網路分析儀

CONTENTS

- 傳輸線簡介
- Smith Chart
- S-Parameters
- 網路分析儀系統架構
- 儀器校準技術
- ■校準步驟
- ■實驗項目

Low frequencies

- Wavelength >> wire length
- Current (I) travels down wires easily for efficient power transmission
- Voltage and current not dependent on position

High frequencies

- Wavelength ≈ or << wire (transmission line) length
- Need transmission-line structures for efficient power transmission
- Matching to characteristic impedance (Z0)
 is very important for low reflection
- Voltage dependent on position along line

- R: series resistance per unit length
- L: series inductance per unit length
- G: shunt conductance per unit length
- C: shunt capacitance per unit length

$$\mathbf{Z}_{0} = \frac{\mathbf{V}_{0}^{+}}{\mathbf{I}_{0}^{+}} \qquad \qquad Z_{0} = \sqrt{\frac{R + jwL}{G + jwC}} \qquad \qquad \gamma = \sqrt{(R + jwL)(G + jwC)}$$

R=G=0(無損耗傳輸線)

$$Z_0 = \sqrt{\frac{L}{C}} \qquad \qquad \gamma = jw\sqrt{LC} = j\beta$$

當 $Z_L \neq Z_0$ 時,不可能只有 traveling wave

$$\Rightarrow \frac{\mathbf{V}(\mathbf{z}) = \mathbf{V}_{0}^{+} \mathbf{e}^{-\mathbf{j}\beta\mathbf{z}} + \mathbf{V}_{0}^{-} \mathbf{e}^{\mathbf{j}\beta\mathbf{z}}}{\mathbf{I}(\mathbf{z}) = \frac{\mathbf{V}_{0}^{+}}{\mathbf{Z}_{0}} \mathbf{e}^{-\mathbf{j}\beta\mathbf{z}} - \frac{\mathbf{V}_{0}^{-}}{\mathbf{Z}_{0}} \mathbf{e}^{\mathbf{j}\beta\mathbf{z}}}$$

當 z = 0 時 (此z代表距離)

$$\mathbf{Z}_{L} = \frac{\mathbf{V}(0)}{\mathbf{I}(0)} = \frac{\mathbf{V}_{0}^{+} + \mathbf{V}_{0}^{-}}{\mathbf{V}_{0}^{+} - \mathbf{V}_{0}^{-}} \mathbf{Z}_{0}$$

$$\mathbf{V}_{0}^{-} = \frac{\mathbf{Z}_{L} - \mathbf{Z}_{0}}{\mathbf{Z}_{L} + \mathbf{Z}_{0}} \mathbf{V}_{0}^{+} \qquad ; \qquad \Gamma = \frac{V_{0}^{-}}{V_{0}^{+}} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}}$$

Return loss (RL) in dB ; $\mathbf{RL} = -20 \log |\Gamma|$

Special cases :

1. short circuit

$$Z_{\rm L}=0$$

$$Z_{\rm L} = 0$$
 ; $\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} = -1$

2. open circuit

$$Z_L = \infty$$

$$Z_L = \infty \qquad ; \qquad \Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} = 1$$

3. Load

$$Z_L = Z_0 \text{ (in general)} = 50\Omega$$
 ; $\Gamma = 0$

$$\Gamma = 0$$

It is essentially a polar plot of the voltage reflection coefficient , Γ .

反射係數圖

$$\Gamma(\mathbf{z}) = \Gamma(0) \mathbf{e}^{2j\beta \mathbf{z}}$$

(往負載方向z增加)

(往source方向z減少)

- ❖ 觀察點朝信號源方向移動時 ,Γ(z) 沿順時針方向旋轉。
- ❖ 觀察點朝負載方向移動時, Γ(z) 沿逆時針方向旋轉。
- ❖ Γ(z) 旋轉 360°, 相當於z變化了半個波長。

$$\Gamma(0) = \frac{\mathbf{Z}_{L} - \mathbf{Z}_{0}}{\mathbf{Z}_{L} + \mathbf{Z}_{0}}$$

- ⇒不同之負載阻抗
- \Rightarrow $\Gamma(0)$ 有不同之半徑

$$0 \le |\Gamma(\mathbf{z})| \le 1$$

◆ 在無損的傳輸線上移動, 相當於在同半徑 的圓上移動。

電阻圖與電抗圖(resistance circle & reactance circle)

