






ELECTRIC QUANTITIES

QUANTITY SYMBOL UNIT UNIT ABBERVIATION

Time t second s
Frequency (cyclic) f hertz Hz
Frequency (radian) ω radian/sec rad/s
Phase angle θ,ϕ degree or radian � or rad
Energy w joule J
Power p watt W
Charge q coulomb C
Current i ampere A
Electric field E volt/meter V/m
Voltage v volt V
Impedence Z ohm Ω
Admittance Y siemen S
Resistance R ohm Ω
Conductance G siemen S
Reactance X ohm Ω
Susceptance B siemen S
Inductance, self L henry H
Inductance, mutual M henry H
Capacitance C farad F
Magnetic flux ϕ weber wb
Flux linkages λ weber-turns wb-t
Power ratio log10ðp2=p1Þ Bel B

STANDARD DECIMAL PREFIXES

MULTIPLIER PREFIX ABBREVIATION
1018 exa E
1015 peta P
1012 tera T
109 giga G
106 mega M
103 kilo k
10−1 deci d

MULTIPLIER PREFIX ABBREVIATION
10−2 centi c
10−3 milli m
10−6 micro μ
10−9 nano n
10−12 pico p
10−15 femto f
10−18 atto a
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P R E F A C E

W H A T I S D I F F E R E N T A B O U T T H I S T E X T ?
Our approach to the art of teaching circuits in our textbook differs from most others.
We realize that electric circuits are intimately integrated into so much of our modern
technology that many students from different disciplines need to learn about them.
Studying circuits can be daunting, but interesting, practical, and rewarding. This can
be true even for students who are not majoring in electrical or computer engineering.
We believe thatmost students who pursue engineering studies wish to be creative and
design things. Most circuits texts do not focus on this basic desire, rather spend their
pages teaching why and how electric circuits work without affording the student an
opportunity to put this learning into practice. The longer it takes students to try their
hand in designing things, the more likely it is that they will become disillusioned and
frustrated—perhaps even to the point of changing to a different major.

We have long believed that an early introduction to design and design evaluation
raises the excitement level and greatly increases student interest in their chosen dis-
cipline. Over 50 years of combined teaching experience at the USAF Academy, the
University of Denver, the University of Colorado at Denver, and the Air Force Insti-
tute of Technology, has only served to strengthen our belief. This new edition
furthers this strategy by adding more design and evaluation examples, exercises,
homework problems, and real-world applications. In addition, students today solve
problems using computers, by hand, and with a calculator. Access to personal com-
puters, laptops, notebook computers, and “smart” devices is nearly ubiquitous, and
key software used in circuit analysis and design has become available for free or at
very deep discounts for students. This edition of our text includes more software
examples, exercises, and discussions geared to making the study of circuits more
in line with the interests of today’s students. Our text has always included software,
but generally as an extension for solving circuits by hand. This edition continues our
effort begun with the sixth edition by integrating software intimately into the solution
of circuit problems whenever and wherever it really helps to solve the problems. It
still recognizes that using software does not replace the intuition that engineers must
develop to analyze, design, and make smart judgments about different working solu-
tions or designs.

The eight edition of The Analysis and Design of Linear Circuits improves on the
seventh edition and remains friendly to users who prefer a Laplace-Early approach
championed in our first edition, or those favoring the more traditional Phasor-First
approach toAC circuits. A later section discusses how to use this text to pursue either
approach using three different focuses. In this edition, we have addedmore skill-level
examples, exercises, and problems that can help develop the student’s confidence in
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mastering the different objectives. The eight edition assumes that the same student
prerequisites as past editions and continues to rely on students having access to per-
sonal computers—although computer access is not essential for using this textbook—
we believe it improves and expands learning. This edition targets students of all engi-
neering disciplines who need an introductory circuit analysis course of one or two
terms. The eight edition continues the authors’ combined commitment to providing
a modern, different, and innovative approach to teaching analysis, design, and design
evaluation of electric circuits.

C O N T I N U I N G F E A T U R E S
O B J E C T I V E S

This text remains structured around a sequence of carefully defined cognitive learn-
ing objectives and related evaluation tools based on Bloom’s Taxonomy of Educa-
tional Objectives. The initial learning objectives focus on enabling skills at the
knowledge, comprehension, and application levels of the taxonomy that we call
Chapter LearningObjectives. As students demonstrate mastery of these lower levels,
they are introduced to higher level objectives involving analysis, synthesis (design),
and evaluation. Each learning objective is explicitly stated in terms of expected stu-
dent proficiency in the homework sections, and each is followed by at least 10 home-
work problems specifically designed to evaluate student mastery of the objective.
This framework has been a standard feature of all eight editions of this book and
has allowed us to maintain a consistent level of expected student performance over
the years. We also list our objectives in the chapter openers to orient the student to
the expected outcomes. These objectives make it easier to assess student learning and
prepare for accreditation reviews. To fulfill ABET Criterion 3: The program must
have documented student outcomes that prepare graduates to attain the program edu-
cational objectives. And to fulfill Criterion 4: The program must regularly use appro-
priate, documented processes for assessing and evaluating the extent to which the
student outcomes are being attained. The results of these evaluations must be system-
atically utilized as input for the continuous improvement of the program. Other avail-
able information may also be used to assist in the continuous improvement of the
program.

I N T E G R A T I N G P R O B L E M S

Every homework section ends with several integrating problems that test mastery of
concepts that cover several objectives. These more in-depth problems test whether
the student not only has mastered individual objectives but also was able to integrate
knowledge across several objectives.

C I R C U I T A N A L Y S I S A N D D E S I G N

Our experience convinces us that an interweaving of analysis and design topics rein-
forces a student’s grasp of circuit analysis fundamentals. Early involvement in design
provides motivation as students apply their newly acquired analysis tools to practical
situations. Using computer simulation software to verify their designs gives students
an early degree of confidence that they have actually created a design that meets
stated specifications. Ideally, a supporting laboratory program where students actu-
ally build and test their designs provides the final confirmation that they can create
useful products. Design efforts as described in this text are very useful in helping to
meet ABET’s design Criterion 3(c): an ability to design a system, component, or
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process to meet desired needs. We identify design examples, exercises, and homework

problems with an icon .

D E S I G N E V A L U A T I O N

Realistic design problems do not have unique solutions, so it is natural for students to
wonder if their design is a good one. Using smart judgment to compare alternative
solutions is a fundamental trait of good engineering. The evaluation of alternative
designs introduces students to real-world engineering practice. Our text includes
judgment problems that ask students, for example, to evaluate an “off-the-shelf”
design and ask if it could meet a specific need. In such problems, we ask the student
“would you buy it?”, or would you buy it if one change was allowed to be made to it?
Including design and the evaluation of design in an introductory course helps to con-
vince students that circuit courses are not simply vehicles for teaching routine skills,
such as node-voltage and mesh-current analyses, but also a vehicle for learning and
practicing engineering judgment. This edition offers continued coverage of design
and evaluation among the worked examples, exercises, and homework problems.
We use software extensively to help students visualize specifications, alternatives,
and their design results. This, in turn, helps them to create better designs and make
smart choices between competing designs. Evaluation generally involves the practi-
cal side of design and can support ABET Criterion 3(c)—specifically to create
designs … within realistic constraints such as economic, environmental, social, polit-
ical, ethical, health and safety, manufacturability, and sustainability.We identify eval-

uation examples, exercises, and homework problems with an icon .

T H E O P A M P
A central feature of this text continues to be an early introduction and integrated
treatment of the OP AMP. The modular form of OP AMP circuits simplifies analog
circuit analysis and design by minimizing the effects of loading. This feature allows
the interconnection of simple building blocks to produce complex signal processing
functions that are especially useful to instrumentation and signal shaping applica-
tions. The close agreement between theory, simulation, and hardware allows stu-
dents to analyze, design, and successfully build useful OP AMP circuits in the
laboratory. The text covers numerous OP AMP applications, such as digital-to-
analog conversion, transducer interface circuits, comparator circuits, block diagram
realization, first-order filters, and multiple-pole active filters. These applications are
especially useful to students from other engineering disciplines that require knowl-
edge of instrumentation, interfacing, filtering, or signal processing.

L A P L A C E T R A N S F O R M S

Laplace transforms are used to solve differential equations using algebraic techni-
ques. In circuits, Laplace transforms are used to treat important concepts such as
zero-state and zero-input responses, impulse and step responses, convolution, fre-
quency response, and filter design. An important pedagogical question is where
Laplace transforms should be taught—in the Circuits course, the Signals and Systems
course, a Differential Equations course, or elsewhere? The traditional approach in
circuits has been to first teach phasors and use them to study ac circuit analysis,
steady-state ac power, polyphase circuit analysis, magnetically coupled circuits,
and frequency response. This extended treatment of phasor analysis means that
Laplace transforms are often delayed to the last weeks of the second semester
and treated as an advanced topic along with Fourier methods and two-port networks.
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Typically, then, Laplace transforms are taught in earnest in a Signals and Systems
course, where their linkage to phasors is often overlooked. We have long advocated
an early Laplace approach, one in which Laplace transforms are introduced and
applied to circuit analysis before phasors are introduced. The advantage of treating
Laplace-based circuit analysis first is that once mastered, it makes learning phasor-
based analysis easier and more intuitive. Students quickly make the connection
between phasor analysis and the concepts of network functions, transient response,
and sinusoidal steady-state response developed through s-domain circuit analysis.
We do not claim that Laplace analysis is more fundamental or even more important
than phasor analysis. We do claim that the learning effort needed to master both pha-
sor analysis and Laplace analysis is not a zero-sum game. Our experience is that less
classroom time is needed to ensure mastery of both methods of analysis when
Laplace transform analysis is treated before phasor analysis. Emphasizing transform
methods in the circuit course also better prepares students to handle the profusion of
transforms they will encounter in subsequent Signals and Systems courses.

S I G N A L S A N D S I G N A L P R O C E S S I N G

We begin our treatment of dynamic circuits with a separate chapter on waveforms
and signal characteristics. This chapter gives students early familiarity with important
input and output signals encountered in the study of linear circuits. Introducing sig-
nals at the beginning of dynamic circuit analysis lets students become comfortable
with time-varying signals without having to simultaneously deal with applying them
to circuits. A further emphasis on signal processing and systems is achieved through
the use of block diagrams, input–output relationships, and transform methods. The
ultimate goal is for students to understand that time-domain waveforms and
frequency-domain transforms are simply alternative ways to characterize signals
and signal processing with each domain approach providing different insight into
the circuit’s performance. Viewing signals in both domains naturally leads to discus-
sions of important concepts such as signal bandwidth, signal sampling, and reciprocal
spreading. It is also useful knowledge in choosing alternative design approaches to
filters.

C O M P U T E R T O O L S

Our philosophy recognizes that today students come to the Circuits course being
comfortable using a computer. Many already know how to use several computer
tools such as spreadsheets and word processing. Somemay be familiar with math sol-
vers and possibly simulation software. One of our goals is to help them learn how to
effectively use these tools. Knowing when to use these tools and how to interpret the
results is essential to understanding circuits. We use three types of computer pro-
grams in this text to illustrate computer-aided circuit analysis, namely spreadsheets
(Excel®), math solvers (MATLAB®), and circuit simulators (Multisim®). Begin-
ning with Chapter 1, examples, exercises, and homework problems related to
computer-aided circuit analysis are integrated into all chapters. The purpose of
the examples is to show students how to develop a problem-solving style that includes
the intelligent use of the productivity tools routinely used by practicing engineers.
Exercises following most examples help students immediately practice the software
skill demonstrated in the example. There are 32 examples and 53 exercises that use
computer tools in their solution. There are 325 homework problems that require the
use of a computer tool and all are identified by a computer icon .
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We have created a Web Appendix D that includes additional examples that make
use of software tools. This approach of integrating software tools into circuits directly
supports ABET’s Criterion 3(k)—an ability to use the techniques, skills, and modern
engineering tools necessary for engineering practice.

A P P L I C A T I O N E X A M P L E S

The text has many examples that link directly to practical uses. The purpose of these
examples is to show the student that the topics being covered are more than a ped-
agogical exercise. These real-world examples find use in common applications and
products. We have increased to 44 the number of Application Examples. They
include topics, such as cathode-ray tube (CRT) operation, batteries, source–load
interfacing, bipolar junction transistor (BJT) operation, digital multimeters,
common-mode rejection ratio (CMRR) in instrumentation amplifiers, attenuation
pads, electrocardiograph (ECG), and clock-timing waveforms, three on how to
obtain a waveform equation from an oscilloscope, sample-hold circuits, resonance,
impedance bridge, gain-bandwidth product, digital filtering, frequency content of
a full-wave rectifier, isolation- and auto-transformers, and more. These examples
can be used to support ABET Criterion 3(j)—a knowledge of contemporary issues.

T E X T A N D W E B A P P E N D I C E S

Sincemany students may need to review this material, we have included a text appen-
dix on complex numbers. There are also fiveWeb appendices: One on the solution of
linear equations (A), one on Butterworth and Chebyshev poles (B), a new appendix
on Fourier transforms (C), one on software tools (D), and one with all the Exercises
worked out (E). These appendices are available at www.wiley.com/college/thomas.

N E W F E A T U R E S O F T H E E I G H T E D I T I O N
S K I L L S : B U I L D I N G E X A M P L E S , E X E R C I S E S , A N D P R O B L E M S

Users have asked that we include additional easier, skills-building examples, exercises,
and problems as a means of helping students build confidence. Throughout the text,
but especially in the early chapters, we have added several one-concept examples and
exercises to key sections. In addition, we added numerous such problems in support of
each learning objective. These skill-building items are at the Bloom’s Taxonomy
“Comprehension” level, rather than themore advanced “Application” and “Analysis”
levels. Solutions to Exercises are in a special Web Appendix E.

C I R C U I T D E S I G N A N D D E S I G N E V A L U A T I O N

Our emphasis on creating solutions and choosing the better or best one has been
strengthened with the inclusion of 64 design examples, 81 design exercises, and
263 design homework problems. There are dozens of design evaluation examples,
exercises, and homework problems. In this edition, there are 21 evaluation examples,
16 evaluation exercises, and 79 homework problems that require applying judgment.

F R E Q U E N C Y R E S P O N S E A N D A C T I V E F I L T E R S
We have continued to improve Chapter 12 on frequency response and Chapter 14 on
active filters. These chapters are excellent means of understanding the frequency
behavior of circuits. We have maintained our integration of software to assist the stu-
dent in understanding frequency behavior through Bode diagrams and pole-zero dia-
grams in both chapters. Users have told us that Chapter 14 often proves useful to
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students in subsequent design courses where knowledge of active filters may be
needed. As a result, we have sustained our coverage of active multipole notch and
tuned filters. Both chapters have more design and evaluation examples as well as
more homework problems.

A C P O W E R S Y S T E M S

In our chapter on three-phase AC power circuits, we have kept it in line with what
today’s students should know. We emphasized power flow and systems in both
single phase and three phase. We added new simulation examples, exercises, and
homework.

T W O P O R T S

In response to several users, we have updated and moved the chapter on two ports
(Chapter 17) from themain text to theWeb. Although located on theWeb, this chap-
ter is fully integrated with the text, with examples, exercises, and problems. It has
index references and answers to selected homework problems. We have added dis-
cussion, examples, and exercises to illustrate that two-port parameters are not just
another way to find voltage and current responses. Rather, their primary utility is
to determine global circuit properties such as voltage gain, current gain, feedback,
and Thévenin equivalence. We have added simulation examples to this chapter.

U S I N G T H I S E D I T I O N F O R L A P L A C E E A R L Y
The eight edition is designed so that it can be used as a LaplaceEarly version as well as a
traditional Phasor First version. The phasor analysis chapter (Chapter 8) comes before
the study of Laplace transform techniques (Chapters 9–11). Those wishing to follow the
traditional approach can follow the eighth edition chapter organization through
Chapter 8, on phasor analysis, with a possible delaying of Chapter 7 until the second
semester. Those choosing a Laplace Early approach can follow the present chapter
organization through Chapter 7, skip Chapter 8, and proceed directly to the Laplace
chapters. The current edition includes an introduction to phasor analysis in Sect.
11–5, dealing with the sinusoidal steady state. As a result, Laplace Early users can study
phasor analysis in Chapter 8 at any point after Chapter 11. The following table shows
suggested chapter sequencing for the traditional and Laplace Early approaches for
three different subject matter emphases. The second author used the Traditional–
Electronics sequence at the USAF Academy and has used the Laplace Early–Systems
sequence at the University of Denver. Enough material is available in the printed text
and in the Web appendices to allow the construction of other topic sequences. Other
organizational options are available in the Instructor Manual.

EMPHASIS SEMESTER 1 SEMESTER 2

TRADITIONAL (PHASOR FIRST)

Power 1 2 3 4 5 6 8/7 7/8 15 16 9 10 11 12

Systems 1 2 3 4 5 6 8/7 7/8 9 10 11 12 13 14

Electronics 1 2 3 4 5 6 8/7 7/8 9 10 11 12 14 15/17

LAPLACE EARLY
Power 1 2 3 4 5 6 7 9 10 11 12 8 15 16

Systems 1 2 3 4 5 6 7 9 10 11 12 13 14 8/15

Electronics 1 2 3 4 5 6 7 9 10 11 12 14 15 17
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U S E O F S O F T W A R E I N T H I S E D I T I O N

Software use throughout the text has been significantly increased and strengthened
to include many newMATLAB,Multisim, and Excel examples to help practice using
the software. Although there are many simulation products that can be used, in this
edition, we chose National Instrument’s Multisim® because of its ease of use, low
cost, breath of problems, the ability to insert virtual laboratory instruments in a cir-
cuit, and its easy integration with another NI product, LabView®. There is an
expanded Web Appendix D to simplify students’ use of software. There are 257
homework problems that suggest solutions using MATLAB, Multisim, or both.
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C H A P T E R 1 INTRODUCTION

The electromotive action manifests itself in the form of two effects which I believe must be distinguished from the beginning by a
precise definition. I will call the first of these “electric tension,” the second “electric current.”

André-Marie Ampère, 1820,
French Mathematician/Physicist

Some History Behind This Chapter
André Ampère (1775–1836) was the first to recognize the
importance of distinguishing between the electrical effects
we now call voltage and current. He also invented the galva-
nometer, the forerunner of today’s voltmeter and ammeter.
A natural genius, he had mastered all the then-known math-
ematics by age 12. He is best known for defining the math-
ematical relationship between electric current and
magnetism, now known as Ampère’s law.

Why This Chapter Is Important Today
Welcome to the study of Linear Circuits. In this chapter you
are introduced to the lexicon of electrical engineering. You
will learn both the terminology and the variables that will
be used throughout the book. Important concepts introduced
here are voltage and current, the reference marks used to
define them, and a voltage benchmark called ground. In addi-
tion, you will gain an initial appreciation of the value of the
computational software that is common in the electrical engi-
neering profession.

Chapter Sections
1–1 About This Book

1–2 Symbols and Units

1–3 Circuit Variables

1–4 Computational and Simulation Software Introduction

Chapter Learning Objectives
1-1 Electrical Symbols and Units (Sect. 1–2)

Given an electrical quantity described in terms of words,
scientific notation, or decimal prefix notation, convert
the quantity to an alternative description.

1-2 Circuit Variables (Sect. 1–3)

Given any two of the three signal variables (i, υ, p) or the
two basic variables (q, w), find the magnitude and direc-
tion (sign) of the unspecified variables.

1-3 Software Introductions (Sect. 1–4, Web Appendix D)

Given a simple computational problem, useMATLAB as
an appropriate engineering tool to solve the problem. (We
will introduce the use of Multisim to solve simulation pro-
blems starting in Chapter 2.)
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1–1 A B O U T T H I S B O O K

The basic purpose of this book is to introduce the analysis and design of linear cir-
cuits. Circuits are important in electrical engineering because they process electrical
signals that carry energy and information. For the present we can define a circuit as
an interconnection of electrical devices and a signal as a time-varying electrical entity.
For example, the information stored on an optical disk is recovered in the optical disk
player (e.g., Blu-Ray) as electronic signals, initially stored as discrete (digital) data
that are processed by circuits to generate continuous (analog) audio and video
outputs. In an electrical power system some form of stored energy (coal, nuclear,
hydro, chemical, etc.) is converted to electrical form and transferred to loads, where
the energy is converted into the form (mechanical, light, heat, etc.) required by the
customer. The optical disk player and the electrical power system both involve cir-
cuits that process and transfer electrical signals carrying energy and information.

In this text we are primarily interested in linear circuits. An important feature of a
linear circuit is that the amplitude of the output signal is proportional to the input
signal amplitude. The proportionality property of linear circuits greatly simplifies
the process of circuit analysis and design. Most circuits are linear only within a
restricted range of signal levels. When driven outside this range they become nonlin-
ear, and proportionality no longer applies. Although we will treat a few examples of
nonlinear circuits, our attention is focused on circuits operating within their lin-
ear range.

Our study also deals with interface circuits. For the purposes of this book, we
define an interface as a pair of accessible terminals at which signals may be observed
or specified. The interface idea is particularly important with integrated circuit (IC)
technology. Integrated circuits involve many thousands, indeed millions, of intercon-
nections, but only a small number are accessible to the user. Designing systems using
integrated circuits involves interconnecting complex circuits that have only a few
accessible terminals. This often includes relatively simple circuits whose purpose is
to change signal levels or formats. Such interface circuits are intentionally introduced
to ensure that the appropriate signal conditions exist at the connections between
complex integrated circuits.

Today’s engineers analyze and design circuits using software tools. Using mathe-
matical analysis tools such as MATLAB, MathCad, and Mathematica as well as cir-
cuit simulation tools such as National Instrument’s NI Multisim (Electronic
Workbench) and Cadence (OrCAD), engineers can improve their understanding
and results. As you proceed through this text, we help you develop the software skills
necessary to become practiced in linear circuit design. Although there are many dif-
ferent software programs that you can use effectively to develop these skills, we will
concentrate on MATLAB and Multisim.

C O U R S E O B J E C T I V E S

This book is designed to help you develop the knowledge and application skills
needed to solve three types of circuit problems: analysis, design, and evaluation.
An analysis problem involves finding the output signals of a given circuit with known
input signals. Circuit analysis is the foundation for understanding the interaction of
signals and circuits. A design problem involves devising one or more circuits that per-
form a given signal-processing function. Usually there are several possible solutions
to a design problem. This leads to an evaluation problem, which involves picking the
best solution from among several candidates using factors such as cost, power con-
sumption, and part counts. In real life the engineer’s role is a blend of analysis, design,
and evaluation, and in practice the boundaries between these categories are
often blurred.
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This text contains many worked examples to help you develop your problem-
solving skills. The examples include a problem statement and provide the intermediate
steps needed to obtain the final answer. The examples often treat analysis problems,
although design and evaluation examples are included. This text also contains a num-
ber of exercises that include only the problem statement and the final answer. You
should use the exercises to test your understanding of the circuit concepts discussed
in the preceding section. Solutions to all Exercises are available on Web Appendix E.

Throughout we will show you where it is useful to turn to software to help solve
problems, be they analysis, design, or evaluation. The computer icon identifies
examples, exercises, and problems that are best solved using software tools.

C H A P T E R O B J E C T I V E S

At the start of each chapter we provide three motivational aspects for what you are
about to learn. First, we present a brief perspective of a key historical figure important
to the content of the chapter. Second, we give an overview of why this chapter is impor-
tant to your study. Third, we introduce you to the learning objectives for the chapter.

The chapter learning objectives are a carefully structured set of enabling skills. They
are introduced in the chapter opener and repeated in more detail at the end of each
chapter. Collectively, these objectives represent the basic knowledge and understand-
ing needed to master the topics covered in each chapter. In the problems section the
objectives explicitly state the expected behavior, followed by a graduated set of home-
work problems designed to help you assess your level of achievement. Each objective
also lists worked examples and exercises in the text that help you work the related
homework problems. Once you understand the chapter learning objectives, you can
move on to the integrating problems at the very end of the problems section. These
problems require mastery of several chapter learning objectives from the present
and prior chapters and provide an opportunity to test your ability to deal with compre-
hensive, integrative problems. Throughout the text, when appropriate, we label the pri-
mary purpose of the example, exercise, course-learning problem, or chapter-integrating

problem with the symbol for analysis, for design, or for evaluation.

A S S E S S M E N T A N D A C C R E D I T A T I O N

Material in this text can be used effectively in a properly designed course to support
ABET accreditation criteria associated with comprehension, use of modern tools,
design, evaluation, and real-world constraints. Additional accreditation and assess-
ment guidance is provided in the Instructors Manual.

1–2 S Y M B O L S A N D U N I T S

Throughout this text we will use the international system (SI) of units. The SI system
includes six fundamental units:meter (m), kilogram (kg), second (s), ampere (A), kelvin
(K), and candela (cd). All the other units of measure can be derived from these six.

Like all disciplines, electrical engineering has its own terminology and symbology.
The symbols used to represent some of the more important physical quantities and
their units are listed in Table 1–1. It is not our purpose to define these quantities here
or to offer this list as an item for memorization. Rather, the purpose of this table is
merely to list in one place all the electrical quantities used in this book.

Numerical values in engineering range over many orders of magnitude. Conse-
quently, the system of standard decimal prefixes in Table 1–2 is used. These prefixes
on a unit abbreviation symbol indicate the power of 10 that is applied to the numer-
ical value of the quantity.
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T A B L E 1–1 SOME IMPORTANT QUANTITIES, THEIR SYMBOLS, AND UNIT ABBREVIATIONS

QUANTITY SYMBOL UNIT UNIT ABBREVIATION

Time t second s

Frequency f hertz Hz

Radian frequency ω radian/second rad/s

Phase angle θ, ϕ degree or radian � or rad

Energy w joule J

Power p watt W

Charge q coulomb C

Current i ampere A

Electric field E volt/meter V/m

Voltage υ volt V

Impedance Z ohm Ω

Admittance Y siemens S

Resistance R ohm Ω

Conductance G siemens S

Reactance X ohm Ω

Susceptance B siemens S

Inductance, self L henry H

Inductance, mutual M henry H

Capacitance C farad F

Magnetic flux ϕ weber wb

Flux linkages λ weber-turns wb-t

Power ratio PRdB bel B

T A B L E 1–2 STANDARD DECIMAL PREFIXES

MULTIPLIER PREFIX ABBREVIATION

1018 exa E

1015 peta P

1012 tera T

109 giga G

106 mega M

103 kilo k

10−1 deci d

10−2 centi c

10−3 milli m

10−6 micro μ

10−9 nano n

10−12 pico p

10−15 femto f

10−18 atto a
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1–3 C I R C U I T V A R I A B L E S
The underlying physical variables in the study of electronic systems are charge and
energy. The idea of electrical charge explains the very strong electrical forces that
occur in nature. To explain both attraction and repulsion, we say that there are
two kinds of charge—positive and negative. Like charges repel, whereas unlike
charges attract each other. The symbol q is used to represent charge. If the amount
of charge is varying with time, we emphasize the fact by writing q as a function of t or
q(t). In the SI system, charge is measured in coulombs (abbreviated C). The smallest
quantity of charge in nature is an electron’s charge qE = −1:6 × 10−19 C

� �
. Thus, there

are 1= qEj j= 6:25 × 1018 electrons in 1 coulomb of charge.
Electrical charge is a rather cumbersome variable to measure in practice. Moreo-

ver, in most situations the charges are moving, so we find it more convenient to meas-
ure the amount of charge passing a given point per unit time. If q(t) is the cumulative
charge passing through a point, we define a signal variable i called current as follows:

i=
dq
dt

(1–1)

Current is a measure of the flow of electrical charge. It is the time rate of change of
chargepassing agivenpoint in a circuit.Thephysical dimensionsof current arecoulombs
per second. In the SI system, the unit of current is the ampere (abbreviated A). That is,

1 coulomb=second = 1 ampere = 1A

Since there are two types of electrical charge (positive and negative), there is a book-
keeping problem associated with the direction assigned to the current. In engineering
it is customary to define the direction of current as the direction of the net flow of
positive charge. Since electrons have negative charge, they move in the opposite
direction of the current.

A second signal variable called voltage is related to the change in energy that
would be experienced by a charge as it passes through a circuit. The symbolw is com-
monly used to represent energy. In the SI system of units, energy carries the units of
joules (abbreviated J). If a small charge dqwere to experience a change in energy dw
in passing from point A to point B in a circuit, then the voltage υ between A and B is
defined as the change in energy per unit charge. We can express this definition in
differential form as

υ=
dw
dq

(1–2)

E x e r c i s e 1–1
Given the pattern in the statement 1 kΩ= 1 kilohm=1× 103ohms, fill in the blanks in the
following statements using the standard decimal prefixes.

(a) = = 5 × 10−3 watts
(b) 10.0 dB = =
(c) 3.6 ps = =
(d) = 0:03 microfarads =
(e) = = 6:6× 109 hertz

A n s w e r s:
(a) 5:0 mW = 5milliwatts
(b) 10:0 decibels = 1:0 bel
(c) 3:6 picoseconds = 3:6 × 10−12 seconds
(d) 30 nF or 0:03 μF = 30:0 × 10−9 farads
(e) 6:6 GHz = 6:6 gigahertz
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Voltage does not depend on the path followed by the charge dq in moving from
point A to point B. Furthermore, there can be a voltage between two points even if
there is no charge motion, since voltage is a measure of how much energy dw would
be involved if a charge dq was moved. The dimensions of voltage are joules per cou-
lomb. The unit of voltage in the SI system is the volt1 (abbreviated V). That is,

1 joule=coulomb= 1 volt = 1 V

The general definition of the physical variable called power is the time rate of
change of energy:

p=
dw
dt

(1–3)

The dimensions of power are joules per second, which in the SI system is called a
watt2 (abbreviated W). In electrical circuits it is useful to relate the power associated
with a device or element to the signal variables current and voltage. Using the chain
rule, Eq. (1–3) can be written as

p=
dw
dq

� �
dq
dt

� �
(1–4)

Now using Eqs. (1–1) and (1–2), we obtain

p= υi (1–5)

The electrical power associated with a situation is determined by the product of volt-
age and current. The total energy transferred during the period from t1 to t2 is found
by solving for dw in Eq. (1–3) and then integrating

wT =
Z w2

w1

dw=
Z t2

t1

p dt (1–6)

In sum, the three key circuit variables—current, voltage, and power—are measured
as follows: current at individual points, voltage always between two points, and power
at an element or device.

A P P L I C A T I O N E X A M P L E 1–1

For nearly a century, visual displays of alternating signals on televisions, oscillo-
scopes, radar screens, and so on were seen using a cathode ray tube or CRT. In
Europe, it was called the Braun tube named after its German inventor Ferdinand
Braun in 1897. However, it was J. J. Thomson, an English physicist, who was able
to show how to deflect cathode rays, a fundamental function of the modern CRT.
In its basic operation, an electron beam is produced from a heated filament connected
to a negative voltage called the cathode. These energized electrons are then acceler-
ated by a positive voltage, placed at a screen called the anode that is located some
distance away inside an evacuated container, usually made of glass, called a vacuum
tube. These electrons pass through the anode and strike a phosphorescent screen
exciting the phosphor and producing light at the spot they strike. Another voltage
placed across the neck of the CRT can cause the beam to be deflected in proportion

1The volt is named after the Italian physicist, Alessandro Volta (1745–1827), for the discovery of a
practical source of current—the battery.

2The watt is named after the Scottish inventor and mechanical engineer, James Watt (1736–1819),
who is credited for inventing the steam engine and enabling the Industrial Revolution.
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to the signal applied, thereby allowing the signal to be visualized. Today, scanned
beams are still used for ion implantation in the manufacture of integrated circuits.

Consider the simplified diagram of a CRT shown in Figure 1–1. If the electron
beam carries 1014 electrons per second and is accelerated by a voltage of 50 kV, find
the power in the beam.

SOLUTION:
Since current is the rate of positive charge flow, its direction is opposite that of the
electron beam, as shown in Figure 1–1. The electrons are flowing to the right from the
cathode toward the anode, but the current i is flowing to the left toward the cathode.
We can find the magnitude of the current by multiplying the magnitude of the charge
of an electron qE by the rate of electron flow dnE=dt.

i= qEj jdnE
dt

= ð1:6 × 10−19Þð1014Þ= 1:6 × 10−5 A= 16 μA

Therefore, the beam power is

p= vi= ð50 × 103Þð1:6× 10−5Þ= 0:8W=800mW ■

Cathode (−)

Anode (+)

50 kV

+−

qE

i

FIGURE 1–1

E X A M P L E 1–2

The current through a circuit element is 50 mA. Find the total charge and the number
of electrons transferred during a period of 100 ns.

SOLUTION:
The relationship between current and charge is given in Eq. (1–1) as

i=
dq
dt

Since the current i is given, we calculate the charge transferred by solving this equa-
tion for dq and then integrating

qT =
Z q2

q1

dq=
Z 10−7

0
i dt

=
Z 10−7

0
50 × 10−3dt = 50× 10−10 C= 5 nC

There are 1= qEj j= 6:25 × 1018 electrons/coulomb, so the number of electrons trans-
ferred is

nE = 5 × 10−9 C
� �

6:25 × 1018 electrons=C
� �

= 31:25 × 109 electrons ■
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T H E P A S S I V E S I G N C O N V E N T I O N

We have defined three circuit variables (current, voltage, and power) using two basic
variables (charge and energy). Charge and energy, like mass, length, and time, are
basic concepts of physics that provide the scientific foundation for electrical engineer-
ing. However, engineering problems rarely involve charge and energy directly, but
are usually stated in terms of voltage, current, and power. The reason for this is sim-
ple: The circuit variables are much easier to measure and therefore are the most use-
ful working variables in engineering practice.

At this point, it is important to stress the physical differences between current and
voltage variables. Current is a measure of the time rate of charge passing a point in a
circuit.We thinkof current as a throughvariable, since it describes the flowofelectrical
charge through a point in a circuit. On the other hand, voltage is not measured at a
single point, but rather between two points or across an electrical device. Conse-
quently, we think of voltage as an across variable that inherently involves two points.

The arrow below the i tð Þ and the plus and minus symbols across the v tð Þ in
Figure 1–3 are reference marks that define the positive directions for the current
and voltage associated with an electrical device. These reference marks do not rep-
resent an assertion about what is happening physically in the circuit. The response of
an electrical circuit is determined by physical laws, not by the reference marks
assigned to the circuit variables.

The reference marks are benchmarks assigned at the beginning of the analysis.
When the actual direction and reference direction agree, the answers found by circuit
analysis will have positive algebraic signs. When they disagree, the algebraic signs of
the answers will be negative. For example, if circuit analysis reveals that the current
variable in Figure 1–3 is positive [i.e., i tð Þ> 0], then the sign of this answer, together
with the assigned reference direction, indicates that the current passes through
point A in Figure 1–3 from left to right. Conversely, when analysis reveals that
the current variable is negative, then this result, combined with the assigned refer-
ence direction, tells us that the current passes through point A from right to left.

E x e r c i s e 1–3
The graph in Figure 1–2(a) shows the charge q tð Þ flowing past a point in a wire as a function
of time.

(a) Find the current i tð Þ at t =1, 2:5, 3:5, 4:5, and 5:5 ms.
(b) Sketch the variation of i tð Þ versus time.

A n s w e r s:
(a) −10 nA, + 40 nA, 0 nA, −20 nA, 0 nA.
(b) The variations in i tð Þ are shown in Figure 1–2(b).

E x e r c i s e 1–2
A device dissipates 100W of power. How much energy is delivered to it in 10 seconds?

A n s w e r: 1 kJ

N o t e : 1 W-s = 1 J
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FIGURE 1–3 Voltage and
current reference marks for a
two-terminal device.
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In summary, the algebraic sign of the answer together with arbitrarily assigned ref-
erence marks tell us the actual directions of a voltage or current variable.

In Figure 1–3, the current reference arrow enters the device at the terminal
marked with the plus voltage reference mark. This orientation is called the pas-
sive sign convention. Under this convention, the power p tð Þ is positive when the
device absorbs power and is negative when it delivers power to the rest of the circuit.
Since p tð Þ= υ tð Þ× i tð Þ, a device absorbs power when the voltage and current variables
have the same algebraic sign and delivers power when they have opposite signs. Cer-
tain devices, such as heaters (a toaster, for example), can only absorb power. The
voltage and current variables associated with these devices must always have the
same algebraic sign. On the other hand, a battery absorbs power p tð Þ> 0½ � when it
is being charged and delivers power p tð Þ< 0½ �when it is discharging. Thus, the voltage
and current variables for a battery can have either the same or opposite alge-
braic signs.

In a circuit some devices absorb power and others deliver power, but the sum of
the power in all of the devices in the circuit is zero. This is more than just a conser-
vation-of-energy concept. When electrical devices are interconnected to form a cir-
cuit, the only way that power can enter or leave the circuit is via the currents and
voltages at device terminals. The existence of a power balance in a circuit is one
method of checking calculations.

The passive sign convention is used throughout this book. It is also the convention
used by circuit simulation computer programs.3 To interpret correctly the results of
circuit analysis, it is important to remember that the reference marks (arrows and
plus/minus signs) are reference directions, not indications of the circuit response.
The actual direction of a response is determined by comparing its reference direction
with the algebraic signs of the result predicted by circuit analysis based on physi-
cal laws.

G R O U N D

Since voltage is defined between two points, it is often useful to define a com-
mon voltage reference point called ground. The voltages at all other points in a
circuit are then defined with respect to this common reference point. We indi-
cate the voltage reference point using the ground symbol shown in Figure 1–4.
Under this convention we sometimes refer to the variables υA tð Þ, υB tð Þ, and
υC tð Þ as the voltages at points A, B, and C, respectively. This terminology appears
to contradict the fact that voltage is an across variable that involves two points. How-
ever, the terminologymeans that the variables υA tð Þ, υB tð Þ, and υC tð Þ are the voltages
defined between points A, B, and C and the common voltage reference point at
point G.

Using a common reference point for across variables is not an idea unique to
electrical circuits. For example, the elevation of a mountain is the number of feet
or meters between the top of the mountain and a common reference point at sea
level. If a geographic point lies below sea level, then its elevation is assigned a neg-
ative algebraic sign. So it is with voltages. If circuit analysis reveals that the voltage
variable at point A is negative [i.e., υA tð Þ< 0], then this fact together with the refer-
ence marks in Figure 1–4 indicate that the potential at point A is less than the ground
potential.

−

+ + +
vA(t) vB(t) vC(t)

A B

G

C

FIGURE 1–4 Ground symbol
indicates a common voltage
reference point.

3We discuss computer-aided circuit analysis in Section 1–4.
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E X A M P L E 1–3

Figure 1–5 shows a circuit formed by interconnecting five devices,
each of which has two terminals. A voltage and current variable has
been assigned to each device using the passive sign convention. The
working variables for each device are observed to be as follows:

DEVICE 1 DEVICE 2 DEVICE 3 DEVICE 4 DEVICE 5

υ + 100 V ? + 25V +75 V −75 V

i ? + 5mA +5mA ? +5mA

p −1W +0:5W ? +0:75W ?

(a) Find the missing variable for each device and state whether the device is
absorbing or delivering power.

(b) Check your work by showing that the sum of the device powers is zero.

SOLUTION:
(a) We use p= υi to solve for the missing variable since two of the three circuit variables are

given for each device.

Device 1 : i1 = p1=υ1 = −1=100 =−10 mA p tð Þ< 0, delivering power½ �
Device 2 : υ2 = p2=i2 = 0:5=0:005 = 100 V p tð Þ> 0, absorbing power½ �
Device 3 : p3 = υ3i3 = 25 × 0:005 = 0:125W p tð Þ> 0, absorbing power½ �
Device 4 : i4 = p4=υ4 = 0:75=75 = 10 mA p tð Þ> 0, absorbing power½ �
Device 5 : p5 = υ5i5 = −75 × 0:005 =−0:375W p tð Þ< 0, delivering power½ �

(b) Summing the device powers yields

p1 + p2 + p3 + p4 + p5 =−1 + 0:5 + 0:125 + 0:75−0:375
= + 1:375−1:375 = 0

This example shows that the sum of the powers absorbed by devices is equal in magnitude
to the sum of the powers supplied by devices. A power balance always exists in the types of
circuits treated in this book and can be used as an overall check of circuit analysis
calculations. ■

E x e r c i s e 1–4
The working variables of a set of two-terminal electrical devices are observed to be
as follows:

DEVICE 1 DEVICE 2 DEVICE 3 DEVICE 4 DEVICE 5

υ + 10 V ? −15 V +5 V ?

i −3 A −3A +10mA ? −12mA

p ? + 40W ? +10mW −120 mW

Using the passive sign convention, find the magnitude and sign of each unknown variable and state
whether the device is absorbing or delivering power.

A n s w e r s:
Device 1: p= −30W (delivering power); Device 2: υ= −13:3 V (absorbing power);Device 3:
p= −150 mW (delivering power); Device 4: i= +2mA (absorbing power); Device 5:
υ= +10 V (delivering power)

v3

−

+ +

+ −

+

− − +

−

v4v1 v5
v2

i1 i2

i3

i4

i5

1

3

4 52

FIGURE 1–5
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1–4 C O M P U T A T I O N A L A N D S I M U L A T I O N S O F T W A R E

I N T R O D U C T I O N
The problems presented in this chapter are relatively straightforward and are solv-
able with simple hand calculations or by using a scientific or engineering calculator.
As we increase our knowledge of electrical devices, their properties, and the circuits
created by connecting them together, the nature of the associated problems will
become more difficult. To solve these problems, tools that are more sophisticated
are required. Extremely valuable tools for electrical and computer engineers are
computational and simulation software that can perform all of the mathematical cal-
culations associated with a problem and displays the results in several ways that assist
in the analysis and design of circuits. To have a complete education, an engineer must
be familiar with the contemporary software tools common to the profession.
Although there are many competitive choices available, a common tool in engineer-
ing for mathematical computations is MATLAB, created by The MathWorks, Inc.,
and one for simulation is NI Multisim by National Instruments.

We introduce MATLAB as an efficient, programmable tool to perform calcula-
tions associated with engineering problems. This software is well established in
the industry and has complete documentation to support users, ranging from novices
to experts. As with any new tool, it requires an investment of time and effort to learn
how to apply it correctly and efficiently. This investment will pay off in the end by
offering the following advantages that come from using andmastering theMATLAB
software:

• Calculating results faster with higher accuracy
• Performing simulations efficiently
• Solving more complex problems
• Examining many design options quickly
• Visualizing results professionally

Similarly, we introduceMultisim as a method to graphically draw circuits and have
the software analyze the circuit in several ways. Like MATLAB, learning Multisim
requires a bit of effort but the end results are a quick way to study the behavior of the
circuits in question. Simulation software offers the following advantages:

• Rapid analysis of circuit variables, such as voltage, current, and power
• Validation of circuit designs
• Ability to modify designs quickly and accurately to explore and evaluate

many possible solutions
• Producing visible graphical results of desired analyses

Web Appendix D offers a brief introduction to using the MATLAB and Multisim
software for engineering problems and provides worked examples for key topics
in each chapter. Combined with the help files and tutorials available with each soft-
ware package, the appendix provides a starting point of where to find applications of
these powerful computational or simulation tools. Mastering each tool will require
significant practice and experience. To provide opportunities to practice and addi-
tional exposure to these software products, every chapter in this book will
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demonstrate specific features of the appropriate software and how they can be
applied to efficiently solve electrical engineering problems. In addition, selected pro-
blems at the end of each chapter specifically request solutions using MATLAB or
Multisim to reinforce the important features of the software in a deliberate, develop-
mental manner. Whenever an Example, Exercise, or Problem uses or recommends
the use of software in its solution, the computer icon will be displayed.

S U M M A R Y
• Circuits are important in electrical engineering

because they process signals that carry energy and
information. A circuit is an interconnection of electri-
cal devices. A signal is an electrical current or voltage
that carries energy or information. An interface is a
pair of accessible terminals at which signals may be
observed or specified.

• This book defines overall course objectives at the
analysis, design, and evaluation levels. In circuit anal-
ysis the circuit and input signals are given and the
object is to find the output signals. The object of circuit
design is to devise one or more circuits that produce
prescribed output signals for given input signals.
The evaluation problem involves appraising alterna-
tive circuit designs using criteria such as cost, power
consumption, and parts count.

• Charge (q) and energy (w) are the basic physical vari-
ables involved in electrical phenomena. Current (i),
voltage (υ), and power (p) are the derived variables
used in circuit analysis and design. In the SI system,
charge is measured in coulombs (C), energy in joules
(J), current in amperes (A), voltage in volts (V), and
power in watts (W).

• Current is defined as dq=dt and is a measure of the
flow of electrical charge. Voltage is defined as
dw=dq and is a measure of the energy required to
move a small charge from one point to another.Power

is defined as dw=dt and is a measure of the rate at
which energy is being transferred. Power is related
to current and voltage as p= υi.

• The reference marks (arrows and plus/minus signs)
assigned to a device are reference directions, not indi-
cations of the way a circuit responds. The actual direc-
tion of the response is determined by comparing the
reference direction and the algebraic sign of the
answer found by circuit analysis using physical laws.

• Under the passive sign convention, the current refer-
ence arrow is directed toward the terminal with the
positive voltage reference mark. Under this conven-
tion, the device power is positive when it absorbs
power and is negative when it delivers power. When
current and voltage have the same (opposite) alge-
braic signs, the device is absorbing (delivering) power.

• Engineers use computational software, such as
MATLAB, to increase the speed and accuracy of cal-
culations. Engineers use simulation software, such as
Multisim, to model the behavior of circuits. Software
is useful for performing circuit simulations and for
expanding the complexity of problems that can be
solved in a reasonable amount of time. Learning
and exploiting the advantages of computational and
simulation software are critical skills for engineers,
and MATLAB and Multisim are common tools for
electrical and computer engineers.

P R O B L E M S

O B J E C T I V E 1–1 E L E C T R I C A L S Y M B O L S A N D U N I T S
( S E C T . 1–2)
Given an electrical quantity described in terms of words, scien-
tific notation, or decimal prefix notation, convert the quantity
to an alternate description.
See Exercise 1–1.

1–1 Express the following quantities to the nearest standard
prefix using no more than three digits.

(a) 20;000;000Hz
(b) 1025W

(c) 0:333× 10−8 s
(d) 33 × 10−12 F

1–2 Express the following quantities to the nearest standard
prefix using no more than three digits.
(a) 0:0022 H
(b) 50:7× 105 J
(c) 82:251 × 104 C
(d) 5633Ω

1–3 An ampere-hour (Ah) meter measures the time integral
of the current in a conductor. During an 8-hour period,
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a certain meter records 4500Ah. Find the number of
coulombs that flowed through the meter during the record-
ing period.

1–4 Electric power companies measure energy consumption in
kilowatt-hours, denoted kWh. One kilowatt-hour is the
amount of energy transferred by 1 kW of power in a period
of 1 hour. A power company billing statement reports a
user’s total energy usage to be 1500 kWh. Find the amount
of energy in joules used during the billing period.

1–5 Fill in the blanks in the following statements.
(a) To convert capacitance from nanofarads to microfarads,

multiply by .
(b) To convert resistance from megohms to kilohms, multi-

ply by .
(c) To convert voltage from millivolts to volts, multiply

by .
(d) To convert frequency frommegahertz to gigahertz, mul-

tiply by .

1–6 Which of the two entries is larger?
(a) 1000 microfarads or 0:0003333 F
(b) 0:005× 106 Hz or 66 kHz
(c) 0:333 pC or 810 fC
(d) 220millihenries or 0:150 H

O B J E C T I V E 1–2 C I R C U I T V A R I A B L E S ( S E C T . 1–3)
Given any two of the three signal variables (i, v, p) or the two
basic variables (q, w), find the magnitude and direction (sign)
of the unspecified variables.
See Examples 1–1 to 1–3 and Exercises 1–2 to 1–4.

1–7 Awire carries a constant current of 30 μA.Howmany cou-
lombs flow past a given point in the wire in 500 ms?

1–8 The net positive charge flowing through a device is
q tð Þ= 20+ 4tmC. Find the current through the device.

1–9 Figure P1–9 shows a plot of the net positive charge flowing
in a wire versus time. Sketch the corresponding current dur-
ing the same period of time.

1–10 The net negative charge flowing through a device
varies as q tð Þ=2:2 t2 C. Find the current through the device
at t = 0, 0:5, and 1 s.

1–11 A cell phone charger outputs 9:6 V and is protected by a
50-mA fuse. A 2-W cell phone is connected to it to be
charged. Will the fuse blow?

1–12 For 0≤ t ≤ 5 s, the current through a device is i tð Þ= 3tA.
For 5 < t ≤ 10 s, the current is i tð Þ= 30−3tA, and i tð Þ=0A
for t > 10 s. Sketch i tð Þ versus time and find the total
charge flowing through the device between t = 0 s and
t = 10 s.

1–13 The charge flowing throughadevice isq tð Þ=1−e −1000t μC.
What will the current be after 1:6094ms?

1–14 The 12-V automobile battery in Figure P1–14 has an out-
put capacity of 100 Ah when connected to a head lamp that
absorbs 200 W of power. The car engine is not running and
therefore not charging the battery. Assume the battery volt-
age remains constant.

(a) Find the current supplied by the battery and determine
how long can the battery power the headlight.

(b) A 100-W device is connected through the utility port.
How long can the battery power both the headlight
and the device?

1–15 The current through a device is zero for t < 0 and is
i tð Þ = 5e−3 t A for t ≥ 0. Find the charge q tð Þ flowing through
the device for t ≥ 0.

1–16 A string of holiday lights is protected by a ½-A fuse and
has 100 LED lights, each of which is rated at 30 mW. How
many strings can be connected end-to-end across a 120-V cir-
cuit without blowing a fuse?

1–17 When illuminated the i – v relationship for a photocell is
i = ev − 12A. For v = −2, 2, and 3 V, find the device power
and state whether it is absorbing or delivering power.

1–18 A new 6-V alkaline lantern battery delivers 237:5 kJ of
energy during its lifetime. How long will the battery last in
an application that draws 20mA continuously. Assume that
the battery voltage is constant.

1–19 Themaximum current allowed by a device’s power rating
is limited by a 25-mA fuse.When the device is connected to a
9-V source, what is the maximum power the device can
dissipate?

1–20 Traffic lights are being converted from incandescent
bulbs to LED arrays to save operating and maintenance
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costs. Typically, each incandescent light uses three 100-W
bulbs, one for each color R, Y, G. A competing LED
array consists of 61 LEDs with each LED requiring 9 V
and drawing 20 mA of current. There are three arrays per
light—R, Y, G. A small city has 1560 traffic signals. Since
one light is always on 24/7, howmuch can a city save in 1 year
if the city buys their electricity at 7:2¢ per kWh?

1–21 Two electrical devices are connected as shown in
Figure P1–21. Using the reference marks shown in the figure,
find the power transferred and state whether the power is
transferred from A to B or B to A when
(a) v = +12 V and i = −1:2A
(b) v = + 80 V and i = +10 mA
(c) v = −240 V and i = −12mA
(d) v = −15 V and i = −300 μA

1–22 Figure P1–22 shows an electric circuit with a voltage and
a current variable assigned to each of the six devices. The
device voltages and currents are observed to be as follows:

v (V) i (A) v (V) i (A)
Device 1 15 −1 Device 4 −10 −1

Device 2 5 1 Device 5 20 −3

Device 3 10 2 Device 6 20 2

Find the power associated with each device and state whether
the device is absorbing or delivering power. Use the power bal-
ance to check your work.

1–23 Figure P1–22 shows an electric circuit with a voltage and
a current variable assigned to each of the six devices. Use
power balance to find v4 when v1 = 20 V, i1 = −2A,
p2 = 20W, p3 = 10W, i4 = 1 A, and p5 = p6 = 2:5W. Is
device 4 absorbing or delivering power?

1–24 In Figure P1–24 the voltage v2 is 10 V and v4 is 5 V. Find
the voltage associated with each element.

1–25 For t ≥ 0, thevoltageacross andpowerabsorbedbya two-
terminal device are v tð Þ = 2e − t V and p tð Þ=40e −2t mW.
Find the total charge delivered to the device for t ≥ 0.

O B J E C T I V E 1–3 S O F T W A R E I N T R O D U C T I O N
( S E C T . 1–4, W E B A P P E N D I X D )
Given a simple computational problem, use MATLAB as an
appropriate engineering tool to solve the problem. (We will
introduce Multisim problems starting in Chapter 2.)
Examples and Exercises throughout the text. See Web
Appendix D.

1–26 Repeat Problem 1–22 using MATLAB to perform the
calculations. Create a vector for the voltage values, v =
[15 5 10 −10 20 20], and a vector for the current values,
i = [−1 1 2 −1 −3 2]. Compute the corresponding vector
for the power values, p, using element-by-element multipli-
cation (.∗) and then use the sum command to verify the
power balance.

1–27 Using the passive sign convention, the voltage across a
device is v tð Þ = 240 cos 314tð ÞV and the current through
the device is i tð Þ = 4 sin 314tð ÞA. Using MATLAB, create a
short script (m-file) to assign a value to the time variable, t,
and then calculate the voltage, current, and power at that
time. Run the script for t = 5ms and t = 10 ms, and for each
result state whether the device is absorbing or deliver-
ing power.
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I N T E G R A T I N G P R O B L E M S

1–28 Power Ratio (PR) in dB

A stereo amplifier takes the output of a CD player, for exam-
ple, and increases the power to an audible level. Suppose the
output of the CD player is 25 mW and the desired audible out-
put is 100W per stereo channel, find the power ratio of the
amplifier per channel in decibels (dB), where the power ratio
in dB is

PRdB = 10 log10 p2=p1ð Þ

1–29 AC to DC Converter

A manufacturer’s data sheet for the converter in Figure P1–29
states that the output voltage is vdc = 12 V when the input volt-
age vac = 120 V. When the load draws a current idc = 15A, the
input power is pac = 300W. Find the efficiency of the
converter.

1–30 Charge-Storage Device

A capacitor is a two-terminal device that can store electric
charge. In a linear capacitor, the amount of charge stored is
proportional to the voltage across the device. For a particular
device the proportionality is q tð Þ = 10 −7v tð Þ. If v tð Þ = 0 for
t < 0 and v tð Þ = 10 1 − e −5000t

� �
for t ≥ 0, find the energy

stored in the device at t = 100 μs.

1–31 Computer Data Sheet

A manufacturer’s data sheet for a notebook computer lists the
power supply requirements as 7:5 A@ 5 V, 2 A@ 15 V,
2:5A@ −15 V, 2:25 A@−5 V, and 0:5 A@ 12 V. The data
sheet also states that the overall power consumption is
115W. Are these data consistent? Explain.

1–32 Light Source Comparison

Today people have three competing light sources for home use.
This problem asks you to determine the trade-offs between the
costs of the three types of lights. In this example, all three emit
the same amount of light (lumens). The following table shows
the salient properties of each lamp. Over the lifetime of one
light-emitting diode (LED) lamp, how much cost savings is
there by using the LED lamp over the traditional incandescent
bulb and over the compact fluorescent lamp (CFL) if electricity
costs 10 ¢=kWh?

BULB TYPE COST PER LAMP POWER USED AVERAGE LIFETIME

Incandescent $1.00 100 W 1500 hours
CFL $3.00 16 W 6000 hours
LED $12.00 2 W 50,000 hours
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C H A P T E R 2 BASIC CIRCUIT ANALYSIS
The equation S=A=L shows that the current of a voltaic circuit is subject to a change, by each variation originating either in the magnitude of
a tension or in the reduced length of a part, which latter is itself again determined, both by the actual length of the part as well as its

conductivity and its section.

Georg Simon Ohm, 1827,
German Mathematician/Physicist

Some History Behind This Chapter
Georg Simon Ohm (1789–1854) discovered the law that now
bears his name in 1827. His results drew heavy criticism and
were not generally accepted for many years. Fortunately, the
importance of his contribution was eventually recognized
during his lifetime. He was honored by the Royal Society
of England in 1841 and appointed a Professor of Physics
at the University of Munich in 1849. The unit of resistance
was named after Professor Ohm in 1862 by the British Asso-
ciation Committee.

Why This Chapter Is Important Today
A circuit is an interconnection of electric devices that per-
forms a useful function. This chapter introduces some basic
tools you will need to analyze and design electric circuits.
You will also be introduced to several important electric
devices that control currents and voltages in a circuit. These
devices range from everyday things like batteries to special
integrated circuits that meter out predetermined voltages or
currents.

To analyze these circuits efficiently, we can use computer-
based tools, such as MATLAB for mathematical computa-
tions and Multisim for circuit simulations. These programs
are powerful tools that are common in both academic and
commercial applications.

Chapter Sections
2–1 Element Constraints
2–2 Connection Constraints
2–3 Combined Constraints
2–4 Equivalent Circuits
2–5 Voltage and Current Division
2–6 Circuit Reduction
2–7 Computer-Aided Circuit Analysis

Chapter Learning Objectives
2-1 Element Constraints (Sect. 2–1)

Given a two-terminal element with one or more electri-
cal variables specified, namely i, v, or p, use the element
i−υ constraint to find the magnitude and direction of the
unknown variables.

2-2 Connection Constraints (Sect. 2–2)

Given a circuit composed of two-terminal elements:
(a) Identify nodes and loops in the circuit.
(b) Identify elements connected in series and in parallel.
(c) Use Kirchhoff’s laws (KCL and KVL) to find

selected signal variables.

2-3 Combined Constraints (Sect. 2–3)

Given a linear resistance circuit, use the element con-
straints and connection constraints to find selected signal
variables.

2-4 Equivalent Circuits (Sect. 2–4)

(a) Given a circuit consisting of linear resistors, find the
equivalent resistance between a specified pair of
terminals.

(b) Given a circuit consisting of a source-resistor combi-
nation, find an equivalent source-resistor circuit.

2-5 Voltage and Current Division (Sect. 2–5)

(a) Given a linear resistance circuit with elements con-
nected in series or parallel, use voltage or current
division to find specified voltages or currents.

(b) Design a voltage or current divider that delivers spe-
cified output signals.

2-6 Circuit Reduction (Sect. 2–6)

Given a linear resistance circuit, find selected signal vari-
ables using successive application of series and parallel
equivalence, source transformations, and voltage and
current division.

2-7 Computer-Aided Circuit Analysis (Sect. 2–7)

Given an appropriate linear circuit, use circuit simulation
and/or computational software to solve for the desired
response.
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2–1 E L E M E N T C O N S T R A I N T S
A circuit is a collection of interconnected electrical devices. An electrical device is a
component that is treated as a separate entity. The rectangular box in Figure 2–1 is
used to represent any one of the two-terminal devices used to form circuits. A two-
terminal device is described by its i−υ characteristic, that is, by the relationship
between the voltage across and current through the device. In most cases, the rela-
tionship is complicated and nonlinear, so we use a linear model that approximates the
dominant features of a device.

To distinguish between a device (the real thing) and its model (an approximate
stand-in), we call the model a circuit element. Thus, a device is an article of hardware
described in manufacturers’ catalogs and parts specifications. An element is a
model described in textbooks on circuit analysis. This book is no exception, and a
catalog of circuit elements will be introduced as we go on.

T H E L I N E A R R E S I S T O R

The first element in our catalog is a linear model of the device described in
Figure 2–2. The actual i−υ characteristic of this device is shown in Figure 2–2(b).
To model this curve accurately across the full operating range shown in the figure
would require at least a cubic equation. However, the graph in Figure 2–2(b) shows
that a straight line is a good approximation to the i−υ characteristic if we operate the
device within its linear range. The power rating of the device limits the range over
which the i−υ characteristics can be represented by a straight line through the origin.

For the passive sign convention used in Figure 2–2(a), the equations describing the
linear resistor element are

υ=Ri or i=Gυ (2–1)

where R and G are positive constants that are reciprocally related:

G=
1
R

(2–2)

The relationships in Eq. (2–1) are collectively known asOhm’s law. The parameterR
is called resistance and has the unit ohms,Ω. The parameterG is called conductance,
with the unit siemens, S. In earlier times, the unit of conductance was cleverly called
the mho, with the unit abbreviation symbol℧ (“ohm” spelled backward and the ohm
symbol upside down). Note that Ohm’s law presumes that the passive sign conven-
tion is used to assign the reference marks to voltage and current.

The Ohm’s law model is represented graphically by the black straight line in
Figure 2–2(b). The i−υ characteristic for the Ohm’s law model defines a circuit ele-
ment that is said to be linear and bilateral. Linearmeans that the defining character-
istic is a straight line through the origin. Elements whose characteristics do not pass
through the origin or are not a straight line are said to be nonlinear. Bilateralmeans
that the i−υ characteristic curve has odd symmetry about the origin.1 With a bilateral
resistor, reversing the polarity of the applied voltage reverses the direction but not
the magnitude of the current, and vice versa. The net result is that we can connect
a bilateral resistor into a circuit without regard to which terminal is which. This is
important because devices such as diodes and batteries are not bilateral, and wemust
carefully identify each terminal.

Figure 2–2(c) and (d) shows photos of discrete resistor devices.
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FIGURE 2–1 Voltage and
current reference marks for a
two-terminal device.

+

–

v R

i

(a)

Model

1

R
v

i
Actual

Linear range

Power rating limits

(b)

(c)
C

o
ur

te
sy

 o
f 

A
rc

o
l R

es
is

to
rs

FIGURE 2–2 The resistor:
(a) Circuit symbol. (b) i−υ
characteristics. (c) Carbon or film
resistors. (d) Wire-wound
resistors.

1A curve i= f ðυÞ has odd symmetry if f ð−υÞ= −f ðυÞ.
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The power associated with the resistor can be found from p= υi. Using Eq. (2–1) to
eliminate υ from this relationship yields

p= i2R (2–3)

or using the same equations to eliminate i yields

p= υ2G=
υ2

R
(2–4)

Since the parameter R is positive, these equations tell us that the power is always
nonnegative. Under the passive sign convention, this means that the resistor always
absorbs or consumes power.

E X A M P L E 2 – 1

A 2:2-kΩ resistor has 12 V impressed across its terminals. Find the current through
the resistor and the power it dissipates.

SOLUTION:
By Ohm’s law i= v=R. Therefore, i= 12=2200 = 0:00545 = 5:45 mA. The power dissi-
pated is found using Eq. (2–3) p= i2R= ð0:00545Þ2 2200 = 65:4 mW which is the same
answer we get if we were to use Eq. (2–4) p= v2=R= 122=2200 = 65:4 mWor Eq. (1–5)
p= iv= 0:00545 × 12 = 65:4 mW. ■

E x e r c i s e 2–1
A6-V lantern battery powers a light bulb that draws 3 mA of current. What is the resistance
of the lamp? How much power does the lantern use?

A n s w e r s: R= 2 kΩ; p=18 mW

E X A M P L E 2 – 2

A resistor operates as a linear element as long as the voltage and current are within
the limits defined by its power rating. Suppose we have a 47-kΩ resistor with a power
rating of 0.25W. Determine the maximum current and voltage that can be applied to
the resistor and have it remain within its linear operating range.

SOLUTION:
Using Eq. (2–3) to relate power and current, we obtain

iMAX =

ffiffiffiffiffiffiffiffiffiffiffiffi
pMAX

R

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25

47 × 103

s
= 2:31 mA

Similarly, using Eq. (2–4) to relate power and voltage, we obtain

vMAX =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RpMAX

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
47 × 103 × 0:25

p
= 108 V

■

E x e r c i s e 2–2
What is the maximum current that can flow through a 1

�
8-W, 6:8-kΩ resistor? What is the

maximum voltage that can be across it?

A n s w e r s: iMAX = 4:287mA; vMAX = 29:15 V

(d)
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FIGURE 2–2 (Continued)
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O P E N A N D S H O R T C I R C U I T S
The next two circuit elements can be thought of as limiting cases of the linear
resistor. Consider a resistor R with a voltage υ applied across it. Let’s calculate
the current i through the resistor for different values of resistance. If υ= 10 V and
R= 1Ω, using Ohm’s law we readily find that i= 10A. If we increase the resistance
to 100Ω, we find i has decreased to 0.1 A or 100 mA. If we continue to increase R to
1MΩ, i becomes a very small 10 μA. Continuing this process, we arrive at a condition
whereR is very nearly infinite and i just about zero.When the current i= 0, we call the
special value of resistance (i.e., R= ∞Ω) an open circuit. Similarly, if we reduce R
until it approaches zero, we find that the voltage is very nearly zero. When υ= 0,
we call the special value of resistance (i.e.,R= 0Ω) a short circuit. The circuit symbols
for these two elements are shown in Figure 2–3. In circuit analysis, the elements in a
circuit model are assumed to be interconnected by zero-resistance wire (that is, by
short circuits).

T H E I D E A L S W I T C H

A switch is a familiar device with many applications in electrical engineering. The
ideal switch can be modeled as a combination open- and short-circuit element.
Figure 2–4(a) and (b) shows the circuit symbol and the i−υ characteristics of an ideal
switch. When the switch is open or OFF, Figure 2–4(a),

i= 0 and υ= any value (2–5a)

and when it is closed or ON, Figure 2–4(b),

υ= 0 and i= any value (2–5b)

When the switch is closed, the voltage across the element is zero and the element
will pass any current that may result. When open, the current is zero and the ele-
ment will withstand any voltage across its terminals. The power is always zero for
the ideal switch, since the product υi= 0 when the switch is either open ði= 0Þ or
closed ðυ= 0Þ. Actual switch devices have limitations, such as the maximum current
they can safely carry when closed and the maximum voltage they can withstand when
open. The switch is operated (opened or closed) by some external influence, such as a
mechanical motion, temperature, pressure, or an electrical signal.

Figure 2–4(c) shows an actual toggle switch, which is simply used to turn thingsON
and OFF, and Figure 2–4(d) shows DIP (dual in-line package) switches designed for
use on a printed circuit board.

The ideal switch is also a basic concept in digital circuits, where OFF usually repre-
sents a logic 0 state and ON represents a logic 1 state.

A P P L I C A T I O N E X A M P L E 2 – 3

The analog switch is an important device found in analog-to-digital interfaces.
Figure 2–5(a) and (b) shows the two basic versions of the device. In either type,
the switch is actuated by applying a voltage to the terminal labeled gate. The switch
in Figure 2–5(a) is said to be normally open because it is open when no voltage is
applied to the gate terminal and closes when voltage is applied. The switch in
Figure 2–5(b) is said to be normally closed because it is closed when no voltage is
applied to the controlling gate and opens when voltage is applied.

Figure 2–5(c) shows an application in which complementary analog switches are
controlled by the same gate. When gate voltage is applied, the upper switch closes
and the lower opens so that point A is connected to point C. Conversely, when no
gate voltage is applied, the upper switch opens and the lower switch closes to connect
point B to point C. In the analog world, this arrangement is called a double throw
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FIGURE 2–3 Circuit symbols:
(a) Open-circuit symbol.
(b) Short-circuit symbol.
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FIGURE 2–4 The circuit
symbol and i−υ characteristics of
an ideal switch: (a) Switch OFF.
(b) Switch ON. (c) Toggle switch.
(d) DIP switches.
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switch since point C can be connected to two other points. In the digital world, it is
called a two-to-one multiplexer (or MUX) because it allows you to select the analog
input at point A or point B under control of the digital signal applied to the gate.

In many applications, an analog switch can be treated as an ideal switch. In other
cases, it may be necessary to account for its nonideal characteristics. When the switch
is open, an analog switch acts like a very large resistance ðROFFÞ, as suggested
in Figure 2–5(d). This resistance is negligible because it ranges from perhaps
109 to 1011 Ω. When the switch is closed it acts like a small resistor ðRONÞ, as sug-
gested in Figure 2–5(e). Depending on other circuit resistances, it may be necessary
to account for RON, because it ranges from perhaps a few mΩ to as high as 100Ω.

This example illustrates how ideal switches and resistors can be combined to
model another electrical device. It also suggests that no single model can serve in
all applications. It is up to the engineer to select a model that adequately represents
the actual device in each application.

I D E A L S O U R C E S

The signal and power sources required for the operation of electronic circuits are
modeled using two elements: voltage sources and current sources. These sources
can produce either constant or time-varying signals. The circuit symbols and the
i−υ characteristic of an ideal voltage source are shown in Figure 2–6, while the circuit
symbol and i−υ characteristic of an ideal current source are shown in Figure 2–7.
The symbol in Figure 2–6(a) represents either a time-varying or constant voltage
source. The battery symbol in Figure 2–6(b) is used exclusively for a constant volt-
age source. There is no separate symbol for a constant current source.

The i−υ characteristic of an ideal voltage source in Figure 2–6(c) is described by
the following element equations:

υ= υS and i= any value (2–6)

The element equations mean that the ideal voltage source produces υS volts across its
terminals and will supply whatever current may be required by the circuit to which it
is connected.

The i−υ characteristic of an ideal current source in Figure 2–7(b) is
described by the following element equations:

i= iS and υ= any value (2–7)

The ideal current source produces iS amperes in the direction of its arrow
symbol and will furnish whatever voltage is required by the circuit to which
it is connected.

The voltage or current produced by these ideal sources is called a forcing
function or a driving function because it represents an input that causes a

ROFF

Gate

(a)

(d)

Gate

(b)

(c)

Gate

RON

(e)
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C

A

FIGURE 2–5 The analog
switch: (a) Normally openmodel.
(b) Normally closed model.
(c) Double throw model.
(d) Model with finite OFF
resistance. (e) Model with finite
ON resistance.

+
–

+

–

vvS

i

(a)

+

–

vVO

i

+

–

(b)

i

(c)

v
VO

FIGURE 2–6 Circuit symbols
and i−υ characteristic of an ideal
independent voltage source:
(a) Time-varying. (b) Constant
(Battery). (c) Constant source i−υ
characteristics.

–

vIO, iS

i

(a) (b)

+

i

v

IO

FIGURE 2–7 Circuit symbol and i−υ
characteristic of an ideal independent
current source: (a) Time-varying or
constant source. (b) Constant source i−υ
characteristics.

20 C H A P T E R 2 BASIC CIRCUIT ANALYSIS



circuit response.When the voltage or current varies with time, it is customary to write
υðtÞ or iðtÞ.
E X A M P L E 2 – 4

Given an ideal voltage source with the time-varying voltage shown in Figure 2–8(a),
sketch its i−υ characteristic at the times t = 0, 1, and 2 ms.

SOLUTION:
At any instant in time, the time-varying source voltage has only one value. We can
treat the voltage and current at each instant of time as constants representing a snap-
shot of the source i−υ characteristic. For example, at t = 0, the equations defining the
i−υ characteristic are υS = 5 V and i= any value. Figure 2–8(b) shows the i−υ relation-
ship at the other instants of time. Curiously, the voltage source i−υ characteristic at
t = 1ms ðυS = 0 and i= any valueÞ is the same as that of a short circuit [see Eq. (2–5b)
or Figure 2–3(b)]. ■

E x e r c i s e 2–3
Adigital clock is a voltage that switches between two values at a constant rate that is used to
time digital circuits. A particular clock switches between 0V and 5V every 10 μs. Sketch the
clock’s i – v characteristics for the times when the clock is at 0 V and at 5 V.

A n s w e r s: On a standard i – v graph, a vertical line through the origin for the times the
clock is at 0 V and a vertical line crossing at 5 V when the clock is at 5 V.

P R A C T I C A L S O U R C E S

The practical models for voltage and current sources in Figure 2–9 may be more appro-
priate in some situations than the ideal models used up to this point. These circuits are
called practical models because they more accurately represent the characteristics of
real-world sources than do the ideal models. It is important to remember that models
are interconnectionsof elements, notdevices. For example, the resistance inamodel does
not always represent an actual resistor. As a case in point, the resistancesRS in the prac-
tical source models in Figure 2–9 do not represent physical resistors but are circuit
elements used to account for resistive effects within the source devices being
modeled.

The linear resistor, open circuit, short circuit, ideal switch, ideal voltage source,
and ideal current source are the initial entries in our catalog of circuit elements.
In Chapter 4, we will develop models for active devices such as the transistor and
OP AMP. Models for dynamic elements such as capacitors and inductors are intro-
duced in Chapter 6.
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FIGURE 2–9 Circuit symbols
for ideal and practical
independent sources: (a) Ideal
voltage source. (b) Practical
voltage source. (c) Ideal current
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2–2 C O N N E C T I O N C O N S T R A I N T S
In the previous section, we considered individual devices and models. In this section,
we turn our attention to the constraints introduced by interconnections of devices to
form circuits. The laws governing circuit behavior are based on the meticulous work
of the German scientist Gustav Kirchhoff (1824–1887). Kirchhoff ’s laws are derived
from conservation laws as applied to circuits. They tell us that element voltages and
currents are forced to behave in certain ways when the devices are interconnected to
form a circuit. These conditions are called connection constraints because they are
based only on the circuit connections, not on the specific devices in the circuit.

In this book, we will indicate that crossing wires are connected (electrically tied
together) using the dot symbol, as in Figure 2–10(a). Sometimes, crossing wires
are not connected (electrically insulated) but pass over or under each other. Since
we are restricted to drawing wires on a planar surface, we will indicate unconnected
crossovers by not placing a dot at their intersection, as indicated in the left of
Figure 2–10(b). Other books sometimes show unconnected crossovers using the sem-
icircular “hopover” shown on the right of Figure 2–10(b). In engineering systems, two
or more separate circuits are often tied together to form a larger circuit (for example,
the interconnection of two integrated circuit packages). Interconnecting different cir-
cuits forms an interface between the circuits. The special jack or interface symbol in
Figure 2–10(c) is used in this book because interface connections represent important
points at which the interaction between two circuits can be observed or specified. On
certain occasions, a control line is required to show a mechanical or other nonelec-
trical dependency. Figure 2–10(d) shows how this dependency is indicated in this
book. Figure 2–10(e) shows how power supply connections are often shown in elec-
tronic circuit diagrams. The implied power supply connection is indicated by an
arrow pointing to the supply voltage, which may be given in numerical ð+15 VÞ or
symbolic form ð+VCCÞ.

The treatment of Kirchhoff’s laws uses the following definitions:

• A circuit is an interconnection of electrical devices.

• A node is an electrical juncture of two or more devices.

• A loop is a closed path formed by tracing through an ordered
sequence of nodes without passing through any node more
than once.

While it is customary to designate the juncture of two or more ele-
ments as a node, it is important to realize that a node is not confined to
a point but includes all the zero-resistance wire from the point to each
element. In the circuit of Figure 2–11, there are only three different
nodes: A, B, and C. The points 2, 3, and 4, for example, are part of
node B, while the points 5, 6, 7, and 8 are all part of node C.

(a) (b)
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(c) (d) (e)

+

–
Implies

E
le
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FIGURE 2–10 Symbols used in circuit diagrams: (a) Electrical connection. (b) Crossover with no connection. (c) Jack connection.
(d) Control line. (e) Power supply connection.
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FIGURE 2–11 Circuit for demonstrating
Kirchhoff’s current law.
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K I R C H H O F F ’ S C U R R E N T L A W
Kirchhoff’s first law is based on the principle of conservation of charge. Kirchhoff’s
current law (KCL) states that

the algebraic sum of the currents entering a node is zero at every instant.

In forming the algebraic sum of currents, we must take into account the current ref-
erence direction associated with each device. If the current reference direction is into
the node, then we assign a positive sign to the corresponding current in the algebraic
sum. If the reference direction is away from the node, we assign a negative sign.
Applying this convention to the nodes in Figure 2–11, we obtain the following set
of KCL connection equations:

NodeA: − i1− i2 = 0
Node B: i1− i3− i4 + i5 = 0
Node C: i2 + i3 + i4− i5 = 0

(2–8)

The KCL equation at node A does not mean that the currents i1 and i2 are both neg-
ative. The minus signs in this equation simply mean that the reference direction for
each current is directed away from nodeA. Likewise, the equation at node B could be
written as

i3 + i4 = i1 + i5 (2–9)

This form illustrates an alternative statement of KCL:

The sum of the currents entering a node equals the sum of the currents leaving
the node.

There are two algebraic signs associated with each current in the application of
KCL. First is the sign given to a current in writing a KCL connection equation. This
sign is determined by the orientation of the current reference direction relative to a
node. The second sign is determined by the actual direction of the current relative to
the reference direction. The actual direction is found by solving the set of KCL equa-
tions, as illustrated in the following example.

E X A M P L E 2 – 5

Given i1 = +4 A, i3 = +1 A, i4 = +2 A in the circuit shown in Figure 2–11, find i2 and i5.

SOLUTION:
Using the node A constraint in Eq. (2–8) yields

− i1− i2 = −ð+4Þ− i2 = 0

The sign outside the parentheses comes from the node AKCL connection constraint
in Eq. (2–8). The sign inside the parentheses comes from the actual direction of the
current. Solving this equation for the unknown current, we find that i2 = −4A. In this
case, the minus sign indicates that the actual direction of the current i2 is directed
upward in Figure 2–11, which is opposite to the reference direction assigned. Using
the second KCL equation in Eq. (2–8), we can write

i1− i3− i4 + i5 = ð+4Þ−ð+1Þ−ð+2Þ+ i5 = 0

which yields the result i5 = −1A.
Again, the signs inside the parentheses are associated with the actual direction of

the current, and the signs outside come from the node B KCL connection constraint
in Eq. (2–8). Theminus sign in the final answer means that the current i5 is directed in
the opposite direction from its assigned reference direction. We can check our work
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by substituting the values found into the node C constraint in Eq. (2–8). These sub-
stitutions yield

+ i2 + i3 + i4− i5 = ð−4Þ+ ð+1Þ+ ð+2Þ−ð−1Þ= 0

as required by KCL. Given three currents, we determined all the remaining currents
in the circuit using only KCL without knowing the element constraints. ■

In Example 2–5, the unknown currents were found using only the KCL constraints
at nodes A and B. The node C equation was shown to be valid, but it did not add any
new information. If we look back at Eq. (2–8), we see that the node C equation is the
negative of the sum of the node A and B equations. In other words, the KCL con-
nection constraint at node C is not independent of the two previous equations. This
example illustrates the following general principle:

In a circuit containing a total of N nodes there are only N−1 independent KCL
connection equations.

Current equations written at N−1 nodes contain all the independent connection
constraints that can be derived from KCL. To write these equations, we select one
node as the reference or ground node and then write KCL equations at the remaining
N−1 nonreference nodes.

E x e r c i s e 2–4
Refer to Figure 2–12.
(a) Write KCL equations at nodes A, B, C, and D.
(b) Given i1 = −1 mA, i3 = 0:5 mA, i6 = 0:2 mA, find i2, i4, and i5.

A n s w e r s:
(a) Node A: − i1− i2 = 0; node B: i2 − i3 − i4 = 0; node C: i4 − i5 − i6 = 0;

node D: i1 + i3 + i5 + i6 = 0
(b) i2 = 1 mA; i4 = 0:5 mA; i5 = 0:3 mA

K I R C H H O F F ’ S V O L T A G E L A W
The second of Kirchhoff’s circuit laws is based on the principle of conservation of
energy. Kirchhoff’s voltage law (KVL) states that

the algebraic sum of all the voltages around a loop is zero at every instant.

For example, three loops are shown in the circuit of Figure 2–13. In writing the alge-
braic sum of voltages, we must account for the assigned reference marks. As a loop is
traversed, a positive sign is assigned to a voltage when we go from a “ + ” to “ − ” ref-
erencemark.Whenwe go from “− ” to “+, ”weuse aminus sign. Traversing the three
loops in Figure 2–13 in the indicated clockwise direction yields the following set of
KVL connection equations:

Loop 1: −υ1 + υ2 + υ3 = 0
Loop 2: −υ3 + υ4 + υ5 = 0
Loop 3: −υ1 + υ2 + υ4 + υ5 = 0

(2–10)

There are two signs associated with each voltage. The first is the
sign given the voltage when writing the KVL connection equation.
The second is the sign determined by the actual polarity of a voltage
relative to its assigned reference polarity. The actual polarities are
found by solving the set of KVL equations, as illustrated in the fol-
lowing example.

A B C

D

i1 i3 i5 i6

i2 i4

FIGURE 2–12
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Loop 3

FIGURE 2–13 Circuit for demonstrating
Kirchhoff’s voltage law.
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E X A M P L E 2 – 6

Given υ1 = 5 V, υ2 = −3 V, and υ4 = 10 V in the circuit shown in Figure 2–13, find υ3
and υ5.

SOLUTION:
Inserting the given numerical values into Eq. (2–10) yields the following KVL equa-
tion for loop 1:

−υ1 + υ2 + υ3 = −ð+5Þ+ ð−3Þ+ ðυ3Þ= 0

The sign outside the parentheses comes from the loop 1KVL constraint in Eq. (2–10).
The sign inside comes from the actual polarity of the voltage. This equation yields
υ3 = +8 V. Using this value in the loop 2 KVL constraint in Eq. (2–10) produces

−υ3 + υ4 + υ5 = −ð+8Þ+ ð+10Þ+ υ5 = 0

The result is υ5 = −2 V. The minus sign here means that the actual polarity of υ5 is the
opposite of the assigned reference polarity indicated in Figure 2–13. The results can
be checked by substituting all the aforementioned values into the loop 3 KVL con-
straint in Eq. (2–10). These substitutions yield

−ð+5Þ+ ð−3Þ+ ð+10Þ+ ð−2Þ= 0

as required by KVL. ■

In Example 2–6, the unknown voltages were found using only the KVL constraints
for loops 1 and 2. The loop 3 equation was shown to be valid, but it did not add any
new information. If we look back at Eq. (2–10), we see that the loop 3 equation is
equal to the sum of the loop 1 and 2 equations. In other words, the KVL connection
constraint around loop 3 is not independent of the previous two equations. This
example illustrates the following general principle:

In a circuit containing a total of E two-terminal elements and N nodes, there are
only E −N+ 1 independent KVL connection equations.

Writing voltage summations around a total ofE−N + 1 different loops produces all
the independent connection constraints that can be derived from KVL. A sufficient
condition for loops to be different is that each contains at least one element that is not
contained in any other loop. In simple circuits with no crossovers, the open space
between elements or “window panes” produces E−N + 1 independent loops. How-
ever, finding all the loops in a more complicated circuit can be a nontrivial problem.

D I S C U S S I O N : For planar circuits, the kind encountered in this text, the number of independ-
ent loops is simply the number of “window panes.”Hence, in Figure 2–13, there are three loops
but only twowindowpanes. The same is true for Figures 2–14 and 2–15. Figure 2–18(c) has three
window panes but seven loops. The number of window panes simply identifies the number of
independent KVL equations one can write. One can use any of the different loops as long as
one does not exceed the number of independent equations. Choosing the right loops can at
times simplify the solution to the problem.

E x e r c i s e 2–5
Find the voltages υx and υy in Figure 2–14.

A n s w e r s: υx = +8 V; υy = +5 V

E x e r c i s e 2–6
Find the voltages υx, υy, and υz in Figure 2–15.

+

–

vx

+ –2 V + –vy

+

–

1 V

+

–
6 V

FIGURE 2–14
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A n s w e r s: υx = +25 V; υy = +5 V; υz = +10 V. Note: One might wonder how
there can be a voltage across an open circuit. One should recall that an open
circuit is a special case of a resistor with infinite resistance and a real element, it
is reasonable that KVL yields the voltage vz.

P A R A L L E L A N D S E R I E S C O N N E C T I O N S

Two types of connections occur so frequently in circuit analysis that they
deserve special attention. Elements are said to be connected in parallel
when they form a loop containing no other elements. For example, loop

A in Figure 2–16 contains only elements 1 and 2. As a result, the
KVL connection constraint around loop A is

−υ1 + υ2 = 0 (2–11)

which yields υ1 = υ2. In other words, in a parallel connection, KVL
requires equal voltages across the elements. Loop B in Figure 2–16
contains only two elements and although visibly they do not look as
if they are in parallel, a KVL analysis quickly shows that v2 = v3
and, therefore, elements 2 and 3 are in parallel. The parallel connec-

tion is not restricted to two elements. As a result, in this circuit, we have υ1 = υ2 = υ3,
and we say that elements 1, 2, and 3 are connected in parallel. In general, then, any
number of elements connected between two common nodes are in parallel, and as a
result, the same voltage appears across each of them. Existence of a parallel connec-
tion does not depend on the graphical position of the elements. For example, the
position of elements 1 and 3 could be switched, and the three elements are still con-
nected in parallel.

Two elements are said to be connected in series when they have one common
node to which no other element with current flowing through it is connected. In
Figure 2–17(a), elements 1 and 2 are connected in series, since only these two ele-
ments are connected at node A. Applying KCL at node A yields

i1− i2 = 0 or i1 = i2 (2–12)

In a series connection, KCL requires equal current through each element. Any number
of elements can be connected in series. For example, element 3 in Figure 2–17(a) is con-
nected in series with element 2 at node B, and KCL requires i2 = i3. Therefore, in this
circuit i1 = i2 = i3, we say that elements 1, 2, and 3 are connected in series, and the same
current exists in each of the elements. In general, elements are connected in series
when they form a single path between two nodes such that only elements in the path
are connected to the intermediate nodes along the path. Existence of a series connec-
tion does not depend on the graphical position of the elements. Hence, if the posi-
tions of elements 1 and 3 were switched, the three elements would still be in series.
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Figure 2–17(b) shows a common connection variation. Element 4 is connected at
nodeA between elements 1 and 2. In general, elements 1 and 2 would not be in series
since more than two elements connect at the same node. However, in this case we see
that the current through element 4 is zero. KCL tells us that all of the current that
flows through element 1 must flow through element 2. In this case, elements 1 and
2 behave as if they were in series.

E X A M P L E 2 – 7

Identify the elements connected in parallel and in series in each of the circuits in
Figure 2–18.

SOLUTION:
In Figure 2–18(a), elements 1 and 2 are connected in series at node A and ele-
ments 3 and 4 are connected in parallel between nodes B and C. In Figure 2–
18(b), elements 1 and 2 are connected in series at node A, as are elements 4 and
5 at node D. There are no single elements connected in parallel in this circuit. In
Figure 2–18(c), there are no elements connected in either series or parallel. It is
important to realize that in some circuits there are elements that are not connected
in either series or in parallel. ■

E x e r c i s e 2–7
Identify the elements connected in series or parallel when a short circuit is connected
between nodes A and B in each of the circuits of Figure 2–18.

A n s w e r s:
Circuit in Figure 2–18(a): Elements 1, 3, and 4 are all in parallel.
Circuit in Figure 2–18(b): Elements 1 and 3 are in parallel; elements 4 and 5 are in series.
Circuit in Figure 2–18(c): Elements 1 and 3 are in parallel; elements 4 and 6 are in parallel.

Note that in all three circuits the short circuit is connected across element 2 causing the
voltages at nodes A and B to be the same. Since the voltage across an element is zero there
can be no power produced or absorbed by that element. One can say that element 2 has
been “shorted out” and effectively removes element 2 from the circuit.

E x e r c i s e 2–8
Identify the elements in Figure 2–19 that are connected in (a) parallel, (b) series, or (c)
neither.
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A n s w e r s:
(a) The following elements are in parallel: 1, 8, and 11; 3, 4, and 5.
(b) The following elements are in series: 9 and 10; 6 and 7.
(c) Only element 2 is not in series or parallel with any other element.

D I S C U S S I O N : The ground symbol indicates the reference node. When ground symbols are
shown at several nodes, the nodes are effectively connected together by a short circuit to form
a single node.

2–3 C O M B I N E D C O N S T R A I N T S
The usual goal of circuit analysis is to determine the currents or voltages at various
places in a circuit. This analysis is based on constraints of two distinctly different types.
The element constraints are based on the models of the specific devices connected in
the circuit. The connection constraints are based on Kirchhoff’s laws and the circuit
connections. The element equations are independent of the circuit connections. Like-
wise, the connection equations are independent of the devices in the circuit. Taken
together, however, the combination of the element and connection constraints supply
the equations needed to describe a circuit.

Our study of the combined constraints begins by considering the simple but
important example in Figure 2–20(a). This circuit is driven by a current source
iS and the resulting responses are current/voltage pairs ðix, υxÞ and ðiO, υOÞ. The ref-
erence marks for the response pairs have been assigned using the passive sign
convention.

To solve for all four responses, we must write four equations. The first two are the
element equations

ix = iS
υO = RiO

(2–13)

The first element equation states that the response current ix and the input driving
force iS are equal in magnitude and direction. The second element equation is Ohm’s
law relating υO and iO under the passive sign convention.

The connection equations are obtained by applying Kirchhoff’s laws. The circuit
in Figure 2–20 has two elements ðE= 2Þ and two nodes ðN = 2Þ, so we need
E−N + 1= 1 KVL equation and N−1= 1 KCL equation. Selecting node B as the ref-
erence node, we apply KCL at node A and apply KVL around the loop to write

KCL: − ix− iO = 0
KVL: −υx + υO = 0

(2–14)

We now have two element constraints in Eq. (2–13) and two connection con-
straints in Eq. (2–14), so we can solve for all four responses in terms of the input driv-
ing force iS. Combining the KCL connection equation and the first element equation
yields iO = − ix = − iS. Substituting this result into the second element equation (Ohm’s
law) produces

υO = −RiS (2–15)

The minus sign in this equation does not mean that υO is always negative. Nor does it
mean the resistance is negative; it cannot be. It means that when the input driving
force iS is positive, then the response υO is negative, and vice versa. This sign reversal
is a result of the way we assigned reference marks at the beginning of our analysis.
The referencemarks defined the circuit input and outputs in such a way that iS and υO
always have opposite algebraic signs. Put differently, Eq. (2–15) is an input–output
relationship, not an element i−υ relationship.
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FIGURE 2–20 (a) Circuit used
to demonstrate combined
constraints.
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E X A M P L E 2 – 8

(a) Find the responses ix, υx, iO, and υO in the circuit in Figure 2–20(a) when
iS = +2 mA and R= 2 kΩ.

(b) Repeat for iS = −2mA.

SOLUTION:
(a) From Eq. (2–13) we have ix = iS = +2 mA and υO = 2000iO. From Eq. (2–14) we

have iO = − ix = −2 mA and υx = υO. Combining these results, we obtain

υx = υO = 2000iO = 2000ð−0:002Þ= −4 V

(b) In this case ix = iS = −2mA, iO = − ix = −ð−0:002Þ= +2mA, and

υx = υO = 2000iO = 2000ð+0:002Þ= + 4 V

This example confirms that the algebraic signs of the outputs υx, υO, and iO are
always the opposite from that of the input driving force iS. ■

E x e r c i s e 2–9
A 1-kΩ resistor RR is inserted between nodes A and B in Figure 2–20(a) as shown in
Figure 2–20(b).

The voltage across it is labeled vR and the current through it is labeled iR. Write a set of
element and connection constraints defining the circuit. Then find ix, vx, iO, iR, vR, and vO if
iS = 1 mA and R= 2 kΩ.

A n s w e r s:
Element constraints: iS = ix = 1 mA; vR = iRRR = 1000 × iR; vO = iOR= 2000 × iO
Connection constraints: − iS− iR− iO = 0; −vx + vR = 0; −vR + vO = 0
ix = 1 mA; iR = −667 μA; iO = −333 μA; vO = vR = vx = −667mV

Letusnow lookat the single-loop circuit shown inFigure 2–21.Westart analyzing this
circuit by assigning referencemarks for the voltage and current at each element.There is
norightorwrongway;however, foreachelement, thecurrentandvoltagemustfollowthe
passive sign convention.Wewill discusshow todo this further afterExercise 2–12.Then,
using these definitions, we can write the element constraints as

υA = VO
υ1 = R1i1
υ2 = R2i2

(2–16)

These equations describe the three devices and do not depend on how the devices are
connected in the circuit.

The connection equations are obtained from Kirchhoff’s laws. To apply these
laws, we must first label the different loops and nodes. The circuit contains E= 3 ele-
ments and N = 3 nodes, so there are E−N + 1= 1 independent KVL constraints and
N−1= 2 independent KCL constraints. There is only one loop, but there are three
nodes in this circuit. We will select one node as the reference point and write
KCL equations at the other two nodes. Any node can be chosen as the reference,
so we select node C as the reference node and indicate this choice by drawing the
ground symbol there. The connection constraints are

KCL: Node A − iA− i1 = 0
KCL: Node B i1− i2 = 0
KVL: Loop −υA + υ1 + υ2 = 0

(2–17)

These equations are independent of the specific devices in the circuit. They depend
only on Kirchhoff’s laws and the circuit connections.
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This circuit has six unknowns: three element currents and three element voltages.
Taken together, the element and connection equations give us six independent equa-
tions. For a network with ðNÞ nodes and ðEÞ two-terminal elements, we can write
ðN−1Þ independent KCL connection equations, ðE−N + 1Þ independent KVL con-
nection equations, and ðEÞ element equations. The total number of equations gen-
erated is

Element equations E
KCL equations N−1
KVL equations E−N + 1
Total 2E

The grand total is then ð2EÞ combined connection and element equations, which is
exactly the number of equations needed to solve for the voltage across and current
through every element—a total of ð2EÞ unknowns.
E X A M P L E 2 – 9

Find all of the element currents and voltages in Figure 2–21 forVO = 10 V, R1 = 2000Ω,
and R2 = 3000Ω.

SOLUTION:
Substituting the element constraints from Eq. (2–16) into the KVL connection con-
straint in Eq. (2–17) produces

−VO +R1i1 +R2i2 = 0

This equation can be used to solve for i1 since the second KCL connection equation
requires that i2 = i1.

i1 =
VO

R1 +R2
=

10
2000 + 3000

= 2 mA

In effect, we have found all of the element currents since the elements are connected
in series. Hence, collectively the KCL connection equations require that

− iA = i1 = i2

Substituting all of the known values into the element equations gives

υA = 10 V υ1 =R1i1 = 4 V υ2 =R2i2 = 6 V

Every element voltage and current has been found. Note the analysis strategy used.
We first found all the element currents and then used these values to find the element
voltages. ■

E x e r c i s e 2–10
The wire connecting R1 to node B in Figure 2–21 is broken. What would you measure for
iA, υ1, i2, and υ2? Is KVL violated? Where does the source voltage appear across?

A n s w e r s: iA = i2 = 0 A, υ1 = υ2 = 0 V. KVL is not violated. The voltage VO appears across
he open (broken) circuit.

E X A M P L E 2 – 1 0

Use element and connection equations to find the voltages across the resistors in
Figure 2–22.
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SOLUTION:
A complete description of this circuit involves four element equations
and four connection equations. The element equations are

υ1 = 100i1
υ2 = 200i2
υ3 = 300i3
υA = 30 V

The four connection equations are

KCL: Node A − iA− i1− i3 = 0
KCL: Node B i1− i2 = 0
KVL: Loop 1 −υA + υ3 = 0
KVL: Loop 2 −υ3 + υ1 + υ2 = 0

Combining the last element equation and the KVL equation around loop 1
shows that

υ3 = υA = 30 V

which is nothing more than a statement that the voltage source and R3 are connected
in parallel. Using this result in the loop 2 equation yields υ1 + υ2 = υ3 = 30 V. Substitut-
ing the first two element equations into this equation produces

100i1 + 200i2 = 30

But the KCL equation at node B points out that i1 = i2, and this result reduces to
300i2 = 30 or i1 = i2 = 0:1 A. Finally, the first two element equations yield

υ1 = 100i1 = 10 V and υ2 = 200i2 = 20 V

In summary, the voltages across the three resistors are υ1 = 10 V, υ2 = 20 V, and
υ3 = 30 V. ■

E x e r c i s e 2–11
Repeat the problem of Example 2–10 if the 30-V voltage source is replaced with a 2-mA
current source with the arrow pointing up toward node A.

A n s w e r s: v1 = 100mV, v2 = 200 mV, v3 = 300mV

E X A M P L E 2 – 1 1

Use element and connection equations to find the voltages across and the currents
through each of the elements in Figure 2–23.

SOLUTION:
A complete description of this circuit involves 2E equations
where E= 4 (two Rs and one each voltage and current
sources). There are four element equations and four connec-
tion equations. The four element equations are

vA = 100 V
v1 = 33 kΩ i1
v2 = 22 kΩ i2
iB = 1 mA
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The four connection equations are

KCL: NodeA − iA− i1− i2 = 0
KCL: Node B i2 + iB = 0
KVL: Loop 1 −vA + v1 = 0
KVL: Loop 2 −v1 + v2−vB = 0

Combining the equation for loop 1 and the vA element constraint yields

vA = v1 = 100 V

From the element equation for the 33-kΩ resistor we find

i1 =
100
33 k

= 3:03 mA

Using the KCL equation at Node B we find

i2 = − iB = −1mA

Using the element constraint for the 22-kΩ resistor we find

v2 = ð−1mÞ ð22 kÞ= −22 V

Now from the loop 2 equation we can find the voltage across the current source

−100 + ð−22Þ= vB = −122 V

And from the KCL equation for Node A we find the current through the voltage
source

iA = −3:03 m−ð−1 mÞ= −2:03 mA

In sum, the following values have been found

vA = 100 V
iA = −2:03 mA
v1 = 100 V
i1 = 3:03 mA
v2 = −22 V
i2 = −1 mA
vB = −122 V
iB = 1 mA ■

E x e r c i s e 2–12
In Figure 2–24, write a loop equation around Loop 1 and a node equation at
Node A. Then if i1 = 200 mA and i3 = −100 mA, use the appropriate ele-
ment equations to find the voltage υx.

A n s w e r s s: Loop 1: −υx + υ1 + υ2 = 0; Node A: i1− i2− i3 = 0;
υx = 35 V

A S S I G N I N G R E F E R E N C E M A R K S

In all of our previous examples and exercises, the reference marks for the element
currents (arrows) and voltages ð+ and −Þ were given. When reference marks are
not shown on a circuit diagram, they must be assigned by the person solving the prob-
lem. Beginners sometimes wonder how to assign reference marks when the actual
voltage polarities and current directions are unknown. It is important to remember
that the reference marks do not indicate what is actually happening in the circuit.
They are benchmarks assigned at the beginning of the analysis. If it turns out that
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the actual direction and reference direction agree, then the algebraic sign of the
response will be positive. If they disagree, the algebraic sign will be negative. In other
words, the sign of the answer together with assigned referencemarks tell us the actual
voltage polarity or current direction.

In this book, the reference marks always follow the passive sign convention. This
means that for any given two-terminal element we can arbitrarily assign either the +
voltage referencemark or the current reference arrow, but not both. For example, we
can arbitrarily assign the voltage reference marks to the terminals of a two-terminal
device. Once the voltage reference is assigned, however, the passive sign convention
requires that the current reference arrow be directed into the element at the terminal
with the + mark. On the other hand, we could start by arbitrarily selecting the termi-
nal at which the current reference arrow is directed into the device. Once the current
reference is assigned, however, the passive sign convention requires that the + volt-
age reference be assigned to the selected terminal.

Following the passive sign convention avoids confusion about the direction of
power flow in a device. In addition, the element constraints, such as Ohm’s law,
assume that the passive sign convention is used to assign the voltage and current ref-
erence marks to a device.

The next example illustrates the assignment of reference marks.

E X A M P L E 2 – 1 2

Find the voltages across the resistors and current sources in Figure 2–25(a).

SOLUTION:
No voltage reference marks are given in Figure 2–25(a), so we assign those shown in
Figure 2–25(b). Because of the passive sign convention, the voltages assigned to the
three current sources must also be assigned as shown. Once the voltage marks for
υ1, υ2, and υ3 are assigned, the passive sign convention requires that the current ref-
erence directions for i1, i2, and i3 be assigned as shown in Figure 2–25(c). KCL can be
used to find the resistor currents directly. Using KCL at node A gives 2− i1−3 = 0;
hence i1 = −1A. KCL applied at node C yields 3 + i3−5 = 0; hence i3 = 2 A. Finally,
at node B KCL requires i1− i2− i3 = 0; hence i2 = i1− i3 = −1−2 = −3 A. Given the
three resistor currents, we use Ohm’s law to find the three resistor voltages.

υ1 = 100i1 = −100 V
υ2 = 50i2 = −150 V
υ3 = 100i3 = + 200 V

The plus on the numerical value of υ3 means that the assigned reference marks agree
with the actual voltage polarity. The minus sign on the numerical values of υ1 and υ2
mean that the assigned marks and physical reality disagree. This disagreement does

3 A

5 A2 A 50 Ω

100 Ω100 Ω

(a)

3 A

5 A2 A 50 Ω

100 Ω100 Ω

+
v2
–

–
vA
+

+
vC
–

+ v1 – + v3 –

+ vB –

(b)

FIGURE 2–25

33COMBINED CONSTRAINTS



not mean that the assigned marks for υ1 and υ2 are wrong. Reference marks are not
predictions. They are definitions that allow us to correctly formulate circuit equations
and interpret the numerical results of circuit analysis.

The voltages across the current sources can now be found by applying KVL
around the three loops shown in Figure 2–25(c).

Loop 1 υA + υ1 + υ2 = 0 or υA = −υ1−υ2
Loop 2 υB−υ1−υ3 = 0 or υB = υ1 + υ3
Loop 3 υC−υ2 + υ3 = 0 or υC = υ2−υ3

Using the resistor voltages found above we have

υA = −ð−100Þ−ð−150Þ= 250 V
υB = −100 + 200 = 100 V
υC = −150−200 = −350 V

Figure 2–25(d) shows the numerical values of all the voltages and currents, some of
which are negative. Again, the negative values do not mean that the voltage refer-
ence marks originally assigned in Figure 2–25(b) are incorrect. ■

E x e r c i s e 2–13
In Figure 2–25(a), the 2-A source is replaced by a 100-V source with the + terminal at the top,
and the 3-A source is removed. Find the current and its direction through the voltage source.

A n s w e r: iVoltage Source = 2:33A up.

2–4 E Q U I V A L E N T C I R C U I T S
The analysis of a circuit can often be made easier by replacing part of the circuit with
one that is equivalent but simpler. The underlying basis for two circuits to be equiv-
alent is contained in their i−υ relationships.

Two circuits are said to be equivalent if they have identical i−υ characteristics at
a specified pair of terminals.

In other words, when two circuits are equivalent, the voltage and current at an inter-
face do not depend on which circuit is connected to the interface.
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+
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FIGURE 2–25 (Continued)
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E Q U I V A L E N T R E S I S T A N C E

The two resistors in Figure 2–26(a) are connected in series between a pair of term-
inals A and B. The objective is to simplify the circuit without altering the electrical
behavior of the rest of the circuit.

The KVL equation around the loop from A to B is

υ= υ1 + υ2 (2–18)

Since the two resistors are connected in series, the same current i exists in both.
Applying Ohm’s law, we get υ1 =R1i and υ2 =R2i. Substituting these relationships
into Eq. (2–18) and then simplifying yields

υ=R1i+R2i= iðR1 +R2Þ
We can write this equation in terms of an equivalent resistance REQ as

υ= iREQ where REQ =R1 +R2 (2–19)

This result means that the circuits in Figure 2–26(a) and (b) have the same i−υ char-
acteristic at terminals A and B. As a result, the response of the rest of the circuit is
unchanged when the series connection of R1 and R2 is replaced by a resistance REQ.

In deriving the equivalence of two resistors in parallel, it is illustrative to use conduc-
tances. The parallel connection of two conductances in Figure 2–27(a) is the dual2 of the
series circuit in Figure 2–26(a). Again, the objective is to replace the parallel connection
by a simpler equivalent circuit without altering the response of the rest of the circuit.

A KCL equation at node A produces

i= i1 + i2 (2–20)

Since the conductances are connected in parallel, the voltage υ appears across both.
Applying Ohm’s law, we obtain i1 =G1v and i2 =G2v. Substituting these relationships
into Eq. (2–20) and then simplifying yields

i= υG1 + υG2 = υ G1 +G2ð Þ
This result can be written in terms of an equivalent conductance GEQ as follows:

i= vGEQ; whereGEQ =G1 +G2 (2–21)

This resultmeans that the circuits in Figure 2–27(a) and (b) have the same i−v character-
istic at terminals A andB.As a result, the response of the rest of the circuit is unchanged
when the parallel connection ofG1 and G2 is replaced by a conductance GEQ.

Since conductance is not normally used to describe a resistor, we can derive the
same relationship using resistors. Figure 2–27(c) shows the same circuit using resis-
tors. Recall from Eq. (2–4) that we can rewrite Eq. (2–21) as an equivalent resistance
REQ = 1=GEQ. That is,

R1kR2 =REQ =
1

GEQ
=

1
G1 +G2

=
1

1
R1

+
1
R2

=
R1R2

R1 +R2
(2–22)

where the symbol “k” is shorthand for “in parallel.”The expression on the far right in
Eq. (2–22) is called the product over the sum rule for two resistors in parallel. This
result is shown in Figure 2–27(d).
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v REQ = R1 + R2
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FIGURE 2–26 A series
resistance circuit: (a) Original
circuit. (b) Equivalent circuit.

2Dual circuits have identical behavior patterns when we interchange the roles of the following para-
meters: (1) voltage and current, (2) series and parallel, and (3) resistance and conductance. In later
chapters, we will see duality exhibited by other circuit parameters as well.
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resistance circuit: (a) Original
circuit with resistors replaced by
their conductance equivalent.
(b) Equivalent conductance
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resistors. (d) Equivalent
resistance circuit.
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Caution: The product over sum rule applies only to two resistors connected in par-
allel. When more than two resistors are in parallel, we must use the following general
result to obtain the equivalent resistance:

REQ =
1

GEQ
=

1
G1 +G2 +G3 + � � � =

1
1
R1

+
1
R2

+
1
R3

+ � � �
(2–23)

E X A M P L E 2 – 1 3

Find the equivalent resistance for the circuits in Figure 2–28 (a) and (b).

SOLUTION:
In the circuit of Figure 2–28(a), the two 100-Ω resistors on the right of the circuit are
in parallel and combine using Eq. (2–22) to 50Ω as shown in Figure 2–28(c). This new
resistor is connected to the remaining 100-Ω resistor. These two resistors are in series
and add as per Eq. (2–19) as shown in Figure 2–28(e). The equivalent resistance REQ

of the circuit of Figure 2–28(a) is 150Ω.
The circuit of Figure 2–28(b) requires a few extra steps. Starting at the farthest

right we see that the 5:6-kΩ resistor and the 10-kΩ resistor are in series. They add
to equal 15:6 kΩ as shown in Figure 2–28(d). This new resistor is in parallel with
the 10-kΩ resistor in the center of the circuit. The new 15:6-kΩ resistor and the
10-kΩ resistor combine to yield 6:09 kΩ as shown in Figure 2–28(f). The two resistors
at the leftmost part of the circuit, that is, the 2:2-kΩ and the 3:3-kΩ resistors are in
parallel. These can combine as a 1:32-kΩ resistor as shown in Figure 2–28(d). Finally,
the 1:32-kΩ resistor and the 6:09-kΩ resistor are in series and can be combined result-
ing in a REQ = 7:41 kΩ as shown in Figure 2–28(g). ■

REQ REQ

REQ
REQ

REQREQ
REQ

100 Ω

100 Ω

(a)

(c)
(d)

(f) (g)
(e)

(b)

100 Ω

1.32 kΩ
10 kΩ 15.6 kΩ

50 Ω

150 Ω

100 Ω

1.32 kΩ

6.09 kΩ

7.41 kΩ

2.2 kΩ

5.6 kΩ

3.3 kΩ
10 kΩ 10 kΩ

FIGURE 2–28
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E x e r c i s e 2–14
Find the equivalent resistance for the circuit in Figure 2–29.

A n s w e r: REQ = 500Ω

E X A M P L E 2 – 1 4

Given the circuit in Figure 2–30(a),

(a) Find the equivalent resistance REQ1 connected between terminals A and B.
(b) Find the equivalent resistance REQ2 connected between terminals C and D.

SOLUTION:
First we note that resistors R2 and R3 are connected in parallel.
Applying the product over sum rule [Eq. (2–22)], we obtain

R2kR3 =
R2R3

R2 +R3

As an interim step,we redraw the circuit, as shown inFigure 2–30(b).

(a) To find the equivalent resistance between terminals A and B,
we note that R1 and the equivalent resistance R2kR3 are con-
nected in series. The total equivalent resistance REQ1

between terminals A and B is

REQ1 = R1 + ðR2kR3Þ

REQ1 = R1 +
R2R3

R2 +R3

REQ1 =
R1R2 +R1R3 +R2R3

R2 +R3

(b) Looking between terminals C and D yields a different result.
In this case R1 is not involved, since there is an open circuit
(an infinite resistance) between terminals A and B. There-
fore, only R2kR3 affect the resistance between terminals
C and D. As a result, REQ2 is simply

REQ2 =R2kR3 =
R2R3

R2 +R3

This example shows that equivalent resistance depends on the pair of terminals
involved. ■

E x e r c i s e 2–15
Find the equivalent resistance between terminals A–C, B–D,A–D, and B–C in the circuit in
Figure 2–30.

A n s w e r s: RA−C =R1; RB−D = 0Ω (a short circuit); RA−D =R1 +R2kR3; RB−C =R2kR3

E x e r c i s e 2–16
Find the equivalent resistance between terminals A–B, A–C, A–D, B–C, B–D, and C–D in
the circuit of Figure 2–31. For example: RA−B = ð80k80Þ+ 60= 100Ω.

A n s w e r s: RA−C = 70Ω; RA−D = 65Ω; RB−C = 90Ω; RB−D = 85Ω; RC−D = 55Ω

REQ 500 Ω 500 Ω

1 kΩ
1.5 kΩ 1.5 kΩ

1 kΩ

FIGURE 2–29
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One final note on checking numerical calculations of equivalent resistance. When
several resistances are connected in parallel, the equivalent resistancemust be smaller
than the smallest resistance in the connection. Conversely, when several resistances
are connected in series, the equivalent resistancemust be larger than the largest resist-
ance in the connection.

E Q U I V A L E N T S O U R C E S

The practical source models introduced previously are shown in Figure 2–32.
These models consist of an ideal voltage source in series with a resistance and
an ideal current source in parallel with a resistance. We now determine the con-
ditions under which the practical voltage source and the practical current sources
are equivalent.

Figure 2–32 shows the two practical sources connected between terminals labeled
A and B. A parallel analysis of these circuits yields the conditions for equivalency at
terminals A and B. First, Kirchhoff’s laws are applied as

Circuit A Circuit B
KVL KCL

υS = υR + υ iS = iR + i

Next, Ohm’s law is used to obtain

Circuit A Circuit B

υR =R1i iR =
υ

R2

Combining these results, we find that the i−υ relationships of each of the circuits at
terminals A and B are

Circuit A Circuit B

i= −
υ

R1
+
υS
R1

i= −
υ

R2
+ iS

These i−υ characteristics take the form of the straight lines shown in Figure 2–33.
The two lines are identical when the intercepts are equal. This requires that υS=R1 = iS
and υS = iSR2, which, in turn, requires that

R1 =R2 =R and υS = iSR (2–24)

When conditions in Eq. (2–24) are met, the response of the rest of the circuit is unaf-
fected when we replace a practical voltage source by an equivalent practical current
source, or vice versa. Exchanging one practical source model for an equivalent model
is called source transformation.

Caution: Source transformationmeans that eithermodelwill deliver the samevoltage
andcurrent to the rest of the circuit.Hence, a circuit connected toeither cannot tellwhich
practical circuit it is connected to. It does not mean that the two models are identical in
everyway. For example, when the rest of the circuit is an open circuit, there is no current
in the resistance of the practical voltage source, and hence no i2R power loss. However,
the current in the practical current source is not zero when the load is an open circuit.
Thus, equivalent sources do not usually have the same internal power loss even
though they deliver the same current and voltage to the rest of the circuit. Suppose
a problem requires the determination of the power supplied by a practical voltage
source connected to a resistive load. It would be incorrect to do a source transforma-
tion and use the transformed current times the original voltage to find the power. It
would also be incorrect to find the power supplied by the practical current source,
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FIGURE 2–32 Practical source
models that are equivalent when
Eq. (2–24) is satisfied.
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since it usually is not the same as that delivered by the equivalent voltage source. (See
Example 2–15.)

E X A M P L E 2 – 1 5

(a) Convert the practical voltage source into the left of nodes A and B in Figure 2–34
(a) to an equivalent current source.

(b) Suppose the practical voltage source is connected to a 5-Ω load across nodes
A and B. How much power is provided by the voltage source?

SOLUTION:
(a) Using Eq. (2–24), we have

R1 = R2 =R= 10Ω

iS =
υS
R

=
50
10

= 5A

The equivalent practical current source is shown in Figure 2–34(b) to the left of
nodes A and B.
(b) The power provided by the source is equal to the 50-V source times the current

flowing through it. The current is found by a loop equation as follows:

50 = 10 × iS + 5 × iS

iS =
50
15

= 3:33 A

The power provided by the voltage source then is

pS = υS × iS = 50 × 3:33 = 166W ■

D I S C U S S I O N : As noted earlier, multiplying the voltage of the voltage source by the current
of the transformed current source does not produce the correct answer: 50 × 5= 250W, not
166W.However, onemay be fooled into thinking that the power delivered by the transformed
current source is equal to that delivered by the original voltage source. To demonstrate that
this is not correct, combine the 5-Ω load connected in parallel with the 10-Ω source resistance
to get an equivalent resistance of 3:33Ω. Find the voltage across the equivalent 3:33-Ω resist-
ance using Ohm’s law:

υS = iS ×REQ = 5× 3:3�3 = 16:�6 V

The power provided by the equivalent current source then is

pS = υS × iS = 16:�6 × 5 = 83:33W

This is not equivalent to the correct answer of 166 W.
Transformed sources are valuable tools, as we will see, but one must remember that the

transformation creates an equivalent circuit only from the perspective of the rest of the circuit
and not between the transformed sources.

E x e r c i s e 2–17
A practical current source consists of a 2-mA ideal current source in parallel with a 500-Ω
resistance. (a) Find the equivalent practical voltage source. Then (b), connect a 1-kΩ resis-
tor in parallel with the first and find the power delivered by the current source. Finally
(c), find the power delivered by the equivalent voltage source. Why the difference?

A n s w e r s:
(a) The equivalent is a 1-V ideal voltage source in series with a 500-Ω resistance.
(b) The power supplied by the current source is 1:33mW.
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FIGURE 2–34
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(c) The power delivered by the transformed source is 667 μW. A source transformation
only guarantees that the load, the 1-kΩ resistor, receives the same i, v, and p.

Figure 2–35 shows another source transformation in which a voltage source and
resistor in parallel is replaced by a voltage source acting alone. The two circuits
are equivalent because the i−υ constraint at the input to the rest of the circuit is
υ= υS in both circuits. In other words, the response of the rest of the circuit is
unchanged if a resistor in parallel with a voltage source is removed from the circuit.
However, removing the resistor does reduce the total current supplied by the voltage
source by υS=R.While the resistor does not affect the current and voltage delivered to
the rest of the circuit, it does dissipate power that must be supplied by the source.

The dual situation is shown in Figure 2–36. In this case a current source connected
in series with a resistor can be replaced by a current source acting alone because the

i−υ constraint at the input to the rest of the circuit is i= iS for both circuits. In other
words, the response of the rest of the circuit is unchanged if a resistor in series with a
current source is removed from the circuit.

S U M M A R Y O F E Q U I V A L E N T C I R C U I T S
Figure 2–37 is a summary of two-terminal equivalent circuits involving resistors and
sources connected in series or parallel. The series and parallel equivalences in the
first row and the source transformations in the second row are used regularly in sub-
sequent discussions. The last row in Figure 2–37 presents additional source transfor-
mations that reduce series or parallel connections to a single ideal current or voltage
source. Proof of these equivalences involves showing that the final single-source cir-
cuits have the same i−υ characteristics as the original connections. The details of such
a derivation are left as an exercise for the reader.

There are several other circuit combinations that involve equivalent circuits that
we should mention. The first is what happens if we connect two or more voltage
sources in parallel? Practical sources, such as real, same-value batteries, are often
connected in parallel to achieve more current. However, ideal sources are capable,
by their definition, of providing whatever current the load requires, hence, multiple,
same-value, voltage sources can be replaced by a single voltage source of that value.
However, one cannot connect ideal voltage sources of different values, including a
short circuit, in parallel since this would violate KVL. The dual is also true for ideal
current sources connected in series. Same-value current sources can be replaced by a
single current source of that value, while connecting ideal current sources of different
values would violate KCL.
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E x e r c i s e 2–18
Find the equivalent circuit for each of the following
(a) Three ideal 1.5-V batteries connected in series.
(b) A 5-mA current source in series with a 100-kΩ resistor.
(c) A 40-A ideal current source in parallel with an ideal 10-A current source.
(d) A 100-V source in parallel with two 10-kΩ resistors.
(e) An ideal 15-V source in series with an ideal 10-mA source.
(f) A 15-V ideal source and a 5-V ideal source connected in parallel.

A n s w e r s:
(a) One 4.5-V voltage source.
(b) A single 5-mA current source.
(c) One 50-A current source.
(d) A single 100-V voltage source.
(e) A 15-V source in series with a 10-mA source. An ideal voltage and current sources can-

not be combined.
(f) This is not a possible combination since KVL would be violated.
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2–5 V O L T A G E A N D C U R R E N T D I V I S I O N

We complete our treatment of series and parallel circuits with a discussion of voltage
and current division. These two analysis tools find wide application in circuit analysis
and design.

V O L T A G E D I V I S I O N

Voltage division provides a simple way to find the voltage across each element in a
series circuit. Figure 2–38 shows a circuit that lends itself to solution by voltage divi-
sion. Applying KVL around the loop in Figure 2–38 yields

υS = υ1 + υ2 + υ3 (2–25)

The elements in Figure 2–38 are connected in series, so the same current i exists in
each of the resistors. Using Ohm’s law, we find that

υS =R1i+R2i+R3i (2–26)

Solving for i yields

i=
υS

R1 +R2 +R3
(2–27)

Once the current in the series circuit is found, the voltage across each resistor is com-
puted using Ohm’s law:

υ1 =R1i=
R1

R1 +R2 +R3

� �
υS (2–28)

υ2 =R2i=
R2

R1 +R2 +R3

� �
υS (2–29)

υ3 =R3i=
R3

R1 +R2 +R3

� �
υS (2–30)

Looking over these results, we see an interesting pattern. In a series connection,
the voltage across each resistor is equal to its resistance divided by the equivalent
series resistance of the connection times the voltage across the series circuit. Thus,
the general expression of the voltage division rule is

υk =
Rk

REQ

� �
υTOTAL (2–31)

In other words, the total voltage divides among the series resistors in proportion to
their resistance over the equivalent resistance of the series connection. The following
examples show several applications of this rule.

E X A M P L E 2 – 1 6

Find the voltage across the 330-Ω resistor in the circuit of Figure 2–39.

SOLUTION:
Applying the voltage division rule, we find that

υO =
330

100 + 560 + 330 + 220

� �
24 = 6:55 V

■

E x e r c i s e 2–19
Find the voltages υx, υy, and υz in the circuit of Figure 2–39. Show that the sum of all the
voltages across each of the individual resistors equals the source voltage.
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A n s w e r s: υx = 1:98 V, υy = 11:11 V, and υz = 4:36 V. 1:98 + 11:11 + 4:36 + 6:55 = 24 V,
Q.E.D.

E X A M P L E 2 – 1 7

Usingonly theavailable20%tolerance3 standard-valueresistors in the insidebackcover,
design a voltage divider to obtain 2:9 V�20% from a 5-V source using only two
resistors.

SOLUTION:
Use the voltage–divider relationship to determine the ratio your design needs to
achieve 2:9 = 5 × x; x= 0:58.

RO

Rs +RO
= 0:58, RO−0:58RO = 0:58Rs, 0:42RO = 0:58Rs, RO = 1:38Rs

whereRO is the output resistor andRs is the source resistor. We need an output resis-
tor that is 1:38 times the source resistor. If we had any value of resistor we wanted, the
problemwould be easy—selectRO as 1:38 kΩ andRs as 1 kΩ. But we are restricted to
�20% values. If we choose Rs = 1 kΩ, the nearest value of RO is 1:5 kΩ. This would
yield an output of 3:0 V within the �20%, even if both resistors are near the end of
their range the output can be as large as 3:46 V or as small as 2:50 V, both are still
within the desired range of 2:32 to 3:48 V. ■

E x e r c i s e 2–20
Using only the available 10% tolerance resistors in the inside back cover, design a voltage
divider to obtain 6:5 V �10% from a 20-V source using only two resistors.

A n s w e r: The best choice is RO = 2:7 kΩ and Rs = 5:6 kΩ. Alternately, RO = 3:3 kΩ and
Rs = 6:86 kΩ are also acceptable. Note that factor of 10 multiples of those pairs will also
work, that is, RO = 27 kΩ and Rs = 56 kΩ, or RO = 270Ω and Rs = 560Ω.

E X A M P L E 2 – 1 8

Select a value for the resistor Rx in Figure 2–40 so υO = 8 V.

SOLUTION:
The unknown resistor is in parallel with the 10-kΩ resistor. Since voltages across par-
allel elements are equal, the voltage υO = 8 V appears across both. We first define an
equivalent resistance REQ =Rxk10 kΩ as

REQ =
Rx × 10000
Rx + 10000

We write the voltage division rule in terms of REQ as

υO = 8=
REQ

REQ + 2000

� �
10

3Discrete standard-value resistors, such as those listed in the inside cover of this text, are typically
rated with a tolerance of 20%, 10%, 5%, or other. The value of a given resistor, say 1 kΩ, represents
a nominal value of resistance of 1000Ω. Depending on the resistor’s tolerance, it can vary by the
range of the tolerance. Hence, a 1-kΩ resistor of 20% tolerance can vary between�20% of the nom-
inal value or from 800 to 1200Ω.
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which yields REQ = 8 kΩ. Finally, we substitute this value into the equation defining
REQ and solve for Rx to obtain Rx = 40 kΩ. ■

E x e r c i s e 2–21
In Figure 2–40Rx = 10 kΩ. The output voltage υO = 20 V. Find the voltage source that would
produce that output. (Hint: It is not 10 V.)

A n s w e r: Voltage source = 28 V.

E X A M P L E 2 – 1 9

Use the voltage division rule to find the output voltage υO of the circuit in
Figure 2–41.

SOLUTION:
At first glance, it appears that the voltage division rule does not apply, since the resis-
tors are not connected in series. However, the current through R3 is zero since the
output of the circuit is an open circuit. Therefore, Ohm’s law shows that
υ3 =R3i3 = 0. Applying KCL at node A shows that the same current exists in R1

and R2, since the current through R3 is zero. Applying KVL around the output loop
shows that the voltage across R2 must be equal to υO since the voltage across R3 is
zero. In essence, it is as ifR1 andR2 were connected in series. Therefore, voltage divi-
sion can be used and yields the output voltage as

υO =
R2

R1 +R2

� �
υS

The reader should carefully review the logic leading to this result because voltage
division applications of this type occur frequently. ■

E x e r c i s e 2–22
In Figure 2–41, suppose that a resistorR4 is connected across the output.What value should
R4 be if we want 1

2υS to appear between node A and ground?

A n s w e r: R4 =
R1R3 +R1R2−R3R2

R2−R1

A P P L I C A T I O N E X A M P L E 2 – 2 0

The operation of a potentiometer is based on the voltage division rule. The device is a
three-terminal element that uses voltage (potential) division to meter out a fraction
of the applied voltage. Simply stated, a potentiometer is an adjustable voltage
divider. Figure 2–42 shows the circuit symbol of a potentiometer, photos of three dif-
ferent types of actual potentiometers, and a typical application.

The voltage υO in Figure 2–42(c) can be adjusted by turning the shaft on the poten-
tiometer to move the wiper arm contact. Using the voltage division rule, the voltage
υO is found as

υO =
RTOTAL−R1

RTOTAL

� �
υS (2–32)

Adjusting the movable wiper arm all the way to the top makes R1 zero, and voltage
division yields

+
– vS R2

A

+

–

vO

R1 R3
i = 0

FIGURE 2–41

Single-turn potentiometer.

Multiple-turn potentiometer.

(b)

Wiper

(a)

w
w

w
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co
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.h

k

FIGURE 2–42 The
potentiometer: (a) Circuit
symbol. (b) Actual devices.
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υO =
RTOTAL−0
RTOTAL

� �
υS = υS (2–33)

In other words, 100% of the applied voltage is delivered to the rest of the circuit.
Moving the wiper all the way to the bottom makes R1 equal to RTOTAL, and voltage
division yields

υO =
RTOTAL−RTOTAL

RTOTAL

� �
υS = 0 (2–34)

This opposite extreme delivers zero voltage. By adjusting the wiper arm position, we
can obtain an output voltage anywhere between zero and the applied voltage υS.
When the wiper is positioned halfway between the top and bottom, we naturally
expect to obtain half of the applied voltage. Setting R1 = 1

2 RTOTAL yields

υO =
RTOTAL−

1
2 RTOTAL

RTOTAL

� �
υS =

υS
2

(2–35)

as expected. The many applications of the potentiometer include volume controls,
voltage balancing, and fine-tuning adjustment.

E x e r c i s e 2–23
Ten volts ðυSÞ are connected across the 10-kΩ potentiometer ðRTOTALÞ shown in
Figure 2–42(c). A load resistor of 10 kΩ is connected across its output. At what resistance
should the wiper ðRTOTAL−R1Þ be set so that 2 V appears at the output, υO?

A n s w e r: RTOTAL−R1 = 2:36 kΩ.

E x e r c i s e 2–24
For the circuit shown in Figure 2–43, find the values of the output vO as the potentiometer is
moved across its range. Then determine the value of vO if the potentiometer is set to exactly
halfway of its range.

A n s w e r s: 0≤ vO ≤ 15 V

When the potentiometer is set to halfway, vO = 6 V.

D E S I G N E X A M P L E 2 – 2 1

Design a voltage divider that will provide 5:5 V�5% from a 9-V battery using only
the �10% standard-value resistors (see inside back cover). The current from the
source should be at or below 0.5 mA to avoid draining the source too quickly.

SOLUTION:
The percentage of the 9-V source desired is

5:5
9

= 0:6111

Using the voltage division rule, we want

R2

R1 +R2
= 0:6111

R2 = 0:6111R1 + 0:6111R2

R2 =
0:6111R1

0:3888
= 1:57R1

(c)

+
−

RTOTAL

RTOTAL – R1

R1

vO

+

–

vS

FIGURE 2–42 The
potentiometer: (b) More actual
devices. (c) An application.
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–
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Selecting R1 = 1 kΩ and R2 = 1:5 kΩ, both of which are standard values, provides an
output voltage of

υO =
R2 × 9
R1 +R2

= 5:4 V

This result is well within the range of acceptable values of 5:225 V� υO � 5:775 V.
Checking to see what the current drain on the source is, we use Ohm’s law.

i=
υS

R1 +R2
=

9
1000 + 1500

= 3:6 mA

This fails to meet the second requirement, a current less than or equal to 0.5 mA. Our
choice of resistors is too small. SelectingR1 = 10 kΩ and R2 = 15 kΩ, both also standard
values, provides the same ratio but a current of only 0.36mA, thusmeeting both require-
ments. Some other R1−R2 pairs that would work are 22 kΩ and 33 kΩ,47 kΩ and
68 kΩ, and 100 kΩ and 150 kΩ. Figure 2–44 shows thedesign taskandourchosenresult.

The designer should be aware that the actual resistor values must be checked to
verify the final design stays within the 5% tolerance for the output voltage.

In design, one must start somewhere and make an assumption. Testing the
assumption may result in the realization that the assumption was wrong and a new
assumption must be made. Design by its nature is often an iterative process. ■

C U R R E N T D I V I S I O N

Current division is a simple way to find the current through each element of a parallel
circuit. It is the dual of voltage division, so we will observe some similarities in the
form of the equations for the two approaches. Figure 2–45 shows a parallel circuit
that lends itself to solution by current division. Applying KCL at node A yields

iS = i1 + i2 + i3

The voltage υ appears across all three resistances since they are connected in parallel.
Using Ohm’s law, we can write

iS = υ
1
R1

+ υ
1
R2

+ υ
1
R3

= υ
1
R1

+
1
R2

+
1
R3

� �
and solve for υ as

υ= iS
1

1
R1

+
1
R2

+
1
R3

Given the voltage υ, the current through any element is found using Ohm’s law as

i1 = υ
1
R1

=

1
R1

iS

1
R1

+
1
R2

+
1
R3

=
G1iS

G1 +G2 +G3
(2–36)

R2

R1

(a)

+

–
9 V

+

–
5.5 V±5% 15 kΩ

10 kΩ

(b)

+

–
9 V

+

–
5.4 V

i < 0.5 mA i = 0.36 mAFIGURE 2–44

iS

i1

R1 R2 R3

i2 i3
+

v

–

A

FIGURE 2–45 A current
divider circuit.
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i2 = υ
1
R2

=

1
R2

iS

1
R1

+
1
R2

+
1
R3

=
G2iS

G1 +G2 +G3
(2–37)

i3 = υ
1
R3

=

1
R3

iS

1
R1

+
1
R2

+
1
R3

=
G3iS

G1 +G2 +G3
(2–38)

These results show that the source current is divided among the parallel resistors in
proportion to their conductances divided by the equivalent conductances in the par-
allel connection. Thus, the general expression for the current through the kth resistor
is given by the current division rule as

ik =

1
Rk

1
R1

+
1
R2

+ � � �+ 1
Rn

0
BB@

1
CCAiTOTAL =

Gk

GEQ

� �
iTOTAL (2–39)

Comparing this equation with Eq. (2–31) for voltage division, we see how similar they
look. In essence, if you know one rule you know the other: Replace υ with i and R
withG in the voltage division rule to obtain the current division rule, and vice versa.
This is one of the strengths of the concept of duality.

For the two-resistor case in Figure 2–46, the current i1 is found using current
division as

i1 =
G1

G1 +G2

� �
iS =

1
R1

1
R1

+
1
R2

iS =
R2

R1 +R2

� �
iS (2–40)

Similarly, the current i2 in Figure 2–46 is found to be

i2 =
G2

G1 +G2

� �
iS =

1
R2

1
R1

+
1
R2

iS =
R1

R1 +R2

� �
iS (2–41)

These two results lead to the following two-path current division rule: When a circuit
can be reduced to two equivalent resistances in parallel, the current through one
resistance is equal to the other resistance divided by the sum of the two resistances
times the total current entering the parallel combination.

Caution: Equations (2–40) and (2–41) apply only when the circuit is reduced to
two parallel paths in which one path contains the desired current and the other path
is the equivalent resistance of all other paths.

E X A M P L E 2 – 2 2

Find the current ix in Figure 2–47(a).

SOLUTION:
To find ix, we reduce the circuit to two paths, a path containing ix and a path equiv-
alent to all other paths, as shown in Figure 2–47(b). Now we can use the two-path
current divider rule as

ix =
6:67

20 + 6:67
× 5= 1:25 A ■

iS

i1

R1 R2

i2
+

v

–

FIGURE 2–46 Two-path
current divider circuit.
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E x e r c i s e 2–25
(a) Find iy and iz in the circuit of Figure 2–47(a).

(b) Show that the sum of ix, iy, and iz equals the source current.

A n s w e r s:
(a) iy = 1:25A; iz = 2:5A
(b) ix + iy + iz = 5 A

E x e r c i s e 2–26
The circuit in Figure 2–48 shows a delicate device that is modeled by a
90-Ω equivalent resistance. The device requires a current of 1 mA to
operate properly. A 1.5-mA fuse is inserted in series with the device
to protect it from overheating. The resistance of the fuse is 10Ω. With-
out the shunt resistance Rx, the source would deliver 5 mA to the
device, causing the fuse to blow. Inserting a shunt resistor Rx diverts
a portion of the available source current around the fuse and device.
Select a value of Rx so only 1 mA is delivered to the device.

A n s w e r: Rx = 12:5Ω

A P P L I C A T I O N E X A M P L E 2 – 2 3

Batteries chemically produce electricity that is used to power many portable devices
including cell phones, tablet computers, flashlights, hearing aids, back-up power, and
automobiles to mention just a few. Batteries are rated in both voltage and ampere-
hours. A typical car battery delivers a nominal 12 V for 70 A-hrs while a “D-cell”
delivers 1.5 V for 4.5 A-hrs. Batteries are not ideal sources; they are all real or prac-
tical sources of energy andmust bemodeled as an ideal voltage source in series with a
resistor. The series resistor models the battery’s internal resistance, which can vary
from a fewmilliohms for a car battery to as high as 100 ohms for a hearing-aid battery.
As a battery ages, especially in use, its internal resistance increases decreasing its use-
fulness. Therefore, it is good practice to measure a battery’s voltage while under load
since measuring the battery’s voltage with an open circuit could indicate a good volt-
age regardless of its internal resistance. The following example looks at the effect of a
battery’s internal resistance on the current available to a load.

A car battery of 12.6 V and an internal resistance of 25 mΩ delivers 100 mA to
accessories and 210 A to the starter motor of a 6-cylinder car. Find the resistance
of the starter motor.

SOLUTION:
Figure 2–49(a) shows the circuit in question. There are several ways to tackle this
problem. Let’s solve it two ways. For our first approach we will do a source

(a)

(b)

5 A

5 A

20 Ω 20 Ω 5 Ω

20 Ω 6.67 Ω

5 Ω

ix iy iz

Equivalent path

ix

D
es

ir
ed

 p
at

h

Equivalent

resistance

FIGURE 2–47

10 mA 100 Ω 90 Ω

1.5 mA fuse, 10 Ω

Device

Shunt resistor Rx

1 mA required

FIGURE 2–48
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transformation as shown in Figure 2–49(b). We know that the total current delivered
to the loads is 210.1 A. we can use a current divider, Eq. (2–41), to find the total resist-
ance of the loads.

iLoads =
Rs × iTotal
Rs +RLoads

=
0:025 × 504

0:025 +RLoads
= 210:1 A

Solving for RLoads yields 34:97mΩ
Ohm’s law can be used to find the voltage across the total load

vLoads = 210:1× 0:03497 = 7:3475 V

Ohm’s law can again be used to find the resistance of the starter motor

RMotor =
7:3475
210

= 34:98mΩ

A second, somewhat simpler, approach is to realize that 210.1 A are flowing through
the source resistance. This results in a voltage drop of

vSource = 210:1 × 0:025 = 5:2525 V

ByKVL this leaves 12:6−5:2525 = 7:3475 V across the loads.We can then solve for
RMotor as before and find it to be 34:98 mΩ. ■

E x e r c i s e 2–27
Repeat the problem of Example 2-23 if the battery’s internal resistance increases to 70mΩ.
Will there be sufficient current available to start the car?

A n s w e r: A source transformation can quickly show that there will be a maximum of only
180 A available for the motor and accessories. The battery is insufficient to power the start-
ing motor and accessories and driver will hear that stomach-wrenching sound. Rrrrrr-rrr-
rr-ugh!

A P P L I C A T I O N E X A M P L E 2 – 2 4

The R−2R ladder circuit in Figure 2–50 is a binary current divider that finds applica-
tions in digital-to-analog signal conversion. The operation of this circuit can be
explained using current division together with series and parallel equivalent resist-
ance. The equivalent resistance connected to ground at node 3 is 2Rk2R=R, which
means that the equivalent resistance seen to the right of node 2 of R+R= 2R. This in
turn means that the total equivalent resistance connected to ground at node 2 is

25 mΩ 100 mA

504 A

12.6 V

210 A100 mA

BatteryBattery

210 A

25 mΩ

RAccRAcc
RMotorRMotor

(a) (b)

+
–

FIGURE 2–49
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2Rk2R=R and hence the equivalent resistance seen to the right of node 1 of
R+R= 2R. The net result is that the equivalent resistance seen to the right of each
numbered node is 2R.

The reference current IREF entering node 1 divides equally
between the two available 2R paths with the result that
i1 = IREF=2, and the current into node 2 is also i1 = IREF=2. At
node 2 this current again divides equally between the two 2R
paths with the result that i2 = i1=2= IREF=4 and the current into
node 3 is i2 = IREF=4. Finally, at node 3 this current divides
equally once more so that i3 = i2=2 = IREF=8. In sum, the cur-
rents in the 2R resistors connected to ground are all of the form
ik = IREF=2k, where k is the node number to which the resistor is
connected. Thus, the R−2R ladder circuit produces signals
(currents in this case) that decrease in a binary fashion as we
proceed down the ladder.

Clearly, the R−2R ladder can be extended to a larger number of nodes. Commer-
cially available integrated circuit ladders have as many as eight-numbered nodes pro-
ducing binary currents ranging from IREF=2 to IREF=256. The advantage of this circuit
is that it produces this wide range of precisely related signals using only two values of
resistance, namely R and 2R. This greatly simplifies the fabrication of the R−2R lad-
der in integrated circuit form.

2–6 C I R C U I T R E D U C T I O N

The concepts of series/parallel equivalence, voltage/current division, and source
transformations can be used to analyze ladder circuits of the type shown in
Figure 2–51. The basic analysis strategy is to reduce the circuit to a simpler equivalent
in which the output is easily found by voltage or current division or Ohm’s law. There
is no fixed pattern to the reduction process, and much depends on the insight of the
analyst. In any case, with circuit reduction we work directly with the circuit model,
and so the process gives us insight into circuit behavior.

With circuit reduction, the desired unknowns are found by simplifying the circuit
and, in the process, eliminating certain nodes and elements. However, we must be
careful not to eliminate a node or element that includes the desired unknown voltage
or current. The next three examples illustrate circuit reduction. The final example
shows that rearranging the circuit can simplify the analysis.

E X A M P L E 2 – 2 5

Use series and parallel equivalence to find the output voltage υO and the input cur-
rent iS in the ladder circuit shown in Figure 2–52(a).

2R 2R 2R

R R 2R

IREF

i1 i2 i3

1 2 3

2R
i1

2R
i2

2R
i3

FIGURE 2–50

FIGURE 2–51 A ladder circuit.
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SOLUTION:
Oneapproach is to combineparallel resistors andusevoltagedivision to findυO and then
combine all resistances into a single equivalent to find the input current iS. Figure 2–52
(b) shows the step required to determine the equivalent resistance between the term-
inals B and ground. The equivalent resistance of the parallel 2R and R resistors is

REQ1 =
R× 2R
R+ 2R

=
2
3
R

The reduced circuit in Figure 2–52(b) is a voltage divider. Notice that the two nodes
needed to find the voltage υO, nodes B and ground, have been retained. The
unknown voltage is found in terms of the source voltage as

υO =

2
3
R

2
3
R+R

υS =
2
5
υS

The input current is found by combining the equivalent resistance found previously
with the remaining resistor R to obtain

REQ2 = R+REQ1

= R+
2
3
R=

5
3
R

Application of series/parallel equivalence has reduced the ladder circuit to the single
equivalent resistance shown in Figure 2–52(c). Using Ohm’s law, the input current is

iS =
υS

REQ2
=
3
5
υS
R

Notice that the reduction step between Figure 2–52(b) and (c) eliminates node B, so
the output voltage υO must be calculated before this reduction step is taken. ■

E x e r c i s e 2–28
In Figure 2–52, R= 15 kΩ. The voltage source υS = 5 V. Find the power delivered to the cir-
cuit by the source.

A n s w e r: pS = 1 mW

E X A M P L E 2 – 2 6

Use source transformations to find the output voltage υO and the input current iS in
the ladder circuit shown in Figure 2–53(a).

SOLUTION:
Figure 2–53 shows another way to reduce the circuit analyzed in Example 2–25.
Breaking the circuit at points X and Y in Figure 2–53(a) produces a voltage source
υS in series with a resistor R. Using source transformation, this combination can be
replaced by an equivalent current source in parallel with the same resistor, as shown
in Figure 2–53(b).

Caution: The current source υS=R is not the input current iS, as is indicated in
Figure 2–53(b). Applying the two-path current division rule to the circuit in
Figure 2–53(b) yields the input current iS as

iS =
R

2
3
R+R

×
υS
R

=
υS
5
3
R
=
3
5
υS
R

+
−

A B

A

2R R

+

vO

−

(a)

iS

vS 2R/3

+

vO

−

(b)

iS

vS 5R/3

REQ2

(c)

R

+
−

REQ1

+
−

iS

vS

A B
R

FIGURE 2–52

51CIRCUIT REDUCT ION



The three parallel resistances in Figure 2–53(b) can be combined into a single equiv-
alent conductance without eliminating the node pair used to define the output volt-
age υO. Using parallel equivalence, we obtain

GEQ = G1 +G2 +G3 =
1
R
+

1
2R

+
1
R
=

5
2R

which yields the equivalent circuit in Figure 2–53(c). The current source υS=R deter-
mines the current through the equivalent resistance in Figure 2–53(c). The output
voltage is found using Ohm’s law.

υO =
υS
R

� 	
×

2R
5

� �
=
2
5
υS

Ofcourse, theseresults are thesameas theresultobtained inExample2–25,except that
here they were obtained using a different sequence of circuit reduction steps. ■

E x e r c i s e 2–29
In Figure 2–53(a), find the current through the 2R resistor.

A n s w e r: i2R =
υS
5R

A

E X A M P L E 2 – 2 7

Find υx in the circuit shown in Figure 2–54(a).

SOLUTION:
In the two previous examples, the unknown responses were defined at the circuit
input and output. In this example, the unknown voltage appears across a 10-Ω resis-
tor in the center of the network. The approach is to reduce the circuit at both ends
while retaining the 10-Ω resistor defining υx. Applying a source transformation to the
left of terminals X–Y and a series reduction to the two 10-Ω resistors on the far right
yields the reduced circuit shown in Figure 2–54(b). The two pairs of 20-Ω resistors
connected in parallel can be combined to produce the circuit in Figure 2–54(c).

iS
+

vO

–

vS 2R R

X

Y

(a)

R

+
–

+

vO

–

vS

R

vS

R

R

2R/5

(b)

(c)

X
iS

+

vO

–

2R R

Y

FIGURE 2–53
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At this point there are several ways to proceed. For example, a source transformation
at the points W–Z in Figure 2–54(c) produces the circuit in Figure 2–54(d). Using
voltage division in Figure 2–54(d) yields υx,

υx =
10

10 + 10 + 10
× 7:5 = 2:5 V

Yet another approach is to use the two-path current division rule in
Figure 2–54(c) to find the current ix,

ix =
10

10 + 10 + 10
×
3
4
=
1
4
A

Then, applying Ohm’s law to obtain υx,

υx = 10 × ix = 2:5 V ■

E x e r c i s e 2–30
Find υx and ix using circuit reduction on the circuit in Figure 2–55.

A n s w e r s: υx = 3:33 V; ix = 0:444 A

E x e r c i s e 2–31
Find υx and υy using circuit reduction on the circuit in Figure 2–56.

A n s w e r s: υx = −3:09 V; υy = 9:21 V

15 V

0.75 A

0.75 A

X

Y

X

Y

W

Z

+  vx  –

+  vx  –

+  vx  –
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REQ2REQ3
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(b)

(c)

20 Ω 10 Ω
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ix

+
–

7.5 V
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10 Ω 10 Ω
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FIGURE 2–54
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E X A M P L E 2 – 2 8

Using circuit reduction, find υO in Figure 2–57(a).

SOLUTION:
One way to solve this problem is to notice that the source branch and the leftmost
two-resistor branch are connected in parallel between node A and ground. Switching
the order of these branches and replacing the two resistors by their series equivalent
yields the circuit of Figure 2–57(b). A source transformation yields the circuit in
Figure 2–57(c). This circuit contains a current source υS=2R in parallel with two
2R resistances whose equivalent resistance is

REQ = 2Rk2R=
2R× 2R
2R+ 2R

=R

Applying a source transformation to the current source υS=2R in parallel with REQ

results in the circuit of Figure 2–57(d), where

vEQ =
υS
2R

� 	
×REQ =

υS
2R

� 	
R=

υS
2

Finally, applying voltage division in Figure 2–57(d) yields

υO =
2R

R+R+ 2R

� �
υS
2
=
υS
4 ■

E x e r c i s e 2–32
Find the voltage across the current source in Figure 2–58.

A n s w e r: υS = −0:225 V

2–7 C O M P U T E R - A I D E D C I R C U I T A N A L Y S I S

In this text, we use three types of computer programs to illustrate computer-aided
circuit analysis, namely spreadsheets, math solvers, and circuit simulators. Practicing
engineers routinely use these tools to analyze and design circuits, so it is important to
learn how to use them effectively. The purpose of including computer examples in
this book is to help you develop an analysis style that includes the intelligent use
of computer tools. As you develop your style, always keep in mind that computer
tools are not problem solvers. You are the problem solver. Computer tools can be
very useful, even essential, once you have defined the problem. However, they do
not substitute for an understanding of the fundamentals needed to formulate the
problem, identify a practical approach, and interpret analysis results.

There are about 100 worked examples and exercises in the text that use computer
tools. The spreadsheet examples use Microsoft Excel. The math solver examples use
MATLAB Release 2013b by The MathWorks, Inc. The circuit simulation examples
use NI Multisim V13 Student Edition by National Instruments.

Our objective is to illustrate the effective use of computer tools rather than
develop your ability to operate these specific software programs. Although this book
provides examples as helpful starting points, it does not emphasize the details of how
to operate any of these software tools. We assume that you learned how to operate
computer tools in previous courses or have enough familiarity with your computer’s
operating system to learn how to do so using online tutorials or any of a number of
commercially available manuals.

The following discussion gives a brief overview of circuit simulation and of apply-
ing a math solver to a circuit analysis problem. Many more examples will follow in
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+
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+
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(b)
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1 kΩ 1 kΩ

3.3 kΩ

1.5 kΩ

2.2 kΩ

0.1 mA

FIGURE 2–58
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subsequent chapters.WebAppendixD provides additional information on computer
programs that support circuit analysis.

C I R C U I T S I M U L A T I O N U S I N G C I R C U I T S I M U L A T I O N S O F T W A R E

Most circuit simulation programs are based on a circuit analysis package called
SPICE, which is an acronym for Simulation Program with IntegratedCircuitEmpha-
sis. Figure 2–59 is a block diagram summarizing the major features of a SPICE-based
circuit simulation program. The inputs are a circuit diagram and the type of analysis
required. In contemporary programs, the circuit diagram is drawn on the monitor
screen using a graphical schematic editor. When the circuit diagram is complete,
the input processor performs a schematic capture, a process that documents the circuit
in what is called a netlist. To initiate circuit simulation, the input processor sends the
netlist and analysis commands to the simulation processor. If the netlist file is not
properly prepared, the simulation will not run or (worse) will return erroneous
results. Hence, it is important to check the netlist to be sure that the circuit it defines
is the one you want to analyze.

The simulation processor uses the netlist together with data from the device
library to formulate a set of equations that describes the circuit. The simulation proc-
essor then solves the equations, writes a dc analysis summary to a standard SPICE
output file, and writes the other analysis results to a response data file. For simple
dc analysis, the desired response data are accessible by examining the SPICE output
file. For other types of analysis, the output processor can be used to generate graph-
ical plots of the data in the response data file.

There are numerous circuit simulation software products available to students—also
to professionals—that simplify the analysis, design, and evaluation of electronic circuits.
In creating this text, we looked at several competing products: OrCAD by Cadence,
Multisim by National Instruments, Circuitlab by CircuitLab, Inc., and DoCircuits by
Sparsha Learning Technologies Pvt Ltd. All of these can be used successfully to solve
the problems in this text. Students can choose whichever product suits them or their
instructor. Space limits us to selecting one for the print edition of this text. We chose
National Instrument’s Multisim because of its ease of use, low cost, breath of problems
it can easily be used on, the ability to insert virtual laboratory instruments in a circuit,
and its easy integration with another NI product LabView.

Circuit

diagrams

Analysis

type

Input

processor

Netlist

Commands Circuit

file

Device

library

Simulation

processor

Analysis

summary Output

file

Response

data file

Analysis

results

Output

processor

FIGURE 2–59 Flow diagram
for circuit simulation programs.
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National Instrument’s Multisim, also called Electronic Workbench, offers a
student-friendly tool to simulate electronic circuits. Web Appendix D provides many
examples that use Multisim to simulate circuit performance and can be used by the
student to see how circuit simulation works for different circuits and analyses. In gen-
eral, Multisim is used to view currents, voltages, and powers at various nodes or
devices in a circuit. The following example illustrates the main steps in solving a cir-
cuit analysis problem via simulation.

E X A M P L E 2 – 2 9

Use Multisim to find the voltages and currents for the circuit in Figure 2–22
(Example 2–10).

SOLUTION:
There are twomethods to simulate your results usingMultisim. We will cover both of
them. In the first method, we use instruments much like you would use in the labo-
ratory to view the simulation results. In the second method, we will define the vari-
ables we wish to simulate and view the results on a spread sheet. For the first method,
the main steps required to solve this problem using Multisim are as follows:

1. Graphically draw the circuit schematic using Multisim’s Design board.
2. Add whatever instruments you wish to view the results on.
3. Tell the program what type of simulation is desired.
4. Simulate the circuit (Run) and view the results. ■

Begin by creating the circuit schematic by using the “Place”menu option and pla-
cing the appropriate components (three resistors, a dc voltage source, and a ground
on the workspace). Click on the resistor values and adjust each tomatch the problem.
Do the same for the voltage source. Then using the “Simulate” menu under
“Instruments,” select the instruments (Digital Multimeters or DMMs) you wish to
use to measure the three currents and two unknown voltages. Connect each part
and the instruments using the wiring tool. Recall that you must intercept the wires
to measure current—a through variable—when connecting the DMM as an ammeter.
Figure 2–60 shows the resultingMultisim schematic. Once the circuit is wired, click on

Simulate:

(a) Select Instruments

(b) Select Analysis type

Place Components RunFIGURE 2–60
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each instrument to view the setup for each instrument. Select “A” to measure current
and “V” to measure voltage. Note that the physical layout of the Multisim schematic
looks different than that of Figure 2–22. Multisim does not allow for diagonal part
placement. Although they look different, the two circuits have the same connections
and are electrically and functionally equivalent. You can verify this fact by writing
device and connection equations for both of the circuits.

The next step is simply to run your simulation by hitting the little green “Run”
triangle. The DMMs will display the desired parameters as shown in the figure.

The second method requires a little more effort to set up but yields more detailed
results. Proceed as follows:

1. Graphically draw the circuit schematic usingMultisim’sDesign board as above
butdonot includeany instruments.Clickon thevariousnodesanda“NetProp-
erties” window opens. Type in the name you wish to assign to that node—we
chose “V1”—and enter it in the box labeled “Preferred net name.” Repeat
for all nodes. This should result in the circuit of Figure 2–61(a).

2. Next you must tell Multisim what type of analysis you wish to run. Under
the “Simulate” menu option, select “Analyses” and “DC operating point”
as shown in Figure 2–61(b). The “DC Operating Point Analysis” window

R3
300Ω R2

200Ω

100Ω

R1

(a)

(b)

(c)

(d)

v1

v1

v2

0

30 V

FIGURE 2–61
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opens and a listing of the variables that this analysis can find are listed on the
left side of the window as shown in Figure 2–61(c). Select the variables
desired and move them to the right side of the window as shown in
Figure 2–61(d). Note that there is no ready choice for the voltage across
R1. Knowing v1 and v2, one can easily calculate that voltage, but Multisim
can do it for you. To do this, select “Add expression” and in the space pro-
vide type in the mathematical expression desired. In this case “V(v1)–V
(v2).” You are now ready to simulate the circuit.

3. Select “Simulate” on the bottom of the Analysis window and a new window
opens called “Grapher View” with all the desired results. These results are
shown in Figure 2–62(a). Note that these results can be exported to Excel.
Choose “Tools” under Grapher View and select “Export to Excel.” The
resulting spread sheet is shown in Figure 2–62(b).

Note that one could even ask Multisim to calculate the power deliv-
ered by the source “P(V1).” It returns –6W, the negative sign indicating
that the source delivers power to the circuit.

E x e r c i s e 2–33
UseMultisim to find all the voltages and currents in the circuit of Figure 2–47
(a) (Example 2–22).

A n s w e r s: See Figure 2–63.

C O M P A R I S O N O F C O M P U T E R - B A S E D T E C H N I Q U E S

We applied two Multisim-based approaches to solve the circuit analysis problem
originally presented as Example 2–10. Both approaches efficiently arrived at a com-
plete and correct solution and may offer some advantages over the manual approach
presented in Example 2–10. It is also possible to solve this problem using a math
solver such as MATLAB discussed in Chapter 1. As you explore these tools, you will
develop the experience and judgment to know when each tool is appropriate to assist
in solving a problem. The circuit simulation tools allow for visual representations of
the circuits and efficiently compute numerical solutions when all of the parameter
values are known.Amath solver quicklymanipulates a set of equations to find a solu-
tion, but you must relate the numerical results back to the original schematic to get
a full representation of the answer. Math solver software can offer distinct

Variable Operating point value

I(R1) 0.1

I(R2) 0.1

I(R3) 0.1

I(V1) –0.2

P(V1) –6

V(v1) 30

V(v1)-V(v2) 10

V(v2)

(a) (b)

20

FIGURE 2–62

Exercise 2–33

DC Operating Point Analysis

Variable Operating point value

1 V(v1) 25.000

2 V(v1)–V(v2) 12.500

3 V(v2) 12.500

4 I(R4) 2.500

5 I(R3) 2.500

6 I(R2) 1.250

7 I(R1) 1.250

FIGURE 2–63
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advantages over circuit simulation software when the circuit contains parameter
values expressed as variables such asR, v, or i rather than numeric values. The circuit
simulation software cannot directly handle this type of the problem, but the math
solver software accommodates it with only minor changes, as we will explore in
Chapter 3. As we develop circuit analysis and design techniques throughout the text,
we will continue to emphasize the advantages and disadvantages of the various com-
puter-based tools so that you can expand your judgment and efficiently apply the
appropriate tools for each problem. No matter what technique one uses, good “engi-
neering sense”must predominate. Results that just do not seem right should be chal-
lenged and verified. As you grow in knowledge and experience, you will develop and
enhance this important engineering characteristic.

S U M M A R Y
• An electrical device is a real physical entity, while a

circuit element is a mathematical or graphical model
that approximates major features of the device.

• Two-terminal circuit elements are represented by a
circuit symbol and are characterized by a single con-
straint imposed on the associated current and voltage
variables.

• An electrical circuit is an interconnection of electrical
devices. The interconnections form nodes and loops.

• A node is an electrical juncture of the terminals of two
or more devices. A loop is a closed path formed by
tracing through a sequence of devices without passing
through any node more than once.

• Device interconnections in a circuit lead to two con-
nection constraints: Kirchhoff’s current law (KCL)
states that the algebraic sum of currents at a node is
zero at every instant; and Kirchhoff’s voltage law
(KVL) states that the algebraic sum of voltages around
any loop is zero at every instant.

• A pair of two-terminal elements are connected in par-
allel if they form a loop containing no other elements.
The same voltage appears across any two elements
connected in parallel.

• A pair of two-terminal elements are connected in
series if they are connected at a node to which no other
elements are connected. The same current exists in
any two elements connected in series.

• Two circuits are said to be equivalent if they each have
the same i−υ constraints at a specified pair of terminals.

• Series and parallel equivalence and voltage and current
division are important tools in circuit analysis anddesign.

• Source transformation changes a voltage source in
series with a resistor into an equivalent current source
in parallel with a resistor, or vice versa.

• Circuit reduction is a method of solving for selected
signal variables in ladder circuits. Themethod involves
sequential application of the series/parallel equiva-
lence rules, source transformations, and the voltage/
current division rules. The reduction sequence used
depends on the variables to be determined and the
structure of the circuit and is not unique.

• Computer-aided circuit analysis applies spreadsheets,
circuit simulation, or math solver software to analyze
circuit problems efficiently. The tools allow for visual
solutions and can eliminate the need to perform tedi-
ous or lengthy manual calculations.

P R O B L E M S

O B J E C T I V E 2 − 1 E L E M E N T C O N S T R A I N T S
( S E C T . 2 − 1 )
Given a two-terminal element with one or more electrical
variables specified, use the element i–v constraint to find the
magnitude and direction of the unknown variables.
See Examples 2–1 to 2–4 and Exercises 2–1 to 2–3.

2–1 The current through a 33-kΩ resistor is 2:2 mA. Find the
voltage across the resistor.

2–2 The voltage across a particular resistor is 8.60 V and the
current is 366 μA. What is the actual resistance of the resis-
tor? Using the inside back cover, what is the likely standard
value of the resistor?

2–3 You can choose to connect either a 4:7-kΩ resistor or a
47-kΩ resistor across a 5-V source. Which will draw the least
current from the source? What is that current?

2–4 Amodel railroader wants to be able to electrically throw a
rail switch RSwitch from two different locations. He designs
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the circuit in Figure P2−4 using two single-pole double-throw
switches. Will it work? Explain.

+

Location A Location B

RSwitch

22

11

–

vS

FIGURE P2−4

2–5 A 100-kΩ resistor dissipates 50 mW. Find the current
through the resistor.

2–6 The conductance of a particular semiconductor resistor is
0.05 mS. Find the current through the resistor when con-
nected across a 1:5-V source.

2–7 In Figure P2−7 the resistor dissipates 25 mW. Find Rx.

+
–

Rx

px = 25 mW

15 V

FIGURE P2−7

2–8 In Figure P2−8 find Rx and the power supplied by the
source.

Rx10 mA 100 V
–

+

FIGURE P2−8

2–9 A resistor found in the lab has three orange stripes fol-
lowed by a gold stripe. An ohmmeter measures its resistance
as 34:9 kΩ. Is the resistor properly color coded? (See inside
back cover for color code.)

2–10 The i – v characteristic of a nonlinear resistor is v = 82i +
0:17i3.

(a) Calculate v and p for i = �0:5, �1, �2, �5, and �10 A.
(b) Find the maximum error in v when the device is treated

as an 82-Ω linear resistance on the range jij < 0:5A.

2–11 A 100-kΩ resistor has a power rating of 0:25W. Find the
maximum current that can flow through the resistor.

2–12 A certain type of film resistor is available with resist-
ance values between 10Ω and 100MΩ. The maximum
ratings for all resistors of this type are 500 V and 0:25W.
Show that the voltage rating is the controlling limit for
R > 1MΩ and that the power rating is the controlling limit
when R < 1MΩ.

2–13 Figure P2−13 shows the circuit symbol for a class of two-
terminal devices called diodes. The i–v relationship for a spe-
cific pn junction diode is i = 5× 10−17 e40 v − 1

� �
A.

(a) Use this equation to find i and p for v = 0, �0:1, �0:2,
�0:4, �0:8, and �1:0 V. Use these data to plot the i – v
characteristic of the element.

(b) Is the diode linear or nonlinear, bilateral or nonbilateral,
and active or passive?

(c) Use the diodemodel to predict i and p for v= 5 V.Do you
think the model applies to voltages in this range?

(d) Repeat (c) for v= −5 V.

–

+

v

i

FIGURE P2−13

2–14 A thermistor is a temperature-sensing element com-
posed of a semiconductor material, which exhibits a
large change in resistance proportional to a small change
in temperature. A particular thermistor has a resistance
of 5 kΩ at 25�C. Its resistance is 340Ω at 100�C. Assum-
ing a straight-line relationship between these two values,
at what temperature will the thermistor’s resistance
equal 1 kΩ?

O B J E C T I V E 2 − 2 C O N N E C T I O N C O N S T R A I N T S
( S E C T . 2 − 2 )
Given a circuit composed of two-terminal elements:

(a) Identify nodes and loops in the circuit.
(b) Identify elements connected in series and in parallel.
(c) Use Kirchhoff’s laws (KCL and KVL) to find

selected signal variables.

See Examples 2–5 to 2–7 and Exercises 2–4 to 2–8.

2–15 In Figure P2−15 i2 = −6A and i3 = 2 A. Find i1 and i4.

A C

B

i1

i4

i2

i3

FIGURE P2−15

2–16 In Figure P2−16 determine which elements are in series,
parallel, or neither. How many different nodes and loops are
there in the circuit? Then if v2 = 3 V and v3 = 5 V, find v1, v4,
and v5.
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v4

+

–

v3

+

–

v1

+

–

v5

+

–

v2+ –

FIGURE P2−16

2–17 For the circuit in Figure P2−17:

(a) Identify the nodes and at least two loops.
(b) Identify any elements connected in series or parallel.
(c) Write KCL and KVL connection equations for the circuit.

A B

C

i1 i2

i3

i4

1

3

2 4

FIGURE P2−17

2–18 In Figure P2−17 i2 = – 30 mA and i4 = 20mA. Find i1
and i3.

2–19 For the circuit in Figure P2–19:
(a) Identify the nodes and at least five loops in the circuit.
(b) Identify any elements connected in series or in parallel.
(c) Write KCL and KVL connection equations for the circuit.

A B

D
C

i2 i4

i5

i3

i1

i6

2

1

3

5

4 6

+
–

–

+

v3

v1

– +v5

– –

+
v2 –

+
+

v6

v4

FIGURE P2−19

2–20 In Figure P2−19 v2 = 20 V, v3 = −20 V, and v4 = 6 V.
Find v1, v5, and v6.

2–21 In many circuits the ground is often the metal case that
houses the circuit. Occasionally a failure occurs whereby a
wire connected to a particular node touches the case caus-
ing that node to become connected to ground. Suppose
that in Figure P2−19 node C accidently touches ground.
How would that affect the voltages found in prob-
lem 2–20?

2–22 The circuit in Figure P2−22 is organized around the three
signal lines A, B, and C.
(a) Identify the nodes and at least five loops in the circuit.
(b) Write KCL connection equations for the circuit.
(c) If i1 = −30mA, i2 = −18mA, and i3 = 75mA, find i4, i5,

and i6.
(d) Show that the circuit in Figure P2−22 is identical to that

in Figure P2−19.

C

D

B

A

i1 i2 i3

i4 i5 i6

1 2 3 4 5 6

FIGURE P2−22

2–23 Are any of the elements in Figure P2−23 in series or par-
allel? If so, identify the ones that are. Then if v2 = 10 V,
v4 = 10 V, and v5 = 5 V, find v1, v3, and v6.

v6

2

+ –

v1

+

–

v3

+

–

v5

+

–

v2+ – v4+ –

4

3 51

6

FIGURE P2−23

2–24 Are any of the elements in Figure P2−24 in series or par-
allel? If so, identify the ones that are. Then if i1 = −5 mA,
i2 = 10mA, and i3 = −15mA, find i4 and i5.

61PROBLEMS



A

B

C

i 1

i3

i2

i4

i5

1

2

4

3

5

FIGURE P2−24

2–25 (a) Use the passive sign convention to assign voltage vari-
ables consistentwith the currents inFigureP2−24.Write three
KVL connection equations using these voltage variables.
(b) If v4 = 0 V, what can be said about the voltages across all
the other elements?

2–26 If a wire is connected between nodes B and C in Figure P2
−24, what can be said about the voltages across each of the
elements?

2–27 TheKCL equations for a three-node circuit are as follows:

Node A − i1 + i2− i4 = 0
Node B − i2− i3 + i5 = 0
Node C i1 + i3 + i4− i5 = 0

Draw the circuit diagram and indicate the reference directions
for the element currents.

O B J E C T I V E 2 − 3 C O M B I N E D C O N S T R A I N T S
( S E C T . 2 − 3 )
Given a linear resistance circuit, use the element constraints
and connection constraints to find selected signal variables.
See Examples 2–8 to 2–12 and Exercise 2–9 to 2–13.

2–28 For the circuit in Figure P2−28, write a complete set of
connection and element constraints and then find vx and ix.

500 μA

33 kΩ

56 kΩ vx

ix

+

–

FIGURE P2−28

2–29 For the circuit in Figure P2−29, write a complete set of
connection and element constraints, then find vx and ix.

24 V

22 kΩ

47 kΩ

ix

vx

+

–

+

–

FIGURE P2−29

2–30 Find vx and ix in Figure P2−30. Compare the results of
your answers with those in problem 2–29. What effect did
adding the 33-kΩ resistor have on the overall circuit? Did
the power supplied by the source change?

33 kΩ

47 kΩ

22 kΩ

iy

ix

vx
24 V

+
–

+

–

FIGURE P2−30

2–31 A modeler wants to light his model building using minia-
ture grain-of-wheat light bulbs connected in parallel as shown
in Figure P2−31. He uses two 1:5-V “C-cells” to power his
lights. He wants to use as many lights as possible but wants
to limit his current drain to 500 μA to preserve the batteries.
If each light has a resistance of 50 kΩ, howmany lights can he
install and still be under his current limit?

1.5 V

1.5 V

50 kΩ ea.

n lightsi ≤ 500 μA

+

–

+

–

FIGURE P2−31

2–32 Find vx and ix in Figure P2−32.

Rest of
the

circuit

ix

5 Ω10 Ω

5 Ω

vx

0.5 A+

–

FIGURE P2−32

2–33 In Figure P2−33:

(a) Assign a voltage and current variable to every element.
(b) Use KVL to find the voltage across each resistor.
(c) Use Ohm’s law to find the current through each resistor.
(d) Use KCL to find the current through each voltage source.
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200 Ω

15 V5 V10 V

200 Ω

200 Ω

+
– +

– +
–

FIGURE P2−33

2–34 Find vO in the circuit of Figure P2−34.

100 Ω

5 V10 V

100 Ω

200 Ω

+
– +

–
vO

+

–

FIGURE P2−34

2–35 Find the power provided by the source in Figure P2−35.

10 mA

500 ΩpS

1 kΩ 1.5 kΩ

FIGURE P2−35

2–36 Figure P2−36 shows a subcircuit connected to the rest of
the circuit at four points.
(a) Use element and connection constraints to find vx and ix.
(b) Show that the sum of the currents into the rest of the cir-

cuit is zero.
(c) Find the voltage vA with respect to the ground in the circuit.

ix

vx

vA

5 kΩ

2 kΩ

8 kΩ

6 mA

4 mA

12 V

20 V

Rest of the circuit

+

–

+ –

+ –

FIGURE P2−36

2–37 In Figure P2−37 ix = 0:33mA. Find the value of R.

ix

++
10 kΩ 10 kΩ

4 V 15 VR

Rest of the circuit

––

FIGURE P2−37

2–38 Figure P2−38 shows a resistor with one terminal con-
nected to ground and the other connected to an arrow.
The arrow symbol is used to indicate a connection to
one terminal of a voltage source whose other terminal is
connected to ground. The label next to the arrow indicates
the source voltage at the ungrounded terminal. Find the
voltage across, current through, and power dissipated in
the resistor.

–18 V

47 kΩ

vxix
+ –

FIGURE P2−38

O B J E C T I V E 2 − 4 E Q U I V A L E N T C I R C U I T S
( S E C T . 2 − 4 )
(a) Given a circuit consisting of linear resistors, find the

equivalent resistance between a specified pair of
terminals.

(b) Given a circuit consisting of a source–resistor combi-
nation, find an equivalent source–resistor circuit.

See Example 2–13 to 2–15 and Exercises 2–14 to 2–18.

2–39 Find the equivalent resistance REQ in Figure P2−39.

300 Ω

25 Ω

REQ

100 Ω

FIGURE P2−39

2–40 Find the equivalent resistance REQ in Figure P2−40.
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82 kΩ 47 kΩ

68 kΩ

REQ

33 kΩ

FIGURE P2−40

2–41 Find the equivalent resistance REQ in Figure P2−41.

15 kΩ 15 kΩ56 kΩ

REQ
47 kΩ

FIGURE P2−41

2–42 Equivalent resistance is defined at a particular pair of
terminals. In Figure P2−42, the same circuit is looked at from
two different terminal pairs. Find the equivalent resistances
REQ1 and REQ2 in Figure P2−42. Note that in calculating
REQ2 the 33-kΩ resistor is connected to an open circuit and
therefore does not affect the calculation.

15 kΩ33 kΩ

22 kΩ
56 kΩ

REQ1 REQ2

10 kΩ

FIGURE P2−42

2–43 Find REQ in Figure P2−43 when the switch is open.
Repeat when the switch is closed.

100 Ω

100 Ω

50 Ω
100 Ω

REQ

FIGURE P2−43

2–44 Find REQ between nodes A and B for each of the circuits
in Figure P2−44. What conclusion can you draw about resis-
tors of the same value connected in parallel?

R

R

R

A B

R

R

R

R

R

A B

R

R

R

(c)

R

n Rs

A B
(a)

(b)

FIGURE P2−44

2–45 Showhow the circuit in Figure P2−45 could be connected to
achieve a resistance of 100, 200, 150, 50, 25, 33:3, and 133:3Ω.

100 Ω

100 Ω

50 Ω

A

B

C

D

FIGURE P2−45

2–46 In Figure P2−46 find the equivalent resistance between
terminals A–B, A–C, A–D, B–C, B–D, and C–D.

BA

C D

22 kΩ

100 kΩ

100 kΩ

FIGURE P2−46

2–47 In Figure P2−47 find the equivalent resistance between
terminals A–B, A–C, A–D, B–C, B–D, and C–D.
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60 Ω

40 Ω

100 Ω

100 Ω

50 Ω
15 Ω

A

C

D

B

FIGURE P2−47

2–48 Select a value ofRL in Figure P2−48 so thatREQ = 15 kΩ.
Repeat for REQ = 11 kΩ.

22 kΩ

RL

REQ

22 kΩ

FIGURE P2−48

2–49 Using nomore than four 1-kΩ resistors, show how the fol-
lowing equivalent resistors can be constructed: 2 kΩ, 500Ω,
1:5 kΩ, 333Ω, 200Ω, and 400Ω.

2–50 Do a source transformation at terminals A and B for each
practical source in Figure P2−50.

(a)

(b)

A

B

47 Ω 10 mA

A

B

100 kΩ
5 V

–

+

FIGURE P2−50

2–51 For each of the circuits in Figure P2−51, find the equiva-
lent practical voltage source at terminals A and B.

A

B

5 Ω

10 Ω

(a)

5 A

(b)

A

B

R

R vS
+
–

FIGURE P2−51

2–52 In Figure P2−52, the i – v characteristic of network N is
v + 50i = 5 V. Find the equivalent practical current source
for the network.

N

A

B

i

v

+

–

FIGURE P2−52

2–53 Select the value of Rx in Figure P2−53 so that REQ =
100 kΩ.

REQ

47 kΩ40 kΩ

10 kΩ22 kΩ

Rx

FIGURE P2−53

2–54 Two 10-kΩ potentiometers (a variable resistor whose
value between the two ends is 10 kΩ and between one end
and the wiper—the third terminal—can range from 0Ω to
10 kΩ) are connected as shown in Figure P2−54. What is
the range of REQ?

10 kΩ

REQ

10 kΩ

FIGURE P2−54

2–55 Select the value of R in Figure P2−55 so that RAB = RL.

4R

A

B

RL

R R

FIGURE P2−55

2–56 What is the range of REQ in Figure P2−56?

REQ

15 kΩ

10 kΩ

15 kΩ

FIGURE P2−56
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2–57 Find the equivalent resistance between terminals A and
B in Figure P2−57.

R R R
A B

FIGURE P2−57

O B J E C T I V E 2 − 5 V O L T A G E A N D C U R R E N T D I V I S I O N
( S E C T . 2 − 5 )
(a) Given a linear resistive circuit with elements con-

nected in series or parallel, use voltage or current
division to find specified voltages or currents.

(b) Design a voltage or current divider that delivers spe-
cified output signals.

See Examples 2–16 to 2–2 4 and Exercises 2–19 to 2–26.

2–58 Use voltage division in Figure P2−58 to find vx, vy, and vz
Then show that the sum of these voltages equals the source
voltage.

+
–

+ vx – + vy –

–

+

vy

2 kΩ 8 kΩ

4 kΩ24 V

FIGURE P2−58

2–59 Use voltage division in Figure P2−59 to obtain an expres-
sion for vL in terms of R, RL, and vS.

+

–
vLvS

+
–

R

RLR

FIGURE P2−59

2–60 Use current division in Figure P2−60 to find ix, iy, and iz.
Then show that the sum of these currents equals the source
current.

ix iy iz

2 kΩ
3 A

1 kΩ 1.5 kΩ

FIGURE P2−60

2–61 Use current division in Figure P2−61 to find an expression
for vL in terms of R, RL, and iS.

+

vL

–

R

R

RLiS

FIGURE P2−61

2–62 Find ix, iy, and iz in Figure P2−62.

6 Ωiy

iz

5 Ω

20 Ω

15 Ω

ix

500 mA

FIGURE P2−62

2–63 Find vO in the circuit of Figure P2−63.

10 V 15 kΩ

5 kΩ
33%+

– +
vO
–

FIGURE P2−63

2–64 You wish to drive a 1-kΩ load from your car battery

as shown in Figure P2−64. The load needs 5 V across it to
operate correctly. Where should the wiper on the potentiom-
eter be set (Rx) to obtain the desired output voltage?

12 V

RX

5 kΩ

1 kΩ5 V
+

‒

+
‒

FIGURE P2−64

2–65 Find the range of values of vO in Figure P2−65.

+
‒

12 V

1 kΩ

1.5 kΩ 1.5 kΩ

+

vO

‒

FIGURE P2−65
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2–66 Use current division in the circuit of Figure P2−66 to find
RX so that the voltage out is 3 V. Repeat for 5 V.

1 A

RX

10 Ω 10 Ω

+
vO
‒

FIGURE P2−66

2–67 Figure P2−67 shows a voltage bridge circuit,

that is, two voltage dividers in parallel with a source
vS. One resistor RX is variable. The goal is often to “bal-
ance” the bridge by making vx = 0 V. Derive an expres-
sion for RX in terms of the other resistors for when the
bridge is balanced.

vS

RA RC

RXRB

+ vx ‒+
‒

FIGURE P2−67

2–68 Ideally, a voltmeter has infinite internal resist-

ance and can be placed across any device to read the volt-
age without affecting the result. A particular digital
multimeter (DMM), a common laboratory tool, is con-
nected across the circuit shown in Figure P2−68. The
expected voltage was 10.2 V. However, the DMM reads
7.61 V. The large, but finite, internal resistance of the
DMM was “loading” the circuit and causing a wrong
measurement to be made. Find the value of the internal
resistance RM of this DMM.

RM

4.7 MΩ DMM

10 MΩ15 V
+
‒

FIGURE P2−68

2–69 Select values for R1, R2, and R3 in Figure P2−69 so

that the voltage divider produces the two output vol-
tages shown.

R1

R2

R3

+

2 V

‒

5 V

3.3 V

+

‒

+
‒

FIGURE P2−69

2–70 Select a value of Rx in Figure P2−70 so

that vL = 4 V.

+

‒

vL

24 V

1 kΩ 1 kΩ
+
‒

1 kΩ Rx

FIGURE P2−70

2–71 Select a value of Rx in Figure P2−71 so that

vL = 2 V. Repeat for 4 V and 6 V. Caution: Rx must be
positive.

120 mA

100 Ω

Rx 50 Ω

+

vL

‒

FIGURE P2−71

O B J E C T I V E 2 − 6 C I R C U I T R E D U C T I O N ( S E C T . 2 − 6 )
Given a linear resistive circuit, find selected signal variables
using successive application of series and parallel equivalence,
source transformations, and voltage and current division.
See Example 2–25 to 2–28 and Exercises 2–27 to 2–31.

2–72 Use circuit reduction to find vx and ix in Figure P2−72.

ix

100 Ω

220 Ω

100 Ω100 mA

+

vx

‒

FIGURE P2−72
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2–73 Use circuit reduction to find vx, ix, and px in Figure P2−73.
Repeat using Multisim.

300 mA

1 kΩ2.2 kΩ

3.3 kΩ 2 kΩ 1 kΩ

ix

px
+ vx ‒

FIGURE P2−73

2–74 Use circuit reduction to find vx and ix in Figure P2−74.

2R

2R 2RRR is

ix+

vx

‒

FIGURE P2−74

2–75 Use circuit reduction to find vx, ix, and px in Figure P2−75.

100 V

1.5 kΩ3 kΩ

2 kΩ 1 kΩ1 kΩix

px

+
‒

+

vx

‒

FIGURE P2−75

2–76 Use circuit reduction to find vx and ix in Figure P2−76.

100 V

18 kΩ 8 kΩ

4 kΩ12 kΩ

ix

+

vx

‒

+
‒

FIGURE P2−76

2–77 Use source transformation to find ix in Figure P2−77.

30 V 200 mA

ix

220 Ω

150 Ω

+
‒

FIGURE P2−77

2–78 Select a value for Rx so that ix = 0 A in Figure P2−78.

‒24 V 12 V

ix

20 Ω

Rx 30 Ω

+
‒

+
‒

FIGURE P2−78

2–79 Use source transformations in Figure P2−79 to relate vO
to v1, v2, and v3.

v1

R

v2

R

v3

R

+
‒

+
‒

+
‒

+

vO

‒

FIGURE P2−79

2–80 The current through RL in Figure P2−80 is 100 mA. Use
source transformations to find RL. Validate your answer
using Multisim.

100 V RL

100 Ω 100 Ω iL=100 mA

100 Ω
+
‒

FIGURE P2−80

2–81 Select Rx so that 50 V is across it in Figure P2−81.

50 V
1 kΩ 1 kΩ 500 Ω

500 ΩRx

500 Ω400 mA

+         ‒

FIGURE P2−81

2–82 The box in the circuit in Figure P2−82 is a resistor whose
value can be anywhere between 8 and 80 kΩ. Use circuit
reduction to find the range of values of vx.

10 kΩ

10 kΩ50 V 10 kΩ
+
‒

+

vx

‒

FIGURE P2−82
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O B J E C T I V E 2 − 7 C O M P U T E R - A I D E D C I R C U I T
A N A L Y S I S ( S E C T . 2 − 7 )
Given an appropriate linear circuit, use circuit simulation and/
or computational software to solve for the desired response.
See Example 2–29 and Exercise 2–32 and also examples inWeb
Appendix D.

2–83 Use Multisim to find all the currents and voltages in the
circuit of Figure P2−76.

2–84 Use Multisim to find all the currents and voltages in the
circuit of Figure P2−77.

2–85 Use Multisim to find ix, vx, and px in the circuit of
Figure P2−73.

2–86 Use Multisim to show the power balance in the circuit of
Figure P2−72, that is, that the sum of the power in the circuit
equals zero.

2–87 A circuit is found to have the following element and con-
nection equations:

v1 = 24 V

v2 = 8k i2
v3 = 5k i3
v4 = 4k i4
v5 = 16k i5
−v1 + v2 + v3 = 0

−v3 + v4 + v5 = 0

i1 + i2 = 0

− i2 + i3 + i4 = 0

− i4 + i5 = 0

UseMATLAB to solve for all of the unknown voltages and cur-
rents associated with this circuit. Sketch one possible schematic
that matches the given equations.

2–88 Consider the circuit of Figure P2−88. Use MATLAB to
find all of the voltages and currents in the circuit and find
the power provided by the source.

240 V

220 kΩ 47 kΩ 47 kΩ

220 kΩ 68 kΩ 33 kΩ
+
‒

FIGURE P2−88

2–89 Consider the circuit of Figure P2−88 again. Use Multi-
sim to find all of the voltages, currents, and power used or
provided. Verify that the sum of all power in the circuit
is zero.

2–90 The circuit of Figure P2−90 is called a “bridge-T” circuit.
Use Multisim to find all of the voltages and currents in the
circuit.

100 Ω

100 Ω

100 Ω 24 V

100 Ω 100 Ω

+
‒

FIGURE P2−90

I N T E G R A T I N G P R O B L E M S

2–91 Nonlinear Device Characteristics

The circuit in Figure P2−91 is a parallel combination of a
75-Ω linear resistor and a varistor whose i – v character-
istic is iV = 2:6 × 10−5v3. For a small voltage, the varistor
current is quite small compared to the resistor current.
For large voltages, the varistor dominates because its
current increases more rapidly with voltage.
(a) Plot the i – v characteristic of the parallel combination.
(b) State whether the parallel combination is linear or non-
linear, active or passive, and bilateral or nonbilateral.
(c) Find the range of voltages over which the resistor current
is at least 10 times as large as the varistor current.
(d) Find the range of voltages over which the varistor current
is at least 10 times as large as the resistor current.

75 Ω

i iV

v

+

‒

FIGURE P2−91

2–92 Transistor Biasing

The circuit shown in Figure P2−92 is a typical biasing arrange-
ment for a BJT-type transistor. The actual transistor for this
problem can be modeled as 0:7-V battery in series with a
200-kΩ resistor. Biasing allows signals that have both positive
and negative variations to be properly amplified by the transis-
tor. Select the two biasing resistorsRA andRB so that 3 � 0:1 V
appears across RB.
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Transistor

+15 V

3 V

0.7V

200 kΩ

RA

RB

+

‒

+
‒

FIGURE P2−92

2–93 Center Tapped Voltage Divider

Figure P2−93 shows a voltage divider with the center tap con-
nected to ground. Derive equations relating vA and vB to vS,R1,
and R2.

A

B

R1

R2

vS

+

vA

‒

‒

vB

+

+
‒

FIGURE P2−93

2–94 Thermocouple Alarm Sensor

A type-K thermocouple produces a voltage that is propor-
tional to temperature. The characteristic of a type-K thermo-
couple is shown in Figure P2−94(a). In an application, this
transducer is used to detect when the temperature reaches
1250�C and then to cause a safety shutoff to trip and stop an
operation. The safety shutoff can be modeled by a 5-kΩ input
resistance, while the transducer can be modeled by a variable
voltage source, v Tð Þ, in series with a resistance of 33Ω to
account for the transducer’s wires and internal resistance as
shown in Figure P2−94(b). The safety shutoff will trip when
exactly 10mV is applied. Select an appropriate resistanceR that
will cause the safety shutoff to trip at exactly 1250�C.

80
E

K

J

C

S
RT

70

60

50

40

30

20

10

0
0 500 1000 1500 2000

(a)

2500

Temperature (ºC)

T
h
er

m
o
co

u
p
le

 o
u
tp

u
t 

v
o
lt

ag
e 

(m
V

)

+

‒

+

vL

‒

R

33 Ω

(b)

Type-K

thermocouple

v(T)

Safety

shutoff

5 kΩ

FIGURE P2−94

2–95 Active Transducer

Figure P2−95 shows an active transducer whose resistance
R VTð Þ varies with the transducer voltage VT as R VTð Þ =
0:5VT

2 + 1. The transducer supplies a current to a 12-Ω load.
At what voltage will the load current equal 100 mA?

R(VT)

12 Ω

Transducer

VT

iL

+
‒

FIGURE P2−95

2–96 Interface Circuit Choice

You have a practical voltage source that can be modeled as a
5-V ideal source in series with a 1-kΩ source resistor. You need
to use your source to drive a 1-kΩ load that requires exactly
2 V across it. Two solutions are provided to you as shown in
Figure P2−96. Validate that both meet the requirement then
select the best solution and give the reason for your choice.
Consider part count, standard parts, accuracy of meeting the
spec, power consumed by the source, and so on. Validate your
results using Multisim.

1 kΩ

Interface #1

5 V 1 kΩ2 kΩ+
‒

+

2V

‒

1 kΩ 500 Ω

Interface #2

5 V 1 kΩ+
‒

+

2V

‒

FIGURE P2−96
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2–97 Programmable Voltage Divider

Figure P2−97 shows a programmable voltage divider in which
digital inputs b0 and b1 control complementary analog switches
connecting a multitap voltage divider to the analog output vO.

The switch positions in the figure apply when digital inputs
are low. When inputs go high the switch positions reverse. Find
the analog output voltage for (b1,b0) = (0,0), (0,1), (1,0), and
(1,1) when VREF = 12 V.

R

R

R

R

VREF

b0 b1

+
vO
‒

+
‒

FIGURE P2−97

2–98 Analog Voltmeter Design

Figure P2−98(a) shows a voltmeter circuit consisting of a
D’Arsonval meter, two series resistors, and a two-
position selector switch. A current of IFS = 400 μA pro-
duces full-scale deflection of the D’Arsonval meter,
whose internal resistance is RM = 25Ω.

(a) Select the series resistanceR1 andR2 so that a volt-

age vx = 100 V produces full-scale deflection when the
switch is in position A, and voltage vx = 10 V produces
full-scale deflection when the switch is in position B.

(b) What is the voltage across the 20-kΩ resistor in

Figure P2−98(b)? What is the voltage when the voltmeter
in part (a) is set to position A and connected across the
20-kΩ resistor?What is the percentage error introduced con-
necting the voltmeter?

(c) A different D’Arsonval meter is available with an

internal resistance of 100Ω and a full-scale deflection current
of 100 μA. If the voltmeter in part (a) is redesigned using this
D’Arsonval meter, would the error found in part (b) be smal-
ler or larger? Explain.

B

A

30 kΩ

20 kΩ

50 V

R1

vx

R2

RM

VM

(b)

(a)

+
‒

+
‒

FIGURE P2−98

2–99 MATLABFunction for Parallel EquivalentResistors

Create a MATLAB function to compute the equivalent resist-
ance of a set of resistors connected in parallel. The function has
a single input, which is a vector containing the values of all of
the resistors in parallel, and it has a single output, which is
the equivalent resistance. Name the function “EQparallel”
and test it with at least three different resistor combinations.
At least one test should have three or more resistor values.

2–100 Finding an Equivalent Resistance using Multisim

Use Multisim to find the equivalent resistance at terminals
A and B of the resistor mesh shown in Figure P2−100. (Hint:
Use a 1-V dc source and measure the current provided by
the source.)

REQ
100 Ω 100 Ω

100 Ω100 Ω

100 Ω
100 Ω

100 Ω100 Ω

100 Ω

A

B

FIGURE P2−100
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C H A P T E R 3 CIRCUIT ANALYSIS
TECHNIQUES

Assuming any system of linear conductors connected in such a manner that to the extremities of each one of them there is connected at least
one other, a system having electromotive forces E1, E2, E3… , no matter how distributed, we consider two points A and A0 belonging to the
system and having potentials V and V 0. If the points A and A0 are connected by a wire ABA0, which has a resistance r, with no electromotive
forces, the potentials of points A and A0 assume different values from V and V 0, but the current i flowing through this wire is given by
i= ðV −V 0Þ=ðr +RÞ in which R represents the resistance of the original wire, this resistance being measured between the points A and A0,
which are considered to be electrodes.

Leon Charles Thévenin, 1883,
French Telegraph Engineer

Some History Behind This Chapter
Leon Charles Thévenin (1857–1926), a distinguished French
telegraph engineer and teacher, was led to his theorem in
1883 following an extensive study of Kirchhoff’s laws.
Norton’s theorem, the dual of Thévenin’s theorem, was not
proposed until 1926 by Edward L. Norton, an American elec-
trical engineer working on long-distance telephony. Curi-
ously, it turns out that the basic concept had been
discovered earlier by Hermann von Helmholtz while study-
ing electricity in animal tissue. Electrical engineering tradi-
tion credits Thévenin and Norton, perhaps because they
worked in areas that offered practical applications for their
results.

Why This Chapter Is Important Today
In this chapter you advance to studying general methods of
analyzing circuits and to the major theorems that describe lin-
ear circuits. These theorems are conceptual tools that give
new insight into circuit behavior. Most importantly, you will
be introduced to the design of interface circuits; your first
exposure to devising a circuit to perform a predetermined
function.

Chapter Sections
3–1 Node-Voltage Analysis
3–2 Mesh-Current Analysis
3–3 Linearity Properties
3–4 Thévenin and Norton Equivalent Circuits
3–5 Maximum Signal Transfer
3–6 Interface Circuit Design

Chapter Learning Objectives
3-1 General Circuit Analysis (Sects. 3–1 to 3–2)

Given a linear resistance circuit:

(a) (Formulation) Write node-voltage or mesh-current
equations for the circuit.

(b) (Solution) Solve the equations from (a) for selected
signal variables or input-output relationships using
classical or software computational techniques.

3-2 Linearity Properties (Sect. 3–3)

Given a linear resistance circuit:

(a) Use the proportionality principle to find selected
signal variables.

(b) Use the superposition principle to find selected
signal variables.

3-3 Thévenin and Norton Equivalent Circuits (Sect. 3–4)

Given a linear resistance circuit:

(a) Find the Thévenin or Norton equivalent at a speci-
fied pair of terminals.

(b) Use the Thévenin or Norton equivalent to find the
signals delivered to linear or nonlinear loads.

3-4 Maximum Signal Transfer (Sect. 3–5)

Given a linear resistance circuit:

(a) Find the maximum voltage, current, and power
available at a specified pair of terminals.

(b) Find the resistive loads required to obtain the max-
imum available signal levels.

3-5 Interface Circuit Design (Sect. 3–6)

Given the signal transfer goals at a source-load interface,
design one or more two-port interface circuits to achieve
the goals and evaluate the alternative design solutions.
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3–1 N O D E - V O L T A G E A N A L Y S I S

Before describing node-voltage analysis, we first review the foundation for every
method of circuit analysis. As noted in Sect. 2–3, circuit behavior is based on con-
straints of two types: (1) connection constraints (Kirchhoff’s laws) and (2) device
constraints (element i−υ relationships). As a practical matter, however, using ele-
ment voltages and currents to express the circuit constraints produces a large number
of equations that must be solved simultaneously to find the circuit responses. For
example, a circuit with only six devices requires us to treat 12 equations with
12 unknowns. Although this is not an impossible task using software tools like
MATLAB, it is highly desirable to reduce the number of equations that must be
solved simultaneously.

You should not abandon the concept of element and connection constraints. This
method is vital because it provides the foundation for all methods of circuit analysis.
In subsequent chapters, we use element and connection constraints many times to
develop important ideas in circuit analysis.

Using node voltages instead of element voltages as circuit variables can reduce the
number of equations that must be treated simultaneously. To define a set of node
voltages, we first select a reference node. The node voltages are then defined as
the voltages between the remaining nodes and the selected reference node.
Figure 3–1 shows the notation used to define node-voltage variables. In this figure
the reference node is indicated by the ground symbol and the node voltages are iden-
tified by a voltage symbol next to all the other nodes. This notation means that the
positive reference mark for the node voltage is located at the node in question,
whereas the negative mark is at the reference node. Obviously, any circuit with N
nodes involves N−1 node voltages since one node, the reference node, is known.

A fundamental property of node voltages needs to be covered at the outset.
Suppose we are given a two-terminal element whose element voltage is labeled υ1.
Suppose further that the terminal with the plus reference mark is connected to a
node, say node A. The two cases shown in Figure 3–2 are the only two possible ways
the other element terminal can be connected. In case A, the other terminal is con-
nected to the reference node, in which case KVL requires υ1 = υA. In case B, the other
terminal is connected to a nonreference node, say node B, in which case KVL
requires υ1 = υA−υB. This example illustrates the following fundamental property
of node voltages:

If the Kth two-terminal element is connected between nodes X and Y, then the
element voltage can be expressed in terms of the two node voltages as

υK = υX −υY (3–1)

where X is the node connected to the positive reference for element voltage υK.

Equation (3–1) is a KVL constraint at the element level. If nodeY is the reference
node, then by definition υY = 0 and Eq. (3–1) reduces to υK = υX . On the other hand, if
node X is the reference node, then υX = 0 and therefore υK = −υY . The minus sign
occurs here because the positive reference for the element is connected to the refer-
ence node. In any case, the important fact is that the voltage across any two-terminal
element can be expressed as the difference of two node voltages, one of which may
be zero.

E x e r c i s e 3–1
The reference node and node voltages in the bridge circuit of Figure 3–3 are υA = 5 V,
υB = 10 V, and υC = −3 V. Find the element voltages.

A n s w e r s: υ1 = 10 V; υ2 = 3 V; υ3 = 13 V; υ4 = 8 V; υ5 = −5 V

+

−

− −

+ +

vA
vB

vC

vA vB vC

Notation

Interpretation

FIGURE 3–1 Node-voltage
definition and notation.

vA vB

vA vB

v1

v1

+

−

−+

Case A

Case B

FIGURE 3–2 Two possible
connections of a two-terminal
element.

+

−

+

+

+ +

−

−

− −

vA

vB

vC

v1

v2

v3

v4

v5

FIGURE 3–3
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E x e r c i s e 3–2
For the circuit in Figure 3–4, first find the node voltages and then find υX and υY.

A n s w e r s: υA =5 V, υB = −4 V, υC = 6 V, υD = 0 V (ground). υX = υA−υB = 9 V and
υY = υA−υC = −1 V.

F O R M U L A T I N G N O D E - V O L T A G E E Q U A T I O N S

To formulate a circuit description using node voltages we use element and connec-
tion analysis, except that the KVL connection equations are not explicitly written.
Instead, we use the fundamental property of node analysis to express the element
voltages in terms of the node voltages.

The circuit in Figure 3–5 demonstrates the formulation of node-voltage equations.
In Figure 3–5 we have identified a reference node (indicated by the ground symbol),
four element currents (i0, i1, i2, and i3), and two node voltages (υA and υB).

The KCL constraints at the two nonreference nodes are as follows:

NodeA: − i0− i1− i2 = 0

Node B: i2− i3 = 0
(3–2)

Using the fundamental property of node analysis, we use the element equations to
relate the element currents to the node voltages.

ResistorR1: i1 =
1
R1

υA

ResistorR2: i2 =
1
R2

ðυA−υBÞ

ResistorR3: i3 =
1
R3

υB

Current source: i0 = − iS

(3–3)

We have written six equations in six unknowns—four element currents and two
node voltages. The element equations on the right side of Eqs. (3–3) involve
unknown node voltages and the input signal iS. Substituting the device constraints
in Eqs. (3–3) into the KCL connection constraints in Eqs. (3–2) yields

Node A: iS−
1
R1

υA−
1
R2

ðυA−υBÞ= 0

Node B:
1
R2

ðυA−υBÞ− 1
R3

υB = 0

which can be arranged in the following standard form:

NodeA:
1
R1

+
1
R2

� �
υA−

1
R2

υB = iS

Node B: −
1
R2

υA +
1
R2

+
1
R3

� �
υB = 0

(3–4)

In this standard form all of the unknown node voltages are grouped on one side and
the independent sources on the other. This will facilitate the analysis.

vC

vB

vX

vY

vA

vD

10V

5V 6V– –
+

+

+

–

–

–
+

+
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i1 i3
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FIGURE 3–5 Circuit for
demonstrating node-voltage
analysis.
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By systematically eliminating the element currents, we have reduced the circuit
description to two linear equations in the two unknown node voltages. The coef-
ficients in the equations on the left side (1=R1 + 1=R2, 1=R2, 1=R2 + 1=R3) depend
only on circuit parameters, whereas the right side contains the known input driving
force iS.

As noted previously, every method of circuit analysis must satisfy KVL, KCL, and
the device i−υ relationships. In developing the node-voltage equations in Eqs. (3–4),
it may appear that we have not used KVL. However, KVL is satisfied because the
equations υ1 = υA, υ2 = υA−υB, and υ3 = υB were used to write the right side of the ele-
ment equations in Eqs. (3–3). The KVL constraints do not appear explicitly in the
formulation of node equations, but they are implicitly included when the fundamen-
tal property of node analysis is used to write the element voltages in terms of the node
voltages.

In summary, four steps are needed to develop node-voltage equations.

S T E P 1 Select a reference node. Identify a node voltage at each of the remainingN−1
nodes and a current with every element in the circuit.

S T E P 2 Write KCL connection constraints in terms of the element currents at theN−1
nonreference nodes.

S T E P 3 Use the i−υ relationships of the elements and the fundamental property of
node analysis to express the element currents in terms of the node voltages.

S T E P 4 Substitute the element constraints from step 3 into the KCL connection
constraints from step 2 and arrange the resultingN−1 equations in a standard
form.

Writing node-voltage equations leads toN−1 equations that must be solved simul-
taneously. If we write the element and connection constraints in terms of element
voltages and currents, we must solve 2E simultaneous equations. The node-voltage
method reduces the number of linear equations thatmust be solved simultaneously to
N−1. The reduction from 2E toN−1 is particularly impressive in circuits with a large
number of elements (large E) connected in parallel (small N).

E X A M P L E 3–1

Formulate node-voltage equations for the bridge circuit in Figure 3–6.

SOLUTION:

S T E P 1 The reference node, node voltages, and element currents are shown in
Figure 3–6.

S T E P 2 The KCL constraints at the three nonreference nodes are as follows:

Node A : i0− i1− i2 = 0

Node B : i1− i3 + i5 = 0

Node C : i2− i4− i5 = 0

S T E P 3 We write the element equations in terms of the node voltages and input signal
sources.

i0 = iS1 i3 =
1
R3

υB

i1 =
1
R1

ðυA−υBÞ i4 =
1
R4

υC

i2 =
1
R2

ðυA−υCÞ i5 = iS2

iS1

i1
i0 R1

i2

R2

i4

R4R3

i3

i5
iS2

vA

vCvB

Reference node

FIGURE 3–6
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S T E P 4 Substituting the element equations into the KCL constraints and arranging the
result instandardformyields threeequations inthe threeunknownnodevoltages.

Node A:
1
R1

+
1
R2

� �
υA−

1
R1

υB−
1
R2

υC = iS1

Node B: −
1
R1

υA +
1
R1

+
1
R3

� �
υB + 0υC = iS2

Node C: −
1
R2

υA + 0υB +
1
R2

+
1
R4

� �
υC = − iS2

The three equations in three unknowns can be written in matrix form. Missing terms are zeros
in the matrix.

This matrix equation is of the formAx= b, whereA is a 3 × 3 square matrix describing the cir-
cuit, x is a 3 × 1 column matrix of unknown node voltages, and b is a 3 × 1 column matrix of
known inputs. Note that matrixA is symmetrical, that is, the terms on either side of the major
diagonal, shown as a dashed line through the matrix, are the same. ■

E x e r c i s e 3–3
For the circuit in Figure 3–6 replace the current source iS2 with a resistor R5.

(a) Using the same node designations and reference node, formulate node-voltage equa-
tions for the modified circuit. Place the result in matrix form Ax=b.

(b) Is the resulting A matrix symmetrical?

A n s w e r s:

(a)

(b) Yes; see terms on either side of the diagonal above.

E x e r c i s e 3–4
Formulate node-voltage equations for the circuit in Figure 3–7 and place the
results in matrix form Ax= b. Is the resulting matrix A symmetrical?

A n s w e r s:

.

Yes, the matrix is symmetrical.

W R I T I N G N O D E - V O L T A G E E Q U A T I O N S B Y I N S P E C T I O N

The node-voltage equations derived in Example 3–1 have a symmetrical pattern, as
shown by the dashed line drawn along the major diagonal. The coefficient of υB in

vA vB

i1

i3

i2 i4 i5

20 mA 50 mA

1.5 kΩ

1 kΩ 2 kΩ

FIGURE 3–7
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the node A equation and the coefficient of υA in the node B equation are each the
negative of the conductance connected between the nodes ð−1=R1Þ. Likewise, the
coefficients of υC in the node A equation and υA in the node C equation are
−1=R2. The coefficients of υA in the node A equation, υB in the node B equation,
and υC in the node C equation are the sum of the conductances connected to the node
in question. The two missing terms or zeros also fall symmetrically about the
diagonal.

This symmetrical pattern always occurs in circuits containing only resistors and
independent current sources. To understand why, consider any general two-terminal
resistance R with one terminal connected to, say, node A. Then according to the fun-
damental property of node analysis there are only two possibilities. The other termi-
nal of R is either connected to the reference node, in which case the current leaving
node A via resistance R is

i=
1
R
ðυA−0Þ= 1

R
υA

or to another nonreference node, say, node B, in which case the current leaving node
A via R is

i=
1
R
ðυA−υBÞ

The pattern for node equations follows from these observations. The sum of the
currents leaving any node A via resistances is

1. υA times the sum of conductances connected to node A.

2. Minus υB times the sum of conductances connected between nodes A and B.

3. Minus similar terms for all othernodes connected tonodeAbyconductances.

Because of KCL, the sum of currents leaving node A via resistances plus the sum of
currents directed away from nodeA by independent current sources must equal zero.

Understanding the aforementioned process allows us to write node-voltage equa-
tions by inspection without going through the intermediate steps involving the KCL
constraints and the element equations or even labeling currents. For example,
the circuit in Figure 3–8 contains two independent current sources and four resistors.
Starting with node A, the sum of conductances connected to node A is 1=R1 + 1=R2.
The conductance between nodes A and B is 1=R2. The reference direction for the
source current iS1 is into node A and for iS2 is directed away from node A. Pulling
all of the observations together, we write the sum of currents directed out of
node A as

NodeA:
1
R1

+
1
R2

� �
υA−

1
R2

υB− iS1 + iS2 = 0 (3–5)

Similarly, the sum of conductances connected to node B is 1=R2 + 1=R3 + 1=R4, the
conductance connected between nodes B andA is again 1=R2, and the source current
iS2 is directed toward node B. These observations yield the following node-voltage
equation.

Node B:
1
R2

+
1
R3

+
1
R4

� �
υB−

1
R2

υA− iS2 = 0 (3–6)

Rearranging Eqs. (3–5) and (3–6) in standard form yields

Node A:
1
R1

+
1
R2

� �
υA−

1
R2

υB = iS1− iS2

Node B: −
1
R2

υA +
1
R2

+
1
R3

+
1
R4

� �
υB = iS2

(3–7)

iS1

iS2

vA

R2

R1 R3 R4

vB

FIGURE 3–8 Circuit for
demonstrating how to write node-
voltage equations by inspection.
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In thematrix formAx= b, whereA is a 2 × 2 squarematrix describing the circuit, x is a
2 × 1 column matrix of unknown node voltages, and b is a 2 × 1 column matrix of
known inputs, we can express the equations as

We have two symmetrical equations in the two unknown voltages. The equations are
symmetrical as seen by the dashed line because the resistance R2 connected between
nodes A and B appears as the cross-coupling term in each equation.

E X A M P L E 3–2

Formulate node-voltage equations for the circuit in Figure 3–9.

SOLUTION:
The total conductance connected to node A is 1=ð2RÞ+ 2=R= 2:5=R, to node B is
1=ð2RÞ+ 2=R+ 1=ð2RÞ= 3=R, and to node C is 2=R+ 1=R+ 1=ð2RÞ= 3:5=R. The con-
ductance connected between nodes A and B is 1=ð2RÞ, between nodes A and C is
2=R, and between nodes B and C is 1=ð2RÞ. The independent current source is direc-
ted into node A. By inspection, the node-voltage equations are as follows:

Node A:
2:5
R

υA−
0:5
R

υB−
2
R

υC = iS

Node B: −
0:5
R

υA +
3
R

υB−
0:5
R

υC = 0

Node C: −
2
R

υA−
0:5
R

υB +
3:5
R

υC = 0

Written in matrix form Ax= b,

Note that the A matrix is symmetrical. ■

E x e r c i s e 3–5
Formulate node-voltage equations for the circuit in Figure 3–10.

A n s w e r s: ð1:5 × 10−3ÞυA−ð0:5 × 10−3ÞυB = iS1

−ð0:5 × 10−3ÞυA + ð2:5 × 10−3ÞυB = − iS2

S O L V I N G L I N E A R A L G E B R A I C E Q U A T I O N S

So far we have dealt only with the problem of formulating node-voltage equations.
To complete a circuit analysis problem, we must solve these linear equations for
selected responses. A system of linear algebraic equations can be solved through
manual calculations or with the aid of a computer. Skilled engineers should be famil-
iar with both techniques and should develop the judgment to knowwhen each type of

iS

vA vC
2R 2R

R

vB

R/2

R/2

FIGURE 3–9

iS1 iS2

vA

vO

vB

−

+

2 kΩ

1 kΩ 500 Ω

FIGURE 3–10
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approach is appropriate. In choosing between manual and computer-aided methods,
you may consider the following four factors:

• The number of unknown responses (the order of the problem)

• The number of parameters in symbolic versus numeric form

• Your skill in performing manual calculations

• The availability of and your proficiency with computer tools

In general, you can efficiently use manual techniques to solve lower-order problems
with numeric parameters. Cramer’s rule and Gaussian elimination are standard
mathematical tools commonly used for manual solutions. Web Appendix A provides
a brief review of these techniques.

As the order of the problem increases or if symbolic parameters are present, it
usually becomes more efficient to use an advanced calculator or computer tools, such
as MATLAB, to find the desired responses. Many scientific handheld calculators
have a built-in capability to solve linear equations when all of the parameter values
are numeric. Alternatively, circuit simulation software such as Multisim can be a
good choice for solving circuit equations when all of the parameters have numeric
values. MATLAB can efficiently solve linear systems of equations with either
numeric or symbolic parameter values. To include symbolic parameters inMATLAB
code, use either the sym or syms command to define the parameters and then pro-
ceed with the normal matrix-based solution to the problem. SeeWebAppendix D for
additional guidance using MATLAB.

Earlier in this section we formulated node-voltage equations for the circuit in
Figure 3–5 [see Eqs. (3–4)].

NodeA:
1
R1

+
1
R2

� �
υA−

1
R2

υB = iS

Node B: −
1
R2

υA +
1
R2

+
1
R3

� �
υB = 0

This problem is formulated with two unknown responses (υA and υB) and has three
symbolic parameters (R1, R2, and R3). In this case, Cramer’s rule would be a suitable
manual technique for finding the responses, but we will illustrate the solution using
MATLAB to handle the symbolic parameters. First, define the symbolic parameters:

syms R1 R2 R3 iS real

Now formulate the problem in matrix notation, using theAx= b structure as follows:

A = [(1/R1 + 1/R2) −1/R2; −1/R2 (1/R2 + 1/R3)];
B = [iS; 0];
x = A\B;
vA = x(1)
vB = x(2)

The resulting solutions are given by

vA = (R1*iS*(R2 + R3))/(R1 + R2 + R3)
vB = (R1*R3*iS)/(R1 + R2 + R3)

We can write these solutions compactly as

vA =
R1iS ðR2 +R3Þ
R1 +R2 +R3

vB =
R1R3iS

R1 +R2 +R3
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The results express the two node voltages in terms of the circuit parameters and the
input signals. Given the two node voltages υA and υB, we can now determine every
element voltage and every current using Ohm’s law and the fundamental property of
node voltages.

υ1 = υA υ2 = υA−υB υ3 = υB

i1 =
υA
R1

i2 =
υA−υB
R2

i3 =
υB
R3

In solving the node equations, we left everything in symbolic form to emphasize that
the responses depend on the values of the circuit parameters (R1,R2, andR3Þ and the
input signal (iS). Even when numerical values are given, it is sometimes useful to
leave some parameters in symbolic form to obtain input-output relationships or to
reveal the effect of specific parameters on the circuit response.

E X A M P L E 3–3

Given the circuit in Figure 3–11, find the input resistance RIN seen by the
current source and the output voltage υO. Solve this problem by hand and
then using MATLAB.

SOLUTION:
In Example 3–2 we formulated node-voltage equations for this circuit as
follows:

Node A:
2:5
R

υA−
0:5
R

υB−
2
R

υC = iS

Node B: −
0:5
R

υA +
3
R

υB−
0:5
R

υC = 0

Node C: −
2
R

υA−
0:5
R

υB +
3:5
R

υC = 0

First we will solve the problem using Cramer’s rule and then we will solve it again
using MATLAB.

The input resistance RIN is the ratio
υA
iS
, whereas the output voltage is simply υC.

We solve for both υA and υC using Cramer’s rule as follows:
Rewrite the three node equations after multiplying both sides of each equation by

R as follows:
2:5υA−0:5υB−2υC = RiS

−0:5υA + 3υB−0:5υC = 0

−2υA−0:5υB + 3:5υC = 0

Then write as a matrix Ax= b

2:5 −0:5 −2

−0:5 3 −0:5

−2 −0:5 3:5

2
64

3
75

υA

υB

υC

2
64

3
75=

RiS

0

0

2
64

3
75

Then

υA =

RiS −0:5 −2
0 3 −0:5
0 −0:5 3:5
















2:5 −0:5 −2
−0:5 3 −0:5
−2 −0:5 3:5















=
RiSð10:25Þ

11:75
= 0:872RiS V

iS

vA vC
2R 2R

R

vB

R/2

R/2

RIN

−

+

vO

FIGURE 3–11
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RIN =
υA
iS

= 0:872
RiS
iS

= 0:872RΩ

And

υC = υO =

2:5 −0:5 RiS
−0:5 3 0
−2 −0:5 0
2:5 −0:5 −2

−0:5 3 −0:5

−2 −0:5 3:5
































=
RiSð6:25Þ
11:75

= 0:532RiS V

Now using MATLAB, we solve for the voltages vA and vC beginning with vA as
follows:

syms vA vB vC R iS Rin real
A = [2.5/R −1/2/R −2/R;...

−1/2/R3/R −1/2/R;...
−2/R −1/2/R 3.5/R];

B = [iS; 0; 0];
x = A\B;
vA = x(1)

The result is given by

vA = (41*R*iS)/47

which can be expressed compactly as:

υA =
41RiS
47

= 0:872 iSRV

The input resistance can be found using

Rin = vA/iS

which yields

RIN =
41R
7

= 0:872RΩ

The output voltage is υC, which we found at the same time as υA above.

vC = x(3)

This result is given by

vC = (25*R*iS)/47

which can be expressed compactly as

vC =
25RiS
47

= 0:532RiS V ■

E x e r c i s e 3–6
Solve the node-voltage equations in Exercise 3–5 for υO in Figure 3–10.

A n s w e r: υO = 1000ðiS1−3iS2Þ=7 V
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E x e r c i s e 3–7
Use node-voltage equations to solve for υ1, υ2, and i3 in Figure 3–12(a).

A n s w e r s: υ1 = 12 V; υ2 = 32 V; i3 = −10mA

E x e r c i s e 3–8
Solve Exercise 3–7 using Multisim.

A n s w e r: Figure 3–12(b) shows the results. Note that the current i3 is negative because the
referenced direction is opposite of the actual direction of the current through R3. The mul-
timeter was connected to correspond to the reference direction.

N O D E A N A L Y S I S W I T H V O L T A G E S O U R C E S

Up to this point we have analyzed circuits containing only resistors and independent
current sources. Applying KCL in such circuits is simplified because the sum of cur-
rents at a node only involves the output of current sources or resistor currents
expressed in terms of the node voltages. Adding voltage sources to circuits modifies
node analysis procedures because the current through a voltage source is not directly
related to the voltage across it.While initially it may appear that voltage sources com-
plicate the situation, they actually simplify node analysis by reducing the number of
equations required.

Figure 3–13 shows threeways to deal with voltage sources in node analysis.Method 1
uses a source transformation to replace the voltage source and series resistance with an
equivalent current source andparallel resistance.Wecan then formulatenodeequations
at the remaining nonreference nodes in the usual way. The source transformation elim-
inates nodeC, so there areonlyN−2 nonreference nodes left in the circuit. Obviously,
method 1 only applies when there is a resistance in series with the voltage source.

Method2 inFigure3–13canbeusedwhetherornot there is a resistance in serieswith
the voltage source. When node B is selected as the reference node, then by definition
υB = 0 and the fundamental property of node voltages says that υA = υS. We do not
need a node-voltage equation at node A because its voltage is known to be equal
to the source voltage. We write the node equations at the remaining N−2 nonrefer-
ence nodes in the usual way. In the final step, we move all terms involving υA to the

XMM2 XMM1

XMM3

+– + –

+
–

R4

2 kΩ 2 kΩ

20 mA

I1

3 kΩ
3.2 kΩ

R3

R1

R2

V1

0

V2

(b)

− v1 +
i3 +

v2

−

2 kΩ 2 kΩ

3 kΩ 3.2 kΩ 20 mA

(a)

FIGURE 3–12
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right side, since it is a known input and not an unknown response. Method 2 reduces
the number of node equations by 1 since no equation is needed at node A.

The thirdmethod in Figure 3–13 is needed when neither nodeA nor nodeB can be
selected as the reference and the source is not connected in series with a resistance. In
this case we combine nodes A and B into a supernode, indicated by the boundary in
Figure 3–13.We use the fact that KCL applies to the currents penetrating this bound-
ary to write a node equation at the supernode. We then write node equations at
the remaining N−3 nonreference nodes in the usual way. We now have N−3 node
equations plus one supernode equation, leaving us one equation short of the N−1
required. Using the fundamental property of node voltages, we can write

υA−υB = υS (3–8)

The voltage source inside the supernode constrains the difference between the node
voltages at nodes A and B. The voltage source constraint provides the additional
relationship needed to write N−1 independent equations in N−1 node voltages.

For reference purposes we will call these modified node equations, since we either
modify the circuit (method 1), use voltage source constraints to define node voltage
at some nodes (method 2), or combine nodes to produce a supernode (method 3).
The three methods are not mutually exclusive. We frequently use a combination
of methods, as illustrated in the following examples.

E X A M P L E 3–4

Use node-voltage analysis to find υO in the circuit in Figure 3–14(a).

+
−

+
−

+
−

C

vA

vB

RS

vS

vS

RS

vA

vB

RS

vA

vB

vS

vA

vB

vS

Rest

of the

circuit

Rest

of the

circuit

Rest

of the

circuit

≡

Rest

of the

circuit

Method 1

Supernode

Method 2 Method 3

FIGURE 3–13 Three methods
of treating voltage sources in
node analysis.
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SOLUTION:
The circuit in Figure 3–14(a) has four nodes, so we appear to need N−1=3 node-
voltage equations. However, applying source transformations to the two voltage
sources (method 1) produces the two-node circuit in Figure 3–14(b). For themodified
circuit we need only one node equation,

1
R1

+
1
R2

+
1
R3

� �
υB =

υS1
R1

+
υS2
R2

To find the output voltage we solve for υB:

υO = υB =

υS1
R1

+
υS2
R2

1
R1

+
1
R2

+
1
R3

=

υS1
R1

+
υS2
R2

R2R3 +R1R3 +R1R2

R1R2R3

=
R2R3υS1 +R1R3υS2
R2R3 +R1R3 +R1R2

Because of the two voltage sources, we need only one node equation in what appears
to be a four-node circuit. The two voltage sources have a common node, so the num-
ber of unknown node voltages is reduced from three to one. The general principle
illustrated is that the number of independent KCL constraints in a circuit containing
N nodes and NV voltage sources is N−1−NV. ■

As an alternative to source transformations, for this circuit we can also apply the
second method for treating voltages sources in node analysis. Since both voltage
sources are connected to ground nodes, vA and vC are defined by the two voltage
sources, that is, vA = vS1 and vC = vS2. This then leaves vB as the only unknown.
We can write the equation for vB as follows:

vB−vS1
R1

+
vB
R3

+
vB−vS2

R2
= 0

Solving for vB

vB
1
R1

+
1
R2

+
1
R3

� �
=
vS1
R1

+
vS2
R2

which, as before, simplifies to

vB = vO =
R2R3vS1 +R1R3vS2
R2R3 +R1R3 +R1R2

E x e r c i s e 3–9
In Figure 3–14(a), υS1 = 24 V, υS2 = −12 V, R1 = 3:3 kΩ, R2 = 5:6 kΩ, and
R3 = 10 kΩ. Find υO using Multisim.

A n s w e r: See Figure 3–14(c).

vS1 vO

vB

−

+

vO

−

+

R1

vS2

R2
R1R3

R1 R2vA vB vC

R2 R3

(b)(a)

vS1 vS2
+
−

+
−

FIGURE 3–14
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E X A M P L E 3–5

Use node-voltage analysis to find υX in the circuit of Figure 3–15.

SOLUTION:
Since the circuit does not have a ground designated, wemust choose a reference node
to start the node-voltage analysis. In theory, any node can be chosen as a ground, but
some ground choices are better than others. Choosing a ground wisely can simplify
the calculations required to find a solution. Recognize that the ground node is our
zero voltage reference. Hence, selecting a node at the minus terminal of a voltage
source immediately determines the voltage at the positive node to be the value of
the source. In our circuit, selecting node C as our ground automatically tells us that
node B is equal to 10 V. If we chose node A or node D as our reference, we would
only know that the voltage between nodes B and C is equal to 10 V, which does not
simplify our analysis. We could choose node B as our ground and we would automat-
ically know that node C is equal to −10 V. This choice is acceptable, but we prefer to
work with positive voltages, so node C is a better option.

Having wisely chosen node C as our ground, we can write the following two node-
voltage equations:

NodeA:
VA−10
0:5 k

+
VA−VD

1:5 k
+
VA

1 k
= 0

NodeD:
VD−VA

1:5 k
−0:020 +

VD

2 k
= 0

Collecting like terms, moving the known sources to the right side, and multiplying
both equations by 1000

VA
1
0:5

+
1
1:5

+
1
1

� �
−VD

1
1:5

� �
=
10
0:5

= 3:66VA−0:666VD = 20

−VA
1
1:5

� �
+VD

1
1:5

+
1
2

� �
= 20= −0:666VA + 1:16VD = 20

We can write these two equations as a matrix and solve it using Cramer’s rule

VA =

20 −0:666

20 1:16












3:66 −0:666

−0:666 1:16











= 9:565 V

VD =

3:66 20

−0:666 20












3:66 −0:666

−0:666 1:16











= 22:609 V

Therefore, vX =VA−VD = −13:044 V. ■

E x e r c i s e 3–10
For the circuit of Figure 3–15, find iX and pX.

A n s w e r s: iX = 869:9 μA and pX = −209mW

+

–
vX

pXiX

20 mA

10 V

C
B

D

A

1.5 kΩ
500 Ω

2 kΩ

1 kΩ

+ –

FIGURE 3–15
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E X A M P L E 3–6

Find the input resistance of the circuit in Figure 3–16(a). Solve
the problem using MATLAB.

SOLUTION:
Method 1 for handling voltage sources will not work here because
the source in Figure 3–16(a) is not connected in series with a resis-
tor. Method 2 will work in this case because the voltage source is
connected to the reference node.As a result, we can eliminate one
node equation since the node A voltage is υA = υS. By inspection,
the four remaining node equations are as follows:

Node B: −υA
1
2R

� �
+ υB

1
2R

+
2
R
+

1
2R

� �
−υC

1
2R

� �
= 0

Node C: −υA
2
R

� �
−υB

1
2R

� �
+ υC

2
R
+

1
2R

+
2
R
+
1
R

� �
−υD

1
R

� �
−υE

2
R

� �
= 0

NodeD: −υC
1
R

� �
+ υD

1
R
+
1
R

� �
−υE

1
R

� �
= 0

Node E: −υC
2
R

� �
−υD

1
R

� �
+ υE

1
R
+
1
R
+
2
R

� �
= 0

We apply the equation υA = υS to incorporate the source voltage and eliminate υA
from the equations.With this change, we can simplify the equations and write them in
matrix form (note the symmetry) as follows:

In this standard form ofAx= b, we can now use MATLAB to efficiently solve for all
of the node voltages. The MATLAB code required to do this is shown below.

syms vS vB vC vD vE R
A = [3/R −1/2/R 0 0; . . .

−1/2/R 11/2/R −1/R −2/R; . . .
0 −1/R 2/R −1/R; . . .
0 −2/R −1/R 4/R];

B = [vS/2/R; 2*vS/R; 0; 0];
x = A\B;
vB = x(1)
vC = x(2)
vD = x(3)
vE = x(4)

The resulting solutions are given by

vB = (73*vS)/263
vC = (175*vS)/263

vS

vA vC vD

vE

2R 2R R

R/2

R

R

vB

R/2

R/2

RIN

iIN

+
−

(a)

FIGURE 3–16
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vD = (150*vS)/263
vE = (125*vS)/263

We can write these results compactly as

υB =
73υS
263

υC =
175υS
263

υD =
150υS
263

υE =
125υS
263

To solve for the input resistance, we need to calculate the input current:

iIN =
υS−υC
R=2

+
υS−υB
2R

Using MATLAB, we get

iIN =
271υS
263R

such that

RIN =
υIN
iIN

=
263R
271 ■

E x e r c i s e 3–11
For the circuit in Figure 3–16(a) let υS = 120 V and R= 4 kΩ.
(a) Use Multisim to simulate the circuit, and find all of the node voltages and the input

current.
(b) Verify that the results for the node voltages agree with the numeric expressions deter-

mined in the solution of Example 3–6.
(c) Use the input current to calculate RIN and compare it with that found in Example 3–6.

A n s w e r s:
(a) See Multisim results shown in Figures 3–16(b) and (c).
(b) From the calculations in Example 3–6 using υS = 120 V, we get

υB =
73υS
263

= 33:31 V υC =
175υS
263

= 79:85 V υD =
150υS
263

= 68:44 V

υE =
125υS
263

= 57:03 V iIN =
271υs

263 × 4 k
= 30:91 mA

The Multisim voltages are the same.

(b) (c)

R4

R1 R2 R3

R5 R6 R7

R8

vA vB vC

V1

vD

vE

2 kΩ

2 kΩ2 kΩ120 V

8 kΩ

4 kΩ

4 kΩ

4 kΩ8 kΩ

Exercise 3–11

DC Operating Point Analysis

Variable Operating point value

1 V(va) 120.000

2 V(vb) 33.30798

3 V(vc) 79.84791

4 V(vd) 68.44106

5 V(ve) 57.03422

6 –I(V1) 30.91255m

FIGURE 3–16
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(c) Using the input voltage and input current found in the Multisim simulation,
RIN for R=4 kΩ results in RIN = υIN=iIN = 120

30:91 m = 3:882 kΩ, compared to
RIN = 263

271R=3:882 kΩ. Again, they are the same.

E X A M P L E 3–7

For the circuit in Figure 3–17,

(a) Formulate node-voltage equations.
(b) Solve for the output voltage υO using R1 =R4 = 2 kΩ and R2 =R3 = 4 kΩ.

SOLUTION:
(a) The voltage sources in Figure 3–17 do not have a common node, and we

cannot select a reference node that includes both sources. Selecting node
D as the reference forces the condition υB = υS2 (method 2) but leaves the other
source υS1 ungrounded.We surround the ungrounded source, and all wires lead-
ing to it, by the supernode boundary shown in Figure 3–17 (method 3). KCL
applies to the four element currents that penetrate the supernode boundary,
and we can write

i1 + i2 + i3 + i4 = 0

These currents can easily be expressed in terms of the node voltages:

υA
R1

+
ðυA−υBÞ

R2
+
ðυC−υBÞ

R3
+
υC
R4

= 0

But since υB = υS2, the standard form of this equation is

1
R1

+
1
R2

� �
υA +

1
R3

+
1
R4

� �
υC =

1
R2

+
1
R3

� �
υS2

We have one equation in the two unknown node voltages υA and υC. Applying the fundamental
property of node voltages inside the supernode, we can write

υA−υC = υS1

That is, the ungrounded voltage source constrains the difference between the two unknown
node voltages inside the supernode. It thereby supplies the relationship needed to obtain
two equations in two unknowns.
(b) Inserting the given numerical values yields

ð7:5 × 10−4ÞυA + ð7:5× 10−4ÞυC = ð5 × 10−4ÞυS2
υA−υC = υS1

To find the output υO, we need to solve these equations for υC. The second equation
yields υA = υC + υS1, which, when substituted into the first equation, gives the required
output:

υO = υC =
υS2
3

−
υS1
2 ■

E x e r c i s e 3–12
For the circuit in Figure 3–18(a),

(a) Find υO when element E is a 10-kΩ resistor.
(b) Find υO when element E is a 4-mA independent current source with reference arrow

pointing left.
(c) If element E is a resistor R, what value is required for R such that υO is 2 V?

