Symposium on VLSI Circuits Short Course 2

Migrating Analog/Mixed-Signal (AMS) Designs to FinFET

Alvin L.S. Loke alvin.loke@ieee.org

Qualcomm Technologies, Inc.

Migrating Mobile SoC to 14nm FinFET

Snapdragon™ 820

Qualcomm Technologies' first 14nm product

AMS content

- PLLs & DLLs
- Wireline I/Os
- Data converters
- Bandgap references
- Thermal sensors
- Regulators
- ESD protection

Terzioglu, Qualcomm [1]

Outline

- MOSFET, Fully-Depleted & FinFET Basics
- Technology Considerations
- Analog/Mixed-Signal Design Considerations
- Conclusion

Basic MOSFET Operation

- Gate/body charge \rightarrow *E*-field \rightarrow energy band bending
- V_{GS} modulates surface conductivity to induce S/D short

Subthreshold Fight for Body Charge

- Capacitor divider dictates source-barrier $\phi_s \& I_D$
- C_B , $C_D << C_{ox}$ \rightarrow weak body effect, weak DIBL, high I_{on}/I_{off}

Less Drain/Body Coupling, Lower Supply

- Steeper subthreshold swing S (ideally 60mV/decade @ 300K)
- Lower V_{DD} , lower power for same $I_{off} \& I_{Dsat}$
- Fully-depleted finFET enables steeper S & less DIBL

Less DIBL -> Stronger FET for Digital

$$I_{eff} = \frac{I_{LO} + I_{HI}}{2}$$

$$I_{LO} @ V_{GS} = \frac{1}{2}V_{DD}, V_{DS} = V_{DD}$$

$$I_{HI} @ V_{GS} = V_{DD}, V_{DS} = \frac{1}{2}V_{DD}$$

I_{eff} is better than *I_{Dsat}* for estimating inverter *CV/I* switching delay

Less DIBL \rightarrow higher $I_{eff} \& r_{out}$ for same I_{Dsat}

Na et al., IBM [2] Wei et al., Stanford [3]

Concept of Fully-Depleted

- Dopants *not* fundamental to field-effect action, just provide mirror charge to set up *E*-field to induce surface inversion
- Remove body dopants & insert heavily-doped conductive "shield" beneath undoped body to provide mirror charge (extreme retrograded-well)
- Body becomes fully-depleted as it has no charge to offer
- Implementations
 - Planar on bulk
 - Planar on SOI (FD-SOI)
 - 3-D (e.g., finFET) on bulk
 - 3-D on SOI

Yan et al., Bell Labs [4] Fujita et al., Fujitsu [5] Cheng et al., IBM [6]

Fully-Depleted Considerations

- Shield must be near drain to pull drain E-fields away from source barrier → less DIBL
- No dopant scattering in body → higher channel mobility
- Less ΔV_{GS} to transition from flatband to inversion, so must adjust gate work function Φ_M (¼-gap vs. band-edge)
- In practice, still need some body dopants to counterdope S/D diffusion & adjust V_T
- Classic V_T condition no longer makes sense since $\phi_p = 0$

Skotnicki, STMicroelectronics [7] Chang *et al.*, UC Berkeley [8]

Fully-Depleted Eliminates RDF

- Body dopants vary in number but also in location
 - Variation in length of *E*-field lines integrates to variation in band-bending or V_T
- In fully-depleted, *E*-field lines have much tighter length distribution which eliminates V_T variation due to RDF
 - But V_T becomes very sensitive to geometric variation

Asenov, U Glasgow [9]

Migrating to Fully-Depleted FinFET

Outline

- MOSFET, Fully-Depleted & FinFET Basics
- Technology Considerations
 - Mechanical Stressors
 - High-K/Metal-Gate
 - Middle-Of-Line
 - Multiple Patterning
- Analog/Mixed-Signal Design Considerations
- Conclusion

Journey to FinFETs

- 16/14nm employs many new technology elements introduced across multiple earlier nodes
- Each element adds new design complexity

Technology Element	Foundry Debut	Reason Required
Mechanical stressors	90nm	Mobility boost for more FET drive & higher I_{on}/I_{off}
HKMG replacement gate integration	28nm (HK-first) 20nm (HK-last)	Higher C_{ox} for more FET drive & channel control
Middle-of-line	20nm	Contact FET diffusion & gate with tighter CPP
Multiple-patterning	20nm	Sub-80nm pitch lithography without EUV

Mechanical Stressors

- Carrier mobility depends on lattice strain (Si is piezoresistive)
- Grow stressors to induce channel strain along L
 - Tensile for NMOS, compressive for PMOS
 - Techniques: STI fill, S/D epitaxy, gate stress memorization
- Anisotropic mobility & stress response
 - L vs. W direction, (100) fin top vs. (110) fin sidewall

