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Preface

Many good books are available on phase-locked loop (PLL) theory. It is
not my intention to compete with them in this field. This book primar-
ily describes how to calculate PLL performances by using standard
mathematical or circuit analysis programs. Theoretical descriptions
are limited to the minimum needed to explain how to perform calcu-
lations. Although presented methods of analysis can be implemented
with many commercial programs, their description always refers to
MATHCAD for mathematical programs and to SIMETRIX for circuit
analysis programs.

MATHCAD† is an integrated environment for performing and com-
municating math-related work. It is calculation software that allows
you to enter mathematics as you would write them on a piece of paper,
and it will automatically update all calculations, graphs, and results
when you change values or equations. Further, MATHCAD includes
hundreds of built-in mathematical functions and operations; operates
on scalars, vectors, and matrices; and automatically tracks and converts
units. It can also generate updatable symbolic solutions.

The SIMETRIX simulator core comprises a direct matrix analog
simulator closely coupled with an event-driven digital simulator. This
combination is often described as “mixed-mode” and has the ability to
efficiently simulate both analog and digital circuits together. The ana-
log simulator is a derivation of SPICE 3 developed by the CAD/IC group
at the University of California at Berkeley, while the event-driven digi-
tal simulator is based on XSPICE from the Georgia Technical Research
Institute. However, only about 50 percent of the SIMETRIX simula-
tor code can be directly traced to these programs. CATENA Software
Ltd. has rewritten some parts and has added its own original code to
others. The additions and changes were made to improve speed, add
new functionality, and improve convergence.

†Mathcad is a registered trademark of Mathsoft Engineering and Education, Inc.,
www.mathsoft.com.

vii
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viii Preface

This book includes a CD-ROM† with

� An academic evaluation version of MATHCAD 11b: a fully functional
version of MATHCAD that will operate for 120 days from installation.

� A demo version of SIMETRIX‡. Virtually all features are enabled, but
a circuit size limit applies which allows the demo program to run all
included circuit files.

� All MATHCAD and SIMETRIX files to perform the analyses described
in the book. The reader can play with them and modify values and/or
configurations in order to adapt to different PLLs.

Most of the calculations are possible with both methods, although one
or the other may be easier in a particular case.

Chapter 1 describes basic PLL theory and explains some important
concepts like loop stability, PLL classification, and transfer functions.
Chapter 2 describes the operation of loop components: the phase de-
tector, loop filter, VCO and crystal oscillator, and frequency divider.
Descriptions are not given with the purpose to explain the design of
these components (with the only exception of the loop filter) but just to
show problems related with their use in PLLs. Chapter 3 is dedicated
to the fractional frequency divider with analog and digital compensa-
tion. Chapter 4 is the core chapter of this book and describes in detail
how to calculate and optimize PLL performance: mainly stability, phase
noise, and settling time. Chapter 5 is a miscellaneous chapter covering
PLL testing and debugging, sampled PLLs, multiloop synthesizers, and
DDSs.

Half of the time spent writing this book was dedicated to finding and
eliminating mistakes; nevertheless I am sure I was not 100 percent
successful. Readers can contact the author by e-mail§ with comments,
suggestions, and detected errors.

Special thanks to Mrs. Stefania Stramaglia and Dr. Elisa Tordella
for their assistance in checking the accuracy of the wording of this book
and to Lucy Mullins for the final copyediting.

Giovanni Bianchi

†All programs are supplied as they are. No responsibility is taken for wrong results,
bugs or problems to computer where they are installed.

‡An updated version can be downloaded at www.catena.uk.com.
§sparafucile@inwind.it.



Chapter

1
Phase-Locked Loop Basics

1.1 Introduction

The phase-locked loop (PLL) is the most important technique for gener-
ation of radio frequency and microwave signals. It allows the generation
of variable output frequency with the same stability of a crystal oscil-
lator by means of feedback. This chapter describes the basic concepts
that will be developed in subsequent chapters.

Linear block diagrams and their analysis will be examined, and fun-
damental equations will be derived. A PLL is a feedback system, so
stability analysis is quite important: fundamental concepts of stabil-
ity analysis will be introduced. In addition, the classification of PLL
by order and type will be given. The description of simple second-order
PLLs will also be used to define some fundamental parameters like unit
bandwidth and peak response. Second-order PLL analysis will also pro-
vide the opportunity to show some introductory simple simulations.

All concepts will be explained with a minimum of mathematics. The
number and complexity of equations used to develop simulation tech-
niques in subsequent chapters will be the minimum required. For the
same reason, some assertions will not be rigorous from the mathemati-
cal point of view. Again all mathematical descriptions are necessary for
the implementation of calculations in computer programs. Any mathe-
matical inexactness that could be present will not affect the precision
of calculated results.

1.2 PLL Working Principles

The schematic block diagram of a PLL is shown in Fig. 1.1. It contains
four basic blocks:

1
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2 Chapter One

:N

VCO
Phase

detector

Frequency
divider

Loop filter

Reference
signal

Synthesizer
output signal

j

Figure 1.1 PLL block diagram.

1. Phase detector (PD). The PD compares a periodic input signal (ref-
erence signal, normally a sine or square wave) with the frequency
divider output signal. The PD output voltage is proportional to the
phase difference between the two signals.

2. Loop filter. This is a lowpass filter that smoothes the PD output
signal and applies it to the VCO input.

3. Voltage-controlled oscillator (VCO). The output frequency of this de-
vice is a monotonic increasing function of input voltage. As a first
approximation we will assume that the output frequency is directly
proportional to the tuning voltage.

4. Frequency divider. The output of the frequency divider is a signal
with a frequency equal to the VCO output frequency divided by N .

The PLL is a servo-controlled system. If its loop gain is high enough
and the loop is stable, the system will reach a stable condition where
two PD inputs have the same phase and thus the same frequency (the
angular frequency is the derivative of the phase with respect to the
time). In this condition, the output frequency equals the input frequency
multiplied by N .

ReferenceSignal(t) = Vr cos (ωrt)

SynthesizerOutputSignal(t) = Vo cos (N ωrt)

When the frequency division factor N is modified, the output frequency
will be modified accordingly. If the reference signal is a very stable one,
the output frequency will become very stable as well. This is the PLL
frequency synthesizer principle of working.

The PD, VCO, and frequency divider have instantaneous input-
output relations. The loop filter input-output relation is difficult to write
in terms of an instantaneous relation. We will therefore use the Laplace
transform to represent PLL signals.
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1.3 Laplace and Fourier Transforms

1.3.1 Definitions

G(s) = L [ g (t)] =
∞∫

0

g (t) exp (−st) d t

G ( f ) = F [ g (t)] =
∞∫

−∞
g (t) exp (− j 2πt) d t

where G(s) is the Laplace transform of g(t) and G( f ) is the Fourier
transform of g(t). The Laplace variable is complex: s = σ + j ω. For
functions equal to zero for t < 0, the Laplace transform calculated on the
imaginary axis s = j ω = j 2π f coincides with the Fourier transform.

1.3.2 Basic properties

Linearity:

L [af (t) + bg(t)] = aL [ f (t)] + bL [ g(t)]

F [af (t) + bg(t)] = aF[ f (t)] + bF[ g(t)]

Transform of derivative:

L

{
d [ g(t)]

d t

}
= sG(s)

F

{
d [ g(t)]

d t

}
= j 2π f G( f )

Transform of integral:

L


 t∫

0

g(τ ) d τ


 = 1

s
G(s)

F


 t∫
−∞

g(τ ) d τ


 = 1

j 2π f
G( f )

Transform of time translated function:

L [ g(t − τ )] = G(s) exp (−sτ )

F [ g(t − τ )] = G( f ) exp (− j 2π f τ )
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Translation over frequency I:

L [ g(t) exp (at)] = G(s − a)

F [ g(t) exp ( j 2πνt)] = G( f − ν)

Translation over frequency II:

L [G(t) cos(at)] = G(s − j a) + G(s + j a)
2

F [ g(t) cos(2πνt)] = G( f − ν) + F ( f + ν)
2

Translation over frequency III:

L [ g(t) sin(at)] = G(s − j a) − G(s + j a)
2 j

F [ g(t) sin(2πνt)] = G( f − ν) − G( f + ν)
2 j

Initial value theorem:

f (t = 0) = lim
s→∞[sF (s)]

Final value theorem:

lim
t→∞ f (t) = lim

s→0
[sF (s)]

1.3.3 Transforms of some
important functions

Unit step:

η(t) =
{

0 (t < 0)

1 (t > 0)

Rectangular pulse:

rect
T (t) =



1

T (0 < t < 
T )

0 elsewhere

Dirac distribution:

δ(t) = lim

T →0

rect
T (t) = d [η(t)]
d t

Laplace and Fourier transform of Dirac distribution:

L [δ(t)] = F [δ(t)] = 1
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Laplace and Fourier transform of unit step:

L [η(t)] = F [η(t)] = 1
s

Laplace transform of exponential function:

L [exp(αt)] = 1
s − α

Fourier transform of a constant:

F[1] = δ( f )

1.4 PLL Transfer Functions

In our representation, only the phase (or angular frequency) of signals
is considered. We will concentrate on the phase (or angular frequency)
of the signals. Phase is the integral of angular frequency.

ReferenceSignal(t) = Vr cos


 t∫
−∞

ωr(τ ) d τ


 = Vr cos[θr(t)]

SynthesizerOutputSignal(t) = Vo cos


 t∫
−∞

ωo(τ ) d τ


 = Vr cos[θo(t)]

For subsequent considerations lowercase letters will denote time-
domain expressions, and corresponding Laplace transforms will be de-
noted by capital letters; e.g., F (s) = L [ f (t)]. We will also suppose that
all conditions for the existence of the Laplace transform will be sat-
isfied. One of the main advantages of Laplace transforms is that inte-
grals (derivatives) of time domain functions correspond to their Laplace
transforms multiplied by 1/s(s). Using the Laplace transform proper-
ties, it is possible to find some simple representations of the PLL blocks.
In detail, the frequency divider output frequency equals the input fre-
quency divided by N ; the same holds true for the angular frequency
and phase. The frequency divider can be represented as one multiplier
by the constant 1/N . The loop filter is characterized by its transfer
function which is the rational function of the variable s; its representa-
tion is a multiplier by the transfer function. The VCO output angular
frequency is proportional to the control voltage, so it can be represented
as a multiplier by constant Kv; if we are interested in the VCO’s out-
put phase rather than its output angular frequency, the Kv gain block
has to be followed by one integrator which is a multiplier by 1/s in
the Laplace domain. The phase detector output is the phase difference
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  Kd   Out1_
s  KvF(s)+

Phase detector Loop 
filter

VCO

In

1/N

a2 a3 a5

a7

−

a1 a4 a6

 Frequency divider

  Kd   Out1_
s

  KvF(s)+

Phase detector Loop
filter

VCO

In

1/N

b2 b4

b7

−

b1 b5 b6

 Frequency divider

b3

(b)

(a)

Figure 1.2 PLL transfer function. (a) From input to output phase. a1—reference
signal phase �r(s); a2—phase error �e(s) = �r(s) − �v(s); a3—PD output
Vdet(s) = Kd �e(s); a4—VCO tuning voltage Vt (s) = Vdet(s)F (s); a5—VCO
output angular frequency �o(s) = KvVt (s); a6—VCO (and PLL) output phase
�o(s) = �o(s)/s; a7—frequency divider output phase �v(s) = �o(s)/N . (b)
From input to output in angular frequency. b1—reference signal angular fre-
quency �(s); b2—angular frequency error �e(s) = �r(s) − �v(s); b3—phase
error �e(s) = �e(s)/s; b4—phase detector output Vdet(s) = Kd �e(s); b5—
VCO tuning voltage Vt (s) = Vdet(s)F (s); b6—VCO (and PLL) output angu-
lar frequency �o(s) = KvVt (s); b7—frequency dvider output angular frequency
�v(s) = �o(s)/N .

between inputs multiplied by the phase detector gain Kd ; if we choose
to represent angular frequency, we multiply the angular frequency dif-
ference by 1/s to obtain the phase difference.

Two PLL block diagrams are possible. In the first (see Fig. 1.2a), the
input is the reference signal phase and the output is the output signal
phase. In the second (see Fig. 1.2b), the input and the output are the
reference signal and output signal angular frequency, respectively.

Consider the block diagram of Fig. 1.2a. Regrouping relations for
quantities a1 through a7 it is possible to write

�o(s) = Kd Kv F (s)
[
�r(s) − �o(s)

N

]
1
s
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Consequently the transfer function from the reference signal to the
synthesizer output signal phase is given by

�o(s)
�r(s)

= N
Kd Kv

N
F (s)

s

1 + Kd Kv
N

F (s)
s

(1.1)

The same transfer function can be found for the angular frequency by
analyzing the block diagram of Fig. 1.2b.

�o(s)
�r(s)

= N
Kd Kv

N
F (s)

s

1 + Kd Kv
N

F (s)
s

(1.2)

The transfer function from the reference signal phase (angular fre-
quency) to the output signal phase (angular frequency) is given by the
frequency division factor N multiplied by the PLL closed-loop transfer
function:

HL(s) =
Kd Kv

N
F (s)

s

1 + Kd Kv
N

F (s)
s

(1.2′)

The Laplace variable is in general complex: s = σ + j ω. Replacing it
with the imaginary only variable s = j ω = j 2π f corresponds to using
the Fourier transform. The PLL closed-loop transfer function becomes
the PLL frequency response:

H ( f ) =
Kd Kv

N
F ( j 2π f )

j 2π f

1 + Kd Kv
N

F ( j 2π f )
j 2π f

(1.3)

and the transfer functions (1.1) and (1.2) become the PLL closed-loop
gain:

ClosedLoopGain( f ) = N
Kd Kv

N
F ( j 2π f )

j 2π f

1 + Kd Kv
N

F ( j 2π f )
j 2π f

= NF ( f ) (1.3′)

The PLL frequency response H ( f ) can also be seen as the gain from
the reference input to the frequency divider output.

We supposed that the loop filter is lowpass. In terms of its frequency
response this means that

lim
f →0

|F ( j 2π f )| > 0 and lim
f →∞

|F ( j 2π f )| ≤ |F ( j 2π f )| f =0 < ∞

(1.4)
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These assumptions imply that

lim
f →∞

H ( f ) = lim
f →∞

Kd Kv
N F ( j 2π f )

j 2π f + Kd Kv
N F ( j 2π f )

= 0

and

H ( f = 0) =
Kd Kv

N F ( j 2π f )

j 2π f + Kd Kv
N F ( j 2π f )

∣∣∣∣∣
f =0

=
Kd Kv

N F (0)
Kd Kv

N F (0)
= 1

In other words, the closed-loop PLL frequency response is lowpass with
the unit gain in direct current. The combination of Eq. (1.3) with
Eqs. (1.1) and (1.2) has a very interesting physical interpretation. It
tells us that any phase (frequency) modulation on the reference signal
modulates the phase (frequency) output signal multiplied by N and
lowpass filtered. Thus, slow varying modulation affects the output sig-
nal; fast varying modulation doesn’t.

1.4.1 PLL stability analysis

The stability of the loop is one important concept that needs to be dis-
cussed. The starting point is the open-loop frequency response. Open-
loop gain can be calculated from Fig. 1.2a (or Fig. 1.2b); it is the gain
from node a1 to node a7 (or from b1 to b7):

HOpenLoop( f ) = Kd Kv

N
F ( j 2π f )

j 2π f
(1.5)

Closed-loop stability analysis can be made by analyzing the open-loop
frequency response. For this purpose the open-loop gain amplitude and
phase calculation are needed. Control system theory states that a sys-
tem is stable if the poles of its transfer function† have a negative real
part. We will assume that the loop filter is stable by itself. From feed-
back control system theory we know that a system is unstable if the
phase shift φo at the frequency where the open-loop gain has unitary
amplitude, f o, equals π(180◦).‡

Open-loop gain is the product of three factors:

1. Constant factor Kd Kv/N

2. Lowpass function F ( j 2π f ) having the properties of Eq. (1.4)

3. Integrator transfer function 1/( j 2π f )

†In the Laplace domain, the complex variable s = σ + j ω.
‡Remember that +π and −π are the same phase shift.
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Comparing the open-loop and closed-loop transfer functions [Eqs. (1.3)
and (1.5)]; it can be seen that at high frequencies the denominator of
Eq. (1.3) can be approximated by 1 because lim

f →∞
F ( j 2π f ) has a finite

value and lim
f →∞

j 2π f = ∞. Thus

lim
f →∞

F ( j 2π f )
j 2π f

= 0

So at high frequencies the open- and closed-loop gains are the same.
The open-loop gain amplitude is the product of the amplitudes of three

factors. At zero frequency open-loop gain is infinite because the loop fil-
ter frequency response amplitude is greater than 0 and the integrator
frequency response becomes infinite. At infinite frequency the open-loop
gain is zero because the loop filter term is finite and the integrator term
is zero. So the open-loop gain amplitude ranges from infinity (at zero
frequency) to zero (at very high frequencies). Thus there is at least one
frequency value that makes the open-loop gain have unitary amplitude.
The phase of the open-loop gain is the sum of the phases of the previous
listed three terms. The constant factor’s phase is zero, the loop filter
phase is a delay variable with frequency, and the integrator phase is
−π/2 and is constant over frequency. In the next sections we will see
that a zero-order loop filter has less than a −π/2 phase shift, so the
total open-loop phase shift is less than π and the loop is always stable.
Higher-order filters are not unconditionally stable. One parameter that
is often used to evaluate loop stability is the phase margin. It is, by def-
inition, the phase shift amount that has to be added to open-loop gain
to make it become unstable. In other words the phase margin is the dis-
tance of the open-loop phase shift, calculated at unity gain frequency,
from +π or −π , whichever is closest. Of course, the higher the phase
margin, the stronger the stability. Bode and Nyquist diagrams are nor-
mally used to check the phase margin. Their use will be explained in
Sec. 1.7.

PLL phase error response is also of interest. Looking at Fig. 1.2a, the
input is the reference signal phase �r(s) (node a1); the output is the
phase error �e(s) = �r(s) − �v(s) (node a2). The transfer function is
called the error response and can be computed with the same procedure
used for closed-loop transfer function derivation. This gives

�e(s)
�r(s)

= �r(s) − �v(s)
�r(s)

= 1
1 + Kd Kv

N
F (s)

s

= 1 − H (s)

(1.6)
�e( f )
�r( f )

= 1

1 + Kd Kv
N

F ( j 2π f )
j 2π f

= j 2π f
j 2π f + Kd Kv

N F ( j 2π f )
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Regarding the loop filter frequency response we already assumed low-
pass conditions (1.4), so

lim
f →0

�e( f )
�r( f )

= 0 and lim
f →∞

�e( f )
�r( f )

= 1

Thus, the error response is highpass.

1.5 PLL Order and PLL Type

We previously stated that the loop filter is a lowpass filter whose trans-
fer function is a rational function with real coefficients of the variable
s (or j 2π f ). The loop filter frequency response can be written as

F ( f ) =
∑N A

k=0 Ak( j 2π f )k∑N B
k=0 Bk( j 2π f )k

(1.7)

It has to satisfy conditions (1.4), implying that

lim
f →0

|F ( f )| =
∣∣∣∣ A0

B0

∣∣∣∣ > 0 ⇒ A0 �= 0

and

lim
f →∞

|F ( f )| = lim
f →∞

∣∣∣∣ AN , A( j 2π f )N A

BN ,B ( j 2π f )N B

∣∣∣∣
=
∣∣∣∣ AN , A

BN ,B

∣∣∣∣ lim
f →∞

∣∣( j 2π f )N A−N B
∣∣ ≤ ∣∣∣∣ A0

B0

∣∣∣∣ < ∞ ⇒ N B ≥ N A

In other words the numerator of the frequency response has a constant
term different from zero, and the denominator order is greater than or
equal to the numerator order. Define the order of the loop filter as the
order of its frequency response denominator. Let’s write the PLL fre-
quency response using an explicit expression of the loop filter frequency
response.

H ( f ) =
Kd Kv

N

∑N A
k=0

Ak ( j 2π f )k∑N
B

k=0 Bk ( j 2π f )k

j 2π f + Kd Kv
N

∑N A
k=0

Ak ( j 2π f )k∑N
B

k=0 Bk ( j 2π f )k

H ( f ) =
Kd Kv

N

∑N A
k=0 Ak( j 2π f )k

j 2π f
∑N B

k=0 Bk( j 2π f )k + Kd Kv
N

∑N A
k=0 Ak( j 2π f )k

H ( f ) =
Kd Kv

N

∑N A
k=0 Ak( j 2π f )k∑N B

k=0 Bk( j 2π f )k+1 + Kd Kv
N

∑N A
k=0 Ak( j 2π f )k

(1.8)
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H ( f ) is a rational function of variable j 2π f ; the numerator is an
N A-order polynomial, and the denominator is an (N B +1)-order polyno-
mial. Both polynomials have real coefficients. From conditions (1.4), we
have that the numerator has a nonzero constant term and that the de-
nominator order is strictly greater than the numerator order. The PLL
order is the same as the closed-loop frequency response denominator or-
der which is N B +1. The PLL order equals the loop filter order plus one.

Another PLL classification can be made by the number of poles of
open-loop gain at zero frequency. Remembering open-loop gain expres-
sion (1.5) and lowpass conditions (1.4), we can find that the open-loop
gain has at least one pole located at zero frequency given by the integra-
tor factor 1/( j 2π f ). The loop filter can have at most one additional pole
at zero frequency; it can’t have more because circuit theory tells us that
one network with two coincident poles on the imaginary axis of variable
s (including zero) is unstable. Summarizing, open-loop gain can have
one or two poles at zero frequency depending on whether the loop filter
DC gain is finite or infinite. The number of poles at zero frequency of
the open-loop frequency response is the type of the PLL (1 or 2).

1.6 First-Order PLL

The simplest loop filter frequency response satisfying conditions (1.4)
is a constant one: Vout = AV in. If the A < 1 loop filter is a resistive
voltage divider, the loop filter order is zero. In the simplest case, A = 1
and the loop filter simply consists of a piece of wire. The zero-order loop
filter gives the first-order PLL whose frequency response is given by

H ( f ) =
Kd Kv

N A

j 2π f + Kd Kv
N A

= 1
j f

Kd Kv A/(2π N ) + 1
= 1

1 + j f
f n

(1.9)

The first-order PLL frequency response is a first-order lowpass re-
sponse; its cutoff frequency is called the “natural frequency of PLL”
and is given by

f n = Kd Kv A
2π N

Normally, Kv, Kd , and N are determined, so the only flexibility in
the PLL design is with the loop filter parameters. The zero-order loop
filter has only one parameter: its gain A. Natural frequency is the
only parameter of a first-order PLL closed-loop response; it can be
changed by changing the loop filter gain. A first-order PLL is impos-
sible to realize, one reason being that any practical VCO has a limited
modulation bandwidth, and thus the VCO transfer function isn’t a
simple constant Kv.
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1.7 Second-Order PLL

First-order loop filters, which correspond to second-order PLLs, are
widely used. Figure 1.3a and b shows passive and active first-order
loop filters. The first-order filter is more realistic than the zero-order
one because it can be designed with a bandwidth narrower than the
VCO modulation bandwidth and thus the effect of the latter can be
neglected. For this reason the second-order loop will be used to inves-
tigate some PLL functions like the closed-loop response and the error
response and to introduce some concepts needed for stability analysis.

The passive filter frequency response is given by

F1, passive( f ) = j 2πτ2 f + 1
j 2π(τ1 + τ2) f + 1

with τ1 = R1C τ2 = R2C

(1.10)

The active filter frequency response is given by

F1, active( f ) = j 2πτ2 f + 1
j 2πτ1 f

with τ1 = R1C τ2 = R2C

(1.11)

In

Out

R1 R2 C

−

+

Gain = −1

(b)

In Out

R1
R2

C

(a)

Figure 1.3 First-order loop filters. (a) Passive, and (b) active.
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Note that both passive and active first-order filters have three com-
ponents, but their frequency responses have only two parameters: τ1
and τ2. This is because the frequency response depends on the ratio be-
tween two impedances: the first given by R2 in series with C, the second
by R1. The passive (active) filter second-order PLL frequency response
can be calculated substituting Eq. (1.10) [Eq. (1.11)] in Eq. (1.3) and
rearranging the expressions. The passive first-order loop has a finite
DC gain; an active one has an infinite DC gain (in practical cases, finite
but very high). So the second-order PLL with a passive filter is type I
and with an active filter is type II.

H 2ndOrder
Passive ( f ) =

j 2π f
(

1
Q

1
2π f n

− N
Kd Kv

)
+ 1(

j f
f n

)2
+ j 1

Q
f
f n

+ 1
(1.12)

with

f n = 1
2π

√
Kd Kv

N
1

τ1 + τ2
and Q =


( N

Kd Kv
+ τ2

)√
Kd Kv

N
1

τ1 + τ2




−1

H 2ndOrder
Active ( f ) =

j 1
Q

f
f n

+ 1(
j f

f n

)2
+ j 1

Q
f
f n

+ 1
(1.13)

with

f n = 1
2π

√
Kd Kv

N
1
τ1

and Q =

τ2

√
Kd Kv

N
1
τ1




−1

As found on the first-order PLL, f n is the natural frequency while Q is
the damping factor of the loop. In most textbooks the damping factor
is indicated with variable ζ instead of Q and 2ζ = 1/Q. As stated in
Sec. 1.3, the PLL closed-loop denominator order is higher by one than
that of the loop filter. The highest power of f in the frequency response
is in its denominator and equals two†: that’s why the PLL is known as
the second-order PLL. Function (1.12) coincides with (1.13) if

1
Q

1
2π f n

� N
Kd Kv

⇒ τ2 � N
Kd Kv

†According to the general rule found in Sec. 1.5, the PLL order equals the
loop filter order plus one.
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Figure 1.4 Active second-order PLL frequency response.

During subsequent considerations only active second-order PLLs will
be considered. The amplitude of the frequency response (dB) is given by

dB
[
H 2ndOrder

Active ( f )
]

= 10 log10




(
1
Q

f
f n

)2
+ 1[

1 −
(

f
f n

)2
]2

+
(

1
Q

f
f n

)2




(1.14)

For f < f n, the denominator of Eq. (1.14) is less than the numera-
tor for any value of Q. This implies that for f < f n, the frequency
response magnitude is greater than 0 dB. The frequency response mag-
nitude for several Q factors is plotted in Fig. 1.4. This graph shows that
the loop operates like a lowpass filter on input signal (reference) phase
modulations. Filter asymptotic slope is 20 dB/decade for any Q value;
the peak on frequency response is increasing with Q. All curves have
one common point ( f / f n = √

2; 0). Frequency response (1.14) has a
well-defined −3-dB frequency and response peak. The 3-dB frequency
can be calculated from Eq. (1.13) and is

(
f
f n

)2

−3dB
= 1 + 2Q2 +

√
(1 + 2Q2)2 + 4Q4

2Q2

The response peak occurs at the value where the derivative of Eq. (1.14)
equals zero, which is(

f
f n

)2

= Q
(√

Q2 + 2 − Q
)
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TABLE 1.1 Second-Order PLL 3-dB Frequency, Peak Response,
and Peak Frequency for Some Values of the Damping Factor

Q −3-dB f / f n Peak, dB Peak f / f n

0.10 10.100 0.076 0.132
0.25 4.249 0.400 0.297
0.50 2.482 1.249 0.500
0.71 2.054 2.102 0.619
1.00 1.817 3.334 0.732
2.00 1.622 7.171 0.899

The corresponding frequency response in dB is

ClosedLoopPeak(Q) = −10 log10

[
1 − Q2

(
Q −

√
Q2 + 2

)2
]

Table 1.1 lists the −3-dB normalized frequency, peak amplitude, and
frequency for some Q values.

The active filter second-order PLL error response is

dB
[
1 − H 2ndOrder

Active ( f )
]

= 10 log10




(
f
f n

)4

[
1 −
(

f
f n

)2
]2

+
(

1
Q

f
f n

)2




(1.15)

Equation (1.15) is plotted in Fig. 1.5 for Q values of 0.25, 0.5, 1, 2. It
can be seen that it is a highpass frequency response with a slope of

Q = 2

 40 dB/decade
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1

0.1
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Figure 1.5 Active second-order
PLL error response.
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TABLE 1.2 Error Response Peak

Q Peak, dB Peak f / f n

0.75 0.054 3.000
1.00 1.249 1.414
2.00 6.301 1.069
5.00 14.023 1.010

40 dB/decade. The error response presents a peak if Q2 > 0.5. The peak
amplitude increases with Q and is given by

ErrorResponsePeak(Q) = 10 log10

(
4Q4

4Q4 − 1

)

Table 1.2 lists error response peaks and their normalized frequency for
different Q values.

Consider now the stability analysis of a type II, second-order loop. In
order to calculate open-loop gain, we substitute active first-order loop
gain [Eq. (1.10)] into PLL open-loop gain [Eq. (1.5)], and we obtian

HOpenLoop( f ) = Kd Kv

N
1

j 2π f
j 2π f τ2 + 1

j 2π f τ1

Applying the definitions of f n and Q from Eq. (1.11) we can write

HOpenLoop( f ) =
j 1

Q
f
f n

+ 1(
j f

f n

)2

For stability analysis purposes, we need to calculate the amplitude and
phase of open-loop gain. The amplitude (dB) and phase (rad) are re-
spectively given by

dB
[
HOpenLoop( f )

] = 10 log10

[(
1
Q

f
f n

)2

+ 1

]
− 20 log10

(
f
f n

)

arg
[
HOpenLoop( f )

] = arctan
(

1
Q

f
f n

)
− π

To check stability conditions, we will first find the unit gain frequency
and then calculate the phase shift at that frequency. Let’s call f z the
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frequency at which the open-loop gain amplitude is 1†:(
1
Q

f z
f n

)2
+ 1(

f z
f n

)4 = 1 ⇒
(

f z

f n

)4

− 1
Q2

(
f z

f n

)2

− 1

= 0 ⇒
(

f z

f n

)2

=
1

Q2 +
√

1
Q4 + 4

2

The phase shift at the unit gain frequency is

arctan
(

1
Q

f z

f n

)
− π = arctan


 1

Q

√√√√ 1
2Q2 +

√
1

4Q4 + 1


− π

The phase margin is

PhaseMarginActive
SecondOrder(Q) = arctan


 1

Q

√√√√ 1
2Q2 +

√
1

4Q4 + 1




The phase margin is always positive for any value of Q; it tends to zero
when Q tends to infinity and tends to π/2 (90◦) when Q tends to zero.

From another point of view, we also know that a system is stable if
all poles f p of its closed-loop transfer function lie in the left half of
the s plane; i.e., Re ( j 2π f p) < 0. Now poles of second-order closed-loop
transfer function are the zeros of the denominator‡ of in Eq. (1.12) or
(1.13) which is: (

j
f
f n

)2

+ j
1
Q

f
f n

+ 1

Poles are given by

j
f p

f n
= j

2π f p

2π f n
= −1

2
1
Q

±
√

Q2

4
− 1

If Q < 1
2 , we have two real negative distinct poles; if Q = 1

2 , we have two
real coincident poles j f p/ f n = 0.5/Q; if Q > 1

2 , we have two complex
conjugate poles having real part 0.5/Q. In any case, since f n and Q
are positive quantities by definition, the two poles have a real part less

†The double underscore in the equation indicates the final result.
‡The denominator is a Hurwitz polynomial of the variable s (or j 2π f ).
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than 0; thus the second-order loop is always stable. Looking at the open-
loop response, we arrive at the same conclusion because arctan( 1

Q
f
f n

)
is always greater than 0 for any finite value of the frequency, and the
open-loop phase shift is always less than π . Nevertheless the second-
order loop can be used to demonstrate the use of two important tools for
stability analysis. The first is the Bode diagram, on the same rectangu-
lar graph, magnitude (dB) and phase (degrees) of open-loop gain versus
frequency are plotted. Normally frequency has a logarithmic scale. The
phase margin can easily be found with the following procedure:

� Find the unit gain frequency; which is the frequency where the open-
loop gain amplitude equals 1 (or 0 dB).

� Read the open-loop gain phase at that frequency; this is the phase
shift at unit gain.

� Determine the phase margin by taking the difference between the
unit gain phase shift and 180◦ (or −180◦).

Figure 1.6a shows the Bode diagram of a type II (active-loop filter),
second-order PLL having Q = 1; the frequency axis is normalized
to natural frequency. The phase margin is also drawn and is about
51.8◦.

Another useful graph for stability analysis is the Nyquist diagram.
On that diagram the imaginary part of the open-loop gain is plotted ver-
sus its real part. This is done for both positive and negative frequencies;
f ∈ [−∞; +∞]. The PLL open-loop gain is the product of three factors:
a constant function, a loop filter function, and an integrator transfer
function (as mentioned in Sec. 1.3); all these factors are real positive
functions of variable s. If Frp(s) is a real positive function of complex
variable s = σ + j ω it implies that

Frp( j ω) = conjugate[Frp(− j ω)]

or that

I m[Frp( j ω)] = −I m[Frp(− j ω)]

Consequently the imaginary part of the open-loop gain for negative
frequencies has the same plot as for the positive part but mirrored on
the x axis. The Nyquist stability criterion applied to our case tells us
that the PLL is stable if the curve doesn’t encircle point (−1; j 0). Again,
the phase margin is the phase shift amount that has to be added to the
open-loop gain to make it encircle the point (−1; j 0). It is easier to
read the phase margin from the Nyquist diagram than from the Bode
diagram. To do so:
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Figure 1.6 Active second-order PLL with Q = 1. (a) Bode diagram. (b)
Nyquist diagram.

� Locate the point where the curve crosses the unit circle.
� The phase margin is the arc from this point to the x axis.

Figure 1.6b shows the Nyquist diagram of type II (active-loop filter),
second-order PLL† having Q = 1; the curve for negative frequency is
dashed. The phase margin is also drawn and is about 51.8◦.

†Same PLL as in Fig. 1.6a.
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Figure 1.7 Active second-order PLL frequency responses (Q = 1).

Figure 1.7 shows type II second-order PLL, Q = 1, frequency re-
sponses: open-loop response, closed-loop response (almost coincident
for f / f n > 3 as anticipated in Sec. 1.5), and error response.

The closed loop† and error response‡ amplitude peaks together with
the phase margin versus Q are Plotted in Fig. 1.8.
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Figure 1.8 Active second-order PLL frequency response parameters.

†See also Table 2.1.
‡See also Table 2.2.
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Chapter

2
Loop Components

2.1 Introduction

This chapter is dedicated to the description of PLL elements. Detailed
explanations on the design of loop components is beyond the scope of this
chapter. However, descriptions of the circuits include all details needed
to understand the operation of real loop components and to show the
problems involved with their use. The internal operation of loop compo-
nents will be examined in order to show the origin of their nonideality.
Nevertheless some ideas on how to simulate circuit performance will be
given. Those simulations contain all the ingredients for more complex
and accurate predictions on the performances of the circuits.

The section on phase detectors describes the most used circuits: mul-
tipliers and phase frequency detectors. They are also the oldest and the
newest types, respectively. Many other circuits can be used, and their
descriptions can be found in the references. The circuits presented here
allow us to describe the main problems coming from real phase detec-
tors, including the sampling operation of PLLs.

A detailed description of active- and passive-loop filters is given in
Sec. 2.3. The loop filter is the key element of a PLL design. It is an analog
circuit; thus it is easy to analyze with a circuit simulator, but difficult
to analyze with a mathematical program. For this reason closed-form
equations for the response of the filters are derived. Scaling rules for
loop filters are explained at the end of Sec. 2.3. Here we explain how to
modify the filter in order to maintain PLL performance while changing
remaining loop components or to shift the frequency response.

The description of oscillators and VCOs in Secs. 2.4 and 2.5 includes
basic linear and nonlinear design techniques. The causes and quantifi-
cation of phase noise, and VCO nonlinear tuning characteristics are
shown.

23
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Section 2.6 deals with variable frequency dividers. Frequency lim-
itations and configurations with fixed and/or variable prescalers are
explained. Only integer dividers are discussed; fractional dividers are
described in Chap. 3.

2.2 Phase Detector

In Sec. 1.4 we described the phase detector as a block whose output is
proportional to the phase difference between its two inputs. Practical
phase detectors realize this function with some approximations.

2.2.1 Multiplier as phase detector

The simpler phase detector consists of an ideal multiplier; a double
balanced mixer is a good approximation of it at RF and microwave
frequencies. Let’s consider the arrangement of Fig. 2.1a. The two mul-
tiplier inputs are the reference and frequency divider output signals;
the output is the product of these:

ReferenceSignal(t) = Vr cos [θr(t)]

DividerOutputSignal(t) = Vd cos
[
θo(t)
N

]

Phase
shifter

p
2

Phase detector
gain

+
−

Reference
signal

Frequency divider
output signal

Phase detector
output

(b)

Ideal multiplier
(balanced mixer)

Phase detector
output 

Reference
signal

Frequency divider
output signal

(a)

×

Figure 2.1 Multiplier as phase detector. (a) Schematic. (b) Linear
approximation for small phase error.
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where θo(t) is the VCO output phase and N is the frequency division
factor.

MultiplierOutput(t) = Am · ReferenceSignal(t)
× DividerOutputSignal(t)

where Am is the multiplier constant expressed in V−1. Thus,

MultiplierOutput(t) = AmVrVd cos [θr(t)] cos
[
θo(t)
N

]

MultiplierOutput(t) = Am
VrVd

2
cos

[
θr(t) − θo(t)

N

]

+ Am
VrVd

2
cos

[
θr(t) + θo(t)

N

]

The preceding formula contains two terms, the second one being a si-
nusoidal function with a frequency about twice that of the reference
signal; it will be filtered out by the PLL.† Consequently we will neglect
that term and write:

MultiplierOutput(t) = Am
VrVd

2
cos

[
θr(t) − θo(t)

N

]

= Am
VrVd

2
sin

[
θr(t) − θo(t)

N
− π

2

]
(2.1)

The multiplier output signal is proportional to the sine of the phase
difference between its inputs and decreased by π/2. If∣∣∣∣θr(t) − θo(t)

N
− π

2

∣∣∣∣ � π

2

Eq. (2.1) can be approximated as

MultiplierOutput(t) ∼= Am
VrVd

2

[
θr(t) − π

2
− θo(t)

N

]
(2.1′)

Within this approximation the multiplier output signal is proportional
to the difference between the phase of the reference signal (delayed

†Remembering that the closed-loop response is lowpass, this suggests that the
H ( f ) unit gain bandwidth has to be � than the reference frequency. Consider
also that leakage signals of the reference frequency and its harmonics are
present and their amplitude is difficult to predict.
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by π/2) and the frequency divider output signal. Note that the phase
detector gain is given by AmVrVd /2. This means that the phase detector
output depends on the signals’ amplitudes too; for proper PLL operation
constant amplitude has to be ensured for the reference and frequency
divider output signals.