+
−

+ −

vA
i2

i1

R1

R2 R3

i3vB vC

vS1

vS2

i4

R4

D

Reference

+
vO
−

Supernode

FIGURE 3–17

(a)

+
−

+

vO

−

E

10 kΩ
4 kΩ

5 V

1 kΩ 10 kΩ

FIGURE 3–18
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A n s w e r s:
(a) 2:53 V
(b) −17:3 V
(c) 115 kΩ

E x e r c i s e 3–13
For the circuit in Figure 3–18(a),

(a) Find υO when element E is an open circuit.
(b) Find υO when element E is a 10-V independent voltage source with the

positive reference on the right.
(c) Validate part (b) using Multisim.

A n s w e r s:
(a) 1:92 V
(b) 12:96 V
(c) See Figure 3–18(b)

S U M M A R Y O F N O D E - V O L T A G E A N A L Y S I S

We have seen that node-voltage equations are very useful in the analysis of a variety
of circuits. These equations can always be formulated using KCL, the element con-
straints, and the fundamental property of node voltages. When in doubt, always fall
back on these principles to formulate node equations in new situations. With practice
and experience, however, we eventually develop an analysis approach that allows us
to recognize shortcuts in the formulation process. The following guidelines summa-
rize our approach and may help you develop your own analysis style:

1. Simplify the circuit by combining elements in series and parallel wherever
possible.

2. If not specified, select a reference node so that as many voltage sources as
possible are directly connected to the reference.

3. Node equations are required at supernodes and all other nonreference
nodes except those that are directly connected to the reference by voltage
sources.

4. Use KCL to write node equations at the nodes identified in step 3. Express
element currents in terms of node voltages or the currents produced by inde-
pendent current sources.

5. Write expressions relating the node voltages to the voltages produced by
independent voltage sources.

6. Substitute the expressions from step 5 into the node equations from step 4
and arrange the resulting equations in standard form.

7. Solve the equations from step 6 for the node voltages of interest. Manual
techniques may be efficient for lower-order problems. Computer tools, such
as MATLAB or Multisim, are usually more practical and faster for higher-
order problems.

3–2 M E S H - C U R R E N T A N A L Y S I S

Mesh currents are analysis variables that are useful in circuits containing many ele-
ments connected in series. To review terminology, a loop is a closed path formed by
passing through an ordered sequence of nodes without passing through any node

(b)

XMM1

10 V

V2

R1

V1 R5 R4

R3

5 V vO

1 kΩ

4 kΩ 10 kΩ

10 kΩ

+
–

FIGURE 3–18
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more than once. A mesh is a special type of loop that does not enclose any
elements. For example, loops A and B in Figure 3–19 are meshes, while
the loop Q is not a mesh because it encloses an element.

Mesh-current analysis is restricted to planar circuits. A planar circuit can be
drawnon a flat surfacewithout crossovers in the “windowpane” fashion shown
in Figure 3–19. To define a set of variables, we associate a mesh current
(iA, iB, iC, etc.) with each window pane and assign a reference direction.
The reference directions for all mesh currents are customarily taken in a
clockwise sense. There is no momentous reason for this, except perhaps
tradition.

We think of these mesh currents as circulating through the elements in
their respective meshes, as suggested by the reference directions shown in
Figure 3–19. We should emphasize that this viewpoint is not based on the
physics of circuit behavior. There are not red and blue electrons running
around that somehow get assigned to mesh currents iA or iB. Mesh currents
are variables used in circuit analysis. They are only somewhat abstractly
related to the physical operation of a circuit andmay be impossible tomeasure

directly. For example, there is no way to cut the circuit in Figure 3–19 to insert an
ammeter that measures only iE.

Mesh currents have a unique feature that is the dual of the fundamental property
of node voltages. If we examine Figure 3–19, we see the elements around the perim-
eter are contained in only one mesh, whereas those in the interior are in two meshes.
In a planar circuit any given element is contained in at most two meshes. When an
element is in two meshes, the two mesh currents circulate through the element in
opposite directions. In such cases KCL declares that the net current through the ele-
ment is the difference of the two mesh currents.

These observations lead us to the fundamental property of mesh currents:

If the Kth two-terminal element is contained in meshes X and Y, then the element
current can be expressed in terms of the two mesh currents as

iK = iX− iY (3–9)

where X is the mesh whose reference direction agrees with the reference
direction of iK.

Equation (3–9) is a KCL constraint at the element level. If the element is contained in
only onemesh, then iK = iX or iK = − iY, depending onwhether the reference direction
for the element current agrees or disagrees with the reference direction of the mesh
current. The key idea is that the current through every two-terminal element in a pla-
nar circuit can be expressed in terms of no more than two mesh currents.

E x e r c i s e 3–14
In Figure 3–20 the mesh currents are iA =10A, iB = 5A, and iC = −3A. Find the element
currents i1 through i6 and show that KCL is satisfied at nodes A, B, and C.

A n s w e r s: i1 = −10A; i2 = 13A; i3 = 5 A; i4 = 8 A; i5 = 5 A; i6 = −3A
At nodeA: i1 + i2 + i6 = 0; at node B: − i2 + i3 + i4 = 0; node C: − i4 + i5− i6 = 0

−10 + 13−3 = 0; −13 + 5 + 8= 0 −8 + 5−ð−3Þ=0

To use mesh currents to formulate circuit equations, we use elements and connec-
tion constraints, except that the KCL constraints are not explicitly written. Instead,
we use the fundamental property of mesh currents to express the element voltages in
terms of the mesh currents. By doing so we avoid using the element currents and
work only with the element voltages and mesh currents.

iA iB iC

iD iE iF

iG iH iJ

Q

FIGURE 3–19 Meshes in a planar
circuit.

iC

iA iB

B CA

i1
i2

i3 i4
i5

i6

FIGURE 3–20
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For example, the planar circuit in Figure 3–21 can be analyzed
using the mesh-current method. In the figure we have defined two
mesh currents and five element voltages. We write KVL constraints
around each mesh using the element voltages.

Mesh A: −υ0 + υ1 + υ3 = 0

Mesh B: −υ3 + υ2 + υ4 = 0
(3–10)

Using the fundamental property of mesh currents, we write the ele-
ment voltages in terms of the mesh currents and input voltages:

υ1 = R1iA υ0 = υS1

υ2 = R2iB υ4 = υS2

υ3 = R3ðiA− iBÞ
(3–11)

We substitute these element equations into the KVL connection equations and
arrange the result in standard form.

ðR1 +R3ÞiA−R3 iB = υS1

−R3 iA + ðR2 +R3ÞiB = −υS2
(3–12)

We have completed the formulation process with two equations in two unknown
mesh currents.

As we have previously noted, every method of circuit analysis must satisfy KCL,
KVL, and the element i−υ relationships. When formulating mesh equations, it may
appear that we have not used KCL. However, writing the element constraints in the
form in Eq. (3–11) requires the KCL equations i1 = iA, i2 = iB, and i3 = iA− iB. Mesh-
current analysis implicitly satisfies KCL when the element constraints are expressed
in terms of the mesh currents. In effect, the fundamental property of mesh currents
ensures that the KCL constraints are satisfied.

We use MATLAB to solve for the mesh currents in Eq. (3–12):

syms R1 R2 R3 vS1 vS2 iA iB v3 real
A = [R1+R3 -R3; -R3 R2+R3];
B = [vS1; -vS2];
x = A\B;
iA = x(1)
iB = x(2)

The resulting mesh currents are as follows:

iA =
ðR2 +R3ÞυS1−R3υS2
R1R2 +R1R3 +R2R3

(3–13)

iB =
R3 υS1−ðR1 +R3ÞυS2
R1R2 +R1R3 +R2R3

(3–14)

Equations (3–13) and (3–14) can now be substituted into the element constraints in
Eq. (3–11) to solve for every voltage in the circuit. For instance, the voltage across
R3 is

υ3 =R3 ðiA− iBÞ= R2R3υS1 +R1R3υS2
R1R2 +R1R3 +R2R3

(3–15)

You are invited to show that the result in Eq. (3–15) agrees with the node analysis
result obtained in Example 3–4 for the same circuit.

A

+
v0
−

+  v2  −
+
v3
−

+
v4
−

R2

R3

R1

+  v1  −

+
−

+
−vS1 vS2iA iB

FIGURE 3–21 Circuit for demonstrating mesh-
current analysis.
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The mesh-current analysis approach just illustrated can be summarized in
four steps:

S T E P 1 Identify a mesh current with every mesh and a voltage across every circuit
element.

S T E P 2 Write KVL connection constraints in terms of the element voltages around
every mesh.

S T E P 3 Use KCL and the i−υ relationships of the elements to express the element vol-
tages in terms of the mesh currents.

S T E P 4 Substitute the element constraints from step 3 into the connection constraints
from step 2 and arrange the resulting equations in standard form.

The number of mesh-current equations derived in this way equals the number of
KVL connection constraints in step 2. When discussing combined constraints in
Chapter 2, we noted that there are E−N + 1 independent KVL constraints in any cir-
cuit. Using the window panes in a planar circuit generates E−N + 1 independent
mesh currents. Mesh-current analysis works best when the circuit has many elements
(E large) connected in series (N also large).

Since Multisim uses node-voltage analysis to solve for node voltages, the currents
that it solves for are branch currents that may be composed of one or two mesh cur-
rents. One can calculate the mesh currents from the information provided by Multi-
sim if desired.

W R I T I N G M E S H - C U R R E N T E Q U A T I O N S B Y I N S P E C T I O N

The mesh equations in Eq. (3–12) have a symmetrical pattern that is similar to the
coefficient symmetry observed in node equations. The coefficients of iB in the first
equation and iA in the second equation are the negative of the resistance common
to meshes A and B. The coefficients of iA in the first equation and iB in the second
equation are the sum of the resistances in meshes A and B, respectively.

This pattern will always occur in planar circuits containing resistors and
independent voltage sources when the mesh currents are defined in the win-
dow panes of a planar circuit, as shown in Figure 3–19. To see why, consider
a general resistance R that is contained in, say, mesh A. There are only two
possibilities. R is either not contained in any other mesh, in which case the voltage
across it is

υ=RðiA−0Þ=RiA

or contained in only one adjacent mesh, say mesh B, in which case the voltage across
it is

υ=RðiA− iBÞ
These observations lead to the following conclusions. The voltage across resistance in
mesh A involves the following terms:

1. iA times the sum of the resistances in mesh A.

2. Minus iB times the sum of resistances common to mesh A and mesh B.

3. Minus similar terms for any other mesh adjacent to mesh A with a common
resistance.

The sum of the voltages across resistors plus the sum of the independent voltage
sources around mesh A must equal zero.

The aforementioned process makes it possible for us to write mesh-current equa-
tions by inspection without going through the intermediate steps involving the KVL
connection constraints and the element constraints.
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E X A M P L E 3–8

For the circuit of Figure 3–22,

(a) Formulate mesh-current equations.
(b) Find the output υO using R1 =R4 = 2 kΩ and R2 =R3 = 4 kΩ using MATLAB.

SOLUTION:
(a) Towritemesh-currentequationsby inspection,wenotethat the total resis-
tances inmeshesA,B, andCareR1 +R2, R3 +R4, and R2 +R3, respectively.
The resistance common to meshes A and C is R2. The resistance common
to meshes B and C is R3. There is no resistance common to meshes A and
B. Using these observations, we write the mesh equations as follows:

Mesh A: ðR1 +R2ÞiA−0iB−R2iC + υS2 = 0

Mesh B: ðR3 +R4ÞiB−0iA−R3iC−υS2 = 0

Mesh C: ðR2 +R3ÞiC−R2iA−R3iB + υS1 = 0

The algebraic signs assigned to voltage source terms follow the passive convention
for themesh current in question. Arranged in standard form, these equations become

ðR1 +R2ÞiA−R2iC = −υS2

ðR3 +R4ÞiB−R3iC = + υS2

−R2iA−R3iB + ðR2 +R3ÞiC = −υS1

Coefficient symmetry greatly simplifies the formulation of these equations compared
with the more fundamental, but time-consuming, process of writing element and con-
nection constraints. Inserting the numerical values into these equations yields

6000 iA −4000 iC = −υS2

6000 iB−4000 iC = υS2

−4000 iA−4000 iB + 8000 iC = −υS1

Putting these three mesh equations in matrix form produces a symmetrical matrix

This is a matrix equation of the form Ax=B, where

A=

6000 0 −4000

0 6000 −4000

−4000 −4000 + 8000

2
664

3
775 x=

iA

iB

iC

2
664

3
775B=

−υS2

υS2

−υS1

2
664

3
775

Using MATLAB to solve for the mesh currents, we first enter the A matrix with
the statement

A =[6000 0 −4000; 0 6000 −4000; −4000 −4000 8000];

The elements in the B matrix are the symbolic variables υS1 and υS2. These quan-
tities are not unknowns, but symbols that represent all possible values of the input
voltages. Define the symbolic variables with the statement

syms VS1 VS2

+
vO
−

R2

vS2iA iB
+
−R1

R3

R4

+ −

vS1

iC

FIGURE 3–22
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and then create the B matrix:

B =[−VS2; VS2; −VS1];

Solve for the unknown mesh currents using matrix division,

x = A\B

which yields

x=
-VS1/4000 − VS2/6000
VS2/6000 − VS1/4000

-(3*VS1)/8000

The elements of the column vector x are the three unknownmesh currents expressed
in terms of the input voltages. The output voltage in Figure 3–22 is written in terms of
the mesh currents as υO =R4iB.We knowR4 = 2 kΩ, so inMATLABwe can compute
the output voltage as

Vo = 2000*x(2)

which yields

Vo =
VS2/3 – VS1/2

We can write this answer compactly as

υO =
υS2
3

−
υS1
2

The result from the mesh-current analysis obtained here is the same as the node-
voltage result obtained in Example 3–7. Either approach produces the same answer,
but which method do you think is easier?

■

E x e r c i s e 3–15
Using the circuit of Figure 3–18 (see Exercises 3–12 and 3–13), use mesh-current analysis to
find the current through the 4-kΩ resistor and the voltage υO when the element E is

(a) a 10-kΩ resistor.
(b) a 10-V independent voltage source with the positive reference on the right.

A n s w e r s:
(a) 949:4 μA and 2:53 V
(b) 740:7 μA and 12:96 V

M E S H E Q U A T I O N S W I T H C U R R E N T S O U R C E S

In developing mesh analysis, we assumed that circuits contain only voltage sources
and resistors. This assumption simplifies the formulation process because the sum
of voltages around a mesh is determined by voltage sources and the mesh currents
through resistors. A current source complicates the picture because the voltage
across it is not directly related to its current. We need to adapt mesh analysis to
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accommodate current sources just as we revised node analysis to deal with voltage
sources.

There are three ways to handle current sources in mesh analysis:

1. If the current source is connected in parallel with a resistor, then it can be
converted to an equivalent voltage source by source transformation. Each
source conversion eliminates a mesh and reduces the number of equations
required by one. This method is the dual of method 1 for node analysis.

2. If a current source is contained in only one mesh, then that mesh current is
determined by the source current and is no longer an unknown. We write
mesh equations around the remaining meshes in the usual way and move
the known mesh current to the source side of the equations in the final step.
The number of equations obtained is one less than the number of meshes.
This method is the dual of method 2 for node analysis.

3. Neither of the first two methods will work when a current
source is contained in two meshes or is not connected in
parallel with a resistance. In this case we create a super-
mesh by excluding the current source and any elements con-
nected in series with it, as shown in Figure 3–23. We write
one mesh equation around the supermesh using the currents
iA and iB. We then write mesh equations of the remaining
meshes in the usual way. This leaves us one equation short
because parts of meshes A and B are included in the super-
mesh. However, the fundamental property of mesh currents
relates the currents iS, iA, and iB as

iA− iB = iS

This equation supplies the one additional relationship needed to
get the requisite number of equations in the unknown mesh
currents.

The aforementioned three methods are not mutually exclusive. We
can use more than one method in a circuit, as the following examples
illustrate.

E X A M P L E 3–9

Use mesh-current equations to find iO in the circuit in Figure 3–24(a).

SOLUTION:
The current source in this circuit can be handled by a source transformation
(method 1). The 2-mA source in parallel with the 4-kΩ resistor in Figure 3–24(a)
can be replaced by an equivalent 8-V voltage source in series with the same resistor,
as shown in Figure 3–24(b). In this circuit the total resistance in mesh A is 6 kΩ, the

iA iB
iS

Supermesh

Excludes these elements

FIGURE 3–23 Example of a supermesh.

+
−

iO

iA iB

(a)

+
−

+
−

iO

(b)

3 kΩ 3 kΩ5 kΩ 5 kΩ

2 kΩ 2 kΩ4 kΩ

4 kΩ

1 kΩ 1 kΩ

2 mA5 V 5 V 8 V

FIGURE 3–24
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total resistance in mesh B is 11 kΩ, and the resistance contained in both meshes is
2 kΩ. By inspection, the mesh equations for this circuit are as follows:

ð6000ÞiA−ð2000ÞiB = 5

−ð2000ÞiA + ð11000ÞiB = −8

Solving for the twomeshcurrentsyields iA = 0:6290 mAand iB = −0:6129 mA. ByKCL
the desired current is iO = iA− iB = 1:2419 mA. The given circuit in Figure 3–24(a)
has three meshes and one current source. The source transformation leading to
Figure 3–24(b) produces a circuit with only two meshes. The general principle illus-
trated is that the number of independent mesh equations in a circuit containing
E elements, N nodes, and NI current sources is E−N + 1−NI. ■

E x e r c i s e 3–16
In Figure 3–24 replace the 5-V source with a 1-mAdc current source with the arrow pointing
up. Use source transformations to reduce the circuit to a single mesh and then solve for iO.

A n s w e r: 1:545mA. If you got a different answer, check it with Multisim.

E X A M P L E 3–1 0

Use mesh-current equations to find υO in Figure 3–25.

SOLUTION:
Source transformation (method 1) is not possible here since neither cur-
rent source is connected in parallel with a resistor. The current source iS2
is in both mesh B and mesh C, so we exclude this element and create the
supermesh (method 3) shown in the figure. The sum of voltages around
the supermesh is

R1 ðiB− iAÞ+R2ðiBÞ+R4ðiCÞ+R3 ðiC− iAÞ= 0

The supermesh voltage constraint yields one equation in the three unknown mesh
currents. Applying KCL to each of the current sources yields

iA = iS1

iB− iC = iS2

Because of KCL, the two current sources force constraints that supply two more
equations. Using these two KCL constraints to eliminate iA and iB from the super-
mesh KVL constraint yields

ðR1 +R2 +R3 +R4ÞiC = ðR1 +R3ÞiS1−ðR1 +R2ÞiS2
Hence, the required output voltage is

υO =R4iC =R4 ×
ðR1 +R3ÞiS1−ðR1 +R2ÞiS2

R1 +R2 +R3 +R4

� �
■

E x e r c i s e 3–17
Use mesh analysis to find the current iO in Figure 3–26 when the element E is

(a) a 5-V voltage source with the positive reference at the top.
(b) a 10-kΩ resistor.

A n s w e r s:
(a) −0:136mA
(b) −0:538 mA

vO

−

+

iS2

R3

R4

R2

R1

iS1 iA

iB

iC

Supermesh

Excluded

FIGURE 3–25

iO

5 kΩ 10 kΩ

4 kΩ

+ −

10 V

E

FIGURE 3–26
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E x e r c i s e 3–18
Use mesh analysis to find the current iO in Figure 3–26 when the element E is

(a) A 1-mA current source with the reference arrow directed down
(b) Two 20-kΩ resistors in parallel

A n s w e r s:
(a) −1 mA
(b) −0:538mA

E x e r c i s e 3–19
Write a set of mesh-current equations for the circuit in Figure 3–27. Do not solve the
equations.

A n s w e r s: −υ1 + 2RiA + 2RðiA− iBÞ+ υ2 = 0; 4RiA−2RiB = υ1−υ2

−υ2 + 2RðiB− iAÞ+RiB + 2RiB = 0; −2RiA + 5RiB = υ2

E x e r c i s e 3–21
Use mesh-current equations to find υO in Figure 3–27.

A n s w e r: υO = ðυ1 + υ2Þ=4

S U M M A R Y O F M E S H - C U R R E N T A N A L Y S I S

Mesh-current equations canalwaysbe formulated fromKVL, the element constraints,
and the fundamental property of mesh currents. When in doubt, always fall back on
these principles to formulate mesh equations in new situations. The following guide-
lines summarize an approach to formulating mesh equations for resistance circuits:

1. Simplify the circuit by combining elements in series or parallel wherever
possible.

2. Mesh equations are required for supermeshes and all other meshes except
those where current sources are contained in only one mesh.

3. Use KVL to write mesh equations for the meshes identified in step 2.
Express element voltages in terms of mesh currents or the voltage produced
by independent voltage sources.

4. Write expressions relating the mesh currents to the currents produced by
independent current sources.

5. Substitute the expressions from step 4 into the mesh equations from step 3
and place the result in standard form.

6. Solve the equations from step 5 for the mesh currents of interest. Manual
techniques may be efficient for lower-order problems. Computer tools, such
as MATLAB or Multisim, are usually more practical and faster for
higher-order problems.

3–3 L I N E A R I T Y P R O P E R T I E S
This book treats the analysis and design of linear circuits. A circuit is said to be linear if
it can be adequately modeled using only linear elements and independent sources.
The hallmark feature of a linear circuit is that outputs are linear functions of the inputs.
Circuit inputs are the signals produced by external sources, and outputs are any other
designated signals. Mathematically, a function is said to be linear if it possesses two
properties—homogeneity and additivity. In linear circuits, homogeneity means that
the output is proportional to the input. Additivity means that the output due to

+

vO

−

+
−

2R

+
−

v1

v2

R

2R 2R

FIGURE 3–27
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two or more inputs can be found by adding the outputs obtained when each input is
applied separately. Mathematically, these properties are written as follows:

f ðKxÞ=Kf ðxÞ ðhomogeneityÞ (3–16)

and

f ðx1 + x2Þ= f ðx1Þ+ f ðx2Þ ðadditivityÞ (3–17)

where K is a scalar constant. In circuit analysis the homogeneity property is called
proportionality, while the additivity property is called superposition.

T H E P R O P O R T I O N A L I T Y P R O P E R T Y

The proportionality property applies to linear circuits with one input. For linear resistive
circuits, proportionality states that every input-output relationship can be written as

y=Kx (3–18)

where x is the input current or voltage, y is an output current or voltage, and K is a
constant. The block diagram in Figure 3–28 describes this linear input-output relation-
ship. In a block diagram the lines headed by arrows indicate the direction of signal flow.
The arrowdirected into the block indicates the input, while the output is indicatedby the
arrowdirectedoutof theblock.Thevariablenameswrittennext tothese lines identify the
input and output signals. The scalar constantK written inside the block indicates that
the input signal x is multiplied by K to produce the output signal as y=Kx.

Theconceptofproportionality is a central and recurring theme in linear circuit design.
The ratio of the output to the input is a concept that dominates much of circuit analysis
and design. We will analyze and design circuits that achieve desired K values. In this
chapter, we restrict the value toK ≤ 1, but beginning in the next chapter we will treat
circuits with K values that can be greater than one. In later chapters we will learn to
design and analyze circuits using complex ratios that vary with time or frequency.

Caution: Proportionality only applies when the input and output are current or
voltage. It does not apply to output power since power is equal to the product of cur-
rent and voltage. In other words, output power is not linearly related to the input
current or voltage.

We have already seen several examples of proportionality. For instance, using
voltage division in Figure 3–29(a) produces

υO =
R2

R1 +R2

� �
υS

which means

x = υS y= υO

K =
R2

R1 +R2

as shown in Figure 3–29(b). Similarly, applying current division to the circuit of
Figure 3–29(c)

iO =
R1

R1 +R2

� �
iS

so that

x = iS y= iO

K =
R1

R1 +R2

+
− vS = x

R1

R2

K

+

vO = y

−

(a)

vS = x vO = y

(b)

R1 + R2

R2K =

iS = x R1

K

R2

iO = y

(c)

iS = x iO = y

(d)

R1 + R2

R1K =

FIGURE 3–29 Examples of
circuit exhibiting proportionality:
(a) Voltage divider. (b) Block
diagram for (a). (c) Current
divider. (d) Block diagram
for (c).

K
x y = Kx

Input Output

FIGURE 3–28 Block diagram
representation of the
proportionality property.
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as shown in Figure 3–29(d). In these two examples the proportionality constant
K is dimensionless because the input and output have the same units. In other situa-
tions K could have the units of ohms or siemens when the input and output have
different units.

E x e r c i s e 3–21
Refer to the block diagram shown in Figure 3–28.

(a) A certain linear device has a K of 0:35. Its output is 6 V. What is the input that will
produce that output?

(b) A different linear device outputs 910 mA when its input is 1 A. What will be its output
when the input to the device is 300 mA?

A n s w e r s:
(a) 17:1 V
(b) 273 mA

E x e r c i s e 3–22
Suppose the voltage divider shown in Figure 3–29(a) has a K of 0.75. How would one go
about changing the K so that it will have a K of 0:8?

A n s w e r: Either increase the output resistor [R2 in Figure 3–29(a)] or reduce the input
resistor (R1 in the same figure) so that the ratio R2=ðR1 +R2Þ= 0:8.

D E S I G N E X A M P L E 3 – 1 1

Design a circuit that has aK = υO=υS = 0:67 using standard value resistors. (See inside
back cover.)

SOLUTION:
Since K is less than one we can use the voltage divider shown in Figure 3–29(a),
that is,

K = 0:67 =
R2

R1 +R2

There are many possible combinations. If we have access to 5% tolerance resistors,
one choice is to selectR2 = 20 kΩ and solve forR1. In this case,R1 = 10 kΩ. If we must
use 20% tolerance resistors, choose R2 = 68 kΩ and R1 = 33 kΩ. ■

D e s i g n E x e r c i s e 3–23
Design a circuit that has K = iO=iS = 0:9 using 5% tolerance standard value resistors. (See
inside back cover.)

A n s w e r: There are many solutions using the circuit of Figure 3–29(c). One is to select
R1 = 91 kΩ and R2 = 10 kΩ.

The next example illustrates that the proportionality constant K can be positive,
negative, or even zero.

E X A M P L E 3 – 1 2

You are given the bridge circuit of Figure 3–30(a).
(a) Find the proportionality constant K in the input-output relationship υO =KυS.
(b) Find the sign of K when R2R3 >R1R4, R2R3 =R1R4, and R2R3 <R1R4.
(c) Draw a block diagram of this relationship.
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SOLUTION:
(a) We observe that the circuit consists of two voltage dividers. Applying the voltage division
rule to each side of the bridge circuit yields

υA =
R3

R1 +R3
υS and υB =

R4

R2 +R4
υS

The fundamental property of node voltages allows us to write

υO = υA−υB

Substituting the equations for υA and υB into this KVL equation yields

υO =
R3

R1 +R3
−

R4

R2 +R4

� �
υS

=
R2R3−R1R4

ðR1 +R3Þ ðR2 +R4Þ
� �

υS

= ðKÞυS
(b) The proportionality constant K can be positive, negative, or zero. Specifically,

If R2R3 >R1R4, thenK > 0

If R2R3 =R1R4, thenK = 0

If R2R3 <R1R4, thenK < 0

When the products of the resistances in opposite legs of the bridge are equal, thenK = 0 and the
bridge is said to be balanced.
(c) See Figure 3–30(b). ■

E x e r c i s e 3–24
In Figure 3–30(a) select values of R so that K = −0:333.

A n s w e r: R1 =R2 =R3 = 1 kΩ and R4 = 5 kΩ. Many other solutions are possible.

U N I T O U T P U T M E T H O D

The unit output method is an analysis technique based on the proportionality prop-
erty of linear circuits. The method involves finding the input-output proportionality
constant K by assuming an output of one unit and determining the input required to
produce that unit output. This technique is most useful when applied to ladder cir-
cuits, and it involves the following steps:

1. A unit output is assumed; that is, υO = 1 V or iO = 1A.

2. The input required to produce the unit output is then found by successive
application of KCL, KVL, and Ohm’s law.

3. Because the circuit is linear, the proportionality constant relating input and
output is

K =
Output
Input

=
1

Input for unit output

Given the proportionality constant K, we can find the output for any input using
Eq. (3–18).

In a way, the unit output method solves the circuit response problem
backward—that is, from output to input—as illustrated by the next example.

+
−vS

R1

R3 R4

R2

+ vO −

+
vA

−

+
vB

−

(a)

vS vO

(b)

(R1 + R3)(R2 + R4)

R2R3 − R1R4

FIGURE 3–30

100 C H A P T E R 3 CIRCUIT ANALYSIS TECHNIQUES



E X A M P L E 3–1 3

Use the unit output method to find υO in the circuit shown in Figure 3–31(a).

SOLUTION:
We start by assuming υO = 1V, as shown in Figure 3–31(b). Then, usingOhm’s law, we
find iO.

iO =
υO
20

= 0:05 A

Next, using KCL at node B, we find i1.

i1 = iO = 0:05 A

Again, using Ohm’s law, we find υ1.

υ1 = 10i1 = 0:5 V

Then, writing a KVL equation around loop L2, we find υ2 as

υ2 = υ1 + υO = 0:5 + 1:0 = 1:5 V

Again, using Ohm’s law, we find i2 as

i2 =
υ2
15

=
1:5
15

= 0:1A

Next, writing a KCL equation at node A yields

i3 = i1 + i2 = 0:05 + 0:1 = 0:15 A

Using Ohm’s law one last time,

υ3 = 10i3 = 1:5 V

We can now find the source voltage υS by applying KVL around loop L1:

υSjfor υO = 1V = υ3 + υ2 = 1:5 + 1:5 = 3 V

A 3–V source voltage is required to produce a 1-V output. From this result, we cal-
culate the proportionality constant K to be

K =
υO
υS

=
1
3

Once K is known, the output for the specified 5-V input is υO = ð1=3Þ 5 = 1:667 V. ■

E x e r c i s e 3–25
Find υO in the circuit of Figure 3–31(a) when υS is −5 V, 10 mV, and 3 kV.

A n s w e r s: υO = −1:667 V; 3:333 mV; 1 kV

(a)

A B

15 Ω 20 Ω

10 Ω 10 Ω

+

vS

−

i3 i1

+ v3  − +  v1  −i2

L1 L2

iO
vO = 1 V

(Assumed)

−

+

+
v2
−

(b)

+
− 5 V 15 Ω 20 Ω

10 Ω 10 Ω
+

vO

−

FIGURE 3–31
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E x e r c i s e 3–26
For the circuit in Figure 3–32(a),

(a) Use the unit output method to find K = iO=iIN
(b) Then use the proportionality constant K to find iO for the input current shown in the

figure.
(c) Draw a block diagram to show the results of parts (a) and (b).

A n s w e r s:
(a) K = 1=4
(b) iO = 0:15 mA
(c) See Figure 3–32(b)

A D D I T I V I T Y P R O P E R T Y

The additivity property states that any output current or voltage of a linear resistive
circuit with multiple inputs can be expressed as a linear combination of the several
inputs:

y=K1x1 +K2x2 +K3x3 + � � � (3–19)

where x1,x2,x3,… are current or voltage inputs, and K1,K2,K3,… are constants that
depend on the circuit parameters. Figure 3–33 shows how we represent this relation-
ship in block diagram form. Again the arrows indicate the direction of signal flow and
the K’s within the blocks are scalar multipliers. The circle in Figure 3–33 is a new
block diagram element called a summing point that implements the operation
y=
Pn

i= 1Kixi. Although the block diagram in Figure 3–33 is nothing more than a pic-
torial representation of Eq. (3–19), the diagram often helps us gain a clearer picture
of how signals interact in different parts of a circuit.

To illustrate this property, we analyze the two-input circuit in Figure 3–34(a) using
node-voltage analysis. Applying KCL at node A, we obtain

υA−υS
R1

− iS +
υA
R2

= 0

Moving the inputs to the right side of this equation yields

1
R1

+
1
R2

� �
υA =

υS
R1

+ iS

Since υO = υA, we obtain the input-output relationship in the form

υO =
R2

R1 +R2

� �
υS +

R1 R2

R1 +R2

� �
iS

y = ½K1�x1 + ½K2�x2
(3–20)

This result shows that the output is a linear combination of the two inputs. Note that
K1 is dimensionless since its input and output are voltages, and thatK2 has the units of

(a)

2 kΩ 3 kΩ 2 kΩ

500 Ω 1 kΩ

0.6 mA

iO

0.25

(b)

iIN iO

0.6 mA 0.15 mA

K1

K2

K3

...

x1

x2

x3

y
+

+

+
+

K1x1

K2x2

K3x3

FIGURE 3–33 Block diagram
representation of the additivity
property.

FIGURE 3–32
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ohms since its input is a current and its output is a voltage. A representative block
diagram is shown in Figure 3–34(b).

S U P E R P O S I T I O N P R I N C I P L E

Since the output in Eq. (3–19) is a linear combination, the contribution of each input
source is independent of all other inputs. This means that the output can be found by
finding the contribution from each source acting alone and then adding the individual
responses to obtain the total response. This suggests that the output of a multiple-
input linear circuit can be found by the following steps:

S T E P 1 “Turn off” all independent sources except one and find the output of the cir-
cuit due to that source acting alone.

S T E P 2 Repeat the process in step 1 until each independent source has been turned on
and the output due to that source found.

S T E P 3 The total output with all independent sources turned on is the algebraic sum of
the outputs caused by each source acting alone.

These steps describe a circuit analysis technique called the superposition principle.
Before applying this method, we must discuss what happens when a voltage or cur-
rent source is “turned off.”

The i−υ characteristics of voltage and current sources are shown in Figure 3–35.
A voltage source is “turned off” by setting its voltage to zero ðυS = 0Þ. This step trans-
lates the voltage source i−υ characteristic to the i-axis, as shown in Figure 3–35(a).
In Chapter 2 we found that a vertical line on the i-axis is the i−υ characteristic of a
short circuit. Similarly, “turning off” a current source ðiS = 0Þ in Figure 3–35(b) trans-
lates its i−υ characteristic to the υ-axis, which is the i−υ characteristic of an open cir-
cuit. Therefore, when a voltage source is “turned off” we replace it by a short circuit,
and when a current source is “turned off” we replace it by an open circuit.

The superposition principle is now applied to the circuit in Figure 3–34 to duplicate
the response in Eq. (3–20), which was found by node analysis. Figure 3–36 shows the
steps involved in applying superposition to the circuit in Figure 3–34. Figure 3–36(a)
shows that the circuit has two input sources. We will first “turn off” iS and replace
it with an open circuit, as shown in Figure 3–36(b). The output of the circuit in

+
−

+

v

−

+

v = 0

−

−

v

+

−

v

+

i

i

i i i

v

v = 0

v

v = vS

vS

iS

i i i = 0

i = iS
i = 0

v v

Set vS to 0

Set iS to 0

≡ ≡

≡ ≡

Short circuit

Open circuit

(a)

(b)

FIGURE 3–35 Turning
off an independent source:
(a) Voltage source. (b) Current
source.

R1

K1

K2

x1 = vS

y = vO

x2 = iS

R2

R1+R2

R2 vO

vA

vS iS

−

+

+

+

+
−

R1R2

R1+R2

(b)

(a)

FIGURE 3–34 (a) Circuit used
to demonstrate superposition.
(b) Block diagram.
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Figure 3–36(b) is called υO1 and represents that part of the total output caused by the
voltage source. Using voltage division in Figure 3–36(b) yields υO1 as

υO1 =
R2

R1 +R2
υS

Next we “turn off” the voltage source and “turn on” the current source, as shown
in Figure 3–36(c). Using Ohm’s law, we get υO2 = iO2R2. We use current division to
express iO2 in terms of iS to obtain υO2

υO2 = iO2R2 =
R1

R1 +R2
iS

� �
R2 =

R1R2

R1 +R2
iS

Applying the superposition principle, we find the response with both sources “turned
on” by adding the two responses υO1 and υO2.

υO = υO1 + υO2

υO =
R2

R1 +R2

� �
υS +

R1R2

R1 +R2

� �
iS

This superposition result is the same as the circuit reduction result given in Eq. (3–20)
and can be represented by the same block diagram shown in Figure 3–34(b).

E X A M P L E 3–1 4

Figure 3–37(a) shows a resistance circuit used to implement a signal-summing func-
tion. Use superposition to show that the output υO is a weighted sum of the inputs υS1,
υS2, and υS3.

SOLUTION:
To determine υO using superposition, we first turn off sources 1 and 2 (υS1 = 0 and
υS2 = 0) to obtain the circuit in Figure 3–37(b). This circuit is a voltage divider in which
the output leg consists of two equal resistors in parallel. The equivalent resistance of
the output leg is R=2, so the voltage division rule yields

υO3 =
R=2

R+R=2
υS3 =

υS3
3

Because of the symmetry of the circuit, it can be seen that the same technique applies
to all three inputs; therefore,

υO2 =
υS2
3

and υO1 =
υS1
3

Applying the superposition principle, the output with all sources “turned on” is

υO = υO1 + υO2 + υO3

=
1
3
½υS1 + υS2 + υS3�

That is, the output is proportional to the sum of the three input signals with
K1 =K2 =K3 = 1=3. ■

E x e r c i s e 3–27
The circuit of Figure 3–38 contains two R-2R modules. Use superposition to find υO.

A n s w e r:
υO =

1
2
υS1 +

1
4
υS2

+
−

+
−

+
−

+
−

+

vO

−

+

vO3

−

R

R

R

R

R

R

vS1 vS2 vS3

vS3

Short circuits

(a)

(b)

FIGURE 3–37

+

vO

−

R1

R2iS
+
− vS

+

vO1

−

R1

R2
+
−

vS

+

vO2

−

R1

R2iS

Open circuit

Short circuit

iO2

(a)

(b)

(c)

FIGURE 3–36 Circuit analysis
using superposition: (a) Original
circuit. (b) Current source off. (c)
Voltage source off.
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E x e r c i s e 3–28
Repeat Exercise 3–27 with the voltage source υS2 replaced by a current source iS2 with the
current reference arrow directed toward ground.

A n s w e r: υO = 3 υS1=5−4iS2R=5

E X A M P L E 3–1 5

Use the principle of superposition to find the voltage υX in Figure 3–39(a). Validate
your answer using Multisim.

SOLUTION:
To find υX wewill turn off each source one at a time starting with the voltage source as
shown in Figure 3–39(b). We chose to find the voltage υXi by first determining the

+
−

+
−

+

−
vOvS2 vS1

2R 2R R 2R 2R R

FIGURE 3–38
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100 Ω

100 Ω
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−
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FIGURE 3–39
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current iX2 and then using Ohm’s law, as shown in Figure 3–39(c). The circuit to the
right of the 50-Ω resistor consists of two 100-Ω resistors in parallel. This result, then, is
in series with the 50-Ω resistor. This combination equals 100Ω. At node A, the cur-
rent iX1 is exactly half of the source current or 0.6 A, because the source current
divides equally between two paths with the same equivalent resistances. At node
B, the current divides equally again, since both path resistances equal 100Ω, resulting
in iX2 = 0:3A. Then by Ohm’s law

υXi = 0:3 × 100 = 30 V

To find the contribution due to the voltage source, we set the current source to zero as
shown in Figure 3–39(d). The circuit to the left of the source’s 100-Ω resistor can be
combined resulting in an equivalent resistance of 60Ω. The problem of finding υXv

then reduces to a simple voltage divider as shown in Figure 3–39(e).

υXv =
60

100 + 60
ð−120Þ= −45 V

The desired voltage υx can be found by algebraically adding the two
contributions as

υX = υXi + υXv = 30 + ð−45Þ= −15 V

To validate our answer with Multisim, we draw the two superposition circuits as
shown in Figure 3–39(f ). We used both the multimeters and the DCOperating Point
Analysis, although redundant, to demonstrate the validity of superposition. The mul-
timeters show that υXi and υXv are the same as calculated by hand. Using the DC
Operating Point Analysis, we can also have Multisim add the voltages, again giving
the same overall result of −15 V. As a final check, you can construct the original
circuit in 3–39(a) to verify the overall result. ■

E x e r c i s e 3–29
Use the principle of superposition to find the current iX in Figure 3–40.

A n s w e r s: iXi = 0:8 A, iXv = 0:4 A, iX = 1:2A

The preceding examples and exercises illustrate use of the superposition theorem to
analyze multiple-input linear circuits. You should not conclude that this is the

24 Ω

10 Ω

2 Ω12 Ω

12 V 2 A

iX
+
−

FIGURE 3–40

+
–

+
–

R1 R3

R5 R8
R6 R7

I1

1.2 A

VXi VXv

R2

50 Ω 50 Ω

100 Ω

v1
120 V

100 Ω

R4

100 Ω

100 Ω100 Ω 100 Ω

XMM1 XMM2

Example 3–15

DC Operating Point Analysis

Variable Operating point value

1 V(vxi) 30.000

2 V(vxi)+V(vxv) –15.000

3 V(vxv) –45.000

(f)

FIGURE 3–39
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primary application of this concept. In fact, superposition is not a particularly attrac-
tive method, since a circuit withN signal sources requiresN different circuit analyses
to obtain the final result. Unless the circuit is relatively simple, superposition may not
reduce the analysis effort compared with, say, node-voltage analysis or a software
tool. Rather, superposition is an important property of linear circuits used primarily
as a conceptual tool to develop other circuit analysis and design techniques and as an
aid in understanding the effect that different sources have on an output.

3–4 T H É V E N I N A N D N O R T O N E Q U I V A L E N T C I R C U I T S
An interface is a connection between circuits. Circuit interfaces occur frequently in
electrical and electronic systems, so special analysis methods are used to handle
them. For the two-terminal interface shown in Figure 3–41, we normally think of
one circuit as the source S and the other as the load L. We think of signals as being
produced by the source circuit and delivered to the load circuit. The source-load
interaction at an interface is one of the central problems of circuit analysis and design.

The Thévenin and Norton equivalent circuits shown in Figure 3–42 are valuable
tools for dealing with circuit interfaces. The conditions under which these equivalent
circuits exist can be stated as a theorem:

If the source circuit in a two-terminal interface is linear, then the interface signals
υ and i do not change when the source circuit is replaced by its Thévenin or Norton
equivalent circuit.

The equivalence requires the source circuit to be linear but places no restriction on
the linearity of the load circuit. Later in this section we consider cases in which the
load is nonlinear. In subsequent chapters we will study circuits in which the loads are
linear energy storage elements called capacitors and inductors.

The Thévenin equivalent circuit consists of a voltage source (υT) in series with a
resistance (RT). The Norton equivalent circuit is a current source (iN) in parallel with
a resistance (RN). Note that the Thévenin andNorton equivalent circuits are practical
sources in the sense discussed in Chapter 2.

The two circuits have the same i−υ characteristics, since replacing one by the other
leaves the interface signals unchanged. To derive the equivalency conditions, we
apply KVL and Ohm’s law to the Thévenin equivalent in Figure 3–42(a) to obtain
its i−υ relationship at the terminals A and B:

υ= υT− iRT (3–21)

Next, applying KCL andOhm’s law to the Norton equivalent in Figure 3–42(b) yields
its i−υ relationship at terminals A and B:

i= iN−
υ

RN
(3–22)

i A

B

L

i A

B

L
+
−

+

v

−

+

v

−

vT

RT

iN RN

Source Interface

(a)

Load Source Interface

(b)

Load

FIGURE 3–42 Equivalent circuits for the source: (a) Thévenin equivalent. (b) Norton equivalent.

i A

B

+

v

−

S L

Source Interface Load

FIGURE 3–41 A two-terminal
interface.
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Solving Eq. (3–22) for υ yields

υ= iNRN− iRN (3–23)

The Thévenin and Norton circuits have identical i−υ relationships. Comparing
Eqs. (3–21) and (3–23), we conclude that

RN = RT

iNRN = υT
(3–24)

In essence, the Thévenin and Norton equivalent circuits are related by the source
transformation studied in Chapter 2. We do not need to find both equivalent circuits.
Once one of them is found, the other can be determined by a source transformation.
The Thévenin and Norton circuits involve four parameters (υT, RT, iN, RN), and
Eq. (3–24)provides tworelationsbetweenthefourparameters.Therefore,only twopara-
meters are needed to specify either equivalent circuit. SinceThévenin andNorton equiv-
alent circuits are, well, equivalent, one uses whichever one is more useful for the task.

In circuit analysis problems it is convenient to use the short-circuit current and
open-circuit voltage to specify Thévenin and Norton circuits. The circuits in
Figure 3–43(a) show that when the load is an open circuit the interface voltage equals
the Thévenin voltage; that is, υOC = υT, since there is no voltage across RT when i= 0.
Similarly, the circuits in Figure 3–43(b) show that when the load is a short circuit the
interface current equals the Norton current; that is, iSC = iN, since all the source cur-
rent iN is diverted through the short-circuit load.

In summary, the parameters of the Thévenin and Norton equivalent circuits at a
given interface can be found by determining the open-circuit voltage and the short-
circuit current.

υT = υOC

iN = iSC
RN =RT = υOC=iSC

(3–25)

A P P L I C A T I O N E X A M P L E 3 – 1 6

Thévenin measurements can be made in the laboratory or in the field with a simple
digital multimeter (DMM). Look at Figure 3–43(c). If one sets the DMM to read

iSC = iNA

A

V

B

+

v = 0

−

iN RN

i = 0A

B

 – – – – – V

 – – – – – A

+
−

+

vOC = vT

−

vT

RT

i = 0A

B

+

vOC = vT

−

S

(a)

(c)(b)

A

B

+

v = 0

−

S iSC = iN

FIGURE 3–43 Loads used to
find Thévenin and Norton
equivalent circuits: (a) Open
circuit yields the Thévenin
voltage. (b) Short circuit yields
the Norton current.
(c) Measuring υOC and iSC using
a DMM.
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voltage, then the multimeter acts like an open circuit1 and the meter reading will be
the circuit’s open-circuit voltage υOC. Setting the DMM to read current makes the
DMM act like a short circuit2 and the meter reading will be the circuit’s short-circuit
current. The circuit’s Thévenin resistance can then be found using Eq. (3–25).

A P P L I C A T I O N S O F T H É V E N I N A N D N O R T O N E Q U I V A L E N T C I R C U I T S

Replacing a complex circuit by its Thévenin or Norton equivalent can greatly simplify
the analysis and design of interface circuits. For example, suppose we need to select a
load resistance in Figure 3–44(a) so the source circuit to the left of the interface A–B
delivers 4 V to the load. This task is easily handled once we have the Thévenin or
Norton equivalent for the source circuit.

To obtain the Thévenin and Norton equivalents, we need υOC and iSC. The open-
circuit voltage υOC is found by disconnecting the load at the terminals A and B, as
shown in Figure 3–44(b). The voltage across the 15-Ω resistor is zero because the
open circuit causes the current through the resistor to be zero. The open-circuit volt-
age at the interface is the same as the voltage across the 10-Ω resistor. Using voltage
division, this voltage is

υT = υOC =
10

10 + 5
× 15 = 10 V

1The open-circuit resistance of a DMM is not infinite, but varies with the quality of the DMM from
107 to 1011 Ω.
2Similarly, the short-circuit resistance of a DMM is not zero, but varies with the quality of the DMM
from 10−1 to 10 Ω.

Load+
−

B

A15 Ω5 Ω

10 Ω15 V

(a)

+
−

+

−

B

A15 Ω5 Ω

10 Ω15 V

(b)

Load+
−

B

A18.3 Ω

10 V

(d)

i = 0

v = 0

+

vOC

−

iSC

(c)

Load

B

A

545 mA

(e)

18.3 Ω

B

A

3 A

(c)

10 Ω

15 Ω

5 Ω

FIGURE 3–44 Example of
finding the Thévenin and Norton
equivalent circuits: (a) The given
circuit. (b) Open circuit yields the
Thévenin voltage. (c) Short
circuit yields the Norton current.
(d) Thévenin equivalent circuit.
(e) Norton equivalent circuit.
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Next we find the short-circuit current iSC using the circuit in Figure 3–44(c). We
do a source transformation of the 15-V source and the series 5-Ω resistor as shown
in the figure. Then we apply current division to find the short-circuit current
as follows:

iSC =

1
15

× 3

1
15

+
1
10

+
1
5

=
30

1
15

� �
× 3

30
1
15

+
1
10

+
1
5

� � =
2× 3

2+ 3+ 6
=

6
11

= 0:5454 A

Finally, we compute the Thévenin and Norton resistances as

RT =RN =
υOC

iSC
= 18:3Ω

The resulting Thévenin and Norton equivalent circuits are shown in Figures 3–44(d)
and 3–44(e).

It is now an easy matter to select a loadRL so that 4 V is supplied to the load. Using
the Thévenin equivalent circuit, the problem reduces to a voltage divider:

RL

RL +RT
× υT =

RL

RL + 18:3
× 10 = 4 V

Solving for RL yields RL = 12:2Ω.
The Thévenin and Norton equivalent can always be found from the open-circuit

voltage and short-circuit current at the interface. The following examples illustrate
other methods of determining these equivalent circuits.

E X A M P L E 3 – 1 7

Find the Thévenin equivalent at nodes A and B for the circuit in
Figure 3–45(a).

SOLUTION:
The open-circuit voltage can be found using a voltage divider as

υOC = υT =
15 k× 12
15 k+ 10 k

= 7:2 V

The short-circuit current is found by placing a short circuit connect-
ing nodes A and B and finding the current flowing through that
short circuit. The short circuit is in parallel with the 15-kΩ resistor
thereby effectively removing it from the circuit. The short-circuit
current is thus found using Ohm’s law as

iSC =
12
10 k

= 1:2 mA

The Thévenin resistance is then found as

RT =
υOC

iSC
=

7:2
1:2 m

=6 kΩ

The Thévenin equivalent circuit is shown in Figure 3–45(b). ■

E x e r c i s e 3–30
Find the Thévenin equivalent at nodes A and B for the circuit in Figure 3–46.

A n s w e r s: υT = 4:14 V;RT = 5:01 kΩ

10 kΩ

(a)

B

(b)

R
T 

= 6 kΩ 

v
T 

= 7.2 V+
−

+
−

+

−

12 V 15 kΩ

vT’RT

iSC

vOC

A

FIGURE 3–45

1.5 kΩ

2.2 kΩ 4.7 kΩ 10 kΩ

3.3 kΩ5 V

+−

B

A

vT’RT

FIGURE 3–46
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E X A M P L E 3–1 8

(a) Find the Thévenin equivalent circuit of the source circuit to the left of the interface in
Figure 3–47(a).

(b) Use the Thévenin equivalent to find the power delivered to two different loads. The first
load is a 10-kΩ resistor and the second is a 5-V voltage source whose positive terminal is
connected to the upper interface terminal.

SOLUTION:
(a) To find the Thévenin equivalent, we use the sequence of circuit reductions shown

in Figure 3–47. In Figure 3–47(a) the 15-V voltage source in series with the 3-kΩ
resistor to the left of terminalsAandB is replacedbya 3-kΩ resistor in parallel with

Load+
−

3 kΩ

4 kΩ

3 kΩ

6 kΩ15 V(a)

(b)

(c)

(d)

(e)

iC

D

A

B

+
−

−

+

2 mA v

Load

3 kΩ

4 kΩ

3 kΩ
6 kΩ5 mA

iC

D

A

B

−

+

2 mA v

Load

3 kΩ

4 kΩ

2 kΩ3 mA

iC

D

−

+

v

Load

3 kΩ

4 kΩ

2 kΩ

6 V

iC

D

−

+

v

+
− Load

9 kΩ

6 V

i

−

+

v

FIGURE 3–47
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an equivalent current source with iS = 15=3000 = 5 mA. In Figure 3–47(b), looking
to the left of terminals C and D, we see two resistors in parallel whose equivalent
resistance is ð3 kΩÞkð6 kΩÞ= 2 kΩ.Wealsoseetwocurrent sources inparallelwhose
equivalent is iS = 5 mA−2mA=3mA. This equivalent current source is shown in
Figure 3–47(c) to the left of terminals C and D. Figure 3–47(d) shows this current
source converted to an equivalent voltage source υS = 3 mA×2 kΩ= 6 V in series
with 2 kΩ. In Figure 3–47(d) the three resistors are connected in series and can be
replaced by an equivalent resistance REQ = 2 kΩ+ 3 kΩ+ 4 kΩ= 9 kΩ. This step
produces the Thévenin equivalent shown in Figure 3–47(e).

Note: The steps leading from Figure 3–47(a) to 3–47(e) involve circuit reduc-
tion techniques studied in Chapter 2, so we know that this approach works best on
ladder circuits like the one in Figure 3–47(a).

(b) Figure3–48showstheThéveninequivalent found inpart (a)(Figure3–47(e))andthe
two loads.When the load is a10-kΩ resistor, the interface current is i= ð6Þ=ð9000 +
10;000Þ= 0:3158 mA, and the power delivered to the load is i2RL = 0:9973 mW.
When the load is a 5-V source, the interface voltage and current are υ= 5 V and
i= ð6−5Þ=9000 = 0:1111 mA, and the power to the load is υ× i= 0:5555 mW. Since
p> 0 in the latter case, we see that the voltage source load is absorbing power
rather than delivering power. A practical example of this situation is a battery
charger.

Caution: The Thévenin equivalent allows us to calculate the power delivered
to a load, but it does not tell us what power is dissipated in the original source
circuit. For instance, if the load in Figure 3–47(e) is an open circuit, then no power
is dissipated in the Thévenin equivalent since i= 0. This does not mean that the
power dissipated in the original source circuit is zero, as we can easily see by look-
ing back at Figure 3–47(a). The Thévenin equivalent circuit has the same i−υ
characteristic at the interface, but it does not duplicate the internal characteristics
of the original source circuit. ■

E x e r c i s e 3–31
For the Thévenin circuit of Figure 3–48, select a loadRL so that 2:5 V are delivered across it.
ChooseRL from the 10%values given in the inside back cover.What will be the actual value
of voltage delivered to the load?

A n s w e r s: RL = 6:8 kΩ; υL = 2:58�10%V

E X A M P L E 3–1 9

(a) Find the Norton equivalent of the source circuit to the left of the inter-
face in Figure 3–49.

(b) Use Multisim to verify your result.
(c) Find the interface current iwhen the power delivered to the load is 5W.

SOLUTION:
(a) The circuit reductionmethodwill not work here since the source

circuit is not a ladder. In this example we write mesh-current
equations and solve directly for the source circuit i−υ relation-
ship. We only need to write equations for meshes A and B since
the 2-A current source determines the mesh C current. The volt-
age sums around these meshes are as follows:

MeshA: −40 + 60 ðiA− iCÞ+ 180 ðiA− iBÞ= 0

Mesh B: −180 ðiA− iBÞ+ 15 ðiB− iCÞ+ υ= 0

9 kΩ

10 kΩ6 V 5 V
+
−

+

−

v

i

+
−

FIGURE 3–48

Load40 V

2 A

60 Ω 15 Ω

180 Ω

i

iBiA

iC
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−

v+
−
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But since iB = i and the current source forces the condition iC = −2, these equa-
tions have the form

240 iA−180 i = −80

−180 iA + 195 i = −30−υ

Solving for the currents in terms of υ yields

iA

i

" #
=

240 −180

−180 195

" #−1 −80

−30−υ

" #
=

−
35
24

−
υ

80

−
3
2
−

υ

60

2
664

3
775

i = −
3
2
−

υ

60

At the interface the i−υ relationship of the source circuit is i= −1:5−υ=60.
Equation (3–22) gives the i−υ relationship of the Norton circuit as i= iN−
υ=RN. By direct comparison, we conclude that iN = −1:5 A and RN = 60Ω. This
equivalent circuit is shown in Figure 3–50(a).

(b) We can use Multisim in much the same way as we can find a circuit’s Thévenin
equivalent in the laboratory or in the field as shown in Figure 3–43(c) using a mul-
timeter. Figure 3–50(b) shows how one can easily find a circuit’s open-circuit volt-
age (υOC) and its short-circuit current (iSC) usingMultisim. The Thévenin resistance
can then easily be calculated using RT = υOC=iSC.

(c) When 5W is delivered to the load, we have υi= 5 or υ= 5=i. Substituting υ= 5=i
into the source i−υ relationship i= −1:5−υ=60 yields the quadratic equation

12i2 + 18i+ 1= 0

whose roots are i= −0:05778 A and −1:442 A. Thus, there are two values of inter-
face current that deliver 5W to the load. ■

D E R I V A T I O N O F T H É V E N I N ’ S T H E O R E M

The derivation of Thévenin’s theorem is based on the superposition principle. We
begin with the circuit in Figure 3–51(a), where the source circuit S is linear. Our
approach is to use superposition to show that the source circuit and the Thévenin cir-
cuit have the same i−υ relationship at the interface. To find the source circuit i−υ
relationship, we first disconnect the load and apply a current source iTEST, as shown
in Figure 3–51(b). Using superposition to find υTEST, we first turn iTEST off and leave
all the sources inside S on, as shown in Figure 3–51(c). Turning a current source off
leaves an open circuit, so

υTEST1 = υOC

XMM1

I2 I1

V2 V1

40 V

2 AR4 R1 R2R5

R6
180 Ω

R3
180 Ω

15 Ω υOC60 Ω 15 Ω60 Ω
+

–

XMM2

40 V

2 A

iSC

+

–

(b)

FIGURE 3–50

Load1.5 A 60 Ω

i

+

−

v

(a)
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Next we turn iTEST back on and turn off all of the independent sources inside S.
Since the source circuit S is linear, it reduces to the equivalent resistance shown in
Figure 3–51(d) when all internal sources are turned off. Using Ohm’s law, we write

υTEST2 = ðREQÞ ð− iTESTÞ
The negative sign in this equation results from the reference directions originally
assigned to iTEST and υTEST in Figure 3–51(b). Using the superposition principle,
we find the i−υ relationship of the source circuit at the interface to be

υTEST = υTEST1 + υTEST2

= υOC−REQ iTEST

This equation has the same form as the i−υ relationship of the Thévenin equivalent
circuit in Eq. (3–21) when υTEST = υ, iTEST = i, υOC = υT, and RT =REQ.

The derivation points out another method of finding the Thévenin resistance. As
indicated in Figure 3–51(d), when all the independent sources are turned off, the i−υ
relationship of the source circuit reduces to υ= − iREQ. Similarly, the i−υ relationship
of a Thévenin equivalent circuit reduces to υ= − iRT when υT = 0. We conclude that

RT =REQ (3–26)

We can find the value of RT by determining the resistance seen looking back into the
source circuit with all independent sources turned off. For this reason the Thévenin
resistance RT is sometimes called the lookback resistance.

The next example shows how lookback resistance contributes to finding a Théve-
nin equivalent circuit.

E X A M P L E 3–2 0

(a) Find the Thévenin equivalent of the source circuit to the left of the interface in
Figure 3–52(a).

(b) Use the Thévenin equivalent to find the voltage delivered to the load.

SOLUTION:
(a) The source circuit in Figure 3–52(a) is treated in Example 3–14 by using superposition to

calculate the open-circuit voltage between terminals A and B. Using the results from
Example 3–14, we have

υT = υOC =
1
3
ðυS1 + υS2 + υS3Þ

i

+

v
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S
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+
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+
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FIGURE 3–51 Using
superposition to prove
Thévenin’s theorem.
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Turning all sources off in Figure 3–52(a) leads to the resistance circuit in Figure 3–52(b).
Looking back into the source circuit in Figure 3–52(b), we see three equal resistances con-
nected in parallel whose equivalent resistance is R=3. Hence, the Thévenin resistance is

RT =REQ =
R
3

(b) Given the Thévenin circuit parameters υT and RT, we apply voltage division in
Figure 3–52(a) to find the interface voltage.

υ=
RL

RL +RT
υT =

RL

RL +R=3

� �
υS1 + υS2 + υS3

3

� 	
=

RL

3RL +R

� �
ðυS1 + υS2 + υS3Þ

The interface voltage is proportional to the sum of the three source voltages. The propor-
tionality constant K =RL=ð3RL +RÞ depends on both the source and the load since these
two circuits are connected at the interface. ■

E x e r c i s e 3–32
For the circuit of Figure 3–53 find the Thévenin equivalent circuit seen byRL. Then use the
equivalent circuit to find the load power pL when RL = 50Ω, 100Ω, and 500Ω.

A n s w e r s: υT = 25 V, RT = 100Ω
pL50Ω = 1:38W, pL100Ω = 1:56W, pL500Ω = 0:868W
Note that the power delivered to the load appears to peak somewhere near 100Ω. We will look
at the concept of maximum power transfer in the next section.

E x e r c i s e 3–33
(a) Find the Thévenin and Norton equivalent circuits seen by the load in Figure 3–54.

(b) Find the voltage, current, and power delivered to a 50-Ω load resistor.

A n s w e r s:
(a) υT = −30 V; iN = −417 mA; RN =RT = 72Ω
(b) υ= −12:3 V i= −246 mA; p=3:03W

E x e r c i s e 3–34
Find the current and power delivered to an unknown load in
Figure 3–54 when υ= +6 V.

A n s w e r s: i= − 1
2 A; p= −3W

A P P L I C A T I O N T O N O N L I N E A R L O A D S

Thévenin and Norton equivalent circuits can be used to find the response of a two-
terminal nonlinear element (NLE). The method of analysis is a straight forward
application of device and interface i−υ characteristics. An interface is defined at
the terminals of the nonlinear element, and the linear part of the circuit is reduced
to the Thévenin equivalent in Figure 3–55(a). The i−υ relationship of the Thévenin
equivalent can be written with interface current as the dependent variable:

i= −
1
RT

� �
υ+

υT
RT

� �
(3–27)

This is the equation of a straight line in the i−υ plane shown in Figure 3–55(b). The line
intersects the i-axis ðυ= 0Þ at i= υT=RT = iSC and intersects the υ-axis ði= 0Þ at
υ= υT = υOC. This line could logically be called the source line since it is determined
by the Thévenin parameters of the source circuit. Logic notwithstanding, electrical
engineers call this the load line for reasons that have blurred with the passage of time.
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The nonlinear element has the i−υ characteristic shown in Figure 3–55(c). Math-
ematically, this nonlinear characteristic has the form

i= f ðυÞ (3–28)

To find the circuit response, we must solve Eqs. (3–27) and (3–28) simultaneously.
Computer software tools likeMATLAB can easily solve this problemwhen a numer-
ical expression for the function f ðυÞ is known explicitly. However, in practice an
approximate graphical solution is often adequate, particularly when f ðυÞ is given only
in graphical form.

The developers of SPICE software packages like Multisim work hard to create
software models of the myriad of electronic devices used in circuit design—yet, even
with their best efforts, devices are often very nonlinear and difficult to model accu-
rately. No matter what software model one uses, there is always a possibility of error.
That is why circuits are first modeled using software and then built and tested in the
laboratory to validate the design.

In Figure 3–55(d) we superimpose the load line on the i−υ characteristic curve of
the nonlinear element. The two curves intersect at the point i= iNLE and υ= υNLE,

+
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FIGURE 3–55 Graphical
analysis of a nonlinear circuit:
(a) Given circuit. (b) Load line.
(c) Nonlinear device’s i−υ
characteristics. (d) Q-point.
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which yields the values of interface variables that satisfy both the source constraints
in Eq. (3–27) and the nonlinear element constraints in Eq. (3–28). In the terminology
of electronics, the point of intersection is called the operating point orQ-point, where
“Q” stands for “quiescent.”

E X A M P L E 3–2 1

Find the voltage, current, and power delivered to the diode in Figure 3–56(a). The
diode’s i–v characterististics are given in Figure 3–56(b).

SOLUTION:
We first find the Thévenin equivalent of the circuit to the left of terminals A and B.
By voltage division, the open-circuit voltage is

υT = υOC =
100

100 + 100
× 5= 2:5 V

When the voltage source is turned off, the lookback equivalent resistance seen
between terminals A and B is

RT = 10 + 100k100 = 60Ω

The source circuit load line is given by

i= −
1
60

υ+
1
60

× 2:5

This line intersects the i-axis ðυ= 0Þ at i= iSC = 2:5=60 = 41:7mA and intersects the
υ-axis ði= 0Þ at υ= υOC = 2:5 V. Figure 3–56(b) superimposes the source circuit load
line on the diode’s i−υ curve. The intersection (Q-point) is at i= iD = 15 mA and
υ= υD = 1:6 V. This is the point (iD,υD) at which both the source and diode device con-
straints are satisfied. Finally, the power delivered to the diode is given by

pD = iD υD = ð15 × 10−3Þ ð1:6Þ= 24 mW

Because of the nonlinear element, the proportionality and superposition properties
do not apply to this circuit. For instance, if the source voltage in Figure 3–56(a) is
decreased from 5 V to 2:5 V, the diode current and voltage do not decrease by
one-half. Try it. ■

E x e r c i s e 3–35
Suppose for the circuit shown in Figure 3–56(a) that the diode’s i−υ characteristics can be
modeled by the following equation:

i=
e4υ−1
100;000

100 Ω
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B
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Q-point

i (mA)

50
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30
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where υ is given in volts and i is given in amperes. Note that these i−υ characteristics is for a
different diode from that shown in Figure 3–56(b). Use manual calculations or the
MATLAB function solve to find the exact operating point for this circuit.

A n s w e r s: υD = 1:77 V; iD = 12:1 mA

In summary, any two of the following parameters determine the Thévenin or Nor-
ton equivalent circuit at a specified interface:

• The open-circuit voltage at the interface

• The short-circuit current at the interface

• The source circuit lookback resistance

Alternatively, for ladder circuits the Thévenin or Norton equivalent circuit can be
found by a sequence of circuit reductions (see Example 3–18). For general circuits
they can always be found by directly solving for the i−υ relationship of the source
circuit using node-voltage or mesh-current equations that include the interface cur-
rent and voltage as unknowns (see Example 3–19).

Simulation software such as Multisim can be used to find the Thévenin or Norton
equivalent circuit (see Example 3–19). Or alternately, in the field or laboratory, the
equivalent circuit parameters can bemeasured using appropriate instruments such as
a multimeter for dc circuits.

3–5 M A X I M U M S I G N A L T R A N S F E R
An interface is a connection between two circuits at which the signal
levels may be observed or specified. In this regard an important consid-
eration is themaximum signal levels that can be transferred across a given
interface. This section defines the maximum voltage, current, and power
available at an interface between a fixed source and an adjustable load.

For simplicity we will treat the case in which both the source and load
are linear resistance circuits. The source can be represented by a Théve-
nin equivalent and the load by an equivalent resistance RL, as shown in
Figure 3–57. For a fixed source, the parameters υT and RT are given and
the interface signal levels are functions of the load resistance RL.

By voltage division, the interface voltage is

υ=
RL

RL +RT
υT (3–29)

For a fixed source and a variable load, the voltage will be a maximum if RL is made
very large compared withRT. Ideally,RL should bemade infinite (an open circuit), in
which case

υMAX = υT = υOC (3–30)

Therefore, the maximum voltage available at the interface is the source open-circuit
voltage υOC.

The current delivered at the interface is

i=
υT

RL +RT
(3–31)

For a fixed source and a variable load, the current will be a maximum if RL is made
very small compared with RT. Ideally, RL should be zero (a short circuit), in
which case

iMAX =
υT
RT

= iN = iSC (3–32)

RL

LoadSource

+

v

−

i

A

B

+
−

vT

RT 

FIGURE 3–57 Two-terminal interface for
deriving the maximum signal transfer
conditions.
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Therefore, the maximum current available at the interface is the source short-circuit
current iSC.

The power delivered at the interface is equal to the product υ× i. Using Eqs. (3–29)
and (3–31), the power is

p = υ× i

=
RLυ2T

ðRL +RTÞ2
(3–33)

For a given source, the parameters υT and RT are fixed and the delivered power is a
function of a single variable RL. The condition for maximum voltage ðRL ! ∞Þ and
the condition for maximum current ðRL = 0Þ both produce zero power. The value of
RL that maximizes the power lies somewhere between these two extremes. To find
this value, we differentiate Eq. (3–33) with respect toRL and solve for the value ofRL

for which dp=dRL = 0.

dp
dRL

=
½ðRL +RTÞ2−2RLðRL +RTÞ�υ2T

ðRL +RTÞ4
=

RT−RL

ðRL +RTÞ3
υ2T = 0 (3–34)

Clearly, the derivative is zero when RL =RT. Therefore, maximum power transfer
occurs when the load resistance equals the Thévenin resistance of the source. When
the condition RL =RT exists, the source and load are said to be matched.

Substituting the condition RL =RT back into Eq. (3–33) shows the maximum
power to be

pMAX =
υ2T
4RT

(3–35)

Since υT = iNRT, this result can also be written as

pMAX =
i2NRT

4
(3–36)

or

pMAX =
υTiN
4

=
υOC

2

h i iSC
2

� �
(3–37)

These equations are consequences of what is known as themaximum power transfer
theorem:

A source with a fixed Thévenin resistance RT delivers maximum power to an
adjustable load RL when RL =RT.

1

To summarize, at an interface with a fixed source,

1. The maximum available voltage is the open-circuit voltage.

2. The maximum available current is the short-circuit current.

3. The maximum available power is the product of one-half the open-circuit
voltage times one-half the short-circuit current.

Figure 3–58 shows plots of the interface voltage, current, and power as functions of
RL=RT. The plots of υ=υOC, i=iSC, and p=pMAX are normalized to the maximum avail-
able signal levels, so the ordinates in Figure 3–58 range from 0 to 1. The plot of the

1An ideal voltage source has zero internal resistance, hence RT = 0. Equation (3–35) points out that
RT = 0 implies an infinite pMAX. Infinite power is a physical impossibility, which reminds us that all
ideal circuit models have some physical limitations.
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normalized power p=pMAX in the neighborhood of the maximum is not a particularly
strong function of RL=RT. Changing the ratio RL=RT by a factor of 2 in either direc-
tion from the maximum reduces p=pMAX by less than 20%. The normalized voltage
υ=υOC is within 20% of its maximum when RL=RT = 4. Similarly, the normalized cur-
rent is within 20% of its maximum when RL=RT = 1

�
4. In other words, for engineering

purposes we can get close to themaximum signal levels with load resistances that only
approximate the theoretical requirements.

E X A M P L E 3–2 2

A source circuit with υT = 2:5 V and RT = 60Ω drives a load with RL = 30Ω.

(a) Determine the maximum signal levels available from the source circuit.
(b) Determine the actual signal levels delivered to the load.

SOLUTION:
(a) The maximum available voltage and current are as follows:

υMAX = υOC = υT = 2:5 V ðRL ! ∞Þ

iMAX = iSC =
υT
RT

= 41:7 mA ðRL = 0Þ

The maximum available power is found using Eq. (3–37).

pMAX =
υOC

2

h i iSC
2

� �
= 26:0 mW ðRL =RT = 60ΩÞ

(b) The actual signal levels delivered to the 30-Ω load are as follows:

υL =
30

30 + 60
2:5 = 0:833 V

iL =
2:5

30 + 60
= 27:8mA

pL = υLiL = 23:1 mW

Although these levels are less than the maximum available values, the power delivered to the
30-Ω load is nearly 90% of the maximum. ■

E x e r c i s e 3–36
A source circuit delivers 4 V when a 50-Ω resistor is connected across its output and 5 V
when a 75-Ω resistor is connected. Find the maximum voltage, current, and power available
from the source.

A n s w e r s: 10 V; 133 mA; 333 mW

i/iSC
p/pMAX v/vOC

1.0

0.5

0.0
0.01 0.1 1.0 10 100

RL/RT

FIGURE 3–58 Normalized
plots of current, voltage,
and power versus RL=RT.
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Remember that themaximumsignal levels just derivedare fora fixedsource resistance
and an adjustable load resistance. This situation often occurs in communication sys-
tems where devices such as antennas, transmitters, and signal generators have fixed
source resistances such as 50, 75, 300, or 600 ohms. In such cases the load resistance
is selected to achieve the desired interface conditions, which often involves matching.

Matching source and load applies when the load resistance RL in Figure 3–57 is
adjustable and the Thévenin source resistance RT is fixed. When RL is fixed and
RT is adjustable, then Eqs. (3–29), (3–31), and (3–33) pointout that themaximumvolt-
age, current, and power are deliveredwhen theThévenin source resistance is zero. If the
source circuit at an interface is adjustable, then ideally the Thévenin source resistance
should be zero. In Chapter 4 we will see that OP AMP circuits approach this ideal.

3–6 I N T E R F A C E C I R C U I T D E S I G N

The maximum signal levels discussed in the previous section place bounds on what is
achievable at an interface. However, those bounds are based on a fixed source and an
adjustable load. In practice, there are circumstances in which the source or the load,
or both, can be adjusted to produce prescribed interface signal levels or neither can
be adjusted. Sometimes it is necessary to insert a circuit between the source and the
load to achieve the desired results. Figure 3–59 shows the general situations and some
examples of resistive interface circuits. By its nature, the inserted circuit has two
terminal pairs, or interfaces, at which voltage and current can be observed or speci-
fied. These terminal pairs are also called ports, and the interface circuit is referred to
as a two-port network. The port connected to the source is called the input, and the
port connected to the load is called the output. The purpose of this two-port network
is to make certain that the source and load interact in a prescribed way.

There is near-infinite number of interface circuits that one can use or devise to
meet the many interfacing challenges an analog design engineer faces. The five
shown in Figure 3–59 represent the simplest ones. The pass-through is used when
the load can be varied by the designer—in practice it may actually not even be shown
since it is a simple connection between the source and the load (Examples 3–23
and 3–24). The series and parallel interfaces are used to help deliver a particular cur-
rent, voltage, or power to a fixed load from a fixed source. In general, the series inter-
face works best when the load is powered by a voltage source and a parallel interface
works best when the load is powered by a current source (Examples 3–25 and 3–26).
The L-pads are used in helping to match the fixed source and fixed load resistances
and deliver specific voltages, currents, or power (Examples 3–27 to 3–29). A common
example is matching a stereo amplifier to a speaker—see Figure 3–60. A more com-
plex interface circuit is the bridge-T considered in Example 3–31. That interface
serves as an attenuation pad to reduce the signal by a fixed amount while maintaining

Source Load
Interface
circuit

(a) (b) (c)

Examples of interface circuits

(d) (e)

R R1
R2 R1

R2R

FIGURE 3–59 A general
interface circuit and a few
examples: (a) Simple pass-
through (often omitted),
(b) series resistor, (c) parallel
resistor, (d) L-pad left,
(e) L-pad right.
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the input and output resistances. In the following section we will see how to design
these interface circuits for various applications.

B A S I C C I R C U I T D E S I G N C O N C E P T S

Before we treat examples of different interface situations, you should recognize that
we are now discussing a limited form of circuit design, as contrasted with circuit anal-
ysis. Although we use circuit analysis tools in design, there are important differences.
A linear circuit analysis problem generally has a unique solution. A circuit design
problem may have many solutions or even no solution. The maximum available sig-
nal levels found in the preceding section provide bounds that help us test for the exist-
ence of a solution. Generally there will be several ways to meet the interface
constraints, and it then becomes necessary to evaluate the alternatives using other
factors, such as cost, power consumption, or reliability.

At this point in our study, resistors are the only elements we can use to design
interface circuits. In subsequent chapters we will introduce other devices, such as
OP AMPs (Chapter 4), capacitors and inductors (Chapter 6) and transformers
(Chapter 15). For this chapter, in a design situation the engineer must choose the
resistance values in a proposed circuit. This decision is influenced by a host of prac-
tical considerations, such as standard values and tolerances, power ratings, temper-
ature sensitivity, cost, and fabrication methods. We will occasionally introduce some
of these considerations into our design examples. Gaining a full understanding of
these practical matters is not one of our objectives. Rather, our goal is simply to illus-
trate how different constraints can influence the design process.

D E S I G N E X A M P L E 3 – 2 3

Select the load resistance in Figure 3–61 so that the interface signals are in the range
defined by υ≥ 4 V and i≥ 30 mA.

SOLUTION:
In this design problem, the source circuit is given and we are free to select the load.
For a fixed source, the maximum signal levels available at the interface are as follows:

υMAX = υT = 10 V

iMAX =
υT
RT

= 100 mA

The bounds given as design requirements are below the maximum available signal
levels, so we should be able to find a suitable resistor. Using voltage division, the
interface voltage constraint requires

RL

100 +RL
× 10≥ 4

or

10RL ≥ 4RL + 400

This condition yields RL ≥ 400=6= 66:7Ω. The interface current constraint can be
written as

10
100 +RL

≥ 0:03

or

10≥ 3 + 0:03RL

100 Ω i

v RL

+

−

10 V
+
−

Interface

circuit

FIGURE 3–61
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which requires RL ≤ 7=0:03 = 233Ω. In theory, any value of RL between 66:7Ω and
233Ω will work. However, to allow for parameter variations we select RL = 150Ω
because it lies at the arithmetic midpoint of the allowable range and is a standard
value of resistance (see inside back cover). The interface in this example is a simple
pass-through as shown in Figure 3–59(a). ■

D e s i g n E x e r c i s e 3–37
SelectRL in Figure 3–61 so that 190�10%mWare delivered to the load. Select a 10% resis-
tor from inside the back cover that will provide the desired power.

A n s w e r: RL = 33Ω ð187 mWÞ or 270Ω ð197mWÞ. The 270-Ω load requires the source to
deliver less power to the total circuit, PS270 = 270 mW versus PS33 = 752mW, and generally
is the better solution. The interface in this exercise is a simple pass-through as shown in
Figure 3–59(a).

D E S I G N E X A M P L E 3 – 2 4

Select a 5% standard-value load resistor RL for the circuit in Figure 3–62 that will
result in 10 V�5% delivered across it.

SOLUTION:
Start by finding the Thévenin equivalent circuit thatRL sees. The Thévenin voltage is
found using a voltage divider

υT =
2 k

1 k+ 2 k

� �
30 = 20 V

We can find RT by the look-back method

ð2 kk1 kÞ+ 3 k= 666 + 3000 = 3:66 kΩ

Using the Thévenin circuit we just found, find the maximum voltage possible by
choosing RL to be an open circuit. By inspection we determine that υMAX = 20 V.
Hence, it is possible to find a suitable resistor to deliver 10 V.

Using voltage division with the Thévenin circuit, we find RL as follows:

10 =
RL

RL + 3:66 k
20

RL =
36:6 k
10

= 3:66 kΩ

From the table in the inside rear cover we find that a 5% 3:6-kΩ resistor is available.
Using it as our choice, we find that the resistance can vary as 3:42 kΩ≤RL ≤ 3:78 kΩ.
Therefore, the output voltage can vary as 9:66 V≤ υL ≤ 10:16 V. This is within the
10 V�5% required.

Our interface is a simple pass-through as shown in Figure 3–59(a). ■

D e s i g n E x e r c i s e 3–38
For the circuit of Figure 3–62, select a load resistor, if possible, so that 6 mA flows through it.

A n s w e r: The maximum current available is 5:46 mA, hence there is no resistor available
that can result in 6 mA flowing through it.

RL

1 kΩ 3 kΩ

2 kΩ30 V +
−

FIGURE 3–62
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D e s i g n E x e r c i s e 3–39
For the circuit of Figure 3–62, determine the maximum power available, and if sufficient,
select a resistive load that will dissipate 20 mW.

A n s w e r s: PMAX =27:3 mW; RL = 1:169 kΩ or 11:50 kΩ

D E S I G N E X A M P L E 3 – 2 5

A light-emitting diode (LED) converts electric current into an optical signal. LEDs
operate at low signal levels with voltages from about 1 V to perhaps 3 V and at cur-
rents between about 10 mA and 40mA. Voltages or currents above these levels may
damage or destroy the device.

Figure 3–63 shows an LED operating at υ= 1:5 V and connected to a 5-V source by
an interface circuit. Design the interface circuit so that the LED current is i= 15 mA�
10% using one or more of the following standard resistors: 110Ω, 160Ω, 240Ω,
360Ω, and 510Ω. These resistors all have a tolerance of �5%, which you must
account for in your design.

SOLUTION:
If the source is directly connected to the LED, the delivered current
would be

i=
5−1:5

2
= 1:75 A

This much current would destroy (vaporize?) the device. The series
resistor R1 interface [Figure 3–59(b)] is needed to limit the current
to the prescribed level. Applying KVL around the series loop yields

−5 + ð2 +R1Þi+ 1:5 = 0

Setting i= 15 mA and solving for R1 yields

R1 =
3:5
0:015

−2 = 231Ω

The nearest standard value listed is 240Ω�5%, which means that R1

would fall in the range 228≤R1 ≤ 252Ω. At the end points of this range,
the LED current is

i=
3:5

252 + 2
= 13:8mA and i=

3:5
228 + 2

= 15:2 mA

Bothof these values arewithin the 15mA�10% tolerance on the LED
current. ■

D e s i g n E x e r c i s e 3–40
Suppose the source circuit in Figure 3–63 is now 12 V in series with a 5-Ω source resistor.
The same LED is used. How does the solution change?

A n s w e r: R1 = 695Ω. If we are restricted to using the resistors specified, then there are
at least two reasonable solutions. First, we could use a 510-Ω resistor in series with a
160-Ω resistor to give a total resistance of 670Ω. Another option would be to combine a
510-Ω resistor in series with a parallel combination of two 360-Ω resistors to give a total
resistance of 690Ω. These options satisfy the constraints, even if we account for the resistor
tolerances.

R1

+
−

i

5 V
Interface

circuit

+

v

−

2 Ω

FIGURE 3–63
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D E S I G N A N D E V A L U A T I O N E X A M P L E 3 – 2 6

Design two versions of the interface circuit in Figure 3–64 that deliver υ2 = 5 V to the
200-Ω load. Evaluate the two designs in terms of power loss in the interface circuit.

SOLUTION:
If the 15-V source is directly connected to the load, the delivered volt-
age would be

υ2 =
200

50 + 200

� �
15 = 12 V

An interface circuit is required to reduce this voltage to the pre-
scribed 5-V level.

The figure shows two possible interface circuits [Figure 3–59(b)
and (c)]. In either case

i2 =
5
200

= 0:025 A

In the series case i1 = i2 = 0:025, and the same current flows through all
elements in the loop. Applying KVL to the series loop

−15 + 0:025 × ð50 +R1Þ+ 5= 0

and solving for R1,

R1 =
10

0:025
−50 = 350Ω

In the parallel case υ1 = υ2 = 5 V. Applying KCL to the parallel resistor R2

i1−
υ2
R2

− i2 =
15−5
50

−
5
R2

−0:025 = 0

and solving for R2,

R2 =
5

0:2−0:025
= 28:57Ω

We have two alternative designs, both of which deliver υ2 = 5 V to the 200-Ω load.
In practice, engineers use additional factors to evaluate alternatives that meet the

same design goal. The power dissipation in the interface circuit is an important factor
for two reasons. First, less interface dissipation means less power demand on the
source. Second, less dissipation in the interface resistors means they can have lower
power ratings, which are generally less expensive.

In the series case the power dissipated in R1 is i22R1 = 0:219W. In the parallel case
the power dissipated in R2 is υ22=R2 = 0:875W. Clearly the power dissipation factor
strongly favors the series design in this case. ■

D e s i g n a n d E v a l u a t i o n E x e r c i s e 3–41
ANorton source of 300mA in parallel with a 50-Ω source resistor provides current to a load
RL = 200Ω. Your task is to design an interface so that 5 V�10% are delivered to the load.

(a) Using the series resistor RS interface shown in Figure 3–59(b), select a 10% resistor
from the inside back cover that will provide the desired voltage.

(b) Using the parallel resistor RP interface shown in Figure 3–59(c), select a 10% resistor
from the inside back cover that will provide the desired voltage.

(c) Select the solution, series or parallel, that causes the source to provide the desired volt-
age while delivering the least power. Calculate the power in each case to defend your
choice.

+
−15 V v2

+

v1

−

50 Ω

200 Ω
Interface
circuit

i2i1

R2

R1

+

−

FIGURE 3–64
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A n s w e r s:
(a) RS = 350Ω; hence choose 330-Ω resistor ðυL = 5:17 VÞ.
(b) RP = 28:57Ω; hence choose 27-Ω resistor ðυL = 4:84 VÞ.
(c) pS = 4:11W; pp = 1:45W; hence choose the parallel solution.

D I S C U S S I O N : This is the same problem with the same numbers as in Example 3–26 except
that a Norton source provides the energy rather than the voltage source (do a source
transformation on the Thévenin source in Example 3–26). As expected, the interfaces are the
same. Yet in this case the parallel solution requires the source to deliver less power than the
series solution. What these two exercises point out is that equivalent sources are equivalent
only to the rest of the circuit and not internally. One cannot do a source transformation and
then use the transformed source to determine the power the original source provides.

D E S I G N E X A M P L E 3 – 2 7

Design the interface circuit in Figure 3–65 so that the 40-V source delivers υ2 = 2 V to
the output load and the resistance seen at the input port is RIN = 300Ω. Note that this
means that the input resistance of the two ports matches the source resistance.

SOLUTION:
This example places constraints at both the output port and the
input port of the interface circuit. In most cases two independ-
ent constraints cannot be satisfied using only one resistor in the
interface circuit. To see why, suppose we use a single 650-Ω
series resistor in the interface circuit. By voltage division, the
output voltage would be

υ2 =
50

300 + 650 + 50

� �
40 = 2 V

as required. However, the input resistance would be RIN = 650 +
50 = 700Ω, which does not meet the input port requirement
of 300Ω.

To meet both requirements, we need a two-resistor L-circuit
such as the one shown Figure 3–59(d). To design this circuit, we
first defineREQ =R2k50. Using this notation, the input port con-
straint is RIN =R1 +REQ = 300Ω and the output port constraint
becomes

υ2 =
REQ

300 +R1 +REQ

� �
40 = 2 V

But R1 +REQ = 300; hence, the output constraint reduces to 40REQ = 2× 600, which
means that REQ = 30Ω. By definition,

REQ =
50R2

50 +R2
= 30

which leads to 50R2 = 1500 + 30R2, or R2 = 75Ω. Finally, since REQ = 30Ω, the input
port constraint then tells us that R1 = 300−REQ = 270Ω. In sum, the L-circuit in the
figure withR1 = 270Ω andR2 = 75Ωwill meet both the input port and the output port
constraints. ■

D e s i g n E x e r c i s e 3–42
Repeat Example 3–27 with the desired υ2 = 10 V instead of 2 V.

A n s w e r: R2 = −75Ω; since a resistor cannot be negative, it is not possible.

300 Ω

50 Ω40 V
+
−

R1

R2

RIN

v2

−

+

Interface

circuit

FIGURE 3–65
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E V A L U A T I O N E X A M P L E 3 – 2 8

In Example 3–27 we designed the interface circuit in Figure 3–65 to meet the require-
ments υ2 = 2 V and RIN = 300Ω. It is claimed that the interface circuit in Figure 3–66
meets the same requirements.

(a) Verify that the circuit in Figure 3–66 produces υ2 = 2 V and RIN = 300Ω.
(b) It is desired that the 50-Ω load “see” a low output resistance. Which of these two circuits

best meets this requirement?

SOLUTION:
(a) The circuit in Figure 3–66 meets the input port constraint since

RIN = 750kð450 + 50Þ= 750k500 = 300Ω

as required. Using this fact and voltage division, we find the
voltage at the input port of the interface circuit to be

υ1 =
RIN

300 +RIN

� �
40 =

300
600

� �
40 = 20 V

Using this voltage as the input to the voltage divider made up of
the 450-Ω series resistor and the 50-Ω load gives

υ2 =
50

450 + 50

� �
υ1 =

50
500

� �
20 = 2 V

This verifies that the circuit in Figure 3–66 produces υ2 = 2 V
and RIN = 300Ω.

(b) To compare the output resistances, we turn the 40-V source off
(replace it by a short) and find the lookback resistance seen at
the output port. For the circuit in Figure 3–65,

ROUT =R2kðR1 + 300Þ= 75kð270 + 300Þ= 66:3Ω

For the circuit in Figure 3–66,

ROUT = 450 + 750k300 = 664Ω

The circuit of Figure 3–65 is much closer to the desired resistance seen by the load and is
the better choice. ■

E v a l u a t i o n E x e r c i s e 3–43

Use Multisim to determine which solution, Figure 3–65 or Figure 3–66, requires less power
from the source.

A n s w e r: Both require the same power, 2.667 W.

D I S C U S S I O N : In fact, one need not do any analysis or simulation if the only question to
answer is which is lower. In the preceding example, it was shown that both circuits met the
same requirements, in particular that RIN = 300Ω. Since both circuits met that requirement
exactly, both would have the same source current, namely 40=ð300+ 300Þ= 66:67 mA, and
therefore, the same power. Of course, the simulation would verify that fact.

D E S I G N E X A M P L E 3 – 2 9

Design the interface circuit in Figure 3–67 so the 50-Ω load “sees” a Thévenin resist-
ance of 50Ω between terminals C and D, while simultaneously the input voltage
source “sees” an input resistance of 300Ω between terminals A and B.Meeting these
two constraints produces matched conditions at the input and output ports of the
interface circuit.

300 Ω

Interface
circuit 50 Ω

450 Ω

40 V
+
−

RIN

v2

−

+

750 Ω

FIGURE 3–66
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SOLUTION:
To meet the two constraints in this example, the interface circuit should be a
two-resistor L-circuit. We have chosen the L-circuit configuration shown in
Figure 3–59(d) for the following reasons. The source must see a larger resistance
ð300ΩÞ at the input port than the load sees at the output port ð50ΩÞ. This indicates
that the source should “look” into a large series resistor R1 while the load “looks”
into a smaller parallel resistor R2.

The design constraints in this example can be expressed in equation form. At the
input port (terminals A and B) the equation is

R1 +
50R2

R2 + 50
= 300Ω

At the output port (terminals C and D) the equation is

ðR1 + 300ÞR2

R1 + 300 +R2
= 50Ω

The design requirements reduce to two equations in two unknowns. What could be
simpler?

These equations can easily be solved using a program likeMATLAB. Solving them
using pencil and paper is a bit of a chore.At this point we encourage you to think about
the problem in physical terms. For instance, if we simply set R2 = 50Ω, then the con-
ditions at terminals C and D will be met, at least approximately. With R2 = 50Ω the
requirement at terminals A and B reduces to RAB =R1 + 50k50 =R1 + 25 = 300Ω.

vT

300 Ω
Interface
circuit 50 Ω

Source Load

+
−

A C

B D

(a)

(b)

50 Ω

R1

R2

(c)

300 Ω R1

R2

300 Ω 50 Ω

FIGURE 3–67
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In other words, by physical reasoning we conclude thatR1 = 275Ω andR2 = 50Ω is an
approximate solution. How good is the approximation?

These values yield input and output resistances of RAB = 300Ω as required, and

RCD = 50kð275 + 300Þ= 50k575 = 46Ω

This value is not exactly 50Ω, but it is within 10%of the desired value. Since electrical
components may have tolerances in the 10% range, a design based on our first-guess
approximation might be adequate.

Our first-guess solution can also serve as the starting place for improving the
design. The fact that RCD = 46Ω tells us that R2 = 50Ω is just a bit too low. Suppose
we increase R2 slightly to, say, R2 = 56Ω (a standard value—see inside back cover).
Then at the input port we have

RAB =R1 + 50k56 =R1 + 26:42 = 300Ω

which would require R1 = 273:58Ω. The nearest standard value to this is R1 = 270Ω.
Using the standard valuesR1 = 270Ω andR2 = 56Ω as our second guess, the input and
output resistances are

RAB = 270 + 50k56= 270 + 26:42= 296:42Ω
RCD = 56kð270 + 300Þ= 56k570 = 50:99Ω

both of which are within 2%of the desired values. Thus, finding an approximate solu-
tion can serve as the first step in the design process. Performing the first step is often
the most creative and challenging part of circuit design. ■

D e s i g n E x e r c i s e 3–44
A common problem is interfacing a TV antenna’s 300-Ω line to a 75-Ω cable input on an
HDTV set. Repeat Example 3–29 for this particular interface. See Figure 3–68 for a photo
of such a device.

A n s w e r s: R1 = 259:8Ω; R2 = 86:6Ω

A P P L I C A T I O N E X A M P L E 3 – 3 0

The source-load interface in Figure 3–69 serves to introduce an important concept
that we will encounter many times in subsequent chapters. By simple voltage divi-
sion, the interface voltage is

υ=
RL

RL +RT
υT

w
w

w
.S

ho
w

M
eC

ab
le

s.
co

m

FIGURE 3–68 300Ω to 75Ω
adapter.

vT

Source Load

+
−

RT

RLv

+

−

FIGURE 3–69
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If the source is ideal ðRT = 0Þ, then the interface voltage is υ= υT regardless of the
value of the load RL. Conversely, if the load is an open circuit ðRL = ∞Þ, then the
interface voltage is υ= υT regardless of the value of the source resistance RT. Real-
world applications typically fall between these two extremes with the result that
υ< υT. Since υT = υOC = υMAX, interface voltage is generally less than the maximum
available voltage. The reduction in interface voltage is an example of an effect called
loading. In general

Loading is the reduction in load voltage due to the effect of load resist-
ance on the signal source driving it.

A loading problem is fundamentally different than the fixed-source, maximumpower
transfer problem.With loading, the source and load are both adjustable and the ques-
tion is how they should be chosen to minimize loading. The undesirable effects of
loading can bemitigated bymakingRT <<RL either by reducing the output resistance
of the source or by increasing the load resistance, or both. As a rule of thumb, the
loading effect is less than 10% when RL ≥ 10RT and less than 1% when RL ≥ 100RT.

E x e r c i s e 3–45
SupposeRT = 200Ω and the loading effect should be less than 1%.What should be the smal-
lest value for RL?

A n s w e r: RL ≥ 20 kΩ

A P P L I C A T I O N E X A M P L E 3 – 3 1

An attenuation pad is a two-port resistance circuit that provides a nonadjustable
reduction in signal level while also providing resistance matching at the input and
output ports. Attenuators are used in numerous applications such as in audio record-
ing studios to reduce the signal coming from a microphone into an audio mixer.
A picture of a typical commercial in-line attenuator is shown in Figure 3–70(a).

Figure 3–70(b) shows the circuit of a particular attenuation pad. The manufac-
turer’s data sheet for this pad specifies the following characteristics at the input
and output ports:
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(a)

vS
+
− 600 Ω

1800 Ω

Attenuation pad

600 Ω

INPUT OUTPUT

Source

RIN = 600 Ω
vT = vS/4
RT = 600 Ω

600 Ω

600 Ω

200 Ω

Interface circuit

(b)

Load

20 × log10
vOUTPUT

vINPUT
= –12 dB

FIGURE 3–70 Switchable In-Line Attenuator.
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PORT CHARACTERISTICS CONDITION VALUE UNITS

Output
Thévenin

voltage
600-Ω source connected at
the input port

vS=4 V

Output
Thévenin
resistance

600-Ω source connected at
the input port

600 Ω

Output Attenuation
600-Ω load connected at the
output port 20 × log10

υoutput
υinput

� �
= −12 dB

Input
Input
resistance

600-Ω load connected at the
output port

600 Ω

Use Multisim to verify these characteristics.

SOLUTION:
Multisim can readily be used to calculate the two-port characteristics of the pad
shown in Figure 3–70(b). To find the Thévenin voltage and resistance, draw the cir-
cuit in Multisim without the 600-Ω load as shown in Figure 3–71. Since Multisim
needs an input to do a simulation, connect a 1-V source to the input. Copy the circuit
a second time. Connect a multimeter (DMM) across the output of each circuit. In the
first case, connect the multimeter as an ammeter (a short) to measure iSC. In the

+

–

+

–

XMM1

R10

R5

R2R1 R3

R4

R7R6 R8

R9

7

Short-circuit current iSC

Open-circuit voltage vOC

1 = RIN, 2 = Gain, 3 = Gain in dB 

RT = voc /iSC = 600 Ω

XMM2

1.8 kΩ

600 Ω

200 Ω

V2

1 V

600 Ω 600 Ω

2

1.8 kΩ

600 Ω

200 Ω

V1

1 V

600 Ω 600 Ω

R15

R11 R12 R13

R14

R16V3

INPUT

OUTPUT

1.8 kΩ

600 Ω

200 Ω
600 Ω1 V

600 Ω 600 Ω

Example 3–31

DC Operating Point Analysis

Variable Operating point value

1 V(input)/I(R11) 600

2 V(output)/V(input)      0.25

3 20*log(V(output)/V(input)) –12.04 

FIGURE 3–71
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second case, connect themeter as a voltmeter (an open) tomeasure υOC. Simulate the
circuit. The ammeter reads 416:7 μA, while the voltmeter reads 250 mV, a quarter of
the input voltage vS. Recalling that the Thévenin resistance is given by RT = υOC=iSC,
we calculate that RT = 600Ω. Both υT and RT are as specified.

To determine if the pad actually attenuates the input signal by 12 dB and if the
input sees 600Ω, we copy the circuit a third time, remove the DMM, and add
the 600-Ω load to the circuit, as would be expected in the attenuation application.
We can calculate the input resistance by knowing the current provided by the
source to the circuit and the voltage of the input to the pad. The current through
the first 600-Ω resistor (R11 in the figure) is the current provided by the source
to the pad. The voltage at the input node to the pad is labeled INPUT in
Figure 3–71. We can askMultisim to do the calculation for us by adding the following
expression to the DC Operating Point Analysis request: V(input)/I(R11). The
attenuation (gain) in decibels of the pad is found as

20 × log10
voutput
vinput

� �
On the circuit the output voltage is labeled OUTPUT and the input voltage is

taken at the node labeled INPUT. We ask Multisim to do the calculation as 20∗log
(V(input)/V(output)). Simulating the circuit Multisim returns 600Ω for the input
resistance as specified. For the attenuation Multisim calculates −12:04 dB, also as
specified. Hence, we can conclude that all specifications are met by the device. ■

E v a l u a t i o n E x e r c i s e 3–46

The manufacturer’s data sheet for the following O-pad used to attenuate the signal from a
150-Ω microphone to a 1500-Ω preamp load specifies the following characteristics at the
input and output ports:

PORT CHARACTERISTICS CONDITION VALUE UNITS

Output Thévenin voltage
150-Ω source microphone

connected at the input port
0:031 vS=�5% V

Output Thévenin resistance
150-Ω source microphone

connected at the input port
1500 �5% Ω

Output Attenuation
150-Ω preamp load connected

at the output port 20 × log10
υoutput
υinput

� 	
≤ −30 dB

Input Input resistance
1500-Ω preamp load connected

at the output port
150+ 5% Ω

Use Multisim to simulate the schematic provided by the manufacturer shown in
Figure 3–72 and determine if the specifications are met.

A n s w e r s: All specifications are met.

+
−

vS

12 kΩ

150 kΩ

150 kΩ 1.6 kΩ 1.5 kΩ

12 kΩ

INPUT OUTPUT

Mike O-Pad Preamp

RIN RT vTFIGURE 3–72
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S U M M A R Y
• Node-voltage analysis involves identifying a reference

node and the node to datum voltages at the remaining
N−1 nodes. The KCL connection constraints at the
N−1 nonreference nodes combined with the element
constraintswritten in termsof thenodevoltagesproduce
N−1 linear equations in the unknown node voltages.

• Mesh-current analysis involves identifying mesh cur-
rents that circulate around the perimeter of each mesh
in a planar circuit. The KVL connection constraints
around E−N + 1 meshes combined with the element
constraints written in terms of the mesh currents
produce E−N + 1 linear equations in the unknown
mesh currents.

• Node and mesh analysis can be modified to handle
both types of independent sources using a combination
of three methods: (1) source transformations, (2)
selecting circuit variables so independent sources spec-
ify the values of some of the unknowns, and (3) using
supernodes or supermeshes.

• A circuit is linear if it contains only linear elements and
independent sources. For single-input linear circuits,
the proportionality property states that any output is
proportional to the input. For multiple-input linear cir-
cuits, the superposition principle states that any output
can be found by summing the outputs produced when
each input acts alone.

• A Thévenin equivalent circuit consists of a voltage
source in series with a resistance. A Norton equivalent
circuit consists of a current source in parallel with a
resistor. The Thévenin and Norton equivalent circuits
are related by a source transformation.

• The parameters of the Thévenin and Norton equiva-
lent circuits can be determined using any two of the fol-
lowing: (1) the open-circuit voltage at the interface,
(2) the short-circuit current at the interface, and (3)
the equivalent resistance of the source circuit with
all independent sources turned off.

• Theparameters of theThévenin andNortonequivalent
circuits can also be determined using circuit reduction
methods or by directly solving for the source i−υ rela-
tionship using node-voltage or mesh-current analysis.

• For a fixed source andanadjustable load, themaximum
interface signal levels are υMAX = υOC ðRL = ∞Þ, iMAX =
iSC ðRL = 0Þ, and pMAX = υOC iSC=4 ðRL =RTÞ. When
RL =RT, the source and load are said to be matched.

• Interface signal transfer conditions are specified in
terms of the voltage, current, or power delivered to
the load. The design constraints depend on the signal
conditions specified and the circuit parameters that are
adjustable. Some design requirements may require a
two-port interface circuit. An interface design problem
may have one, many, or no solutions.

P R O B L E M S

O B J E C T I V E 3 – 1 G E N E R A L C I R C U I T A N A L Y S I S
( S E C T . 3 – 1 A N D 3 – 2 )
Given a circuit:
(a) (Formulation) Write node-voltage or mesh-current equa-

tions for the circuit.
(b) (Solution) Solve the equations from (a) for selected signal

variables or input–output relationships using classical or
software computational techniques.

Node-voltagemethod: See Examples 3–1 to 3–7 and Exercises
3–2 to 3–13.
Mesh-current method: See Examples 3–8 to 3–10 and Exercises
3–14 to 3–20.

3–1 Formulate node-voltage equations for the circuit in
Figure P3−1. Arrange the results in matrix form Ax= b.

R5

R1 R3

R2 R4iS

vA vB vC

FIGURE P3−1

3–2 (a) Formulate node-voltage equations for the circuit in
Figure P3−2. Arrange the results in matrix form Ax= b.
(b) Solve these equations for vA and vB.
(c) Use these results to find vx and ix.
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ix

R1

R2

R4R3

+
vx
−

vA

IS

vB

FIGURE P3−2

3–3 (a) Formulate node-voltage equations for the circuit in
Figure P3−3. Arrange the results in matrix form Ax= b.
(b) Solve these equations for vA and vB.
(c) Use these results to find vx and ix.

+
vx
−

3 A

vB15 ΩvA

5 Ω 10 Ω 5 Ω

ix

FIGURE P3−3

3–4 (a) Formulate node-voltage equations for the circuit in
Figure P3−4.
(b) Solve these equations for vA and vB.
(c) Use these results to find vx and ix.

+
vx
−

1 A

vB

2 A

8 ΩvA

10 Ω 5 Ω 4 Ω

ix

FIGURE P3−4

3–5 (a) Formulate node-voltage equations for the circuit
in Figure P3−5. Arrange the results in matrix form Ax= b.
(b) Solve these equations for vA and vC.
(c) Use these results to find vx and ix.

10 kΩ

vC

vB

vA

ix

10 kΩ

10 kΩ

10 mA

+ vx −

+
− 5 V 10 kΩ

FIGURE P3−5

3–6 (a) Choose a ground wisely and formulate node-voltage
equations for the circuit in Figure P3−6.
(b) Solve for vx and ix when R1 =R2 =R3 =R4 = 5 kΩ, vS =
12 V, and iS = 2 mA.

+ vx −

R3

R4

ix
+
−

R2

R1
vSiS

FIGURE P3−6

3–7 The following are a set of node-voltage equations; draw the
circuit they represent.

vA = vS
vB−vA
R1

+
vB−vC
R2

− iS = 0

vC−vA
R3

+
vC−vB
R2

+
vC
R4

= 0

vD = 0

3–8 (a) Choose a ground wisely and formulate node-voltage
equations for the circuit in Figure P3−8.
(b) Solve for vx and ix.
(c) Validate your answers using Multisim.

1 kΩ

2.2 kΩ 1 kΩ

10 mA

1.5 kΩ

1 kΩ 3.3 kΩ

15 V + –vx

ix

−
+

FIGURE P3−8

3–9 (a) Formulate node-voltage equations for the circuit in
Figure P3−9.
(b) Use MATLAB to find symbolic expressions for
the node voltages in terms of the parameters in the
circuit.
(c) Find numeric values for vA, vB, and vC when R1 =
1 kΩ, R2 = 1:5 kΩ, R3 = 2:2 kΩ, R4 = 3:3 kΩ, iS1 = 1 mA, and
iS2 = 3 mA.
(d) Use Multisim to verify your solution to part (c) is
correct.
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R1

R2

R3

R4

A C

B

iS1

iS2

FIGURE P3−9

3–10 (a) Formulate node-voltage equations for the bridge cir-
cuit in Figure P3−10.
(b) Solve for vx and ix whenR1 =R4 = 1 kΩ,R2 =R3 = 1:5 kΩ,
Rx = 680Ω, and vS = 12 V.
(c) Repeat (b) when R4 is a variable resistor that varies
from 10Ω to 10 kΩ. At what value of R4 is the voltage across
Rx = 0 V? Use Multisim to find the value by either varying
R4 by trial and error to approach the answer, or using a
“Parameter sweep” found under Analyses. To use the lat-
ter, proceed as follows: Under “Parameter sweep” select
“Device type:” Resistor; “Name:” your name for our R4;
“Parameter (what you wish to vary):” resistance; “Present
value:” Any value within your range—say, 1 kΩ. Under
“Points to sweep,” choose “Linear” sweep variation type.
“Start” at 10Ω; “Stop” at 10 kΩ. Use 100 points—Multisim
automatically calculates the increment. Under “More
Options” choose “DCOperating Point.”Then go to the output
tab under the Parameter Sweep window. Since you want the
voltage across the 680-Ω resistor, create an expression for
it, such as V 2ð Þ—V 3ð Þ if those are the node names of the
two nodes determining the voltage. Choose “Simulate.” Gra-
pher View will plot a graph of the resistance value versus the
voltage across the 680-Ω resistor. Make sure the grid lines
are shown on your graph. Use the cursor to find the value
of resistance that causes the voltage to go to zero.

vS

R1 R2

R4R3

ix

+ vx −

Rx
+
−

FIGURE P3−10

3–11 (a) Formulate node-voltage equations for the circuit in
Figure P3−11.
(b) Solve for vx and ix when R1 = 1 kΩ, R2 = 1:5 kΩ,
R3 = 500Ω, R4 = 2 kΩ, Rx = 100Ω, and vS = 15 V.

R1

Rx

R2

R4
R3

ix

vs

+
vx
−

+ −

FIGURE P3−11

3–12 (a) Formulate node-voltage equations for the circuit in
Figure P3−12. (Hint: Use a supernode.)
(b) Solve for vx and ix.
(c) Verify your results using Multisim.

+
vx
−

−
+15 V

ix

1.5 kΩ

1 kΩ
5 V

1 kΩ

2 kΩ

+ −

FIGURE P3−12

3–13 (a) Formulate mesh-current equations for the circuit in
Figure P3−13. Arrange the results in matrix form Ax=b.
(b) Solve for iA and iB.
(c) Use these results to find vx and ix.

iA
+
−

vS

R1

R2 R4

R3

iB
−
vx
+

ix

FIGURE P3−13

3–14 (a) Formulate mesh-current equations for the circuit in
Figure P3−14. Arrange the results in matrix form Ax=b.
(b) Solve for iA, iB, and iC.
(c) Use these results to find vx and ix.

iA

iC

10 kΩ

10 kΩ

10 kΩ
−
+

100 V

5 kΩ

22 kΩiB

− vx +

ix

FIGURE P3−14
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3–15 (a) Formulate mesh-current equations for the circuit in
Figure P3−15. Arrange the results in matrix form Ax=b.
(b) Solve for iA and iB.
(c) Use these results to find vx and ix.

+

vx

−

−
+

4 kΩ

15 V 15 V

2 kΩ

iB

ix

4 kΩ

15 V

iA

4 kΩ

+
−

+
−

2 kΩ

FIGURE P3−15

3–16 (a) Formulate mesh-current equations for the circuit in
Figure P3−16. Arrange the results in matrix form Ax=b.
(b) Solve for iA and iB.
(c) Use these results to find vx and ix.
(d) Solve this problem using node-voltage equations and
compare your answers with the mesh-current approach.
Which method, in this case, was simpler?

iA iB

+
−5 V

10 kΩ 10 kΩ

+ vx −

+
− 10 V

5 kΩ

ix

FIGURE P3−16

3–17 (a) Formulate mesh-current equations for the circuit in
Figure P3−17.
(b) Formulate node-voltage equations for the circuit in
Figure P3−17.
(c) Which set of equations would be easier to solve? Why?
(d) Using MATLAB, find vx and ix in terms of the mesh-
current variables.
(e) Using MATLAB, find vx and ix in terms of the node-
voltage variables.

+
vx
−

iA iB

iC

RE

RA RC

RD
+
−

vS

vA
vC

vB

vD

RB

ix

FIGURE P3−17

3–18 (a) Formulate mesh-current equations for the circuit in
Figure P3−18. (Hint: Use a supermesh.)
(b) Solve for vx and ix when R1 = 2:7 kΩ, R2 = 1:5 kΩ, R3 =
680Ω, R4 = 2:2 kΩ, R5 = 3:3 kΩ, iS = 10 mA, and vS = 12 V.
(c) Use Multisim to verify your results in part (b) and then
find the total power dissipated in the circuit.

ix

vS

vxiSR1

R2 R3

R4

R5

+ −

−

+

FIGURE P3−18

3–19 (a) For the circuit of Figure P3−19 solve for iA, iB, and iC
using supermesh principles.
(b) Use these results to find vx.

iAR1

R2

R4

R3

iB
−
vx
+

iS2

iS1

iC

FIGURE P3−19

3–20 (a) Formulate mesh-current equations for the circuit in
Figure P3−20.
(b) Use MATLAB to find symbolic expressions for vx and ix
in terms of the parameters in the circuit.
(c) Find numeric values for vx and ix when R1 =R2 = 8:2 kΩ,
R3 = 2:2 kΩ,R4 = 3:3 kΩ, iS = 2:5 mA, vS1 = 15 V, and vS2 = 5 V.
(d) Find the power supplied by vS1.
(e) Use Multisim to verify your solutions to parts (c) and (d)
are correct.

+
−

+
vx
−

vS1

vS2

iSR1

R3

R2

R4

+ −

ix

FIGURE P3−20

3–21 The circuit in Figure P3−21 seems to require two super-
meshes since both current sources appear in two meshes.
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However, sometimes rearranging the circuit diagram will
eliminate the need for a supermesh.
(a) Show that supermeshes can be avoided in Figure P3−21
by rearranging the connection of resistor R6.
(b) Formulate mesh-current equations for the modified cir-
cuit as redrawn in part (a).
(c) Solve for vx when R1 =R2 =R3 =R4 = 1 kΩ, R5 =R6 =
10 kΩ, iS1 = 100mA, and iS2 = 50mA.

B C

DA

+
vx
−

iS1 iS2
R6

R5

R1 R2 R3 R4

FIGURE P3−21

3–22 (a) Formulate mesh-current equations for the circuit in
Figure P3−22.
(b) Formulate node-voltage equations for the circuit in
Figure P3−22.
(c) Which set of equations would be easier to solve? Why?
(d) Find vx and ix using whichever method you prefer.

+
−

+

vx

−

15 V
−
+

ix

8 kΩ

4 kΩ
10 V

2 kΩ

2.5 mA

vA vB vC

iA iB

iC

FIGURE P3−22

3–23 Use simple engineering intuition to find the input resist-
ance of the circuit in Figure P3−23. Use either node-voltage
or mesh-current analysis to prove your intuition. (Hint: It is a
balanced bridge.)

+
−

vS

R

R

R
R

R

R

RIN

FIGURE P3−23

3–24 In Figure P3−24 all of the resistors are 1 kΩ and vS = 12 V.
The voltage at node C is found to be vC = −2:4 V when node
B is connected to ground.
(a) Find the node voltages vA and vD, and the mesh currents
iA and iB.
(b) Use Multisim to validate your answers.

+
−

iA iB

R1

R2

R3

R4

A C

D

B

vS

FIGURE P3−24

3–25 Use Figure P3−24 and MATLAB to solve the following
problems:
(a) Using mesh-current analysis, find a symbolic expression
for iA in terms of the circuit parameters.
(b) Compute the ratio vS=iA.
(c) Find a symbolic expression for the equivalent
resistance of the circuit by combining resistors in series
and parallel. Compare your answer to the results from
part (b).

3–26 (a) Formulate mesh-current equations for the circuit in
Figure P3−26.
(b) Formulate node-voltage equations for the circuit in
Figure P3−26.
(c) Which set of equations would be easier to solve?
Why?
(d) UseMultisim to find the node voltages vA and vB and the
mesh currents iA, iB, and iC in Figure P3−26.

100 mA15 kΩ

vB
+ −

22 kΩ
50 V

47 kΩ

22 kΩ

vA

iA

iC

iB

FIGURE P3−26

3–27 (a) Formulate mesh-current equations for the circuit
in Figure P3−27. Arrange the results in matrix form Ax=b.
(b) Use MATLAB and mesh-current analysis to solve for
the mesh currents iA, iB, iC, and iD.
(c) Formulate node-voltage equations for the circuit in
Figure P3−27. Arrange the results in matrix form Ax=b.
(d) UseMATLAB and node-voltage analysis to solve for the
mesh currents iA, iB, iC, and iD and compare the effort
required with each technique, that is, mesh-current versus
node-voltage analysis.
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(e) Use Multisim to verify your results in the previous
two parts.

iD

vA

vB

vD

vC

iC

iBiA

47 kΩ 33 kΩ

22 kΩ

100 kΩ

+
−24 V

50 V

+ −

68 kΩ 81 kΩ

FIGURE P3−27

O B J E C T I V E 3 – 2 L I N E A R I T Y P R O P E R T I E S
( S E C T . 3 – 3 )
Given a linear resistance circuit:
(a) Use the proportionality principle to find selected signal

variables.
(b) Use the superposition principle to find selected signal

variables.
See Examples 3–11 to 3–13 and Exercises 3–21 to 3–26 for
proportionality.
See Examples 3–14 and 3–15, and Exercises 3–27 to 3–29 for
superposition.

3–28 (a) Find vO for theblockdiagram shown inFigureP3−28(a).

(b) Find the proportionality constant K for the circuit in
Figure P3−28(b).
(c) Find the proportionality constant K for the circuit in
Figure P3−28(c).

5.6 mV
0.2

(a)

vO

6.0 mA
K

(b)

150 μA

12 V
K

(c)

150 μA

FIGURE P3−28

3–29 Design a voltage-divider circuit that will realize the

block diagram in Figure P3−28(a).

3–30 Design a current-divider circuit that will realize the

block diagram in Figure P3−28(b).

3–31 Using a single resistor, design a circuit that will real-

ize the block diagram in Figure P3−28(c).

3–32 Find the proportionality constantK = vO=vS for the circuit
in Figure P3−32.

+
−

vS 2 kΩ

2 kΩ 1 kΩ

+

vO

−

FIGURE P3−32

3–33 Find the proportionality constant K = iO=vS for the circuit
in Figure P3−33.

+
−vS 1 kΩ

500 Ω 1 kΩ

iO

FIGURE P3−33

3–34 Find the proportionality constant K = vO=iS for the circuit
in Figure P3−34.

iS 56 kΩ
22 kΩ

33 kΩ

+

vO

−

FIGURE P3−34

3–35 Find the proportionality constant K = iO=iS for the circuit
in Figure P3−35.

iS R1 R2

R4

R3 iO

FIGURE P3−35
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3–36 Find the proportionality constant K = vO=vS for the

circuit in Figure P3−36. Then select values for the resistors so
that vO is −0:1 vS.

vS

R3

R1

R4

R2

−

vO

+

+
−

K

FIGURE P3−36

3–37 Use the unit output method to find K and vO in
Figure P3−37.

20 mA 47 kΩ
22 kΩ

22 kΩ

+

vO

−

K

FIGURE P3−37

3–38 Use the unit output method to find K and vO in
Figure P3−38.

+

vO

−

+
− 2.5 kΩ24 V 3 kΩ 2 kΩ

1 kΩ1 kΩ1.25 kΩ K

FIGURE P3−38

3–39 Use the unit output method to find K in Figure
P3−39. Then select a value for vS that will produce an output
current of iO = 250 mA.

+
−

iO
vS 60 Ω 40 Ω

47 Ω30 Ω

20 Ω

K

FIGURE P3−39

3–40 Use the superposition principle to find vO in Figure
P3−40.

+
−

+
−

15 V 5 V

200 Ω

200 Ω

200 Ω

vO

+

−

FIGURE P3−40

3–41 Use the superposition principle to find iO and vO in
Figure P3−41. Verify your answer using Multisim.

1 kΩ 2 kΩ

2 kΩ

+
−

12 V6 mA

iO

vO

+

−

FIGURE P3−41

3–42 Use the superposition principle to find vO in Figure
P3−42.

+
−

5.6 kΩ 3.3 kΩ

24 V 6.8 kΩ 5 mA 10 kΩ

vO −+

FIGURE P3−42

3–43 Use the superposition principle to find vO in Figure
P3−43.

+

vO

–
20 mA

10 mA

2 kΩ

5 kΩ

2.5 kΩ3 kΩ

FIGURE P3−43

3–44 Use the superposition principle to find iO in Figure P3−44.
Verify your answer using Multisim.
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iO

+
−

10 kΩ

5 kΩ 5 kΩ

15 kΩ 10 kΩ

20 V10 V
+
−

1 mA

FIGURE P3−44

3–45 (a) Use the superposition principle to find vO in terms of
v1, v2, and R in Figure P3−45. (This circuit is a 3-bit R – 2R
network.)
(b) Use MATLAB and node-voltage analysis to verify your
answer symbolically.

+

vO

−

+
− +

−
+
−

R

R

RR

2R

v2

v1
v3

2R

A

B

FIGURE P3−45

3–46 (a) Use the superposition principle to find vO in terms of
vS, iS, and R in Figure P3−46.
(b) Use MATLAB and node-voltage analysis to verify your
answer symbolically.

+

vO

−

vS

2R

R

R A

B

iS+
−

FIGURE P3−46

3–47 A linear circuit containing two sources drives a 100-Ω load
resistor. Source number 1 delivers 1W to the load when
source number 2 is off. Source number 2 delivers 9W to
the load when source number 1 is off. Find the power deliv-
ered to the load when both sources are on. (Hint: The answer
is not 10W. Why?)

3–48 Ablock diagram of a linear circuit is shown in Figure P3–48.
When vS = 10 V and iS = 10 mA the output voltage vO = 1 V.
The output voltage is 2 V when the voltage source is

vS = 10 V and the current source is off or iS = 0 mA. Find
the output voltage when vS = 20 V and iS = −20mA.

vS

iS vO

K1

K2

+
+

FIGURE P3−48

3–49 A certain linear circuit has four input voltages and one
output voltage vO. The following table lists the output for dif-
ferent values of the four inputs. Find the input-output rela-
tionship for the circuit. Specifically, find an expression for
vO in terms of the four input voltages.

υS1 Vð Þ υS2 Vð Þ υS3 Vð Þ υS4 Vð Þ υO Vð Þ
2 4 –4 1 20

1 2 2 1.5 –4

1 4 2 2 –1

0 5 3 –1 3

3–50 When the current source is turned off in the circuit of
Figure P3−50 the voltage source delivers 25W to the load.
How much power does it deliver to the load when both
sources are on? Explain your answer.

+
−

100 Ω

100 Ω
100 V

1 A

PL
PS1

FIGURE P3−50

O B J E C T I V E 3 – 3 T H É V E N I N A N D N O R T O N
E Q U I V A L E N T C I R C U I T S ( S E C T . 3 – 3 – 4 )
Given a linear resistance circuit:
(a) Find the Thévenin or Norton equivalent at a specified pair

of terminals.
(b) Use the Thévenin or Norton equivalent to find the signals

delivered to linear or nonlinear loads.
See Examples 3–16 to 3–21 and Exercises 3–30 to 3–35.

3–51 For the circuit in Figure P3−51, find the Thévenin and
Norton equivalent circuits.
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+
− 15 kΩ

vT, RT, iN

25 V

10 kΩ 10 kΩ

FIGURE P3−51

3–52 For the circuit in Figure P3−52, find the Thévenin and
Norton equivalent circuits.

vT, RT, iN

1 kΩ1 mA

1 kΩ

FIGURE P3−52

3–53 For the circuit of Figure P3−53, find the Thévenin equiv-
alent circuit.

+

−

vT, RT

1.5 mA

50 kΩ 50 kΩ 30 kΩ

25 kΩ 20 kΩ

FIGURE P3−53

3–54 (a) Find the Thévenin or Norton equivalent circuit seen
by RL in Figure P3−54.

(b) Use the equivalent circuit found in part (a) to find iL
if RL = 15 kΩ.

iL

RL15 V 10 kΩ

5 kΩ5 kΩ

+
−

FIGURE P3−54

3–55 (a) Find the Thévenin or Norton equivalent circuit seen
by RL in Figure P3−55.
(b) Use the equivalent circuit found in part (a) to find iL in
terms of iS, R1, R2, and RL.
(c) Check your answer to part (b) using current division.

iS R1

R2

RL

B

A

iL

FIGURE P3−55

3–56 Find the Thévenin equivalent circuit seen by RL in
Figure P3−56. Find the voltage across the load when
RL = 5Ω, 10Ω, and 20Ω.

10 V

10 Ω

10 Ω

10 Ω10 Ω

10 Ω

RL
+
−

FIGURE P3−56

3–57 Find the Norton equivalent seen by RL in Figure P3−57.
Find the current through the load when RL = 4:7 kΩ, 15 kΩ,
and 68 kΩ.

iL

RL20 mA 15 kΩ

1.5 kΩ

15 kΩ

FIGURE P3−57

3–58 You need to determine the Thévenin equivalent circuit
of a more complex linear circuit. A technician tells you
she made two measurements using her DMM. The first
was with a 10-kΩ load and the load current was 91 μA. The
second was with a 1-kΩ load and the load voltage was
124 mV. Calculate the Thévenin equivalent circuit as shown
in Figure P3−58.

vT

RT

10 kΩ 1 kΩ+
−

iL=91μA

+

vL=124 mV

–

FIGURE P3−58

3–59 Find the Thévenin equivalent seen byRL in Figure P3−59.
Find the power delivered to the load when RL = 50 kΩ.
Repeat for RL = 100 kΩ.
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RL

pL

+
− 22 kΩ

68 kΩ 91 kΩ

12 V

FIGURE P3−59

3–60 (a) Use Multisim to find the Norton equivalent at term-
inals A and B in Figure P3−60. (Hint: Use the multimeter
to find the open-circuit voltage and short-circuit current at
the requisite terminals.)
(b) Use the Norton equivalent circuit found in part (a) to
determine the power dissipated in RL when it is equal
to 37 kΩ.
(c) Use Multisim to simulate both the original and the
Norton equivalent circuits with RL = 37 kΩ. Verify that
the power dissipated by the load is the same in both
situations.

A

B

RL
+
− 120   A

47 kΩ

56 kΩ

82 kΩ

56 kΩ

12 V

FIGURE P3−60

3–61 The purpose of this problem is to use Thévenin equiva-
lent circuits to find the current iL in Figure P3−61. Find the
Thévenin equivalent circuit seen looking to the left of term-
inalsA andB. Find the Thévenin equivalent circuit seen look-
ing to the right of terminals C and D. Connect these
equivalent circuits together with the load resistor and find
the current iL.

iLA C

B D

5 kΩ

10 kΩ 10 kΩ 2 kΩ

4 kΩ

3 mA20 V

+
–

FIGURE P3−61

3–62 The circuit in Figure P3−62 was solved earlier using
supermeshes (Problem 3–43). In this problem solve for the
voltage across the load resistor vL by first finding the Théve-
nin equivalent circuit seen by the load resistor. Find vL
when RL = 2:5 kΩ.

+

vL

–20 mA

10 mA

2 kΩ

5 kΩ

RL3 kΩ

FIGURE P3−62

3–63 Assume that Figure P3−63 represents a model of the aux-
iliary output port of a car. The output current is i=1 A when
measured by a very low-resistance ammeter. The voltage is
v= 12 V when measured by a very high-input resistance volt-
meter. Suppose you wanted to charge a 9-V battery by con-
necting the battery at the port, how much current would the
port deliver to the battery?

−

+

v

i

FIGURE P3−63

3–64 The i – v characteristic of the active circuit represented by
Figure P3−63 is 5v + 500i= 100. Find the output voltage
when a 100-Ω resistive load is connected.

3–65 You have successfully completed the first course in
Circuits I, and as part of an undergraduate work–study pro-
gram your former professor has asked you to help her grade a
Circuits I quiz. On the quiz, students were asked to find the
power supplied by the source both to the 10-kΩ load RLð Þ and
to the entire circuit as shown in Figure P3−65. Your professor
asks you to help her by creating a grading sheet.
(a) Solve the quiz and establish reasonable A, B, C, D, and
F cuts for incorrect solutions.
(b) A particular student correctly finds the Thévenin equiv-
alent circuit seen by the resistive load and calculates the
power to the load using vT2=RL. He then does a source
transformation, correctly finding the Norton equivalent of
the circuit. He calculates the source power using vT × iN.
What grade would you give him?
(c) Another student finds pL = 5:625 mW and pS = 22:5 mW,
but provides no work to justify her answers. What grade
would you give her?
(d) A third student first finds the Norton equivalent, and
then finds the current through the load using a current divider
and calculates the power in the load using iL2RL. He figures
correctly what the parallel voltage would be across the Nor-
ton circuit and the load vL, and then calculates pS = iN × vL.
What grade would you give him?
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RL

+
−

10 kΩ 10 kΩ

10 kΩ

10 kΩ

10 kΩ

15 V

FIGURE P3−65

3–66 The Thévenin equivalent parameters of a practical
voltage source are vT = 30 V and RT = 300Ω. You want the
maximum current to the load without exceeding 10mA.
Find the smallest 5% load resistance (see inside back cover)
for which the load current does not exceed 10:0 mA.

3–67 Use a sequence of source transformations to find the
Thévenin equivalent at terminals A and B in Figure P3−67.
Then select a resistor to connect across A and B so that
2 V appears across it.

1 A 3 A20 V

15 Ω

15 Ω

5 Ω
−
+

5 V

B

A

5 Ω

+−

FIGURE P3−67

3–68 The circuit in Figure P3−68 provides power to a number
of loads connected in parallel. The circuit is protected by a
1-mA fuse with a nominal 100-Ω resistance. Each load is
10 kΩ. What is the maximum number of loads the circuit
can drive without blowing the fuse?

10 kΩ 1 mA

10 kΩ
100 Ω

20 V +
−

RL
=10 kΩ each

2.5 kΩ

FIGURE P3−68

3–69 Find the Thévenin equivalent at terminals A and B in
Figure P3−69. Use Multisim to verify your result.

10 mA

15 V

500 Ω

2 kΩ

1 kΩ

+−

A

B

FIGURE P3−69

3–70 A nonlinear resistor is connected across a two-terminal
source whose Thévenin equivalent is vT = 5 V and
RT = 500Ω. The i – v characteristic of the resistor is
i= 10‒4 v + 2 v3:3

� �
. Use the MATLAB function solve to

find the operating point for this circuit and determine the
voltage across, the current through, and the power dissipated
in the nonlinear resistor.

3–71 A blue LED is connected across a two-terminal source
whose Thévenin equivalent is vT = 3 V and RT = 10Ω. The
i – v characteristic of the LED is i= 10‒12 e10v ‒ 1

� �
.

Figure P3−71 shows the LED’s i – v characteristic. Using
either MATLAB or a graphical approach, determine the
voltage across and current through the LED.

0.2

0.15

0.1

0.05A
m

p
er

es

Volts

0

−0.05
−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

FIGURE P3−71

3–72 Find the Norton equivalent seen by RL in Figure P3−72.
Select the value of RL so that
(a) 3 V is delivered to the load.
(b) 300 mA is delivered to the load.
(c) 100 mW is delivered to the load.

RL

20 Ω

20 Ω500 mA 40 Ω

A

B

FIGURE P3−72
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3–73 Find the Thévenin equivalent seen byRL in Figure P3−73.

10 kΩ

10 kΩ

10 kΩ

15 V

B

A

50 mA
+
− RL

FIGURE P3−73

3–74 Find the Thévenin equivalent seen byRL in Figure P3−74.
Select a value of RL so that 5 V appears across it.

+
−

30 Ω

60 Ω 20 Ω

20 Ω

RL

60 V A B

FIGURE P3−74

O B J E C T I V E 3 – 4 M A X I M U M S I G N A L T R A N S F E R
( S E C T . 3 – 5 )
Given a linear resistance circuit:
(a) Find the maximum voltage, current, and power available at

a specified pair of terminals.
(b) Find the resistive loads required to obtain the maximum

available signal levels.
See Example 3–22 and Exercise 3–36.

3–75 For the circuit of Figure P3−75, find the value of RL that
will result in

(a) Maximum voltage. What is that voltage?
(b) Maximum current. What is that current?
(c) Maximum power. What is that power?

10 mA

7 kΩ

3 kΩ RL

FIGURE P3−75

3–76 For the circuit of Figure P3−76, find the value of RL that
will result in:
(a) Maximum voltage. What is that voltage?
(b) Maximum current. What is that current?
(c) Maximum power. What is that power?

100 V 3.3 kΩ

4.7 kΩ 1 kΩ

RL
+
−

FIGURE P3−76

3–77 The resistance R in Figure P3−77 is adjusted until maxi-
mum power is delivered to the load consisting of R and the
12-kΩ resistor in parallel.
(a) Find the required value of R.
(b) How much power is delivered to the load?

3 kΩ

2 kΩ

1 kΩ

R 12 kΩ

Load

50 mA

FIGURE P3−77

3–78 When a 5-kΩ resistor is connected across a two-terminal
source, a current of 15 mA is delivered to the load. When a
second 5-kΩ resistor is connected in parallel with the first,
a total current of 20 mA is delivered. Find the maximum
power available from the source.

3–79 Find the value of R in the circuit of Figure P3−79 so that
maximum power is delivered to the load.What is the value of
the maximum power?

50 Ω R

5 kΩ 2 kΩ

Load

10 V +
−

FIGURE P3−79

3–80 For the circuit of Figure P3−80, find the value of RL that
will result in:
(a) Maximum voltage. What is that voltage?
(b) Maximum current. What is that current?
(c) Maximum power. What is that power?

RL3 kΩ24 mA

1.25 kΩ

1 kΩ

iL

+

vL

−

FIGURE P3−80
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3–81 A 1-kΩ load needs 10 mA to operate correctly.

Design a practical power source to provide the needed cur-
rent. The smallest source resistance you can practically design
for is 50Ω, but you can add any other series resistance if you
need to.

3–82 A practical source delivers 25 mA to a 300-Ω load. The
source delivers 5 V to a 100-Ω load. Find themaximum power
available from the source.

3–83 A10-V source is shown inFigure P3−83 that is used to

power a 100-Ω load. Clearly, the load does not match the
source resistance for maximum power. A young engineer
decides to obtain maximum power from the source by adding
a 100-Ω shunt resistor across the load. Has he achieved his
goal of having the load obtain maximum power from the
source? Explain.

+
–

50 Ω

100 Ω 100 Ω

Load

Added resistor

10 V

FIGURE P3−83

O B J E C T I V E 3 – 5 I N T E R F A C E C I R C U I T D E S I G N A N D
E V A L U A T I O N ( S E C T . 3 – 6 )
Given the signal transfer goals at a source-load interface, design
one or more two-port interface circuits to achieve the goals and
evaluate the alternative design solutions.
See Examples 3–23 to 3–31 and Exercises 3–37 to 3–46.

3–84 (a) Select RL and design an interface circuit for the

circuit shown in Figure P3−84 so that the load voltage is 2 V.

(b) Suppose that the load was set at 15 kΩ. Now design an
appropriate interface so that the load voltage is 2 V.

10 kΩ

RL5 kΩ10 kΩ10 V +
−

Interface
circuit

FIGURE P3−84

3–85 The source in Figure P3−85 has a 100-mA output

current limit. Design an interface circuit so that the load
voltage is v2 = 20 V and the source current is i1 < 50mA.

50 Ω

100 V
Interface
circuit

500 Ω+
−

i1 i2

v2

−

+

v1

−

+

FIGURE P3−85

3–86 Figure P3−86 shows an interface circuit connecting a

15-V source to a diode load. The i – v characteristic of the
diode is i=10−14 e40 v − 1

� �
.

(a) Design an interface circuit so that v= 0:7 V.
(b) Validate your answer using MATLAB.

+
−

i

15 V
Interface

circuit

+

−

v

FIGURE P3−86

3–87 Designthe interface circuit inFigureP3−87so that the

voltage delivered to the load is v=10V ±10%. Use one or
more of only the following standard resistors: 1:3 kΩ, 2 kΩ,
3 kΩ, 4:3 kΩ, 6:2 kΩ, and 9:1 kΩ. These resistors all have a tol-
erance of ± 5%, which you must account for in your design.
Repeat the problem if the desired load voltage is 4:3 V ± 10%.

+
−20 V 10 kΩ

Interface

circuit

+

v2

−

+

v1

−

i1 i2500 Ω

FIGURE P3−87

3–88 In this problem, you will design two interface

circuits that deliver 150 V to the 5-kΩ load shown in
Figure P3−88.
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(a) Design a parallel resistor interface to meet the

requirements.

(b) Convert the source circuit to its Thévenin

equivalent and then design a series interface to meet the
requirement.

(c) If minimizing the power that the current source

delivers is the primary consideration, which of your two
designs best meets the requirement?

+

vL=150 V

–

5 kΩ 5 kΩ10 kΩ90 mA Interface
circuit

FIGURE P3−88

3–89 Two teams are competing to design the interface cir-

cuit in Figure P3−89 so that the 25 mW±10% is delivered to
the 1-kΩ load resistor. Their designs are shown in
Figure P3−89. Which solution is better considering the use
of standard values, number of parts, and power required by
the source? Would your choice be different if the power
had to be within ± 5%?

+
−

50 Ω

20 V

Team A

PL

1 kΩ

2.2 kΩ  680 Ω

+
−

50 Ω

20 V

Team B

PL

1 kΩ

33 Ω 33 Ω

FIGURE P3−89

3–90 The bridge-T attenuation pad shown in Figure P3−90

was found in a drawer. Youneed an attenuation pad that would
match to a 75-Ω source and a 75-Ω load and provide for a
– 12-dB drop of signal (reduction of four times). Use Multi-
sim to determine if the device will work.

225 Ω vT = vS /4

RT = 75 Ω

75 Ω 75 Ω

25 Ω

Attenuation pad

vIN = vS

RIN = 75 Ω

FIGURE P3−90

3–91 Design two interface circuits in Figure P3−91

so that the power delivered to the load is 100 mW. In one
case use a series interface resistor, and in the second case
use a parallel resistor to attain the same result. Evaluate your
interface circuits and determine which one results in the
source delivering less power.

100 mW
25 Ω50 Ω

50 Ω 50 Ω10 V +
−

Interface
circuit

FIGURE P3−91

3–92 Design the interface circuit in Figure P3−91 so that

the voltage delivered to the load is 1:0 V. Repeat for a voltage
of 3:0 V.

3–93 Design the interface circuit in Figure P3−93 so that

RIN = 100Ω and the current delivered to the 50-Ω load is
i=50 mA. (Hint: Use an L-pad.)

100 Ω

50 Ω15 V
+
−

+

RIN ROUT

−

vInterface
circuit

i

FIGURE P3−93

3–94 Design the interface circuit in Figure P3−93 so that

ROUT = 50Ω and the voltage delivered to the 50-Ω load is
v= 2:5 V. (Hint: Use an L-pad.)
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3–95 The circuit in Figure P3−95 has a source resistance

of 50Ω and a load resistance of 300Ω. Design the interface
circuit so that the input resistance is RIN = 50Ω ± 10% and
the output resistance is ROUT = 300Ω ±10%. Validate your
design using Multisim.

50 Ω

300 Ω
+
−

RIN ROUT

vS
Interface
circuit

FIGURE P3−95

3–96 It is claimed thatboth interface circuits inFigureP3−96

will deliver v=4 V to the 75-Ω load. Verify this claim. Which
interface circuit consumes the least power?Which has an out-
put resistance that best matches the 75-Ω load?

+
−20 V

+

v

−

150 Ω

75 Ω

either

Circuit 1 Circuit 2

i

150 Ω 15 Ω

100 Ω

Interface
circuit

ROUT

FIGURE P3−96

I N T E G R A T I N G P R O B L E M S

3–97 Audio Speaker Resistance-Matching Network

A company is producing an interface network that they claim
would result in an RIN of 600Ω ±2% and ROUT of 16, 8, or
4Ω ± 2%—depending on whether the connected speakers
are 16, 8, or 4Ω—selectable via a built-in switch. The design
is shown in Figure P3−97. Prove or disprove their claim.

+
−

600 Ω

vS

592 Ω

8 Ω

8 Ω

Audio matching network

4 Ω

4 Ω
16, 8, or 4 Ω

4 Ω

16 Ω

FIGURE P3−97

3–98 Attenuator Analysis

In Figure P3−98, a two-port attenuator connects a 600-Ω source
to a 600-Ω load. Find the power delivered to the load in terms of
vS. Remove the attenuator and find the power delivered to the
load when the source is directly connected to the load. By what
fraction does the attenuator reduce the power delivered to the
600-Ω load? Express the fraction in dB. Verify your results
using Multisim.

600 Ω

600 Ω

300 Ω300 Ω

450 ΩvS
+
−

ATTENUATOR

FIGURE P3−98

3–99 Attenuator Design

Use the general procedure shown in Application Example 3–31
to design a 75Ω to 75Ω, < −20 dB attenuator with the following
characteristics:

PORT CHARACTERISTICS CONDITION VALUE UNITS

Output Thévenin
voltage

75-Ω source
connected at
the input port

vT < vS/10 V

Output Thévenin
resistance

75-Ω source
connected at
the input port

75 Ω

Output Attenuation 75-Ω load
connected at
the output port

20 × log10
voutput
vinput

� �
<−20

dB

Input Input
resistance

75-Ω load
connected at
the output port

75 Ω

Use Multisim to verify that your design meets these characteristics.
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3–100 Interface Circuit Design

Using no more than three 50-Ω resistors, design the interface
circuit in Figure P3−100 so that v=4 V and i= 50mA regardless
of the value of RL.

+
−

50 Ω

12 V RL
Interface

circuit

+

v

−

i

FIGURE P3−100

3–101 Battery Design

A satellite requires a battery with an open-circuit voltage
vOC = 36 V and a Thévenin resistance RT = 10Ω. The battery
is to be constructed using series and parallel combinations of
one of two types of cells. The first type has vOC = 9 V,
RT = 4Ω, and a weight of 30 g. The second type has vOC = 4 V,
RT = 2Ω, and a weight of 18 g. Design a minimum weight bat-
tery that meets the open-circuit voltage and Thévenin resistance
requirements.

3–102 Design Evaluation

Arequirementexists foracircuit todeliver0 to6 V to a 100-Ω load
from a 24-V source rated at 3:0W. Two proposed circuits are
shown in Figure P3−102. Which one would you choose and why?

+
− 100 Ω100 Ω24 V

150 Ω

Circuit 1

+
− 100 Ω100 Ω24 V

150 Ω

Circuit 2

vO

+

−

vO

+

−

FIGURE P3−102

3–103 Design Interface Competition

The output of a transistorized power supply is modeled by the
Norton equivalent circuit shown in Figure P3−103. Two teams
are competing to design the interface circuit so that
25 mW±10% is delivered to the 1-kΩ load resistor. Their
designs are shown in Figure P3−103. Which solution is better
considering the use of standard values, number of parts, and

power required by the source? Would your choice be different
if the power had to be within ± 5%?

50 Ω

400 mA

Team A

PL
3 kΩ

50 Ω 16 Ω

400 mA

Team B

PL

1 kΩ

1 kΩ

FIGURE P3−103

3–104 Analysis of Competing Interface Circuits

Using MATLAB
Figure P3−104 displays two generalized interface circuit designs.
In both circuits, resistors R1 and R2 connect a Thévenin equiv-
alent circuit to a load resistor. Using MATLAB, develop sym-
bolic expressions for the load current, iL, and the input
resistance,RIN, for each circuit in terms of the given parameters.
Using these two expressions, now use the MATLAB command
solve to solve for R1 and R2 in terms of iL and RIN. Let
vT = 15 V, RT = 100Ω, RL = 50Ω, iL = 50 mA, and RIN = 100Ω.
Can you use both types of interface circuits to find suitable
values for R1 and R2 to meet these specifications? Compare
your interface design(s) with the solution to Problem 3–93.

+
−

RT

vT

iL

RLR2

R1

RIN

+
−

RT

vT

iL

RLR2

R1

RIN

(a)

(b)

FIGURE P3−104
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3–105 Maximum Power Transfer Using Multisim

Figure P3−105 shows a circuit with two sources, a fixed load and
a resistor R. Select R for maximum power transfer to the load.
The result is not an obvious one. (Hint: Simulate in Multisim
using the “Parameter sweep” under “Analyses” and do a linear
sweep for R from 1Ω to 10MΩ. Plot the power transferred to
the load P RLð Þ versus the variable R. What is the maximum
power transferred?)

R

4 kΩ20 kΩ 5 mA

10 V

+
−

FIGURE P3−105

3–106 Noninverting Summer

Anoninverting summer interfacedevice is shown inFigureP3−106.
Of importance is that the input to the device has infinite

resistance—that is, no current flows into the device. The output
voltage for this configuration is two times the input voltage.
Develop a relationship for the voltage vL across RL with respect
to the two input voltages and the two input resistances.

R1

RL

+

 vL

–

R2

RIN = ∞ Ω

vS1

vS2

+
−

+
−

×2

FIGURE P3−106

149INTEGRATING PROBLEMS



C H A P T E R 4 ACTIVE CIRCUITS

Then came the morning of Tuesday, August 2, 1927, when the concept of the negative feedback amplifier came to me in a flash while
I was crossing the Hudson River on the Lackawanna Ferry, on my way to work.

Harold S. Black, 1927,
American Electrical Engineer

Some History Behind This Chapter
The integrated circuit operational amplifier (OP AMP) is the
workhorse of present-day linear electronic circuits. However,
to operate as a linear amplifier, the OP AMP must be pro-
vided with “negative feedback.” The negative feedback
amplifier is one of the key inventions of all time. During
the 1920’s, Harold S. Black (1898–1983) had been working
for several years without much success on the problem of
improving the performance of vacuum tube amplifiers in tel-
ephone systems. The feedback amplifier solution came to
him suddenly on the way to work. He realized that by utiliz-
ing negative feedback, he could obtain a desired reduction in
distortion at the expense of a sacrifice in amplification. He
documented his invention by writing the key concepts of neg-
ative feedback on his morning copy of the New York Times.
His invention paved the way for the development of world-
wide communication systems and spawned completely new
areas of technology, such as feedback control systems and
robotics. Two other achievements were necessary before
low-noise amplifiers could become practical and common-
place: the invention of the transistor by John Bardeen, Walter
Brattain, and William Shockley in 1947, and the invention of
the integrated circuit by Jack S. Kilby in 1958.

Why This Chapter Is Important Today
This is an important chapter for all engineering disciplines.
You will be introduced to modern electronic devices and
how they can be modeled. The utility of these devices will
be apparent when you design OP AMP circuits that provide
signal conditioning in instrumentation systems. You will also
be introduced to criteria used to evaluate alternative designs.
That is, you will begin to function as an engineer making
judgments about the best solution to a problem.

Chapter Sections
4–1 Linear Dependent Sources
4–2 Analysis of Circuits with Dependent Sources
4–3 The Operational Amplifier
4–4 OP AMP Circuit Analysis
4–5 OP AMP Circuit Design
4–6 OP AMP Circuit Applications

Chapter Learning Objectives
4-1 Linear Active Circuits (Sects. 4–1 and 4–2)

Given a linear resistance circuit containing dependent
sources, find selected output signals, input-output rela-
tionships, or input-output resistances.

4-2 OP AMP Circuit Analysis (Sects. 4–3 and 4–4)

Given a linear resistance circuit containing OP AMPs,
find selected output signals or input-output relationships.

4-3 OP AMP Circuit Design (Sect. 4–5)

Given an input-output relationship, design resistive OP
AMP circuits that implement the relationship. Evaluate
the alternative designs using stated criteria.

4-4 OP AMP Circuit Applications (Sect. 4–6)

Apply concepts of OP AMP analysis and design to cre-
ate, analyze, or evaluate circuits that perform a specific
interface, function, or task.
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4–1 L I N E A R D E P E N D E N T S O U R C E S
This chapter treats the analysis and design of circuits containing active devices, such
as transistors or operational amplifiers (OP AMPs). An active device is a component
that requires an external power supply to operate correctly. An active circuit is
one that contains one ormore active devices. An important property of active circuits
is that they are capable of providing signal amplification, one of the most important
signal-processing functions in electrical engineering. Linear active circuits are gov-
erned by the proportionality property, so their input-output relationships are of
the form y=Kx. The term signal amplification means the proportionality factor
K is greater than 1 when the input x and output y have the same dimensions. A block
diagram of this function is shown in Figure 4–1(a). It is the same diagram as first intro-
duced in Figure 3–28. In that chapter, the gain was limited to be Kj j≤ 1. With active
circuits, the gain is limited by the circuit’s configuration and by the limitations of the
actual physical devices or the external power supply. Therefore, an active circuit can
deliver more signal voltage, current, and power at its output than it receives from the
input signal. The passive resistance circuits studied thus far cannot amplify voltage,
current, or power.

Active devices operating in a linear mode are modeled using resistors and one or
more of the dependent sources shown in Figure 4–1. A dependent source is a volt-
age or current source whose output is controlled by a voltage or current in a differ-
ent part of the circuit. As a result, there are four possible types of dependent
sources: a current-controlled voltage source (CCVS), a voltage-controlled voltage
source (VCVS), a current-controlled current source (CCCS), and a voltage-
controlled current source (VCCS). The properties of these dependent sources
are very different from those of the independent sources described in Chapter 2.
The output voltage (current) of an independent voltage (current) source is a spe-
cified value that does not depend on the circuit to which it is connected. To distin-
guish between the two types of sources, the dependent sources are represented by
the diamond symbols in Figure 4–1, in contrast to the circle symbols used for inde-
pendent sources.

Caution: In this book, we use the diamond symbol shown in Figure 4–1 to repre-
sent a dependent source. However, this representation is not universal. Some other
texts use circles and some use rectangles, while others use diamonds. Software simu-
lators also are varied. Multisim and CircuitLab use diamond symbols, while OrCAD
uses circle symbols. DoCircuits use diamonds for dependent current sources and cir-
cles for dependent voltage sources.

A linear dependent source is one whose output is proportional to the controlling
voltage or current. The defining relationship for dependent sources in Figure 4–1 are
all of the form y=Kx, where x is the controlling variable, y is the source output
variable, and K is the proportionality factor. Each type of dependent source is char-
acterized by a proportionality factor, either μ, β, r, or g. These parameters are
often called simply the gain of the controlled source. Strictly speaking, the para-
meters μ and β are dimensionless quantities called the voltage gain and current gain,
respectively. The parameter r has the dimensions of ohms and is called the transre-
sistance, a contraction of transfer resistance. The parameter g is called transconduct-
ance and has the dimensions of siemens.

Although dependent sources are elements used in circuit analysis, they are
conceptually different from the other circuit elements we have studied. The linear
resistor and ideal switch are models of actual devices called resistors and switches.
However, you will not find dependent sources listed in electronic part catalogs.
For this reason, dependent sources are more abstract, since they are not models
of identifiable physical devices. Dependent sources are used in combination with
other circuit elements to create models of active devices.

+
−

i1 ri1

(b) CCVS

i1 βi1

(d) CCCS

gv1

(e) VCCS

(a)

+
−

μv1

(c)VCVS

+
v1
−

+
v1
−

K
y = Kxx

FIGURE 4–1 Dependent
source circuit symbols: (a) Block
diagram of a gain stage.
(b) Current-controlled voltage
source. (c) Voltage-controlled
voltage source. (d) Current-
controlled current source.
(e) Voltage-controlled current
source.
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In Chapter 3 we found that a voltage source acts as a short circuit when it is
turned off. Likewise, a current source behaves as an open circuit when it is turned
off. The same results apply to dependent sources, with one important difference.
Dependent sources cannot be turned on and off individually because they depend
on excitation supplied by independent sources.

Some consequences of this dependency are illustrated in Figure 4–2. When the
independent current source is turned on, KCL requires that i1 = iS. Through con-
trolled source action, the current controlled voltage source is on and its output is

υO = ri1 = riS

When the independent current source is off ðiS = 0Þ, it acts as an open circuit andKCL
requires that i1 = 0. The dependent source is now off and its output is

υO = ri1 = 0

When the independent current source is off, the dependent voltage source acts as a
short circuit.

In other words, turning the independent source on and off turns the dependent
source on and off as well. We must be careful when applying the superposition prin-
ciple and Thévenin’s theorem to active circuits, since the state of a dependent source
depends on the excitation supplied by independent sources. To account for this
possibility, we modify the superposition principle to state that the response due to
all independent sources acting simultaneously is equal to the sum of the responses
due to each independent source acting one at a time.

4–2 A N A L Y S I S O F C I R C U I T S W I T H D E P E N D E N T S O U R C E S
With certain modifications, the analysis tools developed for passive circuits apply
to active circuits as well. Circuit reduction applies to active circuits, but in so doing
we must not eliminate the control variable for a dependent source. As noted previ-
ously, when applying the superposition principle or Thévenin’s theorem, we must
remember that dependent sources cannot be turned on and off independently since
their statesdependonexcitation suppliedbyoneormore independent sources.Apply-
ing a source transformation to a dependent source is sometimes helpful, but again we
must not lose the identity of a controlling signal for a dependent source. Methods like
node and mesh analysis can be adapted to include dependent sources as well.

However, the main difference is that the properties of active circuits can be sig-
nificantly different from those of the passive circuits treated in Chapters 2 and 3.

Our analysis examples are chosen to highlight these
differences.

Consider the circuit of Figure 4–3(a). In this
dependent-source circuit, the dependent source, a
VCVS, is shown highlighted by the shaded box. To
the left, usually, there is a source circuit that provides
the input to the dependent source. To the right is the
load circuit that receives the result of the dependent
source. Let us analyze this circuit and find the voltage
gain K = υO=υS.

We recognize the load circuit as a voltage divider.
That is,

υO =
RL

RL +RC
ð−μυxÞ

+

ri1 = vO

−

Source on

Source off

i1iS

+

 vO = 0

−

i1 = 0

+
−

FIGURE 4–2 Turning off the
independent source affects the
dependent source.

−

RC

μvx

RS

Source or input circuit Load or output circuitVCVS

(a)

RL vOvS

+

+

vx

−

iS

ix

−
+

+

−

FIGURE 4–3 (a) A circuit with a dependent source.
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Note that the dependent source’s output is negative, with the plus sign on the bottom
and the negative sign on the top. This was done intentionally to point out that in
many active devices there is a sign inversion that is modeled by inverting the sign
of the dependent source. To continue our analysis we need to find a relationship
between the dependent source’s control variable υx and the input υS. A KVL around
the input loop is

−υS +RSiS + υx = 0

Now, since the circuit is an open at υx, iS = 0. This makes υx = υS and therefore,

υO =
RL

RL +RC
ð−μυSÞ

And therefore,

K =
υO
υS

=
−μRL

RL +RC

This is shown as a block diagram in Figure 4–3(b). Let us look at what happens when
we give values to the various parameters. Let all of the resistors equal 1 kΩ and
μ= 105. K in this example would be −50;000. If in our example we let υS = 100 μV,
our output υO would be −5 V. The circuit has amplified the input by 50,000 times!
What makes this even more remarkable is that due to the open circuit iS, the source
current, is zero. The source is not providing any power to the circuit. Nor is there any
current ix flowing between the input and output circuits. Yet it should be clear that
there is power provided to the load. This example serves to point out that there is
something else at play. The dependent source does not rely on the input for its out-
put power. Yes, the input provides the signal that will be amplified or attenuated by
the dependent source, but the output power is obtained from a secondary source
driving the dependent source that makes all this possible.1

E X A M P L E 4–1

Determine the current, voltage, and power delivered to
the 500-Ω output load in Figure 4–4. Then find the power
gain defined as pO=pS.

SOLUTION:
The control current ix is found using current division in
the input circuit as:

ix =
50

50 + 25

� �
iS =

2
3
iS (4–1)

Similarly, the output current iO is found using current
division in the output circuit as:

iO =
300

300 + 500

� �
iy =

3
8
iy (4–2)

vS vO

(b)

−μRL

RL+ RC

FIGURE 4–3 (b) Equivalent
block diagram.

ix

48ix

25 Ω

300 Ω 500 Ω

50 Ω

−

Source or input circuit Load or output circuit

vO

+

iS

iyA

iO

FIGURE 4–4

1Usually the external power supply is not shown in circuit diagrams.When using a dependent source
to model an active circuit, we assume that the external supply and the active device itself can handle
whatever power is required by the circuit.When designing the actual circuit, the engineermust make
certain that the active device and its power supply operate within their power ratings.
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At node A, KCL requires that iy = −48ix. Combining this result with Eqs. (4–1) and
(4–2) yields the output current

iO =
3
8

� �
−48ð Þix = −18ð Þ 2

3
iS

� �
= −12iS

(4–3)

The output voltage υO is found using Ohm’s law as follows:

υO = iO500= −6000iS (4–4)

The input-output relationships in Eqs. (4–3) and (4–4) are of the form y=Kx with
K < 0. The proportionality constants are negative because the reference direction for
iO in Figure 4–4 is the opposite of the orientation of the dependent source reference
arrow. As noted earlier and worth repeating, active circuits often produce negative
values of K, which means that the input and output signals have opposite algebraic
signs. Circuits for whichK < 0 are said to provide signal inversion. In the analysis and
design of active circuits, it is important to keep track of signal inversions.

Using Eqs. (4–3) and (4–4), the power delivered to the 500-Ω load in Figure 4–4 is
given by

pO = υOiO = ð−6000iSÞð−12iSÞ=72;000i2S (4–5)

The independent source at the input delivers its power to the parallel combination of
50Ω and 25Ω. Hence, the input power supplied by the independent source is given by

pS = 50k25ð Þi2S =
50
3

� �
i2S

Given the input power and output power, we find the power gain in the circuit as:

Power gain =
pO
pS

=
72;000i2S
50=3ð Þi2S

= 4320

A power gain greater than unity means that the circuit delivers more power at its
output than it receives from the input source. At first glance this appears to be a vio-
lation of energy conservation, until we remember that dependent sources are models
of active devices that require an external power supply to operate. ■

E x e r c i s e 4–1
Find the output vO in terms of the input vS in the circuit in Figure 4–5.
Then if RS =RP = 100Ω, RC =RL = 1 kΩ, and r = 1 kΩ, find the gain
K = vO=vS for the circuit.

A n s w e r s:

υO =
−RLr

RS +RPð Þ RC +RLð Þ
� �

K = −2:5

N O D E - V O L T A G E A N A L Y S I S W I T H D E P E N D E N T S O U R C E S

Node analysis of active circuits is much the same as for passive circuits except that
we must account for the additional constraints caused by the dependent sources.

For example, let us look at using node analysis to continue our study of the circuit
first discussed in Figure 4–3. As shown in Figure 4–6(a), we have inserted a resistor
RF between the source circuit and the load circuit. This simple insertion is an example
of the major reason for the great value of active circuits. Let us analyze this circuit to
find K = υO=υS and see why.

vS RP rix

RS

+
−

RC

RL
−
+

+

vO

−

ix

FIGURE 4–5
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There are five nodes in this circuit. We have selected a
ground and labeled the remaining four nodes. We notice
that all four nodes can be related to other parameters in
the circuit as follows:

υA = υS

υB = υx

υC = −μυx
υD = υO

There are only two unknown nodes, B and D. At node
B we can write the following node equation:

υx− υS
RS

+
υx−ð−μυxÞ

RF
= 0

At node D we write as

υO
RL

+
υO−ð−μυxÞ

RC
= 0

Solving for υx in the node B equation, we get

υx =
υS=RS

1
RS

+
1 + μ
RF

� � =
υS

1 +
ð1+ μÞRS

RF

Solving the node D equation for υo, we get

υO
1
RL

+
1
RC

� �
=
−μυx
RC

υO =
−μυxRL

RL +RC

Substituting our results for υx and solving for υO, we get

υO =
−μRL

RL +RC

� �
υS

1 + 1+ μð ÞRS
RF

" #

And K equals

K =
υO
υS

=
RL

RL +RC

� �
−μ

1+
ð1 + μÞRS

RF

2
664

3
775

This gain can be represented by the block diagram shown in
Figure 4–6(b).

This equation looks a bit intimidating at first, but with some analysis it
makes a lot of sense. If we let RF become an open circuit, that is, look
exactly like our circuit in Figure 4–3, our gain K = υO=υS becomes

K =
−μRL

RL +RC

which is exactly the same response we found earlier. This value ofK is the
maximum gain possible with this circuit. What is important to realize is that you now
have control of the gain (K) of the circuit from 0 to the maximum value of K above.

iS

−

RC

μvx

RS RF

Source or input circuit Load or output circuitVCVS

(a)

RL vOvS

+

+

vx

−

vA vC vDvB

ix

−

+

+

−

FIGURE 4–6 (a) Circuit used to demonstrate effects of
feedback.

(b)

vS vO

RL

RL + RC

−μ

RF

(1 + μ)RS
1 +

K =

FIGURE 4–6
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For example, if we set all the resistors to 100Ω and μ to 105—a reasonable gain for
an OPAMP—we can generate the graph shown in Figure 4–6(c). By choosingRF, we
can obtain whatever gain we wish up to 50,000. Two gains are shown: −200 by choos-
ing RF = 1:63 kΩ and −20;000 by selecting RF = 6:7MΩ.

The key element RF is called the feedback resistor. Feedback is the reason for the
success of many analog circuit designs. It is important to realize that feedback often
causes the current ix to not be zero. With feedback the output circuit directs back
some of its voltage or current to the input circuit and helps the circuit designer
achieve the output desired. We will study many more examples of feedback later
in this and subsequent chapters.

E x e r c i s e 4–2
Use the graph in Figure 4–6(c) to select a value of RF so that the gain is −25;000 and repeat
for −40;000.

A n s w e r: RF = 10 and 40MΩ, respectively.

E x e r c i s e 4–3
With all other resistors set to 1 kΩ and μ= 105, select an appropriate value for RF in
Figure 4–6(a) so that the gain Kj j can never be larger than 10,000, or smaller than 50.

A n s w e r: Use a 100:1-kΩ fixed resistor in series with a 24-MΩ variable resistor for RF.

E X A M P L E 4–2

For the circuit of Figure 4–7, use node-voltage analysis to find expressions for the
unknown node voltages. Write your results as a matrix in Ax= b form.

 158  1k  10k  1M  10M  63M 100k

 Feedback resistance (RF)

G
ai

n
 (

K
)

−50.0k

−40.0k

−30.0k

−20.0k

−10.0k

−45.0k

−35.0k

−25.0k

−15.0k

−5.0k
(1.63 kΩ, K = −200)

(6.7 MΩ, K = −20,000)

0.0
Device parameter sweep

(c)

FIGURE 4–6
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SOLUTION:
The circuit in Figure 4–7 has five nodes. Selecting node E as the
reference, each independent voltage source has one terminal con-
nected to ground.

These connections force the conditions υA = υS1 and υB = υS2.
Therefore, we only need to write node equations at nodes
C and D because voltages at nodes A and B are already known.

Node analysis involves expressing element currents in terms of
the node voltages and applying KCL at each unknown node. The
sum of the currents leaving node C is

1
R1

υC−υS1ð Þ+ 1
R2

υC−υS2ð Þ+ 1
RB

υC +
1
RP

υC−υDð Þ= 0

Similarly, the sum of currents leaving node D is

1
RP

υD−υCð Þ+ 1
RE

υD−βiB = 0

These two node equations can be rearranged into the following form:

Node C:
1
R1

+
1
R2

+
1
RB

+
1
RP

� �
υC−

1
RP

υD =
1
R1

υS1 +
1
R2

υS2

NodeD: −
1
RP

υC +
1
RP

+
1
RE

� �
υD = βiB

(4–6)

Note that we could write these two symmetrical node equations by inspection if
the dependent current source βiB had been an independent source. But it is not inde-
pendent, so we must express its constraint in terms of the unknown node voltages.
Applying the fundamental property of node voltages and Ohm’s law, the current
iB can be written in terms of the node voltages as follows:

iB =
1
RP

υC−υDð Þ

Substituting this expression for iB into Eqs. (4–6) and putting the results in standard
form yields

Node C:
1
R1

+
1
R2

+
1
RB

+
1
RP

� �
υC−

1
RP

υD =
1
R1

υS1 +
1
R2

υS2

NodeD: − β+1ð Þ 1
RP

υC + β+ 1ð Þ 1
RP

+
1
RE

� �
υD = 0

(4–7)

And in matrix form

The result in Eqs. (4–7) involves two equations in two unknowns—the node
voltages—and includes the effect of the dependent source. However, notice that
the matrix is not symmetrical. The dependent source constraint destroys the coeffi-
cient symmetry. The resultant equations can be readily solved using simple substitu-
tion or MATLAB.

This example illustrates a general approach to writing node-voltage equations for
circuits with dependent sources. We start out treating the dependent sources as if
they are independent sources and write node equations for the resulting passive

vA

+

vO

−

βiB

R1

vS1
+
−

+
−

vB vC vD

vS2

R2

RB

iB

RP

RE

E

Reference

FIGURE 4–7
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circuit using the inspection method developed in Chapter 3. This step produces a set
of symmetrical node-voltage equations with the independent and dependent source
terms on the right-hand side. Thenwe express the dependent source terms in terms of
the unknown node voltages andmove them to the left-hand side of the equations with
the other terms involving the unknown node voltages. This step destroys the coeffi-
cient symmetry but leads to a set of node-voltage equations that describe the active
circuit. ■

E x e r c i s e 4–4
For the circuit in Figure 4–7, use the node-voltage equations in Eqs. (4–7) to find the output
voltage υO when R1 = 1 kΩ, R2 = 3 kΩ, RB = 100 kΩ, RP = 1:3 kΩ, RE = 3:3 kΩ, and β= 50.

A n s w e r: υO = υD = 0:736υS1 + 0:245υS2

This circuit is a signal summer that does not involve a signal inversion. The fact that the
output is a linear combination of the two inputs reminds us that the circuit is linear.

E X A M P L E 4–3

For the circuit in Figure 4–8 find the voltage gain Kv = υO=υS, and the current
gain Ki = iO=iS using node-voltage analysis.

SOLUTION:
There are three nodes in this circuit. If we select the bottom node as our refer-
ence, the remaining two nodes are defined by the voltage sources. That is,
υA = υS and υB = −μυx.

By node analysis, the voltage υx is

υx = υA−υB = υS−ð−μυxÞ
Solving for υx yields

υx =
υS
1−μ

The output voltage is directly across the dependent source, hence,

υO = −ðμυxÞ
Substituting our expression for υx, we get

υO = −μ
υS
1−μ

� �

The voltage gain is given by

Kv =
μ

μ−1

� �

This result tells us that for positive values of μ greater than one, the voltage gain is
always more than one regardless of μ.

To find the current gain we note that by Ohm’s law

iO =
υO
RL

=
−ðμυxÞ
RL

And

iS =
υS−ð−μυxÞ

RF
=
υS + μυx

RF

+  vx  −
+

vO

−μvx

vA vB

+
−

−
+

RF

RL

iS

vS

Reference

iO

FIGURE 4–8

158 C H A P T E R 4 ACTIVE CIRCUITS



Substituting for υx, we get

iO =
−μ

υS
1−μ

� �
RL

And

iS =
υS + μ

υS
1−μ

� �
RF

=
υS 1 +

μ
1−μ

� �� �
RF

=
υS

1−μ+ μ
1−μ

� �
RF

=

υS
1−μ
RF

The current gain is given by

Ki =

−μ υS
1−μ

� 	
RL
υS
1−μ

� 	
RF

0
BBBB@

1
CCCCA=

−μRF

RL

The magnitude of the current gain could, in theory, range from 0 to∞, depending on
μ, RF, and RL. Of course, practical considerations will limit the current, and hence,
the gain. ■

E x e r c i s e 4–5
(a) Formulate node-voltage equations for the circuit in Figure 4–9.

(b) Solve the node-voltage equations for υO and iO in terms of iS.

A n s w e r s:

(a)
1:5× 10−3� �

υA− 0:5 × 10−3� �
υB = iS

− 2:5 × 10−3� �
υA + 2:5× 10−3� �

υB = 0

(

(b) υO = 1000iS; iO = 2iS

E X A M P L E 4–4

Determine the output voltage of the circuit shown in Figure 4–10(a) using
Multisim.

SOLUTION:
Figure 4–10(b) shows the symbols used in Multisim to represent the four dependent
sources. These elements are found in the “Components” and then “Source” library
as shown inFigure 4–10(b) under either “ControlledVoltage Sources”or “Controlled
Current Sources.”The input ports shown as rectangles are either open circuits for the
voltage-controlled elements or short circuits for the current-controlled devices. The
output ports are voltage sources or current sources depending on the controlled var-
iable.Note that the controlled sources inMultisimare indicatedbydiamondsasweuse
in the text.All four dependent sources are characterized by a single parameter located
next to the dependent source. The gain is set by simply clicking on the value and enter-
ing the desired gain for μ, β, g, or r depending on the type of dependent source. The
dimensions of the gain depend on the dimensions of the signals at the input and out-
put ports. As we will see in subsequent examples, these elements are combined with
circuit elements to model active devices such as transistors and OP AMPs.

For the problem at hand, we used the VCVS-dependent model and set the gain at
100. The resulting circuit is shown in Figure 4–10(c) with the desired output response
displayed on the voltmeter as vO = 4 V. ■

iO

iS

vBvA

+

vO

−

+

vx

−

vx

500

500 Ω
1 kΩ

2 kΩ

FIGURE 4–9
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E x e r c i s e 4–6
Find iO using Multisim for the circuit of Figure 4–11(a).

A n s w e r: iO = −9A. See Figure 4–11(b).

(b)

v2

1 V/V

VCVS

+
−

+
−

i1
1 Mho

VCCS

+
−

v3

1 Ω

CCVS

+
−

i2
1 A/A

CCCS
+

−

XMM1
50 Ω

100 Ω 33 kΩ

R2 R4

R1

22 kΩ

R3

(c)

0.1 V v1

100 V/V

v4

+
−

+
−

+

vO

−

+

vx

−
100 Ω 33 kΩ

100 vx

22 kΩ50 Ω

0.1 V

(a)

+
−

+
−

FIGURE 4–10
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100 Ω
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100 Ω
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XMM1

500 Ω

(b)

10 V
i1
90 A/A

v1

+ −
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E X A M P L E 4–5

The circuit in Figure 4–12(a) is a model of an inverting OP AMP circuit.

(a) Use node-voltage analysis to find the output υO in terms of the input υS.

(b) Evaluate the input-output relationship found in part (a) as the gain μ becomes
very large.

(c) AssumeR1 =R2 = 100Ω, μ= 1000, andR4 = 1 kΩ. UseMultisim to show the effect
of the feedback resistor R3 by plotting the output gain K = υO=υS for R3 varying
from 10Ω to 100MΩ.

SOLUTION:

(a) Applying a source transformation to the independent source leads to the
modified three-node circuit shown in Figure 4–12(b).With the indicated reference
node the dependent voltage source constrains the voltage at node B. The control
voltage is υx = υA, and the controlled source forces the node B voltage to be

υB = −μυx = −μυA

Thus, node A is the only independent node in the circuit. We can write the node
A equation by inspection as

1
R1

+
1
R2

+
1
R3

� �
υA−

1
R3

υB =
1
R1

υS

Substituting in the control source constraint yields the standard form for this equation:

1
R1

+
1
R2

+
1
R3

+ μ
1
R3

� �
υA =

1
R1

υS

We end up with only one node equation even though at first glance the given
circuit appeared to need three node equations. The reason is that there are
two voltage sources in the original circuit in Figure 4–12(a). Since the two sources
share the reference node, the number of unknown node voltages is reduced from
three to one. The general principle illustrated is that the number of independent
KCL constraints in a circuit containingN nodes andNV voltage sources (depend-
ent or independent) isN−1−NV. The one-node equation can easily be solved for
the output voltage υO = υB as follows:

υO = υB = −μυA =
−μ

1
R1

1
R1

+
1
R2

+ 1 + μð Þ 1
R3

0
BB@

1
CCAυS

Given circuit

(a)

vS R2
μvx

R1 R3

+
− R4

−
+

+

vO

−

+

vx

−

R2R1

R1

μvx

R3

(b)

Modified circuit

R4
−
+

+

vO

−

vS

vA vB

+

vx

−
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The minus signs means the circuit provides signal inversion, which is caused by
the reference polarity of the controlled source. The output voltage does not
depend on the load resistor R4, since the load is connected across an ideal
(though dependent) voltage source.

(b) For large gains μ, we have 1+ μð Þ 1=R3ð Þ� 1=R1ð Þ+ 1=R2ð Þ½ � and the input-
output relationship reduces to

vO =
−μ

1
R1

1 + μð Þ 1
R3

2
664

3
775υS≈ −

R3

R1

� �
υS

That is, when the active device gain is large, the voltage gain of the active circuit
depends on the ratio of two resistances. We will encounter this situation again
with OP AMP circuits.

(c) Figure 4–12(c) shows the original circuit drawn in Multisim. The analysis was
done using the “Parameter Sweep” found under “Analyses.” Using the “Dec-
ade” sweep variation, we swept resistor R3 from 10Ω to 100MΩ using
100 points per decade. Once the sweep was completed, we accessed the “Trace”
properties and adjusted the axes to suit including choosing the logarithmic option
for the bottom feedback resistor axis. Our result is shown in Figure 4–12(d). We
then used the cursor to find the value of R3 that resulted in a gain of −200. We
found that R3 = 33:37 kΩ, so that a standard 33-kΩ resistor would work. What
value of R3 would you need for a gain of – 400? (200:21 kΩ, you can use a
200-kΩ standard value resistor.) ■

100 Ω

100 Ω

R1

R2

1.0 kΩ

R3

1.0 kΩ
R4

(c)

1 V

v2
−1000 V/V
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−
+
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E x e r c i s e 4–7
Use node-voltage analysis to find υO for the circuit in Figure 4–13.

A n s w e r:

υO =

1
Rx

+ μ
1
R2

1
Rx

+
1
RL

+ μ+ 1ð Þ 1
R2

υS

M E S H - C U R R E N T A N A L Y S I S W I T H D E P E N D E N T S O U R C E S

Mesh-current analysis of active circuits follows the same pattern noted for node-voltage
analysis. We initially treat the dependent sources as independent sources and write the
mesh equations of the resulting passive circuit using the inspection method from
Chapter 3. We then account for the dependent sources by expressing their constraints
in terms of unknown mesh currents. The following example illustrates the method.

E X A M P L E 4–6

(a) Formulate mesh-current equations for the circuit in Figure 4–14.

(b) Use themesh equations to find υO andRIN whenR1 = 50Ω,R2 = 1 kΩ,R3 = 100Ω,
R4 = 5 kΩ, and g= 100 mS.

SOLUTION:

(a) Applying source transformation to the parallel combination of R3 and gux in
Figure 4–14(a) produces the dependent voltage source R3gυx = μυx in
Figure 4–14(b).

In the modified circuit we have identified two mesh currents. Initially treating
the dependent source gR3ð Þvx as an independent source leads to two symmetrical
mesh equations.

MeshA: R1 +R2 +R3ð ÞiA−R3iB = υS− gR3ð Þυx
Mesh B: −R3iA + R3 +R4ð ÞiB = gR3ð Þυx

The control voltage υx can be written in terms of mesh currents as

υx =R2iA

Substituting this equation for υx into the mesh equations and putting the equa-
tions in standard form yields

R1 +R2 +R3 + gR2R3ð ÞiA−R3iB = υS

− R3 + gR2R3ð ÞiA + R3 +R4ð ÞiB = 0

The resultingmesh equations are not symmetrical because of the controlled source.

Rx

vS

R1

+
−

R2

+

vO

−

+  vx −

RLμvS
+
−

FIGURE 4–13
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−

+
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−
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+vx−
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+
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(b) Substituting the numerical values into the mesh equations gives

1:115 × 104
� �

iA− 102
� �

iB = υS

− 1:01 × 104
� �

iA + 5:1 × 103
� �

iB= 0

Solving for the two mesh currents using Cramer’s rule yields

iA =
ΔA

Δ
=

υS −102

0 5:1× 103












1:115× 104 −102

−1:01 × 104 5:1 × 103











=

5:1 × 103υS
5:5855 × 107

= 0:9131× 10−4υS

iB =
ΔB

Δ
=

1:115× 104 υS
−1:01 × 104 0












5:5885 × 107
= 1:808× 10−4υS

The output voltage and input resistance are found using Ohm’s law as follows:

υO =R4iB = 0:904υS

RIN =
υS
iA

=10:95 kΩ ■

E x e r c i s e 4–8
Write a set of node-voltage equations and use them to find υO and RIN for the circuit in
Figure 4–14. Use the parameter values given in Example 4–6.

A n s w e r s:
(a) Labeling node υA between the 50-Ω and 1-kΩ resistors, wewrite the node-voltage equa-

tions and the relationship of υx and the node voltages as follows:
υA−υS
50

+
υA−υO
1000

= 0

υO−υA
1000

+
υO
100

+
υO
5000

−0:1υx = 0

υx = υA−υO

(b) Solving these equations, we get υO = 0:904υS and RIN = 10:95 kΩ.

E X A M P L E 4–7

The circuit in Figure 4–15 is a model of a bipolar junction tran-
sistor operating in the active mode. Use mesh analysis to find
the transistor base current iB.

SOLUTION:
The two mesh currents in Figure 4–15 are labeled i1 and i2 to
avoid possible confusion with the transistor base current iB.
As drawn, the circuit requires a supermesh since the depend-
ent current source βiB is included in both meshes and is not
connected in parallel with a resistor. A supermesh is created
by combining meshes 1 and 2 after excluding the series subcir-
cuit consisting of βiB and RC. Beginning at the bottom of the
circuit, we write a KVL mesh equation around the supermesh
using unknowns i1 and i2:

i2RE−Vγ + i1RB +VCC = 0

RB

VCC

iB

REiE

i1

iC
Vγ

βiBRC C

i2

B

E

Supermesh

Excluded

−

+

−+

FIGURE 4–15
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This KVL equation provides one equation in the two unknown mesh currents. Since
the two mesh currents have opposite directions through the dependent current
source βiB, the currents i1, i2, and βiB are related by KCL as

i1− i2 = βiB

This constraint supplies the additional relationship needed to obtain two equa-
tions in the two unknown mesh-current variables. Since iB = − i1, the preceding
KCL constraint means that i2 = β+ 1ð Þi1. Substituting i2 = β+ 1ð Þi1 into the supermesh
KVL equation and solving for iB yields

iB = − i1 =
VCC−Vγ

RB + β+1ð ÞRE
■

E x e r c i s e 4–9
Use mesh analysis to find the current iO in Figure 4–16 when the element E is a dependent
current source 2ix with the reference arrow directed down.

A n s w e r: −0:857 mA

E x e r c i s e 4–10
Use mesh analysis to find the current iO in Figure 4–16 when the element E is a dependent
voltage source 2000ix with the plus reference at the top.

A n s w e r: −0:222 mA

E X A M P L E 4–8

The circuit in Figure 4–17(a) represents a small-signal model of a field effect transistor
(FET) amplifier with two inputs, υS1 and υS2. Use Multisim to solve for the input-
output relationship of the circuit. (Hint:Use superposition to find the respective gains
due to the two sources, for example, υS1 = 1 V and υS2 = 0 V, and vice versa.)

SOLUTION:
Since the circuit is linear, the input-output relationship is of the form

υO =K1υS1 +K2υS2

Using the superposition principle as suggested, let us find the gain K1 by
setting vS1 = 1 V and vS2 = 1 V and solving for vO (node 4). The gain K2 is then found

ix iO

5 kΩ 10 kΩ

4 kΩ

+ −

10 V

E

FIGURE 4–16

+
−

+
−

0

1 5 2

43

+    vx    −

+
vO
−
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by setting vS1 = 0 V and vS2 = 1 V and again solving for vO. Figure 4–17(b) shows a
Multisim circuit diagram for both cases and the resulting outputs on
the multimeters. From these simulations, you can determine that K1 = 10 and
K2 = −10.

The input-output relationship for the circuit is found as

vO = 10 vS1−vS2ð Þ
Thecircuit provides to theoutput thedifferenceof the signals applied to the two inputs.
It also canprovide gain,K = 10, in this example. It is a model of a differential amplifier
of a type often used as the input stage of an OP AMP, and the gain provided must be
identical to both inputs. The next exercise looks at what happens if the gains are even
slightly different. We study about differential amplifiers later in this chapter. ■

E x e r c i s e 4–11
It is very important in designing differential amplifiers that the two transistors be matched
in every way so that the outputs are balanced. Use Multisim to determine the relationship
in the circuit of Figure 4–17(a) if the transconductance of FETG2 is 2.9 mS rather than 3 mS.

A n s w e r: υO = 9:832υS1−9:829υS2. Equal inputs will not receive equal gains.

T H É V E N I N E Q U I V A L E N T C I R C U I T S W I T H D E P E N D E N T S O U R C E S

To find the Thévenin equivalent of an active circuit, we must leave the independent
sources on or else supply excitation from an external test source. This means that
the Thévenin resistance cannot be found by the lookback method because that method
requires that all independent sources be turned off. Turning off the independent sources
deactivates the dependent sources as well and can result in a profound change in the
input and output characteristics of an active circuit. Thus, there are two ways of finding
active circuit Thévenin equivalents. We can either find the open-circuit voltage and
short-circuit current at the interface or directly solve for the interface i−υ relationship.
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−

−
+
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E X A M P L E 4–9

Find the input resistance of the circuit in Figure 4–18.

SOLUTION:
With the independent source turned off iIN = iS = 0ð Þ, the resistance seen at the input
port is RE since the dependent current source βiIN is inactive and acts like an open
circuit. Applying KCL at node A with the input source turned on yields

iE = iIN + βiIN = β+ 1ð ÞiIN
By Ohm’s law, the input voltage is

υIN = iERE = β+ 1ð ÞiINRE

Hence, the active input resistance is

RIN =
υIN
iIN

= β+1ð ÞRE

The circuit in Figure 4–18 is amodel of a transistor circuit in which the gain parameter
β typically lies between 50 and 250. The input resistance with external excitation is
β+ 1ð ÞRE, which is significantly higher from the value of RE without external excita-
tion. A higher RIN helps the transistor reduce the effects of loading on the input
source. ■

D e s i g n E x e r c i s e 4–12
Your task is to design a transistor gain stage with a voltage gain (K) of −150. The transistor
you have has a β of 90. Use the circuit in Figure 4–18 and select appropriate values for RL

and RE. Start by first finding the voltage gain K = vO=vIN.

A n s w e r s:

K = −
βRL

β+ 1ð ÞRE

RE = 1 kΩ and RL = 152 kΩ, respectively, other solutions are possible.

E X A M P L E 4–1 0

Find the Thévenin equivalent at the output interface of the circuit in Figure 4–19.

SOLUTION:
In this circuit the controlled voltage υx appears across an open circuit between nodes
A and B. By the fundamental property of node voltages, υx = υS−υO. With the load
disconnected and the input source turned off υx = 0ð Þ, the dependent voltage source
μυx acts like a short circuit, and the Thévenin resistance looking back into the output
port is RO. With the load connected and the input source turned on, the sum of cur-
rents leaving node B is

υO−μυx
RO

+ iO = 0

Using the relationship υx = υS−υO to eliminate υx and then solving for υO produces the
i−υ characteristic at the output interface as

υO =
μυS
μ+ 1

− iO
RO

μ+ 1

� �

iS RE RL

iIN

iE+

−

+

−
vIN

RIN

vO

βiIN

A

FIGURE 4–18
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The i−υ relationship of a Thévenin circuit is υ= υT− iRT. By direct comparison, we
find the Thévenin parameters of the active circuit to be

υT =
μυS
μ+ 1

and RT =
RO

μ+ 1

The circuit in Figure 4–19 is a model of an OP AMP circuit called a voltage fol-
lower. The resistance RO for a general-purpose OP AMP is around 100Ω, while
the gain μ is about 105. Thus, the active Thévenin resistance of the voltage follower
is not 100Ω, as the lookback method suggests, but is only a milliohm. A low output
resistance reduces the loading effect caused by connecting a load to the output. ■

E x e r c i s e 4–13
Find the input resistance and output Thévenin equivalent of the circuit in Figure 4–20.

A n s w e r s: RIN = 1 + μð ÞRF

υT =
μ

μ+ 1
υS

RT = RO

A P P L I C A T I O N E X A M P L E 4 – 1 1

We have defined four linear dependent sources and shown how to analyze circuits
containing these active elements. In this and the next section we show how dependent
sources are used to model semiconductor devices like transistors and OPAMPs. The
transistor model used here describes the voltages and currents at its external term-
inals. The model does not describe the transistor’s physical structure or internal
charge flow. Those subjects are left to subsequent courses in semiconductor materials
and devices.

The two basic transistor types are the bipolar junction transistor (BJT) and the
field effect transistor (FET). Both types have several possible operating modes, each
with a different set of i−υ characteristics. This is something new in our study. Up to
this point the characteristics of circuit elements have been fixed. With the transistor
we encounter a device whose i−υ characteristics can change. We concentrate on the
BJT because its i−υ characteristics are much easier to understand than the FET.
Because it is easier to understand, the simpler BJT best serves as a prelude to our
study of the OPAMP—an important semiconductor device that also has several pos-
sible operating modes.

The circuit symbol of the BJT is shown in Figure 4–21(a). The device has three
terminals called the emitter (E), the base (B), and the collector (C). The voltages
υBE and υCE are called the base-emitter and collector-emitter voltages, respectively.
The three currents iE, iB, and iC are called the emitter, base, and collector currents.
Photos of real devices are shown in Figures 4–21(b) through 4–21(e).

Applying KCL to the BJT as a whole yields

iE = iB + iC

which means that only two of the three currents can be independently specified.
We normally work with iB and iC, and use KCL to find iE when it is needed.

The BJT’s large-signal model is defined in terms of input signals iB and υBE,
and output signals iC and υCE. For the BJT shown in Figure 4–21(a), the model
applies to a region in which these signals are never negative. Within this region there
are three possible operating modes. The active mode is the dominant feature of a

+
−

+
−

RF RO
i

RLvS μvF

+ vF − +

vL

−

RIN vT, RT

FIGURE 4–20

(a)

Base

(B)

vBE

vCE

+

−

iC

iB

iE

+

−

Emitter (E)

Collector (C)

FIGURE 4–21 (a) Circuit
symbol for the BJT.
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BJT. In this mode the collector current iC is controlled by the base current iB
and υBE is constant.

Active mode: iC = βiB and υBE =Vγ ð4 – 8Þ
The proportionality factor β is called the forward current gain and typically
ranges from about 50 to several hundreds. The constantVγ is called the thresh-
old voltage, which is normally less than a volt. Figure 4–22(a) shows the circuit
elements that model the active mode i−υ characteristics as defined in Eq. (4–
8). In the active mode iB and υCE are determined by the interaction of these
i−υ characteristics with the rest of the circuit.

Two additional operating modes exist at the boundary of the BJT’s operating
region. When iB = 0 and iC = 0, the transistor is in the cutoff mode and the
device acts like an open circuit between the collector and emitter. When
υCE = 0 and υBE =Vγ the transistor is in the saturation mode, and the device
acts like a short circuit between the collector and emitter. These two modes
are summarized as follows:

Cutoff mode: iB = 0 and iC = 0
Saturation mode: υCE = 0 and υBE =Vγ ð4 – 9Þ

Figures 4–22(b) and 4–22(c) show the circuit elements that model the i−υ
characteristics defined in Eq. (4–9).

The circuit in Figure 4–22(b) points out that in the cutoff mode, υCE must
equal the open-circuit voltage available from the external circuit. The circuit in
Figure 4–22(c) points out that in the saturation mode, iC must equal the short-
circuit current available from the external circuit. The net result is that the
BJT’s output variables must fall within the following bounds:

Cutoff

bounds

Saturation

bounds
0 ≤ iC ≤ iSC

υOC ≥ υCE ≥ 0

ð4 – 10Þ

where υOC and iSC are the open-circuit voltage and short-circuit current avail-
able between the collector and emitter terminals. In the cutoff mode the tran-
sistor outputs iC and υCE are equal to their respective cutoff bounds. In
saturation mode the outputs equal their saturation bounds. In the active mode
the outputs fall between the cutoff and saturation bounds.

With this background we are prepared to analyze the transistor circuit in
Figure 4–23.2 The objective of our analysis is to find the outputs iC and υCE. To
do this we must know the transistor’s operating mode. To find the operating
mode we make use of the following two facts:

1. The lower bounds in Eq. (4–10) mean that iC and υCE cannot be negative.

2. The upper bounds in Eq. (4–10) depend on the rest of the circuit.

For the circuit in Figure 4–23 these upper bounds are υOC =VCC and
iSC =VCC=RC.

Our analysis strategy assumes the device is in the active mode and uses the
activemode device equations to find iC. According to Eq. (4–8) the active mode

2This circuit is called the common-emitter configuration because the emitter terminal is common to
the input and output loops.
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element equations are υBE =Vγ and iC = βiB. Using these element constraints and
applying KVL around the input loop in Figure 4–23 yields the collector current as

iC = βiB = β
υS−Vγ

RB

� �
(4–11)

This equation indicates that if υS >Vγ then, iC > 0. However, if υS <Vγ, then iC < 0,
which would violate its cutoff bound. Thus, if the input voltage υS is greater than
the threshold voltage Vγ, then the BJT can be in the active mode. But if υS <Vγ,
the BJT is in the cutoff mode and the outputs equal their cutoff bounds in
Eq. (4–10), namely iC = 0 and υCE = υOC =VCC.

When υS >Vγ, Eq. (4–11) predicts a positive collector current that increases line-
arly with υS. To find the collector-emitter voltage we apply KVL around the output
loop in Figure 4–23 to obtain

υCE =VCC− iCRC (4–12)

This equation predicts that υCE > 0 as long as iC <VCC=RC. But VCC=RC is the
short-circuit current available from the external circuit. Thus, as long as υS >Vγ
and iC < iSC, the BJT is in the active mode and Eqs. (4–11) and (4–12) correctly
predict the outputs iC and υCE. However, if Eq. (4–11) predicts that iC > iSC, then
Eq. (4–12) says that υCE < 0. Both of these results violate the saturation bounds in
Eq. (4–10). When this happens, the BJT is actually in the saturation mode and the
outputs equal their saturation bounds in Eq. (4–10), namely iC = iSC =VCC=RC

and υCE = 0.
Figure 4–24 summarizes this discussion using graphs of the outputs υCE and iC

versus the input voltage υS. When υS <Vγ, the BJT is in the cutoff mode and the out-
puts are iC = 0 and υCE = υOC =VCC. When υS >Vγ, the BJT enters the active mode
and the outputs iC and υCE are governed by Eqs. (4–11) and (4–12). Under these
equations, iC increases linearly as υS increases, with the result that υCE decreases
linearly. The collector current continues to increase as υS increases until it reaches
its saturation bound at iC = iSC. At that point the transistor switches into the satura-
tion mode and thereafter the outputs remain constant at iC = iSC =VCC=RC and
υCE = 0.

In digital applications the input voltage drives the transistor between the cutoff
and saturation modes passing through the active mode as quickly as possible. In ana-
log circuit applications the transistor remains in the active mode where the slope of
the transfer characteristic provides voltage amplification. In the next section we find
that the OP AMP has similar transfer characteristics.

Suppose that the circuit parameters in Figure 4–23 are β= 100, Vγ = 0:7 V,
RB = 100 kΩ, RC = 1 kΩ, and VCC = 5 V. Find iC and υCE when υS = 2 V. Repeat when
υS = 6 V.

iBRB

vS
vBE − −

+

Input
loop

+

iC

vCE

RC

+

−
VCCOutput

loop
+
−

FIGURE 4–23 BJT common-emitter circuit.
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−

+
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−

+

Vγ
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–

vCE = 0

C

B
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−

+

+

E

FIGURE 4–22 Circuit models
for BJT operating modes:
(a) Active mode. (b) Cutoff
mode. (c) Saturation mode.
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SOLUTION:
Since υS = 2 V is greater than Vγ = 0:7 V, the transistor is not in
the cutoff mode. We assume that it is in the active mode and
use Eq. (4–11) to calculate iC.

iC = β
υS − Vγ

RB

� �
=100

2 − 0:7

100× 103

� �
=1:3 mA

The available short-circuit current is iSC =VCC=RC = 5 mA.
Since the calculated iC is less than iSC, the transistor is in fact
in the active mode and we use Eq. (4–12) to find υCE.

υCE =VCC − iCRC = 5 − 1:3 × 10−3 × 1000= 3:7 V

For υS = 2 V, the transistor is in the active mode and the out-
puts are iC = 1:3 mA and υCE = 3:7 V.

For υS = 6 V, we again assume that the transistor is in the
activemodeand calculate the collector current fromEq. (4–11).

iC = β
υS − Vγ

RB

� �
=100

6 − 0:7

100× 103

� �
=5:3 mA

The calculated iC is greater than the available iSC. For this input the transistor is
in the saturation mode and the outputs equal their saturation bounds, namely
iC = iSC = 5 mA and υCE = 0. ■

D e s i g n E x e r c i s e 4–14
The known parameters in Figure 4–25 are β=100, Vγ = 0:7 V,
RC = 1 kΩ, and VCC = 5 V. The circuit is to function as a digital
inverter that meets two conditions:

1. An input of υS = 0 V must produce an output of υCE = 5 V.

2. An input of υS = 5 V must produce an output of υCE = 0 V
Select a value of RB so that the circuit meets these conditions.

A n s w e r: RB <
100× 4:3

5 × 10−3 = 86 kΩ

Any reasonable value less than 86 kΩ (say 56 kΩ, a standard value)
will work.

4–3 T H E O P E R A T I O N A L A M P L I F I E R

The integrated circuit OP AMP is the premier linear active device in present-day ana-
log circuit applications. The term operational amplifier was apparently first used in a
1947 paper by John R. Ragazzini and his colleagues, who reported on work carried
out for the National Defense Research Council during World War II. The paper
described high-gain dc amplifier circuits that perform mathematical operations (addi-
tion, subtraction, multiplication, division, integration, etc.); hence the name operational
amplifier. For more than a decade the most important applications were general- and
special-purpose analog computers using vacuum tube amplifiers. In the early 1960s
general-purpose, discrete-transistor OP AMPs became readily available, and by the
mid-1960s the first commercial integrated circuit OP AMPs entered the market. The
transition from vacuum tubes to integrated circuits decreased the size, power consump-
tion, and cost of OPAMPs by nearly three orders of magnitude. By the early 1970s the
integrated circuit version became the dominant active device in analog circuits.

Saturation

VCC

vCE

0
vS (V)

Cutoff

VCC

Active

Vγ

RC

iC

FIGURE 4–24 Output responses of the BJT circuit in
Figure 4–23. This is called the circuit’s transfer
characteristics.

RB

vBE

vCEvS

RC

VCC

+ +

–

+
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iB

iC

+
−

FIGURE 4–25
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The device itself is a complex array of transistors, resistors, diodes, and capacitors,
all fabricated and interconnected on a tiny silicon chip. Figure 4–26 shows examples
of ways OP AMPs are packaged for use in circuits. In spite of its complexity, the
device can be modeled by rather simple i−υ characteristics. We do not need to con-
cern ourselves with what is going on inside the package; rather, we treat the OPAMP
using a behavioral model that constrains the voltages and currents at the external
terminals of the device.

O P A M P N O T A T I O N

Certain matters of notation and nomenclature must be discussed before developing a
circuit model for the OP AMP. The OP AMP is a five-terminal device, as shown in
Figure 4–27(a). The “+” and “−” symbols identify the input terminals and are a short-
hand notation for the noninverting and inverting input terminals, respectively. These
“+” and “−” symbols identify the two input terminals and have nothing to do with the
polarity of the voltages applied. The other terminals are the output and the positive
and negative supply voltages, usually labeled +VCC and −VCC. While some OP
AMPs have more than five terminals, these five are always present and are the only
ones we will use in this text. Figure 4–27(b) shows how these terminals are arranged
in a common eight-pin integrated circuit package.

The two power supply terminals in Figure 4–27 are not usually shown in circuit
diagrams. Be assured that they are always there because the external power supplies
are required for the OP AMP to operate as an active device. The power required for
signal amplification comes through these terminals from an external power source.
The +VCC and −VCC voltages applied to these terminals also determine the upper
and lower limits on the OP AMP output voltage.

Figure 4–28(a) shows a complete set of voltage and current variables for the OP
AMP, while Figure 4–28(b) shows the abbreviated set of signal variables we will
use. All voltages are defined with respect to a common reference node, usually
ground. Voltage variables υP, υN, and υO are defined by writing a voltage symbol
beside the corresponding terminals. This notationmeans the “+” reference mark is
at the terminal in question and the “−” reference mark is at the reference or
ground terminal. In this book the reference directions for the currents are directed
in at input terminals and out at the output. At times the abbreviated set of current
variables may appear to violate KCL. For example, a global KCL equation for the
complete set of variables in Figure 4–28(a) is

iO = IC+ + IC− + iP + iN correct equationð Þ (4–13)

A similar equation using the shorthand set of current variables in Figure 4–28(b)
reads

iO = iN + iP incorrect equationð Þ (4–14)

This equation is not correct, since it does not include all the currents. What is more
important, it implies that the output current comes from the inputs. In fact, this is
wrong. The input currents are very small, ideally zero. The output current comes
from the supply voltages, as Eq. (4–13) points out, even though these terminals
are not shown on the abbreviated circuit diagram.

T R A N S F E R C H A R A C T E R I S T I C S

The dominant feature of the OP AMP is the transfer characteristic shown in
Figure 4–29. This characteristic provides the relationships between the noninverting
input υP, the inverting input υN, and the output voltage υO. The transfer characteristic
is divided into three regions or modes called +saturation, −saturation, and linear. In
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FIGURE 4–26 Examples of
OP AMP packages: (a) Dual
in-line 14-pin and 8-pin packages
(DIP). (b) A discrete-component,
high-performance audio package.
(c) Low-power surface-mount
package.
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FIGURE 4–27 The OP AMP::
(a) Circuit symbol. (b) Pin-out
diagram for an eight-pin DIP
package.

172 C H A P T E R 4 ACTIVE CIRCUITS



the linear region the OP AMP is a differential amplifier because the output is pro-
portional to the difference between the two inputs. The slope of the line in the linear
range is called the voltage gain. In this linear region the input-output relation is

υO =A υP−υNð Þ (4–15)

The voltage gain of an OP AMP is very large, usually greater than 105. As long as
the net input υP−υNð Þ is very small, the output will be proportional to the input.
However, when A υP−υNj j>VCC, the OP AMP is saturated and the output voltage
is limited by the supply voltages (less some small internal losses).

In the previous section, we stated that the transistor has three operating modes.
The input-output characteristic in Figure 4–29 points out that the OP AMP also
has three operating modes:

1. +Saturation mode whenA υP−υNð Þ>VCC and υO = +VCC.

2. −Saturation mode whenA υP−υNð Þ< −VCC and υO = −VCC.

3. Linear mode whenA υP−υNj j<VCC and υO =A υP−υNð Þ.
Usually we analyze and design OP AMP circuits using the model for the linear

mode. When the operating mode is not given, we use a self-consistent approach sim-
ilar to the one used for the transistor. That is, we assume that the OP AMP is in
the linear mode and then calculate the output voltage υO. If it turns out that
−VCC < υO < +VCC, then the assumption is correct and the OP AMP is indeed in
the linear mode. If υO < −VCC, then the assumption is wrong and the OP AMP is
in the −saturation mode with υO = −VCC. If υO > +VCC, then the assumption is wrong
and the OP AMP is in the +saturation mode with υO = +VCC.

I D E A L O P A M P M O D E L

A dependent-source model of an OP AMP operating in its linear range is shown in
Figure 4–30. This model includes an input resistance RIð Þ, an output resistance ROð Þ,
and a voltage-controlled voltage source whose gain is A.3 Numerical values of these
OP AMP parameters typically fall in the following ranges:

106 <RI < 1012 Ω
10 <RO < 100Ω
105 <A< 108

Clearly, high input resistance, low output resistances, and high voltage
gain are the key attributes of an OP AMP.

The dependent-source model can be used to develop the i−υ relation-
ships of the ideal model. For theOPAMP to operate in its linear mode, the
output voltage is bounded by

−VCC ≤ υO ≤ +VCC

Using Eq. (4–15), we can write this bound as

−
VCC

A
≤ υP−υNð Þ≤ +

VCC

A

The supply voltage VCC is typically about 15 V, while A is a very large
number, usually 105 or greater. Consequently, linear operation requires
that υP≈υN. In the ideal OP AMP model, the voltage gain is assumed to

iP
IC+

iN

iO

IC−

+VCC

−VCC

+

vP

−

vO

+

vN

−

−
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−

+
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+
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+
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FIGURE 4–28 OP AMP
voltage and current definitions:
(a) Complete set.
(b) Shorthand set.
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FIGURE 4–29 OP AMP
transfer characteristics.

+
−

iP

iN

vP

vN

+

+

RI

+

−

RO
iO

vO
+
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FIGURE 4–30 Dependent-source model of
an OP AMP operating in the linear mode.

3The parameter A is used in OP AMP notation to define the device’s “open-loop” gain, which is
equal to μ for VCVS models. In real OP AMPs, the open-loop gain listed in reference manuals is
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be infinite A! ∞ð Þ, in which case linear operation forces υP = υN. The input resist-
ance RI of the ideal OP AMP is assumed to be infinite, so the currents entering input
terminals are zero. In summary, the i−υ relationships of the ideal model of the OP
AMP are as follows:

υP = υN

iP = iN = 0
(4–16)

The implications of these element equations are illustrated on the OP AMP circuit
symbol in Figure 4–31.

At first glance the element constraints of the ideal OP AMP appear to be fairly
useless. They look more like connection constraints and are totally silent about
the output quantities (vO and iO), which are usually the signals of greatest interest.
They seem to say that the OPAMP input terminals are simultaneously a short circuit
υP = υNð Þ and an open circuit iP = iN = 0ð Þ. In practice, however, the ideal model of the
OP AMP is very useful because in linear applications feedback is always present.
That is, for the OP AMP to operate in a linear mode, it is necessary for there to
be feedback paths from the output to one or both of the inputs. These feedback paths
ensure that υP≈υN and make it possible for us to analyze OP AMP circuits using the
ideal OP AMP element constraints in Eq. (4–16).

N O N I N V E R T I N G O P A M P
To illustrate the effects of feedback, let us find the input-output characteristics of the
circuit in Figure 4–32. In this circuit the voltage divider provides a feedback path from
the output to the inverting input.4 Since the ideal OPAMP draws no current at either
input iP = iN = 0ð Þ, we can use voltage division to determine the voltage at the invert-
ing input:

υN =
R2

R1 +R2
υO (4–17)

The input source connection at the noninverting input requires the condition

υP = υS (4–18)

The ideal OP AMP element constraints demand that υP = υN; therefore, we can
equate the right sides of Eqs. (4–17) and (4–18) to obtain the input-output relation-
ship of the overall circuit.

υO =
R1 +R2

R2
υS (4–19)

The preceding analysis illustrates a general strategy for analyzing OP AMP cir-
cuits. We use normal circuit analysis methods to express the OP AMP input voltages

−

+
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vO

+

iP = 0

vP

vN

+

+

− −

Voltages
are

equal

iN = 0

FIGURE 4–31 Ideal OP AMP
characteristics.
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FIGURE 4–32 The
noninverting amplifier circuit.

generally a minimum rather than an exact value. Hence, a listing for A equal to, say, 105 may mean
that the device can be expected to have at least that amount of open-loop gain, but could exceed it by
a factor of 10 or more. In general, we like to have A as large as possible. As we will see, it is the
“closed-loop” gain that we want to be exact.

4The feedback must always be to the inverting terminal. Otherwise the circuit will be unstable for
reasons that we cannot explain based on what we have learned thus far. Further complicating this
understanding is that when using the ideal OP AMP model in either Multisim or OrCAD, the soft-
ware does not distinguish between feedback to the positive or negative terminals. This, of course, is
not true for a real OP AMP like a uA741 as used in the laboratory, in circuit applications, or in
simulations.
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υP and υN in terms of circuit parameters. We then use the ideal OP AMP constraint
υP = υN to solve for the overall circuit input-output relationship.

The circuit in Figure 4–32(a) is called a noninverting amplifier. The input-output
relationship is of the form υO =KυS, which reminds us that the circuit is linear.
Figure 4–32(b) shows the functional building block for this circuit, where the propor-
tionality constant K is

K =
R1 +R2

R2
(4–20)

In an OP AMP circuit the proportionality constant K is sometimes called the closed-
loop gain, because it defines the input-output relationship when the feedback loop is
connected (closed).

When discussing OP AMP circuits, it is necessary to distinguish between two
types of gains. The first is the large open-loop voltage gain provided by the OP
AMP device itself. The second is the closed-loop voltage gain of theOPAMP circuit
with a negative feedback path. Note that Eq. (4–20) indicates that the circuit gain is
determined by the resistors in the feedback path, not by the value of the OP AMP
gain. The gain in Eq. (4–20) is really the voltage division rule upside down. Varia-
tion of the value of K depends on the tolerance on the resistors in the feedback
path, not the variation in the value of the OP AMP’s gain. In effect, feedback
converts the OP AMP’s very large but variable gain into a much smaller but well-
defined gain.

Let us look at a first example of a noninverting OP AMP. Consider the
circuit shown in Figure 4–33(a). Let us find the output voltage, the output cur-
rent, the voltage gain, the output power, and the power gain.

The circuit we just studied is contained within the shaded area. There is an
input source and an output load. The gain of the OP AMP circuit is found
using Eq. (4–20) as

K =
R1 +R2

R2
=
20 k+ 5 k

5 k
= 5

The output voltage is found by substituting into Eq. (4–19), but there is a pos-
sible complication. In the derivation of Eq. (4–19) the input was connected
directly to the noninverting terminal. In this circuit there is a 1-kΩ resistor
between the source and the OP AMP. Doing a KVL at the input yields

−υS + 1 k iP + υP = 0

But we recall that for an ideal OPAMP iP = iN = 0. Therefore, there is no voltage drop
across the 1-kΩ resistor so that the input voltage is impressed directly across the OP
AMP. Eq. (4–19) holds. The output voltage is found as

υO = 5× 1= 5 V

We calculate the output current by using Ohm’s Law as follows:

iO =
υO
RL

=
5

10 k
= 500 μA

The output power is simply pO = υO × iO = 5× 500 μ= 2:5mW. It does not make
sense to talk about power gain with these types of circuits. Since the input current
iP is zero, the source does not provide any power to the circuit. This would appear
to say that this circuit has infinite power gain. Of course that is not true. There is
a power source driving the OP AMP that is indeed providing the necessary power
to the load.

−

+

+
−

1V

iO

iP +
vO

–

(a)

vOK = 5

(b)

vS

1 kΩ

20 kΩ

5 kΩ
10 kΩ

FIGURE 4–33
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D E S I G N E X A M P L E 4 – 1 2

Design an amplifier with a gain of K = 10.

SOLUTION:
Using a noninverting OP AMP circuit, the design problem is to select the values of
the resistors in the feedback path. From Eq. (4–20) the design constraint is

10 =
R1 +R2ð Þ

R2

We have one constraint with two unknowns. Arbitrarily selectingR2 = 10 kΩ, we find
R1 = 90 kΩ. These resistors would normally have low tolerances �1% or lessð Þ to pro-
duce a precisely controlled closed-loop gain.

Comment: The problem of choosing resistance values in OP AMP circuit design
problems deserves some discussion. Although values of resistance from a few ohms
to several hundredmegohms are commercially available, we generally limit ourselves
to the range from about 1 kΩ to perhaps 1 MΩ. The lower limit of 1 kΩ is imposed in
part because of power dissipation in the resistors. Typically, we use resistors with
¼-W power ratings or less. Themaximum voltage inOPAMP circuits is often around
15 V. The smallest ¼-W resistance we can use is RMIN ≥ 15ð Þ2=0:25 = 900Ω, or about
1 kΩ. The upper bound of 1MΩ comes about because surface leakage makes it
difficult to maintain the tolerance in a high-value resistor. High-value resistors are
also noisy, which leads to problems when they are connected in the feedback path.
The 1-kΩ to 1-MΩ range should be used as a guideline, not an inviolate design rule.
Actual design choices are influenced by system-specific factors and changes in
technology. ■

D e s i g n E x e r c i s e 4–15
Design a noninverting amplifier circuit with a gain of 7�10% using standard 10% resistors.
(See inside back cover for standard values.)

A n s w e r: Referring to Figure 4–32(a), R1 = 22 kΩ and R2 = 3:3 kΩ or R1 = 27 kΩ and
R2 = 4:7 kΩ. Other combinations are possible.

E x e r c i s e 4–16
The noninverting amplifier circuit in Figure 4–32(a) is operating with R1 = 2R2 and
VCC = �12 V. Over what range of input voltages υS is the OP AMP in the linear mode?

A n s w e r: −4 V< υS < + 4 V

D e s i g n E x e r c i s e 4–17
There is a need for anOPAMPnoninverting amplifier with a gain of 0:5. Design such a circuit.

A n s w e r: It is not possible to design a noninverting amplifier with a gain less than one.
K = R1 +R2

R2
, hence K ≥ 1: Note: If the sign of the gain is not important, we can achieve the

desired gain with an inverting amplifier or if the sign is important, with a voltage follower
followed by a voltage divider. Both of these OP AMP configurations will be studied later.

E F F E C T S O F F I N I T E O P A M P G A I N

The ideal OP AMP model has an infinite gain. Actual OP AMP devices have very
large, but finite voltage gains. We now address the effect of large but finite gain
on the input-output relationships of OP AMP circuits.
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The circuit in Figure 4–34 shows a finite gain OPAMP circuit
model in which the input resistance RI is infinite. The actual
values of OP AMP input resistance range from 106 to 1012 Ω,
so no important effect is left out by ignoring this resistance.Exam-
iningthecircuit,wesee that thenoninverting inputvoltage isdeter-
mined by the independent voltage source. The inverting input can
be found by voltage division, since the current iN is zero. In other
words, Eqs. (4–17) and (4–18) apply to this circuit as well.

We next determine the output voltage in terms of the con-
trolled-source voltage using voltage division on the series con-
nection of the three resistors RO, R1, and R2:

υO =
R1 +R2

RO +R1 +R2
A υP−υNð Þ

Substituting υP and υN from Eqs. (4–17) and (4–18) yields

υO =
R1 +R2

RO +R1 +R2

� �
A υS−

R2

R1 +R2
υO

� �
(4–21)

The intermediate result in Eq. (4–21) shows that feedback is present since υO appears
on both sides of the equation. Solving for υO yields

υO =
A R1 +R2ð Þ

RO +R1 +R2 1 +Að ÞυS (4–22)

In the limit, as A! ∞ , Eq. (4–22) reduces to

υO =
R1 +R2

R2
υS =KυS

where K is the closed-loop gain we previously found using the ideal OP
AMP model.

To see the effect of a finiteA, we ignoreRO in Eq. (4–22) since it is generally quite
small compared with R1 +R2. With this approximation Eq. (4–22) can be written in
the following form:

υO =
K

1 + K=Að ÞυS (4–23)

When written in this form, we see that the closed-loop gain reduces to K as
A! ∞ . Moreover, we see that the finite-gain model yields a good approximation
to the ideal model results as long as K�A. In other words, the ideal model yields
good results as long as the closed-loop gain is much less than the open-loop gain
of the OP AMP device. One practical rule of thumb is to limit the closed-loop gain
to less than 1% of the OP AMP gain (i.e., K <A=100).

The feedback path also affects the active output resistance. To see this, we con-
struct a Thévenin equivalent circuit using the open-circuit voltage and the short-
circuit current. Equation (4–23) is the open-circuit voltage, and we need only find
the short-circuit current. Connecting a short-circuit at the output in Figure 4–34
forces υN = 0 but leaves υP = υS. Therefore, the short-circuit current is

iSC =A υS=ROð Þ
As a result, the Thévenin resistance is

RT =
υOC

iSC
=

K=A
1 +K=A

RO

When K�A, this expression reduces to

+
−

iN

vP
+

−

RO

vO+
−

vN

vS

R1

R2

A(vP − vN)

+

FIGURE 4–34 The noninverting amplifier circuit with
the dependent-source model.
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RT =
K
A
RO≈0Ω

The OP AMP circuit with feedback has an output Thévenin resistance that is much
smaller than the output Thévenin resistance of the OPAMP device itself. In fact, the
Thévenin resistance is very small sinceRO is typically less than 100Ω andA is greater
than 105.

At this point we can summarize our discussion. We introduced the OPAMP as an
active five-terminal device including two supply terminals not normally shown on the
circuit diagram. We then developed an ideal model of this device that is used to ana-
lyze and design circuits that have feedback. Feedback must be present for the device
to operate in the linear mode. The most dramatic feature of the ideal model is the
assumption of infinite gain. Using a finite-gain model, we found that the ideal model
predicts the circuit input-output relationship quite closely as long as the circuit gainK
is much smaller than the OPAMP gainA. We also discovered that the Thévenin out-
put resistance of an OP AMP with feedback is essentially zero.

In the rest of this book we use the ideal i−υ constraints in Eq. (4–16) to analyzeOP
AMP circuits. The OP AMP circuits have essentially zero output resistance, which
means that the output voltage does not change with different loads. Unless otherwise
stated, from now on the term OP AMP refers to the ideal model.

4–4 O P A M P C I R C U I T A N A L Y S I S

OP AMP circuit analysis takes advantage of OP AMP building blocks that are
connected together in cascade (similar to series) to perform signal analysis func-
tions that are too complex for any one building block alone. This approach
greatly simplifies the analysis and design of these types of circuits. The reason
this works is that OP AMP building blocks, as we saw, have very low output resis-
tances enabling other circuits to be connected to their outputs without altering
the function of either building block. In some cases, a passive circuit’s signal pro-
cessing function can be unintentionally altered by connecting that circuit to
another. When this effect occurs, the circuit is said to be “loaded,” and the effect
needs to be considered. Some OP AMP building blocks, such as the noninverter
just studied, also have very high input resistances. This feature enables them to
be connected to the output of circuits that are sensitive to loading, such as voltage
dividers, without affecting their signal processing function. In this section, we

introduce four more building blocks to complement the non-
inverter just studied. These are the voltage follower, the
inverting amplifier, the summer, and the subtractor. The
key to using the building block approach is to recognize
the feedback pattern and to isolate the basic circuit as a build-
ing block. The first example illustrates this process.

E X A M P L E 4 – 1 3

Find the input-output relationship, that is, the K of the circuit in
4–35(a).

SOLUTION:
As we look at the circuit, we can recognize a voltage divider and
a noninverting OP AMP—two separate building blocks. Since
the noninverter draws no current from the voltage divider, the
output of the divider is unaltered and impressed on the input
to the OP AMP at vP. Each building block has its own gain:

−

+
vP

iP

vN

vO

R3

R4

iN
vS

+
−

R2

R1

RL

Source LoadNoninverting amplifier

Active circuit

Voltage divider

Passive circuit
(a)

vPvS vO

(b)

KAMPKVD

FIGURE 4–35
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KVD for the voltage divider and KAMP for the noninverter. Figure 4–35(b) shows the
two building blocks in cascade. That is, the output of the first building block
becomes the input of the second. We can find the gain of the voltage divider as
follows:

KVD =
υP
υS

=
R2

R1 +R2

Sincethenoninvertingamplifierhaszerooutputresistance, the loadRL has no effect on the
output voltage υO. Using Eq. (4–19), the gain of the noninverting amplifier circuit is

KAMP =
υO
υP

=
R3 +R4

R4

The overall circuit gain is found as

KCIRCUIT =
υO
υS

=
υP
υS

� �
υO
υP

� �
= KVD ×KAMP

=
R2

R1 +R2

� �
R3 +R4

R4

� �
The gain KCIRCUIT is the product of KVD times KAMP because the amplifier circuit
does not load the source circuit since iP = 0. ■

E x e r c i s e 4–18
(a) Find υO in Figure 4–35(a) when R1 =R2 = 1 kΩ, υS = 1 V, R3 =R4 = 1 kΩ and RL = 100Ω.
(b) Repeat when R3 is a short circuit and the other values are the same.

A n s w e r s:
(a) υO = 1 V
(b) υO = 0:5 V

V O L T A G E F O L L O W E R

The OP AMP in Figure 4–36(a) is connected as a voltage follower or buffer. In this
case, the feedback path is a direct connection from the output to the inverting input.
The feedback connection forces the condition υN = υO. The input current iP = 0, so
there is no voltage across the source resistanceRS. Applying KVL, we have the input
condition υP = vS. The ideal OP AMP model requires υP = υN, so we conclude that
υO = υS. By inspection, the closed-loop gain is K = 1. Since the output exactly equals
the input, we say that the output follows the input (hence the name voltage follower).

The voltage follower is used in interface circuits because it isolates the source
from the load. Note that the input-output relationship υO = υS does not depend
on the source or load resistance. When the source is connected directly to the
load, as in Figure 4–36(b), the voltage delivered to the load depends on RS and
RL. The source and load interaction limits the signals that can be transferred across

−

+
iOvO

iP

iN

vP

vN

RL

+
−

vS

RS

RLvS

RS

+
−

(a) (b)

FIGURE 4–36 (a) Source-load
interface with a voltage follower.
(b) Interface without the voltage
follower.
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the interface, as discussed in Chapter 3.When the voltage follower is inserted between
the source and load, the signal levels are limited by the capability of the OP AMP.

By Ohm’s law, the current delivered to the load is iO = υO=RL. But since υO = υS,
the output current can be written in the form

iO = υS=RL

Applying KCL at the reference node, we discover an apparent dilemma:

iP = iO

For the ideal model iP = 0, but the preceding equations say that iO cannot be zero
unless υS is zero. It appears that KCL is violated.

The dilemma is resolved by noting that the circuit diagram does not include the
supply terminals. The output current comes from the power supply, not from the
input. This dilemma arises only at the reference node (the ground terminal). In
OPAMP circuits, as in all circuits, KCLmust be satisfied. However, we must be alert
to the fact that a KCL equation at the reference node could yield misleading results
because the power supply terminals are not usually included in circuit diagrams.

D e s i g n E x e r c i s e 4–19
There is a need for an OP AMP noninverting amplifier with a gain of 0:5. Design such a
circuit. Use the results of Example 4–13 as a guide.

A n s w e r: Use a voltage divider with two equal resistors cascaded by a follower.

A P P L I C A T I O N E X A M P L E 4 – 1 4

Digital (or even analog) Multimeters (DMMs) are ubiquitous engineering tools.
They can be purchased for as little as $5 to as much as several thousand dollars. Most
popular models are in the range of $100 to $200 and are hand-held portables. Clearly
there must be differences to warrant such a wide range of prices. These differences
are durability, accuracy, functions, input resistance, and battery or plug-in powered,
to mention a few. For this discussion let us focus on input resistance.

Consider the circuit of Figure 4–37(a). A particular DMM is used to measure
the voltage across the 10-MΩ resistor. The anticipated voltage was 8 V. However,
the meter reads 6 V. The meter has an internal resistance that is in parallel with the

resistor that is being measured and is significantly altering the reading. One can cal-
culate the internal resistance of the meter RM using voltage division as follows:

6 =
ðRM k 10MÞ

ðRM k 10MÞ+ 5M
12

(a) (b)

+
–+

 vOC

‒

5 MΩ

10 MΩ12 V
+
−

A

V
B

8.0000 V
+

 vOC

‒

5 MΩ

10 MΩ12 V
+
−

A

V
B

6.0000 V

FIGURE 4–37

180 C H A P T E R 4 ACTIVE CIRCUITS



where

RM k 10M=
10M×RM

10M+RM

Solving for RM, we find that RM =10MΩ.
The reason for the problem is that the current splits at node A sending some

through the DMM. In theory, with a perfect DMM all of the current would flow
through the load.

The problem can be solved by inserting a follower in front of the DMMas shown in
Figure 4–37(b). BetterDMMs have a follower in the front end to permit them tomeas-
ure voltages across high resistances. The down side is that a follower requires power to
operate. It should be noted that most voltage measurements are made across resistors
significantly smaller than 10 MΩ, negating the need for a follower.

E x e r c i s e 4–20
A DMM with a known internal resistance of 12:5MΩ is used to measure voltages
across several resistors in the circuit shown in Figure 4–38. What voltage will be meas-
ured on the DMM across each resistor?

A n s w e r s: RESISTOR EXPECTED VOLTAGE (V) MEASURED VOLTAGE (V) PERCENT ERROR

50 kΩ 0:237 0:236 0:41
10MΩ 47:4 45:5 4:01
500 kΩ 2:37 2:28 3:68

E x e r c i s e 4–21
The circuits in Figure 4–36 have υS = 1:5 V, RS = 2 kΩ, and RL = 1 kΩ. Compute the maxi-
mum power available from the source. Compute the power absorbed by the load resistor
in the direct connection in Figure 4–36(b) and in the voltage follower circuit in Figure 4–36
(a). Discuss any differences.

A n s w e r s: 281 μW; 250 μW; 2250 μW

D I S C U S S I O N : With the direct connection, the power delivered to the load is less than the
maximum power available. With the voltage follower circuit, the power delivered to the load is
greater than themaximumvalue specified by themaximumpower transfer theorem.However,
the maximum power transfer theorem does not apply to the voltage follower circuit since the
load power comes from the OP AMP power supply rather than from the signal source.

T H E I N V E R T I N G A M P L I F I E R

The circuit in Figure 4–39 is called an inverting amplifier. The key feature of this cir-
cuit is that the input signal and the feedback are both applied at the inverting input.
Since the noninverting input is grounded, we have υP = 0, an observation we will use
shortly. The sum of currents entering node A can be written as

υS−υN
R1

+
υO−υN
R2

− iN = 0 (4–24)

The element constraints for the OPAMP are υP = υN and iP = iN = 0. Since υP = 0, it
follows that υN = 0. Substituting the OP AMP constraints into Eq. (4–24) and solving
for the input-output relationship yields

υO = −
R2

R1

� �
υS (4–25)

50 V

+  v1  –

+

 v2

  –

–  v3  +

50 kΩ

500 kΩ

10 MΩ
+
−

FIGURE 4–38
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FIGURE 4–39 The inverting
amplifier circuit.
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This result is of the form υO =KυS, where K is the closed-loop gain. However, in this
case the voltage gainK = −R2=R1 is negative, indicating a signal inversion (hence the
name inverting amplifier). We use the block diagram symbol in Figure 4–39(b) to
indicate either the inverting or the noninverting OP AMP configuration.

E x e r c i s e 4–22
The switch in Figure 4–40 moves from A to B. What is the output voltage υO when the
switch is in position A and in position B?

A n s w e r s: Switch in position A, υO = −10 V.
Switch in position B, υO = −15 V, because the OP AMP is saturated.

D e s i g n E x e r c i s e 4–23
A 2-mV signal υS needs to be amplified by a gain of −450�10% using standard 10%
resistors from the inside back cover. Design an appropriate circuit to amplify the signal.

A n s w e r: Because the gain needs to be negative, an inverting amplifier like that shown
in Figure 4–39(a) is used with R2 = 470 kΩ and R1 = 1 kΩ. This produces a gain of −470,
well within the 10% tolerance.

Let us look at another feature of the invertingOPAMP that should be understood.
The OP AMP constraints mean that the input current i1 in Figure 4–39(a) is

i1 =
υS−υN
R1

=
υS
R1

This, in turn, shows that the input resistance seen by the source υS is

RIN =
υS
i1

=R1 (4–26)

In other words, the inverting amplifier has a finite input resistance determined by the
external resistor R1.

The next example shows that the finite input resistance must be taken into account
when analyzing circuits with OP AMPs in the inverting amplifier configuration.

E X A M P L E 4 – 1 5

Find the input-output relationship of the circuit in Figure 4–41(a).

SOLUTION:
The circuit to the right of node B is an inverting amplifier. The load resistanceRL has
no effect on the circuit transfer characteristics since the OP AMP has zero output
resistance. However, the source circuit to the left of node B is influenced by the input
resistance of the inverting amplifier circuit. The effect can be seen by constructing a
Thévenin equivalent of the circuit to the left of node B, as shown in Figure 4–41(b).
By inspection of Figure 4–41(a),

υT =
R2

R1 +R2
υS

RT =
R1R2

R1 +R2

In Figure 4–41(b) the Thévenin resistance is connected in series with the input resis-
tor R3, yielding the equivalent resistance REQ =RT +R3 shown in Figure 4–41(c).

