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Preface

Electrodynamics is an important course in both physics and electrical engineering curricula.
The graduate students majoring in applied electromagnetics are often confronted with a large
number of new concepts and mathematical techniques found in a number of courses, such as
Advanced Electromagnetic Theory, Field Theory of Guided Waves, Advanced Antenna Theory,
Electromagnetic Wave Propagation, Network Theory and Microwave Circuits, Computational
Electromagnetics, Relativistic Electronics, and Quantum Electrodynamics. Frequently, stu-
dents have to consult a large variety of books and journals in order to understand and digest
the materials in these courses, and this turns out to be a time-consuming process. For this
reason, it would be helpful for the students to have a book that gathers the essential parts of
these courses together and treats them according to the similarity of mathematical techniques.

Engineers, applied mathematicians and physicists who have been doing research for many
years often find it necessary to renew their knowledge and want a book that contains the
fundamental results of these courses with a fresh and advanced approach. With this goal in
mind, inevitably this is beyond the conventional treatment in these courses. For example, the
completeness of eigenfunctions is a key result in mathematical physics but is often mentioned
without rigorous proof in most books due to the involvement of generalized function theory. As
a result, many engineers lack confidence in applying the theory of eigenfunction expansions to
solve practical problems. In order to fully understand the theory of eigenfunction expansions, it
is imperative to go beyond the classical solutions of partial differential equations and introduce
the concept of generalized solutions.

The contents of this book have been selected according to the above considerations, and
many topics are approached in contemporary ways. The book intends to provide a whole
picture of the fundamental theory of electrodynamics in most active areas of engineering
applications. It is self-contained and is adapted to the needs of graduate students, engineers,
applied physicists and mathematicians, and is aimed at those readers who wish to acquire more
advanced analytical techniques in studying applied electrodynamics. It is hoped that the book
will be a useful tool for readers saving them time and effort consulting a wide range of books
and technical journals. After reading this book, the readers should be able to pursue further
studies in applied electrodynamics without too much difficulty.

The book consists of ten chapters and four appendices. Chapter 1 begins with experimental
laws and reviews Maxwell equations, constitutive relations, as well as the important prop-
erties derived from them. In addition, the basic electromagnetic theorems are summarized.
Since most practical electromagnetic signals can be approximated by a temporal or a spatial
wavepacket, the theory of wavepackets and various propagation velocities of wavepackets are
also examined.
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xvi Preface

In applications, the solution of a partial differential equation is usually understood to be a
classical solution that satisfies the smooth condition required by the highest derivative in the
equation. This requirement may be too stringent in some situations. A rectangular pulse is
not smooth in the classical sense yet it is widely used in digital communication systems. The
first derivative of the Green’s function of a wave equation is not continuous, but is broadly
accepted by physicists and engineers. Chapter 2 studies the solutions of Maxwell equations.
Three main analytical methods for solving partial differential equations are discussed: (1) the
separation of variables; (2) the Green’s function; and (3) the variational method. In order to be
free of the constraint of classical solutions, the theory of generalized solutions of differential
equation is introduced. The Lagrangian and Hamiltonian formulations of Maxwell equations
are the foundations of quantization of electromagnetic fields, and they are studied through the
use of the generalized calculus of variations. The integral representations of the solutions of
Maxwell equations and potential theory are also included.

Eigenvalue problems frequently appear in physics, and have their roots in the method of
separation of variables. An eigenmode of a system is a possible state when the system is free
of excitation, and the corresponding eigenvalue often represents an important quantity of the
system, such as the total energy and the natural oscillation frequency. The theory of eigenvalue
problems is of fundamental importance in physics. One of the important tasks in studying
the eigenvalue problems is to prove the completeness of the eigenmodes, in terms of which
an arbitrary state of the system can be expressed as a linear combination of the eigenmodes.
To rigorously investigate the completeness of the eigenmodes, one has to use the concept
of generalized solutions of partial differential equations. Chapter 3 discusses the eigenvalue
problems from a unified perspective. The theory of symmetric operators is introduced and is
then used to study the interior eigenvalue problems in electromagnetic theory, which involves
metal waveguides and cavity resonators. This chapter also treats the mode theory of spherical
waveguides and the method of singular function expansion for scattering problems, which are
useful in solving exterior boundary value problems.

An antenna is a device for radiating or receiving radio waves. It is an overpass connecting
a feeding line in a wireless system to free space. The antenna is characterized by a number of
parameters such as gain, bandwidth, and radiation pattern. The free space may be viewed as
a spherical waveguide, and the spherical wave modes excited by the antenna depend on the
antenna size. The bigger the antenna size, the more the propagating modes are excited. For
a small antenna, most spherical modes turn out to be evanescent, making the stored energy
around the antenna very large and the gain of the antenna very low. For this reason, most of
the antenna parameters are subject to certain limitations. From time to time, there arises a
question of how to achieve better antenna performance than previously obtained. Chapter 4
attempts to answer this question and deals with the fundamentals of radiation theory. The most
important antenna parameters are reviewed and summarized. A complete theory of spherical
vector wave functions is introduced, and is then used to study the upper bounds of the product
of gain and bandwidth for an arbitrary antenna. In this chapter, the Foster reactance theorem
for an ideal antenna without Ohmic loss, and the relationship between antenna bandwidth and
antenna quality factor are investigated. In addition, the methods for evaluating antenna quality
factor are also developed.

Electromagnetic boundary value problems can be characterized either by a differential
equation or an integral equation. The integral equation is most appropriate for radiation and
scattering problems, where the radiation condition at infinity is automatically incorporated
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Preface xvii

in the formulation. The integral equation formulation has certain unique features that a dif-
ferential equation formulation does not have. For example, the smooth requirement for the
solution of integral equation is weaker than the corresponding differential equation. Another
feature is that the discretization error of the integral equation is limited on the boundary of
the solution region, which leads to more accurate numerical results. Chapter 5 summarizes
integral equations for various electromagnetic field problems encountered in microwave and
antenna engineering, including waveguides, metal cavities, radiation, and scattering problems
by conducting and dielectric objects. The spurious solutions of integral equations are ex-
amined. Numerical methods generally applicable to both differential equations and integral
equations are introduced.

Field theory and circuit theory are complementary to each other in electromagnetic en-
gineering, and the former is the theoretical foundation of the latter while the latter is much
easier to master. The circuit formulation has removed unnecessary details in the field problem
and has preserved most useful overall information, such as the terminal voltages and currents.
Chapter 6 studies the network representation of electromagnetic field systems and shows how
the network parameters of multi-port microwave systems can be calculated by the field theory
through the use of reciprocity theorem, which provides a deterministic approach to wireless
channel modeling. Also discussed in this chapter is the optimization of power transfer between
antennas, a foundation for wireless power transfer.

The wave propagation in an inhomogeneous medium is a very complicated process, and it is
characterized by a partial differential equation with variable coefficients. The inhomogeneous
waveguides are widely used in microwave engineering. If the waveguides are bounded by
a perfect conductor, only a number of discrete modes called guided modes can exist in the
waveguides. If the waveguides are open, an additional continuum of radiating modes will
appear. In order to obtain a complete picture of the modes in the inhomogeneous waveguides,
one has to master a sophisticated tool called spectral analysis in operator theory. Chapter 7
investigates the wave propagation problems in inhomogeneous media and contains an intro-
duction to spectral analysis. It covers the propagation of plane waves in inhomogeneous media,
inhomogeneous metal waveguides, optical fibers and inhomogeneous metal cavity resonators.

Time-domain analysis has become a vital research area in recent years due to the rapid
progress made in ultra-wideband technology. The traditional time-harmonic field theory is
based on an assumption that a monotonic electromagnetic source turns on at t = −∞ so that
the initial conditions or causality are ignored. This assumption does not cause any problems
if the system has dissipation or radiation loss. When the system is lossless, the assumption
may lead to physically unacceptable solutions. In this case, one must resort to time-domain
analysis. Chapter 8 discusses the time-domain theory of electromagnetic fields, including the
transient fields in waveguides and cavity resonators, spherical wave expansion in time domain,
and time-domain theory for radiation and scattering.

Modern physics has its origins deeply rooted in electrodynamics. A cornerstone of modern
physics is relativity, which is composed of both special relativity and general relativity. The
special theory of relativity studies the physical phenomena perceived by different observers
traveling at a constant speed relative to each other, and it is a theory about the structure
of space–time. The general theory studies the phenomena perceived by different observers
traveling at an arbitrary relative speed and is a theory of gravitation. The relativity, especially
the special relativity, is usually considered as an integral part of electrodynamics. Relativity
has many practical applications. For example, in the design of the global positioning system
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(GPS), the relativistic effects predicted by the special and general theories of relativity must
be taken into account to enhance the positioning precision. Chapter 9 deals with both special
relativity and general relativity. The tensor algebra and tensor analysis on manifolds are used
throughout the chapter.

Another cornerstone of modern physics is quantum mechanics. Quantum electrodynamics
is a quantum field theory of electromagnetics, which describes the interaction between light
and matter or between two charged particles through the exchange of photons. It is remarkable
for its extremely accurate predictions of some physical quantities. Quantum electrodynamics
is especially needed in today’s research and education activities in order to understand the
interactions of new electromagnetic materials with the fields. Chapter 10 provides a short
introduction to quantum electrodynamics and a review of the fundamental concepts of quantum
mechanics. The interactions of fields with charged particles are investigated by use of the
perturbation method, in terms of which the dielectric constant for atom media is derived.
Furthermore, the Klein–Gordon equation and the Dirac equation in relativistic mechanics are
briefly discussed.

The book features a wide coverage of the fundamental topics in applied electrodynamics,
including microwave theory, antenna theory, wave propagation, relativistic and quantum elec-
trodynamics, as well as the advanced mathematical techniques that often appear in the study of
theoretical electrodynamics. For the convenience of readers, four appendices are also included
to present the fundamentals of set theory, vector analysis, special functions, and the SI unit
system. The prerequisite for reading the book is advanced calculus. The SI units are used
throughout the book. A e jωt time variation is assumed for time-harmonic fields. A special
symbol is used to indicate the end of an example or a remark.

During the writing and preparation of this book, the author had the pleasure of discussing
the book with many colleagues and cannot list them all here. In particular, the author would
like to thank Prof. Robert E. Collin of Case Western Reserve University for his comments and
input on many topics discussed in the book, and Prof. Thomas T. Y. Wong of Illinois Institute
of Technology for his useful suggestions on the selection of the contents of the book.

Finally, the author is grateful to his family. Without their constant support, the author could
not have made this book a reality.

Wen Geyi
Waterloo, Ontario, Canada
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1
Maxwell Equations

Ten thousand years from now, there can be little doubt that the most significant event of the 19th
century will be judged as Maxwell’s discovery of the laws of electrodynamics.

—Richard Feynman (American physicist, 1918–1988)

To master the theory of electromagnetics, we must first understand its history, and find out
how the notions of electric charge and field arose and how electromagnetics is related to other
branches of physical science. Electricity and magnetism were considered to be two separate
branches in the physical sciences until Oersted, Ampère and Faraday established a connection
between the two subjects. In 1820, Hans Christian Oersted (1777–1851), a Danish professor
of physics at the University of Copenhagen, found that a wire carrying an electric current
would change the direction of a nearby compass needle and thus disclosed that electricity
can generate a magnetic field. Later the French physicist André Marie Ampère (1775–1836)
extended Oersted’s work to two parallel current-carrying wires and found that the interaction
between the two wires obeys an inverse square law. These experimental results were then
formulated by Ampère into a mathematical expression, which is now called Ampère’s law. In
1831, the English scientist Michael Faraday (1791–1867) began a series of experiments and
discovered that magnetism can also produce electricity, that is, electromagnetic induction. He
developed the concept of a magnetic field and was the first to use lines of force to represent a
magnetic field. Faraday’s experimental results were then extended and reformulated by James
Clerk Maxwell (1831–1879), a Scottish mathematician and physicist. Between 1856 and 1873,
Maxwell published a series of important papers, such as ‘On Faraday’s line of force’ (1856),
‘On physical lines of force’ (1861), and ‘On a dynamical theory of the electromagnetic field’
(1865). In 1873, Maxwell published ‘A Treatise on Electricity and Magnetism’ on a unified
theory of electricity and magnetism and a new formulation of electromagnetic equations since
known as Maxwell equations. This is one of the great achievements of nineteenth-century
physics. Maxwell predicted the existence of electromagnetic waves traveling at the speed of
light and he also proposed that light is an electromagnetic phenomenon. In 1888, the German
physicist Heinrich Rudolph Hertz (1857–1894) proved that an electric signal can travel through
the air and confirmed the existence of electromagnetic waves, as Maxwell had predicted.

Foundations of Applied Electrodynamics Geyi Wen
C© 2010 John Wiley & Sons, Ltd

1
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2 Maxwell Equations

Maxwell’s theory is the foundation for many future developments in physics, such as special
relativity and general relativity. Today the words ‘electromagnetism’, ‘electromagnetics’ and
‘electrodynamics’ are synonyms and all represent the merging of electricity and magnetism.
Electromagnetic theory has greatly developed to reach its present state through the work of
many scientists, engineers and mathematicians. This is due to the close interplay of physical
concepts, mathematical analysis, experimental investigations and engineering applications.
Electromagnetic field theory is now an important branch of physics, and has expanded into
many other fields of science and technology.

1.1 Experimental Laws

It is known that nature has four fundamental forces: (1) the strong force, which holds a nucleus
together against the enormous forces of repulsion of the protons, and does not obey the inverse
square law and has a very short range; (2) the weak force, which changes one flavor of quark
into another and regulates radioactivity; (3) gravity, the weakest of the four fundamental forces,
which exists between any two masses and obeys the inverse square law and is always attractive;
and (4) electromagnetic force, which is the force between two charges. Most of the forces in our
daily lives, such as tension forces, friction and pressure forces are of electromagnetic origin.

1.1.1 Coulomb’s Law

Charge is a basic property of matter. Experiments indicate that certain objects exert repulsive
or attractive forces on each other that are not proportional to the mass, therefore are not
gravitational. The source of these forces is defined as the charge of the objects. There are two
kinds of charges, called positive and negative charge respectively. Charges are quantitized and
come in integer multiples of an elementary charge, which is defined as the magnitude of
the charge on the electron or proton. An arrangement of one or more charges in space forms
a charge distribution. The volume charge density, the surface charge density and the line
charge density describe the amount of charge per unit volume, per unit area and per unit
length respectively. A net motion of electric charge constitutes an electric current. An electric
current may consist of only one sign of charge in motion or it may contain both positive and
negative charge. In the latter case, the current is defined as the net charge motion, the algebraic
sum of the currents associated with both kinds of charges.

In the late 1700s, the French physicist Charles-Augustin de Coulomb (1736–1806) discov-
ered that the force between two charges acts along the line joining them, with a magnitude
proportional to the product of the charges and inversely proportional to the square of the
distance between them. Mathematically the force F that the charge q1 exerts on q2 in vacuum
is given by Coulomb’s law

F = q1q2

4πε0 R2
uR (1.1)

where R = ∣
∣r − r′∣∣ is the distance between the two charges with r′ and r being the position

vectors of q1 and q2 respectively; uR = (r − r′)/
∣
∣r − r′∣∣ is the unit vector pointing from q1

to q2, and ε0 = 8.85 × 10−12 is the permittivity of the medium in vacuum. In order that the
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distance between the two charges can be clearly defined, strictly speaking, Coulomb’s law
applies only to the point charges, the charged objects of zero size. Dividing (1.1) by q2 gives
a force exerting on a unit charge, which is defined as the electric field intensity E produced
by the charge q1. Thus the electric field produced by an arbitrary charge q is

E(r) = q

4πε0 R2
uR = −∇φ(r) (1.2)

where φ(r) = q/4πε0 R is called the Coulomb potential. Here R = ∣
∣r − r′∣∣, r′ is the position

vector of the point charge q and r is the observation point. For a continuous charge distribution
in a finite volume V with charge density ρ(r), the electric field produced by the charge
distribution is obtained by superposition

E(r) =
∫

V

ρ(r′)
4πε0 R2

uRdV (r′) = −∇φ(r) (1.3)

where

φ(r) =
∫

V

ρ(r′)
4πε0 R

dV (r′)

is the potential. Taking the divergence of (1.3) and making use of ∇2(1/R) = −4πδ(R) leads
to

∇ · E(r) = ρ(r)

ε0
. (1.4)

This is called Gauss’s law, named after the German scientist Johann Carl Friedrich Gauss
(1777–1855). Taking the rotation of (1.3) gives

∇ × E(r) = 0. (1.5)

The above results are valid in a vacuum. Consider a dielectric placed in an external electric
field. If the dielectric is ideal, there are no free charges inside the dielectric but it does contain
bound charges which are caused by slight displacements of the positive and negative charges
of the dielectric’s atoms or molecules induced by the external electric field. These slight
displacements are very small compared to atomic dimensions and form small electric dipoles.
The electric dipole moment of an induced dipole is defined by p = qlul , where l is the
separation of the two charges and ul is the unit vector directed from the negative charge to the
positive charge (Figure 1.1).

Example 1.1: Consider the dipole shown in Figure 1.1. The distances from the charges to a
field point P are denoted by R+ and R− respectively, and the distance from the center of the
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P

R

R−

R+

l

-q

q

Figure 1.1 Induced dipole

dipole to the field point P is denoted by R. The potential at P is

φ = q

4πε0

(
1

R+
− 1

R−

)

.

If l � R, we have

1

R+
= 1

√

(l/2)2 + R2 − l Rul · uR

≈ 1

R

(

1 + 1

2

l

R
ul · uR

)

,

1

R−
= 1

√

(l/2)2 + R2 + l Rul · uR

≈ 1

R

(

1 − 1

2

l

R
ul · uR

)

,

where uR is the unit vector directed from the center of the dipole to the field point P . Thus the
potential can be written as

φ ≈ 1

4πε0 R2
p · uR . (1.6)

The dielectric is said to be polarized when the induced dipoles occur inside the dielectric. To
describe the macroscopic effect of the induced dipoles, we define the polarization vector P
as

P = lim
�V →0

1

�V

∑

i

pi (1.7)

where �V is a small volume and
∑

i
pi denotes the vector sum of all dipole moments induced

inside �V . The polarization vector is the volume density of the induced dipole moments. The
dipole moment of an infinitesimal volume dV is given by PdV , which produces the potential
(see (1.6))

dφ ≈ dV

4πε0 R2
P · uR .
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The total potential due to a polarized dielectric in a region V bounded by S may be expressed
as

φ(r) ≈
∫

V

P · uR

4πε0 R2
dV (r′) = 1

4πε0

∫

V

P · ∇′ 1

R
dV (r′)

= 1

4πε0

∫

V

∇′ ·
(

P
R

)

dV (r′) + 1

4πε0

∫

V

−∇′ · P
R

dV (r′) (1.8)

= 1

4πε0

∫

S

P · un(r′)
R

dV (r′) + 1

4πε0

∫

V

−∇′ · P
R

dV (r′)

where the divergence theorem has been used. In the above, un is the outward unit normal to
the surface. The first term of (1.8) can be considered as the potential produced by a surface
charge density ρps = P · un , and the second term as the potential produced by a volume charge
density ρp = −∇ · P.Both ρps and ρp are the bound charge densities. The total electric field
inside the dielectric is the sum of the fields produced by the free charges and bound charges.
Gauss’s law (1.4) must be modified to incorporate the effect of dielectric as follows

∇ · ε0E = ρ + ρp.

This can be written as

∇ · D = ρ (1.9)

where D = ε0E + P is defined as the electric induction intensity. When the dielectric is
linear and isotropic, the polarization vector is proportional to the electric field intensity so that
P = ε0χeE, where χe is a dimensionless number, called electric susceptibility. In this case
we have

D = ε0(1 + χe)E = εrε0E = εE

where εr = 1 + χe = ε/ε0 is a dimensionless number, called relative permittivity. Note that
(1.5) holds in the dielectric.

1.1.2 Ampère’s Law

There is no evidence that magnetic charges or magnetic monopoles exist. The source of the
magnetic field is the moving charge or current. Ampère’s law asserts that the force that a
current element J2dV2 exerts on a current element J1dV1 in vacuum is

dF1 = µ0

4π

J1dV1 × (J2dV2 × uR)

R2
(1.10)

where R is the distance between the two current elements, uR is the unit vector pointing from
current element J2dV2 to current element J1dV1, and µ0 = 4π × 10−7 is the permeability in
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vacuum. Equation (1.10) can be written as

dF1 = J1dV1 × dB

where dB is defined as the magnetic induction intensity produced by the current element
J2dV2

dB = µ0

4π

J2dV2 × uR

R2
.

By superposition, the magnetic induction intensity generated by an arbitrary current distribu-
tion J is

B(r) = µ0

4π

∫

V

J(r′) × uR

R2
dV (r′). (1.11)

This is called the Biot-Savart law, named after the French physicists Jean-Baptiste Biot
(1774–1862) and Félix Savart (1791–1841). Equation (1.11) may be written as

B = ∇ × A

where A is known as the vector potential defined by

A(r) = µ0

4π

∫

V

J(r′)
R

dV (r′).

Thus

∇ · B = 0. (1.12)

This is called Gauss’s law for magnetism, which says that the magnetic flux through any closed
surface S is zero

∫

S

B · und S = 0.

Taking the rotation of magnetic induction intensity and using ∇2(1/R) = −4πδ(R) and
∇ · J = 0 yields

∇ × B = µ0J(r). (1.13)

This is the differential form of Ampère’s law.

Example 1.2: Consider a small circular loop of radius a that carries current I . The center of
the loop is chosen as the origin of the spherical coordinate system as shown in Figure 1.2. The
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nu
R

R ′

P

lu

Figure 1.2 Small circular loop

vector potential is given by

A(r) = µ0 I

4π

∫

l

1

R′ uldl(r′)

where ul is the unit vector along current flow and l stands for the loop. Due to the symmetry,
the vector potential is independent of the angle ϕ of the field point P . Making use of the
following identity

∫

l

φul dl =
∫

S

un × ∇φd S

where S is the area bounded by the loop l, the vector potential can be written as

A(r) = µ0 I

4π

∫

S

un × ∇′ 1

R′ d S(r′)

= −µ0 I

4π

∫

S

un × ∇ 1

R′ d S(r′) = µ0 I

4π
∇ ×

∫

S

un
1

R′ d S(r′).

If the loop is very small, we can let R′ ≈ R. Thus

A(r) = µ0 I

4π
∇ ×

∫

S

un
1

R′ d S(r′)

(1.14)
≈ µ0

4π
∇ × m

R
= µ0

4π R2
m × uR

where uR is the unit vector from the center of the loop to the field point P and

m = I
∫

S

un(r′)d S(r′) = I unπa2

is defined as the magnetic dipole moment of the loop.
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The above results are valid in a vacuum. All materials consist of atoms. An orbiting electron
around the nucleus of an atom is equivalent to a tiny current loop or a magnetic dipole. In the
absence of external magnetic field, these tiny magnetic dipoles have random orientations for
most materials so that the atoms show no net magnetic moment. The application of an external
magnetic field causes all these tiny current loops to be aligned with the applied magnetic field,
and the material is said to be magnetized and the magnetization current occurs. To describe
the macroscopic effect of magnetization, we define a magnetization vector M as

M = lim
�V →0

1

�V

∑

i

mi (1.15)

where �V is a small volume and
∑

i
mi denotes the vector sum of all magnetic dipole moments

induced inside �V . The magnetization vector is the volume density of the induced magnetic
dipole moments. The magnetic dipole moments of an infinitesimal volume dV is given by
MdV , which produces a vector potential (see (1.14))

dA = µ0

4π R2
M × uRdV (r′) = µ0

4π
M × ∇′ 1

R
dV (r′).

The total vector potential due to a magnetized material in a region V bounded by S is then
given by

A = µ0

4π

∫

V

M × ∇′ 1

R
dV (r′)

= µ0

4π

∫

V

∇′ × M
R

dV (r′) − µ0

4π

∫

V

∇′ × M
R

dV (r′) (1.16)

= µ0

4π

∫

V

∇′ × M
R

dV (r′) + µ0

4π

∫

S

M × un(r′)
R

d S(r′)

where un is the unit outward normal of S. The first term of (1.16) can be considered as the
vector potential produced by a volume current density JM = ∇ × M, and the second term as
the vector potential produced by a surface current density JMs = M × un . Both JM and JMs

are magnetization current densities. The total magnetic field inside the magnetized material
is the sum of the fields produced by the conduction current and the magnetized current and
Ampère’s law (1.13) must be modified as

∇ × B = µ0(J + JM ).

This can be rewritten as

∇ × H = J (1.17)
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where H = B/µ0 − M is called magnetic field intensity. When the material is linear and
isotropic, the magnetization vector is proportional to the magnetic field intensity so that
M = χmH, where χm is a dimensionless number, called magnetic susceptibility. In this case
we have

B = µ0(1 + χm)H = µrµ0H = µE

where µr = 1 + χm = µ/µ0 is a dimensionless number, called relative permeability. Notice
that (1.12) holds in a magnetized material.

1.1.3 Faraday’s Law

Faraday’s law asserts that the induced electromotive force in a closed circuit is proportional to
the rate of change of magnetic flux through any surface bounded by that circuit. The direction
of the induced current is such as to oppose the change giving rise to it. Mathematically, this
can be expressed as

∫

	

E · ut d	 = − ∂

∂t

∫

S

B · und S

where 	 is a closed contour and S is the surface spanning the contour as shown in
Figure 1.3; un and ut are the unit normal to S and unit tangent vector along 	 respectively,
and they satisfy the right-hand rule.

Γ

nu

tu

Figure 1.3 A two-sided surface

Loosely speaking, Faraday’s law says that a changing magnetic field produces an electric
field. The differential form of Faraday’s law is

∇ × E = −∂B
∂t

. (1.18)

1.1.4 Law of Conservation of Charge

The law of conservation of charge states that the net charge of an isolated system remains
constant. Mathematically, the amount of the charge flowing out of the surface S per second is
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equal to the decrease of the charge per second in the region V bounded by S

∫

S

J · und S = − ∂

∂t

∫

V

ρdV .

The law of charge conservation is also known as the continuity equation. The differential
form of the continuity equation is

∇ · J = −∂ρ

∂t
. (1.19)

1.2 Maxwell Equations, Constitutive Relation, and Dispersion

From (1.18) and (1.17), one can find that a changing magnetic field produces an electric field
by magnetic induction, but a changing electric field would not produce a magnetic field. In
addition, equation (1.17) implies ∇ · J = 0, which contradicts the continuity equation for a
time-dependent field. To solve these problems, Maxwell added an extra term Jd to Equation
(1.17)

∇ × H = J + Jd .

It then follows that

∇ · J + ∇ · Jd = 0.

Introducing the continuity equation yields

∇ · Jd = ∂ρ

∂t
.

Substituting Gauss’s law (1.4) into the above equation, one may obtain Jd = ∂D/∂t . Thus
(1.17) must be modified to

∇ × H = ∂D
∂t

+ J. (1.20)

The term ∂D/∂t is called the displacement current. Equation (1.20) implies that a changing
electric field generates a magnetic field by electric induction. It is this new electric induction
postulate that makes it possible for Maxwell to predict the existence of electromagnetic
waves. The mutual electric and magnetic induction produces a self-sustaining electromagnetic
vibration moving through space.
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1.2.1 Maxwell Equations and Boundary Conditions

It follows from (1.4), (1.12), (1.18) and (1.20) that

∇ × H(r, t) = ∂D(r, t)

∂t
+ J(r, t),

∇ × E(r, t) = −∂B(r, t)

∂t
, (1.21)

∇ · D(r, t) = ρ(r, t),

∇ · B(r, t) = 0.

The above equations are called Maxwell equations, and they describe the behavior of electric
and magnetic fields, as well as their interactions with matter. It must be mentioned that the
above vectorial form of Maxwell equations is due to the English engineer Oliver Heaviside
(1850–1925), and is presented with neatness and clarity compared to the large set of scalar
equations proposed by Maxwell. Maxwell equations are the starting point for the investigation
of all macroscopic electromagnetic phenomena. In (1.21), r is the observation point of the
fields in meters and t is the time in seconds; H is the magnetic field intensity measured in
amperes per meter (A/m); B is the magnetic induction intensity measured in tesla (N/A·m); E is
electric field intensity measured in volts per meter (V/m); D is the electric induction intensity
measured in coulombs per square meter (C/m2); J is electric current density measured in
amperes per square meter (A/m2); ρ is the electric charge density measured in coulombs per
cubic meter (C/m3). The first equation is Ampère’s law, and it describes how the electric field
changes according to the current density and magnetic field. The second equation is Faraday’s
law, and it characterizes how the magnetic field varies according to the electric field. The minus
sign is required by Lenz’s law, that is, when an electromotive force is generated by a change of
magnetic flux, the polarity of the induced electromotive force is such that it produces a current
whose magnetic field opposes the change, which produces it. The third equation is Coulomb’s
law, and it says that the electric field depends on the charge distribution and obeys the inverse
square law. The final equation shows that there are no free magnetic monopoles and that the
magnetic field also obeys the inverse square law. It should be understood that none of the
experiments had anything to do with waves at the time when Maxwell derived his equations.
Maxwell equations imply more than the experimental facts. The continuity equation can be
derived from (1.21) as

∇ · J(r, t) = −∂ρ(r, t)

∂t
. (1.22)

Remark 1.1: The charge density ρ and the current density J in Maxwell equations are free
charge density and currents and they exclude charges and currents forming part of the structure
of atoms and molecules. The bound charges and currents are regarded as material, which are
not included in ρ and J. The current density normally consists of two parts: J = Jcon + Jimp .
Here Jimp is referred to as external or impressed current source, which is independent of the
field and delivers energy to electric charges in a system. The impressed current source can be
of electric and magnetic type as well as of non-electric or non-magnetic origin. Jcon = σE,
where σ is the conductivity of the medium in mhos per meter, denotes the conduction current
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induced by the impressed source Jimp. Sometimes it is convenient to introduce an external or
impressed electric field Eimp defined by Jimp = σEimp . In a more general situation, one can
write J = Jind (E, B) + Jimp, where Jind (E, B) is the induced current by the impressed current
Jimp .

Remark 1.2 (Duality): Sometimes it is convenient to introduce, magnetic current Jm and
magnetic charges ρm , which are related by

∇ · Jm(r, t) = −∂ρm(r, t)

∂t
(1.23)

and the Maxwell equations must be modified as

∇ × H(r, t) = ∂D(r, t)

∂t
+ J(r, t),

∇ × E(r, t) = −∂B(r, t)

∂t
− Jm(r, t), (1.24)

∇ · D(r, t) = ρ(r, t),

∇ · B(r, t) = ρm(r, t).

The inclusion of Jm and ρm makes Maxwell equations more symmetric. However, there has
been no evidence that the magnetic current and charge are physically present. The validity
of introducing such concepts in Maxwell equations is justified by the equivalence principle,
that is, they are introduced as a mathematical equivalent to electromagnetic fields. Equations
(1.24) will be called the generalized Maxwell equations.

If all the sources are of magnetic type, Equations (1.24) reduce to

∇ × H(r, t) = ∂D(r, t)

∂t
,

∇ × E(r, t) = −∂B(r, t)

∂t
− Jm(r, t), (1.25)

∇ · D(r, t) = 0,

∇ · B(r, t) = ρm(r, t).

Mathematically (1.21) and (1.25) are similar. One can obtain one of them by simply inter-
changing symbols as shown in Table 1.1. This property is called duality. The importance of

Table 1.1 Duality.

Electric source Magnetic source

E H
H −E
J Jm

ρ ρm

µ ε

ε µ
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duality is that one can obtain the solution of magnetic type from the solution of electric type
by interchanging symbols and vice versa.

Remark 1.3: For the time-harmonic (sinusoidal) fields, Equations (1.21) and (1.22) can be
expressed as

∇ × H(r) = jωD(r) + J(r),

∇ × E(r) = − jωB(r),

∇ · D(r) = ρ(r), (1.26)

∇ · B(r, ω) = 0,

∇ · J(r) = − jωρ(r),

where the field quantities denote the complex amplitudes (phasors) defined by

E(r, t) = Re[E(r)e jωt ], etc.

We use the same notations for both time-domain and frequency-domain quantities.

Remark 1.4: Maxwell equations summarized in (1.21) hold for macroscopic fields. For
microscopic fields, the assumption that the charges and currents are continuously distributed
is no longer valid. Instead, the charge density and current density are represented by

ρ(r) =
∑

i

qiδ(r − ri ), J(r) =
∑

i

qi ṙiδ(r − ri ) (1.27)

where qi denotes the charge of i th particle and ṙi (the dot denotes the time derivative) its
velocity. Correspondingly, Maxwell equations become

∇ × H(r, t) = ε0
∂E(r, t)

∂t
+ J(r, t),

∇ × E(r, t) = −µ0
∂H(r, t)

∂t
,

∇ · E(r, t) = ρ(r, t)

ε0
, (1.28)

∇ · H(r, t) = 0.

All charged particles have been included in (1.27). The macroscopic field equations (1.21) can
be obtained from the microscopic field equations (1.28) by the method of averaging.

Remark 1.5: Ampère’s law and Coulomb’s law can be derived from the continuity equation.
If we take electric charge Q as a primitive smoothly distributed over a volume V , we can define
a charge density ρ(r, t) such that Q = ∫

V
ρ(r′, t)dV (r′). Now the assumption that the electric

charges are always conserved may be applied, which implies that if the charges within a region
V have changed, the only possibility is that some charges have left or entered the region. Based
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on this assumption, it can be shown that there exists a vector J, called current density, such that
the continuity equation (1.22) holds (Duvaut and Lions, 1976; Kovetz, 2000). We can define
a vector D, called electric induction intensity, so that Coulomb’s law holds

∇ · D(r, t) = ρ(r, t).

Then the continuity equation (1.22) implies that the divergence of vector ∂D/∂t + J is zero. As
a result, there exists at least one vector H, called the magnetic field intensity, so that Ampère’s
law holds

∇ × H(r, t) = ∂D(r, t)

∂t
+ J(r, t).

Remark 1.6: Maxwell equations might be derived from the laws of electrostatics (Elliott,
1993; Schwinger et al., 1998) or from quantum mechanics (Dyson, 1990).

Remark 1.7: The force acting on a point charge q, moving with a velocity v with respect to
an observer, by the electromagnetic field is given by

F(r, t) = q[E(r, t) + v(r, t) × B(r, t)] (1.29)

where E and B are the total fields, including the field generated by the moving charge q.
Equation (1.29) is referred to as Lorentz force equation, named after Dutch physicist Hendrik
Antoon Lorentz (1853–1928). It is known that there are two different formalisms in classical
physics. One is mechanics that deals with particles, and the other is electromagnetic field theory
that deals with radiated waves. The particles and waves are coupled through the Lorentz
force equation, which usually appears as an assumption separate from Maxwell equations.
The Lorentz force is the only way to detect electromagnetic fields. For a continuous charge
distribution, the Lorentz force equation becomes

f(r, t) = ρE(r, t) + J(r, t) × B(r, t) (1.30)

where f is the force density acting on the charge distribution ρ, that is, the force acting on the
charge distribution per unit volume. Maxwell equations, Lorentz force equation and continuity
equation constitute the fundamental equations in electrodynamics. To completely determine the
interaction between charged particles and electromagnetic fields, we must introduce Newton’s
second law. An exact solution to the interaction problem is very difficult. Usually the fields are
first determined by the known source without considering the influence of the moving charged
particles. Then the dynamics of the charged particles can be studied by Newton’s second law.
The electromagnetic force causes like-charged things to repel and oppositely charged things
to attract. Notice that the force that holds the atoms together to form molecules is essentially
an electromagnetic force, called residual electromagnetic force.

Remark 1.8: Maxwell equations (1.21) are differential equations, which apply locally at each
point in a continuous medium. At the interfaces of two different media, the charge and current
and the corresponding fields are discontinuous and the differential (local) form of Maxwell
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equations becomes meaningless. Thus we must resort to the integral (global) form of Maxwell
equations in this case. Let 	 be a closed contour and S be a regular two-sided surface spanning
the contour as shown in Figure 1.3. Applying Stokes’s theorem to the two curl equations in
(1.21) yields

∫

	

H · ut d	 =
∫

S

(

J + ∂D
∂t

)

· und S,

∫

	

E · ut d	 = −
∫

S

∂B
∂t

· und S (1.31)

If S is a closed surface, applying Gauss’s theorem to the two divergence equations in (1.21)
gives

∫

S

D · und S =
∫

V

ρdV ,

∫

S

B · und S = 0. (1.32)

Remark 1.9: The boundary conditions on the surface between two different media can be
easily obtained from (1.31) and (1.32), and they are

un × (H1 − H2) = Js,

un × (E1 − E2) = 0,

un · (D1 − D2) = ρs, (1.33)

un · (B1 − B2) = 0,

nu Medium 1 

Medium 2 

Figure 1.4 Interface between two different media

where un is the unit normal of the boundary directed from medium 2 to medium 1 as shown
in Figure 1.4; Js and ρs are the surface current density and surface charge density respec-
tively. These boundary conditions can also be obtained from the differential form of Maxwell
equations in the sense of generalized functions (see Chapter 2).

1.2.2 Constitutive Relations

Maxwell equations are a set of seven equations involving 16 unknowns (that is five vector
functions E, H, B, D, J and one scalar function ρ and the last equation of (1.21) is not
independent). To determine the fields, nine more equations are needed, and they are given
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by the generalized constitutive relations:

D = f1(E, H), B = f2(E, H)

together with the generalized Ohm’s law:

J = f3(E, H)

if the medium is conducting. The constitutive relations establish the connections between field
quantities and reflect the properties of the medium, and they are totally independent of the
Maxwell equations. In most cases, the constitutive relations can be expressed as

Di (r, t) =
∑

j=x,y,z

[a j
i (r)E j (r, t) + b j

i (r)Hj (r, t)]

∑

j=x,y,z

[(G j
i ∗ E j )(r, t) + (K j

i ∗ Hj )(r, t)],

Bi (r, t) =
∑

j=x,y,z

[c j
i (r)E j (r, t) + d j

i (r)Hj (r, t)]

=
∑

j=x,y,z

[(L j
i ∗ E j )(r, t) + (F j

i ∗ Hj )(r, t)],

where i = x, y, z; ∗ denotes the convolution with respect to time; a j
i , b j

i , c j
i , d j

i are independent
of time; and G j

i , K j
i , L j

i , F j
i are functions of (r, t). The medium defined by the above equations

is called bianisotropic. An anisotropic medium is defined by

Di (r, t) = ∑

j=x,y,z
[a j

i (r)E j (r, t) + (G j
i ∗ E j )(r, t)],

Bi (r, t) = ∑

j=x,y,z
[d j

i (r)Hj (r, t) + (F j
i ∗ Hj )(r, t)].

A biisotropic medium is defined by

D(r, t) = a(r)E(r, t) + b(r)H(r, t)

+(G ∗ E)(r, t) + (K ∗ H)(r, t)

B(r, t) = c(r)E(r, t) + d(r)H(r, t)

+(L ∗ E)(r, t) + (F ∗ H)(r, t)

where a, b, c, d are independent of time and G, K , L , F are functions of (r, t). An isotropic
medium is defined by

D(r, t) = a(r)E(r, t) + (G ∗ E)(r, t),

B(r, t) = d(r)H(r, t) + (F ∗ H)(r, t).
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For monochromatic fields, the constitutive relations for a bianisotropic medium are usually
expressed by

D = ↔
ε · E +

↔
ξ · H, B = ↔

ς · E + ↔
µ · H.

For an anisotropic medium, both
↔
ξ and

↔
ς vanish.

Remark 1.10: The effects of the current J = Jimp + Jind can be included in the constitutive
relations by introducing a new vector D′′ such that

D′′(r, t) =
t∫

−∞
J(r, t ′)dt ′ + D(r, t).

Thus (1.21) can be written as

∇ × H(r, t) = ∂D′′(r, t)

∂t
,

∇ × E(r, t) = −∂B(r, t)

∂t
,

∇ · D′′(r, t) = 0,

∇ · B(r, t) = 0.

So the current source has been absorbed in the displacement current ∂D′′(r, t)/∂t , and the
Maxwell equations are defined in a lossless and source-free region.

The constitutive relations are often written as

D(r, t) = ε0E(r, t) + P(r, t) + · · · ,
(1.34)

B(r, t) = µ0[H(r, t) + M(r, t) + · · ·],

where M is the magnetization vector and P is the polarization vector. Equations (1.34) may
contain higher order terms, which have been omitted since in most cases only the magnetization
and polarization vectors are significant. The vectors M and P reflect the effects of the Lorentz
force on elemental particles in the medium and therefore they depend on both E and B in
general. Since the elemental particles in the medium have finite masses and are mutually
interacting, M and P are also functions of time derivatives of E and B as well as their
magnitudes. The same applies for the current density Jind .

A detailed study of magnetization and polarization process belongs to the subject of quantum
mechanics. However, a macroscopic description of electromagnetic properties of the medium
is simple as compared to the microscopic description. When the field quantities are replaced by
their respective volume averages, the effects of the complicated array of atoms and electrons
constituting the medium may be represented by a few parameters. The macroscopic description
is satisfactory only when the large-scale effects of the presence of the medium are considered,
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and the details of the physical phenomena occurring on an atomic scale can be ignored. Since
the averaging process is linear, any linear relation between the microscopic fields remains
valid for the macroscopic fields.

In most cases, M is only dependent on the magnetic field B and its time derivatives while
P and J depend only on the electric field E and its time derivatives. If these dependences are
linear, the medium is said to be linear. These linear dependences are usually expressed as

D = ε̃E + ε̃1
∂E
∂t

+ ε̃2
∂2E
∂t2

+ · · · ,

B = µ̃H + µ̃1
∂H
∂t

+ µ̃2
∂2H
∂t2

+ · · · , (1.35)

Jind = σ̃E + σ̃1
∂E
∂t

+ σ̃2
∂2E
∂t2

+ · · · ,

where all the scalar coefficients are constants. For the monochromatic fields, the first two
expressions of (1.35) reduce to

D = εE, B = µH

where

ε = ε′ − jε′′, µ = µ′ − jµ′′,
ε′ = ε̃ − ω2ε̃2 + · · · , µ′ = µ̃ − ω2µ̃2 + · · · , (1.36)

ε′′ = −ωε̃1 + ω3ε̃3 − · · · , µ′′ = −ωµ̃1 + ω3µ̃3 − · · · .

The parameters ε′ and ε′′ are real and are called capacitivity and dielectric loss factor
respectively. The parameters µ′ and µ′′ are real and are called inductivity and magnetic loss
factor respectively.

Remark 1.11: According to the transformation of electromagnetic fields under the Lorentz
transform (see Chapter 9), the constitutive relations depend on the reference systems.

1.2.3 Wave Equations

The electromagnetic wave equations are second-order partial differential equations that de-
scribe the propagation of electromagnetic waves through a medium. If the medium is homo-
geneous and isotropic and non-dispersive, we have B = µH and D = εE, where µ and ε are
constants. On elimination of E or H in the generalized Maxwell equations, we obtain

∇ × ∇ × E + µε
∂2E
∂t2

= −∇ × Jm − µ
∂J
∂t

,

(1.37)

∇ × ∇ × H + µε
∂2H
∂t2

= ∇ × J − ε
∂Jm

∂t
.
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These are known as the wave equations. Making use of ∇ · E = −ρ/ε and ∇ · H = −ρm/µ,
the equations become

(

∇2 − µε
∂2

∂t2

)

E = ∇ × Jm + µ
∂J
∂t

+ ∇
(ρ

ε

)

,

(1.38)(

∇2 − µε
∂2

∂t2

)

H = −∇ × J + ε
∂Jm

∂t
+ ∇

(
ρm

µ

)

.

In a source-free region, Equations (1.38) reduce to homogeneous equations, which have non-
trivial solutions. The existence of the non-trivial solutions in a source-free region indicates
the possibility of a self-sustaining electromagnetic field outside the source region. For the
time-harmonic fields, Equations (1.37) and (1.38) respectively reduce to

∇ × ∇ × E − k2E = −∇ × Jm − jωµJ,
(1.39)

∇ × ∇ × H − k2H = ∇ × J − jωεJm,

and

(∇2 + k2)E = ∇ × Jm + jωµJ − ∇(∇ · J)

jωε
,

(1.40)
(∇2 + k2)H = −∇ × J + jωεJm − ∇(∇ · Jm)

jωµ
,

where k = ω
√

µε. It can be seen that the source terms on the right-hand side of (1.37) and
(1.40) are very complicated. To simplify the analysis, the electromagnetic potential functions
may be introduced (see Section 2.6.1). The wave equations may be used to solve the following
three different field problems:

1. Electromagnetic fields in source-free region: wave propagations in space and waveguides,
wave oscillation in cavity resonators, etc.

2. Electromagnetic fields generated by known source distributions: antenna radiations, exci-
tations in waveguides and cavity resonators, etc.

3. Interaction of field and sources: wave propagation in plasma, coupling between electron
beams and propagation mechanism, etc.

In a source-free region, Equations (1.39) and (1.40) become

∇ × ∇ × E − k2E = 0,∇ × ∇ × H − k2H = 0, (1.41)

and

(∇2 + k2)E = 0, (∇2 + k2)H = 0, (1.42)
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respectively. It should be noted that Equation (1.41) is not equivalent to Equation (1.42). The
former implies

∇ · E = 0,∇ · H = 0 (1.43)

but the latter does not. Therefore the solutions of (1.41) satisfy Maxwell equations while those
of (1.42) may not. For example, E = uze− jkz is a solution of (1.42) but it does not satisfy
∇ · E = 0. So it is not a solution of Maxwell equations. For this reason, it is imperative that one
must incorporate (1.42) with (1.43). This can be accomplished by solving one of the equations
in (1.42) to get one field quantity, say E, and then using Maxwell equations to get the other
field quantity H. Such an approach guarantees that the fields satisfy (1.43).

If the medium is inhomogeneous and anisotropic so that D = ↔
ε · E and B = ↔

µ · H, the
wave equations for the time-harmonic fields are

∇ × ↔
µ

−1 · ∇ × E(r) − ω2↔
ε · E(r) = − jωJ(r) − ∇ × ↔

µ
−1 · Jm,

(1.44)
∇ × ↔

ε
−1 · ∇ × H(r) − ω2↔

µ · H(r) = − jωJm(r) + ∇ × ↔
ε

−1 · J.

1.2.4 Dispersion

If the speed of the wave propagation and the wave attenuation in a medium depend on the fre-
quency, the medium is said to be dispersive. Dispersion arises from the fact that the polarization
and magnetization and the current density cannot follow the rapid changes of the electromag-
netic fields, which implies that the electromagnetic energy can be absorbed by the medium.
Thus, dissipation or absorption always occurs whenever the medium shows the dispersive
effects. In reality, all media show some dispersive effects. The medium can be divided into
normal dispersive and anomalous dispersive. A normal dispersive medium refers to the situ-
ation where the refractive index increases as the frequency increases. Most naturally occurring
transparent media exhibit normal dispersion in the visible range of electromagnetic spectrum.
In an anomalous dispersive medium, the refractive index decreases as frequency increases.
The dispersive effects are usually recognized by the existence of elementary solutions (plane
wave solution) of Maxwell equations in a source-free region

A(k)e j(ωt−k·r) (1.45)

where A(k) is the amplitude, k is the wave vector and ω is the frequency. When the elementary
solutions are introduced into Maxwell equations, it will be found that k and ω must be related
by an equation

f (ω, k) = 0. (1.46)

This is called the dispersion equation. The plane wave e jωt− jk·r has four-dimensional space-
time orthorgonality properties, and is a solution of Maxwell equations in a source-free region
when it satisfies the dispersion relation. It can be assumed that the frequency can be expressed
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in terms of the wave vector by solving the above dispersion equation

ω = W (k). (1.47)

In general, a number of such solutions exist, which give different functions W (k). Each solution
is called a mode. To ensure that the solution e jωt− jk·r is a plane wave, some restrictions must
be put on the solution of dispersion equation, which are (Whitham, 1974)

det

∣
∣
∣
∣

∂2W

∂ki∂k j

∣
∣
∣
∣
�= 0, W (k) is real. (1.48)

These conditions have excluded all non-dispersive waves. A medium is called dispersive if
there are solutions of (1.45) and (1.47) that satisfy (1.48). This definition applies to uniform
medium. For a non-uniform medium, the definition of dispersive waves can be generalized
to allow more general separable solutions of Maxwell equations, such as A(k, r)e jωt , where
A(k, r) is an oscillatory function (for example, a Bessel function). It is hard to give a general
definition of dispersion of waves. Roughly speaking, the dispersive effects may be expected
whenever oscillations in space are coupled with oscillations in time.

If (1.45) is an elementary solution for a linear equation, then formally

ϕ(r, t) =
∞∫

−∞
A(k)e j(ωt−k·r)dk (1.49)

is also a solution of the linear equation. The arbitrary function A(k) may be chosen to satisfy
the initial or boundary condition. If there are n modes with n different choices of W (k),
there will be n terms like (1.49) with n arbitrary functions A(k). For a single linear differential
equation with constant coefficients, there is a one-to-one correspondence between the equation
and the dispersion relation. We only need to consider the following correspondences:

∂

∂t
↔ jω,∇ ↔ − jk,

which yield a polynomial dispersion relation. More complicated dispersion relation may be
obtained for other different type of differential equations.

Example 1.3: To find the dispersion relation of the medium, the plane wave solutions may
be assumed for Maxwell equations as follows

E(r, t) = Re[E(r, ω)e jωt− jk·r], etc. (1.50)

Similar expressions hold for other quantities. In the following, the wave vector k is allowed to
be a complex vector and there is no impressed source inside the medium. Introducing (1.50)
into (1.26) and using the calculation ∇e− jk·r = − jke− jk·r, we obtain

− jk × H(r, ω) + ∇ × H(r, ω) = jωD(r, ω) + Jcon(r, ω),

− jk × E(r, ω) + ∇ × E(r, ω) = − jωB(r, ω).
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In most situations, the complex amplitudes of the fields are slowly varying functions of space
coordinates. The above equations may reduce to

k × H(r, ω) = −ωD(r, ω) + jJcon(r, ω),
(1.51)

k × E(r, ω) = ωB(r, ω).

If the medium is isotropic, dispersive and lossy, we may write

Jcon = σE, D = (ε′ − jε′′)E, B = (µ′ − jµ′′)H.

Substituting these equations into (1.51) yields

k · k = ω2(µ′ − jµ′′)[ε′ − j(ε′′ + σ/ω)].

Assuming k = uk(β − jα), then

β − jα = ω
√

(µ′ − jµ′′)[ε′ − j(ε′′ + σ/ω)]

from which we may find that

β = ω√
2

√

(A2 + B2)1/2 + A, α = ω√
2

√

(A2 + B2)1/2 − A

where A = µ′ε′ − µ′′(ε′′ + σ/ω), B = µ′′ε′ + µ′(ε′′ + σ/ω).

1.3 Theorems for Electromagnetic Fields

A number of theorems can be derived from Maxwell equations, and they usually bring deep
physical insight into the problems. When applied properly, these theorems can simplify the
problems dramatically.

1.3.1 Superposition Theorem

Superposition theorem applies to all linear systems. Suppose that the impressed current source
Jimp can be expressed as a linear combination of independent impressed current sources Jk

imp
(k = 1, 2, · · · , n)

Jimp =
n

∑

k=1

akJk
imp,

where ak (k = 1, 2, · · · , n) are arbitrary constants. If Ek and Hk are fields produced by the
source Jk

imp, the superposition theorem for electromagnetic fields asserts that the fields
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E =
n∑

k=1
akEk and H =

n∑

k=1
akHk are a solution of Maxwell equations produced by the source

Jimp.

1.3.2 Compensation Theorem

The compensation theorem in network theory is well known, which says that any component
in the network can be substituted by an ideal current generator with the same current intensity
as in the element. Similarly the compensation theorem for electromagnetic fields states that
the influences of the medium on the electromagnetic fields can be substituted by the equivalent
impressed sources. Let E, H, M, P and Jind be the field quantities induced by the impressed
current Jimp, which satisfy the Maxwell equations (1.21) and the constitutive relations (1.34)
with J = Jind + Jimp . Suppose that the medium is arbitrary and we can write

M = M1 + M2, P = P1 + P2, J = J1 + J2, (1.52)

Then Equation (1.34) becomes

D = (ε0E + P1) + P2 = D1 + P2,

B = µ0(H + M1) + µ0M2 = B1 + µ0M2,

with B1 = µ0(H + M1) and D1 = (ε0E + P1). Accordingly, the Maxwell equations (1.21) can
be written as

∇ × H = ∂D1

∂t
+ J1 + (Jimp + J′

imp),

∇ × E = −∂B1(r, t)

∂t
− J′

m,imp,

∇ · D1 = ρ + ρ ′, ρ′ = −∇ · P2, (1.53)

∇ · B1 = ρm, ρm = −µ0∇ · M2,

where the new impressed electric current J′
imp = J2 + ∂P2/∂t and magnetic current J′

m,imp =
µ0∂M2/∂t have been introduced to represent the influences of the medium partly or completely,
depending on how the division is made in (1.52). Equations (1.53) are the mathematical
formulation of compensation theorem. Note that both impressed electric and magnetic current
source are needed to replace the medium, and the magnetic current density and the magnetic
charge density satisfy the continuity equation ∇ · J′

m,imp = −∂ρm/∂t .

1.3.3 Conservation of Electromagnetic Energy

The law of conservation of electromagnetic energy is known as the Poynting theorem,
named after the English physicist John Henry Poynting (1852–1914). It can be found from
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(1.21) that

−Jimp · E − Jind · E = ∇ · S + E · ∂D
∂t

+ H · ∂B
∂t

. (1.54)

In a region V bounded by S, the integral form of (1.54) is

−
∫

V

Jimp · EdV =
∫

V

Jind · EdV +
∫

S

S · und S +
∫

V

(

E · ∂D
∂t

+ H · ∂B
∂t

)

dV , (1.55)

where un is the unit outward normal of S, and S = E × H is the Poynting vector representing
the electromagnetic power-flow density measured in watts per square meter (W/m2). It will
be assumed that this explanation holds for all media. Thus, the left-hand side of Equation
(1.55) stands for the power supplied by the impressed current source. The first term on the
right-hand side is the work done per second by the electric field to maintain the current in the
conducting part of the system. The second term denotes the electromagnetic power flowing
out of S. The last term can be interpreted as the work done per second by the impressed source
to establish the fields. The energy density w required to establish the electromagnetic fields
may be defined as follows

dw =
(

E · ∂D
∂t

+ H · ∂B
∂t

)

dt. (1.56)

Assuming all the sources and fields are zero at t = −∞, we have

w = we + wm, (1.57)

where we and wm are the electric field energy density and magnetic field energy density
respectively

we = 1

2
E · D +

t∫

−∞

1

2

(

E · ∂D
∂t

− D · ∂E
∂t

)

dt,

wm = 1

2
H · B +

t∫

−∞

1

2

(

H · ∂B
∂t

− B · ∂H
∂t

)

dt.

Equation (1.55) can be written as

−
∫

V

Jimp · EdV =
∫

V

Jind · EdV +
∫

S

S · und S + ∂

∂t

∫

V

(we + wm)dV . (1.58)

In general, the energy density w does not represent the stored energy density in the fields: the
energy temporarily located in the fields and completely recoverable when the fields are reduced
to zero. The energy density w given by (1.57) can be considered as the stored energy density
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only if the medium is lossless (that is, ∇ · S = 0). If medium is isotropic and time-invariant,
we have

we = 1

2
E · D, wm = 1

2
H · B.

If the fields are time-harmonic, the Poynting theorem takes the following form

−1

2

∫

V

E · J̄impdV = 1

2

∫

V

E · J̄inddV +
∫

S

1

2
(E × H̄) · und S

(1.59)

+ j2ω

∫

V

(
1

4
B · H̄ − 1

4
E · D̄

)

dV ,

where the bar denotes complex conjugate. The time averages of the Poynting vector, energy
densities over one period of the sinusoidal wave e jωt , denoted T , are

¯̄S = 1

T

T∫

0

E × H̄dt = 1

2
Re(E × H̄),

1

T

T∫

0

1

2
E · Ddt = 1

4
Re(E · D̄),

1

T

T∫

0

1

2
H · Bdt = 1

4
Re(H · B̄),

where the double line indicates the time average.

1.3.4 Conservation of Electromagnetic Momentum

The force acting on a charged particle by electromagnetic fields is given by the Lorentz force
equation

F(r, t) = q[E(r, t) + v(r, t) × B(r, t)],

where v is the velocity of the particle. Let m be the mass of the particle and Gp = mv its
momentum. By Newton’s law, we have

dGp(r, t)

dt
= q[E(r, t) + v(r, t) × B(r, t)]. (1.60)

Let Wp = mv · v/2 denote the kinetic energy of the particle. It follows from (1.60) that

dWp(r, t)

dt
= qv(r, t) · E(r, t). (1.61)
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For a continuous charge distribution ρ, Equations (1.60) and (1.61) should be changed to

dgp

dt
= ρE + J × B = f, (1.62)

dwp

dt
= J · E, (1.63)

where J = ρv; gp = ρmv and wp = ρmv · v/2 are the density of momentum and density of
kinetic energy of the charge distribution respectively, and ρm is the mass density. Equations
(1.62) and (1.63) indicate that the charged system gains energy and momentum from the
electromagnetic fields if dwp/dt > 0 and dgp/dt > 0 or releases energy and momentum
to the electromagnetic fields if dwp/dt < 0 and dgp/dt < 0. From the conservation laws
of energy and momentum, it may be concluded that electromagnetic fields have energy and
momentum. From the Maxwell equations and Lorentz force equation in free space, we obtain

f = ρE + J × B = E∇ · D +
(

∇ × H − ∂D
∂t

)

× B

= − ∂

∂t

(
1

c2
E × H

)

+ ∇ ·
[

ε0EE + µ0HH − 1

2
(ε0E · E + µ0H · H)

↔
I

]

,

where c = 1/
√

µ0ε0, EE and HH are dyads. By means of (1.62), the above equation can be
written as

∇ · ↔
T − ∂

∂t
(g + gp) = 0. (1.64)

where
↔
T = ε0EE + µ0HH − 1

2 (ε0E · E + µ0H · H)
↔
I is referred to as the Maxwell stress

tensor and g = E × H/c2 is known as the electromagnetic momentum density. The integral
form of (1.64) over a region V bounded by S is

∂

∂t

∫

V

(g + gp)dV =
∫

S

un · ↔
Td S, (1.65)

Equation (1.65) indicates that the increase of total momentum (the electromagnetic momentum
plus the momentum of the charged system) inside V per unit time is equal to the force acting

on the fields inside V through the boundary S by the fields outside S. For this reason, un · ↔
T

may be interpreted as the force per unit area acting on the surface. We can also interpret

−un · ↔
T as the momentum flow density into S and call −↔

T the electromagnetic momentum
flow density tensor or the electromagnetic energy-momentum tensor.
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1.3.5 Conservation of Electromagnetic Angular Momentum

It follows from (1.64) that

∇ · (r × ↔
T) + ∂

∂t
(r × g + r × gp) = 0.

The integral form of the above equation over a region V bounded by S is

∂

∂t

∫

V

(r × g + r × gp)dV = −
∫

S

un · (r × ↔
T)d S.

Here r × g may be interpreted as the electromagnetic angular momentum density and r × ↔
T

as the electromagnetic angular momentum flow density tensor.

Remark 1.12: The quantities of a dynamic system that do not change with time play an
important role in theoretical physics. These conserved quantities can be the energy, momen-
tum, and angular momentum. Noether’s theorem, named after the German mathematician
Amalie Emmy Noether (1882–1935), states that the conservation laws are the consequences
of continuous symmetry transformations under which the action integral of the system is left
invariant. For example, time translation symmetry gives conservation of energy; space trans-
lation symmetry gives conservation of momentum; rotation symmetry gives conservation of
angular momentum.

1.3.6 Uniqueness Theorems

It is important to know the conditions under which the solution of Maxwell equations is

unique. Let us consider a multiple-connected region V bounded by S =
N∑

i=0
Si , as shown in

Figure 1.5. Assume that the medium inside V is linear, isotropic and time-invariant, and it
may contain some impressed source Jimp . So we have D = εE, B = µH, and Jind = σE.
Let E1, H1 and E2, H2 be two solutions of Maxwell equations. Then the difference fields
E = E1 − E2 and H = H1 − H2 are a solution of the Maxwell equations free of impressed
source. The requirements that the difference fields must be identically zero are the conditions

nu

NS

1S
2S

0S

impJ

Figure 1.5 Multiple-connected region
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for uniqueness that we seek. According to the Poynting theorem in the time domain, we write
∫

V

(

E · ∂D
∂t

+ H · ∂B
∂t

)

dV +
∫

V

σ |E|2 dV = −
∫

S

(E × H) · und S, (1.66)

where un is the unit outward normal of S. If E1 = E2 or H1 = H2 holds on the boundary S
for t > 0, the above equation reduces to

∂

∂t

∫

V

(
1

2
E · D + 1

2
H · B

)

dV = −
∫

V

σ |E|2 dV .

Suppose that the source is turned on at t = 0. Taking the integration with respect to time
over [0, t] yields

∫

V

(
1

2
ε |E(r, t)|2 + 1

2
µ |H(r, t)|2

)

dV −
∫

V

(
1

2
ε |E(r, 0)|2 + 1

2
µ |H(r, 0)|2

)

dV

= −
t∫

0

dt
∫

V

σ |E|2 dV .

If E1(r, 0) = E2(r, 0) and H1(r, 0) = H2(r, 0) hold in V , the second term on the left-hand side
vanishes. Since the right-hand side is a negative number while the left-hand side is a positive
number, this is possible only when E1(r, t) = E2(r, t) and H1(r, t) = H2(r, t) for all t > 0.

If the region extends to infinity (S0 → ∞), we can assume that E1 = E2 or H1 = H2 on

the boundary
N∑

i=1
Si for t > 0, and E1(r, 0) = E2(r, 0) and H1(r, 0) = H2(r, 0) in V . It follows

from (1.66) that
∫

V

(
1

2
ε |E(r, t)|2 + 1

2
µ |H(r, t)|2

)

dV

= −
t∫

0

dt
∫

V

σ |E|2 dV −
t∫

0

dt
∫

S0

1

η0
|E|2 d S. (1.67)

Here η0 = √
µ0/ε0 is the wave impedance in free space. Equation (1.67) implies E1(r, t) =

E2(r, t) and H1(r, t) = H2(r, t) for all t > 0. Note that the preceding discussions are valid
even if σ is zero. Thus the following uniqueness theorem for electromagnetic fields in time
domain has been proved.

Theorem 1.1 Uniqueness theorem for time-domain fields: Suppose that the electromagnetic
sources are turned on at t = 0. The electromagnetic fields in a region are uniquely determined
by the sources within the region, the initial electric field and the initial magnetic field at t = 0
inside the region, together with the tangential electric field (or the tangential magnetic field)
on the boundary for t > 0, or together with the tangential electric field on part of the boundary
and the tangential magnetic field on the rest of the boundary for t > 0.
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We now derive the uniqueness theorem in the frequency domain. Let E1, H1 and E2, H2 be
two solutions of the time-harmonic Maxwell equations. For the difference fields E = E1 − E2

and H = H1 − H2, we may use the Poynting theorem in the frequency domain to write

∫

S

1

2
(E × H̄) · und S + j2ω

∫

V

(
1

4
B · H̄ − 1

4
E · D̄

)

dV = −1

2

∫

V

σ |E|2 dV . (1.68)

If E1 = E2 or H1 = H2 holds on S, the first term on the left-hand side vanishes and we have

jω
∫

V

1

2
µ |H|2 dV − jω

∫

V

1

2
ε̄ |E|2 dV + 1

2

∫

V

σ |E|2 dV = 0.

This implies

ω

∫

V

1

2
Re ε |E|2 dV − ω

∫

V

1

2
Re µ |H|2 dV = 0,

ω

∫

V

1

2
Im ε |E|2 dV + ω

∫

V

1

2
Im µ |H|2 dV = 1

2

∫

V

σ |E|2 dV .

For a dissipative medium, we have Im ε < 0 and Im µ < 0. It is easy to see that if one of the
following two conditions is met

Im ε < 0, Im µ < 0, (1.69)

σ > 0, (1.70)

then the difference fields E and H vanish in V , which implies that the fields in V can be
uniquely determined. Therefore, a loss must be assumed for time-harmonic fields in order to
obtain the uniqueness.

In an unbounded region where S0 → ∞, we may assume that µ → µ0, ε → ε0 on S0. Thus
(1.68) may be written as

N
∑

i=1

∫

Si

1

2
(E × H̄) · und S + jω

∫

V

1

2
µ |H|2 dV − jω

∫

V

1

2
ε̄ |E|2 dV

(1.71)
= −

∫

S0

1

2η0
|E|2 d S − 1

2

∫

V

σ |E|2 dV .
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If E1 = E2 or H1 = H2 holds on
N∑

i=1
Si , the first term on the left-hand side of (1.71) vanishes

and (1.71) reduces to

jω
∫

V

1

2
µ |H|2 dV − jω

∫

V

1

2
ε̄ |E|2 dV = −

∫

S0

1

2η0
|E|2 d S − 1

2

∫

V

σ |E|2 dV . (1.72)

This leads to

ω

∫

V

1

2
Re ε |E|2 dV − ω

∫

V

1

2
Re µ |H|2 dV = 0,

(1.73)
ω

∫

V

1

2
Im ε |E|2 dV + ω

∫

V

1

2
Im µ |H|2 dV =

∫

S0

1

2η0
|E|2 d S + 1

2

∫

V

σ |E|2 dV .

The difference fields vanish in the infinite region if either condition (1.69) or (1.70) is satisfied.
We can further show that the difference fields vanish in the infinite region where radiation
exists, even if the medium is lossless. Assuming that the medium is lossless, the second
equation of (1.73) implies

∫

S0

1

2η0
|E|2 d S = 0, S0 → ∞.

It follows that

|E|2 = 0, S0 → ∞. (1.74)

This relation implies E = H = 0 in the region V , which can be proved as follows. Consider
a sufficiently large sphere that contains all the impressed sources and inhomogeneities. The
fields on the sphere may be expanded in terms of the spherical vector wavefunctions as follows
(see Section 4.3)

E = −
∑

n,m,l

(

α
(2)
nmlM

(2)
nml + β

(2)
nmlN

(2)
nml

)

,

H = 1

jη0

∑

n,m,l

(

α
(2)
nml N

(2)
nml + β

(2)
nmlM

(2)
nml

)

.

A simple calculation gives

|E|2 = 1

k2
0

∑

n,m,l

N 2
nm

(∣
∣
∣α

(2)
nml

∣
∣
∣

2
+

∣
∣
∣β

(2)
nml

∣
∣
∣

2
)

, (1.75)



P1: OTA/XYZ P2: ABC
c01 BLBK281-Wen March 4, 2010 11:57 Printer Name: Yet to Come

Theorems for Electromagnetic Fields 31

where k0 = ω
√

µ0ε0 and Nnm is a constant. Combining (1.74) and (1.75), we obtain α
(2)
nml =

β
(2)
nml = 0. As a result, the fields outside a sufficiently large sphere are identically zero. By

the analyticity of the electromagnetic fields, one must have E = H = 0 in the region V .
Consequently the uniqueness theorem for time-harmonic field may be stated as follows.

Theorem 1.2 Uniqueness theorem for time-harmonic fields: For a region that contains the
dissipation loss or radiation loss, the electromagnetic fields are uniquely determined by the
sources within the region, together with the tangential electric field (or the tangential magnetic
field) on the boundary, or together with the tangential electric field on part of the boundary
and the tangential magnetic field on the rest of the boundary.

The uniqueness for time-harmonic fields is guaranteed if the system has radiation loss, regard-
less whether the medium is lossy or not. This property has been widely validated by the study of
antenna radiation problems, in which the surrounding medium is often assumed to be lossless.

Remark 1.13: The uniqueness for time-harmonic fields fails for a system that contains no
dissipation loss and radiation loss. The uniqueness in a lossless medium is usually obtained by
considering the fields in a lossless medium to be the limit of the corresponding fields in a lossy
medium as the loss goes to zero, which is based on an assumption that the limit of a unique
solution is also unique. However, this limiting process may lead to physically unacceptable
solutions (see Section 3.3.2 and Section 8.2.1). Note that there is no need to introduce loss for
a unique solution in the time-domain analysis.

Example 1.4 (Image principle): To solve the boundary value problem with a perfect electric
conductor, one can use the image principle that is based on the uniqueness theorem. The
perfect electric conductor may be removed by introducing an ‘image’ of the original field
source. The image is constructed in such a way so that the tangential component of the total
electric field produced by the original source and its image vanishes on the perfect electric
conductor. For example, an electric current element parallel to an infinitely large conducting
plane has an image that is positioned symmetrically relative to the conducting plane and has
a reverse orientation. The images for electric and magnetic current elements placed near the
conducting plane are shown in Figure 1.6.

Conducting plane 

Electric current elements Magnetic current elements 

ImagesImages 

Figure 1.6 Image principle
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Figure 1.7 Equivalence theorem

1.3.7 Equivalence Theorems

It is known that there is no answer to the question of whether field or source is primary.
The equivalence principles indicate that the distinction between the field and source is kind
of blurred. Let V be an arbitrary region bounded by S; let S′ be a closed surface pressed
tightly over S from outside; let S′′ be a closed surface pressed tightly to S from inside; let
V ′ be the domain outside S′. A large closed surface S∞ encloses S′ as shown in Figure 1.7.
Two sources that produce the same fields inside a region are said to be equivalent within that
region. Similarly, two electromagnetic fields {E1, D1, H1, B1} and {E2, D2, H2, B2} are said
to be equivalent inside a region if they both satisfy the Maxwell equations and are equal in
that region.

The main application of the equivalence theorem is to find equivalent sources to replace the
influences of substance (the medium is homogenized), so that the formulae for retarding poten-
tials can be used. The equivalent sources may be located inside S (equivalent volume sources)
or on S (equivalent surface sources). The most general form of the equivalent principles is as
follows.

General equivalence principle: Let us consider two electromagnetic field problems in two
different media:

Problem 1 :

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∇ × H1(r, t) = ∂D1(r, t)/∂t + J1(r, t),

∇ × E1(r, t) = −∂B1(r, t)/∂t − Jm1(r, t),

∇ · D1(r, t) = ρ1(r, t),∇ · B1(r, t) = ρm1(r, t),

D1(r, t) = ε1(r)E1(r, t), B1(r, t) = µ1(r)H1(r, t)

Problem 2 :

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∇ × H2(r, t) = ∂D2(r, t)/∂t + J2(r, t),

∇ × E2(r, t) = −∂B2(r, t)/∂t − Jm2(r, t),

∇ · D2(r, t) = ρ2(r, t),∇ · B2(r, t) = ρm2(r, t),

D2(r, t) = ε2(r)E2(r, t), B2(r, t) = µ2(r)H2(r, t).
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If a new set of electromagnetic fields {E, D, H, B} satisfying

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∇ × H(r, t) = ∂D(r, t)/∂t + J(r, t),

∇ × E(r, t) = −∂B(r, t)/∂t − Jm(r, t),

∇ · D(r, t) = ρ(r, t),∇ · B(r, t) = ρm(r, t),

D(r, t) = ε(r)E(r, t), B(r, t) = µ(r)H(r, t),

(1.76)

is constructed in such a way that the sources of the fields {E, D, H, B} and the parameters of
the medium satisfy

⎧

⎪⎨

⎪⎩

J = J1, Jm = Jm1

ρ = ρ1, ρm = ρm1, r ∈ V

µ = µ1, ε = ε2

;

⎧

⎪⎨

⎪⎩

J = J2, Jm = Jm2

ρ = ρ2, ρm = ρm2, r ∈ R3 − V

µ = µ2, ε=ε2

and

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

J = un × (H2+ − H1−)

Jm = −un × (E2+ − E1−)

ρ = un · (D2+ − D1−)

ρm = un · (B2+ − B1−)

, r ∈ S

where un is the unit outward normal to S, and the subscripts + and - signify the values obtained
as S is approached from outside S and inside S respectively, then we have

{E, D, H, B} = {E1, D1, H1, B1} , r ∈ V

{E, D, H, B} = {E2, D2, H2, B2} , r ∈ R3 − V

To prove this theorem, we only need to show that the difference fields

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δE = E − E1

δH = H − H1

δD = D − D1

δB = B − B1

, r ∈ V ;

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

δE = E − E2

δH = H − H2

δD = D − D2

δB = B − B2

, r ∈ R3 − V

in the shadowed region bounded by S′ + S′′ + S∞, denoted by R̃3, are identically zero. The
difference fields satisfy

∇ × δH(r, t) = ∂δD(r, t)/∂t,

∇ × δE(r, t) = −∂δB(r, t)/∂t,

∇ · δD(r, t) = 0,∇ · δB(r, t) = 0, (1.77)

δD(r, t) = εδ(r)E(r, t),

δB(r, t) = µδ(r)δH(r, t),
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where εδ = ε1, µδ = µ1 for r ∈ V and εδ = ε2, µδ = µ2 for r ∈ R3 − V . From

un × (H2+ − H1−) = un × (H+ − H−),

un × (E2+ − E1−) = un × (E+ − E−),

we can find un × δE+ = un × δE− and un × δH+ = un × δH−, which imply that the tangen-
tial components of δE and δH are continuous on S. It follows from (1.77) that

−∇ · (δE × δH) = 1

2

∂

∂t
(εδ |δE|2 + µδ |δH|2).

Taking the integration over the shadowed region R̃3 yields

−
∫

S′+S′′+S∞

(δE × δH) · und S = 1

2

∂

∂t

∫

R̃3

(εδ |δE|2 + µδ |δH|2)dV .

If all the fields are produced after a finite moment t0 > −∞, one may take the integration with
respect to time from −∞ to t

−
t∫

−∞
dt

∫

S′+S′′+S∞

[δE(r, t) × δH(r, t)] · und S

(1.78)
= 1

2

∫

R̃3

(εδ |δE(r, t)|2 + µδ |δH(r, t)|2)dV .

When S′ and S′′ approach S, the values of δE(r, t) × δH(r, t) on S′ and S′′ tend to be the same
since δE(r, t) × δH(r, t) is continuous on S. Thus

∫

S′+S′′

[δE(r, t) × δH(r, t)] · und S = 0.

The electromagnetic wave travels at finite speed. It is thus possible to choose S∞ to be large
enough so that

∫

S∞

[δE(r, t) × δH(r, t)] · und S = 0.

Consequently, Equation (1.78) reduces to

∫

R̃3

(εδ |δE(r, t)|2 + µδ |δH(r, t)|2)dV = 0,

which implies δE(r, t) = 0 and δH(r, t) = 0. The proof is completed.
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By the equivalence principle, the magnetic current Jm and magnetic charge ρm , introduced
in the generalized Maxwell equations, are justified in the sense of equivalence. The difference
between the compensation theorem and equivalence theorem is that the compensation implies
replacement of induced sources or part of them by the imaginary impressed sources at the
same locations. Equivalence implies replacement of any sources (impressed and/or induced)
by another set of impressed sources, usually distributed in a different location.

If E1 = D1 = H1 = B1 = J1 = Jm1 = 0 in the general equivalence theorem, we can choose
µ = µ2, ε = ε2 in (1.76) inside S. If all the sources for Problem 2 are contained inside S, the
following sources

{

Js = un × H2+, Jms = −un × E2+
ρs = un · D2+, ρms = un · B2+

, r ∈ S

produce the electromagnetic fields {E, D, H, B} in (1.76). In other words, the above sources
generate the fields {E2, D2, H2, B2} in R3 − V and a zero field in V . Thus we have:

Theorem 1.3 Schelkunoff–Love equivalence: (named after the American mathematician
Sergei Alexander Schelkunoff, 1897–1992; and the English mathematician Augustus Edward
Hough Love, 1863–1940): Let {E, D, H, B} be the electromagnetic fields with source confined
in S. The following surface sources

{

Js = un × H, Jms = −un × E
ρs = un · D, ρms = un · B

, r ∈ S (1.79)

produce the same fields {E, D, H, B} outside S and a zero field inside S.

It must be mentioned that the electromagnetic fields generated by a single electric source or a
single magnetic source will never be zero within a finite region if the medium is homogeneous.
The fields can be made to vanish inside a region only if both electric source and magnetic
source exist so that the fields generated by both sources cancel each other in the region. In
other words, only the solution of the generalized Maxwell equations can be zero within a finite
region of homogeneous space. However, the solution of Maxwell equations can be zero within
a finite region if the medium is inhomogeneous. Since the sources in (1.79) produce a zero
field inside S, the interior of S may be filled with a perfect electric conductor. By use of the
Lorentz reciprocity theorem (see Example 1.6), it can be shown that the surface electric current
pressed tightly on the perfect conductor does not produce fields. As a result, only the surface
magnetic current is needed in (1.79). Similarly, the interior of S may be filled with a perfect
magnetic conductor, and in this case the surface magnetic current does not produce fields and
only the surface electric current is needed in (1.79). In both cases, one cannot directly apply
the vector potential formula even if the medium outside S is homogeneous.

Example 1.5 (An aperture problem): A general aperture coupling problem between two
regions a and b is shown in Figure 1.8 (a). The impressed electric current Jimp and magnetic
current Jm,imp are assumed to be located in region a only and there is no source in region b.
The conductors in region b are assumed to be extended to infinity. By equivalent principle, the
original problem can be separated into two equivalent problems as shown in Figure 1.8 (b). In
region a, the fields are produced by the impressed sources Jimp and Jm,imp, and the equivalent
magnetic current Jms = −un × E over the aperture region Sa , with the aperture covered by an
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(a) (b)

nu

Conductor

Aperture SaRegion a

,,imp m impJ J

Region b
Region a

,,imp m impJ J

Region b

msJ ms−J

Figure 1.8 An aperture problem

electric conductor. In region b, the field is produced by the equivalent magnetic current −Jms

(the minus sign ensures that the tangential electrical field is continuous across the aperture).
The tangential magnetic field in region a over the aperture, denoted Ha

t , can be decomposed
into two parts (Harrington and Mautz, 1976)

Ha
t = Hi

t + Hm
t (Jms),

where Hi
t is due to the impressed source and Hm

t (Jms) due to the equivalent source Jms , both
being calculated with the aperture covered by an electric conductor. If Hb

t (−Jms) denotes the
tangential magnetic field in region b over the aperture, then the condition that the tangential
magnetic field must be continuous across the aperture yields

Hb
t (−Jms) = Hi

t + Hm
t (Jms).

This can be used to determine the magnetic current Jms .

1.3.8 Reciprocity

A linear system is said to be reciprocal if the response of the system with a particular load
and a source is the same as the response when the source and the load are interchanged. The
earliest study of reciprocity can be traced back to the work done by the English physicist Lord
Rayleigh (1842–1919) in 1894 and the work by Lorentz in 1895. The reciprocity theorems
are the most important analytical tools in the simplification and solution of various practical
problems (Rumsey, 1961; Monteath, 1973; Richmond, 1961).

A linear system is characterized in an abstract way by a known source f , a response u and
a system operator L̂

L̂(u) = f. (1.80)

The system operator L̂ is not unique for a given linear system and it depends on how the source
and the response are defined. In what follows, it is assumed that L̂ is a linear partial differential



P1: OTA/XYZ P2: ABC
c01 BLBK281-Wen March 4, 2010 11:57 Printer Name: Yet to Come

Theorems for Electromagnetic Fields 37

operator, and both f and u are defined in a region V with boundary S. For arbitrary functions
u1 and u2, the following identity can be easily derived using integration by parts (Courant and
Hilbert, 1953)

∫

V

u2 L̂(u1)dV =
∫

V

u1 L̂∗(u2)dV + T (u1, u2; S) (1.81)

for a time-independent system or

T2∫

T1

dt
∫

V

u2 L̂(u1)dV =
T2∫

T1

dt
∫

V

u1 L̂∗(u2)dV + T (u1, u2; S, T1, T2) (1.82)

for a time-dependent system. In (1.81) and (1.82), L̂∗ is known as formal adjoint of L̂;
T (u1, u2; S) and T (u1, u2; S, T1, T2) are bilinear forms (boundary terms); and [T1, T2] is an
arbitrary time interval.

Equations (1.81) and (1.82) may be interpreted as Huygens’ principle, named after the
Dutch physicist Christiaan Huygens (1629–1695). For a time-independent system, Huygens’
principle states that, given a source inside a hypothetical surface S, there is a certain source
spreading over S, which gives the same field outside S as the original source inside S. For
a time-dependent system, it states that the position of a wavefront and the magnitude of the
wave at each point of the wavefront may be determined by the wavefront at any earlier time.
Huygens’ principle can be traced back to 1690 when Huygens published his classical work
Treatise on Light (Huygens, 1690). Huygens was not able to formulate his principle precisely
at that time. A number of famous scientists have worked in this area and elaborated this
principle since then. It should be mentioned that different authors use the term ‘Huygens’
principle’ with different meanings. The best-known representation of Huygens’ principle is to
express the field at some observation point in terms of a surface integral over a closed surface
separating the observation point from the source. Such an expression can easily be obtained
from (1.81) or (1.82), which in general gives a relationship between some volume integrals
defined in the region V and some surface integrals defined on the boundary S. The idea behind
Huygens’ principle could apply not only to electromagnetics but also to any branch of physics,
such as gravitation, elasticity, acoustics and many more (Rumsey, 1959).

One can consider three situations: (1) L̂∗ = L̂ (L̂ is formally self adjoint); (2) L̂∗ �= L̂; and
(3) L̂∗ = −L̂ (L̂ is skew adjoint). For the first two situations, one can choose u2 as a solution
of the adjoint system L̂∗(u2) = f2, where f2 is a known source function. If the boundary term
in (1.81) or (1.82) can be made to vanish, we have

∫

V

u2 f1dV =
∫

V

u1 f2dV ,

T2∫

T1

dt
∫

V

u2 f1dV =
T2∫

T1

dt
∫

V

u1 f2dV , (1.83)

T (u1, u2; S) = 0, T (u1, u2; S, T1, T2) = 0. (1.84)

Equations (1.83) are called reciprocity theorems of Rayleigh-Carson form, and Equations
(1.84) are called reciprocity theorems of Lorentz form. These two forms are equivalent. For
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the situation L̂∗ = −L̂ , we may choose u2 as a solution of the original system L̂(u2) = f2. If
the boundary term in (1.81) or (1.82) can be made to vanish, then

∫

V

u2 f1dV = −
∫

V

u1 f2dV ,

T2∫

T1

dt
∫

V

u2 f1dV = −
T2∫

T1

dt
∫

V

u1 f2dV . (1.85)

The above relations may be called skew-reciprocity theorems of Rayleigh-Carson form.
The quantity

∫

V
u2 f1dV is called the reaction of field u2 on source f1 (Rumsey, 1954).

Equations (1.83) (or (1.85)) simply state that the reaction of field u2 on source f1 is equal
to the reaction (or the negative reaction) of field u1 on source f2. Apparently this kind of
relations exists in various fields of physics and engineering. The concept of reaction is very
useful and it can be used to answer some difficult questions with simplicity. If f1 is a testing
source of unit strength, the reaction

∫

V
u2 f1dV gives the numerical value of response u2 at the

point of the testing source. Thus, a method can be established to solve various boundary value
problems based on the reaction, which is basically a theory of measurement rather than a field
theory (Rumsey, 1963).

A number of reciprocity theorems for electromagnetic fields in both time domain and
frequency domain can be derived by choosing different forms of the operator L̂ . But most of
them are useless. Only one of the reciprocity theorems in frequency domain will be discussed
here, which states that all possible time-harmonic fields of the same frequency are to some
extent interrelated. Suppose that the sources J1(r) and Jm1(r) give rise to the fields E1(r) and
H1(r). Then the Maxwell equations in an isotropic medium can be rewritten in the operator
form L̂(u1) = f1 with

L̂ =
[− jωε· ∇×

∇× jωµ·
]

, u1 =
[

E1

H1

]

, f1 =
[

J1

−Jm1

]

.

For an arbitrary u2 = [E2, H2]T (the superscript T stands for the transpose operation), the
formal adjoint of L̂ and the boundary term may be found through integration by parts as

L̂∗ = L̂,

T (u1, u2; S) =
∫

S

(E1 × H2 − E2 × H1) · und S,

where un is the outward unit normal to S. If u2 = [E2, H2]T is a solution of the transposed
system L̂∗(u2) = f2 with f2 = [J2,−Jm2]T , Equation (1.81) becomes

∫

V

(E2 · J1 − H2 · Jm1)dV =
∫

V

(E1 · J2 − H1 · Jm2)dV

+
∫

S

(E1 × H2 − E2 × H1) · und S. (1.86)
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If both sources are outside S, the surface integral in (1.86) is zero. If both sources are inside S,
it can be shown that the surface integral is also zero by using the radiation condition. Therefore
we obtain the Lorentz form of reciprocity

∫

S

(E1 × H2 − E2 × H1) · und S = 0,

and the Rayleigh-Carson form of reciprocity

∫

V

(E2 · J1 − H2 · Jm1)dV =
∫

V

(−H1 · Jm2 + E1 · J2)dV (1.87)

If the surface S only contains the sources J1(r) and Jm1(r), Equation (1.86) becomes

∫

V

(E2 · J1 − H2 · Jm1)dV =
∫

S

(E2 · un × H1 − H2 · E1 × un)d S.

This is the familiar form of Huygens’ principle. The electromagnetic reciprocity theorem can
also be generalized to an anisotropic medium (Kong, 1990; Tai, 1961; Harrington, 1958).

Example 1.6: An interesting application of the reciprocity theorem is to prove that a surface
electric (or magnetic) current pressed tightly on a perfect electric (or magnetic conductor) does
not radiate. Let Js1 be a surface electric current pressed tightly on a perfect electric conductor,
which generates electromagnetic fields E1 and H1. Now remove the surface electric current Js1

and place an arbitrary current source J2 in space that produces electromagnetic fields E2 and
H2. According to (1.87), we have

∫

V
E2 · Js1dV = ∫

V
E1 · J2dV , where V denotes the region

outside the conductor. Since E2 only has a normal component on the surface of the conductor
while Js1 is a tangential vector, the left side of the above equation must be zero. Thus, we have
∫

V
E1 · J2dV = 0. For J2 is arbitrary, we obtain E1 = 0.

1.4 Wavepackets

A time-domain field can be expressed as the superposition of individual plane waves of the
form e jωt− jk·r. Each plane wave travels with a phase velocity defined by vp = ukω/ |k|, where
uk = k/ |k| and k is the wave vector. The phase velocity is the velocity at which the points of
constant phase move in the medium. It is well known that, to transmit energy or a signal, the
waves must come in a range of frequencies to form a wavepacket. The wavepacket was first
introduced by Schrödinger and is used to represent a small group of plane waves. There are
two different ways of building wavepackets. A waveform is called a spatial wavepacket (or
paraxial approximation) if it is monochromatic and is confined to a narrow region of space
along the path of propagation. A spatial wavepacket is basically a beam of wave. A waveform is
called a temporal wavepacket (or narrow-band approximation) if it propagates in only one
direction and its frequency spectrum is confined to a narrow band around a central frequency.
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The propagation of wavepackets in an absorbing medium was studied for the first time by the
German physicist, Arnold Johannes Wilhelm Sommerfeld (1868–1951), and the French physi-
cist, Léon Nicolas Brillouin (1889–1969) (Brillouin, 1960). The group velocity, signal velocity
and energy velocity are important quantities for characterizing the propagation of wavepackets
and there are certain relationships among them. The speed of each frequency component is the
phase velocity while the speed of the envelope of the wavepacket is called group velocity. The
velocity at which the main part of the wavepacket propagates is called signal velocity. When a
signal propagates in a dispersive medium, it does not retain its original form. At certain depth
of the medium, very weak signal components appear at first and are called forerunners or
fronts whose speed is always equal to the light speed in vacuum. The energy velocity of the
wavepacket is defined as the ratio of the Poynting vector to the energy density.

1.4.1 Spatial Wavepacket and Temporal Wavepacket

By definition, a spatial wavepacket can be represented by

F(r, t) = 1

(2π )3

∞∫

−∞
F̃(k)e jω(k)t− jk·rdk

(1.88)

= 1

(2π )3

∞∫

−∞

∞∫

−∞
F(ξ, 0)e jω(k)t− jk·(r−ξ)dξdk,

where F̃(k) is given by F̃(k) =
∞∫

−∞
F(r, 0)e jk·rdr and ω is the angular frequency of the

wavepacket. Since F(r, 0) is narrow-band in k-space, a rapid phase variation e− jkc ·r may
be factored out so that one may write F(r, 0) = A(r, 0)e− jkc ·r, where kc is the central wave
vector and A(r, 0) is the complex envelope that describes the slowly varying transverse beam
profile or the spatial modulation as the wave propagates. If the dispersion of the medium is
not strong, we may use the first-order approximation for the dispersion relation

ω(k) ≈ ωc + δk · ∇ω(kc),

where ωc = ω(kc) and δk = k − kc. As a result, Equation (1.88) can be approximated by

F(r, t) =
∞∫

−∞
F(ξ, 0)e j[ωct−kc ·(r−ξ)]δ [∇ω(kc)t − (r − ξ)] dξ

= F(r − vgt, 0)e j(ωct−kc ·vgt),

where vg = ∇ω(kc) is defined as the group velocity. Making use of F(r, 0) = A(r, 0)e− jkc ·r

we have

F(r, t) = A(r − vgt, 0)e j(ωct−kc ·r). (1.89)
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Hence the group velocity represents the speed of the envelope of the wavepacket. In a medium
where the dispersion is not strong, the shape of the envelope of the wavepacket does not
change very much as it propagates. When the wavepacket propagates in a highly dispersive
medium, the shape of the envelope of the wavepacket will not remain the same. The phase
of the wavepacket will change as the propagation distance and time increase. As a result, the
concept of group velocity is no longer valid in a highly dispersive medium.

By definition, an arbitrary temporal wavepacket may be expressed as

F(r, t) = 1

2π

∞∫

−∞
F̃(ω)e j[ωt−k(ω)·r]dω

(1.90)

= 1

2π

∞∫

−∞

∞∫

−∞
F(0, t ′)e j[ω(t−t ′)−k(ω)·r]dt ′dω,

where F̃(ω) =
∞∫

−∞
F(0, t)e− jωt dt . The narrow-band approximation assumes that the frequency

spectrum of the time variation is confined to a narrow band around a carrier. Therefore F(0, t)
is a bandpass signal and can be written as F(0, t) = A(0, t)e jωct , where ωc is the carrier
frequency and A(0, t) is a slowly varying function of time. If the dispersion of the medium is
not very strong we may make the first order approximation

k(ω) ≈ kc + δω
dk(ωc)

dω
,

where δω = ω − ωc and kc is the wave vector at the carrier frequency ωc. Hence (1.90) can
be expressed as

F(r, t) = 1

2π

∞∫

−∞

∞∫

−∞
F(0, t ′)e jωc(t−t ′)− jkc ·r+ jδω

[

(t−t ′)− dk(ωc )
dω

·r
]

dt ′dδω

= F
(

0, t − dk(ωc)

dω
· r

)

e jωc
dk(ωc )

dω
·r− jkc ·r (1.91)

= A
(

0, t − dk(ωc)

dω
· r

)

e jωct− jkc ·r.

If the wavepacket propagates mainly in kc direction, that is, k ≈ kc, we have dk(ωc)/dω =
ukc/vg , where ukc is the unit vector along the direction of kc, and vg = dω(ωc)/dk is the group
velocity. Equation (1.91) indicates that the propagation velocity of the envelope of a temporal
wavepacket is equal to group velocity. Again, the shape of the envelope as well as the phase of
the wavepacket will change as it propagates in a strongly dispersive medium, and the concept
of group velocity becomes invalid.

An analogy exists between the spatial diffraction of beams and temporal dispersion of
pulses. It can be shown that the equation that describes how a wavepacket spreads in time due
to dispersion is equivalent to the equation for the transverse spreading due to diffraction. The
temporal imaging technique is based on this space–time analogy (Kolner, 1994).
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1.4.2 Signal Velocity and Group Velocity

According to Sommerfeld and Brillouin, the signal velocity represents the velocity of the main
part of the signal. Thus we may define signal velocity as vs = drp/dt , where rp is the position
of the main part of the wavepacket F, defined by (Vichnevetsky, 1988)

rp(t) =

∞∫

−∞
r |F(r, t)|2 dr

∞∫

−∞
|F(r, t)|2 dr

. (1.92)

It should be understood that the concept of signal velocity of a wavepacket is useful only
when the dispersion of the medium is not very strong (so that the first-order approximation for
the dispersion relation is valid). Substituting (1.89) into (1.92) and using the transformation
r = u + vgt , we obtain

rp(t) =

∞∫

−∞
r
∣
∣A(r − vgt, 0)

∣
∣
2

dr

∞∫

−∞

∣
∣A(r − vgt, 0)

∣
∣
2

dr
=

∞∫

−∞
(u + vgt) |A(u, 0)|2 du

∞∫

−∞
|A(u, 0)|2 du

.

By taking the time derivative of the above equation, we obtain vs = vg, and the signal velocity
of a spatial wavepacket is equal to the group velocity. Similarly substituting (1.91) into (1.92)
and making use of the transformation r = u + vgtukc yields

rp(t) =

∞∫

−∞
r
∣
∣A(0, t − ukc · r/vg)

∣
∣
2

dr

∞∫

−∞

∣
∣A(0, t − ukc · r/vg)

∣
∣
2

dr
=

∞∫

−∞
(u + vgtukc )

∣
∣A(0,−ukc · u/vg)

∣
∣
2

du

∞∫

−∞

∣
∣A(0,−ukc · u/vg)

∣
∣
2

du
.

Hence vs = vgukc = vg, and the signal velocity of a temporal wavepacket is equal to the group
velocity.

1.4.3 Energy Density for Wavepackets

An expression for the electromagnetic energy density that does not involve any medium prop-
erties (such as isotropic, anisotropic) is useful. Such an expression exists for a monochromatic
wave (Tonning, 1960), and can be generalized to the wavepackets, which are more realistic in
applications. In order to find the general expression of the energy density for a wavepacket,
we have to assume that the dispersion of the medium is not very strong so that the first-order
approximation of the dispersion is valid. From (1.89) and (1.91), the fields for both spatial and
temporal wavepackets can be expressed as

E(r, t) = Re[Een(r, t ; ωc)e jωct ], etc. (1.93)
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where Een etc. are the envelopes and they are slowly varying functions of time compared
to e jωc t , and ωc is the angular frequency of the monochromatic paraxial wave or the carrier
wave frequency for the narrow-band signal. We cannot apply (1.57) to a wavepacket directly
because the fields might not be zero at t = −∞. To make use of (1.57), the standard way is to
introduce a damping mechanism for the fields first so that all the fields are zero at t = −∞,
and then let the damping tend to zero after the calculation is finished. To this end, we can
introduce a complex frequency ω̃ = − jα + ωc to replace the real frequency ωc, where α is a
small positive number (the damping factor). Equation (1.93) may be rewritten as

Ẽ(r, t) = Re[Ẽen(r, t ; ω̃)e jω̃t ], etc. (1.94)

which approach zero when t → −∞ and approach the corresponding real fields as α → 0.
Assuming that the fields are analytic functions of frequency, the following first-order expansion
can be made

Ẽen ≈ Een − jα
∂Een

∂ωc
, etc.

for α is assumed to be small. A simple calculation shows that

Ẽ · ∂D̃
∂t

− D̃ · ∂Ẽ
∂t

+ H̃ · ∂B̃
∂t

− B̃ · ∂H̃
∂t

= −ωce2αt Im(Ēen · Den + H̄en · Ben)

+αωce2αt Re

(

Ēen · ∂Den

∂ωc
− Den · ∂Ēen

∂ωc
+ H̄en · ∂Ben

∂ωc
− Ben · ∂H̄en

∂ωc

)

.

From the lossless condition ∇ · (E × H) = 0 and Maxwell equations, we obtain

Im(Een · D̄en − H̄en · Ben) = −Im(Ēen · Den + H̄en · Ben) = 0. (1.95)

Thus the quantity Ēen · Den + H̄en · Ben is real. Consequently the integral of (1.57) can be
expressed as

t∫

−∞

1

2

(

E · ∂D
∂t

− D · ∂E
∂t

+ H · ∂B
∂t

− B · ∂H
∂t

)

dt

= lim
α→0

1

2

t∫

−∞
Ẽ · ∂D̃

∂t
− D̃ · ∂Ẽ

∂t
+ H̃ · ∂B̃

∂t
− B̃ · ∂H̃

∂t
dt (1.96)

= ωc

4
Re

(

Ēen · ∂Den

∂ωc
− D̄en · ∂Een

∂ωc
+ H̄en · ∂Ben

∂ωc
− B̄en · ∂Hen

∂ωc

)

.
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The quantity in the bracket is real. Actually taking the derivative of (1.95) with respect to the
frequency gives

Im

(

Ēen · ∂Den

∂ωc
+ Den · ∂Ēen

∂ωc
+ H̄en · ∂Ben

∂ωc
+ Ben · ∂H̄en

∂ωc

)

= 0.

This relation still holds if we take the complex conjugate of the second and the fourth term
and change their sign simultaneously. Since the envelopes can be considered as constants over
one period of the carrier wave e jωct , the time average of (1.96) over one period of the carrier
wave is

1

2

t∫

−∞

(

H · ∂B
∂t

− B · ∂H
∂t

+ E · ∂D
∂t

− D · ∂E
∂t

)

dt

(1.97)

= ωc

4

(

Ēen · ∂Den

∂ωc
− D̄en · ∂Een

∂ωc
+ H̄en · ∂Ben

∂ωc
− B̄en · ∂Hen

∂ωc

)

.

The above expression can be interpreted as the energy density related to dispersion and will
be denoted w̄d . Similarly the time average of the rest of (1.57) over one period of the carrier
wave is

1

2
(E · D + H · B) = 1

4
Re(Een · D̄en + Hen · B̄en)

(1.98)
= 1

4
(Een · D̄en + Hen · B̄en).

It follows from (1.57), (1.97) and (1.98) that the time average of the energy density over one
period of the carrier wave e jωct can be expressed as

w = 1

4
(Ēen · Den + H̄en · B)

+ωc

4

(

Ēen · ∂Den

∂ωc
− D̄en · ∂Een

∂ωc
+ H̄en · ∂Ben

∂ωc
− B̄en · ∂Hen

∂ωc

)

(1.99)

= 1

4

[

Ēen · ∂(ωcDen)

∂ωc
− ωcD̄en · ∂Een

∂ωc
+ H̄en · ∂(ωcBen)

∂ωc
− ωcB̄en · ∂Hen

∂ωc

]

.

Taking the time average of (1.55) over one period of the carrier wave e jωc t , the Poynting
theorem in a lossless medium without impressed sources becomes

∫

S

S · und S +
∫

V

∂w

∂t
dV = 0,

where S = Re(Een × H̄en)/2 is the time average of the Poynting vector over one period of

the wave e jωct and the calculation ∂w/∂t = ∂w/∂t has been used. Note that ∂w/∂t = 0 for
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a monochromatic wave. As a special case, let us consider an isotropic medium defined by
Den = εEen, Ben = µHen . In this case, Equation (1.99) reduces to the well-known expression

w = 1

4

[
∂(ωcε)

∂ωc
|Een|2 + ∂(ωcµ)

∂ωc
|Hen|2

]

.

1.4.4 Energy Velocity and Group Velocity

The energy velocity is defined as the ratio of the Poynting vector to the energy density, that is,

ve = S/w. If the dispersion of the medium is not very strong, a spatial or temporal wavepacket
in its first-order approximation can be expressed as

E(r, t) = Re[E0(r, t ; ωc)e jωct− jkc ·r], etc. (1.100)

where the fast phase variation e− jkc ·r of the fields has been factored out. The new envelopes E0,
etc. are slowly varying functions of both spatial coordinates and time. Introducing (1.100) into
Maxwell equations in a source-free and lossless region and using the calculation ∇e− jkc ·r =
− jkce− jkc ·r, we obtain

kc × H0 + j∇ × H0 = −ωcD0,

kc × E0 + j∇ × E0 = ωcB0.

Since E0 and H0 are slowly varying function of space, we can let ∇ × E0 ≈ 0 and ∇ × H0 ≈ 0.
Thus the above equation may be rewritten as

kc × Hen + ωcDen ≈ 0,
(1.101)

kc × Een − ωcBen ≈ 0.

By letting kc = kcx ux + kcyuy + kczuz and taking the derivative of (1.101) with respect to kcx ,
we obtain

ux × Hen +
[

kc × ∂Hen

∂ωc
+ ∂(ωcDen)

∂ωc

]
∂ωc

∂kcx
≈ 0,

ux × Een +
[

kc × ∂Een

∂ωc
− ∂(ωcBen)

∂ωc

]
∂ωc

∂kcx
≈ 0.

Multiplying the first equation by −Ēen and second by H̄en and adding the resultant equations
and using (1.99), we get

ux · ¯̄S = ∂ωc

∂kcx
· 1

4

[

Ēen · ∂(ωDen)

∂ωc
− ωcD̄en · ∂Een

∂ωc
+ H̄en · ∂(ωcBen)

∂ωc
− ωcB̄en · ∂Hen

∂ωc

]

= ∂ωc

∂kcx
w̄.
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Similarly we have uy · S = w∂ωc
/

∂kcy and uz · S = w∂ωc
/

∂kcz . Therefore

vg = S

w
= ∇ωc(kc) = ve.

This indicates that the group velocity is always equal to the energy velocity for a spatial
wavepacket.

Taking the derivative of (1.101) with respect to the frequency, we obtain

dkc

dωc
× Hen + kc × ∂Hen

∂ωc
+ ∂(ωcDen)

∂ωc
≈ 0,

dkc

dωc
× Een + kc × ∂Een

∂ωc
− ∂(ωcBen)

∂ωc
≈ 0.

Multiplying the first equation by −Ēen and second by H̄en and adding the resultant equations
and using (1.99) yields

dkc

dωc
· S = 1

4

[

Ēen · ∂(ωDen)

∂ωc
− ωcD̄en · ∂Een

∂ωc
+ H̄en · ∂(ωcBen)

∂ωc
− ωcB̄en · ∂Hen

∂ωc

]

= w.

It follows that

ve · dkc

dωc
≈ 1 or ve · ukc ≈ vg.

The above equation shows that the projection of the energy velocity in the direction of wave
propagation is always equal to the group velocity for a temporal wavepacket.

Remark 1.14: In deriving the electromagnetic energy density for a wavepacket in a general
lossless medium, a damping mechanism (that is, the small parameter α) has been introduced.
This process appears to be a bit contrived. Nonetheless it is required by the uniqueness
theorem for solutions of Maxwell equations. In a steady state, the information about the initial
condition of the field has been lost and many possible solutions may exist. Introducing the
loss is equivalent to introducing causality.

Remark 1.15: One of the essential assumptions in special relativity is that the light speed is
the greatest speed at which energy, information and signals can be transmitted. This is also the
requirement of causality. Sommerfeld and Brillouin were the first to note that group velocity
could be faster than light in the regions of anomalous dispersion. Some experiments in recent
years have shown that the group velocity can exceed the light speed c or even become negative
(for example, Wong, 2000). In all these experiments, the wavepackets experience a very strong
dispersion when they travel in the medium, and the concept of group velocity that relies on
the first-order approximation of dispersion relation is actually invalid.
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Giving an exact definition for the propagation velocity of wavepackets in a highly dispersive
medium is essentially difficult. Several definitions have been proposed for various specific
situations (Fushchych, 1998; Diener, 1998).

1.4.5 Narrow-band Stationary Stochastic Vector Field

As a linear modulation technique, an easy way to translate the spectrum of low-pass or
baseband signal to a higher frequency is to multiply or heterodyne the baseband signal with a
carrier wave. A narrowband bandpass stochastic vector field F (modulated signal) in the time
domain can be expressed as

F(r, t) =

⎧

⎪⎨

⎪⎩

a(r, t) cos[ωct + ϕ(r, t)],

x(r, t) cos ωct − y(r, t) sin ωct,

Re Fen(r, t)e jωct ,

where ωc = 2π fc, a(r, t) and ϕ(r, t) are the carrier frequency, envelope and phase of the
modulated signal respectively, and

Fen(r, t) = x(r, t) + jy(r, t),

x(r, t) = a(r, t) cos ϕ(r, t),

y(r, t) = a(r, t) sin ϕ(r, t).

Here Fen(r, t), x(r, t) and y(r, t) are the complex envelope, in-phase component, and quadra-
ture component of the modulated signal respectively. The complex envelope Fen(r, t) is a
slowly varying function of time compared to e jωct . It is easy to show that the complex en-
velopes of the electromagnetic fields satisfy the time-harmonic Maxwell equations

∇ × Hen(r, t) = jωcεEen(r, t) + Jen(r, t),
(1.102)

∇ × Een(r, t) = − jωcµHen(r, t).

Therefore the theoretical results about the time-harmonic fields can be applied to the com-
plex envelopes of the fields. Let 〈F〉 denote the ensemble average of F. For a station-
ary and ergodic vector field F, the ensemble average equals the time average, that is,

〈F〉 = F = lim
T →∞

1
T

T/2∫

−T/2
F(t)dt . For a stationary and ergodic electromagnetic field, we may

take the ensemble average of (1.102) to get

∇ × Hen(r) = jωcεEen(r) + Jen(r),

∇ × Een(r) = − jωcµHen(r).
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Hence the theoretical results about the time-harmonic fields can also be applied to the ensemble
averages of the complex envelopes of the fields.

All the mathematical sciences are founded on relations between physical laws and laws of numbers,
so that the aim of exact science is to reduce the problems of nature to the determination of quantities
by operations with numbers.

—James Maxwell
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2
Solutions of Maxwell Equations

At the very beginning the given elliptic differential operator is only defined on a space of C2-
functions. The operator is extended to an abstractly defined operator using a formal closure. The
main task is to show that the extended operator is self-adjoint. In this case it is possible to apply
the methods of von Neumann.

—Kurt Otto Friedrichs

Maxwell equations are a set of partial differential equations (PDEs) relating to the field
quantities and their partial derivatives with respect to space and time. The study of partial
differential equations goes back to eighteenth century when they were first used to describe
the problems in physical sciences. Various methods for the solution of partial differential
equation have been proposed since then. Linear PDEs are generally solved by means of
variational method, the method of separation of variables, and the method of Green’s function,
named after the British mathematician George Green (1793–1841). There are no generally
applicable methods to solve non-linear PDEs. In most situations, numerical methods must be
adopted for both linear and non-linear PDEs.

The solutions of partial differential equations had been understood to be classical solutions
that satisfy the smooth conditions required by the differential operators until the 1920s when
people began to realize that the smoothness requirements of classical solutions might be too
stringent in some applications. This led to the notion of the generalized solution and the weak
solution. The theory of generalized solutions is founded on the theory of generalized functions,
which had been used by physicist before the French mathematician Laurent-Moı̈se Schwartz
(1915–2002) set up a rigorous mathematical theory around 1950.

The physical laws are typically characterized by differential equations, and they can also be
expressed as a variational principle. Newton’s second law, described by a differential equation
of second order, expresses the vector relationship between the forces acting on an object and the
motion of the object. When the system becomes complicated, for example a multiple particle
system with mutual interaction, applying Newton’s second law would become tedious. For
this reason, more efficient formulations are needed so that the complicated problems can be
addressed. The Lagrangian formulation, named after the French mathematician Joseph-Louis
Lagrange (1736–1813), and the Hamiltonian formulation, named after the Irish physicist

Foundations of Applied Electrodynamics Geyi Wen
C© 2010 John Wiley & Sons, Ltd
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50 Solutions of Maxwell Equations

William Rowan Hamilton (1805–1865), provide such alternatives. Newton’s law is focused on
the vector nature of motion while the Lagrangian and Hamiltonian formulations are focused
on the scalar nature of motion. In order to understand the Lagrangian formulation, we have to
accept the least action principle, first proposed by French mathematician Pierre-Louis Moreau
de Maupertuis (1698–1759) in 1746 and later developed by Leonhard Paul Euler (Swiss
mathematician, 1707–1783), Lagrange and Hamilton. The least action principle is regarded as
a universal principle, the origin of all laws. It allows us to replace the problem of integrating
the differential equation under the specified boundary condition by the problem of seeking a
function that minimizes the action.

2.1 Linear Space and Linear Operator

Mathematically an operator is defined as a rule, denoted by Â (we shall use a small caret over
a letter to designate an operator), which associates to each element x in a set M an element
y in another set F , denoted by y = Â(x). The set M is called the domain of definition of
Â, denoted by D( Â). The set Â(M) = {y ∈ F

∣
∣y = Â(x) , x ∈ M} is called the range of Â,

denoted by R( Â). The operator Â : M → F is called surjective if Â(M) = F . The operator
Â : M → F is called injective if Â(x1) = Â(x2) implies x1 = x2. The operator Â : M → F
is called bijective if Â is both surjective and injective. Operators are also called maps and
functions. In particular, if F consists of real or complex numbers, Â is called a functional.
In order to show that the domain of definition of the operator Â : M → F is contained in
the set E , we write Â : M ⊂ E → F . In mathematical physics, most common operators
encountered are differential operators, which contain the operation of differentiation, and
integral operators, which contain the operation of integration.

2.1.1 Linear Space, Normed Space and Inner Product Space

Let R be the set of real numbers and C the set of complex numbers. A linear space E is a
set of elements for which rules called addition, denoted by ‘+’ and scalar multiplication,
denoted by ‘·’ are specified, satisfying the following axioms for all elements x, y, z · · · ∈ E
and α, β ∈ R or C

1. Commutativity: x + y = y + x .
2. Associativity: (x + y) + z = x + (y + z).
3. Existence of a zero element: There is a zero element, denoted 0, such that x + 0 = x .
4. Existence of a negative element: For each x there is negative element y such that x + y = 0.
5. Distributivity: α · (x + y) = α · x + α · y.
6. Distributivity: (α + β) · x = α · x + β · x
7. 1 · x = x .
8. α · (β · x) = (α · β) · x .

If α, β ∈ R (resp. C), the space E is said to be a real (resp. complex) linear space. The scalar
multiplication α · x is usually abbreviated as αx . A subset M of a linear space E is called a
linear subspace if αx + βy ∈ M , for all x, y ∈ M and α, β ∈ R or C . If {x1, x2, . . . , xn} ⊂ E ,
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the set of elements
n∑

i=1
αi xi generated by all possible αi ∈ R or C is called the space spanned by

{x1, x2, . . . , xn}. A set of elements {x1, x2, . . . , xn} ⊂ E is said to be linearly independent if

there exist constants αi (i = 1, 2 . . . , n) such that
n∑

i=1
αi xi = 0 implies αi = 0 (i = 1, 2, . . . , n).

Otherwise, it is said to be linearly dependent. A linearly independent subset of E , which
spans E , is called a basis of E . Thus every element of E can be expressed uniquely as a
linear combination of the basis elements. If the basis is finite, E is said to be finite dimension.
Otherwise, it is said to be infinite dimension.

A linear space E is a normed space if there exists a real-valued function ‖x‖, called the
norm of x , such that

1. Positive definiteness: ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0.
2. Homogeneity: ‖αx‖ = |α| · ‖x‖.
3. Triangle inequality: ‖x + y‖ ≤ ‖x‖ + ‖y‖.

A sequence {xn} is said to be convergent to x if ‖xn − x‖ —–−→
n→∞ 0. A sequence {xn} is said to be

a fundamental or Cauchy sequence (named after the French mathematician Augustin-Louis
Cauchy, 1789–1857) if ‖xm − xn‖ ——−→

m,n→∞ 0. A normed space E is said to be complete if

every Cauchy sequence in E converges to an element in E . A complete normed space is called
Banach space.

The set B(x0, r ) = { x ∈ E | ‖x − x0‖ < r} is called an open ball at x0 with radius r . A subset
U (x0) is called a neighborhood of the point x0 if U (x0) contains x0 and an open ball at x0. A
point x0 ∈ M ⊂ E is called an interior point of the subset M if M contains a neighborhood
of the point x0. The subset M is called open if all its points are interior points. The subset M
is called closed if E − M is open. A point x0 is called a limit point of the subset M ⊂ E if for
every neighborhood U (x0), we have U (x0) ∩ M 
= 0. A limit point is called an accumulation
point if the intersection U (x0) ∩ M always contains a point different from x0. Otherwise it is
called an isolated point. The intersection of all closed sets that contain the subset M is called
the closure of M , denoted by M̄ . A subset M ⊂ E is called dense in E if M̄ = E . A space is
called separable if it has a countable dense set. A subset M ⊂ E is called compact if every
sequence of elements from M has a convergent subsequence whose limit lies in M .

An inner product on a linear space E is a mapping E × E → R or C , denoted by (·, ·),
which satisfies

1. Positive definiteness: (x, x) ≥ 0 and (x, x) = 0 if and only if x = 0.
2. Hermitian property: (x, y) = (y, x).
3. Homogeneity: (αx, y) = α(x, y).
4. Additivity: (x + y, z) = (x, z) + (y, z).

Here x, y, z ∈ H , α ∈ R or C . An inner product space is a linear space with an inner product.
An inner product space has a natural norm ‖x‖ = (x, x)1/2, called the norm induced by the
inner product. A complete inner product space in the induced norm is called a Hilbert space,
named after the German mathematician David Hilbert (1862–1943). In an inner product space,
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the Cauchy–Schwartz inequality holds

|(x, y)| ≤
√

(x, x)
√

(y, y) = ‖x‖ · ‖y‖ . (2.1)

2.1.2 Linear and Multilinear Maps

An operator B̂ is said to be an extension of Â, denoted by Â ⊂ B̂, if D( Â) ⊂ D(B̂) and
Â(x) = B̂(x) for all x ∈ D( Â). By a linear operator Â, we mean it satisfies the following
linearity

Â(αx1 + βx2) = α Â(x1) + β Â(x2),

where α, β are scalars. The sum of two linear operators Â and B̂ is defined by

( Â + B̂)(x) = Â(x) + B̂(x), x ∈ D( Â) ∩ D(B̂).

If α is a scalar, the product α Â is defined by

(α Â)(x) = α Â(x), x ∈ D( Â).

The product of two linear operators Â and B̂ is defined by

( Â B̂)(x) = Â[B̂(x)], x ∈ {

x
∣
∣x ∈ D(B̂), B̂(x) ∈ D( Â)

}

.

The sum and product of linear operators are linear operators. The power Ân(n = 0, 1, 2, . . .)
is defined inductively by Â0 = Î ( Î is a unit operator: Î x = x) and Ân+1 = Â Ân. It is easy to
show that Ân Âm = Ân+m , n, m ≥ 0. The graph of an operator Â, denoted by �( Â), is defined
as the set of all pairs {(u, Âu)

∣
∣u ∈ D( Â) }. If Â ⊂ B̂, then �( Â) ⊂ �(B̂). A linear operator

Â : D( Â) ⊂ E → R( Â) ⊂ F is said to be invertible when it is a bijection from D( Â) onto
R( Â). The inverse map is also a linear map and is called the inverse operator, denoted by
Â−1. An operator Â is invertible if and only if the equation Â(x) = 0 has a unique solution
x = 0.

Remark 2.1 (Isomorphism): An isomorphism is a bijection Â such that both Â and Â−1

are homomorphism (a homomorphism is a structure-preserving map between two algebraic
structures such as vector spaces).

Example 2.1: Let Âu = −d2u/dx2. The domain of definition of Â consists of all possible
functions having first and second derivatives in the open interval (0, 1) and satisfying u(0) =
u(1) = 0. To find the inverse of Â, let us consider the equation

Âu = −d2u

dx2
= f (x), u(0) = u(1) = 0,
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where f (x) is an arbitrary continuous function. Integrating the above equation twice leads to

u(x) = −
x∫

0

ds

s∫

0

f (t)dt + c1x + c2.

The boundary condition u(0) = 0 gives c2 = 0. Applying integration by parts yields

u(x) = −
x∫

0

(x − t) f (t)dt + c1x .

From the boundary condition u(1) = 0, we obtain

c1 =
1∫

0

(1 − t) f (t)dt =
x∫

0

(1 − t) f (t)dt +
1∫

x

(1 − t) f (t)dt .

It follows that

u(x) = Â−1 f =
x∫

0

t(1 − x) f (t)dt +
1∫

x

x(1 − t) f (t)dt =
1∫

0

K (x, t) f (t)dt,

where K (x, t) =
{

x(1 − t), x ≤ t
t(1 − x), x ≥ t

is the kernel.

Let E and F be normed spaces. A linear operator Â : E → F is continuous at x0 ∈ E if, for
any ε > 0, there exists a positive number δ(x0, ε) such that

∥
∥ Â(x) − Â(x0)

∥
∥ < ε whenever

‖x − x0‖ < δ(x0, ε). If Â is continuous at every point in its domain, we say Â is contin-
uous. A linear operator Â : E → F is bounded if there is a finite constant c1 > 0 such
that

∥
∥ Â(x)

∥
∥ ≤ c1 ‖x‖ for all u ∈ D( Â). The least constant c1 such that

∥
∥ Â(x)

∥
∥ ≤ c1 ‖x‖

for all x ∈ D( Â) is called the norm of Â and is denoted by
∥
∥ Â

∥
∥. If Â ⊂ B̂ and B̂ is

bounded, Â is also bounded and
∥
∥ Â

∥
∥ ≤ ∥

∥B̂
∥
∥. Here are some important properties of bounded

operators:

1. If Â is a bounded operator, then

∥
∥ Â

∥
∥ = sup

‖x‖≤1

∥
∥ Â(x)

∥
∥ = sup

‖x‖=1

∥
∥ Â(x)

∥
∥ .

2. If Â and B̂ are bounded and defined on the whole space, then

∥
∥ Â + B̂

∥
∥ ≤ ∥

∥ Â
∥
∥ + ∥

∥B̂
∥
∥ ,

∥
∥ Â B̂

∥
∥ ≤ ∥

∥ Â
∥
∥
∥
∥B̂

∥
∥ .
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Let Ei (i = 1, 2, . . . , k) and F be linear spaces. A map Â : E1 × E2 × . . . × Ek → F is called
k-multilinear if Â(x1, x2, . . . , xk) is linear in each argument separately. The space of all con-
tinuous k-multilinear maps of E1 × E2 × . . . × Ek to F is denoted by L(E1, E2, . . . , Ek ; F).
If Ei = E(i = 1, 2, . . . , k), the space is denoted by Lk(E, F). A k-multilinear map Â is
continuous if and only if there exists a c1 > 0, such that

∥
∥ Â(x1, x2, . . . , xk)

∥
∥ ≤ c1 ‖x1‖ · ‖x2‖ . . . ‖xk‖

for all xi ∈ Ei (i = 1, 2, . . . , k). Here Ei (i = 1, 2, . . . , k) and F are assumed to be normed
spaces. Similarly, the norm of the k-multilinear map is defined by

∥
∥ Â

∥
∥ = sup

‖xi ‖=1(i=1,2,...,k)

∥
∥ Â(x1, x2, . . . , xk)

∥
∥ .

This norm makes L (E1, E2, . . . , Ek ; F) into a normed space, which is complete if F is.
Especially L(E, R) or L(E, C) is called real or complex dual space of E , and all denoted
by E∗.

2.2 Classification of Partial Differential Equations

Given any type of partial differential equations (PDEs), one must investigate the following
three properties that any physical phenomena should have: (1) existence of solution; (2)
uniqueness of solution; and (3) stability of solution, that is the solution continuously depends
on the boundary values and initial values. A problem which has these three properties is said
to be well posed. Here are some usual trinities for PDEs (Gustafson, 1987):

1. Three types of PDEs: elliptical, hyperbolic and parabolic.
2. Three types of problems: boundary value problems, initial value problems, and eigenvalue

problems.
3. Three types of boundary conditions: Dirichlet boundary condition, named after the German

mathematician Johann Peter Gustav Lejeune Dirichlet (1805–1859); Neumann boundary
condition, named after the German mathematician Carl Gottfried Neumann (1832–1925);
and Robin boundary condition, named after the French mathematician Victor Gustave
Robin (1855–1897).

4. Three analytical solution methods: separation of variables, Green’s function method, and
variational method.

5. Three important mathematical tools: divergence theorem, inequalities and convergence
theorems.

Let us consider the general second-order equation in two variables

A
∂2u

∂x2
+ 2B

∂2u

∂x∂y
+ C

∂2u

∂y2
+ D

∂u

∂x
+ E

∂u

∂y
+ Fu + G = 0, (2.2)
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which occurs most frequently in practice. Introducing the transformation of coordinates

ξ = ϕ(x, y), η = ψ(x, y) (2.3)

we can rewrite (2.2) as

α
∂2u

∂ξ 2
+ 2β

∂2u

∂ξ∂η
+ γ

∂2u

∂η2
+ �

(

u,
∂u

∂ξ
,
∂u

∂η
, ξ, η

)

= 0, (2.4)

where

α = A

(
∂ϕ

∂x

)2

+ 2B
∂ϕ

∂x

∂ϕ

∂y
+ C

(
∂ϕ

∂y

)2

,

β = A
∂ϕ

∂x

∂ψ

∂x
+ B

(
∂ϕ

∂x

∂ψ

∂y
+ ∂ϕ

∂y

∂ψ

∂x

)

+ C
∂ϕ

∂y

∂ψ

∂y
,

γ = A

(
∂ψ

∂x

)2

+ 2B
∂ψ

∂x

∂ψ

∂y
+ C

(
∂ψ

∂y

)2

,

and � is linear function with respect to u, ∂u/∂ξ and ∂u/∂η.

Theorem 2.1: Assume A 
= 0 and consider the first-order PDE

A

(
∂v

∂x

)2

+ 2B
∂v

∂x

∂v

∂y
+ C

(
∂v

∂y

)2

= 0. (2.5)

If v = v(x, y) is a solution of (2.5), then v(x, y) = c1 (c1 is an arbitrary constant) is the
general solution of the following ordinary differential equation

A

(
dy

dx

)2

− 2B
dy

dx
+ C = 0. (2.6)

The converse is also true.

The theorem can be proved as follows. Since v = v(x, y) is a solution of (2.5), ∂v/∂y is not
zero (otherwise v is a constant). It follows from v(x, y) = c1 that

dy

dx
= −∂v

∂x

/
∂v

∂y
.

From (2.5), we obtain

A

(
dy

dx

)2

− 2B
dy

dx
+ C = A

(

−∂v

∂x

/
∂v

∂y

)2

− 2B

(

−∂v

∂x

/
∂v

∂y

)

+ C = 0.

Therefore v(x, y) = c1 is the general solution of (2.6). We now prove that the converse is also
true. Let ϕ(x, y) = c2 (c2 is an arbitrary constant) be the general solution of (2.6). From the
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implicit function theorem and ϕ(x, y) = c2, y can be expressed in terms of x as follows

y = f (x, c2) (2.7)

if ∂ϕ/∂y 
= 0. Along the curve (2.7), we have

dy

dx
= −∂ϕ

∂x

/
∂ϕ

∂y
.