Garcia Bardon *et al.*, IMEC [11] Liu *et al.*, Globalfoundries [12]

Stress-Related Layout Effects

- Stressors are stronger in 16/14nm for more FET drive,
 so layout effects can be more severe → schematic/layout ∆
- Stress build-up in longer active, I_D /fin not constant vs. # fins
- NMOS/PMOS stress mutually weaken each other
- Interaction with stress of surrounding isolation

Faricelli, AMD [13] Lee *et al.*, Samsung [14] Sato *et al.*, IBM [15]

Electrical Chip-Package Interaction

- FET mobility sensitive to stress from die attach to package
- Package stress can impact long-range device matching (e.g., I/O impedance, bias references, data converters)

Terzioglu, Qualcomm [1]

High-K/Metal-Gate (HKMG)

- Higher C_{ox} without I_{gate} & poly depletion, but finicky interface
- Replace gate after S/D anneal for stable $V_T = f(\Phi_M)$
- Gate = (ALD MG stack to set Φ_M) + (metal fill to reduce R_G)
- Variation in MG grain orientation $\rightarrow V_T$ variation
- HK-first → HK-last for better gate edge control

Gate Density Induced Mismatch

- Thin MG layer that sets gate Φ_{M} is very resistive
- Gate charge spills into metal fill
 → gate Φ_M is modulated by gate height & also gate L
- V_T varies from gate CMP dishing/erosion \rightarrow matching concern
- Some gate types exposed to multiple CMP → more variation

Yang et al., Qualcomm [18]

Gate Resistance Very Significant

- Φ_M metal very resistive, little conductive metal fill for short L
- Δ model approximation
 - Accounts for distributed RC, reality way more complicated
 - $R_G/3$ for 1-side gate contact, $R_G/12$ for 2-side contact
 - R_G for daisy chain connection

Wu & Chan, HKUST [19]

Metal-gate Boundary Effect (MBE)

- V_T affected when near interface between two Φ_M metals
- 2 hypotheses: Φ_M metal interdiffusion, etch-related footing
- Eliminate effect using only one Φ_M in each gate \rightarrow area bloat

Yamaguchi et al., Toshiba [20]

Complex Middle-Of-Line (MOL)

 Difficult to land diffusion & gate contacts on tight CPP using only one contact mask

 Need separate contacts to diffusion & to gate, also insert via under Metal-1

• BEOL, MOL & R_{ext} parasitic resistance

are significant

Standard cell resistance channel intrinsic channel FET parasitic

Terzioglu, Qualcomm [1] Rashed *et al.*, Globalfoundries [21]

Self-Aligned Contact (SAC)

- Allows misaligned contact to land on gate without short
- Etch gate partially after replacement gate CMP, then deposit insulator on top of gate → protects gate during contact etch
- R_G increases & has more variation from partial (recess) etch

Auth *et al.*, Intel [22]

Multiple-Patterning Lithography

- Needed for sub-80nm pitch, EUV not ready for HVM
- 1. Pitch-split mask decomposition (coloring) → complex DRC
- 2. Cut masks to reduce line-end-to-end spacing
- 3. Spacer-based self-aligned double patterning (SADP) for fins

Dorsch, www.semi.org [23]

Outline

- MOSFET, Fully-Depleted & FinFET Basics
- Technology Considerations
- Analog/Mixed-Signal Design Considerations
 - General Principles
 - FETs
 - Passives
- Conclusion

Designing with FinFET

- More drive current for given footprint
- Quantized channel width (challenge for logic & SRAM, OK for analog)
- Better r_{out} (less DIBL) but shorter L_{max}
- Essentially no body effect
- Mismatch variation depends on fin width/ height/shape, HK grains, gate density, stress, less on RDF
- Lower C_j but higher C_{gd} & C_{gs} coupling
- Higher R_s & R_d spreading resistance
- Less junction area efficiency to wells (higher diode series R_D , latch-up)
- No native (zero-V_T) NMOS

Auth et al., Intel [22] Sheu, TSMC [24]

Porting AMS Circuits to FinFET

- For most part can be done with expected node-to-node tweak
- Usual caveats in bleeding-edge nodes
 - Technology & design concurrently developed for faster time-to-market
 - Models are speculative → expect late updates
 & late inclusion of new effects
 - Stay vigilant on Si/model updates that can break design
 - Choose logic-centric circuits/architectures (fab's priority), desensitize to or calibrate out model uncertainty
- Minimize churn with some upfront layout bloat to avoid constructs made for logic area reduction, e.g.,
 - Single gate with more than one Φ_M metal
 - Devices with no active edge dummies