+

−
+
−

1 V

VCC = ± 15 V

A

B

10 kΩ

330 kΩ

100 kΩ

+

vO

–

FIGURE 4–40
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This reduced circuit is in the form of an inverting amplifier, so we can write the input-
output relationship relating υO and υT as

K1 =
υO
υT

= −
R4

REQ
= −

R4 R1 +R2ð Þ
R1R2 +R1R3 +R2R3

The overall input-output relationship from the input source υS to theOPAMPoutput
υO is obtained as follows:

KCIRCUIT =
υO
υS

=
υO
υT

� �
υT
υS

� �

= −
R4 R1 +R2ð Þ

R1R2 +R1R3 +R2R3

� �
R2

R1 +R2

� �

= −
R2R4

R1R2 +R1R3 +R2R3

� �

It is important to note that the overall gain is not the product of the source circuit
voltage gain R2= R1 +R2ð Þ and the inverting amplifier gain −R4=R3. In this circuit
the two building blocks interact because the input resistance of the inverting ampli-
fier circuit loads the source circuit. ■
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E x e r c i s e 4–24
Find the voltage gain K = vO=vS for the circuit in Figure 4–42.

A n s w e r: K = −2:89

T H E S U M M I N G A M P L I F I E R

The summing amplifier or adder circuit is shown in Figure
4–43(a). This circuit has two inputs connected at node A,
which is called the summing point. Since the noninverting

input is grounded, we have the condition υP = 0. This configuration is similar to the
inverting amplifier, so we start by applying KCL to write the sum of currents entering
the node A summing point.

υ1−υN
R1

+
υ2−υN
R2

+
υO−υN
RF

− iN = 0 (4–27)

With the noninverting input grounded, the OP AMP element constraints are
υN = υP = 0 and iN = 0. Substituting these OP AMP constraints into Eq. (4–27), we
can solve for the circuit input-output relationship.

υO = −
RF

R1

� �
υ1 + −

RF

R2

� �
υ2

= K1ð Þυ1 + K2ð Þυ2
(4–28)

The output is a weighted sum of the two inputs. The scale factors (or gains, as they are
called) are determined by the ratio of the feedback resistorRF to the input resistor for
each input: that is, K1 = −RF=R1 and K2 = −RF=R2. In the special case R1 =R2 =R,
Eq. (4–28) reduces to

υO = −
RF

R
υ1 + υ2ð Þ

In this special case the output is proportional to the sum of the two inputs (hence
the name summing amplifier or, more precisely, inverting summer). A block diagram
representation of this circuit is shown in Figure 4–43(b).

The summing amplifier in Figure 4–43 has two inputs, so there are two gains to
contend with, one for each input. The input-output relationship in Eq. (4–28) is easily
generalized to the case of n inputs as

υO = −
RF

R1

� �
υ1 + −

RF

R2

� �
υ2 + � � �+ −

RF

Rn

� �
υn

= K1υ1 +K2υ2 + � � �+Knυn

(4–29)
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where RF is the feedback resistor and R1,R2,…,Rn are the input resistors for the n
input voltages υ1,υ2,…,υn. You can easily verify this result by expanding the KCL
sum in Eq. (4–27) to include n inputs, invoking the OP AMP constraints, and then
solving for υO.

E x e r c i s e 4–25
In Figure 4–43, υ1 = 0:6 V, υ2 = 0:4 V, R1 = 3:3 kΩ, R2 = 4:7 kΩ, and RF = 15 kΩ. Find υO.

A n s w e r: υO = −4:0 V

D E S I G N E X A M P L E 4 – 1 6

Design an inverting summer that implements the input-output relationship

υO = − 5υ1 + 13υ2ð Þ

SOLUTION:
The design problem involves selecting the input and feedback resistors so that

RF

R1
= 5 and

RF

R2
= 13

One solution is arbitrarily to select RF = 65 kΩ, which yields R1 = 13 kΩ and
R2 = 5 kΩ. The resulting circuit is shown in Figure 4–44(a). The design can be
modified to use standard resistance values for resistors with �5% tolerance
(see inside back cover). Selecting the standard value RF = 56 kΩ requires
R1 = 11:2 kΩ and R2 = 4:31 kΩ. The nearest standard values are 11 kΩ and 4.3 kΩ.
The resulting circuit shown in Figure 4–44(b) incorporates standard value resis-
tors and produces gains of K1 = −56=11 = −5:09 and K2 = −56=4:3 = −13:02.
These nominal gains are within 2% of the values in the specified input-output
relationship. ■

E x e r c i s e 4–26
(a) Find υO in Figure 4–44(a) when υ1 = 2 V and υ2 = −0:5 V.

(b) If υ1 = 400mV andVCC = �15 V, what is the maximum value of υ2 for linear mode
operation?

(c) If υ1 = 500 mV and VCC = �15 V, what is the minimum value of υ2 for linear mode
operation?

A n s w e r s:
(a) −3:5 V; (b) 1 V; (c) −1:346 V

A P P L I C A T I O N E X A M P L E 4 – 1 7

Inverting amplifiers of the type discussed above have the ability to be easily
designed with outputs being the weighted sum of the various inputs. While this
type of OP AMP Summer is the most common by far, there is occasionally the need
for a noninverting summer. In this example we analyze a noninverting summer and
discuss the advantages and disadvantages of this summer versus the inverting
summer.

Consider the circuit of Figure 4–45 and find the input-output relationship.

+

−

v1

v2

13 kΩ

vO

(a)

5 kΩ

65 kΩ

+

−

v1

v2

11 kΩ
vO

(b)

4.3 kΩ

56 kΩ

FIGURE 4–44
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One should recognize the shaded area of the figure as being that of a noninverting

amplifier with gain K = RB +RA
RA

h i
, and υO =K × υP, Where υP acts as the summing

terminal of the circuit as well as the non-inverting terminal of the OP AMP.
We can find the voltage at υP using superposition. For the contribution of υ1 we

set all sources except υ1 to zero and solve for the voltage υP1

υP1 = υ1
R2 kR3k � � �RN

R1 +R2 kR3k � � �RN

� �
= υ1K1

Similarly for the contribution of υ2

υP2 = υ2
R1 kR3k � � �RN

R2 +R1 kR3k � � �RN

� �
= υ2K2

And so forth, until all input sources have been accounted for. Then using the additive
property of linear circuits, we obtain the final result

υP = υP1 + υP2 +…+ υPN

υP = υ1K1 + υ2K2 +…+ υNKN

υO =KυP =Kðυ1K1 + υ2K2 +…+ υNKNÞ

While this appears to be a simple result, calculating weighted gains for each input is
not so simple, especially if there aremore than two or three inputs. If all the inputs are
to have the same gain then selecting all source resistors to be equal, makes the circuit
useful and easy to use. For example, consider a three-input noninverting summer
with all source resistors equal. Using our previous result for N= 3, we get

K1 =
R2 kR3

R1 +R2kR3
=

R=2
R+R=2

=
1
3

K2 =
R1kR3

R2 +R1kR3
=

R=2
R+R=2

=
1
3

K3 =
R1kR2

R3 +R1kR2
=

R=2
R+R=2

=
1
3

So that our final result is

υO =K
υ1
3
+
υ2
3
+
υ3
3

� 	
=
K
3

υ1 + υ2 + υ3ð Þ

The designer can choose the OP AMP gain K to produce the overall gain desired.
If, for example, one wanted an overall gain of 10, one would choose K = 30,
resulting in

υO =
30
3

υ1+ υ2+ υ3ð Þ=10ðυ1+ υ2+ υ3Þ

In summary, the noninverting summer has the advantage of being able to sum mul-
tiple inputs with all positive gains using a single OP AMP. Its main disadvantage is
that the design process of selecting resistors to achieve specific gain values can be
significantly more complicated.

E x e r c i s e 4–27
Design a noninverting summer for four inputs with equal gains of 50.

A n s w e r: Select all source resistors equal and then make the gain of the OP AMP 200.

–

+
K

vP

v2

vN

RN

RA
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R2

R1
v1

+

vO

–

+

+

+

FIGURE 4–45
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T H E D I F F E R E N T I A L A M P L I F I E R

The circuit in Figure 4–46(a) is called a differential amplifier or subtractor. Like the
summer, this circuit has two inputs, one applied at the inverting input and one at the
noninverting input of the OP AMP. The input-output relationship can be obtained
using the superposition principle.

First, we turn off source υ2, in which case there is no excitation at the noninverting
input and υP = 0. In effect, the noninverting input is grounded and the circuit acts like
an inverting amplifier with the result that

υO1 = −
R2

R1
υ1 (4–30)

Next, turning υ2 back on and turning υ1 off, we see that the circuit looks like a non-
inverting amplifier with a voltage divider connected at its input. This case was treated
in Example 4–13, so we can write

υO2 =
R4

R3 +R4

� �
R1 +R2

R1

� �
υ2 (4–31)

Using superposition, we add outputs in Eqs. (4–30) and (4–31) to obtain the output
with both sources on:

υO = υO1 + υO2

= −
R2

R1

� �
υ1 +

R4

R3 +R4

� �
R1 +R2

R1

� �
υ2

= K1½ �υ1 + K2½ �υ2

(4–32)

whereK1 andK2 are the inverting and noninverting gains. Figure 4–46(b) shows how
the differential amplifier is represented in a block diagram.

For the special case of R3=R1 =R4=R2, Eq. (4–32) reduces to

υO =
R2

R1
υ2−υ1ð Þ (4–33)

In this case the output is proportional to the difference between the two inputs
(hence the name differential amplifier or subtractor).

+
−

+

−

+
−

v1

i1 R1 R2
i2

v2

R3
iP

vO
iN

vN

vP

R4

(a)

K1

K2

v2

v1

vO

+

+

(b)

A FIGURE 4–46 The differential
amplifier.
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E x e r c i s e 4–28
(a) Findtheinput-outputrelationshipof thesubtractorcircuit inFigure4–47.

(b) If υCC = �15 V and υ1 = 3 V, what is the allowable range of υ2 for lin-
ear operation of the OP AMP?

A n s w e r s:
(a) υO = −4υ1 + 3 υ2; (b) −1 V≤ υ2 ≤ 9 V

B A S I C O P A M P B U I L D I N G B L O C K S

The block diagram representations of the basic OPAMP circuit con-
figurations are shown in Figure 4–48. The noninverting and inverting amplifiers are
represented as gain blocks. The summing amplifier and differential amplifier require

15 kΩ

10 kΩ

10 kΩ 40 kΩ

+
vO

+
−

+

−

+
−

v1

v2

FIGURE 4–47
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v1 vO−

+
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−
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−
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v1

vO

+

+
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v2
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+

+
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RF

R2
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R2

R1
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K2 =
R1 + R2

R1

R4

R3 + R4(              ) (              )

R2

R4

SUMMER

SUBTRACTOR

FIGURE 4–48 Summary of basic OP AMP signal-processing circuits.
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both gain blocks and the summing point symbol. Considerable care must be used
when translating from a block diagram to a circuit, or vice versa, since some gain
blocks involve negative gains. For example, the gains of the inverting summer are
negative. The required minus sign is sometimes moved to the summing point and
the value of K within the gain block changed to a positive number. Since there is
no standard convention for doing this, it is important to keep track of the signs asso-
ciated with gain blocks and summing points.

The OP AMP building blocks in Figure 4–48 can be interconnected to obtain
complex signal-processing functions. These interconnects do not change the
input-output relationships of each block, provided the connections are all between
outputs and inputs. Each of the building blocks in Figure 4–48 is a feedback circuit
with an OP AMP output. These feedback circuits have insignificant output resis-
tances and can drive any load within the OP AMP’s output current capacity.5 In
other words, the building block outputs act like ideal voltage sources just like
the voltage sources connected to the block inputs. This observation leads to the fol-
lowing conclusion:

Connecting the output of one building block circuit to an input of another does
not change the signal-processing function performed by either circuit.

This property allows us to find the function performed by an interconnection using
the functions performed by the individual building blocks. Conversely, this property
allows us to design an interconnection by breaking a required function down into sep-
arate building block functions.

E X A M P L E 4 – 1 8

Derive an expression for υO in Figure 4–49(a) in terms of the two inputs. Draw a
block diagram representative of the circuit.

SOLUTION:
The circuit is an interconnection of two basic building blocks: a three-input summer
and a noninverting amplifier. The circuit meets the connection requirement since
building block outputs are connected to other building block inputs. The node volt-
age υA in the figure is the output of the summer. The summer inputs are a fixed 5-V

vS

vS

5 V

5 V

vA

vA

20 kΩ

20 kΩ

10 kΩ

(a) (b)

5 kΩ

10 kΩ

−2

+3−1

−1/2

10 kΩ

vO

vO+

+
+

+
+

+
+

–

+ −−
−

FIGURE 4–49 (a) Circuit. (b) Block diagram.

5Maximum OP AMP output currents for OP AMPs like the uA741 are typically around 20 mA and
generally range from 1 to 100 mA.
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source, a signal source υS and the noninverting amplifier output υO. Using the invert-
ing summer input-output relationship in Eq. (4–29), we have

υA = −5−2υS−
1
2
υO

The summer output υA is the input to the noninverting amplifier whose voltage gain is
K = 3. Using the input-output relationship of the noninverting amplifier, we have

υO = 3υA

= −15−6υS−
3
2
υO

Solving for υO yields
υO = −6−2:4υS

The signal-processing function on the interconnection was found using the input-
output relationships of the individual building blocks. The method even works with
a feedback path because the 20-kΩ resistor is connected from the noninverting ampli-
fier output to the input of the inverting summer. The block diagram is shown in
Figure 4–49(b). ■

E x e r c i s e 4–29
Derive an expression for υO in Figure 4–50 in terms of the inputs υ1 and υ2.

A n s w e r: υO = 8υ1−4υ2

E X A M P L E 4–1 9

Derive an expression for υO in Figure 4–51 in terms of the two inputs υ1 and υ2.

SOLUTION:
The circuit is an interconnection of a noninverting amplifier
and an inverting amplifier with an additional signal υ2
applied at its noninverting input. The voltage υA shown in
the figure is the output of the noninverting amplifier:

υA =
R1 +R2

R1

� �
υ1

We use superposition to find υO. First, set υ2 = 0, which con-
nects the noninverting input of the second stage to ground.
In this case the second stage acts like an inverting amplifier
whose input is υA and whose output is the response due to υ1
acting alone:

υO1 = −
R4

R3

� �
υA

= −
R4

R3

� �
R1 +R2

R1

� �
υ1

20 kΩ

10 kΩ

40 kΩ40 kΩ

+
vO

v1
+
− v2

+
−

+

−

+

−

10 kΩFIGURE 4–50
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+

−

+

+

−

−

+

−

+
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FIGURE 4–51
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Next, set υ1 = 0 which sets υA = 0 in turn. In effect this connects resistor R3 to ground.
In this case the second stage acts like a noninverting amplifier whose input is υ2 and
whose output is the response due to υ2 acting alone:

υO2 =
R3 +R4

R3

� �
υ2

Applying superposition, the total output is

υO = υO1 + υO2

= −
R4

R3

� �
R1 +R2

R1

� �
υ1 +

R3 +R4

R4

� �
υ2

= −K1½ �υ1 + K2½ �υ2
where −K1 and K2 are the inverting and noninverting gains, respectively.

The dual OP AMP circuit in Figure 4–51 performs the same signal-processing
function as the single OPAMP subtractor circuit in Fig. 4–48.Why use twoOPAMPs
to obtain a function that can be achieved using only one? The answer is that both
input signals in Figure 4–51 are applied to noninverting OP AMP inputs that have
very high input resistances. This means that the two–OP AMP subtractor does not
load the input signal sources. The basic subtractor in Figure 4–48 has finite input
resistances that may load the input signal sources. This difference could be important
when the input signal sources have high Thévenin resistances. ■

D e s i g n a n d E v a l u a t i o n E x e r c i s e 4–30

We have looked at two ways to design subtractor circuits—the more common way as shown
in Figure 4–46 and the less common way as shown in Figure 4–51. Your task is to design OP
AMP circuits that meet the following expression: vO = −20v1 + 10v2 using both realizations.
At least one resistor in each circuit must be 1 kΩ. The remaining resistors should be selected
from the standard 5% values from the inside back cover. Then list pros and cons for each
approach.

A n s w e r s: Single–OP AMP approach: R1 = 1 kΩ, R2 = 20 kΩ, R3 = 11 kΩ, and R4 = 10 kΩ.
Advantages: fewer parts, less power required (one versus two OP AMPs), and simpler
design. Disadvantage: low input resistance may result in loading.

Two–OP AMP approach: R1 = 9:1 kΩ, R2 = 11 kΩ, R3 = 1 kΩ, and R4 = 9:1 kΩ. Advan-
tage: high input resistance allows for connecting to almost any source circuit. Disadvan-
tages: more parts, more power required, and a slightly more
complicated design.

Other design values are possible.

N O D E - V O L T A G E A N A L Y S I S W I T H O P A M P S
There are many useful OP AMP circuits that are not simply
interconnections of basic building blocks. In such cases we
use a modified form of node-voltage analysis that is based
on theOPAMP connections in Figure 4–52. The overall circuit
contains N nodes, including the three associated with the OP
AMP. Normally the objective is to find the OP AMP output
voltage υO relative to the reference node (ground). We assign
node voltage variables to the N−1 nonreference nodes,
including a variable at the OPAMP output. However, an ideal
OP AMP acts like a dependent voltage source connected
between the output terminal and ground. As a result, the

+
−

iN = 0

iO

iP = 0

+

−

+

−
vP

+

−
vO

+

−
vN

Rest of the circuit

FIGURE 4–52 General OP AMP circuit analysis.
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OP AMP output voltage is determined by the other node voltages, and so we do not
need to write a node equation at the OP AMP output node.

We formulate node equations at the other N−2 nonreference nodes in the usual
way. Since there areN−1 node voltages, we seem to havemore unknowns than equa-
tions. However, the OP AMP forces the condition υP = υN in Figure 4–52. This elim-
inates one unknown node voltage since these two nodes are forced to have identical
voltages. Finally, remember that the ideal OP AMP draws no current at its inputs
iP = iN = 0ð Þ in Figure 4–52, so these currents can be ignored when formulating node
equations.

The following steps outline an approach to the formulation of node equations for
OP AMP circuits:

S T E P 1 Identify a node voltage at all nonreference nodes, including OP AMP outputs, but
do not formulate node equations at the OP AMP output nodes.

S T E P 2 Formulate node equations at the remaining nonreference nodes and then use the
ideal OP AMP voltage constraint υP = υN to reduce the number of unknowns.

E X A M P L E 4–2 0

Derive an expression for υO in Figure 4–53 in terms of the inputs υ1 and υ2.

SOLUTION:
This circuit is not an interconnection of OPAMP building blocks because the resistor
R2 is connected between two inputs.We use the node-voltagemethod outlined above
to find the required input-output relationship.

S T E P 1 The circuit has a total of six nonreference nodes as shown in the figure. Nodes B and
E are OP AMP outputs while nodes A and F are connected to ground by the input
voltage sources υ2 and υ1, respectively. As a result, we only need node equations at
C and D. Writing the sum of currents leaving these nodes

Node C:
υC−υB
R1

+
υC−υD
R2

= 0

NodeD:
υD−υC
R2

+
υD−υE
R3

= 0

yields two equations in the four node voltages υB, υC, υD, and υE.

S T E P 2 The noninverting OP AMP inputs are connected to independent voltages sources υ2
and υ1. TheOPAMPvoltage constraints υP = υNð Þmean that υD = υ1 and υC = υ2. These
constraints eliminate υC and υD as unknowns and reduce the two node equations to

Node C:
υ2−υB
R1

+
υ2−υ1
R2

= 0

NodeD:
υ1−υ2
R2

+
υ1−υE
R3

= 0

The node-voltage formulation method outlined above leads to two equations in the
two unknown node voltages υB and υE.

We solve the node C equation for υB

υB = υ2 +
R1

R2
υ2−υ1ð Þ

and the node D equation for υE

υE = υ1 +
R3

R2
υ1−υ2ð Þ

+

−

vO
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R3
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+
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Using the fundamental property of node voltages yields the required output as

υO = υB−υE =
R1 +R2 +R3

R2

� �
υ2−υ1ð Þ

The circuit in Figure 4–53 is a differential amplifier of the form υO =K υ2−υ1ð Þ in
which the input voltages υ1 and υ2 are applied at noninverting OP AMP inputs that
have very high input resistances. The circuit is the first stage of a commercially avail-
able integrated circuit called an instrumentation amplifier. We will use this cir-
cuit later. ■

D e s i g n E x e r c i s e 4–31
Select values of R1, R2, and R3 in Figure 4–53 so that υO = 50 υ2−υ1ð Þ.
A n s w e r: Selecting R1 =R3 = 24:5 kΩ and R2 = 1 kΩ is one of many possible solutions.

4–5 O P A M P C I R C U I T D E S I G N

This section is dedicated to OP AMP circuit design. Unlike circuit analysis, where
we are asked to find the single correct input-output relationship for a given circuit
configuration, circuit design asks us to create a circuit that will realize a desired
input-output relationship. Successful OP AMP circuit designs are accomplished by
interconnecting the various building blocks studied (inverter, noninverter, follower,
summer, subtractor, and more to come). The design process is greatly simplified by
the nearly one-to-one correspondence between the actual OP AMP circuits and their
building-block equivalents.However, unlike analysis problems, design problems rarely
haveaunique solution since thereareusually severalOPAMPcircuits that canmeet the
design objective. This prompts the question, which is the better or best design solution?
Sometimes the choice is obvious; at other times it is not. Making the right choice is
the highest level of learning—a key objective of every nascent engineer—and is
called evaluation (the art of making smart engineering decisions). We have already
seen some application of this skill in Chapter 3 with respect to choosing the better
interface. Engineers are often faced with selecting the best solution from several possi-
bilities. In making their recommendations, engineers consider many factors, including
economic considerations (purchase, maintenance, disposal, and replacement costs),
environmental issues (power used, recyclability, pollution produced), ergonomics
and aesthetics, reliability (durability, maintainability, and accuracy), number of parts,
uniqueness of parts, physical properties (size, shape, and weight), dependability of
thevendor, andavailabilityover time. Inmakingadecision, it is essential thatoneknows
theappropriate factors toconsiderand their respective importance to theapplication. In
this section and the next, we will look at some of these issues.

E V A L U A T I O N E X A M P L E 4 – 3 1

In a particular application, it is necessary to implement the block dia-
gram shown in Figure 4–54. The maximum individual OP AMP gain
cannot exceed �2000. The input resistance of the first signal stage
must be at least 10 kΩ. The nominal input signal υ1 is 1 μV.

Two vendors have provided competitive solutions, shown in Figure
4–55. Choose the best solution based on achieving the desired output
considering: cost, parts count, variety of parts needed, and power usage.

v1

2.6 V vO

106

+

−

FIGURE 4–54
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SOLUTION:
Referring to the block diagram, we determine what output the circuit is supposed to
deliver. We see that the input is multiplied by 106 and then added to −2:6 V. Hence,
we must have a circuit that has the following input-output relation:

υO = 106υ1−2:6 V

Also, the input signal that must be amplified is small, only around 1 μV, and therefore
it needs a large gain to make it usable K = 106

� �
. The input resistance must be at least

10 kΩ, probably to avoid loading from υ1. The individual OP AMPs cannot have a
gain magnitude exceeding 2000. At some point in the design, the 2:6-V source will
need to be subtracted from the amplified υ1.

Let us analyze each vendor’s submission to see first if the circuits meet the
required specifications.

Vendor A

This vendor chose a straightforward approach, splitting the gain across two OPAMP
stages. At υA the output is −1000υ1. This is then input to an inverting summer along
with the 2:6 V. The input from υA is given a gain of −1000 while the 2:6-V input is
given a gain of −1. The end result is the following expression for υO:

υO = υ1 −1000ð Þ −1000ð Þ+ −1ð Þ2:6 = 106υ1−2:6 V

Checking the other criteria; (a) the input to the first signal stage is 10 kΩ, right at the
limit; (b) total parts, 7; (c) different parts, 5; (d) power requirement, two OP AMPs;
and (e) cost, $15.

Vendor B

This vendor took a nontraditional approach. The vendor split the gain across two OP
AMPs but used a noninverter for the first stage followed by a subtractor. The input to

v1

+

+

−

−

−

−

−

−

+

+

+ +

−

+

+

+

vO

vO

vA
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vB

(a) Vendor A

(b) Vendor B

2.6 V

2.6 V

Cost $12 each

Cost $15 each

v1 −
+

100 Ω
100 Ω

100 kΩ
100 kΩ

10 kΩ
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10 MΩ
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the inverting terminal seems uncommon and needs to be analyzed to see if it works.
The first stage provides an output gain at υA of 1001. We need to see what the inputs
to the subtractor are before we can determine the output. We start by doing a Thé-
venin equivalence at υB. We get υT = 2:597 mV and RT = 100Ωk100 kΩ= 99:9Ω.

Next, we look at the subtractor relationship:

υO = −
R2

R1
υ1 +

R1 +R2

R1

� �
R4

R3 +R4

� �
υ2

We note that R2 = 10MΩ. The other resistance will take some work to calculate.
R1 is the input resistance at the inverting terminal. We see that it is 10 kΩ plus
RT, or 10;099:9Ω. Now R3 is the series resistance connected to the noninverting
terminal, or 0Ω, while R4 is the resistance from the noninverting terminal to
ground—an open circuit, or ∞ Ω. Substituting these values into our subtractor equa-
tion, we get

υO = −
107

10;099:9
0:002597+

10;099:9 + 107

10;099:9

� �
∞

0 + ∞

� 	
1001ð Þυ1

υO = −2:57 + 0:992× 106υ1

This vendor’s solution is close but not exact. The gain is off by 0:8% and the constant
is off by 1:2%. Checking the other criteria: (a) the input to the first signal stage is
into a noninverting stage or about ∞ Ω, so there are no concerns with loading;
(b) total parts, 8, (c) different parts, 5, (d) power requirement two OP AMPs; and
(e) cost, $12.

D I S C U S S I O N : Vendor A’s circuit meets all of the specifications exactly, but it costs
more than Vendor B’s circuit. Vendor B’s solution, on the other hand, is not exact,
but the errors are small. Vendor B uses one extra part, but three of the parts are the
same, while Vendor A’s circuit has only two parts that are the same. Both use two OP
AMPs and, since the power supplies to the OP AMPs usually are the largest sources
of power usage, they are equal on this criterion. The bottom line: if the number of
circuits being purchased is small, then Vendor A provides the simpler and most
accurate design. If the number is large so that cost becomes a significant factor and the
small errors can be tolerated, then choose Vendor B. ■

E x e r c i s e 4–32
Verify the solutions found in Evaluation Example 4–21 using Multisim.
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FIGURE 4–56
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A n s w e r: Figure 4–56 displays the results.

D E S I G N A N D E V A L U A T I O N E X A M P L E 4 – 2 2

Design the interface circuit in Figure 4–57 so that 200 mW is delivered to the
500-Ω load.

SOLUTION:
The maximum power available from the 5-V source is

pMAX =
υ2T
4RT

=
52

4 × 50
= 125mW

which is less than the required 200-mW output. This means that the interface circuit
must contain an active device that provides voltage gain. To determine the required
voltage gain, we express the output power as

p2 =
υ22
500

= 0:2W
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which yields the required output voltage as υ2 = � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2 × 500

p
= �10 V. Since the

input is a 5-V source, we need overall voltage gains ofK = �2.We can get these gains
using either the noninverting amplifier or the inverting amplifier shown in the figure.

First Design
The noninverting amplifier shown in the figure has very high input resistance; hence,
i1 = 0 and υ1 = 5 V. To get a voltage gain ofK = + 2 we need 1 +R2=R1ð Þ= 2. Selecting
R1 =R2 = 10 kΩ completes the design. Many other choices of resistors are possible.

Second Design
The inverting amplifier shown in the figure has an input resistance of R3; hence, the
input current is not zero, and υ1 = 5−50i1 < 5 V. In other words, the interface circuit
loads the input source. However, if we specify that R3 � 50Ω, the effect of loading
can be ignored since i1≈0 and the input voltage is essentially 5 V. Neglecting the
effect of loading, a voltage gain of K = −2 requires R4=R3 = 2. Selecting R3 = 25 kΩ
and R4 = 50 kΩ completes the design. Many other choices of resistors are possible
as long as R3 � 50Ω. ■

E x e r c i s e 4–33
Using the circuits and analyses shown in Design Example 4–22, how much power is
being provided by the signal source in each design?What is providing the power to the load?

A n s w e r s: In circuit 1 the signal source is providing zero power. In circuit 2 the signal
source is providing pS = υ21=R3 W. In each case, the power for the load is being supplied
by the OP AMP’s �VCC sources.

D E S I G N A N D E V A L U A T I O N E X A M P L E 4–2 3

Design a circuit using OP AMPs that implements the input-output relationship

υO = 5υ1 + 4υ2−2υ3

SOLUTION:
We will show two ways to solve this design problem and then discuss each design.

First Design
Rewriting the required input-output relationship as

υO = −5ð−υ1Þ−4ð−υ2Þ−2υ3
suggests an inverting summer with three inputs −υ1, −υ2, and υ3 with summing gains
of −5, −4, and −2, respectively. Figure 4–58(a) is a block diagram of this approach
and Figure 4–58(b) is an OP AMP circuit that implements the block diagram. This
design requires three OP AMPs and eight resistors.

Second Design
Rewriting the required input-output relationship as

υO = −2½−2:5υ1−2υ2�−2υ3
suggests an inverting summer with two inputs ½−2:5υ1−2υ2� and υ3, both with a sum-
ming gain of −2. The input ½−2:5υ1−2υ2� can be obtained using a second inverting
summer whose inputs are υ1 and υ2. Figure 4–58(c) is a block diagram of this
approach and Figure 4–58(d) is an OP AMP circuit that implements the block dia-
gram. This design requires two OP AMPs and six resistors.

Evaluation Discussion
This example illustrates again that there are often several ways to solve a given design
problem. This leads to the question of how to choose between different design
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solutions. Candidate designs are evaluated using criteria beyond the fact that they
implement a given signal-processing function. One common measure is to choose
the design that uses the fewest components. Applying this “smallest part count” cri-
teria in this example leads us to choose the second design.

Using this criterion, it is important to understand the impact of part count on the
cost of fabricating a circuit. Reducing part count does much more than simply reduce
component costs. It also (and often more importantly) reduces printed circuit board
space, assembly costs, packaging costs, testing, and logistics costs. ■

E v a l u a t i o n E x e r c i s e 4–34

A requirement exists for a circuit that implements the block diagram in Figure 4–59(a). The
circuit in Figure 4–59(b) is a proposed solution. A breadboard prototype of this circuit failed
to pass preliminary testing. Why?
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A n s w e r s: (1) The noninverter produces a gain of 11, not the desired 10. (2) The gain from
the noninverter into the inverting summer is −5, not −20. (3) The 5-V source is inverted,
resulting in a final value of + 5 V instead of the desired −5 V. (4) A common error for new
students, the inverting summer has the “+” and “−” terminals reversed.

4–6 O P A M P C I R C U I T A P P L I C A T I O N S

OP AMP circuits are fundamental building blocks in a wide range of signal-
processing applications, especially instrumentation, status monitoring, process con-
trol, filtering, digital-to-analog conversion, and analog-to-digital conversion. This
section provides a brief introduction to three of these applications.

D I G I T A L - T O - A N A L O G C O N V E R S I O N

Adigital-to-analog converter (DAC) has become a very common device. Its purpose
is to convert digital signals—binary 1s and 0s—to an analog or continuous format.
DACs are mixed-signal devices: the input to a DAC is a digital signal and the output
is an analog signal. DACs are used extensively in robotics, audio applications, and
communications, especially in high-definition digital television and cell phone appli-
cations. Figure 4–60 shows a simplified block diagram of this device along with photos
of commercially available DACs. For the purpose of the following discussion we will
focus on four-bit devices, although typical devices are generally eight-bit, 10-bit,
12-bit, or even 24-bit. The block diagram in Figure 4–60(a) has a four-bit digital input
ðb1,b2,b3,b4Þ and analog output υO, and a fixed reference voltage VREF. The input
bits can each have only one of two values: a high or logic “1” or a low or logic
“0.” The input-output relationship of the four-bit converter can be written as follows:

υO =KVREF b1 +
b2
2
+
b3
4
+
b4
8

� �
(4–34)

Bit b1 is called the most significant bit (MSB) because it carries the largest weight in
this sum. Conversely, bit b4 is called the least significant bit (LSB) because it carries
the smallest weight.
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For example, a four-bit DAC with K = 0:5 and VREF = 10 V and a digital input
ð0, 1, 0, 1Þ produces an analog output of

υO = 0:5× 10 0 +
1
2
+
0
4
+
1
8

� �
= 3:125 V

Similarly, inputs of ð0, 1, 1, 1Þ and ð1, 1, 0, 0Þ produce outputs of 4:375 V and 7:5 V,
respectively. With a four-bit converter, there are 24 = 16 possible input codes and
hence 16 possible analog output levels. The full-scale output of a DAC is defined
as the output when the input bits are all 1 (υO = 9:375 V in this example). The reso-
lution of a DAC is defined as the change in the analog output caused by an input
change of one LSB (0:625 V in this example). We can think of resolution as the volt-
age increment between adjacent output levels.

The N-bit converter generalization of the four-bit input-output relationship in
Eq. (4–34) is

υO =KVREF Σ
N

k= 1

bk
2k−1

(4–35)

Integrated circuit DACs are available with inputs of N = 8 toN = 24 bits. Increasing
the number of bits improves the conversion precision since the resolution is inversely
proportional to 2N−1. For this reason, DAC resolution is often somewhat loosely
quoted in terms of bits.

We can now discuss two OP AMP circuits that implement Eq. (4–35) for N = 4.
The first method uses the four-input OP AMP summer in Figure 4–61. The summer
inputs υ1, υ2, υ3, and υ4 are applied to the binary-weighted input resistors R, 2R, 4R,
and 8R, respectively. The output of the summer is related to these inputs by the input-
output relationship in Eq. (4–29).

υO = −
RF

R
υ1−

RF

2R
υ2−

RF

4R
υ3−

RF

8R
υ4

= −
RF

R
υ1 +

υ2
2
+
υ3
4
+
υ4
8

� 	
The input voltages are determined by switches controlled by the

input bits b1, b2, b3, and b4. When a bit is low (0), the switch is in the
lower position, connecting the related input to ground. When a bit
is high (1), the switch is in the upper position, connecting the related
input to the reference voltage VREF. In other words, an input volt-
age is zero when its control bit is 0 and equal to VREF when its con-
trol bit is 1. In effect, the input voltages are related to the input bits
as υk = bkVREF. As a result, we can write the summer output as

υO = −
RF

R
b1VREF +

b2VREF

2
+
b3VREF

4
+
b4VREF

8

� �

= −
RF

R
VREF b1 +

b2
2
+
b3
4
+
b4
8

� �
This result is of the form of Eq. (4–35) with N = 4 and K = −RF=R.

A four-bitDACcan also be realized using theR-2R ladder circuit
in Figure 4–62. In this case the voltage inputs υ1, υ2, υ3, and υ4 are

applied to the 2R legs of the ladder. The OP AMP’s noninverting input is connected
to ground ðυP = 0Þ. Since υN = υP = 0, node A in Figure 4–62 is a “virtual” ground. In
other words, the R-2R ladder is effectively shorted to ground at node A. The short-
circuit current the ladder delivers to this virtual short can be shown to be

iSC =
υ1
2R

+
υ2
4R

+
υ3
8R

+
υ4
16R
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SincenodeAisavirtual ground, thecurrent through the feed-
back resistor is iF = υO=RF. For an ideal OP AMP, iN=0, so
the KCL constraint at node A requires iF + iSC = 0, or

υO
RF

+
υ1
2R

+
υ2
4R

+
υ3
8R

+
υ4
16R

= 0

Solving for υO leads to the following results:

υo = −
RF

2R
υ1−

RF

4R
υ2−

RF

8R
υ3−

RF

16R
υ4

= −
RF

2R
υ1 +

υ2
2
+
υ3
4
+
υ4
8

� 	
The input voltages υ1, υ2, υ3, and υ4 are defined by the same
switching arrangement as the inverting summer DAC in
Figure 4–61. Hence, they are related to the input bits as
υk = bkVREF, and the output voltage becomes

υO = −
RF

2R
b1VREF +

b2VREF

2
+
b3VREF

4
+
b4VREF

8

� �

= −
RF

2R
VREF b1 +

b2
2
+
b3
4
+
b4
8

� �
This result is of the form of Eq. (4–35) with N = 4
and K =RF=2R.

In theory, the four-bit inverting summer DAC in Figure 4–61 could be extended
to a larger number of bits. However, the range of input resistances rapidly gets
out of hand. For example, a 10-bit DAC would require input resistances ranging
from R to 1024R. With integrated circuit technology it is virtually impossible to main-
tain tight resistance tolerances over a wide range of resistance values.

The four-bitR-2R ladder DAC in Figure 4–62 can be extended to a larger number
of bits using only two values of resistance, namely R and 2R. The absolute value of R
does not matter. What matters is that the added resistances stand in a two-to-one ratio.
Controlling the ratio of two resistances is much easier to accomplish with integrated
circuit technology than controlling the absolute value of a resistance. This fact accounts
for the widespread use of R-2R ladder architecture in integrated circuit DACs.

E x e r c i s e 4–35
TheR-2R ladder DAC in Figure 4–62 hasRF = 40 kΩ,R=10 kΩ, andVREF = −3 V. Find the
full-scale output and resolution of the converter.

A n s w e r s: 11:25 V; 0:75 V

E x e r c i s e 4–36
A student chooses to design a 6-bit weighted sum DAC for a project. The requirement is to
have errors of 1% or less. What tolerance (accuracy) must the resistors used in the design
have to meet the requirement?

A n s w e r s: Assume we can control the value for R in the design. Whatever value the
designer chooses for R, the 32R resistor must meet the tolerance specification. Therefore,
the tolerance for R is at most 0:03125%. An R-2R design is likely the better option.

I N S T R U M E N T A T I O N S Y S T E M S

One of the most interesting and useful applications of OP AMP circuits is for instru-
mentation systems that collect and process data about physical phenomena. The
instrumentation system typically connects an input transducer to an output

v1
RF

VREF

b1
R

+

−

R

R

2R

2R

v2

b2

2R

v3

b3

2R

v4

b4

2R

iSC iF
A

+
vO

FIGURE 4–62 An R-2R ladder DAC.
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transducer in a meaningful way. An input transducer in this text is a device that con-
verts some physical quantity, such as temperature, light intensity, stress, strain, pres-
sure, rotation, acceleration, or velocity, to an electrical signal. An output transducer
performs the opposite conversion, using electrical signals to generate a physical
quantity. In an instrumentation system, an input transducer generates an electrical
signal that describes some ongoing physical phenomenon. The transducer signal is
processed by OPAMP circuits and provided to an output transducer for observation,
recording, or, frequently, processing by an analog-to-digital converter (ADC). In the
latter case, the output of an ADC is usually sent to a computer or microprocessor. In
addition, the output signal can be used in a feedback control system to monitor and
regulate the physical process itself.

The starting point in instrumentation system design is the transducer. In general,
there are two basic types of transducers: active transducers, which produce a voltage
or current proportional to the physical parameter being sensed, and passive transdu-
cers, which change a parameter, such as resistance or conductance, in proportion to
the physical parameter being sensed but do not directly produce an output voltage
or current. Active transducers usually produce outputs that are quite small—in the
millivolt ormicrovolt range or in themicroampere or nanoampere range.Active trans-
ducersoftenneedconsiderableamplification tomaketheir signalsuseful.Passive trans-
ducers, on the other hand, often have effects that are more dramatic. A photoresistor,
for example, can change the resistance over four, five, or even six orders ofmagnitude,
but it doesnot produceanoutput on its own. Passive transducers need tohavean exter-
nal source toproduceavoltageorcurrent that isproportional to thephysicalparameter.

The block diagram in Figure 4–63 shows an instrumentation sys-
tem in its simplest form. The objective of the system is to deliver an
output signal, υO, that is related to the physical quantity measured
by the input transducer, υTR. In many instrumentation systems, the
transducer is known and is assumed to be linear over the desired
range of measurements. The desired output is also assumed to be
linear. The task is to design the interface circuit between the input
and output. Suppose the input transducer converts a physical vari-
able x into an electrical voltage υTR. For many transducers this volt-
age is of the form

υTR =mx+ b

wherem is a calibration constant and b is a constant offset or bias. With active trans-
ducers, the voltage is usually quite small and must be amplified by some gain K to
meet the needs of the rest of the system. The amplified signal includes a component
proportional to the physical variable,KðmxÞ, and an amplified bias component,KðbÞ.
We can introduce another bias voltage, Vb, to compensate for the KðbÞ term and
yield an output voltage, υO, which is aligned with the needs of the rest of the system.
Figure 4–64 is a block diagram of the typical signal processing steps that need to
be designed. To summarize, the input transducer voltage, υTR, is amplified by K
and then a bias voltage, Vb, is applied to make the signal the proper level for the
output υO:

υO =KυTR +Vb (4–36)

The gainK is the ratio of the desired output voltage range to the available voltage
range at the input transducer:

K =
Desired range
Available range

(4–37)
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A concern in calculating the desired K is getting the sign correct. In this regard, it is
important to keep track of the limits of the range. To do so, it may be helpful to create
a table similar to Table 4–1, where p1 and p2 are the physical values measured by the
input transducer. The gain K is then calculated as

K =
Desired range
Available range

=
υOðp1Þ−υOðp2Þ
υTRðp1Þ−υTRðp2Þ

For example, if you are designing a system that will read the temperature from 0�C
to 100�C and you want 0�C to produce 5 V and 100�C to produce 0 V, create a table
similar to Table 4–2 where υTRð0�Þ and υTRð100�Þ are the voltage signals the input
transducer produces when the temperature is 0�C and 100�C, respectively. The gain
is then computed as

K =

Physical range

Desired range
Available range

=

0� 100�

5 − 0
υTRð0�Þ − υTRð100�Þ

The physical range is shown above the gain equation for reference and to help keep
the voltage values aligned correctly. If you wanted 100�C to produce 5 V and 0�C to
produce 0 V, you would reverse the terms on the top of the ratio:

K =

Physical range

Desired range
Available range

=

0� 100�

0 − 5
υTRð0�Þ − υTRð100�Þ

A C T I V E T R A N S D U C E R S

Toput this procedure intopractice,wewill consider the specific example
of an active transducer. Figure 4–65 shows the characteristics of a light
intensity transducer that converts luminance in the range from 200 to
1000 lumens=m2 to an electrical signal in the range from 4 to 20 mV.
The output of the interface circuit is required to drive an ADC whose
full-scale input range is 0 to 5 V. The interface circuit must convert a
range of 4 mV to 20 mV to a output range of 0 V to 5 V, respectively.
Inserting these values into Eq. (4–36) gives

K × 0:004 +Vb = 0 V@ 200 lumens=m2

K × 0:02 +Vb = 5 V@ 1000 lumens=m2

T A B L E 4–1

PHYSICAL RANGE LOWER PHYSICAL VALUE, P1 UPPER PHYSICAL VALUE, P2
Desired range for υO υOðp1Þ υOðp2Þ
Available range at υTR υTRðp1Þ υTRðp2Þ

T A B L E 4–2

PHYSICAL RANGE 0� 100�

Desired Range for υO υOð0�Þ= 5 V υOð100�Þ= 0 V

Available Range at υTR υTR 0�ð Þ υTR 100�ð Þ
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FIGURE 4–65 Photocell transducer
characteristics.
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Applying Eq. (4–37) and carefully aligning our range end points, we get

K =

Luminance range

Desired range
Available range

=

200 lumens=m2 1000 lumens=m2

0 − 5
0:004 − 0:02

= 312:5

Inserting this value of K into the first equation and solving for the bias gives
Vb = −0:004K = −1:25 V. Thus, the interface circuit must implement an input-output
relationship defined by

υO = 312:5ð Þ υTR−1:25 (4–38a)

To design the interface circuit, we partition the required gain as K = −25ð Þ×
−12:5ð Þ= 312:5. This allows us to get the overall gain of +312.5 using two inverting
amplifier stages with gains of −25 and −12:5. We also rewrite the bias voltage as
Vb = −0:25ð Þ5= −1:25 V. This allows us to get the required bias using an inverting
gain of −0:25 and a standard 5-V power supply as the reference source. Inserting
these results into Eq. (4–38a) yields

υTR = −25ð Þ −12:5ð Þ υTR− 0:25ð Þ5 (4–38b)

Figure 4–66(a) shows a block diagram of Eq. (4–38b) while Figure 4–66(b) shows an
OP AMP circuit that implements the block diagram. Obviously this design is not
unique since we can rearrange Eq. (4–38a) in many different ways.

T A B L E 4–3

PHYSICAL RANGE 200 LUMENS/m2 1000 LUMENS/m2

Desired range for υO 0 V 5V

Available range at υTR 4 mV 20mV
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FIGURE 4–66 Photocell interface circuit realization: (a) Block diagram. (b) Circuit realization.
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D E S I G N A N D E V A L U A T I O N E X A M P L E 4–2 4

A commercially available temperature transducer has the characteristics shown
in Figure 4–67. Design an OP AMP circuit to interface the transducer output
for temperatures ranging from −20�C to 120�C with a panel meter whose full-scale
input range is 0 to 3 V. Use a standard 1:5-V battery as the reference source
for the required bias. Develop two competing designs and discuss pros and cons
of each.

SOLUTION:
Figure 4–67 shows that the transducer output voltage ranges from
2:1 V to 0:42 V for the temperature ranging from −20�C to 120�C.
The interface circuit must convert a range of 2:1 V to 0:42 V to a
ranging of 0 V to 3 V, respectively. Inserting these values into
Eq. (4–36) gives

0 =K ×2:1+Vb at −20�C

3=K ×0:42 +Vb at 120�C

Calculating the gain K,

Temp:range −20�C 120�C

K =
0 − 3
2:1 − 0:42

= −1:786

Inserting this value of K into the first equation and solving for the
bias gives Vb = −2:1K = 3:75 V. The bias voltage can be rewritten
as Vb = 3:75 = 2:5ð Þ1:5 V, which means we need a gain of 2.5 to get
the required bias from the specified 1:5-V battery reference source.
Thus, the interface circuit must realize the following input-output
relationship.

υO = −1:786 υTR + 2:5ð Þ1:5

Looking at the required relationship, we can see that a subtractor circuit can realize the
desired input-output relationship. We know two ways to design subtractor circuits—
the basic one–OP AMP circuit and the two–OP AMP subtractor. We can design our
circuit using each approach and compare the results.

First Design
The required function is of the form υO = −K1υ1 +K2υ2, where K1 = 1:786, υ1 = υTR,
K2 = 2:5, and υ2 = 1:5 V. This function can be realized using the basic subtractor build-
ing block in Figure 4–68(a). Equation (4–32) relates the two gains to the subtractor
circuit parameters as

K1 =
R2

R1
and K2 =

R1 +R2

R1

� �
R4

R3 +R4

� �

The gainK1 = 1:786 can be realized by selectingR2 = 10 kΩ andR1 = 0:56R2 = 5:6 kΩ.
Using these values in the K2 equation produces

K2 = 1 +
10
5:6

� �
R4

R3 +R4

� �
=2:5

Solving forR4 yieldsR4 = 8:75R3. SelectingR3 = 1 kΩ requires thatR4 = 8:75 kΩ. This
completes the first design. Obviously, many other choices are possible.
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Second Design
The required function υO = −K1υ1 +K2υ2 can also be realized using the two–OPAMP
subtractor shown in Figure 4–68(b). This circuit is analyzed in Example 4–19, where
the two gains are related to circuit parameters as

K1 =
R4

R3
1 +

R2

R1

� �
and K2 = 1 +

R4

R3

The gain K2 = 2:5 can be realized by selecting R3 = 10 kΩ which requires
R4 = 1:5R3 = 15 kΩ. Using these values in the K1 equation gives

K1 =
15
10

1 +
R2

R1

� �
=1:786

Solving for R1 yields R1 = 5:25R2. Selecting R2 = 10 kΩ, requires that R1 = 52:5 kΩ.
This completes the second design. Many other choices are possible.

Evaluation Discussion
In terms of parts count, both designs use four resistors. The first design uses a one–OP
AMP subtractor while the second design uses the two–OPAMP version. This differ-
ence makes the first design the best choice under a “smallest parts count” criteria.
However, with the two–OP AMP subtractor, both input signals are applied directly
to noninvertingOPAMP inputs. These inputs have very high input resistances, which
means that the second design does not load the transducer or drain energy from the
1:5-V battery. This difference could be an important advantage of the second design
if the transducer has a high Thévenin resistance or if the interface circuit must oper-
ate for extended periods of time with no servicing of the battery. ■

D e s i g n E x e r c i s e 4–37
A pressure transducer must be connected to a boiler. The selected transducer is linear
between 100 and 1000 psi. Specifically, it has the following characteristics: At 100 psi it pro-
duces 10 μV, and at 1000 psi it produces 100 μV. The output needs to be connected to a
0 – 10-V meter so that 100 psi will give a reading of 0 V and 1000 psi a reading of 10 V.
Design a suitable interface using OP AMPs that have a maximum closed-loop gain of 2000.

Validate your design using Multisim.

A n s w e r: K =111;111 and Vb = −1:11 V. One of many possible solutions is shown in
Figure 4–69. Multisim results are shown in Figures 4–69(b) and (c).

(a) Basic one–OP AMP subtractor

+

vO

+

v2

+
v1

R2R1

R4

R3
+

−

(b) Two–OP AMP subtractor

vO

+

R4R2 R3R1

v1

+
v2

++ +

−−

FIGURE 4–68
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P A S S I V E T R A N S D U C E R S

As mentioned previously, passive transducers require an external source to produce
a voltage or current that is proportional to the physical parameter being measured.
Photoresistors, thermistors, strain gauges, and rotation sensors are but a few of the
passive transducers that use a variance in resistance to sense a physical parameter.
Figure 4–70 shows photos of some passive transducers. In all cases let us look at
how the resistance varies with the physical parameter.

There are two ways to apply an external source to a passive transducer. The first is
using a simple voltage divider, shown in Figure 4–71(a). This technique is useful when
the accuracy of the sensor is not critical and the change in parameter value is
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significant, as with photoresistors, thermistors, or rotational devices such as potenti-
ometers. The second approach is to use a bridge circuit as shown in Figure 4–71(b).
This technique allows for very precise measurement of small changes in parameter
values, such as those created by strain gauges. Let us see an example of each
approach.

D E S I G N E X A M P L E 4 – 2 5

A particular photoresistor varies from 10MΩ in total darkness to 10 kΩ in bright
light. Design an interface system that will produce 5 V when the photoresistor senses
bright light and 0 V when it is in total darkness. Show that the design works using
Multisim.

SOLUTION:
Since the photoresistor varies over three orders of magnitude, we can use the
voltage divider method shown in Figure 4–71(a). We select a 10-V source in
series with a 10-kΩ reference resistor and the photoresistor as shown in
Figure 4–72(a). The reason for this choice becomes more apparent if we look
at the Thévenin equivalent of the circuit as shown in Figure 4–72(b).

The Thévenin voltage vT varies from 5 V in bright light to about 10 V in
darkness and the Thévenin resistance RT varies from 5 kΩ to about 10 kΩ,
respectively. These values simplify the design of the interface circuit; namely,
the interface circuit must convert a range of 5 V to 10 V to an output range of
5 V to 0 V.

Inserting these values into Eq. (4–36) gives

K ×10 +Vb = 0 V in darkness

K × 5+Vb = 5 V in brightness

Applying Eq. (4–37) and aligning our range end points, we get

K =

Sensor range

Desired range
Available range

=

Bright Dark

5 − 0
5 − 10

= −1

Sensor

Sensor

VREF

Voltage divider Bridge circuit

Reference

resistorReference resistor

+

+

+ _
VTR+

–

VTR

VREF

RB

RA

(a) (b)

FIGURE 4–71 Methods for
adding an external voltage to
passive transducers:: (a) voltage
divider, (b) bridge circuit.
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The bias is readily calculated as +10 V.
Figure 4–73(a) shows a possible interface circuit. Note that the 10-V bias was

inverted so that it will add as a positive value. If this is not possible, use an inverter
to change the sign of the bias before applying it to the summer. The large 1-MΩ resis-
tors avoid loading the input to the inverter. Multisim shows the result of the simula-
tion in Figure 4–73(b). Note that the output is not linear. ■

D e s i g n E x e r c i s e 4–38
Use a subtractor to design the interface for the example above.

A n s w e r: Use all 1-MΩ resistors in a standard subtractor circuit. Apply the transducer
input to the wire leading to the negative terminal of the OP AMP and apply the 10-V bias
to the input leading to the positive terminal of the OP AMP. The results are identical to
Figure 4–73(b).

D e s i g n E x e r c i s e 4–39
A 2-kΩ potentiometer is connected to the flaps of an unmanned aerial vehicle, or UAV, to
detect their position. When the flaps are at their maximum upward extension of +45�, the
potentiometer is at its maximum resistance of 2 kΩ; when the flaps are flat or 0�, the poten-
tiometer is set at 1 kΩ; and when the flaps are at their minimum downward extension of
−45�, the potentiometer is at its minimum resistance of 0 kΩ. Design an interface to a
0–5 V ADC that gives +45� at 5 V and −45� at 0 V.

A n s w e r: One possible design is shown in Figure 4–74. If there is a concern about loading
the input to the ADC, insert a buffer after the potentiometer. Sometimes simplicity is the
best policy.
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The next example demonstrates the use of a bridge circuit to detect small changes in a
passive transducer.

D E S I G N E X A M P L E 4–2 6

A strain gauge is a resistive device that measures the elongation (strain) of a solid
material caused by applied forces (stress). A typical strain gauge consists of a thin
film of conducting material deposited on an insulating substrate. When the gauge
is bonded to a member under stress, its resistance changes by

ΔR= 4RG
ΔL
L

where RG is the resistance of the gauge with no applied stress and ΔL=L is the elon-
gation of the material expressed as a fraction of the unstressed length L. The change
in resistance ΔR is only a tenth of an ohm or so, which is far too little to be measured
with an ohmmeter. To detect such a small change, the strain gauge is placed in a
Wheatstone bridge circuit like the one shown in Figure 4–71(b). The bridge contains
fixed resistors RA and RB, two matched strain gauges RG1 [the reference resistor in
Figure 4–71(b)] and RG2 [the passive transducer or sensor in Figure 4–71(b)], and a
precisely controlled reference voltage VREF. The values of RA and RB are chosen so
that the bridge is balanced υTR = 0ð Þwhen no stress is applied. When stress is applied,
the resistance of the stressed gauge changes toRG2 +ΔR and the bridge is unbalanced
υTR 6¼ 0ð Þ. The differential signal υTRð Þ indicates the strain resulting from the applied
stress. See Figure 4–75.

Design an OP AMP circuit to translate strains in the range 0 <ΔL=L< 0:02% into
an output voltage in the range 0 V< υO < 5 V, for RG = 120Ω and VREF = 25 V.

SOLUTION:
With external stress applied, the resistance RG2 changes to RG2 +ΔR. Applying volt-
age division to each leg of the bridge yields

υ2 =
RG2 +ΔR

RG1 +RG2 +ΔR
VREF

υ1 =
RB

RA +RB
VREF

The differential voltage υ2 − υ1ð Þ= υTR can be written as

υ2 − υ1 = υTR =VREF
RG2 +ΔR

RG1 +RG2 +ΔR
−

RB

RA +RB

� �

To achieve bridge balance in the unstressed state, we select RG1 =RG2 =RA =RB =
RG, in which case the differential voltage reduces to

υ2−υ1 = υTR =VREF
ΔR

4RG + 2ΔR

� �
ffiVREF

ΔR
4RG

� �
=VREF

ΔL
L

� �

Thus, the differential voltage is directly proportional to the strain ΔL=L. However,
for VREF = 25 V and ΔL=L= 0:02%, the differential voltage is only VREFð Þ ΔL=Lð Þ=
25 × 0:0002 = 5 mV. To obtain the required 5-V output we need a voltage gain of 1000:

Strain 0% 0:02%

K =
0 − 5
0 − 0:005

= 1000

The bias voltage, Vb, is zero in this case.

Unstressed

Stressed

gauge, RG1

gauge, RG2

+

+ +

+VREF

_

__

v1

vTR

v2 RB

RA
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The OP AMP subtractor is specifically designed to amplify differential signals.
SelectingR1 =R3 = 10 kΩ andR2 =R4 = 10MΩ produces an input-output relationship
for the subtractor circuit of

υO = 1000 υTR

Figure 4–76 shows the basic design.
The input resistance of the subtractor circuit must be large to avoid

loading the bridge circuit. The Thévenin resistance looking back into the bridge
circuit is as follows:

RT =RG1kRG2 +RAkRB

RT =RGkRG +RGkRG

RT =RG = 120Ω

This value is small compared with the 10-kΩ input resistance of the subtractor’s
inverting input.

D I S C U S S I O N : The transducer in this example is the resistor RG2. In the unstressed
state, the voltage across this resistor is υ2 = 12:5 V. In the stressed state the voltage is
υ2 = 12:505 V. In other words, the transducer’s 5-mV signal component is accompanied
by a very large bias. We cannot amplify the 12:5-V bias component by K = 1000 before
subtracting it out since it will saturate the OP AMP. By using a bridge circuit in which
υ1 = 12:5 V, the bias is eliminated at the input and the OP AMP processes the differen-
tial signal υ2−υ1 = υTR. The situation illustrated in this example is actually quite com-
mon. Consequently, the first amplifier stage in most instrumentation systems is a
differential amplifier that removes the transducer bias. ■

E x e r c i s e 4–40
Using the circuit shown in Figure 4–76, simulate the effect in Multisim varying the strain
gauge RG2 from 120Ω to 120:1Ω in increments of 0:001Ω. Plot the resulting output versus
percent of stress ΔL=Lð Þ.
A n s w e r: See Figure 4–77.
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A P P L I C A T I O N E X A M P L E 4 – 2 7

Instrumentation amplifiers are used as we have seen to provide signal processing of
gain and bias to transducer outputs in preparation for use in ADC and other output
devices. A well-designed instrumentation amplifier provides very high gain, very
high common-mode rejection ratio, and very high input resistance, among other
more subtle features best left for future study. Using active transducers can be diffi-
cult if they have a high source resistance or a source resistance that varies with the
transducer’s output voltage. A traditional differential amplifier shown in Figure 4–46
has the potential problem of loading the transducer because of its finite input resist-
ance. A better solution is a two-stage configuration using the OP AMP circuit ana-
lyzed in Example 4–20 followed by a differential amplifier, as shown in Figure 4–78.

The instrumentation amplifier consists of two differential amplifiers each with a
potential gain. The first stage acts like a pair of buffers (remove Rg and that can
be easily seen) to provide a very high input resistance thereby minimizing loading
problems. The second stage is a common differential amplifier that enables easy
resistance connection to the output. Both stages can have gain. The first stage’s gain
was found in Example 4–20 as K1 = 2R

Rg
+ 1, while the second stage has gain K2 =K:A

necessary condition for a high-quality instrumentation amplifier is a high common
mode rejection ratio (CMRR). The CMRR of a differential amplifier measures the
ability of the amplifier to reject input signals common to both inputs. A high CMRR
is important in applicationswhere the signal of interest, say, the transducer’s small volt-
age change, is superimposed on a larger voltage offset, or when the key information is
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contained in the voltage difference between two signals. To ensure this quality, the
resistorsRmust be carefully matched. If not, the gain of one input side over the other
couldmask the actual information change desired. Sincemost instrumentation ampli-
fiers are manufactured on a single semiconductor chip, resistors can be made nearly
identical and, if necessary, laser-trimmed.An interesting and useful feature is that the
resistor Rg can be external of the chip and a potentiometer used to vary the gain.
Since this resistance occurs only once in the gain relationship, it does not need to
be carefully matched. The advantages of this two-stage configuration are that the
input has very high input resistance and the two stages can help distribute the gain
if a very high gain is needed. Many commercial manufacturers employ this architec-
ture for their instrumentation amplifiers, such as Analog Devices, Linear Technol-
ogy, Maxim Integrated Products, National Semiconductor, and Texas Instruments.

D e s i g n E x e r c i s e 4–41
Design an instrumentation amplifier using the configuration of Figure 4–78 that has a gain
of 105. Let RTR = 100Ω. Note that no single stage can have a gain greater than 104. Verify
your solution using Multisim.

A n s w e r: ChooseR= 10 kΩ,KR=5MΩ,Rg = 100Ω as one possible solution. SeeMultisim
simulation in Figure 4–79.
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C O M P A R A T O R C I R C U I T S

A comparator is a mixed-signal device whose digital output is either high or low
depending on the relative amplitudes of two analog inputs. For example, the
open-loop (no feedback) OP AMP circuit in Figure 4–80 functions as a comparator.
In the absence of feedback, the OP AMP is driven into one of its two saturation
modes by the analog inputs vP and vN. Specifically, if vP > vN, the OP AMP is in pos-
itive saturation with vO = +VCC. Conversely, if vP < vN, the OP AMP is in negative
saturation with vO = −VCC.

In digital logic terminology, the comparator output is said to be a logic high
(1) when vP > vN and a logic low (0) when vP < vN. The output voltage levels associ-
ated with the high and low states are usually denoted as VOH and VOL, respectively.
These levels are determined by the positive and negative power supply voltages, which
can be different from the�15 V commonly used in linear applications of OP AMPs.
A useful comparator power configuration uses a unipolar supply of 0 and +5 V, which
allows for an immediate interface to digital logic. Although the standard OP AMPs
discussed for linear operation, such as the uA741 studied earlier, can be used in com-
parator applications, they are not ideal for switching between �VCC because of the
slow switching times. Comparator families such as the LM111 are designed expressly
for comparator applications.

D E S I G N E X A M P L E 4 – 2 8

A commercial oven that heats a critical product cannot exceed a predetermined tem-
perature. A temperature sensing thermocouple circuit produces a voltage propor-
tional to the oven temperature. The output voltage varies linearly from 0V at 0�C
to 12 V at 1000�C.Design a circuit that will detect when a set temperature is exceeded
andwill output 0 V. That output will then shut off the +15-V power to the relay that is
normally ON and controls the 240-V power to the oven. Once the relay trips, it needs
to be reset manually. Figure 4–81(a) shows the diagram of the task.
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FIGURE 4–80 An OP AMP
comparator.
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SOLUTION:
The comparator circuit in Figure 4–81(b) is used to detect whenever the signal
applied to vN goes above a preset voltage that is connected to vP. The preset voltage
is controlled by a potentiometer that outputs 0–15 V depending on how it is
set. Whenever the temperature of the oven exceeds the set threshold temperature,
the comparator switches and the relay trips, which turn off the oven. An example
is shown in Figure 4–81(c). The desired maximum temperature VREF is set to
produce 10 V. Starting at room temperature the oven heats up the thermocouple cir-
cuit and outputs an increasing voltage vtemp. When the temperature in the oven
reaches the set temperature, the comparator outputs 0 V and the oven starts to
cool off. ■

E x e r c i s e 4–42
Find the comparator output voltage in Figure 4–82 for the following:

(a) υ1 = 2 V, υ2 = 3 V, VCC = 5 V
(b) υ1 = 0 V, υ2 = −3 V, VCC = 10 V
(c) υ1 = −2 V, υ2 = −3 V, VCC = 3 V

A n s w e r s:
(a) υO = 0 V; (b) υO = 10 V; (c) υO = 3 V

Figure 4–83(a) shows a comparator circuit often called a zero-crossing detector.
A time-varying analog signal is applied to the noninverting input υP = υS tð Þ½ �,
and the inverting input is connected to ground υN = 0ð Þ. In this configuration the
comparator output is υO = +VCC when υS tð Þ> 0 and υO = −VCC when υS tð Þ< 0.
Figure 4–83(b) shows plots of the input and output signals versus time for
υS tð Þ= 10 sin πtð ÞV and VCC = 15 V. In digital logic terms, the comparator output
changes state (toggles) whenever the analog input passes through zero; hence the
name zero-crossing detector. This circuit is also called a polarity detector because
the digital output is high when the polarity of the analog input is positive and low
when the polarity is negative.

A modified version of the zero-crossing detector is shown in Figure 4–84(a).
A time-varying analog signal is still applied to the noninverting input υP = υS tð Þ½ � as
before, and the modification connects a fixed reference voltage to the inverting input
υN =VREFð Þ. In this configuration the comparator output is υO = +VCC when
υS tð Þ>VREF and υO = −VCC when υS tð Þ<VREF. In effect the applied reference
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voltage shifts the switching threshold from zero to VREF. Figure 4–84(b) shows how
the threshold shift changes the output signal for υS tð Þ= 10 sin πtð ÞV, VCC = 15 V,
and VREF = 5 V.

An analog-to-digital converter (ADC) is a mixed-signal device that
converts an analog input into a multibit digital output. Figure 4–85 is a
block diagram of an ADC with an analog input υS tð Þ, a four-bit digital
output (b1, b2, b3, b4), and a fixed reference voltageVREF. The output bits
can have only one of two values: a high (1) or a low (0). The code used by
these bits to represent the analog input depends on the architecture of
the ADC.

The circuit in Figure 4–86(a) is a four-comparator ADC that converts
the analog input υS tð Þ into a four-bit digital output. The analog input is
applied to the noninverting input of each of the comparators. A fixed ref-
erence voltage is applied to a voltage divider string. Successive taps on
the voltage divider supply a reference voltage to the inverting input of
the comparators. These reference voltages are all different, and each is
larger than the reference voltage of the comparator immediately below it.

The output of any one comparator is high (1) when the analog input
exceeds its applied reference voltage; otherwise it is low (0). When

υS tð Þ< 0:2VREF, the input is smaller than all of the reference voltages, so the digital
output is 0,0,0,0ð Þ. When 0:2VREF < υS tð Þ< 0:4VREF, the digital output is 0,0,0,1ð Þ.
In this range the input exceeds the reference voltage of the lower comparator, so its
output switches to b4 = 1. The outputs of the other comparators remain at zero since
the input is smaller than their reference voltages. When 0:4VREF < υS tð Þ< 0:6VREF,
the output is 0,0,1,1ð Þ because the input exceeds the reference voltages of the bottom
two comparators but not the top two. These observations reveal a pattern that is sum-
marized in Table 4–4.

The circuit in Figure 4–86(a) is called a flash converter because the comparators
operate in parallel and the conversion takes place almost instantaneously. The circuit
divides the input amplitude range into five bins and converts each bin into a unique
four-bit code. The full-scale input range is the voltage range over which the input
amplitude falls within one of the bins (0 toVREF in this example). This range can obvi-
ously be increased by increasing the reference voltage. The price of doing so is
reduced resolution, defined as the largest input voltage change that falls entirely
within one bin (0:2VREF in this example). Resolution can be improved by expanding
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MSB

LSB

FIGURE 4–85 An analog-to-digital
converter (ADC).
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the voltage divider string and adding more comparators. Some integrated circuit
flash converters have asmany as 256 comparators. An example of an eight-bit flash
converter is shown in Figure 4–86(b).

The pattern of 1s and 0s in Table 4–4 is called a thermometer code because
the number of 1s increases monotonically as υS increases, like the way the
mercury column in a thermometer increases with temperature. Integrated
circuit flash converters have built-in decoders that convert the thermometer
code into a standard binary code. The flash converter is by far the fastest
ADC architecture.

E x e r c i s e 4–43
The reference voltage in Figure 4–86(a) is VREF = 15 V. What are the output codes cor-
responding to υS = 1, 2, 5, 10, and 14 V?

A n s w e r s: 0,0,0,0ð Þ; 0,0,0,0ð Þ; 0,0,0,1ð Þ; ð0,1,1,1Þ; 1,1,1,1ð Þ

S U M M A R Y

T A B L E 4–4

DIGITAL OUTPUTS

ANALOG INPUT RANGE b1 b2 b3 b4
0 < υS < 0:2VREF 0 0 0 0

0:2VREF < υS < 0:4VREF 0 0 0 1

0:4VREF < υS < 0:6VREF 0 0 1 1

0:6VREF < υS < 0:8VREF 0 1 1 1

0:8VREF < υS <VREF 1 1 1 1

0.8VREF

VREF vS(t)

0.6VREF

0.4VREF

0.2VREF

b1

R

R

R

R

(a)

R

b2

b3

b4

−

+

−

+

−

+

−

+

(b)

C
o

ur
te

sy
 o

f 
M

ur
at

a 
P

o
w

er
So

lu
ti

o
ns

FIGURE 4–86 (a) Flash ADC
diagram. (b) Eight-bit flash ADC IC.

• A linear dependent source generates a voltage or a cur-
rent whose value is proportional to a voltage or current
at another point in a circuit. There are four such sources:
the current-controlled voltage source, the voltage-
controlled voltage source, the current-controlled cur-
rent source, and the voltage-controlled current source.

• Circuits containing dependent sources can be analyzed
by node-voltage or mesh-current methods. Such cir-
cuits can have input-output relationships that produce
voltage, current, or power gain. The presence of feed-
back can dramatically influence the input and output
resistances of active circuits.

• TheOPAMPisanactivedevicewith five terminals called
the inverting input, the noninverting input, the output,
and twopower supply terminals.Thedevice is ahigh-gain
differentialamplifierwiththreepossibleoperatingmodes:
+saturation,−saturation,and linear.Theoutputpredicted

by the linearmode circuitmodel is comparedwith known
bounds to determine the actual operating mode.

• The ideal OP AMP model has an infinite voltage gain,
an infinite input resistance, and zero output resistance.
The i–υ characteristics of an ideal OP AMP are
iP = iN = 0 and υP = υN. The ideal model is a good work-
ing approximation in linear applications.

• The four basic OP AMP circuit building blocks are the
inverting amplifier, the noninverting amplifier, the
inverting summer, and the subtractor. The analysis
or design of complex OP AMP circuits can be based
on these four building blocks provided the intercon-
nections are made between the output of one to the
input of another.

• Important applications of OP AMPs include interface
circuits, digital-to-analog converters, instrumentation
systems, and comparator circuits.
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P R O B L E M S

O B J E C T I V E 4 – 1 L I N E A R A C T I V E C I R C U I T S
( S E C T S . 4 – 1 , A N D 4 – 2 )
Given a linear resistance circuit containing dependent sources,
find selected output signals, input-output relationships, or
input-output resistances.
See Examples 4–1 to 4–11 and Exercises 4–1 to 4–14.

4–1 Find the voltage gain vO=vS and current gain iO=ix in
Figure P4–1 for r = 10 kΩ.

rix
+
−

+
−

iOix

+

vO

−

vS

100 Ω 500 Ω

400 Ω 2 kΩ

FIGURE P4–1

4–2 Find the voltage gain vO=v1 and the current gain iO=iS in
Figure P4–2. For iS = 10 mA, find the power supplied by
the input current source and the power delivered to the
1:5-kΩ load resistor.

i1

+

vO

−

+

v1

−

iO

iS

100 Ω

100 Ω
2 kΩ

1.5 kΩ

90i1

FIGURE P4–2

4–3 Find the voltage gain vO=vS and current gain iO=ix in
Figure P4–3 for g = 3 × 10−3 S. For vS = 10 V, find the
power supplied by the input voltage source and the power
delivered to the 2-kΩ load resistor.

+
−

+

1 kΩ

3 kΩ 10 kΩ 2 kΩ

500 Ω 

 vO

 

 

iO

vS

ix

−

+

vx

−

gvx

FIGURE P4–3

4–4 (a) Find the voltage gain vO=vS and current gain iO=ix in
Figure P4–4.

(b) Validate your answers by simulating the circuit in
Multisim.

ix
100ix+

−

iO

+

vO

−

vS

3.3 kΩ 4.7 kΩ

 10 kΩ

FIGURE P4–4

4–5 Find the voltage gain vO=vS in Figure P4–5.

−
+

−

+

vS

RS

vX

−

+

RP

vY
μ1vX

−
+

RK

RL
μ2vY

−
+

+

−

vO

FIGURE P4–5

4–6 Find the voltage gain vO=vS in Figure P4–6.

10 kΩ

200 vx
+
−

+  vx  −

+
−

+

vO

−

vS

FIGURE P4–6

4–7 Findan expression for the current gain iO=iS in Figure P4–7.

vS
+
−

RS

RCRE

iS

iE

βiE

iOA

FIGURE P4–7

(Hint: Apply KCL at node A.)

4–8 (a) Find the voltage vO in Figure P4–8.
(b) Validate your answer by simulating the circuit in

Multisim.
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+

vO

−

+
−

1.5 kΩ 1 kΩ

3.3 kΩ1 kΩ2 V

+

vx

−

10‒3vx

FIGURE P4–8

4–9 (a) Find an expression for the gain iO=vS in Figure P4–9 in
terms of RX.

(b) Select a value for RX so that the gain is −0:002.
(c) Simulate the circuit in Multisim and perform a param-

eter sweep on RX from 10Ω to 10MΩ and using the
cursor to find the required value ofRX. How does your
answer compare with part (b)?

+
−

1 kΩ

10 kΩ

RX

103 vx

+

vx

−

iO

vS
−
+

FIGURE P4–9

4–10 Find an expression for the voltage gain vO=vS in
Figure P4–10.

+
−

+

vO

−

vS

− vx +

RS

RO

gvx

FIGURE P4–10

4–11 (a) Find an expression for the voltage gain vO=vS in
Figure P4–11.

(b) Let RS = 1 kΩ, RL = 1 kΩ, and μ = 200. Find the
voltage gain vO=vS as a function of RF. Find the volt-
age gain for three values of RF: ∞, 0 Ω, and 1 kΩ.

(c) Simulate the circuit inMultisim and perform a param-
eter sweep on RF from 10Ω to 10MΩ. Use the cursor
to find your output at RF = 1 kΩ. How does your
answer compare with part (b)?

+
−

RS RF

RLμvx

vx

vOvS
+
−

++ −

−

FIGURE P4–11

4–12 Select g in the circuit of Figure P4–12 so that the output
voltage is 10 V.

+
−

+

vO

−

+

vx

−

1 mV
gvx

1 kΩ

1.5 kΩ

FIGURE P4–12

4–13 In the circuit of Figure P4–13, the VCVS has a μ of 10, RS

is a 10-kΩ resistor and RL is a 3.3-kΩ resistor. Find the value
of the feedback resistor RF that will cause the gain K = vO=vS
to go to infinity. Is there a value of RF that will yield K = 2?
Determine that resistance or explain why not.

+
−

+

vO

−
10vx

1 kΩ

3.3 kΩ
vS

RF

−

−

+

+ vx

FIGURE P4–13

4–14 Find the Thévenin equivalent circuit that the load RL sees
in Figure P4–14. Repeat the problem with RF replaced by an
open circuit.

+
−

+

vx

−

μvx

vS

RFRS RP

RL

vT, RT

−
+

FIGURE P4–14

4–15 (a) Find the Thévenin equivalent circuit that the load RL

sees in Figure 4–15.
(b) Then if RP = r = RL = 10 kΩ, RS = 1 kΩ, and

vS = 1 V, find the power delivered to the load resistor.
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vS
+
−

RS RP

RL

Thévenin circuit

iS

riS
+
−

FIGURE P4–15

4–16 Find RIN in Figure P4–16.

vS
+
−

R

RIN

iS

riS

+
−

FIGURE P4–16

4–17 If R = 2:2 kΩ and β = 110 in Figure P4–17, what is the
effect on the input resistance RIN caused by the dependent
source?

iS βix

RIN

R

ix

FIGURE P4–17

4–18 Find the Norton equivalent circuit seen by the load in
Figure P4–18.

Loadβix ROvS Rx

RS
i

+

−

v

ix
+
−

FIGURE P4–18

4–19 Find the Thévenin equivalent circuit seen by the load in
Figure P4–19.

Load
gvx

ROiS Rs

i

+

−

v

+

vx

−

FIGURE P4–19

4–20 Figure P4–20 is a dependent-sourcemodel of a subtractor.
Use MATLAB or node-voltage analysis to derive an exact
expression for the output. Then let μ ! ∞ and compare
your answer to the expression for the subtractor in
Eq. (4–32) in the text.

+

vx

−

μvx RO

R1vA vCvB

+

−

vO

R2

+
−

+
−

vS2

vS1

R3vD
vE

+
− R4

FIGURE P4–20

4–21 The circuit parameters in Figure P4–21 are RB = 100 kΩ,
RC = 3:3 kΩ, β = 100, Vγ = 0:7 V, and VCC = 15 V. Find iC
and vCE for vS = 0:5 V. Repeat for vS = 4 V and 6 V.

+
−

RC

RB +
+

−
−vS

vCE VCC

iB

iC

FIGURE P4–21

4–22 The circuit parameters in Figure P4–21 are

RC = 3 kΩ, β = 100, Vγ = 0:7 V, and VCC = 5 V. Select a
value of RB such that the transistor is in the saturation mode
when vS ≥ 2 V.

4–23 The parameters of the transistor in Figure P4–23 are
β = 100 and Vγ = 0:7 V. Find iC and vCE for vS = 0:8 V.
Repeat for vS = 2:5 V.
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+
−

+

+

−
−

vS

vCE 15 V

10 kΩ

20 kΩ
iB

10 kΩ

iC

FIGURE P4–23

4–24 When using a transistor as a linear amplifier, it

is important to avoid driving the transistor into either cutoff
or saturation. Since most signals that are amplified are time
varying, the maximum excursions of the time-varying signal
should be known. In this problem, the time-varying signal
is a 3-V sinusoid, vS = 3 cos ωt V. To avoid driving the tran-
sistor into cutoff, a dc bias voltage vBias is added in series with
the sinusoid. Your task is to select appropriate values for vBias
andRB. Your choices should be the smallest bias voltage nec-
essary to prevent cutoff and a sufficient base resistor to avoid
saturation. The parameters of the transistor in Figure P4–24
are β = 90 andVγ = 0:7 V. After selecting appropriate values
for vBias and RB, find the maximum and minimum values of
vO for vS = 3 cos ωtV.

+
−

+
+

−

−

vS vO
+

−
vBias

15 V

10 kΩ

RB

FIGURE P4–24

4–25 An emergency indicator light uses a 10-V, 2-W incandes-
cent lamp. It is to be ON when a digital output is high 5 Vð Þ.
The digital circuit does not have sufficient power to turn
on the lamp directly. However, as is common practice, a
transistor driver is used as a digital switch. Select RB in
the circuit of Figure P4–25 so as to drive the transistor into
saturation causing it to act as a short circuit between the
lamp and ground when the digital output is high. The
Thévenin equivalent for the digital circuit is also shown in
the figure.

+
− Digital

circuit
   = 50

Vγ = 0.7 V

Lamp = 10 V @ 2 W

+10 V

vD

RD RB

iLamp

vD = 5 V

RD = 500 Ω

FIGURE P4–25

O B J E C T I V E 4 – 2 O P A M P C I R C U I T A N A L Y S I S
( S E C T S . 4 – 3 A N D 4 – 4 )
Given a linear resistance circuit containing OP AMPs, find
selected output signals or input-output relationships.
See Examples 4–12 to 4–20 and Exercises 4–15 to 4–31.

4–26 Find the voltage gain of each OP AMP circuit shown in
Figure P4–26.

+

−

470 kΩ

(a)

+

vO

+

vS

15 kΩ

+

−

470 kΩ

(b)

+

vO

15 kΩ

+

vS

FIGURE P4–26

4–27 Considering simplicity and standard 10% tolerance

resistors as major constraints, design OP AMP circuits that
produce the following voltage gains �10%: − 150, + 60,
+ 1, −1, −0:8, + 0:7.

4–28 Two OP AMP circuits are shown in Figure P4–28.

Both claim to produce a gain of either �100.

(a) Show that the claim is true.
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(b) A practical source with a series resistor of 1 kΩ is con-
nected to the input of each circuit. Does the original claim
still hold? If it does not, explain why.

1 kΩ

1 kΩ

100 kΩ

99 kΩ

Source

vS

1 kΩ

Circuit 2

Circuit 1

vO

vO

vIN

vIN

−
−

+

+ +

+

−

+

+

+

FIGURE P4–28

4–29 Suppose the output of the practical source shown in

Figure P4–28 needs to be amplified by −104 and you can use
only the two circuits shown. How would you connect the cir-
cuits to achieve this? Explain why.

4–30 (a) Find the voltage gain vO=vS in Figure P4–30. What is
the range of the input that can be amplified without
causing the OP AMP to saturate?

(b) Validate your answers by simulating the circuit in
Multisim.

+

−

330 kΩ

+

vOvS 47 kΩ+
−

22 kΩ 33 kΩ

VCC = ± 15 V

FIGURE P4–30

4–31 What is the range of the gain vO=vS in Figure P4–31?

vO

vS

+

−

+

+
−

1.5 kΩ 100 kΩ 100 kΩ

VCC = ± 15 V

FIGURE P4–31

4–32 Design a simple OP AMP circuit that has a variable

gain from −100 to −5000.

4–33 Using only one OP AMP, design a circuit that rea-

lizes the following equation:

vO = 5v1−3:3 V

4–34 Design a circuit using only one OP AMP that rea-

lizes the following equation:

vO = −10v1−0:5v2

4–35 Two non-OP AMP circuits need to be connected in

cascade. Explain why using a follower is more useful than
simply connecting the two circuits using wires. Are there
any downsides to using a follower?

4–36 For the circuit in Figure P4–36:
(a) Find vO in terms of vS.
(b) Find iO for vS = 1 V. Repeat for vS = 3 V.

+

−

+
−

vS

iO

+

vO

−

10 kΩ

15 kΩ

150 kΩ 22 kΩ

VCC = ± 24 V

FIGURE P4–36

4–37 For the circuit in Figure P4–37:
(a) Find vO in terms of vS.
(b) Find iO for vS = 1 V. Repeat for vS = 2 V
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vO

+

−

+

+
−

10 kΩ

10 kΩ

150 kΩ

150 kΩ

vS

iO

VCC = ± 18 V

FIGURE P4–37

4–38 A young designer needed to amplify a 2-V signal by

the factors of 1, 5, and 10. Find the problem with the design
shown in Figure P4–38. Recommend a fix.

vO

vS

+

−

+

+

10 kΩ

90 kΩ

40 kΩ
1

2

3

VCC = ± 15 V

FIGURE P4–38

4–39 Design two circuits to produce the following out-

put: vO = 2v1−4v2.
(a) In your first design, use a standard subtractor.
(b) In your second design, both inputs must be into high

input resistance amplifiers to avoid loading.

4–40 Design a noninverting summer for five inputs with

equal gains of 10.

4–41 For the circuit in Figure P4–41:
(a) Find vO in terms of the inputs v1 and v2.
(b) If v1 = 1 V, what is the range of values v2 can have with-

out saturating the OP AMP?

vO

+

−

−

+

+
−

50 kΩ50 kΩ

50 kΩ 50 kΩ

100 kΩ

+
−

v2

v1

VCC = +15 V

FIGURE P4–41

4–42 The input-output relationship for a three-input inverting
summer is

vO = − v1 + 10v2 + 100v3½ �

The resistance of the feedback resistor is 100 kΩ. Find the
values of the input resistors R1, R2, and R3.

4–43 Find vO in terms of the inputs v1, v2, and v3 in
Figure P4–43.

+

−

+

vO

−

v1

v2

v3

+
−

+
−

+
−

5 kΩ

5 kΩ

2.5 kΩ 30 kΩ

30 kΩ

FIGURE P4–43

(Hint: Use superposition.)

4–44 The switch in Figure P4–44 is open. Find vO in terms of
the inputs vS1 and vS2. Repeat with the switch closed.

vO

+

−

+

−

+
−

15 kΩ

15 kΩ

Switch

+
−

vS2

vS1

60 kΩ

60 kΩ

FIGURE P4–44

4–45 Design an OP AMP circuit that realizes the block

diagram shown in Figure 4–45. Do not use more than two
OP AMPs in your design.
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−2

−4

+5

vO

v1

v2

v3

+

+
+

FIGURE P4–45

4–46 Design an OP AMP circuit that realizes the block

diagram shown in Figure 4–46. The OP AMPs that you must
use have a maximum gain of 3000.

3 × 107vS vO

FIGURE P4–46

4–47 Find vO in terms of vS1 and vS2 in Figure P4–47.

+

−

R4R3

R1

R2vS2

vS1

+
vO

FIGURE P4–47

4–48 It is claimed that vO = vS when the switch is closed

in Figure P4–48 and that vO = −vS when the switch is open.
Prove or disprove this claim.

+

−

vS

+

vO

−

+
−

R R

R

Sw

FIGURE P4–48

4–49 The circuit in Figure P4–49 has a diode in its feedback
path and is called a “log-amp” because its output is propor-
tional to the natural log of the input.

(a) Show that v0 = −VTln 1 + vS
RSIO

� 	
if the i – v characteristics

of the diode is iD = IO evD=VT −1
� �

.
(b) Using MATLAB plot vO versus vS for RS = 15 kΩ,

IO = 3× 10−14 A, and VT = 0:026 V. Plot your results on
a semilog plot for 10−6 V≤ vS ≤ 100 V.

vO−

−

+

+

+RS iD vD

vS
+
−

FIGURE P4–49

4–50 (a) Use node-voltage analysis to find the input-output
relationship or K of the circuit in Figure P4–50.

(b) Select values for the resistors so that K = −10.

+

+
vS −

R2

R3R1

R

+
vO

FIGURE P4–50

4–51 Use node-voltage analysis in Figure P4–51 to show that
iO = −vS=2R regardless of the load. That is, show that the cir-
cuit is a voltage-controlled current source.

+

+

vS

iO2R

2RR R

vO

–

+

L
o
ad

FIGURE P4–51

4–52 For the circuit of Figure P4–52:
(a) Find the output in terms of v1.
(b) Draw a block diagram for the circuit.
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+

−

+

+
vO

v2 = 3 V

+

v1
+

−

10 kΩ 100 kΩ 10 kΩ

33 kΩ

100 kΩ

FIGURE P4–52

4–53 For the circuit of Figure P4–53:
(a) Find the output in terms of vS.
(b) Draw a block diagram for the circuit.

vS
+
−

−

+

−

+

50 kΩ

50 kΩ100 kΩ

200 kΩ

100 kΩ

+ vO

FIGURE P4–53

4–54 For the block diagram of Figure P4–54:
(a) Find an expression for vO in terms of v1 and v2.

(b) Design a suitable circuit that realizes the block dia-

gram using only one OP AMP.

5v1

vO
‒1v2 ‒3

+

+

+

FIGURE P4–54

4–55 For the block diagram of Figure P4–55:
(a) Find an expression for vO in terms of vS and the input

voltage source.

(b) Design a suitable circuit that realizes the block

diagram using only one OP AMP and the 0:5-V source.

–100.5 V

vO
8 –2

+

+
–5vS

+
+

FIGURE P4–55

4–56 For the circuit in Figure P4–56:
(a) Find vO in terms of vS and the 1-V source.
(b) Prove that the block diagram provides the same output.

(c) Redesign the circuit using only one OP AMP.

(d) Validate your design using Multisim.

+

−

vS +

+

−

+

vO

1 V+
1 kΩ

1 kΩ 10 kΩ 20 kΩ

10 kΩ

‒101 V

vO
5vS

+

+

FIGURE P4–56

4–57 On a quiz, an instructor asked the students to

draw a circuit that would realize the block diagram shown
in Figure P4–57.
(a) One student drew the circuit shown in Figure P4–57.
(b) The instructor noted three problems with the student’s

design. Find the problems and correct them.

+ vO
‒2

‒1

vS 3

(a)

(b)

+
+

vS
+
−

−

+

+

−

50 kΩ

50 kΩ100 kΩ

200 kΩ

100 kΩ

+ vO

FIGURE P4–57

4–58 On an exam, students were asked to design an effi-

cient solution for the following relationship: v2 = 3v1 + 15.
Two of the designs are shown in Figure P4–58. Which, if
any, of the designs are correct and what grade would you
award each student?
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10 kΩ

10 kΩ

10 kΩ 10 kΩ

10 kΩ

20 kΩ

20 kΩ

(a)

5 V

v2

v1

v1

+
‒

‒

+

‒

+

‒

+

+
+

10 kΩ

10 kΩ

10 kΩ 50 kΩ

(b)

5 V

v2

+

+
‒

‒

+

+

FIGURE P4–58

4–59 For the circuit of Figure P4–59:
(a) Find the output v2 in terms of the input v1.
(b) Draw a representative block diagram for the circuit.

+

−
+

−

10 kΩ 10 kΩ

+

+
−

v1

10 kΩ

10 kΩ

10 kΩ

10 kΩ
5 V

−

v2+

FIGURE P4–59

4–60 For the circuit of Figure P4–60:
(a) Use node-voltage analysis to find the output vO in terms

of the input vS.
(b) Draw a representative block diagram for the circuit.
(c) Verify your answer using Multisim.

50 kΩ

100 kΩ

300 kΩ

50 kΩ

150 kΩ

+
−

vA

vS

vB vC

vD

vE

vO+

+

−

+

−

FIGURE P4–60

4–61 Faced with having to construct the circuit in Figure

P4–61(a), a student offers to build the circuit in Figure
P4–61(b) claiming that it performs the same task.As the teach-
ing assistant in the course, do you agree with the stu-
dents claim?
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FIGURE P4–61

O B J E C T I V E 4 – 3 O P A M P C I R C U I T D E S I G N A N D
E V A L U A T I O N ( S E C T . 4 – 5 )
Given an input-output relationship, design resistive OP AMP
circuits that implement the relationship. Evaluate the alterna-
tive designs using stated criteria.
See Examples 4–21 to 4–23 and Exercises 4–32 to 4–34.

4–62 Design a single OP AMP amplifier with a voltage

gain of −1000 and an input resistance greater than 5 kΩ using
standard 5% resistance values less than 3:3MΩ.

4–63 Design an OP AMP amplifier with a voltage gain of

4 using only 15-kΩ resistors and one OP AMP.

4–64 Using a single OP AMP, design a circuit with inputs

v1 and v2 and an output vO = v2 − 5v1. The input resistance
seen by each input should be greater than 1 kΩ.

4–65 Design a differential amplifier with inputs v1 and v2

and an output vO = 100 v2 − v1ð Þ using only one OP AMP.
All resistances must be between 10 kΩ and 1MΩ.

4–66 Using no more than two OP AMPs, design an OP

AMP circuit with inputs v1, v2, and 100 mV and an out-
put vO = −3v1 + 2v2 − 300 mV.
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4–67 Design a two-input noninverting summer that will

produce an output vO = 200 v1 + v2ð Þ.

4–68 Design a three-input noninverting summer that will

produce an output vO = 6 v1 + v2 + 1Vð Þ.

4–69 Design a cascadedOPAMP circuit that will produce

the output vO = 5 × 107vS + 2:5 V. The maximum gain for
an OP AMP is 10,000. The input stage must have an input
resistance of 1 kΩ or greater.

4–70 Design a cascadedOPAMP circuit that will produce

the following output vO = – 3:5 × 106vS − 1:5 V. The maxi-
mum gain for an OP AMP is 10,000. The input stage must
have an input resistance of 1 kΩ or greater. The only voltage
source available is the �15 V used to power the OP AMPs.

4–71 Using the instrumentation amplifier shown in

Figure 4–78 (Example 4–27), design a circuit that will produce
the output vO = 5× 105 v1 − v2ð Þ. No single OP AMP can
have a gain greater than 5000.

4–72 Design the interface circuit in Figure P4–72 so that

15 mW is delivered to the 100-Ω load. Repeat for a 100-kΩ
load. Verify your designs using Multisim. Assume that your
OP AMPs have VCC = �15 V.

+
−

50 Ω i2

1 V 100 Ω
Interface

circuit

+

v2

−

P2

FIGURE P4–72

4–73 Design the interface circuit in Figure P4–73 so that

the output is v2 = 150v1 + 1:5 V.
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+
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−
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v1

15 V

FIGURE P4–73

4–74 (a) Design a circuit that can produce

vO = 2000vTR−2:6 V using two OP AMPs. The input

resistance must be greater than 10 kΩ for vTR. The
largest resistor you can use is 1MΩ.

(b) Repeat using only one OP AMP. What concession to
the specifications must be made to permit this?

4–75 A requirement exists for an OP AMP circuit with

the input–output relationship

vO = 5vS1−2vS2
Three proposed designs are shown in Figure P4–75. As the
project engineer, you must recommend one of these cir-
cuits for production. Which of these circuits would you rec-
ommend for production and why? Do not assume they
all work.
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‒

FIGURE P4–75

4–76 A requirement exists for an OP AMP circuit to

deliver 12 V to a 1-kΩ load using a 4-V source as an input volt-
age. Two proposed designs are shown in Figure P4–76. Some
characteristics of theOPAMP that must be used in the design
are as follows:

CHARACTERISTIC MIN TYPICAL MAX UNITS

Open-loop gain 105 2 × 105 – V=mV
Input resistance 1010 1011 – Ω
Output voltage −12 – + 15 V
Output current – – 25 mA

Which of these circuits would you recommend for production and why?
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FIGURE P4–76

(Hint: Verify that the circuits perform the required function.)

4–77 A particular application requires that an instru-

mentation interface delivers vO = 200vTR−5 V�2% to a
DAC. The solution currently in use requires two OP AMPs
and is constantly draining the supply batteries. A young engi-
neer designed another tentative solution using just one OP
AMP shown in Figure P4–77. As her supervisor, you must
determine if her design meets the specifications.

3.3 kΩ20 kΩ

100 Ω

3.3 kΩ

680 kΩ

680 kΩ

To DAC

5 V

vTR

v2

+

+

‒

‒

+ +

FIGURE P4–77

O B J E C T I V E 4 – 4 O P A M P C I R C U I T A P P L I C A T I O N S
( S E C T . 4 – 6 )
Apply concepts of OP AMP analysis and design to create, ana-
lyze, or evaluate circuits that perform a specific interface, func-
tion, or task.
See Examples 4–24 to 4–28 and Exercises 4–35 to 4–43.

4–78 The analog output of a five-bit DAC is 2:97 V when the
input code is (1, 0, 0, 1, 1). What is the full-scale output of
the DAC? How much does the analog output change when
the input LSB changes?

4–79 The full-scale output of a six-bit DAC is 10:0 V. What is
the analog output when the input code is (0, 1, 0, 1, 0, 1)?
What is the resolution of this DAC?

4–80 An R-2R DAC is shown in Figure P4–80. The digital vol-
tages v1, v2, etc., can be either 5 V for a logic 1 or 0 V for a
logic 0. What is the DAC’s output when the logic input is
(0, 1, 0 1)?
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+

FIGURE P4–80

4–81 A fifth bit is added to the R-2R DAC shown in Figure
P4–80. What is the maximum possible magnitude of the out-
put voltage? What is the resolution of the revised DAC?

4–82 AChromel-Constantan thermocouple (curveE) has

the characteristics shown in Figure P4–82. Design an interface
thatwill producea −5-V to + 5-V output where −5 V refers to
0�C and + 5 V refers to 1000�C. The transducer can be mod-
eled as a voltage source in series with a 15-Ω resistor.
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4–83 A Chromel-Alumel thermocouple (curve K in

Figure P4–82) is used to measure the temperature of an elec-
tric oven used in the semiconductor industry. Design an inter-
face that will produce a 0-V to 6-V output where 0 V refers to
200�C and 6 V refers to 1200�C (assume a straight line out to
1200�C). The transducer can be modeled as a voltage source
in series with a 500-Ω resistor.

4–84 An analog accelerometer produces a continuous

voltage that is proportional to acceleration in gravitational
units or g. Figure P4–84 shows the characteristics of the accel-
erometer in question. The black curve is the actual character-
istics; the colored curve is an acceptable linearized model.
Design an instrumentation system that will output −10 V
for −2g and + 10 V for 2g. Note that this accelerometer has
an output resistance of 32 kΩ.
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FIGURE P4–84

4–85 A small pressure transducer has the characteristics

shown in Figure P4–85. Design an interface that will operate
between 10 and 30 psi. An input of 10 psi should produce 0 V
and 30 psi should produce + 5 V. The transducer is modeled
as a voltage source in series with a 500-Ω resistor that can vary
�75Ω depending on the pressure. The OP AMPs you must
use have a maximum closed-loop gain of 2000. Your only
available bias source is the �15VCC supply.
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1000
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FIGURE P4–85

4–86 Amedical grade pressure transducer has been devel-

oped for use in invasive blood pressuremonitoring. The output
voltage of the transducer is vTR = 0:06P − 0:75ð ÞmV, where
P is pressure in mmHg. The output resistance of the trans-
ducer is 1 kΩ. The blood pressure measurement is to be an
input to an existing multisensor monitoring system. This sys-
tem treats a 1-V input as a blood pressure of 20 mmHg and a
10-V input as a blood pressure of 200mmHg. Design an OP
AMP circuit to interface the new pressure transducer with the
existing monitoring system.

4–87 The acid/alkaline balance of a fluid is measured by

the pH scale. The scale runs from 0 (extremely acid) to
14 (extremely alkaline), with pH 7 being neutral. A pH
electrode is a sensor that produces a small voltage that is
directly proportional to the pH of the fluid in a test chamber.
For a certain pH electrode, the proportionality factor is
50 mV=pH. A preamplifier is needed to interface this sensor
with a variety of laboratory instruments. The output of the
preamp must be 1 V when the sensor is immersed in a test
solution with pH = 4 and 1:75 V when it is immersed in a
solution with pH = 7. Design an amplifier to meet these
requirements.

4–88 A photoresistor varies from 10Ω in bright sunlight

to 500 kΩ in total darkness. Design a suitable circuit using the
photoresistor so that total darkness produces 0 V, while
bright sunlight produces −5 V, regardless of the load. You
have a 5-V source and a �15-V source to power any OP
AMP you may need.

4–89 Your engineering firm needs an instrumentation

amplifier that provides the following input-output relationship:
vO = 106vTR−3:5 V. The transducer is modeled as a voltage
source in series with a resistor that varies with the transducer
voltage from 40Ω to 750Ω. A vendor is offering the amplifier
shown in Figure P4–89, and the vendor agrees to make a sin-
gle change to the amplifier, if needed, for no cost. Would you
recommend buying it? Explain your rationale.

1 kΩ 1 kΩ

1.42 MΩ

1 MΩ

1 MΩ

vTR

5 V

Instrumentation Amplifier Model 54

Cost $75 each

_

_

+

+

_

+

+

+

vO

FIGURE P4–89
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4–90 Your supervisor drew Figure P4–90 on the back of

an envelope to show you what he expects as an output to a
signal that varies between�5V.Design a suitable comparator
circuit to achieve his expectation.

vS(t)

vO(t)

t

5

15 V

‒15 V (b)

(a)

0

‒5

0

t

FIGURE P4–90

4–91 A rocket design team has a need to detect the tem-

peratures in a rocket motor. The combustion chamber is
that part of a thrust chamber where the combustion
of the propellant takes place. The combustion temperature
is much higher than the melting points of most chamber
wall materials and reaches a temperature of 3000 K. There-
fore, it is necessary either to cool these walls or to stop
rocket operation before the critical wall areas become
too hot. If the heat transfer is too high and thus the wall
temperatures become locally too high, the thrust chamber
will fail. The most critical wall regions are at and near
the nozzle throat and at the nozzle exit. There are two
thermocouples located in a rocket engine, namely, one
at the throat and the other at the end of the nozzle exit.
Your task is to design an emergency shutoff of the
rocket engine if either temperature exceeds 600 K. Shutoff
is done by sending a 5-VDC signal to a fuel controller
that will immediately stop the flow of fuel and abort
the rocket. Use a unipolar comparator powered by a
0- and 5-V supply. Set the comparator reference voltage
at 600 K as 1 V. Use the R-type thermocouple shown in
Figure P4–91 because of its superior accuracy and stability,
especially in a reducing environment as is found in rocket
engines.
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4–92 The OP AMP in Figure P4–92 operates as a comparator.
Find the output voltage when vS = 5 V. Repeat for
vS = −3 V and vS = 12 V.

+15 V

+

−

+
vO

2R R

vS
+
−

FIGURE P4–92

4–93 The circuit in Figure P4–93 has VCC = + 5 V and
vN = −3 V. Sketch the output voltage vO on the range
0 ≤ t ≤ 2 s for vS tð Þ = 4 sin 2πtð ÞV.

+5 V

+
vO

−

+

vS(t) +
−

+

−

3 V

FIGURE P4–93

4–94 A five-bit flash ADC in Figure P4–94 uses a reference
voltage of 5 V. Find the output code for the analog inputs
vS = 3:5 V, 2:3 V, and 4:9 V. If the reference voltage is chan-
ged to 8 V, which of these codes would change?
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I N T E G R A T I N G P R O B L E M S

4–95 Bipolar Power Supply Voltages

The circuit in Figure P4–95 produces bipolar power
supply voltages VPOS > 0 and VNEG < 0 from a floating
unipolar voltage source VREF > 0. Note that the OP
AMP output is grounded and that its +VCC and −VCC

terminals are connected to VPOS and VNEG, respectively.
(a) Show that VPOS = +VREF=2 and VNEG = −VREF=2

even if the load resistors RPOS and RNEG are not equal.
(b) If RPOS and RNEG are not equal, a current iG must flow

into or out of ground. How does the ungrounded voltage
source VREF supply this ground current?

(c) In effect, the OPAMP creates a “virtual ground” at point
A VA = 0ð Þ but draws no current in doing so. Why not
just connect point A to a “real ground” and do away with
the OP AMP?
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FIGURE P4–95

4–96 Thermometer Design Problem

There is a need to design a thermometer that can read from
30�C to 300�C to monitor the temperature of an Unmanned
Aerial Vehicle’s (UAV) power supply. The output will feed a
0-V to 5-V ADC prior to transmission of the temperature data
to the ground. A reading of 30�C will deliver 0 V to the ADC,
while 300�C will deliver 5 V. Select an appropriate thermocou-
ple with sufficient voltage spread from Figure P4–82 and design
the instrumentation amplifier. Other criteria are as follows: the
transducers have a 15-Ω series resistance; the fewer OP AMPs
the better; since power is limited, themaximumOPAMP gain is
1000; and the bias voltage, if needed, must be from the available
15-V supply.

4–97 High Bias Design Problem

A particular pressure sensor is designed to operate under con-
stant pressure. The task is to detect a pressure increase and
sound an alarm. The sensor produces 1 mV at 100 psi, its usual
operating pressure, and increases by 1 μV=psi. The design must
sound an alarm if the pressure reaches 150 psi. The transducer
is modeled as a voltage source with a series resistor that varies
with pressure from 50Ω at 100 psi to 150Ω at 150 psi. Two types
of OP AMPs are available. Type 1 are single-sided, meaning
they have a +VCC of 5 V and a −VCC of 0 V. Type 2 OP AMPs
are double-sided with a VCC of �15 V and have a maximum
closed-loop gain of 5000. The alarm can be driven with the
+5-V available from a saturated type 1 OP AMP. Only
� 15-V and +5-V sources are available. Design the alarm
circuit.

4–98 Weathervane Azimuth Detection

A weathervane turns with the wind direction. The base of the
weathervane is connected to a rotary potentiometer without
stops, that is, the potentiometer turns from 0Ω to 10 kΩ linearly
clockwise, but jumps to 0Ω after the maximum resistance is
reached and would continue toward 10 kΩ if the weathervane
continues to rotate clockwise. The need is to output the voltage
from the potentiometer to comparators that will light 2-VDC
LEDs. Each LED will correspond to a wind direction, N, NE,
E, SE, etc. Set North at 1 V (hence it should always be ON as
long as the system is ON) and NW at 8 V. As the vane turns
clockwise from N to NW, additional LEDs come on. If the vane
turns counterclockwise, the LEDs go off as it turns. You have
available a 15-VDC supply.

4–99 Current Switching DAC

The circuit in Figure P4–99 is a four-bit DAC. The
DAC output is the voltage vO and the input is the binary
code represented by bits b1, b2, b3, and b4. The input bits
are either 0 (low) or 1 (high), and each controls one of the
four switches in the figure. When bits are low, their
switches are in the left position, directing the 2R leg cur-
rents to ground. When bits are high, their switches move
to the right position, directing the 2R leg currents to the
OP AMP’s inverting input. The 2R leg currents do not
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change when switching from left to right because the
inverting input is a virtual ground vN = vP = 0ð Þ. The
purpose of this problem is to show that this constant-
current switching produces the following input-output
relationship.

(a) Since the inverting input is a virtual ground, show that the
currents in the 2R legs are i1 = VREF=2R, i2 = VREF=4R,
i3 = VREF=8R, and i4 = VREF=16R, regardless of switch
positions.

(b) Show that the sum of currents at the inverting input is

b1 i1 + b2 i2 + b3 i3 + b4 i4 + iF = 0

where bits bk k = 1, 2, 3, 4ð Þ are either 0 or 1.
(c) Use the results in parts (a) and (b) to show that the OP

AMP output voltage is

vO = −
RF

2R
VREF b1 +

b2
2

+
b3
4

+
b4
8

� �
as stated.
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−
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FIGURE P4–99

4–100 OP AMP Circuit Analysis and Design

(a) Find the input-output relationship of the circuit in

Figure P4–100.

(b) Design a circuit that realizes the relationship found

in part (a) using only 10-kΩ resistors and one OP AMP.
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FIGURE P4–100

4–101 Instrumentation Amplifier with Alarm

Strain gauges measuring the deflection of a sintered metal col-
umn are connected to a Wheatstone bridge. The output of the
bridge is balanced when there is no strain producing 0 V output.
As the column is deflected, the bridge produces 150 μV=Ω
change caused by the strain gauges. The maximum possible
defection would result in a 4-Ω change. Design an instrumenta-
tion amplifier that can take the voltage created in the bridge and
send it to a 0 – 5 V ADC, where no deflection produces 0 V at
theADC andmaximumdeflection produces 5 V. To avoid load-
ing, send the output of the bridge to a very high input resistance
differential amplifier. The columns being tested are brittle and
can shatter violently if the conditions cause the strain gauges to
change by more than 3:9Ω. For safety, connect the output of
your instrumentation amplifier to a comparator circuit that will
trigger an alarm when the strain causes the resistance to change
by 3:75Ω. The alarm needs to be triggered by 15 V.

4–102 Resistance Temperature Transducer

Circuit 1

vO
−

+

+

900 Ω 600 Ω

100 Ω
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vTR
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+
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+−

Circuit 2

vO

−

+
+

600 Ω 1 kΩ

100 Ω5 V

vTR

+

− 2.5 V
+−

RTR

FIGURE P4–102

A resistive transducer uses a sensing element whose resistance
varies with temperature. For a particular transducer, the resist-
ance varies as RTR = 0:375T + 100Ω, where T is temperature
in �C. This transducer is to be included in a circuit to measure
temperatures in the range from −200�C to 800�C. The circuit
must convert the transducer resistance variation over this tem-
perature range into an output voltage in the range from 0 V to
5 V. Two proposed circuit designs are shown in Figure P4–102.
Which of these circuits would you recommend for production
and why? (Hint: First verify that the circuits perform the
required function.) Use Multisim to verify your results.
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C H A P T E R 5 SIGNAL WAVEFORMS

Under the sea, under the sea mark how the telegraph motions to me. Under the sea, under the sea signals are coming along.

James Clerk Maxwell, 1873,
Scottish Physicist and
Occasional Humorous Poet.

Some History Behind This Chapter
James Clerk Maxwell (1831–1879) is considered the unify-
ing founder of the mathematical theory of electromagnetics.
This genial Scotsman often communicated his thoughts to
friends and colleagues via whimsical poetry. In the short
excerpt given above, Maxwell reminds us that the purpose
of a communication system (the submarine cable telegraph
in this case) is to transmit signals and that those signals must
be changing, or in motion as he put it.

Why This Chapter Is Important Today
Up to this point we have only treated dc signals that are time
invariant. These constant signals are a logical place to begin
the study of circuit analysis and design. However, to carry
information, signals must change, otherwise they keep telling
us the same thing over and over again. This chapter intro-
duces the three basic, time-varying signals used in the anal-
ysis and design of linear circuits.

The chapter also demonstrates how signals can be combined
to create more complex signals. Finally, we look at key,
though partial, properties of signals that allow us to determine
how they might perform without describing the complete
signal.

Chapter Sections
5–1 Introduction
5–2 The Step Waveform
5–3 The Exponential Waveform
5–4 The Sinusoidal Waveform
5–5 Composite Waveforms
5–6 Waveform Partial Descriptors

Chapter Learning Objectives
5-1 Basic Waveforms (Sects. 5–2, 5–3, and 5–4)

Given an equation, graph, or word description of step, ramp,
exponential, or sinusoid waveforms:

(a) Construct an alternative description of the waveform.
(b) Find the parameters or properties of the waveform.
(c) Construct newwaveforms by integrating or differen-

tiating the given waveform.
(d) Generate the basic waveforms inMATLAB orMul-

tisim and use them appropriately to solve problems
or simulate circuits. (See Web Appendix D).

5-2 Composite Waveforms (Sect. 5–5)

Given an equation, graph, or word description of a composite
waveform:

(a) Construct an alternative description of the
waveform.

(b) Find the parameters or properties of the waveform.
(c) Generate the composite waveforms in MATLAB or

Multisim and use them appropriately to solve pro-
blems or simulate circuits. (See Web Appendix D).

5-3 Waveform Partial Descriptors (Sect. 5–6)

Given a complete description of a basic or composite
waveform:

(a) Classify the waveform as periodic or aperiodic and
causal or noncausal.

(b) Find the applicable partial waveform descriptors.
(c) Use appropriate software tools to calculate applicable

partial waveform descriptors (SeeWebAppendix D).
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5–1 I N T R O D U C T I O N
We normally think of a signal as an electrical current i tð Þ or voltage υ tð Þ. The time
variation of the signal is called a waveform. More formally,

A waveform is an equation or graph that defines the signal as a function of time.

Up to this point our study has been limited to the type of waveform shown in
Figure 5–1. The three dots at the start of the waveform indicate that the waveform
is unchanged from the beginning, while the three dots at the end imply that it will
remain the same forever. Waveforms that are constant for all time are called dc sig-
nals. The abbreviation dc stands for direct current, but it applies to either voltage or
current. Mathematical expressions for a dc voltage υ tð Þ or current i tð Þ take the form

υ tð Þ=V0

i tð Þ= I0

)
for −∞ < t < ∞ (5–1)

This equation is only a model. No physical signal can remain constant forever. It is a
useful model, however, because it approximates the signals produced by physical
devices such as batteries.

There are two matters of notation and convention that must be discussed before
continuing. First, quantities that are constant (non-time-varying) are usually repre-
sented by uppercase letters ðVA, I, TOÞ or lowercase letters in the early part of
the alphabet ða, b7, f0Þ. Time-varying electrical quantities are represented by the low-
ercase letters i, υ, p, q, andw. The time variation is expressly indicated when we write
these quantities as υ1 tð Þ, iA tð Þ, or wC tð Þ. Time variation is implicit when they are writ-
ten as υ1, iA, or wC.

Second, in a circuit diagram, signal variables are normally accompanied by the ref-
erence marks (+, −) for voltage and (!) for current. It is important to remember that
these reference marks do not indicate the polarity of a voltage or the direction of cur-
rent. The marks provide a baseline for determining the sign of the numerical value of
the actual waveform. When the actual voltage polarity or current direction coincides
with the reference directions, the signal has a positive value. When the opposite
occurs, the value is negative. Figure 5–2 shows examples of voltage waveforms,

v(t)

V0

0
t

FIGURE 5–1 A constant or dc
waveform.
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FIGURE 5–2 Some example waveforms.
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including some that assume both positive and negative values. The bipolar wave-
forms indicate that the actual voltage polarity is changing as a function of time.

The waveforms in Figure 5–2 are examples of signals used in electrical engineer-
ing. Since there are many such signals, it may seem that the study of signals involves
the uninviting task of compiling a lengthy catalog of waveforms. However, it turns out
that a long list is not needed. In fact, we can derive most of the waveforms of interest
using just three basic signal models: the step, exponential, and sinusoidal functions.
The small number of basic signals illustrates whymodels are so useful to engineers. In
reality, waveforms are very complex, but their time variation can be approximated
adequately using only a few basic building blocks.

Finally, in this chapter we will focus on the use of voltage υ tð Þ to represent a signal
waveform. Remember, however, that a signal can be either a voltage υ tð Þ or cur-
rent i tð Þ.

5–2 T H E S T E P W A V E F O R M

The first basic signal in our catalog is the step waveform. The general step function is
based on the unit step function1 defined as

u tð Þ= 0 for t < 0

1 for t ≥ 0



(5–2)

The step function waveform is equal to zero when its argument t is negative, and is
equal to unity when its argument is positive. Mathematically, the function u tð Þ has a
jump discontinuity at t = 0.

Strictly speaking, it is impossible to generate a true step function since signal vari-
ables like current and voltage cannot jump from one value to another in zero time.
Practically speaking, we can generate very good approximations to the step function.
What is required is that the transition time be short compared with other response
times in the circuit. Actually, the generation of approximate step functions is an eve-
ryday occurrence since people frequently turn things like TVs, stereos, computers
and lights on and off.

Figure 5–3(a) shows how a step might be physically constructed on a circuit dia-
gram. It is assumed that the transition from off to on occurs instantaneously at the
time the switch is thrown, that is, at t = 0 in the figure. The same process is shownmore
compactly in Figure 5–3(b).

On the surface, it may appear that the step function is not a very exciting waveform
or, at best, only a source of temporary excitement. However, the step waveform is a
versatile signal used to construct a wide range of useful waveforms. Multiplying u tð Þ
by a constant VA produces the waveform

VAu tð Þ= 0 for t < 0

VA for t ≥ 0



(5–3)

Replacing t by ðt−TSÞ produces a waveform VAuðt−TSÞ, which takes on the values

VAuðt−TSÞ=
0 for t <TS

VA for t ≥TS



(5–4)

The amplitude VA scales the size of the step discontinuity, and the time-shift
parameter TS advances or delays the time at which the step occurs, as shown

+
–

+
–

+

vO

–

+

vO

–

ON

VA

VAu(t)

OFF

(a)

(b)

(t)

(t)

t = 0

FIGURE 5–3
(a) Approximation to a step
function. (b) Typical
representation.

1The step function is also referred to as a Heaviside function, after Oliver Heaviside, English elec-
trical engineer (1850–1925). In MATLAB, a step function u(t) is entered as “heaviside(t)”.
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in Figure 5–4. The step function transitionswhen the value of tmakes the argument of
the function equal to zero. For example, the function υ tð Þ= 5 uðt + 6ÞV shifts + 5
volts at t = −6 s,and i tð Þ= 2 uðt−1ÞmA shifts + 2 mA at t = 1 s.

Amplitude and time-shift parameters are required to define the general step func-
tion. The amplitude VA carries the units of volts. The amplitude of the step function
in electric current is IA and carries the units of amperes. The constant TS carries the
units of time, usually seconds. The parameters VA (or IA) and TS can be positive,
negative, or zero. By combining several step functions, we can represent a number
of important waveforms. One possibility is illustrated in the following example:

E X A M P L E 5–1

Express the waveform in Figure 5–5(a) in terms of step functions.

SOLUTION:
The amplitude of the pulse jumps to a value of 3 V at t = 1 s; therefore, 3uðt−1Þ is part
of the equation for the waveform. The pulse returns to zero at t = 3 s, so an equal and
opposite step must occur at t = 3 s. Putting these observations together, we express
the rectangular pulse as

υ tð Þ= 3u ðt−1Þ−3u ðt−3ÞV

Figure 5–5(b) shows how the two step functions combine to produce the given
rectangular pulse. ■

E x e r c i s e 5–1
Write an expression using unit step functions for the waveform in Figure 5–6.

A n s w e r: υ tð Þ=10uðt + 2Þ−15uðt−2Þ+ 5uðt−4ÞV

T H E I M P U L S E F U N C T I O N

The generalization of Example 5–1 is the waveform

υ tð Þ=VA½uðt−T1Þ−uðt−T2Þ�V

This waveform is a rectangular pulse of amplitudeVA that turns on at t =T1 and off at
t =T2. The pulse train and square wave signals in Figure 5–2 can be generated by a
series of these pulses. Pulses that turn on at some timeT1 and off at some later timeT2

are sometimes called gating functions because they are used in conjunction with elec-
tronic switches to enable or inhibit the passage of another signal.

A unit-area pulse centered on t = 0 is written in terms of step functions as

υ tð Þ= 1
T

u t +
T
2

� �
−u t−

T
2

� �� �
V (5–5)

v(t) v(t) v(t)

t t t
0 0 0

VAVAVA

–TS TS TS

–TS < 0 TS = 0 TS > 0

v(t) = VAu(t + TS) v(t) = VAu(t) v(t) = VAu(t – TS)

FIGURE 5–4 Effect of time
shifting on the step function
waveform.

v(t) (V)

v(t) (V)

t (s)

t (s)

3

0

–3

3

0

–3

10 2 3

(a)

4 5

0 1 2 3 4 5

3u(t–1)

–3u(t–3)

(b)

FIGURE 5–5

10

v(t) (V)

–2
–5

2 4
t (s)

FIGURE 5–6

236 C H A P T E R 5 SIGNAL WAVEFORMS



The pulse in Eq. (5–5) is zero everywhere except in the range −T=2≤ t ≤T=2, where its
value is 1=T . The area under the pulse is 1 because its scale factor is inversely propor-
tional to its duration. As shown in Figure 5–7(a), the pulse becomes narrower and
higher as T decreases but maintains its unit area. In the limit as T! 0 the scale factor
approaches infinity but the area remains 1. The function obtained in the limit is called a
unit impulse,2 symbolized as δ tð Þ. The graphical representation of δ tð Þ is shown in
Figure 5–7(b). The impulse is an idealized model of a large-amplitude, short-duration
pulse.

A formal definition of the unit impulse is

δ tð Þ= 0 for t 6¼ 0 and
Z t

−∞
δ xð Þdx= u tð Þ (5–6)

The first condition says the impulse is zero everywhere except at t = 0. The second
condition suggests that the unit impulse is the derivative of a unit step function:

δ tð Þ= du tð Þ
dt

(5–7)

The conclusion in Eq. (5–7) cannot be justified using elementary mathematics since
the function u tð Þ has a discontinuity at t = 0 and its derivative at that point does not
exist in the usual sense. However, the concept can be justified using limiting condi-
tions on continuous functions, as discussed in texts on signals and systems.3 Accord-
ingly, we defer the question of mathematical rigor to later courses and think of the
unit impulse as the derivative of a unit step function. Note that this means that the
unit impulse δ tð Þ has units of reciprocal time, or s−1.

An impulse of strengthK is denoted υ tð Þ=Kδ tð Þ. Consequently, the scale factorK
has the units of V-s and is the area under the impulse Kδ tð Þ. In the graphical repre-
sentation of the impulse the value of K is written in parentheses beside the arrow, as
shown in Figure 5–7(b).

E X A M P L E 5–2

Calculate and sketch the derivative of the pulse in Figure 5–8(a).

SOLUTION:
In Example 5–1 the pulse waveform was written as

υ tð Þ= 3uðt−1Þ−3uðt−3ÞV
Using the derivative property of the step function, we write

dυ tð Þ
dt

= 3δðt−1Þ−3δðt−3ÞV=s

The derivative waveform consists of a positive-going impulse at t = 1 s and a negative-
going impulse at t = 3 s. Figure 5–8(b) shows how the impulse train is represented
graphically. The waveform υ tð Þ has the units of volts ðVÞ, so its derivative dυ tð Þ=dt
has the units of V=s. ■

E v a l u a t i o n E x e r c i s e 5–2

Figure 5–9 purports to be an alternative description of an impulse function as ϵ! 0. Prove
or disprove the claim.
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FIGURE 5–7 Rectangular
pulse waveforms and the impulse.
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FIGURE 5–8

2The unit impulse is also referred to as the Dirac delta, after Paul Dirac, the British physicist who
introduced it.

3For example, see Alan V. Oppenheim and Allan S. Willsky, Signals and Systems Analysis (Engle-
wood Cliffs, N.J.: Prentice Hall, 1983), pp. 22–23.
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A n s w e r: From the figure, the area of the triangle is 1
2ð2ϵÞð1=ϵÞ=1:As ϵ! 0, the base of

the triangle shrinks to zero but the amplitude grows to infinity. Yet the area always remains
at 1. Hence, this is equivalent to the definition of an impulse and proves the claim.

T H E R A M P F U N C T I O N

The unit ramp is defined as the integral of a step function:

r tð Þ=
Z t

−∞
u xð Þdx= tu tð Þ (5–8)

The unit ramp waveform r tð Þ in Figure 5–10(a) is zero for t < 0 and is equal to t for
t > 0. Notice that the slope of r tð Þ is 1 and has the units of time, or s. A ramp of strength
K is denoted υ tð Þ=Kr tð Þ, where the scale factorK has the units of V=s and is the slope
of the ramp. The general ramp waveform shown in Figure 5–10(b), written as
υ tð Þ=Krðt−TSÞ, is zero for t <TS and equal to Kðt−TSÞ for t ≥TS. By adding a
sequence of ramps, we can create the triangular and sawtooth waveforms shown
in Figure 5–2.

S I N G U L A R I T Y F U N C T I O N S

The unit impulse, unit step, and unit ramp form a triad of related signals that are
referred to as singularity functions. They are related by integration as

u tð Þ =
Z t

−∞
δ xð Þdx

r tð Þ =
Z t

−∞
u xð Þdx

(5–9)

or by differentiation as

δ tð Þ = du tð Þ
dt

u tð Þ = dr tð Þ
dt

(5–10)

These signals are used to generate other waveforms and as test inputs to linear systems
to characterize their responses. When applying the singularity functions in circuit anal-
ysis, it is important to remember that u tð Þ is a dimensionless function. Eqs. (5–9) and
(5–10) point out that δ tð Þ carries the units of s−1 and r tð Þ carries units of seconds.
E X A M P L E 5–3

Derive an expression for the waveform for the integral of the pulse shown in
Figure 5–11(a).

SOLUTION:
In Example 5–1 the pulse waveform was written as

υ tð Þ= 3u t−1ð Þ−3u t−3ð ÞV
Using the integration property of the step function, we writeZ t

−∞
υ xð Þdx= 3r t−1ð Þ−3r t−3ð Þ

The integral is zero for t < 1 s. For 1 < t < 3 the waveform is 3 t−1ð Þ. For t > 3 it is
3 t−1ð Þ−3 t−3ð Þ= 6. These two ramps produce the pulse integral shown in
Figure 5–11(b). The waveform υ tð Þ has the units of volts (V), so the units of its
integral are V-s. ■

v(t)

0

1/ε

t
ε–ε

FIGURE 5–9

t

t

1

1

1

K

r(t)

Kr(t–TS)

TS 

(b)

(a)

FIGURE 5–10 (a) Unit ramp
waveform. (b) General ramp
waveform.

3

6

0 1 2 3 4 5

4 53210

t (s)

t (s)

3r(t – 1)

–3r(t – 3)

v(
t)

 (
V

)
ʃv

(t
) 

dt
 (

V
-s

)

(a)

(b)

FIGURE 5–11

238 C H A P T E R 5 SIGNAL WAVEFORMS



E x e r c i s e 5–3
Write an expression using ramp functions to describe the waveform shown in Figure 5–12.

A n s w e r: υ tð Þ= r t + 1ð Þ−2r t−1ð Þ+ r t−3ð ÞV

E X A M P L E 5–4

Figure 5–13(a) shows an ideal electronic switch whose input is a ramp 2r tð Þ, where the
scale factor K = 2 carries the units of V=s. Find the switch output υO tð Þ when the gate
function in Example 5–1, shown in Figure 5–13(b), is applied to the control terminal
Gð Þ of the switch.

SOLUTION:
In Example 5–1 the gate function was written as

υG tð Þ= 3u t−1ð Þ−3u t−3ð ÞV
The gate function turns the switch on at t = 1 s and off at t = 3 s. The output voltage of
the switch is

υO tð Þ=
0 t < 1

2t 1< t < 3

0 3< t

8><
>:

Note that the amplitude of the gate function does not influence the magnitude of the
output voltage, since it only controls the position of the switch.

Only the portion of the input waveform within the gate interval appears at the out-
put. Figures 5–13(b), 5–13(c), and 5–13(d) show how the gate function υG tð Þ controls
the passage of the input signal through the electronic switch.

This waveform can be written as a sum of singularity functions as follows. First we
write υO tð Þ in terms of a gate function:

υO tð Þ= 2t½u t−1ð Þ−u t−3ð Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gate function

We then manipulate this equation as follows:

υO tð Þ = 2tu t−1ð Þ−2tu t−3ð Þ
= 2 t−1 + 1ð Þu t−1ð Þ−2 t−3 + 3ð Þu t−3ð Þ
= 2 t−1ð Þu t−1ð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

r t−1ð Þ
+ 2u t−1ð Þ−2 t−3ð Þu t−3ð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

r t−3ð Þ
−6u t−3ð Þ

So finally,

υO tð Þ= 2r t−1ð Þ+ 2u t−1ð Þ−2r t−3ð Þ−6u t−3ð Þ
which describes the gated ramp in terms of step and ramp waveforms. ■

E x e r c i s e 5–4
Express the following signals in terms of singularity functions:

(a) υ1 tð Þ=
0 t < 2
4 2 < t <4

−4 4 < t

8<
: (b) υ2 tð Þ=

0 t < 2
4 2 < t <4

−2t + 12 4 < t

8<
:

(c) υ3 tð Þ=
Z t

−∞
υ1 xð Þdx (d) υ4 tð Þ= dυ2 tð Þ

dt
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A n s w e r s:

(a) υ1 tð Þ=4u t−2ð Þ−8u t−4ð Þ (b) υ2 tð Þ=4u t−2ð Þ−2r t−4ð Þ
(c) υ3 tð Þ=4r t−2ð Þ−8r t−4ð Þ (d) υ4 tð Þ= 4δ t−2ð Þ−2u t−4ð Þ

5–3 T H E E X P O N E N T I A L W A V E F O R M

The exponential waveform is a step function whose amplitude factor gradually
decays to zero. The equation for this waveform is

υ tð Þ= VAe− t=TC

h i
u tð Þ (5–11)

A graph of υ tð Þ versus t=TC is shown in Figure 5–14. The exponen-
tial starts out like a step function. It is zero for t < 0 and jumps to a
maximum amplitude of VA at t = 0. Thereafter it monotonically
decays toward zero as time marches on. The two parameters that
define the waveform are the amplitude VA (in volts) and the time
constant TC (in seconds). The amplitude of a current exponential
would be written IA and carry the units of amperes.

The time constant is of special interest, since it determines the rate
at which the waveform decays to zero. An exponential decays to
about 36.8% of its initial amplitude υ 0ð Þ=VA in one time constant,
because at t =TC, υ TCð Þ=VAe−1, or approximately 0:368 ×VA. At
t = 5TC, the value of the waveform is VAe−5, or approximately
0:00674VA. An exponential signal decays to less than 1%of its ini-

tial amplitude in a time span of five time constants. In theory, an exponential endures
forever, but practically speaking after about 5TC the waveform amplitude becomes
negligibly small. We define the duration of a waveform to be the interval of time out-
side of which the waveform is everywhere less than a stated value. Using this concept,
we say the duration of an exponential waveform is 5TC.

Figure 5–15 shows how an exponential waveform can be constructed. Note that
the unit step multiplies the exponential function and turns it on at t = 0.

E X A M P L E 5–5

Plot the waveform υ tð Þ= −17e−100t
� �

u tð ÞV.

SOLUTION:
From the form of υ tð Þ, we recognize that VA = −17 V and TC = 1=100 s or 10 ms. The
minimum value of υ tð Þ is υ 0ð Þ= −17 V, and the maximum value is approximately
0 V as t approaches 5TC = 50 ms. These observations define appropriate scales for
plotting the waveform. Spreadsheet programs are especially useful for the repetitive
calculations and graphical functions involved in waveform plotting. Figure 5–16
shows how this example can be handled using Excel.We developed our desired equa-
tion by listing our time axis in a column labeled t msð Þ. We beganwith a negative num-
ber −2:5 ms because we want to show the effect of the unit step u tð Þ. We plotted the
curve for five time constants or 50 ms. In another column labeled −17e−100t, we then
wrote our desired equation without the unit step equal to −17∗EXP −100 ∗�
C3=1000Þ, where C3 was the column with the time axis entry and the division by
1000 scales the time units correctly. Finally, we added the unit step in a third column
labeled u tð Þ. In the last column that we labeled v tð Þ, we brought it all together by

v(t) (V)

VA

0.368VA

0 1 2 3 4 5

t
TC

FIGURE 5–14 The exponential waveform.

240 C H A P T E R 5 SIGNAL WAVEFORMS



FIGURE 5–16
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multiplying the desired equation column by the unit step.We then opened the graph-
ing tool and plotted the v tð Þ column versus the time column. Note that there is a slope
to the line from −1:25 ms and 0. The plotter does not know to stay at u tð Þ= 0 until the
axis, hence the slope. This is a good time to point out that in real practice there are no
instantaneous rises and falls, and there will always be a slope. Making this slope as
close to perfect (vertical in this case) is a major challenge of engineering. ■

E x e r c i s e 5–5
Sketch the waveform described by

υ tð Þ= 20e−10;000tu tð ÞV

A n s w e r: See Figure 5–17.

P R O P E R T I E S O F E X P O N E N T I A L W A V E F O R M S

The decrement property describes the decay rate of an exponential signal. For t > 0
the exponential waveform is given by

υ tð Þ=VAe− t=TC V (5–12)

The step function can be omitted since it is unity for t > 0. At time t +Δt the
amplitude is

υ t +Δtð Þ=VAe− t +Δtð Þ=TC =VAe− t=TCe−Δt=TC V (5–13)

The ratio of these two amplitudes is

υ t +Δtð Þ
υ tð Þ =

VAe− t=TCe−Δt=TC

VAe− t=TC
= e−Δt=TC (5–14)

The decrement ratio is independent of amplitude and time. In any fixed time period
Δt, the fractional decrease depends only on the time constant. The decrement prop-
erty states that the same percentage decay occurs in equal time intervals.

The slope of the exponential waveform (for t > 0) is found by differentiating
Eq. (5–12) with respect to time:

dυ tð Þ
dt

=
VA

TC
e− t=TC =

υ tð Þ
TC

(5–15)

The slope property states that the time rate of change of the exponential waveform is
inversely proportional to the time constant. Small time constants lead to large slopes
or rapid decays, while large time constants produce shallow slopes and long
decay times.

Equation (5–15) can be rearranged as

dυ tð Þ
dt

+
υ tð Þ
TC

= 0 (5–16)

When υ tð Þ is an exponential of the form in Eq. (5–12), then dυ=dt + υ=TC = 0. That is,
the exponential waveform is a solution of the first-order linear differential equation
in Eq. (5–16). We will make use of this fact in Chapter 7.

The time-shifted exponential waveform is obtained by replacing t on the right side
of in Eq. (5–11) by t−TS. The general exponential waveform is written as

υ tð Þ= VAe− t−TSð Þ=TC

h i
u t−TSð ÞV (5–17)
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20
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FIGURE 5–17
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where TS is the time-shift parameter for the waveform. Figure 5–18 shows exponen-
tial waveforms with the same amplitude and time constant but different values of TS.
Time shifting translates the waveform to the left or right depending on whether TS is
negative or positive. Caution: The factor t−TS must appear in both the argument of
the step function and the exponential, as shown in Eq. (5–17).

A P P L I C A T I O N E X A M P L E 5 – 6

An oscilloscope is a laboratory instrument that displays the instantaneous value of a
waveform versus time. Figure 5–19 shows an oscilloscope display of a portion of an
exponential waveform. In the figure, the vertical (amplitude) axis is calibrated at
2 V per division, and the horizontal (time) axis is calibrated at 1 ms per division. Find
the time constant of the exponential.

SOLUTION:
For t >TS the general expression for an exponential in Eq. (5–17) becomes

υ tð Þ=VAe− t−TSð Þ=TCV

We have only a portion of the waveform, so we do not know the location of the t = 0
time origin; hence, we cannot find the amplitude VA or the time shift TS from the
display. But, according to the decrement property, we should be able to determine
the time constant since the decrement ratio is independent of amplitude and time.
Specifically, Eq. (5–14) points out that

υ t +Δtð Þ
υ tð Þ = e−Δt=TC

Solving for the time constant TC yields

TC =
Δt

ln
υ tð Þ

υ t +Δtð Þ
� �

Taking the starting point at the left edge of the oscilloscope display yields

υ tð Þ= 3:6 divð Þ 2 V=divð Þ= 7:2 V

Next, defining Δt to be the full width of the display produces

Δt = 8 divð Þ 1ms= divð Þ= 8ms

v(t)

v(t)

v(t)

t

t

t

–TS < 0

TS = 0

TS > 0

VA

VA

VA

–TS 0

0

TS0

(a)

(b)

(c)

FIGURE 5–18 Effect of time
shifting on the exponential
waveform.
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and

υ t +Δtð Þ= 0:5 divð Þ 2 V= divð Þ= 1 V

As a result, the time constant of the waveform is found to be

TC =
Δt

ln
υ tð Þ

υ t +Δtð Þ
� � = 8× 10−3

ln 7:2=1ð Þ = 4:05ms

■

A p p l i c a t i o n E x e r c i s e 5 – 6

You are in a Circuits laboratory and are required to determine the time constant of a volt-
age signal. You observe the signal on an oscilloscope as shown in Figure 5–20. The scope
tells you that ground is at 0:3 V. Find its time constant.

A n s w e r: TC = 2:00 μs

E x e r c i s e 5–7
Figure 5–21 shows three exponential waveforms. Match each curve with the appropriate
expression.
1. υ1 tð Þ=100 e−ðt=100μÞu t−100μð ÞV
2. υ2 tð Þ=100 e−ðt=100μÞ u tð ÞV
3. υ3 tð Þ=100 e− ðt−100μÞ=100μ½ � uðt−100 μÞV

A n s w e r: Waveform (a) = 2, (b) = 3, and (c) = 1.

Amplitude

(1 V/div)

4.0 div

0.3 div

7.5 div

t
(1 μs/div)

0.2 div

FIGURE 5–20
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FIGURE 5–21
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E x e r c i s e 5–8
(a) An exponential waveform has υ 0ð Þ= 1:2 V and υ 3ð Þ=0:5 V. What are VA and TC for

this waveform?
(b) An exponential waveform has υ 0ð Þ= 5 V and υ 2ð Þ= 1:25 V. Find the value of υ tð Þ at

t =1 s and t =4 s?
(c) An exponential waveform has υ 0ð Þ= 5 V and an initial t =0ð Þ slope of −25 V=s. What

are VA and TC for this waveform?
(d) An exponential waveform decays to 10% of its initial value in 3 ms. What is TC for this

waveform?
(e) A waveform has υ 2ð Þ= 4 V, υ 6ð Þ=1 V, and υ 10ð Þ=0:5 V. Is it an exponential

waveform?

A n s w e r s:
(a) VA =1:2 V,TC = 3:43 s
(b) υ 1ð Þ=2:5 V, υ 4ð Þ=0:3125 V
(c) VA = 5 V,TC = 200ms
(d) TC = 1:303 ms
(e) No, it violates the decrement property.

E x e r c i s e 5–9
Find the amplitude and time constant for each of the following exponential signals:

(a) υ1 tð Þ= −15e−1000t
� �

u tð ÞV
(b) υ2 tð Þ= + 12e− t=10

� �
u tð ÞmV

(c) i3 tð Þ= 15e−500t
� �

u − tð ÞmA
(d) i4 tð Þ= 4e−200 t−100ð Þ� �

u t−100ð ÞA
A n s w e r s:
(a) VA = −15 V,TC = 1ms
(b) VA = 12mV,TC = 10 s
(c) IA = 15mA,TC = 2ms
(d) IA = 4A,TC = 5ms

5–4 T H E S I N U S O I D A L W A V E F O R M

The cosine and sine functions are important in all branches of sci-
ence and engineering. The corresponding time-varying waveform
in Figure 5–22 plays an especially prominent role in electrical
engineering.

In contrast with the step and exponential waveforms studied
earlier, the sinusoid, like the dc waveform in Figure 5–1,
extends indefinitely in time in both the positive and negative
directions. The sinusoid has neither a beginning nor an end.
Of course, real signals have finite durations. They were turned
on at some finite time in the past and will be turned off at some time in the
future. While it may seem unrealistic to have a signal model that lasts forever,
it turns out that the eternal sinewave is a very good approximation in many
practical applications.

The sinusoid in Figure 5–22 is an endless repetition of identical oscillations
between positive and negative peaks. The amplitudeVA (in volts) or IA (in amperes)
defines the maximum and minimum values of the oscillations. The period T0 (usually
seconds) is the time required to complete one cycle of the oscillation. The sinusoid

… …

T0 VA

–VA

t

FIGURE 5–22 The eternal sinusoid.
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can be expressed mathematically using either the sine or the cosine function. The
choice between the two depends on where we choose to define t = 0. If we choose
t = 0 at a point where the sinusoid is zero, then it can be written as

υ tð Þ=VA sin 2πt=T0ð ÞV (5–18a)

On the other hand, if we choose t = 0 at a point where the sinusoid is at a positive
peak, we can write an equation for it in terms of a cosine function:

υ tð Þ=VA cos 2πt=T0ð ÞV (5–18b)

Although either choice will work, it is common practice to choose t = 0 at a positive
peak; hence Eq. (5–18b) applies. Thus, we will continue to call the waveform a sinus-
oid even though we use a cosine function to describe it.

As in the case of the step and exponential functions, the general sinusoid is
obtained by replacing t by t−TSð Þ. Inserting this change in Eq. (5–18a) yields a gen-
eral expression for the sinusoid as

υ tð Þ=VA cos 2π t−TSð Þ=T0½ �V (5–19)

where the constantTS is the time-shift parameter. Figure 5–23 shows that the sinusoid
shifts to the right when TS > 0 and to the left when TS < 0. In effect, time shifting
causes the positive peak nearest the origin to occur at t =TS.

The time-shifting parameter can also be represented by an angle:

υ tð Þ=VA cos 2πt=T0 +ϕ½ �V (5–20)

v(t)

T0

t

VA

TS = 0

(a)

–VA

TS

v(t) = VA cos  
2πt

  V
T0

v(t)

T0

t
TS

TS > 0

(b)

VA

–VA

V
2πt

– ϕ
T0

v(t) = VAcos

v(t)

T0

t
TS

TS < 0

(c)

–VA

VA

V
2πt

+ ϕ
T0

v(t) = VAcos

FIGURE 5–23 Effect of time shifting on the sinusoidal waveform.

246 C H A P T E R 5 SIGNAL WAVEFORMS



The parameter ϕ is called the phase angle. The term phase angle is based on the cir-
cular interpretation of the cosine function. We think of the period as being divided
into 2π radians, or 360�. In this sense the phase angle is the angle between t = 0 and the
nearest positive peak. Comparing Eqs. (5–19) and (5–20), we find the relation
between TS and ϕ to be

ϕ= −2π
TS

T0
= −360�

TS

T0
(5–21)

Changing the phase angle moves the waveform to the left or right, revealing different
phases of the oscillating waveform (hence the name phase angle).

The phase angle should be expressed in radians, but is more often reported in
degrees. Care should be taken when numerically evaluating the argument of the cosine
2πt=T0 +ϕð Þ to ensure that both terms have the same units. The term 2πt=T0 has the
units of radians, so it is necessary to convert ϕ to radians when it is given in degrees.

An alternative form of the general sinusoid is obtained by expanding Eq. (5–20)
using the identity cos x+ yð Þ= cos xð Þcos yð Þ−sin xð Þsin yð Þ,

υ tð Þ= VA cosϕ½ �cos 2πt=T0ð Þ+ −VA sinϕ½ �sin 2πt=T0ð ÞV
The quantities inside the brackets in this equation are constants; therefore, we can
write the general sinusoid in the following form:

υ tð Þ= a cos 2πt=T0ð Þ+ b sin 2πt=T0ð ÞV (5–22)

The two amplitude-like parameters a and b have the same units as the waveform
(volts in this case) and are called Fourier coefficients. By definition, the Fourier coef-
ficients are related to the amplitude and phase parameters by the equations

a = VA cosϕ
b = −VA sinϕ

(5–23)

The inverse relationships are obtained by squaring and adding the expressions in
Eq. (5–23):

VA =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2

p
(5–24)

and by dividing the second expression in Eq. (5–23) by the first:

ϕ= tan−1 −b
a

(5–25)

Caution: The inverse tangent function on a calculator has a�180� ambiguity that can
be resolved by considering the signs of the Fourier coefficients a and b.

It is customary to describe the time variation of the sinusoid in terms of a fre-
quency parameter. Cyclic frequency f0 is defined as the number of periods per unit
time. By definition, the period T0 is the number of seconds per cycle; consequently,
the number of cycles per second is

f0 =
1
T0

(5–26)

where f0 is the cyclic frequency or simply the frequency. The unit of frequency (cycles
per second) is the hertz (Hz). The angular frequency ω0 in radians per second is
related to the cyclic frequency by the relationship

ω0 = 2πf0 =
2π
T0

(5–27)

because there are 2π radians per cycle.
There are two ways to express the concept of sinusoidal frequency: cyclic fre-

quency (f0, hertz) and angular frequency (ω0, radians per second). When working
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with signals, we tend to use the former. For example, radio stations transmit carrier
signals at frequencies specified as 690 kHz (AM band) or 101 MHz (FM band).
Radian frequency is more convenient when describing the characteristics of circuits
driven by sinusoidal inputs.

In summary, there are several equivalent ways to describe the general sinusoid:

υ tð Þ = VA cos
2π t−TSð Þ

T0

� �
=VA cos

2πt
T0

+ϕ
� �

= a cos
2πt
T0

� �
+ b sin

2πt
T0

� �
V

= VA cos 2π f0 t−TSð Þ½ �=VA cos 2π f0t +ϕð Þ= a cos 2π f0tð Þ+ b sin 2π f0tð ÞV
= VA cos ω0 t−TSð Þ½ �=VA cos ω0t +ϕð Þ= a cos ω0tð Þ+ b sin ω0tð ÞV

To use any one of these expressions, we need three types of parameters:

1. Amplitude: either VA or the Fourier coefficients a and b

2. Time shift: either TS or the phase angle ϕ
3. Time/frequency: either T0, f0, or ω0

In different parts of this book we use different forms to represent a sinusoid. There-
fore, it is important for you to understand thoroughly the relationships among the
various parameters in Eqs. (5–21) through (5–27).

A P P L I C A T I O N E X A M P L E 5 – 7

Figure 5–24 shows an oscilloscope display of a sinusoid. The vertical axis (amplitude)
is calibrated at 5 V per division, and the horizontal axis (time) is calibrated at 0.1 ms
per division. Derive an expression for the sinusoid displayed in Figure 5–24.

SOLUTION:
The maximum amplitude of the waveform is seen to be four vertical divisions;
therefore,

VA = 4 divð Þ 5 V=divð Þ= 20 V

There are four horizontal divisions between successive zero crossings, which means
there are a total of eight divisions in one cycle. The period of the waveform is

T0 = 8 divð Þ 0:1 ms=divð Þ= 0:8ms

5.5 div

Amplitude

(5 V/div)

4 div

4 div

4 div

t
(0.1 ms/div)

FIGURE 5–24
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The two frequency parameters are f0 = 1=T0 = 1:25 kHz and ω0 = 2πf0 = 7854 rad=s.
The parameters VA, T0, f0, and ω0 do not depend on the location of the t = 0 axis.

To determine the time shift TS, we need to define a time origin. The t = 0 axis
is arbitrarily taken at the left edge of the display in Figure 5–24. The positive
peak shown in the display is 5.5 divisions to the right of t = 0, which is more than half
a cycle (four divisions). The positive peak closest to t = 0 is not shown in Figure 5–24
because it must lie beyond the left edge of the display. However, the positive peak
shown in the display is located at t =TS +T0 since it is one cycle after t =TS. We
can write

TS +T0 = 5:5 divð Þ 0:1ms=divð Þ= 0:55 ms

which yields TS = 0:55−T0 = −0:25 ms. As expected, TS is negative because the near-
est positive peak is to the left of t = 0.

Given TS, we can calculate the remaining parameters of the sinusoid as follows:

ϕ = −
2πTS

T0
= 1:96 rad or 112:5�

a = VA cosϕ= −7:65 V

b = −VA sinϕ= −18:5 V

Finally, the three alternative expressions for the displayed sinusoid are

υ tð Þ = 20 cos 7854tð Þ+ 0:25 × 10−3� �
V

= 20 cos 7854t + 112:5�ð ÞV
= −7:65 cos7854t−18:5 sin7854tV

■

E x e r c i s e 5–10
Derive an expression for the sinusoid displayed in Figure 5–24 when t = 0 is placed in the
middle of the display.

A n s w e r: υ tð Þ= 20 cos 7854t−22:5�ð ÞV

E x e r c i s e 5–11
Sketch the waveform described by

υ tð Þ=10 cos 2000πt−60�ð ÞV

A n s w e r: See Figure 5–25

v(t) (V)

t (ms)

10

0.166

−10

1 ms

… ...

FIGURE 5–25
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P R O P E R T I E S O F S I N U S O I D S

In general, a waveform is said to be periodic if

υ t +T0ð Þ= υ tð Þ
for all values of t. The constant T0 is called the period of the waveform if it is the
smallest nonzero interval for which υ t +T0ð Þ= υ tð Þ. Since this equality must be valid
for all values of t, it follows that periodic signals must have eternal waveforms that
extend indefinitely in time in both directions. Signals that are not periodic are called
aperiodic.

The sinusoid is a periodic signal since

υ t +T0ð Þ=VA cos 2π t +T0ð Þ=T0 +ϕ½ �
=VA cos 2π tð Þ=T0 +ϕ+ 2π½ �

But cos x+ 2πð Þ= cos xð Þ. Consequently,
υ t +T0ð Þ=VA cos 2πt=T0 +ϕð Þ= υ tð Þ

for all t.
The additive property of sinusoids states that summing two or more sinusoids with

the same frequency yields a sinusoid with different amplitude and phase parameters
but the same frequency. To illustrate, consider two sinusoids

υ1 tð Þ = a1 cos 2πf0tð Þ+ b1 sin 2πf0tð ÞV
υ2 tð Þ = a2 cos 2πf0tð Þ+ b2 sin 2πf0tð ÞV

The waveform υ3 tð Þ= υ1 tð Þ+ υ2 tð Þ can be written as

υ3 tð Þ= a1 + a2ð Þcos 2πf0tð Þ+ b1 + b2ð Þsin 2πf0tð ÞV
because cosine and sine are linearly independent functions. We obtain the Fourier
coefficients of the sum of two sinusoids by adding their Fourier coefficients, provided
the two have the same frequency. Caution: The summation must take place with the
sinusoids in Fourier coefficient form. Sums of sinusoids cannot be found by adding
amplitudes and phase angles.

The derivative and integral properties state that when we differentiate or integrate
a sinusoid, the result is another sinusoid with the same frequency:

d VA cosωtð Þ
dt

= −ωVA sinωt =ωVA cos ωt + π=2ð ÞZ
VA cos ωtð Þdt =

VA

ω
sinωt =

VA

ω
cos ωt−π=2ð Þ

These operations change the amplitude and phase angle but do not change the
frequency. The fact that differentiation and integration preserve the underlying
waveform is a key property of the sinusoid. No other periodic waveform has this
shape-preserving property.

E X A M P L E 5–8

(a) Find the period and the cyclic and radian frequencies for each of the following
sinusoids:

υ1 tð Þ = 17 cos 2000t−30�ð ÞV
υ2 tð Þ = 12 cos 2000t + 30�ð ÞV

(b) Find the waveform of υ3 tð Þ= υ1 tð Þ+ υ2 tð ÞV.
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SOLUTION:
(a) The two sinusoids have the same frequency ω0 = 2000 rad=s since a term 2000t

appears in the arguments of υ1 tð Þ and υ2 tð Þ. Therefore, f0 =ω0=2π= 318:3 Hz
and T0 = 1=f0 = 3:14 ms.

(b) We use the additive property, since the two sinusoids have the same frequency.
Beyond this checkpoint, the frequency plays no further role in the calculation.
The two sinusoids must be converted to the Fourier coefficient form using
Eq. (5–23).

a1 = 17 cos −30�ð Þ= +14:7 V

b1 = −17 sin −30�ð Þ= +8:50 V

a2 = 12 cos 30�ð Þ= +10:4 V

b2 = −12 sin 30�ð Þ= −6:00 V

The Fourier coefficients of the signal υ3 = υ1 + υ2 are found as

a3 = a1 + a2 = 25:1 V

b3 = b1 + b2 = 2:50 V

The amplitude and phase angle of υ3 tð Þ are found using Eqs. (5–24) and (5–25):

VA =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a23 + b23

q
= 25:2 V

ϕ = tan−1 −2:5=25:1ð Þ= −5:69�

Two equivalent representations of υ3 tð Þ are
υ3 tð Þ= 25:1 cos 2000tð Þ+ 2:5 sin 2000tð ÞV

and

υ3 tð Þ= 25:2 cos 2000t−5:69�ð ÞV
■

E x e r c i s e 5–12
Write an equation for the waveform obtained by integrating and differentiating the
following signals:

(a) υ1 tð Þ= 30 cos 10t−60�ð ÞV
(b) υ2 tð Þ=3 cosð4000πtÞ−4 sinð4000πtÞV
A n s w e r s:

ðaÞ dυ1
dt

=300 cos 10t + 30�ð ÞV=sZ
υ1 tð Þdt = 3 cos 10t−150�ð ÞV-s

ðbÞ dυ2
dt

= 2π×104cos 4000πt + 143:1�ð ÞV=sZ
υ2dt =

1
800π

cos 4000πt−36:87�ð ÞV-s

E x e r c i s e 5–13
A sinusoid has a period of 5 μs. At t =0 the amplitude is 12 V. The waveform reaches its first
positive peak after t = 0 at t = 4 μs. Find its amplitude, frequency, and phase angle.

A n s w e r s: VA =38:8 V; f0 = 200 kHz; ϕ= +72�
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A p p l i c a t i o n E x e r c i s e 5 – 1 4

You are in a Circuits laboratory and are required to characterize a voltage signal. You
observe the signal on an oscilloscope as shown in Figure 5–26. You measure the voltage
of two adjacent peaks as shown on the figure. Write an expression for the voltage in ampli-
tude-phase form.

A n s w e r: v tð Þ= 169:7 cos 377 t−60�ð ÞV. Note: This is the description of the standard
120-V, 60-Hz commercial voltage for the United States.

5–5 C O M P O S I T E W A V E F O R M S

In the previous sections we introduced the step, exponential, and sinusoidal wave-
forms. These waveforms are basic signals because they can be combined to synthesize
all other signals used in this book. Signals generated by combining the three basic
waveforms are called composite signals. This section provides examples of composite
waveforms.

E X A M P L E 5–9

Characterize the composite waveform generated by

υ tð Þ=VAu tð Þ−VAu − tð ÞV

SOLUTION:
The first term in this waveform is simply a step function of amplitude VA that occurs
at t = 0. The second term involves the function u − tð Þ, whose waveform requires some
discussion. Strictly speaking, the general step function u xð Þ is unity when x> 0 and
zero when x< 0. That is, u xð Þ is unity when its argument is positive and zero when
it is negative. Under this rule the function u − tð Þ is unity when − t > 0 and zero when
− t < 0, that is,

u − tð Þ= 1 for t < 0

0 for t > 0
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which is the reverse of the step function u tð Þ. Figure 5–27 shows how the two com-
ponents combine to produce a composite waveform that extends indefinitely in both
directions and has a jump discontinuity of 2VA at t = 0. This composite waveform is
called a signum function. ■

E x e r c i s e 5–15
Describe the following waveform:

υ tð Þ= VAu tð Þ−VAu − tð Þ½ � δ t + 1ð Þ+ δ tð Þ+ δ t−1ð Þ½ �V

A n s w e r: There are only two terms present: υ tð Þ= −VAδ t + 1ð Þ+VAδ t−1ð ÞV
D I S C U S S I O N : Each impulse function exists only at one point in time. Since all three impulse
functions have a weight of 1 they simply multiply the value of the signum function at the
time the impulses exist, namely, at t = −1; 0, and +1. The values are −VA; 0, and +VA,
respectively. The selective nature of multiplying a function by an impulse is called the sifting
property.

E X A M P L E 5–1 0

Characterize the composite waveform generated by subtracting an exponential from
a step function with the same amplitude.

SOLUTION:
The equation for this composite waveform is

υ tð Þ = VAu tð Þ− VAe− t=TC
� �

u tð ÞV
= VA 1−e− t=TC

� �
u tð ÞV

For t < 0 the waveform is zero because of the step function. At t = 0
the waveform is still zero since the step and exponential cancel.

υ 0ð Þ=VA 1−e0
� �

1ð Þ= 0

For t�TC the waveform approaches a constant value VA because
the exponential term decays to zero. For practical purposes υ tð Þ is
within less than 1% of its final value VA when t = 5TC. At
t =TC, υ TCð Þ=VA 1−e−1

� �
= 0:632VA. The waveform rises to about

63% of its final value in one time constant. All of the observations
are summarized in the plot shown in Figure 5–28. This waveform is
called an exponential rise. It is also sometimes referred to as a “char-
ging exponential,” since it represents the behavior of signals that
occur during the buildup of voltage in resistor-capacitor circuits stud-
ied in Chapter 7. ■

E x e r c i s e 5–16
(a) Sketch the waveform described by the following:

υ tð Þ= 15e−2000t−10
� �

u tð ÞV
(b) What is the value of the voltage at t =TC?

A n s w e r s:
(a) See Figure 5–29.
(b) −4:48 V

–VA

VA

–VAu(–t)

VA u(t)

t

v(t)

FIGURE 5–27 The signum
waveform.

v(t)

VA

0.632VA

0.5VA

0
0 TC 2TC 3TC 4TC 5TC

t

FIGURE 5–28 The exponential rise waveform.
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FIGURE 5–29
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E x e r c i s e 5–17
Figure 5–30 contains a waveform that is called a double-sided exponential, which is
defined as the sum of a normal exponential and a reversed exponential. This waveform
is 1 at t = 0 and decays exponentially to zero in both directions along the time axis. Write an
expression for this waveform.

A n s w e r: υ tð Þ= e−α tj j V.

E X A M P L E 5–1 1

Characterize the composite waveform obtained by multiplying the ramp r tð Þ=TC

times an exponential.

SOLUTION:
The equation for this composite waveform is

υ tð Þ = r tð Þ
TC

VAe− t=TC

h i
u tð ÞV

= VA t=TCð Þe− t=TC
� �

u tð ÞV

For t < 0 the waveform is zero because of the step function. At t = 0 the
waveform is zero because r 0ð Þ= 0. For t > 0 there is a competition
between two effects—the ramp increases linearly with time while
the exponential decays to zero. Since the composite waveform is
the product of these terms, it is important to determine which
effect dominates. In the limit, as t! ∞ , the product of the ramp
and exponential takes on the indeterminate form of infinity times
zero. A single application of l’Hôpital’s rule, then, shows that the
exponential dominates, forcing the υ tð Þ to zero as t becomes large.
That is, the exponential decay overpowers the linearly increasing
ramp, as shown by the graph in Figure 5–31. The waveform obtained
by multiplying a ramp by a decaying exponential is called a
damped ramp. ■

E x e r c i s e 5–18
The equation describing a damped ramp is as follows:

v tð Þ=VA
t
TC

� �
e− t=TC

� �
u tð ÞV

(a) Find the time at which the function reaches its maximum value.
(b) What is the value of v tð Þ at the maximum?

A n s w e r s:
(a) The maximum occurs at t =TC.
(b) υ TCð Þ= 0:368VA.

v(t)

e–α(–t)u(–t) e–αtu(t)

0

1

t

FIGURE 5–30
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0.1VA

0
0 TC 2TC 3TC 4TC 5TC

FIGURE 5–31 The damped ramp waveform.
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E X A M P L E 5–1 2

Characterize the composite waveform obtained bymultiplying sinω0t
by an exponential.

SOLUTION:
In this case the composite waveform is expressed as

υ tð Þ = sinω0t VAe− t=TC
� �

u tð ÞV
= VA e− t=TCsinω0t

� �
u tð ÞV

Figure 5–32 shows a graph of this waveform for T0 = 2TC. For t < 0
the step function forces the waveform to be zero. At t = 0, and peri-
odically thereafter, the waveform passes through zero because
sin nπð Þ= 0. The waveform is not periodic, however, because the
decaying exponential gradually reduces the amplitude of the oscilla-
tion. For all practical purposes the oscillations become negligibly
small for t > 5TC. The waveform obtained by multiplying a sinusoid
by a decaying exponential is called a damped sine. ■

A P P L I C A T I O N E X A M P L E 5 – 1 3

Underdamped second-order systems produce the damped sinusoidal waveform
shown in Figure 5–32. When presented with such a display, it may be necessary to
determine an expression for the resulting waveform. Consider the damped sinusoid
shown in Figure 5–33. We will find an approximate expression.
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FIGURE 5–32 The damped sine waveform.
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We need to determine the waveform’s amplitude VA, its time constant TC, and its
oscillatory frequency, ω0. We start by estimating the coordinates of the first peak,
ð0:00075 s,47 VÞ. To calculate the time constant we need another peak. We could
select the second peak, but if we choose a later peak we can get a more accurate
result. Hence, we choose the fourth peak, ð0:0195 s,7:0 VÞ. We can find the time con-
stant from the decrement property noted earlier in Example 5–6.

TC =
Δt

ln
υ tð Þ

υ t +Δtð Þ
� � =

0:0195−0:00075

ln
47
7:0

� � =
0:01875
1:90

= 9:87 ms

1
TC

= 101:3 s−1

We can use the same two points for finding T0. However, wemust divide the result by
3 since there are three cycles involved.

T0 =
Δt
3

=
0:01875

3
= 6:25 ms

Then we find the radian frequency ω0 from the period:

ω0 =
2π
T0

= 1005 rad=s

Since the waveform has a phase shift, we find the time shift TS by measuring the
time from when the function is zero to the first peak of the cosine. This was our first
peak, 0.00075 s. We can then calculate the phase shift from Eq. (5–21):

ϕ=
−0:00075
0:00625

× 360� = −43:2�

We can then write what we have found thus far in our waveform equation:

υ tð Þ=VAe−101:3t cos 1005t−43:2�ð Þu tð ÞV
We can find VA by substituting a value for υ tð Þ at a time we know. The easiest is at
t = 0, where υ 0ð Þ≈36 V.

υ 0ð Þ = 36 =VAe0 cos 0−43:2�ð Þ=VA0:729

VA = 49:4

Finally, our desired waveform is

υ tð Þ= 49:4 e−101:3t cos 1005t−43:2�ð Þu tð ÞV

D I S C U S S I O N : The function used to generate the waveform in Figure 5–33 was

υ tð Þ= 50 e−100t cos 1000t−45�ð Þu tð ÞV
The errors are all small, with the phase angle having the largest error of 4%. The
size of the errors is, of course, dependent on how accurately one can read the
display.

A p p l i c a t i o n E x e r c i s e 5 – 1 9

For the damped sinusoid waveform shown in Figure 5–34, determine an approximate
expression for υ tð Þ.
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A n s w e r: The generating waveform is υ tð Þ= 100 e−100t sin 2000tð Þu tð ÞV.

E X A M P L E 5 – 1 4

Characterize the composite waveform obtained as the difference of two expo-
nentials with the same amplitude.

SOLUTION:
The equation for this composite waveform is

υ tð Þ = VAe− t=T1
� �

u tð Þ− VA e− t=T2
� �

u tð Þ
= VA e− t=T1 −e− t=T2

� �
u tð Þ

For T1 >T2 the resulting waveform is illustrated in Figure 5–35 (plotted
for T1 = 2T2). For t < 0 the waveform is zero. At t = 0 the waveform is still zero,
since

υ 0ð Þ = VA e−0−e−0
� �

= VA 1−1ð Þ= 0

For t�T1 the waveform returns to zero because both exponentials decay to
zero. For 5T1 > t > 5T2 the second exponential is negligible and the waveform
essentially reduces to the first exponential. Conversely, for t�T1 the first expo-
nential is essentially constant, so the second exponential determines the early
time variation of the waveform. The waveform is called a double exponential,
since both exponential components make important contributions to the
waveform. ■
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FIGURE 5–35 The double
exponential waveform.
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E x e r c i s e 5–20
A double exponential waveform is given as

υ tð Þ= 10 e−1000t−e−2500t
� �

u tð ÞV
(a) What is the value of υ tð Þ at the maximum, and at what time does it occur?
(b) What is the time constant of the dominant (longer-lasting) exponential?
(c) Use MATLAB to plot the curve and verify the results of (a) using the cursor tool.

A n s w e r s:
(a) The maximum value is 3.257 V, and it occurs at t = 611 μs.
(b) The dominant exponential is the first one, since it has the longer time constant of 1 ms

versus 400 μs for the second exponential.
(c) See Figure 5–36.

E X A M P L E 5–1 5

Characterize the composite waveform defined by

υ tð Þ= 5−
10
π

sin 2π500tð Þ− 10
2π

sin 2π1000tð Þ− 10
3π

sin 2π1500tð ÞV

SOLUTION:
The waveform is the sum of a constant (dc) term and three sinusoids at different fre-
quencies. The first sinusoidal component is called the fundamental because it has the
lowest frequency. As a result the frequency f0 = 500 Hz is called the fundamental fre-
quency. The other sinusoidal terms are said to be harmonics because their frequen-
cies are integer multiples of f0. Specifically, the second sinusoidal term is called the
second harmonic 2f0 = 1000 Hzð Þ while the third term is the third harmonic
3f0 = 1500 Hzð Þ. Figure 5–37 shows a plot of this waveform. Note that the waveform
is periodic with a period equal to that of the fundamental component, namely,
T0 = 1=f0 = 2 ms. The decomposition of a periodic waveform into a sum of harmonic
sinusoids is called a Fourier series, a topic we will study in detail in Chapter 13. In fact,
the waveform in this example is the first four terms in the Fourier series for a 10-V
sawtooth wave of the type shown in Figure 5–2. ■
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E x e r c i s e 5–21
For the following composite waveforms, determine the maximum amplitude, the approxi-
mate duration, and the type of waveform represented:

(a) υ1 tð Þ= 25 sin1000t½ � u tð Þ−u t−10ð Þ½ �V
(b) υ2 tð Þ= 50 cos1000t½ � e−200t� �

u tð ÞV
(c) i3 tð Þ= 3000 te−1000t

� �
u tð ÞmA

(d) i4 tð Þ= 10e−5000 tj j A

A n s w e r s:
(a) 25 V, 10 s, gated sinusoid
(b) 50 V, 25 ms, decaying sinusoid
(c) 1:10 mA, 5 ms, damped ramp
(d) 10 A, 2 ms, double-sided exponential

E x e r c i s e 5–22
Characterize the following waveform defined by

υ tð Þ=
X∞
n=1

½bn sinð2πnfOtÞ�V

where bn = 4VA=πn, VA = 10 V, f0 = 1000 Hz, and n= 1,3,5,7,
9,11… byplotting thefirst sixn terms forahalf periodof the fun-
damental frequency fo. (Hint: Vary t from 0 to 500 μs in 50 μs
steps. Excel is useful here.) What waveform in Figure 5–2 does
this function best resemble?

A n s w e r s: Aplot using Excel of the odd terms 1 through 11 is
shown in Figure 5–38. The plot resembles a half-cycle of a
1000 Hz square wave.

5–6 W A V E F O R M P A R T I A L D E S C R I P T O R S

An equation or graph defines a waveform for all time. The value of a waveform v tð Þ
or i tð Þ at time t is called the instantaneous value of the waveform. If one were
to replace t with a particular time and evaluate the equation, one would obtain
the value of the waveform for that particular or instant of time. We often use para-
meters called partial descriptors that characterize important features of a waveform
but do not give a complete description. These partial descriptors fall into two cate-
gories: (1) those that describe temporal features and (2) those that describe ampli-
tude features.

T E M P O R A L D E S C R I P T O R S

Temporal descriptors identify waveform attributes relative to the time axis. For
example, waveforms that repeat themselves at fixed time intervals are said to be peri-
odic. Stated formally,

A signal υ tð Þ is periodic if υ t +T0ð Þ= υ tð Þ for all t, where the period T0 is the smal-
lest value that meets this condition. Signals that are not periodic are called
aperiodic.

The fact that a waveform is periodic provides important information about the sig-
nal but does not specify all of its characteristics. Thus, the fact that a signal is periodic
is itself a partial description, as is the value of the period. The eternal sinewave is the
premier example of a periodic signal. The square wave and triangular wave in
Figure 5–2 are also periodic. Examples of aperiodic waveforms are the step function,
exponential, and damped sine.
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Waveforms that are identically zero prior to some specified time are said to be
causal. Stated formally,

A signal υ tð Þ is causal if there exists a value of T such that υ tð Þ= 0 for all t <T;
otherwise it is noncausal.

It is usually assumed that a causal signal is zero for t < 0, since we can always use
time shifting to make the starting point of a waveform at t = 0. Examples of causal
waveforms are the step function, exponential, and damped sine. The eternal sine-
wave or a constant dc signal are, of course, noncausal.

Causal waveforms play a central role in circuit analysis.When the input driving force
x tð Þ is causal, the circuit response y tð Þ must also be causal. That is, a physically real-
izable circuit cannot anticipate and respond to an input before it is applied. Causality
is an important temporal feature, but only a partial description of the waveform.

A M P L I T U D E D E S C R I P T O R S

Amplitude descriptors are positive scalars that describe signal strength. Generally, a
waveform varies between two extreme values denoted asVMAX andVMIN. The peak-
to-peak value Vpp

� �
describes the total excursion of υ tð Þ and is defined as

Vpp =VMAX−VMIN (5–28)

Under this definitionVpp is always positive even ifVMAX andVMIN are both negative.
The peak value Vp

� �
is the maximum of the absolute value of the waveform. That is,

Vp =MAX VMAXj j, VMINj jf g (5–29)

The peak value is a positive number that indicates the maximum absolute excursion
of the waveform from zero. Figure 5–39 shows examples of these two amplitude
descriptors.

The peak and peak-to-peak values describe waveform variation using the extreme
values. The average value smooths things out to reveal the underlying waveform base-
line. Average value is the area under the waveform over some period of timeT, divided
by that time period. Mathematically, we define average value Vavg

� �
over the time

interval T as

Vavg =
1
T

Z t +T

t
υ xð Þdx (5–30)

For periodic signals the period T0 is used as the averaging interval T.
For some periodic waveforms the integral inEq. (5–30) can be estimated graphically.

The net area under the waveform is the area above the time axis minus the area below
the time axis. For example, the two waveforms in Figure 5–39 obviously have nonzero
average values. The waveform in Figure 5–39(a) has a negative average value because
the negative area below the time axis more than cancels the area above the axis. Sim-
ilarly, the waveform in Figure 5–39(b) clearly has a positive average value.
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The average value indicates whether the waveform contains a constant, non-time-
varying component. The average value is also called the dc component because dc
signals are constant for all t. On the other hand, the ac components have zero average
value and are periodic. For example, the waveform in Example 5–15

v tð Þ= 5−
10
π

sin 2π500tð Þ− 10
2π

sin 2π1000tð Þ− 10
3π

sin 2π1500tð ÞV
has a 5-V average value due to its dc component. The three sinusoids are ac compo-
nents because they are periodic and have zero average value. Sinusoids have zero
average value because over any given cycle the positive area above the time axis
is exactly canceled by the negative area below.4

E X A M P L E 5–1 6

Find the peak, peak-to-peak, and average values of the periodic input and output
waveforms in Figure 5–40 of a half-wave rectifier.

SOLUTION:
The input waveform is a sinusoid whose amplitude descriptors are

Vpp = 2VA Vp =VA Vavg = 0

The output waveform is obtained by clipping off the negative half-cycle of the input
sinusoid. The amplitude descriptors of the output waveform are

Vpp =Vp =VA

The output has a nonzero average value, since there is a net positive area under the
waveform. The upper limit in Eq. (5–30) can be taken as T0=2, since the waveform is
zero from T0=2 to T0.

Vavg =
1
T0

Z T0=2

0
VA sin 2πt=T0ð Þdt = VA

2π
cos 2πt=T0ð Þ





T0=2

0

=
VA

π
The signal processor produces an output with a dc value from
an input with no dc component. Rectifying circuits described
in electronics courses produce waveforms like the output in
Figure 5–40. ■

E x e r c i s e 5–23
For the pulse waveform in Figure 5–41 find VMAX, VMIN, Vp, Vpp,
and Vavg.

A n s w e r s: VMAX =VA, VMIN = −VA, Vp =VA, Vpp = 2VA, Vavg = 0 V

R O O T - M E A N - S Q U A R E V A L U E

The root-mean-square value Vrmsð Þ is a measure of the average power carried by the
signal. The instantaneous power delivered to a resistor R by a voltage υ tð Þ is

p tð Þ= 1
R

υ tð Þ½ �2 (5–31)
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4The dc value of a partial sinusoid is, of course, not zero. Its value depends on the fraction of the cycle
involved.
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The average power delivered to the resistor in time span T is defined as

Pavg =
1
T

Z t +T

t
p tð Þdt (5–32)

Combining Eqs. (5–31) and (5–32) yields

Pavg =
1
R

1
T

Z t +T

t
υ tð Þ½ �2dt

� �
(5–33)

The quantity inside the large brackets in Eq. (5–33) is the average value of the
square of the waveform. The units of the bracketed term are volts squared. The
square root of this term defines the amplitude partial descriptor Vrms.

Vrms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

Z t +T

t
υ tð Þ½ �2dt

s
(5–34)

The amplitude descriptor Vrms is called the root-mean-square (rms) value because it
is obtained by taking the square root of the average (mean) of the square of the wave-
form. For periodic signals the averaging interval is one cycle since such a waveform
repeats itself every T0 seconds.

We can express the average power delivered to a resistor in terms of Vrms as

Pavg =
1
R
V2

rms (5–35)

The equation for average power in terms of Vrms has the same form as the power
delivered by a dc signal. For this reason the rms value was originally called the effec-
tive value, although this term is no longer common. If the waveform amplitude is
doubled, its rms value is doubled, and the average power is quadrupled. Commercial
electrical power systems use transmission voltages in the range of several hundred
kilovolts (rms) to efficiently transmit power over long distances.

E X A M P L E 5–1 7

Find the average and rms values of the sinusoid and sawtoothwaveforms in Figure 5–42.

SOLUTION:
As noted previously, the sinusoid has an average value of zero. The sawtooth clearly
has a positive average value. By geometry, the net area under one cycle of the saw-
tooth waveform isVAT0=2, so its average value is 1=T0ð Þ VAT0=2ð Þ=VA=2. To obtain
the rms value of the sinusoid we apply Eq. (5–34) as
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FIGURE 5–42
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Vrms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAð Þ2
T0

Z T0

0
sin2 2πt=T0ð Þdt

s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAð Þ2
T0

t
2
−
sin 4πt=T0ð Þ

8π=T0

� �T0

0

s
=
VAffiffiffi
2

p

For the sawtooth waveform the rms value is found as:

Vrms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T0

Z T0

0
VAt=T0ð Þ2dt

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAð Þ2
T3
0

t3

3

� �T0

0

s
=
VAffiffiffi
3

p
■

E x e r c i s e 5–24
Find the peak, peak-to-peak, average, and rms values of the periodic
waveform in Figure 5–43.

A n s w e r s: Vp = 2VA;Vpp = 3VA;Vavg = VA
4 ;Vrms =

ffiffi
5

p
2 VA

E x e r c i s e 5–25
Classify each of the following signals as periodic or aperiodic and causal
or noncausal. Then calculate the average and rms values of the periodic
waveforms, and the peak and peak-to-peak values of the other
waveforms.

(a) υ1 tð Þ= 99 cos 3000t − 132 sin 3000t V
(b) υ2 tð Þ=34 sin 800πt½ � u tð Þ − u t − 0:03ð Þ½ �V
(c) i3 tð Þ= 120 u t +5ð Þ − u t − 5ð Þ½ �mA
(d) i4 tð Þ= 50A

A n s w e r s:
(a) Periodic, noncausal, Vavg = 0, and Vrms = 117 V
(b) Aperiodic, causal, Vp = 34 V, and Vpp = 68 V
(c) Aperiodic, causal, Vp =Vpp = 120mA
(d) Aperiodic, noncausal, Vp = 50A, and Vpp = 0

A P P L I C A T I O N E X A M P L E 5 – 1 8

The operation of a digital system is coordinated and controlled by
a periodic waveform called a clock. The clock waveform provides
a standard timing reference to maintain synchronization between
signal-processing results that become valid at different times dur-
ing the clock cycle. Because of differences in digital circuit delays,
there must be agreed-upon instants of time when circuit outputs
can be treated as valid. The clock defers further signal processing
until slower and faster outputs settle down when the clock signals
the start of the next signal-processing cycle.

Figure 5–44 shows an idealized clock waveform as a periodic
sequence of rectangular pulses. While we could easily write an
exact expression for the clock waveform, we are interested here
in discussing its partial descriptors. The first descriptor is the
period T0 or equivalently the clock frequency f0 = 1=T0. Clock
frequency is a common measure of signal-processing speed and
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can take values into the GHz range. The pulse duration T is the time interval in each
cycle when the pulse amplitude is high (not zero). In waveform terminology the ratio
of the time in the high state to the period, that is,T=T0, is called the duty cycle, usually
expressed as a percentage. The pulse edges are the transition points at which the
pulse changes states. There is a rising edge at the low-to-high transition and a falling
edge at the high-to-low transition.

The pulse edges define the agreed-upon time instants at which the circuit outputs
can be treated as valid inputs to other circuits. This means that circuit outputs must
settle down during the time period between successive edges. Some synchronous
operations are triggered by the rising edge and others by the falling edge. To provide
equal settling times forbothcases requiresequal timebetweenedges. Inotherwords, it
is desirable for the clockduty cycle to be 50%.As a result, the clockwaveform is essen-
tially a raised square wave whose dc offset equals one half of the peak-to-peak value.

The system clockC0 in Figure 5–44 is generated at some point in a circuit and then
distributed to other locations. The clock distribution network almost invariably intro-
duces delays, as illustrated byC1 andC2 in Figure 5–44.Clock delay (tD) is defined as
the time difference between a clock edge at a given location and the corresponding
edge in the system clock at the point where it was generated. Delay is not neces-
sarily a bad thing unless unequal delays cause the edges to be skewed, as indicated
by the offset between C1 and C2 in Figure 5–44. When delays are significantly dif-
ferent, there is uncertainty as to instants of time at which further signal processing can
safely proceed. This delay dispersion is called clock skew (tS), defined as the time
difference between a clock edge at a given location and the corresponding edge at
another location. Controlling clock skew is an important consideration in the design
of the clock distribution network in high-speed very large-scale integrated (VLSI)
circuits.

Thus, partial descriptors of clock waveforms include frequency, duty cycle, edges,
delay, and skew. The coming chapters treat dynamic circuits that modify input wave-
forms to produce outputs with different partial descriptors. In particular, dynamic cir-
cuit elements cause changes in a clock waveform, especially the partial descriptors of
edges, delay, and skew.

A P P L I C A T I O N E X A M P L E 5 – 1 9

An electrocardiogram (ECG) is a valuable diagnostic tool used in cardiovascular
medicine. The ECG is based on the fact that the heart emits measurable bioelectric
signals that can be recorded to evaluate the functioning of the heart as a mechanical
pump. These signals were first observed in the late 19th century, and subsequent

signal processing developments have led to the advanced tech-
nology of present-day ECG equipment.

The bioelectric signals of the heart muscle are measured
and recorded through the placement of skin electrodes at var-
ious sites on the surface of the body. The site selection as well
as discussion of the functions of the cardiac muscle are beyond
the scope of this example. Rather, our purpose is to introduce
some of the useful partial descriptors of ECG waveforms.

In bioelectric terminology the normal ECG waveform
in Figure 5–45 is composed of a P wave, a QRS complex,
and a T wave. This sequence of pulses depicts the electrical
activity that stimulates the correct functioning of the cardiac
muscle. The flat baseline between successive events is called
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FIGURE 5–45
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isoelectric, which means there is no bioelectric activity and the heart muscle returns
to a resting state. The body’s natural pacemaker produces a nominally periodic wave-
form under the resting conditions used with ECG tests.

Partial waveform descriptors used to analyze ECG waveforms include:

1. The heart rate 1=T0ð Þ, which is normally between 60 and 100 beats per
minute.

2. ThePR interval (normally 0.12–0.20 seconds), which is the time between the
start of the P wave and the start of the QRS complex.

3. The QRS interval (normally 0.06–0.10 seconds), which is the time between
onset and end of the QRS complex.

4. The ST segment is the signal level between the end of the QRS complex
and the start of the T wave. This level should be the same as the isoelectric
baseline between successive pulses.

Departures fromthesenormal conditions serveasdiagnostic tools in cardiovascular
medicine. Some of the abnormal waveform features of concern include an irregular
heart rate, a missing P wave, a prolonged QRS interval, or an elevated ST segment.
Departures from nominal conditions allow the trained clinician to diagnose the situ-
ation, especially when abnormal features occur in certain combinations. However,
it is not our purpose to discuss the medical interpretation of ECGwaveform abnorm-
alities. Rather, this example illustrates that bioelectric signals carry information and
that the information is decoded by analyzing the signal’s partial waveformdescriptors.

S I G N A L S A N D S O F T W A R E T O O L S

The value of software tools is readily apparent when circuits are tested using a variety
of signals. The Multisim software will allow us to rapidly simulate circuit behavior
under a variety of excitations such as steps, exponentials, sinusoids, and composite
signals. Web Appendix D discusses how to use the various signal sources available
in Multisim. In addition, the web appendix examines the calculating, plotting, and
integration functions available inMATLAB to create professional graphs and to effi-
ciently calculate partial waveform descriptors. In the web appendix there are exam-
ples, exercises, sample problems, andMATLAB software routines are provided that
you can use to help solve problems found in the text.

S U M M A R Y

• Awaveform is an equation or graph that describes a volt-
age or current as a function of time.Most signals of inter-
est in electrical engineering can be derived using three
basic waveforms: the step, exponential, and sinusoid.

• The step function is defined by its amplitude and time-
shift parameters. The impulse, step, and ramp are
called singularity functions and are often used as test
inputs for circuit analysis purposes.

• The exponential waveform is defined by its amplitude,
time constant, and time-shift parameter. For practical
purposes, the duration of the exponential waveform is
five time constants.

• A sinusoid can be defined in terms of three types
of parameters: amplitude (either VA or the Fourier
coefficients a and b), time shift (either TS or the phase
angle ϕ), and time/frequency (either T0 or f0 or ω0).

• Many composite waveforms can be derived using the
three basic waveforms. Some examples are the
impulse, ramp, damped ramp, damped sinusoid, expo-
nential rise, and double exponential.

• Partial descriptors are used to classify or describe impor-
tant signal attributes. Two important temporal attributes
are periodicity and causality. Periodic waveforms repeat
themselves every T0 seconds. Causal signals are zero for
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t < 0. Some important amplitude descriptors are peak
value Vp, peak-to-peak value Vpp, average value Vavg,
and root-mean-square value Vrms.

• Software programs like Multisim and MATLAB can
generate appropriate signals for use in simulation,

analysis, and computation of circuit responses.
MATLAB can perform numeric and symbolic integra-
tion to assist with signal analysis.

P R O B L E M S

O B J E C T I V E 5 – 1 B A S I C W A V E F O R M S ( S E C T S . 5 – 2 ,
5 – 3 , 5 – 4 )
Given an equation, graph, or word description of a linear
combination of step, ramp, exponential, or sinusoid waveforms
(a) Construct an alternative description of the waveform.
(b) Find the parameters or properties of the waveform.
(c) Construct new waveforms by integrating or differentiating

the given waveform.
(d) Generate the basic waveforms in MATLAB or Multisim

and use them appropriately to solve problems or simulate
circuits. (See Web Appendix D.)

See Examples 5–1 to 5–8 and Exercises 5–1 to 5–14.

5–1 Sketch the following waveforms:

(a) v1 tð Þ=5u tð Þ − 5u t − 1ð ÞV
(b) v2 tð Þ= 3u t + 2ð Þ − 2u t − 2ð ÞV
(c) i3 tð Þ= −3u t + 3ð Þ+ 6u tð Þ−3u t−3ð ÞmA
(d) i4 tð Þ=2u − tð ÞA

5–2 Using appropriate step functions, write an expression for
each waveform in Figure P5–2.

–2
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–30

v(t)(V)

t(s)t(s)

i(t)(mA)

v(t)(V)

t(μs)

2

–120

–2

–9 –6 –3

–10

3 6

10

(a) (b)

(c)

9

120

6

FIGURE P5–2

5–3 Using appropriate step functions, write an expression for
each waveform in Figure P5–3.

t(s)

t(μs)

v(t)(V)

v(t)(V)

1

5

–3

–2 2

(a)

(b)

FIGURE P5–3

5–4 Sketch the following waveforms:
(a) v1 tð Þ=5 − u tð ÞV
(b) i2 tð Þ= −2u t + 0:002ð Þ + 3u t + 0:001ð Þ − u tð ÞmA
(c) v3 tð Þ= t u t + 1ð Þ − u t − 1ð Þ½ �V

5–5 Sketch the following waveforms:
(a) v1 tð Þ= r t + 2ð Þ − r t − 2ð ÞV
(b) v2 tð Þ= 4 + r t + 1ð Þ − 2r t − 1ð Þ + r t − 3ð ÞV
(c) v3 tð Þ= d v1 tð Þ

dt

(d) v4 tð Þ= d2 v2 tð Þ
dt2

5–6 Express each of the following signals as a sum of singularity
functions.

(a) v1 tð Þ=
2 t < 1

4 1 ≤ t < 2

0 2 ≤ t

8><
>:

(b) v2 tð Þ=

0 t < 0

−6t 0 ≤ t < 2

−18 + 2t 2 ≤ t < 6

0 6 ≤ t

8>>><
>>>:

5–7 Express the waveform in Figure P5–7 as a sum of step
functions.
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5–8 Express each of the waveforms in Figure P5–8 as a sum of
singularity functions.
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FIGURE P5–8

5–9 Sketch the waveform described by the following:

v tð Þ= 1
s2
t +

1
s

� �
u t + εð Þ−u tð Þ½ �+ −

1
s2
t +

1
s

� �
u tð Þ−u t−εð Þ½ �V

5–10 Sketch the waveform described by the following:
(a) v tð Þ= 10δ t + 10ð Þ−10δ tð Þ+ 10δ t−10ð ÞV
(b) v tð Þ=

X10

k=1

1
k
δ t−kð ÞV

5–11 Using its pulse voltage source, generate on Multisim a
waveform v tð Þ that starts at t = 2ms and consists of a pulse
train of 1-V pulses with a 1-ms pulse width that repeat
every 4 ms.

5–12 Sketch the following exponential waveforms. Find the
amplitude and time constant of each waveform.
(a) v1 tð Þ= 50 e−100t

� �
u tð ÞV

(b) v2 tð Þ= 100 e− t=50
� �

u t − 2ð ÞV
(c) v3 tð Þ= 5 e− t − 5ð Þ� �

u t − 5ð ÞV
(d) v4 tð Þ= −10 e−10,000t

� �
u tð ÞV

5–13 Write an expression for the waveform in Figure P5–13.
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5–14 Write an expression for the waveform in Figure P5–14.
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5–15 Write expressions for the derivative t > 0ð Þ and
integral (from 0 to t) of the exponential waveform
i tð Þ= 100 e−2500t

� �
u tð ÞmA.

5–16 Anexponential waveform decays to 50%of its initial t = 0ð Þ
amplitude in 20 μs. Find the time constant of the waveform.

5–17 Write an expression for the waveform in Figure P5–17.

10

3.68

0 10 20 30 40 50 60

v(t) (V)

t (ms)

FIGURE P5–17
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5–18 The amplitude of an exponential waveform is 12 V at t = 0
and 7 V at t = 3ms. What is its time constant?

5–19 Construct an exponential waveform that fits entirely
within the nonshaded region in Figure P5–19.

0 0.2
0

0.5
0.6

1.0

t (s)

v(t) (V)

FIGURE P5–19

5–20 Construct an exponential waveform that fits entirely
within the nonshaded region in Figure P5–20.

v(t)(V)

20
18

12

4

01 5
0

2010 12
t (ms)

FIGURE P5–20

5–21 By direct substitution, show that the exponential function
v tð Þ=VAe−αt satisfies the following first-order differential
equation.

dv tð Þ
dt

+ αv tð Þ=0

5–22 Find the period, frequency, amplitude, time shift, and
phase angle of the following sinusoids.
(a) v1 tð Þ=240 cos 120πtð Þ − 240 sin 120πtð ÞV
(b) v2 tð Þ= −30 cos 50 kπtð Þ + 40 sin 50 kπtð ÞV

5–23 (a) Plot the waveform of each sinusoid in Problem 5–22
by hand.

(b) Use Multisim to produce the waveform in Problem
5–22(a).

(c) Use MATLAB to produce the waveform in Problem
5–22(b).

5–24 Write an expression for the sinusoid in Figure P5–24.
What are the phase angle and time shift of the waveform?

v(t) (V)

5 ms

5

0

–5

t (ms)

FIGURE P5–24

5–25 Write an expression for the sinusoid in Figure P5–25.
What are the phase angle and time shift of the waveform?

v(t) (V)

t (μs)

3 μs

2.40

3

–3

FIGURE P5–25

5–26 Write an expression for the sinusoid in Figure P5–26.
What are the phase angle and time shift of the waveform?
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5–27 Find the Fourier coefficients, cyclic frequency, and radian
frequency of the following sinusoids:
(a) v tð Þ= 24 cos 200πt + 36:9�ð ÞV
(b) i tð Þ= 240 cos 120πt − 90�ð ÞA

5–28 Use MATLAB or Excel to display two cycles of the fol-
lowing waveform:

268 C H A P T E R 5 SIGNAL WAVEFORMS



vS tð Þ= 19:1 sin 1000πt +6:37 sin 3000πt + 3:82 sin 5000πt +2:73
sin 7000πt + 2:1 sin 9000πt V

What are the period and amplitude of the resulting waveform?
What common waveform is this waveform approximating?

5–29 For the following sinusoid: v tð Þ=10 cos 2π200t + 60�ð ÞV
(a) Find the Fourier coefficients, cyclic frequency, and radian

frequency.
(b) Plot the waveform by hand.
(c) Use MATLAB to produce the waveform.
(d) Use Multisim to produce the waveform.

O B J E C T I V E 5 – 2 C O M P O S I T E W A V E F O R M S
( S E C T . 5 – 5 )
Given an equation, graph, or word description of a composite
waveform
(a) Construct an alternative description of the waveform.
(b) Find the parameters or properties of the waveform.
(c) Generate the composite waveforms in MATLAB or

Multisim and use them appropriately to solve problems
or simulate circuits. (See Web Appendix D.)

See Examples 5–9 to 5–15 and Exercises 5–15 to 5–22.

5–30 Consider the following composite waveforms.
(a) v1 tð Þ= −5 1 − e−100,000t

� �
u tð ÞV

(b) v2 tð Þ=15 e−5t − e−10t
� �

u tð ÞV
Sketch each on paper and then generate each using MATLAB
and compare the results.

5–31 Consider the following composite waveforms.
(a) i1 tð Þ= 10 + 5 sin 500πtð Þ u tð ÞmA
(b) i2 tð Þ= 50 e−1000t + cos 2000πtð Þ� �

u tð ÞmA
Sketch each by hand and then generate each using MATLAB
and compare the results.

5–32 Sketch the damped ramp v tð Þ=2te−30tu tð ÞV.
(a) Find the maximum value of the waveform and the time at

which it occurs.
(b) Plot the same waveform using MATLAB and repeat (a)
(c) Compare the results.

5–33 The value of the waveform v tð Þ= VA − VBe−αtð Þ u tð Þ is 5 V
at t = 0, 8 V at t = 5ms, and approaches 12 V as t ! ∞ .
(a) Find VA, VB, and α, and then sketch the waveform.
(b) Validate your answers by plotting your result in

MATLAB.

5–34 Write an expression for the composite sinusoidal wave-
form in Figure P5–34.

v(t) (V)

t (ms)

15 ms

0

–10

4

FIGURE P5–34

5–35 Write an expression for the composite sinusoidal wave-
form in Figure P5–35.
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FIGURE P5–35

5–36 A waveform of the form v tð Þ= 5 − 10 cos βt − 45�ð Þ peri-
odically reaches a minimum every 10ms.
(a) Find the maximum andminimum values of v tð Þ, the value

of β, and then sketch the waveform.
(b) Generate the waveform in Multisim.
(c) Generate the waveform in MATLAB.

5–37 Write an expression for the composite exponential wave-
form in Figure P5–37.

v(t) (V)

40
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0
0

2
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FIGURE P5–37

5–38 Write an expression for the composite exponential wave-
form in Figure P5–38.
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5–39 Write an expression for the composite exponential wave-
form in Figure P5–39. Then use MATLAB to construct the
same waveform and compare the results.
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5–40 For the double exponential v tð Þ= 10 e−200t−e−2000t
� �

u tð ÞV
(a) Find the maximum value of the waveform and the time at

which it occurs.
(b) Determine the dominant exponential.
(c) Generate the waveform in MATLAB and validate the

result.

5–41 For the double exponential v tð Þ= 15 e−αt−e−500t
� �

u tð ÞV
shown in Figure P5–41, find α.
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5–42 Write an expression for the damped sine waveform in
Figure P5–42. Note: The exponential envelope was added
to help in the determination of the damping exponential.
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5–43 A circuit response is shown in Figure P5–43. Determine
an approximate expression for the waveform.
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5–44 A circuit response is shown in Figure P5–44 that occurs
when one exponential stops and another begins where the
prior one left off. Determine an approximate expression
for the waveform.
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5–45 Sketch or use MATLAB or Excel to graph three or four
cycles of a damped sinusoid with a damping coefficient of
1 ms, a v 0ð Þ amplitude of 15 V, a frequency of 1 kHz, and a
phase shift of 0�.

O B J E C T I V E 5 – 3 W A V E F O R M P A R T I A L D E S C R I P T O R S
( S E C T . 5 – 6 )
Given a complete description of a basic or composite waveform
(a) Classify the waveform as periodic or aperiodic and causal or

noncausal.
(b) Find the applicable partial waveform descriptors.
(c) Use appropriate software tools to calculate applicable par-

tial waveform descriptors.
See Examples 5–16 to 5–1 9 and Exercises 5–23 to 5–25.

5–46 Find VMAX, VMIN, Vp, Vpp, Vavg, andVrms for each of the
following sinusoids.
(a) v1 tð Þ= 84:84 cos 377tð Þ + 84:84 sin 377tð ÞV
(b) v2 tð Þ= −30 cos 1000πtð Þ − 40 sin 1000πtð ÞV
(c) v3 tð Þ=10 + 10 cos 5000πt + 45�ð ÞV

5–47 An exponential waveform given by v tð Þ=25 e−5000t u tð ÞV
repeats every five time constants.
(a) Find Vp, Vpp, VMAX, andVMIN.
(b) Find Vavg and Vrms.
(c) Find the period T0 of the waveform.

5–48 Find VMAX, VMIN, Vp, Vpp, Vavg, Vrms, and T0 for the peri-
odic waveform in Figure P5–48 and determine if the wave-
form is causal or noncausal.
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FIGURE P5–48

5–49 Find VMAX, VMIN, Vp, Vpp, Vavg, Vrms, and T0 for the peri-
odic waveform in Figure P5–49.

v(t) (mV)

t (ms)

T0

10

5

0

–5

0 1 2 3 4 5 6

……

FIGURE P5–49

5–50 Figure P5–50 is the result of the sum of a fundamental and
one of its harmonics (an integer multiple of the fundamental).
Find VMAX, VMIN, Vp, Vpp, Vavg, Vrms, and T0 for the
waveform.
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5–51 Figure P5–51 displays the response of a circuit to a square
wave signal. The response is a periodic sequence of exponen-
tial waveforms. Each exponential has a time constant of
1.6 ms.
(a) Find VMAX, VMIN, Vp, Vpp, and T0 for the waveform.
(b) Use MATLAB to find Vavg and Vrms.
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5–52 Find VMAX, VMIN, Vavg, and Vrms of the offset sine wave
v tð Þ=V0 + VA cos 2πt=T0ð Þ V in terms of V0 and VA.

5–53 Find VMAX, VMIN, Vavg, and Vrms of the full-wave rectified
sine wave v tð Þ=VA sin 2πt=T0ð ÞV in terms ofVA. Is the wave-
form causal or non-causal?

5–54 The first cycle t > 0ð Þ of a periodic waveform with
T0 = 500ms can be expressed as

v tð Þ= 2u tð Þ−3u t−0:2ð Þ+ 2u t−0:4ð ÞV
Sketch the waveform and find VMAX, VMIN, Vp, Vpp, and
Vavg.
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5–55 A periodic waveform can be expressed as
v tð Þ= 20+ 16 cos 500πt − 8 sin 1000πt + 4 cos 2000πt V
(a) What is the period of the waveform?What is the average

value of the waveform?What is the amplitude of the fun-
damental (lowest frequency) component? What is the
highest frequency in the waveform?

(b) Simulate the waveform in MATLAB or Excel and find
VMAX, VMIN, Vp, Vpp, and Vavg.

5–56 UsingMultisim, create the following waveforms and state if
eachwaveformiscausalornon-causal,periodicornon-periodic:
(a) A step voltage switching from 0 to 5 V at t = 100ms.
(b) A triangular wave that has amplitude of 75 V and a

period of 10 ms.
(c) A cosine with amplitude of 100 V, radian frequency of

2000π rad=s, and a phase shift of −45�.
(d) A positive sawtooth wave with amplitude of 5V and a

period of 100 ms.
(e) A charging exponential starting at −10 V and growing to

+ 5 V with a TC of 1 s.

I N T E G R A T I N G P R O B L E M S

5–57 Gated Function

Some radars use a modulated pulse to determine range and
target information. A gated modulated pulse is shown in
Figure P5–57. Determine an expression for the waveform.
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5–58 Exponential Signal Descriptors

Several of the time descriptors used in digital data commu-
nication systems are based on exponential signals. In this
problem, we explore three of these descriptors.

(a) The time constant of fall is defined as the time required
for a pulse to fall from 70.7% to 26.0% of its maximum
value. Assuming that the pulse decreases as e− t=TC , find
the relationship between the time constant of fall and
the time constant of the exponential decay.

(b) The rise timeofapulse is the timerequiredforapulse torise
from10%to90%of itsmaximumvalue.Assuming that the

pulse increases as 1−e− t=TC , find the relationship between
rise time and the time constant of the exponential rise.

(c) The leading-edge pulse time is defined as the time at which a
pulse rises to50%of itsmaximumvalue.Assuming thepulse
increasesas1−e− t=TC , find therelationshipbetweenleading-
edgepulse timeandthe timeconstantof theexponential rise.

5–59 Defibrillation Waveforms

Ventricular fibrillation is a life-threatening loss of synchronous
activity in the heart. To restore normal activity, a defibrillator
delivers a brief but intense pulse of electrical current through
the patient’s chest. The pulse waveform is of interest because
different waveforms may lead to different outcomes.
Figure P5–59 show a waveform known as a biphasic truncated
exponential used in implantable defibrillators. The waveform
is an exponential current whose direction of flow reverses after
4 ms and terminates after 8 ms. Write an expression for this
waveform using the basic signals discussed in this chapter.
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FIGURE P5–59

5–60 Digital Clock Generator

Timingdigital circuits is vital to theoperationofanydigital device.
Using an ideal OP AMP (running open-loop, i.e., without feed-
back)andappropriate resistors, designaway toconvert a sinusoid
into a square wave that varies from −15 to 15 V with a period of
1 ms. The only non-sinusoidal supply available is VCC = ±15 V.

5–61 Partial Sinewave Descriptors

Figure P5–61 shows a gated 60-Hz sine wave. For the portion
shown, find Vp, Vpp, VMAX, VMIN, Vavg, and Vrms.
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5–62 Undesired Oscillations

A test is being run in a wind tunnel when a sensor on the trailing
edge of a wing produces the response shown in Figure P5–62.
When the sensor output reached 1 V, the test was terminated.
You are asked to analyze the results. The oscillation could be
tolerated if it never reaches 20 V because the onboard computer
can mitigate it. However, the response time for the computer to
actuate the compensating aileron is 80 ms. Will the compensa-
tion occur in time?
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5–63 Voltmeter Calibration

Most dc voltmeters measure the average value of the applied
signal. A dc meter that measures the average value can be
adapted to indicate the rms value of an ac signal. The input
is passed through a rectifier circuit. The rectifier output is
the absolute value of the input and is applied to a dc meter
whose deflection is proportional to the average value of the
rectified signal. The meter scale is calibrated to indicate the
rms value of the input signal. A calibration factor is needed
to convert the average absolute value into the rms value of
the ac signal. What is the required calibration factor for a
sinusoid? Would the same calibration factor apply to a square
wave?

5–64 MATLAB Signal Analyzer

Create a MATLAB function to analyze signals represented
numerically. The function should have the following two inputs:
(1) a vector containing equally spaced samples of the signal of
interest and (2) the time step used to sample the signal con-
tained in the vector. The function should display the following
descriptors of the signal: VMAX, VMIN, Vp, Vpp, Vavg, and Vrms.
The function should also plot the waveform assuming the signal
starts at t = 0.
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C H A P T E R 6 CAPACITANCE AND
INDUCTANCE

From the foregoing facts, it appears that a current of electricity is produced, for an instant, in a helix of copper wire surrounding a piece of
soft iron whenever magnetism is induced in the iron; also that an instantaneous current in one or the other direction accompanies every
change in the magnetic intensity of the iron.

Joseph Henry, 1831,
American Physicist

Some History Behind This Chapter
Joseph Henry (1797–1878) and the British physicist Michael
Faraday (1791–1867) independently discovered magnetic
induction almost simultaneously. The quotation above is
Henry’s summary of the experiments leading to his discovery
of magnetic induction. Although Henry and Faraday used
similar apparatus and observed almost the same results,
Henry was the first to fully recognize the importance of the
discovery. The units of circuit inductance (henrys) honors
Henry, while the mathematical generalization of magnetic
induction is called Faraday’s law.

Why This Chapter Is Important Today
Electric circuits owe much of their utility to devices that store
energy, even if only for a short period of time. In this chapter
you will be introduced to two new circuit elements: the
capacitor and the inductor. These energy-storing elements
lead to circuits that perform various mathematical operations
like integration and differentiation. The energy-storing capa-
bility makes possible the signal-processing operations in
modern communications systems and audio equipment.

Chapter Sections
6–1 The Capacitor
6–2 The Inductor
6–3 Dynamic OP AMP Circuits
6–4 Equivalent Capacitance and Inductance

Chapter Learning Objectives
6-1 Capacitor and Inductor Responses (Sects. 6–1, 6–2)
(a) Given the current through a capacitor or an induc-

tor, find the voltage across the element.
(b) Given the voltage across a capacitor or an inductor,

find the current through the element.
(c) Find the power and energy associated with a capac-

itor or inductor.

6-2 Dynamic OP AMP Circuits (Sect. 6–3)
(a) Given an OP AMP integrator or differentiator,

determine the output for specified inputs.
(b) Given an RC circuit containing OP AMPs, find the

input–output relationship and construct a block
diagram.

(c) Design an RC circuit containing OP AMPs that
implements a given input–output relationship.

6-3 Equivalent Inductance and Capacitance (Sect. 6–4)
(a) Derive equivalence properties of inductors and

capacitors or use equivalence properties to simplify
LC circuits.

(b) Given an RLC circuit with dc inputs, find the dc cur-
rents and voltage responses.

274



6–1 T H E C A P A C I T O R
A capacitor is a dynamic element involving the time variation of an electric field pro-
duced by a voltage. Figure 6–1(a) shows the parallel plate capacitor, which is the sim-
plest physical form of a capacitive device. Figure 6–1 also shows two alternative
circuit symbols. Photos of actual devices are shown in Figure 6–2.

Electrostatics shows that a uniform electric field E tð Þ exists between the metal
plates in Figure 6–1(a) when a voltage exists across the capacitor.1 The electric field
produces charge separation with equal and opposite charges appearing on the capac-
itor plates.When the separation d is small compared with the dimension of the plates,
the electric field between the plates is

E tð Þ= q tð Þ
εA

(6–1)

where ε is the permittivity of the dielectric, A is the area of the plates, and q tð Þ is the
magnitude of the electric charge on each plate. The relationship between the electric
field and the voltage across the capacitor υC tð Þ is given by

E tð Þ= υC tð Þ
d

(6–2)

Substituting Eq. (6–2) into Eq. (6–1) and solving for the charge q tð Þ yields

q tð Þ= εA
d

� �
υC tð Þ (6–3)

The proportionality constant inside the brackets in this equation is the capacitance C
of the capacitor. That is, by definition,

C =
εA
d

(6–4)

The unit of capacitance is the farad (F), a term that honors the British physicist
Michael Faraday. Values of capacitance range from a few pF 10−12 F

� �
in semicon-

ductor devices to tens of mF 10−3 F
� �

in industrial capacitor banks. Note: Capacitor
manufacturers typically do not use nanofarads and prefer to rate their capacitors as
fractions of microfarads or multiples of picofarads. Some standard values for com-
mercially available capacitors are found on the inside rear cover.

Using Eq. (6–4), the defining relationship for the capacitor becomes

q tð Þ=CυC tð Þ (6–5)

Figure 6–3(a) graphically displays the element constraint in Eq. (6–5). The graph
points out that the capacitor is a linear element since the defining relationship
between voltage and charge is a straight line through the origin.

I – V R E L A T I O N S H I P

To express the element constraint in terms of voltage and current, we differentiate
Eq. (6–5) with respect to time t as follows

dq tð Þ
dt

=
d CυC tð Þ½ �

dt

+q –q

A

d

Dielectric

Metal plates

iC(t) iC(t)

vC(t)
+

–

(a)

(b)

ε

ℰ

FIGURE 6–1 The capacitor:
(a) Parallel plate device.
(b) Circuit symbols.

(a)

(b)

(c)

C
o

ur
te

sy
 o

f
E

-s
p

ea
ke

rs
.c

o
m

b
re

ck
en

i/
iS

to
ck

C
o

ur
te

sy
 o

f 
V

ik
in

g
Te

ch
no

lo
g

ie
s,

 L
TD

FIGURE 6–2 Photos of real
capacitors: (a) Ceramic.
(b) Electrolytic. (c) Air-tunable.
(d) Film capacitors. (e) High-
voltage. (f) Trim capacitors.

1An electric field is a vector quantity. In Figure 6–1(a) the field is confined to the space between the
two plates and is perpendicular to the plates.
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Since C is constant and iC tð Þ is the time derivative of q tð Þ, we obtain a capacitor i−υ
relationship in the form

iC tð Þ=C
dυC tð Þ
dt

(6–6)

The relationship assumes that the reference marks for the current and voltage follow
the passive sign convention shown in Figure 6–3(b).

The time derivative in Eq. (6–6) means the current is zero when the voltage across
the capacitor is constant, and vice versa. In other words, the capacitor acts like an
open circuit iC = 0ð Þ when dc excitations are applied. The capacitor is a dynamic ele-
ment because the current is zero unless the voltage is changing. However, a discon-
tinuous change in voltage would require an infinite current, which is physically
impossible. Therefore, the capacitor voltage must be a continuous function of time.

Equation (6–6) relates the capacitor current to the rate of change of the capacitor
voltage. To express the voltage in terms of the current, we multiply both sides of
Eq. (6–6) by dt, solve for the differential dυC, and integrate:Z

dυC =
1
C

Z
iC tð Þdt

Selecting the integration limits requires some discussion. We assume that at some
time t0 the voltage across the capacitor υC t0ð Þ is known and we want to determine
the voltage at some later time t > t0. Therefore, the integration limits areZ υC tð Þ

υC t0ð Þ
dυC =

1
C

Z t

t0
iC xð Þdx

where x is a dummy integration variable. Integrating the left side of this equation and
solving for υC tð Þ yields

υC tð Þ= υC t0ð Þ+ 1
C

Z t

t0

iC xð Þdx (6–7)

In practice, the time t0 is established by a physical event such as closing a switch or the
start of a particular clock pulse. Nothing is lost in the integration in Eq. (6–7) if we
arbitrarily define t0 to be zero. Using t0 = 0 in Eq. (6–7) yields

υC tð Þ= υC 0ð Þ+ 1
C

Z t

0
iC xð Þdx (6–8)

Equation (6–8) is the integral form of the capacitor i−υ constraint. Both the integral
form and the derivative form inEq. (6–6) assume that the referencemarks for current
and voltage follow the passive sign convention in Figure 6–3(b).

P O W E R A N D E N E R G Y

With the passive sign convention the capacitor power is

pC tð Þ= iC tð ÞυC tð Þ (6–9)

Using Eq. (6–6) to eliminate iC tð Þ from Eq. (6–9) yields the capacitor power in
the form

pC tð Þ=CυC tð ÞdυC tð Þ
dt

=
d
dt

1
2
Cυ2C tð Þ

� �
(6–10)

This equation shows that the power can be either positive or negative because the
capacitor voltage and its time rate of change can have opposite signs.With the passive
sign convention, a positive sign means the element absorbs power, while a negative
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FIGURE 6–2 (Continued)

vC(t)

q(t)

C

1

(a)

iC(t) C

vC(t)
+ –

(b)

FIGURE 6–3 (a) Graph of the
defining relationship of a linear
capacitor. (b) Circuit symbol
showing capacitor voltage and
current.
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sign means the element delivers power. The ability to deliver power implies that the
capacitor can store energy.

To determine the stored energy, we note that the expression for power in
Eq. (6–10) is a perfect derivative. Since power is the time rate of change of energy,
the quantity inside the brackets must be the energy stored in the capacitor. Math-
ematically, we can infer from Eq. (6–10) that the energy at time t is

wC tð Þ= 1
2
Cυ2C tð Þ+ constant

The constant in this equation is the value of stored energy at some instant t when
υC tð Þ= 0. At such an instant the electric field is zero; hence the stored energy is also
zero. As a result, the constant is zero and we write the capacitor energy as

wC tð Þ= 1
2
Cυ2C tð Þ (6–11)

The stored energy is never negative, since it is proportional to the square of the volt-
age. The capacitor absorbs power from the circuit when storing energy and returns
previously stored energy when delivering power to the circuit.

The relationship in Eq. (6–11) also implies that voltage is a continuous function of
time, since an abrupt change in the voltage implies a discontinuous change in energy.
Since power is the time derivative of energy, a discontinuous change in energy
implies infinite power, which is physically impossible. The capacitor voltage is called
a state variable because it determines the energy state of the element.

To summarize, the capacitor is a dynamic circuit element with the following
properties:

1. The current through the capacitor is zero unless the voltage is changing. The
capacitor acts like an open circuit to dc excitations.

2. The voltage across the capacitor is a continuous function of time.
A discontinuous change in capacitor voltage would require infinite current
and power, which is physically impossible.

3. The capacitor absorbs power from the circuit when storing energy and returns
previously stored energy when delivering power. The net energy transfer is
nonnegative, indicating that the capacitor is a passive element.

The following examples illustrate these properties.

E X A M P L E 6 – 1

The voltage in Figure 6–4(a) appears across a 1
�
2-μF capacitor. Find the current

through the capacitor.

SOLUTION:
The capacitor current is proportional to the time rate of change of the voltage. For
0 < t < 2ms the slope of the voltage waveform has a constant value

dυC
dt

=
10

2 × 10−3 = 5000 V=s

The capacitor current during this interval is

iC tð Þ=C
dυC
dt

= 0:5 × 10−6� �
× 5× 103
� �

= 2:5 mA

For 2 < t < 3ms the rate of change of the voltage is −5000 V=s. Since the rate of
change of voltage is negative, the current changes direction and takes on the value
iC tð Þ= −2:5 mA. For t > 3ms, the voltage is constant, so its slope is zero; hence the

10

5

0
0 1 2 3 4 5

(a)

0 1 2 3 4 5

(b)

2.5

0

–2.5

t (ms)

t (ms)

vC(t) (V)

iC(t) (mA)

FIGURE 6–4
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current is zero. The resulting current waveform is shown in Figure 6–4(b). Note that
the voltage across the capacitor (the state variable) is continuous, but the capacitor
current can be, and in this case is, discontinuous. ■

E x e r c i s e 6 – 1
A 0:01-μF capacitor has the following voltage impressed across it

υ tð Þ= 100 e−1000t
� �

u tð ÞV
Find the current iC tð Þ through the capacitor for t >0.

A n s w e r: iC tð Þ= −e−1000t u tð ÞmA

E X A M P L E 6 – 2

The iC tð Þ in Figure 6–5(a) is given by

iC tð Þ= I0 e− t=TC

� 	
u tð ÞA

Find the voltage across the capacitor if υC 0ð Þ= 0 V.

SOLUTION:
Using the capacitor i−υ relationship in integral form,

υC tð Þ = υC 0ð Þ+ 1
C

Z t

0
iC xð Þdx

= 0+
1
C

Z t

0
I0e−x=TCdx=

I0TC

C
−e−x=TC

� 	


t
0

=
I0TC

C
1−e− t=TC

� 	
V

The graph in Figure 6–5(b) shows that the voltage is continuous while the current is
discontinuous. ■

E x e r c i s e 6 – 2
(a) The voltage across a 10-μF capacitor is 25 sin 2000t½ �u tð ÞV. Derive an expression for the

current through the capacitor.

(b) At t = 0 the voltage across a 100-pF capacitor is −5 V. The current through the capacitor
is 10 u tð Þ−u t−10−4� �� �

μA. What is the voltage across the capacitor for t > 0?

A n s w e r s:
(a) iC tð Þ=0:5 cos2000t½ �u tð ÞA
(b) υC tð Þ= −5 + 105t V for 0 < t < 0:1 ms and υC tð Þ= 5 V for t >0:1 ms

E x e r c i s e 6 – 3
For t ≥ 0 the voltage across a 200-pF capacitor is 5e−4000t V.

(a) What is the charge on the capacitor at t = 0 and t = + ∞?
(b) Derive an expression for the current through the capacitor for t ≥ 0.
(c) For t > 0 is the device absorbing or delivering power?

A n s w e r s:
(a) 1 nC and 0 C
(b) iC tð Þ= −4e−4000tμA
(c) Delivering

iC(t) (A)

I0

t
TC0 1 2 3 4 5

vC(t) (V)

I0TC

C

0 1 2 3 4 5

(a)

(b)

t
TC

FIGURE 6–5
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E X A M P L E 6 – 3

Figure 6–6(a) shows the voltage across a 0:5-μF capacitor. Find the capacitor’s energy
and power.

SOLUTION:
The current through the capacitor was found in Example 6–1. The power waveform
is the point-by-point product of the voltage and current waveforms. The energy is
found either by integrating the power waveform or by calculating ½C υC tð Þ½ �2
point by point. The current, power, and energy are shown in Figures 6–6(b),
6–6(c), and 6–6(d). Note that the capacitor energy increases when it is absorbing
power pC tð Þ> 0½ � and decreases when delivering power pC tð Þ< 0½ �. ■

E x e r c i s e 6 – 4
Find the power and energy for the capacitors in Exercise 6 – 2.

A n s w e r s:
(a) pC tð Þ=6:25 sin4000t½ �u tð ÞW

wC tð Þ=3:125 sin2 2000 t
� �

u tð ÞmJ

(b) pC tð Þ= −0:05 + 103tmW for 0 < t < 0:1 ms
pC tð Þ= 0 for t >0:1 ms
wC tð Þ= 1:25−5 × 104t + 5× 108t2 nJ for 0 < t < 0:1 ms
wC tð Þ= 1:25 nJ for t > 0:1 ms

0
0 1 2 3 4 5

5

10

t (ms)

(a)

0 1 2 3 4 5
0

–2.5

t (ms)

2.5

vC(t) (V) iC(t) (mA)

pC(t) (mW)

0 1 2 3 4 5

t (ms)

(c)

Absorbing power

Delivering power

0 1 2 3 4 5

t (ms)
(d)

wC(t) (μJ)

Stored energy

25.0

18.75

12.5

6.25

0.0

25

0

–12.5

–25

(b)

FIGURE 6–6
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E X A M P L E 6 – 4

The current through a capacitor is given by

iC tð Þ= I0½e− t=TC�u tð ÞA
Find the capacitor’s energy and power.

SOLUTION:
The current and voltage were found in Example 6–2 and are shown in Figures
6–7(a) and 6–7(b). The power waveform is found as the product of current and voltage:

pC tð Þ= iC tð ÞυC tð Þ

= I0e− t=TC
� � I0TC

C
1−e− t=TC

� 	� �

=
I20TC

C
e− t=TC −e−2t=TC

� 	
The waveform of the power is shown in Figure 6–7(c). The energy is given by

wC tð Þ= 1
2
Cυ2C tð Þ= I0TCð Þ2

2C
1−e− t=TC

� 	2
The time history of the energy is shown in Figure 6–7(d). In this example, both power
and energy are always positive. ■

E x e r c i s e 6 – 5
Find the power and energy for the capacitor in Exercise 6–3.

A n s w e r s:
pC tð Þ= −20e−8000t μW

wC tð Þ=2:5e−8000t nJ

A P P L I C A T I O N E X A M P L E 6 – 5

Analog signals abound, but in today’s technological world, analog signals must be
transformed into digital formats to ease electronic transmission and processing. At
the end, these digital signals are often restored to analog form. The first step in
the conversion process uses a sample-and-hold circuit. This circuit is usually found
at the input to an analog-to-digital converter (ADC). The purpose of the circuit is
to sample an analog time-varying input waveform at a specified instant and then hold
that value constant until conversion to digital form is complete. This example dis-
cusses the role of a capacitor in such a circuit.

The basic sample-and-hold circuit in Figure 6–8(a) includes an input buffer, a dig-
itally controlled electronic switch (usually driven by a digital clock υG tð Þ), a holding
capacitorC, and an output buffer. The input buffer is a voltage follower whose output
replicates the analog input signal υS tð Þ and prevents the sample-and-hold circuit from
loading the input. Importantly, the input buffer supplies a charging current iC tð Þ to
the capacitor. The output buffer is also a voltage follower whose output replicates
the capacitor voltage and prevents the ADC circuit from loading the sample-and-
hold circuit.

I0

0
0

t (s)

iC(t) (A)

0
0

I0TC

C

vC(t) (V)

t (s)

0
0

I0
2TC

4C

pC(t) (W)

TCln2
t (s)

0
0

I0
2TC

2

2C

wC(t) (J)

t (s)

(a)

(c)

(d)

(b)

FIGURE 6–7
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To see how the circuit operates, we describe one cycle of the sample-and-hold
process. At time t1 shown in Figure 6–8(b), the digital control υG tð Þ goes high, which
causes the switch to close. This act allows the input buffer to supply a charging
current iC tð Þ to drive the capacitor voltage to the level of the analog input. At time
t2 also shown in Figure 6–8(b), the digital control goes low, the switch opens,
and thereafter the capacitor current iC tð Þ= 0. Zero current means that capacitor volt-
age is constant since dvC tð Þ=dt is zero. In sum, closing the switch causes the capacitor
voltage to track the input (once the capacitor reaches that value), and opening the
switch causes the capacitor voltage to hold a sample of the input until the process
repeats.

Figure 6–8(b) shows several more cycles of the sample-and-hold process. Samples
of the input waveform are acquired during the time intervals labeled tC. During these
intervals the control signal is high, the switch is closed, and the capacitor charges or
discharges in order to track the analog input voltage. Analog-to-digital conversion of
the circuit output voltage takes place during the time intervals tADC. During these
intervals the control signal is low, the switch is open, and the capacitor holds the out-
put voltage constant.

Sample-and-hold circuits are available as monolithic integrated circuits (see
Figure 6–8(c)) that include the two buffers, the electronic switch, but usually not
the holding capacitor. The capacitor is supplied externally, and its selection
involves a trade-off. In an ideal sample-and-hold circuit, the capacitor voltage
tracks the input when the switch is closed (sample mode) and holds the value indef-
initely when the switch is open (hold mode). In real circuits the input buffer has a
maximum output current, which means that some time is needed to charge the
capacitor in the sample mode. Minimizing this sample acquisition time argues
for a small capacitor. On the other hand, in the hold mode, the output buffer draws
a small current that gradually discharges the capacitor, causing the output voltage
to slowly decrease. Minimizing this output drop calls for a large capacitor. Thus,
selecting the capacitance of the holding capacitor involves a compromise between
the sample acquisition time and the output voltage drop in the hold mode. A few
other issues might be obvious. The capacitor must have sufficient time to charge up
to the value of the signal, hence the clock signal must be sufficiently long to permit
this to happen. Similarly, the time allowed for the conversion to occur must also be
sufficient. Note also that the analog signal shown is changing slowly. Clearly if
the analog signal was changing more rapidly, then the sampling and conversion
must be done faster. Currently these concerns are beyond the scope of this text,
but for those interested, investigate Nyquist and Sampling Theory or see Example
13–12 in this text.
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6–2 T H E I N D U C T O R
The inductor is a dynamic circuit element involving the time variation of themagnetic
field produced by a current. Magnetostatics shows that a magnetic flux ϕ surrounds a
wire carrying an electric current. When the wire is wound into a coil, the lines of flux
concentrate along the axis of the coil, as shown in Figure 6–9(a). In a linear magnetic
medium, the flux is proportional to both the current and the number of turns in the
coil. Therefore, the total flux is

ϕ tð Þ= k1NiL tð Þ (6–12)

where k1 is a constant of proportionality.
The magnetic flux intercepts or links the turns of the coil. The flux linkage in a coil

is represented by the symbol λ, with units of webers (Wb), named after the German
scientist WilhelmWeber (1804–1891). The flux linkage is proportional to the number
of turns in the coil and to the total magnetic flux, so λ tð Þ is

λ tð Þ=Nϕ tð Þ (6–13)

Substituting Eq. (6–12) into Eq. (6–13) gives

λ tð Þ= k1N2� �
iL tð Þ (6–14)

The proportionality constant inside the brackets in this equation is the inductance L
of the coil. That is, by definition

L= k1N2 (6–15)

The unit of inductance is the henry (H) (plural: henrys), a name that honors
American scientist JosephHenry. Figure 6–9(b) shows the circuit symbol for an induc-
tor. Photosof someexamplesof actual devices are shown inFigure6–10. Some standard
values for commercially available inductors are found in the inside rear cover.

Using Eq. (6–15), the defining relationship for the inductor becomes

λ tð Þ=LiL tð Þ (6–16)

Figure 6–11 graphically displays the inductor’s element constraint in Eq. (6–16). The
graph points out that the inductor is a linear element since the defining relationship is
a straight line through the origin.

I – V R E L A T I O N S H I P

Equation (6–16) is the inductor element constraint in terms of current and flux link-
age. To obtain the element characteristic in terms of voltage and current, we differ-
entiate Eq. (6–16) with respect to time:

d λ tð Þ½ �
dt

=
d LiL tð Þ½ �

dt
(6–17)

The inductance L is a constant. According to Faraday’s law, the voltage across the
inductor is equal to the time rate of change of flux linkage. Therefore, we obtain
an inductor i−υ relationship in the form

υL tð Þ=L
diL tð Þ
dt

(6–18)

The timederivative inEq. (6–18)means that thevoltageacross the inductor is zerounless
the current is time varying. Under dc excitation the current is constant and υL = 0, so the
inductor acts like a short circuit. The inductor is a dynamic element because only a
changing current produces a nonzero voltage. However, a discontinuous change in
current would produce an infinite voltage, which is physically impossible. Therefore,
the current iL tð Þ must be a continuous function of time t.
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FIGURE 6–9 (a) Magnetic flux
surrounding a current-carrying
coil. (b) Circuit symbol showing
inductor current and voltage.
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inductors: (a) Toroidal. (b) Axial.
(c) Choke.

282 C H A P T E R 6 CAPACITANCE AND INDUCTANCE



Equation (6–18) relates the inductor voltage to the rate of change of the inductor
current. To express the inductor current in terms of the voltage, we multiply both
sides of Eq. (6–18) by dt, solve for the differential diL, and integrate:Z

diL tð Þ= 1
L

Z
υL tð Þdt (6–19)

To set the limits of integration, we assume that the inductor current iL t0ð Þ is known at
some time t0. Under this assumption the integration limits areZ iL tð Þ

iL t0ð Þ
diL tð Þ= 1

L

Z t

t0
υL xð Þdx (6–20)

where x is a dummy integration variable. The left side of Eq. (6–20) integrates to
produce

iL tð Þ− iL t0ð Þ= 1
L

Z t

t0

υL xð Þdx (6–21)

The reference time t0 is established by some physical event, such as closing or opening
a switch. Without losing any generality, we can assume t0 = 0 and solving for iL tð Þ
write Eq. (6–21) in the form

iL tð Þ= iL 0ð Þ+ 1
L

Z t

0
υL xð Þdx (6–22)

Equation (6–22) is the integral form of the inductor i−υ characteristic. Both the inte-
gral form and the derivative form in Eq. (6–18) assume that the reference marks for
the inductor voltage and current follow the passive sign convention shown in
Figure 6–9(b).

P O W E R A N D E N E R G Y

With the passive sign convention the inductor power is

pL tð Þ= iL tð ÞυL tð Þ (6–23)

Using Eq. (6–18) to eliminate υL tð Þ from this equation puts the inductor power
in the form

pL tð Þ= iL tð Þ½ � L
diL tð Þ
dt

� �
=

d
dt

1
2
Li2L tð Þ

� �
(6–24)

This expression shows that power can be positive or negative because the induc-
tor current and its time derivative can have opposite signs. Therefore, like a
capacitor, an inductor can both absorb and deliver power. The ability to deliver
power indicates that the inductor can store energy.

To find the stored energy, we note that the power relation in Eq. (6–24) is a
perfect derivative. Since power is the time rate of change of energy, the quantity
inside the brackets must represent the energy stored in the magnetic field of the
inductor. From Eq. (6–24), we infer that the energy at time t is

wL tð Þ= 1
2
Li2L tð Þ+ constant

As is the case with capacitor energy, the constant in this expression is zero since it is
the energy stored at an instant t at which iL tð Þ= 0. As a result, the energy stored in the
inductor is

wL tð Þ= 1
2
Li2L tð Þ (6–25)
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The energy stored in an inductor is never negative because it is proportional to the
square of the current. The inductor stores energy when absorbing power and returns
previously stored energy when delivering power, so that the net energy transfer is
never negative.

