frequency. If we assume the jitter amplitude is much smaller
than 2π , then we can approximate this equation by the following:

vTCK(t) = A cos(2π fct) − AAj

2

(
cos(2π fLt) − cos(2π fHt)

)
(7.38)

where fH = fc + fj and fL = fc − fj [88]. Taking the Fourier transform of both sides of
this equation, we obtain an expression for the transmit clock in the frequency domain:

VTCK(f ) = A

2
δ(f − fc) − AAj

4

(
δ(f − fL) − δ(f − fH)

)
(7.39)

where we have shown only the positive frequency portion of the spectrum; the spectrum
is symmetrical with respect to frequency. We are now ready to subject this expression of
the transmit clock to the voltage transfer function of the channel, which we will denote
by H(f ), in order to find an expression for the received clock:

VRCK(f ) = A

2
H(fc)δ(f − fc) − AAj

4

(
H(fL)δ(f − fL) − H(fH)δ(f − fH)

)
. (7.40)

In doing so, we have assumed the channel is a linear-phase channel so as to
neglect additional jitter that may be caused by a nonlinear phase response. Given that
H(fc), H(fL), and H(fH) are all constants, we can simply take the inverse Fourier trans-
form of this equation and, after similar approximations to those made for the transmit
clock, arrive at a time-domain expression for the received clock:

vRCK(t) = H(fc)A cos
(
2π fct + H(fL) + H(fH)

2H(fc)
Aj sin(2π fjt)

)
. (7.41)

This equation simply states that the channel attenuates the clock amplitude by a factor
of H(fc) while multiplying its sinusoidal jitter by a factor of [H(fL) + H(fH)]/[2H(fc)].
If the channel is relatively flat around fc, i.e., if H(fL) ≈ H(fH) ≈ H(fc), then the jitter
amplification factor is around 1, and hence the jitter in the received clock will be about
the same jitter as in the transmit clock. However, if we operate the channel at higher
frequencies, the channel exhibits steep frequency roll off (such as an exponential roll
off e−αf around fc), we will have H(fL)  H(fc)  H(fH), and this results in a jitter
amplification factor that is higher than 1 (on the order of 2 to 5).

7.6 Jitter Monitoring and Mitigation

In a wireline link, the transmit data accumulates jitter of various types until it arrives
at the receiver, where it is fed to the equalizer and subsequently to the CDR. The jitter
that matters the most at the end is ϕe (shown in Figure 7.4), which is the relative jitter
at the input of the phase detector of the CDR, that is, the absolute jitter of the equalized
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Figure 7.20 An example jitter budget [92] simulated at design time versus the actual jitter budget
measured after fabrication.

data, ϕin minus the absolute jitter of the recovered clock, ϕout. It is this relative jitter that
impacts the BER of the receiver. The absolute jitter of the equalized data includes the TX
PLL jitter, the channel-induced jitter as described in Section 7.5, and the data-dependent
jitter, which is partially removed by the equalization at the receiver. The recovered clock
includes the RX PLL jitter, the VCO jitter of the CDR, as well as the equalized data
jitter shaped by the CDR loop. The peak-to-peak relative jitter should never exceed
1UI or there will be no position in the UI left at which to sample this jittery data. In
fact, we should reserve some interval within the 1UI period for jitter tolerance, just in
case some of the components contribute more jitter than expected. To illustrate this, we
show in Figure 7.20, a simplified example of a jitter budget for a 25Gb/s optical link
[92] and compare various jitter contributions at the time of design with the actual jitter
contributions as collected during measurement.

This example shows how simulations underestimated some jitters, such as the jit-
ter from the RX PLL and the ISI-induced jitter, overestimated the TX PLL jitter, and
totally neglected the clock distribution jitter and the jitter from the clock channel. While
the design was expected to have a jitter margin (i.e., high-frequency jitter tolerance) of
0.3UI, the measured jitter margin was only about 0.1UI. It is in this context that jitter
monitoring and measurement become important. Jitter monitoring and measurement can
achieve two goals: 1. they enable us to better calibrate our circuits for future designs by
incorporating more realistic jitter characteristics into our models and simulations (this,
in turn, will lead to a better estimate of the jitter tolerance of the fabricated design), and
2. they will enable us to adaptively change certain parameters within the system so as
to mitigate jitter and its effect on CDR performance by either reducing the jitter itself
or reducing its effect on BER. In this section, we will examine several methods of jitter
monitoring and mitigation, which are two active areas of research in wireline.

7.6.1 Eye-Opening Monitor

An Eye-Opening Monitor (EOM) is a simple circuit that allows monitoring of the data
eye at the receiver input and producing information such as the eye opening and the
jitter histogram. Figure 7.21 shows a block diagram of an EOM implemented for a CDR
operating at 40Gb/s [93].

The EOM operation is best described if we first assume that the CDR is in a phase lock
position, i.e., if we assume that the recovered clock samples the received data waveform
at the center of the eye using the CDR sampler. In this case, we consider both the phase
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Figure 7.21 (a) A block diagram of an eye-opening monitor, (b) monitoring the eye with zero
voltage and phase offsets, (c) monitoring the eye as we sweep the voltage and phase offsets, (d)
eye contours corresponding to different BERs.

of the recovered clock and the voltage threshold of the CDR sampler to be at their ideal
values. The EOM samples the received data waveform at a phase offset with respect to
the recovered clock and voltage offset with respect to the threshold of the CDR sampler.
The eye opening is then monitored by measuring the difference in the outputs of the
two samplers. Since we have assumed the CDR is in an ideal lock position, the point
corresponding to the phase of the recovered clock and the CDR sampler threshold cor-
responds to the center of the eye as shown in Figure 7.21(b). If the phase shift and the
voltage offset in the EOM block are small enough, the outputs of the two samplers agree
with each other, and that means the sampling points of both the CDR sampler and the
EOM sampler are within the eye opening area of the eye diagram. As we increase either
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the phase shift or the voltage offset, however, we will reach a point, as depicted in Figure
7.21(c) where the output of the two samplers may not always agree, i.e., due to jitter and
noise, the sampling point of the EOM sampler may fall outside the opening area of the
eye. A simple XOR gate as shown in part (a) detects this mismatch as a function of the
phase and voltage offsets, and feeds this to a mismatch counter. Obviously, the larger
the offsets, the more likely there is to be a mismatch and, hence, the larger the mismatch
count. Contours of all the sampling points corresponding to the same mismatch rates are
shown in Figure 7.21(d) where the mismatch rate ranges from 10−4 to 0.5 as we move
farther away from the center of the eye opening. If we set the offset voltage to zero, the
information displayed in this plot can also be used to plot the BER as a function of the
phase offset, also known as the bathtub curve.

The EOM as described above is also called a “two-dimensional” EOM to distinguish
it from a “one-dimensional” EOM where the voltage offset is fixed, say to 0, and only
the phase offset is swept. In this case, we can essentially measure the CDF (and hence
the PDF) of the jitter for a fixed voltage offset. The silicon area cost, and the accuracy
of the resulting PDF, depends on the resolution by which we are able to increment the
phase shift.

Now, let us consider the case where the CDR is not in a perfect lock position and see
how the EOM can be used to adjust the threshold of the CDR sampler and the phase of
the recovered clock so as to improve CDR performance. Figure 7.22(a) shows a block
diagram of a CDR along with the EOM.

Here, an off-chip algorithm implemented on a PC monitors the outputs of the CDR
sampler and the EOM sampler and adjusts the voltage thresholds and the phase offsets
for both samplers, not just for the EOM sampler. To see how this works, let us assume
the CDR sampling position is off-center initially, as depicted in Figure 7.22(b). The
algorithm then sweeps the voltage offset and the phase offset for the EOM sampler so as
to find the eye opening with respect to CDR sampling position. Once the eye opening is
determined, the algorithm will adjust the voltage offset and the phase shift for the CDR
sampler such that its sampling position is moved to the center of the eye, as shown in
Figure 7.22. This technique is claimed [93] to improve the BER from 10−7 to 10−12 at
an input power of −21dBm.

7.6.2 Relative Jitter Measurement

Aside from the EOM presented in the previous section, relative jitter can be monitored
by either a time-to-digital converter (TDC) as shown in Figure 7.23(a) or an ADC at the
output of a linear PD as shown in Figure 7.23(b). In the former approach, the TDC could
be an extra block in addition to a PD already present in the CDR. The latter approach
is one way of building a TDC by feeding the output of an existing PD to an ADC.
However, for the ADC output to linearly represent the relative jitter, the PD must be
linear; otherwise, the TDC output will be a distorted (nonlinear) representation of the
relative jitter. [94] and [95] present a good treatment of these cases, but we will focus
here on monitoring the relative jitter in a BB-CDR in order to improve its jitter tolerance.
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Figure 7.22 (a) Using EOM to find the best sampling position for the CDR, (b) initial sampling
position of the CDR is not centered, (c) EOM is used to bring the sampling position to the center
of the eye.

Figure 7.23 Relative jitter measurement (a) using a time-to-digital converter (b) using a linear PD
followed by an ADC.

Figure 7.24 shows a simplified block diagram of a BB-CDR employing jitter moni-
toring to adaptively change the loop gain (K) for optimal jitter tolerance [96]. Without
the adaptation block, the BB-CDR operates as follows. A BB-PD, as descried ear-
lier in this chapter, counts the early/late events, and feeds the count to a gain block
(K) and subsequently to a digital loop filter (LF), which contains both a proportional
path and an integrative path similar to a charge pump and an analog loop filter. The
LF then produces a phase code which will be used by the phase interpolator (PI)
to adjust the phase of a reference clock accordingly and to produce the recovered
clock.
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Figure 7.24 Monitoring jitter at the BB-PD output for optimizing the loop gain K. c© 2017 IEEE.
Reprinted, with permission, from [96].

The problem with this CDR, without the adaptation block, is that its loop dynamics,
including the loop gain, the loop bandwidth, and the loop stability, are heavily depen-
dent on the relative jitter, which in turn is influenced by the loop gain. To illustrate
this, Figure 7.25 [96] plots the PSD of the relative jitter for three values of the loop
gain K.

When K is less than or greater than desired, the relative jitter has a larger variance
compared to the case of K desired. It is noted in [96] that a corresponding behavior
can be observed in the autocorrelation function, R(n), of the BB-PD output once it is
low-pass filtered. R(n), as plotted in Figure 7.25(b), shows an under-damped and an
over-damped behavior for K greater than and less than desired, respectively. Accord-
ingly, as shown in Figure 7.24, to find the desired K for optimal jitter performance, we
simply observe R(n), starting from a large value of K and reducing it until its oscillation
subsides.

7.6.3 Absolute Jitter Measurement

Measuring the absolute jitter present in either a data or a clock waveform requires access
to an ideal clock, i.e., a clock with no jitter. We can measure the absolute jitter in a
waveform by simply feeding it along with its associated ideal clock into a linear phase
detector. The output of the phase detector is then proportional to the absolute jitter of
the waveform. However, in the absence of an ideal clock, we can only resort to other
non-ideal waveforms to possibly extract information about the absolute jitter in each
waveform.

To illustrate this, assume we are interested in the absolute jitter of data waveform
A, ϕA, while we also have access to clock waveforms B and C with their uncorrelated
absolute jitters of ϕB and ϕC, respectively. While we cannot observe ϕA, ϕB, and ϕC
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Figure 7.25 (a) Plots of PSD of relative jitter for different values of K: the desired K corresponds
to minimum jitter variance, (b) plots of R(n) for different values of loop gain K: the desired K
corresponds to R(npeak) ≈ 0. c© 2017 IEEE. Reprinted, with permission, from [96].

Figure 7.26 Basic block diagram of absolute jitter measurement. c© 2015 IEEE. Reprinted, with
permission, from [97].

directly, we can feed each pair of waveforms to a phase detector as shown in Figure
7.26 and observe their relative jitter at the corresponding PD output.

The PD outputs, ϕe1, ϕe2, and ϕe3, can then be correlated to produce the variances of
the absolute jitters in the waveforms. For example, if we assume the PD is linear with a
PD gain of one (ϕe1 = ϕA − ϕB), we can write:
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E [ϕe1ϕe2] = E [(ϕA − ϕB)(ϕA − ϕC)]
= E

[
ϕ2

A

]+ E [ϕBϕC] − E [ϕAϕC] − E [ϕAϕB]
= E

[
ϕ2

A

]
= σ 2

A

(7.42)

where we have assumed the jitter in the three waveforms are all uncorrelated with a
mean of zero.

For further insight into the absolute jitter, we can estimate its autocorrelation function
by delaying ϕe1 by n cycles prior to correlating it with ϕe2. Therefore, we can write:

E [ϕe1(k − n)ϕe2(k)] = E [(ϕA(k − n)ϕA(k)]
= RϕA (n)

(7.43)

where we have assumed that the jitter is wide-sense stationary so that the autocorrelation
is a function only of the number of delay cycles, n, and not a function of the time index k.
The Fourier transform of this autocorrelation function provides the PSD of the absolute
jitter.

The scheme described above is implemented on chip [97] to estimate the absolute
jitter in both the input data and the recovered clock in a 10Gb/s multi-lane CDR. Figure
7.27 shows the block diagram of two adjacent BB-CDR lanes employing identical
BB-PDs. During normal operation, each CDR receives its own data and recovers the
corresponding CK. During absolute jitter measurement, the two selectors at the front
end are configured to feed Data1 to both CDR1 and CDR2 to produce CK1 and CK2.
As such, CK1 and CK2 are both associated with the data waveform whose absolute jit-
ter needs to be characterized. An additional PD, PD3, is added between the two lanes to
further characterize the absolute jitter in each of CK1 and CK2.

To follow the procedure described earlier, the outputs of PD1, PD2, and PD3 need to
be correlated in order to characterize the jitter in each of Data1, CK1, and CK2. Since

Figure 7.27 Absolute jitter measurement in two adjacent CDRs. c© 2015 IEEE. Reprinted, with
permission, from [97].
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the PDs are bang-bang, their outputs are binary, and therefore the correlation can be
easily performed on-chip in the digital domain using logic gates, FIFOs, and counters.
The edge monitor blocks collect information on the jitter CDF so as to estimate the PD
gain for each of PD1 and PD2. The data from the digital core is then sent off-chip to
estimate the PSD of the absolute jitter in each of Data1, CK1, and CK2.

Let us now revisit our assumption about the correlation between Data1, CK1, and
CK2. While the jitter in Data1 arises from jitter sources outside the CDR, the jitters
in CK1 and CK2 are contributed by two sources: 1. the jitter generated by each of
VCO1 and VCO2, and 2. the jitter in Data1. Since the two VCOs are assumed to be
independent, or at least sufficiently separated so as to minimize any coupling between
the two, and powered by well-isolated power supplies, the first contributions to CK1 and
CK2 may indeed be considered uncorrelated. The second contribution comes from the
same data jitter but it will be high-pass filtered by the loop before multiplying the PD
outputs for the autocorrelation function. Therefore, the autocorrelation function for the
absolute jitter in the data, as estimated by the block diagram in Figure 7.27, contains only
the out-of-band portion of the jitter; the in-band portion of the jitter is heavily attenuated
in the loop. Coincidently, we are also interested more in the out-of-band jitter, as it is
this portion of the jitter that degrades the CDR performance; the in-band jitter is tracked
by the CDR loop.

Similarly, the absolute jitter in each of CK1 and CK2, as estimated by the above
scheme, provides only a high-pass filtered version (the out-of-band portion) of the jitter
in CK1 and CK2. One way to include more of the in-band jitter in this estimation is to
reduce the loop bandwidth for diagnostic purposes [97].

7.7 Intentional Jitter

As mentioned in Section 7.3, the jitter PDF and its standard deviation affect the lin-
earized gain of the BB-PD, which in turn impacts the loop dynamics of the CDR and its
stability. In fact, it is possible to take advantage of this information and add intentional
jitter to a CDR in order to gain linearity and other desired properties. In this section,
we review two examples where we inject intentional jitter to improve PD linearity of a
10Gb/s CDR [98] and inject intentional jitter in a 28Gb/s CDR for jitter measurement
[99].

7.7.1 Jitter Injection for Improved Linearity

Figure 7.28(a) shows the block diagram of a 10Gb/s CDR where the input data is sam-
pled twice per UI, once at the data center using the data clock (CKD) and once at the
data edge using the edge clock (CKE). To accommodate 10Gb/s operation, the clock is
implemented by four phases of a quarter rate clock (2.5GHz). The data and edge samples
are then demuxed by a factor of 8, feeding 32 data bits and 32 edge bits at the demuxed
rate of 311MHz (10GHz/32) to a digital loop filter. By comparing the data and the edge
bits, similar to what was described in Figure 7.14, the digital loop filter produces an
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8-bit phase code for the data center and an 8-bit phase code for the data edge, with a
nominal difference of 0.5UI between the two codes. Since these codes are used for a
quarter-rate PI, the 8-bit phase code corresponds to a time resolution of 1.56ps. The jit-
ter in the recovered clock in this CDR is influenced by two undesired effects. One is the
finite resolution of the PI and the other is the bang-bang nature of the PD. Even though
the phase code has a resolution of 8 bits, the DAC inside the PI is limited to 6 bits of
resolution for area constraints. By intentionally adding a random 2-bit code to the phase
code prior to dropping its 2 least significant bits, this work restores the effective resolu-
tion of the 6-bit code to 8 bits. In addition, for the edge clock only, a random code with a
maximum of 0.5UIpp is added to its corresponding phase code to linearize the PD char-
acteristics. As a result, the jitter added to the data clock will have a standard deviation
that is different from the jitter added to the edge clock, as shown symbolically in Figure
7.28(b). This provides an extra degree of control for improving the PD linearity and the
DAC resolution.

7.7.2 Jitter Injection for Jitter Measurement

We are interested in measuring the relative jitter between the data and the recovered
clock in a bang-bang CDR by observing the bang-bang PD output. In Section 7.6.2, we
used the autocorrelation function of the PD output and a linearized model of a BB-PD as
shown in Figure 7.16, to arrive at the following expression for the relative jitter variance:

Figure 7.28 (a) A block diagram of a phase-interpolator-based (PI-based) CDR with intentional
jitter in both the data clock and the edge clock, (b) data clock and edge clock waveforms with
different jitter.
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Figure 7.29 Adding intentional deterministic jitter to the edge clock enables measuring the
relative jitter.

σ 2
e =

√
αT − σ 2

PD

K2
PD0

(7.44)

where αT is the data transition density as defined in Section 7.6.2. Using this equation,
we can estimate σ 2

e provided we have the values for both σ 2
PD and KPD0. We can use

Equation 7.34 to obtain σ 2
PD, and so it remains to evaluate KPD0 in order to determine

σ 2
e . Evaluating KPD0, however, is not trivial, because KPD0 is a function of σe itself, and

therefore Equation 7.44 has two unknowns.
To add further observability to the PD output, [99] injects a small deterministic

(square wave) jitter into the input of the phase interpolator controlling the edge clock
jitter. This is shown in Figure 7.29. The injected jitter, which corresponds only to the
least significant bit (LSB) of the PI control, is assumed to be much smaller than the rela-
tive jitter. As a result, the autocorrelation of the PD output will have two components: 1.
the autocorrelation of the relative jitter, which is expected to be a delta function, corre-
sponding to a mainly white relative jitter, and 2. the autocorrelation of the injected jitter,
which is expected to be a triangular waveform. Given that the amplitude of the injected
jitter is known and we can identify its contribution to the autocorrelation function of the
PD output, we can determine KPD0 and hence estimate the power of the relative jitter
using Equation 7.44. We refer the interested readers to [99] for further details of this
scheme.
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8 Phase Noise in Wireless
Applications

A wireless transceiver typically uses a PLL at the transmitter to up-convert a baseband
signal to an RF frequency and uses another PLL at the receiver to down-convert the
RF signal back to the baseband. Depending on the quality of the PLL clock, which is
often measured by its phase noise, the process of up-conversion and down-conversion
produces unwanted signals which often interfere with signals in adjacent channels and
deteriorate the SNR at the receiver. In this chapter, we first provide a brief background
on the transmitter and receiver concepts, and then discuss the impact of PLL phase noise
on transceiver performance.