Bair, AMD [25]

FET Modeling for Analog vs. Digital

- SoC technology/modeling driven by logic & SRAM
- Device targeting & model correlation at few I-V & C-V points for limited V_{DD} values

typical analog biasing $V_{GS} = V_T$ to $V_T + 0.2V$

- Analog also needs accurate slope modeling $(g_{m'}, g_{ds})$ which gets some attention but not priority
- Corner models (e.g., SS, FF) don't necessarily correlate to analog corners

Feng *et al.*, Globalfoundries [26] McAndrew *et al.*, Freescale [27]

Composite FET

- Need high r_{out} for accurate AC *V-to-I* conversion \rightarrow long *L*
- L_{max} limited by gate litho/etch loading & HKMG integration
- Composite FET stack with shorted gate is now commonplace in current mirrors, op amps, data converters, etc.
 - Only top FET in saturation, all other FETs in triode for source degeneration
 - Not a cascode
 - Insignificant body effect
 - Intermediate parasitic C_{gd} , C_{gs} & C_j
- Designers mainly interested in composite FET characteristics
 - Co-development with EDA vendors

Don't Trust Simulator V_T - Many Still Do

- Tough to stack >3 devices in saturation with low V_{DD}
- Can only operate devices in weak/ moderate (not strong) inversion
- Dangerous to design to "usual" V_T reported by simulator
 - Can get wrong FET sizing to ensure $(V_{GS}-V_T)>0$ vs. low offset (e.g., diff pair)
 - Correct goal: burn enough I_D for $g_m \& BW \rightarrow g_m/I_D$ method
- Fab typically measures V_T using constant-current method
 - Simulators now conveniently report constant-current V_T
 - Best to treat V_T as reference point that anchors I-V

Loke *et al.*, AMD [28] Silveira *et al.*, U República [29]

Stronger Parasitic Coupling

- S/D trench contacts & gate form vertical plate capacitors
- Worse supply rejection in LDO regulators
- Kickback noise to analog biasing signals, e.g., DDR RX
- Adding capacitance increases area & wake-up time (concern for burst-mode operation, e.g., IoT)

I/O Voltage Not Scaling With Core Supply

- Many I/Os still use 1.8V signaling despite core V_{DD} reduction
 - Many peripheral ICs remain at lower cost nodes
 - Backward compatibility is key constraint for some I/Os
- Increasingly tough to keep 1.8V thick-oxide devices
 - Thick ALD gate oxide not easy for tighter fin pitch
 - Voltage level shifters must deal with wider voltage gap
 - Some standards no longer support legacy modes in favor of higher link rate & lower power (e.g., LPDDR5)
- Need ecosystem consensus
 - Industry has migrated from 5.0V to 3.3V to 2.5V to 1.8V
 - Obvious power & area benefit to migrate to say 1.2V
 - 1.8V remains an industry-wide issue until next transition

Wei et al., Globalfoundries [30]

16/14nm Passives

- Resistors
 - Precision MOL thin film resistor (migration from poly)
 - Metal-gate resistor
- Capacitors
 - Metal-Oxide-Metal (MOM)
 - Accumulation-mode varactor
 - Metal-Insulator-Metal (MIM) extra cost, less common
- Inductors typically top BEOL layers
- PNP-BJT (analog diode) & ESD diodes
- Don't assume models capture all key effects even though we're the only customer

Resistor Options

- Precision MOL resistor (thin metal compound on STI/ILD)
 - Difficult to build poly resistor ends in HK-last process
 - Ends not well defined, current spreading near contacts
 - Decouples resistor integration from FEOL
- Metal-gate resistor
 - Available for free
 - Not so well controlled
 - ρ_{sheet} depends on gate density, W, W_{max} limit

Capacitor Options

- Metal-Oxide-Metal (MOM)
 - Rarely has scaling helped analog ©
 - Be careful with non-physical BEOL overlay corner models

- Accumulation-mode varactor
 - C-V transition may shift from Φ_M tuning for fully-depleted
 - Steeper transition for higher K_{VCO}

PNP-BJT & ESD Diodes

- Fin width << fin pitch
 → higher R_{series} than planar
- Hard to scale ESD area without reducing ESD HBM/CDM limits
- Maturity of ESD models often lags during technology development

Low-Voltage Bandgap Reference

$$V_{ref} = \frac{PR_3}{R_1} V_D + \frac{PR_3}{R_2} \frac{\eta kT}{q} \ln N$$
CTAT PTAT