Equation (6–25) implies that inductor current is a continuous function of time
because an abrupt change in current causes a discontinuity in the energy. Since power
is the time derivative of energy, an energy discontinuity implies infinite power, which
is physically impossible. Current is called the state variable of the inductor because it
determines the energy state of the element.

In summary, the inductor is a dynamic circuit element with the following properties:

1. The voltage across the inductor is zero unless the current through the inductor
is changing. The inductor acts like a short circuit for dc excitations.

2. The current through the inductor is a continuous function of time. A discon-
tinuous change in inductor current would require infinite voltage and power,
which is physically impossible.

3. The inductor absorbs power from the circuit when storing energy and delivers
power to the circuit when returning previously stored energy. The net energy is
nonnegative, indicating that the inductor is a passive element.

E X A M P L E 6 – 6

The current through a 2-mH inductor is iL tð Þ= 4 sin 1000t + 1 sin 3000tA as shown in
Figure 6–12(a). Find the resulting inductor voltage.

SOLUTION:
The voltage is found from the derivative form of the i−υ relationship:

υL tð Þ = L
diL tð Þ
dt

= 0:002 4× 1000 cos 1000t + 1× 3000 cos 3000t½ �
= 8 cos 1000t + 6 cos 3000t V

The resulting voltage waveform is shown in Figure 6–12(b). Note that the current and
voltage waveforms each contain two sinusoids with the same two frequencies. How-
ever, the relative amplitudes of the two sinusoids are different. In iL tð Þ, the ratio of
the amplitude of the component at ω= 3krad=s to the component at ω= 1krad=s is 1:4,
whereas in υL tð Þ this ratio is 3:4. The fact that the responses of energy storage ele-
ments depend on frequency allows us to create frequency-selective signal processors
called filters. We will study filters in greater depth in Chapters 8, 12, and 14. ■

E x e r c i s e 6 – 6
For t > 0, the voltage across a 4-mH inductor is υL tð Þ= 20e−2000t V. The initial current
is iL 0ð Þ= 0.

(a) What is the current through the inductor for t > 0?
(b) What is the power for t >0?
(c) What is the energy for t > 0?

A n s w e r s:

(a) iL tð Þ= 2:5 1−e−2000t
� �

A
(b) pL tð Þ=50 e−2000t−e−4000t

� �
W

(c) wL tð Þ= 12:5 1−2e−2000t + e−4000t
� �

mJ

5

–5

0 2 4 6

20

–20

0 2 4 6

10

–10

v(t) (V)

i(t) (A)

t (ms)

t (ms)

(a)

(b)

FIGURE 6–12
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E X A M P L E 6 – 7

Figure 6–13 shows the current through and voltage across an unknown energy stor-
age element.

(a) What is the element and what is its numerical value?

(b) If the energy stored in the element at t = 0 is zero, how much energy is stored in
the element at t = 1 s?

SOLUTION:

(a) By inspection, the voltage across the device is proportional to the derivative of
the current, so the element is a linear inductor. During the interval 0 < t < 1 s, the
slope of the current waveform is 10 A/s. During the same interval the voltage is a
constant 100 mV. Therefore, the inductance is

L=
υ tð Þ
di=dt

=
0:1 V
10A=s

= 10 mH

(b) The energy stored at t = 1 s is

wL 1ð Þ= 1
2
Li2L 1ð Þ= 0:5 0:01ð Þ 10ð Þ2 = 0:5 J ■

E x e r c i s e 6 – 7
For t < 0, the current through a 100-mH inductor is zero. For t ≥ 0, the current
is iL tð Þ= 20e−2000t−20e−4000t mA.

(a) Derive an expression for the voltage across the inductor for t >0.
(b) Find the time t >0 at which the inductor voltage passes through zero.
(c) Derive an expression for the inductor power for t > 0.
(d) Find the time interval over which the inductor absorbs power and the interval over

which it delivers power.

A n s w e r s:

(a) υL tð Þ= −4e−2000t + 8e−4000t V
(b) t = 0:347 ms
(c) pL tð Þ= −80e−4000t + 240e−6000t−160e−8000t mW
(d) Absorbing for 0 < t < 0:347 ms, delivering for t > 0:347 ms

E X A M P L E 6 – 8

The current through a 2.5-mH inductor is a damped sine i tð Þ= 10e−500t sin 2000t. Plot
the waveforms of the element current, voltage, power, and energy.

SOLUTION:
Following are the MATLAB code and the resulting plots for the current, voltage,
power, and energy. The code uses symbolic variables, differentiation, and multipli-
cation to calculate the expressions for the four signals. An appropriate time vector
is then substituted into the symbolic expressions to create numerical vectors that
can be plotted. The subplot function allows multiple plots to be placed in a single fig-
ure window. In the plots shown in Figure 6–14, note that the current, voltage, and
power alternate signs, whereas the energy signal is always positive.

i(t) (A)

t (s)

10

5

0 0.5 1.0 1.5

v(t) (V)

t (s)

0.1

0.05

0 0.5 1.0 1.5

(a)

(b)

FIGURE 6–13
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The MATLAB code uses a numerical time vector defined by the expression
tt=0:0:00001:0:004;½ �. The sinusoid has a period of T0 = 2π=2000 = 0:00314,
so plotting from t = 0ms to t = 4ms is sufficient to capture a full period of the sinusoid.
The time step size of 10 μs is a convenient choice and generated 401 points to plot,
which produced a smooth curve for each signal. ■

MATLAB Code
% Create symbolic variables
syms t iL vL pL wL real

% Create the inductor current signal
iL = 10∗exp(−500∗t)∗sin(2000∗t);
% Define the inductance
L = 0.0025;

% Calculate the voltage, power, and energy
vL = L∗diff(iL, ‘t’);
pL = iL∗vL;
wL = L∗iL^2/2;
% Create a time vector
tt = 0:0.00001:0.004;

% Substitute the time vector into the symbolic expressions
iLtt = subs(iL, t, tt);
vLtt = subs(vL, t, tt);
pLtt = subs(pL, t, tt);
wLtt = subs(wL, t, tt);

% Plot the results using the subplot function
subplot(2,2,1)
plot(tt,iLtt, ‘b’,‘LineWidth’,2);
grid on
ylabel(‘i_L(t), (A)’)
title(‘Current’)

subplot(2,2,2)
plot(tt,vLtt,‘b’,‘LineWidth’,2);
grid on
ylabel(‘v_L(t), (V)’)
title(‘Voltage’)

subplot(2,2,3)
plot(tt,pLtt,‘b’,‘LineWidth’,2);
grid on
xlabel(‘Time, (s)’);
ylabel(‘p_L(t), (W)’)
title(‘Power’)

subplot(2,2,4)
plot(tt,wLtt,‘b’,‘LineWidth’,2);
grid on
xlabel(‘Time, (s)’);
ylabel(‘w_L(t), (J)’)
title(‘Energy’)
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E x e r c i s e 6 – 8
Using theMATLAB code fromExample 6–8, modify it to find the waveforms of the current,
voltage, power, and energy of a 50-mH inductor with a current flowing through it given by

iL tð Þ= −
5
π
sin 400πtð Þ− 5

2π
sin 800πtð Þ− 5

3π
sin 1200πtð ÞmA

A n s w e r s: Two cycles of the plots are shown in Figure 6–15.

E x e r c i s e 6 – 9
A 50-mH inductor has an initial current of iL 0ð Þ=0A. The following voltage is applied
across the inductor starting at t =0:

υL tð Þ= −
5
π
sin 400πtð Þ− 5

2π
sin 800πtð Þ− 5

3π
sin 1200πtð ÞV

For t ≥ 0, use MATLAB to determine the inductor current, power, and energy. Plot those
three signals and the inductor voltage for 0� t� 10 ms.

A n s w e r: The plots are shown in Figure 6–16.
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M O R E A B O U T D U A L I T Y

The capacitor and inductor characteristics are quite similar. Interchanging C and L,
and i and υ converts the capacitor equations into the inductor equations, and vice
versa. This interchangeability illustrates the principle of duality. The dual concepts
seen so far are as follows:

KVL $ KCL
Loop $ Node
Resistance $ Conductance
Voltage source $ Current source
Thévenin $ Norton
Short circuit $ Open circuit
Series $ Parallel
Capacitance $ Inductance
Flux linkage $ Charge

The term in one column is the dual of the term in the other column. The principle of
duality states that

If every electrical term in a correct statement about circuit behavior is replaced by
its dual, then the result is another correct statement.

This principle may help beginners gain confidence in their understanding of circuit
analysis. When the concept in one column is understood, the dual concept in the
other column becomes easier to remember and apply.

6–3 D Y N A M I C O P A M P C I R C U I T S
The dynamic characteristics of capacitors and inductors produce signal-processing
functions that cannot be obtained using resistors. The OP AMP circuit in
Figure 6–17(a) is similar to the inverting amplifier circuit except for the capacitor
in the feedback path. To determine the signal-processing function of the circuit,
we need to find its input–output relationship.

We begin by writing a KCL equation at node A.

iR tð Þ+ iC tð Þ= iN tð Þ
The resistor and capacitor device equations are written using their i–υ relationships
and the fundamental property of node voltages:

iC tð Þ =C
d υO tð Þ−υA tð Þ½ �

dt

iR tð Þ = 1
R

υS tð Þ−υA tð Þ½ �

The ideal OP AMP device equations are iN tð Þ= 0 and υA tð Þ= 0. Substituting all of the
element constraints into the KCL connection constraint produces

υS tð Þ
R

+C
dυO tð Þ
dt

= 0

To solve for the output υO tð Þ, wemultiply this equation by dt, solve for the differential
dυO, and integrate as followsZ

dυO tð Þ= −
1
RC

Z
υS tð Þdt
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Assuming the output voltage is known at time t0 = 0, the integration limits areZ υC tð Þ

υC 0ð Þ
dυO tð Þ= −

1
RC

Z t

0
υS xð Þdx

which yields

υO tð Þ= υO 0ð Þ− 1
RC

Z t

0
υS xð Þdx

The initial condition υO 0ð Þ is actually the voltage on the capacitor at t = 0, since by
KVL, we have υC tð Þ= υO tð Þ−υA tð Þ. But υA = 0 for the OP AMP, so in general
υO tð Þ= υC tð Þ. When the voltage on the capacitor is zero at t = 0, the circuit input–
output relationship reduces to

υO tð Þ= −
1
RC

Z t

0
υS xð Þdx (6–26)

The output voltage is proportional to the integral of the input voltage when the initial
capacitor voltage is zero. The circuit in Figure 6–17(a) is an inverting integrator since
the proportionality constant is negative. The constant 1/RC has the units of reciprocal
seconds s−1

� �
so that both sides of Eq. (6–26) have the units of volts.

Interchanging the resistor and capacitor in Figure 6–17(a) produces the OP AMP
differentiator in Figure 6–17(b). To find the input–output relationship of this circuit,
we start by writing the element and connection equations. The KCL connection con-
straint at node A is

iR tð Þ+ iC tð Þ= iN tð Þ
The device equations for the input capacitor and feedback resistor are

iC tð Þ=C
d υS tð Þ−υA tð Þ½ �

dt

iR tð Þ= 1
R

υO tð Þ−υA tð Þ½ �

The device equations for the OP AMP are iN tð Þ= 0 and υA tð Þ= 0. Substituting all of
these element constraints into the KCL connection constraint produces

υO tð Þ
R

+C
dυS tð Þ
dt

= 0

Solving this equation for υO tð Þ produces the circuit input–output relationship:

υO tð Þ= −RC
dυS tð Þ
dt

(6–27)

The output voltage is proportional to the derivative of the input voltage. The cir-
cuit in Figure 6–17(b) is an inverting differentiator since the proportionality constant
(−RC) is negative. The units of the constant RC are seconds so that both sides of
Eq. (6–27) have the units of volts.

There are OP AMP inductor circuits that produce the inverting integrator and
differentiator functions; however, they are of little practical interest because of the
physical size and resistive losses in real inductor devices.

Figure 6–18 shows OP AMP circuits and block diagrams for the inverting integra-
tor and differentiator, together with signal-processing functions studied in Chapter 4.
The term operational amplifier results from the various mathematical operations
implemented by these circuits. The following examples illustrate using the collection
of circuits in Figure 6–18 on the next page in the analysis and design of signal-
processing functions.

+

iR(t)

iN(t)

R vA(t) C

iC(t)

(a)

+

vO(t)

+

–
vS(t)

+

iC(t)

iN(t)

C vA(t) R

iR(t)
+

vO(t)

+

–
vS(t)

(b)

FIGURE 6–17 (a) The
inverting OP AMP integrator.
(b) The inverting OP AMP
differentiator.
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FIGURE 6–18 Summary of basic OP AMP signal-processing circuits.
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E X A M P L E 6 – 9

The input to the circuit in Figure 6–19(a) is υS tð Þ= 10u tð ÞV. Derive an expression for
the output voltage. The OP AMP saturates when υO tð Þ= �15 V.

SOLUTION:
The circuit is the inverting integrator with an initial voltage of 0 V across the capac-
itor. Assuming the OP AMP is operating in the linear mode, the output voltage is

υO tð Þ = υO 0ð Þ− 1
RC

Z t

0
υS xð Þdx

υO tð Þ = 0−
1

106 × 10−6

Z t

0
10 dx

υO tð Þ = −

Z t

0
10 dx= −10tV t > 0

The output contains a ramp with a slope of −10 V=s. The negative slope is due to
the fact that the OP AMP is an inverting integrator. The output will continue to
decrease until the OP AMP saturates at −15 V at t = 1:5 s. Beyond that time the
output is a constant −15 V. Figure 6–19(b) shows both the input and the output of
the integrator.

This example illustrates that dynamic circuits with bounded inputs may have
unbounded responses. The circuit input here is a 10-V step function that has a
bounded amplitude. The circuit output is a ramp whose output would be unbounded
except that the OP AMP saturates. ■

E x e r c i s e 6 – 10
The input to the circuit in Figure 6–19 is υS tð Þ=10 e−5t

� �
u tð ÞV:

(a) For υC 0ð Þ= 0, derive an expression for the output voltage, assuming the OP AMP is in
its linear range.

(b) Does the OP AMP saturate with the given input?

A n s w e r s:

(a) υO tð Þ= 2 e−5t−1
� �

u tð ÞV
(b) Does not saturate

+

1 MΩ

+
vO(t)

+

–
vS(t)

1 μF

(a)

t

vS(t), vO(t) (V)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

(b)

– 0 V +
–5

–10

–15

15

10

5

FIGURE 6–19
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E X A M P L E 6 – 1 0

The input to the circuit in Figure 6–20(a) is the trapezoidal waveform shown
in Figure 6–20(b). Find the output waveform. The OP AMP saturates when
υO tð Þ= �15 V.

SOLUTION:
The circuit is the inverting differentiator with the following input–output
relationship:

υO tð Þ= −RC
dυS tð Þ
dt

= −
1

1000
dυS tð Þ
dt

The output voltage is constant over each of the following three time intervals:

1. For 0 < t < 1ms, the input slope is 5000 V/s and the output is υO = −5 V.

2. For 1 < t < 3ms, the input slope is zero, so the output is zero as well.

3. For 3 < t < 5ms, the input slope is −2500 V=s and the output is +2.5 V.

The resulting output waveform is shown in Figure 6–20(c).
The output voltage remains within �15-V limits, so the OP AMP operates in the
linear mode. ■

E x e r c i s e 6 – 11
The input to the circuit in Figure 6–20(a) is υS tð Þ=VA cos 2000tV. The OP AMP saturates
when υO tð Þ= �15 V.

(a) Derive an expression for the output, assuming that the OP AMP is in the lin-
ear mode.

(b) What is the maximum value of VA for linear operation?

A n s w e r s:
(a) υO tð Þ=2VA sin 2000tV
(b) VAj j � 7:5 V

+
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FIGURE 6–20
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D E S I G N E X A M P L E 6 – 1 1

Use the functional blocks in Figure 6–18 to design an OP AMP circuit to implement
the input–output relationship given below. Then simulate your circuit usingMultisim
to verify your results when υS tð Þ= cos 100t V.

dυS tð Þ
dt

+ 100 υS tð Þ= 100 υ0 tð Þ

SOLUTION:
There are many approaches to solving this problem. In our approach, we begin by
dividing both sides of the input–output relationship by 100 yielding

υ0 tð Þ= υS tð Þ+ 0:01
dυS tð Þ
dt

Then we can draw the block diagram in Figure 6–21(a), which shows that we need a
weighted differentiator and a summer. However, the differentiator and the summer
are both inverting circuits. This means that the output sign of the summer and the
differentiator will cancel, but the input that goes straight to the summer will be
inverted. This then requires that we insert an inverter between the input and the sum-
mer as shown in Figure 6–21(b). The inverting building blocks are realizable using the
OP AMP circuits in Figure 6–18, and the overall transfer characteristic is noninvert-
ing as required. One of many possible circuit realizations is shown in Figure 6–21(c)
with the constraint that the differentiator’s RC = 0:01. Selecting the OP AMPs and
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the values of R and C depends on many additional factors, such as accuracy, internal
resistance of the input source, and output load. The Multisim simulation with

υS tð Þ= cos 100tV is shown in Figure 6–21(d). We have plotted
the input, the output, and the inputs into the summer, that
is, υ2 tð Þ is the inverted input and υ3 tð Þ is the weighted differen-
tiated input. ■

E x e r c i s e 6 – 12
Find the input–output relationship of the circuit in Figure 6–22.

A n s w e r: υO tð Þ= υO 0ð Þ+ 1
RC

Z t

0
υS1 xð Þ−υS2 xð Þð Þdx

D E S I G N E X A M P L E 6 – 1 2

Differential, integral, and integrodifferential equations can be solved using dynamic
circuits. Suppose a second-order system can be described by the following differential
equation:

5
d2υO tð Þ
dt2

+ 100
dυO tð Þ
dt

+ 5000υO tð Þ= 250 V

Develop a block-diagram representation of the equation and then design a circuit to
solve the equation. That is, design a circuit where the output is υO tð Þ.

SOLUTION:
The first step is to solve the equation for the highest-order derivative with a coeffi-
cient of 1. Hence,

d2υO tð Þ
dt2

= −20
dυO tð Þ
dt

−1000υO tð Þ+ 50 V

Next, we realize that the highest-order derivative is simply the sum of three inputs. If
we integrate the second derivative we obtain the first derivative, and if we integrate
the first derivative we obtain the desired output, υO tð Þ. We can use the outputs of the
integrators, scale them, and feed them back into the summer along with the 50-V
driving function. This can be seen in the block diagram of Figure 6–23(a).

We can design the circuit by implementing the block diagram. For each integrator
we select the gain to be −1. Because all of our building blocks are inverting ampli-

fiers, we need to include two inverters to make the signs
come out correctly. The summer is used to achieve the
appropriate gains. Figure 6–23(b) shows one possible cir-
cuit design.

D I S C U S S I O N : Not too long ago, before digital computers
became ubiquitous, these types of problems were solved
using analog computers. Analog computers solved com-
plex, coupled, differential equations using integrators, dif-
ferentiators, summers, inverters, and noninverters. Our
early space efforts, for example, relied heavily on analog
computers. Today, of course, fast, redundant, and rela-
tively cheap digital computers are used and analog com-
puters have been relegated to the annals of history. ■
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–
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–

R
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+
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+
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–20

–103
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D e s i g n E x e r c i s e 6–13
Design a circuit to solve the following differential equation:

10
dυx tð Þ
dt

+ 50υx tð Þ= 1 V

A n s w e r: There are several possible solutions. Figure 6–24 shows
one.

A P P L I C A T I O N E X A M P L E 6 – 1 3

Dynamic OP AMP circuits can function as integrators or differ-
entiators. Given an equation or graph of an input waveform,
we can predict output waveforms using the mathematical
operations of integration or differentiation. Integrators and
differentiators work flawlessly on ideal signal models. In practice there are some
limitations caused by relatively small imperfections in real-world signals.

First consider an inverting integrator with an input υS tð Þ+V0, where υS tð Þ is the
desired signal and V0 is a relatively small dc offset. For this input an ideal inverting
integrator has an output of

υO tð Þ= −
1
RC

" Z t

0
υS xð Þdx|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Desired output

+ V0t|{z}
Ramp

#

The desired output is accompanied by a ramp waveform caused by a small dc offset.
Even if V0 is very small, the ramp V0t will eventually overwhelm the desired signal
and saturate the OP AMP.

The dc offset problem is dealt with using the reset switch in Figure 6–25(a) to
limit the time interval during which the circuit performs integration. When the
reset signal is high, the switch is closed, any voltage on the capacitor is removed,
and the integrator output voltage is forced to zero. When the reset signal goes low,
the switch opens and the circuit operates as an integrator. At the end of a fixed
time interval, the reset signal goes high again and the switch closes, forcing the
output to zero. Practical integrator applications use time-limited integration in

(b)

50 V

50 kΩ

vO(t)–

+ + + +

+

++
– –

–

–

d2

dt2 dt
–d

1 kΩ 1 kΩ

1 kΩ

1 kΩ1 kΩ

1 MΩ 1 MΩ 1 MΩ 1 μF 1 μF1 MΩ

FIGURE 6–23 (Continued)
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+
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+
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–
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10 kΩ
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10 kΩ 1 MΩ 1 μF

FIGURE 6–24

(a) Time-limited integrator

+
vO(t)

+
vS(t)

R

+

–

C
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which the integrator output is periodically reset to zero before any offset driven
ramp becomes important.

Next, consider an inverting differentiator with an input υS tð Þ+VA × sin ωtð Þ, where
υS tð Þ is the desired signal and υA sin ωtð Þ represents relatively small high-frequency
noise. For this input an ideal inverting differentiator has an output of

υO tð Þ= −RC

"
dυS tð Þ
dt|fflffl{zfflffl}

Desired output

+ωVA cos ωtð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Noise

#

The desired output is accompanied by an amplified noise component. Even if the
input noise amplitudeVA is very small, the term ωVA can be large for high-frequency
noise. The basic problem is that differentiation amplifies high-frequency noise to a
degree that can overwhelm the desired signal.

The high-frequency noise problem is dealt with by adding the series resistor shown
in Figure 6–25(b). This addition limits the frequency range over which the circuit
actually performs differentiation. At low frequencies the capacitor is the dominant
element, the series resistor plays no role, and the circuit performs differentiation.
At high frequencies the roles reverse: The added resistor dominates, the capacitor
can be ignored, and the circuit functions as an inverter. As a result the modified cir-
cuit only differentiates signals in a low-frequency band.2 Practical applications use
band-limited differentiation to avoid high-frequency noise problems.

6–4 E Q U I V A L E N T C A P A C I T A N C E A N D I N D U C T A N C E
In Chapter 2 we found that resistors connected in series or parallel can be replaced by
equivalent resistances. The same principle applies to connections of capacitors and
inductors—for example, to the parallel connection of capacitors in Figure 6–26(a).
Applying KCL at node A yields

i tð Þ= i1 tð Þ+ i2 tð Þ+ � � �+ iN tð Þ

Since the elements are connected in parallel, KVL requires

υ1 tð Þ= υ2 tð Þ= � � �= υN tð Þ= υ tð Þ
Because the capacitors all have the same voltage, their i−υ relationships are all of the
form ik tð Þ=Ck dυ tð Þ=dt. Substituting the i−υ relationships into the KCL equation
yields

i tð Þ=C1
dυ tð Þ
dt

+C2
dυ tð Þ
dt

+ � � �+CN
dυ tð Þ
dt

(b) Band-limited differentiator

+
vO(t)

+
vS(t)

C R

+

–

R

FIGURE 6–25 (Continued)

v(t)

+

–
C1

i(t) A

i1(t)

C2

i2(t) iN(t)

CN

B

v(t)

+

–
CEQ = C1 + C2 +…+ CN

i(t) A

B

(a) (b)

Rest of
the

circuit

Rest of
the

circuit

FIGURE 6–26 Capacitors
connected in parallel. (a) Given
circuit. (b) Equivalent circuit.

2In Chapter 12 we find that this low-frequency band falls below ωC = 1=RC.
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Factoring the derivative out of each term we get

i tð Þ= C1 +C2 + � � �+CNð Þdυ tð Þ
dt

This equation states that the responses υ tð Þ and i tð Þ in Figure 6–26(a) do not change
when the N parallel capacitors are replaced by an equivalent capacitance:

CEQ =C1 +C2 + � � �+CN parallel connectionð Þ (6–28)

The equivalent capacitance simplification is shown in Figure 6–26(b). The initial volt-
age, if any, on the equivalent capacitance is υ 0ð Þ, the common voltage across all of the
original N capacitors at t = 0.

Next consider the series connection of N capacitors in Figure 6–27(a). Applying
KVL around loop 1 in Figure 6–27(a) yields the equation

υ tð Þ= υ1 tð Þ+ υ2 tð Þ+ � � �+ υN tð Þ

Since the elements are connected in series, KCL requires

i1 tð Þ= i2 tð Þ= � � �= iN tð Þ= i tð Þ
Since the same current exists in all capacitors, their i−υ relationships are all of
the form

υk tð Þ= υk 0ð Þ+ 1
Ck

Z t

0
i xð Þdx

Substituting these i−υ relationships into the loop 1 KVL equation yields

υ tð Þ= υ1 0ð Þ+ 1
C1

Z t

0
i xð Þdx+ υ2 0ð Þ+ 1

C2

Z t

0
i xð Þdx

+ � � �+ υN 0ð Þ+ 1
CN

Z t

0
i xð Þdx

We can factor the integral out of each term to obtain

υ tð Þ= υ1 0ð Þ+ υ2 0ð Þ+ � � �+ υN 0ð Þ½ �+ 1
C1

+
1
C2

+ � � �+ 1
CN

� �Z t

0
i xð Þdx

This equation indicates that the responses υ tð Þ and i tð Þ in Figure 6–27(a) do not
change when the N series capacitors are replaced by an equivalent capacitance:

1
CEQ

=
1
C1

+
1
C2

+ � � �+ 1
CN

series connectionð Þ (6–29)

v(t)

+

–

C1
i(t)

A

v1(t)

vN(t)
CN

B

(a) (b)

C2

+ –
v2(t)

+ –

–

+
v(t)

+

– CEQ
=

C1
+

C2
+…+

CN

i(t) A

B

1    1 1 1
Loop 1

Rest 
of the
circuit

Rest 
of the
circuit

FIGURE 6–27 Capacitors
connected in series. (a) Given
circuit. (b) Equivalent circuit.
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The equivalent capacitance is shown in Figure 6–27(b). The initial voltage on the
equivalent capacitance is the sum of the initial voltages on each of the original N
capacitors.

The equivalent capacitance of a parallel connection is the sum of the individual
capacitances. The reciprocal of the equivalent capacitance of a series connection is
the sum of the reciprocals of the individual capacitances. Since the capacitor and
inductor are dual elements, the corresponding results for inductors are found
by interchanging the series and parallel equivalence rules for the capacitor. That
is, in a series connection the equivalent inductance is the sum of the individual
inductances:

LEQ =L1 +L2 + � � �+LN series connectionð Þ (6–30)

For the parallel connection, the reciprocals add to produce the reciprocal of the
equivalent inductance:

1
LEQ

=
1
L1

+
1
L2

+ � � �+ 1
LN

parallel connectionð Þ (6–31)

Derivation of Eqs. (6–30) and (6–31) uses the approach given previously for the
capacitor except that the roles of voltage and current are interchanged. Completion
of the derivation is left as a problem for the reader.

E X A M P L E 6 – 1 4

Find the equivalent capacitance and inductance of the circuits in Figure 6–28.

SOLUTION:
(a) For the circuit in Figure 6–28(a), the two 0:5-μF capacitors in parallel combine to

yield an equivalent of 0:5+ 0:5= 1-μF capacitance. This 1-μF equivalent capaci-
tance is in series with a 1-μF capacitor, yielding an overall equivalent of
CEQ = 1= 1=1+ð
1=1Þ= 0:5 μF.

(b) For the circuit of Figure 6–28(b), the 10-mH and the 30-mH inductors are
in series and add to produce an equivalent inductance of 40 mH. This 40-mH
equivalent inductance is in parallel with the 80-mH inductor. The equivalent
inductance of the parallel combination is LEQ = 1= 1=40 + 1=80ð Þ= 26:67 mH.

(c) The circuit of Figure 6–28(c) contains both inductors and capacitors. In later
chapters, we will learn how to combine all of these into a single equivalent
element. For now, we combine the inductors and the capacitors separately.
The 5-pF capacitor in parallel with the 0:1-μF capacitor yields an equivalent
capacitance of 0.100005 μF. For all practical purposes, the 5-pF capacitor can
be ignored, leaving two 0:1-μF capacitors in series with equivalent capacitance
of 0.05 μF. Combining this equivalent capacitance in parallel with the remaining
0:05-μF capacitor yields an overall equivalent capacitance of 0.1 μF. The
parallel 700-μH and 300-μH inductors yield an equivalent inductance of
1= 1=700 + 1=300ð Þ= 210 μH. This equivalent inductance is effectively in series
with the 1-mH inductor at the bottom, yielding 1000 + 210 = 1210 μH as the over-
all equivalent inductance.

Figure 6–29 shows the simplified equivalent circuits for each of the circuits of
Figure 6–28. ■

(a)

1 μF

0.5 μF 0.5 μF

80 mH 30 mH

10 mH

0.1 μF

0.1 μF

5 pF

0.05 μF

700 μH

1 mH

(b)

(c)

300 μH

FIGURE 6–28

(a)

0.5 μF 26.67 mH

(b)

1210 μH

(c)

0.1 μF

FIGURE 6–29
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E x e r c i s e 6–14
(a) A 150-μH inductor is in parallel with two other identical inductors. That combination is

in series with a 100-μH inductor. What is the equivalent inductance of the connection?

(b) A capacitor bank consists of five hundred 400-VDC, 10-mF capacitors in parallel. How
much energy can the bank store when the capacitors are fully charged?

A n s w e r s:
(a) LEQ = 150 μH
(b) w = 400 kJ

E x e r c i s e 6 – 15
Find the equivalent capacitance and the initial stored voltage for the circuit in Figure 6–30.

A n s w e r: CEq = 0:0276 μF with υC 0ð Þ= 35 V.

E x e r c i s e 6 – 16
The current through a series connection of two 1-μF capacitors is a rectangular pulse with an
amplitude of 2 mA and a duration of 10 ms. At t =0 the voltage across the first capacitor is
+10 V and across the second is zero.

(a) What is the voltage across the series combination at t = 10ms?
(b) What is the maximum instantaneous power delivered to the series combination?
(c) What is the energy stored on the first capacitor at t =0 and t =10 ms?

A n s w e r s:
(a) 50 V
(b) 100 mW at t = 10ms
(c) 50 μJ and 450 μJ

D C E Q U I V A L E N T C I R C U I T S

Sometimes we need to find the dc response of circuits containing capacitors and
inductors. In the first two sections of this chapter, we found that under dc conditions
a capacitor acts like an open circuit and an inductor acts like a short circuit. In other
words, under dc conditions, an equivalent circuit for a capacitor is an open circuit and
an equivalent circuit of an inductor is a short circuit.

To determine dc responses, we replace capacitors by open circuits and inductors
by short circuits and analyze the resulting resistance circuit using any of the methods
in Chapters 2 through 4. The circuit analysis involves only resistance circuits and
yields capacitor voltages and inductor currents along with any other variables of
interest. Computer programs like Multisim use this type of dc analysis to find the ini-
tial operating point of a circuit to be analyzed. The dc capacitor voltages and inductor
currents become initial conditions for a transient response that begins at t = 0 when
something in the circuit changes, such as the position of a switch.

E X A M P L E 6 – 1 5

Determine the voltage across the capacitors and current through the inductors in
Figure 6–31(a).

SOLUTION:
The circuit is driven by a 5-V dc source. Figure 6–31(b) shows the equivalent circuit
under dc conditions. The current in the resulting series circuit is 5= 50 + 50ð Þ= 50 mA.
This dc current exists in both inductors, so iL1 = iL2 = 50 mA. By voltage division the

0.033 μF

0.15 μF

0.022 μF

0.1 μF

5 V

10 V

20 V

15 V

+

+

+

+

–
–

–

–

FIGURE 6–30
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–
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voltage across the 50-Ω output resistor is υ= 5× 50= 50 + 50ð Þ= 2:5 V; therefore,
υC1 0ð Þ= 2:5 V. The voltage across C2 is zero because of the short circuits produced
by the two inductors. ■

E x e r c i s e 6 – 17
Find the OP AMP output voltage in Figure 6–32.

A n s w e r:

υO tð Þ= R2 +R1

R1
υdc

S U M M A R Y

R1

+

vO(t)

+

–

C1

+
vdc

R3

R2

C2
–

R4

FIGURE 6–32

• The linear capacitor and inductor are dynamic circuit
elements that can store energy. The instantaneous ele-
ment power is positivewhen they are storing energy and
negative when they are delivering previously stored
energy. The net energy transfer is never negative
because inductors and capacitors are passive elements.

• The current through a capacitor is zero unless the volt-
age is changing. A capacitor acts like an open circuit to
dc excitations.

• The voltage across an inductor is zero unless the cur-
rent is changing. An inductor acts like a short circuit
to dc excitations.

• Capacitor voltage and inductor current are called state
variables because they define the energy state of a

circuit. Circuit state variables are continuous
functions of time as long as the circuit driving forces
are finite.

• OP AMP capacitor circuits perform signal
integration or differentiation. These operations,
together with the summer and gain functions, provide
the building blocks for designing dynamic input–
output characteristics.

• Capacitors or inductors in series or parallel can be
replaced with an equivalent element found by adding
the individual capacitances or inductances or their reci-
procals. The dc response of a dynamic circuit can be
found by replacing all capacitors with open circuits
and all inductors with short circuits.

P R O B L E M S

O B J E C T I V E 6 – 1 C A P A C I T O R A N D I N D U C T O R
R E S P O N S E S ( S E C T S . 6 – 1 A N D 6 – 2 )
(a) Given the current through a capacitor or an inductor, find

the voltage across the element.
(b) Given the voltage across a capacitor or an inductor, find the

current through the element.
(c) Find the power and energy associated with a capacitor or

inductor.
See Examples 6–1 to 6–4 and 6–6 to 6–8, and Exercises 6 – 1
to 6–9.

6–1 For t ≥ 0 the voltage across a 1-μF capacitor is
vC tð Þ = 10 u tð ÞV. Derive expressions for iC tð Þ and pC tð Þ. Is
the capacitor absorbing power, delivering power, or both?

6–2 For t ≥ 0 the voltage across a 0:022-μF capacitor is
vC tð Þ = 5 e−100t u tð ÞV. Derive expressions for iC tð Þ and
pC tð Þ. Is the capacitor absorbing power, delivering power,
or both?

6–3 The voltage across a 2200-pF capacitor is vC tð Þ = 50 cos
2π104t
� �

V. Derive expressions for iC tð Þ and pC tð Þ. Is the
capacitor absorbing power, delivering power, or both?

6–4 The current through a 0:1-μF capacitor is a rectangular pulse
with an amplitude of 2 mA and a duration of 5 ms. Find the
capacitor voltage at the end of the pulse when the capacitor
voltage at the beginning of the pulse is – 1 V.

6–5 For t ≥ 0 the current through capacitor is iC tð Þ= 10 t u tð ÞmA.
At t = 0 the capacitor voltage is 3 V. At t = 1ms the voltage
is 8 V. Find the capacitance of the device.
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6–6 The voltage across a 0:01-μF capacitor is shown in
Figure P6–6. Prepare sketches of iC tð Þ, pC tð Þ, and wC tð Þ. Is
the capacitor absorbing power, delivering power, or both?

0 10 20 30 40 50
0 t (ms)

50

v(t) (V)

FIGURE P6–6

6–7 The voltage across a 0:01-μF capacitor is shown in
Figure P6–7. Prepare sketches of iC tð Þ, pC tð Þ, and wC tð Þ.
Is the capacitor absorbing power, delivering power, or both?

20

10 1550

–20

0 t(ms)

v(t)(V)

FIGURE P6–7

6–8 The current through a 1500-pF capacitor is shown in
Figure P6–8. Given that vC 0ð Þ = −5 V, at what time will
the voltage vC tð Þ first reach 50 V.

20

0
0 5 10

i(t) (mA)

t(μs)

FIGURE P6–8

6–9 For t ≥ 0 the current through a 0:33-μF capacitor is
iC tð Þ = 5 sin 1000πtð ÞmA. Using Multisim, plot vC tð Þ versus
time when vC 0ð Þ = −5 V. In Multisim, use the ac current
source—note that the frequency is in Hz—and set the other
parameters appropriately. Click on the capacitor and set the
initial condition to – 5V. Then simulate the output using the
transient analysis but be certain to check “User-defined”
under initial conditions.

6–10 A 100-μF capacitor has no voltage across it at t = 0:
A current flowing through the capacitor is given as
iC tð Þ = 2 u tð Þ – 3u t – 3ð Þ + u t – 6ð ÞmA. Find the voltage
across the capacitor at t = 4 s. Repeat for t = 6 s.

6–11 The current through a 100-mH inductor is shown in
Figure P6–11. Prepare sketches of vL tð Þ, pL tð Þ, and wL tð Þ.

0 5 10
0 t (μs)

20

10

i(t) (mA)

FIGURE P6–11

6–12 For t ≥ 0 the current through a 4300-μH inductor is
iL tð Þ = 1 e – 10,000t A. Find vL tð Þ, pL tð Þ, and wL tð Þ for t ≥ 0.
Is the inductor absorbing power, delivering power, or both?

6–13 For t ≥ 0 the voltage across a 100-mH inductor is
vL tð Þ = 15 e−100t V. Plot iL tð Þ versus time when iL 0ð Þ = 0A.

(a) Solve using Multisim. In Multisim use the exponential
voltage source, and set its initial value to 15 V and the
pulsed value to 0 V. Set the rise-time appropriately. Set
the fall delay time well beyond the period over which
you want to observe the response. Then, click on the
inductor and set the inductor’s initial condition to 0 A.
Plot the output using the transient analysis. Under
“Analysis parameters,” be sure to check the box under
initial conditions to “User-defined” and set the “End
time” to display at least five time constants.

(b) Solve using MATLAB.

6–14 Repeat Problem 6–13 when the voltage across a 20-mH
inductor is vL tð Þ = 40 e−2000t V. Plot iL tð Þ versus time
when iL 0ð Þ = – 1A.

6–15 A voltage vL tð Þ = 5 cos 1000 ntð ÞV appears across a
50-mH inductor, where n is a positive integer that controls
the frequency of the input signal. The amplitude of the
input signal is constant. Assume iL 0ð Þ = 0A. Use MATLAB
and symbolic variables to compute an expression for iL tð Þ. On
the same axes, plot iL tð Þ versus time for n = 1, 2, 3, 4, and 5,
over an appropriate time scale. On another set of axes, plot
the amplitude of iL tð Þ versus the coefficient n. As n
approaches infinity, what happens to the amplitude of the
current? What type of circuit element does the inductor
behave like as n approaches infinity?

6–16 For t ≥ 0 the voltage across a 100-mH inductor is
vL tð Þ = 500 t u tð ÞV. At t = 2ms the inductor current is
observed to be zero. Find the value of iL(0).

6–17 For t ≥ 0 the current through a 100-mH inductor
is iL tð Þ = 100 t e−1000t A. Derive an expression for vL tð Þ. Is
the inductor absorbing power or delivering power or both?

6–18 The capacitor in Figure P6–18 carries an initial voltage
vC 0ð Þ = – 25 V. At t = 0, the switch is closed, and there-
after the voltage across the capacitor is vC tð Þ = – 100 +
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75 e−2000t V. Derive expressions for iC tð Þ and pC tð Þ for t > 0: Is
the capacitor absorbing power, delivering power, or both?

vC(t)
+

– v(t)

+

iC(t)

pC(t) –

t = 0 Rest of
the

circuit
10 μF

FIGURE P6–18

6–19 A 33-μF capacitor and a 10-mH inductor are connected in
parallel with a closed switch as shown in Figure P6–19. The
inductor has – 5 mA flowing through it at t = 0 – . The switch
opens at t = 0:
(a) Find the initial voltage across the capacitor at t = 0.
(b) Write an equation for the voltage across the elements for

t > 0. Do not solve it.
(c) Simulate the circuit using Multisim. Connect an inductor

in parallel with a capacitor and assign the appropriate ini-
tial conditions and run a transient analysis. Plot the volt-
age across the elements for 5 ms.

(d) Characterize the response signal.

vC(t)
+

–
33 μF 10 mH

t = 0

iL(0) = –5 mA

FIGURE P6–19

6–20 The inductor in Figure P6–20 carries an initial current of
iL 0ð Þ = 0:2A:At t = 0, the switch opens, and thereafter the
current into the rest of the circuit is i tð Þ = −0:2 e−2000t A.
Derive expressions for vL tð Þand pL tð Þ for t > 0 . Is the induc-
tor absorbing or delivering power?

vL(t)
+

–

iL(t)

t = 0 Rest of
the

circuit

i(t)

50 μH

FIGURE P6–20

6–21 The inductor in Figure P6–20 carries an initial current of
iL 0ð Þ = 20mA. At t = 0, the switch opens, and thereafter the
voltage across the inductor is vL tð Þ = −6 e−1000t mV. Derive
expressions for iL tð Þand pL tð Þ for t > 0. Is the inductor
absorbing or delivering power?

6–22 A 0:033-μF capacitor is connected in series with a
10-kΩ resistor. The voltage across the capacitor is vC tð Þ =
10 cos 5000tð ÞV. What is the voltage across the resistor?

6–23 A 500-μH inductor is connected in parallel with a 330-kΩ
resistor. The current through the inductor is iL tð Þ =
200 e−1000t μA. What is the current through the resistor?

6–24 For t > 0 the voltage across an energy storage element is
v tð Þ = 5 e−100t V and the current through the element is
i tð Þ = 10 – 5 e−100t A. What are the element, the element
value, and its initial condition?

6–25 For t > 0 the voltage across a circuit element is
v tð Þ = 5 te−100t cos 1000tð ÞV and the current through the ele-
ment is i tð Þ = 2:5 te−100t cos 1000tð Þ μA.What are the element,
the element value, and its initial condition?

6–26 For t > 0 the voltage across an energy storage element is
v tð Þ = 5 − 20 e−500t V and the current through the element is
i tð Þ = 2000t + 16 e−500t mA. What are the element, the ele-
ment value, and its initial condition?

O B J E C T I V E 6 – 2 D Y N A M I C O P A M P C I R C U I T S
( S E C T . 6 – 3 )
(a) Given an OP AMP integrator or differentiator, determine

the output for specified inputs.
(b) Given a general RC OP AMP circuit, determine its

input–output relationship and construct a block
diagram.

(c) Design an RCOPAMP circuit to implement a given input–
output relationship or a block diagram.

See Examples 6–9 to 6–13 and Exercises 6 – 10 to 6–13.

6–27 The OP AMP integrator in Figure P6–27 has R = 33 kΩ,
C = 0:056μF, and vO 0ð Þ = 10 V. The input is vS tð Þ =
5 e−500t u tð ÞV. The OP AMP has a VCC = �15 V. Find
vO tð Þ for t > 0.

+
vO(t)

+
vS(t)

R

+

–

C

FIGURE P6–27

6–28 Build the OP AMP circuit of Figure P6–27 in Multisim.
Let R = 33 kΩ, C = 0:056μF, and vO 0ð Þ = 15 V. The input
is 10 1 − e−500t

� �
u tð ÞV. The OP AMP has a VCC = �15V.

Plot the output vO tð Þ for t > 0. Over what period of time is
the OPAMP in the linear range? [Hints:Use the exponential
source, set the initial condition of the capacitor to 15 V, and
arrange the limits of the OP AMP to �15 V. When running
the transient simulation, ensure that the analysis uses user-
defined initial conditions.]

6–29 Following the rationale used to derive the dynamic RC
circuits in Figure 6–17, derive the input–output relationship
for the circuit in Figure P6–29. What mathematical operation
does the circuit perform? Reverse the location of the resistor
and the inductor. What mathematical operation does the cir-
cuit perform now?
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+
vO(t)

+
vS(t) iN(t) iR(t)

vA(t)iL(t) L

+

–

R

FIGURE P6–29

6–30 An OP AMP integrator with R = 1MΩ, C = 1 μF,
and vO 0ð Þ = 0 V has the input waveform shown in
Figure P6–30. Sketch vO tð Þ for t > 0.

10 3020 40

3

–1.5

t (s)

vS (t) (V)

FIGURE P6–30

6–31 An OP AMP circuit from Figure 6–18 is in the box shown
in Figure 6–31. The input and outputs are given. What is the
function of the circuit in the box if:

(a) vS tð Þ = cos 500tmV and vO tð Þ = 5 sin 500t V?
(b) vS tð Þ = cos 500tmV and vO tð Þ = 5 cos 500tV?
(c) vS tð Þ = cos 500tmV and vO tð Þ = – 20 sin 500t μV.
(d) vS tð Þ = cos 500tmV and vO tð Þ = – 10 cos 500t V.

vS(t) vO(t)
OP AMP
Circuit

FIGURE P6–31

6–32 Design appropriate OP AMP circuits that will real-

ize each of the functions in problem 6–31.

6–33 The OP AMP integrator in Figure P6–27 has R = 50 kΩ,
C = 120 μF, and vO 0ð Þ = – 2 V. The input is vS tð Þ =
10 u tð ÞV. Use Multisim to determine how long it takes for
the OP AMP to saturate when VCC = �12 V.

6–34 The OP AMP integrator in Figure P6–27 has R = 22 kΩ,
C = 0:001 μF, and vO 0ð Þ = 0 V. The input is vS tð Þ =
2 sin ωtð Þ u tð ÞV. Derive an expression for vO tð Þ and find the
smallest allowable value of ω for linear operation of the
OP AMP. Assume VCC = �15 V.

6–35 The OP AMP differentiator in Figure P6–35 with
R = 22 kΩ and C = 0:62 μF has the input vS tð Þ = 6 1 −ð
e−50tÞu tð ÞV. Find vO tð Þ for t > 0.

+
vO(t)

+
vS(t)

C

+

–

R

FIGURE P6–35

6–36 Redesign the circuit of Figure P6–35 using an RL

circuit rather than theRC approach shown. Refer to Problem
6–29.

6–37 The OP AMP differentiator in Figure P6–35 with
R = 33 kΩ, C = 0:1 μF, and a VCC = �12 V has the input
waveform shown in Figure P6–37. Sketch vO tð Þ for t > 0.

1 2 3 4
t (ms)

6

vS (t) (V)

FIGURE P6–37

6–38 The OP AMP differentiator shown in Figure P6–35 has
R = 100 kΩ and C = 0:1 μF and an output vO tð Þ=
1 sin 100tð Þ½ � u tð Þ V. What is its input vS(t)?

6–39 The input to the OP AMP differentiator in

Figure P6–35 is vS tð Þ = 5 sin 2π× 106t
� �� �

u tð ÞmV. Select R
and C so that the output sinusoid has extreme values of at
least �14 V but does not saturate the OP AMP at � 15 V.

6–40 The OP AMP differentiator in Figure P6–35 with
R = 5 kΩ and C = 220 pF has the input vS tð Þ = 2:5 sin ωtð Þ½ �
u tð ÞV. Determine the frequency at which the OP AMP satu-
rates at �15 V. Validate your answer using Multisim. [Hint:
Use an AC source and an AC analysis with a linear sweep
from 100 kHz to 1 MHz. Use the cursor to determine at what
frequency the magnitude of the output reaches j15j V.]

6–41 Find the input–output relationship of the RC OP AMP
circuit in Figure P6–41.

+
vO(t)

+
vS(t)

C

+

–

RR

FIGURE P6–41

6–42 Find the input–output relationship of the RC OP AMP
circuit in Figure P6–42.
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R

R

+

–

C

+
vO(t)

+
vS(t)

FIGURE P6–42

6–43 Show that the RC OP AMP circuit in Figure P6–43 is a
noninverting integrator whose input–output relationship is

vO tð Þ =
1
RC

Z t

0

vS xð Þdx + vO 0ð Þ

R

R
+

–

C

C

+
vO(t)

+
vS(t)

FIGURE P6–43

6–44 Design an RC OP AMP circuit to implement the

block diagram in Figure P6–44.

+

+

vO(t)

d
dt

1
50

50

vS(t)

FIGURE P6–44

6–45 Repeat Problem 6–44 but use an RL OP AMP

circuit.

6–46 For the block diagram shown in Figure P6–46

(a) Find thedifferential equationtheblockdiagramrepresents.
(b) Design anRCOPAMP circuit that implements the block

diagram.

+
+

vO(t)

1
10

10 V
–

–1
50

FIGURE P6–46

6–47 In this problem you will design an oscillator. The

equation for your oscillator is
d2vO tð Þ
dt2

+ vO tð Þ= 0 V

(a) Draw a block diagram to solve your equation (vO(t)
should be your output) using differentiators.

(b) Draw a block diagram to solve your equation (vO(t)
should be your output) using integrators.

(c) Design a circuit usingOPAMP integrators to realize your
block diagram.

(d) Using Multisim, simulate your circuit and show that your
output is an oscillator. Give both capacitors in the circuit
2-V initial conditions. What is its oscillating frequency?
What could you do to alter the oscillating frequency?

6–48 Draw a block diagram and then design an RC OP

AMP circuit to implement the input–output relationship

vO tð Þ = −25 vS tð Þ + 150
Z t

0

vS xð Þdx

6–49 Design an OP AMP circuit to solve the following

differential equation:

vO tð Þ = 10 vS tð Þ + 1
10

dvS tð Þ
dt

+
1
20

d2vS tð Þ
dt2

6–50 DesignanRCcircuitusingonlyoneOPAMPandonly

one capacitor that implements the input–output relationship

vO tð Þ = −15
Z t

0

vS1 xð Þ dx −20
Z t

0

vS2 xð Þ dx

O B J E C T I V E 6 – 3 E Q U I V A L E N T I N D U C T A N C E A N D
C A P A C I T A N C E ( S E C T . 6 – 4 )
(a) Derive equivalence properties of inductors and capacitors

or use equivalence properties to simplify LC circuits.
(b) Given an RLC circuit with dc input signals, find the dc cur-

rent and voltage responses.
See Examples 6–14 and 6–15 and Exercise 6–14 to 6–17.

6–51 Find a single equivalent element for each circuit in
Figure P6–51.

1.0 μF

2.2 μF 2.2 μF

3.3 μF

50 μH
100 μH

100 μH

50 μH

67 μH

C1

C2

FIGURE P6–51
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6–52 A 2-H inductor is connected in series with a 2-mH

inductor and the combination connected in parallel with a
1-mH inductor. All are �5%. Find the equivalent inductance
of the connection. Which inductor played no effective role in
this combination and could have been ignored?

6–53 Use the lookback method to find the equivalent capaci-
tance of the circuit shown in Figure P6–53.

C

C
v(t) C

C

CEQ

+
–

FIGURE P6–53

6–54 You need to have an equivalent inductance of

235 mH for a particular application. However, you only have
100-mH inductors available. How might you connect these to
get within �5% of the desired value?

6–55 Verify Eqs. (6–30) and (6–31) .

6–56 What is the equivalent capacitance and initial voltage of a
series connection of a 100-μF capacitor with 100 V stored and
a 47-μF capacitor with 200 V stored?

6–57 What is the equivalent capacitance and initial voltage for
the capacitor bank shown in Figure P6–57?

15 V

10 V

+ 15 V

5 V

10 V
0.01 μF

0.01 μF

0.43 μF

0.01 μF

0.022 μF

+
+

+

+

–

–

–

–

–

CEQ

FIGURE P6–57

6–58 What is the equivalent inductance and initial current for
the inductors shown in Figure P6–58?

LEQ

50 μA

25 μH

15 μH
50 μA

100 μA

100 μH50 μH

30 μA

FIGURE P6–58

6–59 For the circuit in Figure P6–59, find an equivalent circuit
consisting of one inductor and one capacitor. Select a value of
an inductor and a capacitor from among the standard values
in the inside rear cover to realize your result and connect
them appropriately.

3 mH 3 mH

1.5 mHLEQ, CEQ

0.3 μF

4 μF

6 μF

FIGURE P6–59

6–60 Figure P6–60 is the equivalent circuit of a two-wire feed-
through capacitor.

(a) What is the capacitance between terminal 1 and ground
when terminal 2 is open?

(b) What is the capacitance between terminal 1 and ground
when terminal 2 is grounded?

0.01 μF

0.02 μF

0.01 μF2

1

FIGURE P6–60

6–61 A capacitor bank is required that can be charged to

5 kVand store at least 250 J of energy.Design a series–parallel
combination that meets the voltage and energy requirements
using 33-μF capacitors each rated at 1.5 kV max.

6–62 A switching power supply requires an inductor that

can store at least 1 mJ of energy. A list of available inductors
is shown below. Select the inductor that best meets the
requirement. Consider both meeting the specifications and
cost. Explain your choice.

L(μH) IMAX(A) COST EACH

10 9.2 $4.75
20 7.0 $5.00
50 5.5 $4.50

100 4.3 $4.75
150 3.8 $4.50
250 2.5 $4.75
500 2.1 $5.00

6–63 The circuits in Figure P6–63 are driven by dc sources. Find
the current through the source under dc conditions.
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+

–
30 V

C1

L1idc

idc

330 ΩC

L2330 Ω

+

–
24 V

C2

C1

220 ΩL

C2330 Ω

FIGURE P6–63

6–64 The circuit in Figure P6–64 is driven by 10-V dc source.
Find the energy stored in the capacitor and inductor under
dc conditions.

+

–
10 V 5 mH

wC(t) wL(t)

50 Ω

1 μF

FIGURE P6–64

6–65 The OPAMP circuit in Figure P6–65 has a capacitor in its
feedback loop. Determine the circuit gain at dc and as the fre-
quency approaches ∞ rad=s.

vS(t) vO(t)

+
+

+

–

R1 R2

C

FIGURE P6–65

6–66 The OPAMP circuit in Figure P6–66 has a capacitor in its
feedback loop. Determine the circuit gain at dc and as the fre-
quency approaches ∞ rad=s.

vO(t)

vS(t)

++

+

–

R R

C

FIGURE P6–66

6–67 The OP AMP circuit in Figure P6–67 is a notch filter that
will be studied later. Determine the circuit gain at dc and as
the frequency approaches ∞ rad=s.

+

+

v2(t)

v1(t)
+

–
+

–

K2Rx/α

K1RR RC

Notch Filter

C

Rx

Rx/α

FIGURE P6–67

I N T E G R A T I N G P R O B L E M S

6–68 Piezoelectric Transducer

Piezoelectric transducers (sensors) measure dynamic phenom-
ena such as pressure and force. These phenomena cause stresses
that “squeeze” a quantity of electric charge from piezoelectric
material in the transducer (the term piezo means “squeeze”
in Greek). The amount of charge q tð Þ is directly proportional
to the measured variable x tð Þ, that is q tð Þ = αx tð Þ. Signal ampli-
fication is needed because the amount of charge produced is
on the order of pC. Figure P6–68 shows an OP AMP charge
amplifier that provides the necessary gain. First show that the
OP AMP output is vO tð Þ = −Kq tð Þ. Then select a value of C
so that the charge amplifier gain is K = 5mV=pC.

R
+

–

x(t)

C

vO(t)

+

–

q(t)

FIGURE P6–68

6–69 LC Circuit Response

At t = 0 the switch in Figure P6–69 is closed and thereafter
the voltage across the capacitor is

vC tð Þ = 10 + 10;000tð Þ e− 8000 t V

Use MATLAB to solve all of the following problems.
(a) Use the capacitor’s i – v characteristic to find the current

i tð Þ for t ≥ 0.
(b) Use the inductor’s i – v characteristic and i tð Þ to find vL tð Þ

for t ≥ 0.
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(c) Use vC tð Þ, vL tð Þ, and KVL to find the voltage v tð Þ deliv-
ered to the rest of the circuit.

(d) The v tð Þ found in (c) should be proportional to the i tð Þ
found in (a). If so, what is the equivalent resistance look-
ing into the rest of the circuit?

(e) On the same axes, plot vC tð Þ, vL tð Þ, and v tð Þ. Use a differ-
ent color for each waveform. Use the plots to verify KVL
for the circuit.

vC(t)

vL(t)+ +

–

–

v(t)

+

–

t = 0

Rest of
the

circuit
25 μF

2.5 mH i(t)

FIGURE P6–69

6–70 Supercapacitor

Supercapacitors have very large capacitances (typically from
0.1 to 3000 F), very long charge-holding times, and small sizes,
making them useful in nonbattery backup power applications.
To measure its capacitance, a supercapacitor is charged to
an initial voltage vO 0ð Þ = 6 V. At t = 0, the device undergoes
a constant current discharge of iD = 3mA. After 1 hour, the
voltage remaining on the capacitor is 3 V. Find the device’s
capacitance.

6–71 Analog Computer Solution

Design an OP AMP circuit that solves the following second-
order differential equation for vO tð Þ. Solve for the response
for vO(t) using Multisim. Caution: Avoid saturating the
OP AMPs by distributing the gain across several OP AMPs.

10−6d
2vO tð Þ
dt2

+ 1
2
× 10−3dvO tð Þ

dt
+ vO tð Þ= 1:5 u tð Þ

6–72 RC OP AMP Circuit Design

An upgrade to one of your company’s robotics products
requires a proportional plus integral compensator that imple-
ments the input–output relationship

vO tð Þ = vS tð Þ + 50
Z t

0

vS xð Þ dx

The input voltage vS tð Þ comes from anOPAMP, and the output
voltage vO(t) drives a 10-kΩ resistive load. Two competing
designs are shown in Figure P6–72. As the project engineer,
you are responsible for recommending one of these designs for
production. Which design would you recommend and why?
(Yourmentor, a wise senior engineer, suggests that you first check
that both designs implement the required signal-processing
function.)

Design #1 

+

+
vO(t)

+

–
vS(t)

+

–
20 kΩ

10 kΩ

10 kΩ

10 kΩ10 kΩ

1 μF

Design #2

+

–

+
vO(t)

50 kΩ 0.4 μF

+
vS(t)

FIGURE P6–72

6–73 Tunable Capacitor

In Section 6–1, Figure 6–2(c) shows an air-tunable capacitor as
one example of the capacitor types. This type of device can vary
its capacitance similar to how a potentiometer can vary its resist-
ance. Changing the capacitance in a circuit can change the fre-
quency at which it operates. Suppose we are given the circuit in
Figure P6–73 with a capacitor connected in parallel with an
inductor. There are no other devices in the circuit. The capac-
itor has an initial voltage vC 0ð Þ = V0 V and the inductor’s initial
current is iL 0ð Þ = 0A.

vC(t)
+

–

C L

FIGURE P6–73

The differential equation for the voltage across the capacitor in
this circuit is given by

d2vC tð Þ
dt2

+
1
LC

vC tð Þ=0

We will learn more about solving this type of differential equa-
tion in the next chapter and beyond. The solution to this differ-
ential equation is

vC tð Þ=V0cos
tffiffiffiffiffiffiffi
LC

p
� �

, t ≥ 0

307INTEGRATING PROBLEMS



UsingMATLAB,plotonasemi-logscale (logarithmiconthehor-
izontal and linear on the vertical) the radian frequency of vC tð Þ
versus the capacitance of the circuit. Use capacitances scaled
logarithmically from 0:001 to 1 μF. In a separate MATLAB fig-
ure, use the subplot command to plot vC(t) versus time for
C = 0:001 μF, 0:01 μF, 0:1 μF, and 1 μF. Using the plots you cre-
ated and your knowledge of how a capacitor stores charge,
explain why changing the capacitance of a parallel LC circuit
changes the frequency at which it oscillates.

6–74 Equivalent Capacitance Bridge

Find the equivalent capacitance of the capacitance bridge
shown in Figure P6–74. (Hint: Use Node Analysis.)

C

C C

C
C

CEQ

FIGURE P6–74

6–75 Air-Coil Inductor Design

In a particular radio frequency (RF) application, you determine
there is a need for a small inductor of 150 μH and rather than
trying to order one and wait for it to arrive, you decide to wind
it yourself. The applicable equation is

L=
r2N2

9r + 10l

where L is the inductance in μH, r is the radius of the coil in
inches, l is the length of the coil in inches, andN is the number
of turns. A maximum length of 1 inch and a maximum coil
diameter of 0.25 inches are required in order to fit in the space
available. You have both 45-gauge and 50-gauge wires that
are 0.0028 and 0.001 inches in diameter, respectively, but
the thinner wire is difficult to wind without breaking. Design
your coil.
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C H A P T E R 7 FIRST- AND SECOND-
ORDER CIRCUITS

When a mathematician engaged in investigating physical actions and results has arrived at his own conclusions, may they not be expressed in
common language as fully, clearly and definitely as in mathematical formula? If so, would it not be a great boon to such as we to express them
so—translating them out of their hieroglyphics that we also might work upon them by experiment.

Michael Faraday, 1857,
British Physicist

Some History Behind This Chapter
Michael Faraday (1791–1867) was appointed a Fellow in the
Royal Society at age 32 and was a lecturer at the Royal Insti-
tution in London for more than 50 years. During this time he
published over 150 papers on chemistry and electricity. The
most important of these papers was the series Experimental
Researches in Electricity, which included a description of
his discovery of magnetic induction. A gifted experimental-
ist, Faraday apparently felt that mathematics obscured the
physical truths he discovered through experimentation.

Why This Chapter Is Important Today
OK, this is a tough chapter. It concentrates on the classical
methods of finding the transient response of circuits contain-
ing resistors, capacitors, and inductors. Mathematically this
requires us to solve first- and second-order differential equa-
tions. These solutions help us understand applications such
as timing circuits and digital gate delays. It is important to
understand first- and second-order transients because we will
revisit these concepts frequently in subsequent chapters.

Chapter Sections
7–1 RC and RL Circuits
7–2 First-Order Circuit Step Response
7–3 Initial and Final Conditions
7–4 First-Order Circuit Response to Exponential

and Sinusoidal Inputs
7–5 The Series RLC Circuit
7–6 The Parallel RLC Circuit
7–7 Second-Order Circuit Step Response

Chapter Learning Objectives
7-1 First-order Circuit Analysis (Sects. 7–1 to 7–4)

Given a first-order RC or RL circuit:
(a) Find the circuit differential equation, the circuit time

constant, and the initial conditions (if not given).
(b) Find the zero-input response.
(c) Find the complete response for step function, expo-

nential, and sinusoidal inputs.

7-2 First-order Circuit Design (Sects. 7–1 to 7–4)

Given responses in a first-order RC or RL circuit:
(a) Find the circuit parameters or other responses.
(b) Design a circuit to produce the given responses.

7-3 Second-order Circuit Analysis (Sects. 7–5 to 7–7)

Given a second-order circuit:
(a) Find the circuit differential equation.
(b) Find the circuit natural frequencies and the initial

conditions (if not given).
(c) Find the zero-input response.
(d) Find the complete response for a step function input.

7-4 Second-order Circuit Design (Sects. 7–5 to 7–7)

Given responses in a second-order RLC circuit:
(a) Find the circuit parameters or other responses.
(b) Design a circuit to produce the given responses.
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7–1 R C A N D R L C I R C U I T S
The flow diagram in Figure 7–1 shows the twomajor steps in the analysis of a dynamic
circuit. In the first step we use device and connection equations to formulate a dif-
ferential equation describing the circuit. In the second step we solve the differential
equation to find the circuit response. In this chapter we examine basic methods of
formulating circuit differential equations and the time-honored, classical methods
of solving for responses. Solving for the responses of simple dynamic circuits gives
us insight into the physical behavior of the basic circuit modules of the more complex
networks in subsequent chapters. This insight will help us correlate circuit behavior
with the results obtained by other methods of dynamic circuit analysis. There are sev-
eral other treatments for solving dynamic circuits—each with its own advantages and
disadvantages. We will look at phasor circuit analysis in the next chapter and return
to it in Chapters 15, 16, and 17. A good deal of our study will involve the use of the
Laplace transform methods beginning in Chapter 9 through Chapter 12, and again in
Chapters 14 and 15. InWebAppendix C, we will take a brief look into circuit analysis
using Fourier transforms.

F O R M U L A T I N G R C A N D R L C I R C U I T E Q U A T I O N S

RC and RL circuits contain linear resistors and a single equivalent capacitor or
inductor. Figure 7–2 shows how we can divide RC and RL circuits into two parts:
(1) the dynamic element and (2) the rest of the circuit, containing only linear resistors
and sources. To formulate the equation governing either of these circuits, we replace
the resistors and sources by their Thévenin or Norton equivalents shown in
Figure 7–2.

Dealing first with the seriesRC circuit in Figure 7–2(a), we note that the Thévenin
equivalent source is governed by the KVL constraint

RTiðtÞ+ υðtÞ= υTðtÞ (7–1)

Begin

Linear
circuit

Differential
equation

End

Response
waveform

Classical
techniques

FIGURE 7–1 Flow diagram for
dynamic circuit analysis.

+

–

v(t)

i(t)

C
Resistors

and
sources

+

−

v(t)vT(t)

RT

i(t)

+
− C

(a)

+

−

v(t)

i(t)

L

Resistors
and

sources
v(t)iN(t) RN

i(t)

L

(b)





+

−

FIGURE 7–2 First-order
circuits: (a) RC series circuit.
(b) RL parallel circuit.
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The capacitor i−υ constraint is

iðtÞ=C
dυðtÞ
dt

(7–2)

Substituting the i−υ constraint into the source constraint yields

RTC
dυðtÞ
dt

+ υðtÞ= υTðtÞ (7–3)

The unknown in Eq. (7–3) is the capacitor voltage υðtÞ that determines the amount of
energy stored in the RC circuit and is referred to as the state variable.

Mathematically, Eq. (7–3) is a first-order linear differential equation with constant
coefficients. The equation is first order because the first derivative of the dependent
variable is the highest-order derivative in the equation. The product RTC is a con-
stant coefficient because it depends on fixed circuit parameters. The signal υTðtÞ is
the Thévenin equivalent of the independent sources driving the circuit. The voltage
υTðtÞ is the input, and the capacitor voltage υðtÞ is the circuit response.

The Norton equivalent source in the RL parallel circuit in Figure 7–2(b) is gov-
erned by the KCL constraint

υðtÞ
RN

+ iðtÞ= iNðtÞ (7–4)

The element constraint for the inductor can be written as

υðtÞ=L
diðtÞ
dt

(7–5)

Combining the element and source constraints we get the differential equation for
the RL circuit:

L
RN

diðtÞ
dt

+ iðtÞ= iNðtÞ (7–6)

The response of the RL circuit is also governed by a first-order linear differential
equation with constant coefficients. The dependent variable in Eq. (7–6) is the induc-
tor current. The circuit parameters enter as the constant ratio L=RN, and the driving
forces are represented by a Norton equivalent current iNðtÞ. The unknown in
Eq. (7–6) is the inductor current iðtÞ. This current determines the amount of energy
stored in the RL circuit and is referred to as the state variable.

The state variables in first-order circuits are the capacitor voltage in theRC circuit
and the inductor current in theRL circuit. As wewill see, these state variables contain
sufficient information about the past to determine future circuit responses.

We observe that Eqs. (7–3) and (7–6) have the same form. In fact, interchanging
the quantities

RT $GN =
1
RN

C$L υ$ i υT $ iN series$ parallel

converts one equation into the other. This interchange is another example of the prin-
ciple of duality. Because of duality we do not need to study theRC andRL circuits as
independent problems. Everything we learn by solving the RC circuit, for example,
can be applied to the RL circuit as well.

We refer to the RC and RL circuits as first-order circuits because they are
described by a first-order differential equation. The first-order differential equations
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in Eqs. (7–3) and (7–6) describe generalRC andRL circuits shown in Figure 7–2.Any
circuit containing a single uncombinable capacitor or inductor and linear resistors
and sources is a first-order circuit.

Z E R O - I N P U T R E S P O N S E O F F I R S T - O R D E R C I R C U I T S
The response of a first-order circuit is found by solving the circuit differential equa-
tion. For the RC circuit the response υðtÞ must satisfy the differential equation in
Eq. (7–3) and the initial condition υð0Þ. By examining Eq. (7–3) we see that the
response depends on three factors:

1. The inputs driving the circuit υTðtÞ
2. The values of the circuit parameters RT and C

3. The value of υðtÞ at t = 0 (i.e., the initial condition)

The first two factors apply to any linear circuit, including resistance circuits. The
third factor relates to the initial energy stored in the circuit. The initial energy can
cause the circuit to have a nonzero response even when the input υTðtÞ= 0 for t ≥ 0.
The existence of a response with no input is something new in our study of linear
circuits.

To explore this discovery we find the zero-input response. Setting all independent
sources in Figure 7–2 to zero makes υTðtÞ= 0 in Eq. (7–3):

RTC
dυðtÞ
dt

+ υðtÞ= 0 (7–7)

Mathematically, Eq. (7–7) is a homogeneous equation because the right side is zero.
The classical approach to solving a linear homogeneous differential equation is to try
a solution in the form of an exponential

υðtÞ=Kest (7–8)

where K and s are constants to be determined.
The form of the homogeneous equation suggests an exponential solution for the

following reasons. Equation (7–7) requires that υðtÞ plus RTC times its derivative
must add to zero for all time t ≥ 0. This can only occur if υðtÞ and its derivative have
the same form. In Chapter 5 we saw that an exponential signal and its derivative are
both of the form e− t=TC . Furthermore, empirical observations of the physical behavior
of such circuits suggest an exponential response. Therefore, the exponential is a log-
ical starting place.

If Eq. (7–8) is indeed a solution, then it must satisfy the differential equation in
Eq. (7–7). Substituting the trial solution into Eq. (7–7) yields

RTCKsest +Kest = 0

or

KestðRTCs+ 1Þ= 0

The exponential function est cannot be zero for all t. The condition K = 0 is a trivial
solution because it implies that υðtÞ is zero for all time t. The only nontrivial way to
satisfy the equation involves the condition

RTCs+ 1= 0 (7–9)
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Equation (7–9) is the circuit characteristic equation because its root determines the
attributes of υðtÞ. The characteristic equation has a single root at s= −1=RTC, so the
zero-input response of the RC circuit has the form

υðtÞ=Ke− t=RTC t ≥ 0

The constantK can be evaluated using the value of υðtÞ at t = 0. Using the notation
υð0Þ=V0 yields

υð0Þ=Ke0 =K =V0

The final form of the zero-input response is

υðtÞ=V0e− t=RTC t ≥ 0 (7–10)

The zero-input response of the RC circuit is the familiar exponential waveform
shown in Figure 7–3. At t = 0 the exponential response starts out at υð0Þ=V0 and then
decays to zero as t! ∞ . The time constant TC =RTC depends only on fixed circuit
parameters. From our study of the exponential signals in Chapter 5, we know that the
υðtÞ decays to about 36.8% of its initial amplitude in one time constant and to essen-
tially zero after about five time constants. The zero-input response of theRC circuit is
determined by two quantities: (1) the circuit time constant and (2) the value of the
capacitor voltage at t = 0.

Let us now look at the behavior of an RL circuit and compare it to the RC circuit
just studied.

The zero-input response of the RL circuit in Figure 7–2(b) is found by setting the
Norton current iNðtÞ= 0 in Eq. (7–6).

L
RN

diðtÞ
dt

+ iðtÞ= 0 (7–11)

The unknown in this homogeneous differential equation is the inductor current iðtÞ.
Equation (7–11) has the same form as the homogeneous equation for the RC circuit,
which suggests a trial solution of the form

iðtÞ=Kest

where K and s are constants to be determined. Substituting the trial solution into
Eq. (7–11) yields the RL circuit characteristic equation

L
RN

s+ 1= 0 (7–12)

RTC0 2RTC 3RTC 4RTC 5RTC
t0

0.368V0

V0

v(t)

+

−

v(t) v(0) = V0vT(t) = 0

RT

i(t)

C

−

+

FIGURE 7–3 First-order RC
circuit zero-input response.
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The root of this equation is s= −RN=L. Denoting the initial value of the inductor cur-
rent by I0, we evaluate the constant K:

ið0Þ= I0 =Ke0 =K

The final form of the zero-input response of the RL circuit is

i tð Þ= I0e−RNt=L t ≥ 0 (7–13)

For the RL circuit the zero-input response of the state variable iðtÞ is an exponen-
tial function with a time constant of TC =GNL=L=RN =L=RT. This response con-
nects the initial state ið0Þ= I0 with the final state ið∞Þ= 0.

The zero-input responses in Eqs. (7–10) and (7–13) show the duality between first-
order RC and RL circuits. These results point out that the zero-input response in a
first-order circuit depends on two quantities: (1) the circuit time constant and (2) the
value of the state variable at t = 0. Capacitor voltage and inductor current are called
state variables because they determine the amount of energy stored in the circuit at
any time t. The following examples show that the zero-input response of the state
variable provides enough information to determine the zero-input response of every
other voltage and current in the circuit.

But first, let us find the time constants of RC or RL circuits.

E X A M P L E 7–1

Find the time constants for circuits C1 and C2 in Figure 7–4.

SOLUTION:
Circuit C1 has three resistors and a single inductor. The question one should ask is,
“What is the equivalent or Norton resistance that the inductor sees?” The time con-
stant then will beL=REQ. In this example, the inductor “sees” two resistorsR1 andR2

in parallel and that combination in series with R3. Therefore, REQ is
R1R2

R1 +R2
+R3.

Hence, the time constant is

TC =
L

REQ
=

L
R1R2

R1 +R2
+R3

=
LðR1 +R2Þ

R1R2 +R3R1 +R3R2
s

Circuit C2 has two capacitors that can be combined into one equivalent capacitor and
two resistors in parallel that can also be combined. The time constant for an RC cir-

cuit is REQCEQ. For this circuit we have CEQ =
C1C2

C1 +C2
, and the equivalent resistance

that CEQ sees is REQ =
R1R2

R1 +R2
. Therefore, the time constant is

TC =REQCEQ =
R1R2

R1 +R2

� �
C1C2

C1 +C2

� �
s

■

E x e r c i s e 7–1
Find the time constant TC for circuit C3 in Figure 7–4.

A n s w e r:
TC =

L1L2

ðL1 +L2ÞðR1 +R2Þs

R1

R1

R2

C1 C2

C2

L1

R2 L2

C3

R3

L

C1

R1 R2

FIGURE 7–4
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E X A M P L E 7–2

The switch in Figure 7–5(a) closes at t = 0, connecting a 1-μF capacitor with 10 V ini-
tially stored across it to two resistors in series. Find the responses vCðtÞ and iðtÞ for
t ≥ 0. Write an equation for the power pRðtÞ absorbed by the equivalent resistance.
Validate your answers using Multisim.

SOLUTION:
The solution involves the zero-input response of an RC circuit since the only energy
in the circuit is the voltage stored on the capacitor at t = 0. To start this solution, we
must first determine the circuit time constant after the switch closes. The equivalent
resistance seen by the capacitor is

REQ = 100 kΩ+ 200 kΩ= 300 kΩ

For t ≥ 0, the time constant is

TC =RTC =REQC = 300 kΩ× 1 μ= 0:3 s

The initial capacitor voltage isV0 = 10 V.Using Eq. (7–10), the zero-input response of
the capacitor voltage is

vCðtÞ= 10e− t=0:3 = 10e−3:33t V t ≥ 0

This result allows us to readily find the current iðtÞ, since once the switch closes we
have a series circuit. The current, then, is found by calculating the current through the
capacitor using the capacitor’s i−v relationship

iðtÞ= iCðtÞ=C
dvCðtÞ
dt

= 1× 10−6d 10e−3:33t
� �

dt
= −33:3e−3:33t μA

The minus sign tells us that the current is opposite of the referenced direction and is
actually flowing out of the capacitor.

The power absorbed by the equivalent resistance can be found as follows:

pRðtÞ= i2RREQ = −33:3 × 10−6e−3:33t
� �2

300 kΩÞ= 333e−6:66t μW
�

Notice the analysis pattern. We first determine the zero-input response of the capac-
itor voltage. The state variable response together with resistance circuit analysis tech-
niques was then used to find the current. The circuit time constant and the value of
the state variable at t = 0 provide enough information to determine the zero-input
response of every voltage or current in the circuit.

Simulating the behavior of the circuit inMultisim will help drive home the fact that
there are responses in the circuit with the only energy source being the voltage stored
in the capacitor at t = 0.

Figure 7–5(b) is the circuit drawn in Multisim. We have placed 10 V on the capac-
itor as its initial condition. We then simulated the circuit using a transient analysis,
being certain to tell the analysis to use the user-defined initial conditions.
Figure 7–5(c) shows the plots of the capacitor voltage vC(t) and the circuit current
i(t) for t ≥ 0. From the plot we can see that the voltage across the capacitor starts
at 10 V and then exponentially decays to zero. The current in the circuit is at its
maximum magnitude at t = 0 and then decays to zero with the same time constant
of 300 ms as the capacitor’s voltage response.

To simulate the power dissipated in the resistors, we needed to create our
ownoutput expression.We created P(R1) + P(R2).We also included the power deliv-
ered by the capacitor P(C1) and plotted both curves together in Figure 7–5(d).We can
see from the plot that the power absorbed by the resistors exactly matches that deliv-
ered by the capacitor (note that the power is negative for the capacitor and positive for

(b)

R2

200 kΩ

C1

1.0 μF
IC = 10.0 V

R1
2

100 kΩ

FIGURE 7–5

100 kΩ

200 kΩ

REQ

10 V

1 μF

i(t) vC(t)
+

–

+

–

t=0

(a)

FIGURE 7–5
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the resistors). Also note that the time constant for the power is 150ms, which is half of
that for the current and voltage. All of the answers have been validated. ■

E x e r c i s e 7–2
The switch in Figure 7–6 closes at t = 0. For t ≥ 0 the current through the resistor
is iRðtÞ= e−100t mA.

(a) What is the capacitor voltage at t = 0?
(b) Write an equation for υðtÞ for t ≥ 0.
(c) Write an equation for the power absorbed by the resistor for t ≥ 0.
(d) How much energy does the resistor dissipate for t ≥ 0?
(e) How much energy is stored in the capacitor at t =0?

A n s w e r s:
(a) 10 V
(b) υðtÞ=10e−100t V
(c) pRðtÞ= 10e−200t mW
(d) 50 μJ
(e) 50 μJ

E X A M P L E 7–3

Find the response of the state variable of the RL circuit in Figure 7–7
using L1 = 10 mH,L2 = 30mH,R1 = 2 kΩ,R2 = 6 kΩ, and iLð0Þ= 100 mA.

SOLUTION:
The inductors are connected in series and can be replaced by an equivalent
inductor

LEQ =L1 +L2 = 10 + 30 = 40 mH

Likewise, the resistors are connected in parallel and the resistance seen by LEQ is

REQ =
R1R2

R1 +R2
= 1:5 kΩ

Figure 7–7 shows the resulting equivalent circuit. The interface signals υðtÞ and iðtÞ
are the voltage across and current through LEQ =L1 +L2. The time constant of
the equivalent RL circuit is

TC =
LEQ

REQ
=
0:04
1500

= 26:6 μs =
1

37;500
s

R2R1

Given circuit

iL(0)

L1

i(t)

Equivalent circuit

L2

L1 + L2

+

−

v(t)
R1R2

R1 + R2

FIGURE 7–7
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The initial current through LEQ is iLð0Þ= 0:1 A. Using Eq. (7–13) with I0 = 0:1 yields
the zero-state response of the inductor current.

iðtÞ= 0:1e−37;500t A t ≥ 0

Given the state variable response, we can find every other response in the original
circuit. For example, by KCL and current division the current through R1 is

iR1ðtÞ=
R2

R1 +R2
iðtÞ= 0:75 e−37;500t A t ≥ 0 ■

E x e r c i s e 7–3
Find the current through R2 and the power dissipated in R1 in Example 7–3.

A n s w e r s: iR2ðtÞ=
R1

R1 +R2
iðtÞ= 25 e−37;500t mA t ≥ 0

pR1 tð Þ= iR1 tð Þð Þ2 ×R1 = 0:075 e−37;500t
� �2

× 2000 = 11:25 e−75;000t W t ≥ 0

Example 7–3 illustrates an important point. The RL circuit in Figure 7–7 is a first-
order circuit even though it contains two inductors. The two inductors are connected
in series and can be replaced by a single equivalent inductor. In general, capacitors or
inductors in series and parallel can be replaced by a single equivalent element. Thus,
any circuit containing the equivalent of a single inductor or a single capacitor is a first-
order circuit.

E X A M P L E 7–4

The switch in Figure 7–8 is closed at t = 0, connecting a capacitor with
an initial voltage of 30 V to the resistances shown. Find the responses
υCðtÞ, iðtÞ, i1ðtÞ, and i2ðtÞ for t ≥ 0.

SOLUTION:
This problem involves the zero-input response of an RC circuit since
there is no independent source in the circuit. To find the required
responses, we first determine the circuit time constant with the switch
closed (t ≥ 0). The equivalent or Thévenin resistance seen by the
capacitor is

REQ = 10 k+ ð20 kjj20 kÞ= 20 kΩ

For t ≥ 0 the circuit time constant is

TC =RTC = 20 × 103 × 0:5× 106 = 10 ms

The initial capacitor voltage is given by V0 = 30 V. Using Eq. (7–10), the zero-input
response of the capacitor voltage is

υCðtÞ= 30e−100t V t ≥ 0

The capacitor voltage provides the information needed to solve for all other zero-
input responses. The current iðtÞ through the capacitor is

i tð Þ = C
dυC tð Þ
dt

= 0:5 × 10−6� �
30ð Þ −100ð Þe−100t

= −1:5e−100t mA t ≥ 0

The minus sign means that the actual current, shown in Figure 7–8, is opposite the
referenced direction. The capacitor is delivering power to the resistors in a manner

t = 0

20 kΩ 20 kΩ

i2(t)i1(t)i(t)

10 kΩ

30 V

0.5 μF

REQ

+

−

+

−
vC(t)

FIGURE 7–8
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similar to an exponentially decaying source. We can use current division to find the
other currents.

i1 tð Þ= i2 tð Þ= 20 k
20 k+ 20 k

i tð Þ= −0:75 e−100e mA t ≥ 0 ■

E x e r c i s e 7–4
The switch in the RL circuit of Figure 7–9(a) moves instantly from position A to position
B at t = 0. If the current flowing through the inductor at t =0 is 1 mA, how long after the
switch moves to position B does it take for the voltage across the resistor to reach
−5 V? Validate your answer using Multisim.

A n s w e r s: υR tð Þ= −5 V at t = 6:93 μs. See Figure 7–9(b) for the Multisim results.

Sometimes it may be difficult to determine the Thévenin or Norton equivalent
seen by the dynamic element in a first-order circuit. In such cases we use other circuit
analysis techniques to derive the differential equation in terms of a more convenient
signal variable. For example, the OP AMP RC circuit in Figure 7–10 is a first-order
circuit because it contains a single capacitor.

From previous experience we know that the key to analyzing an inverting OP
AMP circuit is to write a KCL equation at the inverting input. The sum of currents
entering the inverting input is

1
R1

υS tð Þ−υN tð Þð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

i1 tð Þ

+
1
R2

υO tð Þ−υN tð Þð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

i2 tð Þ

+C
d υO tð Þ−υN tð Þð Þ

dt|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
iC tð Þ

− iNðtÞ= 0

The element equations for the OP AMP are iN tð Þ= 0 and υN tð Þ= υP tð Þ. However, the
noninverting input is grounded; hence υN tð Þ= υP tð Þ= 0. Substituting the OPAMP ele-
ment constraints into the KCL constraint yields

υS tð Þ
R1

+
υO tð Þ
R2

+C
dυO tð Þ
dt

= 0

which can be rearranged in standard form as

R2C
dυO tð Þ
dt

+ υOðtÞ= −
R2

R1
υSðtÞ (7–14)

t=0
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FIGURE 7–10 First-order OP
AMP RC circuit.
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The unknown in Eq. (7–14) is the OP AMP output voltage rather than the capacitor
voltage. The form of the differential equation indicates that the circuit time constant
is TC =R2C.

E X A M P L E 7–5

UseMultisim to analyze the zero-input transient behavior of the first-order OPAMP
RC circuit shown in Figure 7–10, whenC = 1 μF,R1 =R2 = 200 kΩ, and vC 0ð Þ= −10 V.
Find the responses vO tð Þ, iR1 tð Þ, iR2 tð Þ, and iC tð Þ for t≥ 0. Display your results on one
Grapher View plot.

SOLUTION:
The solution involves zero-input responses; hence, in drawing our circuit inMultisim,
we set the input of Figure 7–10 to zero (a short), set the capacitor’s initial condition to
10 V, which yields the correct sign for vC 0ð Þ= −10 V, and draw the rest of the circuit
as shown in Figure 7–11(a).

The current throughR1 is instantly found since one end of the resistor is connected
to ground via the shorted source and the second is connected to vN tð Þ, which, by the
element equation for the OP AMP equals vP tð Þ, and in this case is connected to
ground. This forces the voltage across R1 to be equal to zero and, therefore, the cur-
rent through it is always zero. We will not plot this current since it will be a straight
line at zero.

In simulating the rest of the circuit we ask Multisim to perform a transient
analysis being certain to set the initial conditions to “user-defined.” Since the
time constant for this circuit is R2C, we calculate TC = 200 k× 1 μ= 0:2 s. We would
like to display at least five time constants, so we set the “Start time” to zero and
the “End time” to 1:0 s. We will let Multisim set the remaining two parameters
automatically. Next, we need to tell Multisim which parameters we want it to
calculate and display. We select the three desired outputs I(C1), I(R2), and
V(2), the last being the OP AMP output vO tð Þ, and move them from the “Variables
in circuit” column to the “Selected variables for analysis” column. We then click on
“Simulate.”

The Grapher View opens and the output voltage plot is readily visible, but the
current plots appear as a straight line at zero.We need to separate the plots to display
them on the same graph. Click on “Graph” and open the “Properties.” Open
“Traces” and select trace 1 under “Trace ID”; this should be the voltage trace. Under
the “Y-vertical axis” select “Left axis.” Then under “Trace ID” select 2, one of the
current traces, and then under the “Y-vertical axis” select “Right axis.”Do the same
for the second current trace. This will have the Grapher View plot the voltage
trace against the left voltage axis and the two current traces against the right current
axis. Nowwe will need to adjust the left, right, and bottom axes. On the left axis, label
the axis “Voltage (V)” and choose a large font (e.g., 24 pts). Ensure that the “Axis”
box is “enabled” (it should be by default) and the “Scale” “Linear.” Set the range
from −10 to 0 (V), and then set the “Total ticks” to 10 and “Minor ticks” to 2. This
will display 10 grid lines, but label only every other line. On the bottom axis, label the
axis “Time (s)” and again choose a large font. Set the range from 0 to 1 (s) (so as to
display five time constants). Ensure that the “Axis” is “enabled” and the “Scale”
“Linear.” Again set the “Total ticks” to 10 and “Minor ticks” to 2. Finally, on the
right axis, label the axis “Current (A)” and select a large font. Under “Axis” you
need to check the box titled “Enabled.” This box was already checked on the previ-
ous axes by default. Set the Scale to “Linear” like the others. The range is set by not-
ing that at t = 0, the −10 V across the capacitor is also acrossR2. We can compute that
the extreme current through R2 will be −10
200 k = −50 μA. Since the current
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through the capacitor will be the same as through R2 but opposite in sign, set the
range from −50 μs −5e−005

� �
to + 50 μs 5e−005

� �
. Finally, set the “Total ticks” to

10 and “Minor ticks” to 1, so as to display all of the gridline values. You can then
adjust the weight of the grid lines, the axes, the font size of the axes, the title,
as you see fit. Our result is shown in Figure 7–11(b). The output voltage goes
from −10 V to zero, while the capacitor current goes from +50 μA to zero and the
resistor current varies from −50 μA to zero. All the time constants are the same.
The power associated with the capacitor is always negative, which indicates that it
is delivering power to the rest of the circuit. ■

E x e r c i s e 7–5
A 100-mH inductor and two resistors are all connected in parallel. One resistor is 100Ω and
the second is 470Ω. At time t = 0, the inductor has 100 mA flowing through it. UseMultisim
to calculate a transient plot of the current through the inductor and through each resistor
for t ≥ 0.

A n s w e r s: The Grapher View in Figure 7–12 shows the desired transient responses.
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7–2 F I R S T - O R D E R C I R C U I T S T E P R E S P O N S E

Linear circuits often are characterized by their response to certain classic signals. The
step, for example, helps characterize the circuit’s transient behavior, while the sinus-
oid helps characterize the circuit’s frequency response. This chapter deals with the
classical approach to the transient behavior of circuits. First, in this section, we will
look at the step response of first-order circuits. Next we will look at the transient
behavior from applying a sinusoid or an exponential to a first-order circuit. We will
conclude our study of transient responses by studying the zero-input and step
responses of second-order circuits.

The step response analysis we are about to undertake introduces the concepts of
forced, natural, zero-state, and zero-input responses, which appear extensively in
later chapters. Ironically, designing a circuit to meet transient response specifications
requires making compromises with respect to the circuit’s steady-state performance.
Understanding why circuits behave as they do under both transient and steady-state
excitations is essential to finding the optimum design and poses an interesting chal-
lenge for circuit designers.

Our development of the first-order step response treats theRC circuit in detail and
then summarizes the corresponding results for its dual, the RL circuit. When the
input to theRC circuit in Figure 7–13(a) is a step function, we can write the Thévenin
source as υT tð Þ=VAu tð Þ. The circuit differential equation in Eq. (7–3) becomes

RTC
dυ tð Þ
dt

+ υ tð Þ=VAu tð Þ (7–15)

The step response is a function υ tð Þ that satisfies this differential equation for t ≥ 0 and
meets the initial condition υ 0ð Þ. Since u tð Þ= 1 for t ≥ 0 we can write Eq. (7–15) as

RTC
dυ tð Þ
dt

+ υ tð Þ=VA for t ≥ 0 (7–16)

Mathematics provides a number of approaches to solving this equation, including
separation of variables and integrating factors. However, because the circuit is linear,
we chose a method that uses superposition to divide the solution for υ tð Þ into two
components:

υ tð Þ= υN tð Þ+ υF tð Þ (7–17)

The first component, υN tð Þ, is the natural response and is the general solution of
Eq. (7–16) when the input is set to zero. The natural response has its origin in
the physical characteristic of the circuit and does not depend on the form of the input.
The component υF tð Þ is the forced response and is a particular solution of Eq. (7–16)
when the input is the step function. We call this the forced response because it repre-
sents what the circuit is compelled to do by the form of the input.

Finding the natural response requires the general solution of Eq. (7–16) with the
input set to zero as follows:

RTC
dυN tð Þ
dt

+ υN tð Þ= 0 t ≥ 0

But this is the homogeneous equation that produces the zero-input response in
Eq. (7–8). Therefore, we know that the natural response takes the form

υN tð Þ=Ke− t=RTC t ≥ 0 (7–18)

This is a general solution of the homogeneous equation because it contains an arbi-
trary constantK. At this point we cannot evaluateK from the initial condition, as we

VAu(t)

RT

i(t)

+
− C

(a)

+

−

v(t)

FIGURE 7–13 (a) RC circuit
driven by a step input.
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did for the zero-input response. The initial condition applies to the total response
(natural plus forced), and we have yet to find the forced response.

Turning now to the forced response, we seek a particular solution of the equation

RTC
dυF tð Þ
dt

+ υF tð Þ=VA t ≥ 0 (7–19)

The equation requires that a linear combination of υF tð Þ and its derivative equal
a constant VA for t ≥ 0. Setting υF tð Þ=VA meets this condition since dυF=dt =
dVA=dt = 0. Substituting υF tð Þ=VA into Eq. (7–19) reduces it to the identityVA =VA.

Now combining the forced and natural responses, we obtain

υ tð Þ = υN tð Þ+ υF tð Þ
= Ke− t=RTC +VA t ≥ 0

This equation is the general solution for the step response because it satisfies
Eq. (7–16) and contains an arbitrary constantK. This constant can now be evaluated
using the initial condition. Setting t = 0 we get

υ 0ð Þ=V0 =Ke0 +VA =K +VA

The initial condition requires thatK = V0−VAð Þ. Substituting this conclusion into the
general solution yields the step response of the RC circuit.

υ tð Þ= V0−VAð Þe− t=RTC +VA t ≥ 0 (7–20)

TheRC circuit step response in Eq. (7–20) starts out at the initial conditionV0 and
is driven to a final condition VA, which is determined by the amplitude of the step
function input. That is, the initial and final values of the response are:

lim
t!0 +

υ tð Þ = V0−VAð Þe−0 +VA =V0

lim
t!∞

υ tð Þ = V0−VAð Þe−∞ +VA =VA

The path between the two end points is an exponential waveform whose time con-
stant is the circuit time constant. We know from our study of exponential signals that
the step response will reach its final value after about five time constants. In other
words, after about five time constants the natural response decays to zero and we
are left with a constant forced response caused by the step function input.

The RL circuit in Figure 7–13(b) is the dual of the RC circuit in Figure 7–13(a), so
the development of its step responses follows the same pattern discussed previously.
Briefly sketching themain steps, theNorton equivalent input is a step function IAu tð Þ,
and for t ≥ 0 the RL circuit differential equation Eq. (7–6) becomes

L
RN

di tð Þ
dt

+ i tð Þ= IA t ≥ 0 (7–21)

The solution of this equation is found by superimposing the natural and forced com-
ponents. The natural response is the solution of the homogeneous equation [right
side of Eq. (7–21) set to zero] and takes the same form as the zero-input response
found in the previous section.

iN tð Þ=Ke−RNt=L t ≥ 0

IAu(t) RN

i(t)

L

(b)

+

−

v(t)

FIGURE 7–13 (Continued) (b)
RC circuit driven by a step input.
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where K is a constant to be evaluated from the initial condition once the complete
response is known. The forced response is a particular solution of the equation

L
RN

diF tð Þ
dt

+ iF tð Þ= IA t ≥ 0

Setting iF tð Þ= IA satisfies this equation since dIA=dt = 0.
Combining the forced and natural responses, we obtain the general solution of

Eq. (7–21) in the form

i tð Þ = iN tð Þ+ iF tð Þ
= Ke−RNt=L + IA t ≥ 0

The constant K is now evaluated from the initial condition:

i 0ð Þ= I0 =Ke−0 + IA =K + IA

The initial condition requires that K = I0−IA, so the step response of the RL cir-
cuit is

i tð Þ= I0−IAð Þe−RNt=L + IA t ≥ 0 (7–22)

The RL circuit step response has the same form as the RC circuit step response in
Eq. (7–20). At t = 0 the starting value of the response is i 0ð Þ= I0, as required by the
initial condition. The final value is the forced response i ∞ð Þ= iF tð Þ= IA, since the nat-
ural response decays to zero as time increases.

A step function input to theRC orRL circuit drives the state variable from
an initial value determined by what happened prior to t = 0 to a final value
determined by the amplitude of the step function applied at t = 0. The time
needed to transition from the initial to the final value is about 5TC, where TC

is the circuit time constant. We conclude that the step response of a first-
order circuit depends on three quantities:

1. The amplitude of the step input (VA or IA)

2. The circuit time constant (RTC or L=RN)

3. The value of the state variable at t = 0 (V0 or I0)

A typical plot of a first-order response is shown in Figure 7–14. One
should realize that the initial or final conditions can be positive or negative.
The exponential plot, therefore, can go from positive to negative, positive
to positive, negative to positive (as shown on the figure), or negative to
negative.

E X A M P L E 7–6

Find the response of the RC circuit in Figure 7–15.

SOLUTION:
The circuit is first order, since the two capacitors in series can be replaced by a single
equivalent capacitor

CEQ =
1

1
C1

+
1
C2

= 0:0833 μF

The initial voltage on CEQ is the sum of the initial voltages on the original capacitors.

V0 =V01 +V02 = 5 + 10 = 15 V

0

VA or IA

V0 or I0

v(t) or i(t)

TC 2TC 3TC 4TC 5TC
t

FIGURE 7–14 Step response of a typical
first-order circuit.
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To find the Thévenin equivalent seen by CEQ, we first find the open-circuit voltage.
Disconnecting the capacitors in Figure 7–15 and using voltage division at the inter-
face yields

υT tð Þ = υOC =
R2

R1 +R2
VAu tð Þ = 10

40
100u tð Þ = 25u tð ÞV

Replacing the voltage source by a short circuit and looking to the left at the interface,
we see R1 in parallel with R2. The Thévenin resistance of this combination is

RT =
1

1
R1

+
1
R2

= 7:5 kΩ

The circuit time constant is

TC =RTCEQ = 7:5× 103
� �

8:33 × 10−8� �
=

1
1600

s

For the Thévenin equivalent circuit, the initial capacitor voltage isV0 = 15 V, the step
input is 25u tð Þ, and the time constant is 1=1600 s. Using theRC circuit step response in
Eq. (7–20) yields

υ tð Þ = 15−25ð Þe−1600t + 25

= 25−10e−1600t V t ≥ 0

The initial (t = 0) value of υðtÞ is 25−10 = 15 V, as required. The equivalent capacitor
voltage is driven to a final value of 25 V by the step input in the Thévenin equivalent
circuit. For practical purposes, υðtÞ reaches 25 V after about 5TC = 3:125 ms. ■

E x e r c i s e 7–6
Use the results from Example 7–6 and find the current through R1 in Figure 7–15 for t ≥ 0.

A n s w e r: iR1 tð Þ=2:5+ 0:33e−1600t mA t ≥ 0

E X A M P L E 7–7

Find the step response of the RL circuit in Figure 7–16(a). The initial condition
is i 0ð Þ= I0.

  R1IAu(t)

i(t)

+

−

 v(t)

  R2

  L   R1 + R2

R1IAu(t)

i(t)

+

−

v(t)   L

  R1 + R2

(a) (b)

L/RT0 2L/RT 3L/RT 4L/RT 5L/RT

t0

I0

i(t)

(c)

R1IA

R1+R2

FIGURE 7–16

324 C H A P T E R 7 FIRST- AND SECOND-ORDER CIRCUITS



SOLUTION:
We first find theNorton equivalent to the left of the interface. By current division, the
short-circuit current at the interface is

iSC tð Þ= R1

R1 +R2
IAu tð Þ

Looking to the left at the interface with the current source off (replaced by an open
circuit), we see R1 and R2 in series producing a Norton resistance

RN =R1 +R2

The time constant of the Norton equivalent circuit in Figure 7–16(b) is

TC =
L

R1 +R2ð Þ
The natural response of the Norton equivalent circuit is

iN tð Þ=Ke− R1 +R2ð Þt=L t ≥ 0

The short-circuit current iSC tð Þ is the step function input in the Norton circuit. There-
fore, the forced response is

iF tð Þ= iSC tð Þ= R1

R1 +R2ð ÞIAu tð Þ

Superimposing the natural and forced responses yields

i tð Þ=Ke− R1 +R2ð Þt=L +
R1IA

R1 +R2
t ≥ 0

The constant K can be evaluated from the initial condition:

i 0ð Þ= I0 =K +
R1IA

R1 +R2

which requires that

K = I0−
R1IA

R1 +R2

So the circuit step response is

i tð Þ= I0−
R1IA

R1 +R2

� �
e− R1 +R2ð Þt=L +

R1IA
R1 +R2

t ≥ 0

An example of this response is shown in Figure 7–16(c). ■

E x e r c i s e 7–7
Use the results from Example 7–7 and find the voltage across the current source in
Figure 7–16(a) for t ≥ 0.

A n s w e r: υsource tð Þ=R1IA 1−
R1

R1 +R2

� �
+

R1IA
R1 +R2

−I0

� �
R1e− R1 +R2ð Þt=L V t ≥ 0

E X A M P L E 7–8

The state variable response of a first-order RC circuit for a step function input is

υC tð Þ= 20e−200t−10 V t ≥ 0
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(a) What is the circuit time constant?
(b) What is the initial voltage across the capacitor?
(c) What is the amplitude of the forced response?
(d) At what time is υC tð Þ= 0?
(e) Use MATLAB to display the state variable response and use the cursor to val-

idate the time found in part (d).

SOLUTION:

(a) The natural response of a first-order circuit is of the formKe− t=TC . Therefore, the
time constant of the given responses is TC = 1=200 = 5 ms.

(b) The initial t = 0ð Þ voltage across the capacitor is

υC 0ð Þ= 20e−0−10 = 20−10 = 10 V

(c) The natural response decays to zero, so the forced response is the final
value υC tð Þ.

υC ∞ð Þ= 20e−∞ −10 = 0−10 = −10 V

(d) The capacitor voltage must pass through zero at some intermediate time, since
the initial value is positive and the final value negative. This time is found by
setting the step response equal to zero:

20e−200t−10 = 0 or e−200t = 1=2

which yields the condition e200t = 2 or t = 1n 2=200 = 3:47ms.
(e) The following MATLAB code plots the step response. The plot and the cursor

display are shown in Figure 7–17.

clear all
t = 0:2e−6:20e−3;
vC = 20∗exp(−200∗t)−10;
plot(t,vC,’b’,’LineWidth’,3)
hold on
grid on
xlabel(’Time (s)’)
ylabel(’Voltage (V)’)

■
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E x e r c i s e 7–8
Given the first-order circuit step response

υC tð Þ=20−20e−1000t V t ≥ 0

(a) What is the amplitude of the step input?
(b) What is the circuit time constant?
(c) What is the initial value of the state variable?
(d) What is the circuit differential equation?

A n s w e r s:
(a) 20 V
(b) 1 ms
(c) 0 V
(d) 10−3dυC tð Þ=dt + υC = 20u tð Þ

E x e r c i s e 7–9
Find the solutions of the following first-order differential equations:

(a) 10−4dυC tð Þ
dt

+ υC tð Þ= −5u tð Þ υC 0ð Þ= 5 V

(b) 5 × 10−2diL tð Þ
dt

+ 2000iL tð Þ= 10u tð Þ iL 0ð Þ= −5mA

A n s w e r s:
(a) υC tð Þ= −5 + 10e−10;000t V t ≥ 0
(b) iL tð Þ=5−10e−40;000t mA t ≥ 0

Z E R O - S T A T E R E S P O N S E

Additional properties of dynamic circuit responses are revealed by rearranging
the RC and RL circuit step responses in Eqs. (7–20) and (7–22) in the following way:

RC circuit: υ tð Þ = V0e− t=RTC|fflfflfflfflfflffl{zfflfflfflfflfflffl}
zero-input response

+ VAð1−e− t=RTCÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
zero-state response

t ≥ 0

RL circuit: i tð Þ = I0e−RNt=L
zfflfflfflfflffl}|fflfflfflfflffl{

+ IA 1−e−RNt=L
� 	zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{

t ≥ 0

We recognize the first term on the right in each equation as the zero-input response
discussed in Sect. 7–1. By definition, the zero-input response occurs when the input is
zero VA = 0 or IA = 0ð Þ. The second term on the right in each equation is called the
zero-state response because this part occurs when the initial state of the circuit is zero
V0 = 0 or I0 = 0ð Þ.
The zero-state response is proportional to the amplitude of the input step

function (VA or IA). However, the total response (zero input plus zero state) is not
directly proportional to the input amplitude. When the initial state is not zero, the cir-
cuit appears to violate the proportionality property of linear circuits. However, bear in
mind that the proportionality property applies to linear circuits with only one input.

The RC and RL circuits can store energy and have memory. In effect, they
have two inputs: (1) the input that occurred before t = 0, and (2) the step function
applied at t = 0. The first input produces the initial energy state of the circuit at
t = 0, and the second causes the zero-state response for t ≥ 0. In general, for t ≥ 0,
the total response of a dynamic circuit is the sum of two responses: (1) the zero-input
response caused by the initial conditions produced by inputs applied before t = 0, and
(2) the zero-state response caused by inputs applied after t = 0.
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A P P L I C A T I O N E X A M P L E 7 – 9

The operation of a digital system is controlled by a clock waveform that provides a
standard timing reference. At its source a clock waveform can be described by a rec-
tangular pulse of the form

υS tð Þ=VA u tð Þ−u t−Tð Þ½ �

In this example the pulse amplitude is VA = 5 V and the pulse duration is T = 10 ns.
This clock pulse drives a digital device that can be modeled by the circuit in
Figure 7–18(a). In this model υS tð Þ is the rectangular clock pulse defined above
and υ tð Þ is the clock waveform as received at the input to the digital device. The pres-
ence of a clock pulse at the device input will be detected only if υ tð Þ exceeds a spe-
cified logic “1” threshold level.

Find the zero-state response of the voltage υ tð Þ when RC = 10 ns. Will the clock
pulse be detected if the logic “1” threshold level is 3.7 V?

SOLUTION:
The rectangular pulse input υSðtÞ is indicated by dashed lines in Figure 7–18(b).
The initial capacitor voltage is zero because we seek the zero-state response. The total
response can be found as the sum of the zero-state responses caused by two inputs:

1. A positive 5-V step function applied at t = 0

2. A negative 5-V step function applied at t = 10 ns

The first input causes a zero-state response of

υ1 tð Þ = VA 1−e− t=RC
� �

u tð Þ
= 5ð1−e−108tÞu tð Þ

The second input causes a zero-state response of

υ2 tð Þ = −VAð1−e− t−Tð Þ=RCÞu t−Tð Þ
= −5½1−e−108ðt−10−8Þ�uðt−10−8Þ

Notice that υ2 tð Þ= −υ1 t−Tð Þ, that is, υ2 tð Þ is obtained by inverting and delaying υ1 tð Þ
by T = 10 ns. The total response is the superposition of these two responses.

υ tð Þ= υ1 tð Þ+ υ2 tð Þ

+
− vS(t) C V0 = 0

i(t)

+

−

v(t)

R

+

−

(a)
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(b)
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FIGURE 7–18
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Figure 7–18(b) shows how the two responses combine to produce the overall
pulse response of the circuit. The response υ1 tð Þ begins at zero and eventually
reaches a final value of +5 V. At t =T = 10 ns the first response reaches υ1 Tð Þ=
5ð1−e−1Þ= 3:16 V. The second response υ2 tð Þ begins at t =T = 10 ns, and thereafter
is equal and opposite to υ1 tð Þ except that it is delayed by T = 10 ns. The net result
is that the total response reaches a maximum of υ Tð Þ= 3:16 V. In this example the
clock pulse will not be detected because the logic “1” threshold level is 3.7 V. Clock
pulse detection would be made possible by increasing the pulse duration so that
υ Tð Þ> 3:7 V. This requires that

5ð1−e−108TÞ> 3:7 V

or 1:3 > 5 e−10
8T , which yields T > 1:347 × 10−8. For the digital device in this example,

the minimum detectable clock pulse duration is about 13.5 ns. ■

E x e r c i s e 7–10
The element in Figure 7–19 is a 1-μF capacitor. The switch closes at t = 0. Find the zero-state
response of the capacitor voltage vC tð Þ for t ≥ 0.

A n s w e r: υC tð Þ= 2:5 1−e−200t
� �

V t ≥ 0

E x e r c i s e 7–11
The element in Figure 7–19 is a 1-mH inductor. The switch closes at t = 0. Find the zero-state
response of the inductor current iL tð Þ for t ≥ 0.

A n s w e r: iL tð Þ= 0:5 1−e−5Mt
� �

mA t ≥ 0

7–3 I N I T I A L A N D F I N A L C O N D I T I O N S
Reviewing the first-order step responses of the last section shows that for t ≥ 0 the
state variable responses can be written in the form

RC circuit: υC tð Þ = υC 0ð Þ−υC ∞ð Þ½ �e− t=TC + υC ∞ð Þ t ≥ 0

RL circuit: iL tð Þ = iL 0ð Þ− iL ∞ð Þ½ �e− t=TC + iL ∞ð Þ t ≥ 0
(7–23)

In both circuits the step response is of the general form

State
variable
response

=
Initial Final

value of the − value of the
state variable state variable

2
4

3
5× e− t=TC +

Final
value of the
state variable

To determine the step response of a first-order circuit, we need three quantities: the
initial value of the state variable, the final value of the state variable, and the time
constant. Since we know how to get the time constant directly from the circuit, it
would be useful to have a direct way to determine the initial and final values by
inspecting the circuit itself.

The final value can be calculated directly from the circuit by observing that for
t > 5TC the step responses approach a constant value or dc value. Under dc condi-
tions, a capacitor acts like an open circuit and an inductor acts like a short circuit.
As a result, the final value of the state variable is found by applying dc analysis meth-
ods to the circuit configuration for t > 0, with capacitors replaced by open circuits
(OC) and inductors replaced by short circuits (SC).

10 kΩ

10 kΩ

t = 0
10 kΩ

5 kΩ

iL(t)

vC(t)+ –

10 V

+

–

Element

FIGURE 7–19
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We can also use dc analysis to determine the initial value in many practical situa-
tions. A common situation is a circuit containing dc sources and a switch that is in one
position for a period of time much greater than the circuit time constant, and then is
moved to a new position at t = 0. For example, if the switch is closed for a long period
of time, then the dc sources drive the state variable to a final value. If the switch is
now opened at t = 0, then the dc sources drive the state variable to a new final con-
dition appropriate to the new circuit configuration for t > 0.

Note: The initial condition at t = 0 is the dc value of the state variable for the circuit
configuration that existed before the switch changed positions at t = 0. The switching
action cannot cause an instantaneous change in the initial condition because capac-
itor voltage and inductor current are continuous functions of time. In other words,
opening a switch at t = 0 marks the boundary between two eras. The final condition
of the state variable for the t < 0 era is the initial condition for the t > 0 era that follows.

The usual way to state a switched circuit problem is to say that a switch has been
closed (open) for a long time and then is opened (closed) at t = 0. In this context, a
long time means at least five time constants. Time constants rarely exceed a few hun-
dred milliseconds in electrical circuits, so a long time passes rather quickly.

The state variable response in switched dynamic circuits is found using the follow-
ing steps:

S T E P 1 Find the initial value by applying dc analysis to the circuit configuration for
t <0 with the capacitor (inductor) replaced with an open (short) circuit.

S T E P 2 Find the final value by applying dc analysis to the circuit configuration for t >0
with the capacitor (inductor) replaced with an open (short) circuit.

S T E P 3 Find the time constant TC of the circuit in the configuration for t > 0.

S T E P 4 Write the step response directly using Eq. (7–23) without formulating and sol-
ving the circuit differential equation.

For example, the switch in Figure 7–20(a) has been closed for a long time and is
opened at t = 0. We want to find the capacitor voltage υ tð Þ for t ≥ 0.

S T E P 1 The initial condition is found by dc analysis of the circuit configuration in
Figure 7–20(b), where the switch is closed. Using voltage division, the initial
capacitor voltage is found to be

υ 0ð Þ= R2VA

R1 +R2

S T E P 2 The final condition is found by dc analysis of the circuit configuration in
Figure 7–20(c), where the switch is open. When the switch is open the circuit
has no dc excitation, so the final value of the capacitor voltage is zero.

S T E P 3 The circuit in Figure 7–20(c) also gives us the time constant. Looking back at
the interface, we see an equivalent resistance of R2, since R1 is connected
in series with an open switch. For t ≥ 0 the time constant is R2C. Using
Eq. (7–23), the capacitor voltage for t ≥ 0 is

υ tð Þ = υ 0ð Þ−υ ∞ð Þ½ �e− t=TC + υ ∞ð Þ

=
R2VA

R1 +R2
e− t=R2C t ≥ 0

The result is a zero-input response, since there is no excitation for t ≥ 0. But now
we see how the initial condition for the zero-input response could be produced phys-
ically by opening a switch that has been closed for a long time.

To continue the analysis, we find the capacitor current using its element constraint:

i tð Þ=C
dυ tð Þ
dt

= −
VA

R1 +R2
e− t=R2C t ≥ 0

VA

t = 0

+

−

(a)

R1

R2 v(t)

+

−

C

i(t)
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+

−

(b)
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+

−
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−

(c)
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i(0) = 0

i(∞) = 0

FIGURE 7–20 Solving a
switched dynamic circuit using
the initial and final conditions.
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This is the capacitor current for t ≥ 0. For t < 0 the circuit in Figure 7–20(b) points
out that the capacitor current is zero since the capacitor acts like an open circuit.

The capacitor voltage and current responses are plotted in Figure 7–21. The capac-
itor voltage is continuous at t = 0, but the capacitor current has a jump discontinuity at
t = 0. In other words, state variables are continuous, but nonstate variables can have
discontinuities at t = 0. Since the state variable is continuous, we first find the circuit
state variable and then solve for other circuit variables using the element and connec-
tion constraints.

E X A M P L E 7–1 0

The switch in Figure 7–22(a) has been open for a long time and is closed at t = 0. Find
the inductor current for t ≥ 0.

SOLUTION:
We first find the initial condition using the circuit in Figure 7–22(b). By series equiv-
alence the initial current is

i 0ð Þ= VA

R1 +R2

The final condition and the time constant are determined from the circuit in
Figure 7–22(c). Closing the switch shorts out R2, and the final condition and time
constant for t > 0 are

i ∞ð Þ= VA

R1
and TC =

L
RN

=
L
R1

Using Eq. (7–23), the inductor current for t ≥ 0 is

i tð Þ = i 0ð Þ − i ∞ð Þ½ �e− t=TC + i ∞ð Þ

=
VA

R1 +R2
−
VA

R1

� �
e−R1t=L +

VA

R1
t ≥ 0

■

E x e r c i s e 7–12
The switch in Figure 7–22(a) has been closed for a long time. The switch opens at t = 0. Find
the inductor current for t ≥ 0.

A n s w e r: i tð Þ= VA

R1
−

VA

R1 +R2

� �
e− R1+R2ð Þt=L +

VA

R1 +R2
A t ≥ 0

VA

t = 0

+

−

(a)

R1

R2

v(t)

+

−

L

i(t)

VA v(0) = 0
+

−

(b)

R1

R2
+

−

SC

i(0)

VA v(∞) = 0
+

−

(c)

R1

R2
+

−

SC

i(∞)

FIGURE 7–22
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FIGURE 7–21 Two responses
in the RC circuit of Figure 7–20.
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E X A M P L E 7–1 1

The switch in the circuit of Figure 7–23 has been open for a long time. It closes at t = 0.
Find the current iR tð Þ for t ≥ 0.

SOLUTION:
Although the example asks for the current through the 20-kΩ resistor, it is important
that we solve for the voltage across the capacitor first, since it is the state variable. The
voltage across the capacitor is continuous whereas the current may not be. Once we
have found the state variable, we can apply the usual connection and element con-
straints to find the desired variable.

We start by finding the initial voltage across the capacitor at t = 0−, a whisker of
time before the switch is thrown. At t = 0−, the capacitor is being excited by a dc
source, hence it behaves like an open circuit. The voltage can be found using a voltage
divider

υC 0−ð Þ= 20 k+ 10 kð Þ
20 k + 20 k+ 10 k

50 = 30V

The final condition can be found similarly. At t = ∞ , the closed switch shorts out the
10-kΩ resistor. Hence, our voltage divider becomes

υC ∞ð Þ= 20 k
20 k+ 20 k

50 = 25V

Next we need to find the time constant. For anRC circuit the time constant is given as
RTC, where RT is the Thévenin resistance that the capacitor sees after the switch has
been thrown. Using the look-back method with the switch shorting out the 10-kΩ
resistor and setting the source to zero by replacing it with a short circuit, we see that
RT is

RT =
20 k× 20 k
20 k+ 20 k

= 10 kΩ

And the time constant is

TC =RTC = 10 k× 0:1 μ= 1ms

Appling these calculations to Eq. (7–23), we find the equation for the state
variable

υC tð Þ = 30−25ð Þe− t
0:001 + 25

υC tð Þ = 5e−1000t + 25 V, t ≥ 0

To find the current through the 20-kΩ resistor, we recognize that the resistor is in
parallel with the capacitor, thereby sharing the same voltage. Applying Ohm’s law
yields the desired result

iR tð Þ= υC tð Þ
R20 k

=
5e−1000t + 25

20 k
= 0:25e−1000t + 1:25mA, t ≥ 0

■

E x e r c i s e 7–13
The switch in the circuit of Figure 7–23 has been closed for a long time. It opens at t = 0. Find
the voltage υC tð Þ and the current iR tð Þ for t ≥ 0.

A n s w e r s:
υC tð Þ = −5e−833t +30 V, t ≥ 0

iR tð Þ = 0:167e−833t +1mA, t ≥ 0

20 kΩ

10 kΩ

20 kΩ

t = 0

50 V
0.1 μF

iR(t)

vC(t)+

–

+

–

FIGURE 7–23
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D E S I G N E X A M P L E 7–1 2

Design a first-order RC circuit using standard parts (see inside rear cover) that will
produce the following voltage across the capacitor: υC tð Þ= 50−100e−2000t V.

SOLUTION:
We know that the circuit will look like Figure 7–24(a). We need to select a suitable
source υS tð Þ, a switch, a resistor R, and a capacitor C.

We also know that the general form of a state-variable response is

υC tð Þ= υC 0ð Þ−υC ∞ð Þ½ �e− t=TC + υC ∞ð ÞV, t ≥ 0

Comparing the general form toour given desired response υC tð Þ= 50−100e−2000t V,
we calculate the time constant as 1=2000 = 500 μs. Hence, we want TC =RC=500 μs.
Selecting C = 0:015 μF, a standard value, yields R= 33:3 kΩ. There is an R= 33 kΩ, a
standard value that should be close enough considering the tolerances of the compo-
nents. We now must determine the initial and final voltages. Substituting t = 0 into
our desired output equation, we find our initial voltage is −50 V. Similarly, substitut-
ing t = ∞ , we find our final voltage is + 50 V. This suggests two voltages,
switching at t = 0 from −50 V to + 50 V. We can now design our circuit as shown
in Figure 7–24(b). ■

D e s i g n E x e r c i s e 7–14
Design a first-orderRL circuit that will produce the following current through the inductor:
iL tð Þ=5−5e−500t mA for t ≥ 0. Use standard values for the components.

A n s w e r: A parallel circuit consisting of a current source iS tð Þ= 5u tð ÞmA, an inductor of
2 mH, and a resistor of 1 Ω is one possible solution.

E X A M P L E 7–1 3

For t ≥ 0 the state variable response of the RL circuit in Figure 7–25(a) is
observed to be

iL tð Þ= 50 + 100e−5000t mA

(a) Identify the forced and natural components of the response.
(b) Find the circuit time constant.
(c) Find the Thévenin equivalent circuit seen by the inductor.

R

A

B

(a) (b)

C vC(t)

+

+
–

–+

–

vC(t)

+

–

vS(t) u(t)
50 V

50 V

33 kΩ

0.015 μF

t = 0

+
−

FIGURE 7–24

RT
iL(t)

200 mH

(a)

vT(t)
+
–

FIGURE 7–25
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SOLUTION:
(a) The natural component is the exponential term 100e−5000t mA. The forced com-

ponent is what remains after the natural component dies out as t! ∞ , namely,
iL ∞ð Þ= 50 mA. The forced response is a constant 50 mA, which means that the
Thévenin equivalent is a dc source.

(b) The time constant is the reciprocal of the coefficient of t in e−5000t, that is,
TC = 5000−1 = 0:2 ms.

(c) Expressed in terms of circuit parameters the time constant is TC =L=RT, which
yields the Thévenin resistance as RT =L=TC = 1 kΩ. For dc excitation the
inductor acts like a short circuit at t = ∞ . Hence, iL ∞ð Þ= υT=RT and the Thévenin
voltage is

υT tð Þ=RTiL ∞ð Þ= 1 kΩ× 50 mA=50 V ■

E x e r c i s e 7–15
Use Multisim to to find the inductor current iL tð Þ and voltage υL tð Þ for t ≥ 0 for the circuit
in Figure 7–25. (Hint: Make certain you have the direction of the inital condition correct.)

A n s w e r: See Figure 7–25(b).

E V A L U A T I O N E X A M P L E 7–1 4

The switch in Figure 7–26moves from positionA to position B at t = 0. The first-order
RC circuit in the figure must be designed to produce an output of

υO tð Þ= 5 1−e−1000t
� �

V t ≥ 0

Evaluate the two proposed circuit designs shown in the figure using the following
criteria.

(a) A design must produce the required output.
(b) If both produce the desired output, then compare part counts and use of standard values

to identify the best design.
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SOLUTION:
(a) The desired output is a first-order step response with υO 0ð Þ= 0, υO ∞ð Þ= 5 V, andTC = 1ms.

For t < 0 the switch is in position B and there is zero input; hence υO 0ð Þ= 0 for both circuits.
For t ≥ 0 the switch is in position A. The final condition υO ∞ð Þ is found using voltage divi-
sion on the circuit with the capacitors replaced by open circuits. The circuit time constant is
found using the Thévenin resistance seen by the capacitors. The final value and time con-
stant of circuit A are

Circuit A : υO ∞ð Þ= 75
150 + 75

15 = 5 V

TC =
150 × 75
150 + 75

20 × 10−6 = 10−3 s

The equivalent capacitance in circuit B is CEQ = 4+ 1 = 5 μF. The final value and time con-
stant of circuit B are

Circuit B : υO =
300

600 + 300
15 = 5 V

TC =
600 × 300
600 + 300

5 × 10−6 = 10−3 s

Both circuits produce the desired output.
(b) Circuit A uses three components: a standard 75-Ω resistor, a standard

150-Ω resistor, and a nonstandard 20-μF capacitor (see inside back
cover for standard values). Circuit B uses four components: a standard
300-Ω resistor, a nonstandard 600-Ω resistor, a standard 1-μF capacitor,
and a nonstandard 4-μF capacitor. Circuit A is a better design than
circuit B in terms of both the number of parts and the use of standard
values. ■

D e s i g n E x e r c i s e 7–18
There is a need to design an interface circuit in Figure 7–27(a) so that the
output voltage vO tð Þ across the 100-Ω load equals 10 1−e−100t

� �
V for t ≥ 0.

Use the fewest number of components possible.

A n s w e r: See Figure 7–27(b) for one possible design.
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E x e r c i s e 7–17
In the circuit in Figure 7–28 the switch has been in position A for a long time
and is moved to position B at t =0. For t ≥ 0 find the output voltage υO tð Þ.
A n s w e r: υO tð Þ= −4e−200t V

7–4 F I R S T - O R D E R C I R C U I T R E S P O N S E T O

E X P O N E N T I A L A N D S I N U S O I D A L I N P U T S
A myriad of different signals can excite linear circuits. As we develop our under-
standing of circuit behavior, note that several signals provide important insight into
circuit behavior. Thus far, we have looked at the response of first-order circuits to
step functions and developed analysis techniques that are quick and methodical.
We will now look at the transient response of first-order circuits to two different,
common, and useful signals: the exponential and the sinusoid. In later chapters,
we will learn other techniques to analyze these and more complex circuits; however,
knowing the classical time-domain approach shown in Figure 7–1 will make under-
standing these subsequent techniques easier.

Let us consider an RC circuit excited by a signal other than a step. If the input
signal to the RC circuit in Figure 7–29 starts at t = 0, then we can write the circuit
differential equation in Eq. (7–3) as

RTC
dυ tð Þ
dt

+ υ tð Þ= υT tð Þu tð Þ (7–24)

The u tð Þ implies that the driving signal υT tð Þ has a finite start time arbitrarily
selected as t = 0. This implies that there is an initial condition, υ 0ð Þ=V0, that will
have to satisfy Eq. (7–24).

As with the step response, we find the solution in two parts, namely, the natural
response and the forced response. The natural response is of the form

υN tð Þ=Ke− t=RTC t ≥ 0

The natural response of a first-order circuit always has this form because it is a gen-
eral solution of the homogeneous equation with the input set to zero. The form of the
natural response depends on the physical characteristics of the circuit and is inde-
pendent of the input.

The forced response υF tð Þ depends on both the circuit and the nature of the
forcing function (the input). The forced response is a particular solution of the equation

RTC
dυFðtÞ
dt

+ υFðtÞ= υTðtÞ t ≥ 0

This equation states that whatever function we pick as υF tð Þ plus RTC times the first
derivative of that same function must equal υT tð Þ. This requires that our choice
of υF tð Þ have the same form as that of the forcing function υT tð Þ. Table 7–1 shows the
formof the forcedresponse that shouldbeusedbasedon the formof the forcing function.
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+
–

+

‒

 v(t)

 v(0) = V0

FIGURE 7–29

T A B L E 7–1

FORM OF THE FORCING FUNCTION,
υTðtÞ ðt ≥ 0Þ

FORM OF THE FORCED RESPONSE,
υFðtÞ ðt ≥ 0Þ

VA KF

VAe−αt KFe−αt

VAðcos ωtÞ,VAðsin ωtÞ or
a cos ωt +b sin ωtVAðcos ωtÞ+VBðsin ωtÞ

t = 0
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E X A M P L E 7–1 5

Find the response of theRC circuit in Figure 7–29 to an exponential forcing function.
The initial capacitor voltage is υ 0ð Þ=V0.

SOLUTION:
As before, the natural response is

υNðtÞ=Ke− t=RTC t ≥ 0

The forced response to an exponential input is found using Eq. (7–24) as

RTC
dυFðtÞ
dt

+ υFðtÞ=VAe−αt t ≥ 0

where we select υFðtÞ=KFe−αt from Table 7–1. Substituting for υF tð Þ,

RTC
dKFe−αt

dt
+KFe−αt =VAe−αt t ≥ 0

Performing the differentiation gives

RTCKFð−αÞe−αt +KFe−αt =VAe−αt t ≥ 0

Canceling out the exponentials leaves

−αKFRTC +KF =VA

Solving for KF yields

KF =
VA

1−αRTC

Substituting back into our solution for the forced response and combining it with
the natural response, we get

υðtÞ = υNðtÞ+ υFðtÞ = Ke− t=RTC +
VA

1−αRTC
e−αt t ≥ 0

This leaves only the constantK from the natural response to be determined. We find
K by using the initial condition υð0Þ=V0.

υð0Þ = V0 = Ke−0=RTC +
VA

1−αRTC
e−α0

K = V0−
VA

1−αRTC

Putting it all together, we find the total solution as

υðtÞ= V0−
VA

1−αRTC

� �
e− t=RTC +

VA

1−αRTC
e−αt V t ≥ 0

The resulting waveform is the sum of two decaying exponentials. The exponential
with the longest time constant will outlast the other and is called the dominant
exponential. ■
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E x e r c i s e 7–18
The capacitor in the circuit of Figure 7–30 is in the zero state. Find the voltage across and the
current through the capacitor for t ≥ 0.

A n s w e r s:

υCðtÞ = 45:5e−1000t−45:5e−8333t V, t ≥ 0

iCðtÞ = −45:5e−1000t +379e−8333t μA, t≥ 0

E x e r c i s e 7–19
The circuit in Figure 7–29 hasRT = 100 kΩ, andC =0:1 μF, and it is driven by 10e−50t V. The
capacitor has an initial voltage of −5 V.

(a) Determine which is the dominant exponential.
(b) UseMultisim to find the transient response of the capacitor voltage. Plot the input volt-

age on the same graph.
(c) Determine the maximum voltage VMAX across the capacitor and the time at which the

maximum occurs.

A n s w e r s:
(a) The forcing function has the dominant exponential with a 20-ms time constant. The cir-

cuit’s time constant is only 10 ms and it quickly decays away, leaving only that of the
forcing function.

(b) See Figure 7–31 for the Grapher View result of the response.
(c) Using the cursor function on the Grapher View shows that the maximum voltageVMAX

is 4:02 V and occurs at 18:6 ms.

In the following discussion, we solve for the capacitor voltage in the RC circuit
of Figure 7–29 when the input source is a sinusoid. The solution follows the same
process as for the exponential input just studied. It is important to realize that the
input on the right side of Eq. (7–24) is a sinusoid that starts at t = 0 through some
action such as closing a switch. This means that there will be an initial condi-
tion υð0Þ=V0.

As before, the natural response is

υNðtÞ=Ke− t=RTC t ≥ 0
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As with the exponential input, the forced response depends on both the circuit and
the nature of the forcing function. The forced response is a particular solution of the
following differential equation:

RTC
dυFðtÞ
dt

+ υFðtÞ=VAcos ωt t ≥ 0

This equation requires that υFðtÞ plus RTC times its first derivative add to produce a
cosine function for t ≥ 0. The only way this can happen is for υFðtÞ and its derivative
to be sinusoids of the same frequency. This requirement brings to mind the derivative
property of the sinusoid. So we try a solution in the form of a general sinusoid. As noted
in Chapter 5, a general sinusoid can be written in amplitude and phase angle form as

υFðtÞ=VF cos ðωt +ϕÞ (7–25a)

or in terms of Fourier coefficients as

υFðtÞ= a cos ωt + b sin ωt (7–25b)

While either formwill work, it is somewhat easier to work with the Fourier coefficient
format. (See Table 7–1).

The approach we are using is called the method of undetermined coefficients,
where the unknown coefficients are the Fourier coefficients a and b in Eq. (7–25b).
To find these unknowns we insert the proposed forced response in Eq. (7–25b) into
the differential equation to obtain

RTC
d
dt
ða cos ωt + b sin ωtÞ+ ða cos ωt + b sin ωtÞ=VA cos ωt t ≥ 0

Performing the differentiation gives

RTCð−ωa sin ωt +ωb cos ωtÞ+ ða cos ωt + b sin ωtÞ=VA cosωt

We next gather all sine and cosine terms on one side of the equation.

RTCωb+ a−VA½ �cos ωt + −RTCωa+ b½ �sin ωt = 0

The left side of this equation is zero for all t ≥ 0 only when the coefficients of the
cosine and sine terms are identically zero. This requirement yields two linear equa-
tions in the unknown coefficients a and b:

a+ ðRTCωÞb = VA

−ðRTCωÞa+ b = 0

The solutions of these linear equations are

a=
VA

1+ ωRTCð Þ2 and b=
ωRTCVA

1+ ωRTCð Þ2
These equations express the unknowns a and b in terms of known circuit parameters
(RTC) and known input signal parameters ðω andVAÞ.

We combine the forced and natural responses as

υðtÞ=Ke− t=RTC +
VA

1+ ðωRTCÞ2
ðcos ωt +ωRTC sin ωtÞ t ≥ 0 (7–26)

The initial condition requires
υð0Þ=V0 =K +

VA

1+ ðωRTCÞ2

which means

K =V0−
VA

1+ ðωRTCÞ2
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We substitute this value of K into Eq. (7–26) to obtain the function υðtÞ that satisfies
the differential equation and the initial conditions.

υðtÞ=
�
V0−

VA

1+ ðωRTCÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
natural response

�
e− t=RTC +

VA

1+ ðωRTCÞ2
ðcosωt +ωRTC sinωtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

forced response

V t ≥ 0

This expression seems somewhat less formidable when we convert the forced
response to an amplitude and phase angle format

υðtÞ=
�
V0−

VA

1+ ðωRTCÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
natural response

�
e− t=RTC +

VAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ðωRTCÞ2

q cosðωt + θÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

forced response

V t ≥ 0
(7–27)

where

θ= tan−1ð−b=aÞ= tan−1ð−ωRTCÞ
Equation (7–27) is the complete responseof theRC circuit for an initial conditionV0

and a sinusoidal input VAcos ωt½ �uðtÞ. Several aspects of the response deserve
comment:

1. After roughly five time constants the natural response decays to zero but the
sinusoidal forced response persists.

2. The forced response is a sinusoid with the same frequency (ω) as the input
but with a different amplitude and phase angle.

3. The forced response is proportional toVA. This means that the amplitude of
the forced component has the proportionality property because the circuit is
linear.

In the terminology of electrical engineering, the forced component is called the
sinusoidal steady-state response. The words steady state may be misleading since
together they seem to imply a constant or “steady” value, whereas the forced response
is a sustained oscillation. To electrical engineers steady state means the conditions
reached after the natural response has died out. The sinusoidal steady-state response
is also called the ac steady-state response. Often the words steady state are dropped,
and it is called simply the ac response. Hereafter, ac response, sinusoidal steady-state
response, and the forced response for a sinusoidal input will be used interchangeably.

Finally, the forced response due to a step function input is called the zero-
frequency or dc steady-state response. The zero-frequency terminology means that
we think of a step function as a cosineVA cos ωt½ �u tð Þwith ω= 0. The reader can easily
show that inserting ω= 0 reduces Eq. (7–27) to the RC circuit step response in
Eq. (7–20).

E X A M P L E 7–1 6

The switch in Figure 7–32(a) has been open for a long time and is closed at t = 0. Find
the voltage υðtÞ for t ≥ 0 when υSðtÞ= 20 sin 1000t½ �uðtÞV.

SOLUTION:
We first derive the circuit differential equation. By voltage division, the Thévenin
voltage seen by the capacitor is

υTðtÞ= 4
4 + 4

υSðtÞ= 10 sin 1000t V

vS(t)
t = 0

v(t)

+

−

i(t)

+
−

4 kΩ

4 kΩ

(a)

1 μF

FIGURE 7–32
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The Thévenin resistance (switch closed and source off ) looking back into the
interface is two 4-kΩ resistors in parallel, so RT = 2 kΩ. The circuit time constant is

TC =RTC = ð2 × 103Þð1× 10−6Þ= 2× 10−3 = 1=500 s

Given the Thévenin equivalent seen by the capacitor and the circuit time constant,
the circuit differential equation is

2 × 10−3dυðtÞ
dt

+ υðtÞ= 10 sin 1000t t ≥ 0

Note that the right side of the circuit differential equation is the Thévenin voltage
υTðtÞ, not the original source input υSðtÞ. The natural response is of the form

υNðtÞ=Ke−500t t ≥ 0

The forced response with undetermined Fourier coefficients is

υFðtÞ= a cos 1000t + b sin 1000t

Substituting the forced response into the differential equation produces

2 × 10−3ð−1000a sin 1000t + 1000b cos 1000tÞ+ a cos 1000t

+ b sin 1000t = 10 sin 1000t

Collecting all sine and cosine terms on one side of this equation yields

ða+ 2bÞ cos 1000t + ð−2a+ b−10Þ sin 1000t = 0

The left side of this equation is zero for all t ≥ 0 only when the coefficient of the sine
and cosine terms vanish:

a+ 2b = 0

−2a+ b = 10

The solutions of these two linear equations are a= −4 and b= 2. We combine the
forced and natural responses

υðtÞ=Ke−500t−4 cos 1000t + 2 sin 1000t t ≥ 0

The constant K is found from the initial conditions

υð0Þ=V0 =K−4

The initial condition isV0 = 0 because with the switch open the capacitor had no input
for a long time prior to t = 0. The initial condition υð0Þ= 0 requires K = 4, so we can
now write the complete response in the form

υðtÞ= 4e−500t−4 cos 1000t + 2 sin 1000tV t ≥ 0

or, in an amplitude, phase angle format as

υðtÞ= 4e−500t + 4:47 cosð1000t + 153
� ÞV t ≥ 0

Figure 7–32(b) shows an Excel worksheet that generates plots of the natural
response, forced response, and total response. ColumnA is the time at 0.25-ms inter-
vals. Columns B and C calculate the natural response ð4e−500tÞ and the forced
response ð−4 cos 1000t + 2 sin 1000tÞ at each of the times given in columnA. The total
response in column D is the sum of the entries in columns B and C. The plots show
that the total response merges into the sinusoidal forced response since the natural
response decays to zero after about 5TC = 10 ms. That is, after about 10 ms or so the
circuit settles down to an ac steady-state condition.
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■

E x e r c i s e 7–20
Find the sinusoidal steady-state response of the output voltage υOðtÞ in Figure 7–33 when
the input current is iSðtÞ= IA cos ωt½ �uðtÞA.

A n s w e r:

υðOÞðtÞ= IAωLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

ωL
R

� �2
s cosðωt + θÞV t ≥ 0

where θ= tan−1ðR=ωLÞ. The output voltage is a sinusoid with the same frequency as the
input signal, but with a different amplitude and phase angle. In fact, in the sinusoidal steady
state every voltage and current in a linear circuit is sinusoidal with the same frequency. We
will make use of this fact in Chapter 8.

E x e r c i s e 7–21
Find the forced component solution of the differential equation

10−3 dυðtÞ
dt

+ υðtÞ= 10 cos ωt V

for the following frequencies:

(a) ω= 500 rad=s
(b) ω= 1000 rad=s
(c) ω= 2000 rad=s

(b)

FIGURE 7–32 (Continued)

iS(t) 

+

−

vO(t)t = 0 R L

i(t)

FIGURE 7–33

342 C H A P T E R 7 FIRST- AND SECOND-ORDER CIRCUITS



A n s w e r s:
(a) υFðtÞ=8 cos 500t + 4 sin 500t V t ≥ 0
(b) υFðtÞ= 5 cos 1000t + 5 sin 1000t V t ≥ 0
(c) υFðtÞ=2 cos 2000t + 4 sin 2000t V t ≥ 0

D I S C U S S I O N : Converting these answers to an amplitude and phase angle as

(a) υFðtÞ=8:94 cosð500t−26:6�ÞV t ≥ 0
(b) υFðtÞ= 7:07 cosð1000t−45�ÞV t ≥ 0
(c) υFðtÞ= 4:47 cosð2000t−63:4�ÞV t ≥ 0

we see that increasing the frequency of the input sinusoid decreases the amplitude and phase
angle of the sinusoidal steady-state output of the circuit. We will see in later chapters that this is
a low-pass filter.

E v a l u a t i o n E x e r c i s e 7 – 2 2

The RC circuit in Figure 7–29 is driven by an input vS tð Þ=10 sin 2π100 tð Þ u tð Þ and has anRT

of 47 kΩ and a C of 0:1 μF. The capacitor has an initial voltage of −20 V.

(a) Use Multisim to plot the transient output voltage v tð Þ across the capacitor. In
your plot include the input voltage and estimate when the circuit reaches steady
state.

(b) Repeat if the capacitor was 0:01 μF with the same initial condition.
(c) Study your results. In general, what would you do to permit the circuit to reach steady

state by one cycle of the output waveform?
(d) Suppose that the driving function was vS tð Þ=10 sin 2π1000 tð Þ u tð Þ. How would that

change affect how quickly the circuit reaches steady state as defined in (c)?

A n s w e r s:
(a) See Figure 7–34. For C = 0:1 μF, the circuit reaches steady state after about five time

constants or 23:5 ms.
(b) See Figure 7–34. For C = 0:01 μF, the circuit reaches steady state in about 2:35 ms.
(c) Decrease the time constant so that 5TC is approximately equal to one period of the

sinusoid.
(d) Since the periodwill be smaller by a factor of 10, the time constantwould need to be faster

by a similar amount. We could replace the capacitor with one of 0:001 μF.
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Input source Output with 0.01 μF

Transient Analysis FIGURE 7–34
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7–5 T H E S E R I E S R L C C I R C U I T
Second-order circuits contain two energy storage elements that cannot be replaced
by a single equivalent element. They are called second-order circuits because the
circuit differential equation involves the second derivative of the dependent variable.
Although there is an endless number of such circuits, in this chapter we will concen-
trate on two classical forms: (1) the series RLC circuit and (2) the parallel RLC
circuit. These two circuits illustrate almost all of the basic concepts of second-order
circuits and serve as vehicles for studying the solution of second-order differential
equations. In subsequent chapters we use Laplace transform techniques to analyze
any second-order circuit.

F O R M U L A T I N G S E R I E S R L C C I R C U I T E Q U A T I O N S

We begin with the circuit in Figure 7–35(a), where the inductor and capacitor are con-
nected in series. The source-resistor circuit can be reduced to the Thévenin equivalent
shown in Figure 7–35(b). The result is a circuit in which a voltage source, resistor, induc-
tor, and capacitor are connected in series (hence the name series RLC circuit).

The first task is to develop the equations that describe the series RLC circuit. The
Thévenin equivalent to the left of the interface in Figure 7–35(b) produces the KVL
constraint

υðtÞ+RTiðtÞ= υTðtÞ (7–28)

Applying KVL around the loop on the right side of the interface yields

υðtÞ= υLðtÞ+ υCðtÞ (7–29)

Finally, the i−υ characteristics of the inductor and capacitor are

υLðtÞ=L
diðtÞ
dt

(7–30)

iðtÞ=C
dυCðtÞ
dt

(7–31)

Equations (7–28) through (7–31) are four independent equations in four unknowns
iðtÞ, υðtÞ, υLðtÞ, υCðtÞð Þ. Collectively, this set of equations provides a complete
description of the dynamics of the series RLC circuit. To find the circuit response
using classical methods, we must derive a circuit equation containing only one of
these unknowns.

We use circuit state variables as solution variables because they are continu-
ous functions of time. In the series RLC circuit in Figure 7–35(b), there are two
state variables: (1) the capacitor voltage υCðtÞ and (2) the inductor current iðtÞ.
We first show how to describe the circuit using the capacitor voltage as the solution
variable:

To derive a single equation in υCðtÞ, we substitute Eqs. (7–29) and (7–31) into
Eq. (7–28).

υLðtÞ+ υCðtÞ+RTC
dυCðtÞ
dt

= υTðtÞ (7–32)

These substitutions eliminate the unknowns except υC and υL. To eliminate the
inductor voltage, we substitute Eq. (7–31) into Eq. (7–30) to obtain

υLðtÞ=LC
d2υCðtÞ
dt2

Substituting this result into Eq. (7–32) produces

+

−

v(t)

i(t)

C
Resistors

and
sources

+

−

v(t)vT(t)

RT

i(t)

+
−

(a)

+ −vL(t)

−

+
vC(t)

L

(b)

C

+ −vL(t)

−

+

vC(t)

L

FIGURE 7–35 The series RLC
circuit.
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LC
d2υCðtÞ
dt2

+RTC
dυCðtÞ
dt

+ υCðtÞ= υTðtÞ
υLðtÞ + υRðtÞ + υCðtÞ= υTðtÞ

(7–33)

In effect, this is a KVL equation around the loop in Figure 7–35(b), where the induc-
tor and resistor voltages have been expressed in terms of the capacitor voltage.

Equation (7–33) is a second-order linear differential equation with constant coef-
ficients. It is a second-order equation because the highest-order derivative is the sec-
ond derivative of the dependent variable υCðtÞ. The coefficients are constant because
the circuit parameters L, C, and RT do not change. The Thévenin voltage υTðtÞ is a
known driving force. The initial conditions

υCð0Þ=V0 and
dυC
dt

ð0Þ= 1
C
ið0Þ= I0

C
(7–34)

are determined by the values of the capacitor voltage and inductor current at t = 0,
V0 and I0.

In summary, the second-order differential equation in Eq. (7–33) characterizes the
response of the series RLC circuit in terms of the capacitor voltage υCðtÞ. Once
the solution υCðtÞ is found, we can solve for every other voltage or current, including
the inductor current, using the element and connection constraints in Eqs. (7–28) to (7–31).

Alternatively, we can characterize the series RLC circuit using the inductor cur-
rent. We first write the capacitor i−υ characteristics in integral form:

υCðtÞ= 1
C

Z t

0
iðxÞdx+ υCð0Þ (7–35)

Equations (7–35), (7–30), and (7–29) are inserted into the interface constraint of
Eq. (7–28) to obtain a single equation in the inductor current iðtÞ:

L
diðtÞ
dt

+
1
C

Z t

0
iðxÞdx + υCð0Þ + RTiðtÞ = υTðtÞ

υLðtÞ + υCðtÞ + υRðtÞ = υTðtÞ
(7–36)

In effect, this is a KVL equation around the loop in Figure 7–30(b), where the capac-
itor and resistor voltages have been expressed in terms of the inductor current.

Equation (7–36) is a second-order linear integrodifferential equation with con-
stant coefficients. It is second order because it involves the first derivative and the
first integral of the dependent variable iðtÞ. The coefficients are constant because
the circuit parameters L, C, and RT do not change. The Thévenin equivalent voltage
υTðtÞ is a known driving force, and the initial conditions are υCð0Þ=V0 and ið0Þ= I0.

Equations (7–33) and (7–36) involve the same basic ingredients: (1) an unknown
state variable, (2) three circuit parameters (RT,L,C), (3) a known input υTðtÞ, and (4)
two initial conditions (V0 and I0). The only difference is that one expresses the sum of
voltages around the loop in terms of the capacitor voltage, while the other uses the
inductor current. Either equation characterizes the dynamics of the series RLC cir-
cuit because once a state variable is found, every other voltage or current can be
found using the element and connection constraints.

Z E R O - I N P U T R E S P O N S E O F T H E S E R I E S R L C C I R C U I T

The circuit dynamic response for t ≥ 0 can be divided into two components: (1) the
zero-input response caused by the initial conditions and (2) the zero-state response
caused by driving forces applied after t = 0. Because the circuit is linear, we can solve
for these responses separately and superimpose them to get the total response. We
first deal with the zero-input response.
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With υTðtÞ= 0 (zero-input) Eq. (7–33) becomes

LC
d2υCðtÞ
dt2

+RTC
dvCðtÞ
dt

+ υCðtÞ= 0 (7–37)

This result is a second-order homogeneous differential equation in the capacitor volt-
age. Alternatively, we set υT = 0 in Eq. (7–36) and differentiate once to obtain the
following homogeneous differential equation in the inductor current:

LC
d2iðtÞ
dt2

+RTC
diðtÞ
dt

+ iðtÞ= 0 (7–38)

We observe that Eqs. (7–37) and (7–38) have exactly the same form except that the
dependent variables are different. The zero-input response of the capacitor voltage
and inductor current have the same general form. We do not need to study both to
understand the dynamics of the series RLC circuit. In other words, in the series RLC
circuit we can use either state variable to describe the zero-input response.

In the following discussion we will concentrate on the capacitor voltage response.
Equation (7–37) requires the capacitor voltage, plusRC times its first derivative, plus
LC times its second derivative to add to zero for all t ≥ 0. The only way this can hap-
pen is for υCðtÞ, its first derivative, and its second derivative to have the same wave-
form. No matter how many times we differentiate an exponential of the form est, we
are left with a signal with the same waveform. This observation, plus our experience
with first-order circuits, suggests that we try a solution of the form

υCðtÞ=Kest

where the parametersK and s are to be evaluated. When the trial solution is inserted
in Eq. (7–37), we obtain the condition

KestðLCs2 +RTCs+ 1Þ= 0

The function est cannot be zero for all t ≥ 0. The condition K = 0 is not allowed
because it is a trivial solution declaring that υCðtÞ is zero for all t. The only useful
way to meet the condition is to require

LCs2 +RTCs+ 1= 0 (7–39)

Equation (7–39) is the characteristic equation of the series RLC circuit. The char-
acteristic equation is a quadratic because the circuit contains two energy storage ele-
ments. Inserting Kest into the homogeneous equation of the inductor current in
Eq. (7–38) produces the same characteristic equation. Thus, Eq. (7–39) relates the
zero-input response to circuit parameters for both state variables (hence the name
characteristic equation).

In general, a quadratic characteristic equation has two roots:

s1,s2 =
−RTC�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRTCÞ2−4LC

q
2LC

(7–40)

From the form of the expression under the radical in Eq. (7–40), we see that there are
three distinct possibilities:

Case A: If ðRTCÞ2−4LC > 0, there are two real, unequal roots ðs1 =
−α1 6¼ s2 = −α2Þ.
Case B: If ðRTCÞ2−4LC = 0, there are two real, equal roots ðs1 = s2 = −αÞ.
Case C: If ðRTCÞ2−4LC < 0, there are two complex conjugate roots ðs1 =
−α− jβ and s2 = −α+ jβÞ.
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The symbol j represents the imaginary number
ffiffiffiffiffiffiffi
−1

p
.1 Before dealing with the form

of the zero-input response for each case, we consider an example.

E X A M P L E 7–1 7

A seriesRLC circuit has aC = 0:25 μF andL= 1H. Find the roots of the characteristic
equation for RT = 8:5 kΩ, 4 kΩ, and 1 kΩ.

SOLUTION:
For RT = 8:5 kΩ, the characteristic equation is

0:25 × 10−6s2 + 2:125 × 10−3s+ 1= 0

whose roots are

s1,s2 = −4250�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3750Þ2

q
= −500, −8000

These roots illustrate case A. The quantity under the radical is positive, and there are
two real, unequal roots at s1 = −500 and s2 = −8000.

For RT = 4 kΩ, the characteristic equation is

0:25 × 10−6s2 + 10−3s+ 1= 0

whose roots are

s1,s2 = −2000�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 × 106−4 × 106

p
= −2000

This is an example of case B. The quantity under the radical is zero, and there are two
real, equal roots at s1 = s2 = −2000.

For RT = 1 kΩ the characteristic equation is

0:25 × 10−6s2 + 0:25 × 10−3s+ 1= 0

whose roots are

s1,s2 = −500�500
ffiffiffiffiffiffiffiffiffi
−15

p

The quantity under the radical is negative, illustrating case C.

s1,s2 = −500� j500
ffiffiffiffiffi
15

p

In case C the two roots are complex conjugates. ■

D e s i g n E x e r c i s e 7–23
For a series RLC circuit:

(a) Find the roots of the characteristic equation when RT = 2 kΩ, L= 100mH,and
C =0:4 μF.

(b) ForL=100 mH, select the values ofRT andC so the roots of the characteristic equation
are s1,s2 = −1000� j2000.

(c) Select the values of RT,L, andC so s1 = s2 = −104.

A n s w e r s:
(a) s1 = −1340, s2 = −18;660
(b) RT = 200Ω, C = 2 μF
(c) There is no unique answer to part (c) since the requirement

1Mathematicians use the letter i to represent
ffiffiffiffiffiffiffi
−1

p
. Electrical engineers use j, since the letter i repre-

sents electric current.
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2 × 10−4s+1
� �2

= LCs2 +RTCs+ 1

= 10−8s2 + 2× 10−4s+1

gives two equations,RTC = 10−4 andLC =10−8, in three unknowns. One solution is to select
C = 1 μF, which yields L= 10mH and RT = 200Ω.

We have not introduced complex numbers simply to make things complex. Com-
plex numbers arise quite naturally in practical physical situations involving nothing
more than factoring a quadratic equation. The ability to deal with complex numbers
is essential to our study. For those who need a review of such matters, there is a con-
cise discussion in Appendix A.

F O R M O F T H E Z E R O - I N P U T R E S P O N S E

Since the characteristic equation has two roots, there are two solutions to the homo-
geneous differential equation:

υC1ðtÞ = K1es1t

υC2ðtÞ = K2es2t

That is,

LC
d2

dt2
ðK1es1tÞ+RTC

d
dt
ðK1es1tÞ+K1es1t = 0

and

LC
d2

dt2
ðK2es2tÞ+RTC

d
dt
ðK2es2tÞ+K2es2t = 0

The sum of these two solutions is also a solution since

LC
d2

dt2
ðK1es1t +K2es2tÞ+RTC

d
dt
ðK1es1t +K2es2tÞ+K1es1t +K2es2t = 0

Therefore, the general solution for the zero-input response is of the form

υC tð Þ=K1es1t +K2es2t (7–41)

The constants K1 and K2 can be found using the initial conditions given in
Eq. (7–34). At t = 0 the condition on the capacitor voltage yields

υC 0ð Þ=V0 =K1 +K2 (7–42)

To use the initial condition on the inductor current, we differentiate Eq. (7–41).

dυC tð Þ
dt

=K1s1es1t +K2s2es2t

Using Eq. (7–34) to relate the initial value of the derivative of the capacitor voltage to
the initial inductor current i 0ð Þ yields

dυC 0ð Þ
dt

=
I0
C

=K1s1 +K2s2 (7–43)

Equations (7–42) and (7–43) provide two equations in the two unknown constantsK1

and K2:

K1 +K2 = V0

s1K1 + s2K2 = I0=C
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The solutions of these equations are

K1 =
s2V0−I0=C

s2−s1
and K2 =

−s1V0 + I0=C
s2−s1

Inserting these solutions back into Eq. ((7–41) yields

υC tð Þ= s2V0−I0=C
s2−s1

es1t +
−s1V0 + I0=C

s2−s1
es1t t ≥ 0 (7–44)

Equation (7–44) is the general zero-input response of the series RLC circuit.
The response depends on two initial conditions V0 and I0, and the circuit parameters
RT, L, and C since s1 and s2 are the roots of the characteristic equation
LCs2 +RTCs+ 1= 0. The response takes on different forms depending on whether
the roots s1 and s2 fall under case A, B, or C.

For case A the two roots are real and distinct. Using the notation s1 = −α1 and
s2 = −α2, the form of the zero-input response for t ≥ 0 is

υC tð Þ= α2V0 + I0=C
α2−α1

� �
e−α1t +

−α1V0−I0=C
α2−α1

� �
e−α2t (7–45)

For case A the response is the sum of two exponential functions similar to the double
exponential signal treated in Example 7–14. The function has two time constants 1=α1
and 1=α2. The time constants can be greatly different, or nearly equal, but they cannot
be equal because we would have case B.

With case B the roots are real and equal. Using the notation s1 = s2 = −α, the gen-
eral form in Eq. (7–44) becomes

υC tð Þ= αV0 + I0=Cð Þe−αt + −αV0−I0=Cð Þe−αt
α−α

We immediately see a problem here because the denominator vanishes. However, a
closer examination reveals that the numerator vanishes as well, so the solution
reduces to the indeterminate form 0=0. To investigate the indeterminacy, we let
s1 = −α and s2 = −α+ x, and we explore the situation as x approaches zero. Inserting
s1 and s2 in this notation in Eq. (7–44) produces

υC tð Þ=V0e−αt +
−αV0−I0=C

x

� �
e−αt +

αV0 + I0=C
x

� �
e−αtext

which can be arranged in the form

υC tð Þ= e−αt V0− αV0 + I0=Cð Þ1−e
xt

x

� �
We see that the indeterminacy comes from the term 1−extð Þ=x, which reduces to 0=0
as x approaches zero. Application of l’Hôpital’s rule reveals

lim
x!0

1−ext

x
= lim

x!0

− text

1
= − t

This result removes the indeterminacy, and as x approaches zero the zero-input
response reduces to

υC tð Þ=V0e−αt + αV0 + I0=Cð Þte−αt t ≥ 0 (7–46)

For case B the response includes an exponential and the damped ramp studied in
Example 7–11. The damped ramp is required, rather than two exponentials, because
in case B the two equal roots produce the same exponential function.
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Case C produces complex conjugate roots of the form

s1 = −α− jβ and s2 = −α+ jβ

Inserting these roots into Eq. (7–44) yields

υCðtÞ= −α+ jβð ÞV0−I0=C
j2β

� �
e−αte− jβt +

α+ jβð ÞV0 + I0=C
j2β

� �
e−αtejβt

which can be arranged in the form

υCðtÞ=V0e−αt
ejβt + e− jβt

2

� �
+
αV0 + I0=C

β
e−αt

ejβt−e− jβt

j2

� �
(7–47)

The expressions within the brackets have been arranged in a special way for the
following reasons. Euler’s relationships for an imaginary exponential are written as

ejθ = cos θ+ j sin θ

and

e− jθ = cos θ− j sin θ

When we add and subtract these equations, we obtain

cos θ=
ejθ + e− jθ

2
and sin θ=

ejθ−e− jθ

2j

Comparing these expressions for sin θ and cos θwith the complex terms in Eq. (7–47)
reveals that we can write υC tð Þ in the form

υC tð Þ=V0e−αtcos βt +
αV0 + I0=C

β
e−αtsin βt t ≥ 0

For case C the response contains the damped sinusoid studied in Example 5–12. The
real part of the roots αð Þ provides the exponent coefficient in the exponential func-
tion, while the imaginary part βð Þ defines the frequency of the sinusoidal oscillation.

In summary, the roots of the characteristic equation affect the form of the zero-
input response in the following ways. In case A the two roots are real and unequal
s1 = −α1 6¼ s2 = −α2ð Þ and the zero-input response is the sum of two exponentials of
the form

υC tð Þ=K1e−α1t +K2e−α2t (7–48a)

In case B the two roots are real and equal s1 = s2 = −αð Þ and the zero-input response is
the sum of an exponential and a damped ramp.

υC tð Þ=K1e−αt +K2t e−αt (7–48b)

In case C the two roots are complex conjugates s1 = −α− jβ,s2 = −α+ jβð Þ and the
zero-input response is the sum of a damped cosine and a damped sine.

υC tð Þ=K1e−αtcos βt +K2e−αtsin βt (7–48c)

In determining the zero-input response we use the parameters s, α, and β. At var-
ious points in the development, these parameters appear in expressions such as est,
e−αt, and ejβt. Since the exponent of emust be dimensionless, the parameters s, α, and
β all have the dimensions of the reciprocal of time, or equivalently, frequency. Col-
lectively, we say that s, α, and β define the natural frequencies of the circuit. When it is
necessary to distinguish between these three parameters we say that s is the complex
frequency, α is the neper frequency, and β is the radian frequency. The importance of
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this notation will become clear as we proceed through subsequent chapters of this
book. To be consistent with expressions such as s= −α+ jβ, we specify numerical
values of s, α, and β in units of radians per second (rad/s).2

The constants K1 and K2 in Eqs. (7–48a), (7–48b), and (7–48c) are determined by
the initial conditions on two state variables, as illustrated in the following example.

E X A M P L E 7–1 8

The circuit of Figure 7–36 hasC = 0:25 μF andL= 1H. The switch has been open for a
long time and is closed at t = 0. Find the capacitor voltage for t ≥ 0 for að ÞR= 8:5 kΩ,
bð ÞR= 4 kΩ, and cð ÞR= 1 kΩ. The initial conditions are I0 = 0 andV0 = 15 V.

SOLUTION:
The roots of the characteristic equation for these three values of resistance are found
in Example 7–17.We are now in a position to use those results to find the correspond-
ing zero-input responses.

(a) In Example 7–17 the value R= 8:5 kΩ yields case A with roots s1 = −500 and
s2 = −8000. The corresponding zero-input solution takes the form in Eq. (7–48a).

υC tð Þ=K1e−500t +K2e−8000t

The initial conditions yield two equations in the constants K1 and K2:

υC 0ð Þ=V0 = 15 =K1 +K2

dvC 0ð Þ
dt

=
I0
C

= 0= −500K1−8000K2

Solving these equations yields K1 = 16 and K2 = −1, so that the zero-input
response is

υC tð Þ= 16e−500t−e−8000t V t ≥ 0

(b) In Example 7–17 the value R= 4 kΩ yields case B with roots s1 = s2 = −2000. The
zero-input response takes the form in Eq. (7–48b):

υC tð Þ=K1e−2000t +K2te−2000t

The initial conditions yield two equations in the constants K1 and K2:

υC 0ð Þ=V0 = 15 =K1

dυC 0ð Þ
dt

=
I0
C

= 0= −2000K1 +K2

Solving these equations yields K1 = 15 and K2 = 2000 × 15, so the zero-input
response is

υC tð Þ= 15e−2000t + 15 2000tð Þe−2000t V t ≥ 0

(c) In Example 7–17 the value R= 1 kΩ yields case C with roots
s1,s2 = −500� j500

ffiffiffiffiffi
15

p
. The zero-input response takes the form in Eq. (7–48c):

υC tð Þ=K1e−500tcos 500
ffiffiffiffiffi
15

p� 	
t +K2e−500tsin 500

ffiffiffiffiffi
15

p� 	
t

t = 0

R
+

−

+

−
vC(t) 15 V

C

L iL(0) = 0

FIGURE 7–36

2The term neper frequency honors the sixteenth-century mathematician John Napier, who invented
the base e or natural logarithms. The term complex frequencywas apparently first used at about 1900
by the British engineer Oliver Heaviside.
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The initial conditions yield two equations in the constants K1

and K2:

υC 0ð Þ=V0 = 15 =K1

dvC 0ð Þ
dt

=
I0
C

= 0= −500K1 + 500
ffiffiffiffiffi
15

p
K2

which yield K1 = 15 and K2 =
ffiffiffiffiffi
15

p
, so the zero-input response is

υC tð Þ= 15e−500tcos 500
ffiffiffiffiffi
15

p� 	
t

+
ffiffiffiffiffi
15

p
e−500tsin 500

ffiffiffiffiffi
15

p� 	
t V t ≥ 0

Figure 7–37 shows plots of these responses. All three responses
start out at 15 V (the initial condition) and all eventually decay to
zero. The temporal decay of the responses is caused by energy loss
in the circuit and is called damping. The case A response does not
change sign and is called the overdamped response. The case

C response undershoots and then oscillates about the final value. This response
is said to be underdamped because there is not enough damping to prevent these
oscillations. The case B response is said to be critically damped since it is a special
case at the boundary between overdamping and underdamping. ■

D e s i g n E x e r c i s e 7–24
The circuit in Figure 7–36 has C = 0:02 μF and L=100 mH. Select a value for R that will
produce the critically damped case.

A n s w e r: R=4:472 kΩ

E X A M P L E 7–1 9

In a series RLC circuit the zero-input voltage across the 1-μF capacitor is

υC tð Þ= 10e−1000tsin 2000t V t ≥ 0

(a) Find the circuit characteristic equation.
(b) Find R and L.
(c) Find iL tð Þ for t ≥ 0.
(d) Find the initial values of the state variables.

SOLUTION:
(a) The circuit is underdamped because the zero-input response is a damped sine

with α= 1000 and β= 2000 rad/s. The characteristic equation is

s+ 1000− j2000ð Þ s+ 1000 + j2000ð Þ= s2 + 2000s+ 5× 106 = 0

(b) The characteristic equation of a series RLC circuit [Eq. (7–39)] can be written as

s2 +
R
L
s+

1
LC

= 0

Comparing this term by term to the result in (a) yields the constraints

R
L
= 2000 and

1
LC

= 5× 106

Since C = 1 μF, we find that L= 0:2 H and R= 400Ω.

2 4 6 8

5

10

15

−10

−5

0

vC(t) (V)

t (ms)

Overdamped—Case A

Critically damped—Case B

Underdamped—Case C

FIGURE 7–37
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(c) In a series circuit KCL requires iL tð Þ= iC tð Þ. Hence, the inductor current is

iL tð Þ=C
dυC tð Þ
dt

= 10−6 d
dt

10e−1000tsin 2000t
� �

= −10e−1000t sin 2000t + 20e−1000t cos 2000tmA t ≥ 0
(d) By inspection, the initial values of the state variables are υC 0ð Þ= 0 and

iL 0ð Þ= 20 mA. ■

E x e r c i s e 7–25
In a series RLC circuit, R= 250Ω, L=10 mH, C = 1 μF, V0 = 0, and I0 = 30mA. Find the
capacitor voltage and inductor current for t ≥ 0.

A n s w e r s:
υC tð Þ= 2e−5000t−2e−20;000t V

iL tð Þ= −10e−5000t + 40e−20;000t mA

E x e r c i s e 7–26
In a series RLC circuit the zero-input responses are

υC tð Þ = 2000te−500t V

iL tð Þ = 3:2e−500t−1600te−500t mA

(a) Find the circuit characteristic equation.
(b) Find the initial values of the state variables.
(c) Find R, L, and C.

A n s w e r s:

(a) s2 + 1000s+ 25 × 104 = 0
(b) V0 = 0,I0 = 3:2 mA
(c) R=2:5 kΩ,L= 2:5 H,C = 1:6 μF

7–6 T H E P A R A L L E L R L C C I R C U I T
The inductor and capacitor in Figure 7–38(a) are connected in parallel. The source-
resistor circuit can be reduced to the Norton equivalent shown in Figure 7–38(b). The
result is a parallel RLC circuit consisting of a current source, resistor, inductor, and
capacitor. Our first task is to develop a differential equation for this circuit.
We expect to find a second-order differential equation because there are two energy
storage elements.

The Norton equivalent to the left of the interface introduces the constraint

i tð Þ+ υ tð Þ
RN

= iN tð Þ (7–49)

Writing a KCL equation at the interface yields

i tð Þ= iL tð Þ+ iC tð Þ (7–50)

The i−υ characteristics of the inductor and capacitor are

iC tð Þ=C
dυ tð Þ
dt

(7–51)

υ tð Þ=L
diL tð Þ
dt

(7–52)

+

−

v(t)

i(t)

C

Resistors
and

sources

+

−

v(t)
RN

iR(t)

i(t)

(a)

(b)

C

iC(t)iL(t)

L

iC(t)iL(t)

LiN(t)

FIGURE 7–38 The parallel
RLC circuit.
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Equations (7–49) through (7–52) provide four independent equations in four
unknowns i tð Þ, υ tð Þ, iL tð Þ, iC tð Þð Þ. Collectively these equations describe the dy-
namics of the parallel RLC circuit. To solve for the circuit response using classical
methods, we must derive a circuit equation containing only one of these four
variables.

We prefer using state variables because they are continuous. To obtain a single
equation in the inductor current, we substitute Eqs. (7–50) and (7–52) into Eq. (7–49):

iL tð Þ+ iC tð Þ+ L
RN

diL tð Þ
dt

= iN tð Þ (7–53)

The capacitor current can be eliminated from this result by substituting Eq. (7–52)
into Eq. (7–51) to obtain

iC tð Þ=LC
d2iL tð Þ
dt2

(7–54)

Inserting this equation into Eq. (7–53) produces

LC
d2iL tð Þ
dt2

+
L
RN

dtL tð Þ
dt

+ iL tð Þ= iN tð Þ

iC tð Þ + iR tð Þ + iL tð Þ= iN tð Þ
(7–55)

This result is a KCL equation in which the resistor and capacitor currents are
expressed in terms of the inductor current.

Equation (7–55) is a second-order linear differential equation of the same form as
the series RLC circuit equation in Eq. (7–33). In fact, if we interchange the following
quantities:

υC $ iL L$C RT $GN =
1
RN

υT $ iN series$ parallel

we change one equation into the other. The two circuits are duals, which means that
the results developed for the series case apply to the parallel circuit with the preced-
ing duality interchanges.

However, it is still helpful to outline the major features of the analysis of the
parallel RLC circuit. The initial conditions in the parallel circuit are the initial
inductor current I0 and capacitor voltage V0. The initial inductor current provides
the condition iL 0ð Þ= I0 for the differential equation in Eq. (7–55). By using
Eq. (7–52), the initial capacitor voltage specifies the initial rate of change of the
inductor current as

diL 0ð Þ
dt

=
1
L
υC 0ð Þ= 1

L
V0

These initial conditions are the dual of those obtained for the series RLC circuit in
Eq. (7–34).

To solve for the zero-input response, we set iN = 0 in Eq. (7–55) and obtain a homo-
geneous equation in the inductor current:

LC
d2iL tð Þ
dt2

+
L
RN

diL tð Þ
dt

+ iL tð Þ= 0

A trial solution of the form iL =Kest leads to the characteristic equation

LCs2 +
L
RN

s+ 1= 0 (7–56)
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The characteristic equation is quadratic because there are two energy storage
elements in the parallel RLC circuit. The characteristic equation has two roots:

s1, s2 =
−

L
RN

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L
RN

� �2

−4LC

s
2LC

and, as in the series case, there are three distinct cases:

Case A: If
L
RN

� �2

−4LC > 0, there are two unequal real roots s1 = −α1 and s2 = −α2

and the zero-input response is the overdamped form

iL tð Þ=K1e−α1t +K2e−α2t t ≥ 0 (7–57)

Case B: If
L
RN

� �2

−4LC = 0, there are two real equal roots s1 = s2 = −α and the

zero-input response is the critically damped form

iL tð Þ=K1e−αt +K2te−αt t ≥ 0 (7–58)

Case C: If
L
RN

� �2

−4LC < 0, there are two complex, conjugate roots s1,s2 = −α� jβ

and the zero-input response is the underdamped form

iL tð Þ=K1e−αtcos βt +K2e−αtsin βt t ≥ 0 (7–59)

The analysis results for the series RLC circuit apply to the parallel RLC case with
the appropriate duality replacements. In particular, the form of overdamped, criti-
cally damped, and underdamped response applies to both circuits. The forms of
the responses in Eqs. (7–57), (7–58), and (7–59) have been written with two arbitrary
constants K1 and K2. The following example shows how to evaluate these constants
using the initial conditions for the two state variables.

E X A M P L E 7–2 0

In a parallel RLC circuit RT = 500Ω, C = 1 μF, L= 0:2H. The initial conditions are
I0 = 50 mA and V0 = 0. Find the zero-input response of inductor current, resistor cur-
rent, and capacitor voltage.

SOLUTION:
From Eq. (7–56) the circuit characteristic equation is

LCs2 +
L
RN

s+ 1= 2× 10−7s2 + 4 × 10−4s+ 1= 0

The roots of the characteristic equation are

s1,s2 =
−4 × 10−4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 × 10−8−8 × 10−7

p
4 × 10−7 = −1000� j2000

Since the roots are complex conjugates, we have the underdamped case. The zero-
input response of the inductor current takes the form of Eq. (7–59).

iL tð Þ=K1e−1000tcos 2000t +K2e−1000tsin 2000t t ≥ 0
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The constantsK1 andK2 are evaluated from the initial conditions. At t = 0 the induc-
tor current reduces to

iL 0ð Þ= I0 =K1e0cos 0 +K2e0sin 0 =K1

We conclude that K1 = I0 = 50 mA. To find K2 we use the initial capacitor voltage.
In a parallel RLC circuit the capacitor and inductor voltages are equal, so we
can write

υL tð Þ=L
diL tð Þ
dt

= υC tð Þ

In this example the initial capacitor voltage is zero, so the initial rate of change of
inductor current is zero at t = 0. Differentiating the zero-input response produces

diL tð Þ
dt

= −2000K1e−1000tsin 2000t−1000K1e−1000tcos 2000t

−1000K2e−1000tsin 2000t + 2000K2e−1000t cos2000t

Evaluating this expression at t = 0 yields

diL 0ð Þ
dt

= −2000K1e0sin 0−1000K1e0cos 0

−1000K2e0sin 0 + 2000K2e0cos 0
= −1000K1 + 2000K2 = 0

The derivative initial condition gives condition K2 =K1=2= 25 mA. Given the values
of K1 and K2, the zero-input response of the inductor current is

iL tð Þ= 50e−1000tcos 2000t + 25e−1000tsin 2000t mA t ≥ 0

The zero-input response of the inductor current allows us to solve for every voltage
and current in the parallel RLC circuit. For example, using the i−υ characteristic of
the inductor, we obtain the inductor voltage:

υL tð Þ=L
diL tð Þ
dt

= −25e−1000tsin 2000t V t ≥ 0

Since the elements are connected in parallel, we obtain the capacitor voltage and
resistor current as

υC tð Þ= υL tð Þ=L
diL tð Þ
dt

= −25e−1000tsin 2000t V t ≥ 0

iR tð Þ= υL tð Þ
R

= −50e−1000tsin 2000tmA t ≥ 0 ■

E x e r c i s e 7–27
A parallel RLC circuit has R=1 kΩ,C =1 μF,andL=100 mH. The initial conditions are
I0 = 100 mA and V0 = 0 V.

(a) Use Multisim to plot the zero-input response of the inductor, resistor, and capacitor
currents on one y-axis.

(b) From your current plots, show that Kirchhoff’s current law (KCL) holds for every
instant.

A n s w e r s:
(a) Figure 7–39 shows the plots requested.
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(b) At any point in time, the three currents always sum to zero, thereby validat-
ing Kirchhoff’s Current Law. See the plot of the sum of all three currents in
Figure 7–39.

E X A M P L E 7–2 1

The switch in Figure 7–40 has been open for a long time and is closed
at t = 0.

(a) Find the initial conditions at t = 0.
(b) Find the inductor current for t ≥ 0.
(c) Find the capacitor voltage and current through the switch for t ≥ 0.

SOLUTION:
(a) For t < 0 the circuit is in the dc steady state, so the inductor acts like a short circuit

and the capacitor like an open circuit. Since the inductor shorts out the capacitor,
the initial conditions just prior to closing the switch at t = 0 are

υC 0ð Þ= 0 iL 0ð Þ= 9
250 + 50

= 30 mA

(b) For t ≥ 0 the circuit is a zero-input parallel RLC circuit with initial conditions
found in (a). The circuit characteristic equation is

LCs2 +
L
R
s+ 1= 4× 10−6s2 + 2 × 10−2s+ 1= 0

The roots of this equation are

s1 = −50:51 and s2 = −4950

The circuit is overdamped (case A), since the roots are real and unequal. The
general form of the inductor current zero-input response is

iL tð Þ=K1e−50:51t +K2e−4950t t ≥ 0

1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 9.0m 10.0m0.0

Time (s)

‒100m

‒80m
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‒20m
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40m
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80m

100m

0

C
u
rr

en
t 

(A
)

Inductor current iL(t)

Resistor current iR(t)

Capacitor current iC(t)

Sum of all three currents

Transient Analysis FIGURE 7–39

t = 0

iL(t)
1 H

50 Ω

vC(t)4 μF

+

−

250 Ω

+
−9 V

iSW(t)

FIGURE 7–40
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The constants K1 and K2 are found using the initial conditions. At t = 0 the zero-
input response is

iL 0ð Þ=K1e0 +K2e0 =K1 +K2 = 30 × 10−3

The initial capacitor voltage establishes an initial condition on the derivative of
the inductor current since

L
diL
dt

0ð Þ= υC 0ð Þ= 0

The derivative of the inductor response at t = 0 is

diL
dt

0ð Þ = −50:51K1e−50:51t−4950K2e−4950t
� �jt = 0

= −50:51K1−4950K2 = 0

The initial conditions on inductor current and capacitor voltage produce two
equations in the unknown constants K1 and K2:

K1 +K2 = 30 × 10−3

−50:51K1−4950K2 = 0

Solving these equations yields K1 = 30:3mA and K2 = −0:309 mA. The zero-
input response of the inductor current is

iL tð Þ= 30:3e−50:51t−0:309e−4950t mA t ≥ 0

(c) Given the inductor current in (b), the capacitor voltage is

υC tð Þ=L
diL tð Þ
dt

= −1:53e−50:51t + 1:53e−4950t V t ≥ 0

For t ≥ 0 the current iSW tð Þ is the current through the 50-Ω resistor plus the current
through the 250-Ω resistor.

iSW tð Þ = i250 tð Þ+ i50 tð Þ= 9
250

+
υC tð Þ
50

= 36−30:6e−50:51t + 30:6e−4950t mA t ≥ 0 ■

E x e r c i s e 7–28
The zero-input responses of a parallel RLC circuit are observed to be

iL tð Þ = 10te−2000t A

υC tð Þ = 10e−2000t−20000te−2000t V t ≥ 0

(a) What is the circuit characteristic equation?
(b) What are the initial values of the state variables?
(c) What are the values of R, L, and C?
(d) Write an expression for the current through the resistor.
(e) Use MATLAB to plot your iR tð Þ.
A n s w e r s:

(a) s2 + 4000s+ 4× 106 = 0
(b) iL 0ð Þ=0, υC 0ð Þ= 10 V
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(c) L=1H, C =0:25 μF, R= 1 kΩ
(d) iR tð Þ=10e−2000t−20000te−2000t mA t ≥ 0
(e) The MATLAB plot of iR tð Þ is shown in Figure 7–41.

7–7 S E C O N D - O R D E R C I R C U I T S T E P R E S P O N S E

The step response provides important insights into the response of dynamic circuits in
general. So it is natural that we investigate the step response of second-order circuits.
In Chapter 11 we will develop general techniques for determining the step response
of any linear circuit. However, in this introduction we use classical methods, as in
Figure 7–1, of solving differential equations to find the step response of second-order
circuits.

The general second-order linear differential equation with a step function input
has the form

a2
d2y tð Þ
dt2

+ a1
dy tð Þ
dt

+ a0y tð Þ=Au tð Þ (7–60)

where y tð Þ is a voltage or current response,Au tð Þ is the step function input, and a2, a1,
and a0 are constant coefficients. The step response is the general solution of this dif-
ferential equation for t ≥ 0. The step response can be found by partitioning y tð Þ into
forced and natural components:

y tð Þ= yN tð Þ+ yF tð Þ (7–61)

The natural response yN tð Þ is the general solution of the homogeneous equation
(input set to zero), while the forced response yF tð Þ is a particular solution of the
equation

a2
d2yF tð Þ
dt2

+ a1
dyF tð Þ
dt

+ a0yF tð Þ=A t ≥ 0

Since A is a constant, it follows that dA=dt and d2A=dt2 are both zero, so it is readily
apparent that yF tð Þ=A=a0 is a particular solution of this differential equation. So
much for the forced response.

Turning now to the natural response, we seek a general solution of the homo-
geneous equation. The natural response has the same form as the zero-state
response studied in the previous section. In a second-order circuit the zero-state
and natural responses take one of the three possible forms: overdamped, criti-
cally damped, or underdamped. To describe the three possible forms, we intro-
duce two new parameters: ω0 (omega zero) and ζ (zeta). These parameters are
defined in terms of the coefficients of the general second-order equation in
Eq. (7–60):

ω2
0 =

a0
a2

and 2ζω0 =
a1
a2

(7–62)

The parameter ω0 is called the undamped natural frequency and ζ is called the damp-
ing ratio. Using these two parameters, the general homogeneous equation is written
in the form

d2yN tð Þ
dt2

+ 2ζω0
dyN tð Þ
dt

+ω2
0yN tð Þ= 0 (7–63)
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The left side of Eq. (7–63) is called the standard form of the second-order linear dif-
ferential equation. When a second-order equation is arranged in this format, we can
determine its damping ratio and undamped natural frequency by equating its coeffi-
cients with those in the standard form. For example, in standard form the homoge-
neous equation for the series RLC circuit in Eq. (7–37) is

d2υC tð Þ
dt2

+
RT

L
dvC tð Þ
dt

+
1
LC

υC tð Þ= 0

Equating like terms yields

ω2
0 =

1
LC

and 2ζω0 =
RT

L

for the series RLC circuit. In an analysis situation the circuit element values
determine the value of the parameters ω0 and ζ. In a design situation we select L
and C to obtain a specified ω0 and then select RT to obtain a specified ζ or vice-versa.

To determine the form of the natural response using ω0 and ζ, we insert a trial
solution yN tð Þ=Kest into the standard form in Eq. (7–63). The trial function Kest

is a solution provided that

Kest s2 + 2ζω0s+ω2
0

� �
= 0

Since K = 0 is the trivial solution and est 6¼ 0 for all t ≥ 0, the only useful way for the
right side of this equation to be zero for all t is for the quadratic expression within the
brackets to vanish. The quadratic expression is the characteristic equation for
the general second-order differential equation:

s2 + 2ζω0s+ω2
0 = 0

The roots of the characteristic equation are

s1,s2 =ω0 −ζ�
ffiffiffiffiffiffiffiffiffiffiffi
ζ2−1

q� �
Webegin to see the advantage of using the parameters ω0 and ζ. The constant ω0 is

a scale factor that designates the size of the roots. The expression under the radical
defines the form of the roots and depends only on the damping ratio ζ. As a result, we
can express the three possible forms of the natural response in terms of the damp-
ing ratio.

Case A: For ζ> 1 the discriminant is positive, and there are two unequal, real roots

s1,s2 = −α1, −α2 =ω0 −ζ�
ffiffiffiffiffiffiffiffiffiffiffi
ζ2−1

p� 	
(7–64a)

and the natural response has the overdamped form

yN tð Þ=K1e−α1t +K2e−α2t t ≥ 0 (7–64b)

Case B: For ζ= 1 the discriminant vanishes, and there are two real, equal roots

s1 = s2 = −α= −ζω0 (7–65a)

and the natural response has the critically damped form

yN tð Þ=K1e−αt +K2te−αt t ≥ 0 (7–65b)
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Case C: For ζ< 1 the discriminant is negative, leading to two complex, conjugate
roots s1,s2 = −α� jβ, where

α= ζω0 and β=ω0

ffiffiffiffiffiffiffiffiffiffiffi
1−ζ2

p
(7–66a)

and the natural response has the underdamped form

yN tð Þ=K1e−αtcosβt +K2e−αtsinβt t ≥ 0 (7–66b)

Equations (7–64a), (7–65a), and (7–66a) provide relationships between the natu-
ral frequency parameters α and β and the new parameters ζ and ω0. The reasons for
using two equivalent sets of parameters to describe the natural frequencies of a sec-
ond-order circuit will become clear as we continue our study of dynamic circuits.
Since the units of complex frequency s are radians per second, the standard form
of the characteristic equation s2 + 2ζω0s+ω2

0 shows that ω0 is specified in radians
per second and ζ is dimensionless.

Combining the forced and natural responses yields the step response of the gen-
eral second-order differential equation in the form

y tð Þ= yN tð Þ+A=a0 t ≥ 0 (7–67)

The factorA=a0 is the forced response. The natural response yN tð Þ takes the forms in
Eqs. (7–64b), (7–65b), or (7–66b), depending on the value of the damping ratio. The
constants K1 and K2 in the natural response can be evaluated from the initial
conditions.

In summary, the step response of a second-order circuit is determined by

1. The amplitude of the step function input Au tð Þ
2. The damping ratio ζ and natural frequency ω0

3. The initial conditions y 0ð Þ and dy=dt 0ð Þ
In this regard the damping ratio and natural frequency play the same role for second-
order circuits that the time constant plays for first-order circuits. That is, these circuit
parameters determine the basic form of the natural response, just as the time constant
defines the form of the natural response in a first-order circuit. It is not surprising that
a second-order circuit takes two parameters, since it contains two energy storage
elements.

E X A M P L E 7–2 2

The seriesRLC circuit in Figure 7–42(a) is driven by a step function and is in the zero
state at t = 0. Find the capacitor voltage for t ≥ 0, whenVA = 10 V,R= 1 kΩ,C = 0:5 μF,
and L= 2H.

SOLUTION:
This is a series RLC circuit, so the differential equation for the capacitor
voltage is

10−6d
2υC tð Þ
dt2

+ 0:5 × 10−3 dυC tð Þ
dt

+ υC tð Þ= 10 t ≥ 0

By inspection, the forced response is υCF tð Þ= 10 V. In standard format the homoge-
neous equation is

d2υCN tð Þ
dt2

+ 500
dυCN tð Þ

dt
+ 106υCN tð Þ= 0 t ≥ 0

+

−

vC(t)C

(a)

L

VAu(t)+
−

R

FIGURE 7–42
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Comparing this format to the standard form in Eq. (7–63) yields

ω2
0 = 106 and 2ζω0 = 500

so ω0 = 1000 and ζ= 0:25. Since ζ< 1, the natural response is underdamped (case C).
Using Eqs. (7–66a) and (7–66b), we have

α = ζω0 = 250

β = ω0

ffiffiffiffiffiffiffiffiffiffiffi
1−ζ2

p
= 968

υCN tð Þ = K1e−250tcos 968t + k2e−250tsin 968t

The general solution of the circuit differential equation is the sum of the forced and
natural responses:

υC tð Þ= 10+K1e−250t cos 968t +K2e−250t sin 968 t ≥ 0

The constants K1 and K2 are determined by the initial conditions. The circuit is in
the zero state at t = 0, so the initial conditions are υC 0ð Þ= 0 and iL 0ð Þ= 0. Applying the
initial condition constraints to the general solution yields two equations in the con-
stants K1 and K2:

υC 0ð Þ = 10 +K1 = 0

dυC
dt

0ð Þ = −250K1 + 968K2 = 0

TheseequationsyieldK1 = −10 andK2 = −2:58. The capacitor voltage step response is

υC tð Þ= 10−10e−250t cos 968t−2:58e−250t sin 968tV t ≥ 0

A plot of υC tð Þ versus time is shown in Figure 7–42(b). The response and its first
derivative at t = 0 satisfy the initial conditions. The natural response decays to zero, so
the forced response determines the final value of υC ∞ð Þ= 10 V. Beginning at t = 0 the
response climbs rapidly but overshoots and undershoots the mark before eventually
settling down to the final value. The damped sinusoidal behavior results from the fact
that ζ< 1, producing an underdamped natural response. ■

E X A M P L E 7–2 3

The series RLC circuit of Figure 7–42 is excited by a 10-V step source and has the
initial conditions iL 0ð Þ= 0A and vC 0ð Þ= −5 V. The parameters are L= 2H and
C = 0:5 μF. Use Multisim to vary R from underdamped to overdamped to view the
effects of the damping ratio ζ on the voltage across the capacitor.

SOLUTION:
For a seriesRLC circuit, we found earlier that ω2

0 =
1
LC and 2ζω0 = RT

L . Using these two
equations, we can solve for RT =R

R= 2ζ
ffiffiffiffi
L
C

r
In order to see the effects of varying R, we calculate the value of R that yields the
critical case (Case B) by letting ζ= 1 and solving the above equation. For this circuit,
Case B occurs whenR= 4 kΩ. Knowing this, we can simulate the circuit with values of
R larger than 4 kΩ (overdamped) and smaller than 4 kΩ (underdamped.)
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FIGURE 7–42 (Continued)
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Using Multisim we build the series circuit, being careful to add the two ini-
tial conditions to the inductor and capacitor. Assign a nominal value to the
resistor—say 1 kΩ. To analyze the circuit, under the Simulate menu, we select
the Analyses option and then select “Parameter sweep.” The parameter we
wish to sweep is the resistor R1, so we select “Resistor” as the “Device type”
and “R1” as the “Name.” The resistor parameter we wish to sweep is its
“resistance.” The nominal value you assigned to it will appear as its “Present
value,” but it does not play any role in the analysis. Next, we need to tell Mul-
tisim what type of sweep we want it to perform. Since we want to be certain
that we include the value of resistance that yields the critical case, we will use
the “List” under “Sweep variation type.” We will then include the values of R
that we want Multisim to use in doing the transient analysis. We chose 200, 1000,
2000, 4000, 10,000, 20,000, and 40,000Ω. In the “MoreOptions” section, set “Analysis
to sweep” to “Transient Analysis.” Then select “Edit Analysis” to tell Multisim how
to carry out the transient analysis. We will select “User-defined” under “Initial
conditions,” set the “Start time (TSTART)” to zero, and set the “End time
(TSTOP)” to 20 ms. To ensure a smooth plot, we will make the “Maximum time step
(TMAX)” 1 μs. Finally, open the “Output” tab and select the voltage across the
capacitor as the desired output to be displayed. The Grapher View plots are shown
in Figure 7–43. We have labeled the various curves to show the cases they represent.
If you did not pre-calculate the value of R required for Case B and simply swept a
range of values, it would be very difficult to determine which curve was actually
the critically damped case by looking at the curves.

■

E x e r c i s e 7–29
In Example 7–23 we plotted the effect of ζ on the circuit response by varying the series
resistor R. In this exercise, we would like to look at the effect on the circuit response by
varying the series capacitor C. Let R=1kΩ, L= 2H, VA = 10 V, iL 0ð Þ=0A, and
vC 0ð Þ= −5 V. Set C at a nominal 0:5 μF. Use Multisim and do a suitable parameter sweep
and explain the effect of varyingC on the capacitor voltage, ζ, and ω0. Identify the curves as
Cases A, B, and C.
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A n s w e r s: Increasing C decreases the frequency of oscillation ω0 (visible only in under-
damped cases) and increases ζ. See Figure 7–44. Compare the oscillations in the under-
damped cases in Figure 7–44 with those of Figure 7–43. Varying R keeps the frequency
the same, but varying C causes both the damping coefficient and the oscillations to change.
What do you think would happen if we were to vary L?

E X A M P L E 7–2 4

The circuit in Figure 7–45 is in the zero state. Find the current through the resistor
for t ≥ 0.

SOLUTION:
This is a parallel RLC circuit. The approach we will take is to first find
an expression for the current through the inductor. Then we will use
the inductor’s i−υ relationship to find the voltage across the inductor.
Since the inductor is in parallel with the capacitor and has the same volt-
age, we can use the capacitor’s i−υ relationship to find the current
through the capacitor. Finally, using KCL at the top node we can find
the current through the resistor.

The characteristic equation for a parallel RLC circuit is

s2 +
1
RC

s+
1
LC

= 0

Substituting the values for R, L, and C, we get

s2 + 21;276s + 108 = 0

The roots of this equation are s1 = −14;300, s2 = −7000. Thus the natural response is
overdamped (Case A).

We can write our basic equation for iLðtÞ as

iL tð Þ=K1e−14300t +K2e−7000t
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Natural Response

+ 25
zffl}|ffl{Forced
Response

mA

We make use of the initial conditions to solve for the constants K1 and K2.

100 mH

0.1μF

25 u(t) mA 470 Ω

iR(t) iL(t)

FIGURE 7–45

Case C (underdamped)

Case A (overdamped)

Case B (critically damped)

2m 4m 6m 8m 10m 12m 14m 16m 18m 20m0

Time (s)

C
ap

ac
it

o
r 

V
o
lt

ag
e 

(V
)

‒5

5

0

10

20

15

25
Capacitor SweepFIGURE 7–44

364 C H A P T E R 7 FIRST- AND SECOND-ORDER CIRCUITS



iL 0ð Þ= 0=K1e0 +K2e0 + 25 mA

diL 0ð Þ
dt

=
υL 0ð Þ
L

=
υC 0ð Þ
L

=
0
L
=K1 −14;300ð Þe0 +K2 −7000ð Þe0

Solving these equations for K1 and K2 yields K1 = 24 mA and K2 = −49 mA. There-
fore, the total response for the current through the inductor is

iL tð Þ= 24e−14300t−49e−7000t + 25 mA t ≥ 0

The voltage across the inductor is found using its i−υ relationship

υL tð Þ=L
diL tð Þ
dt

= −34:3e−14300t + 34:3e−7000t V t ≥ 0

And the current through the capacitor is found using its i–υ relationship

iC tð Þ=C
dυC tð Þ
dt

=C
dυL tð Þ
dt

= 49e−14300t−24e−7000t mA t ≥ 0

We can now apply KCL at the top node and find an expression for the current
through the resistor:

iRðtÞ= iSðtÞ− iLðtÞ− iCðtÞ
iR tð Þ= 25−24e−14300t + 49e−7000t−25−49e−14300t + 24e−7000t mA t ≥ 0
iR tð Þ= −73e−14300t + 73e7000t mA t ≥ 0

Checking the result shows that there is no current flowing through the resistor
at t = 0, or at t = ∞ . Considering the behavior of inductors under dc stimulation, we
realize that at t = 0− and again at t = ∞ the inductor acts like a short circuit with zero
volts across it. Since the inductor is in parallel with the resistor, the voltage across the
resistor is zero and, by Ohm’s law, the current through it is zero. ■

E x e r c i s e 7–30
UseMultisim to plot the currents through the three elements in circuit of Figure 7–45. Show
that sum of all three element currents equals the source current for all time.

A n s w e r: See Figure 7–46.
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E x e r c i s e 7–31
Find the zero-state response of υO tð Þ in Figure 7–47 for υS tð Þ=60u tð ÞV.

A n s w e r:

υO tð Þ=100 e−2000t−e−8000t
� �

V

D e s i g n E x e r c i s e 7–32
(a) Select a value forR that will cause theRLC circuit of Figure 7–47 to produce a critically

damped response. All parameters except R remain the same.
(b) UseMultisim to determine themaximum value of υO tð Þ and the time at which it reaches

that value.
(c) What is the value of the maximum power delivered by the source?

A n s w e r s:
(a) R= 250Ω for a critically damped response.
(b) From a Multisim simulation, the voltage maximum occurs at 250 μs and the peak value

is 44.15 V.
(c) The maximum current of 240 mA occurs at t = 0 and again as t! ∞ . Hence, the max-

imum power delivered by the source is 14.4 W.

D E S I G N E X A M P L E 7–2 5

Design a series RLC circuit whose zero-state step response is

υC tð Þ=VA−
5
4
VAe−400t +

1
4
VAe−2000t t > 0

where VA is the amplitude of the step function input.

SOLUTION:
To obtain the required response, the numerical characteristic equation must be

s+ 400ð Þ s+ 2000ð Þ= s2 + 2400s+ 8× 105 = 0

Using circuit parameters, the symbolic characteristic equation of a series RLC
circuit is

s2 +
R
L
s+

1
LC

= 0

Equating coefficients in these two equations leads to two design constraints, namely,
R=L= 2400 and 1=LC = 8× 105. Let R= 3 kΩ; then L=R=2400 = 1:25 H and

C = 1= L× 8× 105
� 	

= 1× 10−6 F. Many other choices are possible. ■

E x e r c i s e 7–33
The step response of a series RLC circuit is observed to be

υC tð Þ= 15−15e−1000t cos 1000tV t ≥ 0

iL tð Þ= 45e−1000t cos 1000t + 45e−1000t sin 1000t mA t ≥ 0

(a) What is the circuit characteristic equation?
(b) What are the initial values of the state variables?
(c) What is the amplitude of the step input?
(d) What are the values of R, L, and C?
(e) What is the voltage across the resistor?

+

−

+
− vO(t)0.5 μF125 mH

200 Ω

vS(t)

FIGURE 7–47
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A n s w e r s:

(a) s2 + 2000s+ 2× 106 = 0
(b) υC 0ð Þ= 0, iL 0ð Þ= 45mA
(c) VA = 15 V
(d) R= 333Ω, L= 167 mH, C = 3 μF
(e) υR tð Þ= 15e−1000t cos 1000t +15e−1000t sin 1000t V

E X A M P L E 7–2 6

What range of source resistance will produce an underdamped natural response in a
parallel RLC circuit with L= 200 mH and C = 0:032 μF?

SOLUTION:
According to Eq. (7–56) the characteristic equation of a parallel RLC circuit is

LCs2 +
L
RN

s+ 1= 0

Dividing the LC puts this equation in the form

s2 +
1

RNC
s+

1
LC

= 0

Comparing this with the standard form s2 + 2ζω0s+ω2
0 leads to

ω0 =
1ffiffiffiffiffiffiffi
LC

p =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

200 × 10−3 × 32 × 10−9
p = 12:5× 103 rad=s

and 2ζω0 = 1=RNC. Underdamped response requires that ζ< 1; hence

RN >
1

2ω0C
=

1

25 × 103 × 32 × 10−9 = 1250Ω ■

E v a l u a t i o n E x e r c i s e 7–34

(a) What range of source resistance will produce an underdamped natural response in a
series RLC circuit with L=200 mH and C = 0:032 μF?

(b) Compare your answer with the parallel circuit solution in Example 7–26.

A n s w e r s:
(a) For an underdamped response, R should be less than 5 kΩ.
(b) In a parallel circuit, as RN increases, it has less influence on the circuit response—an

open circuit would ideally let the circuit oscillate forever. For a series circuit, the dual
is true: asRT decreases, it has less influence on the energy oscillating between the induc-
tor and the capacitor, and a short circuit would ideally let the circuit oscillate forever.

D E S I G N E X A M P L E 7–2 7

Design a parallel RLC circuit with ζ= 0:5 and ω0 = 25 krad=s.

SOLUTION:
The characteristic equation of a parallel RLC circuit can be written as

s2 +
1

RNC
s+

1
LC

= 0
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Comparing this with the standard form s2 + 2ζω0s+ω2
0 leads to two design constraints:

1
RNC

= 2ζω0 = 25 × 103 and
1
LC

=ω2
0 = 6:25 × 108

Let the resistance RN = 10 kΩ; then C = 1=25 × 107 = 4 × 10−9 = 4000 pF and L= 25×
107=6:25 × 108 = 0:4 H. Many other choices are possible since there are three circuit
parameters and only two constraints. ■

D e s i g n E x e r c i s e 7–35
Design a seriesRLC circuit with ζ= 1:5 and ω0 = 50 krad=s. Youmust use a 0:1-μF capacitor.

A n s w e r: With C defined, there is only one solution: R= 600Ω and L=4 mH.

S U M M A R Y
• Circuits containing linear resistors and the equivalent

of one capacitor or one inductor are described by first-
order differential equations in which the unknown is
the circuit state variable.

• The zero-input response in a first-order circuit is an
exponential whose time constant depends on circuit
parameters. The amplitude of the exponential is equal
to the initial value of the state variable.

• For linear circuits the total response is the sum of the
forced and natural responses. The natural response is
the general solution of the homogeneous differential
equation obtained by setting the input to zero. The
forced response is a particular solution of the differen-
tial equation for the given input.

• For linear circuits the total response is the sum of the
zero-input and zero-state responses. The zero-input
response is caused by the initial energy stored in capa-
citors or inductors. The zero-state response results
from the input driving forces.

• The initial and final values of the step response of a first-
or second-order circuit can be found by replacing capa-
citors by open circuits and inductors by short circuits
and then using resistance circuit analysis methods.

• The transient response to a first-order circuit when the
input is other than a step requires that the forced
response solution be of the same form as the input.
Hence, an exponential input suggests an exponential
forced response; a sinusoidal input suggests a sinusoi-
dal forced response, and so forth.

• For a sinusoidal input the forced response is called the
sinusoidal steady-state response, or the ac response.

The ac response is a sinusoid with the same frequency
as the input but with a different amplitude and phase
angle. The ac response can be found from the circuit
differential equation using the method of undeter-
mined coefficients.

• Circuits containing linear resistors and the equivalent
of two energy storage elements are described by
second-order differential equations in which the
dependent variable is oneof the state variables. The ini-
tial conditionsare thevaluesof the twostatevariables at
t = 0.

• The zero-input response of a second-order circuit
takes different forms depending on the roots of the
characteristic equation. Unequal real roots produce
the overdamped response, equal real roots produce
the critically damped response, and complex conjugate
roots produce underdamped responses.

• The circuit damping ratio ζ and undamped natural fre-
quency ω0 determine the form of the zero-input and
natural responses of any second-order circuit. The
response is overdamped if ζ> 1, critically damped if
ζ= 1, and underdamped if ζ< 1.

• Software tools like MATLAB and Multisim can help
produce numerical and graphical solutions for circuit
transient behavior. In applying these tools one must
have some knowledge of analytical methods and an
estimate of the general form of the expected response
in order to effectively use these tools and interpret
their results. Web Appendix D discusses the use of
these tools and contains additional examples and
exercises.
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P R O B L E M S

O B J E C T I V E 7 – 1 F I R S T - O R D E R C I R C U I T A N A L Y S I S
( S E C T S . 7 – 1 T O 7 – 4 )
Given a first-order RC or RL circuit:
(a) Find the circuit differential equation, the circuit time con-

stant, and the initial conditions (if not given).
(b) Find the zero-input response.
(c) Find the complete response for step function, exponential,

and sinusoidal inputs.
See Examples 7–1 to 7–7, 7–9 to 7–11, 7–15, and 7–16 and
Exercises 7–1 to 7–7, 7–9 to 7–13, 7–15, and 7–17 to 7–21.

7–1 Find the function i tð Þ that satisfies the following differential
equation and the initial condition:

500
diðtÞ
dt

+ 25kiðtÞ= 0, ið0Þ= 25mA

7–2 Find the function v tð Þ that satisfies the following differen-
tial equation and initial condition:

10−4dvðtÞ
dt

+ vðtÞ=0, vð0Þ=100 V

7–3 Find the time constants of the circuits in Figure P7–3.

250 mH

150 mH

250 Ω

150 Ω

C1

20 mH

3.3 mH

220 Ω220 Ω 10 mH

C2

FIGURE P7–3

7–4 Find the time constants of the circuits in Figure P7–4.

1.5 kΩ 1 kΩ

3 kΩ 1 kΩ

4 kΩ 2 kΩ0.33 μF

C1

47 kΩ
0.1 μF

0.1 μF
47 kΩ

C2

FIGURE P7–4

7–5 Each of the two circuits in Figure P7–5 has a switch that
affects their time constants. For circuit C1, find the time
constant when the switch is in position A and repeat for

position B. For circuit C2, find the time constant when the
switch is closed and repeat when it is open.

R1
R2

R2

R4 R3

R1

(C1)

(C2)

R3

C1 C2

L

B

A

FIGURE P7–5

7–6 The switch in Figure P7–6 is closed at t =0. The initial
voltage on the capacitor is vC 0ð Þ= 100 V.
(a) Find vC tð Þ and iO tð Þ for t ≥ 0.
(b) UseMATLAB to plot the waveforms for vC tð Þ and iO tð Þ.
(c) Simulate the problem using Multisim and compare the

results to the plots in part (b).

t = 0

0.33 μF

iO(t)15 kΩ

15 kΩ

+

−

vC(t)

FIGURE P7–6

7–7 In Figure P7–7 the initial current through the inductor
is iL 0ð Þ= 5mA.
(a) Find iL tð Þ and vO tð Þ for t ≥ 0.
(b) UseMATLAB to plot the waveforms for iL tð Þ and vO tð Þ.
(c) Simulate the problem using Multisim and compare the

results to the plots in part (b).

150 kΩ

+

−

vO(t)100 kΩ

0.5 H

iL(t)

FIGURE P7–7

7–8 The switch in Figure P7–8 has been in position A for a long
time and is moved to position B at t =0. Find iL tð Þ for t ≥ 0.
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100 Ω

10 mA

A

B

25 mH 150 Ω

t  = 0

iL(t)

FIGURE P7–8

7–9 The circuit in Figure P7–9 has 10 V stored across the
two capacitors, plus on top, at t =0. If C1 = 10,000 pF,
C2 = 15,000 pF, R1 =R2 =R3 = 330 kΩ, find vO tð Þ for t ≥ 0.

R2R1 R3

C1 C2

+

−

vO(t)

FIGURE P7–9

7–10 The switch in Figure P7–10 has been in position A for a
long time and is moved to position B at t =0. Find vC tð Þ
for t ≥ 0.

t = 0

0.05 μFvC(t)

+

−

10 kΩ

100 kΩ

A B

+

−
15 V

FIGURE P7–10

7–11 The switch in Figure P7–11 has been open for a long time
and is closed at t =0. Find iL tð Þ for t ≥ 0.

t = 0

15 mH100 mA

100 Ω

15 Ω

iL(t)

FIGURE P7–11

7–12 The switch in the circuit in Figure P7–12 has been in posi-
tion A for a long time. At t =0 it switches to position B; find
vR tð Þ for t ≥ 0. Verify your result using Multisim.

10 kΩ 10 mA100 mH

A

B

100 mH

t  = 0

+

−

vR(t)

FIGURE P7–12

7–13 The circuit in Figure P7–13 is in the zero state. Find the
voltage vO tð Þ for t ≥ 0 when an input of iS tð Þ= IAu tð Þ is

applied. Identify the forced and natural components in the
output.

  R

+

−

  vO(t)CiS(t)

FIGURE P7–13

7–14 The circuit in Figure P7–14 is in the zero state
when the input vS tð Þ=VAu tð Þ is applied. Find vO tð Þ for
t ≥ 0. Identify the forced and natural components in the
output.

+
− vS(t)

+

−

  vO(t)

L

R

FIGURE P7–14

7–15 The circuit in Figure P7–15 is in the zero state when
the input vS tð Þ= 150u tð Þ is applied. If C = 0:022 μF and
R=82 kΩ, find vO tð Þ for t ≥ 0. Identify the forced and natural
components in the output.

vS(t)

−

  vO(t)R

RC

+
−

+

FIGURE P7–15

7–16 The circuit in Figure P7–16 is in the zero state when the
input vS tð Þ= 24 u tð Þ is applied. If L= 150mH and
R=1:5 kΩ, find vO tð Þ for t ≥ 0. Identify the forced and natural
components in the output. On a single set of axes, use
MATLAB to plot the forced response, the natural response,
and the complete response.

vS(t)

−

R

LR
+
− vO(t)

+

FIGURE P7–16

7–17 The switch in Figure P7–17 has been in position A for a
long time and is moved to position B at t =0. Find vC tð Þ for
t ≥ 0. Identify the forced and natural components in the
response.
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0.01 μF

10 kΩ

10 kΩ

10 kΩ

12 V
vC(t)

+

−

t = 0 A

+

−

B

FIGURE P7–17

7–18 Repeat Problem 7–17. However, after the switch is moved
to position B at t =0, the switch is moved back to positionA at
t =50 μs. Find vC tð Þ for t ≥ 0.

7–19 Find the function that satisfies the following diff-
erential equation and the initial condition for an input
vS tð Þ= 10 cos 250tð ÞV:

dv tð Þ
dt

+ 50v tð Þ= vS tð Þ, v 0ð Þ=0V

7–20 Repeat Problem 7–19 for vS tð Þ=1000e−200tu tð ÞV. Plot
your result using MATLAB.

7–21 The switch in Figure P7–21 has been open long enough for
iL 0ð Þ to reach 0A and is closed at t =0.
(a) If vS tð Þ= 100 u tð ÞV, find vL tð Þ for t ≥ 0.
(b) If vS tð Þ= 100 cos 100tð ÞV, find vL tð Þ for t ≥ 0.
(c) If vS tð Þ= 100 e – 100t V, find vL tð Þ for t ≥ 0.

t = 0

vS (t) vL (t)+
−

+

470 Ω 1 H

330 Ω

−

FIGURE P7–21

7–22 Repeat Problem 7–21 using Multisim.

7–23 Repeat Problem 7–21 using MATLAB to plot the
waveforms.

7–24 The switch in Figure P7–21 has been closed a long time
after being excited by vS tð Þ= 100 u tð ÞV. After the circuit
reached equilibrium, a new t = 0 is established and the switch
is suddenly opened. Find vL tð Þ for t ≥ 0.

7–25 The switch inFigureP7–25has been inpositionA for a long
time and is moved to position B at t = 0. Find iL tð Þ for t ≥ 0.

100 kΩ

100 mH
10 kΩ

15 V

iL(t)

−

t = 0

A

B

+

FIGURE P7–25

7–26 The switch in Figure P7–25 has been in position B for a
long time and is moved to position A at t = 0. Find iL tð Þ
for t ≥ 0.

7–27 The switch in Figure P7–25 has been in position A for a
long time and is moved to position B at t = 0. At t =100 μs
the switch returns to position A. Find iL tð Þ for t ≥ 0.

7–28 The follower circuit in Figure P7–28 is in the zero state
and is driven by a step input vS tð Þ= 2 u tð Þ. If R1 = 50 kΩ,
R2 = 2:2 kΩ, and C = 0:1 μF, find v2 tð Þ for t ≥ 0.

vS(t)

v2(t)

C

R2

+R1

−

++

FIGURE P7–28

7–29 The inverting OP AMP in Figure P7–29 is driven by a
step input vS tð Þ= 2 u tð Þ. Let R1 = 10 kΩ, R2 = 20 kΩ, and
C = 0:1 μF.
(a) If vC 0ð Þ=4 V find v2 tð Þ for t ≥ 0.
(b) What is the value of v2 tð Þ when t =1:386ms?
(c) Validate your analysis using Multisim.

−

+

− +

+ +
v2(t)

vC(0)

vS(t)

R1 R2

C

FIGURE P7–29

7–30 The switch in Figure P7–30 has been in position A for a
long time and is moved to position B at t =0. The switch sud-
denly returns to positionA after 10 ms. Find vC tð Þ for t ≥ 0 and
sketch its waveform.

1 μF

20 kΩ

80 kΩ 20 kΩ
24 V

vC(t)
+

−

t = 0
A B

+
−

FIGURE P7–30

7–31 Switches 1 and 2 in Figure P7–31 have both been in posi-
tion A for a long time. Switch 1 is moved to position B at t =0
and Switch 2 is moved to position B at t =20 ms. Find the volt-
age across the 0:22-μF capacitor for t ≥ 0 and sketch its
waveform.
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0.22 μF

50 kΩ150 kΩ

120 V vC(t)
+

−

t = 0

A

B

+
−

t = 0.02

A

B

SW#1 SW#2

FIGURE P7–31

7–32 The switch in Figure P7–32 has been open for a long time
and is closed at t = 0. The switch is reopened at t = 3ms. Find
vC tð Þ for t ≥ 0.

0.68 μF

2.2 kΩ

vC(t)

+

−

t = 0

t = 3 ms

15 kΩ36 V
+
−

FIGURE P7–32

7–33 Find the sinusoidal steady-state response of vC tð Þ in
Figure P7–33 when R= 100 kΩ, C = 0:02 μF, and the input
voltage is vS tð Þ=15 cos 50tð Þ u tð ÞV. Repeat for an input
voltage of vS tð Þ=15 cos 500tð Þ u tð ÞV, and one more time for
an input voltage of vS tð Þ= 15 cos 5ktð Þ u tð ÞV. Describe
how changing the frequency affects the output’s amplitude
and phase. You may choose to use MATLAB and plot
the steady-state responses of each input on a single set
of axes.

C vC(t)

+

−

R

+
−

vS(t)

FIGURE P7–33

7–34 On the circuit of Figure P7–33 the input is vS tð Þ= 5e – 1000t

u tð ÞV. Find the output vC tð Þ when R= 100 kΩ, C = 0:01 μF,
and vC 0ð Þ=0 V.

O B J E C T I V E 7 – 2 F I R S T - O R D E R C I R C U I T D E S I G N
( S E C T S . 7 – 1 T O 7 – 4 )
Given responses in a first-order RC or RL circuit:
(a) Find the circuit parameters or other responses.
(b) Design a circuit to produce the given responses.
See Examples 7–8, 7–12 to 7–14 and Exercises 7–8, 7–14, 7–16,
and 7–22.

7–35 For t ≥ 0 the zero-input response of the circuit in
Figure P7–35 is vC tð Þ= 20e−10ktV.

(a) Find C and iC tð Þ when R=10 kΩ.
(b) Find the energy stored in the capacitor at t = 2ms.

(c) Suppose the only capacitor you had available has a value
of 0:022 μF. Could you achieve the same output by select-
ing a different R? How would the current change?

C

iC(t)

R vC(t)

+

−

FIGURE P7–35

7–36 For t ≥ 0 the zero-input response of the circuit in
Figure P7–36 is iL tð Þ= 150e−500t mA.
(a) Find L and vL tð Þ when R=500Ω.
(b) Find the energy stored in the inductor at t = 0:5 ms.
(c) Suppose the only inductor you had available has a value

of 500mH. Could you achieve the same output by select-
ing a different R? How would the voltage change?

L

iL(t)

R vL(t)

+

−

FIGURE P7–36

7–37 Design a series RC circuit using a dc voltage source

that delivers the following voltage across the capacitor for t > 0.

vC tð Þ=2e−200t V t ≥ 0

7–38 Design a parallel RL circuit using a dc current source

that delivers the following voltage across the resistor for t >0.

vR tð Þ= 50e−2000t V t ≥ 0

7–39 Design a series RC circuit using a dc voltage source

that delivers a voltage across the capacitor for t >0 that fits
entirely within the nonshaded region of Figure P7–39.

10
9

6

2

10
0

5 10 12 20

vC(t)

t (ms)

FIGURE P7–39
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7–40 Design a series RC circuit using dc voltage sources

that delivers a voltage across the capacitor for t > 0 that fits
entirely within the nonshaded region of Figure P7–40.

10
9

6

0

‒4
2 12 20 24 40

vC(t)(V)

t (s)

FIGURE P7–40

7–41 For t ≥ 0 the step response of the voltage across the capac-
itor in Figure P7–41 is vC tð Þ= 10−20e−10,000t V. Find the IV,
FV, TC, R, and iC tð Þ when C =0:15 μF.

C vC(t)

+

‒

R

+
‒

vS(t)

iC(t)

FIGURE P7–41

7–42 Design a first-order RC circuit using standard parts

(see inside rear cover) that will produce the following voltage
across the capacitor: vC tð Þ= 10−20e−2000t V.

7–43 For t ≥ 0 the step responses of the current through and
voltage across the inductor in Figure P7–43 are iL tð Þ= 5−
10e−2000t mA and vL tð Þ= e−2000tV. Find IV, FV, TC, R, and L.

L vL(t)

+

‒

R

+
‒

vS(t)

iL(t)

FIGURE P7–43

7–44 Design a first-order RL circuit that will produce

the following current through the inductor: iL tð Þ=
25+ 50e−50,000t mA for t ≥ 0.

7–45 The switch in Figure P7–45 has been in position B

for a long time and is moved to position A at t =0.
Design the first-order RC interface circuit such that
vO tð Þ= 10−10e−2500t V.

+

−

vO(t)Interface
circuit

300 Ω

A

B

20 V
+
−

t = 0

FIGURE P7–45

7–46 The switch in Figure P7–45 has been in position A

for a long time and is moved to position B at t = 0.
Design the first-order RC interface circuit such that
vO tð Þ=5e−5000tV.

7–47 A timing circuit is required that feeds into an OP

AMP’s noninverting terminal (i.e., draws no current.) The
circuit’s output response vO tð Þ must be

vO tð Þ= 5 1−e−1000 t
� �

u tð Þ V

Figure P7–47 shows two commercial products and the ven-
dors claim each will meet the requirement. Which will you
select and why?

1 H

Vendor B

Vendor A

Unit cost: $4.50

Unit cost: $7.00

1 kΩ

1 kΩ

5 V v
O

(t)

+
+

−
−

t = 0

1 μF
5 V v

O
(t)

+
+

−
−

t = 0

FIGURE P7–47

7–48 Aproduct line needs anRC circuit that will meet the

following response specifications ±5%:

IV FV T C R C

–5 V +5 V 150 μs ≥1 kΩ ≤0.1 μF

Design a circuit to meet the specifications and validate your
results using Multisim.
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7–49 There is a need for a timing circuit to trip a house

alarm. Design an RC circuit that reaches 5 V across a capac-
itor in exactly 5 s. Your source is 12 dc and you have a 10- μF
capacitor available.

O B J E C T I V E 7 – 3 S E C O N D - O R D E R C I R C U I T A N A L Y S I S
( S E C T S . 7 – 5 , 7 – 6 , 7 – 7 )
Given a second-order circuit:
(a) Find the circuit differential equation.
(b) Find the circuit natural frequencies and the initial condi-

tions (if not given).
(c) Find the zero-input response.
(d) Find the complete response for a step function input.
See Examples 7–17, 7–18, 7–20 to 7–23, 7–24, and 7–26 and
Exercises 7–25, 7–27, 7–29 to 7–31 and 7–33.

7–50 Find the v tð Þ that satisfies the following differential equa-
tion and initial conditions:

d2vðtÞ
dt2

+ 4
dvðtÞ
dt

+ 36vðtÞ=0, vð0Þ= 0 V;
dvð0Þ
dt

= 24 V=s

7–51 Find the v tð Þ that satisfies the following differential equa-
tion and initial conditions:

d2vðtÞ
dt2

+ 10
dvðtÞ
dt

+ 100vðtÞ=0, vð0Þ= 5 V;
dvð0Þ
dt

= 0 V=s

7–52 Find the v tð Þ that satisfies the following differential equa-
tion and initial conditions:

d2vðtÞ
dt2

+ 10
dvðtÞ
dt

+ 125vðtÞ=250uðtÞ,

vð0Þ= 5 V;
dvð0Þ
dt

= 25 V=s

7–53 Find the i tð Þ that satisfies the following differential equa-
tion and initial conditions:

d2iðtÞ
dt2

+ 4
diðtÞ
dt

+ 4iðtÞ=16uðtÞ, ið0Þ= 0,
dið0Þ
dt

=0

7–54 The switch in Figure P7–54 has been open for a long time
and is closed at t = 0. The circuit parameters are L=1H,
C = 0:5 μF, R= 100Ω, and vC 0ð Þ= 5 V.
(a) Find vC tð Þ and iL tð Þ for t ≥ 0.
(b) Is the circuit overdamped, critically damped, or

underdamped?
(c) Use Multisim to simulate your results.

t = 0
C

R

L
+

−
vC(t)

iL(t)

FIGURE P7–54

7–55 The switch in Figure P7–55 has been open for a long time
and is closed at t = 0. The circuit parameters are L= 1H,
C =1 μF, R=500Ω, and vC 0ð Þ= 20 V.
(a) Find vC tð Þ and iL tð Þ for t ≥ 0.
(b) Is the circuit overdamped, critically damped, or

underdamped?
(c) Use Multisim to simulate your results.

t = 0

LRC

iL(t)

+

−
vC(t)

FIGURE P7–55

7–56 Use Multisim to study how the voltage across the
circuit in Figure P7–55 changes as the value of the resistor
is varied. Let L= 1H, C = 1 μF, R=500Ω, and
vC 0ð Þ= – 10 V. Under “Analyses” perform a “Parameter
sweep.” The parameter we wish to sweep is the resistor
R1.We select it under “Device type.”The resistor parameter
we wish to sweep is its “resistance.” The nominal value you
assigned to it will appear as its “present value” but it does not
play any role in the analysis. Next, we need to tell it what type
of sweep we want it to perform. We will use “Decade” under
“Sweep variation type.”We will then include the values of R
that we want Multisim to use in doing the transient analysis,
that is, vary the resistor from 10Ω to 10 kΩ by 3 points per
decade. This will generate a family of curves corresponding
to different values of resistance. By clicking on the various
curves, determine if the response becomes more or less
damped as R varies from 10Ω to 10 kΩ. By looking at the
curves, can you tell about what value of resistance will pro-
duce a critically damped circuit? Verify your guess by actu-
ally calculating the value of R that yields ζ=1.

7–57 The switch in Figure P7–57 has been open for a long time
and is closed at t = 0. The circuit parameters are L= 4H,
C =1 μF, R1 = 2:2 kΩ, R2 = 3:3 kΩ, and VA =12 V.
(a) Find vC tð Þ and iL tð Þ for t ≥ 0.
(b) Is the circuit overdamped, critically damped, or

underdamped?
(c) Use Multisim to validate your results. Hint: In Grapher
View plot vC tð Þ using the left axis and iL tð Þ on the right axis.
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VA

+

−

+

−
vC(t)

iL(t)

t = 0

R1 R2

C

L

FIGURE P7–57

7–58 The switch in Figure P7–58 has been open for a long time
and is closed at t = 0. The circuit parameters are L=1:25H,
C = 0:05 μF, R1 = 33 kΩ, R2 = 33 kΩ, and VA =20 V.
(a) Find vC tð Þ and iL tð Þ for t ≥ 0.
(b) Is the circuit overdamped, critically damped, or
underdamped?
(c) Use Multisim to validate your results. Hint: In Grapher
View plot vC tð Þ using the left axis and iL tð Þ on the right axis.

VA

+

−

C

R1

L
+
− vC(t)

iL(t)t = 0

R2

FIGURE P7–58

7–59 Repeat Problem 7–58 with R1 = 2 kΩ, R2 = 2 kΩ.

7–60 The switch in Figure P7–60 has been in position A for a
long time. At t = 0 it is moved to position B. The circuit para-
meters are R1 = 20 kΩ, R2 = 4 kΩ, L= 1:6 H, C = 1:25 μF,
and VA = 24 V.
(a) Find vC tð Þ and iL tð Þ for t ≥ 0.
(b) Is the circuit overdamped, critically damped, or

underdamped?
(c) Use Multisim to validate your results. Hint: In Grapher
View plot vC tð Þ using the left axis and iL tð Þ on the right axis.

VA

+ +

−
−

t = 0

R1

C L

R2
A

VA+

−
B

iL(t)

vC(t)

FIGURE P7–60

7–61 You have a need for an interface circuit that will

connect your source to a load with a very high input as shown
in Figure P7–61(a) . Your interface must have a response
that fits within the boundaries shown in Figure P7–61(b).
A vendor offers a suitable circuit shown in Figure P7–61(a)

and says that they are willing to change one component with-
out additional cost. Would you purchase the circuit and, if so,
you will buy it what change, if any, would you require? Use
MATLAB or Multisim to verify your result.

100 Ω

250 Ω

5 V

8

7

6
5.5
5
4.5
4
3.5

2.5
2

1

0

0 1 2 3
2.50.5

4 5 6 7

3

Vendor’s Interface

(a)

(b)

t=0
250 mH

1 μF

+

–

vO(t)

vO(t)(V)

t (ms)

+

−

FIGURE P7–61

7–62 The switch in Figure P7–62 has been in position A for a
long time and is moved to position B at t =0. The circuit para-
meters are R1 = 1 kΩ, R2 = 100Ω, L= 250 mH, C=3:3 μF,
and VA =24 V.
(a) Find vC tð Þ and iL tð Þ for t ≥ 0.
(b) Is the circuit overdamped, critically damped, or

underdamped?
(c) Use Multisim to validate your results. Hint: In Grapher
View plot vC tð Þ using the left axis and iL tð Þ on the right axis.

VA

+

−

t = 0

R1

L

R2
A C

+ −B

iL(t)

vC(t)

FIGURE P7–62
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7–63 The switch in Figure P7–62 has been in position B for a
long time and is moved to position A at t = 0. The circuit para-
meters are R1 = 1 kΩ, R2 = 100Ω, L= 250 mH, C=3:3 μF,
and VA =24 V.
(a) Find vC tð Þ and iL tð Þ for t ≥ 0.
(b) Is the circuit overdamped, critically damped, or

underdamped?
(c) Use Multisim to validate your results. Hint: In Grapher

View plot vC tð Þ using the left axis and iL tð Þ on the
right axis.

7–64 The circuit in Figure P7–64 is in the zero state when the
step function input is applied. The circuit parameters are
L= 250 mH, C = 1 μF, R=4:7 kΩ, and VA = 5 V. Find vO tð Þ
for t ≥ 0. (Hint: Find the capacitor voltage first.)

VAu(t)

+

−

CR

L
+
− vO(t)

FIGURE P7–64

7–65 The circuit in Figure P7–65 is in the zero state when the
step function input is applied.
(a) If VA = 15 V, R= 1:5 kΩ, L= 250mH, and C= 0:25 μF,

derive an expression for the voltage vO tð Þ for t ≥ 0.
(b) Validate your solution by plotting it usingMATLAB and

comparing it to a Multisim simulation of the same circuit.

VAu(t)

+

−

C

R+
−

L
vO(t)

FIGURE P7–65

7–66 Derive expressions for the damping ratio and un-
dampednatural frequencyof the circuit inFigureP7–66 in terms
of the circuit parameters R, L, and C. Which parameter(s)
affect the damping ratio? Can you change the damping ratio
without affecting the undamped natural frequency?

vS(t)

+

−

R

R

vO(t)C

L

+
−

FIGURE P7–66

7–67 Derive expressions for the damping ratio and undamped
natural frequency of the circuit in Figure P7–67 in terms of the
circuit parametersR, L, andC.Which parameter(s) affect the

damping ratio? Can you change the damping ratio without
affecting the undamped natural frequency?

iS(t) 

+

−

vO(t)R

2R

L C

FIGURE P7–67

7–68 The circuit of Figure P7–68 is a two-stage, first order cas-
cade circuit that will be studied extensively in Chapter 14.
It is a second-order circuit whose zero-state, step response
can be solved by recognizing that since R and C are the same,
the solution fits Case B for the natural response v2N tð Þ
(Eq. (7–65b)).
(a) Find the output v2 tð Þ when the input vS tð Þ=5u tð Þ,

R= 10 kΩ, and C= 0:1 μF.
(b) Use MATLAB to plot your result.
(c) Simulate the circuit using Multisim and compare your

results.

vS(t)
v2(t)

C
C

R
+R

−

++

FIGURE P7–68

O B J E C T I V E 7 – 4 S E C O N D - O R D E R C I R C U I T D E S I G N
( S E C T S . 7 – 5 T O 7 – 7 )
Given responses in a second-order RLC circuit,
(a) Find the circuit parameters or other responses.
(b) Design a circuit to produce the given responses.
See Examples 7–19, 7–25, and 7–27 and Exercises 7–23, 7–24,
7–26, 7–28, 7–32, 7–34, and 7–35.