8.1 Basics of Wireless Transceivers

Figure 8.1(a) shows the block diagram of a simplified wireless transmitter, in which
a baseband signal is up-converted to an RF frequency in a two-step process: first to
an intermediate frequency (IF), and then to an RF frequency, using a local oscillator
(inside a PLL). The RF signal is then fed to a bandpass filter (BPF) followed by a
power amplifier (PA) and the antenna. If the oscillator produces a pure single tone,
the up-converted signal will simply contain the baseband signal translated (shifted) in
frequency to fRF . If the baseband signal has a bandwidth of B, the RF signal will have
a bandwidth of 2B, as shown in Figure 8.1(b). However, due to the phase noise of the
oscillator, the up-converted signal will also contain frequency content outside the 2B
bandwidth, which may contribute to noise in adjacent receiver channels. The BPF allows
the signal and the noise content within the 2B bandwidth to pass but attenuates the phase
noise and other noise content that lie outside the 2B bandwidth. The PA amplifies the
power of the RF signal so as to extend its reach to the intended receivers.

A simplified block diagram of a wireless receiver is shown in Figure 8.2(a). The
received signal from the antenna is first filtered by an off-chip surface acoustic wave
(SAW) filter, then passed to a low noise amplifier (LNA), and subsequently to a mixer
that down-converts the RF signal either to an intermediate frequency (IF) or directly
to DC for further filtering. The role of the BPF/LPF in the receiver is to select a
channel among many channels that exist in the receiver band, similar to tuning into
a radio station. Typical PSDs for the signals through the wireless receiver are shown in
Figure 8.2(b).
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8.1 Basics of Wireless Transceivers 175

Figure 8.1 (a) A simplified block diagram of a wireless transmitter, (b) PSDs of the input, IF, LO,
and RF signals.

Figure 8.2 (a) A simplified block diagram of a wireless receiver, (b) PSD of the LO, RF, IF, and
the output signals.

8.1.1 Blockers in Wireless Receivers

The desired received signal may occupy a bandwidth B of 100kHz (for example in GSM
standard) and may be as weak as −102dBm (around 2.5μVrms). Undesired received
signals, which lie outside the RX band and are referred to as out-of-band blockers, could
be much higher in their power than the desired signal and, as such, they may prevent
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Figure 8.3 TX1 and TX2 are examples of in-band blockers, whereas TX3 is an example of an
out-of-band blocker.

(block) the weak desired signal from being correctly detected. In addition to the out-
of-band blockers, there are signals from adjacent channels in the same RX band, called
in-band blockers, that can also create interference with the weak desired signal. The
role of the SAW filter is to attenuate the out-of-band blockers and the role of filtering
around IF is to attenuate in-band blockers. Nevertheless, a residual out-of-band blocker
or in-band blocker may adversely affect the SNR at the receiver.

The out-of-band blockers, if not sufficiently attenuated, will force the receiver circuits
to operate in a non-linear region simply due to their large amplitudes relative to the
desired signals. Also, as we will see later, they can mix with other strong blockers and
produce frequency components that directly overlap with the frequency spectrum of the
desired signal.

8.1.2 Noise Figure

An ideal LNA amplifies both the desired signal and the noise, by the same factor, main-
taining the same SNR at its output as at its input. A practical LNA, however, produces
additional noise that will be added to its output. The added noise is generally produced
by the active and passive components of the LNA. As a result, the SNR at the output of
the LNA will be slightly lower than the SNR at the input of the LNA. The difference
between the two SNRs, when expressed in dB, is defined as the noise figure (NF) for the
LNA. In other words:

NF[dB] = SNROUT [dB] − SNRIN[dB]. (8.1)

A typical value for the NF of an LNA is around 2 − 3dB.

8.1.3 Receiver Sensitivity

Receiver sensitivity is defined as the minimum power of the received signal at the
receiver input that can be reliably detected in the presence of noise. As such, the receiver
sensitivity is mainly constrained by the noise power at its input. Most receivers typically
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Figure 8.4 The RX sensitivity is defined as the minimum signal power reliably detectable by the
receiver.

require a signal power level that is two to three times larger (or equivalently 3 to 5dB
higher) than the noise power level. To determine the RX sensitivity, we typically deter-
mine the noise power at the input of the receiver and then multiply it by factor of 2 to 3
(i.e., add 3–5dB to it).

Looking at the block diagram of the receiver in Figure 8.2(a), there are several con-
tributors to the noise at the input of the LNA. The main contributor is thermal noise
coming from the antenna, which is known to be kTB, where k is the Boltzmann con-
stant, T is the temperature in Kelvin, and B is the signal bandwidth. Accordingly, the
thermal noise power in the signal band can be written as:

Nthermal[dBm] = 10 log(kTB) = 10log(kT)[dBm/Hz] + 10 log(B)[dBHz]. (8.2)

At room temperature (T = 300◦K), we can write:

Nthermal[dBm] = −174[dBm/Hz] + 10 log(B)[dBHz]. (8.3)

The other contributor to the input noise is the LNA itself. As we mentioned earlier, the
LNA is characterized by its NF, which quantifies the added noise in dB. As a result, the
minimum equivalent noise at the input (input-referred noise) of the LNA can be written
as:

Nfloor[dBm] = Nthermal[dBm] + NF[dB]

= −174[dBm/Hz] + 10 log(B)[dBHz] + NF[dB].
(8.4)

If we require the minimum detectable signal to be an SNRmin above this noise level,
then we can write an expression for the receiver sensitivity as follows:

RXsensitivity[dBm] = Nfloor[dBm] + SNRmin[dB]. (8.5)

Figure 8.4 depicts the relationship between the thermal noise, the noise floor, and the
RX sensitivity.

8.2 Examples of Phase Noise Requirements for the Transmitter VCO

In this section, we study two wireless standards, i.e., GSM and WCDMA, and determine
the phase noise requirements of their transmitter VCOs. Figure 8.5 shows the frequency
band associated with the P-GSM-900 standard [100]. In this standard, the TX band
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Figure 8.5 Primary GSM (P-GSM) standard spectrum.

Figure 8.6 The local oscillator at the rightmost channel in the TX band leaks its phase noise to the
leftmost channel of the RX band.

(mobile to base station), also known as uplink, is specified as 890 − 915MHz, whereas
the RX band (base station to mobile), also known as downlink, is specified as 935 −
960MHz. With a channel spacing of 200kHz in each of the TX and RX bands, P-GSM-
900 provides a total of 124 channels in each of its TX and RX bands with 100kHz of
guard band on each side. A 20MHz gap between the TX and RX bands acts as a further
guard band to ensure the phase noise of the TX signal from a handset does not spill too
much into the RX band of an adjacent handset. We will determine the maximum phase
noise at the TX that can be tolerated at the RX in this section.

Figure 8.6 shows the VCO phase noise associated with the rightmost channel in the
TX band and how it spills into the leftmost channel in the RX band of an adjacent
mobile set.

To determine the maximum phase noise of the TX that can be tolerated at the RX,
and using the definition of phase noise in Equation 3.25 for a frequency offset of �f ,
we can write:

LGSM(�f ) = S′(fLO + �f )

PTX
. (8.6)

If the maximum noise power allowed in the receiver channel is specified as NRXmax,
we can write:

LGSM(�f ) ≤ NRXmax

B · PTX
. (8.7)

Expressing all quantities in dB, we can write:

LGSM(�f )[dBc/Hz] ≤ NRXmax[dBm] − PTX[dBm] − 10 log(B)[dBHz]. (8.8)
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Figure 8.7 The phase noise of the TX channel of a WCDMA device leaks into the RX channel of
the same device.

If we evaluate this equation with �f =20MHz, NRXmax = −79dBm, PTX = 33dBm,
and B = 100kHz, we will arrive at the following requirement:

LGSM(20MHz) ≤ −162dBc/Hz. (8.9)

As a second example, let us find the TX phase noise requirement in a WCDMA
standard [100]. As shown in Figure 8.7, in this standard, the phase noise of the TX
of one handset may actually interfere with the RX part of the same handset. Although
the duplexer is expected to block any of the handset’s TX power from leaking into
the handset’s RX, in reality, the duplexer can only attenuate the TX power by about
45dB. If we consider a maximum TX power of 26dBm, the duplexer is able to bring
this power down to 26dBm − 45dB = −19dBm. �f can be any value between 30MHz
and 400MHz depending on the specific band. In this case, Equation 8.8 will result in
LWCDMA(�f ) ≤ −161dBc/Hz [101].

8.3 Reciprocal Mixing at the Receiver

An ideal RX mixer, as shown in Figure 8.8, multiplies a narrowband RF signal around
fRF by a tone at fLO to reproduce the narrowband signal around an IF frequency where
(fIF � fRF). The basic idea is that the content centered around fIF is much easier to
process than the original content centered around fRF .

The tone at fLO, which is generated using a local oscillator (LO), inevitably contains
phase noise, as discussed in detail in Chapter 4. Figure 8.9 shows a tone at fLO and its
accompanying phase noise. Consider now a blocker signal with sufficient strength at fB.
The blocker signal, when mixed with the phase noise component at frequency fB + fIF ,
produces content around fIF , in a similar way to how the signal around fRF is translated
by the ideal tone at fLO to around fIF. The blocker signal, as discussed earlier, may
belong to either the same band as that of the desired signal or to an adjacent band. In
most narrowband RF receivers, an off-chip filter (SAW filter in Figure 8.2) is employed
to attenuate the out-of-band blocker signal. In wideband RF receivers without a SAW
filter, the blocker signal may accompany the desired signal to the mixer input and impose
more constraints on LNA linearity and on the phase noise of the local VCO.
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Figure 8.8 An ideal mixer shifts the content from fRF to fIF .

Figure 8.9 The LO phase noise is mixed with the blocker signal and produces in-band noise at fIF .

Figure 8.10 In a direct-conversion receiver, the LO phase noise is mixed with the blocker signal
and produces in-band noise at DC.

The process in which the blocker creates more in-band noise through mixing with the
phase noise of the VCO is called “reciprocal” mixing because the blocker signal at fB
plays the role of a local oscillator and the phase noise of the local oscillator plays the
role of the RF signal. Let us now quantify the effect of this reciprocal mixing on the
SNR at the mixer output.

Without loss of generality, we assume fIF = 0 in this analysis. This corresponds to
what is known as direct-conversion receiver. Figure 8.10 shows the desired signal and a
blocker at �f away from fLO as input to the mixer. If we assume the local oscillator has
a phase noise characterized by LLO(f ) and the blocker has a total power of PB[dBm],
then the process of reciprocal mixing will add the following noise power to the signal
band:
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NRM = PB · LLO(�f ) · B (8.10)

where NRM denotes the in-band noise power due to reciprocal mixing and B is the signal
bandwidth. Expressing this noise power in dBm, we can write:

NRM[dBm] = PB[dBm] + LLO(�f )[dBc/Hz] + 10 log(B)[dBHz]. (8.11)

If we assume this noise is much larger than the thermal noise, which is usually the
case given large blocker power, we can write an expression for the SNR:

SNR[dB] = PC[dBm] − PB[dBm] − LLO(�f )[dBc/Hz] − 10 log(B)[dBHz] (8.12)

where PC is the carrier power associated with the desired signal. If we denote the
minimum required SNR by the standard with SNRmin, then we have the following
requirement for the phase noise:

LLO(�f )[dBc/Hz] ≤ PC[dBm] − PB[dBm] − 10 log(B)[dBHz] − SNRmin[dB]. (8.13)

Example: Figure 8.11 shows the GSM receiver requirement for the blocker power
level. Given the GSM standard requires a minimum SNR of 9dB and a sensitivity of
−99dBm, i.e., a carrier level of −99dBm, calculate the LO phase noise at 600kHz and
3MHz offset from the carrier. Assume the blocker signals have the maximum allowable
power levels as shown in the figure. Assume a channel bandwidth of 200kHz.

Solution: The blocker power can be as much as −43dBm at 600kHz away from the
carrier. Therefore, using Equation 8.13, we can write:

LLO(�f = 600kHz) ≤ −99 − (−43) − 10 log(200k) − 9 = −118[dBc/Hz]. (8.14)

Similary, the blocker power can be as much as −23dBm at 3MHz away from the
carrier. Therefore, we can calculate:

LLO(�f = 3MHz) ≤ −99 − (−23) − 10 log(200k) − 9 = −138[dBc/Hz]. (8.15)

Figure 8.11 Blocker mask for GSM: the receiver is required to tolerate an increasing level of
blocker power as the blocker moves farther away from the desired signal frequency.
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Finally, to find out the increase in noise power due to reciprocal mixing, we need to
compare this noise power with the thermal noise power, which is −174[dBm/Hz] +
10 log(B)[dBHz]. Subtracting the two in dB will provide us with the blocker NF:

BlockerNF[dB] = PB[dBm] + 174[dBm] + LLO(�f )[dBc/Hz]. (8.16)

The blocker NF can be reduced if we can reduce the blocker power (PB) or the VCO’s
phase noise. As mentioned earlier, one way to reduce the blocker power is to simply try
to filter it using a SAW filter. However, in the absence of a SAW filter, we need to design
the local oscillator with reduced phase noise. Equation 8.16 states that every dB increase
in blocker power must be compensated by a dB decrease in the phase noise, or else we
will be compromising the SNR of the design.

Since the phase noise spectrum is usually symmetric around the carrier frequency, as
depicted in Figure 8.10, it is possible to take advantage of this symmetry and cancel
the reciprocal mixing caused by the phase noise. Details of this technique are described
in [102].
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9 Advanced Concepts on Jitter and
Phase Noise

This chapter deals with some advanced concepts connected to jitter and phase noise
which are not strictly necessary to understand the rest of the book. The handling of
these concepts requires, in some cases, a more complex mathematical approach, but in
our view is important for those readers who want to gain a deeper insight.

9.1 A General Method to Convert Phase Noise to Jitter

In this section we will illustrate a general method that can be employed in many cases to
calculate jitter, or other timing parameters, from the phase noise. This method borrows
some basic concepts from discrete time signal processing, which can be found in, e.g.,
[72]. Assume that a given timing parameter j is such that a linear combination of its
values over the clock periods k, . . . , k − n can be expressed as a linear combination of
the absolute jitter a over the clock periods k, . . . , k − m:

α0jk + α1jk−1 + · · · + αnjk−n = β0ak + β1ak−1 + · · · + βmak−m. (9.1)

As an example, the period jitter pk−1 can be expressed as ak − ak−1 (see Equation 2.9).
By taking the z-transform of both members of the previous equation, and indicating with
J(z) and A(z) the z-transform of jk and ak respectively:

(α0 + α1z−1 + · · · + αnz−n)J(z) = (β0 + β1z−1 + · · · + βmz−m)A(z). (9.2)

Therefore, in general the discrete time signal jk can be obtained from ak via a discrete
time filter with frequency response H(z):

J(z) = H(z)A(z) (9.3)

where, in the specific case above, H(z) is defined as:

H(z) :=
∑m

i=0 βiz−i∑n
i=0 αiz−i

. (9.4)

Knowing the general relation between absolute jitter and excess phase ak = −ϕk/ω0

(see Equation 3.5), Equation 9.3 can be expressed as:

J(z) = −H(z)

ω0
�(z) (9.5)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316981238.010
https://www.cambridge.org/core


184 Advanced Concepts on Jitter and Phase Noise

where �(z) is the z-transform of the sequence ϕk. This relation tells us that j is obtained
from ϕ via a filter with frequency response −H( f )/ω0, where the translation from
z-domain to frequency domain is obtained by replacing z−1 with e−j2π fT , with T the
nominal clock period. Using basic linear system theory (see Appendix A.2.10), the rela-
tion between the PSD of j and the PSD of ϕ, which is also the phase noise L( f ), can
then be found:

Sj( f ) =
∣∣∣∣H( f )

ω0

∣∣∣∣
2

Sϕ(f ) =
∣∣∣∣H( f )

ω0

∣∣∣∣
2

L(f ). (9.6)

From here it is easy to obtain the variance of the timing parameter j as:

σ 2
j = 2

∫ +∞

0

∣∣∣∣H( f )

ω0

∣∣∣∣
2

L( f ) df . (9.7)

EXAMPLE 15 In this example we will apply the method above to the computation
the period jitter from the phase noise. Starting from the definition of period jitter (see
Equation 2.9) here reported:

pk−1 = ak − ak−1 (9.8)

and taking the z-transform of both members we find:

z−1P(z) = (1 − z−1)A(z) (9.9)

so that for this case:

H(z) = 1 − z−1

z−1
. (9.10)

Using Equation 9.6, we obtain:

Sp( f ) =
∣∣∣∣1 − e−j2π fT

ω0e−j2π fT

∣∣∣∣
2

L( f ) = 4 sin2(π fT)

ω2
0

L( f ) (9.11)

and finally, using Equation 9.7, the variance of the period jitter as function of the phase
noise:

σ 2
p = 8

ω2
0

∫ +∞

0
sin2(π fT)L( f ) df (9.12)

which is the same as 3.49 for N = 1, obtained in a different way.

The reader is invited to extend the example above to derive Equation 3.49, which
converts phase noise into N-period jitter. In Section 9.3.4 this method will be applied to
derive the link between Allan Deviation and phase noise.

9.2 Confidence Intervals of Statistical Parameters

In Section 2.2, the statistical parameters of jitter were presented and analyzed, but no
mention was made about their accuracy. This important aspect is the topic of this section.

First of all, it is important to understand that the quantities μ̂j and σ̂ 2
j as calculated

in Equations 2.30 and 2.32 only deliver an estimate of mean and variance. Due to the
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stochastic nature of the data, the same computation applied to data coming from the
same system but measured at different times will give different results, even if the system
is time-invariant. In other words, the quantities μ̂j and σ̂ 2

j should be treated as random
variables on their own.

Additionally, the accuracy of the estimation depends on the sample size n. It is natural
to expect an estimate of the variance based on a thousand samples to be much closer to
the real variance than an estimate based on five samples. Figure 9.1 shows the results
of the repeated computation of the sample variance using Equation 2.32 on data coming
from a Gaussian distribution with a variance equal to 1 for several sample sizes n. As
can be seen, the larger the n, the smaller the spread of the sample variance around the
real value.

The central questions that must be answered when estimating mean and variance of
jitter are, therefore: if the number of samples n is given and cannot be changed, how
close is the result of the estimation to the real value? Or, if the sample size n can be
chosen, how large should it be so that the error in the estimation is lower than a given
limit?

These questions constitute the core of so-called parameter estimation theory in statis-
tics. In this section, we will use the concepts from this branch of statistics without
going into the details of the theory. The interested reader can refer to, e.g., [103], [104],
[105], or [13] for a deeper analysis. The content of this section is not a prerequisite for
understanding the remainder of the book.

