HIGH - LEVEL SYNTHESIS Introduction to Chip and System Design

HIGH - LEVEL SYNTHESIS Introduction to Chip and System Design

by 👘

Daniel D. Gajski Nikil D. Dutt Allen C-H Wu University of California/Irvine

> **Steve Y-L Lin** Tsing Hua University

Springer Science+Business Media, LLC

Library of Congress Cataloging-in-Publication Data

High-level synthesis : introduction to chip and system design / by Daniel D. Gajski ... [et al.]. p. cm Includes bibliographical references and index. ISBN 978-1-4613-6617-1 ISBN 978-1-4615-3636-9 (eBook) DOI 10.1007/978-1-4615-3636-9 1. Integrated circuits -- Very large scale integration -- Design and construction -- Data processing. 2. Computer-aided design. 3. Silicon compilers. I. Gajski, Daniel D. TK7874.H5242 1992 621.39'5 -- dc20 91-41308 CIP

Copyright © 1992 by Springer Science+Business Media New York Originally published by Kluwer Academic Publishers in 1992 Softcover reprint of the hardcover 1st edition 1992

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photo-copying, recording, or otherwise, without the prior written permission of the publisher, Springer Science+ Business Media, LLC.

Printed on acid-free paper.

Contents

Pı	Preface			xi
A	ckno	wledge	ements	xv
1	Introduction			
	1.1	The N	leed for Design Automation on Higher Abstraction Levels .	1
	1.2	Levels	of Abstraction	3
	1.3	Defini	tion of Synthesis	8
	1.4	Langu	lages, Designs and Technologies	9
	1.5	Essent	tial Issues in Synthesis	13
		1.5.1	High-level Formulation	13
		1.5.2	Languages and Representations	15
		1.5.3	Design Modeling	16
		1.5.4	Design Quality-Measures	17
		1.5.5	High-Level Synthesis Algorithms	17
		1.5.6	Component Sets and Technology Mapping	18
		1.5.7	Databases and Environments	19
	1.6	Status	s and Future of High-Level Synthesis	21
	1.7	Summ	1ary	24
	1.8	Exerci	ises	24
2	Arc	hitect	ural Models in Synthesis	27

HIGH-LEVEL SYNTHESIS

	2.1	Design Styles and Target Architectures	27
	2.2	Combinatorial Logic	30
	2.3	Finite State Machines	34
		2.3.1 Autonomous FSMs	35
		2.3.2 State-Based and Transition-Based FSM	38
	2.4	Finite State Machine with a Datapath	41
	2.5	System Architecture	47
	2.6	Engineering Considerations	51
		2.6.1 Clocking	51
		2.6.2 Busing	54
		2.6.3 Pipelining	56
	2.7	Summary and Future Directions	57
	2.8	Exercises	59
2	-		
3	Qua	hty Measures	63
3	Qu a 3.1	Introduction	63 63
3	Qua 3.1 3.2	Introduction	63 63 64
3	Qua 3.1 3.2 3.3	Inty Measures Introduction	63 63 64 66
3	Qua 3.1 3.2 3.3	Inty Measures Introduction	 63 63 64 66 67
3	Qua 3.1 3.2 3.3	Inty Measures Introduction The Relationship between Structural and Physical Designs Area Measures 3.3.1 Datapath 3.3.2 Control Unit	 63 63 64 66 67 71
J	Qua 3.1 3.2 3.3 3.4	Introduction Introduction The Relationship between Structural and Physical Designs . Area Measures . 3.3.1 Datapath 3.3.2 Control Unit Performance Measures .	 63 63 64 66 67 71 77
J	Qua 3.1 3.2 3.3 3.4	Introduction	 63 63 64 66 67 71 77 78
J	Que 3.1 3.2 3.3 3.4	Introduction Introduction The Relationship between Structural and Physical Designs . Area Measures . 3.3.1 Datapath 3.3.2 Control Unit Performance Measures . 3.4.1 Electrical Models 3.4.2 The Delay of Combinational Circuits	 63 63 64 66 67 71 77 78 79
J	Qua 3.1 3.2 3.3 3.4	Introduction	 63 63 64 66 67 71 77 78 79 80
J	Qua 3.1 3.2 3.3 3.4	Introduction	63 63 64 66 67 71 77 78 79 80 83
3	Qua 3.1 3.2 3.3 3.4 3.4	Introduction	63 63 64 66 67 71 77 78 79 80 83 88
3	Que 3.1 3.2 3.3 3.4 3.4 3.5 3.6	Introduction	63 63 64 66 67 71 77 78 79 80 83 88 88
3	Qua 3.1 3.2 3.3 3.4 3.4 3.5 3.6 3.7	Introduction	63 63 64 66 67 71 77 78 79 80 83 88 89 91