根據 $Z_{in}(z)$ 與 $\Gamma(z)$ 的關係式可以繪出電阻圖與電抗圖。

Normalized impedance

$$z = \frac{Z}{Z_0} = \frac{R}{Z_0} + j\frac{X}{Z_0} = r + jx$$
; $\Gamma = \frac{Z - Z_0}{Z + Z_0} = \frac{z - 1}{z + 1}$

$$\mathbf{z} = \frac{1+\Gamma}{1-\Gamma} \qquad ; \qquad \Gamma = \Gamma_{r} + \mathbf{j}\Gamma_{i}$$

$$\Rightarrow \mathbf{r} + \mathbf{j}\mathbf{x} = \frac{1 + \Gamma_{r} + \mathbf{j}\Gamma_{i}}{1 - \Gamma_{r} - \mathbf{j}\Gamma_{i}}$$

$$\mathbf{r} = \frac{\mathbf{1} - \mathbf{1}_{r} - \mathbf{1}_{i}}{(1 - \mathbf{\Gamma}_{r})^{2} + \mathbf{\Gamma}_{i}^{2}}$$

$$\mathbf{r}$$

$$\mathbf{r}$$

$$\Rightarrow (\Gamma_{\mathbf{r}} - \frac{\mathbf{r}}{1+\mathbf{r}})^2 + \Gamma_{\mathbf{i}}^2 = (\frac{1}{1+\mathbf{r}})^2$$

所有的電阻圖都在(1,0)點相切

阻抗圓圖(impedance smith chart)

結合反射係數圖,電阻圖及電抗圖:阻抗圓圖

- ❖ 反射係數圖是以(0,0)為圓心的同心圓,半徑大小由圓與實軸的交點來決定 $\Rightarrow |\Gamma| = \frac{\mathbf{r}-1}{\mathbf{r}+1}$
- ❖ 駐波比(SWR)與交點處的r值相同。
- ❖ 實軸的右端點(1,0)為開路點。
- 實軸的左端點(-1,0)為短路點。
- ❖ 座標原點為匹配點。
- ❖ 實軸上所有的點(兩端點除外): 純電阻
- ⋄ Γ(z)=1 的圓為純電抗。

Smith Chart

Smith Chart maps rectilinear impedance plane onto polar plane

Transmission Line Terminated with Zo

For reflection, a transmission line terminated in Zo behaves like an infinitely long transmission line

Transmission Line Terminated with Short, Open

For reflection, a transmission line terminated in a short or open reflects all power back to source

Transmission Line Terminated with 25 Ω

Standing wave pattern does not go to zero as with short or open

Measuring S-Parameters

S-Parameters

- S₁₁ = forward reflection coefficient *(input match)*S₂₂ = reverse reflection coefficient *(output match)*
- S₂₁ = forward transmission coefficient (gain or loss)
- S₁₂ = reverse transmission coefficient (isolation)

Remember, S-parameters are inherently linear quantities -- however, we often express them in a log-magnitude format

Network Analyzer Block Diagram

Vector Network Analyzer

Generalized Network Analyzer Block Diagram

Signal Separation

Splitter

- →usually resistive
- →non-directional
- →broadband

Coupler

- →directional
- →low loss
- →good isolation, directivity
- →hard to get low freq performanc

Measurement Error Modeling

Systematic errors

- due to imperfections in the analyzer and test setup
- are assumed to be time invariant (predictable)
- can be characterized (during calibration process) and mathematically removed during measurements

Random errors

- vary with time in random fashion (unpredictable)
- cannot be removed by calibration
- main contributors:
 - →instrument noise (source phase noise, IF noise floor, etc.)
 - **→switch** repeatability
 - →connector repeatability

Drift errors

- are due to instrument or test-system performance changing after a calibration has been done
- are primarily caused by temperature variation
- can be removed by further calibration(s)

Systematic Measurement Errors

Six forward and six reverse error terms yields 12 error terms for two-port devices

Types of Error Correction

Two main types of error correction:

- response (normalization)
 - →simple to perform
 - →only corrects for tracking errors
 - →stores reference trace in memory, then does data divided by memory

thru

vector

- →requires more standards
- →requires an analyzer that can measure phase
- →accounts for all major sources of systematic error

What is Vector-Error Correction?