The output characteristic of the phase detector realized with the mul-
tiplier is shown in Fig. 2.2a. The phase detector gain AmVrVd /2 is

−720 −360 0 360 720
−2

0

2

Output

Stable
points

Unstable
points

First cycle

Normalized output

Phase error, degrees

−180 0 180
−1.5

0.0

1.5

Output
Linear portion

Linear slope

Stable 
points

Unstable
points

Phase error, degrees

Normalized output

(a)

(b)

Figure 2.2 Multiplier phase detector output characteristic. (a) Ex-
panded plot with many cycles of phase error. (b) Detail of (a) of first
cycle region in part (a).
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supposed to be unitary; the phase error on the abscissa is the quantity
θe = θr − π/2 − θo/N expressed in degrees. Two series of zero-output
points are shown: the first is marked with O and the phase error equals
the integer multiple of 2π (360◦); the other is marked with X and the
phase error equals the odd integer multiple of π (180◦). Points marked
with O are stable points because the output slope is positive† around
those points; likewise points marked with X are unstable points. An-
other important drawback of this phase detector realization is that its
output signal can reasonably be considered proportional to the phase
error only under the hypothesis of

∣∣θr(t) − θo(t)/N − π/2
∣∣ � π/2.

Figure 2.2b shows a close-up view of the multiplier phase detector
output together with the linear output characteristic. The phase er-
ror range is [−π ; π ], it can be seen that the multiplier output is a good
approximation of the ideal one only if |Phase Error| < π/4.

The second drawback of the multiplier is its limited lock range.‡ As
found, the multiplier output is the sum of two signals: One is filtered out
from the PLL; the other is given by Eq. (2.1). Expressing the reference
and divided VCO signals in terms of their frequencies, Eq. (2.1) can be
written as

ReferenceSignal(t) = Vr cos


2π

t∫
−∞

f ref (τ ) d τ




DividerOutputSignal(t) = Vd cos


2π

t∫
−∞

f VCO (τ )
N

d τ




MultiplierOutput(t) = Am
VrVd

2

× sin


2π

t∫
−∞

[
f ref (τ ) − f VCO (τ )

N

]
d τ − π

2




The multiplier output frequency is the difference between the reference
frequency and the divided VCO frequency. If the VCO initial frequency
is very far from the locking value (the reference frequency multiplied
by N), the multiplier output is filtered out by the loop filter and has no
effect on the VCO. The PLL locks only if the initial VCO frequency is
within a given distance from the lock value. This topic will be discussed

†Points with positive slope are stable because if θe is increasing this means
that θo is increasing, and thus the correction signal has to become negative.

‡See Sec. 4.5 for more details.
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Figure 2.3 Phase frequency de-
tector schematic.

in detail later; for now it has to be known that the PLL employing the
multiplier as a phase detector has a limited lock range, so it has to be
ensured someway that the initial VCO frequency is within that limit.

2.2.2 Phase frequency detector

A more advanced phase detector circuit is the phase frequency detector
(PFD). Its schematic is shown in Fig. 2.3. It contains two “D” type flip-
flops (FF1 and FF2) and one AND port. FF1 and FF2 respond to the rising
edges of the input clock signals: reference applied to port f r, and divided
VCO applied to port f v. Input signals are square waves with a low value
lower than the maximum logic “0,” and a high value higher than the
minimum logic “1.” The duty cycle is not important because FF1 and
FF2 respond only to rising edges. Once these conditions are satisfied,
the PFD output is independent from the input amplitude unlike the
multiplier phase detector. Let’s suppose that at the beginning FF1 and
FF2 are in the reset state (Q1 = Q2 = “0”). The first rising edge, from
f r (or f v), causes FF1 (or FF2) to set. The next rising edge from f v
(or f r) causes FF2 (or FF1) to set, but this condition of Q1 = Q2 = “1” is
momentary because it makes the AND port output become “1”, resetting
both FF1 and FF2 back to their initial conditions. Up (or Dwn)† is a very
short pulse whose width equals the propagation time of the AND port
plus the reset time of the flip-flop.

†Items outside of parentheses refer to f r leading f v or a positive phase error;
items within parentheses refer to the opposite condition.
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Figure 2.4 Phase frequency detector waveforms.

PFD waveforms are shown in Fig. 2.4. Three conditions are possible for
phase error:

1. Positive. f r leads f v; see the f r and f v rising edges marked with θe3
and θe4. Up is a rectangular waveform whose width equals the time
distance between the f r and f v rising edges; see the pulses marked
with Up3 and Up4. Dwn is a very short pulse.

2. Negative. f v leads f r; see the rising edges marked with θe1 and
θe2. Up is a very short pulse; Dwn is a rectangular waveform whose
width equals the time distance between the f v and fr rising edges;
see pulses marked with Dwn1 and Dwn2.

3. Zero. f r is synchronous with f v; see the edges marked with θe0. Both
Up and Dwn are very short pulses.

In any case the Up and Dwn low level is logic “0” voltage V low, while
the high logic level “1” is Vhigh. The final result is that the Up − Dwn
signal is a rectangular pulse with amplitude Vhigh − V low, which is pos-
itive (or negative) if the phase error is positive (or negative) and where
the duty cycle is equal to the time distance between f r and f v divided
by the reference period; in other words the duty cycle equals the phase
error magnitude divided by 2π . Averaging that voltage, like a PLL
normally does,† we have

Up − Dwn = (Vhigh − V low)
θe

2π
(2.2)

†The PLL closed-loop response unit gain bandwidth has to be � than the
reference frequency as also found for the case of the multiplier phase detector.
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Figure 2.5 Averaged PFD (V1) and ideal phase detector (V2) output
voltage versus phase error.

so the PFD gain is

Kd, PFD = Vhigh − V low

2π
(2.3)

The PFD waveforms can be calculated for any phase error using a
graphic method like the one in Fig. 2.4 or by running the PFD schematic
on a mixed mode circuit simulator.† The averaged output voltage Up −
Dwn is shown in Fig. 2.5 where it is supposed that Vhigh = 5 V and
V low = 0 V. The closed-form analytic expression for the averaged output
voltage as a function of the phase error is given by

Up − Dwn (θe) =
{

2 arctan
[
tan

(
θe

2
− π

2

)]
+ |θe|

θe
π

}
Vhigh − V low

2π

(2.4)

The PFD output is linear until the phase error is within the limit
±2π ; the multiplier phase detector linearity range is a lot narrower.
Figure 2.6 compares three phase detectors with the same gain: the
multiplier, PFD, and ideal one which is linear for any phase error.

The PFD has one important advantage over the multiplier. The PFD
averaged output is monotonically increasing with the frequency dif-
ference between f r and f v if they are different. This is exactly the
condition when the PLL is not locked. Then if the PLL is not locked,
whatever the VCO initial frequency is, the PFD will push the output

†See the SIMETRIX file PhaseFrequencyDetector Phase.sxsch.
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Figure 2.6 Multiplier, PFD, and linear PD output voltage versus
phase error.

frequency toward the lock value. To recognize this very important prop-
erty let’s suppose first that the reference frequency is higher than the
VCO divided one; this means that f r has more rising edges per unit
time than fv. FF1 will be set more frequently than FF2, while FF1 and
FF2 are reset always simultaneously. The Up average value is higher
than that of Dwn. The final result is that the higher the frequency dif-
ference between f r and f v, the higher the PFD average output, and
vice versa. Two extreme cases are when the divided VCO frequency or
reference signal is zero. In the first case FF1 is set by the first f v rising
edge and never reset, while f v is reset forever: Up − Dwn is a DC volt-
age with amplitude Vhigh − V low. The second case can be reduced to the
first by swapping fv, FF1, Up with fr, FF2, Dwn: Up− Dwn is a DC volt-
age with amplitude −(Vhigh − V low). The exact computation of the PFD
averaged output versus the frequency error can be done by simulating
the circuit on a mixed mode simulator.† The result is shown in Fig. 2.7
where ideal complementary metal oxide semiconductor (CMOS) compo-
nents have been used for simulation having Vhigh = 5 V and V low = 0.
The reference to divided VCO frequency ratio is plotted on a logarith-
mic scale; the curve is antisymmetric on that scale. Note that the PFD
average output becomes ±(Vhigh − V low)/2 for any reference to divided
VCO frequency ratio a little bit greater or lower than 1 and tends
to ±Vhigh − V low for a frequency ratio tending to infinity or zero.

†See the SIMETRIX file PhaseFrequencyDetector Frequency.sxsch.
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Figure 2.7 PFD averaged output voltage versus reference to divided
VCO frequency ratio.

2.2.2.1 Dead zone. For very small phase errors, PFD output voltage is
no longer proportional to the phase error because the PFD internal com-
ponents’ delay dominates the phase delay between inputs. Around zero
phase error the PFD transfer characteristic is quite different from the
straight line shown by Fig. 2.5 assuming more or less the aspect shown
in Fig. 2.8a. The phase detector incremental gain is the derivative of the
output voltage with respect to the phase error; it is shown in Fig. 2.8b
together with the one of an ideal phase detector. Note that practical
PFD gain for small phase error can be quite different from its nominal
value: orders of magnitude higher or lower than nominal, zero, or even
negative. Consequently a PLL transfer function can be quite different
from the calculated one and the PLL can become unstable. This prob-
lem is known as the dead zone or crossover distortion. Unfortunately
the dead zone affects the most important part of the PFD characteristic
because the PLL in the lock state has zero phase error by definition.
A PLL with PFD affected by crossover distortion may appear to work
normally, but it is possible to momentarily see its spectrum looking like
free-running VCO because the PLL is operating in open-loop mode due
to the zero PFD gain. Momentary instability due to the loop gain in-
creasing can be observed as well. The exact lock state phase error value
is affected by internal PLL offsets (normally very small), so any change
in their values can cause the operating point to move into points where
the gain disappears or becomes very high or even negative. Some so-
lutions have been proposed (most of the cases have been patented) to
eliminate dead zone effects. One solution is to force the PLL to lock with



Loop Components 33

−15

(a)

−15
0

0

0

15

15

−0.2

0

0.2

O
ut

pu
t v

ol
ta

ge
, V

P
F

D
 g

ai
n,

 V
/d

eg
re

e

Phase error, degrees

Linear

  Linear

Nonlinear

Nonlinear

(b)

Phase error, degrees

0.1
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(b) Gain.

nonzero phase error. This can be done by summing a fixed (positive or
negative) offset voltage VFIX to the PFD output as shown in Fig. 2.9.
Referring to that schematic it can be seen that Vdet equals zero in the
lock state because the PLL has DC infinite gain. It follows that the
PFD output Up − Dwn = −VFIX and that the phase error is given by
θe = θr − θv = VFIX/Kd . This way the lock state phase error is moved
out of zero and the dead zone is not used. The offset voltage has to be
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Figure 2.9 PLL with PFD and dead zone elimination circuity.

dimensioned in order to pull the operating point out of the dead zone.

θe, LOCKED = VFIX
1

Kd
= VFIX

2π

Vhigh − V low
⇒ VFIX

= θe, LOCKED

2π
(Vhigh − V low)

The phase error in the lock state must be high enough to make the PLL
work outside of the dead zone; e.g., the phase error amplitude has to
equal the dead zone amplitude plus some margin.

VFIX = θe, LOCKED

2π
(Vhigh − V low) = θDeadZone + θMargin

2π
(Vhigh − V low)

= θsafety

2π
(Vhigh − V low)

Expressing the phase in degrees, we obtain

VFIX = �safety, degrees

360
(Vhigh − V low) (2.5)

2.2.2.2 PFD spurs. As discussed, the PFD output is the difference be-
tween two rectangular waves: Up and Dwn. Ideally, in the lock state,
Up and Dwn are two identical periodic rectangular waveforms having
a fundamental frequency equal to reference one ( f ref), an amplitude
equal to the difference between the “1” and “0” state flip-flop voltage
(Vhigh − V low), and a very short pulse width. Thus the ideal PFD output
voltage is a perfect zero in the lock state. The practical case is differ-
ent because the Up and Dwn pulses are not perfectly simultaneous;
they have different amplitudes and pulse widths. The resulting wave-
form still has a zero average value but with a superimposed pseudo-
rectangular waveform whose fundamental period equals the reference
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signal period. The PLL output spectrum is modulated by the reference
signal residual which can only be filtered by the loop filter. Some nonide-
alities on the PFD signals Up and Dwn can be present. Three nonideal
cases together with perfectly balanced PFD are shown in Fig. 2.10; real
cases are combinations of them.

� Figure 2.10a shows the ideal case. Up and Dwn are two identical
rectangular waves with periods equal to the reference signal. The
PFD out voltage is perfectly zero.

� Figure 2.10b shows the first kind of degradation of perfectly balanced
PFD. Up and Dwn are like case (a) but there is a nonzero delay be-
tween them. The PFD out voltage still has a zero average value but
with positive and negative rectangular pulses superimposed.

� Figure 2.10c shows the case of Up and Dwn with different amplitudes.
The PFD average output has to be zero in the lock state; it follows
that Up and Dwn will have different pulse widths to maintain a zero
average output.

� Figure 2.10d shows the important case of offset applied to PFD out-
put. This situation is very often present in PLLs and is intentionally
caused when dead zone elimination offset is applied. If the arrange-
ment in Fig. 2.9 is used, the PFD average value is no longer zero. It
follows that the Dwn (or Up) signal presents wider pulses if VFIX > 0
(or VFIX < 0), while the Up (or Dwn) signal has very short pulses
(ideally of zero width).

In any case the PFD output is periodic with period 1/ f ref, and its
spectrum can be calculated by using Fourier series expansion. The most
interesting case is that of the dead zone. The PFD harmonic amplitude
can be calculated as follows.

Let’s assume VFIX < 0. Then the PFD output voltage in one period is
given by

PFDout(t)t∈[0;T ref] = if (t < δT , Vhigh − V low, 0)

To find δT we set the PFD average value equal to VFIX:

1
T ref

∫ T ref

0
PFDout(t) d t = 1

T ref

∫ δT

0
(Vhigh − V low) d t

= δT
T ref

(Vhigh − V low) = VFIX

δT = VFIX

Vhigh − V low
T ref = �DegreesSafety

360
T ref
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Figure 2.10 PFD output in lock state nonidealities. (a)
Ideal case, (b) Up − Dwn delay, (c) unequal ampli-
tude/width, (d ) offset applied.
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The PFD output voltage expansion in Fourier series is given by

PFDout(t) =
∞∑

k=0

ak sin(k2π f ref t) + bk cos(k2π f ref t)

where the Fourier coefficients are given by

b0 = 1
T ref

∫ T ref

0
PFDout(t) d t = VFIX

bk>0 = 1
T ref

∫ T ref

0
PFDout(t) cos(k2π f ref t) d t

= Vhigh − V low

T ref

∫ δT

0
cos(k2π f ref t) d t

ak = 1
T ref

∫ T ref

0
PFDout(t) sin(k2π f ref t) d t

= Vhigh − V low

T ref

∫ δT

0
sin(k2π f ref t) d t

The nth(n > 0) harmonic amplitude is given by

cn =
√

a2
n + b2

n = 2
π

sin
(

n�DegreesSafety

360 π
)

n
(Vhigh − V low) (2.6)

The low-order harmonic approximate amplitude expression is

cn ∼= �DegreesSafety

180
(Vhigh − V low) = 2VFIX (2.6′)

Reference harmonic spurs modulate the VCO causing the PLL spec-
trum to be affected by side tones that are spaced out by the reference
frequency around the carrier. Figure 2.11 shows the output spectrum
of a PLL having an output frequency of 200 MHz and a reference fre-
quency of 10 MHz. The amplitude of the reference spurs is about 60 dB
below the carrier.

2.2.2.3 Charge pump. The PFD needs the circuit of Fig. 2.3 plus an ad-
ditional circuit for generating the voltage difference Up − Dwn. Many
modern PLLs use another approach; they generate a current rather
than a voltage proportional to the phase error. A PFD with current out-
put is also known as a charge pump (CP). The basic schematic is shown
in Fig. 2.12a. TR1 and TR2 are complementary P and N channel tran-
sistors; they are used as the on/off modulated current source and sink,
respectively. More in detail, when Up (which is the same signal as Q1)
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Figure 2.11 PLL output spectrum with reference spurs.

is high, the TR1 gate-source voltage is −Vdd; thus TR1 is conducting,
and a positive current flows from output to GND; when Up (and thus
Q2) is high, the TR2 gate-source voltage becomes Vdd making the TR2
remove current from the output. Four combinations are possible:

1. Both TR1 and TR2 are on. The output current is close to (but not
equal to) zero because the currents generated from TR1 and TR2 are
very close (but not identical, which is the ideal case). Looking at the
waveforms illustrated in Fig. 2.4, it is possible to observe that Up
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Figure 2.12 Charge pump phase detector.
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and Dwn are simultaneously high only for a very short time, so this
condition is not frequent.

2. Both TR1 and TR2 are off. The output current is zero. This is the most
frequently used condition, particularly when the PLL is locked.

3. TR1 is on and TR2 is off. This happens when the phase error is posi-
tive: A positive current rectangular pulse flows through the output;
its width equals the phase delay between inputs, and its amplitude
equals the saturated drain current of TR1, Idss1.

4. TR1 is off and TR2 is on. This happens when the phase error is neg-
ative. A negative current rectangular pulse flows through the out-
put (or there is a current sink from the output), its width equals the
magnitude of the phase delay between inputs, and its amplitude (<0)
equals the saturated drain current of TR2, Idss2.

If the PLL is locked, condition 2 occurs for most of the time and condition
1 for the rest of the time. If PLL is not locked, combinations of conditions
2 and 3 or 2 and 4 occur depending on the phase error between the CP
inputs. Providing that TR1 and TR2 are as complementary as possible,
i.e., Idss1 = Idss2 = Idss, we will have zero output current when the
PLL is locked. In that condition, the CP will generate short rectangular
current pulses having a width equal to the phase delay between the
CP inputs (the time delay between the f r and f v rising edges), an
amplitude equal to Idss, and the same sign as that of the phase error. In
other words we can write the CP average output current expression as

Icp,Out = Idss
θe

2π
(2.7)

It is possible to define a phase detector current gain as

Kdi = Idss
2π

(2.8)

The output current versus phase error and frequency error are the same
functions found for the voltage output PFD [ see Eq. (2.4) and Figs. 2.6
and 2.7]. The only change that has to be made is replacing the voltage
amplitude factor Vhigh − V low with the current amplitude factor Idss.
The timing diagrams of Figs. 2.4 and 2.10 are still valid if we replace
Up − Dwn with Iout, Vup with Idss1, and Vdwn with Idss2 on the bottom
waveform. Same considerations can be applied also for the dead zone
and reference spurs. The dead zone can be pulled out by adding an offset
current (instead of a voltage offset); this can be easily done by adding
a fixed shunt current generator between the output and GND or Vdd.

We must consider one last thing regarding the charge pump: TR1
and TR2 operation reasonably approximates current generators until
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the drain-source voltage magnitude is higher than a given minimum
value. Output current versus output voltage is shown in Fig. 2.13 where
a charge pump current Idss a little bit less than 1 mA is assumed.
Conditions 3 and 4 are represented. Note that both transistors’ output
characteristics approximate the current generators (horizontal lines)
only if the output voltage is within the current saturation region of both
TR1 and TR2 (between about 0.6 and 4.2 V in the plotted example). The
PLL will work as expected only if the CP output voltage is within its
valid range.

2.2.2.4 Sampled PLL. One of the most important peculiarities of the
PFD is that unlike that of the multiplier, its output changes only in
correspondence with rising edges of input signals. The output voltage
or current can be considered proportional to a “sampled” phase error
signal. Mathematical implications of this kind of situation will be dis-
cussed in the following. The PFD output is a rectangular pulse with
constant amplitude and a width equal to the phase delay between in-
puts. Continuous-time approximation (the one used most) consists of
replacing output waveforms with their average value or DC compo-
nent. That approximation can be applied because of averaging due to
the loop filter whose bandwidth is much lower than that of the reference
frequency. A more accurate approximation can be obtained by replac-
ing PFD rectangular pulses with Dirac pulses having the same area. In
other words, rectangular pulses with constant amplitude and variable
width are replaced by ideal pulses with constant (zero) width and vari-
able amplitude; the average output is the same because of the Dirac
pulse definition. In the lock state, the PFD output pulse width becomes
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very short. The proposed approximation becomes more accurate as the
PLL approaches the lock state (which is the most important state). A
PLL with the new schematization of PFD is shown by Fig. 2.14. The
PFD is schematized with an ideal phase detector whose output is a di-
rect current proportional to the phase error followed by a multiplier by
a periodic sequence of Dirac pulses. The sampling sequence frequency
equals the reference frequency. The area of each individual pulse is
equal to the reference frequency so that the input and output of the
sampler have the same DC component. The PLL closed-loop frequency
response taking into account sampling effects can be determined by
using the following block diagram equations.
Sampled phase detector output (node a′

3):

PFD∗
out( f ) = Kd

[
�r( f ) − �o( f )

1
N

]∗

PLL output (node a6):

�o( f ) = PFD∗
out( f )

F ( j 2π f )
j 2π f

Kv

Substituting the PLL output expression into the sampled PFD one and
applying the following properties of sampled functions:

[ConstantG( f )]∗ = Constant[G( f )]∗

[G1( f )G2( f )]∗ = [G1( f )]∗ [G2( f )]∗

[G( f )]∗ = {
[G( f )]∗

}∗
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we obtain

PFD∗
out( f ) = Kd

1 + Kd Kv
N

[
F ( j 2π f )

j 2π f

]∗ [�r( f )]∗

Finally substituting the PFD output into the PLL output, we obtain

�o( f ) = N
Kd Kv

N
F ( j 2π f )

j 2π f

1 + Kd Kv
N

[
F ( j 2π f )

j 2π f

]∗ [�r( f )]∗ (2.9)

Let’s write explicit expressions of time sampled functions. The Fourier
transform of time sampled functions is given by

[G( f )]∗ = F

[
g(t) f r

+∞∑
k=−∞

δ

(
t − k

f r

)]
=

+∞∑
k=−∞

G( f − k f r)

where δ(t) is the unitary area Dirac pulse at t = 0, and f r is the ref-
erence frequency. The ideal sampling in the time domain causes the
corresponding Fourier transform to be composed of an infinite number
of aliases, each centered on an integer multiple of the sampling fre-
quency. The Fourier transform of a time sampled signal is periodic over
the frequency with the period given by the sampling frequency. For this
reason, sampled Fourier transforms have to be evaluated over a fre-
quency range from zero to the sampling frequency rather than from
−∞ to +∞. For practical purposes the infinite terms of the sampled
Fourier transforms can be replaced with a truncated sum:

[G( f )]∗ = F

[
g(t) f r

+∞∑
k=−∞

δ

(
t − k

f r

)]

=
+∞∑

k=−∞
G( f − k f r) ∼=

+Nalias∑
k=−Nalias

G( f − k f r)

The preceding equation shows that the Fourier transform of a time
sampled function includes an infinite number of terms (see third ex-
pression). We replace the infinite sum with an approximated expression
containing a finite number of terms, Nalias, which is found by imposing
the condition that the difference∣∣∣∣∣∣

Nalias+1∑
k=−(Nalias+1)

G( f − k f r) −
+Nalias∑

k=−Nalias

G( f − k f r)

∣∣∣∣∣∣
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has to be lower than a specified value within the range from zero to the
sampling frequency. Equation (2.9) can also be written as

�o( f ) = N
Kd Kv

N
F ( j 2π f )

j 2π f

1 + Kd Kv
N

∑+∞
k=−∞

F [ j 2π( f −k f r )]
j 2π( f −k f r )

+∞∑
k=−∞

�r[ j 2π( f − k f r)]

(2.9′)
The closed-loop frequency response, taking into account sampling ef-
fects, is

Hsampled( f ) =
Kd Kv

N
F ( j 2π f )

j 2π f

1 + Kd Kv
N

∑+∞
k=−∞

F [ j 2π( f −k f r )]
j 2π( f −k f r )

(2.10)

The numerators of the sampled and continuous-time PLL closed-loop
gains coincide [compare Eq. (2.10) to Eq. (1.3)]. The continuous-time
PLL gain denominator is one plus the numerator, while the sampled
time denominator is one plus the sampled numerator. Regarding stabil-
ity analysis, in general the phase margin predicted taking into account
sampling effects is smaller than the phase margin calculated using
continuous-time approximation. PLL stability can be checked by cal-
culating the poles of the closed-loop frequency response. Generalizing
what we found in Sec. 1.6, it is possible to say that the denominator of
Eq. (2.10) (the sampled approximation):

1 + Kd Kv

N

+∞∑
k=−∞

F [ j 2π( f − k f r)]
j 2π( f − k f r)

plays the same role as the denominator of Eq. (1.3) (continuous time
approximation):

1 + Kd Kv

N
F ( j 2π f )

j 2π f

Then the phase margin for the sampled PLL can be calculated from the
Bode or Nyquist diagram of the factor

Kd Kv

N

+∞∑
k=−∞

F [ j 2π( f − k f r)]
j 2π( f − k f r)

instead of the factor

Kd Kv

N
F ( j 2π f )

j 2π f
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Figure 2.15 Continuous-time and sampled PLL closed-loop frequency
responses (second-order, type II, Q = 1).

which is used for continuous-time approximation. One example† was
considered of type II second-order PLL with Q = 1, f n = f r/10, and
f n = f r/20. Closed-loop frequency responses calculated with Eq. (1.3)
and Eq. (2.10) truncated to Nalias = 11 are plotted in Fig. 2.15. The
curve for f n = f r/20 is hardly distinguished by the curve for the
continuous-time approximation (the difference is less than 0.2 dB up to
f / f n = 10). The phase margin has been calculated with some different
number of alias terms. The result is shown in Table 2.1. In the worst
case of f n = f r/10 there is a phase margin degradation of about 3◦;
it is less than 1◦ when f n = f r/20. The general concept coming out
of this consideration is that continuous-time calculation is a good ap-
proximation for the PLL closed-loop frequency response providing that
the closed-loop unit gain bandwidth is � than the sampling frequency.
With this assumption, Eq. (2.9′) can be written as

�o( f ) ∼= NH ( f )
+∞∑

k=−∞
�r[ j 2π( f − k f r)] (2.11)

Equation (2.11) states that the PLL output spectrum is not only given
by the reference spectrum close to the reference frequency (about plus or
minus the PLL closed-loop bandwidth around the reference frequency)
but also by the reference spectrum around the integer multiple of the
carrier frequency, because of folding back into the reference frequency
due to sampling effects.

†See the MATHCAD file SecondOrderSampledPLL.MCD.
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TABLE 2.1 Type II, Second-Order PLL (Q = 1) Phase Margin Calculations

Sampled

Nalias Continuous time f n = 20 f r f n = 10 f r

3 51.160 49.140
5 51.111 48.944
7 51.827 51.087 48.852
9 51.074 48.799

15 51.054 48.721

2.3 Loop Filter

The basic properties of the loop filter have already been defined in Sec.
1.4 by Eq. (1.4); the loop order and type classification in finite or infinite
DC gain (types I and II) were defined in Sec. 1.5. Some simple loop filter
types were discussed in Secs. 1.6 and 1.7.

2.3.1 Reference spur filtering

From the discussion about phase detectors in Sec. 2.2, we know that
practical phase detectors present at their output not only a signal pro-
portional to the phase error but also residuals of the reference signal
and its harmonics. One of the requirements for the loop filter is that it
has to filter out reference spurs in order to prevent frequency modula-
tion of the VCO.

In order to calculate the effect of phase detector spurs on the PLL
output spectrum, we can modify the block diagram of Fig. 1.2a by the ad-
dition of a signal to the phase detector output. This is done in Fig. 2.16.
Referring to that schematic, the PLL output phase is given by a sum
of two terms, one due to the reference signal, the other to the reference

  Kd   Out1_
sKvF(s)+

Phase detector

Loop
filter

VCO

In

1/N

Frequency divider

a2 a4 a6

a7

Reference spur

a3

−

a5

a1

a3′
+

Figure 2.16 PLL block diagram including phase detector spurs.
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spur. Both terms are weighted by their own transfer function. Those
weighting functions can be calculated by applying Mason’s rule, which
states that on a feedback system the contribution of an input to the
output is filtered by the gain from that input to output divided by one
plus the total loop gain. The PLL output phase is then

�o(s) = N
Kd Kv

N
F (s)

s

1 + Kd Kv
N

F (s)
s

�r(s) + N
Kd

Kd Kv
N

F (s)
s

1 + Kd Kv
N

F (s)
s

ReferenceSpur(s)

(2.12)

It is clearly possible to recognize that reference spurs and reference
phase contributions to the output spectrum are filtered by functions
depending on frequency in the same way, just with a different multi-
plying constant. Both functions are proportional to the PLL closed-loop
transfer function. Passing from the Laplace variable to the frequency,
we can say that reference spurs are filtered by the PLL closed-loop fre-
quency response given by Eq. (1.3) multiplied by the frequency division
factor and divided by the phase detector gain, as given in the following
formula:

ReferenceSpurFiltering( f ) = N
Kd

H ( f ) = N
Kd

Kd Kv
N

F ( j 2π f )
j 2π f

1 + Kd Kv
N

F ( j 2π f )
j 2π f

(2.13)

Considering the direct path from the reference spur to the output, the
reference spur weighting function is

Kv
F ( j 2π f )

j 2π f

This latter determination is a good approximation of the exact formula
(2.13) when the loop gain magnitude is � 1 as it normally is at frequen-
cies higher than the reference frequency.

N
Kd

H ( f )
∣∣∣∣ ∼= N

Kd

Kd Kv

N
F ( j 2π f )

j 2π f
= Kv

F ( j 2π f )
j 2π f

if
∣∣∣∣Kd Kv

N
F ( j 2π f )

j 2π f

∣∣∣∣ � 1

The multiplying factor N/Kd is independent from the loop filter, so
closed-loop responses with different loop filters have to be compared
in order to evaluate the loop filter effectiveness in cutting out refer-
ence spurs. When we described loop filters in Chap. 1, we saw that
the zero-order PLL transfer function is completely characterized by
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Figure 2.17 Second-, third-, and fourth-order PLL closed-loop gains.

its only parameter, which is natural frequency, and that second-order
PLL is characterized by the natural frequency and the damping factor.
As the PLL order increases, the number of free parameters will in-
crease accordingly, but it is difficult to find a physical interpretation
for their meaning. The concepts of closed-loop unit gain bandwidth
and phase margin were introduced in Sec. 1.7. Those concepts can
be usefull when comparing the filtering action of PLLs with different
orders. Figure 2.17 shows the magnitudes of closed-loop frequency re-
sponses of three PLLs (second, third, and fourth order) having the same
unit gain frequency and phase margin (45◦). Note that the unit gain
frequency and the phase margin completely identify the second-order
PLL transfer function, while higher-order PLLs have a higher number
of free parameters, so they have many frequency responses with the
same closed-loop bandwidth and the same phase margin. Figure 2.17
shows one among the infinite possible frequency responses. Three func-
tions are plotted versus frequency normalized to the unit gain fre-
quency, so their amplitudes are unitary at a normalized frequency
of 1. Figure 2.17 clearly shows that the higher the PLL order, the
higher the spur reference attenuation. The asymptotic attenuation is
given by

Slope = 20 (PLLorder − 1) dB/decade
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Figure 2.18 Second-, third-,
and fourth-order PLL Nyquist
diagram.

Consequently, the higher the PLL order, the higher the reference spur
attenuation. Figure 2.18 shows the Nyquist diagram of the PLL of
Fig. 2.17. The phase margin for all PLLs is 45◦.

2.3.2 Loop filters for voltage output
phase detectors

First-order loop filters were presented in Sec. 1.7. Going back to the ac-
tive first-order loop filter of Fig. 1.3b, we can now see that the unit gain
inverting amplifier can be omitted when a multiplier phase detector is
used, because the inverting loop filter transfer function sign there is
just a swap between stable and unstable zero outputs (see Fig. 2.2a).
A schematic of the basic loop filter for the voltage output PFD is shown
in Fig. 2.19. When the PFD is used, the loop filter input signal has to be
the voltage difference, Up − Dwn, so the circuit of Fig. 2.3 is not com-
plete; a difference amplifier has to be inserted between the PFD outputs
and the loop filter input (the loop filter can be one of those in Fig. 1.3).
Figure 2.19a shows a more clever solution; one single operational am-
plifier (opamp) and some passive components perform difference and
filtering functions. The filter output is given by

Vout =
(

1 + Z2

R1

)
Z′

2

R′
1 + Z′

2
Up − Z2

R1
Dwn

= R1 + Z2

R1

Z′
2

R′
1 + Z′

2
Up − Z2

R1
Dwn

if
R1 + Z2

R1

Z′
2

R′
1 + Z′

2
= Z2

R1
⇒ R′

1

Z′
2

= R1

Z2
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R2 C2
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(c)

Figure 2.19 Loop filters for a PFD. (a) Filter schematic, (b) Z2
and Z′

2 for a second-order PLL, (c) Z2 and Z′
2 for a third-order

PLL.

(This balancing condition is in particular satisfied if R1 = R′
1 and

Z2 = Z′
2). Then the output becomes

Vout =
(

1 + Z2

R1

)(
1 + R′

1

Z′
2

)−1

Up − Z2

R1
Dwn

= 1 + Z2
R1

1 + Z′
2

R′
1

Z′
2

R′
1

Up − Z2

R1
Dwn = Z2

R1
(Up − Dwn) (2.14)

Equation (2.14) states that the output voltage equals the difference
between inputs filtered by the factor Z2/R1.

Filters configured as in Fig. 2.19 are particularly suited for a PFD
because they perform difference and filtering actions simultaneously.
Anyway they can still be used with a multiplier phase detector after
removing R′

1 and Z′
2 and connecting the opamp noninverting input to
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ground: The same transfer function with the opposite sign will be ob-
tained. Three particular cases will be considered.

1. Z2 is a simple resistor, the transfer function is a constant, and we
have a first-order PLL.

2. See Fig. 2.19b. Z2 is a series RC (like in Fig. 1.3). The frequency
response has the same expression as Eq. (1.11). The PLL is thus second-
order.

Vout = j 2π f C R2 + 1
j 2π f CR1

(Up − Dwn) = j 2π f τ2 + 1
j 2π f τ1

(Up − Dwn)

(2.15′)

3. See Fig. 2.16c. Z2 is a series RC with one capacitor in parallel.
The frequency response is

Vout = j 2π f C2 R2 + 1
( j 2π f )2C2C3 R1 R2 + j 2π f (C2 + C3)R1

(Up − Dwn)

(2.15′′)

The loop filter is second-order; the PLL is consequently third-order.
Equation (2.15′′) can also be rewritten as

Vout

Up − Dwn

∣∣∣∣
3rdOrder

= j 2π f C2 R2 + 1

j 2πC2

(
C2+C3

C2
R1

) 1
j 2π f C2C3

C2+C3
R2 + 1

(2.15′′′)

Equation (2.15′′′) clearly shows that the second-order loop filter is the
cascade of a first-order filter with an RC lowpass filter. The second-order
transfer function can also be realized with the schematic of Fig. 2.20
(where components’ values are indicated with lowercase letters).

Up

 Out

r1

r1

Dwn

r2 c2

r2 c2

r3

c3

−

+

Figure 2.20 Alternative second-order loop filter for a PFD.
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Transfer functions of networks in Fig. 2.19a (with Z and Z′ given by
Fig. 2.19c) and Fig. 2.20 coincide if

c2 = C2 c3 = C2C3

C2 + C3
= C2//C3 r1 = C2 + C3

C2
R1 r2 = r3 = R2

If spur attenuation has to be increased, the loop filter order can be
increased in many ways.

1. Complicating Z2 by adding other series RC elements in parallel.
But this will not change the asymptotic filter slope because the
RC series element always adds a pole-zero couple on impedance.
The impedance, and gain slope as well, is always 20 dB/decade at
most.

2. Modifying the filter of Fig. 2.19a by splitting input resistors R1 and
R′

1 into two half-value resistors and connecting one capacitor Cin
from the splitting node to ground. That configuration is shown by
Fig. 2.21; the filter order is increased by one. The main advantage
of this configuration is the limited slew rate of signals at the opamp
inputs. Up and Dwn outputs are short rectangular pulses with a
very fast slope (in the order of 100 V/µs). There is the possibil-
ity to dynamically saturate the opamp if its slew rate is not suffi-
ciently high (opamp slew rates are usually about 10 V/µs, 10 times
slower). Input RC prefiltering made by R1/2 and Cin quite reduces
the speed of signals as seen by opamp inputs preventing dynamic
saturation. The frequency response of the loop filter in Fig 2.21 is

Up 

Out

R1/2

R1/2

Dwn

Z2

R1/2

 Cin

 Cin

R1/2

Z2

−

+

Figure 2.21 Loop filter with input prefiltering network.
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given by

Vout

Up − Dwn
= Z2

R1

1
j 2π f R2

4 Cin + 1
(2.16)

where Z2 can be the impedance used for the zero-, first-, and second-
order loop filters discussed before and whose responses are given by
general expression (2.14). Comparing expressions (2.15) with (2.16),
it can be seen that the filter of Fig. 2.21 has two filtering terms, the
first is identical to Eq. (2.15); the second is a first-order lowpass filter
with a time constant of R1Cin/4. The order of the filter in Fig. 2.21
is higher by one than the corresponding filter of Fig. 2.19 (the two
filters coincide if Cin is removed).

3. Modifying the loop filter in Fig. 2.20 by replacing the output RC
lowpass filter with second-order RC, LC, or active lowpass filters.
Some possible solutions are shown in Fig. 2.22. All these filters have
a second-order lowpass frequency response given by

Vout

V in
= Faux( f ) =

[
1 + 1

Qt

(
j

f
f t

)
+

(
j

f
f t

)2
]−1

The cutoff frequency and damping factor are given by
a. Passive RC

f t = 1
2π

√
R1 R3C2C4

Qt =
√

R1

R3

C2

C4

[
1 + R1

R3

(
1 + C2

C4

)]−1

< 0.5

b. Passive RLC

f t = 1
2π

√
LC

Qt = 1
R

√
L
C

c. Active RC (Sallen & Key)

f t = 1
2π

√
R1 R3C2C4

Qt =
√

R1

R3

C2

C4

(
1 + R1

R3

)−1

Solutions 1, 2, and 3 can be combined to increase the loop filter order.

2.3.3 Loop filters for charge pump

When the charge pump phase detector is used, the loop filter has to
transform the output current (proportional to the phase error) gener-
ated from the CP to a voltage for VCO tuning. The loop filter transfer
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Figure 2.22 Some possible auxiliary loop filters. (a) Passive RC, (b)
passive RLC, (c) active RC (Sallen & Key).

function is then a transimpedance. In Sec. 2.2.2.3 it was shown that
the CP output voltage has to be kept within a limited range (with both
CP transistors operating in their current saturation range) in order to
guarantee proper operation of the CP. For this reason both passive and
active realizations of CP loop filters are frequency-depending lowpass
transimpedance with low-input impedance on transients. This way the
CP output voltage is almost constant even when one of the two output
transistors is switched on.