The questions above can be formalized by introducing the concept of confidence inter-
val. If θ is the parameter to be estimated, in our case, either the mean or the variance,
the goal is to find two values θL and θU such that the probability that the real value θ

falls within the interval [θL, θU] is equal to a given number 1 − α:

P [θL ≤ θ ≤ θU] = 1 − α. (9.13)

Figure 9.1 Estimated (sample) variance from a Gaussian population with zero mean and variance
equal to 1, versus sample size n. For each sample size n, the results over 1000 trials are displayed.
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The interval [θL, θU] is called the 100(1 − α)% confidence interval, and it has the fol-
lowing meaning. If the computation of the interval [θL, θU] is repeated many times on
different data sets, in 100(1 − α)% of the cases the real value of the parameter will be
contained within the computed confidence interval. For instance, if α = 0.01, we have a
99% confidence interval; that is, in 99% of the cases the real value of θ will be within the
computed limits. For some of us, it could be particularly disillusioning to realize that we
cannot know the value of the parameter with absolute certainty, but fighting against this
statistical truth will probably not lead us anywhere. So we’d better accept it, for now.

Since the computation of the confidence intervals is heavily based on the Gaussian
distribution, it is useful to review some facts regarding the probability of a Gaussian
random variable before proceeding. Given a random variable X having a Gaussian dis-
tribution with mean μ and variance σ 2, the probability P(Q) that X assumes values larger
than μ + Q σ , with Q a real number, is given by:

P(Q) := P [X ≥ μ + Q σ ] =
∫ +∞

μ+Q σ

1

σ
√

2π
exp

(−(t − μ)2

2σ 2

)
dt. (9.14)

With the change of variable v = (t − μ)/(σ
√

2) this expression can be rewritten as:

P(Q) = 1√
π

∫ +∞

Q/
√

2
e−v2

dv = 1

2
erfc

(
Q√
2

)
(9.15)

where erfc(x) is the complementary error function defined as:

erfc(x) := 2√
π

∫ +∞

x
e−v2

dv (9.16)

which can be computed with the use of the most common mathematical programs or
spreadsheets. Table 9.1 shows the values of P(Q) for several values of Q. In the follow-
ing a Gaussian random variable X with mean μ and variance σ 2 will be indicated by
X ∈ N (μ, σ 2).

9.2.1 Confidence Interval on the Jitter Mean

In this section we will derive an expression for the confidence interval of the estimation
of mean based on the sample mean (Equation 2.30). From Equation 2.30, if the jitter
samples jk have a Gaussian distribution N (μ, σ 2), and are independent from each other,
it is well known that μ̂j ∈ N (μ, σ 2/n), since the sum of independent Gaussian random
variables is still a Gaussian random variable. If the jitter samples are non-Gaussian,
the central limit theorem states that, under certain conditions, the distribution of μ̂j

converges to a normal distribution N (μ, σ 2/n) for increasing n.
In practical situation, if n ≥ 30 the distribution approximates a real Gaussian distri-

bution to a very high degree (see Figure 9.2). Luckily, in the context of jitter estimation,
the number of samples available in practice is far larger than 30, and it can be assumed
that:

μ̂j ∈ N
(

μ,
σ 2

n

)
. (9.17)
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Table 9.1 Probabilities that
X ≥ μ + Q σ for X ∈ N (μ, σ 2).

Q P(Q)

1 1.58 · 10−1

2 2.27 · 10−2

2.33 1.00 · 10−2

3 1.35 · 10−3

3.09 1.00 · 10−3

4 3.17 · 10−5

4.75 1.00 · 10−6

5 2.87 · 10−7

6 1.00 · 10−9

7 1.28 · 10−12

7.03 1.00 · 10−12

7.94 1.00 · 10−15

8 6.22 · 10−16

9 1.13 · 10−19

10 7.62 · 10−24

Figure 9.2 PDF of the sample mean with n = 30 from non-Gaussian populations (circles =
uniform, crosses = sinusoidal) having variance 1 compared to the Gaussian PDF with variance
1/

√
(30) = 0.18 (dashed line).

From this result it is easy to find the confidence interval for the sample mean. Indeed,
from Equation 9.14

P

[
μ̂j ≥ μ + Q

σ√
n

]
= P(Q) (9.18)

so that:
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P

[
μ + Q

σ√
n

≤ μ̂j ≤ μ + Q
σ√
n

]
= 1 − 2P(Q) (9.19)

or, in term of the absolute estimation error |μ̂ − μ|:

P

[
|μ̂j − μ| ≤ Q

σ√
n

]
= 1 − 2P(Q). (9.20)

It can be seen that the confidence interval depends on the sample size n. The larger
the n, the smaller the confidence interval for a given confidence level 1 − 2P(Q). This
expression allows for the calculation of the minimum number of samples n needed to
achieve the 1 − 2P(Q) confidence level that the absolute error on the estimated mean
(|μ̂j − μ|) is lower than a given value ε:

n ≥
(

Q σ

ε

)2

. (9.21)

EXAMPLE 16 Assume it is known that the clock under investigation has a jitter RMS
value of 10ps, and we want to estimate the jitter mean with an absolute error lower than
1ps and a confidence level of 99.7%. How many jitter samples are needed? Based on
Table 9.1, for this confidence level Q = 3, so that n ≥ (3 · 10/1)2 = 900. It can be seen
that, for the estimation of the mean, a number of samples as low as 1000 already yields
a very good confidence estimation. Note that, for a confidence level of 95%, Q = 2, so
that only 400 samples would suffice.

In the previous discussion, it has been tacitly assumed that the RMS value σ of the
jitter was known. In a realistic situation, though, if the mean is unknown, it not very
probable that the RMS will be known. The most natural choice in this case is to use
the estimated RMS value σ̂j from Equation 2.32 instead of σ . At this point, statistical
theory pulls in the concept of the Student’s T-distribution and things get slightly more
complicated. However, again luckily, if the number of samples n is greater than about
30, the T-distribution can be very well approximated with a Gaussian one and the result
derived above holds its validity when σ is replaced by σ̂j:

P

[
|μ̂j − μ| ≤ Q

σ̂j√
n

]
= 1 − 2P(Q). (9.22)

However, the determination of the minimum sample size n is now not as straightforward
as in the case of a known σ , since σ̂j depends also on n. Therefore, a trial and error
procedure is normally needed.

9.2.2 Confidence Interval on the Jitter Variance and Standard Deviation

In most cases, the parameter of interest is the RMS value or the variance of the jit-
ter and not its mean value. It is thus important to know the confidence interval on the
estimation of these quantities when using the sample variance estimator σ̂ 2

j reported in
Expression 2.32.

From mathematical statistics (see, e.g., [104]) it is known that, if the jitter samples
jk ∈ N (μ, σ 2), then the random variable (n−1)σ̂ 2

j /σ 2 has a χ2 distribution with n − 1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316981238.010
https://www.cambridge.org/core


9.2 Confidence Intervals of Statistical Parameters 189

degrees of freedom. The χ2 is a special distribution used extensively in statistical infer-
ence and can be defined with the help of the Gamma function. However, and luckily
enough, it has been shown that, for a large number of degrees of freedom n, the χ2

distribution converges to N (n, 2n). The approximation is already very good for n = 30.
Using this fact, and approximating n − 1 with n, it follows that:

σ̂ 2
j ∈ N (σ 2, 2σ 4/n). (9.23)

This expression means that, when estimating the variance of jitter with the sample vari-
ance, the result will be, on average, the real variance σ 2, but it will be spread around this
average value with the shape of a Gaussian distribution with an RMS value σ 2√(2/n).
Note that the RMS value of the sample variance is proportional to the variance of the
original random variable.

Now it is quite straightforward to calculate the confidence interval. From Equa-
tion 9.23:

P

[
σ 2 − Qσ 2

√
2

n
≤ σ̂ 2

j ≤ σ 2 + Qσ 2

√
2

n

]
= 1 − 2P(Q). (9.24)

After some easy algebra, the previous expression can be reformulated as:

P

[∣∣∣∣∣
σ̂ 2

j

σ 2
− 1

∣∣∣∣∣ ≤ Q

√
2

n

]
= 1 − 2P(Q). (9.25)

Note that the expression σ̂ 2
j /σ 2 − 1 is the relative error of the estimation of the vari-

ance. The confidence interval for the estimation of the RMS value can be derived from
Equation 9.25, observing that, if σ̂j is close to σ , then σ̂ 2

j /σ 2 − 1 ≈ 2(σ̂j/σ − 1), and
σ̂j/σ − 1 is the relative error of the RMS value. Finally, the confidence interval of the
relative error of the estimation of the RMS value is:

P

[∣∣∣∣ σ̂j

σ
− 1

∣∣∣∣ ≤ Q

√
1

2n

]
= 1 − 2P(Q). (9.26)

From this formula, the minimum number of samples n needed to estimate the RMS
with a given confidence level can be derived immediately. Assuming that the allowed
relative error of the estimation is εr, the minimum number of samples n corresponding
to a confidence level of 1 − 2P(Q) is given by:

n ≥ 1

2

(
Q

εr

)2

. (9.27)

Figure 9.3 graphically illustrates Equation 9.27 for three levels of confidence: 68%
(Q = 1), 95% (Q = 2) and 99.7% (Q = 3).

EXAMPLE 17 How many samples are needed to estimate the RMS value of a Gaussian
jitter with a relative error of 1% and a 99.7% confidence level? In this case εr = 0.01
and Q = 3, so that, from Equation 9.27, n should be larger than 45,000. Note that for a
confidence level of 95% and the same relative error, the sample size reduces to 20,000.
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Figure 9.3 Sample size n versus relative error εr for the estimation of the RMS value of a
Gaussian random variable for three levels of confidence.

The expressions above are valid if the jitter samples jk have a Gaussian distribution.
What if this condition is not satisfied? In such cases, things are not as straightforward as
before, but we can contain the increase of complexity by introducing just one additional
coefficient. By virtue of the central limit theorem for large n, the distribution of the
sample variance tends again to a Gaussian distribution, with the only difference being
that in the non-Gaussian case, the variance is not 2σ 4/n, but rather σ 4(2 + γ2)/n:

σ̂ 2
j ∈ N

(
σ 2,

σ 4

n
(2 + γ2)

)
. (9.28)

The coefficient γ2 is called the excess kurtosis and, for a random variable X with mean
μ and variance σ 2, is defined as:

γ2 := E
[
(X − μ)4

]
σ 4

− 3. (9.29)

It is basically a measure of how close to a Gaussian the distribution of X is. Indeed if X is
Gaussian then γ2 = 0 and Equation 9.28 reduces to Equation 9.23. It must be noted that
also in the case of non Gaussian distributions, the sample variance converges to the real
variance, and the excess kurtosis influences only the confidence interval of the estima-
tion. Repeating the steps followed above for the Gaussian case, the confidence interval
for the estimated RMS value for non-Gaussian jitter distributions can be written as:

P

[∣∣∣∣ σ̂j

σ
− 1

∣∣∣∣ ≤ Q

2

√
2 + γ2

n

]
= 1 − 2P(Q) (9.30)

and the minimum sample size n for a given confidence level 1 − 2P(Q) as:

n ≥
(

1

2
+ γ2

4

)(
Q

εr

)2

. (9.31)
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Unfortunately, this approach relies on the fact that we know the value of γ2; that is,
we know the shape of the underlying jitter distribution. In most cases, though, this is
not true, and the excess kurtosis becomes another coefficient that we have to estimate
using Equation 9.29, with its own confidence interval (the order-zero estimation can
be obtained by replacing the expectation operator with the average over the samples).
As can be understood, an exact solution to this problem is not elementary and goes far
beyond the scope of this book.

9.2.3 Confidence Interval on the Jitter Peak and Peak-Peak Values

Calculating peak and peak-peak values, as shown in Equations 2.33, 2.34, and 2.35, is
very straightforward, but what confidence level can be obtained with this procedure? In
other words, once ρ−, ρ+, and ρρ are found, what is the probability that a jitter sample
will be larger that ρ+, or smaller than ρ−, or outside the range ρρ?

This question is part of a branch of mathematics called order statistics developed in
the 1940s and applied to quality control in industrial processes. In particular, a quite
remarkable result states that the probability of finding a jitter sample outside the limits
calculated as before depends only on the sample size n and not on the shape of the
distribution, as long as it can be assumed to be continuous. The proof of this apparently
paradoxical fact is beyond the scope of this book, and the interested reader is referred to
[106] or [107].

The question now becomes slightly different. Given that these probabilities depend
only on n, what is the minimum n such that there is a high confidence level, e.g., 1−P(Q),
with P(Q) as reported in Table 9.1, that the probability of finding a jitter sample beyond
the peak limits is lower than a given bound β? Expressed in mathematical terms, calling
u and v the probabilities of finding a jitter sample larger than ρ+ or lower than ρ−,
respectively, we want to determine n such that:

P [u ≤ β] ≥ 1 − P(Q) (9.32)

for the peak positive,

P [v ≤ β] ≥ 1 − P(Q) (9.33)

for the peak negative, and

P [u + v ≤ β] ≥ 1 − P(Q) (9.34)

for the peak-peak value. Omitting the mathematics (see [107]), the result is:

n ≥ ln(P(Q)

ln(1 − β)
(9.35)

for the peak positive and the peak negative cases. The result is plotted in Figure 9.4 for
three levels of confidence (68%, 95.4%, and 99.7%). For the peak-peak value, n is the
result of the following transcendental equation:

n(1 − β)n−1 − (n − 1)(1 − β)n = P(Q) (9.36)
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Figure 9.4 Estimation of peak value: sample size n versus probability bound β for three
confidence levels.

Figure 9.5 Estimation of peak-peak value: sample size n versus probability bound β for three
confidence levels.

which cannot be solved analytically, but is plotted in Figure 9.5 for the same three levels
of confidence.

It is instructive to find an approximate expression for Equation 9.36 in the case of
a 99.7% confidence interval (P(Q) = 0.003). Considering the Taylor expansion of the
logarithm for small values of β, the result is:

n ≥ 5.81

β
. (9.37)
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For instance, if one wants to be 99.7% sure that at most 1/1000 of the jitter samples are
larger than the peak value, n should be larger than 5810. Comparing Figures 9.4 and 9.5,
it can be seen that the same level of confidence for the same value of β requires roughly
double the sample size in the peak-peak case than in the case of peak value. This also
makes intuitive sense: having a proportion β outside of the ρρ range can be equivalent
to having β/2 larger than ρ+ and β/2 smaller than ρ−, leading to the doubling of the
number of points, as shown by Equation 9.37.

9.3 Estimators for Frequency Stability

Many modern applications rely on the availability of timing sources where frequency
is accurate, i.e., its average value is equal to the nominal one, and very stable, i.e.,
not changing too much over time. Notable examples are the GPS system and digital
communication networks extending across very large geographic distances. In the case
of GPS, the phase differences between clock generators in different satellites and the
receiver are used to determine distance, and thus the position of the receiver itself. A
key point for the system to work is that the clocks should be very stable and accurate,
otherwise the information on distance extracted by comparing phases will be corrupted.
In digital communication networks, frequency stability over the long term at different
nodes geographically far apart is a key element in guaranteeing that data are not lost due
to buffer overflow.

In the 1950s and 1960s a lot of effort was put into devising clock sources offer-
ing the kind of stability needed by such applications, resulting in the development of
timing sources which exploit basic properties of matter to generate periodic signals
with controlled frequencies. Atomic clocks based on the energy transitions of cesium
or rubidium, and the hydrogen maser are some of these.

In parallel with the development of precise timing sources, there was a clear necessity
of establishing criteria to characterize the frequency stability over time of those different
sources. Two factors prompted this development: the first was the need to compare the
performances of clock sources, and the second was the need for a system to classify the
degrees of frequency accuracy required by different applications.

In the late 1960s the metrology community converged on a few well-defined quanti-
ties, which proved to be quite useful and are still in use today. The Allan Deviation is
probably the most well known.

Even though these quantities are not directly connected to the design and anal-
ysis of integrated systems, they are quite relevant for many other applications in
the field of electronic and information engineering. This section aims to give an
overview of the subject; a thorough handling would take a book by itself. The inter-
ested reader is referred to [108], [109], and [110] for an in-depth examination of these
issues.

This section will start with some basic concepts dealing with the characterization of
frequency stability and then focus on the Allan Deviation and on its relation to jitter. At
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the end, the concepts of Modified Allan Deviation and Time Deviation will be briefly
explained, but not discussed in detail.

9.3.1 Basic Concepts

The main question to address is how to determine the frequency stability of a given
clock source over a given observation period τ . The starting point for an analysis in
the time domain is the simple clock model described by Equation 2.1. The quantity to
characterize is the deviation over time of the instantaneous frequency of the clock signal
f (t) = f0 + ϕ̇(t)/(2π ) from the average nominal frequency f0, �f (t) = f (t)− f0. It makes
sense to consider the frequency deviation normalized to the nominal frequency, so that
historically a new quantity y(t) was defined as:

y(t) := �f (t)

f0
= f (t) − f0

f0
. (9.38)

This is essentially the frequency error over time normalized to the nominal frequency.
Note that, for an ideal clock, y(t) is identical to zero.

In order to evaluate the stability over an observation period τ , the approach used by
the standardization bodies considered the average values of y(t) over periods of time
spanning τ seconds. It must be noted that, depending on the application, the observation
period τ can range from milliseconds to days or even years. Figure 9.6 shows an example
of y(t) together with its average values (indicated as ȳi) calculated over consecutive
periods τ .

It would seem sensible to characterize the stability of the clock source by simply
taking the variance of the ȳi. This is indeed one way of doing it, leading to a quantity
which has been called true variance and indicated by I2(τ ) = E

[
ȳ2

i

]
. Unfortunately,

this quantity turns out to be of no practical use, since, for all real clock sources,
it approaches infinity for increasing values of τ , due to the intrinsic random walk
nature of the frequency error for all real oscillators, so that its variance diverges with
time.

For this reason, the Allan Deviation (named after D. W. Allan) was taken as the basic
metrological quantity for frequency stability.

Figure 9.6 Normalized frequency deviation y(t) versus time. The ȳi indicate the average values of
y(t) across a time span τ .
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9.3.2 Allan Deviation (ADEV)

To get rid of the numerical difficulties connected with the true variance, other approaches
were considered, based on the relative comparison of the ȳi, rather than on their absolute
values. One of them is built on the difference between two consecutive values of ȳi, by
defining the quantity �yi as:

�yi := ȳi+1 − ȳi√
2

. (9.39)

The variance of �y is called the Allan Variance (AVAR) σ 2
�y(τ ):

σ 2
�y(τ ) := E

[
(�yi)

2
]

= 1

2
E
[
(ȳi+1 − ȳi)

2
]

(9.40)

and its square root σ�y(τ ) is called the Allan Deviation (ADEV). Since the values of
ȳi depend on the observation interval τ , the ADEV is also a function of τ . Note that,
in the literature, the ADEV is normally indicated by σy(τ ). Nevertheless, since it is
based on the difference of consecutive ȳi, in this book we prefer to use the notation
σ�y(τ ), to avoid possible confusion with the standard deviation of ȳi itself. The factor√

2 in the denominator of Equation 9.39 is chosen so that the value of ADEV is equal
to the standard deviation of ȳi for a noise process in which consecutive values of ȳi are
uncorrelated. Due to the difference operation in Equation 9.39, the ADEV turns out to
be well defined and not diverging for any kind of noise produced by real oscillators.
Given a series of m average frequency measurements, a widely used estimator for the
AVAR is given by:

σ 2
�y(τ ) = 1

2(m − 1)

m−1∑
i=1

(ȳi+1 − ȳi)
2. (9.41)

Figure 9.7 [47] shows the ADEV for some typical high-precision clock sources.