4 Design Description Languages

vi

4.1	Introd	uction to HDLs
4.2	Langu	age Models vs. Architectural Styles
4.3	Progra	mming Language Features for HDLs
	4.3.1	Data Types
	4.3.2	Operators and Assignment Statements
	4.3.3	Control Constructs
	4.3.4	Execution Ordering 99
4.4	Hardw	vare-Specific HDL Features
	4.4.1	Interface Declarations
	4.4.2	Structural Declarations
	4.4.3	RT and Logic Operators
	4.4.4	Asynchrony
	4.4.5	Hierarchy
	4.4.6	Interprocess Communication
	4.4.7	Constraints
	4.4.8	User Allocation and Bindings
4.5	HDL I	Formats
	4.5.1	Textual HDLs
	4.5.2	Graphical HDLs
	4.5.3	Tabular HDLs
	4.5.4	Waveform-Based HDLs
4.6	A Disc	cussion of Some HDLs
	4.6.1	Instruction Set Processor Languages
	4.6.2	Programming-Language-Based HDLs
	4.6.3	HDLs for Digital Signal Processing
	4.6.4	Simulation-Based HDLs
4.7	Match	ing Languages to Target Architectures
4.8	Model	ing Guidelines for HDLs
	4.8.1	Combinatorial Designs
	4.8.2	Functional Designs

		4.8.3	Register-Transfer Designs		
		4.8.4	Behavioral Designs		
	4.9	Summ	ary and Future Directions		
	4.10	Exerci	ses		
5	Des	ign Re	presentation and Transformations 137		
	5.1	Introd	uction		
	5.2	Design	Flow in High-Level Synthesis: An Example 139		
	5.3	HDL Compilation			
	5.4	4 Representation of HDL Behavior			
		5.4.1	Control-Flow Representation		
		5.4.2	Representation of Sequencing and Timing		
		5.4.3	Disjoint Control and Data-Flow Representations 154		
		5.4.4	Hybrid Control and Data-Flow Representations 154		
		5.4.5	Parse-Tree Representations		
	5.5	Repres	sentation of HLS Outputs		
	5.6	Design Views and Complete Representation Schemes for High- Level Synthesis			
	5.7	Transf	\hat{o} rmations		
		5.7.1	Compiler Transformations		
		5.7.2	Flow-Graph Transformations		
		5.7.3	Hardware-Specific Transformations		
	5.8	Summ	ary and Future Directions		
	5.9	Exerci	ses		
6	Part	Partitioning 179			
	6.1	Introd	uction		
	6.2	Basic 1	Partitioning Methods		
		6.2.1	Problem Formulation		
		6.2.2	Random Selection		
		6.2.3	Cluster Growth		

