

The Silicon Spiral Inductor

This example is intended to show you how to create, simulate, and analyze a 2.5 turn spiral inductor using the Ansoft HFSS Design Environment.

Nominal Design:

Spiral: 2.5T, W=15um, S=1.5um, Rad=60um

M6, 2um, σ= 2.8e7 S/m

Underpass: M5, 0.5um, σ= 2.8e7 S/m

Stackup:

Passivation: 0.7um

εr = 7.9

Oxide: 9.8um

εr = 4.0

Substrate: 300um

εr = 11.9, σ= 10 S/m

Getting Started

Launching Ansoft HFSS

 To access Ansoft HFSS, click the Microsoft Start button, select Programs, and select the Ansoft > HFSS 10 program group. Click HFSS 10.

Setting Tool Options

- To set the tool options:
 - Note: In order to follow the steps outlined in this example, verify that the following tool options are set :
 - 1. Select the menu item *Tools > Options > HFSS Options*
 - 2. HFSS Options Window:
 - 1. Click the General tab
 - ▲ Use Wizards for data entry when creating new boundaries: Checked
 - ▲ Duplicate boundaries with geometry: ☑ Checked
 - 2. Click the OK button
 - 3. Select the menu item *Tools > Options > 3D Modeler Options*.
 - 4. 3D Modeler Options Window:
 - 1. Click the **Operation** tab
 - ▲ Automatically cover closed polylines: ☑ Checked
 - 2. Click the Drawing tab
 - ▲ Edit property of new primitives: ☑ Checked
 - 3. Click the OK button

Opening a New Project

- To open a new project:
 - In an Ansoft HFSS window, click the D On the Standard toolbar, or select the menu item *File > New*.
 - From the Project menu, select Insert HFSS Design.

Set Solution Type

- To set the solution type:
 - Select the menu item HFSS > Solution Type
 - Solution Type Window:
 - Choose Driven Terminal
 - Click the OK button

Solution Type 🛛 🔀
🔘 Driven Modal
Driven Terminal
○ Eigenmode
OK Cancel

10.1

Set Model Units

- Creating the 3D Model
- Set Model Units
 - To set the units:
 - 1. Select the menu item *3D Modeler > Units*
 - 2. Set Model Units:
 - 1. Select Units: um
 - 2. Click the OK button

Set Default Material

- To set the default material:
 - 1. Using the 3D Modeler Materials toolbar, choose Select
 - 2. Select Definition Window:
 - 1. Click the Add Material button
 - 2. View/Edit Material Window:
 - 1. For the Material Name type: My_Sub
 - 2. For the Value of Relative Permittivity type: 11.9
 - 3. For the Value of Bulk Conductivity type: 10
 - 4. Click the OK button
 - 3. Click the OK button

Gelect units: um	-
Rescale to new units	
ОК	Cancel
oose Select	

 	vacuum	•	Model	Ŧ
	vacuum			
	Select	Ľ	<i>h</i>	

perties of the Material				
				View/Edit Material for
Name	Туре	Value	Units	Active Design
Relative Permittivity	Simple	11.9		te ricato boolgi
Relative Permeability	Simple	1		C This Product
Bulk Conductivity	Simple	10	Siemens/m	
Dielectric Loss Tangent	Simple	0		C All Products
Magnetic Loss Tangent	Simple	0		
Magnetic Saturation	Simple	0	Tesla	
Lande G Factor	Simple	2		Validate Material
Delta H	Simple	0	A_per_meter	

Create Substrate

To create the substrate:

- 1. Select the menu item *Draw > Box*
- 2. Using the coordinate entry fields, enter the box position
 - X: -270.0, Y: -270.0, Z: 0.0, Press the Enter key
- 3. Using the coordinate entry fields, enter the opposite corner of the box:
 - M dX: 540.0, dY: 540.0, dZ: 300.0, Press the Enter key

M To set the name:

- 1. Select the Attribute tab from the Properties window.
- 2. For the Value of Name type: Sub
- 3. Click the **OK** button
- M To fit the view:
 - 1. Select the menu item *View > Fit All > Active View*.