9.3.3 Relation Between Allan Deviation and Jitter

Since the ADEV is a characterization of frequency instability, and frequency instability
manifests itself as jitter on the clock edges, it is natural to try to understand if there is
a simple relation between ADEV and the jitter definitions given in this chapter. It turns
out that there is, and it is simple indeed.

To derive it, let’s first consider the very definition of y(t) as given in Equation 9.38.
If the frequency deviation �f is small compared to f0, the ratio of the two is equal to
the clock period deviation, �T , divided by the nominal period, T = 1/f0.1 Under this
hypothesis, which is very well satisfied for the case of high-accuracy clocks where the
concept of ADEV is used, the yi can be expressed as:

yi = −�Ti

T
= −Ti − T

T
(9.42)

1 This follows from the fact that period and frequency are reciprocals of each other, f = 1/T . Differentiating
f , we find df = −dT/T2, so that df /f = −dT/T .
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Figure 9.7 Allan deviation (ADEV) for some typical high-precision clock sources (reproduced
with permission from Dr. John Vig[47]).

Figure 9.8 Computation of ADEV from jitter.

where T is the nominal period, �Ti and Ti are the average period deviation and the
average period respectively, across the i-th observation interval τ .

With reference to Figure 9.8, consider two consecutive observation periods each con-
sisting of N clock cycles. The first period, indicated with a, starts with the edge at time
tk and ends at time tk+N . The second, indicated by b, starts at tk+N and ends at tk+2N .
The average clock period across a, Ta can be calculated as the difference between the
instants of the last and first edges, divided by the number of cycles:

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316981238.010
https://www.cambridge.org/core


9.3 Estimators for Frequency Stability 197

Ta = tk+N − tk
N

. (9.43)

Expressing tk as the sum of the ideal clock plus absolute jitter tk = kT+ak, and replacing
it in the expression above, we find that:

Ta = (k + N)T + ak+N − kT − ak

N
= T + ak+N − ak

N
(9.44)

so that the normalized frequency deviation can be expressed in terms of the absolute
jitter and of the N-period jitter as:

ya = −ak+N − ak

NT
= −pk(N)

NT
. (9.45)

Following the same steps, the normalized frequency deviation across the observation
period b, can be expressed as:

yb = −ak+2N − ak+N

NT
= −pk+N(N)

NT
. (9.46)

Finally, the quantity calculated in Equation 9.39 can be written as:

�y = yb − ya√
2

= pk(N) − pk+N(N)√
2NT

(9.47)

and the ADEV:

σ�y(NT) = 1

NT

√
E
[
(pk(N) − pk+N(N))2]

2
. (9.48)

From these expressions it can be seen that the ADEV over τ = NT is essen-
tially a measure of the variability of the N-period jitter over two consecutive N-cycle
observation periods, normalized to the observation interval.

9.3.4 Relation Between Allan Deviation and Phase Noise

In this section the relation between ADEV and phase noise will be derived by applying
the general method outlined in Section 9.1. Starting from Equation 9.47, �y can be
written as a function of the absolute jitter as:

�y(NT) = −(ak − 2ak+N + ak+2N)√
2NT

. (9.49)

The expression above can be reformulated in terms of a discrete time signal ak filtered
by a FIR filter with appropriate coefficients:

�y(NT) = −ak√
2NT

(1 − 2z−N + z−2N) = −ak√
2NT

(1 − z−N)2 (9.50)

where z−1 is the unity delay operator, which in this case represents a delay of one clock
period. Using the relation between absolute jitter and excess phase ak = −ϕk/ω0 (see
Equation 3.5) and basic theory of linear systems (see Appendix A.2.10), it is easy to
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derive the relation between the PSD of �y and the PSD of the excess phase, which is by
definition equal to the phase noise, as:

S�y(f ) = |1 − z−N |4
2ω2

0τ
2

L( f ) (9.51)

where NT has been replaced by the more commonly used τ . By replacing z−1 = e−j2π fT

in Equation 9.51, after some easy mathematical steps, finally:

S�y(f ) = 2 sin4(π f τ )

(π f0τ )2
L( f ) (9.52)

and the relationship between ADEV and phase noise can then be written as:

σ�y(τ ) = 2

π f0τ

√∫ +∞

0
sin4(π f τ )L(f ) df . (9.53)

From the previous equation it can be seen that different phase noise profiles lead
to different behaviors of the ADEV versus τ . Therefore, in metrology, the ADEV has
been used not only as a measure of the frequency stability of clock signals, but also
as tool for characterizing the behavior in the frequency domain of the excess phase
noise affecting the oscillator. Generic phase noise profiles can by represented by the
power law L(f ) = f α , where α is an integer coefficient equal to or smaller than zero.
Figure 9.9 gives an overview of the relation between the phase noise power law profiles
and the different behaviors of the ADEV versus τ . Each of the profiles has a different
“signature,” with the exception of white phase modulation and flicker phase modulation,
represented by α = 0 and α = −1, respectively, which lead to almost identical ADEV
profiles. For this reason, in the early 1980s, a variant of the ADEV, the Modified Allan
Deviation (MDEV), was defined, which can distinguish between these two sources of
noise. This will be the topic of the next section.

Figure 9.9 Relation between ADEV and phase noise power law.
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9.3.5 Modified Allan Deviation (MDEV) and Time Deviation (TDEV)

The difference between the ADEV and the MDEV is that the MDEV computation
involves an additional averaging of the yi.

With reference to Figure 9.10, in computing the MDEV, the observation interval τ

is subdivided into n intervals τ0. The yi are then calculated over a window of length τ ,
shifted by multiples of τ0. In this way, instead of having only one value of yi within
τ , n values are generated. These values are then used to calculate their first difference
averaging over all n values. The first difference is then normalized by

√
2 as in the

ADEV:

�yi := 1√
2n

n−1∑
i=0

(ȳi+n − ȳi). (9.54)

The MDEV is calculated as the standard deviation of �y and is often indicated in the
literature as mod σy(τ ).

From Equation 9.45, it is apparent that the MDEV is a measure of the variability
of the N-period jitter averaged over n sliding windows within the observation interval
τ = NT , and that a relation very similar to Equation 9.48 holds:

σ�y(NT) = 1

NT

√√√√√E

[[
1
n

∑n−1
i=0 (pk+iM(N) − pk+iM+N(N))

]2
]

2
(9.55)

where M = Nτ0/τ .
As can be seen from Equations 9.48 and 9.55, both ADEV and MDEV are quantities

carrying the information of the accuracy of the clocks in the time domain normalized
to the observation interval τ = NT . In the clock distribution for telecommunication
networks, the goal is not only stability in frequency, but also synchronicity of the several
clock signals distributed over different nodes of the network. For this reason another
quantity, based on MDEV, was defined. This quantity is called time deviation (TDEV),
and is simply defined as:

Figure 9.10 Computation of MDEV for the case n = 4.
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TDEV(τ ) = τ√
3

MDEV(τ ). (9.56)

By denormalizing MDEV with respect to τ , the TDEV is a direct measure of the timing
accuracy, rather than of the frequency accuracy.

9.4 An Overview of Flicker Noise

Phenomena which display a PSD of the form S( f ) ∝ 1/f β , with β ≥ 1 present us
with some challenges, the foremost important one being how to consider the divergent
integral of the PSD down to zero frequency. It is common knowledge that the integral
of the PSD over frequency gives the power of the signal, and for this class of signals the
integration seems to imply infinite power. This conclusion is obviously wrong, since no
finite system can deliver infinite power.

A particular case of this phenomenon is the case of flicker noise, where the PSD
assumes the form S( f ) ∝ 1/f . This kind of dependency of the PSD on the frequency has
been observed not only in the noise in electronic systems, but also in many other areas,
such as, among others, the average seasonal temperature, variation in economic data,
and the loudness distribution over frequency in a musical piece. The phenomenon of 1/f
noise is therefore very widespread, and by no means unique to the field of electronics.
Theories have been developed to explain the phenomenon in particular application cases,
but, to the author’s knowledge, there’s no generally accepted explanation of the basic
fundamental mechanism at its origin.

Before delving into more elaborated considerations, let’s face the problem of the
apparent infinite power of flicker noise processes from a practical perspective. Follow-
ing the consideration of Flinn [111], even assuming that the integral of the 1/f PSD
over frequency delivers the power (not an obvious conclusion, as we will see later), we
note that: ∫ f2

f1

1

f
df = log

(
f2
f1

)
(9.57)

so the amount of energy in a given range is only dependent on the ratio of the extreme
frequencies. This means that the energy content in any frequency decade, no mat-
ter where in the frequency spectrum, is the same as the energy content between, for
instance, 1Hz and 10Hz. Now, from a practical perspective, how many decades of
the frequency spectrum should we consider in the worst case? Taking the assumed
lifespan of the known universe (according to the Big-Bang theory, 14 billion years),
roughly 1017s, as the longest practical time, and the time it takes light to travel past
the classical electron radius, 10−23s, as the shortest time, we see that the number of
decades covered by these two extremes is about 40. So, even in the worst case, the
total energy content in a flicker noise phenomenon can be at most 40 times larger
than its content in the 1Hz to 10Hz range. As an example, the flicker noise of a n-
channel MOS device can be modeled as a voltage noise source at the gate with PSD
(see [112]):
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Svf ( f ) = K

C2
oxWLf

(9.58)

where, for a modern CMOS technology, K is a constant in the range of 10−26 C2/m2 and
Cox is of the order of 20 fF/um2. For small device dimensions W = 1um and L = 40nm,
the integrated flicker noise voltage over one decade is of the order of 25uV RMS. Even
considering the maximum practical frequency range of 40 decades, the total voltage
noise would sum up to 1mV RMS, definitely a relevant value for some applications, but
not at all threatening.

Despite this reassuring consideration, there have been continuous attempts in the
past to find an indication of a flattening out of the flicker noise spectrum for very
low frequencies. If this were the case, the integral of the PSD would be a finite
number, solving the issue of the infinite power. As of today, in almost all cases inves-
tigated, no evidence has been found of any change of shape of the spectrum for very
low frequencies. The authors in [113] investigated the 1/f noise in MOSFET down
to 10−6.3Hz, and the 1/f trend was still on going. The only exceptions to this rule
have been found in the resistance fluctuations of thin-films made of tin at the tem-
perature of the superconducting transition and in the voltage fluctuations across nerve
membranes.

Therefore, for all practical aspects, we have to accept that the 1/f noise extends far
below the frequency range that can be measured with reasonable accuracy.

One of the most popular theories about the origin of flicker noise in electronic devices
involves the fluctuation of current value due to the trapping and releasing of charges
with different time constants. This theory, first proposed by Schottky [114] and subse-
quently refined by Bernamont [115], can be summarized as follows. In a conducting
medium, charge packets are released at random instants distributed over time as Poisson
points with parameter λ (average points per unit of time). Each charge packet generates
a current which has an exponential decaying behavior of the form:

h(t) = h0e−αt. (9.59)

The total current, given by the superposition of the packets, fluctuates around the average
value equal to λh0/α. This process can be modeled as a impulse generator, triggered by
a Poisson process, followed by a linear filter with impulse response h(t), as shown in
Figure 9.11. It can be shown (see, e.g., [1]) that the PSD of the Poisson impulse process
z is given by:

Sz(ω) = 2πλ2δ(ω) + λ (9.60)

and, using linear filter theory, the PSD of the output current process can be expressed as:

Si(ω) = 2πλ2H2(0)δ(ω) + λ |H(ω)|2 (9.61)

where H(ω) is the Fourier transform of h(t). In this expression, the first term represent
the DC term, the average current value, while the second is the associated noise. In the
particular case of an exponential decay, as in Equation 9.59:
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Figure 9.11 Model of a flicker noise current generator based on the theory of charge trapping and
releasing.

H(ω) = h0

α + jω
(9.62)

so that the PSD of the noise current is:

S(ω) = λh2
0

α2 + ω2
(9.63)

showing a flat frequency behavior at low frequencies, and decaying as 1/f 2 for f >

α/(2π ). If one postulates the existence of many trapping sites in the conducting medium,
with time constants α uniformly distributed between two extremes α1 and α2, the
compound PSD is given by the linear superposition of the PSD of the single processes:

Sn(ω) = 1

α2 − α1

∫ α2

α1

λh2
0

α2 + ω2
dα = λh2

0

ω(α2 − α1)

[
arctan

(α2

ω

)
− arctan

(α1

ω

)]
(9.64)

where in this case λ is the compound impulse rate. This expression can be approxi-
mated as:

Sn(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λh2
0

α1α2
if ω � α1

πλh2
0

2ω(α1 − α2)
if α1 � ω � α2

λh2
0

ω2
if ω  α2.

(9.65)

It can be seen that for frequencies between α1/(2π ) and α2/(2π ) the PSD follows a
1/f profile. It has to be noted, though, that for this model to explain the 1/f behavior
below the lowest frequency currently measurable, one would require to postulate the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316981238.010
https://www.cambridge.org/core
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existence of trapping sites with extremely long relaxation time 1/α, longer than what
can be measured with modern techniques and, potentially, infinitely long. This merely
exchanges one infinity with another, and therefore does not seem to be a satisfactory
solution to the issue.

In [116] Mandelbrot made the key observation that a process whose PSD has a 1/f β

behavior with β ≥ 1 cannot be stationary. Indeed, we know that the 1/f 2 spectrum
is typical of random walks, or Brownian motion, where the variance of the process
increases linearly with time, and a time-dependent variance is an obvious sign of a non-
stationary process. Measurements made on the variance of signal affected by flicker
noise showed that the variance increases logarithmically with time (see, e.g., [117]), so
that also flicker noise should be considered to be non-stationary. Since the process is not
stationary, the Wiener–Khinchin theorem, stating that the PSD is the Fourier transform
of the autocorrelation, does not hold. The consequence is that the integral of the PSD
cannot be assumed to represent the power of the signal, which is, in the first place, given
by the value of the autocorrelation for a time delay equal to zero.

Nevertheless, common practice in the industry is to calculate the power of the flicker
noise by integrating the corresponding PSD, as if the process were stationary.

Another aspect often encountered is that repeated experimental measuring of the PSD
of a flicker noise process, apparently under identical conditions, reveals that the slope of
the PSD is pretty constant, but the magnitude can often change by orders of magnitude
between one measurement and the next.

In [118] Keshner made an attempt to explain both aspects, by deriving an expression
for the autocorrelation of a specific flicker noise process. The system investigated is an
infinite-length distributed RC line, driven by a white noise current source. It is known
that the characteristic impedance Z0 of a generic transmission line is given by:

Z0 =
√

R + jωL

G + jωC
(9.66)

where R, L, G, and C are the resistance, inductance, conductance loss, and capacitance
per unit length. If we assume L = 0 and G = 0, then the characteristic impedance
assumes the form:

Z0 ∝ 1√
j f

. (9.67)

By applying traditional linear system theory, if this line is driven by a white noise current
source with PSD Si( f ), the output voltage PSD Sv( f ) will be:

Sv( f ) = Si( f ) · |Z0|2 ∝ 1

f
(9.68)

so that the PSD of the voltage at the line input follows perfectly a 1/f profile down
to zero frequency. Instead of following this approach, in [118] the author proceeds to
calculate the autocorrelation function of the voltage v(t) directly in the time domain,
under the assumption that the current source is a impulse shot noise process with zero
mean. The response of the line to a current impulse at time t0 is simply the inverse
Fourier transform of Equation 9.67, which is:
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v(t) ∝ 1√
t − t0

(9.69)

for t > t0 and zero otherwise. Assuming that the time t0 is a uniformly distributed
random variable in the interval [0, T], v(t) becomes a random process, and its autocorre-
lation function, defined as Rv(t1, t2) := E [v(t1)v(t2)] can be calculated as:

Rv(t1, t2) =
∫ +∞

−∞
1√

t1 − t0

1√
t2 − t0

· (PDF of t0)dt0

∝
∫ t1

0

1√
t1 − t0

1√
t2 − t0

dt0 (9.70)

where it has been assumed that t1 < t2 < T . This integral can be evaluated with the help
of integral tables (see, e.g., [119]) and is equal to:

log

(√
t2 + √

t1√
t2 − √

t1

)
. (9.71)

If the line has been connected to the current source long before the voltage at its ter-
minals is measured, then 0 � t1 < t2 and t2/t1 ≈ 1 so that finally the autocorrelation
function is:

Rv(t1, t2) ∝ log

(
4t2

t2 − t1

)
= [

log(4t2) − log(|τ |)] (9.72)

where τ := t2 − t1 according to the widespread usage. Based on this result, the con-
clusion of the author in [118] is that the autocorrelation function of this process is
“almost” stationary. The nonstationary behavior is entirely contained in the added term
that depends only on t2. By taking the Fourier transform of 9.72 with respect to τ , the
PSD includes a 1/| f | term coming from the log(|τ |) plus an impulse at frequency zero,
whose amplitude depends on the logarithm of the time elapsed since the system is active
t2. The author argues that a careful observer would be able to obtain repetitive measure-
ments of the PSD of the system, by allowing in each measurement attempt a roughly
constant, sufficiently long time to pass from the moment the system is activated to the
moment the measurement is taken. According to the author, the almost stationary auto-
correlation function of the form in Equation 9.72 would also explain some experimental
observations where the value of the slope of the PSD varies slightly but the value of the
magnitude sometimes varies enormously.

For the interested reader, [120] explains some of the concepts outlined in this section,
presenting them in a fashion more familiar to electrical engineers.

Bringing this conversation back to the framework of jitter and phase noise, there is one
key observation to be made: there is no contradiction between a phase noise spectrum
with infinite power and a voltage or current spectrum with finite power, and the former
is the only one relevant when jitter or phase noise is considered. The concept of a phase
noise with infinite power should not horrify the reader. There is no energy in the phase
of a signal; all the energy is contained in the amplitude.2 Infinite phase noise power just

2 Recall also another similar apparent paradox: the phase velocity of an electromagnetic wave can be larger
than the speed of light. Another similar consideration apply to the point of breaking of a sea wave on the
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means that, if one waits long enough, the phase of a real signal will drift further and
further from the ideal phase.

9.5 Lorentian Spectrum of Oscillator Phase Noise

In Section 4.3, it was shown how the phase noise of a free-running oscillator follows a
1/f 2 profile. Similar to the subject of the previous section, this behavior poses the fun-
damental problem that the PSD diverges to infinity for very low values of the frequency
offset f . The methods used in that section, however, included some approximations,
which are acceptable for large frequency offsets but do not hold for very small ones. In
this section, a more precise analysis shows that the spectrum of a free-running oscillator
does indeed have a Lorentian profile: it is flat for frequencies below a given corner fre-
quency and rolls off as 1/f 2 above it. The derivation follows the original work of Demir
[6], including a few heuristic arguments in order to keep it shorter. The reader is referred
to the original paper for an exact mathematical treatise. The interested reader can also
refer to [121] for a treatment using concepts probably more familiar to designers.