Substituting this into (2.6) yields

A

(

−∂ϕ

∂x

/
∂ϕ

∂y

)2

− 2B

(

−∂ϕ

∂x

/
∂ϕ

∂y

)

+ C

∣
∣
∣
∣
∣

y= f (x,c2)

= 0,

which simply states that v = ϕ(x, y) satisfies (2.5). The proof is complete.
We can choose the transformation (2.3) to make α and γ vanish. This can be achieved

by solving (2.5) or (2.6) as indicated by the above theorem. Equation (2.6) is known as the
characteristic equation of (2.2) and the solutions of (2.6) are referred to as characteristics
or characteristic curves. The characteristic equation (2.6) may be written as

dy

dx
= B ± √

d

A
, (2.8)

where d = B2 − AC is the discriminant. Equation (2.2) is respectively called elliptical, hy-
perbolic or parabolic if d < 0, d > 0 or d = 0.

2.2.1 Canonical Form of Elliptical Equations

Since d < 0 for elliptical equation, Equation (2.8) has two solutions ϕ(x, y) = c1 and
ϕ̄(x, y) = c2. Making use of the following transformation

ξ = ϕ(x, y), η = ϕ̄(x, y),

Equation (2.4) may be reduced to

∂2u

∂ξ∂η
+ 1

2β
�

(

u,
∂u

∂ξ
,
∂u

∂η
, ξ, η

)

= 0. (2.9)

Introducing another transformation

ρ = ξ + η

2
, σ = ξ − η

2 j
,
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Equation (2.9) may be written as

∂2u

∂ρ2
+ ∂2u

∂σ 2
+ �1 = 0,�1 = 2�

β
. (2.10)

This is the canonical form of elliptical equation.

2.2.2 Canonical Form of Hyperbolic Equations

Since d > 0 for hyperbolic equation, Equation (2.8) has two real solutions ϕ(x, y) = c1 and
ψ(x, y) = c2. By use of the transformation (2.3), Equation (2.4) may be reduced to (2.9).
Similarly, we may introduce another transform

ρ = ξ + η

2
, σ = ξ − η

2

to obtain

∂2u

∂ρ2
− ∂2u

∂σ 2
+ �2 = 0,�2 = 2�

β
. (2.11)

This is the canonical form of hyperbolic equation.

2.2.3 Canonical Form of Parabolic Equations

For parabolic equations, we have d = 0, and Equation (2.8) has only one real solution ϕ(x, y) =
c1. We may choose an arbitrary function ψ(x, y) linearly independent of ϕ(x, y) such that
γ 
= 0. Using (2.3), we have

α = A

(
∂ϕ

∂x

)2

+ 2B
∂ϕ

∂x

∂ϕ

∂y
+ C

(
∂ϕ

∂y

)2

= 0

from which we obtain

√
A

∂ϕ

∂x
+

√
C

∂ϕ

∂y
= 0.

Thus

β = A
∂ϕ

∂x

∂ψ

∂x
+

√
AC

(
∂ϕ

∂x

∂ψ

∂y
+ ∂ϕ

∂y

∂ψ

∂x

)

+ C
∂ϕ

∂y

∂ψ

∂y

=
(√

A
∂ϕ

∂x
+

√
C

∂ϕ

∂y

)(√
A

∂ψ

∂x
+

√
C

∂ψ

∂y

)

= 0
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and (2.4) reduces to

∂2u

∂η2
+ �3 = 0,�3 = 1

γ
�. (2.12)

This is the canonical form of parabolic equation.
The classification of partial differential equations with more than two independent variables

can be carried out in a similar manner (for example, Rubinsten and Rubinsten, 1998).

2.3 Modern Theory of Partial Differential Equations

When different methods (for example, separation of variables) are used to find a solution of
a partial differential equation, a formal solution is often obtained. If the formal solution is
smooth and satisfies the equation as well as the boundary conditions or initial values, it is
called a classical solution in the usual sense. However, a formal solution is not necessarily
a classical solution although it may be practically meaningful. For this reason, we have to
extend the concept of the classical solutions.

2.3.1 Limitation of Classical Solutions

We now use several examples to demonstrate that the smoothness requirement of the classical
solutions may be too stringent in practical situations.

Example 2.2 (the Cauchy problem): Let us consider the Cauchy problem of one-dimensional
wave equation

∂2u(x, t)

∂t2
− a2 ∂2u(x, t)

∂x2
= 0, t > 0,−∞ < x < ∞,

(2.13)

u(x, 0) = ϕ(x),
∂u(x, 0)

∂t
= ψ(x),−∞ < x < ∞.

The formal solution of the above equation is given by the D’Alembert formula:

u(x, t) = 1

2
[ϕ(x − at) + ϕ(x + at)] + 1

2a

x+at∫

x−at

ψ(ξ )dξ,

named after the French mathematician Jean le Rond d’Alembert (1717–1783). This formal
solution becomes a classical solution if

u(x, t) ∈ C2(�) ∩ C1(�̄),� = {(x, t) |t > 0,−∞ < x < ∞} .

Here Cm(�) (m ≥ 1) stands for the set of all functions, which have continuous partial deriva-
tives to the order m, and Cm(�̄) is the set of all u ∈ Cm(�) for which all partial derivatives can
be extended to the closure �̄ of �. It can be shown that if ϕ(x) ∈ C2(R) and ψ(x) ∈ C1(R),
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the formal solution given by the D’Alembert formula is a classical solution. However, the re-
quirement that the initial data ϕ(x) and ψ(x) must be smooth is impractical in some situations.
For instance, if ψ(x) is a rectangular pulse

ψ(x) =
{

1, − � < x < �

0, |x | ≥ �,� > 0

for small �, ψ(x) is not continuous. Nonetheless, it is known that the rectangular pulse is
often used in engineering analysis. Hence we must generalize the concept of solutions. One
of the strategies is to construct smooth sequences {ϕn} ∈ C2(R) and {ψn} ∈ C1(R) such that

lim
n→∞ ϕn = ϕ, lim

n→∞ ψn = ψ (2.14)

hold, and consider a series of Cauchy problems

∂2un(x, t)

∂t2
− a2 ∂2un(x, t)

∂x2
= 0, t > 0,−∞ < x < ∞,

un(x, 0) = ϕn(x),
∂un(x, 0)

∂t
= ψn(x),−∞ < x < ∞

for n = 1, 2, . . .. The classical solutions of these Cauchy problems are then given by the
D’Alembert formula

un(x, t) = 1

2
[ϕn(x − at) + ϕn(x + at)] + 1

2a

x+at∫

x−at

ψn(ξ )dξ .

As n → ∞, un may approach a limit u

lim
n→∞ un = u. (2.15)

In this case, the limit function u can be considered as a generalized solution. This generalized
solution may not have continuous derivatives and thus cannot be considered as a classical
solution. To set the stage for the generalized solution, we first need to clarify the convergence
implied by (2.14) and (2.15). Second, if the limit function u in (2.15) is considered as a
generalized solution of (2.13), we must specify the meaning of the partial derivatives in (2.13).
In other words, we must generalize the concept of derivatives in the usual sense.

Example 2.3 (the Dirichlet problem): Let � be a non-empty open set in RN , N ≥ 1 and
x = (x1, x2, . . . , xN ) ∈ RN . Consider the variational problem

F(u) = 1

2

∫

�

N∑

j=1

(∂u/∂x j )
2dx −

∫

�

f udx = min,

u = g, x ∈ ∂�, (2.16)
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where f and g are continuous functions and dx = dx1dx2 . . . dxn . If we assume that u ∈
C2(�̄), it is easy to show that u is a solution of the following boundary value problem

−∇2u = f, x ∈ �; u = g, x ∈ ∂�. (2.17)

If the solution of (2.16) is not sufficiently smooth, for example, u /∈ C2(�̄), u may not be
a solution of (2.17) in the usual sense. There exist reasonable situations where (2.16) lacks
smooth conditions. In order to investigate these situations, we must add ‘ideal elements’ to the
class of smooth solutions to ensure that the space of solutions is closed (Courant and Hilbert,
1989; Zeidler, 1995), and we also need to understand how the partial derivatives are applied
to these ‘ideal elements’.

2.3.2 Theory of Generalized Functions

The theory of generalized functions was introduced by Schwartz around 1950 to get rid
of the restrictions in classical analysis. He invented a new calculus and extended the con-
cept of ordinary functions while preserving many of the basic operations of analysis, in-
cluding addition, multiplication by C∞ functions, differentiation as well as convolution
and Fourier transforms. The generalized functions have now been widely used in the-
oretical physics, engineering science, differential equations, group theory and functional
analysis.

Let � be a non-empty open set in RN , N ≥ 1 and x = (x1, x2, . . . , xN ) ∈ RN . A multi-
index is denoted by α = (α1, α2, . . . , αN ) with αi ≥ 0, i = 1, 2, . . . , N , and |α| = α1 + α2

+ . . . + αN is the length of α. We use the following shorthand notations

∂αu(x) = ∂ |α|u(x)

∂xα1
1 ∂xα2

2 . . . ∂xαN
N

, xα = xα1
1 · xα2

2 · · · xαN
N .

By convention, we let ∂αu = u if α = (0, 0, . . . , 0). Let Cm(�)m = 1, 2, . . .) stand for the
set of all functions that have continuous partial derivatives of order k = 0, 1, 2, . . . m, and
Cm(�̄) for the set of all u ∈ Cm(�) for which all partial derivatives can be extended to the
closure �̄ of �. If u ∈ Ck(�) (resp. u ∈ Ck(�̄)) for all k(k = 0, 1, 2 . . .), we write u ∈ C∞(�)
(resp. u ∈ C∞(�̄)). Let C∞

0 (�) denote the set of all functions u ∈ C∞(�) that vanish outside
a compact set K of � (Different u may have different K ), and Let L2(�) denote the set of
all functions such that

∫

�

|u|2 dx < ∞. It can be shown that L2(�) is a Hilbert space with the

inner product (u, v) = ∫

�

uv̄dx. In addition, L2(�) is separable, and we have (Adams, 1975):

1. C∞
0 (�) is dense in L2(�).

2. C(�̄) is dense in L2(�).

The support of a function u is defined by supp u(x) = {x |x ∈ �, u(x) 
= 0 }. The limit concept
in C∞

0 (�) can be defined as follows. Let ϕn, ϕ ∈ C∞
0 (�), we say that ϕn approaches ϕ in

C∞
0 (�) if
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1. There exists a compact subset K of open set � such that all ϕn(x) vanish in � − K .
2. For all multi-index α, the sequence {∂αϕn} uniformly converges to ∂αϕ on K

max
x∈K

∣
∣∂αϕn − ∂αϕ

∣
∣ → 0, n → ∞.

The space C∞
0 (�) equipped with the above convergence is denoted by D(�).

Let D′(�) be the dual space of D(�). The element in D′(�) is called the generalized
function. D(�) is called the fundamental space of D′(�). We define the addition and scalar
multiplication in D′(�) as follows:

1. Addition: (T1 + T2)ϕ = T1ϕ + T2ϕ, T1, T2 ∈ D′(�), ϕ ∈ D(�).
2. Scalar multiplication: (aT )ϕ = aT ϕ, T ∈ D′(�), ϕ ∈ D(�).

where a is a real or complex number. Thus D′(�) becomes a linear space. Let {Tn} be a
sequence in D′(�) and T ∈ D′(�). We say that the sequence {Tn} converges to T , denoted by
lim

n→∞ Tn = T , if lim
n→∞ Tn(ϕ) = T (ϕ) for all ϕ ∈ D(�).

The variational lemma plays a fundamental role in the calculus of variations.

Variational lemma: Let � be a nonempty set in RN and u ∈ L2(�). If
∫

�

u(x)ϕ(x)dx = 0

holds for all ϕ ∈ C∞
0 (�), then u(x) = 0 for almost all x ∈ �. If, in addition, u ∈ C(�), then

u(x) = 0 for all x ∈ �.

Example 2.4: The space L2(�) can be identified as a linear subspace of D′(�). For u, v ∈
L2(�), we define

U (ϕ) =
∫

�

u(x)ϕ(x)dx, V (ϕ) =
∫

�

v(x)ϕ(x)dx, ϕ ∈ D(�).

Thus, U and V are generalized functions. It is obvious that u = v implies U = V . Moreover,
the map from u ∈ L2(�) to U ∈ D′(�) is injective. In other words, U = V implies u = v. In
fact, suppose u, v ∈ L2(�) and

U (ϕ) =
∫

�

u(x)ϕ(x)dx =
∫

�

v(x)ϕ(x)dx = V (ϕ).

Then
∫

�

[u(x) − v(x)] ϕ(x)dx = 0 holds for all ϕ ∈ D(�). By the variational lemma, we have

u = v.

The function u ∈ L2(�) is called a representation of U , or simply called a generalized function
(we identify u with U ). For T ∈ D′(�), we formally write

T (ϕ) ≡ 〈T, ϕ〉 ≡
∫

�

T (x)ϕ(x)dx, ϕ ∈ D(�),
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where 〈·, ·〉 is used to denote a bilinear form (pairing). In engineering, we often use T (x)
instead of T to denote the generalized function to explicitly indicate its dependence on x.

Remark 2.2 (Physical explanation of generalized function): Let T (r) be a scalar field distri-
bution in space. If we attempt to measure the field at a specific point r using an instrument,
what is actually obtained is the weighted average of the field distribution in a small area
centered at r. In other words, the measured field is not exactly T (r) but a number given by
〈T, ϕ〉 = ∫

R3

T (r)ϕ(r)dr, where ϕ(r) denotes the weight. Different measurements correspond

to different weights in the function space D(�). If we let the weight ϕ(r) go through all the
elements in D(�), the field T (r) can then be determined by 〈T, ϕ〉. Therefore, the functional
ϕ �→ 〈T, ϕ〉 can be used to determine the field distribution T (r).

Example 2.5: Let y ∈ �. Define 〈δ(x − y), ϕ(x)〉 = ϕ(y), ϕ ∈ D(�). Obviously δ(x − y) is
a generalized function and is called δ-function. Formally we have

∫

�

δ(x − y)ϕ(x)dx = ϕ(y), x, y ∈ �,ϕ ∈ D(�).

The definition of derivative of generalized functions is based on the integration by parts

∫

�

u∂αvdx = (−1)|α|
∫

�

v∂αudx, u, v ∈ D(�).

For T ∈ D′(�) and all multi-index α, the generalized derivative ∂αT is defined by

(∂αT )ϕ = (−1)|α|T (∂αϕ), ϕ ∈ D(�).

It is readily found that ∂αT ∈ D′(�) for all multi-index α.

Example 2.6: The generalized derivative of unit step function

H (x) =
{

0, x < 0
1, x ≥ 0

(2.18)

is H ′(x) = δ(x).

Let T ∈ D′(�), a(x) ∈ C∞(�). The scalar multiplication aT is defined by

(aT )ϕ = T (aϕ), ϕ ∈ D(�).

The Leibniz rule, named after the German mathematician Gottfried Wilhelm Leibniz
(1646–1716), holds for the scalar multiplication

∂α(aT ) =
∑

β≤α

Cβ
α(∂βa) · (∂α−βT ),
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where α and β are multi-index; β ≤ α means |β| ≤ |α|; Cβ
α = C |β|

|α| = |α|!/ |β|!(|α| − |β|)!
is the combinatorial number. For a vector function A(x) =

N∑

i=1
Ai uxi (uxi is the unit vector

along xi direction), we define the generalized divergence and rotation as follows

〈∇ · A, ϕ〉 =
N

∑

i=1

(Ai ,−∂ϕ/∂xi ),

〈∇ × A, ϕ〉 =
N

∑

i=1

N
∑

j=1

N
∑

k=1

εi jk(Ak ,−∂ϕ/∂x j )uxi ,

where εi jk = uxi · (ux j × uxk ).

Example 2.7: Consider a function f (x) which is differentiable (in the usual sense) except for
some finite jump discontinuities at point set {xi }. The generalized derivative of f (x) is

d f

dx
=

{
d f

dx

}

+
∑

i

�i f δ(x − xi ),

where {d f/dx} denotes the derivative in the usual sense and �i f = f (xi + 0) − f (xi − 0).
The above relation can be generalized to multivariable functions. Let f (r) be differentiable
except on the surface S ⊂ R3. The generalized derivative of f (r) is

∂ f

∂xi
=

{
∂ f

∂xi

}

+ ni� f δ(S),

where ni is the projection of the unit outward normal un of S along the xi -axis; � f is the jump
of f when crossing S along the unit outward normal; δ(S) is a generalized function defined by

〈δ(S), ϕ(r)〉 =
∫

R3

δ(S)ϕ(r)dr =
∫

S

ϕ(r)d S(r).

In R3, we have

∇ f = {∇ f } + un� f δ(S),

∇ · e = {∇ · e} + �(un · e)δ(S), (2.19)

∇ × e = {∇ × e} + �(un × e)δ(S).

These relations are useful when dealing with current or charge distribution on a surface. If the
sources contain current and charge on the surface S, we write

J = {J} + Jsδ(S), ρ = {ρ} + ρsδ(S). (2.20)
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Making use of (2.19) and (2.20), Maxwell equations can be written as

{∇ × H} + �(un × H)δ(S) = {J} + Jsδ(S) + ∂D/∂t,

{∇ × E} + �(un × E)δ(S) = −∂B/∂t,

{∇ · D} + �(un · D)δ(S) = {ρ} + ρsδ(S),

{∇ · B} + �(un · B)δ(S) = 0.

Thus, we have

Js = �(un × H),�(un × E) = 0,

�(un · D) = ρs,�(un · B) = 0.

These are the boundary conditions on the surface between two different media.

Let ϕ ∈ C∞(RN ) and α, p be multi-index. The function ϕ is called rapidly decreasing at
infinity if

lim
|x|→∞

xα∂pϕ(x) = 0

holds for all α, p. The set of all rapidly decreasing functions is denoted by S(RN ), which
forms a linear space under usual addition and scalar multiplication. We now introduce the
convergence in S(RN ). Let ϕn, ϕ ∈ S(RN ), we say ϕn approaches ϕ in S(RN ) if the sequence
{∂αϕn} for all multi-index α uniformly converges to ∂αϕ in RN

max
x∈RN

∣
∣∂αϕn − ∂αϕ

∣
∣ → 0, n → ∞.

The set S(RN ) equipped with the above convergence is called the rapid decreasing function
space. The dual space of S(RN ) is denoted by S′(RN ), whose elements are called generalized
functions. S(RN ) is called the fundamental space of S′(RN ). Evidently we have C∞

0 (RN ) ⊂
S(RN ) ⊂ C∞(RN ); C∞

0 (RN ) is dense in S(RN ); and S(RN ) is dense in C∞(RN ). All the
operations (such as limit, derivative, etc.) in S′(RN ) can be defined in the same way as in
D′(�). It can be shown that D′(RN ) ⊃ S′(RN ).

In classical analysis, the convolution of two functions f (x) and g(x) is defined by

f ∗ g(x) =
∫

RN

f (y)g(x − y)dy.
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If f ∗ g(x) are considered as the generalized function in D′(RN ) or S′(RN ), then for ϕ ∈ D(RN )
or S(RN ) we have

〈 f ∗ g(x), ϕ(x)〉 =
∫

RN

dxϕ(x)
∫

RN

f (y)g(x − y)dy

=
∫

RN

dx f (x)
∫

RN

g(y)ϕ(x + y)dy

= 〈 f (x), 〈g(y), ϕ(x + y)〉〉.

It is readily found that

〈 f (x), 〈g(y), ϕ(x + y)〉〉 = 〈g(x), 〈 f (y), ϕ(x + y)〉〉.

Let T1 and T2 be two generalized functions. If the operation T1 ∗ T2 defined by

〈T1 ∗ T2(x), ϕ(x)〉 = 〈T1(x), 〈T2(y), ϕ(x + y)〉〉, ϕ ∈ D(RN ) or S(RN )

exists, it is called the convolution of generalized function T1 and T2. It is easy to see that

1. T1 ∗ T2 = T2 ∗ T1, (T1 ∗ T2) ∗ T3 = T1 ∗ (T2 ∗ T3).

2. δ ∗ T = T ∗ δ = T , ∂(δ∗T )
∂xi

= T ∗ ∂δ
∂xi

= ∂T
∂xi

.

3. ∂(T1∗T2)
∂xi

= ∂T1
∂xi

∗ T2 = T1 ∗ ∂T2
∂xi

.

We recall that the classical Fourier transform (named after the French mathematician Jean
Baptiste Joseph Fourier, 1768–1830) and the inverse Fourier transform are defined respectively
by

F( f )(ξ) =
∫

RN

f (x)e− jx·ξ dx,F−1(g)(x) = 1

(2π )N

∫

RN

g(ξ)e jx·ξ dξ,

where x = (x1, x2, . . . , xN ) and ξ = (ξ1, ξ2, . . . ,ξN ). Some important properties of Fourier
transform can be easily found and are summarized below:

1. Differential properties: F(∂α f ) = j |α|ξαF( f ),F( − j |α|xα f ) = ∂αF( f );
2. Convolution properties: F( f ∗ g) = F( f ) · F(g),F( f · g) = (2π )−NF( f ) ∗ F(g);
3. Parseval equality:

∫

RN

f · ḡdx = (2π )−N
∫

RN

F( f ) · F(g)dξ.

The Fourier transform can be extended to the generalized functions. For T ∈ S′(RN ), its
Fourier transform, denoted F(T ), is defined by

〈F(T ), ϕ〉 = 〈T,F(ϕ)〉, ϕ ∈ S(RN ).
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The inverse Fourier transform of the generalized function T , denoted F−1(T ), is defined by

〈F−1(T ), ϕ〉 = 〈T,F−1(ϕ)〉, ϕ ∈ S(RN ).

The differential properties and convolution properties still hold for the generalized Fourier
transform.

2.3.3 Sobolev Spaces

A differential operator defined on C[a, b] is unbounded in the usual norm ‖x‖ = max
a≤x≤b

|u(x)|
on C[a, b], but it may be bounded if we adopt a different norm. For example, if we introduce
the norm

‖u‖1 =
⎡

⎣

b∫

a

(|u|2 + ∣
∣u ′∣∣2

)dx

⎤

⎦

1/2

on the space C[a, b], the differentiation is a continuous operator on the space C[a, b]. The
space C[a, b] equipped with the above norm is not complete. However, if the function u is
considered as a generalized function and the derivative is understood in the generalized sense,
the space of the generalized functions with the norm ‖·‖1 is complete. Such spaces are called
Sobolev spaces, named after the Russian mathematician Sergei Lvovich Sobolev (1908–1989),
and they play a fundamental role in modern theory of partial differential equations. In terms
of the generalized function theory, the Sobolev spaces H m(�) are defined by

H m(�) = {

u| u ∈ L2(�), ∂αu ∈ L2(�), |α| ≤ m
}

with an inner product

(u, v)m =
∑

|α|≤m

(∂αu, ∂αv), u, v ∈ H m(�) (2.21)

where ∂α denotes the generalized derivative and (·, ·) is the inner product of L2(�). The norm
corresponding to (2.21) is denoted by ‖·‖m . It is easy to show that H m(�) is a Hilbert space,
and we have Hm1 ⊂ H m2 for m1 ≥ m2 ≥ 0. Evidently, C∞

0 (�) ⊂ H m(�). The completion of
C∞

0 (�) in H m(�) in the norm on H m(�) is denoted by H m
0 (�), that is H m

0 (�) = C∞
0 (�).

Thus, H m
0 (�) is also a Hilbert space and C∞

0 (�) is dense in Hm
0 (�). For m = 1, we have

H 1(�) = {

u| u ∈ L2(�), ∂u ∈ L2(�)
}

,

(u, v)1 =
∫

�

(
N

∑

i=1

∂u

∂xi
· ∂v̄

∂xi
+ uv̄

)

dx,

‖u‖1 =
⎧

⎨

⎩

∫

�

[
N

∑

i=1

|∂u/∂xi |2 + |u|2
]

dx

⎫

⎬

⎭

1/2

.
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We can also define the Sobolev spaces H s(�), where s can be factional and negative values.
For 0 < s = [s] + λ, 0 < λ < 1, where [s] denotes the integral part of s, we define H s(�) to
be the closure of C∞(�) with respect to the norm

‖u‖2
s = ‖u‖2

[s] +
∑

|α|=[s]

∫

�

∫

�

|∂αu(x) − ∂αu(y)|2
|x − y|N+2λ

dxdy, (2.22)

where N is the dimension of �. Similarly, Hs
0 (�) is the closure of C∞

0 (�) with respect to the
norm (2.22).

To solve the partial differential equations, we often need to know the boundary values of
the unknown functions. If u(x) ∈ C(�̄), the restriction of the function u(x) to the boundary
� denoted u(x)|�, is called the trace of the function u(x) on �. Obviously u(x)|� ∈ L2(�).
If u(x) ∈ L2(�), u(x) may not be continuous on � and the above definition of trace is not
valid. However, we can make use of a sequence of smooth functions {un(x)} defined in �̄ to
approximate the function u(x). The trace of the function u(x) is defined as the limit of the
traces {un(x)|�}. Let � be a bounded region in RN with boundary �. For u(x) ∈ Cm(�̄), we
define the trace operator as follows

γ0u = u|� , γ j u = ∂ j u

∂n j

∣
∣
∣
∣
�

= γ0
∂ j u

∂n j
, j = 1, 2, . . . , m − 1, (2.23)

where ∂ j u/∂n j denotes the j th derivative of u in the direction of un (the unit outward normal
of �). The trace operators γ j can be extended to bounded linear operators mapping from
H m(�) onto H m− j−1/2(�). The kernel of the trace operator γ j (u) is Hm

0 (�), γ j [Hm
0 (�)] = 0,

j = 0, 1, 2, . . . , m − 1 (Adams, 1975).

2.3.4 Generalized Solutions of Partial Differential Equations

Many practical situations do not admit sufficiently smooth solutions. For this reason, we
must generalize the concept of solutions. Mathematically, the generalized solution and weak
solution come naturally from the direct method of the calculus of variations as well as the
problems where the solution is constructed as the limit of an approximate procedure. Let us
consider the partial differential equation

Âu(x) = f (x), x ∈ �, (2.24)

where Â = ∑

|α|≤m
aα(x)∂α is a linear partial differential operator of order m. The coefficients

aα(x) and the source term f are assumed to be smooth enough. The classical solution of
(2.24) requires that u ∈ Cm(�), f ∈ C(�). Thus, Âu ∈ C(�). It follows from the integration
by parts that

( Âu, ϕ) = (u, Â∗ϕ) = ( f, ϕ), ϕ ∈ C∞
0 (�), u ∈ Cm(�), (2.25)
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where (·, ·) is the inner product of L2(�) and Â∗ is the formal adjoint of Â:

Â∗ϕ =
∑

|α|≤m

(−1)|α|∂α [āα(x)ϕ].

If u is a classical solution of (2.24) with u ∈ Cm(�) and Âu ∈ C(�), we have

(u, Â∗ϕ) = ( f, ϕ), ϕ ∈ C∞
0 (�), u ∈ Cm(�). (2.26)

If u /∈ Cm(�) or f /∈ C(�), u is not a classical solution of (2.24), and it does not satisfy (2.24)
in the usual sense. However, it may satisfy (2.26). For f ∈ L2(�), if there exists u ∈ L2(�)
such that

(u, Â∗ϕ) = ( f, ϕ) (2.27)

holds for all ϕ ∈ C∞
0 (�), u is called a weak solution of (2.24), and (2.27) is called the weak

formulation. Weak solutions are important because many differential equations encountered
in practice do not have smooth solutions. The only way of solving such equations is through the
weak formulation. Notice that the above approach does not involve the concept of generalized
derivatives. In the case of linear problems, especially for elliptic and parabolic equations, it is
often possible to show that solutions in the weakest sense (2.27) are classical solutions. Let
f ∈ D′(�). If there exists u ∈ D′(�) such that Âu = f in D′(�) (all the derivatives in Â are
viewed as generalized derivatives), u is called a generalized solution. If u ∈ L2(�) is a weak
solution of (2.24), it can be considered as a generalized function in D′(�)

〈u, ϕ〉 =
∫

�

u(x)ϕ̄(x)dx = (u, ϕ), ϕ ∈ D(�).

Similarly, f ∈ L2(�) can also be viewed as a generalized function

〈 f, ϕ〉 =
∫

�

f (x)ϕ̄(x)dx = ( f, ϕ), ϕ ∈ D(�).

If the coefficients aα(x) are sufficiently smooth, then

〈u, Â∗ϕ〉 =
〈

u,
∑

|α|≤m

(−1)|α|∂α[āα(x)ϕ]

〉

=
∑

|α|≤m

(−1)|α|〈u, ∂α[āα(x)ϕ]〉 =
∑

|α|≤m

〈aα(x)∂αu, ϕ〉

=
〈

∑

|α|≤m

aα(x)∂αu, ϕ

〉

= 〈 Âu, ϕ〉, ϕ ∈ D(�).
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From (2.27), it follows that

〈 Âu, ϕ〉 = 〈 f, ϕ〉, ϕ ∈ D(�),

which implies Âu = f in D′(�). Therefore, a weak solution is also a generalized solution.
The inverse is not necessarily true. The modern theory of partial differential equations is based
on the notion of generalized solutions. The strategy is to break up the investigation of partial
differential equations into two steps:

1. Prove the existence of generalized solutions by the method of functional analysis.
2. Prove the regularity of generalized solutions, that is prove that the generalized solutions

are also classical solutions by assuming that the conditions (such as the boundary data and
the source function) are sufficiently regular.

2.4 Method of Separation of Variables

The method of separation of variables is also called the method of eigenfunction expansion.
The basic idea of separation of variables is to seek a solution of the form of a product
of functions, each of which depends on one variable only, so that the solution of original
partial differential equations may reduce to the solution of ordinary differential equations.
We use the Helmholtz equation to illustrate the procedure. The Helmholtz equation, named
after the German physicist Hermann Ludwig Ferdinand von Helmholtz (1821–1894), is the
time-independent form of wave equation, and is given by

(∇2 + k2)u = 0, (2.28)

where k is a constant. When k is zero, the Helmholtz equation reduces to the Laplace equation,
named after the French mathematician Pierre-Simon Marquis de Laplace (1749–1827). The
Helmholtz equation is separable in eleven orthogonal coordinate systems (Eisenhart, 1934).

2.4.1 Rectangular Coordinate System

In the rectangular coordinate system, Equation (2.28) becomes

∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
+ k2u = 0. (2.29)

We seek a solution in the form

u = X (x)Y (y)Z (z). (2.30)

Substituting (2.30) into (2.29) gives

1

X

d2 X

dx2
+ 1

Y

d2Y

dy2
+ 1

Z

d2 Z

dz2
+ k2 = 0. (2.31)
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Since k is a constant and each term depends on one variable only and can change independently,
the left-hand side of (2.31) can sum to zero for all coordinate values only if each term is a
constant. Thus, we have

d2 X

dx2
+ k2

x X = 0,

d2Y

dy2
+ k2

yY = 0, (2.32)

d2 Z

dz2
+ k2

z Z = 0,

where kx , ky and kz are separation constants and satisfy

k2
x + k2

y + k2
z = k2. (2.33)

The solutions of (2.32) are harmonic functions, denoted by X (kx x), Y (ky y) and Z (kzz), and
they are any linear combination of the following independent harmonic functions:

eikαα, e−ikαα, cos kαα, sin kαα(α = x, y, z). (2.34)

Consequently (2.30) may be expressed as

u = X (kx x)Y (ky y)Z (kzz). (2.35)

The separation constants kx , ky and kz are also called eigenvalues, and they are determined
by the boundary conditions. The corresponding solutions (2.35) are called eignefunctions
or elementary wavefunctions. The general solution of (2.29) can be expressed as a linear
combination of the elementary wavefunctions.

2.4.2 Cylindrical Coordinate System

In cylindrical coordinate system, Equation (2.28) can be written as

1

ρ

∂

∂ρ

(

ρ
∂u

∂ρ

)

+ 1

ρ2

∂2u

∂ϕ2
+ ∂2u

∂z2
+ k2u = 0. (2.36)

By the method of separation of variables, the solutions may be assumed to be

u = R(ρ)�(ϕ)Z (z). (2.37)
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Introducing (2.37) into (2.36) yields

d2 R

dρ2
+ 1

ρ

d R

dρ
+

(

µ2 − p2

ρ2

)

R = 0,

d2�

dϕ2
+ p2� = 0, (2.38)

d2 Z

dz2
+ β2 Z = 0,

where µ, p and β are separation constants and satisfy

β2 + µ2 = k2. (2.39)

The first equation of (2.38) is the Bessel equation, named after the German mathematician
Friedrich Wilhelm Bessel (1784–1846), whose solutions are Bessel functions:

Jp(µρ), Np(µρ), H (1)
p (µρ), H (2)

p (µρ),

where Jp(µρ) and Np(µρ) are the Bessel functions of the first and second kind, H (1)
p (µρ) and

H (2)
p (µρ) are the Bessel functions of the third and fourth kind, also called Hankel functions of

the first and second kind respectively, named after the German mathematician Hermann Hankel
(1839–1873). The solutions of second and third equation of (2.38) are harmonic functions.
Note that only Jp(µρ) is finite at ρ = 0. The separation constants µ and p are determined by
the boundary conditions. For example, if the field u is finite and satisfies the homogeneous
Dirichlet boundary condition u = 0 at ρ = a, the separation constant µ is determined by
Jp(µρ) = 0. If the cylindrical region contains all ϕ from 0 to 2π , the separation constant p is
usually determined by the requirement that the field is single-valued, that is �(0) = �(2π ).
In this case p must be integers. If the cylindrical region only contains a circular sector, p will
be fractional numbers.

2.4.3 Spherical Coordinate System

In spherical coordinate system, Equation (2.28) can be expressed as

1

r2

∂

∂r

(

r2 ∂u

∂r

)

+ 1

r2 sin θ

∂

∂θ

(

sin θ
∂u

∂θ

)

+ 1

r2 sin θ

∂2u

∂ϕ2
+ k2u = 0. (2.40)

By means of the separation of variables, we let

u = R(r )�(θ )�(ϕ). (2.41)
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Substitution of (2.41) into (2.40) leads to

1

R

d

dr

(

r2 d R

dr

)

+ k2r2 = β2,

1

� sin θ

d

dθ

(

sin θ
d�

dθ

)

− m2

sin2 θ
= −β2, (2.42)

d2�

dϕ2
+ m2� = 0.

Let x = cos θ and P(x) = �(θ ), the second equation of (2.42) becomes

(1 − x2)
d2 P

dx2
− 2x

d P

dx
+

(

β2 − m2

1 − x2

)

P = 0. (2.43)

This is called the Legendre equation, named after the French mathematician Adrien-Marie
Legendre (1752–1833). The points x = ±1 are singular. Equation (2.43) has two linearly
independent solutions and can be expressed as a power series at x = 0. In general, the series
solution diverges at x = ±1. But if we let β2 = n(n + 1), n = 0, 1, 2 . . . , the series will be
finite at x = ±1 and have finite terms. Thus the separation constant β is determined naturally
and (2.42) can be written as

d

dr

(

r 2 d R

dr

)

+ [

k2r2 − n(n + 1)
]

R = 0,

(1 − x2)
d2 P

dx2
− 2x

d P

dx
+

[

n(n + 1) − m2

1 − x2

]

P = 0, (2.44)

d2�

dϕ2
+ m2� = 0.

The solutions of the first equation of (2.44) are spherical Bessel functions

jn(kr ) =
√

π

2kr
Jn+1/2(kr ), nn(kr ) =

√
π

2kr
Nn+1/2(kr ),

h(1)
n (kr ) =

√
π

2kr
H (1)

n+1/2(kr ), h(2)
n (kr ) =

√
π

2kr
H (2)

n+1/2(kr ).

The solutions of the second equation of (2.44) are associated Legendre functions

Pm
n (cos θ ), Qm

n (cos θ ).

The solutions of the third equation of (2.44) are harmonic functions. Note that in spherical
coordinate system the separation coefficients are not related.
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2.5 Method of Green’s Function

Physically, the Green’s function represents the field produced by a point source. Through the
use of the Green’s function, the solution of Maxwell equations can be represented by an integral
defined over the source region or on a closed surface enclosing the source. Mathematically,
the solution of a partial differential equation L̂u = f can be expressed as u = L̂−1 f , where
L̂−1 stands for the inverse of L̂ and is often represented by an integral operator whose kernel
is the Green’s function.

2.5.1 Fundamental Solutions of Partial Differential Equations

Consider a partial differential operator with constant coefficients: Â = ∑

|α|≤m
aα∂α. If there

exists a generalized function G ∈ D′(RN ) such that Â(G) = −δ, G is called the fundamental
solution or Green’s function of the equation Â(G) = f . If f is a function such that u =
−G ∗ f exists as a generalized function, then u is a generalized solution of Â(u) = f . Let
ρ = (x, y), r = (x, y, z) and v be a constant. The fundamental solutions of wave equations
are summarized below:

1. Two-dimensional Laplace equation

∇2G(ρ,ρ′) = −δ(ρ − ρ′), G(ρ,ρ′) = − 1

2π
ln

∣
∣ρ − ρ′∣∣ .

2. Three-dimensional Laplace equation

∇2G(r, r′) = −δ(r − r′), G(r, r′) = 1

4π |r − r′| .

3. Two-dimensional Helmholtz equation

(∇2 + k2)G(ρ,ρ′) = −δ(ρ − ρ′), G(ρ,ρ′) = 1

4 j
H (2)

0 (k
∣
∣ρ − ρ′∣∣).

4. Three-dimensional Helmholtz equation

(∇2 + k2)G(r, r′) = −δ(r − r′), G(r, r′) = e− jk|r−r′|
4π |r − r′| .

5. One-dimensional wave equation

⎧

⎪⎨

⎪⎩

(
∂2

∂z2
− 1

v2

∂2

∂t2

)

G(z, z′; t, t ′) = −δ(z − z′)δ(t − t ′)

G(z, z′; t, t ′) = 0, t < t ′
,

G(z, z′; t, t ′) = v

2
H (t − t ′ − ∣

∣z − z′∣∣ /v).
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6. Two-dimensional wave equation

⎧

⎪⎨

⎪⎩

(

∇2 − 1

v2

∂2

∂t2

)

G(ρ,ρ′; t, t ′) = −δ(ρ − ρ′)δ(t − t ′)

G(ρ,ρ′; t, t ′) = 0, t < t ′
,

G(ρ,ρ′; t, t ′) = H (t − t ′ − ∣
∣ρ − ρ′∣∣ /v)

2π
√

(t − t ′)2 − |ρ − ρ′| /v
.

7. Three-dimensional wave equation

⎧

⎪⎨

⎪⎩

(

∇2 − 1

v2

∂2

∂t2

)

G(r, r′; t, t ′) = −δ(r − r′)δ(t − t ′)

G(r, r′; t, t ′) = 0, t < t ′
,

G(r, r′; t, t ′) = δ(t − t ′ − ∣
∣r − r′∣∣ /v)

4π |r − r′| .

In the above, H (x) is the unit step function. More examples of Green’s functions and their
derivations can be found in Chapter 8.

2.5.2 Integral Representations of Arbitrary Fields

The integral expressions of the fields are important for the study of boundary value problems,
especially for the radiation and scattering problems. The results obtained in this section are
applicable to any time-domain fields, not necessarily of electromagnetic origin.

Representation theorem for time-domain fields: Let V be a bounded region with boundary
S, and un be the unit outward normal to S. For any time-dependent smooth vector fields e and
h, we have

−∇ ×
∞∫

−∞
dt ′

∫

S

G(r, r′; t, t ′)un(r′) × e(r′, t ′)d S(r′)

+∇
∞∫

−∞
dt ′

∫

S

G(r, r′; t, t ′)un(r′) · e(r′, t ′)d S(r′)

± ∂

v∂t

∞∫

−∞
dt ′

∫

S

G(r, r′; t, t ′)un(r′) × h(r′, t ′)d S(r′)

+∇ ×
∞∫

−∞
dt ′

∫

V

{

G(r, r′; t, t ′)
[

∇′ × e(r′, t ′) ± ∂h(r′, t ′)
v∂t ′

]}

dV (r′)
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−∇
∞∫

−∞
dt ′

∫

V

[

G(r, r′)∇′ · e(r′, t ′)
]

dV (r′)

∓ ∂

v∂t

∞∫

−∞
dt ′

∫

V

G(r, r′; t, t ′)
[

∇′ × h(r′, t ′) ∓ ∂e(r′, t ′)
v∂t ′

]

dV (r′)

=
{

e(r, t), r ∈ V

0, r ∈ R3 − V
(2.45)

where G(r, r′; t, t ′) = δ(t − t ′ − ∣
∣r − r′∣∣ /v)/4π

∣
∣r − r′∣∣ is Green’s function of the wave equa-

tion in three-dimensional space.

Equation (2.45) is called the Stratton–Chu formula, named after the American scientist
Julius Adams Stratton (1901–1994) and the Chinese scientist Lan Jen Chu (1913–1973), and
can be derived as follows. For an arbitrary field point r ∈ V shown in Figure 2.1, the following
vector identities can easily be established

∇′ × [

G(r, r′; t, t ′)e(r′, t ′)
] = G(r, r′; t, t ′)∇′ × e(r′, t ′)

−∇ × [

G(r, r′; t, t ′)e(r′, t ′)
]

,

∇′ · [G(r, r′; t, t ′)e(r′, t ′)
] = G(r, r′; t, t ′)∇′ · e(r′, t ′)

−∇ · [G(r, r′; t, t ′)e(r′, t ′)
]

,

∓∇′ ×
[

G(r, r′; t, t ′)
∂h(r′, t ′)

v∂t ′

]

= ∓G(r, r′; t, t ′)∇′ × ∂h(r′, t ′)
v∂t ′

±∇ ×
[

G(r, r′; t, t ′)
∂h(r′, t ′)

v∂t ′

]

, (2.46)

un

S

V

r

Figure 2.1 An arbitrary region
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where the property ∇G = −∇′G has been used. Applying ∇× to the first equation, −∇ to
the second, and using the relation ∇ × ∇× = −∇2 + ∇∇·, we obtain

∇ × ∇′ × [

G(r, r′; t, t ′)e(r′, t ′)
]

= ∇ × [

G(r, r′; t, t ′)∇′ × e(r′, t ′)
] − ∇∇ · [G(r, r′; t, t ′)e(r′, t ′)

]

+
[

∂2G(r, r′; t, t ′)
v2∂t ′2 − δ(r − r′)δ(t − t ′)

]

e(r′, t ′),

and

−∇∇′ · [G(r, r′; t, t ′)e(r′, t ′)
] = −∇ [

G(r, r′; t, t ′)∇′ · e(r′, t ′)
]

+∇∇ · [G(r, r′; t, t ′)e(r′, t ′)
]

.

Adding the above two equations as well as the last equation of (2.46) yields

∇ × ∇′ × [

G(r, r′; t, t ′)e(r′, t ′)
] − ∇∇′ · [G(r, r′; t, t ′)e(r′, t ′)

]

∓∇′ ×
[

G(r, r′; t, t ′)
∂h(r′, t ′)

v∂t ′

]

= ∇ ×
{

G(r, r′; t, t ′)
[

∇′ × e(r′, t ′) ± ∂h(r′, t ′)
v∂t ′

]}

− ∇ [

G(r, r′; t, t ′)∇′ · e(r′, t ′)
]

∓G(r, r′; t, t ′)∇′ × ∂h(r′, t ′)
v∂t ′ + ∂2G(r, r′; t, t ′)

v2∂t ′2 e(r′, t ′) − δ(r − r′)δ(t − t ′)e(r′, t ′).

Taking the integration over V and interchanging differentiation and integration, we obtain

∇ ×
∞∫

−∞
dt ′

∫

S

un(r′) × e(r′)G(r, r′; t, t ′)d S(r′)

−∇
∞∫

−∞
dt ′

∫

S

un(r′) · e(r′, t ′)G(r, r′; t, t ′)d S(r′)

∓
∞∫

−∞
dt ′

∫

S

un(r′) ×
[

G(r, r′; t, t ′)
∂h(r′, t ′)

v∂t ′

]

d S(r′)

= ∇ ×
∞∫

−∞
dt ′

∫

V

{

G(r, r′; t, t ′)
[

∇′ × e(r′, t ′) ± ∂h(r′, t ′)
v∂t ′

]}

dV (r′)

−∇
∞∫

−∞
dt ′

∫

V

G(r, r′)∇′ · e(r′)dV (r′)
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∓
∞∫

−∞
dt ′

∫

V

[

G(r, r′; t, t ′)∇′ × ∂h(r′, t ′)
v∂t ′ ∓ ∂2G(r, r′; t, t ′)

v2∂t ′2 e(r′, t ′)
]

dV (r′)

=
{

e(r, t), r ∈ V

0, r ∈ R3 − V
.

Equation (2.45) can be obtained by making use of ∂G/∂t = −∂G/∂t ′ and the following
calculations

∞∫

−∞
dt ′

∫

V

[

G(r, r′; t, t ′)∇′ × ∂h(r′, t ′)
v∂t ′ ∓ ∂2G(r, r′; t, t ′)

v2∂t ′2 e(r′, t ′)
]

dV (r′)

= ∂

v∂t

∞∫

−∞
dt ′

∫

V

G(r, r′; t, t ′)
[

∇′ × h(r′, t ′) ∓ ∂e(r′, t ′)
v∂t ′

]

dV (r′),

∞∫

−∞
dt ′

∫

S

un(r′) ×
[

G(r, r′; t, t ′)
∂h(r′, t ′)

v∂t ′

]

d S(r′)

= ∂

v∂t

∞∫

−∞
dt ′

∫

S

G(r, r′; t, t ′)un(r′) × h(r′, t ′)d S(r′).

In a similar manner, we can prove the Stratton–Chu formula for time-harmonic fields.

Representation theorem for time-harmonic fields: Let V be a bounded region with boundary
S, and un be the outward unit normal to S. For any time-independent smooth vector fields e
and h, we have the Stratton–Chu formula

−∇ ×
∫

S

G(r, r′)un(r′) × e(r′)d S(r′) + ∇
∫

S

G(r, r′)un(r′) · e(r′)d S(r′)

± jk
∫

S

G(r, r′)un(r′) × h(r′)d S(r′)

+∇ ×
∫

V

G(r, r′)
[∇′ × e(r′) ± jkh(r′)

]

dV (r′)

−∇
∫

V

G(r, r′)∇ · e(r′)dv(r′) ∓ jk
∫

V

G(r, r′)
[∇′ × h(r′) ∓ jke(r′)

]

dV (r′)

=
{

e(r, t), r ∈ V

0, r ∈ R3 − V
(2.47)
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where G(r, r′) = e− jk|r−r′|/4π
∣
∣r − r′∣∣ is Green’s function of the Helmholtz equation in three-

dimensional space.

2.5.3 Integral Representations of Electromagnetic Fields

In our preceding discussions, the field quantities e and h do not have to satisfy the Maxwell
equations. Let V be a region of finite extension, which contains the sources J and Jm . For the
fields satisfying the time-domain Maxwell equations

∇ × H(r, t) − 1

vη

∂E(r, t)

∂t
= J(r, t),

∇ × E(r, t) + η

v

∂H(r, t)

∂t
= −Jm(r, t),

∇ · E(r, t) = ηvρ(r, t),∇ · H(r, t) = v

η
ρm(r, t),

where v = 1/
√

µε and η = √
µ/ε, we let

e = √
εE, h = √

µH (2.48)

in (2.45) to obtain

∇ ×
∞∫

−∞
dt ′

∫

S

G(r, r′; t, t ′)Jms(r′, t ′)d S(r′) + ηv∇
∞∫

−∞
dt ′

∫

S

G(r, r′; t, t ′)ρs(r′, t ′)d S(r′)

+η

v

∂

∂t

∞∫

−∞
dt ′

∫

S

G(r, r′; t, t ′)Js(r′, t ′)d S(r′)

−∇ ×
∞∫

−∞
dt ′

∫

V

G(r, r′; t, t ′)Jm(r′, t ′)dV (r′) − ηv∇
∞∫

−∞
dt ′

∫

V

[

G(r, r′; t, t ′)ρ(r′, t ′)
]

dV (r′)

−η

v

∂

∂t

∞∫

−∞
dt ′

∫

V

G(r, r′; t, t ′)J(r′, t ′)dV (r′) =
{

E(r, t), r ∈ V

0, r ∈ R3 − V
(2.49)

where Js = un × H, Jms = −un × E, ρs = εun · E, ρms = µun · H. Interchanging e and h in
(2.45) and using (2.48) yields

−∇ ×
∞∫

−∞
dt ′

∫

S

G(r, r′; t, t ′)Js(r′, t ′)d S(r′) + v

η
∇

∞∫

−∞
dt ′

∫

S

ρms(r′, t ′)G(r, r′; t, t ′)d S(r′)

+ 1

ηv

∂

∂t

∞∫

−∞
dt ′

∫

S

G(r, r′; t, t ′)Jms(r′, t ′)d S(r′)
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+∇ ×
∞∫

−∞
dt ′

∫

V

G(r, r′; t, t ′)J(r′, t ′)dV (r′) − v

η
∇

∞∫

−∞
dt ′

∫

V

G(r, r′)ρm(r′, t ′)dV (r′)

− 1

ηv

∂

∂t

∞∫

−∞
dt ′

∫

V

G(r, r′; t, t ′)Jm(r′, t ′)dV (r′) =
{

H(r, t), r ∈ V

0, r ∈ R3 − V
. (2.50)

Similarly, for the time-harmonic fields satisfying the Maxwell equations,

∇ × H(r) − jω
1

vη
E(r) = J(r),

∇ × E(r) + jω
η

v
H(r) = −Jm(r),

∇ · E(r) = ηvρ(r),∇ · H(r) = v

η
ρm(r),

we may use (2.47) to obtain

jkη

∫

S

G(r, r′)Js(r′)d S(r′) + ∇ ×
∫

S

G(r, r′)Jms(r′)d S(r′)

+ηv∇
∫

S

G(r, r′)ρs(r′)d S(r′) − jkη

∫

V

G(r, r′)J(r′)dV (r′)

(2.51)
−∇ ×

∫

V

G(r, r′)Jm(r′)dV (r′) − ηv∇
∫

V

G(r, r′)ρ(r′)dV (r′)

=
{

E(r), r ∈ V

0, r ∈ R3 − V
,

j
k

η

∫

S

G(r, r′)Jms(r′)d S(r′) − ∇ ×
∫

S

G(r, r′)Js(r′)d S(r′)

+v

η
∇

∫

S

ρms(r′)G(r, r′)d S(r′) − j
k

η

∫

V

G(r, r′)Jm(r′)dV (r′)

(2.52)
+∇ ×

∫

V

G(r, r′)J(r′)dV (r′) − v

η
∇

∫

V

G(r, r′)ρm(r′)dV (r′)

=
{

H(r), r ∈ V

0, r ∈ R3 − V
.
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The electromagnetic fields are called radiating if they satisfy

lim
r→∞ r (ur × E − ηH) = 0, (2.53)

where r = |r|. Equation (2.53) is called the Silver-Müller radiation condition, named after
the American scientist Samuel Silver (1915–1976) and the German mathematician Claus
Müller (1920–2008). Let all the sources be confined in V0, and S be any closed surface that
encloses V0. Using the Silver-Müller radiation condition, the time-domain radiating fields in
R3 − V0 can be expressed as

E(r, t) = −∇ ×
∫

S

Jms(r′, t − R/v)

4π R
d S(r′) − ηv∇

∫

S

ρs(r′, t − R/v)

4π R
d S(r′)

(2.54)

−η

v

∂

∂t

∫

S

Js(r′, t − R/v)

4π R
d S(r′),

H(r, t) = ∇ ×
∫

S

Js(r′, t − R/v)

4π R
d S(r′) − v

η
∇

∫

S

ρms(r′, t − R/v)

4π R
d S(r′)

(2.55)

− 1

ηv

∂

∂t

∫

S

Jms(r′, t − R/v)

4π R
d S(r′),

E(r, t) = −∇ ×
∫

V0

Jm(r′, t − R/v)

4π R
dV (r′) − ηv∇

∫

V0

ρ(r′, t − R/v)

4π R
dV (r′)

(2.56)

−η

v

∂

∂t

∫

V0

J(r′, t − R/v)

4π R
dV (r′),

H(r, t) = ∇ ×
∫

V0

J(r′, t − R/v)

4π R
dV (r′) − v

η
∇

∫

V0

ρm(r′, t − R/v)

4π R
dV (r′)

(2.57)

− 1

ηv

∂

∂t

∫

V0

Jm(r′, t − R/v)

4π R
dV (r′),
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where R = ∣
∣r − r′∣∣. Similarly the time-harmonic radiating fields in R3 − V0 may be repre-

sented by

E(r) = − jkη

∫

S

G(r, r′)Js(r′)d S(r′) − ∇ ×
∫

S

Jms(r′)G(r, r′)d S(r′)

(2.58)

−ηv∇
∫

S

ρs(r′)G(r, r′)d S(r′),

H(r) = − j
k

η

∫

S

G(r, r′)Jms(r′)d S(r′) + ∇ ×
∫

S

Js(r′)G(r, r′)d S(r′)

(2.59)

−v

η
∇

∫

S

ρms(r′)G(r, r′)d S(r′),

E(r) = − jkη

∫

V0

G(r, r′)J(r′)dV (r′) − ∇ ×
∫

V0

Jm(r′)G(r, r′)dV (r′)

(2.60)

−ηv∇
∫

V0

ρ(r′)G(r, r′)dV (r′),

H(r) = − j
k

η

∫

V0

G(r, r′)Jm(r′)dV (r′) + ∇ ×
∫

V0

J(r′)G(r, r′)dV (r′)

(2.61)

−v

η
∇

∫

V0

ρm(r′)G(r, r′)dV (r′),

where G(r, r′) = e− jk R/4π R. From these integral representations, it is readily found that the
radiating fields satisfy the finiteness condition

E(r) = o(1/r ), H(r) = o(1/r ) (2.62)

for sufficiently large r . It must be mentioned that the integral expressions (2.54), (2.55),
(2.58), and (2.59) are only valid for a closed surface S. If the surface S is open, these integral
expressions no longer satisfy the Maxwell equations. In this case, special treatment is needed
in order for the integral expressions to satisfy the Maxwell equations. Consider an open surface
S with boundary �. Let un be the outward normal on S, ut be the tangent along the boundary
�, and ub be a unit vector perpendicular to both un and ut , as shown in Figure 2.2. To maintain
the continuity equation along the boundary �, electric and magnetic charges along � must be
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tu

S

( )2dl −

( )2dl +

( )1dl −

nu

bu

Γ

( )1dl +

Figure 2.2 An open surface

introduced. To see this, we can make a small rectangle of length dl1 and width dl2. According
to the continuity equation, we have

Js |dl2(+) · ut dl2 − Js |dl2(−) · ut dl2 + Js |dl1(+) · ubdl1 − Js |dl1(−) · ubdl1 = −dl1dl2 jωρ.

Letting dl2 approach zero yields

lim
dl2→0

dl2 jωρ = jωρl = Js |dl1(−) · ub = −ut · H.

Similarly, for the magnetic current we may find that

lim
dl2→0

dl2 jωρm = jωρml = Jms |dl1(−) · ub = ut · E.

The radiation fields in R3 − V0 are the superposition of contributions from surface sources
and line sources along �, and can be expressed by

E(r) = −
∫

S

[

jkηG(r, r′)Js(r′) + Jms(r′) × ∇′G(r, r′) − ηcρs(r′)∇′G(r, r′)
]

d S(r′)

+
∫

�

ηcρl(r′)∇′G(r, r′)d�(r′),

(2.63)

H(r) = −
∫

S

[

j
k

η
G(r, r′)Jms(r′) − Js(r′) × ∇′G(r, r′) − c

η
ρms(r′)∇′G(r, r′)

]

d S(r′)

+
∫

�

c

η
ρml(r′)∇′G(r, r′)d�(r′).

It can be verified that Equations (2.63) satisfy the Maxwell equations.
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2.6 Potential Theory

Potential theory is the mathematical treatment of the potential-energy functions used in physics
to study gravitation and electromagnetism, and has developed into a major field of mathematical
research (Kellog, 1953; MacMillan, 1958). In the nineteenth century, it was believed that all
forces in nature could be derived from a potential which satisfies the Laplace equation. These
days, the term ‘potential’ is used in a broad sense, and the potential is not necessarily a solution
of Laplace equation. As long as the solution of a partial differential equation can be expressed
as the first derivative of a new function, this new function can be considered as a potential.
Usually the solution and its potential function satisfy the same type of equation, while the
equation for the latter has a simpler source term.

2.6.1 Vector Potential, Scalar Potential, and Gauge Conditions

From the equations ∇ · B = 0 and ∇ × E = −∂B/∂t , a vector potential A and a scalar
potential φ can be introduced such that

E = −∇φ − ∂A
∂t

, B = ∇ × A. (2.64)

If the medium is isotropic and homogeneous, we can substitute (2.64) into ∇ × H = J +
∂D/∂t , and insert the first of (2.64) into ∇ · D = ρ to obtain

(

∇2 − 1

v2

∂2

∂t2

)

A = −µJ + ∇
(

∇ · A + 1

v2

∂φ

∂t

)

,

(2.65)(

∇2 − 1

v2

∂2

∂t2

)

φ = −ρ

ε
− ∂

∂t

(

∇ · A + 1

v2

∂φ

∂t

)

,

where v = 1/
√

µε. The term ∇ · A + ∂φ/v2∂t on the right-hand sides can be set to zero by
means of the gauge transform. In fact, we can define a new vector potential A′ and a new scalar
potential φ′ through

A′ = A + ∇ψ, (2.66)

φ′ = φ − ∂ψ

∂t
, (2.67)

where ψ is called the gauge function. The transformation from (A, φ) to (A′, φ′) defined
by (2.66) and (2.67) is called the gauge transformation. The electromagnetic fields remain
unchanged under the gauge transformation. The new vector potential A′ and scalar potential
φ′ satisfy

∇ · A′ + 1

v2

∂φ′

∂t
= ∇ · A + 1

v2

∂φ

∂t
+ ∇2ψ − 1

v2

∂2ψ

∂t2
.
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If the term ∇ · A + ∂φ/v2∂t is not zero, the left-hand side can be sent to zero by forcing the
gauge function ψ to satisfy

∇2ψ − 1

v2

∂2ψ

∂t2
= −

(

∇ · A + 1

v2

∂φ

∂t

)

.

Thus, the equation

∇ · A + 1

v2

∂φ

∂t
= 0 (2.68)

may be assumed and is called the Lorenz gauge condition, named after the Danish physi-
cist Ludvig Valentin Lorenz (1829–1891). If A and φ satisfy the Lorenz gauge condition,
Equations (2.65) reduce to

(

∇2 − 1

v2

∂2

∂t2

)

A = −µJ,

(

∇2 − 1

v2

∂2

∂t2

)

φ = −ρ

ε
, (2.69)

and they become uncoupled. The retarded solutions of (2.69) are given by

A(r, t) =
∫

V0

µJ(r′, t − R/v)

4π R
dV (r′), φ(r, t) =

∫

V0

ρ(r′, t − R/v)

4πεR
dV (r′),

where V0 denotes the source region. Note that the Lorenz gauge condition implies the continuity
equation of the current.

Another important gauge condition is the Coulomb gauge:

∇ · A = 0. (2.70)

The existence of such a gauge condition can be justified by the following argument. From
(2.66) we obtain ∇ · A′ = ∇ · A + ∇2ψ . Therefore, if ∇ · A is not zero, we may set ∇ · A′ to
zero by letting ∇2ψ = −∇ · A. If A and φ satisfy the Coulomb gauge condition, Equations
(2.65) become

(

∇2 − 1

v2

∂2

∂t2

)

A = −µJ + 1

v2
∇ ∂φ

∂t
,∇2φ = −ρ

ε
. (2.71)

By means of ∇2(1/4π R) = −δ(r − r′), the current source J can be divided into the sum of
two components

J(r, t) =
∫

V0

J(r′, t)δ(r − r′)dV (r′) = −∇2
∫

V0

J(r′, t)

4π R
dV (r′) = J‖ + J⊥ (2.72)
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where

J‖(r, t) = −∇∇ ·
∫

V0

J(r′, t)

4π R
dV (r′), J⊥(r, t) = ∇ × ∇ ×

∫

V0

J(r′, t)

4π R
dV (r′) (2.73)

are referred to as the irrotational component and the solenoidal component of J respectively.
By using Gauss’s theorem, the irrotational component can further be written as

J‖(r, t) = −∇
∫

V0

∇′ ·
[

J(r′, t)

4π R

]

dV (r′) − ∇
∫

V0

∇′ · J(r′, t)

4π R
dV (r′)

= ∇
∫

∂V0

J(r′, t)

4π R
· un(r′)dV (r′) − ∇

∫

V0

∇′ · J(r′, t)

4π R
dV (r′) (2.74)

= −∇
∫

V0

∇′ · J(r′, t)

4π R
dV (r′) = ∇ ∂

∂t

∫

V0

ρ(r′, t)

4π R
dV (r′) = ε∇ ∂φ

∂t
,

where ∂V0 denotes the boundary of V0. The surface integral in (2.74) is zero for we have
assumed that the source is confined inside V0. Then Equations (2.71) become

(

∇2 − 1

v2

∂2

∂t2

)

A = −µJ⊥,∇2φ = −ρ

ε
. (2.75)

These equations indicate that the vector potential is determined by the solenoidal component of
the current distribution while the scalar potential is determined by the instantaneous distribution
of charges. This would not violate the fact that the field travels at finite speed. In fact, the finite
propagation time effects have been included in the vector potential (Heras, 2007).

The electric field can also be decomposed into the sum of the irrotational component and
the solenoidal component E = E‖ + E⊥. From E = −∇φ − ∂A/∂t and the Coulomb gauge
condition, we obtain

E‖ = −∇φ, E⊥ = −∂A
∂t

. (2.76)

So the Coulomb gauge condition allows us to separate the field into two parts, one part being
described solely by the vector potential A, and the other part solely by the scalar potential
φ. The Coulomb gauge is often applied to source-free region. In this case, we have φ = 0,
and A satisfies the homogeneous wave equation. Considering (2.70), we conclude that the
electromagnetic fields in a source-free region can be represented by two scalar potential
functions.

Remark 2.3: As shown in (2.72), any vector F can be expressed as the sum of a solenoidal
component F⊥ and an irrotational component F‖ with

∇ × F‖ = 0,∇ · F⊥ = 0. (2.77)
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This is called the Helmholtz theorem. Introducing the Fourier transform pair

F̃(k) = F(F)(k) =
∫

F(r)e− jk·rdr,

F(r) = F−1(F̃)(r) = 1

(2π )3

∫

F̃(k)e jk·rdr,

and using (2.77) we have

k · F̃⊥ = k · F(F⊥) = 0, k × F̃‖ = k × F(F‖) = 0. (2.78)

These equations imply that the solenoidal field is transverse in k space while the irrotational
field is longitudinal in k space. For this reason, the solenoidal field and irrotational field are
also known as the transverse field and the longitudinal field respectively. Apparently we have

F̃‖ = 1

k2
(F̃ · k)k, F̃⊥ = F̃ − F̃‖

where k = |k|. Hence

F‖(r) = F−1(F̃‖)(r) = 1

(2π )3

∫
1

k2

[

F̃(k) · k
]

ke jk·rdk

= 1

(2π )3

∫ ∫
1

k2

[

F(r′) · k
]

ke jk·(r−r′)dkdr′

=
∫

F(r′) · ↔
δ

‖
(r − r′)dr′,

F⊥(r) = 1

(2π )3

∫ ∫ {

F(r′) − 1

k2

[

F(r′) · k
]

k
}

e jk·(r−r′)dkdr′

= 1

(2π )3

∫ ∫

F(r′) ·
(

↔
I − 1

k2
kk

)

e jk·(r−r′)dkdr′

=
∫

F(r′) · ↔
δ

⊥
(r − r′)dr′,

where
↔
I is the identity dyadic;

↔
δ

‖
and

↔
δ

⊥
are the longitudinal and transverse δ-dyadics,

defined respectively by

↔
δ

‖
(r) = 1

(2π )3

∫
1

k2
kke jk·rdk,

↔
δ

⊥
(r) = 1

(2π )3

∫ (
↔
I − 1

k2
kk

)

e jk·rdk.

Note that
↔
δ(r) ≡ ↔

Iδ(r) = ↔
δ

‖
(r) + ↔

δ
⊥

(r). From ∇2(1/4π R) = −δ(r − r′), we obtain

↔
δ

‖
(r) = 1

3

↔
δ(r) + 1

4πr3

(↔
I − 3

rr
r2

)

,
↔
δ

⊥
(r) = 2

3

↔
δ(r) − 1

4πr 3

(↔
I − 3

rr
r2

)

,

where r = |r|
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We mention in passing that the temporal gauge or the Hamiltonian gauge is defined by φ = 0.
The velocity gauge is defined by ∇ · A + u−2∂φ/∂t = 0, where u is a complex constant. The
velocity gauge includes the Lorenz gauge (u = 1/

√
µε) and the Coulomb gauge (u = ∞).

2.6.2 Hertz Vectors and Debye Potentials

In addition to vector potential A and scalar potential φ, other potential functions can be
introduced to simplify the problems. If the current source J is irrotational, it only has a
longitudinal component and can be written as

J = ∂P
∂t

(2.79)

by (2.74). Here

P(r, t) = ∇
∫

V0

ρ(r′, t)

4π R
dV (r′)

is the equivalent polarization vector. From the continuity equation, the corresponding polar-
ization charge density is given by ρ = −∇ · P. Substituting (2.79) into the first equation of
(2.69), we have

(

∇2 − 1

v2

∂2

∂t2

)

A = −µ
∂P
∂t

.

To get rid of the differential operation on the source term, we may introduce a new potential
function �e such that

A = 1

v2

∂�e

∂t
. (2.80)

The new potential function �e is called the electric Hertz vector and satisfies

(

∇2 − 1

v2

∂2

∂t2

)

�e = −P
ε

. (2.81)

From (2.68) and (2.80), we obtain

φ = −∇ · �e. (2.82)

In terms of the electric Hertz vector, the electromagnetic fields may be represented by

B = 1

v2
∇ × ∂�e

∂t
, E = ∇(∇ · �e) − 1

v2

∂2�e

∂t2
. (2.83)
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If the current source J is solenoidal, it only has a transverse component and may be written as

J = ∇ × M (2.84)

where M is the equivalent magnetization vector

M(r, t) = ∇ ×
∫

V0

J(r′, t)

4π R
dV (r′)

by (2.73). Introducing (2.84) into the first equation of (2.69) gives

(

∇2 − 1

v2

∂2

∂t2

)

A = −µ∇ × M.

To get rid of the differential operation on the source term, we can introduce a new potential
function �m , called the magnetic Hertz vector such that A = −µ∇ × �m . The magnetic
Hertz vector satisfies

(

∇2 − 1

v2

∂2

∂t2

)

�m = −M. (2.85)

Since ∇ · A = 0 implies φ = 0, the electromagnetic fields can be expressed as

B = µ∇ × ∇ × �m, E = −µ∇ × ∂�m

∂t
. (2.86)

In general, the current source J is of the form J = ∂P/∂t + ∇ × M from (2.73). For a linear
medium, the superposition theorem applies and the electromagnetic fields for a general current
source can be expressed as the sum of (2.83) and (2.86):

E = ∇(∇ · �e) − 1

v2

∂2�e

∂t2
− µ∇ × ∂�m

∂t
, H = ε∇ × ∂�e

∂t
+ ∇ × ∇ × �m .

In source-free region, these equations may be written as

E = ∇ × ∇ × �e − µ∇ × ∂�m

∂t
, H = ε∇ × ∂�e

∂t
+ ∇ × ∇ × �m,

by use of (2.81) and (2.85).
In source-free region, the electromagnetic fields can be represented by two scalar potential

functions. Hence we may use the spherical coordinate system (r, θ, ϕ) and choose �e = rue

and �m = rum to represent the electromagnetic fields. Here ue and um satisfy the homogeneous
wave equations:

(

∇2 − 1

v2

∂2

∂t2

)

ue = 0,

(

∇2 − 1

v2

∂2

∂t2

)

um = 0,
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and they are called Debye potentials, named after the Dutch physicist Peter Joseph William
Debye (1884–1966). Let ur , uθ and uϕ denote the unit vectors in the direction of increasing r ,
θ and ϕ respectively. A simple calculation gives

∇ × ∇ × (rue) =
(

−1

r
∇2

θϕue

)

ur + ∇θϕ

[
1

r

∂(rue)

∂r

]

,

∇ × (rum) = ∇θϕum × ur ,

where

∇θϕ = uθ

∂

∂θ
+ uϕ

1

sin θ

∂

∂ϕ
,

∇2
θϕ = 1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

sin2 θ

∂2

∂ϕ2
.

Thus the electromagnetic fields in a source-free region can be expressed as

E = −
(

1

r
∇2

θϕue

)

ur + ∇θϕ

[
1

r

∂(rue)

∂r

]

+ µur × ∂

∂t
∇θϕum,

(2.87)

H = −
(

1

r
∇2

θϕum

)

ur + ∇θϕ

[
1

r

∂(rum)

∂r

]

− εur × ∂

∂t
∇θϕue.

The derivation of (2.87) relies on an assumption that the electromagnetic fields can be repre-
sented by Debye potentials. It can be verified that this assumption is valid in a region between
two concentric spheres (Wilcox, 1957).

2.6.3 Jump Relations in Potential Theory

In electromagnetic theory, we are often faced with the following potential integrals

A(r) =
∫

S

a(r′)G(r, r′)d S(r′), ϕ(r) =
∫

S

f (r′)G(r, r′)d S(r′),

where G(r, r′) = e− jk R/4π R. When the field point r is on the surface S, these potential
integrals are defined as the improper but convergent integrals as follows

A(r) = lim
δ→0

∫

S−Sδ

a(r′)G(r, r′)d S(r′), ϕ(r) = lim
δ→0

∫

S−Sδ

f (r′)G(r, r′)d S(r′),
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where r ∈ S, Sδ is a small area of arbitrary shape containing r and δ is the maximum chord of
Sδ . For r ∈ S, the following jump relations can be established

∇ · A±(r) =
∫

S

∇G(r, r′) · a(r′)d S(r′) ∓ 1

2
un(r) · a(r),

∇ × A±(r) =
∫

S

∇G(r, r′) × a(r′)d S(r′) ∓ 1

2
un(r) × a(r), (2.88)

∇ϕ±(r) =
∫

S

f (r′)∇G(r, r′)d S(r′) ∓ 1

2
un(r) f (r),

where un(r) is the unit outward normal of S at r and

∇ · A±(r) ≡ lim
h→+0

∇ · A[r ± hun(r)],

∇ × A±(r) ≡ lim
h→+0

∇ × A[r ± hun(r)],

∇ϕ±(r) ≡ lim
h→+0

∇ϕ[r ± hun(r)].

The subscripts + and − respectively indicate the limit values as r approaches S from the
exterior and interior of S. All the integrals in (2.88) stand for the Cauchy principal values.
Moreover, we have

lim
h→+0

un(r) × {∇ × ∇ × A[r + hun(r)] − ∇ × ∇ × A[r − hun(r)]} = 0, r ∈ S.

We only show the derivation of the last relation in (2.88). Let the closed surface S be split into
two parts, S′ and Sδ, of which Sδ is a small region surrounding r, and S′ the remainder of S.
If S is smooth around r, Sδ may be considered as a circular disk of radius δ centered at r, as
shown in Figure 2.3. Thus

∇ϕ±(r) = lim
h→0

∇
∫

S

f (r′)G(r ± hun(r), r′)d S(r′)

= lim
h→0

∇
∫

S′

f (r′)G(r ± hun(r), r′)d S(r′)

+ lim
h→0

∇
∫

Sδ

f (r′)G(r ± hun(r), r′)d S(r′).
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nu

r
Sδ

S ′

Figure 2.3 Cauchy principal value

The first integral on the right-hand side approaches the principal value as δ → 0. The integral
over Sδ can be calculated through the approximation

lim
h→0

∇
∫

Sδ

f (r′)G(r ± hun(r), r′)d S(r′)

= f (r) lim
h→0

(

∇t ± un
∂

∂h

)∫

Sδ

d S(r′)
|r ± hun(r) − r′|

≈ f (r) lim
h→0

1

4π

(

∇t ± un
∂

∂h

) 2π∫

0

δ∫

0

ρdρdφ
√

ρ2 + h2

= 1

2
f (r) lim

h→0

(

∇t ± un
∂

∂h

)(

δ − h + h2

2δ

)

= ∓1

2
un f (r),

which gives the last expression of (2.88).
The function

ϕ(r) =
∫

S

f (r′)G(r, r′)d S(r′), r ∈ R3 − S

is called a single-layer potential with density f and the function

ψ(r) =
∫

S

f (r′)
∂G(r, r′)
∂n(r′)

d S(r′), r ∈ R3 − S

is called a double-layer potential with density f .

Example 2.8: The potential generated by a charge distribution ρ on a surface S is

ϕ(r) =
∫

S

ρ(r′)
|r − r′|d S(r′), r ∈ R3 − S.
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The potential produced by a layer of electric dipoles on a surface S is

ψ(r) =
∫

S

τ (r′)
∂

∂n(r′)

(
1

r − r′

)

d S(r′), r ∈ R3 − S,

where τ is dipole moment density. Physically, the double layer potential is very much like a
charged battery.

The potential theory can be used to establish integral equations on the surface of a scattering
object. It can also be used to show the existence of a unique solution to the scattering problems
(Colton and Kress, 1983, 1998; Jones, 1979).

For a perfect conducting surface S, we may introduce the following boundary value problems
for electromagnetic fields

1. Interior boundary value problem: un × Esc(r) = −un × Ein(r), r ∈ S and Ein(r) is a known
continuous function.

2. Exterior boundary value problem: un × Esc(r) = −un × Ein(r), r ∈ S and Ein(r) is a
known continuous function; Esc(r) and Hsc satisfies the Silver–Müller radiation condi-
tion at infinity.

Example 2.9: From the jump relations, we may find that the electromagnetic fields

Esc(r) =
∫

S

Jm(r) × ∇′G(r, r′)d S(r′),

Hsc(r) = − 1

jkη
∇ × Esc(r),

generated by a magnetic current distribution Jm on S, are a solution of the interior boundary
value problem if Jm is a solution of the integral equation

( Î − Ĝ)Jm(r) = 2un × Ein(r), r ∈ S (2.89)

where

Ĝ(J)(r) = 2un(r) ×
∫

S

J(r′) × ∇′G(r, r′)d S(r′), r ∈ S.

Similarly, the electromagnetic fields

Esc(r) = −
∫

S

Jm(r) × ∇′G(r, r′)d S(r′)

Hsc(r) = − 1

jkη
∇ × Esc(r)
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generated by a magnetic current distribution Jm on S, are a solution of the exterior boundary
value problem if Jm is a solution of the integral equation

( Î + Ĝ)Jm(r) = 2un × Ein(r), r ∈ S (2.90)

where the surface S is assumed to be smooth.

2.7 Variational Principles

The principle of least action leads to the development of the Lagrangian and Hamiltonian
formulations of classical mechanics. Although these formulations seem difficult to grasp at
first, they have some merits that Newton’s formulation does not have. For example, they can
easily be transferred to the frameworks of relativistic and quantum mechanical physics. The
principle of least action is considered the core strategy of modern physics. In terms of the
principle of least action, the differential equations of a given physical system can be derived
by minimizing the action of the system. The original problem, governed by the differential
equations, is thus replaced by an equivalent variational problem. Such a procedure is also called
the energy method. It is commonly believed that the theoretical formulation of a physical law
is not complete until the law can be reformulated as a variational problem.

2.7.1 Generalized Calculus of Variation

To study the extreme value problem involving operators, it is necessary to generalize the usual
concepts of derivative in classical calculus to the operators. Let E and F be normed spaces
and f̂ , ĝ : U ⊂ E → F be two maps where U is open in E . The two maps are said to be
tangent at u0 ∈ U if (for example, Abraham et al., 1988)

lim
u→u0

∥
∥ f̂ (u) − ĝ(u)

∥
∥

‖u − u0‖ = 0.

For f̂ : U ⊂ E → F and u0 ∈ U it can be shown that there is at most one L̂ ∈ L(E, F) such
that the map ĝ : U ⊂ E → F defined by ĝ(u) = f̂ (u0) + L̂(u − u0) is tangent to f̂ at u0. If
such L̂ exists, we say f̂ is differentiable at u0, and we define the derivative of f̂ at u0 to be
D f̂ (u0) = L̂ . The map D f̂ : U → L(E, F) is called the derivative of f̂ . Moreover, if D f̂ is
continuous, we say f̂ is of class C1 or continuously differentiable.

Example 2.10: Let F be a normed space and ĝ : U ⊂ R → F be differentiable. Then Dĝ(t) ∈
L(R, F), and

ĝ′(t) = dĝ

dt
= lim

h→0

ĝ(t + h) − ĝ(t)

h
= Dĝ(t) · 1, 1 ∈ R.

Similar to the classical calculus, we may introduce the concept of directional derivative. Let
us consider an operator f̂ from U ⊂ E to F . If, for a given u ∈ U and a non-zero v ∈ E , there
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is an operator D f̂ : U → L(E, F) such that

lim
t→0

∥
∥
∥
∥
∥

f̂ (u + tv) − f̂ (u)

t
− D f̂ (u) · v

∥
∥
∥
∥
∥

= 0,

then D f̂ (u) ∈ F is called the directional derivative in the direction of v. If f̂ is differentiable
at u, the directional derivatives of f̂ exists at u and is given by

D f̂ (u) · v = d

dt
f̂ (u + tv)

∣
∣
∣
∣
t=0

. (2.91)

A general approach of variational method may be formulated by the functional derivative.
Let 〈·, ·〉 be a continuous bilinear form E × F to R. The bilinear form 〈·, ·〉 is called E-
nondegenerate if 〈x, y〉 = 0 for all y ∈ F implies x = 0. Similarly the bilinear form 〈·, ·〉 is
called F-nondegenerate if 〈x, y〉 = 0 for all x ∈ E implies y = 0. Let E and F be normed
spaces and 〈·, ·〉 : E × F → R be E-nondegenerate. Let f̂ : F → R be differentiable at the
point y ∈ F . The functional derivative δ f̂ /δy of f̂ with respect to y is the unique element
in E , if it exists, such that for all y′ ∈ F we have

D f̂ (y) · y′ = 〈δ f̂ /δy, y′〉. (2.92)

Similarly if ĝ : E → R is differentiable at the point x ∈ E and 〈·, ·〉 : E × F → R is F-
nondegenerate, the functional derivative δĝ/δx is defined, if it exists, by

Dĝ(x) · x ′ = 〈x ′, δĝ/δx〉 (2.93)

for all x ′ ∈ E .

Example 2.11: Let E be a normed space and f̂ : U ⊂ E → R be differentiable. Then
D f̂ (u) ∈ L(E, R) = E∗. If E is a Hilbert space, the gradient of f̂ is the map grad f̂ =
∇ f̂ : U ⊂ E → E defined by

D f̂ (u) · v = (∇ f̂ (u), v). (2.94)

Thus ∇ f̂ (u) = δ f̂ /δu.

Example 2.12: Let E = F be a Banach space of functions defined on a region � ⊂ RN . The
L2-bilinear form on E × E is defined by

〈ϕ,ψ〉 =
∫

�

ϕ(x)ψ(x)dx.
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For f̂ : E → R, the functional derivative δ f̂ /δϕ is defined by

D f̂ (ϕ) · ψ = 〈δ f̂ /δϕ,ψ〉 =
∫

�

δ f̂

δϕ
(x)ψ(x)dx

for all ψ ∈ E . From the above equation we can immediately write

∫

�

δ f̂

δϕ
(x)ψ(x)dx = d

dε
f̂ (ϕ + εψ)

∣
∣
∣
∣
ε=0

. (2.95)

This relation can be used to find the functional derivative δ f̂ /δϕ.

If f̂ is a differential function of n variables: f̂ : F1 × F2 × . . . Fn → R, we have n bilinear
forms 〈·, ·〉i : Ei × Fi → R (i = 1, 2, . . . , n). The i th partial functional derivative δ f̂ /δyi

of f̂ with respect to yi ∈ Fi is defined by

〈δ f̂ /δyi , y′
i 〉i = d

dε
f̂ (y1, y2, . . . , yi + εy′

i , . . . , yn)

∣
∣
∣
∣
ε=0

. (2.96)

The total functional derivative can be expressed as

D f̂ (y1, y2, . . . , yn) · (y′
1, y′

2, . . . , y′
n) =

n
∑

i=1

〈δ f̂ /δyi , y′
i 〉. (2.97)

Extremum theorem: Let Fi (i = 1, 2, . . . , n) be spaces of functions. A necessary condition for
a differentiable function f̂ : F1 × F2 × . . . Fn → R to have an extremum at (y1, y2, . . . , yn)
is

δ f̂

δyi
= 0, i = 1, 2, . . . , n. (2.98)

These equations are referred to as the Lagrangian equations.

2.7.2 Lagrangian Formulation

The action of a system is an integral over time of a function called the Lagrangian function.
The Lagrangian function is usually expressed as the difference between kinetic energy and
potential energy, and depends on the scalar properties of the system. The least action principle
requires that the action of the system must be a minimum. This leads to the Lagrangian
equations, which are the differential equations describing the system.
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2.7.2.1 Lagrangian Equation for Charged Particle

Classical physics deals with two different phenomena: the particles governed by Newtonian
mechanics, and the fields governed by Maxwell equations. These two phenomena are coupled
through the Lorentz force equation. For a particle of mass m, Newton’s second law states that

d

dt
[mq̇(t)] = F[t, q(t), q̇(t)] (2.99)

where q = (q1, q2, q3) is its position; F is the force acting on the particle; and the dot denotes
the derivative with respect to time. The above equation is the well-known differential equation
formulation of classical mechanics. From theoretical point of view, a more useful formulation
for the classical mechanics is based on the principle of least action, by which (2.99) is derived
by minimizing certain functional, called the action of the mechanical system. The action of
the system is an integral over time of a function called Lagrangian function L

S(q) =
t2∫

t1

L [t, q(t), q̇(t)] dt,

where q(t) are known as the generalized coordinates. Equation (2.99) is found by demanding
the action S to be at its minimum so that the functional derivative vanishes

δS

δqi
= 0, i = 1, 2, 3.

Suppose q(t) is the path that renders S to be a minimum. Let the path q(t) be changed to
q(t) + ε�q(t), where �q = (�q1,�q2,�q3) is small everywhere in the time interval [t1, t2]
and the endpoints of the path are supposed to be fixed: �q(t1) = �q(t2) = 0. Then the partial
functional derivative with respect to q1 can be found by (2.95) as

t2∫

t1

δS

δq1
�q1dt = d

dε

t2∫

t1

L(t, q1 + ε�q1, q2, q3, q̇1 + ε�q̇1, q̇2, q̇3)dt

∣
∣
∣
∣
∣
∣
ε=0

=
t2∫

t1

(

�q1
∂L

∂q1
− �q1

d

dt

∂L

∂q̇1

)

dt + �q1
∂L

∂q1

∣
∣
∣
∣

t2

t1

=
t2∫

t1

(
∂L

∂q1
− d

dt

∂L

∂q̇1

)

�q1dt .

Similar expressions can be obtained for the partial functional derivative with respect to q2 and
q3. So if S has a local extremum at q(t), the path q(t) must satisfy

δS

δqi
= d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, 2, 3. (2.100)
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These are the Lagrangian equations. In order to transform (2.99) into the form of (2.100), we
need to find an appropriate Lagrangian function L , which constitutes the so-called inverse
variational problem. For a conservative mechanical system, the Lagrangian function is

L[t, q(t), q̇(t)] = T − V = 1

2
m |q̇|2 − V (q)

with T = m |q̇|2 /2 being the kinetic energy and V being the potential energy of the mechanical
system. It can be shown that (2.100) reduces to (2.99) with the above Lagrangian function.

Remark 2.4: In the Lagrangian function, only the first derivative of q(t) is involved. As a
result, the smoothness requirement for the solution of original Newton’s second law is reduced
in the least action principle, which implies that we seek a solution in an expanded solution
space.

Remark 2.5: Let f (t, q(t)) be an arbitrary function, the new Lagrangian function formed by

L ′[t, q(t), q̇(t)] = L[t, q(t), q̇(t)] + d

dt
f [t, q(t)]

is equivalent to L in the sense that they both give the same Lagrangian equations (2.100).

A charged particle q of velocity q̇ in an electromagnetic field is subject to a force given by
Lorentz force equation

F = q(E + q̇ × B).

The equation of motion for the charged particle of mass m is

d(mq̇)

dt
= q(E + q̇ × B).

To transform the above equation into the Lagrangian equation, the Lagrangian function must
be chosen as

L[t, q(t), q̇(t)] = −m0c
√

c2 − |q̇|2 − q(φ − q̇ · A),

where m0 is the rest mass of the particle; φ and A are scalar potential and vector potential
function respectively. The generalized momentum is (see (2.106))

p = mq̇ + qA,

where m = m0/

√

1 − |q̇|2 /c2. The generalized momentum for a charged particle in an elec-
tromagnetic field is not equal to the mechanical momentum mq̇ and an additional term qA
must be added.
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2.7.2.2 Lagrangian Equation for Electromagnetic Fields

Let r = (x1, x2, x3) and consider a dynamic system η(r, t) = (η1(r, t), η2(r, t), . . . , ηn(r, t)),
whose components ηi (r, t) (i = 1, 2, . . . , n) are called generalized coordinates. The
Lagrangian function L(t,η) is the integral of Lagrangian density function L over a re-
gion � in R3

L(t,η) =
∫

�⊂R3

L
(

t, x j , ηi ,
∂ηi

∂x j
,
∂ηi

∂t

)

dx1dx2dx3.

The action of the system is then defined by

S(η) =
t2∫

t1

L(t,η)dt =
t2∫

t1

dt
∫

�⊂R3

L
(

t, x j , ηi ,
∂ηi

∂x j
,
∂ηi

∂t

)

dx1dx2dx3.

Suppose η is the function that makes S(η) reach a local minimum. Let η change to η + ε�η,
where �η = (�η1,�η2, . . . , �ηn) is small everywhere and is zero on the boundaries of �

and at the endpoints of the time interval [t1, t2]: �η|∂� = �η|t1
= �η|t2

= 0. Thus

t2∫

t1

∫

�⊂R3

δS(η)

δηi
�ηi dtdx1dx2dx3 = d

dε
S(η1, η2, . . . , ηi + ε�ηi , . . . , ηn)

∣
∣
∣
∣
ε=0

=
t2∫

t1

dt
∫

�⊂R3

⎛

⎝
∂L
∂ηi

−
3

∑

j=1

d

dx j

∂L
∂ηi/∂x j

− d

dt

∂L
∂ηi/∂t

⎞

⎠�ηi dx1dx2dx3.

Hence the Lagrangian equations for the dynamic system are given by

δS

δηi
= d

dt

∂L
∂(∂ηi/∂t)

+
3

∑

j=1

d

dx j

∂L
∂(∂ηi/∂x j )

− ∂L
∂ηi

= 0, i = 1, 2, . . . , n. (2.101)

Comparing (2.100) with (2.101), the second term on the right-hand side of (2.101) emerges
since the generalized coordinates ηi are functions of position. The Maxwell equations in free
space can be expressed as

∇ × E + ∂B
∂t

= 0,∇ · B = 0, (2.102)

∇ × B − µ0ε0
∂E
∂t

= µ0J,∇ · E = 1

ε0
ρ. (2.103)

The fields E and B have six components that are not independent, and therefore they cannot be
used as the generalized coordinates. We have to resort to the vector potential A and the scalar
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potential φ. The electromagnetic fields can then be represented by

E = −∇φ − ∂A
∂t

, B = ∇ × A. (2.104)

These are equivalent to (2.102). For this reason, only (2.103) should be considered as the
equation of motion if we use A and φ as the generalized coordinates, and (2.102) simply gives
the definition of A and φ. The Lagrangian density function for the electromagnetic fields is
given by

L(t, x j , φ, A) = 1

2
(ε0 |E|2 − µ−1

0 |B|2) − ρφ + J · A. (2.105)

Here E and B are related to the generalized coordinates A and φ through (2.104). Considering

∂L
∂φ

= −ρ,

∂L
∂(∂φ/∂x j )

= ε0 E j
∂ E j

∂(∂φ/∂x j )
= −ε0 E j ,

∂L
∂(∂φ/∂t)

= 0,

and substituting these relations into (2.101), we obtain the Lagrangian equation corresponding
to the generalized coordinate φ as follows

−ε0

3
∑

j=1

∂ E

∂x j
+ ρ = 0,

which is the second equation of (2.103). Taking the following calculations

∂L
∂ A1

= J1,

∂L
∂(∂ A1/∂t)

= ε0 E1
∂ E1

∂(∂ A1/∂t)
= −ε0 E1,

∂L
∂(∂ A1/∂x2)

= − 1

µ0
B3

∂ B3

∂(∂ A1/∂x2)
= 1

µ0
B3,

∂L
∂(∂ A1/∂x3)

= − 1

µ0
B2,

into account, we have

1

µ0

(
∂ B3

∂x2
− ∂ B2

∂x3

)

− ε0
∂ E1

∂t
− J1 = 0,
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and similarly

1

µ0

(
∂ B1

∂x3
− ∂ B3

∂x1

)

− ε0
∂ E2

∂t
− J2 = 0,

1

µ0

(
∂ B2

∂x1
− ∂ B1

∂x2

)

− ε0
∂ E3

∂t
− J3 = 0.

These are the first equation of (2.103).

2.7.3 Hamiltonian Formulation

The Hamiltonian function is often defined as the sum of kinetic energy and potential energy,
that is, the total energy. As a result, the Hamiltonian function must remain constant in a closed
system. The Hamiltonian mechanics is the starting point of Schrödinger’s development for his
wave mechanics.

2.7.3.1 Hamiltonian Equation for Charged Particle

The second-order equations in (2.100) can be further reduced to first-order equations in terms
of the Hamiltonian formulation. The Hamiltonian function is defined by

H (t, q, p) =
3

∑

i=1

pi q̇i − L[t, q(t), q̇(t)],

where p = (p1, p2, p3) is called the generalized momentum, whose components are

pi = ∂L

∂q̇i
, i = 1, 2, 3. (2.106)

From (2.100), we obtain

ṗi = ∂L

∂qi
, i = 1, 2, 3. (2.107)

The first-order equations of motion can be obtained by considering the total differential of the
Hamiltonian function

d H (t, q, p) =
3

∑

i=1

(q̇i dpi + pi dq̇i ) −
3

∑

i=1

(
∂L

∂qi
dqi + ∂L

∂ q̇i
dq̇i

)

− ∂L

∂t
dt

=
3

∑

i=1

(

q̇i dpi − ∂L

∂qi
dqi

)

− ∂L

∂t
dt =

3
∑

i=1

(q̇i dpi − ṗi dqi ) − ∂L

∂t
dt,
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where Equations (2.107) have been used. Comparing the above equation with the following
calculation

d H (t, q, p) =
3

∑

i=1

(
∂ H

∂qi
dqi + ∂ H

∂pi
dpi

)

+ ∂ H

∂t
dt

we obtain ∂ H/∂t = −∂L/∂t and

q̇i = ∂ H

∂pi
, ṗi = −∂ H

∂qi
, i = 1, 2, 3. (2.108)

These are the first-order equations we seek. Equations (2.108) are called Hamiltonian equa-
tions and they are equivalent to the second-order Lagrangian equations. The preceding discus-
sion can easily be generalized to a system consisting of multiple particles. The Hamiltonian
function for the charged particle in an electromagnetic field is given by

H (t, q, p) =
3

∑

i=1

pi q̇i − L = mc2 + qφ = c
√

(p − qA)2 + m2
0c2 + qφ.

If |q̇| � c this reduces to

H (t, q, p) = 1

2m0
(p − qA)2 + m0c2 + qφ,

which is the non-relativistic Hamiltonian function.

2.7.3.2 Hamiltonian Equation for Electromagnetic Fields

Let η(r, t) = (η1(r, t), η2(r, t), . . . , ηn(r, t)) be the generalized coordinates with r =
(x1, x2, x3). We may introduce the Hamiltonian density function

H(t, x j , ηi , πi ) =
n

∑

i=1

πi
∂ηi

∂t
− L

(

t, x j , ηi ,
∂ηi

∂x j
,
∂ηi

∂t

)

, (2.109)

where πi = ∂L/∂(∂ηi/∂t)(i = 1, 2, . . . , n) are the generalized momentum density func-
tions. The Hamiltonian function is the integral of the Hamiltonian density function

H (t, ηi , πi ) =
∫

�⊂R3

H(t, x j , ηi , πi )dx1dx2dx3

=
∫

�⊂R3

[
n

∑

i=1

πi (∂ηi/∂t) − L
]

dx1dx2dx3.
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The total differential of the Hamiltonian function is

DH (t, ηi , πi ) · (�t,�ηi ,�πi )

=
n

∑

i=1

〈δH/δηi ,�ηi 〉 +
n

∑

i=1

〈δH/δπi ,�πi 〉 + 〈δH/δt,�t〉
(2.110)

=
n

∑

i=1

∫

�⊂R3

δH

δηi
�ηi dx1dx2dx3 +

n
∑

i=1

∫

�⊂R3

δH

δπi
�πi dx1dx2dx3

+
∫

�⊂R3

δH

δt
�tdx1dx2dx3,

which can be written as

DH (t, ηi , πi ) · (�t,�ηi ,�πi )

=
n

∑

i=1

∫

�⊂R3

�ηi

⎡

⎣− ∂L
∂ηi

+
3

∑

j=1

d

dx j

∂L
∂(∂ηi/∂x j )

⎤

⎦ dx1dx2dx3

(2.111)

+
n

∑

i=1

∫

�⊂R3

�πi
∂ηi

∂t
dx1dx2dx3 −

∫

�⊂R3

∂L
∂t

�tdx1dx2dx3.

Comparing (2.110) with (2.111), we obtain δH/δt = −∂L/∂t and

δH

δηi
= − ∂L

∂ηi
+

3
∑

j=1

d

dx j

∂L
∂(∂ηi/∂x j )

δH

δπi
= ∂ηi

∂t
, i = 1, 2, . . . , n.

Making use of (2.101), the above equations become

η̇i = δH

δπi
, π̇i = −δH

δηi
,i = 1, 2, . . . , n. (2.112)

The Hamiltonian density function for the electromagnetic field can be constructed through
(2.105) and (2.109). Let η1 = φ, ηi = Ai−1, i = 2, 3, 4. Taking the following calculations

π1 = ∂L
∂(∂φ/∂t)

= 0, πi = ∂L
∂(∂ Ai−1/∂t)

= −ε0 Ei−1, i = 2, 3, 4,
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into account, the Hamiltonian density function can be expressed as

H(t, x j , φ, A, πi ) = −ε0E · ∂A
∂t

− 1

2

(

ε0 |E|2 − µ−1
0 |B|2) + ρφ − J · A

= 1

2

[

ε−1
0

(

π2
2 + π2

3 + π2
4

) + µ−1
0 |B|2] − (π2ux1 + π3ux2 + π4ux3 ) · ∇φ + ρφ − J · A

where uxi (i = 1, 2, 3) are the unit vectors along xi . The Hamiltonian function is thus of the
form

H (t, φ, A, πi ) =
∫

�⊂R3

H(t, x j , φ, A, πi )dx1dx2dx3

=
∫

�⊂R3

{
1

2
[ε−1

0 (π2
2 + π2

3 + π2
4 ) + µ−1

0 |B|2] (2.113)

− (π2ux1 + π3ux2 + π4ux3 ) · ∇φ + ρφ − J · A
}

dx1dx2dx3.

It is readily found that

〈δH/δφ,�φ〉 =
∫

�⊂R3

(−ε0∇ · E + ρ)�φdx1dx2dx3,

〈δH/δAi ,�Ai 〉 =
∫

�⊂R3

[−µ−1
0 ∇ · (uxi × B) − Ji

]

�Ai dx1dx2dx3, i = 1, 2, 3.

Therefore

δH

δφ
= −ε0∇ · E + ρ,

δH

δAi
= − 1

µ0
∇ · (uxi × B) − Ji ,

and the equations π̇i = −δH/δηi imply µ−1
0 ∇ × B = J + ε0∂E/∂t and ∇ · E = ρ/ε0. Fur-

thermore, it can be shown that

δH

δπ1
= 0,

δH

δπi
= 1

ε0
πi − uxi−1 · ∇φ = uxi−1 · (Ei−1 − ∇φ), i = 2, 3, 4.

So the equations η̇i = δH/δπi , i = 2, 3, 4 imply E = −∇φ − ∂A/∂t and the equation η̇1 =
δH/δπ1 implies ∂φ/∂t = 0 or φ = 0. Thus, the temporal gauge or Hamiltonian gauge comes
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into the picture naturally, and (2.113) may be written as

H (t, A,�) =
∫

�⊂R3

{
1

2

[

ε−1
0 (�2

1 + �2
2 + �2

3) + µ−1
0 |B|2] − J · A

}

dx1dx2dx3,

where the components of the vector potential A are considered as the generalized coordinates
and the generalized momentum is given by the vector � = (�1,�2,�3) = −ε0E.

The partial differential equation entered theoretical physics as a handmaid, but has gradually
become mistress.

—Albert Einstein
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3
Eigenvalue Problems

The validity of theorems on eigenfunctions can be made plausible by the following observation
made by Daniel Bernoulli (1700–1782). A mechanical system of n degrees of freedom possesses
exactly n eigensolutions. A membrane is, however, a system with an infinite number of degrees
of freedom. This system will, therefore, have an infinite number of eigenoscillations.

—Arnold Sommerfeld

In 1894, the French mathematician Jules Henri Poincaré (1854–1912) established the existence
of an infinite sequence of eigenvalues and the corresponding eigenfunctions for the Laplace
operator under Dirichlet boundary condition. This key result signifies the beginning of spectral
theory, which extends the eigenvector and eigenvalue theory of a square matrix and has played
an important role in mathematics and physics. The study of eigenvalue problems has its roots
in the method of separation of variables. An eigenmode of a system is a possible state when
the system is free of excitation, which might exist in the system on its own under certain
conditions, and is also called an eigenstate of the system. The corresponding eigenvalue often
represents an important quantity of the system, for example the total energy of the system
and the natural oscillation frequency. The eigenmode analysis has been extensively used in
physics and engineering science as an arbitrary state of the system can be expressed as a linear
combination of the eigenmodes. When the eigenvalue problem is solved, what remains is to
determine the expansion coefficients in the linear combination by using the source conditions
or the initial values of the system. In most situations, only one or a few eigenmodes dominate
in the linear combination.

The electromagnetic eigenvalue problems are often expressed by differential equations.
The corresponding differential operators are typically positive-bounded-below and symmetric
if the medium is isotropic and homogeneous. The variational method may be used to solve
the eigenvalue problem for a positive-bounded-below symmetric operator, and to prove the
existence and completeness of eigenmodes. The electromagnetic eigenvalue problems can also
be formulated by integral equations, and the corresponding integral operators are frequently
compact.

Eigenvalue problems result from the boundary value problems defined in a finite region.
When the defining region is unbounded, the discrete eigenvalues may become continuous and

Foundations of Applied Electrodynamics Geyi Wen
C© 2010 John Wiley & Sons, Ltd

105



P1: OTA/XYZ P2: ABC
c03 BLBK281-Wen March 4, 2010 12:23 Printer Name: Yet to Come

106 Eigenvalue Problems

the Fourier integrals enter the picture. In some cases, the eigenvalue theory can be applied to
study the boundary value problems whose defining region is infinite. For example, the method
of singular function expansion in electromagnetics is rooted in the integral equation for the
scattering problem with a compact operator, and the singular function is the eigenfunction of
the product of the compact operator and its adjoint.

3.1 Introduction to Linear Operator Theory

The basic concepts of linear operators are introduced in Chapter 2. More topics on the linear
operators will be discussed in this section for later use. The domain of definition of a linear
operator Â is denoted by D( Â), and it is a subset of some functional space. An integral operator
is often defined on the whole functional space while a differential operator is typically defined
in a proper subset of the functional space.

3.1.1 Compact Operators and Embeddings

A set S in a normed space is called relatively compact if and only if each sequence in S
has a convergent subsequence. If, in addition, the limits of these convergent subsequences
belong to S, then S is compact. Each relatively compact set is bounded. In RN , a closed and
bounded set is compact. Let E and F be two normed spaces. An operator Â : D( Â) ⊂ E → F
is called compact if and only if Â is continuous and Â transforms bounded sets into relatively
compact sets. The compact operators are always bounded. If there exists a compact operator Âε

depending on a parameter ε such that
∥
∥ Âu − Âεu

∥
∥ ≤ ε ‖u‖ holds for all ε > 0 and all u ∈ E ,

Â is compact. This property can be used to study the compactness of the integral operators.
The following Arzelà–Ascoli theorem, named after the Italian mathematicians Cesare Arzelà
(1847–1912) and Giulio Ascoli (1843–1896), gives a sufficient condition to decide if a set of
continuous functions forms a relative compact set.

Theorem 3.1 Arzelà–Ascoli theorem: Let H := C[a, b] with ‖u‖ := max
a≤x≤b

|u(x)|. Suppose

that we are given a set M in H such that

1. M is bounded: ‖u‖ ≤ c1 for all u ∈ M and for fixed c1 ≥ 0.
2. M is equicontinuous: For each ε > 0, there is a δ > 0 such that |x − y| < δ implies

|u(x) − u(y)| < ε for all u ∈ M.

Then M is a relatively compact subset of H.

Example 3.1: Consider the following integral equation

b∫

a

K (x, y)v(y) = λv(x),−∞ < a ≤ x ≤ b < ∞ (3.1)

where the function K : [a, b] × [a, b] → R is continuous (in this case we call K (x, y) a
continuous kernel) and is symmetric: K (x, y) = K (y, x). Set H = L2(a, b) with the usual
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inner product, and define the integral operator Â as follows

Âv(x) =
b∫

a

K (x, y)v(y)dy, v ∈ H. (3.2)

Since the set [a, b] × [a, b] is compact, the function K : [a, b] × [a, b] → R is uniformly
continuous. As a result, for each ε > 0, there is a δ > 0 such that |x − z| < δ implies

α = max
a≤y≤b

|K (x, y) − K (z, y)| < ε.

Let u = Âv. For |x − z| < δ we thus have

|u(x) − u(z)| ≤ α

b∫

a

|v(y)| dy ≤ ε(b − a)1/2 ‖v‖ , x, z ∈ [a, b] (3.3)

where use is made of Cauchy-Schwartz inequality:

b∫

a

1 · |v(y)| dy ≤
⎛

⎝

b∫

a

1 · dy

⎞

⎠

1/2⎛

⎝

b∫

a

|v(y)|2 dy

⎞

⎠

1/2

= (b − a)1/2 ‖v‖ .

Consequently u(x) is continuous function on [a, b]. Also we have

max
a≤y≤b

|u(x)| ≤ max
a≤x,y≤b

|K (x, y)|
b∫

a

|v(y)dy| ≤ c1 ‖v‖ (3.4)

for some constant c1. The above expression implies

∥
∥ Âv

∥
∥ =

⎛

⎝

b∫

a

|u(y)|2 dy

⎞

⎠

1/2

≤ c2 ‖v‖

for some constant c2. This indicates that the operator Â is bounded.
Let M be bounded set in H . It follows from (3.3), (3.4) and the Arzelà–Ascoli theorem that

the set Â(M) is relatively compact in C[a, b]. We may further show that Â(M) is relatively
compact in L2(a, b). In fact, if un → u in C[a, b] as n → ∞, then

‖un − u‖ =
⎧

⎨

⎩

b∫

a

|un(x) − u(x)|2 dx

⎫

⎬

⎭

1/2

≤ max
a≤x≤b

|un(x) − u(x)| (b − a)1/2 → 0.

Therefore Â is compact.
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Example 3.2: Consider (3.1) again. If K (x, y) is square integrable

b∫

a

b∫

a

|K (x, y)|2 dxdy < ∞

(in this case K (x, y) is called L2 kernel), the operator Â defined by (3.2) is a compact operator
from L2(a, b) to L2(a, b). This can be proved as follows. Since C{[a, b] × [a, b]} is dense in
L2[(a, b) × (a, b)], there is a sequence of continuous kernel {Kn(x, y)} such that

lim
n→∞

b∫

a

b∫

a

|K (x, y) − Kn(x, y)|2 dxdy = 0.

The operator Ân defined by Ânv(x) =
b∫

a
Kn(x, y)v(y)dy, v ∈ H is compact by the previous

theorem. Making use of Schwarz inequality, we have

∥
∥( Â − Ân)v

∥
∥ =

∥
∥
∥
∥
∥
∥

b∫

a

[K (x, y) − Kn(x, y)] v(y)dy

∥
∥
∥
∥
∥
∥

≤
⎡

⎣

b∫

a

dx

b∫

a

|K (x, y) − Kn(x, y)|2 dy

b∫

a

|v(y)|2 dy

⎤

⎦

1/2

=
⎡

⎣

b∫

a

dx

b∫

a

|K (x, y) − Kn(x, y)|2 dy

⎤

⎦

1/2

‖v‖ .

Hence

∥
∥ Â − Ân

∥
∥ ≤

⎡

⎣

b∫

a

b∫

a

|K (x, y) − Kn(x, y)|2 dxdy

⎤

⎦

1/2

.

This implies lim
n→∞

∥
∥ Â − Ân

∥
∥ = 0 and Â is compact.

Example 3.3: Consider the integral operator

Ĝ(J)(r) = un(r) ×
∫

S

J(r′) × ∇′G(r, r′)d S(r′), r ∈ S, J ∈ [L2(S)]3, (3.5)
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where S is a closed surface, un(r) is the unit outward normal, J is a vector field tangent to S,
and G(r, r′) = e− jk|r−r′|/4π

∣
∣r − r′∣∣. For δ > 0, we may define

Gδ =
{∇′G(r, r′),

∣
∣r − r′∣∣ ≥ δ

0,
∣
∣r − r′∣∣ < δ

, G′ =
{

∇′G(r, r′),
∣
∣r − r′∣∣ < δ

0,
∣
∣r − r′∣∣ ≥ δ

.

The integral operator Ĝ can be split into the sum of two integral operators Ĝ = Ĝδ + Ĝ ′ with

Ĝδ(J)(r) = un(r) ×
∫

S

J(r′) × Gδd S(r′),

Ĝ ′(J)(r) = un(r) ×
∫

S

J(r′) × G′d S(r′).

The kernel of Ĝδ has no singularity and is square integrable. Hence Ĝδ is compact. It can be
shown that the norm of Ĝ ′ can be arbitrarily small (Jones, 1979). Therefore, Ĝ is a compact
operator.

Let E and F be normed spaces. We say that the embedding ′E ⊂ F ′ is continuous if and
only if there exists a linear injective operator Ĵ : E → F , which is continuous. The embedding
′E ⊂ F ′ is called compact if and only if there exists a linear injective operator Ĵ : E → F ,
which is compact. Since the operator Ĵ : E → F is injective, we may identify u ∈ E with
Ĵ (u) ∈ F . The space E may thus be considered as a subspace of F and we may write E ⊂ F
instead of ′E ⊂ F ′.

Example 3.4: Let � be a nonempty bounded open set in Rn, n > 1. Then we have:

1. The embedding C(�̄) ⊂ L2(�) is continuous.
2. The embedding H1

0 (�) ⊂ L2(�) is compact.
3. The embedding H1(�) ⊂ L2(�) is compact.

Note that the norm of u ∈ C(�̄) is defined by ‖u‖ = max
x∈�̄

|u(x)|.

If E is a subset of F , we can define Ĵ (u) := u for all u ∈ E . In this case, we have

1. The embedding E ⊂ F is continuous if and only if un————−→
n→∞

u in E implies

un————−→
n→∞

u in F .

2. The embedding E ⊂ F is compact if and only if it is continuous and each bounded sequence
{un} ⊂ E has a subsequence that converges in F .

3.1.2 Closed Operators

We assume that all the operators are defined in a Hilbert space H . Let Â be an operator with
domain D( Â). To extend Â to a larger domain, we can use the following strategy. Suppose that u
is not in D( Â), but that there exists a sequence {un} ⊂ D( Â) such that un → u and Â(un) → v.
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Then we can define Â(u) = v. This definition is reasonable only if v does not depend on the
sequence {un}. In other words, if {u ′

n} ⊂ D( Â) is such that u′
n → u and Â(u′

n) → v′, we must
have v = v′. An operator having this property is called closable, and the extended operator
is called its closure, denoted by Â. Equivalently an operator Â is closable if the closure of

its graph �( Â), denoted �( Â), is the graph of some linear operator. This latter linear operator

is the closure of Â. Thus �( Â) = �( Â). Since �( Â) ⊂ �( Â), if Â exists, it extends Â. An
operator Â is closed if it is closable and Â = Â. The closure Â, whenever it exists, is a closed

operator. If Â ⊂ B̂ and B̂ is closable, then �( Â) ⊂ �(B̄); hence Â is closable and Â ⊂ B̂.
Thus the closure of a closable operator Â is equal to the least closed operator which extends
Â. Closedness is very important to the convergence of the solutions of separation of variables.
An operator is not usually continuous but it may have the property of being closed.

Remark 3.1: If E and F are normed spaces, the map ‖·‖E×F : E × F → R defined by

‖(u, v)‖E×F = (‖u‖2
E + ‖v‖2

F

)1/2
, u ∈ E, v ∈ F

is a norm on E × F . Equivalent norms on E × F are (u, v) �→ max{‖u‖E , ‖v‖F } and (u, v) �→
‖u‖E + ‖v‖F . The normed space E × F is denoted by E ⊕ F and called the direct sum of
E and F .

Remark 3.2: If Â is a closed operator, the map u �→ (u, Âu) is an isomorphism between
D( Â) and the closed subspace �( Â). If we set ‖u‖� = (‖u‖ + ∥∥ Âu

∥
∥)1/2, D( Â) becomes a

Banach space. The norm ‖·‖� on D( Â) is called graph norm.

The closure Â may not be linear even if Â is linear. If an operator is only densely defined,
‘closed’ is weaker than ‘bounded’ or ‘continuous’. To find the closure of an operator is, in
general, not an easy task. To determine the closure of an operator Â, we must define the domain
D( Ā) and the map Â, which requires the extension of the notion of derivatives and the introduc-
tion of generalized derivatives. Almost all differential operators are either closed or closable.

3.1.3 Spectrum and Resolvent of Linear Operators

For any scalar λ and a linear operator Â : D( Â) ⊂ H → H , where H is a Hilbert space, we
define Âλ = λ Î − Â. The set of those λ for which Â−1

λ does not exist is called the point
spectrum (or discrete spectrum) of the operator Â and is denoted by σp( Â). Thus λ ∈ σp( Â)
if and only if the equation

Âu − λu = 0 (3.6)

has a solution u = 0. The elements of the point spectrum are called the eigenvalues of Â and
the corresponding non-zero solutions of the above equation are called eigenfunctions of Â.
Now suppose Â−1

λ exists. The set of those λ for which R( Âλ) is not dense in H is called the
residual spectrum of Â and is denoted by σr ( Â). The set of those λ for which R( Âλ) is dense
in H and Â−1

λ is bounded is called resolvent set of Â and is denoted by ρ( Â) (in this case, we
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can resolve the problem completely). The set of those λ for which R( Âλ) is dense in H and
Â−1

λ is not bounded is called continuous spectrum of Â and is denoted by σc( Â) (the term
continuous derives from the fact that in most cases such λ form a continuum in the plane).
These definitions are summarized below:

1. λ ∈ σp( Â) if and only if Â−1
λ does not exist. Uniqueness of (3.6) fails but existence holds.

2. λ ∈ σr ( Â) if and only if Â−1
λ exists and R( Âλ) = H .

3. λ ∈ σc( Â) if and only if Â−1
λ exists and is unbounded and R( Âλ) = H . Uniqueness of (3.6)

holds but existence fails.
4. λ ∈ ρ( Â) if and only if Â−1

λ exists and is bounded and R( Âλ) = H .

The union σp( Â) ∪ σr ( Â) ∪ σc( Â) is called the spectrum of Â and is denoted by σ ( Â). We
have

σp( Â) ∪ σr ( Â) ∪ σc( Â) ∪ ρ( Â) = C,

where C is the set of all complex numbers. Note that the residual spectrum does not occur for
a large class of operators, such as self-adjoint operators. For λ ∈ ρ( Â), the operator Â−1

λ is
called the resolvent of Â. Here are some important properties:

1. Âλ has a bounded inverse if and only if
∥
∥ Âλu

∥
∥ ≥ c1 ‖u‖ holds for all u ∈ D( Â) and for

some constant c1 > 0.
2. If Â is a closed operator, its resolvent Â−1

λ is bounded and defined on the whole space.
3. If Â is a closable operator, then σ ( Â) = σ ( Â).

Example 3.5: Consider the heat-conduction equation defined in a finite interval [0, l]

∂2v(x, t)

∂x2
− ∂v(x, t)

∂t
= 0,

(3.7)
v(0, t) = v(l, t) = 0, t > 0; v(x, 0) = f (x).

Let H = L2[0, 1], and Â : u(x) → −d2u/dx2, with D( Â) = {u ∈ C2[0, l]|u(0) = u(l) = 0}.
We first solve the eigenvalue problem

−d2u

dx2
= λ2u, u(0) = u(l) = 0.

The normalized eigenfunctions of the eigenvalue problem are easily found to be

un(x) =
√

2/ l sin λn x (3.8)
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where λn = nπ/ l. The spectrum of Â is σ ( Â) = σp( Â) = {λ2
n |n = 1, 2, · · · }. The eigenfunc-

tions (3.8) can be used to expand the solution of (3.7), and we have

v(x, t) = 2

l

∞
∑

n=1

an exp
(−λ2

nt
)

sin λn x, (3.9)

where an =
l∫

0
f (x) sin λn xdx . As l → ∞, the difference �λ = λn+1 − λn = π/ l between

any two neighboring eigenvalues approaches zero. As a result, the point spectrum becomes a
continuous spectrum and the series (3.9) becomes an integral

v(x, t) = 2

π

∞∫

0

a(λ) exp(−λ2t) sin(λt)dλ,

where a(λ) =
∞∫

0
f (x) sin λxdx . This is how the Fourier integral enters the picture.

3.1.4 Adjoint Operators and Symmetric Operators

Let H be a Hilbert space and (·, ·) stand for its inner product and ‖·‖ its corresponding
norm. Let Â: D( Â) ⊂ H →R( Â) ⊂ H be a linear operator, where D( Â) denotes the domain
of definition of Â and R( Â) the range of Â. We assume that D( Â) is dense in Hilbert
space H . Thus there is a unique linear operator, denoted by Â∗ and defined in D( Â∗), such
that

( Âu, v) = (u, Â∗v), u ∈ D( Â), v ∈ D( Â∗). (3.10)

The operator Â∗ is called the adjoint operator of Â. An operator Â is called self-adjoint
(resp. skew adjoint) if Â∗ exists and Â = Â∗ (resp. Â = − Â∗). Some important properties of
adjoint operators are listed below (Yosida, 1988):

1. If D( Â) = H , Â∗ is bounded.
2. (α Â)∗ = ᾱ Â∗, Â∗ + B̂∗ ⊂ ( Â + B̂)∗, Â∗ B̂∗ ⊂ (B̂ Â)∗ (ᾱ is the complex conjugate of α). If

Â is bounded operator defined in the whole space H , we have Â∗ + B̂∗ = ( Â + B̂)∗ and
Â∗ B̂∗ = (B̂ Â)∗.

3. If Â is closable and Â∗ exists, then ( Â)∗ = Â∗. Â∗ is a closed operator. Every self-adjoint
operator is closed.

Example 3.6: Let S be a closed surface in R3 and L2(S) be the set of square-integrable
complex functions defined on S. Define the inner product by (u, v) = ∫

S
u(r)v̄(r)d S(r) and
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consider the operator Â : L2(S) → L2(S)

Âu(r) =
∫

S

∂G(r, r′)
∂n(r′)

u(r′)d S(r′), (3.11)

where G(r, r′) = e− jk|r−r′|/4π
∣
∣r − r′∣∣. Then the adjoint of Â is

Â∗v(r) =
∫

S

∂Ḡ(r, r′)
∂n(r)

v(r′)d S(r′). (3.12)

In fact, we have

( Âu, v) =
∫

S

v̄(r)

⎡

⎣

∫

S

∂G(r, r′)
∂n(r′)

u(r′)d S(r′)

⎤

⎦ d S(r)

=
∫

S

u(r)

⎡

⎣

∫

S

∂Ḡ(r′, r)

∂n(r)
v(r′)d S(r′)

⎤

⎦ d S(r) = (u, Â∗v).

The integral operators defined by (3.11) and (3.12) are also compact.

An operator Â is said to be symmetric if and only if Â ⊂ Â∗ and

( Âu, v) = (u, Âv) (3.13)

for all u, v ∈ D( Â). Since Â∗ is closed, a symmetric operator Â is closable. Moreover, the
closure of a symmetric operator is a symmetric operator since ( Â)∗ = Â∗. If Â is a symmetric
operator, its closure Â exists.

For technical reasons, it is the notion of self-adjoint rather than symmetric operator that is
important in applications. However verifying self-adjointness is very difficult while verifying
symmetry is usually trivial. In addition, self-adjointness is just a special situation of symmetry.

Example 3.7: Let Âu = −d2u/dx2, D( Â) consists of all possible functions having first and
second derivatives in the open interval (0, 1) and satisfying u(0) = u(1) = 0. Then the operator
Â is symmetric since

( Âu, v) − (u, Âv) = −
1∫

0

d

dx

(

v
du

dx
− u

dv

dx

)

dx = −
(

v
du

dx
− u

dv

dx

)1

0

= 0.

Notice that the symmetry of a differential operator depends on the boundary conditions.
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Let E and F be two inner product spaces and Â : D( Â) ⊂ E → F be a linear differential
operator. If there exists an operator Â∗ : D( Â∗) ⊂ F → E such that

( Âu, v) = (u, Â∗v) + b(u, v), u ∈ D( Â), v ∈ D( Â∗),

Â∗ is called the adjoint differential operator of Â. Here b(u, v) is the boundary term. If
Â = Â∗, the operator Â is called the self-adjoint differential operator.

Example 3.8: Let u(x, y) ∈ C2(�) ∩ C1(�̄) ⊂ L2(�), p(x, y) ∈ C1(�̄), q(x, y) ∈ C(�̄) and

Âu = ∂

∂x
p
∂u

∂x
+ ∂

∂y
p
∂u

∂y
+ qu.

From the integration by parts, we have

∫

�

v Âudxdy =
∫

�

u Â∗vdxdy + b(u, v),

where

Â∗v = ∂

∂x
p

∂v

∂x
+ ∂

∂y
p
∂v

∂y
+ qv,

b(u, v) =
∫

�

p

(

v
∂u

∂n
− u

∂v

∂n

)

d�,

and � is the boundary of �. Hence Â = Â∗ and Â is self-adjoint.

3.1.5 Energy Space

Let H be a real Hilbert space. A symmetric operator B̂ is said to be positive definite if
(B̂u, u) ≥ 0 for all u ∈ D(B̂) ⊂ H and the equality holds only for u = 0. A symmetric
operator B̂ is said to be positive-bounded-below if there is a positive constant c1 such that

(B̂u, u) > c1 ‖u‖2 (3.14)

for all u ∈ D(B̂) ⊂ H . If B̂ is positive definite, the quantity (B̂u, u) is called energy of u. We
introduce the energy inner product of the operator B̂

(u, v)B̂ = (B̂u, v)

and let ‖·‖B̂ stand for the corresponding energy norm defined by ‖u‖B̂ = (B̂u, u)1/2. We say
that the sequence un converges in energy to u if ‖un − u‖B̂ ————−→

n→∞
0. Evidently if B̂ is

positive-bounded-below and ‖un − u‖B̂ ————−→
n→∞

0, then ‖un − u‖ ————−→
n→∞

0.
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Remark 3.3: It is interesting to examine the difference between the positive definite and
the positive-bounded-below physically. For a system involving a positive definite operator, an
arbitrarily small input may give rise to an arbitrarily large response. For a system involving a
positive-bounded-below operator, a large response needs a sufficiently large input.

Remark 3.4: For most eigenvalue problems in mathematical physics, the operator B̂ is a
differential operator. To check if the operator B̂ is positive-bounded-below, we may use
Poincaré inequality

∫

�

u2d� ≤ c1

∫

�

N∑

j=1

(∂ j u)2d� + c2

⎛

⎝

∫

�

ud�

⎞

⎠

2

, (3.15)

where � is a bounded open region in RN , c1 and c2 are positive constants. We can also use the
inequality

c3

∫

�

u2d� ≤
∫

�

N
∑

j=1

(∂ j u)2d�, (3.16)

where c3 is a positive constant and u is assumed to be equal to zero on the boundary of �. The
expression (3.16) is called the Friedrichs inequality, named after the German mathematician
Kurt Otto Friedrichs (1901–1982).

Suppose that B̂ is positive-bounded-below. The energy space HB̂ consists of all u ∈ H that
have the following two properties:

1. There exists a sequence {un} ⊂ D(B̂) such that ‖un − u‖ ————−→
n→∞

0, u ∈ H .

2. The sequence {un} ⊂ D(B̂) is a Cauchy sequence with respect to energy norm ‖·‖B̂ .

The sequence {un} ⊂ D(B̂) satisfying the above properties is called the admissible sequence
for u. For all u, v ∈ HB̂ we define (u, v)B̂ = lim

n→∞(un, vn)B̂ , where {un} and {vn} are the

admissible sequences for u and v respectively. To show that the limit lim
n→∞(un, vn)B̂ exists, we

note that

(un, vn)B̂ − (um, vm)B̂ = (un, vn − vm)B̂ + (un − um, vm)B̂

≤ ‖un‖B̂ ‖vn − vm‖B̂ + ‖un − um‖B̂ ‖vm‖B̂ ————−→
n,m→∞

0.

Let B̂ be positive-bounded-below. It is readily found that

1. HB̂ is a real Hilbert space with respect to the energy product (·, ·)B̂ , and D(B̂) is dense in
HB̂ .

2. The embedding HB̂ ⊂ H is continuous, that is, ‖u‖ ≤ c1 ‖u‖B̂ for all u ∈ HB̂ .
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3. The operator Ĵ : H → H ∗
B̂

defined by Ĵ ( f )(v) = ( f, v), v ∈ HB̂ is a continuous embed-
ding.

We can identify f with Ĵ ( f ) so that H becomes a subset of H∗
B̂

. Thus we have HB̂ ⊂ H ⊂ H∗
B̂

and

〈 f, v〉B̂ = ( f, v), f ∈ H, v ∈ HB̂, (3.17)

where the note 〈g, v〉B̂ is defined by 〈g, v〉B̂ = g(v) for g ∈ H∗
B̂

and all v ∈ HB̂ .