Set Default Material

To set the default material:

- 1. Using the 3D Modeler Materials toolbar, choose Select
- 2. Select Definition Window:
 - 1. Click the Add Material button
 - 2. View/Edit Material Window:
 - 1. For the Material Name type: My_Oxide
 - 2. For the Value of Relative Permittivity type: 4.0
 - 3. Click the OK button
 - 3. Click the OK button

Create Oxide

To create substrate:

- 1. Select the menu item *Draw > Box*
- 2. Using the coordinate entry fields, enter the box position
 - M X: -270.0, Y: -270.0, Z: 300.0, Press the Enter key
- 3. Using the coordinate entry fields, enter the opposite corner of the box:
 - M dX: **540.0**, dY: **540.0**, dZ: **9.8**, Press the **Enter** key

M To set the name:

- 1. Select the Attribute tab from the Properties window.
- 2. For the Value of Name type: Oxide
- 3. Click the **OK** button
- To fit the view:
 - 1. Select the menu item View > Fit All > Active View

Set Default Material

- To set the default material:
 - 1. Using the 3D Modeler Materials toolbar, choose Select
 - 2. Select Definition Window:
 - 1. Click the Add Material button
 - 2. View/Edit Material Window:
 - 1. For the Material Name type: My_Pass
 - 2. For the Value of Relative Permittivity type: 7.9
 - 3. Click the OK button
 - 3. Click the OK button

Create Passivation

To create substrate:

- 1. Select the menu item *Draw > Box*
- 2. Using the coordinate entry fields, enter the box position
 - X: -270.0, Y: -270.0, Z: 309.8, Press the Enter key
- 3. Using the coordinate entry fields, enter the opposite corner of the box:
 - M dX: **540.0**, dY: **540.0**, dZ: **0.7**, Press the **Enter** key

M To set the name:

- 1. Select the Attribute tab from the Properties window.
- 2. For the Value of Name type: Pass
- 3. Click the **OK** button
- To fit the view:
 - 1. Select the menu item *View > Fit All > Active View*

Set Default Material

- To set the default material:
 - 1. Using the 3D Modeler Materials toolbar, choose vacuum

Create Air

- M To create air:
 - 1. Select the menu item *Draw > Box*
 - 2. Using the coordinate entry fields, enter the box position
 - X: -270.0, Y: -270.0, Z: 0.0, Press the Enter key
 - 3. Using the coordinate entry fields, enter the opposite corner of the box:
 - M dX: 540.0, dY: 540.0, dZ: 600.0, Press the Enter key

M To set the name:

- 1. Select the **Attribute** tab from the **Properties** window.
- 2. For the Value of Name type: Air
- 3. Click the **OK** button
- M To fit the view:
 - 1. Select the menu item *View > Fit All > Active View*

Create Radiation Boundary

- To select the object Air:
 - Select the menu item Edit > Select > By Name
 - Select Object Dialog,
 - Select the objects named: Air
 - Click the OK button
- M To create a radiation boundary
 - Select the menu item HFSS > Boundaries > Assign > Radiation
 - Radiation Boundary Window
 - Name: Rad1
 - Click the OK button

Create Ground

- To create ground:
 - Select the menu item Draw > Rectangle
 - M Using the coordinate entry fields, enter the box position
 - X: -270.0, Y: -270.0, Z: 0.0, Press the Enter key
 - Using the coordinate entry fields, enter the opposite corner of the base rectangle:
 - M dX: **540.0**, dY: **540.0**, dZ: **0.0**, Press the Enter key
- M To set the name:
 - Select the **Attribute** tab from the **Properties** window.
 - For the Value of Name type: Ground
 - ▲ Click the **OK** button
- To fit the view:
 - Select the menu item View > Fit All > Active View.