Let’s consider a signal x(t), periodic in 2π/ω0. The signal can be expanded in Fourier
series as:

x(t) =
+∞∑

n=−∞
Xnejnω0t. (9.73)

Assume that the signal is subject to excess phase noise, but not to amplitude noise. This
can be modeled by adding a time-dependent noise component α(t) to the ideal time axis
t, so that the noisy signal can be written as x(t+α(t)). As an example, a sinusoidal signal
with added excess phase φ(t) can be written as sin(ω0t+φ(t)) = sin(ω0(t+φ(t)/ω0)), so
that in this case α(t) = φ(t)/ω0. The autocorrelation of the noisy signal is by definition:

Rx(t, τ ) := E
[
x (t + α(t)) · x∗ (t + τ + α(t + τ ))

]
(9.74)

and is in general, not stationary, since it depends on time t. By replacing Equation 9.73
in Equation 9.74, the autocorrelation assumes the form:

Rx(t, τ ) =
∑
n,m

XnX∗
mej(n−m)ω0te−jmω0τ E

[
ejω0[nα(t)−mα(t+τ )]

]
. (9.75)

To evaluate this result further, it is necessary to find expressions for the expectation term
E
[
ejω0[nα(t)−mα(t+τ )]

]
. The key observation is that the excess phase of a free-running

oscillator is produced by the steady accumulation of uncorrelated circuit noise over
cycles. Thus α(t) has the statistical characteristic of a Gaussian random walk process;
or, more precisely a Wiener process if the added noise is white. Having said that, it is
straightforward to understand that, for the case n �= m, the two processes nα(t) and
mα(t + τ ) diverge from each other. Their difference grows indefinitely over time, and

shore. If the angle between the wave and the line of the shore (assumed both to be straight) is extremely
small, the point of breaking can travel along the shore very fast, even faster than light (at least in a thought
experiment). But again, there is no contradiction, since the point of breaking does not transport any energy.
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applied to the argument of a sinus or cosinus functions (as in the complex exponential
under consideration) results in a number with average, i.e., expected value, equal to
zero. This heuristic derivation can be proven mathematically as in [6]. For n = m
the expectation term E

[
ejω0[nα(t)−mα(t+τ )]

]
can be evaluated by considering the random

process z(τ ):

z(τ ) := n [α(t) − α(t + τ )] . (9.76)

This process is obtained by taking the difference of the process α(t) at two time instants
separated by τ . Since α(t) is a random walk process, it can be seen that α(t) − α(t + τ )
is non stationary Gaussian process with zero mean and variance linearly increasing with
time as cτ [1]. Thus z(τ ) is a zero-mean Gaussian random variable with variance equal to
n2cτ . By using Equation 9.76 the expectation term under consideration can be written
as E

[
ejω0z(τ )

]
. This turns out to be the characteristic function of a Gaussian random

variable evaluated at ω0, and it can be proved to be (see, e.g., [1]):

E
[
ejω0z(τ )

]
= e− 1

2 ω2
0n2c|τ |. (9.77)

Summarizing the previous considerations, the time average over t of E
[
ejω0[nα(t)−mα(t+τ )]

]
is equal to: {

0 if n �= m

e− 1
2 ω2

0n2c|τ | if n = m.
(9.78)

By replacing the previous expression into Equation 9.75, the autocorrelation averaged
over time results in:

Rx(τ ) =
∑

n

|Xn|2e−jnω0τ e− 1
2 ω2

0n2c|τ | (9.79)

and, by taking the Fourier transform of the autocorrelation, the spectrum of the signal
x(t + α(t)) can be expressed as:

Sx(f ) =
∑

n

|Xn|2 ω2
0n2c

1
4ω4

0n4c2 + (ω + nω0)2
. (9.80)

It can be seen that for frequencies far away from the harmonics (ω  nω0+ω2
0n2c/2)

the spectrum as a 1/f 2 profile, while it flattens out at offset frequencies below ω2
0n2c/2.

It is also interesting to note how the integral in Equation 9.80 around each harmonic is
equal to the power of the harmonic itself |Xn|2. This means that the excess phase noise
does not change the energy of the signal; it just spreads its energy over the frequency
spectrum, blurring the very sharp frequency impulse of an ideal noiseless oscillator.
Also observe how the expression above is in agreement with Equation 3.20, stating the
relation between the phase noise of the fundamental and that of the harmonics, obtained
with other considerations.
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10 Numerical Methods

The most common approach to the investigation of the behavior of electronic systems
in the presence of jitter is to use linear modeling in the frequency domain and phase
noise profiles. However, especially in the presence of complex or non-linear systems,
it is often beneficial to perform transient simulations and evaluate the results in the
time domain. To use this approach, it is necessary to provide numerical methods to,
first, generate clock signals in the time domain that have given phase noise profiles and,
second, analyze the results of transient simulations and possibly convert them into phase
noise plots. The goal of this chapter is to provide some of these techniques.

Most of the chapter is dedicated to algorithms and numerical recipes to generate jitter
samples with several different phase noise profiles, and to compute jitter and phase noise
given a vector of time instants, typically obtained from transient simulations. Following
that, basic algorithms to perform tail fitting are presented. All algorithms are imple-
mented and demonstrated using Matlab and are coded such that they can be easily ported
to any other common programming language. The code is included in Appendix B.

10.1 Numeric Generation of Jitter with Given Phase Noise Profiles

The problem addressed in this section is how to generate a sequence of numbers tk
representing the instants of the edge transitions of a clock having nominal frequency f0
and a desired phase noise profile L(f ).

As a starting point, the sequence tk can be decomposed into the sum tk = tid,k + ak

of a vector describing an ideal clock, tid,k = k/f0 with k ≥ 0, and a vector ak describing
the jitter process. Note that the ak corresponds to the absolute jitter, according to the
definition given in Section 2.1.1. The problem translates then into the generation of the
sequence ak showing a given phase noise profile L(f ).

Before proceeding it is important to recall that the PSD of the sequence ak is inde-
pendent from its probability density function (PDF). To make it clearer, imagine one
realization of the process ak being plotted on a graph, where the x-axis is the index k and
the y-axis is the value (amplitude) of ak. The PSD describes the behavior of the sequence
in the frequency domain and is thus connected to how the samples ak develop along the
x-axis. The PDF, on the other hand, is a histogram of the amplitude of the process and
thus a description of how the samples are distributed along the y-axis. In principle, a
white process (flat PSD) can have different PDF (Gaussian, uniform, triangular, etc.)
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and, conversely, a process with a certain PDF can assume several different PSD shapes,
depending on its behavior over time. Although Gaussian (Gaussian PDF) white (flat
PSD) processes are very common, a Gaussian process is not necessarily white, and a
white process is not necessarily Gaussian.

In the following sections, we will make use of the relationship between the PSD of
jitter Sa and the phase noise L(f ), derived in Section 3.1.2 and repeated here again for
convenience:

Sa(f ) = L(f )

ω2
0

. (10.1)

10.1.1 Generation of Jitter Samples with Flat Phase Noise Profile

Assume the desired L(f ) is flat over a frequency range and equal to L0 as shown in
Figure 3.10. It follows from Equation 10.1 that the sequence ak must also have a flat
PSD. It is thus natural to use as a starting point a sequence ak obtained from a Gaussian
pseudo-random number generator with mean zero and variance σ 2

a . The question is now
how to choose σa so that L(f ) = L0. Since ak is a discrete time white noise process
defined on time instants that are multiples of 1/f0, its variance is related to the PSD by:

Sa(f ) = σ 2
a

f0
. (10.2)

By equating this expression to Equation 10.1, we obtain:

σa = 1

2π

√
L0

f0
. (10.3)

For an example of Matlab code, see Section B.1.1.

10.1.2 Generation of Jitter Samples with Low-Pass, High-Pass, or Band-Pass Phase Noise
Profiles

In most practical situations it is necessary to generate jitter samples with specific pro-
files, such as high-pass, band-pass, or low-pass. In the case of a simple PLL spectrum,
such as the one shown in Figure 3.12, a low-pass profile is needed. These profiles can
be generated quite easily by taking the jitter samples for a flat profile (as described
in Section 10.1.1) and then filtering them using a digital filtering function, which is
available in most mathematical packages, to shape the jitter samples accordingly. If the
digital filter implements the transfer function H(f ), then the resulting phase noise will
be L(f ) = |H(f )|2L0.

For an example of Matlab code, see Section B.1.2.

10.1.3 Generation of Jitter Samples with 1/f 2 Phase Noise Profile

Free-running oscillators show phase noise profiles which have a 1/f 2 or 1/f 3 character-
istic close to the carrier. In this section we will address the generation of 1/f 2 profiles
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10.1 Numeric Generation of Jitter with Given Phase Noise Profiles 209

such as those shown in Figure 3.11. Since in these cases there is no flat region, the
approach of Section 10.1.2 cannot be used directly. However, from basic linear system
theory, it is known that a 1/f 2 spectrum can be obtained by passing a flat spectrum
through an ideal integrator. Exploiting this idea, first a Gaussian sequence of jitter sam-
ples lk with variance σ 2

l and flat spectrum is generated. This sequence is then passed
through an accumulator to generate the sequence a, where ak = ak−1 + lk. The main
question is how to choose the value of σl so that the profile shown in Figure 3.11 is
obtained.

From the basics of random process theory, we know that the PSD of the sequence l is
Sl(f ) = σ 2

l /f0, and from basic linear theory (see also Section 9.1):

Sa(f ) = 1∣∣1 − e−j2π f /f0
∣∣2 Sl(f ). (10.4)

Using the fact that the region of interest is where f � f0, and that L(f ) = Sa(f )ω2
o, the

resulting phase noise profile can be expressed as:

L(f ) =
(

f0
2π f

)2 σ 2
l

f0
ω2

0. (10.5)

By equating this expression to the desired phase noise profile L(f ) = L1f 2
1 /f 2, as shown

in Figure 3.11, and solving for σl, finally:

σl = f1
f0

√
L1

f0
. (10.6)

For an example of Matlab code, see Section B.1.3.

10.1.4 Generation of Jitter Samples with 1/f and 1/f 3 Phase Noise Profiles

Spectral densities with a 1/f profile are typical of flicker noise processes. In this section,
we will first explain a method to generate a noise profile of the form L1f1/f . In a second
step, by applying a further integration step, the 1/f PSD will be converted into a 1/f 3

PSD.
In order to generate the 1/f profile we will use the following procedure. A random

sequence lk with a flat PSD and a variance σl will be passed through a bank of first-order
low-pass filters, whose outputs will be summed to give the sequence ak. It is natural to
think that if the DC gains and the corner frequencies of the low-pass filters are scaled
such that a reduction of the gain by a factor α is accompanied by an increase of the
corner frequency by a factor α2, the transfer function of the complete bank will resemble
a 1/f profile (see Figure 10.1). Indeed, it is known (see [122]) that, in order to obtain
a pretty accurate approximation of a 1/f profile, it is sufficient to implement one single
low-pass filter per decade of frequency, meaning that a factor α = √

10 is enough. This
representation of 1/f noise was first introduced by Bernamont [115] and is based on the
most widespread underlying principle of various models describing 1/f noise generation
in several physical phenomena. A more detailed description of this approach applied to
noise in oscillators can be found in [123].
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Figure 10.1 Composition of first-order low-pass filters to obtain a 1/f noise profile.

With reference to Figure 10.1, if the flicker noise profile is to be generated over a
frequency range from fmin to fmax, the corner frequencies of the bank of filters should
span at least the same interval. For simplicity, fmax is chosen to be an integer number
N of decades away from fmin (fmax = 10Nfmin). The transfer function Hn(f ) of the n-th
bank can be expressed as:

Hn(f ) = 10−n/2

1 + j f
10nfmin

. (10.7)

The PSD Sa(f ) of the output process ak can be expressed as:

Sa(f ) =
∣∣∣∣∣
n=N∑
n=0

Hn(f )

∣∣∣∣∣
2

Sl(f ) (10.8)

where Sl(f ) = σ 2
l /f0 is the PSD of the input process lk.

In order to simplify this expression, consider the value of
∑

Hn(f ) for frequencies
in the proximity of the corner frequency of a given n0-th bank, 10n0 fmin. Around this
frequency, the major contributions to

∑
Hn(f ) come from the n0-th bank itself and from

the two adjacent banks, so that:∣∣∣∣∣
n=N∑
n=0

Hn(10n0 fmin)

∣∣∣∣∣
2

≈ ∣∣Hn0−1(10n0 fmin) + Hn0 (10n0 fmin) +Hn0+1(10n0 fmin)
∣∣2 . (10.9)

Replacing Equation 10.7 in the previous expression:∣∣∣∣∣
n=N∑
n=0

Hn(10n0 fmin)

∣∣∣∣∣
2

≈ 1

10n0

∣∣∣∣∣
√

10

1 + j10
+ 1

1 + j
+

√
10

10 + j

∣∣∣∣∣
2

= γ

10n0
(10.10)

with γ = 1.426. This means that
∣∣∑Hn(f )

∣∣2 is taking the value γ /10n0 at 10n0 fmin,
and since the assumption is that it shows a 1/f profile, the following expression can be
derived: ∣∣∣∣∣

n=N∑
n=0

Hn(f )

∣∣∣∣∣
2

= γ
fmin

f
. (10.11)
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Replacing the expression above in Equation 10.8, and considering the general rela-
tionship between the PSD of jitter and phase noise (Equation 10.1), the phase noise
spectrum of the resulting jitter process can be finally expressed as:

L(f ) = 4π2f0σ 2
l γ fmin

f
. (10.12)

It can be seen that, in order to obtain the desired L(f ) = L1f1/f , the variance of the
input noise process lk has to be selected to be equal to:

σ 2
l = L1f1

4π2γ fminf0
. (10.13)

For an example of Matlab code, see Section B.1.4.
In order to obtain a 1/f 3 profile of the form L(f ) = L1f 3

1 /f 3, it is sufficient to apply a
further integration step to the sequence obtained above. As described in Section 10.1.3,
the resulting PSD will show an additional factor [f0/(2π f )]2, and the final phase noise
spectrum will be:

L(f ) = σ 2
l γ fminf 3

0

f 3
. (10.14)

In order to obtain the desired profile, the variance of the input process lk must be selected
to be equal to:

σ 2
l = L1f 3

1

γ fminf 3
0

. (10.15)

For an example of Matlab code, see Section B.1.5.

10.1.5 Generation of Jitter Samples with More Complex Phase Noise Profiles

The basic profiles described in the previous sections can be easily combined to form
more complex phase noise profiles. Indeed, if independent jitter processes are generated
using the approaches above starting from uncorrelated random number sources and then
summed together, the PSD of the sum will be equal to the sum of the PSD of the single
processes. In this way, many different complex PSD shapes can be easily implemented.

As an example, the code in Section B.1.6 describes the generation of a phase noise
profile featuring a 1/f 3 region, a 1/f 2 region, a PLL-like spectrum and, finally, a flat
noise floor.

The resulting phase noise profile, obtained using the techniques explained in Section
10.2, is shown in Figure 10.2.

10.2 Computation of Jitter from Vector of Time Instants

The problem addressed here is the extraction of jitter information starting from an array
of numbers, representing the edge instants of a jittered clock, which might be the result
of a simulation or come from measurements. Assume an array tk with k = 0 . . . n − 1
representing the time instants of the rising edges of a jittered clock signal; then the
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Figure 10.2 Example of a complex phase noise profile.

absolute jitter is defined as the time displacement of the k-th rising edge tk with respect to
the edge (kT) of an ideal clock having the same period T and a possible timing offset tOS:

ak := tk − kT − tOS. (10.16)

The problem now translates into finding appropriate expressions for T and tOS. Since
we have two unknowns, we need two equations to arrive at a unique solution. The two
criteria we will use to write the equations are to require that, first, the absolute jitter
has zero mean, and, second, the absolute jitter has the least variance. The first criterion
translates into the following condition:

n−1∑
k=0

ak =
n−1∑
k=0

(tk − kT − tOS) = 0 (10.17)

which gives the following expression for tOS as a function of T:

tOS = 1

n

n−1∑
k=0

(tk − kT). (10.18)

We now need to find T . The second criterion is equivalent to minimizing the following
expression:

n−1∑
k=0

a2
k =

n−1∑
k=0

(tk − kT − tOS)2. (10.19)

Note that, in writing this expression, we have already assumed that the average jitter is
zero, otherwise we would have had to include the jitter average in the computation of
the variance. Using Equation 10.18, this condition dictated by the second criterion can
be expressed as:
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∂

∂T

n−1∑
k=0

a2
k = 2

n−1∑
k=0

ak
∂ak

∂T
= 0. (10.20)

From Equations 10.16 and 10.18, we have ∂ak/∂T = (n − 1)/2 − k. Since we assumed
that ak has zero mean, we can rewrite the previous equation as:

n−1∑
k=0

kak = 0. (10.21)

Using Equations 10.16 and 10.18, after some manipulation, the following expression for
T is obtained:

T = 12

n(n2 − 1)

n−1∑
k=0

(
k − n − 1

2

)
tk. (10.22)

On a first guess, it may appear that T should be equal to the average period given by
the sequence tk, which is (tn−1 − t0)/(n − 1). The reader can easily confirm that this is
indeed true for n = 2 and n = 3. For n > 3, however, Equation 10.22 shows that the
correct T depends on the specific tk distribution between t0 and tn−1, and may be larger
or smaller than the average period. We demonstrate this with an example.

EXAMPLE 18 Assume t0 = 0 and t4 = 4ns. The average period is therefore 1ns
irrespective of the values of t1, t2, and t3. We now use Equation 10.22 to calculate T for
the following three cases: (a) t1 = 1ns, t2 = 2ns, t3 = 3ns, (b) t1 = 1.8ns, t2 = 2ns,
t3 = 2.2ns, (c) t1 = 0.5ns, t2 = 2ns, t3 = 3.5ns. The T for cases (a), (b), and (c) are
1ns, 0.84ns, and 1.1ns, respectively.

The extraction of the ideal clock from the jittered data can also be approached in a
different way. The time of the transitions of the clock can be plotted on a graph, as
depicted in Figure 10.3, in which the value on the x-axis is the index k of the observed
rising edge, and the y-axis is the time value at which the transition occurs. If the clock
were ideal, the tk values would all lie on a straight line with a slope equal to the period.
In reality, because of jitter, the values deviate in a random manner. The goal is to find a

Figure 10.3 Time of the transitions vs. transition index.
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straight line with the minimum mean square distance from the observed transition val-
ues. In statistics, this line is called the best fit line, regression line, or least squares line.
In general, the least squares line associated with n points (xk, yk), with k = 0 . . . n − 1,
has the form y = β1x + β0; see for instance [124], where:

β1 = n
∑

xkyk −∑
xk
∑

yk

n
∑

x2
k − (

∑
xk)2

(10.23)

β0 =
∑

yk − β1
∑

xk

n
. (10.24)

Setting β1 = T , β0 = tOS, yk = tk, and xk = k, the formulas for the slope and intercept
of the regression line are identical to Equations 10.18 and 10.22. The two approaches
are identical.

10.3 Computation of Phase Noise Plot from Jitter Samples

Once the jitter has been extracted from the data, the computation of the phase noise is
fairly straightforward. Applying Equation 3.5, the jitter samples are first converted into
excess phase samples and then a PSD operation is applied. Most mathematical packages
have built-in functions to compute the PSD of arrays of data. Alternatively, the PSD can
be calculated via FFT using standard approaches, as can be found, for instance, in [72].