2.3.3.1 Passive loop filters for charge pump. Pure passive CP loop filters
are shown in Fig. 2.23. A low input impedance on transients is ensured
by input shunt capacitor C1; for this reason the minimum practical
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Figure 2.23 (a) Second-, (b) third-, and (c) fourth-order passive
loop filters for charge pump.

loop filter order is 2 and only a type II PLL is possible. Figures 2.23a
to c show second-, third-, and fourth-order loop filters, respectively. It
is assumed that the VCO tuning port has infinite DC input resistance
with, eventually, one shunt capacitor. The effect of the VCO tuning
port input capacitance is to increase the value of C1, C3, and C4 for
the second-, third-, and fourth-order filters, respectively. With these
assumptions the fourth-order filter is simplified into third-order if C4
is removed (or if C4 = 0) and into second-order if C3 is removed too
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(or C3 = C4 = 0). The general expression for the fourth-order passive
transimpedance is

F ( f ) = Z( f ) =
∑1

k=0 Nk( j 2π f )k∑4
k=1 Dk( j 2π f )k

(2.17)

where the coefficients of the numerator and denominator are given
by

N0 = 1

N1 = C2 R2

D1 = C1 + C2 + C3 + C4

D2 = C3C4 R4 + C1[C2 R2 + C3 R3 + C4(R3 + R4)]
(2.18)

+ C2[C3(R2 + R3) + C4(R2 + R3 + R4)]

D3 = C2C3C4(R2 + R3)R4 + C1{C3C4 R3 R4 + C2 R2[C3 R3

+ C4(R3 + R4)]}
D4 = C1C2C3C4 R2 R3 R4

The third-order coefficients can be obtained by putting C4 = 0 in
Eq. (2.18), and the second-order coefficient can be obtained by letting
C3 = C4 = 0. Note that these simplifications don’t affect the numerator
coefficients.

The main advantage of the passive CP loop filter is that no active
component is required which normally adds noise to the tuning volt-
age. The main drawback is that the CP output voltage range is lim-
ited (usually less than 5 V), and thus so is the tuning voltage. When
a wider tuning voltage range is required, active components have to
be used. The simplest solution is to insert a voltage amplifier between
the passive loop filter output and the VCO tuning port. The voltage
amplifier has to respect the same conditions on its input impedance
assumed for the VCO tuning port, and its output impedance has to
be as low as possible in order to minimize interactions with the tun-
ing port input impedance. Both of these two conditions can be reason-
ably satisfied by using one operational amplifier as shown in Fig. 2.24.
Letting K (for the circuit of Fig. 2.14, K = 1 + r4/r5) be the voltage
gain of the amplifier, the loop filter frequency response becomes the
same as that of Eq. (2.17) [its coefficients are still given by Eq. (2.18)]
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Figure 2.24 Passive transimpedance loop filter with gain.

multiplied by K :

F ( f ) = Z( f ) = K
∑1

k=0 Nk( j 2π f )k∑4
k=1 Dk( j 2π f )k

(2.19)

Additional filters of Fig. 2.22 can also be inserted between the loop filter
output and the VCO tuning port in Fig. 2.24 in order to further increase
the PLL order. Equation (2.19) is multiplied by the second-order lowpass
function of Fig. 2.22a.

2.3.3.2 Active loop filters for charge pump. One possible realization of
transimpedance using an operational amplifier is shown in Fig. 2.25.
Its transfer function from the charge pump current to the tuning voltage
is given by

Vout = −Z2 ICP (2.20)

Comparing Eq. (2.20) with Eq. (2.14), it can be seen that these two ex-
pressions have the same dependence on frequency due to impedance
Z2. The two expressions differ for a constant positive multiplying fac-
tor R1, and Eq. (2.19) has the opposite sign with respect to Eq. (2.14).
This sign inversion can easily be removed by adding a further inver-
sion (e.g., inserting one inverting amplifier between the filter output
and VCO tuning port) or by inverting the CP output characteristic by
swapping the reference and divided VCO signals at the PFD inputs. The
main advantage of the circuit in Fig. 2.25 is that the input impedance
from the inverting to noninverting input is always very close to zero.
By choosing the noninverting input voltage bias Vref, a value right in
the middle of the CP dynamic range, proper operation of the charge
pump is automatically ensured. At the beginning of Sec. 2.3.3.1 it was
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Figure 2.25 Active loop filters for
a CP. (a) Filter schematic, (b) Z2
for a first-order loop filter, (c) Z2
for a second-order loop filter.

shown that the minimum order for PLL with CP and a passive filter
is three and only type II PLLs are possible. If the passive loop filter is
replaced with that of Fig. 2.25, these restrictions are removed. Then
any PLL order and type are possible. Similarly to the filter of Fig. 2.19,
the first- and second-order loop filter frequency responses of Fig. 2.25
are given by

Vout = − j 2π f CR2 + 1
j 2π f C

ICP (2.20′)

Vout = − j 2π f C2 R2 + 1
( j 2π f )2C2C3 R2 + j 2π f (C2 + C3)

ICP (2.20′′)

Similarly to the filters of Figs. 2.19, 2.21, and 2.24, additional filters of
Fig. 2.22 can be cascaded to the filter output of Fig. 2.25, increasing the
PLL order and multiplying the transfer functions of Eqs. (2.19), (2.19′),
and (2.19′′) by the second-order lowpass function of Fig. 2.22.
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2.3.4 Loop filter scaling

The scope of this section is to show loop filter alterations needed to
achieve some variations on loop performance or to take into account
variations on loop components. The first kind of loop filter scaling is
needed when one loop filter, designed to operate with a given PLL, has
to be modified in order to operate with a different PLL having different
component values. In other words let’s consider a given PLL with known
values of the phase detector gain Kd , VCO tuning sensitivity Kv, and
frequency division factor N . Also suppose we have a loop filter such
that the closed-loop PLL frequency response is satisfactory for a given
specification. The problem to be solved is how to modify the loop filter
components so that the filter can be used on a different PLL having
one or more different parameters, say K ′

d , K ′
v, N ′ but keeping the same

closed-loop frequency response.† The original PLL closed-loop frequency
response is given by Eq. (1.3):

H ( f ) =
Kd Kv

N
F ( j 2π f )

j 2π f

1 + Kd Kv
N

F ( j 2π f )
j 2π f

where F ( j 2π f ) is the original loop filter transfer function. The new
PLL closed-loop frequency response is

H ′( f ) =
K ′

d K ′
v

N ′
F ′( j 2π f )

j 2π f

1 + K ′
d K ′

v
N ′

F ′( j 2π f )
j 2π f

where F ′( j 2π f ) is the new loop filter transfer function. We want the
original and new PLLs to have the same frequency response, H ( f ) =
H ′( f ). It means that

H ( f ) = H ′( f ) ⇒
Kd Kv

N
F ( j 2π f )

j 2π f

1 + Kd Kv
N

F ( j 2π f )
j 2π f

=
K ′

d K ′
v

N ′
F ′( j 2π f )

j 2π f

1 + K ′
d K ′

v
N ′

F ′( j 2π f )
j 2π f

H ( f ) = H ′( f ) ⇒ F ′( j 2π f ) = Kd

K ′
d

Kv

K ′
v

N ′

N
F ( j 2π f )

Define the scale factor as a constant over frequency:

α = Kd

K ′
d

Kv

K ′
v

N ′

N

†This condition may happen if a different VCO and/or phase detector needs
to be used; modifications of the frequency division factor occur when a different
reference and/or output frequency needs to be used.
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The new loop filter transfer function is the old one multiplied by the
scale factor:

F ′( j 2π f ) = αF ( j 2π f ) (2.21)

Condition (2.21) can be satisfied in different ways depending on the loop
filter configuration:

1. If the loop filter configuration is one of those of Figs. 1.3b, 2.19, or
2.20, it can be done by either dividing input resistor R1 (or r1) or
multiplying feedback impedance Z2 by α (i.e., multiply all its resis-
tance and dividing all its capacitance by α).

2. If the loop filter configuration is the one of Fig. 2.21, it can be done
either by dividing the input resistors R1/2 and simultaneously mul-
tiplying input capacitors Cin by α or multiplying feedback impedance
Z2 by α.

3. If the loop filter configuration is one of Figs. 2.23, 2.24, or 2.25, it can
be done by multiplying all its resistors and dividing all its capacitors
by α.

4. For the loop filter of Fig. 2.24, there is the additional option to mul-
tiply the amplifier gain by α, but this has to be considered very care-
fully because decreasing the amplifier gain reduces the tuning volt-
age range, and increasing the gain increases noise in the tuning
voltage.

5. In any case no modifications have to be made on auxiliary output
filters (if present).

Another kind of loop filter scaling is used when a different closed-loop
frequency response with a different cutoff frequency but with the same
shape over the frequency is needed.† Let’s call H ′′( f ) a new closed-loop
frequency response. We want the following:

H ′′( f ) = H (β f ) ⇒
Kd Kv

N
F ′′( j 2π f )

j 2π f

1 + Kd Kv
N

F ′′( j 2π f )
j 2π f

=
Kd Kv

N
F ( j 2πβ f )

j 2πβ f

1 + Kd Kv
N

F ( j 2πβ f )
j 2πβ f

H ′′( f ) = H (β f ) ⇒ F ′′( j 2π f ) = 1
β

F ( j 2πβ f ) (2.22)

The new loop filter frequency response has to be scaled over the fre-
quency and by the magnitude by the same factor. Amplitude scaling
is the same operation previously discussed. It can be done following

†This implies that the new PLL has the same Nyquist diagram, the same
phase margin, the same peak response, etc.
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instructions 1 to 4 (depending on the loop filter used) where scaling
factor α has to be replaced with 1/β. The loop filter translation can be
performed as follows:

6. If the loop filter configuration is one of those in Figs. 1.3b, 2.19, or
2.20, it can be done by dividing all capacitors by β2 and multiplying
all resistors of feedback impedance Z2 by β.

7. If the loop filter configuration is that of Fig. 2.21, the modifications
in instruction 6 have to be done together by dividing the capacitance
of the input capacitors Cin by β.

8. If the loop filter configuration is one of those in Figs. 2.23, 2.24, or
2.25, it can be done by multiplying all capacitors by β2 and dividing
all resistors excluding amplifier feedback resistors by β.

9. In any case the auxiliary output filter (if present) has to be modified
by dividing the cutoff frequency f t by β without changing Qt . This
corresponds to
a. Multipling all resistors and all capacitors of passive RC or

Sallen & Key filters by β.
b. Multipling the inductor and capacitor on the RLC filter by β.

For the particular case of the charge pump with a pure passive loop,
instruction 8 has to be applied as in the following example† where a loop
filter as in Fig. 2.23c is used. The PLL components’ values are as follows:

� Phase detector (CP) gain

Kd = (1 × 10−3)/2π

� VCO modulation sensitivity

Kv = 2π(50 × 106)

� Frequency division factor

N = 40

� Frequency scaling factor

β = 2

The loop filter components (scaled filter with lowercase letters) are

� C1 = 1 nF c1 = 4 nF
� C2 = 22 nF c2 = 88 nF

†See the file LoopFilterScaling.MCD.
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Figure 2.26 Closed-loop frequency response for nominal and scaled loop
filters.

� R2 = 330 � r2 = 165 �

� R3 = R4 = 470 � r3 = r4 = 235 �

� C3 = C4 = 470 pF c3 = c4 = 1.88 nF

The PLL parameters (scaled filter within parentheses) are

� Closed-loop unit gain bandwidth 84.39 kHz (42.195 kHz)
� Closed-loop gain peak 3.092 dB (3.092 dB)
� Closed-loop peak frequency 43.738 kHz (21.869 kHz)
� Phase margin 44.185◦ (44.185◦)

The closed-loop frequency response for both nominal and scaled loop
filters are plotted in Fig. 2.26.

2.4 VCO

2.4.1 Principle of working

The VCO acts as a quasi-sinusoidal† generator whose output frequency
is a defined function of the tuning voltage. Usually, radio frequency
(RF) and microwave oscillators employ a combination of selective posi-
tive feedback with a gain element. A general block diagram of such an

†The output signal is a distorted sinusoid, containing some harmonics.
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Figure 2.27 General block dia-
gram of RF oscillator.

oscillator is shown in Fig. 2.27. The gain from the input to the output
can easily be found by applying Mason’s rule:

Out
In

= Gain( f ) = A( f )
1 − A( f )β( f )

(2.23)

where A( f ) and β( f ) are the frequency-dependent gain of the amplifier
and the feedback element. If at some frequency, the loop gain A( f ) β ( f )
becomes unitary, the closed-loop gain of Eq. (2.23) becomes infinite. This
means that there is a finite output signal with a zero input signal. This
implies oscillations by definition.

So at unit loop gain the frequency loop oscillates at that frequency.
The onset of oscillations can be explained by linear considerations
although the amplitude of oscillations is determined by compression
of the active device. Oscillations build up from noise or some switch on
transient. At startup the amplitude is very small and the loop gain is
higher than 1. As oscillations build up to the active element compres-
sion level, the gain is reduced according to the amplifier compression
curve. Steady-state amplitude is reached when the loop gain is com-
pressed down to 1. Such nonlinear limitation of the output level also
generates harmonics that have to be filtered out.

Selective networks consist of some reactive elements with at least
one capacitor and one inductor. Sometimes one or more elements of
a feedback network are given by parasitic elements of an active de-
vice. An oscillator’s output frequency can be changed by modifying the
value of one or more elements of the feedback network. An oscillator
becomes voltage controlled if one of more elements of a frequency selec-
tive feedback network changes its value according to a control voltage.
The most widely used device is called a varactor, which is a reverse-
biased junction diode whose capacitance monotonically decreases with
reverse bias. Varactors are usually realized using silicon for frequen-
cies up to a few gigahertz or gallium arsenide for frequencies up to
40 GHz or more. Whatever material they are made of, varactors can
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be classified into two different classes according to the doping profile
of their junction: abrupt and hyperabrupt. Without going deeply into
semiconductor physics, abrupt varactors have a lower parasitic series
resistance (higher merit factor) and a lower capacitance variation over
the bias voltage comparing to hyperabrupt varactors. The junction ca-
pacitance C j versus the reverse-bias voltage V j can be expressed as

C j (V j ) = C0(
1 − V j /Vϕ

)γ + Cmin (2.24)

where Co = zero-bias junction capacitance
Vϕ = junction potential
γ = grading coefficient

Cmin = parasitic (or residual) shunt capacitance or junction
capacitance for very high reverse bias

Although Eq. (2.24) can be derived from semiconductor physics, from a
VCO design point of view, Eq. (2.24) is just a compact representation of
voltage-depending capacitance. Its parameters are calculated by curve
fitting with a measured C − V curve. Figure 2.28 shows capacitance
versus voltage of one abrupt gallium arsenide varactor. The dashed
line is measured, and the continuous line comes from Eq. (2.24) with
the following parameters:

Co = 3.50 pF Cmin = 0.15 pF Vϕ = 9.91 V γ = 4.06

Agreement between the two curves is excellent.
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Figure 2.28 Measured and modeled capacitance versus voltage of
abrupt GaAs varactor.
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A varactor is not a pure capacitor. It can be better modeled as a series
RC network† due to its parasitic resistance. The varactor merit factor
at a given frequency is defined as the ratio between its capacitive reac-
tance at that frequency divided by the parasitic series resistance. The
varactor merit factor ranges from 10 to 100 at microwave frequencies.

Some microwave VCOs employ a yttrium-iron-garnet (YIG) resonator
instead of a varactor. A YIG resonator is a parallel LC circuit, not just a
capacitor. It is tuned by a magnetic field at a very linear rate. A magnetic
field is generated by electromagnets, so the YIG resonant frequency
and the oscillator output frequency are controlled by current flowing
through the electromagnet. A YIG tuned oscillator (YTO) is current
controlled rather than voltage controlled. In addition, big solenoids of
an electromagnet don’t allow for fast variation on output frequency.
YTOs for PLL applications have two tuning coils: a main coil for coarse
tuning (high current, very limited bandwidth), and the so-called FM
coil (relatively wide bandwidth and low current) for PLL correction
of output frequency to its exact value. The main advantage of a YIG
resonator over a varactor is the Q factor which is 10 to 100 times higher.

2.4.2 VCO analysis

A detailed and in-depth description of VCO configurations is beyond the
scope of this book. Here some examples will be presented just to show
some design techniques and problems involved with VCO applications
on a PLL. Figure 2.29 shows the schematic of a VCO which is widely
used for output frequency up to 2 GHz. It is known as “Clapp” oscillator.
The frequency selective positive feedback network consists of compo-
nents Cbe, Cbo, and the elements of the thank circuit. Thank circuit is
a series LC resonator where the capacitance is voltage-dependent. It
includes Ctuning, Ltuning, the varactor DV1, and the varactor bias resistor
RT1. Ctuning, which acts like a DC-block between the base and varactor
voltage, can be used to modify the output frequency versus the tuning
voltage characteristic since it is in series with the varactor capacitance.
The value of Rbias is in kilo-ohms. It allows the tuning voltage to reverse
bias the varactor without loading it at radio frequencies; it can be re-
placed or combined with an inductor. The active element is a bipolar
transistor (usually silicon) BJT1 with its bias network made by resis-
tors Rbc, Rbo, and Rbias. The Lbias inductor is sometimes used to prevent
Rbias from loading too much from the feedback network. The output is

†Normally a series inductance also has to be considered, whose value mainly
depends on the used package chip, beam lead, a surface-mount device (SMD),
or axial package. Series inductance is very low for beam lead devices, about
1 nH for an SMD package, and even higher for axial in-hole packages.
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Figure 2.29 Schematic of an oscillator suitable for RF frequencies.

connected to the emitter with a DC decoupling capacitor Cout, and the
collector is connected to ground at radio frequencies by capacitor Cbypass
which is placed very close to the transistor.

Another very popular schematic for frequencies from 3 to 20 GHz
is shown in Fig. 2.30. The active device MESFET1 is a GaAs metal
epitaxial semiconductor field effect transistor (MESFET). The thank
circuit is a parallel LC, the varactor anode is DC connected to ground
via Ld , the cathode is connected to the tuning voltage via RT1. At radio
frequencies the cathode is grounded. Resistor RT1 is less critical than
the one of Fig. 2.29 because CT1 has a very low impedance to ground,
so the minimum decoupling is needed to the tuning port. The feed-
back network consists of the previously described thank circuit, gate
inductor Lg, and the parasitic gate-source capacitance of the active
device MESFET1. The drain bias network consists of Rbias, Lbias (high
impedance at RF, low DC impedance), Cbypass (low RF impedance to de-
couple Vcc pin), and DC block Cout. An approximate calculation of the
oscillation frequency of the circuit of Fig. 2.30 can be done by using
a simplified linear model for the active element, which is a voltage-
controlled current source (VCCS) with a parasitic input capacitance
Cgs having series resistor Ri.
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Figure 2.30 Schematic of an oscillator suitable for microwave frequency.

A linearized circuit is shown in Fig. 2.31a where the bias network is
omitted and the thank circuit is replaced by a parallel RLC resonating
circuit. The oscillation frequency is calculated from the open-loop gain
expression. The loop can be opened by breaking connections between
the gate and control pin of the VCCS on the field effect transistor (FET)
linear model, as shown in Fig. 2.31b.

The circuit is analyzed by using the FET source as a reference node
for all voltages instead of ground. This technique is known as virtual
ground and simplifies the analysis. The open-loop gain is given by

Gol( f ) = − gmLd ( j 2π f )∑4
k=0 ak( j 2π f )k

(2.25)

with

a0 = 1

a1 = Ld

Rloss
+ Cgs Ri

a2 = Ld

[
Ct + Cgs

(
1 + Ri

Rloss

)]
+ LgCgs

a3 = Ld Cgs

(
Ct Ri + Lg

Rloss

)
a4 = CgsCt LgLd

The oscillation condition is the unitary loop gain. The loop gain is
a complex number, so the oscillation condition is equivalent to two
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Figure 2.31 Simplified linear schematic of the oscillator of Fig. 2.29.
(a) Closed loop, and (b) open loop.
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conditions:

|Gol( f )| = 1 arg[Gol( f )] = 0

The numerator of Gol( f ) is purely imaginary. The argument is zero if
the real part of the denominator is zero and the imaginary coefficient
has the opposite sign† of that of the numerator:

a0( j 2π f )0 + a2( j 2π f )2 + a4( j 2π f )4 = 0

a1( j 2π f )1 + a3( j 2π f )3 = −gmLd ( j 2π f )

or

a0 − a2(2π f )2 + a4(2π f )4 = 0

a1 − a3(2π f )2 = −gmLd

Let’s momentarily suppose that the condition on the real part of the
denominator is satisfied. The loop gain amplitude is ≥ 1 if

a1 − a3(2π f )2 ≤ −gmLd ⇒ gm ≥ a3(2π f )2 − a1

Ld

gm ≥
[
Ld Cgs

(
Ct Ri + Lg

Rloss

)]
(2π f )2 − Cgs Ri + Ld

Rloss

Ld
(2.26)

where gm and Ld are both positive quantities. Equation (2.26) contains
positive quantities only. This implies that the numerator of the second
member of Eq. (2.26) has to be nonnegative‡:

f ≥ 1
2π

√√√√√ Cgs Ri + Ld
Rloss

Ld Cgs

(
Ct Ri + Lg

Rloss

) (2.27)

In the special case of Ri = 0, Eq. (2.27) simplifies to

f ≥ 1
2π

√
CgsLg

(2.27′)

The minimum potential oscillation frequency is given by the res-
onance of the gate inductor with the gate-source capacitance and is

†Equation (2.25) has a minus sign.
‡Equation (2.26) has to be satisfied with an equals sign when gm indicates

FET transconductance at power compression, e.g., steady-state oscillations
with a stabilized amplitude.
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independent from the thank circuit in the simplified case of Ri = 0 (in
the more general case of Ri > 0, it is slightly affected by the thank cir-
cuit values). In practice the circuit can oscillate in a frequency range: the
lower limit is given by Eq. (2.27) [or the simplified Eq. (2.27′)], and the
upper limit is due to the FET gain decreasing at high frequencies. There
is a frequency value that makes the FET gain go low enough to where it
does not satisfy the condition (2.26). The calculation of this upper limit
of oscillation frequency is difficult and thus a more complex FET model
is needed. If condition (2.26) is satisfied, the oscillation frequency is
given by the zeros in the real part of the loop gain denominator:

a0 − a2(2π f )2 + a4(2π f )4 = 0 ⇒ (2π f )2 = a2

2a4
±

√(
a2

2a4

)2

− a0

a4

Substituting the values of the coefficients of the loop gain denominator
(a0, a1, . . . , a4) into this expression, we obtain two values for oscillation
frequency, but only one value is the good one since only one will satisfy
condition (2.26). If there is only one oscillating frequency, the oscillator
is well designed. If there are many oscillating frequencies, the oscilla-
tor is not well designed and doesn’t work properly. Such a poorly de-
signed oscillator is affected by the output frequency jumping from one
value to the other; this phenomenon is sometimes called mode jumping
where typically the output frequency changes when the supply voltage
is switched off and on.

f = 1
2π

√√√√ a2

2a4
±

√(
a2

2a4

)2

− a0

a4
(2.28)

The oscillation frequency given by Eq. (2.28) depends on the tuning
capacitance Ct and thus on the tuning voltage according to Eq. (2.24).
Determination of the output frequency using Eq. (2.28) is very qualita-
tive due to the very simplified models used for the thank circuit, active
elements, and output load (bias network omitted). Nevertheless it can
be used as a good starting point. More accurate calculations can be made
by using nonlinear circuit simulators like SPICE. A more detailed de-
scription of a VCO having a configuration as in Fig. 2.30 is given by the
following SPICE netlist† including nonlinear models for the varactor
[based on Eq. (2.24)] and for the MESFET (based on the Statz model).
Gate and source inductors are modeled with series RL networks; one
resistor is added in series with the varactor to model varactor parasitic
resistance, and all capacitors are modeled with ideal elements. That
SPICE circuit file can be used to see the oscillation buildup from the

†See the SIMETRIX file MicrowaveVCO.sxsch.
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Figure 2.32 SPICE simulation of VCO transient output voltage.

switch on transient as shown in Fig. 2.32 and to calculate the steady-
state oscillation frequency versus the tuning voltage. Although circuit
description is not very accurate (real active and passive components
should have more complicated models), it still gives relativly good pre-
dictions about output frequency and power.

V3 Vtuning 0 3 *Tuning Voltage
R3 1 Vtuning 220
C4 1 0 10p
R1 1 2 1
D1 Source 2 Varactor
C7 Source 2 150f
Ld Source 3 3n
R2 0 3 1
Z$Q1 Drain Gate Source MESFET1
Lg 4 Gate 1.5n
R12 4 0 3
R4 Drain 5 22
L2 6 5 6n
V1 6 0 5 Pulse(0 5 0 2n 2n) *Vcc
Cout Drain Out 10p
R5 OUT 0 50 *Load Resistor
.TRAN 0 10n 0 1p
.model MESFET1 NMF
+ (VTO = -0.655 ALPHA = 2.9 LAMBDA = 0.062 BETA = 0.057
Cgd = 0.1pF + Cgs = 0.3pF Cds = 0.1pF M = 2.84 VBI = 1.54)
.model VARACTOR D (CJO = 3.5pF m = 4.06 VJ = 9.91)

A physical VCO construction is shown in Fig. 2.33. The gate and drain
inductors are realized with a high-impedance microstrip transmission
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Figure 2.33 Physical VCO realization.

line; the FET, varactor, and capacitors are in chip form; and the con-
nections are made by bonding wires. The circuit is built with alumina
substrate (h = 0.635 mm, εr = 9.9) on a 5 mm × 8 mm carrier. Three
output frequency curves are plotted on Fig. 2.34: The first is given by
Eq. (2.24) (gm = 10 mS, Cgs = 0.5 pF, Ri = 6, Lg = 1.5 nH, Ld = 3 nH,
resonator unloaded Q = 30),† the second is the SPICE simulation re-
sult, and the third is the measured one.
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Figure 2.34 VCO output frequency versus tuning voltage.

†See the MATHCAD file VCO.mcd.
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In Sec. 1.4 we gave a first definition of the VCO in-out relation; more
precisely it was assumed that the output angular frequency is propor-
tional to the tuning voltage through a proportionality constant named
VCOgain (Kv). The VCO tuning characteristic is not linear. In the gen-
eral case the output angular frequency isn’t a linear function of the
tuning voltage: The VCO gain has to be defined as the derivative of the
output angular frequency with respect to the tuning voltage:

Kv = d
[
ωout

(
V tuning

)]
d
(
V tuning

) = 2π
d
[

f out
(
V tuning

)]
d
(
V tuning

) = 2π K ′
v (2.29)

The VCO gain Kv has a unit of rad s−1 V−1. Very often K ′
v is used which

has the unit Hz/V. It is the derivative of the frequency with respect to
the tunning voltage rather than of the angular frequency. K ′

v is usually
called the modulation sensitivity and is often expressed in MHz/V. The
modulation sensitivity of the VCO in Fig. 2.33 together with its tuning
curve is plotted in Fig. 2.35. Note that the modulation sensitivity ranges
from 328 (at minimum output frequency) to 188 MHz/V (at maximum
frequency).

In order to evaluate the effect of Kv variation, we will employ the VCO
of Fig. 2.35 over its output frequency range (6.7 to 9.3 GHz) in one type
II second-order PLL. If f r is the reference frequency expressed in MHz,
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Figure 2.35 VCO output frequency versus tuning voltage and modulation sensitivity.
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the frequency division factors at the minimum and maximum output
frequencies are respectively given by

Na = 6700
f r

Nb = 9300
f r

Corresponding VCO gains are

Kva = 2π(328 × 106) Kvb = 2π(188 × 106)

The PLL natural frequencies are

f na = 1
2π

√
Kd Kva

Na

1
τ1

=
√

Kd (328 × 106) f r

2π6700
1
τ1

f nb =
√

Kd (188 × 106) f r

2π9300
1
τ1

Qa = τ2√
Kd Kva

Na

1
τ1

= τ2√
Kd 2π(328×106) f r

6700
1
τ1

Qb = τ2√
Kd 2π(188×106) f r

9300
1
τ1

so

f na

f nb
=

√
Kva

Kvb

Nb

Na
=

√
328
188

9300
6700

∼= 1.56 and
Qa

Qb
= f nb

f na

∼= 0.64

At the minimum output frequency, the PLL natural frequency is
at a maximum and the damping factor is at a minimum, and vice
versa. Keeping in mind that the higher the Q the lower the phase mar-
gin, choose τ1 and τ2 to have a maximum damping factor Qb = 1.197
(45◦ phase margin). We will have Qa = Qb(0.64) ∼= 0.769 (about 62◦

phase margin). Likewise if τ2 gives the minimum natural frequency
f nb = 1 kHz, it will also be f na = 1.56 kHz. Summarizing, at the
highest output frequencies, the loop gain is decreased by two factors:
VCO modulation sensitivity decreases and frequency division factor in-
creases. The closed-loop gain, together with the error response of that
PLL at the minimum and maximum output frequencies, is plotted in
Fig. 2.36. The offset frequency is normalized to f nb, being f nb = 1 kHz.
The abscissa can also be read as the offset frequency expressed in
kilohertz.
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Figure 2.36 Closed-loop gain and phase error response at the min-
imum and maximum output frequency.

Some VCO designs try to compensate for the two factors discussed
by increasing Kv to a high tuning voltage (thus at the highest output
frequency). This result is very difficult to achieve because at a high tun-
ing voltage, the varactor capacitance tends to saturate (see Fig. 2.28).
In addition the higher the output frequency, the more it is affected by
parasitic elements of both the active and passive components of the
VCO and the less it depends on varactor capacitance. Sometimes one
variable gain amplifier is inserted between the loop filter output and
VCO tuning port. The gain of that amplifier is programmed together
with the frequency divider such that the loop gain is almost constant
over the output frequency in order to minimize variations on the PLL
closed-loop transfer function.

2.4.3 Phase Noise

Noise sources within active and passive devices in the oscillator will
modulate the output spectrum: noise sidebands are produced around
the fundamental frequency. Active device noise usually dominates
over noise due to passive components. Transistor noise has two
components:

1. Low-frequency noise. Its power density is proportional to 1/ f . It is
also known as flicker noise.

2. Thermal noise. Its power density is constant over the frequency. It
is also known as white noise.
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Output signal modulations due to noise sources can be classified into
three classes: AM, FM, and PM.† FM and PM produce the same effect
on the output spectrum; AM is typically orders of magnitude lower than
the previous two. The oscillator output signal can be written as

Vout,VCO (t) = [Vo + nAM (t)] sin[2π f VCOt + θn(t)] (2.30)

where Vo = output signal amplitude
nAM(t) = AM noise

f VCO = VCO output frequency or carrier frequency
θn(t) = PM noise

Phase modulation due to noise produces two symmetrical sidebands
around the carrier frequency. They can be characterized by the ratio of
noise power in a 1-Hz bandwidth at a given frequency f m offset from the
carrier to the signal or carrier power. This ratio is very often expressed
in dBc/Hz. Leeson found a closed-form expression for single sideband
(SSB) phase noise‡:

L ( f m) = 10 log10

{
1
2

[
1 +

(
f out

2QL f 2
m

)2
](

1 + f c

f m

)
NFKT

Ps

}
(2.31)

where f out = VCO output frequency
f m = offset frequency

NF = active device noise figure
K = Boltzmann’s constant = 1.38 × 10−23 J/K
T = room temperature = 298 K
f c = flicker noise corner of active device§

Ps = average power at input of active device
QL = resonator’s loaded Q

Equation (2.31) can be expanded into a polynomial of variable 1/ f m:

L ( f m) = 10 log10

(
A0 + A1

f m
+ A2

f 2
m

+ A3

f 3
m

)
= 10 log10

(
3∑

K=0

AK

f K
m

)

(2.32)

†Amplitude modulation, frequency modulation, and phase modulation,
respectively.

‡A more precise definition of phase noise will be given in Sec. 4.3.1.
§Below f c, the noise density of the active device increases with a slope of 1/ f

(10 dB/decade).
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Figure 2.37 Tangential approximation of VCO phase noise
shape.

with

A0 = NFKT
2Ps

A1 = f c
NFKT

2Ps

A2 =
(

f out

2QL

)2 NFKT
2Ps

A3 =
(

f out

2QL

)2

f c
NFKT

2Ps

A typical phase noise shape is shown in Fig. 2.37 where Eq. (2.32) is
tangentially approximated by four segments with constant slope.

Equation (2.31) gives some suggestions about how to minimize oscil-
lator phase noise. The active device has to be chosen with the minimum
possible noise figure even if the noise figure mentioned in Eq. (2.31) is
relative to the transistor operating in the compression region: it can be
quite different from the small signal noise figure usually declared by
transistor manufacturers. The active device has to be chosen with the
flicker noise corner as low as possible as well. The oscillator has to be
designed in order to maximize power at the input of the active device.
The highest possible Q resonator has to be used. Loaded Q is always
lower than unloaded (or the intrinsic resonator’s Q): Resonator loading
due to the active device together with the feedback network has to be
minimized. Given that YIG Q is 10 to 100 times higher than varactor
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Figure 2.38 Open loop gain for the oscillator of Fig. 2.31.

Q, a YIG VCO has a 20- to 40-dB better phase noise compared with
a varactor VCO. Anyway Eq. (2.31) has two terms that don’t contain
QL and have constant and 1/ f m dependence over the offset frequency.
Improvements on QL don’t improve the constant and 1/ f m sloped part
of the phase noise spectrum. QL can be approximately calculated from
the open-loop gain as drawn in Fig. 2.38, which shows the open-loop
gain of the oscillator of Fig. 2.31† with same components’ values used
for the calculation of Kv. It can be seen that the maximum loop gain fre-
quency slightly differs from the oscillation frequency (where the loop
gain phase is zero). This is due to the phase shift introduced by the
feedback network and parasitic elements of the active device. Loaded
Q is defined as the ratio of oscillation frequency to open-loop gain 3-dB
bandwidth: QL = f osc/� f . The main approximation of this approach
consists in considering that transconductance gm is the only circuit pa-
rameter changing from the onset to stabilized amplitude oscillations. It
is assumed that gm reduction due to transistor compression stabilizes
the amplitude of the oscillation by making open-loop gain equal to 1
at the oscillation frequency. In practice many other elements change
due to nonlinear effects: inside the active device and sometimes even
inside the resonator (typically the varactor).

The phase noise of the VCO in Fig. 2.33 was measured at an output
frequency of 8 GHz. The result is shown in Fig. 2.39. The measured

†See the MATHCAD file Vco.mcd.
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Figure 2.39 Phase noise of the VCO of Fig. 2.33.

phase noise spectrum is well approximated by

L ( f m) = 10 log10

(
A0 + A2

f 2
m

+ A3

f 3
m

)
(2.33)

with

A3 = 7.6 × 106, A2 = 21.7, A0 = 9.8 × 10−15

Comparing Eq. (2.33) with (2.32), it can be seen that the 1/ f m slope
term is missing. This is due to the phase noise meters noise floor of
−140 dBc/Hz masking both 1/ f m and the constant terms of Eq. (2.32).
Figure 2.39 shows the modeled phase noise [Eq. (2.33)] and its three
terms together with the measured phase noise. Note that Eq. (2.32)
states that the 1/ f 2

m and 1/ f 3
m sloped noise terms cross at f m = f c

(flicker noise corner). In the case of Fig. 2.39 the flicker noise corner is
about 350 kHz.

2.4.4 Pulling and pushing

Oscillator pulling is defined as variation of the output frequency caused
by a given variation of the output load. It is normally defined as the out-
put frequency variation for a load with 2:1 standing wave radio (SWR)
and any phase from 0 to 360◦. High pulling values can be dangerous
for PLL performance because mismatched loads make the frequency
versus tuning voltage curve to be rippled. Kv is consequently affected
by big variations in the tuning voltage, which cause the PLL to respond
by presenting a large variation in its output frequency, even bigger
than those shown in Fig. 2.36. Attenuators, high-isolation amplifiers,
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isolators, and a combination of these have to be inserted between the
VCO output and the load in order to minimize that risk.

Oscillators are also affected by output frequency variations caused by
variations in the supply voltage. This characteristic is called pushing;
it can increase VCO (and PLL) phase noise and/or generate spurs if
noise and/or periodic disturbs are superimposed on the VCO bias supply
voltage.

2.5 Reference Sources

A reference source oscillator is one of the key component of a PLL
synthesizer. It provides the stability of the PLL output signal, and its
phase noise strongly determines the output signal phase noise within
the PLL bandwidth. The most common type of reference sources are
crystal oscillators, although more stable components are available such
as cesium or rubidium frequency standards but at a very high cost, size,
and current consumption.

Crystal† oscillators are basically oscillators that employ a piezoelec-
tric resonator, usually cut from quartz, as a resonating circuit. The main
advantage of such a component is that its Q factor can be as high as
106 or more. A typical crystal oscillator scheme is like the oscillator of
Fig. 2.29 where the thank circuit (components RT 1, DV1, Ltuning, and
Ctuning is replaced by a crystal resonator whose equivalent circuit is
shown in Fig. 2.40. That circuit has a low-impedance series resonance
frequency:

f s = 1
2π

√
LsCs

and one parallel resonant frequency given by

f p = 1

2π

√
Ls

CsCp

Cp+Cs

Cs Ls Rs

Cp

Figure 2.40 Equivalent circuit of a crystal resonator.

†Sometimes the word crystal is shortered to Xtal.
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The parallel capacitance is usually some thousand times higher than
the series capacitance, so series and parallel frequency resonant fre-
quencies are very close to each other. Oscillators can use either parallel
or series resonance.

Crystal resonators can have Q factors higher than one million as
anticipated. If properly used, they can give very low phase noise oscil-
lators as the Leeson equation predicts. The phase noise of two different
crystal oscillators is plotted in Fig. 2.41.

A crystal oscillators output frequency ranges from a few tens of kilo-
hertz to some hundreds of megahertz. For higher output frequencies,
surface acoustic wave (SAW) resonators are used up to about 2 GHz,
but SAW devices have lower Q factors compared with those of crystal
resonators.

Several techniques are used to minimize frequency variations over
the temperature changes in crystal oscillators. Three solutions are
available with different costs and performances.

1. The variation in frequency due to the temperature characteristics of
a crystal resonator is a function of the cut angle. The cut angle can
be chosen in order to minimize frequency variations within a given
temperature range. Variations of ±5 parts per million (ppm) over
a temperature range of 100◦C can be achieved. Typical output fre-
quency variation versus temperature curves are shown in Fig. 2.42
for different values of the cut angle.