		6.2.4	Hierarchical Clustering		
		6.2.5	The Min-Cut Partitioning		
		6.2.6	Simulated Annealing		
	6.3	Partiti	oning in High-Level Synthesis		
		6.3.1	Unit Selection for Scheduling and Binding		
		6.3.2	Chip Partitioning		
	6.4	Summ	ary and Future Directions		
	6.5	Exerci	ses		
7	\mathbf{Sch}	eduling	g 213		
	7.1	Proble	m Definition $\ldots \ldots 213$		
	7.2	Basic S	Scheduling Algorithms		
		7.2.1	Time-Constrained Scheduling		
		7.2.2	Resource-Constrained Scheduling		
	7.3	Schedu	lling with Relaxed Assumptions		
		7.3.1	Functional Units with Varying Delays		
		7.3.2	Multi-functional Units		
		7.3.3	Realistic Design Descriptions		
	7.4	Other	Scheduling Formulations		
		7.4.1	Simulated Annealing		
		7.4.2	Path-Based Scheduling		
		7.4.3	DFG Restructuring		
	7.5	Summ	ary and Future Directions		
	7.6	Exerci	ses		
8	Allo	Allocation 259			
	8.1	Proble	m Definition		
	8.2	Datap	ath Architectures		
	8.3	Alloca	tion Tasks		
		8.3.1	Unit Selection		

		832	Functional-Unit Binding	269	
		833	Storage Binding	270	
		834	Interconnection Binding	270	
		835	Interdependence and Ordering	270	
	84	Greedy	Constructive Approaches	272	
	8.5	Decom	nosition Approaches	277	
	0.0	8 5 1	Clique Partitioning	. 211	
		0.0.1	Left Edge Algerithm	· 211	
		0.0.2	Weighted Directite Metching Algorithm	. 200 996	
	0.0	8.9.3 T	D C	. 200	
	8.6	Iterati	ve Refinement Approach	. 290	
	8.7	Summ	ary and Future Directions	. 292	
	8.8	Exercis	3es	. 294	
9	Desi	ign Me	ethodology for High-Level Synthesis	297	
	9.1	Basic (Concepts in Design Methodology	. 297	
	9.2	Generi	c Synthesis System	. 305	
	9.3	System	n Synthesis	. 308	
	9.4	Chip S	ynthesis	. 311	
	9.5	Logic a	and Sequential Synthesis	. 314	
	9.6	Physic	al-Design Methodology	. 319	
	9.7	System	n Database	. 320	
	9.8	Compo	onent Database	. 324	
	9.9	Concer	ptualization environment	. 326	
	9.10	Summ	arv and Further Research	. 332	
	9.11	Exerci	ses	. 334	
	• • • •				
Bi	Bibliography 337				
Tn	dev			252	
	uca			000	

Preface

Rationale

Computer-aided design (CAD) research, and the CAD industry in particular, has been very successful and has enjoyed exceptional growth, paralleled only by the advances in IC fabrication. Since problems at lower levels of design became humanly intractable and time consuming earlier than on higher abstraction levels, CAD researchers and the industry first turned to problems such as circuit simulation, placement, routing and floorplanning. CAD tools for logic simulation and synthesis came later. As design complexities grew and time-to-market requirements shrank drastically, industry and academia started focusing on even higher levels of design than logic and layout. A higher level of abstraction reduces the number of objects that a designer needs to consider by an order of magnitude, which in turn allows the design and manufacture of larger systems in shorter periods of time. High-level synthesis is thus the natural next step in the design methodology of VLSI systems.

Another reason for the emphasis on high-level design methodologies is that high-level abstractions are closer to a designer's way of thinking. It is difficult to imagine a designer specifying, documenting and communicating a chip design in terms of a circuit schematic with 100,000 gates, or a logic description with 100,000 Boolean expressions. With increasing design complexity, it becomes impossible for a designer to comprehend the functionality of a chip or a system specified completely with circuit or logic schematics. A system described in terms of higher level components (e.g., memories, registers, ALUs and buses) and specified using higher level operations on data values over time exposes the design's functionality and allows a designer to consider alternative implementations with ease.

Research on high-level synthesis started over twenty years ago, but did not come into focus since lower level tools were not available to seriously support the insertion of high-level synthesis into the mainstream design methodology. Since then, substantial progress has been made in formulating and understanding the basic concepts in high-level synthesis. Although many open problems remain, the two most important problems are the lack of a universally accepted theoretical framework and a CAD environment supporting both automatic and manual high-level synthesis. In spite of these deficiencies, high-level synthesis has matured to the point that a book is necessary to summarize the basic concepts and results developed so far and to define the remaining open problems. Such a reference text will allow the high-level synthesis community to grow and prosper in the future.