3.1.6 Energy Extension, Friedrichs Extension and Generalized Solution

Let B̂ : D(B̂) ⊂ H → H be a linear, symmetric, positive-bounded-below operator on the real
Hilbert space H . The duality map B̂E : HB̂ → H ∗

B̂
is defined by

〈B̂E u, v〉B̂ = (u, v)B̂, u, v ∈ HB̂ . (3.18)

For u ∈ D(B̂), we have

〈B̂E u, v〉B̂ = (u, v)B̂ = (B̂u, v) = 〈B̂u, v〉B̂, u, v ∈ HB̂ .

This implies B̂E u = B̂u and B̂E is the extension of B̂. The duality map B̂E is called the energy
extension of B̂. We can also introduce a new operator B̂F : D(B̂F ) ⊂ H → H defined by

B̂F u = B̂E u

with D(B̂F ) = {u ∈ HB̂

∣
∣B̂E u ∈ H }. Then it is easy to show that B̂ ⊂ B̂F ⊂ B̂E . The new

operator B̂F is called the Friedrichs extension of B̂, which has the following properties
(Zeidler, 1995):

1. The operator B̂F is self-adjoint and bijective, and (B̂F u, u) ≥ c1 ‖u‖2 for all u ∈ D(B̂F ).
2. The inverse operator B̂−1

F : H → H is linear, continuous and self-adjoint. If the embedding
HB̂ ⊂ H is compact, the inverse operator B̂−1

F : H → H is compact.

Let us consider the operator equation

B̂u = f, u ∈ D(B̂), f ∈ H. (3.19)

This is considered the original classical problem and its solution is the classical solution, which
is confined in D(B̂) so that B̂u exists. We now introduce three new equations

B̂F u = f, u ∈ D(B̂F ), (3.20)

(u, B̂v) = ( f, v), u ∈ HB̂, for all v ∈ D(B̂), (3.21)
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1

2
(u, u)B̂ − ( f, u) = min, u ∈ HB̂ . (3.22)

These are the generalized versions of the original classical problem (3.19), and their solutions
are sought in a broader domain of definition than D(B̂). The three generalized versions are
equivalent and they have a unique solution u0 = B̂−1

F f . Actually, by the properties of B̂F ,
Equation (3.20) has a unique solution u0 = B̂−1

F f . For all u ∈ HB̂ , we have

( f, u) = 〈 f, u〉B̂ = 〈B̂Fu0, u〉B̂ = 〈B̂E u0, u〉B̂ = (u0, u)B̂,

which allows us to write

1

2
(u − u0, u − u0)B̂ − 1

2
(u0, u0)B̂ = 1

2
(u, u)B̂ − ( f, u).

Equation (3.22) is thus equivalent to

1

2
(u − u0, u − u0)B̂ − 1

2
(u0, u0)B̂ = min, u ∈ HB̂,

which has a unique solution u = u0. Since H is a real Hilbert space, Equation (3.21) is
equivalent to

(B̂Fv, u) = ( f, v), u ∈ HB̂

for all v ∈ D(B̂). Considering

(B̂Fv, u) = 〈B̂Fv, u〉B̂ = 〈B̂Ev, u〉B̂ = (v, u)B̂, u ∈ HB̂, v ∈ D(B̂)

and (v, u)B̂ = (u, v)B̂ , Equation (3.21) is equivalent to

〈B̂E u, v〉B̂ = ( f, v) = 〈 f, v〉B̂, u ∈ HB̂

for all v ∈ D(B̂). Since D(B̂) is dense in HB̂ , the above equation is equivalent to

B̂E u = f, u ∈ HB̂ .

This is equivalent to (3.20) since f ∈ H . Thus we have proved the equivalence of (3.20),
(3.21) and (3.22). The solution u0 = B̂−1

F f is called the generalized solution of the original
classical problem (3.19).

Example 3.9: Consider the classical problem

B̂u = u′′ = −d2u

dx2
= f, u ∈ D(B̂) = C∞

0 (0, 1), f ∈ H = L2(0, 1). (3.23)
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We now show that HB̂ = H1
0 (0, 1) with the inner product

(u, v)B̂ = (B̂u, u) =
1∫

0

u′v′dx, u, v ∈ HB̂ . (3.24)

Here u′ = du/dx denotes the generalized derivative. First we demonstrate that B̂ is positive-

bounded-below. The inner product in H is defined by (u, v) =
1∫

0
u(x)v(x)dx . Using integration

by parts and the boundary conditions, we have

(u, v)B̂ = (B̂u, v) = −
1∫

0

u′′vdx =
1∫

0

u′v′dx, u, v ∈ D(B̂). (3.25)

Moreover, (B̂u, u) = 0 implies
∫ 1

0 u′2dx = 0, which leads to u′ = 0. Hence u(x) is a constant,
which must be zero according to the boundary conditions. Consequently, the operator B̂
is positive definite. Since u(0) = 0, one may write u(x) = ∫ x

0 u′(t)dt . Applying Cauchy’s
inequality, we obtain

u2(x) ≤
x∫

0

12dt

x∫

0

[u′(t)]2dt = x

x∫

0

[u′(t)]2dt ≤ x

1∫

0

[u′]2dt .

Taking the integration over the interval [0, 1] yields

‖u‖2 =
1∫

0

u2(x)dx ≤ 1

2

1∫

0

u′2dt = 1

2
(B̂u, u).

This shows that the operator B̂ is positive-bounded-below. Next we prove HB̂ = H 1
0 (0, 1). For

u ∈ HB̂ , there exists an admissible sequence {un} such that

‖un − u‖ ———−→
n→∞

0, (3.26)

and the sequence {un} ⊂ D(B̂) = C∞
0 (0, 1) is a Cauchy sequence with respect to the energy

norm ‖·‖B̂ . So we have

‖un − um‖2
B̂

=
1∫

0

(u′
n − u′

m)2dx → 0,
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and hence {u ′
n} is a Cauchy sequence in H . As a result, there exists a function v ∈ H such that

∥
∥u ′

n − v
∥
∥———−→

n→∞
0. (3.27)

Making use of
1∫

0
unϕ

′dx = −
1∫

0
u′

nϕdx for all ϕ ∈ C∞
0 (0, 1), and letting n → ∞, we obtain

1∫

0

uϕ′dx = −
1∫

0

vϕdx .

Thus v is the generalized derivative of u and u ∈ H1(0, 1). By (3.26) and (3.27), we may
conclude that u ∈ H 1

0 (0, 1). On the other hand, if we assume that u ∈ H 1
0 (0, 1), there exists a

sequence {un} ⊂ D(B̂) such that (3.26) and (3.27) hold. Consequently, {un} is an admissible
sequence for u and u ∈ HB̂ . For any u, v ∈ HB̂ , the inner product (u, v)B̂ is defined by

(u, v)B̂ = lim
n→∞(un, vn)B̂ = lim

n→∞

1∫

0

u′
nv

′
ndx =

1∫

0

u′v′dx,

where {un} and {vn} are the admissible sequences for u and v respectively, and the derivatives
in the last integral are understood in the generalized sense.

The weak formulation of the classical problem (3.23) is given by (3.21)

1∫

0

u(−v′′)dx =
1∫

0

f vdx, u ∈ HB̂ (3.28)

for all v ∈ D(B̂). By definition, the energy extension B̂E of B̂ is defined as

〈B̂E u, v〉B̂ = (u, v)B̂, u, v ∈ HB̂ .

This implies

〈B̂E u, v〉B̂ =
1∫

0

u′v′dx =
1∫

0

−u′′vdx, u, v ∈ HB̂,

where all the derivatives are understood in the generalized sense. From the above equation,
one may find that B̂Eu = −u′′, u ∈ HB̂ . The Friedrichs extension B̂F is

B̂F u = B̂Eu, u ∈ D(B̂F ),
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where D(B̂F ) consists of all u ∈ HB̂ such that B̂E u ∈ H = L2(0, 1). Explicitly

D(B̂F ) = {u ∈ H 1
0 (0, 1)

∣
∣ u′′ ∈ L2(0, 1)

}

,

where the double prime denotes the generalized derivative. Note that (3.20) is

−u ′′ = f, u ∈ D(B̂F ), f ∈ L2(0, 1).

Remark 3.5: In general, if B̂ is a 2m th order positive-bounded-below differential operator
defined over a finite region �, we take H = L2(�). The definition of domain D(B̂) consists
of the functions u for which B̂u exists, with u and its derivatives satisfying the homogeneous
boundary conditions. The energy space HB̂ contains the functions that have the generalized
derivatives up to m (including m). These generalized derivatives are square-integrable and
satisfy the homogeneous boundary conditions.

3.2 Eigenvalue Problems for Symmetric Operators

The concepts of eigenvalues and eigenfunctions play a major role in mathematics and
physics, and many mathematical equations lead to eigenvalue problems after separation of
variables.

3.2.1 Positive-Bounded-Below Symmetric Operators

Consider the eigenvalue problem defined by

B̂v − λv = 0, v ∈ D(B̂) ⊂ H, v = 0, (3.29)

where H is a real Hilbert space, and D(B̂) is dense in H . The operators B̂ is assumed to be
symmetric and positive-bounded-below, that is, there is a positive constant c1 such that

‖v‖2
B̂

= (v, v)B̂ ≥ c1 ‖v‖2 (3.30)

for all v ∈ D(B̂). This assumption ensures that (B̂v, v) indeed gives an inner product, so that
the Cauchy-Schwarz’s inequality holds

∣
∣(v1, v2)B̂

∣
∣
2 ≤ (v1, v1)B̂(v2, v2)B̂ . (3.31)

For the classical problem (3.29), we may introduce the generalized eigenvalue problem

B̂F u − λu = 0, u ∈ D(B̂F ), u = 0. (3.32)

The variational method may be used to solve the eigenvalue problems (Mikhlin, 1964;
Weinberger, 1974). We have the following properties:
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1. The eigenvalues are real and all the corresponding eigenfunctions can be assumed to be
real. Furthermore all the eigenvalues are positive.

2. The eigenfunctions of different eigenvalues are orthogonal: If λ1 and λ2 are distinct eigen-
values and v1 and v2 are the corresponding eigenfunctions, then (v1, v2) = 0.

3. Let λ1 be the lower bound of the functional (B̂v, v)/(v, v). If there exists a function v0

such that λ1 = (B̂v0, v0)/(v0, v0), then λ1 = (B̂v0, v0)/(v0, v0) is the lowest eigenvalue of
(3.29) and v0 is the corresponding eigenfunction.

4. Let λ1, λ2, · · · , λn be (in the order of increasing value) the first n eigenvalues and let
v1, v2, · · · , vn be the corresponding eigenfunctions. If there exists a function vn+1, which
minimizes the functional (B̂v, v)/(v, v) under the supplementary conditions (v, v1) =
(v, v2) = · · · = (v, vn) = 0, then vn+1 is the eigenfunction corresponding to the eigen-
value λn+1 = (B̂vn+1, vn+1)/(vn+1, vn+1). This eigenvalue is the next following after λn .
This procedure reduces the eigenvalue problem to the variational problem of finding the
minimum of the functional (B̂v, v)/(v, v).

5. Let H be a real separable Hilbert space with dim H = ∞. If the embedding HB̂ ⊂ H is
compact, then the generalized eigenvalue problem (3.32) has an infinite set of eigenvalues
c1 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn · · ·, and λn → ∞ as n → ∞. In addition, the corresponding
eigenfunctions {vn} constitute a complete system in H , and vn ∈ HB̂ for all n.

The first four properties are straightforward, and we only prove the last one. Let

ϕ(v) = (B̂v, v)

(v, v)
≥ c1, v ∈ D(B̂) (3.33)

and λ1 > 0 be the exact lower bound of the functional ϕ(v)

λ1 = inf
v∈D(B̂)

ϕ(v).

By the definition of exact lower bound, for any positive integer n, it is possible to find a function
un ∈ D(B̂) such that c1 ≤ λ1 ≤ ϕ(un) ≤ λ1 + 1

/

n. Obviously we have lim
n→∞ ϕ(un) = λ1. The

functional ϕ(un) does not change if un is multiplied by a constant. Thus we may choose
‖un‖ = 1, then ϕ(un) = (B̂un, un) and

(B̂un, un) → λ1. (3.34)

We now prove that there is a function v1 ∈ HB̂ such that (B̂Fv1, v1) = λ1. Let η be an arbitrary
function from D(B̂) and t an arbitrary real number. Then

(B̂(un + tη), un + tη)

‖un + tη‖2 ≥ λ1.

Since ‖un‖ = 1, we have

t2
[

(B̂η, η) − λ1 ‖η‖2
]+ 2t

[

(B̂un, η) − λ1(un, η)
]+ (B̂un, un) − λ1 ≥ 0.
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The discriminant of the above expression must be negative as it is a quadratic expression and
does not change sign. Hence

[

(B̂un, η) − λ1(un, η)
]2 ≤ [(B̂η, η) − λ1 ‖η‖2] [(B̂un, un) − λ1

]

. (3.35)

From (3.34) and (3.35) it follows that

(B̂un, η) − λ1(un, η) ———−→
n→∞

0 (3.36)

for all η ∈ D(B̂). Note that the sequence {un} is contained in D(B̂) ⊂ HB̂ . By assumption that
the embedding HB̂ ⊂ H is compact, we may therefrom select a subsequence, still denoted
{un}, such that un ———−→

n→∞
v1 ∈ H . We now show that v1 ∈ HB̂ . In fact, let η = un − um in

(3.36), we obtain

(B̂un, un − um) − λ1(un, un − um) ———−→
n→∞

0. (3.37)

Interchanging m and n gives

(B̂um, um − un) − λ1(um, um − un) ———−→
m→∞

0. (3.38)

Adding (3.37) and (3.38) yields

(B̂(un − um), un − um) − λ1(un − um, un − um) ———−→
m,n→∞

0.

Since un → v1 in H , the above equation implies

‖un − um‖B̂ ———−→
m,n→∞ 0.

Thus {un} is an admissible sequence and v1 ∈ HB̂ . By symmetric property of B̂, Equation
(3.36) can be written as

(un, B̂η) − λ1(un, η) ———−→
n→∞

0 (3.39)

for all η ∈ D(B̂). Proceeding to the limit as n → ∞ in (3.39) gives

(v1, B̂η) − λ1(v1, η) = 0, v1 ∈ HB̂

for all η ∈ D(B̂). This is equivalent to B̂Fv1 − λ1v1 = 0, v1 ∈ D(B̂F ), and λ1 = (B̂Fv1, v1).
We denote by λ2 the exact lower bound of functional ϕ(v) under the supplementary condition

(v, v1) = 0. By repeating the foregoing arguments, we may find that λ2 is the second eigenvalue
of operator B̂F and that it corresponds to a normalized eigenfunction v2, orthogonal to v1.
Continuing this process, we obtain an increasing sequence of eigenvalues of λ1 ≤ λ2 ≤ · · · ≤
λn · · · and the corresponding orthonormal sequence of eigenfunctions v1, v2, · · · , vn, · · ·.
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In order to prove that λn approaches infinity as n increases, we may use the method of
contradiction. Suppose that the converse is true. Then there exists a constant c1 such that
λn ≤ c1 for all n. Since (B̂vn, vn) = λn ≤ c1, the sequence {vn} of eigenfunctions is bounded.
By the hypothesis of the theorem that the embedding HB̂ ⊂ H is compact, it is possible
to choose from the sequence {vn} a subsequence {vnk}, which converges as k increases:
lim

k,l→∞
‖vnk − vnl‖2 = 0. This contradicts the fact that ‖vnk − vnl‖2 = 2.

To prove the completeness of the system of eigenfunctions {vn}, we first demonstrate the
completeness of {vn} in HB̂ . If the system of the eigenfunctions were incomplete in HB̂ ,
there would exist nonzero functions in HB̂ , which are orthogonal to all the eigenfunctions vn .
Denoting by λ̃ the exact lower bound of ϕ(v) for these functions one would find that λ̃ is an
eigenvalue of operator B̂F , greater than all λn and this is impossible since |λn| → ∞. For an
arbitrary u ∈ H , we may choose a v ∈ HB̂ such that ‖u − v‖ < ε/2 (since HB̂ is dense in H ),
where ε is an arbitrary small positive number. By the completeness of {vn} in HB̂ , v can be

approximated by a sum of the form
N∑

i=1
aivi such that

∥
∥
∥
∥
v −

N∑

i=1
aivi

∥
∥
∥
∥

B̂

< εc1/2, where c1 is

the constant in (3.30). Now we have

∥
∥
∥
∥
∥

u −
N
∑

i=1

aivi

∥
∥
∥
∥
∥

< ‖u − v‖ +
∥
∥
∥
∥
∥
v −

N
∑

i=1

aivi

∥
∥
∥
∥
∥

< ε/2 + 1

c1

∥
∥
∥
∥
∥
v −

N
∑

i=1

aivi

∥
∥
∥
∥
∥

B̂

< ε.

The proof is completed.
Therefore, any function u ∈ H has the following expansion

u =
∑

n

(u, vn)vn,

where the set of eigenfunctions {vn} is assumed to be orthonormal.

Remark 3.6: In practice, we only need to show that the operator B̂ is positive definite. If B̂ is
positive definite, we may add ξ on both sides of (3.29), where ξ is a arbitrary positive number,
to yield

(B̂ + ξ Î )v = (λ + ξ )v.

Thus the new operator B̂ + ξ Î is positive-bounded-below.

Example 3.10: The longitudinal component of a TM mode in a uniform metal waveguide is
characterized by the Dirichlet problem

−∇2u(x) = λu(x), x ∈ �,
(3.40)

u(x) = 0, x ∈ �.

By (3.16), the operator B̂ = −∇2 is positive-bounded-below in D(B̂) = C∞
0 (�). It can be

shown that HB̂ = H 1
0 (�) (Zeidler, 1995). Furthermore the embedding H1

0 (�) ⊂ H = L2(�)
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is compact. Thus the generalized eigenvalue problem B̂F u = λu, u ∈ D(B̂F ) has a complete
orthonormal set {un} in L2(�). The corresponding eigenvalues satisfy λn———−→

n→∞
∞ with

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · ·.

Example 3.11: The longitudinal component of a TE mode in a uniform metal waveguide is
characterized by the Neumann problem

−∇2u(x) = λu(x), x ∈ �,
(3.41)

∂u(x)/∂n = 0, x ∈ �.

The domain of definition of the operator B̂ = −∇2 is D(B̂) = {u ∈ C∞(�̄) |∂u/∂n = 0
}

. Let
H = L2(�). For all u, v ∈ D(B̂)

(u, v)B̂ =
∫

�

−v∇2udx =
∫

�

N∑

j=1

∂ j u∂ jvdx −
∫

�

∂u

∂n
vd�

=
∫

�

N
∑

j=1

∂ j u∂ jvdx, u, v ∈ D(B̂).

Therefore, the operator B̂ is positive definite. By introducing a positive constant ξ , Equation
(3.41) can be modified into the equivalent problem

−∇2u(x) + ξu(x) = Â(u) = (λ + ξ )u(x), x ∈ �,
(3.42)

∂u(x)/∂n = 0, x ∈ �,

where Â = B̂ + ξ Î . The new operator Â is positive-bounded-below with D( Â) = D(B̂). For
all u, v ∈ D( Â)

(u, v) Â =
∫

�

N
∑

j=1

∂ j u∂ jvdx + ξ

∫

�

uvdx

(3.43)
=
∫

�

∇u · ∇vdx + ξ

∫

�

uvdx, u, v ∈ D( Â).

The completion of D( Â) with respect to the norm ‖·‖Â is the energy space HÂ. For arbitrary
u, v ∈ HÂ there exist two admissible sequences {un} and {vn} such that ‖un − u‖ → 0 and
‖vn − v‖ → 0. We define

(u, v) Â = lim
n→∞(un, vn) Â. (3.44)
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Let u ∈ HÂ, there exists an admissible sequence {un} ⊂ D( Â) such that

‖un − u‖ ———−→
n→∞

0

and the sequence {un} ⊂ D( Â) is a Cauchy sequence with respect to energy norm ‖·‖ Â. From
(3.43) we obtain

‖un − um‖2
Â

=
N
∑

j=1

∥
∥∂ j un − ∂ j um

∥
∥

2 + ξ ‖un − um‖2 → 0.

Thus {∂ j un} is a Cauchy sequence in H . As a result, there exists a function v j ∈ H such that

∥
∥∂ j un − v j

∥
∥ ———−→

n→∞
0, v j ∈ H, j = 1, 2, · · · , N .

Making use of

∫

�

un∂ jϕdx = −
∫

�

∂ j unϕdx, ϕ ∈ C∞
0 (�)

and letting n → ∞ we obtain

∫

�

u∂ jϕdx = −
∫

�

v jϕdx, ϕ ∈ C∞
0 (�).

Hence v j = ∂ j u holds in the generalized sense. As a result, u ∈ H 1(�) and HÂ is a subspace
of H 1(�). Since ∂ j un → ∂ j u as n → ∞, we have ∂u/∂n = 0 on � in the generalized sense.
Therefore HÂ ⊂ {u ∈ H 1(�)

∣
∣ ∂u/∂n = 0 on �}. Now we are able to write (3.44) as

(u, v) Â =
∫

�

∇u · ∇vdx + ξ

∫

�

uvdx, u, v ∈ HÂ

in which the derivatives should be understood in the generalized sense.
To prove that the embedding HÂ(�) ⊂ L2(�) is compact, let Ĵ (u) = u, u ∈ HÂ(�). The

operator Ĵ : HÂ(�) → L2(�) is linear and continuous since

∥
∥ Ĵ (u)

∥
∥

2 = ‖u‖2 ≤ ξ−1(‖∇u‖2 + ξ ‖u‖2) = ξ−1 ‖u‖ Â .

A bounded sequence {un} in HÂ implies ‖un‖ Â = ‖∇un‖2 + ξ ‖un‖2 ≤ c1, where c1 is a
constant. The compactness of Ĵ can then be obtained by using the Rellich theorem (named
after the Italian mathematician Franz Rellich, 1906–1955) stated below. Therefore the gen-
eralized eigenvalue problem ÂF u = (λ + ξ )u, u ∈ D( ÂF ) has a complete orthonormal set
{un} in L2(�). The corresponding eigenvalues satisfy 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · ·, with
λn ———−→

n→∞
∞.
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Theorem 3.2 Rellich’s theorem: Any sequence { fn} that satisfies

‖ fn‖2 =
∫

�

f 2
n d� ≤ c1, ‖∇ fn‖2 =

∫

�

(∇ fn)2d� ≤ c2,

where c1 and c2 are constants, has a subsequence, still denoted by { fn}, such that
lim

m,n→∞
∫

�

( fm − fn)2d� = 0 (Kurokawa, 1969).

3.2.2 Compact Symmetric Operators

We now study the eigenvalue problem

Âv − λv = 0, (3.45)

where Â is defined in the whole space H . The set of all the eigenfunctions corresponding to
an eigenvalue λ is called the eigenspace. An eigenvalue λ is said to have finite multiplicity
if the corresponding eigenspace has finite dimension. The following Hilbert-Schmidt theorem
is a fundamental result concerning compact self-adjoint operators on Hilbert spaces.

Hilbert-Schmidt theorem: Let Â : H → H be a linear compact symmetric operator on the
Hilbert space H which is separable and H = {0}. Then

1. All the eigenvalues of Â are real, and each eigenvalue λ = 0 has finite multiplicity.
2. Any two eigenfunctions of Â that correspond to different eigenvalues are orthogonal.
3. The operator Â has a complete orthonormal system of eigenfunctions.
4. If the operator Â has a countable set of eigenvalues (for example λ = 0 is not an eigenvalue

of Â and dim H = ∞), the eigenvalues of Â form a sequence {λn} such that λn ———−→
n→∞ 0.

(This means the inverse of Â, if it exists, is unbounded.)

The first two properties are obvious and we only need to prove the last two. To this end, we
first make the following assumption:

Assumption 1: Âu = 0 implies u = 0 (that is, λ = 0 is not an eigenvalue of Â) and dim H = ∞.

Proof based on assumption 1. Since H = {0}, the above assumption implies Â = 0 and hence
∥
∥ Â
∥
∥ = 0. Let

ϕ(v) = ( Âv, v)

(v, v)
, (3.46)

and consider the maximum problem max |ϕ(v)|. If l1 is the exact upper bound of the functional
|ϕ(v)|, that is

l1 = sup
v∈H

|ϕ(v)| , (3.47)
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then, for any positive integer n, it is possible to find a function un ∈ H such that l1 + 1/n ≤
|ϕ(un)| ≤ l1. Obviously lim

n→∞ |ϕ(un)| = l1. Since the functional ϕ(un) does not change if un is

multiplied by a constant, we may choose ‖un‖ = 1. Then ϕ(un) = ( Âun, un) and

|ϕ(un)| = ∣∣( Âun, un)
∣
∣→ l1. (3.48)

For the real bounded sequence {ϕ(un)}, there is a convergent subsequence of {ϕ(un)}, still
denoted by {ϕ(un)}, and a real number λ1 such that ϕ(un) ———−→

n→∞
λ1, with |λ1| = l1. We

now prove that there exists a function v1 such that ϕ(v1) = λ1. Let η be an arbitrary function
from H and t an arbitrary real number. Then

|ϕ(un + tη)| =
∣
∣( Â(un + tη), un + tη)

∣
∣

‖un + tη‖2 ≤ |λ1| .

Using ‖un‖ = 1 we obtain

t2
[

( Âη, η)s − |λ1| ‖η‖2
]+ 2t

[

( Âun, η)s − |λ1| (un, η)
]+ ( Âun, un)s − |λ1| ≤ 0.

Here s = sgn( Â(un + tη), un + tη). The discriminant of the above expression must be negative
as it is a quadratic expression and does not change sign. Hence we have

∣
∣( Âun, η)s − |λ1| (un, η)

∣
∣
2 ≤ [( Âη, η)s − |λ1| ‖η‖2

] [

( Âun, un)s − |λ1|
]

(3.49)
≤ [∣∣( Âη, η)

∣
∣+ |λ1| ‖η‖2

] [

( Âun, un)s − |λ1|
]

.

If t = 0 is assumed, we have s = sgn( Âun, un) and λ1 = |λ1| s. From (3.48) and (3.49), it
follows that

( Âun, η) − λ1(un, η) ———−→
n→∞ 0, η ∈ H. (3.50)

Since Â is compact, there exists a subsequence, still denoted {un} such that { Âun} converges.
The above relation implies that there exists v1 ∈ H , such that

un ———−→
n→∞

v1.

By symmetric property of Â, Equation (3.50) may be written as

(un, Âη) − λ1(un, η) ———−→
n→∞ 0, η ∈ H. (3.51)
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Proceeding to the limit as n → ∞ in (3.51) and making use of the symmetric property again,
we obtain

( Âv1 − λ1v1, η) = 0, η ∈ H,

which implies Âv1 − λ1v1 = 0, and v1 is an eigenfunction. Now let H1 = {u ∈ H |(u, v1) = 0 }
and u ∈ H1. Then

( Âu, v1) = (u, Âv1) = λ1(u, v1) = 0.

Thus Âu⊥v1. Since dim H = ∞, we have H1 = {0}. Furthermore Â = 0 on H1. Otherwise
there would exist a non-zero element u ∈ H1 such that Âu = 0, which contradicts our assump-
tion 1. Therefore we may apply the previous procedure to the restricted operator Â : H1 → H1

to find the second eigenfunction v2:

Âv2 − λ2v2 = 0, v2 ∈ H1, ‖v1‖ = 1.

Note that

|λ2| = sup
v∈H1

∣
∣( Âv, v)

∣
∣

(v, v)
.

Comparing this to (3.47) gives |λ1| ≥ |λ2| > 0. If the above procedure is continued, we obtain
a countable system of eigenfunctions

Âvn − λnvn = 0, n = 1, 2, · · · , |λ1| ≥ |λ2| ≥ · · · > 0,

where {vn} is orthonormal system. We now prove that |λn| ———−→
n→∞ 0. Suppose that the

converse is true. Then there exists a constant c1 such that |λn| ≥ c1 > 0 for all n, where c1 is a
constant. As a result, the sequence {vn/λn} is bounded. Since Â is compact and Â(vn/λn) = vn ,
n = 1, 2, · · ·, the sequence {vn} contains a convergent subsequence, still denoted {vn}. But this
is impossible since (vn, vm) = 0 for n = m. In fact, ‖vn − vm‖2 = 2. Hence {vn} is not a
Cauchy sequence, contradicting the fact that {vn} is convergent.

We now prove the completeness of the system of eigenfunctions. If the system of the
eigenfunctions were incomplete, there would exist nonzero functions, which are orthogonal to
all the eigenfunctions vn . Denoting by

∣
∣λ̃
∣
∣ the exact upper bound of |ϕ(v)| for these functions,

which must be greater than zero according to the assumption that λ = 0 is not an eigenvalue.
Then λ̃ would be an eigenvalue of operator Â, smaller than all λn in absolute value and this is
impossible since |λn| ———−→

n→∞ 0.

In order to show that each eigenvalue of Â has finite multiplicity, we may consider the
eigenvalue λ1 without loss of generality. Since |λn| = 0 and |λn| ———−→

n→∞
0, there is a number

N such that λ1 = · · · = λN and λ j = λ1 for all j > N . Assuming that u is an eigenfunction
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corresponding to λ1, then u may be expanded as

u =
∞
∑

n=1

(u, vn)vn =
N
∑

n=1

(u, vn)vn

for the eigenfunctions with different eigenvalues are orthogonal. Therefore {v1, v2, · · · , vN }
forms a basis of eigenspace of λ1.

We now proceed to the proof based on the following assumption:
Assumption 2: Âu = 0 implies u = 0 and dim H = N , where N = 1, 2, · · ·.

Remark 3.7: If M is a closed linear subspace of a Hilbert space H , then there exists a unique
orthogonal decomposition for each u ∈ H

u = w + v,w ∈ M, v ∈ M⊥,

where M⊥ is the orthogonal complement to M defined by

M⊥ = {v ∈ H |(v,w) = 0, for all w ∈ M } ,

which is a closed linear subspace of H .

Proof based on assumption 2. Following the same procedure, there exists a system of eigen-
functions {vn |n = 1, 2, · · · , M } such that

Âvn − λnvn = 0, n = 1, 2, · · · , M, |λ1| ≥ |λ2| ≥ · · · > |λM | .

Obviously we have M = N by construction. Hence the system {vn |n = 1, 2, · · · , N } is
complete.

Proof of general situation: We only need to consider the case when λ = 0 is an eigenvalue of
Â. Let N ( Â) = {u ∈ H

∣
∣ Âu = 0 } denote the kernel (or null space) of Â. Then N ( Â) = {0}.

Since Â is continuous, N ( Â) is a closed linear subspace of H . There exists a complete
orthonormal system in a separable Hilbert space H with H = 0. Therefore, there exists a
complete orthonormal system {wm} in N ( Â), which satisfies Âwm = 0, m = 1, 2, · · ·.

For each u ∈ H there exists a unique orthogonal decomposition

u = w + v,w ∈ N ( Â), v ∈ N ( Â)⊥.

If v ∈ N ( Â)⊥ then ( Âv,w) = (v, Âw) = 0 for all w ∈ N ( Â). Hence Âv ∈ N ( Â)⊥ and the
operator Â maps N ( Â)⊥ into N ( Â)⊥.

If Âv = 0 with v ∈ N ( Â)⊥, then v = 0. Actually if Âv = 0 with v ∈ N ( Â)⊥, then v ∈
N ( Â) ∩ N ( Â)⊥. By the uniqueness of orthogonal decomposition, we have v = 0. If the Hilbert-
Schmidt theorem with assumption 1 is applied to the restricted operator Â : N ( Â)⊥ → N ( Â)⊥,
we may obtain a complete orthonormal system {vn} on N ( Â)⊥. Hence for each u ∈ H we
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have

u = w + v =
∞
∑

m=1

(w,wm)wm +
∞
∑

m=1

(v, vn)vn

=
∞
∑

m=1

(v + w,wm)wm +
∞
∑

m=1

(v + w, vn)vn

=
∞
∑

m=1

(u, wm)wm +
∞
∑

m=1

(u, vn)vn,

where we have used (v,wm) = 0 for all m and

(w, vn) = (w, Âvn)

λn
= ( Âw, vn)

λn
= 0

for all n. The proof is completed.

3.3 Interior Electromagnetic Problems

A metal waveguide is a conducting tube used to guide electromagnetic waves. A metal cavity
resonator is a device consisting of a hollow space bounded by a conducting surface, and can
be used to generate or select electromagnetic waves of specific frequencies. Both of them are
typical examples of interior eigenvalue problems in electromagnetic theory.

3.3.1 Mode Theory for Waveguides

Let us consider the wave propagation in an arbitrary metal waveguide, which is uniform along
z-axis. The medium filled in the waveguide is assumed to be isotropic and homogeneous with
medium parameters µ, ε and σ . The cross-section of the waveguide is denoted by � and
its boundary by �, as shown in Figure 3.1. The electric field in a source-free region in the
waveguide satisfies the wave equation

∇ × ∇ × E(r) − k2E(r) = 0, r ∈ �
(3.52)

un(r) × E(r) = 0, r ∈ �

x

y ΓΩ

Figure 3.1 An arbitrary metal waveguide
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where k = ω
√

µεe, εe = ε(1 − jσ/ωε), and un is the unit outward normal to the boundary �.
The electric field can be decomposed into a transverse and a longitudinal component, both of
which are assumed to be the separable functions of the transverse coordinates ρ = (x, y) and
the longitudinal component z

E(r) = [e(ρ) + uzez(ρ)]u(z). (3.53)

Substituting (3.53) into (3.52) and considering the boundary conditions yields

∇ × ∇ × e − ∇(∇ · e) = B̂(e) = k2
c e,ρ ∈ �,

(3.54)
un × e = 0,∇ · e = 0,ρ ∈ �,

where k2
c is the separation constant, and B̂ = ∇ × ∇ × (·) − ∇∇(·) The function u(z) satisfies

d2u(z)

dz2
+ (k2 − k2

c )u(z) = 0.

The domain of definition of operator B̂ is

D(B̂) = {e ∣∣e ∈ [C∞(�̄)]2, un × e = 0,∇ · e = 0 on �
}

.

Let H = [L2(�)]2 = L2(�) × L2(�). For two transverse vector fields e1 and e2 in H , the
inner product is defined by (e1, e2) = ∫

�

e1 · e2d� and the corresponding norm is denoted by

‖·‖. For all e1, e2 ∈ D(B̂), we have

(B̂(e1), e2) =
∫

�

[∇ × ∇ × e1 − ∇(∇ · e1)] · e2d�

=
∫

�

[∇ × e1 · ∇ × e2 + (∇ · e1)(∇ · e2)] d�.

So B̂ is symmetric and positive definite. To apply the previous eigenvalue theory, we may
modify (3.54) into

∇ × ∇ × e − ∇(∇ · e) + ξe = Â(e) = (k2
c + ξ )e,ρ ∈ �,

(3.55)
un × e = 0,∇ · e = 0,ρ ∈ �,

where ξ is an arbitrary positive constant and Â = B̂ + ξ Î . For all e1, e2 ∈ D( Â) = D(B̂), we
have

(e1, e2) Â = ( Â(e1), e2) =
∫

�

[∇ × ∇ × e1 − ∇(∇ · e1) + ξe1] · e2d�

(3.56)
=
∫

�

[∇ × e1 · ∇ × e2 + (∇ · e1)(∇ · e2) + ξe1 · e2] d�.
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Hence the new operator Â is a symmetric, positive-bounded-below operator. Thus we can
assume that e is real. The completion of D( Â) with respect to the norm ‖·‖Â = (·, ·)1/2

Â
is

denoted by HÂ. Assuming e ∈ HÂ, by definition, there exists admissible sequence {en ∈ D( Â)}
for e such that

‖en − e‖ ———−→
n→∞

0 (3.57)

and {en} is a Cauchy sequence in HÂ. So we have

‖en − em‖2
Â

= ‖∇ × en − ∇ × em‖2 + ‖∇ · en − ∇ · em‖2 + ξ ‖en − em‖2 ———−→
n→∞

0.

Consequently, {∇ × en} and {∇ · en} are Cauchy sequences in H and L2(�) respectively. As
a result, there exist h ∈ H , and ρ ∈ L2(�) such that

‖∇ × en − h‖ ———−→
n→∞

0, ‖∇ · en − ρ‖ ———−→
n→∞

0. (3.58)

From (3.58) and

∫

�

∇ × en · ϕd� =
∫

�

en · ∇ × ϕd�,ϕ ∈ [C∞
0 (�)]2,

∫

�

(∇ · en)ϕd� = −
∫

�

en · ∇ϕd�,ϕ ∈ C∞
0 (�),

we obtain

∫

�

h · ϕd� =
∫

�

e · ∇ × ϕd�,ϕ ∈ [C∞
0 (�)]2,

∫

�

ρϕd� = −
∫

�

e · ∇ϕd�,ϕ ∈ C∞
0 (�).

Therefore, ∇ × e = h and ∇ · e = ρ hold in the generalized sense. For two smooth functions
e and ψ defined in �̄, we have

∫

�

(un × e) · ψd� =
∫

�

(ψ · ∇ × e − e · ∇ × ψ)d�,

∫

�

(∇ · e)(un · ψ)d� =
∫

�

(∇ · ψ∇ · e + ψ · ∇∇ · e)d�.
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If we take e as the limit of an admissible sequence {en ∈ D( Â)}, we have

∫

�

(un × e) · ψd� = 0,

∫

�

(∇ · e)(un · ψ)d� = 0.

Hence un × e = 0,∇ · e = 0 hold in the generalized sense. Therefore

HÂ ⊂ {e ∈ H | ∇ × e ∈ H,∇ · e ∈ L2(�); un × e = 0,∇ · e = 0 on �
}

.

For arbitrary e1, e2 ∈ HÂ, there are two admissible functions {e1n} and {e2n} such that
‖e1n − e1‖ ———−→

n→∞
0 and ‖e2n − e2‖ ———−→

n→∞
0. Then

(e1, e2) Â = lim
n→∞(e1n, e2n) Â =

∫

�

[∇ × e1 · ∇ × e2 + (∇ · e1)(∇ · e2) + ξe1 · e2] d�,

where the derivatives are understood in the generalized sense.
We now show that the embedding HÂ ⊂ H is compact. Let Ĵ (e) = e, e ∈ HÂ. Then the

linear operator Ĵ : HÂ → H is continuous since

∥
∥ Ĵ (e)

∥
∥

2 = ‖e‖2 ≤ ξ−1(ξ ‖e‖2 + ‖∇ × e‖2 + ‖∇ · e‖2) = ξ−1 ‖e‖2
Â
.

A bounded sequence {en} ⊂ HÂ implies

‖en‖2
HA

= ξ ‖en‖2 + ‖∇ × en‖2 + ‖∇ · en‖

=
∫

�

[

ξ (enx )2 + ξ (eny)2 + (∇enx )2 + (∇eny)2
]

d� ≤ c1,

where c1 is a constant. The compactness of the operator Ĵ follows from Rellich’s theorem.
Thus, according to the eigenvalue theory of symmetric operators, Equation (3.54) has an
infinite set of eigenvalues 0 ≤ k2

c1 ≤ k2
c2 ≤ · · · ≤ k2

cn ≤ · · ·, and k2
cn → ∞ as n → ∞. The

corresponding set of eigenfunctions {en} constitutes a complete system in H . Multiplying the
first of (3.55) by e and taking the integration across � yield

k2
c = ( Â(e), e)

(e, e)
=

∫

�

(|∇ × e|2 + |∇ · e|2)d�

∫

�

|e|2 d�

. (3.59)

The eigenvalue kcn is called the cut-off wavenumber of the n th mode in the waveguide and
the corresponding eigenfunction en is called the n th waveguide vector modal function. It
should be noted that the waveguide vector modal functions do not depend on the operating
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frequency of the waveguide and they are dependent merely on the geometry of the cross-
section of the waveguide. Apparently the waveguide vector modal functions en belong to one
of the following four categories:

1. ∇ × en = 0, ∇ · en = 0.

2. ∇ × en = 0, ∇ · en = 0.

3. ∇ × en = 0, ∇ · en = 0.

4. ∇ × en = 0, ∇ · en = 0.

Since the vector modal functions belonging to category 4 can be expressed as a linear com-
bination of the vector modal functions of the second and third categories due to (3.54), a
complete set of eigenfunctions can be constructed from the waveguide modal functions of the
first three categories only.

The waveguide vector modal functions that belong to the first category are called transverse
electromagnetic (TEM) modes, which satisfy ∇ × en = 0 and ∇ · en = 0. We may introduce
a potential function ϕ(ρ) such that en = ∇ϕ and

∇ · ∇ϕ = 0,ρ ∈ �,

un × ∇ϕ = 0,ρ ∈ �.

The second equation implies that ϕ is a constant along the boundary �. If � is a simply con-
nected region, the above equations imply en = 0, and no TEM mode exists in the waveguide.
Actually, from

∫

�

∇ · (ϕ∇ϕ)d� =
∫

�

ϕ∇ϕ · und� = ϕ

∫

�

∇ϕ · und�

= ϕ

∫

�

∇ · ∇ϕd� = 0

and

∫

�

∇ · (ϕ∇ϕ)d� =
∫

�

(∇ϕ · ∇ϕ + ϕ∇ · ∇ϕ)d� =
∫

�

∇ϕ · ∇ϕd�,

we can obtain en = ∇ϕ = 0. If � is a multiply connected region (for example, a coaxial cable),
ϕ can take different values on different conductors, which can support a TEM mode. If en is a
TEM mode, we have k2

cn = 0 from (3.59).
The waveguide vector modal functions that belong to the second category are called trans-

verse electric (TE) modes, which satisfy ∇ × en = 0 and ∇ · en = 0. Since

uz × ∇ × en = ∇(uz · en) − (uz · ∇)en = 0,
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we may introduce a new function hzn such that

∇ × en = −uzkcnhzn. (3.60)

The new function hzn is proportional to the longitudinal magnetic field. It follows from (3.54)
and (3.60) that

∇2hzn + k2
cnhzn = 0,ρ ∈ �,

(3.61)
un · ∇hzn = 0,ρ ∈ �.

The eigenfunctions of (3.61) form a complete set (see Example 3.11). By definition, we have

∫

�

hzmhznd� = 1

kcmkcn

∫

�

∇ × em · ∇ × end� = kcm

kcn

∫

�

em · end�.

Therefore, if the set {en} is orthonormal, the set {hzn} is also orthonormal. On the contrary, if
hzn is an eigenfunction of (3.61), we may find

en = 1

kcn
uz × ∇hzn. (3.62)

It is easy to show that en satisfies (3.54) and ∇ · en = 0. Thus en is a TE mode. In addition we
have

∫

�

em · end� = 1

kcmkcn

∫

�

∇hzm · ∇hznd� = kcm

kcn

∫

�

hzm · hznd�.

So the set {en} is orthonormal if the set {hzn} is. The foregoing analysis indicates that there is a
one-to-one correspondence between the set of TE modes and the set of eigenfunctions {hzn}.

The waveguide vector modal functions that belong to the third category are called transverse
magnetic (TM) modes, which satisfy ∇ · en = 0. We may introduce a new function ezn such
that

∇ · en = kcnezn . (3.63)

The new function ezn is proportional to the longitudinal electric field. It follows from (3.54)
and (3.63) that

∇2ezn + k2
cnezn = 0,ρ ∈ �,

(3.64)
ezn = 0,ρ ∈ �.
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The eigenfunctions of (3.64) form a complete set (see Example 3.10). Moreover, we have

∫

�

ezmeznd� = 1

kcmkcn

∫

�

∇ · em · ∇ · end� = kcm

kcn

∫

�

em · end�.

Thus if the set {en} is orthonormal, so is the set {ezn}. Conversely, the TM modes can be derived
from the eigenfunctions ezn of (3.64) through

en = 1

kcn
∇ezn. (3.65)

It is easy to show that en defined by (3.65) satisfies (3.54) and is a TM mode. Furthermore, we
have

∫

�

em · end� = 1

kcmkcn

∫

�

∇ezm · ∇eznd� = kcm

kcn

∫

�

ezm · eznd�,

and if the set {ezn} is orthonormal so is the set {en}. Therefore, a one-to-one correspondence
between the set of TM modes and the set of eigenfunctions {ezn} is established.

Example 3.12: Consider a rectangular waveguide shown in Figure 3.2. The longitudinal
component of the TE modes can be obtained from (3.61) by means of the method of separation
of variables, and they are

a

b

y

x

Figure 3.2 Rectangular waveguide

hzn =
√

εpεq

ab
cos

pπ

a
x cos

qπ

b
y, εp =

{

1, p = 0

2, p = 0
,

kcn =
√

(pπ/a)2 + (qπ/b)2, p, q = 0, 1, 2, · · · .

Here the subscript n is used to designate the multi-index (p, q). The transverse TE vector
modal functions en can be obtained from (3.62) as

en = ux

√
εpεq

ab

qπ

kcnb
cos

pπ

a
x sin

qπ

b
y − uy

√
εpεq

ab

pπ

kcna
sin

pπ

a
x cos

qπ

b
y.
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Similarly the longitudinal component of the TM modes can be derived from (3.64)

ezn =
√

4

ab
sin

pπ

a
x sin

qπ

b
y,

kcn =
√

(pπ/a)2 + (qπ/b)2, p, q = 1, 2, · · · .

The transverse TM vector modal functions en are then determined by (3.65)

en = ux

√

4

ab

pπ

kcna
cos

pπ

a
x sin

qπ

b
y + uy

√

4

ab

qπ

kcnb
sin

pπ

a
x cos

qπ

b
y.

The set of waveguide vector modal functions en provides a complete system for the transverse
fields in the waveguide. Other complete sets of functions derived from en are listed below

{uz × en| un · uz × en = 0,ρ ∈ �} ,

{ezn = ∇ · en/kcn | ezn = 0,ρ ∈ �} ,

{hzn = uz · ∇ × en/kcn, c̃| un · ∇hzn = 0,ρ ∈ �} .

Here c̃ is a constant. According to the boundary conditions that the eigenfunctions satisfy, {en}
are electric field-like and most appropriate for the expansion of the transverse electric field;
{uz × en} are magnetic field-like and most appropriate for the expansion of the transverse
magnetic field; {ezn} are electric field-like and most appropriate for the expansion of the
longitudinal electric field; {hzn} are magnetic field-like and most appropriate for the expansion
of the longitudinal magnetic field. Notice that ∇ × E is magnetic field-like while ∇ × H
is electric field-like. Hereafter, the waveguide modal functions are assumed to satisfy the
orthonormal condition:

∫

�

em · end� = δmn . (3.66)

Introducing the modal voltage and the modal current

Vn =
∫

�

E · end�, In =
∫

�

H · uz × end�, (3.67)

the electromagnetic fields in the waveguide have the following expansions

E =
∞
∑

n=1

en Vn + uz

∞
∑

n=1

∇ · en

kcn

∫

�

uz · E
∇ · en

kcn
d�,

H =
∞
∑

n=1

Inuz × en + uz
1

�1/2

∫

�

uz · H
�1/2

d� +
∞
∑

n=1

∇ × en

kcn

∫

�

H · ∇ × en

kcn
d�.
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Similarly we have

∇ × E =
∞
∑

n=1

uz × en

∫

�

∇ × E · uz × end�

+ uz
1

�1/2

∫

�

uz · ∇ × E
�1/2

d� +
∞
∑

n=1

∇ × en

kcn

∫

�

∇ × E · ∇ × en

kcn
d�,

∇ × H =
∞
∑

n=1

en

∫

�

∇ × H · end� + uz

∞
∑

n=1

∇ · en

kcn

∫

�

uz · ∇ × H
∇ · en

kcn
d�.

For a perfectly conducting waveguide, the expansion coefficients in the above expansions can
be calculated as follows

∫

�

∇ × E · uz × end� = dVn

dz
+
∫

�

uz · E∇ · end�,

∫

�

∇ × E · ∇ × en

kcn
d� = kcn Vn,

∫

�

∇ × H · end� = −d In

dz
+
∫

�

H · ∇ × end�,

∫

�

∇ × H · uz
∇ · en

kcn
d� = kcn In.

Substituting these equations into the Maxwell equations in a lossy medium:

∇ × H = jωεE + σE,

∇ × E = − jωµH,

we obtain

∞
∑

n=1

⎧

⎨

⎩
−d In

dz
+
∫

�

H · ∇ × et d�

⎫

⎬

⎭
= jωεe

∞
∑

n=1

en Vn,

∞
∑

n=1

∇ · en

kcn
kcn In = jωεe

∞
∑

n=1

∇ · en

kcn

∫

�

uz · E
∇ · en

kcn
d�,

∞
∑

n=1

uz × etn

⎧

⎨

⎩

dVn

dz
+
∫

�

uz · E∇ · end�

⎫

⎬

⎭
= − jωµ

∞
∑

n=1

uz × en In,
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∞
∑

n=1

∇ × en

kcn
kcn Vn = − jωµ

⎧

⎨

⎩

∞
∑

n=1

∇ × en

kcn

∫

�

H·∇ × en

kcn
d� + uz

�1/2

∫

�

H· uz

�1/2
d�

⎫

⎬

⎭
.

Comparing the coefficients of the preceding equations gives

−d In

dz
+
∫

�

H · ∇ × end� = jωεeVn,

k2
cn In = jωεe

∫

�

uz · E∇ · end�,

dVn

dz
+
∫

�

uz · E∇ · end� = − jωµIn,

k2
cn Vn = − jωµ

∫

�

H·∇ × end�,

∫

�

H· uz

�1/2
d� = 0.

It follows that the modal voltage and current satisfy the transmission line equations

dVn

dz
= − jβn Zwn In(z),

d In

dz
= − jβnYwn Vn(z), (3.68)

where βn and Zwn are called the propagation constant and wave impedance for the nth mode
respectively

βn =
{

k, TEM
√

k2 − k2
cn, TE or TM

,

Zwn =
⎧

⎨

⎩

η, TEM
ηk/βn, TE
ηβn/k, TM

,

Ywn = 1/Zwn.

(3.69)

Here k = ω
√

µεe, η = √
µ/εe. If βn = 0, the solution of (3.68) can be expressed as

Vn(z) = Ane− jβn z + Bne jβn z, In(z) = (Ane− jβn z − Bne jβn z)Z−1
wn . (3.70)

Other expansion coefficients can be represented as

∫

�

H·∇ × en

kcn
d� = − kcn

jβn

Vn(z)

Zwn
,

∫

�

uz · E
∇ · en

kcn
d� = kcn

jβn
In(z)Zwn .
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Accordingly the fields in the waveguide can be written as

E =
∞
∑

n=1

[

en Vn(z) + uz
∇ · en

jβn
In(z)Zwn

]

,

H =
∞
∑

n=1

[

uz × en In(z) − uz
∇ × en

jβn

Vn(z)

Zwn

]

.

(3.71)

The above expansions are fundamental in the analysis of waveguide discontinuities.

3.3.2 Mode Theory for Cavity Resonators

A cavity resonator is an important passive device at microwave frequency, whose counterpart
is the LC resonant circuit at low frequency. We assume that the cavity resonator has a perfectly
conducting wall and the medium in the cavity is homogeneous and isotropic with medium
parameters σ , µ and ε. The volume occupied by the cavity is denoted by V and its boundary
by S (Figure 3.3). Since the metallic wall is a perfect conductor, the fields in the cavity satisfy
the Maxwell equations

S

V

σ,µ,ε

Figure 3.3 An arbitrary metal cavity

∇ × H(r, t) = ε
∂

∂t
E(r, t) + σE,

∇ × E(r, t) = −µ
∂

∂t
H(r, t),

∇ · E(r, t) = 0,∇ · H(r, t) = 0,

(3.72)

with boundary conditions un × E = 0 and un · H = 0, where un is the unit outward normal to
the boundary S. From (3.72), the following wave equations can easily be obtained

∇ × ∇ × E(r, t) + µε
∂2E(r, t)

∂t2
+ µσ

∂E(r, t)

∂t
= 0, r ∈ V,

(3.73)
un × E(r, t) = 0, r ∈ S,

∇ × ∇ × H(r, t) + µε
∂2H(r, t)

∂t2
+ µσ

∂H(r, t)

∂t
= 0, r ∈ V,

(3.74)
un · H(r, t) = 0, un × ∇ × H(r, t) = 0, r ∈ S.

Assuming that the solutions of (3.73) and (3.74) can be expressed as a separable function of
space and time

E(r, t) = e(r)u(t), H(r, t) = h(r)v(t),
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and introducing these into (3.73) and (3.74), we obtain

∇ × ∇ × e − k2
e e = 0,∇ · e = 0, r ∈ V,

(3.75)
un × e = 0, r ∈ S,

∇ × ∇ × h − k2
hh = 0,∇ · h = 0, r ∈ V,

(3.76)
un · h = 0, un × ∇ × h = 0, r ∈ S,

1

v2

∂2u

∂t2
+ σ

η

v

∂u

∂t
+ k2

e u = 0, (3.77)

1

v2

∂2v

∂t2
+ σ

η

v

∂v

∂t
+ k2

hv = 0, (3.78)

where k2
e and k2

h are separation constants, η = √
µ/ε, and v = 1/

√
µε. Both (3.75) and (3.76)

form an eigenvalue problem. However, their eigenfunctions do not form a complete set.
Considering ∇ · e = 0 and ∇ · h = 0, Equations (3.75) and (3.76) may be modified as

∇ × ∇ × e − ∇∇ · e − k2
e e = 0, r ∈ V,

(3.79)
un × e = 0,∇ · e = 0, r ∈ S,

∇ × ∇ × h − ∇∇ · h − k2
hh = 0, r ∈ V,

(3.80)
un · h = 0, un × ∇ × h = 0, r ∈ S.

These are the eigenvalue equations for the metal cavity system. Equations (3.79) and (3.54)
are similar, and they can be approached in an exact manner. Consequently, Equation (3.79)
has an infinite set of eigenvalues 0 ≤ k2

e1 ≤ k2
e2 ≤ · · · ≤ k2

en ≤ · · ·, and k2
en → ∞ as n → ∞.

The corresponding eigenfunctions {en}, called cavity vector modal functions, constitute a
complete orthonormal system in [L2(V )]3, and they can be chosen from the following three
categories

1. ∇ × en = 0,∇ · en = 0.

2. ∇ × en = 0,∇ · en = 0.

3. ∇ × en = 0,∇ · en = 0.

In the same way, we can show that the vector modal functions hn of (3.80) constitute a complete
orthonormal system, and they can be chosen from the following three categories

1. ∇ × hn = 0,∇ · hn = 0.

2. ∇ × hn = 0,∇ · hn = 0.

3. ∇ × hn = 0,∇ · hn = 0.

The vector modal functions belonging to category 2 in the two sets of vector modal functions
{en} and {hn} are related to each other. In fact, if en belong to category 2, we can define a
function hn through

∇ × en = kenhn. (3.81)
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and hn belongs to category 2. Furthermore, we have

∇ × ∇ × hn − k2
enhn = k−1

en ∇ × (∇ × ∇ × en − k2
enen
) = 0, r ∈ V,

un × ∇ × hn = k−1
en un × ∇ × ∇ × en = k−1

en un × k2
enen = 0, r ∈ S.

Consider the integration of un · hn over an arbitrary part of S, denoted �S

∫

�S

un · hnd S = k−1
en

∫

�S

un · ∇ × end S = k−1
en

∫

��

en · u�d�, (3.82)

where �� is the closed contour around �S and u� is the unit tangent vector along the contour.
The right-hand side of (3.82) is zero. So we have un · hn = 0 for �S is arbitrary. Therefore hn

satisfies (3.80) and the corresponding eigenvalue is k2
en . If hm is another vector modal function

corresponding to em belonging to category 2, then

∫

V

hm · hndV = (kemken)−1
∫

V

∇ × em · ∇ × endV

= (kemken)−1
∫

S

un × em · ∇ × end S + (ken/kem)
∫

V

em · endV = δmn .

Consequently the vector modal functions hn in category 2 can be derived from the vector
modal functions en in category 2 and they are orthonormal. Conversely if hn is in category 2,
one can define en through

∇ × hn = khnen (3.83)

and a similar discussion shows that en is an eigenfunction of (3.75) with khn being the
eigenvalue. So the completeness of the two sets is still guaranteed if the vector modal functions
belonging to category 2 in {en} and {hn} are related through either (3.81) or (3.83). From now
on, Equations (3.81) and (3.83) will be assumed and ken = khn will be denoted by kn . Note
that the complete set {en} is most appropriate for the expansion of electric field, and {hn} is
most appropriate for the expansion of the magnetic field.

Example 3.13: Assume that the cavity contains a time-harmonic impressed electric current
source with frequency ω

J(r, t) = J(r) sin ωt = Ree jωt J(r)e− jπ/2. (3.84)

The electromagnetic fields (phasors) excited by the source satisfy

∇ × H(r) = jωεE + σE + J(r)e− jπ/2,

∇ × E(r) = − jωµH(r).
(3.85)
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The fields can then be expanded in terms of the vector modal functions as follows

E(r) =∑
n

Vnen(r) +∑
ν

Vνeν(r),

(3.86)
H(r) =∑

n
Inhn(r) +∑

τ

Iτ hτ (r),

∇ × E(r) =
∑

n

hn(r)
∫

V

∇ × E(r) · hn(r)dV +
∑

τ

hτ (r)
∫

V

∇ × E(r) · hτ (r)dV ,

(3.87)
∇ × H(r) =

∑

n

en(r)
∫

V

∇ × H(r) · en(r)dV +
∑

ν

eν(r)
∫

V

∇ × H(r) · eν(r)dV ,

where the subscript n denotes the modes belonging to category 2, and the Greek subscript ν

and τ for the modes belonging to categories 1 and 3 respectively, and

Vn(ν) =
∫

V

E(r) · en(ν)(r)dV , In(τ ) =
∫

V

H(r) · hn(τ )(r)dV . (3.88)

Taking the following calculations

∫

V

∇ × E · hndV =
∫

V

E · ∇ × hndV +
∫

S

(E × hn) · und S = kn Vn,

∫

V

∇ × E · hτ dV =
∫

V

E · ∇ × hτ dV +
∫

S

(E × hτ ) · und S = 0,

∫

V

∇ × H · end S =
∫

V

H · ∇ × endV +
∫

S

(H × en) · und S = kn In,

∫

V

∇ × H · eνd S =
∫

V

H · ∇ × eνdV +
∫

S

(H × eν) · und S = 0,

into account, Equation (3.87) can be written as

∇ × E =
∑

n

knVnhn,∇ × H =
∑

n

kn Inen.

Substituting the above expansions into time-harmonic equations (3.85) and comparing the



P1: OTA/XYZ P2: ABC
c03 BLBK281-Wen March 4, 2010 12:23 Printer Name: Yet to Come

144 Eigenvalue Problems

expansion coefficients, we may see that

jωVn + σ

ε
Vn − kn

ε
In = j

ε

∫

V

J · endV ,

jωVν + σ

ε
Vν = j

ε

∫

V

J · eνdV ,

jωIn + σm

µ
In + kn

µ
Vn = 0,

Iτ = 0.

(3.89)

From (3.89), we obtain

Vn = − 1

kn

ηωωn

ω2
n − ω2 + 2 jωγ

∫

V

J(r) · en(r)dV ,

In = − jωnv

ω2
n − ω2 + 2 jωγ

∫

V

J(r) · en(r)dV , (3.90)

Vν = j

jωε + σ

∫

V

J · eνdV ,

Iτ = 0,

where ωn = kn/
√

µε stand for the resonant frequencies of the metal cavity resonator;
γ = σ/2ε is the attenuation constant; v = 1/

√
µε; and η = √

µ/ε is the wave impedance.
Introducing (3.90) into (3.86) gives

E(r) =
∑

n

1

kn

−ηωωn

ω2
n − ω2 + 2 jωγ

en(r)
∫

V

J(r) · en(r)dV +
∑

ν

jeν(r)

jωε + σ

∫

V

J(r) · eν(r)dV ,

H(r) =
∑

n

− jωnc

ω2
n − ω2 + 2 jωγ

hn(r)
∫

V

J(r) · en(r)dV .

The fields in time domain are then given by

E(r, t) = ReE(r)e jωt =
∑

n

−ηωωn

kn

(ω2
n − ω2) cos ωt + 2ωγ sin ωt

(ω2
n − ω2)2 + 4ω2γ 2

en(r)
∫

V

J(r) · en(r)dV

(3.91)
+ 1

ε

∑

ν

ω cos ωt − 2γ sin ωt

ω2 + 4γ 2
eν(r)

∫

V

J · eνdV ,

H(r, t) = ReH(r)e jωt =
∑

n

ωnv
(ω2

n − ω2) sin ωt − 2ωγ cos ωt

(ω2
n − ω2)2 + 4ω2γ 2

hn(r)
∫

V

J(r) · en(r)dV .

(3.92)
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If the loss σ is sent to zero, these equations reduce to

E(r, t) =
∑

n

−ηωωn

kn

cos ωt

ω2
n − ω2

en(r)
∫

V

J(r) · en(r)dV + 1

ε

∑

ν

cos ωt

ω
eν(r)

∫

V

J · eνdV ,

(3.93)

H(r, t) =
∑

n

ωnv
sin ωt

ω2
n − ω2

hn(r)
∫

V

J(r) · en(r)dV . (3.94)

Note that both (3.93) and (3.94) have singularities whenever the frequency of the excitation
source coincides with one of the resonant frequencies. As a result, the field distributions are
infinite everywhere inside the cavity, leading to a physically unacceptable solution. This result
indicates that the time-harmonic problem is not stable under the perturbation of system loss
and a lossless time-harmonic system cannot be considered to be the limit of the corresponding
lossy system as the loss goes to zero. The lossy condition is necessary in solving time-harmonic
problems, which is implied by the uniqueness theorem in frequency domain.

3.4 Exterior Electromagnetic Problems

The eigenvalue theory can also be applied to the exterior problems. The free space can
be considered as a spherical waveguide, and the spherical wave functions, derived from an
eigenvalue problem of Laplace operator in spherical coordinates, are widely used in radiation
and scattering problems. The eigenmode expansion method (EEM) has been used to solve
exterior boundary value problems (Ramm, 1982; Marks, 1989). The method is based on the
eigenfunctions of integral equations and lacks a solid mathematical foundation. The integral
operator involved in the EEM is not symmetric, and it is thus hard to prove the existence and the
completeness of its eigenfunctions. A more useful method for the study of scattering problem
is the singular function expansion, which was first introduced by the German mathematician
Erhard Schmidt (1876-1959) in 1907 (Cochran, 1972), and has been applied to study various
scattering problems (Inagaki, 1982; Pozar, 1984).

3.4.1 Mode Theory for Spherical Waveguides

The free space can be considered as a spherical waveguide. In a spherical coordinate system,
the fields can be decomposed into a transverse component and a radial component

E = Et + ur Er , H = Ht + ur Hr ,

where ur is the unit vector in the direction of increasing r . Taking the vector and scalar product
of the Maxwell equations

∇ × H = jωεE + J,∇ × E = − jωµH − Jm
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with the vector r, we obtain

jωε(r × E) + r × J = ∇(r · H) − (r · ∇)H − H,
(3.95)

− jωµ(r × H) − r × Jm = ∇(r · E) − (r · ∇)E − E,

−∇ · (r × Ht ) = jωε(r · E) + r · J,
(3.96)

∇ · (r × Et ) = jωµ(r · H) + r · Jm .

Making use of

(r · ∇)F = r
∂F
∂r

= r
∂

∂r
(Fr ur + Fθuθ + Fϕuϕ)

= rur
∂

∂r
Fr + r

∂

∂r
(Fθuθ + Fϕuϕ) = rur

∂

∂r
Fr + r

∂

∂r
Ft ,

and comparing the transverse components of (3.95) yields

1

r
∇θϕ(r · H) − r

∂Ht

∂r
− Ht = jωε(r × Et ) + r × Jt ,

1

r
∇θϕ(r · E) − r

∂Et

∂r
− Et = − jωµ(r × Ht ) − r × Jmt ,

(3.97)

where ∇θϕ = uθ ∂/∂θ + uϕ(sin θ )−1∂/∂ϕ. The radial components in (3.97) can be eliminated
by using (3.96), to get the equations for the transverse fields

− jωµ
∂

∂r
(rHt ) + 1

r2
∇θϕ∇θϕ · (r × Et ) + k2(r × Et ) = jωµ(r × Jt ) + 1

r
∇θϕ(r · Jm),

− jωε
∂

∂r
(rEt ) − 1

r2
∇θϕ∇θϕ · (r × Ht ) − k2(r × Ht ) = − jωε(r × Jmt ) + 1

r
∇θϕ(r · J).

(3.98)

From (2.87), we can write

rEt = ∇θϕu(r, θ, ϕ) + ur × ∇θϕu′(r, θ, ϕ),

rHt = ∇θϕv(r, θ, ϕ) + ur × ∇θϕv′(r, θ, ϕ),
(3.99)

where u, u′, v and v′ are scalar functions. Introducing the positive definite operator

−∇2
θϕ = − 1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

− 1

sin2 θ

∂2

∂ϕ2
,

the eigenvalue problem

−∇2
θϕ [Y (θ, ϕ)] = λY (θ, ϕ),

together with the boundary conditions that Y (θ, ϕ) must be finite and Y (θ, 0) = Y (θ, 2π )
may be solved by using the method of separation of variables. The eigensolutions are called
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spherical harmonics Y l
nm(θ, ϕ). The spherical harmonics form a complete set in L2(�) (� is

the unit sphere), and satisfy

−∇2
θϕ

[

Y l
nm(θ, ϕ)

] = n(n + 1)Y l
nm(θ, ϕ).

Here

Y l
nm(θ, ϕ) = Pm

n (cos θ ) fml(ϕ),

fml(ϕ) =
{

cos mϕ, l = e
sin mϕ, l = o

,

n = 0, 1, 2, · · · , m = 0, 1, 2, · · · , n,

and Pm
n (cos θ ) are the associated Legendre functions. It is easy to show the following orthog-

onal relationships

2π∫

0

dϕ

π∫

0

{

sin θ

[

∂Y l
nm

∂θ

∂Y l ′
n′m′

∂θ

]

+ 1

sin θ

[

∂Y l
nm

∂ϕ

∂Y l ′
n′m ′

∂ϕ

]}

dθ

=
{

0, [n, m, l] = [n′, m ′, l ′]
N 2

nm, [n, m, l] = [n′, m′, l ′]
,

2π∫

0

dϕ

π∫

0

Y l
nmY l ′

n′m′ sin θdθ =
⎧

⎨

⎩

0, [n, m, l] = [n′, m′, l ′]

(1 + δm0)
2π

2n + 1

(n + m)!

(n − m)!
, [n, m, l] = [n′, m′, l ′]

,

where

δm0 =
{

1, m = 0
0, m = 0

, N 2
nm = (1 + δm0)

2π (n + m)!n(n + 1)

(n − m)!(2n + 1)
.

We can introduce the vector basis functions

enml(θ, ϕ) = 1

Nnm
∇θϕY l

nm(θ, ϕ),

hnml(θ, ϕ) = ur × enml(θ, ϕ),
(3.100)

which satisfy the orthonormal relationships:

∫

S′

enml · en′m′l ′ d� = δmm′δnn′δll ′,

∫

S′

hnml · hn′m′l ′d� = δmm ′δnn′δll ′ ,

∫

S′

enml · hn′m′l ′d� = 0,

(3.101)
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where S′ is a sphere enclosing the source and d� is the differential element of the solid angle.
Furthermore,

∇θϕ · enml (θ, ϕ) = 1

Nnm
∇θϕ · ∇θϕY l

nm(θ, ϕ) = − 1

Nnm
n(n + 1)Y l

nm(θ, ϕ),

∇θϕ · hnml(θ, ϕ) = ∇θϕ · [ur × enml (θ, ϕ)] = 0.

The radial components Er and Hr can be expanded in terms of the spherical harmonics

Er =
∑

n,m,l

Cnml(r )Y l
nm(θ, ϕ), Hr =

∑

n,m,l

Dnml(r )Y l
nm(θ, ϕ).

Similar expansions exist for the scalar functions u, u ′, v and v′ in (3.99). Considering these
expansions and (3.99), the transverse electromagnetic fields can be expressed as

rEt =
∑

n,m,l

[

V T M
nml (r )enml + V T E

nml (r )hnml
]

,

rHt =
∑

n,m,l

[

I T M
nml (r )hnml − I T E

nml (r )enml
]

,
(3.102)

where Vnml and Inml are modal voltages and modal currents respectively, and

rET M
t =

∑

n,m,l

V T M
nml (r )enml, rHT M

t =
∑

n,m,l

I T M
nml (r )hnml,

rET E
t =

∑

n,m,l

V T E
nml (r )hnml, rHT E

t = −
∑

n,m,l

I T E
nml (r )enml .

For the field components rET M
t and rHT M

t , the corresponding radial field component Hr is
zero in a source-free region. Hence they are a TM wave. Similarly the field components rET E

t
and rHT E

t are a TE wave, where the radial field component Er is zero. We may substitute
(3.102) into (3.98) to find that, in a source-free region, the modal voltages and currents satisfy
the following spherical transmission line equations

dV T M
nml

dr
= − jβn(r )Z T M

n (r )I T M
nml ,

(3.103)
d I T M

nml

dr
= − jβn(r )Y T M

n (r )V T M
nml ,

dV T E
nml

dr
= − jβn(r )Z T E

n (r )I T E
nml ,

(3.104)
d I T E

nml

dr
= − jβn(r )Y T E

n (r )V T E
nml ,
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where βn =
√

k2 − n(n + 1)/r2 and

Z T M
n (r ) = 1

Y T M
n (r )

= ηβn(r )

k
————−→

r→∞ η,

Z̃ T E
n (r ) = 1

Y T E
n (r )

= ηk

βn(r )
————−→

r→∞ η

are the characteristic impedances for the corresponding modes. From the above relationships
we obtain

d2 I T M
nml

dr2
+ β2

n (r )I T M
nml = 0,

d2V T E
nml

dr2
+ β2

n (r )V T E
nml = 0. (3.105)

Once V T E
nml and I T M

nml are known, V T M
nml and I T E

nml can then be determined from (3.103) and (3.104)
respectively. It follows from (3.105) that the modal voltages Vnml and currents Inml decrease
as r increases if kr <

√
n(n + 1). The number

√
n(n + 1)/k is called cut-off radius.

3.4.2 Singular Functions and Singular Values

Given a compact operator Â, we can define a new operator by the composition L̂ = Â Â∗. This
new operator is positive definite, symmetric and compact. Therefore, the eigenvalue theory
for a compact symmetric operator can be applied to the eigenvalue problem

L̂vn = λnvn. (3.106)

We have the following properties:

1. All the eigenvalues of L̂ are real and nonnegative, and each eigenvalue λ = 0 has finite
multiplicity.

2. Two eigenfunctions of L̂ that correspond to different eigenvalues are orthogonal.
3. The operator L̂ has a complete orthonormal system of eigenfunctions.
4. If the operator L̂ has a countable set of eigenvalues (for example, λ = 0 is not an eigenvalue

of L̂), the eigenvalues of L̂ form a sequence {λn} such that λn ———−→
n→∞ 0. (This means

the inverse of L̂ , if it exists, is unbounded.)

Since λn ≥ 0, we can write λn = µ2
n . Then, the function

un = µ−1
n Â∗vn, µn > 0 (3.107)

is an eigenfunction of L̂∗ (the adjoint of L̂). In fact,

L̂∗un = µ−1
n Â∗ Â Â∗vn = µ−1

n Â∗µ2
nvn = µ2

nun.
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Furthermore, we have

(un, um) = (µ−1
n Â∗vn, µ

−1
m Â∗vm) = µ−1

n µ−1
m (vn, Â Â∗vm) = µ−1

n µm(vn, vm) = δnm .

Thus, {un} is an orthonormal set. The functions {un} and {vn} are called singular functions
of Â and {µn} are the corresponding singular values. It must be mentioned that the singular
functions do not have any singular behavior. The name arises in connection with the singular
value decomposition of an operator. As a result, any function f has the following expansions

f = v +
∞
∑

n=1

( f, vn)vn, f = u +
∞
∑

n=1

( f, un)un,

where v and u are functions (depending on f ) satisfying Â∗v = 0 and Âu = 0 respectively.

Example 3.14: For a perfectly conducting scatterer, the electric current Js induced by an
incident field Hin(r) satisfies the integral equation of second kind (see Section 5.5.1 for
derivation)

( Î − Ĝ)Js(r) = 2un(r) × Hin(r), r ∈ S,

where un is the unit outward normal of the surface S and

Ĝ(Js)(r) = 2un(r) ×
∫

S

Js(r′) × ∇′G0(r, r′)d S(r′), r ∈ S,

with G0(r, r′) = e− jk|r−r′|/4π
∣
∣r − r′∣∣. Its adjoint is given by

Ĝ∗(Js)(r) = 2
∫

S

[

un(r′) × Js(r′)
]× ∇′Ḡ0(r, r′)d S(r′).

Let L̂ = ( Î − Ĝ)∗( Î − Ĝ), and consider the eigenvalue problem

L̂(Jsn) = λnJsn, Jsn ∈ [L2(S)]3.

Since Ĝ is a compact operator (Example 3.3), L̂ is a compact symmetric operator and is also
positive definite. Therefore the eigenvalue theory of compact symmetric operators applies for
the operator L̂ .

3.5 Eigenfunctions of Curl Operator

The eigenvalue problem of the curl operator has important applications in electromagnetics
(Good, 1957; Moses, 1959; Moses and Prosser, 1986). The eigenfunction ψ of a curl operator



P1: OTA/XYZ P2: ABC
c03 BLBK281-Wen March 4, 2010 12:23 Printer Name: Yet to Come

Eigenfunctions of Curl Operator 151

satisfies

∇ × ψ(r) = λψ(r), r ∈ R3. (3.108)

One type of eigensolution of (3.108) may be assumed to be a plane wave solution

ψ(r) = Ve jk·r (3.109)

where k = (kx , ky, kz) and V is a constant vector. Introducing (3.109) into (3.108) yields

jk × V = λV.

It is easy to show that the above equation has three eigenvalues λ = τk(τ = 0,±1), k = |k|,
and the corresponding orthonormal eigensolutions are

V0(k) = 1

k

⎡

⎣

kx

ky

kz

⎤

⎦ , Vδ(k) = 1√
2k(k2

x + k2
y)1/2

⎡

⎣

jδkky − kx kz

− jδkkx − kykz

k2
x + k2

y

⎤

⎦ , (δ = ±1)

with V∗
τ · Vυ = δτυ(τ, υ = 0,±1). We may introduce the following orthonormal vectors

χτ (r| k) = [χτ1(r| k), χτ2(r| k), χτ3(r| k)]T = (2π )−3/2Vτ (k)e jk·r,

which satisfy the orthonormal conditions:

∫

R3

χ∗
τ (r| k) · χυ(r| k′)dr = δτυδ(k − k′), (τ, υ = 0,±1),

∑

τ

∫

R3

χ∗
τ i (r| k) · χτ j (r′∣∣k)dk = δi jδ(r − r′), (i, j = 1, 2, 3).

An arbitrary vector Q(r) can then be expanded as follows

Q(r) =
∑

τ

∫

R3

χ
τ
(r| k) · qτ (k)dk =

∑

τ

Qτ (r)

where

Qτ (r) =
∫

R3

χ
τ
(r| k) · qτ (k)dk,

qτ (k) =
∫

R3

χ∗
τ (r| k) · Qτ (r)dr.
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Since ∇ · Qτ (r) = 0(τ = ±1) and ∇ × Q0(r) = 0, an arbitrary vector Q may be decomposed
into three components: one is irrotational and the other two are solenoidal. This result may be
regarded as the generalized Helmholtz theorem.

The Euler ‘Calculus of Variations’ from 1744 is one of the most beautiful mathematical works
that has ever been written.

—Constantin Carathéodory (Greek mathematician, 1873–1950)
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4
Antenna Theory

True optimization is the revolutionary contribution of modern research to decision processes.
—George Bernhard Dantzig (American mathematician, 1914–2005)

Electromagnetic radiation is caused by accelerated charge or time-changing current. When an
external source is used to excite the current distribution on a nearby scatterer, the scatterer gives
off electromagnetic waves. This constitutes a radiation problem. For the radiation problem,
the scatterer must be carefully designed to control the electromagnetic energy distribution in
free space. An antenna is a device for radiating or receiving radio waves. In most applications,
the electromagnetic energy is fed to the scatterer by a waveguide, and the antenna is a bridge
connecting the waveguide and free space. The antenna transmits the electromagnetic energy
from the waveguide into free space in a transmitting mode, or receives electromagnetic energy
from free space to the waveguide in a receiving mode. In other words, it transforms guided
waves into free space waves and vice versa. A scattering problem typically refers to the situation
where the external source is far away from the scatterer. A current distribution induced on
the scatterer by the incident field from the external source produces a far field pattern. If the
direction of the incident field changes diversely so that each portion of the scatterer faces a
direct illumination at least once, the far field patterns obtained will include all the geometrical
information of the scatterer, and the geometry of the scatterer can be recovered from them.

In 1886, Hertz invented the first wire antennas (a dipole and a loop) to confirm Maxwell’s
theory and the existence of electromagnetic waves. Modern antenna theory was started during
the World War II and a number of classical antennas were introduced during that time (Silver,
1949). The sources of radiation fields are the current distributions, including both conduction
current and displacement current. The antenna can thus be classified as conduction-current type
and displacement-current type. For the conduction-current antenna, the source of radiation is
conduction current on a metallic radiator surface. Linear antenna, loop, helix and spiral
antenna are of the conduction-current type, and they are typically for lower frequency, lower
gain, and wide beam width applications. For the displacement-current antenna, the source of
the radiation is the electromagnetic fields at the antenna aperture or on the antenna surface.
Horn antenna, slot antenna, aperture antenna, parabolic reflector, dielectric rod antenna belong
to this type, and they are usually for higher frequency, higher gain, and narrow beamwidth

Foundations of Applied Electrodynamics Geyi Wen
C© 2010 John Wiley & Sons, Ltd
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applications. The antennas can also be categorized into four basic types: electrically small
antenna, resonant antenna, broadband antenna and aperture antenna. For the small antenna,
its maximum extent is much less than a wavelength and it has low directivity, low radiation
resistance, low radiation efficiency and high input reactance. Both the resonant antenna and
broadband antenna have real input impedance but the bandwidth is narrow for the former and
very wide for the latter. The aperture antenna has very high gain and moderate bandwidth.
The radiation patterns of an antenna can be omni-directional or directional, depending on the
antenna applications.

The most important parameters for characterizing antenna are gain, efficiency, input
impedance, bandwidth, radiation pattern, beamwidth, sidelobes, front-to-back ratio, and po-
larization. There are trade-offs between these antenna parameters. To satisfy one parameter
requirement, one may have to sacrifice one or more other parameter levels. Most of the antenna
parameters are subject to certain limitations, which can be understood by spherical wavefunc-
tion expansion of the fields produced by antenna. The propagating modes supported by an
antenna depend on the size of the smallest circumscribing sphere enclosing the antenna. The
bigger the antenna size (the size of the sphere), the more propagating modes the antenna will
generate. When the antenna is very small, no propagating modes can exist and all the spherical
modes are rapidly cut off. As a result, the stored energy around the antenna becomes very
large and the radiation power becomes very small, and the antenna has a high quality factor.

A more useful performance index for describing antenna is the product of antenna gain and
bandwidth for they must be maximized simultaneously in most applications. It can be shown
that antenna fractional bandwidth is reciprocal to antenna quality factor. Thus, the product of
antenna gain and bandwidth can be expressed as the ratio of antenna gain over antenna quality
factor. The maximum possible product of antenna gain and bandwidth is an upper bound of
the antenna performance, which can be used to determine the antenna size required to achieve
a specified antenna performance.

4.1 Antenna Parameters

An arbitrary transmitting antenna system and a receiving antenna system are shown in Figure
4.1. The power to the matching network is denoted by Pm ; the power accepted by the antenna
is denoted by Pa; and the power radiated by the antenna is denoted by Prad . Due to the
mismatch, portion of the power Pm is reflected back to the source by the matching network,
which is denoted by Pref . The power accepted by the antenna can be expressed as

Pa = 1

2
ReV Ī = Pm − Pref − Pmatch

loss ,

where V and I are the modal voltage and modal current for the dominant mode in the feeding
waveguide respectively and they are calculated at the reference plane, and Pmatch

loss is the power
loss in the matching network. The radiated power of the antenna can be represented by

Prad = 1

2

∫

S

Re(E × H̄) · und S

where S is a surface, which encloses the antenna.
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Figure 4.1 (a) Transmitting antenna (b) Receiving antenna

Antenna performances depend on the antenna geometry as well as how the antenna is used.
In mobile devices, the antenna position keeps changing as the subscriber travels around, and
reasonable antenna performances are expected for all different positions. The antenna design
is based on those positions that are used most often. For example, the mobile phone has three
typical positions:

1. Talking position: the phone is held by the user against the ear.
2. Dialing position: the phone is held in front of the user so the display can be seen.
3. Set-down position: the phone is lying down on a flat non-metal surface.

Blockage of the antenna from user’s head and hand is also a major consideration for handset
antenna design, which determines where the antenna should be located to minimize the
influences of the hand and head.

4.1.1 Radiation Patterns and Radiation Intensity

The radiation pattern of antenna is a mathematical function or a graphical representation
of the radiation properties of the antenna as a function of space coordinates. In most cases,
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the radiation pattern is determined in the far field region. Radiation properties can be power
flux density, radiation density, field strength, phase or polarization. For a linearly polarized
antenna, the radiation pattern is usually described by E-plane and H-plane patterns. The E-plane
is defined as the plane containing the electric field vector and the direction of the maximum
radiation and the H-plane is defined as the plane containing the magnetic field vector and
the direction of maximum radiation. The antenna radiation pattern magnitude must be plotted
relative to a recognized standard. The most common standard level is that of a perfect isotropic
radiator (antenna), which would radiate energy equally in all directions.

Let ur be the unit vector along a far field observation point r = r∞ur . The radiation
intensity of an antenna in the direction ur is defined as the power radiated from the antenna
per unit solid angle

U (ur ) = r2
∞
2

Re
[

E(r) × H̄(r)
] = r2

∞
2η

|E(r)|2 ,

where η = √
µ/ε. The radiation intensity for an isotropic radiator is U (ur ) = Prad/4π .

4.1.2 Radiation Efficiency, Antenna Efficiency and Matching
Network Efficiency

Not all the input power to the antenna will be radiated to the free space. The power loss
may come from the impedance mismatch that causes a portion of the input power to be
reflected back to the transmitter, or from the imperfect conductors and dielectrics that cause a
portion of the input power to be dissipated as heat. The radiation efficiency of the antenna is
defined by

er = Prad

Pa
.

The radiation efficiency reflects the conduction and dielectric losses of the antenna. The
antenna efficiency is defined by

et = Prad

Pm
= Pm − Pref

Pm
· Pa

Pm − Pref
· Prad

Pa
= (1 − |�|2)eser ,

where es = Pa/(Pm − Pref ) is the efficiency describing the loss in the matching network; �

is the reflection coefficient at the input of the matching network; and

em = Pa

Pm
= (1 − |�|2)es

is the matching network efficiency. Better antenna efficiency means:

1. Better quality of communication.
2. Better wireless coverage.
3. Longer battery life for wireless terminals.
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4.1.3 Directivity and Gain

The directivity of an antenna is defined as the ratio of the radiation intensity in a given
direction from an antenna to the radiation intensity averaged over all directions

D(ur ) = U (ur )

Prad/4π
.

Theoretically, there is no mathematical limit to the directivity that can be obtained from
currents confined in an arbitrarily small volume. However, the high field intensities around a
small antenna with a high directivity will produce high energy storage around the antenna,
large power dissipation, low radiation efficiency and narrow bandwidth.

The (absolute) gain of an antenna is defined as the ratio of the radiation intensity in a given
direction to the radiation intensity that would be obtained if the power accepted by the antenna
were radiated isotropically.

G(ur ) = U (ur )

Pa/4π
= er D(ur ).

The old definition of the gain is

Gold(ur ) = U (ur )

Pm/4π
= et D(ur ).

This is also called absolute gain. The gain of an antenna often refers to the maximum gain and
is usually given in decibels.

4.1.4 Input Impedance, Bandwidth and Antenna Quality Factor

The input impedance of antenna is defined as the ratio of the voltage to current at the in-
put reference plane of the antenna. The bandwidth of an antenna is defined as the range of
frequencies within which the performance of the antenna, with respect to some characteris-
tics (such as the input impedance, return loss, gain, radiation efficiency, pattern, beamwidth,
polarization, sidelobe level, and beam direction), conforms to a specified standard. Antenna
bandwidth is an important quantity, which measures the quality of signal transmission such
as signal distortion. For broadband antennas, the bandwidth is usually expressed as the
ratio of the upper-to-lower frequencies of acceptable operation. For narrow band anten-
nas, the bandwidth is expressed as a percentage of the frequency difference (upper minus
lower) over the center frequency of the bandwidth (fractional bandwidth). The bandwidth
can be enhanced by introducing losses, parasitic elements, loading or changing matching
network.

If the impedance of an antenna is not perfectly matched to that of the source, some power
will be reflected back and not transmitted. This reflected power relative to incident power is
called return loss. A figure of merit for antenna is return loss bandwidth, which is defined
as the frequency range where return loss is below an acceptable level. For example, a return
loss of −10 dB indicates 90% of the power is transmitted. At −7 dB return loss, 80% of the
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power is transmitted. The return loss bandwidth is closely related to antenna physical volume.
Increasing the return loss bandwidth is one of the challenges in small antenna design.

The quality factor of antenna is defined as 2π times the ratio of total energy stored around
the antenna divided by the energy radiated per cycle:

Q = ωW̃

Prad
,

where W̃ is the time average energy stored in the antenna and ω is the frequency. In most
applications of this definition, the antenna quality factor is evaluated at the resonant frequency,
and the quality factor can be expressed as

Q = 2ωW̃i

Prad
,

where W̃i is either the average stored electric or magnetic energy. For a non-resonant antenna, it
is tacitly assumed that the antenna system should be tuned to resonance by adding a capacitive
or inductive energy storage element depending on whether the stored energy is predominantly
magnetic or electric. For this reason, W̃i is chosen as the average stored magnetic energy W̃m

or the average stored electric energy W̃e in the near field zone around the antenna, whichever
is larger.

It will be shown later that, for a high quality factor antenna, the quality factor is reciprocal
of antenna fractional bandwidth for input impedance. The antenna quality factor is a field
quantity and is more convenient for theoretical study, while the antenna bandwidth requires
more information on the frequency behavior of the input impedance. We will use Qreal to
indicate that all the stored energy around an antenna has been included in the calculation of
antenna quality factor, to distinguish it from another antenna quality factor, denoted by Q, to
be introduced later, in which only the stored energy outside the circumscribing sphere of the
antenna is included. Obviously we have Qreal � Q.

4.1.5 Vector Effective Length, Equivalent Area and Antenna Factor

Let r = r∞ur be a far field observation point. The far field of the antenna in a homogeneous
and isotropic medium can be expressed as (see (4.8))

E(r) = − jωµI

4πr∞
e− jkr∞L(ur ).

Here I is the exciting current at the feeding plane, and L is called the antenna vector effective
length defined by

L(ur ) = 1

I

∫

V0

{

J(r′) − [J(r′) · ur
]

ur
}

e jkur ·r′
dV (r′),
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where V0 is the source region and J is the current distribution inside the source region. The
open circuit voltage at the antenna-feeding plane induced by an incident field Ein (Figure
4.1(b)) is given by (see Section 6.4.1)

Voc(ur ) = −1

I

∫

V0

Ein(r′) · J(r′)dV (r′)

which results from the reciprocity of transmitting and receiving antenna. Let the incident field
be a plane wave from the direction −ur . The incident field may be written as

Ein(r) = Ein(o)e jkur ·r,

where Ein(o) is the field strength at the origin (antenna position) and is perpendicular to ur .
Thus

Voc(ur ) = −1

I
Ein(o) ·

∫

V0

J(r′)e jkur ·r′
dV (r′)

= −1

I
Ein(o) ·

∫

V0

{

J(r′) − [J(r′) · ur
]

ur
}

e jkur ·r′
dV (r′)

= −Ein(o) · L(ur ).

This relation has been used as the definition of the vector effective length in most literature.
According to the equivalent circuit for the receiving antenna as shown in Figure 4.2, the
received power by the load is

Prec(ur ) = 1

2

∣
∣
∣
∣

Voc(ur )

Z + ZL

∣
∣
∣
∣

2

ReZL = 1

2

∣
∣
∣
∣

Ein(o) · L(ur )

Z + ZL

∣
∣
∣
∣

2

ReZL ,

where Z is the antenna input impedance.

I

Voc
ZL

Z

T

V

Figure 4.2 Equivalent circuit for receiving antenna
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The antenna equivalent area is a transverse area defined as the ratio of received power to
the power flux density of the incident plane wave

Ae(ur ) = Prec(ur )
∣
∣Ein(o)

∣
∣
2
/2η

=
∣
∣
∣
∣

Ein(o) · L(ur )

Z + ZL

∣
∣
∣
∣

2
ηReZ L
∣
∣Ein(o)

∣
∣
2 .

If the receiving antenna is conjugately matched and there is no polarization loss, the antenna
equivalent area can be simplified as

Ae(ur ) = 1

4

(
η

ReZL

)

|L(ur )|2 .

The antenna factor is defined as the ratio of incident electric field strength to the induced
terminal voltage

AF(ur ) =
∣
∣Ein(o)

∣
∣

|V (ur )| ,

where V (ur ) stands for the induced terminal voltage at the reference plane of the receiving
antenna due to the incident field. From the equivalent circuit of a receiving antenna, we obtain

V (ur ) = ZL

Z L + Z
Voc(ur ).

So the relationship between the antenna factor and vector effective length is

AF(ur ) =
∣
∣Ein(o)

∣
∣

∣
∣Ein(o) · L(ur )

∣
∣

∣
∣
∣
∣
1 + Z

Z L

∣
∣
∣
∣
.

If there is no polarization loss, this reduces to

AF(ur ) =
∣
∣
∣
∣
1 + Z

Z L

∣
∣
∣
∣

1

|L(ur )| .

Let S∞ be a large closed surface, which encloses the antenna. The transmitting properties of
antenna can be expressed as functions of the effective length and they are summarized below:

Poynting vector:

S(r) = 1

2η
|E(r)|2 = η |I |2

8r 2∞

∣
∣
∣
∣

L(ur )

λ

∣
∣
∣
∣

2

.

Radiation intensity:

U (ur ) = r 2
∞

2η
|E(r)|2 = η |I |2

8

∣
∣
∣
∣

L(ur )

λ

∣
∣
∣
∣

2

.
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Radiated power:

Prad = η |I |2
8

∫

S∞

∣
∣
∣
∣

L(ur )

λ

∣
∣
∣
∣

2

d�.

Radiation resistance:

Rrad ≡ 2Prad

|I |2 = η

4

∫

S∞

∣
∣
∣
∣

L(ur )

λ

∣
∣
∣
∣

2

d�.

Directivity:

D(ur ) = 4πU (ur )

Prad
= πη

Rrad

∣
∣
∣
∣

L(ur )

λ

∣
∣
∣
∣

2

.

Gain:

G(ur ) = er D(ur ) = πη

Rrad + Rloss

∣
∣
∣
∣

L(ur )

λ

∣
∣
∣
∣

2

.

4.1.6 Polarization and Coupling

The polarization of a wave is defined as the curve traced by the instantaneous electric field
in a plane perpendicular to the propagation direction of the wave. If the direction of the
electric field at a point of space is constant in time, we say the electric field at that point is
linearly polarized. If the tip of the electric field is a circle (or ellipse) centered at the point
in the course of time, we say the electric field is circularly (elliptically) polarized at that
point. Elliptically polarized field is encountered in practice very often. The polarization of an
antenna is defined as the curve traced by instantaneous electric field radiated by the antenna
in a plane perpendicular to the radial direction. The radiation fields of all antennas aside from
the dipoles are generally elliptically polarized, except in some preferred directions.

For perfect transmission of power between two antennas, their polarizations must match
exactly. In practice, the polarization mismatch loss always exists. If two antennas have no
coupling, their polarizations are said to be orthogonal. The polarization mismatch loss between
a circularly polarized and linearly polarized antenna is 3 dB and half power is lost. Two linear
polarized antennas orientated at an angle of 45 degrees will also have 3 dB polarization
mismatch loss.

In a cellular environment, the degree of polarization match between the mobile and base
station can vary considerably. In outdoor suburban environments, the polarization of the
incident field would be mainly vertical while in indoors and in dense urban environments,
scattering and multipath reflections can cause the incident polarization to change dramatically.
Additionally, the degree of polarization match between the incident field and mobile antenna
is impacted by the user. For example, how the device is held and placed changes the degree of
polarization match.
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Minimizing the antenna coupling is important if isolation between two signal paths is
required. The coupling between two antennas can be measured using a network analyzer. The
coupling is the amplitude of S21 over the frequency range of both bands when the network
analyzer is connected to these two antennas. The coupling between two antennas in the far
field is inversely related to the square of the distance between them (assume both antennas are
in free space). For example, if the distance is doubled, the coupling is reduced by a factor of
four (−6dB). Antenna coupling is strongly influenced by the out-of-band impedance of the
antenna. For example, if one antenna is very poorly matched at the band of another antenna
and vice versa, the coupling between the two antennas might be low even if they are placed in
close proximity. Unbalanced antennas are fed against the ground, and they make the ground
part of the antenna. Two unbalanced antennas fed against the same ground tend to have less
isolation than balanced antennas. This problem can be improved if the antenna design can
make the currents in the ground localized in the vicinity of the antenna.

4.2 Properties of Far Fields

If the antenna current distribution is known, all the antenna performances can be determined.
Some performances of antenna are very sensitive to the antenna current distribution while
some of them are relatively insensitive. Since the exact current distribution of antenna is
very complicated and is not easily discovered, people usually use approximations to find a
simplified current distribution in order to predict the antenna performances that are insensitive
to the current distribution, such as gain, antenna pattern, and radiation resistance. In the
feeding area, approximations have to be adopted on the basis of a good understanding of how
the current distribution affects the various antenna performances. The factors that affect the
antenna current distribution include antenna shape, size, excitation, and the environment of the
antenna. Müller has systematically studied the properties of electromagnetic radiation patterns
(Müller, 1956, 1969) and a summary has been given by Colton and Kress (Colton & Kress,
1983, 1998). From (2.60) and (2.61), the fields produced by a time-harmonic current source J
can be expressed as

E(r) = − jkη

∫

V0

G(r, r′)J(r′)dV (r′)

− η

jk

∫

V0

∇′ · J(r′)∇′G(r, r′)dV (r′) −
∫

V0

Jm(r′) × ∇′G(r, r′)dV (r′), (4.1)

H(r) = − j
k

η

∫

V0

G(r, r′)Jm(r′)dV (r′)

− 1

jηk

∫

V0

∇′ · Jm(r′)∇′G(r, r′)dV (r′) +
∫

V0

J(r′) × ∇′G(r, r′)dV (r′), (4.2)

where G(r, r′) = e− jk R/4π R with R = |r − r′|. Making use of the Gauss theorem, we have
∫

V0

∇′ · J(r′)∇′G(r, r′)dV (r′) = −
∫

V0

[

J(r′) · ∇′]∇′G(r, r′)dV (r′),
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and the electromagnetic fields can be rewritten as

E(r) = − jkη

∫

V0

(
↔
I + 1

k2
∇∇
)

G(r, r′) · J(r′)dV (r′) −
∫

V0

Jm(r′) × ∇′G(r, r′)dV (r′), (4.3)

H(r) = − j
k

η

∫

V0

(
↔
I + 1

k2
∇∇
)

G(r, r′) · Jm(r′)dV (r′) +
∫

V0

J(r′) × ∇′G(r, r′dV (r′), (4.4)

where
↔
I is the identity dyadic tensor. Let uR = (r − r′)/|r − r′|. Then

[

J(r′) · ∇′]∇′G(r, r′)

= G(r, r′)
[

−k2 + 3

R

(

jk + 1

R

)]
[

J(r′) · uR
]

uR − G(r, r′)
J(r′)

R

(

jk + 1

R

)

,

If R is sufficiently large, we can ignore the terms higher than R−1. Thus,

[

J(r′) · ∇′]∇′G(r, r′) ≈ −k2G(r, r′)
[

J(r′) · uR
]

uR . (4.5)

In the far field region defined by r � r ′, kr � 1, the following approximations can be made

R = ∣∣r − r′∣∣ ≈ r − ur · r′,
1

|r − r′| ≈ 1

r
,

(4.6)
e− jk|r−r′|
|r − r′| uR ≈ e− jkr

r
e jkur ·r′

ur ,

where ur is the unit vector along r. It is readily found from (4.1), (4.2), (4.5) and (4.6) that the
far fields have the following asymptotic forms

E(r) = e− jkr

r

[

E∞(ur ) + O

(
1

r

)]

, H(r) = e− jkr

r

[

H∞(ur ) + O

(
1

r

)]

, (4.7)

Here the vector fields E∞ and H∞ are defined on the unit sphere �, and are known as the
electric far field pattern and magnetic far field pattern respectively. The far field patterns
are independent of the distance r and are given by

E∞(ur ) = − jkη

4π

∫

V0

[

J − (J · ur )ur + 1

η
Jm × ur

]

e jkur ·r′
dV (r′),

(4.8)

H∞(ur ) = − jk

4πη

∫

V0

[Jm − (Jm · ur )ur − ηJ × ur ] e jkur ·r′
dV (r′),
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and satisfy

ηH∞(ur ) = ur × E∞(ur ), ur · E∞(ur ) = ur · H∞(ur ) = 0. (4.9)

It follows from (4.7) and (4.9) that the far fields satisfy the Silver–Müller radiation conditions

lim
r→∞ r (ur × E − ηH) = 0.

If there are no magnetic sources, the Poynting vector in the far field region can be expressed
as

S = 1

2
Re(E × H̄) = ur

k2η

32π2r2

∣
∣
∣
∣
∣
∣

ur ×
∫

V0

Je jkur ·r′
dV (r′)

∣
∣
∣
∣
∣
∣

2

. (4.10)

The total radiated power by the current J is

Prad =
∫

S∞

S · und S(r′) =
∫

S∞

S · unr2d�

= k2η

32π2

∫

S∞

∣
∣
∣
∣
∣
∣

ur ×
∫

V0

Je jkur ·r′
dV (r′)

∣
∣
∣
∣
∣
∣

2

d�(r). (4.11)

From the Poynting theorem and (4.3), the radiated power can also be calculated by

Prad = −1

2
Re
∫

V0

J̄(r′) · E(r′)dV (r′)

= kη

8π

∫

V0

∫

V0

J̄(r) ·
(

↔
I + 1

k2
∇∇
)

sin(k
∣
∣r − r′∣∣)

|r − r′| · J(r′)dV (r)dV (r′).

Remark 4.1: Let V0 be a finite region. If the electric or magnetic far field pattern vanishes
identically, the electromagnetic fields generated by the source confined in V0 are identically
zero in R3 − V0. This property can easily be proved by the analyticity of the fields.

Remark 4.2: Many factors affect the propagation properties of radiated waves, such as the
earth’s atmosphere, the ground, mountains, buildings, and weather conditions. When a wave
is incident upon an obstacle, it will be reflected, refracted and diffracted. Reflection is the
change of direction of the wave at the surface of the obstacle so that the wave returns to
the medium from which it is originated. Refraction is the change of direction of the wave,
which happens when the wave passes into the obstacle and is accompanied by a change
in speed and wavelength of the wave. The amount of reflection and refraction depends on
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the medium properties, wave polarization, the angle of incidence and the wave frequency.
Diffraction is the change of direction of the wave to bend around the obstacle. A low fre-
quency wave whose wavelength is longer than the maximum size of an obstacle can easily
be propagated around the obstacle. When frequency increases, the obstacle causes more and
more attenuation and a shadow zone on the opposite side of the incidence develops. The
shadowed side consists of bright and dark regions, which are not expected from the analysis
of geometrical optics. Therefore, diffraction often refers to the departure from the analysis of
geometrical optics, which occurs whenever a portion of the wave front of the incident wave is
obstructed.

4.3 Spherical Vector Wavefunctions

If the antenna is very small compared to the wavelength, the radiated fields will be substantially
spherical. Let the antenna be enclosed by a sphere. The radiated fields outside the sphere can be
expanded as a linear combination of spherical vector wavefunctions (SVWF), which was first
reported by the American physicist William Webster Hansen (1909–1949) (Hansen, 1935).
For this reason, the spherical vector wavefunctions have found wide applications in antenna
analysis.

4.3.1 Field Expansions in Terms of Spherical Vector Wavefunctions

Consider the vector Helmholtz equation

∇ × ∇ × F(r) − ∇∇ · F(r) − k2F(r) = 0. (4.12)

To find its independent vector solutions, we may start with a scalar function ψ , which is a
solution of the Helmholtz equation:

(∇2 + k2)ψ = 0. (4.13)

It can be shown that (4.12) has three independent vector solutions

L = ∇ψ, M = ∇ × (rψ), N = 1

k
∇ × ∇ × (rψ).

If {ψn} is a complete set, we may expect that the corresponding vector functions {Ln, Mn, Nn}
will also form a complete set and can be used to represent an arbitrary vector wavefunction.
In the spherical coordinate system, the solution of (4.13) is

ψ
(q)
nml(r) = h(q)

n (kr )Y l
nm(θ, ϕ).

Here Y l
nm(θ, ϕ) = Pm

n (cos θ ) fml(ϕ) (n = 0, 1, 2, · · ·; m = 0, 1, 2, · · · , n; l = e, o) are the
spherical harmonics; Pm

n (cos θ ) are the associated Legendre functions; h(q)
n (kr ) (q = 1, 2)
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are the spherical Hankel functions; and

fml(ϕ) =
{

cos mϕ, l = e
sin mϕ, l = o

.

The spherical vector wavefunctions are defined by

L(q)
nml(r) = ∇[ψ (q)

nml (r)
]

,

M(q)
nml(r) = ∇ × [rψ (q)

nml (r)
] = ∇ψ

(q)
nml (r) × r, (4.14)

N(q)
nml (r) = 1

k
∇ × ∇ × [rψ (q)

nml (r)
] = 1

k
∇ × M(q)

nml(r).

Explicitly,

M(q)
nml (r) = h(q)

n (kr )

sin θ

∂Y l
nm(θ, ϕ)

∂ϕ
uθ − h(q)

n (kr )
∂Y l

nm(θ, ϕ)

∂θ
uϕ,

N(q)
nml (r) = n(n + 1)

kr
h(q)

n (kr )Y l
nm(θ, ϕ)ur + 1

kr

d
[

rh(q)
n (kr )

]

dr

∂Y l
nm(θ, ϕ)

∂θ
uθ

+ 1

kr sin θ

d
[

rh(q)
n (kr )

]

dr

∂Y l
nm(θ, ϕ)

∂ϕ
uϕ.

It will be shown later that the spherical vector wavefunctions {L(q)
nml, M(q)

nml , N(q)
nml} form a

complete set. So the vector potential function can be expanded as follows

A = 1

jω

∑

n,m,l,q

(

α
(q)
nml M

(q)
nml + β

(q)
nmlN

(q)
nml + γ

(q)
nmlL

(q)
nml

)

. (4.15)

From Maxwell equations and µH = ∇ × A, the electromagnetic fields can be expressed by

E = −
∑

n,m,l,q

(

α
(q)
nmlM

(q)
nml + β

(q)
nml N

(q)
nml

)

,

H = 1

jη

∑

n,m,l,q

(

α
(q)
nml N

(q)
nml + β

(q)
nmlM

(q)
nml

)

, (4.16)

where η = √
µ/ε, µ and ε are medium parameters.

Example 4.1 (Spherical waveguide): The free space may be considered as a spherical waveg-
uide, and the transmission direction is along the radius r in a spherical coordinate system
(r, θ, φ) while the waveguide cross-sections are spherical surfaces. The electromagnetic fields
E and H in spherical coordinates (r, θ, φ) can be decomposed into transverse components
Et , Ht and radial components ur Er , ur Hr

E = Et + ur Er , H = Ht + ur Hr .
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We can introduce the orthonormal vector basis functions

enml = 1

Nnm
∇θϕY l

nm(θ, ϕ), hnml = ur × enml .

Then the spherical vector wavefunctions can be expressed as

M(q)
nml = − Nnm

kr
h̃(q)

n (kr )hnml,

N(q)
nml = Nnm

kr
˙̃h

(q)

n (kr )enml + ur γ
(q)
nml, (4.17)

where h̃(q)
n (kr ) = krh(q)

n (kr ), γ
(q)
nml = (kr )−1n(n + 1)h(q)

n (kr )Y l
nm(θ, ϕ) and ˙̃h

(q)

n (kr ) is the
derivative of h̃(q)

n (kr ) with respect to its argument. Substituting (4.17) into (4.16) gives

rEt = 1

k

∑

m,n,l

[

Nnmh̃(1)
n (kr )α(1)

nml + Nnmh̃(2)
n (kr )α(2)

nml

]

hnml

−
[

Nnm
˙̃h

(1)

n (kr )β(1)
nml + Nnm

˙̃h
(2)

n (kr )β(2)
nml

]

enml, (4.18)

rHt = 1

jkη

∑

m,n,l

[

Nnm
˙̃h

(1)

n (kr )α(1)
nml + Nnm

˙̃h
(2)

n (kr )α(2)
nml

]

enml

−
[

Nnmh̃(1)
n (kr )β(1)

nml + Nnmh̃(2)
n (kr )β(2)

nml

]

hnml .

These can be rewritten as

rEt =
∑

n,m,l

[

V T M
nml (r )enml + V T E

nml (r )hnml
]

,

rHt =
∑

n,m,l

[

I T M
nml (r )hnml − I T E

nml (r )enml
]

.
(4.19)

Here

V T E
nml (r ) = V T E+

nml (r ) + V T E−
nml (r ),

I T E
nml (r ) = I T E+

nml (r ) + I T E−
nml (r ),

V T M
nml (r ) = V T M+

nml (r ) + V T M−
nml (r ),

I T M
nml (r ) = I T M+

nml (r ) + I T M−
nml (r ).
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are the equivalent modal voltages and currents for TE and TM modes with

V T M+
nml (r ) = − Nnmβ

(2)
nml

k
˙̃h

(2)

n (kr ), V T M−
nml (r ) = − Nnmβ

(1)
nml

k
˙̃h

(1)

n (kr ),

V T E+
nml (r ) = Nnmα

(2)
nml

k
h̃(2)

n (kr ), V T E−
nml (r ) = Nnmα

(1)
nml

k
h̃(1)

n (kr ),

I T E+
nml (r ) = − Nnmα

(2)
nml

jηk
˙̃h

(2)

n (kr ), I T E−
nml (r ) = − Nnmα

(1)
nml

jηk
˙̃h

(1)

n (kr ),

I T M+
nml (r ) = − Nnmβ

(2)
nml

jηk
h̃(2)

n (kr ), I T M−
nml (r ) = − Nnmβ

(1)
nml

jηk
h̃(1)

n (kr ),

where the superscripts + and − denote outward-going and inward-going waves respectively.
The radially directed wave impedances for TE modes and TM modes are defined by

Z T E
n (r ) = V T E+

nml (r )

I T E+
nml (r )

= − jη
h̃(2)

n (kr )

˙̃h
(2)

n (kr )
,

Z T M
n (r ) = V T M+

nml (r )

I T M+
nml (r )

= jη
˙̃h

(2)

n (kr )

h̃(2)
n (kr )

.

As r → ∞, the wave impedances approach η.

The expansion coefficients in (4.16) may be expressed in terms of the current distribution
confined in the finite region V0. The radial components of the fields are

r · E = −
∑

n,m,l,q

β
(q)
nmlr · N(q)

nml, r · H = 1

jη

∑

n,m,l,q

α
(q)
nmlr · N(q)

nml .

Since the source is limited in a finite region V0 and the observation point is outside the source
region, the wave must be out-going and one can choose q = 2. The above equations become

r · E = −1

k

∞
∑

n=0

n
∑

m=0

∑

l=e,o

β
(2)
nmln(n + 1)h(2)

n (kr )Y l
nm(θ, ϕ),

r · H = 1

jηk

∞
∑

n=0

n∑

m=0

∑

l=e,o

α
(2)
nml n(n + 1)h(2)

n (kr )Y l
nm(θ, ϕ).

(4.20)

From the wave equations

∇ × ∇ × H − k2H = ∇ × J,∇ × ∇ × E − k2E = − jωµJ
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we obtain

r · ∇ × ∇ × H − k2r · H = r · ∇ × J,

r · ∇ × ∇ × E − k2r · E = − jωµr · J.

By use of the following identity for an arbitrary vector function F

(∇2 + k2)(r · F) = 2∇ · F + r · ∇(∇ · F) − r · ∇ × ∇ × F + k2r · F,

one may find that the radial components satisfy

(∇2 + k2)

(

r · E − j

ωε
r · J

)

= j

ωε
r · ∇ × ∇ × J,

(∇2 + k2)(r · H) = −r · ∇ × J.

The solutions of these equations are

r · E = j

ωε
r · J + 1

jωε

∫

V0

G(r, r′)r′ · ∇′ × ∇′ × J(r′)dV (r′),

r · H =
∫

V0

G(r, r′)r′ · ∇′ × J(r′)dV (r′),
(4.21)

where G(r, r′) = e− jk|r−r′ |/4π |r − r′| is the Green’s function. If the field point r is outside
the source region V0, we have r · J = 0. The Green’s function has the expansion

G(r, r′) = − jk

4π

∞
∑

n=0

(2n + 1) jn(kr<)h(2)
n (kr>)Pn(cos γ ),

where jn(kr ) are the spherical Bessel functions, γ is the angle between r and r′, and r< =
min{r, r ′}, r> = max{r, r ′}. Making use of the addition formula

Pn(cos γ ) =
n
∑

m=0

∑

l=e,o

2(n − m)!

(n + m)!(1 + δm0)
Y l

nm(θ, ϕ)Y l
nm(θ ′, ϕ′),

the Green’s function may be represented by

G(r, r′) = − jk
∞
∑

n=0

n
∑

m=0

∑

l=e,o

n(n + 1)

N 2
nm

χnml(r, θ, ϕ)χ̃nml(r
′, θ ′, ϕ′), (4.22)
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where N 2
nm = (1 + δm0)

2π (n + m)!n(n + 1)

(n − m)!(2n + 1)
and

χnml(r, θ, ϕ) =
{

jn(kr )Y l
nm(cos θ ), r < r ′,

h(2)
n (kr )Y l

nm(cos θ ), r > r ′,

χ̃nml(r ′, θ ′, ϕ′) =
{

h(2)
n (kr ′)Y l

nm(cos θ ′), r < r ′,
jn(kr ′)Y l

nm(cos θ ′), r > r ′.

Substituting (4.22) into (4.21) gives

r · E = − k

ωε

∞
∑

n=0

n
∑

m=0

∑

l=e,o

n(n + 1)

N 2
nm

χnml(r, θ, ϕ)

×
∫

V0

χ̃nml (r
′, θ ′, ϕ′)r′ · ∇′ × ∇′ × J(r′)dV (r′),

(4.23)

r · H = − jk
∞
∑

n=0

n
∑

m=0

∑

l=e,o

n(n + 1)

N 2
nm

χnml (r, θ, ϕ)

×
∫

V0

χ̃nml (r
′, θ ′, ϕ′)r′ · ∇′ × J(r′)dV (r′).

These equations can be rewritten as

r · E = −η

∞
∑

n=0

n
∑

m=0

∑

l=e,o

n(n + 1)

N 2
nm

χnml(r, θ, ϕ)

×
∫

V0

J(r′) · ∇′ × ∇′ × [r′χ̃nml (r
′, θ ′, ϕ′)

]

dV (r′),

(4.24)

r · H = − jk
∞
∑

n=0

n∑

m=0

∑

l=e,o

n(n + 1)

N 2
nm

χnml(r, θ, ϕ)

×
∫

V0

J(r′) · ∇′ × [r′χ̃nml(r
′, θ ′, ϕ′)

]

dV (r′).

Comparing (4.20) and (4.24), we obtain the expansion coefficients

α
(2)
nml = k2η

N 2
nm

∫

V0

J(r′) · ∇′ × [r′χ̃nml(r
′, θ ′, ϕ′)

]

dV (r′),

(4.25)
β

(2)
nml = kη

N 2
nm

∫

V0

J(r′) · ∇′ × ∇′ × [r′χ̃nml(r
′, θ ′, ϕ′)

]

dV (r′).
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4.3.2 Completeness of Spherical Vector Wavefunctions

The proof of the completeness of the spherical vector wavefunctions has been investigated
by a number of authors (Vekua, 1953; Wilcox, 1957; Aydin & Hizal, 1986), and can also be
carried out by the unified theory studied in Chapter 3. The spherical vector wavefunctions
of the second kind are defined by letting q = 2 in (4.14)

L(2)
nml(r) = ∇[ψ (2)

nml(r)
]

,

M(2)
nml (r) = ∇ × [rψ (2)

nml(r)
] = ∇ψ

(2)
nml (r) × r,

N(2)
nml (r) = 1

k
∇ × ∇ × [rψ (2)

nml (r)
] = 1

k
∇ × M(2)

nml(r),

(4.26)

where ψ
(2)
nml(r) = h(2)

n (kr )Pm
n (cos θ ) fml (ϕ). The spherical vector wavefunctions of the second

kind satisfy the radiation condition. Let S be a closed surface that contains the origin, the
SVWF of the second kind may be used to expand an arbitrary function in [L2(S)]3.

Completeness of SVWF of second kind: The set of spherical vector wavefunctions of the
second kind is complete in [L2(S)]3.

In order to prove the completeness, it suffices to prove that a vector U(r) ∈ [L2(S)]3 that is
orthogonal to all the spherical vector wavefunctions of the second kind, that is,

(

M(2)
nml, U

)

s =
∫

S

M(2)
nml(r

′) · Ū(r′)d S(r′) = 0,

(

N(2)
nml , U

)

s =
∫

S

N(2)
nml(r

′) · Ū(r′)d S(r′) = 0,

(

L(2)
nml, U

)

s
=
∫

S

L(2)
nml(r

′) · Ū(r′)d S(r′) = 0,

(4.27)

must be zero. Let Cnm = − jk/N 2
nm and

↔
I be the identity dyadic. For r > r ′, the Green’s

function has the expansion (Morse and Feshback, 1953)

e− jk|r−r′|
4π |r − r′|

↔
I = 2

∞
∑

n=0

n
∑

m=0

∑

l=e,o

Cnm

×
[

M(1)
nml (r

′)M(2)
nml (r) + N(1)

nml(r
′)N(2)

nml(r) + n(n + 1)L(1)
nml(r

′)L(2)
nml(r)

k2

]

. (4.28)

Let V0 be a spherical region centered at the origin and contained in S. Multiplying the first,
second and third equations of (4.27) by CnmM(1)

nml (r), CnmN(1)
nml (r), Cnmn(n + 1)L(1)

nml(r)/k2

respectively, with r ∈ V0, and summing the equations for all n, m and l, and using (4.28),
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we obtain

T(r) ≡
∫

S

Ū(r′) · ↔
I

e− jk|r−r′|
2π |r − r′|d S(r′) = 0, r ∈ V0.

This is a solution of the vector Helmholtz equation inside S and is identically zero in V0. Since
the solutions of the Helmholtz equation are analytical, T(r) and all its derivatives must be zero
inside S. Consequently

T(r)− = 0,
∂T(r)

∂n(r)

∣
∣
∣
∣
−

= 0,

where the subscript − denotes the limit value as r approaches S from the interior of S. Since
T(r) is continuous, this implies

T(r) = 0, r ∈ S. (4.29)

By the jump relation, we have

∂T(r)

∂n(r)

∣
∣
∣
∣
+

= −2Ū(r), r ∈ S. (4.30)

Notice that T(r) satisfies the radiation condition. From the uniqueness theorem of Helmholtz
equation and (4.29), T(r) must be zero outside S, which implies ∂T(r)/ ∂n(r)|+ = 0. It follows
from (4.30) that Ū = 0 in [L2(S)]3. The proof is completed.

Remark 4.3: The completeness of spherical vector wavefunctions can be generalized to the
region between two concentric spheres. In this case, the complete set is

{

L(1)
nml , M(1)

nml , N(1)
nml , L(2)

nml, M(2)
nml, N(2)

nml

}

.

4.4 Foster Theorems and Relationship Between Quality
Factor and Bandwidth

The Foster theorems, named after the American mathematician Ronald Martin Foster
(1896–1998), state that the slope of the reactance curve or susceptance curve as a func-
tion of frequency is always positive for a lossless circuit. Although the Foster theorems are
typically stated for a lossless network in text books, they can be generalized to a lossy network
in numerous situations. For example, the Foster reactance theorem holds for a simple series
RLC circuit or any lossy network that consists of a resistor serially connected to a lossless
network. From the viewpoint of circuit theory, an ideal antenna, defined as an antenna without
Ohmic loss, is a one-port lossy network with radiation loss. By using the complex frequency
domain approach, the Foster theorems can be shown to hold for an ideal antenna (Geyi et al.,
2000; Geyi, 2007a).
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∂S

un

V

V0

V0

Figure 4.3 Poynting theorem

4.4.1 Poynting Theorem and the Evaluation of Antenna Quality Factor

The differential form of the complex Poynting theorem for time-harmonic fields in a homo-
geneous and isotropic medium is

∇ · S = −1

2
J̄ · E − j2ω(wm − we), (4.31)

where S = E × H̄/2 is the complex Poynting vector, wm = µH · H̄/4 and we = εE · Ē/4 are
the magnetic and electric field energy densities. Let V0 be the volume occupied by the electric
current source J and ∂V0 be the surface surrounding V0. Taking the integration of the imaginary
part of (4.31) over a volume V containing V0 as shown in Figure 4.3, we obtain

Im
∫

S

un · Sd S = −Im
∫

V0

1

2
J̄ · EdV − 2ω

∫

V

(wm − we)dV , (4.32)

where S is the boundary of V . Choosing V = V0, Equation (4.32) becomes

Im
∫

∂V0

un · Sd S = −Im
∫

V0

1

2
J̄ · EdV − 2ω

∫

V0

(wm − we)dV . (4.33)

If we choose V = V∞, where V∞ is the region enclosed by a sphere S∞ with radius r being
sufficiently large so that it lies in the far field region of the antenna system, we get

Im
∫

S∞

un · Sd S = −Im
∫

V0

1

2
J̄ · EdV − 2ω

∫

V∞

(wm − we)dV . (4.34)

Since S is a real vector in the far field region, the above equation reduces to

−Im
∫

V0

1

2
J̄ · EdV = 2ω

∫

V∞

(wm − we)dV . (4.35)
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It follows from (4.32), (4.33) and (4.34) that

Im
∫

∂V0

un · Sd S = 2ω

∫

V∞−V0

(wm − we)dV , (4.36)

Im
∫

S

un · Sd S = 2ω

∫

V∞−V

(wm − we)dV . (4.37)

Taking the integration of the real part of (4.31) over the volume V containing the source region
V0, we obtain the radiated power

Prad = Re
∫

S

un · Sd S = −Re
∫

V0

1

2
J̄ · EdV . (4.38)

Equation (4.38) shows that the surface integral of the real part of the Poynting vector is
independent of the surface S as long as it encloses the source region V0. Equations (4.36) and
(4.37) show that the surface integral of the imaginary part of the Poynting vector depends
on the integration surface S in the near field region (in the far field region it becomes zero).
Considering (4.32), (4.38) and (4.35) we may find that

∫

S

un · Sd S = −
∫

V0

1

2
J̄ · EdV − j2ω

∫

V

(wm − we)dV

= Prad − jIm
∫

V0

1

2
J̄ · EdV − j2ω

∫

V

(wm − we)dV (4.39)

= Prad + j2ω

∫

V∞−V

(wm − we)dV .

The above relation indicates that the complex power flowing out of S is equal to the radiation
power plus the reactive power outside S. This expression seems to be the most general form
of the Poynting theorem for an open system. Let w̃e(wrad

e ) and w̃m(wrad
m ) denote the stored

(radiated) electric field and magnetic field energy densities respectively. The stored energies
are defined by (Collin and Rothschild, 1964)

w̃m = wm − wrad
m , w̃e = we − wrad

e . (4.40)

These calculations are physically appropriate since density is a summable quantity. It is readily
seen from (4.37) that wm is equal to we in the far field zone, since the complex Poynting vector
becomes real as V approaches V∞. This observation indicates that the electric field energy
and the magnetic field energy for the radiated field are identical everywhere, that is,

wrad
e = 1

4
εErad · Ērad = 1

4
µHrad · H̄rad = wrad

m . (4.41)
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The total energy of the radiated fields is simply twice the electric or magnetic energy density
of the radiated fields. Mathematically, Equation (4.41) holds everywhere. Consequently, from
(4.35), (4.36) and (4.39), we obtain

W̃m − W̃e =
∫

V∞−V0

(w̃m − w̃e)dV =
∫

V∞−V0

(wm − we)dV = 1

2ω
Im
∫

∂V0

S · und S. (4.42)

Here W̃m and W̃e stand for the total stored magnetic and electric energy in the volume
surrounding the radiator. Note that the total stored energy can be expressed as

W̃e + W̃m =
∫

V∞−V0

(

we − wrad
e + wm − wrad

m

)

dV

=
∫

V∞−V0

(we + wm)dV −
∫

V∞−V0

(

wrad
e + wrad

m

)

dV (4.43)

=
∫

V∞−V0

(we + wm)dV − r

c
Re
∫

∂V0

S · und S,

where r is the radius of the sphere S∞, and c is the wave velocity. Both terms on the right-hand
side of (4.43) are divergent as r → ∞, but it can be shown that their difference is finite. So
the stored electric and magnetic field energies may be obtained from (4.42) and (4.43) as

W̃m = 1

2

⎡

⎣

∫

V∞−V0

(we + wm)dV − r

c
Re
∫

∂V0

S · und S + 1

2ω
Im
∫

∂V0

S · und S

⎤

⎦ ,

W̃e = 1

2

⎡

⎣

∫

V∞−V0

(we + wm)dV − r

c
Re
∫

∂V0

S · und S − 1

2ω
Im
∫

∂V0

S · und S

⎤

⎦ .

(4.44)

The antenna Qreal is defined by

Qreal =

⎧

⎪⎪⎨

⎪⎪⎩

2ωW̃m

Prad
, W̃m > W̃e,

2ωW̃e

Prad
, W̃e > W̃m .