7–69 The circuit in Figure P7–69 is in the zero state when

the step function input is applied. If the input source is
VA =10 V and L= 0:5 H, select values of R and C so that
the circuit’s output vO tð Þ for t ≥ 0 is critically damped. Use
MATLAB or Multisim to show your result for vO tð Þ. (Hint:
Find the inductor current first.)

VAu(t)

+

−

C

R

L
+
− vO(t)

FIGURE P7–69
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7–70 In a series RLC circuit the step response across the 1-μF
capacitor is
vC tð Þ= 15−e−200t 15 cos 1000tð Þ+ 3 sin 1000tð Þ½ �V t ≥ 0

(a) Find R and L. (b) Find iL tð Þ for t ≥ 0.

7–71 In a parallel RLC circuit the zero-input response in the
220-mH inductor is

iL tð Þ= 50e−6000t−40e−3000t mA t ≥ 0

(a) Find R and C. (b) Find vC tð Þ for t ≥ 0.

7–72 In a parallel RLC circuit the state variable responses are

vC tð Þ = e−100t 5 cos 300tð Þ+15 sin 300tð Þ½ � V t ≥ 0

iL tð Þ = 20−25e−100tcos 300tð ÞmA t ≥ 0

Find R,L, and C.

7–73 The zero-input response of a series RLC circuit with
R= 50Ω is

vC tð Þ= 2e−1000t cos 500tð Þ−4e−1000t sin 500tð ÞV t ≥ 0

If the initial conditions remain the same, what is the zero-input
response when R=100Ω?

7–74 In a parallel RLC circuit the inductor current is observed
to be

iL tð Þ= 20e−20tsin 20tð ÞmA t ≥ 0

Find vC tð Þ when vC 0ð Þ=0:6 V.

7–75 Design a parallel RLC circuit whose natural

response has the form

vL tð Þ=K1e−20,000t +K2te−20,000t V t ≥ 0

7–76 Design a series RLC circuit with ζ=0:5 and

ω0 = 100 krad=s.
(a) What is the form of the natural response of vC tð Þ for your

design?
(b) Simulate your circuit in Multisim.

7–77 Design a series RLC circuit with ζ=1 and

ω0 = 10 krad=s.
(a) What is the form of the natural response of vC tð Þ for your

design?
(b) Simulate your circuit in Multisim.

7–78 Design a series RLC circuit whose output vol-

tage resides entirely within the nonshaded region of
Figure P7–78. Validate your design using MATLAB or
Multisim.

0
0

1

2

3

4

5
4.5

6

7

5.25

4.75

2 4 6

vO(t)(V)

t (ms)

FIGURE P7–78

7–79 A circuit is needed to produce the following step

response:

vC tð Þ= 10−13:3e−200t +3:3e−800t V t > 0

A vendor has proposed using the circuit shown in Figure P7–79
to produce the desired response. The vendor realizes that the
proposed circuit does not exactly meet the desired response
and is willing to make a single change for no extra charge. What
change should the vendor make? (Hint: Use MATLAB to
generate the desired response and then simulate the vendor’s
corrected circuit using Multisim and verify that the responses
match.)

4.7 kΩ 6.25 H

10 V vO(t)

+
+

−
−

t = 0

1 μF

FIGURE P7–79

7–80 What range of damping ratios is available in the circuit in
Figure P7–80?

0.01 μF

10 Ω

2.5 mH

200 Ω

FIGURE P7–80
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7–81 A variable capacitor is used in the circuit of P7–81 to vary
the damping ratio. What range of damping ratios is available
in the circuit?

47 Ω

1–1000 pF

1 mH

FIGURE P7–81

7–82 A particular parallel RLC circuit has the step response
observed on an oscilloscope and shown in Figure P7–82. Four
points on the waveform were measured and are shown.
Determine the circuit’s initial value, final value, the dominant
exponential’s time constant, and the likely case (A, B, or C) of
the circuit response.

0.450.40.350.30.25

Time in seconds

i L
(t

) 
in

 m
A

0.20.150.10.050 0.5

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

X: 0.01451

Y: 2.005

X: 0.2002

Y: 2.734

X: 0.4004

Y: 1.268

X: 0.07558

Y: 4.516

FIGURE P7–82

I N T E G R A T I N G P R O B L E M S

7–83 First-Order OP AMP Circuit Step Response
Find the zero-state response of the OP AMP output voltage in
Figure P7–83 when the input is vS tð Þ=VA u tð ÞV. Validate your
solution using Multisim when R1 = 1 kΩ, R2 = 10 kΩ,
C2 = 0:01 μF, and VA =1 V.

−

−
++

+

–

vO(t)
vS(t)

R1 R2

C2

FIGURE P7–83

7–84 Intermittent Timing Circuit for Windshield Wipers

A carmaker needs anRC timing circuit to trigger the windshield
wiper relay. The circuit should be driver selectable to trigger at
1, 2, 5, and 10 s ± 5%. The source circuit is the car voltage of 12 V
with a series resistance of 10Ω. You must use standard parts
(see inside rear cover). You have a single-sided OP AMP avail-
able with aVCC of 0 V and + 12 V that you can use to trigger the
windshield wiper relay. The relay triggers with an input of
+ 12 V± 1 V. You may assume that the circuit resets after the
trigger. You should validate your design using Multisim.

7–85 RC Circuit Design

Design the first-order RC circuit in Figure P7–85 so an
input vS tð Þ= 20 u tð ÞV produces a zero-state response
vO tð Þ= 20−5e−1000t V. Validate your design using MATLAB
or Multisim.

vS(t)
First-order

RC
circuit

+
−

+

−

vO(t)

FIGURE P7–85

7–86 Sample-Hold Circuit

Figure P7–86 is a simplified diagram of a sample-hold circuit.
When the switch is in position A, the circuit is in the sample
mode and the capacitor voltage must charge to at least 99%
of the source voltage VA in less than 1 μs. When the switch is
moved to position B, the circuit is in the hold mode and the
capacitor must retain at least 99% of VA for at least 1 ms. Select
a capacitor that meets these constraints.

C

50 Ω

Sample Hold

A B

100 MΩVA vC(t)

+

−

+
−

FIGURE P7–86

7–87 Super Capacitor

Super capacitors have very large capacitance (typically from 0.1
to 3000F), small sizes, and very long charge-holding times, mak-
ing them useful in nonbattery backup power applications. The
charge-holding quality of a super capacitor is measured using
the circuit in Figure P7–87. The switch is closed for a long time
(say, 24 h) and the capacitor charged to 5 V. The switch is then
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opened and the capacitor allowed to self-discharge through
any leakage resistance for 24 h. Suppose that after 24 h the
voltage across a 100-F super capacitor is 4:75 V. What is the
equivalent leakage resistance in parallel with the capacitor?

C5 V RL
+
−

Super capacitor

100 Ω

FIGURE P7–87

7–88 Cost-Conscious RLC Circuit Design

You are assigned a task to design a series, passive RLC circuit
with a characteristic equation of s2 + 2000s+ 5× 106 = 0. To save
money, your supervisor wants you to use a previously purchased
150-mH inductor with a 10-Ω parasitic resistance. The RLC cir-
cuit will be used to interface to a Thèvenin source with a 75-Ω
series output resistance. Your circuit must demonstrate the
desired response with the source circuit connected.

7–89 Combined First- and Second-Order Response

The switch in Figure P7–89 has been in position A for a
long time and is moved to position B at t = 0 and then to
position C when t = 10 ms. For 0 < t < 10 ms, the capacitor
voltage is a charging exponential vC tð Þ= 10 1−e−100t

� �
V.

For t > 10 ms, the capacitor voltage is a sinusoid
vC tð Þ= 6:321 cos 1000 t−0:01ð Þ½ �V.
(a) Suppose the resistance is reduced to 1 kΩ and the switch-

ing sequence repeated.

Will the amplitude of the sinusoid increase, decrease, or
stay the same?

Will the frequency of the sinusoid increase, decrease, or
stay the same?

(b) Suppose the inductance is reduced to 100 mH and the
switching sequence repeated.

Will the amplitude of the sinusoid increase, decrease, or
stay the same?

Will the frequency of the sinusoid increase, decrease, or
stay the same?

+

−

1 HvC(t)

10 kΩ

A C

B

+

−

10 V
1 μF

FIGURE P7–89

7–90 Undesired Ringing

A digital clock has become corrupted by a ringing (undesired
oscillations) as shown in Figure P7–90(a). The unwanted
oscillations can cause false triggers and must be reduced. The
clock can be modeled as an RLC series circuit as shown in
Figure P7–55(b) with the voltage taken at node A. The parasitic
capacitance is estimated at 0:01 μF and the Thévenin resistance
at 330Ω. From the graph determine the inductanceL. Design an
interface circuit that significantly reduces the ringing without
significantly reducing the rise time (the time it takes the pulse
to go from low to high or vice versa). The transition must occur
in less than 80 μs and the “overshoot” (deviation from 0 or 5 V)
must be less than ± 1:5 V. From the graph determine L. Then
design a suitable interface to meet the output specifications.
Use standard value components. Use Multisim to validate your
design.
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FIGURE P7–90

7–91 Triangular Wave Design

There is a need to generate a 12-V±10%, 1-kHz triangular
wave. You have a ± 5-V, 1-kHz square wave. You recall
from your first Circuits course that you can easily design
an OP AMP integrator that should be able to produce a
triangular wave from a square wave. But the slope of the
square wave should not show any visually detectable
curve—and it should start at t = 0. The OP AMPs available
have a ± 15 VVCC. Design the circuit and verify your design
using Multisim. The desired input/output is shown in Figure
P7–91.
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7–92 Optimum Fusing

A sensitive instrument that can be modeled by the series RLC
circuit shown in Figure P7–92 is to be protected by a fuse. The
voltage across the capacitor is

vC tð Þ= e−10t −cos103t +0:0971 sin 103tð Þ u tð Þ V

The peak current was found to occur at about 13 ms after t = 0.
Engineer A suggests a 10- mA fuse; Engineer B suggests a
5- mA fuse; while Engineer C suggests a 1- mA fuse. The crite-
rion is to select a fuse that is closest to the peak value of current
expected without blowing. Which engineer is correct? Provide
evidence for your decision.

1 H

Fuse

Instrument

1u(t) V

iS(t) 

+vC(t)− 

9 Ω 1 Ω+

−

92.5 μF

FIGURE P7–92

7–93 Lightning Pulser Design

The circuit in Figure P7–93 is a simplified diagram of a pulser
that delivers simulated lightning transients to the test article
at the output interface. Closing the switch must produce a
short-circuit current of the form iSC tð Þ= IAe−αtcos βtð Þ, with
α= 100 krad=s, β= 200 krad=s, and IA = 2:5 kA. Select the values
of L,C, and V0.

50 Ω

Pulser

iSC(t)

V0

+

−
C L

t = 0

Test Article

FIGURE P7–93

7–94 RLC Circuit Design

Losses in real inductors can be modeled by a series resistor as
shown in Figure P7–94. In this problem, we include the effect
of this resistor on the design of the series RLC circuit shown
in the figure. The design requirements include a source resist-
ance of 50Ω, an undamped natural frequency of 50kHz, and
a damping ratio less than 0.1.

The characteristics of the available inductors are listed below.

L(MH) RL(Ω) L mHð Þ RL Ωð Þ
10.0 651 4.7 240
7.5 471 3.9 190
6.8 356 3.3 161

Which inductor would you use in your design and why?

vS(t) C

RL L

50 Ω Lossy Inductor

+
−

FIGURE P7–94

7–95 Competing Circuit Designs

Figure P7–88 shows the step responses vC tð Þ of two competing
series RLC circuits from two different vendors. The circuits are
designed to switch from 0 to 10 V and to meet a specification for
a desired circuit with the following characteristic equation:

s2 + 10 s+ 100= 0

Not all of the details of the actual circuits have been provided
because of proprietary reasons, but each vendor has given some
information about their respective circuit. Both claim they meet
the required specifications.
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VENDOR A VENDOR B

RT = 100 Ω R/L = 10 rad/s
1/LC = 100 (rad/s)2 ω0 = 10 rad/s
C = 2 mF

Which vendor would you choose and why?
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FIGURE P7–95

7–96 Solving Differential Equations with MATLAB

MATLAB has a built-in function for solving ordinary differen-
tial equations called dsolve. We can use this function to
quickly explore the solution to a second-order differential equa-
tion when the forcing function is a sinusoidal or exponential sig-
nal. Suppose we have a series RLC circuit in the zero state
connected to a voltage source vT tð Þ. The parameter values

are R= 4 kΩ, L= 1H, and C=1 μF. The differential equation
for the voltage across the capacitor is given by Eq. (7–33). If
vT tð Þ=10 u tð ÞV, we can use the following MATLAB code to
solve for the capacitor voltage and plot the results.

% Define the symbolic time variable
syms t real
% Define the parameter values
R = 4000;
L = 1;
C = 1e-6;
% Solve the differential equation for the
% series RLC circuit with zero
% initial conditions
vCt = dsolve(’L∗C∗D2v + R∗C∗Dv + v = 10’,
’v(0)=0’,’Dv(0)=0’,’t’);
% Create a time vector for plotting and
% substitute in numerical values
tt = 0:0.0001:0.04;
vCt = subs(vCt);
vCtt = subs(vCt,t,tt);
% Plot the results
figure
plot(tt,vCtt,’b’,’LineWidth’,2)
grid on
xlabel(’Time, (s)’)
ylabel(’v_C(t), (V)’)
title(’Problem 7-89’)

Run the givenMATLAB code and examine the results. Modify
the code to solve the same problem when the input voltage is
vT tð Þ=10 cos 200 πtð ÞV. Solve the problem a third time for
vT tð Þ=10e−2000t V. Compare and comment on the responses
for the three different types of input signals.
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C H A P T E R 8 SINUSOIDAL
STEADY-STATE RESPONSE

The vector diagram of sine waves gives the best insight into the mutual relationships of alternating currents and emf’s.

Charles P. Steinmetz, 1893,
American Engineer

Some History Behind This Chapter
The vector description of sinusoids was first discussed in
detail by Charles Steinmetz (1865–1923) at the International
Electric Congress of 1893. Although Oliver Heaviside may
have used the vector concept earlier, Steinmetz is credited
with popularizing the approach by demonstrating its many
applications. By the turn of the century the vector method
was well established in engineering practice and education.
In the 1950s Steinmetz’s vectors came to be called phasors
to avoid possible confusion with the space vectors used to
describe electromagnetic fields.

Why This Chapter Is Important Today
In this chapter we learn how to analyze ac circuits driven by a
single-frequency sinusoid. We do this using a clever tech-
nique called phasor analysis that allows us to deal with ac cir-
cuits using the same tools we used on dc circuits. Phasor
analysis is the key to understanding the electrical power sys-
tems that supply our homes and businesses. Using complex
numbers is the price we pay for the simplicity of phasor anal-
ysis. Yet complex numbers are easy to master; after all, you
were first introduced to them in high school. Fortunately,
very complex (pun intended) problems can be solved using
software tools.

Chapter Sections
8–1 Sinusoids and Phasors
8–2 Phasor Circuit Analysis
8–3 Basic Phasor Circuit Analysis and Design
8–4 Circuit Theorems with Phasors
8–5 General Circuit Analysis with Phasors
8–6 Energy and Power

Chapter Learning Objectives
8-1 Sinusoids and Phasors (Sect. 8–1)

Use the additive and derivative properties of phasors to
convert sinusoids into phasors and vice versa.

8-2 Impedance (Sects. 8–2, and 8–3)

Given a linear circuit in the sinusoidal steady state:
(a) Convert R, L, and C elements into impedances in

the phasor domain.
(b) Use series and parallel equivalence to find the equiv-

alent impedance at a specified pair of terminals.

8-3 BasicPhasorCircuitAnalysis andDesign (Sects. 8–3,
and 8–4)
(a) Given a linear circuit in the sinusoidal steady state,

find phasor responses using equivalent circuits, cir-
cuit reduction, Thévenin or Norton equivalent cir-
cuits, and proportionality, or superposition.

(b) Given a desired phasor response and a sinusoidal
input, design a circuit in the sinusoidal steady state
that produces the desired response.

8-4 General Circuit Analysis (Sect. 8–5)

Given a linear circuit in the sinusoidal steady state, find
equivalent impedances and phasor responses using
node-voltage or mesh-current analysis.

8-5 Average Power and Maximum Power Transfer
(Sect. 8–6)

Given a linear circuit in the sinusoidal steady state:
(a) Find the average power delivered at a specified interface.
(b) Find the maximum average power available at a

specified interface.
(c) Find the load impedance required to draw the max-

imum available power.
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8–1 S I N U S O I D S A N D P H A S O R S
The phasor concept is the foundation for the analysis of linear circuits in the sinus-
oidal steady state. Simply put, a phasor is a complex number representing the ampli-
tude and phase angle of a sinusoidal voltage or current. The connection between
sinewaves and complex numbers is provided by Euler’s relationship:

ejθ = cos θ+ j sin θ (8–1)

Equation (8–1) relates the sine and cosine functions to the complex exponential ejθ.
To develop the phasor concept, it is necessary to adopt the point of view that the
cosine and sine functions can be written in the form

cos θ=Re ejθ
� �

(8–2)

and

sin θ= Im ejθ
� �

(8–3)

where Re stands for the “real part of” and Im for the “imaginary part of.” Develop-
ment of the phasor concept can begin with either Eq. (8–2) or (8–3). The choice
between the two involves deciding whether to describe the sinewave using a sine
or cosine function. In Chapter 5 we chose the cosine, so we will reference phasors
to the cosine function.

When Eq. (8–2) is applied to the general sinusoid defined in Chapter 5, we obtain

υ tð Þ =VA cos ωt +ϕð Þ
=VARe ej ωt+ϕð Þ� �

=VARe ejωtejϕ
� �

= Re VAejϕ
� �

ejωt
� �

=Re Vejωt
� � (8–4)

In the last line of Eq. (8–4), moving the amplitude VA inside the real part operation
does not change the final result because it is a real constant.

By definition, the quantity VAejϕ in the last line of Eq. (8–4) is the phasor repre-
sentation of the sinusoid υ tð Þ. The phasor V is written as

V=VAejϕ|fflfflffl{zfflfflffl}
Polar

=VA cos ϕ+ jVA sin ϕ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rectangular

(8–5)

Note thatV is a complex number determined by the amplitude and phase angle of the
sinusoid. Figure 8–1 shows a graphical representation commonly called a phasor
diagram.

As shown in Eq. (8–5), a phasor is a complex number that can be written in either
polar or rectangular form. An alternative way to write the polar form is to replace the
exponential ejϕ by the shorthand notation ffϕ. In subsequent discussions, we will often
express phasors as V=VAffϕ, which is equivalent to the polar form in Eq. (8–5).
When written this way, one states that the phasor has an amplitude of VA at an
angle of ϕ.

Two features of the phasor concept need emphasis:

1. Phasors are written in boldface type like V or I1 to distinguish them from
signal waveforms such as υ tð Þ and i1 tð Þ.

2. A phasor is determined by amplitude and phase angle and does not contain
any information about the frequency of the sinusoid.

The first feature points out that signals can be described in different ways.
Although the phasor V and waveform υ tð Þ are related concepts, they have different

j Im

Re

VA cos ϕ

VA

V

jVA sin ϕ

ϕ

FIGURE 8–1 Phasor diagram.
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physical interpretations and our notation must clearly distinguish between them. The
absence of frequency information in the phasors results from the fact that in the sinus-
oidal steady state, all currents and voltages are sinusoids with the same frequency.
Carrying frequency information in the phasor would be redundant, since it is the
same for all phasors in any given steady-state circuit problem.

In summary, given a sinusoidal signal υ tð Þ=VAcos ωt +ð ϕÞ, the corresponding pha-
sor representation is V=VAejϕ =VAffϕ. Conversely, given the phasor V=VAejϕ, the
corresponding sinusoid is found by multiplying the phasor by ejωt and reversing the
steps in Eq. (8–4) as follows:

υ tð Þ = Re Vejωt
� �

=Re VAejϕ
� �

ejωt
� �

= VARe ej ωt +ϕð Þ� �
=VARe cos ωt +ϕð Þ+ j sin ωt +ϕð Þf g

= VA cos ωt +ϕð Þ
(8–6)

The frequency ω in the complex exponential Vejωt in Eq. (8–6) must be expressed or
implied in a problem statement, since by definition it is not contained in the phasor.
Figure 8–2 shows a geometric interpretation of the complex exponential Vejωt as a
vector in the complex plane of lengthVA, which rotates counterclockwise with a con-
stant angular velocity of ω, the radian frequency of the sinusoid. The real part oper-
ation projects the rotating vector onto the horizontal (real) axis and thereby
generates υ tð Þ=VAcos ωt +ϕð Þ. The complex exponential is sometimes called a rotat-
ing phasor, and the phasor V is viewed as a snapshot of the situation at t = 0.

E x e r c i s e 8–1
Convert the following sinusoids to phasors in polar and rectangular form:

(a) υ tð Þ= 20 cos 150t−60�ð ÞV
(b) υ tð Þ= 10 cos 1000t +180�ð ÞV
(c) i tð Þ= −4 cos 3t + 3 cos 3t−90�ð ÞA
A n s w e r s:
(a) V= 20ff−60� = 10− j17:3 V
(b) V=10ff180� = −10 + j0 V
(c) I= 5ff−143� = −4− j3A

E x e r c i s e 8–2
Convert the following phasors to sinusoids:

(a) V= 169ff−45� V at f = 60Hz
(b) V=10ff90� + 66− j10 V at ω=10 krad=s
(c) I= 15+ j5 + 10ff180� mAat ω= 1000 rad=s

A n s w e r s:
(a) υ tð Þ= 169 cos 377t−45�ð ÞV
(b) υ tð Þ=66 cos 104t V
(c) i tð Þ= 7:07 cos 1000t + 45�ð ÞmA

P R O P E R T I E S O F P H A S O R S

Two important properties of phasors play key roles in circuit analysis. First, the addi-
tive property states that the phasor representing a sum of sinusoids of the same fre-
quency is obtained by adding the phasor representations of the component sinusoids.
To establish this property we write the expression

j Im

Re
VA cos (ωt+ϕ)

VA

Ve jω t

ωt + ϕ

ω

FIGURE 8–2 Complex
exponential Vejωt .
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υ tð Þ = υ1 tð Þ+ υ2 tð Þ+ � � �+ υN tð Þ
= Re V1ejωt

� �
+Re V2ejωt

� �
+ � � �+Re VNejωt

� � (8–7)

where υ1 tð Þ,υ2 tð Þ,…,υN tð Þ are sinusoids of the same frequency whose phasor repre-
sentations are V1,V2,…,VN . The real part operation is additive, so the sum of real
parts equals the real part of the sum. Consequently, Eq. (8–7) can be written in
the form

υ tð Þ = Re V1ejωt +V2ejωt + � � �+VNejωt
� �

= Re V1 +V2 + � � �+VNð Þejωt� � (8–8)

Comparing the last line in Eq. (8–8) with the definition of a phasor, we conclude that
the phasor V representing υ tð Þ is

V=V1 +V2 + � � �+VN (8–9)

The result in Eq. (8–9) applies only if the component sinusoids all have the same fre-
quency so that ejωt can be factored out as shown in the last line in Eq. (8–8).

In Chapter 5 we found that the time derivative of a sinusoid is another sinusoid
with the same frequency. Since they have the same frequency, the signal and its deriv-
ative can be represented by phasors. The derivative property of phasors allows us
easily to relate the phasor representing a sinusoid to the phasor representing its
derivative.

Equation (8–6) relates a sinusoid function and its phasor representation as

υ tð Þ=Re Vejωt
� �

Differentiating this equation with respect to time t yields

dυ tð Þ
dt

=
d
dt

Re Vejωt
� �

=Re V
d
dt
ejωt


 �
= Re jωVð Þejωt� � (8–10)

From the definition of a phasor, we see that the quantity jωVð Þ on the right side of
this equation is the phasor representation of the time derivative of the sinusoidal
waveform. This phasor can be written in the form

jωV = ωej90
�� �

VAejθ
� �

= ωVAej θ+ 90�ð Þ
(8–11)

which points out that differentiating a sinusoid changes its amplitude by a multipli-
cative factor ω and shifts the phase angle by 90�.

In summary, the additive property states that adding phasors is equivalent to add-
ing sinusoids of the same frequency. The derivative property states that multiplying a
phasor by jω is equivalent to differentiating the corresponding sinusoid. The follow-
ing examples show applications of these two properties of phasors.

E X A M P L E 8–1

(a) Construct the phasors for the following signals:

υ1 tð Þ = 10 cos 1000t−45�ð ÞV
υ2 tð Þ = 5 cos 1000t + 30�ð ÞV

(b) Use the additive property of phasors and the phasors found in (a) to find
υ tð Þ= υ1 tð Þ+ υ2 tð Þ.
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SOLUTION:
(a) The phasor representations of υ1 tð Þ and υ2 tð Þ are

V1 = 10e− j45
�
= 10 cos −45�ð Þ+ j10 sin −45�ð Þ

= 7:07− j7:07

V2 = 5e+ j30� = 5 cos 30�ð Þ+ j5 sin 30�ð Þ
= 4:33 + j2:5

(b) The two sinusoids have the same frequency, so the additive property of phasors
can be used to obtain their sum:

V=V1 +V2 = 11:4− j4:57 = 12:3e− j21:8
�

The waveform corresponding to this phasor sum is

υ tð Þ = Re 12:3e− j21:8
�� �
ej1000t

� �
= 12:3 cos 1000t−21:8�ð ÞV

The phasor diagram in Figure 8–3 shows that summing sinusoids can be viewed
geometrically in terms of phasors.

MATLAB can be a valuable tool in working with phasors. The following code is
useful for this example:

% Create the phasor values
V1 = 10∗exp(-j∗45∗pi/180)
V2 = 5∗exp(j∗30∗pi/180)
% Form the sum
V = V1 + V2
% Compute the polar form
MagV = abs(V);
PhaseV = angle(V);
PhaseVDeg = 180∗PhaseV/pi;
% Display the results
disp([‘V =’,num2str(MagV,‘% 3.4g’), . . .

exp(‘,num2str(PhaseVDeg,’% 3.4g’),‘j)’])

Recall that the MATLAB complex exponential function operates on values in
radians, not degrees. The code produces the following results, which agree with
the solution shown above:

V1 =
7.0711 - 7.0711i

V2 =
4.3301 + 2.5000i

V =
11.4012 - 4.5711i

V = 12.28 exp(-21.85j) ■

E x e r c i s e 8–3
(a) Construct the phasors for the following signals:

i1 tð Þ = 100 cos 2000tð ÞmA
i2 tð Þ = 50 cos 2000t−60�ð ÞmA

(b) Use the additive property to find i tð Þ= i1 tð Þ+ i2 tð Þ and check the results usingMATLAB.

j Im

Re

V2
5

10 12.3

−45°

30°

V1

V

−21.8°

FIGURE 8–3
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A n s w e r s:
(a) See Figure 8–4. I1 = 100 mA, I2 = 25− j43:30mA
(b) I= 125− j43:3 = 132ff−19:1� mA, so i tð Þ= 132 cos 2000t−19:1�ð ÞmA

E X A M P L E 8–2

(a) Construct the phasors representing the following signals:

iA tð Þ = 5 cos 377t + 50�ð ÞA
iB tð Þ = 5 cos 377t + 170�ð ÞA
iC tð Þ = 5 cos 377t−70�ð ÞA

(b) Use the additive property of phasors and the phasors found in (a) to find the sum
of these waveforms.

SOLUTION:
(a) The phasor representations of the three sinusoidal currents are:

IA = 5ej50
�

= 5 cos 50�ð Þ+ j5 sin 50�ð Þ = 3:21 + j3:83 A

IB = 5ej170
�
= 5 cos 170�ð Þ+ j5 sin 170�ð Þ = −4:92 + j0:87 A

IC = 5e− j70 = 5 cos −70�ð Þ+ j5 sin −70�ð Þ = 1:71− j4:70 A

(b) The currents have the same frequency, so the additive property of phasors
applies. The phasor representing the sum of these currents is

IA + IB + IC = 3:21−4:92 + 1:71ð Þ+ j 3:83 + 0:87−4:70ð Þ
= 0+ j0A

It is not obvious by examining the waveforms that these three currents add
to zero. However, the phasor diagram in Figure 8–5 makes this fact clear,
since the sum of any two phasors is equal and opposite to the third. Phasors of
this type occur in balanced three-phase power systems. The balanced condition
occurs when three equal-amplitude phasors are displaced in phase by
exactly 120�. ■

E x e r c i s e 8–4
Show that the phasors IA, IB, and IC would still sum to zero if they were all rotated 90�

counterclockwise.

A n s w e r:

IA + IB + IC = −3:83 + j3:21ð Þ+ −0:87− j4:92ð Þ+ 4:70 + j1:71ð Þ
= 0+ j0A

E X A M P L E 8–3

Use the derivative property of phasors to find the time derivative
of υ tð Þ= 15 cos 200t−30�ð ÞV.

j Im

Re

IA

55

5

5

50°

120°120°

120°

IC

IB

IA+ IB

FIGURE 8–5
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I1 100 mA

50 mA

132 mA

I−60°

−19.1°
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SOLUTION:
The phasor for the sinusoid isV= 15ff−30�. According to the derivative property, the
phasor representing dυ=dt is found by multiplying V by jω.

j200ð Þ× 15ff30�ð Þ= 200ej90
�� �
× 15e− j30

�� �
= 3000ej60

�
= 3000 ff60�

The sinusoid corresponding to the phasor jωV is

dυ tð Þ
dt

= Re 3000ej60
�� �
ej200t

� �
= 3000 Refej 200t + 60�ð Þg

= 3000 cos 200t + 60�ð ÞV=s

Finding the derivative of a sinusoid is easily carried out in phasor form, since it only
involves manipulating complex numbers. ■

E x e r c i s e 8–5
Find the phasor corresponding to the time derivative of the waveform:

υ tð Þ=100 cos 1000tð ÞV

A n s w e r: V=105ff90� V=s

E X A M P L E 8–4

(a) Convert the following phasors into sinusoidal waveforms:

V1 = 20 + j20 V, ω= 500 rad=s

V2 = 10
ffiffiffi
2

p
e− j45

�
V, ω= 500 rad=s

(b) Use phasor addition to find the sinusoidal waveform υ3 tð Þ= υ1 tð Þ+ υ2 tð Þ.

SOLUTION:
(a) Since V1 = 20 + j20 = 20

ffiffiffi
2

p
ej45

�
, the waveforms corresponding to the phasors V1

and V2 are as follows:

υ1 tð Þ = Re 20
ffiffiffi
2

p
ej45

�
ej500t

� �
= 20

ffiffiffi
2

p
cos 500t + 45�ð ÞV

υ2 tð Þ = Re 10
ffiffiffi
2

p
e− j45

�
ej500t

� �
= 10

ffiffiffi
2

p
cos 500t−45�ð ÞV

(b) Since V2 = 10
ffiffiffi
2

p
e− j45

�
= 10− j10, the additive property of phasors yields

V3 = V1 +V2 = 20 + j20 + 10− j10 V

= 30+ j10 = 31:6ej18:4
�
V

Hence,

υ3 tð Þ=Re 31:6ej18:4
�
ej500t

� �
= 31:6 cos 500t + 18:4�ð ÞV

The graphical solution is shown in Figure 8–6. ■

E x e r c i s e 8–6
Find the phasor corresponding to the waveform υ tð Þ=VA cos ωtð Þ+2VA sin ωtð Þ.
A n s w e r: V=VA− j2VA =

ffiffiffi
5

p
VA ff−63:4� V

j Im

Re
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45°
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8–2 P H A S O R C I R C U I T A N A L Y S I S

Phasor circuit analysis is a method of finding sinusoidal steady-state responses
directly from the circuit without using differential equations. How do we perform
phasor circuit analysis? At several points in our study we have seen that circuit anal-
ysis is based on two kinds of constraints: (1) connection constraints (Kirchhoff’s laws)
and (2) device constraints (element equations). To analyze phasor circuits, we must
see how these constraints are expressed in phasor form.

C O N N E C T I O N C O N S T R A I N T S I N P H A S O R F O R M

The sinusoidal steady-state condition is reached after the circuit’s natural response
decays to zero. In the steady state all of the voltages and currents are sinusoids with
the same frequency as the driving force. Under these conditions, the application of
KVL around a loop could take the form

V1 cos ωt +ϕ1ð Þ+V2 cos ωt +ϕ2ð Þ+ � � �+VN cos ωt +ϕNð Þ= 0

These sinusoids have the same frequency but have different amplitudes and phase
angles. The additive property of phasors discussed in the preceding section shows
that there is a one-to-one correspondence between waveform sums and phasor sums.
Therefore, if the sum of the waveforms is zero, then the corresponding phasors must
also sum to zero.

V1 +V2 + � � �+VN = 0

Clearly the same result applies to phasor currents and KCL. In other words, we can
state Kirchhoff’s laws in phasor form as follows:

KVL: The algebraic sum of phasor voltages around a loop is zero.
KCL: The algebraic sum of phasor currents at a node is zero.

D E V I C E C O N S T R A I N T S I N P H A S O R F O R M

Turning now to the device constraints, we note that the i−υ characteristics of the three
passive elements are:

Resistor: υR tð Þ = RiR tð Þ

Inductor: υL tð Þ = L
diL tð Þ
dt

Capacitor: iC tð Þ = C
dυC tð Þ
dt

(8–12)

In the sinusoidal steady state, all of these currents and voltages are sinusoids. Given
that the signals are sinusoid, how do these i−υ relationships constrain the correspond-
ing phasors?

In the sinusoidal steady state, the voltage and current of the resistor can be written
in terms of phasors as υR tð Þ=Re VRejωt

� �
and iR tð Þ=Re IRejωt

� �
. Consequently, the

resistor i−υ relationship in Eq. (8–12) can be expressed in terms of phasors as follows:

Re VRejωt
� �

=R×Re IRejωt
� �

Since R is a real constant, moving it inside the real part operation on the right side of
this equation does not change things:

Re VRejωt
� �

=Re RIRejωt
� �

This relationship holds only if the phasor voltage and current for a resistor are related as

VR =RIR (8–13)
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To explore this relationship, we assume that the current through a resistor is
iR tð Þ= IA cos ωt +ϕð Þ. Then the phasor current is IR = IAejϕ, and according to
Eq. (8–13), the phasor voltage across the resistor is

VR =RIAejϕ

This result shows that the voltage has the same phase angle ϕð Þ as the current.
Phasors with the same phase angle are said to be in phase; otherwise they are
said to be out of phase. Figure 8–7 shows the phasor diagram of the resistor
current and voltage. Two scale factors are needed to construct a phasor diagram
showing both voltage and current, since the two phasors do not have the same
dimensions.

In the sinusoidal steady state, the voltage and current for the inductor can be writ-
ten in terms of phasors as υL tð Þ=Re VLejωt

� �
and iL tð Þ=Re ILejωt

� �
. Using the

derivative property of phasors, the inductor i−υ relationship in Eq. (8–12) can be
expressed as follows:

Re VLejωt
� �

= L×Re jωILejωt
� �

= Re jωLILejωt
� �

Since L is a real constant, moving it inside the real part operation does not change
things. Written this way, we see that the phasor voltage and current for an inductor
are related as

VL = jωLIL (8–14)

When the current is iL tð Þ= IA cos ωt +ϕð Þ, the corresponding phasor is IL = IAejϕ and
the i−υ constraint in Eq. (8–14) yields

VL = jωLIL = ωLej90
�� �

IAejϕ
� �

= ωLIAej ϕ+ 90�ð Þ

The resulting phasor diagram in Figure 8–8 shows that the inductor voltage and cur-
rent are 90� out of phase. The voltage phasor is advanced by 90� counterclockwise,
which is in the direction of rotation of the complex exponential ejωt. When the voltage
phasor is advanced counterclockwise (that is, ahead of the rotating current phasor),
we say that the voltage phasor leads the current phasor by 90� or, equivalently, the
current lags the voltage by 90�.

Finally, the capacitor voltage and current in the sinusoidal steady state can be writ-
ten in terms of phasors as υC tð Þ=Re VCejωt

� �
and iC tð Þ=Re ICejωt

� �
. Using the deriv-

ative property of phasors, the i−υ relationship of the capacitor in Eq. (8–12) becomes

Re ICejωt
� �

= C ×Re jωVCejωt
� �

= Re jωCVCejωt
� �

Moving the real constant C inside the real part operation does not change the final
result, so we conclude that the phasor voltage and current for a capacitor are
related as

IC = jωCVC

Solving for VC yields

VC =
1

jωC
IC (8–15)

j Im

Re
ϕ

IL90°

VL

FIGURE 8–8 Phasor i−υ
characteristics of the inductor.

j Im

Re

VR

ϕ

IR

FIGURE 8–7 Phasor i−υ
characteristics of the resistor.
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When iC tð Þ= IA cos ωt +ϕð Þ, then according to Eq. (8–15), the phasor voltage across
the capacitor is

VC =
1

jωC
IC =

1
ωC

e− j90
�

� �
IAejϕ
� �

=
IA
ωC

ej ϕ−90
�ð Þ

The resulting phasor diagram inFigure 8–9 shows that voltage and current are 90� out of
phase. In this case, the voltage phasor is retarded by 90� clockwise, which is in a direc-
tion opposite to rotation of the complex exponential ejωt. When the voltage is retarded
clockwise (that is, behind the rotating current phasor), we say that the voltage phasor
lags the current phasor by 90� or, equivalently, the current leads the voltage by 90�.

T H E I M P E D A N C E C O N C E P T

The phasor I−V constraints in Eqs. (8–13), (8–14), and (8–15) are all of the form

V=ZI (8–16)

where Z is called the impedance of the element. Equation (8–16) is analogous to
Ohm’s law in resistive circuits. Impedance is the proportionality constant relating
phasor voltage and phasor current in linear, two-terminal elements. The impedances
of the three passive elements are given as follows:

Resistor: ZR = R

Inductor: ZL = jωL

Capacitor: ZC =
1

jωC
= −

j
ωC

(8–17)

Since impedance relates phasor voltage to phasor current, it is a complex quantity
whose units are ohms. Although impedance can be a complex number, it is not a pha-
sor. Phasors represent sinusoidal signals, while impedances characterize circuit ele-
ments in the sinusoidal steady state. Finally, it is important to remember that the
generalized two-terminal device constraint in Eq. (8–16) assumes that the passive
sign convention is used to assign the reference marks to the voltage and current.

E F F E C T S O F F R E Q U E N C Y O N I M P E D A N C E

It is important to stop and reflect on what the concept of
impedance means to us. The behavior of these three ele-
ments versus frequency is a fundamental concept of electri-
cal engineering. Figure 8–10 shows a plot of the magnitude
of the impedance Zj j of each of the three circuit elements
versus frequency ω.

The magnitude of the impedance of the resistor ZRj j is
unaffected by frequency. It is simplyR, the resistor’s resist-
ance. It plots as a horizontal line on the figure. The magni-
tude of the impedance of an inductor is a function of
frequency, ZLj j=ωL. At dc, when nothing is changing,
an inductor behaves like a short circuit (i.e., zero ohms);
we saw this in Chapter 6, where we discussed dc equivalent
circuits and modeled an inductor when nothing was
changing—that is, ω= 0—as a short circuit. We made use
of this substitution in Chapter 7 when we analyzed first-order RL circuits excited by
a step function. However, as the frequency exciting the inductor begins to increase,

j Im
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ϕ
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−90°
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FIGURE 8–9 Phasor i−υ
characteristics of the capacitor.
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FIGURE 8–10 Magnitude of the impedance of passive
circuit elements versus frequency.
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the impedance of the inductor increases linearly with the frequency. The magnitude,
then, appears as an increasing straight line on the graph. As the frequency approaches
infinity, the nature of the inductor morphs into an open circuit of infinite ohms.

The impedance of a capacitor, however, exhibits behavior quite different from
that of either a resistor or an inductor. Themagnitude of the impedance of a capacitor
is an inverse function of frequency, ZCj j= 1=ωC. At dc, when nothing is changing or
ω= 0, the capacitor behaves like an open circuit (i.e., ∞Ω); again, we saw this in
Chapter 6, where we discussed dc equivalent circuits and used it in Chapter 7 when
analyzingRC circuits excited by a step function. However, as the frequency begins to
increase, the impedance of the capacitor decreases inversely with the frequency. The
magnitude, then, appears as a hyperbola on the graph. As the frequency approaches
infinity, the nature of the capacitor completely changes into a short circuit of zero
ohms. This opposing behavior of inductors and capacitors is what permits the real-
ization of so many different circuits.

From the graph in Figure 8–10 we can see that there is a frequency, ω0, where the
magnitude of the impedance of the inductor equals that of the capacitor. This fre-
quency is called the resonant frequency and it is an important property of circuits
in the sinusoidal steady state that we can use to our advantage. As we progress in
our study of circuits, we will learn how to use these divergent properties to analyze,
design, and evaluate ac circuits.

E X A M P L E 8–5

The circuit in Figure 8–11(a) is operating in the sinusoidal steady state with
i tð Þ= 4 cos 5000tð ÞA. Find the steady-state voltage v tð Þ by hand and by using Multisim.

SOLUTION:
We will solve the problem first by hand: our first step.

Our first step is to convert our circuit from the time-domain shown inFigure 8–11(a)
into phasors. We proceed as follows. The resistor and the capacitor have impedances

ZR =R= 10+ j0 and ZC =
1

jωC
=

1

j5000 × 10−5 = 0− j20

+

−

V

+

−

v(t)

I=4+j0

‒j20 Ω

Rest
of the
circuit

+

−
VC

10 Ω

+ VR −

i(t)

10 μF

Rest
of the
circuit

(a) (b)

+

−
vC(t)

10 Ω

+ vR(t) −

10 Ω

C1

10 μF

(c) (d)

R11

I1

4 A

795.77 Hz

0°

Example 8–5
Single Frequency AC  Analysis @ 795.77 Hz

Variable Frequency (Hz) Magnitude Phase (deg)

1 V(1) 795.77 89.443 ‒63.435

FIGURE 8–11
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Applying KCL at node A shows that i tð Þ= 4 cos 5000tð Þ is the current through both
the resistor and the capacitor. The corresponding phasor current is I= 4+ j0. Using
the element impedances, the phasor voltages across the resistor and the capacitor are

VR = ZRI = 10 × 4 + j0ð Þ= 40 + j0

VC = ZCI = − j20ð Þ× 4+ j0ð Þ= 0− j80

We can redraw our circuit using phasors as shown in Figure 8–11(b).
Applying KVL around the loop yields V=VR +VC; hence,

V= 40− j80 = 89:4ff−63:4� V
and the steady-state voltage waveform is

υ tð Þ = Re 89:4e− j63:4
�
ej5000t

� �
= 89:4 cos 5000t−63:4�ð ÞV

Next we will solve the problem using Multisim. Since we do not know what is to the
left of the circuit, only that the current is given, we can build our circuit in Multisim
using the ac current source. Note that Multisim requires that the frequency be stated
in hertz; hence, 5000 rad=s equals 795:77 Hz. We will build the rest of the circuit as
usual, as shown in Figure 8–11(c). Since we are only interested in the steady-state
result, we can ignore any initial condition on the capacitor. To simulate the response,
we open “Analyses” and select “Single frequency AC analysis.” In the window that
opens, we list the frequency inHz, that is, 795.77. Check the “Frequency column” box
so that the frequency is listed in the output, and, since we want to be able to write our
answer in magnitude and phase, select that type of output for the “Complex number
format.” We are interested in the voltage v tð Þ across the input to the two-element
load. We identify the input node on the circuit diagram, “1” in our circuit, and ask
Multisim to provide that voltage output “V 1ð Þ.” Then click on “Simulate.” Grapher
View returns the result shown in Figure 8–11(d). From the results, we can quickly
write the desired expression for v tð Þ.

v tð Þ= 89:443 cos 5000 t−63:435�ð ÞV ■

E x e r c i s e 8–7
A series circuit is composed of a 1-kΩ resistor, a 1-μF capacitor, and a 100-mH inductor.

(a) At what frequency will themagnitude of the impedance of the inductor equal that of the
resistor?

(b) At what frequency will the magnitude of the impedance of the capacitor equal that of
the resistor?

(c) At what frequency will the magnitude of the impedance of the inductor equal the mag-
nitude of the impedance of the capacitor? What is the frequency called?

A n s w e r s:
(a) ZLj j= ZRj j when ω= 10 krad=s.
(b) ZCj j= ZRj j when ω=1 krad=s.
(c) ZLj j= ZCj j when ω=3:162 krad=s. The resonant frequency.

E x e r c i s e 8–8
An element in a circuit operating in the sinusoidal steady state has a voltage across it and a
current through it as follows:

v tð Þ=50 cos 500tð ÞV and i tð Þ= 4 cos 500t−60�ð ÞA
Find the impedance of the element.

A n s w e r: Z =6:25 + j10:8Ω
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E x e r c i s e 8–9
A series connection consists of a 12-mH inductor and a 20-pF capacitor. The current flowing
through the circuit is iL tð Þ= 20 cos 106t

� �
mA.

(a) Find the impedance of each element.
(b) Find the phasor voltage across each element.
(c) Using both hand calculations and a Multisim simulation, find the voltages across each

element.
(d) Does the current in the inductor lead or lag the voltage across it?
(e) Does the current in the capacitor lead or lag the voltage across it?

A n s w e r s:
(a) ZL = j12 kΩ, ZC = − j50 kΩ
(b) VL = 240ff90� V, VC = 1000ff−90� V
(c) υL tð Þ=240 cos 106t + 90�

� �
V, υC tð Þ= 1 cos 106t−90�

� �
kV. See also Figure 8–12.

(d) The current lags the voltage in the inductor by 90�

(e) The current leads the voltage in the capacitor by 90�.

8–3 B A S I C P H A S O R C I R C U I T A N A L Y S I S A N D D E S I G N

Functions of time like υ tð Þ=VA cos ωt +ϕVð Þ and i tð Þ= IA cos ωt +ϕIð Þ are time-
domain representations of sinusoidal signals. Producing the corresponding phasors
can be thought of as a transformation that carries υ tð Þ and i tð Þ into a complex-number
domain where signals are represented as phasors V and I. We call this complex-
number domain the phasor domain. When we analyze circuits in this phasor domain,
we obtain sinusoidal steady-state responses in terms of phasors likeV and I. Perform-
ing the inverse phasor transformation as υ tð Þ=Re Vejωt

� �
and i tð Þ=Re Iejωt

� �
carries

the responses back into the time domain. To perform ac circuit analysis in this way,
we obviously need to develop methods of analyzing circuits in the phasor domain.

In the preceding section, we showed that KVL and KCL apply in the phasor
domain and that the phasor element constraints all have the form V=ZI. These ele-
ment and connection constraints have the same format as the underlying constraints
for resistance circuit analysis as developed in Chapters 2, 3, and 4. Therefore, familiar
algebraic circuit analysis tools, such as series and parallel equivalence, voltage and cur-
rent division, proportionality and superposition, and Thévenin and Norton equivalent
circuits, are applicable in the phasor domain. In other words, we do not need new anal-
ysis techniques to handle circuits in the phasor domain. The only difference is that cir-
cuit responses are phasors (complex numbers) rather than dc signals (real numbers).

We can think of phasor-domain circuit analysis in terms of the flow diagram in
Figure 8–13. The analysis begins in the time domain with a linear circuit operating
in the sinusoidal steady state and involves three major steps:

S T E P 1 The circuit is transformed into the phasor domain by representing the input
and response sinusoids as phasors and the passive circuit elements by their
impedances.

12 mH

C1

20 pF

L11 2

I1

20 mA

159.2 kHz

0°

Exercise 8–9
Single Frequency AC Analysis @ 159200 Hz
Variable Frequency (Hz) Magnitude Phase (deg)

1 V(1)-V(2) 159,200 240 90

2 V(2) 159,200 1000 ‒90

FIGURE 8–12
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S T E P 2 Standard algebraic circuit analysis techniques are applied
to solve the phasor-domain circuit for the desired unknown
phasor responses.

S T E P 3 The phasor responses are inverse transformed back into
time-domain sinusoids to obtain the response waveforms.

The third step assumes that the required end product is a time-domain
waveform. However, a phasor is just another representation of a
sinusoid. With some experience, we learn to think of the response
as a phasor without converting it back into a time-domain waveform.

Figure 8–13 points out that there is another route to time-domain
response using the classical differential equation method from
Chapter 7. However, the phasor-domain method works directly
with the circuit model and is far simpler. More important, phasor-
domain analysis provides insights into ac circuit analysis that are
essential to understanding much of the terminology and viewpoint
of electrical engineering.

S E R I E S E Q U I V A L E N C E A N D V O L T A G E D I V I S I O N

We begin the study of phasor-domain analysis with two basic anal-
ysis tools—series equivalence and voltage division. In Figure 8–14
the two-terminal elements are connected in series, so by KCL,
the same phasor current I exists in impedances Z1,Z2,…,ZN . Using
KVL and the element constraints, the voltage across the series con-
nection can be written as

V = V1 +V2 + � � �+VN

= Z1I+Z2I+ � � �+ZNI

= Z1 +Z2 + � � �+ZNð ÞI
(8–18)

The last line in this equation points out that the phasor responses
V and I do not change when the series connected elements are
replaced by an equivalent impedance:

ZEQ =Z1 +Z2 + � � �+ZN (8–19)

In general, the equivalent impedance ZEQ is a complex quantity of
the form

ZEQ =R+ jX

whereR is the real part andX is the imaginary part. The real part ofZ is called resist-
ance and the imaginary part (X , not jX) is called reactance. Both resistance and
reactance are expressed in ohms (Ω), and both can be functions of frequency (ω).
For passive circuits, resistance is always positive, while reactance X can be either
positive or negative. A positive X is called an inductive reactance because the reac-
tance of an inductor is ωL, which is always positive. A negative X is called a capac-
itive reactance because the reactance of a capacitor is −1=ωC, which is always
negative.

Combining Eqs. (8–18) and (8–19), we can write the phasor voltage across the kth
element in the series connection as

Vk =ZkI=
Zk

ZEQ
V (8–20)

Forced response
of circuit-differential

equation

Time domain

Begin

Phasor domain

Circuit in the
sinusoidal

steady state

Sinusoidal
response

waveforms

Circuit 
in the

phasor domain

Algebraic
solution

techniques

Phasor
responses

End

FIGURE 8–13 Flow diagram for phasor circuit
analysis.

+

−

Rest of
the 

circuit

Z1

V

I V1 + − V2 + −

Z2 ZN

VN+ −

FIGURE 8–14 A series connection of impedances.
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Equation (8–20) is the phasor version of the voltage division principle. The phasor
voltage across any element in a series connection is equal to the ratio of its impedance
to the equivalent impedance of the connection times the total phasor voltage across
the connection.

E X A M P L E 8–6

The circuit in Figure 8–15(a) is operating in the sinusoidal steady state with
υS tð Þ= 35 cos 1000tV.

(a) Transform the circuit into the phasor domain.
(b) Solve for the phasor current I.
(c) Solve for the phasor voltage across each element.
(d) Find the waveforms corresponding to the phasors found in (b) and (c).
(e) Repeat (c) using Multisim.

SOLUTION:
(a) The phasor representing the input source voltage is VS = 35ff0� V. The impe-

dances of the three passive elements are given as follows:

ZR = R= 50Ω

ZL = jωL= j1000 × 25 × 10−3 = j25Ω

ZC =
1

jωC
=

1

j1000 × 10−5 = − j100Ω

Using these results, we obtain the phasor-domain circuit in Figure 8–15(b).
(b) The equivalent impedance of the series connection is

ZEQ = 50 + j25− j100 = 50− j75 = 90:1ff−56:3� Ω
The current in the series circuit is

I=
VS

ZEQ
=

35ff0�
90:1ff−56:3� = 0:388ff56:3� A

(c) The current I exists in all three series elements, so the voltage across each passive
element is

VR = ZRI= 50× 0:388ff56:3� = 19:4ff56:3� V
VL = ZLI= j25 × 0:388ff56:3� = 9:70ff146:3� V
VC = ZCI= − j100 × 0:388ff56:3� = 38:8ff−33:7� V

Note that the voltage across the resistor is in phase with the current, the voltage
across the inductor leads the current by 90�, and the voltage across the capacitor
lags the current by 90�.

(d) The sinusoidal steady-state waveforms corresponding to the phasors in (b) and
(c) are given as follows:

i tð Þ = Re 0:388ej56:3
�
ej1000t

� �
= 0:388 cos 1000t + 56:3�ð ÞA

υR tð Þ = Re 19:4ej56:3
�
ej1000t

� �
= 19:4 cos 1000t + 56:3�ð ÞV

υL tð Þ = Re 9:70ej146:3
�
ej1000t

� �
= 9:70 cos 1000t + 146:3�ð ÞV

υC tð Þ = Re 38:8e− j33:7
�
ej1000t

� �
= 38:8 cos 1000t−33:7�ð ÞV

(e) See Figure 8–15(c).

+
−

50 Ω

10 μF

(a)

25 mH
i(t)

vS(t)

  35    0° V

+
−

50 ΩI

+ −VR
+ −VC

+ −VL

−j100 Ω

(b)

j25 Ω

FIGURE 8–15
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■

E x e r c i s e 8–10
The circuit in Figure 8–15(a) is operating in the sinusoidal steady state with
υS tð Þ= 100 cos 2000t−45�ð ÞV.

(a) Transform the circuit into the phasor domain.
(b) Solve for the phasor current I.
(c) Solve for the phasor voltage across each element.
(d) Find the waveforms corresponding to the phasors found in (b) and (c).
(e) Draw a phasor diagram of all three voltages and the current.

A n s w e r s:
(a) See Figure 8–15(d).
(b) I= 2ff−45� A
(c) VR = 100ff−45� V

VL = 100ff+ 45� V
VC = 100ff−135� V

(d) i tð Þ = 2 cos 2000t−45�ð ÞA
υR tð Þ = 100 cos 2000t−45�ð ÞV
υL tð Þ = 100 cos 2000t + 45�ð ÞV
υC tð Þ = 100 cos 2000t−135�ð ÞV

(e) See Figure 8–15(e).

D E S I G N E X A M P L E 8–7

Design the voltage divider in Figure 8–16(a) so that an input υs = 15 cos 2000tV pro-
duces a steady-state output υO tð Þ= 2 sin 2000tV.

SOLUTION:
Using voltage division, we can relate the input and output phasors as
follows:

VO =
Z2

Z1 +Z2
VS

The phasor representation of the input voltage is VS = 15ff0= 15 + j0. Using the iden-
tity cos x−90�ð Þ= sin x, we write the required output phasor as VO = 2ff−90� = 0− j2.
The design problem is to select the impedances Z1 and Z2 so that

0− j2=
Z2

Z1 +Z2
15 + j0ð Þ

50 Ω 10 μF

(c)

R1
C1

1 2 3
V2

35 Vpk

159.2 Hz

0°

25 mH

L1

–

+

Example 8–6
Single Frequency AC Analysis @ 159.2 Hz

Variable Frequency (Hz) Magnitude Phase (deg)

1 V(2)-V(3) 159.2 38.8 ‒33.7

2 V(1)-V(2) 159.2 19.4 56.3

3 V(3) 159.2 9.7 146.3

4 I(R1) 159.2 388.4m 56.3

FIGURE 8–15 (Continued)

+
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50 ΩI

+ −VR
+ −VC

+ −VL

‒j50 Ω j50 Ω

100     −45° V

(d)

j Im

Re

I

45°

(e)

‒45°‒135°

VL

VC VR

FIGURE 8–15 (Continued)
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VS

I

Z2

Z1

−

+

VO

(a)

FIGURE 8–16
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Solving this design constraint for Z1 yields

Z1 =
15 + j2
− j2

Z2

Evidently, we can choose Z2 and then solve for Z1. In making this choice, we must
keep some physical realizability conditions in mind. In general, an impedance has the
form Z =R+ jX . The reactance X can be either positive (an inductor) or negative (a
capacitor), but the resistance R must be positive. With these constraints in mind,
we selectZ2 = − j1000 (a capacitor) and solve forZ1 = 7500 + j1000 (a resistor in series
with an inductor). Figure 8–16(b) shows the resulting phasor circuit. To find the
values of L and C, we note that the input is υS = 15 cos 2000t; hence, the frequency
is ω= 2000. The inductive reactance ωL= 1000 requires L= 0:5 H, while the capaci-
tive reactance requires − ωCð Þ−1 = −1000 or C = 0:5 μF. Other possible designs are
obtained by selecting different values of Z2. To be physically realizable, the selected
value of Z2 must produce R≥ 0 for Z1 and Z2. ■

D e s i g n E x e r c i s e 8–11
Design the voltage divider in Figure 8–16(a) so that an input υS tð Þ= 50 cos 2000tð ÞV pro-
duces an output υO tð Þ= 25 cos 2000t−30�ð ÞV.

A n s w e r: We first find the relationship between Z1 and Z2 that will result in the desired
output. Using the voltage-divider relationship as shown in the prior example, we find that

Z1 = ð1:239ff53:79� ÞZ2 = ð0:7321+ jÞZ2

We can now select a reasonable value for Z2, such as 1 kΩ. If we choose a larger value, we
will need a larger inductor that tends to be heavier, physically larger, and more expensive.
A smaller value and our resistors will be smaller and draw more current, hence use more
power. Since no other constraint was stated, we will use the 1-kΩ resistor. This will yield a
Z1 of 732 + j1000Ω, which consists of a 732-Ω resistor in series with a 0:5-H inductor. This
solution is shown in Figure 8–16(c). Of course, there are many other possible solutions, for
example, assume you wanted a smaller inductor and a larger resistor. In this case, we can
selectZ2 = 1000− j1000Ω, a resistor, and a capacitor in series. The result will be the circuit of
Figure 8–16(d), where we have reduced the inductor by a factor of 0.27 and increased the
resistance by about 2.4 times.

D e s i g n E x e r c i s e 8–12
The circuit shown in Figure 8–17(a) is operating in the sinusoidal steady state at a frequency
of 100 krad=s. It requires a load ofZL = 1500ff−57:5� Ω to operate properly. Design the load
using standard parts to within �5% of the desired values.

A n s w e r: The load requires an 806-Ω resistor and a 7910-pF capacitor. See Figure 8–17(b)
for the closest standard values.

+
−

7500 j1000

2   −90°−j100015   0°

−

+

(b)

(c)

+
−

732 Ω

1 kΩ

500 mH

vO(t)vS(t)

+

−

+
−

1732 Ω

1 kΩ

0.5 μF

134 mH

(d)

vO(t)vS(t)

+

−

FIGURE 8–16 (Continued)
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−
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i(t)

Rest
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(b)

820 Ω

8200 pF

FIGURE 8–17
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A P P L I C A T I O N E X A M P L E 8 – 8

The purpose of the impedance bridge in Figure 8–18 is to measure the unknown
impedanceZX by adjusting known impedancesZ1, Z2,andZ3 until the detector volt-
age VDET is zero. The circuit consists of a sinusoidal source VS driving two voltage
dividers connected in parallel. Using the voltage division principle, we find that the
detector voltage is

VDET = VA−VB =
Z2

Z1 +Z2
VS−

ZX

Z3 +ZX
VS

=
Z2Z3−Z1ZX

Z1 +Z2ð Þ Z3 +ZXð Þ
� �

VS

This equation shows that the detector voltage will be zero when Z2Z3 =Z1ZX. When
the branch impedances are adjusted so that the detector voltage is zero, the unknown
impedance can be written in terms of the known impedances as follows:

ZX =RX + jXX =
Z2Z3

Z1

This equation is called the bridge balance condition. Since the equality involves
complex quantities, at least two of the known impedances must be adjustable to
balance both the resistance RX and the reactance XX of the unknown impedance.
In practice, bridges are designed assuming that the sign of the unknown reactance
is known. Bridges that measure only positive reactance are called inductance
bridges, while those that measure only negative reactance are called capacitance
bridges.

The Maxwell inductance bridge in Figure 8–19 is used to measure the resist-
ance RX and inductance LX of an inductive device by alternately adjusting resis-
tances R1 and R2 to balance the bridge circuit. The impedances of the legs of this
bridge are given as:

Z1 =
1

jωC1 +
1
R1

Z2 = R2 Z3 =R3

For the Maxwell bridge, the balance condition ZX =Z2Z3=Z1 yields

RX + jωLX =
R2R3

R1
+ jωC1R2R3

Equating the real and imaginary parts on each side of this equation yields the para-
meters of the unknown impedance in terms of the known impedances:

RX =
R2R3

R1
and LX =R2R3C1

+
− VDET

Z1

Z2

Z3

ZX

VAVS VB
+ −

FIGURE 8–18 Impedance
bridge.

VDET

R1

R2

R3

RX

LX

C1

−+

FIGURE 8–19 Maxwell
bridge.
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Note that adjusting R1 affects only RX. The Maxwell bridge measures inductance by
balancing the positive reactance of an unknown inductive device with a calibrated
fraction of negative reactance of the known capacitor C1. If the reactance of the
unknown device is actually capacitive (negative), then the Maxwell bridge cannot
be balanced.

E x e r c i s e 8–13
Consider the Maxwell bridge shown in Figure 8–18. Suppose we know that the
unknown impedance is an unknown capacitor CX in parallel with an unknown resistance
RX. Let Z1 be a resistance R1 in series with an inductance L1. Let Z2 be a resistance
R2 and Z3 be a resistance R3. Find the relationships that will allow the bridge to be
balanced.

A n s w e r: RX =
R2R3

R1
, CX =

L1

R2R3

P A R A L L E L E Q U I V A L E N C E A N D C U R R E N T D I V I S I O N

In Figure 8–20 the two-terminal elements are connected in parallel,
so the same phasor voltage V appears across the impedances
Z1,Z2,…,ZN . Using the phasor element constraints, the current
through each impedance is Ik =V=Zk. Next, using KCL, the total
current entering the parallel connection is

I = I1 + I2 + � � �+ IN

=
V
Z1

+
V
Z2

+ � � �+ V
ZN

=
1
Z1

+
1
Z2

+ � � �+ 1
ZN

� �
V

(8–21)

The same phasor responses V and I exist when the parallel connected elements are
replaced by an equivalent impedance.

1
ZEQ

=
I
V

=
1
Z1

+
1
Z2

+ � � �+ 1
ZN

(8–22)

These results can also be written in terms of admittance Y, which is defined as the
reciprocal of impedance:

Y =
1
Z

=G+ jB

The real part of Y is called conductance G and the imaginary part is called suscep-
tance B, both of which are expressed in units of siemens (S).

Using admittances to rewrite Eq. (8–21) yields

I = I1 + I2 + � � �+ IN

= Y1V+Y2V+ � � �+YNV

= Y1 +Y2 + � � �+YNð ÞV
(8–23)

Hence, the equivalent admittance of the parallel connection is

YEQ =
I
V

=Y1 +Y2 + � � �+YN (8–24a)

+

−

Rest of
the 

circuit
V

I

Z1

I1

Z2

I2

ZN

IN

FIGURE 8–20 Parallel connection of impedances.
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We can write this in terms of equivalent impedance as

ZEQ =
V
I
=

1
1
Z1

+
1
Z2

+ � � �+ 1
ZN

(8–24b)

Combining Eqs. (8–23) and (8–24a), we find that the phasor current through the
kth element in the parallel connection using admittances is

Ik =YkV=
Yk

YEQ
I (8–25a)

Similarly, using Eq. (8–24b), we can express the individual phasor currents in terms of
impedances as

Ik =
V
Zk

=

1
Zk
I

ZEQ

I=

1
Zk

1
Z1

+
1
Z2

+ � � �+ 1
ZN

I (8–25b)

Equations (8–25a) and (8–25b) are the phasor versions of the current division
principle. The phasor current through any element in a parallel connection is
equal to the ratio of its admittance to the equivalent admittance of the connection
times the total phasor current entering the connection. Equation (8–25a) shows this
in terms of admittances, while Eq. (8–25b) shows the same relationship in terms of
impedances.

Note: In dealing with phasors, one finds that the concept of admittance is
used more frequently than the concept of conductance is used in dc circuits.
The reason is that whereas resistors in dc circuits are rarely described in terms
of their conductances, ac circuits are often described in terms of their admit-
tances. Hence, although we will emphasize impedances in this text, you should
be aware that many phasor applications use admittances as useful circuit
descriptors.

E X A M P L E 8–9

The circuit in Figure 8–21(a) is operating in the sinusoidal steady state with
iS tð Þ= 50 cos 2000tmA.

(a) Transform the circuit into the phasor domain.
(b) Solve for the phasor voltage V.
(c) Solve for the phasor current through each element.
(d) Find the waveforms corresponding to the phasors found in (b) and (c).
(e) Sketch a phasor diagram of the resulting phasors.

0.05    0° A

500 Ω

(b)

+

−

V−j500 Ω

j1000 Ω

I2I1
500 Ω

0.5 H

(a)

1 μF

+

−

iS(t) v(t)

FIGURE 8–21
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SOLUTION:
(a) The phasor representing the input source current is IS = 0:05ff0� A. The impe-

dances of the three passive elements are:

ZR = R= 500Ω

ZL = jωL = j2000 × 0:5 = j1000Ω

ZC =
1

jωC
=

1

j2000 × 10−6 = − j500Ω

Using these results, we obtain the phasor-domain circuit in Figure 8–21(b).
(b) The admittances of the two parallel branches are:

Y1 =
1

− j500
=

1
500ff−90� = 2× 10−3ff 90� = j2 × 10−3 S

Y2 =
1

500 + j1000
=

1
1118ff 63:4� = 894 × 10−6ff −63:4� = 4− j8ð Þ× 10−4 S

The equivalent admittance of the parallel connection is

YEQ = Y1 +Y2 = j2 × 10−3 + 4− j8ð Þ× 10−4

= 4 + j12ð Þ× 10−4 = 12:6 × 10−4ff71:6� S
and the voltage across the parallel circuit is

V =
IS

YEQ
=

0:05ff0�
12:6 × 10−4ff71:6�

= 39:7ff−71:6� V
(c) The current through each parallel branch is

I1 = Y1V= 2× 10−3ff90�� �
39:7ff−71:6�ð Þ= 79:4ff18:4� mA

I2 = Y2V= 894 × 10−6ff−63:4�� �
39:7ff−71:6�ð Þ

= 35:5ff−135� mA

(d) The sinusoidal steady-state waveforms corresponding to the phasors in (b) and
(c) are:

υ tð Þ = Re 39:7e− j71:6
�
ej2000t

� �
= 39:7 cos 2000t−71:6�ð ÞV

i1 tð Þ = Re 79:4ej18:4
�
ej2000t

� �
= 79:4 cos 2000t + 18:4�ð ÞmA

i2 tð Þ = Re 35:5e− j135
�
ej2000t

� �
= 35:5 cos 2000t−135�ð ÞmA

(e) The phasor diagram is shown in Figure 8–21(c)
■

E x e r c i s e 8–14
The circuit in Figure 8–21(a) is operating in the sinusoidal steady state with
iS tð Þ= 100 cos 1000t−45�ð ÞmA.

(a) Transform the circuit into the phasor domain.
(b) Solve for the phasor voltage V.
(c) Solve for the phasor current through each element.
(d) Find the waveforms corresponding to the phasors found in (b) and (c).

A n s w e r s:
(a) See Figure 8–21(d).
(b) V=100ff−45� V

j Im

Re

(c)

V

18.4°

‒135°
‒71.6°

79.4 mA

35
.5

 m
A

3
9
.7

 V

I1

I2

0.1    −45° A

500 Ω
+

−

V−j1000 Ω

j500 Ω

(d)

IR

IL

IC

FIGURE 8–21 (Continued)
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(c) IR = 141:4ff−90� mA
IL = 141:4ff−90� mA
IC = 100ff+ 45� mA

(d) υ tð Þ= 100 cos 1000t−45�ð ÞV
iR tð Þ= 141:4 cos 1000t−90�ð ÞmA
iL tð Þ= 141:4 cos 1000t−90�ð ÞmA
iC tð Þ=100 cos 1000t +45�ð ÞmA

E X A M P L E 8–1 0

Find the steady-state currents i tð Þ, iC tð Þ, and iR tð Þ in the circuit of Figure 8–22
for υS = 100 cos 2000tV, L= 250 mH,C = 0:5 μF, andR= 3 kΩ.

SOLUTION A—Classical Approach:
The phasor representation of the input voltage is 100ff0�. The impedances of the pas-
sive elements are

ZL = j500Ω ZC = − j1000Ω ZR = 3000Ω

Figure 8–23(a) shows the phasor-domain circuit.
To solve for the required phasor responses, we reduce the circuit using a combi-

nation of series and parallel equivalence. Using parallel equivalence, we find that the
capacitor and resistor can be replaced by an equivalent impedance

ZEQ1 =
1

YEQ1
=

1
1

− j1000
+

1
3000

= 300− j900Ω

The resulting circuit reduction is shown in Figure 8–23(b). The equivalent impedance
ZEQ1 is connected in series with the impedance ZL = j500. This series combination
can be replaced by an equivalent impedance

ZEQ2 = j500 +ZEQ1 = 300− j400Ω

This step reduces thecircuit to theequivalent input impedanceshown inFigure8–23(c).
The phasor input current in Figure 8–23(c) is

I=
100ff0�
ZEQ2

=
100ff0�

300− j400
= 0:12 + j0:16 = 0:2ff53:1�A

Given the phasor current I, we use current division in Figure 8–23(a) to find IC.

IC =
YC

YC +YR
I=

1
− j1000
1

− j1000
+

1
3000

0:2ff53:1�

= 0:06 + j0:18 = 0:19ff71:6�A
By KCL, I= IC + IR, so the remaining unknown current is

IR = I − IC = 0:06− j0:02 = 0:0632ff−18:4�A
The waveforms corresponding to the phasor currents are

i tð Þ = Re Iej2000t
� �

= 0:2 cos 2000t + 53:1�ð ÞA
iC tð Þ = Re ICej2000t

� �
= 0:19 cos 2000t + 71:6�ð ÞA

iR tð Þ = Re IRej2000t
� �

= 0:0632 cos 2000t−18:4�ð ÞA ■

+
−

L

C R

iR(t)iC(t)

i(t)

vS(t)

FIGURE 8–22
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403BASIC PHASOR CIRCUIT ANALYSIS AND DESIGN



SOLUTION B—Computer-Aided Approach:
Multisim allows for simple solutions to phasor problems. Start by drawing the circuit
as shown in Figure 8–24(a). There are two ac sinusoidal voltage sources available in
Multisim. For this problem, the simplest one to use is the one listed under “SIGNAL_
VOLTAGE_SOURCES” as “AC_VOLTAGE” since it allows you to list the
source’s peak value. The “AC_POWER” source listed under “POWER_
SOURCES” requires one to list the source’s rms value. In both cases, the frequency
must be in hertz, so for this problem 2000 radians equals 318:3 Hz. Under “Analyses”
select “Single frequency AC analysis.” A new window opens and you enter the fre-
quency desired for the analysis, which is 318:3Hz in this case. Since we would like to
see the frequency in our result, we check the box labeled “Frequency column.” Select
the “Magnitude/Phase” option for the “Complex number format”, as shown in
Figure 8–24(b), since we will need it to write our results in the desired format. Next
go to the tab labeled “Output” and select the three desired currents. Note that if you
select the source current I V1ð Þ, you will get the negative of the desired current i tð Þ
because Multisim used the passive sign convention. Instead choose I(L1), the induc-
tor current, which is the same as the desired current. Now click on “Simulate,” and
Grapher View opens to display the desired results as shown in Figure 8–24(c). We
added the source current so that the difference between it and the desired (inductor)
current i tð Þ can be readily seen.

By clicking on the Grapher View results, one can select the precision in the results
to display. We chose “1” to match the classical approach. The answers provided are
the same.

■

E x e r c i s e 8–15
Using the values in Example 8–10, find the voltage υL tð Þ across the inductor in the circuit
shown in Figure 8–22. Validate your answer using Multisim.

A n s w e r: υL tð Þ= 100 cos 2000t + 143�ð ÞV for both cases

V1

C1

0.50 μF

R1

3 kΩ

100 Vpk

318.3 Hz

0°

+

−

L1

250 mH

Example 8–10 
Single Frequency AC Analysis @ 318.3 Hz 

Variable Frequency (Hz) Magnitude Phase (deg)

1 I(R1) 318.3 63.2m ‒18.4

2 I(C1) 318.3 189.7m 71.6

3 I(L1) 318.3 200.0m 53.1

4 I(V1) 318.3 200.0m ‒126.9

(a) (b)

(c)

FIGURE 8–24
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A P P L I C A T I O N E X A M P L E 8 – 1 1

In general, the equivalent impedance seen at any pair of terminals can be written in
rectangular form as

ZEQ =REQ + jXEQ (8–26)

In a passive circuit the equivalent resistanceREQ must always be nonnegative, that
is,REQ ≥ 0. However, the equivalent reactanceXEQ can be either positive (inductive)
or negative (capacitive). When inductance and capacitance are both present, their
reactances may exactly cancel at certain frequencies. When XEQ = 0, the impedance
is purely resistive and the circuit is said to be in resonance. The frequency at which
this occurs is called a resonant frequency, denoted by ω0.

For example, suppose we want to find the resonant frequency of the circuit in
Figure8–25.Wefirst findtheequivalent impedanceof theparallel resistorandcapacitor:

ZRC =
1

YR +YC
=

1
1
R
+ jωC

=
R

1 + jωRC

This expression can be put into rectangular form by multiplying and dividing by the
conjugate of the denominator:

ZRC =
R

1 + jωRC
1− jωRC
1− jωRC

=
R

1 + ωRCð Þ2 − j
ωR2C

1 + ωRCð Þ2

The impedance ZRC is connected in series with the inductor. Therefore, the overall
equivalent impedance ZEQ is

ZEQ = ZL +ZRC

=
R

1 + ωRCð Þ2 + j ωL−
ωR2C

1 + ω0RCð Þ2
" #

= REQ + jXEQ

Note that the equivalent resistance REQ is positive for all ω. However, the equivalent
reactance XEQ can be positive or negative. The resonant frequency is found by set-
ting the reactance to zero

XEQ ω0ð Þ=ω0L−
ω0R2C

1 + ω0RCð Þ2 = 0

and solving for the resonant frequency:

ω0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC

−
1

RCð Þ2
s

(8–27)

Note the reactance XEQ is inductive (positive) when ω>ω0 and capacitive (negative)
when ω<ω0.

E x e r c i s e 8–16
The circuit in Figure 8–25 is operating in the sinusoidal steady state. IfR= 1 kΩ,L=200 mH,
and C = 1 μF:
(a) Find the value of ω that will cause the circuit to be in resonance.
(b) What will the value of ZEQ be under those conditions?

A n s w e r s:
(a) ω=2 krad=s
(b) ZEQ = 200 + j0Ω

ZEQ

R
1

jωC

jωL

ZRC

FIGURE 8–25
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E X A M P L E 8–1 2

The circuit in Figure 8–26 is operating in the sinusoidal steady state with ω= 5 krad=s.

(a) Find the value of capacitance C that causes the input impedance Z to be purely
resistive.

(b) Find the real part of the input impedance for this value of C.

SOLUTION:
(a) At the specified frequency the impedance is

Z = j5000 × 0:01 +
1

1
100

+ j5000C

which can be written as

Z = j50 +
100

1 + j5 × 105C
×
1− j5 × 105C

1− j5 × 105C

= j50 +
100

1 + 5× 105C
� 	2 − j 5 × 107C

1 + 5 × 105C
� 	2

A purely resistive input impedance means that the imaginary part of Z is zero,
which requires that

50−
5× 107C

1+ 5 × 105C
� 	2 = 0 or 25 × 1010C2−106C + 1= 0

This quadratic has a double root at C = 2× 10−6 F.
(b) For this value of capacitance the real part of Z is

Re Zf g=REQ =
100

1+ 5 × 105C
� 	2 = 50Ω

■

E x e r c i s e 8–17
The circuit in Figure 8–25 is operating in the sinusoidal steady state at ω=1 krad=s. If
R= 1 kΩ,L=200 mH, and C = 1 μF:

(a) Find the value of ZEQ classically under those conditions.
(b) Repeat the problem using Multisim. (Hint:Drive the circuit with a 1-V ac signal source

at 1 krad=s. The equivalent impedance will be found when doing the simulation by
creating your own expression at the output using “Add expression” and adding the fol-
lowing to the “Selected variables for analysis” column: V 1ð Þ=I L1ð Þ.)

A n s w e r s: For both (a) and (b) ZEQ = 500− j300Ω.

E X A M P L E 8–1 3

A circuit is operating in the sinusoidal steady state with ω= 377 rad=s. A load ZL of
327ff63:4� Ω is required to be connected to the circuit. It is desired that the load be
made purely resistive by the addition of an appropriate reactance. Select the appro-
priate reactance using standard parts from the inside rear cover.

10 mH 

100 Ω C

Z

FIGURE 8–26
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SOLUTION:
Since the load is given in magnitude and phase form, we will convert it to real and
imaginary form. We can then see what the offsetting reactance needs to be

ZL =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 +X2

p
fftan−1 X

R

� �
= 327ff63:4�

Setting magnitude and phase portions equal

X
R

= tan 63:4� = 2;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 +X2

p
= 327

From the phase relationship we find that X = 2R. Substituting that result into the
magnitude equation, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 + 4R2
p

=R
ffiffiffi
5

p
= 327

which yields R= 146:2Ω and X = 2R= 292:5Ω.
Therefore,ZL = 146:2 + j292:5Ω. In order to negate the reactance, we need to add

a capacitive reactance of – j292:5Ω in series with the load. At 377 rad=s, we find we
need a capacitor of 9:1 μF. The nearest value shown in the rear of the text is 10 μF.
However, 9-μF capacitors can be found on-line from several suppliers. ■

E x e r c i s e 8–18
The circuit in Figure 8–27 is operating at ω= 10 krad=s.

(a) Find the equivalent impedance Z.
(b) What element should be connected in series with Z to make the total reactance zero?

A n s w e r s:
(a) Z =256 + j195= 322ff37:3� Ω
(b) A capacitor with C =0:513 μF

E x e r c i s e 8–19
In Figure 8–28 υS tð Þ=12:5 cos 1000t V and iS tð Þ= 0:2 cos 1000t−36:9�ð ÞA. What is the
impedance seen by the voltage source and what element is in the box?

A n s w e r: Z = 50+ j37:5Ω and the element is a 37:5-mH inductor.

A P P L I C A T I O N E X A M P L E 8 – 1 4

Consider theRC circuit in Figure 8–29(a). Find a relationship for the ratio of the out-
put voltage phasor to the input voltage phasor. Plot the magnitude of this ratio as a
function of frequency and comment on the result.

SOLUTION:
The output voltage can be found using a voltage divider as follows:

VC =
1=jωC

R+ 1=jωC
VS

VC =
1

jωCR+ 1
VS

Studying this result one sees that this is a complex ratio and that the units of ω and
1
RC are s−1 or radians per second. The ratio has units of volts over volts, so it is non-
dimensional. We first find the magnitude of the ratio as follows:

Z

100

j400

500

‒j125

FIGURE 8–27

50 Ω

vS(t)
+
−

?

iS(t)

FIGURE 8–28

(a)

1/( jωC)

R

VS

−

+

VC
+
−

FIGURE 8–29
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VC

VS










=

1
RC

jω+
1
RC
















=

1
RCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 +
1
RC

� �2
s

We can plot this ratio as a function of frequency by letting ω take on values from 0 to
∞. The following table shows a few salient points of the plot:

ω VC=VSj j
0 1

0:1=RC 0.995

1=RC 1=
ffiffiffi
2

p
= 0:707

10=RC 0.0995

∞ 0

The graph is shown in Figure 8–29(b).
What one can see from the graph is that input signals with low

frequencies appear across the capacitor relatively unscathed. High fre-
quency signals, on the other hand, have their amplitudes significantly
reduced. This makes sense because as the frequency of the circuit
increases, the capacitor’s impedance becomes smaller. To preserve
KVL, then, the voltage across the resistor must increase as the voltage
across the capacitor decreases. This behavior is significant and is a char-
acteristic of circuits called filters. This simpleRC configuration is called
a low-pass filter because it passes low frequencies while blocking high
ones.Since the curve is continuous, onemight reasonably ask:Whendoes
the “pass” portion of the filter stop and where does the “stop” or block
portion begin? For reasons that will be explained in later chapters, the
boundary between the stop and pass regions of the filter is set at the fre-
quency where the amplitude has decreased to 0.707 of its original value.
This frequency is called the cutoff frequency and is indicated as ωC. For
this filter, it is when ω=ωC = 1=RC rad=s. Filters are a major building
block of electronics and are found in every type of application, from
computers and communications to power and instrumentation. ■

D e s i g n E x e r c i s e 8–20
For the circuit of Figure 8–29(a), design a low-pass filter using standard parts so that the
cutoff frequency is 1000 rad=s.

A n s w e r: There are many solutions. One of them is R=1 kΩ and C = 1 μF.

E x e r c i s e 8–21
For the circuit of Figure 8–29(a), replace the capacitor with an inductor. (a) Find the ratio
VL=VSj j, and (b) comment on its behavior as the frequency changes from 0 to ∞.

A n s w e r s:

(a) VL=VSj j= jω= jω+R=Lð Þj j= ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 + R=Lð Þ2

q
(b) The circuit blocks signals with low frequencies and passes signals with high frequencies.

It is known as a high-pass filter and its cutoff frequency is ωC =R=L rad=s.

0.995

(b)

1

0.707

0.099

Passband

0.1ωC ωC

ω
10ωC

|VC / VS|

Stopband

FIGURE 8–29 (Continued)
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8–4 C I R C U I T T H E O R E M S W I T H P H A S O R S
In this section we treat basic properties of phasor circuits that parallel the resistance
circuit theorems developed in Chapter 3. Circuit linearity is the foundation for all of
these properties. The proportionality and superposition properties are two funda-
mental consequences of linearity.

P R O P O R T I O N A L I T Y

The proportionality property states that phasor output responses are proportional to
the input phasor. Mathematically, proportionality means that

Y=KX (8–28)

whereX is the input phasor,Y is the output phasor, andK is the proportionality con-
stant. In phasor circuit analysis, the proportionality constant is generally a complex
number.

The unit output method discussed in Chapter 3 is based on the proportionality
property and is applicable to phasors. To apply the unit output method in the phasor
domain, we assume that the output is a unit phasor Y= 1ff0�. By successive applica-
tion of KCL, KVL, and the element impedances, we solve for the input phasor
required to produce the unit output. Because the circuit is linear, the proportionality
constant relating input and output is

K =
Output
Input

=
1ff0�

Input phasor for unit output

Once we have the constant K, we can find the output for any input or the input
required to produce any specified output.

The next example illustrates the unit output method for phasor circuits.

E X A M P L E 8–1 5

Use the unit output method to find the input impedance, current I1, output voltage
VC, and current I3 of the circuit in Figure 8–30 for VS = 10ff0� V.

SOLUTION:
The following steps implement the unit output method for the circuit in
Figure 8–30.

1. Assume a unit output voltage VC = 1 + j0 V.
2. By Ohm’s law, I3 =VC=50 = 0:02 + j0A.
3. By KVL, VB =VC + j100ð ÞI3 = 1 + j2 V.
4. By Ohm’s law, I2 =VB= − j50ð Þ= −0:04 + j0:02 A.
5. By KCL, I1 = I2 + I3 = −0:02 + j0:02 A.
6. By KVL, VS = 50 + j100ð ÞI1 +VB = −2+ j1 V.

Given VS and I1, the input impedance is

ZIN =
VS

I1
=

−2 + j1
−0:02 + j0:02

= 75 + j25Ω

The proportionality factor between the input VS and output voltage VC is

K =
1
VS

=
1

−2 + j
= −0:4− j0:2

I1

+
−VS

I3

50 Ω−j50 Ω

j100 Ω50 Ω j100 ΩVA VB

VG = 0

VC

I2

FIGURE 8–30
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Given K and ZIN, we can now calculate the required responses for an input
VS = 10ff0�:

VC = KVS = −4− j2 = 4:47ff−153� V

I1 =
VS

ZIN
= 0:12− j0:04= 0:126ff−18:4�A

I3 =
VC

50
= −0:08− j0:04 = 0:0894ff−153�A ■

E x e r c i s e 8–22
Use the unit output method to find the output current IO in the
circuit of Figure 8–31.

A n s w e r: K = IO=IS = 0:204ff−24:3�, and therefore, IO = 10:22
ff−9:28�mA.

S U P E R P O S I T I O N

The superposition principle applies to phasor responses only if all of the independent
sources driving the circuit have the same frequency. That is, when the input sources
have the same frequency, we can find the phasor response due to each source acting
alone and obtain the total response by adding the individual phasors. If the sources
have different frequencies, then superposition can still be used but its application is
different.With different frequency sources, each source must be treated in a separate
steady-state analysis because the element impedances change with frequency. The
phasor response for each source must be changed into waveforms and then superpo-
sition applied in the time domain. In other words, the superposition principle always
applies in the time domain. It also applies in the phasor domain when all independent
sources have the same frequency. The following examples illustrate both cases.

E X A M P L E 8–1 6

Use superposition to find the steady-state voltage υR tð Þ in Figure 8–32 for
R= 20Ω,L1 = 2 mH, L2 = 6mH,C = 20 μF, υS1 > = 100 cos 5000tV, and υS2 = 120 cos
5000t + 30�ð ÞV. Validate your answer using Multisim.

SOLUTION:
In this example, the two sources operate at the same frequency. Figure 8–33(a)
shows the phasor-domain circuit with source 2 turned off and replaced by a short
circuit. The three elements in parallel in Figure 8–33(a) produce an equivalent
impedance of

ZEQ1 =
1

1
20

+
1

− j10
+

1
j30

= 7:20− j9:60Ω

L1

+
−

R+

−

L2

+
−C

vS1(t) vS2(t)

vR(t)

FIGURE 8–32

50   15° mA

100   0° Ω 50   90° Ω

50   0° Ω50   40° Ω

IO

FIGURE 8–31

+
−

+

−

j10 Ω

−j10 Ω

j30 Ω

20 Ω

(a)

+
−

VR2

+

−

j10 Ω

−j10 Ω

j30 Ω

20 Ω

(b)

VR1

120   30° V100    0° V

FIGURE 8–33
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By voltage division, the phasor response VR1 is

VR1 =
ZEQ1

j10 +ZEQ1
100ff0�

= 92:3 − j138 = 166ff − 56:3� V

Figure 8–33(b) shows the phasor-domain circuit with source 1 turned off and source
2 on. The three elements in parallel in Figure 8–33(b) produce an equivalent
impedance of

ZEQ2 =
1

1
20

+
1

− j10
+

1
j10

= 20 − j0Ω

By voltage division, the response VR2 is

VR2 =
ZEQ2

j30 +ZEQ2
120ff30� = 59:7 − j29:5 = 66:6ff − 26:3� V

Since the sources have the same frequency, the total response can be found by adding
the individual phasor responses VR1 and VR2:

VR =VR1 +VR2 = 152 − j168 = 227ff − 47:9� V

The time-domain function corresponding to the phasor sum is

υRðtÞ=RefVRej5000tg= 227 cos ð5000t−47:9�ÞV
The overall response can also be obtained by adding the time-domain functions cor-
responding to the individual phasor responses VR1 and VR2:

υRðtÞ = RefVR1ej5000tg+RefVR2ej5000tg
= 166 cosð5000t − 56:3�Þ+ 66:6 cosð5000t − 26:3�ÞV

You are encouraged to show that the two expressions for υR tð Þ are equivalent using
the additive property of sinusoids.

Multisim is a useful tool for solving phasor superposition problems. To demon-
strate the superposition principle, we will analyze the output of each source inde-
pendently. Then we will ask Multisim to add the two results to obtain the desired
output. Finally, we will let Multisim solve the problem with the two sources together.
In Figure 8–33(c), we have drawn three circuits. The top one has υS1 only, the middle
one υS2 only, and the bottom one has both sources.

(c)

+

−

.1 μΩ2 mH 6 mH

R6

V1

120 Vpk
795.77 Hz
30°

L1 L2R2

R7
20 Ω

C1
20 μF

+

−

.1 μΩ 2 mH 6 mH

L3 L4

V2
100 Vpk
795.77 Hz
0°

R4 R1

R3
20 Ω

C2
20 μF

+

−

.1 μΩ 2 mH 6 mH

L5 L6

V3
100 Vpk
795.77 Hz
0°

V4
120 Vpk
795.77 Hz
30°

R8 R

R5
20 Ω

C3
20 μF

+

−

Example 8–16
Single Frequency AC Analysis @ 795.77 Hz

Variable Frequency (Hz) Magnitude Phase (deg)

1 V(R1) 795.77 166.4 ‒56.3

2 V(R2) 795.77 66.6 ‒26.3

3 795.77 226.5 ‒47.9

4 V(R) 795.77 226.5 ‒47.9

V(R1)+V(R2)

FIGURE 8–33 (Continued)
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We draw each circuit using the ac signal source, not the ac power source.
Since Multisim uses hertz as its operating frequency, we convert 5000 rad=s into
795:77 Hz. Opening the source window, we enter both the amplitude and phase
in two places for each source. Note that the second source needs to have a +30�

phase shift to its signal. A small issue occurs in running Multisim. A source at dc
is a short and so is an inductor. Multisim starts the analysis by doing a netlist
check, and it cannot run the simulation because of the apparent impossible sit-
uation of a short across a voltage source. It returns a statement that it has a
singular matrix error. Hence, to avoid this issue, a very small resistor 0:1 μΩð Þ
is placed in series with either inductor. The resistor is too small to have any effect
on the results. We do a “Single frequency AC analysis” and instruct Multisim to out-
put “Magnitude/Phase” of the desired outputs, V R1ð Þ, V R2ð Þ, V R1ð Þ+V R2ð Þ, and
V Rð Þ. The results are shown in the Grapher View and compared closely with the
hand calculations. ■

E x e r c i s e 8–23
The two sources in Figure 8–34 have the same frequency. Use superpo-
sition to find the phasor current IX.

A n s w e r: IX = 0:206ff − 158�A

E X A M P L E 8–1 7

Use superposition to find the steady-state current i tð Þ in Figure 8–35 for
R= 10 kΩ,L= 200 mH,υS1 = 24 cos 20,000tV, and υS2 = 8 cos 60,000t + 30�ÞVð . Com-
ment on using Multisim to solve this problem.

SOLUTION:
In this example the two sources operate at different frequencies. With source 2 off,
the input phasor is VS1 = 24ff0� V at a frequency of ω= 20 krad=s. At this frequency
the equivalent impedance of the inductor and resistor is

ZEQ1 =R+ jωL= ð10 + j4Þ kΩ

The phasor current due to source 1 is

I1 =
VS1

ZEQ1
=

24ff0�
10,000 + j4000

= 2:23ff − 21:8� mA

With source 1 off and source 2 on, the input phasor VS2 = 8ff30� V at a frequency of
ω= 60 krad=s. At this frequency the equivalent impedance of the inductor and resis-
tor is

ZEQ2 =R+ jωL= ð10 + j12Þ kΩ

The phasor current due to source 2 is

I2 =
VS2

ZEQ2
=

8ff30�
10,000 + j12000

= 0:512ff − 20:2� mA

+
−

i(t)
L

R

+
−

vS1(t)

vS2(t)

FIGURE 8–35

−j100 Ω

10 Ω

100 Ω

IX

0.1   −90° A 20   45° V

+
−

j75 Ω

FIGURE 8–34
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The two input sources operate at different frequencies, so the phasors’ responses I1
and I2 cannot be added to obtain the overall response. In this case the overall
response is obtained by adding the corresponding time-domain functions.

iðtÞ = RefI1ej20;000tg+RefI2ej60;000tg
= 2:23 cos ð20,000t−21:8�Þ+ 0:512 cos ð60,000t−20:2�ÞmA ■

Multisim cannot solve this problem using just one circuit simulation as it could if
the frequencies were the same. However, it can be solved in two steps. We created
two circuits each with one of the sources and the other source was replaced by a short
circuit. We simulated each circuit using the “Single frequencyAC analysis” run at the
frequency of the one source in the circuit. We asked for magnitude and phase output
of the inductor current (we could have just as easily asked for the resistor current).
Grapher View returned the following:

VARIABLE FREQUENCY (HZ) MAGNITUDE PHASE (DEG)

I L1ð Þ 3183 2:228m −21:80

and

VARIABLE FREQUENCY (HZ) MAGNITUDE PHASE (DEG)

I L2ð Þ 9549 512:2 u −20:19

From theGrapher View for each simulation, we wrote the individual waveform using
the output results and the frequency of the source. The final result is their sum or

i tð Þ= 2:23 cos 20,000t−21:8�ð Þ+ 0:512 cos 60,000t−20:2�ð ÞmA

which is the same as that found by hand calculation above.

E x e r c i s e 8–24
Use superposition to find the output voltage υO tð Þ in the circuit of Figure 8–36
if iS tð Þ=100 cos 10,000tÞmA and υS tð Þ=20 cos 20,000t − 45�ÞVðð .

A n s w e r: υO tð Þ= 7:07 cos 10kt−45�ð Þ+ 8:94 cos 20kt−108:4�ð ÞV

E V A L U A T I O N E X A M P L E 8–1 8

The voltage source in Figure 8–37 produces a 60-Hz sinusoid with a peak ampli-
tude of 200 V plus a 180-Hz third harmonic with a peak amplitude of 10 V, that is,
υSðtÞ= 200 cos ð2π 60tÞ+ 10 cos ð2π 180tÞV. The purpose of the LC T-circuit is to
reduce the relative size of the third-harmonic component delivered to the 100-Ω
load resistor. Use MATLAB to calculate the voltage amplitudes across the load
caused by the 60-Hz and the 180-Hz signals. For each frequency, determine the
magnitude of the ratio of the output voltage to the input voltage. Is the circuit
performing its task?

SOLUTION:
We will do a small amount of circuit analysis and then rely on MATLAB to perform
the necessary calculations for each input frequency. Figure 8–38 shows the circuit in
the phasor domain.

We can use circuit reduction and voltage division to solve for the load voltage in
the phasor domain. LetZEQ1 be the equivalent impedance of inductorL2 and resistor

1 μF 

100 Ω

vS(t)vO(t)iS(t) +
−

−

+

FIGURE 8–36
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+
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RL in series, and let ZEQ2 be the equivalent impedance of the capacitor in parallel
with impedance ZEQ1. We will first solve for ZEQ1 and ZEQ2 and then use voltage
division to find the voltage across the capacitor. We can then apply voltage division
a second time to find the load voltage for each frequency. Using the for command in
MATLAB reduces the amount of code we have to write for this problem. The
MATLAB code is follows:

% Define the fixed parameters
Rs = 1;
L1 = 1;
L2 = 1;
C = 14e-6;
RL = 100;
% Create a list of frequencies to evaluate
wList = 2∗pi∗[60 180];
% List the input amplitudes and create vectors for results
AList = [200 10];
VList = zeros(size(wList));
KList = zeros(size(wList));
% Use a for loop to evaluate the response to each frequency
for n = 1:length(wList)

w = wList(n);
A = AList(n);
Zeq1 = j∗w∗L2 + RL;
ZC = 1/(j∗w∗C);
Zeq2 = Zeq1∗ZC/(Zeq1+ZC);
VA = Zeq2∗A/(Rs + j∗w∗L1 + Zeq2);
VList(n) = RL∗VA/Zeq1;
KList(n) = VList(n)/A;

end
% Display the results
VList
KList
% Display the magnitudes of the results
VListMag = abs(VList)
KListMag = abs(KList)

The preceding code generates the following results:

VList = −199.6902e+000 − 8.8021e+000i −5.2297e−003 +
55.0922e−003i
KList = −998.4508e−003 − 44.0107e−003i −522.9683e−006 +
5.5092e−003i
VListMag = 199.8841e+000 55.3399e−003
KListMag = 999.4203e−003 5.5340e−003

The amplitude of the 60-Hz component is virtually unchanged as it moves through
the circuit, and its amplitude at the load is 99.94% of its original value. The amplitude
of the 180-Hz component is drastically reduced at the output, with a load amplitude
less than 1% of its original value. This circuit is correctly filtering the higher-
frequency component because the impedances of the capacitor and the inductors
change with frequency ■
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E x e r c i s e 8–25
Analyze the sinusoidal steady-state behavior of the circuit shown in Figure 8–37 in
more detail. To do so, find the magnitude of the ratio of the output voltage to the input
voltage for the range of frequencies from 1Hz to 1 kHz. For simplicity, assume that the
input signal always has a magnitude of 1 V. Examine at least 500 data points in the fre-
quency range and space them logarithmically with the MATLAB command logspace.
Plot the results in terms of magnitude versus frequency (in hertz) on log-log axes. Use
the plot to verify the results in Example 8–18.

A n s w e r: See Figure 8–39. The plot is consistent with the results presented in
Example 8–18.

T H É V E N I N A N D N O R T O N E Q U I V A L E N T C I R C U I T S

In the phasor domain, a two-terminal circuit containing linear elements and sources
can be replaced by the Thévenin or Norton equivalent circuits shown in Figure 8–40.
The general concept of Thévenin’s and Norton’s theorems and their restrictions are
the same as in the resistive circuit studied in Chapter 3. The important difference here
is that the signals VT, IN, V, and I are phasors, and ZT and ZL are complex numbers
representing the source and load impedances.

Finding the Thévenin or Norton equivalent of a phasor circuit involves the same
process as for resistance circuits, except that now we must manipulate complex num-
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FIGURE 8–39
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bers. The Thévenin and Norton circuits are equivalent to each other, so their circuit
parameters are related as follows:

VOC = VT = INZT

ISC =
VT

ZT
= IN

ZT =
VOC

ISC
=ZN

(8–29)

Algebraically, the results in Eq. (8–29) are identical to the corresponding equa-
tions for resistance circuits. The important difference is that these equations involve
phasors and impedances rather than waveforms and resistances. These equations
point out that we can determine a Thévenin or Norton equivalent by finding any
two of the following quantities: (1) the open-circuit voltageVOC, (2) the short-circuit
current ISC, and (when there are no dependent sources) (3) the impedance ZT look-
ing back into the source circuit with all independent sources turned off.

The relationships in Eq. (8–29) define source transformations that allow us to con-
vert a voltage source in series with an impedance into a current source in parallel with
the same impedance, or vice versa. Phasor-domain source transformations simplify
circuits and are useful in formulating general node-voltage or mesh-current equa-
tions, discussed in the next section.

The next two examples illustrate applications of source transformation and
Thévenin equivalent circuits. We will follow those examples with three additional
examples exploring these concepts.

E X A M P L E 8–1 9

The Thévenin circuit in Figure 8–41(a) is operating in the phasor domain. If
VT = 120ff30� V and ZT = 100 − j50Ω, perform a source transformation resulting in
the Norton circuit of Figure 8–41(b).

SOLUTION:
The source transformation is related throughOhm’s law. Hence, IN =VT=ZT, and the
Norton impedance equals the Thévenin impedance.

IN =
120ff30�
100 − j50

=
120ff30�

112ff − 26:6�
= 1:07ff56:6�A

ZN = ZT = 100 − j50Ω ■

E x e r c i s e 8–26
The Norton circuit in Figure 8–41(b) has a current source IN = 300 � j400mA and a Norton
impedance ZN of 100 þ j100Ω. Find the equivalent Thévenin circuit.

A n s w e r s: VT = 70:7ff − 8:13� V, ZT = 141ff45�Ω.

D E S I G N E X A M P L E 8–2 0

The circuit of Figure 8–42 is in the phasor domain. Find
the Thévenin equivalent circuit that the load ZL sees.
Then design a load ZL so that 10ff−90� V are delivered
across it.

+
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−

+
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−

+
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FIGURE 8–41
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+
−

+

VO = 10  ‒90° V 

−‒j1 kΩ

1 kΩ j1 kΩ

50   0° V ZL

FIGURE 8–42

416 C H A P T E R 8 SINUSOIDAL STEADY-STATE RESPONSE



SOLUTION:
We calculate the Thévenin equivalent circuit by removing the load and looking into
the open terminals, effectively looking across the capacitor. VT is found using a volt-
age divider and ZT using the look-back method.

VT =
− j1k

1k − j1k

� �
50 + j0ð Þ= 1kff − 90�

1:414ff − 45�
50ff0� = 35:35ff − 45� V

ZT =
1kð Þ − j1kð Þ
1k − j1k

+ j1k=
1k2ff − 90�

1:414kff − 45�
+ j1k = 707ff − 45� + j1k

ZT = 500− j500 + j1000 = 500 + j500Ω

We reconnect the load and expand it as ZL =RL + jXL. Once again we use a voltage
divider and solve for RL and XL. We set up the equation as follows:

VL =
ZL

ZL +ZT
VT

VL = 10ff − 90� =
RL + jXL

RL + jXL + 500 + j500
35:35ff − 45�

Cross multiplying

10ff − 90�

35:35ff − 45�

� �
RL + jXL + 500 + j500ð Þ=RL + jXL

Expanding the left side and collecting like terms, we get

200 − 0:8RL − j0:2RL + 0:2XL− j0:8XL = 0

The real and the imaginary parts must both be zero. Hence, we get two equations
in two unknowns that we can solve simultaneously.

200 = 0:8RL−0:2XL

0 = −0:2RL−0:8XL

which results in RL = 235:3Ω and XL = −58:8Ω. Our load, then, is
ZL = 235:3− j58:8Ω. ■

E x e r c i s e 8–27
Convert the Thévenin circuit found in Example 8–20 into its Norton equivalent. Then
repeat the design task in that example.

A n s w e r: IN = 50ff−90�mA, ZN = 500+ j500Ω. Since the load does not know if it is con-
nected to a Thévenin or a Norton equivalent circuit, it performs the same. Hence, the same
ZL is required to produce the same output, ZL = 235:3 − j58:8Ω.

E X A M P L E 8–2 1

Both sources in Figure 8–43(a) operate at a frequency of ω= 5000 rad=s. Find the
steady-state voltage υR tð Þ using source transformations.
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SOLUTION:
Example 8–16 solves this problem using superposition. In this example we use source
transformations. We observe that the voltage sources in Figure 8–43(a) are con-
nected in series with impedances and can be converted into the following equivalent
current sources:

IEQ1 =
100ff0�
j10

= 0 − j10 A

IEQ2 =
120ff30�

j30
= 2 − j3:46 A

Figure 8–43(b) shows the circuit after these two source transformations. The two
current sources are connected in parallel and can be replaced by a single equivalent
current source:

IEQ = IEQ1 + IEQ2 = 2 − j13:46 = 13:6ff − 81:5�A

The four passive elements are connected in parallel and can be replaced by an equiv-
alent impedance:

ZEQ =
1

1
20

+
1

− j10
+

1
j10

+
1
j30

= 16:6ff33:7�Ω

The voltage across this equivalent impedance equals VR, since one of the parallel
elements is the resistor R. Therefore, the unknown phasor voltage is

VR = IEQZEQ = 13:6ff − 81:5�ð Þ× 16:6ff33:7�ð Þ= 227ff − 47:9� V

The value of VR is the same as found in Example 8–16 using superposition. The
corresponding time-domain function is

υR tð Þ=Re VRej5000t
� �

= 227 cos 5000t−47:9�ð ÞV ■

E x e r c i s e 8–28
Repeat Example 8–21 using Multisim if both sources are operating at a frequency of
ω= 20 krad=s. (Hint: Find L1, L2, and C from the data in Example 8–21 first.)

A n s w e r: υR tð Þ= 9:196 cos 20kt−163:8�ð ÞV

E X A M P L E 8–2 2

Use Thévenin’s theorem to find the current IX in the bridge circuit shown in
Figure 8–44(a).

+
−

+

−

j10 Ω

−j10 Ω

j30 Ω

20 Ω

(a)
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100    0° V

+
−
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+

− j30 Ω

−j10 Ω
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(b)
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j10 Ω

0−j10 A 2−j3.46 A

FIGURE 8–43
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SOLUTION:
Disconnecting the impedance j200 from the circuit in Figure 8–44(a) produces the
circuit shown in Figure 8–44(b). The voltage between nodes A and B is the Thévenin
voltage since removing the impedance j200 leaves an open circuit. The voltages at
nodes A and B can each be found by voltage division. Since the open-circuit voltage
is the difference between these node voltages, we have

VT = VA−VB

=
− j120

50− j120
75ff0�− 60

60 + 50
75ff0�

= 23:0− j26:6 V

Turning off the voltage source in Figure 8–44(b) and replacing it by a short circuit
produces the situation shown in Figure 8–44(c). The look-back impedance seen at
the interface is a series connection of two pairs of elements connected in parallel.
The equivalent impedance of the series/parallel combination is

ZT =
1

1
50

+
1

− j120

+
1

1
50

+
1
60

= 69:9− j17:8Ω

Given the Thévenin equivalent circuit, we treat the impedance j200 as a load con-
nected at the interface and calculate the resulting load current IX as

IX =
VT

ZT + j200
=
23:0 − j26:6
69:9 + j182

= 0:180ff − 118�A ■

E x e r c i s e 8–29
(a) Find the Thévenin equivalent circuit seen by the inductor in

Figure 8–45.

(b) Use the Thévenin equivalent to calculate the current IX.

A n s w e r s:
(a) VT = 0:08925 + j1:3839 V, ZT = 230:8− j153:8Ω
(b) IX = 5:852ff99:44� mA

+
−

IX

50 Ω

75    0° V

50 Ω

60 Ω−j120 Ω

j200 Ω
A B

C

D

+
−

50 Ω

75    0° V

50 Ω

60 Ω−j120 Ω

+ −VT

VA VB

(a)

50 Ω 50 Ω

60 Ω−j120 Ω

ZT

(b) (c)

A B

FIGURE 8–44

+
−

1 kΩ

−j500 Ωj100 Ω 500 Ω50    120° V

Ix

FIGURE 8–45

419CIRCUIT THEOREMS WITH PHASORS



E x e r c i s e 8–30
By inspection, determine the Thévenin equivalent circuit seen by the capacitor in Figure
8–30 for VS = 10ff0� V.

A n s w e r: VT = 5ff0� V,ZT = 25 + j50Ω

E X A M P L E 8–2 3

In the steady state, the open-circuit voltage at an interface is observed to be

υOC tð Þ= 12 cos 2000tV

When a 50-mH inductor is connected across the interface, the interface voltage is
observed to be

υ tð Þ= 17 cos 2000t + 45�ð ÞV

Find the Thévenin equivalent circuit at the interface.

SOLUTION:
The phasors for υOC tð Þ and υ tð Þ are VOC = 12ff0� and V= 17ff45�. The phasor Théve-
nin voltage at the interface is VT =VOC = 12ff0�. The impedance of the inductor is
ZL = jωL= j2000 × 0:050 = j100Ω. When the inductor load is connected across the
interface, we use voltage division to express the interface voltage as

V=
ZL

ZT +ZL
VT

Inserting the known numerical values yields

17ff45� = j100
ZT + j100

12ff0�

Solving for ZT, we have

ZT = j100 ×
12ff0�
17ff45� − j100 = 49:9− j50:1Ω

The Thévenin equivalent circuit at the interface is defined by VT = 12ff0� and
ZT = 49:9− j50:1Ω. ■

E x e r c i s e 8–31
In the steady state the short-circuit current at an interface is observed to be

iSC tð Þ= 0:75 sin ωtA

When a 150-Ω resistor is connected across the interface, the interface current is observed
to be

i tð Þ=0:6 cos ωt−53:1�ð ÞA
Find the Norton equivalent phasor circuit at the interface.

A n s w e r: IN = 0 − j0:75A,ZT = 0+ j200Ω
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D E S I G N E X A M P L E 8–2 4

For the circuit shown in Figure 8–46(a), design an interface that converts an input
voltage of VS = 90ff0� V into an output of VO = 63:6ff−45� V. The circuit is operating
at 1000 rad=s. Validate your design using Multisim.

SOLUTION:
Let us see what the interface circuit is required to do. We can make a ratio of the
output over the input and determine what effect the interface circuit must perform
to meet the requirement.

VO

VS
=
63:3ff−45�

90ff0� = 0:707ff−45�

Since there is a negative phase shift, it appears that a simple voltage divider with a
resistorZR =R and a capacitorZC = − jX could work with the output taken across the
capacitor.

VO

VS
= 0:707ff−45� = − jX

R− jX
=

Xff − 90�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 +X2

p
fftan−1 −X

R

� �

Setting magnitudes and angles equal, we can solve for the necessary relation-
ships. Thus

Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 +X2

p = 0:707

and

ff−90�

fftan−1 −X
R

� �ff−45�

If we select R and X to have the same value then the magnitude of the denomi-
nator would be

ffiffiffi
2

p
X and the angle would be −45�. This would produce the desired

result. The interface is shown in Figure 8–46(b).
Next, we need to select R and C. If we pick R= 1 kΩ we can calculate the value

of the capacitor. Since the radian frequency is 1000 rad=s, C is found to be 1 μF.
We simulated the circuit in Multisim with the design values found for R and C.

Grapher View returns the following analysis of our design:

VARIABLE FREQUENCY (HZ) MAGNITUDE PHASE (DEG)

V 2ð Þ 159:2 63:6 −45:0

These results indicate that our design choices for R and C were valid. ■

Interface
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+
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+
−

+

VO  =  63.6  −45°
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‒jX

R FIGURE 8–46
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D e s i g n E x e r c i s e 8–32
Repeat the problem in Example 8–24, except you cannot use capacitors.

A n s w e r: Use anRL series circuit with the output taken across the resistor. SelectR=1 kΩ
and L= 1H. Other solutions are possible. A Multisim simulation will verify the results.

8–5 G E N E R A L C I R C U I T A N A L Y S I S W I T H P H A S O R S
The previous sections discuss basic analysis methods based on equivalence, reduction,
andcircuit theorems.Thesemethodsarevaluablebecauseweworkdirectlywithelement
impedancesand therebygain insight into steady-statecircuitbehavior.Wealsoneedgen-
eral methods, such as node and mesh analysis, to deal with more complicated circuits
than the basic methods can easily handle. These general methods use node-voltage
or mesh-current variables to reduce the number of equations that must be solved
simultaneously.

Node-voltage equations involve selecting a reference node as ground or
datum and assigning a node-to-datum voltage to each of the remaining nonreference
nodes. Because of KVL, the voltage between any two nodes equals the difference
of the two node voltages. This fundamental property of node voltages plus the
element impedances allow us to write KCL constraints at each of the nonreference
nodes.

For example, consider node A in Figure 8–47. The sum of currents leaving this
node can be written as

IS2−IS1 +
VA

Z1
+
VA−VB

Z2
+
VA−VC

Z3
= 0

Rewriting this equation with unknowns grouped on the left and known inputs on the
right yields

1
Z1

+
1
Z2

+
1
Z3

� �
VA−

1
Z2

VB−
1
Z3

VC = IS1−IS2

Expressing this result in terms of admittances produces the following equation.

Y1 +Y2 +Y3½ �VA− Y2½ �VB− Y3½ �VC = IS1−IS2

This equation has a familiar pattern. The unknowns VA, VB, and VC are the node-
voltage phasors. The coefficient Y1 +Y2 +Y3½ � of VA is the sum of the admittances of
all of the elements connected to node A. The coefficient Y2½ � of VB is admittance of
the elements connected between nodes A and B, while Y3½ � is the admittance of the
elements connected between nodes A and C. Finally, IS1 and IS2 are the phasor cur-
rent sources connected to node A, with IS1 directed into and IS2 directed away from
the node. These observations suggest that we can write node-voltage equations for
phasor circuits by inspection, just as we did with resistive circuits.

Circuits that can be drawn on a flat surface with no crossovers are called planar
circuits. The mesh-current variables are the loop currents assigned to each mesh
in a planar circuit. Because of KCL, the current through any two-terminal element
is equal to the difference of the two adjacent meshes. This fundamental property of
mesh currents together with the element impedances allow us to write KVL con-
straints around each of the meshes.

Z1

Z3

IS2

IS1

VB

VC

VA

Z2

FIGURE 8–47 An
example node.
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For example, the sum of voltages around mesh A in Figure 8–48 is

Z1IA +Z2 IA−IB½ �+Z3 IA−IC½ �−VS1 +VS2 = 0

Arranging this equation in standard form yields

Z1 +Z2 +Z3½ �IA− Z2½ �IB− Z3½ �IC =VS1−VS2

This equation also displays a familiar pattern. The unknowns IA, IB, and IC are mesh-
current phasors. The coefficient Z1 +Z2 +Z3½ � of IA is the sum of the impedances in
meshA. The coefficient Z2½ � of IB is the impedance in bothmeshA andmesh B, while
Z3½ � is the impedance common to meshes A and C. Finally, VS1 and VS2 are the pha-
sor voltage sources in mesh A. These observations allow us to write mesh-current
equations for phasor circuits by inspection.

The preceding discussion assumes that the circuit contains only current sources in
the case of node analysis and voltage sources in mesh analysis. If there is a mixture of
sources, we may be able to use the source transformations discussed in Sect. 8–4 to
convert from voltage to current sources, or vice versa. A source transformation is
possible only when there is an impedance connected in series with a voltage source
or an impedance in parallel with a current source. When a source transformation is
not possible, we use the phasor version of the modified node- and mesh-analysis
methods described in Chapter 3.

Formulating a set of equilibrium equations in phasor form is a straightforward
process involving concepts that we have used before in Chapters 3 and 4. Once for-
mulated, we use Cramer’s rule or Gaussian reduction to solve these equations for
phasor responses, although this requires manipulating linear equations with complex
coefficients. In principle, the solution process can be done by hand, but as a practical
matter circuits with more than three nodes or meshes are best handled using com-
puter tools. Modern hand-held scientific calculators and math analysis programs like
MATLAB can deal with sets of linear equations with complex coefficients. Circuit
analysis programs such as Multisim have ac analysis options that handle steady-state
circuit analysis problems.

With modern computer tools such as Multisim and MATLAB, one may question
why one should bother with hand solutions at all. Until fairly recently, the reason
was that most software tools could not effectively handle symbolic operators. That is
no longer an issue, with symbolic manipulators available in many software
packages. MATLAB, for example, has a symbolic toolbox that permits the solution
of analytical problems using symbolic variables. Nevertheless, for one to become a
good engineer, it is essential to develop a sense of what looks right. This sense is not
innate and must be developed with practice. The next few examples and exercises
will help you to develop this sense both classically by hand and by using soft-
ware tools.

E X A M P L E 8–2 5

The circuit in Figure 8–49(a) is operating in the sinusoidal steady state. Convert
the circuit into the phasor domain and find the phasor voltages at nodes
A and B.

SOLUTION:
We start by converting the time-domain circuit into the phasor domain resulting in
Figure 8–49(b). The voltage source in Figure 8–49(b) is connected in series with an

IA ICIB
VS1

+
−

VS2

Z1

Z2

Z3

Z4

+
−

FIGURE 8–48 An
example mesh.
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impedance consisting of a resistor and inductor connected in parallel. The equivalent
impedance of this parallel combination is

ZEQ =
1

1
50

+
1

j100

= 40 + j20Ω

Applying a source transformation produces an equivalent current source of

IEQ =
10ff − 90�

40 + j20
= −0:1− j0:2A

Figure 8–49(c) shows the circuit produced by the source transformation. Note that
the transformation eliminates node B. The node-voltage equation at the remaining
nonreference node in Figure 8–49(c) is

1
− j50

+
1

j100
+

1
50

� �
VA = 0:1ff0�−ð−0:1− j0:2Þ

Solving for VA yields

VA =
0:2+ j0:2
0:02 + j0:01

= 12 + j4 = 12:6ff18:4� V

Referring to Figure 8–49(b), we see that KVL requires VB =VA + 10ff−90�. There-
fore, VB is found to be

VB = ð12 + j4Þ+ 10ff−90� = 12− j6= 13:4ff−26:6� V ■

j100 Ω

50 Ω

VA

0.1     0° A

−j50 Ω

10   −90° V

VB

(b)

50 Ω

VA

0.1     0° A

−j50 Ω

(c)

+−

50 Ω2 μF 10 mH

v(t) = 10 cos(10 kt‒90°) V

i(t)=100 cos(10 kt) mA

(a)

BA
+−

j100 Ω−0.1 − j0.2 A

FIGURE 8–49
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E x e r c i s e 8–33
Use Multisim to solve for the node voltages VA and VB in the circuit of Figure 8–49(a).

A n s w e r: See Figure 8–50. VA = 12:6ff18:4� and VB = 13:4ff−26:6�

E X A M P L E 8–2 6

Use node analysis to find the current IX in Figure 8–51.

SOLUTION:
In this examplewe use node analysis on a problem solved inExample 8–22
using a Thévenin equivalent circuit. The voltage source cannot be
replaced by source transformation because it is not connected in series
with an impedance. By inspection, the node equations at nodes
A and B are:

NodeA:
VA

− j120
+
VA−VB

j200
+
VA−VC

50
= 0

Node B:
VB

60
+
VB−VA

j200
+
VB−VC

50
= 0

A node equation at node C is not required because the voltage source
forces the conditionVC = 75ff0�. Substituting this constraint into the equa-
tions of nodes A and B and arranging the equations in standard form
yields two equations in two unknowns:

Node A:
1
50

+
1

− j120
+

1
j200

� �
VA−

1
j200

� �
VB =

75ff0�
50

� �

Node B: −
1

j200

� �
VA +

1
50

+
1
60

+
1

j200

� �
VB =

75ff0�
50

� �

Solving these equations for VA and VB yields

VA = 70:4 − j21:4V

VB = 38:6 − j4:33V

Using these values for VA and VB, the unknown current is found to be

IX =
VA−VB

j200
=
31:8 − j17:1

j200
= 0:180ff−118�A

This value of IX is the same as the answer obtained in Example 8–22. ■

+
−

IX

VA

50 Ω

75   0° V

50 Ω

60 Ω−j120 Ω

j200 Ω

VB

VC

FIGURE 8–51
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100 mA
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0°
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2 μF

+−

Exercise 8–33 
Single Frequency AC Analysis @ 1591.5 Hz 

Variable Frequency (Hz) Magnitude Phase (deg)

1 V(A) 1591.5 12.6 18.44

2 V(B) 1591.5 13.4 ‒26.56 

FIGURE 8–50
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E X A M P L E 8–2 7

The circuit in Figure 8–51 is operating in the sinusoidal steady state at 10,000 rad=s.
Use Multisim to find the Thévenin equivalent circuit seen by the capacitor. Then use
the Thévenin circuit to find the current waveform through the capacitor.

SOLUTION:
We draw the circuit twice inMultisim, as shown in Figure 8–52. In the first circuit, the
capacitor is removed and the open-circuit voltage is simply V 4ð Þ. In the second circuit
a very small resistor R7 of 0:1 μΩwas inserted in place of the capacitor tomeasure the
short-circuit current I R7ð Þ. We asked Multisim to calculate the Thévenin impedance
using the ratio of voc=isc or V 4ð Þ=I R7ð Þ.

We ran the single frequency AC analysis using the Magnitude and Phase output
option. The result in Grapher View is given in the table below.

VARIABLE FREQUENCY (HZ) MAGNITUDE PHASE (DEG)

V 4ð Þ 1591:5 72:5 5:87
I R7ð Þ 1591:5 1:54 −7:49
V 4ð Þ=I R7ð Þ 1591:5 47:1 13:4

From these data, we can write that VT = 72:5 ff5:87� V and ZT = 47:1 ff13:4� Ω.
We then ran the analysis again using the Real/Imaginary output option to facilitate
finding the components for ZT. The results are obtained as follows:

VARIABLE FREQUENCY (HZ) REAL IMAGINARY

V 4ð Þ=I R7ð Þ 1591:5 45:8 10:9

This readily showed that we have ZT equal to a 45:8-Ω resistor in series with a
1:09-mH inductor (at 10 krad=s). We added the Thévenin circuit to Figure 8–52 with
the capacitor as the load and ran the analysis again for the current through the capac-
itor. Grapher View returned the following:

VARIABLE FREQUENCY (HZ) MAGNITUDE PHASE (DEG)

I C1ð Þ 1591:5 612m 73:1

From this we can write the desired waveform as iC tð Þ = 612 cos 10,000t +ð
73:1�ÞmA. ■

V2

+

−

75 Vpk
1591.5 Hz
0°

R5
50 Ω

R4
50 Ω

20 mH

R6
60 Ω

L2

1.09 mH

L3
6

54
V1

+

−

75 Vpk
1591.5 Hz
0°

R2
50 Ω

R1
50 Ω

R7
0.1 μΩ

C1
0.833 μF

20 mH

R3
60 Ω

L1

1

Circuit to find open-circuit voltage Circuit to find short-circuit voltage Thévenin circuit

32
V3

+

−

72.5 Vpk
1591.5 Hz
5.87°

45.8 Ω

R8FIGURE 8–52
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E x e r c i s e 8–34
The circuit in Figure 8–51 is operating in the sinusoidal steady state at 10,000 rad=s. Use
Multisim to find the Thévenin equivalent circuit seen by the 60-Ω resistor. Then use the
Thévenin circuit to find the current waveform through the 60-Ω resistor.

A n s w e r s:

VARIABLE FREQUENCY (HZ) MAGNITUDE PHASE (DEG)

V 5ð Þ 1591:5 68:0 −448m
I R3ð Þ 1591:5 1:48 −14:2
V 5ð Þ= I R3ð Þ 1591:5 45:8 13:8

The Thévenin equivalent circuit is VT = 68:0ff−0:448� V and ZT = 45:8 ff13:8� Ω = 44:5 + j10:9Ω.

VARIABLE FREQUENCY (HZ) MAGNITUDE PHASE (DEG)

I R6ð Þ 1591:5 647m −6:40

The desired waveform is iR tð Þ = 647 cos 10,000t – 6:4�ð ÞmA.

E X A M P L E 8–2 8

Use node-voltage analysis to determine the phasor input–output relationship of the
OP AMP circuit in Figure 8–53.

SOLUTION:
In the sinusoidal steady state the sum of currents leaving the inverting input node is

VN−VS

Z1
+
VN−VO

Z2
+ IN = 0

This is the only required node equation, since the input source forces the condition
VA =VS and no node equation is ever required at an OP AMP output. In the time
domain the i−υ relationships of an ideal OP AMP are υPðtÞ= υNðtÞ and
iPðtÞ= iNðtÞ= 0. In the sinusoidal steady state these equations are written in phasor
form as VP =VN and IP = IN = 0. In the present case this means VN = 0 since the non-
inverting input is grounded. When the ideal OP AMP constraints are inserted in the
node equation, we can solve for the OP AMP input–output relationship as

VO = −
Z2

Z1
VS

This result is the phasor-domain version of the inverting amplifier configuration. In
the phasor domain, the “gain” K = −Z2=Z1 is determined by a ratio of impedances
rather than resistances. Thus, the gain affects both the amplitude and the phase angle
of the steady-state output. ■

E x e r c i s e 8–35
In the circuit of Figure 8–53, Z1 is a 1-kΩ resistor and Z2 is the parallel combination of a
10-kΩ resistor and a 1-μF capacitor. Determine the output voltage υOðtÞ if the input
is υSðtÞ= 1 cos 100t V.

A n s w e r: υOðtÞ= 7:07 cos ð100t + 135�ÞV.

+

−IN

VA VN VO

VS

Z1 Z2

+
−

FIGURE 8–53
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E V A L U A T I O N E X A M P L E 8–2 9

Avendor claims that the circuit shown in Figure 8–54 is a high-pass filterwith a cutoff
frequency of ωC = 1=R1C and a pass-band gain of −R2=R1. Verify his claim by finding
the phasor voltage ratio VO=VS and determining at what radian frequency the gain
falls to 0.707 of the pass-band (maximum) value.

SOLUTION:
The circuit is an inverting amplifier whose input–output relationship was
found in Example 8–28 as

VO = −
Z2

Z1
VS

VO = −
R2

R1 +
1

jωC

VS = −
jωCR2

jωCR1 + 1
VS = −

R2

R1

� �
jω

jω+
1

R1C

0
BB@

1
CCAVS

The phasor voltage ratio is

VO

VS
= −

R2

R1

� �
jω

jω+
1

R1C

0
BB@

1
CCA

At dc,ðω= 0,ÞVO = 0 and as ω! ∞ ,VO ! −
�R2
R1

�
VS. The maximum value occurs at

infinite frequency with a gain of −
�R2
R1

�
. This is a high-pass filter as stated, since

low frequencies are blocked with a low gain and high frequencies are allowed to pass.
We still need to determine the frequency where the gain falls to 0:707 × −

�R2
R1

�
. The

magnitude of the phasor voltage ratio is

VO

VS










= −

R2

R1

� �
jω

jω+
1

R1C

0
BB@

1
CCA



















=
R2

R1

� �
ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 +
1

R1C

� �2
s

The value of ω that makes the output equal 0.707 of the maximum occurs at 1=R1C as
stated.

VO

VS











ω= 1=R1C

=
R2

R1

� � 1
R1Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
R1C

� �2

+
1

R1C

� �2
s =

R2

R1

� �
1ffiffiffi
2

p = 0:707 ×
R2

R1

� �

The vendor accurately described his product. ■

D e s i g n E x e r c i s e 8–36
Use the circuit of Figure 8–54 to design a high-pass filter with a pass-band gain of −100 and a
cutoff frequency ωC of 10,000 rad=s. Use standard parts (see the inside rear cover).

A n s w e r: Choose R1 = 1 kΩ, then C = 0:1μF and R2 = 100 kΩ. Many other solutions are
possible.

VO

+

+

−

1/jωC R2R1

VS
+

‒

FIGURE 8–54
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E X A M P L E 8–3 0

Find the input–output relationshipVO=VS =K for the circuit of Figure 8–55. Then for
R1 = 1 kΩ,C1 = 0:1 μF, R2 = 10 kΩ,andC2 = 1 μF, useMATLAB to create a plot of the
log of the magnitude of the input–output relationship K versus the log of the fre-
quency from 1 rad=s to 1Mrad=s. Discuss the characteristics of the result.

SOLUTION:
The OP AMP follower effectively isolates the two RC circuits. One can use the volt-
age division rule for each RC circuit and then simply multiply the results together to
obtain the desired input–output relationship.

The output of the first RC circuit is

V1 =

1
jωC1

R1 +
1

jωC1

VS =
1

R1C1jω+ 1
VS

V1 is the input to the follower. Hence, the output, V2, is equal to the input, V1. The
output of the second RC circuit, then, is another voltage divider:

VO =
R2

R2 +
1

jωC2

V2 =
jωR2C2

R2C2jω+ 1
V2 =

jωR2C2

R2C2jω+ 1
V1

Substituting V1 from the first RC circuit and dividing by VS, we obtain our result:

K =
VO

VS
=

jωR2C2

R2C2jω+ 1

� �
1

R1C1jω+ 1

� �
=

jω

jω+
1

R2C2

2
4

3
5

1
R1C1

jω+
1

R1C1

2
664

3
775

The magnitude of K with the values of the R’s and C’s substituted is given as

K =
ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 +
1

R2C2

� �2
s
2
66664

3
77775

1
R1C1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 +
1

R1C1

� �2
s
2
66664

3
77775=

ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 + 1002

p
" #

10;000ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 + 10;0002

q
2
64

3
75

The following MATLAB code will produce the desired plot:

% Create the range over which we want to have MATLAB plot the
response.
% Use logspace to cover from 10̂0 rad/s to 10̂6 rad/s.
w=logspace(0,6);
% Define the gain of the function.
K=w./(sqrt((w.*w)+10000)).*1e4./(sqrt((w.*w)+1e8));
% Request a log-log plot of w vs K.
loglog(w,K)
grid on
xlabel(‘Frequency in rad/s’)
ylabel(‘Gain (K)’)

MATLAB returns the plot shown in Figure 8–56.

−

vS C1

C2

R2

R1

vO

+

−

v1

+

−

v2

+

−

+
+

−

FIGURE 8–55
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D I S C U S S I O N : The plot shows a prototypical characteristic of abandpass filter. Signals con-
taining frequencies less than about 100 rad=s or greater than about 10 krad=s are attenuated
(decreased). Those signals that fall in the band of frequencies between these two frequencies
can pass through with little or no attenuation—hence the name. The frequencies that form the
boundaries between which signals pass are generally considered to be the frequency where the
magnitude of the input–output relationship has dropped to 0.707 or 1=

ffiffiffi
2

p
of the peak value.

■

D e s i g n E x e r c i s e 8–37
Design a bandpass filter with a lower frequency cutoff of 100Hz and an upper frequency
cutoff of 20 kHz.

A n s w e r: Select R1 =R2 = 1 kΩ,C1 = 7960 pF,andC2 = 1:59 μF in the circuit shown in
Figure 8–55. Other correct solutions are possible.

E X A M P L E 8–3 1

The circuit in Figure 8–57 is an equivalent circuit of an ac induction motor. The cur-
rent IS is called the stator current, IR the rotor current, and IM the magnetizing cur-
rent. Use the mesh-current method to solve for the branch currents IS, IR, and IM.

SOLUTION:
Applying KVL to the sum of voltages around each mesh in
Figure 8–57 yields

Mesh A: −360ff0� + 0:1 + j0:4ð ÞIA + j10 IA−IBð Þ = 0

Mesh B: j10 IB−IAð Þ+ 4+ j0:4ð ÞIB = 0

Arranging these equations in standard form yields

0:1+ j10:4ð ÞIA− j10ð ÞIB = 360ff0�
− j10ð ÞIA + 4+ j10:4ð ÞIB = 0

+
−

j0.4 Ω0.1 Ω

IM

IA IB

4 Ω

j0.4 Ω
IRIS

360    0° V j10 Ω

FIGURE 8–57
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Solving these equations for IA and IB we get

IA = 79:0 − j48:2A

IB = 81:7 − j14:9A

The required stator, rotor, and magnetizing currents are related to these mesh cur-
rents, as follows:

IS = IA = 92:5ff−31:4�A
IR = −IB = −81:8 + j14:7 = 83:0ff170�A
IM = IA−IB = −2:68− j33:3= 33:4ff−94:6�A ■

E X A M P L E 8–3 2

Use MATLAB and mesh-current analysis to find the branch currents I1, I2, and I3 in
Figure 8–58.

SOLUTION:
We identify three mesh currents IA, IB, and IC as shown in the
figure. We write by inspection three mesh-current equations as
follows.

IA−ICð Þj5 + IA j10 + IA−IBð Þj20 = 0

IB−IAð Þj20 + IB 50−120ff−30� = 0

IC−IAð Þj5−120ff0� + 120ff−30� = 0

Using MATLAB’s complex number ability, we use the soft-
ware to solve for the three mesh currents, IA, IB, and IC. Then
we use these results to find the requested branch currents as
follows:

I1 = IC−IA

I2 = IA

I3 = IB−IA

The following MATLAB code will do all of this for us:

%Create the symbolic variables and the two input voltages
syms IA IB IC
Vs1 = 120;
Vs2 = 120*exp(-j*pi/6);
%Create the mesh currents equations
Eqn1 = (IA-IC)*5j + IA*10j + (IA-IB)*20j;
Eqn2 = (IB-IA)*20j + IB*50 - Vs2;
Eqn3 = (IC-IA)*5j - Vs1 + Vs2;
%Solve the mesh current equations set equal to zero for
%the symbolic variables
Soln = solve(Eqn1,Eqn2,Eqn3,IA,IB,IC);
IAnum = double(Soln.IA);
IBnum = double(Soln.IB);
ICnum = double(Soln.IC);
%Solve for the branch currents

+
−

+
−

j20 Ω

j10 Ω

j5 Ω

I1

I3

IA

IC

VB

IB

VD

VC

VA

50 Ω120    0° V 120    ‒30° V

I2

FIGURE 8–58
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I1 = ICnum-IAnum;
I2 = IAnum;
I3 = IBnum-IAnum;
%Convert to magnitude and phase
I1Mag = abs(I1)
I1Phase = 180*angle(I1)/pi
I2Mag = abs(I2)
I2Phase = 180*angle(I2)/pi
I3Mag = abs(I3)
I3Phase = 180*angle(I3)/pi

MATLAB returns the following:

I1Mag = 12.4233
I1Phase = −15.0000
I2Mag = 3.6077
I2Phase = −16.0616
I3Mag = 1.3027
I3Phase = 166.4700

Hence, our results are I1 = 12:4ff−15:0� A, I2 = 3:61ff−16:1� A, I3 = 1:30ff166:5� A.
■

E v a l u a t i o n E x e r c i s e 8–38

Repeat Example 8–32 but use node-voltage analysis to solve for the currents of Figure 8–58.
Which method do you think is easier and why?

A n s w e r s:

I1 = 12:4ff−15:0� A, I2 = 3:61ff−16:1� A, I3 = 1:30ff166:5� A
This four-node circuit has only one unknown node-voltage equation that needs to be solved.
Hence, it is reasonable to say that node-voltage analysis is easier.

E X A M P L E 8–3 3

Use the mesh-current method to solve for output voltage V2 and input impedance
ZIN of the circuit in Figure 8–59.

SOLUTION:
The circuit contains a voltage-controlled voltage source. We ini-
tially treat the dependent source as an independent source and
use KVL to write the sum of voltages around each mesh:

MeshA: −10ff0� + 200 + j250ð ÞIA + 400 IA−IBð Þ = 0

Mesh B: 400 IB−IAð Þ+ 50− j500ð ÞIB + 2VX = 0

Arranging these equations in standard form we get

MeshA: 600 + j250ð ÞIA−400IB = 10ff0�
Mesh B: −400IA + 450− j500ð ÞIB = −2VX

+
−

j250 Ω200 Ω

IA IB

400 Ω

−j500 Ω

ZIN

10    0° V
+
−

50 Ω

2VX

VX

+

−
V2

+

−
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Using Ohm’s law, the control voltage VX is

VX = 400 IA−IBð Þ

Eliminating VX from the mesh equations yields

Mesh A: 600 + j250ð ÞIA−400IB = 10ff0�
Mesh B: 400IA + −350− j500ð ÞIB = 0

Solving for the two mesh currents we get

IA = 10:8− j11:1mA

IB = −1:93− j9:95 mA

Using these values of the mesh currents, the output voltage and input impedance are
calculated as follows:

V2 = 2VX + 50IB = 800 IA−IBð Þ+ 50IB

= 800IA−750IB = 10:1− j1:42

= 10:2ff−8:00� V
ZIN =

10ff0�
IA

=
10ff0�

0:0108− j0:0111
= 450 + j463Ω ■

E x e r c i s e 8–39
Use the mesh-current or node-voltage method to find the output voltage
V2 and input impedance ZIN in Figure 8–60.

A n s w e r: V2 = 1:77ff−135� V,ZIN = 100− j100Ω

E X A M P L E 8–3 4

In the circuit in Figure 8–61, the input voltage is υS tð Þ= 10 cos 105tV. Use node-
voltage analysis and MATLAB to find the input impedance at the input interface
and the proportionality constant relating the input voltage phasor to the phasor volt-
age across the 50-Ω load resistor, that is, K =VO=VS.

SOLUTION:
We will solve this example problem using two distinct approaches
in MATLAB. Both approaches start by formulating the following
node-voltage equations for VA, VB, and VO:

NodeA:
VA−VS

50
+
VA−VB

− j50
+
VA−VO

j100
= 0

Node B:
VB−VA

− j50
+

VB

j100
+
VB−VO

− j50
= 0

NodeO:
VO−VA

j100
+
VO−VB

− j50
+
VO

50
= 0

In the first approach, we will convert these equations to matrix form and then use
MATLAB to solve for VA, VB, and VO. We can then use the three voltages to solve

+
−

+

−
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50 Ω

5    0° V

j100 Ω

−j50 Ω 50 Ω
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−j50 Ω

FIGURE 8–60
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for the input impedance and the input–output relationship for the circuit. Converting
the node-voltage equations into matrix form, we get:

1
50

+
1

− j50
+

1
j100

−1
− j50

−1
j100

−1
− j50

1
− j50

+
1

j100
+

1
− j50

−1
− j50

−1
j100

−1
− j50

1
j100

+
1

− j50
+

1
50

2
66666664

3
77777775

VA

VB

VO

2
64

3
75=

VS

50
0

0

2
6664

3
7775

Since MATLAB can handle complex numbers, we can now use the software to
solve forVA,VB, andVO. The following MATLAB code will calculate the node vol-
tages, the input impedance, and the gain of the circuit:

% Solve the problem using a matrix approach
% Create the matrices
Vs = 10;
A = [1/50 + 1/(−50j) + 1/(100j) −1/(−50j) −1/(100j);...

−1/(−50j) 1/(−50j) + 1/(100j) + 1/(−50j) −1/(−50j);...
−1/(100j) −1/(−50j) 1/(100j) + 1/(−50j) + 1/50];

B = [Vs/50; 0; 0];
% Solve for the node voltages and assign labels
V = A\B;
VA = V(1)
VB = V(2)
VO = V(3)
% Compute the input impedance and circuit gain
Iin = (Vs-VA)/50;
Zin = VA/Iin
K = VO/Vs

The results from the code are:

VA = 9.5000 + 1.5000i
VB = 6.0000 + 2.0000i
VO = −0.5000 + 1.5000i
Zin = 5.0000e+001 +3.0000e+002i
K = −0.0500 + 0.1500i

So the input impedance is ZIN = 50 + j300Ω, and the gain is K = −0:05 + j0:15.
We can exploit anotherMATLAB function to solve the same problem in a slightly

different way.Wewill use the original node-voltage equations derived above, but this
time we will allowMATLAB to perform all of the calculations by working with these
equations in symbolic form. The net result is that we do not have to convert the equa-
tions into matrix form to find a solution. The required code is shown below:

% Create the symbolic variables and the input signal
clear all
syms Va Vb Vo
Vs = 10;
% Create the node-voltage equations
NVa = (Va−Vs)/50 + (Va−Vb)/(−50j) + (Va−Vo)/(100j);
NVb = (Vb−Va)/(−50j) + Vb/(100j) + (Vb−Vo)/(−50j);
NVo = (Vo−Va)/(100j) + (Vo−Vb)/(−50j) + Vo/50;
% Solve the node voltage equations set equal to zero for the
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% symbolic variables
V = solve(NVa,NVb,NVo);
% Compute the input impedance and the proportionality constant
Vout = V.Vo;
Vin = V.Va;
Iin = (Vs−Vin)/50;
Zin = Vin/Iin
K = Vout/Vs

The MATLAB results are:

Zin = 300∗i + 50
K = (3∗i)/20-1/20

which agree with our previous results using the matrix approach. Both approaches
are acceptable, and either the nature of the exercise or personal preference will dic-
tate which approach is more efficient for a particular problem. ■

E x e r c i s e 8–40
Use MATLAB and either mesh-current or node-voltage analysis to find the current IX in
Figure 8–62.

A n s w e r: IX = 1:44ff171�A

E x e r c i s e 8–41
The circuit in Figure 8–63 is operating in the sinusoidal steady state at
10 krad/s. Use Multisim to find the output waveforms corresponding to VO

and IO.

A n s w e r s: Multisim’s Grapher View returns the following:

VARIABLE FREQUENCY (HZ) MAGNITUDE PHASE (DEG)

V Oð Þ 1591:5 4:04 −44:9
I Oð Þ 1591:5 809m 45:1

vO tð Þ= 4:04 cos 10kt – 44:9�ð ÞV and iO tð Þ= 809 cos 10 kt + 45:1�ð ÞmA:

8–6 E N E R G Y A N D P O W E R

In the sinusoidal steady state, ac power is transferred from sources to various loads.
To study the transfer process, wemust calculate the power delivered in the sinusoidal
steady state to any specified load. It turns out that there is an upper bound on the
available load power; hence, we need to understand how to adjust the load to extract
the maximum power from the rest of the circuit. In this section the load is assumed
to be made up of passive resistance, inductance, and capacitance. To reach our objec-
tives, we must first study the power and energy delivered to these passive elements in
the sinusoidal steady state.

In the sinusoidal steady state the current through a resistor can be expressed as
iR tð Þ= IA cos ωtð Þ. The instantaneous power delivered to the resistor is

pR tð Þ = Ri2R tð Þ=RI2A cos2 ωtð Þ

=
RI2A
2

1 + cos 2ωtð Þ½ �
(8–30)

+
−

60 Ω

500   0° V

−j60 Ω

60 Ω

60 Ω

−j200 Ω

IX
j60 Ω

FIGURE 8–62

IS = 20   45° mA

2 kΩ

+

−

+

−

+
−

−j5 Ω

−j200 Ω IO

VOVx
100Vx

FIGURE 8–63
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where the identity cos2 xð Þ=½ 1+ cos 2xð Þ½ � is used to obtain the last line in Eq. (8–30).
The energy delivered for t ≥ 0 is found to be

wR tð Þ =
Z t

0
pR xð Þdx= RI2A

2

Z t

0
dx+

RI2A
2

Z t

0
cos 2ωxdx

=
RI2A
2

t +
RI2A
4ω

sin 2ωt

Figure 8–64 shows the time variation of pR tð Þ and wR tð Þ. Note that the power is a
periodic function with twice the frequency of the current, that both pR tð Þ and
wR tð Þ are always positive, and that wR tð Þ increases without bound. These observa-
tions remind us that a resistor is a passive element that dissipates energy.

In the sinusoidal steady state an inductor operates with a current iL tð Þ= IA cos ωtð Þ.
The corresponding energy stored in the element is

wL tð Þ = 1
2
Li2L tð Þ= 1

2
LI2A cos2ωt

=
1
4
LI2A 1 + cos 2ωtð Þ

where the identity cos2 xð Þ=½ 1+ cos 2xð Þ½ � is again used to produce the last line. The
instantaneous power delivered to the inductor is

pL tð Þ= dwL tð Þ
dt

= −
ωLI2A
2

sin 2ωtð Þ (8–31)

Figure 8–65 shows the time variation of pL tð Þ and wL tð Þ. Observe that both pL tð Þ and
wL tð Þ are periodic functions at twice the frequency of the ac current, that pL tð Þ is
alternately positive and negative, and that wL tð Þ is never negative. Since wL tð Þ≥ 0,
the inductor does not deliver net energy to the rest of the circuit. Unlike the resistor’s
energy in Figure 8–64, the energy in the inductor is bounded by ½LI2A ≥wL tð Þ, which
means that the inductor does not dissipate energy. Finally, since pL tð Þ alternates
signs, we see that the inductor stores energy during a positive half cycle and then
returns the energy undiminished during the next negative half cycle. Thus, in the
sinusoidal steady state there is a lossless interchange of energy between an inductor
and the rest of the circuit.

In the sinusoidal steady state the voltage across a capacitor is υC tð Þ=VA cos ωtð Þ.
The energy stored in the element is

wC tð Þ = 1
2
Cυ2C tð Þ= 1

2
CV2

A cos2ωt

=
1
4
CV2

A 1 + cos 2ωtð Þ

The instantaneous power delivered to the capacitor is

pC tð Þ= dwC tð Þ
dt

= −
ωCV2

A

2
sin 2ωtð Þ (8–32)

Figure 8–66 shows the time variation of pC tð Þ and wC tð Þ. Observe that these relation-
ships are the duals of those found for the inductor. Thus, in the sinusoidal steady state
the element power is sinusoidal, and there is a lossless interchange of energy between
the capacitor and the rest of the circuit.

0

2

0

pR(t)

RIA

RIA

t

0

wR(t)

t

2

2

FIGURE 8–64 Resistor power
and energy in the sinusoidal
steady state.

0

2

wL(t)

LIA

t

0

2

pL(t)

LIA

t

ω

2

LIAω−

2

2

2

FIGURE 8–65 Inductor power
and energy in the sinusoidal
steady state.
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A V E R A G E P O W E R

We are now in a position to calculate the average power delivered to various loads.
The instantaneous power delivered to any of the three passive elements is a periodic
function that can be described by an average value. The average power in the sinus-
oidal steady state is defined as

P=
1
T0

Z T0

0
p tð Þdt

The power variation of the inductor in Eq. (8–31) and capacitor in Eq. (8–32) have
the same sinusoidal form. The average value of any sinusoid is zero since the areas
under alternate cycles cancel. Hence, the average power delivered to an inductor or
capacitor is zero:

Inductor:PL = 0

Capacitor:PC = 0

The resistor power in Eq. (8–30) has both a sinusoidal ac component and a constant
dc component ½RI2A. The average value of the ac component is zero, but the dc com-
ponent yields

Resistor:PR =
1
2
RI2A

To calculate the average power delivered to an arbitrary load ZL =RL + jXL, we
use phasor circuit analysis to find the phasor current IL through ZL. The average
power delivered to the load is dissipated in RL, since the reactance XL represents
the net inductance or capacitance of the load. Hence the average power to the
load is

P=
1
2
RL ILj j2 (8–33)

Caution: When a circuit contains two or more sources, superposition applies only to
the total load current and not to the total load power. You cannot find the total power
to the load by summing the power delivered by each source acting alone.

The following example illustrates a power transfer calculation.

E X A M P L E 8–3 5

Find the average power delivered to the load to the right of the interface in Figure 8–67.

SOLUTION:
The equivalent impedance to the right of the interface is

ZL = j250 +
1

1
− j75

+
1
100

= 36 + j202Ω

The current delivered to the load is

IL =
150ff0�
50 +ZL

= 0:683ff−66:9�A

Hence, the average power delivered across the interface is

P=
1
2
RL ILj j2 = 36

2
0:683j j2 = 8:40W

0

2

wC(t)

CVA

t

0

2

pC(t)

CVA

t

ω

2

CVAω−

2

2

2

FIGURE 8–66 Capacitor
power and energy in the
sinusoidal steady state.

+
−

ZL

150   0° V

j250 Ω

‒j75 Ω

50 Ω

100 Ω

FIGURE 8–67
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Note: All of this power goes into the 100-Ω resistor since the inductor and capacitor
do not absorb average power. ■

E x e r c i s e 8–42
The circuit in Figure 8–68 is operating in the sinusoidal steady state at 60 Hz. Find the aver-
age power delivered to the 25-Ω load. Then use Multisim to validate your answer. (Hint:
Place a small 0:1-μΩ resistor in series with either inductor to avoid a singular event that pre-
vents Multisim from running.)

A n s w e r s:
(a) P = 234W
(b) Grapher View returns the same result:

VARIABLE FREQUENCY (HZ) MAGNITUDE PHASE (DEG)

P R1ð Þ 60 234 0:00

M A X I M U M P O W E R

Toaddress themaximumpower transfer problem,wemodel the source-load interface as
shown in Figure 8–69. The source circuit is represented by a Thévenin equivalent circuit
with sourcevoltageVT and source impedanceZT =RT + jXT. The load circuit is repre-
sented by an equivalent impedance ZL =RL + jXL. In the maximum power transfer
problem the source parameters VT, RT, and XT are given, and the objective is to
adjust the load impedance RL and XL so that average power to the load is a
maximum.

The average power to the load is expressed in terms of the phasor current and load
resistance:

P=
1
2
RL Ij j2

Then, using series equivalence, we express the magnitude of the interface current as

Ij j = VT

ZT +ZL










+ VTj j

RT +RLð Þ+ j XT +XLð Þj j

=
VTj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRT +RLÞ2ðXT +XLÞ2
q

Combining the last two equations yields the average power delivered across the
interface as:

P=
1
2

RL VTj j2
RT +RLð Þ2 + XT +XLð Þ2 (8–34)

The quantities VTj j, RT and XT in Eq. (8–34) are fixed. Our problem is to select RL

and XL to maximize P.
Clearly, for every value of RL the denominator in Eq. (8–34) is minimized and P

maximized whenXL = −XT. This choice ofXL is possible because a reactance can be
positive or negative. When the source Thévenin equivalent has an inductive reac-
tance XT > 0ð Þ, we modify the load to have a capacitive reactance of the same mag-
nitude, and vice versa when the Thévenin equivalent has a capacitance reactance.
This step reduces the net reactance of the series connection in Figure 8–69 to zero,
creating a condition in which the net impedance seen by the Thévenin voltage source
is purely resistive.

+
−

+
−150   0° V

125   −90° V

j2 Ω j4 Ω

25 Ω

FIGURE 8–68

+
−

Source Load

ZL

ZT

I

V

+

−

VT

FIGURE 8–69 A source-load
interface in the sinusoidal
steady state.
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When the source and load reactances cancel out, the expression for average power
in Eq. (8–34) reduces to

P=
1
2

RL VTj j2
RT +RLð Þ2 (8–35)

This equation has the same form encountered in Chapter 3 in dealing with maximum
power transfer in resistive circuits. From the derivation in Sect. 3–5, we know P is
maximized when RL =RT. In summary, to obtain maximum power transfer in the
sinusoidal steady state, we select the load resistance and reactance so that

RL =RT andXL = −XT (8–36)

These conditions can be compactly expressed in the following way:

ZL =Z∗
T (8–37)

The condition formaximumpower transfer is called a conjugatematch, since the load
impedance is the conjugate of the source impedance.When the conjugate-match con-
ditions are inserted into Eq. (8–34), we find that the maximum average power avail-
able from the source circuit is

PMAX =
VTj j2
8RT

(8–38)

where VTj j is the peak amplitude of the Thévenin equivalent voltage.
It is important to remember that conjugate matching applies when the source is

fixed and the load is adjustable. These conditions arise frequently in power-limited
communication systems. However, as we will see in Chapter 16, conjugate matching
does not apply to electrical power systems because the power transfer constraints are
different.

E X A M P L E 8–3 6

(a) Calculate the average power delivered to the load in the circuit shown in
Figure 8–70(a) for υS tð Þ= 5 cos 106t V, R= 200Ω, RL = 200Ω, andC = 0:01 μF.

(b) Calculate the maximum average power available at the interface and specify the
load required to draw the maximum power.

SOLUTION:

(a) To find the power delivered to the 200-Ω load resistor, we use a Thévenin equiv-
alent circuit. By voltage division, the open-circuit voltage at the interface is

VT =
ZC

ZR +ZC
VS =

− j100
200− j100

5ff0�

= 1− j2 =
ffiffiffi
5

p ff−63:4� V
By inspection, the short-circuit current at the interface is

IN =
5ff0�
200

= 0:025 + j0A

Given VT and IN, we calculate the Thévenin source impedance:

ZT =
VT

IN
=
1− j2
0:025

= 40− j80Ω

+
−

R

RLC

(a)

+
− RL

(b)

ZT

5   −63.4°VT = √ V

   = 40−j80 Ω

vS(t)

FIGURE 8–70
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Using the Thévenin equivalent shown in Figure 8–70(b), we find that the current
through the 200-Ω resistor is

I=
VT

ZT +ZL
=

ffiffiffi
5

p ff−63:4�
40− j80 + 200

= 8:84ff−45�mA

and the average power delivered to the load resistor is

P=
1
2
RL Ij j2 = 100 8:84 × 10−3� �2

= 7:81 mW

(b) Using Eq. (8–38), the maximum average power available at the interface is

PMAX =
VTj j2
8RT

=

ffiffiffi
5

p� 	2
8ð Þ 40ð Þ = 15:6mW

The 200-Ω load resistor in (a) draws about half of the maximum available power.
To extract maximum power, the load impedance must be

ZL =Z∗
T = 40 + j80Ω

This impedance can be obtained using a 40-Ω resistor in series with a reactance of
+ 80Ω. The required reactance is inductive (positive) and can be produced by an
inductance of

L=
XTj j
ω

=
80

106
= 80 μH

■

E x e r c i s e 8–43
Calculate the maximum average power available at the interface in Figure 8–71.

A n s w e r: PMAX =62:5 mW.

S U M M A R Y

0.1    0° A −j50 Ω

j100 Ω

50 Ω

FIGURE 8–71

• Aphasor is a complex number representing a sinusoidal
waveform. The magnitude and angle of the phasor cor-
respond to the amplitude and phase angle of the sinus-
oid.Thephasordoesnotprovide frequency information.

• The additive property states that adding phasors is
equivalent to adding sinusoids of the same frequency.
The derivative property states that multiplying a pha-
sor by jω is equivalent to differentiating the corre-
sponding sinusoid.

• In the sinusoidal steady state, phasor currents and
voltages obey Kirchhoff’s laws and the element i−υ
relationships are written in terms of impedances.
Impedance can be defined as the ratio of phasor volt-
age over phasor current. The device and connection
constraints for phasor circuit analysis have the same
form as resistance circuits.

• Phasor circuit analysis techniques include series equiva-
lence, parallel equivalence, circuit reduction, Thévenin’s

and Norton’s theorems, unit output method, superposi-
tion, node-voltage analysis, and mesh-current analysis.

• In the sinusoidal steady state the equivalent imped-
ance at a pair of terminals is Z jωð Þ=R ωð Þ+ jX ωð Þ,
whereR ωð Þ is called resistance andX ωð Þ is called reac-
tance. A frequency at which an equivalent impedance
is purely real is called a resonant frequency. Admit-
tance is the reciprocal of impedance.

• In the sinusoidal steady state the instantaneous power
to a passive element is a periodic function at twice the
frequency of the driving force. The average power
delivered to an inductor or capacitor is zero. The aver-
age power delivered to a resistor is 1

2R IRj j2. The max-
imum average power is delivered by a fixed source to
an adjustable load when the source and load impe-
dances are conjugates.

• Multisim and MATLAB are powerful tools that can
greatly simplify the analysis of phasor circuits.
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P R O B L E M S

O B J E C T I V E 8 – 1 S I N U S O I D S A N D P H A S O R S
( S E C T . 8 – 1 )
Use the additive and derivative properties of phasors to convert
sinusoidal waveforms into phasors and vice versa.
See Examples 8–1 to 8–4 and Exercises 8–1 to 8–6.

8–1 Transform the following sinusoids into phasor form and
draw a phasor diagram. Use the additive property of phasors
to find v1 tð Þ + v2 tð Þ.
(a) v1 tð Þ= 100 cos ωt−45�ð ÞV
(b) v2 tð Þ=200 cos ωt +135�ð ÞV

8–2 Transform the following sinusoids into phasor form and
draw a phasor diagram. Use the additive property of phasors
to find i1 tð Þ + i2 tð Þ.
(a) i1 tð Þ= −4 sin ωtð ÞA
(b) i2 tð Þ= 3 cos ωtð ÞA

8–3 Transform the following sinusoids into phasor form and
draw a phasor diagram. Use the additive property of phasors
to find v1 tð Þ + v2 tð Þ + v3 tð Þ.
(a) v1 tð Þ= 100 cos ωt − 45�ð ÞV
(b) v2 tð Þ= 100 cos ωt + 75�ð ÞV
(c) v3 tð Þ = 100 cos ωt + 195�ð ÞV

8–4 The sum of the two voltage phasors shown in Figure P8–4 is
V3. If the frequency is 60 Hz, write the sum in the time
domain, v3 tð Þ.

10√
2

j Im

Re

10

20

10‒10 20

V2

V1

135°

FIGURE P8–4

8–5 Convert the following phasors into sinusoidal
waveforms.
(a) V1 = 220 e− j45

�
V, ω=314:2 rad=s

(b) V2 = 110 ej45
�
V, ω=377 rad=s

(c) I1 = 30 e− j26:6
�
mA, ω=314:2 rad=s

(d) I2 = 50 e− j145
�
mA, ω= 377 rad=s

8–6 Use the phasors below and the additive property to find
the sinusoidal waveforms v3 tð Þ= v1 tð Þ−v2 tð Þ and i3 tð Þ=
2i1 tð Þ+3i2 tð Þ.
V1 = 15ff15� V, ω= 2π×440 rad=s
V2 = 15ff195� V, ω= 2π× 440 rad=s

I1 = 200ff−45� mA, ω= 104 rad=s
I2 = −100ff135� mA, ω= 104 rad=s

8–7 The phasor representation of a sinusoid with ω = 200 rad=s
is V = 10 − j10 V. Use the phasor derivative property to find
the time derivative of the sinusoid.

8–8 Convert the following phasors into sinusoidal waveforms:
(a) V1 = 5 + j5 V, ω = 10 krad=s
(b) V2 = 3 8 − j6ð ÞV, ω = 3Mrad=s

(c) I1 = 12 + j5 +
5
j
mA, ω = 377 rad=s

(d) I2 =
330 + j810
2200 − j560

A, ω = 100 rad=s

8–9 If the derivative property of phasors is multiplication of the
phasor by jω, the integral property of phasors is division of
the phasor by jω. Use phasors and these properties to find
the sinusoids in each of the following:

(a) v2 tð Þ =
1
100

dv1 tð Þ
dt

+ 20 v1 tð Þ and
v1 tð Þ = 10 cos 100t + 90oð ÞV
(b) i2 tð Þ=10

Z
i1 tð Þdt−3i1 tð Þ and i1 tð Þ = −4 cos 5tð ÞA

8–10 Given the sinusoids v1 tð Þ = 250 cos ωt − 45�ð ÞV and
v2 tð Þ = 750 sin ωtð ÞV, use the additive property of phasors
to find v3 tð Þ such that v1 + v2 + v3 = 0.

8–11 Graphically add the following three phasors and deter-
mine their sum: V1 = 14:14 + j 14:14 V, V2 = 10 ff – 60� V,
V3 = – 3:42 – j 9:40 V.

8–12 Given a sinusoid v1 tð Þwhose phasor isV1 = 4 – j 3 V, use
phasor methods to find a voltage v2 tð Þ that lags v1 tð Þ by 90�

and has an amplitude of 10 V.

8–13 A new parameter Z is defined as V=I: If V = 9:85 +
j 1:74 V and i tð Þ = −4 sin ωtð ÞA, find Z.

8–14 Complex power S is defined as VI∗, where I∗ is the com-
plex conjugate of the current phasor. If V = 1200 + j 1600 V
and I = 800 − j 600mA, find S.

O B J E C T I V E 8 – 2 I M P E D A N C E ( S E C T . 8 – 2 )

Given a linear circuit in the sinusoidal steady state:
(a) Convert R, L, and C elements into impedances in the pha-

sor domain.
(b) Use series and parallel equivalence to find the equivalent

impedance at a specified pair of terminals.
(c) See Example 8–5 and Exercises 8–7 to 8–9.

8–15 A design engineer needs to know what value of R, L, or C
to use in circuits to achieve a certain impedance.
(a) At what radian frequency will a 0:015-μF capacitor’s
impedance equal − j100Ω?
(b) At what radian frequency will a 33-mH inductor’s
impedance equal j100Ω?
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(c) At what radian frequency will a 100-Ω resistor’s imped-
ance equal 100Ω?

8–16 Usingstandardvalues fromthe insiderearcover, select

values of components that will yield ZL = 80ff45� Ω ± 5%
at 5 kHz.

8–17 For the circuit of Figure P8–17
(a) Find the equivalent impedance Z when ω = 2000 rad=s.
Express the result in both polar and rectangular forms.
(b) Select standard values from the inside rear cover to real-
ize the results ± 10% from part (a).

10 Ω

20 Ω 100 μF

20 mHZ

FIGURE P8–17

8–18 Find the equivalent impedance Z in Figure P8–18. If
ω = 10 krad=s, what two elements (R, L, and/or C) could
be used to replace the phasor circuit?

Z

50 Ω

−j50 Ω

j100 Ω

40 Ω

−j200 Ω

FIGURE P8–18

8–19 Find the equivalent impedance Z in Figure P8–19 when
ω = 50 krad=s. What two elements (R, L, and/or C) could
be used to replace the phasor circuit?

Z

200 Ω

33 Ω

0.47 μF

2 mH

FIGURE P8–19

8–20 A certain RLC series load has a ZL = 100 – j999Ω
when excited by a 1-krad=s source and a ZL = 100 + j90Ω
when driven by a 100-krad=s source. Find the values of
R, L, and C.

8–21 Find the equivalent impedance Z in Figure P8–21. If
ω = 150 krad=s what two elements (R, L, and/or C) could
be used to replace the phasor circuit?

Z

j600 Ω

−j300 Ω

j900 Ω

600 Ω

FIGURE P8–21

8–22 The circuit in Figure 8–21 is operating in the sinusoidal
steady-state with ω = 10 krad=s.
(a) How would the element impedances change if the
steady-state frequency were reduced to 100 rad=s?
(b) What is the equivalent impedance Z at this new
frequency?
(c) What two elements (R, L, and/or C) could be used to
replace the phasor circuit?

8–23 The circuit in Figure P8–23 is operating in the sinusoidal
steady state with ω = 100 krad=s.
(a) Find the equivalent impedance Z.
(b) What circuit element can be added in series with
the equivalent impedance to place the circuit in resonance?

Z

50 Ω

5 μF 5 μF

2.5 mH

FIGURE P8–23

8–24 The circuit of Figure P8–24 is operating at 50 Hz. Find the
equivalent impedance Z.

15 Ω

3ix(t)

220 μF

8.2 mH
Z

ix(t)

FIGURE P8–24

8–25 The equivalent impedance in Figure P8–25 is known to be
Z = 60 + j180Ω. Find the impedance of the inductor.
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Z

ZL

−j200 Ω

600 Ω

FIGURE P8–25

8–26 A capacitorC is connected in parallel with a resistor

R. Select values of R and C so that the equivalent impe-
dance of the parallel combination is 300 − j400Ω at
ω = 1Mrad=s.

8–27 The circuit in Figure P8–27 is excited by a 1 krad=s

sinusoidal source. As the circuit’s designer, select a capacitor
C such that the impedance Z looking into the circuit is
all real.

100 Ω

C

10 mH

Z

FIGURE P8–27

8–28 An 820-Ω resistor is connected in parallel with a 1000-pF
capacitor. The impedance of the parallel combination is
410 – j410Ω. Find the frequency.

8–29 Two impedances Z1 = 300 – j50Ω and Z2 = 450 +
j100Ω are connected in parallel. Find the equivalent imped-
ance of the pair.

O B J E C T I V E 8 – 3 B A S I C P H A S O R C I R C U I T A N A L Y S I S
A N D D E S I G N ( S E C T S . 8 – 3 A N D 8 – 4 )
(a) Given a linear circuit in the sinusoidal steady state, find

phasor responses using equivalent circuits, circuit reduc-
tion, Thévenin or Norton equivalent circuits, proportional-
ity, or superposition.

(b) Given a desired phasor response and a sinusoidal input,
design a circuit in the sinusoidal steady state that produces
the desired response.

See Examples 8–6 to 8–10, 8–12 to 8–24 and Exercises 8–10 to
8–32.

8–30 A 100-mH inductor and a 100-Ω resistor are connected in
parallel. The circuit is excited by a voltage source with
vS tð Þ=10 cos 1 kt – 45�ð ÞV. What is the steady-state current
iS tð Þ flowing from the source?

8–31 A voltage vS tð Þ = 50 cos 5000tð ÞV is applied to the circuit
in Figure P8–31.

(a) Convert the circuit into the phasor domain.
(b) Find the phasor current flowing through the circuit
and the phasor voltages across the inductor and the resistor.
(c) Plot all three phasors from (b) on a phasor diagram.
Describe if the current leads or lags the inductor voltage.

50 Ω 25 mH

vS(t)

+ vR(t) ‒ + vL(t) ‒

i(t)

+
−

FIGURE P8–31

8–32 The circuit in Figure P8–32 is operating in the sinusoidal
steady state. Find the phasor current and the two element
voltages. Is the phasor voltage across the capacitor leading
or lagging the current?

22 kΩ ‒j22 kΩ

+ VR ‒ + VC ‒

I

+
− 5    30° V

FIGURE P8–32

8–33 A voltage v tð Þ = 100 cos 3 ktð ÞV is applied across a
series connection of a 33-kΩ resistor and 3300-pF capacitor.
Find the steady-state current i tð Þ through the series
connection.

8–34 A complex load is driven by a current source
i tð Þ = 50 cos 5 ktð ÞmA. The voltage measured across the
load is v tð Þ = 100 cos 5 kt – 85�ð ÞV. Find the impedance of
the load and determine what two elements R, L, and/or C
are equivalent to it.

8–35 The circuit in Figure P8–35 is operating in the sinusoidal
steady state with vS tð Þ = VA cos ωtð Þ. Derive a general
expression for the phasor response IL and the voltage VO.

+
−

iL(t)

vS(t)

R

RL vO(t)

+

−

FIGURE P8–35
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8–36 A current source delivering i tð Þ= 120 cos 500tð ÞmA is con-
nected across a parallel combination of a 10-kΩ resistor and a
0:2-μF capacitor. Find the steady-state current iR tð Þ through
the resistor and the steady-state current iC tð Þ through the
capacitor. Draw a phasor diagram showing I, IC, and IR.

8–37 The circuit in Figure P8–37 is operating in the sinusoidal
steady state with iS tð Þ= IA cos ωtð Þ. Derive general expres-
sions for the steady-state responses VR and IC.

vR(t)CiS(t)

iC(t)

2R

R

+

−

FIGURE P8–37

8–38 A practical voltage source can be modeled using an ideal
voltage source vS tð Þ=120 cos 2π400tð ÞV in series with a 50-Ω
resistor. Convert the source into the phasor domain and then
do a source transformation into a current source in parallel
with an impedance. Finally, convert the current source back
into the time domain.

8–39 A current source of IN = 50ff – 70:5� mA is in parallel with
an impedance of Z = 150 – j50Ω. Convert the practical cur-
rent source into a voltage source in series with an impedance.
Then convert the voltage source back into the time domain if
the frequency is 100 Hz.

8–40 A current of i tð Þ= 100 cos 10 kt – 45�ð ÞmA is applied
across a parallel connection of a 1:5-kΩ resistor, a 150-mH
inductor, and a 0:0667-μF capacitor. Use current division to
find the steady-state currents iC tð Þ, iL tð Þ, and iR tð Þ through
each of the three elements. Find the phasor voltage across
the parallel connection. Draw a phasor diagram showing V,
IC, IL, and IR. Comment on the results.

8–41 The circuit in Figure P8–41 is operating in the sinusoidal
steady state. Find the steady-state response vx tð Þ.

100 cos 2000t V

+

−

1 μF
+
−

500 Ω

500 Ω

0.25 H

vX(t)

FIGURE P8–41

8–42 The circuit in Figure P8–42 is operating in the sinusoidal
steady state. Find the steady-state responses vx tð Þ and ix tð Þ.

3 cos 2500t A

+

−

0.2 μF

2 kΩ1 kΩ vX(t)

iX(t)

FIGURE P8–42

8–43 Use the unit-output method to find VX and IX in the cir-
cuit of Figure P8–43.

200 Ω 400 Ω

+

VX

‒ IX

−j200 Ω

200   ‒45° mA

FIGURE P8–43

8–44 The circuit in Figure P8–44 is driven by a 100-krad=s
source and is operating in the sinusoidal steady-state. Use
Multisim to find the steady-state phasor response Vx.

Vx

+

−

−j20 Ω

−j50 Ω

50 Ω

100 Ω100   0° V
+
−

FIGURE P8–44

8–45 The circuit in Figure P8–45 is operating in the sinusoidal
steady state.
(a) Use superposition to find the phasor response Ix.
(b) If the circuit is driven by a 1000 rad=s source, use Multi-
sim to validate your response in part (a).

IX

25 Ω −j50 Ω

50 Ωj25 Ω

1     45° A 100    ‒45° V
+
−

FIGURE P8–45
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8–46 The circuit in Figure P8–46 is operating in the sinusoidal
steady state.
(a) Use superposition to find the response vx tð Þ.
(b) Use Multisim to validate your response in part (a).
Note: The sources do not have the same frequency.

10 cos 500t V

+

−

2 μF
+
−

500 Ω

vX(t)

5 cos 1500t V+
−

FIGURE P8–46

8–47 An RC series circuit is excited by a sinusoidal source
v tð Þ = VA cos ωt + φð ÞV. Determine the effects on the
magnitudes of the current, voltages, and impedances caused
by changes in the source parameters. Complete the follow-
ing table.

SOURCE VRjj VCjj jIj jZ Rj jZ Cj
Increase/decrease VA Increase/

decreasej I j
Increase/decrease ω None

Increase/decrease φ None

8–48 The circuit in Figure P8–48 is operating in the sinusoidal
steady state.
(a) Use superposition to find the response vx tð Þ.
(b) Validate your answer using Multisim.

75 Ω

+  −

+

−

200 cos(2000t −45°) mA

10 cos 2000t V

500 Ω vX(t)

3 μF

FIGURE P8–48

8–49 The circuit in Figure P8–49 is operating in the sinusoidal
steady state. Use superposition to find the response vx tð Þ.
Note: The sources do not have the same frequency.

1 kΩ

+  −

+

−

200 cos(1000t +45°) mA

100 cos 2000t V

1 kΩ vX(t)
1 μF

FIGURE P8–49

8–50 The bridge circuit in Figure P8–50 is operating in the
sinusoidal steady state.
(a) Is the bridge balanced, that is, VX = 0?
(b) What impedance, if any, should be connected across VX

to cancel the reactance in the circuit?

VX

20 Ω j40 Ω

20 Ω−j10 Ω

100    −30° V
+
−

+ −

FIGURE P8–50

8–51 TheOPAMP circuit of Figure P8–51 hasVS = 2 ff – 15� V,
ZS = 50 ff+30� Ω, ZF = 100 ff– 45� Ω, and a VCC of ± 15 V.
(a) Find the output voltage VO across and the current IO
through ZL when it is 1000 ff0� Ω.
(b) Find the output voltage VO across and the current IO
through ZL when it is 500 ff – 90� Ω.
(c) If the input voltage is VS = 9 ff0� V, repeat (a).

+

−

VS

ZS

ZF

+
−

ZL

+

−

VO

FIGURE P8–51

8–52 Design an equivalent ZS = 50 ff+30� Ω and ZF =

100 ff– 45� Ω if the circuit of Figure 8–51 is operating in the
steady state at a frequency of 1000 rad=s.
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8–53 The circuit in Figure P8–53 is operating in the sinusoidal
steady state. Use the unit-output method to find the phasor
responses VX and IX.

+
−

−

+

VX

50 kΩ 100 kΩ

150    0° V −j50 kΩ −j100 kΩ

IX

FIGURE P8–53

8–54 Find the Thévenin equivalent of the source circuit to the
left of the interface in Figure P8–54. Then use the equivalent
circuit to find the steady-state voltage v tð Þ and current i tð Þ
delivered to the load. Validate you answer using Multisim.

30 cos 106t V

v(t)

+

−

+
−

400 pF

1 kΩ

500 Ω

2 mH
Loadi(t)

FIGURE P8–54

8–55 For the circuit in Figure P8–55, do the following:
(a) Find the phasor Thévenin equivalent of the source circuit
to the left of the interface by hand. Then use Multisim to val-
idate your Thévenin circuit.
(b) Use the equivalent circuit to find the phasor voltage V
and current I delivered to the load by hand calculations. Then
use Multisim to validate your voltage and current results.

100 sin 25 kt V

v(t)

+

−

+
−

100 Ω

100 Ω

Loadi(t)
50 Ω

5 cos 25 kt A

10 mH

1 μF

FIGURE P8–55

8–56 The circuit in Figure P8–56 is operating in the sinusoidal
steady state.WhenZL = 0, the phasor current at the interface
is I = 4:8 – j3:6 mA. When ZL = – j20 kΩ, the phasor inter-
face current is I = 10 + j0 mA. Find the Thévenin equivalent
of the source circuit.

V

+

−

I

Source ZL

FIGURE P8–56

8–57 Design a linear circuit that will deliver an output

phasor VO = 60ff45� V when an input phasor VS = 240 ff0� V
is applied in Figure P8–57.

−

+

VO

−

+

VS
Linear
Circuit

FIGURE P8–57

8–58 Design a linear circuit thatwill deliver anoutput pha-

sor VO = 240 ff0� V when an input phasor VS = 60ff45� V
is applied in Figure 8–57. Assume the source is operating at
1000 rad=s and select values for your components. (Hint:
Use an inverting OP AMP.)

8–59 A load of ZL = 1000 + j1000Ω is to be driven by a

phasor source VS = 120 ff0�V. The voltage across the load
needs to be VL = 100 ff0� V. Design an interface that will
meet these conditions. Validate your answer using Multisim.
Assume the source is operating at 1000 rad=s.

8–60 Design an interface circuit so that an input voltage

vS tð Þ = 100 cos 2 × 104t
� �

V delivers a steady-state output cur-

rent of iO tð Þ = 10 cos 2 × 104t −60�
� �

mA to a 1-kΩ resistive
load. Validate your answer using Multisim.

8–61 Design an interface circuit so that an input voltage

vS tð Þ = 15 cos 100 ktð ÞV delivers a steady-state output voltage
of vO tð Þ = 10 cos 100 kt – 45�ð ÞV.

8–62 Refer to the RLC series circuit shown in Figure P8–62.
(a) What is the maximum output voltage vO tð Þ and at what
frequency does it occur? Use Multisim and do an ac sweep
from 10Hz to 1MHz, and then narrow your sweep until
you find the frequency at which the peak occurs and the out-
put voltage at that frequency.
(b) Bandwidth is defined as BW = fH – fL, where fH is the
higher frequency at which the magnitude of the output is
exactly 0.707 of the maximum value, and fL is the lower
frequency at which the magnitude of the output is exactly
0.707 of the maximum value. What is the bandwidth of this
circuit?
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(c) What is the minimum output voltage vX tð Þ and at what
frequency does it occur? Use Multisim and do an ac sweep
from 10Hz to 1MHz, and then narrow your sweep until
you find the frequency at which the minimum occurs and
the output voltage at that frequency.

vS(t)
+
−

1000 pF

100 Ω

1 H

+
+

−

−

vO(t)
vX(t)

FIGURE P8–62

O B J E C T I V E 8 – 4 G E N E R A L C I R C U I T A N A L Y S I S
( S E C T . 8 – 5 )
Given a linear circuit operating in the sinusoidal steady state,
find equivalent impedances and phasor responses using
node–voltage or mesh–current analysis.
See Examples 8–25 to 8–34 and Exercises 8–33 to 8–41.

8–63 The circuit in Figure P8–63 is operating in the sinusoidal
steady state with ω = 10 krad=s. Use node-voltage analysis to
find the steady-state response vx tð Þ. Use Multisim to validate
your answer.

+
−

+
−

30 cos(ωt − 45°) V15 cosωt V

0.5 H 0.1 μF

10 kΩ

−

+

vX(t)

FIGURE P8–63

8–64 For the phasor circuit in Figure P8–64:

(a) Use node-voltage analysis to find the steady-state phasor
response VO.
(b) Usemesh-current analysis to find the steady-state phasor
response VO.
(c) Which method was easier to solve and why?

+
−

−

+

VOj50 Ω 200 Ω

j20 Ω j100 Ω

120    0° V

FIGURE P8–64

8–65 The circuit in Figure P8–65 is operating in the sinusoidal
steady state.

(a) Find the node voltage phasors VA and VB.
(b) If the circuit is operating with ω = 10 krad=s, use Multi-
sim to verify your answer in (a).

VA VB

−j200 Ω −j100 Ωj100 Ω

500 Ω

100 Ω

10    0° A

FIGURE P8–65

8–66 Use MATLAB and mesh-current analysis to find the
branch currents I1, I2, and I3 in Figure P8–66.

+
−

+
−

−100 cos 104t V100 sin 104t V

10 mH

0.04 μF1 kΩ

i1(t) i2(t) i3(t)

FIGURE P8–66

8–67 Use mesh-current analysis to find the phasor branch
currents I1, I2, and I3 in the circuit shown in Figure P8–67.
Validate your answer using Multisim.

i3(t)

1 kΩ

10 mH

1 kΩ

0.04 μF

50 sin (104 t) V ‒50 cos (104 t) V+
−

i1(t) i2(t)

+
−

FIGURE P8–67

8–68 Use mesh-current analysis to find the phasor branch cur-
rents I1, I2, and I3 in the circuit shown in Figure P8–68.

2i2(t)

1 kΩ

2 kΩ10 mH

0.04 μF

100 sin (104 t) V +
−

i1(t) i2(t)

i3(t)

FIGURE P8–68
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8–69 Use MATLAB and mesh-current analysis to find

the phasor currents IA and IB in Figure P8–69.

+
−

j10 Ωj30 Ω j20 Ω

20 Ω20 Ω 20 Ω

IA IB

24    0° V

FIGURE P8–69

8–70 The OP AMP circuit in Figure P8–70 is operating in

the sinusoidal steady state.

(a) Show that
VO

VS
=

R1 +R2

R1

� � jω+
1

R1 +R2ð ÞC
jω+

1
R1C

0
BB@

1
CCA

(b) Find the value of the magnitude of VO=VS at ω = 0 and
as ω! ∞ .
(c) Design the OP AMP circuit so that the gain as ω! ∞
equals 10. Then select appropriate values of R1, R2, and C
so that the gain at 10 krad=s is 7.07.
(d) Validate your design usingMultisim by doing an ac sweep
from 10Hz to 100 kHz and then use Grapher View’s cursor to
find the gain at a frequency of 10 krad=s.

VS

+

VO

‒

+
+

−

R2ωR1

FIGURE P8–70

8–71 The circuit in Figure P8–71 is operating in the sinusoidal
steady-state.

(a) If vS tð Þ = 2 cos 2128tV, find the output vO tð Þ.
(b) At what frequency is the magnitude of the output voltage
equal to half of the magnitude of the input voltage in the cir-
cuit of Figure P8–71? Use Multisim and do an ac sweep from
1Hz to 100 kHz, and then use Grapher View’s cursor to find
the desired frequency.

vO(t)vS(t)

++

+

−

100 kΩ 100 kΩ

4700 pF

FIGURE P8–71

8–72 Use MATLAB to find the phasor current IO in
Figure P8–72.

200 Ω

500 Ω −j400 Ω

−j100 Ω

j200 Ω

400   0° V 5   0° A
+
−

A
B

C

D

IO

IA IC

IB

FIGURE P8–72

8–73 For the circuit in Figure P8–73, find the three phasor

branch currents as follows:
(a) Write a set of mesh-current equations. You can reduce
the number of mesh equations by doing a source transforma-
tion with the current source and inductor.
(b) Write the equations in standard form and arrange them
in an appropriate matrix.
(c) UseMATLAB’s matrix approach (see Example 8–34) to
solve the equations. Find the branch currents from the mesh
currents.
(d) Write a set of node-voltage equations. You can reduce
the number of node equations by doing a source transforma-
tion with the 50-V source and the 1-kΩ resistor.
(e) Write the equations in standard form and arrange them
in an appropriate matrix.
(f) Use MATLAB’s matrix approach (see Example 8–34) to
solve the equations. Find the branch currents from the node
voltages and the suitable impedances.
(g) Compare the two analysis techniques.Was onemore effi-
cient than the other? Explain.

10 kΩ

2 kΩ

1 kΩ

+−

+ −

10  −90° mA

50   45° V

100  −45° V

j100 Ω

−j100 Ω

I3

I1

I2

FIGURE P8–73

8–74 The circuit in Figure 8–73 is operating at 1000 rad=s.
Simulate the circuit inMultisim and find the three branch cur-
rents i1 tð Þ, i2 tð Þ, and i3 tð Þ.

8–75 The circuit in Figure P8–75 is operating with
ω = 20 krad=s.
(a) Find the phasor outputsVO and IO in Figure P8–75 when
μ=50 and the phasor input is IS = 1 + j1 mA.
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(b) Use Multisim to verify your results above.

IO

IS

2 kΩ

j20 kΩ

−j50 kΩ
+
−

A B

+

−

VO

+

−

Vx
μVx

FIGURE P8–75

8–76 Find the phasor responses IIN and VO in Figure P8–76
when VS = 2 + j0 V.

+
−

+
−

−

+

10 Ω

50 Ω
VO

VOVS

IIN

50IIN

20

−j50 Ω

j10 Ω

FIGURE P8–76

8–77 For the circuit of Figure P8–77 find the Thévenin

equivalent circuit seen at the output.

+

VX

‒

10VX

VT’ ZT

1 kΩ

2 kΩ j2 kΩ

1   0° V +
‒

+
−

FIGURE P8–77

8–78 The two competing OPAMP circuits in Figure P8–78

are operating in the sinusoidal steady state with ω=100 krad=s.
The two manufacturers both claim that their circuit meets the
following specifications:

Voltage gain at 100 krad=s must be 1.414.
Voltage gain as ω ! ∞ must approach 0.
Voltage gain at dc must be 2.0.
Cost: Circuit (a) $1.25 each, or $0.50 in quantity, circuit
(b) $1.05 each, $0.60 in quantity.

(a) Find the magnitude of the ratio of the output phasor V2

to the input phasor V1 at each specification frequency for
each circuit.
(b) UseMATLAB to plot the log of jV2=V1j versus the log of
the frequency ω. Comment on the function of the circuit from
the plot.

(c) Use Multisim and do an ac sweep from 100 rad=s to
100Mrad=s (recall Multisim uses Hz) and comment on the
function of the circuit from the plot by Grapher View.
(d) Which circuit would you buy, if either? Explain.

v2(t)
+

v1(t)
+

+

−

1 nF

10 kΩ5 kΩ

(a)

v2(t)
+

v1(t)
+

+

−

5 kΩ2.5 kΩ25 mH

(b)

FIGURE P8–78

8–79 Find the phasor inputVS in Figure P8–79 when the phasor
output is VO = 300 + j200 V.

+
−

10 Ω

100 ΩVS

j20 Ω

−j200 Ω

+

‒

VO

FIGURE P8–79

8–80 The dependent source circuit inFigure P8–80 is operating in
the sinusoidal steady state with ω=1 krad=s and μ= 104. Find
the phasor gain K =VO=VS and the input impedance ZIN

seen by VS. Validate your answer using Multisim.

+
−

+
−

−

+

‒

+

μVx

10 kΩ10 kΩ

ZIN

VOVxVS

−j10 kΩ

−j10 kΩ

FIGURE P8–80

8–81 Find the phasor gainK =VO=VS and input impedanceZIN

of the circuit in Figure P8–81.
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+
−

−

+

VO47 kΩ

−j25 kΩ −j25 kΩ

10 kΩ

ZIN

VS

FIGURE P8–81

8–82 Find the phasor gainK = VO=VS, input impedanceZIN of
the circuit, output impedance ZOUT of the circuit, and the
capacitor current IX in Figure P8–82.

+
−

−

+

VO

100 Ω

100 Ω−j100 Ω

ZIN ZOUT

VS

j100 Ω

IX

FIGURE P8–82

8–83 Given the circuit in Figure P8–83:
(a) Use node-voltage or mesh-current analysis to develop a
set of matrix equations for the circuit.
(b) Use MATLAB to solve the matrix equations and then
find the phasor gain K¼VO=VS and input impedance ZIN

of the circuit.
(c) Without using the matrix equations, use the MATLAB
command solve on the original node-voltage or mesh-cur-
rent equations to solve the equations and then find the phasor
gain and input impedance.

+
− 100 Ω

50 Ω 50 Ω 50 Ω

VS −j90 Ω

j50 Ω

+

−

VO

ZIN

FIGURE P8–83

O B J E C T I V E 8 – 5 A V E R A G E P O W E R A N D M A X I M U M
P O W E R T R A N S F E R ( S E C T . 8 – 6 )
Given a linear circuit in the sinusoidal steady state:
(a) Find the average power delivered at a specified interface.
(b) Find the maximum average power available at a specified

interface.

(c) Find the load impedance required to draw the maximum
available power.

See Examples 8–35 and 8–36 and Exercises 8–42 and 8–43.

8–84 A load consisting of a 3:3-kΩ resistor in series with a
1:5-μF capacitor is connected across a voltage source
vS tð Þ=169:7 cos 377tð ÞV. Find the phasor voltage, current,
and average power delivered to the load.

8–85 A load consisting of a 1-kΩ resistor in parallel with a
0:33-μF capacitor is connected across a current source deli-
vering iS tð Þ= 15 cos 3000tð ÞmA. Find the average power
delivered to the load.

8–86 The circuit in Figure P8–86 is operating in the sinusoidal
steady state at a frequency of 10 krad=s. Use Multisim to find
the average power delivered to the 100-Ω resistor.

+
−

+ −

PAVG

j80 Ω 100 Ω

−j40 Ω

12    0° V

18   −90° V

FIGURE P8–86

8–87 You have a task of designing a load that ensure

maximum power is delivered to it. The load needs to be
connected to a source circuit that is not readily observable,
but that you can make measurements at its output terminals.
You measure the open-circuit voltage and read 120ff0� V.
You then connect a known load of 50 − j50Ω and you meas-
ure 47:1ff11:3� V across it.

(a) Design your load for maximum power transfer.
(b) Find the maximum average power delivered to
your load.

8–88 The load in Figure P8–88 needs to be designed for

maximum power transfer.
(a) Find the maximum available average power at the inter-
face shown in the figure.
(b) Specify the load required to extract the maximum aver-
age power.

+

−

v

1 kΩ1 mH

30 cos 106t V

500 pF
PMAX
Load

i

+
−

FIGURE P8–88
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8–89 The RC load in Figure P8–89 needs to be designed

for maximum power transfer.
(a) Find the maximum average power available at the inter-
face in the figure.
(b) Specify the values of R and C that will extract the max-
imum power from the source circuit.

+

−

10 cos 10 kt V v(t)

500 Ω500 mH
Load

C R

i(t)

+
−

FIGURE P8–89

I N T E G R A T I N G P R O B L E M S

8–90 AC Voltage Measurement

An ac voltmeter measurement indicates the amplitude of a
sinusoid and not its phase angle. The magnitude and phase
can be inferred by making several measurements and using
KVL. For example, Figure P8–90 shows a relay coil of unknown
resistance and inductance. The following ac voltmeter readings
are taken with the circuit operating in the sinusoidal steady state
at f =60 Hz : jVSj=24 V, jV1j= 10 V; and jV2j=18 V. Find R
and L.

VS

200 Ω

V2

+

−

L

R

Relay coil

V1+ −

+
−

FIGURE P8–90

8–91 Home Power Distribution

The circuit of Figure P8–91 emulates a typical 60-Hz residential
power system. There are three wires entering the house, two are
called “hot” and the remaining one is called the return or “neu-
tral.” Each hot line is protected by a circuit breaker—but not
the return. In the “house,” appliances such as lights, toasters,
and electronics are connected between one of the hot wires
and the neutral. Large appliances such as ovens and dryers
are connected between the two hot wires. Appliances are
designed to operate with either 120 V or 240 Vwithin a few volts
either way.

(a) Show that if R1 and R2 are equal, IN = 0 and V1 =V2.
(b) Consider a typical power draw where an R1 is, for exam-
ple, a 130-Ω light bulb,R2 a 40-Ω toaster, andR3 10-Ω clothes
dryer. Find the phasors V1 and V2 and find IN.

(c) Based on your results in (a) and (b), is the neutral line
even necessary? Open the neutral line, that is, force IN = 0,
and again find the voltages V1 and V2. What is your answer?
Would your home be better protected by adding a breaker to
the return line?
(d) Simulate the circuit inMultisim and validate your results.
The source frequency is 60 Hz.

+

V1

‒

+

V2

‒

I1

0.05 Ω j0.02 Ω

0.05 Ω

House

Circuit breaker

j0.02 Ω

0.05 Ω j0.02 Ω

R1

R3

R2

 120    0° V

 120    0° V

+
−

+
− IN

I2

FIGURE P8–91

8–92 OP AMP Bandpass Filter

Use the analysis methods discussed in Example 8–30 to find
the input–output relationshipVO=VS for the active bandpass fil-
ter of Figure P8–92. Treat each stage separately and then mul-
tiply the input–output relationships from each stage to obtain
the overall input–output relationship. Select R and C values
so that the low cutoff frequency is 1 krad=s, the upper cutoff fre-
quency is 100 krad=s, and the magnitude of the passband gain
is 50.

vS(t) +

R1

R2

R4

R3

C2

C3

Stage 1 Stage 2
+ +

vO(t)

+
−

−
−

FIGURE P8–92

8–93 Power Transmission Efficiency

A power transmission circuit with a source voltage of
VS = 880+ j0 V can be modeled as shown in Figure P8–93.
(a) Find the average power produced by the source, lost in
the wires, and delivered to the load.
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(b) What is the transmission efficiencydefinedasη = PL=PS?
(c) Design a solution to improve the efficiency. Note the fre-
quency is 60 Hz.

50 Ω

j150 Ω

PL

Load

j5 Ω0.4 Ω

+
− Wires

j5 Ω0.4 Ω

Source

PS

VS

FIGURE P8–93

8–94 60-Hz Filter

A 1-kΩ resistor models an important and sensitive laboratory
instrument. The instrumentmeasures a desired signal that varies
from 1Hz to 500Hz. However, interference from power lines
in the laboratory causes the instrument to saturate. A vendor
has designed a device that he claims will essentially eliminate
a 60-Hz signal from the instrument with only the smallest atten-
uation to other frequencies. The interface circuit is shown in
Figure P8–94. Connect the vendor’s circuit to the model for
the instrument and analyze its performance to determine if it
will do the job.

10 Ω
7.03 μF

++

60-Hz Filter

1 H
VOUTVIN

−−

FIGURE P8–94

8–95 AC Circuit Design

Select valuesofL andC in Figure P8–95 so that the input imped-
ance seen by the voltage source is 50 + j0Ωwhen the frequency

is ω = 106 rad=s. For these values of L and C, find the output
Thévenin impedance seen by the 300-Ω load resistor.

+
−

50 Ω

300 ΩVS

ZIN = 50 + j0 Ω ZOUT

jωL

jωC
1

FIGURE P8–95

8–96 AC Circuit Analysis

Ten years after graduating with a BSEE, you decide to go to
graduate schools for a master’s degree. In desperate need of
income, you agree to sign on as a grader in the basic circuit anal-
ysis course. One of the problems asks the students to find v tð Þ in
Figure P8–96 when the circuit operates in the sinusoidal steady
state. One of the students offers the following solution:

v tð Þ= R + jωLð Þ× i tð Þ
= 20 + j20ð Þ × 0:5 cos 200t

= 10 cos200t + j10 cos 200 t

= 10
ffiffiffi
2

p
cos 200 t + 45�ð Þ

Is the answer correct? If not, what grade would you give the stu-
dent? If correct, what comments would you give the student
about the method of solution?

0.1 H

i(t) = 0.5 cos 200t A

20 Ω

v(t)

+

−

FIGURE P8–96

452 C H A P T E R 8 SINUSOIDAL STEADY-STATE RESPONSE



C H A P T E R 9 LAPLACE TRANSFORMS

My method starts with a complex integral; I fear this sounds rather formidable; but it is really quite simple … I am afraid that no physical
people will ever try to make out my method: but I am hoping that it may give them confidence to try your methods.

Thomas John Bromwich, 1915,
British Mathematician

Some History Behind This Chapter
Laplace transforms have their roots in the pioneering work of
the eccentric British engineer Oliver Heaviside (1850–1925).
His operational calculus was essentially a collection of intu-
itive rules that allowed him to formulate and solve important
technical problems of his day. His intuitive approach drew
bitter criticism from the scientists of his day. Eventually indi-
viduals like John Bromwich recognized the importance of
Heaviside’s methods and began to develop the necessary
mathematical foundations. A complete development was
eventually discovered in the 1780 writings of the French
mathematician Pierre Simon Laplace.

Why This Chapter Is Important Today
The difficulties of finding transient responses using classical
differential equations are avoided when we apply the techni-
ques of Laplace transforms. These techniques not only sim-
plify the solution of circuit differential equations but also give
us a deeper insight into circuit behavior. Transient response,
frequency response, and even phasor techniques come
together once Laplace transforms and techniques are under-
stood. Laplace transforms make the analysis and design of
circuits easy and maybe even fun.

Chapter Sections
9–1 Signal Waveforms and Transforms
9–2 Basic Properties and Pairs
9–3 Pole-Zero Diagrams
9–4 Inverse Laplace Transforms
9–5 Circuit Response Using Laplace Transforms
9–6 Initial and Final Value Properties

Chapter Learning Objectives
9-1 Laplace Transform (Sects. 9–1–9–3)

Find the Laplace transform of a given signal waveform using
transform properties and pairs, using the integral definition of
the Laplace transformation, or using software applications.
Locate the poles and zeros of the transform and construct a
pole-zero diagram.

9-2 Inverse Transforms (Sects. 9–4)

(a) Find the inverse transform of a given Laplace trans-
form using partial fraction expansion, basic trans-
form properties and pairs, or using software tools.

(b) Given a pole-zero diagram, find the respective
transform.

9-3 Circuit Response Using Laplace Transforms
(Sect. 9–5)

Given a first- or second-order circuit:
(a) Determine the circuit differential equation and the

initial conditions (if not given).
(b) Transform the differential equation into the

s domain and solve for the response transform.
(c) Use the inverse transformation to find the response

waveform.

9-4 Initial and Final Value Properties (Sect. 9–6)

Given the Laplace transform of a signal, find the initial
and final values of the signal waveform.
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9–1 S I G N A L W A V E F O R M S A N D T R A N S F O R M S

A mathematical transformation employs rules to change the form of data without
altering its meaning. An example of a transformation is the conversion of numerical
data from decimal to binary form. In engineering circuit analysis, transformations are
used to obtain alternative representations of circuits and signals. These alternate
forms provide a different perspective that can be quite useful or even essential.
Examples of the transformations used in circuit analysis are the Fourier transforma-
tion, the Z-transformation, and the Laplace transformation. These methods all
involve specific transformation rules, make certain analysis techniques more man-
ageable, and provide a useful viewpoint for circuit and system design.

This chapter deals with the Laplace transformation. The discussion of the Laplace
transformation follows the path shown in Figure 9–1 by the solid arrow. The process
begins with a linear circuit. We derive a differential equation describing the circuit
response and then transform this equation into the frequency domain, where it
becomes an algebraic equation. Algebraic techniques are then used to solve the
transformed equation for the circuit response. The inverse Laplace transformation
then changes the frequency-domain response into the response waveform in the time
domain. The dashed arrow in Figure 9–1 shows that there is another route to the
time-domain response using the classical techniques discussed in Chapter 7. The clas-
sical approach appears to be more direct, but the advantage of the Laplace transfor-
mation is that solving a differential equation becomes an algebraic process and
reveals properties of the circuit not easily seen in the classical approach.

Symbolically, we represent the Laplace transformation as

ℒ f tð Þf g=F sð Þ (9–1)

This expression states that F sð Þ is the Laplace transform of the waveform f tð Þ. The
transformation operation involves two domains: (1) the time domain, in which the
signal is characterized by its waveform f tð Þ, and (2) the complex frequency domain,
in which the signal is represented by its transform F sð Þ.

Time domain
(t domain)

Begin

Laplace solution methods
to be studied in this chapter

End
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h
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7

Complex frequency domain
(s domain)

Differential
equation

Classical
techniques

Laplace
transform

Inverse
transform

−1

Algebraic
equation

Response
transform

Algebraic
techniques

Linear
circuit

Response
waveform

FIGURE 9–1 Flow diagram of
dynamic circuit analysis with
Laplace transforms.

454 C H A P T E R 9 LAPLACE TRANSFORMS



The symbol s stands for the complex frequency variable, a notation we first
introduced in Chapter 7 in connection with the zero-state response of linear
circuits. The variable s has the dimensions of reciprocal time, or frequency,
and is expressed in units of radians per second. In this chapter, the complex
frequency variable is written as s= σ+ jω, where σ=Re sf g is the real part and
ω= Im sf g is the imaginary part. This variable is the independent variable in the s
domain, just as t is the independent variable in the time domain. Although we cannot
physically measure complex frequency in the same sense that we measure time,
it is an extremely useful concept that pervades the analysis and design of linear
systems.

A signal can be expressed as a waveform or a transform. Collectively, f tð Þ and F sð Þ
are called a transform pair, where the pair involves two representations of the
signal. To distinguish between the two forms, a lowercase letter denotes a
waveform and an uppercase a transform. For electrical waveforms such as current
i tð Þ or voltage υ tð Þ, the corresponding transforms are denoted I sð Þ and V sð Þ. In this
chapter, we will use f tð Þ and F sð Þ to stand for signal waveforms and transforms in
general.

The Laplace transformation is defined by the integral

F sð Þ=
Z ∞

0−
f tð Þe−stdt (9–2)

Since the definition involves an improper integral (the upper limit is infinite), we
must discuss the conditions under which the integral exists (converges). The integral
exists if the waveform f tð Þ is piecewise continuous and of exponential order. Piece-
wise continuousmeans that f tð Þ has a finite number of steplike discontinuities in any
finite interval. Exponential order means that constants K and b exist such that
f tð Þj j<Kebt for all t > 0. As a practical matter, the signals encountered in engineering
applications meet these conditions.

From the integral definition of the Laplace transformation, we see that when a
voltage waveform υ tð Þ has units of volts Vð Þ, the corresponding voltage transform
V sð Þ has units of volt-seconds V-sð Þ. Similarly, when a current waveform i tð Þ has units
of amperes Að Þ, the corresponding current transform I sð Þ has units of ampere-
seconds A-sð Þ. Thus, waveforms and transforms do not have the same units. Even
so, we often refer to both V sð Þ and υ tð Þ as voltages and both I sð Þ and i tð Þ as currents
despite the fact that they have different units. The reason is simply that it is awkward
to keep adding the wordswaveform and transform to statements when the distinction
is clear from the context.

Equation (9–2) uses a lower limit denoted t = 0− to indicate a time just a whisker
before t = 0. We use t = 0− because in circuit analysis t = 0 is defined by a discrete
event, such as closing a switch. Such an event may cause a discontinuity in f tð Þ at
t = 0. To capture this discontinuity, we set the lower limit at t = 0− , just prior to
the event. Fortunately, in many situations, there is no discontinuity so we will not dis-
tinguish between t = 0− and t = 0 unless it is crucial.

Equally fortunate is the fact that the number of different waveforms encountered
in linear circuits is relatively small. The list includes the three basic waveforms from
Chapter 5 (the step, exponential, and sinusoid), as well as composite waveforms such
as the impulse, ramp, damped ramp, and damped sinusoid. Since the number of
waveforms of interest is relatively small, we do not often use the integral definition
in Eq. (9–2) to find Laplace transforms. Once a transform pair has been found, it can
be cataloged in a table for future reference and use. Table 9–2 in this chapter is suf-
ficient for our purposes.
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E X A M P L E 9 – 1

Show that the Laplace transform of the unit step function f tð Þ= u tð Þ is F sð Þ= 1=s.

SOLUTION:
Applying Eq. (9–2) yields

F sð Þ=
Z ∞

0
u tð Þe−stdt

Since u tð Þ= 1 throughout the range of integration this integral becomes

F sð Þ=
Z ∞

0
e−stdt = −

e−st

s







∞

0

= −
e− σ+ jωð Þt

σ+ jω







∞

0

=
1
s

QED

The last expression on the right side vanishes at the upper limit since e−st goes to zero
as t approaches infinity provided that σ> 0. At the lower limit, the expression reduces
to 1=s. The integral used to calculate F sð Þ is valid only in the region for which σ> 0.
However, once evaluated, the result F sð Þ= 1=s can be extended to neighboring
regions provided that we avoid the point at s= 0 where the function becomes
indeterminant. ■

E x e r c i s e 9–1
Find the Laplace transform of υ tð Þ= −7 u tð ÞV.

A n s w e r: V sð Þ= −7=sV-s

E X A M P L E 9 – 2

Show that the Laplace transform f tð Þ= e−αt½ �u tð Þ is F sð Þ= 1= s+ αð Þ.

SOLUTION:
Applying Eq. (9–2) yields

F sð Þ=
Z ∞

0
e−αte−stdt =

Z ∞

0
e− s+ αð Þtdt =

e− s+ αð Þt

− s+ αð Þ







∞

0

=
1

s+ α
QED

The last term on the right side vanishes at the upper limit since e− s+αð Þt vanishes as
t approaches infinity provided that σ> −α. At the lower limit, the last term reduces
to 1= s+ αð Þ. Again, the integral is valid only for a limited region, but the result F sð Þ=
1= s+ αð Þ can be extended outside this region if we avoid the point at s= −α. ■

E x e r c i s e 9–2
Find the Laplace transform of υ tð Þ= 8e−5tu tð ÞV.

A n s w e r:
V sð Þ= 8

s+5
V-s

E X A M P L E 9 – 3

Show that the Laplace transform of the impulse function f tð Þ= δ tð Þ is F sð Þ= 1.

SOLUTION:
Applying Eq. (9–2) yields
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F sð Þ=
Z ∞

0−
δ tð Þe−stdt =

Z 0 +

0−
δ tð Þe−stdt =

Z 0 +

0−
δ tð Þdt = 1 QED

The difference between t = 0− and t = 0 is important since the impulse is zero every-
where except at t = 0. To capture the impulse in the integration, we take a lower limit
at t = 0− and an upper limit at t = 0+ . Since e−st = 1 when t = 0 and

R
δ tð Þdt = 1 on this

integration interval, we find that F sð Þ= 1. ■

E x e r c i s e 9–3
Find the Laplace transform of iðtÞ= 0:5 δðtÞA.

A n s w e r: IðsÞ=0:5A-s

I N V E R S E T R A N S F O R M A T I O N

So far, we have used the direct transformation to convert waveforms into trans-
forms. But Figure 9–1 points out the need to perform the inverse transformation
to convert transforms into waveforms. Symbolically, we represent the inverse
process as

ℒ−1fFðsÞg= f ðtÞ (9–3)

This equation states that f ðtÞ is the inverse Laplace transform of F sð Þ. The inverse
Laplace transformation is defined by the complex inversion integral

f ðtÞ= 1
2πj

Z α+ j∞

α− j∞
FðsÞestds (9–4)

The Laplace transformation is an integral transformation since both the direct proc-
ess in Eq. (9–2) and the inverse process in Eq. (9–4) involve integrations.

Happily, formal evaluation of the complex inversion integral is not necessary
because of the uniqueness property of the Laplace transformation. A symbolical
statement of the uniqueness property is

IFℒff ðtÞg=FðsÞTHENℒ−1fFðsÞgð= ÞuðtÞf ðtÞ
The mathematical justification for this statement is beyond the scope of our treat-
ment.1 However, the notation ð= Þ means “equal almost everywhere.” The only
points where equality may not hold is at the discontinuities of f ðtÞ.

If we just look at the definition of the direct transformation in Eq. (9–2), we could
conclude that FðsÞ is not affected by the values of f ðtÞ for t < 0. However, when we use
Eq. (9–2) we are not just looking for the Laplace transform of f ðtÞ, but a Laplace
transform pair such that ℒff ðtÞg=FðsÞ and ℒ−1fFðsÞg= f ðtÞ. The inverse Laplace
transformation in Eq. (9–4) always produces a causal waveform, one that is zero
for t < 0. Hence a transform pair ½f ðtÞ$FðsÞ� is unique if and only if f ðtÞ is causal.
For instance, in Example 9–1, we show thatℒfuðtÞg= 1=s; hence, by the uniqueness
property, we know that ℒ−1f1=sgð= ÞuðtÞ.

For this reason, Laplace transform-related waveforms are written as ½f ðtÞ�uðtÞ to
make their causality visible. For example, in the next section, we find the Laplace
transform of the sinusoid waveform cos βt. In the context of Laplace transforms, this
signal is not an eternal sinusoid but a causal waveform f ðtÞ= ½cos βt�uðtÞ. It is

1SeeWilber R. LePage,Complex Variables and Laplace Transform for Engineering, Dover Publish-
ing Co., New York, 1980, p. 318.
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important to remember that causality and Laplace transforms go hand in hand when
interpreting the results of circuit analysis.

9–2 B A S I C P R O P E R T I E S A N D P A I R S
The previous section gave the definition of the Laplace transformation and showed
that the transforms of some basic signals can be found using the integral definition. In
this section, we develop the basic properties of the Laplace transformation and show
how these properties can be used to obtain additional transform pairs.

The linearity property of the Laplace transformation states that

ℒfAf1ðtÞ+Bf2ðtÞg=AF1ðsÞ+BF2ðsÞ (9–5)

where A and B are constants. This property is easily established using the integral
definition in Eq. (9–2):

ℒfAf1ðtÞ+Bf2ðtÞg =
Z ∞

0
½Af1ðtÞ+Bf2ðtÞ�e−stdt =A

Z ∞

0
f1ðtÞe−stdt +B

Z ∞

0
f2ðtÞe−stdt

= AF1ðsÞ+BF2ðsÞ
The integral definition of the inverse transformation in Eq. (9–4) is also a linear oper-
ation, so it follows that

ℒ−1fAF1ðsÞ+BF2ðsÞg=Af1ðtÞ+Bf2ðtÞ (9–6)

An important consequence of linearity is that for any constant K

ℒfKf ðtÞg=KFðsÞ andℒ−1fKFðsÞg=Kf ðtÞ (9–7)

The linearity property is an extremely important feature that wewill usemany times in
this and subsequent chapters. The next two examples show how this property can be used
to obtain the transforms of the exponential rise waveform and of a sinusoidal waveform.

E X A M P L E 9 – 4

Show that the Laplace transform of f ðtÞ=Að1−e−αtÞuðtÞ is

FðsÞ= Aα
sðs+ αÞ

SOLUTION:
This waveform is the difference between a step function and an exponential. We can
use the linearity property of Laplace transforms to write

ℒfAð1−e−αtÞuðtÞg=AℒfuðtÞg−Aℒfe−αtuðtÞg
The transforms of the step and exponential functions were found in Examples 9–1
and 9–2. Using linearity, we find that the transform of the exponential rise is

FðsÞ= A
s
−

A
s+ α

=
Aα

sðs+ αÞ QED
■

E x e r c i s e 9–4
Transform the response υðtÞ= ½10e−1000t−5�uðtÞV of a particularRC circuit into the Laplace
domain.

A n s w e r: VðsÞ= 5ðs−1000Þ
sðs+1000ÞV-s
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E X A M P L E 9 – 5

Show that the Laplace transform of the sinusoid f ðtÞ=A½sinðβtÞ�uðtÞ is
FðsÞ= Aβ=ðs2 + β2Þ.

SOLUTION:
Using Euler’s relationship, we can express the sinusoid as a sum of exponentials.

e+ jβt = cos βt + j sin βt

e− jβt = cos βt− j sin βt

Subtracting the second equation from the first yields

f ðtÞ=A sin βt =
Aðejβt−e− jβtÞ

2j
=
A
2j
ejβt−

A
2j
e− jβt

The transform pairℒfe−αtg= 1=ðs+ αÞ in Example 9–2 is valid even if the exponent α
is complex. Using this fact and the linearity property, we obtain the transform of the
sinusoid as

ℒfAsinβtg= A
2j
ℒ ejβt
� �

−
A
2j
ℒ e− jβt
� �

=
A
2j

1
s− jβ

−
1

s+ jβ

� �

=
Aβ

s2 + β2
QED

■

E x e r c i s e 9–5
Transform the sinusoid iðtÞ=100½sinð200tÞ�uðtÞmA into the Laplace domain.

A n s w e r: IðsÞ= 20;000
s2 + 40;000

mA-s

E x e r c i s e 9–6
Use the linearity property to find the Laplace transform of f tð Þ=A cos βtð Þ½ �.
A n s w e r: Start by using cos βt =

1
2

ejβ + e− jβ
� �

, then follow Example 9–5.

F sð Þ= As

s2 + β2

I N T E G R A T I O N P R O P E R T Y

In the time domain, the i−υ relationships for capacitors and inductors involve inte-
gration and differentiation. Since we will be working in the s domain, it is important
to establish the s-domain equivalents of these mathematical operations. Applying the
integral definition of the Laplace transformation to a time-domain integration yields

ℒ
Z t

0
f ðτÞdτ

� �
=
Z ∞

0

Z t

0
f ðτÞdτ

� �
e−stdt (9–8)

The right side of this expression can be integrated by parts using

y=
Z t

0
f ðτÞdτ and dx= e−stdt

These definitions result in

dy= f ðtÞdt and x=
−e−st

s
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Using these factors reduces the right side of Eq. (9–8) to

ℒ
Z t

0
f ðτÞdτ

� �
=

−e−st

s

Z t

0
f ðτÞdτ

� �∞
0
+
1
s

Z ∞

0
f ðtÞe−stdt (9–9)

Thefirst termontheright inEq.(9–9)vanishesat the lower limitbecausethe integralover
a zero-length interval is zero provided that f ðtÞ is finite at t = 0. It vanishes at the upper
limit because e−st approaches zero as t goes to infinity for σ> 0. By the definition of
the Laplace transformation, the second term on the right is FðsÞ=s. We conclude that

ℒ
Z t

0
f ðτÞdτ

� �
=
FðsÞ
s

(9–10)

The integration property states that time-domain integration of a waveform f ðtÞ
can be accomplished in the s domain by the algebraic process of dividing its transform
FðsÞ by s. The next example applies the integration property to obtain the transform
of the ramp function.

E X A M P L E 9 – 6

Show that the Laplace transform of the ramp function rðtÞ= tuðtÞ is 1=s2.

SOLUTION:
From our study of signals, we know that the ramp waveform can be obtained from
uðtÞ by integration.

rðtÞ=
Z t

0
uðτÞdτ

In Example 9–1 we foundℒfuðtÞg= 1=s. Using these facts and the integration prop-
erty of Laplace transforms, we obtain

ℒ rðtÞf g=ℒ
Z t

0
uðτÞdτ

� �
=
1
s
ℒ uðtÞf g= 1

s2
QED ■

E x e r c i s e 9–7

Let υ1ðtÞ=VAe−αtuðtÞV. Show that the Laplace transform of υ2ðtÞ=
Z t

0
VAe−αxdxV is equal

to V1ðsÞ=s.
A n s w e r: Z t

0
VAe−αxdx=

VA

−α
e−αx







t

0

=
VA

−α
ðe−αt −1Þ= VA

α
ð1−e−αtÞ

ℒ
VA

α
ð1−e−αtÞ


 �
=
VA

α
1
s
−

1
s+ α

� �
=
VA

α
s+ α−s
sðs+ αÞ
� �

=
VA

sðs+ αÞ
V1ðsÞ
s

=
VA

sðs+ αÞ QED

E x e r c i s e 9–8

If iðtÞ= 6 e−1000tuðtÞmA, find the Laplace transform of υðtÞ= 1

10−6

Z t

0
iðxÞ dxV.

A n s w e r:

VðsÞ= IðsÞ
10−6s

=
6000

sðs+ 1000ÞV-s
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D I F F E R E N T I A T I O N P R O P E R T Y

The time-domain differentiation operation transforms into the s domain as follows:

ℒ
df ðtÞ
dt

� �
=
Z ∞

0

df ðtÞ
dt

� �
e−stdt (9–11)

The right side of this equation can be integrated by parts using

y= e−st and dx=
df ðtÞ
dt

dt

These definitions result in

dy= −se−stdt and x= f ðtÞ
Inserting these factors reduces the right side of Eq. (9–11) to

ℒ
df ðtÞ
dt

� �
= f ðtÞe−st







∞

0−

+ s
Z ∞

0−
f ðtÞe−stdt (9–12)

For σ> 0, the first term on the right side of Eq. (9–12) is zero at the upper limit
because e−st approaches zero as t goes to infinity. At the lower limit it reduces to
− f ð0−Þ. By the definition of the Laplace transform, the second term on the right side
is sFðsÞ. We conclude that

ℒ
df ðtÞ
dt

� �
= sFðsÞ− f ð0−Þ (9–13)

The differentiation property states that time-domain differentiation of a waveform
f ðtÞ is accomplished in the s domain by the algebraic process of multiplying the trans-
form FðsÞ by s and subtracting the constant f ð0−Þ. Note that the constant f ð0−Þ is the
value of f ðtÞ at t = 0− just prior to t = 0.

The s-domain equivalent of a second derivative is obtained by repeated applica-
tion of Eq. (9–13). We first define a waveform gðtÞ as

gðtÞ= df ðtÞ
dt

hence
d2f ðtÞ
dt2

=
dgðtÞ
dt

Applying the differentiation rule to these two equations yields

GðsÞ= sFðsÞ− f ð0−Þ and ℒ
d2f ðtÞ
dt2

� �
= sGðsÞ−gð0−Þ

Substituting the first of these equations into the second results in

ℒ
d2f ðtÞ
dt2

� �
= s2FðsÞ−sf ð0−Þ− f 0ð0−Þ

where

f 0ð0−Þ= df
dt





t = 0−

Repeated application of this procedure produces the nth derivative:

ℒ
dnf ðtÞ
dtn

� �
= snFðsÞ−sn−1f ð0−Þ−sn−2f 0ð0−Þ� � � − f ðn−1Þð0−Þ (9–14)

where f ðn−1Þð0−Þ is the ðn−1Þth derivative of f ðtÞ evaluated at t = 0− .
A hallmark feature of the Laplace transformation is the fact that time integration

and differentiation change into algebraic operations in the s domain. This observa-
tion gives us our first hint as to why it is often easier to workwith circuits and signals in
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the s domain. The next example shows how the differentiation rule can be used to
obtain additional transform pairs.

E X A M P L E 9 – 7

Show that the Laplace transform of f ðtÞ= cos βt½ �uðtÞ is FðsÞ= s=ðs2 + β2Þ.

SOLUTION:
We can express cos βt in terms of the derivative of sin βt as

cos βt =
1
β

d
dt

sin βt

In Example 9–5 we found ℒfsin βtg= β=ðs2 + β2Þ. Using these facts and the differen-
tiation rule, we can find the Laplace transform of cos βt as follows:

ℒfcos βtg =
1
β
ℒ

d
dt
sin βt


 �
=
1
β

s
β

s2 + β2

� �
−sinð0−Þ

� �

=
s

s2 + β2
QED

■

E x e r c i s e 9–9
Let υ1ðtÞ=VArðtÞV. Show that the Laplace transform of υ2ðtÞ= dVArðtÞ=dtV is equal
to sV1ðsÞ−υ1ð0−Þ.
A n s w e r:

dVArðtÞ
dt

=
dVAtuðtÞ

dt
=VA uðtÞ

ℒ VAuðtÞf g= VA

s

sV1ðsÞ−υ1ð0−Þ= s
VA

s2
−0=

VA

s
QED

E x e r c i s e 9–10

If iðtÞ= 30 e−1200tuðtÞmA, find the Laplace transform of υðtÞ= 0:1
diðtÞ
dt

V.

A n s w e r:
VðsÞ= sIðsÞ− ið0−Þ= 3s

s+ 1200
mV-s

T R A N S L A T I O N P R O P E R T I E S

The s-domain translation property of the Laplace transformation is

IFℒff ðtÞg=FðsÞTHENℒfe−αtf ðtÞg=Fðs+ αÞ
This theorem states that multiplying f ðtÞ by e−αt is equivalent to replacing s by s+ α
(that is, translating the origin in the s plane by an amount α). In engineering applica-
tions, the parameter α is always a real number, but it can be either positive or negative
so the origin in the s domain can be translated to the left or right. Proof of the theorem
follows almost immediately from the definition of the Laplace transformation.

ℒfe−αtf ðtÞg=
Z ∞

0
e−αtf ðtÞe−stdt

=
Z ∞

0
f ðtÞe−ðs+ αÞtdt

=Fðs+ αÞ
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The s-domain translation property can be used to derive transforms of damped
waveforms from undamped prototypes. For instance, the Laplace transform of the
ramp, cosine, and sine functions are

ℒftuðtÞg =
1
s2

ℒf½cos βt�uðtÞg =
s

s2 + β2

ℒf½sin βt�uðtÞg =
β

s2 + β2

To obtain the damped ramp, damped cosine, and damped sine functions, we multiply
each undamped waveform by e−αt . Using the s-domain translation property, we
replace s by s+ α to obtain transforms of the corresponding damped waveforms.

ℒ te−αtu tð Þf g =
1

s+ αð Þ2

ℒ e−αtcos βt½ �u tð Þf g =
s+ α

s+ αð Þ2 + β2

ℒ e−αtsin βt½ �u tð Þf g =
β

s+ αð Þ2 + β2

This completes the derivation of a basic set of transform pairs listed in Table 9–2.
The time-domain translation property of the Laplace transformation is

IFℒ f tð Þf g=F sð Þ THEN for a> 0ℒ f t−að Þu t−að Þf g= e−asF sð Þ
The theorem states that multiplying F sð Þ by e−as is equivalent to shifting f ðtÞ to the
right in the time domain by an amount a> 0. In other words, it is equivalent to delay-
ing f tð Þ in time by an amount a> 0. Proof of this property follows from the definition
of the Laplace transformation.

ℒ f t−að Þu t−að Þf g=
Z ∞

0−
f t−að Þu t−að Þe−stdt =

Z ∞

a
f t−að Þe−stdt

In this equation, we have used the fact that u t−að Þ is zero for t < a and is unity for t ≥ a.
We now change the integration variable from t to τ= t−a. With this change of var-
iable, the last integral in this equation takes the form

ℒ f t−að Þu t−að Þf g =
Z ∞

0
f τð Þe−sτe−asdτ

= e−as
Z ∞

0
f τð Þe−sτdτ

= e−asF sð Þ
which confirms the statement of the time-domain translation property. A simple
application of this property is finding the Laplace transform of the delayed step
function.

ℒ u t−Tð Þf g= e−sTℒ u tð Þf g= e−sT

s

In this section, we derived the basic transform properties listed in Table 9–1.
The Laplace transformation has other properties that are useful in signal-

processing applications. We treat two of these properties in the last section of this
chapter. However, the basic properties in Table 9–1 are used frequently in circuit
analysis and are sufficient for nearly all of the applications in this book.
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Similarly, Table 9–2 lists a basic set of Laplace transform pairs that is sufficient for
most of the applications in this book. All of these pairs were derived in the preceding
two sections. Tables 9–1 and 9–2 are repeated in the inside back cover.

Allof thewaveforms inTable9–2arecausal, that is, theyhaveadefinedstartorbegin-
ning.There isau tð Þ associatedwith everywaveform.Asa result, theLaplace transform
pairs areunique andwecanuse the table in either direction.That is, givenan f tð Þ in the
waveform column, we find its Laplace transform in the right column, or given an F sð Þ
in the right column, we find its inverse transform in the waveform column.

The last example in this section shows how to use the properties and pairs in
Tables 9–1 and 9–2 to obtain the transform of a waveform not listed in the tables.

E X A M P L E 9 – 8

Find the Laplace transform of the waveform

f tð Þ= 2u tð Þ−5 e−2t
� �

u tð Þ+ 3 cos2t½ �u tð Þ+ 3 sin2t½ �u tð Þ

SOLUTION:
Using the linearity property, we write the transform of f ðtÞ in the form

ℒ f tð Þf g= 2ℒ u tð Þf g−5ℒ e−2tu tð Þ� �
+ 3ℒ cos2t½ �u tð Þf g+ 3ℒ sin2t½ �u tð Þf g

T A B L E 9–1 BASIC LAPLACE TRANSFORMATION PROPERTIES

PROPERTIES TIME DOMAIN FREQUENCY DOMAIN

Independent variable t s

Signal representation f tð Þ f sð Þ
Uniqueness ℒ−1 F sð Þf g =ð Þ f tð Þ½ �u tð Þ ℒ f tð Þf g=F sð Þ
Linearity Af1 tð Þ+Bf2 tð Þ AF1 sð Þ+BF2 sð Þ
Integration R 1

0 f τð Þdτ F sð Þ
s

Differentiation df tð Þ
dt

sF sð Þ− f 0−ð Þ

d2f tð Þ
dt2

s2F sð Þ−sf 0−ð Þ−f 0 0−ð Þ

d3f tð Þ
dt3

s3F sð Þ−s2f 0−ð Þ−sf 0 0−ð Þ− f 00 0−ð Þ

s-Domain translation e−αt f tð Þ F s+ αð Þ
t-Domain translation f t−að Þu t−að Þ e−asF sð Þ

T A B L E 9–2 BASIC LAPLACE TRANSFORM PAIRS

SIGNAL WAVEFORM f tð Þ TRANSFORM F sð Þ

Impulse δ tð Þ 1

Step function u tð Þ 1
s

Ramp tu tð Þ 1
s2

Exponential e−αt½ �u tð Þ 1
s+ α

Damped ramp te−αt½ �u tð Þ 1
s+ αð Þ2

Sine sin βt½ �u tð Þ β
s2 + β2

Cosine cos βt½ �u tð Þ s
s2 + β2

Damped sine e−αtsin βt½ �u tð Þ β
s+ αð Þ2 + β2

Damped cosine e−αtcos βt½ �u tð Þ s+ αð Þ
s+ αð Þ2 + β2
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The transforms of each term in this sum are listed in Table 9–2:

F sð Þ= 2
s
−

5
s+ 2

+
3s

s2 + 4
+

6
s2 + 4

Normally, a Laplace transform is written as a quotient of polynomials rather than
as a sum of terms. Rationalizing the preceding sum yields

F sð Þ= 16 s2 + 1
� �

s s+ 2ð Þ s2 + 4ð Þ ■

E x e r c i s e 9–11
Find the Laplace transforms of the following waveforms:
(a) f tð Þ= e−2t

� �
u tð Þ+ 4tu tð Þ−u tð Þ

(b) f tð Þ= 2+ 2 sin2t−2 cos2t½ �u tð Þ
A n s w e r s:

(a) F sð Þ= 2 s+ 4ð Þ
s2 s+ 2ð Þ

(b) F sð Þ= 4 s+2ð Þ
s s2 + 4ð Þ

E x e r c i s e 9–12
Find the Laplace transforms of the following waveforms:

(a) f tð Þ= e−4t
� �

u tð Þ+ 5
Z t

0
sin4x dx

(b) f tð Þ= 5 e−40t
� �

u tð Þ+ d 5te−40t½ �u tð Þ
dt

A n s w e r s:

(a) F sð Þ= s3 + 36s+ 80
s s+ 4ð Þ s2 + 16ð Þ

(b) F sð Þ= 10s+200

s+ 40ð Þ2

E x e r c i s e 9–13
Find the Laplace transforms of the following waveforms:

(a) f tð Þ=A cos βt−ϕð Þ½ �u tð Þ
(b) f tð Þ=A e−αtcos βt−ϕð Þ½ �u tð Þ
A n s w e r s:

(a) F sð Þ=A cos ϕ
s+ β tanϕ
s2 + β2

� �

(b) F sð Þ=A cosϕ
s+ α+ β tanϕ
s+ αð Þ2 + β2

" #

E x e r c i s e 9–14
Find the Laplace transforms of the following waveforms for T > 0:

(a) f tð Þ=Au tð Þ−2Au t−Tð Þ+Au t−2Tð Þ
(b) f tð Þ=Ae−α t−Tð Þu t−Tð Þ
A n s w e r s:

(a) F sð Þ= A 1−e−Ts
� �2

s

(b) F sð Þ= Ae−Ts

s+ α
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S O F T W A R E A P P L I C A T I O N S

There are software applications that can be used to find the Laplace transform
of a given waveform. In particular, MATLAB has the functions laplace and
ilaplace, which operate on symbolic expressions to take the Laplace transform
and inverse Laplace transform, respectively. Example 9–8 could have been solved
using the laplace function as follows:

syms t s
f = (2−5∗exp(−2∗t)+3∗cos(2∗t)+3∗sin(2∗t))∗heaviside(t);
F = laplace(f )
simplify(F)

where MATLAB uses heaviside(t) for the unit step function u tð Þ. MATLAB
would respond with

F =
(3∗s)/(ŝ 2 + 4) − 5/(s + 2) + 6/(ŝ 2 + 4) + 2/s

Using MATLAB’s simplify function rationalizes the expression yielding

ans =
(16∗(ŝ 2 + 1))/(s∗(ŝ 3 + 2∗ŝ 2 + 4∗s + 8))

These are the same results as obtained in the example. Later in Example 9–16 we
will look at using the ilaplace function. For additional examples on how to use
these software tools, please visit Web Appendix D.