- PTAT+CTAT using currents
- More $R_D \rightarrow \text{smaller } N$
- Higher $V_D \rightarrow$ headroom issue

Banba et al., Toshiba [31]

Thermal Sensor with R_D Cancellation

N+1 identical I_o current sources partitioned into 1, M & N sources

- Measure ΔV_{BF} at current ratios of 1:M & 1:N to cancel diode R_D
- Swap amp inputs to cancel diode mismatch
- Average out I_o variation with **Dynamic Element Matching**

$$\Delta V_{BE,M} = \frac{\eta kT}{q} \ln M + (M-1) I_o R_D$$

$$\Delta V_{BE,N} = \frac{\eta kT}{q} \ln N + (N-1) I_o R_D$$

$$\frac{\eta kT}{q} = \frac{(N-1)\Delta V_{BE,M} - (M-1)\Delta V_{BE,N}}{(N-1)\ln M - (M-1)\ln N}$$

ON Semiconductor [32]

Conclusion

- 14nm mobile SoCs are already in production; no showstoppers to migrate AMS designs to finFET
- 16/14nm AMS design is about understanding all the precursor technologies that led to finFET as much as understanding finFET itself
- FinFET/HKMG/MOL parasitics & local layout effects have significantly increased AMS design effort
- Logic & SRAM will continue to drive CMOS scaling priorities into 10nm & 7nm, so expect AMS designs to continue adapting

References (1/3)

- [1] E. Terzioglu, "Design and technology co-optimization for mobile SoCs," in *Int. Conf. on IC Design & Technology*, Keynote, Leuven, Belgium, Jun. 2015.
- [2] M. Na et al., "The effective drive current in CMOS inverters," in *IEEE Int. Electron Devices Meeting Tech. Dig.*, San Francisco, CA, Dec. 2002, pp. 121-124.
- [3] L. Wei et al., "Exploration of device design space to meet circuit speed targeting 22nm and beyond," in *Proc. Int. Conf. Solid State Devices and Materials*, Sep. 2009, pp. 808-809.
- [4] R.-H. Yan et al., "Scaling the Si MOSFET: From bulk to SOI to bulk," IEEE Trans. Electron Devices, vol. 39, no. 7, pp. 1704–1710, Jul. 1992.
- [5] K. Fujita *et al.*, "Advanced channel engineering achieving aggressive reduction of V_T variation for ultralow power applications," in *IEEE Int. Electron Devices Meeting Tech. Dig.*, pp. 32.3.1-32.3.4, Dec. 2011.
- [6] K. Cheng *et al.*, "Fully depleted extremely thin SOI technology fabricate by a novel integration scheme featuring implant-free, zero-silicon-loss, and faceted raised source/drain," in *IEEE Symp. VLSI Technology Tech. Dig.*, pp. 212-213, Jun.2009.
- [7] T. Skotnicki, "CMOS technologies- trends, scaling and issues," in *IEEE Int. Electron Devices Meeting Short Course*, Dec. 2010.
- [8] L. Chang et al., "Gate length scaling and threshold voltage control of double-gate MOSFETs," in *IEEE Int. Electron Devices Meeting Tech. Dig.*, San Francisco, CA, Dec. 2000, pp. 719-722.
- [9] A. Asenov, "Suppression of random dopant-induced threshold voltage fluctuations in sub-0.1- μ m MOSFET's with epitaxial and δ -doped channels," *IEEE Trans. Electron Devices*, vol. 46, no. 8, pp. 1718-1724, Aug. 1999.
- [10] X. Huang et al., "Sub-50nm finFET: PMOS," in *IEEE Int. Electron Devices Meeting Tech. Dig.*, Washington, DC, Dec. 1999, pp. 67-70.
- [11] M. Garcia Bardon et al., "Layout-induced stress effects in 14nm & 10nm finFETs and their impact on performance," in *IEEE Symp. VLSI Technology Tech. Dig.*, Kyoto, Japan, Jun. 2013, pp. 114-115.