(4.45)

Remark 4.4: The evaluation of the antenna quality factor can be traced back to the classical
work of Chu, who derived the theoretical value of Q for an ideal antenna enclosed in a
circumscribing sphere (Chu, 1948). Chu’s analysis is based on the spherical mode expansions
and is only valid for an omni-directional antenna that radiates either TE or TM modes. In
order to avoid the difficulty that the total electric and magnetic field energies are infinite, Chu
introduced the equivalent impedance for each mode and obtained an expression of antenna
Q through the calculation of stored energies in the equivalent circuit for the impedance. The
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Grad + Gloss

V

S∞

Rrad + Rloss

un

Y

Z

I

I

unV0

L´ C´

L

C

V

V∞
T

∂V0

Ω

Figure 4.4 Equivalent circuit for transmitting antenna

major shortcomings of the Chu’s method are that it is restricted to spherical modes and requires
several approximations. Collin and Rothschild proposed a method for evaluating antenna Q
(Collin and Rothschild, 1964). Their method is based on the idea that the total stored energy
can be calculated by subtracting the radiated field energy from the total energy in the fields.
Such method has been successfully used by Fante (Fante, 1969) and re-examined by McLean
(McLean, 1996) to study the antenna Q. All these studies only utilize the stored energies
outside the circumscribing sphere of the antenna in the calculation of antenna Q, which is
much smaller than Qreal (for numerical examples, see Collardey et al., 2005, 2006).

4.4.2 Equivalent Circuit for Transmitting Antenna

We choose the source region V0 in such a way that its surface ∂V0 is coincident with the antenna
surface (except at the antenna input terminal � where ∂V0 crosses the antenna reference plane
T ), as shown in Figure 4.4. Applying Poynting theorem over the region V∞ − V0 yields

1

2

∫

S∞

(E × H̄) · und S + 1

2

∫

∂V0

(E × H̄) · und S

= − j2ω

∫

V∞−V0

(wm − we)dV − 1

2

∫

V∞−V0

σE · ĒdV ,

(4.46)



P1: OTA/XYZ P2: ABC
c04 BLBK281-Wen March 13, 2010 16:2 Printer Name: Yet to Come

Foster Theorems and Relationship Between Quality Factor and Bandwidth 177

where σ is the conductivity of the medium in V∞ − V0. If we assume that the antenna surface
is perfectly conducting, E × H̄ vanishes everywhere on ∂V0 except over the input terminal �.
We further assume that the antenna reference plane T is away from the antenna discontinuity so
that the higher order modes excited by the discontinuity has negligible effects at the reference
plane. For a single mode feeding waveguide, we have

1

2

∫

∂V0

(E × H̄) · und S = 1

2

∫

�

(E × H̄) · und S = −1

2
V Ī , (4.47)

where V and I are equivalent modal voltage and current at the reference plane respectively.
Introducing (4.47) into (4.46) and using the fact that Prad = 1

2

∫

∂V∞
(E × H̄) · und S, we may

find that

1

2
V Ī = Prad + Ploss + j2ω

∫

V∞−V0

(wm − we)dV ,

where Ploss = 1
2

∫

V∞−V0

σE · ĒdV stands for the power loss outside the source region V0. The

antenna impedance Z and admittance Y are defined by

Z = V

I
= 2Prad

|I |2 + 2Ploss

|I |2 + j
4ω(Wm − We)

|I |2 ,

Y = I

V
= 2Prad

|V |2 + 2Ploss

|V |2 + j
4ω(Wm − We)

|V |2 ,

where Wm and We are the total magnetic energy and electric energy produced by the antenna
respectively, and both are infinite as integration region V∞ − V0 is infinite. By use of (4.42),
we have Wm − We = W̃m − W̃e. Thus

Z = Rrad + Rloss + j X = Rrad + Rloss + j

(

ωL − 1

ωC

)

,

Y = Grad + Gloss + j B = Grad + Gloss + j

(

ωC ′ − 1

ωL ′

)

,

where R, X, G, and B denote the resistance, reactance, conductance and susceptance respec-
tively and their definitions are given below

Rrad = 2Prad/ |I |2 , Grad = 2Prad/ |V |2

Rloss = 2Ploss/ |I |2 ,Gloss = 2Ploss/ |V |2 ,

X = ωL − 1/ωC, B = ωC ′ − 1/ωL ′,

L = 4W̃m/ |I |2 , L ′ = |V |2 /4ω2W̃m

C = |I |2 /4ω2W̃e, C ′ = 4W̃e/ |V |2 .

(4.48)
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The equivalent circuits for the antenna are shown in Figure 4.4. It should be notified that the
values of all elements in the equivalent circuits depend on the frequency.

4.4.3 Foster Theorems for Ideal Antenna and Antenna Quality Factor

To prove that the Foster theorem holds for an ideal antenna, we introduce the complex
frequency s = α + jω and all calculations are confined to the complex frequency plane. For
clarity, all quantities in the complex frequency domain are denoted by the same symbols in real
frequency domain but explicitly showing the dependence on s. Taking the Laplace transform
of the time-domain Maxwell’s equations in a lossless medium yields

∇ × E(r, s) = −sµH(r, s),∇ × H(r, s) = sεE(r, s). (4.49)

The frequency-domain quantities can be recovered by letting α = 0 in (4.49). From (4.49) a
relation similar to (4.31) can be obtained in the region outside V0

∇ ·
[

1

2
E(r, s) × H̄(r, s)

]

= −1

2
α
[

µ |H(r, s)|2 + ε |E(r, s)|2]− j
1

2
ω
[

µ |H| (r, s)|2 − ε |E(r, s)|2] .
(4.50)

Taking the integration of (4.50) over the connected region V∞ − V0, as shown in Figure 4.4,
gives

∫

∂V0+S∞

1

2

[

E(r, s) × H̄(r, s)
] · und S = −2α [Wm(s) + We(s)] − 2 jω [Wm(s) − We(s)] ,

(4.51)
where

Wm(s) = 1

4

∫

V∞−V0

µ |H(r, s)|2 dV (r),

We(s) = 1

4

∫

V∞−V0

ε |E(r, s)|2 dV (r).

We assume again that the antenna reference plane is away from the antenna discontinuity so
that the higher-order modes excited by the discontinuity have negligible effects at the reference
plane. Thus, for a single-mode feeding waveguide, we can make the following approximation

1

2

∫

∂V0

[

E(r, s) × H̄(r, s)
] · und S(r) = −1

2
V (s) Ī (s). (4.52)
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Letting Prad (s) = 1
2

∫

S∞

[

E(r, s) × H̄(r, s)
] · und S(r) and substituting it into (4.51), we get

1

2
V (s) Ī (s) = Prad (s) + 2α [Wm(s) + We(s)] + 2 jω [Wm(s) − We(s)] . (4.53)

If α is sufficiently small so that α � v/r with v = 1/
√

µε, we can make a first-order approx-
imation e−αr/c ≈ 1 − αr/v, and derive directly from the Maxwell equations, defined in the
complex plane, the following:

Erad (r, s) ≈ −
(

1 − r
α

v

) jωµ

4πr
e− jkr

∫

V0

[

J(r′, s) − J(r′, s) · ur
]

e− jkur ·r′
dV (r′),

Hrad (r, s) ≈ −η
(

1 − r
α

v

) jωε

4πr
e− jkr

∫

V0

ur × J(r′, s)e− jkur ·r′
dV (r′).

Hence

Prad (s) = Prad (ω)(1 − rα/v)2 ≈ (1 − 2rα/v)Prad (ω) (4.54)

where Prad (ω), previously defined in (4.38), is the radiated power in the frequency domain,
which is independent of α. Substituting (4.54) into (4.53), we obtain

1

2
V (s) Ī (s) = Prad (ω) + 2α

[

Wm(s) + We(s) − r

c
Prad (ω)

]

+ 2 jω [Wm(s) − We(s)] .

(4.55)

The impedance and admittance in the complex frequency plane can then be expressed as

Z (s) = 2Prad (ω)

|I (s)|2 + 4α

|I (s)|2
[

Wm(s) + We(s) − r

c
Prad (ω)

]

+ 4 jω

|I (s)|2 [Wm(s) − We(s)] ,

Y (s) = 2Prad (ω)

|V (s)|2 + 4α

|V (s)|2
[

Wm(s) + We(s) − r

c
Prad (ω)

]

+ 4 jω

|V (s)|2 [Wm(s) − We(s)] .

(4.56)

Similarly, we can introduce the stored energies in the complex frequency domain

W̃m(s) + W̃e(s) = Wm(s) + We(s) − r

c
Prad (ω),

W̃m(s) − W̃e(s) = Wm(s) − We(s),
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and rewrite (4.56) as

Z (s) = 2Prad (ω)

|I (s)|2 + 4sW̃m(s)

|I (s)|2 + 4s̄W̃e(s)

|I (s)|2 ,

Y (s) = 2Prad (ω)

|V (s)|2 + 4sW̃m(s)

|V (s)|2 + 4s̄W̃e(s)

|V (s)|2 .

(4.57)

To get rid of the complex conjugation s̄, we may introduce a new quantity W̃ ′
e(s) = |s|2 W̃s(s).

Now (4.57) can be extended to an analytic function of s by replacing all complex conjugations
s̄ in W̃m(s) and W̃ ′

e(s) with −s, and jω (resp. − jω) by s (resp. −s) in Prad (ω). Thus, (4.57)
become analytic and can be written as

Z (s) = 2Prad (s)

I (s)I (−s)
+ 4sW̃m(s)

I (s)I (−s)
+ 4s−1W̃ ′

e(s)

I (s)I (−s)
,

Y (s) = 2Prad (s)

V (s)V (−s)
+ 4sW̃m(s)

V (s)V (−s)
+ 4s−1W̃ ′

e(s)

V (s)V (−s)
.

(4.58)

Note that (4.57) and (4.58) are identical when α = 0. If α is assumed to be small, a Taylor
expansion may be assumed for an arbitrary analytic function A(s) so that

A(s)A(−s) = |A( jω)|2 + jαT (ω) + o(α)

where T (ω) is a real function of ω. When this relation is used in (4.58) and use is made of the
following decompositions

Z (s) = R(α,ω) + j X (α, ω),

Y (s) = G(α,ω) + j B(α,ω),
(4.59)

we may find that

R(α,ω) = 2Prad

|I |2 + 4α

|I |2 (W̃m + W̃e),

G(α,ω) = 2Prad

|V |2 + 4α

|V |2 (W̃m + W̃e),

(4.60)

where the power, energies, voltage and current are all calculated at α = 0. Since Z (s) and Y (s)
are analytic functions, their real and imaginary parts satisfy the Cauchy-Riemann conditions

∂ R(α,ω)

∂α
= ∂ X (α,ω)

∂ω
,
∂G(α,ω)

∂α
= ∂ B(α, ω)

∂ω
, (4.61)

∂ R(α,ω)

∂ω
= −∂ X (α,ω)

∂α
,
∂G(α,ω)

∂ω
= −∂ B(α,ω)

∂α
. (4.62)
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By direct calculation, we have

∂ R(α,ω)

∂α

∣
∣
∣
∣
α=0

= 4(W̃m + W̃e)

|I |2 ,
∂G(α,ω)

∂α

∣
∣
∣
∣
α=0

= 4(W̃m + W̃e)

|V |2 . (4.63)

From (4.61) and (4.63), we obtain

∂ X

∂ω

∣
∣
∣
∣
α=0

= 4

|I |2 (W̃m + W̃e) > 0,
∂ B

∂ω

∣
∣
∣
∣
α=0

= 4

|V |2 (W̃m + W̃e) > 0. (4.64)

These are the Foster theorems for a lossless antenna system, which indicate that the slope of
the reactance curve or the susceptance curve as a function of the frequency for an ideal antenna
is always positive. From (4.64), we obtain the stored magnetic and electric field energies

W̃e = 1

8
|I |2

(
∂ X

∂ω
− X

ω

)

, W̃m = 1

8
|I |2

(
∂ X

∂ω
+ X

ω

)

. (4.65)

So the antenna quality factor may be written as

Qreal = 1

2Rrad

(

ω
d X

dω
± X

)

= 1

2Grad

(

ω
d B

dω
± B

)

, (4.66)

where either + or − is chosen to give the higher Qreal .

Several remarks are needed to clarify some misunderstandings about the Foster theorems in
antenna engineering.

Remark 4.5: Some antenna impedances or the admittances may have singularities depending
on the position of the reference plane, where the reactance curve or susceptance curve abruptly
changes from positive infinity to negative infinity so that the Foster theorems hold. It should be
noted that all numerical methods cannot accurately model these singularities due to numerical
errors, and thus a negative (but very steep) slope may occur. For the same reason, all antenna
measurements cannot accurately handle singularities and in addition the Ohmic loss will be
introduced in the measurements. Therefore the negative slope may appear in the measured
reactance or susceptance curves, and the Foster theorems only hold approximately.

Remark 4.6: The Foster theorems only hold for an ideal antenna with the feeding waveguide
connected. The modeling of wire antennas is usually based on a number of approximations.
The most dramatic approximation is that the feeding waveguide is replaced by a delta gap.
This kind of approximation is questionable and cannot be checked experimentally since all
practical antennas involve a feeding waveguide, and the feeding waveguide itself contributes
significantly to the value of antenna impedance. When the delta gap is used to calculate the
impedance of thick wires, one should limit the calculation to the low frequency range since
the delta gap is only valid for thin wires.

Remark 4.7: The Foster theorems hold only in the frequency range between the cut-off
frequency of the dominant mode and the cut-off frequency of the first higher-order mode of
the feeding waveguide as a single-mode assumption has been used at the antenna terminal
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in the proof of Foster theorems for an ideal antenna. When the operating frequency is higher
than the cut-off frequency of the first higher-order mode, the feeding waveguide is equivalent
to a multiple-transmission line system and the antenna becomes a multi-port device. In this
case, the Foster theorems fail.

Remark 4.8: All circuit parameters for a microwave network depend on the frequency. A
common mistake made in the study of the Foster theorems for antenna is that either the
terminal voltage or current of the antenna are assumed to be independent of frequency. This
assumption will lead to additional terms on the right-hand side of (4.64), which cannot be
explained physically.

4.4.4 Relationship Between Antenna Quality Factor and Bandwidth

We now use the Foster theorems to prove a widely-held assumption that the antenna quality
factor is the inversion of antenna fractional bandwidth. Consider a high quality factor system.
Let ωr denote one of the resonant frequencies of a single antenna system; then by definition,
we have

X (ωr ) = 0. (4.67)

Since α is very small, we have X (α,ωr ) ≈ X (ωr ) = 0 at the resonant frequency ωr . From
(4.62), we obtain

d Rrad

dω

∣
∣
∣
∣
ωr

= − ∂ X (α,ωr )

∂α

∣
∣
∣
∣
α=0

≈ 0.

Thus, as one moves off resonance, Z can be written as

Z ≈ Rrad + j(ω − ωr )
d X

dω

∣
∣
∣
∣
ωr

+ · · ·.

The frequency at which the absolute value of the input impedance is equal to
√

2 times its
value at resonance is the half-power point. The half-power points occur when

Rrad =
∣
∣
∣
∣
∣
(ω − ωr )

d X A

dω

∣
∣
∣
∣
ωr

∣
∣
∣
∣
∣
, (4.68)

so that the fractional bandwidth B f can be written

B f = 2 |ω − ωr |
ωr

≈ 2Rrad

ωr |d X/dω|ωr

= 4Prad

ωr |I |2 |d X/dω|ωr

. (4.69)

From (4.65) we obtain

d X

dω
= 8W̃e

|I |2 + X

ω
,

d X

dω
= 8W̃m

|I |2 − X

ω
.
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Introducing the above into (4.69) and using (4.67), we find

B f = 4Prad

∣
∣8ωr W̃ ± |I |2 X

∣
∣
ωr

= 4Prad

∣
∣8ωr W̃

∣
∣
ωr

= 1

Qreal
. (4.70)

Here W̃ = W̃m or W̃e, whichever is larger. Thus, we have proved that the antenna fractional
bandwidth is the inversion of antenna Qreal when Qreal � 1.

4.5 Minimum Possible Antenna Quality Factor

The study of antenna quality factor was usually based on the spherical wavefunction expansion
outside the circumscribing sphere of the antenna. The antenna quality factor resulting from
the spherical wavefunction expansion is much lower than the real value Qreal as the stored
energy inside the circumscribing sphere has been ignored.

4.5.1 Spherical Wavefunction Expansion for Antenna Quality Factor

Assume that the antenna is enclosed by the circumscribing sphere of radius a, denoted by
Va with bounding surface Sa . The stored energies outside the circumscribing sphere can be
evaluated through (4.42) and (4.43)

W̃m − W̃e = 1

2ω
Im
∫

Sa

S · und S = 1

4ω
Im

2π∫

0

dφ

π∫

0

(E × H̄) · ur a2 sin θdθ,

W̃e + W̃m =
∞∫

a

dr

⎧

⎨

⎩

2π∫

0

dϕ

π∫

0

r2
(ε

4
|E|2 + µ

4
|H|2

)

sin θdθ − 1

2c
Re
∫

∂V∞

E × H̄ · ur d S

⎫

⎬

⎭
.

From (4.16) and (4.18), we obtain

Prad = 1

2
Re
∫

S∞

E × H̄ · ur d S = 1

2k2η

∑

n,m,l

N 2
nm

(∣
∣
∣α

(2)
nml

∣
∣
∣

2 +
∣
∣
∣β

(2)
nml

∣
∣
∣

2
)

, (4.71)

W̃e + W̃m = εa

4k2

∑

n,m,l

N 2
nm

(∣
∣
∣α

(2)
nml

∣
∣
∣

2
+
∣
∣
∣β

(2)
nml

∣
∣
∣

2
)

·
{

2 − (ka)2
[∣
∣h(2)

n (ka)
∣
∣
2 − jn−1(ka) jn+1(ka) − nn−1(ka)nn+1(ka)

]

(4.72)

− ∣∣h(2)
n (ka)

∣
∣
2 − (ka)[ jn(ka) j̇n(ka) + nn(kr )ṅn(ka)]

}

,

W̃m − W̃e = εa

4k2

∑

n,m,l

N 2
nm

[∣
∣
∣β

(2)
nml

∣
∣
∣

2 −
∣
∣
∣α

(2)
nml

∣
∣
∣

2
]

·
{∣
∣h(2)

n (ka)
∣
∣
2 + (ka)[ jn(ka) j̇n(ka) + nn(ka)ṅn(ka)]

}

.
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It follows from (4.72) that

W̃m = ε

4k3

∑

n,m,l

N 2
nm

(∣
∣
∣α

(2)
nml

∣
∣
∣

2
Qn +

∣
∣
∣β

(2)
nml

∣
∣
∣

2
Q′

n

)

,

W̃e = ε

4k3

∑

n,m,l

N 2
nm

(∣
∣
∣α

(2)
nml

∣
∣
∣

2
Q ′

n +
∣
∣
∣β

(2)
nml

∣
∣
∣

2
Qn

)

,

(4.73)

where

Qn = ka − ∣∣h(2)
n (ka)

∣
∣
2
[

1

2
(ka)3 + ka(n + 1)

]

− 1

2
(ka)3

∣
∣
∣h(2)

n+1(ka)
∣
∣
∣

2

+1

2
(ka)2(2n + 3) [ jn(ka) jn+1(ka) + nn(ka)nn+1(ka)] , (4.74)

Q′
n = ka − 1

2
(ka)3

[∣
∣h(2)

n (ka)
∣
∣
2 − jn−1(ka) jn+1(ka) − nn−1(ka)nn+1(ka)

]

.

Plots of Qn and Q′
n show that Qn > Q′

n , Qn+1 > Qn and Q′
n+1 > Q′

n (Fante, 1969). Further-
more we have Qn � Q′

n for small ka. If ka has the order of n, Qn and Q′
n are of the same

order of magnitude. For the first three modes, we have

Q1 = 1

ka
+ 1

(ka)3
, Q′

1 = 1

ka
,

Q2 = 3

ka
+ 6

(ka)3
+ 18

(ka)5
, Q′

2 = 3

ka
+ 4

(ka)3
,

Q3 = 6

ka
+ 21

(ka)3
+ 135

(ka)5
+ 675

(ka)7
, Q′

3 = 6

ka
+ 15

(ka)3
+ 45

(ka)5
.

We now can define an antenna quality factor Q based on (4.71) and (4.73)

Q =

⎧

⎪⎪⎨

⎪⎪⎩

2ωW̃m

Prad
, W̃m > W̃e

2ωW̃e

Prad
, W̃e > W̃m

= Larger of

⎧

⎪⎪⎨

⎪⎪⎩

∞∑

n=1

(

a2
n Qn + b2

n Q′
n

)

∞∑

n=1

(

a2
n + b2

n

)
,

∞∑

n=1

(

a2
n Q′

n + b2
n Qn

)

∞∑

n=1

(

a2
n + b2

n

)

⎫

⎪⎪⎬

⎪⎪⎭

(4.75)
where

a2
n =

∑

m,l

N 2
nm

∣
∣
∣α

(2)
nml

∣
∣
∣

2
, b2

n =
∑

m,l

N 2
nm

∣
∣
∣β

(2)
nml

∣
∣
∣

2
. (4.76)

The antenna Q defined by (4.75) is much smaller than the real value Qreal .
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4.5.2 Minimum Possible Antenna Quality Factor

To study the minimum possible antenna quality factor, we first assume that the antenna only
radiates TE modes. Since Qn > Q′

n , Equation (4.75) reduces to

QT E =

∞∑

n=1
a2

n Qn

∞∑

n=1
a2

n

.

In this case, the minimum possible antenna QT E will be Q1. In fact, we have

QT E =

∞∑

n=1
a2

n Qn

∞∑

n=1
a2

n

≥

∞∑

n=1
a2

n Q1

∞∑

n=1
a2

n

= Q1 = min QT E

since Qn+1 > Qn , and min QT E can be achieved by setting an = 0 for n ≥ 2. If the antenna
only radiates TM modes, a similar discussion leads to

min QT E = min QT M = Q1, (4.77)

which can be reached by letting bn = 0 for n ≥ 2. In the general situation, both TE and TM
modes exist. If the first expression of (4.75) is assumed to be the largest, the antenna Q is

Q =

∞∑

n=1

(

a2
n Qn + b2

n Q′
n

)

∞∑

n=1

(

a2
n + b2

n

)
.

To insure that the first expression of (4.75) is always larger than the second during the
optimizing process, a constraint on the coefficients an and bn is needed. This can be achieved
by assuming an ≥ bn . Under this condition, we have

Q =

∞∑

n=1

(

a2
n Qn + b2

n Q′
n

)

∞∑

n=1

(

a2
n + b2

n

)
≥

∞∑

n=1

(

a2
n Q1 + b2

n Q′
1

)

∞∑

n=1

(

a2
n + b2

n

)
= C(Q1 − Q′

1) + Q ′
1,

where C =
∞∑

n=1
a2

n/
∞∑

n=1
(a2

n + b2
n) ≥ 1

2 since an ≥ bn . The right-hand side of the above expres-

sion can be minimized by setting C = 1/2 or an = bn(n ≥ 1). Therefore,

min Q = Q1 + Q′
1

2
= 1

ka
+ 1

2(ka)3
, (4.78)
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which can be achieved by setting a1 = b1 and an = bn = 0 for n ≥ 2. If the second expression
in (4.75) is the largest, exactly the same result can be obtained by interchanging an and bn . Thus,
the minimum Q problem has a unique lowest limit although the Q is defined conditionally.
Therefore, the antenna will attain the lowest Q if only TE1m and TM1m modes are equally
excited. In this case, the stored electric energy and magnetic energy outside the circumscribing
sphere will be equal, and the antenna will be at resonance outside the sphere. The existence
of a lower bound for antenna Q implies that the stored energy around antenna can never be
made zero. Once the maximum antenna size is given, this lower bound is then determined. For
a small antenna (ka < 1), Equations (4.77) and (4.78) can be approximated by

min QT E = min QT M ≈ 1

(ka)3
, min Q ≈ 1

2(ka)3
. (4.79)

Since Qreal is always greater than the Q defined by (4.75), Equation (4.78) may be considered
the minimum possible value for Qreal .

4.6 Maximum Possible Product of Gain and Bandwidth

In most applications, we need to maximize antenna gain and bandwidth simultaneously. For
this reason, a reasonable quantity characterizing antenna would be the product of antenna gain
and bandwidth, or the ratio of antenna gain to antenna Qreal . The optimization of the ratio of
the gain to Qreal is more important from the practical point of view. The ratio of gain to Qreal

is actually the ratio of radiation intensity over the averaged stored energy around the antenna.
Since the antenna quality factor is defined conditionally as shown in (4.45), the optimization
of the ratio of gain to Qreal is subject to certain constraints (Geyi, 2003a). In order to seek the
maximum possible ratio of gain over antenna quality factor, we can use Q defined by (4.75)
to replace Qreal in the optimization process.

4.6.1 Directive Antenna

We assume that the antenna is placed in a spherical coordinate system (r, θ, ϕ) and enclosed by
the smallest circumscribing sphere of radius a, and the spherical coordinate system is oriented
in such a way that the maximum radiation is in (θ, ϕ) = (0, 0) direction. Considering the basis
functions in (4.18)

enml = uθ

Nnm sin θ
· fml(ϕ)

[

(n + 1) cos θ Pm
n (cos θ ) − (n − m + 1)Pm

n+1(cos θ )
]

− uϕ

Nnm sin θ
· [Pm

n (cos θ ) f ′
ml(ϕ)

]

,

we may find that only m = 1 contributes to the field in the direction of θ = 0. Hence making
use of the relationships

lim
θ→π

P1
n (cos θ )

sin θ
= 1

2
(−1)nn(n + 1), lim

θ→0

P1
n (cos θ )

sin θ
= 1

2
n(n + 1),
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we obtain

lim
θ→0

en1l = − 1

2Nn1
(n + 1)n

[

uθ f1l (ϕ) + uϕ f ′
1l (ϕ)

]

,

lim
θ→0

hn1l = − 1

2Nn1
(n + 1)n

[

uϕ f1l (ϕ) − uθ f ′
1l(ϕ)

]

.

From (4.18), the far field components in the direction of ϕ = 0 are

Eθ = − 1

2kr

∑

n

(n + 1)n
[

˙̃h
(2)

n (kr )β(2)
n1e + h̃(2)

n (kr )α(2)
n1o

]

,

Hϕ = 1

j2ηkr

∑

n

(n + 1)n
[

−h̃(2)
n (kr )β (2)

n1e + ˙̃h
(2)

n (kr )α(2)
n1o

]

,

Eϕ = − 1

2kr

∑

n

(n + 1)n
[

˙̃h
(2)

n (kr )β (2)
n1o − h̃(2)

n (kr )α(2)
n1e

]

,

Hθ = 1

j2ηkr

∑

n

(n + 1)n
[

h̃(2)
n (kr )β (2)

n1o + ˙̃h
(2)

n (kr )α(2)
n1e

]

.

For sufficiently large r , the radiation intensity can be written as

1

2
r 2Re(E × H̄) · ur = 1

2
r 2Re(Eθ H̄ϕ − Eϕ H̄θ )

= 1

8k2η

∣
∣
∣
∣
∣

∑

n

(n + 1)njn
(

β
(2)
n1e + jα(2)

n1o

)

∣
∣
∣
∣
∣
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+ 1
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∣
∣
∣
∣
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∑

n

(n + 1)njn
(

β
(2)
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)

∣
∣
∣
∣
∣

2

.

The directivity in the direction of (θ, ϕ) = (0, 0) is then given by

G = 4πr2
1
2 Re(E × H̄) · ur

Prad

= π

∣
∣
∣
∣

∑

n
(n + 1)njn
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β
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2 +
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∣
∣β

(2)
nml

∣
∣
∣

2
) .

(4.80)

From (4.75) and (4.80), we obtain

G
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∣
∣
∣
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= π
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⎡
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∣
∣
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2
⎤

⎦ ,

(4.81)
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where the subscript dir is used to indicate a directional pattern, and

d = Larger of
{
∑

n,m,l

(

N 2
nm

∣
∣
∣α

(2)
nml

∣
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2
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∣
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∣

2
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∣
∣
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∣
∣
∣

2
Qn

)}
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(4.82)

Since only α
(2)
n1l and β

(2)
n1l contribute to the numerator of (4.81), Equation (4.81) can be in-

creased by setting α
(2)
nml = β

(2)
nml = 0(m �= 1). Thus

d = Larger of

⎧
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)
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]

,
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(2)
n1o
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∣
∣

2
+
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∣
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n1e

∣
∣
∣

2
)
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∣
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∣
∣
∣

2
+
∣
∣
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(2)
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)
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]

.

Setting

Aon = j n+1n(n + 1)α(2)
n1o, Ben = j nn(n + 1)β(2)

n1e,

Aen = − j n+1n(n + 1)α(2)
n1o, Bon = j nn(n + 1)β (2)

n1o,

we have

G

Q

∣
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dir

= 1

d

⎡

⎣

∣
∣
∣
∣
∣

∞
∑
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(Aon + Ben)

∣
∣
∣
∣
∣

2

+
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∣
∣
∣
∣

∞
∑
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∣
∣
∣
∣
∣

2
⎤

⎦ , (4.83)

where

d = Larger of

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∞
∑

n=1

2

2n + 1

[

(|Aon|2 + |Aen|2)Qn + (|Ben|2 + |Bon|2)Q′
n

]

,

∞
∑

n=1

2

2n + 1

[

(|Aon|2 + |Aen|2)Q′
n + (|Ben|2 + |Bon|2)Qn

]

.

(4.84)

The denominator of (4.83) depends only on the magnitudes of An and Bn . If we adjust the
phase of An and Bn so that they are in phase to maximize the numerator, the denominator will
not change. Therefore, (4.83) can be rewritten as

G

Q

∣
∣
∣
∣
dir

= 1

d

⎧

⎨

⎩

[ ∞
∑

n=1

(|Aon| + |Ben|)
]2

+
[ ∞
∑

n=1

(|Aen | + |Bon|)
]2
⎫

⎬

⎭
. (4.85)
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Suppose that the upper expression of (4.84) is the largest. In order that the upper expression
of (4.84) is always larger than the lower expression in the optimizing process, we must place
a restriction on |An| and |Bn|:

|Aon| ≥ |Ben | , |Aen| ≥ |Bon | . (4.86)

Under this condition, the ratio in (4.85) can be maximized by letting |Aon | = |Ben| and
|Aen| = |Bon|. From Cauchy-Schwartz inequality, we obtain

G

Q

∣
∣
∣
∣
dir

= 2

( ∞∑

n=1
|Aon|

)2

+
( ∞∑

n=1
|Aen |

)2

∞∑

n=1

1

2n + 1
(|Aon |2 + |Aen |2)(Qn + Q′

n)

(4.87)

= 2
(ζ, Co)2

E + (ζ, Ce)2
E

(Co, Co)E + (Ce, Ce)E
≤ 2 ‖ζ‖2

E .

where ζ = (ζ1, ζ2, · · ·), Ce(o) = (Ce(o)1, Ce(o)2, · · ·) with

Ce(o)n =
√

Qn + Q′
n

2n + 1

∣
∣Ae(o)n

∣
∣ , ζn =

√

2n + 1

Qn + Q′
n

.

Both ζ and Ce(o) are vectors in the Euclidean space consisting of all vectors of infinite

dimension with the inner product and norm defined by (ζ, C)E =
∞∑

n=1
ζnCn and ‖ζ‖ = (ζ, ζ)1/2

E ,

respectively. The ratio of gain to Q reaches maximum if Ce = Co = c1ζ, that is,

|Aen | = |Aon | = |Ben| = |Bon| = c1
2n + 1

Qn + Q′
n

, (4.88)

where c1 is an arbitrary constant. The above conditions show that both the TE and TM modes
must be equally excited to achieve the maximum possible ratio of gain to Q, which is in
agreement with the condition for minimizing Q. From (4.87) the maximum possible ratio of
gain to Q for a directional antenna will be 2‖ζ‖2

E . Thus, the upper limit of ratio of gain to Q
for a directional antenna is

max
G

Q

∣
∣
∣
∣
dir

=
∞
∑

n=1

2(2n + 1)

Qn + Q′
n

. (4.89)

4.6.2 Omni-Directional Antenna

We assume that the antenna has an omni-directional pattern and the field is independent of ϕ,
and consider the maximum possible ratio of gain to Q in the direction of θ = π/2. Since the
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field is independent of ϕ, the vector basis function in (4.18) can be chosen as

en0e = −uθ

1

Nn0
P1

n (cos θ ), hn0e = −uϕ

1

Nn0
P1

n (cos θ ).

The field components produced by the omni-directional antenna are then given by

Eθ = − 1

kr
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n
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(2)
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n (kr )P1
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β
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For sufficiently large r , the radiation intensity can be written as
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2
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The directivity is

G = 4πr2
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(∣
∣
∣α

(2)
nml

∣
∣
∣

2
+
∣
∣
∣β

(2)
nml

∣
∣
∣

2
) .

(4.90)
From (4.75) and (4.90), we obtain

G

Q

∣
∣
∣
∣
omn

= 4π

d

⎡

⎣

∣
∣
∣
∣
∣

∑

n

jnβ
(2)
n0e P1

n (0)

∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣

∑

n

j n+1α
(2)
n0e P1

n (0)

∣
∣
∣
∣
∣

2
⎤

⎦ , (4.91)

where

d = Larger of
{
∑

n,m,l

(

N 2
nm

∣
∣
∣α

(2)
nml

∣
∣
∣

2
Qn + N 2

nm

∣
∣
∣β

(2)
nml

∣
∣
∣

2
Q′

n

)

,
∑

n,m,l

(

N 2
nm

∣
∣
∣α

(2)
nml

∣
∣
∣

2
Q′

n + N 2
nm

∣
∣
∣β

(2)
nml

∣
∣
∣

2
Qn

)}

.
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The first term in the numerator of (4.91) represents the contribution from the TM modes and
the second term represents the contribution from the TE modes. Only α

(2)
n0e and β

(2)
n0e contribute

to the numerator of (4.91), so (4.91) can be increased by setting α
(2)
nml = β

(2)
nml = 0 (m �= 0),

α
(2)
n0o = β

(2)
n0o = 0. Let An = j n+1α

(2)
n0e and Bn = j nβ

(2)
n0e, we have

G

Q

∣
∣
∣
∣
omn

= 4π

d

⎡

⎣

∣
∣
∣
∣
∣

∞
∑

n=1

An P1
n (0)

∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣

∞
∑

n=1

Bn P1
n (0)

∣
∣
∣
∣
∣

2
⎤

⎦ , (4.92)

where

d = Larger of

{ ∞
∑

n=1

N 2
n0(|An|2 Qn + |Bn|2 Q′

n),
∞
∑

n=1

N 2
n0(|An|2 Q ′

n + |Bn|2 Qn)

}

. (4.93)

Since the denominator of (4.92) depends only on the magnitude of An and Bn , the denominator
is not changed if the phases of An and Bn are adjusted to maximize the ratio of gain to Q. If
we choose the phases of An and Bn to be the negative of P1

n (0), the terms in the numerator
will be added in phase. Thus

G

Q

∣
∣
∣
∣
omn

= 4π

d

⎧

⎨

⎩

[ ∞
∑

n=1

|An|
∣
∣P1

n (0)
∣
∣

]2

+
[ ∞
∑

n=1

|Bn|
∣
∣P1

n (0)
∣
∣

]2
⎫

⎬

⎭
.

If the first expression of (4.93) is the largest we have

G

Q

∣
∣
∣
∣
omn

= 4π

[ ∞∑

n=1
|An|

∣
∣P1

n (0)
∣
∣

]2

+
[ ∞∑

n=1
|Bn|

∣
∣P1

n (0)
∣
∣

]2

∞∑

n=1
N 2

n0(|An|2 Qn + |Bn|2 Q′
n)

. (4.94)

Similarly, we introduce the condition |An| ≥ |Bn| (n ≥ 1) to guarantee that the first expression
of (4.93) is always the largest during the optimizing process. Under this condition, the above
ratio can be maximized by letting |An| = |Bn|. Therefore,

G

Q

∣
∣
∣
∣
omn

= 8π

[ ∞∑

n=1
|An|

∣
∣P1

n (0)
∣
∣

]2

∞∑

n=1
N 2

n0 |An|2 (Qn + Q ′
n)

= 8π
(ξ, C)E

(C, C)E
≤ 8π ‖ξ‖2

E , (4.95)

where ξ = (ξ1, ξ2, · · ·), C = (C1, C2, · · ·) with

Cn =
√

N 2
n0(Qn + Q′

n) |An| , ξn = ∣∣P1
n (0)

∣
∣ /

√

N 2
n0(Qn + Q ′

n).
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The ratio (4.95) reaches maximum if C = c1ξ, or

|An| = c1

∣
∣P1

n (cos θ )
∣
∣

N 2
n0(Qn + Q′

n)
.

The upper limit of the ratio of gain to Q for an omni-directional antenna is

max
G

Q

∣
∣
∣
∣
omn

=
∞
∑

n=1

2(2n + 1)
∣
∣P1

n (0)
∣
∣
2

n(n + 1)(Qn + Q ′
n)

. (4.96)

Remark 4.9: Chu has shown that the maximum ratio of gain to Q for an omni-directional
antenna is (Chu, 1948)

max
G

Q

∣
∣
∣
∣

Chu

omn

=
∞
∑

n=1

(2n + 1)
∣
∣P1

n (0)
∣
∣
2

n(n + 1)QChu
n

. (4.97)

Here QChu
n is the quality factor of nth TM modes and is a function of ka. Chu’s theory is valid

only for an omni-directional antenna that radiates either TE or TM modes, and is based on the
equivalent ladder network representation of the wave impedance of each mode and the stored
energies in some elements have been neglected. Hence Chu’s limit just holds approximately.
Also note that the new upper limit (4.96) can be twice as much as Chu’s limit (4.97) if ka is
small.

4.6.3 Best Possible Antenna Performance

Since the antenna fractional bandwidth is reciprocal to antenna Qreal if Qreal is not very
small, the product of antenna gain and bandwidth can be expressed as G B f ≈ G/Qreal . The
antenna quality factor used in (4.89) and (4.96) does not include the stored energies inside the
circumscribing sphere of the antenna, it is thus much smaller than the real antenna Qreal . It
follows from (4.89) and (4.96) that the products of gain and bandwidth for an arbitrary antenna
of dimension 2a are bounded by

G B f

∣
∣
dir

≤ max G B f

∣
∣
dir

=
∞
∑

n=1

2(2n + 1)

Qn(ka) + Q′
n(ka)

,

G B f

∣
∣
omn

≤ max G B f

∣
∣
omn

=
∞
∑

n=1

2(2n + 1)
∣
∣P1

n (0)
∣
∣
2

n(n + 1)
[

Qn(ka) + Q′
n(ka)

] .

(4.98)

The first expression applies for the directional antennas, and the second one for the omni-
directional antennas. It should be noted that the right-hand sides of (4.98) are finite numbers.
From (4.78), the fractional bandwidth of an arbitrary antenna of dimension 2a has an upper
limit too

B f ≤ max B f = 2(ka)3

2(ka)2 + 1
. (4.99)
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Equations (4.98) indicate that one can sacrifice the bandwidth to enhance the gain. If the
bandwidth is rendered very small, a high gain antenna can be achieved. One can also sacrifice
the gain to improve the bandwidth. But the improvement will be limited as the bandwidth
itself is bounded by the right-hand side of (4.99).

The upper bounds max G B f

∣
∣
dir

, max G B f

∣
∣
omn

and max B f are all monotonically increasing
functions of ka. It can be seen that max G B f

∣
∣
dir

is always higher than max G B f

∣
∣
omn

. The
rate of increase of these upper bounds for small ka is much higher than that for large ka,
which implies that a little increase in the size of the small antennas will notably improve their
performances. For the small antennas with ka < 1, only the first terms of the infinite series in
(4.98) are significant. Thus, we may write

max G B f

∣
∣
dir ≈ 6

Q1 + Q ′
1

= 6(ka)3

2(ka)2 + 1
,

max G B f

∣
∣
omn ≈ 3

Q1 + Q′
1

= 3(ka)3

2(ka)2 + 1
.

(4.100)

The right-hand sides of (4.100) are the best possible antenna performances that a small antenna
of maximum dimension 2a can achieve. They set up a target that can be approached by various
methods and have been proven to be very useful for small antenna design for which trial and
error method is often used.

4.7 Evaluation of Antenna Quality Factor

The minimum possible antenna quality factor for an arbitrary antenna provides a theoretical
lower bound to the antenna quality factor when the maximum antenna size is given. This lower
bound is usually far lower than the antenna Qreal since the stored energies inside the smallest
circumscribing sphere are totally ignored. In this section, we introduce two methods for the
evaluation of antenna Qreal .

4.7.1 Quality Factor for Arbitrary Antenna

The first method is based on the Foster reactance theorem for antennas. To find out the stored
energies, we only need to know the energy difference W̃m − W̃e (see (4.65)). It follows from
(4.39) that

−1

2

∫

V0

J̄ · EdV (r) =
∫

S

un · Sd S + j2ω

∫

V

(wm − we)dV .

Ignoring the energy difference in V0, we may write

−1

2

∫

V0

J̄ · EdV (r) =
∫

S

un · Sd S + j2ω

∫

V −V0

(w̃m − w̃e)dV . (4.101)
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The left-hand side can be expressed as

−1

2

∫

V0

J̄ · EdV (r) = −1

2

∫

V0

J̄ · (−∇φ − jωA)dV (r), (4.102)

where φ and A are the scalar and vector potential functions

φ(r) = ηv

4π

∫

V0

ρ(r′)e− jk R

R
dV (r′), A(r) = η

4πv

∫

V0

J(r′)e− jk R

R
dV (r′),

with R = |r − r′|, η = √
µ/ε and v = 1/

√
µε. Inserting these equations into (4.102) yields

−1

2

∫

V0

J̄ · EdV (r) = ωηv

8π

∫

V0

∫

V0

[
1

c2

J̄(r) · J(r′)
R

− ρ̄(r)ρ(r′)
R

]

sin(k R)dV (r)dV (r′)

+ j
ωηv

8π

∫

V0

∫

V0

[
1

c2

J̄(r) · J(r′)
R

− ρ̄(r)ρ(r′)
R

]

cos(k R)dV (r)dV (r′).

From the above equation and (4.101), we obtain

Prad = ωηc

8π

∫

V0

∫

V0

[
1

c2

J̄(r) · J(r′)
R

− ρ̄(r)ρ(r′)
R

]

sin(k R)dV (r)dV (r′),

W̃m − W̃e = ηc

16π

∫

V0

∫

V0

[
1

c2

J̄(r) · J(r′)
R

− ρ̄(r)ρ(r′)
R

]

cos(k R)dV (r)dV (r′).

(4.103)

Thus, once the current distribution is known, the calculation of the energy difference is simply
an integration. The antenna Qreal can then be determined by (4.66), and the element values of
the antenna equivalent circuit can be determined by (4.48).

4.7.2 Quality Factor for Small Antenna

We now introduce a method to calculate the quality factor Qreal for small antennas (Geyi,
2003(b)). The method is based on the understanding that, for a small antenna, the total energy
in the Poynting theorem can easily be separated into the stored energy and radiated energy by
using the low frequency expansions. The Poynting theorem in the frequency domain provides
an equation on the stored electric and magnetic energy while the Poynting theorem in the
time domain can be used as another independent equation for the stored electric and magnetic
energy. By solving these equations, the stored electric and magnetic energy can be obtained,
thus making the Qreal calculation possible.
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If the maximum dimension of the source distribution is small compared to the wavelength λ

so that R = |r − r′| < λ/2π , we may use the following expansion

e− jk R = 1 − jk R − (k R)2

2
+ j(k R)3

6
+ · · · .

Hence the potential functions can be approximated by

φ(r) ≈ ηv

4π

∫

V0

ρ(r′)
R

dV (r′) − jkq

− ηv

8π
k2
∫

V0

Rρ(r′)dV (r′) + j
ηv

24π
k3
∫

V0

R2ρ(r′)dV (r′),

(4.104)

A(r) ≈ η

4πv

∫

V0

J(r′)
R

dV (r′) + k2vp

− η

8πv
k2
∫

V0

RJ(r′)dV (r′) + j
η

24πv
k3
∫

V0

R2J(r′)dV (r′),

where p ≡ ∫

V0

r′ρ(r′)dV (r′) is the electric dipole moment of the source (using the continuity

equation, one can easily show that
∫

V0

J(r′)dV (r′) − jωp = 0), and q is the total charge of the

source, which is zero if there is no current flowing out of ∂V0 since

∫

V0

∇ · JdV =
∫

∂V

J · und S = 0 = − jω
∫

V0

ρdV = − jωq.

Substituting (4.104) into (4.102), we obtain

−
∫

V0

1

2
J̄ · EdV (r) = ηk4v2

12π
|p|2 + ηk4

12π
|m|2

− j
ωηv

8π

⎧

⎨

⎩

∫

V0

∫

V0

[
ρ(r′)ρ̄(r)

R
− k2 R

2
ρ(r′)ρ̄(r)

]

dV (r)dV (r′)

− 1

v2

∫

V0

∫

V0

[
J(r′) · J̄(r)

R
− k2 R

2
J(r′) · J̄(r)

]

dV (r)dV (r′)

⎫

⎬

⎭
,

(4.105)

where m = 1
2

∫

V0

r × J(r)dV (r) is the magnetic dipole moment of the source. If S is large

enough, the first term on the right-hand side of (4.101) becomes a real number. Thus, the
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following identifications can be made from (4.101) and (4.105)

Prad ≈ ηk4v2 |p|2
12π

+ ηk4 |m|2
12π

, (4.106)

W̃e − W̃m ≈ ηv

16π

⎧

⎨

⎩

∫

V0

∫

V0

[
ρ(r′)ρ̄(r)

R
− k2 R

2
ρ(r′)ρ̄(r)

]

dV (r)dV (r′)

(4.107)

− 1

v2

∫

V0

∫

V0

J(r′) · J̄(r)

R
dV (r)dV (r′)

⎫

⎬

⎭
,

where the terms higher than the order of 1/v2 in the stored energy have been neglected. The
radiated power in (4.106) consists of the contributions from the electric dipole moment and
the magnetic dipole moment of the source current distribution. Equation (4.107) gives the dif-
ference between the stored magnetic energy and the stored electric energy around the antenna.
In order to determine W̃e and W̃m , another equation is needed, which can be obtained by the
time-domain Poynting theorem. We will use the same notations as in the frequency domain
for all electromagnetic quantities in the time domain, with the time t explicitly appearing as
an independent variable. In the time domain, the Poynting theorem can be expressed as

−
∫

V0

J(r, t) · E(r, t)dV (r) = Prad (t) + d

dt
[We(t) + Wm(t)], (4.108)

with

Prad (t) =
∫

S

[E(r, t) × H(r, t)] · und S(r),

We(t) = 1

2

∫

V

E(r, t) · D(r, t)dV ,

Wm(t) = 1

2

∫

V

H(r, t) · B(r, t)dV .

Here V is a large volume enclosing the source region V0, and S is the boundary of V . The
physical implication of time-domain Poynting theorem is different from its counterpart in
frequency domain, and hence provides another independent equation. The rate of energy
transfer from the charged particles to the electromagnetic fields can be calculated as follows

−
∫

V0

J(r, t) · E(r, t)dV (r) = −
∫

V0

J(r, t) ·
[

−∇φ(r, t) − ∂A(r, t)

∂t

]

dV (r), (4.109)

where

A(r, t) =
∫

V0

µJ(r′, T )

4π R
dV (r′), φ(r, t) =

∫

V0

ρ(r′, T )

4πεR
dV (r′), (4.110)



P1: OTA/XYZ P2: ABC
c04 BLBK281-Wen March 13, 2010 16:2 Printer Name: Yet to Come

Evaluation of Antenna Quality Factor 197

with R = ∣∣r − r′∣∣, T = t − R/v. If the sources are confined in a small region, we can make
the following approximations for the sources in (4.110)

ρ(r′, T ) = ρ(r′, t) − ∂ρ(r′, t)

∂t

R

v

+1

2

∂2ρ(r′, t)

∂t2

(
R

v

)2

− 1

6

∂3ρ(r′, t)

∂t3

(
R

v

)3

+ · · · ,

J(r′, T ) = J(r′, t) − ∂J(r′, t)

∂t

R

v
(4.111)

+1

2

∂2J(r′, t)

∂t2

(
R

v

)2

− 1

6

∂3J(r′, t)

∂t3

(
R

v

)3

+ · · · .

It follows from (4.109), (4.110) and (4.111) that

−
∫

V0

J(r, t) · E(r, t)dv = η

6πv2
|p̈(t)|2 + η

6πv4
|m̈(t)|

+ ηv

8π

d

dt

⎧

⎨

⎩

∫

V0

∫

V0

1

R
ρ(r, t)ρ(r′, t)dV (r)dV (r′)

+ 1

2v2

∫

V0

∫

V0

R
∂ρ(r, t)

∂t

∂ρ(r′, t)

∂t
dV (r)dV (r′)

+ 1

v2

∫

V0

∫

V0

J(r, t) · J(r′, t)

R
dV (r)dV (r′)

⎫

⎬

⎭
,

(4.112)

where p(t) = ∫

V0

rρ(r, t)dV (r) and m(t) = 1
2

∫

V0

r × J(r, t)dV (r) are the electric dipole

moment and the magnetic dipole moment of the source respectively. Comparing the above
expression to (4.108), we can identify the radiated power in the time domain and the total
energy around the antenna as

Prad (t) = η

6πv2
|p̈(t)|2 + η

6πv4
|m̈(t)|2 , (4.113)

W̃e(t) + W̃m(t) ≈ ηv

8π

⎧

⎨

⎩

∫

V0

∫

V0

1

R
ρ(r, t)ρ(r′, t)dV (r)dV (r′)

+ 1

2v2

∫

V0

∫

V0

R
∂ρ(r, t)

∂t

∂ρ(r′, t)

∂t
dV (r)dV (r′) (4.114)

+ 1

v2

∫

V0

∫

V0

J(r, t) · J(r′, t)

R
dV (r)dV (r′)

⎫

⎬

⎭
,
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where we have assumed that We(t) ≈ W̃e(t), Wm(t) ≈ W̃m(t) since the total radiated energy
for a small antenna is of the order 1/v2 and is very small compared to the total energy. For
a time-harmonic field, we may write ρ(r, t) = Reρ(r)e jωt , J(r, t) = ReJ(r)e jωt , and the time
average of the total stored energy is

W̃m + W̃e = W̃m(t) + W̃e(t) = 1

T

∫ T

0

[

W̃m(t) + W̃e(t)
]

dt

= ηv

16π

1

v2

∫

V0

∫

V0

J(r) · J̄(r′)
R

dV (r)dV (r′) (4.115)

+ ηv

16π

∫

V0

∫

V0

(
k2 R

2
+ 1

R

)

ρ(r)ρ̄(r′)dV (r)dV (r′).

Combining (4.107) and (4.115) gives the stored energies around the antenna:

W̃e = ηv

16π

∫

V0

∫

V0

1

R
ρ(r)ρ̄(r′)dV (r)dV (r′),

W̃m = ηv

16π

1

v2

∫

V0

∫

V0

J(r) · J̄(r′)
R

dV (r)dV (r′) (4.116)

+ ηv

16π

k2

2

∫

V0

∫

V0

Rρ(r)ρ̄(r′)dV (r)dV (r′).

The time average of (4.113) is exactly the same as (4.106). In (4.116), the stored energies are
directly related to the source distributions and numerical integrations can be easily carried
out once the current distributions are known. The antenna Qreal can be calculated by (4.45).

Remark 4.10: To show that the energies in Equations (4.116) are positive, let us consider the
integral

I =
∫

V0

∫

V0

ρ(r)ρ̄(r′)
|r − r′| dV (r)dV (r′).

Making use of the relation (Byron and Fuller, 1969)

1

4π |r − r′| = 1

(2π )3

∫

R3

e jk·(r−r′)

|k|2 d3k,
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we have

I = 1

2π2

∫

R3

1

|k|2

⎡

⎣

∫

V0

∫

V0

ρ(r)ρ̄(r′)e jk·(r−r′)dV (r)dV (r′)

⎤

⎦ d3k

= 1

2π2

∫

R3

1

|k|2 ρ̃(k) ¯̃ρ(k)d3k > 0,

where ρ̃(k) = ∫

V0

ρ(r)e jk·rd3k.

Example 4.2: A dipole is a one-dimensional structure that only radiates TM modes. Since
the dipole only uses a small space within the circumscribing sphere, the real antenna Qreal

should be much larger than the theoretical limit (4.78). We assume that the dipole antenna has
radius a0 and length 2a. It is readily found that, for a0 � 2a, we have

Prad ≈ 10a2k2 |I0|2 , W̃e ≈ ηc |I0|2
4πω2a

(

ln
a

a0
− 1

)

.

So the antenna Qreal is given by

Qreal = 2ωW̃e

Prad
≈ 6

(ka)3

(

ln
a

a0
− 1

)

. (4.117)

Equation (4.66) can be used to demonstrate the validity of the above expression. In fact,
the input impedance of a small dipole antenna has been given by Schelkunoff as follows
(Schelkunoff, 1952)

Rrad = 20 (ka)2 , X = − η

kaπ

(

ln
a

a0
− 1

)

.

Substituting the above equations into (4.66), we can find the same result as (4.117).
Now consider a small circular loop antenna. The radius of the loop is a and the the radius

of the wire is a0. The radiated power and the stored magnetic energy can be found as

Prad ≈ 1

12
k4πη |I0|2 a4, W̃m ≈ ηa

4c
|I0|2 ln

a

a0
.

Therefore, the quality factor Qreal of the small loop antenna is

Qreal = 2ωW̃m

Prad
≈ 6

π (ka)3
ln

a

a0
. (4.118)

It can be seen that the quality factor of a small loop antenna is about three times lower than
that of a small dipole of the same maximum dimension 2a. Again, the input impedance of a
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small loop antenna has been given by Schelkunoff as follows

Rrad = ηπ

6
(ka)4, X = kηa ln

a

a0
.

Substituting the above equations into (4.66), we obtain the same result as (4.118).

4.7.3 Some Remarks on Electromagnetic Stored Energy

The calculation of stored energies is a key step in calculating antenna Qreal and antenna
input impedance. The expressions for stored energies tend to infinity as some parameters of
the geometry (for example, the radius of the wire) approach zero. This infinity problem has
haunted physicist for years, and even quantum electrodynamics does not satisfactorily resolve
this problem. As an example, let us consider the energy of a stationary charge distribution.
The interaction energy Winter of two point charges q1 and q2, located at r1 and r2 respectively,
is equal to the work to move one of the charges into place from infinity while the other
charge is fixed, that is, Winter = q1q2/4πε0 |r1 − r2|. For a distribution of n point charges, the
interaction energy is

Winter = 1

2

n
∑

i=1

qi

n
∑

j=1, j �=i

q j

4πε0

∣
∣ri − r j

∣
∣

= 1

2

n
∑

i=1

qiφ(ri ) (4.119)

where φ(ri ) =
n∑

j=1, j �=i

q j

4πε0

∣
∣ri − r j

∣
∣

is the potential at ri produced by all charges except qi .

In deriving (4.119), the contribution of qi to the potential φ(ri ) has been excluded, which
corresponds to the self-energy of the point charge and is infinite. The total energy of the
system is the sum of self-energy and interaction energy, and is also infinite. For a continuous
charge distribution, the total energy of the system can be calculated by the integral

Wtotal = 1

2

∫

V0

ρ(r)φ(r)dV (r) (4.120)

where φ(r) = 1
2

∫

V0

ρ(r′)
4πε0 |r − r′|dV (r′). It should be noted that (4.119) and (4.120) are essen-

tially different and the latter includes the self-energy. For a continuous charge distribution,
the contribution of ρ(r′) to φ(r) becomes infinitely small as dV (r) approaches zero. Equation
(4.120) can be rewritten as

Wtotal = ε0

2

∫

V0

|E(r)|2 dV (r) + ε0

2

∫

∂V0

φ(r)E(r) · un(r)d S(r)

(4.121)
= ε0

2

∫

All space

|E(r)|2 dV (r).
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The surface integral in (4.121) approaches zero as the surface becomes infinitely large. Equa-
tion (4.120) can be interpreted as the total energy of the charge system and the charge is
considered to be the carrier of the energy, while (4.121) represents the total energy of the static
field and the electric field is considered to be the carrier of the energy. These two different
interpretations are all appropriate for a static field. When the field is time-dependent, the
electromagnetic field exists in free space and has energy, and in this case the field must be
considered the carrier of the energy.

To overcome the infinity problem for a point charge, one may assume that the charge is
distributed on a sphere of radius a and mass mbare, carrying total charge q. The total (potential)
energy of this single charge system is

Wtotal = 1

2

∫

V0

ρ(r)φ(r)dV (r) = 1

2

4π∫

0

q

4πa2

q

4πε0a
a2d�(r) = q2

8πε0a
,

which is finite. The above calculation, however, raises two questions:

1. If the charge particle, say, the electron, is of finite size what is its internal structure?
2. It would be difficult to take into account that forces acting on the particle must be transmitted

by a speed less than light speed.

Therefore, the finite size particle cannot serve as a good basis for a theory of elementary objects
and the radius a of the sphere representing an electron has to be sent to zero. According to
Einstein’s special theory of relativity, q2/8πε0a = mextrac2, where mextra is the extra mass
due to energy. Thus, the total mass of the particle of mass mbare is m phys = mbare + mextra . It
is the mass m phys , called physical mass, that an experimenter would measure if the particle
were subject to Newton’s law (Hooft, 2000). Again, the physical mass tends to infinity as the
radius a is sent to zero.

Every existence above a certain rank has its singular points; the higher the rank, the more of them.
At these points, influences whose physical magnitude is too small to be taken account of by a
finite being may produce results of the greatest importance.

—James Maxwell
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5
Integral Equation Formulations

Integral equation had now become a new mathematical tool not confined to symmetrical kernels. It
was developed during several decades and was seen as a universal tool with which it was possible
to solve the majority of boundary value problems of physics.

—Lars Gårding (Swedish mathematician, 1919–)

An equation that contains an unknown function under one or more signs of integration is
called an integral equation. The integral equation formulation of boundary value prob-
lems can be traced back to the early work of Helmholtz, Gustav Robert Kirchhoff (German
physicist, 1824–1887) and Rayleigh. The establishment of the general theory of integral equa-
tions is attributed to a number of famous scientists, including Ivar Erik Fredholm (Swedish
mathematician, 1866–1927), Vito Volterra (Italian mathematician, 1860–1940), Hilbert and
Schmidt, to name just a few. The derivation of integral equations is either based on the di-
rect method or the indirect method. The former uses the representation theorem of fields,
and the latter utilizes layer ansatz. The integral equations hold a wide range of engineer-
ing applications and offer some unique features that the differential equations do not have.
The integral equation method is most appropriate for solving a field problem whose domain
extends to infinity, such as the radiation and scattering problems in electromagnetics. The
boundary condition at infinity is automatically incorporated into the integral equation formu-
lation, and the unbounded-domain problem is transformed into a bounded-domain problem.
Since the unknowns are restricted on the boundary of the physical problem, the dimension
of the problem is decreased by one. As a result, the number of unknowns is reduced and
the numerical accuracy is improved once the integral equation is discretized into a matrix
equation.

The requirements of smoothness of the unknown functions are relaxed when a differential
equation is transformed into an integral equation. This raises the question of whether the
integral equation obtained is equivalent to the original differential equation. In fact, the spu-
rious solutions may occur in the integral equation formulation. Therefore, a challenge in the
integral equation formulation is to find various methods to remove or distinguish the spurious
solutions.

Foundations of Applied Electrodynamics Geyi Wen
C© 2010 John Wiley & Sons, Ltd
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5.1 Integral Equations

Let RN be the N -dimensional Euclidean space, and � ⊂ RN be a bounded region and �

its boundary. Let Â be a linear differential operator and Â∗ its formal adjoint. Consider a
differential equation

Âu(x) = f (x), x ∈ �,

where u is the unknown function and f is a known function. We may use the direct method to
establish the integral equation. From integration by parts, we obtain

∫

�

[

ϕ(x) Âψ(x) − ψ(x) Â∗ϕ(x)
]

dx =
∫

�

b [ϕ(x), ψ(x)] d�(x), (5.1)

where ϕ and ψ are two arbitrary smooth functions and b(·, ·) is a bilinear form. If G(x, x′) is
the Green’s function of Â∗

Â∗G(x, x′) = −δ(x − x′),

we can let ϕ(x) = G(x, x′), ψ(x) = u(x) in (5.1), yielding

∫

�

u(x)δ(x − x′)dx −
∫

�

b
[

G(x, x′), u(x)
]

d�(x) = −
∫

�

G(x, x′) f (x)dx.

If � is smooth, we may let x′ → � to obtain

1

2
u(x′) −

∫

�

b
[

G(x, x′), u(x)
]

d�(x) = −
∫

�

G(x, x′) f (x)dx.

By use of the symmetric property of the Green’s function G(x, x′) = G(x′, x), the above
equation can be written as

1

2
u(x) −

∫

�

b
[

G(x, x′), u(x′)
]

d�(x′) = −
∫

�

G(x, x′) f (x′)dx′.

This is the integral equation defined on the boundary �.

Remark 5.1: A Fredholm equation of the first type is defined by

∫

�

K (x, x′)u(x′)d�(x′) = g(x),

where u is the unknown function and appears inside of the integral; g(x) is a known function;
K (x, x′) is also known and is called the kernel function. If the unknown function occurs both
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inside and outside the integral, we have a Fredholm equation of the second type defined by

u(x) − λ

∫

�

K (x, x′)u(x′)d�(x′) = g(x).

Here λ is a parameter. A Fredholm equation features that the domain of integral is constant.
The domain of integral can also be variable. In this case, the integral equations

∫

�(x)

K (x, x′)u(x′)d�(x′) = g(x),

u(x) − λ

∫

�(x)

K (x, x′)u(x′)d�(x′) = g(x),

are called Volterra equations of the first and second type respectively.

Many integral equations are characterized by compact operators. For this reason, many
properties of compact operators are applicable to integral equations. Especially we have:

The Fredholm alternative theorem: Let H be a Hilbert space with an inner product (·, ·). If the
operator Â : H → H is compact, EITHER the equations ( Î − λ Â)u = 0 and ( Î − λ Â∗)v = 0
have only the trivial solutions u = 0 and v = 0, and the equation ( Î − λ Â)u = f has a
unique solution OR the equations ( Î − λ Â)u = 0 and ( Î − λ Â∗)v = 0 have the same number
of nontrivial solutions, and ( Î − λ Â)u = f has a solution if and only if ( f, v) = 0 for all
solutions v of the equation ( Î − λ Â∗)v = 0.

5.2 TEM Transmission Lines

A transverse electromagnetic (TEM) transmission line filled with homogeneous medium is
shown in Figure 5.1, where the cross-section � of the transmission line is assumed to be a

multiple connected region enclosed by a perfectly conducting boundary � =
p∑

i=0
�i . The TEM

Γ0

y

x

Γ1

Γ2

Γp

Ω2

Ω1

Ωp

Figure 5.1 A TEM transmission line



P1: OTA/XYZ P2: ABC
c05 BLBK281-Wen March 3, 2010 21:2 Printer Name: Yet to Come

206 Integral Equation Formulations

θ ρ

Γ

Ω

Figure 5.2 An arbitrary boundary point

mode in the transmission line may be characterized by the electric potential function ϕ that
satisfies Laplace equation:

(
∂2

∂x2
+ ∂2

∂y2

)

ϕ(x, y) = 0, (x, y) ∈ �,

ϕ(x, y) = V (x, y), (x, y) ∈ �,

(5.2)

where V (x, y) is a known potential distribution on the boundary �. By use of Green’s identity,
the following integral equation for (5.2) can easily be established

c(ρ)ϕ(ρ) =
∫

�

[

G(ρ,ρ′)
∂ϕ(ρ′)
∂n(ρ′)

− ϕ(ρ′)
∂G(ρ,ρ′)

∂n(ρ′)

]

d�(ρ′), (5.3)

where ρ = (x, y); c(ρ) = θ/2π and θ is the angle formed by the two half tangents at the
boundary point ρ, as shown in Figure 5.2; G(ρ,ρ′) = −(2π )−1 ln

∣
∣ρ − ρ′∣∣ is the Green’s

function of the Laplace equation:

∇2G(ρ,ρ′) = −δ
(

ρ − ρ′) . (5.4)

The boundary value problem (5.2) can also be solved by using the complex variable integral
equation formulation. Let zi be the fixed points inside �i in the complex plane, and ψi be
the total flux through �i (i = 1, 2, · · · , p). We can introduce an analytic function (Geyi et al.,
1989)

W (z) = ϕ(x, y) + jψ(x, y) −
p

∑

i=1

ψi

2π
ln(z − zi ),

where ψ(x, y) is the flux function. Applying the Cauchy integral formula results in a complex
variable integral equation

jθW (z) =
∫

�

W (z′)
z′ − z

dz′. (5.5)
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5.3 Waveguide Eigenvalue Problems

Consider an arbitrary metal waveguide filled with homogeneous medium. Let the cross-section
of the waveguide be denoted by � and its boundary by �. For convenience, we introduce the
following integral operators

Ĝkc = 2
∫

�

d�(ρ′)G(ρ,ρ′),

Ĝn′
kc

= 2
∫

�

d�(ρ′)
∂G(ρ,ρ′)

∂n(ρ′)
,

Ĝn
kc

= 2
∫

�

d�(ρ′)
∂G(ρ,ρ′)

∂n(ρ)
,

N̂kc = −1

2

∫

�

d�(ρ′)N0(kc

∣
∣ρ − ρ′∣∣),

N̂ n′
kc

= −1

2

∫

�

d�(ρ′)
∂ N0(kc

∣
∣ρ − ρ′∣∣)

∂n(ρ′)
,

N̂ n
kc

= −1

2

∫

�

d�(ρ′)
∂ N0(kc

∣
∣ρ − ρ′∣∣)

∂n(ρ)
,

Ĥkc = 1

2 j

∫

�

d�(ρ′)H (2)
0 (kc

∣
∣ρ − ρ′∣∣),

Ĥ n′
kc

= 1

2 j

∫

�

d�(ρ′)
∂ H (2)

0 (kc

∣
∣ρ − ρ′∣∣)

∂n(ρ′)
,

Ĥ n
kc

= 1

2 j

∫

�

d�(ρ′)
∂ H (2)

0 (kc

∣
∣ρ − ρ′∣∣)

∂n(ρ)
,

where ρ = (x, y); G(ρ,ρ′) is the Green’s function of two-dimensional Helmholtz equation

(∇2 + k2
c )G(ρ,ρ′) = −δ(ρ − ρ′), (5.6)

and kc is the cut-off wavenumber; N0(kc

∣
∣ρ − ρ′∣∣) is the Neumann function; and

H (2)
0 (kc

∣
∣ρ − ρ′∣∣) is the Hankel function of the second. The longitudinal component of mag-

netic field of a TE mode in the waveguide, denoted by h, constitutes the Neumann eigenvalue
problem:

(∇2 + k2
c )h = 0,ρ ∈ �,

∂h/∂n = 0,ρ ∈ �.
(5.7)
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The corresponding integral equation can be easily obtained by Green’s identity as follows

( Î + Ĝn′
kc

)h = 0, (5.8)

where Î is the identity operator. The longitudinal component of electric field of a TM mode
in the waveguide, denoted e, satisfies the Dirichlet eigenvalue problem:

(∇2 + k2
c )e = 0,ρ ∈ �,

e = 0,ρ ∈ �,
(5.9)

and the corresponding integral equation is

Ĝkc (q) = 0, (5.10)

where q = ∂e/∂n.
The cut-off wavenumbers for the TE or TM modes are obtained by requiring that the integral

equation has a nontrivial solution. The eigenfunctions and corresponding cut-off wavenumbers
satisfying the differential equations (5.7) and (5.9) also satisfy the integral equations (5.8) and
(5.10) respectively, but the converse is not necessarily true. For example, if G = −N0/4 is
exploited, the spurious wavenumbers do occur in (5.8) and (5.10) (Harrington, 1993). For this
reason, it is necessary to investigate the properties of the spurious solutions and find a method
to distinguish or remove them.

5.3.1 Spurious Solutions and their Discrimination

If G = −N0/4 is used, Equation (5.8) becomes

( Î + N̂ n′
kc

)h = 0. (5.11)

Let ks be a spurious wavenumber and hs the corresponding spurious eigenfunction. Then
( Î + N̂ n′

ks
)hs = 0. According to the Fredholm alternative theorem, the transpose of the above

equation has a nontrivial solution ht
s

( Î + N̂ n
ks

)ht
s = 0. (5.12)

We define a single-layer potential function with ht
s as the density

V (ρ) = N̂ks (h
t
s),ρ ∈ R2, (5.13)

which is a solution of the Helmholtz equation. It follows from the jump relation that

(
∂V

∂n

)

−
= ( Î + N̂ n

ks
)ht

s,ρ ∈ �, (5.14)
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where the subscript − stands for the limit value of (∂V/∂n) as ρ approaches � from the interior
of �. It follows from (5.12) and (5.14) that (∂V/∂n)− = 0. Therefore,V satisfies (5.7). Since
ks and the corresponding eigenfunction ht

s are assumed to be a spurious solution of (5.7), this
is possible only when V is zero everywhere inside �. By continuity of V , we have

V (ρ) = 0,ρ ∈ �. (5.15)

Furthermore, we have the jump relation

(
∂V

∂n

)

+
= (− Î + N̂ n

ks
)ht

s,ρ ∈ �,

where the subscript + represents the limit value as ρ approaches � from the exterior of �. On
account of the above equation and (5.14) we have (∂V/∂n)+ = −2ht

s . Therefore, V (ρ) is not
zero in R2 − �. Thus the spurious wavenumbers of the interior Neumann eigenvalue equation
(5.11) are eigenvalues of the exterior Dirichlet eigenvalue problem.

A similar discussion can be carried out for TM modes. If G = −N0/4, Equation (5.10)
becomes

N̂kc (q) = 0. (5.16)

Assume that ks is a spurious wavenumber and hs is the corresponding spurious eigenfunction.
Then N̂ks (qs) = 0 has a nontrivial solution and the single-layer potential function V = N̂ks (qs)
vanishes on �. As a result, the potential V must be zero inside �. Otherwise it would be a
solution of (5.9), contradicting the assumption that ks is a spurious wavenumber. Since V is
zero inside �, (∂V/∂n)− vanishes. The jump relations yield

(
∂V

∂n

)

−
= ( Î + N̂ n

ks
)qs,ρ ∈ �,

(
∂V

∂n

)

+
= (− Î + N̂ n

ks
)qs,ρ ∈ �.

(5.17)

Subtracting the second equation from the first gives

(
∂V

∂n

)

+
= −2qs . (5.18)

This implies that the potential V is not zero in R2 − �. Thus, the spurious wavenumbers
of the interior Dirichlet eigenvalue equation (5.16) are eigenvalues of the exterior Dirichlet
eigenvalue problem.

Consequently, the spurious wavenumbers of both interior Dirichlet and Neumann eigenvalue
problems are eigenvalues of the exterior Dirichlet eigenvalue problem. This property can be
used to discriminate the spurious solutions for a waveguide with an edge as shown in Figure 5.3.
In the vicinity of the edge, the longitudinal electric field e for a TM mode and the longitudinal
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x

β

ϕρΩ

y

Γ

Figure 5.3 A waveguide with an edge

magnetic field h for a TE mode inside the waveguide have the following expansions

e =
∞

∑

l=1

al Jν(kcρ) sin νϕ, h =
∞

∑

l=1

bl Jν(kcρ) cos νϕ,

where ν = lπ/(2π − β). For small ρ and ϕ ∈ (0, 2π − β), it is easy to show that

e ∝ ρπ/(2π−β),
∂e

∂n
∝ ρ(β−π)/(2π−β),

h ∝ c0 + c1ρ
π/(2π−β),

∂h

∂n
∝ ρ(β−π )/(2π−β),

where c0 and c1 are constants. Thus, e and h are always finite while their normal derivatives
are finite only when β > π . The field in the vicinity of the edge outside the waveguide
for an exterior Dirichlet eigenvalue problem has a similar asymptotic expression, but the
normal derivatives of the field are infinite for β > π . Therefore, the following criterion for
discriminating spurious wavenumbers is obtained (Geyi, 1990).

Criterion for discriminating spurious wavenumbers: Assume that the waveguide has an
edge with β > π . If the normal derivative of the eigenfunction corresponding to an eigenvalue
approaches a large number at the vortex of the edge, the eigenvalue is a spurious wavenumber.

5.3.2 Integral Equations Without Spurious Solutions

An integral equation without spurious solutions can be established by using the Green’s
function that satisfies the radiation condition. Let us consider the Neumann problem first.
Without loss of generality, we use G(ρ,ρ′) = H (2)

0 (kc

∣
∣ρ − ρ′∣∣)/4 j . For the Neumann problem,

Equation (5.8) becomes

( Î + Ĥ n′
kc

)h = 0. (5.19)

If ks is a spurious wavenumber such that (5.19) has a nontrivial solution

( Î + Ĥn′
ks

)hs = 0,
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then the transpose of the above equation has a nontrivial solution ht
s

( Î + Ĥn
ks

)ht
s = 0.

From the solution ht
s , we may construct a single-layer potential function V = Ĥks (h

t
s). On

account of the jump relation

(
∂V

∂n

)

−
= ( Î + Ĥ n

ks
)ht

s = 0,ρ ∈ �,

and that ks is not an eigenvalue of the Neumann problem, the potential V must vanish inside
�. By continuity, the potential V vanishes on �. Since V satisfies the radiation condition, it
must vanish in R2 − � by the uniqueness theorem for the solution of Helmholtz equation.
This implies ht

s = 0, contradicting the assumption that ht
s is a nontrivial solution. Thus, the

Neumann problem (5.19) has no spurious solutions.
For Dirichlet problem, Equation (5.10) becomes Ĥkc (q) = 0. If ks is a spurious solution so

that the following equation

Ĥks (qs) = 0 (5.20)

has a nontrivial solution qs , we can construct a single-layer potential function V = Ĥks (qs).
Since the potential V vanishes on � from (5.20), it must vanish in �. By the uniqueness
theorem for the solution of the Helmholtz equation, the potential V must vanish in R2 − �

since V satisfies the radiation condition. This implies qs = 0, which is against our assumption
that qs is a nontrivial solution. Thus, the Dirichlet eigenvalue problem (5.10) has no spurious
solutions if the Green’s function G satisfies the radiation condition.

5.4 Metal Cavity Resonators

An idealized model for a resonant cavity consists of a finite space filled with a homoge-
neous medium and completely enclosed by a perfect conductor. Its resonant frequencies and
corresponding resonant modes satisfy the Maxwell equations

∇ × E(r) = − jωµH(r)

∇ × H(r) = jωεE(r)

}

, r ∈ V

un(r) × E(r) = 0, r ∈ S,

(5.21)

where V is the region enclosed by the metal boundary S and un its outward unit vector. To derive
an integral equation for the resonant cavity problem, we can use the integral representation of
the magnetic field inside V

H(r) = −
∫

S

[

un(r′) × H(r′)
] × ∇′G(r, r′)dS(r′),r ∈ V, (5.22)
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where G(r, r′) = e− jk|r−r′|/4π
∣
∣r − r′∣∣ and k = ω

√
µε. In deriving (5.22), the boundary con-

ditions in (5.21) have been used. Letting r approach S from inside V and using the jump
relation yields

1

2
H−(r) = −

∫

S

[

un(r′) × H−(r′)
] × ∇′G(r, r′)dS(r′),

where H−(r) denotes the limit value of H(r) when r approaches the boundary S from inside
V . Introducing the surface current density Js(r) = −un(r) × H−(r), the above equation can
be written as

1

2
Js(r) + un(r) ×

∫

S

Js(r′) × ∇′G(r, r′)dS(r′)= 0. (5.23)

The condition that (5.23) has a nontrivial solution determines the resonant frequencies. Nu-
merical discretization of (5.23) is straightforward (Geyi and Hongshi, 1988(a)). Evidently any
resonant frequencies of (5.21) satisfy the integral equation (5.23). It can be shown that the
converse is also true. In fact, if Js(r) is a nontrivial solution corresponding to a frequency ω

obtained from (5.23), one can construct the fields

E(r) =
∫

S

[

jωµJs(r′)G(r, r′) − ρs(r′)
ε

∇′G(r, r′)
]

dS(r′),

H(r) = −
∫

S

Js(r′) × ∇′G(r, r′)dS(r′),
(5.24)

where r ∈ R3, ρs = ∇s · Js/jω and ∇s is the surface divergence. From the jump relations, we
obtain

E+(r) = −ρs(r)

2ε
un(r) +

∫

S

[

jωµJs(r′)G(r, r′) − ρs(r′)
ε

∇′G(r, r′)
]

dS(r′),

E−(r) = ρs(r)

2ε
un(r) +

∫

S

[

jωµJs(r′)G(r, r′) − ρs(r′)
ε

∇′G(r, r′)
]

dS(r′),

H+(r) = −1

2
Js(r) × un(r) −

∫

S

Js(r′) × ∇′G(r, r′)dS(r′),

H−(r) = 1

2
Js(r) × un(r) −

∫

S

Js(r′) × ∇′G(r, r′)dS(r′),



P1: OTA/XYZ P2: ABC
c05 BLBK281-Wen March 3, 2010 21:2 Printer Name: Yet to Come

Scattering Problems 213

where + and − denote the limit value from inside V and outside V respectively. These
equations imply

E+(r) − E−(r) = −ρs(r)

ε
un(r), (5.25)

un(r) × H+(r) = 0, r ∈ S. (5.26)

It is easy to show that the fields defined by (5.24) satisfy the Maxwell equations in whole space
and the radiation condition at infinity. From (5.26) and the uniqueness theorem of Maxwell
equations, the electromagnetic fields defined by (5.24) are zero outside �. Therefore, we
have E+(r) = 0, r ∈ S and by (5.25) we obtain un(r) × E−(r) = 0, r ∈ S, which shows that
ω and the fields defined by (5.24) satisfy (5.21). Hence ω is a resonant frequency of the cavity
resonator.

5.5 Scattering Problems

The methods used to study the scattering problem depend on the electrical length of the
scatterer. When the electrical length of the scatterer is very small, the low frequency analysis,
such as Stevenson’s approach (Stevenson, 1953) and Neumann’s method (Ahner and Kleimann,
1973; Colton & Kleimann, 1980; Geyi, 1995) may be used. When the wavelength and the size
of the scatterer are comparable, one may adopt numerical methods, such as the finite element
method (FEM) and the moment method. If the electrical length of the scatterer is very large,
the high frequency methods, such as the geometric theory of diffraction, may be applied to
solve the scattering problem.

5.5.1 Three-Dimensional Scatterers

5.5.1.1 Conducting scatterer

An arbitrary conducting scatterer is shown in Figure 5.4. It is assumed that the scatterer is a
perfect conductor and occupies a finite region V bounded by S. A current distribution J is
located in the source region V0. Let S∞ be a closed surface large enough to enclose both V0 and
the scatterer V . From the representation theorems, the total fields inside the region bounded

µ

S∞

un

J
un

0 0,ε

V S
V0

Figure 5.4 A three dimensional scatterer
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by S and S∞ can be expressed by

E(r) = −
∫

S

jωµ0G0(r, r′)un(r′) × H(r′)dS(r′) +
∫

S

[

un(r′) × E(r′)
] × ∇′G0(r, r′)dS(r′)

+
∫

S

[

un(r′) · E(r′)
] ∇′G0(r, r′)dS(r′) +

∫

S∞

jωµ0G0(r, r′)un(r′) × H(r′)dS(r′)

−
∫

S∞

[

un(r′) × E(r′)
] × ∇′G0(r, r′)dS(r′) −

∫

S∞

[

un(r′) · E(r′)
] ∇′G0(r, r′)dS(r′)

−
∫

V0

[

jωµ0G0(r, r′)J(r′) − ρ(r′)
ε0

∇′G0(r, r′)
]

dV (r′),

H(r) =
∫

S

jωε0G0(r, r′)un(r′) × E(r′)dS(r′) +
∫

S

[

un(r′) × H(r′)
] × ∇′G0(r, r′)dS(r′)

+
∫

S

[

un(r′) · H(r′)
] ∇′G0(r, r′)dS(r′) −

∫

S∞

jωε0G0(r, r′)un(r′) × E(r′)dS(r′)

−
∫

S∞

[

un(r′) × H(r′)
] × ∇′G0(r, r′)dS(r′) −

∫

S∞

[

un(r′) · H(r′)
] ∇′G0(r, r′)dS(r′)

+
∫

V0

J(r′) × ∇′G0(r, r′)dV (r′),

where G0(r, r′) = e− jk0|r−r′ |/4π |r − r′| is the Green’s function in free space and k0 =
ω

√
µ0ε0. Taking the radiation conditions into account, the integral over S∞ must be zero

when S∞ becomes infinite. Therefore,

E(r) = −
∫

S

jωµ0G0(r, r′)un(r′) × H(r′)dS(r′)

+
∫

S

[

un(r′) × E(r′)
] × ∇′G0(r, r′)dS(r′)

+
∫

S

[

un(r′) · E(r′)
] ∇′G0(r, r′)dS(r′)

−
∫

V0

[

jωµ0G0(r, r′)J(r′) − ρ(r′)
ε0

∇′G0(r, r′)
]

dV (r′),

H(r) =
∫

S

jωε0G0(r, r′)un(r′) × E(r′)dS(r′)
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+
∫

S

[

un(r′) × H(r′)
] × ∇′G0(r, r′)dS(r′)

+
∫

S

[

un(r′) · H(r′)
]∇′G0(r, r′)dS(r′)

+
∫

V0

J(r′) × ∇′G0(r, r′)dV (r′).

If the incident field is defined as the portion of the total field when the scatterer is not present
and the scattered field as the portion of the total field with the incident field subtracted, the
above equations can be written as

E(r) = Es(r) + Ein(r)

= −
∫

S

jωµ0G0(r, r′)un(r′) × H(r′)dS(r′)

+
∫

S

[

un(r′) × E(r′)
] × ∇′G0(r, r′)dS(r′)

− 1

jωε0

∫

S

∇′
s · [

un(r′) × H(r′)
]∇′G0(r, r′)dS(r′) + Ein(r), (5.27)

H(r) = Hs(r) + Hin(r)

=
∫

S

jωε0G0(r, r′)un(r′) × E(r′)dS(r′)

+
∫

S

[

un(r′) × H(r′)
] × ∇′G0(r, r′)dS(r′)

+ 1

jωµ0

∫

S

∇′
s · [

un(r′) × E(r′)
] ∇′G0(r, r′)dS(r′) + Hin(r), (5.28)

where Es(r) and Hs(r) denote the scattered fields, and Ein(r) and Hin(r) are the incident fields:

Ein(r) = −
∫

V0

[

jωµ0G0(r, r′)J(r′) − ρ(r′)
ε0

∇′G0(r, r′)
]

dV (r′),

Hin(r) =
∫

V0

J(r′) × ∇′G0(r, r′)dV (r′).
(5.29)

Here we have used the relations

∇s · (un × H) = − jωε0un · E,

∇s · (un × E) = jωµ0un · H,
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where ∇s · denotes the surface divergence. From the jump relations, it follows that

E(r) = −1

2
un(r) × [un(r) × E(r)] − 1

2

1

jωε0
un(r)∇s · [un(r) × H(r)]

−
∫

S

jωµ0G0(r, r′)un(r′) × H(r′)dS(r′) +
∫

S

[

un(r′) × E(r′)
] × ∇′G0(r, r′)dS(r′)

− 1

jωε0

∫

S

∇′
s · [

un(r′) × H(r′)
]∇′G0(r, r′)dS(r′) + Ein(r),

H(r) = −1

2
un(r) × [un(r) × H(r)] + 1

2
un(r)∇s · [un(r) × E(r)]

+
∫

S

jωε0G0(r, r′)un(r′) × E(r′)dS(r′) +
∫

S

[

un(r′) × H(r′)
] × ∇′G0(r, r′)dS(r′)

+ 1

jωµ0

∫

S

∇′
s · [

un(r′) × E(r′)
]∇′G0(r, r′)dS(r′) + Hin(r).

Applying the boundary conditions on a perfect conductor un × E = 0, un · H = 0 leads to

un(r) ×
∫

S

jωµ0G0(r, r′)Js(r′)dS(r′)

+ 1

jωε0
un(r) ×

∫

S

∇′
s · Js(r′)∇′G0(r, r′)dS(r′) = un(r) × Ein(r),

(5.30)

1

2
Js(r) − un(r) ×

∫

S

Js(r′) × ∇′G0(r, r′)dS(r′) = un(r) × Hin(r), (5.31)

where Js = un × H. Equation (5.30) is an integral equation of first kind and is called an
electric field integral equation (EFIE) while (5.31) is an integral equation of second kind and
is called a magnetic field integral equation (MFIE). Both integral equations have singular
kernels. The singularities of the kernel are weak in the sense that they are integrable.

Remark 5.2: If both the source and the scatterer are two-dimensional (see Figure 5.5) so that
all the field quantities are independent of one coordinate, say, z, the integral equations (5.30)
and (5.31) may be simplified to scalar integral equations. To find the simplified scalar integral
equations, we may use the following relation

G0(ρ,ρ′) = 1

4 j
H (2)

0 (k0

∣
∣ρ − ρ′∣∣) =

∞∫

−∞

e− jk0|r−r′|
4π |r − r′|dz′, (5.32)

where
∣
∣r − r′∣∣ = [

∣
∣ρ − ρ′∣∣2 + (z − z′)2]1/2, and ρ = (x, y) is the position vector in the (x, y)-

plane. If the incident field is a TM wave (that is, the magnetic field has no z-component), the
induced current on the scatterer has a z-component only

Js = un × (Hnun + Hlul ) = uz J�,
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y

x

lu

Γ

Γ∞

un

un

J

0 0,µ ε

0Ω
Ω

Figure 5.5 A two dimensional scatterer

where J� = Hl , Hn and Hl are the normal and tangential components on the scatterer boundary
�. Thus, (5.30) may be written as

∫

�

jωµ0G0(ρ,ρ′)J�(ρ′)d�(ρ′) = Ein
z (ρ). (5.33)

If the incident field is a TE wave (that is, the electric field has no z-component), the surface
current has a ul component only

Js = un × Hzuz = −Hzul = ul J�,

where J� = −Hz . Then (5.31) reduces to

1

2
J�(ρ) −

∫

�

J�(ρ′)
∂G0(ρ,ρ′)

∂n(ρ′)
d�(ρ′) = −Hin

z (ρ). (5.34)

Equations (5.33) and (5.34) can also be derived from Green’s identity or layer ansatz.

Both the EFIE and the MFIE do not have uniqueness at those values of k corresponding
to the interior resonance (Jones, 1979). The uniqueness of the EFIE can be determined by
examining if there exists Jp �= 0 satisfying the homogeneous equation

un(r) ×
∫

S

jωµ0G0(r, r′)Jp(r′)dS(r′)

+ 1

jωε0
un(r) ×

∫

S

∇′
s · Jp(r′)∇′G0(r, r′)dS(r′) = 0.

(5.35)

If this is true, we may construct the following electromagnetic fields

Ep(r) =
∫

S

jωµ0G0(r, r′)Jp(r′)dS(r′) + 1

jωε0

∫

S

∇′
s · Jp(r′)∇′G0(r, r′)dS(r′),

Hp(r) = −
∫

S

Jp(r′) × ∇′G0(r, r′)dS(r′).

From the jump relation and (5.35) it follows that (un × Ep)+ = 0. It is easy to demonstrate
that Ep and Hp satisfy the Maxwell equations and radiation conditions. By the uniqueness
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theorem, the fields Ep and Hp must be identically zero outside S. Similarly, by the jump
relation we have

(un × Ep)− = 0. (5.36)

Hence it may be concluded that the fields Ep and Hp , which satisfy the Maxwell equations
inside S and (5.36), are not zero inside S. Otherwise from the jump relations, we obtain

(Ep)+ − (Ep)− = un

jωε0
∇s · Jp, (Hp)+ − (Hp)− = −Jp × un,

which would lead to Jp = 0, contradicting our previous assumption that Jp �= 0.
In a similar manner, we can discuss the uniqueness of the MFIE. Let us assume that there

exists a non-trivial solution Jp �= 0 satisfying the homogeneous equation

1

2
Jp(r) − un(r) ×

∫

S

Jp(r′) × ∇′G0(r, r′)dS(r′) = 0. (5.37)

If we introduce the inner product (Jp1, Jp2) = ∫

S
Jp1 · J̄p2dS for two tangential vectors Jp1 and

Jp2, the adjoint of (5.37) is

1

2
Ja

p(r) +
∫

S

[

un(r′) × Ja
p(r′)

] × ∇′Ḡ0(r, r′)dS(r′) = 0. (5.38)

By the Fredholm alternative, (5.37) has a non-trivial solution if (5.38) does. Taking the complex
conjugate, the above equation can be written as

1

2
J′

p(r) + un(r) ×
∫

S

J′
p(r) × ∇′G0(r, r′)dS(r′) = 0, (5.39)

where J′
p = un × J̄a

p(r). Thus, (5.37) possesses a non-trivial solution if (5.39) does. We can
construct the fields

E′
p(r) =

∫

S

J′
p(r′) × ∇′G0(r, r′)dS(r′),

H′
p(r) =

∫

S

jωε0G0(r, r′)J′
p(r′)dS(r′) + 1

jωµ0

∫

S

∇′
s · J′

p(r′)∇′G0(r, r′)dS(r′).

It is easy to show that E′
p and H′

p satisfy Maxwell equations, the radiation condition and
(un × E′

p)+ = 0 due to (5.39). Thus, the fields E′
p and H′

p are identically zero outside S. By
virtue of the jump relations

(E′
p)+ − (E′

p)− = J′
p × un,

(H′
p)+ − (H′

p)− = − un

jωµ0
∇s · J′

p,
(5.40)

we obtain (un × H′
p)− = 0. As a result, the fields E′

p and H′
p, which satisfy Maxwell

equations inside S, are not zero inside S. Otherwise the first equation of (5.40) will lead to a
contradiction that J′

p = 0.
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In conclusion, the uniqueness of the EFIE fails at those values of k0, which are the interior
modes of electric resonance and satisfy

∇ × Hp = j
k0

η0
Ep,∇ × Ep = − jk0η0Ep,

un × Ep = 0, r ∈ S,

where η0 = √
µ0/ε0. The uniqueness of the MFIE fails at those values of k0, which are the

interior modes of magnetic resonance and satisfy

∇ × H′
p = j

k0

η0
E′

p,∇ × E′
p = − jk0η0E′

p,

un × H′ = 0, r ∈ S.

5.5.1.2 Dielectric scatterer

A dielectric scatterer involves the penetration of the fields inside the dielectric body, and
its analysis is more complicated. It will be assumed that the dielectric body with medium
parameters µ and ε is finite and homogeneous, which occupies the region V bounded by S,
as shown in Figure 5.4. When the field, generated by a nearby source, is incident upon the
dielectric body, it will generate a scattered field outside S and a transmitted field inside S. The
tangential components of the total fields must be continuous across S

(un × E)+ = (un × Ed )−, (un × H)+ = (un × Hd )−, (5.41)

where the subscript d is used to represent the total field inside S. The total fields in the region
bounded by S and S∞ are given by (5.27) and (5.28). Similarly, the total field inside S can be
expressed as

Ed (r) =
∫

S

jωµun(r′) × Hd (r′)G(r, r′)dS(r′) −
∫

S

[

un(r′) × Ed (r′)
] × ∇′G(r, r′)dS(r′)

+ 1

jωε

∫

S

∇′
s · [

un(r′) × H(r′)
]∇′G(r, r′)dS(r′),

Hd (r) = −
∫

S

jωεun(r′) × Ed (r′)G(r, r′)dS(r′) −
∫

S

[

un(r′) × Hd (r′)
] × ∇′G(r, r′)dS(r′)

− 1

jωµ

∫

S

∇′
s · [

un(r′) × E(r′)
]∇′G(r, r′)dS(r′),

where G(r, r′) = e− jk|r−r′|/4π
∣
∣r − r′∣∣ and k = ω

√
µε. Introducing the equivalent surface

electric current and surface magnetic current on the dielectric body

Js = un × H = un × Hd , Jms = −un × E = −un × Ed ,
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the fields outside S and inside S can be represented by

E(r) = −
∫

S

jωµ0G0(r, r′)Js(r′)dS(r′) −
∫

S

Jms(r′) × ∇′G0(r, r′)dS(r′)

− 1

jωε0

∫

S

∇′
s · Js(r′)∇′G0(r, r′)dS(r′) + Ein(r),

H(r) = −
∫

S

jωε0G0(r, r′)Jms(r′)dS(r′) +
∫

S

Js(r ′) × ∇′G0(r, r′)dS(r′)

− 1

jωµ0

∫

S

∇′
s · Jms(r′)∇′G0(r, r′)dS(r′) + Hin(r),

and

Ed (r) =
∫

S

jωµJs(r′)G(r, r′)dS(r′) +
∫

S

Jms(r′) × ∇′G(r, r′)dS(r′)

+ 1

jωε

∫

S

∇′
s · Js(r′)∇′G(r, r′)dS(r′),

Hd (r) =
∫

S

jωεJms(r′)G(r, r′)dS(r′) −
∫

S

Js(r′) × ∇′G(r, r′)dS(r′)

+ 1

jωµ

∫

S

∇′
s · Jms(r′)∇′G(r, r′)dS(r′),

respectively. If the observation point r approaches a point of S and the jump relations are used,
we obtain

E(r) = 1

2
un(r) × Jms(r) − 1

j2ωε0
un(r)∇s · Js(r)

−
∫

S

jωµ0G0(r, r′)Js(r′)dS(r′) −
∫

S

Jms(r′) × ∇′G0(r, r′)dS(r′)

− 1

jωε0

∫

S

∇′
s · Js(r′)∇′G0(r, r′)dS(r′) + Ein(r),



P1: OTA/XYZ P2: ABC
c05 BLBK281-Wen March 3, 2010 21:2 Printer Name: Yet to Come

Scattering Problems 221

H(r) = −1

2
un(r) × Js(r) − 1

j2ωµ0
un(r)∇s · Jms(r)

−
∫

S

jωε0G0(r, r′)Jms(r′)dS(r′) +
∫

S

Js(r′) × ∇′G0(r, r′)dS(r′)

− 1

jωµ0

∫

S

∇′
s · Jms(r′)∇′G0(r, r′)dS(r′) + Hin(r),

Ed (r) = 1

2
un(r) × Jms(r) − 1

j2ωε
un(r)∇s · Js(r)

+
∫

S

jωµJs(r′)G(r, r′)dS(r′) +
∫

S

Jms(r′) × ∇′G(r, r′)dS(r′)

+ 1

jωε

∫

S

∇′
s · Js(r′)∇′G(r, r′)dS(r′),

Hd (r) = −1

2
un(r) × Js(r) − 1

j2ωµ
un(r)∇s · Jms(r)

+
∫

S

jωεJms(r′)G(r, r′)dS(r′) −
∫

S

Js(r′) × ∇′G(r, r′)dS(r′)

+ 1

jωµ

∫

S

∇′
s · Jms(r′)∇′G(r, r′)dS(r′).

Multiplying these equations vectorially by un yields

−1

2
ε0Jms(r) = −un(r) ×

∫

S

jωµ0ε0G0(r, r′)Js(r′)dS(r′)

− un(r) ×
∫

S

Jms(r′) × ε0∇′G0(r, r′)dS(r′)

− 1

jω
un(r) ×

∫

S

∇′
s · Js(r′)∇′G0(r, r′)dS(r′)

+ un(r) × ε0Ein(r),

(5.42)

1

2
µ0Js(r)(r) = −un(r) ×

∫

S

jωµ0ε0G0(r, r′)Jms(r′)dS(r′)

+ un(r) ×
∫

S

Js(r′) × µ0∇′G0(r, r′)dS(r′)

− 1

jω
un(r) ×

∫

S

∇′
s · Jms(r′)∇′G0(r, r′)dS(r′)

+ un(r) × µ0Hin(r),

(5.43)
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−1

2
εJms(r) = un(r) ×

∫

S

jωµεJs(r′)G(r, r′)dS(r′)

+ un(r) ×
∫

S

Jms(r′) × ε∇′G(r, r′)dS(r′)

+ 1

jω
un(r) ×

∫

S

∇′
s · Js(r′)∇′G(r, r′)dS(r′),

(5.44)

1

2
µJs(r) = un(r) ×

∫

S

jωµεJms(r′)G(r, r′)dS(r′)

− un(r) ×
∫

S

Js(r′) × µ∇′G(r, r′)dS(r′)

+ 1

jω
un(r) ×

∫

S

∇′
s · Jms(r′)∇′G(r, r′)dS(r′).

(5.45)

Adding (5.42) and (5.44) gives

− 1

2
(ε0 + ε)Jms(r) + jun(r) ×

∫

S

[

k2
0 G0(r, r′) − k2G(r, r′)

] 1

ω
Js(r′)dS(r′)

+ un(r) ×
∫

S

Jms(r′) × [

ε0∇′G0(r, r′) − ε∇′G(r, r′)
]

dS(r′)

+ 1

jω
un(r) ×

∫

S

∇′
s · Js(r′)

[∇′G0(r, r′) − ∇′G(r, r′)
]

dS(r′)

= un(r) × ε0Ein(r).

(5.46)

Adding (5.43) and (5.45) gives

1

2
(µ0 + µ)Js(r) + jun(r) ×

∫

S

[

k2
0G0(r, r′) − k2G(r, r′)

] 1

ω
Jms(r′)dS(r′)

+ un(r) ×
∫

S

Js(r′) × [

µ∇′G(r, r′) − µ0∇′G0(r, r′)
]

dS(r′)

+ 1

jω
un(r) ×

∫

S

∇′
s · Jms(r′)

[∇′G0(r, r′) − ∇′G(r, r′)
]

dS(r′)

= un(r) × µ0Hin(r).

(5.47)
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Making use of the relation
∫

S
∇s · F(r)dS(r) = 0 for an arbitrary vector field F(r), the last

integral in (5.46) and (5.47) may be written as
∫

S

∇′
s · Js(r′)

[∇′G0(r, r′) − ∇′G(r, r′)
]

dS(r′)

= −∇
∫

S

∇′
s · Js(r′)

[

G0(r, r′) − G(r, r′)
]

dS(r′)

= −
∫

S

[

Js(r′) · ∇′] ∇′ [G0(r, r′) − G(r, r′)
]

dS(r′).

Therefore, (5.46) and (5.47) become

−1

2
(ε0 + ε)Jms(r) + jun(r) ×

∫

S

[

k2
0G0(r, r′) − k2G(r, r′)

] 1

ω
Js(r′)dS(r′)

+ un(r) ×
∫

S

Jms(r′) × [

ε0∇′G0(r, r′) − ε∇′G(r, r′)
]

dS(r′)

− 1

jω
un(r) ×

∫

S

[

Js(r′) · ∇′] [∇′G0(r, r′) − ∇′G(r, r′)
]

dS(r′)

= un(r) × ε0Ein(r),

(5.48)

1

2
(µ0 + µ)Js(r) + jun(r) ×

∫

S

[

k2
0 G0(r, r′) − k2G(r, r′)

] 1

ω
Jms(r′)dS(r′)

+ un(r) ×
∫

S

Js(r′) × [

µ∇′G(r, r′) − µ0∇′G0(r, r′)
]

dS(r′)

− 1

jω
un(r) ×

∫

S

[

Jms(r′) · ∇′] [∇′G0(r, r′) − ∇′G(r, r′)
]

dS(r′)

= un(r) × µ0Hin(r).

(5.49)

Equations (5.48) and (5.49) are the integral equations for an arbitrary dielectric scatterer,
which may be rewritten as

−1

2

(
k0

η0
+ k

η

)

Jms(r) + jun(r) ×
∫

S

[

k2
0 G0(r, r′) − k2G(r, r′)

]

Js(r′)dS(r′)

+ un(r) ×
∫

S

Jms(r′) ×
[

k0

η0
∇′G0(r, r′) − k

η
∇′G(r, r′)

]

dS(r′)

− 1

j
un(r) ×

∫

S

[

Js(r′) · ∇′] [∇′G0(r, r′) − ∇′G(r, r′)
]

dS(r′)

= un(r) × k0

η0
Ein(r),

(5.50)
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1

2
(k0η0 + kη) Js(r) + jun(r) ×

∫

S

[

k2
0 G0(r, r′) − k2G(r, r′)

]

Jms(r′)dS(r′)

+ un(r) ×
∫

S

Js(r′) × [

kη∇′G(r, r′) − k0η0∇′G0(r, r′)
]

dS(r′)

− 1

j
un(r) ×

∫

S

[

Jms(r′) · ∇′] [∇′G0(r, r′) − ∇′G(r, r′)
]

dS(r′)

= un(r) × k0η0Hin(r),

(5.51)

where η0 = √
µ0/ε0, η = √

µ/ε. The integral equations (5.50) and (5.51) for the dielectric
scatterer can also be used to determine the interior resonant frequencies of an isolated dielectric
resonator by assuming the right-hand side of both equations to be zero (Geyi and Hongshi,
1988(b)). At these frequencies the scattering solution of the dielectric object is not unique.

Remark 5.3: Several methods have been proposed to overcome the non-uniqueness of integral
equations for the scattering problems (Mautz and Harrington, 1978; Poggio and Miller, 1973;
Peterson, 1990; Correia, 1993). Since the matrix equations obtained from the discretization of
the integral equations become ill-conditioned at the interior resonant frequencies, the matrix
condition number can be used to detect the degree of ill-conditioning, thus providing an
indicator for the interior resonant frequencies (Klein and Mittra, 1973). Another method of
avoiding the non-uniqueness problem is to utilize the extended boundary condition (EBC).
The EBC is defined as the requirement that a set of field quantities vanish over an observation
domain in the zero-field region. The observation domain can be a closed surface, a portion of
plane, or a portion of line in the zero-field region.

5.5.2 Two-Dimensional Scatterers

If the fields are independent of one coordinate, say, the z coordinate, Maxwell equations can
be expressed by the sum of two different kinds of fields, called transverse electric (TE) field
and transverse magnetic (TM) field. The TM field has no z-component of the magnetic field
while the TE field has no z-component of the electric field. The fundamental equations for the
TM field can be written as

uz × ∇Ez(ρ) = jωµHt (ρ),

uz · ∇ × Ht (ρ) = jωεEz(ρ) + Jz(ρ),
(5.52)

where the subscript t denotes the transverse part of the vector field and ρ = (x, y) is the
two-dimensional position vector. The fundamental equations for the TE field can be expressed
as

uz · ∇ × Et (ρ) = − jωµHz(ρ),

−uz × ∇Hz(ρ) = jωεEt (ρ) + Jt (ρ).
(5.53)

Eliminating Ht from (5.52) and Et from (5.53) yields

∇2
t Ez(ρ) + k2 Ez(ρ) = jωµJz(ρ), TM,

∇2
t Hz(ρ) + k2 Hz(ρ) = ∇t · [uz × Jt (ρ)] , TE.

(5.54)
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Let us consider a two-dimensional scatterer shown in Figure 5.5. On the boundary of the
scatterer, the z-component of the TM fields must satisfy

(Ez)+ = (Edz)− ,

(
1

jk0η0

∂ Ez

∂n

)

+
=

(
1

jkη

∂ Edz

∂n

)

−
, (5.55)

where the subscript d indicates the total field inside the scatterer. If the scatterer is a perfect
conductor, the above boundary conditions reduce to Ez = 0. For a perfect conductor, the
current distribution on the scatterer for the TM fields is then given by

J� = uz J� = uz
1

jk0η0

∂ Ez

∂n
. (5.56)

The boundary conditions for TE fields on the scatterer are

(Hdz)− − (Hz)+ = J� · ul ,

(
η

jk

∂ Hdz

∂n

)

−
=

(
η0

jk0

∂ Hz

∂n

)

+
. (5.57)

If the scatterer is a perfect conductor, the external field satisfies (∂ Hz/∂n)+ = 0 and the surface
current for the TE fields is given by

J� = J�ul = −Hzul . (5.58)

5.5.2.1 Conducting cylinder

For the TE incidence with the incident field generated by a nearby current source confined in
�0, the total z-component of the magnetic field in the region bounded by �∞ and � may be
obtained by using Green’s identity for a scalar field

Hz(ρ) = −
∫

�0

G0(ρ,ρ′)∇′
t · [

uz × Jt (ρ
′)
]

d�(ρ′)

−
∫

�

[

G0(ρ,ρ′)
∂ Hz(ρ′)
∂n(ρ′)

− Hz(ρ
′)

∂G0(ρ,ρ′)
∂n(ρ′)

]

d�(ρ′)

+
∫

�∞

[

G0(ρ,ρ′)
∂ Hz(ρ′)
∂n(ρ′)

− Hz(ρ′)
∂G0(ρ,ρ′)

∂n(ρ′)

]

d�(ρ′),

where G0(ρ,ρ′) = H (2)
0 (k0

∣
∣ρ − ρ′∣∣)/4 j . The integral on �∞ vanishes as �∞ approaches

infinity because of the radiation condition. From the boundary condition on a perfect conductor,
it follows that

Hz(ρ) = −
∫

�0

G0(ρ,ρ′)∇′
t · [

uz × Jt (ρ
′)
]

d�(ρ′) +
∫

�

Hz(ρ
′)

∂G0(ρ,ρ′)
∂n(ρ′)

d�(ρ′)

= H in
z (ρ) +

∫

�

Hz(ρ′)
∂G0(ρ,ρ′)

∂n(r′)
d�(ρ′),
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where H in
z (ρ) = − ∫

V0

G0(ρ,ρ′)∇′
t · [uz × Jt (ρ′)]d�(ρ′) is the incident field. As the observa-

tion point ρ approaches a point on the boundary �, the jump relation gives

1

2
J�(ρ) −

∫

�

J�(ρ′)
∂G0(ρ,ρ′)

∂n(ρ′)
d�(ρ′) = − Hin

z (ρ), (5.59)

where J� = −Hz . This agrees with (5.34).
For the TM incidence, the z-component of the electric field in the region bounded by �∞

and � may be expressed as

Ez(ρ) = jωµ0

∫

�0

G0(ρ,ρ′)Jz(ρ′)d�(ρ′) −
∫

�

[

G0(ρ,ρ′)
∂ Ez(ρ′)
∂n(ρ′)

− Ez(ρ′)
∂G0(ρ,ρ′)

∂n(ρ′)

]

d�(ρ′)

+
∫

�∞

[

G0(ρ,ρ′)
∂ Ez(ρ′)
∂n(ρ′)

− Ez(ρ′)
∂G0(ρ,ρ′)

∂n(ρ′)

]

d�(ρ′).

The integral on �∞ must vanish as �∞ approaches infinity. Introducing the boundary condition
on the perfect conductor, we have

Ez(ρ) = Ein
z (ρ) −

∫

�

G0(ρ,ρ′)
∂ Ez(ρ′)
∂n(ρ′)

d�(ρ′), (5.60)

where Ein
z (ρ) = jωµ0

∫

V0

G0(ρ,ρ′)Jz(ρ′)d�(ρ′) is the incident field. If we let the observation

point approach the boundary �, Equation (5.60) becomes

∫

�

G0(ρ,ρ′)J�(ρ′)d�(ρ′) = 1

jk0η0
Ein

z (ρ), (5.61)

where J�(ρ) = ( jk0η0)−1∂ Ez(ρ)/∂n(ρ) is the surface current. This agrees with (5.33).
Equation (5.61) is an integral equation of first kind. An integral equation of second kind for

the TM incidence can be obtained by taking the normal derivative of (5.60) so that

∂ Ez(ρ)

∂n(ρ)
= ∂ Ein

z (ρ)

∂n(ρ)
−

∫

�

∂G0(ρ,ρ′)
∂n(ρ)

∂ Ez(ρ′)
∂n(ρ′)

d�(ρ′).

Letting the observation point ρ approach the boundary � and using the jump relation, we
obtain

1

2
J�(ρ) +

∫

�

J�(ρ′)
∂G0(ρ,ρ′)

∂n(ρ)
d�(ρ′) = 1

jk0η0

∂ Ein
z (ρ)

∂n(ρ)
. (5.62)
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This is an integral equation of the second kind. Both (5.61) and (5.62) can be used to solve the
scattering problem for the TM fields.

To determine the uniqueness of (5.59), we assume that there exists J�p �= 0, which satisfies
the homogenous equation

1

2
J�p(ρ) −

∫

�

J�p(ρ′)
∂G0(ρ,ρ′)

∂n(ρ′)
d�(ρ′) = 0. (5.63)

We may construct a single-layer potential function using J�p(ρ)

u p(ρ) =
∫

�

J�p(ρ′)G0(ρ,ρ′)d�(ρ′),

and it satisfies the two-dimensional Helmholtz equation

∇2
t u p + k2

0u p = 0, (5.64)

in the (x, y)-plane. It follows from the jump relation that

[
∂u p(ρ)

∂n(ρ)

]

−
= 1

2
J�p(ρ) +

∫

�

J�p(ρ′)
∂G0(ρ,ρ′)

∂n(ρ)
d�(ρ′)

= 1

2
J�p(ρ) −

∫

�

J�p(ρ′)
∂G0(ρ,ρ′)

∂n(ρ′)
d�(ρ′) = 0.

Hence the uniqueness of (5.63) fails at those values of k0, which are the eigenvalues of the
interior Neumann problem. The study of the uniqueness of (5.62) is similar to that of (5.59).

For the uniqueness of (5.61), we can assume that the integral equation

∫

�

G0(ρ,ρ′)J�p(ρ′)d�(ρ′) = 0,ρ ∈ � (5.65)

has a non-trivial solution J�p(ρ), and construct a single-layer function

u p(ρ) =
∫

�

J�p(ρ′)G0(ρ,ρ′)d�(ρ′),

which also satisfies the Helmholtz equation (5.64) in the (x, y)-plane. By the continuity of the
single-layer function and (5.65), we have

[

u p(ρ)
]

− =
∫

�

J�p(ρ′)G0(ρ,ρ′)d�(ρ′) = 0.



P1: OTA/XYZ P2: ABC
c05 BLBK281-Wen March 3, 2010 21:2 Printer Name: Yet to Come

228 Integral Equation Formulations

So the uniqueness of (5.61) fails at those values of k0, which are the eigenvalues of interior
Dirichlet problem.

5.5.2.2 Dielectric cylinder

Similarly, the total z-component of the magnetic field for the TE incidence in the region
bounded by �∞ and � may be represented by

Hz(ρ′) = Hin
z (ρ) −

∫

�

[

G0(ρ,ρ′)
∂ Hz(ρ′)
∂n(ρ′)

− Hz(ρ
′)

∂G0(ρ,ρ′)
∂n(ρ′)

]

d�(ρ′), (5.66)

where the integral on �∞ has been ignored because of the radiation condition and

H in
z (ρ) = −

∫

�0

G0(ρ′,ρ′)∇′
t · [

uz × Jt (ρ
′)
]

d�(ρ′)

is the incident field. The integral expression for the total field inside � is

Hdz(ρ) =
∫

�

[

G(ρ,ρ′)
∂ Hdz(ρ′)
∂n(ρ′)

− Hdz(ρ′)
∂G(ρ,ρ′)

∂n(ρ′)

]

d�(ρ′),ρ ∈ �

where G(ρ,ρ′) = H (2)
0 (k

∣
∣ρ − ρ′∣∣)/4 j . As the observation point ρ approaches the boundary

�, the jump relations yield

1

2
Hz(ρ) = H in

z (ρ) −
∫

�

[

G0(ρ,ρ′)
∂ Hz(ρ′)
∂n(ρ′)

− Hz(ρ
′)

∂G0(ρ,ρ′)
∂n(ρ′)

]

d�(ρ′),

1

2
Hdz(ρ) =

∫

�

[

G(ρ,ρ′)
∂ Hdz(ρ′)
∂n(ρ′)

− Hdz(ρ′)
∂G(ρ,ρ′)

∂n(ρ′)

]

d�(ρ′).

Introducing the surface electric current J� = uz J� and magnetic current Jm� = uz Jm�

J� = −Hz = −Hdz, Jm� = η0

jk0

∂ Hz

∂n
= η

jk

∂ Hdz

∂n
,

and making use of the boundary condition (5.57), we have

−1

2
J�(ρ) +

∫

�

[

j
k0

η0
Jm�(ρ′)G0(ρ,ρ′) + J�(ρ′)

∂G0(ρ,ρ′)
∂n(ρ′)

]

d�(ρ′) = Hin
z (ρ),

1

2
J�(ρ) +

∫

�

[

j
k

η
Jm�(ρ)G(ρ,ρ′) + J�(ρ)

∂G(ρ,ρ′)
∂n(ρ′)

]

d�(ρ′) = 0.

(5.67)
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These are the integral equations for the TE incidence. For the TM incidence, the z-component
of the electric field in the region bounded by �∞ and � may be expressed as

Ez(ρ) = Ein
z (ρ) −

∫

�

[

G0(ρ,ρ′)
∂ Ez(ρ′)
∂n(ρ′)

− Ez(ρ′)
∂G0(ρ,ρ′)

∂n(ρ′)

]

d�(ρ′),

where

Ein
z (ρ) = jωµ0

∫

�0

G0(ρ,ρ′)Jz(ρ′)d�(ρ′)

is the incident field. The total field inside � can be expressed as

Edz(ρ) =
∫

�

[

G(ρ,ρ′)
∂ Edz(ρ′)
∂n(ρ′)

− Edz(ρ
′)

∂G(ρ,ρ′)
∂n(ρ′)

]

d�(ρ′),ρ ∈ �.

Letting the observation point ρ approach the boundary � and making use of the jump relations
yields

1

2
Ez(ρ) = Ein

z (ρ) −
∫

�

[

G0(ρ′,ρ′)
∂ Ez(ρ′)
∂n(ρ′)

− Ez(ρ
′)

∂G0(ρ,ρ′)
∂n(ρ′)

]

d�(ρ′),

1

2
Edz(ρ′) =

∫

�

[

G(ρ,ρ′)
∂ Edz(ρ′)
∂n(ρ′)

− Edz(ρ′)
∂G(ρ,ρ′)

∂n(ρ′)

]

d�(ρ′).

Introducing the surface electric current J� = uz J� and magnetic current Jm� = ul Jm�

J� = 1

jk0η0

∂ Ez

∂n
= 1

jkη

∂ Edz

∂n
, Jm� = −Ez = −Edz,

and making use of the boundary conditions, we obtain the integral equations for TM incidence

−1

2
Jm�(ρ) +

∫

�

[

jk0η0G0(ρ,ρ′)J�(ρ′) + Jm�(ρ′)
∂G0(ρ,ρ′)

∂n(ρ′)

]

d�(ρ′) = Ein
z (ρ),

1

2
Jm�(ρ) +

∫

�

[

jkηG(ρ,ρ′)J�(ρ′) + Jm�(ρ′)
∂G(ρ,ρ′)

∂n(ρ′)

]

d�(ρ′) = 0.

(5.68)

The above integral equations for dielectric cylinder can also be obtained from the general
integral equations (5.50) and (5.51) by using (5.32). The integral equations for dielectric
cylinder also have the defect that the solution is not unique at the interior resonant frequencies.
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u

S

Ein, Hin

Esc, Hsc

un
,µ ε

α

Figure 5.6 Arbitrary scatterer.

5.5.3 Scattering Cross-Section

The main purpose of studying the scattering problem is to extract the properties of the scattering
object, such as its shape and size, from the information contained in the scattered waves. One
of the important quantities characterizing the scattering object is the scattering cross-section.
The scattering cross-section of a three-dimensional object is defined by

σsc = Psc

pin
,

where pin denotes the time-average incident power density, and Psc the time-averaged scattered
power given by

Psc = 1

2
Re

∫

S

(Esc × H̄sc) · undS,

where S is an arbitrary surface enclosing the scatterer, as shown in Figure 5.6. The time-
averaged power absorbed by the scatterer is

Pabs = −1

2
Re

∫

S

(E × H̄) · undS,

where E, H are the total fields E = Ein + Esc, H = Hin + Hsc. If we let Pext denote the total
power extracted from the incident power by the scatterer, we have

Pext = Pabs + Psc = −1

2
Re

∫

S

(E × H̄ − Esc × H̄sc) · undS

= −1

2
Re

∫

S

(Ein × H̄sc + Esc × H̄in) · undS,

(5.69)

where we have used the relation 1
2 Re

∫

S
(Ein × H̄in) · undS = 0. The absorption cross-section

is defined by

σabs = Pabs

pin
.
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The sum of scattering cross-section and absorption cross-section is called extinction cross-
section

σext = Pext

pin
= σabs + σsc.

5.5.4 Low Frequency Solutions of Integral Equations

The low frequency solution of electromagnetic scattering problem can be traced back to the
work of Stevenson (Stevenson, 1953). Due to the lack of powerful calculating instruments
at that time, Stevenson’s idea did not attract much attention until late sixties. An alternative
approach to the low frequency problems is based on Neumann’s method in functional analysis
(Bladel, 1977; Kleimann, 1978; Geyi, 1995). Consider the following operator equation

( Î − λK̂k)u = f, (5.70)

where K̂k is an integral operator dependent of the wavenumber k; Î is the unit operator, f is a
known source function; λ is a parameter, and u is the unknown to be determined. We assume
that both u and f belong to a Hilbert space H equipped with a norm denoted by ‖·‖. The
radius of spectrum of K̂k is defined by rσ (K̂k) = sup

λ∈σ (K̂k )

{1/ |λ|}, where σ (K̂k) stands for the

spectrum of K̂k , that is, all values of λ such that the inverse of Î − λK̂k does not exist or is
unbounded, or the operator Î − λK̂k is not dense in H . If rσ (K̂k) < 1, the solution of (5.70)
can be expressed as a convergent Neumann series

u =
∞

∑

n=0

(K̂k)n f . (5.71)

Furthermore, if rσ (K̂k) ≤ ρ < 1, then
∥
∥K̂k − K̂0

∥
∥ → 0 as |k| → 0. This implies that (5.71) is

convergent for small k.
The Neumann’s method can be used to solve the low frequency scattering problem. We

will use the integral equations for scattering of conducting cylinder to illustrate the procedure.
In order to apply the Neumann’s method, the integral equations (5.59) and (5.61) must be
regularized in the sense that all the kernels of integral equations are analytic with respect to
the wavenumber k0. For the TE incidence, Equation (5.59) may be written as

1

2
J�(ρ) −

∫

�

J�(ρ′)
[
∂G0(ρ,ρ′)

∂n(ρ′)
− ∂G̃0(ρ,ρ′)

∂n(ρ′)

]

d�(ρ′)

−
∫

�

J�(ρ′)
∂G̃0(ρ,ρ′)

∂n(ρ′)
d�(ρ′) = −H in

z (ρ),

(5.72)

where G̃0(ρ,ρ′) = −(2π )−1 ln
∣
∣ρ − ρ′∣∣ satisfying ∇2G̃0(ρ,ρ′) = −δ(ρ − ρ′) and

−1

2
=

∫

�

∂G̃0(ρ,ρ′)
∂n(ρ′)

d�(ρ′).
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Multiplying both sides of the above equation by J�(ρ) and adding the result to (5.72) yield
the regularized equation

( Î − K̂ T E
k0

)J�(ρ) = −H in
z (ρ), (5.73)

where K̂ T E
k0

is an integral operator

K̂ T E
k0

[J�(ρ)] =
∫

�

[

J�(ρ′) − J�(ρ)
] ∂G̃0(ρ,ρ′)

∂n(ρ′)
d�(ρ′)

+
∫

�

J�(ρ′)
[

∂G0(ρ,ρ′)
∂n(ρ′)

− ∂G̃0(ρ,ρ′)
∂n(ρ′)

]

d�(ρ′).

The Neumann solution of (5.73) is

J�(ρ) =
∞

∑

n=0

(K̂ T E
k0

)n[−H in
z (ρ)]. (5.74)

This is a simple summation and can be easily carried out numerically.
To regularize (5.61) for the TM incidence, we assume that the origin of the coordinate

system is located inside �. Then the value of the incident field at the origin is

Ein(0) =
∫

�

[

G0(ρ′, 0)
∂ Ein(ρ′)
∂n(ρ′)

− Ein(ρ′)
∂G0(ρ′, 0)

∂n(ρ′)

]

d�(ρ′)

=
∫

�

[

G0(ρ′, 0)
∂ E(ρ′)
∂n(ρ′)

− E(ρ′)
∂G0(ρ′, 0)

∂n(ρ′)

]

d�(ρ′) (5.75)

= jk0

∫

�

Js(ρ′)G0(ρ′, 0)d�(ρ′),

where we have used the relation

∫

�

[

G0(ρ′, 0)
∂ Esc(ρ′)
∂n(ρ′)

− Esc(ρ′)
∂G0(ρ′, 0)

∂n(ρ′)

]

d�(ρ′) = 0,

and the boundary conditions on the conductor surface. Equation (5.75) is equivalent to

1

jk0
Ein(0)

π

ln k0ρ
un(ρ) · ∇G0(ρ, 0)

=
∫

�

J�(ρ′)
π

ln k0ρ
un(ρ) · ∇G0(ρ, 0)G0(ρ′, 0)d�(ρ′),

(5.76)
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where ρ = |ρ|. Adding (5.61), (5.75) and (5.76), we obtain the following regularized integral
equation

( Î − K̂ TM
k0

)J�(ρ) = −Fin(ρ),

where

K̂ TM
k0

[J�(ρ)] = −2
∫

�

J (ρ′)
[

un(ρ) · ∇G0(ρ,ρ′) − π

ln k0ρ
un(ρ) · ∇G0(ρ, 0)G0(ρ′, 0)

]

d�(ρ′),

Fin(ρ) = 2

jk0

[
∂ Ein(ρ)

∂n(ρ)
+ π

ln k0ρ
Ein(0)un(ρ) · ∇G0(ρ, 0)

]

.

The Neumann’s series solution is then given by

J�(ρ) =
∞

∑

n=0

(K̂ TM
k0

)n[Fin(ρ)].

The above approach is similar to Colton and Kleimann (1980). The difference is that we use
ln k0ρ in (5.76) instead of ln k0. Utilizing ln k0 would lead to an inconsistency of dimension in
the numerical calculations.