Assign a Perfect E boundary to the Ground

• To select the ground:

- 1. Select the menu item *Edit > Select > By Name*
- 2. Select Object Dialog,
 - 1. Select the objects named: Ground
 - 2. Click the OK button
- M To assign the Perfect E boundary
 - 1. Select the menu item *HFSS > Boundaries > Assign > Perfect E*
 - 2. Perfect E Boundary window
 - 1. Name: PerfE_Ground
 - 2. Click the OK button

M Hide Dielectrics

- To hide the dielectrics:
 - 1. Select the menu item *Edit > Select All Visible*
 - 2. Select the menu item View > Hide Selection > All Views

Set Default Material

- To set the default material:
 - 1. Using the 3D Modeler Materials toolbar, choose Select
 - 2. Select Definition Window:
 - 1. Click the Add Material button
 - 2. View/Edit Material Window:
 - 1. For the Material Name type: My_Met
 - 2. For the Value of Bulk Conductivity type: 2.8e7
 - 3. Click the **OK** button
 - 3. Click the OK button

Create Offset Coordinate System

- To create an offset Coordinate System:
 - Select the menu item 3D Modeler > Coordinate System > Create > Relative CS > Offset
 - 2. Using the coordinate entry fields, enter the origin
 - **X: 0.0**, Y: **0.0**, Z: **304.8**, Press the Enter key

10.1

Create Spiral Path

To create the path:

- 1. Select the menu item *Draw > Line*
- 2. Using the coordinate entry fields, enter the vertex point:
 - X: -60.0, Y: 7.5, Z: 0.0, Press the Enter key
- 3. Using the coordinate entry fields, enter the vertex point:
 - X: -60.0, Y: -60.0, Z: 0.0, Press the Enter key
- 4. Using the coordinate entry fields, enter the vertex point:
 - X: **76.5**, Y: **-60.0**, Z: **0.0**, Press the **Enter** key
- 5. Using the coordinate entry fields, enter the vertex point:
 - X: 76.5, Y: 76.5, Z: 0.0, Press the Enter key

6. Using the coordinate entry fields, enter the vertex point:

X: -76.5, Y: 76.5, Z: 0.0, Press the Enter key

7. Using the coordinate entry fields, enter the vertex point:

X: -76.5, Y: -76.5, Z: 0.0, Press the Enter key

8. Using the coordinate entry fields, enter the vertex point:

X: 93.0, Y: -76.5, Z: 0.0, Press the Enter key

9. Using the coordinate entry fields, enter the vertex point:

X: 93.0, Y: 93.0, Z: 0.0, Press the Enter key

10. Using the coordinate entry fields, enter the vertex point:

▲ X: -93.0, Y: 93.0, Z: 0.0, Press the Enter key

11. Using the coordinate entry fields, enter the vertex point:

- X: -93.0, Y: -93.0, Z: 0.0, Press the Enter key
- 12. Using the coordinate entry fields, enter the vertex point:

X: **109.5**, Y: **-93.0**, Z: **0.0**, Press the **Enter** key

13. Using the coordinate entry fields, enter the vertex point:

- X: **109.5**, Y: **7.5**, Z: **0.0**, Press the **Enter** key
- 14. Using the coordinate entry fields, enter the vertex point:
 - A X: **131.0**, Y: **7.5**, Z: **0.0**, Press the Enter key
- 15. Using the mouse, right-click and select Done
- 16. Click the OK button when the Properties dialog appears

Create the Spiral

To set the grid plane:

- 1. Select the menu item *3D Modeler > Grid Plane > XZ*
- M To create conductor profile:
 - 1. Select the menu item *Draw > Rectangle*
 - 2. Using the coordinate entry fields, enter the box position
 - X: -60.0, Y: 7.5, Z: 0.0, Press the Enter key
 - 3. Using the coordinate entry fields, enter the opposite corner of the base rectangle:
 - M dX: -15.0, dY: 0.0, dZ: 2.0, Press the Enter key

To set the name:

- 1. Select the **Attribute** tab from the **Properties** window.
- 2. For the Value of Name type: Spiral
- 3. Click the OK button

To Sweep the profile:

- 1. Select the menu item *Edit > Select > By Name*
- 2. Select Object Dialog,
 - 1. Select the objects named: Polyline1, Spiral
 - 2. Click the OK button
- Note: You can also select the object from the Model Tree
- 1. Select the menu item *Draw > Sweep > Along Path*
- 2. Click the **OK** button when the Sweep along path dialog appears
- M To fit the view:
 - 1. Select the menu item *View > Fit All > Active View*.