References (2/3)

- [12] Y. Liu *et al.*, "NFET effective work function improvement via stress memorization technique in replacement metal gate technology," in *IEEE Symp. VLSI Technology Tech. Dig.*, Kyoto, Japan, Jun. 2013, pp. 198-199.
- [13] J. Faricelli, "Layout-dependent proximity effects in deep nanoscale CMOS," in *Proc. IEEE Custom Integrated Circuits Conf.*, San Jose, CA, Sep. 2010, pp. 1-8.
- [14] C. Lee et al., "Layout-induced stress effects on the performance and variation of finFETs," in *IEEE Int. Conf. on Simulation of Semiconductor Processes and Devices*, Washington, DC, Sep. 2015, pp. 369-372.
- [15] F. Sato et al., "Process and local layout effect interaction on a high performance planar 20nm CMOS," in IEEE Symp. VLSI Technology Tech. Dig., Kyoto, Japan, Jun. 2013, pp. 116-117.
- [16] C. Auth et al., "45nm high-k + metal-gate strain-enhanced transistors," in *IEEE Symp. VLSI Technology Tech. Dig.*, Honolulu, HI, Jun. 2008, pp. 128-129.
- [17] P. Packan et al., "High performance 32nm logic technology featuring 2nd generation high-k + metal gate transistors," in *IEEE Int. Electron Devices Meeting Tech. Dig.*, Baltimore, MD, Dec. 2009, pp. 1-4.
- [18] S. Yang *et al.*, "High-performance mobile SoC design and technology co-optimization to mitigate high-K metal gate process variations," in *IEEE Symp. VLSI Technology Tech. Dig.*, Honolulu, HI, Jun. 2014 pp. 1-2.
- [19] W. Wu and M. Chan, "Gate resistance modeling of multifin MOS devices," *IEEE Electron Device Letters*, vol. 27, no. 1, pp. 68-70, Jan. 2006.
- [20] M. Yamaguchi et al., "New layout dependency in high-K/metal gate MOSFETs," in IEEE Electron Devices Meeting Tech. Dig., Washington, DC, Dec. 2011, pp. 579-582.
- [21] M. Rashed et al., "Innovations in special constructs for standard cell libraries in sub 28nm technologies," in *IEEE Int. Electron Devices Meeting Tech. Dig.*, Washington, DC, Dec. 2013, pp. 248-251.
- [22] C. Auth *et al.*, "A 22nm high performance and low-power CMOS technology featuring fully-depleted trigate transistors, self-aligned contacts and high density MIM capacitors," in *IEEE Symp. VLSI Technology Tech. Dig.*, Honolulu, HI, pp. 131-132, Jun. 2012.

References (3/3)

- [23] J. Dorsch, "Changes and challenges abound in multi-patterning lithography," *Semiconductor Manufacturing & Design Community*, www.semi.org/en/node/54491, Feb. 2015.
- [24] B. Sheu, "Circuit design using finFETs," in *IEEE Int. Solid-State Circuits Conf.*, Tutorial T4, San Francisco, CA, Feb. 2013.
- [25] L. Bair, "Process/product interactions in a concurrent design environment," in *Proc. IEEE Custom Integrated Circuits Conf.*, San Jose, CA, Sep. 2007, pp. 779-782.
- [26] J. Feng et al., "Bridging design and manufacture of analog/mixed-signal circuits in advanced CMOS," in IEEE Symp. VLSI Technology Tech. Dig., Kyoto, Japan, Jun. 2011, pp. 226-227.
- [27] C. McAndrew *et al.*, "Corner models: inaccurate at best, and it only gets worst...," in *Proc. IEEE Custom Integrated Circuits Conf.*, San Jose, CA, Sept. 2013, pp. 1-4.
- [28] A. Loke *et al.*, "Constant-current threshold voltage extraction in HSPICE for nanoscale CMOS analog design," in *Synopsys Users Group (SNUG) Conf.*, San Jose, CA, Mar. 2010, pp. 1-19.
- [29] F. Silveira et al., "A g_m/I_D based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator OTA," *IEEE J. Solid-State Circuits*, vol. 31, no. 9, pp. 1314-1319, Sep. 1996.
- [30] A. Wei et al., "Challenges of analog and I/O scaling in 10nm SoC technology and beyond," in IEEE Electron Devices Meeting Tech. Dig., San Francisco, CA, Dec. 2014, pp. 462-465.
- [31] H. Banba *et al.*, "A CMOS bandgap reference circuit with sub-1-V operation," *IEEE J. Solid-State Circuits*, vol. 34, no. 5, pp. 670-673, May 1999.
- [32] "ADT7461 ±1°C temperature monitor with series resistance cancellation," ON Semiconductor Publication No. ADT7461/D, Mar. 2014.

Acknowledgments

- Esin Terzioglu
- Sam Yang
- Jihong Choi
- Albert Kumar
- Tin Tin Wee
- Ray Stephany
- Lixin Ge
- Bo Yu
- Zhiqin Chen
- Stanley S.C. Song

- Steven Dillen
- Stephen Knol
- Patrick Drennan
- Ken Rim
- Chidi Chidambaram
- Yanxiang Liu
- Jun Yuan
- Masoud Roham
- Reza Jalilizeinali
- Xiaohua Kong