5.6 Multiple Metal Antenna System

When integral equations are applied to solve antenna problems, approximations of the source
region are usually adopted by ignoring the antenna feeding waveguides. For example, a linear
antenna is usually characterized by an integral equation in which the source region is usually
modeled by a delta gap or a magnetic ring current. Such an approximation gives rise to
a serious problem that the solution obtained cannot be checked experimentally because a
feeding waveguide is always involved in every experimental set-up. In addition, the integral
equation based on the delta gap is only valid for thin wires or low frequency problems. When
the frequency is high or wire is thick, the integral equation cannot produce reasonable results,
especially for the antenna input impedance. For this reason, a practical integral equation
formulation for the antenna system must consider the influences of the feeding waveguides
(Geyi, 2006b).1

Let us assume that the antenna system consists of N metal antennas. To get a universal
integral equation for any operating conditions, the metal antenna system is assumed to include
all possible sources, as shown in Figure 5.7. Each antenna may be in transmitting mode,
receiving mode or in a mode that the antenna transmits and receives at the same time (for
example, the antenna is in the transmitting mode but interfered with by an arbitrary incident
field from the outside of the antenna). The source region V (q)

0 (q = 1, 2, · · · , N ) of the i th
antenna is chosen in such a way that its boundary ∂V (q)

0 is coincident with the antenna surface,

1 W, Geyi, “New magnetic field integral equation for antenna system”, Progress in Electromagnetics Research,
PIER 63, 153–76, 2006. Reproduced by permission of © 2006 The Electromagnetics Academy & EMW Publishing.
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J

1

∂V∞

nu

Antenna terminal

un

un

(1)
0V∂

,in in
ex         extE H

Antenna terminal

(1)
0VJ (1)z

( )
0

N

( )N

V( )Nz

µ,ε

( )T T

Figure 5.7 Multiple metal antenna system

which is assumed to be a perfect conductor (except for a cross-sectional portion �(q) where
∂V (q)

0 crosses the antenna input terminal). Let ∂V∞ be a large surface that encloses the whole
antenna system. From the representation theorem for electromagnetic fields, the total magnetic

field in the region bounded by ∂V0 =
N∑

i=1
∂V (q)

0 and ∂V∞ can then be expressed as

H(r) = − j
k

η

∫

∂V0

G(r, r′)Jms(r′)dS(r′) +
∫

∂V0

Js(r′) × ∇′G(r, r′)dS(r′)

− 1

jkη

∫

∂V0

∇′
s · Jms(r′)∇′G(r, r′)dS(r′) + Hin

ext (r),

where η = √
µ/ε; Js = un × H; Jms = −un × E; G(r, r′) = e− jk|r−r′|/4π

∣
∣r − r′∣∣; ∇s repre-

sents the surface divergence; and

Hin
ext (r) = − j

k

η

∫

∂V∞

G(r, r′)Jms(r′)dS(r′) +
∫

∂V∞

Js(r′) × ∇′G(r, r′)dS(r′)

− 1

jkη

∫

∂V∞

∇′
s · Jms(r′)∇′G(r, r′)dS(r′)

stands for the external incident magnetic field. Letting the observation point r approach the
boundary of the source region ∂V0 from the interior of ∂V0 + ∂V∞ and using the jump relations,
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we obtain

H(r) = − j
k

η

∫

∂V0

G(r, r′)Jms(r′)dS(r′) +
∫

∂V0

Js(r′) × ∇′G(r, r′)dS(r′)

− 1

jkη

∫

∂V0

∇′
s · Jms(r′)∇′G(r, r′)dS(r′) + Hin

ext (r)

+1

2
Js(r) × un(r) − 1

j2kη
un(r)∇s · Jms(r).

Multiplying both sides of the above equations by un gives

1

2
Js(r) = − j

k

η
un(r) ×

∫

∂V0

G(r, r′)Jms(r′)dS(r′)

+un(r) ×
∫

∂V0

Js(r′) × ∇′G(r, r′)dS(r′)

− 1

jkη
un(r) ×

∫

∂V0

∇′
s · Jms(r′)∇′G(r, r′)dS(r′)

+un(r) × Hin
ext (r).

Making use of the boundary conditions on the metal part of the antenna, the above equation
can be written as

−1

2
Js(r) + un(r) ×

∫

∂V0

Js(r′) × ∇′G(r, r′)dS(r′)

= −un(r) × [Hin
int(r) + Hin

ext (r)],

(5.77)

where

Hin
int(r) = − j

k

η

N
∑

q=1

∫

�(q)

G(r, r′)Jms(r′)d�(r′)

− 1

jkη

N
∑

q=1

∫

�(q)

∇′
s · Jms(r′)∇′G(r, r′)d�(r′)

(5.78)

is determined by the equivalent surface magnetic current Jm = −uz(q) × E on the antenna
input terminals �(q) (q = 1, 2, · · · , NA). In order to determine the equivalent magnetic
current on the antenna input terminals, we can make use of the field expressions in the
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waveguide (see (3.71))

−uz(q) × E(r(q)) = −
∞

∑

n=1

uz(q) × e(q)
n (r(q))V (q)

n (z(q)),

uz(q) × H(r(q)) = −
∞

∑

n=1

e(q)
n (r(q))I (q)

n (z(q)),

(5.79)

where r(q) = r − r0 is the local coordinate system for the q th feeding waveguide and r(q) ∈
�(q), as shown in Figure 5.8; and

V (q)
n (z(q)) = A(q)

n e− jβ (q)
n z(q) + B(q)

n e jβ (q)
n z(q)

,

I (q)
n (z(q)) = 1

Z (q)
wn

(A(q)
n e− jβ (q)

n z(q) − B(q)
n e jβ (q)

n z(q)
),

β (q)
n =

⎧

⎪⎨

⎪⎩

k, TEM mode

√

k2 − k(q)2
cn , TE or TM modes

, Z (q)
wn =

⎧

⎨

⎩

η, TEM mode
ηk/β

(q)
n , TE modes

ηβ
(q)
n /k, TM modes

.

Assume that the feeding waveguides of antennas are in single-mode operation. The modal
voltages and currents may be written as

V (q)
1 (z(q)) = δ(q)e− jβ(q)

1 z(q) + B(q)
1 e jβ(q)

1 z(q)
,

V (q)
n (z(q)) = B (q)

n e jβ(q)
n z(q)

, n ≥ 2,

I (q)
1 (z(q)) = 1

Z (q)
w1

(δ(q)e− jβ(q)
1 z(q) − B(q)

1 e jβ (q)
1 z(q)

),

I (q)
n (z(q)) = − 1

Z (q)
wn

B(q)
n e jβ(q)

n z(q)
, n ≥ 2,

x(q)

z

x

Ω(q)

r

r0

r(q)

y(q)

y

Figure 5.8 Coordinate systems
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where δ(q) = 1 if the q th antenna is in transmitting mode and excited by the dominant mode
of unit amplitude, and δ(q) = 0 if the q th antenna is in receiving mode. Thus, on the input
terminal �(q) (z(q) = 0), Equation (5.79) may be written as

Jms(r(q)) = −uz(q) × e(q)
1 (r(q))(δ(q) + B(q)

1 ) −
∞

∑

n=2

uz(q) × e(q)
n (r(q))B(q)

n ,

Js(r(q)) = −e(q)
1 (r(q))

δ(q) − B(q)
1

Z (q)
w1

+
∞

∑

n=2

e(q)
n (r(q))

B(q)
n

Z (q)
wn

.

The expansion coefficients can be determined by the second equation of the above equations

B(q)
1 = δ(q) + Z (q)

w1

∫

�(q)

Js(r(q)) · e(q)
1 (r(q))d�,

B(q)
n = Z (q)

wn

∫

�(q)

Js(r(q)) · e(q)
n (r(q))d�.

The equivalent magnetic current on the reference plane T (q) may thus be expressed by

Jms(r(q)) = −2δ(q)uz(q) × e(q)
1 (r(q))

−
∞

∑

n=1

uz(q) × e(q)
n (r(q))Z (q)

wn

∫

�(q)

Js(r(q)) · e(q)
n (r(q))d�(r(q)).

(5.80)

Inserting this into (5.78) yields

Hin
int(r) =

N
∑

q=1

⎡

⎣2δ(q)G(q)
1 (r) +

∞
∑

n=1

Z (q)
wnG(q)

n (r)
∫

�(q)

Js(r(q)) · e(q)
n (r(q))d�(r(q))

⎤

⎦, (5.81)

where

G(q)
n (r) = jk

η

∫

�(q)

G(r, r′)uz(q) × e(q)
n (r(q))d�(r′)

+ 1

jηk

∫

�(q)

∇′
s · [

uz(q) × e(q)
n (r(q))

]∇′G(r, r′)d�(r′).

From (5.77) and (5.81), one may obtain the following modified MFIE

−1

2
Js(r) + un(r) ×

∫

∂V0

Js(r′) × ∇′G(r, r′)dS(r′)

+
N

∑

q=1

⎡

⎣

∞
∑

n=1

Z (q)
wnun(r) × G(q)

n (r)
∫

�(q)

Js(r(q)) · e(q)
n (r(q))d�

(

r(q)
)

⎤

⎦ (5.82)

=
N∑

q=1

[

−2δ(q)un(r) × G(q)
1 (r)

]

− un(r) × Hin
ext (r), r ∈ ∂V0.
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As pointed out before, the non-uniqueness problem occurs in the integral equation formulations
when it is used to describe an isolated scatterer. When the antenna input terminals �(q) exist,
the electromagnetic energy is exchanged between the source region (enclosed by ∂V0) and
the exterior region (outside of ∂V0) of the antennas. As a result, the physical conditions for
interior resonance no longer exist, and the solution of (5.82) is unique.

5.7 Numerical Methods

Experiment, theory and computation form a tripod in modern scientific research. The traditional
numerical methods for solving differential equations include finite element method and finite
difference method. These types of numerical methods are called the domain method since
the governing equation has to be solved over the entire defining region of the problem. On the
other hand, the integral equations are defined on the boundary of the defining region and the
numerical methods used to solve them are called the boundary method, such as the boundary
element method. The domain method can easily be applied to nonlinear, inhomogeneous and
time-varying problems. The numerical accuracy of domain methods is generally lower than
the boundary method because the discretization error is limited only on the boundary for the
latter. When the numerical methods are used to solve the integral equations, the integration
region must be divided into sub-areas, called elements. Each element is usually approximated
by a straight line for two-dimensional problems and a planar triangle or a planar rectangle for
three-dimensional problems. The unknown function on each element is then approximated by
a linear combination of some known basis functions. To get a general picture of this procedure,
we may begin with a universal frame for the numerical methods, called the projection method.

5.7.1 Projection Method

Let U and W be two subspaces of a linear space E . The sum of U and W , denoted by U + W
is defined as the set of all vectors of the form u + w with u ∈ U and w ∈ W . The linear
space E is said to be the direct sum of U and W , written as E = U ⊕ W , if and only if, (1)
E = U + W ; (2) U ∩ W = 0. (This means that the only common element is the zero vector.)
W is called a direct complement of U in E .

If E has a direct sum decomposition E = U ⊕ W , we may introduce a linear operator
P̂ : E → U , called the projection of E onto U along W , which satisfies (1) P̂u = u, for all
u ∈ U ; (2) P̂w = 0, for all w ∈ W . Apparently Î − P̂ is the projection of E onto W along U .
For all h ∈ E , we may write h = u + w = P̂h + w (Figure 5.9).

w
h

W

Uu

Figure 5.9 Projection of vector h = u + w
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Let us consider an operator equation

T̂ x = y, x, y ∈ H, (5.83)

where T̂ : D(T ) ⊂ H → H is a linear operator (differential operator or integral operator) and
H is a Hilbert space. Let {X N } and {Y N } be two given sequences of subspaces with X N ⊂ D(T̂ )
and Y N ⊂ H , and let {P̂ N } be a sequence of projections of H onto Y N . Whenever an exact
solution of (5.83) is not available, we have to seek a numerical solution. Suppose x N is an
approximate solution in X N . In general, T̂ x N − y is not zero. The projection method requires
that the projection of T̂ x N − y onto Y N vanishes

P̂ N (T̂ x N − y) = 0. (5.84)

If {ui
∣
∣ i = 1, 2, · · · , N } is an orthonormal basis of Y N , the projection operator may be ex-

pressed by

P̂ N (·) =
N

∑

i=1

(·, ui )ui , (5.85)

where (·, ·) stands for the inner product in H . If {vi
∣
∣ i = 1, 2, · · · , N } is an orthonormal basis

of X N , we have the expansion

x N =
N

∑

i=1

aiv
i . (5.86)

Introducing (5.85) and (5.86) into (5.84) gives

N
∑

i=1

ai (T̂ vi , u j ) = (y, u j ), j = 1, 2, · · · , N . (5.87)

The projection method is also called the method of weighted residuals if the inner product is
defined as an integral.

5.7.2 Moment Method

If we choose ui = Ŝvi , where Ŝ is an operator, the projection method reduces to the moment
method. In this case, Equation (5.87) becomes

N
∑

i=1

ai (T̂ vi , Ŝv j ) = (y, Ŝv j ), j = 1, 2, · · · , N . (5.88)

Especially if we choose Ŝ = T̂ , this becomes

N
∑

i=1

ai (T̂ vi , T̂ v j ) = (y, T̂ v j ), j = 1, 2, · · · , N . (5.89)
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The same equation as (5.89) may be obtained if we minimize the error functional
∥
∥T̂ x N − y

∥
∥

using (5.86). Thus, (5.89) is equivalent to the method of least squares. If we choose Ŝ = Î ,
Equation (5.88) reduces to

N
∑

i=1

ai (T̂ vi , v j ) = (y, v j ), j = 1, 2, · · · , N .

This is referred to as Galerkin’s method, named after the Russian mathematician Boris
Grigoryevich Galerkin (1871–1945).

5.7.3 Construction of Approximating Subspaces

The practical implementation of numerical methods depends on how to construct the approx-
imating subspaces X N and Y N . For most applications, the solution of the operator equation
(5.83) is defined in a region � ∈ Rm(m = 1, 2, 3). We may choose a set of points {ri

∣
∣ i =

1, 2, · · · , N } with ri = (xi
1, · · · , xi

m), called global nodes. The node numbering system is
called the global numbering system. Consider a set of functions { li (r)

∣
∣ i = 1, 2, · · · , N },

which satisfies:

1. For each i , there exists a positive number εi such that

li (r) =
{ �= 0,

∣
∣r − ri

∣
∣ ≤ εi ,

= 0,
∣
∣r − ri

∣
∣ > εi .

2. li (r) (i = 1, 2, · · · , N ) are continuous and l i (r j ) = δi j .

It is easy to show that the set { l i (r)
∣
∣ i = 1, 2, · · · , N } is linearly independent. Thus we let

X N = Y N = span
{

l1(r), l2(r), · · · , l N (r)
}

.

The approximate solution may be written as

x N (r) =
N

∑

i=1

ai l
i (r).

The set { li (r)
∣
∣ i = 1, 2, · · · , N } forms a global basis for X N and Y N . To construct these

global basis functions, we divide the region � into n subregions (called elements) �e (e =
1, 2, · · · , n) such that the intersection of any two elements is either empty or consists of a
common boundary curve or points (Figure 5.10). For each element, we choose Ne nodes rα

(α = 1, 2, · · · , Ne) (the node numbering system α is called the local numbering system) and
introduce the Lagrange shape functions lαe , which are smooth and satisfy

lαe (r) = 0, r /∈ �e,

lαe (rβ) = δαβ,α, β = 1, 2, · · · , Ne.



P1: OTA/XYZ P2: ABC
c05 BLBK281-Wen March 3, 2010 21:2 Printer Name: Yet to Come

Numerical Methods 241

Ωe

Figure 5.10 Discretization of the solution region

The nodes that are not on the boundaries of elements are called internal nodes. Otherwise
they are called boundary nodes. If m elements meet at r, we say that r has m-multiplicity,
denoted by m(r). Let ri be a node of m-multiplicity, that is, there exist m elements �(e j )

( j = 1, 2, · · · , m) that meet at ri . Then the global basis functions can be constructed as
follows

li (r) =
m(ri )
∑

j=1

1

m(r)
l
α j
e j (r), i = 1, 2, · · · , N

where α j is the local numbering for the node ri .

5.7.3.1 Lagrange shape function for line element

The construction of Lagrange shape function is an interpolation process. A line element is
shown in Figure 5.11. The global coordinates of the two end points p1 and p2 are denoted by
x1 and x2 respectively. Let p be an arbitrary point in the element with coordinate x . We may
introduce the local coordinate system λ = |p1 p| / |p1 p2| (also called the natural coordinate
system). Evidently

x = (1 − λ)x1 + λx2. (5.90)

Therefore an arbitrary line element in x-coordinate system is transformed into a standard line
element in the natural coordinate system through (5.90). If we apply the linear interpolation
to the standard element, the Lagrange shape functions are

l1
e (λ) = 1 − λ, l2

e (λ) = λ,0 ≤ λ ≤ 1.

To better represent the unknowns, we use higher-order interpolation. For a quadratic inter-
polation, one more node p3 must be introduced in the middle of the standard line element

(a) (b)

10

p2 p1 p2
p1

x λ

Figure 5.11 Linear element
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p2 (1)p1 (0)

p3 (1/2)

λ

Figure 5.12 Quadratic element

(Figure 5.12). The Lagrange shape functions for the quadratic element are then given by

l1
e (λ) = (λ − 1)(2λ − 1), l2

e (λ) = λ(2λ − 1), l3
e (λ) = 4λ(1 − λ), 0 ≤ λ ≤ 1.

5.7.3.2 Lagrange shape function for triangular element

Consider a planar triangular element �p1 p2 p3 shown in Figure 5.13 (a), whose area is denoted
by �. The global coordinates for vertex pi are denoted by (xi , yi ) (i = 1, 2, 3). The triangle
is then divided into three small triangles using an arbitrary point p inside the triangle as a
common vortex. We introduce the local coordinate system (natural or area coordinate system)

λ1 = �1/�, λ2 = �2/�, λ3 = �3/�, (5.91)

where �1, �2 and �3 are areas of the subtriangle �p2 p3 p, �p3 p1 p and �p1 p2 p respectively.

Note that
3∑

i=1
λi = 1, 0 ≤ λi ≤ 1. Therefore, only two natural coordinates are independent. It

is easy to show that the global coordinate system is related to the local coordinate system by

⎡

⎣

x
y
1

⎤

⎦ =
⎡

⎣

x1 x2 x3

y1 y2 y3

1 1 1

⎤

⎦

⎡

⎣

λ1

λ2

λ3

⎤

⎦ .

This transforms an arbitrary triangle in the global coordinate system into a standard right
triangle shown in Figure 5.13(b). Therefore, it is only necessary to quote results for the
standard right triangle element. If we apply the linear interpolation to the standard right
triangle, the Lagrange shape functions are

(a) (b)

p3

p2

p1

y

x

p

p3 (0,0)
p1 (1,0)

p2 (0,1)
2λ

1λ

Figure 5.13 Linear triangular element
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p5 (0,1/2)
p4 (1/2 ,1/2)

p6 (1/2,0)
p3 (0,0)

p2 (0,1)

p1 (1,0)

2λ

1λ

Figure 5.14 Quadratic triangular element

l i
e (λ1, λ2) = λi ,0 ≤ λi ≤ 1, i = 1, 2, 3.

To achieve higher accuracy, a higher-order interpolation can be used. In this case more nodes
other than the vertices must be inserted to the triangle. For example if we use quadratic
interpolation, the mid-points 4, 5, and 6 of the sides of the standard right triangle may be
introduced (Figure 5.14). The Lagrange shape functions are then given by

l1
e = λ1(2λ1 − 1), l2

e = λ2(2λ2 − 1), l3
e = λ3(2λ3 − 1),

l4
e = 4λ1λ2, l5

e = 4λ2λ3, l6
e = 4λ1λ3.

When the above approximating subspaces are applied to integral equations, the procedure is
called the boundary element method. The coefficient matrix of the algebraic system (5.87)
resulting from an integral equation is not sparse in general. As the size of the matrix grows,
iterative methods or the conjugate gradient method may be used to solve the algebraic system
to save the computational time. Other acceleration techniques such as multi-pole expansion
may also be used.

Remark 5.4: The integral equation method has been used in electromagnetic engineering
for years and is usually applied to a source-free region. When the region contains sources,
an integral equation, where both volume integral and boundary integral are involved, may be
obtained. To numerically solve the integral equation, both the boundary and the source region
have to be discretized, and the integration must be performed over both of them. In this case,
the integral equation method loses its main advantages. In addition, the generation of mesh in
three dimensions is not an easy task and very time-consuming even when an automatic mesh
generator is available. To maintain the advantages of the integral equation method when it is
applied to a source region, we must transform the volume integrals into boundary integrals.
According to Huygens’ principle, this transformation is physically possible.

It came as a complete surprise, when, in a short note published in 1900, the Swedish mathematician
Ivar Fredholm showed that the general theory of all integral equations considered prior to him
was, in fact, extremely simple.

—Jean Alexandre Eugène Dieudonné (French mathematician, 1906–1992)
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6
Network Formulations

The most practical solution is a good theory.
—Albert Einstein

Microwave field theory is an important branch of applied electromagnetics, and it studies
the structures with dimensions being of the order of the wavelength. In a broad sense, the
microwave field theory applies to the problems of guided waves, resonances, radiations and
scattering. In many situations, a microwave field problem can be reduced to a network or
circuit problem, which allows us to apply the circuit and network methods to solve the original
field problem. The network formulation has eliminated unnecessary details in the field theory
while reserving useful global information, such as the terminal voltages and currents.

A microwave network consists of waveguides, passive devices, and active devices. The
waveguides at microwave frequencies are counterparts to connecting wires in low-frequency
circuits, which interconnect different parts of the microwave network. The ports of the mi-
crowave network are a set of waveguide cross-sections at reference planes, through which
the energy flows into or out of the circuit. The port is typically chosen to be far away from
waveguide discontinuities so that only the dominant mode is propagating in the neighborhood
of the reference planes. Instead of the circuit voltages and currents in low-frequency circuits,
the modal voltages and currents are often used in a microwave network. The irregularities
(or discontinuities) bounded by the waveguide ports will excite a number of higher-order
modes, which are assumed to die out at the reference planes. As a result, the effects of these
discontinuities may be considered as lumped. A microwave network may be characterized
by a network matrix, such as the impedance matrix, the admittance matrix and the scattering
matrix. To find the elements of the network matrix, we need to solve the Maxwell equations
subject to various boundary conditions.

6.1 Transmission Line Theory

Transmission line theory is the cornerstone of electromagnetic engineering. The early his-
tory of the transmission lines has been summarized by Packard and Oliner (Packard, 1984;
Oliner, 1984). The essential basis of modern transmission line theory was developed by Oliver

Foundations of Applied Electrodynamics Geyi Wen
C© 2010 John Wiley & Sons, Ltd
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Heaviside in the late nineteenth century, who considered various possibilities for waves along
wire lines and found that a single conductor line was not feasible, and a guided wave needs two
wires. Heaviside also introduced the term ‘impedance’, which is defined as the ratio of voltage
to current in a circuit. The concept of the impedance was then extended to fields and waves
by Schelkunoff in 1938 in a systematic way. The impedance is regarded as the characteristic
of the field as well as the medium, and has a direction. In 1897, Rayleigh showed that waves
could propagate within a hollow conducting cylinder and found that such waves existed only
in a set of well-defined normal modes, and to support the modes in the hollow cylinder, the
operating frequency must exceed the cut-off frequencies of the corresponding modes. The
theory of dielectric waveguide was first studied by Sommerfeld in 1899 and then extended by
the Greek physicist Demetrius Hondros (1882–1962) in 1909. The guided wave in a single
dielectric rod is based on the fact that the discontinuity surface between two different media
is likely to bind the wave to that surface, thus guiding the wave. The possible use of hollow
waveguides was investigated during the 1930s by the American radio engineers George Clark
Southworth (1890–1972) and Wilmer Lanier Barrow (1903–1975). Most of the important
results on waveguide theory obtained in the first half of the last century have been included in
the Waveguide Handbook (Marcuvitz, 1951). Nowadays it is well understood that any guided
wave structure can be represented by a transmission line, and the term ‘transmission line’ is
used in a broad sense, which may indicate the traditional two-wire transmission line, coaxial
cable, a hollow waveguide, a dielectric waveguide or any other complicated structure as long
as it supports a guided wave. The concept of transmission lines has also been generalized to
study three-dimensional guided waves since only the transmission direction is important. The
terms ‘transmission line’ and ‘waveguide’ are used interchangeably.

6.1.1 Transmission Line Equations

The transmission lines are used to transmit microwave signals. They are also used extensively
in microwave circuit designs, such as directional couplers, filters, and power dividers. In the
time domain, the voltage and current along a transmission line, as shown in Figure 6.1, satisfy
the transmission line equations:

∂v(z, t)

∂z
= −Ri(z, t) − L

∂i(z, t)

∂t
,
∂i(z, t)

∂z
= −Gv(z, t) − C

∂v(z, t)

∂t
,

where R, L , G and C are the resistance, inductance, conductance and capacitance per unit
length of the transmission line respectively. For time-harmonic fields, these equations reduce
to

dV

dz
= −I Zunit ,

d I

dz
= −V Yunit , (6.1)

where V and I are phasors, and Zunit = R + jωL and Yunit = G + jωC are the series
impedance and shunt admittance per unit length of the transmission line. From the above
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(a)

(b)

z

v(z,t)

i(z,t)

z + ∆z

C∆zG∆z

i(z,t)

v(z + ∆z,t)

i(z + ∆z,t)

R∆z

L∆z

v(z,t)

Figure 6.1 (a)Transmission line. (b) Equivalent circuit

equations, we obtain

d2V

dz2
− γ 2V = 0,

d2 I

dz2
− γ 2 I = 0. (6.2)

The quantity γ = √
Zunit Yunit = α + jβ is called the propagation constant. The solutions

for the voltage and current can be obtained from (6.1) and (6.2) as

V = V + + V − = Ae−γ z + Beγ z, I = I + − I − = 1

Zc
(Ae−γ z − Beγ z), (6.3)

where V + = Ae−γ z , V − = Beγ z , I + = Ae−γ z/Zc, and I − = Beγ z/Zc are the incident volt-
age wave, the reflected voltage wave, the incident current wave and the reflected current wave
respectively; and

Zc =
√

Zunit

Yunit
= V +

I + = − V −

I −

is called the characteristic impedance. When the time factor is restored, we have

V + = Ae−αze j(ωt−βz),

which stands for a wave moving along the positive z direction with an exponential damping
factor determined by the attenuation constant α. The phase velocity is the speed of points of
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Z
V  ,V –+

+

z = – l

LZ

I +

I –

z = 0

Figure 6.2 Transmission line terminated in a load

constant phase and is given by vp = ω/β. As a result, β = 2π/λ, where λ is the wavelength.
The reflection coefficient � at position z is defined by

� = V −

V + = B

A
e2γ z = �Le2γ z,

where �L = B/A is the reflection coefficient at z = 0 (Figure 6.2), called the load reflection
coefficient. The input impedance at z can be obtained from (6.3)

Z = V

I
= V + + V −

I + − I − = V +

I +
1 + V −/V +

1 − I −/I + = Zc
1 + �

1 − �
= Zc

1 + �Le2γ z

1 − �Le2γ z
. (6.4)

The reflection coefficient is

� = Z − Zc

Z + Zc
. (6.5)

It follows from (6.4) and (6.5) that

Z = Zc
Z L + Zc tanh(−γ z)

Zc + ZL tanh(−γ z)
. (6.6)

For a lossless transmission line, the input impedance at z = −l becomes

Z = Zc
ZL + j Zc tan(βl)

Zc + j ZL tan(βl)
. (6.7)

Example 6.1 For the matched case: ZL = Zc, we have Z = Zc. For the open circuit: ZL = ∞,
we have Z = Zc/j tan βl. For the short circuit: ZL = 0, we have Z = j Zc tan βl. When
l = λ/4, we have Z = Z2

c /ZL , which is called the quarter wavelength transform.

In Section 3.3.1, we showed that the modal voltage and the modal current in a waveguide
satisfy

dVn

dz
= − jβn Zwn In(z),

d In

dz
= − jβnYwn Vn(z). (6.8)
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Here Zwn = 1/Ywn is the wave impedance for the nth mode, and βn and Zwn are given by
(3.67). From (6.8), we obtain

d2Vn

dz2
+ β2

n Vn(z) = 0,
d2 In

dz2
+ β2

n In(z) = 0.

It is easy to see the following correspondences between (6.1) and (6.8):

Zunit ↔ jβn Zwn, Yunit ↔ jβnYwn, Zc ↔ Zwn, γ ↔ jβn.

6.1.2 Signal Propagations in Transmission Lines

Propagation of signals along transmission lines constitutes a vital part of a communication
system. The types of signals handled by a modern communications system can be categorized
either as an analogue signal or a digital signal. The analogue signal is the actual wave-
form that is related to a physical quantity while the digital signal is just pulses of the same
shape.

According to Fourier analysis, any signal can be regarded as the sum of individual sine
waves. After traveling a distance z in the transmission line, an individual sine wave V0 sin ωt
will appear at the other end as V0 exp(−αz) sin ω(t − z/vp), where vp = ω/β is the phase
speed. So the sine wave suffers a change of amplitude determined by the attenuation, and
delay of z/vp. If a signal, which is a sum of sine waves, passes the transmission line, it will
be distorted in general. The distortion will be small if the attenuation does not vary very much
over the frequency range and the phase speed vp is independent of the frequency.

A signal a(t) can be multiplied by a carrier cos ωct to become a double-sided modulated
signal s(t) = a(t) cos ωct . The Fourier transform of the signal s(t) is of the form

s̃(ω) = 1

2
[ã(ω − ωc) + ã(ω + ωc)] ,

where ã(ω) is the Fourier transform of a(t). The inverse transform is

s(t) = 1

2π

∞∫

−∞
s̃(ω)e jωtdω = Re

1

2π

∞∫

0

ã(ω − ωc)e jωt dω.

After traveling a distance z in a lossless transmission line, the modulated signal s(t)
becomes

s(z, t) = Re
1

2π

∞∫

0

ã(ω − ωc)e j(ωt−βz)dω.
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If we assume that a(t) is a narrowband signal whose spectrum is zero outside the range
|ω| > ωm with ωm � ωc, we can expand β as a Taylor series:

β = βc + ωm

(
dβ

dω

)

c

+ ω2
m

2

(
d2β

dω2

)

c

+ · · · ,

where the subscript c denotes that the function is evaluated ω = ωc. If the range of ωm is small
enough, we can make use of the first-order approximation such that

s(z, t) = Re
1

2π

∞∫

0

ã(ω − ωc)e j(ωt−βz)dω

= Re
1

2π
e j(ωct−βc z)

∞∫

0

ã(ω − ωc)e j(ω−ωc)[t−z(dβ/dω)c]dω

= a

[

t − z

(
dβ

dω

)

c

]

cos(ωct − βcz).

The term ωct − zβc represents the phase-shifted carrier. After demodulation, we obtain the
output a[t − z(dβ/dω)c]. Thus, each frequency component of the demodulated signal is
delayed by the same amount. This delay is called group delay and is given by τ = z(dβ/dω)c.
The group speed is the velocity with which the envelope of the signal composed of a group
of frequency components propagates (see Section 1.4). So the group speed is given by vg =
(dω/dβ)c. If the phase speed is constant so that ω = vpβ, the group speed vg is equal to the
phase speed vp.

6.2 Scattering Parameters for General Circuits

When the voltages and currents are defined at the reference planes of a microwave circuit,
relations exist between the voltages and currents. For a linear microwave circuit, these relations
are characterized by impedance or admittance matrices. In microwave engineering, the concept
of power is more fundamental than the concepts of voltage and current since the latter are
not easily measurable at microwave frequencies. For this reason, the scattering parameters are
often introduced and are defined in such a way that the power relationship in the circuit can
be expressed in a simple and straightforward manner. Scattering parameters originated in the
theory of transmission lines and exist for all linear passive time-invariant systems.

6.2.1 One-Port Network

Let us consider a one-port network with input impedance Z as shown in Figure 6.3. The
one-port network is connected to a voltage source Vs with source impedance Zs . The incident
voltage and the incident current are defined as the terminal voltage and current when the
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I

sV

Z
sZ

V

Figure 6.3 A one-port network

one-port network is conjugately matched to the source (that is, Z = Z̄s):

V + = Vs Z̄s

Zs + Z̄s
= Vs Z̄s

2ReZs
, I + = Vs

Zs + Z̄s
= Vs

2ReZs
.

So we have V + = Z̄s I +. In this case, the load Z receives the maximum available power,
denoted Pa , from the source

Pa = 1

2
Re(V Ī ) = |Vs |2

8Re(Zs)
=

∣
∣V +∣

∣
2

Re(Zs)

2
∣
∣Z̄s

∣
∣
2 .

The incident voltage and current are determined by the source only. The source impedance
Zs is called the reference impedance of the network. In general, the input impedance Z may
not be conjugately matched to the source. The reflected voltage and the reflected current are
then defined by

V − = V − V +, − I − = I − I +.

The minus sign in front of I − implies that the reference direction of I − is opposite the reference
direction of I + (see Figure 6.2). The normalized incident voltage wave a and the normalized
reflected voltage wave b are defined by

a = V +√
ReZs

Z̄s
, b = V −√

ReZs

Zs
,

which can also be expressed as

a = I +√

ReZs, b = I −√

ReZs .

The terminal voltage and current are thus given by

V = V + + V − = 1√
ReZs

(Z̄sa + Zsb),

I = I+ − I − = 1√
ReZs

(a − b),
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from which we obtain

a = V + Zs I

2
√

ReZs
, b = V − Z̄s I

2
√

ReZs
.

The voltage reflection coefficient and current reflection coefficient are

�V = V −

V + = Zs(Z − Z̄s)

Z̄s(Z + Z̄s)
, � I = I −

I + = Z − Z̄s

Z + Z̄s
.

In general �V is not equal to � I . In microwave engineering, the reference impedance Zs is
usually assumed to be real, and so we have �V = � I . The ratio of the normalized reflection
wave and the normalized incident wave is the reflection coefficient

� = b

a
= Z − Z̄s

Z + Z̄s
= � I .

6.2.2 Multi-Port Network

For an n-port network with port number i = 1, 2, · · · , n shown in Figure 6.4, we may introduce
the normalized incident wave and reflected wave at each port:

ai = Vi + Zsi Ii

2
√

ReZsi
, bi = Vi − Z̄si Ii

2
√

ReZsi
. (6.9)

For a linear network, the normalized reflected wave must be linearly related to the normalized
incident wave:

[b] = [S][a], (6.10)

nI

nV

snZ

snV

1I

1V

s1Z

s1V

n-port
network

Figure 6.4 n-port network
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where

[b] =

⎡

⎢
⎢
⎢
⎣

b1

b2
...

bn

⎤

⎥
⎥
⎥
⎦

, [a] =

⎡

⎢
⎢
⎢
⎣

a1

a2
...

an

⎤

⎥
⎥
⎥
⎦

, [S] =

⎡

⎢
⎢
⎢
⎣

S11 S12 · · · S1n

S21 S22 · · · S2n
...

...
. . .

...
Sn1 Sn2 · · · Snn

⎤

⎥
⎥
⎥
⎦

and Si j (i, j = 1, 2, · · · , n) are called scattering parameters. From (6.10), we obtain

Sii = bi

ai

∣
∣
∣
∣
al =0,l �=i

, Si j = bi

a j

∣
∣
∣
∣
al =0,l �= j

.

Remark 6.1: For an n-port microwave network, the reference plane of each port is assumed
to be in the single-mode region of the transmission line with real characteristic impedance
Zci (i = 1, 2, · · · , n). In this case, the normalized incident wave and reflected wave at each
port are defined by

ai = Vi + Zci Ii

2
√

Zci
, bi = Vi − Zci Ii

2
√

Zci
. (6.11)

Thus,

Vi =
√

Zci (ai + bi ), Ii = 1√
Zci

(ai − bi ). (6.12)

The normalized incident wave and reflected wave defined by (6.9) are a generalized version
of (6.11) for an arbitrary circuit.

Example 6.2 (Lossless condition): Consider an n-port network, the power delivered to the
network is

P = 1

2
Re[V ]T [ Ī ] = 1

2
([a]T [ā] − [b]T [b̄]) = 1

2
[a]T ([1] − [S]T [S̄])[ā].

If the network is lossless, then P = 0. This gives the lossless condition

[1] − [S]T [S̄] = 0, (6.13)

where [1] denotes the identity matrix.

Example 6.3 (Power gain): Consider a two-port network shown in Figure 6.5. The input
reflection coefficient is

�in = b1

a1
= S11 + S12S21�

L

1 − S22�L
, (6.14)
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2I

2V LZ

1I

1V
s1Z

s1V
Two-port network

inP LP

Figure 6.5 Two-port network

where �L = a2/b2 is the reflection coefficient of the load. The output reflection coefficient is

�out = b2

a2
= S22 + S12S21�

S

1 − S11�S
, (6.15)

where �S = a1/b1 is the reflection coefficient of the source. The input power to the network
is

Pin = 1

2
ReV1 Ī1 = 1

2
(|a1|2 − |b1|2) = 1

2
|a1|2 (1 − ∣

∣�in
∣
∣
2
).

The power absorbed by the load ZL is

P L = −1

2
ReV2 Ī2 = 1

2
(|b2|2 − |a2|2) = 1

2
|b2|2 (1 − ∣

∣�L
∣
∣
2
).

The power gain is defined as the ratio of P L over Pin:

G P = P L

Pin
=

1
2 |b2|2 (1 − ∣

∣�L
∣
∣
2
)

1
2 |a1|2 (1 − ∣

∣�in
∣
∣
2
)

=
∣
∣
∣
∣

S21

1 − S22�L

∣
∣
∣
∣

2 1 − ∣
∣�L

∣
∣
2

1 − ∣
∣�in

∣
∣
2 . (6.16)

6.3 Waveguide Junctions

Major advances of microwave network theory were made during World War II by a number
of scientists, among whom the American physicists Schelkunoff, Julian Seymour Schwinger
(1918–1994) and Nathan Marcuvitz played an important role. The main research topic of the
microwave network theory was the representation of waveguide discontinuities by lumped
circuit elements or network parameters. In most applications, the waveguide supports a single
dominant propagating mode. When a discontinuity exists, such as discontinuity in cross-
sectional shape or an obstacle in the waveguide, an infinite number of non-propagating modes
will be excited in the vicinity of the discontinuity by the incident dominant propagating mode.
A typical n-port waveguide discontinuity is shown in Figure 6.6 (a), which consists of n
uniform waveguides and a discontinuity (a junction). The reference planes T1, T2, · · · , and Tn
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(a) (b)

1T

2T

nT

n-port
network

1T

2T

nT

Figure 6.6 (a) Waveguide junction. (b) Equivalent circuit

are assumed to be far away from the discontinuity so that only the dominant modes exist at
the reference planes.

The modal voltage V and the modal current I at a reference plane are proportional to
the transverse electric field and transverse magnetic field in the waveguide respectively. The
uniqueness theorem indicates that the modal voltages at the reference planes V1, V2, · · · , Vn

can be determined by the modal currents I1, I2, · · · , In at the reference planes. If the medium
is linear, the modal voltages and currents are linearly related. So we may write

[V ] = [Z ][I ], (6.17)

where

[V ] =

⎡

⎢
⎢
⎢
⎣

V1

V2
...

Vn

⎤

⎥
⎥
⎥
⎦

, [I ] =

⎡

⎢
⎢
⎢
⎣

I1

I2
...
In

⎤

⎥
⎥
⎥
⎦

, [Z ] =

⎡

⎢
⎢
⎢
⎣

Z11 Z12 · · · Z1n

Z21 Z22 · · · Z2n
...

...
. . .

...
Zn1 Zn2 · · · Znn

⎤

⎥
⎥
⎥
⎦

,

and Zi j (i, j = 1, 2, · · · , n) are called impedance parameters. It follows from (6.17) that

Zii = Vi

Ii

∣
∣
∣
∣

Il =0,l �=i

, Zi j = Vi

I j

∣
∣
∣
∣

Il =0,l �= j

.

Hence the impedance parameters are also called open circuit parameters. If the power delivered
into the network, denoted P , is zero:

P = 1

4
[I ]T [Z T + Z̄ ][ Ī ] = 0,
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(a)

(b)

T T

11 12

21 22

Z Z

Z Z

0Ω

T

z = 0

Figure 6.7 (a) A waveguide discontinuity. (b) Equivalent circuit

the network is lossless and satisfies the lossless condition

[Z T + Z̄ ] = 0. (6.18)

To determine the network parameters, the field distribution in the waveguide junction must
be known. There are a number of analytical methods, which can be applied to solve the
waveguide junction problems (for example, Collin, 1991; Schwinger and Saxon, 1968; Lewin,
1951). The variational method is the most commonly used one that can handle a large variety
of discontinuity problems.

Example 6.4 Consider a waveguide junction with an arbitrarily shaped thin iris placed at z = 0
in a uniform waveguide, as shown in Figure 6.7 (a). Only the dominant mode is assumed to
be propagating and all higher-order modes are evanescent. If the dominant mode of unit
amplitude is incident from the left of the iris, a number of higher-order modes will be excited.
The transverse electromagnetic fields in the region z < 0 may be expanded in terms of the
complete orthonormal set {en} in the waveguide (see (3.71)):

E−
t = (e− jβ1z + �e jβ1z)e1 +

∞∑

n=2
Vne jβn zen,

H−
t = (e− jβ1z − �e jβ1z)Z−1

w1uz × e1 −
∞∑

n=2
Vn Z−1

wne jβn zuz × en,

where Vn are the modal voltages; � is the reflection coefficient for the dominant mode at
z = 0; and βn and Zwn are given by (3.69). Similarly the fields in the region z > 0 have the
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(a)

(b)

12Z

T T

12Z

T T11 12Z – Z

Figure 6.8 Equivalent circuits for the waveguide discontinuity

following expansions

E+
t = V ′

1e− jβ ′
1ze1 +

∞∑

n=2
en V ′

ne− jβ ′
n z,

H+
t = V ′

1e− jβ ′
1z Z−1

w1uz × e1 +
∞∑

n=2
uz × en V ′

n Z−1
wne− jβ ′

n z .

The tangential electric field must be continuous at z = 0. Thus

1 + � = V ′
1 =

∫


0

Et (0) · e1d
, Vn = V ′
n =

∫


0

Et (0) · end
, (n ≥ 2), (6.19)

where 
0 is the aperture at z = 0. Considering the symmetry property of the structure and that
the tangential electric field must be continuous at z = 0, we have Z11 = Z22 and the equivalent
circuit shown in Figure 6.7 (b) can be simplified to a T-type circuit shown in Figure 6.8 (a).
The first expression of (6.19) indicates that the two terminal voltages of the equivalent circuit
are equal, which implies Z11 = Z12, and the final equivalent circuit is shown in Figure 6.8 (b).
Note that the tangential magnetic field must also be continuous at the aperture:

(1 − �)Z−1
w1uz × e1 −

∞
∑

n=2

uz × en Vn Z−1
wn = V ′

1 Z−1
w1uz × e1 +

∞
∑

n=2

uz × en V ′
n Z−1

wn .

Substitution of (6.19) into the above equation gives

e1 = e1

∫


0

Et (0) · e1d
 +
∞

∑

n=2

en Zw1 Z−1
wn

∫


0

Et (0) · end
, in
0. (6.20)
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This is an integral equation that can be used to determine the aperture field Et (0). The input
admittance is given by

Y = 1

Zw1
+ 1

Z12
= 1

Zw1

1 − �

1 + �
.

Thus, it follows from the first equation of (6.19) that

1

Z12
= 1

Zw1

−2�

1 + �
= 1

Zw1

2

⎛

⎝1 −
∫


0

Et (0) · e1d


⎞

⎠

∫


0

Et (0) · e1d


. (6.21)

Multiplying both sides of (6.20) by Ēt (0) and taking the integration over 
0, we have

1 −
∫


0

Et (0) · e1d
 =

∞∑

n=2
en Zw1 Z−1

wn

∣
∣
∣
∣
∣
∣

∫


0

Et (0) · end


∣
∣
∣
∣
∣
∣

2

∫


0

Ēt (0) · e1d


.

Substituting this into (6.21) gives

1

Z12
= 1

Zw1

−2�

1 + �
= 1

Zw1

2
∞∑

n=2
en Zw1 Z−1

wn

∣
∣
∣
∣
∣
∣

∫


0

Et (0) · end


∣
∣
∣
∣
∣
∣

2

∣
∣
∣
∣
∣
∣

∫


0

Et (0) · e1d


∣
∣
∣
∣
∣
∣

2 . (6.22)

This is a variational expression, whose functional derivative with respect to the aperture electric
field Et (0) is zero (Kurokawa, 1969).

6.4 Multiple Antenna System

A multiple antenna system is different from a waveguide junction. The former is an open
system whose energy occupies the whole free space, while the latter is a closed system whose
energy is confined in a finite region. From the viewpoint of the network theory, a multiple
antenna system is also equivalent to a multi-port microwave network, and its parameters can
be determined by solving the Maxwell equations subject to boundary conditions.

6.4.1 Impedance Matrix

Consider a system consisting of n antennas contained in a region V∞ bounded by S∞. Let
the fields generated by antenna i (i = 1, 2, · · · , n) when antenna j ( j �= i) are receiving be
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denoted by Ei and Hi . We use V (i)
0 to denote the source region for antenna i . The source

region is chosen in such a way that its boundary, denoted by ∂V (i)
0 , is coincident with the

metal surface of the antennas except for a portion 
(i) where the boundary crosses the antenna
reference plane. This state of operation is illustrated in Figure 6.9 (a). Figure 6.9 (b) is the
corresponding equivalent network representation. Taking the integration of Poynting theorem

in frequency domain and using the divergence theorem over the region V∞ −
n∑

l=1
V (l)

0 with

medium parameters σ , µ, and ε, as shown in Figure 6.9 (a), we have

1

2

∫

S∞

(Ei × H̄i ) · und S + 1

2

∫

n∑

l=1
∂V (l)

0

(Ei × H̄i ) · und S

= − j2ω
∫

V∞−
n∑

l=1
V (l)

0

(wmi − wei )dV − 1

2

∫

V∞−
n∑

l=1
V (l)

0

σEi · Ēi dV ,

(6.23)

(a)

(b)

(i)
lV

(i)
LlZ

(i)
lI

(i)
nI

(i)
nV

(i) (i)
11 12

=

1n1 1
(i) (i)

21 22 2n2 2

(i) (i)
n1 n2 nnn n

Z Z ZV I

Z Z ZV I

Z Z ZV I…

…
…

…

… … … ……

(i)
LnZ

(i)
iI

(i)
iV

siV

(i)
siZ

nu S

Scatterers

nu

iT

V ∞∞

(i)
0V

iJ

(i)
0V

Antenna i Antenna n
,, εµσ

(i)Ω

∂

Figure 6.9 (a) Multiple antenna system. (b) Equivalent circuit
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where wmi = µHi · H̄i/4 and wei = εEi · Ēi/4 are the magnetic and electric energy densities

respectively; un is the unit outward normal on the surface enclosing the region V∞ −
n∑

l=1
V (l)

0 ,

as shown in Figure 6.9. If the antenna surface is perfectly conducting, Ei × H̄i vanishes
everywhere on ∂V (i)

0 except over the antenna input terminal 
(i). For the single-mode feeding
waveguides, we have

∫

∂V (l)
0

(Ei × H̄i ) · und S = −V (i)
l Ī (i)

l , l = 1, 2, · · · , n. (6.24)

In deriving the above equations, the following relations have been used

Ei (r) = V (i)
l e1l (x, y), Hi (r) = I (i)

l uz × e1l (x, y), (6.25)

where e1l denotes the vector modal function of the dominant mode in the feeding waveguide
of antenna l, and V (i)

l and I (i)
l represent the modal voltage and modal current at the reference

plane of antenna l when antenna i is transmitting and other antennas are receiving. Introducing
(6.24) into (6.23), we obtain

1

2
V (i)

i Ī (i)
i + 1

2

n
∑

l=1,l �=i

V (i)
l Ī (i)

l

= 1

2

∫

S∞

(Ei × H̄i ) · und S + 1

2

∫

V∞−
n∑

l=1
V (l)

0

σEi · Ēi dV + j2ω

∫

V∞−
n∑

l=1
V (l)

0

(wmi − wei )dV .

(6.26)

If all other antennas l(l �= i) are in an open-circuit state while antenna i is transmitting, that
is, I (i)

l = 0 for l �= i , the self-impedance can be expressed as

Zii = V (i)
i

I (i)
i

∣
∣
∣

I (i)
l =0,l �=i

= 1
∣
∣
∣I (i)

i

∣
∣
∣

2

∫

S∞

(Ei × H̄i ) · und S

+ 1
∣
∣
∣I (i)

i

∣
∣
∣

2

∫

V∞−
n∑

l=1
V (l)

0

σEi · Ēi dV + j4ω
∣
∣
∣I (i)

i

∣
∣
∣

2

∫

V∞−
n∑

l=1
V (l)

0

(wmi − wei )dV
(6.27)

from (6.26). Note that the fields Ei , Hi in (6.27) are calculated with antenna i transmitting
while the rest remain open. To calculate the mutual impedance Zi j , we may use the frequency-
domain reciprocity theorem

∫

S

(Ei × H j − E j × Hi ) · und S = 0, (6.28)
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where S is an arbitrary closed surface that does not contain any impressed sources and un is

the outward unit normal. Choosing S = S∞ +
n∑

l=1
∂V (l)

0 in (6.28) yields

n
∑

l=1

∫

∂V (l)
0

(Ei × H j − E j × Hi ) · und S +
∫

S∞

(Ei × H j − E j × Hi ) · und S

(6.29)

=
n

∑

l=1

[

V ( j)
l I (i)

l − V (i)
l I ( j)

l

]

= 0,

where (6.25) has been used. This is the well-known reciprocity theorem in network theory.
If we assume that all other antennas are in the state of open circuit when antenna i (or j) is
transmitting, the above equation reduces to V ( j)

i I (i)
i = V (i)

j I ( j)
j , or

Zi j = V ( j)
i

I ( j)
j

∣
∣
∣
∣
∣

I ( j)
l =0,l �= j

= V (i)
j

I (i)
i

∣
∣
∣
∣
∣

I (i)
l =0,l �=i

= Z ji . (6.30)

Therefore the impedance matrix is symmetric. To express Zi j in terms of the field quantities,
we may choose S = S′

i + ∂V (i)
0 in (6.28), where S′

i is a closed surface containing antenna i
only. Then

∫

∂V (i)
0

(Ei × H j − E j × Hi ) · und S +
∫

S′
i

(Ei × H j − E j × Hi ) · und S = 0.

This implies

V (i)
i I ( j)

i − V ( j)
i I (i)

i =
∫

S′
i

(Ei × H j − E j × Hi ) · und S. (6.31)

Similarly,

V ( j)
j I (i)

j − V (i)
j I ( j)

j =
∫

S′
j

(E j × Hi − Ei × H j ) · und S, (6.32)

where S′
j is a closed surface containing antenna j only. The right-hand sides of (6.31) and

(6.32) can be shown to be equal by choosing S = S′
i + S′

j +
n∑

l=1,l �=i, j
∂V (l)

0 + S∞ in (6.28).
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When antenna i (or j) is transmitting with all other antennas being open, we have

V ( j)
i I (i)

i = −
∫

S′
i

(Ei × H j − E j × Hi ) · und S

(6.33)

= −
∫

S′
j

(E j × Hi − Ei × H j ) · und S = V (i)
j I ( j)

j .

By definition, the mutual impedance of the two-antenna system can be written as

Zi j = V ( j)
i

I ( j)
j

∣
∣
∣
∣
∣

I ( j)
l =0,l �= j

= −

∫

S′
i

(Ei × H j − E j × Hi ) · und S

I (i)
i I ( j)

j

= −

∫

V (i)
0

Ji · E j dV

I (i)
i I ( j)

j

, (6.34)

where use is made of the following reciprocity theorem

∫

V ( j)
0

J j · Ei dV =
∫

S′
j

(E j × Hi − Ei × H j ) · und S

(6.35)

=
∫

S′
i

(Ei × H j − E j × Hi ) · und S =
∫

V (i)
0

Ji · E j dV

Equation (6.34) may be regarded as an exact expression of Huygens’ principle in a symmetrical
form, and it is generally applicable to an inhomogeneous medium.

6.4.2 Scattering Matrix

Let Zsl be the reference impedance for the input terminal of antenna l. Introducing

V (i)
l = Z̄sl√

ReZsl
a(i)

l + Zsl√
ReZsl

b(i)
l , I (i)

l = 1√
ReZsl

a(i)
l − 1√

ReZsl
b(i)

l (6.36)

into (6.29), we obtain

n
∑

l=1

[

a(i)
l b( j)

l − a( j)
l b(i)

l

]

= 0. (6.37)

If we assume that all other antennas are matched when antenna i (or j) is transmitting, Equation
(6.37) reduces to a(i)

i b( j)
i = a( j)

j b(i)
j , which gives the symmetric property of scattering matrix

Si j = b( j)
i

a( j)
j

∣
∣
∣
∣
∣
a( j)

l =0,l �= j

= b(i)
j

a(i)
i

∣
∣
∣
∣
∣
a(i)

l =0,l �=i

= Sji .
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In terms of incident and reflected power waves, Equations (6.31) and (6.32) can be written as

b(i)
i a( j)

i − b( j)
i a(i)

i = 1

2

∫

S′
i

(Ei × H j − E j × Hi ) · und S, (6.38)

b( j)
j a(i)

j − b(i)
j a( j)

j = 1

2

∫

S′
j

(E j × Hi − Ei × H j ) · und S. (6.39)

If all other antennas are matched when antenna i (or j) is transmitting, it follows from (6.35)
that

Si j = b( j)
i

a( j)
j

∣
∣
∣
∣
∣
a( j)

l =0,l �= j

= − 1

2a(i)
i a( j)

j

∫

S′
i

(Ei × H j − E j × Hi ) · und S

(6.40)

= − 1

2a(i)
i a( j)

j

∫

V (i)
0

Ji · E j dV .

6.4.3 Antenna System with Large Separations

So far the separations between antennas are arbitrary. We now assume that the antennas are
located in the far field region of each other. Determining the fields Ei and Hi produced by
the antenna i with antennas j( j �= i) in place is not an easy task. Therefore, the following
simplification is made: the calculation of fields Ei and Hi is carried out with the antennas j
( j �= i) removed. Physically, this assumption is equivalent to neglecting the reflections between
the antennas. To derive the expressions of the impedance parameters Zi j when the antenna i
and antenna j are far apart, two different coordinate systems for antenna i and antenna j may
be used. The origins of the coordinate systems are chosen to be the geometrical center of the
current distributions and the separation between antenna i and antenna j satisfies kr j 	 1,
r j 	 2a j , r j 	 2ai where r j = ∣

∣r j

∣
∣ is the distance between antenna j and an arbitrary point

of the circumscribing sphere (denoted by S′
i ) of antenna i , as shown in Figure 6.10. Let r′

i be
the arbitrary point chosen on the circumscribing sphere of antenna i , and ri, j = ri, j uri, j , where
ri, j is the distance between the two origins and uri, j is a unit vector directed from antenna
i to antenna j . Thus the far field of antenna j at antenna i can be expressed as (see (4.7)
and (4.8))

E j (r j ) ≈ − jkηI ( j)
j e− jkr j

4πr j
L j (ur j ), H j (r j ) ≈ 1

η
ur j × E j (r j ), (6.41)

where r j = r′
i − ri, j is assumed to be a point on the sphere S′

i and

L j (ur j ) = 1

I ( j)
j

∫

V ( j)
0

[

J j − (J j · ur j )ur j

]

e jkr′
j ·ur j dV (r′

j )
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Figure 6.10 Coupling between two distant antennas

is the antenna’s effective vector length. Since r′
i is very small compared to ri, j in magnitude, we

can make the approximation r j = ∣
∣r′

i − ri, j

∣
∣ ≈ ri, j − uri, j · r′

i . The field E j in the coordinate
system Oi can then be represented by

E j (r j ) ≈ − jkηI ( j)
j e− jkri, j e jkuri, j ·r′

i

4πri, j
L j (−uri, j ),

H j (r j ) ≈ −1

η
uri, j × E j (r j ).

(6.42)

Then

∫

S′
i

(Ei × H j − E j × Hi ) · und S =
∫

S′
i

[−η−1Ei × (uri, j × E j ) − E j × Hi
] · und S

=
∫

S′
i

E j · [−η−1uri, j × (Ei × un) − Hi × un
]

d S =
∫

S′
i

E j · (Jis − η−1uri, j × Jims)d S,

(6.43)

where Jis = un × Hi , Jims = −un × Ei are the equivalent electric current and magnetic cur-
rent on the surface S′

i respectively. Substituting (6.42) into (6.43), we obtain

∫

S′
i

(Ei × H j − E j × Hi ) · und S ≈ −4πri, j e jkri, j

jkη
Ei (uri, j ) · E j (−uri, j )

= − jkηI (i)
i I ( j)

j e− jkri, j

4πri, j
Li (uri, j ) · L j (−uri, j ).

(6.44)
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Here we have used the far field expression of antenna i at antenna j

Ei (ri, j ) = − jkηe− jkri, j

4πri, j

∫

S′
i

e jkuri, j ·ri
[

Jis(r′
i ) − uri, j × η−1Jims(r′

i )
]

d S

(6.45)

= − jkηI (i)
i e− jkri, j

4πri, j
Li (uri, j ).

It follows from (6.44) that the mutual impedance Zi j is given by

Zi j = V ( j)
i

I ( j)
j

∣
∣
∣
∣
∣

I ( j)
i =0

= jkηe− jkri, j

4πri, j
Li (uri, j ) · L j (−uri, j ).

If the antennas are far apart, the self-impedance Zii is approximately equal to the input
impedance of the antenna i when it is isolated (denoted by Zi ), and (6.27) reduces to

Zii = V (i)
i

I (i)
i

∣
∣
∣
∣
∣

I (i)
j =0, j �=i

≈ Zi . (6.46)

The above simplification is valid for a multiple antenna system with large separation. If the
transmitting performance of antenna i (assuming only antenna i is transmitting) is the major
concern, the influence on antenna i due to antenna j ( j �= i) is negligible. However, if we
are interested in the receiving performance of antenna j , the coupling from the transmitting
antenna i to the receiving antenna j cannot be ignored. It is through this coupling that the
receiving antenna collects electromagnetic energy from the transmitting antenna.

The scattering parameters for the multiple antenna system with large separation can be
simplified in a similar manner and they are

Si j ≈ jkηI (i)
i I ( j)

j e− jkri, j

8πri, j a
(i)
i a( j)

j

Li (uri, j ) · L j (−uri, j )

(6.47)

= jkηe− jkri, j

8πri, j

(1 − �
(i)
i )(1 − �

( j)
j )√

ReZsi
√

ReZsj
Li (uri, j ) · L j (−uri, j ),

where �
( j)
j is the reflection coefficient at the reference plane of antenna j .

Example 6.5 (Coupling between two small dipoles): A small two-dipole system is shown in
Figure 6.11. The two dipoles are assumed to be identical and are located in the far field region
of each other and separated by r1,2. The radius of the dipoles is a0 and their length is 2a. The
current distributions on the dipole surface may be assumed to be

Ji (r) = uzi

I (i)
i

2πa0

(

1 − |zi |
a

)

, − a < zi < a, i = 1, 2.
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,εµ
1z 2z

2θ1θ
2y

2x
1y

1x

Dipole 1 Dipole 2

Figure 6.11 Two-dipole system

From the far field expressions, the vector effective lengths for dipole 1 and 2 can easily be
found as

L1(ur1,2 ) = −uθ1 (ur1,2 )a sin θ1(ur1,2 ),

L2(−ur1,2 ) = −uθ2 (−ur1,2 )a sin θ2(−ur1,2 ),

and the mutual impedance is then given by

Z12 = jkηa2e− jkr1,2

4πr1,2
sin θ1(ur1,2 ) sin θ2(−ur1,2 )uθ1 (ur1,2 ) · uθ2 (−ur1,2 ).

If dipole 1 and 2 are perpendicular or collinear, the mutual impedance is zero. The coupling is
maximized when the two dipoles are placed in parallel.

Example 6.6 (Coupling between two small loop antennas): Consider two identical circular
small loop antennas, separated by a distance r1,2 and located in the far field region of each
other as shown in Figure 6.12. The radius of the loop is assumed to be a and the radius of the
wire is a0. Since the loop is very small, the current density on the loop can be assumed to be
constant:

Ji (r) = uϕi

I (i)
i

2πa0
, i = 1, 2,

where ϕi is the polar angle in (xi , yi )-plane. The vector effective lengths for loop 1 and 2 are
easily found to be

L1(ur1,2 ) = jkπa2uϕ1 (ur1,2 ) sin θ1(ur1,2 ),

L2(−ur1,2 ) = jkπa2uϕ2 (−ur1,2 ) sin θ2(−ur1,2 )

and the mutual impedance is

Z12 = − jηk3πa4e− jkr1,2

4r1,2
sin θ1(ur1,2 ) sin θ2(−ur1,2 )uφ1 (ur1,2 ) · uφ2 (−ur1,2 ).
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1z
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2z
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θ θ

Figure 6.12 Two-loop system

If the two loops are perpendicular or placed face to face the coupling is zero. The coupling is
maximized when the two loops lie in the same plane.

6.5 Power Transmission Between Antennas

The wireless power transmission may be considered as a three-step process. The first step is
to convert direct-current power into radio-frequency power; the second step is to transmit the
radio-frequency power to some distant point; the third step is to collect the radio-frequency
power and convert it back to direct-current power at the receiving point. The last step is often
accomplished by a rectenna, which is an antenna combined with a rectifier.

Wireless power transmission has been a research topic for years. Many applications can
benefit from the research, such as microwave imaging, radar and directed energy weapons.
The basic theory for the power transmission between two antennas was investigated in 1960s
(Goubao and Schwinger, 1961; Kay, 1960; Sherman, 1962; Borgiotti, 1966), and it has found
wide applications in many fields (Brown, 1984). Theoretically, power transmission efficiency
of almost 100% is attainable by increasing the sizes of the antennas. For a given power
transmission efficiency over a given distance between the transmitting and receiving antenna,
there exists an optimum antenna aperture distribution which can minimize the transmitting
and receiving aperture sizes. To achieve the maximum transmission efficiency, the transmitting
antenna must be focused at the receiving antenna. In other words, the radiated electromagnetic
energy must be focused in the vicinity of the axis of the transmitting and receiving antenna
apertures as it propagates.

6.5.1 Universal Power Transmission Formula

Let us consider the power transmission between antenna i and antenna j ( j �= i) when antenna
i is transmitting and antenna j is receiving. It follows from Figure 6.9 (b) that

V (i)
i = Z (i)

i I (i)
i , V ( j)

i = −I ( j)
i Z ( j)

Li ,

V ( j)
j = Z ( j)

j I ( j)
j , V (i)

j = −I (i)
j Z (i)

L j .

(6.48)
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Here Z (i)
i is the input impedance of antenna i when antenna i is transmitting and all other

antennas are receiving. Substituting (6.48) into (6.33), we obtain

I ( j)
j I (i)

j (Z ( j)
j + Z (i)

L j ) =
∫

S′
i orS′

j

(Ei × H j − E j × Hi ) · und S

(6.49)
= I (i)

i I ( j)
i (Z (i)

i + Z ( j)
Li ).

Multiplying (6.49) by its conjugate, we obtain

∣
∣
∣I ( j)

j

∣
∣
∣

2 ∣
∣
∣I (i)

j

∣
∣
∣

2 ∣
∣
∣Z ( j)

j + Z (i)
L j

∣
∣
∣

2
=

∣
∣
∣
∣
∣
∣
∣

∫

S′
i orS′

ji

(Ei × H j − E j × Hi ) · und S

∣
∣
∣
∣
∣
∣
∣

2

(6.50)

=
∣
∣
∣I (i)

i

∣
∣
∣

2 ∣
∣
∣I ( j)

i

∣
∣
∣

2 ∣
∣
∣Z (i)

i + Z ( j)
Li

∣
∣
∣

2
.

If the antenna i and antenna j are conjugately matched, that is

Z̄ ( j)
j = Z (i)

L j , Z̄ (i)
i = Z ( j)

Li ,

Equation (6.50) can be written as

1

2

∣
∣
∣I (i)

j

∣
∣
∣

2
ReZ (i)

L j

1

2

∣
∣
∣I (i)

i

∣
∣
∣

2
ReZ (i)

i

=

∣
∣
∣
∣
∣
∣
∣

∫

S′
i orS′

ji

(Ei × H j − E j × Hi ) · und S

∣
∣
∣
∣
∣
∣
∣

2

4
∣
∣
∣I (i)

i

∣
∣
∣

2
ReZ (i)

i

∣
∣
∣I ( j)

j

∣
∣
∣

2
ReZ (i)

j

=
1

2

∣
∣
∣I ( j)

i

∣
∣
∣

2
ReZ ( j)

Li

1

2

∣
∣
∣I ( j)

j

∣
∣
∣

2
ReZ ( j)

j

. (6.51)

This implies

Ti j = P (i)
j

P (i)
i

=

∣
∣
∣
∣
∣
∣
∣

∫

S′
i orS′

j

(Ei × H j − E j × Hi ) · und S

∣
∣
∣
∣
∣
∣
∣

2

4Re
∫

S′
i

(Ei × H̄i ) · und SRe
∫

S′
j

(E j × H̄ j ) · und S
= P ( j)

i

P ( j)
j

= Tji , (6.52)

where P (i)
i is the transmit power of antenna i when all other antennas are receiving and P(i)

j is
the power received by antenna j when antenna i is transmitting. Equation (6.52) indicates that
the ratio of the power received by antenna j to the transmitting power of antenna i (known
as the power transmission efficiency, denoted Ti j ) is equal to the ratio of the power received
by antenna i to the transmitting power of antenna j (denoted Tji ). It also indicates that the
radiation pattern of the antenna for reception is identical with that for transmission. Equation
(6.52) is the theoretical foundation for the wireless power transmission in free space, and is
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the starting point for optimizing the aperture distribution to achieve the maximum possible
power transmission efficiency. Evidently the power transmission efficiency is maximized if

Ei = Ē j , Hi = −H̄ j (6.53)

hold on some closed surface that encloses either antenna i or j . If the separation between
antenna i and j is large enough, we may use (6.44) to obtain

∣
∣
∣
∣
∣
∣
∣

∫

S′
i orS′

j

(Ei × H j − E j × Hi ) · und S

∣
∣
∣
∣
∣
∣
∣

2

≈ (4πri, j )2

η2k2

∣
∣Ei (ri, j ) · E j (−ri, j )

∣
∣
2

=
(

4λ

ri, j

)2

Ui (uri, j )U j (−uri, j ) cos θi j , (6.54)

where Ui and U j are the radiation intensity of antenna i and j respectively, and θi j is the angle
between Ei (ri, j ) and E j (−ri, j ). Substituting (6.54) into (6.52), we obtain the well-known Friis
transmission formula

P (i)
j

P (i)
i

=
(

λ

4πri, j

)2 4πUi (uri, j )4πU j (−uri, j ) cos θi j

1

2
Re

∫

S′
i

(Ei × H̄i ) · und S
1

2
Re

∫

S′
j

(E j × H̄ j ) · und S

=
(

λ

4πri, j

)2

Gi (uri, j )G j (−uri, j ) cos θi j , (6.55)

where Gi and G j are the gains of the antenna i and antenna j respectively. For a two-antenna
system, Equation (6.55) may be written as

P (1)
2 = EIRP

Ls
G2(−ur1,2 ) cos θ12, (6.56)

where Ls = (4πr1,2/λ)2 is known as free-space path loss, and EIRP stands for the effective
isotropic radiated power defined by EIRP = P (1)

1 G1(ur1,2 ). The received isotropic power is
defined as EIRP/Ls , which is the power received by an isotropic antenna (G2 = 1).

Remark 6.2: In a wireless communication system, channel impairments are caused by several
mechanisms, which are path loss, blockage, fast fading (multi-path effect), shadowing, random
frequency modulation (relative motion of transmitter and receiver) and delay spread (multiple
signals arrive with a slight additional delay which spreads the received signal and causes each
symbol to overlap with proceeding and following symbols, producing inter-symbol interfer-
ence). As a result, the propagation losses can be significantly higher than the free-space path
loss. In practice, the path loss (called propagation model) for both indoor and outdoor appli-
cations should be modified as Ls = (4πr1,2/λ)2 × correction factors. The correction factors
depend on the propagation environments and are usually based on measured data. Therefore,
many propagation models are of semi-empirical type. The predictions from these models may
have a large deviation from the actually measured data.
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Figure 6.13 Two-planar aperture system

6.5.2 Power Transmission Between two Planar Apertures

If a two-antenna system is used to transmit electric power, the antenna geometries and their
current distributions should be chosen properly in order that the electromagnetic power de-
livered from one antenna to the other is maximized. Let us consider the maximum power
transmission between two-planar apertures. The configuration of a two-planar aperture system
in free space is shown in Figure 6.13, where both apertures are in an infinite conducting screen
so that the tangential electric field outside the aperture is zero. When the aperture i (i = 1, 2)
is used as a transmitting antenna, the aperture field is assumed to be

Ei = ux Ei ,Hi = uy
1

η0
Ei ,

where η0 = √
µ0/ε0 is the wave impedance in free space. We will use the same notations for

the aperture field distribution and the field produced by the aperture, and this will not cause any
confusion. By means of equivalence theorem and image principle, the electric field produced
by aperture 1 may be represented by

E1(r) = 1

2π

∫

T1

uy × uR

(

jk0 + 1

|r − r′|
)

e− jk0|r−r′|E1(r′)dx ′dy′, (6.57)

where uR = (r − r′)/
∣
∣r − r′∣∣, k0 = ω

√
µ0ε0. In deriving the above expression, we have ne-

glected the multiple scattering between the apertures. If the apertures are located in the Fresnel
region of each other and the observation point r is on the aperture 2, the following approxi-
mations can be made

uy × uR ≈ ux ,
∣
∣r − r′∣∣ ≈ r1,2 + 1

2r1,2
[(x − x ′)2 + (y − y′)2].

From (6.57), we obtain

E1(r) = ux E1(r) ≈ ux
je− jk0r1,2

λr1,2

∫

T1

E1e− jk0[(x−x ′)2+(y−y′)2]/2r1,2 dx ′dy′,

H1(r) = uy
1

η0
E1(r).

(6.58)
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Substituting these into (6.52) gives

T12 =
(

1

λr1,2

)2

∣
∣
∣
∣
∣
∣

∫

T2

m̃1m2dxdy

∣
∣
∣
∣
∣
∣

2

∫

T1

|m1|2 dxdy
∫

T2

|m2|2 dxdy
, (6.59)

where

m1(x, y) = E1e− jk0(x2+y2)/2r1,2 ,

m2(x, y) = E2e− jk0(x2+y2)/2r1,2 ,

m̃1(x, y) =
∫

T1

m1(x ′, y′)e jk0(xx ′+yy′)/r1,2 dx ′dy′,

m̃2(x, y) =
∫

T2

m2(x ′, y′)e jk0(xx ′+yy′)/r1,2 dx ′dy′.

Note that
∫

T1

m1m̃2dxdy =
∫

T2

m̃1m2dxdy.

This is equivalent to T12 = T21. We may introduce the power transmission efficiency between
two ideal apertures

T ideal
12 =

Re
∫

T2

(E1 × H̄1) · uzdxdy

Re
∫

T1

(E1 × H̄1) · uzdxdy
.

Then

T ideal
12 =

(
1

λr1,2

)2

∫

T2

|m̃1|2 dxdy

∫

T1

|m1|2 dxdy
. (6.60)

Thus (6.59) may be expressed as

T12 = T ideal
12 · U,
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where

U =

∣
∣
∣
∣
∣
∣

∫

T2

m̃1m2dxdy

∣
∣
∣
∣
∣
∣

2

∫

T2

|m̃1|2 dxdy
∫

T2

|m2|2 dxdy
.

The power transmission efficiency T12 reaches maximum if both T ideal
12 and U are maximized.

From Cauchy-Schwartz inequality, we have max U = 1, which can be reached by letting
m2(x, y) = c1 ¯̃m1(x, y), (x, y) ∈ T2, that is,

E2(x, y) = c2 Ē1(x, y), (x, y) ∈ T2. (6.61)

Here both c1 and c2 are arbitrary complex numbers. The above equation implies that the
aperture distribution of antenna 2 is equal to the complex conjugate of the field produced by
antenna 1 at antenna 2. We now consider the condition for maximizing T ideal

12 . Equation (6.60)
can be rewritten as

T ideal
12 = (T̂ m1, m1)

(m1, m1)

where (·, ·) denotes the inner product defined by (u, v) = ∫

T1

uv̄dxdy for two arbitrary functions

u and v, and T̂ is a self-adjoint operator defined by

T̂ m1
(

ξ ′, ς ′) =
∫

T1

K2(ξ, ς ; ξ ′, ς ′)m1(ξ, ς )dξdς

with

K2(ξ, ς ; ξ ′, ς ′) =
(

1

λr1,2

)2 ∫

T1

e jk0[(ξ−ξ ′)x+(ς−ς ′)y]/r1,2 dxdy.

If the condition (6.61) is met, we have

T12 = T ideal
12 = (T̂ m1, m1)

(m1, m1)
. (6.62)

This is a variational expression (Rayleigh quotient), and attains an extremum when m1 satisfies

T̂ m1(x, y) = T12m1(x, y). (6.63)

Therefore, the power transmission between planar apertures is maximized if the aperture field
distributions satisfy (6.61) and (6.63) simultaneously. Equation (6.63) is an eigenvalue problem
and its largest eigenvalue is the maximum possible value for the power transmission efficiency.
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Table 6.1 Eigenvalues.

c1 T12

0.5 0.30969
1 0.57258
2 0.88056
4 0.99589
8 1.00000

Equation (6.63) may be used first to determine the aperture distribution of antenna 1, and the
aperture distribution of antenna 2 can then be determined from (6.61).

Example 6.7: Let us consider the power transmission between two identical rectangular
apertures with T1 = T2 = [−a, a] × (−∞, +∞), Equation (6.63) reduces to

a∫

−a

m1(x ′)
sin[ka(x − x ′)/r1,2]

π (x − x ′)
dx ′ = T12m1(x)

where m1(x) = E1(x)e− jkx2/2r1,2 . The above eigenvalue problem also appears in signal theory
and has been solved by Slepian and Pollak (Slepian and Pollak, 1961). The solutions are

T12 = 2c1

π
[R(1)

00 (c1, 1)]2,

E1(x) = S00(c1, x/a)e− jkx2/2r1,2,

where c1 = ka2/r1,2, R(1)
00 is the radial prolate spheroidal function, and S00 is the angular

prolate spheroidal function. Some values of T12 are listed in Table 6.1. Observe that the power
transmisson efficiency of 100% can be achieved by increasing the parameter c1.

6.5.3 Power Transmission Between two Antenna Arrays

The proceeding discussions on the power transmission between two antennas can be gener-
alized to two antenna arrays. Consider an nt + nr antenna system shown in Figure 6.14, in
which antennas 1 ∼ nt are transmitting while antennas nt + 1 ∼ nt + nr are receiving. This
system can be described as an nt + nr network and can be characterized by

[

[bt ]
[br ]

]

=
[

[Stt ] [Str ]
[Srt ] [Srr ]

] [

[at ]
[ar ]

]

, (6.64)

where the normalized incident and reflected waves for transmitting antenna array and receiving
antenna array are respectively given by

[at ] = [a1, a2, · · · , ant ]
T ,

[bt ] = [b1, b2, · · · , bnt ]
T ,

[ar ] = [ant +1, ant +2, · · · , ant +nr ]
T ,

[br ] = [bnt +1, bnt +2, · · · , bnt +nr ]
T .
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Antenna t rn + n

Scatterers

Figure 6.14 Power transmission between two antenna arrays

The power transmission efficiency between the two antenna arrays is defined as the ratio of
the power delivered to the loads of the receiving array to the input power to the transmitting
antenna array

Tarray =
1

2
(|[br ]|2 − |[ar ]|2)

1

2
(|[at ]|2 − |[bt ]|2)

. (6.65)

Assume that the receiving antenna array is matched so that [ar ] = 0. Making use of (6.64),
Equation (6.65) can be written as

Tarray = ([A][at ], [at ])

([B][at ], [at ])
, (6.66)

where (·, ·) denotes the usual inner product of two column vectors, [A] and [B] are two matrices
defined by

[A] = [Str ]T Srt , [B] = [1] − [Stt ]
T [Stt ].

If the power transmission efficiency Tarray reaches the maximum at [at ], then we have

[A][at ] = Tarray[B][at ]. (6.67)

Therefore, the maximum possible value of Tarray is the largest eigenvalue of (6.67) and can
be found numerically. From (6.67), we obtain

Tarray = ([B]−1[A][at ], [at ])

([at ], [at ])
≤ ∥

∥[B]−1[A]
∥
∥ ,

where ‖·‖ denotes the matrix norm. The right-hand side is the maximum possible power
transmission coefficient for a system with the receiving antenna array matched.
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If both transmitting antenna array and receiving antenna array are matched, Equation (6.65)
reduces to

Tarray = ([A][at ], [at ])

([at ], [at ])
≤ ‖[A]‖ . (6.68)

The right-hand side is the maximum possible power transmission efficiency between two
matched antenna arrays.

Remark 6.3: Let [A] be a complex m × n matrix

[A] =

⎡

⎢
⎢
⎢
⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎤

⎥
⎥
⎥
⎦

.

One of the matrix norms can be defined as

‖[A]‖ =
⎛

⎝

m
∑

i=1

n
∑

j=1

∣
∣ai j

∣
∣
2

⎞

⎠

1/2

.

6.6 Network Parameters in a Scattering Environment

The network parameters vary with the environments. Predicting this variation is important in
practice. For example, an embedded antenna in a handset is surrounded by a number of circuit
components, any changes of these components, such as their locations, sizes and electrical
properties, will affect the system performance. In this section, we present a perturbation
method to predict how the system performance varies with the environments.

6.6.1 Compensation Theorem for Time-Harmonic Fields

In circuit theory, any element can be replaced by an idea current source of the same current
intensity as in the element. This property is called the compensation theorem. The general
form of the compensation theorem in electromagnetics says that the influence of substance on
the fields can partly or completely be compensated by appropriate distribution of impressed
currents (see also Section 1.3.2). Let us consider a closed surface S filled with a linear, isotropic
medium and free of impressed source, as shown in Figure 6.15. The medium inside S may be
inhomogeneous, with a permittivity ε(r), permeability µ(r) and conductivity σ (r). Thus, we
may write

∇ × E(r) = − jωµ(r)H(r),∇ × H(r) = [σ (r) + jωε(r)]E(r). (6.69)
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µ ε σ, ,

Figure 6.15 A region free of impressed source

If the medium parameters µ(r), ε(r) and σ (r) in S are changed to µ′(r), ε′(r) and σ ′(r), the
corresponding fields will be governed by

∇ × E′(r) = − jωµ′(r)H′(r),∇ × H′(r) = [σ ′(r) + jωε′(r)]E′(r). (6.70)

This can be written as

∇ × E′(r) = − jωµ(r)H′(r) − J′
m,imp(r),

∇ × H′(r) = [σ (r) + jωε(r)]E′(r) + J′
imp(r),

(6.71)

where

J′
m,imp(r) = jωH′(r)[µ′(r) − µ(r)],

J′
imp(r) = {σ ′(r) − σ (r) + jω[ε′(r) − ε(r)]}E′(r)

(6.72)

are the equivalent impressed current sources introduced in the region bounded by S. So the
perturbed fields can be determined by introducing the equivalent current sources as if the
medium parameters had not changed. This is one of the forms of the compensation theorem in
electromagnetic field theory. The differential fields �E = E′ − E,�H = H′ − H satisfy the
following equations

∇ × �E(r) = − jωµ(r)�H(r) − J′
m,imp(r),

∇ × �H(r) = [σ (r) + jωε(r)]�E(r) + J′
imp(r).

(6.73)

Hence the equivalent current sources in (6.72) generate the differential fields.

6.6.2 Scattering Parameters in a Scattering Environment

The influences of the changes of medium parameters can be studied by means of the compen-
sation theorem. Let us consider the perturbation of the scattering parameters in a scattering
environment. Figure 6.16 shows two antenna elements together with a region Vp enclosed
by Sp, where the changes of medium parameters take place. It is assumed that the medium
outside Sp is lossless. Two scenarios will be considered:

1) Scenario 1: The permeability, permittivity and conductivity in the region Vp are µ, ε and σ

respectively, which may vary from point to point. The antenna i produces the fields Ei and
Hi when antennas j( j �= i) are receiving. The normalized transmission coefficient between
antenna i and antenna j is denoted by Si j .
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pS

Antenna i
Antenna j

jJ
pV

µ ε σ, ,

Figure 6.16 Multiple antenna system in a scattering environment

2) Scenario 2: The medium parameters µ, ε and σ in the region Vp are changed to µ′, ε′

and σ ′ respectively. The antenna i produces the fields E′
i and H′

i when antennas j( j �= i)
are receiving. The normalized transmission coefficient between antenna i and antenna j is
denoted by S′

i j .

From (6.40) and the reciprocity theorem in a region with impressed sources, the transmission
coefficient for scenario 1 can be expressed as

Si j = − 1

2a(i)
i a( j)

j

∫

S′
i

(Ei × H j − E j × Hi ) · und S = − 1

2a(i)
i a( j)

j

∫

V ′
j

J j · Ei dV , (6.74)

where S′
i is the surface enclosing antenna i only (Sp is not included in S′

i ), V ′
j is the region

enclosed by S′
j , which includes antenna j as well as Vp, and J j is the current distribution of

antenna j . Similarly the perturbed transmission coefficient for scenario 2 can be expressed as
(assuming that the impressed current J j remains unchanged)

S′
i j = − 1

2a(i)
i a( j)

j

∫

S′
i

(E′
i × H′

j − E′
j × H′

i ) · und S = − 1

2a(i)
i a( j)

j

∫

V ′
j

J j · E′
i dV . (6.75)

Subtracting (6.74) from (6.75) gives

S′
i j − Si j = − 1

2a(i)
i a( j)

j

∫

V ′
j

J j · (E′
i − Ei )dV . (6.76)

Since V ′
j contains the region Vp, from the reciprocity theorem it follows that

S′
i j − Si j = − 1

2a(i)
i a( j)

j

∫

V ′
j

J j · (E′
i − Ei )dV = − 1

2a(i)
i a( j)

j

∫

Vp

J′
imp · E j − J′

m,imp · H j dV

(6.77)

= 1

2a(i)
i a( j)

j

∫

Vp

{

jω(µ′ − µ)H′
i · H j − [

σ ′ − σ + jω(ε′ − ε)
]

E′
i · E j

}

dV .
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If we assume that the effect of the changes in permittivity and permeability has negligible
effect on the fields, Equation (6.77) can be approximated by

S′
i j − Si j = 1

2a(i)
i a( j)

j

∫

Vp

{

jω(µ′ − µ)Hi · H j − [

σ ′ − σ + jω(ε′ − ε)
]

Ei · E j
}

dV . (6.78)

One of the applications of (6.78) is to study the reflections in a waveguide due to a slight
inhomogeneity of the filled dielectric materials. Another application of (6.78) is to study the
scattering caused by atmospheric inhomogeneity between two antennas (Monteath, 1973).

Equation (6.77) is useful to study the effect of changes in permittivity and permeability of the
medium in a finite volume. But it is not convenient to study the changes in highly conducting
bodies where the fields are confined to a shallow surface layer. In this case, a surface integral
is more appropriate. Making use of reciprocity again, Equation (6.77) may be expressed as

S′
i j − Si j = − 1

2a(i)
i a( j)

j

∫

Vp

J′
imp · E j − J′

m,imp · H j dV

= − 1

2a(i)
i a( j)

j

∫

Sp

[

(E′
i − Ei ) × H j − E j × (H′

i − Hi )
] · und S (6.79)

= 1

2a(i)
i a( j)

j

∫

Sp

(E j × H′
i − E′

i × H j ) · und S.

Suppose that the boundary Sp has a surface impedance Zs in scenario 1 and Z ′
s in scenario

2. Then

E j t (r) = Zsun × H j t (r), E′
i t (r) = Z ′

sun × H′
j t (r), r ∈ Sp,

where the subscript t denotes the tangential component. Introducing these into (6.79) yields

S′
i j − Si j = 1

2a(i)
i a( j)

j

∫

Sp

[

H′
i · (un × E j ) − H j · (un × E′

i )
]

d S

(6.80)

= 1

2a(i)
i a( j)

j

∫

Sp

(Z ′
s − Zs)H′

i t · H j t d S.

If there are m scatterers and each scatter occupies a region Vp(p = 1, 2, · · · , m), the integrals
in Equations (6.77)–(6.80) become a summation of integrals over each scatterer. For instance,
Equation (6.77) may be written as

S′
i j = Si j

+ 1

2a(i)
i a( j)

j

m
∑

p=1

∫

Vp

{

jω(µ′ − µ)H′
i · H j − [

σ ′ − σ + jω(ε′ − ε)
]

E′
i · E j

}

dV . (6.81)
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The first term on the right-hand side corresponds to the contribution due to the direct path
from antenna i to antenna j . The second term represents the m multi-path components
contributed by the m scatterers. The presence of significant scatterers in the propagation
medium guarantees that the waves from different paths will add differently at each receiving
antenna element so that the receiving signals of different receiving antennas are independent.

Remark 6.4 (MIMO channel modeling): It is known that the performance of a wireless
multiple-input and multiple-output (MIMO) system depends on the propagation channel. The
propagation channel models can generally be divided into two different groups: the statistical
models based on information theory and the site-specific models based on measurement or
numerical simulation. It can be shown that the channel matrix can be identified as the scattering
matrix, and (6.77) provides a deterministic approach to the MIMO channel prediction (Geyi.
2007(b)).

6.6.3 Antenna Input Impedance in a Scattering Environment

The perturbation problems for the antenna input impedance can be studied in a similar manner.
We still consider two scenarios for a single antenna system shown in Figure 6.17:

1) Scenario 1: The permeability, permittivity and conductivity in the region Vp bounded by
Sp are µ, ε and σ respectively, which may vary from point to point. The antenna produces
the fields E and H. The antenna input impedance is Z .

2) Scenario 2: The medium parameters µ, ε and σ in the region Vp are changed to µ′, ε′ and
σ ′ respectively. The antenna produces the fields E′ and H′. The antenna input impedance
is Z ′.

It will be shown later that the antenna input impedance can be expressed as [see (6.91)]

Z = − 1

I 2

∫

V0

E · JdV + Zinternal (6.82)

for scenario 1 and

Z ′ = − 1

I 2

∫

V0

E′ · JdV + Zinternal (6.83)

0V

pS

0V

J

pV

µ ε σ, ,

∂

Figure 6.17 Perturbed antenna
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for scenario 2. In (6.82) and (6.83), Zinternal stands for the internal impedance of the antenna,
and V0 is the source region bounded by ∂V0, which is coincident with the metal surface of the
antenna except for the antenna input terminal. Both the excitation current J and the internal
impedance Zinternal are assumed to be constant while medium properties change. Subtracting
(6.82) from (6.83), we obtain

Z ′ − Z = 1

I 2

∫

V0

(E′ − E) · JdV . (6.84)

Let V be the volume bounded by S, which encloses both the region Vp and the antenna.
According to (6.72) and the frequency domain reciprocity theorem, Equation (6.84) can be
written as

Z ′ − Z = − 1

I 2

∫

V

(E′ − E) · JdV = − 1

I 2

∫

Vp

(J′
imp · E − J′

m,imp · H)dV

= 1

I 2

∫

Vp

{

jω(µ′ − µ)H′ · H − [

(σ ′ − σ + jω(ε′ − ε)
]

E′ · E
}

dV . (6.85)

Similarly if we assume that the effect of the changes in permittivity and permeability has
negligible effect on the fields, Equation (6.85) can then be approximated by

Z ′ − Z = 1

I 2

∫

Vp

{

jω(µ′ − µ)H · H − [

(σ ′ − σ + jω(ε′ − ε)
]

E · E
}

dV . (6.86)

6.7 RLC Equivalent Circuits

A RLC circuit is also known as a resonant circuit, and has been widely used in radio engineer-
ing. Any one-port electrical network is equivalent to a RLC circuit.

6.7.1 RLC Equivalent Circuit for a One-Port Microwave Network

Consider a one-port network fed by a single-mode waveguide. The one-port microwave net-
work is enclosed by a conducting surface S. We introduce a region V0 such that its surface ∂V0

coincides with S except a portion 
 where ∂V0 crosses the waveguide at the reference plane
T , as shown in Figure 6.18 (a). Applying the Poynting theorem to the region V0 with medium
parameters σ , µ, and ε, we have

1

2

∫

∂V0−


(E × H̄) · und S + 1

2

∫




(E × H̄) · und S = − j2ω(Wm − We) − Ploss, (6.87)
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(a)

(b)

T

C L RI

V

T

nu

S

0V
0V

Ω
∂

Figure 6.18 (a) A one-port network. (b) RLC equivalent circuit

where

Ploss = 1

2

∫

V0

σE · ĒdV , We = 1

4

∫

V0

εE · ĒdV , Wm = 1

4

∫

V0

µH · H̄dV (6.88)

are the power loss, total electric energy and total magnetic energy inside V0 respectively.
The first term on the left-hand side is zero due to the boundary condition. For a single-mode
waveguide, the second term on the left-hand side of (6.87) is −V Ī/2, where V and I are
equivalent modal voltage and current at the reference plane. Thus, (6.87) becomes

1

2
V Ī = Ploss + j2ω(Wm − We).

The input impedance Z is

Z = Rloss + j

(

ωL − 1

ωC

)

,

where

Rloss = 2Ploss

|I |2 , L = 4W̃m

|I |2 , C = |I |2
4ω2W̃e

,

are equivalent circuit elements. The equivalent RLC circuit of the one-port microwave network
is shown in Figure 6.18 (b).
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0∂V

S
Ω

T

nu0VmJ,J

Figure 6.19 An arbitrary source

Remark 6.5: The above discussion is only valid for a bounded microwave system where the
electromagnetic fields are confined in the finite region V0. For an open system, such as an
antenna, where the electromagnetic fields radiate into infinity, the total energies We and Wm

defined by (6.88) become infinite. In this case, we must use stored energies instead of the total
energies to derive the RLC equivalent circuit for the open system (see Section 4.4.2).

6.7.2 RLC Equivalent Circuits for Current Sources

From the equivalent circuits in network theory, developed by Helmholtz, Léon Charles
Thévenin (French engineer, 1857–1926) and Edward Lawry Norton (American engineer,
1898–1983), an arbitrary network may be replaced by an equivalent voltage source in series
with an equivalent impedance or alternatively by an equivalent current source in parallel with
an equivalent admittance. In the following, we show that these equivalents also exist for gen-
eral electromagnetic sources. Consider an arbitrary source connected to a feeding waveguide
bounded by a conducting surface S, as shown in Figure 6.19. We introduce a source region V0

such that its surface ∂V0 coincides with S except a portion 
 where ∂V0 crosses the waveguide
at the reference plane T . All discontinuities and the exciting sources are assumed to be far
from the reference plane T so that only the dominant mode exists at the reference plane. In
the source region V0, the generalized Maxwell equations can be expressed as

∇ × H = ( jωε + σ )E + J,

∇ × E = − jωµH − Jm,

where µ, ε and σ are the medium parameters. From the above equations, we obtain

∇ · (E × H̄) = − jωµ |H|2 + jωε |E|2 − σ |E|2 − H̄ · Jm − E · J̄. (6.89)

Taking the integration of (6.89) over the region V0 and using the divergence theorem yield

1

2

∫

∂V0

(E × H̄) · und S = − j2ω(Wm − We) − Ploss − 1

2

∫

V0

H̄ · JmdV − 1

2

∫

V0

E · J̄dV ,

(6.90)
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where the notations are defined in (6.88). For a single-mode feeding waveguide, we have
1

2

∫

∂V0

(E × H̄) · und S = 1

2
V Ī , where V and I are the equivalent modal voltage and current at

the reference plane. From (6.90), we obtain

1

2
V Ī + 1

2
Rs |I |2 + 1

2
jωLs |I |2 − 1

2
j
|I |2
ωCs

= −1

2

∫

V0

H̄ · JmdV − 1

2

∫

V0

E · J̄dV , (6.91)

or

1

2
V Ī + 1

2
G p |V |2 − 1

2
jωCp |V |2 − 1

2

|V |2
jωL p

= −1

2

∫

V0

H̄ · JmdV − 1

2

∫

V0

E · J̄dV . (6.92)

Here the circuit elements are defined by

Rs = 2Ploss

|I |2 , Ls = 4Wm

|I |2 , Cs = |I |2
4ω2We

,

G p = 2Ploss

|V |2 , L p = |V |2
4ω2Wm

, Cp = 4We

|V |2 .

Introducing the voltage and current sources

Vs = −1

Ī

∫

V0

H̄ · JmdV , Īs = − 1

V

∫

V0

E · J̄dV , (6.93)

Equations (6.91) and (6.92) can be rewritten as

V + Rs I + jωLs I + 1

jωCs
I = Vs + V

Īs

Ī
, (6.94)

I + G pV + jωC pV + V

jωL p
= V̄s

V̄
I + Is . (6.95)



P1: OTA/XYZ P2: ABC
c06 BLBK281-Wen March 3, 2010 21:6 Printer Name: Yet to Come

284 Network Formulations

(a)

(b)
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TsLsC sR
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Figure 6.20 Equivalent circuits for an arbitrary source

respectively. If there is no electric current source inside the source region, the equivalent circuit
can be constructed from (6.94), as shown in Figure 6.20 (a). If there is no magnetic current
source inside the source region, an equivalent circuit can be constructed from (6.95), as shown
in Figure 6.20 (b).

Example 6.8: For an electric source J = uz Ĩsδ(x)δ(y)(a < z < b), the equivalent current
source is

Īs = − 1

V

∫

V0

E · J̄dV = −
¯̃Is

V

b∫

a

E · uzdz = ¯̃Is .

For a ring magnetic source Jm = −uϕ Ṽsδ(ρ − ρ0), the equivalent voltage source is

Vs = −1

Ī

∫

V0

H̄ · JmdV = Ṽs

Ī

∫

ρ=ρ0

H̄ · uϕdc = Ṽs .

where dc = ρ0dϕ

The equivalent circuit for the one-port microwave network and the equivalent circuit for the
source can be combined to form the complete equivalent circuit for the whole microwave
system, as shown in Figure 6.21.

It is to be noted that all the laws in circuit theory can be derived from Maxwell field equations
(Ramo and Whinnery, 1953). There is a correspondence between circuit concepts and field
concepts (Harrington, 1961). For example, Kirchhoff’s voltage law in circuit theory is a result
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T
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Equivalent circuit for  
electric current source

Equivalent circuit for 
one-port network

Single mode region

pCpLpG
sI

I

J

Figure 6.21 Equivalent circuit for a microwave system

of Faraday’s law, while Kirchhoff’s current law corresponds to the continuity equation. The
circuit theory is the simplification and specialization of the field theory.

The underlying physical laws necessary for the mathematical theory of a large part of physics
and the whole of chemistry are thus completely known, and the difficulty is only that the exact
application of these laws leads to equations much too complicated to be soluble.

—Paul Adrien Maurice Dirac (British physicist, 1902–1984)
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7
Fields in Inhomogeneous Media

The great success which these eminent men (Gauss, Weber, Riemann, J. & C. Neumann, Lorentz,
etc.) attained in the application of mathematics to electrical phenomena, gives, as is natural,
additional weight to their theoretical speculations.

—James Maxwell

An electromagnetic medium is called inhomogeneous if its electrical parameters are functions
of space position, and the wave speed in the medium varies with position. Many transmission
media in practice are inhomogeneous, such as the earth’s atmosphere and optical fibers. In an
inhomogeneous medium, the electromagnetic fields satisfy a partial differential equation with
variable coefficients, which is more difficult to solve than a partial differential equation with
constant coefficients.

An inhomogeneous waveguide refers to a guided structure, whose medium properties vary
across its cross-section but remain constant in the direction of propagation. The reasons
for introducing inhomogeneities in a waveguide are twofold. One is to provide mechanical
support and the other is to obtain the performances that are not obtainable with homogeneous
waveguides. An important feature of the inhomogeneous waveguide is that the free modes
are of the hybrid type: they have both longitudinal components of the electric field and the
magnetic field and the modes are generally neither transverse electric (TE) nor transverse
magnetic (TM). The determination of the dispersion relationship is not as straightforward as
the homogeneous waveguide, which requires the solution of a rather involved transcendental
equation by numerical methods. When the waveguide is bounded by a metal surface, the
number of modes is countable and the waveguide has a discrete spectrum. When the waveguide
is open, additional radiating modes exist, which are non-countable. Typical inhomogeneous
waveguides include microstrip lines, coplanar waveguides, and dielectric waveguides (optical
fibers). In order to obtain a complete picture of the modes in the inhomogeneous waveguides,
a sophisticated tool called spectral analysis in operator theory is a necessity.

Most of the time, the differential operator characterizing the electromagnetic boundary
value problem can be extended to a self-adjoint operator so that the functional calculus for
self-adjoint operators may apply. Equivalently, a variational formulation may be used by
introducing a bilinear form associated with the self-adjoint operator. The spectral properties

Foundations of Applied Electrodynamics Geyi Wen
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of the self-adjoint operator can be obtained from the knowledge of the corresponding bilinear
form.

7.1 Foundations of Spectral Analysis

The spectral theory has wide applications in physics. In quantum mechanics, for example,
an observable can only assume values in the spectrum of its corresponding operator. The
spectral theory may be applied to study the metal waveguides and metal cavity resonators (see
Chapter 3). To deal with more complicated problems in electromagnetic theory, we need
several more notions from the spectral theory.

7.1.1 The Spectrum

Let Âλ = λ Î − Â, and N ( Âλ) and R( Âλ) be the kernel and range of Âλ respectively. We recall
that the spectrum of an operator Â defined in a Hilbert space H consists of the point spectrum
σp( Â), the residual spectrum σr ( Â) and the continuous spectrum σc( Â):

σp( Â) = {

λ ∈ C | N ( Âλ) �= 0
}

,

σr ( Â) =
{

λ ∈ C | N ( Âλ) = 0, R( Âλ) �= H
}

,

σc( Â) =
{

λ ∈ C | N ( Âλ) = 0, R( Âλ) = H, Â−1
λ is unbounded

}

,

where C is the set of all complex numbers. If Â is self-adjoint, we have σr ( Â) = 0. If Â is a
self-adjoint operator, we may introduce

σess( Â) = {

λ ∈ σ ( Â)
∣
∣ λ ∈ σc( Â), or λ ∈ σp( Â) with dim N ( Âλ) = +∞}

,

σdisc( Â) = {

λ ∈ σp( Â)
∣
∣ dim N ( Âλ) < +∞}

,

which are called the essential spectrum and the discrete spectrum of operator Â respectively.
Some basic properties of the resolvent and the spectrum of a linear operator Â defined in a
Hilbert space H with a norm ‖·‖ = (·, ·)1/2 are summarized below:

1. ρ( Â) is an open set in the complex plane.
2. σ ( Â) is a closed set in the complex plane.
3. If Â is self-adjoint, all nonreal numbers are in ρ( Â).
4. If Â is self-adjoint, a real number λ is in σ ( Â) if and only if there exists a sequence

{un} ⊂ D( Â) (the domain of Â) such that ‖un‖ = 1 and
∥
∥ Âλun

∥
∥ → 0 as n → ∞.

Example 7.1 (Position operator): The position operator Â = x is defined by Âu(x) = xu(x)
whose domain D( Â) is the set of those u ∈ L2(R) such that xu ∈ L2(R). It is easy to show that
D( Â) is dense in L2(R) and Â is self-adjoint. Consider the eigenvalue equation ( Â − λ Î )u =
(x − λ)u = 0. This equation holds only if u = 0 for x �= λ, which implies u = 0 almost
everywhere, and there are no eigenvalues. Let λ be any real number, and we can try the sequence
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un = cn exp[−n2(x − λ)2/2] where cn is chosen so that ‖un‖ = 1. Thus, cn = √
nπ−1/4. Since

‖(x − λ)un‖2 = c2
nn−3

∞∫

−∞
x2e−x2

dx → 0,

we have λ ∈ σ ( Â). Thus σ ( Â) consists of the whole real axis.

Let H be a Hilbert space. The sequence {xn} is said to converge weakly to x (weak conver-
gence) if lim

n→∞(xn, y) = (x, y) for all y ∈ H . This relation is denoted by xn
w

————−→
n→∞ x . If

a linear map Â : H → H is continuous, it is weakly continuous, that is, if xn
w

————−→
n→∞ x ,

then Âxn
w

————−→
n→∞

Âx . If {xn} is a bounded sequence in a separable Hilbert space, there

exists a subsequence {xnk } and a vector x ∈ H such that xnk

w
————−→

k→∞
x .

The following theorems are important in studying the spectrum of a self-adjoint operator
(for example, Schechter, 1981).

Theorem 7.1: If Â is self-adjoint, a number λ is in σess( Â) if and only if there exists a sequence
{un} ⊂ D( Â) (the domain of Â) such that

1. ‖un‖ = 1,
2. {un} has no convergent subsequence (or equivalently un converges to zero weakly), and
3.

∥
∥ Âλun

∥
∥ → 0 as n → ∞.

The sequence in the above theorem is called the singular sequence. An operator B̂ is called
compact relative to operator Â or Â-compact if D( Â) ⊂ D(B̂) and ‖un‖ + ‖ Âun‖ ≤ c1 (c1

is a constant) implies that {B̂un} has a convergent subsequence.

Weyl theorem (named after the German mathematician Hermann Klaus Hugo Weyl,
1885–1955): If Â is a self-adjoint and B̂ is symmetric and Â-compact, then

1. Â + B̂ is self-adjoint, and
2. σess( Â + B̂) = σess( Â).

7.1.2 Spectral Theorem

An operator P̂ is called an orthogonal projection if it is bounded and symmetric, and
satisfies P̂2 = P̂ . A self-adjoint operator may be decomposed into the sum of the orthogonal
projections.

Spectral theorem: Let Â be a self-adjoint operator on a Hilbert space H. Then there is a
family {Ê(λ)} of orthogonal projections depending on a real parameter λ, called the spectral
family of Â, such that

1. If λ1 < λ2, then Ê(λ1)Ê(λ2) = Ê(λ1).
2. For each u ∈ H and real λ, Ê(λ + ε)u → Ê(λ)u as ε → 0+.
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3. u ∈ D( Â) if and only if
∞∫

−∞
λ2d

∥
∥Ê(λ)u

∥
∥

2
< ∞.

4. For u ∈ D( Â) and v ∈ H, we have ( Âu, v) =
∞∫

−∞
λd(Ê(λ)u, v).

5. For any complex-valued function f (λ), the operator

f ( Â) =
∞∫

−∞
f (λ)d Ê(λ) (7.1)

is defined on the set D[ f ( Â)] consisting of those u ∈ H such that

∞∫

−∞
| f (λ)|2 d

∥
∥Ê(λ)u

∥
∥

2
< ∞.

6. For u ∈ D[ f ( Â)], v ∈ D[g( Â)]

( f ( Â)u, g( Â)v) =
∞∫

−∞
f (λ)g(λ)d(Ê(λ)u, v).

7.
f ( Â)∗ =

∞∫

−∞
f (λ)d Ê(λ).

8. If I is the interval (−∞, λ], then Ê(λ) = χI ( Â), χI is the characteristic function of the
interval I

χI (λ) =
{

1, λ ∈ I
0, λ /∈ I

.

7.1.3 Generalized Eigenfunctions of Self-Adjoint Operators

Let Â be a self-adjoint operator on Hilbert space H , and u ∈ H . If its eigenfunctions un form
a complete orthonormal set, we have the eigenfunction expansions

u =
∑

n

(u, un)un, Âu =
∑

n

λn(u, un)un. (7.2)

It should be noted that such expansions do not always exist for a general self-adjoint operator.
However, the following spectral decomposition always holds for a general self-adjoint operator

Â =
∞∫

−∞
λd Ê(λ). (7.3)
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In the theory of differential equations, the eigenfunction expansions (7.2) are more convenient
than the spectral decomposition (7.3), and it would be useful to extend (7.2) to a general
self-adjoint operator. In the following, we only discuss the situation where Â is a differential
operator.

Let Â be a self-adjoint operator in L2(RN ). Its domain D( Â) contains the fundamental space
D(RN ). We further assume that Â is continuous from D(RN ) to D(RN ), and is real, that is,

Âu = Âu. Let D′(RN ) denote the dual space of D(RN ). We introduce a conjugate operator Â′

from D′(RN ) to D′(RN ) such that, for T ∈ D′(RN ) and all u ∈ D(RN ), we have

〈 Â′T, u〉 = 〈T, Âu〉,

where 〈T, u〉 = T (u). Especially for T ∈ D( Â), we have

〈 Â′T, u〉 = 〈T, Âu〉 =
∫

RN

T (x)( Âu)(x)dx.

Since Â is real and self-adjoint in L2(RN ), this can be rewritten as

〈 Â′T, u〉 =
∫

RN

T (x)( Âu)(x)dx =
∫

RN

( ÂT )(x)u(x)dx = 〈 ÂT, u〉.

Thus Â′T = ÂT for T ∈ D( Â), and Â′ is an extension of Â, Â ⊂ Â′. The generalized function
T ∈ D′(RN ) is called a generalized eigenfunction of operator Â with the eigenvalue λ if
Â′T = λT . Apparently, the generalized eigenfunction becomes the eigenfunction of operator
Â when T ∈ D( Â).

Assume that Â has a finite or countable set of eigenvalues {λn} and the corresponding
orthonormal eigenfunctions are denoted by {un} ⊂ D( Â). Furthermore, we assume that for
each natural number n, there is a set Bn ⊂ R such that the operator Â has a generalized
eigenfunction uλ corresponding to each λ ∈ Bn . The system {un} ∪ {uλ| λ ∈ Bn, n = 1, 2, · · ·}
is said to form a complete orthonormal set of generalized eigenfunctions if for all u, v ∈
D(RN ), we have

∫

RN

u(x)v̄(x)dx =
∑

n

〈un, u〉〈un, v〉 +
∑

n

∫

Bn

〈uλ, u〉〈uλ, v〉dλ. (7.4)

Here some or all Bn may be empty, and they may have intersections. Formally (7.4) can be
written as

u(x) =
∑

n

〈un, u〉un +
∑

n

∫

Bn

〈uλ, u〉uλdλ, (7.5)
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or

δ(x − ξ) =
∑

n

un(x)un(ξ) +
∑

n

∫

Bn

uλ(x)uλ(ξ)dλ. (7.6)

It follows that

Âu(x) =
∑

n

〈un, u〉λnun +
∑

n

∫

Bn

〈uλ, u〉uλλdλ. (7.7)

7.1.4 Bilinear Forms

Let H be a Hilbert space with inner product (·, ·) and the induced norm ‖·‖ = (·, ·)1/2. A
bilinear form b(u, v) is a scalar function linear in u and conjugate linear in v defined for u, v

in some subspace D(b) of H

b(αx + βy, v) = αb(x, v) + βb(y, v),

b(x, αu + βv) = ᾱb(x, u) + β̄b(x, v),

where α and β are complex numbers. The subspace D(b) is called the domain of b. We will
denote b(u, u) by b(u). A bilinear form is said to be closed if

un → u, b(un − um) → 0, {un} ⊂ D(b)

implies u ∈ D(b) and b(un − u) → 0. A bilinear form is called Hermitian (after French
mathematician Charles Hermite, 1822–1901) if

b(u, v) = b(v, u), u, v ∈ D(b).

If b(u, u) ≥ 0 for all u ∈ D(b), b is called positive. If b(u, u) ≥ −c1 ‖u‖2 holds for all
u ∈ D(b) for some c1, b is said to be bounded from below. Notice that b is automatically
Hermitian if H is complex and b is bounded from below.

If the domain of a bilinear form is dense in H , we can define an operator B̂ as follows. We
say that u ∈ D(B̂) and B̂u = f if and only if u ∈ D(b) and

b(u, v) = ( f, v), v ∈ D(b).

The operator B̂ is linear and is called the operator associated with b.

Theorem 7.2: Let b be a closed Hermitian bilinear form with dense domain in H. If there
exists some constant c1 such that b(u) ≥ c1‖u‖2, u ∈ D(b), the operator B̂ associated with b
is self-adjoint and σ (B̂) ⊂ [c1,∞).

Theorem 7.3: Let a be a closed Hermitian bilinear form with dense domain in H and b be a
Hermitian bilinear form such that D(a) ⊂ D(b) and |b(u)| ≤ c1a(u), u ∈ D(a). Assume that
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every sequence {un} ⊂ D(a) satisfying ‖un‖2 + a(un) ≤ c2 has a subsequence {v j } such that
b(v j − vk) → 0, j, k → ∞. Assume also that, for such a subsequence {v j }, v j → 0 implies
that b(v j ) → 0. Let c(u) = a(u) + b(u) and B̂ and Ĉ be operators associated with b and c
respectively. Then σess(Ĉ) = σess( Â).

Proofs of the above theorems can be found in (Schechter, 1981).

Example 7.2 (Dirichlet problem for second-order elliptical equation): Let 
 be a bounded
region in RN and we consider the second-order operator defined in 


L̂ = −
N

∑

i=1

N
∑

j=1

∂

∂x j

(

ai j (x)
∂

∂xi

)

+
N

∑

i=1

bi (x)
∂

∂xi
+ c(x), (7.8)

where ai j (x) are symmetric, that is, ai j (x) = a ji (x), and ai j (x) ∈ C1(
̄), bi (x), c(x) ∈ C(
̄).
If there exists a positive constant γ such that

N
∑

i=1

N
∑

j=1

ai j (x)ξiξ j ≤ γ

N
∑

i=1

ξ 2
i , x ∈ 
̄,ξ = (ξ1, ξ2, · · · , ξN ) ∈ RN ,

the operator L̂ is said to be uniformly elliptic. Let L̂ be uniformly elliptic and consider the
following Dirichlet problem

L̂u(x) = f (x), x ∈ 
, u(x)|� = 0, (7.9)

where � is the boundary of 
, and f ∈ C(
). The set of classical solutions of the Dirichlet
problem is

D(L̂) = {

u| u ∈ C2(
) ∩ C(
̄), u|� = 0
}

. (7.10)

For a classical solution u, we may introduce the bilinear form on D(L̂)

b(u, v) =
∫




L̂u · vdx

for all v ∈ D(L̂). It follows from integration by parts that

b(u, v) =
∫




⎡

⎣

N
∑

i=1

N
∑

j=1

ai j (x)
∂u

∂xi

∂v

∂x j
+

N
∑

i=1

bi (x)
∂u

∂xi
v + c(x)uv

⎤

⎦ dx =
∫




f vdx (7.11)

for all v ∈ D(L̂). Thus a classical solution satisfies the above relation. If u is not a classical
solution or f /∈ C(
), u may still satisfy the above equation. A natural extension of the set of



P1: OTA/XYZ P2: ABC
c07 BLBK281-Wen March 4, 2010 12:30 Printer Name: Yet to Come

294 Fields in Inhomogeneous Media

classical solution is H 1
0 (
). Let f ∈ L2(
). If there exists u ∈ H 1

0 (
) such that

∫




⎡

⎣

N
∑

i=1

N
∑

j=1

ai j (x)
∂u

∂xi

∂v

∂x j
+

n
∑

i=1

bi (x)
∂u

∂xi
v + c(x)uv

⎤

⎦ dx =
∫




f vdx (7.12)

for all v ∈ H 1
0 (
), the function u is a weak solution of the Dirichlet problem.

Example 7.3: Let H = [L2(R2)]3 and consider the bilinear form

b (h1, h2) =
∫

R2

⎛

⎝
∑

i=x,y,z

∇t h1i · ∇t h̄2i + β2h1 · h̄2

⎞

⎠ dxdy,

where ∇t = ux∂/∂x + uy∂/∂y denotes the two-dimensional gradient and all the derivatives
are understood in the generalized sense, hi = (hix , hiy, hiz)(i = 1, 2) are vector functions
defined in (x, y)-plane, and β is a positive constant. If we choose D(b) as the Sobolev space
[H 1(R2)]3, then b is a closed Hermitian bilinear form with dense domain.

The functions in Sobolev spaces can be approximated by smooth functions. Let 
 be a bounded
open set. Then

1. C∞(
) is dense in H m(
)(m ≥ 0).
2. C∞

0 (
) is dense in L p(
).
3. C∞

0 (RN ) is dense in H m(RN )(m ≥ 0).
4. Hm

0 (RN ) = H m(RN ).

Note that C∞
0 (
) is not dense in H m(
) if 
 is a bounded open set.

7.1.5 Min-Max Principle

Let B̂ be a self-adjoint operator that is bounded from below (B̂u, u) ≥ c1 ‖u‖2. Define

λn(B̂) = sup
u1,u2,···,un−1

inf
u∈D(B̂),‖u‖=1
u∈[u1,u2,···,un−1]⊥

(B̂u, u), (7.13)

where [u1, u2, · · · , um]⊥ = {u| (u, ui ) = 0, i = 1, 2, · · · , m}. Note that the ui are not neces-
sarily independent. For each fixed n, the min-max principle states that

either

1. there are n eigenvalues (counting degenerate eigenvalues a number of times equal to their
multiplicity) below the bottom of the essential spectrum, and λn(B̂) is the nth eigenvalue;

or
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2. λn is the bottom of the essential spectrum, that is, λn = inf{λ| λ ∈ σess(B̂)} and in this case
λn = λn+1 = λn+2 = · · ·, and there are at most n − 1 eigenvalues (counting multiplicity)
below λn .

The min-max principle can be used to compare the eigenvalues of operators, to locate where
σess begins, and to prove the existence of eigenvalues.

7.1.6 A Bilinear Form for Maxwell Equations

Let V ∈ R3 be a bounded domain with boundary S. Let L2(V ) be the space of square integrable
functions defined in V with the usual inner product (u, v)V = ∫

V
uv̄dV and L2(S) the space of

square integrable function defined on the boundary S with the inner product (u, v)S = ∫

S
uv̄d S.

For vector functions a, b ∈ [L2(V )]3, the inner product is defined by (a, b)V = ∫

V
a · b̄dV .

Similarly we can define (a, b)S = ∫

S
a · b̄d S, a, b ∈ [L2(S)]3. The Green’s identities can thus

be written as

(∇ × a, b)V − (a,∇ × b)V = (un × a, b)S,

(∇ · a, ϕ)V + (a,∇ϕ)V = (un · a, ϕ)S.
(7.14)

where un is the unit outward normal of S. If the region V is source free, the electric field in V
satisfies

∇ × ↔
µ

−1 · ∇ × E(r) − ω2↔
ε · E(r) = 0,

where
↔
µ(r) and

↔
ε(r) are permeability and permittivity tensors (3 × 3 matrices) of the medium

in V respectively, and they are functions of position. Since ∇ · (
↔
ε · E) = 0, the above equation

can be regularized as

B̂(E) = ∇ × ↔
µ

−1 · ∇ × E(r) − ↔
ε

∗∇τ∇ · (
↔
ε · E) = ω2↔

ε · E(r),

where B̂ = ∇ × ↔
µ

−1 · ∇ × · − ↔
ε

∗∇τ∇ · (
↔
ε·); ∗ denotes the adjoint; and τ is an arbitrary

function. For E, F ∈ [C2(V )]3, we have

(B̂(E), F)V = b(E, F) + (un × (
↔
µ

−1 · ∇ × E), F)S − (τ∇ · (
↔
ε · F), un · (

↔
ε · F))S, (7.15)

where

b(E, F) =
∫

V

{

(
↔
µ

−1 · ∇ × E) · (∇ × F̄) + τ [∇ · (
↔
ε · E)][∇ · (

↔
ε · F)]

}

dV
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is a bilinear form. It can be shown that this bilinear form is bounded from below (Costabel,
1991). Let H = {E ∈ [H 1(V )]3

∣
∣ un × E = 0 on S}. For the operator equation

B̂(E) = f, E ∈ [C2(V )]3, f ∈ [L2(V )]3,

un × E = 0 on S,

we may introduce the weak formulation (variational formulation): Find E ∈ H such that

b(E, F) = (f, F) (7.16)

for f ∈ [L2(V )]3 and for all F ∈ H . From (7.15), we can see that E satisfies the natural
boundary condition

∇ · (
↔
ε · E) = 0, on S. (7.17)

7.2 Plane Waves in Inhomogeneous Media

The calculation of fields in an inhomogeneous medium is a very difficult task. Exact solutions
can be obtained only in some simple situations, one of which is when the medium parameters
depend on one of the coordinates only.

7.2.1 Wave Equations in Inhomogeneous Media

Assume that the medium is inhomogeneous and isotropic so that D = εE and B = µH in
frequency domain. The wave equations for the time-harmonic fields in a source-free region
are

∇ × µ−1∇ × E(r) − ω2εE(r) = 0,

∇ × ε−1∇ × H(r) − ω2µH(r) = 0.
(7.18)

Let us consider the case where the medium parameters depend on one coordinate only, say, z.
We may write µ = µ(z) and ε = ε(z). If the electric field has only one component such that

E = (Ex , Ey, Ez) = (0, Ey, 0),

we have ∇ · D = ∂(εEy)/∂y = 0, which is equivalent to ∂ Ey/∂y = 0. From the first equation
of (7.18) we obtain

[
∂2

∂x2
+ µ(z)

∂

∂z
µ−1(z)

∂

∂z
+ ω2µ(z)ε(z)

]

Ey = 0. (7.19)

Similarly if the magnetic field has only one component such that

H = (Hx , Hy, Hz) = (0, Hy, 0),
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we obtain

[
∂2

∂x2
+ ε(z)

∂

∂z
ε−1(z)

∂

∂z
+ ω2µ(z)ε(z)

]

Hy = 0. (7.20)

7.2.2 Waves in Slowly Varying Layered Media and WKB Approximation

Both (7.19) and (7.20) are differential equations with variable coefficients. By the method of
separation of variables, we may let

Ey(x, z) = ey(z)e± jkx x , Hy(x, z) = hy(z)e± jkx x .

Introducing these into (7.19) and (7.20) yields

[

µ(z)
d

dz
µ−1(z)

d

∂z
+ ω2µ(z)ε(z) − k2

x

]

ey = 0,

[

ε(z)
∂

∂z
ε−1(z)

∂

∂z
+ ω2µ(z)ε(z) − k2

x

]

hy = 0.

(7.21)

If µ(z) and ε(z) are slowly varying functions of z, Equations (7.21) may be approximated by

d2ψ

dz2
+ k2(z)ψ = 0 (7.22)

where ψ denotes ey or hy , and k2(z) = ω2µ(z)ε(z) − k2
x is a slowly varying function of z. We

assume that the solution is of the form

ψ(z) = A(z)e− jφ(z) (7.23)

and substitute it into (7.22), to obtain

A′′(z) + {

k2(z) − [φ ′(z)]2
}

A(z) − 2 jφ′(z)A′(z) − jφ′′(z)A(z) = 0,

where the prime denotes the derivative with respect to z. The real and imaginary parts of the
left-hand side of the above equation must be zero, yielding

A′′(z) + {k2(z) − [φ′(z)]2}A(z) = 0,

φ′′(z)A(z) + 2φ ′(z)A′(z) = 0.
(7.24)

We further assume that A′′/A is much smaller than the difference k2 − (φ′)2, and the upper
equation of (7.24) may be approximated by

k2(z) − [φ′(z)]2 = 0.
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The solution is

φ(z) = ±
z∫

z0

k(z)dz, (7.25)

where z0 is some initial value. Using (7.25), the lower equation of (7.24) can be written as

A′

A
= − φ′′

2φ′ = − k ′

2k
.

The solution of the equation is

A(z) = A(z0)

√

k(z0)

k(z)
. (7.26)

Substituting (7.25) and (7.26) into (7.23) gives the approximate solution

ψ(z) = 1√
k(z)

⎧

⎨

⎩
C0 exp

⎡

⎣− j

z∫

z0

k(z)dz

⎤

⎦ + D0 exp

⎡

⎣ j

z∫

z0

k(z)dz

⎤

⎦

⎫

⎬

⎭
, (7.27)

where C0, D0 and z0 are constants. The above procedure is known as WKB approximation,
named after the German physicist Gregor Wentzel (1898–1978), the Dutch physicist Hendrik
Anthony Kramers (1894–1952), and the French physicist Léon Brillouin, who developed the
method in 1926.

7.2.3 High Frequency Approximations and Geometric Optics

The time-harmonic Maxwell equations in an isotropic inhomogeneous medium take the form

∇ × H(r) = jωε(r)E(r),

∇ × E(r) = − jωµ(r)H(r),

∇ · [ε(r)E(r)] = 0,∇ · [ε(r)H(r)] = 0.

(7.28)

The refractive index n of the medium is defined by n = √
µε/µ0ε0, where µ0 and ε0 are the

permeability and permittivity in free space. The wavenumber in free space will be denoted by
k0 = ω

√
µ0ε0. Similar to (7.23), we assume that

E = E0(r)e− jk0 L(r), H = H0(r)e− jk0 L(r). (7.29)
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The function L(r) is known as eikonal. The wavefronts are defined as the surfaces of constant
phase: L(r) = const. Substituting (7.29) into (7.28), we obtain

H0(r) × ∇L(r) − ωε(r)

k0
E0(r) = j

1

k0
∇ × H0(r),

E0(r) × ∇L(r) + ωµ(r)

k0
H0(r) = j

1

k0
∇ × E0(r),

E0(r) · ∇L(r) = 1

jk0
[E0(r) · ∇ ln ε(r) + ∇ · E0(r)] ,

H0(r) · ∇L(r) = 1

jk0
[H0(r) · ∇ ln µ(r) + ∇ · H0(r)] .

(7.30)

If the frequency is very high, k0 becomes very large and the right-hand side of (7.30) can be
equated to zero. There results

H0(r) × ∇L(r) − ωε(r)

k0
E0(r) = 0,

E0(r) × ∇L(r) + ωµ(r)

k0
H0(r) = 0,

E0(r) · ∇L(r) = 0,

H0(r) · ∇L(r) = 0.

(7.31)

The last two equations show that E0 and H0 are transverse to ∇L , that is, transverse to the
direction of propagation of the wavefront. From the first two equations of (7.31), it is easy to
see that E0 · H0 = 0. Therefore, the field is locally a plane wave. If H0(r) is eliminated from
the first two equations of (7.31), then

n2(r)E0(r) + [∇L(r) · E0(r)]∇L(r) − [∇L(r)]2E0(r) = 0.

The second term is zero due to the third equation of (7.31). Thus, if E0 is not identically zero,
it is necessary that

[∇L(r)]2 = n2(r). (7.32)

This is called an eikonal equation.
Making use of the second equation of (7.31), the Poynting vector may be written as

1

2
Re(E × H̄) = 1

2
Re

k0

ωµ̄
|E0(r)|2 ∇ L̄(r)e− jk0(L−L̄).

For real L(r), we have

1

2
Re(E × H̄) = 1

2
Re

k0

ωµ̄
|E0(r)|2 ∇L(r).
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So the direction of energy flow is normal to the wavefront. The curves whose tangent at each
point is the direction of energy flow of the field are known as rays. In optics, the rays are used
to model the propagation of light through an optical system, by representing the light field in
terms of discrete rays. The ray optics can be used to study light reflections and refractions.
Since the rays are normal to the wavefront, we may introduce a unit tangent vector to the rays:

s(r) = 1

n(r)
∇L(r), (7.33)

Let r be a point P on a ray and s be the arc length measured along the ray. Then dr/ds = s,
and

n(r)
dr
ds

= ∇L(r).

Taking the derivative with respect to s and making use of the relation d
ds = dr

ds · ∇, we obtain

d

ds
n(r)

dr
ds

= ∇n(r). (7.34)

This is the differential equation for the rays, called the ray equation, which can be solved
numerically with initial data to determine the rays in a region.

Example 7.4 (Square-law distribution): Consider a square-law medium described by

n(x) = n1[1 − �(x/a)2],

where n1, � and a are constant with �(x/a)2 � 1. Since �(x/a)2 � 1, the above equation
may be written as

n2(x) = n2
1[1 − 2�(x/a)2].