9–3 P O L E - Z E R O D I A G R A M S

The transforms for signals in Table 9–2 are ratios of polynomials in the complex fre-
quency variable s. Likewise, the transform found in Example 9–8 takes the form of
a ratio of two polynomials in s. These results illustrate that the signal transforms
of greatest interest to us usually have the form

F sð Þ= bmsm + bm−1sm−1 + � � �+ b1s+ b0
ansn + an−1sn−1 + � � �+ a1s+ a0

(9–15)

If numerator and denominator polynomials are expressed in factored form, then F sð Þ
is written as

F sð Þ=K
s−z1ð Þ s−z2ð Þ… s−zmð Þ
s−p1ð Þ s−p2ð Þ… s−pnð Þ (9–16)

where the constant K = bm=an is called the scale factor.
The roots of the numerator and denominator polynomials, together with the scale

factor K, uniquely define a transform F sð Þ. The denominator roots are called poles
because for s= pi i= 1,2,…,nð Þ the denominator vanishes and F sð Þ becomes infinite.
The roots of the numerator polynomial are called zeros because the transform F sð Þ
vanishes for s= zi i= 1,2,…,mð Þ. Collectively, the poles and zeros are called critical
frequencies because they are values of s at which F sð Þ does dramatic things, like van-
ish or become indeterminant.

In the s domain, we can specify a signal transform by listing the location of its
critical frequencies together with the scale factorK. That is, in the frequency domain,
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we describe signals in terms of poles and zeros. The description takes the form of a
pole-zero diagram, which shows the location of poles and zeros in the complex s
plane. The pole locations in such plots are indicated by an and the zeros by an
. The independent variable in the frequency domain is the complex frequency var-

iable s, so the poles or zeros can be complex as well. In the s plane, we use a horizontal
axis to plot the value of the real part of s and a vertical j-axis to plot the imaginary
part. The j-axis is an important boundary in the frequency domain because it divides
the s plane into two distinct half planes. The real part of s is negative in the left half
plane and positive in the right half plane. As we will soon see, the sign of the real part
of a pole has a profound effect on the form of the corresponding waveform.

For example, Table 9–2 shows that the transform of the exponential waveform
f tð Þ= e−αtu tð Þ is F sð Þ= 1= s+ αð Þ. The exponential signal has a single pole at s= −α
and no finite zeros. The pole-zero diagram in Figure 9–2(a) is the s-domain portrayal
of the exponential signal. In this diagram the identifies the pole located at
s= −α+ j0, a point on the negative real axis in the left half plane.

The damped sinusoid f ðtÞ= ½Ae−αtcos βt�uðtÞ is an example of a signal with com-
plex poles. From Table 9–2 the corresponding transform is

FðsÞ= Aðs+ αÞ
ðs+ αÞ2 + β2

The transform FðsÞ has a finite zero on the real axis at s= −α. The roots of the denom-
inator polynomial are s= −α� jβ. The resulting pole-zero diagram is shown in
Figure 9–2(b). The poles of the damped cosine do not lie on either axis in the s plane
because neither the real nor imaginary parts are zero.

Finally, the transform of a unit ramp f ðtÞ= tuðtÞ is FðsÞ= 1=s2. This transform has
no finite zeros and two poles at the origin ðs= 0+ j0Þ in the s plane as shown in
Figure 9–2(c). The poles in all of the diagrams of Figure 9–2 lie in the left half plane
or on the j-axis boundary.

The diagrams in Figure 9–2 show the poles and zeros in the finite part of the s
plane. Signal transforms may have poles or zeros at infinity as well. For example,
the step function has a zero at infinity since FðsÞ= 1=s approaches zero as s! ∞ .
In general, a transform FðsÞ given by Eq. (9–16) has a zero of order n−m at infinity
if n>m and a pole of orderm−n at infinity if n<m. Thus, the number of zeros equals
the number of poles if we include those at infinity.

The pole-zero diagram is the s-domain portrayal of the signal, just as a plot of the
waveform versus time depicts the signal in the t domain. Later, we will see how linear
circuits can also be portrayed using pole-zero diagrams. The utility of a pole-zero dia-
gram as a description of circuits and signals will become clearer as we develop addi-
tional s-domain analysis and design concepts.

s plane

−α −α

jω

σ

s plane

jω

σ

jβ

−jβ

s plane

jω

σ

(2)

(c)(b)(a)

FIGURE 9–2 (a–c) Pole-zero
diagrams in the s plane.
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E X A M P L E 9 – 9

Find the poles and zeros of the waveform

f ðtÞ= ½e−2t + cos2t−sin2t�uðtÞ

SOLUTION:
Using the linearity property and the basic pairs in Table 9–2, we write the transform
in the form

FðsÞ= 1
s+ 2

+
s

s2 + 4
−

2
s2 + 4

Rationalizing this expression yields FðsÞ.

FðsÞ= 2s2

ðs+ 2Þðs2 + 4Þ =
2s2

ðs+ 2Þðs+ j2Þðs− j2Þ
This transform has three zeros and three poles. There are two zeros at s= 0 and one at
s= ∞ . There is a pole on the negative real axis at s= −2 + j0, and there are two poles
on the imaginary axis at s= � j2. The resulting pole-zero diagram is shown in
Figure 9–3. Reviewing the analysis, we can trace the poles to the components of
f ðtÞ. The pole on the real axis at s= −2 came from the exponential e−2t, while the
complex conjugate poles on the j-axis came from the sinusoid cos2t−sin2t. The zeros,
however, are not traceable to specific components. Their locations depend on all
three components. ■

E x e r c i s e 9–15
Find the poles and zeros of the transform of the following waveform and plot the results on
a pole-zero diagram.

f ðtÞ= ½−2e− t− t +2�uðtÞ

A n s w e r s: Zeros: s= 1, two at s= ∞ ; poles: two at s=0,s= −1.
See Figure 9–4 for the pole-zero diagram.

E X A M P L E 9 – 1 0

Find the poles and zeros of the transform of the waveform f ðtÞ= ½4−3 cos 500t�uðtÞ
and plot the results.

SOLUTION:
Using the linearity property and the basic pairs from Table 9–2, we write the trans-
form in the form

FðsÞ= 4
s
−

3s

s2 + ð500Þ2

Rationalizing this expression results in FðsÞ.

FðsÞ= s2 + 4 × ð500Þ2
s½s2 + ð500Þ2� =

ðs+ j1000Þðs− j1000Þ
sðs+ j500Þðs− j500Þ

The transform has two complex conjugate zeros at s= � j1000, and another at s= ∞ .
It has a pole at s= 0, and a complex conjugate pair at s= � j500. The pole at zero is
caused by the step function and the two poles on the imaginary axis are caused by the
cosine term. The results are plotted in Figure 9–5. ■
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σ
−1 1

 2
(2)

 at ∞

s-plane

FIGURE 9–4
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FIGURE 9–5
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E x e r c i s e 9–16
Find the poles and zeros of the transform of the following waveform and plot the results on a
pole-zero diagram.

f ðtÞ= ½e−10tcos 200t + 0:05e−10tsin 200t�uðtÞ

A n s w e r s: Zeros: s= −20,s= ∞ ; poles: s= −10� j 200.
See Figure 9–6 for the pole-zero diagram.

9–4 I N V E R S E L A P L A C E T R A N S F O R M S

The inverse transformation converts a transform FðsÞ into the corresponding
waveform f ðtÞ. Applying the inverse transformation in Eq. (9–4) requires knowledge
of a branch of mathematics called complex analysis. Fortunately, we do not need
Eq. (9–4) because the uniqueness of the Laplace transform pairs in Table 9–2
allows us to go from a transform to a waveform. This may not seem like much help
since it does not take a very complicated circuit or signal before we exceed the
listing in Table 9–2, or even the more extensive tables that are available. However,
there is a general method of expanding FðsÞ into a sum of terms that are listed in
Table 9–2.

For linear circuits, the transforms of interest are ratios of polynomials in s. In
mathematics such functions are called rational functions. To perform the inverse
transformation, we must find the waveform corresponding to rational functions of
the form

FðsÞ=K
ðs−z1Þðs−z2Þ � � � ðs−zmÞ
ðs−p1Þðs−p2Þ � � � ðs−pnÞ (9–17)

where K is the scale factor, ziði= 1,2,…,mÞ are the zeros, and piði= 1,2,…,nÞ are the
poles of FðsÞ.

If there are more finite poles than finite zeros ðn>mÞ, then FðsÞ is called a proper
rational function. If the denominator in Eq. (9–17) has no repeated roots
ðpi ≠ pj for i ≠ jÞ, then FðsÞ is said to have simple poles. In this section we first treat
the problem of finding the inverse transform of proper rational functions with simple
poles. Once we have mastered this case, we will address problems with improper
rational functions and multiple poles.

If a proper rational function has only simple poles, then it can be decomposed into
a partial fraction expansion of the form

FðsÞ= k1
s−p1

+
k2

s−p2
+ � � �+ kn

s−pn
(9–18)

In this case, FðsÞ can be expressed as a linear combination of terms with one term for
each of its n simple poles. The k’s associated with each term are called residues.

Each term in the partial fraction decomposition has the form of the transform of an
exponential signal. That is, we recognize that ℒ−1fðk=s+ αÞg= ½ke−αt�uðtÞ. We can
now write the corresponding waveform using the linearity property:

f ðtÞ= ½k1ep1t + k2ep2t + � � �+ knepnt�uðtÞ (9–19)

In the time domain, the s-domain poles appear in the exponents of exponential
waveforms and the residues at the poles become the amplitudes.

Given the poles of FðsÞ, finding the inverse transform f ðtÞ reduces to finding the
residues. To illustrate the procedure, consider a case in which FðsÞ has three simple
poles and one finite zero.

σ

−j200

j200

−10−20

1 at ∞ s-plane

FIGURE 9–6
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FðsÞ=K
ðs − z1Þ

ðs − p1Þðs − p2Þðs − p3Þ =
k1

s − p1
+

k2
s − p2

+
k3

s − p3

We find the residue k1 by first multiplying this equation through by the factor ðs−p1Þ

ðs−p1ÞFðsÞ=K
ðs − z1Þ

ðs − p2Þðs − p3Þ = k1 +
k2ðs − p1Þ
s − p2

+
k3ðs − p1Þ
s − p3

If we now set s= p1, the last two terms on the right vanish, leaving

k1 = ðs − p1ÞFðsÞ




s= p1

=K
ðs − z1Þ

ðs − p2Þðs − p3Þ







s= p1

Using the same approach for k2 yields

k2 = ðs − p2ÞFðsÞ




s= p2

=K
ðs − z1Þ

ðs − p1Þðs − p3Þ







s= p2

The technique generalizes so that the residue at any simple pole pi is

ki = ðs − piÞFðsÞ




s=pi

(9–20)

The process of determining the residue at any simple pole is sometimes called the
cover-up algorithm because we temporarily remove (cover up) the factor ðs= piÞ
in FðsÞ and then evaluate the remainder at s= pi.

E X A M P L E 9 – 1 1

Find the waveform corresponding to the transform

FðsÞ= 2
ðs + 3Þ

sðs + 1Þðs + 2Þ

SOLUTION:
FðsÞ is a proper rational function and has simple poles at s= 0, s= −1, s= −2. Its
partial fraction expansion is

FðsÞ= k1
s
+

k2
s+ 1

+
k3
s+ 2

The cover-up algorithm yields the residues as

k1 = sFðsÞ




s= 0

=
2ðs+ 3Þ

ðs+ 1Þðs+ 2Þ







s= 0

= 3

k2 = ðs+ 1ÞFðsÞ




s= −1

=
2ðs+ 3Þ
sðs+ 2Þ







s= −1

= −4

k3 = ðs+ 2ÞFðsÞ




s= −2

=
2ðs+ 3Þ
sðs+ 1Þ







s= −2

= 1

The inverse transform f ðtÞ is
f ðtÞ= ½3− 4e− t + e−2t�uðtÞ ■
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E x e r c i s e 9–17
Find the waveforms corresponding to the following transforms:

(a) F1ðsÞ= 4
ðs+ 1Þðs+ 3Þ

(b) F2ðsÞ= e−5s
2s

ðs+ 1Þðs+3Þ
� �

(c) F3ðsÞ= 4ðs+ 2Þ
ðs+ 1Þðs+ 3Þ

A n s w e r s:

(a) f1ðtÞ= ½2e− t−2e−3t�uðtÞ
(b) f2ðtÞ= ½−e−ðt−5Þ + 3e−3ðt−5Þ�uðt−5Þ
(c) f3ðtÞ= ½2e− t + 2e−3t �uðtÞ
Comment: Note that

F2ðsÞ= e−5s
2s

ðs+1Þðs+3Þ
� �

= e−5s
−1
s+ 1

+
3

s+3

� �
so that the delay factor e−5s is not involved in the partial fraction expansion but simply
flags the amount by which the resulting waveform ½e− t + 3e−3t�uðtÞ is delayed to pro-
duce f2ðtÞ.

E x e r c i s e 9–18
Find the waveforms corresponding to the following transforms:

(a) FðsÞ= 6ðs+ 2Þ
sðs+ 1Þðs+ 4Þ

(b) FðsÞ= 4ðs+1Þ
sðs+1Þðs+ 4Þ

A n s w e r s:

(a) f ðtÞ= ½3−2e− t−e−4t�uðtÞ
(b) f ðtÞ= ½1−e−4t�uðtÞ

C O M P L E X P O L E S

Special treatment is necessary when FðsÞ has a complex pole. In physical situations,
the function FðsÞ is a ratio of polynomials with real coefficients. If FðsÞ has a complex
pole p= −α+ jβ, then it must also have a pole p∗ = −α− jβ; otherwise, the coefficients
of the denominator polynomial would not be real. In other words, for physical signals,
the complex poles of FðsÞ must occur in conjugate pairs. As a consequence, the par-
tial fraction decomposition of FðsÞ will contain two terms of the form

FðsÞ= � � �+ k
s+ α− jβ

+
k∗

s+ α+ jβ
+ � � � (9–21)

The residues k and k∗ at the conjugate poles are themselves conjugates because FðsÞ
is a rational function with real coefficients. These residues can be calculated using the
cover-up algorithm and, in general, they turn out to be complex numbers. If the com-
plex residues are written in polar form as

k= kj jejθ and k∗ = kj je− jθ

then the waveform corresponding to the two terms in Eq. (9–21) is

f ðtÞ= ½� � �+ kj jejθeð−α+ jβÞt + kj je− jθeð−α− jβÞt + � � ��uðtÞ
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This equation can be rearranged in the form

f ðtÞ= ½� � �+ 2 kj je−αt e+jðβt + θÞ + e− jðβt + θÞ

2


 �
+ � � ��uðtÞ (9–22)

The expression inside the brackets is of the form

cos x=
e+jx + e− jx

2


 �
Consequently, we combine terms inside the braces as a cosine function with a
phase angle:

f ðtÞ= ½� � �+ 2 kj je−αtcosðβt + θÞ+ � � ��uðtÞ (9–23)

In summary, if FðsÞ has a complex pole, then in physical applications, there must
be an accompanying conjugate complex pole. The inverse transformation combines
the two poles to produce a damped cosine waveform. We only need to compute the
residue at one of these poles because the residues at conjugate poles must be conju-
gates. Normally, we calculate the residue for the pole at s= −α+ jβ because its angle
equals the phase angle of the damped cosine. Note that the imaginary part of this pole
is positive, which means that the pole lies in the upper half of the s plane.

The inverse transform of a proper rational function with simple poles can be found
by the partial fraction expansion method. The residues k at the simple poles can be
found using the cover-up algorithm. The resulting waveform is a sum of terms of the
form ½ke−αt�uðtÞ for real poles and ½2 kj je−αtcosðβt + θÞ�uðtÞ for a pair of complex con-
jugate poles. The partial fraction expansion of the transform contains all of the data
needed to construct the corresponding waveform.

E X A M P L E 9 – 1 2

Find the inverse transform of

FðsÞ= 20ðs+ 3Þ
ðs+ 1Þðs2 + 2s+ 5Þ

SOLUTION:
FðsÞ has a simple pole at s= −1 and a pair of conjugate complex poles located at the
roots of the quadratic factor

ðs2 + 2s+ 5Þ= ðs+ 1− j2Þðs+ 1+ j2Þ
The partial fraction expansion of FðsÞ is

FðsÞ= k1
s+ 1

+
k2

s+ 1− j2
+

k∗2
s+ 1+ j2

The residues at the poles are found from the cover-up algorithm.

k1 =
20ðs+ 3Þ
s2 + 2s+ 5







s= −1

= 10

k2 =
20ðs+ 3Þ

ðs+ 1Þðs+ 1+ j2Þ





s= −1 + j2

= −5− j5 = 5
ffiffiffi
2

p
e+ j5π=4

We now have all of the data needed to construct the inverse transform.

f ðtÞ= ½10e− t + 10
ffiffiffi
2

p
e− tcosð2t + 5π=4Þ�uðtÞ
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Inthisexampleweusedk2 toobtain theamplitudeandphaseangleof thedampedcosine
term. The residue k∗2 is not needed, but to illustrate a point we note that its value is

k∗2 = ð−5− j5Þ∗ = −5+ j5 = 5
ffiffiffi
2

p
e− j5π=4

If k∗2 is used instead, we get the same amplitude for the damped sine but the wrong
phase angle.Caution:Remember that Eq. (9–23) uses the residue at the complex pole
with a positive imaginary part. In this example, this is the pole at s= −1+ j2, not the
pole at s= −1− j2. ■

E x e r c i s e 9–19
Find the inverse transforms of the following rational functions:

(a) FðsÞ= 16
ðs+ 2Þðs2 + 4Þ

(b) FðsÞ= 2ðs+2Þ
sðs2 + 4Þ

A n s w e r s:

(a) f ðtÞ= ½2e−2t +2
ffiffiffi
2

p
cosð2t−3π=4Þ�uðtÞ

(b) f ðtÞ= ½1 + ffiffiffi
2

p
cosð2t−3π=4Þ�uðtÞ

E x e r c i s e 9–20
Find the inverse transforms of the following rational functions:

(a) FðsÞ= 8
sðs2 + 4s+ 8Þ

(b) FðsÞ= 4s
s2 + 4s+ 8

A n s w e r s:

(a) f ðtÞ= ½1 + ffiffiffi
2

p
e−2tcosð2t +3π=4Þ�uðtÞ

(b) f ðtÞ= ½4 ffiffiffi
2

p
e−2tcosð2t + π=4Þ�uðtÞ

S U M S O F R E S I D U E S

The sums of the residues of a proper rational function are subject to certain condi-
tions that are useful for checking the calculations in a partial fraction expansion. To
derive these conditions, we multiply Eqs. (9–17) and (9–18) by s and take the limit as
s! ∞ . These operations yield

lim
s!∞

sFðsÞ= lim
s!∞

Ksm+ 1

sn
= lim

s!∞

k1s
s+ p1

+ � � �+ kns
s+ pn

� �
In the limit, this equation reduces to

K lim
s!∞

sm+ 1

sn

� �
= k1 + k2 + � � �+ kn

Since FðsÞ is a proper rational function with n>m, the limit process in this equation
yields the following conditions:

k1 + k2 + � � �+ kn =
0 if n>m+ 1

K if n=m+ 1

(
(9–24)

For a proper rational function with simple poles, the sum of residues is either zero or
else equal to the transform scale factor K.
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E X A M P L E 9 – 1 3

Use the sum of residues to find the unknown residue in the following expansion:

F sð Þ= 660 s+ 10ð Þ
s+ 1ð Þ s+ 100ð Þ =

60
s+ 1

+
k

s+ 100

SOLUTION:
We have n= 2 andm+ 1= 2, so the sum of residues is the scale factorK = 660. Solving
for k, we get

660 = 60 + k

k = 600

F sð Þ = 60
s+ 1

+
600

s+ 100 ■

E x e r c i s e 9–21
Use the sum of residues to find the unknown residue in the following expansions:

(a)
21ðs+ 5Þ

ðs+ 3Þðs+ 10Þ =
6

s+ 3
+

k
s+ 10

(b)
58s

ðs+2Þðs2 + 25Þ =
k

s+2
+
2+ j5
s+ j5

+
2− j5
s− j5

A n s w e r s:
(a) k=15
(b) k= −4

S O M E S P E C I A L C A S E S

Most of the transforms encountered in physical applications are proper rational func-
tions with simple poles. The inverse transforms of such functions can be handled by
the partial fraction expansion method developed in the previous section. This
section covers the problem of finding the inverse transform when FðsÞ is an improper
rational function or has multiple poles. These matters are treated as special cases
because they occur only for certain discrete values of circuit or signal parameters.
However, some of these special cases are important, so we need to learn how to han-
dle improper rational functions and multiple poles.

FðsÞ is an improper rational function when the order of the numerator polynomial
equals or exceeds the order of the denominator ðm≥ nÞ. For example, the transform

FðsÞ= s3 + 6s2 + 12s+ 11
s2 + 4s+ 3

(9–25)

is improper because m= 3 and n= 2. Using long division this improper rational func-
tion can be changed into the sum of a quotient plus a remainder which is a proper
rational function. We proceed as follows:
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which yields

FðsÞ = s+ 2|ffl{zffl} +
s+ 5

s2 + 4s+ 3|fflfflfflfflfflffl{zfflfflfflfflfflffl}
= Quotient +Remainder

The remainder is a proper rational function, which can be expanded by partial frac-
tions to produce

FðsÞ= s+ 2+
2

s+ 1
−

1
s+ 3

All of the terms in this expansion are listed in Table 9–2 except the first term. The
inverse transform of the first term is found using the transform of an impulse and
the differentiation property. The Laplace transform of the derivative of an impulse is

ℒ
dδðtÞ
dt

� �
= sℒ δðtÞ½ �−δð0−Þ= s

sinceℒfδðtÞg= 1 and δð0−Þ= 0. By the uniqueness property of the Laplace transfor-
mation, we haveℒ−1fsg= dδðtÞ=dt. The first derivative of an impulse is called a dou-
blet. The inverse transform of the improper rational function in Eq. (9–25) is

f ðtÞ= dδðtÞ
dt

+ 2δðtÞ+ 2e− t−e−3t
� �

uðtÞ

The method illustrated by this example generalizes in the following way. When
m= n, long division produces a quotientK plus a proper rational function remainder.
The constantK corresponds to an impulseKδ tð Þ, and the remainder can be expanded
by partial fractions to find the corresponding waveform. If m> n, then long division
yields a quotient with terms like s,s2,…sm−n before a proper remainder function is
obtained. These higher powers of s correspond to derivatives of the impulse. These
pathological waveforms are theoretically interesting, but they do not actually occur in
real circuits.

Improper rational functions can arise during mathematical manipulation of
signal transforms. When F sð Þ is improper, it is essential to reduce it by long division
prior to expansion; otherwise the resulting partial fraction expansion will be
incomplete.

E X A M P L E 9 – 1 4

Find the inverse transform of the following function

F sð Þ= s3 + 3s2 + 1
s3 + 6s2 + 11s+ 6

SOLUTION:
This is an improper function since the orders of the numerator and the denominator
are equal.We begin by performing a long division in order to change the function into
a quotient and a remainder
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which yields

F sð Þ= 1+
−3s2−11s−5

s3 + 6s2 + 11s+ 6
= 1+

−3s2−11s−5
s+ 1ð Þ s+ 2ð Þ s+ 3ð Þ

We can expand the right-hand equation using partial fractions resulting in

F sð Þ= 1+
3
2

s+ 1
+

−5
s+ 2

+
1
2

s+ 3
The inverse transform is

f tð Þ= δ tð Þ+ 3
2
e− t−5e−2t +

1
2
e−3t

� �
u tð Þ ■

E x e r c i s e 9–22
Find the inverse transforms of the following functions:

(a) F sð Þ= s2 + 4s+ 5
s2 + 4s+ 3

(b) F sð Þ= s2−4
s2 + 4

A n s w e r s:

(a) f tð Þ= δ tð Þ+ e− t−e−3t
� �

u tð Þ
(b) f tð Þ= δ tð Þ− 4sin 2tð Þ½ �u tð Þ

E x e r c i s e 9–23
Find the inverse transforms of the following functions:

(a) F sð Þ= s+ 10
s+100

(b) F sð Þ= 2s2 + 3s+ 5
s

(c) F sð Þ= s3 + 2s2 + s+ 3
s+2

A n s w e r s:

(a) f tð Þ= δ tð Þ−90e−100t u tð Þ
(b) f tð Þ=2

dδ tð Þ
dt

+3δ tð Þ+5u tð Þ

(c) f tð Þ= d2δ tð Þ
dt2

+ δ tð Þ+ e−2t
� �

u tð Þ

M U L T I P L E P O L E S

Under certain special conditions, transforms can have multiple poles. For example,
the transform

F sð Þ= K s−z1ð Þ
s−p1ð Þ s−p2ð Þ2 (9–26)

has a simple pole at s= p1 and a pole of order 2 at s= p2. Finding the inverse transform
of this function requires special treatment of themultiple pole.We first factor out one
of the two multiple poles.

F sð Þ= 1
s−p2

K s−z1ð Þ
s−p1ð Þ s−p2ð Þ

� �
(9–27)
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The quantity inside the brackets is a proper rational function with only simple poles
and can be expanded by partial fractions using the method of the previous section.

F sð Þ= 1
s−p2

c1
s−p1

+
k22
s−p2

� �
We now multiply through by the pole factored out in the first step to obtain

F sð Þ= c1
s−p1ð Þ s−p2ð Þ +

k22
s−p2ð Þ2

The first term on the right is a proper rational function with only simple poles, so it
too can be expanded by partial fractions as

F sð Þ= k1
s−p1

+
k21
s−p2

+
k22

s−p2ð Þ2

After two partial fraction expansions, we have an expression in which every term
is available in Table 9–2. The first two terms are simple poles that lead to exponential
waveforms. The third term is of the form k= s+ αð Þ2, which is the transform of a
damped ramp waveform kte−αt½ �u tð Þ. Therefore, the inverse transform of F sð Þ in
Eq. (9–26) is

f tð Þ= k1ep1t + k21ep2t + k22tep2t½ �u tð Þ (9–28)

Caution: If F sð Þ in Eq. (9–26) had another finite zero, then the term in the brackets in
Eq. (9–27) would be an improper rational function. When this occurs, long division
must be used to reduce the improper rational function before proceeding to the par-
tial-fraction expansion in the next step.

As with simple poles, the s-domain location of multiple poles determines the expo-
nents of the exponential waveforms. The residues at the poles are the amplitudes of
the waveforms. The only difference here is that the double pole leads to two terms
rather than a single waveform. The first term is an exponential of the form ept , and the
second term is a damped ramp of the form tept.

E X A M P L E 9 – 1 5

Find the inverse transform of

F sð Þ= 4 s+ 3ð Þ
s s+ 2ð Þ2

SOLUTION:
The given transform has a simple pole at s= 0 and a double pole at s= −2. Factoring
out one of the multiple poles and expanding the remainder by partial fractions yields

F sð Þ= 1
s+ 2

4 s+ 3ð Þ
s s+ 2ð Þ
� �

=
1

s+ 2
6
s
−

2
s+ 2

� �
Multiplying through by the removed factor and expanding again by partial fractions
produces

F sð Þ= 6
s s+ 2ð Þ −

2

s+ 2ð Þ2 =
3
s
−

3
s+ 2

−
2

s+ 2ð Þ2

The last expansion on the right yields the inverse transform as

f tð Þ= 3−3e−2t−2te−2t
� �

u tð Þ ■
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E x e r c i s e 9–24
Find the inverse transform of

F sð Þ= 400
s+ 100ð Þ

s s+200ð Þ2

A n s w e r:
f tð Þ= 1−e−200t + 200te−200t

� �
u tð Þ

In principle, the procedure illustrated in this example can be applied to higher-
order poles, although the process rapidly becomes quite tedious. For example, an
nth-order pole would require n partial-fraction expansions, which is not an idea with
irresistible appeal. Mathematics offers other methods of determining multiple pole
residues that reduce the computational burden somewhat. However, these advanced
mathematical tools are probably not worth learning because computer tools such as
MATLAB readily handle multiple pole situations. Although we do encounter func-
tions with high-order multiple poles in later chapters, we rarely need to find their
inverse transforms.

Thus, for practical reasons, our interest inmultiple pole transforms is limited to two
possibilities. First, a double pole on the negative real axis leads to the damped ramp:

ℒ−1 k

s+ αð Þ2
" #

= kte−αt½ �u tð Þ (9–29)

Second, a pair of double, complex poles leads to the damped cosine ramp:

ℒ−1 k

s+ α− jβð Þ2 +
k∗

s+ α+ jβð Þ2
" #

= 2 kj jte−αtcos βt +∠kð Þ½ �u tð Þ (9–30)

These two cases illustrate a general principle: When a simple pole leads to a wave-
form f tð Þ, then a double pole at the same location leads to a waveform tf tð Þ. Multi-
plying a waveform by t tends to cause the waveform to increase without bound unless
exponential damping is present.

E x e r c i s e 9–25
Find the inverse transforms of the following functions:

(a) F sð Þ= s

s+1ð Þ s+ 2ð Þ2

(b) F sð Þ= 16
s2 s+ 4ð Þ

(c) F sð Þ= 800s s+ 1ð Þ
s+2ð Þ s+10ð Þ2

A n s w e r s:

(a) f tð Þ= −e− t + e−2t + 2te−2t
� �

u tð Þ
(b) f tð Þ= 4t−1 + e−4t

� �
u tð Þ

(c) f tð Þ= 25e−2t + 775e−10t−9000te−10t
� �

u tð Þ

The inverse Laplace transform allows us to recover a time-domain waveform after
operating on a system in the Laplace domain. Computing the inverse transformation
manually is useful for understanding the relationship between the two domains, but
at some point, it becomes more efficient to perform the transformation calculations
with software. The following example demonstrates the use of MATLAB to find the
inverse transform of a transform with multiple poles.
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E X A M P L E 9 – 1 6

Use MATLAB to find the inverse transform f tð Þ of the following function:

F sð Þ= s+ 100ð Þ2
s+ 50ð Þ2 s+ 200ð Þ

SOLUTION:
The following MATLAB code using the ilaplace function will find the desired
waveform:

syms t s
F = (s+100)̂ 2/(s+50)̂ 2/(s+200);
f = ilaplace(F)
pretty (f )

MATLAB returns the following answer:

f =
(5∗exp(-50∗t))/9 + (4∗exp(-200∗t))/9 + (50∗t∗exp(-50∗t))/3

The pretty function helps MATLAB express the answer in a more recogniza-
ble form.

5 exp(-50 t) 4 exp(-200 t) 50 t exp(-50 t)
——————————- + ———————————- + —————————————-

9 9 3

Or, written in a more common way

f tð Þ= 5
9
e−50t +

4
9
e−200t +

50t
3
e−50t

Web Appendix D contains additional examples using MATLAB to compute the
Laplace transform of a waveform or to take the inverse of a transform to find the
waveform. ■

F I N D I N G T R A N S F O R M S F R O M P O L E - Z E R O D I A G R A M S

Pole-zero diagrams give great insight into a circuit’s performance. In designing cir-
cuits, a designer often considers the location of poles and zeros. In some design
requirements, the location of poles and zeros are specified. In this subsection, we dis-
cuss how one can obtain a transform from a pole-zero diagram. In subsequent chap-
ters, we will learn how to design circuits from a desired transform.

Consider the pole-zero diagram in Figure 9–7. There are three poles and three
zeros. There is a pair of imaginary poles at �j500 and a single pole at −100. There
are two real zeros, one at zero and one at −200. A third zero is at infinity. Starting
with the poles, we can write

F sð Þ= K

s2 + 5002
� �

s+ 100ð Þ
Then including the zeros

F sð Þ= Ks s+ 200ð Þ
s2 + 5002
� �

s+ 100ð Þ

jω

σ

–j500

j500

−100−200

1 at ∞ s-plane

FIGURE 9–7
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The one parameter we cannot get from the pole-zero diagram is K, the scale-factor.
This needs to be specified as a separate requirement. We can then apply the rules we
have learned to expand the transform. In the next chapter, we will learn what circuit
elements and/or signals give rise to certain poles and zeros. For now let us be satisfied
with extracting a transform from a pole-zero diagram.

E X A M P L E 9 – 1 7

Find the transform F sð Þ from the pole-zero diagram of Figure 9–8. K is 106.

SOLUTION:
This diagram has four poles and four zeros, two of which are at infinity. Starting with
the poles we see that two are complex conjugates at s1,s2 = −100� j100, and there are
two at s= 0.

F sð Þ= K zerosð Þ
s2 s+ 100− j100ð Þ s+ 100 + j100ð Þ

Including the zeros and the specified K value, we get

F sð Þ= 106 s+ 100ð Þ s−100ð Þ
s2 s+ 100− j100ð Þ s+ 100 + j100ð Þ =

106 s2−104
� �

s2 s2 + 200s+ 2× 104
� �

■

E x e r c i s e 9–26
Find the transform F sð Þ from the pole-zero diagram of Figure 9–9. K is 3 × 104.

A n s w e r:
F sð Þ= 3× 104 s2 + 200s+12500

� �
s s+100ð Þ s+ 200ð Þ2

9–5 C I R C U I T R E S P O N S E U S I N G L A P L A C E T R A N S F O R M S

The payoff for learning about the Laplace transformation comes when we use it to
find the response of dynamic circuits. The pattern for circuit analysis is shown by the
solid line in Figure 9–1. The basic analysis steps are as follows:

S T E P 1 Develop the circuit differential equation in the time domain.

S T E P 2 Transform this equation into the s domain and algebraically solve for the
response transform.

S T E P 3 Apply the inverse transformation to this transform to produce the response
waveform.

The first-order RC circuit in Figure 9–10 will be used to illustrate these steps.

S T E P 1
The KVL equation around the loop and the element i−υ relationship or element
equations are

KVL : −υS tð Þ+ υR tð Þ+ υC tð Þ= 0

Source : υS tð Þ=VAu tð Þ
Resistor : υR tð Þ= i tð ÞR

Capacitor : i tð Þ=C
dυC tð Þ
dt

jω

σ

–j100

j100

−100 100

2

(2)

at ∞ s-plane

FIGURE 9–8

jω

σ

–j50

j50

−200 −100

2

(2)

at ∞ s-plane

FIGURE 9–9

C

R

VAu(t)

+
−

+

−
vC(t)

i(t)

vS(t)

vR(t)+ −

+

−

FIGURE 9–10 First-order RC
circuit.
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Substituting the i−υ relationships into the KVL equation and rearranging terms pro-
duces a first-order differential equation,

RC
dυC tð Þ
dt

+ υC tð Þ=VAu tð ÞV (9–31)

with initial condition υC 0−ð Þ=V0 V.

S T E P 2
The analysis objective is to use Laplace transforms to find the waveform υC tð Þ that
satisfies this differential equation and the initial condition.We first apply the Laplace
transformation to both sides of Eq. (9–31):

ℒ RC
dυC tð Þ
dt

+ υC tð Þ
� �

=ℒ VAu tð Þ½ �

Using the linearity property leads to

RCℒ
dυC tð Þ
dt

� �
+ℒ υC tð Þ½ �=VAℒ u tð Þ½ �

Using the differentiation property and the transform of a unit step function produces

RC sVC sð Þ−V0½ �+VC sð Þ=VA
1
s

(9–32)

This result is an algebraic equation in VC sð Þ, which is the transform of the response
we seek. We rearrange Eq. (9–32) to the form

s+ 1=RCð ÞVC sð Þ= VA=RC
s

+V0

and algebraically solve for VC sð Þ.

VC sð Þ= VA=RC
s s+ 1=RCð Þ +

V0

s+ 1=RC
V-s (9–33)

The functionVC sð Þ is the transform of the waveform υC tð Þ that satisfies the differen-
tial equation and the initial condition. The initial condition appears explicitly in this
equation as a result of applying the differentiation rule to obtain Eq. (9–32).

S T E P 3
To obtain the waveform υC tð Þ, we find the inverse transform of the right side of
Eq. (9–33). The first term on the right is a proper rational function with two simple
poles on the real axis in the s plane. The pole at the origin was introduced by the step
function input. The pole at s= −1=RC came from the circuit. The partial fraction
expansion of the first term in Eq. (9–33) is

VA=RC
s s+ 1=RCð Þ =

k1
s
+

k2
s+ 1=RC

The residues k1 and k2 are found using the cover-up algorithm.

k1 =
VA=RC
s+ 1=RC






s= 0

=VA and k2 =
VA=RC

s






s= −1=RC

= −VA

Using these residues, we expand Eq. (9–33) by partial fractions as

VC sð Þ= VA

s
−

VA

s+ 1=RC
+

V0

s+ 1=RC
V-s (9–34)
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Each term in this expansion is recognizable: The first is a step function and the next
two are exponentials. Taking the inverse transform of Eq. (9–34) gives

υC tð Þ = VA−VAe− t=RC +V0e− t=RC
� �

u tð Þ
= VA + V0−VAð Þe− t=RC� �

u tð ÞV
(9–35)

The waveform υC tð Þ satisfies the differential equation in Eq. (9–31) and the initial
condition υC 0−ð Þ=V0. The term VAu tð Þ is the forced response due to the step func-
tion input, and the term V0−VAð Þe− t=RC� �

u tð Þ is the natural response. The complete
response depends on three parameters: the input amplitude VA, the circuit time con-
stant RC, and the initial condition V0.

These results are identical to those found using the classical methods in Chapter 7.
The outcome is the same, but the method is quite different. The Laplace transforma-
tion yields the complete response (forced and natural) by an algebraic process that
inherently accounts for the initial conditions. The solid arrow in Figure 9–1 shows the
overall procedure. Begin with Eq. (9–31) and relate each step leading to Eq. (9–35) to
steps in Figure 9–1.

E X A M P L E 9 – 1 8

The switch in Figure 9–11 has been in positionA for a long time. At t = 0 it is moved to
position B. Find iL tð Þ for t ≥ 0.

SOLUTION:

S T E P 1 The circuit differential equation is found by combining the KVL equation and
element equations with the switch in position B.

KVL: υR tð Þ+ υL tð Þ= 0

Resistor: υR tð Þ= iL tð ÞR

Inductor: υL tð Þ=L
diL tð Þ
dt

Substituting the element equations into the KVL equation yields

L
diL tð Þ
dt

+RiL tð Þ= 0

Prior to t = 0, the circuit was in a dc steady-state condition with the switch in position
A. Under dc conditions the inductor acts like a short circuit, and the inductor current
just prior to moving the switch is iL 0−ð Þ= I0 =VA=R.

S T E P 2 Using the linearity and differentiation properties, we transform the circuit dif-
ferential equation into the s domain as

L sIL sð Þ−I0½ �+RIL sð Þ= 0

Solving algebraically for IL sð Þ yields

IL sð Þ= I0
s+R=L

A-s

S T E P 3 The inverse transform of IL sð Þ is an exponential waveform:

iL tð Þ= I0e−Rt=L
h i

u tð ÞA
where I0 =VA=R. Substituting iL tð Þ back into the differential equation yields

L
diL tð Þ
dt

+RiL tð Þ= −RI0e−Rt=L +RI0e−Rt=L = 0

The waveform found using Laplace transforms does indeed satisfy the circuit
differential equation and the initial condition. ■

L

R

VA

+

−

vL(t)

iL(t)

vR(t)
+ −

+

−
B

t = 0
A

FIGURE 9–11
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E x e r c i s e 9–27
The inductor in Figure 9–11 is replaced by a capacitor C. The switch has been in position
A for a long time. At t = 0 it is moved to position B. Find VC sð Þ and υC tð Þ for t ≥ 0.

A n s w e r s:

VC sð Þ= VA

s+
1
RC

V-s, υC tð Þ=VAe− t=RCu tð ÞV

E X A M P L E 9 – 1 9

The switch in Figure 9–12 has been open for a long time. At t = 0 the switch is closed.
Find i tð Þ for t ≥ 0.

SOLUTION:
The governing equation for the second-order circuit in Figure 9–12 is found by com-
bining the element equations and a KVL equation around the loop with the switch
closed:

KVL: υR tð Þ+ υL tð Þ + υC tð Þ= 0

Resistor: υR tð Þ = Ri tð Þ

Inductor: υL tð Þ = L
di tð Þ
dt

Capacitor: υC tð Þ =
1
C

Z t

0
i τð Þdτ+ υC 0ð Þ

Substituting the element equations into the KVL equation yields

L
di tð Þ
dt

+Ri tð Þ+ 1
C

Z t

0
i τð Þdτ+ υC 0ð Þ= 0

Using the linearity property, the differentiation property, and the integration
property, we transform this second-order integrodifferential equation into the s
domain as

L sI sð Þ− iL 0ð Þ½ �+RI sð Þ+ 1
C
I sð Þ
s

+ υC 0ð Þ1
s
= 0

Solving for I sð Þ results in

I sð Þ= siL 0ð Þ−υC 0ð Þ=L
s2 +

R
L
s+

1
LC

A-s

Prior to t = 0, the circuit was in a dc steady-state condition with the switch open. In
dc steady state, the inductor acts like a short circuit and the capacitor like an open
circuit, so the initial conditions are iL 0−ð Þ= 0A and υC 0−ð Þ=VA = 10 V. Inserting
the initial conditions and the numerical values of the circuit parameters into the equa-
tion for I sð Þ gives

I sð Þ= −
10

s2 + 400s+ 2× 105
A-s

CVA

+

−

vC(t)
+

−

R

t = 0

R L

R = 400 Ω
L = 1 H

C = 5 μF
VA = 10 V

vL(t)vR(t)
+ − + −

i(t)

FIGURE 9–12
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The denominator quadratic can be factored as s+ 200ð Þ2 + 4002 and I sð Þwritten in the
following form:

I sð Þ= −
10
400

400

s+ 200ð Þ2 + 400ð Þ2
" #

A-s

Comparing the quantity inside the brackets with the entries in the FðsÞ column of
Table 9–2, we find that I sð Þ is a damped sine with α= 200 and β= 400. By linearity,
the quantity outside the brackets is the amplitude of the damped sine. The inverse
transform is

i tð Þ= −0:025e−200t sin 400t
� �

u tð ÞA
Substituting this result back into the circuit integrodifferential equation yields the fol-
lowing term-by-term tabulation:

υL tð Þ = L
di tð Þ
dt

= + 5e−200t sin 400t−10e−200t cos 400tV

υR tð Þ=Ri tð Þ= −10e−200t sin 400tV

υC tð Þ= 1
C

Z t

0
i τð Þdτ= + 5e−200t sin 400t + 10e−200t cos 400t−10 V

υC 0ð Þ= + 10 V

The sum of the far right-hand sides of these equations is zero. This result shows that
the waveform i tð Þ found using Laplace transforms does indeed satisfy the circuit inte-
grodifferential equation and the initial conditions. ■

E x e r c i s e 9–28
The switch in Figure 9–13 has been open a long time. At t = 0 the switch is closed.

(a) Find the differential equation for iL tð Þ and initial condition iL 0ð Þ.
(b) Transform the equation into the s domain.
(c) Solve the equation for IL sð Þ.
(d) Take the inverse transform of IL sð Þ to find iL tð Þ.
A n s w e r s:

(a) 2 = 200iL tð Þ+ 0:05
diL tð Þ
dt

A, iL 0ð Þ=0

(b)
2
s
= 200IL sð Þ+0:05 sIL sð Þ−0ð ÞA-s

(c) IL sð Þ= :01
s

−
:01

s+4000
A-s

(d) iL tð Þ= 10 1−e−4000t
� �

u tð ÞmA

E x e r c i s e 9–29
Find the transforms that satisfy the following equations and the given initial conditions.

(a) dυ tð Þ
dt

+ 6υ tð Þ=4u tð ÞV, υ 0−ð Þ= −3 V

(b) 4
dυ tð Þ
dt

+ 12υ tð Þ=16 cos3t V, υ 0−ð Þ=2 V

A n s w e r s:

(a) V sð Þ= 4
s s+6ð Þ −

3
s+6

V-s

(b) V sð Þ= 4s
s2 + 9ð Þ s+3ð Þ +

2
s+ 3

V-s

iL(t)

t = 0

50 mH

20 mA

100 Ω

100 Ω

FIGURE 9–13
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E x e r c i s e 9–30
Find the transforms that satisfy the following equations and the given initial conditions.

(a)
Z t

0
υ τð Þdτ+ 10υ tð Þ= 10u tð ÞV

(b) d2υ tð Þ
dt2

+ 4
dυ tð Þ
dt

+ 3υ tð Þ= 5e−2t V, υ0 0−ð Þ= 2 V=s, υ 0−ð Þ= −2 V

A n s w e r s:

(a) V sð Þ= 1
s+0:1

V-s

(b) V sð Þ= 5
s+ 1ð Þ s+ 2ð Þ s+3ð Þ −

2
s+ 1

V-s

C I R C U I T R E S P O N S E W I T H T I M E - V A R Y I N G I N P U T S

It is encouraging to find that the Laplace transformation yields results that agree with
those obtained by classical methods. The transformmethod reduces solving circuit dif-
ferential equations to analgebraic process that includes the initial conditions.However,
before being overcome with euphoria, we must remember that the Laplace transform
methodbeginswith thecircuitdifferential equationandthe initial conditions. Itdoesnot
provide thesequantities tous.The transformmethodsimplifies the solutionprocess, but
it does not substitute for understanding how to formulate circuit equations.

The Laplace transform method is especially useful when the circuit is driven by
time-varying inputs. To illustrate, we return to the RC circuit in Figure 9–10 and
replace the step function input by a general input signal denoted υS tð Þ. The right side
of the circuit differential equation in Eq. (9–31) changes to accommodate the new
input by taking the form

RC
dυC tð Þ
dt

+ υC tð Þ= υS tð Þ (9–36)

with an initial condition υC 0ð Þ=V0 V.
The only change here is that the driving force on the right side of the differential

equation is a general time-varying waveform υS tð Þ. The objective is to find the capac-
itor voltage υC tð Þ that satisfies the differential equation and the initial conditions. The
classical methods of solving for the forced response depend on the form of υS tð Þ.
However, with the Laplace transform method, we can proceed without actually spe-
cifying the form of the input signal.

We first transform Eq. (9–36) into the s domain:

RC sVC sð Þ−V0½ �+VC sð Þ=VS sð Þ
The only assumption here is that the input waveform is Laplace transformable, a con-
dition met by all causal signals of engineering interest. We now algebraically solve for
the response VC sð Þ:

VC sð Þ= VS sð Þ=RC
s+ 1=RC

+
V0

s+ 1=RC
V-s (9–37)

The function VC sð Þ is the transform of the response of the RC circuit in Figure 9–10
due to a general input signal υS tð Þ.We have gotten this far without specifying the form
of the input signal. In a sense, we have found the general solution in the s domain of
the differential equation in Eq. (9–36) for any causal input signal.

All of the necessary ingredients are present in Eq. (9–37):

1. The transform VS sð Þ represents the applied input signal.
2. The pole at s= −1=RC defines the circuit time constant.
3. The initial value υC 0−ð Þ=V0 summarizes all events prior to t = 0.
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However, we must have a particular input in mind to solve for the waveform υC tð Þ.
The following examples illustrate the procedure for different input driving forces.

E X A M P L E 9 – 2 0

Find υC tð Þ in the RC circuit in Figure 9–14 when the input is the wave-
form υS tð Þ= VAe−αt½ �u tð ÞV.

SOLUTION:
The transform of the input is VS sð Þ=VA= s+ αð Þ. For the exponential input the
response transform in Eq. (9–37) becomes

VC sð Þ= VA=RC
s+ αð Þ s+ 1=RCð Þ +

V0

s+ 1=RC
V-s (9–38)

If α≠1=RC, then the first term on the right is a proper rational function with two sim-
ple poles. The pole at s= −α came from the input and the pole at s= −1=RC from the
circuit. A partial fraction expansion of the first term has the form

VA=RC
ðs+ αÞðs+ 1=RCÞ =

k1
s+ α

+
k2

s+ 1=RC

The residues in this expansion are

k1 =
VA=RC
s+ 1=RC






s= −α

=
VA

1−αRC

k2 =
VA=RC
s+ α






s= −1=RC

=
VA

αRC−1

The expansion of the response transform VC sð Þ is

VC sð Þ= VA= 1−αRCð Þ
s+ α

+
VA= αRC−1ð Þ

s+ 1=RC
+

V0

s+ 1=RC
V-s

The inverse transform of VC sð Þ is

υC tð Þ= VA

1−αRC
e−αt +

VA

αRC−1
e− t=RC +V0e− t=RC

� �
u tð ÞV

The first term is the forced response, and the last two terms are the natural
response. The forced response is an exponential because the input introduced a pole
at s= −α. The natural response is also an exponential, but its time constant depends on
the circuit’s pole at s= −1=RC. In this case the forced and natural responses are both
exponential signalswithpoleson therealaxis.However, the forcedresponsecomes from
thepole introducedby the input,while thenatural responsedependsonthecircuit’spole.

If α= 1=RC, then the response just given is no longer valid (k1 and k2 become infi-
nite). To find the response for this condition, we return to Eq. (9–38) and replace α
by 1=RC:

VC sð Þ= VA=RC

s+ 1=RCð Þ2 +
V0

s+ 1=RC
V-s

We now have a double pole at s= −1=RC = −α. The double pole term is the trans-
form of a damped ramp, so the inverse transform is

υC tð Þ= VA
t

RC
e− t=RC +V0e− t=RC

h i
u tð ÞV

+

−

vS(t) = VAe−αt  u(t) V

R

C vC(t)+
−

FIGURE 9–14
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When α= 1=RC, the s-domain poles of the input and the circuit coincide and the zero-
state V0 = 0ð Þ response has the form αte−αt. We cannot separate this response into
forced and natural components since the input and circuit poles coincide. ■

E x e r c i s e 9–31
The RC circuit in Figure 9–14 has R= 10 kΩ,C = 0:2 μF, andV0 = −5 V. The input is
υS tð Þ= 10e−1000tu tð ÞV. Find υC tð Þ for t ≥ 0.

A n s w e r: υC tð Þ= 5e−500t−10e−1000t
� �

u tð ÞV.

E X A M P L E 9 – 2 1

Find υC tð Þ when the input to the RC circuit in Figure 9–15 is υS tð Þ= VAcos βt½ �u tð ÞV.

SOLUTION:
The transform of the input is VS sð Þ=VAs= s2 + β2

� �
. For a cosine input the response

transform in Eq. (9–37) becomes

VC sð Þ= sVA=RC

s2 + β2
� �

s+ 1=RCð Þ +
V0

s+ 1=RC
V-s

The sinusoidal input introduces a pair of poles located at s= � jβ. The first term on
the right is a proper rational function with three simple poles. The partial fraction
expansion of the first term is

sVA=RC
s− jβð Þ s+ jβð Þ s+ 1=RCð Þ =

k1
s− jβ

+
k∗1

s+ jβ
+

k2
s+ 1=RC

To find the response, we need to find the residues k1 and k2:

k1 =
sVA=RC

s+ jβð Þ s+ 1=RCð Þ





s= jβ

=
VA=2

1 + jβRC
= k1j jejθ

where

k1j j= VA=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + βRCð Þ2

q and θ= − tan−1 βRCð Þ

The residue k2 at the circuit pole is

k2 =
sVA=RC

s2 + β2






s= −1=RC

= −
VA

1+ βRCð Þ2

We now perform the inverse transform to obtain the response waveform:

υC tð Þ = 2 k1j jcos βt + θð Þ+ k2e− t=RC +V0e− t=RC
� �

u tð Þ

=
VAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + βRCð Þ2
q cos βt + θð Þ− VA

1+ βRCð Þ2 e
− t=RC +V0e− t=RC

2
64

3
75u tð ÞV

The first term is the forced response, and the remaining two are the natural response.
The forced response is sinusoidal because the input introduces poles at s= � jβ. The
natural response is an exponential with a time constant determined by the location of
the circuit’s pole at s= −1=RC. ■

+

−

vS(t) = [VAcosβt] u(t) V

R

C vC(t)+
−

FIGURE 9–15

487CIRCUIT RESPONSE USING LAPLACE TRANSFORMS



E x e r c i s e 9–32
The RL circuit of Figure 9–16 is in the zero state when the input iS tð Þ= 2 cos 1000t½ �u tð ÞA is
applied. Find iL tð Þ for t ≥ 0.

A n s w e r: iL tð Þ= 0:894 cos 1000t−63:4�ð Þ−0:4e−500t� �
u tð ÞA

9–6 I N I T I A L A N D F I N A L V A L U E P R O P E R T I E S
The initial value and final value properties can be stated as follows:

Initial value : lim
t!0 +

f tð Þ= lim
s!∞

sF sð Þ
Final value : lim

t!∞
f tð Þ= lim

s!0
sF sð Þ (9–39)

These properties display the relationship between the origin and infinity in the
time and frequency domains. The value of f tð Þ at t = 0+ in the time domain (initial
value) is the same as the value of sF sð Þ at infinity in the s plane. Conversely, the value
of f tð Þ as t! ∞ (final value) is the same as the value of sF sð Þ at the origin in the
s plane.

Proof of both the initial value and final value properties starts with the differen-
tiation property:

sF sð Þ− f 0−ð Þ=
Z ∞

0−

df tð Þ
dt

e−stdt (9–40)

To establish the initial value property, we rewrite the integral on the right side of this
equation and take the limit of both sides as s! ∞ .

lim
s!∞

sF sð Þ− f 0−ð Þ½ �= lim
s!∞

Z 0 +

0−

df tð Þ
dt

e−stdt + lim
s!∞

Z ∞

0 +

df tð Þ
dt

e−stdt (9–41)

The first integral on the right side reduces to f 0 +ð Þ− f 0−ð Þ since e−st is unity on the
interval from t = 0− to t = 0+ . The second integral vanishes because e−st goes to zero
as s! ∞ . In addition, on the left side of Eq. (9–41), the f 0−ð Þ is independent of s and
can be taken outside the limiting process. Inserting all of these considerations reduces
Eq. (9–41) to

lim
s!∞

sF sð Þ= lim
t!0 +

f tð Þ (9–42)

which completes the proof of the initial value property.
Proof of the final value theorembeginsby taking the limit of both sides ofEq. (9–40)

as s! 0:

lim
s!0

sF sð Þ− f 0−ð Þ½ �= lim
s!0

Z ∞

0−

df tð Þ
dt

e−stdt (9–43)

The integral on the right side of this equation reduces to f ∞ð Þ− f 0−ð Þ because e−st

becomes unity as s! 0. Again, the f 0−ð Þ on the left side is independent of s and can
be taken outside of the limiting process. Inserting all of these considerations reduces
Eq. (9–43) to

lim
s!0

sF sð Þ= lim
t!∞

f tð Þ (9–44)

which completes the proof of the final value property.

200 mH100 Ω

iL(t)

iS(t) = 2 cos1000t u(t) A

FIGURE 9–16
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A damped cosine waveform provides an illustration of the application of these
properties. The transform of the damped cosine is

ℒ Ae−αtcos βt½ �u tð Þf g= A s+ αð Þ
s+ αð Þ2 + β2

Applying the initial and final value limits, we obtain

Initial value : lim
t!0

f tð Þ = lim
t!0

Ae−αtcosβt =A

lim
s!∞

sF sð Þ = lim
s!∞

sA s+ αð Þ
s+ αð Þ2 + β2

=A

Final value : lim
t!∞

f tð Þ = lim
t!∞

Ae−αtcosβt = 0

lim
s!0

sF sð Þ = lim
s!0

sA s+ αð Þ
s+ αð Þ2 + β2

= 0

Note the agreement between the t-domain and s-domain limits in both cases.
There are restrictions on the initial and final value properties. The initial

value property is valid when F sð Þ is a proper rational function or, equivalently,
when f tð Þ does not have an impulse at t = 0. The final value property is valid
when the poles of sF sð Þ are in the left half plane or, equivalently, when f tð Þ is a wave-
form that approaches a final value at t! ∞ . Note that the final value restriction
allows F sð Þ to have a simple pole at the origin since the limitation is on the poles
of sF sð Þ.

Caution: The initial and final value properties will appear to work when the afore-
mentioned restrictions are not met. In other words, these properties do not tell you
they are giving nonsense answers when you violate their limitations. Youmust always
check the restrictions on F sð Þ before applying either of these properties.

For example, applying the final value property to a cosine waveform yields

lim
t!∞

cos βt = lim
s!0

s
s

s2 + β2

� �
= 0

The final value property appears to say that cosβt approaches zero as t! ∞ . This
conclusion is incorrect since the waveform oscillates between −1 and + 1. The prob-
lem is that the final value property does not apply to a cosine waveform because sF sð Þ
has poles on the j-axis at s= � jβ.

E X A M P L E 9 – 2 2

Use the initial and final value properties to find the initial and final values of the
waveform whose transform is

F sð Þ= 2
s+ 3ð Þ

s s+ 1ð Þ s+ 2ð Þ

SOLUTION:
The given F sð Þ is a proper rational function, so the initial value property can be
applied as

f 0ð Þ= lim
s!∞

sF sð Þ= lim
s!∞

2
s+ 3ð Þ

s+ 1ð Þ s+ 2ð Þ
� �

= 0
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The poles of sF sð Þ are located in the left half plane at s= −1 and s= −2; hence, the
final value property can be applied as

f ∞ð Þ= lim
s!0

sF sð Þ= lim
s!0

2
s+ 3ð Þ

s+ 1ð Þ s+ 2ð Þ
� �

= 3

In Example 9–11, the waveform corresponding to this transform was found to be

f tð Þ= 3−4e− t + e−2t
� �

u tð Þ
from which we find

f 0ð Þ = 3−4e−0 + e−0 = 0

f ∞ð Þ = 3−4e−∞ + e−∞ = 3

which confirms the results found directly from f sð Þ. ■

E x e r c i s e 9–33
Find the initial and final values of the waveforms corresponding to the following transforms:

(a) F1 sð Þ=100
s+ 3

s s+ 5ð Þ s+20ð Þ
(b) F2 sð Þ= 80

s s+5ð Þ
s+4ð Þ s+20ð Þ

A n s w e r s:
(a) Initial value = 0, final value = 3.
(b) F2 sð Þ is not a proper rational function, hence, we cannot determine the initial

value, final value = 0.

S U M M A R Y
• The Laplace transformation converts waveforms in

the time domain into transforms in the s domain.
The inverse transformation converts transforms into
causal waveforms. A transform pair is unique if and
only if f tð Þ is causal.

• The Laplace transforms of basic signals like the step
function, exponential, and sinusoid are easily derived
from the integral definition. Other transform pairs can
be derived using basic signal transforms and the
uniqueness, linearity, time integration, time differenti-
ation, and translation properties of the Laplace
transformation.

• Proper rational functions with simple poles can be
expanded by partial fractions to obtain inverse
Laplace transforms. Simple real poles lead to expo-
nential waveforms and simple complex poles to

damped sinusoids. Partial-fraction expansions of
improper rational functions and functions with multi-
ple poles require special treatment. MATLAB soft-
ware can be used to find Laplace transforms from
f tð Þ and waveforms from F sð Þ. (seeWeb Appendix D)

• Using Laplace transforms to find the response of a lin-
ear circuit involves transforming the circuit differential
equation into the s domain, algebraically solving for
the response transform, and performing the inverse
transformation to obtain the response waveform.

• The initial and final value properties determine the ini-
tial and final values of a waveform f tð Þ from the value
of sF sð Þ as s! ∞ and s! 0, respectively. The initial
value property applies if F sð Þ is a proper rational func-
tion. The final value property applies if all of the poles
of sF sð Þ are in the left half plane.
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P R O B L E M S

O B J E C T I V E 9 – 1 L A P L A C E T R A N S F O R M
( S E C T S . 9 – 1 , 9 – 2 , 9 – 3 )
Find the Laplace transform of a given signal waveform using
transform properties and pairs, using the integral definition
of the Laplace transformation, or software applications. Locate
the poles and zeros of the transform and construct a pole-zero
diagram.
See Examples 9–1 to 9–10 and Exercises 9–1 to 9–16.

9–1 Find the Laplace transform of f tð Þ = 3 1 − e−1000 t
� �

u tð Þ.
Locate the poles and zeros of F sð Þ.

9–2 Find the Laplace transform of f tð Þ = 20× 103 sin 60πtð Þ
u tð Þ. Locate the poles and zeros of F sð Þ.

9–3 Find the Laplace transform of f tð Þ = – 5 δ tð Þ + 50 u tð Þ.
Locate the poles and zeros of F sð Þ.

9–4 Find the Laplace transform of f tð Þ = 10 e−2000t −
�

2e−1000 t � u tð Þ. Locate the poles and zeros of F sð Þ.
9–5 Find the Laplace transform of f tð Þ = e−2t − 2et

� �
u tð Þ.

Locate the poles and zeros of F sð Þ.
9–6 Find the Laplace transform of f tð Þ = A B + αtð Þ e−αt½ � u tð Þ.

Locate the poles and zeros of F sð Þ.
9–7 Find the Laplace transform of f tð Þ = 5 − 5 cos 500tð Þ½ � u tð Þ.

Locate the poles and zeros of F sð Þ.
9–8 Find the Laplace transform of f tð Þ = 5 4cos 10tð Þ −½

3sin 10tð Þ� u tð Þ. Locate the poles and zeros of F sð Þ.
9–9 Find the Laplace transform of f tð Þ = δ0 tð Þ + δ tð Þ − e− t u tð Þ.

Locate the poles and zeros of F sð Þ.
9–10 Find the Laplace transform of f tð Þ = 2 − 5t − 2e−25t

� �
u tð Þ. Locate the poles and zeros of F sð Þ.

9–11 Find the Laplace transforms of the following waveforms
and plot their pole-zero diagrams. Then use MATLAB to
validate your results.

(a) f1 tð Þ= 15e−5t −20e−10t
� �

u tð Þ
(b) f2 tð Þ= 10 cos 1000t + cos 2000t½ � u tð Þ

9–12 Find the Laplace transforms of the following waveforms
and plot their pole-zero diagrams.
(a) f1 tð Þ= δ tð Þ+ 100e−100t + 200e−200t

� �
u tð Þ

(b) f2 tð Þ= 15e−2000t + 15 cos 5000t
� �

u tð Þ

9–13 Find the Laplace transforms of the following waveforms.
Locate the poles and zeros of F sð Þ. Use MATLAB to verify
your results.
(a) f1 tð Þ=2δ tð Þ+ 144t e−12t

� �
u tð Þ

(b) f2 tð Þ= 100+ 50e−10t cos100t + sin100tð Þ� �
u tð Þ

9–14 Find the Laplace transforms of the following waveforms.
Use MATLAB to verify your results.
(a) f1 tð Þ=2δ t−1ð Þ
(b) f2 tð Þ= 5e−100 t−2ð Þu t−2ð Þ
(c) f3 tð Þ=200e−50 t−10−3ð Þu t−10−3� �

9–15 Use MATLAB to find the Laplace transform of the
following waveform

f tð Þ= 50+ 2e−10t
� �

u tð Þ+ 2:5 cos 100 t−0:05ð Þ½ � u t−0:05ð Þ

9–16 Find the Laplace transforms of the following waveforms.

(a) f1 tð Þ= d
dt

150e−1000tcos 20kt
� �

u tð Þ

(b) f2 tð Þ=
Z t

0
20e−10xdx+ 10 u tð Þ+ 20

de−10t

dt
u tð Þ

9–17 Consider the waveform in Figure P9–17.

A

f(t)

t
0

0
T

FIGURE P9–17

(a) Write an expression for the waveform f tð Þ using step and
ramp functions.
(b) Use the time-domain translation property to find the
Laplace transform of the waveform f tð Þ found in part (a).
(c) Verify the Laplace transform found in (b) by applying the
definition of the Laplace transformation in Eq. (9–2) to the
waveform f tð Þ found in (a).

9–18 Consider the waveform in Figure P9–18.

A

−A

f(t)

t
0

2TT

FIGURE P9–18
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(a) Write an expression for the waveform f tð Þ using step
functions.
(b) Use the time-domain translation property to find the
Laplace transform of the waveform f tð Þ found in part (a).
(c) Verify the Laplace transform found in (b) by applying the
definition of the Laplace transformation in Eq. (9–2) to the
waveform f tð Þ found in (a).

9–19 For the following waveform:
f tð Þ= 500+ 100e−500t

�
t cos 1000t� u tð Þ

(a) Find the Laplace transform of the waveform. Locate the
poles and zeros of F sð Þ.
(b) Validate your result using MATLAB.

9–20 Consider the waveform in Figure P9–20.

0 TC/2 3TC/2 5TC/22TC 3TCTC

A

f(t)

t

0.368A

FIGURE P9–20

(a) Write an expression for the waveform f tð Þ in
Figure P9–20 using a delayed exponential.
(b) Use the time-domain translation property to find the
Laplace transform of the waveform f tð Þ found in part (a).
(c) Verify the Laplace transform found in (b) by applying the
definition of the Laplace transformation in Eq. (9–2) to the
waveform f tð Þ found in (a).

O B J E C T I V E 9 – 2 I N V E R S E T R A N S F O R M S
( S E C T . 9 – 4 )

(a) Find the inverse transform of a given Laplace
transform using partial fraction expansion, basic
transform properties and pairs, or using soft-
ware tools.

(b) Given a pole-zero diagram, find the respective
transform.

See Examples 9–11 to 9–17 and Exercises 9–17 to 9–26.

9–21 Find the inverse Laplace transforms of the following
functions:

(a) F1 sð Þ= 10
s s+ 50ð Þ

(b) F2 sð Þ= s+ 2
s+ 3ð Þ s+4ð Þ

9–22 Find the inverse Laplace transforms of the following func-
tions. Validate your answers using MATLAB.

(a) F1 sð Þ= s
s+10ð Þ s+ 40ð Þ

(b) F2 sð Þ= s+ 1ð Þ s+ 10ð Þ
s s+ 100ð Þ s+1000ð Þ

9–23 Find the inverse Laplace transforms of the following
functions:

(a) F1 sð Þ= 50 s+ 1000ð Þ s+2000ð Þ
s+500ð Þ s+ 5000ð Þ

(b) F2 sð Þ= 50s2

s+ 100ð Þ s+ 500ð Þ
9–24 Find the inverse Laplace transforms of the following func-

tions. Validate your answers using MATLAB.

(a) F1 sð Þ= s s+10ð Þ s+20ð Þ
s+ 5ð Þ s+50ð Þ

(b) F2 sð Þ= s+1ð Þ3
s+ 10ð Þ2

9–25 Find the inverse Laplace transforms of the following
functions:

(a) F1 sð Þ= 9000

s+10ð Þ2 + 302

(b) F2 sð Þ= 5 s+10ð Þ
s+ 10ð Þ2 + 302

9–26 Find the inverse Laplace transforms of the following func-
tions and sketch their waveforms for β > 0:

(a) F1 sð Þ=A
β s+ βð Þ
s s2 + β2
� �

(b) F2 sð Þ= A s s+ βð Þ
s2 + β2

9–27 Find the inverse Laplace transforms of the following
functions:

(a) F1 sð Þ= α2

s2 s+ αð Þ
(b) F2 sð Þ= α2

s s+ αð Þ2

9–28 Use the sum of residues to find the unknown residues in
the following expansions:

(a) F1 sð Þ= 600
s+10ð Þ s+ 20ð Þ s+ 30ð Þ =

3
s+10

+
k

s+ 20
+

3
s+ 30

(b) F2 sð Þ= 2 s+ 10ð Þ
s+ 15ð Þ s+ 20ð Þ =

k
s+ 15

+
4

s+20
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9–29 Use the sum of residues to find the unknown residue in
the following expansion. Then find the inverse transform
of the completed expansion. Finally, validate your answer
using MATLAB.

F sð Þ= 5000 s+1000ð Þ
s+500ð Þ s+ 5000ð Þ =

5000
9

s+500
+

k
s+ 5000

9–30 Find the inverse Laplace transforms of the following func-
tions and then validate your answers using MATLAB:

(a) F1 sð Þ= 16s
s+ 3ð Þ s2 + 21s+ 20ð Þ

(b) F2 sð Þ= 60 s2 + 16
� �

s s2 + 36ð Þ
9–31 Find the inverse transforms of the following functions:

(a) F1 sð Þ= s+ 106
� �

s+ 107
� �

s s+105
� 	

s+ 108
� �

(b) F2 sð Þ= 5 s4 + 10s2 + 4
� �

s s2 + 1ð Þ s2 + 4ð Þ
9–32 Find the inverse transforms of the following functions:

(a) F1 sð Þ= 300 s+ 50ð Þ
s2 s2 + 40s+ 300ð Þ

(b) F2 sð Þ= 1000s2

s+5ð Þ s2 + 4s+ 8ð Þ
9–33 Find the inverse transforms of the following functions:

(a) F1 sð Þ= 16 s2 + 256
� �

s s2 + 8s+ 32ð Þ
(b) F2 sð Þ= 3 s2 + 20s+ 400

� �
s s2 + 50s+ 400ð Þ

9–34 Find the inverse Laplace transforms of the following func-
tions using MATLAB:

(a) F1 sð Þ= s+ 100ð Þ3
s+ 50ð Þ2 s+200ð Þ2

(b) F2 sð Þ= s+50ð Þ3
s+100ð Þ2 s+ 200ð Þ2

9–35 A certain transform F sð Þ=K s+ γ
s+ α has a simple pole at

s = −50, a simple zero at s = −γ, and a scale factor of K = 1.
Select values for γ so that the inverse transform is
(a) f tð Þ = δ tð Þ − 5e−50t

(b) f tð Þ = δ tð Þ
(c) f tð Þ = δ tð Þ + 5e−50t

9–36 Find the inverse transforms of the following functions:

(a) F1 sð Þ= s s+10ð Þ s+100ð Þ
s+ 1ð Þ s+ 1000ð Þ s+ 10000ð Þ

(b) F2 sð Þ= s+1000ð Þ s+ 100000ð Þ
s+ 10000ð Þ

9–37 Find the inverse transforms of the following functions:

(a) F1 sð Þ= s2 + 1
� �
s+5ð Þ

(b) F2 sð Þ= s+ 1000ð Þ2
s+10000ð Þ2

9–38 Find the inverse transforms of the following functions:

(a) F1 sð Þ= e−10s s+100ð Þ
s+ 10ð Þ s+1000ð Þ

(b) F2 sð Þ= se−10s + 100
s+10ð Þ s+1000ð Þ

(c) F3 sð Þ= s+100e−10s

s+10ð Þ s+1000ð Þ
9–39 Use MATLAB to find the inverse transform and plot the
poles and zeros of the following function:

F sð Þ= 500s s2 + 30s+ 400
� �

s+ 20ð Þ s3 + 6s2 + 16s+ 16ð Þ
(Hint: Refer to Web Appendix D for examples on how to use
MATLAB’s function pzplot to find poles and zeros of trans-
fer functions.)

9–40 Use MATLAB to find the inverse transform and plot the
poles and zeros of the following function:

F sð Þ = 500 s3 + 2s2 + s + 2
� �

s s3 + 4 s2 + 4 s + 16
� �

(Hint: Refer to Web Appendix D for examples on how to use
MATLAB’s function pzplot to find poles and zeros of trans-
fer functions.)

9–41 Find the transform F sð Þ from the pole-zero diagram of
Figure P9–41. K is 3.

jω

σ

–j7.5

j7.5

−10 −5

1 at ∞ s-plane

FIGURE P9–41

9–42 Find the transform F sð Þ from the pole-zero diagram of
Figure P9–42. K is 5 × 106. Use MATLAB to find the corre-
sponding waveform f tð Þ.
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jω

σ

–j500

–j250

j500

j250

−100 −50

(2)

1 at ∞ s-plane

FIGURE P9–42

9–43 Find the transform F sð Þ from the pole-zero diagram of
Figure P9–43. K is 500.

jω

σ

–j50

j50

−100 −50 50

s-plane

FIGURE P9–43

O B J E C T I V E 9 – 3 C I R C U I T R E S P O N S E U S I N G
L A P L A C E T R A N S F O R M S ( S E C T . 9 – 5 )
Given a first- or second-order circuit:
(a) Determine the circuit differential equation and the initial

conditions (if not given).
(b) Transform the differential equation into the s domain and

solve for the response transform.
(c) Use the inverse transformation to find the response

waveform.
See Examples 9–18 to 9–21 and Exercises 9–27 to 9–32.

9–44 Use the Laplace transformation to find the v tð Þ that satis-
fies the following first-order differential equations:

(a) 250
dv tð Þ
dt

+2500v tð Þ= 0, v 0−ð Þ=100 V

(b)
dv tð Þ
dt

+ 300v tð Þ=300 u tð Þ, v 0−ð Þ= −150 V

9–45 Use the Laplace transformation to find the i tð Þ that satis-
fies the following first-order differential equation:

di tð Þ
dt

+ 500 i tð Þ= 0:100e−100t
� �

u tð Þ, i 0−ð Þ = 0A

9–46 The switch in Figure P9–46 has been open for a long time
and is closed at t =0. The circuit parameters are R = 10 kΩ,
L = 100 mH, and VA = 24 V.

LRVA

+

−

iL(t)t = 0R

FIGURE P9–46

(a) Find the differential equation for the inductor current
iL tð Þ and initial condition iL 0ð Þ.
(b) Transform the equation into the s domain.
(c) Solve the equation for IL sð Þ.
(d) Take the inverse transform of IL sð Þ to find iL tð Þ.

9–47 The switch in Figure P9–46 has been closed for a long time
and is opened at t = 0. The circuit parameters are R = 50Ω,
L = 200 mH, and VA = 30 V.
(a) Find the differential equation for the inductor current
iL tð Þ and initial condition iL 0ð Þ.
(b) Transform the equation into the s domain.
(c) Solve the equation for IL sð Þ.
(d) Take the inverse transform of IL sð Þ to find iL tð Þ.

9–48 The switch in Figure P9–48 has been open for a long time.
At t = 0 the switch is closed.

t = 0

+
−vS(t)

100 kΩ 50 kΩ

1000 pF 150 kΩ vO

+

−

FIGURE P9–48

(a) Find the differential equation for the capacitor voltage
and initial condition vC 0ð Þ.
(b) Find vO tð Þ using the Laplace transformation
for vS tð Þ= 100 u tð ÞV.

9–49 Repeat Problem 9–48 for the input waveform
vS tð Þ=169 cos 377t½ � u tð ÞV. Use MATLAB to plot the
result. Validate your results by simulating the circuit in
Multisim.

9–50 Repeat Problem 9–48 for the input waveform
vS tð Þ=10 e−2000tu tð ÞV. Use MATLAB to plot the result.
Validate your results by simulating the circuit in Multisim.
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9–51 Use the Laplace transformation to find the v tð Þ that satis-
fies the following second-order differential equation:

d2v tð Þ
dt2

+ 20
dv tð Þ
d t

+ 1000 v tð Þ = 0, v 0−ð Þ= 20 V and

dv 0−ð Þ
dt

=0:

9–52 Use the Laplace transformation to find the v tð Þ that satis-
fies the following second-order differential equation:

d2v tð Þ
dt2

+ 40
dv tð Þ
dt

+ 400 v tð Þ = 0, v 0−ð Þ= 0 and

dv 0−ð Þ
dt

= 500 V=s

9–53 The switch in Figure P9–53 has been open for a long time
and is closed at t =0. The circuit parameters are R=50Ω,
L= 250mH, C = 0:5 μF, and VA =1000 V.

LCVA

+

−

iL(t)

vC(t)
t = 0

R R

+

−

FIGURE P9–53

(a) Find the circuit differential equation in iL tð Þ and the ini-
tial conditions iL 0ð Þ and vC 0ð Þ.
(b) Use Laplace transforms to solve for iL tð Þ for t ≥ 0.

9–54 The switch in Figure P9–53 has been open for a long time
and is closed at t = 0. The circuit parameters are R= 500Ω,
L= 2:5 H, C = 2:5 μF, and VA =500 V.
(a) Find the circuit differential equation in vC tð Þ and the ini-
tial conditions iL 0ð Þ and vC 0ð Þ.
(b) Use Laplace transforms to solve for vC tð Þ for t ≥ 0.
(c) Simulate the circuit in Multisim to plot your resulting
waveform.

9–55 The switch in Figure P9–55 has been closed for a long time
and is opened at t = 0.

+

−
vC(t)t = 0

R1 R2

C

L

vS(t) +
−

iL(t)

FIGURE P9–55

(a) Find the circuit differential equation in vC tð Þ and the ini-
tial conditions iL 0ð Þ and vC 0ð Þ.

(b) The circuit parameters are L=50 H, C = 0:25 μF,
R1 = 10 kΩ, R2 = 20 kΩ, and vS = 10u tð ÞV.

V. Use Laplace transforms and MATLAB to solve for
vC tð Þ for t ≥ 0:

9–56 The switch in Figure P9–55 has been open for a long time
and is closed at t = 0.
(a) Find the circuit differential equation in iL tð Þ and the ini-
tial conditions iL 0ð Þ and vC 0ð Þ .
(b) The circuit parameters are L=50 H, C = 0:25 μF,
R1 = 10 kΩ, R2 = 10Ω, and vS = 10u tð ÞV. Use Laplace trans-
forms and MATLAB to solve for iL tð Þ for t ≥ 0.
(c) Simulate the circuit in Multisim to plot your resulting
waveform.

9–57 The RLC circuit in Figure P9–57 is in the zero state when
at t = 0 an exponential source, vS tð Þ=VAe−αt V, is suddenly
connected to it.

t = 0

+
−vS(t)

R L i(t)

C

FIGURE P9–57

(a) Find the circuit integrodifferential equation that
describes the behavior of the current in the circuit.
(b) If R= 82Ω, L= 100mH, C = 15 μF, VA =15 V, and
α=500 s−1, use Laplace transforms and MATLAB to solve
for i tð Þ for t ≥ 0:

9–58 Repeat Problem 9–57 when an exponential source,
vS tð Þ= 15 1 − e−500t

� �
V, is suddenly connected to the circuit.

9–59 Find vC tð Þ for t ≥ 0 when the input to the RC cir-
cuit shown in Figure P9–59 is vS tð Þ=VAr tð ÞV. Assume
vC 0 –ð Þ=0 V.

+

−

vS(t) = VAr(t)

R

C vC(t)+
−

FIGURE P9–59

9–60 For the inverting OPAMP circuit shown in Figure P9–60,
write a differential equation for vO tð Þ in terms of the elements
and vS tð Þ. Assume vC 0ð Þ= 0: Then let vS tð Þ= e−10t u tð ÞV,
R1 = 1 kΩ, R2 = 10 kΩ, and C = 1 μF and using Laplace tech-
niques, find the output vO tð Þ.
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R2

R1

C2

+

–

+
–

+
–

vO(t)vS(t)

FIGURE P9–60

O B J E C T I V E 9 – 4 I N I T I A L A N D F I N A L V A L U E
P R O P E R T I E S ( S E C T . 9 – 6 )
Given the Laplace transform of a signal, find the initial and
final values of the signal waveform. See Example 9–22
and Exercise 9–33.

9–61 Use the initial and final value properties to find the initial
and final values of the waveforms corresponding to the trans-
forms below. If either property is not applicable, explain why.

(a) F1 sð Þ= 100 s+1ð Þ
s+2ð Þ s+3ð Þ

(b) F2 sð Þ= s−20
s s+ 5ð Þ

9–62 Use the initial and final value properties to find the initial
and final values of the waveforms corresponding to the trans-
forms below. If either property is not applicable, explain why.

(a) F1 sð Þ= 30s2

s+1ð Þ s2 + 13s+12ð Þ
(b) F2 sð Þ= s+1000

s s+ 10ð Þ s+ 100ð Þ
9–63 Use the initial and final value properties to find the initial

and final values of the waveforms corresponding to the trans-
forms below. If either property is not applicable, explain why.

(a) F1 sð Þ=400
s

s+100ð Þ2 + 2002

(b) F2 sð Þ= 50 3s4 + 10s2 + 4
� �

s s2 + 1ð Þ s2 + 4ð Þ
9–64 Use the initial and final value properties to find the initial

and final values of the waveforms corresponding to the trans-
forms below. If either property is not applicable, explain why.

(a) F1 sð Þ= 50 s s2 + 7 s + 10
� �

s + 2ð Þ s + 6ð Þ s + 24ð Þ
(b) F2 sð Þ= 125 s2 + 10s+ 40

� �
s s2−625ð Þ

9–65 Use the initial and final value properties to find the initial
and final values of the waveforms corresponding to the fol-
lowing transforms. If either property is not applicable,
explain why.

(a) F1 sð Þ= s s + 6ð Þ
s2 + 6 s + 9

(b) F2 sð Þ= 10 s2 + 100s+ 1000
� �

s s2 + 200s+ 1000ð Þ

9–66 Use the initial and final value properties to find the
initial and final values of the waveform corresponding to
the following transform. If either property is not applicable,
explain why.

F sð Þ= 80 s3 + 2s2 + s + 2
� �

s s3 + 4 s2 + 4 s + 16
� �

9–67 The MATLAB function limit can be used to take the
limit of a symbolic expression. Use MATLAB and the initial
and final value properties to find the initial and final values
of the waveforms corresponding to the following transforms.
If either property is not applicable, explain why. Use
MATLAB again to compute the waveforms corresponding
to each transform and then take limits in the time domain
to verify the answers found using the initial and final value
properties.

(a) F1 sð Þ= s+ 300ð Þ2
s+30ð Þ2 s+ 1000ð Þ

(b) F2 sð Þ= s+ 200ð Þ2
s+ 100ð Þ2 s+2000ð Þ

I N T E G R A T I N G P R O B L E M S

9–68 The Dominant Pole Approximation

When a transform F sð Þ has widely separated poles, then
those closest to the j-axis tend to dominate the response
because they have less damping. An approximation to
the waveform can be obtained by ignoring the contribu-
tions of all except the dominant poles. We can ignore the
other poles simply by discarding their terms in the partial
fraction expansion of F sð Þ. The purpose of this example
is to examine a dominant pole approximation of the
transform

F sð Þ= 106
s+ 4000

s+ 1000ð Þ s+ 25ð Þ2 + 1002
h i

(a) Construct a partial-fraction expansion of F sð Þ and
find f tð Þ.
(b) Construct a pole-zero diagram of F sð Þ and identify the
dominant poles.
(c) Construct a dominant pole approximation g tð Þ by dis-
carding the other poles in the partial fraction expansion in
part (a).
(d) Plot f tð Þ and g tð Þ and comment on the accuracy of the
approximation.
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9–69 First-Order Circuit Step Response

In Chapter 7, we found that the step response of a first-order
circuit can be written as

f tð Þ= f ∞ð Þ + f 0ð Þ − f ∞ð Þ½ � e− t=TC

where f 0ð Þ is the initial value, f ∞ð Þ is the final value and TC is
the time constant. Show that the corresponding transform has
the form

F sð Þ=K
s + γ

s s + αð Þ
� �

and relate the time-domain parameters f 0ð Þ, f 4ð Þ, and TC to the
s-domain parameters K, γ, and α.

9–70 Inverse Transform for Complex Poles

In Section 9–4, we learned that complex poles occur in conju-
gate pairs and that for simple poles the partial fraction expan-
sion of F sð Þ will contain two terms of the form

F sð Þ=…
k

s + α − jβ
+

k∗

s + α + jβ
+…

Show that when the complex conjugate residues are written in
rectangular form as

k= a + jb and k∗ = a − jb

the corresponding term in the waveform f tð Þ is
f tð Þ…+ 2e−α t a cos β tð Þ − b sin β tð Þ½ � +…

9–71 Solving State Variable Equations

With zero input, a series RLC circuit can be described by
the following coupled first-order equations in the induc-
tor current iL tð Þ and capacitor voltage vC tð Þ.

dvC tð Þ
dt

=
1
C

iL tð Þ
diL tð Þ
dt

= −
1
L

vC tð Þ − R
L

iL tð Þ

(a) Transform these equations into the s domain and solve
for the transforms IL sð Þ and VC sð Þ in terms of the initial con-
ditions iL 0ð Þ= I0 and vC 0ð Þ=V0.
(b) Find iL tð Þ and vC tð Þ for R=100Ω, L= 100 mH, C = 1 μF,
I0 = 10mA, and V0 = 15 V.

9–72 Complex Differentiation Property

The complex differentiation property of the Laplace transfor-
mation states that

If L f tð Þf g=F sð Þthen L tf tð Þf g= −
d
ds

F sð Þ

Use this property to find the Laplace transforms of f tð Þ=
tg tð Þf gu tð Þ when g tð Þ= e−αt . Repeat for g tð Þ= sin βt and
g tð Þ= cos βt.

9–73 Butterworth Poles

Steven Butterworth, a British engineer, 1885–1958, discovered
a method of designing electric filters. He was quoted saying
“An ideal electrical filter should not only completely reject
the unwanted frequencies but should also have uniform sensi-
tivity for the wanted frequencies.” His algorithms are widely
used in filter design, as we will see in Chapter 14. He based
his design on locating the poles of his filters in a unique pattern
around a circle of radius ωC. The number of poles on the circle
constitutes the order of the filter. Themore poles, the better the
filter is. Odd-order filters include one real pole at –ωC and pairs
of complex-conjugate poles placed on a circle of radius ωC

at equal angular spacing. Even-order filters locate complex-
conjugate poles placed on a circle of radius ωC at equal angular
spacing. Figure P9–73 shows the location of the poles in a third-
and in a fourth-order Butterworth filter. Assuming an ωC of
1 rad=s, what is the denominator of the Laplace transform,
F sð Þ, associated with each of the two Butterworth filters shown
in the figure?

Third-order
Butterworth

jω

ωC−ωC
σ

60º

60º

Fourth-order
Butterworth

jω

ωC−ωC
σ

45º

45º

45º

FIGURE P9–73
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C H A P T E R 10 s-DOMAIN CIRCUIT
ANALYSIS

The resistance operator Z is a function of the electrical constants of the circuit components and of d/dt, the operator of time-differentiation,
which will in the following be denoted by p simply.

Oliver Heaviside, 1887,
British Engineer

Some History Behind This Chapter
The use of operational methods to study electric circuits was
pioneered by Oliver Heaviside (1850–1925). The quotation
given here was taken from his book Electrical Papers, orig-
inally published in 1887. His resistance operator Z, which he
later called impedance, is a central theme for much of electri-
cal engineering. Heaviside does not often receive the recog-
nition he deserves, in part because his intuitive approach was
not accepted by most Victorian scientists of his day. Mathe-
matical justification for his methods was eventually supplied
by John Bromwich and others. However, no important errors
were found in Heaviside’s results.

Why This Chapter Is Important Today
In this chapter we use Laplace transforms to make analyzing
dynamic circuits no more difficult than dc circuits. You will
see that all the circuit analysis tools learned in Chapters 1
through 4 can be extended to the study of the transient
response of linear circuits. In addition, pole-zero diagrams
will give you a new way to visualize and predict circuit
behavior.

Chapter Sections
10–1 Transformed Circuits
10–2 Basic Circuit Analysis in the s Domain
10–3 Circuit Theorems in the s Domain
10–4 Node-Voltage Analysis in the s Domain
10–5 Mesh-Current Analysis in the s Domain
10–6 Summary of s-Domain Circuit Analysis

Chapter Learning Objectives
10-1 Equivalent Impedance (Sects. 10–1 and 10–2)

Given a linear circuit, use series and parallel equivalence to
find the equivalent impedance at specified terminal pairs.
Select element values to obtain specified pole locations.

10-2 Basic Circuit Analysis Techniques (Sects. 10–2 and
10–3)

Given a linear circuit:
(a) Determine the initial conditions (if not given) and

transform the circuit into the s domain.
(b) Solve for zero-state and zero-input responses using

circuit reduction, the unit output method, Thévenin
or Norton equivalent circuits, or superposition.

(c) Identify the forced and natural poles in the responses
or select circuit parameters to place the natural poles
at specified locations.

10-3 General Circuit Analysis (Sects. 10–4–10–6)

Given a linear circuit:
(a) Determine the initial conditions (if not given) and

transform the circuit into the s domain.
(b) Solve for zero-state and zero-input response trans-

forms and waveforms using node-voltage or mesh-
current methods.

(c) Identify the forcedandnatural poles in the responses,
or select circuit parameters to place the natural poles
at specified locations.
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10–1 T R A N S F O R M E D C I R C U I T S
So far, we have used the Laplace transformation to change waveforms into trans-
forms and convert circuit differential equations into algebraic equations. These
operations provide a useful introduction to the s domain. However, the real power
of the Laplace transformation emerges when we transform the circuit itself and study
its behavior directly in the s domain.

The solid arrow in Figure 10–1 indicates the analysis path we will be following
in this chapter. The process begins with a linear circuit in the time domain. We
transform the circuit into the s domain, write the circuit equations directly in that
domain, and then solve these algebraic equations for the response transform. The
inverse Laplace transformation then produces the response waveform. However,
the s-domain approach is not just another way to derive response waveforms. This
approach allows us to work directly with the circuit model using the analysis tools
studied for dc circuits such as voltage division and equivalence plus some new ones
using s-domain concepts. By working directly with the circuit model, we gain insights
into the interaction between circuits and signals that cannot be obtained using the
classical approach indicated by the dotted path in Figure 10–1.

How are we to transform a circuit?We have seen several times that circuit analysis
is based on device and connection constraints. The connection constraints are
derived from Kirchhoff’s laws and the device constraints from the i−υ relationships
used to model the physical devices in the circuit. To transform circuits, we must see
how these two types of constraints are altered by the Laplace transformation.

C O N N E C T I O N C O N S T R A I N T S I N T H E s D O M A I N

A typical KCL connection constraint could be written as

i1ðtÞ+ i2ðtÞ− i3ðtÞ+ i4ðtÞ= 0

Linear
circuit

Differential
equation

Classical
techniques

Response
waveform

Laplace
transform

Laplace
transform

Inverse
transform

Transformed
circuit

Algebraic
equation

Algebraic
techniques

Response
transform‒1

Begin

End

Time domain
(t domain)

Complex frequency domain
(s domain)

Laplace solution methods in Chapter 9

Laplace solution methods in this chapter

C
la

ss
ic

al
 s

o
lu

ti
o
n
 m

et
h
o
d
s 

in
 C

h
ap

te
r 

7

FIGURE 10–1 Flow diagram
for s-domain circuit analysis.
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This connection constraint requires that the sum of the current waveforms at a node
be zero for all times t. Using the linearity property, the Laplace transformation of this
equation is

I1ðsÞ+ I2ðsÞ−I3ðsÞ+ I4ðsÞ= 0

In the s domain, the KCL connection constraint requires that the sum of the current
transforms be zero for all values of s. This idea generalizes to any number of currents
at a node and any number of nodes. In addition, this idea obviously applies to Kirchh-
off’s voltage law as well. The form of the connection constraints do not change
because they are linear equations and the Laplace transformation is a linear opera-
tion. In summary, KCL and KVL apply to waveforms in the t domain and to trans-
forms in the s domain.

E L E M E N T C O N S T R A I N T S I N T H E S D O M A I N

Turning now to the element constraints, we first deal with the independent signal
sources shown in Figure 10–2. The i−υ relationships for these elements are

Voltage source: υðtÞ= υSðtÞ
iðtÞ= Depends on circuit

Current source: iðtÞ= iSðtÞ
υðtÞ= Depends on circuit

(10–1)

Independent sources are two-terminal elements. In the t domain, they constrain the
waveform of one signal variable and adjust the unconstrained variable to meet the
demands of the external circuit. We think of an independent source as a generator
of a specified voltage or current waveform. The Laplace transformation of the
expressions in Eq. (10–1) yields

Voltage source: VðsÞ =VSðsÞ
IðsÞ =Depends on circuit

Current source: IðsÞ = ISðsÞ
VðsÞ =Depends on circuit

(10–2)

In the s domain, independent sources function the same way as in the
t domain, except that we think of them as generating voltage or current
transforms rather than waveforms.

Next we consider the active elements in Figure 10–3. In the time
domain, the element constraints for linear dependent sources are linear
algebraic equations. Because of the linearity property of the Laplace
transformation, the forms of these constraints are unchanged when
they are transformed into the s domain:

t domain s domain
Voltage-controlled υ2ðtÞ= μυ1ðtÞ V2ðsÞ= μV1ðsÞ
voltage source

Current-controlled i2ðtÞ= βi1ðtÞ I2ðsÞ= βI1ðsÞ
current source

Current-controlled υ2ðtÞ= ri1ðtÞ V2ðsÞ= rI1ðsÞ
voltage source

Voltage-controlled i2ðtÞ= gυ1ðtÞ I2ðsÞ= gV1ðsÞ
current source

(10–3)

+
−

+
−vS(t) VS(s)

iS(t) IS(s)

+

v(t)

−

+

V(s)

−

−

v(t)

+

−

V(s)

+

i(t) I(s)

t domain s domain

i(t) I(s)

(a)

(b)

FIGURE 10–2 s-Domain models of
independent sources.
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Similarly, the element constraints of the ideal OPAMP are linear algebraic equations
that are unchanged in form by the Laplace transformation:

t domain s domain

υPðtÞ= υNðtÞ VPðsÞ=VNðsÞ
iNðtÞ= 0 INðsÞ= 0

iPðtÞ= 0 IPðsÞ= 0

(10–4)

Thus, for linear active devices, the only difference is that in the s domain the ideal
element constraints apply to transforms rather than waveforms.

Finally,weconsider the two-terminalpassive circuit elements shown inFigure10–4.
In the time domain their i−υ relationships are

Resistor: υRðtÞ = RiRðtÞ

Inductor: υLðtÞ = L
diLðtÞ
dt

Capacitor: υCðtÞ = 1
C

Z t

0
iCðτÞdτ+ υCð0Þ

(10–5)

+
−

−

+

μv1(t)

+

−

v2(t)

−

+

v2(t)

−

+

v1(t) +
−

−

+

μV1(s) V2(s)

+
−

+
−

−

+

V2(s)

−

+

V1(s)

−

−

+

+

+

+

v1(t)

vO(t)
vP(t)

iP(t)

iN(t)

iO(t)

vN(t)

−

+

V1(s)

βi1(t)

i1(t) i2(t)

βI1(s)

I1(s) I2(s)

gv1(t)

i2(t)

gV1(s)

I2(s)

+

−

−

+

+

+
VO(s)

VP(s)

IP(s)

IN(s)

IO(s)

VN(s)

ri1(t)

i1(t)

rI1(s)

I1(s)

t domain s domain FIGURE 10–3 s-Domain
models of dependent sources
and OP AMPs.
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These element constraints are transformed into the s domain by
taking the Laplace transform of both sides of each equation using
the linearity, differentiation, and integration properties.

Resistor:VRðsÞ = RIRðsÞ
Inductor:VLðsÞ = LsILðsÞ−LiLð0Þ

Capacitor:VCðsÞ = 1
Cs

ICðsÞ+ υCð0Þ
s

(10–6)

As expected, the element relationships are algebraic equations
in the s domain. For the linear resistor, the s-domain version of
Ohm’s law says that the voltage transform VRðsÞ is proportional
to the current transform IRðsÞ. The element constraints for the
inductor and capacitor also involve a proportionality between
voltage and current but include a term for the initial conditions
as well.

The element constraints in Eq. (10–6) lead to the s-domain cir-
cuit models shown on the right side of Figure 10–4. The t-domain
parameters L and C are replaced by proportionality factors Ls
and 1=Cs in the s domain. The initial conditions associated with
the inductor and capacitor are modeled as voltage sources in
series with these elements. The polarities of these sources are
determined by the sign of the corresponding initial condition
terms in Eq. (10–6). These initial condition voltage sources must
be included when using these models to calculate the voltage
transforms VLðsÞ or VCðsÞ.

I M P E D A N C E A N D A D M I T T A N C E

The concept of impedance is a basic feature of s-domain circuit analysis. For zero
initial conditions, the element constraints in Eq. (10–6) reduce to

Resistor:VRðsÞ = ðRÞIRðsÞ
Inductor:VLðsÞ = ðLsÞILðsÞ

Capacitor:VCðsÞ = ð1=CsÞICðsÞ
(10–7)

In each case, the element constraints are all of the form VðsÞ=ZðsÞIðsÞ, which means
that in the s domain the voltage across the element is proportional to the current
through it. The proportionality factor is called the element impedance ZðsÞ. Stated
formally,

Impedance is the proportionality factor relating the transform of the voltage across
a two-terminal element to the transform of the current through the element with all
initial conditions set to zero.

The impedances of the three passive elements are

Resistor:ZRðsÞ = R

Inductor:ZLðsÞ = Ls with iLð0Þ= 0

Capacitor:ZCðsÞ = 1=Cs with υCð0Þ= 0

(10–8)

It is important to remember that part of the definition of s-domain impedance is that
the initial conditions are zero.

The s-domain impedance is a generalization of the t-domain concept of resist-
ance. The impedance of a resistor is its resistance R. The impedance of the inductor

R

+

vR(t)

−

+

VR(s)

−

iR(t) IR(s)

t domain s domain

iL(t) IL(s)

(a)

(b)

iC(t) IC(s)

(c)

+

vL(t)

−

+

VL(s)

−

+

vC(t)

−

+

VC(s)

−

−
+

+
−

L

C

R

Ls

LiL(0)

1/Cs

vC(0)
s

FIGURE 10–4 s-Domain models of passive elements
using voltage sources for initial conditions.
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and capacitor depend on the inductance L and capacitance C
and the complex frequency variable s. Since a voltage transform
has units of V-s and current transform has units of A-s, it follows
that impedance has units of ohms since ðV-sÞ=ðA-sÞ=V=A=Ω.

Algebraically solving Eq. (10–6) for the element currents in
terms of the voltages produces alternative s-domain models.

Resistor: IRðsÞ = 1
R
VRðsÞ

Inductor: ILðsÞ = 1
Ls

VLðsÞ+ iLð0Þ
s

Capacitor: ICðsÞ = Cs VCðsÞ−CυCð0Þ

(10–9)

In this form, the i−υ relations lead to the s-domainmodels shown
in Figure 10–5. The reference directions for the initial condition
current sources are determined by the sign of the corresponding
terms in Eq. (10–9). The initial condition sources are in parallel
with the element impedance. Note that the relationships shown
in Eq. (10–9) are just source transformations of those shown in
Eq. (10–6).

Admittance YðsÞ is the s-domain generalization of the
t-domain concept of conductance and can be defined as the
reciprocal of impedance.

YðsÞ= 1
ZðsÞ (10–10)

Using this definition, the admittances of the three passive ele-
ments are

Resistor:YRðsÞ = 1
ZRðsÞ =

1
R

= G

Inductor:YLðsÞ = 1
ZLðsÞ =

1
Ls

with iLð0Þ= 0

Capacitor:YCðsÞ = 1
ZCðsÞ = Cs with υCð0Þ= 0

(10–11)

Since YðsÞ is the reciprocal of impedance, its units are siemens since Ω−1 =A=V=S.
In summary, to transform a circuit into the s domain, we replace each element by

an s-domain model. For independent sources, dependent sources, OP AMPs, and
resistors, the only change is that these elements now constrain transforms rather
than waveforms. For inductors and capacitors, we can use either the model with a
series initial condition voltage source (Figure 10–4) or the model with a parallel
initial condition current source (Figure 10–5). However, to avoid possible confusion,
we always write the inductor impedanceLs and capacitor impedance 1=Cs beside the
transformed element regardless of which initial condition source is used.

To analyze the transformed circuit, we can use the tools developed for resistance
circuits in Chapters 2 through 4. These tools are applicable because KVL and KCL
apply to transforms, and the s-domain element constraints are linear equations sim-
ilar to those for resistance circuits. These features make s-domain analysis of dynamic
circuits an algebraic process that is akin to resistance circuit analysis to phasor circuit
analysis studied in Chapter 8.

R

+

vR(t)

−

+

VR(s)

−

iR(t) IR(s)

t domain s domain

iL(t) IL(s)

(a)

(b)

iC(t) IC(s)

(c)

+

vL(t)

−

+

vC(t)

−

L

C

R

+

VL(s)

−

+

VC(s)

−

Ls

1/Cs

iL(0)

s

CvC(0)

FIGURE 10–5 s-Domain models of passive elements
using current sources for initial conditions.
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E X A M P L E 1 0–1

The switch in Figure 10–6(a) has been in position 1 for a long time and is moved to
position 2 at t = 0. For t > 0, transform the circuit into the s domain and use Laplace
transforms to solve for the voltage υCðtÞ.

SOLUTION:
We have solved this type of problem before using various methods. In this example,
we find the response by first transforming the circuit itself. For t > 0, the transformed
circuit takes the form in Figure 10–6(b), where we have used a parallel current source
CυC 0ð Þ to account for the initial condition.

Applying KCL to the current transforms at node A produces

−I1 sð Þ−I2 sð Þ+CυC 0ð Þ= 0A-s

For t < 0 the switch in Figure 10–6(a) is in position 1 and the circuit is in a dc
steady-state condition. As a result, we have υC 0ð Þ=VA. In the s-domain circuit in
Figure 10–6(b), the two branch current transforms can be written in terms of the
capacitor voltage and element impedances as

Resistor: I1 sð Þ = VC sð Þ
R

Capacitor: I2 sð Þ = VC sð Þ
1=Cs

=CsVC sð Þ

Substituting these observations into the KCL equation and solving for VC sð Þ yields

VC sð Þ= CVA

Cs+
1
R

=
VA

s+
1
RC

V-s

Performing the inverse Laplace transformation leads to

υC tð Þ= VAe− t=RC
h i

u tð ÞV

The form of the response should be no great surprise. We could easily predict this
response using the classical differential equation methods studied in Chapter 7.What
is important in this example is that we obtained the response using only basic circuit
concepts applied in the s domain.

Onemay wonder why we chose to use the parallel capacitor transformmodel from
Figure 10–5(c) rather than the series transform model from Figure 10–4(c). In truth
for this problem, it really does not matter. Let us solve the same problem using the
series model.

VA

R

−

− C

1

2

t  domain

(a)

t = 0

++

vC(t)

R

+

VC(s)

−

2

CvC(0)
Cs

I2(s)

1

I1(s) A

s  domain

(b)

FIGURE 10–6
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Since we want to find the voltage across the capacitor, we must realize that the
voltage includes the capacitor’s initial condition as shown in Figure 10–6(c). In this
case, that voltage is the same as the voltage across the resistor.We can readily find the
voltage across the resistor using a voltage divider with the initial condition source
providing the voltage. Thus,

VC sð Þ= R

R+
1
Cs

υC 0ð Þ
s

� �
=

VARCs
s RCs+ 1ð Þ =

VA

s+
1
RC

V-s

which transforms back to the time domain the same as above. As with most engineer-
ing analyses, the choice of which model or technique to use is left up to the engineer.
The better or best choice will come with practice. ■

E x e r c i s e 10–1
Transform the circuit of Figure 10–7(a) into the s domain and solve for the voltage υC tð Þ if
υS tð Þ=VAe−αtu tð ÞV and υC 0ð Þ=V0.

A n s w e r s:
(a) The transformed circuit is shown in Figure 10–7(b).

(b) υC tð Þ= V0−

VA

RC
1
RC

−α

0
B@

1
CAe− t=RC +

VA

RC
1
RC

−α

0
B@

1
CAe−αt

2
64

3
75u tð ÞV

E X A M P L E 1 0–2

(a) Transform the circuit in Figure 10–8(a) into the s domain.
(b) Solve for the current transform I sð Þ.
(c) Perform the inverse transformation to find the waveform i tð Þ.

R

+

VC(s)

−

2

VC(0)/s

1/Cs

(c)

+
−

FIGURE 10–6 (Continued)
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−
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−

+
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−
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−

FIGURE 10–7
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−

LiL(0)

+
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SOLUTION:

(a) Figure 10–8(b) shows the transformed circuit using a series voltage sourceLiL 0ð Þ
to represent the inductor’s initial condition. The impedances of the two passive
elements are R and Ls. The independent source voltage VAu tð Þ transforms
as VA=s.

(b) By KVL, the sum of voltage transforms around the loop is

−
VA

s
+VR sð Þ+VL sð Þ= 0

Using the impedance models, the s-domain element constraints are

Resistor:VR sð Þ = RI sð Þ
Inductor:VL sð Þ = LsI sð Þ−LiL 0ð Þ

Substituting the element constraints into the KVL constraint and collecting
terms yields

−
VA

s
+ R+Lsð ÞI sð Þ−LiL 0ð Þ= 0

Solving for I sð Þ produces

I sð Þ= VA=L
s s+R=Lð Þ +

iL 0ð Þ
s+R=L

A-s

The current I sð Þ is the transform of the circuit response for a step function input.
I sð Þ is a rational function with simple poles at s= 0 and s= −R=L.

(c) To perform the inverse transformation, we expand I sð Þ by partial fractions:

I sð Þ=VA=R
s

zfflffl}|fflffl{forced

−
VA=R
s+R=L

+
iL 0ð Þ

s+R=L

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{natural

A-s

Taking the inverse transform of each term in this expansion gives

iðtÞ= VA

R

�zffl}|ffl{forced

−
VA

R
e−Rt=L + iL 0ð Þe−Rt=L

�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{natural

uðtÞA

The forced response is caused by the step function input. The exponential
terms in the natural response depend on the circuit time constant L=R. The
step function and exponential components in i tð Þ are directly related to the
terms in the partial-fraction expansion of I sð Þ. The pole at the origin came from
the step function input and leads to the forced response. The pole at s= −R=L
came from the circuit and leads to the natural response. Thus, in the s domain,
the forced response is that part of the total response that has the same poles as
the input excitation. The natural response is that part of the total response
whose poles came from the circuit. We say that the circuit contributes the nat-
ural poles because their locations depend on circuit parameters, not on the
input. In other words, poles in the response do not occur by accident. They
are present because the physical response depends on two things—(1) the input
and (2) the circuit. ■
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E x e r c i s e 10–2
The source of the t-domain circuit of Figure 10–8(a) is suddenly turned off. Use Laplace
techniques to solve for the voltage across the resistor υR tð Þ.
A n s w e r: υR tð Þ= VAe−Rt=L

� �
u tð ÞV

E X A M P L E 1 0–3

Find the output υO tð Þ for the dependent-source circuit shown in Figure 10–9(a). The
capacitor has an initial voltage of VBV.

SOLUTION:
We start by transforming the circuit into the s domain as shown in Figure 10–9(b).
The output transform voltage is VO sð Þ= −μVX sð Þ. We can solve for VX sð Þ by writing
a loop equation around the input loop and solving for I sð Þ. Starting at the source volt-
age, we get

−
VA

s
+RI sð Þ+ I sð Þ

Cs
+
υC 0ð Þ
s

= 0

Substituting VB for υC 0ð Þ and solving for I sð Þ

I sð Þ= VA−VBð Þ=s
R+ 1=Cs

=
VA−VBð Þ=R
s+ 1=RC

Recognizing that VX sð Þ= I sð Þ=Cs+VB=s, we get

VX sð Þ= VA−VBð Þ
RCs s+ 1=RCð Þ +

VB

s

We can now find VO sð Þ

VO sð Þ= −μVX sð Þ=
−

μ
RC

VA−VBð Þ
s s+ 1=RCð Þ +

−μVB

s

The first term can be expanded by partial fractions

VO sð Þ= −μ VA−VBð Þ
s

+
μ VA−VBð Þ
s+ 1=RC

+
−μVB

s
=
−μVA

s
+
μ VA−VBð Þ
s+ 1=RC

Taking the inverse transform of each term gives

υ0 tð Þ= −μVA|fflfflffl{zfflfflffl}
forced

+ μVAe− t=RC−μVBe− t=RC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
natural

2
64

3
75u tð ÞV

(a)

C

R

μvX(t)vS(t)=VAu(t)
vC(0)/s

+

vX(t)

−

+

VX(s)

−

1/Cs+

vO(t)

−

+
−

−
+

(b)

R

μVX(s)VA/s

+

VO(s)

−

+
− +

−

−
+I(s)

FIGURE 10–9
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The forced response is caused by the input step function. The exponential terms in
the natural response are caused by the circuit’s RC time constant. The dependent
source, in this example, simply multiplies the input and stored voltage responses
by −μ. ■

E x e r c i s e 10–3
Replace the capacitor in the circuit of Figure 10–9(a) with an inductor, L, with an initial
current of IBA. Find υO tð Þ and identify the forced and natural responses.

A n s w e r: υO tð Þ= μRIBe−Rt=L−μVAe−Rt=L|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
natural

2
4

3
5u tð ÞV:

There is no forced component–at steady state because the inductor shorts out the input to
the dependent source.

10–2 B A S I C C I R C U I T A N A L Y S I S I N T H E s D O M A I N

In this section, we develop the s-domain versions of series and parallel equivalence
and voltage and current division. These analysis techniques are the basic tools
in s-domain circuit analysis, just as they are for resistance circuit analysis. These
methods apply to circuits with elements connected in series or parallel. General anal-
ysis methods using node-voltage or mesh-current equations are covered later in
Sects. 10–4 and 10–5.

S E R I E S E Q U I V A L E N C E A N D V O L T A G E D I V I S I O N

The concept of a series connection applies in the s domain because Kirchhoff’s laws
do not change under the Laplace transformation. In Figure 10–10, the two-terminal
elements are connected in series; hence by KCL the same current I sð Þ exists in impe-
dances Z1 sð Þ,Z2 sð Þ,…,ZN sð Þ. Using KVL and the element constraints, the voltage
across the series connection can be written as

V sð Þ = V1 sð Þ+V2 sð Þ+ � � �+VN sð Þ
= Z1 sð ÞI sð Þ+Z2 sð ÞI sð Þ+ � � �+ZN sð ÞI sð Þ
= Z1 sð Þ+Z2 sð Þ+ � � �+ZN sð Þ½ �I sð Þ

(10–12)

The last line in this equation points out that the responsesV sð Þ and I sð Þ do not change
when the series-connected elements are replaced by an equivalent impedance:

ZEQ sð Þ=Z1 sð Þ+Z2 sð Þ+ � � �+ZN sð Þ (10–13)

Rest of
the 

circuit

Z1

ZN

Z2

I(s)

A

B

+ V1(s) − + V2(s) −

+

V(s)

−

+

VN(s)

−

Rest of
the 

circuit
ZEQ

I(s)

A

B

+

V(s)

− ZEQ = Z1 + Z2 + . . .  + ZN 

FIGURE 10–10 Series equivalence in the s domain.
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In general, the equivalent impedance ZEQ sð Þ is a quotient of polynomials in the com-
plex frequency variable of the form

ZEQ sð Þ= bmsm + bm−1sm−1 + � � �+ b1s+ b0
ansn + an−1sn−1 + � � �+ a1s+ a0

(10–14)

The roots of the numerator polynomial are the zeros ofZEQ sð Þ, while the roots of the
denominator are the poles.

Combining Eqs. (10–12) and (10–13), we can write the element voltages in
the form

V1 sð Þ= Z1 sð Þ
ZEQ sð ÞV sð Þ V2 sð Þ= Z2 sð Þ

ZEQ sð ÞV sð Þ � � � VN sð Þ= ZN sð Þ
ZEQ sð ÞV sð Þ (10–15)

These equations are the s-domain voltage division principle:

Every element voltage in a series connection is equal to its impedance divided by
the equivalent impedance of the connection times the voltage across the series
circuit.

This statement parallels the corresponding rule for resistance circuits given in
Chapter 2.

P A R A L L E L E Q U I V A L E N C E A N D C U R R E N T D I V I S I O N

The parallel circuit in Figure 10–11 is the dual of the series circuit discussed previ-
ously. In this circuit the two-terminal elements are connected in parallel; hence by
KVL the same voltage V sð Þ appears across admittances Y1 sð Þ,Y2 sð Þ,…,YN sð Þ. Using
KCL and the element constraints, the current into the parallel connection can be
written as

I sð Þ = I1 sð Þ+ I2 sð Þ+ � � �+ IN sð Þ
= Y1 sð ÞV sð Þ+Y2 sð ÞV sð Þ+ � � �+YN sð ÞV sð Þ
= Y1 sð Þ+Y2 sð Þ+ � � �+YN sð Þ½ �V sð Þ

(10–16)

The last line in this equation points out that the responsesV sð Þ and I sð Þ do not change
when the parallel connected elements are replaced by an equivalent admittance:

YEQ sð Þ=Y1 sð Þ+Y2 sð Þ+ � � �+YN sð Þ (10–17)

In general, the equivalent admittanceYEQ sð Þ is a quotient of polynomials in the com-
plex frequency variable s. Since impedance and admittance are reciprocals, it turns
out that if YEQ sð Þ= p sð Þ=q sð Þ, then the equivalent impedance at the same pair of

Rest of
the 

circuit
Y1 Y2 YN

I(s)

A

B

+

V(s)

−

Rest of
the 

circuit
YEQ

I(s)

A

B

+

V(s)

− YEQ = Y1 + Y2 + . . . + YN

I2(s) IN(s)I1(s)

FIGURE 10–11 Parallel equivalence in the s domain.
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terminals has the formZEQ sð Þ= 1=YEQ sð Þ= q sð Þ=p sð Þ. That is, at a given pair of term-
inals, the poles of ZEQ sð Þ are zeros of YEQ sð Þ, and vice versa.

Combining Eqs. (10–16) and (10–17), we can write the element currents in
the form

I1 sð Þ= Y1 sð Þ
YEQ sð ÞI sð Þ I2 sð Þ= Y2 sð Þ

YEQ sð ÞI sð Þ � � � IN sð Þ= YN sð Þ
YEQ sð ÞI sð Þ (10–18)

These equations are the s-domain current division principle:

Every element current in a parallel connection is equal to its admittance divided
by the equivalent admittance of the connection times the current into the parallel
circuit.

This statement is the dual of the results for a series circuit and parallels the current
division rule for resistance circuits.

We begin to see that s-domain circuit analysis involves basic concepts that parallel
the analysis of resistance circuits in the t domain. Repeated application of series/
parallel equivalence and voltage/current division leads to an analysis approach called
circuit reduction, discussed in Chapter 2. The major difference here is that we use
impedance and admittances rather than resistance and conductance, and the analysis
yields voltage and current transforms rather than waveforms.

E X A M P L E 1 0–4

The inductor current and capacitor voltage in Figure 10–12(a) are zero at t = 0.

(a) Transform the circuit into the s domain and find the equivalent impedance
between terminals A and B.

(b) Use voltage division to solve for the output voltage transform V2 sð Þ.

SOLUTION:

(a) Figure 10–12(b) shows the circuit in Figure 10–12(a) transformed into the s
domain. As a first step, we use parallel equivalence to find the equivalent imped-
ance of the parallel resistor and capacitor.

ZEQ1 sð Þ= 1
YEQ1 sð Þ =

1
1
R
+Cs

=
R

RCs+ 1

Figure 10–12(c) shows that the equivalent impedance ZEQ1 sð Þ is connected in
series with the inductor. This series combination can be replaced by an equiva-
lent impedance

ZEQ sð Þ = Ls+ZEQ1 sð Þ=Ls+
R

RCs+ 1

= RLCs2 +
Ls+R
RCs+ 1

Ω

as shown in Figure 10–12(d). The rational functionZEQ sð Þ is the impedance seen
between terminals A and B in Figure 10–12(b).

(b) Using voltage division in Figure 10–12(c), we find V2 sð Þ as

V2 sð Þ= ZEQ1 sð Þ
ZEQ sð Þ
� �

V1 sð Þ= R
RLCs2 +Ls+R

� �
V1 sð Þ

Note that ZEQ sð Þ and V2 sð Þ are rational functions of the complex frequency var-
iable s. ■

+
−

A

B

Ls

R
1/Cs

+

V2(s)

−

V1(s)

(b)

+
−

A

B

Ls

ZEQ1

+

V2(s)

−

V1(s)

(c)

+
−

A

B

V1(s)

(d)

ZEQ

A

B

L

R

(a)

C

+

v2(t)

−

v1(t)+
−

FIGURE 10–12
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E x e r c i s e 10–4
The circuit of Figure 10–13 is in the zero state.

(a) Find the equivalent impedance ZIN sð Þ that the source sees.
(b) Find the output voltage V2 sð Þ.
A n s w e r s:

(a) ZIN sð Þ=
C1 +C2ð Þ
C1C2

s+
R1 +R2ð Þ

C1C2R1R2

� �
s+

1
R1C1

� �
s+

1
R2C2

� � Ω

(b) V2 sð Þ=
C1

C1 +C2
s+

1
R1 C1 +C2ð Þ

� �
V1 sð Þ

s+
1

C1 +C2

� �
R1 +R2

R1R2

� � V-s

E X A M P L E 1 0–5

Consider the s-domain circuit in Figure 10–14.

(a) Find the input impedance ZIN sð Þ.
(b) Find the ratio of the output V2 sð Þ to the input V1 sð Þ.
(c) What are the poles and zeros of the input impedance and of

V2 sð Þ=V1 sð Þ.

SOLUTION:

(a) Let us start with finding ZIN sð Þ. In this example there are two par-
allel branches: 0:5s+ 2k and 1k+ 106=s. We can combine them as
follows

ZIN sð Þ= 0:5s+ 2kð Þ 1k+ 106=s
� �

0:5s+ 2k+ 1k+ 106=s
=
2s 0:5s+ 2kð Þ 1k+ 106=s

� �
2s 0:5s+ 3k+ 106=s
� �

ZIN sð Þ= s+ 4kð Þ 1000s+ 106
� �

s2 + 6 × 103s+ 2× 106
=
1000 s+ 4000ð Þ s+ 1000ð Þ
s2 + 6 × 103s+ 2× 106

Which can be factored as follows

ZIN sð Þ= 1000 s+ 4000ð Þ s+ 1000ð Þ
s+ 354ð Þ s+ 5646ð Þ Ω

(b) The output is across a resistor that is in series with an inductor and the pair is in
parallel with the source voltage. This allows us to use a simple voltage divider

V2 sð Þ= 2000
0:5s+ 2000

V1 sð Þ

The ratio V2 sð Þ=V1 sð Þ is
V2 sð Þ
V1 sð Þ =

4000
s+ 4000

(c) The poles of the input impedance are at s= −354 and s= −5646 and zeros are at
s= −1000 and s= −4000. The single pole of V2 sð Þ=V1 sð Þ is at s= −4000, while its
only zero is at infinity. ■

ZIN(s)

+
−

V1(s)

R1

R2
1/C1s

1/C2s

+

V2(s)

−

FIGURE 10–13

V1(s)

ZIN(s) Z2(s)

+

V2(s)

–

+
−

1 kΩ

In parallel

0.5 s

106/s
2 kΩ

FIGURE 10–14
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E x e r c i s e 10–5
For the Figure 10–14, find the following:

(a) The impedance Z2 sð Þ seen looking into the V2 sð Þ terminals with the input source set to
zero (short-circuited).

(b) The poles and zeros of Z2 sð Þ?
(c) The impedance Z2 sð Þ seen looking into the V2 sð Þ terminals with the input source

removed (open-circuited).
(d) The poles and zeros of Z2 sð Þ in this second case?

A n s w e r s:

(a) Z2 sð Þ= 2000 s
s+4000

Ω

(b) Pole at s = −4000, zero at s = 0

(c) Z2 sð Þ= 2000 s2 + 2000s+ 2× 106
� �

s2 + 6000s+ 2× 106
� � Ω

(d) Poles are at s = −354 and s = −5646, zeros at s1, s2 = −1000 ± j 1000

D E S I G N E X A M P L E 1 0 – 6

In a circuit analysis problem we are required to find the poles and zeros of a circuit.
In circuit design we are required to adjust circuit parameters to place the poles and
zeros at specified s-plane locations. This example is a simple pole-placement design
problem.

(a) Transform the circuit in Figure 10–15(a) into the s domain and find the equivalent
impedance between terminals A and B.

(b) Select the values of R and C such that ZEQðsÞ has a zero at s= −5000 rad=s.

SOLUTION:
(a) Figure 10–15(b) shows the circuit transformed to the s domain. The equivalent impedance

ZEQ1ðsÞ is

ZEQ1ðsÞ = 1
YR +YC

=
1

1
R
+Cs

=
R

RCs+ 1
Hence, the equivalent impedance between terminals A and B is

ZEQðsÞ = R+ZEQ1ðsÞ=R+
R

RCs+ 1

= R
Cs+ 2
RCs+ 1

Ω

(b) For ZEQðsÞ to have a zero at s= −5000 requires 2=RC =5000 or RC = 4× 10−4. Selecting a
standard value for the resistor R=10 kΩ in turn requires C =0:04 μF. ■

D e s i g n E x e r c i s e 10–6
For Figure 10–15, select values of R and C so the ZEQ sð Þ has a pole at s = −10,000: Use
standard values from the inside rear cover. Under this design where is the zero located?

A n s w e r s:
Select R = 10 kΩ, C = 0:01 μF
Zero at s = −20,000

A

B

R

R

C

(a)

A

B

R

R

Cs

ZEQ ZEQ1

1

(b)

FIGURE 10–15
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D e s i g n E x e r c i s e 1 0–7
The circuit of Figure 10–16 is in the zero state.

(a) Find the output current transform I2ðsÞ.
(b) If R=1 kΩ, select values of L and C such that I2ðsÞ has two identical poles

at −5000 rad=s.

A n s w e r s:

(a) I2ðsÞ= s2I1ðsÞ
s2 +

R
L
s+

1
LC

2
64

3
75A-s

(b) L=100 mH,C = 0:4 μF

E x e r c i s e 10–8
The inductor current and capacitor voltage in Figure 10–17 are zero at t = 0.

(a) Find the equivalent impedance between terminals A and B.
(b) Solve for the output voltage transform V2ðsÞ in terms of the input voltage V1ðsÞ.
A n s w e r s:

(a) ZEQðsÞ= ðR1Cs+ 1ÞðLs+R2Þ
LCs2 + ðR1 +R2ÞCs+ 1

(b) V2ðsÞ= Ls
Ls+R2

� �
V1ðsÞ

10–3 C I R C U I T T H E O R E M S I N T H E s D O M A I N

In this section we study the s-domain versions of proportionality, superposition, and
Thévenin/Norton equivalent circuits. These theorems define fundamental properties
that provide conceptual tools for the analysis and design of linear circuits. With some
modifications, all of the theorems studied in Chapter 3 apply to linear dynamic cir-
cuits in the s domain.

P R O P O R T I O N A L I T Y

For linear resistance circuits the proportionality theorem states that any output y is
proportional to the input x:

y=Kx (10–19)

The same concept applies to linear dynamic circuits in the s domain except that the
proportionality factor K is a rational function of s rather than a constant. For
instance, in Example 10–4, we found the output voltage V2ðsÞ to be

V2ðsÞ=
R

RLCs2 +Ls+R|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
K

2
64

3
75V1ðsÞ (10–20)

whereV1ðsÞ is the transform of the input voltage. The quantity inside the brackets is a
rational function that serves as the proportionality factor between the input and out-
put transforms.

i1(t) L C

R i2(t)

FIGURE 10–16

+
−

V1(s)
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B

R1 R2

1/Cs Ls

+

V2(s)

−

FIGURE 10–17
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In the s-domain, rational functions that relate inputs and outputs are called
network functions. We begin the formal study of network functions in Chapter 11.
In this chapter, we will simply illustrate network functions by an example.

E X A M P L E 1 0 – 7

There is no initial energy stored in the circuit in Figure 10–18. Find the network func-
tions relating IRðsÞ to V1ðsÞ and ICðsÞ to V1ðsÞ.

SOLUTION:
The equivalent impedance seen by the voltage source is

ZEQ =Ls+
1

1
R
+Cs

=
RLCs2 +Ls+R

RCs+ 1

Hence we can relate the ILðsÞ and V1ðsÞ as

ILðsÞ= V1ðsÞ
ZEQðsÞ =

RCs+ 1
RLCs2 +Ls+R

� �
V1ðsÞ

Using s-domain current division, we can relate IRðsÞ and ICðsÞ to ILðsÞ as

IRðsÞ=
1
R

1
R
+Cs

ILðsÞ= 1
RCs+ 1

� �
ILðsÞ

ICðsÞ= Cs
1
R
+Cs

ILðsÞ= RCs
RCs+ 1

� �
ILðsÞ

Finally, using these relationships plus the relationship between ILðsÞ and V1ðsÞ
derived previously, we obtain the required network functions.

IR sð Þ= 1
RLCs2 +Ls+R

� �
V1 sð Þ

IC sð Þ= RCs
RLCs2 +Ls+R

� �
V1 sð Þ

■

E x e r c i s e 10–9
In Figure 10–19 find the network function relating the output V2ðsÞ to the input V1ðsÞ.
A n s w e r: V2 sð Þ= R

LCs2 +RCs+ 1

� �
I1 sð Þ

S U P E R P O S I T I O N

For linear resistance circuits, the superposition theorem states that any output y of a
linear circuit can be written as

y=K1x1 +K2x2 +K3x3 +… (10–21)

where x1,x2,x3,… are circuit inputs and K1,K2,K3,… are weighting factors that de-
pend on the circuit. The same concept applies to linear dynamic circuits in the s domain
except that the weighting factors are rational functions of s rather than constants.

Superposition is usually thought of as a way to find the circuit response by adding
the individual responses caused by each input acting alone. However, the principle

+
−

Ls

R 1/CsV1(s)

IL(s)

IR(s) IC(s)

FIGURE 10–18

Ls

R 1/Cs

+

V2(s)

−

I1(s)

FIGURE 10–19
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applies to groups of sources as well. In particular, in the s domain, there are two types
of independent sources: (1) voltage and current sources representing the external
driving forces for t
 0 and (2) initial condition voltage and current sources represent-
ing the energy stored at t = 0. As a result, the superposition principle states that the
s-domain response can be found as the sum of two components: (1) the zero-input
response caused by the initial condition sources with the external inputs turned off
and (2) the zero-state response caused by the external inputs with the initial condition
sources turned off. Turning a source off means replacing voltage sources by short cir-
cuits ½VSðsÞ= 0� and current sources by open circuits ½ISðsÞ= 0�.

The zero-input response is the response of a circuit to its initial conditions when
the input excitations are set to zero. The zero-state response is the response of a cir-
cuit to its input excitations when all of the initial conditions are set to zero. The term
zero input is self-explanatory. The term zero state is used because there is no energy
stored in the circuit at t = 0.

The result is that voltage and current transform in a linear circuit can be found as
the sum of two components of the form

VðsÞ=Vzs ðsÞ+VziðsÞ IðsÞ= IzsðsÞ+ IziðsÞ (10–22)

where the subscript zs stands for zero state and zi for zero input. An important cor-
ollary is that the time-domain response can also be partitioned into zero-state and
zero-input components because the inverse Laplace transformation is a linear
operation.

We analyze the circuit treated in Example 10–2 to illustrate the superposition of
zero-state and zero-input responses. The transformed circuit in Figure 10–20 has two
independent voltage sources: (1) an input voltage source and (2) a voltage source
representing the initial inductor current. The resistor and inductor are in series, so
these two elements can be replaced by an impedance ZEQðsÞ=Ls+R.

First we turn off the initial condition source and replace its voltage source by a
short circuit. Using the resulting zero-state circuit shown in Figure 10–20, we obtain
the zero-state response:

IzsðsÞ= VA=s
ZEQðsÞ =

VA=L
sðs+R=LÞA-s (10–23)

The pole at s= 0 comes from the input source and the pole at s= −R=L comes from
the circuit. Next, we turn off the input source and use the zero-input circuit shown in
Figure 10–20 to obtain the zero-input response:

IziðsÞ= LiLð0Þ
ZEQðsÞ =

iLð0Þ
s+R=L

A-s (10–24)

+
−

−
+I(s)

+
− Izs(s) Izi(s)

−
+

Ls + R Ls + R
R Ls

VA

s

Input signal
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LiL(0)

Initial
condition

source
Transformed circuit

VA

s LiL(0)

Zero state Zero input

Off

FIGURE 10–20 Using superposition to find the zero-state and zero-input responses.
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The pole at s= −R=L comes from the circuit. The zero-input response does not have
a pole at s= 0 because the step function input is turned off.

Superposition states that the total response is the sum of the zero-state component
in Eq. (10–23) and the zero-input component in Eq. (10–24).

IðsÞ= IzsðsÞ+ IziðsÞ= VA=L
sðs+R=LÞ +

iLð0Þ
s+R=L

A-s (10–25)

The transform IðsÞ in this equation is the same as found in Example 10–2. To derive
the time-domain response, we expand IðsÞ by partial fractions:

IðsÞ=VA=R
s

−
VA=R
s+R=L|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

zero state

+
iLð0Þ

s+R=L|fflfflfflffl{zfflfflfflffl}
zero input

A-s (10–26)

Performing the inverse transformation on each term yields

Using superposition to partition the waveform into zero-state and zero-input com-
ponents produces the same result as Example 10–2. The zero-state component con-
tains the forced response. The zero-state and zero-input components both contain an
exponential term due to the natural pole at s= −R=L because both the external driv-
ing force and the initial condition source excite the circuit’s natural response.

The superposition theorem helps us understand the response of circuits with mul-
tiple inputs, including initial conditions. It is a conceptual tool that helps us organize
our thinking about s-domain circuits in general. It is not necessarily the most efficient
analysis tool for finding the response of a specific multiple-input circuit.

E X A M P L E 1 0–8

The switch in Figure 10–21(a) has been open for a long time and is closed at t = 0

(a) Transform the circuit into the s domain.
(b) Find the zero-state and zero-input components of VðsÞ.
(c) Find υðtÞ for IA = 1mA,L= 2H,R= 1:5 kΩ, and C = 1=6 μF.

SOLUTION:

(a) To transform the circuit into the s domain, we must find the initial inductor cur-
rent and capacitor voltage. For t < 0, the circuit is in a dc steady-state condition
with the switch open. The inductor acts like a short circuit, and the capacitor acts
like an open circuit. By inspection, the initial conditions at t = 0− are iLð0Þ= 0 and
υCð0Þ= IAR. Figure 10–21(b) shows the s-domain circuit for these initial condi-
tions. The current source version for the capacitor’s initial condition is used here
because the circuit elements are connected in parallel. The switch and constant
current source combine to produce a step function IAuðtÞwhose transform is IA=s.

(b) The resistor, capacitor, and inductor can be replaced by an equivalent impedance

ZEQ =
1

YEQ
=

1
1
Ls

+
1
R
+Cs

=
RLs

RLCs2 +Ls+R

IA

t = 0

L
R C

+

v(t)

−

+

V(s)

−

IA

s
Ls R

1

Cs

RCIA

(a) t domain

(b) s domain

FIGURE 10–21

(10–27)
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The zero-state response is found with the capacitor initial condition source
replaced by an open circuit and the step function input source on:

VzsðsÞ=ZEQðsÞIAs =
RLs

RLCs2 +Ls+R

� �
IA
s
=

IA=C

s2 +
s

RC
+

1
LC

The pole in the input at s= 0 is canceled by the zero at the origin in ZEQðsÞ. As a
result, the zero-state response does not have a forced pole at s= 0. The zero-input
response is found by replacing the input source by an open circuit and turning the
capacitor initial condition source on:

VziðsÞ= ZEQðsÞ½ � CRIA½ �= RIAs

s2 +
s

RC
+

1
LC

(c) Inserting the given numerical values of the circuit parameters and expanding
the zero-state and zero-input response transforms by partial fractions yields

VzsðsÞ= 6000
ðs+ 1000Þðs+ 3000Þ =

3
s+ 1000

+
−3

s+ 3000
V-s

VziðsÞ= 1:5s
ðs+ 1000Þðs+ 3000Þ =

−0:75
s+ 1000

+
2:25

s+ 3000
V-s

The inverse transforms of these expansions are

υzsðtÞ= ½3e−1000t−3e−3000t�uðtÞV
υziðtÞ= ½−0:75e−1000t + 2:25e−3000t�uðtÞV

Note that the circuit responses contain only transient terms that decay to zero.
There is no forced response because in the dc steady state the inductor acts like
a short circuit, forcing υðtÞ to zero for t! ∞ . From an s-domain viewpoint there is
no forced response because the forced pole at s= 0 is canceled by a zero in the
network function. ■

D e s i g n E x e r c i s e 10–10
The switch in the circuit of Figure 10–21(a) has been closed for a long time. At t =0 the
switch is suddenly opened.

(a) Find the transform IRðsÞ for the current through the resistor.
(b) Select values of R, L, and C so that the current reaches at least 63% of its final value in

100 ms or less.

A n s w e r s:

(a) IRðsÞ=
IA
RC

s s+
1
RC

� �A-s

(b) After one time constant the current reaches 63% of its final value; hence RC < 100ms.
R=56 kΩ and C =1 μF are one pair of values that work; there are many others.
The value of L does not matter since it is not connected in the circuit after t = 0.

E X A M P L E 1 0–9

Use superposition to find the zero-state component of IðsÞ in the s-domain circuit
shown in Figure 10–22(a).

517CIRCUIT THEOREMS IN THE s DOMAIN



SOLUTION:
Turning the voltage source off produces the circuit in Figure 10–22(b). In this circuit
the resistor and capacitor are connected in parallel, so current division yields I1ðsÞ in
the form

I1ðsÞ= YR

YC +YR

IA
ðs+ αÞ =

IA
ðRCs+ 1Þðs+ αÞ

Turning the voltage source on and the current source off produces the circuit in
Figure 10–22(c). In this case the resistor and capacitor are connected in series,
and series equivalence gives the current I2ðsÞ as

I2ðsÞ= 1
ZR +ZC

VAβ
s2 + β2

=
CsVAβ

ðRCs+ 1Þðs2 + β2Þ
Using superposition, the total zero-state response is

IZS sð Þ = I1 sð Þ−I2 sð Þ

=
IA

RCs+ 1ð Þ s+ αð Þ −
CsVAβ

RCs+ 1Þ s2 + β2
� ��

There is a minus in this equation because I1ðsÞ and I2ðsÞ were assigned opposite ref-
erence directions in Figures 10–22(b) and 10–22(c). The total zero-state response has
four poles. The natural pole at s= −1=RC came from the circuit. The forced pole at
s= −α came from the current source, and the two forced poles at s= � jβ came from
the voltage source.

In this example, the time-domain response would have a transient component
Ke− t=RC due to the natural pole, a forced componentKe−αt due to the current source,
and a forced component of the formKAcosβt +KBsinβt due to the voltage source.We
can infer these general conclusions regarding the time-domain response by simply
examining the poles of the s-domain response. ■

E x e r c i s e 10–11
The initial conditions for the circuit in Figure 10–23 are υC 0−ð Þ= 0 and iL 0−ð Þ= I0. Trans-
form the circuit into the s domain and find the zero-state and zero-input components
of V sð Þ.
A n s w e r s:

Vzs sð Þ= 1
LCs2 +RCs+ 1

� �
VA

s

Vzi sð Þ= LI0
LCs2 +RCs+1

E x e r c i s e 10–12
The initial conditions for the circuit in Figure 10–24 are υC 0−ð Þ= 0 and iL 0−ð Þ= I0.
Transform the circuit into the s domain and find the zero-state and zero-input components
of I sð Þ.
A n s w e r s:

Izs sð Þ = LCs2

LCs2 +RCs+ 1

� �
IA
s

Izi sð Þ = −LCs2

LCs2 +RCs+ 1

� �
I0
s

+
−

I(s)

R
1

CsIA

s + α

IA

s + α

(a) s-domain circuit

I1(s)

R
1

Cs

(b) Voltage source OFF

+
−

I2(s)

R
1

Cs

(c) Current source OFF

VAβ

s2 + β2

VAβ

s2 + β2

FIGURE 10–22

R

+
−

L

CVAu(t)
iL(0)

vC(0) = 0

+

v(t)

−

FIGURE 10–23

C i(t)

RL

iL(0)

IAu(t)

FIGURE 10–24
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E X A M P L E 1 0–1 0

A transformed dependent-source circuit is shown in Figure 10–25(a). The capacitor
has an initial voltage ofVB V. Use superposition to find the zero-state and zero-input
responses. Combine the results to find the total response transform VO sð Þ. Then use
the total response components to find the poles of the circuit. Identify the poles as
forced or natural.

SOLUTION:
The output transform voltage is VO sð Þ= −μVX sð Þ. With two independent voltage
sources, we find VX sð Þ by using superposition and using voltage dividers. Starting
with the source voltage, we find the zero-state contribution to VX sð Þ as shown in
Figure 10–25(b)

VXzs sð Þ= 1=Cs
R+ 1=Cs

VA

s+ α

� �
=

1=RC
s+ 1=RC

VA

s+ α

� �
For the zero-input contribution to VX sð Þ shown in Figure 10–25(c), let υC 0ð Þ=VB,
to yield

VXzi sð Þ= R
R+ 1=Cs

υC 0ð Þ
s

� �
=

1
s+ 1=RC

VB

Adding these results together, we get

VXðsÞ= 1=RC
s+ 1=RC

VA

s+ α

� �
+

1
s+ 1=RC

VB

Therefore, the output transform is

VOðsÞ= −μVXðsÞ= −μVA=RC
ðs+ 1=RCÞðs+ αÞ +

−μVB

s+ 1=RC

Wecan expand the first term by partial fractions so that our total response transform is

The result has two poles, a forced pole determined by the input source at s= −α, and a
second natural pole determined by the circuit at s= −1=RC. ■

E x e r c i s e 10–13
For the circuit of Figure 10–25(a), let the input voltage VS sð Þ=VA=s, and use superposition
to find the zero-state and the zero-input components of the output. Identify the forced and
natural poles. Then show that υO tð Þ is the same as that found in Example 10–3.

vC(0)/s

+

VXzi(s)

−

1/Cs

(c)

R

μVX(s)

+

VOzi(s)

−

+
−vC(0)/s

+

VX(s)

−

1/Cs

(a)

R

μVX(s)VA/(s+α) VA/(s+α)

+

VO(s)

−

+
−

−
+

+

VXzs(s)

−

1/Cs

(b)

R

μVX(s)

+

VOzs(s)

−

+
−

+
−

−
+

−
+

FIGURE 10–25
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A n s w e r s:

VOzs sð Þ= −μVA=RC
s s+ 1=RCð Þ

VOzi sð Þ= −μVB

s+ 1=RCð Þ
Forced pole at s = 0, natural pole at s = −1=RC.

υO tð Þ= −μVA +
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zero state

|fflfflffl{zfflfflffl}
forced

μVAe− t=RC−μVBe− t=RC
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{zero input

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
natural

2
664

3
775uðtÞVQED

T H É V E N I N A N D N O R T O N E Q U I V A L E N T C I R C U I T S

In the s domain, a two-terminal circuit containing linear elements and sources can be
replaced by the Thévenin or Norton equivalent circuits in Figure 10–26. The general
concept and restrictions are the same in the s domain as for resistive circuits. The
important differences here are that the source terms VT sð Þ and IN sð Þ are transforms
while ZT and ZN are s-domain impedances.

To find the Thévenin or Norton equivalent circuit, we use the same process as for
resistance circuits, except that now we must manipulate rational functions of s. Since
the Thévenin and Norton circuits are equivalent to each other, their circuit para-
meters are related to the s-domain open-circuit voltage VOC sð Þ and short-circuit cur-
rent ISC sð Þ as

VOC sð Þ = VT sð Þ= IN sð ÞZN

ISC sð Þ = VT sð Þ
ZT

= IN sð Þ

ZT = ZN =
VOC sð Þ
ISC sð Þ

(10–28)

Algebraically the results in Eq. (10–28) are identical to the corresponding equations
for resistance circuits, except that these equations involve transforms and impe-
dances rather thanwaveforms and resistances. Collectively these equations show that
finding a Thévenin or Norton equivalent involves finding any two of the following
three quantities: (1) the open-circuit voltage VOC sð Þ, (2) the short-circuit current
ISC sð Þ and (in the absence of dependent sources) (3) the lookback impedance with
all independent sources turned off.

The relationships in Eq. (10–28) also define source transformations that
allow us to convert a voltage source in series with an impedance into a current
source in parallel with the same impedance, or vice versa. Performing s-domain
source transformations may lead to circuit simplifications and can be useful when
formulating node-voltage or mesh-current equations, as discussed in the following
section.

Thévenin and Norton equivalent circuits should be regarded as important concep-
tual tools offering insight into how circuits operate in the s domain. They are not, in
general, important tools for reducing the computational effort involved in s-domain
circuit analysis.

(b) Norton

I(s)

+
−

ZL

+

−

V(s)VT(s)

ZT

I(s)

ZL

+

−

V(s)IN(s) ZN

(a) Thevenin´

FIGURE 10–26 Thévenin and
Norton equivalent circuits in the s
domain.
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E X A M P L E 1 0–1 1

The circuit in Figure 10–27(a) is in the zero state. Use a source transformation and
voltage division to find the s-domain relationship between the input I1 sð Þ and the out-
put V2 sð Þ.

SOLUTION:
In this example, we use a source transformation on the subcircuit to the left of points
A and B in Figure 10–27(a). This Norton subcircuit consists of an independent
current source IN = I1 sð Þ in parallel with an impedance ZN =R. The equivalent Thé-
venin circuit consists of a voltage source VT = INZN =RI1 sð Þ in series with an imped-
ance ZT =ZN =R. Figure 10–27(b) shows the circuit after the source transformation.
Applying voltage division in the modified circuit yields the required input–output
relationship.

V2 sð Þ= Ls

R+
1
Cs

+Ls

2
64

3
75RI1 sð Þ= RLCs2

LCs2 +RCs+ 1

� �
I1 sð Þ

■

E x e r c i s e 10–14
The circuit of Figure 10–28 is in the zero state.

(a) Find the Thévenin equivalent circuit that the load sees.
(b) Find the Norton equivalent of the same circuit.

A n s w e r s:

(a)VT sð Þ=
1
RC

V1 sð Þ

s+
1

RC1

V-s, ZT sð Þ=
C1 +C2

C1C2

� �
s+

1
R C1 +C2ð Þ

� �
s s+

1
RC1

� � Ω

(b) IN sð Þ=
C2

C1 +C2

� �
V1 sð Þ
R

� �
s

s+
1

R C1 +C2ð Þ
A-s, ZN sð Þ=ZT sð Þ

E x e r c i s e 10–15
The circuit in Figure 10–28 has a 1-MΩ resistive load connected across the
output. If C1 = C2 = 1 μF and R = 10 kΩ, find the location of the poles and zeroes
of VO sð Þ=V1 sð Þ.
A n s w e r:
Poles at s = −101:01 and s = −0:99; zero at s = 0 and one at infinity.

I1(s) Ls

A

1/Cs

B

R

+

−

V2(s) RI1(s)

R

Ls

A

1/Cs

B

+

−

V2(s)

(a) (b)

+
−

FIGURE 10–27

1/C1s

1/C2sR

+

−

V1(s)

Thévenin
equivalent

+
−

FIGURE 10–28
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E X A M P L E 1 0–1 2

The circuit in Figure 10–29(a) is in the zero state. Use a Thévenin equivalent to find
the s-domain relationship between the input V1 sð Þ and the output V2 sð Þ.

SOLUTION:
In this example, we treat the capacitor as a load and find the Thévenin equivalent
circuit to the left of points A and B as shown in Figure 10–29(b). To obtain the
required Thévenin circuit, we find the open-circuit voltage and lookback impedance.
Figure 10–29(c) shows the open-circuit situation. There is no voltage across the
inductor, so the open-circuit voltage VT sð Þ is the same as the voltage across the sec-
ond resistor. Using voltage division we have

VT sð Þ= R
R+R

V1 sð Þ= V1 sð Þ
2

To find the lookback impedance, we turn the input voltage source off [replace V1 sð Þ
by a short circuit] to obtain the situation in Figure 10–29(d). By inspection,

ZT =Ls+RjjR=Ls+
R
2

Given the VT sð Þ and ZT, we return to Figure 10–29(b) and use voltage division to
obtain the desired input–output relationship.

V2 sð Þ = ZL

ZT +ZL

� �
VT sð Þ=

1
Cs

Ls+
R
2
+

1
Cs

2
64

3
75V1 sð Þ

2

=
1

2LCs2 +RCs+ 2

� �
V1 sð Þ

■

1/Cs

A

B

1/Cs
+
−

A

B

VT(s)

ZT ZL

+

−

V2(s)

+

−

V2(s)V1(s)

R

R

Ls

(a) (b)

+
−

R

R

+

−

VT(s)+
− V1(s)

Ls

(c)

R

R Ls

ZT(d)

FIGURE 10–29
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E x e r c i s e 10–16
Find the Norton and the Thévenin equivalents of the s-domain circuits in Figure 10–30.

A n s w e r s:
(a) IN sð Þ= IA

RCs+ 1ð Þ s+ αð Þ ZN sð Þ=ZT sð Þ= RCs+ 1
Cs

VT sð Þ= IA
Cs s+ αð Þ

(b) IN sð Þ= RIA
Ls+Rð Þ s+ αð Þ ZN sð Þ=ZT sð Þ= Ls+R

LCs2 +RCs+ 1

VT sð Þ= RIA
s+ αð Þ LCs2 +RCs+1ð Þ

10–4 N O D E - V O L T A G E A N A L Y S I S I N T H E s D O M A I N

The previous sections deal with basic analysis methods using equivalence, reduction,
and circuit theorems. These methods are valuable because we work directly with the
element impedances and thereby gain insight into s-domain circuit behavior. We also
need general methods to deal with more complicated circuits that these basic meth-
ods cannot easily handle.

F O R M U L A T I N G N O D E - V O L T A G E E Q U A T I O N S

Formulating node-voltage equations involves selecting a referencenodeandassigning
a node-to-datum voltage to each of the remaining nonreference nodes. Because of
KVL, the voltage across any two-terminal element is equal to the difference of the
twonodevoltages.This fundamental property ofnodevoltages, togetherwith element
impedances, allows us to write KCL constraints at each of the nonreference nodes.

For example, consider the s-domain circuit in Figure 10–31. The sum of currents
leaving node A can be written as

IS2 sð Þ−IS1 sð Þ+ VA sð Þ
Z1 sð Þ +

VA sð Þ−VB sð Þ
Z2 sð Þ +

VA sð Þ−VC sð Þ
Z3 sð Þ = 0

Rewriting this equation with unknown node voltages grouped on the left and inputs
on the right yields

1
Z1 sð Þ +

1
Z2 sð Þ +

1
Z3 sð Þ

� �
VA sð Þ− 1

Z2 sð ÞVB sð Þ− 1
Z3 sð ÞVC sð Þ= IS1 sð Þ−IS2 sð Þ

Expressing this result in terms of admittances produces the following equation:

Y1 sð Þ+Y2 sð Þ+Y3 sð Þ½ �VA sð Þ− Y2 sð Þ½ �VB sð Þ− Y3 sð Þ½ �VC sð Þ= IS1 sð Þ−IS2 sð Þ

This equation has a familiar pattern. The unknowns are the node-voltage transforms
VA sð Þ, VB sð Þ, and VC sð Þ. The coefficient Y1 sð Þ+Y2 sð Þ+Y3 sð Þ½ � of VA sð Þ is the sum of
the admittances of the elements connected to nodeA. The coefficient Y2 sð Þ½ � ofVB sð Þ
is the admittance of the elements connected between nodes A and B, while Y3 sð Þ½ �
is the admittance of the elements connected between nodes A and C. Finally,
IS1 sð Þ−IS2 sð Þ is the sum of the source currents directed into node A. These observa-
tions suggest that we can write node-voltage equations for s-domain circuits by
inspection, just as we did with resistive circuits.

The formulation method just outlined assumes that there are no voltage sources
in the circuit. When transforming the circuit, we can always select the current
source models to represent the initial conditions. However, the circuit may contain

R
1

CsIA
s + α

IA
s + α

(a)

Ls

1
Cs

(b)

R

FIGURE 10–30

IS2(s)

Z 3
(s)

IS1(s)

Z2(s)

Z
1
(s

)
VC(s)

VA(s)
VB(s)

FIGURE 10–31 An
example node.
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dependent or independent voltage sources. If so, they can be treated using the fol-
lowing methods:

Method 1: If there is an impedance in series with the voltage source, use a
source transformation to convert it into an equivalent current source.
Method 2: Select the reference node so that one terminal of one or more of
the voltage sources is connected to ground. The source voltage then determines
the node voltage at the other source terminal, thereby eliminating an unknown.
Method 3: Create a supernode surrounding any voltage source that cannot
be handled by method 1 or 2.

Some circuits may require more than one of these methods.
Formulating a set of equilibrium equations in the s domain is a straightforward

process involving concepts developed in Chapters 3 and 4 for resistance circuits.
The following example illustrates the formulation process.

E X A M P L E 1 0–1 3

Formulate s-domain node-voltage equations for the circuit in Figure 10–32(a).

SOLUTION:
Figure 10–32(b) shows the circuit in the s domain. In transforming the circuit, we use
current sources to represent the inductor and capacitor initial conditions. This choice
facilitates writing node equations since the resulting s-domain circuit contains only
current sources and fewer nodes. The sum of currents leaving nodes A and B can
be written as

NodeA:
VA sð Þ
R

+
VA sð Þ−VB sð Þ

Ls
−IS sð Þ+ iL 0ð Þ

s
= 0

Node B:
VB sð Þ
1=Cs

+
VB sð Þ−VA sð Þ

Ls
−
iL 0ð Þ
s

−CυC 0ð Þ = 0

Rearranging these equations in the standard format with the unknowns on the left
and the inputs on the right yields

NodeA:
1
R
+

1
Ls

� �
VA sð Þ− 1

Ls

� �
VB sð Þ = IS sð Þ− iL 0ð Þ

s

Node B: −
1
Ls

� �
VA sð Þ+ 1

Ls
+Cs

� �
VB sð Þ = CυC 0ð Þ+ iL 0ð Þ

s

iS(t) IS(s)

iL(0)

VA(s) VB(s)

R R

L Ls

C
Cs

CvC(0)
1

s

Reference node

t domain

(a)

s domain

(b)

FIGURE 10–32
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Note that 1=R+ 1=Lsð Þ is the sum of the admittances connected to node A,
1=Ls+Csð Þ is the sum of the admittances connected to node B, and 1=Ls is the admit-
tance connected between nodes A and B. The circuit is driven by an independent
current source IS sð Þ and two initial condition sources CυC 0ð Þ and iL 0ð Þ=s. The terms
on the right side of these equations are the sum of source currents directed into each
node. With practice, we learn to write these equations by inspection. ■

E x e r c i s e 10–17
Using the nodes identified, write a set of node-voltage equations for the circuit of
Figure 10–33.

A n s w e r:

VB sð Þ 1
R2

+Cs+
1
Ls

� �
−VC sð Þ 1

Ls

� �
=

VS sð Þ
R2

−
iL 0ð Þ
s

+CυC 0ð Þ

−VB sð Þ 1
Ls

� �
+VC sð Þ 1

Ls
+

1
R1

+
1
R3

� �
=

VS sð Þ
R1

+
iL 0ð Þ
s

S O L V I N G s - D O M A I N C I R C U I T E Q U A T I O N S

Example 10–13 shows that node-voltage equations are linear algebraic equations in
the unknown node voltages. In theory, solving these equations can be accomplished
using classical techniques such as Cramer’s rule or Gaussian reduction. In practice,
we quickly lose interest save for a 2 × 2 or, perhaps for the stout of heart, a 3 × 3 linear
set of equations, since coefficients in the equations are polynomials, making the
algebra rather tedious. With today’s software, it is becoming increasingly practical
to use programs such as MATLAB to solve these linear equations using their
symbolic analysis toolboxes. In Example 10–14, we will solve using the classical
Cramer’s rule a simple 2 × 2 set of equations formulated in Example 10–13. Subse-
quently, we will solve a 3 × 3 set of equations usingMATLAB inWebAppendix D to
contrast the difference and to highlight some important features of the classical solu-
tion that may be somewhat obscured in the software approach.

E X A M P L E 1 0–1 4

For the circuit of Figure 10–32, do the following:

(a) Solve the node-voltage equations fromExample 10–13 and identify the zero-state
and zero-input responses.

(b) Solve for the zero-state components of the waveforms υA tð Þ and υB tð Þ
when R= 1 kΩ,C = 0:2 μF,L= 500 mH, and iS tð Þ= 10u tð ÞmA.

SOLUTION:

(a) In Example 10–13, we formulated the following node-voltage equations for the
circuit of Figure 10–32:

1
R
+

1
Ls

� �
VA sð Þ− 1

Ls
VB sð Þ= IS sð Þ− iL 0ð Þ

s

−
1
Ls

VA sð Þ+ Cs+
1
Ls

� �
VB sð Þ= iL 0ð Þ

s
+CυC 0ð Þ

Using Cramer’s rule, it is convenient to find the determinant of these equations:

iL(0)

VA(s)

VS(s)

VB(s) VC(s)R2

R3

R1

Ls

Cs

CvC(0)

1

s

+
−

FIGURE 10–33
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We call ΔðsÞ the circuit determinant because it depends only on the elements R,
L, and C. The determinant ΔðsÞ characterizes the circuit and does not depend on
either the input or the initial conditions. Note also that since the circuit contained
no dependent sources, the determinant is symmetrical about the major diagonal.
Continuing our solution, the node-voltage VA sð Þ is found using Cramer’s rule:

VA sð Þ =
ΔA sð Þ
Δ sð Þ =

IS sð Þ− iL 0ð Þ
s

−
1
Ls

iL 0ð Þ
s

+CυC 0ð Þ Cs+
1
Ls






















Δ sð Þ

=
L;Cs2 + 1
� �

RIS sð Þ
LCs2 +RCs+ 1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

zero state

+
−RLCsiL 0ð Þ+RCυC 0ð Þ

LCs2 +RCs+ 1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
zero state

Similarly solving for VB sð Þ,

VB sð Þ =
ΔB sð Þ
Δ sð Þ =

1
R
+

1
Ls

IS sð Þ− iL 0ð Þ
s

−
1
Ls

iL 0ð Þ
s

+CυC 0ð Þ






















Δ sð Þ

=
RIS sð Þ

LCs2 +RCs+ 1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
zero state

+
Ls+Rð ÞCυC 0ð Þ+LiL 0ð Þ

LCs2 +RCs+ 1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
zero input

This solution readily provides both the zero-input and zero-state components of
the response transforms VA sð Þ and VB sð Þ.

D I S C U S S I O N : Cramer’s rule results in a solution of the node voltages as a ratio of deter-
minants of the form

VX sð Þ= ΔX sð Þ
Δ sð Þ

The response transform VX sð Þ is a rational function of s whose poles are either zeros of the
circuit determinant Δ sð Þ or poles of the determinant ΔX sð Þ. This means that VX sð Þ has poles
when Δ sð Þ= 0 or when ΔX sð Þ! ∞ . The partial-fraction expansion of VX sð Þ will contain
terms for each of these poles. We call the zeros of Δ sð Þ the natural poles because they depend
only on the circuit and give rise to the natural response terms in the expansion. We call the
poles of ΔX sð Þ the forced poles because they depend on the form of the input signal and give
rise to the forced response terms in the expansion. We will revisit these ideas in our discussion
of circuit stability in Sect. 10–6.
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(b) Since the problem is to find the zero-state components of υA tð Þ and υB tð Þ, we
start by substituting the component and source values into our equations for
VA sð Þ and VB sð Þ found in part (a). We use only the zero-state portions of the
transforms since all initial conditions are set to zero—that is, iL 0ð Þ= 0A and
υC 0ð Þ= 0V—which is by definition the circuit’s zero state.

VAzs sð Þ = 10−7s2 + 1

10−10s2 + 0:2 × 10−6s+ 10−3

� �
10−2

s

= 10
s2 + 107

s s+ 1000ð Þ2 + 30002
h i V-s

VBzs sð Þ = 1

10−10s2 + 0:2 × 10−6s+ 10−3

� �
10−2

s

= 10
107

s s+ 1000ð Þ2 + 30002
h i V-s

Both response transforms have three poles: a forced pole at s= 0 and two natural
poles at s= −1000� j3000. The forced pole comes from the step function input,
and the two natural poles are zeros of the circuit determinant. Expanding these
rational functions as

VAzs sð Þ = 10
s
−
20
3

3000

s+ 1000ð Þ2 + 30002

 !

VBzs sð Þ =
10
s
−
10
3

3000

s+ 1000ð Þ2 + 30002

 !
−10

s+ 1000

s+ 1000ð Þ2 + 30002

 !

and taking the inverse transforms yields the required zero-state response
waveforms:

υAzs tð Þ = 10u tð Þ−20e−1000t 1
3
sin 3000tð Þ

� �
u tð ÞV

υBzs tð Þ = 10u tð Þ−10e−1000t 1
3
sin 3000tð Þ+ cos 3000tð Þ

� �
u tð ÞV

The step function in both responses is the forced response caused by the forced
pole at s= 0. The damped sinusoids are natural responses determined by the nat-
ural poles.

Figure 10–34 shows part of an Excel spreadsheet that produces plots of
υAzs tð Þ and υBzs tð Þ. Spreadsheets are useful for generating graphs, especially
when we wish to compare waveforms. The two plots show that the two
response waveforms are different even though they have the same poles. In
other words, the basic form of a response is determined by the forced and nat-
ural poles, but the relative amplitudes (and phases) are influenced by the zeros
as well. ■
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E x e r c i s e 10–18
For the circuit of Figure 10–32(a), find the zero-state current transforms through each
passive element.

A n s w e r:

IRzs sð Þ=
s2 +

1
LC

s2 +
R
L
s+

1
LC

IS sð ÞA-s ILzs sð Þ= ICzs sð Þ=
R
L
s

s2 +
R
L
s+

1
LC

IS sð ÞA-s

In s-domain circuit analysis and design, the location of complex poles is often
specified in termsof theundampednatural frequency ω0ð Þ and damping ratio (ζ) para-
meters introduced in our study of second-order cicuits. Using these parameters, the
standard form of a second-order factor is s2 + 2ζω0s+ω2

0, which locates the poles at

s1,2 =ω0 −ζ�
ffiffiffiffiffiffiffiffiffiffiffi
ζ2−1

q� �
The quantity under the radical depends only on the damping ratio ζ. When ζ> 1 the
quantity is positive and the two poles are real and distinct, and the second-order
factor becomes the product of two first-order terms. If ζ= 1 the quantity under the
radical vanishes and there is a double pole as s= −ω0. If ζ< 1 the quantity under
the radical is negative and the two roots are complex conjugates.

FIGURE 10–34
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The location of complex poles is also defined in terms of the two natural frequency
parameters α and β. Using these parameters, the poles are at s1,2 = −α� jβ, and the
standard form of a second-order factor is s+ αð Þ2 + β2.

In s-domain circuit design, we often need to convert from one set of parameters
to the other. First, equating their standard forms

s2 + 2αs+ α2 + β2 = s2 + 2ζω0s+ω2
0

and then equating the coefficients of like powers of s yields

ω0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 + β2

p
and ζ=

αffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 + β2

p
and conversely

α= ζω0 and β=ω0

ffiffiffiffiffiffiffiffiffiffiffi
1−ζ2

p
Figure 10–35 shows how these parameters define the locations of complex poles in

the s plane. The natural frequency parameters α and β define the rectangular coor-
dinates of the poles. In a sense, the parameters ω0 and ζ define the corresponding
polar coordinates. The parameter ω0 is the radial distance from the origin to the
poles. The angle θ is determined by the damping ratio ζ alone, since θ= cos−1ζ.

D E S I G N E X A M P L E 1 0 – 1 5

The s-domain circuit in Figure 10–36 is to be designed to produce a pair of complex
poles defined by ζ= 0:5 and ω0 = 1000 rad=s. To simplify production the design will
use equal element values R1 =R2 =R and C1 =C2 =C. Select the values of R, C,
and the gain μ so that the circuit has the desired natural poles.

SOLUTION:
To locate the natural poles, we find the circuit determinant using node-voltage equa-
tions. The circuit has four nodes but only two of these involve independent variables.
For the indicated reference node, the voltages at nodes A and D are VA sð Þ=VS sð Þ
and VD sð Þ= μVX sð Þ= μVC sð Þ. That is, the two grounded voltage sources specify the
voltages at nodes A and D. Consequently, we only need equations at nodes B and
C. The sums of currents leaving these nodes are

Node B:
VB sð Þ−VS sð Þ

R1
+
VB sð Þ−VC sð Þ

R2
+
VB sð Þ−μVC sð Þ

1=C1s
= 0

Node C:
VC sð Þ−VB sð Þ

R2
+
VC sð Þ
1=C2s

= 0

Arranging these equations with unknown node voltages on the left and the source
terms on the right yields

C1s+
1
R1

+
1
R2

� �
VB sð Þ− μC1s+

1
R2

� �
VC sð Þ =

VS sð Þ
R1

−
1
R2

� �
VB sð Þ+ C2s+

1
R2

� �
VC sð Þ = 0

The natural poles are zeros of the circuit determinant:

Δ sð Þ =

C1s+
1
R1

+
1
R2

� �
− μC1s+

1
R2

� �

−
1
R2

� �
C2s+

1
R2

� �























= C1C2s2 +

C1

R2
+
C2

R1
+
C2

R2
−μ

C1

R2

� �
s+

1
R1R2

jω

σ
θ

jβ

−jβ

−α ζω0

ω0

s-planes  = ‒α ‒ jβ

s  = ‒α + jβ

FIGURE 10–35 s-plane
geometry relating α and β to ζ
and ω0

+
−

R1

VS(s) μVX

+

−

1
C2s

VA VB VD

1
C1s

+
−

R2

VC

VX

FIGURE 10–36
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For equal resistances R1 =R2 =R and equal capacitances C1 =C2 =C, the circuit
determinant reduces to

Δ sð Þ
C2 = s2 +

3−μ
RC

� �
s+

1
RC

� �2

Comparing this second-order factor to the standard form s2 + 2ζω0s+ω2
0 yields the

following design constraints:

ω0 =
1
RC

= 1000 and ζ=
3−μ
2

= 0:5

These constraints lead to the conditions RC = 10−3 and μ= 2. Selecting R= 10 kΩ
makes C = 0:1 μF. For the specified conditions the natural poles are located at
s= −α� jβ, where

α= ζω0 = 500 rad=s and β=ω0

ffiffiffiffiffiffiffiffiffiffiffi
1−ζ2

p
= 866 rad=s ■

D e s i g n E x e r c i s e 10–19
Consider the circuit in Figure 10–36. Select values for the various components to produce a
pair of complex poles defined by ζ= 0:5 and ω0 = 1 krad=s. To produce your design youmust
assume unity gain μ=1ð Þ for the dependent source and that R1 =R2 =R.

A n s w e r: With the given assumptions,

ω0 =
1

R
ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p and ζ=
ffiffiffiffiffiffi
C2

C1

r

If we selectR=10 kΩ, thenC1 = 0:2 μF andC2 = 0:05 μF.Other correct answers are possible.

D E S I G N E X A M P L E 1 0 – 1 6

(a) For the s-domain circuit in Figure 10–37, solve for the zero-state
output VO sð Þ in terms of a general input VS sð Þ.

(b) Solve for the zero-state output υO tð Þ when the input is a unit step
function υS tð Þ= u tð ÞV.

(c) Select values ofR1,R2, andC to produce amaximum gain of – 100
and a pole at s = –100 krad=s.

SOLUTION:
(a) We use the node-voltage method to find the OP AMP output. A node

equation is not required at node A since the selected reference node
makesVA sð Þ=VS sð Þ. Likewise, one is not needed at nodeD since it is theOPAMPoutput.
Finally, we can avoid writing a node equation at node B by observing that the element
impedances R1 and 1=Cs are connected in series. We can treat this series combination
as a single element with an equivalent impedance R1 + 1=Cs. Using all of these observa-
tions, the sum of the currents leaving Node C is

Node C:
VC sð Þ−VS sð Þ
R1 + 1=Cs

+
VC sð Þ−VO sð Þ

R2
+ IN sð Þ= 0

In the s domain the idealOPAMPmodel inEq. (10–4) requires IN sð Þ= 0 andVP sð Þ=VN sð Þ.
But VP sð Þ= 0 since the noninverting input is grounded; hence, VN sð Þ=VC sð Þ= 0. Inserting
these conditions in the node C equation and solving for the output voltage yields

+

−
+
−

A B DR1 R2

VS(s)

+
VO(s)

VC(s)

1 /Cs

R1+1/Cs

FIGURE 10–37
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VOzs sð Þ = −
R2

R1 + 1=Cs

� �
VS sð Þ

= −
R2

R1

s
s+ 1=R1C

� �� �
VS sð ÞV-s

This equation relates the zero-state output to a general input VS sð Þ. The output transform
is proportional to the input transform since the circuit is linear. The proportionality factor
within the brackets is called a network function. In this case, the network function has a
natural pole at s= −1=R1C and a zero at s= 0.

(b) A step function input VS sð Þ= 1=s produces a forced pole at s= 0. However, the zero in the
network function cancels the forced pole so that

υO tð Þ = ℒ−1 −
R2

R1

s
s+ 1=R1C

� �
1
s


 �
=ℒ−1 −

R2

R1

1
s+ 1=R1C

� �
 �

= −
R2

R1
e− t=R1C

� �
u tð ÞV

For a step function input the zero-state output has no forced pole, only a natural pole at
s= −1=R1C. The general principle is that the forced response can be zero even when the
input is not zero. In the s domain, this occurs when the network function relating output to
input has zeros at the same location as forced poles.

(c) The product 1=R1C controls the location of the pole and –R2=R1 controls the gain. Select-
ing the pole first, we have 1=R1C = 100 krad=s. Choosing R1 = 1 kΩ results in C = :01 μF.
For the gain, we need –R2=R1 = – 100: With R1 = 1 kΩ, we get R2 = 100 kΩ. ■

D e s i g n E x e r c i s e 1 0–2 0
(a) For the s-domain circuit in Figure 10–38, solve for the zero-state output

VO sð Þ in terms of a general input VS sð Þ.
(b) Solve for the zero-state output when the input is a step func-

tion υS tð Þ=VAu tð ÞV.
(c) Select values of R1, R2, and C to produce a maximum gain of −100 and a

pole at s = −10 krad=s.

A n s w e r s:

(a) VO sð Þ= −
1=R1C

s+ 1=R2C
VS sð ÞV-s

(b) υO tð Þ= −
VAR2

R1
1−e− t=R2C
h i

u tð ÞV
(c) Let R2 = 100 kΩ, C = 0:001 μF, and R1 = 1 kΩ. Other answers are possible.

E x e r c i s e 10–21
Formulate node-voltage equations for the circuit in Figure 10–39 and find the circuit deter-
minant. Assume that the initial conditions are zero.

A n s w e r: The node equations are

Node B:
1
Ls

+
1
R1

+
1
R2

� �
VB sð Þ− 1

R2

� �
VC sð Þ =

VS sð Þ
R1

Node C: −
1
R2

� �
VB sð Þ+ Cs+

1
R2

� �
VC sð Þ = CsVS sð Þ

The circuit determinant is

Δ sð Þ=
1
R1

+
1
R2

� �
LCs2 +

L
R1R2

+C
� �

s+
1
R2

Ls

+

−+
−

R1 R2

VS(s)

1/Cs

+
VO(s)

FIGURE 10–38

+
−VS(s) Ls

R1 R2

VB(s)VA(s) VC(s)

Cs
1

FIGURE 10–39
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10–5 M E S H - C U R R E N T A N A L Y S I S I N T H E s D O M A I N

We can use the mesh-current method only when the circuit can be drawn on a flat
surface without crossovers. Such planar circuits have special loops called meshes that
are defined as closed paths that do not enclose any elements. The mesh-current vari-
ables are the loop currents assigned to each mesh in a planar circuit. Because of KCL
the current through any two-terminal element can be expressed as the difference of
two adjacent mesh currents. This fundamental property of mesh currents, together
with the element impedances, allows us to write KVL constraints around each of
the meshes.

For example, in Figure 10–40, the sum of voltages around
mesh A can be written as

Z1 sð ÞIA sð Þ+Z3 sð Þ IA sð Þ−IC sð Þ½ �−VS1 sð Þ+Z2 sð Þ IA sð Þ−IB sð Þ½ �+VS2 sð Þ= 0

Rewriting this equation with unknown mesh currents grouped
on the left and inputs on the right yields

Z1 sð Þ+Z2 sð Þ+Z3 sð Þð ÞIA sð Þ−Z2 sð ÞIB sð Þ−Z3 sð ÞIC sð Þ=VS1 sð Þ−VS2 sð Þ
This equation displays the following pattern. The unknowns are
the mesh-current transforms IA sð Þ, IB sð Þ, and IC sð Þ. The coeffi-
cient Z1 sð Þ+Z2 sð Þ+Z3 sð Þ½ � of IA sð Þ is the sum of the impedances
of the elements in mesh A. The coefficients Z2 sð Þ½ � of IB sð Þ and
Z3 sð Þ½ � of IC sð Þ are the impedances common to mesh A and
the other meshes. Finally, VS1 sð Þ−VS2 sð Þ is the sum of the

source voltages around mesh A. These observations suggest that we can write
mesh-current equations for s-domain circuits by inspection, just as we did with resis-
tive circuits.

The formulation approach just outlined assumes that there are no current
sources in the circuit. When writing mesh-current equations, we select the voltage
source model to represent the initial conditions. If the circuit contains depend-
ent or independent current sources, they can be treated using the following
methods:

Method 1: If there is an admittance in parallel with the current source, use a
source transformation to convert it into an equivalent voltage source.

Method 2: Draw the circuit diagram so that only one mesh current circulates
through the current source. This mesh current is then determined by the
source current.

Method 3: Create a supermesh for any current source that cannot be handled
by method 1 or 2.

Some circuits may require more than one of these methods.
The following examples illustrate the mesh-current method of s-domain circuit

analysis.

E X A M P L E 1 0 – 1 7

(a) Formulate mesh-current equations for the circuit in Figure 10–41(a).
(b) Solve for the zero-input component of IA sð Þ and IB sð Þ.
(c) Find the zero-input responses iA tð Þ and iB tð Þ for R1 = 100Ω, R2 = 200Ω,

L1 = 50 mH, and L2 = 100 mH.

−
+

VS2(s)

Z1(s)

Z
2
(s

)

VS1(s)

Z
3
(s

)

Z
4(s)

 IC (s)IA(s)IB(s)

−
+

FIGURE 10–40 An example mesh.
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SOLUTION:

(a) Figure 10–41(b) shows the circuit transformed into the s domain. In transforming
the circuit, we used the voltage source model for the initial conditions. The net
result is that the transformed circuit contains only voltage sources. The sum of
voltages around meshes A and B can be written as

Mesh A: −VS sð Þ+L1sIA sð Þ−L1iL1 0ð Þ+R1 IA sð Þ−IB sð Þ½ � = 0

Mesh B: R1 IB sð Þ−IA sð Þ½ �+L2sIB sð Þ−L2iL2 0ð Þ+R2IB sð Þ = 0

Rearranging these equations in standard form yields

Mesh A: L1s+R1ð ÞIA sð Þ−R1IB sð Þ=VS sð Þ+L1iL1 0ð Þ
Mesh B: −R1IA sð Þ+ L2s+R1 +R2ð ÞIB sð Þ=L2iL2 0ð Þ

These s-domain circuit equations are two linear algebraic equations in the two
unknown mesh currents IA sð Þ and IB sð Þ.

(b) To solve for the mesh equations, we first find the circuit determinant:

Δ sð Þ = L1s+R1 −R1

−R1 L2s+R1 +R2














= L1L2s2 + R1L2 +R1L1 +R2L1ð Þs+R1R2

To find the zero-input component of IA sð Þ, we let VS sð Þ= 0 and use Cra-
mer’s rule:

IAzi sð Þ =

L1iL1 0ð Þ −R1

L2iL2 0ð Þ L2s+R1 +R2














Δ sð Þ

=
L2s+R1 +R2ð ÞL1iL1 0ð Þ+R1L2iL2 0ð Þ

L1L2s2 + R1L2 +R1L1 +R2L1ð Þs+R1R2

Similarly, the zero-input component in IB sð Þ is

IBzi sð Þ =

L1s+R1 L1iL1 0ð Þ
−R1 L2iL2 0ð Þ














Δ sð Þ

=
L1s+R1ð ÞL2iL2 0ð Þ+R1L1iL1 0ð Þ

L1L2s2 + R1L2 +R1L1 +R2L1ð Þs+R1R2

(c) To find the time-domain response, we insert the numerical parameters into the
preceding expressions to obtain

(a)

vS(t)

L1 L2

R1 R2

(b)

VS(s)

L1s L2s

R1

R2

− + − +

IA(s) IB(s)

L1iL1
(0) L2iL2

(0)

+
V2(s)

−

+
V4(s)

−

+ V1(s) − + V3(s) −

+
−

+
−

FIGURE 10–41
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IAzi sð Þ= 0:005s+ 15ð ÞiL1 0ð Þ+ 10iL2 0ð Þ
0:005s2 + 25s+ 20;000

=
s+ 3000ð ÞiL1 0ð Þ+ 2000iL2 0ð Þ

s+ 1000ð Þ s+ 4000ð Þ

IBzi sð Þ= 0:005s+ 10ð ÞiL2 0ð Þ+ 5iL1 0ð Þ
0:005s2 + 25s+ 20;000

=
s+ 2000ð ÞiL2 0ð Þ+ 1000iL1 0ð Þ

s+ 1000ð Þ s+ 4000ð Þ
The circuit has natural poles at s= −1000 and −4000 rad=s. Expanding by partial
fractions yields

IAzi sð Þ = 2
3
×
iL1 0ð Þ+ iL2 0ð Þ

s+ 1000
+
1
3
×
iL1 0ð Þ−2iL2 0ð Þ

s+ 4000
A-s

IBzi sð Þ =
1
3
×
iL1 0ð Þ+ iL2 0ð Þ

s+ 1000
−
1
3
×
iL1 0ð Þ−2iL2 0ð Þ

s+ 4000
A-s

The inverse transforms of these expansions are the required zero-input response
waveforms:

iAzi tð Þ = 2
3
iL1 0ð Þ+ iL2 0ð Þ½ �e−1000t + 1

3
iL1 0ð Þ−2iL2 0ð Þ½ �e−4000t

� �
u tð ÞA

iBzi tð Þ =
1
3
iL1 0ð Þ+ iL2 0ð Þ½ �e−1000t− 1

3
iL1 0ð Þ−2iL2 0ð Þ½ �e−4000t

� �
u tð ÞA

Notice that if the initial conditions are iL1 0ð Þ= − iL2 0ð Þ, then both IA sð Þ and IB sð Þ
have a zero at s= −1000. This zero effectively cancels the natural pole at
s= −1000. As a result, this pole has zero residue in both partial fraction expan-
sions, and the corresponding terms disappear from the time-domain responses.
Likewise, if the initial conditions are iL1 0ð Þ= 2iL2 0ð Þ, then both IA sð Þ and IB sð Þ
have a zero at s= −4000, and the natural pole at s= −4000 disappears in the
s-domain responses. The general principle is that all of the circuit’s natural poles
may not be present in a given response. When this happens the response trans-
form has a zero at the same location as a natural pole, and we say that the natural
pole is not observable in the specified response. ■

E x e r c i s e 10–22
Solve for the zero-state components of IA sð Þ and IB sð Þ in Figure 10–41(b).

A n s w e r:
IAzs sð Þ = R1 +R2 +L2s

L1L2s2 + R1L2 +R1L1 +R2L1ð Þs+R1R2
VS sð ÞA-s

IBzs sð Þ =
R1

L1L2s2 + R1L2 +R1L1 +R2L1ð Þs+R1R2
VS sð ÞA-s

E X A M P L E 1 0–1 8

(a) Formulate mesh-current equations for the circuit in Figure 10–42(a).
(b) Solve for the zero-input component of iA tð Þ for iL 0ð Þ= 0,υC 0ð Þ= 10 V,

L= 250 mH,C = 1 μF, andR= 1 kΩ.
(c) Use Multisim to simulate the circuit in Figure 10–42(b) and then validate your

results by running a MATLAB calculation of the result. Compare the two plots.
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SOLUTION:

(a) Figure 10–42(a) is the s-domain circuit used in Example 10–13 to develop node
equations. In this circuit, each current source is connected in parallel with an
impedance. Source transformations convert these current sources into the equiv-
alent voltage sources shown in Figure 10–42(b). The circuit in Figure 10–42(b) is
a series RLC circuit of the type treated in Chapter 7. By inspection, the KVL
equation for the single mesh in this circuit is

R+Ls+
1
Cs

� �
IA sð Þ=RIS sð Þ+LiL 0ð Þ− υC 0ð Þ

s

The circuit determinant is the factor R+Ls+ 1=Cs= LCs2 +RCs+ 1
� �

=Cs. The
zeros of the circuit determinant are roots of the quadratic equation LCs2 +
RCs+ 1= 0,which we recognize as the characteristic equation of a seriesRLC cir-
cuit. In our study ofRLC circuits, we called these roots natural frequencies. Thus,
the natural poles of the circuit are its natural frequencies.

(b) Solving the mesh equation for the zero-input component yields

IAzi sð Þ= LCsiL 0ð Þ−CυC 0ð Þ
LCs2 +RCs+ 1

A-s

Inserting the given numerical values produces

IAzi sð Þ= −
10−5

0:25 × 10−6s2 + 10−3s+ 1
= −

40

s2 + 4 × 103s+ 4× 106

= −
40

s+ 2000ð Þ2 A-s

The zero-state response has two natural poles, both located at s= −2000. The
inverse transform of IAzi sð Þ is a damped ramp waveform:

iAzi tð Þ= − 40te−2000t
� �

u tð ÞA
The damped ramp response indicates a critically damped second-order circuit.
The minus sign means the direction of the actual current is opposite to the ref-
erence mark assigned to IA sð Þ in Figure 10–42. This sign makes sense physically
since the capacitor initial condition source in Figure 10–42(b) tends to drive cur-
rent in a direction opposite to the assigned reference mark.

(c) A transient simulation was conducted using Multisim. A series RLC circuit was
built with the initial condition of the capacitor set at + 10 V and that of the induc-
tor to 0 A. There was no input since the requirement was for the zero-input

IS(s) R

Ls

1
Cs

CvC(0)

iL(0)
s

(a)

− +

IA(s)

R Ls LiL(0)

1
Cs

vC(0)
s

IS(s)R

(b)

+
−

+
−

FIGURE 10–42
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response. A transient analysis of the circuit current was plotted versus time
for 5 ms. The resulting plot is shown in Figure 10–42(c).

Then MATLAB was asked to plot the result of part (b). The following
MATLAB code was used

t = 0:2e-6:5e-3;
iR=-40∗t.∗exp(-2000∗t);
plot(t,iR,’b’,’LineWidth’,4)
grid on
xlabel('Time (s)')
ylabel('Current (A)')

The MATLAB plot is also shown in Figure 10–42(c). Comparing the results
shows no measureable differences between the two computer plots. ■

E x e r c i s e 10–23
For the circuit in Figure 10–42(b), let IS sð Þ=0:01= s+ 500ð ÞA-s,L= 250mH,C =1 μF,
andR= 1 kΩ. Use partial fraction expansion or MATLAB to solve for the zero-state com-
ponent of iA tð Þ.
A n s w e r:

iAZSt =
2/(225∗exp(2000∗t))-2/(225∗exp(500∗t))+(160∗t)/(3∗exp(2000∗t))

iAzs tð Þ= 160t
3

+
2

225

� �
e−2000t −

2
225

e−500t
� �

u tð ÞA

E X A M P L E 1 0–1 9

Formulate mesh current equations for the circuit in Figure 10–43 and solve
for IB sð Þ in symbolic from. Locate the natural poles of the circuit
for R= 1 kΩ,C = 4 μF, andL= 1H.
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SOLUTION:
By inspection the two mesh-current equations are

MeshA: R+Ls+
1
Cs

� �
IA sð Þ− 1

Cs
IB sð Þ=VS sð Þ

Mesh B: −
1
Cs

IA sð Þ+ R+Ls+
1
Cs

� �
IB sð Þ= 0

The circuit determinant is

Δ sð Þ = R+Ls+
1
Cs

� �2

−
1
Cs

� �2

=R2 + 2RLs+ 2
R
Cs

+L2s2 + 2
L
C

=
Ls+Rð Þ LCs2 +RCs+ 2

� �
Cs

and the required mesh current is

IB sð Þ= ΔB sð Þ
Δ sð Þ =

R+Ls+
1
Cs

VS sð Þ

−
1
Cs

0




















Δ sð Þ

=
VS sð Þ

Ls+RÞ LCs2 +RCs+ 2Þðð
The natural poles are roots of the denominator of IB sð Þ, namely

s+
R
L

� �
s2 +

R
L
s+

2
LC

� �
= 0

For R= 1 kΩ,C = 4 μF, andL= 1H, this expression factors as

s+ 1000ð Þ s2 + 1000s+ 5× 105
� 	

= s+ 1000ð Þ s+ 500ð Þ2 + 5002
h i

= 0

so the natural poles are located at s= −1000 rad=s and s= −500� j500 rad=s. ■

E x e r c i s e 10–24
(a) Formulate mesh-current equations for the circuit in Figure 10–44. Assume that the

initial conditions are zero.
(b) Find the circuit determinant.
(c) Solve for the zero-state component of IB sð Þ.
A n s w e r s:

(a)
R1 +Lsð ÞIA sð Þ−R1IB sð Þ=VS sð Þ
−R1IA sð Þ+ R1 +R2 + 1=Csð ÞIB sð Þ=0

(

(b) Δ sð Þ= R1 +R2ð ÞLCs2 + R1R2C +Lð Þs+R1

Cs

(c) IBzs sð Þ= R1CsVS sð Þ
R1 +R2ð ÞLCs2 + R1R2C +Lð Þs+R1

E x e r c i s e 10–25
Formulate mesh-current equations for the circuit in Figure 10–44 when a resistor R3 is
connected between nodes A and B. Assume that the initial conditions are zero.

+
− Ls

R1 R2

VS(s)

IB(s)

IA(s)

Cs
1

B

A

FIGURE 10–44
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A n s w e r:

R1 +Lsð ÞIA sð Þ−R1IB sð Þ−LsIC sð Þ=VS sð Þ

−R1IA sð Þ+ R1 +R2 +
1
Cs

� �
IB sð Þ−R2IC sð Þ=0

−LsIA sð Þ−R2IB sð Þ+ R2 +R3 +Lsð ÞIC sð Þ=0

10–6 S U M M A R Y O F s - D O M A I N C I R C U I T A N A L Y S I S

At this point, we review our progress and put s-domain circuit analysis into perspec-
tive. We have shown that linear circuits can be transformed from the time domain
into the s domain. In this domain KCL and KVL apply to transforms and the passive
element i−υ characteristics become impedances with series or parallel initial condi-
tion sources. In relatively simple circuits, we can use basic analysis methods, such
as reduction, superposition, Thévenin and Norton equivalent circuits, and voltage/
current division. For more complicated circuits we use systematic procedures, such
as the node-voltage or mesh-current methods, to solve for the circuit response.

In theory, we can perform s-domain analysis on circuits of any complexity. In prac-
tice, the algebraic burden of hand computations gets out of hand for circuits with
more than three nodes or meshes. Of what practical use is an analysis method that
becomes impractical at such amodest level of circuit complexity?Why not just appeal
to computer-aided analysis tools in the first place?

Unquestionably, large-scale circuits are best handled by computer-aided analysis.
Computer-aided analysis is probably the right approach even for small-scale circuits
when numerical values for all circuit parameters are known and the desired end prod-
uct is a plot or numerical listing of the response waveform. Simply put, s-domain
circuit analysis is not a particularly efficient algorithm for generating numerical
response data.

The purpose of s-domain circuit analysis is to gain insight into circuit behavior, not
to grind out particular response waveforms. In this regard, s-domain circuit analysis
complements programs such as MATLAB and Multisim. It offers a way of charac-
terizing circuits in very general terms. It provides guidelines that allow us to use com-
puter-aided analysis tools intelligently. Some of the useful general principles derived
in this chapter are summarized below.

The response transform YðsÞ1 is a rational function whose partial-fraction expan-
sion leads directly to a response waveform of the form

y tð Þ=
Xnumber of poles

j = 1

kje
−pj t

where k j is the residue of the pole in YðsÞ located at s= −p j. The location of the poles
tells us a great deal about the formof the response. The pair of conjugate complex poles
in Example 10–14 produced a damped sine waveform, the two distinct real poles in
Example 10–17 produced exponential waveforms, and the double pole in Example
10–18 led to a damped ramp waveform. The general principle illustrated is as follows:

The poles of Y(s) are either real or complex conjugates. Simple real poles lead to
exponentials, double real poles lead to a damped ramp, and complex conjugate
poles lead to damped sinusoids.

As the discussion in Example 10–14 noted, the poles in Y sð Þ are introduced either
by the circuit itself (natural poles) or by the input driving force (forced poles).

1In this context, YðsÞ is not an admittance but the Laplace transform of the circuit output yðtÞ
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The natural poles are zeros of the circuit determinant and lead to the natural
response.The forced poles are poles of the inputX(s) and lead to the forced response.

Stability is a key concept in circuit analysis and design. For our present purposes,
we say that a linear circuit is stable if its natural response decays to zero as t! ∞ .
Figure 10–45 shows the waveforms of the natural modes corresponding to different
pole locations in the s plane. Poles in the left half plane give rise to waveforms that
decay to zero as time increases, while those in the right half plane increase without
bound. As a result, we can say that

A circuit is stable if all of its natural poles are located in the left half of the s plane.

Stability requires all of the natural poles to be in the left half plane (LHP). The circuit
is unstable if even one natural pole falls in the right half plane (RHP).

In Figure 10–45, the jω-axis is the boundary between the LHP (stable circuits) and
RHP (unstable circuits). Poles exactly on this boundary require further discussion.
As Figure 10–45 shows, simple j-axis poles at s= 0 and s= � jβ lead to natural modes
like uðtÞ and cosðβtÞ that neither decay to zero nor increase without bound. The figure
also shows that double poles on the j-axis lead to natural modes like tuðtÞ and t cosðβtÞ
that increase without bound. Circuits with simple poles on the j-axis are sometimes said
tobemarginallystable,2while thosewithmultiplepolesonthe j-axis are clearly unstable.

Circuit stability is determined by natural poles, not forced poles. For example,
suppose an input xðtÞ= e10t produces an output transform

YðsÞ= 12s
ðs+ 2Þ|fflfflffl{zfflfflffl}
LHP

ðs−10Þ|fflfflffl{zfflfflffl}
RHP

σ

t

ζ = 1/2
t

ζ = 0
one pole

t

α = 0
two poles

t

ζ = −1/2

t

α = >0 t

α = 0
one pole

t

α = <0

t
ζ = 0

two poles

jω

FIGURE 10–45 Form of the
natural response corresponding
to different pole locations.

2They could just as logically be called marginally unstable. The stability status of simple j-axis poles
depends on the application. For example, electronic circuits with simple poles firmly rooted on the
j-axis are called stable oscillators. On the other hand, j-axis poles in audio amplifiers cause “ringing,”
a dirty word among audiophiles.

539SUMMARY OF s-DOMAIN CIRCUIT ANALYSIS



This transform has a left half plane (LHP) pole and a right half plane (RHP) pole.
The corresponding waveform

yðtÞ= 2e−2t|ffl{zffl}
natural
bounded

+ 10e10t|fflffl{zfflffl}
forced

unbounded

t > 0

has an unbounded term due to the RHP pole. Even with an unbounded response the
circuit is still said to be stable because the natural pole at s= −2 is in the LHP and
leads to a natural response that decays to zero. The unbounded part of the response
waveform comes from the forced RHP pole caused by the unbounded input.

Since the natural response plays a key role, we would like to predict the number of
natural poles by simply examining the circuit. Figure 10–46 summarizes examples
from this chapter and leads to the following observations. Circuits with only one
energy storage element (inductor or capacitor) have only one pole, circuits with
two independent elements have two poles, and Example 10–19 has three poles to
go with its three energy storage elements. The conclusion appears to be that the num-
ber of natural poles is equal to the number of energy storage elements.While this rule

10–6

Example Circuit Diagram Natural Poles

10–2

10–14

10–8

10–18

10–19

1 Inductor

1 Capacitor

1 Capacitor
1 Inductor

1 Capacitor
1 Inductor

1 Capacitor
1 Inductor

1 Capacitor
2 Inductors

jω

σ

jω

σ

jω

σ

jω

σ

jω

σ

jω

σ

1 LHP pole

1 LHP pole

2 LHP poles
Overdamped

2 LHP poles
Underdamped

2 2 LHP poles
Critically damped

3 LHP poles

FIGURE 10–46 Summary of
Chapter 10 examples.
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is a useful guideline, there are exceptions (capacitors in parallel, for example). The
best we can say is that

The number of natural poles does not exceed the number of energy storage
elements.

Another implication in Figure 10–46 comes from two additional observations.
First, all of the natural poles are in the LHP; hence, all of the circuits are stable. Sec-
ond, all of the circuits contain only passive resistors, capacitors, and/or inductors; that
is, there are no active elements. These observations imply that

Circuits consisting of passive resistors, capacitors, and inductors are inherently
stable.

This conclusion makes sense physically since the passive elements can only store or
dissipate energy. They cannot produce the energy needed to sustain an unbounded
response.

What about circuits with active elements like dependent sources orOPAMPs? Such
circuits canbeunstable, aswe can see by reviewingExample 10–15. In that example, we
analyzed the activeRC circuit in Figure 10–36 and found the circuit determinant to be

ΔðsÞ
C2 = s2 +

3−μ
RC

� �
s+

1
RC

� �2

and the two natural poles are defined by

ω0 =
1
RC

and ζ=
3−μ
2

where μ is the gain of the dependent source, the active element
in the circuit. For μ= 0 (active element turned off), the damping
ratio is ζ= 1:5> 1 and the circuit is overdamped. For μ= 1, the
damping ratio is ζ= 1 and the circuit is critically damped. For
3 > μ> 1, the damping ratio is 1 > ζ> 0 and the circuit is under-
damped. For μ= 3, the damping ratio is ζ= 0 and the circuit is
undamped and therefore oscillates. Finally, for μ> 3, the damp-
ing ratio is ζ< 0 and the circuit is said to have negative damping,
which is an unstable condition.

Figure 10–47 shows the loci of the natural poles as the gain
increases. For μ> 3, the poles move into the RHP and the cir-
cuit becomes unstable. This makes sense physically. When the
gain is high enough, the active element can produce the energy
needed to sustain an unbounded output. Since instability is
almost always undesirable, we usually state the conclusion
the other way around. That is, this active RC circuit is stable
provided the gain μ< 3. It is common for active circuits to be
stable when circuit parameters are in one range and unstable
when they are outside this range. For double-pole circuits
the stable range can be found by relating the damping ratio
to circuit parameters. For single-pole circuits, the stable range
ensures that the pole lies on the negative real axis.

E x e r c i s e 10–26
The circuit determinants of three circuits to be studied in subsequent chapters are given
below. Determine the nature of the poles of each circuit and what conditions, if any, could
cause the circuit to become unstable.

(a) R2C2s2 + 2RCs+ 1
(b) R2C2s2 +RCs+ 1
(c) R2C2s2 + ð3−μÞRCs+ 1

2

μ = 1
ζ = 1

μ = 2
ζ = 

σ

jω μ = 3
ζ = 0

μ > 3
ζ < 0

Stable poles Unstable poles

Marginally stable poles

μ = 0
ζ = 1

ω0 = 1/RC

1
2

1
2

FIGURE 10–47 Pole loci on a circle of radius ω0.
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A n s w e r s:
(a) Poles are real, negative, and equal; circuit is always stable.
(b) Poles are complex with negative real parts; circuit is always stable.
(c) Poles can vary depending on μ. If μ< 1, the poles are real, distinct, and both negative, so

the circuit is always stable. If μ=1, the poles are real, negative, and equal, so the circuit
is always stable. If 1 < μ< 3, the poles are complex with negative real parts, so the circuit
is always stable. If μ= 3, the poles are pure imaginary and the circuit is marginally stable.
If μ>3, the poles have positive real parts and the circuit is unstable.

S U M M A R Y
• Kirchhoff’s laws apply to voltage and current wave-

forms in the time domain and to the corresponding
transforms in the s domain.

• The s-domain models for the passive elements include
initial condition sources and the element impedance or
admittance. Impedance is the proportionality factor in
the expression VðsÞ=ZðsÞIðsÞ relating the voltage and
current transforms. Admittance is the reciprocal of
impedance.

• The impedances of the three passive elements are
ZRðsÞ=R,ZLðsÞ=Ls, andZCðsÞ= 1=Cs.

• The s-domain circuit analysis techniques closely paral-
lel the analysis methods developed for resistance cir-
cuits. Basic analysis techniques, such as circuit
reduction, Thévenin’s and Norton’s theorems, the unit
output method, or superposition, can be used in simple
circuits. More complicated networks require a general
approach, such as the node-voltage or mesh-current
methods.

• Response transforms are rational functions whose
poles are zeros of the circuit determinant or poles
of the transform of the input driving forces. Poles

introduced by the circuit determinant are called natu-
ral poles and lead to the natural response. Poles intro-
duced by the input are called forced poles and lead to
the forced response.

• In linear circuits, response transforms and waveforms
can be separated into zero-state and zero-input com-
ponents. The zero-state component is found by setting
the initial capacitor voltages and inductor currents to
zero. The zero-input component is found by setting
all input driving forces to zero.

• The main purpose of s-domain circuit analysis is to gain
insight into circuit performance without necessarily find-
ing the time-domain response. The natural poles reveal
the form, stability, and observability of the circuit’s
response. The number of natural poles is never greater
than thenumberofenergystorageelements in thecircuit.

• A circuit is stable if all of its natural poles are in the left
half of the s plane. Passive circuits are inherently stable
so their natural poles are all in the left half plane.
Active circuits can be stable when circuit parameters
are in one range and unstable for parameters outside
this range.

P R O B L E M S

O B J E C T I V E 1 0 – 1 E Q U I V A L E N T I M P E D A N C E
( S E C T S . 1 0 – 1 A N D 1 0 – 2 )
Given a linear circuit, use series and parallel equivalences to
find the equivalent impedance at specified terminal pairs. Select
element values to obtain specified pole locations.
See Examples 10–4 to 10–6 and Exercises 10–4 to 10–8.

10–1 For a series RC circuit, find ZEQ sð Þ and then select

R and C so that there is a pole at s = 0 and a zero
at s = −10 krad=s.

10–2 For a parallel RC circuit, find ZEQ sð Þ and then

select R and C so that there is a pole at s = −250 krad=s.

10–3 For the circuit of Figure P10–3:

(a) Find and express ZEQ sð Þ as a rational function and locate
its poles and zeroes.
(b) Select values of R and C to locate a pole at s = −22
krad=s. Where is the resulting zero?

2R

C

2R

ZEQ

1

2

FIGURE P10–3
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10–4 For the circuit of Figure P10–4:

(a) Find and expressZEQ sð Þ as a rational function and locate
its poles and zeroes.
(b) Select values ofR andC to locate a zero at s=−330 krad=s.

R

C
A B

2R

ZEQ

1

2 C/2

FIGURE P10–4

10–5 For the circuit of Figure P10–4, remove the short cir-

cuit between nodes A and B.
(a) Find and expressZEQ sð Þ as a rational function and locate
its poles and zeroes.
(b) Select values ofR andC to locate a zero at s= −470 rad=s.

10–6 For a series RLC circuit find ZEQ sð Þ, and then if

R = 10 kΩ and L = 1H, select C so that there is a pole at
s = 0 and zeroes at s1,s2 = −5 ± j 8:66ð Þ krad=s. Repeat so
that there are two real and equal zeroes.

10–7 For the circuit of Figure P10–7:

(a) Find and expressZEQ sð Þ as a rational function and locate
its poles and zeroes.
(b) If R = 1 kΩ and C = 0:1 μF, select a value of L to locate
zeroes at ± j10 krad=s.
(c) Where are the poles located once you have selected the
inductor in part (b)?

L

C

R

ZEQ

1

2

FIGURE P10–7

10–8 For the circuit of Figure P10–8:

(a) Find and expressZEQ sð Þ as a rational function and locate
its poles and zeroes.
(b) Select values of R and L to locate a pole at −330 rad=s.
Where is the resulting zero?

2R

RL

ZEQ

1

2

FIGURE P10–8

10–9 For the circuit of Figure P10–9:

(a) Find and express ZEQ sð Þ as a rational function and locate
its poles and zeroes.
(b) Select values of R and L to locate a pole at −15 krad=s.
Where are the resulting zeroes?

R 2L

2L

ZEQ

1

2

FIGURE P10–9

10–10 For the circuit of Figure P10–10:

(a) Find and express ZEQ sð Þ as a rational function and locate
its poles and zeroes.
(b) If R = 15 kΩ, select values of L and C to locate poles at
± j200 krad=s. Where are the resulting zeroes?

R

1/CsLs

ZEQ

1

2

FIGURE P10–10

10–11 For the circuit of Figure P10–11:
(a) If R = 560Ω, L= 1H, and C = 0:5 μF locate the poles
and zeroes of ZEQ sð Þ?
(b) If we were to increase the resistance to 10 kΩ, how would
the poles and zeroes change?
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R
C

L

ZEQ

1

2

FIGURE P10–11

10–12 Find ZEQ1 sð Þ and ZEQ2 sð Þ for the bridge-T circuit in
Figure P10–12. Express each impedance as a rational function
and locate its poles and zeroes.

2R

R

C/2C

ZEQ1 ZEQ2

1

2

3

4

FIGURE P10–12

10–13 For the circuit of Figure P10–13:
(a) Find and expressZEQ sð Þ as a rational function and locate
its poles and zeroes.
(b) If its poles were located at −20 krad=s and zero, where
would the poles move to if the value of R was reduced to half
of its current value?

2R C

ZEQ

1

2C 2R

2

FIGURE P10–13

10–14 For the two-port circuit of Figure P10–14:

(a) Find ZEQ1 sð Þ and ZEQ2 sð Þ, and express each impedance
as a rational function and locate its poles and zeroes.
(b) Select values of R and L to place a pole at −1 kHz.

R

2R

2L

L

ZEQ1 ZEQ2

1

2

FIGURE P10–14

10–15 Find the equivalent impedance between terminals

1 and 2 in Figure P10–15. Select values of R and L so that
ZEQ sð Þ has a pole at s = −3:3 krad=s. Locate the zeroes of
ZEQ sð Þ for your choice of R and L.

2L

L

2R

R

ZEQ

1

2

FIGURE P10–15

10–16 For the dependent circuit in Figure P10–16, select

values of R, L, and μ, so that ZIN sð Þ has a pole at
s = −500 rad=s.

IS(s)
μVX(s)

VX(s)

+

−

Ls

+
−

R

ZIN(s)

FIGURE P10–16

O B J E C T I V E 1 0 – 2 B A S I C C I R C U I T A N A L Y S I S
T E C H N I Q U E S ( S E C T S . 1 0 – 2 A N D 1 0 – 3 )
Given a linear circuit,
(a) Determine the initial conditions (if not given) and trans-

form the circuit into the s domain.
(b) Solve for zero-state and zero-input responses using circuit

reduction, the unit output method, Thévenin or Norton
equivalent circuits, or superposition.

(c) Identify the forced and natural poles in the responses or
select circuit parameters to place the natural poles at speci-
fied locations.

See Examples 10–1 to 10–5 and 10–7 to 10–12 and Exercises 10–1
to 10–4 and 10–7 to 10–16.

10–17 For the circuit of Figure P10–17:
(a) Use voltage division to find VO sð Þ.
(b) Use the lookback method to find ZT sð Þ.

+

−

1/Cs

RR

ZT(s)

VO(s)VS(s)
+
−

FIGURE P10–17
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10–18 A load resistor RL = R is connected across the output in
Figure P10–17. Show that the network function (in this case
the ratio of the output to the input) is

VO sð Þ
VS sð Þ =

1
2RC

s+
2

3RC

10–19 For the circuit of Figure P10–19:
(a) Use current division to find I2 sð Þ.
(b) Use the lookback method to find ZN sð Þ.
(c) If I1 sð Þ is equal to IA=s, find the poles and zeroes of I2 sð Þ
and identify the natural and the forced poles.

I2(s)

R2

R1

Ls

ZN(s)

I1(s)

FIGURE P10–19

10–20 The interface circuit of Figure P10–20 needs to pro-

duce an output transform of

VO sð Þ
Vi sð Þ =

1
2

s+
1
RC

� �
s+

1
2RC

Design an appropriate circuit.

+
−

Vi(s)

+

−

VO(s)Interface

FIGURE P10–20

10–21 Find the Thévenin equivalent for the circuit in

Figure P10–21. Then select values for R and L so that the
Thévenin voltage has a pole at −24 krad=s.

R Ls

R

VT(s), ZT(s)

VS(s)
+
−

FIGURE P10–21

10–22 The circuit in Figure P10–21 has R = 1 kΩ and L = 1H.
A load is connected across the output equal to ZL sð Þ = s +
500Ω. Identify the natural poles and zeroes of the load
voltage.

10–23 If the input to the RLC circuit of Figure P10–23
is vS tð Þ = u tð Þ:
(a) Find the output voltage transform across each element.
(b) Compare the three outputs with regard to their respec-
tive poles and zeros.
(c) Use the initial- and final-value theorems to determine
the value of the voltage across each element at t = 0
and t = ∞. What conclusions can one draw regarding the
results?

+
−

+
VR(s)
‒

+
VL(s)
‒

+

VLC(s)

‒

+

VC(s)

‒

VS(s)

R

Ls

1/Cs

FIGURE P10–23

10–24 If the input to the RLC circuit of Figure P10–23
is vS tð Þ = u tð Þ:
(a) Find the output voltage transform VLC sð Þ across L and C
taken together.
(b) Use the initial- and final-value theorems to determine the
value of the voltage across the combined elements at t = 0
and t = ∞. What conclusions can one draw regarding the
results?

10–25 The switch in Figure P10–25 has been in position A for a
long time and is moved to position B at t = 0. Transform the
circuit into the s domain and solve for IL sð Þ, iL tð Þ, VO sð Þ, and
vO tð Þ in symbolic form.

t = 0

A

B

2R

L

+

−

iL(t)

+

vO(t)

‒

RVA

FIGURE P10–25

10–26 The switch in Figure P10–25 has been in position B for a
long time and is moved to position A at t = 0. Transform the
circuit into the s domain and solve for IL sð Þ and iL tð Þ in sym-
bolic form.

10–27 The switch in Figure P10–27 has been in position A for a
long time and is moved to position B at t = 0. Transform the
circuit into the s domain and solve for IC sð Þ, iC tð Þ, VO sð Þ, and
vO tð Þ in symbolic form.
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2R

t = 0

A

B

C
−

−+

+

VA2VA vC(t)
+

−

iC(t)

R

+ vO(t) −

FIGURE P10–27

10–28 The switch in Figure P10–27 has been in position B for a
long time and is moved to position A at t = 0. Transform the
circuit into the s domain and solve for VC sð Þ, vC tð Þ, VO sð Þ,
and vO tð Þ in symbolic form.

10–29 Transform the circuit in Figure P10–29 into the s domain
and find: IL sð Þ, iL tð Þ, VL sð Þ, and vL tð Þ when v1 tð Þ = VA δ tð Þ
and iL 0ð Þ = IA.

+
−

v1(t) R

2R

L

+

        

−

vL(t)

iL(t)

FIGURE P10–29

10–30 Repeat Problem 10–29 if v1 tð Þ = VAu tð Þ.
10–31 Transform the circuit in Figure P10–29 into the s domain

and find IL sð Þ and iL tð Þ when v1 tð Þ = VAe−1000tu tð Þ,
R = 100Ω, L = 100mH, and iL 0ð Þ = 0A. Validate you
answer using Multisim.

10–32 The switch in Figure P10–32 has been in position A for a
long time and is moved to position B at t = 0:
(a) Transform the circuit into the s domain and solve for
IL sð Þ in symbolic form.
(b) Repeat part (a) using MATLAB.
(c) Find iL tð Þ forR1 = R2 = 500Ω, R3 = 1 kΩ,L = 500 mH,
C = 0:15 μF, and VA = 5 V.

R2

t = 0

A

B

C

R1

VA

L

+

        

−

+

−

iL(t)
vC(t)R3

FIGURE P10–32

10–33 The switch in Figure P10–32 has been in position B for a
long time and is moved to position A at t = 0:
(a) Transform the circuit into the s domain and solve for
VC sð Þ in symbolic form.

(b) Find vC tð Þ forR1 = 50Ω, R2 = 100Ω, R3 = 1 kΩ,
L = 500 mH, C = 1 μF, and VA = 15 V. In addition, the
inductor is not ideal but has a parasitic resistance (in series)
of 100Ω.
(c) Repeat part (b) using Multisim.

10–34 The circuit in Figure P10–34 is in the zero state. The
s-domain relationship between the input I1 sð Þ and the output
IR sð Þ is usually given as a ratio called a network function. Find
IR sð Þ=I1 sð Þ. Identify the poles and the zeros.

i1(t)

C

L
R

iR(t)

FIGURE P10–34

10–35 The circuit in Figure P10–35 is in the zero state. Find the
s-domain relationship between the input I1 sð Þ and the output
VO sð Þ. Identify the poles and the zeroes.

+

−

R/2R

C

i1(t) vO(t)

C/2

FIGURE P10–35

10–36 The initial conditions for the circuit in Figure P10–36
are vC 0ð Þ = 0 and iL 0ð Þ = I0. Transform the circuit into the
s domain and use superposition and voltage division to find
the zero-state and zero-input components of VC sð Þ.

+
−

vS(t) L

R

C

Thévenin

+ vR(t) ‒
+

  vC(t)

‒

iL(t)

FIGURE P10–36

10–37 The initial conditions for the circuit in Figure P10–36
are vC 0ð Þ = 0 and iL 0ð Þ = I0. Transform the circuit into the
s domain and use superposition and voltage division to find
the zero-state and zero-input components of VR sð Þ.

10–38 The circuit in Figure P10–36 is in the zero state. Trans-
form the circuit into the s domain and find the Thévenin
equivalent circuit at the capacitor’s terminals.

10–39 There is no energy stored in the capacitor in
Figure P10–39 at t = 0: Transform the circuit into the s
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domain and use current division to find vO tð Þ when the input
is iS tð Þ = 15 e−1000t u tð ÞmA. Identify the forced and natural
poles in VO sð Þ.

10 kΩ20 kΩ

15 kΩ0.2 μF vO(t)

+

−
iS(t)

FIGURE P10–39

10–40 Repeat Problem 10–39 when iS tð Þ = 1:5 cos2000t u tð ÞmA.

10–41 The circuit in Figure P10–41 is in the zero state. Use a
Thévenin equivalent to find the s-domain relationship
between the input IS sð Þ and the interface current I sð Þ.

5R
C

i(t)

iS(t)

2R

+

vO(t)

‒

FIGURE P10–41

10–42 For the circuit of Figure P10–41:
(a) Find the Thévenin equivalent circuit that the 5R load
resistor sees in when vC 0ð Þ = V0 V.
(b) Then find the voltage delivered to the load vO tð Þ if
vC 0ð Þ = 20 V, iS tð Þ = 100 u tð ÞmA, R = 1 kΩ, and C = 2 μF.
(c) Identify the forced, natural, zero-state, and zero-input
components of vO tð Þ.
(d) Simulate the circuit in Multisim.

10–43 The circuit in Figure P10–43 is in the zero state. Find the
Thévenin equivalent to the left of the interface.

+
−

100u(t)

20 kΩ

20 kΩ

0.1 μF

Interface

FIGURE P10–43

10–44 A 0:1-μF capacitor is connected across the interface in
Figure P10–43. Find the voltage across it.

10–45 Find the required impedance ZX sð Þ that needs to
be inserted in series as shown in Figure P10–45 to make
the output voltage equal to

V2 sð Þ= s s+1000ð Þ
s2 + 2000s+ 106

V1 sð Þ

ZX(s)

V1(s) V2(s)
+
−

1 kΩ

1 kΩ

1 H
+

−

FIGURE P10–45

10–46 The Thévenin equivalent shown in Figure P10–46

needs to deliver

VO sð Þ= 105

s+2000ð Þ s+ 10ð Þ V-s

to a 2-kΩ load. Design an interface to allow that to occur.

ZT(s) = (s+2k) Ω

2 kΩ

VT(s) = 100/(s+10)

+
−

+

−

VO(s)Interface

FIGURE P10–46

10–47 There is no initial energy stored in the circuit in
Figure P10–47. Transform the circuit into the s domain and
use superposition to findV sð Þ. Identify the forced and natural
poles in V sð Þ.

VA sin βt

R

L R+
−

IBu(t)
+

−
v(t)

FIGURE P10–47

10–48 The equivalent impedance between a pair of terminals is

ZEQ sð Þ = 2000
s + 3000
s + 2000

� �
Ω

A voltage v tð Þ = 10 e−10tu tð Þ is applied across the terminals.
Find the resulting current response i tð Þ.

10–49 There is no initial energy stored in the circuit in

Figure P10–49. Use circuit reduction to find the output net-
work function V2 sð Þ=V1 sð Þ. Then select values of R and C
so that the poles of the network function are approximately
−2618 and −382 rad=s.
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V1(s)

R

R 1
Cs

+
−

+ 

V2(s)

−

1
Cs

FIGURE P10–49

10–50 Find VO sð Þ in terms of the input and the elements for the
zero state, dependent source circuit of Figure P10–50. Locate
the natural poles and zeroes of the circuit.

+
−

+

VS(s) VX(s)1/Cs
μVX(s)

R RF

−

+

VO(s)

−

−
+

FIGURE P10–50

O B J E C T I V E 1 0 – 3 G E N E R A L C I R C U I T A N A L Y S I S
( S E C T S . 1 0 – 4 – 1 0 – 6 )
Given a linear circuit:
(a) Determine the initial conditions (if not given) and trans-

form the circuit into the s domain.
(b) Solve for zero-state and zero-input response transforms

and waveforms using node-voltage or mesh-current
methods.

(c) Identify the forced and natural poles in the responses or
select circuit parameters to place the natural poles at speci-
fied locations.

See Examples 10–13 to 10–19 and Exercises 10–17 to 10–26.

10–51 There is no initial energy stored in the circuit in
Figure P10–51.
(a) Transform the circuit into the s domain and formulate
mesh-current equations.
(b) Show that the solution of these equations for I2 sð Þ in sym-
bolic form is

I2 sð Þ= R1Cs V1 sð Þ
R1 +R2ð ÞLCs2 + R1R2C +Lð Þs+R1

(c) Identify the poles and zeros of I2 sð Þ.
(d) Find i2 tð Þ for v1 tð Þ = 20u tð ÞV, R1 = 2 kΩ, R2 = 1 kΩ,
L = 1H, and C = 0:5 μF.

R2

+
−

+

−

R1 C

L

i2(t)

v1(t) v2(t)

FIGURE P10–51

10–52 There is no initial energy stored in the circuit in
Figure P10–51.
(a) Transform the circuit into the s domain and formulate
node-voltage equations.
(b) Show that the solution of these equations for V2 sð Þ in
symbolic form is

V2 sð Þ= R1V1 sð Þ
R1 +R2ð ÞLCs2 + R1R2C +Lð Þs+R1

(c) Identify the natural and forced poles of V2 sð Þ.
(d) Find v2 tð Þ for v1 tð Þ = 5u tð ÞV, R1 = R2 = 500Ω,L = 0:5 H,
and C = 1 μF.

10–53 There is no initial energy stored in the circuit in

Figure P10–53.
(a) Transform the circuit into the s domain and formulate
node-voltage equations.
(b) Solve these equations for V2 sð Þ in symbolic form.
(c) Insert an OP AMP buffer at point A and solve for V2 sð Þ
in symbolic form. How did inserting the buffer change the
denominator and, therefore, the location of the poles?
(d) Using both separate circuits (with and without the OP
AMP), select values of R1, R2, C1, and C2 to locate a pole
at −10 krad=s and a second pole at −100 krad=s. Evaluate
the two approaches and give pros and cons for each design.

+
−

+

−

R1

i2(t)

R2

AC1 C2

v1(t) v2(t)

FIGURE P10–53

10–54 There is no initial energy stored in the circuit in

Figure P10–53. The Thévenin equivalent circuit to the left
of point A when a unit step is applied is

VT sð Þ= 1

s+103
V-s, andZT sð Þ= 106

s+103
Ω
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Select values for R2 and C2 such that the output transform is

V2 sð Þ= s

s2 + 3000s+106
V-s

10–55 There is no initial energy stored in the bridged-T circuit
in Figure P10–55.
(a) Transform the circuit into the s domain and formulate
mesh-current equations.
(b) Use the mesh-current equations to find the s-domain
relationship between the input V1 sð Þ and the output V2 sð Þ.

+
−

+

−

R1

C1 C2

R2

v1(t) v2(t)

FIGURE P10–55

10–56 There is no initial energy stored in the bridged-T circuit
in Figure P10–55.
(a) Transform the circuit into the s domain and formulate
node-voltage equations.
(b) Use the node-voltage equations to find the s-domain
relationship between the input V1 sð Þ and the output V2 sð Þ.

10–57 Find the transform of the Thévenin equivalent circuit
looking into the v2 tð Þ terminals for the circuit of P10–55.

10–58 There is no initial energy stored in the circuit in
Figure P10–58.
(a) Find the zero-state mesh currents iA tð Þ and iB tð Þ
when v1 tð Þ = 10 e−2000tu tð ÞV.
(b) Validate your answers using Multisim.

+
−

v1(t) iA(t) iB(t)

1 kΩ 250 Ω

750 Ω

10 μF

10 μF

FIGURE P10–58

10–59 There is no external input in the circuit in Figure P10–59.
(a) Find the zero-input node voltages vA tð Þ and vB tð Þ, and
the voltage across the capacitor vC tð Þ when vC 0ð Þ = −5 V
and iL 0ð Þ = 0A.
(b) Use MATLAB to plot your results in (a).

(c) Use Multisim to validate your results in (a).
(d) Compare the MATLAB and Multisim plots. Are they
the same?

vA(t) vB(t)

100 Ω 100 Ω 0.2 H

10 μF

+ vC(t) −

FIGURE P10–59

10–60 There is no external input in the circuit in Figure P10–59.
(a) Find the zero-input node voltages vA tð Þ and vB tð Þ, and
the voltage across the capacitor vC tð Þ when vC 0ð Þ = 0 V
and iL 0ð Þ = 10mA.
(b) Use MATLAB to plot your results in (a).
(c) Use Multisim to validate your results in (a).
(d) Compare the MATLAB and Multisim plots. Are they
the same?

10–61 The two-OP AMP circuit in Figure P10–61 is a

bandpass filter.
(a) Your task is to design such a filter so that the low-
frequency cutoff is 2000 rad=s and the high-frequency cutoff
is 200,000 rad=s. (Hint: See Example 10–16 and Exercise
10–18.)
(b) Show that your design is correct using Multisim.

+

−+
−

R1 R2

VS(s)

OP AMP #1 OP AMP #2

1/C2s

1/C3s

+

−

R3 R4

+
VO(s)

FIGURE P10–61

10–62 The circuit in Figure P10–62 is in the zero state.

Use node-voltage equations to find the circuit determi-
nant. Select values of R, C, and μ so that the circuit has
ω0 = 10 krad=s and ζ = 0:5. (Hint: See Example 10–15.)
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+
−

+
−

C C
R

R
μvX(t)

+

−

+
vX(t)

−
v1(t) v2(t)

FIGURE P10–62

10–63 The circuit in Figure P10–63 is in the zero state.

Use mesh-current equations to find the circuit determinant.
Select values of R, L, and C so that the circuit has
ω0 = 20 krad=s and ζ = 1:0. (Hint: See Example 10–15.)

R

L

C
RiA(t) iB(t)

+
−v1(t)

FIGURE P10–63

10–64 TheOPAMP circuit in Figure P10–64 is in the zero

state. Use node-voltage equations to find the circuit determi-
nant. Select values of R, C1, and C2 so that the circuit has
ω0 = 20 krad=s and ζ = 1:0. (Hint: See Example 10–15.)

+

−

+

+

1/C1s

1/C2s

V1(s)
V2(s)

R R

FIGURE P10–64

10–65 Compare the results of your designs of the circuits

in Figures P10–63 and P10–64. Since both circuits purport to
have the same response characteristics, what are the advan-
tages and disadvantages of each?

10–66 Three node voltages are shown in Figure P10–66.
(a) Explain why only one of the node voltages is
independent.
(b) Write a node voltage equation in the independent node
voltage.
(c) IfVC sð Þ is the circuit’s output, find the output–input ratio
or network function, VC sð Þ=VS sð Þ.

R1 R2

VS(s)

VA(s) VB(s)

μVX(s)

VC(s)

1/Cs

+ VX(s) –

–
+

–
+

FIGURE P10–66

10–67 Three mesh currents are shown in Figure P10–67.
(a) Explain why only two of these mesh currents are
independent.
(b) Write s-domain mesh-current equations in the two inde-
pendent mesh currents.
(c) Find IX sð Þ and VX sð Þ in terms of the mesh currents.

+
–

LsR1 R2

VS(s)

IC(s)

IA(s)

Cs
1

IB(s) βIX(s)

IX(s)

+ VX(s) –

FIGURE P10–67

10–68 The switch in Figure P10–68 has been in positionA for a
long time and is moved to position B at t = 0:
(a) Write an appropriate set of node-voltage or mesh-
current equations in the s domain.
(b) Use MATLAB to solve for VC sð Þ and vC tð Þ. Also using
MATLAB, plot vC tð Þ and the exponential source on the
same axes.
(c) Validate your results for vC tð Þ using Multisim. Include
the exponential source output in your Grapher View plot.

+
–

‒

–

++

1 kΩ

10 V

1 kΩ

1 kΩ

0.1 μF

1 H
10e–1000t

vC(t)

A

B
t = 0

FIGURE P10–68

10–69 There is no energy stored in the circuit in Figure P10–69 at
t = 0: Transform the circuit into the s domain. Then use the
unit output method to find the ratio VO sð Þ=VS sð Þ. Subse-
quently, use the input vS tð Þ = 100 u tð Þ and find the out-
put vO tð Þ.
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+
–

1 kΩ

0.2 μF1 kΩ

0.2 μF 0.2 μF
vS(t) vO(t)

+

‒

FIGURE P10–69

10–70 The switch in Figure P10–70 has been open for a long
time and is closed at t = 0. Transform the circuit into the
s domain and solve for IO sð Þ and iO tð Þ.

‒

+

0.1 H 0.1 H

500 Ω500 Ω

500 Ω

750 Ω

50 V

iO(t)

t = 0

FIGURE P10–70

10–71 There is no initial energy stored in the circuit in

Figure P10–71.
(a) Transform the circuit into the s domain.
(b) Then use the unit output method to find the
ratio VO sð Þ=VS sð Þ.
(c) If vS tð Þ = δ tð Þ and R1 = R2 = 500Ω, select values of L
and C to produce a VO sð Þ with ζ = 0:707 and ω0 = 707
rad=s. (Hint: Try values of L first, i.e., 100 mH, 200 mH.)

+
–

R2

R1

vO(t)

+

‒

vS(t)

C

L

FIGURE P10–71

10–72 With the circuit in the zero state, the input to the inte-

grator shown in Figure P10–72 is v1 tð Þ= cos 2000 t V. The
desired output is v2 tð Þ= −sin 2000 t V. Use Laplace to select
valuesofR andC toproduce thedesiredoutput. If the capacitor
had 5 V across it at t = 0, how would that affect the output?

‒

+

+

+

1/Cs

V1(s)

V2(s)

R

FIGURE P10–72

10–73 Show that the circuit in Figure P10–73 has natural poles
at s = −4=RC and s = −2=RC ± j2=RC when L = R2C=4:

+
–

R

RC

L L

vO(t)

+

–

vS(t)

FIGURE P10–73

10–74 Find the range of the gain μ for which the circuit’s output
VO sð Þ in Figure P10–74 is stable (i.e., all poles are in the left-
hand side of the s plane.)

+
–

R R

VS(s)
μVX(s)

+
–1/Cs VX(s)

‒

+
+

VO(s)

−

FIGURE P10–74

10–75 If in the circuit of Figure P10–74, μ is −3, R = 1 kΩ,
C = 1 μF, and vS tð Þ = 5 u tð Þ:
(a) Locate the poles and zeroes of VO sð Þ, identifying the
forced and the natural poles.
(b) Find vO tð Þ.

10–76 The circuit in Figure P10–76 is shown in the t domain
with initial values for the energy storage devices.
(a) Transform the circuit into the s domain and write a set of
node-voltage equations.
(b) Transform the circuit into the s domain and write a set of
mesh-current equations.
(c) With the circuit in the zero state, use symbolic operations
in MATLAB to solve for the node voltages.