10.4 Algorithms for Tail Fitting

In this section, the topic of tail fitting, already introduced in Section 2.2.8, is analyzed
further, focusing on the basic mathematical methods involved. Specifically, we introduce
and elaborate the concepts of Q-scale and normalized Q-scale transforms, which have
proven to be very useful and are at the basis of the algorithms for tail fitting currently
implemented in some specialized measurement equipment.

It has been recognized that the tails of the distribution resulting from the convolution
of a Gaussian PDF with a bounded PDF, have a linear behavior if a particular transfor-
mation is applied. In this approach, the problem of Gaussian fitting can be reduced to a
standard problem of linear fitting, and the mean and sigma values of the best Gaussian fit
can be extracted very easily from the parameters of the straight line fitting the linearized
distribution.

As starting point let’s consider the equation describing the PDF of a Gaussian
distribution:

n(x) = 1

σ
√

2π
exp

[
− (x − μ)2

2σ 2

]
. (10.25)

Note that in this section we will use the dimensionless variable x to denote the x-axis.
While in the context of this book x is meant to be jitter, the methodology explained
here is general and can be applied to many other fields. From the equation above, the
corresponding Cumulative Distribution Function (CDF) can be computed as:
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N(x) =
∫ x

−∞
n(t) dt = 1

σ
√

2π

∫ x

−∞
exp

[
− (t − μ)2

2σ 2

]
dt. (10.26)

With a simple change of variable v = (t − μ)/(
√

2σ ) the above expression can be
rewritten as:

N(x) = 1√
π

∫ x−μ

σ
√

2

−∞
exp(−v2) dv (10.27)

and finally, using the complementary error function erfc already introduced in Sec-
tion 9.2, Equation 9.16:

N(x) = 1

2
erfc

(
−x − μ

σ
√

2

)
. (10.28)

If we invert the formula above the following fundamental relationship is found:

− √
2 erfc−1 [2N(x)] = x − μ

σ
. (10.29)

At this point, let’s define the Q-scale transform of a particular CDF �(x) as:

Q(x) := −√
2 erfc−1 [2�(x)] . (10.30)

From Equation 10.29 it is clear that if the Q-scale transform is applied to the CDF of a
Gaussian distribution, the result is a straight line, with slope 1/σ and intercepting the
x-axis at μ (see Figure 10.4 for an example).

Supported by this insight, tail fitting can be performed by following some easy steps.
First the CDF of the left and right tails are calculated based on the PDF or histogram of
the measured data. In this sense note that the left CDF is the usual CDF (integral of the
PDF starting from −∞ up to a given x-axis value), while the right CDF is defined as

Figure 10.4 Linearization of the CDF of a Gaussian distribution, by use of the Q-scale
transformation. Top: PDF and CDF of a Gaussian distribution with μ = 1, σ = 0.2 . Bottom:
CDF plot obtained by applying the Q-scale transformation 10.30.
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the integral of the PDF starting from a given x-axis value to +∞. In a second step, the
Q-scale transform in Equation 10.30 is applied to the left and right CDF. Third, a best
linear fit (e.g., by using the LMS criteria) is applied to the linearized CDF and, finally,
the values of the mean and sigma for the left and right tails are extracted from the fitted
lines, based on Equation 10.29.

Figures 10.5 and 10.6 show the result of the procedure outlined above, applied to two
cases. The first case is obtained by the convolution of a Gaussian curve having mean
μ = 0 and σ = 0.4 with a dual-Dirac distribution where the first Dirac pulse is located
at x = 1 with weight 0.25, while the second is at x = 2 with weight 0.75. The second
case is the convolution of the same Gaussian curve with a uniform distribution between
x = 1 and x = 3.

Note how the Q-scale tail fitting method, while still giving a good fit of the tails,
generally underestimates the DJ and, to compensate for that, overestimates the variance
of the Gaussian curves, and thus the RJ. This might give overly pessimistic results for
TJ for very low probabilities (refer to Section 2.2.6 for a review of RJ, DJ, and TJ).

The reason for this behavior can be readily understood. The Q-scale method assumes
that the best fit Gaussian curves are of the form of Equation 10.26, thus having an area
equal to one. But this cannot hold in the presence of DJ, especially when the DJ com-
ponent is significant. Indeed, in such cases, part of the area below the PDF must be
attributed to DJ, so that the area accounted for by the Gaussian distributions (or, in other
terms, by the RJ) must be less than 1. This is evident by looking at the top plot of Figures
10.5 and 10.6: the amplitude of the fitted Gaussian is too large to be realistic.

Recognizing these limitations, a new method was introduced, involving the estimation
of the amplitude A of the Gaussian distribution. The basic theory can be traced back to
the work of Popovici [125], addressing the problem of the extrapolation of bit error

Figure 10.5 Tail fitting with Q-scale applied to a dual-Dirac DJ distribution. Top: PDF of the
measured jitter (solid) and fitted Gaussian curves (dashed). Bottom: CDF of the measured jitter
(solid) and fitted Gaussian curves (dashed) plotted in Q-scale.
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Figure 10.6 Tail fitting with Q-scale applied to a uniform DJ distribution. Top: PDF of the
measured jitter (solid) and fitted Gaussian curves (dashed). Bottom: CDF of the measured jitter
(solid) and fitted Gaussian curves (dashed) plotted in Q-scale.

rates in digital links in the presence of amplitude noise, and has been further developed
recently (see, e.g., [126], [127]) for application in specialized test equipment.

The starting point is to recognize that the Gaussian curve to be fitted is equal to a
Gaussian PDF multiplied by an amplitude factor A less than or equal to 1:

nA(x) = A · n(x) = A

σ
√

2π
exp

[
− (x − μ)2

2σ 2

]
. (10.31)

As a result, the corresponding CDF is NA(x) = A · N(x), where N(x) is the CDF of a
Gaussian distribution. It can be easily seen that application of the Q-scale transform to
NA(x)/A will linearize the tail of the PDF under test and allow the extraction of the mean
and variance:

− √
2 erfc−1

[
2NA(x)

A

]
= x − μ

σ
. (10.32)

The fact that CDF under test is divided by the amplitude A before applying the Q-scale
transform gives this method the name of normalized Q-scale transform.

In the context of tail fitting, the amplitude A is one of the unknown parameters to be
identified. The approach described by [125] is to divide the CDF under test �(x) by a
variable factor k and then apply the Q-scale transform:

− √
2 erfc−1

[
2�(x)

k

]
. (10.33)

It can be readily understood that the Q-scale transformation will result in a straight
line only if k = A. Figure 10.7 illustrates this concept with an example obtained with
a Gaussian CDF of amplitude A = 0.3. The top graph shows PDF and CDF of the
distribution, while the bottom graph shows the result of the application of the normalized
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Figure 10.7 Linearization of the CDF of a Gaussian distribution, by use of the normalized Q-scale
transformation. Top: PDF and CDF of a Gaussian distribution with μ = 1, σ = 0.2, and A = 0.3.
Bottom: CDF plot obtained by applying the normalized Q-scale transformation 10.33.

Figure 10.8 Tail fitting with normalized Q-scale applied to a dual-Dirac DJ distribution. Top: PDF
of the measured jitter (solid) and fitted Gaussian curves (dashed). Bottom: CDF of the measured
jitter (solid) and fitted Gaussian curves (dashed) plotted in normalized Q-scale.

Q-scale transform with different factors k. Only for k = 0.3 is the result a perfect straight
line, and the mean and standard deviation of the Gaussian can be extracted from the
slope and the intercept with the x-axis.

Using this result, tail fitting including estimation of amplitude A can be performed
in the following steps. As before, first the CDF of the left and right tails are calculated
based on the PDF or histogram of the measured data. Second, the left and right CDF
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Figure 10.9 Tail fitting with normalized Q-scale applied to a uniform DJ distribution. Top: PDF of
the measured jitter (solid) and fitted Gaussian curves (dashed). Bottom: CDF of the measured
jitter (solid) and fitted Gaussian curves (dashed) plotted in normalized Q-scale.

are divided by a variable scaling factor k and the Q-scale transform of Equation 10.30
is applied. The result of the Q-scale transform is tested by varying the factor k, and the
amplitude A is assumed to be equal to the k factor giving the best linear result. Third, a
best linear fit is applied to the linearized CDFs and, finally, the values of the mean and
sigma for the left and right tails are extracted from the fitted lines.

Figures 10.8 and 10.9 show the result of the procedure outlined above, applied to two
cases of dual-Dirac and uniform DJ already presented before. It can be noted how the
normalized Q-scale approach delivers a more realistic fitting of the tail of the distribution
and more accurate results for the DJ as well as for the RJ components.

Section B.3 reports Matlab functions implementing the Q-scale and the normalized
Q-scale methods.

Note that one of the biggest challenges is the selection of the range of the distribution
over which to apply the tail fitting algorithm. Ideally we would like to take the most
extreme parts of the PDF, so that the contamination of RJ due to DJ is at a minimum,
but those parts are also the ones more subject to random variations and to inaccuracy due
to the limited number of samples available. Following [128], the algorithms presented
in Section B.3 evaluate the linearity of the transformed CDF over a variable x range, and
finally the one giving the least error when fitted with a straight line is chosen. This is
meant to be just one possible example of how to tackle this problem, and many others
might be equivalent or superior.
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Appendix A Review of Random Variables
and Processes

This appendix reviews in a very compact form the basic concepts of random variables
and random processes for the purpose of understanding jitter and phase noise. The goal
is not to provide a thorough treatment, but rather to help the reader in recalling the defini-
tions and the meanings of some of the most useful and common concepts. It is assumed
that the reader is familiar with the basic concepts of probability. Although not strictly
necessary, it is beneficial that the reader has been previously exposed to the theory of
random variables and random processes, as can be found in a typical graduate univer-
sity class. For further reading, or an in-depth analysis of the concepts, such specialized
textbooks as [1], [13], [129], and [105] can be consulted.

A.1 Random Variables

A.1.1 Definition

Given an experiment with many possible outcomes, a random variable X is defined as
a function that assigns a real number to each outcome of this experiment. In order to
be called a random variable, the function must satisfy the following condition: the set
of outcomes for which X is smaller than or equal to a given real number a, has a given,
well-defined probability for any a.

As an example, let’s take as an experiment the toss of a dice. The possible outcomes
are each of the six faces of the dice. We can associate with each face the integer numbers
1 to 6, even if there are no numbers (or dots) on the faces of the dice (assuming that we
can distinguish each of the faces of the dice somehow). This rule of association can be
formalized as a function X which can assume the values 1, 2, 3, 4, 5, 6. Given any real
number a, the probability that X < a is always well defined. For instance, the probability
that X ≤ 3.4567 is equal to the probability that the dice shows one of the faces associated
with the numbers 1 to 3. The probability that X ≤ −1 is obviously zero, since there is
no possible outcome associated to numbers below 1. Since the condition stated in the
above paragraph is satisfied, X can be called a random variable.

Note that the name “random variable” is, strictly speaking, a misnomer, since it refers
to a function, not to a variable. However, in common practice the mechanism of asso-
ciating a number with the outcomes of the experiment is often not defined explicitly,
so that the property of being “random” is improperly associated with the value returned
by the function X (hence the name “random variable”), rather than with the underlying
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experimental outcome. In many cases taken from engineering or physics, the result of
the experiment is in itself a number, and the association of the result with a real num-
ber is not necessary. For instance, the measurement of the voltage noise of an electronic
device at a given time is already in the form of a real number. This is why, very often, we
identify with the term “random variable” the numerical result of the experiment itself.

A random variable is called discrete if it assumes values only within a set of distinct
real numbers, while it is called continuous if it can assume any value in a continuous
interval of the real axis.

A.1.2 Distribution and Density Functions

The cumulative distribution function (CDF) FX(a) of a random variable X is defined as
the probability that X ≤ a:

FX(a) := P [X ≤ a] . (A.1)

It is easy to understand that the CDF of any random variable is a non-decreasing function
of a and that FX(−∞) = 0, while FX(+∞) = 1. The CDF is often simply referred to as
the distribution function.

The probability density function (PDF), or density function for short, fX(a) is defined
as the derivative of the CDF:

fX(a) := ∂FX(a)

∂a
. (A.2)

Recalling the definitions of derivative and of CDF, the PDF is equal to the probability
of the random variable X assuming values in a small interval ε around a, divided by ε,
for ε tending to 0.

The probability that the random variable X assumes values between a1 and a2 is equal
to the difference of the CDF in a1 and a2, or, equivalently, to the integral of the PDF
between a1 and a2:

P [a1 < X ≤ a2] = FX(a2) − FX(a1) =
∫ a2

a1

fX(v) dv. (A.3)

From the above properties, it follows that any PDF is a nonnegative real function, defined
over the whole real axis, and its integral from −∞ to +∞ is equal to 1.

In case of a continuous random variable, the CDF and PDF are continuous functions.
For a discrete random variable the CDF is a stepwise increasing function, while the PDF
is made of Dirac impulses, with area equal to the probability that the random variable
assumes that specific value.

A.1.3 Expectation

The expectation of a random variable X is the probability-weighted average of X, and is
denoted as E [X]. If X is a discrete random variable assuming only a finite number N of
different values a1, . . . , aN , then the expectation of X is:
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E [X] :=
N∑

i=1

aiP [X = ai] . (A.4)

If X is a continuous random variable, the equation above becomes an integral:

E [X] :=
∫ +∞

−∞
afX(a) da. (A.5)

The most important property of the expectation is its linearity. Given two random vari-
ables X and Y and any two real numbers a and b, the expectation of the random variable
obtained by combining linearly X and Y is equal to:

E [aX + bY] = aE [X] + bE [Y] . (A.6)

In many practical cases a random variable X is transformed into another random variable
Y by application of a function g(·), Y = g(X). It can be shown that in these cases the
expectation of the random variable Y can be computed as:

E [Y] = E
[
g(X)

] =
∫ +∞

−∞
g(a)fX(a) da. (A.7)

This result is known as the fundamental theorem of expectation. In case of a discrete
random variable the result can be written as:

E
[
g(X)

] =
N∑

i=1

g(ai)P [X = ai] . (A.8)

A notable case of function of a random variable is given by the characteristic function
�X(ω), defined as:

�X(ω) := E
[
eiωX] =

∫ +∞

−∞
eiωafX(a) da. (A.9)

It can be seen that the characteristic function is the complex conjugate of the Fourier
transform of the PDF.

A.1.4 Mean, Variance, and Higher-Order Moments

The mean of a random variable X is simply the expectation of that variable, E [X], and
is a measure of the center of the variable’s PDF:

μX := E [X] . (A.10)

The variance is a measure of the spread of the PDF around the center point as is
defined as:

σ 2
X := E

[
(X − μX)2

]
. (A.11)

It can be easily shown that σ 2
X = E

[
X2
] − μ2

X . For a random variable with zero mean
the variance is equal to the second moment E

[
X2
]
. The squared root of the variance is

called standard deviation and is denoted by σX .
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In general, the quantity E [Xn] is called the n-th moment of the random variable X and
E [(X − μX)n] is called the n-th central moment.

The characteristic function of a random variable can be used to compute the high-
order moments by simple differentiation:

E
[
Xn] = 1

in
∂n�X(ω)

∂ωn

∣∣∣∣
ω=0

. (A.12)

A.1.5 Two Random Variables

Experiments in which two random variables X and Y are involved can be described by
the joint cumulative distribution function FXY (a, b), defined as:

FXY (a, b) := P [X ≤ a and Y ≤ b] . (A.13)

The joint probability density function fXY (a, b) is the partial derivative of the joint CDF:

fXY (a, b) := ∂2

∂a ∂b
FXY (a, b). (A.14)

From this definition it can be shown that:

FXY (a, b) =
∫ a

−∞

∫ b

−∞
fXY (v, w) dvdw. (A.15)

In general, the probability that the couple (X, Y) is in a region D of the bi-dimensional
plane is given by the integral of the joint PDF over the region D:

P [(X, Y) ∈ D] =
∫ ∫

D
fXY (v, w) dvdw. (A.16)

From the joint distribution, the distributions of the single variable can be computed as:

FX(a) = FXY (a, +∞)
fX(a) = ∫ +∞

−∞ fXY (a, b) db.
(A.17)

A.1.6 Independent Random Variables

Two random variables X and Y are said to be independent if for any two events A and B:

P [X ∈ A and Y ∈ B] = P [X ∈ A] · P [Y ∈ B] . (A.18)

In this case, the joint distribution functions are the product of the distribution functions
of the single random variables:

FXY (a, b) = FX(a)FX(b)
fXY (a, b) = fX(a)fX(b).

(A.19)
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A.1.7 Expectation of a Function of Two Random Variables

Similar to the case of one random variable, two random variables X and Y can be trans-
formed into another random variable Z by means of a function g(·, ·), Z = g(X, Y).
According to the original definition, the expectation of Z is given by:

E [Z] =
∫ +∞

−∞
afZ(a) da (A.20)

however it can be computed in a much easier way directly in terms of the function g(·, ·)
and of the joint PDF fXY (a, b):

E
[
g(X, Y)

] =
∫ +∞

−∞

∫ +∞

−∞
g(a, b)fXY (a, b) da db. (A.21)

A.1.8 Correlation and Covariance

Correlation and covariance are a measure of the interdependency of two random vari-
ables and are indicated as RXY and CXY respectively. They are defined respectively
as the expectation of the product of X and Y , and of the product of X − μX and
Y − μY

RXY := E [XY]
CXY := E [(X − μX)(Y − μY )] .

(A.22)

It is easy to show that:

CXY = RXY − μXμY . (A.23)

The correlation coefficient ρXY of two random variables is defined as:

ρXY := CXY

σXσY
(A.24)

and it can be shown to be always less than or equal to 1 in absolute value:

|ρXY | ≤ 1. (A.25)

Two random variables are called uncorrelated if their covariance is zero, or, based on
the relationship above, if:

E [XY] = E [X] E [Y] . (A.26)

Two random variables are called orthogonal if their correlation is zero:

E [XY] = 0. (A.27)

It is easy to show that if two random variables are independent, then they are also
uncorrelated.
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A.2 Random Processes

A.2.1 Definition

While a random variable is a rule to associate a real number with each possible outcome
of an experiment, strictly speaking a random process is a rule to associate with the
experiment’s outcome a function of time x(t). Since the experiment can have multiple
outcomes, in some cases also a non-countable number of outcomes, the random process
defines a family of time functions associated with the experiment.

As in the case of the random variable, the results of many experiments in engineering
and physics are already in the form of a function of time. For example, the position of a
particle subject to Brownian motion, the output voltage noise of a resistor over time, the
total number of particles emitted by a radioactive substance, and the number of persons
in a line waiting to be served, can be expressed in terms of a real-time function. For this
reason, in the common usage in engineering and physics, the term “random process”
often identifies directly the result of the experiment over time.

Note that if t is fixed, x(t) is a random variable equal to the state of the process at
time t.

A.2.2 Classification of Random Processes

Random processes can be classified based on the nature of the variable t and on the
nature of the values returned by the function x(t). If t assumes values over the whole real
axis, then x(t) is called continuous-time process. If t assumes only integer values then
the process is called discrete-time process. In the case of a discrete-time process, the
process is typically indicated by xn, where n can assume integer values. If the function
x(t) returns only a countable number of values, it is called discrete-state, otherwise it is
called continuous-state.