The solution of (7.34) in (x, z)-plane can be obtained by solving the following scalar differential
equations

d

ds
n(x)

dx

ds
= dn(x)

dx
,

d

ds
n(x)

dz

ds
= 0.

From the second equation we obtain

dz

ds
= A

n(x)
,

where A is a constant that can be determined by the initial condition. Assume that the ray
passes through the point (x0, z0). Then

dz

ds

∣
∣
∣
∣
(x0,z0)

= A
1

n(x0)
= cos θ0.
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Here θ0 is the angle between the ray and z-axis at (x0, z0), and A = n(x0) cos θ0. The z-
component of the wavenumber k is

kz(x0, z0) = k0n(x0) cos θ0 = kz(x, z) = k0 A.

Hence we may write

dz

ds
= kz

k0n(x)
. (7.35)

Since the ray is confined in the (x, z)-plane, we have

dr
ds

· dr
ds

=
(

dx

ds

)2

+
(

dz

ds

)2

= 1.

It follows that

dx

ds
=

[

1 −
(

dz

ds

)2
]1/2

. (7.36)

Combining (7.35) and (7.36) gives

dz

dx
= akz

[u2 − v2(x/a)2]1/2
, (7.37)

where u2 = a2(k2
0n2

1 − k2
z ), v2 = a2k2

02�n2
1. Integrating (7.37) gives the equation for the ray

x = x0 cos

(
v

a2kz
z

)

+ a2kz

v
tan θ0 sin

(
v

a2kz
z

)

.

This indicates that the x-coordinate of the ray is a periodic function of its z-coordinate.

Let κ be the curvature of the ray and uc be the unit vector in the direction of the radius of
curvature. Then κuc = ds/ds = (s · ∇)s = −s × ∇ × s. Thus

κ = −uc · (s × ∇ × s) = uc · ∇ ln n.

The above equation indicates that the rays in a homogeneous medium are straight lines. In an
inhomogeneous medium, the rays will bend towards the region of higher refractive index, that
is, towards the region of lower speed of light.
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The behavior of the magnitude E0 can be determined by the Maxwell equations. Introducing
(7.29) into (7.18) yields

1

jk0

[

(∇L · ∇ ln µ − ∇2 L)E0 − 2(∇L · ∇)E0 − (E0 · ∇ ln µ)∇L + (∇ · E0)∇L
]

+ [

(∇L)2 − n2
]

E0 + 1

( jk0)2

[∇2E0 + ∇ ln µ × (∇ × E0) − ∇(∇ · E0)
] = 0.

(7.38)

The second term is zero due to the eikonal equation and the third term can be ignored for large
k0. From ∇ · D = 0 we have ∇ · E0 = −E0 · ∇ ln ε. Thus, (7.38) may be written as

(∇L · ∇)E0 + 1

2
(∇2L)E0 + (E0 · ∇ ln n)∇L − 1

2
(∇L · ∇ ln µ)E0 = 0. (7.39)

This is the differential equation for the amplitude E0, called the transport equation. The
amplitude H0 of the magnetic field satisfies the similar transport equation

(∇L · ∇)H0 + 1

2
(∇2 L)H0 + (H0 · ∇ ln n)∇L − 1

2
(∇L · ∇ ln ε)H0 = 0. (7.40)

Taking the scalar product of (7.39) with Ē0 and adding the resultant equation to its conjugate,
we obtain

n
d

ds
|E0|2 + µ |E0|2 ∇ ·

(
1

µ
∇L

)

= 0.

The ratio of the field intensity at s2 of a ray to s1 is then given by

|E0|2s2

|E0|2s1

= exp

⎡

⎣−
s2∫

s1

√
µ

ε
∇ ·

(
1

µ
∇L

)

ds

⎤

⎦ .

Similarly, we have

|H0|2s2

|H0|2s1

= exp

⎡

⎣−
s2∫

s1

√
ε

µ
∇ ·

(
1

ε
∇L

)

ds

⎤

⎦ .

A detailed study about the theory and applications of geometric optics can be found in (Kline
and Kay, 1965; Jones, 1979).
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7.2.4 Reflection and Transmission in Layered Media

If the fields are independent of one Cartesian coordinate, say, the y coordinate, Maxwell
equations in an isotropic and homogeneous medium can be decoupled into two sets of equations

Hx = 1

jωµ

∂ Ey

∂z
, Hz = − 1

jωµ

∂ Ey

∂x
,

(
∂2

∂x2
+ ∂2

∂z2
+ ω2µε

)

Ey = 0,

(7.41)

and

Ex = − 1

jωε

∂ Hy

∂z
, Ez = 1

jωε

∂ Hy

∂x
,

(
∂2

∂x2
+ ∂2

∂z2
+ ω2µε

)

Hy = 0.

(7.42)

The fields determined by (7.41) are called transverse electric (TE) fields, which consist of
one electric field component Ey and two magnetic field components Hx and Hz . The fields
determined by (7.42) are called transverse magnetic (TM) fields, which contain one magnetic
field component Hy and two electric field components Ex and Ez .

Let us consider a TE plane wave Ein = uy E1e−ikz z− jkx x , which is incident upon a layered
medium from layer 1 as shown in Figure 7.1. Assume that the medium parameters µ and ε

depend on the layer number l(l = 1, 2, · · · , m) but are constant inside each layer. The total
fields in the layer l may be expressed as

Ey(x, z) = [

Ale
− jkzl (z−zl ) + Ble

jkzl (z−zl )
]

e− jkx x ,

Hx (x, z) = − kzl

ωµl

[

Ale
− jkzl (z−zl ) − Ble

jkzl (z−zl )
]

e− jkx x ,

Hz(x, z) = kx

ωµl

[

Ale
− jkzl (z−zl ) + Ble

jkzl (z−zl )
]

e− jkx x ,

1 1,εµ

2 2,εµ

m–1 m–1, εµ

m m, εµ
mz

m–1z

z

x Layer 1

Layer 2

Layer m

1z

2z

Figure 7.1 A layered medium
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where the x-component of the wavenumber k has the same value as the incident field. At
z = zl , the tangential fields are given by

Ey(x, zl ) = (Al + Bl)e
− jkx x , Hx (x, zl) = 1

ηl
(Bl − Al)e

− jkx x ,

where ηl = ωµl/kzl . The tangential fields must be continuous across the interface. As a result,
the fields at z = zl−1 can be expressed as

Ey(x, zl−1) = Ey(x, zl) cos ξl − jηl Hx (x, zl) sin ξl,

Hy(x, zl−1) = Hx (x, zl ) cos ξl − j
1

ηl
Ey(x, zl) sin ξl,

(7.43)

where ξl = kzl(zl − zl−1). Introducing the matrices

[Fl] =
[

Ey(x, zl)

Hx (x, zl )

]

, [Kl ] =
⎡

⎣

cos ξl − jηl sin ξl

− j
1

ηl
sin ξl cos ξl

⎤

⎦ ,

Equation (7.43) may be rewritten as

[Fl−1] = [Kl ] · [Fl].

The relationship between the fields at the lower boundary of layer 1 and the fields at the lower
boundary of layer m is

[F1] = [K ] · [Fm], (7.44)

where

[K ] = [K2] · [K3] · · · [Km] =
[

k11 k12

k21 k22

]

.

Since det[Kl] = 1, we have det[K ] = 1 and

[K ]−1 =
[

k22 −k21

−k12 k11

]

.

We may introduce the reflection coefficient Rl and the surface impedance Zl at z = zl

Rl = Bl

Al
, Zl = − Ey(x, zl)

Hx (x, zl)
.

Then

Rl = Zl − ηl

Zl + ηl
, Zl = ηl

1 + Rl

1 − Rl
.
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It follows from (7.44) that

Z1 = k11 Zm − k12

k22 − k11 Zm
.

If the lower boundary of layer m is at z = +∞, we have Bm = 0, Rm = 0 and Zm = ηm . The
study for TM incidence can be carried out similarly.

7.3 Inhomogeneous Metal Waveguides

Inhomogeneously filled waveguides, such as a rectangular waveguide partially filled with
dielectric slabs, are used in a number of waveguide components. The determination of the
propagation constants of the modes in the waveguides is the major focus of our interest.

7.3.1 General Field Relationships

Consider a metal waveguide, which is uniform along the z-axis. The cross-section of the
waveguide is denoted by 
 and its boundary is assumed to be a perfect conductor and is denoted
by � = �1 + �2, as shown in Figure 7.2. The waveguide is filled with an inhomogeneous
medium in which µ and ε are functions of transverse positions but are constant along the
z-axis. Assume that the fields in the waveguide have a z dependence of the form e− jβz

E(r) = e(ρ)e− jβz, H(r) = h(ρ)e− jβz, (7.45)

where ρ = (x, y) ∈ 
 denotes the transverse position. Introducing these into Maxwell equa-
tions, we obtain

∇β × h = jωεe,∇β × e = − jωµh,

∇β · εe = 0,∇β · µh = 0.
(7.46)

Here ∇β = ∇t − jβuz denotes an operator obtained from ∇ by replacing the derivative with
respect to z with multiplication by − jβ, and ∇t is transverse gradient operator. For an arbitrary

nu
y

1Γ
Ω

2Γ
,εµ

x

Figure 7.2 Inhomogeneous waveguide
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vector function f(ρ) and a scalar function u(ρ), we have

∇β · (∇β × f) = 0,

∇β · (uf) = u∇β · f + f · ∇t u,

∇β · (∇βu) = ∇2
t u − β2u,

∇β × (∇βu) = 0,

∇β × ∇β × f = −∇2
t f + β2f + ∇β (∇β · f).

(7.47)

It follows from (7.46) that

∇β × ε−1
r ∇β × h = k2

0µr h,

∇β × µ−1
r ∇β × e = k2

0εr e,

∇β · εr e = 0,∇β · µr h = 0,

(7.48)

where µr = µ/µ0, εr = ε/ε0 and k0 = ω
√

µ0ε0. A solution of (7.48) is called a guided mode
of the waveguide if the field is non-trivial and has finite energy:

(β, k0) ∈ R2, (e, h) �= 0, and e, h ∈ [L2(
)]3.

7.3.2 Symmetric Formulation

It follows from (7.48) that the fields satisfy

∇β × ε−1
r ∇β × h = k2

0µr h,ρ ∈ 
,

un · µr h = 0, un × ε−1
r ∇β × h = 0,ρ ∈ �,

(7.49)

and

∇β × µ−1
r ∇β × e = k2

0εr e,ρ ∈ 
,

un × e = 0, un · µ−1
r ∇β × e = 0,ρ ∈ �,

(7.50)

where un is the unit outward normal on �. Let L2
q (
) denote the space of square integrable

functions defined in 
 with inner product defined by (u, v)q = ∫




quv̄d
 and the corresponding

norm is denoted by ‖·‖q = √

(·, ·)q . We also introduce the product space Hq = [L2
q(
)]3

with an inner product (p1, p2)q = ∫




qp1 · p̄2d
, p1, p2 ∈ Hq . The corresponding norm is still

denoted by ‖·‖q = √

(·, ·)q .
In (7.49) and (7.50), the propagation constant is considered as a parameter while the

wavenumber k0 is taken as the eigenvalue that is a function of β. For a given β, both (7.49)
and (7.50) define a symmetric eigenvalue problem in Hµr and Hεr respectively. From (7.49)
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we obtain

k2
0

∫




µr |h|2 d
 =
∫




1

n2
(∇β × h) · (∇β × h)d


≥ 1

n2+

∫




(∇β × h) · (∇β × h)d


= 1

n2+

∫




(∇β × ∇β × h) · h̄d
,

where n = √
εr and n+ = max

ρ∈

n(ρ). Making use of the last equation of (7.47) and integration

by parts, we have

k2
0

∫




µr |h|2 d
 ≥ 1

n2+

∫




(−∇2
t h + β2h + ∇β∇β · h) · h̄d


= 1

n2+

∫




(|∇t × h|2 + |∇t · h|2 − ∣
∣∇β · h

∣
∣
2
)d
 + β2

n2+

∫




|h|2 d
.

If µr is a constant, we have ∇β · h = 0 and the above is equivalent to

∫




(|∇t × h|2 + |∇t · h|2)d
 + (β2 − k2
0µr n2

+)
∫




|h|2 d
 ≤ 0. (7.51)

As a result, if |β| ≥ k0
√

µr n+, then h = 0 and (7.49) has a trivial solution. In other words, no
guided modes exist in this case. Hence the solution (β, k0) of (7.49) or (7.50) must satisfy

k0 >
|β|√
µr n+

. (7.52)

This is the guidance condition for an inhomogeneously filled waveguide.

7.3.3 Asymmetric Formulation

In engineering, the propagation constant β is usually considered as the eigenvalue while the
frequency or the wavenumber k0 is taken as a parameter. This arrangement often yields a
non-symmetric eigenvalue problem, which is more difficult to study. The guided modes in the
waveguide may be decomposed into a transverse and a longitudinal component

E(r) = [et (ρ) + uzez(ρ)]e− jβz, H(r) = [ht (ρ) + uzhz(ρ)]e− jβz . (7.53)
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Introducing these into Maxwell equations, we obtain

∇ × ht = jωεuzez,∇ × et = − jωµuzhz,

jβuz × ht + uz × ∇hz = − jωεet ,

jβuz × et + uz × ∇ez = jωµht ,

∇ · εet = jβεez,∇ · µht = jβµhz.

(7.54)

By eliminating ht , ez and hz , we have the following eigenvalue problem

µ∇ × µ−1∇ × et − ∇ε−1∇ · εe − (ω2µε − β2)et = 0,ρ ∈ 
,

un × et = 0,∇ · εet = 0,ρ ∈ �.
(7.55)

In (7.55), β2 is taken as the eigenvalue and ω2 as the parameter. The differential operator in
(7.55) is not symmetric. Let etm and etn be two different eigenfunctions corresponding to the
eigenvalues β2

m and β2
n respectively. Then

µ∇ × µ−1∇ × etm − ∇ε−1∇ · εetm − (ω2µε − β2
m)etm = 0.

Taking the scalar product of the above equation with ∇ × µ−1∇ × etn − ω2εetn and integrating
the resultant equation over 
 yields

∫




µ(∇ × µ−1∇ × etm − ω2εetm) · (∇ × µ−1∇ × etn − ω2εetn)d


−
∫




ω2ε−1(∇ · εetm)(∇ · εetn)d
 + β2
m

∫




(µ−1∇ × etm · ∇ × etn − ω2εetm · etn)d
 = 0.

(7.56)

Interchanging m and n and subtracting the result from (7.56) gives

(

β2
m − β2

n

)
∫




(µ−1∇ × etm · ∇ × etn − ω2εetm · etn)d
 = 0. (7.57)

This implies the following orthogonality relation

∫




(µ−1∇ × etm · ∇ × etn − ω2εetm · etn)d
 = 0, (7.58)

if β2
m �= β2

n . From (7.54), the transverse magnetic field can be expressed in terms of the
transverse electric field

uz × ht = 1

ωβ
(∇ × µ−1∇ × et − ω2εet ),
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and the orthogonality relation (7.58) can be written as

∫




(etm × htn) · uzd
 = 0, m �= n. (7.59)

This is the most general form of the orthogonality relation in a waveguide. The modes in a
waveguide filled with homogeneous medium can be classified into TEM, TE and TM modes.
In an inhomogeneous waveguide, such a classification is impossible since the modes contain
both ez and hz .

7.4 Optical Fibers

An optical fiber consists of a core of dielectric material surrounded by a cladding of another
dielectric material which has lower refractive index than that of the core. The electromagnetic
fields are confined in the core region due to the total internal reflection and the fiber acts as a
waveguide. Optical fibers have been widely used in fiber-optic communication, and they carry
much more information and travel longer distances than conventional metal wires. Moreover,
they are immune to electromagnetic interferences.

7.4.1 Circular Optical Fiber

In a cylindrical system, the total fields can be decomposed into a sum of the transverse
component and longitudinal component

E = Et + uz Ez, H = Ht + uz Hz .

If the fields have a z dependence of the form e− jβz , we have the decomposition ∇ = ∇t − jβuz .
From Maxwell equations, the transverse fields may be expressed in terms of the longitudinal
fields as

Et = 1

k2
c

[− jωµ∇t × (uz Hz) − jβ∇t Ez] ,

Ht = 1

k2
c

[ jωε∇t × (uz Ez) − jβ∇t Hz] ,

(7.60)

where k2
c = ω2µε − β2. The longitudinal components satisfy the two-dimensional Helmholtz

equation

(∇2
t + k2

c

)

Ez = 0,
(∇2

t + k2
c

)

Hz = 0. (7.61)

Consider the circular optical fiber shown in Figure 7.3. The core is the circular region of
radius a with medium parameters µ0, εr1ε0. The external region is the cladding with medium
parameters µ0, εr2ε0. The refractive indices ni = √

εri (i = 1, 2) are assumed to be constants.
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a ϕ

y

x

ρ

Figure 7.3 Circular optical fiber

The solutions of (7.61) in the core region must be finite, and may be written as

Ez1 = A1
Jm(kc1ρ)

Jm(kc1a)
e jmϕe− jβz = A1

Jm(uρ ′)
Jm(u)

e jmϕe− jβz,

Hz1 = B1
Jm(kc1ρ)

Jm(kc1a)
e jmϕe− jβz = B1

Jm(uρ ′)
Jm(u)

e jmϕe− jβz,

where k2
c1 = k2

0n2
1 − β2; k2

0 = ω2µ0ε0; u = kc1a; ρ ′ = ρ/a; A1 and B1 are constants to be
determined by boundary conditions. The solutions of (7.61) in the cladding region must
decrease as ρ increases to guarantee that the fields are square integrable (that is, the energy is
finite), and they are given by

Ez2 = A2
Km(kc2ρ)

Km(kc2a)
e jmϕe− jβz = A2

Km(vρ ′)
Km(v)

e jmϕe− jβz,

Hz2 = B2
Km(kc2ρ)

Km(kc2a)
e jmϕe− jβz = B2

Km(vρ ′)
Km(v)

e jmϕe− jβz,

where Km are modified Bessel functions of the second kind, and k2
c2 = β2 − k2

0n2
2 and v = kc2a.

The transverse field components can then be determined from (7.60). In the core region, the
fields are

Eρ1 = − j
(a

u

)2
[

uβ J ′
m(uρ ′)

a Jm(u)
A1 + jωµ0m Jm(uρ′)

ρ Jn(u)
B1

]

e jmϕe− jβz,

Eϕ1 = − j
(a

u

)2
[

jβm Jm(uρ′)
ρ Jm(u)

A1 − ωµ0u J ′
m(uρ ′)

a Jm(u)
B1

]

e jmϕe− jβz,

Hρ1 = − j
(a

u

)2
[

uβ J ′
m(uρ ′)

a Jm(u)
B1 − jωε0n2

1m Jm(uρ ′)
ρ Jm(u)

A1

]

e jmϕe− jβz,

Hϕ1 = − j
(a

u

)2
[

jβm Jm(uρ ′)
ρ Jm(u)

B1 + ωε0n2
1u J ′

m(uρ′)
a Jm(u)

A1

]

e jmϕe− jβz .
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In the cladding region, the fields are

Eρ2 = j
(a

v

)2
[

vβK ′
m(vρ ′)

aKm(v)
A2 + jωµ0mKn(vρ ′)

ρKm(v)
B2

]

e jmϕe− jβz,

Eϕ2 = j
(a

v

)2
[

jβmKm(vρ ′)
ρKm(v)

A2 − ωµ0vK ′
m(vρ ′)

aKm(v)
B2

]

e jmϕe− jβz,

Hρ2 = j
(a

v

)2
[

vβK ′
m(vρ ′)

aKm(v)
B2 − jωε0n2

2mKm(vρ ′)
ρKm(v)

A2

]

e jmϕe− jβz,

Hϕ2 = j
(a

v

)2
[

jβmKm(vρ ′)
ρKm(v)

B2 + ωε0n2
2vK ′

m(vρ ′)
aKm(v)

A2

]

e jmϕe− jβz .

The boundary conditions at ρ = a require that the tangential fields must be continuous, which
leads to

A1 = A2, B1 = B2,

−
(a

u

)2
[

jβm

ρ
A1 − ωµ0u J ′

m(u)

a Jm(u)
B1

]

=
(a

v

)2
[

jβm

ρ
A2 − ωµ0vK ′

m(v)

aKm(v)
B2

]

,

−
(a

u

)2
[

jβm

ρ
B1 + ωε0n2

1u J ′
n(u)

a Jm(u)
A1

]

=
(a

v

)2
[

jβm

ρ
B2 + ωε0n2

2vK ′
m(v)

aKm(v)
A2

]

.

This set of linear equations can be reduced to

A1

(
1

u2
+ 1

v2

)
jβm

a
− B1

ωµ0

a

[
1

u

J ′
m(u)

Jm(u)
+ 1

v

K ′
m(v)

Km(v)

]

= 0,

A1
ωε0

a

[
n2

1

u

J ′
m(u)

Jm(u)
+ n2

2

v

K ′
m(v)

Km(v)

]

+ B1
jβm

a

(
1

u2
+ 1

v2

)

= 0.

A non-trivial solution of the above set of equations requires that the determinant of the
coefficient matrix vanishes, yielding

[
1

u

J ′
m(u)

Jm(u)
+ 1

v

K ′
m(v)

Km(v)

] [
n2

1

u

J ′
m(u)

Jm(u)
+ n2

2

v

K ′
m(v)

Km(v)

]

= m2β2

k2
0

(
1

u2
+ 1

v2

)

,

which can be used to determine the propagation constant β. For the guided modes, both kc1

and kc2 must be positive. This requires

k0n2 ≤ β ≤ k0n1. (7.62)

When β = k0n2, we have kc2 = 0, which is called the cut-off condition. Note that the propa-
gation constant β is not equal to zero when the optical fiber is at cut-off. This is different from
a hollow metal waveguide. If kc2 < 0, the fields will radiate in ρ direction, and at same time,
they still propagate along z direction. Such field distributions are called radiation modes.
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y

x
cΩ

∞Ω

Figure 7.4 An optical fiber

7.4.2 Guidance Condition

Let 
c denote the cross-section of the core region of an arbitrary fiber, and the exterior region
(the cladding) be denoted by 
∞, as shown in Figure 7.4. The medium parameters of the
fiber are given by µ0, εr ε0. The refractive index of the fiber is denoted by n(ρ) = √

εr , which
is a positive function of the transverse coordinates ρ = (x, y) only. We assume that the fiber
cladding is homogeneous and extends infinitely in the transverse (x, y)-plane. This assumption
is reasonable since the radius of the core is very small compared to the radius of the cladding
in practice. The refractive index of the cladding is thus a constant, denoted by n(ρ) = n∞.
If the index n is piecewise constant, the fiber is called a step-index fiber. If the index n is a
continuous function, the fiber is called a graded-index fiber. For an optical fiber, Equation
(7.48) reduces to

∇β × n−2∇β × h = k2
0h,

∇β × ∇β × e = k2
0n2e,

∇β · n2e = 0,∇β · h = 0.

(7.63)

Multiplying both sides of the first equation by h̄ and integrating over (x, y)-plane by use of
integration by parts, we obtain

k2
0

∫

R2

|h|2 d
 =
∫

R2

1

n2
(∇β × h) · (∇β × h)d


≥ 1

n2+

∫

R2

(∇β × h) · (∇β × h)d


= 1

n2+

∫

R2

(∇β × ∇β × h) · h̄d
,

where n+ = max
ρ∈R2

n(ρ). Making use of the last equation of (7.47) and integration by parts again,

we have

k2
0

∫

R2

|h|2 d
 ≥ 1

n2+

∫

R2

(−∇2
t h + β2h) · h̄d


= 1

n2+

∫

R2

(|∇t × h|2 + |∇t · h|2)d
 + β2

n2+

∫

R2

|h|2 d
.
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This is equivalent to

∫

R2

(|∇t × h|2 + |∇t · h|2)d
 + (

β2 − k2
0n2

+
)
∫

R2

|h|2 d
 ≤ 0. (7.64)

If |β| ≥ k0n+ the above inequality implies h = e = 0, and no guided modes exist in the optical
fiber. Therefore, the guided solution (β, k) of (7.63) must satisfy

k0 > |β|/n+. (7.65)

In the region 
∞, the first equation of (7.63) becomes

∇2
t h + (

k2
0n2

∞ − β2
)

h = 0,ρ ∈ 
∞.

From the uniqueness theorem for Helmholtz equation, the above relation implies that h must
be zero in R2 − D (D is a disk containing the core region 
c) in order that h ∈ [L2(R2)]3

if k0 > |β|/n∞, and hence h must be identically zero in R2. Therefore, the guided solution
(β, k0) of (7.63) must also satisfy

k0 ≤ |β|/n∞. (7.66)

Combining (7.65) and (7.66) gives

|β|/n+ < k0 ≤ |β|/n∞. (7.67)

The expression is similar to (7.62) and implies

n+ > n∞. (7.68)

This is called the guidance condition for the optical fiber.

7.4.3 Eigenvalues and Essential Spectrum

Consider the optical fiber shown in Figure 7.4 and let H = [L2(R2)]3. The inner product of H
is defined by (h1, h2) = ∫

R2

h1 · h̄2d
. Considering the last equation of (7.63), the first equation

of (7.63) can be modified as follows

∇β × 1

n2
∇β × h − 1

n2∞
∇β (∇β · h) = B̂(h) = k2h, (7.69)



P1: OTA/XYZ P2: ABC
c07 BLBK281-Wen March 4, 2010 12:30 Printer Name: Yet to Come

314 Fields in Inhomogeneous Media

where B̂ = ∇β × n−2∇β × (·) − n−2
∞ ∇β∇β(·). Equation (7.69) is a two-dimensional eigen-

value problem. For convenience, we let D(B̂) = [C∞
0 (R2)]3. For all h1, h2 ∈ D(B̂), we have

(B̂(h1), h2) =
∫

R2

[

∇β × 1

n2
∇β × h1 − 1

n2∞
∇β(∇β · h1)

]

· h̄2d
,

(7.70)

=
∫

R2

(
1

n2
∇β × h1 · ∇β × h2 + 1

n2∞
∇β · h1∇β · h2

)

d
.

Hence B̂ is a symmetric operator. Let n− be defined by n− = min
ρ∈R2

n(ρ). It follows from (7.70)

that

(B̂(h1), h2) ≥ 1

n2+

∫

R2

(∇β × h1 · ∇β × h2 + ∇β · h1∇β · h2)d
,

(B̂(h1), h2) ≤ 1

n2−

∫

R2

(∇β × h1 · ∇β × h2 + ∇β · h1∇β · h2)d
.

(7.71)

For all h1, h2 ∈ D(B̂), we have

∫

R2

(∇β × h1 · ∇β × h2 + ∇β · h1∇β · h2)d


=
∫

R2

(−h̄2 · ∇2
t h1 + β2h1 · h̄2 + h̄2 · ∇β(∇β · h1) + ∇β · h1∇β · h2)d


=
∫

R2

(−h̄2 · ∇2
t h1 + β2h1 · h̄2)d
,

(7.72)

and (7.71) implies

(B̂(h), h) ≥ 1

n2+

∫

R2

(|∇t × h|2 + |∇t · h|2 + β2 |h|2)d
,

(B̂(h), h) ≤ 1

n2−

∫

R2

(|∇t × h|2 + |∇t · h|2 + β2 |h|2)d
.

(7.73)

Hence B̂ is positive-bounded-below if β �= 0 and we may introduce the energy product
(h1, h2)B̂ = (B̂(h1), h2). The completion of D(B̂) with respect to the energy norm ‖·‖B̂ is
the energy space HB̂ . We now show that HB̂ is isomorphic to the space

H (∇t×,∇t ·) = {

h ∈ [L2(R2)]3
∣
∣∇t × h ∈ [L2(R2)]3,∇t · h ∈ L2(R2)

}
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equipped with the norm

‖h‖H (∇t ×,∇t ·) = (‖h‖2 + ‖∇t × h‖2 + ‖∇t · h‖2)1/2,

where all derivatives are understood in the generalized sense. Let h ∈ HB̂ . Then there exists
admissible sequence {hn ∈ D(B̂)} for h such that

hn ————−→
n→∞ h (7.74)

in H and {hn} is a Cauchy sequence in HB̂ . From (7.73), we obtain

1

n2−

∫

R2

(|∇t × hn − ∇t × hm |2 + |∇t · hn − ∇t · hm |2 + β2 |hn − hm |2)d
 ≤ ‖hn − hm‖2
B̂

≤ 1

n2+

∫

R2

(|∇t × hn − ∇t × hm |2 + |∇t · hn − ∇t · hm |2 + β2 |hn − hm |2)d
. (7.75)

Consequently, {∇t × hn} and {∇t · hn} are Cauchy sequences in [L2(R2)]3 and L2(R2) respec-
tively. As a result, there exist e ∈ [L2(R2)]3, and ρ ∈ L2(R2) such that

∇t × hn ————−→
n→∞

e,∇t · hn ————−→
n→∞

ρ. (7.76)

From

∫

R2

∇t × hn · ϕd
 =
∫

R2

hn · ∇t × ϕd
,ϕ ∈ [C∞
0 (R2)]2,

∫

R2

(∇t · hn)ϕd
 = −
∫

R2

hn · ∇tϕd
,ϕ ∈ C∞
0 (R2),

we obtain

∫

R2

e · ϕd
 =
∫

R2

h · ∇t × ϕd
,ϕ ∈ [C∞
0 (R2)]2,

∫

R2

ρϕd
 = −
∫

R2

h · ∇tϕd
,ϕ ∈ C∞
0 (R2).

Therefore, ∇t × h = e and ∇t · h = ρ hold in the generalized sense. By (7.74) and (7.76),
we have h ∈ H (∇t×,∇t ·). On the other hand, if we assume that h ∈ H (∇t×,∇t ·), then there
exists a sequence {hn} ⊂ D(B̂) such that (7.74) and (7.76) hold (since D(B̂) is dense in
H (∇t×,∇t ·)). Thus, {hn} is an admissible sequence for h from (7.75). Therefore, h ∈ HB̂ .
The Friedrichs extension of B̂ is denoted by B̂F . Instead of solving (7.69), we consider the
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following generalized eigenvalue problem

B̂F (h) = ∇β × 1

n2
∇β × h − 1

n2∞
∇β (∇β · h) = k2

0h, (7.77)

where all derivatives are understood in the generalized sense. The bilinear form associated
with B̂F is

b(h1, h2) = (B̂F (h1), h2)

=
∫

R2

(
1

n2
∇β × h1 · ∇β × h2 + 1

n2∞
∇β · h1∇β · h2

)

d
, (7.78)

which is a closed Hermitian bilinear form with D(b) = H (∇t×,∇t ·). From Theorem 7.2 and
(7.73), we obtain

σ (B̂F ) ⊂ [β2/n2
+,+∞). (7.79)

It follows from (7.67) that the eigenvalues k2
0 of B̂F satisfy

σp(B̂F ) ⊂ (|β|2/n2
+, |β|2/n2

∞
]

.

The continuous part of the spectrum is the essential spectrum denoted by σess(B̂F ), which
corresponds to the radiation modes. It can be shown that

σess(B̂F ) = [

β2/n2
∞,+∞)

. (7.80)

To prove this, one may rewrite (7.78) as (Bamberger and Bonnet, 1990)

b(h1, h2) = d(h1, h2) + βd1(h1, h2) + β2d2(h1, h2) (7.81)

with

d (h1, h2) =
∫

R2

(
1

n2
∇t × ht1 · ∇t × h̄t2 + 1

n2∞
∇t · ht1∇t · h̄t2 + 1

n2
∇t hz1 · ∇t h̄z2

)

d


+ β2

n2∞

∫

R2

h1 · h̄2d
,

d1 (h1, h2) = j
∫

R2

(n−2 − n−2
∞ )(∇t hz1 · h̄t2 − ht1 · ∇t h̄z2)d
,

d2 (h1, h2) =
∫

R2

(n−2 − n−2
∞ )ht1 · h̄t2d
.



P1: OTA/XYZ P2: ABC
c07 BLBK281-Wen March 4, 2010 12:30 Printer Name: Yet to Come

Optical Fibers 317

It is easy to show that d0, d1 and d2 are Hermitian and continuous on H (∇t×,∇t ·). We have

d (h, h) ≥ 1

n2+

∫

R2

(|∇t × ht |2 + |∇t · ht |2 + |∇t hz |2)d
 + β2

n2∞

∫

R2

|h|2 d


≥ min

{
1

n2+
,

β2

n2∞

}∫

R2

(|∇t × h|2 + |∇t · h|2 + |h|2 + |∇t hz|2)d


(7.82)

≥ min

{
1

n2+
,

β2

n2∞

}
⎡

⎣

∫

R2

(|∇t × h|2 + |∇t · h|2 + |h|2)d


⎤

⎦

= min

{
1

n2+
,

β2

n2∞

}

‖h‖2
H (∇t ×,∇t ·) .

Let ci (i = 1, 2, · · ·) denote constants. We now show that

|d1(h, h)| ≤ c1d(h, h), |d2(h, h)| ≤ c2d(h, h). (7.83)

Since n−2 − n−2
∞ is zero outside 
c, we may write

|d1(h, h)| ≤ c3

∣
∣
∣
∣
∣
∣

∫


c

(∇t hz · h̄t − ht · ∇t h̄z)d


∣
∣
∣
∣
∣
∣

≤ c3

∫


c

(
∣
∣∇t hz · h̄t

∣
∣ + ∣

∣ht · ∇t h̄z

∣
∣)d
 ≤ 2c3

∫


c

|∇t hz| · ∣∣h̄t

∣
∣ d
.

Therefore,

|d1(h, h)| ≤ c3

∫


c

(|∇t hz |2 + |ht |2)d
, (7.84)

|d1(h, h)| ≤ c4

∫


c

|∇t hz |2 d


∫


c

|ht |2 d
. (7.85)

It is readily found that

d2(h, h) ≤ c5

∫


c

|h|2 d
. (7.86)

Thus (7.83) holds due to (7.84) and (7.86). Consider a sequence {hn} ⊂ H (∇t×,∇t ·) such that

‖hn‖2 + d(hn, hn) ≤ c6.
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This inequality implies

‖hn‖H (∇t ×,∇t ·) ≤ c7.

It is easy to see that H (∇t×,∇t ·) is compactly embedded in [L2(R2)]3. As a result, there is a
subsequence, still denoted by {hn} such that

‖hm − hn‖ → 0 (7.87)

as m, n → ∞. It follows from (7.85), (7.86) and (7.87) that

|d1(hm − hn, hm − hn)| → 0,

|d2(hm − hn, hm − hn)| → 0.

By Theorem 7.3, we have

σess(B̂F ) = σess(D̂),

where D̂ is the operator associated with the form d. We now show that σess(D̂) =
[β2/n2

∞,+∞). To this purpose, we only need to show that σess(D̂0) = [0,+∞), where D̂0 is
the operator associated with d0 defined by

d0 (h1, h2) =
∫

R2

(
1

n2
∇t × ht1 · ∇t × h̄t2 + 1

n2∞
∇t · ht1∇t · h̄t2 + 1

n2
∇t hz1 · ∇t h̄z2

)

d
.

Making use of (7.79) with β = 0, we have σess(D̂0) ⊂ [0,+∞). We only need to prove
that (0,+∞) ⊂ σess(D̂0) since σess(D̂0) is closed. Let us consider the sequence {hn} with
(Bamberger and Bonnet, 1990)

hn(ρ) = 1√
n
ψ(ρ/n)J0(

√
γρ)h0,ρ ∈ R2,

where ψ is a function of C∞
0 (R2) which vanishes in 
c, h0 is a vector in C3 (C is the complex

plane), γ ∈ (0,+∞) is an arbitrary positive real number. By properly choosing h0, it is easy
to show that

1. ‖hn‖ = 1.
2.

∥
∥D̂0hn − γ hn

∥
∥ → 0, n → ∞.

3. hn
w

————−→
n→∞

0 in H .

By Theorem 7.1, we have (0,+∞) ⊂ σess(D̂0). Thus, we have proved (7.80).
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In order to find the dispersion relation for the guided modes, we must find all pairs (β, k0)
with β > 0, k0 > 0 such that there exists h �= 0 satisfying (7.77) or

b(h, h) = k2
0(h, h). (7.88)

The eigenvalues k2
0 as a function of β can be obtained by applying the min-max principle. Let

λm(β) = sup
h1,h2,···,hm−1∈[L2(R2)]3

inf
h∈[L(R2)]3,‖h‖=1
h∈[h1,h2,···,hm−1]⊥

b(h, h). (7.89)

The solutions of (β, k0) of (7.88) are the roots of the dispersion relation

k2
0 = λm(β), m = 1, 2, · · · . (7.90)

Note that we may use (7.81) to write (7.88) as

β2

[

d2(h, h) + 1

n2∞
(h, h)

]

+ βd1(h, h) + d0(h, h) − k2
0(h, h) = 0. (7.91)

Given the wavenumber k0, the quadratic equation has two solutions β1,2(k0).

Remark 7.1 (Weakly guiding approximation): Denote τ = 1 − n2
∞/n2

+. An optical fiber is
called weakly guiding if τ � 1. Let ξ (ρ) = (1 − n2/n2

+)/τ . Then, 0 ≤ ξ (ρ) ≤ 1. It follows
from (7.54) that

∇2
t et + ∇t (et · ∇t ln n2) + k2

0n2et = β2et ,ρ ∈ R2. (7.92)

The second term is negligible if the optical fiber is weakly guiding since

−∇t ln n2 = −∇t ln(1 − τξ ) = τ∇tξ + τ 2∇t (ξ
2) + · · · .

In weak guidance, Equation (7.92) reduces to

∇2
t et + k2

0n2et = β2et .

The equation can be solved using k2
0 as the parameter and β2 as the eigenvalue.

7.5 Inhomogeneous Cavity Resonator

Inhomogeneous cavity resonators are often found in microwave engineering. For example, a
dielectric resonator enclosed by a metal shield to prevent radiation forms an inhomogeneous
cavity resonator. Another example is to use a metal cavity to measure the dielectric constant
of a sample placed inside the cavity.
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7.5.1 Mode Theory

By eliminating H from the time-harmonic Maxwell equations in an inhomogeneous metal
cavity, which occupies a region V bounded by a conducting surface S, we may find that the
electric field E satisfies the following eigenvalue equation

∇ × µ−1
r ∇ × E(r) = k2

e εr E(r), r ∈ V,

un × E(r) = 0, r ∈ S,
(7.93)

where µr = µ/µ0 and εr = ε/ε0 are relative permeability and permittivity of the medium filled
in the cavity respectively, and k2

e is the eigenvalue to be determined. The above equation implies
that ∇ · εr E(r) = 0. Instead of solving (7.93), we may consider the following regularized
eigenvalue problem

ε−1
r ∇ × µ−1

r ∇ × E − ∇∇ · εr E − k2
e E = 0, r ∈ V,

un × E = 0,∇ · εr E = 0, r ∈ S.
(7.94)

Since the first equation does not imply the divergence-free condition ∇ · εr E(r) = 0, the
boundary condition ∇ · εr E = 0 has been introduced in (7.94). The advantage of (7.94) is
that it is an elliptical differential equation of second order. Similarly, we can construct the
following eigenvalue problem for the magnetic field

µ−1
r ∇ × ε−1

r ∇ × H − ∇∇ · µr H − k2
hH = 0, r ∈ V,

un · µr H = 0, un × ε−1
r ∇ × H = 0, r ∈ S.

(7.95)

Introducing the operator B̂e = ε−1
r ∇ × µ−1

r ∇ × −∇∇ · εr , Equation (7.94) can be written as

B̂e(E) = k2
e E, r ∈ V,

un × E = 0,∇ · εr E = 0, r ∈ S.
(7.96)

The domain of definition of the operator B̂e is

D(B̂e) = {

E| E ∈ [C∞(V )]3, un × E = 0,∇ · εr E = 0, r ∈ S
}

. (7.97)

Let L2
εr

(V ) denote the space of square integrable functions defined in V with inner product

defined by (u, v)εr = ∫

V
εr uvdV and the corresponding norm is denoted by ‖·‖εr

= (·, ·)1/2
εr .

We also introduce the inner product space Hεr = [L2
εr

(V )]3 whose inner product is defined by

(E1, E2)εr =
∫

V

εr E1 · E2dV , E1, E2 ∈ Hεr .
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The corresponding norm is still denoted by ‖·‖εr
= √

(·, ·)εr . For all E1, E2 ∈ D(B̂e), we have

(B̂e(E1), E2)εr =
∫

V

(∇ × µ−1
r ∇ × E1 − εr∇∇ · εr E1) · E2dV

=
∫

V

[

µ−1
r ∇ × E1 · ∇ × E2 + (∇ · εr E1)(∇ · εr E2)

]

dV

from integration by parts. Therefore, B̂e is symmetric and positive definite. Introducing a
positive parameter ξ , Equation (7.96) can be modified as

Âe(E) = (

k2
e + ξ

)

E, r ∈ V,

un × E = 0,∇ · εr E = 0, r ∈ S,
(7.98)

where Âe = B̂e + ξ Î is symmetric and positive-bounded-below with D( Âe) = D(B̂e). For all
E1, E2 ∈ D( Âe), we may introduce the energy inner product

(E1, E2) Âe
= ( Âe(E1), E2)εr

=
∫

V

[

µ−1
r ∇ × E1 · ∇ × E2 + (∇ · εr E1)(∇ · εr E2) + ξεr E1 · E2

]

dV .

The completion of D( Âe) with respect to the norm ‖·‖Âe
= (·, ·) Âe

is denoted by HÂe
. Let

E ∈ HÂe
. Then there exists an admissible sequence {En ∈ D( Âe)} such that

‖En − E‖εr
————−→

n→∞
0.

Since {En} is a Cauchy sequence in HÂe
, we have

‖En − Em‖Âe
————−→

n,m→∞
0,

which implies

‖∇ × En − ∇ × Em‖εr
————−→

n,m→∞
0,

‖∇ · εr En − ∇ · εr Em‖εr
————−→

n,m→∞
0.

Hence there exist H′ ∈ Hεr and ρ ∈ L2
εr

(V ) such that

∥
∥∇ × En − H′∥∥

εr
————−→

n,m→∞ 0,

‖∇ · εr En − ρ‖εr
————−→

n,m→∞
0.
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From

∫

V

∇ × En · ϕd
 =
∫

V

En · ∇ × ϕd
,ϕ ∈ [C∞
0 (V )]3,

∫

V

(∇ · εr En)ϕdV = −
∫

V

εr En · ∇ϕdV , ϕ ∈ C∞
0 (V ),

we may let n → ∞ to obtain

∫

V

H′ · ϕdV =
∫

V

E · ∇ × ϕdV ,

∫

V

ρϕdV = −
∫

V

εr E · ∇ϕdV .

Therefore, ∇ × E = H′ and ∇ · εr E = ρ hold in the generalized sense. For arbitrary E1, E2 ∈
HÂe

there are admissible sequences {E1n} and {E2n} such that

‖E1n − E1‖εr
————−→

n→∞
0, ‖E2n − E2‖εr

————−→
n→∞

0.

We define

(E1, E2) Âe
= lim

n→∞(E1n, E2n) Âe

=
∫

V

[

µ−1
r ∇ × E1 · ∇ × E2 + (∇ · εr E1)(∇ · εr E2) + ξεr E1 · E2

]

dV,

where the derivatives are understood in the generalized sense. We now prove that the embedding
HÂe

⊂ Hεr is compact. Let Ĵ (E) = E, E ∈ HÂe
. Then the linear operator Ĵ : HÂe

→ Hεr is
continuous since

∥
∥ Ĵ (E)

∥
∥

2

εr
= ‖E‖2

εr
=

∫

V

εr E · EdV ≤ ξ−1 ‖E‖2
Âe

.

A bounded sequence {En} ⊂ HÂe
implies

‖En‖2
Âe

=
∫

V

[

µ−1
r ∇ × En · ∇ × En + (∇ · εr En)(∇ · εr En) + ξεr En · En

]

dV ≤ c1,

where c1 is a constant. The compactness of the operator Ĵ follows from Rellich’s theorem. From
the general eigenvalue theory discussed in section 3.2.1, Equation (7.96) has an infinite set of
eigenvalues 0 ≤ k2

e1 ≤ k2
e2 ≤ · · · ≤ k2

en ≤ · · ·, and k2
en → ∞ as n → ∞. The corresponding
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set of eigenfunctions {En} constitutes a complete set in Hεr . The different eigenfunctions
corresponding to different eigenvalues are orthogonal and can be normalized as follows

∫

V

εr Em · EndV =
{

0 (m �= n)

1 (m = n)
.

Each eigenfunction En belongs to one of the following four categories:

1. ∇ × En = 0,∇ · εr En = 0.

2. ∇ × En �= 0,∇ · εr En = 0.

3. ∇ × En = 0,∇ · εr En �= 0.

4. ∇ × En �= 0,∇ · εr En �= 0.

We now show that a complete set of eigenfunctions can be derived from the first three
categories. Assuming that En belongs to the category 4, we can introduce two new functions

E′ = Aε−1
r ∇ × µ−1

r ∇ × En, E′′ = B∇∇ · εr En,

where A and B are constants. By use of (7.96), En can be expressed as a linear combination
of E′ and E′′

En = k−2
en (A−1E′ − B−1E′′). (7.99)

Since En belongs to category 4, we have k2
en �= 0, E′ �= 0 and E′′ �= 0. Applying ε−1

r ∇ ×
µ−1

r ∇× to (7.96), we obtain

ε−1
r ∇ × µ−1

r ∇ × E′ = k2
enE′.

Since ∇ · εr E′ = 0, we may add ∇∇ · εr E′ to the left-hand side of the above equation

ε−1
r ∇ × µ−1

r ∇ × E′ − ∇∇ · εr E′ = k2
enE′.

Therefore E′ satisfies the same differential equation as the eigenfunction En . The tangential
component of E′ on the boundary of the cavity is

un × E′ = Aun × ε−1
r ∇ × µ−1

r ∇ × En

= Aun × ∇∇ · εr En + Aun × k2
enEn

= Aun ×
(

un
∂

∂n
+ ut

∂

∂t

)

∇ · εr En = 0,

where ut is the unit tangent vector of S and use is made of (7.96). By definition, ∇ · εr E′

vanishes on S. Therefore, E′ satisfies (7.96) and E′ is an eigenfunction belonging to category
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2. It follows from (7.99) that E′′ is also an eigenfunction belonging to category 3. Furthermore
E′ and E′′ are orthogonal. In fact,

∫

V

εr E′ · E′′d
 =
∫

V

AB
(∇ × µ−1

r ∇ × En
) · (∇∇ · εr En)dV

= −
∫

V

AB∇ · εr En∇ · (∇ × µ−1
r ∇ × En

)

dV

+
∫

V

AB∇ · [(∇ × µ−1
r ∇ × En

)

(∇ · εr En)
]

dV = 0.

The eigenvalue problem (7.95) may be studied in a similar manner. Equation (7.95) has an
infinite set of eigenvalues 0 ≤ k2

h1 ≤ k2
h2 ≤ · · · ≤ k2

hn ≤ · · ·, and k2
hn → ∞ as n → ∞. The

corresponding set of eigenfunctions {Hn} constitutes a complete set in Hµr . The different
eigenfunctions corresponding to different eigenvalues are orthogonal and can be normalized
as follows

∫

V

µr Hm · HndV =
{

0 (m �= n)

1 (m = n)
.

Also each eigenfunction Hn can be chosen from one of the following three categories:

1. ∇ × Hn = 0,∇ · Hn = 0.

2. ∇ × Hn �= 0,∇ · Hn = 0.

3. ∇ × Hn = 0,∇ · Hn �= 0.

The eigenfunctions belonging to category 2 in the two sets of eigenfunctions {En} and {Hn}
are related. To show this, let En belong to category 2. Then ken �= 0, and we can define a
function Hn through

∇ × En = kenµr Hn. (7.100)

Obviously Hn belongs to category 2. In addition

µ−1
r ∇ × ε−1

r ∇ × Hn − k2
enHn = k−1

en µ−1
r ∇ × (

ε−1
r ∇ × µ−1

r ∇ × En − k2
enEn

) = 0

and on the boundary S, we have

un × ∇ × Hn = k−1
en un × ∇ × µ−1

r ∇ × En = k−1
en un × k2

enεr En = 0.

Consider the integration of un · Hn over an arbitrary part of S, denoted �S

∫

�S

un · µr Hnd S = k−1
en

∫

�S

un · ∇ × End S = k−1
en

∫

��

u� · End�
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where �� is the closed contour around �S and u� is the unit tangent vector along the contour.
The right-hand side vanishes for an arbitrary �S, which implies un · Hn = 0, r ∈ S. Therefore
Hn satisfies (7.95) and the corresponding eigenvalue is k2

en . If Hm is another eigenfunction
corresponding to Em belonging to category 2, then

∫

V

µr Hm · Hnd
 = (kemken)−1
∫

V

µ−1
r ∇ × Em · ∇ × EndV

= (kemken)−1
∫

V

∇ × µ−1
r ∇ × Em · EndV + (kemken)−1

×
∫

V

∇ · (En × µ−1
r ∇ × Em

)

dV

= (kemken)−1k2
em

∫

V

εr Em · EndV + (kemken)−1

×
∫

S

un · (En × µ−1
r ∇ × Em

)

d S

= kem

ken

∫

V

εr Em · EndV .

So the eigenfunctions Hn defined by (7.100) are orthogonal to each other, and the eigenfunc-
tions Hn in category 2 can be derived from the eigenfunction En in category 2. Conversely if
Hn is in category 2, we can define En by

∇ × Hn = khnεr En, (7.101)

and a similar discussion indicates that En is an eigenfunction of (7.94) with khn being the
eigenvalue. So the completeness of the two sets are still guaranteed if the eigenfunctions
belonging to category 2 in {En} and {Hn} are related through either (7.100) or (7.101). From
now on, Equations (7.100) and (7.101) will be assumed to hold, and ken = khn will be denoted
by kn . The complete set {En} is most appropriate for the expansion of electric field, and {Hn}
is most appropriate for the expansion of the magnetic field.

7.5.2 Field Expansions

If the cavity contains an impressed electric current source J and a magnetic current source Jm ,
the fields excited by these sources satisfy the Maxwell equations

ε−1
r ∇ × H(r) = (σ + jωε0)E(r) + J(r),

µ−1
r ∇ × E(r) = − jωµ0H(r) − Jm(r),

(7.102)
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and can be expanded in terms of the vector eigenfunctions

E =
∑

n

vnEn +
∑

ν

vνEν, H =
∑

n

inHn +
∑

τ

iτ Hτ , (7.103)

µ−1
r ∇ × E =

∑

n

Hn

∫

V

∇ × E · HndV +
∑

τ

Hτ

∫

V

∇ × E · Hτ dV ,

(7.104)
ε−1

r ∇ × H =
∑

n

En

∫

V

∇ × H · EndV +
∑

ν

Eν

∫

V

∇ × H · EνdV ,

where the subscript n denotes the eigenfunctions belonging to category 2, and the Greek
subscript ν and τ for the eigenfunctions belonging to category 1 or 3, and

vn(ν) =
∫

V

εr E · En(ν)dV , in(τ ) =
∫

V

µr H · Hn(τ )dV . (7.105)

Considering the following calculations

∫

V

∇ × E · HndV =
∫

V

E · ∇ × HndV +
∫

V

∇ · (E × Hn)dV = knvn,

∫

V

∇ × E · Hτ dV =
∫

V

E · ∇ × Hτ dv +
∫

V

∇ · (E × Hτ )dV = 0,

∫

V

∇ × H · EndV =
∫

V

H · ∇ × EndV +
∫

V

∇ · (H × En)dV = knin,

∫

V

∇ × H · EνdV =
∫

V

H · ∇ × EνdV +
∫

V

∇ · (H × Eν )dV = 0,

Equation (7.104) can be written as

µ−1
r ∇ × E =

∑

n

knvnHn, ε
−1
r ∇ × H =

∑

n

kninEn. (7.106)

Substituting the above expansions into (7.102) leads to

∑

n

knvnHn = − jωµ0

(
∑

n

inHn +
∑

τ

iτ Hτ

)

− Jm,

∑

n

kninEn = (σ + jωε0)

(
∑

n

vnEn +
∑

ν

vνEν

)

+ J.

(7.107)
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Thus the expansion coefficients can easily be determined by

knvn = − jωµ0in −
∫

V

µr Jm · HndV ,

jωµ0iτ +
∫

V

µr Jm · Hτ dV = 0,

knin = (σ + jωε0)vn +
∫

V

εr J(r) · EndV ,

(σ + jωε0)vν +
∫




εr J · Eνd
 = 0.

(7.108)

The wave propagation in inhomogeneous media is a very complicated process. In most situa-
tions, we have to adopt the numerical methods, such as finite difference and finite element, to
fully understand the physical process.

The mathematical facts worthy of being studied are those which, by their analogy with other facts,
are capable of leading us to the knowledge of a physical law.

—Henri Poincaré
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8
Time-domain Theory

Since Maxwell’s time, physical reality has been thought of as represented by continuous fields,
and not capable of any mechanical interpretation. This change in the conception of reality is the
most profound and the most fruitful that physics has experienced since the time of Newton.

—Albert Einstein

The ever-increasing interest in ultra-wideband techniques and high speed devices has made
time-domain analysis an important research field. The short pulses may be used to obtain
high resolution and high accuracy in radar and to increase information transmission rate in
communication systems. An important feature of the short pulses is that the rate of decay
of electromagnetic energy can be slowed down when the pulse shape is properly chosen.
A very short intense electromagnetic pulse can result in irreversible damages to electronic
equipments, such as computers and radio receivers.

Compared to the voluminous literature on time-harmonic theory of electromagnetics, time-
domain electromagnetics is still a virgin land to be cultivated. In the time-domain theory, the
fields are assumed to start at a finite instant of time and Maxwell equations are solved subject to
initial conditions, boundary conditions, excitation conditions and causality. According to the
linear system theory and Fourier analysis, the response of the system to an arbitrary pulse can be
obtained by superimposing its responses to all the real frequencies. In other words, the solution
to the time-domain problem can be expressed in terms of the time-harmonic solution through
the use of the Fourier transform. This process can be assisted by the fast Fourier transform and
has been used extensively in studying the transient responses of electromagnetic systems. The
procedure, however, is not always most effective and is not a trivial exercise since the time-
harmonic problem must be solved for a large range of frequencies, and only an approximate
time-harmonic solution valid over a finite frequency band can be obtained.

Moreover, the time-harmonic solution may not be able to give the correct physical picture
in some situations. The time-harmonic field theory is founded on the assumption that a
monotonic electromagnetic source turns on at t = −∞ and the initial conditions of the fields
produced by the source are ignored. This assumption does not cause any problem if the system
has dissipation or radiation loss. When the system is lossless, the assumption may lead to
physically unacceptable solutions. For example, the time-harmonic theory predicts that the

Foundations of Applied Electrodynamics Geyi Wen
C© 2010 John Wiley & Sons, Ltd
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field response of a lossless metal cavity is sinusoidal if the excitation source is sinusoidal.
The time-domain theory, however, shows that a sinusoidal response can be built up only if the
cavity is excited by a sinusoidal source whose frequency coincides with one of the resonant
frequencies. In addition, the field responses in a lossless cavity predicted by the time-harmonic
theory are singular everywhere inside the cavity if the frequency of the sinusoidal excitation
source coincides with one of the resonant frequencies of the cavity, while the time-domain
theory always gives finite field responses. Therefore, we are forced to seek a solution in the
time domain in some situations.

8.1 Time-domain Theory of Metal Waveguides1

In high-speed circuits, the signal frequency spectrum of a pulse may extend to terahertz
regime and signal integrity problems may occur, which requires a deep understanding of the
propagation characteristics of the transients in a waveguide. One of the research topics is to
determine the response of the waveguide to an arbitrary input signal. If the input signal of the
waveguide is x(t), after traveling a distance z, the output from the waveguide is given by the
Fourier integral

y(t) = 1

2π

∞∫

−∞
X (ω)e j(ωt−βz)dω. (8.1)

Here X (ω) is the Fourier transform of x(t); β = v−1
√

ω2 − ω2
c is the propagation constant;

ωc is the cut-off frequency of the propagating mode; and v = 1/
√

µε is the signal speed, with
µ and ε being the permeability and permittivity of the medium filling the waveguide.

Several methods have been proposed to evaluate the Fourier integral in (8.1), such as the
saddle point integration method (Namiki and Horuchi, 1952) and the stationary phase method
(Ito, 1965). A serious drawback to the stationary phase method is that it contradicts the
physical realizability as well as causality (that is, the response appears before the input signal
is launched). A more rigorous approach is based on impulse response function for a lossless
waveguide, which is defined as the inverse Fourier transform of the transfer function e− jβz . The
impulse response function can be expressed as an exact closed form and has been applied to
study transient responses of a waveguide to various input signals (for example, Schulz-Dubois,
1970).

The response given by (8.1) is, however, hardly realistic when describing the propagation
of a very short pulse or an ultra-wideband signal since it is based on an assumption that the
waveguide is in a single-mode operation. This assumption is reasonable only for a narrow
band signal but fails for a short pulse that covers a very wide range of frequency spectrums
and thus will excite a number of higher-order modes in the waveguide. Many authors have
approached the transient responses of waveguides for various input signals, such as a step
function, a rectangular pulse or even a δ impulse, tacitly assuming the waveguide is in a

1 W. Geyi, ‘A time-domain theory of waveguide’, Progress in Electromagnetics Research, PIER 59, 267–97, 2006.
Reproduced by permission of ©2006 The Electromagnetics Academy & EMW Publishing.
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single-mode operation. This approach has oversimplified the problem and the results obtained
cannot accurately describe the transient process in the waveguide.

In order to find the real picture of the transient process in the waveguide, the time-domain
Maxwell equations must be solved subject to initial conditions, boundary conditions and
excitation conditions, and the higher-order mode effects must be taken into account.

8.1.1 Field Expansions

Assume that the medium in the waveguide is homogeneous and isotropic with medium pa-
rameters µ, ε and σ . The cross-section of the waveguide is denoted by � and its boundary by
�, which is assumed to be a perfect conductor. The transient electrical field in a source-free
region of the waveguide satisfies the equation

∇2E(r, t) − 1

v2

∂2E(r, t)

∂t2
− σ

η

v

∂E(r, t)

∂t
= 0, r ∈ �,

∇ · E(r, t) = 0, r ∈ �, (8.2)

un × E(r, t) = 0, r ∈ �,

where v = 1/
√

µε and un is the unit outward normal to the boundary �. The solution of (8.2)
can be expressed as the sum of a transverse component and a longitudinal component, both
of which are separable functions of transverse coordinates ρ and the longitudinal coordinate
z with time

E(r, t) = [e(ρ) + uzez(ρ)]u(z, t). (8.3)

Inserting (8.3) into (8.2) and taking the boundary condition into account, we obtain

∇ × ∇ × e(ρ) − ∇∇ · e(ρ) − k2
c e(ρ) = 0,ρ ∈ �,

un × e(ρ) = ∇ · e(ρ) = 0,ρ ∈ �,
(8.4)

where k2
c is the separation constant. The function u(z, t) satisfies the modified Klein-Gordon

equation

∂2u(z, t)

∂z2
− 1

v2

∂2u(z, t)

∂t2
− σ

η

v

∂u(z, t)

∂t
− k2

c u(z, t) = 0. (8.5)

When σ = 0, Equation (8.5) reduces to the Klein–Gordon equation, named after the
Swedish physicist Oskar Benjamin Klein (1894–1977) and German physicist Walter Gor-
don (1893–1939), who proposed the equation in 1927. There exists a complete orthonormal
system of vector modal functions {en| n = 1, 2, · · ·} satisfying (8.4) (see Section 3.3.1). These
vector modal functions can be used to expand the fields in both frequency and time domain.
The transient electromagnetic fields in the waveguide can then be expressed as

E(r, t) =
∞
∑

n=1

vn(z, t)en(ρ) + uz

∞
∑

n=1

e′
zn(z, t)

∇ · en(ρ)

kcn
,
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H(r, t) =
∞
∑

n=1

in(z, t)uz × en(ρ) + uz
1√
�

∫

�

uz · H(r, t)√
�

d� (8.6)

+
∞
∑

n=1

h′
zn(z, t)

∇ × en(ρ)

kcn
,

∇ × E =
∞
∑

n=1

(
∂vn

∂z
+ kcne′

zn

)

uz × en +
∞
∑

n=1

kcnvn
∇ × en

kcn
,

(8.7)

∇ × H =
∞
∑

n=1

(

−∂in

∂z
+ kcnh′

zn

)

en + uz

∞
∑

n=1

kcnin
∇ · en

kcn
,

where vn and in are the time-domain modal voltage and the time-domain modal current
defined by

vn(z, t) =
∫

�

E(r, t) · en(ρ)d�,

in(z, t) =
∫

�

H(r, t) · uz × en(ρ)d�,

(8.8)

and e′
zn and h′

zn are given by

e′
zn(z, t) =

∫

�

uz · E(r, t)
∇ · en(ρ)

kcn
d�,

h′
zn(z, t) =

∫

�

H(r, t)·∇ × en(ρ)

kcn
d�.

Substituting (8.6) and (8.7) into the generalized Maxwell equations

∇ × E(r, t) = −µ
∂H(r, t)

∂t
− Jm(r, t),

∇ × H(r, t) = ε
∂E(r, t)

∂t
+ J(r, t) + σE(r, t),

and comparing the transverse and longitudinal components, we obtain

−∂in

∂z
+ kcnh′

zn = ε
∂vn

∂t
+ σvn +

∫

�

J · end�, (8.9)

kcnin = ε
∂e′

zn

∂t
+ σe′

zn +
∫

�

uz · J
∇ · en

kcn
d�, for TM modes only, (8.10)

∂vn

∂z
+ e′

znkcn = −µ
∂in

∂t
−
∫

�

Jm · uz × end�, (8.11)
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kcnvn = −µ
∂h′

zn

∂t
−
∫

�

uz · Jm
uz · ∇ × en

kcn
d�, for TE modes only, (8.12)

−µ
∂

∂t

∫

�

H · uz√
�

d� =
∫

�

uz · Jm√
�

d�, for TE modes only. (8.13)

For the TEM modes, the modal voltages and modal currents satisfy

∂vTEM
n

∂z
= −µ

∂i TEM
n

∂t
−
∫

�

Jm · uz × end�,

∂iTEM
n

∂z
= −ε

∂vTEM
n

∂t
− σvTEM

n −
∫

�

J · end�,

(8.14)

from (8.9) and (8.11). The modal voltages for the TEM modes satisfy the wave equation

∂2vTEM
n

∂z2
− 1

v2

∂2vTEM
n

∂t2
− σ

η

v

∂vTEM
n

∂t
= µ

∂

∂t

∫

�

J · end� − ∂

∂z

∫

�

Jm · uz × end�. (8.15)

The modal currents iTEM
n can be determined by the time integration of vTEM

n .
For the TE modes, we have

∂vTE
n

∂z
= −µ

∂iTE
n

∂t
−
∫

�

Jm · uz × end�,

∂i TE
n

∂z
− kcnh′

zn = −ε
∂vTE

n

∂t
− σvTE

n −
∫

�

J · end�,

µ
∂h′

zn

∂t
= −kcnv

TE
n −

∫

�

uz · Jm
uz · ∇ × en

kcn
d�,

(8.16)

from (8.9), (8.11) and (8.12). The modal voltages vTE
n satisfy the modified Klein–Gordon

equation

∂2vTE
n

∂z2
− 1

v2

∂2vTE
n

∂t2
− σ

η

v

∂vTE
n

∂t
− k2

cnv
TE
n

= µ
∂

∂t

∫

�

J · end� − ∂

∂z

∫

�

Jm · uz × end� + kcn

∫

�

uz · Jm
uz · ∇ × en

kcn
d�.

(8.17)

The modal currents iTE
n can be determined by the time integration of ∂vTE

n /∂z.
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For the TM modes, the modal voltages and modal currents satisfy

∂vTM
n

∂z
+ kcne′

zn = −µ
∂i TM

n

∂t
−
∫

�

Jm · uz × end�,

∂i TM
n

∂z
= −ε

∂vTM
n

∂t
− σvTM

n −
∫

�

J · end�,

ε
∂ ēzn

∂t
= kcniTM

n − σe′
zn −

∫

�

uz · J
∇ · en

kcn
d�,

(8.18)

from (8.9), (8.10) and (8.11). The modal currents iTM
n also satisfy the modified Klein–Gordon

equation

∂2iTM
n

∂z2
− 1

v2

∂2iTM
n

∂t2
− σ

η

v

∂i TM
n

∂t
− k2

cniTM
n

= − ∂

∂z

∫

�

J · end� − kcn

∫

�

uz · J
∇ · en

kcn
d� (8.19)

+ ε
∂

∂t

∫

�

Jm · uz × end� + σ

∫

�

Jm · uz × end�.

The modal voltages vTM
n can then be determined by a time integration of ∂iTM

n /∂z. The exci-
tation problem in the waveguide is now reduced to the solution of a series of inhomogeneous
modified Klein–Gordon equations.

8.1.2 Solution of the Modified Klein–Gordon Equation

To find the complete solution of the transient fields in the waveguide, we need to solve the
modified Klein–Gordon equation. This can be done by using the retarded Green’s function.
The retarded Green’s function of the modified Klein–Gordon equation is defined by

(
∂2

∂z2
− 1

v2

∂2

∂t2
− σ

η

v

∂

∂t
− k2

cn

)

Gn(z, t ; z′, t ′) = −δ(z − z′)δ(t − t ′),

Gn(z, t ; z′, t ′)
∣
∣
t<t ′ = 0.

(8.20)

The second equation represents the causality condition. From the Fourier transform pair

G̃n(p, ω; z′, t ′) =
∞∫

−∞

∞∫

−∞
Gn(z, t ; z′, t ′)e− j pz− jωt dzdt,

Gn(z, t ; z′, t ′) = 1

(2π )2

∞∫

−∞

∞∫

−∞
G̃n(p, ω; z′, t ′)e jpz+ jωt dpdω,

(8.21)
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o
1ω2ω

ω -plane

Figure 8.1 Integration contour

we find that

G̃n(p, ω; z′, t ′) = −v2e− j pz′− jωt ′

ω2 − p2v2 − k2
cnv

2 − jωσ/ε
.

Substituting this into the second equation of (8.21) yields

Gn(z, t ; z′, t ′) = − v2

(2π )2

∞∫

−∞
e jp(z−z′)dp

∞∫

−∞

e jω(t−t ′)

ω2 − p2v2 − k2
cnv

2 − jωσ/ε
dω.

To calculate the integral with respect to ω, we may extend ω to the complex plane and use the
residue theorem in complex variable analysis. There are two simple poles in the integrand:
ω1,2 = jγ ±√

p2v2 + k2
cnv

2 − γ 2, where γ = σ/2ε. To satisfy the causality condition, we
only need to consider the integral along a closed contour consisting of the real axis from −∞
to ∞ and an infinite semicircle in the upper half plane, as shown in Figure 8.1. The contour
integral along the large semicircle is zero for t > t ′. Using the residue theorem and the relation
(Gradsheyn and Ryzhik, 1994)

∞∫

0

sin q
√

x2 + a2

√
x2 + a2

cos bxdx = π

2
J0(a

√

q2 − b2)H (q − b)

a > 0, q > 0, b > 0,

(8.22)

we obtain the retarded Green’s function:

Gn(z, t ; z′, t ′) = v

2
e−γ (t−t ′) H [(t − t ′) − ∣

∣z − z′∣∣ /v]

·J0

[

(k2
cnv

2 − γ 2)1/2
√

(t − t ′)2 − |z − z′|2 /v2

]

,

(8.23)
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where J0(x) is the Bessel function of first kind and H (x) is the unit step function. The retarded
Green’s function can now be used to solve the modified Klein–Gordon equation with the
known source function f (z, t):

(
∂2

∂z2
− 1

v2

∂2

∂t2
− σ

η

v

∂

∂t
− k2

cn

)

un(z, t) = f (z, t).

The above equation and (8.20) can be transformed into the frequency domain by using the
Fourier transform as follows

(
∂2

∂z2
+ β2

cn

)

ũn(z, ω) = f̃ (z, ω), (8.24)

(
∂2

∂z2
+ β2

cn

)

G̃n(z, ω; z′, t ′) = −δ(z − z′)e− jωt ′
, (8.25)

where β2
cn = k2 − k2

cn − jσkη, k = ω/v. Multiplying (8.24) and (8.25) by G̃n and ũ respec-
tively and then subtracting the resultant equations yields

ũn(z, ω)
∂2G̃n(z, ω; z′, t ′)

∂z2
− G̃n(z, ω; z′, t ′)

∂2ũn(z, ω)

∂z2

= −δ(z − z′)ũn(z, ω)e− jωt ′ − f̃ (z, ω)G̃n(z, ω; z′, t ′).

(8.26)

We assume that the source function f (z, t) is limited in a finite interval (a, b), as shown in
Figure 8.2. Taking the integration of the above equation over the interval [a, b] and then taking
the inverse Fourier transform, we obtain the solution

un(z, t) =
∞∫

−∞
Gn(z, t ; z′, t ′)

∂un(z′, t ′)
∂z′ dt ′

∣
∣
∣
∣
∣
∣

b

z=a

−
∞∫

−∞
un(z′, t ′)

∂Gn(z, t ; z′, t ′)
∂z′ dt ′

∣
∣
∣
∣
∣
∣

b

z=a

−
b∫

a

∞∫

−∞
f (z′, t ′)Gn(z, t ; z′, t ′)dt ′dz, z ∈ (a, b),

(8.27)

Source
region

Right-traveling waveLeft-traveling wave 

a b

Figure 8.2 Left-traveling wave and right-traveling wave in a waveguide
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where the symmetry of Green’s function about z and z ′ has been used. If we let a → −∞ and
b → ∞, the above expression becomes

un(z, t) = −
∞∫

−∞

∞∫

−∞
f (z′, t ′)Gn(z, t ; z′, t ′)dt ′dz′, z ∈ (−∞, ∞). (8.28)

The solution in the region (z+,+∞) (z+ > b) and (−∞, z−) (z < a) may be expressed in
terms of its boundary values at z+ and z−. Without loss of generality, we assume that a < 0
and b > 0, and the medium in the waveguide is lossless. Taking the integration of (8.26) over
[z+,+∞) with z+ > b and using integration by parts, we obtain

G̃n(z+, ω; z′, t ′)
∂ ũn(z+, ω)

∂z
− ũn(z+, ω)

∂G̃n(z+, ω; z′, t ′)
∂z

= −ũn(z′, ω)e− jωt ′
,

where the radiation condition at z = +∞ has been used. Taking the inverse Fourier transform
and letting z′ = z+ leads to

un(z+, t − t ′) + v

t−t ′∫

−∞
J0
[

kcnv(t − τ − t ′)
] ∂un(z+, τ )

∂z
dτ = 0.

Since z+ and t ′ are arbitrary, the above equation can be written as

un(z, t) + v J0(kcnvt)H (t) ∗ ∂un(z, t)

∂z
= 0, z ≥ b > 0. (8.29)

This equation is called the right-traveling condition of the wave (Kristensson, 1995). Simi-
larly, taking the integration of (8.26) over (−∞, z−] with z− < a, we obtain the left-traveling
condition

un(z, t) − v J0(kcnvt)H (t) ∗ ∂un(z, t)

∂z
= 0, z ≤ a < 0. (8.30)

Both (8.29) and (8.30) are integral-differential equations. If the source is turned on at t = 0,
all the fields must be zero when t < 0, and (8.29) and (8.30) can be solved by the single-sided

Laplace transform defined by ũn(z, s) =
∞∫

0
un(z, t)e−st dt . Thus

ũn(z, s) + [(s/v)2 + k2
cn]−1/2 ∂ ũn(z, s)

∂z
= 0, z ≥ b > 0,

un(z, t) − [(s/v)2 + k2
cn]−1/2 ∂ ũn(z, s)

∂z
= 0, z ≤ a < 0.
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The solutions of the above equations are

ũ+
n (z, s) = ũ+

n (b, s)e−
√

(s/v)2+k2
cn(z−b), z ≥ b > 0,

ũ−
n (z, s) = ũ−

n (a, s)e
√

(s/v)2+k2
cn(z−a),z ≤ a < 0.

By means of the inverse Laplace transform, the solutions of (8.29) and (8.30) can be expressed
as

un(z, t) = un

(

b, t − z − b

v

)

− ckcn(z − b)

×
t− z−b

v∫

0

J1

[

kcnv
√

(t − τ )2 − (z − b)2/v2
]

√

(t − τ )2 − (z − b)2/v2
un(b, τ )dτ,z ≥ b > 0,

un(z, t) = un

(

a, t + z − a

v

)

+ ckcn(z − a)

×
t+ z−a

v∫

0

J1

[

kcnv
√

(t − τ )2 − (z − a)2/v2
]

√

(t − τ )2 − (z − a)2/v2
un(a, τ )dτ , z ≤ a < 0.

Once the input signal is known, the output signal after traveling a certain distance in the
waveguide can be determined by the convolution integral.

8.1.3 Excitation of Waveguides

A wideband pulse in the waveguide will excite a number of higher-order modes and the
field distributions are determined by (8.6). The bandwidth of the excitation pulse must be
adjusted properly in order to control the number of modes excited in the waveguide. For
example, if the spectrum of the baseband signal is limited to the range [0, ω f ] and ω0 is the
carrier frequency with ω f � ω0, the frequency spectrum range of the modulated signal will
be [ω0 − ω f , ω0 + ω f ]. If ω f is properly chosen so that ωc1 < ω0 − ω f and ω0 + ω f < ωc2,
where ωc1 and ωc2 are respectively the cut-off frequencies of the dominant mode and the first
higher-order mode, only the dominant mode will propagate in the waveguide and the radio
signal will be transmitted without distortion.

Example 8.1 (Rectangular waveguide): Let us consider a rectangular waveguide of width a
and height b as depicted in Figure 8.3. The waveguide is excited by a line current extending
across the waveguide located at x = x0, and the current density is given by

J(r, t) = uyδ(x − x0)δ(z − z0) f (t). (8.31)
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0x

y

a

b

x
J

Figure 8.3 Rectangular waveguide

Since the line current is uniform in y direction, the fields excited by the current are independent
of y. As a consequence, only TEn0 modes will be excited and we have

kcn = nπ

a
, en(x, y) = eTE

n0 (x, y) = −uy

(
2

ab

)1/2

sin
nπx

a
, n = 1, 2, 3 · · · . (8.32)

From (8.28), the modal voltages may be written as

vTE
n (z, t) = bη

2

(
2

ab

)1/2

sin
nπ

a
x0

t−|z−z0|/v∫

−∞

df (t′)
dt ′ J0

[

kcnv

√

(t − t ′)2 − |z − z0|2 /v2

]

dt ′,

(8.33)

where η = √
µ/ε. Thus the time-domain voltages vTE

n for n = 2, 4, 6, · · · vanish. The total
electric field in the waveguide is given by the first equation of (8.6)

E = uy Ey = −uy

(
2

ab

)1/2 ∞
∑

n=1

vTE
n sin

nπx

a
. (8.34)

For the time-domain response to a continuous sinusoidal wave turned on at t = 0, we may
expect that the time-domain response approaches the well-known steady-state response as
time goes to infinity. Let x0 = a/2,z0 = 0, and f (t) = H (t) sin ωt in (8.34). Equation (8.33)
may be expressed as the sum of two parts:

vTE
n (z, t) = vTE

n (z, t)
∣
∣
steady + vTE

n (z, t)
∣
∣
transient , t > |z| /v,

where vTE
n (z, t)

∣
∣
steady

and vTE
n (z, t)

∣
∣
transient

represent the steady-state part and the transient part
of the response respectively:

vTE
n (z, t)

∣
∣
steady = bη

2

(
2

ab

)1/2

ka sin
nπ

2

×
∞∫

|z|/a

cos ka(vt/a − u)J0

[

kcna
√

u2 − |z|2 /a2

]

du,
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vTE
n (z, t)

∣
∣
transient = −bη

2

(
2

ab

)1/2

ka sin
nπ

2

×
∞∫

vt/a

cos ka(vt/a − u)J0

[

kcna
√

u2 − |z|2 /a2

]

du.

The transient part of the response approaches zero as t → ∞. By means of the following
relations (Gradsheyn and Ryzhik, 1994)

∞∫

a

J0(b
√

x2 − a2) sin dxdx =
{

0, 0 < d < b
cos(a

√
d2 − b2)/

√
d2 − b2, 0 < b < d

∞∫

a

J0(b
√

x2 − a2) cos dxdx =
{

exp(−a
√

b2 − d2)/
√

b2 − d2, 0 < d < b
− sin(a

√
d2 − b2)/

√
d2 − b2, 0 < b < d

(8.35)

the steady-state response is found to be

vTE
n (z, t)

∣
∣
steady = bη

2

(
2

ab

)1/2 ka sin nπ
2

√∣
∣(ka)2 − (kcna)2

∣
∣

×
⎧

⎨

⎩

sin
(

ka vt
a − |z|

a

√

(ka)2 − (kcna)2
)

, k > kcn

cos
(

ka vt
a

)

exp
[

− ∣
∣ z

a

∣
∣
√

(kcna)2 − (ka)2
]

, k < kcn

.

Thus as |z| increases, the modal voltages decrease rapidly when k < kcn. In other words, only
those modes satisfying k > kcn propagate in the steady state. When vTE

n

∣
∣
steady are inserted

into (8.34), it can be found that the steady-state response of the electric field agrees with the
traditional time-harmonic theory of waveguides.

If the excitation is a unit step pulse f (t) = H (t), Equation (8.33) becomes

vTE
n (z, t) = ηb

2

(
2

ab

)1/2

sin
nπ

2
J0

⎡

⎣kcna

√
(

vt

a

)2

− |z|2
a2

⎤

⎦ H

(
vt

a
− |z|

a

)

.

The plots of the time-domain voltages vTE
n indicate that the voltages for the higher-order modes

cannot be ignored for a unit step pulse. The time responses of the fields are different from
the original excitation pulse since a hollow waveguide is essentially a high pass filter and
blocks all the low frequency components below the first cut-off frequency (Geyi, 2006(a)).
Therefore, a hollow metal waveguide is not an ideal medium to transmit a wideband signal.
Instead, one must use multi-conductor transmission lines, which support a TEM mode whose
cut-off frequency is zero.

Example 8.2 (Coaxial waveguide): To see how a pulse propagates in a TEM transmission
line as well as the effects of the higher-order modes, let us consider a coaxial line consisting
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a

y

x

Jm

b

Figure 8.4 Coaxial waveguide

of an inner conductor of radius a and an outer conductor of radius b, as shown in Figure 8.4.
We assume that the coaxial line is excited by a magnetic current located at z = z0

Jm(r, t) = uϕ f (t)δ(z − z0)δ(ρ − ρ0), a < ρ0 < b (8.36)

where (ρ, ϕ, z) are the polar coordinates and uϕ is the unit vector in ϕ direction. According to
the symmetry, only the TEM mode and those TM0n modes independent of ϕ will be excited.
The orthonormal vector modal functions for these modes are given by (Marcuvitz, 1951)

et1(ρ, ϕ) = uρe1(ρ), kc1 = 0, e1(ρ) = 1

ρ
√

2π ln c1
,

etn(ρ, ϕ) = uρen(ρ), kcn = χn

a
,

en(ρ) =
√

π

2

χn

a

J1(χnρ/a)N0(χn) − N1(χnρ/a)J0(χn)
√

J 2
0 (χn)/J 2

0 (c1χn) − 1
, n ≥ 2,

(8.37)

where c1 = b/a, uρ is the unit vector in ρ direction, and χn is the nth nonvanishing root
of the equation J0(χnc1)N0(χn) − N0(χnc1)J0(χn) = 0. From (8.28), the time-domain modal
currents may be expressed as

ηi TEM
1

a
= − π

a
√

2π ln c1
f (t − |z − z0| /v),

ηiTM
n

a
= −πρ0

a
en(ρ0) (8.38)

·
t−|z−z0|/v∫

−∞

df (t′)
dt ′ J0

[

kcnv

√

(t − t ′)2 − |z − z0|2 /v2

]

dt ′, n ≥ 2.

Equation (8.38) indicates that the signal can be transmitted without distortion in a coaxial line
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if the highest frequency component of the excitation pulse is below the cut-off frequency of
the first higher order mode. Otherwise the higher-order modes will be excited. The magnetic
field in the coaxial cable may be obtained from the second equation of (8.6) as follows

ηH = uϕηHϕ = uϕ

ηiTEM
n

a

1

(ρ/a)
√

2π ln c1

+uϕ

∞
∑

n=2

ηiTM
n

a

√
πχn

2

J1(χnρ/a)N0(χn) − N1(χnρ/a)J0(χn)
√

J 2
0 (χn)/J 2

0 (c1χn) − 1
.

8.2 Time-domain Theory of Metal Cavity Resonators2

A metal cavity resonator constitutes a typical eigenvalue problem in electromagnetic theory
and the study of the transient process in a metal cavity may be carried out by the field
expansions in terms of the vector modal functions studied in Section 3.3.2. When these
expansions are introduced into the time-domain Maxwell equations, we may find that the
expansion coefficients satisfy the ordinary differential equations of second order, which can
be easily solved once the initial conditions and the excitations are known.

8.2.1 Field in Arbitrary Cavities

Consider a metal cavity with a perfectly conducting wall, and assume that the medium in
the cavity is homogeneous and isotropic with medium parameters σ , µ and ε. The volume
occupied by the cavity is denoted by V and its boundary by S. If the cavity contains an
impressed electric current source J and a magnetic current source Jm , the fields excited by
these sources satisfy the Maxwell equations in the cavity:

∇ × H(r, t) = ε
∂E(r, t)

∂t
+ σE(r, t) + J(r, t),

∇ × E(r, t) = −µ
∂H(r, t)

∂t
− Jm(r, t),

(8.39)

with the boundary conditions un × E = 0 and un · H = 0 on the boundary S. Here un is the
unit outward normal to the boundary. The fields inside the cavity can be expanded in terms of
its vector modal functions as follows

E(r, t) =
∑

n

Vn(t)en(r) +
∑

ν

Vν(t)eν(r),

(8.40)
H(r, t) =

∑

n

In(t)hn(r) +
∑

τ

Iτ (t)hτ (r),

2 W. Geyi, ‘Time-domain theory of metal cavity resonator’, Progress in Electromagnetics Research, PIER 78,
219–53, 2008. Reproduced by permission of ©2008 The Electromagnetics Academy & EMW Publishing.
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∇ × E(r, t) =
∑

n

hn(r)
∫

V

∇ × E(r, t) · hn(r)dV +
∑

τ

hτ (r)
∫

V

∇ × E(r, t) · hτ (r)dV ,

∇ × H(r, t) =
∑

n

en(r)
∫

V

∇ × H(r, t) · en(r)dV +
∑

ν

eν(r)
∫

V

∇ × H(r, t) · eν(r)dV ,

(8.41)

where the subscript n denotes the vector modal functions belonging to category 2, and the
Greek subscript ν and τ for the vector modal functions belonging to category 1 or 3, and

Vn(ν)(t) =
∫

V

E(r, t) · en(ν)(r)dV , In(τ )(t) =
∫

V

H(r, t) · hn(τ )(r)dV . (8.42)

Considering the following calculations

∫

V

∇ × E · hndV =
∫

V

E · ∇ × hndV +
∫

S

(E × hn) · und S = kn Vn,

∫

V

∇ × E · hτ dV =
∫

V

E · ∇ × hτ dV +
∫

S

(E × hτ ) · und S = 0,

∫

V

∇ × H · end S =
∫

V

H · ∇ × endV +
∫

S

(H × en) · und S = kn In,

∫

V

∇ × H · eνd S =
∫

V

H · ∇ × eνdV +
∫

S

(H × eν ) · und S = 0,

Equation (8.41) can be written as

∇ × E =
∑

n

knVnhn,∇ × H =
∑

n

kn Inen.

Substituting the above expansions into (8.39) and equating the expansion coefficients of the
vector modal functions, we obtain

∂Vn

∂t
+ σ

ε
Vn − kn

ε
In = −1

ε

∫

V

J · endV ,

∂Vν

∂t
+ σ

ε
Vν = −1

ε

∫

V

J · eνdV ,

∂ In

∂t
+ kn

µ
Vn = − 1

µ

∫

V

Jm · hndV ,

∂ Iτ
∂t

= − 1

µ

∫

V

Jm · hτ dV .

(8.43)
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From these equations, we may find that

∂2 In

∂t2
+ 2γ

∂ In

∂t
+ ω2

n In = ωn SI
n ,

∂2Vn

∂t2
+ 2γ

∂Vn

∂t
+ ω2

nVn = ωn SV
n ,

(8.44)

where ωn = knv, γ = σ/2ε and

SI
n = v

∫

V

J · endV − 1

knη

∂

∂t

∫

V

Jm · hndV − σv

kn

∫

V

Jm · hndV ,

SV
n = − η

kn

∂

∂t

∫

V

J · endV − v

∫

V

Jm · hndV .

The expansion coefficients In and Vn may be determined by use of the retarded Green’s
function defined by

∂2Gn(t, t ′)
∂t2

+ 2γ
∂Gn(t, t ′)

∂t
+ ω2

nGn(t, t ′) = −δ(t − t ′),

Gn(t, t ′)
∣
∣
t<t ′ = 0.

(8.45)

The solution of (8.45) is readily found to be

Gn(t, t ′) = − e−γ (t−t ′)
√

ω2
n − γ 2

sin
√

ω2
n − γ 2(t − t ′)H (t − t ′). (8.46)

Therefore, the general solution of In may be written as

In(t) = −
∞∫

−∞
Gn(t, t ′)ωn SI

n (t ′)dt ′ + e−γ t

(

c1 cos
√

ω2
n − γ 2t + c2 sin

√

ω2
n − γ 2t

)

, (8.47)

where c1 and c2 are two arbitrary constants. If the source is turned on at t = 0, both Vn(0−) and
In(0−) may be assumed to be zero due to causality. Considering the third equation of (8.43),
the second term of (8.47) vanishes. Thus

In(t) = ωn
√

ω2
n − γ 2

t∫

0−

e−γ (t−t ′) sin
√

ω2
n − γ 2(t − t ′)

(8.48)

×
⎡

⎣v

∫

V

J · endV − 1

knη

∂

∂t ′

∫

V

Jm · hndV − σv

kn

∫

V

Jm · hndV

⎤

⎦ dt ′.
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Similarly, we have

Vn(t) = ωn
√

ω2
n − γ 2

t∫

0−

e−γ (t−t ′) sin
√

ω2
n − γ 2(t − t ′)

(8.49)

×
⎡

⎣− η

kn

∂

∂t ′

∫

V

J · endV − v

∫

V

Jm · hndV

⎤

⎦ dt ′.

and

Vν(t) = −1

ε
e−2γ t

t∫

0−

e2γ t ′
dt ′

∫

V

J · eνdV ,

Iτ (t) = − 1

µ

t∫

0−

dt ′
∫

V

Jm · hτ dV .

(8.50)

Substituting (8.48), (8.49) and (8.50) into (8.40), we may find out the field distributions inside
the metal cavity.

Example 8.3: Assume that the current source is sinusoidal and is turned on at t = 0

J(r, t) = J′(r)H (t) sin ωt (8.51)

and Jm(r, t) = 0. It follows from (8.48), (8.49), and (8.50) that

In(t) = ωnv

∫

V

J′ · endV

[−(ω2
n − ω2) sin ωt + 2ωγ cos ωt

(ω2
n − ω2)2 + 4ω2γ 2

(8.52)

+ 1

βn

−(ω2
n − ω2)ω sin βnt + 2ωγ (βn cos ωt + γ sin βnt)

(ω2
n − ω2)2 + 4ω2γ 2

e−γ t

]

,

Vn(t) = −ηωωn

kn

∫

V

J′ · endV

[
(ω2

n − ω2) cos ωt + 2ωγ sin ωt

(ω2
n − ω2)2 + 4ω2γ 2

(8.53)

+ 1

βn

−(ω2
n − ω2)(γ sin βnt + βn cos βnt) − 2ω2γ sin βnt

(ω2
n − ω2)2 + 4ω2γ 2

e−γ t

]

,

Vν (t) = −1

ε

∫

V

J′ · eνdV

[
2γ sin ωt − ω cos ωt

ω2 + 4γ 2
+ ωe−2γ t

ω2 + 4γ 2

]

,

Iτ (t) = 0.
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The time-domain electromagnetic fields are given by

E(r, t) = −
∑

n

ηωωn

kn
en(r)

∫

V

J′ · endV

[
(ω2

n − ω2) cos ωt + 2ωγ sin ωt

(ω2
n − ω2)2 + 4ω2γ 2

− 1

βn

(ω2
n − ω2)(γ sin βnt + βn cos βnt) + 2ω2γ sin βnt

(ω2
n − ω2)2 + 4ω2γ 2

e−γ t

]

+
∑

ν

1

ε
eν(r)

∫

V

J′ · eνdV

[
ω cos ωt − 2γ sin ωt

ω2 + 4γ 2
+ ωe−2γ t

ω2 + 4γ 2

]

,

(8.54)

H(r, t) =
∑

n

ωnvhn(r)
∫

V

J′ · endV

[
(ω2

n − ω2) sin ωt − 2ωγ cos ωt

(ω2
n − ω2)2 + 4ω2γ 2

+ 1

βn

−(ω2
n − ω2)ω sin βnt + 2ωγ (βn cos ωt + γ sin βnt)

(ω2
n − ω2)2 + 4ω2γ 2

e−γ t

]

.

(8.55)

Compared to the time-harmonic solutions (3.91) and (3.92) for a sinusoidal excitation J(r, t) =
J′(r) sin ωt , Equations (8.54) and (8.55) have additional terms with exponential factor, which
tend to zero with increasing time and may be viewed as the transient response for a lossy
system. Hence the response in a metal cavity resonator can be separated into the sum of
a steady-state response and a transient response if the medium is lossy. The time-domain
solutions (8.54) and (8.55) approach the time-harmonic solutions (3.91) and (3.92) for a lossy
system as time goes to infinity.

For a lossless cavity, Equations (8.54) and (8.55) become

E(r, t) = −
∑

n

ηωωn

kn

cos ωt − cos ωnt

ω2
n − ω2

en(r)
∫

V

J′ · endV

+
∑

ν

1 + cos ωt

ωε
eν(r)

∫

V

J′ · eνdV ,

(8.56)

H(r, t) =
∑

n

v
ωn sin ωt − ω sin ωnt

ω2
n − ω2

hn(r)
∫

V

J′ · endV . (8.57)

The time-domain solutions (8.56) and (8.57) do not agree with the time-harmonic solutions
(3.93) and (3.94). When the cavity is lossless, the time-domain solutions are not sinusoidal
even if the time approaches infinity, in contrast to the fact that the time-harmonic solutions are
always sinusoidal. When ω approaches ωn , Equations (8.56) and (8.57) may be rewritten as

E(r, t) = −
∑

n

ηv

2
t sin ωnten(r)

∫

V

J′ · endV

(8.58)
+
∑

ν

1 + cos ωt

ωε
eν(r)

∫

V

J′ · eνdV ,

H(r, t) =
∑

n

v

(

−1

2
t cos ωnt + 1

2ωn
sin ωnt

)

hn(r)
∫

V

J′ · endV . (8.59)
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Therefore the time-domain solutions (8.58) and (8.59) are finite for a finite time t , and there
is no infinity problem that occurs in the time-harmonic solutions (3.90) and (3.91).

The above phenomenon can be explained by the uniqueness theorem of electromagnetic
fields. In a bounded region, such as a cavity, the time-harmonic Maxwell equations have a
unique solution if and only if the system is lossy, while the time-domain Maxwell equations
always have a unique solution even if the system is lossless.

Remark 8.1: A cavity resonator is similar to an RLC circuit in low-frequency circuit, which
is the most fundamental circuit system discussed in introductory physics courses. The RLC
circuit is often used as an equivalent circuit to represent a single-port network. Figure 8.5
shows an RLC circuit whose element values are assumed to be independent of frequency.
We now investigate this circuit in both frequency domain and time domain with a sinusoidal
excitation. In frequency-domain analysis, the voltage source is assumed to be

vs(t) = V sin ωt = ReVse jωt , (8.60)

i(t)

vs(t)

C L R

_ 

+ 

Figure 8.5 RLC circuit

where Vs = V e− jπ/2 is the phasor of the voltage source. According to the phasor arithmetic,
the phasor of the current is

I (ω) = Vsω

L

2ωγ − j(ω2 − ω2
r )

4ω2γ 2 + (ω2 − ω2
r )2

,

where ωr = 1/
√

LC is the resonant frequency of the circuit, and γ = R/2L is the attenuation
constant. Thus, the current in the time domain is given by

i(t) = ReI (ω)e jωt = V ω

L

(ω2
r − ω2) cos ωt + 2ωγ sin ωt

(ω2
r − ω2)2 + 4ω2γ 2

. (8.61)

If the loss R is sent to zero, the limit of current for a resonant LC circuit becomes

i(t) = V

L

ω cos ωt

ω2
r − ω2

. (8.62)

We now re-examine the same problem in the time domain by means of Laplace transform.
Assume that the RLC circuit is excited by a sinusoidal source turned on at t = 0

vs(t) = V H (t) sin ωt,
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where H (t) is the unit step function. The current i(t) satisfies the following differential equation
in time domain

Ri(t) + L
di(t)

dt
+ 1

C

t∫

0−

i(τ )dτ = vs(t).

Taking the Laplace transform yields

I (s) = V
s

Ls2 + Rs + 1/C

ω

s2 + ω2
.

This expression has four poles: s1,2 = ± jω, s3,4 = −γ ± j
√

ω2
r − γ 2 and one zero at origin.

The inverse Laplace transform gives the time-domain current, which can be split into the sum
of two parts

i(t) = V ω

L

(ω2
r − ω2) cos ωt + 2ωγ sin ωt

(ω2
r − ω2)2 + 4ω2γ 2

(8.63)

− V ω

Lβr

γ (ω2 + ω2
r ) sin βr t + βr (ω2

r − ω2) cos βr t

(ω2
r − ω2)2 + 4ω2γ 2

e−γ t .

The first term on the right-hand side of (8.63) stands for the steady-state response of the
system, which coincides with the frequency-domain solution (8.61). The second term may be
viewed as the transient response of the lossy system, which approaches zero as time goes to
infinity. For a lossless system (γ = 0), Equation (8.63) reduces to

i(t) = V

L

ω cos ωt

(ω2
r − ω2)

− V

L

ω cos ωr t

(ω2
r − ω2)

. (8.64)

By comparing (8.62) against (8.64), we may find that the time-domain analysis disagrees with
the frequency-domain analysis for a lossless system. The second term in the time-domain
solution (8.64) does not appear in the time-harmonic solution (8.62). The second term in
(8.64) is originated from the second term in (8.63), which is the transient part when loss exists
and is no longer transient when loss disappears. From (8.62) and (8.64), two key differences
between the frequency-domain and time-domain analysis for a lossless system can be found:

1. The frequency-domain analysis and time-domain analysis give different results for a lossless
system. The time-harmonic solution (8.62) is sinusoidal while the time-domain solution
(8.64) is not.

2. When ω approaches the resonant frequency ωr , the time-harmonic solution (8.62) tends to
infinity while the time-domain solution (8.64) reduces to

i(t) = V

2L
t sin ωr t. (8.65)
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From the above analysis, we conclude that the frequency-domain analysis fails when the
system is lossless. The time-harmonic fields in a lossless medium cannot be considered the
limit of the corresponding fields in a lossy medium as the loss goes to zero. For a lossless
system we have to rely on the time-domain analysis to find a reasonable solution.

8.2.2 Fields in Waveguide Cavities

Evaluating the vector modal functions in an arbitrary metal cavity is not an easy task. When
the metal cavity consists of a section of a uniform metal waveguide, the analysis of the
transient process in the metal cavity can be carried out by means of the time-domain theory of
waveguide.

8.2.2.1 Field expansions

Consider a waveguide cavity with a perfect electric wall of length L , as shown in Figure 8.6.
The transient electromagnetic fields inside the waveguide cavity with current source J and Jm

can be expanded in terms of the transverse vector modal functions en in the waveguide

E(r, t) =
∞
∑

n=1

vn(z, t)en(ρ) + uz

∞
∑

n=1

∇ · en(ρ)

kcn
e′

zn,

H(r, t) =
∞
∑

n=1

in(z, t)uz × en(ρ) + uz
1√
�

∫

�

uz · H√
�

d� +
∞
∑

n=1

∇ × en(ρ)

kcn
h′

zn,

(8.66)

where ρ = (x, y) is the position vector in the waveguide cross-section �, and

vn(z, t) =
∫

�

E · end�, in(z, t) =
∫

�

H · uz × end�,

h′
zn(z, t) =

∫

�

H·
(∇ × etn

kcn

)

d�, e′
zn(z, t) =

∫

�

uz · E
(∇ · etn

kcn

)

d�.

un

Ω

z1 z2

z

L

J
Jm

Figure 8.6 A metal cavity formed by a waveguide
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Similar to the time-domain theory of waveguide, the modal voltages vTEM
n and currents iTEM

n
for the TEM modes satisfy the wave equation

∂2vTEM
n

∂z2
− 1

v2

∂2vTEM
n

∂t2
− σ

η

v

∂vTEM
n

∂t

= η

v

∂

∂t

∫

�

J · end� − ∂

∂z

∫

�

Jm · uz × end�,

∂2iTEM
n

∂z2
− 1

v2

∂2i TEM
n

∂t2
− σ

η

v

∂iTEM
n

∂t

= σ

∫

�

Jm · uz × end� − ∂

∂z

∫

�

J · end� + 1

ηv

∂

∂t

∫

�

Jm · uz × end�.

(8.67)

Once vTEM
n (or i TEM

n ) are determined, iTEM
n (or vTEM

n ) can be determined by the time integration
of vTEM

n (or iTEM
n ). The modal voltages vTE

n for TE modes satisfy the modified Klein–Gordon
equation

∂2vTE
n

∂z2
− 1

v2

∂2vTE
n

∂t2
− σ

η

v

∂vTE
n

∂t
− k2

cnv
TE
n

= η

v

∂

∂t

∫

�

J · end� − ∂

∂z

∫

�

Jm · uz × end�

+kcn

∫

�

(uz · Jm)

(
uz · ∇ × en

kcn

)

d�.

(8.68)

The modal currents iTE
n for TE modes can be determined by the time integration of ∂vTE

n /∂z:

iTE
n (z, t) = −η

v

t∫

−∞

∂vTE
n (z, t ′)
∂z

dt ′

−η

v

t∫

−∞

⎧

⎨

⎩

∫

�

Jm(r, t ′) · [uz × en(ρ)] d�(ρ)

⎫

⎬

⎭
dt ′.

(8.69)

The modal currents iTM
n for TM modes also satisfy the modified Klein–Gordon equation

∂2iTM
n

∂z2
− 1

v2

∂2iTM
n

∂t2
− σ

η

v

∂iTM
n

∂t
− k2

cniTM
n

= σ

∫

�

Jm · uz × end� − ∂

∂z

∫

�

J · end�

+ 1

ηv

∂

∂t

∫

�

Jm · uz × end� − kcn

∫

�

uz · J
(∇ · en

kcn

)

d�.

(8.70)
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The modal voltages vTM
n can then be determined by the time integration of ∂iTM

n /∂z:

vTM
n (z, t) = −ηv

t∫

−∞

∂iTM
n (z, t ′)

∂z
dt ′ − ηv

t∫

−∞

⎡

⎣

∫

�

J(r, t ′) · en(ρ)d�(ρ)

⎤

⎦ dt ′. (8.71)

8.2.2.2 Solutions of the modified Klein–Gordon equations

Since the tangential electric field on the electric conductor must be zero, the time-domain
voltages satisfy the homogeneous Dirichlet boundary conditions

vn(z, t)|z=z1
= vn(z, t)|z=z2

= 0. (8.72)

Considering (8.9) and the boundary condition that the normal component of the magnetic field
on an electric conductor must be zero, the time-domain currents must satisfy the homogeneous
Neumann boundary conditions

∂in(z, t)

∂z

∣
∣
∣
∣
z=z1

= ∂in(z, t)

∂z

∣
∣
∣
∣
z=z2

= 0. (8.73)

In order to solve (8.67), (8.68) and (8.70) subject to the boundary conditions (8.72) and (8.73),
we may introduce the retarded Green’s functions

(
∂2

∂z2
− 1

v2

∂2

∂t2
− σ

η

v

∂

∂t
− k2

cn

)

Gv
n(z, t ; z′, t ′) = −δ(z − z′)δ(t − t ′),

Gv
n(z, t ; z′, t ′)

∣
∣
t<t ′ = 0,

Gv
n(z, t ; z′, t ′)

∣
∣
z=z1

= Gv
n(z, t ; z′, t ′)

∣
∣
z=z2

= 0,

(8.74)

for the modal voltages and

(
∂2

∂z2
− 1

v2

∂2

∂t2
− σ

η

v

∂

∂t
− k2

cn

)

Gi
n(z, t ; z′, t ′) = −δ(z − z′)δ(t − t ′),

Gi
n(z, t ; z′, t ′)

∣
∣
t<t ′ = 0,

∂Gi
n(z, t ; z′, t ′)

∂z

∣
∣
∣
∣
z=z1

= ∂Gi
n(z, t ; z′, t ′)

∂z

∣
∣
∣
∣
z=z2

= 0,

(8.75)

for the modal currents. Taking the Fourier transform of the Green’s functions with respect to
time t

G̃v,i
n (z, ω; z′, t ′) =

∞∫

−∞
Gv,i

n (z, t ; z′, t ′)e− jωt dt



P1: OTA/XYZ P2: ABC
c08 BLBK281-Wen March 13, 2010 16:3 Printer Name: Yet to Come

352 Time-domain Theory

gives

(
∂2

∂z2
+ β2

n

)

G̃v,i
n (z, ω; z′, t ′) = −e− jωt ′

δ(z − z′), (8.76)

where β2
n = k2 − k2

cn − jσkη, k = ω/v. The above equations can be solved by the method of
eigenfunctions and the solutions are

G̃v
n(z, ω; z′, t ′) =

∞
∑

m=1

−1

β2
n − (mπ/L)2

2

L
sin

mπ

L
(z − z1) sin

mπ

L
(z′ − z1)e− jωt ′

,

G̃i
n(z, ω; z′, t ′) =

∞
∑

m=0

−1

β2
n − (mπ/L)2

εm

L
cos

mπ

L
(z − z1) cos

mπ

L
(z ′ − z1)e− jωt ′

.

Taking the inverse Fourier transform and making use of the residue theorem, we obtain

Gv
n(z, t ; z′, t ′) =

∞
∑

m=1

2v

L
sin

mπ

L
(z − z1) sin

mπ

L
(z′ − z1)

·e−γ (t−t ′)
sin

[

v(t − t ′)
√

k2
cn + (mπ/L)2 − (γ /v)2

]

√

k2
cn + (mπ/L)2 − (γ /v)2

H (t − t ′),

(8.77)

Gi
n(z, t ; z′, t ′) =

∞
∑

m=0

εmv

L
cos

mπ

L
(z − z1) cos

mπ

L
(z′ − z1)

·e−γ (t−t ′)
sin

[

v(t − t ′)
√

k2
cn + (mπ/L)2 − (γ /v)2

]

√

k2
cn + (mπ/L)2 − (γ /v)2

H (t − t ′),

(8.78)

where γ = σ/2ε. If one of the ends of the waveguide cavity extends to infinity, say, z2 → ∞,
the discrete values mπ/L become a continuum. In this case, Equations (8.77) and (8.78)
become

Gv
n(z, t ; z′, t ′)

∣
∣
z2→∞ = − v

π
e−γ (t−t ′)

·
∞∫

0

[

cos k(z + z′ − 2z1) − cos k(z − z′)
] sin

[

v(t − t ′)
√

k2
cn + k2 − (γ /v)2

]

√

k2
cn + k2 − (γ /v)2

dk,

Gi
n(z, t ; z′, t ′)

∣
∣
z2→∞ = v

π
e−γ (t−t ′)

·
∞∫

0

[

cos k(z + z′ − 2z1) + cos k(z − z′)
] sin

[

v(t − t ′)
√

k2
cn + k2 − (γ /v)2

]

√

k2
cn + k2 − (γ /v)2

dk.
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These integrations may be carried out by using (8.22), and the retarded Green’s functions are
given by

eγ (t−t ′)Gv
n(z, t ; z′, t ′)

∣
∣
∣
z2→∞

=

−v

2
J0

[

(k2
cnv

2 − γ 2)1/2
√

(t − t ′)2 − |z + z′ − 2z1|2 /v2

]

H [v(t − t ′) − ∣
∣z + z′ − 2z1

∣
∣]

+v

2
J0

[

(k2
cnv

2 − γ 2)1/2
√

(t − t ′)2 − |z − z′|2 /v2

]

H [v(t − t ′) − ∣
∣z − z′∣∣], (8.79)

eγ (t−t ′)Gi
n(z, t ; z′, t ′)

∣
∣
∣
z2→∞

= v

2
J0

[

(k2
cnv

2 − γ 2)1/2
√

(t − t ′)2 − |z + z′ − 2z1|2 /v2

]

H [v(t − t ′) − ∣
∣z + z′ − 2z1

∣
∣]

+v

2
J0

[

(k2
cnv

2 − γ 2)1/2
√

(t − t ′)2 − |z − z′|2 /v2

]

H [v(t − t ′) − ∣
∣z − z′∣∣]. (8.80)

The retarded Green’s functions can be used to solve the following modified Klein–Gordon
equations

(
∂2

∂z2
− 1

v2

∂2

∂t2
− σ

η

v

∂

∂t
− k2

cn

)

vn(z, t) = f (z, t), z1 < z < z2,

(
∂2

∂z2
− 1

v2

∂2

∂t2
− σ

η

v

∂

∂t
− k2

cn

)

in(z, t) = g(z, t), z1 < z < z2,

subject to the boundary conditions (8.72) and (8.73). The solutions of the above equations are

vn(z, t) = −
z2∫

z1

dz′
∞∫

−∞
f (z′, t ′)Gv

n(z, t ; z′, t ′)dt ′, z1 < z < z2,

in(z, t) = −
z2∫

z1

dz′
∞∫

−∞
g(z′, t ′)Gi

n(z, t ; z′, t ′)dt ′, z1 < z < z2.

(8.81)

Thus the solutions of (8.68) and (8.70) can be expressed as

vTE
n (z, t) = −η

v

z2∫

z1

dz′
∞∫

−∞
Gv

n(z, t ; z′, t ′)dt ′
∫

�

∂

∂t ′ J(ρ′, z′, t ′) · en(ρ′)d�(ρ′)

−
z2∫

z1

dz′
∞∫

−∞

∂Gv
n(z, t ; z′, t ′)

∂z′ dt ′
∫

�

Jm(ρ′, z′, t ′) · uz × en(ρ′)d�(ρ′)

−kcn

z2∫

z1

dz′
∞∫

−∞
Gv

n(z, t ; z′, t ′)dt ′
∫

�

uz · Jm(ρ′, z′, t ′)
uz · ∇ × en(ρ′)

kcn
d�(ρ′),

(8.82)
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i TM
n (z, t) = −

z2∫

z1

dz′
∞∫

−∞

∂Gi
n(z, t ; z′, t ′)

∂z′ dt ′
∫

�

J(ρ′, z′, t ′) · en(ρ′)d�(ρ′)

− 1

ηv

z2∫

z1

dz′
∞∫

−∞
Gi

n(z, t ; z′, t ′)dt ′
∫

�

∂

∂t ′ Jm(ρ′, z′, t ′) · uz × en(ρ′)d�(ρ′)

+kcn

z2∫

z1

dz′
∞∫

−∞
Gi

n(z, t ; z′, t ′)dt ′
∫

�

uz · J(ρ′, z′, t ′)
∇ · en(ρ′)

kcn
d�(ρ′).

(8.83)

In deriving these expressions, it has been assumed that all sources are confined inside the cavity.
It should be notified that the time-domain voltage and current do not satisfy the homogeneous
boundary conditions (8.72) and (8.73) at z = z1 or z = z2 if the magnetic current Jm is tightly
pressed on the electric wall z = z1 or z = z2.

8.2.2.3 Excitation of waveguide cavities

The time-domain response inside a metal cavity resonator is uniquely determined by the
boundary conditions, initial conditions, and source conditions, regardless of whether the cavity
involves loss or not. A wideband signal source in a waveguide cavity will excite an infinite
number of waveguide modes, and the total fields in the cavity are the linear combination of
these modes and are determined by (8.66), in which each expansion coefficient represents the
contribution from the corresponding mode and can be determined by (8.82) or (8.83). We now
give some examples to illustrate the transient processes inside the waveguide cavities.

Example 8.4 (A shorted rectangular waveguide): Consider a shorted rectangular waveguide
shown in Figure 8.7. The shorted waveguide is excited by a line current extending across the
waveguide centered at x = x0 = a/2, z = z0, which is given by (8.31). By the symmetry of
the structure and excitation, only TEn0 modes will be excited and the vector modal functions
are shown in (8.32). Assuming f (t) = H (t) sin ωt and ignoring the heat loss, the time-domain
voltages may be found from (8.79) and (8.82) as follows

vTE
n (z, t) = bη

2

(
2

ab

)1/2

ka sin
nπ

a
x0

·

⎧

⎪⎨

⎪⎩

vt/a∫

|z−z0|/a

cos ka(vt/a − u)J0

[

kcna
√

u2 − |z − z0|2 /a2

]

du

−
vt/a∫

|z+z0|/a

cos ka(vt/a − u)J0

[

kcna
√

u2 − |z + z0|2 /a2

]

du

⎫

⎪⎬

⎪⎭

.
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Figure 8.7 A shorted rectangular waveguide excited by a centered current source

Due to the existence of radiation loss in the shorted waveguide, the time-domain responses
may be divided into the sum of a steady-state part and a transient part

vTE
n (z, t) = vTE

n (z, t)
∣
∣
steady + vTE

n (z, t)
∣
∣
transient

where

vTE
n (z, t)

∣
∣
steady

= bη

2

(
2

ab

)1/2

ka sin
nπ

a
x0

·

⎧

⎪⎨

⎪⎩

∞∫

|z−z0|/a

cos ka(vt/a − u)J0

[

kcna
√

u2 − |z − z0|2 /a2

]

du

−
∞∫

|z+z0|/a

cos ka(vt/a − u)J0

[

kcna
√

u2 − |z + z0|2 /a2

]

du

⎫

⎪⎬

⎪⎭

,

vTE
n (z, t)

∣
∣
transient

= −bη

2

(
2

ab

)1/2

ka sin
nπ

a
x0

·

⎧

⎪⎨

⎪⎩

∞∫

vt/a

cos ka(vt/a − u)J0

[

kcna
√

u2 − |z − z0|2 /a2

]

du

−
∞∫

vt/a

cos ka(vt/a − u)J0

[

kcna
√

u2 − |z + z0|2 /a2

]

du

⎫

⎪⎬

⎪⎭

.

The transient part approaches zero as t → ∞. The integrals in the steady-state part can be
carried out by use of (8.35). Thus

vTE
n (z, t)

∣
∣
steady = bη

2

(
2

ab

)1/2 ka
√
∣
∣(ka)2 − (kcna)2

∣
∣

sin
nπ

2
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×

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin

(

ka
vt

a
− |z − z0|

a

√

(ka)2 − (kcna)2

)

− sin

(

ka
vt

a
− |z + z0|

a

√

(ka)2 − (kcna)2

)

, k > kcn

cos

(

ka
vt

a

)

exp

[

−|z − z0|
a

√

(kcna)2 − (ka)2

]

− cos

(

ka
vt

a

)

exp

[

−|z + z0|
a

√

(kcna)2 − (ka)2

]

, k < kcn

.

In the region 0 < z < z0, the steady-state response may be rewritten as

vTE
n (z, t)

∣
∣
steady = 1√

2

(
b

a

)1/2
ηk

βn
sin

nπ

2
·

⎧

⎪⎨

⎪⎩

2 sin(βnz) cos(ωt − βnz0), k > kcn

cos(ωt) exp[βn(z − z0)]−
cos(ωt) exp[−βn(z + z0)], k < kcn

,

where βn = (
∣
∣k2 − k2

cn

∣
∣)1/2. The time-domain voltages for the TEn0 modes in the shorted

waveguide are a standing wave if the operating frequency is higher than the cut-off frequency
of the TEn0 mode. The time-domain currents can be determined by (8.69) as

iTE
n (z, t) =

(
2b

a

)1/2

sin
nπ

2

[

−1

2
sin ω(t − |z + z0| /v) − 1

2
sin ω(t − |z − z0| /v)

]

+
(

2b

a

)1/2

sin
nπ

2

⎧

⎨

⎩

kcn(z + z0)

2

t−|z+z0|/v∫

0

J1

[

kcnv
√

(t − t ′)2 − |z + z0|2 /v2
]

√

(t − t ′)2 − |z + z0|2 /v2
sin ωt ′dt ′

−kcn(z − z0)

2

t−|z−z0|/v∫

0

J1

[

kcnv
√

(t − t ′)2 − |z − z0|2 /v2
]

√

(t − t ′)2 − |z − z0|2 /v2
sin ωt ′dt ′

⎫

⎬

⎭
.

The steady-state part of iTE
n (z, t) is

iTE
n (z, t)

∣
∣
steady

=
(

2b

a

)1/2

sin
nπ

2

[

−1

2
sin ω(t − |z + z0| /v) − 1

2
sin ω(t − |z − z0| /v)

]

+
(

2b

a

)1/2

sin
nπ

2

⎧

⎪⎨

⎪⎩

kcn(z + z0)

2

∞∫

|z+z0|/v

J1

[

kcnv
√

u2 − |z + z0|2 /v2
]

√

u2 − |z + z0|2 /v2
sin ω(t − u)du

−kcn(z − z0)

2

∞∫

|z−z0|/v

J1

[

kcnv
√

u2 − |z − z0|2 /v2
]

√

u2 − |z − z0|2 /v2
sin ω(t − u)du

⎫

⎪⎬

⎪⎭

.
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Assuming that k > kcn and making use of the following calculations

∞∫

a

sin dx√
x2 − a2

Jν(b
√

x2 − a2)dx

= π

2
Jν/2

[a

2
(d −

√

d2 − b2)
]

J−ν/2

[a

2
(d +

√

d2 − b2)
]

,

∞∫

a

cos dx√
x2 − a2

Jν(b
√

x2 − a2)dx

= −π

2
Jν/2

[a

2
(d −

√

d2 − b2)
]

N−ν/2

[a

2
(d +

√

c2 − b2)
]

,

(a > 0, 0 < b < d),

we obtain

iTE
n (z, t)

∣
∣
steady

= − 2√
2

(
b

a

)1/2

sin
nπ

2
cos(βnz) sin(ωt − βnz0)

for 0 < z < z0. Let V TE
n (z) and I TE

n (z) be the phasors of vTE
n (z, t)

∣
∣
steady

and iTE
n (z, t)

∣
∣
steady

respectively, then

V TE
n (z) = 2√

2

(
b

a

)1/2
ηk

βn
sin

nπ

2
sin(βnz)e− jβn z0 , k > kcn,

I TE
n (z) = j

2√
2

(
b

a

)1/2

sin
nπ

2
cos(βnz)e− jβn z0 , k > kcn.

Since the currents are assumed to be in positive z-direction, the impedances for the TE modes
at z ∈ (0, z0) are given by

Zn(z) = V TE
n (z)

−I TE
n (z)

= j
ηk

βn
tan(βnz), k > kcn.

This is a well-known result in time-harmonic theory.

Example 8.5 (A rectangular waveguide cavity): A rectangular waveguide cavity is obtained
by letting the shorted waveguide be closed by a perfect conducting wall at z = L with L > z0,
as shown in Figure 8.8. For the same excitation source (8.31), only TEn0 mode will be excited
in the cavity. It follows from (8.77) and (8.82) that

vTE
n (z, t) = 2η

L

(
2b

a

)1/2

sin
nπx0

a

∞
∑

m=1

sin mπ
L z sin mπ

L z0
√

(nπ/a)2 + (mπ/L)2

·
t∫

−∞

df (t′)
dt ′ sin

[

c(t − t ′)

√
(nπ

a

)2
+
(mπ

L

)2
]

dt ′.

(8.84)
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Figure 8.8 A rectangular waveguide cavity excited by a current source

If the cavity is excited by a sinusoidal signal turned on at t = 0, that is f (t) = H (t) sin ωt , the
time-domain modal voltage may be written as

vTE
n (z, t) = −2ηk

L

(
2b

a

)1/2

sin
nπx0

a

∞
∑

m=1

sin
mπ

L
z sin

mπ

L
z0

·
cos kct − cos

[

vt
√

(nπ/a)2 + (mπ/L)2
]

k2 − (nπ/a)2 − (mπ/L)2
.

(8.85)

It can be seen that the time-domain response cannot be divided into a transient part and a
steady-state part due to the lossless assumption. Numerical plots indicate that the response is
not sinusoidal as t → ∞ if k is not equal to any resonant wavenumber

√

(nπ/a)2 + (mπ/L)2

(Geyi, 2008). Notice that the response (8.85) is finite as k approaches any resonant wavenum-
ber, and in this case, a sinusoidal wave gradually builds up as t → ∞. Therefore, the response
of a lossless metal cavity is sinusoidal if and only if the frequency of the exciting sinusoidal
wave coincides with one of the resonant frequencies of the metal cavity.

If the excitation waveform is a unit step function f (t) = H (t), Equation (8.84) becomes

vTE
n (z, t) = 2η

L

(
2b

a

)1/2

sin
nπx0

a

·
∞
∑

m=1

sin
mπ

L
z sin

mπ

L
z0

sin
[

ct
√

(nπ/a)2 + (mπ/L)2
]

√

(nπ/a)2 + (mπ/L)2
.

(8.86)

and the response of the metal cavity is no longer a unit step function.

Example 8.6 (A coaxial waveguide): A lossless coaxial waveguide cavity of length L con-
sisting of an inner conductor of radius a and an outer conductor of radius b is shown in Figure
8.9. The coaxial waveguide is excited by a magnetic ring current located at z = z0, which is
given by (8.36). According to the symmetry, only the TEM mode and those TM0q modes that
are independent of ϕ will be excited and the vector modal functions for these modes are given
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Figure 8.9 Cross-section of a coaxial waveguide

by (8.37). It follows from (8.78) and (8.83) that

i TM
n (z, t) = −2π

ηL
ρ0en(ρ0)

∞
∑

m=0

εm
cos(mπ z/L) cos(mπ z0/L)
√

(χn/a)2 + (mπ/L)2

·
t∫

−∞

df (t′)
dt ′ sin

[

v(t − t ′)
√

(χn/a)2 + (mπ/L)2
]

dt ′.

(8.87)

For f (t) = H (t) sin ωt , the above expression becomes

iTM
n (z, t) = 2kπ

ηL
ρ0en(ρ0)

∞
∑

m=0

εm cos
mπ

L
z cos

mπ

L
z0

·
cos kct − cos

[

vt
√

(χn/a)2 + (mπ/L)2
]

k2 − (χn/a)2 − (mπ/L)2
.

(8.88)

In the case where k does not coincide with any resonant wavenumber
√

(χn/a)2 + (mπ/L)2, the
field response determined from (8.66) is not sinusoidal. When the frequency of the excitation
waveform approaches one of the resonant frequencies, a sinusoidal wave will gradually build
up inside the coaxial waveguide cavity.

If the coaxial waveguide cavity is excited by the unit step waveform f (t) = H (t), Equation
(8.87) becomes

iTM
n (z, t) = −2π

ηL
ρ0en(ρ0)

·
∞
∑

m=0

εm
cos(mπ z/L) cos(mπ z0/L)
√

(χn/a)2 + (mπ/L)2
sin

[

vt
√

(χn/a)2 + (mπ/L)2
]

.

The field response is no longer a unit step waveform. This is completely different from the
time-domain response in a coaxial waveguide, which retains the original excitation waveform
although it is distorted by the higher-order modes.
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8.3 Spherical Wave Expansions in Time-domain

In the spherical coordinate system (r, θ, ϕ), the electromagnetic fields can be decomposed into
the transverse components and the radial components

E = Et + ur Er , H = Ht + ur Hr .

If these decompositions are introduced into Maxwell equations, the radial components can be
eliminated to get the equations for the transverse components.

8.3.1 Transverse Field Equations

Taking the vector and scalar product of Maxwell equations

∇ × H(r, t) = ε
∂E(r, t)

∂t
+ J(r, t),

∇ × E(r, t) = −µ
∂H(r, t)

∂t
− Jm(r, t),

with the vector r, we obtain

ε
∂

∂t
(r × E) + r × J = ∇(r · H) − (r · ∇)H − H,

(8.89)
−µ

∂

∂t
(r × H) − r × Jm = ∇(r · E) − (r · ∇)E − E,

−∇ · (r × Ht ) = ε
∂(r · E)

∂t
+ r · J,

(8.90)
∇ · (r × Et ) = µ

∂(r · H)

∂t
+ r · Jm .

For an arbitrary vector F, its directional derivative along r is

(r · ∇)F = r
∂F
∂r

= r
∂

∂r
(Fr ur + Fθ uθ + Fϕuϕ)

= rur
∂

∂r
Fr + r

∂

∂r
(Fθ uθ + Fϕuϕ) = rur

∂

∂r
Fr + r

∂

∂r
Ft .

Considering this equation and comparing the transverse components of (8.89), we obtain

1

r
∇θϕ(r · H) − r

∂Ht

∂r
− Ht = ε

∂

∂t
(r × Et ) + r × Jt ,

1

r
∇θϕ(r · E) − r

∂Et

∂r
− Et = −µ

∂

∂t
(r × Ht ) − r × Jmt ,

(8.91)
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where ∇θϕ = uθ
∂
∂θ

+ uϕ
1

sin θ
∂
∂ϕ

. The radial components in (8.91) may be eliminated by using
(8.90), to obtain the equations for the transverse fields

−µ
∂

∂r

[
∂(rHt )

∂t

]

+ 1

r2
∇θϕ∇θϕ · (r × Et ) − µε

∂2

∂t2
(r × Et )

= µ
∂

∂t
(r × Jt ) + 1

r
∇θϕ(r · Jm),

−ε
∂

∂r

[
∂(rEt )

∂t

]

− 1

r2
∇θϕ∇θϕ · (r × Ht ) + µε

∂2

∂t2
(r × Ht )

= −ε
∂

∂t
(r × Jmt ) + 1

r
∇θϕ(r · J).

(8.92)

8.3.2 Spherical Transmission Line Equations

Similar to (3.102), the transverse electromagnetic fields in time domain may be represented
by

rEt (r, t) =
∑

n,m,l

[

V TM
nml (r, t)enml(θ, ϕ) + V TE

nml(r, t)hnml(θ, ϕ)
]

,

rHt (r, t) =
∑

n,m,l

[

I TM
nml (r, t)hnml(θ, ϕ) − I TE

nml(r, t)enml(θ, ϕ)
]

.