2. Temperature compensated crystal oscillators (TCXO). In these cir-
cuits one varactor is added in series or in parallel with the crys-
tal resonator. A temperature-dependent voltage is applied to that



Loop Components 81

−20

−10

0

10

20

−50 0 50 100°C

∆f
f

[ppm]
a

b

c

d

Figure 2.42 Crystal oscillator frequency versus temperature for different
cut angles.

varactor to compensate for the temperature variation of the res-
onator. Variations of ±2 ppm over a temperature range of 100◦C can
be achieved. The major drawback of this technique is Q reduction
due to the varactor loading the resonator resulting in phase noise
degradation.

3. Oven controlled crystal oscillators (OCXO). The complete oscillator
(including crystal resonator) temperature is stabilized at a value
higher than the maximum working temperature by using electrical
heaters. The output frequency becomes virtually constant over tem-
perature. The current consumption is higher than for circuits 1 and
2 due to heater power dissipation.

Similarly to all other oscillators, crystal oscillators are affected by
pulling and pushing; thus noise in the supply will increase the phase
noise.

2.6 Frequency Dividers

In PLL frequency synthesizers, the VCO normally operates at a fre-
quency higher than the reference frequency. The phase detector input
signal comes from the VCO output via a frequency divider which di-
vides the output frequency up to the reference frequency. The simplest
frequency divider is the so-called T (toggle) flip-flop. It simply consists
of one J -K flip-flop whose J and K inputs are connected to the “1” logic
value. Its schematic and the input and output waveforms are shown in
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Figure 2.43 Toggle (T) flip-flop.

Fig. 2.43. The input signal is connected to the clock. The output toggles
its state at each rising edge of the input signal; this way the output
frequency is half of the input one.

Higher-frequency division factors can be obtained by cascading n tog-
gle flip-flops. That circuit is known as a ripple counter. Figure 2.44
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FF3
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Q2 Q3

Figure 2.44 Ripple counter.
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shows a schematic of a three-stage (n = 3) ripple counter and its wave-
forms. The output frequency equals the input frequency divided by 2n;
thus this configuration only allows division factors of 1, 2, 4, 8, etc.
The circuit of Fig. 2.44 can of course be used to divide by 8, 4, 2, and
1 connecting the output to Q3, Q2, Q1, and the input, respectively. A
PLL synthesizer employing a ripple counter as a frequency divider can
only generate output frequency values that are a reference frequency
multiplied by an integer power of 2. A more flexible design would have
a frequency divider that works for all integer values. This can be done
by adding one combinatory network to the circuit of Fig. 2.44 as shown
in Fig. 2.45. We can understand how this circuit works by observing the
timing diagram of Fig. 2.44. It shows that voltages of a ripple counter
(considered as a whole) are periodic with a period of 2n multiplied by
the period of the input signal. Output signal Q3 can divide the input
frequency for any integer in the range 1 to 2n if counting is stopped
before it is completed.

Depending on the required frequency division of 1, 2, 3, . . . , 7, count-
ing has to be stopped before the second, third, fourth, . . . , eighth input
rising edge, respectively. This can be done by resetting all the flip-flops

fout

Programmable combinatory network

Q0

Q1

Q2

Q3

Out

N0

N1

N2

Frequency division programming

K1

J1

Rst1

fin

Vdd

FF1
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K2

J2

Rst2

Vdd

FF2

Clk2

Q1

K3

J3

Rst3

Vdd

FF3

Clk3

Q2 Q3Q0

Figure 2.45 Three-bit programmable divider, N = 1 ÷ 8.
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TABLE 2.2 Combinatory Logic for Different Division Factors

Rising Frequency
edge no. Q1 Q2 Q3 division Reset signal

1 1 1 1 1 Q1 Q2 Q3Input
2 0 1 1 2 Q1 Q2 Q3
3 1 0 1 3 Q1 Q2 Q3
4 0 0 1 4 Q1 Q2 Q3
5 1 1 0 5 Q1 Q2 Q3
6 0 1 0 6 Q1 Q2 Q3
7 1 0 0 7 Q1 Q2 Q3
8 0 0 0 8 Always 0

from their asynchronous reset input.† This way, counting is restarting
after the first, second, third, . . . , seventh input rising edge. Thus the out-
put waveform period equals the input period multiplied by 1, 2, 3, . . . , 7
(or 8 if an asynchronous reset signal is not used). If a division factor
of M < 2n has to be obtained, a combinatory network has to recognize
the ripple counter state after M input pulses and generate one reset
signal before the M + 1 input rising edge arrival. Logic functions for
reset signal generation in case of n = 3 are listed in Table 2.2 for any
frequency division factor from 1 to 8. A programmable frequency divider
is obtained if fixed combinatory logic is replaced by a programmable one
in the circuit of Fig. 2.45. Since an n-stages ripple counter can divide
up to 2n, n bits are needed to program the frequency division factor.
Programmable logic will have one output bit (reset signal), n input bits
for programming (N0, N1, N2 in Fig. 2.45), n input bits for connections
to n flip-flop outputs (Q1, Q2, Q3 in Fig. 2.45), and one input bit to be
connected to the divider input (Q0 in Fig. 2.45). The total number of bits
is then 2n + 1. The combinatory network has to realize different logic
functions depending on the programming inputs. It can be implemented
with a read-only memory (ROM); its contents are listed in Table 2.3.

The circuit of Fig. 2.45 has a maximum input frequency of work-
ing due to internal propagation delay. More precisely, a flip-flop has a
propagation delay from the input rising edge to the output signal toggle
T flip-flop, a reset delay from the input to output T reset, and a combinatory
logic input-output propagation delay T combinatory.

1. The counter needs time to complete its state (e.g., to propagate the
rising edge from the input to the output of the last flip-flop) given by
nT flip-flop.

†See the following SIMETRIX files: FrequencyDivider By1.sxsch, Frequen-
cyDivider By2.sxsch, FrequencyDivider By3.sxsch, FrequencyDivider By4.
sxsch, and FrequencyDivider By6.sxsch for simulation.
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TABLE 2.3 Reset Signal Generation ROM

ROM inputs (address)

Division
Input and programming

flip-flop output inputs

Q0 Q1 Q2 Q3 N0 N1 N2

Frequency
division
factor ROM output

1 0 1 1 1 0 0 0 1
2 — 0 1 1 1 0 0 1
3 — 1 0 1 0 1 0 1
4 — 0 0 1 1 1 0 1
5 — 1 1 0 0 0 1 1
6 — 0 1 0 1 0 1 1
7 — 1 0 0 0 1 1 1
8 — — — — 1 1 1 0

All remaining combinations 0

2. The reset combinatory logic needs T combinatory time to generate a reset
signal after the counter completes the proper configuration.

3. All flip-flops need T reset time to reset their outputs after the reset
signal arrives.

4. The total cycle time is the sum of times 1, 2, and 3: T cycle = nT flip-flop+
T combinatory + T reset.

The reset process will begin after the Mth input rising edge and has
to be completed after the M +1 input rising edge. The reset process has
to be quicker than the input period, so

Input frequency < 1
nT flip-flop + T combinatory + T reset

The maximum input frequency is decreasing as the divider number
of stages is increasing (or the maximum division factor is increasing).
The counter speed can be increased if a synchronous counter is used.
The ripple counter shown in Fig. 2.44 is an asynchronous counter be-
cause all flip-flops use a different clock signal. The fastest possible
counter configuration is the parallel carry synchronous counter† shown
in Fig. 2.46. Since each flip-flop is using the same clock (input fre-
quency), the counter propagation time is no longer the value 1 but is
reduced to T flip-flop +T AND where T AND is the input-output propagation
delay of AND gates (usually a lot shorter than T flip-flop). A programmable
divider based on a synchronous counter has the same schematic of

†See the SIMETRIX file SynchronousCounter ParallelCarry.sxsch for
simulation.
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Figure 2.46 Parallel carry three-stage synchronous counter.

Fig. 2.45 but with the ripple counter (FF1, FF2, and FF3) replaced by
the synchronous counter of Fig. 2.46. Its maximum input frequency is
then

Input frequency <
1

(T flip-flop + T AND + T combinatory + T reset

and is no longer depending on the number of stages.
Even when it has synchronous counters, a programmable frequency

divider has a maximum input frequency on the order of some tens of
megahertz when CMOS or transistor-transistor logic (TTL) technology
is used. Faster emitter coupled logic (ECL) logic can be used, but its
high current consumption and low integration capability is a problem
in most applications. For higher-frequency synthesizers, the arrange-
ment shown in Fig. 2.47 can be used. A fast logic frequency divider is
inserted between the VCO output and the programmable divider input.
This device is commonly called a prescaler, and it supplies a frequency
division factor P (usually 32, 64, 128, and higher powers of 2). This
way the programmable divider input frequency is kept below its oper-
ating limits even if the VCO frequency reaches gigahertz values. The
global frequency division factor is MP where M is programmable and
can assume any integer value from 1 to 2n, while P is a fixed value. The
division step is thus P , and the output frequency step will be M f ref. If a
smaller step is required, a lower reference frequency has to be used with
consequent limitations on the PLL bandwidth as explained in Sec. 3.1.
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Figure 2.47 Programmable frequency divider with high-
frequency prescaler.

To extend the frequency range beyond programmable divider limits
without increasing the frequency step, a dual modulus prescaler has to
be used. Such a configuration is shown in Fig. 2.48. The circuit consists
of four blocks:

� Two programmable frequency dividers Aand M like those in Fig. 2.45
(thus operating up to 10–50 MHz).

� One high-frequency dual modulus prescaler which divides by P or
P + 1 depending on whether the modulus control (MC) level is high
or low. Dual modulus prescalers are also referred to as pulse swallow
counters.

� One set-reset flip-flop.

The MC level will be low at the beginning of a count cycle and will
remain low until the :A counter has counted down from its programmed
value. At this time, the MC goes high and remains high until the :M
counter has counted the rest of the way down from its programmed
value. The MC is then set back to low, the counters preset to their

Divider by A

Out
Reset

In

Divider by M

Out In

Set

P/P+1

Reset
Out

Out  InOut In

Dual modulus prescaler

Modulus control

Figure 2.48 Frequency divider with dual modulus
prescaler.
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respective programmed values, and the sequence is repeated. The cycle
can be divided into two portions:

� The first portion is from the beginning to the end of :A counting down.
During this time the MC signal is low and the dual modulus prescaler
is dividing by P + 1. This takes A rising edges from the prescaler
output and thus (P + 1)A from the prescaler input.

� The second is from the end of :A counting down to the end of :M
counting down. During this time the MC signal is high and the dual
modulus prescaler is dividing by P . This takes M − A rising edges
from the prescaler output and thus P (M−A) from the prescaler input.

The total cycle takes N = (P + 1)A + P (M − A) periods of the input
signal to generate one pulse at the output of the :M divider. The fre-
quency division factor is thus

N = A+ MP (2.34)

Since both A and M are programmable, N is programmable as well,
and it is incremented by 1 or P (P is usually an integer power of 2,
P = 16, 32, 64, or 128) if A or M are incremented by 1, so A and M
represent fine and coarse frequency division steps, respectively. A has
to be programmable from zero to P − 1 in order to make N assume
all integer values. From the previous description of the counting cycle
it follows that :A counting has to end before the :M one. This implies
M > A. If all integer frequency division factors have to be covered,
the above inequality has to be verified for any A. This means that
M > P − 1 and consequently that the minimum achievable frequency
division factor is given by Eq. (2.34) when both A and M assume their
minimum value (0 and P , respectively) Nmin = P 2. So the higher is P ,
the lower the frequency is at the programmable divider inputs, but the
higher the minimum division factor as well, and vice versa.

Insertion of a microwave prescaler (usually fixed) will further extend
the operation frequency of pulse swallow dividers up to microwave fre-
quencies even if at the expense of a reduction in the frequency
resolution.

2.6.1 Frequency divider phase noise

It can be demonstrated that the phase noise level at the input of an
ideal frequency divider (multiplier) is reduced (increased) by N at the
divider (multiplier) output where N is the division (multiplication) fac-
tor. Referring to the dB expression, a term 20 log10(N ) has to be sub-
tracted from the divider output signal or added to the multiplier output
signal. It follows that the signal output of a cascaded ideal frequency
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Figure 2.49 Frequency divider phase noise represen-
tations. (a) Phase noise referred to output. (b) Phase
noise referred to input.

multiplier and divider with the same factor is identical to that at the
input, including phase noise, and this consequence is quite reasonable.
A real frequency divider exhibits an internal phase noise contribution
which adds to the output signals. Frequency divider phase noise can
be represented by a phase noise source added to the input or output as
shown in Fig. 2.49a and b, respectively.

The output phase noise of the circuit in Fig. 2.49a is

θout, A = θn

N
+ θd, in

N

while that of the circuit in Fig. 2.49b is

θout,B = θn

N
+ θd, out

where θn is the phase noise of the input signal and θd, in and θd, out are
the input and output equivalent phase noises of the frequency divider.
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Figure 2.50 Model for phase noise performance calculation of q cascaded
dividers.

Two expressions and consequently two circuits A and B coincide if

θd, out = θd, in

N

The phase noise of several cascaded frequency dividers can be calcu-
lated by analyzing the diagram of Fig. 2.50 where the output noise
source representation was chosen.

The output phase noise is given by

θout,B = θ1

N2N3N4 · · · Nq
+ θ2

N3N4 · · · Nq
+ θq =

q∑
k=1

θk

q∏
j =k+1

1
Nq

(2.35)

Note that the contribution to the global noise source of q cascaded fre-
quency dividers is due to a given divider increasing as the divider gets
close to the output: This is exactly the opposite of what happens with
the noise figure of cascaded amplifiers.

From these considerations it follows that to compare performances of
different frequency dividers, it is important to characterize devices with
the same input frequency and division factors. Figure 2.51 shows typical
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Figure 2.51 Typical output phase noise of a :8 frequency divider.
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output noise of three frequency dividers dividing by 8 and with input
frequencies from 10 MHz to 10 GHz. Note that the higher the input
frequency, the higher the noise. The good news comes from Eq. (2.35);
i.e., a higher noise divider (one with higher input frequency) has a less
important contribution to global noise.

Most general frequency divider chains for a microwave synthesizer
include one GaAs divider that divides the input frequency from about 10
GHz down to about 1 or 2 GHz, one ECL (or equivalent technology) dual
modulus prescaler with output frequency around 10 MHz, and two TTL
or CMOS programmable frequency dividers operating together with the
dual modulus prescaler. All of the mentioned dividers can have different
voltages for the logic high and low levels. Level translators have to be
inserted if needed. Modern technology offers integrated circuits which
include all components needed for the schematic of Fig. 2.48. Together
with a phase frequency detector, the integrated PLL input dynamic
range is typically in the order of 0 to 25 dBm, and GaAs output levels
are generally compatible with that range.
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Chapter

3
Fractional-N Frequency

Divider

3.1 Introduction

The principal limit of the standard PLL is that the output frequency
can assume only integer multiples of the reference frequency. Thus the
resolution frequency equals the reference frequency. If fine resolution
is needed, a low reference frequency has to be chosen, which means
there will be a narrow PLL closed-loop bandwidth which leads to a
slow output frequency settling and a small VCO phase noise reduction.†

The fractional-N technique has been developed to circumvent this
obstacle.

Single- and multiple-accumulator fractional dividers are examined
in this chapter. The origin of fractional spurs is explained, and ana-
log and digital compensation techniques are also discussed. So far full
digital multi-accumulator fractional divider architecture appears to be
the best-performing one. Special consideration is given to the multi-
accumulator configuration; it is analyzed by applying equations origi-
nally derived for sigma–delta modulators and using an analogy between
the two systems. The implication of fractional dividers on PLL design
is also discussed.

3.2 Single-Accumulator Fractional Divider

A fractional-N synthesizer is essentially a synthesizer where the fre-
quency divider divides by an integer plus a fraction—not just an inte-
ger. Since the frequency divider can only divide by integer factors, the

†See Chap. 4.
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ACCUMULATORout (k)

OVERFLOW(k)

A 

 CLK

N/N + 1  From VCOTo phase detector

  Accumulator

Integer frequency divider

Figure 3.1 Fractional-N frequency divider.

required fractional division is obtained by averaging a time-varying di-
vision factor over a time interval. The basic idea is to cyclically switch
between N and N + 1. The frequency divider divides by N + 1 every A
reference periods and by N the rest of the Q − A reference periods. The
average division factor over Q reference signal periods is the effective
division ratio given by

N ∗ = N + A
Q

(3.1)

This means that the synthesizer output frequency can be a fractional
multiple of the reference frequency. N is the integer part of the divi-
sion factor. A/Q is a rational number that can assume values between
0 and 1; it is the fractional part of the division factor. Figure 3.1 shows
one possible realization of the fractional-N frequency divider. The ac-
cumulator is clocked by the divided VCO frequency. At each reference
clock period, the accumulator sums modulo Q the binary number A to
its output value. If the accumulator overflows, the frequency division is
increased by 1 passing from N to N + 1.

Operation of the accumulator fractional divider can be explained with
the following two examples.

Example 3.1 The A = 3, Q = 8 accumulator output sequence is

Reference cycle = 1 2 3 4 5 6 7 8 9 ...
ACCUMULATOR = 0 3 6 1 4 7 2 5 0 ...
OVERFLOW = 1 0 0 1 0 0 1 0 1 ...

Repetitive sequence of 8 cycles, 3 overflows each 8 cycles.
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Example 3.2 A = 2, Q = 8 accumulator output sequence is

Reference cycle = 1 2 3 4 5 6 7 8 9 ...
ACCUMULATOR = 0 2 4 6 0 2 4 6 0 ...
OVERFLOW = 1 0 0 0 1 0 0 0 1 ...

Repetitive sequence of 4 cycles, 2 overflows each 8 cycles.
The results of Examples 3.1 and 3.2 can be generalized as follows: If

A is the addendum and Q is the modulo of the accumulator, the wave-
forms are periodic with period Q and with A overflows per period. If
Q is an integer multiple of A, the period becomes Q/A. The frequency
division factor averaged on Q reference periods is consequently given
from Eq. (3.1) with the above described meaning of Q and A. One of
the main consequences is that the fractional-N frequency resolution is
given by the reference frequency divided by the accumulator size rather
than by the reference frequency alone. Providing that the accumulator
size Q is large enough, the PLL resolution can be arbitrarily reduced
keeping the reference signal frequency as high as needed. The major
drawback of this technique is that the frequency at the output of the fre-
quency divider is modulated by the OVERFLOW signal. This makes the
phase detector output generate a beat note that frequency modulates
the VCO. Given a reference frequency f r and the frequency of the signal
at the output of frequency divider f v, if the PLL is a locked VCO, we
have

f v =




f r

(
N + A

Q

)
1
N > f r if OVERFLOW = 0

f r

(
N + A

Q

)
1

N +1 < f r if OVERFLOW = 1

The VCO divided frequency is always higher or lower than the ref-
erence one. The PLL phase error increases by the frequency differ-
ence multiplied by the reference period and by 2π at each reference
period:

�ϕ = 2π( f r − f v)
1
f v

= 2π

(
f r

f v
− 1
)

or

�ϕ = 1
N + A/Q

2π

Q

{ −A (if OVERFLOW = 0)

Q − A (if OVERFLOW = 1)

}
(3.2)

The error signal is a staircase waveform. Each step is negative or pos-
itive depending on whether OVERFLOW = 0 or 1. Phase error steps
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generate corresponding steps on the phase detector output signal. Their
amplitude is given by the phase error multiplied by the phase detector
gain:

�nFRAC−N
DET = �ϕ Kd = 1

N + A/Q
2π

Q
Kd

{ −A if OVERFLOW = 0

Q − A if OVERFLOW = 1

}

The explicit waveform expression can be calculated from incremental
values considering that the accumulator incremental output values are
the exact opposite of the factor between the braces:

nFRAC−N
DET (t) = − 1

N + A/Q
2π

Q
Kd · ACCUMULATORout (t) (3.3)

The effect of this waveform is to push the VCO frequency down and
up around its average value, i.e., to frequency modulate it. Frequency
modulation affects the synthesized spectrum exactly like a noise added
to the phase detector output. The frequency response from this source
to the output spectrum is given by†

ϕOUT

nDET
= N ∗

Kd
H ( f )

The synthesizer output phase error spectrum is

ϕFRAC−N
OUT ( f ) = nFRAC−N

DET ( f )
N + A/Q

Kd
H ( f ) (3.4)

or

ϕFRAC−N
OUT ( f ) = 2π

Q
ACCUMULATORout ( f )H ( f ) (3.4′)

Spectral components of Eq. (3.4) can be calculated with the follow-
ing considerations. It was previously found that accumulator outputs
are discrete-time periodic sequences with period Q/ f r in the most gen-
eral case. The discrete fourier transform (DFT) of those sequences can
be calculated over one period. Points of the sequence are spaced over
time by 1/ f r. The sampling frequency is then f r; and hence the maxi-
mum frequency of DFT is f r/2. Time sequences have Q samples within

†See Eq. (4.6).

�o = NH ( f )�r + N
Kd

H ( f )nDET + N
Kd

H ( f )
F ( f )

nFILT

+ [1 − H ( f )]nVCO − NH ( f )nDIV

where the integer division factor N has to be replaced by Eq. (3.1).
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one period, so the corresponding DFTs have Q/2 terms. The conclu-
sion is that the accumulator waveform spectra have Q/2 spectral com-
ponents from 0 to f r/2 spaced by fundamental frequency f r/Q. The
fractional-N phase error spectrum contains the same discrete lines fil-
tered by the PLL closed-loop response. In order to filter out all error
signal spectral components, the PLL closed-loop bandwidth needs to be
narrower than f r/Q. This condition is the same as that coming from
one integer-N PLL having a reference frequency f r/Q which has the
same frequency resolution. So far it seems that nothing was gained
from fractional-N . To keep the potential advantage of the fractional-N
synthesizer, techniques are needed for phase error compensation.

The first of those consists of injecting the opposite signal of Eq. (3.3)
into the phase detector output. It will cancel fractional-N associated
frequency modulation. The correction signal can be taken from the ac-
cumulator output whose waveform has the same phase error shape, but
with one different multiplying constant. The circuitry basically consists
of one digital-to-analog converter (DAC) followed by one gain-controlled
amplifier whose output (voltage or current depending on the phase de-
tector output type) is summed to the phase detector. The DAC and
amplifier have to multiply the accumulator by the factor Knf calculated
from Eq. (3.3):

Knf × ACCUMULATORout (t) = −nFRAC−N
DET (t) ⇒ Knf

= 1
N + A/Q

2π

Q
Kd (3.5)

The basic block diagram is shown by Fig. 3.2.
The analog compensation circuitry has to apply one correction fac-

tor which depends on the frequency division factor. The error canceling
performance will be affected by the temperature, aging, and the compo-
nents’ tolerance. One other disadvantage of this kind of compensation
technique is the difficulty of getting the correct timing of compensating
waveforms. Some calculation on accumulator waveforms, compensation
waveforms, and tolerance on compensating circuitry can be made with
MATHCAD.†

An 8-bit accumulator (Q = 256) was considered; it was also supposed
that A = 11. Figure 3.3 shows the accumulator output and overflow
waveforms. Note that there are 11 overflows each 256 time steps.

Figure 3.4 shows the fractional-N phase error and accumulator out-
put multiplied by factor (2π/Q)/(N + A/Q). The first curve lays below
the x axis, the second above. Note that the two curves are opposite each

†See the file AccumulatorNfractional.MCD.
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ACC_OUT(k)

OVERFLOW(k)

A

CLK

N/N + 1

VCO

Phase 
detector 

   Accumulator

j+

Loop filter

Reference
signal

  Knf

Synthesizer
output signal

Tuning 
voltage

Phase error 
compensation

Integer
frequency
divider

Figure 3.2 Fractional-N PLL with analog phase error
compensation.

other. Figure 3.5 shows the magnitude of the phase error spectrum. The
abscissa is the offset frequency normalized to the reference frequency.

Regarding the effect of the nonexact amplitude and the time compen-
sation waveform, we found that multiplying the accumulator output by

0 128 256

0

255

Clock cycles

Overflow

Accumulator output

0

1

Figure 3.3 Accumulator output and overflow (A = 11,
Q = 256).
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0 128 256

0

255

Clock cycles

−0.06

0.00

Accumulator output

Phase error

Figure 3.4 The upper trace is the accumulator output, and the
lower trace is the phase error.

factor Knf given by Eq. (3.5) and adding this signal to the phase detector
output will result in a complete cancellation of the fractional-N phase
error. In practice neither the amplitude or the timing of the correction
signal will be exact. So the phase error after correction will be

nRESIDUAL
DET (t, K , T d ) = 1

N + A/Q
2π

Q
Kd ACCUMULATORout(t)

− ACCUMULATORout(t − T d )(1 − K )

K is a factor that takes into account the nonexact amplitude of the
error correction signal: K = 0 means no correction; K = 1 means exact

0 0.25 0.50
1E−5

1E−4

1E−3

0.01

0.1

1

Frequency/fr

Figure 3.5 Fractional-N phase error spectrum.
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1

0

Figure 3.6 Fractional-N phase error relative power for non-
perfect compensation.

amplitude. T d represents the time shift between the error and error
correction signals.

The phase error total power is given by

ε(K , T d ) = 1
Q

Q−1∑
k=0

[
nRESIDUAL

DET

(
k

1
f r

, K , T d

)]2

(3.6)

If K = 0, Eq. (3.6) gives the error power without correction, so the
correction’s effectiveness can be measured with the following ratio:

E = ε(K , T d )
ε(0, T d )

The ratio is plotted in Fig. 3.6.
Another possible technique for fractional-N phase error compensa-

tion is to add a time-variable phase delay stage between the frequency
divider output and the phase detector input; it compensates for the ac-
cumulated integer and reduces spurious levels. This technique is still
affected by the amplitude and phase error and tends to increase phase
noise.

3.3 Multiple-Accumulator Fractional
Dividers

More recently, new totally digital techniques have been developed, which
are not sensitive to aging and tolerance. The basic idea is the one
used by the sigma-delta (
 − �) analog-to-digital converter (ADC).
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That technique will be discussed showing the perfect analogy of 1-bit

 − � ADC and the accumulator-based frequency division modulator
of Fig. 3.2.

3.3.1 Z transform

The Z transform is a widely used method for analysis of time-invariant
discrete-time systems. Let f (t) be a function defined for discrete val-
ues of the variable t = kT s with k assuming all negative and positive
integer values and where T s is the sampling interval. The Z transform
of f (t) is defined as

F(z) = Z[ f (t)] =
+∞∑

k=−∞
f (kT s)z−k Definition of Z transform

From the definition we get the following:

Z[ f (t − T s)] = 1
z

Z[ f (t)] Z transform of delayed sequence

z is a complex variable and can be written in cartesian form, z = x + j y,
or polar form, z = ρ exp( j φ). The Z transform is a series that converges
if ρ < ρmax (circle of convergence). If the circle of convergence includes
the unit circle (ρmax > 1), a special case of the unit magnitude z vari-
able can be considered, z = exp( j 2πT s). The Z transform expression
becomes

F [z = exp( j 2π f T s)] =
+∞∑

k=−∞
f (kT s) exp( j k2π f T s)

which is the DFT of f (t). The delayed sequence transform becomes

Z[ f (t − T s)] = Z[ f (t)] exp(− j 2π f T s)

The preceding relation coincides with the Fourier transform of the func-
tion translated by one sampling time T s. In the following calculations
of this chapter it will always be assumed that the convergence of the Z
transform is within the unit circle, and the Z transform will be consid-
ered as a compact way to write the DFT.

3.3.2 First-order Σ-∆ modulator

Figure 3.7 shows a block diagram of a first-order 
-� modulator. It
contains one difference operator, one unit delay element, one discrete
integrator, and one 1-bit quantizer whose output is the sum of the input
and quantization noise Eq 1.



102 Chapter Three

1/z

+Fr(z)

Eq1 (z)Discrete integrator
1/(1 − 1/z)

1-bit quantizer

Y(z)−

1/z

+ +

Figure 3.7 First-order 
-�
modulator.

Let us calculate the discrete-time integrator transfer function in the
Z domain. Assuming that g(t) is the discrete-time integration of f (t),
it is possible to find a recursive relation between the integrand and
integral:

g(nT s) =
n∑

k=−∞
f (kT s) = f (nT s) +

n−1∑
k=−∞

f (kT s) = f (nT s) + g[(n− 1)T s]

Discrete-time signals and systems can easily be represented with the
Z transform. Using capital letters to denote the Z-transformed func-
tion, e.g., F(z) = Z[ f (t)] and G(z) = Z[g(t)], and using the time-
delay property of the Z transform, Z [g (t − T )] = 1

z Z[g(t)], we can
write

G(z) = F(z) + 1
z

G(z) ⇒
(

1 − 1
z

)
G(z) = F(z)

Thus

G(z) =
(

1 − 1
z

)−1

F(z) (3.7)

Let us calculate the relation between the input and output of a first-
order 
-� modulator. It is given by Eq. (3.8).

Y (z) =
(

1 − 1
z

)−1

1 + 1
z

(
1 − 1

z

)−1 Fr(z) + 1

1 + 1
z

(
1 − 1

z

)−1 Eq1(z)

= Fr(z)
1 − 1

z + 1
z

+ Eq1(z)
1 − 1

z + 1
z

Y (z) = F(z) +
(

1 − 1
z

)
Eq1(z) (3.8)
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The output signal is the sum of two terms: The first is the input; the
second is the 1-bit ADC quantization noise which is frequency shaped
by the factor (1 − 1/z). That factor is the Z-domain transfer function of
the discrete-time differentiator and is the reciprocal of the discrete-time
integrator given by Eq. (3.7).

The quantization noise power density can be computed by passing
from the Z transform to the DFT:

1 − 1
z

→ 1 − exp(− j ωT s) = exp
(

− j
ωT s

2

)
2 j sin

(
ωT s

2

)

Let E1( f ) and E1,
�( f ) be the quantization noise power density of a 1-
bit quantizer and a first order 
-� modulator, respectively. The relation
between the two functions is given by

E1,
�( f ) = 4 sin2
(

π
f
f s

)
E1( f ) (3.9)

The 1-bit quantizer output equals q (or 0) if input > q/2 (or < q/2). If the
input amplitude probability is uniformly distributed in the range [0; q],
the quantization noise will be uniformly distributed between −q/2 and
+q/2.

Let p(eq) be the density of the probability of quantization error eq.
Then the quantization noise power is given by the quantization noise
variance:

P1 =
0.5q∫

−0.5q

eq12 p(eq)d (eq1) = 1
q

0.5q∫
−0.5q

eq12 d (eq1)

= 1
q

[
eq13

3

]0.5q

−0.5q
= 1

q
1
3

(
q3

8
+ q3

8

)
= q2

12

P1 = σ 2
eq1 = q2

12
(3.10)

Assuming that the 1-bit quantization noise density is constant over
frequenies from − f s/2 to f s/2 (where f s is the sampling frequency),
E1( f ) is given by

E1( f ) = q2

12
1
f s

(3.11)
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1-bit quantizer

First-order Σ−∆ converter
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Figure 3.8 Quantization noise. (a) 1-bit quantizer, and (b) first-
order 
-� converter.

Consequently E1,
�( f ) is given by

E1,
�( f ) = 4 sin2
(

π
f
f s

)
q2

12
1
f s

(3.12)

The first-order 
-� converter total quantization noise can be calculated
by integrating Eq. (3.12) over the frequency:

P1,
� =
f s/2∫

− f s/2

E1,
�( f ) df = q2

6
1
f s

f s/2∫
− f s/2

2 sin2
(

π
f
f s

)
df = q2

6

P1,
� = q2

6
= 2P1 (3.13)

Compared with the 1-bit quantizer, the first-order 
-� converter has
double the total noise, but its density is pushed toward high frequencies.
Figure 3.8 shows the quantization noise power density versus frequency
for (a) a 1-bit quantizer and (b) a first-order 
-� converter.

3.3.3 Higher-order Σ-∆ converters

The noise shaping property expressed by Eq. (3.8) suggests a way to
combine more 
-� converters in order to further reduce the low-
frequency quantization noise power density. Figure 3.9 shows the block
diagram of a third-order 
-� converter. Consider its outputs Y1(z),
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Y2(z), Y3(z) :

Y1(z) = Fr(z) +
(

1 − 1
z

)
Eq1(z)

Y2(z) = −Eq1(z) +
(

1 − 1
z

)
Eq2(z)

Y3(z) = −Eq2(z) +
(

1 − 1
z

)
Eq3(z)

Y1(z)

−

−Eq1(z)

(1 − 1/z)

Y(z)

Y3(z) (1 − 1/z)

1/z

+ + +

+ + +

++

+Fr(z)

Eq1(z)Discrete integrator
1/(1 − 1/z) 

1-bit quantizer

−

1/z

+

Y2(z)

−

−Eq2(z)

1/z

+

Eq2(z)

−

1/z

+

Y3(z)

1/z

+

Eq3(z)

−

1/z

+−

1/z

(1 − 1/z)

+−

1/z

Figure 3.9 Third-order 
-� converter.
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Now, multiply Y1(z) by 1 = (1 − 1/z)0, Y2(z) by (1 − 1/z)1, Y3(z) by
(1 − 1/z)2. Summing the resulting terms, we have

Y1(z)
(

1 − 1
z

)0

= F(z) +
(

1 − 1
z

)
Eq1(z)

Y2(z)
(

1 − 1
z

)1

= −
(

1 − 1
z

)
Eq1(z) +

(
1 − 1

z

)2

Eq2(z)

Y3(z)
(

1 − 1
z

)2

= −
(

1 − 1
z

)2

Eq2(z) +
(

1 − 1
z

)3

Eq3(z)

and

Y (z) = Y1(z)
(

1 − 1
z

)0

+ Y2(z)
(

1 − 1
z

)1

+ Y3(z)
(

1 − 1
z

)2

Thus,

Y (z) = F(z) +
(

1 − 1
z

)3

Eq3(z)

Generalizing the procedure applied for third-order 
-�, we have that
the M-order 
-� modulator quantization noise power density and the
total quantization noise power are given by Eqs. (3.14) and (3.15),
respectively.

EM,
�( f ) =
[
2 sin

(
π

f
f s

)]2M q2

12
1
f s

(3.14)

PM,
�( f ) = q2

12
2
f s

f s/2∫
− f s/2

[
2 sin

(
π

f
f s

)]2M

df

= P1
1
π

f s/2∫
f =− f s/2

[
2 sin

(
π

f
f s

)]2M

d
(

π
f
f s

)

= P1
1
π

π∫
−π

[
2 sin (x)

]2M d x

= P1
2
π

π∫
0

[2 sin(x)]2Md x (3.15)

An M-order 
-� modulator quantization noise power density normal-
ized to a 1-bit quantizer is plotted on Fig. 3.10 (log scale on x and y). Note
that all curves have one common point [1/3( f /f s); 1]. The quantization
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Figure 3.10 N order 
-� modulator quantization noise power den-
sity.

noise power relative to the 1-bit quantizer is reported by Table 3.1 for
M = 1, 2, . . . , 7.

The 
-� converter quantization noise power density given by
Eq. (3.14) can be approximated for the low-frequency range. Since if
x 
 1 sin(x) ∼= x,

EM,
�( f ) ∼= 22N q2

12
1
f s

(
π

f
f s

)2M

A three-stage 
-� converter having the block diagram of Fig. 3.9 is also
known as a multistage noise shaper or MASH. Summarizing, given one
quantizer and one sampling frequency, an M-order 
-� converter has a
quantization noise power density proportional to the frequency raised
to 2M and a total quantization noise power that increases with M.

TABLE 3.1 Total Quantization Noise Power for the M = order Σ-∆
Modulator


-� modulator order M Total quantization relative noise power†

0‡ 1 (0 dB)
1 2 (3.01 dB)
2 6 (7.78 dB)
3 20 (13.01 dB)
4 70 (18.45 dB)
5 252 (24.01 dB)
6 924 (29.66 dB)
7 3432 (35.36 dB)

†Number in parentheses = 10 log10 (number not in parentheses).
‡1-bit quantizer only.
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ACC_IN(k)

 ACC_OUT(k)
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 Eq(k)
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+In(k)

Discrete
integrator
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+

1-bit
quantizer

Out(k)

X3

X2X1

X4

+

Figure 3.11 Time-domain first-order 
-� modulator and accumulator block diagrams.

Comparing first-order 
-� modulator and accumulator waveforms,
we can note that Eq(k) is the same as the accumulator output ACC
OUT(k), and Out(k) has the same shape as the accumulator’s overflow
ACC OVFL(k) multiplied by Q. Two circuits are shown in Fig. 3.11.

The calculation of first-order 
-� modulator output waveforms can
be done by implementing the following routine:

`All to zero at the beginning of the process
B(0) = C(0) = D(0) = 0
For k = 1 to Kmax

X1(k) = A(k) - X3(k-1) `Integrator input
X2(k) = X1(k) + X2(k-1) `Integrator output
If X2(k)> Q Then `Output

X3(k) = Q
Else
X3(k) = 0
End If

Next k

One possible implementation is the following Mathcad program†:

X :=
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X0,0 ← 0
X1,0 ← 0
X2,0 ← 0
X3,0 ← 0
for k ε 1 .. Kmax − 1∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

X0,k ← k
X1,k ← A - X3,k-1
X2,k ← X1,k+ X2,k-1
X3,k ← q if X2,k≥q
X3,k ← 0 ifX2,k< q

X

†See the file SigmaDelta1.MCD.
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Figure 3.12 First-order 
-� quantization error and accu-
mulator output.

The accumulator output can be calculated with the following
formulas:

ACC_OUT0 := 0
k := 1.. Kmax − 1
ACC_OUTk := if [ACC_OUTk−1 + A <Q, ACC_OUTk−1 + A,

(ACC_OUTk−1 + A) − Q]
ACC_OVFL0 := 0
ACC_OVFLk := if (ACC_OUTk > ACC_OUTk−1, 0, 1)

One particular case is considered: Q = 16 and A = 5. This case is simple
enough to calculate by hand and compare.

Figure 3.12 shows the 
-� quantization error Eq,k and the accumu-
lator output. The two curves are identical. Figure 3.13 shows the accu-
mulator output versus the time index k and the same curve translated
by Q samples. The two curves are identical. The waveform is periodic
over time with period Q as expected. Figure 3.14 shows 
-� output X3
and the accumulator overflow. In all plots the second curve is y shifted
by 0.1 in order to help it to be distinguished from the first one. Variable
k represents the discrete-time index. Different calculations can be done
with different accumulator sizes Q and different input values. In any
case output waveforms are periodic by Q time samples:

� Eq,k = ACC OUTk

� X3k Q = ACC OVFLk

� X3, ACC OVFL have a duty cycle = A/Q
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16 18 20

AccumulatorOutput(k) + 0.1

AccumulatorOutput(k − Q)

22 24 26 28 30 32

0

Q

Clock cycles k

Figure 3.13 Normal and translated accumulator output.