Audience

This book in intended for three different groups in the CAD community.

First, it is intended for CAD managers and system designers who may be interested in the methodology of chip and system design and in the capabilities and limitations of high-level synthesis tools.

Second, this book can be used by CAD tool developers who may want to implement or modify algorithms for high-level synthesis. Complementary books by Camposano and Wolf [CaWo91] and Walker and Camposano [WaCa91] discuss specific research approaches to high-level synthesis.

Finally, since this book surveys basic concepts in high-level design and algorithms for automatic synthesis, it is also intended for graduate students and seniors specializing in design automation and system design.

Textbook Organization

The book is organized into nine chapters that can be divided into five parts. Chapters 1 and 2 present the basic concepts and the system design process. Chapters 2 and 3 deal with design models and quality metrics for those models. Chapters 4 and 5 deal with design description languages and design representation. Chapters 6, 7 and 8 provide a survey of algorithms for partitioning, scheduling and allocation, while Chapter 9 covers the issues of design methodology and frameworks for high-level synthesis.

Given an understanding of the concepts defined in Chapters 1 and 2, each chapter is self-contained and can be read independently. We used the same writing style and organization in each chapter of the book. A typical chapter starts with an introductory example, defines the basic concepts and describes the main problems to be solved. It follows with a description of several well known algorithms or solutions to the posed problems and explains the advantages and disadvantages of each approach. Each chapter ends with a short survey of other work in the field and some open problems.

The book is designed for use in two different courses. One course would be on system design and methodology, omitting the synthesis algorithms in Chapters 6, 7 and 8; a second course would emphasize high-level synthesis techniques and omit the material on languages and frameworks in Chapters 4 and 9.

We have included several exercises at the end of each chapter. These exercises are divided into three categories: homework problems, project problems and thesis problems. Homework problems test the understanding of the basic material in the chapter. Project problems, indicated by an asterisk, require some literature research and a good understanding of the topic; they may require several weeks of student work. Thesis problems, indicated by a double asterisk are open problems that may result in an M.S. or even a Ph.D. thesis if researched thoroughly.

We hope that this book fills the need for a unifying body of material on high-level synthesis; we welcome your comments and corrections.

> Daniel Gajski, Nikil Dutt, Allen Wu, Steve Lin Irvine, CA September 1991

Acknowledgements

We would like to thank all of our colleagues and students with whom we discussed the basic issues in high-level synthesis over the last ten years. Without them, many issues would never be clarified and many ideas would go unchallenged.

We would also like to thank those individuals who helped us formulate the issues and focus on the material to be presented in this book. In particular, we thank Bob Grafton of NSF for encouraging research in this area, and Bob Larsen, who over the years helped us in developing quality measures and objective methods for comparative analysis.

We extend our gratitude to the following members of the U.C. Irvine CADLAB without whom this book would not have been possible: Sanjiv Narayan and Loganath Ramachandran for rewording and editing parts of and reformulating algorithms in Chapters 7 and 8; Elke Rundensteiner and Frank Vahid for help in writing three sections and editing parts of Chapters 5, 6 and 9; Roger Ang and Jim Kipps for editing and proofreading of Chapters 2 and 4; Viraphol Chaiyakul and Tedd Hadley for typing and proofreading of and figure drawing in Chapters 1, 5 and 9; and Indraneel Ghosh, Jie Gong and Pradip Jha for help with figure drawing. In addition, all of these people carefully read drafts of chapters, suggested organizational and conceptual changes and helped with corrections to make the book more understandable. We thank Tedd Hadley for his assistance in formatting and overall production of the camera-ready manuscript.

This work was partially supported by the National Science Foundation (grants MIP-8922851 and MIP-9009239) and by the Semiconductor Research Corporation (grant 90-DJ-146). The authors are grateful for their support.