Set Grid Plane

- To set the grid plane:
 - 1. Select the menu item *3D Modeler > Grid Plane > XY*

Create Underpass

To create underpass:

- 1. Select the menu item *Draw > Box*
- 2. Using the coordinate entry fields, enter the box position
 - ▲ X: -60.0, Y: 7.5, Z: -0.8, Press the Enter key
- 3. Using the coordinate entry fields, enter the opposite corner of the box:
 - M dX: -75.0, dY: -15.0, dZ: -0.5, Press the Enter key
- To set the name:
 - 1. Select the Attribute tab from the Properties window.
 - 2. For the Value of Name type: Underpass
 - 3. Click the OK button
- M To fit the view:
 - 1. Select the menu item *View > Fit All > Active View*.

Create Via1

M To create via:

- 1. Select the menu item *Draw > Box*
- 2. Using the coordinate entry fields, enter the box position
 - X: -60.0, Y: 7.5, Z: 0.0, Press the Enter key
- 3. Using the coordinate entry fields, enter the opposite corner of the box:
 - M dX: -15.0, dY: -15.0, dZ: -0.8, Press the Enter key

M To set the name:

- 1. Select the Attribute tab from the Properties window.
- 2. For the Value of Name type: Via1
- 3. Click the **OK** button
- M To fit the view:
 - 1. Select the menu item *View > Fit All > Active View*.

Create Via2

- M To create via:
 - 1. Select the menu item *Draw > Box*
 - 2. Using the coordinate entry fields, enter the box position
 - X: -120.0, Y: 7.5, Z: 0.0, Press the Enter key
 - 3. Using the coordinate entry fields, enter the opposite corner of the box:

M dX: -15.0, dY: -15.0, dZ: -0.8, Press the Enter key

M To set the name:

- 1. Select the **Attribute** tab from the **Properties** window.
- 2. For the Value of Name type: Via2
- 3. Click the **OK** button
- To fit the view:
 - 1. Select the menu item View > Fit All > Active View.

Create Feed

M To create feed:

- 1. Select the menu item *Draw > Box*
- 2. Using the coordinate entry fields, enter the box position
 - X: **-120.0**, Y: **7.5**, Z: **0.0**, Press the **Enter** key
- 3. Using the coordinate entry fields, enter the opposite corner of the box:
 - ▲ dX: **-22.0**, dY: **-15.0**, dZ: **2.0**, Press the Enter key

M To set the name:

- 1. Select the Attribute tab from the Properties window.
- 2. For the Value of Name type: Feed
- 3. Click the OK button
- To fit the view:
 - 1. Select the menu item *View > Fit All > Active View*.

Solve Inside Conductors

- M To solve inside:
 - 1. Select the menu item Edit > Select All Visible
 - 2. Select the menu item *Edit > Properties*
 - 3. Properties Dialog Attribute Tab
 - 1. Solve Inside: ☑ Checked
 - 2. Click the OK button
- Click the OK button for all warning messages (Solving inside a solid with high conductivity may require a large mesh)

Seed Mesh Conductors set for Solve Inside

M To solve inside:

- 1. Select the menu item *Edit > Select All Visible*
- Select the menu item HFSS > Mesh Operations > Assign > Inside Selection > Length Based
- 3. Element Length Based Refinement Dialog
 - 1. Restrict Length of Elements:
 D Unchecked
 - 2. Restrict Number of Elements: 🗹 Checked
 - 3. Maximum Number of Elements: 5000
 - 4. Click the OK button

10.1

Set Default Material

To set the default material:

- 1. Using the 3D Modeler Materials toolbar, choose Select
- 2. Select Definition Window:
 - 1. Type pec in the Search by Name field
 - 2. Click the OK button

Create Ground Ring

M To create outer ring:

- 1. Select the menu item *Draw > Box*
- 2. Using the coordinate entry fields, enter the box position
 - X: -225.0, Y: -225.0, Z: 0.0, Press the Enter key
- 3. Using the coordinate entry fields, enter the opposite corner of the box:
 - M dX: **450.0**, dY: **450.0**, dZ: **2.0**, Press the Enter key

To set the name:

- 1. Select the **Attribute** tab from the **Properties** window.
- 2. For the Value of Name type: Ring
- 3. Click the **OK** button
- To fit the view:
 - 1. Select the menu item *View > Fit All > Active View*