3.3.4 Multiple-accumulator fractional-N
phase noise

Given the correspondence between the first-order 
-� converter and
the accumulator circuit, the fractional-N circuit equivalent of the third-
order 
-� converter of Fig. 3.9 is shown by Fig. 3.15. It is a three-
accumulator frequency divider circuit. In the single accumulator
fractional-N divider, the frequency divider factor is increased by 1 each
time the accumulator overflow occurs; in this case the control signal can
be only 1 or 0. In a multi-accumulator fractional-N divider, the control
signal OUT(k) may assume many different values. The instantaneous
frequency division factor consequently assumes more values. OUT(k)

Clock cycles k

16 18 20 22 24 26 28 30 32

0

1

AccumulatorOutput(k) + 0.1

First order Σ-∆  QuantizerOutput(k)

Figure 3.14 Accumulator overflow and 
-� output.
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IN(k)
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−
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Ts
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Figure 3.15 Three-accumulator fractional-N divider modulator. (All three
accumulator clocks are coming out from the frequency divider.)

is affected by the first accumulator overflow at the kth time sample, by
the second one at the kth and (k−1)th time samples, and by third one at
the kth, (k − 1)th, and (k − 2)th time samples. Examining the diagram
of Fig. 3.15 we found that the transfer function from the first, second,
and third accumulator overflows to output in the Z domain are given
respectively by 1 = (1 − 1/z)0, (1 − 1/z)1, (1 − 1/z)2, so we can write

OUT (z) =
3∑

j =1

ACC OVFL j

(
1 − 1

z

) j

= ACC OVFL1 (z)

+ ACC OVFL2 (z) − 1
z

ACC OVFL2 (z)

+ ACC OVFL3 (z) − 2
1
z

ACC OVFL3 (z)

+ 1
z

1
z

ACC OVFL3 (z)

which corresponds in the time domain to Eq. (3.16).

OUT(k) = ACC OVFL1 (k)

+ ACC OVFL2 (k) − ACC OVFL2 (k − 1)

+ ACC OVFL3 (k) − 2 ACC OVFL3 (k − 1)

+ ACC OVFL3 (k − 2) (3.16)
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OUT(k) is the sum of 4 positive and 3 negative terms; each term is an
accumulator overflow that can assume a value of 1 or 0. OUT(k) can
assume all integer values from −3 to +4.

The fractional-N order can be increased by generalizing the
schematic of Fig. 3.15. The key block is the one inside the dashed box;
it consists of one accumulator, one discrete-time differentiator, and one
adder. This block has to be recursively replicated as many times (in
increasing order) as needed.

Now, the output signal of the third-order 
-� converter Y (k) (see
Fig. 3.8) is a pseudo-random signal whose average of power spectrum is
given by Eq. (3.14), so the majority of noise energy is pushed toward the
high-frequency range and can be filtered out by using a lowpass filter.
In the same way, the frequency division modulating signal OUT(k) is
a pseudo-random signal whose average is the fractional frequency and
with a power spectrum given by Eq. (3.14). Still noise energy is pushed
toward high frequencies; it can be filtered out with a lowpass filter. In
the case of the PLL synthesizer, the lowpass function is made by the
PLL closed-loop response. Its bandwidth† has to be 
 f s/6. The loop
filter has to be designed to meet that specification. The Y (k) amplitude
is within [0; q] while OUT(k) is within [0; 1] and correspondent synthe-
sizer output angular frequency is modulated by a factor OUT(k)2π f ref.
Thus we can replace q with 2π f ref and f s with f ref and obtain the
fractional-N generated angular frequency noise power density:

|�noise( f )|2 =
[
2 sin

(
π

f
f ref

)]2M
π2

3
f ref (3.17)

We are more interested in phase noise than in frequency noise. Any-
way the latter can be calculated from the first by discrete-time deriva-
tion. This means that we have to multiply Eq. (3.17) by the squared
amplitude of the discrete-time differentiator transfer function. That
factor is already contained in Eq. (3.17) since the factor between the
squared brackets is the transfer function of the discrete-time integra-
tor which is the reciprocal of the one of the differentiator. Thus the phase
noise power density due to an M-accumulator fractional-N synthesizer
is given by

|�noise( f )|2 =
[
2 sin

(
π

f
f ref

)]2(M−1)
π2

3
f ref (3.18)

†At that offset, the frequency noise intercepts the value of the single accu-
mulator which is not acceptable (see Fig. 3.10).
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Figure 3.16 Normal and translated accumulator output Q = 32,
A = 11.

For low-frequency values Eq. (3.18) can be approximated as

Fnoise( f ) ∼= (2π )2M

12
f −2(M−1)

ref f 2(M−1) (3.18′)

which states that an M-accumulator fractional-N synthesizer phase
noise slope is 20(M − 1) dB/decade. Equation (3.18) relies on the flat
distribution of quantization noise over frequency; or in other words, it
needs the last accumulator’s waveforms to be random signals. In real
cases, the accumulator’s waveforms are not truly (or perfectly) ran-
dom signals. Because of this nonideality, it is difficult to find the multi-
accumulator synthesizer phase noise analytically, but it is possible to
find it by numerical calculation.† Figure 3.16 shows the resulting fre-
quency control waveform OUTk and the same curve translated by 2Q
samples in the case of Q = 32, A = 11. Again, the translated curve
is also y shifted by 0.1 in order to help distinguish the two. Note that
OUTk = OUTk−2Q; the frequency division modulation waveform is pe-
riodic with a period of 2Q/ f ref. Consequently the phase noise spectrum
has Q spectral lines spaced by f ref/(2Q) (the maximum frequency is
f ref/2). In some particular cases, when Q is an integer multiple of A,
the period becomes shorter, being multiplied by 1/A, and the phase
noise spectrum becomes made by Q/A spectral lines still with maxi-
mum frequency f ref/2 and spaced by f ref A/(2Q). The output spectrum

†See the file 3AccumulatorsNfractional.MCD.
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Figure 3.17 Fractional-N phase noise (Q = 256, A = 33).

is modulated by a signal which is more similar to a periodic signal than
to random noise; the effectiveness of the spur reduction is compromised.

Figure 3.17 shows the result for accumulator size Q = 256 and the
first accumulator inputs A = 33 and A = 32. On the same graph is
also plotted the result coming from Eq. (3.18). It can be seen that the
first case (A = 33) reasonably approximates the analytic expression
derived for random sequences; in the second case (A = 32) Q/A = 8,
and the phase noise spectrum contains only eight equally spaced lines
(they don’t look so, but remember the logarithmic scale). Spectra shown
by Fig. 3.17 are calculated using the FFT. This calculation is not rig-
orous because the FFT needs samples that are equally time spaced by
sampling time. The accumulator’s waveforms are instead timed by 1/ f v
which is not constant since it depends on the instant frequency division.
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Chapter

4
Synthesizer Performance

Simulation

4.1 Introduction

This chapter is the core of the book. Many techniques for the predic-
tion of PLL performances are described. Section 4.2 deals with the
calculation of open-loop, closed-loop, and phase error responses. We
show how to calculate these functions by using mathematical manipu-
lation and circuit analysis programs. The methods described also allow
for the calculation of global parameters like the unit gain bandwidth,
response peak, and phase margin. Applying the methods of this sec-
tion, it is possible to analyze PLLs without limitations on loop filter
complexity.

Section 4.3 describes phase noise definition and analysis. Modeling of
the noise from loop components together with the impact of this noise
on the PLL phase noise is presented. The optimum closed-loop band-
width to achieve minimum PLL phase noise is defined at the end of the
section.

Angular modulated PLLs are described in Sec. 4.4 which gives a phys-
ical interpretation of closed-loop and phase error responses.

The analysis of dynamic performances of PLLs is presented in
Sec. 4.5. Output frequency settling for linear and nonlinear operation
of the phase detector are illustrated. Simulation techniques for these
calculations are examined for both linear and nonlinear operation. An
approximated linear analysis for the latter is also described.

A final comparison table for the mathematical manipulation and
circuit analysis methods completes the chapter.
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4.2 Simulation Techniques

Two techniques for simulation of a PLL are discussed in this chapter.
The first one is based on the use of mathematical manipulation pro-
grams that perform all the complex number algebraic computations
needed to manipulate PLL equations. The fundamental equations are
open-loop, closed-loop, and phase error response [Eqs. (1.3), (1.5) and
(1.6)]. All these functions can be easily calculated from the loop filter
transfer function, and several loop filters were described in Sec. 2.3
together with their transfer functions. PLL performances can be calcu-
lated by analyzing the block diagrams of Fig. 1.2 by application of the
above-mentioned equations. Sampling effects can be calculated using
Eq. (2.10).

The other method of analysis is based on circuit simulators with the
application of behavioral models. Calculation of the loop filter gain is
one of the basic capabilities of circuit simulators. The remaining blocks
of Fig. 1.2 are multipliers by a constant, one subtractor, and one in-
tegrator. The behavioral model analysis of block diagrams consists of
representing quantities of each node in the block diagram with voltages
and replacing each block with a corresponding circuit characterized by
the same input-output relations. According to this definition, the blocks
in the diagram of Fig. 1.2 are modeled as follows:

� The loop filter transfer function is modeled by the loop filter circuit
itself.

� The multiplier by constant is modeled by the ideal voltage ampli-
fier generally implemented with voltage-controlled voltage sources
(VCVSs) that have input and output ports referred to ground and a
gain equal to the multiplying constant. If the multiplying constant
is less than 1, a two-resistor voltage divider can be used instead of a
VCVS.

� The subtractor is modeled by the unit gain VCVS with the input port
floating from ground and the output port referred to ground: The
VCVS output voltage is equal to the difference between the voltages
at the input terminals.

� The subtractor followed by the multiplier by constant is modeled by a
VCVS like above but with the gain equal to the multiplying constant.

� The integrator is modeled by one circuit having an input-output gain
of 1/(2π f ).

In the case of the charge pump, the phase detector output is inherently a
current rather than a voltage, so the output VCVS of the phase detector
block is replaced by a voltage-controlled current source (VCCS).
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In order to show the application of the two analysis methods, we will
analyze one fourth-order type II PLL with the following parameters:

� Loop filter schematic as in Fig. 2.21 with feedback impedance as in
Fig. 2.19c. Component values are Cin = 2.2 nF, C2 = 10 nF, C3 =
1 nF, R1/2 = 3.3 Kilo-ohms (k�), R2 = 5.6 k�.

� PFD with Vdd = 5 V (ideal CMOS), Kd = 5/(2π)
� VCO modulation sensitivity of 10 MHz/V, Kv = 2π(10 × 106)
� Output frequency of 1 GHz, reference frequency of 1 MHz, and thus

frequency division factor N = 103.

This PLL will be analyzed using two approaches. Open-loop, closed-
loop, and phase error responses will be calculated through analysis
of the Fig. 1.2a block diagram. Two programs will be used: mathemati-
cal manipulation MATHCAD, and the SPICE-based simulator program
SIMETRIX.† MATHCAD calculation is a straightforward application of
loop equations and loop filter frequency responses. The loop filter fre-
quency response can be calculated from Eq. (2.16):

Loop filter feedback impedance and gain:

Z2(f ) :=
(

C3·j·2·π ·f + 1
1

C2·j·2·π ·f + R2

)−1

F(f ) := Z2(f )
R1

· 1

j·2·π ·f·R1
4 ·Cin + 1

Phase detector gain: Kd := 5·(2·π )−1

VCO tuning sensitivity: Kv := 2·π ·10·106

Frequency division factor: N := 1000

The open-loop gain, closed-loop frequency response, and phase error
response are given by Eqs. (1.5), (1.3), and (1.6), respectively, as follows:

Open loop gain: Hopen(f ) := Kd·Kv
N · F(f )

j·2·π ·f

Closed loop frequency response: H(f) :=
Kd·Kv

N · F(f )
j·2·π ·f

1+ Kd·Kv
N · F(f )

j·2·π ·f

Phase error response: H1(f) := 1
1+ Kd·Kv

N · F(f )
j·2·π ·f

The program will calculate the preceding expressions as complex func-
tions of frequency. Their amplitude and phase (real and imaginary

†See the files Mathcad PLL Analysis.MCD and Simetrix PLL Analysis.
sxsch.
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parts) can be plotted versus frequency obtaining the Bode plot, Nyquist
plot, etc. A frequency stimulus expression has to be defined in order
to plot the functions. This can be done through definition of an integer
index to sweep the frequency variable:

frequency stimulus:

Kmax := 255 k := 0..Kmax − 1 fstart := 10 fstop := 1·106

freqk := fstart·
(

fstop

fstart

) k
Kmax−1

This way the frequency will be swept from 10 Hz to 1 MHz with 51 points
per decade (255 total points). The phase margin, closed-loop unit gain
bandwidth, and closed-loop gain peak can be easily calculated by using
the equation-solving capability of MATHCAD.

Phase margin calculation:

fzero := 104

Given|Hopen(fzero)| = 1 fUnitGain := find(fzero) fUnitGain = 6.49·103

PhaseMargin := arg(Hopen(fUnitGain))·180
π

+ 180

PhaseMargin = 46.203

Closed loop unit gain bandwidth calculation:

fzero := 104

Given|H(fzero)| = 1 fClosedLoopUnitGain := find(fzero)

fClosedLoopUnitGain = 8.614·103

Closed loop gain peak:

D(f) := d
df

|H(f)|

fguess := 5·103

Given D(fguess) = 0 fClosedLoopPeak := find(fguess)

fClosedLoopPeak = 4.412·103

ClosedLoopPeakdB:= 20. log(|H(fClosedLoopPeak)|)
ClosedLoopPeakdB = 3.19
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Figure 4.1 Behavioral model circuit of type II fourth-order PLL.

More or less of the same calculations can be performed by using be-
havioral model concepts. The SIMETRIX schematic of Fig. 4.1 is a be-
havioral model representation of a PLL block diagram as in Fig. 1.2a.
Some significant nodes of the schematic are marked with terminals.

The voltages on terminals represent the quantities on the nodes of
the block diagram.

� The PFD is represented by VCVS E2; its gain equals Kd = 5/(2π ).
Terminals marked with Up and Dwn correspond to PFD output termi-
nals. This component supplies a differential output voltage between
the nodes equal to the average PFD. Two resistors R1 and R2, en-
sure a DC path to ground, which is needed for initial DC analysis of
the circuit performed by the simulator. If a charge pump is used, E2
has to be replaced with a VCCS with gain Kd = I cp/(2π ), negative
output terminal connected to ground, and a positive one connected to
the loop filter input (which will be a transimpedance).

� Loop filter components are R1a, R1aa, R2a, Cina, C2a, C3a, R1b,
R1bb, R2b, Cinb, C2b, C3b, and E1. The operational amplifier is sim-
ply modeled with a high gain VCVS (gain of E1 is 108).

� The VCO block consists of components E4, R6, L1, and H1. Compo-
nent E4 is a VCVS whose gain equals Kv; its input is connected to the
node marked V tune, representing the tuning voltage (node a4 in
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Fig. 1.2), while the output is connected to node Omega VCO Out,
whose voltage represents the VCO output angular frequency (node
a5 in Fig. 1.2). The integrator is realized with R6 = 10−12�, L1 = 1H,
and the current-controlled voltage source H1 = 1 V/A. The gain from
node Omega VCO Out to node Theta VCO Out is given by 1/(10−12 +
j 2π f ). For frequencies sufficiently higher than 10−12 (which really
is a very low value), that gain can be approximated with 1/( j 2π f ),
which is perfect integrator transfer function. The approximation
could be eliminated by replacing R6 with a short circuit, but this is
not allowed because this way the voltage generator E4 output would
be DC grounded from the L1 and H1 input.

� The frequency divider is a simple two-resistor (Rdivider1 and Rdi-
vider2) voltage divider. Gain from node Theta VCO Out to Theta V
(node a7 in Fig. 1.2a) is given by Rdivider1/(Rdivider1 + Rdivider2) =
1/1000 = 1/N , which is the reciprocal of the frequency division factor
as needed.

� Nodes Theta R and Theta V represent the reference phase of
the reference signal and of the divided VCO (nodes a1 and a7 of
Fig. 1.2a). The difference between those two node voltages corre-
sponds to the phase error; E3 presents that voltage to its output
PhaseError.

Summarizing, voltages on the marked node of the schematic in
Fig. 4.1 represent corresponding (phases, angular frequencies, voltages)
quantities of the block in Fig. 1.2a so all frequency responses can be
calculated applying one alternating current (AC) voltage source stimu-
lus at the input (reference input of phase detector) and performing AC
analysis of the circuit. AC analysis is one of the basic capabilities of
SPICE.

From definitions of the closed-loop frequency response [Eq. (1.3)] and
the transfer function from the reference phase to the output phase
[Eq. (1.1)], it follows that the loop response is equal to the PLL input-
output transfer function divided by N. The closed-loop response is then
the gain from the reference input to the frequency divider output. This
is the gain from the AC source to node Theta V in the schematic of
Fig. 4.1. The AC source has a unit amplitude; thus the Theta V voltage
equals the closed-loop frequency response. The phase error response
is given by the voltage on the PhaseError node. The open-loop gain
can be calculated by opening the connection between the frequency
divider output and phase detector input, but this requires analysis
of two circuits. A smarter solution is found by recognizing that the
open-loop gain can be written in terms of the closed-loop response and
phase error response. This can be done by combining Eqs. (1.3), (1.5),
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Figure 4.2 Type II fourth-order PLL Bode diagram.

and (1.6):

HOpenLoop( f ) = H ( f )
1 − H ( f )

= H ( f )
PhaseErrorResponse( f )

(4.1)

The open-loop gain is the ratio between the closed-loop and phase error
frequency responses; therefore, its amplitude and phase can be plot-
ted by using SIMETRIX capability to plot relative voltages. Use the
instruction

Probe AC/Noise \dB-Relative Voltage \dB(V1/V2)

For the amplitude, and the instruction

Probe AC/Noise \Phase-Relative Voltage \Phase(V1/V2)

for the phase.
The frequency responses calculated with MATHCAD and SIMETRIX

are plotted in Fig. 4.2 (open-loop gain) and in Fig. 4.3 (closed-loop re-
sponse and phase error response). These two methods give almost iden-
tical results; the difference is less than 0.00055 dB for amplitude and
0.00056◦ for phase in all three functions and all over the frequency
range. Looking at Fig. 4.2 it is possible to observe that the phase calcu-
lated with MATHCAD is in the range [−180◦; +180◦], while SIMETRIX
removes the apparent discontinuities that occur when the phase mag-
nitude approaches 180◦.

The Nyquist diagram can be easily plotted with MATHCAD by using
the polar plot. SIMETRIX can plot the Nyquist diagram of a given node
voltage with the instruction:

Probe AC/Noise \Nyquist-Voltage
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Figure 4.3 Type II fourth-order PLL response. Closed-loop frequency
response with (A) SIMETRIX and (A′) MATHCAD. Phase error re-
sponse magnitude with (B) SIMETRIX and (B ′) MATHCAD.

In this case, the procedure is a little bit more complicated because the
open-loop gain is obtained as the ratio of two voltages. The following
procedure has to be used:

Probe \Add Curve

setting

y=Im(:Theta V/:PhaseError) and x=Re(:Theta V/:PhaseError).

MATHCAD Nyquist diagrams have a better aspect than those plotted
by SIMETRIX. MATHCAD polar plots have a unitary aspect ratio; thus
mathematically defined circles are plotted like circles. Differently from
that, the aspect ratio of SIMETRIX graphs can be made approximately
unitary only by manual resizing of the graph window. Without resizing,
the unitary circle curve looks like an ellipse. Moreover the unit circle
isn’t automatically drawn by SIMETRIX; it has to be plotted applying
the following procedure:

Probe \Add Curve

and setting

y=−(((abs(1-Im(:Theta V/:PhaseError)ˆ2)+1−(Im(:Theta V/:Phase-
Error)ˆ2))/2)ˆ0.5)

x=Im(:Theta V/:PhaseError)

Anyway, some other SPICE-based analysis programs have polar plot
capability, eliminating that difficulty. Figure 4.4 shows the results ob-
tained with the two approaches.
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TABLE 4.1 Comparison of PLL Analysis Methods

Mathematical Behavioral circuits

Loop filter
complexity

Moderate (−)
Analytic expression of the

response is needed.

Very high (+)
Simulator can handle very

complex circuits.

Calculation of
phase margin

Easy (+)
By using the equation-solving

feature to find the solution of
|Hopen( f )| = 1 and finding
the open-loop phase at that
frequency.

Relatively easy (−)
By placing the cursor on the

curve of the open-loop phase
curve at the unit gain
frequency.

Calculation of
closed-loop unit
bandwidth

Easy (+)
By using the equation-solving

feature to find the solution of
|H ( f )| = 1.

Relatively easy (−)
By placing the cursor on the

curve of the closed-loop
frequency response at the
unit gain.

Calculation of
closed-loop peak

Easy (−)
By using the equation-solving

feature to find the solution of
D[|H ( f )|] = 0.

Very easy (+)
Built in.

Statistical analysis Possible (−)
By manually generating

multiple analyses.

Easy (+)
By using Monte Carlo analysis.

Calculation of
sampling effects

Easy (+)
By writing Eq. (2.10).

Very difficult (−)

NOTE: (+) = advantage (more powerful or easier to use).
(−) = disadvantage (less powerful or more difficult to use).

The mathematical program-based method and the behavioral circuit
method are more or less equivalent for basic calculations. Advantages
and disadvantages of both methods are listed in Table. 4.1. This table
will be updated in later sections, where the description of PLL analysis
will be completed discovering further advantages and disadvantages.

4.3 Phase Noise

4.3.1 Definitions

Any oscillator and synthesizer output signal can be written as

Vout(t) = V (t) cos


 t∫

0

ω(τ ) dτ




V (t) is the amplitude of the signal and can be written as the sum of the
nominal amplitude and the AM noise: V (t) = Vo + VAM(t). ω(t) is the
instantaneous angular frequency. The argument of the cosine function
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can be written in terms of the average (or nominal) frequency ωo = 2π f o
and phase deviations θn(t):

Vout(t) = [Vo + VAM(t)] cos [ωot + θn(t)]

Defining the bilateral power density of phase deviations as∣∣∣∣∣∣
∞∫

−∞
θn(t) exp(− j 2π f t) d t

∣∣∣∣∣∣
2

= |	n( f )|2

	n is defined for both positive and negative values of frequency. θn(t) is
a real function. It follows that |	n( f )|2 = |	n(− f )|2.

The spectral density of phase deviation is defined as the unilateral
power density of the phase deviation:

Sφ( f ) = |	n( f )|2 + |	n(− f )|2 = 2 |	n( f )|2 (4.2)

Neglecting AM noise, the oscillator output signal is: Vout(t) = Vo cos [ωot
+ θn(t)]. If the phase deviation amplitude is � 1, the oscillator output
signal can be approximated as

Vout(t) = Vo{cos(ωot) cos[θn(t)] − sin(ωot) sin[θn(t)]}
∼= Vo[cos(ωot) − sin(ωot)θn(t)]

The output spectrum is given by

F[Vout(t)] ∼= Vo
δ( f − f o) + δ( f + f o)

2
− Vo

	n( f − f o) − 	n( f + f o)
2 j

(4.3)
That spectrum consists of two symmetrical parts. Each part includes
one carrier at f o and two symmetrical noise sideband spectra. The
distance of each part from the origin is equal to the carrier frequency.
The oscillator output spectrum is shown in Fig. 4.5. The oscillator phase
noise at a given frequency f m is defined as the ratio between noise in a
1-Hz bandwidth f m offset from f o and the carrier. From Eq. (4.3) the
phase noise is given by

PhaseNoise( f m) = (Vo/2)2 |	n( f m)|2
(Vo/2)2 = |	n( f m)|2 (4.4)

The phase noise is usually expressed in logarithmic units (dBc/Hz):

L ( f m) = 10 log10
{|	n ( f m)|2} (4.4′)

Comparing the definition of the phase deviation spectral density given
in Eq. (4.2) and that of the phase noise given in Eq. (4.4), it can be
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Figure 4.5 Phase deviation spectrum and oscillator output spectrum.

found that Sφ( f ) = 2PhaseNoise( f ). In the next sections we will
use lowercase Greek letter θ to denote the time-domain phase noise,
uppercase Greek letter 	 to denote its Fourier transform, and upper-
case letter L to denote the phase noise expressed in dB: 	( f ) = F [θ(t)],
L( f ) = 10 log10[|	( f )|2].

4.3.2 Phase noise of PLL synthesizer

All electronic components generate noise, and loop components are no
exception. Phase noise produced by the VCO, reference source, and fre-
quency divider was discussed in Secs. 2.4.3, 2.5, and 2.6.1. The noise
voltage produced by the loop filter originates from the resistor thermal
noise and operational amplifier noise. Commonly used models for noise
on resistors and operational amplifiers are shown in Fig. 4.6. The re-
sistor noise is modeled by adding a noise voltage source in series with
a noiseless resistor. The voltage noise density is given by |vr|2 = 4 KTR
where K is the Boltzmann constant, T is the absolute temperature, and
R is the resistance of the resistor. The voltage noise in series can be
replaced by a shunt noise current with a density of

∣∣ir∣∣2 = 4KT (1/R),
passing from a Thevenin to a Norton circuit.

The operational amplifier noise model includes one voltage noise gen-
erator and two equal-amplitude current noise generators connected
to inputs. Voltage and current noise densities are given by opamp
manufacturers.

The noise voltage at the loop filter output can be calculated by con-
sidering all noise sources on the circuit, multiplying them by their own
gain to the output node, and summing the square magnitude of all these
terms. This operation can be quite tedious even using a mathematical
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(a)

(b)

vrR

Ideal noiseless
resistor

|vr |
2  = 4KTR

Out

+

in2

in1

vn

Ideal noiseless
operational amplifier

In+

In−

|in1|2 = |in2|2 = in2

−

Figure 4.6 Noise models for loop
filter components. (a) Resistor,
and (b) operational amplifier.

manipulation program, but it is automatically performed by SPICE
through AC noise analysis.

However, noise generated by resistors can be minimized by noting
that the frequency responses of all loop filters for the PFD described
in Sec. 2.3.2 don’t change if all impedances are scaled by a constant
factor (i.e., all resistance and inductance divided and all capacitance
multiplied by an arbitrary constant). The noise voltage amplitude on
resistors is proportional to the square root of resistance; thus the resis-
tance of the loop filter has to be minimized compatibly with the current
driving capability of the phase detector and operational amplifiers. Min-
imization of loop filter output noise also requires the use of low-noise
operational amplifiers.

The phase noise of the PFD is usually assumed to be proportional to
the reference frequency due to the increased rate of flip-flop switching.
Expressing the phase frequency detector noise in logarithmic units we
have

LDET ( f r) = LDET( f r = 1 Hz) + 10 log10 ( f r) (4.5)

where f r is the reference frequency expressed in hertz and LDET( f r =
1 Hz) is on the order of –200 dBc/Hz.

Each loop component can be represented as an ideal block with one
noise source added to its output. The diagram of Fig. 1.2a is transformed
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Figure 4.7 PLL block diagram with noise sources.

to that of Fig. 4.7. The diagram of Fig. 4.7 includes five different noise
sources:

1. Reference phase noise

2. Phase detector noise

3. Loop filter output noise voltage

4. VCO phase noise

5. Frequency divider phase noise

The PLL output phase noise is given by a linear combination of five
terms. Each term is given by one of these listed noise sources multi-
plied by a weighting function of the frequency. The weighting functions
are the gains from the noise injection point to the output and can be
calculated by application of Mason’s rule.

The phase of the output signal is given by

	o =
Kd Kv

F ( f )
j 2π f

1 + Kd Kv
N

F ( f )
j 2π f

	r +
Kv

F ( f )
j 2π f

1 + Kd Kv
N

F ( f )
j 2π f

nDET +
Kv

j 2π f

1 + Kd Kv
N

F ( f )
j 2π f

nFILT

+ 1

1 + Kd Kv
N

F ( f )
j 2π f

nVCO −
Kd Kv

F ( f )
j 2π f

1 + Kd Kv
N

F ( f )
j 2π f

nDIV

We have five noise sources, each filtered by its own frequency response.
These partial frequency responses can be rearranged in terms of the
PLL closed-loop, phase error, and loop filter frequency responses as
follows:

	o( f ) = NH ( f )	r + N
Kd

H ( f )nDET + N
Kd

H ( f )
F ( f )

nFILT

+ [1 − H ( f )
]

nVCO − NH ( f )nDIV (4.6)
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All noise sources are uncorrelated, so the output phase noise is given by
the sum of the squared amplitude of each term in Eq. (4.6) as follows:

|	o( f )|2 = N 2 |H ( f )|2 |	r( f )|2 + N 2

K2
d

|H ( f )|2 |nDET( f )|2

+ N 2

K2
d

|H ( f )|2
|F ( f )|2 |nFILT ( f )|2 + [1 − H ( f )]2 |nVCO( f )|2

+ N 2 |H ( f )|2 |nDIV ( f )|2 (4.7)

The loop filter noise can usually be minimized by minimizing the impe-
dance of passive elements and choosing low-noise operational ampli-
fiers. Under this condition the third term of Eq. (4.7) can be neglected.
The output noise includes three terms which depend on frequency and
whose weighting function is the closed-loop frequency response H ( f ).
The VCO phase noise also depends on frequency, but its weighting func-
tion is the phase error response [1 − H ( f )]. Equation (4.7) can be re-
arranged and approximated as

|	o( f )|2 = N 2

[
|	r( f )|2 + |nDET( f )|2

K2
d

+ |nDIV( f )|2
]

|H ( f )|2

+ [1 − H ( f )]2 |nVCO( f )|2 (4.7′)

The synthesizer output phase noise is the sum of two terms. The
first one is given by a linear combination of the reference signal, phase
detector, and frequency detector noise. It is filtered by the closed-loop
response which is lowpass; for this reason it is sometimes called in-band
noise. The second is the VCO phase noise and is filtered by the highpass
phase error response. The closed-loop and phase error responses cross
close to the unit gain line (see Figs. 1.7, 2.36, and 4.3), so increasing the
loop bandwidth will increase the contribution of in-band noise and will
decrease the contribution of the VCO to the output phase noise, and
vice versa. Call f 1 the crossover frequency between the PLL closed-
loop and phase error responses and f 2 the crossover frequency of the
VCO phase noise with in-band noise: The best compromise is normally
obtained when f 1 ≈ f 2. Moreover the magnitude of both the closed-
loop and phase error frequency responses is higher than 1 at offset
frequencies close to the cutoff. Those peaks are added to in-band noise
and VCO filtered noise, respectively, increasing the PLL phase noise.
For this reason the closed-loop response and phase error peaks have
to be minimized. Peaks can be minimized but not eliminated, usually
increasing the phase margin. Thus the PLL phase noise at the offset
frequency close to crossover is always higher than that of the VCO
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only or the reference source increased by 20 log10(N ) only† even if all
remaining components are noiseless.

4.3.2.1 MATHCAD analysis of PLL phase noise. Let’s analyze the phase
noise of a PLL synthesizer with 8-GHz output frequency and 1-MHz
reference frequency employing the following components:

� VCO with Kv = 2π(277 × 107) as in Fig. 2.35 for f out = 8 GHz and
with phase noise as plotted in Fig. 2.39, which can be modeled by
Eq. (2.33):

LVCO ( f m) = 10 log10

[
(9.8 × 10−15) + 21.7

f 2
m

+ 7.6 × 106

f 3
m

]

� Reference oscillator with the same resonator Q as in Fig. 2.41 (curve 1)
but with an output frequency 10 times lower (1 MHz instead of
10 MHz). The sloped portion of the phase noise will decrease by
20 log10(10 MHz/1 MHz) = 20 dB, while the noise floor (flat portion of
the curve) will remain unchanged according to the Leeson equation.
The reference phase noise can be expressed as

LREF ( f m) = 10 log10

(
10−15 + 8 × 10−13

f 2
m

+ 8 × 10−11

f 3
m

)

� Frequency divider whose output phase noise is assumed to be like the
transistor-transistor logic (TTL) divider of Fig. 2.50 (remember that
the phase noise of a frequency divider is mainly determined by the
last divider of the chain as stated in Sec. 2.6.1). Frequency divider
noise can be approximated by the following formula:

LDIV ( f m) = 10 log10

(
10−16.5 + 3 × 10−13

f m

)

� Phase detector with phase noise given by Eq. (4.5):

LDET = −200 + 10 log10(106) = −140

� Loop filter circuit like that in Fig. 2.21 with a feedback impedance
as in Fig. 2.19c. The component values are Cin = 270 pF, C2 = 1 nF,
C3 = 82 pF, R1/2 = 12 k�, R2 = 18 k�.

†The phase noise of the reference oscillator followed by an ideal frequency
multiplier by N. This ideal source generates the same PLL frequency with a
frequency division factor of N .
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Figure 4.8 Type II, fourth-order PLL. (a) Nyquist diagram and the (b)
closed-loop and phase error responses.

Equations for noise sources and the loop frequency response had be
implemented inside a MATHCAD worksheet.† The Nyquist diagram is
shown in Fig. 4.8a. It can be seen that the phase margin is about 44.9◦:
more or less like in the example of Sec. 4.2.

†See the file Mathcad PLL PhaseNoise Analysis.MCD.
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Figure 4.9 PLL phase noise and its partial terms.

Figure 4.8b shows the closed-loop and the phase error responses. Both
curves exhibit a peak response of about 3.3 dB, a closed-loop unit gain
bandwidth of 27.4 kHz, and an error response unit gain cutoff frequency
of 14.9 KHz.

The in-band phase noise is calculated by a combination of the refer-
ence, PFD, and frequency divider phase noises using Eq. (4.7′):

LInBand(f) = 10 · log
[(

10
LREF(f)

10 + 10
LDIV(f)

10 + 10
LDET

10 · 1

kd2

)
· N2

]

The PLL phase noise had been calculated by applying Eq. (4.7′) and is
plotted in Fig. 4.9 together with the VCO, in-band, and all component
phase noises. The in-band and VCO phase noises cross at 19.5 kHz.
Phase noise minimization suggests that the closed-loop and phase error
responses have to cross more or less at the same frequency; two curves
cross at about 20 kHz as Fig. 4.8b shows, very closed to the requested
value.

In order to show the effectiveness of the phase noise minimization cri-
terion, the loop filter was scaled by factors 0.1, 1, and 10 by applying the
scaling rules described in Sec. 2.3.4. Loop filter scaling changes the cut-
off frequency but doesn’t affect the shape of the response, in particular
the phase margin and response peak. A scaling factor of 1 corresponds
to not scaling the filter; scaling factors of 0.1 or 10 correspond, respec-
tively, to reducing or increasing the closed-loop bandwidth by 10. PLL
phase noise curves for the nominal loop filter and the two scaled loop
filters are plotted in Fig. 4.10. The nominal (not scaled) filter gives the
lowest phase noise; the narrower band PLL has a higher phase noise
below 20 kHz; the wider band one has a higher noise above 30 kHz.
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Figure 4.10 PLL phase noise with different values of the closed-loop
unit gain bandwidth.

The optimum PLL bandwidth is not always achievable. An important
limiting factor is reference spur filtering. When a small frequency step
is needed, a low reference frequency has to be used and the maximum
closed-loop bandwidth is limited because it has to be a small fraction
of the reference frequency (as explained in Sec. 2.2). In our case the
optimum loop bandwidth is a little bit smaller than 30 kHz, while the
reference frequency is 1 MHz, which is 36.5 times bigger, keeping a rea-
sonable margin for reference spur filtering. Sometimes the PLL band-
width has to be wider than the optimum value because fast settling is
required (see Sec. 4.5).

If an M-accumulator fractional-N divider is used, its phase noise is
given by Eq. (3.18) which states that the M-accumulator fractional-N
synthesizer phase noise slope is 20(M − 1) dB/decade. The slope of the
PLL frequency response has to be not less than that value; otherwise
the in-band noise is not sufficiently filtered and will affect the PLL
phase noise even at high offset frequencies. In Sec. 2.3.1 it was found
that the PLL lowpass slope is 20(PLLorder − 1) dB/decade, and it has
to be not less than the fractional-N phase noise slope. Thus it has to
be 20(PLLorder − 1) ≥ 20(M − 1) ⇒ PLLorder ≥ M. The PLL minimum
order equals the number of accumulators.

4.3.2.2 SIMETRIX analysis of PLL phase noise. The same calculation of
the synthesizer output phase noise can be performed with circuit anal-
ysis by inserting noise sources inside the behavioral model of the loop.
In other words the block diagram of Fig. 4.7 has to be implemented by
applying the method of the behavioral model. In Sec. 4.2 we described
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how to build up the equivalent circuit of the block diagram of Fig. 1.2a.
The block diagram of Fig. 4.7 is derived from the one of Fig. 1.2a, in-
cluding the phase noise of the loop components. The equivalent circuit
for the block diagram of Fig. 4.1 has to be built up by applying the
method described in Sec. 4.2 and summing the noise voltages at the
output of all the loop components. According to the principle of behav-
ioral modeling, all quantities of the block diagram are represented by
voltages or currents (more usually voltages). Consequently phase noise
sources will be represented by noise sources whose voltage density is
equal to the corresponding phase noise. The square magnitude of the
output noise voltage equals the synthesizer output phase noise. Now,
the dependence on the frequency of the reference signal, phase detector,
VCO, and frequency divider phase noise can be expressed as

|	( f )|2 =
3∑

k=0

Ak f −k

where in some cases the coefficients Akcan be zero. Thus the loop com-
ponents’ phase noise curves have portions with slope over frequency
of 30, 20, 10, and 0 dB/decade, and their corresponding noise voltage
sources have the same slope. It is quite easy to model a flat noise source
with a resistor followed by a VCVS†: One 6033.01-� resistor followed
by a voltage gain of 100K gives a noise voltage density of 1 mV/Hz0.5

(−60 dB below 1 V/Hz0.5) when the temperature of the resistor is 27◦C.
Figure 4.11a shows the circuit. The noise voltage is available between
nodes Vnp and Vnn, modifying the gain of the VCVC output level ac-
cordingly. Sloped noise sources can be obtained by filtering the flat noise
generated by the circuit of Fig. 4.11a. The simplest filter is a first-order
RC lowpass filter which has an asymptotic slope of 20 dB/decade. The
circuit of Fig. 4.11a can be slightly complicated by placing a capacitor in
the shunt with the resistor. The 20-dB/decade slope noise source is ob-
tained providing that the cutoff frequency 1/(2π RC) is � than the min-
imum frequency of interest. The resulting circuit is shown in Fig. 4.11b.‡

The output noise between nodes Vnp and Vnn has a voltage density
of 1 mV/Hz1/2 at 1 Hz and depends on frequency as 1/ f . Noise gen-
erators with a slope that is not an integer multiple of 20 dB/decade
are impossible§ to obtain by applying the above described approach be-
cause lowpass filters have an asymptotic slope of 20 multiplied by the

†See the SIMETRIX file FlatNoise.
‡See the SIMETRIX file 20dB decade Noise.sxsch.
§The impedance of inductors and capacitors is sloped by 20 dB/decade, and

there is no slower sloped element.
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Figure 4.11 Noise generators. (a) Flat noise generator, (b) 20-dB/decade
noise generator, (c) 10-dB/decade noise generator, and (d) 30-dB/decade
noise generator.
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Figure 4.12 Ten-dB/decade filter.

filter order (which is an integer of course) dB/decade. A 10-dB/decade
sloped filter can be synthesized by inserting many alternating poles
and zeros in the transfer function. In this way the zeros partially can-
cel the filtering action of the poles and the filter slope is reduced to
the desired value. Physical realization of the filter consists of a mod-
ified version of the RC lowpass filter where the capacitor is replaced
by many series RC networks in parallel: This way the slope around
the cutoff is used instead of the asymptotic slope. Figure 4.12 shows
one possible realization of that filter.† It consists of one series resistor
(R1), six series RC (R2, C2, R3, C3, . . . , R6, C6), and one ideal ampli-
fier (E1) that adjusts the gain of the filter and provides zero output
impedance.