As an example, the total number of particles emitted by a radioactive substance over
time is a continuous-time discrete-state process. The process obtained my tossing a dice
multiple times is a discrete-time discrete-state process. Notably, jitter on a clock is a
discrete-time process, while the excess phase is a continuous-time one. Both of them
are continuous-state.

A.2.3 Mean, Autocorrelation, and Autocovariance

The mean μx(t) of a random process x(t) is defined as the expectation of the random
variable x(t), for each value of t:

μx(t) := E [x(t)] (A.28)

and is a function of time t. The mean μx(t) can be considered as the average waveform
of the process x(t).

The autocorrelation Rx(t1, t2) is the expectation of the product x(t1)x(t2):

Rx(t1, t2) := E [x(t1)x(t2)] . (A.29)
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The autocorrelation for t1 = t2 = t is the average power of x(t), or, in other terms, the
second moment of the random variable x(t):

Rx(t, t) := E
[
x(t)2

]
. (A.30)

If x(t) has zero mean, then Rx(t, t) is the variance of x(t).
The autocovariance Cx(t1, t2) is the expectation of the product of x(t1) − μx(t1) and

x(t2) − μx(t2), or, in other terms, the covariance of the two random variables x(t1) and
x(t2):

Cx(t1, t2) := E [(x(t1) − μx(t1))(x(t2) − μx(t2))] . (A.31)

The autocovariance for t1 = t2 = t is the variance of the random variable x(t).
Autocorrelation and autocovariance are related to each other by:

Cx(t1, t2) = Rx(t1, t2) − μx(t1)μx(t2). (A.32)

If a process has zero mean, autocorrelation and autocovariance are identical.
An alternative, and more useful, way of writing the autocorrelation and autocovari-

ance is by using the lag variable τ = t2 − t1:

Rx(t, τ ) := E [x(t + τ )x(t)] . (A.33)

A.2.4 Stationary Processes

A random process x(t) is called strict-sense stationary if its statistical properties are
invariant to a translation of the time axis. This means that the statistics of the process
x(t + u) are equal to the statistics of x(t) for any u. In nature, many processes are strict
sense stationary, if the environmental conditions of the experiment don’t change over
time. For example, the process consisting in an infinite sequence of dice tossing is
a strict-sense stationary process. The noise produced by a resistor in an environment
where temperature doesn’t change is another example.

If only the mean and the autocorrelation (and thus also autocovariance) of the process
are invariant to a translation of the time axis:

μx(t + u) = μx(t)
Rx(t1, t2) = Rx(t1 + u, t2 + u)

(A.34)

then the process is called wide-sense stationary. Obviously a strict-sense stationary pro-
cess is also stationary in the wide sense, but the converse is not generally true. From the
equations above it is immediately apparent that for wide-sense stationary processes the
mean is independent of time, μx(t) = μx, and the autocorrelation depends only on the
difference between t1 and t2. For this class of processes the autocorrelation is typically
expressed as a function of the single lag variable τ :

Rx(τ ) := E [x(t + τ )x(t)] . (A.35)

Note that for wide-sense stationary processes E
[
x(t)2

] = Rx(0); thus the power is equal
to the value of the autocorrelation at zero lag, and is independent of time.
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A.2.5 Wide-Sense Cyclostationary Processes

A random process x(t) is called wide-sense cyclostationary if its mean and its auto-
correlation are invariant to translation of the time axis by multiples of a given
period T:

μx(t + mT) = μ(t)

R(t, τ ) = R(t + mT , τ )
(A.36)

for any integer m.
It can be shown that if x(t) is a wide-sense cyclostationary process with period T

and u is a random variable independent from the process x(t) and uniformly distributed
between 0 and T , then the new process y(t) = x(t − u) obtained by shifting the time
origin by u is wide-sense stationary. This operation is called phase randomization of the
cyclostationary process x(t). The mean and autocorrelation of y(t) turn out to be the time
average of the mean and autocorrelation of the original process x(t) over one period T:

my = 1
T

∫ T
0 mx(t) dt

Ry(τ ) = 1
T

∫ T
0 Rx(t, τ ) dt.

(A.37)

Phase randomization is an acceptable method of reducing the cyclostationarity of a pro-
cess to stationarity in the wide sense, in the case where the phase of the original process
is either not known or not of interest.

A.2.6 Gaussian Processes

A random process x(t) is called Gaussian or Normal if, for any integer n, and for any
choice of n time samples x(t1) . . . x(tn), the random variable

Y =
n∑

i=1

aix(ti) (A.38)

is a Gaussian random variable for any value of the coefficients a1 to an. An interest-
ing property of Gaussian processes is that their complete statistical properties can be
described by using only the mean and autocovariance, or autocorrelation. Gaussian pro-
cesses are very common in nature and a very useful model to describe a variety of
real-life applications.

A.2.7 Power Spectral Density and the Wiener–Khinchin Theorem

Assume that we have a wide-sense stationary random process x(t). In order to find the
energy distribution of this process over frequency, we calculate its Fourier transform
over a limited period of time [−T/2, +T/2]:

XT (f ) :=
∫ +T/2

−T/2
x(t)e−j2π ft dt. (A.39)
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Using Parseval’s theorem, the quantity:∫ +∞

−∞
|XT (f )|2 df (A.40)

is the energy of the signal over the interval [−T/2, +T/2], so that

1

T
|XT (f )|2 (A.41)

can be interpreted as distribution of power in the frequency domain. For each f this
quantity is a random variable, since it is a function of the random process x(t). The power
spectral density (PSD) Sx(f ) is defined as the limit of the expectation of the expression
above, for large T:

Sx(f ) := lim
T→∞ E

[
1

T
|XT (f )|2

]
. (A.42)

The Wiener–Khinchin theorem ensures that for well-behaved wide-sense stationary
processes the limit exists and is equal to the Fourier transform of the autocorrelation:

Sx(f ) = ∫ +∞
−∞ Rx(τ )e−j2π f τ dτ

Rx(τ ) = ∫ +∞
−∞ Sx(f )ej2π f τ df .

(A.43)

An easy consequence of the Wiener–Khinchin theorem is that the total power of the
signal is equal to the autocorrelation in zero, and is given by the integral of the PSD
over the whole frequency axis:

Rx(0) =
∫ +∞

−∞
Sx(f ) df . (A.44)

A.2.8 Engineering Definitions of the Power Spectral Density

In the practice of engineering, it has become customary to use slightly different vari-
ants of the PSD definition, depending on the particular application or research field. The
most common ones are: one-sided PSD, two-sided PSD, single-sideband (SSB) PSD
and double-sideband (DSB) PSD. Since these are often sources of confusion and mis-
understanding, this subsection aims to clarify their meaning in accordance with their
most widespread usage (see, e.g., [24], [130], [26] p. 5, [25]).

• Two-Sided PSD, Sx(f ): this is a synonym of the PSD defined as the Fourier Transform
of the autocorrelation.

• One-Sided PSD, S′
x(f ): this is a variant derived from the two-sided PSD by consid-

ering only the positive frequency semi-axis. To conserve the total power, the value of
the one-sided PSD is twice that of the two-sided PSD:

S′
x(f ) :=

⎧⎨
⎩

0 if f < 0
Sx(f ) if f = 0
2Sx(f ) if f > 0.

(A.45)
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Figure A.1 Illustration of the definition of One-Sided and Two-Sided PSD.

Note that the one-sided PSD definition makes sense only if the two-sided is an even
function of f . This is always the case if x(t) is a real process, but might not be true
if x(t) is complex. The total power of the process can be calculated by integrating
S′

x(f ) from zero to infinity. The relationship between one-sided and two-sided PSD is
illustrated in Figure A.1.

If S′
x(f ) is even symmetrical around a positive frequency f0, then two additional

definitions can be adopted:

• Single-Sideband PSD, SSSB,x(f ): this is obtained from S′
x(f ) by moving the origin of

the frequency axis to f0:

SSSB,x(f ) := S′
x(f0 + f ). (A.46)

By doing so, the frequency f in the SSB PSD assumes the meaning of the off-
set frequency from f0. This concept is particularly useful for describing phase or
amplitude modulation schemes in wireless communications, where f0 is the carrier
frequency. Note that there is no difference in the values of the one-sided versus the
SSB PSD; it is just a pure translation on the frequency axis. The total power of the
process can be calculated by integrating the SSB PSD from minus infinity to plus
infinity.

• Double-Sideband PSD, SDSB,x(f ): this is a variant of the SSB PSD obtained by con-
sidering only the positive frequency semi-axis. As in the case of the one-sided PSD,
to conserve total power, the value of the DSB PSD is twice that of the SSB:

SDSB,x(f ) :=
⎧⎨
⎩

0 if f < 0
SSSB,x (f ) if f = 0
2SSSB,x(f ) if f > 0.

(A.47)

Note that the DSB definition makes sense only if the SSB PSD is even symmetrical
around zero. In the case of a modulated carrier, this holds if the modulation affects
only the phase. If additionally the amplitude is modulated, the SSB could by asym-
metrical, and the DSB definition cannot be correctly applied. The relation among
DSB, SSB, and one-sided PSD is illustrated in Figure A.2.
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Figure A.2 Illustration of the definition of Single-Sideband and Double-Sideband PSD.

Figure A.3 Physical meaning of the PSD: (a) experiment, (b) mathematical model.

A.2.9 The Physical Meaning of the Power Spectral Density

In this section we want to show that the one-sided PSD S′
x(f ) represents the average

power of the signal x measured over a 1Hz band around the frequency f . Let us assume
the signal x represents a physical voltage delivered by a voltage source over a 1Ohm
resistor. The instantaneous power delivered by the source and dissipated in the resistor
is equal to P(t) = x2(t).

We are interested to know how much of the total average power is delivered by fre-
quency components in the range f0 − 1/2 Hz to f0 + 1/2 Hz. In a thought experiment,
we can apply an ideal band-pass filter B(f ) between the signal source and the resis-
tor and then measure the dissipated power on the resistor (see [1]). This experiment is
illustrated in Figure A.3 together with its mathematical description. The measurement

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316981238.012
https://www.cambridge.org/core


A.2 Random Processes 231

process is modeled as a low-pass filter H(f ) with unity gain at zero frequency. The
instantaneous power delivered to the resistor, indicated as P(f0, 1Hz), is equal to y2(t).
Using basic concepts of linear systems (see Section A.2.10), its average value is equal
to the autocorrelation of the process y at zero:

E
[
P(f0, 1Hz)

] = H(0)E
[
y2(t)

]
= E

[
y2(t)

]
= Ry(0) (A.48)

since the low-pass filter used has gain 1 at zero frequency. From the definition of two-
sided PSD we have:

Ry(0) =
∫ +∞

−∞
Sy(f )df =

∫ +∞

−∞
Sx(f )B2(f )df . (A.49)

Given that the band-pass filter B has value 1 on the intervals [f0 − 1/2, f0 + 1/2] and
[−f0 − 1/2, −f0 + 1/2] and zero otherwise, and considering Sx(f ) almost constant on
those intervals:

Ry(0) =
∫ −f0+1/2

−f0−1/2
Sx(f )df +

∫ f0+1/2

f0−1/2
Sx(f )df = 2Sx(f0) = S′

x(f0). (A.50)

So the one-sided PSD at frequency f0 is equal to the power physically dissipated by
the resistor in the described experiment due to the frequency components of the voltage
signal in a 1Hz bandwidth around f0:

S′
x(f0) = E

[
P(f0, 1Hz)

]
. (A.51)

A.2.10 Random Processes and Linear Systems

Consider a random process y(t) obtained as the response of a time-invariant linear sys-
tem L, with impulse response h(t) and frequency response H(f ), to an input random
process x(t):

y(t) = L [x(t)] . (A.52)

Since the expectation is a linear operator, the mean of y(t) is equal to the response of the
system to the mean of x(t), independent of the matter of whether x(t) is stationary or not:

E
[
y(t)

] = L [E [x(t)]] (A.53)

μy(t) =
∫ +∞

−∞
μx(t − τ )h(τ ) dτ . (A.54)

The autocorrelation of y(t), Ry(t1, t2) is obtained from the autocorrelation of x(t) by
applying the linear transformation on both time arguments:

Ry(t1, t2) =
∫ +∞

−∞

∫ +∞

−∞
Rx(t1 − τ1, t2 − τ2)h(τ1)h(τ2) dτ1dτ2. (A.55)

In particular, if x(t) is wide-sense stationary then:

μy = μx

∫ +∞

−∞
h(t) dt = μxH(0) (A.56)
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and

Ry(τ ) =
∫ +∞

−∞
Rx(τ − τ1)ch(τ1) dτ1 (A.57)

where:

ch(τ1) :=
∫ +∞

−∞
h(τ1 + τ2)h∗(τ2) dτ2 (A.58)

and, in terms of PSD:

Sy(f ) = Sx(f ) |H(f )|2 . (A.59)

A.2.11 Ergodicity

The most important statistical properties of a random process x(t) are obtained by apply-
ing the expectation operator to some functions of the process itself. For instance, the
mean is obtained as E [x(t)], and the autocorrelation as E [x(t1)x(t2)]. The expectation
returns the probability-weighted average of the specific function at that specific time
over all possible realizations of the process. As an example, the mean μ(t) = E [x(t)]
represents the average value of the process x(t) at the specific time t, over all possible
realizations of the process itself. In many real practical cases, though, data from many
realizations of the process are not available. On the contrary, often only data from one of
them are known. The problem of estimating the statistical parameter of a process from
a single realization is therefore central in the theory of random processes.

A straightforward way of proceeding is to replace the expectation operator with the
time average. Considering again the mean as an example, we could argue that the time
average:

1

2T

∫ +T

−T
x(t) dt (A.60)

is a good estimation for the expectation of the process, but this is not always the case.
A process is called ergodic, if its statistical properties can be reliably estimated by

replacing the expectation operator with a time-average over any one of its realizations.
In particular, it is called mean-ergodic or correlation-ergodic, if mean or correlation can
be obtained by time-averages.

It is obvious that if the statistical properties change with time, a process cannot be
ergodic. Therefore, a necessary condition for mean- and correlation-ergodicity is that
the process is wide-sense stationary. However, this condition is not sufficient: ergodic
processes are a subset of wide-sense stationary processes.

Stating the necessary and sufficient conditions for ergodicity is beyond the scope of
this short review. However, one sufficient condition is particularly simple and powerful.
It can be shown that if the autocovariance of a process Cx(τ ) tends to zero for large
τ (process asymptotically uncorrelated), then the process is mean-ergodic. The same
conditions do not imply that the process is also autocorrelation-ergodic, though, except
if the process is a Gaussian process. An asymptotically uncorrelated Gaussian process
is both mean- and autocorrelation-ergodic.
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Appendix B Matlab Code for Jitter
Generation and Analysis

B.1 Generation of Jitter

B.1.1 Flat Phase Noise Profile

The following Matlab code offers a possible implementation of the described procedure
in the case of a 1GHz clock with a flat phase noise level at −110dBc/ Hz:

----------------------------------------------------------------

F0=1e9;

L0=-110;

npoints=1e6;

sigma=sqrt(10^(L0/10)/F0)/(2*pi);

t_id=1/F0*(0:npoints-1);

j=sigma*randn(1,npoints);

t=t_id+j;

----------------------------------------------------------------

where the function randn generates normally distributed random numbers with
variance equal to 1.

B.1.2 Low-Pass, High-Pass, or Band-Pass Phase Noise Profiles

The following code describes the generation of jitter samples with a simple PLL spec-
trum (inband phase noise = −110dBc/ Hz and 3dB frequency = 1MHz, carrier frequency
= 1 GHz), using the Matlab built-in functions butter and filter.

----------------------------------------------------------------

F0=1e9;

L0=-110;

f3dB=1e6;

npoints=1e7;

sigma=sqrt(10^(L0/10)/F0)/(2*pi)

t_id=1/F0*(0:npoints-1);

j=sigma*randn(1,npoints);

[B,A] = butter(1,2*f3dB/F0);

j_filtered=filter(B,A,j);

t=t_id+j_filtered;

----------------------------------------------------------------
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B.1.3 1/f 2 Phase Noise Profile

The following code describes the generation of jitter samples with a 1/f 2 profile and
−110dBc/ Hz ant 5MHz offset frequency for a 1GHz clock.

----------------------------------------------------------------

F0=1e9;

L1=-110;

f1=5e6;

npoints=1e6;

sigma_l=(f1/F0)*sqrt(10^(L1/10)/F0)

t_id=1/F0*(0:npoints-1);

l=sigma_l*randn(1,npoints);

j=cumsum(l);

t=t_id+j;

----------------------------------------------------------------

B.1.4 1/f Phase Noise Profiles

The following code generates a 1/f phase noise profile with −60dBc/ Hz at 1kHz on a
1GHz carrier in the frequency range from 10Hz to 100MHz.

----------------------------------------------------------------

F0=1e9;

fmin=1e1;

fmax=1e8;

L1=-60;

f1=1e3;

npoints=1e8;

t_id=1/F0*(0:npoints-1);

gamma=abs(sqrt(10)/(1+j*10)+1/(1+j)+sqrt(10)/(10+j))^2;

sigma_l=sqrt(10^(L1/10)*f1/(F0*fmin*gamma*4*pi^2));

l=sigma_l*randn(1,npoints);

fcorner=logspace(log10(fmin),log10(fmax),8);

[B1,A1] = butter(1,2*fcorner(1)/F0);

[B2,A2] = butter(1,2*fcorner(2)/F0);

[B3,A3] = butter(1,2*fcorner(3)/F0);

[B4,A4] = butter(1,2*fcorner(4)/F0);

[B5,A5] = butter(1,2*fcorner(5)/F0);

[B6,A6] = butter(1,2*fcorner(6)/F0);

[B7,A7] = butter(1,2*fcorner(7)/F0);

[B8,A8] = butter(1,2*fcorner(8)/F0);
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l1_filtered=filter(B1,A1,l);

l2_filtered=filter(B2,A2,l/sqrt(10));

l3_filtered=filter(B3,A3,l/sqrt(10)^2);

l4_filtered=filter(B4,A4,l/sqrt(10)^3);

l5_filtered=filter(B5,A5,l/sqrt(10)^4);

l6_filtered=filter(B6,A6,l/sqrt(10)^5);

l7_filtered=filter(B7,A7,l/sqrt(10)^6);

l8_filtered=filter(B8,A8,l/sqrt(10)^7);

j=l1_filtered+l2_filtered+l3_filtered+l4_filtered+...

l5_filtered+l6_filtered+l7_filtered+l8_filtered;

t=t_id+j;

----------------------------------------------------------------

B.1.5 1/f 3 Phase Noise Profiles

The following code generates a 1/f 3 noise profile with −80dBc/ Hz at 10kHz on a 1GHz
carrier.