Create Inner Ring

M To create inner ring:

- 1. Select the menu item *Draw > Box*
- 2. Using the coordinate entry fields, enter the box position
 - ▲ X: -210.0, Y: -210.0, Z: 0.0, Press the Enter key
- 3. Using the coordinate entry fields, enter the opposite corner of the box:
 - M dX: **420.0**, dY: **420.0**, dZ: **2.0**, Press the **Enter** key

M To set the name:

- 1. Select the **Attribute** tab from the **Properties** window.
- 2. For the Value of Name type: Inner
- 3. Click the **OK** button
- To fit the view:
 - 1. Select the menu item *View > Fit All > Active View*

Complete the Ring

- To select the objects Ring and Inner:
 - 1. Select the menu item *Edit > Select > By Name*
 - 2. Select Object Dialog,
 - 1. Select the objects named: Ring, Inner
 - 2. Click the OK button

M To complete the ring:

- 1. Select the menu item *3D Modeler > Boolean > Subtract*
- 2. Subtract Window
 - M Blank Parts: Ring
 - M Tool Parts: Inner
 - Click the OK button

To create extension:

- 1. Select the menu item *Draw > Box*
- 2. Using the coordinate entry fields, enter the box position
 - X: -157.0, Y: 7.5, Z: 0.0, Press the Enter key
- 3. Using the coordinate entry fields, enter the opposite corner of the box:
 - M dX: -53.0, dY: -15.0, dZ: 2.0, Press the Enter key

To set the name:

- 1. Select the Attribute tab from the Properties window.
- 2. For the Value of Name type: Ring_Ext1
- 3. Click the **OK** button
- To fit the view:
 - 1. Select the menu item *View > Fit All > Active View*

Create Extension 2

To create extension:

- 1. Select the menu item *Draw > Box*
- 2. Using the coordinate entry fields, enter the box position
 - X: **146.0**, Y: **7.5**, Z: **0.0**, Press the **Enter** key
- 3. Using the coordinate entry fields, enter the opposite corner of the box:
 - M dX: 64.0, dY: -15.0, dZ: 2.0, Press the Enter key

To set the name:

- 1. Select the Attribute tab from the Properties window.
- 2. For the Value of Name type: Ring_Ext2
- 3. Click the **OK** button
- To fit the view:
 - 1. Select the menu item *View > Fit All > Active View*

Group the Conductors

- To group the conductors:
 - 1. Select the menu item *Edit > Select > By Name*
 - 2. Select Object Dialog,
 - 1. Select the objects named: Ring, Ring_Ext1, Ring_Ext2
 - 2. Click the OK button
 - 3. Select the menu item, *3D Modeler > Boolean > Unite*
- M To fit the view:
 - 1. Select the menu item *View > Fit All > Active View*.

Create Source 1

To create source:

- 1. Select the menu item *Draw > Rectangle*
- 2. Using the coordinate entry fields, enter the box position
 - X: -142.0, Y: 7.5, Z: 1.0, Press the Enter key
- 3. Using the coordinate entry fields, enter the opposite corner of the base rectangle:
 - M dX: -15.0, dY: -15.0, dZ: 0.0, Press the Enter key
- M To set the name:
 - 1. Select the **Attribute** tab from the **Properties** window.
 - 2. For the Value of Name type: Source1
 - 3. Click the **OK** button
- To fit the view:
 - 1. Select the menu item *View > Fit All > Active View*.

Assign Excitation

- M To select the object Source:
 - 1. Select the menu item *Edit > Select > By Name*
 - 2. Select Object Dialog,
 - 1. Select the objects named: Source1
 - 2. Click the OK button
 - Note: You can also select the object from the Model Tree

To assign lumped port excitation

- 1. Select the menu item *HFSS > Excitations > Assign > Lumped Port*
- 2. Lumped Port : General
 - 1. Name: **p1**,
 - 2. Resistance: 50
 - 3. Reactance: 0
 - 4. Click the **Next** button
- 3. Lumped Port : Terminals
 - 1. Number of Terminals: 1,
 - 2. For T1, click the Undefined column and select New Line
 - 3. Using the coordinate entry fields, enter the vector position
 - X: -157.0, Y: 0.0, Z: 1.0, Press the Enter key
 - 4. Using the coordinate entry fields, enter the vertex
 - M dX: **15.0**, dY: **0.0**, dZ: **0.0**, Press the Enter key
 - 5. Click the Finish button