Poles and zeros of a transfer function are approximately given by
Pk = R1Ck+1 and Zk = Rk+1Ck+1 with k ∈ [1; 6]. The frequency re-
sponse magnitude (in dB) of the filter together with the magnitude of
function f −0.5 are plotted in Fig. 4.13. The maximum amplitude error
is less than 0.4 dB from 1 Hz to 1 MHz. The filter of Fig. 4.12 can be
cascaded with the generators of Fig. 4.11a and b obtaining the out-
put voltage noise density of f −0.5 and f −1.5 (10 and 30 dB/decade),
respectively.

Another approach can be used to model a f −0.5 voltage noise density.
This consists of taking flicker noise coming out from a forward-biased
diode. SPICE models diode noise with the equation:

i2
n( f ) = 4KT

RS
+ 2qId + KFId

1
f

(4.8)

†See the SIMETRIX file Half Slope.sxsch.
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Figure 4.13 Magnitude frequency response of the circuit of Fig. 4.12.

where RS, KF = two parameters of the diode SPICE model (series
resistance and flicker noise coefficient, respectively)

q = electron charge
T = absolute temperature
Id = forward current

The square magnitude of the current noise density given by Eq. (4.8)
contains three terms:

1. Thermal noise density due to series resistance of the diode (RS )

2. Shot noise

3. Flicker noise

The first two terms have a flat distribution over frequency, while the
third is 10 dB/decade sloped over frequency. For high values of the for-
ward current and the flicker noise coefficient, the third term dominates
over the other two and Eq. (4.8) can be approximated as

i2
n( f ) ∼= KF Id

1
f

(4.8′)

A forward-biased diode followed by a VCVS gives a noise generator
sloped by 10 dB/decade. Figure 4.11c shows the schematic of such a
generator† with an output voltage noise density of 1 mV/Hz0.5 at 1 Hz.

†See the SIMETRIX file 10dB decade Noise.sxsch.
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Figure 4.14 Output voltage noise density of the circuits in Fig. 4.11a,
b, c, d.

The diode SPICE model is

.MODEL flick D IS=1n N=1 RS=0.1 KF=100

Inserting a 20-dB/decade lowpass filter within the above circuit, we
will obtain a 30-dB/decade noise source (voltage noise proportional to
f −1.5). Figure 4.11d shows the schematic.† The output voltage noise
density is still 1 mV/Hz0.5 at 1 Hz.

Figure 4.14 shows the output voltage noise density of the circuits of
Fig. 4.11a, b, c, and d. The output voltage noise density is 1 mV/Hz0.5

at 1 Hz for all four circuits. The slope is 0, 20, 10, 30 dB/decade, respec-
tively, for the circuits in Fig. 4.11a, b, c, and d.

Noise coming out from circuits can be summed up (by a series con-
nection of the output ports) to obtain any noise spectrum in the form
|	( f )|2 = ∑3

k=0 Ak f −k . The gain of the output of the VCVS has to be
set according to the corresponding coefficient Ak . In order to show this
modeling technique, consider the VCO phase noise. In Sec. 4.3.2.1 it
was assumed that the VCO phase noise is given by

LVCO ( f m) = 10 log10

(
9.8 × 10−15 + 21.7

f 2
m

+ 7.6 × 106

f 3
m

)

†See the SIMETRIX file 30dB decade Noise.sxsch.
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The corresponding equivalent noise voltage density is given by

vn,VCO ( f m) =
√

9.8 × 10−15 +
√

21.7
f m

+
√

7.6 × 106

f 1.5
m

The equivalent voltage noise has three terms sloped by 0, 20, and
30 dB/decade, respectively. The circuits of Fig. 4.11a, b, and d are re-
quired to model that. Summing the outputs of those circuits, we will
have the following noise spectrum:

v′
n ( f m) = 10−3 + 10−3

f m
+ 10−3

f 1.5
m

which has the same form of required noise but different coefficients. To
make those coefficients equal, too, it is sufficient to multiply the gains

of the circuits in Fig. 4.11a, b, and d by the coefficients
√

9.8×10−15

10−3 ,
√

21.7
10−3 ,√

7.6×106

10−3 . The resulting circuit is shown in Fig. 4.15.†

The noise voltage generated by the circuit of Fig. 4.15 (representing
the VCO phase noise) can be added to the phase output of the VCO
behavioral model by series connection of the noise generator output
ports (Vnp, Vnn) to the VCO output: this way the noisy VCO block
of Fig. 4.1 is implemented. The circuit‡ is shown in Fig. 4.16. It is
very similar to the one in Fig. 4.7 except for the component values
and the presence of the VCO phase noise model given by components
E5, E6, E7, R4, R5, R8, C1, C2, and I1.

Performing an AC analysis of the schematic of Fig. 4.16, it is pos-
sible to calculate the PLL closed-loop and phase error responses (the
voltages on nodes Theta V and PhaseError, respectively). Performing
noise analysis it is possible to calculate the VCO contribution to the
PLL output phase noise which is given by the output noise at node Vnn.

The procedure described for the VCO can be applied to all remain-
ing loop components in order to model their noise. More precisely the
user needs to model the noise of the following components: the phase
detector, VCO, and frequency divider. Noise coming out of the loop fil-
ter is automatically computed by SPICE. Although the circuit obtained
from the application of this procedure can be quite complicated, an in-
teresting simplification can be achieved by applying a trick. The block
diagram of Fig. 4.7 can be simplified into the one of Fig. 4.17, where
the phase detector and frequency divider are noiseless. Two diagrams
have the same output phase noise if the relation between the equivalent

†See the SIMETRIX file VCO Noise.sxsch.
‡See the SIMETRIX file PLL VCO Phase Noise.sxsch.
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Figure 4.15 Model for the VCO phase noise.

phase noise of Fig. 4.17 and the noise sources of Fig. 4.7 is given by

∣∣InputEquivalentNoise( f )
∣∣2 = |	r( f )|2 + |nDET( f )|2

K2
d

+ |nDIV( f )|2

(4.9)

In Sec. 4.3.2.1, it was assumed that the reference signal, phase de-
tector, and frequency divider phase noise are, respectively, given by

LDET = −200 + 10 log10(106) = −140

LDIV ( f m) = 10 log10

(
10−16.5 + 3 × 10−13

f m

)

LREF ( f m) = 10 log10

(
10−15 + 8 × 10−13

f 2
m

+ 8 × 10−11

f 3
m

)
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Input
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Frequency divider

Θoj2pf_

nFILT

Phase detector

+ +

Figure 4.17 Simplified block diagram of Fig. 4.7.

These three terms can be combined according to Eq. (4.9) obtaining:

EquivalentInputNoise ( f m) =
√

1.682 × 10−14 +
√

11 × 10−13

f 0.5
m

+
√

8 × 10−11

f 1.5
m

The noise voltage corresponding to the equivalent input noise con-
tains three terms with slopes of 0, 10, and 30 dB/decade. Synthesis of
the voltage noise generator can be performed by applying the method
described for VCO phase noise. The resulting network† is shown in
Fig. 4.18.

The circuit of Fig. 4.18 can be inserted in series with the reference
input of the schematic of Fig. 4.16, as shown‡ in Fig. 4.19. The noise
and AC analyses of that circuit give all the noise contributions and
frequency responses:

� The output noise at node PLLout is the total PLL phase noise.
� The differential output noise between the nodes PLLout and Vnp is

the VCO phase noise.
� The noise on node Vnp2 is the equivalent input noise.
� The noise voltage on node InBandNoise is the in-band noise given

by the first term of Eq. (4.7′) (in-band noise equals equivalent input
noise multiplied by the frequency division factor).

†See the SIMETRIX file Input Equivalent Noise.sxsch.
‡See the SIMETRIX file PLL Phase Noise.sxsch.
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Figure 4.18 Equivalent input noise generator.

� The AC voltage on node Theta V is the closed-loop frequency
response.

� The AC voltage on node PhaseError is the phase error response.
� The ratio Theta V/ PhaseError is the open-loop response.

Figure 4.20 shows these quantities.
Figure 4.21 shows the result of the Monte Carlo analysis (50 itera-

tions) on the circuit of Fig. 4.19. A 10 percent tolerance was assumed
for loop filter components and the VCO modulation sensitivity while all
remaining components’ parameters were considered as constant. The
PLL output total phase noise is given by the voltage noise density. The
black line is the nominal case (no tolerance), and the dashed lines sur-
rounding the black one are the statistical results.

Figure 4.22 shows PLL output phase noise computations made with
MATHCAD and SIMETRIX. The two curves are quite close, with the
maximum difference being less than 1.2 dB. This is probably due to
the fact that loop filter noise effects are not computed in MATHCAD
(the phase noise calculated by SIMETRIX is higher), although values
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Figure 4.20 Results of analysis on schematic of Fig. 4.19.

of the noise parameters can be slightly different in the two circuits due
to numerical rounding.

Table 4.1 can be updated considering the lesson learned in the dis-
cussions of Secs. 4.3.2.1 and 4.3.2.2. Table 4.2 provides a more complete
list of pros and cons of the mathematical and behavioral model methods
of analysis.
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Figure 4.21 Monte Carlo phase noise analysis of the schematic in
Fig. 4.19.
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Figure 4.22 PLL output phase noise computations with SIMETRIX and MATHCAD.

4.4 Modulation of the PLL

Frequency modulation of the PLL output signal will be discussed in this
section. Phase modulation with a modulating signal m(t) corresponds
to frequency modulation with the integral of m(t). Therefore all the con-
cepts of this section will also apply to phase modulation just considering
m(t) as the integral of the phase modulating signal.

There are two possible methods for output frequency modulation:

1. Frequency modulation of the reference oscillator (which has to be a
tunable crystal oscillator, i.e., a crystal oscillator with a varactor in
series or in shunt with the resonator).

TABLE 4.2 Comparison of PLL Analysis Methods (Update 1)

Mathematical Behavioral circuits

Loop components’
phase noise
modeling

Easy (+)
By writing their expressions.

Relatively difficult (−)
Frequency shaped voltage

noise sources have to be
synthesized.

Loop filter output
noise calculation

Difficult (−)
Relatively complicated

expressions have to be
written even for simple loop
filter circuits.

Very easy (+)
Automatically computed.

NOTE: (+) = advantage (more powerful or easier to use).
(−) = disadvantage (less powerful or more difficult to use).
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:N

VCOPD

+

Frequency divider

j

Loop
filter

Tunable
reference
oscillator

VCO modulation

Reference
modulation

Synth.
output
signal

Figure 4.23 PLL with two frequency modulation points.

2. Frequency modulation of the VCO by adding the modulating voltage
to the loop filter output.

Both of these possibilities are shown in Fig. 4.23.
In the remaining part of this section, it will be assumed that the PLL

is locked before application of the modulating signals and that the am-
plitudes of the modulating signals are sufficiently small to maintain the
lock condition. Once that condition is satisfied, linearity of the frequency
versus tuning voltage characteristic of both the reference oscillator and
VCO will be guaranteed as well.

Since the observed output quantity is the frequency (more precisely
the angular frequency), the block diagram of Fig. 1.2b will be used as a
reference and will be modified in order to insert modulation points; the
resulting diagram is shown in Fig. 4.24.

F(f )
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1
Kd Kv+

Phase detector VCO

Out

Frequency divider

j2p f_

VCO modulation

Kv′

Tunable
reference

source

Reference
modulation

Loop
filter

+

Figure 4.24 Block diagram of frequency modulated PLL.
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4.4.1 Modulation of the reference
oscillator only

Assume that the VCO modulation signal (indicated with “VCO modu-
lation” in the schematic of Fig. 4.24) is zero. Let mr(t) be the modulat-
ing signal of the reference oscillator signal (indicated with “Reference
modulation” in the schematic of Fig. 4.24). The frequency response
from “Reference modulation” to “Out” is given by the ratio of Fourier
transforms of the PLL output angular frequency and m(t). The refer-
ence modulation frequency response can be calculated by application of
Mason’s rule to the schematic of Fig. 4.24.

�out( f )
MR( f )

= F [ωOut(t)]
F [mr(t)]

=
Kvr

1
j 2π f Kd F ( f )Kv

1 + 1
j 2π f Kd F ( f )Kv

1
N

This can be rearranged as

RefMod( f ) = Kvr N
1

j 2π f Kd F ( f )Kv
1
N

1 + 1
j 2π f Kd F ( f )Kv

1
N

= Kvr NH ( f ) (4.10)

where Kvr is the reference oscillator gain expressed in rad·s−1·V−1.
Equation (4.10) shows that the modulating signal affects the output
signal through the filtering action of the PLL closed-loop frequency
response.

Assuming a sinusoidal modulating signal

mr(t) = Ar cos(2π f mr t)

the reference output signal is

Refout(t) = Vr cos
[
2π f reft + Kvr

2π f mr
Ar sin(2π f mrt)

]

and the PLL output signal is

PLLout(t) = Vo cos
[
2π N f reft + N

Kvr′

2π f mr
Ar sin(2π f mrt + ϕr)

]

where

Kvr′ = Kvr |H ( f mr)| ϕr = arg [H ( f mr)]

Summarizing, the frequency modulation of the PLL due to the reference
modulation is the same as an ideal VCO tuned at N f ref with the gain
equal to NKvr and with the modulating signal filtered by PLL response
H ( f ) (see Fig. 4.25). H ( f ) is a lowpass function; thus the PLL will
keep the low-frequency components of the reference modulating signal
and will cancel the high-frequency ones.
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H(f )

Out

VCO
gain = NKvr

In
Figure 4.25 Equivalent circuit of
reference modulated PLL.

4.4.2 Modulation of the VCO only

Assume now that the VCO modulation signal only is present [call it
mv(t)] while the modulating signal of the reference oscillator is zero.
The VCO modulation frequency response can be calculated by appli-
cation of the Mason rule to the schematic of Fig. 4.24 assuming “VCO
modulation” as the input and “Out” as the output:

VCOMod( f ) = Kv

1 + 1
j 2π f Kd F ( f )Kv

1
N

= Kv[1 − H ( f )] (4.11)

where Kv is the VCO gain expressed in rad·s−1·V−1. Equation (4.11)
shows that the modulating signal affects the output signal as filtered
by the PLL phase error response.

Assuming a sinusoidal modulating signal

mr(t) = Ar cos(2π f mvt)

the PLL output signal is

PLLout(t) = Vo cos
[
2π N f reft + Kv′

2π f mv
Av sin(2π f mvt + ϕv)

]

where

Kv′ = Kv
∣∣1 − H ( f mv)

∣∣ ϕv = arg[1 − H ( f mv)]

The frequency modulation of the PLL due to the VCO modulation is the
same as that of an ideal VCO tuned at N f ref with the same gain and
with the modulating signal filtered by PLL error response 1 − H ( f )
(see Fig. 4.26). The function 1 − H ( f ) is highpass; therefore, the PLL
will keep the high-frequency components of the VCO modulating signal
and will cancel the low-frequency ones.

4.4.3 Dual-point modulation

The conclusions of Secs. 4.4.1 and 4.4.2 suggest that by feeding both the
reference and VCO modulation points with the same signal, it is possi-
ble to modulate the PLL with both the low- and high-frequency compo-
nents of the modulating signal. This can be done with the arrangement
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1−H (f )

Out

VCO
gain = Kv

In

Figure 4.26 Equivalent circuit of
VCO modulated PLL.

of Fig. 4.27 where the gain K2 is needed to match the reference and
VCO gain.

The frequency response from the “dual-point modulation” input to
the “Out” output is given by a linear combination of Eqs. (4.10) and
(4.11).

DualPointMod( f ) = Kvr NH ( f ) + K2Kv[1 − H ( f )] (4.12)

If K2 = Kvr N
Kv

, Eq. (4.12) becomes

DualPointMod( f ) = Kvr N (4.12′)

which is a constant: A perfectly balanced dual-point modulated PLL ide-
ally has an infinite modulation bandwidth. For practical applications
the infinite modulation bandwidth is too large because it allows trans-
mission of high-frequency noise and spur components of the modulating
signal. Some prefiltering of the modulating signal has to be provided.
Anyway, the dual-point modulation scheme allows greater flexibility in
the choice of the PLL bandwidth because of the virtual independence
of the modulation bandwidth from that of the PLL.

 F(f )
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Kv+

Phase detector VCO

Out

Frequency divider

j2πf_

VCO modulation

Kv′

Tunable
reference
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Loop
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modulation

+

Figure 4.27 Dual-point modulated PLL.
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4.5 Settling Time

In this section we will analyze the dynamics of the PLL when its out-
put frequency is changed. Assume that the frequency division factor is
initially set to N = N1 and holds that value for a very long time (ideally
infinite). The PLL is locked and its output frequency reaches its very
stable value of f out1 = N1 f ref where f ref is the reference frequency.
Now assume that N is changed to a new value N2 �= N1. If the PLL is
stable,† its output frequency will tend to its new value f out2 = N2 f ref
with a transient that will be analyzed in this section. In Sec. 2.2, it
was shown that a real phase detector output is linear for limited values
of phase error only. Let’s assume that the frequency step f out1 − f out2
is small enough to ensure small phase error values (and thus linear
operation of the phase detector) during the transient. Under these con-
ditions, it can be demonstrated that the output frequency of the PLL
under analysis is the same as that of one PLL having a fixed frequency
division factor N = N2 (final value) and whose reference frequency has
a step from f refN1/N2 to f ref. To understand this, begin considering
that two PLLs have the same initial and final steady-state output fre-
quency. Furthermore, the output frequency of the second PLL in the
frequency domain is given by

Fout( f ) = Fin( f )N2 H ( f ) (4.13)

The PLL closed-loop frequency response can be written in a compact
form derived from Eq. (1.8):

H ( f ) =

N A∑
k=0

Ak( j 2π f )k

N B +1∑
k=0

bk( j 2π f )k

where N B + 1 > N A and A0, b0 > 0

Equation (4.13) can be rewritten as

Fout( f ) = Fin( f )N2

N A∑
k=0

Ak( j 2π f )k

N B +1∑
k=0

bk( j 2π f )k

(4.13′)

†See Sec. 1.4.1 for stability definition.
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or

Fout( f ) = Fin( f )

N A∑
k=0

ak ( j 2π f )k

N B +1∑
k=0

bk ( j 2π f )k

with ak = N2 Ak (4.13′′)

Introducing the auxiliary quantity �,


N B +1∑
k=0

bk( j 2π f )k�( f ) = Fin( f )

Fout( f ) =
N A∑
k=0

ak( j 2π f )k�( f )

(4.13′′′)

Factor j 2π f in the Fourier domain corresponds to the derivation on
the time domain, so the system of equations (4.13′′′) can be written in
the time domain as 



N B +1∑
k=0

bk
d k[γ (t)]

d k
t

= f in(t)

f out(t) =
N A∑
k=0

ak
d k[γ (t)]

d k
t

(4.14)

For transient calculations we are interested in solving the system of
differential equations (4.14) for t > 0 assuming that the change of
frequency division factor happens at t = 0. For t > 0 f in(t) = f ref
by hypothesis and Eq. (4.14) becomes



N B +1∑
k=0

bk
d k[γ (t)]

d k
t

= f ref

f out(t) =
N A∑
k=0

ak
d k[γ (t)]

d k
t

(4.14′)

and initial conditions are that before changing (at t < 0), the output
frequency is constant and equal to f out(t < 0) = f out1 = N1 f ref and
all its derivatives are zero. System (4.14′) with these initial conditions
is exactly the system of differential equations with the same initial
conditions as that for the frequency division switching PLL. For t < 0
the PLL output frequency is constant (all derivatives are zero) and
equal to N1 f ref. For t > 0 the output frequency evolves according to the
PLL parameters’ values at that time (i.e., N = N2) for both frequency
division and reference frequency switching PLL.
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The PLL transient due to frequency switching (change of frequency
division factor) can be calculated by the step response of PLL. Since
we are assuming linear operation of the phase detector (remaining loop
components are linear as well), it will be sufficient to calculate the unit
step response. The Fourier transform of reference (input) frequency is
given by the Fourier transform of the unit step:

Fin( f ) = 1
j 2π f

Consider a second-order type II PLL. Its closed-loop frequency response
is given by Eq. (1.13):

H 2ndOrder
Active

( f ) =
j 1

Q
f
f n

+ 1(
j f

f n

)2
+ j 1

Q
f
f n

+ 1

The output response to the reference frequency unit step is given by
the inverse Fourier transform of

OutStep( f ) = N
j 1

Q
f
f n

+ 1(
j f

f n

)2
+ j 1

Q
f
f n

+ 1

1
j 2π f

which is given by Eq. (4.15) for Q �= 0.5 and by Eq. (4.15′) for Q = 0.5.

outstep(t)
N

= 1 +




sin
(

π

√
4Q2−1

Q f nt
)

√
4Q2 − 1

− cos

(
π

√
4Q2 − 1

Q
f nt

)

× exp
(

−π
f n

Q
t
)

(4.15)

outstep(t)
N

∣∣∣∣
Q= 1

2

= 1 + (2t − 1) exp(−2π f nt) (4.15′)

Equations (4.15) and (4.15′) give a normalized output angular frequency
response to the reference unit step. They are plotted in Fig. 4.28 where
the abscissa is time multiplied by 2π f n. For Q > 0.5 the second-order
type II PLL step response presents damped oscillations with a fre-
quency of (2Q)−1

√
4Q2 − 1 f n. This is close to the natural frequency and

then to the closed-loop unit bandwidth. This concept is more general in
that PLL transients, due to the output frequency switching, present
damped oscillations with a frequency close to the unit gain bandwidth.
Hence, the wider the bandwidth, the shorter the period of oscillations
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Figure 4.28 Second-order type II PLL transient response to the
reference frequency unit step. Normalized output frequency =
output frequency/N. Normalized time = 2π f nt.

and the faster the settling of output frequency. Wider-bandwidth PLLs
have a shorter settling time,† and vice versa.

Note that the output frequency versus time has an overshoot increas-
ing with the damping factor Q. Fig. 4.29 shows overshoot versus Q for
a second-order type II PLL.

In Sec. 1.7 it was shown that the second-order type II PLL phase mar-
gin decreases and the closed-loop frequency response peak increases
with the damping factor. Again, this trend is present in all PLLs with
any order. The higher the phase margin, the lower the closed-loop peak
and the transient overshoot.

4.5.1 Lock-in

PLL locking with linear operation of the phase detector is defined as a
lock-in. Now we will calculate the lock-in range. To do that we will cal-
culate the phase error which is node b3 in the block diagram of Fig. 1.2b.
The frequency response from the reference input (node b1) to node b3 is
given by

Ref 	e( f ) =
1

j 2π f

1 + 1
j 2π f Kd F ( f )Kv

1
N

= 1 − H ( f )
j 2π f

(4.16)

†A wider bandwidth also gives a wider lock-in range. See Sec. 4.5.1.
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Figure 4.29 Overshoot versus Q for second-order type II PLL.

For a second-order type II PLL, Eq. (4.16) can be written as

Ref 	e( f ) =
(

j f
f n

)2

(
j f

f n

)2
+ j 1

Q
f
f n

+ 1

1
j 2π f

=
j f
f 2

n(
j f

f n

)2
+ j 1

Q
f
f n

+ 1

1
2π

(4.16′)

The phase error due to the unit reference angular frequency step is
given by the inverse Fourier transform of

	e refstep( f ) =
j f
f 2

n(
j f

f n

)2
+ j 1

Q
f
f n

+ 1

1
2π

1
j 2π f

=
1

(2π f n)2(
j f

f n

)2
+ j 1

Q
f
f n

+ 1

which is given by Eq. (4.17) for Q �= 0.5 and by Eq. (4.17′) for Q = 0.5

θe refstep(t) = Q
π f n

sin
(

π

√
4Q2−1

Q f nt
)

√
4Q2 − 1

exp
(

−π
f n

Q
t
)

(4.17)

θe refstep(t) = t exp(−2π f nt) (4.17′)

The phase error due to the unit step on the reference angular frequency
is plotted in Fig. 4.30 where the phase error is normalized by multiply-
ing it by the natural angular frequency 2π f n and time is normalized by
multiplying the time by 2π f n as well. Note that the phase error has a
peak increasing with the damping factor Q; Fig. 4.31 shows that peak
versus Q.
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Figure 4.30 Second-order type II PLL phase error for the reference
angular frequency unit step. Normalized phase error = (phase error)
2π f nt. Normalized time = 2π f nt.

The phase detector linear range depends on its type. Looking at Fig. 2.6
it can be seen that the multiplier is approximately linear† if the phase
error magnitude is less than π/4(±45◦), while the PFD has a linear
range of ±2π(±360◦).
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Figure 4.31 Normalized peak phase error versus Q for second-
order type II PLL.

†The multiplier output characteristic is sinusoidal, so it is truly linear for zero
phase error only. The linear range definition depends on specified nonlinearity.
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The second-order type II PLL lock-in range can be computed as
follows:

1. Given the damping factor Q, calculate the normalized peak phase
error from the graph of Fig. 4.31. Call it NormalizedPhaseError(Q).

2. Given the PLL natural frequency f n, calculate the peak phase error
for the unit step on the angular reference frequency PeakPhase-
Error = NormalizedPhaseError(Q)/(2π f n).

3. If the peak phase error is less than the phase detector linear range,
then the maximum amplitude of the angular reference frequency
step is more than one, and vice versa. More precisely, MaxInput-
Step = PhaseDetectorLinearRange/PeakPhaseError.

4. The lock-in maximum output angular frequency step is MaxInput-
Step · N (where N is the final value of the frequency division factor).

5. Finally, the maximum output frequency step is MaxInputStep ·
N /(2π ).

The phase error response of the second-order type II PLL to the input
step is inversely proportional to the natural frequency and thus de-
creases with the unit gain bandwidth [see Eqs. (4.17) and (4.17′)]. This
means that keeping the maximum phase error constant, the input step
amplitude can be increased if the PLL bandwidth increases, or that
the lock-in range increases with PLL bandwidth. This concept is more
general: For any PLL the lock-in range increases with the closed-loop
bandwidth.

Analytical calculation of the lock-in range can be quite difficult or
even impossible as the loop filter complexity increases. Numerical meth-
ods can be used to circumvent this difficulty. Section 4.5.1.1 will address
this.

4.5.1.1 Settling time calculation within the lock-in range. Five methods of
analysis will be described, three of them are mathematical methods; the
remaining two are based on behavioral model circuit analysis. All these
methods will be applied to a second-order type II PLL similar to that of
the previous sections with the following more detailed specifications:

� Phase detector gain: Kd = 5/(2π )
� VCO gain: Kv = 2π(277 × 106)
� Frequency division factor: N = 8000
� Natural frequency: f n = 10 kHz
� Damping factor: Q = 1
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� Loop filter schematic like the one of Fig. 2.19 with the following com-
ponents: R1 = 4385 �, R2 = 1592 �, C2 = 10 nF.

� Reference frequency = 1 MHz

All the analysis methods that will be described will be applied to this
case, and the results will be compared. A second-order PLL was chosen
to make all presented methods applicable.

Method A: Analytic calculation of inverse Laplace transform. This method was
essentially explained in previous sections. It consists of calculating the
inverse Laplace or Fourier response of the out angular frequency re-
sponse and phase error response to the unit step on the reference an-
gular frequency. The only clarification to be added is that the Laplace
transform expression coincides with the Fourier transform (setting s =
j 2π f ) if the time domain transformed function is zero for negative val-
ues of time. This is not rigorous from a mathematical point of view since
the Laplace variable s is complex while the Fourier variable j 2π f is
purely imaginary. In any event it gives exact results in our case. The
main drawback of this method is that it is quite difficult (if not impos-
sible) to find inverse Laplace transforms for PLLs with an order higher
than 2. That’s why a second-order PLL is used as a benchmark.

Method B: Inverse Laplace transform calculation by expansion in series of Laurent.

The normalized output step response is given by the inverse Fourier
transform of

OutStep ( f ) = H ( f )
1

j 2π f

The first step consists of calculating the poles of function OutStep( f ).
That function obviously has a pole in the origin due to factor 1/(2π f n).
In order to calculate the remaining poles, the closed-loop frequency
response has to be written as a ratio between two polynomials:

H ( f ) = Num( f )
Den( f )

The poles to calculate are the roots of polynomial Den( f ) and can be cal-
culated by function “polyroots” (a built in MATHCAD function). Func-
tion OutStep( f ) can be written as (expansion in series of Laurent)

OutStep ( f ) =
n∑

k=0

Rk

( j 2π f − Pk)

where the Pk are the poles of the function (they are one more than the
PLL order n due to the pole in the origin), and Rk is the residual in the
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pole Pk . Residuals are found by calculating the limits:

Rk = lim
j 2π f →Pk

OutStep ( f )( j 2π f − Pk)

Particularly, the residual of the pole in the origin equals 1:

R0 = lim
j 2π f →0

OutStep ( f )( j 2π f k) = H (0) = 1

Now the function OutStep( f ) is written as the sum of n + 1 terms
having a simple inverse Fourier transform. The normalized output step
response is given by

OutStep ( f ) = 1 +
n∑

k=1

Rk exp(−Pkt)

The phase error can be calculated by applying the same procedure,
because it has the same poles Pk with different residuals that have to
be recalculated.

Method C: FFT. If poles and/or residual calculation is impossible [be-
cause of a high PLL order, or because the analytic expression of H ( f )
is not available since it is defined on discrete points only and interpo-
lated], it is still possible to numerically calculate the Fourier transform
and its inverse with the fast Fourier transform (FFT). The FFT is a
fast algorithm for calculation of the DFT. From our practical point of
view, the main difference between the Fourier transform and the FFT is
that the first deals with continuous functions defined for t ∈ (−∞; +∞),
while the latter deals with functions defined in a discrete and finite
number of points equally spaced and distributed over a finite time in-
terval t ∈ [0; T FFT]. The number of sampling points has to be an integer
power of 2, so they are defined as

tk = T FFT
k

2NFFT − 1
with k = 0, . . . , 2NFFT − 1

Furthermore the FFT works as a sampled function that is periodic with
period T FFT, so its resolution frequency is 1/T FFT and the maximum
frequency is half of the sampling frequency:

f MAX = 1
T FFT

2NFFT−1

Because of this periodicity the chosen time interval has to be suffi-
ciently large to allow a significant reduction of the switching transient
at the end of the interval. The step stimulus will no longer be located in
t = 0, but it will be located in the center of the sampling interval T FFT/2.
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The out frequency response to the reference step will be calculated as
follows:

� Define a time interval T FFT many times as the reciprocal of the PLL
unit gain bandwidth.

� Define an integer power for sampling points NFFT (usually around 10).
� Define the input step as

η(t) = if
(

t <
T FFT

2
, 0, 1

)

� The sample input step is

uk = η(tk) with tk = T FFT
k

2NFFT − 1

� Calculate the FFT of the input step:

U = FFT (u)

� The filter U with the PLL frequency response is

V = U H
(

k
T FFT

)
with k = 0, . . . , 2NFFT−1

� Calculate the inverse FFT of V :

v = IFFT (V )

� Interpolate v to generate a continuous time response.

The same procedure has to be followed for the phase error calculation
by simply replacing the frequency response H ( f ) with Ref 	e( f ) =
1−H ( f )

j 2π f .
The FFT method is always applicable. The only requirement is the

availability of a complex expression for the loop filter frequency re-
sponse (magnitude and phase or real and imaginary part). That expres-
sion can be analytic or an interpolating function from discrete points.

Methods A, B, and C can be implemented† in MATHCAD and give
almost coincident results.

Method D: Behavioral model of reference switching PLL. The analyzed circuit
has to model the block diagram‡ of Fig. 1.2b as shown in Fig. 4.32.
The phase detector is modeled by components E3, H1, E2, R6, L1, R1,

†See the MATHCAD file Second Order PLL Step Response.MCD.
‡See the SIMETRIX file PLL 2nd Order Step.sxsch.
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Figure 4.32 Circuit for PLL settling time simulation.

and R2. The integrator consists of R6, L1, and H1. The loop filter is
modeled by components E1 (opamp) R1a, R1b, R2a, R2b, C2a, and
C2b. The VCO is modeled by components E4 and E5; the latter trans-
forms the output frequency into an angular frequency by multiplying it
by 2π . The voltage divider made by resistors Rdivider1 and Rdivider2
models the frequency divider. The reference and divided VCO angu-
lar frequency are voltages on nodes Omega R and Omega V, the an-
gular frequency and phase error are voltages on nodes OmegaError
and PhaseError, the tuning voltage is the voltage on node Vtune, and
the VCO output frequency and angular frequency are the voltages on
nodes Freq VCO Out and Omega VCO Out.

The circuit of Fig. 4.32 can still be used for closed-loop and phase
error responses simply by performing an AC analysis (input generator
V1 has to be an AC source) and probing AC voltages on nodes Omega V
and OmegaError. Switching of the transient calculation is straightfor-
ward as well: Input generator V1 has to be a voltage step, the transient
analysis has to be performed, and interested quantities are picked by
probing the voltage on the corresponding node. The normalized output
step response is the voltage on node Omega V.

Method E: Behavioral model of frequency divider switching PLL. This method
is the closest one to the physical representation of the frequency switch-
ing PLL. Indeed the output frequency of the PLL synthesizer is usu-
ally changed by changing the frequency division factor rather than by
changing the reference frequency. Nevertheless we found in Sec. 4.5
that two operations are equivalent and analysis methods A, B, C, and
D are based on the time-varying reference frequency. The circuit used
for application of this method is very similar to the one of Fig. 4.32 with
two changes:
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Figure 4.33 Behavioral model for time-varying frequency divider.

1. The input generator V1, which originally was a voltage step is re-
placed by a fixed voltage whose amplitude is the reference angular
frequency = 2π × 106.

2. The fixed voltage divider made by Rdivider1 and Rdivider2 is re-
placed by a time-varying voltage divider. It is shown in Fig. 4.33. S1
is a voltage-controlled switch. When the input voltage is lower than
Voff = 0.49 V, its output resistance is Roff = 10 M�. For an input volt-
age higher than Von = 0.51 V, the output resistance is Ron = 10 �.
The voltage generator V2 is a unit voltage step at t = 0.

Thus for t < 0 the voltage division factor is given by

N 1 =
(

Rdivider2//Roff
Rdivider2//Roff + Rdivider1

)−1
∼= 7200.1152

For t > 0 S1 switches on and the voltage division factor becomes

N 2 =
(

Rdivider2//Ron
Rdivider2//Ron + Rdivider1

)−1
∼= 8000

Consequently the output frequency switches from about Fstart =
7.2 GHz to Fstop = 8 GHz. Normalization can only be applied to this
circuit by plotting the following expressions:

NormalizedOutputFrequency = FreqVCO Out − Fstart

Fstart − Fstop

= FreqVCO Out − (7.2 × 109)
(8 × 109) − (7.2 × 109)

NormalizedPhaseError = PhaseError
�ωin

= PhaseError
2π� f out

N2

= PhaseError
2π(Fstop − Fstart)

N2

= PhaseError
2π105
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Figure 4.34 Calculations of the normalized output frequency step
response.

Results from applications of methods A, B, C, D, and E are plotted
in Fig. 4.34 which shows the normalized output angular frequency
(ωout/N ) versus the normalized time (t2π f n) and in Fig. 4.35 which
shows the phase error versus normalized time. All the curves refer to
the unit step on the reference angular frequency. It can be seen that all
five methods are very consistent and give quite close results.

All the above described methods allow for calculation of the maximum
output frequency step lock-in range. This can be done by increasing
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Figure 4.35 Calculations of the phase error step response.
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Figure 4.36 Second-order type II PLL ( f n = 10 kHz, Q = 1) output
normalized step response.

the input step amplitude (all outputs will increase proportionally since
the system is assumed to be linear) up to where the peak phase error
exceeds the phase detector linear range and displaying the output fre-
quency step corresponding to this limited case.

A final observation has to be made about the output frequency step
response. Figure 4.36 shows the same curve of Fig. 4.34 but with time
on a larger interval, and not normalized. Looking at that picture it is
really difficult to say if the PLL is locked after 200, 300, 400, or 500 µs.
To answer the question whether or not the PLL is locked, a frequency
error has to be specified. More precisely Fig. 4.36 shows a normalized
output frequency. Thus the frequency error relative to the frequency
step has to be specified. The PLL is locked at a given time tlock if and
only if the normalized output frequency is definitely within specified
limits at that time (i.e., for all t > tlock). One way to check for this is to
expand the y scale around 1, as Fig. 4.37 shows, but it is not possible to
simultaneously see the initial part of the transient with this method.
Another solution is to plot the magnitude of the relative frequency error
on a logarithmic y scale: Large and small values of the frequency error
can simultaneously be displayed.

RelativeError(t) =
∣∣∣∣ OutputFrequency(t) − InitialOutputFrequency
FinalOutputFrequency − InitialOutputFrequency

∣∣∣∣
Figure 4.38 shows a log plot of the frequency error.
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4.5.2 Pull-in

The PLL transient when the phase detector works outside of its linear
region will be discussed in this section. Linear differential equations
(4.14) and (4.14′) are no longer valid because of the phase detector non-
linearity. Consequently mathematical methods A, B, and C described in
Sec. 4.5.1.1 are no longer valid. Thus nonlinear differential equations
have to be solved: This is what the SPICE transient analysis does. Meth-
ods D and E are still valid; the first will be used in this section since it is

200

Time, µs

−100 0 100 300 400 500
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Figure 4.38 Second-order type II PLL ( f n = 10 kHz, Q = 1) frequency
error log plot.
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Figure 4.39 Schematic of third-order loop filter for pull-in analysis.

equivalent to the other and is more flexible. When the phase detector is
operating nonlinearly, two situations are possible: For relatively small
frequency division steps, the PLL still locks; for higher steps, it doesn’t.
The maximum output frequency step that allows the PLL to lock is
defined as the pull-in range. The pull-in process involves by definition
nonlinear operation of the phase detector; thus it depends on the used
phase detector. Although some approximated formulas are available
for pull-in of some particular PLL (usually of low order), this section
will describe methods for accurate numerical calculation in more gen-
eral cases. Two cases will be considered: multiplier and PFD. A fourth-
order PLL will be analyzed with the same parameters as the one in
Sec. 4.5.1.1 (which is second-order) but with a different loop filter, the
schematic of which is shown in Fig. 4.39.