IO

VO2iA(t) iB(t)

+        –
VO1

R1

R2L

C1

C2

iC(t)

vC(t)

vS(t)=VAu(t) V iS(t)=IAe–αt u(t) A

vB(t)

vA(t) vD(t)

+
‒

+

–

FIGURE P10–76
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I N T E G R A T I N G P R O B L E M S

10–77 Thévenin’s Theorem from Time-Domain Data

A black box containing a linear circuit has an on-off switch
and a pair of external terminals. When the switch is turned
on, the open-circuit voltage between the external terminals
is observed to be

voc tð Þ= 10 e−10 t−10 e−50 t
� �

u tð ÞV
The short-circuit current was observed to be

isc tð Þ= 100 e−10 t + 200 e−50 t +50 e−100 t
� �

u tð ÞmA

A50-Ω loadresistance isconnectedacross the terminalsandthe
switch turned on again. What is the voltage delivered to
the load?

10–78 Design a Load Impedance

In order to match the Thévenin impedance of a source,
the load impedance in Figure P10–78 must

be ZL sð Þ= s+ 10
s+ 20

.

(a) What impedance Z2 sð Þ is required if R = 20Ω?
(b) How would you realize Z2 sð Þ using only resistors, induc-
tors, and/or capacitors? (Hint:Write ZL sð Þ as a sum of admit-
tances, then solve for Y2 sð Þ.)

R

ZL(s)

Z2(s)

FIGURE P10–78

10–79 RC Circuit Analysis and Design

The RC circuits in Figure P10–79 represent the situa-
tion at the input to an oscilloscope. The parallel combi-
nation of R1 and C1 represents the probe used to
connect the oscilloscope to a test point. The parallel
combination of R2 and C2 represents the input imped-
ance of the oscilloscope.

(a) Assuming zero initial conditions, transform the cir-

cuit into the s domain and find the relationship between the
test-point voltage VS sð Þ and the voltage VO sð Þ at the oscillo-
scope’s input.

(b) For R2 = 10MΩ and C2 = 5 pF, determine the

values of R1 and C1 that make the input voltage a scaled
duplicate of the test-point voltage.

R2 C2

vO(t)
+

R1

C1
+

‒
vS(t)

Test point

Probe O'scope

FIGURE P10–79

10–80 s-domain OP AMP Circuit Analysis

The OP AMP circuit in Figure P10–80 is in the zero state.
Transform the circuit into the s domain and use the OP
AMP circuit analysis techniques developed in Section 4-4
to find the relationship between the input V1 sð Þ and the out-
put V2 sð Þ.

+

‒+
‒

R1

+

‒

R2

C1

C2

v1(t)
v2(t)

FIGURE P10–80

10–81 Pulse Conversion Circuit

The purpose of the test setup in Figure P10–81 is to deliver
damped sine pulses to the test load. The excitation comes
from a 1-Hz square wave generator. The pulse conversion cir-
cuit must deliver damped sine waveforms with ζ < 0:5 and
ω0 > 10 krad=s to 50-Ω and 600-Ω loads. The recommended
values for the pulse conversion circuit are L = 10mH and
C = 0:1 μF. Verify that the test setupmeets the specifications.
(Hint:Compute the voltage across the load for an input signal
equal to a unit step function, u tð Þ, and then again for a neg-
ative unit step function, −u tð Þ.) Note that the output of a
square wave generator is the sum of a series of step functions.

‒

+

50 Ω

50 Ω 

or 600 Ω

L C

Square wave

generator

Test loadPulse

converter

FIGURE P10–81
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10–82 By-Pass Capacitor Design

In transistor amplifier design, a by-pass capacitor is connected
across the emitter resistorRE to effectively short out the emit-
ter resistor at signal frequencies. This design improves the
gain of the transistor for the desired ac signals. The circuit
in Figure P10–82(a) is a common-emitter amplifier. The
shaded portion is a low-frequency model of the transistor
in use. In this problem, the task is to design a proper by-pass
capacitor so that there is a pole at s = −300 rad=s. Reduce the
circuit to its Thévenin equivalent as shown in Figure P10–82
(b) and then select the proper capacitor. RS = 10 kΩ, Rπ =
2 kΩ,RE = 3:3 kΩ, RL = 1 kΩ, and β= 70:

RS

RE CE

(a)

Rπ

RL

+

–

vS(t)

iB(t)

βiB(t)+
–

(b)

1___
CEs

+

–

VT(s)

ZT(s)

+
–

vC(t)

vC(s)

FIGURE P10–82

10–83 Pole Eliminator Circuit

The Acme Pole Eliminator Company states in their online
catalog that the circuit shown in Figure P10–83 can eliminate
any realizable pole. Their catalog states “Suppose you have a
need to eliminate the pole associated with an input, for exam-
ple, VS sð Þ = K=ðs + αÞ. Selecting 1=R1C = α will eliminate
the pole, while the ratio R2=R1 can be used to provide any
desired negative gain or attenuation to the output.” Prove
or disprove their claim.

Acme pole eliminator

+

VO(s)

−

VS(s)

R1 R2

+
−

‒

+

+

‒

1
Cs

FIGURE P10–83
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C H A P T E R 11 NETWORK FUNCTIONS

The driving-point impedance of a network is the ratio of an impressed electromotive force at a point in a branch of the network to the resulting
current at the same point.

Ronald M. Foster, 1924,
American Engineer

Some History Behind This Chapter
The network function concept emerged in the 1920s during
the development of systematic methods of designing electric
filters for long-distance telephone systems. The filter design
effort eventually evolved into a theory known as network syn-
thesis. The purpose of network synthesis is to obtain circuits
that produce a desired network function. Ronald Foster along
with Sidney Darlington, Hendrik Bode, Wilhelm Cauer, and
Otto Brune are generally considered the founders of modern
network synthesis.

Why This Chapter Is Important Today
This special chapter introduces one of the most important
concepts of electrical engineering—the network function.
In this chapter, you will learn what network functions are
and why they are important descriptors of electric circuits.
Most importantly, you will learn how to design circuits that
can realize a desired network function. But we don’t stop
there. Since design can lead to many different answers, we
introduce you to the criteria used to evaluate alternative
solutions.

Chapter Sections
11–1 Definition of a Network Function
11–2 Network Functions of One- and Two-Port Circuits
11–3 Network Functions and Impulse Response
11–4 Network Functions and Step Response
11–5 Network Functions and Sinusoidal Steady-State

Response
11–6 Impulse Response and Convolution
11–7 Network Function Design and Evaluation

Chapter Learning Objectives
11-1 Network Functions (Sects. 11–1 and 11–2)

Given a linear circuit:
(a) Find specified network functions and locate their

poles and zeros.
(b) Select the element values to produce specified poles

and zeros.

11-2 Network Functions, Impulse Response, and Step
Response (Sects. 11–3 and 11–4)
(a) Given a first- or second-order linear circuit, find its

impulse or step response.
(b) Given the impulse or step response of a linear cir-

cuit, find the network function.
(c) Given the impulse or step response of a linear cir-

cuit, find the response due to other inputs.

11-3 Network Functions and the Sinusoidal Steady-
State Response (Sect. 11–5)
(a) Given a first- or second-order linear circuit with a

specified input sinusoid, find the sinusoidal steady-
state response.

(b) Given thenetwork function, impulse response,or step
response, find the sinusoidal steady-state response
for a specified input sinusoid.

11-4 Network Functions and Convolution (Sect. 11–6)
(a) Given the impulse response of a linear circuit, use

the convolution integral to find the response to a
specified input.

(b) Use the convolution integral to derive properties of
linear circuits.

11-5 Network Function Design and Evaluation (Sect.
11–7)
(a) Design alternative circuits that realize a given net-

work function and meet other stated constraints.
(b) Use software to visualize and simulate alternative

designs.
(c) Evaluate alternative designs using stated criteria and

select the best design.
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11–1 D E F I N I T I O N O F A N E T W O R K F U N C T I O N
The proportionality property of linear circuits states that the output is proportional to
the input. In Chapter 10, we noted that in the s domain the proportionality factor is a
rational function of s called a network function. More formally, a network function is
defined as the ratio of a zero-state response transform (output) to the excitation
(input) transform.

Network function =
Zero-state response transform

Input signal transform
(11–1)

Note carefully that this definition specifies zero initial conditions and implies only
one input.

To study the role of network functions in determining circuit responses, we write
the s-domain input–output relationship as

Y sð Þ=T sð ÞX sð Þ (11–2)

where T sð Þ is a network function, X sð Þ the input signal transform, and Y sð Þ a zero-
state response or output.1 Figure 11–1 shows a block diagram representation of the
s-domain input–output relationship in Eq. (11–2).

In an analysis problem, the circuit and input ½X sð Þ or x tð Þ� are specified. We deter-
mine T sð Þ from the circuit, use Eq. (11–2) to find the response transform Y sð Þ, and
use the inverse transformation to obtain the response waveform y tð Þ. In a design
problem the circuit is unknown. The input and output are specified, or their ratio
T sð Þ=Y sð Þ=X sð Þ is given. The objective is to devise a circuit that realizes the speci-
fied input–output relationship. A linear circuit analysis problem has a unique solu-
tion, but a design problem may have one, many, or even no solutions. If more
than one working solution exists, then one must ask, which design should
I choose? Selecting the optimum design is one of the hallmarks of a modern engineer.
Later in the chapter we will discuss how one might go about making a smart decision.

Equation (11–2) points out that the poles of the response Y sð Þ come from either
the network functionT sð Þ or the input signalX sð Þ.When there are no repeated poles,
the partial-fraction expansion of the right side of Eq. (11–2) takes the form

Y sð Þ=
XN
j = 1

kj
s−pj|fflfflfflfflffl{zfflfflfflfflffl}

natural
poles

+
XM
ℓ = 1

kℓ
s−pℓ|fflfflfflfflffl{zfflfflfflfflffl}

forced
poles

(11–3)

where s= pjðj = 1,2,…,NÞ are the poles of T sð Þ and s= pℓðℓ = 1,2,…,MÞ are the poles
of X sð Þ. The inverse transform of this expansion is

y tð Þ=
XN
j = 1

kjepjt|fflfflfflfflffl{zfflfflfflfflffl}
natural
response

+
XM
ℓ = 1

kℓe
pℓ t

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
forced

response

(11–4)

The poles ofT sð Þ lead to the natural response. In a stable circuit, the natural poles are
all in the left half of the s plane, and all of the exponential terms in the natural
response eventually decay to zero. The poles of X sð Þ lead to the forced response.

T(s)
Circuit

X(s) Y(s)

Input Output

FIGURE 11–1 Block diagram
for an s-domain input–output
relationship.

1In this context Y sð Þ is not an admittance but the transform of the output waveform y tð Þ.
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In a stable circuit, those elements in the forced response that do not decay to zero are
called the steady-state response.

It is important to remember that the complex frequencies in the natural response
are determined by the circuit and do not depend on input. Conversely, the complex
frequencies in the forced response are determined by the input and do not depend on
the circuit. However, the amplitude of its part of the response depends on the resi-
dues in the partial-fraction expansion in Eq. (11–3). These residues are influenced by
all of the poles and zeros, whether forced or natural. Thus, the amplitudes of the
forced and natural responses depend on an interaction between the poles and zeros
of T sð Þ and X sð Þ.

The following example illustrates this discussion.

E X A M P L E 1 1–1

A simple series RC circuit shown in Figure 11–2 is driven by a charging exponential
source. If R= 10 kΩ and C = 0:01 μF , the network function is

T sð Þ= V2 sð Þ
V1 sð Þ =

1=RC
s+ 1=RC

=
10;000

s+ 10;000

Find the zero-state response υ2 tð Þwhen the input is υ1 tð Þ= 10ð1−e−5000tÞ u tð ÞV. Iden-
tify the natural and forced components of your answer.

SOLUTION:
The transform of the input signal is

V1 sð Þ= 10
s
−

10
s+ 5000

=
50;000

sðs+ 5000Þ
Using the s-domain input-output relationship in Eq. (11–2), the transform of the
response is

V2 sð Þ= 50;000ð Þ 10;000ð Þ
sðs+ 5000Þðs+ 10;000Þ

Expanding by partial fractions,

V2 sð Þ= k1
s
+

k2
s+ 5000|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

forced poles

+
k3

s+ 10;000|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
natural pole

The two forced poles came from the input charging exponential, while the natural
pole came from the RC circuit via the network function. Using the cover-up method
to evaluate the residues yields

k1 =
5 × 108

ðs+ 5000Þðs+ 10;000Þ





s= 0

= 10

k2 =
5 × 108

sðs+ 10;000Þ





s= −5000

= −20

k3 =
5 × 108

sðs+ 5000Þ





s= −10;000

= 10

Collectively the residues depend on all of the poles and zeros. The inverse transform
yields the zero-state response as

υ2 tð Þ=
 

10e−10
4t|fflfflfflffl{zfflfflfflffl}

natural response

+ 10−20e−5 × 103t|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
forced response

!
u tð ÞV

+
−

R

+

−

V1(s) 1
Cs

V2(s)

FIGURE 11–2
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The natural pole is s= −10;000 and is located in the left-half of the s plane caus-
ing the natural response to decay to zero. The forced poles are at zero and at
s= −5000. The pole at s= −5000 will decay to zero leaving a steady-state response
of 10 u tð Þ. ■

E x e r c i s e 11–1
The network function for a circuit is

T sð Þ= 10s
s+ 100

(a) Find the zero-state response v2 tð Þ when the input is v1 tð Þ = 10 u tð ÞV.
(b) Repeat when v1 tð Þ = cos 50tV.

A n s w e r s:

(a) v2 tð Þ= 100 e−100t u tð ÞV
(b) v2 tð Þ= 8 e−100t + 4:47 cos 50 t +63:4�ð Þ� �

u tð ÞV

T E S T S I G N A L S

While the transfer function is a useful concept, it is clear that we cannot find the
circuit response until we are given an input signal. Here, we encounter a central
paradox of circuit analysis. In practice, the input signal is a carrier of information.
Information signals, such as data, voice, and video, are unpredictable by their
nature—otherwise, why send a signal when the information is already known? We
could spend a lifetime studying a circuit for various inputs and still not treat all
possible signals that might be encountered in practice. What we must do is calculate
the responses due to certain standard test signals. Although these test signals may
never occur as real input signals, their responses tell us enough to understand the
signal-processing capabilities of a circuit.

The two premier test signals used are the pulse and the sinusoid. The study of the
pulse response divides into two extreme cases, short and long.When the pulse is very
short compared to the circuit response time, the sudden injection of energy causes a
circuit response long after the input returns to zero. The short pulse is modeled by an
impulse, and the resulting impulse response is treated in Sect. 11–3. At the other
extreme, the long pulse has a duration that greatly exceeds the circuit response time.
In this case, the circuit has ample time to be driven from the zero state to a new
steady-state condition. The step function is used to model the long pulse input,
and the resulting step response is studied in Sect. 11–4.

The impulse response is of great importance because it contains all of the infor-
mation needed to calculate the response due to any other input. The step response
is important because it describes how a circuit response transitions from one state to
another. The signal transition requirements for circuits and systems are often stated
in terms of the step response using partial waveform descriptors such as rise time, fall
time, propagation delay, and overshoot.

The unique properties of the sinusoid make it a useful input for characterizing the
signal-processing capabilities of linear circuits and systems. When a stable linear cir-
cuit is driven by a sinusoidal input, the steady-state output is a sinusoid with the same
frequency, but with a different phase angle and amplitude. The frequency-dependent
relationship between the sinusoidal input and the steady-state output is called
frequency response, a signal-processing description that is often used to specify the
performance of circuits and systems. The relationship between network functions
and the sinusoidal steady-state response is studied in Sect. 11–5.
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11–2 N E T W O R K F U N C T I O N S O F O N E - A N D T W O - P O R T
C I R C U I T S

The two major types of network functions are driving-point impedance and transfer
functions. A driving-point impedance relates the voltage and current at a pair of
terminals called a port. The driving-point impedance Z sð Þ of the one-port circuit
in Figure 11–3 is defined as

Z sð Þ= V sð Þ
I sð Þ (11–5)

When the one port is driven by a current source, the response is V sð Þ=Z sð ÞI sð Þ
and the natural frequencies in the response are the poles of impedance Z sð Þ. On
the other hand, when the one port is driven by a voltage source, the response is
I sð Þ= Z sð Þ½ �−1V sð Þ and the natural frequencies in the response are the poles of
1=Z sð Þ; that is, the zeros of Z sð Þ. In other words, the driving-point impedance is a
network function whether upside down or right side up.

The term driving point means that the circuit is driven by a source at one port
and the response is observed at the same port. The element impedances defined
in Sect. 10–1 are elementary examples of driving-point impedances. The equivalent
impedances found by combining elements in series and parallel are also driving-point
impedances. Driving-point functions are the s-domain generalization of the concept
of the input resistance. The terms driving-point impedance, input impedance, and
equivalent impedance are synonymous.

The driving-point impedance seen at a pair of terminals determines the loading
effects that result when those terminals are connected to another circuit. When
two circuits are connected together, these loading effects can profoundly alter the
responses observed when the same two circuits operated in isolation. In an analysis
situation, it is important to be able to predict the response changes that occur when
one circuit loads another. In design situations, it is important to know when the cir-
cuits can be designed separately and then interconnected without encountering load-
ing effects that alter their designed performance. The conditions under which loading
can or cannot be ignored will be studied in this and subsequent chapters.

Transfer functions are usually of greater interest in signal-processing applications
than driving-point impedances because they describe how a signal is modified by
passing through a circuit. A transfer function relates an input and response (or out-
put) at different ports in the circuit. Figure 11–4 shows the possible input–output

configurations for a two-port circuit. Since the input and output
signals can be either a current or a voltage, we can define four
kinds of transfer functions:

TV sð Þ= Voltage Transfer Function =
V2 sð Þ
V1 sð Þ

TI sð Þ= Current Transfer Function =
I2 sð Þ
I1 sð Þ

TY sð Þ= Transfer Admittance =
I2 sð Þ
V1 sð Þ

TZ sð Þ= Transfer Impedance =
V2 sð Þ
I1 sð Þ

(11–6)

The functions TV sð Þ and TI sð Þ are dimensionless since the input
and output signals have the same units. The function TZ sð Þ has
units of ohms and TY sð Þ has units of siemens.

The functions in Eq. (11–6) are sometimes called forward
transfer functions because they relate inputs applied at port 1

Circuit
in the

zero state

+

−

V(s)

I(s)

Z(s)

FIGURE 11–3 A one-port
circuit.

Circuit
in the 

zero state

Input

V1(s) or I1(s)

Output

V2(s) or I2(s)

TI(s)

TZ(s)

TV(s)
+

−
V2(s)

+
− V1(s)

In Out

+
− V1(s)

In

TY(s)

I2(s)

Out

In

I1(s)

In

I1(s)
+

−
V2(s)

Out

I2(s)

Out

FIGURE 11–4 Two-port circuits and transfer
functions.
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to outputs occurring at port 2. There are, of course, reverse transfer functions that
relate inputs at port 2 to outputs at port 1. It is important to realize that a transfer
function is valid only for a specified input port and output port. For example, the volt-
age transfer function TV sð Þ=V2 sð Þ=V1 sð Þ relates the input voltage applied at port 1 in
Figure 11–4 to the voltage response observed at the output port. The reverse voltage
transfer function for signal transmission from output to input is not 1=TV sð Þ. Unlike
driving-point impedance, transfer functions are not network functions when they
are turned upside down.

D E T E R M I N I N G N E T W O R K F U N C T I O N S

The rest of this section illustrates analysis techniques for deriving network functions.
The application of network functions in circuit analysis and design begins in the next
section and continues throughout the rest of this book. But first, we illustrate ways to
find the network functions of a given circuit.

The divider circuits in Figure 11–5 occur so frequently that it is worth taking time
to develop their transfer functions in general terms. Using s-domain voltage division
in Figure 11–5(a), we can write

V2 sð Þ= Z2 sð Þ
Z1 sð Þ+Z2 sð Þ
� �

V1 sð Þ

Therefore, the voltage transfer function of a voltage divider circuit is

TV sð Þ= V2 sð Þ
V1 sð Þ =

Z2 sð Þ
Z1 sð Þ+Z2 sð Þ (11–7)

Similarly, using s-domain current division in Figure 11–5(b) yields the transfer func-
tion of a current divider circuit as

TI sð Þ= I2 sð Þ
I1 sð Þ =

Y2 sð Þ
Y1 sð Þ+Y2 sð Þ =

Z1 sð Þ
Z1 sð Þ+Z2 sð Þ (11–8)

By series equivalence, the driving-point impedance at the input of the voltage divider
isZEQ sð Þ=Z1 sð Þ+Z2 sð Þ. By parallel equivalence, the driving-point impedance at the
input of the current divider is ZEQ sð Þ= 1=ðY1 sð Þ+Y2 sð ÞÞ.

Two other useful circuits are the inverting and noninverting OP AMP configura-
tions shown in Figure 11–6. To determine the voltage transfer function of the invert-
ing circuit in Figure 11–6(a), we write the sum of currents leaving node B:

VB sð Þ−VA sð Þ
Z1 sð Þ +

VB sð Þ−VC sð Þ
Z2 sð Þ + IN sð Þ= 0

But the ideal OP AMP constraints require that IN sð Þ= 0 and VB sð Þ= 0 since the non-
inverting input is grounded. By definition, the output voltage V2 sð Þ equals node volt-
age VC sð Þ and the voltage source forces VA sð Þ to equal the input voltage V1 sð Þ.
Inserting all of these considerations into the node equations and solving for the volt-
age transfer function yields

TV sð Þ= V2 sð Þ
V1 sð Þ = −

Z2 sð Þ
Z1 sð Þ (11–9)

From the study of OP AMP circuits in Chapter 4, you should recognize Eq. (11–9)
as the s-domain generalization of the inverting OP AMP circuit gain equa-
tion, K = −R2=R1.

The driving-point impedance at the input to the inverting circuit is

ZIN sð Þ= V1 sð Þ
½VA sð Þ−VB sð Þ�=Z1 sð Þ

+
−

Z1(s)

Z2(s)
+

−
V2(s)V1(s)

Y2(s)Y1(s)

I1(s)

I2(s)

(a)

(b)

FIGURE 11–5 Basic divider
circuits. (a) Voltage divider.
(b) Current divider.

559NETWORK FUNCTIONS OF ONE- AND TWO-PORT CIRCUITS



But VA sð Þ=V1 sð Þ and VB sð Þ= 0; hence the input impedance is
ZIN sð Þ=Z1 sð Þ, and should be a loading consideration. This simply
means that the input to an inverting amplifier (or any inverting terminal
of an OP AMP configuration) will be equal to the input impedance of
the inverting terminal, Z1 sð Þ, in Figure 11–6(a). Compare this result to
that of the noninverting configuration studied in the discussion that
follows.

For the noninverting circuit in Figure 11–6(b), the sum of currents
leaving node B is

VB sð Þ−VC sð Þ
Z2 sð Þ +

VB sð Þ
Z1 sð Þ + IN sð Þ= 0

In the noninverting configuration, the ideal OP AMP constraints
require that IN sð Þ= 0 and VB sð Þ=V1 sð Þ. Bydefinition, theoutput voltage
V2 sð Þ equals node voltage VC sð Þ. Combining all of these considerations
and solving for the voltage transfer function yields

TV sð Þ= V2 sð Þ
V1 sð Þ =

Z1 sð Þ+Z2 sð Þ
Z1 sð Þ (11–10)

Equation (11–10) is the s-domain version of the noninverting amplifier gain equation,
K = ðR1 +R2Þ=R1. The transfer function of the noninverting configuration is the recip-
rocal of the transfer function of the voltage divider in the feedback path. The ideal
OPAMP draws no current at its input terminals, so theoretically the input impedance
of the noninverting circuit is infinite making it useful to solve loading issues.

The transfer functions of divider circuits and the basic OPAMP configurations are
useful analysis and design tools in many practical situations. However, a general
method is needed to handle circuits of greater complexity. One general approach
is to formulate either node-voltage or mesh-current equations with all initial condi-
tions set to zero. These equations are then solved for network functions using Cra-
mer’s rule for hand calculations or symbolic math analysis programs such as
MATLAB. The algebra involved can be a bit tedious at times, even with MATLAB.
But the tedium is reduced somewhat because we only need the zero-state response
for a single input source.

The following examples illustrate methods of calculating network functions.

E X A M P L E 1 1–2

(a) Find the transfer functions of the circuits in Figure 11–7.
(b) Find the driving-point impedances seen by the input sources in these circuits.
(c) UsingR = 1 kΩ,C = 1 μF, andL = 1H, show that all three circuits have the same

transfer function. Then show that their driving-point impedances are different.

SOLUTION:
(a) These are all divider circuits, so the required transfer functions can be obtained

using Eq. (11–7) or (11–8).

For circuit C1: Z1 sð Þ = R,Z2 sð Þ= 1=Cs, and TV sð Þ= 1=ðRCs+ 1Þ

For circuit C2: Z1 sð Þ = Ls, Z2 sð Þ=R, and TV sð Þ= 1
L
R
s+ 1

For circuit C3: Z1 sð Þ = 1
Cs

,Z2 sð Þ=R, and T1 sð Þ= 1=ðRCs+ 1Þ

+
−

R

+

−

V1(s) 1
Cs

1
Cs

V2(s)

Ls

+

−

V1(s) V2(s)R

I1(s)

R

I2(s)

C1

C2

C3

+
−

FIGURE 11–7

A

+
−

Z2Z1

+

−

B C

V1(s)
V2(s)

VA(s) VB(s) VC(s)

+

(a)

IN(s)
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−
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FIGURE 11–6 Basic OP AMP
circuits. (a) Inverting amplifier.
(b) Noninverting amplifier.
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These transfer functions are all of the form 1=ðτs+ 1Þ, where τ is the circuit time
constant.

(b) The driving-point impedances are found by series or parallel equivalence.

For circuit C1: Z sð Þ = Z1 +Z2 = ðRCs+ 1Þ=Cs
For circuit C2: Z sð Þ = Z1 +Z2 =Ls+R

For circuit C3: Z sð Þ = 1=ðY1 +Y2Þ= 1=ðCs+GÞ=R=ðRCs+ 1Þ

(c) With the element values provided, we find that

For circuit C1: TV sð Þ= 1

10−3s+ 1
=

1000
s+ 1000

For circuit C2: TV sð Þ= 1
1

103
s+ 1

=
1000

s+ 1000

For circuit C3: TI sð Þ= 1

10−3s+ 1
=

1000
s+ 1000

All three realizations have the same transfer function—a single pole at
s = −1000 rad=s. However, the input impedance seen by the source is quite dif-
ferent in each case:

For circuit C1: Z sð Þ= 10−3s+ 1

10−6s
=
1000 s+ 1000ð Þ

s
Ω

For circuit C2: Z sð Þ= s+ 1000ð ÞΩ

For circuit C3: Z sð Þ= 1000

10−3s+ 1
=

106

s+ 1000
Ω

Circuit C1 has a pole at zero and a zero at −1000 rad=s. Circuit C2 has a single
zero at −1000 rad=s, while circuit C3 has a single pole at −1000 rad=s. In general,
the larger the impedance seen by the source, the smaller effect the impedance
will have on the source. This usually is a good thing. ■

The general principle illustrated here is that several different circuits can have the
same transfer function. Put differently, a desired transfer function can be realized by
several different circuits. This fact is important in design because circuits that pro-
duce the same transfer function offer alternatives that may differ in other features.
In this example, they all have different input impedances.

D e s i g n E x e r c i s e 11–2
(a) Show that the two OP AMP circuits in Figure 11–8 have a transfer function

TV sð Þ = V2 sð Þ=V1 sð Þ of the same form.

(b) Select standard values from the inside rear cover so that the transfer functions found in
(a) each have a pole at s = −10,000.

(c) Using the values found in (b), find the driving-point impedance of each circuit.

A n s w e r s:

(a) TVRL sð Þ= −

R
L

s+
R
L

; TVRC sð Þ= −

1
RC

s+
1
RC

R RLs

C1

C2

V1(s) V2(s)

V2(s)V1(s)

R
R

1/Cs

+

+

+

_ _

+

_

+

_

_

+

_

FIGURE 11–8
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(b) For the RL circuit, let R =10 kΩ and L = 1H. For the RC circuit, let R = 10 kΩ and
C = 0:01 μF. Other correct answers are possible.

(c) ZRL sð Þ = s + 10,000Ω; ZRC sð Þ = 10,000Ω.

E X A M P L E 1 1–3

(a) Find the input impedance seen by the voltage source in Figure 11–9.
(b) Find the voltage transfer function TV sð Þ=V2 sð Þ=V1 sð Þ of the circuit.
(c) Locate the poles and zeros of TV sð Þ for R1 = 10 kΩ,R2 = 20 kΩ,C1 = 0:1 μF,

and C2 = 0:05 μF.

SOLUTION:
(a) The circuit is a voltage divider. We first calculate the equivalent impedances of

the two legs of the divider. The two elements in parallel combine to produce the
series leg impedance Z1 sð Þ as

Z1 sð Þ= 1
C1s+ 1=R1

=
R1

R1C1s+ 1

The two elements in series combine to produce shunt leg impedance Z2 sð Þ:

Z2 sð Þ=R2 + 1=C2s=
R2C2s+ 1

C2s

Using series equivalence, the driving-point impedance seen at the input is

ZEQ sð Þ = Z1 sð Þ+Z2 sð Þ

=
R1C1R2C2s2 + ðR1C1 +R2C2 +R1C2Þs+ 1

C2sðR1C1s+ 1Þ

(b) Using voltage division, the voltage transfer function is

TV sð Þ =
Z2 sð Þ
ZEQ sð Þ =

ðR1C1s+ 1ÞðR2C2s+ 1Þ
R1C1R2C2s2 + ðR1C1 +R2C2 +R1C2Þs+ 1

(c) Inserting the specified numerical values into TV sð Þ yields

TV sð Þ =
ð10−3s+ 1Þð10−3s+ 1Þ
10−6s2 + 2:5 × 10−3s+ 1

=
ðs+ 1000Þ2

ðs+ 500Þðs+ 2000Þ
which indicates a double zero at s= −1000 rad=s, and simple poles at
s= −500 rad=s and s= −2000 rad=s. ■

E x e r c i s e 11–3
For the circuit of Figure 11–10, (a) find the voltage transfer function TV sð Þ=V2 sð Þ=V1 sð Þ
and the driving-point impedance Z sð Þ, and (b) locate the poles and zeros of the transfer
function when R1 =R2 = 1 kΩ,L= 10mH, and C = 0:1 μF.

A n s w e r s:

(a) TV sð Þ= R2Cs+ 1
LCs2 + ðR1 +R2ÞCs+ 1

and Z sð Þ= LCs2 + ðR1 +R2ÞCs+ 1
Cs

(b) Zeros at s= −104 rad=s and infinity. Poles at s= −194;868 rad=s and s= −5131 rad=s.

R1

+

−
V1(s)

V2(s)
+
− 1

C1s

1
C2s

R2

FIGURE 11–9

1
Cs

Ls

+

−

V1(s) V2(s)

R2

R1

+
−

FIGURE 11–10
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D E S I G N E X A M P L E 1 1–4

Find the driving-point impedance seen by the voltage source in Figure 11–11. Find
the voltage transfer function TV sð Þ=V2 sð Þ=V1 sð Þ of the circuit. The poles of TV sð Þ
are located at p1 = −1000 rad=s and p2 = −5000 rad=s. If R1 =R2 = 20 kΩ, what values
of C1 and C2 are required?

SOLUTION:
The circuit is an inverting OP AMP configuration of the form in
Figure 11–6(a). The input impedance of this circuit is

Z1 sð Þ=R1 +
1
C1s

=
R1C1s+ 1

C1s

The impedance Z2 in the feedback path is

Z2 sð Þ= 1
C2s+ 1=R2

=
R2

R2C2s+ 1

and the voltage transfer function is

TV sð Þ= −
Z2 sð Þ
Z1 sð Þ = −

R2C1s
R1C1s+ 1ð Þ R2C2s+ 1ð Þ

The poles of TV sð Þ are located at p1 = −1=R1C1 = −1000 and
p2 = −1=R2C2 = −5000. If R1 =R2 = 20 kΩ, then C1 = 1=1000R1 =
:05 μF and C2 = 1=5000R2 = 0:01 μF. ■

E x e r c i s e 11–4
Suppose that capacitor C1 in the circuit of Figure 11–11 suddenly became shorted. What
effect would it have on the circuit’s voltage transfer function?

A n s w e r: The transfer function would become

TV sð Þ= −
R2=R1

R2C2s+ 1

effectively eliminating the pole at s= −1=R1C1.

E x e r c i s e 11–5
Suppose that capacitor C2 in the circuit of Figure 11–11 suddenly became open-circuited.
What effect would it have on the circuit’s voltage transfer function?

A n s w e r: The transfer function would become

TV sð Þ= −
R2C1s

R1C1s+ 1

effectively eliminating the pole at s= −1=R2C2.

E X A M P L E 1 1–5

For the circuit in Figure 11–12 find the input impedance
Z sð Þ=V1 sð Þ=I1 sð Þ, the transfer impedance TZ sð Þ=V2 sð Þ=I1 sð Þ, and
the voltage transfer function TV sð Þ=V2 sð Þ=V1 sð Þ.

SOLUTION:
Thecircuit is not a simplevoltagedivider, soweusemesh-current equa-
tions to illustrate the general approach to finding network functions.
By inspection, the mesh-current equations for this ladder circuit are

R2

1
C2s

+

−

+
−

V1(s)

+

V2(s)

1
C1sR1

FIGURE 11–11

+
−

+

−

R

1
Cs

V1(s) V2(s)R

1
Cs

IA(s) IB(s)

I1(s)

A

FIGURE 11–12
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R+
1
Cs

� �
IA sð Þ−RIB sð Þ=V1 sð Þ

−RIA sð Þ+ 2R+
1
Cs

� �
IB sð Þ= 0

In terms of the mesh current, the input impedance is Z sð Þ=V1 sð Þ=IA sð Þ. Using
Cramer’s rule to solve for IA sð Þ yields

IA sð Þ= ΔA

Δ
=

V1 sð Þ −R

0 2R+
1
Cs














R+
1
Cs

−R

−R 2R+
1
Cs

















=

Cs 2RCs+ 1ð Þ
RCsð Þ2 + 3RCs+ 1

V1 sð Þ

The input impedance of the circuit is

Z sð Þ= V1 sð Þ
IA sð Þ =

RCsð Þ2 + 3RCs+ 1
Cs 2RCs+ 1ð Þ

In terms of mesh current, the transfer impedance is TZ sð Þ=V2 sð Þ=IA sð Þ. The
mesh-current equations do not yield the output voltage directly. But since

V2 sð Þ= IB sð ÞZC sð Þ= IB sð Þ 1
CS

, we can solve the second mesh equation for IB sð Þ in

terms of IA sð Þ as
IB sð Þ= RCs

2RCs+ 1
IA sð Þ

and obtain the specified transfer impedance as

TZ sð Þ= IB sð Þ 1=Csð Þ
IA sð Þ =

R
2RCs+ 1

To obtain the specified voltage transfer function, we could use Cramer’s rule to solve
for IB sð Þ in terms of V1 sð Þ and then use the fact that V2 sð Þ= IB sð ÞZC sð Þ. But a
moment’s reflection reveals that

TV sð Þ= V2 sð Þ
V1 sð Þ =

V2 sð Þ
I1 sð Þ
� �

I1 sð Þ
V1 sð Þ
� �

=TZ sð Þ× 1
Z sð Þ

Hence, the specified voltage transfer function is

TV sð Þ = R
2RCs+ 1

×
Cs 2RCs+ 1ð Þ

RCsð Þ2 + 3RCs+ 1

=
RCs

RCsð Þ2 + 3RCs+ 1 ■

E x e r c i s e 11–6
For the circuit shown in Figure 11–12, insert a follower at point A and find the transfer func-
tion TV sð Þ=V2 sð Þ=V1 sð Þ. Compare your result with that found in Example 11–5 for the
same transfer function.

A n s w e r: The transfer function would become

TV sð Þ= RCs

RCsð Þ2 + 2RCs+ 1

564 C H A P T E R 1 1 NETWORK FUNCTIONS



The difference appears to be slight—simply changing the middle term of the denominator
from 3 to 2. However, this change affects the location of the poles and could affect the
nature of the circuit’s behavior. Inserting the follower eliminates the loading effect of
the second RC circuit on the first.

E X A M P L E 1 1–6

Find the voltage transfer function TV sð Þ=V2 sð Þ=V1 sð Þ of the circuit in Figure 11–13.

SOLUTION:
The voltage-controlled voltage source makes this an active RC circuit.
We use node-voltage equations in this problem because the required out-
put is a voltage. The circuit contains two voltage sources connected at a
common node. Selecting this common node as the reference eliminates
two unknowns since VA sð Þ=V1 sð Þ and VD sð Þ= μVC sð Þ=V2 sð Þ. The sums
of currents leaving nodes B and C are

Node B:
VB sð Þ−V1 sð Þ

R1
+
VB sð Þ−VC sð Þ

R2
+
VB sð Þ−μVC sð Þ

1=C1s
= 0

Node C:
VC sð Þ−VB sð Þ

R2
+
VC sð Þ
1=C2s

= 0

Multiplying both equations by R1R2 and rearranging terms produces

Node B: R1 +R2 +R1R2C1sð ÞVB sð Þ− R1 + μR1R2C1sð ÞVC sð Þ=R2V1 sð Þ
Node C: −VB sð Þ+ 1+R2C2sð ÞVC sð Þ= 0

Using the node C equation to eliminate VB sð Þ from the node B equation leaves

R1 +R2 +R1R2C1sð Þ 1+R2C2sð ÞVC sð Þ− R1 + μR1R2C1sð ÞVC sð Þ=R2V1 sð Þ
Since the output V2 sð Þ= μVC sð Þ, the required transfer function is

TV sð Þ= V2 sð Þ
V1 sð Þ =

μ
R1R2C1C2s2 + R1C1 +R1C2 +R2C2−μR1C1ð Þs+ 1

This circuit is a member of the Sallen-Key family, often used in filter design with
R1 =R2 =R and C1 =C2 =C, in which case the transfer function reduces to

TV sð Þ= μ
RCsð Þ2 + 3−μð ÞRCs+ 1

We will encounter this result again in later chapters. ■

D e s i g n E x e r c i s e 11–7
Consider the dependent-source circuit shown in Figure 11–13 with R1 = R2 = R and
C1 = C2 = C and the resulting transfer function under those conditions shown in the example
immediately above.

(a) Select values for μ, R, and C so that the transfer function has purely imaginary poles
at s = ± j1000.

(b) What function can the circuit perform under these constraints?

A n s w e r s:
(a) Let μ = 3,R = 1 kΩ, and C = 1 μF. Other values of R and C are possible, but not other

values of μ.
(b) The circuit can function as an oscillator producing an output sinusoid at 1000 rad=s.

+
−

+

−

1
C2sV1(s) V2(s)

R1 R2

1
C1s

+
−

μVC(s)

VA(s) VC(s) VD(s)

VB(s)

FIGURE 11–13
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E x e r c i s e 11–8
(a) Find the voltage transfer function TV sð Þ=V2 sð Þ=V1 sð Þ of the circuit in Figure 11–14.

(b) What are the conditions on μ that will ensure the circuit is stable?

A n s w e r s:

(a) TV sð Þ= V2 sð Þ
V1 sð Þ =

−μ
RCs+ 1−μ

(b) For a circuit to be stable all polesmust be in the left-hand portion of the s-plane, hence μ
must be less than 1.

T H E C A S C A D E C O N N E C T I O N A N D T H E C H A I N R U L E

Signal-processing circuits often involve a cascade connection in which the output
voltage of one circuit serves as the input to the next stage. In some cases, the overall
voltage transfer function of the cascade can be related to the transfer functions of the
individual stages by a chain rule

TV sð Þ=TV1 sð ÞTV2 sð Þ � � � TVk sð Þ (11–11)

where TV1, TV2, …, TVk are the voltage transfer functions of the
individual stages when operated separately. It is important to
understand when the chain rule applies since it greatly simplifies
the analysis and design of cascade circuits.

To illustrate the chain rule concept, consider the two-stage
RC circuit in Figure 11–15. When disconnected and operated
in isolation, the transfer function of each stage can be found
using voltage division as

TV1 sð Þ= R
R+ 1=Cs

=
RCs

RCs+ 1

TV2 sð Þ= 1=Cs
R+ 1=Cs

=
1

RCs+ 1

When connected in cascade, the output of the first stage serves as
the input to the second stage. If the chain rule applies, we would
obtain the overall transfer function as

TV sð Þ = V3 sð Þ
V1 sð Þ =

V2 sð Þ
V1 sð Þ
� �

V3 sð Þ
V2 sð Þ
� �

= TV1 sð Þð Þ TV2 sð Þð Þ

=
�

RCs
RCs+ 1|fflfflfflffl{zfflfflfflffl}
first
stage

��
1

RCs+ 1|fflfflfflffl{zfflfflfflffl}
second
stage

�
=

RCs�
RCs

�2
+ 2RCs+ 1|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

overall

(11–12)

However, in Example 11–5, the overall transfer function of this circuit was found
to be

TV sð Þ= RCs

RCsð Þ2 + 3RCs+ 1
(11–13)

which disagrees with the chain rule result in Eq. (11–12).
The reason for the discrepancy is that when they are connected in cascade, the

second circuit “loads” the first circuit. That is, the voltage-divider rule requires that
the interface current I2 sð Þ in Figure 11–15 be zero. The no-load condition I2 sð Þ= 0

− +

−

V1(s) V2(s)

R
1

Cs

μVX(s)

VX(s)

+

+
−+

−

FIGURE 11–14
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V2(s)

1
Cs

V3(s)

R +

−

+

−

2nd stage

I2(s)

R+
−

1
CsV1(s)

V1(s) V2(s) V3(s)
TV1 TV2

FIGURE 11–15 Two-port circuits connected in
cascade.
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applies when the stages operate separately, but when connected in cascade, the inter-
face current is not zero. The chain rule does not apply here because loading caused by
the second stage changes the transfer function of the first stage.

However, Figure 11–16 shows how the loading problem goes away when an OP
AMP voltage follower is inserted between the RC circuit stages. The follower does
not draw any current from the first RC circuit I2 sð Þ= 0½ � and applies V2 sð Þ directly
across the input of the second RC circuit. With this modification, the chain rule in
Eq. (11–11) applies because the voltage follower isolates the two circuits, thereby sol-
ving the loading problem.

In the s domain, loading causes the transfer function of a circuit to change when it
drives the input of another circuit. In a cascade connection, loading does not occur
at an interface if (1) the output (Thévenin) impedance of the driving stage is zero or
(2) the input impedance of the driven stage is infinite. The voltage follower in
Figure 11–16 is an example of a stage that meets both criteria (1) and (2). In general,
an inverting OP AMP stage meets criterion (1) but not criterion (2), while a voltage-
divider stage meets neither criteria.

When analyzing or designing a cascade connection, it is important to recognize
situations in which the chain rule applies. The next example illustrates this point.

E V A L U A T I O N E X A M P L E 1 1–7

Figure 11–17 shows two cascade connections involving the same
two stages but with their positions reversed. Do either of these
connections involve loading? If not, use the chain rule to find the
overall transfer function.

SOLUTION:
Both circuits involve a cascade connection of a voltage-
divider stage and an inverting amplifier stage. The version in
Figure 11–17(a) does not involve loading because the output
impedance of the first stage is zero. Hence, connecting the
second-stage voltage divider does not load the first stage and
the chain rule applies. The transfer function of the inverting
amplifier stage is

TV1 sð Þ= −
Z2 sð Þ
Z1 sð Þ = −

R2

R1 + 1=C1s
= −

R2C1s
R1C1s+ 1

1
Cs

+

−

V2(s)

+

−

R

R+
−

V1(s)

V2(s)

+

−

I2(s) = 0

V3(s)

+

−

1st stage Follower 2nd stage

V1(s) V2(s) V2(s) V3(s) = TV1TV2V1(s)
TV1 TV21

1
Cs

FIGURE 11–16 Cascade
connection with voltage follower
isolation.

1
C1s

1
C2s

−

+ R3

R1

V1(s) V2(s)

+

−

R2

+
−

(a)

−

+

ZT(s)

ZIN(s)

1
C2sV1(s) V2(s)

+

−

R3

1
C1s

R1

+
−

R2

(b)

FIGURE 11–17
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The second stage is a voltage divider whose transfer function is

TV2 sð Þ= Z2 sð Þ
Z2 sð Þ+Z1 sð Þ =

R3

R3 + 1=C2s
=

R3C2s
R3C2s+ 1

and the chain rule yields the overall transfer function as

TV sð Þ=TV1 sð Þ×TV2 sð Þ = −R2C1s
R1C1s+ 1

×
R3C2s

R3C2s+ 1

=
−R2C1R3C2s2

R1C1R3C2s2 + R1C1 +R3C2ð Þs+ 1

The cascade connection in Figure 11–17(b) interchanges the positions of the two
stages. The loading occurs in this case because the first stage is a voltage divider with a
nonzero output (Thévenin) impedance of

ZT sð Þ= 1
1
R3

+C2s
=

R3

R3C2s+ 1

and the inverting amplifier in the second stage has a finite input impedance of

ZIN sð Þ=ZT sð Þ+ R1 +
1

C1s

� �
=

R3

R3C2s+ 1
+
R1C1s+ 1

C1s
=
C1R3s+ R1C1s+ 1ð Þ R3C2s+ 1ð Þ

C1s R3C2s+ 1ð Þ

TV sð Þ= V2 sð Þ
VT sð Þ ×

VT sð Þ
V1 sð Þ = −

Z2 sð Þ
ZIN sð Þ ×

R3C2s
R3C2s+ 1

sinceV1 sð Þ=VT sð Þ R3C2s+ 1
R3C2s

� �
This results in a voltage transfer function of

TV sð Þ= −R2C1R3C2s2

R1C1R3C2s2 + R1C1 +R3C2 +R3C1ð Þs+ 1

which is not equal to TV1 sð Þ×TV2 sð Þ since it includes an extra term in the denomina-
tor, namely, R3C1s. This extra term alters the location of the poles. The chain rule
does not apply to this connection since the second stage loads the first stage.

The effects of loading might be more visible if numbers are used. Let us look at
the transfer functions if R1 =R2 =R3 = 10 kΩ, C1 = 10 μF and C2 = 1 μF. Using these
element values, the transfer function for the circuit in Figure 11–17(a) is

TV1 sð Þ= −
s2

s+ 10ð Þ s+ 100ð Þ
For the circuit in Figure 11–17(b), the transfer function is

TV2 sð Þ= −
s2

s+ 4:88ð Þ s+ 205ð Þ
The locations of the poles are quite different for the two circuits. Avoiding uninten-
tional loading is a sign of experienced circuit designers.

■

E v a l u a t i o n E x e r c i s e 11–9

Figure 11–18 shows two cascade connections involving the same two stages but with their
positions reversed. Does either of these connections involve loading? Find their voltage
transfer functions and, if loading is present, determine the condition necessary to minimize
the effect.
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A n s w e r s: Both circuits exhibit loading effects.

(a) TVa sð Þ= V2 sð Þ
V1 sð Þ =

RA +RB

RB

� �
s

s+
RL +R
RLRC

0
BB@

1
CCA

To minimize loading effects select R�RL.

(b) TVb sð Þ= V2 sð Þ
V1 sð Þ =

RA +RB

RB

� � R
R+RS

s

s+
1

R+RSð ÞC

0
BB@

1
CCA

To minimize loading effects select R�RS.

11–3 N E T W O R K F U N C T I O N S A N D I M P U L S E R E S P O N S E

The impulse response is the zero-state response of a circuit when the
driving force is a unit impulse applied at t = 0. When the input signal is
x tð Þ= δ tð Þ, then X sð Þ=ℒ δ tð Þf g= 1 and the input–output relationship
in Eq. (11–2) reduces to

Y sð Þ=T sð Þ× 1=T sð Þ
The impulse response transform equals the network function, and we
could treatT sð Þ as if it is a signal transform. However, to avoid possible
confusion between a network function (description of a circuit) and a
transform (description of a signal), we denote the impulse response
transform asH sð Þ and use h tð Þ to denote the correspondingwaveform.2

Figure 11–19 shows this concept in a block diagram form. That is,

Impulse Response
Transform Waveform

H sð Þ=T sð Þ× 1 h tð Þ=ℒ−1 H sð Þf g
(11–14)

Linear circuit
in t domain

(a)

x(t) = δ(t) y(t) = h(t)

T(s)

(b)

X(s) = 1 Y(s) = T(s) × 1 = H(s)

FIGURE 11–19 Block diagram of impulse
response: (a) In the t domain. (b) In the s domain.
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FIGURE 11–18

2Not all books make this distinction. Books on signals and circuits often useH sð Þ to represent both a
transfer function and the impulse response transform.
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When there are no repeated poles, the partial-fraction expansion of H sð Þ is

H sð Þ= k1
s−p1

+
k2

s−p2
+ � � � + kN

s−pN|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
natural poles

where p1, p2, … , pN are the natural poles in the denominator of the transfer function
T sð Þ. All of the poles of H sð Þ are natural poles since the impulse excitation does not
introduce any forced poles. The inverse transform gives the impulse response wave-
form as

h tð Þ= ½k1ep1t + k2ep2t + � � �+ kNepNt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
natural response

�u tð Þ

When the circuit is stable, all of the natural poles are in the left half plane and the
impulse response waveform h tð Þ decays to zero as t! ∞ . A linear circuit whose
impulse response ultimately returns to zero is said to be asymptotically stable.
Asymptotic stability means that the impulse response has a finite time duration.
That is, for every ε> 0, there exists a finite time duration TD such that h tð Þj j< ε for
all t >TD.

It is important to note that the impulse response h tð Þ contains all the information
needed to determine the circuit response to any other input. That is, since
ℒ h tð Þf g=H sð Þ=T sð Þ, we can calculate the output y tð Þ for any Laplace transforma-
ble input x tð Þ as

y tð Þ=ℒ−1 H sð ÞX sð Þf g
This expression, known as the convolution theorem, states that the impulse response
can be used to relate the input and output of a linear circuit. Thus, the impulse
response h tð Þ or H sð Þ can be considered as a mathematical model of a linear circuit.
Obviously, it is important to be able to find the impulse response and to know how to
use the impulse response to find the output for other inputs. The following examples
illustrate both of these issues.

E X A M P L E 1 1–8

Find the response υ2 tð Þ in Figure 11–20 when the input is υ1 tð Þ= δ tð Þ. Use the element
values R1 = 10 kΩ,R2 = 12:5 kΩ,C1 = 1 μF, and C2 = 2 μF.

SOLUTION:
In Example 11–3, the transfer function of this circuit was found to be

TV sð Þ= V2 sð Þ
V1 sð Þ =

R1C1s+ 1ð Þ R2C2s+ 1ð Þ
R1C1R2C2s2 + R1C1 +R2C2 +R1C2ð Þs+ 1

For the given element values, the impulse response transform is

H sð Þ= s+ 100ð Þ s+ 40ð Þ
s2 + 220s+ 4000

=
s+ 100ð Þ s+ 40ð Þ
s+ 20ð Þ s+ 200ð Þ

ThisH sð Þ is not a proper rational function, so we use one step of a long division plus a
partial-fraction expansion to obtain

H sð Þ= 1+
80=9
s+ 20

−
800=9
s+ 200

R1

+

−
V1(s)

V2(s)+
− 1

C1s

1
C2s

R2

FIGURE 11–20
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and the impulse response is

h tð Þ= δ tð Þ+ 80
9

e−20t−10e−200t
� �

u tð Þ

In this case, the impulse response contains an impulse because the network function
is not a proper rational function. ■

E x e r c i s e 11–10
A certain circuit has the following voltage transfer function:

TV sð Þ= 105s

s+ 102
� �

s+105
� 	

Find the circuit’s impulse response h tð Þ.
A n s w e r: h tð Þ= −100:1e−10

2t +100;100e−10
5t

h i
u tð Þ

E X A M P L E 1 1–9

The impulse response of a linear circuit is h tð Þ= 200e−100tu tð Þ. Find the output when
the input is a unit ramp r tð Þ= tu tð Þ.

SOLUTION:
The circuit impulse response transform is

H sð Þ=ℒ h tð Þf g=ℒ 200e−100tu tð Þ� �
=

200
s+ 100

The Laplace transform of the unit ramp input is 1=s2; hence, using the convolution
theorem, the response due to a ramp input is

y tð Þ = ℒ−1 H sð Þ 1
s2


 �
=ℒ−1 200

s+ 100ð Þs2

 �

= ℒ−1 1=50
s+ 100

+
2
s2
−
1=50
s


 �

=
1
50

e−100t + 100t−1
� �

u tð Þ

This example illustrates that the impulse response h tð Þ contains all the information
needed to calculate the response due to another input. ■

E x e r c i s e 11–11
The impulse response of a circuit is h tð Þ=100e−20tu tð Þ. Find the output when the input is a
step function x tð Þ=u tð Þ.
A n s w e r:

y tð Þ= 5 1−e−20t
� �

u tð Þ

E x e r c i s e 11–12
Find the impulse response of the circuit in Figure 11–21.

A n s w e r: h tð Þ=0:1δ tð Þ+ 90e−100t
� �

u tð Þ

+
−

+

−

9 kΩ

1 μF

1 kΩ

v2(t)v1(t)

FIGURE 11–21
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11–4 N E T W O R K F U N C T I O N S A N D S T E P R E S P O N S E

The step response is the zero-state response of the circuit output when the driving
force is a unit step function applied at t = 0. When the input is x tð Þ= u tð Þ, then
X sð Þ=ℒ u tð Þf g= 1=s and the s-domain input–output relationship in Eq. (11–2) yields
Y sð Þ=T sð Þ=s. The step response transform and waveform will be denoted by G sð Þ
and g tð Þ, respectively. That is,

Step Response
Transform Waveform

G sð Þ= T sð Þ
s

g tð Þ=ℒ−1 G sð Þf g
(11–15)

The poles of G sð Þ are the natural poles contributed by the network function T sð Þ
and a forced pole at s= 0 introduced by the step function input. The partial fraction
expansion of G sð Þ takes the form

G sð Þ= k0
s

+|fflffl{zfflffl}
forced
pole

k1
s−p1

+
k2

s−p2
+…+

kN
s−pN|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

natural
poles

where p1, p2, …, pN are the natural poles in T sð Þ. The inverse transformation gives
the step response waveform as

g tð Þ= k0u tð Þ|fflfflffl{zfflfflffl}
forced

response

+ ½k1ep1t + k2ep2t +…+ kNepNt�u tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
natural
response

When the circuit is asymptotically stable, the natural response decays to zero, leaving
a forced component called the dc steady-state response. The amplitude of the steady-
state response is the residue in the partial-fraction expansion of the forced pole at
s= 0. By the cover-up method, this residue is

k0 = sG sð Þjs= 0 =T 0ð Þ

For a unit step input, the amplitude of the dc steady-state response equals the value of
the transfer function at s= 0. By linearity, the general principle is that an input Au tð Þ
produces a dc steady-state output whose amplitude is AT 0ð Þ.

We next show the relationship between the impulse and step responses. First,
combining Eqs. (11–14) and (11–15) gives

G sð Þ= H sð Þ
s

The step response transform is the impulse response transform divided by s. The inte-
gration property of the Laplace transform tells us that division by s in the s domain
corresponds to integration in the time domain. Therefore, in the time domain, we can
relate the impulse and step response waveforms by integration:

g tð Þ=
Z t

0
hðτÞdτ (11–16)
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Using the fundamental theorem of calculus, the impulse
response waveform is expressed in terms of the step response
waveform

h tð Þð= Þdg tð Þ
dt

(11–17)

where the symbol (=) means equal almost everywhere, a condi-
tion that excludes those points at which g tð Þ has a discontinuity.
In the time domain, the step response waveform is the integral
of the impulse response waveform. Conversely, the impulse
response waveform is (almost everywhere) the derivative of
the step response waveform.

The key idea is that there are relationships between the
network function T sð Þ and the responses H sð Þ,h tð Þ,G sð Þ, and
g tð Þ. If any one of these quantities is known, we can obtain
any of the other four using relatively simple mathematical
operations. A summary of these relationship is shown in
Figure 11–22.

E X A M P L E 1 1–1 0

The element values for the circuit in Figure 11–23 are R1 = 10 kΩ,R2 = 100 kΩ,
C1 =C2 = 0:1 μF, and υ1 tð Þ= u tð ÞV. Find the response υ2 tð Þ.

SOLUTION:
For a unit step input V1 sð Þ= 1=s. In Example 11–4, the transfer
function of this circuit is shown to be

TV sð Þ= V2 sð Þ
V1 sð Þ = −

R2C1s
ðR1C1s+ 1ÞðR2C2s+ 1Þ

Substituting the numerical element values into this expression
yields the step response transform as

V2 sð Þ=G sð Þ = TV sð Þ
s

= −
1000

ðs+ 100Þðs+ 1000Þ

=
−10=9
s+ 100

+
10=9

s+ 1000

The inverse transform yields

υ2 tð Þ= 10
9
ð−e−100t + e−1000tÞu tð Þ

In this case, the forced pole at s= 0 is canceled by a zero ofTV sð Þ and the final value of
the step response is zero. Using the final value theorem, we have

gð∞Þ= lim
t!∞

g tð Þ= lim
s!0

sG sð Þ=T 0ð Þ

R2

1
C2s

+

−

+
−

V1(s)

+

V2(s)

1
C1sR1

FIGURE 11–23

s domaint domain

{g(t)}

{G(s)}

{h(t)}

{H(s)}

sG(s)dg(t)
––––

dt
H(s)
––––

s

G(s)

H(s)
T(s)

g(t)

h(t)
1

–1

–1

FIGURE 11–22 Relationships between step and
impulse responses, and the transfer function in the
t and s domains.
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the final steady-state value of the step response is equal to the value of the transfer
function evaluated at s= 0. In the present caseTV 0ð Þ= 0, so the dc steady-state output
of the circuit is zero. Recall from Chapter 6 that in the dc steady state, capacitors can
be replaced by open circuits. Replacing C1 in Figure 11–23 by an open circuit discon-
nects the input source from the OPAMP, so no dc signals can be transferred through
the circuit. A series capacitor that prevents the passage of dc signals is commonly
called a blocking capacitor. ■

D e s i g n E x e r c i s e 11–13
Design a circuit that will produce the following step response output:

υ2 tð Þ= ½1−e−1000t�u tð ÞV

A n s w e r: The transfer function of the desired circuit is

TV sð Þ= 103

s+ 103

A simple series RC circuit with the output taken across the capacitor will produce the
desired response as long as the pole at −1=RC equals −1000 rad=s.

E X A M P L E 1 1–1 1

The step response of a linear circuit is g tð Þ= 5½1−e−200t� u tð Þ. Find the output wave-
form when the input is x tð Þ= ½12e−200t� u tð Þ. Use the inverse Laplace function to vis-
ualize (plot) the response y tð Þ.

SOLUTION:
Since we are given the step response g tð Þ, we start by realizing thatG sð Þ=H sð Þ=s. We
transform the step response into the s domain as follows:

G sð Þ= 5
s
−

5
s+ 200

=
1000

sðs+ 200Þ =
H sð Þ
s

Hence,

H sð Þ= 1000
s+ 200

The transform of the input signal is

X sð Þ= 12
s+ 200

The output is found by applying the convolution theorem

y tð Þ = ℒ−1fH sð ÞX sð Þg

y tð Þ = ℒ−1 1000
s+ 200

� �
12

s+ 200

� �
 �

y tð Þ = ℒ−1 12000

ðs+ 200Þ2
( )

= 12;000te−200tu tð Þ
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Figure 11–24 is a graph of the output. (Plotted using MATLAB.) ■

E x e r c i s e 11–14
A particular circuit has the following voltage transfer function:

TV sð Þ= s+5
s+ 10

Find the circuit’s step response g tð Þ, impulse response h tð Þ, step response transform G sð Þ,
and impulse response transform H sð Þ.
A n s w e r:

g tð Þ= ½0:5e−10t +0:5�u tð Þ, h tð Þ= δ tð Þ−5e−10tu tð Þ, G sð Þ= s+5
sðs+10Þ , H sð Þ= s+5

s+10

A P P L I C A T I O N E X A M P L E 1 1 – 1 2

Three time-domain parameters often used to describe the step
response are rise time, delay time, and overshoot. Rise
timeðTRÞ is the time interval required for the step response
to rise from 10% to 90% of its steady-state value gð∞Þ. Delay
timeðTDÞ is the time interval required for the step response to
reach 50% of its steady-state value.Overshoot is the difference
between the peak value of the step response and its steady-
state value. Overshoot is usually expressed as a percentage
of the steady-state value, namely

Overshoot =
gmax−gð∞Þ

gð∞Þ × 100

Figure 11–25 illustrates these descriptors for a typical step
response.

Step response descriptors are used to specify the perfor-
mance of both analog and digital systems. Rise time governs
how rapidly the system responds to an abrupt change in the
input. Delay time controls the time between the application
of an abrupt change and the appearance of a significant change
in the output. Overshoot indicates the amount of damping
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0

5

10

15

20

25

Time (s)

O
u
tp

u
t 

y(
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FIGURE 11–24

t

g(t)

gmax

g(∞)

0.9g(∞)

0.5g(∞)

0.1g(∞)

0

Overshoot

TD

TR

FIGURE 11–25 Step response showing rise time ðTRÞ,
delay time ðTDÞ, and overshoot.
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present in the system. Lightly damped oscillations produce large overshoots and
may cause erroneous state changes in digital systems.

Rise time, delay time, and overshoot can be determined experimentally or
calculated using modern computer tools. How to use MATLAB to find these para-
meteres can be found in Web appendix D.

E x e r c i s e 11–15
The impulse response of a circuit is h tð Þ= 8000ð600t−1Þe−800tu tð Þ. Find and plot the step
response. Find approximate values for the rise time, delay time, and overshoot.

A n s w e r s:

g tð Þ= −2:5½1 + ð2400t−1Þ e−800t�u tð Þ
TR = 329 μs
TD = 180 μs
Overshoot = 79%

11–5 N E T W O R K F U N C T I O N S A N D S I N U S O I D A L S T E A D Y - S T A T E
R E S P O N S E

When a stable, linear circuit is driven by a sinusoidal input, the output contains a
steady-state component that is a sinusoid of the same frequency as the input. This
section deals with using the circuit transfer function to find the amplitude and phase
angle of the sinusoidal steady-state response. To begin, we write a general sinusoidal
input in the form

x tð Þ=XAcosðωt +ϕÞ (11–18)

which can be expanded as

x tð Þ=XAðcos ωt cos ϕ−sin ωt sin ϕÞ

The waveforms cos ωt and sin ωt are basic signals whose transforms are given in
Table 9–2 as ℒfcos ωtg= s=ðs2 +ω2Þ and ℒfsin ωtg=ω=ðs2 +ω2Þ. Therefore, the
input transform is

X sð Þ =XA

"
s

s2 +ω2 cos ϕ−
ω

s2 +ω2 sin ϕ

#

=XA
s cos ϕ−ω sin ϕ

s2 +ω2

� � (11–19)

Equation (11–19) is the Laplace transform of the general sinusoidal waveform in
Eq. (11–18).

Using Eq. (11–2), we obtain the response transform for a general sinusoidal input:

Y sð Þ=XA
s cos ϕ−ω sin ϕ
ðs− jωÞðs+ jωÞ

� �
T sð Þ (11–20)

The response transform contains forced poles at s= � jω because the input is a sinus-
oid. Expanding Eq. (11–20) by partial fractions,
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Y sð Þ= k
s− jω

+
k∗

s− jω|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
forced poles

+
k1

s−p1
+

k2
s−p2

+…+
kN

s−pN|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
natural poles

where p1, p2, …, pN are the natural poles contributed by the transfer function T sð Þ.
To obtain the response waveform, we perform the inverse transformation:

y tð Þ=
�
kejωt + k∗e− jωt|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
forced response

+ k1ep1t + k2ep2t +…+ kNepNt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
natural response

�
u tð Þ

When the circuit is stable, the natural response decays to zero, leaving a sinusoidal
steady-state response due to the forced poles as s= � jω. The steady-state response is

ySS tð Þ= kejωt + k∗e− jωt
� �

u tð Þ
where the subscript SS identifies a steady-state condition.

To determine the amplitude and phase of the steady-state response, we must find
the residue k. Using the cover-up method from Chapter 9, we find k to be

k = ðs− jωÞXA
s cos ϕ−ω sin ϕ
ðs− jωÞðs+ jωÞ

� �
T sð Þ





s= jω

= XA
jω cos ϕ−ω sin ϕ

2jω

� �
TðjωÞ

= XA
cos ϕ− j sin ϕ

2

� �
TðjωÞ= 1

2
XAejϕTðjωÞ

The complex quantityTðjωÞ can bewritten inmagnitude and angle form as jTðjωÞjejθ.
Using these results, the residue becomes

k =
1
2
XAejϕ

� �



TðjωÞ




ejθ

=
1
2
XA





TðjωÞ




ejðϕ+ θÞ

The inverse transform yields the steady-state response in the form

ySS tð Þ = 2 kj jcos ωt +∠kð Þ
=XA T jωð Þj j|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
amplitude

cos ωt +ð ϕ+ θÞ|fflffl{zfflffl}
phase

(11–21)

In the development leading to Eq. (11–21), we treat frequency as a general var-
iable where the symbol ω represents all possible input frequencies. In some cases,
the input frequency has a specific value, which we denote as ωA. In this case, the input
is written as

x tð Þ=XA cos ωAt +ϕð Þ
To obtain the steady-state output, we evaluate the transfer function at the specific
frequency ωAð Þ of the input sinusoid, namely

T jωAð Þ= T jωAð Þj j∠T jωAð Þ
and the steady-state output is expressed as

ySS tð Þ=XA T jωAð Þj j cos ωAt +ϕ+∠T jωAð Þ½ �
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This result emphasizes three things about the steady-state response:

1ð ÞOutput frequency = Input frequency =ωA

2ð ÞOutput amplitude = Input amplitude × T jωAð Þj j
3ð ÞOutput phase = Input phase +∠T jωAð Þ

(11–22)

The block diagram in Figure 11–26 helps to clarify this result. The input x tð Þ
contributes the amplitude XA, the frequency ωA, and the phase ϕ to the steady-state
output ySS tð Þ. The linear circuit contributes a multiplier to the input amplitude
and a phase shift. The multiplier is the magnitude of the transfer function T sð Þj j
evaluated at s= jωA and shown as T jωAð Þj j. The phase shift is added to the input
phase and is the phase of the transfer function ∠T sð Þ evaluated at s= jωA and shown
as ∠T jωAð Þ.

The next two examples illustrate sinusoidal steady-state response calculations. In
the first example, frequency is treated as a general variable and we examine the
steady-state response as frequency varies over a wide range. In the second example,
we evaluate the steady-state response at two specific frequencies.

E X A M P L E 1 1–1 3

Findthesteady-stateoutput inFigure11–27(a) forageneral inputυ1 tð Þ=VAcos ωt +ϕð Þ.
Then for L= 1mH, R= 100Ω, and v1 tð Þ= 10 cos 100 kt + 135�ð ÞV, find v2SS tð Þ.
Finally, use Multisim to verify your result.

SOLUTION:
In Example 11–2, the circuit transfer function is shown to be

T sð Þ= R
Ls+R

The magnitude and angle of T jωð Þ are

T jωð Þj j = Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 + ωLð Þ2

q
θ ωð Þ = − tan−1 ωL

R

� �
Using Eq. (11–21), the sinusoidal steady-state output is

υ2SS tð Þ= VARffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 + ωLð Þ2

q cos ωt +ϕ− tan−1 ωL=Rð Þ� �

Ls

+

−

V1(s) V2(s)R+
−

(a)

FIGURE 11–27

Linear circuit

in t domain

x(t)=X
∧

A cos(ωAt+ϕ)

T(s)│s=jωA
=

|T(jωA)|∠T( jωA)

ySS(t)=X
∧

A|T(j ωA)| cos(ωAt+ϕ+∠T( jωA)〉

FIGURE 11–26 Block
diagram of sinusoidal steady state
response.
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Note that both the amplitude and phase angle of the steady-state response depend
on the frequency of the input sinusoid. In particular, at ω= 0 the amplitude of the
steady-state output reduces to VA, which is the same as the amplitude of the input
sinusoid. This makes sense because at dc the inductor in Figure 11–27(a) acts like
a short circuit that directly connects the output port to the input port. At very high
frequency, the amplitude of the steady-state output approaches zero. This alsomakes
sense because at very high frequency the inductor acts like an open circuit that dis-
connects the output port from the input port. In between these two extremes, the out-
put amplitude decreases as the frequency increases.

Substituting the values given into the general result found above yields

vSS2 tð Þ = 10× 100ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1002 + 105 × 10−3

� 	2r cos 105t + 135�− tan−1 10
5 × 10−3

100

 !

vSS2 tð Þ = 7:071 cos 105t + 135�−45�
� 	

= 7:071 cos 105t + 90�
� 	

V

To solve this problemusingMultisim, we draw the circuit using the ac signal source,
being careful to enter the frequency in hertz. We then perform a “Single Frequency
ACAnalysis.”WeaskMultisim to show the frequency and to display the results using
magnitude and phase. Multisim returns the results shown in Figure 11–27(b). These
results compare favorably with those calculated by hand.

■

E x e r c i s e 11–16
Find the steady-state output in Figure 11–28 for a general input υ1 tð Þ=VAcos ωt +ϕð ÞV.

A n s w e r:
υ2SS tð Þ= VA

R1C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 +

1
R2C

� �2
s cos ½ωt +ϕ−180�− tan−1ðωR2CÞ�V

The 180� is due to the inverting OPAMP. At dc, the capacitor is an open circuit and the OP
AMP is operating as a simple inverter with gain of −R2=R1. As ω! ∞ , the output
approaches zero.

E V A L U A T I O N E X A M P L E 1 1–1 4

A sensitive piece of electronic equipment is interfered with by a 60 Hz hum.
A manufacturer claims his simple circuit can effectively eliminate that noise. The
manufacturer’s specification sheet does not show what components make up the
design, but rather, lists the transfer function as

TV sð Þ= s2 + 142129
s2 + 7:45s+ 142129

+

−

1 mH

2

R1
100 Ω

L1

V1

10 Vpk
15,915 Hz
135°

Example 11–13
Single Frequency AC Analysis @ 15915 Hz 

Variable Frequency (Hz) Magnitude Phase (deg)

1 V(2) 15915 7.07 90

(b)

FIGURE 11–27

R1

R2

V2(s)

+

−

V1(s)

+

−

+

− 1/Cs

FIGURE 11–28
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and claims it will reduce the interfering signal by at least 300 times, that is attenuate it
by more than 50 dB without any noticeable attenuation of signals as near as 58 and
62 Hz (less than 0.5 dB).

Test the manufacturer’s assertion by calculating the sinusoidal steady-state output
for five frequencies: 10, 58, 60, 62, and 100 Hz.

SOLUTION:
We will proceed as follows. We will use a one volt sinusoid as the input signal,
υ1 tð Þ= 1 cos 2πftV as our reference. We will evaluate the magnitude and phase of
the transfer function TV j2πfð Þ at the five different frequencies. Then we will find
the output υ2SS tð Þ for each frequency and compute the effect of the circuit on the var-
ious frequencies.

For 10Hz

TVðj2π10Þ= jðj2π10Þ2 + 142129j∠0�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðj2π10Þ2 + 142129�2 + ½7:45 × 2π10�2

q
∠tan−1ð468:1Þ= 138181ð Þ

TVðj2π10Þ= 138181∠0�

138182∠0:194�
= 0:999∠−0:194�

υ2SS tð Þ= 0:999 cosð2π10t−0:194�ÞV

Attenuation dB= 20 log
0:999
1

= −8:69 × 10−3 dB, or less than 0.1%.

For 58Hz

TVðj2π58Þ= jðj2π58Þ2 + 142129j∠0�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðj2π58Þ2 + 142129�2 + ½7:45 × 2π58�2

q
∠ tan−1ð2714:9Þ=ð9323:6Þ

TVðj2π58Þ= 9323:6∠0�

9710:8∠16:2�
= 0:960∠−16:2�

υ2SS tð Þ= 0:960 cosð2π58t−16:2�ÞV

Attenuation dB= 20 log
0:960
1

= −0:35 dB or about 4%.

For 60Hz

TV j2π60ð Þ = j j2π60ð Þ2 + 142129j∠0�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2π60ð Þ2 + 142129

h i2
+ 7:45 + 2π60½ �2∠tan−1 2808:6ð Þ= 6:7ð Þ

r

TV j2π60ð Þ = 6:7∠0�

2808:6∠89:9�
= :00239∠−89:9�

υ2SS tð Þ= 2:39 cos 2π60t−89:9�ð ÞmV or about a reduction of 418 times.

Attenuation dB= 20 log
0:00239

1
= −52:4 dB

For 62Hz

TVðj2π62Þ= jðj2π62Þ2 + 142129j∠180�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ j2π62ð Þ2 + 142129�2 + ½7:45 × 2π62�2

q
∠tan−1ð2902:2Þ=ð−9626:0Þ

TVðj2π62Þ = 9626:0∠180�

10054∠163:3�
= 0:960∠16:7�

υ2SS tð Þ= 0:960 cos 2π62t + 16:7�ð ÞV

Attenuation dB= 20 log
0:960
1

= −0:35 dB or about 4%.
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For 100Hz

TVðj2π100Þ = jðj2π100Þ2 + 142129j∠180�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðj2π100Þ2 + 142129�2 + ½7:45 × 2π100�2

q
∠tan−1ð4680:9Þ=ð−252655Þ

TVðj2π100Þ = 252655∠180�

252698∠178:94�
= 0:999∠1:06�

υ2SS tð Þ= 0:999 cos 2π100t + 1:06�ð ÞV

Attenuation dB= 20 log
0:999
1

= −8:69 × 10−3 dB or less than 0.1%.

The manufacturer’s claim was correct. ■

D e s i g n E x e r c i s e 11–17
Rather than purchasing the device in Example 11–14, design a circuit to achieve the transfer
function given. (Hint: Use a seriesRLC circuit with the output voltage taken appropriately.)

A n s w e r: As suggested, use a series RLC circuit with the output taken across the L and C
together. Choose R= 7:45Ω, L=1H, and C =7:04 μF. Other answers are possible.

E X A M P L E 1 1–1 5

The impulse response of a linear circuit is:
h tð Þ= 5000 2e−1000tcos 2000t

�
−e−1000tsin 2000t�u tð Þ.

(a) Find the sinusoidal steady-state response when x tð Þ= 5 cos 1000t.
(b) Repeat (a) when x tð Þ= 5 cos 3000t.

SOLUTION:
The transfer function corresponding to h tð Þ is

T sð Þ =H sð Þ=ℒ h tð Þf g

= 5000
2 s+ 1000ð Þ

s+ 1000ð Þ2 + 2000ð Þ2 −
2000

s+ 1000ð Þ2 + 2000ð Þ2
" #

=
104s

s2 + 2000s+ 5× 106

(a) At ωA = 1000 rad=s, the value of T jωAð Þ is

T j1000ð Þ = 104 j1000ð Þ
j1000ð Þ2 + 2000 j1000ð Þ+ 5× 106

=
j107

5 × 106−106
� �

+ j2 × 106
=

j10
4 + j2

=
10ej90

�ffiffiffiffiffi
20

p
ej26:6

� = 2:24ej63:4
�

and the steady-state response for x tð Þ= 5 cos 1000t is

ySS tð Þ = 5× 2:24 cos 1000t + 0� + 63:4�ð Þ
= 11:2 cos 1000t + 63:4�ð Þ
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(b) At ωA = 3000 rad=s, the value of T jωAð Þ is

T j3000ð Þ = 104 j3000ð Þ
j3000ð Þ2 + 2000 j3000ð Þ+ 5× 106

=
j3 × 107

5 × 106−9 × 106 + j6 × 106

=
j30

−4 + j6
=

30ej90
�ffiffiffiffiffi

52
p

ej123:7
� = 4:16e− j33:7

�

and the steady-state response for x tð Þ= 5 cos 3000t is

ySS tð Þ = 5× 4:16 cos 3000t + 0�−33:7�ð Þ
= 20:8 cos 3000t−33:7�ð Þ

Again note that the amplitude and phase angle of the steady-state response
depend on the input frequency. ■

E x e r c i s e 11–18
The transfer function of a linear circuit is T sð Þ= 5 s+100ð Þ= s+500ð Þ. Find the steady-state
output for

(a) x tð Þ=3 cos 100t
(b) x tð Þ=2 sin 500t

A n s w e r s:
(a) ySS tð Þ=4:16 cos 100t + 33:7�ð Þ
(b) ySS tð Þ= 7:21 cos 500t−56:3�ð Þ

E x e r c i s e 11–19
The impulse response of a linear circuit is h tð Þ= δ tð Þ−100 e−100t

� �
u tð Þ. Find the steady-state

output for

(a) x tð Þ=25 cos 100t
(b) x tð Þ=50 sin 100t

A n s w e r s:
(a) ySS tð Þ=17:7 cos 100t + 45�ð Þ
(b) ySS tð Þ= 35:4 cos 100t−45�ð Þ

N E T W O R K F U N C T I O N S A N D P H A S O R C I R C U I T A N A L Y S I S

In this text, we present twomethods of finding the sinusoidal steady-state response of
a linear circuit. Bothmethods depend on the fact that in the steady state every voltage
and current in a linear circuit is a sinusoid of the same frequency as the input sinusoid.
As a result, every method of sinusoidal steady-state analysis boils down to finding the
amplitude and phase angle of sinusoidal waveforms, all of which have the same
frequency.

The steady-state analysis method developed in this chapter involves first finding
the network function T sð Þ that relates an input and a particular output. We next form
the complex quantity T jωð Þ by replacing s by jω, where ω is the frequency of the input
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sinusoid. The magnitude T jωð Þj j and angle ∠T jωð Þ then give us the amplitude and
phase angle of the steady-state output via Eq. (11–21). Since T jωð Þ is a function of
ω, it can describe the steady-state response for a single frequency or whole range
of frequencies.

The steady-state analysis method developed in Chapter 8 involves representing
the amplitude and phase angles of a sinusoid by a complex number called a phasor.
Although not strictly limited to a single frequency, phasor analysis works best when
analyzing circuits driven by a single frequency. This method emphasizes the imped-
anceZ sð Þ of the individual two-terminal elements in the circuit. The element’s phasor
impedance Z jωð Þ is found by replacing s by jω, where ω is the frequency of the input
sinusoid. When numerical values of the element impedances are given, the specific
value of frequency ω is not required.When the element impedances are not given, the
frequency must be given so we can compute the phasor impedances of the three pas-
sive elements.

Resistor: ZR =R

Inductor: ZL = jωL

Capacitor: ZC =
1

jωC

The advantage of the phasor method is that it uses familiar analysis tools like volt-
age or current division, series or parallel equivalence, source transformation, and
mesh or node analysis to solve for the complex numbers (phasors) representing
the voltages and currents in the circuit. The magnitude and angle of a phasor are
the amplitude and phase angle of the corresponding sinusoidal steady-state response.
Responses found using the phasor method are identical to those found using the net-
work function method developed in this chapter.

Under what circumstances is one method better than the other?
Phasor circuit analysis works best when the circuit is driven at a single frequency

and we need to find several voltages and currents, or the average power, such as in
the electric power systems studied in Chapter 16. The network function method
works best when there is a single output and the circuit is driven at many different
frequencies, such as in the frequency-response and filter applications studied in
Chapters 12 and 14. The network function method is the only method available when
we know the impulse or step response and need to infer the frequency response
of a circuit from its time-domain response. Thus, the preferred method depends
on how the circuit is driven (single or multiple frequencies), how much we know
about the circuit (complete circuit diagram or only the impulse response), and what
we need to find out (multiple responses or a single response). Understanding both
methods and how they are applied is important to engineers working with electrical
circuits.

11–6 I M P U L S E R E S P O N S E A N D C O N V O L U T I O N
In signal processing, the term convolution refers to a process by which the impulse
response of a linear system is used to determine the zero-state response due to other
inputs. When the impulse response and input are given in the s domain as H sð Þ and
X sð Þ, the zero-state response is obtained from the inverse Laplace transform of their
product.

y tð Þ=ℒ−1 H sð ÞX sð Þf g (11–23)
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The purpose of this section is to introduce the notion that the convolution process can
also be viewed and carried out entirely in the time domain. Specifically, given a causal
impulse response h tð Þ and a causal input x tð Þ, the zero-state response is obtained from
the convolution integral3

y tð Þ=
Z t

0
h t−τð Þx τð Þdτ (11–24)

where τ is a dummy variable of integration. The shorthand notation y tð Þ= h tð Þ∗x tð Þ is
used to represent the t-domain process, where the asterisk indicates a convolution
integral, not a multiplication. That is, the expression h tð Þ∗x tð Þ reads “h tð Þ convolved
with x tð Þ,” not “h tð Þ times x tð Þ.”

Figure 11–29 indicates the parallelism between the input–output relationships
in the s domain and t domain. In the s domain, the impulse response H sð Þ
multiplies the input transform to produce the output transform. In the t domain,
the impulse response h tð Þ is convolved with the input waveform to produce the out-
put waveform.

The following example illustrates that the same result is achieved whether convo-
lution is carried out in the s domain or the t domain.

E X A M P L E 1 1–1 6

A linear circuit has an impulse response h tð Þ= 2e− tu tð Þ and an input x tð Þ= e−2tu tð Þ.
Find the zero-state response using

(a) The s-domain process in Eq. (11–23)
(b) The t-domain convolution integral in Eq. (11–24)

SOLUTION:
(a) Converting h tð Þ and x tð Þ into the s domain yields

H sð Þ=ℒ 2e− tf g= 2
s+ 1

and X sð Þ=ℒ e−2t
� �

=
1

s+ 2

Applying Eq. (11–23) produces y tð Þ as

y tð Þ =ℒ−1 H sð ÞX sð Þf g=ℒ−1 2
s+ 1ð Þ s+ 2ð Þ


 �

=ℒ−1 2
s+ 1

−
2

s+ 2


 �
= 2e− t−2e−2t for t > 0

(b) Meanwhile, back in the t domain the convolution integral in Eq. (11–24) yields

y tð Þ =
Z t

0
h t−τð Þx τð Þdτ=

Z t

0
2e− t−τð Þe−2τdτ

= 2e− t
Z t

0
eτe−2τdτ= 2e− t

Z t

0
e−τdτ

= 2e− t 1−e− tð Þ= 2e− t−2e−2t for t ≥ 0

t domain s domain

x(t) X(s)

h(t) H(s)

y(t) = h(t) * x(t) Y(s) = H(s) × X(s)

FIGURE 11–29 Input–output
relationships in the t domain and
the s domain.

3Recall from Chapter 5 that a waveform is causal if f tð Þ= 0 for all t < 0. If the impulse response h tð Þ is
not causal, the upper limit in the convolution integral becomes +∞ . If the input x tð Þ is not causal, the
lower limit becomes −∞ .
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The two methods produce the same result. The difference is that the convolution
integral evaluation is carried out entirely in the time domain. ■

E X A M P L E 1 1–1 7

A linear circuit has an impulse response h tð Þ= e−100tu tð Þ and an input x tð Þ= t u tð Þ.
(a) Find the zero-state response using the t-domain convolution integral.
(b) Validate your answer using both the s-domain process and MATLAB.
(c) Which method was the easier to use?

SOLUTION:
(a) Using the convolution integral for this problem yields

y tð Þ =
Z t

0
h t−τð Þx τð Þdτ=

Z t

0
e−100 t−τð Þτ dτ

y tð Þ = e−100t
Z t

0
e100ττ dτ= e−100t e100τ

τ
100

−
1

104

� �� �t
0

y tð Þ = e−100t e100t
t

100
−

1

104

� �
−1

0
100

−
1

104

� �� �

y tð Þ = t
100

u tð Þ− 1

104
u tð Þ+ e−100t

104
u tð Þ

(b) Using the s-domain process, we first convert h tð Þ and x tð Þ into the s domain as
follows:

H sð Þ =ℒ e−100tu tð Þ� �
=

1
s+ 100

andX sð Þ= ℒ tu tð Þf g= 1
s2

Y sð Þ = H sð ÞX sð Þ= 1
s2 s+ 100ð Þ =

1
s

1
s s+ 100ð Þ
� �

=
1
s

0:01
s

−
0:01

s+ 100

� �

Y sð Þ = 0:01
s2

−
0:01

s s+ 100ð Þ =
0:01
s2

−
10−4

s
+

10−4

s+ 100

y tð Þ =ℒ−1 Y sð Þf g= t
100

u tð Þ− 1

104
u tð Þ+ e−100t

104
u tð Þ

The following MATLAB program can be used to validate the s-domain
process

clear all
syms t s
h = exp(-100∗t);
x = t;
H = laplace (h);
X = laplace (x);
Y = H∗X;
y = ilaplace(Y)

This produces the following result that is the same as that found by hand

y = t/100 + exp(-100∗t)/10000 - 1/10000

(c) While in Example 11–16, it appeared that the s-domain process was easier; it is
not always the case, as this example shows. ■
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E x e r c i s e 11–20
A linear circuit has an impulse response h tð Þ= e−10tu tð Þ and an input x tð Þ=5u tð Þ. Find the
zero-state response using the t-domain convolution integral.

A n s w e r: y tð Þ= 1
2

1−e−10t
� �

, t ≥ 0

E Q U I V A L E N C E O F S - D O M A I N A N D t - D O M A I N C O N V O L U T I O N

The approach used here starts out in the s domain withY sð Þ=H sð ÞX sð Þ and proceeds
to show that y tð Þ= h tð Þ∗ x tð Þ. By beginning in the s domain we are assuming that the
waveforms are causal. The s-domain input–output relationship can be written as

Y sð Þ=H sð ÞX sð Þ=H sð Þ
�Z ∞

0
x τð Þe−sτdτ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ℒ x tð Þf g

�

where the bracketed term is the integral definition ofℒ x tð Þf g. The impulse response
can be moved inside the integration since H sð Þ does not depend on the dummy var-
iable τ.

Y sð Þ=
Z ∞

0
H sð Þe−sτ½ �x τð Þdτ (11–25)

Using the time translation property from Chapter 9 and the integral definition of the
Laplace transformation, the bracketed term can be written as

H sð Þe−sτ = ℒ h t−τð Þu t−τð Þf g

=
Z ∞

0
h t−τð Þu t−τð Þe−stdt

When the last line in this result replaces the bracketed term in Eq. (11–25), we obtain

Y sð Þ=
Z ∞

0

"Z ∞

0
h t−τð Þu t−τð Þe−stdt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H sð Þe−sτ

#
x τð Þdτ

Interchanging the order of integration produces

Y sð Þ=
Z ∞

0

Z t

0
h t−τð Þx τð Þdτ

� �
e−stdt

The inner integration is now carried out with respect to the dummy variable τ. The
upper limit on this integration need only extend to τ= t (rather than infinity) since
u t−τð Þ= 0 for τ> t. By definition, the outer integration (now with respect to t) yields
the Laplace transform of the quantity inside the bracket. In other words, this equa-
tion is equivalent to the statement

Y sð Þ=ℒ
Z t

0
h t−τð Þx τð Þdτ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

2
4

3
5

h tð Þ ∗ x tð Þ
So finally we have

y tð Þ=ℒ−1 Y sð Þf g=ℒ−1 H sð ÞY sð Þf g= h tð Þ ∗ x tð Þ
which establishes the equivalence of Eqs. (11–23) and (11–24). It is important to
remember that this equivalence applies only to causal waveforms.
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E X A M P L E 1 1–1 8

Use time-domain and s-domain convolution to find the zero-state response when

h tð Þ= x tð Þ= 2e− t½ �u tð Þ

SOLUTION:
Using the convolution integral in Eq. (11–24) produces

y tð Þ =
Z t

0
2e− t−τð Þ2e−τdτ= 4e− t

Z t

0
eτe−τdτ

= 4e− t
Z t

0
dτ= 4te− t for t ≥ 0

Using s-domain convolution, we have H sð Þ=X sð Þ= 2= s+ 1ð Þ; hence,
Y sð Þ=H sð Þ×X sð Þ= 4

s+ 1ð Þ2

which yields y tð Þ=ℒ−1 Y sð Þf g= 4te− t½ �u tð Þ. ■

E x e r c i s e 11–21
Use the convolution integral to find the zero-state response for h tð Þ= 2u tð Þ and
x tð Þ= 5 u tð Þ−u t−2ð Þ½ �.
A n s w e r: y tð Þ= 0 for t <0

10t for 0≤ t < 2
20 for 2≤ t








G R A P H I C A L A P P R O A C H T O C O N V O L U T I O N

In addition to the strictly mathematical approach to evaluating the convolu-
tion integral, there is a geometric or graphical interpretation of convolution. The geo-
metric approach offers another perspective, which may provide us with additional
insight into the process or help us proceed in situations that are more complicated.

Consider the following. A linear circuit has an impulse response h tð Þ= 2e− tu tð Þ.
Use a graphical approach to find the zero-state response when an input
x tð Þ= t u tð Þ is applied to the circuit.

A direct application of Eq. (11–24) for comparison produces the following:

y tð Þ=
Z t

0
2e− t−τð Þτ dτ= 2e− t

Z t

0
τeτdτ

y tð Þ= 2 t−1 + e− tð Þ for t ≥ 0

Graphically, we approach the convolution as follows:
Figure 11–30 shows a geometric interpretation of the convolution. In

Figure 11–30(a) and (b), the input and impulse responsewaveformsareplottedagainst
the dummy variable τ. Forming h −τð Þ reflects the impulse response across the τ= 0
axis, as shown in Figure 11–30(c). Forming h t−τð Þ shifts the reflected impulse
response to the right by t seconds, as shown in Figure 11–30(d). Multiplying the
reflected/shifted impulse response by the input produces the product h t−τð Þ× x τð Þ,
shown in Figure 11–30(e). The integrating from τ= 0 to τ= t yields the area under this
product, which is the value of the zero-state output at time t. At a later instant of time,
the reflected impulse response h t−τð Þ shifts farther to the right, creating a new prod-
uct h t−τð Þ× x τð Þ with a new area and a new value of y tð Þ.

Thus, the geometric interpretation of t-domain convolution involves four opera-
tions: reflecting, shifting, multiplying, and integrating. We visualize convolution as a
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process that reflects the impulse response across the origin and then progressively
shifts it to the right as t increases. At any time t, the output is the area under the prod-
uct of the reflected/shifted impulse response and the input. Under this interpretation
we can think of the impulse response as a weighting function. That is, when integrat-
ing the product h t−τð Þ× x τð Þ, the impulse response tells us howmuchweight to assign
to previous values of the input.

E X A M P L E 1 1–1 9

A certain circuit has an impulse response h tð Þ= 2e− t½ �u tð Þ. Graphically use the con-
volution integral to find the zero-state response for x tð Þ= 5 u tð Þ−u t−2ð Þ½ �.

SOLUTION:
Evaluation of the convolution integral can be divided into the three situations shown
in Figure 11–31. The situation for t < 0 is shown in Figure 11–31(a). For this case the
reflected impulse response h t−τð Þ and the input x τð Þ do not overlap so the area under
their product is zero. Hence y tð Þ= 0 for t < 0. This simply says that the zero-state
response is causal when the impulse response and input are causal.

For 0 < t < 2, the reflected impulse response and input overlap as shown in
Figure 11–31(b). In this situation, the area under the product h t−τð Þ× x τð Þ is found
by integrating τ= 0 to τ= t.

y tð Þ=
Z t

0
2e− t−τð Þ� �

5½ �dτ= 10e− t
Z t

0
eτdτ= 10e− t et−1ð Þ= 10 1−e− tð Þ for 0 < t < 2

x( )

(a)

h( )

(b)

h (

(c)

(d)

(e)

h(t   τ)

τ

[h(t   τ)][x(τ)]

τ

past
time

future

x(τ)

0 t

Area = y(t)

0 t

τ

τ

τ

τ

τ

τ)– –

–

FIGURE 11–30 Graphical
interpretation of convolution.
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0 < t < 2

x(τ)
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20 t

h(t   τ)–

(a)

t < 0

x(τ)

τ

20t

h(t   τ)–

FIGURE 11–31
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For t > 2, the reflected impulse response and input overlap as shown in Figure 11–
31(c). In this case, the product h t−τð Þ× x τð Þ is confined to the interval 0 < τ< 2 since
the input x τð Þ is zero everywhere outside of this interval. In this situation, the area
under the product is found by integrating from τ= 0 and τ= 2.

y tð Þ=
Z 2

0
2e− t−τð Þ� �

5½ �dτ
= 10e− t

Z 2

0
eτdτ

= 10e− t e2−1
� �

for 2≤ t

Evaluation of the convolution integral was guided by the geometric interpretation
in Figure 11–31 and leads to a zero-state response defined on three intervals.

y tð Þ=
0 for t < 0
10 1−e− tð Þ for 0≤ t < 2
10e− t e2−1

� �
for 2≤ t








■

E x e r c i s e 11–22
Repeat Example 11–19 by mathematically, not geometrically, computing the convolution
integral. Verify that the result is equivalent to the answer found for Example 11–19.
You may use MATLAB.

A n s w e r: y tð Þ=10 1−e− t½ �u tð Þ−10 1−e− t−2ð Þ� �
u t−2ð Þ. The result is equivalent to the answer

in Example 11–19.

A P P L I C A T I O N S O F T H E C O N V O L U T I O N I N T E G R A L

Given that s-domain and t-domain convolutions are equivalent, why study both
methods? The best answer the authors can give at this point will have an “eat your
spinach” ring to it. Suffice it to say that in subsequent courses you will encounter sig-
nals for which Laplace transforms do not exist; hence, only the t-domain method con-
volution is possible. Examples of such application are the noncausal waveforms used
in communication systems and the discrete-time signals used in digital signal proces-
sing. We cannot treat such applications here, but rather only introduce the student to
the concept of viewing convolution as a t-domain process.

11–7 N E T W O R K F U N C T I O N D E S I G N A N D E V A L U A T I O N
Finding and using a network function of a given circuit is an s-domain analysis prob-
lem. An s-domain synthesis problem involves finding a circuit that realizes a given
network function. For linear circuits, an analysis problem always has a unique solu-
tion. In contrast, a synthesis problem may have many solutions because different cir-
cuits can have the same network function. A transfer function design problem
involves synthesizing several circuits that realize a given function and evaluating
the alternative designs, using criteria such as input or output impedance, cost, and
power consumption.

The design process discussed here begins with a given transfer function TV sð Þ. We
partition this transfer function into a product of simpler functions.

TV sð Þ=TV1 sð ÞTV2 sð Þ� � �TVk sð Þ
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We then realize each of these simpler functions using basic circuit modules such as
voltage dividers, inverting amplifiers, and noninverting amplifiers. The overall trans-
fer function is then achieved by connecting the individual stages in cascade, as indi-
cated in Figure 11–32.

Of course, this approach assumes that the chain rule applies. In other words, we
must avoid loading when designing the stages in the cascade realization. This is
accomplished by coordinating the input and output impedances of adjacent stages
or using OP AMP voltage followers to isolate the individual stages.

Before turning to examples, we discuss the design of simple one-pole modules that
serve as the building block stages in a cascade design.

F I R S T - O R D E R V O L T A G E - D I V I D E R C I R C U I T D E S I G N

Webegin our study of transfer function design by developing a voltage-divider realiza-
tion of a first-order transfer function of the formK= s+ αð Þ. The impedances Z1 sð Þ and
Z2 sð Þ are related to the given transfer function using the voltage–divider relationship.

TV sð Þ= K
s+ α

=
Z2 sð Þ

Z1 sð Þ+Z2 sð Þ (11–26)

To obtain a circuit realization, we must assign part of the givenTV sð Þ toZ2 sð Þ and the
remainder to Z1 sð Þ. There are many possible realizations of Z1 sð Þ and Z2 sð Þ because
there is no unique way to make this assignment. For example, simply equating the
numerators and denominators in Eq. (11–26) yields

Z2 sð Þ=K and Z1 sð Þ= s+ α−Z2 sð Þ= s+ α−K (11–27)

Inspecting this result, we see that Z2 sð Þ is realizable as a resistance R2 =KΩð Þ and
Z1 sð Þ as an inductance L1 = 1 Hð Þ in series with a resistance R1 = α−Kð ÞΩ½ �. The
resulting circuit diagram is shown in Figure 11–33(a). For K = α the resistance R1

can be replaced by a short circuit because its resistance is zero. A gain restriction
K ≤ α is necessary because a negative R1 is not physically realizable as a single
component.

An alternative synthesis approach involves factoring s out of the denominator of
the given transfer function. In this case, Eq. (11–26) is rewritten in the form

TV sð Þ= K=s
1 + α=s

=
Z2 sð Þ

Z1 sð Þ+Z2 sð Þ (11–28)

Equating numerators and denominators yields the branch impedances

Z2 sð Þ= K
s

and Z1 sð Þ= 1+
α
s
−Z2 sð Þ= 1+

α−K
s

(11–29)

R1 = α − K  

L = 1

(a) RL design

R2 = K

R = 1

(b) RC design

C1 =
1

C2 =
1
K

α − K 

FIGURE 11–33 (a and b)
Circuit realizations of
T sð Þ=K= s+ αð Þ for K ≤ α.

TV2(s)TV1(s)

+

VIN(s) TVk(s)

−

+

VOUT(s)

−

TV(s)

+

VIN(s)

−

+

VOUT(s)

−

FIGURE 11–32 Cascade
connection transfer functions.
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In this case, we see thatZ2 sð Þ is realizable as a capacitance C2 = 1=K Fð Þ andZ1 sð Þ as a
resistance R1 = 1Ωð Þ in series with a capacitance C1 = 1= α−Kð Þ F½ �. The resulting cir-
cuit diagram is shown in Figure 11–33(b). For K = α, the capacitance C1 can be
replaced by a short circuit because its capacitance is infinite. A gain restriction
K ≤ α is required to keep C1 from being negative.

As a second design example, consider a voltage-divider realization of the transfer
function Ks= s+ αð Þ. We can find two voltage-divider realizations by writing the spe-
cified transfer function in the following two ways:

T sð Þ= Ks
s+ α

=
Z2 sð Þ

Z1 sð Þ+Z2 sð Þ (11–30a)

T sð Þ= K
1+ α=s

=
Z2 sð Þ

Z1 sð Þ+Z2 sð Þ (11–30b)

Equation (11–30a) uses the transfer function as given, while Eq. (11–30b) factors s
out of the numerator and denominator. Equating the numerators and denominators
in Eq. (11–30a) and (11–30b) yields two possible impedance assignments:

Using Eq. (11–30a):Z2 sð Þ=Ks and Z1 sð Þ= s+ α−Z2 sð Þ= 1−Kð Þs+ α (11–31a)

Using Eq. (11–30b):Z2 sð Þ=K and Z1 sð Þ= 1+
α
s
−Z2 sð Þ= 1−Kð Þ+ α

s
(11–31b)

The assignment in Eq. (11–31a) yields Z2 sð Þ as an inductance L2 =KH and Z1 sð Þ as
an inductance L1 = 1−Kð ÞH½ � in series with a resistance R1 = α Ωð Þ. The assignment in
Eq. (11–31b) yields Z2 sð Þ as a resistance R2 =KΩð Þ and Z1 sð Þ as a resistance
R1 = 1−Kð ÞΩ½ � in series with a capacitance C1 = 1=α Fð Þ. The two realizations are
shown in Figure 11–34. Both realizations require K ≤ 1 for the branch impedances
to be realizable and both simplify when K = 1.

D e s i g n E x e r c i s e 11–23
Design an RC circuit to realize the following transfer function

T sð Þ= 200
s+ 1000

A n s w e r: Use the circuit of Figure 11–33(b) with R=1Ω, C1 = 1250 μF, and C2 = 5000 μF.
Wewill learn how to scale these answers to more practical device values later in this section.

D e s i g n E x e r c i s e 11–24
Design an RL circuit to realize the following transfer function:

T sð Þ= 200
s+ 1000

A n s w e r: Use the circuit of Figure 11–33(a) with R2 = 200Ω, L = 1H, and R1 = 800Ω.

D e s i g n E x e r c i s e 11–25
Design an RC circuit to realize the following transfer function

T sð Þ= 500
s+10,000

A n s w e r: Use the circuit of Figure 11–33(b) with C2 = 2000 μF, R = 1Ω, and
C1 = 105 μF. We will learn how to scale these answers to more practical device values later
in this section.

R = 

L1 = 1 − K

R1 = 1 − K

(a) RL design

L2 = K

R2 = K

(b) RC design

C = 1

α

α

FIGURE 11–34 Circuit
realizations of T sð Þ=Ks= s+ αð Þ
for K ≤ 1.
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V O L T A G E - D I V I D E R A N D O P A M P C A S C A D E C I R C U I T D E S I G N

The examples in Figures 11–33 and 11–34 illustrate an important feature of voltage-
divider realizations. In general, we can write a transfer function as a quotient of poly-
nomials T sð Þ= r sð Þ=q sð Þ. A voltage-divider realization requires the impedances
Z2 sð Þ= r sð Þ andZ1 sð Þ= q sð Þ−r sð Þ to be physically realizable. A voltage-divider circuit
usually places limitations on the gain K. This gain limitation can be overcome by
using an OP AMP circuit in cascade with the divider circuit.

For example, a voltage-divider realization of the transfer function in Eq. (11–26)
requires K ≤ α. When K > α, then T sð Þ is not realizable as a simple voltage divider,
since Z2 sð Þ= s+ α−K requires a negative resistance. However, the given transfer
function can be written as a two-stage product:

TV sð Þ= K
s+ α

=
K
α

� �
|ffl{zffl}
first
stage

�
α

s+ α

�
|fflfflfflffl{zfflfflfflffl}
second
stage

When K > α, the first stage has a positive gain greater than unity. This stage can be
realized using a noninverting OP AMP circuit with a gain of R1 +R2ð Þ=R1. The first-
stage design constraint is

K
α
=
R1 +R2

R1

Choosing R1 = 1Ω requires that R2 = K=αð Þ−1. An RC voltage-divider realization of
the second stage is obtained by factoring an s out of the stage transfer function. This
leads to the second-stage design constraint

α=s
1 + α=s

=
Z2 sð Þ

Z1 sð Þ+Z2 sð Þ

Equating numerators and denominators yields Z2 sð Þ= α=s and Z1 sð Þ= 1.
Figure 11–35 shows a cascade connection of a noninverting first stage and the RC
divider second stage. The chain rule applies to this circuit, since the first stage has
an OPAMP output. The cascade circuit in Figure 11–35 realizes the first-order trans-
fer functionK= s+ αð Þ forK > α, a gain requirement that cannot be met by the divider
circuit alone.

D e s i g n E x e r c i s e 11–26
Design an active RC circuit to realize the following transfer function

T sð Þ= 2000
s+1000

A n s w e r: Use the circuit shown in Figure 11–35. The OP AMP stage has a gain of 2 by
making both resistors equal. Choose the components in the second stage voltage divider
so that R= 1Ω and C =1000 μF. We will learn how to scale these answers to more practical
device values later in this section.

+

−
1

2nd
 stage

1
αK

α −11

1st
 stage

FIGURE 11–35 Circuit
realization of T sð Þ=K= s+ αð Þ
for K > α.
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D e s i g n E x e r c i s e 11–27
Design an active RL circuit to realize the following transfer function

T sð Þ= 2000
s+ 1000

A n s w e r: Use the circuit shown in Figure 11–35. The OP AMP stage has a gain of 2 by
making both resistors equal. In the second stage, replace the resistor with an inductor
and replace the capacitor with a resistor. Let the components in the second stage voltage
divider be R=1 kΩ and L= 1H.

D E S I G N E X A M P L E 1 1–2 0

Design a circuit to realize the following transfer function using only resistors, capa-
citors, and OP AMPs:

TV sð Þ= 3000s
s+ 1000ð Þ s+ 4000ð Þ

SOLUTION:
The given transfer function can be written as a three-stage product.

TV sð Þ= ½ K1

s+ 1000|fflfflfflfflffl{zfflfflfflfflffl}
first
stage

� ½ K2|{z}
second
stage

� ½ K3s
s+ 4000|fflfflfflfflffl{zfflfflfflfflffl}
third
stage

�

where the stage gains K1,K2, and K3 have yet to be selected. Factoring s out of the
denominator of the first-stage transfer function leads to an RC divider realization:

K1=s
1 + 1000=s

=
Z2 sð Þ

Z1 sð Þ+Z2 sð Þ
Equating numerators and denominators yields

Z2 sð Þ=K1=s and Z1 sð Þ= 1+ 1000−K1ð Þ=s
The first stage Z1 sð Þ is simpler when we select K1 = 1000. Factoring s out of the
denominator of the third-stage transfer function leads to an RC divider realization:

K3

1 + 4000=s
=

Z2 sð Þ
Z1 sð Þ+Z2 sð Þ

Equating numerators and denominators yields

Z2 sð Þ=K3 and Z1 sð Þ= 1−K3 + 4000=s

The third stage Z1 sð Þ is simpler when we selectK3 = 1. The stage gains must meet the
constraint K1 ×K2 ×K3 = 3000 since the overall gain of the given transfer function is
3000.We have selectedK1 = 1000 andK3 = 1, which requiresK2 = 3. The second stage
must have a positive gain greater than 1 and can be realized using a noninverting
amplifier with K2 = R1 +R2ð Þ=R1 = 3. Selecting R1 = 1Ω requires that R2 = 2Ω.
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Figure 11–36 shows the three stages connected in cascade. The
chain rule applies to this cascade connection because the OP
AMP in the second stage isolates the RC voltage-divider circuits
in the first and third stages. The order of the first and third stages
can be swapped in this design without consequence. The circuit in
Figure 11–36 realizes the given transfer function but is not a real-
istic design because the values of resistance and capacitance are
impractical. For this reason we call this circuit a prototype design.
Wewill shortly discuss how to scale a prototype to obtain practical
element values. ■

D e s i g n E x e r c i s e 11–28
Design a circuit to realize the following transfer function using only

resistors, capacitors, and no more than one OP AMP.

TV sð Þ= 106

s+ 103
� �2

A n s w e r: Figure 11–37 shows one possible prototypical solution.

I N V E R T I N G O P A M P C I R C U I T D E S I G N

The inverting OP AMP circuit places fewer restrictions on the
form of the desired transfer function than does the basic voltage divider. To illustrate
this, we will develop two inverting OP AMP designs for a general first-order transfer
function of the form

TV sð Þ= −K
s+ γ
s+ α

The general transfer function of the inverting OPAMP circuit is −Z2 sð Þ=Z1 sð Þ, which
leads to the general design constraint

−K
s+ γ
s+ α

= −
Z2 sð Þ
Z1 sð Þ (11–32)

The first design is obtained by equating the numerators and denominators in
Eq. (11–32) to obtain the OP AMP circuit impedances as Z2 sð Þ=Ks+Kγ and
Z1 sð Þ= s+ α. Both of these impedances are of the form Ls+R and can be realized
by an inductance in series with a resistance, leading to the design realization in
Figure 11–38(a).

A second inverting OP AMP realization is obtained by equating Z2 sð Þ in
Eq. (11–32) to the reciprocal of the denominator and equatingZ1 sð Þ to the reciprocal
of the numerator. This assignment yields the impedances Z1 sð Þ= 1= Ks+Kγð Þ and
Z2 sð Þ= 1= s+ αð Þ. Both of these impedances are of the form 1= Cs+Gð Þ, where Cs

3rd
 stage

+

−

2nd
 stage

1

1

1
4000

1
1000

1
2

1st
 stage

FIGURE 11–36
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1 1

1
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FIGURE 11–37
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(a) RL design

+
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(b) RC design

α

1

1
KγFIGURE 11–38 Inverting OP

AMP circuit realizations
of T sð Þ= −K s+ γð Þ= s+ αð Þ.
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is the admittance of a capacitor andG the admittance of a resistor. Both impedances
can be realized by a capacitance in parallel with a resistance. These impedance iden-
tifications produce the RC circuit in Figure 11–38(b).

Because it has fewer restrictions, it is often easier to realize transfer functions using
the inverting OP AMP circuit. To use inverting circuits, the given transfer function
must require an inversion or be realized using an even number of inverting stages. In
some cases, the sign in front of the transfer function is immaterial and
the required transfer function is specified as �TV sð Þ. Caution: The
input impedance of an inverting OPAMP circuit may load the source
circuit.

D e s i g n E x e r c i s e 11–29
Design an active RC prototype circuit to realize the following transfer
function

T sð Þ= −100
s+ 50
s+100

A n s w e r: See Figure 11–39.

D E S I G N E X A M P L E 1 1–2 1

Design a circuit to realize the transfer function given inExample 11–20 using inverting
OP AMP circuits.

SOLUTION:
The given transfer function can be expressed as the product of two inverting transfer
functions:

TV sð Þ= 3000s
s+ 1000ð Þ s+ 4000ð Þ =½− K1

s+ 1000|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
first stage

�½− K2s
s+ 4000|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

second stage

�
where the stage gains K1 and K2 have yet to be selected. The first stage can be rea-
lized in an inverting OP AMP circuit since

−
K1

s+ 1000
= −

K1=1000
1 + s=1000

= −
Z2 sð Þ
Z1 sð Þ

Equating theZ2 sð Þ to the reciprocal of the denominator andZ1 sð Þ to the reciprocal of
the numerator yields

Z2 sð Þ= 1
1 + s=1000

and Z1 sð Þ= 1000=K1

The impedance Z2 sð Þ is realizable as a capacitance C2 = 1=1000 Fð Þ in parallel with a
resistance R2 = 1Ωð Þ and Z1 sð Þ as a resistance R1 = 1000=K1 Ωð Þ. We selectK1 = 1000
so that the two resistances in the first stage are equal. Since the overall gain requires
K1 ×K2 = 3000, this means thatK2 = 3. The second-stage transfer function can also be
produced using an inverting OP AMP circuit:

−
3s

s+ 4000
= −

3
1 + 4000=s

= −
Z2 sð Þ
Z1 sð Þ

Equating numerators and denominators yields Z2 sð Þ=R2 = 3 and Z1 sð Þ=R1 +
1=C1s= 1+ 4000=s.

1100

+

−

+

V2(s)
+

V1(s)

  1
  –––– 
 5000

1
   –––  
 100

FIGURE 11–39
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Figure 11–40 shows the cascade connection of the RC OP
AMP circuits that realize each stage. The overall transfer
function is noninverting because the cascade uses an even
number of inverting stages. The chain rule applies here since
the first stage has an OP AMP output. The circuit in Fig-
ure 11–40 is a prototype design because the values of resist-
ance and capacitance are impractical. ■

D e s i g n E x e r c i s e 11–30
Design a circuit to realize the following transfer function using
only resistors, capacitors, and no more than one OP AMP.

TV sð Þ= −106

s+ 103
� �2

A n s w e r: Figure 11–41 shows one possible prototypical solution.

M A G N I T U D E S C A L I N G

The circuits designed thus far in this section have been proto-
typical designs. Proto hails from an early Greek word meaning
“first,” hence a prototype is the first realization of a design. The
methods studied thus far usually yield element values that are
outside of practical ranges. The allowable ranges depend on

the fabrication technology used to construct the circuits and their eventual applica-
tion. For example, monolithic integrated circuit (IC) technology limits capacitances
to a few hundred picofarads, and inductors are difficult to manufacture on ICs and
almost never used. OP AMP circuits of the type studied in this text should have a
feedback resistanceRF ≥ 1 kΩ to keep the output current demandwithin the capabil-
ities of general-purpose OP AMP devices and RF ≤ 10MΩ so that the feedback cur-
rent is not so small as to be interfered by electromagnetic noise.Other technologies and
applications place different constraints on element values. For example, home appli-
ances, industrial applications, and the power industry, where physical size and weight
are of less importance, use devices with much larger values than the electronics
industry.

There are no hard and fast rules here, but, roughly speaking, an electronic circuit is
probably realizable by some means if its passive element values fall in the ranges
shown in the tables on the inside rear cover, with the caveat that OP AMP circuits
generally use RS ≥ 1 kΩ to reduce the effects of loading on the input source (assum-
ing that it is not connected to the output of another OPAMP) and so not to source so
much current as to damage the OP AMP.

These are as follows:

Capacitors4: 1 pF to 10,000 μF
Inductors5: 10 nH to 100 mH

Resistors6: 10Ω to 10MΩ.

+

−

+

−

1st stage 2nd stage

1
1 1 3

1
1000

1
4000

FIGURE 11–40

+

−

1st stage 2nd stage

1
1 1

1/1000

1/1000

FIGURE 11–41

4Recent innovations in dielectrics have enabled a large new class of electronic double-layer capaci-
tors (EDLC) or supercapacitors with capacitances up to 5000 F. These devices are still relatively
large for small electronic applications.
5Inductors up to 150 H are possible but are large and expensive.
6Resistors are manufactured outside this range but are used only in specialty applications.
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The important idea here is that circuit designs such as Figure 11–40 are impractical
because 1-Ω resistors are too small for OP AMP circuits and 1-mF capacitors are too
large physically and expensive. Large inductors, greater than 100 mH, often called
chokes, are weighty and have a large series parasitic resistance that should be con-
sidered. As a final note in building circuits in the laboratory, one should take into
account the ultimate application of the circuit.

It is often possible to scale themagnitude of circuit impedances so that the element
values fall intopractical ranges.Thekey is to scale theelementvalues inaway thatdoes
not change the transfer function of the circuit. Multiplying the numerator and denom-
inator of the transfer function of a voltage-divider circuit by a scale factor km yields

TV sð Þ= km
km

Z2 sð Þ
Z1 sð Þ+Z2 sð Þ =

kmZ2 sð Þ
kmZ1 sð Þ+ kmZ2 sð Þ (11–33)

Clearly, this modification does not change the transfer function but scales each
impedance by a factor of km and changes the element values in the following way:

Rafter = kmRbefore Lafter = kmLbefore Cafter =
Cbefore

km
(11–34)

Equation (11–34) was derived using the transfer function of a voltage-divider circuit.
It is easy to show that we would reach the same conclusion if we had used the transfer
functions of inverting or noninverting OP AMP circuits.

In general, a circuit ismagnitude scaled bymultiplying all resistances, multiplying all
inductances, and dividing all capacitances by a scale factorkm. The scale factor must be
positive but can be greater than or less than 1. Different scale factors can be used for
each stage of a cascade design, but only one scale factor can be used for each stage.
These scaling operations do not change the voltage transfer function realized by the
circuit.

Our design strategy is first to create a prototype circuit whose element values may
be unrealistically large or small. Applying magnitude scaling to the prototype pro-
duces a design with practical element values. Sometimes, there may be no scale factor
that brings the prototype element values into a practical range. When this happens,
we must seek alternative realizations because the scaling process is telling us that the
prototype is not a viable candidate.

Caution: Simulation software such as Multisim provides no warning that imprac-
tical element values are specified, especially if ideal OP AMP models are used in the
simulation. The results appear fine, but actually building the design in a laboratory
(even if those values are available) could present a challenge.

E X A M P L E 1 1–2 2

Magnitude scale the circuit in Figure 11–40 so all resistances are at least 10 kΩ and all
capacitances are less than 1 μF.

SOLUTION:
The resistance constraint requires kmR≥ 104 Ω. The smal-
lest resistance in the prototype circuit is 1Ω; therefore, the
resistance constraint requires km ≥ 104. The capacitance con-
straint requires C=km ≤ 10−6 F. The largest capacitance in the
prototype is 10−3 F; therefore, the capacitance constraint
requires km ≥ 103. The resistance condition on km dominates
the two constraints. Selecting km = 104 produces the scaled
design in Figure 11–42. This circuit realizes the same transfer
function as the prototype in Figure 11–40 but uses practical
element values. ■

+
−

1st stage 2nd stage

10 kΩ
10 kΩ

10 kΩ0.025 μF 30 kΩ

0.1 μF

+
−

FIGURE 11–42
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E x e r c i s e 11–31
Select a magnitude scale factor for each stage in Figure 11–36 so that both capacitances are
0:01 μF and all resistances are greater than 10 kΩ.

A n s w e r: km =105 for the first stage; km =104 for the second stage; km =0:25 × 105 for the
third stage.

E x e r c i s e 11–32
Select a magnitude scale factor for the OP AMP circuit in Figure 11–39.

A n s w e r: km =108, any larger and the feedback resistor becomes too large, any smaller
and the input capacitor becomes too large.

S E C O N D - O R D E R C I R C U I T D E S I G N

An RLC voltage divider can also be used to realize second-order transfer functions.
For example, the transfer function

TV sð Þ= K
s2 + 2ζω0s+ω2

0

can be realized by factoring s out of the denominator and equating the result to the
voltage-divider input–output relationship:

TV sð Þ= K=s
s+ 2ζω0 +ω2

0=s
=

Z2 sð Þ
Z1 sð Þ+Z2 sð Þ

Equating numerators and denominators yields

Z2 sð Þ= K
s

and Z1 sð Þ= s+ 2ζω0 +
ω2
0−K
s

The impedance Z2 sð Þ is realizable as a capacitance C2 = 1=K Fð Þ and Z1 sð Þ
as a series connection of an inductance L1 = 1 Hð Þ, resistance R1 = 2ζω0 Ωð Þ, and
capacitance C1 = 1= ω2

0−K
� �

F
� �

. The resulting voltage-divider circuit is shown in
Figure 11–43(a). The impedances in this circuit are physically realizable when
K ≤ω2

0. Be aware that the resistance controls the damping ratio ζ because it is
the element that dissipates energy in the circuit. Note that inductors, especially
larger values, have a parasitic resistance that needs to be taken into account
when selecting the resistor if a particular damping ratio is desired. Finally, note

(b) Cascade design K > ω0 2

First stage Second stage

1+
−

2ζω0

ω0
2

1

ω0
2

K1 −1

(a) Voltage divider design K ≤ ω0
2

L1 = 1

R1= 2ζω0

C1 =
1

C2 = K

ω0
2
 − K

1

FIGURE 11–43 Second-order
circuit realizations.
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that if K =ω2
0, then the capacitor C1 can be replaced by a short circuit resulting in a

more efficient design.
When K >ω2

0, we can partition the transfer function into a two-stage cascade of
the form

TV sð Þ=½ K

ω2
0|{z}

first
stage

�½ ω2
0=s

s+ 2ζω0 +ω2
0=s|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

second stage

�
The first stage requires a positive gain greater than unity and can be realized using a
noninverting OP AMP circuit. The second stage can be realized as a voltage divider
with Z2 sð Þ=ω2

0=s and Z1 sð Þ= s+ 2ζω0. The resulting cascade circuit is shown in
Figure 11–43(b).

D E S I G N E X A M P L E 1 1–2 3

Find a second-order realization of the transfer function given in Example 11–20.

SOLUTION:
The given transfer function can be written as

TV sð Þ= 3000s
s+ 1000ð Þ s+ 4000ð Þ =

3000s

s2 + 5000s+ 4× 106

Factoring s out of the denominator and equating the result to the transfer function of
a voltage divider gives

3000

s+ 5000 + 4 × 106=s
=

Z2 sð Þ
Z1 sð Þ+Z2 sð Þ

Equating the numerators and denominators yields

Z2 sð Þ= 3000 and Z1 sð Þ= s+ 2000 + 4 × 106=s

Both of these impedances are realizable, so a single-stage voltage-divider design is
possible. The prototype impedanceZ1 sð Þ requires a 1-H inductor, which is a bit large.
A more practical value is obtained using a scale factor of km = 0:1. The resulting
scaled voltage divider circuit is shown in Figure 11–44. ■

D e s i g n E x e r c i s e 11–33
Design a second-order circuit to realize the following transfer function:

TV sð Þ= 106

s+103
� �2

A n s w e r: Figure 11–45 shows one possible solution.

D e s i g n E x e r c i s e 11–34
Design a second-order circuit to realize the following transfer function using practical,
standard values:

TV sð Þ= 2× 1010

s2 + 105s+ 108

A n s w e r: Figure 11–46 shows one possible solution.

200 Ω 100 mH 2.5 μF

300 Ω

FIGURE 11–44

2 kΩ 1 H

1 μF v2(t)

+

−

v1(t)

+

−

FIGURE 11–45

+
− +

−

1 kΩ

200 kΩ
1 kΩ

10 mH

1 μFv1(t) v2(t)

+

−

FIGURE 11–46
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D E S I G N E V A L U A T I O N S U M M A R Y

Examples 11–20, 11–21, and 11–23 show three different ways to realize the transfer
function

TV sð Þ= 3000s
s+ 1000ð Þ s+ 4000ð Þ

This illustrates that a design requirement can have many solutions. Selecting the best
design from among the alternatives involves additional criteria such as element
count, power requirements, and output loading effects.

The element counts for each design are given in Table 11–1. On a pure element-
count basis and external power requirement, the RLC divider in Figure 11–44 is the
best design. However, inductors have some serious drawbacks. They are heavy and
lossy in low-frequency applications and are not usually fabricated in integrated circuit
form. Fortunately, inductors are not essential to transfer function design, as shown by
the two RC OP AMP designs.

Power requirements: The twoRCOPAMP designs require external dc power sup-
plies. The voltage divider cascade in Figure 11–36 requires less power since it uses
only one OPAMP, compared with the two-OP-AMP inverting cascade. Thus, power
requirements would favor the one-OP-AMP circuit over the two-OP-AMP circuit.

Output loading: The output impedance of the design is important if the circuit must
drive a finite load of, say, 1 kΩ. The resulting loading effects could defeat the basic
purpose of the circuit by changing its transfer function. Output loading considera-
tions favor the inverting cascade in Figure 11–40 because it has an OP AMP output
that has zero output impedance.

A design problem involves more than simply finding a prototype that realizes a
given transfer function. In general, the first step in a design problem involves deter-
mining an acceptable transfer function, one that meets performance requirements
such as the characteristics of the step or frequency response. In other words, we must
first design the transfer function and then design several circuits that realize the trans-
fer function. To deal with transfer function design we must understand how perfor-
mance characteristics are related to transfer functions. The next two chapters provide
some background on this issue.

D E S I G N A N D E V A L U A T I O N E X A M P L E 1 1–2 4

Given the step response g tð Þ= � 1+ 4e−500t
� �

u tð Þ,
(a) Find the transfer function T sð Þ.
(b) Design two RC OP AMP circuits that realize the T sð Þ found in part (a).
(c) Evaluate the two designs on the basis of element count, input impedance, and

output impedance.

T A B L E 11–1

NUMBER OF

EXAMPLE FIGURE DESCRIPTION R L C OP AMP

11–20 11–36 RC voltage-divider cascade 4 0 2 1

11–21 11–40 RC inverting cascade 4 0 2 2

11–23 11–44 RLC voltage divider 2 1 1 0
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SOLUTION:
(a) The transform of the step response is

G sð Þ= �ℒ 1+ 4e−500t
� �

u tð Þ� �
= � 1

s
+

4
s+ 500

� �
= � 5s+ 500

s s+ 500ð Þ
and the required transfer function is

T sð Þ=H sð Þ= sG sð Þ= �5s+ 500
s+ 500

(b) The first design uses an inverting OP AMP configuration. Using the minus sign
on the transfer function T sð Þ and factoring an s out of the numerator and denom-
inator yield

T sð Þ= −
5+ 500=s
1+ 500=s

= −
Z2 sð Þ
Z1 sð Þ

Equating numerators and denominators yields Z2 sð Þ= 5+ 500=s and Z1 sð Þ=
1+ 500=s. The impedance Z2 sð Þ is realizable as a resistance R2 = 5Ωð Þ in series
with a capacitance C2 = 1=500 Fð Þ and Z1 sð Þ as a resistance R1 = 1Ωð Þ in series
with a capacitance C1 = 1=500 Fð Þ. Using a magnitude scale factor km = 105 pro-
duces circuit C1 in Figure 11–47.

The second design uses a noninverting OPAMP configuration. Using the plus
sign on the transfer function T sð Þ and factoring an s out of the numerator and
denominator yield

T sð Þ= 5+ 500=s
1 + 500=s

=
Z1 sð Þ+Z2 sð Þ

Z1 sð Þ
Equating numerators and denominators yields

Z1 sð Þ= 1+
500
s

and Z2 sð Þ= 5+
500
s

−Z1 sð Þ= 4

The impedanceZ1 sð Þ is realizable as a resistance R1 = 1Ωð Þ in series with a capac-
itance C1 = 1=500 Fð Þ and Z2 sð Þ as a resistance R2 = 4Ωð Þ. Using a scale factor of
km = 104 produces circuit C2 in Figure 11–47.

(c) Circuit C1 uses one more capacitor than circuit C2. The OP AMP output on both
circuits means that they each have almost zero output impedance. The input imped-
ance to circuit C2 is very large, because its input is the noninverting input of the
OP AMP. The input impedance of circuit C1 is Z1 sð Þ= km 1 + 500=sð Þ; hence, the
scale factor must be selected to avoid loading the source circuit. The final design
for circuit C1 in Figure 11–47 uses km = 105, which means that Z1 sð Þj j> 100 kΩ,
which should be high enough to avoid loading the source circuit. ■

E v a l u a t i o n E x e r c i s e 11–35

The following transfer function was realized in different ways in Figures 11–37, 11–41, and
11–45:

TV sð Þ= �106

s+103
� �2

Compare the various designs in a table similar to Table 11–1. Which would you
recommend if
(a) There was no power available?
(b) There was a desire not to invert the output and to avoid using inductors?
(c) There was a concern about loading at the output?

0.02 μF

C1

500 kΩ
0.02 μF

100 kΩ

+
−

10 kΩ
40 kΩ

0.2 μF

C2

+
−

FIGURE 11–47
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A n s w e r s:
(a) The RLC circuit in Figure 11–45 requires no power.
(b) The RC voltage-divider cascade in Figure 11–37 does not invert the output and does

not require an inductor.
(c) None of the circuits prevents the possibility of loading at the output.One could add anOP

AMP follower at the output of any of the three solutions to address loading concerns.

D e s i g n E x e r c i s e 11–36
There is a need to realize the following transfer function using practical standard values:

TV sð Þ= −
104s

s2 + 103s+ 1010

In researching distributers’ catalogs, the manufacturer of the circuit shown in Figure 11–48,
claimed it could produce the desired transfer function. Element values were not provided,
but your supervisor is certain it could be reverse engineered in-house. Using standard parts,
design the desired transfer function using the circuit in Figure 11–48.

A n s w e r: One possible solution is R1 = 10 kΩ, R2 = 100 kΩ, C = 0:01 μF, and
L = 10 mH.

D E S I G N E X A M P L E 1 1–2 5

Verify that circuit C2 in Figure 11–47meets its design requirements, usingMATLAB
and Multisim. Compare the results.

SOLUTION:
One of the important uses of computer-aided analysis is to verify that a proposed
design meets the performance specifications. The circuit C2 in Figure 11–47 is
designed to produce a specified step response

g tð Þ= 1+ 4e−500t
� �

u tð ÞV
This response jumps from zero to 5 V at t = 0 and then
decays exponentially to 1 V at large t. The time constant
of the exponential is 1=500 = 2ms, which means that the
final value is effectively reached after about five time
constants, or 10 ms.

One can use MATLAB to better visualize the speci-
fications of a circuit design. To haveMATLAB produce
the step response, we use the transfer function operator,
tf, as shown in the m-file below. In this example, after
we entered the circuit’s transfer function, we applied the
MATLAB function step to plot the desired step
response of the circuit in question.

s = tf(‘s’);
H = 5*(s+100)/(s+500);
step (H)

Figure 11–49 shows the step response of the circuit
as plotted by MATLAB. We have selected two points
for reference, namely t = 2ms and t = 4ms.

V1(t)

R1

R2

V2(t)

+

−

+

−

+

−

C

L

FIGURE 11–48

Step Response

Time (s)

A
m

p
li

tu
d
e

0 0.002 0.004 0.006 0.008 0.01 0.012
1

1.5

2

2.5

3

3.5

4

4.5

5

System: H

Time (s): 0.002

Amplitude: 2.47

System: H

Time (s): 0.004

Amplitude: 1.54

FIGURE 11–49
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We then simulated the circuit using Multisim. We drew the circuit and used the
step-voltage source with a very fast rise-time of 1 ps for the input. Figure 11–50 shows
both the circuit as drawn and the result of our transient analysis on Grapher View.
We used the cursors to identify the same two data points we found in the MATLAB
simulation for the comparison.

The theoretical values can also be calculated directly from g tð Þ at the same two
points:

g 0:002ð Þ= 1+ 4e−500 × 0:002 = 2:4715

g 0:004ð Þ= 1+ 4e−500 × 0:004 = 1:5413

We summarize our results in the following table:

TIME  (S) HAND CALCULATION MATLAB MULTISIM

0.002

0.004

2.4715 V

1.5413 V

2.47 V

1.54 V

2.472 V

1.541 V

TECHNIQUE

The data show that theory and simulation agree to three significant figures. ■

A P P L I C A T I O N E X A M P L E 1 1 – 2 6

The operation of a digital system is coordinated and con-
trolled by a periodic waveform called a clock. The clock
waveform provides a standard timing reference to maintain
synchronization between signal processing results that are
generated asynchronously. Because of differences in digital
circuit delays, there must be agreed-upon instants of time at
which circuit outputs can be treated as valid inputs to other
circuits.

Figure 11–51 shows a section of the clock distribution
network in an integrated circuit. In this network, the clock
waveform is generated at one point and distributed to other
on-chip locations by interconnections that can be modeled
as lumped resistors and capacitors. Clock distribution
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FIGURE 11–51 Clock distribution network.
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problems arise when the RC circuit delays at different locations are not the same.
This delay dispersion is called clock skew, defined as the time difference between a
clock edge at one location and the corresponding edge at another location.

To qualitatively calculate a clock skew, we will find the step responses in the RC
circuit in Figure 11–52. The input VS sð Þ is a unit step function that simulates the lead-
ing edge of a clock pulse. The resulting step responses VA sð Þ and VB sð Þ represent the
clock waveforms at points A and B in a clock distribution network. To find the step
responses, we use the following s-domain node-voltage equations.

NodeA:
2
R
+Cs

� �
VA sð Þ− 1

R

� �
VB sð Þ =

VS sð Þ
R

Node B: −
1
R

� �
VA sð Þ+ 1

R
+Cs

� �
VB sð Þ = 0

The circuit determinant is

Δ sð Þ= ðRCsÞ2 + 3ðRCsÞ+ 1
R2 =

ðRCs+ 0:382ÞðRCs+ 2:618Þ
R2

which indicates that the circuit has simple poles at s= −0:382=RC and s= −2:618=RC.
Using the circuit determinant and a unit step input, we can easily solve the node equa-
tions for VA sð Þ and VB sð Þ:

VA sð Þ= RCs+ 1
s RCs+ 0:382ð Þ RCs+ 2:618ð Þ

=
1
s
−

0:7235
s+ 0:382=RC

−
0:2764

s+ 2:618=RC

VB sð Þ= 1
s RCs+ 0:382ð Þ RCs+ 2:618ð Þ

=
1
s
−

1:171
s+ 0:382=RC

+
0:1710

s+ 2:618=RC

From these we obtain the time-domain step responses as

υA tð Þ= 1−0:7235e−0:382t=RC−0:2764e−2:618t=RC

υB tð Þ= 1−1:171e−0:382t=RC + 0:1710e−2:618t=RC for t > 0

These two responses are plotted in Figure 11–53. For a unit step
input, both responses have a final value of unity. Using the defi-
nition of step response delay time given in Example 11–12 (time
required to reach 50% of the final value), we see that

TDA = 1:06=RC and TDB = 2:23=RC

The delay time skew is

Delay Skew=TDB −TDA = 1:17=RC

The clock distribution problem is not that the RC elements
representing the interconnects produce time delay, but that delays
are not all the same. Ideally, digital devices at different locations
should operate on their respective digital inputs at exactly the
same instant of time. Erroneous results may occur when the clock
pulse defining that instant does not arrive at all locations at the
same time. Minimizing clock skew is one of the major constraints
on the design of the clock distribution network in large-scale inte-
grated circuits.

R R

+

−
VS(s) 1

Cs
1

Cs

VA(s) VB(s)

FIGURE 11–52 Two-stage RC
circuit model.
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FIGURE 11–53 Step responses showing
clock skew.
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S U M M A R Y
• A network function is defined as the ratio of the

zero-state response transform to the input transform.
Network functions are either driving-point functions
or transfer functions. Network functions are rational
functions of s with real coefficients whose complex
poles and zeros occur in conjugate pairs.

• Network functions for simple circuits like voltage and
current dividers and inverting and noninverting OP
AMPs are easy to derive and often useful. Node-
voltage or mesh-current methods are used to find
the network functions for more complicated circuits.
The transfer function of a cascade connection obeys
the chain rule when each stage does not load the pre-
ceding stage in the cascade.

• The impulse response is the zero-state response of
a circuit for a unit impulse input. The transform of
the impulse response is equal to the network function.
The impulse response contains only natural poles and
decays to zero in stable circuits. The impulse response
of a linear, time-invariant circuit obeys the propor-
tionality and time-shifting properties. The short pulse
approximation is a useful way to simulate the impulse
response in practical situations.

• The step response is the zero-state response of a circuit
when the input is a unit step function. The transform of
the step response is equal to the network function times
1=s. The step response contains natural poles and a
forcedpoleat s= 0that leads toadcsteady-stateresponse
in stable circuits. The amplitude of the dc steady-state
response can be found by evaluating the network func-
tion at s= 0. The step response waveform can also be
found by integrating the impulse response waveform.

• The sinusoidal steady-state response is the forced
response of a stable circuit for a sinusoidal input. With
a sinusoidal input, the response transform contains
natural poles and forced poles at s= � jω that lead to
a sinusoidal steady-state response in stable circuits.
The amplitude and phase angle of the sinusoidal
steady-state response can be found by evaluating the
network function at s= jω.

• The sinusoidal steady-state response can be found
using phasor circuit analysis or directly from the
transfer function. Phasor circuit analysis works best
when the circuit is driven at only one frequency
and several responses are needed. The transfer
function method works best when the circuit is driven
at several frequencies and only one response is
needed.

• The convolution integral is a t-domain method relating
the impulse response h tð Þ and input waveform x tð Þ to
the zero-state response y tð Þ. Symbolically the convolu-
tion integral is represented by y tð Þ= h tð Þ ∗ x tð Þ. Time-
domain convolution and s-domain multiplication are
equivalent; that is, y tð Þ= h tð Þ ∗ x tð Þ=ℒ−1fH sð ÞX sð Þg.
The geometric interpretation of t-domain convolution
involves four operations: reflecting, shifting, multiply-
ing, and integrating.

• First- and second-order transfer functions can be
designed using voltage dividers and inverting or non-
inverting OP AMP circuits. Higher-order transfer
functions can be realized using a cascade connection
of first- and second-order circuits. Prototype designs
usually require magnitude scaling to obtain practical
element values.

P R O B L E M S

O B J E C T I V E 1 1 – 1 N E T W O R K F U N C T I O N S ( S E C T S .
1 1 – 1 , A N D 1 1 – 2 )
Given a linear circuit:
(a) Find specified network functions and locate their poles

and zeros.
(b) Select the element values to produce specified poles

and zeros.
See Examples 11–1 to 11–7 and Exercises 11–1 to 11–9.

11–1 Find the driving point impedance seen by the voltage
source in Figure P11–1 and the voltage transfer func-
tion TV sð Þ=V2 sð Þ=V1 sð Þ.

+

−

1/Cs

R

R

V2(s)V1(s)

+

−

FIGURE P11–1

11–2 (a) Find the driving point impedance seen by the

voltage source in Figure P11–2 and the voltage transfer
function TV sð Þ=V2 sð Þ=V1 sð Þ.
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(b) Select values of R and L so that the transfer function has
a zero at s= −120 rad=s and a pole at s= −80 rad=s.

Ls

+

−

V1(s) V2(s)
R

2R
+

−

FIGURE P11–2

11–3 (a) Find the driving point impedance seen by the

voltage source in Figure P11–3 and the voltage transfer func-
tion TV sð Þ=V2 sð Þ=V1 sð Þ.
(b) Select values of R, L, and C so that the transfer function
has a pair of real poles at s= −1000 rad=s. Where are the zer-
oes under these conditions?

+

−

1
––
Cs

Ls

R V2(s)V1(s)

+

−

FIGURE P11–3

11–4 (a) Find the driving point impedance seen by the

voltage source in Figure P11–4 and the voltage transfer func-
tion TV sð Þ=V2 sð Þ=V1 sð Þ.
(b) Select values of R, L, and C so that the transfer function
has real poles at s= −9898 rad=s and s= −101 rad=s. Where
are the zeroes under these conditions?

+

−

1
––
Cs

Ls

R
V2(s)V1(s)

+

−

FIGURE P11–4

11–5 The driving point impedance seen by the voltage source in
Figure P11–5 is

Z sð Þ= RLCs2 +Ls+R
LCs2 + 1

Show that the zeroes of the driving point impedance are the
poles of the voltage transfer function TV sð Þ=V2 sð Þ=V1 sð Þ.

+

−

1
––
Cs

R

Ls V2(s)V1(s)

+

−

FIGURE P11–5

11–6 (a) Find the driving point impedance seen by the

voltage source in Figure P11–6 and the voltage transfer func-
tion TV sð Þ=V2 sð Þ=V1 sð Þ.
(b) Select values for R1, R2, and C so that there is a pole in
the transfer function at s= −2000 rad=s, and the input imped-
ance is 5000Ω. 1/Cs

+

−

+

−

+

−

R1 R2

V1(s) V2(s)

FIGURE P11–6

11–7 (a) Find the driving point impedance seen by the

voltage source in Figure P11–7 and the voltage transfer func-
tion TV sð Þ=V2 sð Þ=V1 sð Þ.
(b) Select values for R and C so that there is a pole in the
transfer function at s= −2000 rad=s. Under these conditions,
where is the zero?

1/Cs

R R

+

+

V2(s)
+

−

V1(s)

FIGURE P11–7

11–8 (a) Find the driving point impedance seen by the

voltage source in Figure P11–8 and the voltage transfer func-
tion TV sð Þ=V2 sð Þ=V1 sð Þ.
(b) Select values for R1, R2, C1, and C2 so that there is a pole
in the transfer function at s= −10,000 rad=s, a zero at
s= −5000 rad=s, and the input impedance at dc is 2 kΩ.

1/C1s 1/C2sV1(s)

R2R1

+

+

−

V2(s)

+

−

−

FIGURE P11–8
11–9 Find the voltage transfer function TV sð Þ=V2 sð Þ=V1 sð Þ in

Figure P11–9.

+

−

1/Cs

Ls

R

R

V2(s)V1(s)+

−

FIGURE P11–9
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11–10 Find the driving point impedance seen by the voltage
source in Figure P11–10 and the voltage transfer function
TV sð Þ=V2 sð Þ=V1 sð Þ. Insert a follower at A and repeat.

+

−

Ls Ls

R R

V2(s)V1(s)+

−

A

FIGURE P11–10

11–11 Find the voltage transfer function TV sð Þ=V2 sð Þ=
V1 sð Þ in Figure P11–11. Select values of R1, R2, μ, and C so
that TV sð Þ has a pole at s= −100 krad=s. What role does
the gain factor μ play in the location of the pole?

V2(s)
μVx(s)

Vx(s)V1(s)

++

−−

+

−1
Cs

R1 R2

+

−

FIGURE P11–11

11–12 Find the voltage transfer function TV sð Þ=V2 sð Þ=
V1 sð Þ in Figure P11–12. Select values of R1, R2, and C so that
TV sð Þ has a pole at s= −500 krad=s, the input impedance is
equal to 1:5 kΩ and R2=R1 = 100.

1/Cs

+

−

+

−

+

−

R1 R2

V1(s) V2(s)

FIGURE P11–12

11–13 Find the current transfer function TI sð Þ= I2 sð Þ=
I1 sð Þ in Figure P11–13. Select values of R and L so that
TI sð Þ has a pole at s= −500 rad=s.

LsRI1(s)

2R I2(s)

FIGURE P11–13

11–14 Find the voltage transfer function TV sð Þ=V2 sð Þ=V1 sð Þ of
the cascade connection in Figure P11–14. Locate the poles
and zeros of the transfer function.

10 kΩ

+

+

−

10 kΩ

0.01 μF

10 kΩ

100 kΩ

+

−

0.015 μF

+

v1(t) v2(t)

FIGURE P11–14

11–15 Find the driving point impedance and voltage transfer
function TV sð Þ=V2 sð Þ=V1 sð Þ of the cascade connection in
Figure P11–15. Locate the poles and zeros of the transfer
function.

+

−

0.1 μF

0.056 μF

+

−

1 kΩ

10 kΩ

33 kΩ v2(t)

+

−

v1(t)

Z(s)

FIGURE P11–15

11–16 Find the voltage transfer function TV sð Þ=V2 sð Þ=V1 sð Þ in
Figure P11–16. If R1 = 1 kΩ and R2 = 10 kΩ, select values of μ
and C so that TV sð Þ has a pole at s= −100 krad=s.

V2(s)
μVx(s)

Vx(s)V1(s)

++

−−

+

−+

−

1
Cs

R1 R2

FIGURE P11–16

O B J E C T I V E 1 1 – 2 N E T W O R K F U N C T I O N S , I M P U L S E
R E S P O N S E , A N D S T E P R E S P O N S E S ( S E C T S . 1 1 – 3
A N D 1 1 – 4 )

(a) Given a first- or second-order linear circuit, find its impulse
or step response.

(b) Given the impulse or step response of a linear circuit, find
the network functions.

(c) Given the impulse or step response of a linear circuit, find
the response due to other inputs.

See Examples 11–8 to 11–12 and Exercises 11–10 to 11–15.
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11–17 For the circuit in Figure P11–17:

(a) Find the impulse response h2 tð Þ.
(b) Find the step response g2 tð Þ.

56 kΩ+
−

+

−0.22 μF

33 kΩ

v1(t) v2(t)

FIGURE P11–17

11–18 Find v2 tð Þ in Figure P11–18 when v1 tð Þ= δ tð Þ. Repeat
for v1 tð Þ= u tð Þ.

50 Ω

50 Ω

+
−

10 mH

+

−

v1(t) v2(t)

FIGURE P11–18

11–19 Find v2(t) in Figure P11–19 when v1 tð Þ= δ tð Þ. Repeat
for v1 tð Þ= u tð Þ.

15 kΩ+
−

+

−

10 kΩ

0.01 μF

v1(t) v2(t)

FIGURE P11–19

11–20 (a) Find h tð Þ and g tð Þ for the circuit in Figure P11–20.
(b) Swap the inductor and capacitor in the shaded
portion of the circuit and repeat (a).

+
− 1 kΩ

1 kΩ 1 H

0.2 μF v2(t)v1(t)

+

−

FIGURE P11–20

11–21 Find h tð Þ and g tð Þ for the circuit in Figure P11–21
if RF = 20 kΩ.

+

−

0.02 μF

RF+

−
+

−

5 kΩ

v1(t) v2(t)

FIGURE P11–21

11–22 Select an appropriate RF for the circuit of

Figure P11–21 so that the step response of the circuit
is g tð Þ= 5e−2000t −5

� �
u tð ÞV.

11–23 Find v2 tð Þ in Figure P11–23 when v1 tð Þ= δ tð Þ. Repeat
for v1 tð Þ= u tð Þ.

+

−
50 kΩ

+

−

+
−

50 kΩ

2 μF

v1(t) v2(t)

FIGURE P11–23

11–24 The impulse response of a linear circuit is
h tð Þ= 10e−500 t− 10e−1000 t

� �
u tð Þ. Find the circuit’s step

response g tð Þ, impulse response transform H sð Þ, step
response transform G sð Þ, and the circuit’s transfer func-
tion T sð Þ.

11–25 The impulse response of a linear circuit is
h tð Þ= 2 δ tð Þ − 4000e−200 t u tð Þ. Find the circuit’s step response
g tð Þ, impulse response transform H sð Þ, step response trans-
form G sð Þ, and the circuit’s transfer function T sð Þ.

11–26 The step response transform of a linear circuit is

G sð Þ= 2000
s s+ 2000ð Þ. Find the circuit’s impulse response h tð Þ,

step response g tð Þ, impulse response transform H sð Þ, and
the circuit’s transfer function T sð Þ.

11–27 The step response of a linear circuit is
g tð Þ= 50 e−25k t−e−50k t

� �
u tð Þ. Find the circuit’s impulse

response h tð Þ, impulse response transform H sð Þ, step
response transform G sð Þ, and the circuit’s transfer func-
tion T sð Þ.

11–28 Find h tð Þ= dg tð Þ
dt

when g tð Þ= 3−e−10t
� �

u tð Þ. Verify your

answer by first transforming g tð Þ into G sð Þ and finding
H sð Þ= sG sð Þ and then taking the inverse transform of H sð Þ.
Did you get the same answer?

11–29 The impulse response of a linear circuit is
h tð Þ= 5000 e−5000 t

� �
u tð Þ. Find the output waveform when

the input is x tð Þ= 5tu tð ÞV.
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11–30 The step response of a linear circuit is g tð Þ= 0:5
1 −e−250 t
� �

u tð Þ. Find the output waveform when the input
is v1 tð Þ= 20 e−200t

� �
u tð Þ. Use MATLAB to find the Laplace

transforms of g tð Þ and v1 tð Þ. Then find V2 sð Þ. Finally, use the
inverse Laplace function to find the waveform v2 tð Þ and plot
the results.

11–31 (a) Design a circuit that has the following step

response:

g tð Þ= 1−e−10,000t
� �

u tð Þ
(b) Validate your design using Multisim.

11–32 The step response of a linear circuit is g tð Þ=50
e−50t cos 2000t
� �

u tð Þ. Find the circuit’s impulse response
h tð Þ, impulse response transform H sð Þ, step response trans-
form G sð Þ, and the circuit’s transfer function T sð Þ.

11–33 The transfer function of a linear circuit is T sð Þ=
s + 2000ð Þ= s + 1000ð Þ. Find the output waveform when the
input is x tð Þ= 5e−1000t u tð Þ. UseMATLAB to find the Laplace
transform of x tð Þ. Then find Y sð Þ. Finally, use the inverse
Laplace function to find the waveform y tð Þ and plot the
results.

11–34 The impulse response of a linear circuit is h tð Þ=
20 u tð Þ + 2 δ tð Þ. Find the output waveform y tð Þ when the
input is x tð Þ= 5 e−20t

� �
u tð Þ.

O B J E C T I V E 1 1 – 3 N E T W O R K F U N C T I O N S A N D
T H E S I N U S O I D A L S T E A D Y - S T A T E R E S P O N S E
( S E C T . 1 1 – 5 )

(a) Given a first- or second-order linear circuit with a specified
input sinusoid, find the sinusoidal steady-state response.

(b) Given the network function, impulse response, or step
response, find the sinusoidal steady-state response for a
specified input sinusoid.

See Examples 11–13 to 11–15 and Exercises 11–16 to
11–19.

11–35 The circuit in Figure P11–35 is in the steady state with
v1 tð Þ=10 cos 1414:21t V. Find v2SS tð Þ. Repeat for v1 tð Þ=
10 cos 1 kt V. And without doing any calculations, repeat
for v1 tð Þ= 10 V.

+
−

100 Ω

20 μF

+

−

25 mH
v1(t) v2(t)

FIGURE P11–35

11–36 The circuit in Figure P11–36 is in the steady state with
v1 tð Þ=5 cos 500tV. Find v2SS tð Þ. Repeat for v1 tð Þ= 5 cos 1
kt V, and for v1 tð Þ=5 cos 10 kt V. Where is the pole located?

0.1 μF

+

−

+

−
+
−

5 kΩ 10 kΩ

v1(t) v2(t)

FIGURE P11–36
11–37 The circuit in Figure P11–37 is in the steady state with

v1 tð Þ= 25 cos 2000t V. Find v2SS tð Þ. Where are the poles
located?Without doing any calculations repeat for v1 tð Þ= 5 V.

+
−

+

−

10 Ω 50 μF

5 mH
v1(t) v2(t)

FIGURE P11–37
11–38 The output in Figure P11–37 is v2SS tð Þ=25:5 cos

10,000t + 11:8�ð ÞV. Find the input v1 tð Þ that produced that
output.

11–39 The circuit in Figure P11–39 is in the steady state
with i1 tð Þ= 10 cos 50 ktmA, R1 = 100Ω, R2 = 400Ω, and L=
100 mH. Find i2SS tð Þ. Repeat for i1 tð Þ= 10 cos 5 ktmA.Where
is the pole located?

R1

R2 L

i2(t)i1(t)

FIGURE P11–39
11–40 The circuit in Figure P11–40 is in the steady state.

(a) If i1 tð Þ=5 cos 100tmA, find i2SS tð Þ.
(b) If i1 tð Þ=5 cos 1000tmA, find i2SS tð Þ.
(c) If i1 tð Þ=5 cos 10,000tmA, find i2SS tð Þ.
(d) Verify your results using Multisim’s single frequency AC
analysis.

i1(t)
1 kΩ

0.5 μF 2 H

i2ss(t)

FIGURE P11–40

11–41 The circuit in Figure P11–41 is in the steady state.
(a) If i1 tð Þ=10 cos 500tmA, find i2SS tð Þ.
(b) If i1 tð Þ=10 cos 2500tmA, find i2SS tð Þ.
(c) If i1 tð Þ=10 cos 12,500tmA, find i2SS tð Þ.
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(d) Verify your results using Multisim’s single frequency
AC analysis.

10 kΩ
10 kΩ

v2(t)

+

−

i1(t)

0.02 μF

FIGURE P11–41

11–42 The impulse response transform of a circuit is

HR sð Þ= V2 sð Þ
I1 sð Þ =

5000s
s+2500

Find v2SS tð Þ if i1 tð Þ= 10 cos 5000tmA. Compare your answer to
that found in Problem 11–41.

11–43 The transfer function of a linear circuit is
T sð Þ= s + 200ð Þ= s + 20ð Þ. Find the sinusoidal steady-state
output for an input x tð Þ= 15 cos 200t.

11–44 The step response of a linear circuit is
g tð Þ= 15 e−500t

� �
u tð Þ. Find the sinusoidal steady-state output

for an input x tð Þ= 5 cos 500t.

11–45 The step response of a linear circuit is
g tð Þ= 2 e+100t

� �
u tð Þ. Find the sinusoidal steady-state output

for an input x tð Þ= 5 cos 500t.

11–46 A student looks back at some notes she took

in class. She sees Figure P11–46 and an equation v2 tð Þ=
2 1−e−

t
RC

� �
u tð Þ after it. How are the figure and the equation

related, if at all?

+

− +

−

R

R

C
R

v1(t) v2(t)

+

−

FIGURE P11–46

11–47 The impulse response of a linear circuit is
h tð Þ= 50 e−5000t

� �
u tð Þ − δ tð Þ. Find the sinusoidal steady-state

output for an input x tð Þ= 2 cos 10 kt.

11–48 The impulse response of a linear circuit is
h tð Þ= 800 e−100t−e−400 t

� �
u tð Þ. Use MATLAB to find the

sinusoidal steady-state output for an input x tð Þ=8 cos 200t.
Use MATLAB to plot y tð Þ.

11–49 The step response of a linear circuit is
g tð Þ= – e−50 t sin 200t

� �
u tð Þ. Find the sinusoidal steady-state

response for an input x tð Þ= 20 cos 100t.

11–50 The step response of a linear circuit is
g tð Þ= 1 − 10 t e−10 t

� �
u tð Þ. Find the sinusoidal steady-state

response for an input x tð Þ= 25 cos 20t.

O B J E C T I V E 1 1 – 4 N E T W O R K F U N C T I O N S A N D
C O N V O L U T I O N ( S E C T . 1 1 – 6 )

(a) Given the impulse response of a linear circuit, use the con-
volution integral to find the response to a specified input.

(b) Use the convolution integral to derive properties of linear
circuits.

See Examples 11–16 to 11–19 and Exercises 11–20 to 11–22.

11–51 The impulse response of a linear circuit is h tð Þ= u tð Þ. Use
the convolution integral to find the response due to an
input x tð Þ=u tð Þ.

11–52 The impulse response of a linear circuit is h tð Þ= u tð Þ. Use
the convolution integral to find the response due to an
input x tð Þ= t u tð Þ.

11–53 The impulse response of a linear circuit is h tð Þ=
u tð Þ −u t− 2ð Þ½ �. Use the convolution integral to find the
response due to an input x tð Þ= u tð Þ.

11–54 The impulse response of a linear circuit is h tð Þ=
u tð Þ −u t− 2ð Þ. Use the convolution integral to find the
response due to an input x tð Þ= u tð Þ −u t− 1ð Þ.

11–55 The impulse response of a linear circuit is h tð Þ=
t u tð Þ −u t− 1ð Þ½ �. Use the convolution integral to find the
response due to an input x tð Þ= u t− 2ð Þ.

11–56 (a) The impulse response of a linear circuit is h tð Þ=
e− t u tð Þ. Use the convolution integral to find the response
due to an input x tð Þ=u tð Þ.
(b) Convert the impulse response into a transfer function
and the input into the s domain. Solve the problem in the s
domain and covert your answer back into the t domain. Com-
pare your result with that found in part (a).

11–57 (a) The impulse response of a linear circuit is
h tð Þ= 10 u tð Þ −u t− 1ð Þ½ �. Use the convolution integral to find
the response due to an input x tð Þ= e− t u tð Þ.
(b) Convert the impulse response into a transfer function
and the input into the s domain. Solve the problem in the
s domain and covert your answer back into the t domain.
Compare your result with that found in part (a).

11–58 (a) The impulse response of a linear circuit is h tð Þ=
e− t u tð Þ. Use the convolution integral to find the response
due to an input x tð Þ= t u tð Þ.
(b) Convert the impulse response into a transfer function
and the input into the s domain. Solve the problem in the
s domain and covert your answer back into the t domain.
Compare your result with that found in part (a).

11–59 Show that f tð Þ ∗ δ tð Þ= f tð Þ. That is, show that convolving
any waveform f tð Þ with an impulse leaves the waveform
unchanged.

11–60 Show that if h tð Þ= u tð Þ, then output y tð Þ for any input x tð Þ
is y tð Þ=

Z t

0
x τð Þ dτ.

That is, a circuit whose impulse response is a step function oper-
ates as an integrator.
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11–61 Use the convolution integral to show that if the input to a
linear circuit is x tð Þ= u tð Þ, then

y tð Þ= g tð Þ=
Z t

0
h τð Þ dτ

That is, show that the step response is the integral of the impulse
response.

11–62 If the input to a linear circuit is x tð Þ= tu tð Þ, then the out-
put y tð Þ is called the ramp response. Use the convolution inte-
gral to show that

dy tð Þ
dt

=
Z t

0
h τð Þ dτ= g tð Þ

That is, show that the derivative of the ramp response is the step
response.

11–63 The impulse response of a linear circuit is h tð Þ= 3u tð Þ.
Use MATLAB to compute the convolution integral and find
the response due to an input x tð Þ= t u tð Þ −u t− 1ð Þ½ �.

11–64 The impulse response of a linear circuit is h tð Þ=
100 e – 50tu tð Þ and x tð Þ= t u tð Þ. Use s-domain convolution to
find the zero-state response y tð Þ.

11–65 The impulse responses of two linear circuits are
h1 tð Þ=2e−2t u tð Þ and h2 tð Þ= 5e−5t u tð Þ. What is the impulse
response of a cascade connection of these two circuits?

11–66 The impulse response of a linear circuit is shown in
Figure P11–66. Graphically find the convolution of the
impulse response shown and a unit step function, x tð Þ=u tð Þ.

(1.0 s, 0.368)

1

900m

800m

700m

600m

500m

400m

300m

200m

100m

0
0.0 500.0m 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Time (s)

h(
t)

FIGURE P11–66

11–67 Solve Problem 11–51 graphically.

11–68 A linear circuit has an impulse response h tð Þ=Ae−at u tð Þ.
Use the convolution integral to find the zero-state response
for x tð Þ=Be−btu tð Þ. Assume a 6¼ b and that both a and b
are positive, real numbers.

O B J E C T I V E 1 1 – 5 N E T W O R K F U N C T I O N D E S I G N
( S E C T . 1 1 – 7 )

(a) Design alternative circuits that realize a given network
function and meet other stated constraints.

(b) Use software to visualize and simulate alternative designs.

(c) Evaluate alternative designs using stated criteria and select
the best design.

See Examples 11–20 to 11–26 and Exercises 11–23 to
11–36.

11–69 Design an RC circuit using practical values to real-

ize the following transfer function:

TV sð Þ= 5× 105

s+ 5× 105

11–70 Design an RL circuit using practical values to real-

ize the following transfer function:

TV sð Þ= 5× 106

s+ 7× 106

11–71 Design a circuit to realize the transfer function

below using only resistors, capacitors, and OP AMPs.

TV sð Þ= 10,000
s+ 100,000

Scale the circuit so that all capacitors are exactly 1000 pF.

11–72 Design a circuit to realize the transfer function below
using only resistors, capacitors, and OP AMPs.

TV sð Þ= 200,000
s+ 2000

Scale the circuit so that all resistors are exactly 1 kΩ.

11–73 Design a circuit to realize the transfer function

below using only resistors, inductors, and no more than one
OP AMP.

TV sð Þ= s+10,000
s

Scale the circuit so that all inductors are exactly 100 mH.

11–74 Design a circuit to realize the transfer function

below using only resistors, capacitors, and OP AMPs.

TV sð Þ= −50,000s
s+ 2500ð Þ

Scale the circuit so that all capacitors are exactly 0.1 μF.

11–75 Design a circuit to realize the transfer function

below using only resistors, capacitors, and OP AMPs.

TV sð Þ= 10,000s
s+ 100ð Þ s+ 1000ð Þ

Scale the circuit so that all capacitors are exactly 0.1 μF.

11–76 Design a circuit to realize the transfer function

below using only resistors, capacitors, and OP AMPs. Scale
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the circuit so that all resistors are greater than 10 kΩ and all
capacitors are less the 1 μF.

TV sð Þ= ±
5× 108

s+ 100ð Þ s+ 10,000ð Þ

11–77 Three junior engineers were asked to design a cir-

cuit to realize the transfer function below using only resistors,
capacitors, and OP AMPs.

TV sð Þ= 5000 s
s+ 1000ð Þ s +5000ð Þ

The three solutions in Figure P11–77 were provided.
(a) Verify that all three circuits realize the specified TV sð Þ.
(b) Which circuit would you choose if the output must drive a
1-kΩ load?
(c) Which circuit would you choose if the input comes from a
50-Ω source?
(d) Which circuit would you use if minimizing power usage is
paramount?

10 kΩ

10 kΩ

100 Ω

500 Ω

10 kΩ

10 kΩ

1 kΩ

0.02 μF

0.1 μF

0.1 μF

0.02 μF

0.2 μF

2 μF

+

−

+

+

+

+

−

−

−

−

Design 1

100 mH

Design 2

Design 3

v1(t)

+

−

v1(t)

+

−

v1(t)

v2(t)

+

−

v2(t)

+

−

v2(t)

FIGURE P11–77

11–78 Design a passive circuit to realize the transfer func-

tion below using only resistors, capacitors, and inductors.
Scale the circuit so that all inductors are 50 mH or less.

TV sð Þ= s2

s+3000ð Þ2

11–79 A circuit is needed to realize the transfer function

listed below.

TV sð Þ= ±
s+ 125ð Þ s+500ð Þ
s+250ð Þ s+ 1000ð Þ

(a) Design the circuit using two OP AMPs.
(b) Design the circuit using only one OP AMP.
(c) Design the circuit using no OP AMPs.

In all cases, scale the circuit so that all parts use practical values.

11–80 Design a circuit to realize the transfer function

below using only resistors, capacitors, and OP AMPs. Use
only values from the inside rear cover. Your design must
be within ±10% of the desired response.

TV sð Þ= −
5000 s+ 100ð Þ
s s + 10000ð Þ

11–81 A circuit is needed to realize the impulse response

transform listed below. Scale the circuit so that all parts use
practical values.

H sð Þ= ±
200s+ 106

s2 + 200s+ 106

11–82 It is claimed that both circuits in Figure P11–82 realize
the transfer function

TV sð Þ=K
s+2000
s+1000

� �
(a) Verify that both circuits realize the specified TV sð Þ.
(b) Which circuit would you choose if the outputmust drive a
1 kΩ load?
(c) Which circuit would you choose if the input comes from a
50 Ω source?
(d) It is further claimed that connecting the two circuits in
cascade produces an overall transfer function of TV sð Þ½ �2 no
matter which circuit is the first stage and which is the second
stage. Do you agree or disagree? Explain.

+

−

+

0.05 μF

v2(t)
+

v1(t)

10 kΩ

0.1 μF

10 kΩ

+

v2(t)

+

v1(t)

10 kΩ

10 kΩ

−

− −

FIGURE P11–82
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11–83 It is claimed that both circuits in Figure P11–83

realize the transfer function

TV sð Þ= ± 1000s
s+1000ð Þ s+ 4000ð Þ

(a) Verify that both circuits realize the specified TV sð Þ.
(b) Which circuit would you choose if the output must drive a
1-kΩ load?
(c) Which circuit would you choose if the input comes from a
50-Ω source?
(d) It is further claimed that connecting the two circuits in
cascade produces an overall transfer function of TV sð Þ½ �2 no
matter which circuit is the first stage and which is the second
stage. Do you agree or disagree? Explain.

0.1 μF

+

−

+

10 kΩ

v2(t)

0.025 μF10 kΩ

+
v1(t)
−

+

0.025 μF20 kΩ

+

10 kΩv1(t)
−

0.05 μF

v2(t)
−

FIGURE P11–83

11–84 Design a circuit that produces the following step

response.

g tð Þ=250 1−e−50 t−50 t e−50 t
� �

u tð Þ

11–85 A circuit is needed that will take an input of

v1 tð Þ=5 e−100tu tð ÞmV and produce an output of v2 tð Þ=
5 e−200tu tð ÞV. Design such a circuit using practical parts
values. Validate your design by using Multisim.

11–86 A circuit is needed that will take an input of

v1 tð Þ= 1 −e−10,000t
� �

u tð ÞV and produce a constant −2 V out-
put. Design such a circuit using practical parts values. Vali-
date your design using Multisim.

11–87 There is a need for a circuit with the following

transfer function that must connect to a 50-Ω input and a
1-kΩ load.

TV sð Þ= 1010s

s+ 104
� �

s+106
� �

In a parts catalog, your supervisor points out that the circuit
below might do the task. The manufacturer states that only
ground and nodes A, B, C, and D are accessible. Can the circuit
work? If so, how would you connect it to the source and load?

A B C D

GND

1 MΩ

10 kΩ

10 pF10 pF100 Ω1 μF

−
+

−
+

FIGURE P11–87

I N T E G R A T I N G P R O B L E M S

11–88 First-Order Circuit Impulse and Step

Responses
Each row in the table shown in Figure P11–88 refers to a first-
order circuit with an impulse response h tð Þ and a step response
g tð Þ. Fill in the missing entries in the table.

h(t)Circuit

R

1
αR

+

−

+

−

v1(t) v2(t)

g(t)

δ(t) − [α e−αt] u(t)

u(t)
2

1 + e−αt

FIGURE P11–88

11–89 OP AMP Modules and Loading

Figure P11–89 shows an interconnection of three basic OP
AMP modules.

(a) Does this interconnection involve loading?
(b) Find the overall transfer function of the interconnection
and locate its poles and zeros.
(c) Find the steady-state output v2 tð Þ when the input is
v1 tð Þ= cos 500t V. Repeat for v1 tð Þ= cos 10 ktV and again
for v1 tð Þ= cos 200 kt V.
(d) Can you think of a use for this circuit?
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10 kΩ 10 kΩ 10 kΩ 10 kΩ

10 kΩ

10 kΩ

0.1 μF

1000 pF
+

v2(t)

+

v1(t)

1st stage

2nd stage

3rd stage

10 kΩ

−

+

−

+

−

+

FIGURE P11–89

11–90 OP AMP Modules and Stability

Figure P11–90 shows an interconnection of three basic circuit
modules. Does this interconnection involve loading? Find the
overall transfer function of the interconnection and locate its
poles and zeros. Is the circuit stable?

+
−

R

R

R

R
R

1/Cs
1/Cs

+

−

+

− +

V2(s)

V1(s)

1st stage 2nd stage 3rd stage

FIGURE P11–90

11–91 Step Response and Fan-Out

The fan-out of a digital device is defined as the maximum num-
ber of inputs to similar devices that can be reliably driven by the
device output. Figure P11–91 is a simplified diagram of a
device’s output driving n identical capacitive inputs. To operate
reliably, a 5-V step function at the device output must drive the
capacitive inputs to 3.7 V in 10 ns or less. Determine the device
fan-out for R= 680Ω and C = 2 pF.

Driver
Interconnect

Loads

1

2

n

C

Loads

1

2

n

C

C

R

+
−

vS(t)

FIGURE P11–91

11–92 Designing to Specifications

A particular circuit needs to be designed that has the following
transfer function requirements:
Poles at s= −200 and s= −20,000; zeros at s=0 and s= −2000;
and a gain of 20 as s ! ∞ .
Find the circuit’s transfer function and use MATLAB to plot its
step response. Then design a circuit that will meet that require-
ment. Finally, use Multisim to validate that your circuit has the
same step response as found using MATLAB.

11–93 Comparison of Sinusoidal Steady-State Analysis

versus Phasor Analysis
A circuit designer often is faced with deciding which analysis
technique to use when attempting to solve a circuit problem.
In this problem we will look at the circuit in Figure P11–93 and
choosewhich technique is thebetter one touse for different anal-
ysis scenarios. Explain why you selected the technique you did.

+

v1(t)

−

+

v2(t)

−

1 μF 1 μF

iX(t)

2 kΩ 1 kΩ1 H

FIGURE P11–93
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(a) You need to calculate the circuit’s transfer func-
tion TV sð Þ=V2 sð Þ=V1 sð Þ.
(b) The input is given as v1 tð Þ= 5 cos 1000tV and you need to
find v2SS tð Þ.
(c) The input is given as v1 tð Þ= 5 cos 1000tV and you need to
find iX tð Þ.
(d) The input is given as v1 tð Þ=VA cos ωt V and you need to
find v2SS tð Þ.
(e) The input is given as v1 tð Þ= 170 cos 377t V and you need
to find all of the voltages and currents in the circuit.
(f) You need to find the poles and zeros of the circuit.
(g) You need to find if the current leads or lags the voltage
across the two resistors when the input is 5 cos 1000t V.
(h) You need to determine what type of filtering the circuit
performs.
(i) You need to select a load for maximum power when the
input is v1 tð Þ=170 cos 377tV.

11–94 Simulated Impulse Response

There was a small black box that could not be opened to deter-
mine what was inside, but there were four terminals visible
and accessible. A pair were marked input, the other pair
were marked output. Our task was to determine what the cir-
cuit’s transfer function might be. An impulse was simulated
by creating a one teravolt (TV) high triangular pulse by 2 ps
width. This was applied to the input of the box. The output
was observed as a decaying exponential as shown in
Figure P11–94.
(a) Using the available data, find the impulse response of the
unknown circuit.

(b) Design a likely circuit that has the same impulse response
as what is in the box.
(c) Comment on the reasonableness of the approach to
determine what is in the box. That is, how critical is the design
of the impulse to achieve a correct result?
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C H A P T E R 12 FREQUENCY RESPONSE

The advantage of the straight-line approximation is, of course, that it reduces the complete characteristics to a sum of elementary
characteristics.

Hendrik W. Bode, 1945,
American Engineer

Some History Behind This Chapter
Hendrik Bode spent most of his distinguished career as a
member of the technical staff of the Bell Telephone Labora-
tories. In the 1930s, Bode made major contributions to feed-
back amplifier theory during the development of long-distance
telephone systems. His contributions included an approach to
frequency response based on logarithmic plots and straight-line
approximation. These so-called Bode plots are still valuable
today and remain the industry-standard way to describe the
frequency response of circuits and systems.

Why This Chapter Is Important Today
In Chapter 8, we used phasors to study the steady-state
response at a single-frequency. In Chapter 11, we showed
that network functions give the steady-state response at
any frequency. In this chapter, we use network functions
and Bode diagrams to describe the steady-state response over
a range of frequencies. Bode diagrams are used here because
they allow us to quickly visualize how the poles and zeros of
a network function affect the frequency response of a circuit.

Chapter Sections
12–1 Frequency-Response Descriptors
12–2 Bode Diagrams
12–3 First-Order Low-Pass and High-Pass Responses
12–4 Bandpass and Bandstop Responses
12–5 The Frequency Response of RLC Circuits
12–6 Bode Diagrams with Real Poles and Zeros
12–7 Bode Diagrams with Complex Poles and Zeros
12–8 Frequency Response and Step Response

Chapter Learning Objectives
12-1 First-Order Circuit Frequency Response (Sects.
12–1–12–3)

Given a first-order circuit or transfer function:
(a) Understand and use frequency response descriptors.
(b) Find and classify the frequency response.

(c) Plot the gain and phase responses using straight-line
approximations and computer tools.

(d) Design circuits to produce a specified frequency
response.

12-2 Bandpass and Bandstop Responses (Sect. 12–4)

Given a cascade or parallel connection of two first-order
circuits:
(a) Find and classify the frequency response.
(b) Plot the gain and phase responses using straight-line

approximations and computer tools.
(c) Design circuits to produce a specified frequency

response.

12-3 TheFrequencyResponseofRLCCircuits (Sect.12–5)

GivenanRLCcircuitconnectedasabandpassorabandstop
filter:
(a) Find the frequency-response descriptors such as Q

and B.
(b) Design circuits to produce a specified frequency

response.
(c) Compare the bandpass and bandstop responses

obtained from RLC filters with similar ones obtained
from first-order filters.

12-4 Bode Plots (Sects. 12–6 and 12–7)

Given a linear circuit or transfer function:
(a) Plot the gain and phase responses using straight-line

approximations and computer tools.
(b) Develop a transfer function from a straight-line

Bode gain plot.
(c) Design a circuit that produces a given straight-line

gain plot.

12-5 FrequencyResponseandStepResponse(Sect.12–8)

Given a circuit or a transfer function:
(a) Find the gain response corresponding to a given step

response or vice versa.
(b) Use the relationship between frequency and step

responses to choose the best solution for a design
specification.
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12–1 F R E Q U E N C Y - R E S P O N S E D E S C R I P T O R S

In Chapter 11, we learned that the sinusoidal steady-state output can be found by
evaluating the transfer function T sð Þ at s= jω, where ω is the frequency of the sinus-
oidal input. The function T jωð Þ determines the amplitude and phase angle of the out-
put through the gain function jT jωð Þj and phase function θðωÞ= ffTðjωÞ. Recall
Figure 11–26, which demonstrates the following

Output amplitude = Input amplitude × jTðjωÞj
Output phase = Input phase + θðωÞ (12–1)

The value of gain and phase functions are frequency dependent and together reveal
how a circuit responds to input sinusoids of different frequencies. This frequency-
dependent relationship between sinusoidal inputs and the resulting steady-state out-
puts is called the frequency response of the circuit.

Frequency-response concepts and techniques find wide applications in communi-
cation, control, and instrumentation systems. A key component in these applications
is the electronic filter, a signal processor that modifies or reshapes the frequency con-
tent of signals.

Thegain andphase functions canbeexpressedmathematicallyor
presented graphically, as shown in Figure 12–1.Most of the descrip-
tive terminology of frequency response is based on the shape of the
gain function. For example, the gain plot in Figure 12–1 is relatively
constant at lower frequencies and decreases rapidly at higher fre-
quencies. The range of frequencies with nearly constant gain is
called a passband. The range of frequencies with significantly
reduced gain is called a stopband. The frequency associated with
the transition from a passband to an adjacent stopband is called
the cutoff frequency, denoted as ωC or fC.

In linear circuits, there is a gradual transition from a passband
to a stopband, so the location of the cutoff frequency is a matter
of definition. The most widely used definition assigns cutoff to
the frequency at which the passband gain decreases by a factor
of 1=

ffiffiffi
2

p
from its maximum value. Under this definition ωC is found

from the condition

jT jωCð Þj= 1ffiffiffi
2

p Tmax (12–2)

where Tmax is the maximum gain in the passband.
Additional terminology is based on the four basic types of gain responses in

Figure 12–2. The figure also shows the sinusoidal input and outputs for each type.
The input to all four is a composite signal consisting of three equal-amplitude sinusoids
at distinct frequenciesω1,ω2, and ω3. The output signals all contain the same three fre-
quencies but have amplitudes modified by the form of the gain response.

• The low-pass gain response has a single passband extending from zero fre-
quency (dc) to ωC. This type of gain passes the input at ω1 unchanged and
attenuates the inputs at ω2 and ω3 since they fall in the stopband above ωC.

• The high-pass response has a single passband extending from ωC to infinite
frequency. This type of gain passes the inputs at ω2 and ω3 unchanged and
attenuates the input at ω1 since it falls in the stopband below ωC.

• The bandpass response has a single passband with two adjacent stopbands—
one below ωC1 and another above ωC2. This gain response passes the input at
ω2 unchanged and attenuates the inputs at ω1 and ω3.

0˚

ω

Gain

Tmax

0

−45˚

−90˚

ωωC

ωC

Passband Stopband

Phase

Tmax

2√

FIGURE 12–1 Typical frequency-response plots.
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ω1
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ω2ωC1 ωC2 ω3

GAIN

Passband StopbandStopband

ω

Amplitude

ω1 ω2 ω3

ω1
ω

ω2ωC ω3
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GAIN

Stopband Passband

ω

Amplitude

ω1 ω2 ω3

BANDSTOP

ω1
ω

ω2ωC1 ωC2 ω3

GAIN

Stopband PassbandPassband
ω1 ω2 ω3

ω

Amplitude

Input

ω

Amplitude

ω1 ω2 ω3

Gain response Output

ω1
ω

ω2ωC ω3

GAIN

Passband Stopband

LOW PASS

FIGURE 12–2 Four basic gain responses.
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• The bandstop response has a single stopband with two adjacent passbands—
one below ωC1 and another above ωC2. This gain attenuates the input at ω2

and passes the inputs at ω1 and ω3 unchanged.

The element impedancesZ sð Þ play a key role in circuit frequency response. Repla-
cing s by jω and evaluating at Z jωð Þ at ω= 0 ðdcÞ and ω= ∞ leads to the important
conclusion shown in Table 12–1. The first row in Table 12–1 shows that the impedance
of a resistor does not change with frequency. The next row shows that a capacitor has
an infinite impedance (an open circuit) at dc and zero impedance (a short circuit) at
infinite frequency. In the last row, we see that an inductor acts like a short circuit at
dc and an open circuit at infinite frequency. These conclusions are worth remembering
because they often help us see how a circuit produces particular gain responses.

12–2 B O D E D I A G R A M S

The gain jT jωð Þj is often expressed in decibels (dB), defined as

jT jωð ÞjdB = 20 log10jT jωð Þj (12–3)

Some understanding of the decibel scale is necessary to construct and interpret gain-
response plots. A gain of jT jωð Þj= 10n expressed in dB is jTðjωÞjdB = 20 log10ð10nÞ=
20n dB. The gain of Tmax=

ffiffiffi
2

p
expressed in dB is 20 log10ðTmaxÞ−20 log10ð

ffiffiffi
2

p Þ=
jTmaxjdB−3 dB. In other words, the cutoff frequency occurs when the passband gain
is reduced by 3 dB. For this reason, the cutoff frequency is sometimes referred to as
the 3-dB down frequency.

Table 12–2 lists other values of jT jωð Þj and the corresponding values of jT jωð ÞjdB:
Note in particular that a gain of 1 is 0 dB and a gain of 2(0.5) is + 6ð−6Þ dB. This
means that the gain 2jT jωð Þj expressed in dB is jTðjωÞjdB + 6 dB while jT jωð Þj=2
is jTðjωÞjdB − 6 dB.

The frequency range of interest is often so wide that a linear frequency scale tends
to mask important features for the response. For this reason, frequency-response plots
almost alwaysuse a logarithmic scale for the frequency variable.Theuseof log-frequency
scales is a standard practice, and the resulting response plots are called Bode diagrams.

Bode diagrams are plots of the gain jTðjωÞjdB and phase θðωÞ versus
log-frequency.

The use of log-frequency scales involves some special terminology. An octave is
any frequency range whose end points have a 2:1 ratio, and a decade is any range with
a 10:1 ratio. For example, the frequency range from 10Hz to 20 Hz is one octave, as is
the range from 20 to 40 MHz. The standard UHF (ultrahigh frequency) band spans a
one-decade range from 0.3 GHz to 3 GHz. The audio range from 20 Hz to 20 kHz
spans three decades.

In summary, Bode diagrams, or Bode plots, as they are sometimes called, are used
to describe the frequency response of circuits and systems. Although it is convenient
to use software to create Bode plots—such as MATLAB, to analyze transfer func-
tions, or Multisim to simulate a circuit’s behavior—it is useful to understand how
poles, zeros, and different circuit elements give rise to the various features in a Bode
diagram. In the sections that follow, we will spend some time relating the circuit’s
behavior to the resulting Bode diagram. We will also see how a circuit’s damping
coefficient ζ can significantly affect its frequency response. Understanding these
behaviors will help us in learning to analyze, design, and evaluate filters.

T A B L E 12–1 PASSIVE
ELEMENT IMPEDANCES AT ZERO
AND INFINITE FREQUENCY

IMPEDANCE AT

ELEMENT ω = 0 ω = ∞

Resistor R R
ZR =R

Capacitor ∞ 0
ZC = 1=jωC Open

circuit
Short
circuit

Inductor 0 ∞
ZL = jωL Short

circuit
Open
circuit

T A B L E 12–2 VALUES OF
GAIN AND GAIN IN DB

jT jωð Þj jT jωð ÞjdB
103 60

102 40

10 20

2 6ffiffiffi
2

p
3

1 0

1=
ffiffiffi
2

p
−3

0:5 −6

10−1 −20

10−2 −40

10−3 −60
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A P P L I C A T I O N E X A M P L E 1 2–1

The use of the decibel as a measure of performance pervades the literature and folk-
lore of electrical engineering. The decibel originally came from the definition of
power ratios in bels.1

Number of bels = log10
POUT

PIN

The decibel (dB) is more commonly used in practice. The number of decibels is
10 times the number of bels:

Number of dB= 10 × ðNumber of belsÞ= 10 log10
POUT

PIN

When the input and output powers are delivered to equal input and output resis-
tances R, then the power ratio can be expressed in terms of voltages across the
resistances.

Number of dB= 10 log10
υ2OUT=R
υ2IN=R

= 20 log10
υOUT

υIN

or in terms of currents through the resistances:

Number of dB= 10 log10
i2OUT ×R
i2IN ×R

= 20 log10
iOUT

iIN

The definition of gain in dB in Eq. (12–3) is consistent with these results, since in the
sinusoidal steady state the transfer function equals the ratio of output amplitude to
input amplitude. The preceding discussion is not a derivation of Eq. (12–3) but simply
a summary of its historical origin. In practice, Eq. (12–3) is applied when the input
and output are not measured across resistances of equal value.

When the chain rule applies to a cascade connection, the overall transfer function
is a product

T jωð Þ=T1 ×T2 × � � �× TN

where T1, T2,…,TN are the transfer functions of the individual stages in the cascade.
Expressed in dB, the overall gain is

jTðjωÞjdB = 20 log10ðjT1j× jT2j× � � �× jTN jÞ
= 20 log10jT1j+ 20 log10jT2j+ � � �+ 20 log10jTN j
= jT1jdB + jT2jdB + � � �+ jTN jdB

Because of the logarithmic definition, the overall gain (in dB) is the sum of the gains
(in dB) of the individual stages in a cascade connection. The effect of altering a stage
or adding an additional stage can be calculated by simply adding or subtracting the
change in dB. Since summation is simpler than multiplication, the enduring popular-
ity of the dB comes from its logarithmic definition, not its somewhat tenuous relation-
ship to power ratios.

1The name of the unit honors Alexander Graham Bell (1847–1922), the inventor of the telephone.
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E x e r c i s e 12–1
A sinusoidal signal with a peak voltage of 3:7 V is input into a frequency-dependent circuit.
What is its peak voltage at its −3 dB frequency?

A n s w e r: 2:62 V

E x e r c i s e 12–2
A transfer function has a passband gain of 25. At a particular frequency in its stopband, the
gain of the transfer function is only 0.0006. By howmany decibels does the gain of the pass-
band exceed that of that frequency in the stopband?

A n s w e r: 92:4 dB

E x e r c i s e 12–3
A particular filter is said to be 83 dB down at a desired stop frequency. How many times
reduced is a signal at that frequency compared to a signal in the filter’s passband?

A n s w e r: By 14,125 times.

12–3 F I R S T -O R D E R L O W -P A S S A N D H I G H -P A S S
R E S P O N S E S

F I R S T -O R D E R L O W-P A S S R E S P O N S E

We begin the study of frequency response with the first-order low-pass transfer
function:

T sð Þ= K
s+ α

(12–4)

The constants K and α are real. The constant K can be positive or negative, but α
must be positive so that the natural pole at s= −α is in the left half of the s plane
to ensure that the circuit is stable. Remember, the concepts of sinusoidal steady state
and frequency response do not apply to unstable circuits that have poles in the right
half of the s plane or on the j-axis.

To describe the frequency response of the low-pass transfer function, we replace s
by jω in Eq. (12–4)

TðjωÞ= K
jω+ α

(12–5)

and express the gain and phase functions as

jTðjωÞj = jKjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 + α2

p

θðωÞ = ffK − tan−1ðω=αÞ
(12–6)

The value of the gain function is a positive number. Since K is real, the angle of
KðffKÞ is either 0� when K > 0 or �180� when K < 0. An example of a negative K
occurs in an inverting OP AMP configuration where TðsÞ= −Z2ðsÞ=Z1ðsÞ.

Figure 12–3 shows Bode plots of the gain and phase of the first-order low-pass
function using a log scale for the normalized frequency ω=α. The gain plot displays
a low-pass characteristic with a passband at low frequency and a stopband at high
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frequency. The maximum passband gain occurs at ω= 0, where Tmax = jKj=α. The
gain gradually decreases as frequency increases until at ω= α we have

jTðjαÞj= jKjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 + α2

p =
jKj=αffiffiffi

2
p =

1ffiffiffi
2

p Tmax (12–7)

Referring to Eq. (12–2), we conclude that ωC = α is the cutoff frequency marking the
boundary between a low-frequency passband and a high-frequency stopband. This
boundary occurs when ω=α= 1 as shown in Figure 12–3.

The low- and high-frequency gain asymptotes shown in Figure 12–3 are especially
important. The low-frequency asymptote is the horizontal line and the high-frequency
asymptote is the sloped line.At low frequencies ðω � αÞ, the gain approaches jT jωð Þj
! jKj=α. At high frequencies ðω � αÞ, the gain approachesjT jωð Þj! jKj=ω. The
intersection of the two asymptotes occurs when jKj=α= jKj=ω. The intersection forms
a “corner” at ω= α, so the cutoff frequency is also called the corner frequency.

The high-frequency gain asymptote decreases by a factor of 10 ð−20 dBÞ when-
ever the frequency increases by a factor of 10 (one decade). As a result, the high-
frequency asymptote has a slope of −1 or −20 dB per decade and the low-frequency
asymptote has a slope of 0 or 0 dB/decade. These two asymptotes provide a straight-
line approximation to the gain response that differs from the true response by a max-
imum of 3 dB or a factor of

ffiffiffi
2

p
at the corner frequency.

The semilog plot of the phase shift of the first-order low-pass transfer function is
shown in Figure 12–3. At ω= α the phase angle in Eq. (12–6) is

θðωCÞ = ffK − tan−1 α
α

� 	
= ffK − 45�

Slope = −1 =
−20 dB per decade

|T(0)|
100

|T(0)|
10

|T(0)|
|T(0)|

|T(0)|dB

|T(0)|dB−3 dB

|T(0)|dB−20 dB

Phase

ω
α

ω
α

Slope = −45˚ per decade

Gain

Slope = 0 Asymptotes
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Gain (dB)
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K−45°
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K− 135°

2√

FIGURE 12–3 First-order
low-pass Bode plots.
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At low frequency ðω � αÞ, the phase angle approaches ffK and at high frequencies
ðω � αÞ the phase approaches ffK−90�. Almost all of the −90� phase change occurs
in the two-decade range from ω=α= 0:1 to ω=α= 10. The straight-line segments in
Figure 12–3 provide an approximation of the phase response. The phase approxima-
tion below ω=α= 0:1 is θ= ffK and above ω=α= 10 is θ= ffK− 90

�
. Between these

values, the phase approximation is a straight line that begins at θ= ffK, passes through
θ= ffK−45� at the cutoff frequency, and reaches θ= ffK−90� at ω=α= 10. The slope of
this line segment is −45�/decade since the total phase change is −90� over a two-
decade range.

To construct the straight-line approximations for a first-order low-pass transfer func-
tion, we need two parameters, the value of Tð0Þ and α. The parameter α defines the
cutoff frequency and the value of Tð0Þ defines the passband gain jT 0ð Þj and the
low-frequency phase ffT 0ð Þ. The required quantities Tð0Þ and α can be determined
directly from the transfer function TðsÞ and can often be estimated by inspecting
the circuit itself.

Using logarithmic scales in Bode plots allows us to make straight-line approxima-
tions to both the gain and phase responses. These approximations provide a useful
way of visualizing a circuit’s frequency response. Often, such graphical estimates are
adequate for developing analysis and design approaches. For example, the frequency
response of the first-order low-pass function can be characterized by cal-
culating the gain and phase over a two-decade band from one decade
below to one decade above the cutoff frequency.

E X A M P L E 1 2–2

Consider the circuit in Figure 12–4. Find the transfer function
T sð Þ=V2ðsÞ=V1ðsÞ, α, and ωC, and construct the straight-line approxima-
tions to the gain and phase responses.

SOLUTION:
Applying voltage division, the voltage transfer function for the circuit is

TðsÞ= R
Ls+R

=
R=L

s+R=L

Comparing this with Eq. (12–4), we see that the circuit has a low-pass gain
response with α=R=L and Tð0Þ= 1. Therefore, jTð0ÞjdB = 0 dB,
ωC =R=L, and ffK = 0�. Given these quantities, we construct the
straight-line approximations shown in Figure 12–5. Note that the fre-
quency scale in Figure 12–5 is normalized by multiplying ω byL=R= 1=α.

Circuit interpretation: The low-pass response in Figure 12–5 can be
explained in termsof circuit behavior.At zero frequency, the inductor acts
like a short circuit that directly connects the input port to the output port
to produce a passband gain of 1 (or 0 dB). At infinite frequency the induc-
tor acts like an open circuit, effectively disconnecting the input and output
ports and leading toagainof zero.Between these twoextremes the imped-
ance of the inductor gradually increases, causing the circuit gain to
decrease. Inparticular, at the cutoff frequencywehaveωL=R, the imped-
ance of the inductor is jωL= jR, and the transfer function reduces to

TðjωCÞ= R
R+ jR

=
1ffiffiffi
2

p ff−45�

In other words, at the cutoff frequency, the gain is −3 dB and the phase
shift is −45�. Obviously, the changing impedance of the inductor gives the
circuit its low-pass gain features. ■
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D e s i g n E x e r c i s e 12–4
Select values of R and L for the circuit of Figure 12–4 so that the cutoff frequency occurs
at 10 kHz.

A n s w e r: R=100 kΩ, L=1:591H. Many other design options are possible.

E v a l u a t i o n E x e r c i s e 1 2–5

A student designed a low-pass filter with a required cutoff frequency of 1000 Hz using the
circuit of Figure 12–4. When he measured the output at the −3 dB frequency, he was sur-
prised that the output had decreased by 16:1 dB. He checked his values ofR andL and their
ratio R=L = 1000, just as he designed it. What did he do wrong?

A n s w e r: Since the cutoff frequency is expressed in radians per second, he should have
used R=L = 2π × 1000 = 6283 rad=s in his design. Instead, he used only an equivalent fre-
quency of 159:2 Hz.

D E S I G N E X A M P L E 1 2–3

Design an RC low-pass filter with a cutoff frequency of 1 krad/s and a passband
gain of 1.

SOLUTION:
The transfer function for a low-pass filter was shown in Eq. (12–4) to be

TðsÞ= K
s+ α

where K is a constant to be determined and α is the cutoff frequency. We can design
this circuit using a simple RC voltage divider with the output taken across the
capacitor.

TðsÞ= 1=Cs
R+ 1=Cs

=
1=RC

s+ 1=RC

We can see that α= 1=RC = 1000 rad=s, and for the passband gain to
be 1, K must equal α. We need to select R and C so the reciprocal of
their product equals 1000 rad/s. Using standard values we select
R= 1 kΩ and C = 1 μF. Many other solutions are possible. ■

D e s i g n E x e r c i s e 12–6
Design an RC low-pass filter with a cutoff of 100 rad=s and a passband
gain of + 4.

A n s w e r: See Figure 12–6. A different approach is shown in Design
Example 12–4.

D E S I G N E X A M P L E 1 2 – 4

(a) Show that the transfer function T sð Þ=V2ðsÞ=V1ðsÞ in Figure 12–7 has a low-pass
gain characteristic.

(b) Select element values so the passband gain is −4 and the cutoff frequency is
100 rad/s.

(c) Use Multisim to simulate the frequency response of the results in part (b).

−

+
+

−

1 kΩ

1 kΩ

3 kΩ

10 μF v2(t)

−

+

v1(t)

Second stageFirst stage

FIGURE 12–6

624 C H A P T E R 1 2 FREQUENCY RESPONSE



SOLUTION:
(a) The circuit is an inverting amplifier configuration with

Z1ðsÞ=R1 and Z2ðsÞ= 1

C2s+
1
R2

=
R

R2C2s+ 1

The circuit transfer function is found as

TðsÞ= −
Z2ðsÞ
Z1ðsÞ = −

R2

R1
×

1
R2C2s+ 1

Rearranging the standard low-pass form in Eq. (12–4) as

TðsÞ= K=α
s=α+ 1

shows that the circuit transfer function has a low-pass form with

ωC = α=
1

R2C2
and Tð0Þ= −

R2

R1

This is an inverting circuit, so the −90� phase swing of the low-pass form runs
from ffTð0Þ= −180� to ffTð∞Þ= −270�, passing through ffTðjωCÞ= −225� along
the way.

Circuit interpretation: The low-pass response is easily deduced from
knowncircuitperformance.Atdcthecapacitoracts likeanopencircuitandthecircuit
inFigure 12–7 reduces toa resistance invertingamplifierwithK=Tð0Þ=−R2=R1. At
infinite frequency the capacitor acts like a short circuit that connects the OPAMP
output directly to the inverting input. This connection results in zero output since
the node voltage at the inverting input is necessarily zero. In between these two
extremes, the gain gradually decreases as the decreasing capacitor impedance
gradually pulls the OP AMP output down to zero at infinite frequency.

(b) The design constraints require that ωC = 1=R2C2 = 100 and jTð0Þj=R2=R1 = 4. Selecting
R1 = 10 kΩ implies that R2 = 40 kΩ and C2 = 0:25 μF.

(c) To simulate the frequency response of our design, we use Multisim’s “AC analysis” option
under Analyses. We draw the circuit and set up the AC sweep as shown in Figure 12–8(a).
Use the ac signal source, not the ac power source, and set the input to 1 V peak, the
output is then equal to the transfer function, that is, TV = VO=V1 = VO=1 = VO. We
choose the sweep range from 1Hz to 10 kHz and ask for a “Decade” sweep. To obtain
an accurate reading of the cursor, we ask Multisim to calculate the output with 1000 points
per decade. Since we can anticipate that the output will cover several decades, we ask
for a “Logarithmic” vertical scale. We tell Grapher View to plot the voltage at the output.
Once Grapher View produces the output, we delete the phase portion and ask for the left
axis to be displayed in decibels. Using the cursor we can identify the −3 dB point at
15:93 Hz versus the 15:92 expected. The cursor results are displayed on the plot shown
in Figure 12–8(b). The circuit performed as desired.
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+

−

1
C2s
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■

E x e r c i s e 12–7
The circuit of Figure 12–8(a) has the following sinusoids applied to its input. Using only the
plot in Figure 12–8(b), find the approximate amplitude of the sinusoid exiting the circuit.

(a) v1 tð Þ = 100 cos 2π tmV
(b) v1 tð Þ = 100 cos 200π tmV
(c) v1 tð Þ = 100 cos 2000π tmV

A n s w e r s: Reading the decibels from the graph, we get for each signal the following:
(a) About +12 dB, hence 100 × 4 = 400 mV
(b) About −4 dB, hence 100 × 0:63 = 63:0 mV
(c) About −24 dB, hence 100 × 0:063 = 6:3 mV
Comment:Amore accurate reading could be obtained by using the cursor. If evenmore accuracy is
desired, simulating the circuit using 10,000 or more points per decade and using the cursor
would provide added accuracy. However, often simply reading the graph can be sufficient.

D e s i g n E x e r c i s e 12–8
Design a low-pass active filter that has a gain of −10 and a cutoff frequency of 10 krad/s.

A n s w e r: Use the circuit of Figure 12–7 with R1 = 10 kΩ, R2 = 100 kΩ, and C = 1000 pF.
Other designs are possible.

G A I N - B A N D W I D T H P R O D U C T (G B W )
In terms of frequency response, the ideal OP AMP model introduced in Chapter 4
assumes that the device has an infinite gain and an infinite bandwidth. The OP AMP
used in Multisim to model the ideal OP AMP, theOPAMP_3T_VIRTUAL, approx-
imates the ideal OP AMP. The model can be further idealized by clicking on the
device and modifying its parameters. For example, one can adjust the open loop gain
to be 1015, the input resistance to be 1 TΩ, the output resistance to be 1 pΩ, and, most
importantly, the unity gain-bandwidth to be 1 THz. However, using the ideal model,
while simplifying the design and analysis of OP AMP circuits, can mask the behavior
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of circuits built using real OPAMPs. Amore realistic model of the device is shown in
Figure 12–9(a).

Thecontrolled sourcegain inFigure12–9(a) is a low-pass transfer functionwith adc
gainofA and a cutoff frequency ωC. The straight-line asymptotes of controlled source
gain are shown in Figure 12–9(b). The gain-bandwidth product GBW = AωCð Þ is the
basic performance parameter of this model.

With no feedback, the OP AMP transfer function is the same as the controlled-
source transfer function. The gain-bandwidth product of the open-loop transfer func-
tion is

GBW =AωC open loopð Þ (12–8a)

The closed-loop transfer function of the circuit in Figure 12–9(a) is found by writing
the following device and connection equations:

Device equation:VO sð Þ= A
s
ωC

+ 1
VP sð Þ−VN sð Þð Þ

Input connection:VP sð Þ=VS sð Þ
Feedback connection:VN sð Þ=VO sð Þ

Substituting the connection equations into the OP AMP device equation yields

VO sð Þ= A
s
ωC

+ 1
VS sð Þ−VO sð Þð Þ

A

ωC

ω

A
1 + A

Gain Gain

ω

(1 + A)ωC

+
−

+

−

VO(s)
VN(s)

VP(s)

+
−

VS(s)

A
s  + 1

ωC

(a)

(b) (c)

Gain-
bandwidth

product

[VP(s)-VN(s)]

FIGURE 12–9
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Solving for the closed-loop transfer function produces

T sð Þ= VO sð Þ
VS sð Þ =

A
A+ 1

� �
1

s
A+ 1ð ÞωC

+ 1

2
64

3
75

The straight-line asymptotes of the closed-loop transfer function are shown in
Figure 12–9(c).

The closed-loop circuit has a low-pass transfer function with a dc gain of
A= A + 1ð Þ and a cutoff frequency of A+ 1ð Þ ωC. The gain-bandwidth product of
the closed-loop circuit is

GBW =
A

A+ 1

� �
A+ 1ð Þ ωC½ �=AωC “closed loopð Þ” (12–8b)

which is the same as the open-loop case. In other words, the gain-bandwidth product
in Eq. (12–8) is invariant and is not changed by feedback. It can be shown that this
result is a general one that applies to all linear OP AMP circuits, regardless of the
circuit configuration.

The gain-bandwidth product is a fundamental parameter that limits the frequency
response of OPAMP circuits. For example, anOPAMPwith a gain-bandwidth prod-
uct of GBW = 106 Hz is connected as a noninverting amplifier with a closed-loop
gain of 20. The frequency response of the resulting closed-loop circuit has a low-pass
characteristic with a passband gain of 20 and a cutoff frequency of

fC =
106

20
= 50 kHz

The next example demonstrates the effects of the gain bandwidth product on a real-
istic design.

A P P L I C A T I O N D E S I G N E X A M P L E 1 2–8

Design a low-pass filter with a gain of – 1000 and a cutoff frequency of 20 kHz. Com-
pare the frequency response of the same design between an ideal OP AMP and a
UA741 general-purpose OP AMP using Multisim. If there is a problem with the
UA741 design, suggest how to fix it.

SOLUTION:
We need to design a circuit to realize the following transfer function

TV sð Þ= −
1000 × 2π× 2× 104

s+ 2π× 2× 104
= −

125:7 × 106

s+ 125:7 × 103
= −

1=RSC
s+ 1=RFC

A low-pass filter using an idealOPAMP inverting amplifier, as shown in Figure 12–10
(a), is an efficient design that will realize the transfer function. An AC analysis using
Multisim shows in Grapher View of Figure 12–10(d) that the circuit performs as
desired. However, when one goes into the laboratory, one cannot find any ideal OP
AMPs. Instead, one can usually find a UA741 general-purpose OP AMP. Building
the same circuit using a real OP AMP as shown in Figure 12–10(b) gives a very dif-
ferent result. The cutoff frequency occurs around 940 Hz, not at the desired 20 kHz.
The reason is that the UA741 OP AMP has aGBW of about 1MHz. With a desired
gain of 1000, the gain begins to fall off at around 200 Hz and is only about 50 at
20 kHz, as one can see in the Grapher View (Figure 12–10(d)).

Requiring a cutoff frequency of 20 kHz, the most gain using a single UA741 that
can be obtained isK =GBW=fC = 1×106

20 × 103 = 50. This would require cascading some
20 UA741 OP AMPs to reach a gain of 1000, which is very impractical. A reasonable
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approach is to use an OP AMP with a larger GBW product. The HA7-2850-5 OP
AMP, for example, has a GBW of about 470MHz. Using that OP AMP in the same
circuit, as shown in Figure 12–10(c), shows that its performance matches the ideal OP
AMP’s for this application. One might ask why bother with the UA 741 if there are
better products available. Generally, the answer is cost. The HA7-2850-5 and other
largeGBW OPAMPs can cost $2, $3, or more even in quantity; whereas the UA 741
costs as little as $0:16 in small quantities. Furthermore, the limitations of the UA 741
make it a cheap and useful teaching tool for understanding OP AMP circuit design.
Table 12–3 summarizes the results of this analysis.

Note, however, that in this text we will continue to rely on the ideal OP AMP and
let courses in electronics discuss other options. ■
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T A B L E 12–3

OP AMP GBW GAIN @ 20 KHZ fC (KHz)

Ideal 1 THz 707 20:0
UA741 1MHz 47:3 0:941
HA7-2850-5 470MHz 704 19:8

629FIRST-ORDER LOW-PASS AND HIGH-PASS RESPONSES



E x e r c i s e 12–9
There are hundreds of different operational amplifiers that are designed to meet many
varying needs. Gain-bandwidth is only one parameter. For example, an LF347D is a
general-purpose OP AMP with a 3MHzGBW, a LH4161 is a high-speed OP AMP with
a GBW of 50MHz, while an NJM2043D is a low-noise OP AMP pre-amplifier with a
GBW of only 12 Hz. Notwithstanding their other assets, what is the maximum frequency
that each OP AMP can amplify, if a gain of 100 is desired?

A n s w e r s: LF347D, fC = 30 kHz; LH4161, fC = 500 kHz; NJM2043D, fC = 0:12 Hz.

F I R S T-O R D E R H I G H-P A S S R E S P O N S E

We next treat the first-order high-pass transfer function

TðsÞ= Ks
s+ α

(12–9a)

The high-pass function differs from the low-pass case by the introduction of a zero at
s= 0. Replacing s by jω in TðsÞ and solving for the gain and phase functions yields

jTðjωÞj= jKjωffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 + α2

p

θðωÞ= ffK + 90� − tan−1ðω=αÞ
(12–9b)

Figure 12–11 shows Bode plots for the first-order high-pass function plotted using
a log scale for the normalized frequency ω=α. The gain diagram displays a high-pass
characteristic with a passband at high frequency and a stopband at low frequency.

Slope = +1 =

+20 dB per decade
|T(∞)|

100

|T(∞)|

10

|T(∞)|

|T(∞)|

|T(∞)|dB

|T(∞)|dB−3 dB

|T(∞)|dB−20 dB
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ω

α

ω

α

2

Gain

Slope = 0Asymptotes
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K−45°

Slope = −45˚ per decade

FIGURE 12–11 First-order
high-pass Bode plots.
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The maximum passband gain occurs at high frequency ðω � αÞ where the gain
jTðjωÞj!Tmax = jKj. In the passband, the gain gradually decreases as frequency
decreases until at ω= α we have

jTðjαÞj= jKjαffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 + α2

p =
jKjffiffiffi
2

p =
1ffiffiffi
2

p Tmax (12–10)

Again invoking Eq. (12–2), we find that ωC = α is the cutoff frequency marking the
boundary between a high-frequency passband and a low-frequency stopband. This
boundary is shown as ω=α= 1 in Figure 12–11.

The low- and high-frequency gain asymptotes approximate the gain response in
Figure 12–11. The high-frequency asymptote ðω � αÞ is the horizontal line whose
ordinate is jKj ðslope = 0 or 0 dB=decadeÞ. The low-frequency asymptote ðω � αÞ
is a line of the form jKj ω=α ðslope = +1 or +20 dB=decadeÞ. The intersection of these
two asymptotes occurs when jKj= jKjω=α, which defines a corner frequency at ω= α.

The semilog plot of the phase shift of the first-order high-pass function is shown in
Figure 12–11. The phase shift approaches ffK at high frequency, passes through
ffK + 45� at the cutoff frequency, and approaches ffK + 90� at low frequency. Most
of the 90� phase change occurs over the two-decade range centered on the cutoff fre-
quency. The phase shift can be approximated by the straight-line segments shown in
Figure 12–11. As in the low-pass case, ffK is 0� whenK is positive and�180� when K
is negative.

Like the low-pass function, the first-orderhigh-passBodeplots canbeapproximated
by straight-line segments. To construct these lines we need twoparameters,Tð∞Þ and
α. The parameter α defines the cutoff frequency, and the quantity Tð∞Þ gives the
passband gain jTð∞Þj and the high-frequency phase angle ffTð∞Þ. The quantities
Tð∞Þ and α can be determined directly from the transfer function or estimated
directly from the circuit in some cases. The straight line shows that the first-order
high-pass response can be characterized by calculating the gain and phase over a
two-decade band from one decade below to one decade above the cutoff frequency.

E X A M P L E 1 2–6

Show that the transfer function T sð Þ=V2 sð Þ=V1 sð Þ in Figure 12–12 has a high-pass
gain characteristic. Construct the straight-line approximations to the gain and phase
responses of the circuit.

SOLUTION:
Applying voltage division, the voltage transfer function for the circuit is

T sð Þ= R
R+ 1=Cs

=
RCs

RCs+ 1

Rearranging Eq. (12–9a) as

T sð Þ= K s=αð Þ
s=α+ 1

shows that the circuit has a high-pass gain characteristic with α= 1=RC and T ∞ð Þ= 1.
Therefore, T ∞ð Þj jdB = 0 dB, ωC = 1=RC, and ffT ∞ð Þ= 0�. Given these quantities, we
construct the straight-line gain and phase approximations in Figure 12–13. The fre-
quency scale in Figure 12–13 is normalized by multiplying ω by RC = 1=α.

Circuit interpretation: The high-pass response in Figure 12–13 can be understood
in terms of known circuit behavior. At zero frequency, the capacitor acts like an open
circuit that effectively disconnects the input signal source, leading to zero gain. At
infinite frequency, the capacitor acts like a short circuit that directly connects the
input to the output, leading to a passband gain of 1 (or 0 dB). Between these two
extremes, the impedance of the capacitor gradually decreases, causing the gain to

+
−

R V2(s)V1(s)

+

−

1
Cs

FIGURE 12–12
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increase. In particular, at the cutoff frequency we have 1=ωC =R,
the impedance of the capacitor is 1=jωC = − jR, and the transfer func-
tion is

T jωCð Þ= R
R − jR

=
1ffiffiffi
2

p ff+ 45�

In other words, at the cutoff frequency, the gain is −3 dB and the phase
shift is +45�. Obviously, the decreasing impedance of the capacitor
gives the circuit its high-pass gain characteristics. ■

E x e r c i s e 12–10
The circuit shown in Figure 12–12 has R=2:2 kΩ and C = 0:33 μF. What is
the gain of the circuit at ω= 1 krad=s in dB?

A n s w e r: T j1000ð Þj jdB = −4:62 dB.

D e s i g n E x e r c i s e 12–11
Design anRL high-pass filter with a cutoff of 10 krad=s and a passband gain
of 1.

A n s w e r: Use an RL voltage divider with the output taken across
the inductor. Select R=1 kΩ and L= 100 mH. Many other designs are
possible.

D E S I G N E X A M P L E 1 2 – 7

(a) Show that the transfer function T sð Þ=V2 sð Þ=V1 sð Þ of the circuit in
Figure 12–14(a) has a high-pass gain characteristic.

(b) Select the element values to produce a passband gain of −4 and a
cutoff frequency of 40 krad=s.

(c) Use Multisim to simulate the design.

SOLUTION:
(a) The branch impedances of the inverting OP AMP configuration in

Figure 12–14(a) are

Z1 sð Þ=R1 +
1
Cs

=
R1Cs+ 1

Cs
and Z2 sð Þ=R2

and the voltage transfer function is

T sð Þ= −
Z2 sð Þ
Z1 sð Þ = −

R2Cs
R1Cs+ 1

=
−R2=R1ð Þs
s+ 1=R1C

This results in a high-pass transfer function of the form Ks= s+ αð Þ
with K = −R2=R1 and α=ωC = 1=R1C.

Circuit interpretation: The high-pass response of this circuit is
easily understood in terms of element impedances. At dc, the
capacitor in Figure 12–14(a) acts like an open circuit that effec-

tively disconnects the input source, resulting in zero gain. At infinite frequency,
the capacitor acts like a short circuit that reduces the circuit to an inverting ampli-
fier with K =T ∞ð Þ= −R2=R1. As the frequency varies from zero to infinity, the
gain gradually increases as the capacitor impedance decreases.

(b) The design requirements specify that 1=R1C = 4× 104 and R2=R1 = 4. Selecting R1 = 10 kΩ
requires R2 = 40 kΩ and C = 2500 pF.
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(c) The Grapher View of the simulation is shown in Figure 12–14(b). The simulation
was conducted using an ideal OP AMP and then repeated using a practical OP
AMPwith aGBW = 10MHz. Both simulations show the same desired cutoff fre-
quency fC = 6:362 kHz or ωC = 39:97 krad=s, but the practical OP AMP simula-
tion shows another pole at around 2:5MHz, that is,

GBW
K

=
10 × 106

4
= 2:5 × 106 = 2:5MHz

This pole is caused by the limitations of the internal OP AMP design as discussed
earlier. While one can postulate designing a high-pass filter, in reality, they will all
be band-pass filters. ■

D e s i g n E x e r c i s e 1 2 – 1 2
Design a high-pass filter that has the following transfer function:

T sð Þ= −
200s

s+ 5000

A n s w e r: Use the circuit of Figure 12–14 with R1 = 1 kΩ, R2 = 200 kΩ, and C =0:2 μF.
Other solutions are possible.

E V A L U A T I O N E X A M P L E 1 2 – 8

Your company issued a request for proposals listing the following design require-
ments and evaluation criteria.

Design requirements call for a high-pass filter with a passband gain of unity
and a cutoff frequency of 150 Hz�10%. The filter input is driven by a sensor
with a 50-Ω source resistance.

Evaluation criteria are filter performance, parts count, power consumption, and
cost. The three vendors have responded with the designs shown in Figure 12–15
(a). As a junior engineer, you have been asked to evaluate the designs and iden-
tify the best design. Which vendor would you recommend and why?
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SOLUTION:
The design requirements describe a high-pass transfer function of the form

T sð Þ= Ks
s+ α

=
�1s

s+ 2π150
=

�s
s+ 942:5

MATLAB will help in visualizing the gain requirement. The following MATLAB
code is used.

T=tf([1 0],[1 942.5]);
w=logspace(2,4,10000);bode(T,w);grid

We call MATLAB’s transfer function routine, tf. The parenthesis in the call con-
tains the transfer function. Inside each bracket are the coefficients of each s term
in the numerators followed by the coefficients of each s term in the denominator.
It is important to tell MATLAB when a term is missing. Hence, in the numerator,
there is no s0 term so we enter a zero. We use logspace to plot the graph. In
logspace, the first number is the exponent of the power of 10 that we want to start
our plot, hence the 2 tells MATLAB to start at 102 = 100. The second number is
where we want to end our sweep, 4 means 104 = 10000. The final entry tells
MATLAB how many calculations to make per decade. Finally, the bode command
tells MATLAB to perform a Bode diagram of the transfer function. MATLAB
returns a complete Bode gain and phase response; however, for this problem, we
are interested only in the gain response. This is shown in Figure 12–15(b).

Now that we know what to expect, we can analyze the performance of each of the
three proposed filters. We could use MATLAB again; but for this problem, we will
analyze each filter classically.

Vendor #1: Using voltage division to find T sð Þ yields

T sð Þ= 104

104 +
1

10−7s

=
10−3s

10−3s+ 1
=

s
s+ 1000

This is a high-pass response with T ∞ð Þj j= 1 and fC = 1000= 2πð Þ= 159:2Hz.
Vendor #2: The circuit is an inverting amplifier whose transfer function is

T sð Þ= −330 × 103

330 × 103 +
1

3:3 × 10−9s

=
−1:089 × 10−3s

1:089 × 10−3s+ 1
=

−s
s+ 918:3

10 kΩ

330 kΩ

330 kΩ

v2(t)v1(t)

+

−

+

−

0.1 μF

Vendor #1
Unit Cost: $2.50

Vendor #2
Unit Cost: $3.50

Vendor #3
Unit Cost: $2.25

100 mH

100 Ω

v2(t)v1(t)

+

−

+

−

3300 pF

+

−

v1(t)
+

v2(t)
+

(a)

FIGURE 12–15
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This is a high-pass response with T ∞ð Þj j= 1 and fC = 918:3= 2πð Þ= 146:2 Hz.
Vendor #3: Using voltage division to find T sð Þ yields

T sð Þ= 0:1s
0:1s+ 100

=
s

s+ 1000

This is a high-pass response with T ∞ð Þj j= 1 and fC = 1000= 2πð Þ= 159:2 Hz.
Evaluation discussion: The analysis summary in Table 12–4 shows that all three

filters meet the basic passband gain ð�1Þ and cutoff frequency ð150 Hz�10%Þ
requirements. The vendor #2 design can be eliminated because it has the largest part
count, requires a dc power supply for its OP AMP, and has the highest cost. The ven-
dor #3 filter has a serious loading problem that offsets its lower cost. This filter has a
100-Ω input resistor that loads the specified 50-Ω input source. The actual cutoff fre-
quency of the source/filter combination is Rsource +Rfilterð Þ=L= 50 + 100=0:1ð Þ=
1500 rad=s or 238:7Hz, not the 159:2Hz found by analyzing the filter in isolation.
The input impedance of the vendor #1 design is greater than 10 kΩ, so it does not
load the 50-Ω source. All factors considered, the best design is the filter proposed
by vendor #1. ■

T A B L E 12–4 ANALYSIS SUMMARY

PASSBAND GAIN CUTOFF FREQ. (HZ) PARTS COUNT POWER CONSUMPTION COST SOURCE LOADING

Vendor #1 1 159.2 2 Low $2.50 No

Vendor #2 −1 146.2 4 Medium $3.50 No

Vendor #3 1 159.2 2 Low $2.25 Yes

100 200 300 400 500 600 700

Frequency (rad/s)

800 1000   1500 2000 2500 3000 4000 5000 6000 8000 10,000

(b)

System: T
Frequency (rad/s): 994
Magnitude (dB): –3

Bode diagram
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E v a l u a t i o n E x e r c i s e 1 2–1 3

Suppose that the evaluation task of Example included the requirement that the filter feed a
500-Ω recorder. Would the choice be different?

A n s w e r: Yes. The 500-Ω recorder would load both of the passive filters. Only the OP
AMP solution from vendor #2 would work.

E x e r c i s e 12–14
For each circuit in Figure 12–16, identify whether the gain response has low-pass or high-
pass characteristics and find the passband gain and cutoff frequency.

A n s w e r s:
(a) High pass, T ∞ð Þj j= 1=3, ωC = 66:7 rad=s
(b) Low pass, T 0ð Þj j= 2=3, ωC = 300 rad=s
(c) Low pass, T 0ð Þj j= 1, ωC = 333 krad=s
(d) High pass, T ∞ð Þj j= 1=3, ωC = 333 krad=s

D e s i g n E x e r c i s e 12–15
Consider the two circuits shown in Figure 12–17. Determine if each has a low-pass or high-
pass characteristic. Then design each to have a cutoff frequency of 10 krad=s and a gain of
200. The input resistance must be 
 1 kΩ.

A n s w e r s:
(a) This is a low-pass filter as shown in Figure 12–7. Select R1 = 2 kΩ,R2 = 400 kΩ, and

C = 250 pF.

(b) This is also a low-pass filter with ωC =R1=L and gain = −R2=R1. Select R1 =
2 kΩ,R2 = 400 kΩ, andL= 200 mH. In both cases, other designs are possible.

E x e r c i s e 12–16
State whether the following transfer functions have low-pass or high-pass gain characteris-
tics and find the passband gain and cutoff frequency.

(a) T1 sð Þ= 1

10s−1 + 10−3

(b) T2 sð Þ= 102

25s+103

(c) T3 sð Þ= 20=s
50 + 20=s

A n s w e r s:
(a) High pass, passband gain = 1000, ωC = 10 krad=s
(b) Low pass, passband gain = 0:1, ωC = 40 rad=s
(c) Low pass, passband gain = 1, ωC = 0:4 rad=s

10 kΩ

1 μF

5 kΩ

10 kΩ

1 μF

10 kΩ

5 kΩ

5 kΩ

10 mH

10 kΩ

5 kΩ10 mH

(a)

(b)

(c)

(d)

FIGURE 12–16
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−
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C

L

+

−

R1 R2
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+
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FIGURE 12–17
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12–4 B A N D P A S S A N D B A N D S T O P R E S P O N S E S

Bandpass and bandstop responses can be obtained using first-order high-pass and
low-pass circuits as building blocks. Figure 12–18 shows a cascade connection of
first-order high-pass and low-pass circuits. When the second stage does not load
the first, the overall transfer function can be found by the chain rule as

T sð Þ=T1 sð Þ×T2 sð Þ=
�

K1s
s+ α1|fflffl{zfflffl}

�
high pass

�
K2

s+ α2|fflffl{zfflffl}
�

low pass

(12–11)

Replacing s by jω in Eq. (12–11) and solving for the gain response yields

T jωð Þj j=
 

K1j jωffiffiffiffiffiffiffiffiffiffi
ω2 + α21

p
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

!

high pass

 
K2j jffiffiffiffiffiffiffiffiffiffi
ω2 + α22

p
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

!

low pass

(12–12)

Note that the overall gain is zero at ω= 0 and again at infinite frequency. This pattern
suggests a bandpass response.

The overall gain in Eq. (12–12) is bandpass when the high-pass cutoff frequency is
much lower than the low-pass cutoff frequency α1 � α2ð Þ. To see why, we develop the
gain asymptotes for Eq. (12–12) in three frequency ranges.

• Low frequency ω� α1 � α2ð Þ: This range falls in the stopband of the high-
pass gain and the passband of the low-pass gain. As a result, the overall gain
approaches

T jωð Þj j!
�

K1j jω
α1|fflffl{zfflffl}

�
high pass

�
K2j j
α2|{z}
�

low pass

=
K1j j K2j jω
α1α2

• High frequency α1 � α2 �ωð Þ: This range falls in the passband of the high-
pass gain and the stopband of the low-pass gain. In this range, the overall gain
approaches

T jωð Þj j!
�

K1j jω
ω|fflffl{zfflffl}

�
high pass

�
K2j j
ω|{z}
�

low pass

=
K1j j K2j j

ω

• Mid-frequency α1 �ω� α2ð Þ: This range falls in the
passband of both first-order gains, so the overall gain
approaches

T jωð Þj j!
�

K1j jω
ω|fflffl{zfflffl}

�
high pass

�
K2j j
α2|{z}
�

low pass

=
K1j j K2j j
α2

Figure 12–19 shows a plot of the low-, mid-, and high-frequency
gain asymptotes. The low-frequency andmid-frequency asymptotes

+

−

First stage
T1(s)

High pass

Second stage
T2(s)

Low pass

+

−

V1(s) V2(s)

FIGURE 12–18 Cascade
connection of high-pass and
low-pass circuits.

Stop

Gain

Low
frequency

Pass Stop

Mid
frequency

High
frequency

α1 α2

|K1K2|ω

α1α2

|K1K2|

α2

ω

|K1K2|

α2

|K1K2|

ω

FIGURE 12–19 Bandpass gain characteristic.
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intersectwhen K1K2j jω=α1α2 = K1K2j j=α2. This occurs atω= α1, which is the cutoff fre-
quency of the high-pass stage. The high-frequency and mid-frequency asymptotes
intersect when K1K2j j=ω= K1K2j j=α2. This occurs at ω= α2 which is the cutoff fre-
quency of the low-pass stage. The straight-line gain plot based on these asymptotes
indicates a passband between cutoff frequencies ωC1 = α1 ωC2 = α2. The mid-
frequency gain applies in this passband. Finally, there are two stopbands; one below
ωC1 and the other above ωC2.

The input signal to the bandpass cascade must pass through both a high-pass and a
low-pass stage to reach the output. In the parallel connection in Figure 12–20, an input
can reach the output via either a high-pass or a low-pass path. As a result, the overall
transfer function is the sum of the high-pass and low-pass transfer functions.

T sð Þ=T1 sð Þ+T2 sð Þ=
�

K1s
s+ α1|fflffl{zfflffl}

�
high pass

+
�

K2

s+ α2|fflffl{zfflffl}
�

low pass

Since the overall gain is a sum, we must consider each of these paths separately.
Replacing s by jω and solving for the individual path gains gives

T1 jωð Þj j=
 

K1j jωffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 + α21

q
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

!

high pass

and T2 jωð Þj j=
 

K2j jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 + α22

q
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

!

low pass

(12–13)

The overall gain has a bandstop characteristic when the high-pass cutoff frequency
is much higher than the low-pass cutoff frequency α2 � α1ð Þ. To see why, we develop
the gain asymptotes of Eq. (12–13) in three frequency ranges.

• Low frequency ω� α2 � α1ð Þ: This range falls in the stopbandof thehigh-pass
gainandthepassbandof the low-passgain. Inthis range, the low-passpathdom-
inates, so the overall gain approaches T jωð Þj j! K2j j=α2.

• High frequency α2 � α1 �ωð Þ: This range falls in the passband of the high-
pass gain and the stopband of the low-pass gain. In this range, the high-pass
path dominates, so the overall gain approaches T jωð Þj j! K1j j.

Thus, there is a low-frequency passband and a high-frequency passband. In a band-
stop response these passbands normally have the same gain, so that K1j j= K2j j=α2.
A mid-frequency stopband lies in between these two passbands.

• Mid-frequency α2 �ω� α1ð Þ: This range falls in the
stopband of both first-order gains. The stopband
asymptotes of the low-pass and high-pass gains
are K2j j=ω and K1j jω=α1, respectively. These asymp-
totes intersect when K2j j=ω= K1j jω=α1. Since K1j j=
K1j j=α2 the intersection frequency turns out to
be ω=

ffiffiffiffiffiffiffiffiffiffi
α1α2

p
.

Figure 12–21 is a plot of the low-, mid-, and high-frequency
gain asymptotes. The low-pass gain dominates at frequencies
below the intersection frequency

ffiffiffiffiffiffiffiffiffiffi
α1α2

p
and the high-pass gain

dominates above the intersection. The straight-line gain plot
indicates a stopband between cutoff frequencies at ωC1 = α2
and ωC2 = α1 and two passbands: one below ωC1 and the other
above ωC2.

+

+

V2(s)V1(s)

T1(s)
High pass

T2(s)
Low pass

FIGURE 12–20 Parallel
connection of high-pass and
low-pass circuits.
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FIGURE 12–21 Bandstop gain characteristic.
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This analysis shows that bandpass and bandstop responses can be obtained using
first-order circuit building blocks. More importantly, the straight-line gain approxi-
mations to the first-order gains help us understand how the building blocks interact
to produce other types of responses. This understanding explains the enduring utility
of Bode plots. The Bode plots in Figures 12–19 and 12–21 are reasonably good
approximations of the actual gains as long as the two first-order cutoff frequencies
are widely separated. Although widely separated has no precise definition, the
straight-line gain works fairly well when α2 > 10α1 for a bandpass response and
α1 > 10α2 for a bandstop response.

D E S I G N E X A M P L E 1 2 – 9

Design a bandpass circuit with a passband gain of 10 and cutoff frequencies at 20 Hz
and 20 kHz. Verify the design using Multisim.