Create Source 2

To create source:

- 1. Select the menu item *Draw > Rectangle*
- 2. Using the coordinate entry fields, enter the box position
 - X: 131.0, Y: 7.5, Z: 1.0, Press the Enter key
- 3. Using the coordinate entry fields, enter the opposite corner of the base rectangle:
 - M dX: **15.0**, dY: **-15.0**, dZ: **0.0**, Press the **Enter** key
- M To set the name:
 - 1. Select the **Attribute** tab from the **Properties** window.
 - 2. For the Value of Name type: Source2
 - 3. Click the **OK** button
- To fit the view:
 - 1. Select the menu item *View > Fit All > Active View*.

Assign Excitation

- M To select the object Source:
 - 1. Select the menu item *Edit > Select > By Name*
 - 2. Select Object Dialog,
 - 1. Select the objects named: Source2
 - 2. Click the OK button
 - Note: You can also select the object from the Model Tree

M To assign lumped port excitation

- 1. Select the menu item *HFSS > Excitations > Assign > Lumped Port*
- 2. Lumped Port : General
 - 1. Name: **p2**,
 - 2. Resistance: 50
 - 3. Reactance: 0
 - 4. Click the **Next** button
- 3. Lumped Port : Terminals
 - 1. Number of Terminals: 1,
 - 2. For T1, click the Undefined column and select New Line
 - 3. Using the coordinate entry fields, enter the vector position
 - X: **146.0**, Y: **0.0**, Z: **1.0**, Press the Enter key
 - 4. Using the coordinate entry fields, enter the vertex
 - M dX: -15.0, dY: 0.0, dZ: 0.0, Press the Enter key
 - 5. Click the Finish button

Show All

M To show all object

1. Select the menu item *View > Show All > All Views*

Boundary Display

To verify the boundary setup:

- 1. Select the menu item *HFSS > Boundary Display (Solver View)*
- 2. From the Solver View of Boundaries, toggle the Visibility check box for the boundaries you wish to display.
 - Note: The background (Perfect Conductor) is displayed as the outer boundary.
 - Note: The Perfect Conductors are displayed as the **smetal** boundary.
 - Note: Select the menu item, View > Visibility to hide all of the geometry objects. This makes it easier to see the boundary
- 3. Click the Close button when you are finished

Name	Туре	Solver Visibility	Visibility	Color
Rad1	User Defined	Visible to solver.		
PerfE1	User Defined	Visible to solver.		
p1	User Defined	Visible to solver.		
р2	User Defined	Visible to solver.		
outer	Default	Overridden by other boundaries. Invi		
smetal	Default	Visible to solver.		

Analysis Setup

Creating an Analysis Setup

M To create an analysis setup:

- 1. Select the menu item *HFSS > Analysis Setup > Add Solution Setup*
- 2. Solution Setup Window:
 - 1. Click the **General** tab:
 - Solution Frequency: 12.0GHz
 - Maximum Number of Passes: 20
 - Maximum Delta S: 0.02
 - 2. Click the **Options** tab:
 - ▲ Do Lambda Refinement: ☑ Checked
 - M Target: 0.05
 - ▲ User Low-Order Solution Basis: 🗹 Checked
 - 3. Click the OK button

Adding a Frequency Sweep

- M To add a frequency sweep:
 - 1. Select the menu item *HFSS > Analysis Setup > Add Sweep*
 - 1. Select Solution Setup: Setup1
 - 2. Click the OK button
 - 2. Edit Sweep Window:
 - 1. Sweep Type: Interpolating
 - 2. Click the Setup Interpolation Basis button
 - Max Solutions: 20
 - Error Tolerance: 0.5%
 - Click the OK button
 - 3. Frequency Setup Type: Linear Step
 - Start: 0.1GHz
 - M Stop: 20.0GHz
 - Step: 0.1GHz
 - 4. Click the OK button

Save Project

- To save the project:
 - 1. In an Ansoft HFSS window, select the menu item *File > Save As*.
 - 2. From the Save As window, type the Filename: hfss_spiral_inductor
 - 3. Click the Save button
- Analyze

Model Validation

- To validate the model:
 - 1. Select the menu item *HFSS > Validation Check*
 - 2. Click the **Close** button
 - Note: To view any errors or warning messages, use the Message Manager.