The PLL loop filter of Fig. 4.32 was replaced with the filter of Fig. 4.39
and AC analysis has been performed† in order to calculate the closed-
loop H ( f ) and phase error response 1 − H ( f ). The results are shown
in Fig. 4.40. The basic linear performances of PLL were found to be

� Phase margin = 49◦

� Closed-loop unit gain bandwidth = 8.97 kHz
� Closed-loop response peak = 3.75 dB

†See the SIMETRIX file PLL 4th Order Step.sxsch.
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Figure 4.40 Response of type II fourth-order PLL with the loop
filter of Fig. 4.39.

Assuming that the phase detector is a PFD, the linear phase error
range is clearly defined as ±2π , the input step amplitude was increased
up to where the phase error peak reaches the value of 2π , and the
output frequency is displayed finding a lock-in range of 466.35 MHz
(amplitude of output frequency step after the transient). If a multiplier
is used as the phase detector, determination of the linear operating
range is more difficult, and a linear analysis approach is not sufficient
to delimit between the lock-in and pull-in range.

4.5.2.1 Pull-in for the PLL with a multiplier phase detector. The multiplier
phase detector has a sinusoidal characteristic. The model for the phase
detector has to be changed in the above used circuit. The phase detector
model has to be complicated in order to introduce the sinusoidal output
characteristic. This can be done with the circuit of Fig. 4.41. The volt-
age on nodes Omega R and Omega V corresponds to the reference and
divided VCO angular frequencies. The voltage on node OmegaError is
the angular frequency error; its integral (voltage on node PhaseError)
is the phase error. The nonlinear voltage-controlled generator ARB2
has an output voltage equal to the sine of the phase error and models
the sinusoidal characteristic of the multiplier. The VCVS E2 models
the phase detector gain: It is assumed to be the same small signal gain
Kd = 5/(2π ) of the linear case. Moreover the multiplier is modeled with
a differential output. Differently from PFDs, multipliers usually have
single-ended output, but this can easily be simulated by connecting
node Up to ground and simplifying the loop filter of Fig. 4.39 by remov-
ing R1b, R2b, and C2b and connecting the opamp noninverting input to
ground: Two circuits are perfectly equivalent and give the same result.
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Figure 4.41 Behavioral model for the multiplier phase detector.

In the schematic of Fig. 4.41 (used for lock-in calculation), the phase
detector (components E3, R6, L1, and H1) had a linear input-output
characteristic. Here, the phase detector (see Fig. 4.41) has a sinusoidal
input-output characteristic.† The input voltage step is delayed by 100 µs
to make switching transients beginning at that time. Four meaningful
cases were found:

1. Quasi-linear operation:

Phase error over time within the range [−0.113; 0.713]
Output frequency step = 51 MHz

2. Moderate nonlinear operation:

Phase error over time within the range [−0.376; 1.729]
Output frequency step = 102 MHz

3. Strong nonlinear operation:

Phase error over time within the range [0; 70.31]
Output frequency step = 204 MHz

4. Very strong nonlinear operation:

Phase error over time within the range [0; ∞] linearly increasing
about 600 V/ms
Output frequency step = 800 MHz (PLL does not lock)

†See the SIMETRIX file PLL 4th Order Step NonLinear Sine.sxsch.
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Figure 4.42 Pull-in process for type II fourth-order PLL with a multiplier
as the phase detector.

Note that the multiplier phase detector characteristic (see Fig. 2.2)
has a monotonic phase error range of ±π/2 ∼= 1.571, so case 3 only ex-
ceeds the monotonic (which does not mean linear) range. Results of the
three different cases 1, 2, and 3 are shown in Fig. 4.42, while curve 4 is
plotted in Fig. 4.43.

It can be seen that for small values of the frequency step (case 1),
the switching transient is very close to that calculated with the lin-
ear model. As the frequency step increases, the transient waveform is
distorted with increased overshoot percentage and lock time (case 2).
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Further increasing the output frequency step (case 3) creates undula-
tions in the beginning part of the switching transient (portion of curve
3 from 100 to about 800 µs). This shape of the output frequency versus
time curve is very typical of the pull-in process. In cases 2 and 3 after
the initial distorted or rippled initial transient, the output frequency
tends to its final value with the same shape as that of the linear op-
eration. Pull-in is slower than lock-in because of this added portion of
the switching transient. For a fast PLL, the lock difference between the
initial and final output frequency has to be less than the lock-in range.

The pull-in range is calculated by increasing the input step ampli-
tude up to the condition shown in Fig. 4.43 when the output frequency
oscillates around zero without tending to any value, and the phase error
continues to increase quite linearly over time without any apparent
limit. The pull-in range is given by

PullInRange [Hz] = InputVoltageStep(FrequencyDivisionFactor)
1

2π

The analyzed PLL pull-in range is about 800 MHz.
The pull-in range has to be wider than the VCO output frequency

excursion with the minimum and maximum possible tuning voltages
which correspond to the saturated low and high output voltages of the
operational amplifier. If this condition is not reached, switching on the
PLL power supply may generate a transient that pushes the opamp out
voltage to its saturated minimum or maximum voltage; in this case the
VCO output frequency may go far from the needed value, and the PLL
may not lock. When that requirement is not achievable, acquisition lock
circuits have to be used:

� Coarse VCO pretuning. A DAC tunes the VCO at the required output
frequency. The PLL only has to correct the output frequency error
due to the open-loop VCO tuning, temperature drift, aging, etc. This
way a narrower pull-in range is required and/or pull-in occurs for a
smaller output frequency step, and the PLL locks faster due to the
reduced output frequency step.

� Ramp added on tuning voltage. A slow voltage ramp is added to the
VCO tuning voltage. The frequency sweeps from its minimum to its
maximum value, when it passes close to its lock value (the wanted
final frequency of the PLL), the loop locks it. Sometimes lock indi-
cation circuits are added which disable the ramp when the PLL is
locked. Several solutions are possible for the lock indication circuit.
The simpler solution is an AC detector on the loop filter output: When
the PLL is locked, the tuning voltage is a stable DC.

� Discriminator-aided lock. The PLL output frequency is measured
with a frequency discriminator, and an error signal is generated



Synthesizer Performance Simulation 173

proportional to the difference between the measured and required
frequencies and feeds back the tuning voltage. This circuit is more
properly known as the frequency and phase-locked loop (FPLL).

� Dual-band PLL. At the end of Sec. 4.5 it was stated that wider-band
PLLs have a wider lock-in range; this is true also for pull-in. Two
loop filters are used with two different PLL bandwidths: A wideband
filter (with a wider pull-in range) is used during the output frequency
switching; a narrowband filter is used in the lock condition. A lock
indicator is used to select the proper filter.

4.5.2.2 Pull-in for the PLL with a Phase Frequency Detector. From the dis-
cussion about PFDs in Sec. 2.2.2 we know that the PFD has a clearly
defined linear phase error range of ±2π . The lock-in range can be ex-
actly calculated with linear simulation as explained in Sec. 4.5.2. Sec-
tion 2.2.2 also states (see Fig. 2.7) that for large phase error values
due to input signals with different frequencies, the PFD output volt-
age becomes about +Vdd/2 (or −Vdd/2) if the divided VCO frequency
is lower (or higher) than the reference frequency. This characteristic of
the PFD will push the VCO frequency in the right direction: Reducing
or increasing the VCO frequency whether it is higher or lower than the
set value. The PLL with phase frequency detector locks for any value
of the output frequency step. The pull-in range of a PLL employing a
PFD is infinite.

The first attempt to simulate the pull-in process for the PLL with
the PFD was to replace the nonlinear voltage-controlled voltage source
ARB2 (whose output is the sine of the input voltage) with another one
implementing the PFD characteristic given by Eq. (2.4), which can be
rewritten in terms of input and output voltages as

Vout =
{

1
π

atan
[
tan

(
V in − π

2

)]
+ if (V in > 0, 0.5, −0.5)

}
V in

Unfortunately, that simulation does not work, maybe because of the
many discontinuities present in the preceding equation. The behavioral
model approach has to be abandoned if the pull-in process for the PLL
with the PFD has to be simulated.

This new circuit† is more a high-level physical PLL model rather
than a behavioral model. It describes all components of a PLL: reference
source, PFD, loop filter, and VCO. The PFD circuit is shown in Fig. 4.44.
It describes exactly the circuit of Fig. 2.3. Two resistors R1 and R2 were
added for simulator needs coming from the interface between the digital
components of PFD and the analog components of the loop filter. The

†See the SIMETRIX file PLL 4th Order Step NonLinear PFD.sxsch.
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Figure 4.44 Phase frequency de-
tector circuit used for pull-in
simulation.

loop filter schematic is still that of Fig. 4.39 since the behavioral model
of the loop filter coincides with the physical model; in other words, the
output voltage models itself.

A physical model of the VCO is shown in Fig. 4.45. The voltage on node
3 is zero at the beginning of the simulation time (t = 0), For t > 0 the
voltage on node 3 is given by the solution of the differential equation:

V2(t) = V3(t) + R5 · C4
d V3(t)

d t
(4.18)

Vtune
Divided VCO1

1

E2

V2

28.88
2

R5

3
C4
1 Farad

IC=0

1k
++ N1OUT

ARB2

4
HCO4D

U4

10k
R8

2.5*Sin (217.5552912611 e6*V(N1)) + 2.5

Figure 4.45 VCO circuit used for pull-in simulation.
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Now, for small values of t it can be assumed† that V3 � V2. Then
Eq. (4.18) can be well approximated as

V2(t) ∼= R5 · C4
d V3(t)

d t
⇒ V3(t) ∼= 1

R5 · C4

t∫
0

V2(τ ) d τ

= 10−3

t∫
0

V2(τ ) d τ (4.18′)

The node on voltage 4 is given by

V4(t) = vp sin
[
aV3(t)

]+ vo with vp = vo = 2.5, a ∼= 217.55 × 106

(4.19)
Substituting Eq. (4.18′) into Eq. (4.19) we obtain

V4(t) ∼= vp sin


a10−3

t∫
0

V2(τ ) d τ


+ vo (4.20)

The relation between the VCO tuning voltage and the output signal is
given by

VCOout(t) ∼= VCOamplitude sin


Kv

t∫
0

Vtuning(τ ) d τ


 (4.21)

Comparing Eq. (4.20) with (4.21), we see that components R5, C4, and
ARB2 create a VCO with gain Kv = a × 10−3, amplitude vp , and out
offset voltage vo, so the VCO’s output voltage (node 4) swings between
vo − vp = 0 and vo + vp = 5 V. The CMOS inverter U4 converts the
sinusoidal output from node 4 into a square wave with CMOS levels.
The circuit of Fig. 4.45 models a VCO cascaded with a frequency divider;
node 5 is the frequency divider output. Insertion of a frequency divider
is not impossible; it only needs some flip-flops and some combinatory
logic, but note the following:

1. A frequency divider is not essential because the phase detector deals
with the frequency divider output and no other loop component uses
the VCO output signal (apart from the frequency divider, of course).
The VCO output signal is simply the divider output signal with time
divided by the frequency division factor.

2. Adding a frequency divider will greatly increase the computation
time because the time step has to be a small fraction of the shorter

†The PLL lock time is on the order of milliseconds, while the time constant
R5 · C4 = 103 seconds.
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period of the faster signal in the circuit. Elimination of the frequency
divider makes the highest frequency in the circuit N = 8000 times
lower than the VCO output frequency; the simulation time is de-
creased by the same factor.

Now Kv = a × 10−3 ∼= 2π(277 × 106)/8000; thus the VCO modeled by
the circuit of Fig. 4.45 has a gain equal to that used for calculations
in the other sections of this chapter divided by the frequency division
factor of 8000.

The unit gain buffer E2 and the fixed voltage generator V2 add an
offset to the tuning voltage (node V tune) making the output frequency
assume a value of 1 MHz (VCO frequency of 8 GHz) for a tuning voltage
of approximately 0 V. The output frequency of the circuit† in Fig. 4.45
is plotted in Fig. 4.46 versus the tuning voltage; this is the divided
VCO frequency. We obtain the not-divided frequency by multiplying
the divided VCO frequency by the frequency division factor.

The frequency divider is not explicitly present in the simulation cir-
cuit; therefore, only the reference frequency step approach can be im-
plemented. Pull-in simulation is performed by stepping the reference
frequency. The circuit of Fig. 4.45 is also used to generate the reference
signal. Here a voltage step generator is connected between the tuning
input and ground and has a zero initial value. Transient analyses are
performed with some increasing step values, and the VCO output fre-
quency is plotted versus time. The PLL output frequency is not directly
available, but it can be picked by probing the tuning voltage and keep-
ing in mind that the VCO output frequency versus the tuning frequency

†See the SIMETRIX file VCO PullIn.sxsch.
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is given by

VCOfrequencyMHz(TuningVoltageVolt) = 277(TuningVoltageVolt

+ 28.88) (4.22)

The choice of the offset voltage is somewhat arbitrary. Different as-
sumptions cause translation of the VCO tuning characteristic without
affecting the gain. The chosen offset makes the reference frequency
1 MHz (and thus the output steady-state frequency is 1 MHz corre-
sponding to the PLL output frequency of 8 GHz) before application of
the voltage step. However what really matters is the frequency step
and not the initial and final frequencies. In Sec. 4.5.2 it was found that
a lock-in range of 466.35 MHz corresponds to a tuning voltage step of
466.35/277 = 1.68 V. Two cases have been analyzed:

1. Output frequency step of 400 MHz, a little bit less than the lock-in
range.

2. Output frequency step of about 888 MHz, about twice the lock-in
range, corresponding to a voltage step of 3.2 V.

The resulting output frequency transients (beginning at t = 100 µs)
are shown in Fig. 4.47. Curve (c) comes from the linear calculation of
case 1. Linear simulation with behavioral models and nonlinear simu-
lation with the physical model give consistent results.

The physical model simulation is inherently discrete time; sampling
effects are automatically taken into account by the PFD model.

The pull-in process on the PLL with the PFD is characterized by the
presence of undulations superimposed on the output frequency ramp-
up. This can be observed in Fig. 4.47 by looking at the initial portion of
curve (b), the one delimited by point ( f ). These undulations look like
double-wave-rectified sinusoids with increasing amplitude, while those
of Fig. 4.42 look like sinusoids with increasing amplitude: Both these
two shapes are characteristic of a used phase detector (PFD or mul-
tiplier). An interesting approximate calculation of the pull-in process
can be performed based on analysis of curve (b). Let f r and f v be the
reference and divided VCO frequencies. It is f v < f r from the transient
beginning at t = 100 µs up to about t = 240 µs: that region is delimited
by points marked with (e). Below 100 µs the PLL is locked. Therefore, for
t < 100 µs the phase detector output is zero, and for 100 µs < t < 240 µs
the phase detector output is a nonperiodic pseudo square wave with a
mean value of Vdd/2 as described in Sec. 2.2.2. When input signals have
a slightly different frequency, the PFD average output plotted in
Fig. 2.7 can be approximated with the following formula:

Vdet,pull-in ∼= Vdd
2

if( f r > f v, 1, −1) (4.23)
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Consequently for t < 240 µs the tuning voltage can be approximated
by the loop filter response† to an input voltage step with an amplitude
of Vdd/2 differentially applied between the Up and Dwn inputs. That
waveform can be transformed into the PLL output frequency by appli-
cation of the VCO characteristic, which is given by Eq. (4.22) in our
case. The result is curve (d) of Fig. 4.47. It can be considered as a good
approximation of the pull-in part of the tuning transient for the practi-
cal purpose of the settling time calculation. Approximate evaluation of
the lock time taking the pull-in time into account, can be done for the
PLL with a PFD considering that the output frequency follows curve (d)
until the frequency error becomes lower than the lock-in range. From
that point, the residual error tends to zero with the shape of the linear
calculated step response being like curve (a) but with different initial
and final values. Curves (a) and (d) can be calculated with any of meth-
ods B, C, D, and E described in Sec. 4.5.1.1.

The pull-in process is then approximated by a ramp on the tuning
voltage which pushes the output frequency toward its final steady-state
value. This ramp acts as a tuning aid; therefore, the PLL with the PFD
always locks no matter what the output frequency step is. The infinite

†See the SIMETRIX file PLL 4th Order Step NonLinear PFD Approx.sxsch.
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pull-in range is the main advantage of using a PFD over a multiplier
and most of the other phase detectors. A PLL with a PFD does not need
an external acquisition aid. However, application of the VCO pretuning
makes the PLL operate closer to lock-in, thus reducing the lock time.

At this point we can complete the comparison table of the mathemat-
ical and circuit-based simulation methods. This is done in Table 4.3.

TABLE 4.3 Comparison of the PLL Analysis Methods (update 2)

MATHCAD SIMETRIX

Loop filter
complexity

Moderate (−)
Analytic expression of transfer

function is needed.

Very high (+)
Simulator can handle very

complex circuits.

Calculation of
phase margin

Easy (+)
By using the equation-solving

feature to find the solution of
|Hopen( f o)| = 1 and finding
the open-loop phase at f o.

Relatively easy (−)
By placing the cursor on the

curve of the open-loop phase
curve at the unit gain
frequency.

Calculation of
closed-loop gain
unit BW

Easy (+)
By using the equation-solving

feature to find the solution of
|H ( f )| = 1.

Relatively easy (−)
By placing the cursor on the

curve of the closed-loop
frequency response at the
unit gain.

Calculation of
closed-loop peak

Easy (−)
By using the equation-solving

feature to find the solution of
D[|H ( f )|] = 0.

Very easy (+)
Built in.

Statistical
analysis

Possible (−)
By manual perform of multiple

analyses.

Easy (+)
By using Monte Carlo analysis.

Calculation of
sampling effects

Easy (+)
By writing Eq. (2.10).

(−) On settling time only,
with physical models.

Loop components’
phase noise
modeling

Easy (+)
By writing their expressions.

Possible (−)
Frequency shaped voltage

noise sources have to be
synthesized.

Loop filter output
noise calculation

Difficult (−)
Relatively complicated

expressions have to be
written even for simple loop
filter circuits.

Very easy (+)
Automatically computed.

Lock-in transient
calculation

Easy,
There are 3 methods. FFT is

the more general method.

Easy.
There are 2 methods. The

switching reference is the
more flexible method.

Pull-in transient
calculation

(−) Provides only an
approximate solution of a
PLL with a PFD.

(+) Possible in most cases,
different methods available.

NOTE: (+) = advantage (more powerful or easier to use).
(−) = disadvantage (less powerful or more difficult to use).
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Summarizing, most of the calculations are possible with both the
methods.

4.6 Final Note on Circuit-Based Simulation

SPICE transient simulation (here implemented with SIMETRIX)
allows for the modeling of other nonlinearities eventually present
within the PLL. The operational amplifier nonlinearity is modeled by
the SPICE macromodel. The VCO nonlinear tuning characteristic can
be modeled with an arbitrary voltage-controlled voltage source inserted
between the loop filter output and the VCO tuning input.
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Chapter

5
Miscellaneous

5.1 Introduction

This chapter illustrates some circuits and systems correlated with the
PLL. Section 5.2 describes a practical PLL design, which shows the
use of modern integrated circuits. The simulation concepts discussed
in Chap. 4 have been applied. The results of simulations have been
compared with measurements demonstrating the effectiveness of sim-
ulations.

Section 5.3 describes the sampling phase detector, a useful circuit
for the design of a microwave synthesizer which does not use the high-
frequency prescaler. It also discusses some ideas about its application
and the related problems.

Section 5.4 describes the multiple-loop architecture which is widely
used when high resolution is needed. In this section the analysis of the
multiple loop is reduced to the analyses of the single-loop PLL. Thus
applicability of the techniques discussed in Chap. 4 is extended to the
multiple-loop PLL.

The final section examines the newest synthesizer architecture
known as direct digital synthesizer. Using that architecture it is pos-
sible to generate signals with high resolution and a fast settling time.
This section discusses the working principles and effects of nonideal
components. It also includes some basic ideas on the design of the out-
put lowpass filter.

5.2 PLL Performance Verification

Figure 5.1 shows the simplified electrical diagram of a PLL, which uses
a VCO, a crystal oscillator, a single chip synthesizer LMX2353, and a
passive loop filter. The LMX2353 chip needs only six bypass or DC-block
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Figure 5.1 Simplified schematic of an experimental PLL.

capacitors. The following description is taken from the LMX2353 data
sheet.†

Reference and feedback frequency dividers, and phase frequency detector
with charge pump are contained in a single chip LMX2353 manufactured
by National Semiconductors.

LMX2353 includes a reference divider with maximum input fre-
quency of 50 MHz and programmable divider ratio from 3 to 215 − 1 =
32767.

The feedback is a fractional-N with a single 4 bit accumulator. The di-
vider is 19 bits with 15 bits integer divide and 4 bits fractional. The integer
part is configured as a 5 bit A counter and a 10 bit M counter. Prescaler
ratio can be selected between 16/17 and 32/33. The LMX2353 is capable
of operating from 0.5 to 1.2 GHz with the 16/17 prescaler offering a con-
tinuous integer divide range from 272 to 16399, and 1.2 to 2.5 GHz with
the 32/33 prescaler offering a continuous integer divide range from 1056
to 32767. The fractional part of the divider ratio is programmable in either
1/15 or 1/16 modes. A variable phase delay stage compensates for the accu-
mulated integer phase error, minimizing the charge pump duty cycle, and
reducing spurious levels. This technique eliminates the need for compen-
sation current injection into the loop filter. The LMX2353 has a 16 level

†Reproduced with permission of National Semiconductor Corporation. The
full data sheet is downloadable at www.national.com.
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Figure 5.2 Layout of an experimental PLL.

programmable charge pump which supplies output current magnitudes
from 100 to 1600 µA.

Reference divider, feedback divider, and charge pump current are pro-
grammable writing internal registers. The serial data is transferred into
the LMX2353 via a three wire interface (Data, LE, Clock).

National Semiconductor also provides a PC program downloadable
at www.national.com to drive the IC.

The LMX2353 and related passive components were placed on a
printed circuit board 40 × 40 mm wide. The layout is shown in Fig. 5.2:
The loop filter components C1, C2, C3, R2, and R3 are placed in the
upper left corner of the board. The PLL values are

� External reference frequency: 15.36 MHz
� Reference divider ratio: 4 ⇒ f ref = 15.36/4 = 3.84 MHz
� Output frequency range: 1098.24 − 1198.08 MHz
� Frequency resolution: f ref/16 = 240 kHz
� VCO modulation sensitivity: 32.2 MHz/V
� Charge pump current: 1.6 mA
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Figure 5.3 Simulated and measured closed-loop magnitude frequency
response.

� Loop filter components
Capacitors: C1 = 2.7 nF, C2 = 27 nF, C3 = 680 pF//30 pF†

Resistors: R2 = 820 �, R3 = 270 �,
� In-band noise: −85 dBc/Hz flat over offset frequency

The same result can be obtained by reducing the charge pump current
and increasing all the impedances of the loop filter by the same factor.
The loop filter resistance would be increased, consequently increasing
the loop filter noise. The current of the charge pump has to be set at its
maximum in order to minimize the loop filter noise.

The PLL can be analyzed‡ using the methods described in Chap. 4.
The following parameters have been calculated:

� Phase margin = 51.6◦.
� Closed-loop unit gain bandwidth = 20.4 kHz.
� Closed-loop peak = 2.5 dB at 12.5 kHz.
� Closed-loop frequency response. It is plotted in Fig. 5.3.
� PLL phase noise. It is plotted in Fig. 5.4 together with its terms.§ Note

that the in-band noise crosses the VCO noise at about 5 kHz, while

†30 pF is the input capacitance of the VCO tuning port including the connec-
tion shielded cable.

‡See the MATHCAD file Example1.MCD and the SIMETRIX file
Example1.sxsch.

§In-band and VCO noise.
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Figure 5.4 Simulated and measured phase noise.

the closed-loop response crosses the phase error response at about
20 kHz. The PLL bandwidth is four times higher than the optimum
value for the phase noise described in Sec. 4.3.2. The loop bandwidth
was increased in order to reduce settling time.

� Lock-in transient for the output frequency stepping from 1152 to
1156.2 MHz. It is plotted in Fig. 5.5.

The graphs of Figs. 5.3, 5.4, and 5.5 also show the measured curves.
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Figure 5.5 Simulated and measured lock-in transient.
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The phase noise and the frequency settling curve were measured with
the Agilent VCO analyzer 4352S. The test methods and procedure are
described in the manual of the instrument.

5.2.1 Measurement of PLL frequency
response magnitude

The closed-loop frequency response can be measured by frequency mod-
ulation of the reference source and by the measure of the reference and
output spectra. The measurement technique is based on the theory of
the modulated PLL described in Sec. 4.4. The time-domain expression
for the frequency modulated reference source was found in Sec. 4.4:

RefOut(t) = Vr cos
[
2π f ref t + Kvr

2π f mr
Ar sin(2π f mr t)

]
(5.1)

In order to find the spectrum of the frequency modulated wave, Eq. (5.1)
can be expanded in series as

RefOut(t) = Vr

+∞∑
k=−∞

Jk

(
Kvr Ar

2π f mr

)
cos[2π( f ref + k f mr)t] (5.1′)

where Jk(β) is Bessel’s function of the first kind and the kth order of
the variable β. For small values of the variable, Bessel’s functions can
be approximated as

J0(β) ∼= 1 − J−1(β) = J1(β) ∼= β

2
J−k(β) = Jk(β) ∼= 0 ∀k > 1

Let’s define the modulation index as

β = Kvr Ar

2π f mr

For small values of the modulation index β = Kvr Ar
2π f mr

, Eq. (5.1′) can be
approximated as

RefOut(t) = Vr cos(2π f ref t)

+ Vr
β

2
cos[2π( f ref + f mr)t] − Vr

β

2
cos[2π( f ref − f mr)t]

(5.1′′)

The general expression (5.1′) of the frequency modulated signal spec-
trum consists of one carrier at frequency f ref and infinitely extended
lower and upper sidebands. Each of them has an infinite number of spec-
tral components. Those components are spaced by integer multiples of
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f mr
† far from the carrier. In the simplified case of a low modulation

index, the spectrum has only two side tones ± f mr far from the carrier.
Their relative amplitude is given by

ReferenceSidebandLevel = 20 log10

(
SidebandAmplitude
CarrierAmplitude

)

= 20 log10

(
β

2

)
dBc (5.2)

As calculated in Sec. 4.4, the modulation index of the PLL output signal
is

β ′ = Kvr Ar

2π f mr
N |H ( f mr)| = βN |H ( f mr)|

Hence the sideband level of the PLL output signal is

SynthesizerSidebandLevel = 20 log10

(
β ′

2

)
dBc (5.3)

Subtraction of Eq. (5.2) from (5.3) gives

SynthesizerSidebandLevel − ReferenceSidebandLevel

= 20 log10[N · |H ( f mr)|] dB (5.4)

Now, N is the frequency divider ratio and is known, constant, and does
not depend on the modulating frequency f mr. Equation (5.4) states that
the difference between the output and the reference sideband level is
given by the amplitude of the PLL closed-loop gain. This result can be
applied to measure the amplitude of the closed-loop frequency response.
The following operations have to be performed:

1. Replace the reference oscillator with one having the same frequency
and the frequency modulation (FM) capability. Connect a low-
frequency sinusoidal oscillator with the modulation input of the FM
oscillator.

2. Set the modulating oscillator frequency at a low value, i.e., about
0.5–1 kHz.

3. Connect a spectrum analyzer with the synthesizer output. Set the
center frequency equal to the PLL output frequency (= N f ref) and
the span a little bit wider than 6 f mr. Adjust the modulating signal
amplitude to have ± f mr side tones at the level of about −30 dBc (the
remaining side tones should be lower than –65 dBc). Take note of
the measured level.

† f mr is the modulating frequency.
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4. Connect a spectrum analyzer with the FM generator output. Set the
center frequency equal to the reference frequency = f ref and the span
a little bit wider than 6 f mr. The level of side tones at ± f mr should
be slightly less than −30 dBc. If so, take note of the measured level;
if not, reduce the modulating amplitude and repeat step 3.

5. According to Eq. (5.4) the PLL closed-loop frequency response am-
plitude at offset frequency f mr is the difference between levels 3 and
4 decreased by 20 log10(N )

6. The closed-loop response at frequency f mr is given by

dB[|H ( f mr)|] = SynthesizerSidebandLevel (step 3)

− ReferenceSidebandLevel (step 4) − 20 log10(N )

7. Increase the modulating frequency and repeat steps 3 to 6 up to the
maximum offset frequency of interest, say up to a frequency response
amplitude of about −50 dB.

The measurement of the closed-loop frequency response is not essential
since what really matters in a PLL synthesizer is the phase noise and
the settling time. Anyway, the measurement of the frequency response
can be helpful for debugging or troubleshooting.

5.3 Sampling Phase Detector

The sampling phase detector (SPD) can be used in a PLL to lock a
microwave frequency VCO to an integer multiple of a lower frequency
(about some hundreds of megahertz) without using a microwave fre-
quency divider. The SPD block diagram is shown in Fig. 5.6a. It basi-
cally consists of a phase detector (usually a multiplier) whose reference
signal is supplied by a pulse generator rather than a sinusoidal one
for standard multiplier phase detectors. The symbol of the SPD is shown
in Fig. 5.6b.

(a) Functional diagram (b) Symbol

Phase
detector

j

Comb
generator

fref

kfref

To loop
filter input

VCO
feedback

signal

VCO
feedback

signal

j

Sampling phase
detector

fref To loop
filter input

Figure 5.6 Sampling phase detector.
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Figure 5.7 Pulse generator output waveform.

The pulse generator output signal is a rectangular wave with period
T , pulse width PW, and amplitude Vpeak. That signal can be written as
a sum of unit rectangular pulses defined a little bit differently† from
that in Sec. 1.3.3.

RectangularPulse	T (t) =
{

1 |t| < 	T
2

0 elsewhere

CombOut(t) =
+∞∑

n=−∞
RectangularPulse	T (t − nT ) (5.5)

The pulse generator output waveform is plotted in Fig. 5.7 where time
is normalized to the period, and amplitude is normalized to Vpeak.

The pulse generator output signal can be expanded in Fourier series
as

CombOut(t) = Vpeak
PW
T

+ Vpeak
2
π

∞∑
k=1

sin
(

kπ PW
T

)
k

cos
(

2πk
t

T

)

(5.6)

†The rectangular pulse as defined in this chapter is translated in time and
has unit amplitude. Thus the comb output signal Fourier series is simplified
by having only cosine terms, and the waveform amplitude is controlled by a
multiplying factor Vpeak.
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The first term of Eq. (5.6) is a DC voltage that is eliminated by the output
capacitor and will not be considered. Equation (5.6) can be replaced by
Eq. (5.6′) where the DC component is removed.

CombOut(t) = Vpeak
2
π

∞∑
k=1

sin
(

kπ PW
T

)
k

cos
(

2πk
t

T

)
(5.6′)

The pulse generator output signal is a “comb” (that is why it is called a
comb generator) of harmonics of its fundamental frequency 1/T . The
amplitude of the kth harmonic is given by

Harmonick = Vpeak
2
π

sin
(

kπ PW
T

)
k

(5.6′′)

The harmonic level envelope is shaped as sin(x)/x. The level of the
fundamental frequency is found by setting k = 1 in the expression
(5.6′′). The harmonic level normalized to the fundamental versus the
harmonic order is plotted in Fig. 5.8. Let’s define K3dB as the index
of the harmonic whose power is half of that of the fundamental. The
K3dBth harmonic is 3 dB below the fundamental if

sin
(

K3dBπ PW
T

)
K3dB

= 1√
2

sin
(

π
PW
T

)

K3dB can be found by solving the above-written transcendental equation
once PW and T are known.
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Figure 5.8 Comb generator output spectrum.
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The comb generator output spectrum presents nulls at indices kz
given by

Harmonick = 0 ⇒
sin
(

kzπ
PW
T

)
kz

= 0 ⇒ kzπ
PW
T

= mπ ⇒ kz = m
T

P W

where m is an arbitrary integer number. The first null occurs at kz =
T/PW. It follows that the smaller the duty cycle PW/T, the wider the
output spectrum. Figure 5.8 also shows the position of the first three
nulls and the −3 dB harmonic.

The rectangular waveform is generated from a sinusoidal input by a
step recovery diode. The input frequency 1/T is on the order of hun-
dreds of megahertz, and the input power is around half a watt. Comb
generators usually incorporate output matching and equalizing net-
works which flatten the output spectrum. The output spectra have sig-
nificant energy up to about 20 GHz with total conversion efficiency of
some percents. Here are some typical numbers:

� Input frequency: 1/T = 1 GHz
� Input power: Pin = 100 mW
� Efficiency: η = 2%
� Total output power: Po = ηPin = 2 mW
� Maximum output frequency: Fmax = 20 GHz
� Number of output spectral components: Nharm = FmaxT = 20
� Level of each† harmonic component: Lharm = Po/Nharm = 0.1 mW

Now, assuming that the output pulses are very short and that the
multiplier in Fig. 5.6a is ideal, the output of the SPD is the VCO signal
sampled at the sampling frequency f ref = 1/T . This is how the name
sampling phase detector came to be.

Figure 5.9 shows a PLL with a PFD. Let us assume that the VCO
frequency is close to one of the harmonics of the reference frequency.
We will denote the index of that harmonic as K ∗. Let the VCO and the
comb generator output signals respectively be

VCOout(t) = VVCO cos(2π f VCOt)

Combout(t) =
∞∑

k = 1
k �= K ∗

ak cos(2πk f ref t) + aK ∗ cos(2π K ∗ f ref t)

†In this simple calculation a flat spectrum is assumed up to 20 GHz. In a real
case the spectrum amplitude is decreasing at higher frequencies.
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Figure 5.9 SPLL basic schematic.

The SPD output is the product of these two signals:

SPDout(t) = VVCO cos(2π f VCOt)
∞∑

k = 1
k �= K ∗

ak cos(2πk f ref t)

+ VVCO cos(2π f VCOt)aK ∗ cos(2π K ∗ f ref t) (5.7)

The SPD output signal, given by Eq. (5.7), is the sum of infinite sinu-
soidal signals. Each sinusoidal signal has a frequency that is the sum
or the difference between the VCO frequency and one of the harmonics
of the reference frequency. Equation (5.7) can be expanded as

SPDout(t) =
∞∑

k=1

VVCOak

2
cos[2π( f VCO + k f ref) t]

+
∞∑

k = 1
k �= K ∗

VVCOak

2
cos[2π( f VCO − k f ref) t]

+ VVCOaK ∗

2
cos[2π( f VCO − K ∗ f ref) t] (5.7′)

Equation (5.7′) has three terms. The first one has spectral components
whose frequency is the sum of the VCO and the reference harmonics.
The second term has spectral components whose frequency is the differ-
ence between the VCO one and the reference harmonics far from it. The
smallest of these frequencies is comparable with the reference one; the
remaining frequencies are higher. Therefore, all the above-mentioned
mixing products have frequencies close to and higher than that of the
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Figure 5.10 Integrated SPD.

VCO and are thus filtered out by the PLL. The only useful signal for
the PLL is the third term of Eq. (5.7′):

SPD′
out(t) = VVCOaK ∗

2
cos[2π(K ∗ f ref − f VCO) t] (5.7′′)

Thus if the difference between the VCO frequency and the closest refer-
ence harmonic is smaller than the pull-in range, the PLL will lock the
VCO to that harmonic. The PLL using the SPD is also known as a sam-
pled phase-locked loop (SPLL). Its basic schematic is shown in Fig. 5.9.

The circuit in Fig. 5.9 includes a VCO pretuning circuit. It has to set
the VCO output frequency close to the required reference harmonic.
Driving the pretuning circuit allows the VCO to be locked on the differ-
ent harmonics of the reference signal. However, if the VCO frequency
excursion covers more than one harmonic and the pretuning is not
sufficiently accurate, there is the risk of a false lock; i.e., the PLL
locks the wrong harmonic. The circuit in Fig. 5.9 is commonly used
with a voltage-controlled dielectric resonator oscillator (VCDRO). These
oscillators use a high Q dielectric resonator with a varactor somehow
coupled to it. The output frequency excursion is of a few megahertz and
false lock is avoided. The pretuning circuit is a slow ramp generator,
disabled when the phase lock is detected.

However, the phase detector gain of the mixer changes over frequency
and depends on the amplitude of the used harmonic and on the am-
plitude of the VCO signal (which depends on the output frequency).
Hence, one SPLL, generating more than one output frequency,† will
have a different phase detector gain at a different output frequency
and consequently a different bandwidth and settling time.

The comb generator and phase detector can be integrated into a sin-
gle component as shown in Fig. 5.10. The comb generator has balanced

†Locking to different reference harmonics.
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output and consists of transformer T 1, step recovery diode SRD1, and
coupling capacitors C1 and C2. The phase detector is a single balanced
mixer using diodes D1 and D2, resistors R1 and R2 for DC return, capac-
itors C3 and C4 and resistor R3 for VCO and output signal decoupling.

5.4 Multiple-Loop PLL

The single-loop microwave PLL has to use one high-frequency prescaler
as the first stage of the frequency divider. These prescalers have a fixed
module and have to divide the VCO frequency down to a value below 2
GHz. The most common fixed microwave divider ratios are 4 and 8. The
frequency resolution of such a PLL is the reference frequency multiplied
by the fixed divider ratio. The reference frequency has to be decreased
by that factor in order to save the resolution. This implies the reduction
of the maximum closed loop and the increase of in-band noise† by the
same factor. The narrowband PLL also has a limited VCO phase noise
reduction. Fractional-N ‡ is an architecture that allows for a small fre-
quency resolution combined with a relatively high-reference frequency.
Another possible architecture is the dual-loop synthesizer whose block
diagram is shown in Fig. 5.11. It consists of two loops: the internal
loop with the components inside the rectangle marked as PLL2 (phase
detector PD2, loop filter LF2, VCO2, and frequency divider FD2), and the
external loop with the components PD1, LF1, VCO1, MIXER, IF filter,
and FD1.

The external loop is a standard single-loop PLL with a reference
frequency f ref 2 and a frequency division N2; its output frequency is
FPLL2 = N2 f ref 2. FPLL2 is below 2 GHz; thus the frequency divider
ND2 has no fixed prescaler and the frequency resolution is f ref 2.
The signals at the RF and LO inputs of the mixer have frequencies of
Fout and FPLL2, respectively. The output IF signal has two sinusoidal
components, one having a frequency of Fout + FPLL2, and the other
having a frequency of Fout −FPLL2. The sum product is high frequency
and is filtered out from the IF filter together with the mixer spurs and
leakage.§ The difference signal feeds the input of the frequency divider
ND1 whose output frequency is (Fout − FPLL2)/N1. The phase detec-
tor PD1 compares the phases of the ND1 output signal with that of the

†Equation (4.7′) states that the in-band noise is proportional to the frequency
division factor-N∣∣InBand( f )

∣∣2 = N 2
⌊
|�r( f )|2 + |nDET( f )|2 K−2

d + |nDIV( f )|2
⌋

‡See Chap. 3.
§Having frequency ±mf RF ± nf lo with n, m = 0, 1, 2, . . . .