Thus

r × Et (r, t) =
∑

n,m,l

[

V TM
nml (r, t)hnml(θ, ϕ) − V TE

nml(r, t)enml(θ, ϕ)
]

,

r × Ht (r, t) =
∑

n,m,l

[−I TM
nml (r, t)enml(θ, ϕ) − I TE

nml(r, t)hnml(θ, ϕ)
]

.

Introducing the following calculations

∇θϕ∇θϕ · (r × Et ) =
∑

n,m,l

V TE
nmln(n + 1)enml,

∇θϕ∇θϕ · (r × Ht ) =
∑

n,m,l

I TM
nml n(n + 1)enml,

∂

∂r

[
∂(rEt )

∂t

]

=
∑

n,m,l

(
∂2V TM

nml

∂r∂t
enml + ∂2V TE

nml

∂r∂t
hnml

)

,

∂

∂r

[
∂(rHt )

∂t

]

=
∑

n,m,l

(
∂2 I TM

nml

∂r∂t
hnml − ∂2 I TE

nml

∂r∂t
enml

)

,

∂2

∂t2
(r × Et ) =

∑

n,m,l

(
∂2V TM

nml

∂t2
hnml − ∂2V TE

nml

∂t2
enml

)

,

∂2

∂t2
(r × Ht ) =

∑

n,m,l

(

−∂2 I TM
nml

∂t2
enml − ∂2 I TE

nml

∂t2
hnml

)

,
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into (8.92) yields

−µ
∑

n,m,l

(
∂2 I TM

nml

∂r∂t
hnml − ∂2 I TE

nml

∂r∂t
enml

)

+ 1

r2

∑

n,m,l

V TE
nmln(n + 1)enml

−µε
∑

n,m,l

(
∂2V TM

nml

∂t2
hnml − ∂2V TE

nml

∂t2
enml

)

= µ
∂

∂t
(r × Jt ) + 1

r
∇θϕ(r · Jm),

−ε
∑

n,m,l

(
∂2V TM

nml

∂r∂t
enml + ∂2V TE

nml

∂r∂t
hnml

)

− 1

r2

∑

n,m,l

I TM
nml n(n + 1)enml

+µε
∑

n,m,l

(

−∂2 I TM
nml

∂t2
enml − ∂2 I TE

nml

∂t2
hnml

)

= −ε
∂

∂t
(r × Jmt ) + 1

r
∇θϕ(r · J).

Equating the coefficients before the vector basis functions gives

ε
∂2V TM

nml

∂t2
+ ∂2 I TM

nml

∂r∂t
= −

∫

S′

[
∂

∂t
(r × Jt ) + 1

µr
∇θϕ(r · Jm)

]

· hnmld�,

−µ
∂2 I TM

nml

∂t2
− ∂2V TM

nml

∂r∂t
− 1

εr2
I TM
nml n(n + 1) =

∫

S′

[

− ∂

∂t
(r × Jmt ) + 1

εr
∇θϕ(r · J)

]

· enmld�,

−µ
∂2 I TE

nml

∂t2
− ∂2V TE

nml

∂r∂t
=
∫

S′

[

− ∂

∂t
(r × Jmt ) + 1

εr
∇θϕ(r · J)

]

· hnmld�,

ε
∂2V TE

nml

∂t2
+ ∂2 I TE

nml

∂r∂t
+ 1

µr 2
V TE

nmln(n + 1) =
∫

S′

[
∂

∂t
(r × Jt ) + 1

µr
∇θϕ(r · Jm)

]

· enmld�,

where S′ is a sphere enclosing the source and d� is the differential element of the solid angle.
After some manipulations, we obtain

[
∂2

∂r2
− 1

v2

∂2

∂t2
− n(n + 1)

r2

]

I TM
nml

= ε

∫

S′

[

− ∂

∂t
(r × Jmt ) + 1

εr
∇θϕ(r · J)

]

· enmld�

− ∂

∂r

t∫

−∞

⎧

⎨

⎩

∫

S′

[
∂

∂t ′ (r × Jt ) + 1

µr
∇θϕ(r · Jm)

]

· hnmld�

⎫

⎬

⎭
dt ′,
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[
∂2

∂r 2
− 1

v2

∂2

∂t2
− n(n + 1)

r2

]

V TE
nml

= −µ

∫

S′

[
∂

∂t
(r × Jt ) + 1

µr
∇θϕ(r · Jm)

]

· enmld�

− ∂

∂r

t∫

−∞

⎧

⎨

⎩

∫

S′

[

− ∂

∂t ′ (r × Jmt ) + 1

εr
∇θϕ(r · J)

]

· hnmld�

⎫

⎬

⎭
dt ′.

These are the time-domain spherical transmission line equations.

8.4 Radiation and Scattering in Time-domain

The application of short pulses in radar and telecommunication has made the analysis and
design of ultra-wideband antenna in the time-domain an active research field. The ultra-
wideband systems have some advantages over the traditional narrow band system because of
the use of very short pulses, such as efficient transfer of localized electromagnetic energy and
high-resolution interrogation of targets.

8.4.1 Radiation From an Arbitrary Source

In the time domain, the vector and scalar potential in free space satisfy the wave equations

(

∇2 − µ0ε0
∂2

∂t2

)

A(r, t) = −µJ(r, t),

(

∇2 − µ0ε0
∂2

∂t2

)

φ(r, t) = −ρ(r, t)

ε
.

For the radiation problem in free space, the solutions are

A(r, t) =
∫

V

µ0J(r′, T )

4π R
dV (r′), φ(r, t) =

∫

V

ρ(r′, T )

4πε0 R
dV (r′),

where R = ∣
∣r − r′∣∣, T = t − R/c, and c = 1/

√
µ0ε0. In time-domain electromagnetics, the

difference between the time of emission and the time of observation is the basis for the
existence of electromagnetic radiation. When the observation point is very close to the sources,
the changes of the sources ρ and J over a time scale of R/c are not significant and retardation
effects can be ignored. In this case, the time of emission T is approximately equal to the time
of observation t . In other words the potentials are approximately those occurring in statics.
On the contrary, retardation effects become significant when the observation point is far from
the source. Suppose that the origin of the coordinates lies inside the source distribution,
and the source distribution has a characteristic dimension d . We can make the following
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approximations:

R = ∣
∣r − r′∣∣ =

√

r2 − 2r · r′ + r ′2 ≈ r − ur · r′,

T ≈ tr = t − r/c + ur · r′/c
(8.93)

for r >> d. The last term in tr denotes the amount of time it takes for the radiation to propagate
across the source. Making use of (8.93), the potentials can then be rewritten as

A(r, t) = µ0

4πr

∫

V

J
(

r′, t − r

c
+ 1

c
ur · r′

)

dV (r′),

φ(r, t) = 1

4πε0r

∫

V

ρ

(

r′, t − r

c
+ 1

c
ur · r′

)

dV (r′).

By use of the following approximations

∇ f (t − R/c)

R
≈ −ur

c

∂

∂t

f (tr )

r
+ o

(
1

r2

)

,

∇ × J(t − R/c)

R
≈ −ur × J′(tr )

cr
+ o

(
1

r

)

,

the far fields produced by the source may be expressed as

E(r, t) = −∇φ − ∂A
∂t

≈ − µ0

4πr

∫

V

∂J(r′, tr )

∂t
dV (r′) + urη0

4πr

∫

V

∂ρ(r′, tr )

∂t
dV (r′),

H(r, t) = ∇ × A ≈ − ur

4πcr
×
∫

V

∂J(r′, tr )

∂t
dV (r′),

where η0 = √
µ0/ε0. To get rid of the charge distribution, we may use the continuity equation

∇′
r′ · J(r′, tr ) = −∂ρ(r′, tr )

∂t
,

where ∇′
r′ denotes the operation applied to the spatial argument only. Since

∇′ · J(r′, tr ) = ∇′
r′ · J(r′, tr ) − 1

c
uR · ∂J(r′, tr )

∂t

≈ ∇′
r′ · J(r′, tr ) − 1

c
ur · ∂J(r′, tr )

∂t
,

the continuity equation can be written as

∂ρ(r′, tr )

∂t
= ∇′ · J(r′, tr ) + 1

c
ur · ∂J(r′, tr )

∂t
. (8.94)
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From
∫

V
∇′ · J(r′, tr )dV (r′) = 0 and (8.94), the radiated electric field can be represented by

E(r, t) ≈ − µ0

4πr

∫

V

∂J(r′, tr )

∂t
dV (r′) + µ0

4πr
ur

∫

V

ur · ∂J(r′, tr )

∂t
dV (r′)

= ur × µ0

4πr

∫

V

ur × ∂J(r′, tr )

∂t
dV (r′) = −η0ur × H(r, t).

(8.95)

Thus, the far field generated by any transient sources is a transverse electromagnetic wave
relative to the radial direction. The rate of energy radiated per unit area is

d Prad

dS
= ur · (E × H) = η0 |H|2

= η0

16π2c2r2

∣
∣
∣
∣
∣
∣

ur ×
∫

V

∂J(r′, tr )

∂t
dV (r′)

∣
∣
∣
∣
∣
∣

2

,

where d S stands for the differential area of the sphere of radius r . The rate of energy radiated
per unit solid angle (angular distribution of radiated power) is

d Prad

d�
= d Prad

r2d S
= η

16π 2c2

∣
∣
∣
∣
∣
∣

ur ×
∫

V

∂J(r′, tr )

∂t
dV (r′)

∣
∣
∣
∣
∣
∣

2

.

8.4.2 Radiation From Elementary Sources

The time-domain analysis of radiation mechanism by elementary electric and magnetic sources
is helpful for understanding the physical process of radiation, which involves the exchange of
energies between the source and the radiated fields.

8.4.2.1 Radiation by accelerated charged particle

Any accelerated charges will radiate electromagnetic energy. Let c(t ′) denote the position of
a charged particle with charge q moving with velocity v, small compared with the speed of
light, |v| /c � 1. The current density is

J(r′, t ′) = qv(t ′)δ[r′ − c(t ′)].

The time of emission of radiation may be approximated by

tr = t − r

c
+ 1

c
ur · c(t ′) ≈ t − r

c
= te
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for |v| /c � 1. Then

∫

V

∂J(r′, tr )

∂t
dV (r′) ≈ d

dt

∫

V

J(r′, te)dV (r′) = q
dv(te)

dte
,

which indicates that the radiation is produced whenever the charged particle is accelerated.
The angular distribution of the radiated power is

d Prad

d�
= η0q2

16π2c2

∣
∣
∣
∣
ur × dv(te)

dte

∣
∣
∣
∣

2

= η0q2

16π2c2

∣
∣
∣
∣

dv(te)

dte

∣
∣
∣
∣

2

sin2 θ (te),

where θ (te) is the angle between the direction of observation ur and the direction of the
acceleration at the emission time te. Note that there is no radiation along the direction of
acceleration. Since

∫

sin2 θd� = 8π
/

3, the total radiated power is

Prad = ηq2

6πc2

∣
∣
∣
∣

dv(te)

dte

∣
∣
∣
∣

2

.

This is the well-known Larmor formula, named after Irish physicist Joseph Larmor
(1857–1942).

8.4.2.2 Radiation from electric dipole and magnetic dipole

An electric dipole consists of two point charges of equal magnitude q(t) but opposite sign
separated by a fixed distance l, as shown in Figure 8.10. Let I (t) be the current flowing in the
direction of ud and ud is a unit vector from the negative charge to the positive charge. The
electric dipole moment p is defined by

p(t) = p(t)ud = q(t)lud .

An infinitesimal dipole is obtained when the length of the dipole goes to zero and charges be-
come infinity in such a way that the dipole moment remains finite. The radiated electromagnetic
fields of the dipole can be obtained from (8.95)

E(r, t) ≈ µ0

4πr
{ur × [ur × p̈(tr )]}tr =t−r/c = µ0

4πr
[ p̈(tr )]tr =t−r/c sin θuθ ,

H(r, t) ≈ − 1

4πrc
[ur × p̈(tr )]tr =t−r/c = 1

4πrc
[ p̈(tr )]tr =t−r/c sin θuϕ.

(8.96)

ud
q(t)–q(t)

l

Figure 8.10 A dipole
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un

I0(t)

S

Feeding point 

Figure 8.11 A loop

At large radial distance from the dipole, the rate of energy radiated per unit area is

d Prad

dS
= 1

(4π )2ε0c3

sin2 θ

r2
p̈
(

t − r

c

)

.

The definition of a magnetic dipole is exactly the same as the electric dipole and we only
need to replace q(t) by qm(t), and I (t) by Im(t). A magnetic dipole is a fictitious source that
is equivalent to a small electric current loop in the sense that they both give the same fields
outside the source region. It can be shown that the electromagnetic fields produced by the
magnetic dipole are the same as that produced by a small electric current loop if we define
the magnetic dipole element by m(t) = µ0 I0(t)Sun , where S is the area of the loop, I0(t) is the
current in the loop, and un is the unit normal whose direction is determined by the right-hand
rule as shown in Figure 8.11. When the loop is electrically small, the current is approximately
uniform with the value I0(t). The fields produced by the loop can be obtained by duality
through (8.96) as

E(r, t) ≈ − 1

4πcr
[m̈(tr )]tr =t−r/c sin θuϕ,

H(r, t) ≈ ε0

4πr
[m̈(tr )]tr =t−r/c sin θuθ .

The radiated fields of the small loop is proportional to m̈(t).

8.4.3 Enhancement of Radiation

The vector wave equations for the electromagnetic fields in free space can be rewritten as

∇2E − µ0ε0
∂2E
∂t2

= µ0
∂J
∂t

+ ∇ × Jm + ∇ρ

ε0
,

∇2H − µ0ε0
∂2H
∂t2

= −∇ × J + ε0
∂Jm

∂t
+ ∇ρm

µ0
.

If all sources are within a finite volume V , the solutions of these equations are

E(r, t) = −
∫

V

SE (r′, t − ∣
∣r − r′∣∣ /v)

4π R
dV (r′),

H(r, t) = −
∫

V

SH (r′, t − ∣
∣r − r′∣∣ /v)

4π R
dV (r′),

(8.97)
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where

SE (r, t) = µ0
∂J(r, t)

∂t
+ ∇ × Jm(r, t) + ∇ρ(r, t)

ε0
,

SH (r, t) = −∇ × J(r, t) + ε0
∂Jm(r, t)

∂t
+ ∇ρm(r, t)

µ0
.

It can be seen that the contributions of the sources to the fields are not directly through the
sources themselves but through their time variation and space variations. As a result, the wire
antennas with concentrated loadings along their length radiate more efficiently than unloaded
wires and significant contributions to the radiation fields come from the ends of the wire
antennas. Physically the loading and the discontinuity increase the gradient of charges along
the wire antennas.

The radiation can also be enhanced by decreasing the rise-time of the pulse (Geyi, 1996).
To demonstrate this point, we may consider the current distribution

J(r, t) = J(r) f (t)δ(z), r ∈ �,

and its radiated electric field on the z-axis:

E(0, 0, z, t) = − µ

4π z

d f (t − z/c)

dt

∫

�

J(r′)d�(r′).

The time-integrated Poynting vector of the fields is

S(0, 0, z) = 1

η0

∞∫

−∞
|E(0, 0, z, t)|2 dt

(8.98)

= η0

(
1

4π zc

)2
∣
∣
∣
∣
∣
∣

∫

�

J(r′)d�(r′)

∣
∣
∣
∣
∣
∣

2 ∞∫

−∞

∣
∣
∣
∣

d f (t)

dt

∣
∣
∣
∣

2

dt .

This indicates that the shorter the rise time of the exciting pulse, the slower is the decay of the
radiating energy. The property is very important to carrier-free radar, and it implies that the
radar range can be increased by a shorter exciting pulse. Let us consider an interesting case
where the exciting pulse is a modulated signal with a finite duration D and a carrier whose
cycle is D0 = D/n(n > 1):

f (t) = Ag(t) sin

(
π t

D0

)

, 0 < t < D. (8.99)

If the energy of the pulse is normalized, that is,

D∫

0

g2(t)dt = 1,

D∫

0

f 2(t)dt = 1,
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we have A ≥ 1. Substituting (8.99) into (8.98) gives

S(0, 0, z) = η0

(
1

4π zc

)2
∣
∣
∣
∣
∣
∣

∫

�

Jd�

∣
∣
∣
∣
∣
∣

2

(8.100)

·
⎧

⎨

⎩

(nπ

D

)2
+ A2

2

D∫

0

[
dg(t)

dt

]2

dt − A2

2

D∫

0

[
dg(t)

dt

]2

cos

(
2nπ t

D

)

dt

⎫

⎬

⎭
.

The last term in the curved brackets decreases rapidly as n increases. As a result, the time
integrated energy on the z-axis increases as n increases. In other words, the decay of the energy
density of the radiated electromagnetic pulse can be slowed down by increasing the frequency
of the carrier.

Example 8.7: Consider three types of pulses with unit energy: a triangular pulse, a single-
cycle sinusoidal pulse and a single-cycle sinusoidal pulse with a carrier, respectively defined
by

f1(t) = √
2/D(1 − 2 |t | /D), |t | < D/2,

f2(t) = √
2/D sin(π t/D), 0 < t < D,

f3(t) = 2
√

1/D sin(π t/D) sin(π t/D0), D = nD0, n > 1, 0 < t < D.

The corresponding time-integrated Poynting vectors are

S1(0, 0, z) = η0
8

D2

(
1

4π zc

)2
∣
∣
∣
∣
∣
∣

∫

�

J(r′)d�(r′)

∣
∣
∣
∣
∣
∣

2

,

S2(0, 0, z) = η0
π2

D2

(
1

4π zc

)2
∣
∣
∣
∣
∣
∣

∫

�

J(r′)d�(r′)

∣
∣
∣
∣
∣
∣

2

,

S3(0, 0, z) = η0
π2

D2
(1 + n2)

(
1

4π zc

)2
∣
∣
∣
∣
∣
∣

∫

�

J(r′)d�(r′)

∣
∣
∣
∣
∣
∣

2

,

and we have S1 < S2 < S3.

8.4.4 Time-domain Integral Equations

The time-domain integral equations can be used to analyze the transient radiation character-
istics of complex antennas. The derivation of integral equations in the time domain is very
similar to that in the frequency domain.
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σ =

un

un

S∞

V S

∞
V0

0 0,µ ε

Figure 8.12 An arbitrary metal antenna

8.4.4.1 Integral equations for metal antenna

An arbitrary metal antenna is shown in Figure 8.12. It is assumed that the scatterer is a perfect
conductor and occupies a finite region V bounded by S. A nearby current source J is located
in the region V0. Let S∞ be a closed surface, which is large enough to enclose both V0 and the
scatterer V . From the representation theorems, the total fields inside the region bounded by S
and S∞ can be expressed as

E(r, t) = ∇ ×
∫

S∞

Jms(r′, T )G0(r, r′)d S(r′) + 1

ε0
∇
∫

S∞

ρs(r′, T )G0(r, r′)d S(r′)

+µ0
∂

∂t

∫

S∞

Js(r′, T )G0(r, r′)d S(r′) − ∇ ×
∫

S

Jms(r′, T )G0(r, r′)d S(r′)

− 1

ε0
∇
∫

S

ρs(r′, T )G0(r, r′)d S(r′) − µ0
∂

∂t

∫

S

Js(r′, T )G0(r, r′)d S(r′)

+Ein(r, t),

H(r, t) = −∇ ×
∫

S∞

Js(r′, T )G0(r, r′)d S(r′) + 1

µ0
∇
∫

S∞

ρms(r′, T )G0(r, r′)d S(r′)

+ε0
∂

∂t

∫

S∞

Jms(r′, T )G0(r, r′)d S(r′) + ∇ ×
∫

S

Js(r′, T )G0(r, r′)d S(r′)

− 1

µ0
∇
∫

S

ρms(r′, T )G0(r, r′)d S(r′) − ε0
∂

∂t

∫

S

Jms(r′, T )G0(r, r′)d S(r′)

+Hin(r, t),

where Js = un × H, Jms = −un × E, ρms = µun · H, ρs = εun · E, G0(r, r′) =
1/4π

∣
∣r − r′∣∣, T = t − ∣

∣r − r′∣∣ /c, c = 1/
√

µ0ε0, and

Ein(r, t) = − 1

ε0
∇
∫

V0

ρs(r′, T )G0(r, r′)d S(r′) − µ0
∂

∂t

∫

V0

Js(r′, T )G0(r, r′)d S(r′),

Hin(r, t) = ∇ ×
∫

V0

Js(r′, T )G0(r, r′)d S(r′),
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are the incident fields. The integrals over S∞ must be zero as S∞ approaches infinity. Let r
approach S from the outside. From the jump relations, it follows that

E(r, t) = 1

2
un(r) × Jms(r, t) − ∇ ×

∫

S

Jms(r′, T )G0(r, r′)d S(r′)

+ 1

2ε0
un(r)ρs(r, t) − 1

ε0
∇
∫

S

ρs(r′, T )G0(r, r′)d S(r′)

−µ0
∂

∂t

∫

S

Js(r′, T )G0(r, r′)d S(r′) + Ein(r, t),

H(r, t) = −1

2
un(r) × Js(r, t) + ∇ ×

∫

S

Js(r′, T )G0(r, r′)d S(r′)

+ 1

2µ0
un(r)ρms(r, t) − 1

µ0
∇
∫

S

ρms(r′, T )G0(r, r′)d S(r′)

−ε0
∂

∂t

∫

S

Jms(r′, T )G0(r, r′)d S(r′) + Hin(r, t).

Multiplying the above equations vectorially by un(r), we obtain

un(r) ×µ0
∂

∂t

∫

S

Js(r′, T )G0(r, r′)d S(r′)

+un(r) × 1

ε0
∇
∫

S

ρs(r′, T )G0(r, r′)d S(r′) = un(r) × Ein(r, t),
(8.101)

and

1

2
Js(r, t) − un(r) × ∇ ×

∫

S

Js(r′, T )G0(r, r′)d S(r′) = un(r) × Hin(r, t). (8.102)

Considering

∇ [

ρs(r′, T )G0(r, r′)
]

= ρs(r′, T )∇G0(r, r′) − uRG0(r, r′)
∂ρs(r′, T )

c∂t
(8.103)

=
[

ρs(r′, T ) + ∣
∣r − r′∣∣ ∂ρs(r′, T )

c∂t

]

∇G0(r, r′),

∇ × [

Js(r′, T )G0(r, r′)
]

= ∇G0(r, r′) × Js(r′, T ) − G0(r, r′)uR × ∂Js(r′, T )

c∂t

= ∇G0(r, r′) ×
[

Js(r′, T ) + ∣
∣r − r′∣∣ ∂Js(r′, T )

c∂t

]

,

(8.104)
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Equations (8.101) and (8.102) can be written as

un(r) × µ0
∂

∂t

∫

S

Js(r′, T )G0(r, r′)d S(r′)

−un(r) × 1

ε0

∫

S

[

ρs(r′, T ) + ∣
∣r − r′∣∣ ∂ρs(r′, T )

c∂t

]

∇′G0(r, r′)d S(r′)

= un(r) × Ein(r, t),

(8.105)

1

2
Js(r, t) − un(r) ×

∫

S

[

Js(r′, T ) + ∣
∣r − r′∣∣ ∂Js(r′, T )

c∂t

]

× ∇′G0(r, r′)d S(r′)

= un(r) × Hin(r, t).

(8.106)

These are the time-domain integral equations for the metal antenna. The surface currents
and charge densities satisfy the continuity equations

∇s · Js(r, t) + ∂ρ(r, t)

∂t
= 0,∇s · Jms(r, t) + ∂ρms(r, t)

∂t
, (8.107)

which can be used to eliminate the surface charge density in (8.105).

Remark 8.2 (Method of Laplace transform): Laplace transform has been the traditional
method used for the analysis of transient phenomena. By taking the Laplace transform of
(8.105) and (8.106), we obtain the integral equations in the complex frequency domain. After
discretization and matrix inversion, the time-domain response can be obtained by taking the
inverse Laplace transform. The time response of the scatterer is usually represented as a series
of exponentials. This indicates that the field response may be characterized by the singularities
of the Laplace transform. The singularity expansion method (SEM) is based on this idea
(Baum, 1976; Marin, 1973). The singularities are often simple poles and are dependent on the
geometry of the scatterer only. Therefore, they can be used to characterize the scatterer.

8.4.4.2 Integral equations for dielectric antenna

An arbitrary dielectric antenna is shown in Figure 8.13. It is assumed that the dielectric
scatterer is finite and homogeneous, and occupies a region V bounded by S. When the fields
generated by a source J are incident upon the dielectric scatterer, they will generate scattered
fields outside S and a transmitted field inside S. The tangential components of the total fields
must be continuous across S

(un × E)+ = (un × Ed )−, (un × H)+ = (un × Hd )−, (8.108)

where the subscript d stands for the transmitted fields inside the dielectric scatterer. Ignoring
the integral over S∞ (S∞ approaches infinity), the total fields inside the region bounded by S



P1: OTA/XYZ P2: ABC
c08 BLBK281-Wen March 13, 2010 16:3 Printer Name: Yet to Come

Radiation and Scattering in Time-domain 373

J
0 0,µ ε

V S
,µ ε

un

un

S∞

V0

Figure 8.13 An arbitrary dielectric antenna

and S∞ can be represented by

E(r, t) = −∇ ×
∫

S

Jms(r′, T )G0(r, r′)d S(r′) − 1

ε0
∇
∫

S

ρs(r′, T )G0(r, r′)d S(r′)

−µ0
∂

∂t

∫

S

Js(r′, T )G0(r, r′)d S(r′) + Ein(r, t),

H(r, t) = ∇ ×
∫

S

Js(r′, T )G0(r, r′)d S(r′) − 1

µ0
∇
∫

S

ρms(r′, T )G0(r, r′)d S(r′)

−ε0
∂

∂t

∫

S

Jms(r′, T )G0(r, r′)d S(r′) + Hin(r, t),

where

Ein(r, t) = − 1

ε0
∇
∫

V0

ρs(r′, T )G0(r, r′)dV (r′) − µ0
∂

∂t

∫

V0

Js(r′, T )G0(r, r′)dV (r′),

Hin(r, t) = ∇ ×
∫

V0

Js(r′, T )G0(r, r′)dV (r′),

are the incident fields. The total fields inside S can be expressed as

Ed (r, t) = ∇ ×
∫

S

Jms(r′, Td )G0(r, r′)d S(r′) + 1

ε
∇
∫

S

ρs(r′, Td )G0(r, r′)d S(r′)

+µ
∂

∂t

∫

S

Js(r′, Td )G0(r, r′)d S(r′),

Hd (r, t) = −∇ ×
∫

S

Js(r′, Td )G0(r, r′)d S(r′) + 1

µ
∇
∫

S

ρms(r′, Td )G0(r, r′)d S(r′)

+ε
∂

∂t

∫

S

Jms(r′, Td )G0(r, r′)d S(r′),
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where Td = t − ∣
∣r − r′∣∣ /v, v = 1/

√
µε and we have used (8.108). Let the observation point

approach the boundary S from the outside. Making use of the jump relations, we may find that

E(r, t) = 1

2
un(r) × Jms(r, t) − ∇ ×

∫

S

Jms(r′, T )G0(r, r′)d S(r′)

+ 1

2ε0
un(r)ρs(r, t) − 1

ε0
∇
∫

S

ρs(r′, T )G0(r, r′)d S(r′)

−µ0
∂

∂t

∫

S

Js(r′, T )G0(r, r′)d S(r′) + Ein(r, t),

H(r, t) = −1

2
un(r) × Js(r, t) + ∇ ×

∫

S

Js(r′, T )G0(r, r′)d S(r′)

+ 1

2µ0
un(r)ρms(r, t) − 1

µ0
∇
∫

S

ρms(r′, T )G0(r, r′)d S(r′)

−ε0
∂

∂t

∫

S

Jms(r′, T )G0(r, r′)d S(r′) + Hin(r, t),

Ed (r, t) = 1

2
un(r) × Jms(r, t) + ∇ ×

∫

S

Jms(r′, Td )G0(r, r′)d S(r′)

+ 1

2ε
un(r)ρs(r, t) + 1

ε
∇
∫

S

ρs(r′, Td )G0(r, r′)d S(r′)

+µ
∂

∂t

∫

S

Js(r′, Td )G0(r, r′)d S(r′),

Hd (r, t) = −1

2
un(r) × Js(r, t) − ∇ ×

∫

S

Js(r′, Td )G0(r, r′)d S(r′)

+ 1

2µ
un(r)ρms(r, t) + 1

µ
∇
∫

S

ρms(r′, Td )G0(r, r′)d S(r′)

+ε
∂

∂t

∫

S

Jms(r′, Td )G0(r, r′)d S(r′).

Multiplying these equations vectorially by un yields

−1

2
ε0Jms(r, t) = −µ0ε0un(r) × ∂

∂t

∫

S

Js(r′, T )G0(r, r′)d S(r′)

−un(r) × ∇ ×
∫

S

Jms(r′, T )ε0G0(r, r′)d S(r′)

−un(r) × ∇
∫

S

ρs(r′, T )G0(r, r′)d S(r′) + un(r) × ε0Ein(r, t),

(8.109)
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1

2
µ0Js(r, t) = −µ0ε0un(r) × ∂

∂t

∫

S

Jms(r′, T )G0(r, r′)d S(r′)

+un(r) × ∇ ×
∫

S

Js(r′, T )µ0G0(r, r′)d S(r′)

−un(r) × ∇
∫

S

ρms(r′, T )G0(r, r′)d S(r′) + un(r) × µ0Hin(r, t),

(8.110)

−1

2
εJms(r, t) = µεun(r) × ∂

∂t

∫

S

Js(r′, Td )G0(r, r′)d S(r′)

+un(r) × ∇ ×
∫

S

Jms(r′, Td )εG0(r, r′)d S(r′)

+un(r) × ∇
∫

S

ρs(r′, Td )G0(r, r′)d S(r′),

(8.111)

1

2
µJs(r, t) = µεun(r) × ∂

∂t

∫

S

Jms(r′, Td )G0(r, r′)d S(r′)

−un(r) × ∇ ×
∫

S

Js(r′, Td )µG0(r, r′)d S(r′)

+un(r) × ∇
∫

S

ρms(r′, Td )G0(r, r′)d S(r′).

(8.112)

Adding (8.109) and (8.111) gives

−1

2
(ε0 + ε)Jms(r, t)

+un(r) ×
∫

S

[

µ0ε0
∂

∂t
Js(r′, T ) − µε

∂

∂t
Js(r′, Td )

]

G0(r, r′)d S(r′)

+un(r) × ∇ ×
∫

S

[

ε0Jms(r′, T ) − εJms(r′, Td )
]

G0(r, r′)d S(r′)

+un(r) × ∇
∫

S

[

ρs(r′, T ) − ρs(r′, Td )
]

G0(r, r′)d S(r′) = un(r) × ε0Ein(r, t).

(8.113)

Adding (8.110) and (8.112) gives

1

2
(µ0 + µ)Js(r, t)

+un(r) ×
∫

S

[

µ0ε0
∂

∂t
Jms(r′, T ) − µε

∂

∂t
Jms(r′, Td )

]

G0(r, r′)d S(r′)

+un(r) × ∇ ×
∫

S

[

µJs(r′, Td ) − µ0Js(r′, T )
]

G0(r, r′)d S(r′)

+un(r) × ∇
∫

S

[

ρms(r′, T ) − ρms(r′, Td )
]

G0(r, r′)d S(r′) = un(r) × µ0Hin(r, t).

(8.114)
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By use of (8.103) and (8.104), Equations (8.113) and (8.114) can be rewritten as

1

2
(µ0 + µ)Js(r, t)

+un(r) ×
∫

S

[

µ0ε0
∂

∂t
Jms(r′, T ) − µε

∂

∂t
Jms(r′, Td )

]

G0(r, r′)d S(r′)

+un(r) ×
∫

S

[

Js(r′, Td ) + ∣
∣r − r′∣∣ ∂Js(r′, Td )

v∂t

]

× µ∇′G0(r, r′)d S(r′)

−un(r) ×
∫

S

[

Js(r′, T ) + ∣
∣r − r′∣∣ ∂Js(r′, T )

c∂t

]

× µ0∇′G0(r, r′)d S(r′)

−un(r) ×
∫

S

[

ρms(r′, T ) + ∣
∣r − r′∣∣ ∂ρms(r′, T )

c∂t

]

∇′G0(r, r′)ds(r′)

+un(r) ×
∫

S

[

ρms(r′, Td ) + ∣
∣r − r′∣∣ ∂ρms(r′, Td )

v∂t

]

∇′G0(r, r′)d S(r′)

= un(r) × µ0Hin(r, t),

(8.115)

−1

2
(ε0 + ε)Jms(r, t)

+un(r) ×
∫

S

[

µ0ε0
∂

∂t
Js(r′, T ) − µε

∂

∂t
Js(r′, Td )

]

G0(r, r′)d S(r′)

+un(r) ×
∫

S

[

Jms(r′, T ) + ∣
∣r − r′∣∣ ∂Jms(r′, T )

c∂t

]

× ε0∇′G0(r, r′)d S(r′)

−un(r) ×
∫

S

[

Jms(r′, Td ) + ∣
∣r − r′∣∣ ∂Jms(r′, Td )

v∂t

]

× ε∇′G0(r, r′)d S(r′)

−un(r) ×
∫

S

[

ρs(r′, T ) + ∣
∣r − r′∣∣ ∂ρs(r′, T )

c∂t

]

∇′G0(r, r′)d S(r′)

+un(r) ×
∫

S

[

ρs(r′, Td ) + ∣
∣r − r′∣∣ ∂ρs(r′, Td )

v∂t

]

∇′G0(r, r′)d S(r′)

= un(r) × ε0Ein(r, t).

(8.116)

Equations (8.115) and (8.116) are the time-domain integral equations for the dielectric
antenna. Equations (8.107) can be used to eliminate the surface charge densities in the above
equations. In recent years, there has been increasing interest in the use of the time-domain
integral equations to numerically solve the scattering problems, which is very efficient for
a homogeneous scattering environment. When the environment gets complicated, we must
consider the domain method to tackle the time-domain problems. One popular method is
the finite-difference time-domain (FDTD), which is a numerical scheme proposed by Yee
in 1966 to solve Maxwell equations (Yee, 1966). Compared with the time-domain integral
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equations, the FDTD method is very powerful in dealing with inhomogeneous or nonlinear
problems. When FDTD is applied to solve a problem with infinite computational domain,
a truncated boundary must be introduced to make the number of unknowns in the domain
finite. To simulate the original infinite domain problem, absorbing boundary conditions must
be carefully designed to minimize the reflections from the truncated boundary (Umashankar
and Taflove, 1993).

And the continuity of our science has not been affected by all these turbulent happenings, as the
older theories have always been included as limiting cases in the new ones.

—Max Born (German physicist, 1882–1970)
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9
Relativity

The special theory of relativity owes its origins to Maxwell equations of the electromagnetic field.
—Albert Einstein

Newton’s first law states that a body at rest or in uniform motion will remain at rest or in
uniform motion unless some external force is applied to it. It is evident that Newton’s first law
does not hold for all coordinate systems. Those coordinate systems where Newton’s first law
is applicable are called inertial systems.

A physical law can be described as a relation between some physical quantities, which are
generally the functions of space and time in a given coordinate system. A common belief is
that the physical laws should retain the same functional form in different inertial coordinate
systems. This is called the principle of relativity. Newton believed the existence of an abso-
lute reference frame and all other inertial frames are at rest or in uniform motion with respect
to it. Based on the assumption of the existence of a universal time, the transformation laws
between different inertial coordinate systems could be derived. This is called the Galilean
transformation, named after the Italian scientist Galileo Galilei (1564–1642). The principle
of relativity based on the Galilean transformation is called the principle of Galilean relativity,
and Newton’s law of motion is invariant under Galilean transformation, that is, it preserves
the functional form under Galilean transformation. An important feature that Galilean trans-
formation predicts is that the velocity of a particle with respect to one inertial system is simply
the algebraic addition of the velocity of the particle with respect to another inertial system and
the relative velocity of the two inertial systems.

Maxwell first formulated the mathematical equations for describing the electromagnetic
phenomena in 1861 based on a model of ether to give a mechanical explanation of the
electromagnetic waves. The ether is an imaginative medium whose mechanical vibration
forms electromagnetic waves. The speed of light predicted by Maxwell equations would be
the speed with respect to the ether, which fills all the space and thus provides an absolute
reference frame. If we assume that Maxwell equations hold for all inertial frames, which are
related by Galilean transformations, the light speed would be the same in all inertial frames,
which contradicts the simple addition of velocities mentioned above. It can also be shown

Foundations of Applied Electrodynamics Geyi Wen
C© 2010 John Wiley & Sons, Ltd
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that Maxwell equations are not invariant under Galilean transformation. Therefore, either
Maxwell’s theory or Galilean transformation was subject to a major revision.

In 1881, American physicists Albert Abraham Michelson (1852–1931) and Edward
Williams Morley (1838–1923) performed a famous experiment in attempt to find any mo-
tion of the earth relative to the ether. However, their experiment gave a null result and thus
overturned the assumption about the existence of ether. This experiment motivated Einstein to
abandon the concept of ether and Galilean transformation and to adopt the Lorentz transfor-
mation, a generalization of Galilean transformation, and led him to form a complete theory of
relativity.

The relativity theory can be divided into special theory, which was systematically studied by
Einstein in 1905, and general theory presented by Einstein in 1916. The special theory studies
the physical phenomena perceived by different observers traveling at a constant speed relative
to each other while the general theory studies the phenomena perceived by different observers
traveling at an arbitrary relative speed. The tensor algebra and tensor analysis provide a natural
mathematical language for describing the relativity.

9.1 Tensor Algebra on Linear Spaces

It is well known that the classical vector analysis enables one to express a physical law in a
concise manner that does not depend on a coordinate system. However, the concept of vector,
which is uniquely determined by its three components relative to some coordinate system, is
too limited in practice. Some quantities in mathematics and physics must be described by a
tensor, which requires more than three components for a complete specification. For example,
one must introduce the stress tensor to fully specify the stress in elasticity. The tensor analysis
reserves the major advantages of vector analysis and allows for an effortless transition from a
given coordinate system to another. A physical theory is not considered complete if it cannot
be expressed in tensorial form.

9.1.1 Tensor Algebra

Let E be an n dimensional linear space and E∗ its dual space. If {e1, e2, · · · , en} is an
ordered basis of E , there is a unique ordered basis of E∗, the dual basis {e1, e2, · · · , en},
such that e j (ei ) = δ j

i , where δ j
i = 1 if j = i and 0 otherwise. Let Lk(E1, E2, · · · , Ek ; F)

denote the vector space of continuous k-multilinear maps of E1 × E2 × · · · × Ek to F , where
Ei (i = 1, 2, · · · , k) and F are vector spaces. For all x ∈ E and α ∈ E∗, we have the following
expansions

x =
n
∑

i=1

ei (x)ei , α =
n
∑

i=1

α(ei )e
i .

We put T r
s(E) = Lr+s(E∗, · · · , E∗, E, · · · , E ; R) (r copies of E∗ and s copies of E). Ele-

ments of T r
s(E) are called tensors on E , contravariant of order r and covariant of order s; or

simply type (r, s). Given T1 ∈ T r1
s1 (E) and T2 ∈ T r2

s2 (E), the tensor product of T1 and T2 is
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a tensor T1 ⊗ T2 ∈ T r1+r2
s1+s2 (E) defined by

T1 ⊗ T2
(

β1, · · · , βr1 , γ 1, · · · γ r2 , f1, · · · , fs1 , g1, · · · , gs2

)

= T1
(

β1, · · · , βr1 , f1, · · · , fs1

)

T2
(

γ 1, · · · γ r2 , g1, · · · , gs2

)

,

where β j , γ j ∈ E∗ and f j , g j ∈ E . By convention, we let T 0
0(E) = R. We always identify

E∗∗ (the dual space of E∗) with E . Thus, ei (e j ) = e j (ei ) and T 1
0(E) = L(E∗, R) = E∗∗ = E .

If {e1, · · · , en} is a basis of E and {e1, · · · , en} is the dual basis, then

{

ei1 ⊗ · · · ⊗ eir ⊗ e j1 ⊗ · · · ⊗ e js
∣
∣ i1, · · · , ir , j1, · · · , js = 1, · · · , n

}

is a basis of T r
s(E). Thus, dim[T r

s(E)] = nr+s . Note that the definition of tensor does not
involve any coordinate system.

We use summation convention in this chapter: summation is implied when an index is
repeated on upper and lower levels. Thus any tensor T ∈ T r

s(E) may be represented by

T = T i1···ir
j1··· js ei1 ⊗ · · · ⊗ eir ⊗ e j1 ⊗ · · · ⊗ e js , (9.1)

where T i1···ir
j1··· js = T (ei1 , · · · , eir , e j1 , · · · e js ) are called the components of T relative to the

basis {e1, · · · , en}. If the components of tensors T1 and T2 are T
i1···ir1

1 j1··· js1
and T

h1···hr2
2 k1···ks2

respectively, the components of the tensor product T1 ⊗ T2 are

(T1 ⊗ T2)i1···ir1 h1···hr2 j1··· js1 k1···ks2
= T

i1···ir1
1 j1··· js1

T
h1···hr2

2 k1···ks2
. (9.2)

An (r, 0)-tensor is called symmetric if

T (α1, · · · , αr ) = T (ασ (1), · · · , ασ (r ))

holds for all permutations σ of {1, · · · , r} and all elements α1, · · · αr ∈ E∗. An (r, 0)-tensor is
called antisymmetric if

T (α1, · · · , αr ) = sgn σ T (ασ (1), · · · , ασ (r ))

holds for all permutations σ of {1, · · · , r} and all elements α1, · · ·αr ∈ E∗. Here sgn σ = 1
for even permutation and sgn σ = −1 for odd permutation. Similar definitions hold for
(0, s)-tensor.

The (k, l)-contraction map Ck
l :T r

s(E) → T r−1
s−1(E) is defined by

Ck
l(T i1···ir

j1··· js ei1 ⊗ · · · ⊗ eir ⊗ e j1 ⊗ · · · ⊗ e js )

= T i1···,ik−1qik+1···ir
j1··· jl−1q jl+1··· js ei1 ⊗ · · · ⊗ �

eik ⊗ · · · ⊗ eir ⊗ e j1 ⊗ · · · ⊗ �

e
jl ⊗ · · · ⊗ e js ,

where
�

e means that the term e is omitted.
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Example 9.1: An inner product (·, ·) on E is a symmetric (0,2)-tensor. Its matrix has compo-
nents gi j = (ei , e j ). Thus the matrix [gi j ] is symmetric and positive definite. The components
of the inverse matrix are denoted by gi j . We define the index lowering operator b:E → E∗

by x �→ (x, ·). Its inverse is denoted by #:E∗ → E and is called index raising operator. For
x = xi ei and α = αi ei , we have

(xb)i = g ji x
j , (α#)i = gi jα j .

The inner product can be expressed as

(x, y) = xb(y) = gi j x
i y j .

The index raising and lowering operator can be applied to tensors to produce new ones.

The components of a tensor depend on the choice of the basis. Consider another basis {ẽi }.
Each basis vector ei can be expressed as a linear combination of the new basis vectors ẽi

ei = A j
i ẽ j . (9.3)

Similarly, for the dual basis we can write

ei = Bi
j ẽ

j . (9.4)

It is easy to see that [Bi
j ] is the inverse matrix of [A j

i ]. Thus we have

ẽi = B j
i e j , (9.5)

and

ẽi = Ai
j e

j . (9.6)

In the new basis vectors, we can express an arbitrary tensor as

T = T̃ i1···ir
j1··· js

ẽi1 ⊗ · · · ⊗ ẽir ⊗ ẽ j1 ⊗ · · · ⊗ ẽ js . (9.7)

Inserting (9.3) and (9.4) into (9.1) gives

T = Ai1
h1 · · · Air

hr T h1···hr
k1···ks Bk1

j1 · · · Bks
js ẽi1 ⊗ · · · ⊗ ẽir ⊗ ẽ j1 ⊗ · · · ⊗ ẽ js .

Comparing the above expression with (9.7) gives

T̃ i1···ir
j1··· js

= Ai1
h1 · · · Air

hr Bk1
j1 · · · Bks

js T h1···hr
k1···ks . (9.8)
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This is known as the tensoriality criterion and is used to define a tensor in classical analysis.
As special cases, a covariant tensor of order s obeys the transformation rule

T̃ j1··· js = Bi1
j1 · · · Bis

js Ti1···is ,

and a contravariant tensor of order r obeys the following transformation rule

T̃ i1···ir = Ai1
j1 · · · Air

jr T j1··· jr .

A vector x in E has the following expansions

x = xi ei = x̃ i ẽi .

It follows that

x̃ i = Ai
j x

j , xi = Bi
j x̃

j . (9.9)

Therefore a vector is a (1,0)-tensor. Based on (9.9), the tensor transformation rule (9.8) can be
written in a somewhat different form. From (9.9) it follows that

∂ x̃ i

∂x j
= Ai

j ,
∂xi

∂ x̃ j
= Bi

j . (9.10)

Thus (9.8) becomes

T̃ i1···ir
j1··· js

= ∂ x̃ i1

∂xh1
· · · ∂ x̃ ir

∂xhr

∂xk1

∂ x̃ j1
· · · ∂xks

∂ x̃ js
T h1···hr

k1···ks . (9.11)

A coordinate system on E is a bijection φ from the n dimensional linear space E to Rn , denoted
by φ : p ∈ E → (x1, x2, · · · , xn) ∈ Rn or (E, φ). Let ψ be another coordinate system on E ,
ψ : p ∈ E → (x̃1, x̃2, · · · , x̃n) ∈ Rn . Thus a vector x ∈ E may be denoted by (x1, x2, · · · , xn)
and (x̃1, x̃2, · · · , x̃ n) respectively. These two n-tuples of real numbers are related to each other
by the transformation equations

x̃1 = f 1(x1, x2, · · · , xn),
x̃2 = f 2(x1, x2, · · · , xn),

...
x̃ n = f n(x1, x2, · · · , xn),

where f 1, · · · , and f n are n distinct functions of n variables. In the sequel, we will denote the
n-tuple (x1, x2, · · · , xn) by a single letter xh and the above transformation equations will be
written in the compressed form

x̃ j = x̃ j (xh), (9.12)
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and the inverse of the above will be expressed in the form

xh = xh(x̃ j ). (9.13)

It follows from (9.12), (9.13) and the chain rule that

∂ x̃ j

∂xh

∂xh

∂ x̃ l
= δ j

l,
∂xh

∂ x̃ j

∂ x̃ j

∂xk
= δh

k . (9.14)

For the linear space E , it is always possible to find a single coordinate system to cover the
whole space.

9.1.2 Tangent Space, Cotangent Space and Tensor Space

In classical calculus, vectors are considered as arrows characterized by a direction and a length
and they are independent of their location in space. Such vectors are called free vectors. In
both mathematics and physics, we need to introduce the notion of vectors, which depend on
locations. For example, a vector representing the electric field depends on the space point at
which the electric field is defined. Another example is the normal vector defined on a surface.
As position changes, the normal vector changes its directions.

Let E be an n-dimensional linear space. A tangent vector X p at p ∈ E is an ordered pair
(p, X ), where X ∈ E . The point p is called the base point of the tangent vector X p. The set of
all tangent vectors at a point p ∈ E is called the tangent space at p and is denoted by Tp(E).
Given two tangent vectors X p and Yp and a constant a, we can define new tangent vectors at
p by (X + Y )p = X p + Yp and (aX )p = aX p. The tangent space Tp(E) with above addition
and scalar multiplication constitutes a linear vector space. Note that two tangent vectors at
different points cannot be added. Basically it is not defined. Let X p be a tangent vector at
p ∈ U ⊂ E where U is open in E, and let f : U ⊂ E → R be smooth function defined on U .
The directional derivative of f at the point p in the direction of X p is defined by

(X p f )(p) = D f (p) · X p, (9.15)

where D f (p) is the derivative of f at p(see Section 2.7.1).
Equation (9.15) implies that a tangent vector may be viewed as an operator on the smooth

functions defined in a neighborhood of the point. The operator assigns to a function the
directional derivative of the function in the direction of the vector. This understanding is very
different from the usual concept of a vector. Let C∞

p denote the set of smooth functions defined
in the neighborhood of p. For f, g ∈ C∞

p and a, b ∈ R, we have

X p(a f + bg) = aX p( f ) + bX p(g),

X p( f g) = f (p)X p(g) + g(p)X p( f ).
(9.16)

Let φ be a coordinate system on E and p ∈ E . For any f ∈ C∞
p , the function g = f ◦ φ−1 :

Rn → R is a function of the coordinates. The partial derivatives of f with respect to x j are
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defined by

∂ f

∂x j
= ∂( f ◦ φ−1)

∂x j
◦ φ, j = 1, 2, · · · , n. (9.17)

For f, g ∈ C∞
p , and a, b ∈ R, we have

∂

∂x j
(a f + bg) = a

∂ f

∂x j
+ b

∂g

∂x j
,

∂

∂x j
( f g) = f

∂g

∂x j
+ g

∂ f

∂x j
.

It follows from (9.15) and (9.17) that

(X p f )(p) = D( f ◦ φ−1 ◦ φ)(p) · X p = D( f ◦ φ−1) ◦ Dφ(p) · X p.

Since Dφ(p) · X p ∈ Rn , the above equation may be written as

(X p f )(p) = a j
∂ f

∂x j
.

where a j ( j = 1, 2, · · · , n) are constants. It is natural to use the following identification

X p = a j
∂

∂x j
,

which implies a j = X p(x j ), called the components of the tangent vector X p. The n operators
∂/∂x j , j = 1, 2, · · · , n are linearly independent. Actually if a j∂/∂x j = 0 then (a j∂/∂x j )xi =
ai = 0. Consequently the n operators ∂/∂x j , j = 1, 2, · · · , n constitute a basis of the tangent
space Tp(E). The basis {∂/∂x j } is called the coordinate basis induced by the coordinate
system (E, φ). Let (x̃1, x̃2, · · · , x̃ n) be another coordinate system. Then

X p = Xh ∂

∂xh
= X̃ j ∂

∂ x̃ j
.

It is readily found that

X̃ j = ∂ x̃ j

∂xh
Xh,

∂

∂xh
= ∂ x̃ j

∂xh

∂

∂ x̃ j
.

The dual space of Tp(E) is denoted by T ∗
p (E), called the cotangent space. The element in

T ∗
p (E) is called the covector. For any f ∈ C∞

p we can define a unique element d f ∈ T ∗
p (E)

by

d f (X p) = X p( f ), X p ∈ Tp(E),
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from which we obtain

dxh

(
∂

∂xk

)

= δh
k .

Thus, the set {dxk} is a basis of the cotangent space T ∗
p (E) that is dual to the basis {∂/∂xh} of

Tp(E). Any ωp ∈ T ∗
p (E) can be expressed as ωp = ωkdxk . Especially

d f = ∂ f

∂xk
dxk,

which is consistent with the usual expression of differential of a function. If (x̃1, x̃2, · · · , x̃ n)
is another coordinate system, we have

ωh = ∂ x̃ k

∂xh
ω̃k , dx̃ j = ∂ x̃ j

∂xh
dxh .

We introduce the tensor space at p ∈ E , denoted by

T r
p s(E) = Lr+s[T ∗

p (E), · · · , T ∗
p (E), Tp(E), · · · , Tp(E); R]

with r copies of T ∗
p (E) and s copies of Tp(E). An element t ∈ T r

p s(E) is called a tensor of
contravariant order r and covariant order s at p. An element t ∈ T r

p s(E) can be expressed
as

T = T i1···ir
j1··· js

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dx j1 ⊗ · · · ⊗ dx js . (9.18)

Under the coordinate transformation (9.12), the components of the above tensor change ac-
cording to (9.11).

Let U ⊂ E be an open subset. The set T (U ) = ⋃

p∈U
Tp(E) is called the tangent bundle

restricted to U . The tangent bundle is not a vector space but it has more structure than just a
set. Similarly, we can define the cotangent bundle T ∗(U ) = ⋃

p∈U
T ∗

p (E) and rhe tensor bundle

T r
s(E) = ⋃

p∈U
T r

p s(E). If for all points p ∈ U , a unique element is prescribed in each T r
p s(E)

we obtain a tensor field on U . A vector field on U ⊂ E is a (1,0)-tensor field. A scalar field
on U ⊂ E is a (0,0)-tensor field. Relative to a coordinate system x j , the components of tensor
fields are defined in the same way as (9.18). In this case, the components are functions of the
coordinates x j of p. The tensor field is said to be smooth if these coefficients are smooth.
All operations about the tensors can be extended to tensor fields pointwise. For example,
the directional derivatives can be extended to vector fields by defining X ( f )(p) = X p( f ).
Once the coordinate system is chosen, a tensor field T is simply denoted by its components
T i1···ir

j1··· js .
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9.1.3 Metric Tensor

Let X and Y be two vector fields. A metric tensor field on a linear space E is a symmetric
(0,2)-tensor field, denoted by 〈·, ·〉, such that if 〈X, Y 〉 = 0 for all Y then X = 0. A linear
space E equipped with a metric tensor field is called a Riemannian space, named after the
German mathematician Georg Friedrich Bernhard Riemann (1826–1866). 〈X, Y 〉 is called the
inner product between X and Y . In terms of the coordinate system, the inner product is given
by

〈X, Y 〉 = Xi Y j

〈
∂

∂xi
,

∂

∂x j

〉

= gi j Xi Y j ,

where gi j = 〈∂/∂xi , ∂/∂x j 〉 are the coefficients of the metric tensor field. We define the square
norm of X by

‖X‖2 = 〈X, X〉 = gi j X i X j .

X is respectively called timelike, spacelike, and null if ‖X‖2 < 0, ‖X‖2 > 0 and ‖X‖2 = 0.

Example 9.2: Let E = R4 and gi j = ηi j with

[

ηi j
] =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤

⎥
⎥
⎦

. (9.19)

This metric is called the Minkowski metric, named after the German mathematician Hermann
Minkowski (1864–1909). The space R4 equipped with the Minkowski metric is called the
Minkowski space.

In classical analysis, the metric tensor is introduced by coordinate transformations starting
from a rectangular coordinate system. Let x̄ i , i = 1, 2, · · · , n be the rectangular coordinates
and x j , j = 1, 2, · · · , n be the new (curvilinear) coordinates, both being related by x̄ i = xi (x j ),
i, j = 1, 2, · · · , n. Then we have dx̄i = ∂ x̄ i

∂x j dx j . The differential length may be expressed as

ds2 =
n
∑

l=1

(dx̄l )2 =
n
∑

l=1

∂ x̄ l

∂xi

∂ x̄ l

∂x j
dxi dx j = gi j dxi dx j

where gi j =
n∑

l=1

∂ x̄ l

∂xi
∂ x̄ l

∂x j is the metric tensor in the new coordinate system x j . It is easy to see

that the metric tensor is symmetric gi j = g ji .
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9.2 Einstein’s Postulates for Special Relativity

Einstein’s theory of relativity has changed our view of space and time. One of Einstein’s
starting points was the principle of relativity due to Galileo. This principle claims that all
physical laws should retain their functional forms under Galilean transformation, and was
widely accepted by physicists from the seventeenth until the middle of the nineteenth century
when James Clerk Maxwell discovered Maxwell equations. Maxwell equations seemed not
to obey Galileo’s principle of relativity. That is, they do not retain their functional form under
Galilean transformation. To solve this dilemma, Einstein abandoned Galileo’s principle of
relativity, which is based on Galilean transformation. Instead, he adopted the principle of
relativity based on the Lorentz transformation.

9.2.1 Galilean Relativity Principle

In physics we want to record what is happening using clocks and measuring rulers. To do
this we use the reference frame, which defines the time and spatial position. Associated with
each reference frame is a four-dimensional Cartesian coordinate system. Different frames put
different labels to the same event and different relationships between them. We will make
no distinction between a reference frame and the coordinate system associated with it. A
coordinate system in which a free particle will remain at rest or in uniform motion is called an
inertial reference frame. In classical mechanics, we assume that the inertial reference frames
do exist. Different inertial reference frames are connected by the Galilean transformation

r̃ = r − R = r − vt,

t̃ = t.
(9.20)

Here (r, t) and (r̃, t̃) are respectively the space–time coordinates in coordinate system S and
S̃, of which the relative velocity is v, and R = vt , as shown in Figure 9.1.

Newton’s equation of motion is invariant under the Galilean transformation. Thus all inertial
systems are equivalent in Newton’s theory. However it is found that the wave equation for the

r r~

R

o y

x~

o~

z~

y~

z

x

Figure 9.1 Galilean transformation
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electric field is not invariant under the Galilean transformation. As a result, Maxwell equations
only hold in a single coordinate system, and this violates the relativity principle.

If the relativity principle is considered a universal law, we only have two possibilities in
order to solve the dilemma. One is to modify the Maxwell equations so that they are invariant
under the Galilean transformation and the other is to modify the Galilean transformation so
that the Maxwell equations are invariant under the new transformation. Einstein chose the
latter.

9.2.2 Fundamental Postulates

Einstein’s special theory of relativity is based on two postulates:

1. Relativity principle: The law of nature preserves its form in all inertial coordinate systems.
This is also called invariance or covariance of physical laws.

2. Invariance of light speed: The speed of light is finite and independent of the motion of its
source. In different inertial systems the light speed is the same.

The relativity principle generalizes the Galilean relativity principle for classical mechanics to
all physical laws, including electromagnetism. It applies to everything! The invariance of light
speed implies that light must travel at the same speed for all observers, regardless of their state
of motion. In other words, Maxwell equations must be valid for all observers. The invariance
of light speed is very much similar to the properties of sound waves. The propagation speed
of sound wave is independent of the motion of the source.

9.3 The Lorentz Transformation

In special relativity, we work in four-dimensional flat space–time, three of space, one of time
(in distinction to the curved space–time in general relativity). Therefore the space will be
the four-dimensional linear space R4. Furthermore, we will use orthonormal (Cartesian-like)
coordinates with the metric tensor given by (9.19). The Lorentz transformation to be studied
below had been derived by many physicists before Einstein established the special theory of
relativity in 1905. Actually the Irish physicists George Francis FitzGerald (1851–1901) and
Larmor, and Lorentz himself had all arrived at the Lorentz transformation by 1892. Poincaré
also asserted before 1905 that all physical laws should retain their functional forms under
Lorentz transformation.

From now on, all tensors will use Greek indices. Some Greek symbols will be used to stand
for both physical quantities and indices. This will not cause any confusion, as one can easily
identify what a Greek symbol implies from the context.

9.3.1 Intervals

We take the first three coordinates x1, x2, x3 to be spatial, that is, x1 = x , x2 = y, x3 = z
and the fourth one x4 to be ct , where c is the light speed. Therefore the coordinate system
xα(α = 1, 2, 3, 4) is our reference frame. A point (x1, x2, x3, x4) in R4 is called an event.
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All events constitute our space–time. A physical process is an ordered sequence of events
in space–time. For example, the movement of a particle in space–time is a typical physical
process. The path of the particle, (x1(τ ), x2(τ ), x3(τ ), x4(τ )) for some parameter τ , is called
the world line of the particle, which is a continuous curve according to the classical continuum
assumption. The space–time interval of two events is defined by

s =
[(

x1
2 − x1

1

)2 + (x2
2 − x2

1

)2 + (x3
2 − x3

1

)2 − (x4
2 − x4

1

)2
]1/2

. (9.21)

The intervals can be classified into three categories:

1. s2 = 0, light-like interval.
2. s2 < 0, time-like interval.
3. s2 > 0, space-like interval.

Let us observe two events in coordinate system S = (x1, x2, x3, x4). The first event is to send
a light signal at t1 from the point r1 = (x1

1 , x2
1 , x3

1 ), and the second event is that the signal
arrives to the point r2 = (x1

2 , x2
2 , x3

2 ) at t2. The interval between the two evens is zero since the
light signal travels a distance c(t2 − t1). Thus

(

x1
2 − x1

1

)2 + (x2
2 − x2

1

)2 + (x3
2 − x3

1

)2 − (x4
2 − x4

1

)2 = 0.

If we observe the same events in a different coordinate system S̃ = (x̃1, x̃2, x̃3, x̃4), which is
moving with a velocity v relative to S, we should also have

(

x̃1
2 − x̃1

1

)2 + (x̃2
2 − x̃2

1

)2 + (x̃3
2 − x̃3

1

)2 − (x̃4
2 − x̃4

1

)2 = 0,

since the light signal travels at the same speed c in the inertial coordinate system S̃ by Einstein’s
postulates. The above observations show that if the interval is zero in one inertial coordinate
system, it is zero in all other inertial coordinate systems. For two infinitesimally separated
events in the inertial coordinate system S, the intervals can be written as

ds2 = (dx1)2 + (dx2)2 + (dx3)2 − (dx4)2 = ηµνdxµdxν,

where ηµν is the metric tensor given by (9.19). Similarly, in the inertial coordinate S̃, we have

ds̃2 = (dx̃1)2 + (dx̃2)2 + (dx̃3)2 − (dx̃4)2 = η̃µνdx̃µdx̃ν .

In a flat space–time, we have ηµν = η̃µν . Since ds and ds̃ have the same dimension (length)
they must be related linearly and we can write ds = ads̃ + b, where a and b are constants.
Since ds = 0 implies ds̃ = 0 we have b = 0. Thus ds = a(v)ds̃. The constant a depends only
on the magnitude of velocity for space and time are assumed to be homogeneous. Hence
a(v) = a(v). By relativity principle, we also have ds̃ = a(v)ds. It follows that a2(v) = 1 or
a(v) = ±1. As a special case, if S̃ is at rest relative to S we have ds = ds̃, which implies
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a(v) = 1. Therefore ds2 is an invariant under the transformation of two inertial systems

ds = ds̃, (9.22)

which is the mathematical expression of invariance of light speed. The above equation can be
written as

ηµνdxµdxν = η̃µνdx̃µdx̃ν . (9.23)

9.3.2 Derivation of the Lorentz Transformation

In the special theory of relativity, we assume that there exists a collection of inertial reference
frames in which the world line of a particle subject to no external force is a straight line. The
transformation from one inertial reference frame S to another inertial reference frame S̃ is the
Lorentz transformation. We write

x̃µ = Lµ
νxν . (9.24)

Making use of (9.23) we obtain

η̃µνdx̃µdx̃ν = η̃µν Lµ
α Lν

βdxαdxβ = ηαβdxαdxβ,

which implies η̃µν Lµ
α Lν

β = ηαβ in flat space–time. From the above equation it follows that
det[Lµ

ν] = ±1. As a result, we have

3
∑

µ=1

(

Lµ
ν

)2 − (L4
ν)2 = 1, ν = 1, 2, 3,

3
∑

µ=1

(

Lµ
4
)2 − (L4

4
)2 = −1,

η̃µν Lµ
α Lν

β = 0, α = β.

(9.25)

Let us consider a special case where the inertial reference frame S̃ is moving relative to the
other frame S, and the coordinate axes of the two frames are parallel and oriented so that the
frame S̃ is moving in the positive x direction with speed v as viewed from S. The two origins
o and õ coincide at t = t̃ = 0. Since coordinates x2, x3 do not change, Equation (9.24) may be
written as

⎡

⎢
⎢
⎣

x̃1

x̃2

x̃3

x̃4

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

L1
1 0 0 L1

4

0 1 0 0
0 0 1 0

L4
1 0 0 L4

4

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎦
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and Equation (9.25) reduces to

(

L1
1
)2 − (L4

1
)2 = 1,

(

L1
4
)2 − (L4

4
)2 = −1,

L1
1L1

4 − L4
1 L4

4 = 0.

(9.26)

Since the origin of the frame S̃ viewed in frame S is (vt, 0, 0, x4), we have

L1
1v/c + L1

4 = 0. (9.27)

The four unknowns L1
1, L4

1, L1
4, and L4

4 can be obtained from (9.26) and (9.27). Finally,
we obtain

x̃1 = γ (x1 − x4v/c),

x̃2 = x2,

x̃3 = x3,

x̃4 = γ (x4 − x1v/c),

(9.28)

where γ = 1/
√

1 − (v/c)2. The inverse transform is

x1 = γ (x̃1 + x̃4v/c),

x2 = x̃2,

x3 = x̃3,

x4 = γ (x̃4 + x̃1v/c).

(9.29)

We denote

[

Li
k
]

x1 =

⎡

⎢
⎢
⎣

γ 0 0 −γ v/c
0 1 0 0
0 0 1 0

−γ v/c 0 0 γ

⎤

⎥
⎥
⎦

.

It is easy to see that det[Lµ
ν]x1 = 1.

In deriving the Lorentz transformation, we have assumed that the origin o and õ coincide
at the time t = t̃ = 0. Thus the Lorentz transformation is assumed to be homogeneous. If
this assumption is abandoned, the resulting Lorentz transformation is inhomogeneous. If S̃
is moving relative to S with an arbitrary velocity v as viewed from S and two origins o
and õ coincide at t = t̃ = 0, the homogeneous Lorentz transformation may be expressed in a
compact form:

r̃ = ↔
α · r − γβx4, x̃4 = γ (x4 − β · r),
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where

r̃ = (x̃1, x̃2, x̃3), r = (x1, x2, x3),

↔
α = ↔

I + (γ − 1)
ββ

β2
,β = v/c.

Under the Lorentz transformation, the differential volume element is an invariant:

dx̃1dx̃2dx̃3dx̃4 = ∂(x̃1, x̃2, x̃3, x̃4)

∂(x1, x2, x3, x4)
dx1dx2dx3dx4 = dx1dx2dx3dx4.

9.3.3 Properties of Space–Time

A large number of physical theories can be simplified by combining space and time into
a single continuum: space–time. Some properties of space–time may be derived from the
Lorentz transformation.

9.3.3.1 Simultaneity in special relativity

Let us consider the special Lorentz transformation (9.28). Assume that (x1
1 , x2

1 , x3
1 , x4

1) and
(x1

2 , x2
2 , x3

2 , x4
2 ) are two arbitrary points in frame S. The corresponding two points in frame S̃

are denoted by (x̃1
1 , x̃2

1 , x̃3
1 , x̃4

1 ) and (x̃1
2 , x̃2

2 , x̃3
2 , x̃4

2 ) respectively. From (9.28), we obtain

x̃4
2 − x̃4

1 = x4
2 − x4

1 − (x1
2 − x1

1

)

v/c
√

1 − (v/c)2
. (9.30)

The above equation shows that two observers in relative motion would disagree about the time
interval between two events.

9.3.3.2 Fitzgerald-Lorentz contraction

It follows from (9.28) that

x̃1
2 − x̃1

1 = γ
(

x1
2 − x1

1

)− γ
v

c

(

x4
2 − x4

1

)

. (9.31)

Suppose we have a ruler, which is at rest in the frame S̃. It is natural to define the length
of the ruler relative to any inertial system as the difference between simultaneous coordinate
values of the end points. The length of the ruler measured by the observer in the frame S̃ is
l0 = x̃1

2 − x̃1
1 , which is the length of the ruler as seen in the rest frame of the ruler and is called

the proper length. Now we want to measure the length of the ruler in frame S. By definition,
we may find the length l of the ruler relative to S as the difference between simultaneous
coordinate values of the end points of the ruler. This can be done by placing the ruler to the x1

axis and reading the coordinates of the two ends of the ruler at the same time (synchronously).
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Thus we have x4
2 = x4

1 , and (9.31) becomes

l = l0

√

1 − (v/c)2, (9.32)

where l = x1
2 − x1

1 is the length of the ruler measured by the observer in the frame S. The
above equation indicates that a moving ruler is contracted in the direction of motion. This is
called Fitzgerald-Lorentz contraction. In other words, the distance between two points in
one coordinate system appears to be contracted to an observer in relative motion parallel to
the line connecting these two points. This contraction is an effect caused by the operational
definition of the measurement of length. Note that the proper length l0 is an invariant.

It follows from (9.28) that a ruler which is placed perpendicular to the x-axis will have
the same length in S and S̃. In general, a body, which moves relative to an inertial system,
is contracted in the direction of its motion while its transverse dimension does not change.
Consider a volume V0 which is at rest in the frame S̃. The corresponding value of the volume
measured synchronously in S is then given by

V = V0

√

1 − (v/c)2. (9.33)

The transformation of surface element may be obtained similarly (see Bladel, 1984).

9.3.3.3 Time dilation

It follows from (9.29) that

x4
2 − x4

1 = γ
(

x̃4
2 − x̃4

1

)+ γ
v

c

(

x̃1
2 − x̃1

1

)

.

Suppose we have a clock, which is at rest in the frame S̃ and is fixed at some point (x̃1
2 = x̃1

1 ),
and the time interval measured is t̃2 − t̃1. The above equation reduces to

t2 − t1 = t̃2 − t̃1
√

1 − (v/c)2
. (9.34)

This indicates that a moving clock appears to be running slow compared to the stationary
clock. This effect is known as time dilation. The time t̃ as seen in the rest frame of the clock
is called the proper time, denoted by τ . We rewrite (9.34) as

dτ = dt
√

1 − (v/c)2. (9.35)

The interval in the frame S̃ is

ds̃2 = −c2dτ 2.

Since ds̃ is an invariant, the proper time dτ is also an invariant.
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9.4 Relativistic Mechanics in Inertial Reference Frame

Newton’s law of motion is invariant under Galilean transformation but not under Lorentz
transformation. Thus Newton’s law must be modified so that they are consistent with the
special relativity.

9.4.1 Four-Velocity Vector

In the coordinate system xµ, the four-velocity vector uµ of a particle is defined by uµ =
dxµ/dτ , where dτ is the proper time. By definition, we have

ds2 = (dx1)2 + (dx2)2 + (dx3)2 − (dx4)2 = −c2dτ 2,

which implies dτ = dt
√

1 − u2/c2 and

uµ =
(

u
√

1 − u2/c2
,

c
√

1 − u2/c2

)

,

where u = (dx1/dt, dx2/dt, dx3/dt) = (ux , uy, uz) is the velocity of the particle, and
u = |u|. Under the special Lorentz transformation (9.28), the four velocity vector uµ changes
according to ũµ = ∂ x̃µ

∂xν uν . Hence

ũx = ux − v

(1 − vux/c2)
, ũ y = uy

(1 − vux/c2)γ
, ũz = uz

(1 − vux/c2)γ
.

9.4.2 Four-Momentum Vector

In the coordinate system xµ, the four-momentum vector of a particle is defined by

pµ = m0uµ =
(

m0u
√

1 − u2/c2
,

m0c
√

1 − u2/c2

)

,

where m0 is the mass of the particle at rest, called rest mass. The first three components form
a vector

p = m0u
√

1 − u2/c2
= mu, (9.36)

where

m = m0
√

1 − (u/c)2
(9.37)

is defined as the mass of a moving particle. Equation (9.36) reduces to m0u, the classical
definition of momentum, when u � c. Therefore, p can be considered as the definition of
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momentum in relativity. If u � c, the fourth component of pµ has the following expansion

p4 = m0c
√

1 − u2/c2
= 1

c

(

m0c2 + 1

2
m0u2 + · · ·

)

.

It can be seen that the second term in the bracket is the kinetic energy in classical mechanics.
Consequently, all quantities in the bracket represent energy. When the particle is at rest only
the term m0c2 is left. For this reason, the term m0c2 stands for the rest energy of a particle.
The energy of a free particle with mass m and velocity u is thus defined by

E = m0c2

√

1 − u2/c2
= mc2.

This is the famous Einstein mass-energy relation. The kinetic energy of the particle is then
given by T = E − m0c2. Thus the four momentum vector may be written as

pµ =
(

m0u
√

1 − u2/c2
,

1

c
E

)

.

Since pµ pµ is invariant under coordinate transformation from S to S̃

pµ pµ = p̃µ p̃µ. (9.38)

the rest mass is an invariant. If the particle is at rest in the frame S̃, then p̃µ = (0, 0, 0, m0c2/c),
and from (9.38) it follows that

p2 − E2/c2 = −m2
0c2,

where p = |p|. This gives

E =
√

p2c2 + m2
0c4.

When the speed of the particle increases, its mass, energy and momentum increase corre-
spondingly. In classical mechanics, the energy can be determined up to a constant (the rest
energy) and the constant can be ignored. In special relativity the constant cannot be ignored.

9.4.3 Relativistic Equation of Motion

In relativistic mechanics, Newton’s equation must be modified to

dp
dt

= F, (9.39)

where F is the external force acting on the particle and p is the momentum defined by (9.36).
If the velocity of the particle is u, the work done by F per unit time is equal to the increase of
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the energy of the particle per unit time d E/dt = F · u or

d

dt

(
E

c

)

= F · u
c

. (9.40)

Combining (9.39) and (9.40) yields

d

dt

(

p,
E

c

)

=
(

F,
F · u

c

)

.

In terms of proper time, this becomes

dpµ

dτ
= Fµ, (9.41)

where

Fµ =
(

F
√

1 − u2/c2
,

F · u

c
√

1 − u2/c2

)

is called four-force vector. Under the special Lorentz transformation (9.28), the four-force
Fµ changes according to F̃µ = ∂ x̃µ

∂xν Fν . Thus

F̃x = Fx − F · uv/c2

1 − vux/c2
, F̃y = Fy

(1 − vux/c2)γ
, F̃z = Fz

(1 − vux/c2)γ
. (9.42)

Remark 9.1: Sometimes we need to consider the system in which the external forces produce
a change in the rest mass of the particle. For example, the Joule heat energy produced in a
conducting body due to the electromagnetic forces will contribute to the rest mass. In this
case, in order to maintain (9.41), the four-force vector should be changed to

Fµ =
(

F
√

1 − u2/c2
,

F · u + Q

c
√

1 − u2/c2

)

(9.43)

where Q is the amount of heat or non-mechanical energy developed per unit time in the body.
Thus (9.40) becomes

d E

dt
= F · u + Q.

When the force F is conservative, we can write F = −∇ψ , where ψ is the potential function.
Equation (9.40) implies

E + ψ = W = constant (9.44)

where W is the total energy.
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9.4.4 Angular Momentum Tensor and Energy-Momentum Tensor

From the two four-vectors xµ and pν we can form an antisymmetric (2,0)-tensor

Mµν = xµ pν − xν pµ.

This is called the angular momentum tensor. We also can introduce another antisymmetric
(2,0)-tensor

Dµν = xµ Fν − xν Fµ.

Then it is easy to verify that

d Mµν

dτ
= Dµν.

Let us consider a continuous matter distribution, which moves with a local average velocity
u = ux u with respect to the frame S. Let �V0 be a differential volume at a point, which is at
rest momentarily with respect to S̃. The corresponding differential volume �V in the frame S
measured synchronously is given by �V = �V0

√

1 − (u/c)2. Let ρm be the volume density
of mass and ρm0 be the density of rest mass, both being the functions of space coordinates and
time. Then these two mass densities are related by

ρm = ρm0
√

1 − (u/c)2
(9.45)

due to (9.37). Considering a point inside the matter distribution at a given time, we assume
that the matter at this point is momentarily at rest relative to S̃. In the frame S̃, Equation (9.45)
reduces to ρ̃m = ρ̃m0 . Since the rest mass is invariant, we have ρm0�V = ρ̃m0�V0. Thus we
get

ρm = ρ̃m0

1 − (u/c)2
, ρm0 = ρ̃m0

√

1 − (u/c)2
.

We further assume that the interactions between the mass particles are negligible (that is we
consider an incoherent matter, which is a mass distribution without pressure or viscosity).
From (9.41) it follows that

d

dτ
(m0uµ) = d

dτ
(ρm0�V uµ) = d

dτ
(ρ̃m0�V0uµ) = Fµ. (9.46)

Note that the four-force vector may be written as

Fµ =
(

F
√

1 − (u/c)2
,

F · u

c
√

1 − (u/c)2

)

=
(

f�V
√

1 − (u/c)2
,

f�V · u

c
√

1 − (u/c)2

)

=
(

f,
f · u

c

)

�V0 = f µ�V0
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where f µ = (f, f · u/c) is the four-force density which is a four-vector since �V0 is an
invariant. Equation (9.46) may be expressed as

ρ̃m0 uµ d(�V0)

dτ
+ �V0

d(ρ̃m0 uµ)

dτ
= f µ�V0. (9.47)

When the rest mass is conserved, the first term on the left-hand side is zero. When the rest
mass is not conserved, the four-force density should be changed to (see (9.43)) f µ =

(

f, f·u+q
c

)

,

where q is the amount of non-mechanical energy developed per unit of volume and time.
In order to calculate the first term on the left-hand side of (9.47) when the rest mass is not

conserved, let us consider matter distribution which occupies a volume V at the time t . At the
time t + �t the volume of this matter will be increased by an amount

dV = dt
∫

S

u · und S = dt
∫

V

∇ · udV ,

where S is the bounding surface of V and un is unit outward normal of S. The above equation
must hold for every part of the material body. In particular if V is an infinitesimal volume
element �V we have

1

�V

d�V

dt
= ∇ · u. (9.48)

Since �V0 and dτ are measured in the rest frame S̃, from (9.48) we have

d�V0

dτ
= �V0∇̃ · ũ, (9.49)

where ∇̃ means the differentiation with respect to the coordinates in S̃. In the rest system
S̃ we have ũ = 0. But its derivatives with respect to the coordinates need not be zero. Let
∂α = ∂/∂xα(α = 1, 2, 3, 4). Since ∂αuα is an invariant, we have

∂αuα = ∂̃α ũα = ∇̃ · ũ. (9.50)

By use of (9.49) and (9.50), Equation (9.47) may be written as

d(ρ̃m0 uµ)

dτ
+ ρ̃m0 uµ∂αuα = f µ. (9.51)

The first term on the left-hand side is

d(ρ̃m0 uµ)

dτ
= ∂(ρ̃m0 uµ)

∂xα
· ∂xα

∂τ
= uα∂α(ρ̃m0u

µ).

Thus (9.51) becomes

∂ν T µν
m = f µ. (9.52)
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The quantity T µν
m = ρ̃m0 uµuν is a symmetric (2,0)-tensor, called the energy-momentum

tensor. Introduce the momentum density vector g = ρmu. Then (9.52) implies

∂e

∂t
+ ∇ · (eu) = c f 4,

∂gα

∂t
+ ∇ · (gαu) = f α, α = 1, 2, 3,

where e = ρmc2 stands for the total energy. The first equation means the conservation of
energy, and the second equations mean the conservation of momentum.

9.5 Electrodynamics in Inertial Reference Frame

It is required by relativity that all the physical laws must retain their forms under the Lorentz
transformation. This is called invariance or covariance of physical laws. A physical law is
expressed as an equation consisting of physical quantities. If both sides of the equation can be
written in the form of tensors of the same type, it will satisfy the principle of relativity. For
example, if a physical law in the reference frame S can be expressed as

Aα = BαβCβ, (9.53)

where Aα, Bαβ and Cβ are (1,0)-tensor, (2,0)-tensor and (0,1)-tensor respectively. Under the
coordinate transformation x̃α = x̃α(xβ), the above tensors change according to

Ãα = ∂ x̃α

∂xβ
Aβ, C̃β = ∂xα

∂ x̃β
Cα, B̃µν = ∂ x̃µ

∂xα

∂ x̃ν

∂xβ
Bαβ.

Then

B̃µνC̃ν = ∂ x̃µ

∂xα

∂ x̃ν

∂xλ

∂xβ

∂ x̄ν
BαλCβ = ∂ x̃µ

∂xα
BαλCλ = ∂ x̃µ

∂xα
Aα = Ãµ.

Hence (9.53) is invariant under the coordinate transformation.

9.5.1 Covariance of Continuity Equation

Electric charge will be assumed to be invariant. This fact has been verified by a number of
experiments. Introducing Jα = (Jx , Jy, Jz, cρ), the continuity equation may be written in the
form

∂α Jα = 0, (9.54)

where ∂α = ∂/∂xα is formally a (0,1)-tensor. If we can prove that J α is a (1,0)-tensor then
∂α Jα is a scalar, a (0,0)-tensor, and (9.54) is the covariant form required. Actually the charge
in the differential volume element is dq = ρdx1dx2dx3. Thus

dqdx4 = ρdx1dx2dx3dx4.
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Since dq and dx1dx2dx3dx4 are invariant under the Lorentz transformation, the current
density ρ changes according to dx4. The charge passing through dx2dx3 during the time
interval dt is

dq = J 1dx2dx3dt = J 1dx2dx3dx4/c

or

dx1cdq = J 1dx1dx2dx3dx4.

Hence J 1 changes according to dx1. In general, J α changes according to dxα . Therefore we
have proved that Jα is a contravariant vector, and the continuity equation (9.54) satisfies the
principle of relativity.

9.5.2 Covariance of Maxwell Equations

The vector potential A and scalar potential φ in free space satisfy the following equations

∇2A − 1

c2

∂2A
∂t2

= −µ0J,∇2φ − 1

c2

∂2φ

∂t2
= − ρ

ε0
, (9.55)

and the Lorentz gauge condition

∇ · A + 1

c2

∂φ

∂t
= 0. (9.56)

If we introduce Aµ = (Ax , Ay, Az, φ/c), Equations (9.55) may be written as

Aµ = µ0 Jµ,

where � = ∂2

∂t2 − 1
c2

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)

is the wave operator. It is easy to show that the wave

operator � is an invariant under Lorentz transformation. Since Jµ is a contravariant vector Aµ

is also a contravariant vector. We rewrite (9.56) as

∂µ Aµ = 0.

This is a covariant form. We now introduce an antisymmetric (0, 2)-tensor, called the electro-
magnetic field-strength tensor

Fµν = ∂µ Aν − ∂ν Aµ = −Fνµ,

where Aµ = ηµν Aν . Another field strength tensor may be constructed by the metric tensor

Fµν = ηµαηνβ Fαβ.
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The two inhomogeneous Maxwell equations

∇ × B − 1

c2

∂E
∂t

= µ0J,∇ · E = ρ

ε0

can be written in the form

∂µ Fµν = −µ0 J ν , (9.57)

and the two homogeneous Maxwell equations

∇ × E + ∂B
∂t

= 0,∇ · B = 0

can be written in the form

∂µ Fνα + ∂ν Fαµ + ∂α Fµν = 0. (9.58)

Here (µ,ν,α) = (1,2,3) gives ∇ · B = 0, and (µ,ν,α) = (4,2,3),(4,3,1),(4,1,2) give ∇ × E +
∂B/∂t = 0. Therefore, there are only four independent equations.

Equations (9.57) and (9.58) are the covariant form of Maxwell equations. Equation (9.58)
can be written into a different form by using the dual field-strength tensor Gαβ defined by

Gαβ = 1

2
ε̄αβγ δ Fγ δ,

where ε̄αβγ δ is an antisymmetric (4, 0)-tensor, defined by

1. ε̄αβγ δ = 0 whenever any two indices are the same;
2. ε̄1234 = 1;
3. ε̄αβγ δ = 1 if four indices are different and can be transformed to 1234 by an even permu-

tation;
4. ε̄αβγ δ = −1 if four indices are different and can be transformed to 1234 by an odd permu-

tation.

Then (9.58) is equivalent to ∂αGαβ = 0. As a result, Maxwell equations can also be written as

∂µ Fµν = −µ0 J ν ,

∂αGαβ = 0.

9.5.3 Transformation of Electromagnetic Fields and Sources

Since Fµν is a (2,0)-tensor, we have the following transformation relation

F̃µν = ∂ x̃µ

∂xα

∂ x̃ν

∂xβ
Fαβ. (9.59)
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Under the Lorentz transformation (9.28), Equation (9.59) gives the field transformations

Ẽx = Ex , Ẽy = γ (Ey − vBz), Ẽz = γ (Ez + vBy),

B̃x = Bx , B̃y = γ
(

By + Ez
v

c2

)

, B̃z = γ
(

Bz − Ey
v

c2

)

.
(9.60)

The four current changes according to the rule J̃µ = ∂ x̃µ

∂xα Jα , which gives the source transfor-
mations

J̃x = γ (Jx − vρ), J̃y = Jy, J̃z = Jz, cρ̃ = γ
(

cρ − Jx
v

c

)

.

9.5.4 Covariant Forms of Electromagnetic Conservation Laws

It is readily found that the Lorentz force density equation f = ρE + J × B can be written in
the covariant form

f µ = Fµν Jν, (9.61)

where Jµ = gµν J ν = (Jx , Jy, Jz,−cρ). The first three components of f µ represent the force
density f. Making use of (9.57), Equation (9.61) may be expressed as

f µ = − 1

µ0
Fµν∂α Fα

ν.

We recall that the conservation laws of electromagnetic energy and momentum are

∇ · S + ∂w

∂t
= −Jimp · E − Jind · E = −J · E,

∇ · ↔
T − ∂g

∂t
= f,

where w = E · D/2 + H · B/2, J = Jimp + Jind and
↔
T is the Maxwell stress tensor. Introduc-

ing the (2,0)-tensor of second order, called the electromagnetic energy–momentum tensor

T µν

E M = − 1

µ0

(

ηµα Fαβ Fβν + 1

4
ηµν Fαβ Fαβ

)

,

the conservation laws of electromagnetic energy and momentum may be written as

∂νT µν

E M = − f µ. (9.62)

The covariant form of the conservation laws of electromagnetic angular momentum in the
source-free region is

∂α Mαβγ = 0,

where Mαβγ = T αγ

E M xβ − T αβ

E M xγ .
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Remark 9.2 (Electromagnetic field invariants): Two invariants can be constructed from the
electromagnetic field-strength tensor

Fµν Fµν = invariant, ε̄αβγ δ Fαβ Fγ δ = invariant,

which imply

|B|2 − 1

c2
|E|2 = invariant,

1

c
E · B = invariant. (9.63)

9.5.5 Total Energy-Momentum Tensor

If the incoherent matter contains charged particles subjected to electromagnetic forces, the
four-force density is given by (9.62). For a closed system consisting of matter and fields, we
rewrite (9.52) as

∂βT αβ = 0, (9.64)

where

T αβ = T αβ
m + T αβ

E M (9.65)

is the total energy-momentum tensor.

9.6 General Theory of Relativity

In the theory of special relativity, there is a preferred class of ‘non-accelerating’ global frames,
called inertial frames, in which Newton’s first law holds. All inertial frames are equivalent,
and physical laws preserve their form under the coordinate transformation (characterized by
the Lorentz transformation) from one inertial frame to another. Special relativity reveals that
the space and time are not separate. A question may then be raised whether we can find an
inertial frame after all. By definition we only need to check if a free particle travels in a straight
line at constant speed relative to the frame. However, a completely free particle does not exist
in reality since the gravity affects all matter equally. In other words, there are no particles that
are free of all forces.

In 1916, Einstein published his important paper ‘The foundations of the general theory of
relativity’ in Annalen der Physik. By accepting the experimental fact that the inertial mass is
equal to gravitational mass, Einstein assumed that the gravity and acceleration are equivalent.
As a result, a gravitational field can be simulated by an acceleration field, and a uniform
gravitational field can be eliminated from a reference frame by suitable acceleration. If the
gravitational field is not uniform, the gravity can be eliminated in a sufficiently small region in
which the gravitational field can be treated as uniform. As an accelerated coordinate system is
characterized by a metric tensor gαβ , the gravitational field can also be characterized by gαβ .
Therefore the space–time is curved by the gravity. Given the sources of the gravitational field,
the determination of this metric tensor gαβ is one of the major tasks in general relativity.
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9.6.1 Principle of Equivalence

In Newton’s theory there are two kinds of mass: inertial mass in his law of motion and
gravitational mass in his law of gravity. In Newton’s theory there is no reason why these two
masses should be related to each other. Newton’s second law states that the force exerted on a
particle is proportional to its acceleration. Thus one may write

F = mi a, (9.66)

where mi is a constant, called the inertial mass. Newton’s law of universal gravitation states
that the gravitational force of a particle of mass M exerted on a particle of mass mg is
proportional to the gradient of a scalar field �, known as the gravitational potential

Fg = −G Mmgr
r3

= −mg∇�, (9.67)

where r = |r| is the distance between two particles, G = 6.67 × 10−11 is the constant of
universal gravitation, and � = G M/r . The mass mg is called the gravitational mass. Many
experiments have demonstrated that

mi = mg. (9.68)

It follows from (9.66), (9.67) and (9.68) that

a = −∇�. (9.69)

Therefore all particles accelerate in the same way, independent of their mass. Einstein gener-
alized the fact (9.68) and assumed that there is no observable distinction between the effects
of gravity and acceleration. This is referred to as the principle of equivalence. In a closed
box, there is no physical experiment within the box that can tell if the box is at rest on the
earth’s surface or the box is accelerating at 1g (g is the acceleration due to the gravity) in
empty space.

In a gravitational field, it is impossible to identify the global inertial frames in special
relativity. But we can pick out local inertial frames in which gravity disappears (that is, frames
in free-fall). Therefore the principle of equivalence can also be stated as: gravitation can be
made to vanish locally through an appropriate choice of frames. This statement implies, in
small enough regions of space–time, the laws of physics reduce to those of special relativity and
it is impossible to detect the existence of a gravitational field. Mathematically, this statement
implies that, given any point p in the four dimensional space of events, one can find a coordinate
system xµ (that is, local inertial frame) with its origin being at p, such that the metric becomes
locally Minkowskian

gµν(xα) = ηµν + o(xα)2,
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where ηµν denotes the Minkowskian metric tensor in special relativity. In the local inertial
frame, we have

gµν(p) = ηµν,
∂gµν

∂xα
(p) = 0.

9.6.2 Manifolds

The tensor transformation (9.11) is based on the linear coordinate transformation (9.9), and
furthermore the space E on which the tensor is defined is assumed to be a linear space. In
practice, it is often necessary to use curvilinear coordinate systems, the transition to which
involves non-linear coordinate transformations. Recurrently, we have to consider the tensor
analysis on a curved surface, which cannot be covered by a single coordinate system. For
example, a sphere in R3 cannot be covered by a single two-dimensional coordinate system.
Manifolds are an abstraction of the idea of a smooth surface in Euclidean space and generalize
the parameter representation of the surface. The abstraction strips away the containing space
and makes the constructions intrinsic to the manifold itself (Abraham et al., 1988).

An n-dimensional manifold is a point set M , which is covered completely by a countable
set of neighborhoods (open sets) U1, U2, · · · , such that each point p ∈ M belongs to at
least one of these neighborhoods. A local coordinate system on each Ui is a bijection
φi : p ∈ Ui → (x1, x2, · · · , xn) ∈ φi (Ui ) ⊂ Rn , where φi (Ui ) is an open set in Rn . Let Ui

and U j be any two coordinate neighborhoods such that Ui ∩ U j = ∅. For p ∈ Ui ∩ U j , we
have two sets of coordinates x1, x2, · · · , xn ∈ φi (Ui ) and x̃1, x̃2, · · · , x̃n ∈ φ j (U j ) for p. If the
overlap map

φ j ◦ φ−1
i : (x1, x2, · · · , xn) → (x̃1, x̃2, · · · , x̃n) (9.70)

as shown in Figure 9.2, is smooth, the manifold is called the n-dimensional differentiable
manifold. The pair (Ui , φi ) is called a chart of dimension n with coordinate neighborhood

Rn

Rn

–1ο

φ i

φ j

φ j φ i
Ui

Uj

Figure 9.2 Local coordinate systems
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Ui . The collection of all charts is called an atlas on M . The map (9.70) will be denoted by

x̃ j = x̃ j (xh),

and the inverse of the above will be expressed in the compressed form

xh = xh(x̃ j ).

An n manifold M immersed in Rm (n ≤ m) is characterized by

y1 = y1(x1, x2, · · · , xn),

y2 = y2(x1, x2, · · · , xn),
· · · · · ·
ym = ym(x1, x2, · · · , xn).

(9.71)

We call (x1, x2, · · · , xn) the local coordinates and (y1, y2, · · · , ym) the global or ambient
coordinates.

9.6.3 Tangent Bundles, Cotangent Bundles and Tensor Bundles

Let (U, φ) be a chart and p ∈ U . The set of all C∞ functions U → R is denoted by C∞
p . For

any f ∈ C∞
p , the function f ◦ φ−1 : Rn → R is a function of the coordinates. The partial

derivatives of f with respect to x j are defined by

∂ f

∂x j
= ∂( f ◦ φ−1)

∂x j
◦ φ.

Obviously we have the usual laws of partial differentiation: For f, g ∈ C∞
p , and a, b ∈ R

∂

∂x j
(a f + bg) = a

∂ f

∂x j
+ b

∂g

∂x j
,

∂

∂x j
( f g) = f

∂g

∂x j
+ g

∂ f

∂x j
.

The tangent space at a point p of a differentiable manifold M is denoted by Tp(M), which is
the set of all maps X p : C∞

p → R that satisfy

X p(a f + bg) = aX p( f ) + bX p(g),

X p( f g) = f (p)X p(g) + g(p)X p( f ),

for all f, g ∈ C∞
p , and all a, b ∈ R, with vector space operations in Tp(M) defined by

(X p + Yp) f = X p( f ) + Yp( f ), X p, Yp ∈ Tp(M),

(aX p) f = a(X p f ), X p ∈ Tp(M), a ∈ R.

Any element X p ∈ Tp(M) is called a tangent vector of M at p.
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Remark 9.3: The tangent vector may be introduced in a different way. Let M be an n
dimensional manifold. A curve at p ∈ M is defined as a C1 map c : I → M from an interval
I ⊂ R into M with 0 ∈ I and c(0) = p. In a coordinate system, the curve is represented by
(x1(t), x2(t), · · · , xn(t)). For any C1 function f defined on M the map

X p : f → d

dt
f [c(t)]

∣
∣
∣
∣
t=0

= d

dt
f ◦ ϕ−1 ◦ ϕ[c(t)] = dxi

dt

∣
∣
∣
∣
t=0

∂ f

∂xi

is called the tangent vector of curve c at p. Therefore,

X p = dxi

dt

∣
∣
∣
∣
t=0

∂

∂xi
. (9.72)

Here dxi/dt are called the components of the tangent vector. Two curves c1 and c2 at p ∈ E
are said to be tangent at c1(0) = c2(0) = p if they have the same components.

The dual space of Tp(M) is denoted by T ∗
p (M), called the cotangent space. The element

in T ∗
p (M) is called the covector or 1-form. For any f ∈ C∞

p , we define a unique element
d f ∈ T ∗

p (M) by

d f (X p) = X p( f ), X p ∈ Tp(M).

The tensor space at p ∈ M is defined by

T r
p s(M) = Lr+s[T ∗

p (M), · · · , T ∗
p (M), Tp(M), · · · , Tp(M); R]

with r copies of T ∗
p (M) and s copies of Tp(M). An element t ∈ T r

p s(M) is called a tensor of
contravariant order rand covariant order s.

All the properties of tensors defined on linear space discussed in Section 9.1.2 can be carried
forward to the tensors defined on a chart of manifold. Similarly we can define the tangent
bundle T M , the cotangent bundle T ∗(M) and the tensor bundle T r

s(M) restricted to a
subset U ⊂ M :

T (M)|U =
⋃

p∈U

Tp(M),

T ∗(M)
∣
∣
U

=
⋃

p∈U

T ∗
p (M),

T r
s(M)

∣
∣
U

=
⋃

p∈U

T r
p s(M).

If for any point p ∈ U , a unique element is prescribed in each T r
p s(M) we obtain a tensor

field on U . More precisely a tensor field on U is a map from U to T r
s(M)|U . A vector field

on U is defined as a map from U to T (M)|U , and it is a (1,0)-tensor field. A scalar field is
a (0, 0)-tensor field. Relative to a coordinate system x j the components of tensor fields are
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defined in the same way as (9.18). In this case, the components are functions of the coordinates
x j of p. The tensor field is said to be smooth if these coefficients are smooth.

9.6.4 Riemannian Manifold

A Riemannian manifold is a differential manifold in which each tangent space is equipped
with an inner product which varies smoothly from point to point. A smooth inner product or
metric on a manifold M is a bilinear form 〈·, ·〉 that associates a pair of smooth vector fields
X and Y to a scalar field 〈X, Y 〉, satisfying the following properties:

1. Symmetry: 〈X, Y 〉 = 〈Y, X〉.
2. Bilinearity:

〈aX, bY 〉 = ab〈X, Y 〉, a, b ∈ R,

〈X, Y + Z〉 = 〈X, Y 〉 + 〈X, Z〉,
〈X + Y, Z〉 = 〈X, Z〉 + 〈Y, Z〉.

3. Non-degeneracy: If 〈X, Y 〉 = 0 for all Y , then X = 0.

A manifold endowed with a smooth metric tensor field 〈·, ·〉 is called a Riemannian manifold.
In terms of a local coordinate system, the metric tensor field is given by

〈X, Y 〉 = X i Y j

〈
∂

∂xi
,

∂

∂x j

〉

= gi j Xi Y j ,

where gi j = 〈∂/∂xi , ∂/∂x j 〉 are the coefficients of the metric tensor field. If X is a vector field
on M , we define the square norm of X by

‖X‖2 = 〈X, X〉 = gi j X i X j .

Therefore the square norm of a vector field is an invariant. Notice that we have the following
three situations:

1. X is timelike if ‖X‖2 < 0.
2. X is spacelike if ‖X‖2 > 0.
3. X is lightlike if ‖X‖2 = 0.

In general, the inequality ‖X + Y‖ ≤ ‖X‖ + ‖Y‖ does not hold. A Riemannian 4-manifold
M is called locally Minkowskian if its metric in a local coordinate system is given by (9.19).

Let c : I = (a, b) → M be a curve, given by xi (t), t ∈ I, i = 1, 2, · · · , n in a coordinate
system. Let X = dxi

dt
∂

∂xi be the tangent vector. The curve is said to be non-null if ‖X‖2 = 0.
The curve is said to be spacelike if ‖X‖2 > 0 and timelike if ‖X‖2 < 0. If the curve c is a
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non-null in M , its length is defined by

L(a, b) =
b∫

a

√

±gi j
dxi

dt

dx j

dt
dt, (9.73)

where the sign ±1 is chosen as +1 if the curve is spacelike and –1 if the curve is timelike.
Equivalently the differential of arc-length is defined by

ds =
√

±gi j dxi dx j . (9.74)

Remark 9.4: A reference frame consists of a collection of material objects (clocks and rulers)
with respect to which the observer relates his measurements (Bladel, 1984). The connection
between coordinates and measurements is based on the form of the differential length given by
(9.74) associated with the coordinates. In general, it is impossible to introduce on the surface a
global Cartesian coordinates for which the differential arc-length is ds =

√

dx2 + dy2 + dz2.
The geometry on the surface is non-Euclidean but a Riemannian geometry. To determine the
geometry on the surface, we use an intrinsic way without referring to the embedding of the
surface to the three-dimensional Euclidean space. For an arbitrary coordinate system xi on
the surface, the distance between two neighboring points xi and xi + dxi can be measured by
means of a measuring ruler. Then ds and dxi are known numbers and the metric tensor gi j can
be determined by (9.74). In this way, the geometry on the surface becomes an empirical science
subjected to the limitations arising from the limited measuring accuracy (Møller, 1952).

9.6.5 Accelerated Reference Frames

An accelerated reference frame is usually relative to the inertial reference frame. Let us start
with an inertial reference frame x̄α(α = 1, 2, 3, 4) whose metric tensor is given by (9.19). The
differential interval is thus given by

ds2 = ηαβdx̄αdx̄β = (dx̄1)2 + (dx̄2)2 + (dx̄3)2 − (dx̄4)2.

We may introduce the general curvilinear coordinates xα(α = 1, 2, 3, 4) (the first three coor-
dinates are used to represent spatial position and the last one is for time defined by t = x4/c
at each spatial point) by means of the transformation

x̄α = x̄α(xβ), α, β = 1, 2, 3, 4, (9.75)

then

dx̄α = ∂ x̄α

∂xβ
dxβ = aα

βdxβ, (9.76)
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where aα
β = ∂ x̄α/∂xβ . The differential length may be expressed in terms of the curvilinear

coordinates

ds2 = gαβdxαdxβ,

where

gαβ =
3
∑

γ=1

∂ x̄γ

∂xα

∂ x̄γ

∂xβ
− ∂ x̄4

∂xα

∂ x̄4

∂xβ
=

3
∑

γ=1

aγ
αaγ

β − a4
αa4

β (9.77)

is the metric tensor in the new coordinate system xα, which is symmetric gαβ = gβα . Therefore,
ds2 is an invariant. In the general situation, different points in the coordinate system xα may
have largely varying velocities relative to the Minkowski coordinate system x̄α . Therefore, the
motion of different points in the coordinate system xα relative to the Minkowski coordinate
system x̄α is very similar to the motion of fluid. We will confine ourselves to such a picture, that
is, each point in the coordinate system xα flows like a real fluid with respect to the Minkowski
coordinate system x̄α. This means that the velocity of each point in xα relative to x̄α must be
smaller than the light speed c.

For a fixed point p in xα , we have dxα = 0(α = 1, 2, 3). It follows from (9.76) that the
velocity components vα of the point p relative to the inertial reference system x̄α are

vα

c
= dx̄α

dx̄4
= aα

4

a4
4
. (9.78)

The requirement that the velocity of the point must be smaller than light speed, that is,
3∑

α=1
(vα)2 < c2 puts a restriction on the transformation (9.75)

g44 =
3
∑

α=1

aα
4 − (a4

4
)2

< 0. (9.79)

In order that the reference frame xα defined by (9.75) is physically realizable, the admissive
space–time transformation (9.75) must satisfy this condition.

If the physical process is required to be causal, further restrictions must be imposed on the
transformation (9.75). Let us consider the following two events in the inertial reference frame
x̄α . The first event is to transmit a signal from a point (x̄1, x̄2, x̄3) at the time t̄ , and the second
event is that the signal arrives at the point (x̄1 + dx̄1, x̄2 + dx̄2, x̄3 + dx̄3) at time t̄ + dt̄ .
Since the signal speed must be smaller than the light speed, the differential interval of the

two adjacent events ds2 =
3∑

α=1
(dx̄α)2 − (cdt̄)2 must be smaller than or equal to zero. In the

reference frame xα, this implies ds2 = gαβdxαdxβ ≤ 0. For any two adjacent events, which
are simultaneous in the reference frame xα (that is, dx4 = 0) and thus cannot be connected by
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a signal, we must have

3
∑

α,β=1

gαβdxαdxβ > 0.

This must hold for arbitrary dxα(α = 1, 2, 3). Therefore, we have

gαα > 0,

∣
∣
∣
∣

gαα gαβ

gβα gββ

∣
∣
∣
∣
> 0,

∣
∣
∣
∣
∣
∣

g11 g12 g13

g21 g22 g23

g31 g32 g33

∣
∣
∣
∣
∣
∣

> 0, (α, β = 1, 2, 3). (9.80)

It follows from (9.79) and (9.80) that

g = ∣∣gαβ

∣
∣ =

∣
∣
∣
∣
∣
∣
∣
∣

g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44

∣
∣
∣
∣
∣
∣
∣
∣

< 0. (9.81)

Remark 9.5: The metric tensor (9.77) is based on a starting inertial reference frame x̄α.
Actually we can start with any other inertial reference frames, which will give the same metric
tensor. To prove this, let us consider a different inertial frame x̄ ′α . The metric tensor based on
this new inertial frame is

g′
αβ =

3
∑

γ=1

∂ x̄ ′γ

∂xα

∂ x̄ ′γ

∂xβ
− ∂ x̄ ′4

∂xα

∂ x̄ ′4

∂xβ
=

4
∑

λ=1

⎡

⎣

⎛

⎝

3
∑

γ=1

∂ x̄ ′γ

∂ x̄λ

∂ x̄ ′γ

∂ x̄λ
− ∂ x̄ ′4

∂ x̄λ

∂ x̄ ′4

∂ x̄λ

⎞

⎠
∂ x̄λ

∂ x̃α

∂ x̄λ

∂ x̃β

⎤

⎦

=
3
∑

λ=1

∂ x̄λ

∂xα

∂ x̄λ

∂xβ
− ∂ x̄4

∂xα

∂ x̄4

∂xβ
= gαβ.

Here we have used (9.25). This relation indicates that the metric tensor in a general coordi-
nate system is independent of the inertial reference system that is used to define the metric
tensor.

Remark 9.6: It is known that we have to introduce fictitious forces, such as the centrifugal
force and the Coriolis force, to describe a mechanical system in an accelerated reference frame.
Such forces have no connection with the physical properties of the mechanical system itself,
and in fact they depend on the accelerated system introduced relative to the inertial system.
Therefore, Newton introduced the concept of absolute space (an ideal reference frame) relative
to which the physical laws have the simplest and natural form. However, the theory of special
relativity abandoned the concept of absolute space because it is impossible to determine by
experiments which inertial system should be regarded as the absolute system. Einstein gave
a new interpretation of these fictitious forces in an accelerated reference frame. According to
this interpretation, these fictitious forces are treated as a kind of gravitational force.
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Example 9.3 (Rotating system of reference): We can introduce a rotating reference frame
xα = (r, ϕ, z, ct) by

x̄1 = r cos(�t + ϕ),

x̄2 = r sin(�t + ϕ),

x̄3 = z,

x̄4 = ct̄ = ct.

Then

gαβ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 r2 0
�r2

c
0 0 1 0

0
�r2

c
0 −

(

1 − �2r2

c2

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9.82)

9.6.6 Time and Length in Accelerated Reference Frame

The time and length measurements must be examined carefully in an accelerated system.
Following Møller (Møller, 1952), we consider two points p and q whose space coordinates
are xα(α = 1, 2, 3) and xα + dxα (α = 1, 2, 3) respectively. The spatial distance dl between
p and q at the time t = x4/c can be measured by a standard ruler, which is at rest relative to
the point p. If dxα is very small the point q will also be at rest relative to the ruler. In order to
express dl in terms of the metric tensor gαβ , we may introduce an inertial reference frame x̄α

relative to which the point p (approximately point q) is at rest momentarily, which is called
an instantaneous co-moving inertial reference frame. The transformation from xα to x̄α is
given by (9.75). Since the point p is at rest momentarily relative to the inertial reference frame
x̄α , from (9.78) we obtain

aα
4 = 0, α = 1, 2, 3 (9.83)

at the point p. The differences dx̄α (α = 1, 2, 3) corresponding to the two points p and q in
the reference xα are

dx̄α =
3
∑

β=1

aα
βdxβ, α = 1, 2, 3

due to (9.83). Therefore

ds2 = ηαβdx̄αdx̄β = (dx̄1)2 + (dx̄2)2 + (dx̄3)2 − (dx̄4)2

= dl̄2 − c2dt̄2 = gαβdxαdxβ .
(9.84)
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Note that dl̄2 = (dx̄1)2 + (dx̄2)2 + (dx̄3)2 only depends on dx1, dx2 and dx3. Thus we may
write gαβdxαdxβ as (Bladel, 1984)

ds2 = gαβdxαdxβ =
3
∑

α,β=1

gαβdxαdxβ + g44(dx4)2 + 2dx4
3
∑

β=1

g4βdxβ

=
3
∑

α,β=1

(gαβ − g4αg4β/g44)dxαdxβ

−
⎛

⎝
√−g44dx4 −

3
∑

β=1

g4βdxβ

/

√−g44

⎞

⎠

2

.

(9.85)

Comparing (9.84) and (9.85) we obtain

dl̄2 =
3
∑

α,β=1

γαβdxαdxβ,

cdt̄ = √−g44dx4 −
3
∑

β=1

γβdxβ = √−g44dx4

⎛

⎝1 −
3
∑

β=1

γβvβ

/

c
√−g44

⎞

⎠ ,

(9.86)

where vβ = dxβ/dt is the velocity and

γαβ = gαβ + γαγβ, γα = g4α

/√−g44. (9.87)

It follows from (9.85) and (9.86) that

ds2 = −c2dτ 2 =
3
∑

α,β=1

γαβdxαdxβ + g44(dx4)2

⎛

⎝1 −
3
∑

β=1

γβvβ

/

c
√−g44

⎞

⎠

2

. (9.88)

Remark 9.7: We may assume that dl̄ = dl, where dl is the distance between the two neigh-
boring points p and q measured in the coordinate system xα (Møller, 1952).

Example 9.4: Consider the rotating system of reference again, whose metric tensor is given
by (9.82). From (9.87), we obtain

γ11 = 1, γ22 = r2

1 − �2r2/c2
, γ33 = 1, γαβ = 0, α = β.
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Thus the distance dl between two neighboring points (r, ϕ, z) and (r + dr, ϕ + dϕ, z) mea-
sured in the rotating system of reference is

dl2 =
3
∑

α,β=1

γαβdxαdxβ = dr2 + r2dϕ2

1 − �2r2/c2
. (9.89)

This relation shows that the geometrical theorems obtained from an observer in the reference
frame, which is at rest relative to a rotating system, will be different from the theorems of
Euclidean geometry. Let us consider an circle given by r = constant. According to (9.89), the
periphery of the this circle measured by the observer in the rotating system will be

2π∫

0

rdϕ
√

1 − �2r2/c2
= 2πr
√

1 − �2r2/c2
.

Therefore the periphery of the circle is larger than 2πr .

Now consider a clock fixed at a given reference point p of the reference frame xα. From the
second expression of (9.86), the time interval (that is, proper time interval obtained by an
observer in the instantaneous co-moving inertial reference frame at p, which is at rest relative
to the clock) of the trajectory of the clock is

cdτ = cdt̄ = √−g44dx4 (9.90)

since dxα = 0 (α = 1, 2, 3) for a clock at rest. Note that t = x4/c denotes the time shown by
the clock at p.

Example 9.5: For a rotating reference frame given by (9.82), Equation (9.90) becomes

dτ = 1

c

√−g44dx4 =
√

1 − �2r2/c2dt, (9.91)

where dt is the coordinate time interval, which is equal to the proper time interval only for
points on the rotational axis.

9.6.7 Covariant Derivative and Connection

In order to be able to relate tensors at distinct points, it is necessary to use a process of
differentiation. However, the ordinary differential operation on a tensor does not yield a
tensor. Therefore we need to use a different concept of differentiation, a covariant derivative
to guarantee that the new tensor after the differentiation is still a tensor. The basic idea is to
introduce a ‘compensating field’, called a connection, in the ordinary differential operation.
This connection will be denoted by �. The covariant derivative of the scalar field is defined to
be its ordinary derivative

Dµφ = ∂µφ,
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which is covariant. The covariant derivative of a contravariant vector field Xµ is defined by

Dµ X ν = ∂µ X ν + �ν
λµXλ.

The covariant derivative of a covariant vector field Xµ is defined by

Dµ Xν = ∂µ Xν − �λ
νµ Xλ.

In general, the covariant derivative of arbitrary tensor is defined by

DµT ν1···νr
σ1···σs = ∂µT ν1···νr

σ1···σs +
r
∑

m=1

�νm
νµT ν1···νm−1νvm+1νr

σ1···σs

−
s
∑

n=1

�σ
σnµT ν1···νr

σ1···σn−1σσn+1···σs .

Under a coordinate transform xµ → x̃µ, the connection � must transform according to

�̃µ
νλ = ∂ x̃µ

∂xα

∂xβ

∂ x̃ν

∂xχ

∂ x̃λ
�α

βχ − ∂2 x̃µ

∂xβ∂xχ

∂xβ

∂ x̃ν

∂xχ

∂ x̃λ
(9.92)

to make the covariant derivative of a (r, s)-tensor T ν1···νr
σ1···σs be a (r, s + 1)-tensor. The

transformation law (9.92) may be expressed in a different form as

�̃µ
νλ = ∂ x̃µ

∂xα

∂xβ

∂ x̃ν

∂xχ

∂ x̃λ
�α

βχ + ∂ x̃µ

∂xα

∂2xα

∂ x̃ν∂ x̃λ
. (9.93)

This can be proved by the chain rule.
If the covariant derivative of a tensor field is zero in a subset of a manifold, the tensor field

is said to be parallel-transported in the subset. If a metric tensor gρσ is parallel-transported,
that is, Dµgρσ = 0, then

∂µgρσ = �λ
ρµgλσ + �λ

σµgρλ = �σρµ + �ρσµ = 2�(ρσ )µ. (9.94)

This is called the metricity condition. Here �σρµ = �λ
ρµgλσ and �(ρσ )µ denote the sym-

metrized part �(ρσ )µ = (�ρσµ + �σρµ)/2. The antisymmetrized part is defined by �[ρσ ]µ =
(�ρσµ − �σρµ)/2.

The connection on a manifold is not unique. Given a metric gρσ in a coordinate system xµ,
there exist infinite connections that satisfy the metricity condition. One of these connections,
called the Levi-Civita connection, named after the Italian mathematician Tullio Levi-Civita
(1873–1941), is given by

�λ
ρσ = 1

2
gλµ(∂ρgσµ + ∂σ gρµ − ∂µgρσ ), (9.95)
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which satisfies the metricity condition

Dµgρσ = ∂µgρσ − �λ
ρµgλσ − �λ

σµgρλ = 0. (9.96)

The components of the Levi-Civita connection are called Christoffel symbols, named after
the German mathematician Elwin Bruno Christoffel (1829–1900). The Levi-Civita connection
is symmetric in the last two indices. From now on, all quantities derived from �λ

ρσ will be
underlined. Multiplying (9.96) by gρσ we obtain

�λ
λµ = 1

2
gρσ ∂µgρσ . (9.97)

Let the determinant of the matrix [gρσ ] be denoted by g = ∣∣gρσ

∣
∣. Then

∂g

∂xλ
= ggρσ ∂gρσ

∂xλ
.

Making use of this relation, we may write (9.97) as

�λ
λµ = 1

2g

∂g

∂xµ
= ∂

∂xµ
ln

√−g. (9.98)

The Riemann curvature tensor of a Levi-Civita connection is defined by

Rν
ρµσ = ∂µ�ν

ρσ − ∂σ �ν
ρµ + �ν

λµ�λ
ρσ − �ν

λσ �λ
ρµ,

which has the symmetric properties:

Rνρµσ = −Rνρσµ = Rρνµσ = Rρνσµ,

Rνρµσ = Rµσνρ.

Here Rνρµσ = gµν Rµ
ρµσ . The Ricci tensor, named after the Italian mathematician Gregorio

Ricci-Curbastro (1853–1925), is defined by Rρσ = Rµ
ρµσ and is also symmetric

Rρσ = Rσρ.

The scalar curvature is defined by R = gµν Rµν .
Let x̃µ be another coordinate system. The transformation law of the metric tensor is

gρσ = g̃µν

∂ x̃µ

∂xρ
· ∂ x̃ν

∂xσ
.

By a lengthy calculation, it can be shown that the Levi-Civita connection changes according
to

�λ
ρσ = ∂xλ

∂ x̃µ

(
∂ x̃α

∂xρ

∂ x̃β

∂xσ
�̃

µ

αβ + ∂2 x̃µ

∂xρ∂xσ

)

. (9.99)
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9.6.8 Geodesics and Equation of Motion in Gravitational Field

Let us consider the length of a curve defined by (9.73). A geodesic is a curve which extremizes
the length functional (9.73). Taking the variation of the functional, a geodesic xµ(t) must
satisfy the famous geodesic equation

d2xµ

dt2
+ �µ

ρσ

dxρ

dt

dxσ

dt
= 0, (9.100)

if the parameter t is an affine parameter, that is, if it is related to the proper time by t =
aτ + b. If the proper time is used as the parameter of the curve the geodesic equation may be
written as

duµ

dτ
+ �µ

ρσ uρuσ = 0, (9.101)

where uµ is the four velocity. The geodesics are locally straight in an inertial coordinate
system.

Equation (9.101) is assumed to be the equation of motion of a test particle, not acted on
by any forces except an arbitrary gravitational field, in an arbitrary coordinate system. It can
be derived by the equivalence principle. By Einstein equivalence principle, there exists a free
falling coordinate system x̄α where the equation of motion of a particle under the influence of
purely gravitational force is

d2 x̄α

dτ 2
= 0, (9.102)

where dτ is the proper time

−c2dτ 2 = η̄αβdx̄αdx̄β . (9.103)

Here η̄αβ is used to represent the Minkowski metric. It can be shown that the transformation
of (9.102) and (9.103) gives (9.100) with

gµν = ∂ x̄α

∂xµ

∂ x̄β

∂xν
η̄αβ .

In fact,

d2 x̄α

dτ 2
= d

dτ

(
∂ x̄α

∂xρ
· dxρ

dτ

)

= d

dτ

∂ x̄α

∂xρ
· dxρ

dτ
+ ∂ x̄α

∂xµ
· d2xµ

dτ 2

=
(

∂2 x̄α

∂xρ∂xσ
· ∂xµ

∂ x̄α
· dxσ

dτ
· dxρ

dτ
+ d2xµ

dτ 2

)

· ∂ x̄α

∂xµ
= 0.

Making use of (9.99) we obtain (9.100).
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For a particle which is momentarily at rest in the gravitational field (that is, uα = 0, α =
1, 2, 3), Equation (9.101) can be written as

3
∑

µ=1

gνµ

duµ

dτ
+ d

dτ
(gν4u4) = 1

2

∂g44

∂xν
u4u4, ν = 1, 2, 3. (9.104)

From (9.88), we obtain

−c2

(
dτ

dx4

)2

=
3
∑

α,β=1

γαβ

dxα

dx4

dxβ

dx4
+ g44

⎛

⎝1 −
3
∑

β=1

γβ√−g44

vβ

c

⎞

⎠

2

,

or

u4 = c

⎡

⎢
⎣−g44

⎛

⎝1 −
3
∑

β=1

γβ√−g44

vβ

c

⎞

⎠

2

− v2

c2

⎤

⎥
⎦

−1/2

, (9.105)

where v =
√

3∑

α,β=1
γαβ

dxα

dt
dxβ

dt is the magnitude of the particle velocity. Thus we have

gν4u4 = cγν

⎡

⎢
⎣

⎛

⎝1 −
3
∑

β=1

γβ√−g44

vβ

c

⎞

⎠

2

+ v2

c2g44

⎤

⎥
⎦

−1/2

,

and after some calculation we get

d

dτ
(gν4u4) = 1√−g44

⎛

⎝c2 dγν

dx4
+

3
∑

β=1

γνγβ√−g44

dvβ

dt

⎞

⎠ (9.106)

for a particle which is momentarily at rest. Substituting (9.106) and (9.105) into (9.104) we
obtain

3
∑

µ=1

γνµ

d2xµ

dt2
= − ∂

∂xν

(

−c2g44

2

)

− √−g44c
dγν

dt
, ν = 1, 2, 3.

Therefore the particle which is momentarily at rest gets accelerated. The covariant components
of the acceleration is

aν =
3
∑

µ=1

γνµ

d2xµ

dt2
.
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If we let g44 = −(1 + 2�/c2), the acceleration can be expressed as

aν = − ∂�

∂xν
− c

√

1 + 2�

c2

dγν

dt
, ν = 1, 2, 3. (9.107)

The metric tensor gαβ defines the motion of a test particle under the gravitational field. The
influence of gravity on the particle has been included in the metric tensor gαβ . Therefore we
sometimes call the metric tensor gαβ the gravitational potential.

Remark 9.8 (Newton mechanics as a limit case): If we make the following assumptions:

1. The particle moves slowly, which implies we may neglect dxµ/dτ compared to dt/dτ .
2. The gravitational field is static.
3. The gravitational field is weak.

we can get the Newton equation from (9.100). Based on the above assumptions, Equation
(9.100) may be approximated by

d2xµ

dτ 2
+ �µ

44
dx4

dτ

dx4

dτ
= 0. (9.108)

Since the field is static, all the time derivatives of gαβ vanish. Thus we have

�µ
44 = −1

2
gµν ∂g44

∂xν
.

A weak gravitational field means that we can introduce a local coordinate system xα in which
the metric tensor can be written as

gαβ = ηαβ + hαβ,
∣
∣hαβ

∣
∣� 1,

where ηαβ is given by (9.19); hαβ and their derivatives are small quantities whose squares may
be ignored. Therefore

�µ
44 = −1

2
ηµν ∂h44

∂xν
, (9.109)

and (9.108) reduces to

d2xµ

dτ 2
− c2

2

∂h44

∂xµ

(
dt

dτ

)2

= 0, µ = 1, 2, 3,

d2t

dτ 2
= 0.

The last equation implies dt/dτ = constant. Thus the first equation can be written as

d2xµ

dt2
= 1

2

∂
(

c2h44
)

∂xµ
, µ = 1, 2, 3.
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If we compare this equation to (9.69) we obtain

h44 = −2�/c2 + constant.

Since the coordinate system must become Minkowskian at great distance, h44 must vanish if
we define the gravitational potential � to vanish at infinity. Then we have

h44 = −2�/c2, (9.110)

and

g44 = −(1 + 2�/c2).

9.6.9 Bianchi Identities

Let us consider a vector field Xα . It can be shown that

[Dγ , Dβ]Xα = Dγ Dβ Xα − Dβ Dγ Xα = −Rα
νβγ X ν

where [Dγ , Dβ] = Dγ Dβ − Dβ Dγ is called the commutator of operators Dγ and Dβ . We
also have the first Bianchi identity, named after the Italian mathematician Luigi Bianchi
(1856–1928),

Rν
ρµσ + Rν

µσρ + Rν
σρµ = 0, (9.111)

and the second Bianchi identity

Dµ Rνλρσ + Dσ Rνλµρ + Dρ Rνλσµ = 0. (9.112)

Since the metric tensor gνρ has zero covariant derivative, it can be inserted to the middle of
each term in (9.112). By contraction, we obtain

Dµ Rλσ − Dσ Rλµ + Dρ Rρ
λσµ = 0.

Similarly by inserting gλσ into the above identity and contracting, we obtain

Dµ R − Dσ Rσ
µ − Dρ Rρ

µ = Dµ R − 2Dσ Rσ
µ = 0.

This can also be written as

Dµ

(

Rµ
ν − 1

2
δµ

ν R

)

= 0. (9.113)
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The Einstein tensor is defined by

Gµν = Rµν − 1

2
gµν R.

Raising the first index and then contracting the above equation we obtain

Gµ
µ = −R. (9.114)

9.6.10 Principle of General Covariance and Minimal Coupling

The principle of equivalence can be used to study the effects of gravitation on physical systems.
We can first write down the physical equations in the locally inertial coordinate system, that
is, the equations of special relativity and then perform a coordinate transformation to find the
corresponding equations in an arbitrary (accelerated) coordinate system. A different approach
is based on the principle of general covariance. It states that a physical equation holds in a
general gravitational field if the following conditions are met (Weinberg, 1972)

1. The equation holds in the absence of gravitation. In other words, it agrees with the laws of
special relativity when the metric tensor gαβ equals the Minkowski tensor ηαβ and when
the connection coefficients �γ

αβ vanish.
2. The equation is generally covariant; that is, it retains its form under a general change of

coordinates.

The principle of general covariance follows from the principle of equivalence. The principle
of general covariance requires that the equations preserve their form under a general change
of coordinates. Given a physical equation expressed in Minkowski space (that is, special
relativity), we may get its version in the presence of gravitation field by introducing gravitation
through the substitution of gαβ for ηαβ and of Dµ for ∂µ in the physical equation written in
special relativity in Minkowski coordinates. This procedure is called minimal coupling.