Analyze

- To start the solution process:
 - 1. Select the menu item *HFSS > Analyze All*

Setup1: Solving Ports on Local Machine -	
Adapting p1, Pass 9	
Abort	

Solution Data

To view the Solution Data:

- 1. Select the menu item HFSS > Results > Solution Data
 - M To view the Profile:
 - 1. Click the **Profile** Tab.
 - M To view the Convergence:
 - 1. Click the **Convergence** Tab
 - Note: The default view is for convergence is Table. Select the Plot radio button to view a graphical representations of the convergence data.
 - M To view the Matrix Data:
 - 1. Click the Matrix Data Tab
 - Note: To view a real-time update of the Matrix Data, set the Simulation to Setup1, Last Adaptive
- 2. Click the Close button

Create Reports

Create S-parameter vs. Frequency

M To Create a report:

- 1. Select the menu item *HFSS > Results > Create Report*
- 2. Create Report Window:
 - 1. Report Type: Terminal S Parameters
 - 2. Display Type: Rectangular
 - 3. Click the **OK** button
- 3. Traces Window:
 - 1. Solution: Setup1: Sweep1
 - 2. Click the Y tab
 - 1. Domain: Sweep
 - 2. Category: Terminal S-Parameters
 - 3. Quantity: St(p1,p1), St(p2,p1)
 - 4. Function: **dB**
 - 5. Click the Add Trace button
 - 3. Click the Done button

Create Reports (Continued)

Custom Equations - Output Variables

- 1. Select the menu item *HFSS > Results > Create Report*
- 2. Create Report Window:
 - 1. Report Type: Terminal S Parameters
 - 2. Display Type: Rectangular
 - 3. Click the **OK** button
- 3. Traces Window:
 - 1. Click the Output Variables button
 - 2. Output Variables dialog:
 - 1. Name: Q11
 - 2. Expression:
 - A Category: Terminal Y Parameters
 - Quantity: Yt(p1,p1)
 - Function: im
 - Click the Insert Quantity into Expression button
 - 🔬 Type: /
 - Quantity: Yt(p1,p1)
 - Function: re
 - Click the Insert Quantity into Expression button
 - 3. Click the Add button
 - 4. Repeat for Q22, by replacing Yt(p1,p1) with Yt(p2,p2)
 - 5. Click the **Done** button
 - 3. Solution: Setup1: Sweep1
 - 4. Domain: Sweep
 - 5. Click the Y tab
 - 1. Category: **Output Variables**
 - 2. Quantity: **Q11, Q22**
 - 3. Function: abs
 - 4. Click the Add Trace button
 - 6. Click the **Done** button

$$Q_{nn} = \frac{\mathrm{Im}(Y_{nn})}{\mathrm{Re}(Y_{nn})}$$

Create Reports (Continued)

Custom Equations - Output Variables

- 1. Select the menu item *HFSS > Results > Create Report*
- 2. Create Report Window:
 - 1. Report Type: Terminal S Parameters
 - 2. Display Type: Rectangular
 - 3. Click the OK button
- 3. Traces Window:
 - 1. Click the Output Variables button
 - 2. Output Variables dialog:
 - 1. Name: L11
 - 2. Expression:
 - Type: -1/(2*pi*freq*
 - Category: Terminal Y Parameters
 - Quantity: Yt(p1,p1)
 - Function: im
 - Click the Insert Quantity into Expression button
 - 🔺 Type:)
 - 3. Click the Add button
 - 4. Click the Done button
 - 3. Solution: Setup1: Sweep1
 - 4. Domain: Sweep
 - 5. Click the Y tab
 - 1. Category: Output Variables
 - 2. Quantity: Y11
 - 3. Function: none
 - 4. Click the Add Trace button 6.00E-09

6. Click the **Done** button

10.1-26

$$L_{nn} = \frac{-1}{2\pi \cdot f \cdot im(Y_{nn})}$$