Miscellaneous 195

:N1

VCO1PD1

FD1

VCO pretuning

fref1  Out

IF filter

:N2

VCO2PD2

FD2

fref2

FIF/N1

 FPLL2

Fout

   PLL2

RF

LO

IFFIF

F1(f ) +

LF1

F2(f )

LF2

Mixer

j

j

×

Figure 5.11 Dual-loop PLL synthesizer.

reference signal. If the PLL is stable, it will lock and the two phases
will be equal. Consequently the two corresponding frequencies will be
equal as well:

f ref 1 = Fout − N2 f ref 2

N1
(5.8)

The output frequency is then

Fout = N1 f ref 1 + N2 f ref 2 (5.8′)

We assumed that VCO1 is a microwave oscillator and the VCO2 output
frequency is below 2 GHz. Therefore, the IF frequency Fout − FPLL2 is
still within the microwave range. Consequently the first stage of the
frequency divider is a fixed microwave prescaler and the frequency
division factor N1 is the product of one fixed factor by one variable
factor:

N1 = N1,fixed · N1,variable

Equation (5.8′) can be written as

Fout = N1,fixed · N1,variable f ref 1 + N2 · f ref 2 (5.8′′)
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From Eq. (5.8′′) it follows that

� Unitary increasing (decreasing) of N1,variable implies Fout is decreas-
ing (increasing) by N1,fixed · f ref 1.

� Unitary increasing (decreasing) of N2 implies Fout is decreasing (in-
creasing) by f ref 1.

The PLL2 output frequency range has to be equal to a variation of Fout
when N1,variable is increased by 1. Thus;

FPLL2,max − FPLL2,min = N1,fixed f ref 1 ⇒ N2,max − N2,min = N1,fixed
f ref 1

f ref 2

If the initial frequency of VCO1 is very far from its steady-state value
[given by Eq. (5.8′)], the frequency of the IF signal may be out of the IF
filter passband. In that case no signal will clock the frequency divider
FD1, and the external PLL will not lock regardless of its pull-in range.
Thus, a pretuning circuit is needed with sufficient precision to avoid
that risk.

5.4.1 Phase noise of multiple-loop PLL

The phase noise of PLL2 is given by Eq. (4.7′) and can be calculated
with any of the methods described in Sec. 4.3.

∣∣�o2( f )
∣∣2 = N 2

2

[
|�r2( f )|2 + |nDET2( f )|2

K2
d 2

+ |nDIV2( f )|2
]

|H2( f )|2

+ [1 − H2( f )]2
∣∣nVCO2( f )

∣∣2
where index 2 denotes values of PLL2, whose frequency response is
given by

H2( f ) =
Kd 2 Kv2

N2

F2( f )
j 2π f

1 + Kd 2 Kv2
N2

F2( f )
j 2π f

The output phase noise of PLL2 is a component of the in-band noise of
the external loop:

|�o( f )|2 =
{

N 2
1

[
|�r1( f )|2 + |nDET1( f )|2

K2
d 1

+ |nDIV2( f )|2
]

+ |�o2( f )|2
}

|H1( f )|2 + [1 − H1( f )]2 |nVCO1( f )|2 (5.9)
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where index 1 denotes values of the external loop with the frequency
response given by

H1( f ) =
Kd 1 Kv1

N1

F1( f )
j 2π f

1 + Kd 1 Kv1
N1

F1( f )
j 2π f

The phase noise of VCO1, nVCO1( f ), includes degradation due to noise
injection from the pretuning network. The methods of phase noise anal-
ysis described in Sec. 4.3 can easily be applied to calculate the phase
noise of the dual-loop PLL given by Eq. (5.9).

For small values of offset frequency, it can be assumed that

|H1( f )|2 ∼= |H2( f )|2 ∼= 1 ⇒ ∣∣1 − H1( f )
∣∣2 ∼=

∣∣1 − H2( f )
∣∣2 ∼= 0

Close-to-carrier phase noise is then given by Eq. (5.9) where the closed-
loop response is replaced by 1 and the error response by 0:

|�o( f )|2Close-In = N 2
1

[
|�r1( f )|2 + |nDET1( f )|2

K2
d 1

+ |nDIV2( f )|2
]

+ N 2
2

[
|�r2( f )|2 + |nDET2( f )|2

K2
d 2

+ |nDIV2( f )|2
]

(5.10)

In the simplified case of noiseless phase detectors and frequency di-
viders, the close-to-carrier phase noise becomes

|�o( f )|2Close-In = N 2
1 |�r1( f )|2 + N 2

2 |�r2( f )|2 (5.10′)

Very often reference signals of the internal and external loops are gen-
erated by the same reference source with two frequency dividers:

f ref 1 = 1
R1

f ref f ref 2 = 1
R2

f ref

If two reference dividers are noiseless, it follows that

�r1( f ) = �r( f )
R1

�r2( f ) = �r( f )
R2

which means that the two reference signals are coherent and their
contributions are summed as voltage rather than as power like in
Eq. (5.10′). Close-to-carrier noise becomes

|�o( f )|2Close-In = |N1�r1( f ) + N2�r2( f )|2 =
(

N1

R1
+ N2

R2

)2

|�r( f )|2

(5.11)
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Assuming the two reference signals come from the same signal, the
output frequency given by Eq. (5.8′) becomes

Fout =
(

N1

R1
+ N2

R2

)
f ref (5.12)

Comparing Eq. (5.11) with (5.12), it can be seen that the close-to-carrier
phase noise of the dual-loop synthesizer is the same as that of a single-
loop synthesizer with the same reference signal and output frequency.
Leeson’s Eq. (2.31) states that close-to-carrier noise of the reference
oscillator is proportional to f ref/(QL f 2) where QL is the resonator’s
loaded Q and f is the offset frequency. Substituting reference close-to-
carrier noise given by Leeson’s equation into Eq. (5.11), we obtain

|�o( f )|2Close-In =
(

N1

R1
+ N2

R2

)2( f ref

2QL f 2

)2( f c

f

)
NFKT

2Ps

From Eq. (5.11), (
N1

R1
+ N2

R2

)2

=
(

Fout

f ref

)2

Then,

|�o( f )|2Close-In =
(

Fout

2QL f 2

)2( f c

f

)
NFKT

2Ps
(5.13)

The close-to-carrier phase noise of any PLL with a single or double-
loop depends only on the output frequency and on the parameters of
the reference oscillator: loaded Q of the resonator, noise figure and
flicker noise of the active device, and power on the resonator. Double-
loop architecture can be generalized to multiple loop: if PLL2 itself is
a double-loop PLL, a triple-loop synthesizer is obtained, and so on. In
any case Eq. (5.13) remains valid.

5.4.2 Transients in Multiple-Loop PLL

The synthesizer of Fig. 5.11 has three possible transients on the out-
put frequency. The first is excited by changing the divider ratio of the
external loop, the second by changing the divider ratio of the internal
loop, and the third by variations of the pretuning voltage. As shown in
Sec. 4.5, the first two transients can be calculated in response to steps in
the reference angular frequency. Changes in pretuning voltage are ide-
ally simultaneous with changes in FD1. In this chapter linear transient
analysis will be described based on the equivalent block diagram of the
dual-loop PLL of Fig. 5.11. That block diagram is shown in Fig. 5.12.
The observed magnitude is the angular frequency like in Fig. 1.2b.
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Figure 5.12 Block diagram of dual-loop PLL synthesizer.

The mixer is the only new block; it is modeled with a subtractor since
the mixer IF output frequency is the difference between the RF and
LO input frequencies, and the IF angular frequency is the difference
between the RF and LO angular frequencies as well.

Linear calculations of frequency settling transients consist of calcu-
lations of some frequency responses. The inputs are the two reference
frequencies of the two phase detectors and the pretuning input. The
outputs are the synthesizer output, phase errors on two phase detec-
tors (for validation of linear analysis), and the mixer output (to check
if the IF filter passband limits are exceeded during the transient). All
these frequency responses are calculated with Mason’s rule.

5.4.2.1 Step on the angular frequency of the external-loop reference. Sup-
pose we want to apply a step of amplitude 	ω2 on the reference angular
frequency. The variation on the PLL2 output angular frequency will be

	ωout2,2(t) = F−1
[

N2 H2( f )
	ω2

j 2π f

]
(5.14)

The phase error on PD2 is

	θ2,2(t) = F−1
[

1 − H2( f )
j 2π f

	ω2

j 2π f

]
(5.15)
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The variation on the synthesizer output angular frequency is

	ωout1,2(t) = F−1
[

N2 · H2( j 2π f )H1( j 2π f )
	ω2

j 2π f

]
(5.16)

The phase error on phase detector PD1 is

	θ1,2(t) = F−1
[

N2 · H2( j 2π f )
1

N1

1 − H1( j 2π f )
j 2π f

	ω2

j 2π f

]
(5.17)

The inverse Fourier transforms (5.15) to (5.17) can be calculated with
any of the methods described in Sec. 4.5. The transient on the output
frequency can be calculated together with the phase error on two phase
detectors. It is possible to check whether or not the linear limits have
been exceeded.

5.4.2.2 Step on the angular frequency of the internal-loop reference. Sup-
pose we want to apply a step of amplitude 	ω1 on an angular frequency
of θre f 1. PLL2 is not affected by any variation of the external loop. The
variation on the synthesizer output angular frequency is

	ωout1,1(t) = F−1
[

N1 · H1( j 2π f )
	ω1

j 2π f

]
(5.18)

The phase error on phase detector PD1 is

	θ1,1(t) = F−1
[

1 − H1( j 2π f )
j 2π f

	ω1

j 2π f

]
(5.19)

Equations (5.18) and (5.19) are the same as those for the single loop.
The methods of Sec. 4.5 can be applied as they are, including the check
of the phase detector linear operation.

5.4.2.3 Step on the pretuning voltage. Suppose we want to apply a step
of amplitude 	V1 on a pretuning voltage of the external loop. Again,
this perturbation doesn’t affect PLL2. The variation on the synthesizer
output angular frequency is

	ωout1,3(t) = F−1
{

Kv1[1 − H1( j 2π f )]
	V1

j 2π f

}
(5.20)

The phase error on phase detector PD1 is

	θ1,3(t) = F−1
[
− Kv1

N1

1 − H1( j 2π f )
j 2π f

	V1

j 2π f

]
(5.21)

Equations (5.20) and (5.21) are similar to Eqs. (5.18) and (5.19). There
are two differences: There is a different multiplying constant and the
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closed-loop response is replaced by the phase error frequency response.
The methods of Sec. 4.5 can be applied with minor changes.

5.4.2.4 Simultaneous application of different excitations. Different exci-
tations can be applied simultaneously. Their effect can be calculated
by superimposition of effects since the system is linear. One particu-
larly interesting combination is one step on the eternal loop reference
frequency and one step on the pretuning voltage. Summing Eq. (5.18)
with (5.20) gives

	ωout1,1 + 3(t) = F−1
{

H1( j 2π f )N1	ω1 + [1 − H1( j 2π f )]Kv1 	V1

j 2π f

}
(5.22)

if 	V1 = N1
Kv1

	ω1 Eq. (5.22) becomes

	ωout1,1 + 3(t) = F−1
{

N1	ω

j 2π f

}
= N1	ω η(t) (5.22′)

which is an ideal step. This result was also found in Sec. 4.4.3 where it
was demonstrated that a perfectly balanced dual-point modulated PLL
ideally has an infinite modulation bandwidth. Note that synchronous
and balanced variations on the reference (modeling variations on the
frequency divider) and on pretuning are exactly a perfectly balanced
dual-point modulated PLL. Under the same condition, the phase error
given by the sum of Eqs. (5.19) and (5.21) becomes zero.

5.4.3 Variations on Double-Loop
Architecture

Many variations on the theme of the multiple-loop synthesizer are pos-
sible. Some of them will be described in this section.

1. PLL2 of Fig. 5.11 can be replaced by one high-frequency PLL (some-
times an SPLL) with an output frequency close to that of VCO1. This
way the IF frequency becomes quite lower than the output frequency
and the high-frequency fixed prescaler is no longer needed in the fre-
quency divider FD1. This configuration is still given by Eq. (5.8′), but
N1 can be changed with the unit step. Thus the output frequency res-
olution becomes the smaller of f ref 1 and f ref 2. If PLL2 is an SPLL,
f ref 2 is the input frequency of the comb generator, and N2 is the
index of the locked harmonic.

2. The same result of case 1 can be obtained by swapping the comb
generator between the reference input and the VCO output of PLL2.
In this case the PLL2 output (frequency around some hundreds of
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megahertz) feeds the comb generator input whose output is the LO
signal of the mixer. The combination of comb generator and mixer is
analogous to the SPD described in Sec. 5.3 and is also known as the
harmonic mixer or sampling mixer. The only difference is that the
SPD output is a baseband signal, while the harmonic mixer IF output
is an RF signal. The harmonic mixer generates many mixing prod-
ucts, but only one will fall within the passband of the IF filter. The ex-
ternal loop will lock that mixing product, making its frequency equal
to N1 · f ref 1. The output frequency is given by Eq. (5.8′) where f ref 2 is
the PLL2 output frequency and N2 is such that the result of Eq. (5.8′)
is closest to the VCO1 pretuned frequency. A configuration with a har-
monic mixer eliminates the risk of false lock on PLL2 but moves that
risk to the external loop, making pretuning accuracy more critical.

3. PLL2 can be replaced by a DDS generator.† In this case very high res-
olution is achieved because the DDS resolution is on the order of 1 Hz.

All considerations on phase noise and the settling time of the dual-loop
PLL made in Secs. 5.4.1 and 5.4.2 are still applicable with the following
changes for the above-mentioned cases.

The PLL2 output frequency in case 1 and the N2th harmonic in case 2
are close to the output frequency. The system can work with the PLL2
frequency lower or higher than that of VCO1. In the latter condition,
the IF output frequency will decrease if the VCO1 frequency increases.
From an external loop point of view, a block from the VCO1 tuning port
to the mixer IF port behaves like a VCO with a negative gain: i.e., in-
creasing the on tuning voltage decreases the output frequency. A 180◦

phase shift is added to the loop gain making it unstable. An additional
phase shift can be removed by inverting the output characteristic of
the loop filter or of the phase detector. The latter solution is easily
implemented with PFD by the swapping f v and f r inputs.‡ In case 3,
calculations on PLL2 need to be replaced by calculations on DDS
(see Sec. 5.5).

5.5 Direct Digital Synthesizer

A direct digital synthesizer (DDS) is a full digital architecture synthe-
sizer characterized by high tuning speed and high frequency resolu-
tion. The DDS basic block diagram is shown in Fig. 5.13. The DDS in-
cludes four basic blocks: one accumulator, one read-only memory (ROM)

†See Sec. 5.5.
‡As an example, the phase detector polarity of LMX2353 (LMX2353 is used

in Sec. 5.2), has a polarity that can be programmed via the three-wire interface.
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Figure 5.13 DDS basic diagram.

implementing a lookup table, one digital-to-analog converter (DAC),
and one lowpass filter.

5.5.1 Principle of DDS operation

Operation of the accumulator was already described in Sec. 3.2. The
accumulator is clocked by a reference frequency that can be considered
as the sampling frequency of the system. Denote the size of the accumu-
lator with Q, the input addendum with A, the output with DDSout, and
the accumulator clock frequency with f CLK. At each clock cycle the ac-
cumulator output is increased by A until overflow is reached. Assuming
DDSout = 0 as the initial condition, it is

DDSout,k = (k A) mod Q (5.23)

where index k indicates the kth clock cycle.
Equation (5.23) can be interpreted as the phase of a periodic signal

with frequency f CLK A/Q. The lookup table address bus is connected
to the accumulator output, and the data ideally are the sine of the
corresponding address:

idealDATA(i) = sin
[
2π

ADDRESS(i)
Q

]
(5.24)

where the variable i denotes the ith cell of the ROM.
The sine function assumes all real values between −1 and +1, while

the ROM output can only assume discrete values, so Eq. (5.24) has to
be rounded as

DATA(i) = int




1 + sin
[
2π ADDRESS(i)

Q

]
2

(2L − 1)


 (5.24′)

The ROM output given by Eq. (5.24′) assumes all integer values
between 0 and 2L − 1 where L is the number of bits of ROM data.
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DAC output

Ideal sine

t

Figure 5.14 DDS DAC output waveform.

The accumulator output can be 0, 1, 2, . . . , Q − 1, which is a digital
word with length log2(Q) bits corresponding to the size of the ROM. Q
usually is an integer power of 2, and the ROM size is of course an integer
number. The ROM output is a digital sequence that can be considered
a staircase waveform approximating a sinusoidal waveform with fre-
quency f CLK A/Q. That waveform which changes at each clock cycle, is
affected by the quantization error due to the finite length of the ROM
output. The ROM output digital sequence can be transformed into an
analog waveform with a DAC. Figure 5.14 shows the DAC output and
the corresponding sinusoidal waveform.

The DAC output waveform is an approximation of the sine wave with
frequency

f o = f CLK
A
Q

(5.25)

sampled at a frequency equal to that of the accumulator clock, but the
waveform of Fig. 5.14 is a sequence of rectangular pulses having width
T CLOCK = 1/ f CLK instead of Dirac pulses. We want to make the DDS
generate a sinusoidal signal with unit† amplitude and frequency f o =
f CLK A/Q. Denote that signal with s(t):

s(t) = sin (2π f ot)

Its spectrum is

S( f ) = δ( f − f o) − δ( f + f o)
2 j

†This assumption implies no lack of generality.
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Ideal sampling of a signal s(t) with sampling frequency f CLK consists of
multiplying s(t) by a periodic sequence of Dirac pulses with a period of
1/ f CLK. Sampling of s(t) with frequency f CLK gives the following signal:

s(t)∗ = sin (2π f ot)
+∞∑

k=−∞
δ

(
t − k

f CLK

)

with the spectrum

S( f )∗ = f CLK

+∞∑
k=−∞

δ( f + f o − k f CLK) − δ( f + f o − k f CLK)
2 j

Sampled signal s(t)∗ consists of a sequence of Dirac pulses placed at
discrete equal-spaced time tk = k/ f CLK with area equal to s(tk). The
DAC output is a sequence of rectangular pulses with amplitudes equal
to s(tk) and widths equal to 1/ f CLK. Its spectrum can be calculated by
multiplying S( f )∗ by the response of the filter having a pulse response
equal to the rectangular pulse with unit amplitude and width 1/ f CLK.
The frequency response of that filter is given by the inverse Fourier
transform of its pulse response:

T ( f ) =

1
f CLK∫
0

exp ( j 2π f t) d t = 1
f CLK

sin
(
π

f
f CLK

)
π

f
f CLK

exp
(

j π
f

f CLK

)

The spectrum of the DAC output signal is given by S( f )∗ multiplied
by T ( f ):

SDAC( f ) =
+∞∑

k=−∞

δ( f + f o − k f CLK) − δ( f + f o − k f CLK)
2 j

×
sin
(
π

f
f CLK

)
π

f
f CLK

exp
(

j π
f

f CLK

)
(5.26)

The magnitude of the DAC output spectrum is

|SDAC( f )| =
+∞∑

k=−∞

δ( f + f o − k f CLK) − δ( f + f o − k f CLK)
2

×
∣∣∣∣∣∣
sin
(
π

f
f CLK

)
π

f
f CLK

∣∣∣∣∣∣ (5.26′)

The DAC output spectrum has one spectral line with the same fre-
quency of signal s(t) and infinite spectral components at frequencies of
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k f CLK ± f o with k assuming all integer values. A useful spectral com-
ponent has frequency f o, and the closest unwanted spectral component
has frequency f CLK − f o. The original signal s(t) can be reconstructed
by filtering out all unwanted spectral components. This can be done
only if

f o < f CLK − f o ⇒ f o <
f CLK

2
(5.27)

Equation (5.27) is the well-known condition on the sampling fre-
quency given by the Shannon theorem. The maximum frequency given
by Eq. (5.27) is also known as the Nyquist frequency. The output low-
pass filter of Fig. 5.13 should be an ideal lowpass filter with a cutoff
frequency of f CLK. It filters out all unwanted spectral components pre-
senting at its output the pure sine we want to generate. Anyway
Eq. (5.26′) states that the amplitude of the output signal depends on its
frequency with the factor

T ′( f o) = sin
(

π
f o

f CLK

)(
π

f o

f CLK

)−1

= sinc
(

π
f o

f CLK

)
(5.28)

which is close to unity for very low frequencies. It monotonically de-
creases with f o for a minimum value of 2/π (about −3.9 dB) at max-
imum frequency f o,MAX = 0.5 f CLK. The spectrum of the DAC output
with the sinc filter T ′( f ) and the ideal lowpass output characteristics
are shown in Fig. 5.15 where the x axis is frequency normalized to the
sampling frequency f CLK. The output ideal lowpass cutoff frequency is
half of the sampling frequency. At this frequency the output filter gain
crosses T ′( f ) at the value T ′( f CLK/2) = 2/π .

0
0 0.5fclk 3fclk2fclkfclk

1

f

DAC output spectrum (assuming Vo = 1)

Useful component of DAC spectrum

Sampling signal spectrum (not in scale)

|T ′(f )|

−3.9 dB point of |T ′(f )|

Ideal lowpass filter

Figure 5.15 DDS output.
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The signal at the output of the lowpass filter is a sinusoid with a fre-
quency given by Eq. (5.25) with the limitation of the Shannon theorem
given by Eq. (5.27):

f o = f CLK
A
Q

f o <
f CLK

2
⇒ A <

Q
2

(5.29)

The DDS output frequency is changed by changing the input addendum
of the accumulator. The output frequency resolution is

f RES = f CLK

Q
(5.30)

Here are some typical numbers:

� Clock frequency: f CLK = 20 MHz
� Accumulator size: 24 bits ⇒ Q = 224 − 1
� Maximum theoretical output frequency: f o,MAX = f CLK/2 = 10 MHz
� Output frequency resolution: f RES = f CLK/Q ∼= 1.2 Hz

DDS integrated circuits are available on the market with an accumula-
tor, lookup table, and DAC in a single chip; the clock frequencies exceed
1 GHz and frequency resolutions reach values well below 1 Hz.

5.5.2 Effects of nonideal components
on DDS performance

The discussion in Sec. 5.5.1 was based on ideal DDS components. It
was found that the DDS output signal is a pure sine, ideally sampled at
frequency f CLK, filtered by the sinc filter, processed by a DAC (which is
inherently nonlinear), and filtered by an ideal lowpass filter. Based on
these conclusions, the DDS schematic of Fig. 5.13 can be modeled with
the functional block diagram of Fig. 5.16.

The signal at the input of the DDS functional block diagram (node n1)
is a pure sine. The ideal sampler consists of one multiplier by sampling
the sequence of Dirac pulses with period 1/ f CLK; the sampled input is at
node n2. The sinc filter transforms an ideally sampled signal into a rect-
angular pulse sequence of DAC output (node n3). The nonlinear transfer
characteristic models the DAC staircase characteristic and other non-
linearities that can be present. The DAC output is the signal on node
n4. A reconstruction filter removes all unwanted spectral components.
The DDS output signal is at node n5.

5.5.2.1 Reconstruction filter. An ideal lowpass filter like that consid-
ered in Sec. 5.5.1 is not physically realizable as known. Practical filters
have finite selectivity. One widely used lowpass filter topology is the
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Figure 5.16 DDS functional block diagram.

lumped passive LC ladder network of Fig. 5.17. The most common con-
figuration is with equal source and load resistance,† symmetrical struc-
ture, and Chebysheff response with odd order. The order of the filter
equals the number of reactive elements. Design formulas for that filter
can be found in the literature and can be easily implemented into a
MATHCAD worksheet.‡

The passband attenuation of Chebysheff filters varies between 0 and
RP, where RP is a defined design parameter named ripple and is usu-
ally expressed in decibels. For this reason Chebysheff filters are also
known as equal ripple filters. Figure 5.18 shows the frequency response
of three Chebysheff filters with a ripple of 0.1 dB and three different
orders (N = 7, 9, and 13). The cutoff frequency of these filters is cho-
sen to have 60 dB of attenuation at the Nyquist frequency. Because
of the nonideal response of the filters, the maximum DDS output fre-
quency (the cutoff frequency of the filter) is quite lower than the theo-
retical Nyquist frequency (0.5 f CLK) being 0.242 f CLK, 0.311 f CLK, and
0.391 f CLK, respectively, for N = 7, 9, 13.

Selectivity of the reconstruction filter is then a limiting factor for the
maximum DDS output frequency: It will approach its theoretical limit

C2

In Out

L1

C4

L3 LN

CN−1

LN−2

Figure 5.17 Lumped passive LC ladder lowpass filter.

†Defined as doubly terminated filters.
‡See the MATHCAD file LowPassFilter.MCD.
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Figure 5.18 Response of Chebysheff filters with 0.1-dB ripple and dif-
ferent order.

of the Nyquist frequency as the filter selectivity (i.e., order of the filter)
is increased. The maximum DDS output frequency for spur (unwanted
spectral components above Nyquist frequency) attenuation of 50 dB
and 60 dB is plotted in Fig. 5.19 versus filter order. It is assumed that
the filters have 0.1 dB of ripple.

In any case, the filter order cannot be arbitrarily increased because
high-order filters are very critical and sensitive to the tolerance of com-
ponents’ values. Moreover real capacitors and inductors are not purely
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Figure 5.19 Maximum DDS output frequency for spur attenuation of
50 and 60 dB.
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Figure 5.20 Chebysheff filters of different order with (lower traces)
and without (upper traces) dissipation loss.

reactive elements but present power dissipation that can be taken into
account with parasitic shunt or series resistors or with the Q factor. The
effects of the finite Q factor of reactive elements are shown in Fig. 5.20
where the frequency responses of three Chebysheff filters are plotted
with and without taking into account the dissipation. All filters have
the same ripple and cutoff frequency. The dissipation loss smoothes the
filter response as the frequency approaches the cutoff, making the re-
sponse less sharp. This reduction of filter selectivity increases with the
filter order. In any case the DDS maximum output frequency has to be
even lower than the value taken from Fig. 5.19 because of the margins
needed for filter tolerance and smoothing of the response close to cutoff.

Chebysheff filters have all their poles of attenuation at infinite fre-
quency, where series inductors become open circuits and shunt capac-
itors become short circuits. Filter selectivity can be increased without
increasing the order by introducing poles of attenuation at finite fre-
quencies with the use of elliptic filters (also known as Cauer filters).
They approximately are Chebysheff filters with series inductors (or
shunt capacitors) replaced by parallel (or series) LC. This way poles
of attenuation at infinite frequency are translated toward the resonant
frequency of LC elements.

Figure 5.21 shows one Chebysheff filter and one elliptic filter,† to-
gether with their frequency responses. Both filters are seventh order
with 0.1 dB ripple and 8 MHz cutoff frequency. The values of their

†See the SIMETRIX file DDS1 Lowpass3.sxsch.
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Figure 5.21 Chebysheff and elliptic filters with a cutoff frequency
of 8 MHz.

components are approximated to the closest standard value. The re-
sponse of Fig. 5.21c clearly shows how a shift of attenuation poles from
infinite to a frequency close to cutoff improves selectivity. Elliptic fil-
ters have higher selectivity than Chebysheff filters with the same order.
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Figure 5.22 Fifth-order lowpass
filter.

A given selectivity can be obtained with a lower order if an elliptic filter
is used. A lower order implies less smoothing of the frequency response
close to the cutoff and a lower sensitivity of the frequency response to
the tolerance of the component values.

Calculation of the effects of the tolerance on components’ values, and
the effects of using nonexact values for the filter elements (due to the
use of standard values) can be done with both mathematical and circuit
analysis programs. The latter case is quite straightforward and consists
of performing AC and Monte Carlo analyses of the filter. Filter analysis
can also be performed with mathematical programs.† The basic pro-
cedure for ladder filter analysis will be illustrated with the circuit of
Fig. 5.22 representing a fifth-order lowpass filter including the source
and load. The procedure is based on the assumption of unitary output
voltage and deducing all voltages and currents of the circuit beginning
from the output and recursively going back to the input.
Let the output voltage be 1. Then

Current flowing through the output load and inductor L5 is

I1( f ) = 1
R1

Voltage on node 4 is

V4( f ) = 1 + I1( f ) j 2π f L5

Current through capacitor C4 is

I4( f ) = j 2π f C4V4( f )

†See the MATHCAD file LowPassFilter Synthesis Analysis.MCD and the
SIMETRIX file LowPassFilter Synthesis Analysis.sxsch for comparison.
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Voltage on node 3 is

V3( f ) = V4( f ) + [I1( f ) + I4( f )] j 2π f L3

Current through capacitor C2 is

I2( f ) = j 2π f C2V3( f )

Voltage on node 1 is

V1( f ) = V3( f ) + [I1( f ) + I2( f ) + I4( f )]( j 2π f L1 + Rs)

Available power from source V in is

Pin( f ) = V1( f )2

4Rs

Filter gain is

Gain( f ) = 10 log10

[
Pout( f )
Pin( f )

]
= −10 log10[Pin( f )]

The above procedure can be generalized for filters of any order. More
complicated impedance expressions than inductors and capacitors can
also be used to give a more realistic description of real components.
Component values can be modified displaying the resulting response.

5.5.2.2 Nonlinearities. A sampled signal generated by a DAC is dis-
torted by the quantization error generated by a combination of finite
length of ROM output word and DAC resolution. Thus even in the ideal
case, the sampled signal passes through a nonlinear transfer charac-
teristic which is the block after the sinc filter in Fig. 5.16. Moreover real
DACs present additional nonlinearity due to deviation from the nomi-
nal staircase characteristic. The signal on node n3 of Fig. 5.16 has the
spectrum given by Eq. (5.26′). The spectrum has infinite components
with frequencies given by

f o and k f CLK ± f o with k = 1, 2, 3, . . .

At nonlinear transfer output all the above spectral components inter-
modulate generating even more spectral components with frequencies
of

f o and k f CLK ± mf o with k, m = 1, 2, 3, . . .

Some of these products have frequencies lower than the output lowpass
cutoff and will not be filtered: They are known as DDS output spurs.
Their level normally is in the range from −45 to −70 dBc. DAC nonlin-
earity is often generated by internal crosstalk due to parasitic coupling.
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Figure 5.23 SIMETRIX schematic of DDS.

These effects increase with the clock frequency. Consequently the
general trend is that higher clock frequency DDSs have the higher
spur level.

Some calculations of a DDS output spectrum can be performed† with
both MATHCAD and SIMETRIX. The first method is quite straightfor-
ward: Accumulator output is calculated with Eq. (5.23), ROM ideal (no
quantization) with Eq. (5.24), DAC ideal output (only quantization, no
further nonlinearity) with Eq. (5.24′). Additional nonlinearity is mod-
eled with a third-order polynomial and spectra are calculated with the
FFT. The SIMETRIX simulation circuit is shown in Fig. 5.23. The ac-
cumulator output is the digital output of the analog to digital converter
(ADC), U1 has a 2.3-MHz sinusoidal signal as its input (node 1), and
the clock is a digital pulse generator with a period of 50 ns and 50%
of duty cycle (20-MHz square wave). Digital outputs D0, D1, . . . , D5 ex-
actly model the ROM output (D0 is LSB, D5 is MSB). The circuit of
Fig. 5.25 includes one 6-bit weighted resistor DAC with 50-� output
resistance, consisting of

� Resistors R0, R1, . . . , R5
� Resistor R6 and DC source V3 (the offset compensation network)
� CCVS‡ H1 with R7 (the output matching network)

†See files DDS1.mcd and DDS1.sxsch.
‡Current-controlled voltage source.
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Figure 5.24 Output waveforms of circuit of Fig. 5.23. Node 1—ideal
sine, node 10—DAC output (multiplied by 2), node 6—DDS output.

The LC ladder network between nodes 2 and 6 is the output lowpass
filter (same circuit as in Fig. 5.21a), and the output filter load is R8.

Output waveforms are simulated with a transient simulation and
are plotted in Fig. 5.24. The output signal is delayed with respect to the
input. This is due in part to the conversion time of the ADC and in part
to the group delay of the output filter.

The output spectrum (node 6) of the circuit in Fig. 5.23 is plotted in
Fig. 5.25. Figure 5.25a shows the DDS output spectrum for an output
frequency of 2.3 MHz. Note the many spectral lines around the funda-
mental frequency. These are the DDS spurs, and they have a maximum
level of about −43 dBc. Above 8 MHz the spur level is attenuated by
the output lowpass filter. Figure 5.25b shows the DDS output spectrum
when the output frequency is 2 MHz. Note that the spur energy is
concentrated around the harmonies of the output frequency. This is be-
cause the output frequency (2 MHz) and the clock frequency (20 MHz)
are both integer multiples of the same frequency. Such a condition usu-
ally involves a reduced accuracy of the simulation.

A simulation was performed with a simple 6-bit ADC in order to give
prominence to spurs. The number of ADC bits and numbers of weighted
resistors of the DAC can be increased in order to reduce the spur level.
The circuit of Fig. 5.23 allows some interesting analyses on the DDS,
for example:

� Impairment can be introduced into a DAC in order to model some
nonlinearity and to study its effect on the output spectrum.
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Figure 5.25 DDS output spectrum from the circuit of Fig. 5.23.

� Time-domain noise can be added to the ADC clock in order to study
the effect of jitter.

� The output filter can be changed with less or more selective ones.

The DDS synthesizer has a high-frequency resolution, fast frequency
settling (just the time needed to change the input addendum register),
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and low phase noise (about that of a clock signal with some degradation
due to the noise of digital circuits). Two drawbacks of a DDS are output
spurs and a maximum output frequency that is about 1 GHz for faster
DDSs on the market.

Frequency multiplication is needed for generation of microwave sig-
nals. Calculation of effects of frequency multiplication on DDS spurs is
interesting in this regard.
Let s(t) be the signal generated by a DDS and affected by a spur:

s(t) = sin (2π f ot) + 	v sin [2π( f o + 	 f )t]

where the first term is the carrier and the second term is the unwanted
spur with amplitude 	v � 1. Moreover the spur frequency is lower
than the maximum DDS output frequency: thus 	 f < f CLK/2 f o. Con-
sider now a frequency doubler consisting of a nonlinear two-port device
with an output voltage equal to twice the square of the input voltage.
Assume that s(t) is the input voltage and s2(t) is the corresponding
output:

s2(t) = 2s(t)2 = 2{sin (2π f ot) + 	v sin [2π( f o + 	 f )t]}2

s2(t) ∼= 2 sin2(2π f ot) + 4	v sin (2π f ot) sin [2π( f o + 	 f )t]

s2(t) ∼= 1 − cos [2π(2 f o)t] + 2	v cos (2π	 f t) − 2	v cos [2π(2 f o + 	 f )t]

The doubler output signal is the sum of four terms: the first is a DC
component, the second is a cosine with a frequency double that of the
input, the third has a frequency below the DDS Nyquist frequency,
and the fourth has a frequency close to that of the second term. Low-
frequency components can be easily eliminated with a bandpass filter,
so the only important terms are the second and the fourth. Let s′

2(t)
be the filtered signal containing those two terms only (with the sign
changed for simplicity):

s′
2(t) ∼= cos [2π(2 f o)t] + 2	v cos [2π(2 f o + 	 f )t]

The filtered frequency doubler output has two spectral components:

� The carrier, a cosine with the same amplitude as the input carrier
and double frequency.

� The spur having the same distance 	 f from the carrier as the input
signal but with double the amplitude.

In other words a frequency duplication increases the spur level by a
factor of 2(+6.02 dB). This result can be generalized to any frequency
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multiplication factor.

OutSpurLevel[dBc] = InputSpurLevel[dBc] + 20 log10(N ) (5.31)

where N is the frequency multiplication factor.
Equation (5.31) was derived assuming a low spur level and is valid

until the predicted output spur level is below −10 dBc. This assertion
coincides with that of Sec. 2.6.1 about phase noise increasing (or de-
creasing) due to frequency multiplication (or division): In fact phase
noise can be considered as the sum of many low-level spurs whose fre-
quencies are distributed around the carrier.

5.5.2.3 Compensation of sinc filter. One of the results of Sec. 5.5.1 is
that the amplitude of the DDS output signal is decreasing in frequency
by the sinc factor T ′( f o) given by Eq. (5.28). Many techniques can be
used to obtain flat power across the frequency. The first is to connect a
voltage-controlled amplifier (or attenuator) at the lowpass filter output
and modify the gain (or the attenuation) frequency by frequency to
flatten the output power. This gain control can be done by

1. Open-loop mode. Control voltage is generated by a DAC driven by a
ROM correction table whose input is the output frequency.

2. Closed-loop mode. Output power is measured with a detector and
compared with a reference voltage; the difference between them gen-
erates the control voltage.

A simpler solution is to use an equalizer† like that shown in Fig. 5.26.
It is designed to operate with a 50-� source and load impedance and
for a clock frequency of 20 MHz. A different design for a different clock
frequency can be obtained by dividing all reactive elements by the ratio
between the desired clock frequency and 20 MHz (frequency scaling).
The circuit is symmetric and presents about 6 dB of insertion loss in
DC, gain can be restored with a 6-dB amplifier. The input is node 2; the
output is node 6.

The response of the equalizer together with the sinc factor and their
combination are plotted in Fig. 5.27. The resulting equalized output
power flatness is better than ±0.4 dB.

5.5.3 Enhancements of DDS architecture

The full digital structure of a DDS is very flexible. Important additional
capabilities can easily be added.

†See the SIMETRIX file DDS SINC Compensation.
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Different waveforms can be generated by a DDS simply by changing
the relation between the address and data of the lookup table (sawtooth,
triangular, square waves, and even noise). A phase modulation port can
be added by inserting an adder between the accumulator output (which
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represents the phase of the synthesized signal) and the PROM address
input as shown in Fig. 5.28.

A DDS can generate in-phase and quadrature (I and Q) signals, i.e.,
two coherent sinusoidal signals with the same frequency and 90◦ out
of phase. This can be done by duplicating the ROM, DAC, and output
filter. Two ROMs share the same address coming from accumulator
output. The data of the first ROM contain the cosine, while the data of
the second ROM contain the sine of the address. An arrangement for I
and Q generation is shown in Fig. 5.29.

However, the quadrature relation between output signals is con-
served only if two output filters are phase matched, and this require-
ment can be difficult to achieve because of the high order of the filter
and then the large group delay. Figure 5.30 shows phase matching be-
tween two filters like that of Fig. 5.21a, one with nominal components
and the other with capacitors and inductors statistically varying ±10
percent. The maximum possible phase mismatch is about ±20◦ close-to-
cutoff frequency of 8 MHz. Phase mismatch was calculated performing
200 iterations of the Monte Carlo analysis.†
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