9.6.11 Einstein Field Equations

The gravitational potential � satisfies

∇2� = 4πGρ̃m0 , (9.115)

where ρ̃m0 is the volume density of mass measured in rest frame, In relativity, we need an
covariant analogue of (9.115), a form which is independent of the choices of coordinate system.
By the mass-energy relation the mass density can be generalized to energy density. Since the
energy density is just one component of the stress-energy tensor, we may need to use whole of
T µν . Furthermore, the gravitational potential � should be related to gµν . Therefore, we may
expect that the covariant analogue of (9.115) may be written in the form

♦(gµν) = χT µν, (9.116)
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where ♦ is a second order differential operator to be determined that generalizes ∇2, and χ

is some constant. ♦(gµν) should be some linear combination of gµν , their first derivative and
second derivative of gµν , and must be symmetric since T µν is symmetric. Examples of such
a tensors are Ricci tensors Rµν , gµν R and gµν . Thus the left-hand side of (9.116) may be
expressed as a linear combination of these quantities

Rµν + agµν R + �gµν = χT µν. (9.117)

Applying the conservation laws DνT µν = 0 we obtain

Dν(Rµν + agµν R) = 0,

where we have used Dνgµν = 0. If this is compared to (9.113) we obtain a = −1/2. Hence
(9.117) becomes

Rµν − 1

2
gµν R + �gµν = χT µν. (9.118)

These are the Einstein field equations, which relate the curvature of space–time with the
mass, energy, and momentum within it.

The constant � is called cosmological constant, which is usually set to zero. Thus we have

Rµν − 1

2
gµν R = χT µν. (9.119)

By lowering the second index and contracting, we obtain

Gµ
µ = χT µ

µ = −R

from (9.114). Thus Einstein field equation can also be written as

Rµν = χ

(

T µν − 1

2
gµνT µ

µ

)

. (9.120)

Remark 9.9: The energy-momentum tensor describes not only matter distribution but also
fields of all kinds, such as the electromagnetic field but it does not include the contributions
from the gravitational field.

Equation (9.118) is a set of non-linear partial differential equations in the metric coefficients
gµν and it is not easy to solve mainly because the technique of superposition of solutions
cannot be used.

Now we determine the constant χ . When the gravitational field is very weak, Equation
(9.118) can be approximated by a set of linear differential equations. A weak field means that
we can introduce a local coordinate system xα in which the metric tensor can be written as

gαβ = ηαβ + hαβ,
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where ηαβ is given by (9.19); hαβ and their derivatives are small quantities whose squares may
be ignored. The Christoffel symbols are small of the first order. Therefore, we can neglect all
terms depending on the square of Christoffel symbols in Ricci tensor to get

Rµν = gµρgνσ Rρσ ≈ gµρgνσ
(

∂µ�µ
ρσ − ∂σ �µ

ρµ

)

≈ ηµρηνσ
(

∂µ�µ
ρσ − ∂σ �µ

ρµ

)

.

Making use of the following calculations

∂µ�µ
ρσ ≈ 1

2
ηµλ

(
∂2hσλ

∂xµ∂xρ
+ ∂2hρλ

∂xµ∂xσ
− ∂2hρσ

∂xµ∂xλ

)

,

∂σ�µ
ρµ ≈ 1

2
ηµλ

(
∂2hµλ

∂xσ ∂xρ
+ ∂2hρλ

∂xσ ∂xµ
− ∂2hρµ

∂xσ ∂xλ

)

,

we obtain

Rρσ = ∂µ�µ
ρσ − ∂σ�µ

ρµ

= −1

2
ηµλ ∂2hρσ

∂xµ∂xλ
+ 1

2
ηµλ

(
∂2hσλ

∂xµ∂xρ
+ ∂2hρµ

∂xσ ∂xλ
− ∂2hµλ

∂xσ ∂xρ

)

.

Assuming the gravitational field is static, then all the derivatives of hµν with respect to time
are zero. For the component R44, it follows from (9.109) and (9.110) that

R44 ≈ η4ρη4σ
(

∂µ�µ
44 − ∂4�

µ
4µ

) = ∂µ�µ
44

= −1

2
∇2h44 = ∇2

(
�

c2

)

.

(9.121)

Now we consider an incoherent matter which is at rest. Its energy-momentum tensor is
T αβ

m = ρ̃m0 uαuβ . Then we have

T 44
m = ρmc2 = ρ̃m0 c2,

T α
m α = ρ̃m0 uαuα = −ρ̃m0 c2.

(9.122)

Substituting (9.121) and (9.122) into (9.120) we obtain

∇2� = χ

(
1

2
ρ̃m0 c4

)

.

Comparing this equation with (9.115) gives rise to χ = 8πG/c4. Finally, the Einstein field
equations (9.119) may written as

Rµν − 1

2
gµν R = 8πG

c4
T µν.
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or

Rµν = 8πG

c4

(

T µν − 1

2
gµνT µ

µ

)

. (9.123)

from (9.120).
The general relativity is the simplest theory on gravity and is found to be consistent with

experiments. However, the general relativity has not been completely reconciled with quantum
mechanics yet.

9.6.12 The Schwarzschild Solution

The Schwarzschild solution, named after the German physicist Karl Schwarzschild
(1873–1916), is one of the most useful solutions of the Einstein field equations. Consider
an inertial reference frame x̄α(α = 1, 2, 3, 4) whose metric tensor is given by (9.19). The
differential interval is thus given by

ds2 = ηαβdx̄αdx̄β = (dx̄1)2 + (dx̄2)2 + (dx̄3)2 − (dx̄4)2.

In a spherical coordinate system (r, θ, ϕ, ct), this can be written as

ds2 = dr2 + r2dθ2 + r 2 sin2 θdϕ − c2t2. (9.124)

In a gravitational field, the differential interval will take a more complicated form

ds2 = gαβdxαdxβ.

Consider an empty space surrounding a static star or planet. We use the spherical coordinate
system (r, θ, ϕ, ct) with the origin at the center of the planet. If the planet does not rotate very
fast, we may ignore the effects of rotation and assume that the gravitational field is spherically
symmetric. In this case, the metric coefficients gαβ as a function of (r, θ, ϕ, ct) must satisfy

gαβ(r, θ, ϕ, ct) = gαβ(r, θ, ϕ,−ct),

gαβ(r, θ, ϕ, ct) = gαβ(r, θ,−ϕ, ct),

gαβ(r, θ, ϕ, ct) = gαβ(r,−θ, ϕ, ct),

which imply gαβ = 0(α = β). Thus the differential interval may be written as

ds2 = g11dr2 + g22dθ2 + g33dϕ2 − g44c2dt2,

where gii (i = 1, 2, 3, 4) are independent of time. According to the spherical symmetry, both
g11 and g44 only depend on r . Now if we let dr = 0 and dt = 0, the differential interval should
reduce to differential length on the sphere of radius r

ds2 = g22dθ2 + g33dϕ2 = r2dθ2 + r2 sin2 θdϕ.
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Therefore g22 = r2, g33 = r2 sin2 θ , and the differential interval becomes

ds2 = g11(r )dr 2 + r 2dθ2 + r2 sin2 θdϕ2 − g44(r )c2dt2.

In order to determine g11 and g44, we need to use the Einstein field equations. In the empty
space we have T µν = 0 and Einstein field equations reduce to

Rµν = 0.

One can find g11 and g44 from these equations. Ignoring the details, the differential interval
may be expressed as

ds2 =
(

1 − 2G M

c2r2

)−1

dr2 + r2dθ2 + r 2 sin2 θdϕ2 −
(

1 − 2G M

c2r2

)

c2dt2, (9.125)

where M is the mass of the planet. This is the Schwarzschild solution outside the planet,
which shows that the mass M introduces the curvature of the space–time. As r → ∞, Equation
(9.125) reduces to (9.124).

9.6.13 Electromagnetic Fields in An Accelerated System

We have already shown that the electromagnetic fields in an inertial system can be written as

∂µ Fµν = −µ0 J ν,

∂µ Fνα + ∂ν Fαµ + ∂α Fµν = 0.

By minimal coupling, these equations can be generalized to an arbitrary coordinate system

Dµ Fµν = −µ0 J ν,

Dµ Fνα + Dν Fαµ + Dα Fµν = 0.
(9.126)

By means of the following calculations

Dµ Fµν = ∂ Fµν

∂xµ
+ �µ

αµFαν + �ν
βµFµβ,

Dα Fµν = ∂ Fµν

∂xα
− �β

µα Fβν − �γ
να Fµγ ,

Dν Fαµ = ∂ Fαµ

∂xν
− �β

αν Fβµ − �γ
µν Fαγ ,

Dµ Fνα = ∂ Fνα

∂xµ
− �β

νµFβα − �γ
αµFνγ ,



P1: OTA/XYZ P2: ABC
c09 BLBK281-Wen March 3, 2010 22:6 Printer Name: Yet to Come

General Theory of Relativity 427

and (9.98), Equation (9.126) can be written as

∂ Fµν

∂xα
+ ∂ Fνα

∂xµ
+ ∂ Fαµ

∂xν
= 0,

1√−g

∂

∂xµ

(√−gFµν
) = −µ0 J ν .

(9.127)

These are most general form of Maxwell equations in an arbitrary coordinate system.

Henceforth space by itself and time by itself are doomed to fade away into mere shadows, and
only a kind of the union of the two will preserve an independent reality.

—Hermann Minkowski
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10
Quantization of Electromagnetic
Fields

The true logic in this world lies in probability theory.
—James Maxwell

Reality is merely an illusion, albeit a very persistent one.
—Albert Einstein

In the late 1800s and early 1900s, there was an increase in the number of experimental
observations that could not be explained by classical physics. Physical scientists began to
believe that the physics needs a complete reformulation. This led to the birth of modern physics,
which rests on three pillars: the quantum theory, special relativity and general relativity.

The quantum theory was invented to describe the physics of small systems, such as atoms
and nuclei, and was pioneered by Max Planck (German physicist, 1858–1947), Albert Ein-
stein, Niels Henrik David Bohr (Danish physicist, 1885–1962) and Louis de Broglie (French
physicist, 1892–1987). It is the work by the German physicist Werner Heisenberg (1901–1976)
and the Austrian physicist Erwin Rudolf Josef Alexander Schrödinger (1887–1961) that made
the early quantum theory become what is known as quantum mechanics today. Quantum me-
chanics has replaced Newtonian mechanics as the correct description of small particle systems.

On the atomic and molecular scale, both the charged particles and electromagnetic fields
must obey the laws of quantum mechanics, which leads to quantum electrodynamics. In classi-
cal electrodynamics, the field strengths may take arbitrary values. In quantum electrodynamics,
however, the field strengths cannot be identically zero. Quantum electrodynamics is remark-
able for its incredible accuracy in predicting small particle systems, and it has been widely used
for calculating the interaction of electromagnetic radiation with atomic and molecular matter.
It should be mentioned that a mathematically rigorous quantum field theory for describing the
behavior of elementary particles is still not available.

Foundations of Applied Electrodynamics Geyi Wen
C© 2010 John Wiley & Sons, Ltd
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10.1 Fundamentals of Quantum Mechanics

In classical mechanics, the motion of a particle can be determined in an exact manner. In
quantum mechanics, we do not have this determinism. The small particle system is so delicate
that any means of observation will interfere with the system and modify it. For this reason,
the quantum mechanics is basically a theory about measurement, and it is based on a few
postulates or axioms that we accept without proofs.

10.1.1 Basic Postulates of Quantum Mechanics

The mathematical foundation of quantum mechanics is the theory of Hilbert space. Any
quantum system can be described by a complex Hilbert space H with inner product (·, ·)
and norm ‖·‖ = (·, ·)1/2. The basic postulates for the quantum mechanics are summarized as
follows.

1. A physical system is characterized by a unit vector ψ ∈ H , called a state or a wavefunction
that contains all the information of the system and satisfies the Schrödinger equation

Ĥψ = j�
∂ψ

∂t
, (10.1)

where � = h/2π , and h = 6.62377 × 10−34 are known as Planck’s constant.
2. Each physical quantity A (such as position, momentum, angular momentum and energy)

is associated with a self-adjoint operator (or Hermitian operator), which is denoted by Â:
D( Â) ⊂ H → H , and is called observable. In particular, the self-adjoint operator Ĥ :
D(Ĥ ) ⊂ H → H corresponding to the energy of the quantum system is called the Hamil-
tonian of the quantum system.

3. A measurement of the observable A in the state ψ results in a number that is statistical and
belongs to one of the eigenvalues of Â. The number 〈 Â〉 ≡ ( Âψ,ψ) is called the mean
value of A. (Note that we use 〈·〉 to denote the mean value and 〈·, ·〉 a bilinear form.) Let
� Â = Â − 〈 Â〉, and the number 〈� Â2〉 = ∥∥ Âψ − 〈 Â〉ψ∥∥2

is called the dispersion of the
observable in the state ψ . The mean value is always real, and the dispersion is always
positive.

Let {un} be an orthonormal system of eigenfunctions of an observable Â

Âun = λnun.

For each state ψ ∈ H , we may write

ψ =
∑

n

(ψ, un)un.
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Thus

(ψ,ψ) =
∑

n

|(ψ, un)|2 = 1,

〈 Â〉 = ( Âψ,ψ) =
∑

n

λn |(ψ, un)|2,

〈� Â2〉 = ∥∥ Âψ − 〈 Â〉ψ∥∥2 =
∑

n

(λn − 〈 Â〉)2 |(ψ, un)|2 .

Especially if ψ = um , we have (ψ, un) = 0 (n 	= m), and 〈 Â〉 = λm , 〈� Â2〉 = 0. The number

Pψ (λn) = |(ψ, un)|2 (10.2)

is defined as the probability that the measurement of A will yield the value λn or the probability
for realizing the state un . More generally, if the quantum system is in the state ψ and φ is
another state, then |(ψ, φ)|2 is defined as the probability for realizing φ.

The operator [ Â, B̂] = Â B̂ − B̂ Â is the commutator of the operators Â and B̂. The op-
erators Â and B̂ are said to commute if [ Â, B̂] = 0. We may interpret Â B̂ as the process of
measuring B first followed by measuring A. The reverse order is denoted byB̂ Â. The result
of measuring A and B depends on the order of measurement if [ Â, B̂] 	= 0. If two adjoint
operators commute, they have common eigenfunctions, and vice versa.

10.1.2 Quantum Mechanical Operators

According to the basic postulates of quantum mechanics, a physical quantity is associated
with a Hermitian operator. But we have not described any rules as to how the Hermitian
operator should be constructed. The correspondence principle proposed by Bohr states that
the quantum theory and classical theory must agree in the cases where quantum effects are
not important. Therefore the operator equation in quantum mechanics must be reduced to its
classical counterpart when the system is becoming very large. To fulfill this requirement, the
quantum mechanical operator can be defined as the same as their classical counterparts.

The position operators x̂ , ŷ and ẑ are defined as

x̂ψ(r, t) = xψ(r, t), ŷψ(r, t) = yψ(r, t), ẑψ(r, t) = zψ(r, t).

In three dimensions, we write r̂ = x̂ux + ŷuy + ẑuz , where ux , uy and uz are unit vectors
along the x , y and z axis.

Remark 10.1 (Particle-wave duality): Particle-wave duality proposes that all energy exhibits
both wave-like and particle-like properties. A particle of energy E and momentum p in
free space may be associated with a wavefunction ψ(r, t) = c1e− j(Et−p·r)/�, where c1 is a
constant.
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When the momentum operator p̂ is applied to the wavefunction ψ(r, t) = c1e− j(Et−p·r)/�, it
must yield the momentum p. Thus the momentum operator p̂x , p̂y and p̂z may be defined as

p̂x = − j�
∂

∂x
, p̂y = − j�

∂

∂y
, p̂z = − j�

∂

∂z
.

In three dimensions, we may write

p̂ = − j�∇ = − j�

(

ux
∂

∂x
+ uy

∂

∂y
+ uz

∂

∂z

)

.

The angular momentum operator is defined by l̂ = r̂ × p̂ or componentwise

l̂x = ŷ p̂z − ẑ p̂y, l̂ y = ẑ p̂x − x̂ p̂z, l̂z = x̂ p̂y − ŷ p̂x .

The mean value of a Hermitian operator Â changes with time according to

d

dt
〈 Â〉 =

(

Âψ,
∂ψ

∂t

)

+
(

Â
∂ψ

∂t
, ψ

)

+
(

∂ Â

∂t
ψ,ψ

)

= 1

j�
〈[ Â, Ĥ ]〉 +

〈

∂ Â

∂t

〉

. (10.3)

If Â does not depend on time explicitly, we have

d

dt
〈 Â〉 = 1

j�
〈[ Â, Ĥ ]〉. (10.4)

This is called the Heisenberg equation of motion. If Â and Ĥ commute, Equation (10.4)
reduces to d

dt 〈 Â〉 = 0. In this case, the mean value of the Hermitian operator does not change
with time.

10.1.3 The Uncertainty Principle

In quantum mechanics, some physical quantities cannot be measured simultaneously with
arbitrary accuracy. Let Â and B̂ be two observables, and ψ be a state in the Hilbert spaceH .
Let ξ be an arbitrary real number. Then

(ξ Âψ + j B̂ψ, ξ Âψ + j B̂ψ) = ξ 2( Â2ψ,ψ) − jξ ([ Â, B̂]ψ,ψ) + (B̂2ψ,ψ) ≥ 0.

Let j Ĉ = [ Â, B̂]. Then Ĉ is a Hermitian operator. We may write the above as

ξ 2〈 Â2〉 − ξ 〈Ĉ〉 + 〈B̂2〉 = 〈 Â2〉
(

ξ − 〈Ĉ〉
2〈 Â2〉

)2

+
(

〈B̂2〉 − 〈Ĉ〉2

4〈 Â2〉

)

≥ 0.
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Choosing ξ = 〈Ĉ〉/2〈 Â2〉 yields

〈 Â2〉〈B̂2〉 ≥ 1

4
〈Ĉ〉2 = 1

4
〈[ Â, B̂]〉2. (10.5)

This is valid for any two Hermitian operators Â and B̂, and is thus also valid for � Â and �B̂.
Therefore

√

〈� Â2〉
√

〈�B̂2〉 ≥ 1

2

∣
∣〈[ Â, B̂]〉∣∣ , (10.6)

where we have used the relation 〈[� Â,�B̂]〉 = 〈[ Â, B̂]〉. Equation (10.6) implies that if Â
and B̂ do not commute, it is impossible to measure the two corresponding physical quantities
simultaneously with arbitrary accuracy. This is called the uncertainty principle.

Example 10.1 (Heisenberg’s uncertainty principle): Heisenberg’s principle states that it is
impossible to measure the position and momentum simultaneously with arbitrary accuracy.
Actually,

[x̂, p̂x ]ψ = − j�

[

x
∂ψ

∂x
− ∂

∂x
(xψ)

]

= j�ψ.

Thus [x̂, p̂x ] = j�. In general, we have

[α̂, p̂β ] =
{

j�, α = β

0, α 	= β
, α = x, y, z.

It follows from (10.6) that

√

〈�x̂2〉
√

〈� p̂2
x 〉 ≥ �

2
.

If we localize a particle more precisely (that is,
√

〈�x̂2〉 is small), the velocity of the particle
becomes more uncertain (that is,

√〈� p̂2
x 〉 is large). Conversely if we measure the velocity

more precisely, the position of the particle becomes more uncertain.

Example 10.2: Let the Hamiltonian of the system be Ĥ , and Â be an arbitrary Hermitian
operator which does not explicitly depend on time. By means of (10.6), we obtain

√

〈�Ĥ 2〉
√

〈� Â2〉 ≥ 1

2

∣
∣〈[ Â, Ĥ ]〉∣∣ .

It follows from (10.4) that

√

〈�Ĥ 2〉
√

〈� Â2〉 ≥ �

2

∣
∣
∣
∣

d

dt
〈 Â〉
∣
∣
∣
∣
.
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Let τ Â =
√

〈� Â2〉(d〈 Â〉/dt)−1 denote the time interval needed for 〈 Â〉 to increase by
√

〈� Â2〉.
In a given state, each physical quantity has a τÂ, among which we can choose a smallest one,
denoted by �t . Thus

�E · �t ≥ �/2, (10.7)

where �E =
√

〈�Ĥ 2〉. This equation indicates that the higher the precision of the measure-
ment of the energy, the longer the time needed for the measurement. Essentially the uncertainty
principle states that any measurement made on a physical system perturbs the system.

It must be mentioned that the uncertainty principle is not a limit set by the accuracy of
measuring equipment. It is a fundamental requirement by the nature.

10.1.4 Quantization of Classical Mechanics

Quantization is a procedure for building quantum mechanics from classical mechanics, which
consists of two main steps. The first step is to construct the Hamiltonian function in terms
of the generalized coordinates and generalized momenta. The second step is to convert the
classical Hamiltonian function to the quantum mechanical Hamiltonian operator by replacing
the generalized coordinates and the generalized momenta with quantum mechanical operators
subject to the commutation rules. In classical non-relativistic physics, the motion of a particle
of mass m in R3 is governed by the classical Newtonian equation

m
d2r(t)

dt2
= F[r(t)],

where F is the force field. If the force field possesses a potential V (r) such that F = −∇V ,
the total energy of the particle is given by

E = p2

2m
+ V, (10.8)

where p = mdr/dt is the momentum vector at time t . The first term of the above equation
denotes the kinetic energy and the second term the potential energy. The energy operator, the
Hamiltonian, of a single particle can be obtained from (10.8) by replacing p with p̂ as

Ĥ = p̂2

2m
+ V (r, t) = − �

2

2m
∇2 + V (r, t).

In quantum mechanics, the motion of a particle of mass m is described by the Schrödinger
equation

− �
2

2m
∇2ψ(r, t) + V (r, t)ψ(r, t) = j�

∂ψ(r, t)

∂t
. (10.9)
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The physical state ψ(r, t) of the particle satisfies
∫

R3

|ψ(r, t)|2 dr = 1. Since the expectation

value of the position vector is given by 〈r̂〉 = ∫

R3

r |ψ(r, t)|2 dr, we may interpret |ψ(r, t)|2 dr

as the probability of finding the particle inside the differential volume dr at time t . If Ĥ does
not explicitly depend on time, the general solution of (10.9) may be written as

ψ(r, t) =
∑

n

anun(r)e− j En t/�,

where un is the eigenfunction of Ĥ with energy En

− �
2

2m
∇2un(r) + V (r)un(r) = Enun(r).

This is called the stationary Schrödinger equation. The probability of finding the system in
the state un with energy En is

Pψ (En) = |(ψ, un)|2 = |an|2 .

10.1.5 Harmonic Oscillator

The study of the harmonic oscillator is fundamental in quantum mechanics. In classical
mechanics, an idealized harmonic oscillator is a point mass connected to the end of a frictionless
idealized spring. The motion of the mass is governed by the ordinary differential equation

m
d2x(t)

dt2
= −K x

where −K x is the restoring force. Let px = mdx/dt . The total energy of the system is
E = p2

x/2m + K x2/2. In quantum mechanics, the harmonic oscillator is described by the
Schrödinger equation

Ĥ (ψ) =
(

p̂2
x

2m
+ 1

2
K x̂2

)

ψ = − �
2

2m

∂2ψ(x, t)

∂x2
+ 1

2
K x2ψ(x, t)

= j�
∂ψ(x, t)

∂t
.

The corresponding stationary Schrödinger equation is

− �
2

2m

d2u(x)

dx2
+ 1

2
K x2u(x) = Eu(x).
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This eigenvalue equation can be solved by the method of power series expansion. The nor-
malized harmonic oscillator wavefunction is [for example, Yariv, 1982]

un(x) =
(

α√
πn!2n

)1/2

Hn(αx)e−α2x2/2, n = 0, 1, 2, · · · ,

where Hn are Hermite polynomials:

Hn(ξ ) = eξ2
(−1)n dne−ξ 2

dξn

and α = (mω/�)1/2, ω = (K/m)1/2. The corresponding eigenvalues are given by

En = �ω

(

n + 1

2

)

, n = 0, 1, 2, · · · .

As a result, the energy of the harmonic oscillator is quantized and is not zero even in its lowest
energy state n = 0. We may introduce two new operators

â = α√
2

x̂ + j
1√
2�α

p̂x , â+ = α√
2

x̂ − j
1√
2�α

p̂x , (10.10)

which are called the annihilation operator and the creation operator respectively. Then it
is easy to show that

âun = n1/2un−1, â+un = (n + 1)1/2un+1. (10.11)

The operators â and â+ are not Hermitian, and we have

[â, â+] = 1. (10.12)

It follows from (10.10) that

x̂ = 1√
2α

(â+ + â), p̂x = j�α√
2

(â+ − â).

Making use of these relations, we obtain

Ĥ = �ω

2
(ââ+ + â+â) = �ω

(

â+â + 1

2

)

.

Since

â+âun = nun,

the operator â+â is referred to as the particle number operator.



P1: SYF/XYZ P2: SYF
c10 BLBK281-Wen March 13, 2010 16:4 Printer Name: Yet to Come

Fundamentals of Quantum Mechanics 437

10.1.6 Systems of Identical Particles

The principle of indistinguishability in quantum mechanics states that it is impossible to
distinguish between n identical particles. Consider a system of two non-interacting identical
particles, numbered as 1 and 2. Then

Ĥ (1)ψα(1) = Eαψα(1), Ĥ (2)ψβ(2) = Eβψβ(2), (10.13)

where ψα and ψβ are any two eigenstates of the single-particle Hamiltonian. The subscripts α

and β are used to denote the eigenstates while the numbers in parentheses denote the particle
or its spatial and spin coordinates. Since the particles are assumed to be non-interacting, the
total Hamiltonian of the system is

Ĥ (1, 2) = Ĥ (1) + Ĥ (2). (10.14)

From (10.13) and (10.14), we obtain

Ĥ (1, 2)ψ(1, 2) = (Eα + Eβ )ψ(1, 2), (10.15)

where ψ(1, 2) could be one of the following eigenfunctions

ψα(1)ψβ(2), ψα(2)ψβ(1),
1

2

[

ψα(1)ψβ (2) ± ψα(2)ψβ(1)
]

from the mathematical point of view. To find the correct eigenstate, the physical conditions must
be taken into account. Let P̂12 denote the interchange of particles 1 and 2 with P̂12ψ(1, 2) =
ψ(2, 1). Since an interchange of particles 1 and 2 does not change the state of the system, we
have

[P̂12, Ĥ (1, 2)] = P̂12 Ĥ (1, 2) − Ĥ (1, 2)P̂12 = 0

from (10.15). This implies that P̂12 and Ĥ commute and they possess common eigenfunctions.
Thus we may write

P̂12ψ(1, 2) = λψ(1, 2).

Since two permutations give the original state, we have

P̂2
12ψ(1, 2) = λ2ψ(1, 2) = ψ(1, 2),

which yields λ = ±1. Hence the eigenfunction ψ(1, 2) is either symmetric (λ = 1) or anti-
symmetric (λ = −1) when two particles are interchanged. Let ψs and ψa denote the symmetric
and antisymmetric wavefunctions respectively. For two identical non-interacting particles in
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the state ψα and ψβ , the normalized symmetric and antisymmetric wavefunctions are given
by

ψs = 1√
2

[

ψα(1)ψβ(2) + ψα(2)ψβ(1)
]

,

ψa = 1√
2

[

ψα(1)ψβ(2) − ψα(2)ψβ(1)
]

.

There exist two completely different kinds of elementary particles in nature. The particles with
half-odd-integral spin (such as electrons, protons, and neutrons) are called fermions, named
after the Italian physicist Enrico Fermi (1901–1954), and they are material particles. The
particles with integral spin (such as photons) are called bosons, named after the Indian physicist
Satyendra Nath Bose (1894–1974), and they are force carriers transferring interactions between
fermions. Experiments show that the fermions are described by antisymmetric wavefunctions,
and the bosons are described by symmetric wavefunctions.

The normalized antisymmetric wavefunctions of a system of more than two particles can
be constructed in terms of Slater determinant

ψa(1, 2, · · · , N ) = 1√
N !

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ψ1(1) ψ1(2) · · · ψ1(N )

ψ2(1) ψ2(2) · · · ψ2(N )

...
...

...
...

ψN (1) ψN (2) · · · ψN (N )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (10.16)

The symmetric wavefunctions ψs can be obtained by replacing all (−) signs in the expansion
of (10.16) by (+). It can be seen that if any two fermions are placed in the same eigenstate,
ψα will vanish. This fact is known as the Pauli exclusion principle, named after the Austrian
physicist Wolfgang Ernst Pauli (1900–1958), which results from the postulate of fermions
antisymmetry.

10.2 Quantization of Free Electromagnetic Fields

In Newton’s time light was considered a beam of particles. The wavelike nature of light was
disclosed during the first half of nineteenth century, and light was demonstrated to be an
electromagnetic wave. The polarization of light was due to the vectorial character of electric
field. However, the classical electromagnetic theory could not explain blackbody radiation,
which led Max Planck in 1900 to postulate that the energy of an electromagnetic wave of
frequency f is quantized and is an integral multiple of the smallest amount of energy h f .
Therefore, the electromagnetic field of frequency f consists of a beam of particles, called
photons, each of which carries energy h f . The particle parameters (the energy E and the
momentum p of a photon) and the wave parameters (the angular frequency ω = 2π f and
wave vector k = ukk with k = 2π/λ) of a photon are related by Planck–Einstein relations

E = �ω, p = �k.
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Quantum electrodynamics (QED) deals with the interaction of electromagnetic fields with
atoms and molecules. On the atomic and molecular scale, both the particles and fields are
subject to quantum conditions. To find the quantized field, the classical Hamiltonian must
be converted to quantum mechanical Hamiltonian operator. The classical field variables may
be treated as dynamical variables, called canonical coordinates, and their time derivatives are
the canonical momenta. The canonical coordinates and canonical momenta are subject to the
canonical commutation rules. The field is then converted to an operator through combinations
of creation and annihilation operators. This procedure is known as quantization. The QED
has been the most precise theory that agrees closely with experiments. The non-relativistic
version of QED is also known as quantum optics or cavity QED, which is useful for studying
the properties of light and its interaction with materials.

The quantization of the field is a very important concept in modern physics. The result
from the quantization is the field quanta, which can be created and annihilated. The quanta of
the electromagnetic fields are photons, and they are force-carrier particles in electromagnetic
interactions.

10.2.1 Quantization in Terms of Plane Wave Functions

To overcome the difficulties of normalization, we first assume that the electromagnetic fields
are confined in arbitrary volume V . For convenience, we take the volume V as a cube of sides
L . Using the Coulomb gauge condition, the fields in source-free region may be expressed as

E = −∂A
∂t

, B = ∇ × A,

where the vector potential A satisfies

∇2A(r, t) − 1

v2

∂2A(r, t)

∂t2
= 0,

and v = 1/
√

µε. By separation of variables, we may try a solution of the form

A(r, t) = a(t)a(r), (10.17)

where a(t) and a(r) satisfy

ä(t) + ω2a(t) = 0, (10.18)

∇2a(r) + k2a(r) = 0. (10.19)

Here k = ω/v is the separation constant and the dot denotes the derivative with respect to
time. The solution of (10.19) may be taken as the plane wave solution

ak(r) =
√

1/V u(k) exp(− jk · r),



P1: SYF/XYZ P2: SYF
c10 BLBK281-Wen March 13, 2010 16:4 Printer Name: Yet to Come

440 Quantization of Electromagnetic Fields

where u(k) is the unit polarization vector and k = |k|. The Coulomb gauge condition requires
that u(k) · k = 0. This is called the transversality condition, which indicates that the polar-
ization vector is perpendicular to k. The vector u(k) can be chosen as one of the mutually
orthonormal directions transverse to k, denoted by e(λ)(k) (λ = 1, 2). We have

e(1)(k) · e(2)(k) = 0, e(1)(k) · k = e(2)(k) · k = 0.

The set {e(1)(k), e(2)(k), k} forms a right-handed system. We further assume that the vector
potential A satisfies periodic boundary conditions, that is, it takes the same value on opposite
faces of the cube of sides L . Then k may take the following values

k = (kx , ky, kz) = 2π

L
(nx , ny, nz), nx , ny, nz = 0,±1,±2, · · · (10.20)

except in the situation nx = ny = nz = 0. Corresponding to each k, the solution of (10.18)
may be represented by a(λ)

k (t) = b(λ)
k e jωkt , where b(λ)

k is independent of time. Therefore the
vector potential may be written in the form

A(r, t) =
∑

k,λ

[

b(λ)
k a(λ)

k (r)e jωkt + b̄(λ)
k ā(λ)

k (r)e− jωkt
]

where a(λ)
k (r) = √

1/V e(λ)(k) exp(− jk · r). The electromagnetic fields may thus be expressed
as

E(r, t) = −∂A(r, t)

∂t
= − j

∑

k,λ

ωk

[

b(λ)
k a(λ)

k (r)e jωkt − b̄(λ)
k ā(λ)

k (r)e− jωkt
]

,

(10.21)
B(r, t) = ∇ × A(r, t) =

∑

k,λ

[

b(λ)
k ∇ × a(λ)

k (r)e jωkt + b̄(λ)
k ∇ × ā(λ)

k (r)e− jωkt
]

.

The total electromagnetic energy or Hamiltonian of the system is given by

H =
∫

V

(
1

2
ε |E|2 + 1

2µ
|B|2

)

dr = ε
∑

k,λ

ω2
k(b(λ)

k b̄(λ)
k + b̄(λ)

k b(λ)
k ),

where we have used the following calculations

∫

V

a(λ)
k (r) · ā(λ′)

k′ (r)dr = δkk′δλλ′,

∫

V

1

2
ε |E|2 dr = 1

2
ε
∑

k,λ

ω2
k(b(λ)

k b̄(λ)
k + b̄(λ)

k b(λ)
k ),

∫

V

1

2µ
|B|2 dr = 1

2
ε
∑

k,λ

ω2
k(b(λ)

k b̄(λ)
k + b̄(λ)

k b(λ)
k ).
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Introducing the transformation

q (λ)
k = α(b(λ)

k + b̄(λ)
k ),

p(λ)
k = α(ḃ(λ)

k + ˙̄bk
(λ)) = jωkα(b(λ)

k − b̄(λ)
k ),

where α is an arbitrary real constant, the Hamiltonian of the system admits the representation

H =
∑

k,λ

ε

2α2
(p(λ)2

k + ω2
kq (λ)2

k ) =
∑

k,λ

1

2
(p(λ)2

k + ω2
kq (λ)2

k ). (10.22)

In the above, we have chosen α = √
ε. Equation (10.22) indicates that the total Hamiltonian of

the electromagnetic field can be expressed as the sum of Hamiltonians of harmonic oscillators.
Note that q (λ)

k and p(λ)
k are canonically conjugate. Actually

∂ H

∂p(λ)
k

= q̇ (λ)
k ,

∂ H

∂q (λ)
k

= − ṗ(λ)
k .

The energy operator Ĥ can be obtained by replacing p(λ)
k and q (λ)

k with p̂(λ)
k and q̂ (λ)

k respectively,
together with the following canonical commutation relations

[

q̂ (λ)
k , q̂ (λ′)

k′

]

= 0,
[

p̂(λ)
k , p̂(λ′)

k′

]

= 0,
[

q̂ (λ)
k , p̂(λ′)

k′

]

= j�δkk′δλλ′ .

Thus

Ĥ =
∑

k,λ

1

2
( p̂(λ)2

k + ω2
kq̂ (λ)2

k ). (10.23)

Similar to (10.10), we introduce the new operators

â(λ)
k =

√

1

2�ωk
( j p̂(λ)

k + ωkq̂ (λ)
k ),

(10.24)

â(λ)+
k =

√

1

2�ωk
(− j p̂(λ)

k + ωkq̂ (λ)
k ).

Thus

[

â(λ)
k , â(λ′)

k′

]

=
[

â(λ)+
k , â(λ′)+

k′

]

= 0,

(10.25)[

â(λ)
k , â(λ′)+

k′

]

= δkk′δλλ′ .
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It follows from (10.23) and (10.24) that

Ĥ =
∑

k,λ

�ωk

(

â(λ)+
k â(λ)

k + 1

2

)

. (10.26)

In order to find the eigenvalues of Ĥ , we only need to find the eigenvalues of â(λ)+
k â(λ)

k .
Assuming that

â(λ)+
k â(λ)

k un(k, λ) = αn(k, λ)un(k, λ), (10.27)

the eigenvalues αn(k, λ) are then real and non-negative. Applying â(λ)
k to the above equation

and making use of the last equation of (10.25) yields

â(λ)+
k â(λ)

k

[

â(λ)
k un(k, λ)

]

= [αn(k, λ) − 1] â(λ)
k un(k, λ). (10.28)

If this is repeated m times we may find

â(λ)+
k â(λ)

k

[

â(λ)m
k un(k, λ)

]

= [αn(k, λ) − m] â(λ)m
k un(k, λ).

For a given αn(k, λ), the eigenvalue αn(k, λ) − m may become negative if m is very large.
This situation is not allowed because the eigenvalues of â(λ)+

k â(λ)
k must be non-negative. As a

result, there must exist a non-negative integer n(k, λ) for which

â(λ)n(k,λ)
k un(k, λ) 	= 0, â(λ)[n(k,λ)+1]

k un(k, λ) = 0.

Thus

â(λ)+
k â(λ)

k

[

â(λ)n(k,λ)
k un(k, λ)

]

= [αn(k, λ) − n(k, λ)] â(λ)n(k,λ)
k un(k, λ),

â(λ)
k

[

â(λ)n(k,λ)
k un(k, λ)

]

= 0.

These equations imply that αn(k, λ) = n(k, λ) and we have

â(λ)+
k â(λ)

k un(k, λ) = n(k, λ)un(k, λ). (10.29)

Similarly we may apply â(λ)+
k to (10.27) and use the last equation of (10.25) to get

â(λ)+
k â(λ)

k

[

â(λ)+
k un(k, λ)

]

= [n(k, λ) + 1] â(λ)+
k un(k, λ). (10.30)

Considering (10.28), (10.29) and (10.30), we may write

â(λ)
k un(k, λ) = c(λ)

k un−1(k, λ),

â(λ)+
k un(k, λ) = d (λ)

k un+1(k, λ).
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Since all the eigenfunctions are assumed to be normalized, we have

n(k, λ) = (â(λ)+
k â(λ)

k un(k, λ), un(k, λ))

= (â(λ)
k un(k, λ), â(λ)

k un(k, λ)) =
∣
∣
∣c(λ)

k

∣
∣
∣

2
,

n(k, λ) = ((â(λ)
k â(λ)+

k − 1)un(k, λ), un(k, λ))

= (â(λ)+
k un(k, λ), â(λ)+

k un(k, λ)) − 1 =
∣
∣
∣d (λ)

k

∣
∣
∣

2
.

Ignoring the phase factor, we obtain

c(λ)
k =

√

n(k, λ), d(λ)
k =

√

n(k, λ) + 1.

Thus

â(λ)
k un(k, λ) =

√

n(k, λ)un−1(k, λ),

â(λ)+
k un(k, λ) =

√

n(k, λ) + 1un+1(k, λ).

The operator â(λ)+
k â(λ)

k is the number operator. The eigenvalue n(k, λ) of the number operator
is called the occupation number and represents the number of photons in the (k, λ) state. The
operators â(λ)+

k and â(λ)
k are the creation and annihilation operators. The eigenvalues of the

energy operator Ĥ are given by

∑

k,λ

[

n(k, λ) + 1

2

]

�ωk. (10.31)

By definition, the electromagnetic field momentum is

P =
∫

V

εE × Bdr =
∑

k,λ

εωk(b(λ)
k b̄(λ)

k + b̄(λ)
k b(λ)

k )

(10.32)
=
∑

k,λ

k
2ωk

(p(λ)2
k + ω2

kq (λ)2
k ).

The operator p̂ can be obtained by replacing p(λ)
k and q (λ)

k with p̂(λ)
k and q̂ (λ)

k respectively

p̂ =
∑

k,λ

1

2

k
ωk

( p̂(λ)2
k + ω2

kq̂ (λ)2
k ) =

∑

k,λ

�k
(

â(λ)+
k â(λ)

k + 1

2

)

. (10.33)

The eigenvalues of p̂ are given by

∑

k,λ

[

n(k, λ) + 1

2

]

�k.
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The quantized electromagnetic field becomes a system of photons. The number of photons in
the (k, λ)state is n(k, λ). Each photon in the (k, λ) state has energy Ek = �ωk and momentum
pk = �k. Note that E2

k = |pk|2 c2, which reveals that the rest mass of photon is zero. The
ground state of the system corresponds to n(k, λ) = 0 for all (k, λ). It follows from (10.31)
that the energy of the ground state is

∑

k,λ

�ωk/2. Since the index (k, λ) has infinite number of

choices, the energy of the ground state (or zero-point energy) is infinite. This is the well-known
conceptual difficulty of quantized field theory. The zero-point energy represents the energy of
vacuum fluctuations.

The operators Â for the vector potential and Ê for the electric field can be obtained as
follows

Â(r, t) =
∑

k,λ

√

�

2εωk

[

â(λ)+
k a(λ)

k (r)e jωkt + â(λ)
k ā(λ)

k (r)e− jωkt
]

,

Ê(r, t) = − j
∑

k,λ

√

�ωk

2ε

[

â(λ)+
k a(λ)

k (r)e jωkt − â(λ)
k ā(λ)

k (r)e− jωkt
]

, (10.34)

B̂(r, t) = − j
∑

k,λ

√

�

2εωk

[

â(λ)+
k k × a(λ)

k (r)e jωkt − â(λ)
k k × ā(λ)

k (r)e− jωkt
]

.

So far we have assumed that the electromagnetic fields are confined in a cube V of side L , and
thus k = (kx , ky, kz) is discrete and is determined by (10.20) with kα = 2πnα/L(α = x, y, z).
If L approaches infinity, the values of kα = 2πnα/L become very dense in k-space. Let
�kx = �ky = �kz = 2π/L . Thus �kx�ky�kz = (2π )3/V .

Remark 10.2 (Mode density): The field inside the volume V is the superposition of plane
wave modes whose wave vectors are given by (10.20). Each triplet of integers nx ,ny and nz

defines two modes with different polarizations. Each mode may be associated with a volume
�kx�ky�kz = (2π )3/V . Let k = |k| = 2π f/v. The number of modes whose magnitudes of
k vectors lies between 0 and k is

N f = 2 · 4π

3
k3

/(
2π

L

)3

= 8π

3

f 3V

v3
. (10.35)

The mode density is defined as the number of modes per unit volume per unit frequency
interval, and may be expressed as

p( f ) = 1

V

dN f

df
= 8π f 2

v3
. (10.36)

In the limit of V → ∞, the sum over k may be replaced by an integral

1

V

∑

k

(·) = 1

(2π )3

∑

k

(·)�kx�ky�kz —–−→
v→∞

1

(2π )3

∫

dk(·).
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The sum over the polarization vector can be obtained by the cosine sum rule

∑

λ=1,2

e(λ)
i (k)e(λ)

j (k) = δi j − ki k j

k2
.

If the polarization vectors are complex, the above equation can be generalized to

∑

λ=1,2

e(λ)
i (k)ē(λ)

j (k) = δi j − ki k j

k2
.

Introducing a polarization vector in the direction of the magnetic field

b(λ)(k) = k
k

× e(λ)(k),

then we have

∑

λ=1,2

e(λ)
i (k)b̄(λ)

j (k) = εi jl
kl

k2
,

∑

λ=1,2

b(λ)
i (k)b̄(λ)

j (k) = δi j − ki k j

k2
.

10.2.2 Quantization in Terms of Spherical Wavefunctions

The electromagnetic fields can also be expanded in terms of spherical wavefunctions. By
separation of variables, we still assume that (10.17), (10.18) and (10.19) hold. We further
assume that the fields are confined in a sphere of radius r0, denoted by V . Physically a(r) must
be bounded in the sphere. Moreover the tangent component of a(r) on the spherical surface
r = r0 must be zero to guarantee that the electric field E only has a normal component on the
spherical surface r = r0. In this case E × H = 0 on the spherical surface, that is, there is no
electromagnetic energy flowing out of the sphere.

To find the spherical wave solution of (10.19) under the transversality condition, we start
from the scalar Helmholtz equation

(∇2 + k2)u(r) = 0. (10.37)

The solution of the above equation in the sphere can be written as

umn = jn(kr )Ymn(θ, ϕ),

where jn is the spherical Bessel function, Ymn is the spherical harmonics defined by

Ymn = Nmn Pm
n (cos θ )e jmϕ, n= 0, 1, 2, · · · , |m| = 0, 1, 2, · · · , n,



P1: SYF/XYZ P2: SYF
c10 BLBK281-Wen March 13, 2010 16:4 Printer Name: Yet to Come

446 Quantization of Electromagnetic Fields

where Nmn is normalization constant

Nmn =
[(

2m + 1

4π

)
(n − |m|)!
(n + |m|)!

]1/2

.

Let l̂ be the angular momentum operator. Since [l̂,∇2] = 0, l̂umn is a solution of (10.19) and
∇ · l̂umn = 0. Introducing the notation Mmn = jcn l̂umn, where cn is the normalization constant
to be determined, then

(∇2 + k2)Mnm = 0.

The tangential component of Mmn must vanish at r = r0. Thus we have jn (kr0) = 0. Making
use of the asymptotic expression

jn (x) —–−→
v→∞

sin (x − nπ/2)

x
,

we have kr0 − nπ/2 = lπ (l = 0, 1, 2, · · ·) for sufficiently large r0, that is,

k = kl =
(

l + n

2

) π

r0
.

We may introduce another solution of (10.19)

Nmn = cn

k
∇ × (l̂umn) = 1

jk
∇ × Mmn,

which satisfies transversality condition and the wave equation

(∇2 + k2)Nmn = 0.

It is easy to show that

∇ × (l̂umn) = j�

{
∂

∂r
[r jn(kr )]

}

∇Ymn − j� jn(kr )r∇2Ymn,

where the first term is the tangent component. So we must let

∂

∂r
[r jn(kr )]

∣
∣
∣
∣
r=r0

= 0.

For sufficiently large r0, the above equation implies cos(kr0 − nπ/2) = 0, which gives

k = kl =
(

l + n + 1

2

)
π

r0
, l = 0, 1, 2 · · · .
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The normalization constant cn can be chosen as

cn =
√

2

n(n + 1)r0

ωl

�
, ωl = klc,

so that

∫

V

Mmn · M̄m′n′ dr = δmm′δnn′δkl kl′ ,

∫

V

Nmn · N̄m ′n′ dr = δmm′δnn′δkl kl′ ,

∫

V

Mmn · N̄m ′n′ dr = 0.

We now use λ = 0 to stand for M and λ = 1 for N. We also use q to denote the multi-index
[l, m, n]. Then Mmn and Nmn can be represented by a single notation a(λ)

q , and we have

∫

V

a(λ)
q · ā(λ′)

q ′ dr = δqq ′δλλ′ .

Given (q, λ), the solution of (10.18) may be written as

a(λ)
q (t) = b(λ)

q e jωq t .

The vector potential A(r, t) can thus be represented by

A (r, t) =
∑

q,λ

[

b(λ)
q a(λ)

q (r)e jωq t + b̄(λ)
q ā(λ)

q (r)e− jωq t
]

.

Following a similar approach leading to (10.26), we may find that the energy operator Ĥ of
the system is

Ĥ =
∑

q,λ

(

â(λ)+
q â(λ)

q + 1

2

)

�ωq

with

[

â(λ)
q , â(λ′)+

q ′

]

= δqq ′δλλ′,

[

â(λ)+
q , â(λ′)+

q ′

]

=
[

â(λ)
q , â(λ′)

q ′

]

= 0.
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10.3 Quantum Statistics

When a system has a large number of constituent particles, it is impossible to find the evolution
of the system by solving the Schrödinger equation. In this case, we may adopt a similar treat-
ment in classical statistical mechanics. Consider a physical system consisting of N identical
particles confined in a finite volume V . If the interactions between particles are very weak, the
total energy of the system and the number of the particles can be expressed as

E =
∞
∑

j=1

n j e j , N =
∞
∑

j=1

n j ,

where n j is the number of particles with energy e j . The three parameters N , V and E define
a macrostate of the system. In classical mechanics, the states of particles in a system are
described by their positions and speeds, and all particles are considered distinguishable and
can be labeled and tracked. The change of position of any particle results in a different
configuration of the system. Each particle can be assumed to be in any state accessible to the
system.

In quantum mechanics, the states of particles in a system are described by the wavefunctions.
Some particles are indistinguishable from one another, and interchanging any two particles
does not result in a new configuration of the system. This means that the wavefunction of
the system is invariant with respect to the interchange of the constituent particles. Given
the macrostate (N , V, E), there will be a large number of different ways to arrange the N
particles in V so that the total energy of the system is E . Each of these different ways defines
a microstate of the system. In other words, for a given macrostate, there exist a number of
corresponding microstates. It is natural to assume that at any time the system in equilibrium
is equally likely to be in any one of these microstates. This assumption is known as the equal
a priori probability postulate, and is the backbone of statistical mechanics. The particles in
quantum mechanics can be divided into three categories:

1. Identical but distinguishable particles. An example is a collection of harmonic oscillators
which are distinguishable.

2. Identical indistinguishable particles of half-odd-integral spin (fermions). Fermions such as
electrons and protons are material particles which obey the Pauli exclusion principle. Any
two particles cannot occupy the same quantum state.

3. Identical indistinguishable particles of integral spin (Bosons). Bosons such as photons do
not obey Pauli exclusion principle, and more than one particle can occupy the same quantum
state.

10.3.1 Statistical States

Let Q be a quantum system composed of identical particles and H be a Hilbert space. A
tuple � = (ψ1, p1; ψ2, p2; · · ·) is referred to as a statistical state of Q, where ψn satisfy the
Schrödinger equation and form a complete orthonormal system in H , and pn are real numbers
with 0 ≤ pn ≤ 1, n ≥ 1. The real number pn is called the probability of finding the system
Q in the physical state ψn . The statistical state � is called a pure state if pno = 1 for some
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fixed n0 and pn = 0 for all n 	= n0. Otherwise � is called a mixed state. Suppose that we
measure the observable Â : D( Â) ⊂ H → H in the statistical state �. The outcome of the
measurement is statistical. The number

〈 Â〉e =
∑

n

pn( Âψn, ψn)

is called the ensemble average of Â. The number

〈� Â2〉e =
∑

n

pn

∥
∥ Âψn − 〈 Â〉eψn

∥
∥

2

is called the dispersion.

10.3.2 Most Probable Distributions

A single particle’s quantum state is characterized by

Ĥψ j = e jψ j ,

where Ĥ is the Hamiltonian of the particle when it is in the volume V all by itself, and e j are
the energy eigenvalues and ψ j are the corresponding eigenfunctions. Consider an N -particle
system Q. A macrostate of the system is specified by

e1 e2 · · · e j · · · ,
n1 n2 · · · n j · · · , (10.38)

where n j is the number of particles with energy e j ( j = 1, 2, · · ·). Thus the total energy E and
the particle number N are

E =
∞
∑

j=1

n j e j , N =
∞
∑

j=1

n j . (10.39)

A macrostate of the system is specified once the numbers n j are given. The probability of
finding the system in the macrostate is proportional to the number of microstates, denoted by
P , that realize the macrostate. The number of microstates that correspond to the macrostate
(n1, n2, · · · n j , · · ·) are [for example, Yariv, 1982]

1. P = N !
∞∏

j=1

g
n j
j

n j !
(Identical distinguishable particles).

2. P =
∞∏

j=1

g j !
(g j −n j )!n j

(Identical indistinguishable particles of half-odd-integral spin).

3. P =
∞∏

j=1

(n j +g j −1)!
n j !(g j −1)! (Identical indistinguishable particles of integral spin).
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where g j is the degeneracy of state j . The most probable macrostate (n1, n2, · · · n j , · · ·)can
be obtained by maximizing P subject to the constraints (10.39). Introducing the function

F = ln P − α

⎛

⎝

∞
∑

j=1

n j − N

⎞

⎠− β

⎛

⎝

∞
∑

j=1

n j e j − E

⎞

⎠

and using the method of Lagrange multipliers, we obtain the expected number of particles in
energy state j

1. n j = g j

eα+βe j
(Identical distinguishable particles).

2. n j = g j

eα+βe j +1
(Identical indistinguishable particles of half-odd-integral spin).

3. n j = g j

eα+βe j −1
(Identical indistinguishable particles of integral spin).

They are called Maxwell-Boltzmann statistics, Fermi-Dirac statistics and Bose-Einstein statis-
tics respectively. Here β = (kT )−1, k = 1.3807 × 10−23 is the Boltzmann constant, and T is
the temperature. The constants α can be determined by the nature of the system of the particles.

10.3.3 Blackbody Radiation

Consider the thermal radiation field inside a large cubic box of sides L . The system is assumed
to be at thermal equilibrium at temperature T . The electromagnetic field is quantized using
plane wave modes as shown in (10.26). A mode in state j has energy e j = ( j + 1/2)�ω.
Since the modes are distinguishable, we use Maxwell-Boltzmann statistics. The probability of
finding the mode in state j is

p j = n j

N
= e−e j /kT

∞∑

l=1
e−el /kT

.

The average thermal energy per mode is

Eav =
∞
∑

j=1

p j e j =
∞
∑

j=0

e j
e−e j /kT

∞∑

l=1
e−el/kT

= �ω

2
+ �ω

e�ω/kT − 1
.

The first term on the right-hand side represents the zero point energy, which cannot be extracted,
and thus can be ignored. Therefore

Eav = �ω

e�ω/kT − 1
.
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The product of average thermal energy per mode with mode density (10.36) gives the blackbody
energy density per unit frequency

ρ( f ) = 8πh f 3

v3(eh f/kT − 1)
.

The blackbody spectral intensity is the blackbody energy density per unit frequency multiplied
by the velocity of light and averaged over all directions (since the radiation is the same in all
directions)

I ( f ) = ρ( f )

4π
v = 2h f 3

v2(eh f/kT − 1)
,

which is the well-known Planck’s law.

10.4 Interaction of Electromagnetic Fields With the Small
Particle System

So far, the dynamics of particles and fields have been discussed separately. To study the
dynamical system consisting of both particles and fields, the fields and the particles are
subject to quantum conditions. Quantum electrodynamics has been the most successful theory
in studying the interaction between radiation fields and small particle system (atoms and
molecules). In quantum electrodynamics, the Hamiltonian is of the form

Ĥ = Ĥpart + Ĥrad + Ĥint, (10.40)

where Ĥpart and Ĥrad represent the contributions from the particles and electromagnetic fields
respectively while Ĥint stands for the interaction between fields and particles. Equation (10.40)
indicates that the electromagnetic fields can deliver energy to the particles or receive energy
from them. When the electromagnetic field is very strong, the influence of the particles on
the field is negligibly small. In this case, the field can be considered as an external field and
treated classically. This process is called the semi-classical method.

10.4.1 The Hamiltonian Function of the Coupled System

The Hamiltonian function can be constructed from the Lagrangian function as indicated in
Chapter 2. The Lagrangian function also consists of three parts, one each for the particles,
fields and the interaction between them. The least action principle leads to the Lagrangian
equations. It is known that the Lagrangian function for a system is not unique. A correct
choice of Lagrangian function must guarantee that the Lagrangian equations are the equations
of motion. The total Lagrangian function for the system of particles and fields in free space
may be written as

L = L part + Lrad + Lint, (10.41)
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where

L part = 1

2

∑

α

mαq̇2
α − V (q1, q2, · · ·),

Lrad =
∫

Lrad dr, Lint =
∫

Lintdr,

Lrad = ε0

2

[(
∂A(r, t)

∂t

)2

− c2 [∇ × A(r, t)]2

]

,

Lint = J⊥ · A.

Here J⊥ =∑
α

eαq̇α · ↔
δ⊥(r − qα) is the transverse part of the total current J =

∑

α

eαq̇αδ(r − qα), and V is the potential function due to the electrostatic field, and the Hamil-

tonian gauge has been assumed. We have

∂L

∂q̇αi
= mαq̇αi + eα Ai (qα, t),

d

dt

∂L

∂q̇αi
= mα q̈αi + eα

∂ Ai (qα, t)

∂t
+ eα

3
∑

j=1

∂ Ai (qα, t)

∂qα j
q̇α j ,

∂L

∂qαi
= − ∂V

∂qαi
+ eα

3
∑

j=1

∂ A j (qα, t)

∂qα j
q̇α j ,

d

dt

(
∂L

∂(∂ Ai/∂t)

)

= ε0
∂2 Ai

∂t2
,

∂L
∂ Ai

= J⊥,

3
∑

j=1

d

dx j

(
∂L

∂(∂ Ai/∂x j )

)

= −ε0c2∇2 Ai ,

where L = Lrad + Lint, and i = 1, 2, 3. In deriving the first equation, we have used the
following relation

∫
↔
δ‖(r − qα) · A(r, t)dr = 0.

The Lagrangian equations for the particles are

mαq̈αi = − ∂V

∂qαi
− eα

∂ Ai (qα, t)

∂t
+ eα

3
∑

j=1

[
∂ A j (qα, t)

∂qαi
− ∂ Ai (qα, t)

∂qα j

]

q̇α j

= − ∂V

∂qαi
+ eα Ei (qα, t) + eα [qα × B(qα, t)]i
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and the Lagrangian equation for the field is

(

∇2 + 1

c2

∂2

∂t2

)

A(r, t) = − 1

ε0c2
J⊥(r, t).

Therefore the Lagrangian function defined by (10.41) gives the correct equations of motion.
The generalized momenta conjugate to q and A are

pα = ∂L

∂q̇α

= mαq̇α + eαA(qα, t),

� = ∂L
∂Ȧ

= ε0
∂A(r, t)

∂t
= −ε0E(r, t).

Thus the Hamiltonian function of the system can be written as

H =
∑

α

pα · q̇α +
∫

� · ∂A
∂t

dr − L

=
∑

α

1

2mα

[pα − eαA(qα, t)]2 + V (q1, q2, · · ·) (10.42)

+1

2

∫ [
�2

ε0
+ ε0c2 [∇ × A(r, t)]2

]

dr.

10.4.2 Quantization of the Coupled System

The quantization of the coupled system can be carried out by replacing the classical dynamical
variables in the Hamiltonian with Hermitian operators in Hilbert space. The operators are
subject to the commutation relations

⎧

⎨

⎩

[q̂αi , p̂β j ] = j�δi jδαβ,

[ Âi (r, t), �̂ j (r′, t)] = j�δ⊥
i j (r − r′),

i, j = 1, 2, 3; α, β = 1, 2, · · · ,

where δ⊥
i j are the components of the transverse δ-dyadic.

Consider an atomic system whose Hamiltonian in an electromagnetic field is given by
(10.42). Making use of (10.22), Equation (10.42) may be written as

H =
∑

α

1

2mα

[pα − eαA(qα, t)]2 + 1

4πε0

∑

α<β

eαeβ
∣
∣qα − qβ

∣
∣

+
∑

k,λ

1

2

(

p(λ)2
k + ω2

kq (λ)2
k

)

.

The operator Ĥ can then be obtained by replacing canonical variables with corresponding
operators

Ĥ =
∑

α

1

2mα

[p̂α − eαÂ(qα, t)]2 + 1

4πε0

∑

α<β

eαeβ
∣
∣qα − qβ

∣
∣

+
∑

k,λ

1

2

(

p̂(λ)2
k + ω2

kq̂ (λ)2
k

)

.
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We rewrite this as

Ĥ = Ĥ0 + Ĥ ′,

where Ĥ0 is the Hamiltonian for the atomic system and the fields, and Ĥ ′ is the Hamiltonian
for describing the interaction between the atomic system and fields

Ĥ0 =
∑

k,λ

1

2

(

p̂(λ)2
k + ω2

kq̂ (λ)2
k

)

+ 1

4πε0

∑

α<β

eαeβ
∣
∣qα − qβ

∣
∣

+
∑

α

p̂2
α

2mα

,

Ĥ ′ =
∑

α

e2
αÂ2(qα, t)

2mα

−
∑

α

eα

2mα

[p̂α · Â(qα, t) + Â(qα, t) · p̂α].

Making use of the commutation relation

p̂α · Â(qα, t) − Â(qα, t) · p̂α = 0

where Hamiltonian gauge is assumed, we have

Ĥ ′ =
∑

α

e2
αÂ2(qα, t)

2mα

−
∑

α

eα

mα

p̂α · Â(qα, t). (10.43)

When the wavelength of the radiation is long compared with the dimensions of the atoms,
the variation of the electromagnetic field over the atoms in (10.43) can be neglected and the
vector potential Â(qα, t) can be approximated by Â(0, t), where 0 denotes the center of mass
of the atomic system. We also assume that the radiation field strength is much smaller than the
Coulomb fields within the atoms. So we may ignore the first term in (10.43) to get

Ĥ ′ = −
(
∑

α

eα

mα

p̂α

)

· Â(0, t). (10.44)

Furthermore we make the approximation p̂α = mαq̇α + eαÂ(0, t) ≈ mαq̇α to rewrite (10.44)
as

Ĥ ′ = −
(
∑

α

eαq̇α

)

· Â(0, t) = − ˙̂µ · Â(0, t), (10.45)

where µ̂ =∑
α

eαqα is the dipole moment of the atomic system. Since adding a term d[µ̂ ·
Â(0, t)]/dt to (10.45) does not affect the final results, Equation (10.45) may be written as

Ĥ ′ = µ̂ · ˙̂A(0, t) = −µ̂ · E(0, t). (10.46)
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10.4.3 Perturbation Theory

Suppose that the Hamiltonian of a system can be written as

Ĥ = Ĥ0 + Ĥ ′, (10.47)

where Ĥ0 is a Hamiltonian with known eigenvalues and eigenfunctions

Ĥ0un = Enun, (10.48)

and Ĥ ′ is small compared to Ĥ0. We will use perturbation techniques to find the approximate
eigenvalues and eigenfunctions of Ĥ . By the postulate of quantum mechanics, the system state
changes with time according to the Schrödinger equation

Ĥψ(t) = j�
∂ψ(t)

∂t
.

If Ĥ does not explicitly depend on time, we have

ψ(t) =
∑

n

anun(r)e− j En t/�,

where an are independent of time and are the expansion coefficients of ψ(0)

ψ(0) =
∑

n

anun(r)

and {un} is the complete set of eigenfunctions of (10.48). If the system is in the state um with
energy Em at t = 0, that is, ψ(0) = um , we have an = δnm , which holds for all subsequent
times. Thus we have ψ(t) = um(r)e− j Em t/�, and the system is still in the state um .

We now consider a more interesting situation. Suppose that the system is in the state um

at t = 0 with Hamiltonian Ĥ0, which does not explicitly depend on time. Then the system is
perturbed by an external influence Ĥ ′, which may depend on time so that the total Hamiltonian
is given by

Ĥ = Ĥ0 + λĤ ′,

where λ > 0 is a small parameter. In this case, the system will not remain in the initial state
um . The state ψ(t) satisfies the Schrödinger equation

(Ĥ0 + λĤ ′)ψ(t) = j�
∂ψ(t)

∂t
. (10.49)

Since {un} is a complete set we may write

ψ(t) =
∑

n

an(t)un(r)e− j Ent/�. (10.50)
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The expansion coefficients an are now dependent of time. Substituting (10.50) into (10.49)
and using the orthonormal condition for un we obtain

ȧn = − j

�

∑

l

λal(Ĥ ′ul, un)e jωnl t (10.51)

where ωnl = (En − El)/�. Since we have assumed that the system is in the state umat t = 0,
Equation (10.51) is subject to the following initial condition

an(0) = δnm . (10.52)

It is very difficult to solve (10.49) for a general Ĥ ′. However, if Ĥ ′ is very small, that is,
Ĥ ′ � Ĥ0, we may adopt the perturbation method to find the approximate solutions. Assuming
the following power series expansion for an

an = a(0)
n + λa(1)

n + λ2a(2)
n + · · · (10.53)

and substituting this into (10.51) yields

ȧ(0)
n + λȧ(1)

n + λ2ȧ(2)
n + · · · = − j

�

∑

l

λ
(

a(0)
l + λa(1)

l + λ2a(2)
l + · · ·

)

(Ĥ ′ul, un)e jωnl t .

Equating the coefficients for the same powers of λ, we obtain

ȧ(0)
n = 0,

ȧ(1)
n = − j

�

∑

l

a(0)
l (Ĥ ′ul , un)e jωnl t ,

...

ȧ(s)
n = − j

�

∑

l

a(s−1)
l (Ĥ ′ul , un)e jωnl t .

(10.54)

The first equation gives a(0)
n = constant. We may let

an(0) = a(0)
n = δnm .

This corresponds to the situation of λ = 0 where no perturbation exists. Thus the second
equation of (10.54) becomes

ȧ(1)
n = − j

�
(Ĥ ′um, un)e jωnm t .

The first-order solution may be obtained by letting λ = 1 in (10.53)

an(t) = a(0)
n + a(1)

n = δnm + a(1)
n .
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Usually the final state is different from the initial state. So we have

an(t) = a(1)
n = − j

�

t∫

0

(Ĥ ′um, un)e jωnm t dt(n 	= m), (10.55)

where the initial condition a(1)
n (0) = 0(n 	= m) has been used. Therefore

∣
∣a(1)

n

∣
∣
2

is the proba-
bility of finding the system at time t in the state un when the system is in the state um at t = 0,
and is called the transition probability from state um to un . The transition rate per unit time
is defined by

Wm→n(t) = d

dt

∣
∣a(1)

n

∣
∣
2
. (10.56)

The perturbation method can be used to obtain approximate solutions in many practical
situations where the radiation field strengths are much smaller than Coulomb fields within the
atoms.

Example 10.3 (Time-harmonic perturbation): The time-harmonic perturbation refers to the
perturbation that varies sinusoidally with time

Ĥ ′ = Ĥse jωt + Ĥ∗
s e− jωt , t > 0,

where Ĥs = Ĥ ∗
s is independent of time. Then it is readily found that

a(1)
n = − j

�

t∫

0

(Ĥ ′um, un)e jωnm t dt

= −1

�

[

(Ĥsum, un)
e j(ωnm+ω)t − 1

ωnm + ω
+ (Ĥ∗

s um, un)
e j(ωnm−ω)t − 1

ωnm − ω

]

.

We assume that the frequency of perturbation is very close to |ωnm |, that is, �ω ≈ |En − Em |.
In this case, the transition probability may be written as

∣
∣a(1)

n

∣
∣
2 ≈

∣
∣(Ĥsum, un)

∣
∣
2

�2

sin2[(ωnm ± ω)t/2]

[(ωnm ± ω)t/2]2
(10.57)

where + is for the situation where ωmn ≈ ω, and − is for ωnm ≈ ω. When t is very large, the
transition rate is given by

Wm→n = d

dt

∣
∣a(1)

n

∣
∣
2 ≈ 2π

∣
∣(Ĥsum, un)

∣
∣
2

�2
δ(ωnm ± ω)

(10.58)

= 2π
∣
∣(Ĥsum, un)

∣
∣
2

�
δ(En − Em ± �ω),
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where the following relation has been used

sin2(xt/2)

(x/2)2
→ 2π tδ(x), t → ∞.

We now calculate the transition probability from m to a group of final states clustered about
the state n. Let ρ(ωnm) be the density of these final states per unit of ωnm . Equation (10.57)
can be expressed as

∣
∣a(1)

n

∣
∣
2 ≈ 1

�2

∞∫

−∞

∣
∣(Ĥsum, un)

∣
∣
2 sin2 [(ωnm ± ω)t/2]

[(ωnm ± ω)/2]2 ρ(ωnm)dωnm .

When t is very large ρ(ωnm) is a slowly varying function compared to the rest of the integrand.
Thus

∣
∣a(1)

n

∣
∣
2 ≈ 2π

�2

∣
∣(Ĥsum, un)

∣
∣
2
ρ(ωnm ≈ ∓ω)t.

The transition rate is

Wm→n = d

dt

∣
∣a(1)

n (t)
∣
∣
2 = 2π

�2

∣
∣(Ĥsum, un)

∣
∣
2
ρ(ωnm ≈ ∓ω)

= 2π

�2

∣
∣(Ĥsum, un)

∣
∣
2
ρ(E = Em ∓ �ω).

This is called Fermi’s Golden Rule, and it represents a transition rate from a single state m
to a continuum of states n.

10.4.4 Induced Transition and Spontaneous Transition

An atomic system subject to electromagnetic fields may undergo transition to lower or higher
states. This process is called induced transition. When the fields are not present, an atom
may undergo transition to lower states. This process is called spontaneous transition.

10.4.4.1 Induced transition

Let us consider an atomic system that has two possible states u1 and u2 with E2 > E1 and
�E = E2 − E1 = �ω21. The atomic system is perturbed by electromagnetic radiation with

E(r, t) = uE0(r) cos ωt,

where u is a unit vector. In atomic system, the speed of electrons is much smaller than the
light speed. This implies |v × B| / |E| ∼v/c � 1. For this reason, the influence of magnetic
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field on the electrons is much smaller than that of the electric field and can be ignored. The
potential energy of an electron in the field E is

V = −eE · r = −eu · rE0(r) cos ωt.

We may take the perturbation Hamiltonian due to the field as

Ĥ ′ = −eu · r̂E0(r)

2
(e jωt + e− jωt ) = Ĥs(e jωt + e− jωt ),

where Ĥs = −eu · r̂E0(r)/2. On the atomic scale, the electric field can be considered as
uniform. By means of (10.58), we have

W1→2 = πe2 E2
0

2�
|r12|2 δ (�E − �ω) = W2→1 = Wi , (10.59)

where r12 = ∫ u · ru1u∗
2dr. In real atomic systems, it is impossible to specify the exact value of

�E = E2 − E1. Thus we have to introduce a probability density function g(E) with g(E)d E

being the probability of finding �E between E and E + d E and
∞∫

−∞
g(E)d E = 1. Thus, the

induced transition rate Wi can be obtained by superimposing all possible values of �E with
g(E) as a weighting function

Wi = πe2 E2
0

2�
|r12|2

∞∫

−∞
δ (�E − �ω) g(�E)d�E

(10.60)

= πe2 E2
0

2�
|r12|2 g(�ω) = e2 E2

0

4�2
|r12|2 g( f ),

where f stands for the frequency, and the relation g( f )d f = g(�ω)d�ω has been used. The
power-flow density, denoted by I f , is the product of energy density and energy velocity

I f = 1

2
εE2

0 × 1√
µε

= 1

2
cnε0 E2

0 ,

where n = √
εr is the index of refraction and c = 1/

√
µ0ε0. Equation (10.60) may be rewritten

as

Wi = e2 |r12|2
2�2cnε0

g( f )I f . (10.61)

10.4.4.2 Spontaneous transition

We still consider an atom which has two possible states u1 and u2 with E2 > E1 and is
subject to electromagnetic radiation E(r, t) = uE0(r, t), where u is a unit vector. We ignore
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the influence of magnetic field on the electrons. The potential energy of an electron in the field
E is

V = −eE · r = −eu · rE0(r, t). (10.62)

According to (10.34), the electric field may be quantized and expressed as a linear combination
of radiation modes as follows

Ê(r, t) = − ju
∑

k

√

�ωk

2V ε

[

â+
k e jωkt e− jk·r − âke− jωkt e jk·r].

In order to get the transition rate from state u2 to u1, we may first derive the transition rate
due to a single radiation mode and then sum up the transition rates over all radiation modes.
Assume that the atom is initially in the excited state u2 and the radiation mode is the state un(k).
The initial state of the combined system is characterized as ui = u2un(k). After the transition,
the atom is in the lower state u1 and the radiation mode is elevated to state un+1(k)for gaining
a quantum of radiation. The final state of the combined system is u f = u1un+1(k). The initial
and final energies of the combined system are

Ei = E2 + �ωk

[

n(k) + 1

2

]

, E f = E1 + �ωk

[

n(k) + 1

2
+ 1

]

.

The radiation mode is considered as a perturbation. Considering (10.62), the perturbation
Hamiltonian can be taken as

Ĥ ′ = Ĥse jωkt + Ĥ ∗
s e− jωkt = jeu · r

√

�ωk

2V ε

[

â+
k e jωkt e− jk·r − âke− jωkt e jk·r] , (10.63)

where Ĥs = je
√

�ωk
2V ε

u · râ+
k e− jk·r. The transition rate is thus given by (10.58)

W (k) = 2π
∣
∣(Ĥsui , u f )

∣
∣
2

�
δ (E1 − E2 + �ωk) .

Note that

Ĥsui = jeu · ru2e− jk·r
√

�ωk

2V ε

√

n(k) + 1un+1(k),

and

(Ĥsui , u f ) = jee− jk·rr12

√

�ωk

2V ε

√

n(k) + 1.

where r12 = (u · ru2, u1). So the transition rate is

W (k) = Ws(k) + Wi (k),
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where Ws(k) and Wi (k) stand for the spontaneous transition rate and induced transition rate
respectively

Ws(k) = πe2ωk

V ε
|r12|2 δ(E1 − E2 + �ωk),

Wi (k) = πe2ωk

V ε
n(k) |r12|2 δ(E1 − E2 + �ωk).

The induced transition rate is thus proportional to the mode energy density n(k)�ω(k)/V while
the spontaneous transition rate is independent of the mode energy. The total spontaneous and
induced transition rate can be obtained by summing over all radiation modes. Since the mode
density is (see (10.36))

p( fk) = 8πn3 f 2
k

c3
,

where c = 1/
√

µ0ε0, the total spontaneous transition rate is given by

Ws = 1

ts
=

∞∫

0

Ws(k)p( fk)V d fk = 16π3n3e2 f 3
0

εhc3
|r12|2 , (10.64)

where we have let E2 − E1 = h f0 and ts is the spontaneous lifetime.

10.4.5 Absorption and Amplification

When electromagnetic waves propagate in a medium, the medium absorbs the energy of the
field (the energy of a photon is delivered to electrons of an atom) and causes the attenuation of
the field along with dispersion in which the phase velocity of a wave depends on its frequency.
It follows from (10.61) and (10.64) that the induced transition rate in a two-level atomic system
may be written as

Wi = λ3

8πhn2cts
g( f )I f (10.65)

where λ is the wavelength of the wave in free space. Let N1 and N2 be the atomic population
densities (atoms/m3) in levels 2 and 1 (E2 > E1) respectively. Consider a differential volume
in the medium which is illuminated by a plane wave propagating in z direction. The differential
volume has an area A in the (x, y)-plane and a thickness dz in z direction, as shown in Figure
10.1. The power-flow densities of the plane wave at z and z + dz are denoted by I f (z) and
I f (z + dz) respectively. Since the increase of the power flow should be equal to the power
gain induced by the net transition from level 2 to level 1, we have

d I f

dz
= (N2 − N1)Wi h f = −α I f ,
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z z + dz

A

Atomic
medium

(z)If (z + dz)If

Figure 10.1 A differential volume of an atomic medium

where α = (N1 − N2) λ2g( f )
8πn2ts

is called the absorption coefficient. The solution of the equation
is

I f (z) = I f (0)e−αz.

If N1 > N2, the medium absorbs energy from the incident field and the incident field is
attenuated. If N2 > N1 (called the population inversion), we let γ = −α, and it is called the
gain constant. In the latter case, the incident wave gets energy from the medium and it is
amplified while passing through the medium. This is the basis of laser.

10.4.6 Quantum Mechanical Derivation of Dielectric Constant

Consider a two-level atom with energies E1 and E2

Ĥ0ψn(r) = Enψn(r)(n = 1, 2),

where Ĥ0 is the Hamiltonian of the unperturbed atom. When an electromagnetic field is applied
to the atom, the total Hamiltonian of the two-level system may be expressed as

Ĥ = Ĥ0 + Ĥ ′.

Here the interaction Hamiltonian is assumed to be of the dipole type

Ĥ ′ = −µ̂ · E(t) = −µ̂E(t)

where µ̂ is the projection of the dipole operator along the electric field E. The wave function
ψ of the two-level system satisfies

Ĥψ(r, t) = j�
∂ψ(r, t)

∂t
, (10.66)

and may be expanded in terms of ψn

ψ(r, t) =
∑

n=1,2

Cn(t)ψn(r),
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where Cn(t) = (ψ,ψn). Introducing this into (10.66) yields

j�
∑

n=1,2

dCn(t)

dt
ψn(r) =

∑

n=1,2

Cn(t)
[

Enψn(r) + Ĥ ′ψn(r)
]

.

Multiplying both sides by ψ̄m and taking the integration, we obtain

dC1(t)

dt
= 1

j�
C1(t) [E1 − E(t)µ11] − 1

j�
C2(t)E(t)µ21,

dC2(t)

dt
= 1

j�
C2(t) [E2 − E(t)µ22] − 1

j�
C1(t)E(t)µ12,

(10.67)

where µmn = (µ̂ψm, ψn). It follows from (10.67) that

dC1C̄1

dt
= − 1

j�
C1C̄1 [E1 − E(t)µ̄11] + 1

j�
C1C̄1 [E1 − E(t)µ11]

+ 1

j�
C1C̄2 E(t)µ̄21 − 1

j�
C̄1C2 E(t)µ21,

dC2C̄2

dt
= − 1

j�
C2C̄2 [E2 − E(t)µ̄22] + 1

j�
C2C̄2 [E2 − E(t)µ22]

+ 1

j�
C̄1C2 E(t)µ̄12 − 1

j�
C1C̄2 E(t)µ12,

dC1C̄2

dt
= − 1

j�
C1C̄2 [E2 − E(t)µ̄22] + 1

j�
C1C̄2 [E1 − E(t)µ11]

+ 1

j�
C1C̄1 E(t)µ̄12 − 1

j�
C2C̄2 E(t)µ21,

dC2C̄1

dt
= 1

j�
C2C̄1 [E2 − E(t)µ22] − 1

j�
C2C̄1 [E1 − E(t)µ̄11]

− 1

j�
C1C̄1 E(t)µ12 + 1

j�
C2C̄2 E(t)µ̄21.

The expectation of µ̂ is given by

〈µ̂〉 = (µ̂ψ,ψ) =
(
∑

m=1,2

Cm(t)µ̂ψm(r),
∑

n=1,2

Cn(t)ψn(r)

)

=
∑

m=1,2

∑

n=1,2

CmC̄nµmn.

If the system contains a large number of identical atoms, we may take the ensemble average
of the dipole moment

〈µ̂〉e =
∑

m=1,2

∑

n=1,2

〈CmC̄n〉eµmn =
∑

m=1,2

∑

n=1,2

ρmnµmn,
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where ρmn = 〈CmC̄n〉e. Physically ρmn are the density matrix elements. The diagonal elements
ρnn denote the population of the state ψn , and the off-diagonal elements ρmn denote the
coherence. Apparently ρmn satisfy the same equations as CmC̄n . By symmetry we assume that

µ11 = µ22 = 0, µ12 = µ21 = µ,

where µ is real. Then

〈µ̂〉e = µ(ρ12 + ρ21). (10.68)

It is easy to show that

dρ21

dt
= − jρ21

(E2 − E1)

�
+ j

µE(t)

�
(ρ11 − ρ22),

d

dt
(ρ11 − ρ22) = j

2

�
µE(t)(ρ21 − ρ̄21).

Intuitively, once the excitation stops we may expect the population ρnn will tend toward their
thermodynamic equilibrium levels ρ(0)

nn with a certain time constant resulting from stochastic
interactions. This time constant, denoted by T1 is called diagonal relaxation time or population
lifetime. In the same way, we may expect the off-diagonal elements to lose coherence with a
time constant T2. Introducing these relaxation times, the equations for density matrix elements
may be modified as follows

dρ21

dt
= − jρ21

(E2 − E1)

�
+ j

µE(t)

�
(ρ11 − ρ22) − ρ21

T2
,

d

dt
(ρ11 − ρ22) = j

2

�
µE(t)(ρ21 − ρ̄21) − (ρ11 − ρ22) − (ρ(0)

11 − ρ
(0)
22 )

T1
.

Assuming E(t) = E0 cos ωt , the solution of the off-diagonal element may be found as follows

ρ21 = (ω0 − ω)�T 2
2 (ρ(0)

11 − ρ
(0)
22 )

1 + (ω − ω0)2T 2
2 + 4�2T1T2

+ j
�T2(ρ(0)

11 − ρ
(0)
22 )

1 + (ω − ω0)2T 2
2 + 4�2T1T2

,

where ω0 = (E2 − E1)/� and � = µE0/2�. Let N denote the number of atoms per unit
volume. The magnitude of the polarization vector is

P(t) = N 〈µ̂〉e = µ2(N (0)
1 − N (0)

2 )T2

�
· (ω0 − ω)T2 E0 cos ωt + E0 sin ωt

1 + (ω − ω0)2T 2
2 + 4�2T1T2

,

where N (0)
1 = Nρ

(0)
11 , N (0)

2 = Nρ
(0)
22 . Comparing the above equation with the following

P(t) = Re(ε0χe E0e jωt ) = ε0χ
′
e E0 cos ωt + ε0χ

′′
e E0 sin ωt,
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where χe = χ ′
e − jχ ′′

e , we obtain

χ ′
e = µ2(N (0)

1 − N (0)
2 )T2

ε0�
· 1

1 + (ω − ω0)2T 2
2 + 4�2T1T2

,

χ ′′
e = µ2(N (0)

1 − N (0)
2 )T2

ε0�
· (ω0 − ω)T2

1 + (ω − ω0)2T 2
2 + 4�2T1T2

.

(10.69)

The dielectric constant is then given by

ε = ε′ − jε′′, ε′ = ε0(1 + χ ′
e), ε′′ = ε0χ

′′
e .

10.5 Relativistic Quantum Mechanics

The Schrödinger equation (10.9) is not covariant and thus must be modified so that it is
compatible with special relativity.

10.5.1 The Klein–Gordon Equation

We may start with the following identity for a free particle in special relativity (see Chapter 9)

p2c2 + m2
0c4 = E2. (10.70)

After quantization we obtain

[

(− j�∇)2c2 + m2
0c4
]

ψ =
(

j�
∂

∂t

)2

ψ.

Rearranging terms gives

(

∇2 − 1

c2

∂2

∂t2

)

ψ = m2
0c2

�2
ψ. (10.71)

This is the Klein–Gordon equation. The equation involves a second-order time derivative,
so we must specify the initial values of both ψ and ∂ψ/∂t to solve the equation. This is
unacceptable in quantum mechanics as the wavefunction ψ is supposed to contain all the
information for the prediction of the system’s behavior. Therefore the Klein–Gordon equation
is not suitable for describing a single particle. In 1934, the Austrian physicists Pauli and Victor
Frederick Weisskopf (1908–2002) reinterpreted the Klein–Gordon equation as a field equation
(like Maxwell equations). Since the Klein–Gordon equation is a scalar field equation, it is used
to describe the spinless particles.
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10.5.2 The Dirac Equation

In order to overcome the difficulties encountered in the Klein–Gordon equation, Dirac proposed
the relativistic wave equation for particles in 1928. After quantization, Equation (10.70)
becomes

j�
∂ψ

∂t
=
√

p̂2c2 + m2
0c4ψ. (10.72)

This is not easy to work with because of the square root. Following Dirac, we may assume the
equation sought is of the form, called the Dirac equation

j�
∂ψ

∂t
= (cαx p̂x + cαy p̂y + cαz p̂z + βm0c2)ψ, (10.73)

where αi (i = x, y, z) and β are constants to be determined. It follows from (10.72) and (10.73)
that

p̂2c2 + m2
0c4 = (cαx p̂x + cαy p̂y + cαz p̂z + βm0c2)2.

Equating the similar terms gives

α2
x + α2

y + α2
z = 1,

αxαy + αyαx = αzαy + αyαz = αxαz + αzαx = 0,

αxβ + βαx = αyβ + βαy = αzβ + βαz = 0.

These conditions can be met only if αi and β are matrices. One possible choice is

αi =
[

0 σi

σi 0

]

, β =
[

I 0
0 −I

]

, i = x, y, z (10.74)

where

σx =
[

0 1
1 0

]

, σy =
[

0 − j
j 0

]

, σz =
[

1 0
0 −1

]

(10.75)

are Pauli spin matrices and I is 2 × 2 unit matrix. Since αi and β are matrices, ψ must be
vector

ψ = [ψ1 ψ2 ψ3 ψ4
]T = [ψ+ ψ−

]T
,

and the Dirac equation (10.73) can be written as

j�
∂ψ+
∂t

= σ · p̂cψ− + m0c2ψ+,

j�
∂ψ−
∂t

= σ · p̂cψ+ − m0c2ψ−,

(10.76)
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where σ = σx ux + σyuy + σzuz , ψ+ = [ψ1, ψ2]T and ψ− = [ψ3, ψ4]T . Note that any solution
of the Dirac equation is also a solution of the Klein–Gordon equation, but the converse is not
true.

If the particle described by the Dirac equation has a charge q, subject to an applied electro-
magnetic field characterized by the vector potential A and scalar φ, the Dirac equation (10.73)
must be modified according to the correspondence principle by replacing p̂ with p̂ − qA

j�
∂ψ

∂t
= [cαx ( p̂x − q Ax ) + cαy( p̂y − q Ay) + cαz( p̂z − q Az) + βm0c2

]

ψ. (10.77)

Accordingly, Equation (10.76) must be modified as

j�
∂ψ+
∂t

= σ · (p̂ − qA)cψ− + m0c2ψ+,

(10.78)

j�
∂ψ−
∂t

= σ · (p̂ − qA)cψ+ − m0c2ψ−.

Finally, we note that quantum mechanics is a set of principles for describing small particles. We
accept these principles simply because they are self-consistent and pragmatic, and can interpret
the experiments with high degree of accuracy. Quantum mechanics provides a mathematical
frame for many branches of physics and chemistry and has many successful applications such
as in laser, semiconductors, magnetic resonance imaging, and electron microscope. Current
active research topics are to explore the possibility of manipulating quantum states, which
include quantum information and quantum computation, and are still in their infancy [see
Nielsen and Chuang, 2000].

There is no quantum world. There is only an abstract physical description. It is wrong to think that
the task of physics is to find out how nature is. Physics concerns what we can say about nature.

—Niels Bohr
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Appendix A
Set Theory

The set theory is the foundation of modern mathematics, and is used in the definitions of all
mathematical objects.

A.1 Basic Concepts

A set A is a collection of certain different objects. These objects are called the elements of the
set. We use a ∈ A (or a /∈ A) to indicate that a is (or is not) an element of A. The set that has
no element is called empty set, denoted by Ø. Sets can be represented by enumerating their
elements in braces or by defining properties possessed by the elements. For example, the set
of natural numbers can be expressed by

{0, 1, 2, · · ·} = { x | x is a natural number}.

Two sets A and B are said to be identical or equal, denoted by A = B, if they have exactly the
same elements. The set A is called a subset of B if all elements of A belong to B, denoted by
A ⊂ B. The empty set is a subset of any set A.

A.2 Set Operations

The union of two sets A and B, denoted by A ∪ B, is defined by

A ∪ B = { x | x ∈ A or x ∈ B}.

The intersection of two sets A and B, denoted by A ∩ B, is defined by

A ∩ B = { x | x ∈ A and x ∈ B}.

If the intersection of two sets is empty, they are called disjoint.

Foundations of Applied Electrodynamics Geyi Wen
C© 2010 John Wiley & Sons, Ltd
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The difference of two sets A and B, denoted by A − B, is defined as the set of elements
that belong to A but not to B. Consider the subset A of a given set M . The complement of A
with respect to M is defined as M − A.

The Cartesian product of two sets A and B is defined by

A × B = { (a, b)| a ∈ A and b ∈ B}.

The elements (a, b) are called ordered pairs. Similarly one can define n times Cartesian
product.

A.3 Set Algebra

1. Associative laws

(A ∩ B) ∩ C = A ∩ (B ∩ C),
(A ∪ B) ∪ C = A ∪ (B ∪ C).

2. Commutative laws

A ∩ B = B ∩ A,

A ∪ B = B ∪ A.

3. Distributive laws

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C),
(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C).

4. De Morgan laws

A ∩ B = Ā ∪ B̄,

A ∪ B = Ā ∩ B̄.
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Appendix B
Vector Analysis

Vector analysis studies the differentiation and integration of vector fields. It plays an important
role in electromagnetic field theory.

B.1 Formulas from Vector Analysis

By definition, the gradient of a scalar function φ(r) at r is

∇φ(r) = lim
V →0

1

V

∫

S

unφd S, (B.1)

where V is a volume containing the point r, S is its boundary and un is the unit outward normal
of S. The gradient measures the rate and direction of change in a scalar field. The divergence
of a vector function A is defined by

∇ · A = lim
V →0

1

V

∫

S

un · Ad S. (B.2)

The divergence measures the magnitude of the source of the vector field at a point. The rotation
of a vector function A is defined by

∇ × A = lim
V →0

1

V

∫

S

un × Ad S. (B.3)

The rotation measures the tendency of the vector field to rotate about a point. Let a, b, c and
d be vector functions; and φ and ψ be scalar functions. Then

1. a · b × c = b · c × a = c · a × b.

2. a × (b × c) = (a · c)b − (a · b)c.
3. (a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c).

Foundations of Applied Electrodynamics Geyi Wen
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4. ∇(φψ) = φ∇ψ + ψ∇φ.

5. ∇(a · b) = (a · ∇)b + (b · ∇)a + a × (∇ × b) + b × (∇ × a).
6. ∇ · (φa) = a · ∇φ + φ∇ · a.

7. ∇ · (a × b) = b · ∇ × a − a · ∇ × b.

8. ∇ × (φa) = ∇φ × a + φ∇ × a.

9. ∇ × (a × b) = a∇ · b − b∇ · a + (b · ∇)a − (a · ∇)b.

10. ∇ × ∇ × a = ∇∇ · a − ∇2a.

Let V be a volume bounded by the closed surface S and un be the unit outward normal of S.
Then the following Gauss theorems hold

1.
∫

V
∇φdV = ∫

S
φund S.

2.
∫

V
∇ · adV = ∫

S
un · ad S.

3.
∫

V
∇ × adV = ∫

S
un × ad S.

Let S be an unclosed surface bounded by the contour �. Then we have the following Stokes
theorems:

1.
∫

S
un × ∇φd S = ∫

�

φul d�.

2.
∫

S
un · ∇ × ad S = ∫

�

a · uld�.

where ul is the unit tangent vector along � in the positive sense with respect to un .
If a vanishes as rapidly as r−2 at infinity, we have Helmholtz identity

a(r) = − 1

4π
∇

∫

R3

∇′ · a(r′)
|r − r′| dV (r′) + 1

4π
∇ ×

∫

R3

∇′ × a(r′)
|r − r′| dV (r′)

and

∫

R3

|a(r)|2 dV (r) =
∫

R3

∫

R3

∇ · a(r)∇′ · ā(r′) + ∇ × a(r) · ∇′ × ā(r′)
4π |r − r′| dV (r)dV (r′).

The Helmholtz identity indicates that a vector field is determined by its divergence and rotation.

B.2 Vector Analysis in Curvilinear Coordinate Systems

A curvilinear coordinate system is usually obtained from the standard Cartesian coordinate
system by a non-linear transformation. In a curvilinear coordinate system, the coordinate lines
are curved.
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B.2.1 Curvilinear Coordinate Systems

Let � ∈ R3 be a connected region, and (x, y, z) be the rectangular coordinate system in R3.
Let

v1 = v1(x, y, z), v2 = v2(x, y, z), v3 = v3(x, y, z), (x, y, z) ∈ � (B.4)

be three independent, continuous and single-valued functions of the rectangular coordinates
(x, y, z) defined in �. The range of the new variables (v1, v2, v3) is denoted by D. If the above
transform is invertible, (B.4) can be solved with respect to (x, y, z) to give

x = x(v1, v2, v3), y = y(v1, v2, v3), z = z(v1, v2, v3), (v1, v2, v3) ∈ D, (B.5)

which are also independent, continuous and single-valued functions in the region D. For
each point (x, y, z) in �, there is associated a point (v1, v2, v3) and vice versa. (v1, v2, v3) is
called the curvilinear coordinate system in �. Through each point (x, y, z), there pass three
surfaces

vi = constant (i = 1, 2, 3),

which are called the coordinate surfaces. On each coordinate surface, one coordinate is constant
and the other two are variable. Two coordinate surfaces intersect in a curve, called a coordinate
curve, along which two coordinates are constant and one is variable. A coordinate surface
is designated by the constant coordinate and a coordinate curve is designated by variable
coordinate, as shown in Figure B.1.

Let r denote the vector from the origin of the rectangular system to a variable point
P = (x, y, z)

r = xux + yuy + zuz, (B.6)

P

e3

e2

e1

v2-surface

v3-surface

v1

v2

v3

v1-surface

Figure B.1 Curvilinear coordinate system
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where ui is the unit vector along i(i = x, y, z) direction. Considering (B.5), (B.6) may be
written as

r = x(v1, v2, v3)ux + y(v1, v2, v3)uy + z(v1, v2, v3)uz .

The vectors

e1 = ∂r
∂v1

, e2 = ∂r
∂v2

, e3 = ∂r
∂v3

are linearly independent and form a basis at the point P , which is called a local frame. Note
that the base vector ei is the tangent vector along the coordinate curve vi (i = 1, 2, 3) as shown
in Figure B.1. The metric tensor is defined by

gi j = ei · e j = ∂x

∂vi

∂x

∂v j
+ ∂y

∂vi

∂y

∂v j
+ ∂z

∂vi

∂z

∂v j
.

The symmetric matrix [gi j ] possesses an inverse denoted by [gi j ]

3∑

k=1

gik gk j = δ j
i .

The dual basis is defined by

ei =
3

∑

j=1

gi j e j (i = 1, 2, 3).

The dual basis has the following properties

ei · e j = δ j
i , ei · e j = gi j ,

ei = 1√
g

e j × ek,

ei = √
ge j × ek,

where (i, j, k) is a permutation of (1, 2, 3) and

g = det[gi j ] = [e1 · (e2 × e3)]2.

A vector function A at the point P may be expanded in terms of the basis {e1, e2, e3} or the
dual basis {e1, e2, e3} at the point P

A =
3

∑

i=1

ai ei =
3

∑

i=1

ai ei .
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The differential dr is an infinitesimal displacement from the point (v1, v2, v3) to a neighboring
point (v1 + dv1, v2 + dv2, v3 + dv3)

dr =
3

∑

i=1

∂r
∂vi

dvi =
3

∑

i=1

ei dvi .

The magnitude of this displacement is denoted by ds

ds2 = dr · dr =
3

∑

i, j=1

ei · e j dvi dv j =
3

∑

i, j=1

gi j dvi dv j .

Especially an infinitesimal displacement at (v1, v2, v3) along the vi -curve is

dri = ei dvi

and the magnitude of the infinitesimal displacement along the vi -curve is

dsi =
√

dri · dri = √
gii dvi .

Consider an infinitesimal parallelogram in the v1-surface bounded by intersecting v2- and
v3-curves as shown in Figure B.2. The area of the infinitesimal parallelogram in the v1-surface
is equal to

d�1 = |dr2 × dr3| = |e2 × e3| dv2dv3 =
√

g22g33 − g2
23dv2dv3.

Similarly for the areas of the infinitesimal parallelograms in the v2- and v3-surfaces

d�2 = |dr1 × dr3| = |e1 × e3| dv1dv3 =
√

g11g33 − g2
13dv1dv3,

d�3 = |dr1 × dr2| = |e1 × e2| dv1dv2 =
√

g11g22 − g2
12dv1dv2.

dr3

dr2

v3-curve

v2-curve

v1-surface

Figure B.2 Element of area in v1-surface
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P

v1-curve

v3 + dv3

v1 + dv1

v2 + dv2

v3-curve

v2-curve

Figure B.3 A volume element in curvilinear coordinate system

The volume element bounded by coordinate surfaces is given by

dv = dr1 · dr2 × dr3 = e1 · e2 × e3dv1dv2dv3 = √
gdv1dv2dv3.

B.2.2 Differential Operators

Consider a volume element bounded by coordinate surfaces at point P as indicated in Figure
B.3. For two end faces that lie in v2-surfaces, the area of the first face at v2 is e1 × e3dv1dv3

and the area of the second face at v2 + dv2 is e3 × e1dv1dv3.

B.2.2.1 Gradient

The net contribution of these two end faces to the integral in (B.1) is

(φe1 × e3dv1dv3)v2 + (φe3 × e1dv1dv3)v2+dv2 .

For sufficiently small dv2, the above expression may be approximated by

∂φ

∂v2
(e3 × e1dv1dv2dv3) = ∂φ

∂v2

(
1√
g

e3 × e1
√

gdv1dv2dv3

)

= ∂φ

∂v2
(e2√gdv1dv2dv3).

Similar results may be obtained from the two remaining pairs of faces. Note that V in (B.1)
can be approximated by dv = √

gdv1dv2dv3 as V → 0. Therefore the gradient of φ is

∇φ =
3∑

i=1

ei ∂φ

∂vi
.
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B.2.2.2 Divergence

The net contribution of the two end faces in the v2-surfaces to the integral in (B.2) is

(A · e1 × e3dv1dv3)v2 + (A · e3 × e1dv1dv3)v2+dv2 .

For sufficiently small dv2, this may be approximated by

∂

∂v2
(A · e3 × e1dv1dv2dv3) = ∂

∂v2
(A · e2√gdv1dv2dv3)

= ∂

∂v2
(a2√g)dv1dv2dv3.

Following a similar discussion, the divergence of a vector A referred to a curvilinear coordinate
system is

∇ · A = 1√
g

3
∑

i=1

∂

∂vi
(ai√g).

B.2.2.3 Rotation

The net contribution of the two end faces in the v2-surfaces to the integral in (B.3) is

(e1 × e3dv1dv3 × A)v2 + (e3 × e1dv1dv3 × A)v2+dv2 .

For sufficiently small dv2, this may be approximated by

∂

∂v2
(e3 × e1dv1dv2dv3 × A) = ∂

∂v2
(e2 × A

√
gdv1dv2dv3).

The net contribution of other two remaining pairs of faces to the integral in (B.3) is

∂

∂v1
(e1 × A

√
gdv1dv2dv3) + ∂

∂v3
(e3 × A

√
gdv1dv2dv3).

Note that

e1 × A = e1 × e2a2 + e1 × e3a3 = 1√
g

a2e3 − 1√
g

a3e2,

e2 × A = e2 × e1a1 + e2 × e3a3 = − 1√
g

a1e3 + 1√
g

a3e1,

e3 × A = e3 × e1a1 + e3 × e2a2 = 1√
g

a1e2 − 1√
g

a2e1.
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Thus the rotation of a vector A with respect to a curvilinear coordinate system is

∇ × A = 1√
g

[(
∂a3

∂v2
− ∂a2

∂v3

)

e1 +
(

∂a1

∂v3
− ∂a3

∂v1

)

e2 +
(

∂a2

∂v1
− ∂a1

∂v2

)

e3

]

.

B.2.2.4 Laplace operator

Finally, we note that the Laplace operator ∇2 can be expressed as

∇2φ = ∇ · ∇φ = 1√
g

3
∑

i=1

3
∑

j=1

∂

∂vi

(

gi j√g
∂φ

∂v j

)

.

B.2.3 Orthogonal Systems

The most useful curvilinear coordinate systems are orthogonal, and the base vectors are
mutually perpendicular. Hence gi j = 0, i �= j . In this case, it is customary to introduce the
metrical coefficients

hi = √
gii =

√

1/gii , i = 1, 2, 3

and an orthonormal basis {u1, u2, u3}

ui = ei/hi = hi ei , ui · u j = δi j .

Thus an arbitrary vector A has following expansion

A =
3

∑

i=1

Ai ui ,

and we have

∇ · A = 1

h1h2h3

[
∂

∂v1
(h2h3 A1) + ∂

∂v2
(h1h3 A2) + ∂

∂v3
(h1h2 A3)

]

,

∇ × A = 1

h2h3

[
∂

∂v2
(h3 A3) − ∂

∂v3
(h2 A2)

]

u1 + 1

h3h1

[
∂

∂v3
(h1 A1) − ∂

∂v1
(h3 A3)

]

u2

+ 1

h1h2

[
∂

∂v1
(h2 A2) − ∂

∂v2
(h1 A1)

]

u3,

∇φ =
3

∑

i=1

1

hi

∂φ

∂vi
ui ,

∇2φ = 1

h1h2h3

[
∂

∂v1

(
h2h3

h1

∂φ

∂v1

)

+ ∂

∂v2

(
h3h1

h2

∂φ

∂v2

)

+ ∂

∂v3

(
h1h2

h3

∂φ

∂v3

)]

.
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z

y

x

z-curve

y-curve

x-curve

Figure B.4 Rectangular system

Example B.1 (Rectangular coordinate system): Let v1 = x, v2 = y, v3 = z. Then h1 = h2 =
h3 = 1. The coordinate curves are shown in Figure B.4. The orthonormal basis vectors are
ui (i = x, y, z).

Example B.2 (Cylindrical coordinate system): Let v1 = ρ, v2 = ϕ, v3 = z. (ρ, ϕ, z) are
called cylindrical coordinates. They are related to the rectangular coordinates by the equations

x = ρ cos ϕ, y = ρ sin ϕ, z = z,

ρ > 0, 0 ≤ ϕ < 2π.

The metrical coefficients are h1 = 1, h2 = ρ, h3 = 1. The coordinate curves are shown in
Figure B.5. The orthonormal basis vectors are

uρ = ux cos ϕ + uy sin ϕ,

uϕ = −ux sin ϕ + uy cos ϕ,

uz = uz.

ϕ

ϕ -curve

ρ -curve

z

y

x

z-curve

Figure B.5 Cylindrical coordinate system

Example B.3 (Spherical coordinate system): Let v1 = r, v2 = θ, v3 = ϕ. (r, θ, ϕ) are called
spherical coordinates and are related to rectangular coordinates by

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ,

r > 0, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π.
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θ

ϕ-curve

ϕ

z

θ -curve r-curve

y

x

Figure B.6 Spherical coordinate system

The metrical coefficients are h1 = 1, h2 = r, h3 = r sin θ. The coordinate curves are shown
in Figure B.6. The orthonormal basis vectors are

ur = ux sin θ cos ϕ + uy sin θ sin ϕ + uz cos θ,

uθ = ux cos θ cos ϕ + uy cos θ sin ϕ − uz sin θ,

uϕ = −ux sin ϕ + uy cos ϕ.
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Appendix C
Special Functions

Special functions refer to the mathematical functions that usually appear in the solutions of
differential equations and have established names and notations.

C.1 Bessel Functions

The Bessel equation is

d2 f

dz2
+ 1

z

d f

dz
+

(

µ2 − p2

z2

)

f = 0.

One of the solutions is the Bessel function of the first kind

Jp(µz) =
∞

∑

m=0

(−1)m

�(m + 1)�(p + m + 1)

(µz

2

)p+2m
,

where the gamma function is defined by

�(α) =
∞∫

0

xα−1e−x dx, α > 0.

If p is not an integer, a second independent solution is J−p(µz). If p = n is an integer, J−n(µz)
is related to Jn(µz) by

J−n(z) = (−1)n Jn(z).

For this reason, we need to find other independent solutions. These include the Bessel function
of the second kind defined by

Np(µz) = cos pπ Jp(µz) − J−p(µz)

sin pπ
,
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482 Appendix C. Special Functions

and the Bessel functions of the third (Hankel function of the first kind) and fourth kind (Hankel
function of the second kind) defined by

H (1)
p (µz) = Jp(µz) + j Np(µz),

H (2)
p (µz) = Jp(µz) − j Np(µz).

Let Rp(µz) = AJp(µz) + B Np(µz), where A and B are constant. We have the recurrence
relations

2p

µz
Rp(µz) = Rp−1(µz) + Rp+1(µz),

1

µ

d

dz
Rp(µz) = 1

2

[

Rp−1(µz) − Rp+1(µz)
]

,

z
d

dz
Rp(µz) = pRp(µz) − µz Rp+1(µz),

d

dz

[

z p Rp(µz)
] = µz p Rp−1(µz),

d

dz

[

z−p Rp(µz)
] = −µz−p Rp+1(µz).

C.2 Spherical Bessel Functions

The spherical Bessel equation is

d2zn

dz2
+ 2

z

dzn

dz
+

[

µ2 − n(n + 1)

z2

]

zn = 0.

The spherical Bessel functions are the solution of this equation and are defined by

jn(µz) =
√

π

2µz
Jn+ 1

2
(µz), nn(µz) =

√
π

2µz
Nn+ 1

2
(µz),

h(1)
n (µz) =

√
π

2µz
H (1)

n+ 1
2
(µz), h(2)

n (µz) =
√

π

2µz
H (2)

n+ 1
2
(µz).

They are known as the spherical Bessel functions of the first, second, third and fourth kind
respectively; h(1)

n and h(2)
n are also called the spherical Hankel functions of the first and second

kind. Let zn(µz) = Ajn(µz) + Bnn(µz), where A and B are constant. We have the recurrence
relations:

2n + 1

µz
zn(µz) = zn−1(µz) + zn+1(µz),

2n + 1

µ

d

dz
zn(µz) = nzn−1(µz) − (n + 1)zn+1(µz),
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d

dz

[

zn+1zn(µz)
] = µzn+1zn−1(µz),

d

dz

[

z−nzn(µz)
] = −µz−nzn+1(µz).

C.3 Legendre Functions and Associated Legendre Functions

The Legendre equation is

(1 − z2)
d2 f

dz2
− 2z

d f

dz
+ n(n + 1) f = 0. (C.1)

It has two independent solutions. One is the Legendre function of the first kind, also called the
Legendre polynomial denoted by Pn(z)

Pn(z) = 1

2nn!

dn

dzn
(z2 − 1)n,

where n is an integer. Another independent solution of (C.1) is the Legendre function of the
second kind defined by

Qn(z) = 1

2
Pn(z) ln

1 + z

1 − z
−

n
∑

r=1

1

r
Pr−1(z)Pn−r (z).

The recurrence relations are

z
d

dz
Pn(z) − d

dz
Pn−1(z) = n Pn(z),

(n + 1)Pn+1(z) − (2n + 1)z Pn(z) + n Pn−1(z) = 0,

(z2 − 1)
d

dz
Pn(z) = nz Pn(z) − n Pn−1(z),

d

dz
Pn+1(z) − d

dz
Pn−1(z) = (2n + 1)Pn(z).

The Legendre polynomials are orthogonal

1∫

−1

Pm(x)Pn(x)dx = 2

2n + 1
δmn .

The associated Legendre equation is

(1 − z2)
d2 f

dz2
− 2z

d f

dz
+

[

n(n + 1) − m2

1 − z2

]

f = 0.



P1: OTA/XYZ P2: ABC
appc BLBK281-Wen March 13, 2010 16:2 Printer Name: Yet to Come

484 Appendix C. Special Functions

The two linearly independent solutions are the associated Legendre function of the first and
the second kind defined by

Pm
n (z) = (1 − z2)m/2

2nn!

dm+n

dzm+n
(z2 − 1)n,

and

Qm
n (z) = (1 − z2)

m
2

dm

dzm
Qn(z), m ≤ n,

respectively.
The following integrations are useful

1∫

−1

Pm
n (x)Pk

n (x)

1 − x2
dx = 1

m

(n + m)!

(n − m)!
δmk,

1∫

−1

Pm
k (x)Pm

n (x)dx = 2

2k + 1

(k + m)!

(k − m)!
δkn,

π∫

0

[
d Pm

n (cos θ )

dθ

d Pm
k (cos θ )

dθ
+ m2

sin2 θ
Pm

n (cos θ )Pm
k (cos θ )

]

sin θdθ

= 2

2n + 1

(n + m)!

(n − m)!
n(n + 1)δnk .
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Appendix D
SI Unit System

This book uses SI unit system in which mass M is measured in kilograms, length L in meters,
time T in seconds, and charge Q in coulombs. Table (D.1) lists the electromagnetic quantities,
their symbols, dimensions and SI unit.

Table D.1 Electromagnetic quantities, symbols, dimensions and SI unit.

Quantity Symbol SI unit Dimensions

Charge q Coulomb Q
Current I Ampere Q/T
Resistance R Ohm M L2/T Q2

Inductance L Henry M L2/Q2

Capacitance C Farad Q2T 2/M L2

Charge density ρ Coulomb/cubic meter Q/L3

Current density J Ampere/square meter Q/T L2

Electric field intensity E Volt/meter M L/QT 2

Electric displacement D Coulomb/square meter Q/L2

Electric dipole moment p Coulomb-meter QL
Polarization vector P Coulomb/ square meter Q/L2

Magnetic field intensity H Ampere/meter Q/T L
Magnetic induction B Weber/square meter M/QT
Magnetic dipole moment m Ampere-square meter QL2/T
Magnetization vector M Ampere/meter Q/T L
Vector potential A Weber/Henry M L/QT
Scalar potential φ Volt M L2/QT 2

Conductivity σ Mho/meter Q2T/M L3

Permeability µ Henry/meter M L/Q2

Permittivity ε Farad/meter Q2T 2/M L3

Frequency f Hertz 1/T
Force F Newton M L/T 2

Energy W Joule M L2/T 2

Power P Watt M L2/T 3

Poynting vector S Watt/square meter M/T 3
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486 Appendix D. SI Unit System

Table (D.2) shows the physical constants.

Table D.2 Physical constants.

Quantity Symbol Value

Speed of light c 3.00 × 108 meter/second
Elementary charge e 1.60 × 10−19 Coulomb
Electron mass me 9.11 × 10−31 kilogram
Proton mass m p 1.67 × 10−27 kilogram
Permeability constant µ0 1.26 × 10−6 Henry/meter
Permittivity constant ε0 8.85 × 10−12 Farad/meter
Gravitational constant G 6.67 × 10−11 Newton · square meter/square kilogram
Planck’s constant h 6.63 × 10−34 Joule · second
Boltzmann constant k 1.3807 × 10−23 Joule/Kelvin
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bilinear form, 292–6, 316
bounded from below, 292, 296
closed, 292, 316
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Levi-Civita, 416–27
conservation of electromagnetic energy, 23
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cotangent bundle, 386, 408
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cross-section
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scattering, 230
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cut-off radius, 149
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Delta function, 62
dielectric loss factor, 18
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eigenfunctions, 110–12, 120–9, 308, 323–6,
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eigenvalues, 110–12, 120–9, 151, 306–8,
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eikonal equation, 299
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electromagnetic angular momentum
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equivalence principle
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Extremum theorem, 95
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Fitzgerald-Lorentz contraction, 394
forerunners, 40
Foster theorem, 172, 182
four-force vector, 397–9
four-momentum vector, 395–7
four-velocity vector, 395
Fredholm alternative theorem, 205, 208
Fredholm equation of the first type, 204
Fredholm equation of the second type, 205
free-space path loss, 269
Friedrichs extension, 116–25, 315–16
Friedrichs inequality, 115
Friis transmission formula, 269
functional, 50

functional derivative, 94, 96
partial functional derivative, 95
total functional derivative, 95

gain constant, 462
Galerkin’s method, 240
Galilean transformation, 379, 388
gauge condition

Coulomb, 84, 439–40
Hamiltonian, 87, 452, 454
Lorenz, 84, 401
temporal, 87
velocity, 87

gauge function, 83–4
gauge transformation, 83
Gauss’s law, 3, 5–6, 10
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125, 132–3, 291, 315, 322
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132–3, 315, 322
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scalar multiplications of, 62

generalized momentum, 100, 434, 453
density function, 101

generalized Ohm’s law, 16
geodesic, 418

geodesic equation, 418
global nodes, 240
global numbering system, 240
graph norm, 110
Green’s function, 73, 204–37

retarded Green’s function, 334, 344,
351–3

group delay, 250
guidance condition

for inhomogeneous waveguide, 307
for optical fiber, 313

guided mode, 306

Hamiltonian density function, 101–3
Hamiltonian equations, 101–4
Hamiltonian function, 100–4, 453
Hankel functions, 71
harmonic functions, 70
Heisenberg equation of motion, 432
Helmholtz equation, 69, 73, 165, 207–9,

309
Helmholtz theorem, 86

generalized, 152
Hertz vector

electric, 87
magnetic, 88

Hilbert-Schmidt theorem, 126
Huygens’ principle, 37–9

image principle, 31, 270
impedance, 246

characteristic impedance, 149, 247
reference impedance, 251
wave impedance, 139, 236–7, 256–8

impedance parameter, 255–62, 263–8
incident current, 250
incident field, 215
incident voltage, 250
indirect method, 203
inductivity, 18
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inner product, 51, 60, 66, 68, 107, 112, 114,
118–20, 131, 189, 239, 292, 295, 306,
313, 320, 382, 387, 409, 430

integral equation, 203–43
electric field integral equation (EFIE),

216
for cavity resonator, 212
for conducting cylinder, 217, 226
for dielectric cylinder, 228–9
for multiple metal antenna system, 237
for TEM transmission line, 206
for three dimensional conducting

scatterer, 216
for three dimensional dielectric scatterer,

223–4
for waveguide, 208
kernel function of, 204
low frequency solutions of, 231–3
magnetic field integral equation (MFIE),

216–18, 237
spurious solutions of, 203–38
time-domain integral equation, 372,

376
internal nodes, 241
interval, 390

light-like, 390
space-like, 390
time-like, 390

invariance of light speed, 389
irrotational component, 85–6

jump relations, 90, 172, 208–9, 211–12,
216–18, 220, 226–9, 234

Klein–Gordon equation, 331, 333–4, 350–3,
465

Lagrange shape function, 240
Lagrangian density function, 98–102
Lagrangian equation, 95–9, 452–3
Lagrangian function, 95–8, 451–3
Larmor formula, 366
left-traveling condition, 337
Legendre equation, 72, 483
local coordinate system, 406
local numbering system, 240

Lorentz force equation, 14, 25, 26,
403

Lorentz transformation, 391–7, 401,
403

macrostate, 448
magnetic field energy density, 24, 173
magnetic field intensity, 9, 11, 14
magnetic induction intensity, 6, 11
magnetic loss factor, 18
magnetic susceptibility, 9
magnetization current, 8
magnetization vector, 8, 17
mass,

gravitational, 405
inertial, 405
physical, 201

Maxwell equations, 11–17, 23, 32–3, 47,
78–9, 98, 140, 145, 211, 276, 282,
298, 305, 325, 332, 342, 360, 402, 427

generalized, 12, 23, 32–3, 78–9, 276, 282,
325, 342, 360

medium
anisotropic, 16
anomalous dispersive, 20
bianisotropic, 16
biisotropic, 16
inhomogeneous, 287
isotropic, 16
linear, 18
normal dispersive, 20

method of eigenfunction expansion, 69
method of finite-difference time-domain

(FDTD), 376
method of least squares, 240
method of separation of variables, 69–72,

131, 140, 331, 439, 445
method of weighted residuals, 239
metricity condition, 416
metric tensor field, 387, 409
microstate, 448
MIMO channel modeling, 279
minimal coupling, 422, 426
Minkowski metric, 387, 390–1, 401, 405–6,

410, 413, 420, 423, 425
min-max principle, 294, 319
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modal current, 137, 177, 236, 248, 255, 260,
281, 283

time-domain, 332–42, 349–59
modal voltage, 137, 177, 236, 248, 255–6,

260, 281, 283
time-domain, 332–42, 349–59

modulated signal, 47
moment method, 239
multi-index, 60–1

narrow-band approximation, 39
natural coordinate system, 241
Neumann series, 231–3
normalized incident voltage wave, 251–4,

262–3, 273–5
normalized reflected voltage wave, 251–4,

262–3, 273–5

observable, 430–2, 449
operators (maps), 50

adjoint, 112–14
angular momentum, 432, 446
annihilation, 436, 443
bijective, 50
bounded, 53, 106–7
closed, 110
closure of, 110, 112–13
compact, 106–9, 113, 121–6, 205
continuous, 53
continuously differentiable, 93
creation, 436, 443
derivative of, 93
differentiable, 93
differential, 50
directional derivative of, 94, 384
domain of definition, 50
formal adjoint, 37
graph of, 52
index lowering, 382
index raising, 382
injective, 50
integral, 50, 107–9, 113, 207, 231
inverse 52, 111, see also invertible
invertible, 52, see also inverse
kernel of, 129, 288
linear, 52

momentum, 432, 443
norm of, 53–4
particle number, 436, 443
position, 288, 431
positive-bounded-below, 114–15,

118–24, 132, 314, 321
positive definite, 114–15, 124, 131, 321
range of, 50
relatively compact, 289
resolvent of, 111
self-adjoint, 112, 287–91, 430
surjective, 50
symmetric, 112–42, 289, 306, 314,

321
trace, 67

optical fiber, 309–19
graded-index, 312
radiation mode of, 311
step-index, 312

orthogonal projection, 289

parallel-transported tensor field, 416
paraxial approximation, 39
partial differential equations (PDEs)

characteristic equation of, 56
elliptical equation, 56, 320
hyperbolic equation, 56
parabolic equation, 56
second-order equation, 54, 100
usual trinities for, 54
variational problem, 59, 93–104

Particle-wave duality, 431
Pauli exclusion principle, 438
Pauli spin matrices, 466
physical process, 390, 411
Planck’s constant, 430
Planck’s law, 451
Poincaré inequality, 115
polarization

circularly polarized field, 161
elliptically polarized field, 161
linearly polarized field, 161
polarization of antenna, 161
polarization of wave, 161
polarization vector, 4–5, 17

population inversion, 462
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potential
Coulomb, 3
Debye, 89
double-layer, 91
gravitational, 405, 420–2, 424
scalar, 83, 98–104, 194–5, 363–4, 401
single-layer, 91
vector, 6, 7, 8, 83–5, 87, 98–104, 194–5,

363–4, 401, 439–40, 444, 447, 452–4
power gain, 254
power transmission efficiency, 268, 270–5
Poynting theorem, 23, 25, 173–6, 193–7,

259, 280, 403
Poynting vector, 24, 160, 164, 173, 368–9
principle of equivalence, 405, 422
principle of Galilean relativity, 379, 388
principle of general covariance, 422
principle of least action, 93, 95
principle of relativity, 379, 388–9, 400–1
projection, 238

orthogonal projection, 289
projection method, 239
propagation constant, 139, 247, 305–19,

356–7
propagation model, 269
proper length, 393
proper time, 394–9, 414–15, 418–20

quantization, 434, 438–47
quarter wavelength transform, 248

ray equation, 300
reaction, 38
received isotropic power, 269
reciprocity, 37, 260–2

Rayleigh-Carson form, 37
Lorentz form, 37

reference frame, 388
inertial, 388, 391, 395, 400, 410–13,

425
instantaneous co-moving inertial, 413–15

reflected current, 251
reflected voltage, 251
reflection, 164
reflection coefficient, 248, 304

load, 248

refraction, 164
refractive index, 298
Rellich theorem, 125–6, 133, 322
representation theorem, 74–82, 211, 213,

219, 234
for time-domain fields, 74
for time-harmonic fields, 77

Riemannian manifold, 409
right-traveling condition, 337
RLC circuit, 347

for transmitting antenna, 176–8
for one-port microwave network, 280–1
for current sources, 282–5

scalar curvature, 417
scalar field, 386, 408
scattered field, 215
scattering parameter, 253, 262–5, 276–8
Schrödinger equation, 430, 434–5, 448, 455,

465
stationary, 435, 437, 449, 455, 462

Schwarzschild solution, 425–6
semi-classical method, 451
set

closed, 51
closure of, 51
compact, 51
dense, 51
interior point of, 51
isolated point of, 51
limit point of, 51
open, 51
relatively compact, 106

Silver–Müller radiation condition, 80, 164
singular function, 150
singularity expansion method, 372
singular sequence, 289
singular value, 150
solenoidal component, 85–6
solutions of partial differential equations

characteristic curves, 56
characteristics, 56
classical, 49, 58–9, 67–9
fundamental, 73
generalized, 49, 59, 67–9, 73, 117
weak, 49, 67–9
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space
Banach, 51
cotangent, 385, 408
dual, 54, 116, 380, 408
energy, 115–25, 132–3, 321–2
fundamental, 61, 64
Hilbert, 51, 60, 66, 110–29, 288–96, 430,

448
inner product, 51–2, 66–8, 94, 107,

112–30, 289–90, 292, 294–5, 430–2,
449

linear, 50
Minkowski, 387
normed, 51, 93–4, 106, 109–10
of finite dimension, 51
of infinite dimension, 51
rapid decreasing function, 64
Riemann, 387
separable, 51
Sobolev, 66–7, 109, 118–20, 123, 294,

296
tangent, 384, 407
tensor, 386, 408

spectral family, 289
spectral theorem, 289
spectrum, 111

continuous, 111, 288
discrete, 110, 288
essential, 288, 316
point, 110, 288
radius of, 231
residual, 110

spherical Bessel functions, 72, 169, 445,
482

spherical Hankel functions, 166–70, 482
spherical harmonics, 147, 165, 445
spherical vector wave function, 166–7,

171
state, 430

mixed, 449
pure, 448
statistical, 448

stratton–Chu formula, 75, 77
summation convention, 381
superposition theorem, 22
support of function, 60

tangent bundle, 386, 408
tangent vector, 384, 407–8

base point of, 384
components of, 385, 408

tensor, 380, 408
angular momentum tensor,

398
contraction of, 381
dual field-strength tensor, 402
Einstein tensor, 422
electromagnetic angular momentum flow

density tensor, 27
electromagnetic energy-momentum

tensor, 26, 403
electromagnetic field-strength tensor,

401
electromagnetic momentum flow density

tensor, 26
energy momentum tensor, 400
Maxwell stress tensor, 26, 403
Ricci tensor, 417
Riemann curvature tensor, 417
tensor bundle, 386, 408
tensor components, 381
tensor field, 386, 408
tensor product, 380
tensor space, 386, 408
symmetric tensor, 381

tensoriality criterion, 383
time dilation, 394
trace, 67
transeversality condition, 440
transition

induced, 458
probability, 457
spontaneous, 458
rate, 457

transmission line equations, 139,
246

spherical, 148
time-domain spherical, 363

transport equation, 302
transverse electric (TE) field (mode), 134–9,

148–9, 167–8, 185, 207–11, 217,
224–9, 303–5, 333–4, 339–40,
350–9
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transverse magnetic (TM) field (mode),
135–9, 148–9, 167–8, 185, 207–11,
216, 224–9, 303–5, 333–4, 341–2,
350–9

uncertainty principle, 433
uniqueness theorems, 27, 31, 347

time-domain fields, 28
time-harmonic fields, 31

unit step function, 62, 335, 340, 345, 353,
359

variational lemma, 61
variational methods, 49, 54, 94, 256, see also

variational principles
variational principles, 49, 93–104, see also

variational methods
vector field, 386, 408
velocity

energy, 40, 45
group, 40–2, 45, 250
phase, 39, 250
signal, 40, 42

Volterra equation, 205

wave equations, 19, 69, 73–4, 87–8,
130, 140, 296, 363, 367, 401,
439

wavefronts, 299
wavefunction, 430–2, 435–8, 448,

465
waveguide, 130–40, 177–8, 205–11, 235–7,

330–42
cut-off wavenumber of, 133
discontinuity, 254–8
inhomogeneous, 305–9
vector modal function of, 133, 236, 256,

331
wavepacket

spatial, 39
temporal, 39

weak convergence, 289
weak formulation, 68
weakly guiding approximation,

319
well posed problem, 54
weyl theorem, 289
WKB approximation, 298
world line, 390
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