- Process of characterizing systematic error terms
 - →measure known standards
 - →remove effects from subsequent measurements.
- 1-port calibration (reflection measurements)
 - →only 3 systematic error terms measured
 - →directivity, source match, and reflection tracking
- Full 2-port calibration

(reflection and transmission measurements)

- →12 systematic error terms measured
- →usually requires 12 measurements on four known standards (SOLT)
- Some standards can be measured **multiple** times (e.g., THRU is usually measured four times)
- Standards defined in cal kit definition file
 - →network analyzer contains standard cal kit definitions
 - **→CAL KIT DEFINITION MUST MATCH ACTUAL CAL KIT** USED!

Crosstalk (Isolation)

DUT

- Crosstalk definition: signal leakage between ports
- •Can be a problem with:
 - →High-isolation devices (e.g., switch in open position)
 - → High-dynamic range devices (some filter stopbands)
- Isolation calibration
 - →Adds noise to error model (measuring noise floor of system)
 - →Only perform if really needed (use averaging)
 - →if crosstalk is **independent** of DUT match, use two terminations
 - →if dependent on DUT match, use DUT with termination on

Errors and Calibration Standards

UNCORRECTED RESPONSE thru Convenient **DUT** Generally not accurate No errors removed Easy to perform Use when highest accuracy is not required Removes frequency response error Other errors: Random (Noise, Repeatability)

Drift

1-PORT SHORT OPEN LOAD DUT

- •For reflection measurements
- Need good termination for high accuracy with two-port devices
- •Removes these errors:
 Directivity
 Source match
 Reflection tracking

FULL 2-PORT

- Highest accuracy
- Removes these errors:
 Directivity
 Source, load match
 Reflection tracking
 Transmission tracking
 Crosstalk

Thru-Reflect-Line (TRL) Calibration

We know about Short-Open-Load-Thru (SOLT) calibration... What is TRL?

- A two-port calibration technique
- Good for noncoaxial environments (waveguide, fixtures, wafer probing)
- Uses the same 12-term error model as the more common SOLT cal
- Uses practical calibration standards that are easily fabricated and characterized
- Two variations: TRL (requires 4 samplers)
 and TRL* (only three samplers needed)
- Other variations: Line-Reflect-Match (LRM),
 Thru-Reflect-Match (TRM), plus many others

網路分析儀校準步驟

- **設定工作頻率:** Start → 輸入起始頻率 → Stop → 輸入截止頻率,網路分析儀工作頻率範圍300KHz~3GHz。
- 設定取樣點: Menu → Number of point → 有201、401、801三種 點數可選。
- 校準過程: (1) Cal → Cal Kit → 3.5mm → Return 。
 - (2) Calibrate Menu
 → Full 2-Port
 - (3) REFECTION

REFECTION中有(S11)和(S22)兩個部分,(S11) → 將 PORT1分別接上校準元件OPEN、SHORT、LORD(每接 上一端須按下右邊的鍵,出現橫線時即可換端),(S22) → 將校準元件接到PORT2,步驟與(S11)相同 → REFECTION DONE

網路分析儀校準步驟

(4) TRANSMISSION

將PORT1和PORT2接上→分別按下FWD.TRANS THRU、
FWD.MATCH THRU、REV.TRANS THRU、REV.MATCH
THRU → TRANS DONE

(5) ISOLATION → OMIT ISOLATION →

ISOLATION DONE

(6) DONE 2-PORT CAL

元件量測:將元件接上 → MEAS → 選擇S11、S21、S12、S22

選擇顯示型式: FORMAT — 如:Log MAG、Smith Chart、Phase

實驗項目

濾波器

低通濾波器(Low-pass filter)

利用網路分析儀量出S參數及Group delay

帶通濾波器(Band-pass filter)

利用網路分析儀量出S參數及Group delay 找出20dB頻寬及3dB頻寬 , 可求得Shape factor Shape factor= 20dB頻寬/ 3dB頻寬

實驗項目

全集總枝幹耦和器(L-C Branch line coupler)

量測耦合器之S參數(量測時其餘兩埠請接上50Ω負載) 觀察之間的相位

威爾金森功率分配器(Wilkinson power splitter)

量測功率分配器之S參數(量測時第三埠請接上50Ω負載) 觀察相位及Group Delay