----------------------------------------------------------------

F0=1e9;

fmin=1e1;

fmax=1e8;

L1=-80;

f1=10e3;

npoints=1e7;

t_id=1/F0*(0:npoints-1);

gamma=abs(sqrt(10)/(1+j*10)+1/(1+j)+sqrt(10)/(10+j))^2;

sigma_l=sqrt(10^(L1/10)*f1^3/(F0^3*fmin*gamma));

l=sigma_l*randn(1,npoints);

fcorner=logspace(log10(fmin),log10(fmax),8);

[B1,A1] = butter(1,2*fcorner(1)/F0);

[B2,A2] = butter(1,2*fcorner(2)/F0);

[B3,A3] = butter(1,2*fcorner(3)/F0);

[B4,A4] = butter(1,2*fcorner(4)/F0);

[B5,A5] = butter(1,2*fcorner(5)/F0);

[B6,A6] = butter(1,2*fcorner(6)/F0);

[B7,A7] = butter(1,2*fcorner(7)/F0);

[B8,A8] = butter(1,2*fcorner(8)/F0);

l1_filtered=filter(B1,A1,l);

l2_filtered=filter(B2,A2,l/sqrt(10));

l3_filtered=filter(B3,A3,l/sqrt(10)^2);
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l4_filtered=filter(B4,A4,l/sqrt(10)^3);

l5_filtered=filter(B5,A5,l/sqrt(10)^4);

l6_filtered=filter(B6,A6,l/sqrt(10)^5);

l7_filtered=filter(B7,A7,l/sqrt(10)^6);

l8_filtered=filter(B8,A8,l/sqrt(10)^7);

j1=l1_filtered+l2_filtered+l3_filtered+l4_filtered+...

l5_filtered+l6_filtered+l7_filtered+l8_filtered;

j=cumsum(j1);

t=t_id+j;

----------------------------------------------------------------

B.1.6 More Complex Phase Noise Profiles

The following code describes the generation of a phase noise profile featuring a 1/f 3

region, a 1/f 2 region, a PLL-like spectrum, and finally a flat noise floor.

----------------------------------------------------------------

F0=1e9;

fmin=1e1;

fmax=1e8;

L1_flicker=-80;

f1_flicker=3e3;

L1_white=-100;

f1_white=30e3;

L0_pll=-100;

f3dB_pll=2e6;

L0_flat=-130;

npoints=1e8;

t_id=1/F0*(0:npoints-1);

gamma=abs(sqrt(10)/(1+j*10)+1/(1+j)+sqrt(10)/(10+j))^2;

sigma_l_flicker=sqrt(10^(L1_flicker/10)*f1_flicker^3...

/(F0^3*fmin*gamma));

l_flicker=sigma_l_flicker*randn(1,npoints);

fcorner=logspace(log10(fmin),log10(fmax),8);

[B1,A1] = butter(1,2*fcorner(1)/F0);

[B2,A2] = butter(1,2*fcorner(2)/F0);

[B3,A3] = butter(1,2*fcorner(3)/F0);

[B4,A4] = butter(1,2*fcorner(4)/F0);
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[B5,A5] = butter(1,2*fcorner(5)/F0);

[B6,A6] = butter(1,2*fcorner(6)/F0);

[B7,A7] = butter(1,2*fcorner(7)/F0);

[B8,A8] = butter(1,2*fcorner(8)/F0);

l1_filtered=filter(B1,A1,l_flicker);

l2_filtered=filter(B2,A2,l_flicker/sqrt(10));

l3_filtered=filter(B3,A3,l_flicker/sqrt(10)^2);

l4_filtered=filter(B4,A4,l_flicker/sqrt(10)^3);

l5_filtered=filter(B5,A5,l_flicker/sqrt(10)^4);

l6_filtered=filter(B6,A6,l_flicker/sqrt(10)^5);

l7_filtered=filter(B7,A7,l_flicker/sqrt(10)^6);

l8_filtered=filter(B8,A8,l_flicker/sqrt(10)^7);

j1_flicker=l1_filtered+l2_filtered+l3_filtered+l4_filtered+...

l5_filtered+l6_filtered+l7_filtered+l8_filtered;

j_flicker=cumsum(j1_flicker);

sigma_l_white=(f1_white/F0)*sqrt(10^(L1_white/10)/F0);

l_white=sigma_l_white*randn(1,npoints);

j_white=cumsum(l_white);

sigma_l_pll=sqrt(10^(L0_pll/10)/F0)/(2*pi);

l_pll=sigma_l_pll*randn(1,npoints);

[B,A] = butter(1,2*f3dB_pll/F0);

j_pll=filter(B,A,l_pll);

sigma_j_flat=1/(2*pi)*sqrt(10^(L0_flat/10)/F0);

j_flat=sigma_j_flat*randn(1,npoints);

t=t_id+j_flicker+j_white+j_pll+j_flat;

----------------------------------------------------------------

B.2 Analysis of Jitter

The following code describes a Matlab function, which delivers the main jitter parame-
ters and the phase noise profile starting from the array of transition instants t.

----------------------------------------------------------------

function [F_id,tj_per_pp,tj_per_rms,tj_c2c_pp,tj_c2c_rms,...

tj_rms,tj_pp,fPHN,PHN] = f_extract_jitter_phn(t)

%% Compute Period Jitter

T=diff(t);

% Peak to Peak Period Jitter
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tj_per_pp=max(T)-min(T);

% Rms Period Jitter

tj_per_rms=std(T);

% Peak to Peak Cycle to Cycle Jitter

tj_c2c_pp=max(diff(T))-min(diff(T));

% Rms Cycle to Cycle Jitter

tj_c2c_rms=std(diff(T));

%% Compute least squares line

n=length(t);

i=(0:n-1);

T_id=(sum(i.*t)-(n-1)/2*sum(t))/((n^2-1)*n/12);

t_off=sum(t)/n-T_id*(n-1)/2;

F_id=1/T_id;

%% Absolute jitter

t_id=t_off+(0:T_id:(n-1)*T_id);

tj=t-t_id;

tj=tj-mean(tj);

% Standard Deviation Absolute Jitter

tj_rms=std(tj);

% Peak to Peak Absolute Jitter

tj_pp=max(tj)-min(tj);

%% Compute Phase Noise

phi_e=tj*2*pi/T_id;

npsd=2^(nextpow2(length(phi_e)/4)-1); .

Fpsd=1/(npsd*T_id);

fPHN=0:Fpsd:Fpsd*(floor(npsd/2)-1);

nwind=32;

w=hann(npsd,’periodic’)’;

U2=sum(w.^2);

I=zeros(1,npsd);

for i=1:nwind

start=1+floor((n-npsd)/(nwind-1))*(i-1);

stop=start+npsd -1;

xtmp=phi_e(start:stop);

v=xtmp.*w;

I=I+abs(fft(v,npsd)).^2;

end

PHN=I/(nwind*U2/T_id);

PHN=PHN(1:floor(npsd/2));

----------------------------------------------------------------
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B.3 Tail Fitting

The following code describes a Matlab function, which performs tail fitting according
to the Q-scale methodology, starting from the PDF of the jitter, defined over the x-axis.
It returns the mean and sigma values of the Gaussian curves fitting the left and right tails
of the PDF.

----------------------------------------------------------------

function [mu_L,sigma_L,mu_R,sigma_R] = ...

f_tail_fitting_q_scale(x, pdf, fitbins_strt, fitbins)

% x = x-axis over which the PDF is defined

% pdf = PDF of the jitter

% fitbins = array defining the length of bins used for tail fitting

% fitbins_strt = starting bin for tail fitting

%% build CDF

deltax=x(2)-x(1);

cdf_left=[0,cumsum(pdf)]*deltax;

cdf_right=[0,fliplr(cumsum(fliplr(pdf)))]*deltax;

%% fit left CDF

err_best=1;

for i_nbins=1:length(fitbins)

i_nbins

fit_interval=[fitbins_strt:fitbins_strt+fitbins(i_nbins)];

cdf_left_q_scale=-sqrt(2)*erfcinv(2*cdf_left);

c(i_nbins,:)=polyfit(x(fit_interval),...

cdf_left_q_scale(fit_interval),1);

fitted=x(fit_interval)*c(i_nbins,1)+c(i_nbins,2);

err(i_nbins)=std(cdf_left_q_scale(fit_interval)-fitted);

if err(i_nbins)< err_best;

err_best=err(i_nbins);

i_nbins_best=i_nbins;

end

end

sigma_L=1/c(i_nbins_best,1)

mu_L=-c(i_nbins_best,2)*sigma_L

%% fit right CDF

err_best=1;

for i_nbins=1:length(fitbins)

fit_interval=[length(cdf_right)-fitbins_strt-fitbins(i_nbins)...

:length(cdf_right)-fitbins_strt];

cdf_right_q_scale=-sqrt(2)*erfcinv(2*cdf_right);
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c(i_nbins,:)=polyfit(x(fit_interval),...

cdf_right_q_scale(fit_interval),1);

fitted=x(fit_interval)*c(i_nbins,1)+c(i_nbins,2);

err(i_nbins)=std(cdf_right_q_scale(fit_interval)-fitted);

if err(i_nbins)< err_best;

err_best=err(i_nbins);

i_nbins_best=i_nbins;

end

end

sigma_R=-1/c(i_nbins_best,1)

mu_R=c(i_nbins_best,2)*sigma_R

----------------------------------------------------------------

The following code describes a Matlab function which performs tail fitting according
to the normalized Q-scale methodology, starting from the PDF of the jitter, defined over
the x-axis. It returns the amplitude, mean, and sigma values of the Gaussian curves fitting
the left and right tails of the PDF.

----------------------------------------------------------------

function [A_L,mu_L,sigma_L,A_R, mu_R,sigma_R] = ...

f_tail_fitting_norm_q_scale(x, pdf, fitbins_strt, fitbins)

% x = x-axis over which the PDF is defined

% pdf = PDF of the jitter

% fitbins = array defining the length of bins used for tail fitting

% fitbins_strt = starting bin for tail fitting

%% build CDF

deltax=x(2)-x(1);

cdf_left=[0,cumsum(pdf)]*deltax;

cdf_right=[fliplr(cumsum(fliplr(pdf))),0]*deltax;

k=[0.01:0.01:1];

%% fit left CDF

err_best=1;

for i_nbins=1:length(fitbins)

fit_interval=[fitbins_strt:fitbins_strt+fitbins(i_nbins)];

for i_k=1: length(k)

cdf_left_q_scale=-sqrt(2)*erfcinv(2/k(i_k)*cdf_left);

c(i_k,i_nbins,:)=polyfit(x(fit_interval),...

cdf_left_q_scale(fit_interval),1);

fitted=x(fit_interval)*c(i_k,i_nbins,1)+c(i_k,i_nbins,2);

err(i_k,i_nbins)=std(cdf_left_q_scale(fit_interval)-fitted);

if err(i_k,i_nbins)< err_best;

err_best=err(i_k,i_nbins);
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i_k_best=i_k;

i_nbins_best=i_nbins;

end

end

end

sigma_L=1/c(i_k_best,i_nbins_best,1);

mu_L=-c(i_k_best,i_nbins_best,2)*sigma_L;

A_L=k(i_k_best);

%% fit right CDF

err_best=1;

for i_nbins=1:length(fitbins)

fit_interval=[length(cdf_right)-fitbins_strt-fitbins(i_nbins)...

:length(cdf_right)-fitbins_strt];

for i_k=1: length(k)

cdf_right_q_scale=-sqrt(2)*erfcinv(2/k(i_k)*cdf_right);

c(i_k,i_nbins,:)=polyfit(x(fit_interval),...

cdf_right_q_scale(fit_interval),1);

fitted=x(fit_interval)*c(i_k,i_nbins,1)+c(i_k,i_nbins,2);

err(i_k,i_nbins)=std(cdf_right_q_scale(fit_interval)-fitted);

if err(i_k,i_nbins)< err_best;

err_best=err(i_k,i_nbins);

i_k_best=i_k;

i_nbins_best=i_nbins;

end

end

end

sigma_R=-1/c(i_k_best,i_nbins_best,1);

mu_R=c(i_k_best,i_nbins_best,2)*sigma_R;

A_R=k(i_k_best);

----------------------------------------------------------------
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Index

Absolute jitter
and period jitter, 3, 25
and phase noise, 52, 66, 183
definition, 3, 17, 25
from 1/f 2 phase noise, 55
from 1/f 3 phase noise, 58
from flat phase noise, 54
from PLL-like phase noise, 56
from spectral spurious tones, 66
jitter transfer function, 54
measurement, 168
phase noise integration limits, 53

Accumulated jitter, 21
Adjacent period jitter, 24
Allan Deviation (ADEV), 193

and jitter, 195, 197, 199
definition, 195
estimator, 195
from phase noise, 66, 197
modified (MDEV), 199

Allan Variance (AVAR), see Allan Deviation
Analog to Digital Converters (ADC)

effective number of bits (ENOB), 129
error power for random inputs, 132
error power for sinusoidal inputs, 130
flash ADC in oversampling converters, 140
Nyquist converters, 128
oversampling �� modulators, 139
quantization noise, 128
spectrum of error signal, 133
time skew calibration, 137
time-interleaved, 133

Aperture jitter, 24
Atomic clocks, 193, 195

Bit error rate (BER), 143

Clock and Data Recovery (CDR), 4, 13, 145, 166
bang-bang phase detector, 155
bang-bang phase detector gain, 157
bang-bang quantization error, 158
jitter generation, 146, 150
jitter peaking, 148, 168
jitter tolerance (JTOL), 4, 148, 151, 154

jitter tracking, 148
jitter transfer, 146
limited VCO range, 153
linear model, 145, 147, 149–151, 159, 168
phase interpolator based, 167, 172
stability, 159

CMOS differential stage
jitter, 74

CMOS inverter
random jitter, 10, 73
supply induced jitter, 73

Constant current on capacitor, 9
jitter, 69

Crystal oscillators
parallel RLC network approximation, 88
Pierce configuration, 87
resonance modes, 87
time-invariant phase noise analysis, 86

Cycle jitter, 24
Cycle-to-Cycle jitter

and absolute jitter, 23, 25
and period jitter, 23, 25
definition, 23, 25

Deterministic jitter (DJ), 7, 160, 216, 219
definition, 36
DJ and RJ convolution, 37
dual Dirac, 41
total DJ, 38

Digital circuits
clock skew, 113
edge-triggered, 111
gated and enabled systems, 114
latch-based, 117
metastability, 114
MTBF, 114
multicycle paths, 116

Digital to Analog Converters (DAC)
integrating capacitor, 126
linear filtering, 123
NRZ current DAC, 121
RZ current DAC, 126

Duty cycle distortion, 161
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Ergodicity, 28, 232
Error function, 186
Error probability, 144
Excess phase, 206

and absolute jitter, 43, 45
definition, 16
power spectral density, 49
voltage to phase conversion, 46, 49

Eye diagram, 5, 160
monitoring, 164

Figure of Merit (FOM), 83, 101
Flicker noise

at very low frequencies, 201
charge trapping theory, 201
in oscillators, 103
infinite power paradox, 200, 204
infinite RC line, 203
stationarity, 203, 204
ubiquity, 200
up-conversion, 92

Frequency dividers, 104
absolute jitter, 105
and spurious tones, 107
input–output phase noise, 105
N-period jitter, 105

Frequency multipliers, 108
absolute jitter, 109
input-output jitter, 109
N-period jitter, 109

Frequency stability, 193
Allan Deviation, see Allan Deviation
power laws, 198
true variance, 194

GSM standard, 177, 181

Hold time, 112, 118
constraint on peak jitter, 117
definition, 111

Impulse Sensitivity Function (ISF), 90, 96
effective, 93
LC tank, 94

Integrated jitter, 24
Intentional jitter, 4

in CDR, 171

Jitter
absolute, see Absolute jitter
aliasing, 46
and phase noise, 183
and phase noise, summary tables, 66
as discrete-time random process, 2, 4, 25, 27, 43
computation from time vector, 211, 237
deterministic, see Deterministic jitter
generic definition, 15

histogram, 27, 28
mean, 31, 184
median, 31
multiple components, 37
on data, 5
peak, 32, 33
peak and non-Gaussian distributions, 34
peak and unbounded distributions, 33
peak-peak, 32
probability density function, 28, 29
random, see Random jitter
spectral spurious tones, 65
standard deviation, 32
variance, 32

Jitter amplification, 161
Jitter decomposition, 7, 39

DJ underestimation, 216
independent-σ technique, 39
tail fitting, 39, 41, 214, 239, 240

Jitter distribution
Dirac, 31
dual-Dirac, 30, 40
Gaussian, 30, 186
sinusoidal, 30
uniform, 30

Jitter estimation, 185
confidence interval, 185
mean, 186
minimum number of samples, 188–191, 193
order statistics, 191
peak, 191
variance, 188

Jitter generation, see Clock and Data Recovery
(CDR)

Jitter mitigation, 163
Jitter monitoring, 163
Jitter tolerance, see Clock and Data Recovery (CDR)
Jitter transfer, see Clock and Data Recovery (CDR)
Jitter variance, 184

LC oscillators
class-C, 100
Colpitts, 100
double-switch, 99
phase noise up-conversion, 85
single-switch, 99
time-invariant phase noise analysis, 84
time-variant phase noise analysis, 96

Leeson’s model, 80, 85, 96
Long-term jitter

and period jitter, 63
and phase noise, 59
and PLL bandwidth, 63
definition, 23
from PLL-like phase noise, 62

Maximum Time Interval Error (MTIE)
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and absolute jitter, 22
definition, 22

N-period jitter, see also Period jitter
and absolute jitter, 20, 25
and period jitter, 21, 25
and phase noise, 59, 66, 184
definition, 3, 20, 25
from 1/f 2 phase noise, 61
from 1/f 3 phase noise, 63
from flat phase noise, 60
from PLL-like phase noise, 61
from spectral spurious tones, 66
multiple spectral components, 66

Narrow angle assumption, 47, 50
Noise factor F, 82, 84, 96, 98, 99
Noise figure, 176

Period jitter, see also N-period jitter
and absolute jitter, 3, 19, 25
definition, 2, 19, 25

Phase jitter, 24
Phase noise

and jitter, summary tables, 66
computation from jitter samples, 214, 237
definition, 51
equivalent noise bandwidth, 56
generation of 1/f 2 profile, 208, 234
generation of band-pass profiles, 208, 233
generation of complex profiles, 211, 236
generation of flat profile, 208, 233
generation of flicker profiles, 209, 211, 234, 235
harmonics, 49, 206
in-band, 56
Lorentian spectrum, 205
time-variant analysis, 90

Power Spectral Density (PSD), 45, 228
physical meaning, 230

Q-scale, 42, 215, 239
normalized, 42, 217, 240

Quality factor, 81, 82, 85, 89
and FOM, 84

Random jitter (RJ), 7, 160, 216, 219
and bit error rate, 35
and Q factor, 41
definition, 35
RJ and DJ convolution, 37

total RJ, 38
Regression line, 214
Relative jitter

and absolute jitter, 18, 25
definition, 18, 25
measurement, 166

Relaxation oscillators
jitter, 78

Ring oscillators
jitter, 2, 12, 77
jitter vs. number of stages, 78
N-period jitter, 78
time-variant phase noise analysis, 93

Sample mean, 31, 186
confidence interval, 187

Sample variance, 32, 188
confidence interval, 189

Setup time, 111, 118
constraint on peak jitter, 113, 116, 119
definition, 111

Short-term jitter, 24
Sinusoidal jitter (SJ)

definition, 36
Spread Spectrum Clock (SSC), 4, 23
Spurious to Carrier Ratio (SCR), 50

Tail fitting, see Jitter decomposition
Time Deviation (TDEV), 199
Time Error (TE)

and absolute jitter, 22
definition, 21

Time Interval Error (TIE)
and absolute jitter, 22
and N-period jitter, 22
definition, 21

Total jitter (TJ)
definition, 41

WCDMA standard, 179
Wiener process, 70, 205
Wiener–Khinchin theorem, 203, 227
Wireless receiver

blocker signals, 175
reciprocal mixing, 179
sensitivity, 176

Wireless transmitter
VCO phase noise requirements, 177
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