SOLUTION:
Our design uses a cascade connection of first-order low- and high-pass building blocks.
The required transfer functionhas the forminEq. (12–11)with the following constraints

ωC1 = α1 = 2π 20ð Þ= 40π rad=s

ωC2 = α2 = 2π 20 × 103
� �

= 4π× 104 rad=s

K1K2j j
α2

= 10

Inserting these numerical values in Eq. (12–11) allows us to write the required trans-
fer function as

T sð Þ=
� s
s+ 40π|fflfflffl{zfflfflffl}

	
high pass

ð10�|ffl{zffl}
gain

�
4π× 104

s+ 4π× 104|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
low pass

�

This transfer function can be realized using the three-stage
cascade circuit in Figure 12–22(a). The first stage is the RC
high-pass circuit from Example 12–6 and the third stage is
the RL low-pass circuit from Example 12–2. The noninverting
OP AMP circuit in the second stage serves two purposes:
(1) It isolates the first and third stages so the chain rule applies
and (2) it supplies the mid-band gain. Using the chain rule, the
circuit transfer function is

T sð Þ=
� s
s+ 1=RCC|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

	
high pass

�
R1 +R2

R1|fflfflfflffl{zfflfflfflffl}
gain

��
RL=L

s+RL=L|fflfflfflfflfflffl{zfflfflfflfflfflffl}
low pass

�

Comparing the circuit transfer function to the required transfer function leads to
the constraints and stage designs listed in Table 12–5. As always, many other solu-
tions are possible.

−

+

C

RC

R1

R2

RL

L

v2(t)

−

−

+ +

v1(t)

High pass Low passGain

(a)

FIGURE 12–22

T A B L E 12–5

STAGE CONSTRAINT STAGE DESIGN

High pass RCC = 1=40π LetRC = 100 kΩ; thenC = 0:0796 μF

Gain 1 +R2=R1 = 10 LetR1 = 10 kΩ; thenR2 = 90 kΩ

Low pass L=RL = 1=40;000π LetRL = 200 kΩ; thenL= 1:592H
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The circuit was designed in Multisim using the values from Table 12–5. The Gra-
pher View of the design is shown in Figure 12–22(b). The corner frequencies are
exactly as required. ■

E x e r c i s e 12–17
Select the element values in Figure 12–22(a) so that the passband gain is 6 dB and the cutoff
frequencies are 1 and 50 krad=s. Validate your design using Multisim.

A n s w e r s: RC = 5 kΩ;C = 0:2 μF;R1 =R2;RL = 20 kΩ;L= 400mH

The Multisim results are shown in Figure 12–23. Comment: Note that the peak value does
not quite reach 6 dB because the effect of the pole at 50 krad=s occurs before the effect of
the pole at 1 krad=s was complete. If reaching 6 dB is critical, the gain of the amplifier needs
to be increased to compensate for the effect of the second pole. A gain of 2:035 6:17 dBð Þ
should accomplish the task.
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FIGURE 12–22 (continued)
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E x e r c i s e 12–18
Two first-order circuits in a cascade connection have the following transfer functions.

T1 sð Þ= 20
s

2000
+ 1

and T2 sð Þ= s
s+ 40

What are the cutoff frequencies and the passband gain? Assume that the chain rule applies.

A n s w e r: ωC1 = 40 rad=s; ωC2 = 2000 rad=s; passband gain = 20

E V A L U A T I O N E X A M P L E 1 2–1 0

There is a need for a design of a bandstop filter centered at 100 Hz that has the fol-
lowing transfer function �2%:

T sð Þ=
4 s2 + 200s+ 4× 105
� 	
s+ 100ð Þ s+ 4000ð Þ

A vendor has submitted the circuit of Figure 12–24, claiming that the design meets
the specifications within �1%. Is the vendor’s claim accurate?

SOLUTION:
Let us start by calculating the transfer function from the circuit. If the transfer function
is as desired then we can determine if the transfer function meets the specifications.
The circuit consists of a high-pass filter, a low-pass filter, and an inverting summer.
The transfer function of the filter circuits after substituting the values on the circuit are

THP ðsÞ= −
ðR2=R1Þs
s+ 1=R1C

= −
4s

s+ 4000

TLPðsÞ= −
1=R1C

s+ 1=R2C
= −

400
s+ 100

The summer adds the two and inverts the signs

T sð Þ= − THPðsÞ+TLPðsÞð Þ

T sð Þ= − −
4s

s+ 4000

� �
+ −

400
s+ 100

� �� �

+
40 kΩ

High pass

Low pass

10 kΩ 40 kΩ

10 kΩ

10 kΩ 10 kΩ

10 kΩ

0.025 μF

0.25 μF

+

− v2(t)

+
v1(t)

+

−

+

−

Inverting summer

FIGURE 12–24
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T sð Þ= 4ðs2 + 200s+ 4× 105Þ
ðs+ 100Þðs+ 4000Þ

The circuit realizes the desired transfer function. Now we need to determine if the
transfer function actually meets the desired specifications to �1%.

We can determine if the specifications are met graphically by plotting the low-pass
and high-pass frequency characteristics and determining where the minimum occurs.

Figure 12–25 displays the two transfer functions plotted on a
log-log plot. We know that first-order filters, as these are, will
have corner frequencies at their poles and slopes of positive
or negative one, depending on whether they are high-pass
or low-pass designs. The low-pass filter has a corner frequency
at 100 rad=s, a passband magnitude of 4, a slope of −1, and
crosses 10 krad=s at a magnitude of 0.04. The high-pass filter
has a corner frequency of 4000 rad=s, also a passband magnitude
of 4, a slope of + 1, and crosses 40 rad=s at a magnitude of 0.04.
The high- and low-pass curves cross at approximately 630 rad=s,
which equals 100:3 Hz and is well within the �1% required by
the specification and the vendor’s claim.

The solution just completed worked fine for this straightfor-
ward problem. For transfer functions with complex poles or mul-

tiple poles, the analysis requiresmore effort.Wewill study alternatemeans, including
using appropriate software tools later in this chapter. ■

D e s i g n E x e r c i s e 12–19
Following the analysis pattern in Example 12–10, design a circuit that realizes the following
transfer function. Use no resistor smaller than 1 kΩ. What are the passband gain and the
cutoff frequencies of the filter?

T sð Þ= 200ðs2 + 200s+ 106Þ
ðs+100Þðs+ 104Þ

A n s w e r: See Figure 12–26 for one design solution. The passband gains are 200 and the
low-pass filter’s cutoff frequency is 100 rad=s, while the high-pass filter’s cutoff frequency
is 10 krad=s.

10040 1000

630 4000

Stopband

Slope = −1 Slope = +1

10,000 100,00010
0.04

0.4

4

Gain

ω(rad/s)

FIGURE 12–25
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+
v1(t)

+

−
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−
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FIGURE 12–26
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12–5 T H E F R E Q U E N C Y R E S P O N S E O F R L C C I R C U I T S
A second-order circuit can take many forms as long as it has two independent energy
storing elements. However, the properties of second-order circuits are traditionally
introduced using simple series and parallel RLC circuits. In Chapter 7, these circuits
were used to highlight the role of ζ and ω0 in the transient response of second-order
circuits. In this section, they are used to introduce the role of impedance in second-
order circuit frequency response. These canonic circuits are useful introductory
vehicles because they give us physical insight into the relationship between circuit
parameters and circuit response.

S E R I E S R L C B A N D P A S S C I R C U I T

The transfer function of the RLC voltage divider in Figure 12–27 is

T sð Þ= V2 sð Þ
V1 sð Þ =

R
R+Ls+ 1=Cs

=
R

R+ZLC sð Þ (12–14)

where ZLC sð Þ=Ls+ 1=Cs is the impedance of the series leg of the voltage divider.
To describe the frequency response of the circuit, we replace s by jω to obtain

T jωð Þ= R
R+ZLC jωð Þ

The variation of the impedanceZLC jωð Þ is the key to under-
standing RLC circuit frequency response.

Figure 12–28 shows how the impedance ZLC jωð Þ=
j ωL−1=ωCð Þ produces a bandpass gain response. At
ω= 0 dcð Þ, the capacitor acts like an open circuit and
ZLC 0ð Þ=∞. At ω=∞ , the inductor acts like an open circuit
and ZLC ∞ð Þ=∞. In either case, the open circuit effectively
disconnects the input source, making V2 = 0 and producing
zero-gain stopbands at low and high frequencies.

At ω=ω0 = 1=
ffiffiffiffiffiffiffi
LC

p
, the impedance ZLC ω0ð Þ= 0, since

ZLC jω0ð Þ= j
Lffiffiffiffiffiffiffi
LC

p −

ffiffiffiffiffiffiffi
LC

p

L

 !
= j

ffiffiffiffi
L
C

r
−

ffiffiffiffi
L
C

r !
= 0

That is, the inductor and capacitor combine to produce a
short circuit that makes a direct connection between the
input and the output ports. This connection makes
V2 =V1, producing a voltage gain of T jω0ð Þj j=Tmax = 1.
Clearly Tmax is the maximum voltage gain available from
this voltage-divider circuit. The cutoff frequencies occur
when ZLC jωð Þ= � jR, since

T jωð Þj j= R
R� jR










= 1ffiffiffi

2
p =

1ffiffiffi
2

p Tmax

so that the voltage gain is reduced by a factor of 1=
ffiffiffi
2

p
from

its maximum value at ω=ω0.
Several parameters are used to describe the bandpass

gain response. First, the maximum gain occurs at the center
frequency ω0 located at

ω0 =
1ffiffiffiffiffiffiffi
LC

p (12–15)
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FIGURE 12–27 Series RLC
bandpass circuit.
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The cutoff frequencies occur when ZLCðjωÞ= � jR, which requires that�
ωL−

1
ωC

�
= �R

and leads to the quadratic equation

LCω2−ð�RÞCω−1 = 0

Because of the � sign, this quadratic has four roots, only two of which have physical
meaning, namely

ωC1 = −
R
2L

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
2L

� �2

+
1
LC

s

ωC2 = +
R
2L

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
2L

� �2

+
1
LC

s (12–16)

where ωC1 and ωC2 are the cutoff frequencies shown in Figure 12–28. The product of
the two cutoff frequencies in Eq. (12–16) is

ωC1ωC2 = −
R
2L

� �2

+
R
2L

� �2

+
1
LC

=
1
LC

=ω2
0

In other words, the center frequency ω0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωC1ωC2

p
is the geometric mean of the two

cutoff frequencies. Finally, using the results in Eq. (12–16), the bandwidth B in
Figure 12–28 is found to be

B=ωC2−ωC1 =
R
L

(12–17)

In summary, the descriptive parameters ω0,ωC1,ωC2, and B are related to the series
RLC circuit parameters by Eqs. (12–15)–(12–17).

For historical reasons, it is traditional to add a fifth descriptive parameter called
the quality factorQ, defined as the ratio of center frequency over bandwidth and zeta
is the damping ratio studied in chapter 7, namely

Q=
ω0

B
= 1=ð2ζÞ=

ffiffiffiffiffiffiffiffiffiffi
L=C

p
R

(12–18)

Figure 12–29 shows the effect of Q on the bandpass
response characteristics. When Q� 1, the response is said
to be narrow band, since B�ω0. Conversely, when
Q� 1, the response is said to be wide band, since B�ω0.
Thus, Q= 1 is the dividing point between narrow-band or
high-Q responses and wide-band or low-Q responses. But
regardless of the value of Q, the maximum gain is always
Tmax = 1 or 0 dBð Þ at ω=ω0.

A high-Q bandpass circuit is sometimes called a tuned fil-
ter. This terminology applies when the center frequency is
carefully adjusted (tuned) to select a narrow band of signal
frequencies while rejecting a much broader range of signal
frequencies outside of the passband. At the center fre-
quency ZLC jω0ð Þ= 0, so the filter input impedance is
R+ j0, a condition known as resonance. For this reason
the center frequency is also called the resonant frequency.
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FIGURE 12–29 Effect of Q on the series RLC bandpass
response.
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E X A M P L E 1 2–1 1

A series RLC circuit has a center frequency of ω0 = 20 krad=s, a quality factor of
Q= 5, and a resistance R= 50Ω. Find the values of L, C, B, ωC1, and ωC2. Use Multi-
sim and simulate the voltage gain across the resistor. Compare with the results cal-
culated by hand.

SOLUTION:
UsingthedefinitionofQ, thebandwidthisB=ω0=Q= 4 krad=s. For a seriesRLC circuit,
B=R=L and the inductance is L=R=B= 50=4000 = 12:5 mH. Using this inductance
and the center frequency, the capacitance is found as C = 1=ω2

0L= 0:2 μF. Inserting
these results into Eq. (12–16) yields the lower cutoff frequency as

ωC1 = −2000 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20002 + 20;0002

q
= 18:1 krad=s

Using the definition of bandwidth, we get ωC2 =ωC1 +B= 22:1 krad=s. ■

We build our circuit in Multisim and perform an AC analysis. We sweep over one
decade and askMultisim to calculate 1000 points per decade to obtain good accuracy
in our simulation. In order to obtain a band-pass response, we ensure that the output
is taken across the resistor. Grapher View returns the plot shown in Figure 12–30.
Although not normally required, to demonstrate Multisim’s accuracy for this example,
we will determine our values to five significant figures. Using the cursors we find the
following: the center frequency f0 = 3:1842 krad=s, which equals ω0 = 20:007 krad=s;
the lower cutoff frequency fC1 = 2:8813 kHz or ωC1 = 18:104 krad=s; and the upper
cutoff frequency fC2 = 3:5165 kHz or ωC2 = 22:095 krad=s. From the two cutoff
frequencies, we can calculate the bandwidth B = 22,095 − 18,104 = 3:9910 krad=s.
Finally, we can calculate the quality factor Q = ω0=B = 20,007=3991:0 = 5:0130.
All these values are as expected.
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E x e r c i s e 12–20
A series RLC circuit with the output taken across the resistor has a center frequency of
ω0 = 500 krad=s, a resistance of 40Ω, and a bandwidth B of 50 krad=s. Find Q, L,
C, ωC1, and ωC2. Verify your results using Multisim.

A n s w e r s: Q = 10, L = 0:8 mH, C = 5000 pF, ωC1 = 475,625 rad=s, and ωC2 = 525,625
rad=s.

See Figure 12–31 for the Multisim verification.

D E S I G N A N D E V A L U A T I O N E X A M P L E 1 2–1 2

Design abandpass circuit using a seriesRLC circuit thatmeets the filter requirements in
Example 12–9. Compare thisRLC design with the circuit developed in Example 12–9.

SOLUTION:
The bandpass filter requirements given in Example 12–9 call for passband
gain of 10 and cutoff frequencies at 20 Hz and 20 kHz. The series RLC cir-
cuit can produce the required cutoff frequencies. However, we also need a
gain stage since the RLC circuit has a maximum gain of 1. The required
bandpass response and gain can be obtained using the cascade connection
in Figure 12–32. The chain rule applies to this circuit since the gain stage
has an infinite input impedance that does not load the output of the
RLC stage.

Given that fC1 = 20 Hz and fC2 = 20 kHz, the descriptive parameters of
the bandpass stage are

ω0 = 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fC1 fC2

p
= 3:974 krad=s

B = 2πðfC2 − fC1Þ= 125:5 krad=s

Q =
ω0

B
= 0:0317

Since Q� 1, the design requirements here and in Example 12–9 describe a wide-
band filter. Selecting R= 10 kΩ, the inductance in the series RLC circuit is

50k
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L=R=B= 79:66 mH. Using this inductance and the center frequency gives the capac-
itance as C = 1=ω2

0L= 0:795 μF. The gain stage is a noninverting amplifier for which a
gain of 10 requires 1 +R2=R1 = 10. Selecting R1 = 10 kΩ makes R2 = 90 kΩ.

Evaluation discussion: The design developed here uses the series RLC cascade in
Figure 12–32. The design developed in Example 12–9 uses the cascade of first-order
circuits shown in Figure 12–22(a). The element count for the two designs is summar-
ized in Table 12–6.

The minor difference in element count is not significant. What is significant is the
difference in possible output stage loading. The circuit in Figure 12–32 is not subject
to loading since the output is an OPAMP whose output impedance is zero. The first-
order cascade in Figure 12–22(a) is susceptible to loading since its output stage is a
passive RL circuit with a finite output impedance. ■

D e s i g n E x e r c i s e 12–21
Design a series RLC bandpass circuit that has a center frequency of ω0 = 10 krad=s, a max-
imum gain of 20 dB, and a bandwidth of 5 krad=s.

A n s w e r: Same design as in Figure 12–32, with L= 100mH, C = 0:1 μF, R= 500Ω,
R1 = 10 kΩ, and R2 = 90 kΩ. Other answers are possible.

T H E S E R I E S R L C B A N D S T O P C I R C U I T

The bandpass circuit in Figure 12–27 and the bandstop circuit in Figure 12–33 are
both series RLC circuits. The difference is that the bandpass circuit takes its output
across the resistor while the bandstop circuit takes its output across the inductor and
capacitor in series. The voltage transfer function of the bandstop voltage-divider cir-
cuit in Figure 12–33 is

T sð Þ= V2 sð Þ
V1 sð Þ =

Ls+ 1=Cs
R+Ls+ 1=Cs

=
ZLC sð Þ

R+ZLC sð Þ (12–19)

where ZLCðsÞ=Ls + 1=Cs is the impedance of the shunt leg of the voltage divider.
This impedance is the key to understanding the shape of RLC circuit frequency
response.

Figure 12–34 shows how the impedance ZLCð jωÞ= jðωL−1=ωCÞ produces a band-
stop gain response. At ω= 0, the capacitor acts like an open circuit so that the output
voltage isV2 =VOC =V1. At ω= ∞ , the inductor acts like an open circuit and again we
haveV2 =VOC =V1. In either case, the conditionV2 =V1 produces maximum gains of
Tmax = 1 in the low- and high-frequency passbands.

At ω=ω0 = 1=
ffiffiffiffiffiffiffi
LC

p
, the impedance ZLC jωð Þ= 0. The resulting short circuit makes

V2 = 0, reducing the gain to zero and producing the null or notch in the gain response.
The cutoff frequencies occur when ZLCð jωÞ= � jR, since

T jωð Þj j= �jR
R� jR










= 1ffiffiffi

2
p =

1ffiffiffi
2

p Tmax

so that the voltage gain is reduced by a factor of 1=
ffiffiffi
2

p
from its maximum value in the

two passbands. In sum, the values of ZLCðjωÞ that produce the bandpass response in
Figure 12–28 produce the bandstop response shown in Figure 12–34.

T A B L E 12–6

FIGURE DESCRIPTION R L C OP AMP

12–22(a) First-order cascade 4 1 1 1

12–32 Series RLC cascade 3 1 1 1
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FIGURE 12–33 Series RLC
bandstop circuit.
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Since ZLC controls bandstop gain response, the equa-
tions relating the descriptive parameters to circuit para-
meters are the same as those governing the bandpass case.
Specifically, the notch occurs whenZLC = 0 at a frequency of

ω0 =
1ffiffiffiffiffiffiffi
LC

p

The passband cutoff frequencies occur when ZLC = � jR at
frequencies of

ωC1 = −
R
2L

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
2L

� �2

+
1
LC

s

ωC2 = +
R
2L

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
2L

� �2

+
1
LC

s

Finally, the width of the stopband is

B=ωC2−ωC1 =
R
L

These equations are the same as Eqs. (12–15)–(12–17) for
the bandpass circuit, except that here they describe the loca-
tion and width of the stopband rather than the passband.

The RLC bandstop circuit is best suited to narrow-band
applications aimed at eliminating a single frequency. Nar-
row-band notch circuits are often used to eliminate power
line noise at 60 Hz (50Hz in many other countries), espe-
cially in biomedical instrumentation, where signal levels
are usually very low.

D E S I G N E X A M P L E 1 2 – 1 3

Avoltage source with a Thévenin resistance of 50Ω has a spurious (undesirable) con-
ducted emission at 25 krad=s. Connecting an inductor and capacitor in series across
the 50-Ω source produces a bandstop filter that can eliminate the troublesome signal.
To avoid reducing nearby useful signals, the stopband bandwidth must be less than
1 krad/s. Select values of L and C. Use Multisim to simulate the design and validate
the center frequency, the bandwidth, and the depth of the notch in decibels.

SOLUTION:
The stopband bandwidth limitation requires B=R=L < 1 krad=s. Since R= 50Ω, this
constraint means that L>R=1000 = 50mH. To eliminate the spurious emission, the
bandstop notch must be located at

ω0 =
1ffiffiffiffiffiffiffi
LC

p = 25× 103 rad=s

Selecting L= 100 mH makes the notch bandwidth B=R=L= 0:5 krad=s < 1 krad=s,
which meets the bandwidth limitation. Given this inductance, the required notch fre-
quency calls for a capacitance of C = 1=ω2

0L= 0:016 μF.
Grapher View of the simulation is shown in Figure 12–35. The simulation was con-

ducted using a series RLC circuit with the output taken across the L and C together.
The center frequency is desired at 25:0 krad=s, the bandwidth is at 503 rad=s, and the
depth of the notch is −40:75 dB.
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FIGURE 12–34 Effect of ZLC on the series RLC bandstop
response.
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■
D e s i g n E x e r c i s e 12–22

Design a bandstop filter to eliminate a 13:5 kHz signal. The bandwidth of the notch should
not exceed 10 kHz.

A n s w e r: Use a series RLC bandstop design with L=0:1 H, C = 1390 pF, R≤ 6:28 kΩ.
Other designs are possible.

P A R A L L E L R L C B A N D P A S S C I R C U I T

Using current division, the current transfer function of the parallel RLC circuit in
Figure 12–36 is written as

T sð Þ= I2 sð Þ
I1 sð Þ =

1=R
1=R+Cs+ 1=Ls

=
1=R

1=R+YLC sð Þ (12–20)

where YLCðsÞ=Cs+ 1=Ls is the admittance of the inductor and capacitor in
parallel. The bandpass features of the parallel RLC circuit are controlled by this
admittance.

The variation of the admittance YLCðjωÞ= jðωC−1=ωLÞ produces a bandpass
response for the following reasons. At ω= 0 and ω= ∞ , the admittance YLCðjωÞ is
infinite, which is equivalent to a zero-impedance short circuit. This short circuit
shunts all of the input current around the resistor in Figure 12–36, making I2 = 0
and producing zero-gain stopbands at low and high frequencies.

At ω=ω0 = 1=
ffiffiffiffiffiffiffi
LC

p
, the admittance YLCðjωÞ= 0, since

YLC jω0ð Þ= j
Cffiffiffiffiffiffiffi
LC

p −

ffiffiffiffiffiffiffi
LC

p

L

 !
= j

ffiffiffiffi
C
L

r
−

ffiffiffiffi
C
L

r !
= 0

A zero admittance is the same as an infinite-impedance open circuit. Because of this
open circuit, all of the input current passes through the resistor, making I2 = I1. This
creates a current gain of jTðjω0Þj=Tmax = 1. Clearly, Tmax is the maximum current
gain available from this current-divider circuit.

AC analysis
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The cutoff frequencies occur when YLCðjωÞ= � j=R, since

T jωð Þj j= 1=R
1=R� j=R










= 1ffiffiffi

2
p =

1ffiffiffi
2

p Tmax

and the current gain is reduced by a factor of 1=
ffiffiffi
2

p
from its maximum value at ω=ω0.

Thus, the current gain of the parallel circuit in Figure 12–36 displays a passband
response centered at ω0 with stopbands at both high and low frequencies.

The admittance YLCðjωÞ plays the same role in the parallel RLC circuit that the
impedance ZLCðjωÞ plays in the series RLC circuit. In fact, comparing the transfer
functions in Eqs. (12–14) and (12–20) reveals that the two circuits are duals. That
is, one transfer function can be converted into the other using the following duality
interchanges.

SeriesRLC ParallelRLC
R $ 1=R

L $ C

C $ L

Duality also means that these interchanges convert Eqs. (12–15)–(12–18) for the
series RLC circuit into the corresponding relationships for the parallel RLC circuit.

StartingwithEq. (12–15), the interchange leaves thecenter frequencyunchangedat

ω0 =
1ffiffiffiffiffiffiffi
LC

p (12–21)

The two cutoff frequencies in Eq. (12–16) become

ωC1 = −
1

2RC
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2RC

� �2

+
1
LC

s

ωC2 = +
1

2RC
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2RC

� �2

+
1
LC

s (12–22)

It is easy to show that the center frequency ω0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωC1 ωC2

p
is the geometric mean of

these two cutoff frequencies. Given these cutoff frequencies, the bandwidth, the
damping ratio, and quality factor of the parallel RLC circuit are

B = ωC2−ωC1 =
1
RC

Q =
ω0

B
=R

ffiffiffiffiffiffiffiffiffiffi
C=L

p (12–23)

Equations (12–21)–(12–23) relate the descriptive parameters of a bandpass response
to the circuit parameters of the parallel RLC circuit.

Finally, the gain plots in Figure 12–29 also apply to the current gain of the parallel
RLC circuit. As we noted with the series circuit, the response is narrow band when
Q� 1 and is wide band whenQ� 1. Thus, high-Q and narrow-band are synonymous
terms in both the series and parallel RLC circuits. But regardless of the value of Q,
the maximum current gain is always Tmax = 1 or 0 dBð Þ at ω=ω0.

A high-Q parallel RLC circuit is sometimes called a tank circuit. This terminology
apparently comes from the vacuum tube era, when the tunable LC components in
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frequency-selective amplifiers were packaged in a metal “tanklike” container. The
center frequency is also the resonant frequency of the parallel RLC circuit, since

ZIN jω0ð Þ= 1
1
R
+ j ω0C−

1
ω0L

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
at resonance

ω0 =
1ffiffiffiffiffiffiffi
LC

p

=R+ j0

So, again, the passband center frequency is also called the resonant frequency.

E X A M P L E 1 2–1 4

AparallelRLC circuit has a bandwidth ofB= 12 krad=s, a quality factor ofQ= 3, and
a 1-mH inductance. Find the values of R, C, ω0, ωC1, and ωC2.

SOLUTION:
Using the definition ofQ, we find the center frequency as ω0 =BQ= 36 krad=s. Using
the given inductance and the center frequency, we get the capacitance as C = 1=ω2

0L=
0:772 μF. For a parallelRLC circuit,B= 1=RC and the resistance isR= 1=BC = 108Ω.
Inserting these results into Eq. (12–22) yields the lower cutoff frequency as

ωC1 = −6000 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
60002 + 36;0002

q
= 30:5 krad=s

Then, using the definition of bandwidth, we get ωC2 =ωC1 +B= 42:5 krad=s. ■

E x e r c i s e 12–23
Use Multisim to verify that the circuit designed in Example 12–14 indeed meets the
specifications.

A n s w e r: Simulating the circuit shown in Figure 12–37 using Multisim yields the following
Grapher View results:
ω0 = 36:0 krad=s, ωC1 = 30:5 krad=s, ωC2 = 42:5 krad=s, B=12:0 krad=s, andQ= 3:0. The cir-
cuit designed meets all the desired parameters.
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B = 12.0 krad/s
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D E S I G N E X A M P L E 1 2–1 5

Design a parallel RLC circuit with cutoff frequencies at 12 kHz and 16 kHz.

SOLUTION:
The descriptive parameters of the required circuit are

ω0 = 2π
ffiffiffiffiffiffiffiffiffiffiffiffi
fC1fC2

p
= 87:1 krad=s

B = 2π fC2 − fC1ð Þ= 25:1 krad=s

Selecting R= 1 kΩ gives C = 1=RB= 0:0398 μF and L= 1=ω2
0C = 3:32 mH. ■

E x e r c i s e 12–24
A seriesRLC circuit has cutoff frequencies at 100 rad=s and 10 krad=s. Find the values ofB,
ω0, and Q. Does the circuit have a wide-band or narrow-band response?

A n s w e r: B=9:9 krad=s; ω0 = 1 krad=s; Q= 0:101; wide-band

12–6 B O D E D I A G R A M S W I T H R E A L P O L E S A N D Z E R O S
The purpose of this section is to offer a method for understanding the effects of poles
and zeros on the frequency response of circuits described by their transfer functions.
In general, few people still draw Bode plots by hand. Software tools such as
MATLAB and Multisim easily permit one to generate Bode plots from either trans-
fer functions or circuits, respectively. So, one may ask, why spend any time at all
learning of the effects of poles and zeros? Software tools are extremely useful, but
they cannot tell you if you made an error or, if the results are not what you expected,
how to go about improving them. With some practice, one can tell by looking at a
Bode plot where poles and zeros are located, and this can help in making changes
to improve the performance of a circuit. Finally, understanding the effects of poles
and zeros on a Bode plot can help one focus on critical features and aid in further
analysis.

We will begin by studying how a straight-line approximation of a Bode plot is con-
structed when the poles and zeros are located on the real axis in the s plane. As a
place to start, consider the following transfer function:

T sð Þ= Ks s+ α1ð Þ
s+ α2ð Þ s+ α3ð Þ (12–24)

whereK, α1, α2, and α3 are real. This function has zeros at s= 0 and s= −α1, and poles
at s= −α2 and s= −α3. All of these critical frequencies lie on the real axis in the s
plane. When making Bode plots, we put T jωð Þ in a standard format obtained by fac-
toring out α1, α2 and α3:

T jωð Þ= Kα1
α2α3

� �
jω 1+ jω=α1ð Þ

1+ jω=α2ð Þ 1 + jω=α3ð Þ (12–25)

Using the following example notation:

Magnitude = M = 1+ jω=αj j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ω=αð Þ2

q
Angle = θ= ff 1+ jω=αð Þ= tan−1 ω=αð Þ

Scale factor = K0 =
Kα1
α2α3

(12–26)
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we can write the transfer function in Eq. (12–25) in the form

T jωð Þ=K0
ωej90

�� �
M1ejθ1
� �

M2ejθ2ð Þ M3ejθ3ð Þ =
K0j jωM1

M2M3
ej ffK0 + 90� + θ1−θ2−θ3ð Þ (12–27)

The gain (in dB) and phase responses are

T jωð Þj jdB = 20 log10 K0j j|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
scale factor

+ 20 log10ω|fflfflfflfflfflffl{zfflfflfflfflfflffl}
zero

+ 20 log10M1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
zero

− 20 log10M2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
pole

− 20 log10M3|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
pole

θ ωð Þ = ffK0

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{
+ 90�
zfflfflfflfflfflffl}|fflfflfflfflfflffl{

+ θ1
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

− θ2
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

− θ3
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

(12–28)

The terms in Eq. (12–28) caused by zeros have positive signs and increase the
gain and phase angle, while the pole terms have negative signs and decrease the gain
and phase.

The summations in Eq. (12–28) illustrate a general principle. In a Bode plot, the
gain and phase responses are determined by the following types of factors:

1. The scale factor K0

2. A factor of the form jω due to a zero or a pole at the origin

3. Factors of the form 1+ jω=αð Þ caused by a zero or pole at s= −α

We can construct Bode plots by considering the contributions of these three factors.
The scale factor K0. The gain and phase contributions of the scale factor are con-

stants that are independent of frequency. In dB, the gain contribution 20 log10 K0j j is
positive when K0j j> 1 and negative when K0j j< 1. The phase contribution ffK0 is 0�

when K0 is positive and �180� when K0 is negative.
The factor jωð Þ. If there were no critical points at the origin, the slope of the gain

plot would be 0—that is, a horizontal line—and the phase would be 0�. A simple zero
or pole at the origin contributes �20 log10ω to the gain or a slope of �1 and �90� to
the phase, where the plus sign applies to a zero and the minus to a pole. When T sð Þ
has a factor sn in the numerator (denominator), it has a zero (pole) of order n at the
origin. Multiple zeros or poles at s= 0 contribute�20 n log10ω to the gain or a slope of
�n and �n90� to the phase. Figure 12–38 shows that the gain factors contributed by

Pole Zero

−20 × n dB/decade +20 × n dB/decade

+20 × n dB

−20 × n dB

10n

1

10−n

1.00.1 10
ω(rad/s)

|T(jω)| |T(jω)|dB

0 dB

FIGURE 12–38 Gain
responses of poles and zeros
at s = 0.
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zeros and poles at the origin are straight lines that pass through a gain of 1 (0 dB)
at ω= 1.2

The factor 1 + jω=αð Þ. The gain contributions of first-order zeros and poles are
shown in Figure 12–39. Like the first-order transfer functions studied earlier in
this chapter, these factors produce straight-line gain asymptotes at low and high
frequency. In a Bode plot of a low-pass filter, the low-frequency ω� αð Þ asymptotes
are horizontal lines at a gain of 1 0 dBð Þ. The high-frequency ω� αð Þ asymptotes are
straight lines of the form �ω=α or �20 log ω=αð ÞdB, where the plus sign applies to a
zero and the minus to a pole. The high-frequency gain asymptote is proportional to
the frequency ω slope = + 1 absolute or + 20 dB=decadeð Þ for a zero and proportional
to 1=ω slope = −1 absolute or−20 dB=decadeð Þ for a pole. In either case, the low- and
high-frequency asymptotes intersect at the corner frequency ω= α.

To construct straight-line gain approximations, we develop a piecewise linear
function T jωð Þj jSL where the subscript SL refers to the straight-line approximation,
defined by the asymptote of each factor in T jωð Þ. The function T jωð Þj jSL has a corner
frequency at each of the critical frequencies of the transfer function. At frequencies
below a corner, ω< αð Þ a first-order factor is represented by a gain of 1. Above the
corner frequency ω> αð Þ, the factor is represented by its high-frequency asymptote
ω=α. To generate T jωð Þj jSL, we start out below the lowest critical frequency, usually
at least one decade, with a low-frequency baseline that accounts for the scale factor
K0 and any poles or zeros at the origin. We increase frequency and change the slope
of T jωð Þj jSL whenever we pass a corner frequency. We proceed upward in frequency
until we have gone beyond the highest critical frequency, at which point we have a com-
plete expression for T jωð Þj jSL.

The following example illustrates the process.

E X A M P L E 1 2–1 6

(a) Construct the Bode plot of the straight-line approximation of the gain of the
transfer function

T sð Þ= 12;500 s+ 10ð Þ
s+ 50ð Þ s+ 500ð Þ

(b) Find the point at which the high-frequency gain falls below the dc gain.

(a) Zero

Actual

+20 dB/decade

10

|T(jω)| |T(jω)|dB

ω/α

10

2

1
0.1 0.5 1 2 10

20 dB

10 dB

3 dB

0 dB

(b) Pole

|T(jω)|dB

ω/α

Asymptotes

Asymptotes

|T(jω)|

0.1 0.5 1 2 10
0.1

1

1

−20 dB/decade

Actual

–10 dB

–3 dB

0 dB

–20 dB

2

10

1

FIGURE 12–39 Gain
responses of poles and zeros
at s = −α.

2Strictly speaking, a circuit with a natural pole at the origin is unstable and does not have a sinusoidal
steady-state response. Nevertheless, it is traditional to treat poles at the origin in Bode diagrams
because there are practical applications in which such poles are important considerations.
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SOLUTION:
(a) Written in the standard form for a Bode plot, the transfer function is

T jωð Þ= 5 1 + jω=10ð Þ
1+ jω=50ð Þ 1 + jω=500ð Þ

The scale factor is K0 = 5 and the corner frequencies are at ωC = 10 a zeroð Þ,
50 a poleð Þ, and 500 a poleð Þ rad=s. At low frequency ω< 10 rad=sð Þ, all of the
first-order factors are represented by their low-frequency asymptotes. As a result
T jωð Þj j≈5 1ð Þ= 1ð Þ½ 1ð Þ�= 5, so the low-frequency baseline is T jωð Þj jSL = 5 for
ω� 10.

What this means is that since there are no critical points at ω= 0, the slope of
the gain asymptote is zero entering our Bode plot from the left at a gain ofK0 = 5.
At ω= 10 rad=s, we encounter the first critical frequency: a zero. Beginning at
this point, the slope changes by + 1 absolute or + 20 dB=decade. The straight-
line gain becomes T jωð Þj jSL = 5 ω=10ð Þ=ω=2. After this point the line continues
upward with the + 1 slope until it reaches the next critical point: a pole at
ω= 50 rad=s. The pole causes the slope of the Bode plot to change by −1 at
the pole, or −20 dB=decade. The plot that was growing with a slope of + 1
becomes horizontal again with a slope of zero. After this point, the gain contri-
bution due to the pole factor 1= 1 + jω=50ð Þ is represented by its high-frequency
asymptote ω=50, and T jωð Þj jSL = 5 ω=10ð Þ= ω=50ð Þ= 25. The horizontal line
continues until we reach the last critical point: another pole at ω= 500 rad=s.
The slope changes one last time by −1 or −20 dB=decade, exiting our
graph down to the right. The gain contribution of the last pole is approximated
by ω=500, and the gain rolls off with a slope of −1 as T jωð Þj jSL =
5 ω=10ð Þ= ω=50ð Þ ω=500ð Þ= 12;500=ω. In summary, the straight-line approxima-
tion to the gain is

T jωð Þj jSL =
5 if 0 <ω� 10
ω=2 if 10 <ω� 50
25 if 50 <ω� 500
12;500=ω if 500 <ω










Given this function, we can easily plot the straight-

line gain response in Figure 12–40. At low frequency
ω< 10ð Þ the gain is flat at a value of 5 14 dBð Þ. At ω= 10
the zero causes the gain to increase as ω slopeð
= + 1 or + 20 dB=decadeÞ. This increasing gain con-
tinues until ω= 50, where the first pole cancels the
effect of the zero and the gain is flat at a value of
25 28 dBð Þ. The gain remains flat until the final pole
causes a corner at ω= 500. Thereafter the gain falls
off as 1=ω slope = −1 or −20 dB=decadeð Þ.

(b) Thedcgain is5.AquicklookatthesketchinFigure12–40
shows that the high-frequency gain falls below the dc
gain in the regionaboveω= 500,where the straight-line
gain is 12;500=ω. Hence, we estimate the required fre-
quency to be ω= 12;500=5 = 2500 rad=s. ■

1

2.5

5

25 28 dB

14 dB

0 dB

1 10 50050 5000

|T(jω)| |T(jω)|dB

ω

T(jω) =
(1 + jω/50) (1 + jω/500)

+1 –1

0

0

5 (1 + jω/10)

FIGURE 12–40
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E x e r c i s e 12–25
Use MATLAB to graph the Bode magnitude plot of the transfer function in
Example 12–16.

A n s w e r: The required MATLAB code is:

T=tf([12500 125000], [1 550 25000]);
w = logspace(0,4,1000);
bodemag(T,w);grid

The Bode plot is shown in Figure 12–41.

D E S I G N E X A M P L E 1 2 – 1 7

You need to design a circuit that has the transfer function indicated by the straight-
line Bode plot shown in Figure 12–42.

(a) Develop a transfer function T sð Þ from the
straight-line graph.

(b) Validate your results using MATLAB.
(c) Design a cascade circuit that realizes the T sð Þ

found in part (a).
(d) Validate your design using Multisim.

SOLUTION:
(a) In previous examples we were given a transfer function

and required to construct a straight-line gain plot. Here
we are given a straight-line gain plot and asked to find
the transfer function. The gain plot shows a finite gain
at dc and corner frequencies at ω= 10,50, and 250 rad=s.
The slope of the straight-line gain response between the
first corner at ω= 10 and 50 rad=s is

m= −14−0ð Þ= log 50− log 10ð Þ= −20 dB=decade

Bode diagram
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The −20 dB=decade slope means that T sð Þ has a pole at s= −10. The gain slope between
the second corner at ω=50 and 250 rad=s is

m= −42− −14ð Þ½ �= log 250− log 50ð Þ=−40 dB=decade

The slope decreases by another −20 dB=decade, so T sð Þ also has a pole at s= −50. The
gain slope between the last corner at ω=250 and 1000 rad=s is

m= −54− −42ð Þ½ �= log 1000− log 250ð Þ= −20 dB=decade

The gain slope increases by + 20 dB=decade, so T sð Þ must have zero at s= −250. These
critical frequencies account for all of the corner frequencies shown in the figure, and
T sð Þ has the form

T sð Þ= K s+ 250ð Þ
s+ 10ð Þ s+ 50ð Þ

The dc gain of this transfer function isT 0ð Þ=K=2. From Figure 12–42, the dc gainT 0ð Þ= 1.
Hence, we find K = 2, so that the desired transfer function becomes

T sð Þ= 2 s+ 250ð Þ
s+ 10ð Þ s+ 50ð Þ

(b) We use MATLAB to produce the Bode magnitude plot of the transfer function we just
found and compare it with the desired straight-line graph. The following MATLAB code
produces the Bode plot shown in Figure 12–43:

T = tf([2 500],[1 60 500])
w = logspace(0,3,1000);
bodemag(T,w); grid

We superimposed the straight-line graph on the MATLAB plot. It appears to fit well, so
we can now design our circuit.

(c) The transfer function found in part (a) can be expressed as the product of two
transfer functions:

T sð Þ=
1

s
10

+ 1|fflfflffl{zfflfflffl}
T1 sð Þ

0
BBBB@

1
CCCCA

s
250

+ 1
s
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Both of these transfer functions can be realized by voltage dividers. Factoring
s out of the denominator of T1 sð Þ and equating the result to a voltage divider
yields

1=s
1=10 + 1=s|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

T1 sð Þ

=
Z2 sð Þ

Z1 sð Þ+Z2 sð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
voltage divider

Equating the numerators and denominators yields a
voltage divider with Z2 = 1=C1s and Z1 =R1, where
C1 = 1 F and R1 = 1=10Ω.

Factoring s out of the numerator and denominator of
T2 sð Þ and equating the result to a voltage divider yields

1=250 + 1=s
1=50 + 1=s|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

T2 sð Þ

=
Z2 sð Þ

Z1 sð Þ+Z2 sð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
voltage divider

Equating thenumerators anddenominators leads to a voltage
dividerwithZ2 =R2 + 1=C2s andZ1 =R3, whereR2 = 1=250Ω,
C2 = 1F, and R3 = 4=250Ω.

Figure 12–44 shows a cascade circuit using the two voltage dividers separated
by a voltage follower to ensure that the chain rule applies. The element values in
the prototype version of this circuit are R1 = 1=10Ω, C1 =C2 = 1F , R2 = 1=250Ω,
and R3 = 4=250Ω. Using a magnitude scale factor of km = 106 to get practical
values produces a final design with R1 = 100 kΩ, C1 =C2 = 1μF, R2 = 4 kΩ, and
R3 = 16 kΩ. Many other designs are possible.

(d) We useMultisim to simulate the circuit in Figure 12–44 using anAC analysis sim-
ulation. Figure 12–45 shows the circuit as drawn in Multisim and the response in
Grapher View. To ensure compliance with the specifications, we compared key
points with theMATLAB simulation in Figure 12–43. These key points are tabu-
lated and compared in Table 12–7. The circuit meets all of the desired
specifications.

■
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T A B L E 12–7

FREQUENCY
(RAD/S)

MATLAB
(DB)

MULTISIM
(DB)

0 0 0

10 −3.19 −3.17

50 −17.0 −17.0

250 −39.1 −39.1

1000 −53.7 −53.7
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E x e r c i s e 12–26
(a) Derive an expression for the straight-line approximation to the gain response of the

following transfer function:

T sð Þ= 500 s+50ð Þ
s+ 20ð Þ s+ 500ð Þ

(b) Find the straight-line gains at ω=10, 30, and 100 rad=s.
(c) Find the frequency at which the high-frequency gain asymptote falls below −20 dB.
(d) Compare your answers in parts (b) and (c) with MATLAB.

A n s w e r s:

(a) T jωð Þj jSL =
2:5 if 0 <ω� 20
50=ω if 20 <ω� 50
1 if 50 <ω� 500
500=ω if 500 <ω










(b) 8 dB, 4:4 dB, 0 dB
(c) 5 krad=s
(d) 7:16 dB, 4:16 dB, 0:628 dB, and 4:975 krad=s.

In many situations, the straight-line Bode plot tells us all we need to know.
When greater accuracy is needed, the straight-line gain plot can be refined by adding
gain corrections in the neighborhood of the corner frequency. Figure 12–39 shows
that the actual gains and the straight-line approximations differ by �3 dB at the cor-
ner frequency. They differ by roughly�1 dB an octave above or below the corner
frequency. When these “corrections” are included, we can sketch the actual
response and achieve somewhat greater accuracy. However, making the graph-
ical gain corrections is usually not worth the trouble. First, the gain corrections
overlap unless the corner frequencies are separated by more than two octaves.
More important, the purpose of a straight-line gain analysis is to provide insight,
not to generate accurate frequency-response data. The straight-line plots are
useful in preliminary analysis and in the early stages of design. At some point
accurate response data will be needed, in which case it is better to use com-
puter-aided analysis rather than trying to “correct the errors” graphically in a
straight-line plot.

S T R A I G H T - L I N E P H A S E A N G L E P L O T S

Figure 12–46 shows the phase contributions of first-order zeros and poles.
The straight-line approximations are similar to the gain asymptotes except that
there are two slope changes. The first occurs a decade below the gain corner
frequency, and the second occurs a decade above. The total phase changes by 90�

over this two-decade range, so the straight-line approximations have slopes of
�45� per decade, where the plus sign applies to a zero and the minus to a
pole. Poles and zeros at the origin contribute a constant phase angle of�n90�, where
n is the order of the critical frequency and the plus (minus) sign applies to
zeros (poles).

To generate a straight-line phase plot, we begin with the low-frequency phase
asymptote. This low-frequency baseline accounts for the effect of the scale factor
K0 and any poles or zeros at the origin. We account for the effect of other critical
frequencies by introducing a slope change of �45�=decade one decade below and
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one decade above each gain corner frequency. These slope changes generate a
straight-line phase plot as we proceed from the low-frequency baseline to a high fre-
quency that is at least a decade above the highest gain corner frequency.

It is important to remember that a decade above the highest corner frequency the
phase asymptote is a constant value with zero slope. That is, at high frequency the
straight-line phase plot is a horizontal line at θ jωð Þ= m − nð Þ90�, wherem is the num-
ber of finite zeros and n is the number of poles.

E X A M P L E 1 2–1 8

Find the straight-line approximation to the phase response of the transfer function in
Example 12–16. Verify your solution using MATLAB.

SOLUTION:
In Example 12–16, the standard form of T jωð Þ is shown to be

T jωð Þ= 5 1+ jω=10ð Þ
1 + jω=50ð Þ 1+ jω=500ð Þ

The scale factor isK0 = 5 and the corner frequencies are ωC = 10 zeroð Þ, 50 poleð Þ, and
500 poleð Þ rad=s. At low frequency T jωð Þ!K0 = 5, so the low-frequency phase
asymptote is θ ωð Þ!ffK0 = 0�. Proceeding from one decade below the lowest corner
frequency 1 rad=sð Þ to one decade above the highest corner frequency 5000 rad=sð Þ,
we encounter the slope changes listed in Table 12–8.

Figure 12–47 shows the straight-line approximation and the actual phase response
from MATLAB.

T A B L E 12–8

FREQUENCY CAUSED BY SLOPE CHANGE NET SLOPE

1 zero at s= −10 + 45�=decade + 45�=decade
5 pole at s= −50 −45�=decade 0�=decade
50 pole at s= −500 −45�=decade −45�=decade
100 zero at s= −10 −45�=decade −90�=decade
500 pole at s= −50 + 45�=decade −45�=decade
5000 pole at s= −500 + 45�=decade 0�=decade

0˚
5.7˚

45˚

84.3˚
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ω/α
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(b) Pole

Actual

−45˚/decade

FIGURE 12–46 Phase
responses of poles and zeros
at s = −α.
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■

E x e r c i s e 12–27
Construct a Bode plot of the straight-line approximation to the phase response of
the transfer function in Exercise 12–26. Use the plot to estimate the phase angles at
ω= 1, 15, 300, and 104 rad=s. Compare your results with those obtained using MATLAB.

A n s w e r s: 0�, −18�, −45�, −90�; MATLAB: −1:8�, −21:9�, −36:6�, −87:3�

12–7 B O D E D I A G R A M S W I T H C O M P L E X P O L E S A N D Z E R O S
The frequency response of transfer functions with complex poles and zeros can be
analyzed using straight-line gain plots. However, complex critical frequencies may
produce resonant peaks (or valleys) where the actual gain response departs signifi-
cantly from the straight-line approximation. Straight-line plots can be used to define a
starting place for describing the frequency response of these highly resonant circuits.

Complex poles and zeros occur in conjugate pairs that appear as quadratic factors
of the form

s2 + 2ζω0s+ω2
0 (12–29)

where ζ and ω0 are the damping ratio and undamped natural frequency. In a Bode
diagram, the appropriate standard form of the quadratic factor is obtained by factor-
ing out ω2

0 and replacing s by jω to obtain

1 − ω=ω0ð Þ2 + j2ζ ω=ω0ð Þ (12–30)

In a Bode diagram, this quadratic factor introduces gain and phase terms of the
following form:

T jωð Þj jdB = �20 log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ω=ω0ð Þ2
h i2

+ 2ζω=ω0ð Þ2
r

(12–31a)

θ ωð Þ= � tan−1 2ζω=ω0

1− ω=ω0ð Þ2 (12–31b)
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where the plus sign applies to complex zeros of T sð Þ and the minus sign to com-
plex poles.

Figure 12–48 shows the gain contribution of complex poles and zeros for several
values of the damping ratio ζ. The low-frequency ω�ω0ð Þ gain asymptotes for these
plots are unity 0 dBð Þ. The high-frequency ω�ω0ð Þ gain asymptotes are of the
form ω=ω0ð Þ�2. Expressed in dB, the high-frequency asymptote is �40 log10 ω=ω0ð Þ,
which in a Bode diagram is a straight line with a slope of �2 or �40 dB=decade,
where again the plus sign applies to zeros and the minus to poles.

These asymptotes intersect at a corner frequency of ω=ω0. The gains in the
neighborhood of the corner frequency are strong functions of the damping ratio.
For ζ> 1=

ffiffiffi
2

p
the actual gain lies entirely above the asymptotes for complex zeros

and entirely below the asymptotes for complex poles. For ζ< 1=
ffiffiffi
2

p
, the gain is a

minimum at ω=ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2ζ2

p
for complex zeros and a maximum for complex poles.

These valleys (for zeros) and peaks (for poles) are not particularly conspicuous until
ζ< 0:5.

To develop a straight-line gain plot for complex critical frequencies, we insert a
corner frequency at ω=ω0. Below this corner frequency we use the low-frequency
asymptote to approximate the gain, and above the corner we use the high-frequency
asymptote. The actual gain around the corner frequency depends on ζ. But generally
speaking, the straight-line gain is within �3 dB of the actual gain for ζ in the range
from about 0.3 to about 0.7. When ζ falls outside this range, we can calculate the
actual gain at the corner frequency and perhaps a few points on either side of
the corner frequency. These gains may give us a better picture of the gain plot in
the vicinity of the corner frequency.

However, we should keep in mind that the purpose of straight-line gain analysis is
insight into the major features of a circuit’s frequency response. If greater accuracy is
required, then computer-aided analysis is the best approach. The straight-line gain
gives useful results when the resonant peaks and valleys are not too abrupt. When
a circuit has lightly damped critical frequencies, the straight-line approach may
not be particularly helpful.

E X A M P L E 1 2 – 1 9

(a) Construct the straight-line gain plot for the transfer function

T sð Þ= 5000 s+ 100ð Þ
s2 + 400s+ 500ð Þ2

(b) Verify the solution using MATLAB.
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SOLUTION:
(a) The transfer function has a real zero at s= −100 rad=s and a pair of complex poles

with ζ= 0:4 and ω0 = 500 rad=s. This damping ratio falls in the range (0.3 to 0.7) in
which the resonant peak due to the complex poles is not too pronounced. Hence
we expect the straight-line gain to give a useful approximation. Written in stand-
ard form, T jωð Þ is

T jωð Þ= 2
1 + jω=100

1− ω=500ð Þ2 + j0:8ω=500

 !

The scale factor isK0 = 2, and there are corner frequencies at ω= 100 rad=s due to
the zero and ω= 500 rad=s due to the pair of complex poles. At low frequency
T jωð Þ! 2, so the low-frequency ω< 100ð Þ baseline is T jωð Þj jSL = 2. This gain
applies until we pass the first critical frequency at ω= 100. Beginning at that
point, the zero is represented by its high-frequency asymptote ω=100ð Þ and
the straight-line gain becomes

T jωð Þj jSL = 2 ω=100ð Þ=ω=50

This linearly increasing gain applies until we pass the critical frequency at
ω0 = 500. Thereafter the complex poles are represented by their high-frequency
asymptote 5002=ω2

� �
. After this point the gain rolls off as

T jωð Þj jSL = 2 ω=100ð Þ 5002=ω2� �
= 5000=ω

In summary, the straight-line gain function is

T jωð Þj jSL =
2 if 0 <ω� 100
ω=50 if 100 <ω� 500
5000=ω if 500 <ω








Figure 12–49 shows a plot of the straight-line gain. We expect to see a gain peak
around ω= 500 rad=s due to the complex poles. The plot in Figure 12–49 shows
that the zero at s= −100 rad=s causes the gain to bend upward prior to the corner
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frequency at ω= 500 rad=s. This upward bend enhances the height of the reso-
nant peak caused by the complex poles.

(b) In addition to the straight-line approximation, Figure 12–49 shows the magni-
tude response created with the following MATLAB code:

T=tf([5000 500000] , [1 400 250000]);
w = logspace(1, 4, 1000);
bodemag(T,w);grid

The straight-line results are reasonable approximations of the true response, but
there is a larger error observed than in transfer functions with only real poles and
zeros. In this case, the errors are especially pronounced between 100 rad=s and
the peak at 500 rad/s. Practically, it is usually better to use MATLAB to plot the
Bode plots when there are complex poles. ■

E x e r c i s e 12–28
Construct a straight-line graph of the gain function of the following transfer function. Then
use MATLAB to plot the actual Bode magnitude plot.

T sð Þ= 20s
s2 + 2s+2500

A n s w e r:

T jωð Þj jSL =
ω=125 for 0 <ω≤ 50

20=ω for ω> 50







The required MATLAB code is

T=tf([20 0],[1 2 2500]);
w = logspace(0,3,1000);
bodemag(T,w);grid

Both the straight-line graph and the MATLAB Bode magnitude plot are shown in
Figure 12–50.
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P H A S E P L O T S F O R C O M P L E X C R I T I C A L F R E Q U E N C I E S

Figure 12–51 shows the phase contribution from complex poles or zeros for several
values of ζ. The low-frequency phase asymptotes are 0� and the high-frequency limits
are �180�. The phase is always �90� at ω=ω0 regardless of the value of the damping
ratio. The total phase change is�180�, and most of this change occurs in a two-decade
range from ω0=10 to 10ω0. As a result, the straight lines in Figure 12–51 offer crude
approximations to the phase shift. The shapes of the phase curves change radically with
the damping ratio, so these straight-line approximations are of little use except atω0 and
around the end points.

The net result is that phase angle plots for complex critical frequencies are best gen-
erated by computer-aided analysis. In practical applications we can often derive useful
information from the gain plot alone without generating the phase response. However,
the converse is not true. When we need phase response, we usually need gain as well.

E x e r c i s e 12–29
Use MATLAB to plot the actual Bode phase plot for the transfer function in Exercise 12–28.

A n s w e r: The required MATLAB code is

T=tf([20 0], [1 2 2500]);
w = logspace(0,3,1000); bode(T,w);grid

Figure 12–52 shows the resulting Bode magnitude and phase plots.
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D E S I G N E X A M P L E 1 2 – 2 0

A series RLC bandstop filter shown in Figure 12–33 has the following transfer
function

T sð Þ=
s2 +

1
LC

s2 +
R
L
s+

1
LC

Design an RLC bandstop filter such that the rejected frequency is 25 krad=s and the
bandwidth is 500 rad=s. The filter is connected to a Thévenin source with a 50-Ω
source resistance. Validate both the gain and frequency response of the design using
both Multisim and MATLAB.

SOLUTION:
From the study of the RLC bandstop filter, we recall that the bandwidth is B = R=L
and the center frequency is ω0 = 1ffiffiffiffiffi

LC
p . Using the source’s resistance as our R, we can

calculate the other parameters.

B =
R
L
= 500 =

50
L

L =
50
500

= 0:1 H

Knowing L, we can readily find C

ω0 =
1ffiffiffiffiffiffiffi
LC

p = 25× 103 =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:1 ×C
p

C = 0:016 × 10−6 = 0:016 μF

This yields the following transfer function

T sð Þ= s2 + 625 × 106

s2 + 500s+ 625 × 106

To validate our design, we construct the circuit in Multisim as shown in Figure 12–33
and ask for an AC analysis. If the filter was designed correctly, the center frequency
will be at 3:98 kHz (25 krad=s=2π). In order to see the narrow characteristics of this
filter, we sweep from 2500 to 6000 Hz to spread out the notch, and ask for one million
data points per decade. The more data points we have in the simulation, the more
accurately the depth of the filter will be defined. The results are shown in Grapher
View in Figure 12–53(a). The simulation shows that the center frequency is exactly
25:0 krad=s while the bandwidth is 80 Hz = 503 rad=s. Note that the filter attenuates
the signal by over 90 dB at the center frequency. Note also that the phase shifts
abruptly at the center frequency from −90� to + 90� crossing 0� at the center fre-
quency. This is a common occurrence for either notch or tuned filters, with the latter
flipping in the opposite direction.

For MATLAB, we use the following code to generate the response of the filter’s
transfer function

T=tf([1 0 625e6],[1 500 625e6]);
w=logspace(4,5,10000000);bode(T,w);grid

The MATLAB plot is shown in Figure 12–53(b). The characteristics are identical to
the Multisim results: B = 503 rad=s, ω0 = 25:0 krad=s. The one exception is that the
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depth of the notch is different because we asked MATLAB to calculate 10 million
points in that decade. This resulted in MATLAB detecting the depth of the notch
to exceed 100 dB. In theory, the depth of the notch is infinite, but in practice we
are limited by the elements we use to build and the tools we use to analyze the per-
formance of the filter—inductors, in particular, have a parasitic resistance that keeps
the impedance from ever going to zero at resonance. ■

12–8 F R E Q U E N C Y R E S P O N S E A N D S T E P R E S P O N S E

The step response g tð Þ and frequency response T jωð Þj j are alternative ways to
describe the performance of a filter. The transient and frequency responses are
not independent. In fact, one can be derived from the other. Filter performance is
usually specified in terms of frequency response. Hence, it is important to understand
the time-domain consequences of frequency-domain specifications, and vice versa.

AC analysis
G

ai
n
 (

d
B

)
P

h
as

e 
(d

eg
)

G
ai

n
 (

d
B

)
P

h
as

e 
(d

eg
)

2.5k

0

–20
–10

–30
–40
–50
–60
–70
–80
–90

–100

0

–90.0
–67.5
–45.0
–22.5

0.0
22.5
45.0
67.5

90.0

–20
–10

–30
–40
–50
–60
–70
–80
–90

–100

–22.5

–45

–67.5

–90

90

67.5

45

22.5

0

3.0k 3.5k 4.0k 4.5k 5.0k 5.5k 6.0k

2.5k 3.0k 3.5k

(a)

4.0k 4.5k 5.0k 5.5k 6.0k

Frequency (Hz)

2.5 3 3.5 4 4.5 5 5.5 6

(b)

Frequency (kHz)

(3.94 kHz, –3.00 dB) (4.02 kHz, –3.00 dB)

B = 80 Hz = 503 rad/s
Multisim

MATLAB

(3.98 kHz = 25.0 krad/s, –90.4 dB)

System: T
Frequency (kHz): 3.98
Magnitude (dB): –103

(3.98 kHz, 0°)

FIGURE 12–53

667FREQUENCY RESPONSE AND STEP RESPONSE



As a starting place, consider the first-order low-pass filter defined by

T sð Þ= K
s+ α

Section 12–3 shows that this filter has a passband (dc) gain of K=α and a cutoff fre-
quency of ωC = α. Recall from Chapter 11 that the step response of a circuit is
G sð Þ=T sð Þ=s. Hence, the step response of this low-pass filter is

G sð Þ= K
s s+ αð Þ =

K=α
s

=
K=α
s+ α

The time-domain step response g tð Þ is

g tð Þ=L −1fG sð Þg= K
α
ð1−e−αtÞ for t ≥ 0

The time-domain response has a final value ðt! ∞Þ of K=α and a time constant
of TC = 1=α.

Specifying the gain and cutoff frequency of the frequency response also
determines the amplitude and duration of the transient response, and vice versa.
For instance, if the duration of the transient response is specified to be less than
then 20 μs then 5TC = 5=α= 5=ωC < 20 × 10−6 and hence ωC > 250 krad=s or 39:8 kHz.
This cutoff frequency might not satisfy the frequency-response requirements. In any
case, we need to look at the response in both domains.

Today’s users of communication technology generally recognize that wide band
and high speed are synonymous. The first-order low-pass filter illustrates the connec-
tion, since ωCTC = 1. If we want a short response time (small TC), then a wide band-
width (large ωC) is required. On the other hand, a fixed bandwidth (given ωC) limits
the speed of response, since TC = 1=ωC. This illustrates a signal-processing principle
called reciprocal spreading. Shrinking the response in one domain causes the
response in the other domain to spread out.

The important point is that evaluating filter performance involves both the fre-
quency domain and the time domain. We will encounter this idea again in
Chapter 14, where we design much more complex filters. In any case, it is clear that
it is important to be able to go from one domain to the other. Changing domains
involves concepts learned in several previous chapters, as illustrated in the following
examples.

E X A M P L E 1 2–2 1

You are given a second-order low-pass filter with the following transfer function:

T sð Þ= 10;000
s2 + 200ζs+ 10;000

Characterize the effects of changing ζ on the step response and the magnitude of the
frequency response.

SOLUTION:
We will consider three values of ζ, namely 0.25, 1, and 5. These represent the three
different damping cases considered in Chapter 7. Figure 12–54 shows both the step
responses and the Bode magnitude plots for the three cases. The requiredMATLAB
code to generate the plots is
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T1 = tf([10000],[1 1000 10000]);
T2 = tf([10000],[1 200 10000]);
T3 = tf([10000],[1 50 10000]);
step(T1,T2,T3); grid
figure
w = logspace(0,3,1000);
bodemag(T1,T2,T3,w); grid

The frequency response is clearly that of a second-order low-pass filter. The
undampednatural frequency is 100 rad= s. As ζ decreases, the filter’s roll-off becomes
steeper near the critical frequency. In many filter applications, a steeper roll-off indi-
cates a “better” filter. The resonant peak that occurs with a small ζ is not always desir-
able, since signals passing through the filter are amplified unequally in the passband.
However, in general, one would like the steeper roll-off that a smaller ζ offers.
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Now consider the step response of the same circuit. The effect of ζ is quite differ-
ent. As the damping coefficient decreases, the response becomes more underdamped
and oscillates more as it approaches its final value. This additional oscillation is not
desirable if one is processing an audio signal, since underdamped circuits introduce
“ringing” and distortion. When the circuit is critically damped ðζ= 1Þ, it offers the
fastest rise time without an overshoot. It also offers a good compromise regarding
filtering, as seen in the frequency response. We will see other characteristics in
Chapter 14, but for now, we can see the effects of ζ on two important circuit behavior
properties. A circuit designer must evaluate these competing properties and decide
on which is best for the application under consideration. ■

E v a l u a t i o n E x e r c i s e 1 2–3 0

There is a need for a passive notch filter at 100 rad=s. The narrower the notch, the better,
but there should be minimal ringing of signals passing through. Shown below are the
transforms of three filters submitted for consideration are shown below. Which would
you recommend and why?

T1 sð Þ = s2 + 10s+ 10;000
s2 + 150s+ 10;000

T2 sð Þ = s2 + 20s+ 10;000
s2 + 250s+ 10;000

T3 sð Þ = s2 + 10;000
s2 + 50s+10;000

A n s w e r: T1ðsÞ offers the best compromise—a relatively narrow notch with only a slight
overshoot. T2ðsÞ would be the best choice if no ringing at all was desired, but the notch
would be wider.

E X A M P L E 1 2–2 2

For t ≥ 0, the step response of a filter is

g tð Þ= −5e−40t + 25e−200t

Is this a low-pass, high-pass, bandpass, or bandstop filter? What is the passband gain
and the approximate cutoff frequency?

SOLUTION:
Recall from Chapter 11 that T sð Þ= sG sð Þ where G sð Þ=ℒfg tð Þg. The filter transfer
function is found as follows:

T sð Þ = sℒ g tð Þf g= −
5s

s+ 40
+

25s
s+ 200

=
20s2

s+ 40ð Þ s+ 200ð Þ

This is a high-pass filter with Tð0Þ= 0 and Tð∞Þ= 20. The high-frequency passband
gain is 20 or, equivalently, 26 dB. The filter has a corner frequency (pole) at
ω= 40 rad=s and another at ω= 200 rad=s. The low-frequency gain asymptote
is 20ω2=ð40 × 200Þ=ω2=400. This asymptote has a slope of 40 dB=decade and a
value of 4ð12 dBÞ at the first corner. Above the first corner, the gain asymptote
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is 20ω=ð200Þ=ω=10, which has a slope of 20 dB=decade and
a value of 20ð26 dBÞ at the second corner. Given these
results, we can easily sketch the straight-line gain shown in
Figure 12–55. Clearly the cutoff frequency is in the vicinity
of the second corner frequency, hence ωC≈200 rad=s. ■

E x e r c i s e 12–31
The impulse response of a particular filter is h tð Þ=104te−100tu tð Þ.
What type of filter is this? What is its passband bandwidth?

A n s w e r: It is a second-order low-pass filter. Its cutoff frequency
is about 64 rad=s; hence, that is also its bandwidth.

E X A M P L E 1 2–2 3

The straight-line gain response of a filter is shown in
Figure 12–56. What are the initial and final values of the step
response? What is the approximate duration of the transient
response?

SOLUTION:
In this case, we must derive the transfer function from the gain
plot. The straight-line gain has corner frequencies atω= 20 rad=s
and another at ω= 100 rad=s. The first corner increases the
gain slope by 20−6ð Þ= log 100− log 20ð Þ= �20 dB=decade, so
there is a simple zero at s= −20. The second corner decreases
the slope by −20 dB=decade, so there is a simple pole at
s= −100. The two critical frequencies account for all of the
corner frequencies shown in the figure, so the necessary trans-
fer function has the form

T sð Þ=K
s+ 20
s+ 100

The infinite frequency gain of this transfer function is Tð∞Þ=K. The high-frequency
gain in Figure 12–56 is + 20 dB; hence, K = 10. In general, the step response is
G sð Þ=T sð Þ=s; hence, for this filter we have

G sð Þ= 10
s

s+ 20
s+ 100

=
2
s
+

8
s+ 100

The time-domain step response g tð Þ is
g tð Þ=ℒ−1 G sð Þf g= 2+ 8e−100t t > 0

The initial value is gð0Þ= 10, the final value is gð∞Þ= 2, and the time constant of
the transient term is TC = 1=100 s. The duration of the transient response is
about 5TC = 50ms. ■

E v a l u a t i o n E x e r c i s e 1 2–3 2

A certain RLC series bandpass circuit has the following transfer function:

T sð Þ= 200s
s2 + 200s+640;000

Is it possible to alter a circuit element to keep the same center frequency while minimizing
the ringing?
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A n s w e r: Yes. Increasing the resistance will make the middle term in the denominator,
R=L=2ζω0 = 200, larger, which will increase ζ but leave the center frequency at
800 rad=s. Multiplying the value of the resistance by 8 will increase the damping ratio to
make it equal to 1 and all ringing will stop. Note that the bandwidth will increase with
increasing ζ.

E V A L U A T I O N E X A M P L E 1 2–2 4

Modern piezoelectric pressure transducers are fabricated as an integrated circuit that
includes both the sensing crystal and the signal-conditioning electronics. The step
response of such a transducer takes the form

υTR tð Þ=KVe− t=TCp tð Þ
where υTR (t) is the transducer output voltage caused by an abrupt change in pressure
p tð Þ=PAu tð Þ. The transducer transient response is defined by the sensitivity KV

(usually in mV=psiÞ, and the discharge time constant TC (usually in seconds).
A transducer is to be installed in an environment with sinusoidal pressure variations
in the range from 2mHz to 2 kHz. A vendor offers transducers with the character-
istics presented in Table 12–11. Select the model that meets the frequency-response
requirements and produces the largest output signal for any given pressure change.

SOLUTION:
The specified response υTR tð Þ is for an input PAu tð Þ. The unit step response g tð Þ is
derived from this response by dividing out the amplitude of the input step PA.

g tð Þ= 1
PA

υTR tð Þ=KVe− t=TCu tð Þ

In the s domain, the step response is

G sð Þ= KV

s+ 1=TC

and the pressure-to-voltage transfer function is found to be

T sð Þ= sG sð Þ= KVs
s+ 1=TC

This transfer function has a first-order high-pass characteristic with a passband gain
of KV and a cutoff frequency of ωC = 1=TC. The specified frequency range from
2mHz to 2 kHz must fall in the transducer passband, which means that the cutoff fre-
quency must be less than 2 mHz. In equation form this requires

ωC =
1
TC

< 2π× 0:002 or TC >
250
π

= 79:6 s

Models 266, 268, and 269 meet the frequency-response requirement, since they have
discharge time constants TC greater than 79.6 s. Model 266 is the best choice because
it has the most sensitivity (passband gain) at KV = 5mV=psi. ■

T A B L E 12–11

MODEL 261 265 266 268 269

KVðmV=psiÞ 50 10 5 1 0:5
TCðsÞ 10 50 100 500 1000
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S U M M A R Y
• The frequency response of a circuit is defined by the

variation of the gain T jωð Þj j and phase ffT jωð Þwith fre-
quency. The gain function is usually expressed in dB in
frequency-response plots. Logarithmic frequency
scales are used on frequency-response plots of the gain
and phase functions.

• A passband is a range of frequencies over which the
steady-state output is essentially constant with very lit-
tle attenuation. A stopband is a range of frequencies
over which the steady-state output is significantly
attenuated. The cutoff frequency is the boundary
between a passband and the adjacent stopband.

• Circuit gain responses are classified as low pass, high
pass, bandpass, and bandstop depending on the num-
ber and location of the stopbands and passbands. The
performance of devices and circuits is often specified
in terms of frequency-response descriptors such as
bandwidth, passband gain, and cutoff frequency.

• The low- and high-frequency gain asymptotes of a
first-order circuit intersect at a corner frequency deter-
mined by the location of its pole. The total phase
change from low to high frequency is�90�. First-order

circuits can be connected to produce bandpass and
bandstop responses.

• Series and parallel RLC circuits provide bandpass and
bandstop gain characteristics that are easily related to
the circuit parameters.

• Bodeplots are graphs of the gain (in dB) andphase angle
(in degrees) versus log-frequency scales. Straight-line
approximations to the gain and phase can be constructed
using the corner frequencies defined by the poles and
zeros of T sð Þ. The purpose of the straight-line approxi-
mations is to develop a conceptual understanding of
frequency response. The straight-line plots do not neces-
sarily provide accurate data at all frequencies, especially
for circuits with complex poles.

• Computer-aided circuit analysis programs can accu-
rately generate and plot frequency-response data. The
user must have a rough idea of the gain and frequency
ranges of interest to use these tools intelligently.

• It is often necessary to relate the time-domain charac-
teristics of a circuit to its frequency response, and vice
versa. The transfer function provides a link between
the frequency-domain and time-domain responses.

P R O B L E M S

O B J E C T I V E 1 2 – 1 F I R S T - O R D E R C I R C U I T
F R E Q U E N C Y R E S P O N S E ( S E C T S . 1 2 – 1 – 1 2 – 3 )
Given a first-order circuit or transfer function:
(a) Understand and use frequency response descriptors.
(b) Find and classify the frequency response.
(c) Plot thegainandphase responsesusing straight-lineapprox-

imations and computer tools.
(d) Design circuits to produce a specified frequency

response.
See Examples 12–1 to 12–8 and Exercises 12–1 to 12–16.

12–1 A transfer function has a passband gain of 1000. At a
particular frequency in its stopband, the gain of the transfer
function is only 0:00025. By how many decibels does the
gain of the passband exceed that of the frequency in the
stopband?

12–2 A particular filter is said to be 80 dB down at a
desired stop frequency. How many times reduced is a signal
at that frequency compared to a signal in the filter’s pass-
band?

12–3 A certain low-pass filter has the Bode diagram shown in
Figure P12–3.

(a) How many dB down is the filter at 100 rad=s?
(b) Estimate where the cutoff frequency occurs, then deter-
mine how many dB down is the filter at one octave after the
cutoff frequency?

|T( jω)|

10

1

0.1

0.01

1 10 100 1000 10,0005000
ω (rad/s)

FIGURE P12–3

673PROBLEMS



12–4 Find the transfer function TV sð Þ=V2 sð Þ=V1 sð Þ of the cir-
cuit in Figure P12–4.
(a) Find the dc gain, infinite frequency gain, and cutoff fre-
quency. Identify the type of gain response.
(b) Sketch the straight-line approximations of the gain and
phase responses.
(c) Calculate the gain at ω=0:1ωC, ωC, and 10ωC.
(d) Use Multisim to plot the Bode magnitude gain response
of the circuit. Validate your answers for part (c).
(e) Howmany dB down from the passband is the filter at one
octave past the cutoff?

100 mH 100 Ω

100 Ωv1(t)

+

−

v2(t)

+

−

FIGURE P12–4

12–5 Find the transfer function TV sð Þ=V2 sð Þ=V1 sð Þ of the cir-
cuit in Figure P12–5.
(a) Find the dc gain, infinite frequency gain, and cutoff fre-
quency. Identify the type of gain response.
(b) Sketch the straight-line approximation of the gain
response.
(c) Calculate the gain at ω=0:25 ωC, 0:5 ωC, and ωC.
(d) Use MATLAB to plot the Bode magnitude gain response
of the circuit. Validate your answers for part (c).
(e) Howmany dB down from the passband is the filter at two
octaves before the cutoff?

470 Ω

470 Ωv1(t)

+

−

v2(t)

+

−

50 mH

FIGURE P12–5

12–6 Find the transfer function TV sð Þ=V2 sð Þ=V1 sð Þ of the cir-
cuit in Figure P12–6.
(a) Find the dc gain, infinite frequency gain, and cutoff
frequency. Identify the type of gain response.
(b) Sketch the straight-line approximation of the gain
response.
(c) Calculate the gain at ω=0:1 ωC, ωC, and 10 ωC.
(d) Use Multisim to plot the Bode magnitude gain response
of the circuit. Validate your answers for part (c).
(e) What element values would you change to increase the
cutoff frequency to 10 ωC?
(f) Howmany dB down from the passband is the filter at one
decade past the cutoff?

+

−

20 kΩ

0.15 μF

30 kΩ
10 kΩ

v1(t)

+

−

v2(t)

+

−

FIGURE P12–6

12–7 Find the transfer function TV sð Þ=V2 sð Þ=V1 sð Þ of the cir-
cuit in Figure P12–7.
(a) Find the dc gain, infinite frequency gain, and cutoff fre-
quency. Identify the type of gain response.
(b) Sketch the straight-line approximation of the gain
response.
(c) Calculate the gain at ω= 0:1 ωC, ωC, and 10 ωC.
(d) Use MATLAB to plot the Bode magnitude gain response
of the circuit. Validate your answers for part (c).
(e) What element values would you change to increase the
passband gain by a factor of five without changing the cutoff
frequency?

+

−

10 kΩ

0.01 μF

+

−

+

−

2 kΩ

v1(t) v2(t)

FIGURE P12–7

12–8 Design a low-pass filter with a cutoff frequency of

2 krad=s and a passband gain of 1. Validate your design using
Multisim.

12–9 Design a high-pass filter with a cutoff frequency of

159Hz and a passband gain of 5. Validate your design using
Multisim.

12–10 Design a low-pass filter with a cutoff frequency of

20 krad=s and a passband gain of 200. Validate your design
using Multisim.

12–11 Design a passive high-pass filter with a cutoff fre-

quency of 500 rad=s and a passband gain of 1. Validate your
design using Multisim.

12–12 You task is to connect themodules in Figure P12–12

so that the gain of the transfer function is 4 and the cutoff
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frequency of the filter is 500 rad=s when connected between
the source and the load. Repeat if the cutoff frequency is
625 rad=s and the gain did not matter.

10 kΩ

100 Ω
70 kΩ

v1(t)
Gain stage

10 kΩ

15 kΩ

10 kΩ

0.1 μF

Filter stage

Source

+
−

−

−

+

+

v2(t)

Load

FIGURE P12–12

12–13 Ayoung designer needed to design a low-pass filter

with a cutoff of 1 krad=s and a gain of – 5. The filter is to fit as
an interface between the source and the load. The designer
was perplexed when no matter how the stages are connected
the results are not what were expected. Explain the problem
and suggest a way to achieve the desired results.

100 Ω

v1(t) Gain stage

10 kΩ

10 kΩ

0.1 μF

Filter stage

Source

+
−

+

v2(t)

Load

50 kΩ

10 kΩ

+

−

−

FIGURE P12–13

12–14 Design a low-pass first-order filter with a cutoff fre-

quency of 100 Hz and a passband gain of 1.What is its transfer
function? Validate your design using MATLAB.

12–15 Design an RC low-pass first-order filter with a cut-

off frequency of 100 krad=s and a passband gain of + 50.
What is the minimum GBW that the OP AMP must have
to not affect the filter’s cutoff?

12–16 Design anRL high-pass first-order filter with a cut-

off frequency of 250 Hz and a passband gain of – 25.

12–17 AnOPAMP has aGBW of 2MHz. Can it be

used in an RC high-pass first-order filter with a cutoff fre-
quency of 2000 rad=s and a passband gain of – 104? Design
the filter assuming you have a suitable OP AMP.

12–18 Find the transfer function TV sð Þ=V2 sð Þ=V1 sð Þ of the
circuit in Figure P12–18.
(a) Find the dc gain, infinite frequency gain, and cutoff
frequency. Identify the type of gain response.
(b) Use MATLAB to plot the Bode magnitude gain
response of the circuit.
(c) What element value would you change to increase the
cutoff frequency by one decade?

10 kΩ

60 kΩ

10 kΩ

3 kΩ

+

−

v1(t)

+

−

v2(t)

+

−

0.1 μF

FIGURE P12–18

12–19 (a) Find the transfer function TV sð Þ=V2 sð Þ=V1 sð Þ
of the circuit in Figure P12–19.
(b) What type of gain response does the circuit have?
(c) What is the passband gain?
(d) Design a suitable filter using practical, standard values of
R and C from the inside rear cover so that the cutoff fre-
quency is 500 kHz ± 5% and the passband gain is 100.
(e) What is theminimumGBW that theOPAMPmust have?

+

−
R KR

R
v1(t)

+

v2(t)

+

C

FIGURE P12–19
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12–20 A first-order high-pass circuit has a passband gain of
20 dB and a cutoff frequency of 1000 rad=s.
(a) Find the circuit’s transfer function.
(b) Find the gain (in dB) at ω= 0, 500, 1000, and 5000 rad=s.
(c) Verify your results using MATLAB.

12–21 A first-order low-pass circuit has a passband gain of 0 dB
and a cutoff frequency of 5 krad=s. Find the gain (in dB) at
ω= 0, 500 rad=s, 50 krad=s, and 500 krad=s.

12–22 The transfer function of a first-order circuit is

T sð Þ= 10;000
s+2000

(a) Identify the type of gain response. Find the cutoff fre-
quency and the passband gain.
(b) Use MATLAB to plot the magnitude of the Bode gain
response.
(c) Design a circuit to realize the transfer function.
(d) Use Multisim to validate your circuit design by compar-
ing its frequency response to the MATLAB output.

12–23 The transfer function of a first-order circuit is

T sð Þ= 50s
s+10;000

(a) Identify the type of gain response. Find the cutoff fre-
quency and the passband gain.
(b) Use MATLAB to plot the magnitude of the Bode gain
response.
(c) Design a circuit to realize the transfer function.
(d) Use Multisim to validate your circuit design by compar-
ing its frequency response to the MATLAB output.

12–24 A student decided that she needed a low-pass

filter that had a roll-off of – 2 or – 40 dB=decade, with a cutoff
frequency of 2000 rad=s. She correctly designed two identical
passive RC filters, each with a cutoff of 2000 rad=s, and con-
nected them in cascade. She cleverly separated them with a
buffer to avoid loading. When she measured the cutoff fre-
quency, she was dismayed to discover that it was not
2000 rad=s although the roll-off was correct.
(a) Simulate the cascaded pair usingMultisim and determine
where the actual cutoff frequency occurs.
(b) Help the student by altering her design so that the two
identical RC filters actually produce the desired outcome.
Explain why the discrepancy occurred. Verify your new
design using Multisim.

O B J E C T I V E 1 2– 2 B A N D P A S S A N D B A N D S T O P
R E S P O N S E S ( S E C T . 1 2 – 4 )
Given a cascade or parallel connection of two first-order circuits:
(a) Find and classify the frequency response.
(b) Plot the gain and phase responses using straight-line

approximations and computer tools.

(c) Design circuits to produce a specified frequency response.
See Examples 12–9, 12–10 and Exercises 12–17 to 12–19.

12–25 A circuit has the following transfer function

T sð Þ= 1000s

s2 + 1000s+106

UseMATLAB to plot the Bode diagram of the transfer func-
tion. From the plot, determine the following:
(a) The nature of the filter, that is, LP, HP, BP, BR.
(b) The center frequency in radians.
(c) The cutoff frequencies.
(d) The phase angles at ω= 0, ω ! ∞ , ω=ωC1, ω=ωC2,
and ω=ω0?

12–26 Design a circuit with the transfer function in Prob-

lem 12–25. Validate your design using Multisim.

12–27 A circuit has the following transfer function

T sð Þ= s2 + 106

s2 + 100s+ 106

UseMATLAB to plot the Bode diagram of the transfer func-
tion. From the plot determine the following:
(a) The nature of the filter, that is, LP, HP, BP, BR?
(b) The center frequency in radians.
(c) The cutoff frequencies.
(d) The phase angles at ω= 0, ω ! ∞ , ω=ωC1, ω=ωC2,
and ω=ω0?

12–28 Design a circuit with the transfer function in

Problem 12–27. Validate your design using Multisim.

12–29 A circuit has the following transfer function:

T sð Þ= s+106

s2 + 50s+ 106

UseMATLAB to plot the Bode diagram of the transfer func-
tion. From the plot determine the following:
(a) The nature of the filter, that is, LP, HP, BP, BR?
(b) The cutoff frequency in radians.
(c) The phase angles at ω= 0, ω ! ∞ , and ω=ωC?
(d) Is anOPAMP required to achieve this transfer function?
Explain.

12–30 Design a circuit with the transfer function in Prob-

lem 12–29. Validate your design using Multisim.

12–31 The circuit in Figure P12–31 produces a bandpass

response for a suitable choice of element values. Identify the
elements that control the two cutoff frequencies. Select the
element values so that the passband gain is 100 and the cutoff
frequencies are 1000 rad=s and 40 krad=s. Use practical
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element values with R≥ 10 kΩ and C ≤ 1 μF. Use Multisim to
validate your design.

−

+

C1

C2R1

R4

R3

R2 v2(t)

−

−

+
+

v1(t)

FIGURE P12–31

12–32 The circuit in Figure P12–32 produces a bandpass

response for a suitable choice of element values. Identify the
elements that control the two cutoff frequencies. Select the
element values so that the passband gain is 100 and the cutoff
frequencies are 1000 rad=s and 40 krad=s. Use practical ele-
ment values withR≥ 10 kΩ andC ≤ 1 μF. UseMultisim to val-
idate your design.

+

−
v2(t)

+

v1(t) R2

C1
C2R3 R4R1

−

+

−

+

−

FIGURE P12–32

12–33 Suppose that the circuits in Figures P12–31 and

P12–32 had to feed a 100-Ω instrument. Which circuit would
you select and why?

12–34 The circuit in Figure P12–34 produces a bandstop

response for a suitable choice of element values.

+

R2

R

R RF+

v2(t)

+

v1(t)

−

+

R1

C1

C2

−

+

−

+

+

−

FIGURE P12–34

(a) Find the circuit’s transfer function.
(b) Identify the elements that control the two cutoff frequen-
cies. Select the element values so that the cutoff frequencies
are 400 krad=s and 4000 krad=s. Use practical element values
with resistances greater than 10 kΩ and capacitances less than
1 μF. Design your passband gain to be + 40 dB. After looking
at the simulations, can the design specifications be met?
(c) Use MATLAB to plot the Bode magnitude plot for the
values you selected.
(d) Simulate your circuit using Multisim and compare the
results to the MATLAB output.

12–35 Design an audio amplifier that amplifies signals

from 20Hz to 20 kHz. Your approach should be to use a cas-
cade connection of two first-order passive circuits separated
by a noninverting OP AMP. The source has a 50-Ω series
resistor and the output of the filter feeds a 10-kΩ audio trans-
ducer. Design a bandpass circuit with the following specifica-
tions all ± 5%: fCL = 20Hz, fCH = 20 kHz, B=19,980Hz.
Passband gain + 40 dB. What is the minimum GBW of the
OP AMP that can be used in this application? Use Multisim
to validate your results.

12–36 Design an audio amplifier that amplifies sig-

nals from 2 to 10 kHz. Your approach should be to use
a cascade connection of two first-order passive circuits
separated by a noninverting OP AMP. The source has a
50-Ω series resistor, and the output of the filter feeds a
10-kΩ audio transducer. Design a bandpass circuit with
the following specifications all ± 5%: fCL = 2 kHz, fCH =
10 kHz, B=8 kHz. Passband gain + 40 dB. Use Multisim
to validate your results. Even though Problems 12–35 and
12–36 share similar constructs, one cannot achieve the
desired specifications in Problem 12–36. What is the reason
for the problem?

12–37 Design an audio amplifier that amplifies signals

from 20Hz to 20 kHz. Your approach should be to use a cas-
cade connection of two first-order active OP AMP circuits.
The source has a 1-kΩ series resistor, and the output of the
filter feeds a 32-Ω audio transducer. Design a bandpass circuit
with the following specifications all ± 5%: fCL = 20Hz,
fCH = 20 kHz, B= 19,980Hz. Passband gain should be adjust-
able (use a potentiometer) from 0 dB to + 60 dB. Use Multi-
sim to validate your results.

12–38 A student needed to design a bandstop filter that

was to block frequencies between 1000 rad=s and
10,000 rad=s with unity gain in the passbands. His design is
shown in Figure P12–38. As a teaching assistant, you are
required to grade his design. What grade would you assign
and what critique would you give him?
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+

10 kΩ

10 kΩ 10 kΩ+

v2(t)

+

v1(t)

−

+

10 kΩ

10 kΩ

0.1 μF

0.01 μF

−

+

−

+

+

−

FIGURE P12–38

O B J E C T I V E 1 2 – 3 T H E F R E Q U E N C Y R E S P O N S E O F
R L C C I R C U I T S ( S E C T . 1 2 – 5 )
Given an RLC circuit connected as a bandpass or a bandstop
filter:
(a) Find the frequency-response descriptors such as Q and B.
(b) Design circuits to produce a specified frequency response.
(c) Compare the bandpass and bandstop responses obtained

from RLC filters with similar responses obtained from
first-order filters.

See Examples 12–11 to 12–15 and Exercises 12–20 to 12–24.

12–39 Determine the filter type for the circuit in Figure P12–39.
Then findQ, B, ωC1, ωC2, and ω0. Is the circuit a narrow-band
or a wide-band filter?

−

+
+

−

390 Ω

100 mH22 μF

10 kΩ

90 kΩ

−

+

v1(t) v2(t)

FIGURE P12–39

12–40 Design an RLC bandstop filter with a center fre-

quency of 50 krad=s and a bandwidth of 5 krad=s. The pass-
band gain is 0 dB. Use practical values for R, L, and C and
do not use an OP AMP.

12–41 Design an RLC bandpass filter with a center fre-

quency of 1000 rad=s and a Q of 0:5. The passband gain is
+ 20 dB. Use practical values for R, L, and C. Use no more
than one OP AMP.

12–42 A series RLC bandpass circuit with R= 20Ω is designed
to have a bandwidth of 2:5Mrad=s and a center frequency of
50Mrad=s. Find L, C, Q, and the two cutoff frequencies.
Could you design this circuit using a cascade connection of
two first-order filters separated by a follower? Why or
why not?

12–43 A parallel RLC bandpass circuit with C = 0:01 μF and
Q=10 has a center frequency of 500 krad=s. Find R, L, and
the two cutoff frequencies. Could you design this circuit using
a cascade connection of two first-order filters separated by a
follower? Why or why not?

12–44 A 20-mH inductor with an internal series resistance of
15Ω is connected in series with a capacitor and a voltage
source with a Thévenin resistance of 50Ω.
(a) What value of C is needed to produce ω0 = 10 krad=s?
(b) Find the bandwidth and quality factor of the circuit.

12–45 This problem looks at the effect of an inductor’s parasitic
resistance on the circuit’s performance.
(a) Consider the circuit in Figure P12–45. Find the circuit’s
transfer function T sð Þ=V2 sð Þ=V1 sð Þ. Let RP = 0 (an inductor
without a parasitic resistance) and find the transfer function of
the circuit with ideal components. How is the transfer function
altered by the parasitic resistance? In general, describe how
the poles and zeroes are affected by the parasitic resistance.

1

+
–

Cs

RP

Ls

R1

V2(s)V1(s)

+

–

FIGURE P12–45

(b) Use Multisim to simulate the ac gain performance of the
circuit with and without the parasitic resistance if R1 = 50Ω,
RP = 20Ω, L= 100mH, C = 0:016 μF. Find Q, B, and ω0 for
each case. Comment on the effect of the parasitic resistance
on the circuit’s performance with respect to these three
parameters.

12–46 In a series RLC circuit, which element would you adjust
(and by how much) to
(a) Double the bandwidth without changing the center
frequency?
(b) Double the center frequency without changing the
bandwidth?
(c) Repeat parts (a) and (b) for a parallel RLC circuit.

12–47 A parallel RLC circuit with R= 1:5 kΩ has a center fre-
quency of 50 krad=s and a bandwidth of 50 krad=s. Find the
values of L and C. Find the Q of this circuit. Is it wide-band
or narrow-band?
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12–48 A series RLC bandpass filter is required to have

resonance at f0 = 50 kHz. The circuit is driven by a sinusoidal
source with a Thévenin resistance of 60Ω. The following
standard capacitors are available in the stock room:
1 μF, 0:68 μF, 0:47 μF, 0:33 μF, 0:2 μF, and 0:12 μF. The in-
ductor will be custom-designed to match the capacitor used.
Select the available capacitor that minimizes the filter
bandwidth.

12–49 A series RLC bandstop circuit is to be used as a

notch filter to eliminate a bothersome 120-Hz hum in an
audio channel. The signal source has a Thévenin resistance
of 75Ω. Select values of L and C so that the upper cutoff fre-
quency of the stopband is below 180 Hz. UseMultisim to ver-
ify your design.

12–50 Find the transfer function TV sð Þ=V2 sð Þ=V1 sð Þ for
the bandpass circuit in Figure P12–50. Use MATLAB to vis-
ualize the Bode characteristics if R= 50Ω, L= 50 μH, and
C = 2000 pF. Design an active circuit to meet those same char-
acteristics. Verify your design using Multisim.

v1(t)

+

−

v2(t)

+

−

R

L C

FIGURE P12–50

12–51 Show that the transfer function TV sð Þ=V2 sð Þ=
V1 sð Þ of the circuit in Figure P12–51 has a bandstop filter
characteristic. Derive expressions relating the notch fre-
quency and the cutoff frequencies to R, L, and C. Then select
values of R, L, and C so that the bandwidth is 10 krad=s and
the center frequency is 20 krad=s. Validate your design using
Multisim.

v1(t)

+

−

v2(t)

+

−

RL

C

FIGURE P12–51

12–52 Figure P12–52 shows an RLC filter with an input current
and an output voltage. The purpose of this problem is to
determine the filter type using informal circuit analysis.
Use the element impedances and basic analysis tools to find
the magnitude of the output voltage jV2 jωð Þj at ω= 0,
ω ! ∞ , and ω=ω0 = 1=

ffiffiffiffiffiffiffi
LC

p
. What is the filter type?

R

C L v2(t)i1(t)

+

−

FIGURE P12–52

12–53 Aprofessor gave the following quiz to his students:

Look at Figure P12–53. Each curve represents the voltage
across an individual element in a series RLC circuit. Identify
which curve belongs to which element, namely, R, L, C, or
V1. Then explain how there can be two voltages greater than
1 0 dBð Þ when the input V1 is at 0 dB?
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FIGURE P12–53

O B J E C T I V E 1 2 – 4 B O D E P L O T S ( S E C T S . 1 2 – 6 A N D
1 2 – 7 )
Given a linear circuit or transfer function:
(a) Plot the gain and phase responses using straight-line

approximations and computer tools.
(b) Develop a transfer function from a straight-line Bode

gain plot.
(c) Design a circuit that produces a given straight-line

gain plot.
See Examples 12–16 to 12–20 and Exercises 12–25 to 12–29.

12–54 The transfer functionTV sð Þ=V2 sð Þ=V1 sð Þ for a particular
circuit is

T sð Þ= 100
s+ 200

(a) Construct the straight-line Bode plot of the gain and
phase of the transfer function. Use the straight-line
plots to estimate the amplitude and phase of the steady-
state output for v1 tð Þ= 10 cos 20t V, v1 tð Þ=10 cos 200t V, and
v1 tð Þ= 10 cos 2000tV.
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(b) Calculate the actual output amplitude and phase for
these three inputs and compare the results with your estimates.
(c) Use MATLAB to generate a Bode plot of your transfer
function. Compare your answers from the straight-line plot
and your hand calculations with that produced byMATLAB.

12–55 The transfer functionTV sð Þ=V2 sð Þ=V1 sð Þ for a particular
circuit is

T sð Þ= −
100s
s+ 500

(a) Construct the straight-line Bode plot of the gain and
phase of the transfer function. Use the straight-line plots
to estimate the amplitude and phase of the steady-state
output for v1 tð Þ= 10 cos 50t V, v1 tð Þ=10 cos 500tV, and
v1 tð Þ= 10 cos 5000t V.
(b) Calculate the actual output amplitude and phase for
these three inputs and compare the results with your estimates.
(c) Use MATLAB to generate a Bode plot of your transfer
function. Compare your answers from the straight-line plot
and your hand calculations with that produced byMATLAB.

12–56 Find the transfer functionTV sð Þ=V2 sð Þ=V1 sð Þ for the cir-
cuit in Figure P12–56.
(a) Construct the straight-line Bode plot of the gain
and phase of the transfer function. Use the straight-line
plots to estimate the amplitude and phase of the steady-
state output for v1 tð Þ=10 cos 10t V, v1 tð Þ= 10 cos 100t V, and
v1 tð Þ= 10 cos 1000t V.
(b) Calculate the actual output amplitude and phase for
these three inputs and compare the results with your estimates.
(c) Use MATLAB to generate a Bode plot of your transfer
function. Compare your answers from the straight-line plot
and your hand calculations with that produced byMATLAB.

1 kΩ+
−

+

−

100 kΩ

1 μF

v1(t) v2(t)

FIGURE P12–56

12–57 Repeat Problem 12–56 using the circuit in Figure P12–57.

+

−
100 kΩ

+

−

+
−

1 kΩ

1 μF

v1(t) v2(t)

FIGURE P12–57

12–58 For the following transfer function

T sð Þ= 2 s+ 100ð Þ
s+1ð Þ

(a) Construct the straight-line Bode plot of the gain. Is this a
low-pass, high-pass, bandpass, or bandstop function? Esti-
mate the cutoff frequency and passband gain.
(b) Use MATLAB to plot the Bode magnitude of the trans-
fer function.
(c) Design a circuit using only one OP AMP and practical
values for the components that has the same transfer function.
(d) UseMultisim to compare the frequency response of your
designed circuit with the MATLAB Bode plot.

12–59 For the following transfer function

T sð Þ= 100 s+ 10ð Þ
s s+ 1000ð Þ

(a) Construct the straight-line Bode plot of the gain. Is this a
low-pass, high-pass, bandpass, or bandstop function? Esti-
mate the cutoff frequency and passband gain.
(b) Use MATLAB to plot the Bode magnitude of the trans-
fer function.
(c) Design a circuit using practical values for the components
that has the same transfer function.
(d) UseMultisim to compare the frequency response of your
designed circuit with the MATLAB Bode plot.

12–60 For the following transfer function

T sð Þ= 106s2

s+1000ð Þ2

(a) Construct the straight-line Bode plot of the gain. Is this a
low-pass, high-pass, bandpass, or bandstop function? Esti-
mate the cutoff frequency and passband gain.
(b) Use MATLAB to plot the Bode magnitude of the trans-
fer function.
(c) Design a circuit using practical values for the components
that has the same transfer function.
(d) UseMultisim to compare the frequency response of your
designed circuit with the MATLAB Bode plot.

12–61 For the following transfer function

T sð Þ= 500s s+100ð Þ
s+ 10ð Þ s+ 1000ð Þ

(a) Construct the straight-line Bode plot of the gain. Is this a
low-pass, high-pass, bandpass, or bandstop function? Esti-
mate the cutoff frequency and passband gain.
(b) Use MATLAB to plot the Bode magnitude of the trans-
fer function.
(c) Design a circuit using practical values for the components
that has the same transfer function.
(d) UseMultisim to compare the frequency response of your
designed circuit with the MATLAB Bode plot.
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12–62 For the following transfer function TV sð Þ=
V2 sð Þ=V1 sð Þ

Tv sð Þ= 100 s+ 10ð Þ s+ 100ð Þ
s+ 1ð Þ s+1000ð Þ

(a) Construct the straight-line Bode plot of the gain. Is this a
low-pass, high-pass, bandpass, or bandstop function? Esti-
mate the cutoff frequency(ies) and passband gain.
(b) UseMATLAB to plot the Bode magnitude and phase of
the transfer function.
(c) What is the output v2 tð Þ if v1 tð Þ=10 cos 200t + 45�ð ÞV?

12–63 For the following transfer function TV sð Þ=V2 sð Þ=V1 sð Þ

T sð Þ= 108 s+ 100ð Þ2
s+ 1000ð Þ4

(a) Construct the straight-line Bode plot of the gain. Is this a
low-pass, high-pass, bandpass, or bandstop function? Esti-
mate the cutoff frequency(ies) and passband gain.
(b) UseMATLAB to plot the Bode magnitude and phase of
the transfer function.
(c) What is the output v2 tð Þ, if v1 tð Þ= 10 cos 1000t− 60�ð ÞV?

12–64 For the following transfer function TV sð Þ=V2 sð Þ=V1 sð Þ
Tv sð Þ= 4 s

0:04 s2 + 0:2 s+ 1
(a) Construct the straight-line Bode plot of the gain. Is this a
low-pass, high-pass, bandpass, or bandstop function?
(b) Use the straight-line plot to estimate the maximum gain
and the frequency at which it occurs.
(c) Use MATLAB to plot the Bode magnitude and phase of
the transfer function.

12–65 Consider the gain plot in Figure P12–65.

(a) Find the transfer function corresponding to the straight-
line gain plot.
(b) Use MATLAB to plot the Bode magnitude of the trans-
fer function.
(c) Compare the straight-line gain and the actual gain at
ω= 10 and 100 rad=s.
(d) Design a circuit to realize the Bode plot.

40

0

10 100

|T(jω)|dB

ω (rad/s)

FIGURE P12–65

12–66 Consider the gain plot in Figure P12–66.

(a) Find the transfer function corresponding to the straight-
line gain plot.
(b) Hand-draw a straight-line plot of the phase.
(c) Use MATLAB to plot the Bode magnitude and phase of
the transfer function.
(d) Compare the straight-line gain and phase with the actual
responses (from MATLAB) at ω= 100 and 500 rad=s.
(e) Design a circuit that will realize the transfer function
found in part (a).
(f) Use Multisim to verify your circuit design.

1
–40
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20
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2500

10,000
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FIGURE P12–66

12–67 Consider the gain plot in Figure P12–67.

(a) Find a transfer function corresponding to the straight-line
gain plot. Note that the magnitude of the actual frequency
response must be exactly 5 at the geometric mean of the
two cutoff frequencies 245 rad=sð Þ.
(b) Use MATLAB to plot the Bode magnitude of the trans-
fer function.

100 600245

5

ω (rad/s)

+1 −1

|
T(jω)|

FIGURE P12–67

12–68 Consider the gain plot in Figure P12–68.

(a) Find the transfer function corresponding to the straight-
line gain plot.
(b) Use MATLAB to plot the Bode magnitude of the trans-
fer function.
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(c) Design a circuit that will realize the transfer function
found in part (a).
(d) Use Multisim to verify your circuit design.

|T(jω)|

10

|T(jω)|
dB

1 0

0.1

0.01

20

−20

−40

1 10 100 1000 10,0005000500
ω (rad/s)

FIGURE P12–68

12–69 Consider theMATLABphaseplot inFigureP12–69.

Your task is todesignacircuit thatwill realize thatplot.Thepass-
band gain of the circuit needs to be 20 dB.
(a) Find the transfer function corresponding to the phase plot.
(b) Design a circuit that will realize the transfer function
found in part (a).
(c) Verify your design using Multisim.
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FIGURE P12–69

12–70 Consider the gain plot in Figure P12–70. The goal is

to design a circuit that will result in the dashed curve shown
on the plot.
(a) Find the transfer function corresponding to the straight-
line gain plot.
(b) Use MATLAB to plot the Bode magnitude of the trans-
fer function.

(c) Adjust the poles so that the transfer function results in the
dashed line. (Hint: Multiply the two poles into a quadratic
expression. Then adjust the Q of the circuit to attain the
desired result.)
(d) Design a circuit that will realize the transfer function
found in part (c).
(e) Use Multisim to verify your circuit design.
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FIGURE P12–70

12–71 For the following transfer function TV sð Þ=V2 sð Þ=V1 sð Þ

Tv sð Þ= 100 s+ 1000ð Þ
s+100

(a) Construct the straight-line Bode plot of the phase.
(b) Use the straight-line phase diagram to estimate the phase
at ω= 10, 100, 1000, and 10,000 rad=s.
(c) UseMATLAB to plot the Bode gain and phase and com-
pare the phase plot to the straight-line estimate.

12–72 For the following transfer function TV sð Þ=V2 sð Þ=V1 sð Þ

TV sð Þ= 10 s+ 500ð Þ
s+ 100ð Þ s+ 1000ð Þ

(a) Construct the straight-line Bode plot of the phase.
(b) Use the straight-line phase diagram to estimate the phase
at ω= 10, 100, 1000, and 10,000 rad=s.
(c) UseMATLAB to plot the Bode gain and phase and com-
pare the phase plot to the straight-line estimate.

O B J E C T I V E 1 2 – 5 F R E Q U E N C Y R E S P O N S E A N D S T E P
R E S P O N S E ( S E C T . 1 2 – 8 )
Given a circuit or a transfer function:
(a) Find the gain response corresponding to a given step

response or vice versa.
(b) Use the relationship between frequency and step responses

to choose the best solution for a design specification.
See Examples 12–21 to 12–24 and Exercises 12–30 to 12–32.
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12–73 The step response of a linear circuit is

g tð Þ= 50e−100t u tð Þ

(a) Is the circuit a low-pass, high-pass, bandpass, or bandstop
filter?
(b) Construct the straight-line Bode gain plot and estimate
the cutoff frequency and passband gain.
(c) Use MATLAB to plot the Bode magnitude and step
responses.
(d) Design a circuit to achieve the transfer function.
(e) Use Multisim to verify the step and frequency responses.

12–74 The step response of a linear circuit is

g tð Þ= 6−4e−100t−2e−1000t
� �

u tð Þ

(a) Is the circuit a low-pass, high-pass, bandpass, or bandstop
filter?
(b) Construct the straight-line Bode gain plot and estimate
the cutoff frequency and passband gain.
(c) Use MATLAB to plot the Bode magnitude and step
responses.
(d) Design a circuit to achieve the transfer function.
(e) Use Multisim to verify the step and frequency responses.

12–75 The step response transform of a linear circuit is

G sð Þ= 100s2

s+1ð Þ s+100ð Þ

(a) Is the circuit a low-pass, high-pass, bandpass, or bandstop
filter?
(b) Construct the straight-line Bode gain plot and estimate
the cutoff frequency and passband gain.
(c) Use MATLAB to plot the Bode magnitude and step
responses.
(d) Design a circuit to achieve the transfer function.
(e) Use Multisim to verify the step and frequency
responses.

12–76 The straight-line gain response of a linear circuit is shown
in Figure P12–65. What are the initial and final values of the
circuit step response? What is the approximate duration of
the transient response?

12–77 The straight-line gain response of a linear circuit is shown
in Figure P12–68. What are the initial and final values of the
circuit step response? What is the approximate duration of
the transient response?

12–78 There is a need for a passive notch filter at

10 krad=s. The narrower the notch the better, but there
should be minimal ringing of the signals passing through.
The transforms of three filters were submitted for considera-
tion. Which would you recommend and why?

T1 sð Þ = s2 + 100s+ 108

s2 + 104s+108

T2 sð Þ = s2 + 500s+ 108

s2 + 2500s+108

T3 sð Þ = s2 + 108

s2 + 5000s+108

12–79 There is a need for a passive tuned filter at

10 krad=s. The higher the Q the better, but there should be
no ringing of the signals passing through. The transform of
a prototype filter is shown. Design the filter by selecting
the middle term of the denominator to maximize theQ while
assuring there is no ringing.

Ttuned sð Þ= 108s

s2 + xs+108

I N T E G R A T I N G P R O B L E M S

12–80 Step Response of an RLC Bandpass Circuit

The step response of a series RLC bandpass circuit is

g tð Þ= 4
5
e−200t sin 500 tð Þ

� �
u tð Þ

(a) Find the passband center frequency and the two cutoff
frequencies.
(b) Design a circuit that would possess the above step
response.
(c) Validate your design using Multisim.

12–81 A Tunable Tank Circuit

The RLC circuit in Figure P12–81 (often called a tank circuit)
has R= 4:7 kΩ, C =680 pF, and an adjustable (tunable) L ran-
ging from 64 to 640 μH.

R

C L v2(t)v1(t)

+

−

+
−

FIGURE P12–81

(a) Show that the circuit is a bandpass filter.
(b) Find the frequency range in Hzð Þ over which the center
frequency can be tuned.
(c) Find the bandwidth in Hzð Þ at the end points of
this range.
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12–82 Filter Design Specification

Construct a transfer function whose gain response lies entirely
within the nonshaded region in Figure P12–82. Validate your
results using MATLAB.

|T( jω)|dB
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−20

−40
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FIGURE P12–82

12–83 Chip RC Networks

Integrated circuit (chip) RC networks are used at parallel data
ports to suppress radio frequency noise. In a certain application,
RF noise at 3:2MHz is interfering with a 4-bit parallel data sig-
nal operating at 1:1MHz. A chip RC network is to be used
to reduce the RF noise on the parallel bus by at least 7 dB
without reducing the data signals by more than 2 dB. A vendor
offers a family of chip RC networks connected as shown in
Figure P12–83. The available circuit parameters are shown in
Table P12–83. Select the part number that best meets the noise
suppression requirements.

b1

b2

b3

b4

R C

C

C

C

R

R

R

FIGURE P12–83

T A B L E P 1 2 – 8 3

R (Ω) C (PF) PART NO. R (Ω) C (PF) PART NO.

82
220 ZAEN14

330
220 ZAEN34

330 ZAEN15 330 ZAEN35
1000 ZAEN16 1000 ZAEN36

470
220 ZAEN24

630
220 ZAEN44

330 ZAEN25 330 ZAEN45
1000 ZAEN26 1000 ZAEN46

12–84 Design Evaluation

Your company issued a request for proposals listing the fol-
lowing design requirements and evaluation criteria.
Design Requirements: Design a low-pass filter with a pass-
band gain of 9 ± 10% and a cutoff frequency of
90 ± 10% krad=s. A sensor drives the filter input with a
1-kΩ source resistance and an open-circuit voltage range
of ± 1:6 V.
Evaluation Criteria: Filter performance, parts count, use of
standard parts, and cost.
The two vendors have respondedwith the designs shown in

Figure P12–84.
As a junior engineer, the project manager asks you evalu-

ate the designs and recommend a vendor. Which vendor
would you recommend and why?

−

+

1 kΩ
8.2 kΩ

3.3 kΩ

−

−

+ +

vIN(t) vOUT(t)3300 pF

VCC = ± 15 V

Unit Cost: $29.00

First-Order Filter Company

−

++

−

8.2 kΩ
68 kΩ

−

+

vIN(t) vOUT(t)

3.3 kΩ

3300 pF

VCC = ± 15 V

Unit Cost: $20.99

Simply Filters, Ltd

FIGURE P12–84
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12–85 Design Evaluation

In a research laboratory, you need a bandpass filter tomeet
the following requirements:

Design Requirements: Passband gain: 10 ± 5%, B=
10 krad=s ± 5%, ω0 = 5 krad=s ± 2%, ωCL = 2 krad=s ± 10%.

Evaluation Criteria: Filter performance, parts count, use of
standard parts, and cost.

The two vendors have responded with the designs shown in
Figure P12–85.

As a research assistant, your supervisor asks you to evalu-
ate the two designs and recommend a vendor. Which vendor
would you recommend and why?

+

−

+

−

90 kΩ

1 kΩ

1 kΩ

1 kΩ

10.7 kΩ

1 kΩ

10 kΩ

−

+

v1(t)

−

+

v1(t)

−

+

v2(t)

−

+

v2(t)

100 mH

0.4 μF

0.0824 μF

0.485 μF

Vendor #1

Vendor #2

FIGURE P12–85

12–86 Design Evaluation

In a cable service distribution station, you need a bandstop
filter to meet the following requirements:

Design Requirements: Passband gain: 10 ± 5%, B=
3:3 kHz ± 5%, f0 = 500 Hz ± 2%, fCL = 75 Hz ± 10%. Filter
must interface with a 50-Ω source and a 500-Ω load.

Evaluation Criteria: Filter performance including depth of
notch, parts count, power usage, ease of maintenance, use of
standard parts, and cost.

The two vendors have responded with the designs shown in
Figure P12–86.

As an engineering cable guy, your supervisor asks you to
evaluate the two designs and recommend a vendor. Which
vendor would you recommend and why?

−

+

−

+

−

+

vO(t)

vi(t)
+

10 kΩ 10 kΩ

10 kΩ

40 kΩ20 kΩ

50 kΩ20 kΩ

Vendor A
$23.00

0.005 μF

0.05 μF

+

−

+

vO(t)vi(t)

+

82 Ω

9.1 Ω
1 kΩ

4.3 mH

Vendor B
$22.00

24 μF

+

FIGURE P12–86
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C H A P T E R 13 FOURIER SERIES

The series formed of sines or cosines of multiple arcs are therefore adapted to represent between definite limits all possible functions, and the
ordinates of lines or surfaces whose form is discontinuous.

Jean Baptiste Joseph Fourier, 1822,
French Physicist

Some History Behind This Chapter
The analysis techniques in this chapter have their roots in the
works of the French physicist J. B. J. Fourier (1768–1830).
Fourier found that discontinuous functions could be repre-
sented by an infinite series of harmonic sinusoids. Fourier
was guided by his physical intuition and presented empirical
evidence to support his claim but left the question of series
convergence unanswered. This question was later settled by
the German mathematician P. G. L. Dirichlet (1805–1859).
Fourier’s methods were eventually accepted and are now
widely used.

Why This Chapter Is Important Today
The word spectrum denotes both a natural resource and a
mathematical concept. As a natural resource, it is critical to
modern communications and its use is regulated by national
and international agencies. As a mathematical concept, it
describes the range of frequencies needed to reproduce a
signal. Fourier theory suggests that perfect reproduction
requires an infinite spectrum, a practical impossibility. The
theory also shows that a finite range of frequencies carry
most of the energy in periodic signals. Intentionally limiting
a signal to this range makes the spectrum available to
other users and allows today’s profusion of communication
systems.

Fourier transforms do for aperiodic signals what Fourier
series do for periodic ones. Fourier transforms let us under-
stand the frequency content of aperiodic signals and apply
that understanding to communication systems and other
applications. An introduction to Fourier transforms is avail-
able in Web Appendix C.

Chapter Sections
13–1 Overview of Fourier Series
13–2 Fourier Coefficients
13–3 Waveform Symmetries
13–4 Circuit Analysis Using the Fourier Series
13–5 RMS Value and Average Power

Chapter Learning Objectives
13-1 The Fourier Series (Sects. 13–1–13–3)
(a) Given an equation or graph of a periodic waveform,

derive expressions for the Fourier coefficients.
(b) Given a0, an, and bn calculate the Fourier coeffi-

cients of a given periodic waveform.
(c) Given a Fourier series of a periodic waveform,

determine the properties of the waveform and plot
its amplitude and phase spectra.

13-2 Fourier Series and Circuit Analysis (Sect. 13–4)
(a) Given a linear circuit with a periodic input waveform,

find the Fourier series of a steady-state response.
(b) Given a network function with a periodic input, find

the amplitude and phase spectra of the steady-state
output.

13-3 RMS Value and Average Power (Sect. 13–5)
(a) Given a periodic waveform, find the rms value of the

waveform and the average power delivered to a spe-
cified load.

(b) Given the Fourier series of a periodic waveform,
find the fraction of the average power carried by
specified components and estimate the average
power delivered to a specified load.
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13–1 O V E R V I E W O F F O U R I E R S E R I E S
In this chapter, we develop amethod of finding the steady-state response of circuits to
periodic signals. Periodic waveforms can be written as a Fourier series consisting of
an infinite sum of harmonically related sinusoids. Figure 13–1 provides examples of
common periodic signals. If the signal is aperiodic, then a Fourier transform is
required to characterize the frequency content of the signal. Web appendix C will
explore Fourier transforms in more detail.

If a signal f tð Þ is periodic with period T0 and is reasonably well behaved, then f tð Þ
can be expressed as a Fourier series of the form

f tð Þ = a0 + a1 cos 2πf0tð Þ+ a2 cos 2π2f0tð Þ+ � � �+ an cos 2πnf0tð Þ+ � � �
+ b1 sin 2πf0tð Þ+ b2 sin 2π2f0tð Þ+ � � �+ bn sin 2πnf0tð Þ+ � � � (13–1)

or, more compactly,

f tð Þ= a0|{z}
dc

+
X∞
n= 1

½an cosð2πnf0tÞ+ bn sinð2πnf0tÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ac

(13–2)

The coefficient a0 is the dc component or average value of f tð Þ . The constants an
and bn n= 1, 2, 3,…ð Þ are the Fourier coefficients of the sinusoids in the ac compo-
nent. The lowest frequency in the ac component occurs for n= 1 and is called the fun-
damental frequency, defined as f0 = 1=T0. The other frequencies are integer multiples
of the fundamental called the second harmonic 2f0ð Þ, third harmonic 3f0ð Þ, and, in
general, the nth harmonic nf0ð Þ.

Since Eq. (13–2) is an infinite series, there is always a question of convergence.We
have said that the series converges as long as f tð Þ is reasonably well behaved. Basi-
cally, this means that f tð Þ is single valued, the integral of jf tð Þj over a period is finite,
and f tð Þ has a finite number of discontinuities in any one period. These requirements,
called the Dirichlet conditions, are sufficient to assure convergence. Every periodic
waveform that meets the Dirichlet conditions has a convergent Fourier series. How-
ever, there are waveforms that do not meet the Dirichlet conditions that also have
convergent Fourier series. That is, while the Dirichlet conditions are sufficient, they

f(t)

f(t)

f(t)

f(t)

t

t

t

t

A

−A

A

A

−A

A

T0

T0

T0

T0T

Square wave

Rectangular pulse wave

Triangular wave

Sawtooth wave

FIGURE 13–1 Examples of periodic waveforms.
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are not necessary and sufficient. This limitation does not present a serious problem
because the Dirichlet conditions are satisfied by the waveforms generated in physical
systems. All of the periodic waveforms in Figure 13–1meet theDirichlet requirements.

It is important to have an overview of how a Fourier series is used in circuit anal-
ysis. In our previous study, we learned how to find the steady-state responses due to a
dc or an ac input. The Fourier series resolves a periodic input into a dc component
and an infinite sum of ac components.We treat each of the terms in the Fourier series
as a separate input source and use our circuit analysis tools to find the steady-state
responses due to each term acting alone. The complete steady-state response is found
by superposition, that is, adding up the responses due to each term acting alone. The
net result is that the output is a modified version of the Fourier series of the peri-
odic input.

At first glance, it may seem complicated to find the complete response by finding
the individual responses due to infinitely many inputs. However, each step simply
involves circuit analysis tools we have already mastered. The end result tells us
how the circuit transforms the input series into the output series. The distribution
of amplitudes and phase angles in a Fourier series is called the spectrum of a periodic
waveform. Frequency-domain signal processing involves modifying a given input
spectrum to produce a desired output spectrum. Thus, finding the Fourier series
of periodic waveforms is not an end in itself, but the first step in the study of
frequency-domain signal processing.

13–2 F O U R I E R C O E F F I C I E N T S
The Fourier coefficients for any periodic waveform f tð Þ satisfying the Dirichlet con-
ditions can be obtained from the equations

a0 =
1
T0

Z +T0=2

−T0=2
f tð Þdt

an =
2
T0

Z +T0=2

−T0=2
f tð Þ cos 2πnt=T0ð Þdt

bn =
2
T0

Z +T0=2

−T0=2
f tð Þ sin 2πnt=T0ð Þdt

(13–3)

The integration limits in these equations extend from −T0=2 to +T0=2. However,
the limits can span any convenient interval as long as it is exactly one period
or an integral number of periods. For example, the limits could be from 0 to
T0 or −T0=4 to 3T0=4. We will show where Eq. (13–3) comes from in a moment,
but first we use these equations to obtain the Fourier coefficients of the saw-
tooth wave.

E X A M P L E 1 3–1

Find the Fourier coefficients for the sawtooth wave in Figure 13–1.

SOLUTION:
An expression for a sawtooth wave on the interval 0≤ t ≤T0 is

f tð Þ= At
T0

0 ≤ t < T0
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For this definition of f tð Þ, we use 0 and T0 as the limits in Eq. (13–3). The first expres-
sion in Eq. (13–3) yields a0 as

a0 =
1
T0

Z T0

0

At
T0

dt =
At2

2T2
0





T0

0

=
A
2

This result states that the average or dc value isA=2, which is easy to see because the
area under one cycle of the sawtooth wave, a triangle, is AT0=2. The second expres-
sion in Eq. (13–3) yields an as

an =
2
T0

Z T0

0

At
T0

cos 2πnt=T0ð Þdt

=
2A
T2
0

cos 2πnt=T0ð Þ
2πn=T0ð Þ2 +

t × sin 2πnt=T0ð Þ
2πn=T0ð Þ

" #T0

0

=
2A
T2
0

cos 2πnð Þ−cos 0ð Þ
2πn=T0ð Þ2

" #
= 0 for all n

Since an = 0 for all n, there are no cosine terms in the series. The bn coefficients are
found using the third expression in Eq. (13–3):

bn =
2
T0

Z T0

0

At
T0

sin 2πnt=T0ð Þdt

=
2A
T2
0

sin 2πnt=T0ð Þ
2πnt=T0ð Þ2 −

t × cos 2πnt=T0ð Þ
2πn=T0ð Þ

" #T0

0

=
2A
T2
0

−T0 cos 2πnð Þ
2πn=T0ð Þ

� �
= −

A
nπ

for all n

Given the coefficients an and bn found above, the Fourier series for the sawtooth
wave is

f tð Þ= A
2
+
X∞
n= 1

−
A
nπ

� �
sin 2πnf0tð Þ

■

E x e r c i s e 13–1
Find the Fourier coefficients for the rectangular pulse wave in Figure 13–1.

A n s w e r: a0 =
AT
T0

, an =
2A
nπ

sin
nπT
T0

� �
, bn = 0

E X A M P L E 1 3–2

In this example, we use MATLAB to show that a truncated Fourier series approx-
imates a periodic waveform. The waveform is a sawtooth with A= 10 and T0 = 2 ms.
Calculate the Fourier coefficients of the first 20 harmonics and plot the truncated
series representation of the waveform using the first 5 harmonics and repeat for
the first 10 harmonics.
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SOLUTION:
From Example 13–1, the Fourier coefficients for the sawtooth wave are

a0 =A=2 an = 0 and bn = −
A
nπ

for all n

The following MATLAB code will create the requested harmonics and generate
the required plots:

%Create the symbolic variables
syms t
% Define the waveform parameters
A = 10;
T0 = 0.002;
n = 1:20;
% Calculate the coefficients
a0 = A/2;
bn = -A./n/pi;
an = zeros(size(bn));
% Create vectors for the cosine and sine terms
cnt = cos(2*pi*n*t/T0);
snt = sin(2*pi*n*t/T0);
% Create the partial sums
N = 5;
ft5 = a0 + an(1:N)*cnt(1:N)’ + bn(1:N)*snt(1:N)’;
N = 10;
ft10 = a0 + an(1:N)*cnt(1:N)’ + bn(1:N)*snt(1:N)’;
% Substitute in a time vector
tt = 0:T0/500:2*T0;
ftt5 = subs(ft5,t,tt);
ftt10 = subs(ft10,t,tt);
% Create the plots
figure
plot(tt,ftt5,’b’,’LineWidth’,2)
xlabel(’Time (sec)’)
ylabel(’f(t)’)
title(’dc + first 5 harmonics’)
grid on
figure
plot(tt,ftt10, ’b’, ’LineWidth’, 2)
xlabel(’Time (sec)’)
ylabel(’f(t)’)
title(’dc + first 10 harmonics’)
grid on

In the MATLAB code, note that the partial sums were created using vector mul-
tiplication in the second and third terms. For the vector multiplication, the first vector
multiplies the transpose of the second vector to complete the multiplication and sum-
mation in a single MATLAB operation.

Figure 13–2 displays the resulting waveforms. The waveform generated with the first
five harmonics in Figure 13–2 (a) has the correct general shape, amplitude, and period.
When we increase the number of harmonics to 10 in Figure 13–2 (b), the shape of the
waveform improves and we note that the transition from 10 to 0 in the waveform at
t = 2 ms is steeper and a better approximation of the actual vertical transition. ■
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E x e r c i s e 13–2
Given a rectangular pulse waveform as shown in Figure 13–1,
letA=10,T0 = 5 ms,andT =2ms. (a)UseMATLAB to calcu-
late the Fourier coefficients for the first 10 harmonics. (b) Use
the 10 harmonics to plot a truncated series representation of
the waveform.

A n s w e r s:
(a) a0 = 4, a1 = 6:054, a2 = 1:871, a3 = −1:247, a4 = −1:514,

a5 = 0, a6 = 1:009, a7 = 0:535, a8 = −0:468, a9 = −0:673,
a10 = 0, bn = 0 for all n:

(b) See Figure 13–3.

D E R I V I N G E Q U A T I O N S F O R an AND bn
The sawtooth wave example shows how to calculate the
Fourier coefficients using Eq. (13–3). We now turn to
the derivation of these equations. An equation for a Four-
ier coefficient is derived by multiplying both sides of
Eq. (13–2) by the sinusoid associated with the coefficient
and then integrating the result over one period. This multiply and integrate process
isolates one coefficient because it turns out that all of the integrations produce zero
except one.

The following derivation makes use of the fact that the area under a sine or cosine
wave over an integer number of cycles is zero. That is,Z +T0=2

−T0=2
sin 2πk f0tð Þdt = 0 for all k

Z +T0=2

−T0=2
cos 2πk f0tð Þdt = 0 for k 6¼ 0

=T0 for k= 0

(13–4)
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where k is an integer. These equations state that integrating a sinusoid over k 6¼ 0
cycles produces zero, since the areas under successive half-cycles cancel. The single
exception occurs when k= 0, in which case the cosine function reduces to one and the
net area for one period is T0.

We derive the equation for the amplitude of the dc component a0 by integrating
both sides of Eq. (13–2):

Z +T0=2

−T0=2
f tð Þdt

= a0

Z +T0=2

−T0=2
dt +

X∞
n= 1

an

Z +T0=2

−T0=2
cos 2πnf0tð Þdt + bn

Z +T0=2

−T0=2
sin 2πnf0tð Þdt

" #

= a0T0 + 0 + 0

(13–5)

The integrals of the ac components vanish because of the properties in Eq. (13–4),
and the right side of this expression reduces to a0T0. Solving for a0 yields the first
expression in Eq. (13–3).

To derive the expression for an, we multiply Eq. (13–2) by cos 2πmf0tð Þ and inte-
grate over the interval from −T0=2 to +T0=2:Z +T0=2

−T0=2
f tð Þ cos 2πmf0tð Þdt = a0

Z +T0=2

−T0=2
cos 2πmf0tð Þdt

+
X∞
n= 1

an

Z +T0=2

−T0=2
cos 2πmf0tð Þ cos 2πnf 0tð Þdt

"

+ bn

Z +T0=2

−T0=2
cos 2πmf0tð Þ sin 2πnf 0tð Þdt

#
(13–6)

All of the integrals on the right side of this equation are zero except one. To show this
we use identities

cos xð Þ cos yð Þ = 1
2
cos x−yð Þ+ 1

2
cos x+ yð Þ

cos xð Þ sin yð Þ = 1
2
sin x−yð Þ+ 1

2
sin x+ yð Þ

to change Eq. (13–6) into the following form:

Z +T0=2

−T0=2
f tð Þ cos 2πmf0tð Þdt = a0

Z +T0=2

−T0=2
cos 2πmf0tð Þdt

+
X∞
n= 1

an
2

Z +T0=2

−T0=2
cos 2π m−nð Þf0t½ �dt +

Z +T0=2

−T0=2
cos 2π m+ nð Þf0t½ �dt

" #( )

+
X∞
n= 1

bn
2

Z +T0=2

−T0=2
sin 2π m−nð Þf0t½ �dt +

Z +T0=2

−T0=2
sin 2π m+ nð Þf0t½ �dt

" #( )
(13–7)

All of the integrals are now in the form of expressions in Eq. (13–4). Consequently,
we see all of the integrals on the right side of Eq. (13–7) vanish, except for one cosine
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integral whenm= n. This one survivor corresponds to the k= 0 case in Eq. (13–4), and
the right side of Eq. (13–7) reduces toZ T0=2

−T0=2
f tð Þ cos 2πnf0tð Þdt = an

2

Z T0=2

−T0=2
cos 2π n−nð Þf0t½ �dt

=
an
2
T0

Solving Eq. (13–7) for an yields the second expression in Eq. (13–3).
Toobtain theexpression forbn wemultiply Eq. (13–2) by sin 2πmf0tð Þ and integrate

over the interval t = −T0=2 to +T0=2. The derivation steps then parallel the approach
used to find an. The end result is that the dc component integral vanishes and the ac
component integrals reduce to bnT0=2, which yields the expression for bn in
Eq. (13–3).

The derivation of Eq. (13–3) focuses on the problem of finding the Fourier coeffi-
cients of a given periodic waveform. Some experience and practice are necessary to
understand the implications of this procedure. On the other hand, it is not necessary
to go through these mechanics for every newly encountered periodic waveform
because tables of Fourier series expansions are available. For our purposes, the
listing in Figure 13–4 on the next page will suffice. For each waveform defined graph-
ically, the figure lists the expressions for a0, an, and bn as well as restrictions on the
integer n.

E X A M P L E 1 3–3

Verify the Fourier coefficients given for the square wave in Figure 13–4 and write the
first three nonzero terms in its Fourier series.

SOLUTION:
An expression for a square wave on the interval 0 < t <T0 is

f tð Þ= A 0 < t <T0=2

−A T0=2 < t <T0

(

Using the first expression in Eq. (13–3) to find a0 yields

a0 =
1
T0

Z T0=2

0
A dt +

1
T0

Z T0

T0=2
−Að Þdt

=
A
T0

T0

2
−0−T0 +

T0

2

� �
= 0

The result a0 = 0 means that the dc value of the square wave is zero, which is easy to
see because the area under a positive half-cycle cancels the area under a negative
half-cycle. Using the second expression in Eq. (13–3) to find an produces

an =
2
T0

Z T0=2

0
A cos 2πnt=T0ð Þdt + 2

T0

Z T0

T0=2
−Að Þ cos 2πnt=T0ð Þdt

=
2A
T0

sin 2πnt=T0ð Þ
2πn=T0

� �T0=2

0
−
2A
T0

sin 2πnt=T0ð Þ
2πn=T0

� �T0

T0=2

=
A
nπ

sin nπð Þ − sin 0ð Þ − sin 2nπð Þ + sin nπð Þ½ �= 0

Since an = 0 for all n, there are no cosine terms in the series. This makes some intuitive
sense because a sinewave with the same fundamental frequency as the square wave
fits nicely inside the square wave with zeros crossing at the same points, whereas a
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cosine with the same frequency does not fit at all. The bn coefficients for the sine
terms are found using the third expression in Eq. (13–3):

bn =
2
T0

Z T0=2

0
A sin 2πnt=T0ð Þdt + 2

T0

Z T0

T0=2
−Að Þ sin 2πnt=T0ð Þdt

=
2A
T0

−
cos 2πnt=T0ð Þ

2πn=T0

� �T0=2

0
−
2A
T0

−
cos 2πnt=T0ð Þ

2πn=T0

� �T0

T0=2

=
A
nπ

−cos nπð Þ+ cos 0ð Þ+ cos 2nπð Þ−cos nπð Þ½ �

=
2A
nπ

1−cos nπð Þ½ �

Constant (dc)

Cosine wave Triangular wave

Sawtooth wave

Waveform Fourier
Coefficients Waveform Fourier

Coefficients

a0 = A
an = 0    all n
bn = 0    all n

a0 = 0
a1 = A
an = 0   n ≠ 1
bn = 0   all n

an = 0         all n

bn = −  A    all n

a0 = 0

an =   8A      n odd

an = 0           n even
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nπ

(nπ)2T0
A

t

f(t)
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FIGURE 13–4 Fourier coefficients for some periodic waveforms.
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The term ½1−cos nπð Þ�= 2 if n is odd and zero if n is even. Hence, bn can be written as

bn =
4A
nπ

n odd

0 n even

8<
:

The first three nonzero terms in the Fourier series of the square wave are

f tð Þ= 4A
π

sin 2πf0t +
1
3
sin 2π3f0t +

1
5
sin 2π5f0t + � � �

� �
Note that this series contains only odd harmonic terms. ■

E x e r c i s e 13–3
The triangular wave in Figure 13–4 has a peak amplitude ofA= 10 and T0 = 2 ms. Calculate
the Fourier coefficients of the first nine harmonics.

A n s w e r: a0 = 0, a1 = 8:11, a2 = 0, a3 = 0:901, a4 = 0, a5 = 0:324, a6 = 0,
a7 = 0:165, a8 = 0, a9 = 0:100, bn =0 for all n:

A L T E R N A T I V E F O R M O F T H E F O U R I E R S E R I E S
The series in Eq. (13–1) can be written in several alternative yet equivalent forms.
From our study of sinusoids in Chapter 5, we recall that the Fourier coefficients deter-
mine the amplitude and phase angle of the general sinusoid. Thus, we can write a
general Fourier series in the form

f tð Þ =A0 +A1 cos 2πf0t +ϕ1ð Þ+A2 cos 2π2f0t +ϕ2ð Þ+ � � �
=A0 +

X∞
n= 1

An cos 2πnf0t +ϕnð Þ=A0 +
X∞
n= 1

An cos nω0t +ϕnð Þ (13–8)

where

An =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n + b2n

p
and ϕn = tan−1 −bn

an
(13–9)

The coefficient An is the amplitude of the nth harmonic and ϕn its phase angle.1

Note that the amplitude An and phase angle ϕn contain all of the information
needed to construct the Fourier series in the form of Eq. (13–8). Figure 13–5 shows
how plots of this information are used to display the spectral content of a periodic
waveform f tð Þ. The plot of An versus nf0 (or nω0) is called the amplitude spectrum,
while the plot of ϕn versus nf0 (or nω0) is called thephase spectrum. Both plots are line
spectra because spectral content can be represented as a line at discrete frequencies.

In theory, a Fourier series includes infinitely many harmonics, although the har-
monics tend to decrease in amplitude at high frequency. For example, the summary in
Figure 13–4 shows that the amplitudes of the square wave decrease as 1=n, the trian-
gular wave as 1=n2, and the parabolic wave as 1=n3. The 1=n3 dependence means that
the amplitude of the fifth harmonic in a parabolic wave is less than 1% of the ampli-
tude of the fundamental (actually 1/125th of the fundamental). In practical signals,
the harmonic amplitudes decrease at high frequency so that at some point the
higher-order components become negligibly small. This means that we can truncate
the series at some finite frequency and still retain the important features of the signal.

0

An

ϕn

f0

f0

2f0

2f0

3f0

3f0

4f0

4f0

f (Hz)

f (Hz)

FIGURE 13–5 Amplitude and
phase spectra.

1There is a 180� ambiguity in the value returned by the inverse tangent function in most computa-
tional tools. The ambiguity is resolved by the following rule: bn > 0 implies that the angle is in the
range 0 to −180�, while bn < 0 implies the 0 to + 180� range.
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This is an important consideration in systems with finite bandwidth such as smart
phone, satellite TV, and other modern communication systems.

E X A M P L E 1 3–4

Derive expressions for the amplitude An and phase angle ϕn of the Fourier series of
the sawtooth wave in Figure 13–4. Sketch the amplitude and phase spectra of a saw-
tooth wave with A= 5 and T0 = 4 ms.

SOLUTION:
Figure 13–4 gives the Fourier coefficients of the sawtooth wave as

a0 =
A
2

an = 0 bn = −
A
nπ

for all n

Using Eq. (13–9) yields

An =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n + b2n

q
=

A
2

n= 0

A
nπ

n> 0

8>><
>>:

and

ϕn = tan−1 −bn
an

=
undefined n= 0

90� n> 0

(

For A= 5 and f0 = 1=T0 = 250 Hz, the first four nonzero terms in the series are

f tð Þ = 2:5 + 1:59 cos 2π250t + 90�ð Þ
+ 0:796 cos 2π500t + 90�ð Þ+ 0:531 cos 2π750t + 90�ð Þ

Figure 13–6 shows the amplitude and phase spectra for this signal. Note that the lines
in the amplitude spectrum are inversely proportional to frequency. As frequency
increases, the amplitudes decrease so that the high-frequency components become
negligible.

■

E x e r c i s e 13–4
Derive expressions for the amplitude An and phase angle ϕn for the triangular wave in
Figure 13–4 and write an expression for the first three nonzero terms in the Fourier series
with A= π2=8 and T0 = 2π=5000 s.

A n s w e r s: An =
8A

nπð Þ2ϕn = 0� n odd

An = 0 ϕn undefined n even

f tð Þ = cos 5000tð Þ+ 1
9
cos 15;000tð Þ+ 1

25
cos 25;000tð Þ+ � � �

0
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FIGURE 13–6
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13–3 W A V E F O R M S Y M M E T R I E S

Many of the Fourier coefficients are zero when a periodic waveform has certain types
of symmetries. It is helpful to recognize these symmetries, since they may simplify the
calculation of the Fourier coefficients.

The first expression in Eq. (13–3) shows that the amplitude of the dc component a0
is the average value of the periodic waveform f tð Þ. If the waveform has equal area
above and below the time axis, then the integral over one cycle vanishes, the average
value is zero, and a0 = 0. The square wave, triangular wave, and parabolic wave in
Figure 13–4 are examples of periodic waveforms with zero average value.

A waveform is said to have even symmetry if f − tð Þ= f tð Þ. The cosine wave, rec-
tangular pulse, and triangular wave in Figure 13–4 are examples of waveforms with
even symmetry. The Fourier series of an even waveform is made up entirely of cosine
terms: that is, all of the bn coefficients are zero. To show this, we write the Fourier
series for f tð Þ in the form

f tð Þ= a0 +
X∞
n= 1

an cos 2πnf0tð Þ+ bn sin 2πnf0tð Þ½ � (13–10)

Given the Fourier series for f tð Þ, we use the identities cos −xð Þ= cos xð Þ and
sin −xð Þ= −sin xð Þ to write the Fourier series for f − tð Þ as follows:

f − tð Þ= a0 +
X∞
n= 1

an cos 2πnf0tð Þ−bn sin 2πnf0tð Þ½ � (13–11)

For even symmetry f tð Þ= f − tð Þ and the right sides of Eqs. (13–10) and (13–11) must
be equal. Comparing the Fourier coefficients term by term, we find that f tð Þ= f − tð Þ
requires bn = −bn. The only way this can happen is for bn = 0 for all n.

A waveform is said to have odd symmetry if − f − tð Þ= f tð Þ. The sine wave, square
wave, and parabolic wave in Figure 13–4 are examples of waveforms with this type
of symmetry. The Fourier series of odd waveforms are made up entirely of sine
terms: that is, all of the an coefficients are zero. Given the Fourier series for f tð Þ
in Eq. (13–10), we use the identities cos −xð Þ= cos xð Þ and sin −xð Þ= −sin xð Þ to write
the Fourier series for − f − tð Þ in the form

− f − tð Þ= −a0 +
X∞
n= 1

−an cos 2πnf0tð Þ+ bn sin 2πnf0tð Þ½ � (13–12)

With odd symmetry f tð Þ= − f − tð Þ and the right sides of Eq. (13–10) and (13–12) must
be equal. Comparing the Fourier coefficients term by term, we find that odd symme-
try requires a0 = −a0 and an = −an. The only way this can happen is for an = 0 for all n,
including n= 0.

Awaveform is said to have half-wave symmetry if − f t−T0=2ð Þ= f tð Þ. This require-
ment states that inverting the waveform ½− f tð Þ� and then time shifting by half a cycle
T0=2ð Þ must produce the same waveform. Basically, this means that successive half-
cycles have the same waveshape but opposite polarities. In Figure 13–4, the sine
wave, cosine wave, square wave, triangular wave, and parabolic wave have half-wave
symmetry. The sawtooth wave, half-wave sine, rectangular pulse train, and full-wave
sine do not have this symmetry.

With half-wave symmetry, the amplitudes of all even harmonics are zero. To show
this, we use the identities cos x−nπð Þ= −1ð Þncos xð Þ and sin x−nπð Þ= −1ð Þnsin xð Þ to
write the Fourier series of − f t−T0=2ð Þ in the form

− f t−T0=2ð Þ = −a0 +
X∞
n= 1

− −1ð Þnan cos 2πnf0tð Þ½

− −1ð Þnbn sin 2πnf0tð Þ�
(13–13)
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For half-wave symmetry, the right sides of Eqs. (13–10) and (13–13) must be equal.
Comparing the coefficients term by term, we find that equality requires
a0 = −a0, an = − −1ð Þnan, and bn = − −1ð Þnbn. The only way this can happen is for
a0 = 0 and for an = bn = 0 when n is even. In other words, the only nonzero Fourier
coefficients occur when n is odd.

Awaveformmay havemore than one symmetry. For example, the triangular wave
in Figure 13–4 has even symmetry and half-wave symmetry, while the square wave
has both odd and half-wave symmetries. The sawtooth wave in Figure 13–4 is an
example where an underlying odd symmetry is masked by a dc component.
A symmetry that is not apparent until the dc component is removed is sometimes
called a hidden symmetry.

Finally, whether a waveform has even or odd symmetry (or neither) depends on
where we choose to define t = 0. For example, the triangular wave in Figure 13–4 has
even symmetry because the t = 0 vertical axis is located at a local maximum. If the axis
is shifted to a zero crossing, the waveform has odd symmetry and the cosine terms in
the series are replaced by sine terms. If the vertical axis is shifted to a point between a
zero cross and a maximum, then the resulting waveform is neither even nor odd and
its Fourier series contains both sine and cosine terms.

E X A M P L E 1 3–5

Given that f tð Þ is a square wave of amplitudeA and period T0, use the Fourier coeffi-
cients in Figure 13–4 to find the Fourier coefficients of g tð Þ= f t +T0=4ð Þ.

SOLUTION:
Figure 13–7 compares the square waves f tð Þ and g tð Þ= f t +T0=4ð Þ. The square wave
f tð Þ has odd symmetry (sine terms only) and half-wave symmetry (odd harmonics
only). Using the coefficients in Figure 13–4, the Fourier series for f tð Þ is

f tð Þ=
X4A

nπ
sin 2πnt=T0ð Þ n odd

The Fourier series for g tð Þ= f t +T0=4ð Þ can be written in the form

g tð Þ= f t +T0=4ð Þ =
X4A

nπ
sin 2πn t +T0=4ð Þ=T0½ � n odd

=
X4A

nπ
sin 2πnt=T0 + nπ=2ð Þ

=
X4A

nπ
cos 2πnt=T0ð Þsin nπ=2ð Þ

=
X4A

nπ
cos 2πnt=T0ð Þ −1ð Þ n−1ð Þ=2 n odd

Figure 13–7 shows that g tð Þ has even and half-wave symmetry, so its Fourier series
has only cosine terms and odd harmonics. The Fourier coefficients for g tð Þ are

a0 = 0 an =

0 n even

4A
nπ

� �
−1ð Þ n−1ð Þ=2 n odd

8><
>:

bn = 0 all n

Shifting the time origin alters the even or odd symmetry properties of a periodic
waveform because these symmetries depend on values of f tð Þ on opposite sides of
the vertical axis at t = 0. The half-wave symmetry of a waveform is not changed by

A

A

t

f(t)

t

g(t)

T0

T0

FIGURE 13–7
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time shifting because this symmetry only requires successive half-cycles to have the
same form but opposite polarities. ■

E x e r c i s e 13–5
(a) Identify the symmetries in the waveform f tð Þ whose Fourier series is

f tð Þ= 2
ffiffiffi
3

p
A

π
cos ω0tð Þ− 1

5
cos 5 ω0tð Þ+ 1

7
cos 7 ω0tð Þ

�

−
1
11

cos 11 ω0tð Þ+ 1
13

cos 13 ω0tð Þ+ � � �
�

(b) Write the corresponding terms of the function g tð Þ= f t−T0=4ð Þ.
A n s w e r s:
(a) Even symmetry; half–wave symmetry; zero average value.

(b) g tð Þ= 2
ffiffiffi
3

p
A

π
sin ω0tð Þ− 1

5
sin 5 ω0tð Þ− 1

7
sin 7 ω0tð Þ

�

+
1
11

sin 11 ω0tð Þ+ 1
13

sin 13 ω0tð Þ+ � � �
�

13–4 C I R C U I T A N A L Y S I S U S I N G T H E F O U R I E R S E R I E S
Up to this point, we have concentrated on finding the Fourier series description of
periodic waveforms. We are now in a position to address circuit analysis problems
of the type illustrated in Figure 13–8. This first-orderRL circuit is driven by a periodic
sawtooth voltage, and the objective is to find the steady-state current i tð Þ.

We begin by using the results in Example 13–4 to express the input voltage as a
Fourier series in the form

υS tð Þ= VA

2|{z}
dc

+
X∞
n= 1

VA

nπ
cos n ω0t + 90�ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ac
V

(13–14)

This result expresses the input driving force as the sum
of a dc component plus ac components at harmonic fre-
quencies nω0 = 2πnf0,n= 1, 2, 3, . . . . Since the circuit is
linear, we find the steady-state response caused by
each component acting alone and then obtain the total
response by superposition.

In the dc steady state, the inductor acts like a short circuit, so the steady-state cur-
rent due to the dc input VA=2 is simply I0 =VA= 2Rð Þ. The amplitude and phase angle
of the nth harmonic of the sawtooth input are

Vn =
VA

nπ
and ϕn = 90�

In Chapter 11, we found that the sinusoidal steady-state response at frequency ωA

can be found directly from a network function T sð Þ as
Output amplitude = Input amplitude × T jωAð Þj j

Output phase = Input phase + ffT jωAð Þ
In the present case, the input is the nth harmonic at ωA = nω0, the output is the current
I sð Þ=V sð Þ=Z sð Þ, and hence the network function of interest is T sð Þ= 1= Ls+Rð Þ.

+

−
R

L

i(t)vS(t)

0

••• •••

VA

T0 2T0

t(s)

vS(V)

FIGURE 13–8 Linear circuit with a periodic input.

699CIRCUIT ANALYSIS USING THE FOURIER SERIES



Applying the Chapter 11 method here yields the amplitude and phase of the nth har-
monic current as

Amplitude = Vn ×
1

jnω0L+R










= VA

nπR
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + nω0L=Rð Þ2
q

Phase = ϕn + angle
1

jnω0L+R

� �
= 90� − tan−1 nω0L=Rð Þ

Defining θn = tan−1 nω0L=Rð Þ, we get the waveform of the steady-state response to
the nth harmonic input.

in tð Þ= VA

nπR
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ nω0L=Rð Þ2
q

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
amplitude

cos ðnω0t + 90�−θn

|fflfflfflffl{zfflfflfflffl}
phase

Þ

We have now found the steady-state response of the circuit due to the dc compo-
nent acting alone and the nth harmonic ac component acting alone. Since the circuit is
linear, superposition applies and we find that the steady-state response caused the
sawtooth input by summing the contributions of each of these sources:

i tð Þ = I0 +
X∞
n= 1

in tð Þ

=
VA

2R
+
VA

R

X∞
n= 1

1

nπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ nω0L=Rð Þ2

q cos nω0t + 90�−θnð ÞA
(13–15)

The Fourier series in Eq. (13–15) represents the steady-state current due to a saw-
tooth driving force whose Fourier series is in Eq. (13–14).

E X A M P L E 1 3–6

Find the first four nonzero terms of the Fourier series in Eq. (13–15) for
VA = 25 V,R= 50Ω,L= 40 μH,ω0 = 1Mrad=s: Use Multisim to simulate the circuit’s
response using a sawtooth input and compare it to an input made up of the first four
terms of the Fourier series representing the sawtooth input.

SOLUTION:
Equation (13–15) gives a Fourier series of the form

i tð Þ= I0 +
X∞
n= 1

Incos nω0t +Ψnð Þ

where

I0 =
VA

2R
In =

VA

R
1

nπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + nω0L=Rð Þ2

q Ψn =
π
2
− tan−1 nω0L=Rð Þ

Inserting the numerical values leads to

I0 =
1
4

In =
1

2nπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ n× 0:8ð Þ2

q Ψn =
π
2
− tan−1 n× 0:8ð Þ
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The first four nonzero terms in the Fourier series include the dc component plus the
first three harmonics. For n= 0, 1, 2, 3, we have

I0 = 0:25

I1 = 0:124 ψ1 = 0:896 rad = 51:3�

I2 = 0:0422 ψ2 = 0:559 rad = 32:0�

I3 = 0:0204 ψ3 = 0:395 rad = 22:6�

Hence, the desired expression is

i tð Þ = 0:25 + 0:124 cos 106t + 51:3�
� �

+ 0:0422 cos 2 × 106t + 32�
� �

+ 0:0204 cos 3 × 106t + 22:6�
� �

+ � � �A
Multisim has a sawtooth voltage source available. It is under “signal voltage sources”
and is called a triangular voltage. We adjusted the period to 1=f0 or 6:2832 μs and the
fall time to a fast 0.1 ps. For the Fourier series simulation, we placed four sources
in series that correspond to the first four Fourier series components, such
as 12:5 V dc,7:9577 sin 2π× 159,155ð ÞV,3:9789 sin 2π× 318,310ð ÞV, and 2:6526 sin
2π× 477,465ð ÞV. The two circuits and their responses are shown in Figure 13–9.

We used Multisim’s Grapher View to plot the results of two cycles of the voltage
input and the current output under two conditions. In the first case, we used Multi-
sim’s sawtooth containing (ideally) all the harmonics—the triangular voltage. In the
second case, we constructed an input using dc and ac sources corresponding to the
first four terms of the Fourier series. Note that in Multisim the individual voltage
sources are sine waves (not cosine waves) and need to be connected to produce a
negative sine wave for the series. On the Grapher View, the sawtooth is shown in
black and is reproduced well by Multisim. The current response due to the sawtooth
wave is shown in gray.
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Replacing the sawtooth with its first four terms yields the input curve shown in
blue. It is only a modest representative of the sawtooth. It would take more terms
to obtain a more reasonable approximation to an ideal sawtooth, as was shown in
Example 13–2. The resulting current is shown in light blue and is a good approxima-
tion for the actual current response. ■

The results in Example 13–6 require some additional scrutiny to appreciate fully
the Fourier analysis.

First note that if L= 0, Eq. (13–15) reduces to

i tð Þ= VA=R
2

+
X∞
n= 1

VA=R
nπ

cos nω0t + 90�ð Þ

which is the Fourier series of a sawtooth wave of amplitude VA=R. This makes
sense because without the inductor the circuit in Figure 13–8 is a simple resistive
circuit in which i tð Þ= υs tð Þ=R, so the input and response must have the same
waveform.

When L 6¼ 0 the response is not a sawtooth, but we can infer some features of its
waveform if we examine the amplitude spectrum. At high frequency ½ nω0L=Rð Þ� 1�
Eq. (13–15) points out that the amplitudes of the ac components are approximately

In≈
VA

R
1

n2πω0L=R
(13–16)

In the steady-state response, the amplitudes of the high-frequency ac components
decrease as 1=n2, whereas the ac components in the input sawtooth decrease as
1=n. In other words, the relative amplitudes of the high-frequency components are
much smaller in the response than in the input. This makes sense because the induc-
tor’s impedance increases with frequency and thereby reduces the amplitudes of the
high-frequency ac currents. We would expect the circuit to filter out the high-
frequency components in the input and produce a response without the sharp corners
and discontinuities in the input sawtooth.

This is exactly the response we see in Figure 13–9 with the plot of the truncated
series from Example 13–6 (blue line). The plot approximates a rounded version of
the sawtooth waveform, which indicates the high-frequency components have been
removed. The high-frequency components are responsible for the sharp transitions,
which appear in the original sawtooth waveform, but not in the waveform represent-
ing the steady-state current i tð Þ in the circuit. It would take an infinite number of har-
monics to exactly reproduce the sharp transitions.

The next example demonstrates the fact that a square wave, for example, really
consists of individual sinusoids that add together to form the periodic waveform.
The subsequent example illustrates how the Fourier components of a waveform
allow us to better understand the performance of a realistic circuit application.

D E S I G N E X A M P L E 1 3–7

Design a series RLC tuned filter to pass only the third harmonic of a 5-V 200 kHz
square wave. Show that only the third harmonic is the dominant frequency at the out-
put of the filter. Validate the design using Multisim.

SOLUTION:
A 5-V 200 kHz square wave can be represented by the following Fourier series

v1 tð Þ= a0 +
X∞
n= 1

an cos 2πnf0t + bn sin 2πnf0tð ÞV
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For a 5-V square wave with odd symmetry, Figure 13–4 indicates that

a0 = 0, an = 0, bn =
4VA

nπ
for n=odd and bn = 0 for n= even

Substituting the values forVA, f0, and n, we can write the series of the first three terms
as υ1 tð Þ= 6:366 sin 1:256Mt + 2:122 sin 3:770Mt + 1:273 sin 6:283Mt +…V

A properly designed tuned filter would allow the third harmonic to exit the filter
with no attenuation while severely attenuating the other frequencies. Higher harmo-
nics will be increasingly attenuated since they are naturally weaker (magnitude
divided by n) and the filter attenuates these frequencies more as they are further
removed from the tuned frequency. The transfer function of a series RLC tuned
filter is

T sð Þ=
R
L
s

s2 +
R
L
s+

1
LC

We know we want the center frequency (ω0) to be equal to the frequency of the third
harmonic, namely 3.770 Mrad/s. For a series RLC circuit, the center frequency
is given as ω0 = 1=

ffiffiffiffiffiffiffi
LC

p
. In order to select out just the third harmonic, we will need

a modestly high Q. Again for a series RLC tuned filter, Q=
ffiffiffiffiffiffiffi
L=C

p
R . Since L and C

will be selected to meet the center or resonant frequency, R will be chosen to create
the Q. Selecting L= 1mH, a standard value, results in a C = 70:362 pF, a value
obtained using a standard 50-100 pF trimmer capacitor. A standard value R of
100 Ω yields a Q of 37.7, a reasonably high Q.

The resulting transfer function is

T sð Þ= 105s

s2 + 105s+ 1:421 × 1013

We will now calculate the resulting magnitudes of the sinusoidal steady-state output
of the fundamental and the third and fifth harmonics.

jT j1:256Mð Þj= 105 × 1:256 × 106ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:421 × 1013− 1:256 × 106

� �2� 	2
+ 105 × 1:256 × 106
� 	2r

T j1:256Mð Þj j= 9:942 × 10−3

T j3:770Mð Þj j= 105 × 3:770 × 106ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:421 × 1013− 3:770 × 106

� �2� 	2
+ 105 × 3:770 × 106
� 	2r

T j3:770Mð Þj j= 0:999

T j6:283Mð Þj j= 105 × 6:283 × 106ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:421 × 1013− 6:283 × 106

� �2� 	2
+ 105 × 6:283 × 106
� 	2r

T j6:283Mð Þj j= 24:86 × 10−3

Our output becomes

v2 tð Þ= 0:0632 sin 1:256Mt + 2:119 sin 3:770Mt + 0:0316 sin 6:283Mt + � � �V
Simulating this circuit in Multisim requires the use of the Bipolar Voltage from the
“Signal Voltage Sources.” We set the source at 200 kHz, + 5 V, −5 V, 100% duty
cycle, and very fast rise and fall times of 1 ps. We then asked Grapher View to plot

703CIRCUIT ANALYSIS USING THE FOURIER SERIES



the input square wave and the output of the filter. The fundamental has been atten-
uated by 40 dB and the fifth harmonic by 32 dB. The desired third harmonic was only
attenuated by 0:0087 dB. Figure 13–10 shows the Multisim circuit and the Grapher
View plots.

One could increase the attenuation of both the fundamental and the third
harmonic by increasing the Q of the circuit. Note that high values of Q require
accurate values of L and C to ensure that the tuned frequency is exactly where it
is desired since even a tiny error might cause the desired frequency to be significantly
attenuated. ■

D e s i g n E x e r c i s e 13–6
Design a first-order low pass filter to allow only the fundamental of the square wave of
Design Example 13–7 to pass with an attenuation of ≤ 3 dB. Verify your results by calcu-
lating the magnitude of the fundamental and of the third harmonic.

A n s w e r s: Select ωC = 1:256Mrad=s, the frequency of the fundamental. Use a series
RC circuit with the output taken across C. Select R=1 kΩ,C = 796 pF. Magnitude
of fundamental = 4:50 V −3 dBð Þ. Magnitude of third harmonic = 0:671 V −10 dBð Þ. Note:
A first-order filter has a roll-off of −20 dB per decade.A third harmonic is only half a decade
on a log scale. If better isolation is desired, then a higher-order filter is needed, which is the
topic of Chapter 14.

A P P L I C A T I O N E X A M P L E 1 3– 8

Figure 13–11 shows a block diagram of a dc power supply. The ac input is a sinusoid
that is converted in to a full-wave sine by the rectifier. The filter passes the dc com-
ponent in the rectified sine and suppresses the ac components. The result is an output
consisting of a small residual ac ripple riding on top of a much larger dc signal.
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Calculate and plot the first 10 harmonics in amplitude spectra of the filter input
and output for VA = 23:6 V,T0 = 1=60s and a low-pass filter transfer function of

T sð Þ= 200ð Þ2
s2 + 70s+ 200ð Þ2

SOLUTION:
The amplitude spectrum of the filter input is obtained using the Fourier coefficients
for the full-wave rectified sine in Figure 13–4:

a0 = 2VA=π= 15:02 V an =
0 n odd
4VA=π
1−n2










= 30:04

n2−1
n even

8<
: (13–17)

The magnitude of the transfer function at each of these discrete frequencies is

T jnω0ð Þj j= 200ð Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200ð Þ2− nω0ð Þ2

h i2
+ 70 nω0ð Þ2

r (13–18)

To obtain the specified output spectrum, we must generate the product of the input
amplitude times the transfer function magnitude for n= 0,1,2,3,…,10.

Spreadsheets are ideally suited for making repetitive calculations of this type.
Figure 13–12 shows an Excel spreadsheet that implements the required calculations.
Column A gives the index n and Column B gives the corresponding frequencies in
Hz. Column C calculates the frequencies in rad/s. Column D calculates the input
amplitudes using Eq. (13–17). Column E calculates the magnitude of the transfer
function at the frequency in question—the Excel equation for the calculation in
Eq. (13–18) is shown in the fx window above the column designators. Finally, Column
F computes the output amplitudes by taking the product of the input amplitude and
the magnitude of the transfer function for each frequency. Excel then is used to pro-
duce the bar graph shown. Since the low-pass filter has unity gain at zero frequency,
the dc components in the input and output are equal. The second harmonic at 120 Hz
is the first nonzero component at the output. It has a 10-V input amplitude but only a
754-mVoutput amplitude. By the fourth harmonic at 240Hz, the 2-V input amplitude
has been reduced to less than 36 mV. This and subsequent harmonics are entirely
negligible.
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■

E x e r c i s e 13–7
Derive an expression for the first three nonzero terms in the Fourier series of the steady–
state output voltage in Example 13–8.

A n s w e r: υO tð Þ= 15:02 + 0:754 cos 2π 120t +5:7�ð Þ+0:036 cos 2π 240t +2:7�ð ÞV

13–5 R M S V A L U E A N D A V E R A G E P O W E R

In Chapter 5, we introduced the rms value of a periodic waveform as a descriptor of
the average power carried by a signal. In this section, we relate the rms value of the
waveform to the amplitudes of the dc and ac components in its Fourier series. The
rms value of a periodic waveform is defined as

Frms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T0

Z T0

0
f tð Þ½ �2dt

s
(13–19)

The waveform f tð Þ can be expressed as a Fourier series in the amplitude and phase
form as

f tð Þ=A0 +
X∞
n= 1

An cos nω0t +ϕnð Þ

Substituting this expression into Eq. (13–19), we can write F2
rms as

F2
rms =

1
T0

Z T0

0
A0 +

X∞
n= 1

An cos nω0t +ϕnð Þ
" #2

dt (13–20)

FIGURE 13–12
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Squaring and expanding the integrand on the right side of this equation produces
three types of terms. The first is the square of the dc component:

1
T0

Z T0

0
A0½ �2dt =A2

0 (13–21)

The second is the cross product of the dc and ac components, which takes the form

1
T0

X∞
n= 1

2A0

Z T0

0
An cos nω0t +ϕnð Þdt = 0 (13–22)

These terms all vanish because they involve integrals of sinusoids over an integer
number of cycles. The third and final type of term is the square of the ac components,
which can be written as

1
T0

X∞
n= 1

X∞
m= 1

Z T0

0
An cos nω0t +ϕnð ÞAm cos mω0t +ϕmð Þdt = 1

2

X∞
n= 1

A2
n (13–23)

This rather formidable expression boils down to a simple sum of squares because all
of the integrals vanish except when m= n.

Combining Eqs. (13–19) through (13–23), we obtain the rms value as

Frms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

0 +
X∞
n= 1

A2
n

2

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

0 +
X∞
n= 1

Anffiffiffi
2

p
� �2

s
(13–24)

Since the rms value of a sinusoid of amplitude A is A=
ffiffiffi
2

p
, we conclude that

The rms value of a periodic waveform is equal to the square root of the sum of the
square of the dc value and the square of the rms value of each of the ac
components.

In Chapter 5, we found that the average power delivered to a resistor is related to
its rms voltage or current as

P=
V2

rms

R
= I2rmsR

Combining these expressions with the result in Eq. (13–24), we can write the aver-
age power delivered by a periodic waveform in terms of the average power delivered
by each of its Fourier components:

P =
V2

0

R
+
X∞
n= 1

V2
n

2R
= I20R+

X∞
n= 1

I2n
2
R

= P0 +
X∞
n= 1

Pn

(13–25)

where P0 is the average power delivered by the dc component and Pn the average
power delivered by the nth ac component. This additive feature is important because
it means we can find the total average power by adding the average power carried by
the dc component to that carried by each of the ac components.

Caution: In general, we cannot find the total power by adding the power delivered
by each component acting alone because the superposition principle does not apply
to power. However, the average power carried by harmonic sinusoids is additive
because they belong to a special class called orthogonal signals.
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E X A M P L E 1 3–9

Derive an expression for the average power delivered to a resistor by a sawtooth volt-
age of amplitudeVA and period T0. Then calculate the fraction of the average power
carried by the dc component plus the first three ac components.

SOLUTION:
An equation for the sawtooth voltage is υ tð Þ=VAt=T0 for the range 0< t <T0. The
square of the rms value of a sawtooth is

V2
rms =

1
T0

Z T0

0

VAt
T0

� �2

dt =V2
A

t3

3T3
0

� �T0

0

=
V2

A

3

The average power delivered to a resistor is

P=
V2

rms

R
=
V2

A

3R
= 0:333

V2
A

R

This result is obtained directly from the sawtooth waveformwithout having to sum an
infinite series. The same answer could be obtained by summing an infinite series. The
question this example asks is, how much of the average power is carried by the first
four components in the Fourier series of the sawtooth wave? The amplitude spec-
trum of the sawtooth wave (see Example 13–4) is

An =

VA

2
n= 0

VA

nπ
n> 0

8>><
>>:

From Eq. (13–25), the average power in terms of amplitude spectrum is

P=
VA=2ð Þ2

R
+
X∞
n= 1

V2=nπð Þ2
2R

which can be arranged in the form

P=
V2

A

R



1

2ð Þ2 +
1

2 πð Þ2 +
1

2 2πð Þ2 +
1

2 3πð Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0:319 96%ð Þ

+
1

2 4πð Þ2 + � � �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0:333

�

The infinite series within the braces sums to 0.333 and matches the average power we
calculated directly from the waveform itself. The dc component plus the first three ac
terms contribute 0.319 to the infinite sum. In other words, these four components
alone deliver 96% of the average power carried by the sawtooth wave. ■

E x e r c i s e 13–8
The full–wave rectified sine wave shown in Figure 13–4 has an rms value of A=

ffiffiffi
2

p
. What

fraction of the average power that the waveform delivers to a resistor is carried by the first
two nonzero terms in its Fourier series?

A n s w e r: Fraction = 88=9π2 or 99:07%
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E X A M P L E 1 3–1 0

Figure 13–8 shows a series RL circuit driven by a sawtooth voltage source. Estimate
the average power delivered to the resistor for VA = 25 V, R= 50, Ω, L= 40 μH,
T0 = 5 μs, and ω0 = 2π=T0 = 1:26Mrad=s.

SOLUTION:
The Fourier series of the current in a series RL circuit is given in Eq. (13–15) as

i tð Þ= I0 +
X∞
n= 1

In cos nω0t +Ψnð Þ

where

I0 =
VA

2R
In =

VA

R
1

nπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + nω0L=Rð Þ2

q
We cannot directly calculate the rms value of this current without a closed-form
expression for its waveform. However, we can get an estimate of the average power
from the Fourier series. In terms of its Fourier series, the average power delivered by
the current is

P= I20R+
X∞
n= 1

I2n
2
R

When nω0L=R� 1, the amplitude In decreases as 1=n2 and its contribution to the
average power falls off as 1=n4. In other words, the infinite series for the average
power converges very rapidly. To show how rapidly the series converges, we calcu-
late the first few terms using the specified numerical values

These results indicate that P= 3:48W is a reasonable estimate of the average power,
an estimate obtained using only four terms in the infinite series. The important point
is that the high-frequency ac components are not important contributors to the aver-
age power carried by a signal. ■

E x e r c i s e 13–9
In the rectangular-pulse waveform shown in Figure 13–4, the width of the pulse is one-third
the period, T =T0=3. The waveform is to pass through a low-pass filter and then through a
resistive load. The loadmust receive at least 97%of the average power in the original wave-
form. Determine the minimum value of N such that if the filter passes components
V0,V1,V2,…,VN , the load will receive the required amount of power.
(Hint: You may want to use MATLAB to perform the calculations.)

A n s w e r: N = 10.
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A P P L I C A T I O N E X A M P L E 1 3– 1 1

The Fourier series serves as an introduction to the concept that a signal can be
described by a spectrum that gives the distribution of amplitudes (and sometimes
phases) of the sinusoidal components in a waveform. Radio, television, cell phones,
satellite communication, and radar systems must confine their signal spectra to an
allocated portion of the available electromagnetic spectrum. Spectral allocations
are regulated by various governmental agencies since there are many potential users
and a limited spectral resource. As a result, users must design their systems to operate
within specified spectral limitations.

These limitations are often specified using the concept of signal bandwidth,
defined as the frequency interval outside of which the amplitude spectrum is less than
some specified value. Accordingly, signal bandwidth (B) can be quantified by the
expression

B = fU − fL

where fU and fL are the upper and lower limits on the bandwidth interval. Bandwidth
is a partial signal descriptor that places an upper bound on the spectral content out-
side of the interval fL < f < fU.Caution: The spectral content inside the interval can be
less than this upper bound at some frequencies but must be less at every frequency
outside the interval.

For a periodic waveform, the lower frequency bound is fL = f0 when there is no dc
component a0 = 0ð Þ and is fL = 0 when a0 is not zero. The upper bound is another mat-
ter. In general, the Fourier series is an infinite series, so that in theory its spectral
content extends to infinite frequency. However, we have seen the amplitudes of
the higher harmonics become negligibly small and make little contribution to the
waveform’s energy content. In other words, an acceptable approximation to a peri-
odic waveform is obtained when its Fourier series is terminated at some desig-
nated fU = nf0.

One simple way to select nf0 is to compare the amplitudes of the high-frequency
harmonics with the amplitude of the largest ac component, usually the fundamental.
Harmonics whose amplitudes are less than a specified fraction (say 5%) of the
fundamental are ignored. Applying a 5% criterion to waveforms whose Fourier
coefficients decrease as 1=n (square wave, rectangular pulse, and sawtooth wave;
see Figure 13–4) yields fU = 20f0. Waveforms whose harmonics fall off as 1=n2 (trian-
gular wave and rectified sine waves) meet a 5% bound at about fU = 5f0. Regardless
of the criteria used, the basic idea is that signal bandwidth is an important design con-
sideration that in turn influences the bandwidth required in system components.

For example, accurate representation of arterial blood pressure waveforms
requires the first eight harmonics of the pressure signal. To get a useful record of
the arterial pressure waveform, the bandwidth (inHz) of ameasurement systemmust
be at least eight times the maximum heart rate (in beats/second). Thus, designing a
recording system for a maximum heart rate of 180 beats/minute requires a minimum
bandwidth of 24 Hz.

A P P L I C A T I O N E X A M P L E 1 3– 1 2

Digital signal processing uses samples of an analog waveform, as contrasted with ana-
log processing, which operates on the entire waveform. Sampling refers to the proc-
ess of selecting discrete values of a time-varying analog waveform for further
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processing. By far, the most common method of sampling is to record the waveform
amplitudes at equally spaced time intervals. The set of samples υk k= 1,2,3,…f g of an
analog waveform υ tð Þ is defined as

υk = υ kTSð Þ
where k is an integer andTS the time interval between successive samples. Figure 13–
13 shows an example of sampling an analog waveform.

The digitized samples can be stored in a computer or some other medium such as a
compact disc. These samples become the onlymeans of describing the original analog
signal. How good of a description can they be? From our experience, we know that a
reasonable facsimile can be obtained if the samples are closely spaced. Intuitively, it
might seem that exact reconstruction of the analog waveform would require the time
between samples to approach zero. Surprisingly, exact reproduction is possible from
samples taken at finite intervals.

An analog waveform υ tð Þ whose spectral content falls below fmax can be
reproduced exactly from samples υk = υ kTsð Þ if the sampling rate
fS = 1=TS is greater than 2fmax.

This statement, known as the sampling theorem, is one of the key principles of signal
processing. The theorem states that exact recovery requires aminimum sampling rate
of 2fmax.

2 Analog waveforms are usually sampled at a rate higher than the minimum.
For example, the industry standard sampling rate for recording digital audio signals is
fS = 44:1 kHz, which is slightly more than twice the generally accepted upper limit on
human hearing at fmax = 20 kHz.

The important point is that the minimum sampling rate is determined by the spec-
tral content of the original analog waveform. Waveforms whose sinusoidal compo-
nents all fall in the band 0≤ f ≤ fmax are said to be strictly band-limited. For
example, the waveform

υ tð Þ= 8+ 5cos 2π200tð Þ+ 3cos 2π400tð Þ+ 1:5cos 2π1200tð Þ
is strictly band-limited with fmax = 1:2 kHz and can be reproduced exactly from sam-
ples taken at any fS > 2:4 kHz.

Most analog signals are not strictly band limited but usually have an upper fre-
quency limit beyond which the spectral content is of no interest. For example, a peri-
odic waveform is not strictly band-limited because its Fourier series is an infinite sum
of harmonics at nf0. However, the amplitudes of the higher harmonic become neg-
ligibly small as n! ∞ . A band-limited approximation to a periodic waveform is
obtained by defining fmax = nf0, where nf0 is the harmonic beyond which the spectral
amplitudes are less than some specified value.

Examples of the maximum frequency of interest for some biomedical signals are:

Type fmax

Electrocardiogram (ECG) 250 Hz
Blood flow 25 Hz
Respiratory rate 10 Hz
Electromyogram (EMG) 10 kHz

t

v1

v(t)

v3

v2

v4

v5

v7

v6

v8

TS

FIGURE 13–13 Sampled
signal.

2This minimum sampling rate is called theNyquist rate. The name honors Harry Nyquist, who along
with Claude Shannon and others made several key breakthroughs in signal processing in the era
from 1920 to 1950 while working at the Bell Telephone Laboratories.
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For these signals, the spectral content above the listed fmax does not contain useful
diagnostic information and can be ignored. As a result, biomedical signals have min-
imum sampling rates ranging from fS = 20 Hz to fS = 20 kHz.

But we cannot simply ignore the spectral content above fmax. It turns out that sam-
pling signals that are not strictly band-limited causes aliasing, a process by which
seemingly negligible out-of-band spectral content reappears as in-band distortion.
The answer to the aliasing problem is to filter the analog signal prior to sampling.
These anti-aliasing filters must pass spectral content up to the highest frequency of
interest, fmax and suppress the spectral content above the lowest aliasing frequency
at fS− fmax where fS is the sampling frequency.

Figure 13–14 shows the gain response of an anti-aliasing filter used in telecommu-
nication. This low-pass filter has 0dB gain at dc, −3dB gain at fmax = 3:3 kHz, and less
than −60 dB gain at 2fmax. This type of gain response cannot be achieved by the first-
and second-order filters studied in Chapter 12. This type of performance calls for
higher-order filters of the type discussed in Chapter 14.

S U M M A R Y

Gain (dB)

f (kHz)

20

0

–20

–40

–60
1 2 3 4 5 6 7 8 9 10

FIGURE 13–14 Antialiasing
filter.

• The Fourier series resolves a periodic waveform
into a dc component plus an ac component contain-
ing an infinite sum of harmonic sinusoids. The dc
component is equal to the average value of the
waveform. The amplitudes of the sine and cosine
terms in the ac component are called Fourier
coefficients.

• Waveform symmetries cause the amplitudes of some
terms in a Fourier series to be zero. Even symmetry
causes all of the sine terms in the ac component to
be zero. Odd symmetry causes all of the cosine terms
to be zero. Half-wave symmetry causes all of the even
harmonics to be zero.

• An alternative form of the Fourier series represents
each harmonic in the ac component by its amplitude
and phase angle. A plot of amplitudes versus fre-
quency is called the amplitude spectrum. A plot of

phase angles versus frequency is called the phase
spectrum.

• The steady-state response of a linear circuit for a peri-
odic driving force can be found by first finding the
steady-state response due to each term in the Fourier
series of the input. The Fourier series of the steady-
state response is then found by adding (superposing)
responses due to each term acting alone. The individ-
ual responses can be found using either phasor or
s-domain analysis.

• The rms value of a periodic waveform is equal to the
square root of the sum of the square of the dc value
and the square of the rms value of each of the ac com-
ponents. The average power delivered by a periodic
waveform is equal to the average power delivered by
the dc component plus the sum of average power deliv-
ered by each of the ac components.

P R O B L E M S

O B J E C T I V E 1 3 – 1 T H E F O U R I E R S E R I E S ( S E C T S .
13–1–13–3)
(a) Given an equation or graph of a periodic waveform, derive

expressions for the Fourier coefficients.
(b) Given a0,an,and bn, calculate the Fourier coefficients of a

given periodic waveform.

(c) Given a Fourier series of a periodic waveform, determine
properties of the waveform and plot its amplitude and phase
spectra.

See Examples 13–1 to 13–5 and Exercises 13–1 to 13–5.

13–1 Find the first four terms of the Fourier series of the square
wave waveform shown in Figure P13–4.
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13–2 A sine wave has an amplitude of 15 V, a radian frequency
of 1000 rad/s, and a phase shift of 45�. Find the Fourier series
expression for this waveform.

13–3 Derive expressions for the Fourier coefficients of the peri-
odic waveform in Figure P13–3.

1 ms

200 μs

10

t(s)

v(t) (V)

FIGURE P13–3

13–4 Derive expressions for the Fourier coefficients of the peri-
odic waveform in Figure P13–4.

v(t) (V)

10

0 0.5 1 1.5
t(ms)

FIGURE P13–4

13–5 Derive expressions for the Fourier coefficients of the peri-
odic waveform in Figure P13–5.

T0VA

−VA

t(s)

v(t)

FIGURE P13–5

13–6 The equation for the first cycle (0≤ t ≤T0) of a periodic
pulse train is

v tð Þ=VA −5u tð Þ+ 5u t−T0=2ð Þ½ �V
(a) Sketch the first two cycles of the waveform.
(b) Derive expressions for the Fourier coefficients an and bn.

13–7 The equation for the first cycle (0≤ t ≤T0) of a periodic
waveform is

v tð Þ=VAe− t=T0V

(a) Sketch the first two cycles of the waveform.
(b) Derive expressions for the Fourier coefficients an and bn.

13–8 Derive expressions for the Fourier coefficients of the peri-
odic waveform in Figure P13–8.

T0

2

0

VA

T0

t(s)

v(t) (V)

FIGURE P13–8

13–9 Find the first five nonzero Fourier coefficients of the
shifted and offset square wave in Figure P13–9. Use your
results to write an expression in the corresponding Fourier
series.

10

0.25
0

. . . . . .

5

v(t) (V)

1.25 2.25

t (ms)
1 2

T0

FIGURE P13–9

13–10 Use the results in Figure 13–4 to calculate the Fourier
coefficients of the shifted triangular wave in Figure P13–10.
Write an expression for the first four nonzero terms in the
Fourier series.

t(μs)

25

v(t) (V)

–25

50 100

FIGURE P13–10

13–11 Derive expressions for the Fourier coefficients of the
periodic waveform in Figure P13–11.
(a) Write an expression for the first four nonzero terms in
the Fourier series.
(b) Plot the spectrum of the Fourier coefficients an and bn.

713PROBLEMS



16 s

4s

5

–5

t(s)

v(t) (V)

FIGURE P13–11

13–12 A particular periodic waveform with a period of 10 ms
has the following Fourier coefficients

a0 = −5, an =
16
nπ

sin
nπ
4

cos
nπ
4
, bn =

−16
nπ

sin
nπ
4

sin
nπ
4

(a) Write an expression for the terms in the Fourier series up
to n= 8.
(b) Convert your expression in to amplitude and phase form
and plot its spectrum.

13–13 Use the results in Figure 13–4 to calculate the Fourier coef-
ficients of the full-wave rectified sine wave in Figure P13–13.
Use MATLAB to verify your results. Write an expression
for the first four nonzero terms in the Fourier series.

t (s)

339

v(t) (V)

1
50

FIGURE P13–13

13–14 A half-wave rectified sine wave has an amplitude of
169 V and a fundamental frequency of 60 Hz. Use the results
in Figure 13–4 to write an expression for the first four nonzero
terms in the Fourier series. Use MATLAB to plot the ampli-
tude spectrum of the signal.

13–15 Thewaveform f(t) is a 10-kHz triangular wavewith a peak-
to-peak amplitude of 15 V. Use the results in Figure 13–4
to write an expression for the first four nonzero terms in the
Fourier series of g tð Þ= 4+ f tð Þ and plot its amplitude spec-
trum. Use MATLAB to plot two periods of g(t) and an
estimate for g(t) using the first four nonzero terms in the
Fourier series. Comment on the differences between the
two waveforms.

13–16 A sawtooth wave has peak-to-peak amplitude of 5 V and
a fundamental frequency of 100 Hz. Use the results in
Figure 13–4 to write an expression for the first four nonzero

terms in the Fourier series and plot the amplitude spectrum of
the signal. Use MATLAB to plot two periods of the original
signal and an estimate for the signal using the first four non-
zero terms in the Fourier series. Comment on the differences
between the two waveforms.

13–17 The equation for the first cycle (0≤ t ≤T0) of a periodic
pulse train is

v tð Þ=VA u 3t−T0ð Þ−u 3t−2T0ð Þ½ �V
(a) Sketch the first two cycles of the waveform and identify a
related signal in Figure 13–4.
(b) Use the Fourier series of the related signal to find the
Fourier coefficients of v(t).

13–18 The equation for a periodic waveform is

v tð Þ=VA sin 4πt=T0ð Þ+ sin 4πt=T0ð Þj j½ �
(a) Sketch the first two cycles of the waveform and identify a
related signal in Figure 13–4.
(b) Use the Fourier series of the related signal to find the
Fourier coefficients of v(t).
(c) Use MATLAB to sketch an estimate for the signal using
the Fourier coefficients for n≤ 6.

13–19 The first four terms in the Fourier series of a periodic
waveform are

v tð Þ= 5 sin 15kπtð Þ− 1
9
sin 45kπtð Þ+ 1

25
sin 75kπtð Þ

�

−
1
49

sin 105kπtð Þ
�
V

(a) Find the period and fundamental frequency in rad/s and
Hz. Identify the harmonics present in the first four terms.
(b) Identify the symmetry features of the waveform.
(c) Write the first four terms in the Fourier series for the
waveform v t−T0=4ð Þ.

13–20 The first five terms in the Fourier series of a periodic
waveform are

v tð Þ= −12:5+ 25
π
4
cos 500tð Þ− 1

3
cos 1000tð Þ− 1

15
cos 1500tð Þ

�

−
1
35

cos 2500tð Þ
�
V

(a) Find the period and fundamental frequency in rad/s
and Hz. Identify the harmonics present in the first five
terms.
(b) Use MATLAB to plot two periods of v(t).
(c) Identify the symmetry features of the waveform.
(d) Write the first five terms of the Fourier series for the
waveform v(−t).

13–21 The equation for a full-wave rectified cosine is v tð Þ=
VA cos 2πt=T0ð Þj jV.
(a) Sketch v(t) for −T0 ≤ t ≤T0.
(b) Compute the Fourier coefficients for v(t).
(c) Use the Fourier coefficients to plot an estimate for v(t).
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13–22 Find the Fourier series for the waveform in Figure P13–22.

0 T0/6 T0/3

T0/2 2T0/3 5T0/6 T0

VA

−VA

t

v(t) (V)

FIGURE P13–22

O B J E C T I V E 1 3 – 2 F O U R I E R S E R I E S A N D C I R C U I T
A N A L Y S I S ( S E C T . 1 3 – 4 )
(a) Given a linear circuit with a periodic input waveform, find

the Fourier series of a steady-state response.
(b) Given a network function with a periodic input, find the

amplitude and phase spectra of the steady-state output.
See Examples 13–6 to 13–8 and Exercises 13–6 and 13–7.

13–23 An RC series circuit is driven by the following periodic
source:

vs tð Þ= 10 cos 10 kt + 5 cos 30 kt + 3:33 cos 50 kt V

(a) Find the output taken across the capacitor when R= 50Ω
and C = 5 μF.
(b) Simulate the output using Multisim and compare it to the
input when C varies from 0.1 to 10 μF. Perform a “Parameter
sweep” analysis on the capacitor over that range using a dec-
ade sweep, 2 points per decade. Comment on the output
waveform, vis-à-vis the input. What function is the circuit
performing?

13–24 The periodic pulse train in Figure P13–24 is applied to
the RL circuit shown in the figure.
(a) Use the results in Figure 13–4 to find the Fourier coeffi-
cients of the input for VA =12 V, T0 = πms, and T =T0=4.
(b) Find the first four nonzero terms in the Fourier series of
vO(t) for R=330Ω and L= 82mH.

+

−

L

R vO(t)

+

−

vS(t)

T0

vS(t) (V)

T

VA

t(ms)

FIGURE P13–24

13–25 The periodic triangular wave in Figure P13–25 is applied
to theRC circuit shown in the figure. The Fourier coefficients
of the input are

a0 = 0 an =0 bn =
8VA

nπð Þ2 sin
nπ
2

� 	
If VA =10 V and T0 = 2πms, find the first four nonzero terms in
the Fourier series of vO(t) for R= 5 kΩ and C = 0:01 μF.

+

−
C

R

vO(t)

+

−

vS(t)
0

VA

−VA

T0 T0
t(ms)

vS(t) (V)

2

FIGURE P13–25

13–26 The periodic sawtooth wave in Figure P13–26 drives the
OP AMP circuit shown in the figure.
(a) Use the results in Figure 13–4 to find the Fourier coeffi-
cients of the input for VA =3 V and T0 = 4πms.
(b) Find the first four nonzero terms in the Fourier series of
vO(t) for R1 = 20 kΩ, R2 = 100 kΩ, and C = 0:1 μF.
(c) Simulate the circuit using Multisim. Use the triangular
source and make the fall time very short (0.1 ps). Plot three
cycles of the output. The voltage limit for the OP AMP
is VCC = ± 15 V.

+

−

+

−

R1 R2C

vO(t)

i(t)

+

vS(t)

0

VA

T0

t(ms)

vS(t) (V)

FIGURE P13–26

13–27 (a) Design a low-pass OP AMP circuit to pass

only the fundamental and the next nonzero harmonic of a
20πms square wave. The gain of the OP AMP should be +5.
(b) Find the first four nonzero terms in the Fourier series of
the output of your filter.
(c) Validate your design using Multisim. The OP AMP’s
VCC = ± 15 V.

13–28 (a) Design a passive low-passRC filter to block the

fundamental and all harmonics froma full-wave rectified sinus-
oidal waveform. Use the results in Figure 13–4 to find the
Fourier coefficients of the input for VA =170 V, T0 = 16:6 ms.
(b) Find the first four nonzero terms in the Fourier series of
the output of your filter.

13–29 The periodic triangular wave in Figure P13–29 is applied
to the RLC circuit shown in the figure.
(a) Use the results in Figure 13–4 to find the Fourier coeffi-
cients of the input for VA =5 V and T0 = 400π μs.
(b) Find the amplitude of the first five nonzero terms in the
Fourier series for i(t) when R=1Ω, L= 8mH, and C =0:2 μF.
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What term in the Fourier series tends to dominate the
response? Explain.

+

−
C

R

L

i(t)

vS(t)

0

VA

−VA

T0

t(μs)

vS(t) (V)

FIGURE P13–29

13–30 Asawtooth wavewithVA =10 V andT0 = 20πms drives a
circuit with a transfer function T sð Þ= s= s+ 200ð Þ. Find the
amplitude of the first five nonzero terms in the Fourier series
of the steady-state output. Construct plots of the amplitude
spectra for the input and output waveforms and comment
on any differences.

13–31 Repeat Problem 13–30 for T sð Þ= 200= s+200ð Þ.

13–32 Design a tuned RLC filter to pass the third har-

monic of a triangular wave.
(a) Use the results in Figure 13–4 to find the Fourier coeffi-
cients of the input forVA = 15 V andT0 = 10πms. Design your
filter with a Q of 10.
(b) Compare the magnitudes of the fundamental and of the
fifth harmonic with that of the third harmonic at the input and
output of the tuned filter.

13–33 Design a notch RLC filter to block the third har-

monic of a triangular wave.
(a) Use the results in Figure 13–4 to find the Fourier coeffi-
cients of the input forVA = 12 V andT0 = 10πms. Design your
filter with a Q of 20.
(b) Compare the magnitudes of the fundamental and of the
fifth harmonic with that of the third harmonic at the input and
output of the tuned filter.

13–34 The voltage across a 1500-pF capacitor is a triangular
wave with VA =250 V and f0 = 1 kHz. Construct plots of the
amplitude spectra of the capacitor voltage and current. Dis-
cuss any differences in spectral content.

13–35 An ideal time delay is a signal processor whose output is
vO tð Þ= vIN t−TDð Þ. Write an expression for vO tð Þ for TD =
0:5 ms and vIN tð Þ=10 + 10 cos 2π500tð Þ+ 2:5 cos 2π1000tð Þ+
0:625 cos 2π4000tð ÞV
Discuss the spectral changes caused by the time delay.

13–36 A triangular wave with VA = 10 V and T0 = 20πms drives
a circuit whose transfer function is

T sð Þ= 100s

s+ 50ð Þ2 + 4002

(a) Find the amplitude of the first four nonzero terms in the
Fourier series of the steady-state output. What term in the
Fourier series tends to dominate the response? Explain.
(b) Repeat Part (a) for a new transfer functionX sð Þ=T sð Þ=s.
What is the key difference between T(s) and X(s)?

O B J E C T I V E 1 3 – 3 R M S V A L U E A N D A V E R A G E P O W E R
( S E C T . 1 3 – 5 )
(a) Given a periodic waveform, find the rms value of the wave-

form and the average power delivered to a specified load.
(b) Given the Fourier series of a periodic waveform, find the

fraction of the average power carried by specified compo-
nents and estimate the average power delivered to a speci-
fied load.

See Examples 13–9 to 13–11 and Exercises 13–8 and 13–9.

13–37 The current through a 1-kΩ resistor is

i tð Þ=50+ 36cos 120πt−30
�� �
−12cos 360πt +45

�� �
mA

Find the rms value of the current and the average power deliv-
ered to the resistor.

13–38 The voltage across a 100-Ω resistor is given by the an
Fourier coefficients shown in volts in Figure P13–38. All bn
coefficients are zero, as is a0. The fundamental frequency is
250 Hz.

(a) Find expressions for the current through the resistor and
the power dissipated by the resistor.
(b) Find the average of the power expression by integrating
over one period of the waveform and dividing by the period.

1
–3

–2.5

–1.5

–0.5

0.849

0.364

–0.283
–0.509

–2.55

a n
 (

V
)

0.5

1

–2

–1

0

2 3 4 5 6
n

7 8 9 10

FIGURE P13–38

13–39 The voltage across a 50-Ω resistor is

v tð Þ= 60+ 24 sin 200πtð Þ−8 sin 600πtð Þ+4:8 sin 1000πtð ÞV
(a) Find expressions for the current through the resistor and
the power dissipated by the resistor.
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(b) Find the average of the power expression by integrating
over one period of the waveform and dividing by the period.
MATLAB would be useful here.
(c) Find the rms value of the voltage by applying Eq (13–19)
to the expression for v(t). MATLAB would be useful here.
(d) Find the rms value of the voltage by applying Eq (13–24)
to the Fourier coefficient of v(t) and compare the result to the
answer in Part (c).
(e) Compute theaveragepowerdissipatedbytheresistorusing
P=V2

rms=R and compare the result to the answer in Part (b).

13–40 Find the rms value of a square wave. Find the fraction of
the total average power carried by the first three nonzero ac
components in the Fourier series.

13–41 Find the rms value of a sawtooth wave. Find the fraction
of the total average power carried by the first three nonzero
ac components in the Fourier series. Compare with the results
found in Problem 13–40.

13–42 Find the rms value of a parabolic wave. Find the fraction
of the total average power carried by the first three nonzero
ac components in the Fourier series. Compare with the results
found in Problem 13–40.

13–43 Use MATLAB to find the rms value of a half-wave rec-
tified sine wave. Find the fraction of the total average power
carried by the dc component plus the first three nonzero ac
components in the Fourier series.

13–44 Find the rms value of the periodic waveform in
Figure P13–44 and the average power the waveform delivers
to a resistor. Find the dc component of the waveform and the
average power carried by the dc component.What fraction of
the total average power is carried by the dc component?
What fraction is carried by the ac components?

0

... ...

T0

t(s)

T0/2
–VA/2

3VA/2

vS(t) (V)

3T0/2

FIGURE P13–44

13–45 Repeat Problem 13–44 for the periodic waveform in
Figure P13–45.

0

VA

T0 2T0

t(s)

vS(t) (V)

FIGURE P13–45

13–46 A first-order low-pass filter has a cutoff frequency of
1 krad/s and a passband gain of 40 dB. The input to the filter is

vS tð Þ= 20 cos 500t + 12 cos 1500tV:

Find the rms value of the steady-state output.

13–47 Repeat Problem 13–46 for a first-order high-pass filter
with the same cutoff frequency and passband gain.

13–48 Estimate the rms value of the periodic voltage

v tð Þ=VA 2−cos ω0tð Þ+ 1
3
cos 3 ω0tð Þ− 1

5
cos 5 ω0tð Þ

�

+
1
7
cos 7 ω0tð Þ−…

�
V

13–49 The input to the circuit in Figure P13–49 is the voltage

vS tð Þ= 15cos 2π2000tð Þ+5cos 2π6000tð ÞV
(a) Calculate the average power delivered to the 50-Ω load
resistor.
(b) Use Multisim to find the magnitude of the voltage across
the load resistor for each of the two inputs. Then apply
Eq (13–24) to find Vrms and Eq (13–25) to find the average
power delivered to the load. Or, you can do a transient anal-
ysis with both sources connected and have Multisim calculate
the average power, “avg(P(R2)),” dissipated in the 50-Ω load
(R2). However, in this latter case, let the circuit reach steady
state before measuring the average power. Compare your
answer with that found in Part (a).

+
−

50 Ω

50 Ω0.75 μF vO(t)

+

−

vS(t)

FIGURE P13–49

13–50 Find an expression for the average power delivered to a
resistor R by a rectangular pulse voltage with amplitude VA,
period T0, and pulse width T =T0=4. How many components
of the Fourier series are required to account for 98% of the
average power carried by the waveform?

13–51 Repeat Problem 13–50 if T =T0=8.

I N T E G R A T I N G P R O B L E M S
13–52 Fourier Series from a Bode Plot

The transfer function of a linear circuit has the straight-
line gain and phase Bode plots in Figure P13–52. The first
four terms in the Fourier series of a periodic input v1(t) to the
circuit are

v1 tð Þ=42cos 75tð Þ+ 14cos 225tð Þ+ 8:4cos 375tð Þ+6cos 525tð Þ V

Estimate the amplitudes and phase angles of the first four terms
in the Fourier series of the steady-state output v2(t).
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FIGURE P13–52

13–53 Spectrum of a Periodic Impulse Train

A periodic impulse train can be written as

x tð Þ=T0

X∞
n= −∞

δ t−nT0ð Þ

Find the Fourier coefficients of x(t). Plot the amplitude spectrum
and comment on the frequencies contained in the impulse train.

13–54 Power Supply Filter Design

The input to a power supply filter is a full-wave rectified sine
wave with f0 = 50Hz. The filter is a first-order low pass with
unity dc gain. Select the cutoff frequency of the filter so that
the ac components in the filter output are all less than 1% of
the dc component.

13–55 Spectrum Analyzer Calibration

A certain spectrum analyzer measures the average power deliv-
ered to a calibrated resistor by the individual harmonics of peri-
odic waveforms. The calibration of the analyzer has been
checked by applying a 1-MHz square wave and the following
results reported:

f(MHz) 1 3 5 7 9 11

P(dBm) 12.1 2.56 −1.88 −4.80 −6.98 −8.73

The reported power in dBm is P= 10 logðPnÞ, where Pn is the
average power delivered by the nth harmonic in mW. Is the
spectrum analyzer correctly calibrated?

13–56 Virtual Keyboard Design

Electronic keyboards are designed using the following equation
that assigns particular frequencies to each of the 88 keys in a
standard piano keyboard:

f nð Þ=440
ffiffiffi
212

p
Þn−49Hz

�
where n is the key number. There is a need for an amplifier that
can pass high C, key 64, but block keys 63 and 65. Design such a
filter using an RLC tuned circuit with a gain K of 100.
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C H A P T E R 14 ACTIVE FILTER DESIGN

In its usual form the electric wave-filter transmits currents of all frequencies lying within one or more specified ranges, and excludes currents
of all other frequencies.

George A. Campbell, 1922,
American Engineer

Some History Behind This Chapter
The electric filter was independently invented during World
War I by George Campbell in the United States and by K. W.
Wagner in Germany. Electric filters and vacuum tube ampli-
fiers were key technologies that triggered the growth of tel-
ephone and radio communication systems in the 1920s and
1930s. The emergence of semiconductor electronics in the
1960s, especially the integrated circuit OP AMP, allowed
the functions of filtering and amplification to be combined
into what are now called active filters.

Why This Chapter Is Important Today
This is a fun chapter dedicated to the design of practical fil-
ters. After studying this chapter, you will be able to design a
wide range of analog filters that find applications in instru-
mentation systems, audio systems, communication systems,
and even digital systems. You will also learn how to evaluate
different solutions to a filter design problem.

Chapter Sections
14–1 Active Filters
14–2 Second-Order Low-Pass and High-Pass Filters
14–3 Second-Order Bandpass and Bandstop Filters
14–4 Low-Pass Filter Design
14–5 Low-Pass Filter Evaluation
14–6 High-Pass Filter Design
14–7 Bandpass and Bandstop Filter Design

Chapter Learning Objectives
14-1 Second-Order Filter Analysis (Sects. 14–1, 14–2
and 14–3)

(a) Given a second-order filter circuit, find a specified
transfer function.

(b) Given the transfer function of a second-order cir-
cuit, develop a method of selecting the element
values to achieve specified filter characteristics.

14-2 Second-Order Filter Design (Sects. 14–2 and 14–3)

(a) Construct a second-order transfer function with spe-
cified filter characteristics.

(b) Design a second-order circuit with specified filter
characteristics.

14-3 Low-Pass Filter Design (Sects. 14–4 and 14–5)

Given a low-pass filter specification:

(a) Construct a transfer function that meets the
specification.

(b) Design a cascade of first- and second-order circuits
that implements a given transfer function.

(c) Select the best design from competitive filter
approaches based on specified frequency and step
response criteria.

14-4 High-Pass, Bandpass, and Bandstop Filter Design
(Sects. 14–6 and 14–7)

Given a high-pass, bandpass, or bandstop filter
specification:

(a) Construct a transfer function that meets the
specification.

(b) Design a cascade or parallel connection of first- and
second-order circuits that implements a given trans-
fer function.

(c) Select the best design from competitive filter
approaches based on specified frequency and step
response criteria.
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14–1 A C T I V E F I L T E R S
An electric filter is a signal processor that amplifies, attenuates, or otherwise reshapes
the frequency content of input signals. There is a multitude of applications for filters.
Engineers use filters in communication systems for noise suppression, to isolate a sin-
gle communication band from many, to keep signals from one communication band
from spilling over onto an adjacent band, and to recover modulated signals. In instru-
mentation systems, engineers use filters to select desired frequency components or
eliminate undesired ones. In addition, instrumentation systems require filters to
bandwidth-limit analog inputs prior to converting them in to digital signals. They also
need filters to convert digital signals back in to analog representations. In audio sys-
tems, audio engineers use filters in crossover networks to send frequencies to differ-
ent speakers or in recording and playback applications where fine control of
frequency components is crucial to the music industry. Biomedical systems use filters
to interface physiological sensors with data-logging and diagnostic equipment.

Filters are classified as passive or active depending on the components used in their
physical realization.Passive filter circuits contain only resistors, capacitors, and induc-
tors. TheRLCbandpass andbandstop circuits studied inChapter 12arepassive filters.
These circuits can be highly selective when losses are low, and the response is highly
resonant. However, they cannot supply passband gains greater than one and suffer
from loading effects that can nullify the chain rule in a cascade design.

In this chapter, we emphasize an active filter as a circuit that contains only resis-
tors, capacitors, and OP AMPs. These filters offer several advantages:

• They provide frequency selectivity comparable to passive RLC circuits plus
passband gains greater than one.

• They have OP AMP outputs, which means that the chain rule applies in a
cascade design.

• They do not require inductors, which can be large, lossy, and expensive in
low-frequency applications.

Our study of active filter design will begin by building on our introductory knowl-
edge from Chapter 12. We will introduce filter prototypes that easily can be designed
and cascaded. We will look at the low-pass and high-pass Sallen-Key1 configurations
and learn how to design each using two different approaches. We will also look at
some RC stand-alone, active tuned and notch filter configurations that can rival
the RLC filters studied in Chapter 12. After gaining confidence on designing first-
and second-order filters, we will learn how to cascade them to achieve steep roll-offs
using three common cascade algorithms for active, multi-pole filter design.

Active filter design involves devising circuits that realize a given
transfer function T sð Þ. Our design strategy is based on the familiar
cascade connection in Figure 14–1. Under the chain rule, the over-
all transfer function is

T sð Þ=T1 sð Þ×T2 sð Þ×T3 sð Þ× � � �×Tn sð Þ
The stages in the cascade are either first-order or second-order
active filters. The real poles in T sð Þ are produced using the
first-order building block developed in Chapter 12. The complex

poles are produced by second-order building blocks developed in the next two
sections. The complex pole locations are specified by the customary second-order

T1(s)

First stage Second stage Third stage

…T2(s) T3(s)

FIGURE 14–1 A cascade connection.

1Both circuits belong to a family of circuits originally proposed by R. P. Sallen and E. L. Key in
“A Practical Method of Designing RC Active Filters,” IRE Transactions on Circuit Theory,
Vol. CT-2, pp. 74–85, 1955. In 1955 the controlled sources were designed using vacuum tubes.
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parameters—our old friends the damping ratio ζ and undamped natural frequency
ω0. Thus, we design an active filter by controlling the poles introduced by each stage
in a cascade connection.

In a second-order transfer function, the denominator controls the location of the
poles and thus the critical frequencies. The numerator controls the zeros and thus
determines if a transfer function is a low-pass, high-pass, band-pass, or band-reject
filter. Hence, the following transfer functions summarize the different filter types.
Low-pass filters have the following form

T sð Þ= K

s=ω0ð Þ2 + 2ζ s=ω0ð Þ+ 1
(14–1)

High-pass filters have the following form

T sð Þ= K s=ω0ð Þ2
s=ω0ð Þ2 + 2ζ s=ω0ð Þ+ 1

(14–2)

Band-pass filters have the following form

T sð Þ= K s=ω0ð Þ
s=ω0ð Þ2 + 2ζ s=ω0ð Þ+ 1

(14–3)

Finally, band-stop filters have the following form

T sð Þ= K½ s=ω0ð Þ2 + 1�
s=ω0ð Þ2 + 2ζ s=ω0ð Þ+ 1

(14–4)

It is also useful to recall from Chapter 12 that the denominator of all of the different
second-order filters can be written using different parameters as

T sð Þ= numerator

s=ω0ð Þ2 + 2ζ s=ω0ð Þ+ 1
=

numerator

s=ω0ð Þ2 + B
ω0

s=ω0ð Þ+ 1
=

numerator

s=ω0ð Þ2 + 1
Q

s=ω0ð Þ+ 1

where ζ is the damping ratio,B the bandwidth, andQ the quality factor of the circuit.
Different types of filter circuits are specified using different parameters. All filters
specify critical frequencies and passband gains. In addition, high-pass and low-pass
filters often specify damping ratios ζ, notch and tuned filters require certain B and
Q, and wide bandpass filters often insist on a particularB. We will discuss these para-
meters in more detail as we cover each filter type.

For future reference, note that replacing s=ω0 by ω0=s converts the low-pass trans-
fer function T sð Þ in Eq. (14–1) into the high-pass transfer function T sð Þ in Eq. (14–2).
We will make good use of this low-pass to high-pass transformation in a later section.

14–2 S E C O N D - O R D E R L O W - P A S S A N D H I G H - P A S S F I L T E R S
The second-order building blocks developed in this section are the counterparts of
the first-order low-pass and high-pass filters in Chapter 12. These second-order
circuits all have the following features: (1) an OP AMP output (to avoid loading),
(2) two capacitors (to get two poles), and (3) at least one feedback path (to make
the poles complex). We begin our development with the low-pass case.

S E C O N D - O R D E R L O W - P A S S F I L T E R S
From Eq. (14–1), the transfer function of a second-order low-pass filter has the form

T sð Þ= K

s=ω0ð Þ2 + 2ζ s=ω0ð Þ+ 1
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The gain response is found by substituting jω for s to obtain

jT jωð Þj= jKjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1−ðω=ω0Þ2�2 + 4ζ2 ω=ω0ð Þ2

q (14–5)

At low frequency ω�ω0ð Þ the gain approaches jT jωð Þj! jKj=
jT 0ð Þj. At high frequency ω�ω0ð Þ the gain approaches
jT jωð Þj! jKj ω0=ωð Þ2. Figure 14–2 presents Bode plots of these
gain asymptotes (solid lines) and the actual gain (dashed
curves) for several values of ζ. The key points to remember
are the following:

• The low- and high-frequency gain asymptotes intersect
at ω=ω0.

• For ω<ω0 the asymptotic gain equals the dc gain
jT 0ð Þj= jKj.

• For ω>ω0 the slope of the asymptotic gain is
−40 dB=decade.

• The actual gain at ω=ω0 is jT jω0ð Þj= jKj=2ζ.
From a design perspective, we say that ω0 locates the corner
frequency and ζ controls the gain in the vicinity of the corner.

The circuit in Figure 14–3(a) is analyzed in Chapter 11 (Example 11–6), where its
voltage transfer function is shown to be

T sð Þ= V2 sð Þ
V1 sð Þ =

μ
R1R2C1C2s2 + R1C1 +R1C2 +R2C2−μR1C1ð Þs+ 1

(14–6)

This is a second-order low-pass function with a dc gain of jT 0ð Þj= μ.
An OP AMP RC filter is obtained by replacing the dependent source in

Figure 14–3(a) by the OPAMP circuit in Figure 14–3(b). The gain of this noninvert-
ing amplifier gain is 1 +RA=RB. Thus, modification simulates the dependent source
when 1+RA=RB = μ or, equivalently, RA = μ−1ð ÞRB. The modified circuit is our first
second-order building block. Note that it has anOPAMP output, two capacitors, and
a feedback path.

Our objective is to find methods of determining the gain μ and the four element
values that produce specified values of ω0 and ζ. Comparing the denominators in
Eqs. (14–1) and (14–6) givesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1R2C1C2
p

= 1=ω0 and R1C2 +R2C2 + 1−μð ÞR1C1 = 2ζ=ω0

Using the first equation to eliminate ω0 from the second equation leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1R2C1C2

p
=

1
ω0

and

ffiffiffiffiffiffiffiffiffiffiffi
R1C2

R2C1

r
+

ffiffiffiffiffiffiffiffiffiffiffi
R2C2

R1C1

r
+ 1−μð Þ

ffiffiffiffiffiffiffiffiffiffiffi
R1C1

R2C2

r
= 2ζ (14–7)

Two methods of selecting element values to meet these design goals are dis-
cussed below.

|T(jω)|

10K

K

0.1K

ζ = 0.05

ζ = 0.5

ζ = 1 −40 dB/dec

ω00.1 ω0 10 ω0

ω

FIGURE 14–2 Second-order low-pass gain responses.
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(a) Dependent source circuit (b) OP AMP realization

FIGURE 14–3 Second-order
low-pass circuits.
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The equal element method requires that R1 =R2 =R and C1 =C2 =C. Inserting
these conditions into Eq. (14–7) leads to

RC =
1
ω0

and μ= 3−2ζ (14–8)

Using this method, we select values of R (or C) and RB, then solve for C (or R) and
RA = μ−1ð ÞRB. The dc gain achieved by this method is jT 0ð Þj= μ= 3−2ζ, and the
method is valid for ζ< 1:5.

The unity gain method requires that R1 =R2 =R and μ= 1. Inserting these condi-
tions in Eq. (14–7) leads to

R
ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p
=

1
ω0

and
C2

C1
= ζ2 (14–9)

Using this method, we select a value of C1 and calculate C2 = ζ2C1 and R=
ω0

ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p� �−1
. To get a gain μ= 1, we make the noninverting OP AMP circuit a volt-

age follower. That is, we replace RA by a short circuit andRB by an open circuit. This
eliminates the need for RA and RB but requires two different capacitors. Obviously,
the dc gain achieved by this design method is jT 0ð Þj= μ= 1. The unity gain method
does not place any restrictions on the value of the damping coefficient, ζ.

The equal element and unity gain methods provide alternative ways to design an
active low-pass filter with prescribed values of ω0 and ζ. However, the dc gains
produced by these methods are predetermined and are not adjustable design para-
meters. An additional gain correction stage may be needed when ω0, ζ, and the dc
gain are all three prescribed.

D E S I G N A N D E V A L U A T I O N E X A M P L E 1 4–1

Develop a second-order low-pass transfer function with a corner frequency at
ω0 = 1 krad=s and with corner frequency gain equal to the dc gain. Use MATLAB
to help visualize the Bode plots of the desired transfer function. Then design two
competing circuits using the equal element and unity gain design techniques. Use
Multisim to simulate the frequency responses of the designed circuits. Compare
the results and comment on any differences.

SOLUTION:
The required transfer function has the form

T sð Þ= K

s=1000ð Þ2 + 2ζ s=1000ð Þ+ 1

The requirement that the corner frequency gain equal the dc gain results in
jT j1000ð Þj=K=2ζ. These two gains are equal when ζ= 0:5.

Equal element design: Inserting ω0 = 1 krad=s and ζ= 0:5 into Eq. (14–8) yields
RC = 10−3 s and μ= 2. The resulting transfer function then is

T1 sð Þ= 2× 106

s2 + 1000s+ 106

Selecting R=RB = 10 kΩ requires C = 0:1 μF and RA = μ−1ð ÞRB = 10 kΩ. The
resulting circuit is shown in Figure 14–4(a) and has a dc gain of jT 0ð Þj= μ= 2.

Unity gain design: Inserting ω0 = 1 krad=s and ζ= 0:5 into Eq. (14–9) yields the
following transfer function:

T2 sð Þ= 106

s2 + 1000s+ 106

With the recognition that R
ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p
= 10−3 s and C2 = ζ2C1 = 0:25C1, selecting

C1 = 0:1 μF dictates that C2 = 0:025 μF and R= 20 kΩ. The dc gain in this circuit
is, by design, 1 and Figure 14–4(b) shows the resulting circuit.

(a)

+
−

(b)

+
−

10 kΩ 10 kΩ

10 kΩ
10 kΩ

20 kΩ 20 kΩ

0.1 μF

0.1 μF

0.025 μF

0.1 μF

FIGURE 14–4
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We can visualize our transfer function designs by using the bodemag function of
MATLAB. The following code will generate the Bode magnitude plots:

T1=tf([2000000],[1 1000 1000000]);
T2=tf([1000000],[1 1000 1000000]);
w = logspace(1,4,1000);
bodemag(T1,T2,w);grid

MATLAB returns the graphs shown in Figure 14–5(a), plotted in dB versus Hz.
The circuits were built in Multisim and simulated using AC analysis. Grapher

View returned the results shown in Figure 14–5(b), which are also plotted in dB ver-
sus Hz. The designs accurately implement the transfer functions.

Comparing the two circuit designs shows that the equal element design has a
greater gain and uses equal-value components, but requires two extra resistors.
The unity gain design is simpler but requires two different capacitors. The preferred
design depends on the application and other nonstated requirements.
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D e s i g n E x e r c i s e 1 4–1
Develop a second-order low-pass transfer function with a corner frequency of 50 rad=s or
7:96Hz, a dc gain of 2, and a gain of 4 at the corner frequency. Validate your result by using
MATLAB to plot the transfer function’s absolute gain versus frequency.

A n s w e r: The desired transfer function is

T sð Þ= 5000
s2 + 25s+2500

Figure 14–6 shows the MATLAB results.

D e s i g n E x e r c i s e 1 4–2
Design circuits using both the equal element design and unity gain design techniques to real-
ize the transfer function in Exercise 14–1. Use Multisim to simulate your designs and com-
pare them to the MATLAB results shown in Figure 14–6.

A n s w e r: The two designs are shown in Figure 14–7 along with the Grapher View output.
Note that both designs required adjustments to their gains to get an overall gain of 2. The
filter from the equal element design required a dc gain of 2.5 to achieve the necessary damp-
ing ratio. To get the overall circuit gain of 2, a voltage divider was connected to the output of
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the filter. In the unity gain design, a second amplifier stage was required to boost the overall
gain to 2. Either design provides the desired output, but the equal element design requires
less power.

S E C O N D - O R D E R H I G H - P A S S F I L T E R S
The transfer function of a second-order high-pass filter from Eq. (14–2) has the form

T sð Þ= K s=ω0ð Þ2
s=ω0ð Þ2 + 2ζ s=ω0ð Þ+ 1

This transfer function has two poles and a double zero at s= 0. Substituting jω for s
yields the gain response as

jT jωð Þj= jKj ω=ω0ð Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1− ω=ω0ð Þ2�2 + 4ζ2 ω=ω0ð Þ2

q (14–10)

At high frequency ω�ω0ð Þ the gain approaches jT jωð Þj! jKj=
jT ∞ð Þj. At low frequency ω�ω0ð Þ the gain approaches
jT jωð Þj! jKj ω=ω0ð Þ2. Figure 14–8 presents Bode plots of these
gain asymptotes (solid lines) and the actual gain (dashed curves)
for several values of ζ. The key points to remember are the
following:

• The high- and low-frequency gain asymptotes intersect
at ω=ω0.

• For ω>ω0 the asymptotic gain equals the infinite fre-
quency gain jT ∞ð Þj= jKj.

• For ω<ω0 the slope of the asymptotic gain is + 40 dB=
decade.

• The actual gain at ω=ω0 is jT jω0ð Þj= jKj=2ζ.
As in the low-pass case, the design parameter ω0 locates the cor-
ner frequency and ζ controls the actual gain around the corner
frequency.

The circuit in Figure 14–9(a) has a transfer function of
the form

T sð Þ= V2 sð Þ
V1 sð Þ =

μR1R2C1C2s2

R1R2C1C2s2 + R2C2 +R1C1 +R1C2−μR2C2ð Þs+ 1
(14–11)

This is a second-order high-pass function with an infinite-frequency gain of
jT ∞ð Þj= μ. The high-pass circuit in Figure 14–9(a) is obtained from the low-pass

ζ = 0.05

ζ = 0.5

ζ = 1

+ 40 dB/dec

|T(jω)|
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ω00.1 ω0 10 ω0

ω

FIGURE 14–8 Second-order high-pass gain
responses.
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circuit in Figure 14–3(a) by interchanging the locations of the resistors and capacitors.
In Problem 14–1, the student will discover how this interchange converts the low-pass
T sð Þ in Eq. (14–6) into the high-pass T sð Þ in Eq. (14–11).

As in the low-pass case, we replace the dependent source in Figure 14–9(a) by the
noninverting OP AMP circuit in Figure 14–9(b). The OP AMP circuit simulates the
dependent source when 1+RA=RB = μ or, equivalently,RA = μ−1ð ÞRB. Themodified
high-pass circuit is a second-order building block with an OP AMP output, two capa-
citors, and a feedback path.

Again our goal is to find methods of determining the gain μ and the four element
values that produce specified values of ω0 and ζ. Comparing the denominators in
Eqs. (14–2) and (14–11) givesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1R2C1C2
p

= 1=ω0 and R1C1 +R1C2 + 1−μð ÞR2C2 = 2ζ=ω0

Using the first equation to eliminate ω0 from the second equation leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1R2C1C2

p
=

1
ω0

and

ffiffiffiffiffiffiffiffiffiffiffi
R1C1

R2C2

r
+

ffiffiffiffiffiffiffiffiffiffiffi
R1C2

R2C1

r
+ 1−μð Þ

ffiffiffiffiffiffiffiffiffiffiffi
R2C2

R1C1

r
= 2ζ (14–12)

To select the element values in Eq. (14–12), we use methods similar to those used to
design our low-pass building block.

The equal element method requires that R1 =R2 =R and C1 =C2 =C. Inserting
these conditions in Eq. (14–12) leads to

RC =
1
ω0

and μ= 3−2ζ (14–13)

Under this method we select values of R (or C) and RB and solve for C (or R) and
RA = μ−1ð ÞRB. The infinite-frequency gain achieved by this method is jT ∞ð Þj=
μ= 3−2ζ, and the method is valid for ζ< 1:5.

The unity gain method requires that C1 =C2 =C and μ= 1. Inserting these condi-
tions in Eq. (14–12) gives

C
ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
=

1
ω0

and
R1

R2
= ζ2 (14–14)

Using this method, we select a value of R2 and calculate R1 = ζ2R2 and C =
ω0

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p� �−1
. To get a gain μ= 1, we make the noninverting OP AMP circuit into

a voltage follower. That is, we replaceRA by a short circuit andRB by an open circuit,
thereby eliminating the need for these two resistors. Obviously the infinite-frequency
gain achieved by this method is jT ∞ð Þj= μ= 1. As with the low-pass filter, the unity
gainmethod does not place any restrictions on the value of the damping coefficient, ζ.

The equal element and unity gain methods are alternative ways to design an active
high-pass filter with prescribed values of ω0 and ζ. As we found in the low-pass case,
the passband gains produced by thesemethods are predetermined and are not adjust-
able design parameters. An additional gain correction stage may be needed when ω0,
ζ, and the infinite-frequency gain are all three prescribed.

D E S I G N E X A M P L E 1 4–2

Develop a second-order high-pass transfer function with a corner frequency at
ω0 = 20 krad=s, an infinite-frequency gain of 0 dB, and a corner frequency gain of
−3 dB. Use MATLAB to help visualize the Bode magnitude plot of the desired
transfer function. Then design two competing circuits using the equal element and
unity gain design techniques. Use Multisim to simulate the frequency responses of
the designed circuits. Compare the results and comment on the differences.
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SOLUTION:
The required transfer function has the form

T sð Þ= K s=20;000ð Þ2
s=20;000ð Þ2 + 2ζ s=20;000ð Þ+ 1

The infinite-frequency gain is T ∞ð Þ=K and the corner frequency gain is
jT j20;000ð Þj=K=2ζ. A gain of 0 dB at infinite frequency requires K = 1. A gain of
−3 dB at the corner frequency requires jT j20;000ð Þj= 1=

ffiffiffi
2

p
, which in turn requires

that ζ= 1=
ffiffiffi
2

p
= 0:707. Therefore, the desired transfer function is

T sð Þ= s2

s2 + 28;280s+ 400 × 106

We can visualize our transfer function design by using the bodemag function of
MATLAB as follows:

T=tf([1 0 0],[1 28280 400e6]);
w = logspace(3,5,10000);
set(cstprefs.tbxprefs,'FrequencyUnits','Hz')
bodemag(T,w);
grid

Figure 14–10 shows the resulting plot. We changed the frequency axis to hertz to bet-
ter compare our design results.

Equal element design: Inserting ω0 = 20 krad=s and ζ= 0:707 into Eq. (14–13)
yields RC = 5× 10−5 s and μ= 3−

ffiffiffi
2

p
= 1:586. Selecting C = 0:005 μF and RB = 50 kΩ

requires R= 10 kΩ and RA = μ−1ð ÞRB = 29:3 kΩ. The high-frequency gain of this
design is jT ∞ð Þj= μ= 1:586, which is more than the specified value of 1 0 dBð Þ.
We add a gain correction stage with a gain of 1=1:586 = 0:6305 to bring the overall
gain down to 0 dB. Figure 14–11(a) shows the resulting two-stage design.

Unity gain design: Inserting ω0 = 20 krad=s and ζ= 0:707 into Eq. (14–14) yields
C

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
= 5× 10−5 s and R1 = ζ2R2 = 0:5R2. Selecting R2 = 10 kΩ requires that R1 =

System: T1
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5 kΩ and C = 7071 pF. The jT ∞ð Þj gain of this circuit is 1, which matches the desired
0 dB. The resulting single-stage design is shown in Figure 14–11(b).

The circuits were created inMultisim and simulated using AC analysis. Their Gra-
pher View results are shown in Figure 14–12. Clearly, both circuit designs implement
the transfer function extremely well and meet all three design specifications.

Comparing the two circuit designs shows that the equal element design requires an
extraOPAMPusedasabufferand fourmore resistors than theunitygaindesignbecause
its gain is greater than 1. The voltage divider could beplaced after the filter thereby elim-
inating theneed for thebuffer, but raising a concernabout loadingat theoutput.Regard-
less, the unity gain design appears to be the better choice in this case. ■

D e s i g n E x e r c i s e 1 4–3
Construct a second-order high-pass transfer functionwith a corner frequency of 20 rad=s, an
infinite-frequency gain of 4, and a gain of 2 at the corner frequency.

A n s w e r: T sð Þ= 4s2

s2 + 40s+ 400
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The design requirements for the Sallen-Key second-order filters studied are sum-
marized in Table 14–1:

14–3 S E C O N D - O R D E R B A N D P A S S A N D B A N D S T O P F I L T E R S
The active RC filters in this section are the counterparts of the passive RLC circuits
studied in Chapter 12. These active filters achieve the frequency selectivity of the pas-
sive RLC circuits without the need for inductors. We continue our development of
active filter building blocks with the bandpass case.

S E C O N D - O R D E R B A N D P A S S F I L T E R S
The transfer function of a second-order bandpass filter from Eq. (14–3) has the form

T sð Þ= K s=ω0ð Þ
s=ω0ð Þ2 + 2ζ s=ω0ð Þ+ 1

This transfer function has two poles and a zero at s= 0. The gain response is found in
the usual way as

jT jωð Þj= jKjj ω=ω0ð Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1− ω=ω0ð Þ2�2 + 4ζ2 ω=ω0ð Þ2

q (14–15)

At low frequency ω�ω0ð Þ the gain approaches jT jωð Þj!
jKj ω=ω0ð Þ. At high frequency ω�ω0ð Þ the gain approaches
jT jωð Þj! jKj ω0=ωð Þ. Figure 14–13 presents Bode plots of these
gain asymptotes (solid lines) and the actual gain (dashed curves)
for several values of ζ. The key points to remember are the
following:

• The low- and high-frequency gain asymptotes intersect
at ω=ω0.

• For ω<ω0 the slope of the asymptotic gain is + 20 dB=
decade.

• For ω>ω0 the slope of the asymptotic gain is −20 dB=
decade.

• The actual gain at ω=ω0 is jT jω0ð Þj= jKj=2ζ.
Note again that the design parameter ω0 locates the center fre-
quency and ζ controls the actual gain near the center frequency.

T A B L E 14–1

EQUAL ELEMENT UNITY GAIN

R1 =R2 =R R1 =R2 =R

Low Pass C1 =C2 =C μ= 1

ω0 = 1
RC= ω0 = 1=R

ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p

μ= 3−2ζ ζ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2=C1

p
R1 =R2 =R C1 =C2 =C

C1 =C2 =C μ= 1

High Pass ω0 = 1
RC= ω0 = 1=C

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p

μ= 3−2ζ ζ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1=R2

p

|T(jω)|
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FIGURE 14–13 Second-order bandpass gain
responses.
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The circuit in Figure 14–14 has a transfer function of the form

T sð Þ= V2 sð Þ
V1 sð Þ =

−R2C2s
R1R2C1C2s2 + R1C1 +R1C2ð Þs+ 1

(14–16)

This circuit produces a second-order bandpass function. It has an OP AMP output,
two capacitors, and two feedback paths—one via resistor R2 and the other through
the capacitor C2. The dual feedback identifies this circuit as a member of the
multiple-feedback family of active filters.2

Derivation of Eq. (14–16) using node analysis is easy, as the student can readily
verify by working Problem 14–2.

Our design goal is to select element values to achieve specified values of ω0 and ζ.
Comparing the denominators in Eqs. (14–3) and (14–16) givesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1R2C1C2
p

= 1=ω0 and R1C1 +R1C2 = 2ζ=ω0

Using the first equation to eliminate ω0 from the second equation producesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1R2C1C2

p
=

1
ω0

and

ffiffiffiffiffiffiffiffiffiffiffi
R1C1

R2C2

r
+

ffiffiffiffiffiffiffiffiffiffiffi
R1C2

R2C1

r
= 2ζ (14–17)

In this case there are two design constraints and four unknown element values.
An equal-capacitor method C1 =C2 =Cð Þ can be used to reduce the number of

unknowns. Inserting C1 =C2 =C into Eq. (14–17) yieldsffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
C =

1
ω0

and
R1

R2
= ζ2 (14–18)

Under this method we select a value of R2 and solve for R1 = ζ2R2 and C =
ω0

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p� �−1
: Since this method uses C1 =C2, the center frequency gain found from

Eq. (14–16) is jT jω0ð Þj=R2=2R1 = 1=2ζ2. Note that the center frequency gain is
greater than 1 when ζ< 1=

ffiffiffi
2

p
. For example, when ζ= 0:1, the gain is 50. This contrasts

with the passive RLC bandpass circuit, whose center frequency gain is always 1.
The key descriptive parameters of a second-order bandpass filter are its center fre-

quencyω0 and bandwidthB= 2ζω0. It is customary to add a third parameter called the
quality factor, defined as Q=ω0=B. From this definition, it is clear that Q and ζ are
both dimensionless parameters related asQ= 1=2ζ. Either parameter can be used to
characterize filter bandwidth. WhenQ> 1 ζ< 0:5ð Þ, the filter is said to be narrow-band
because thebandwidth is less than thecenter frequency.WhenQ< 1 ζ> 0:5ð Þ, the filter
is said to be wide-band. The active bandpass building block developed here is best
suited to narrow-band applications. Filters with a highQ are also referred to as tuned
filters. The design of wide-band active bandpass filters is discussed in Sect. 14–7.

D E S I G N E X A M P L E 1 4–3

Use the active RC circuit in Figure 14–14 to design a bandpass filter with a center
frequency at 10 kHz and a bandwidth of 4 kHz. Find the center frequency gain for
the design. Use MATLAB to show the filter’s gain characteristics.

SOLUTION:
The specified filter parameters define the center frequency and bandwidth as

ω0 = 2π× 104 = 62:8 krad=s and B= 2π× 4000 = 25:1 krad=s

+

−
R1 R2

C2

C1

v1(t)

+

v2(t)

+

FIGURE 14–14 Second-order
bandpass circuit.

2For an extensive discussion of the multiple-feedback family, see Wai-Kai Chen, Ed., The Circuits
and Filters Handbook, CRC Press, 1995, Chapter 76, pp. 2372 ff. The bandpass circuit in Figure 14–
14 is sometimes called the Delyannis-Friend circuit. See M. E. Van Valkenburg, Analog Filter
Design, Holt, Rinehart & Winston, Inc, 1982, p. 203.
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The required damping ratio is ζ=B=2ω0 = 0:2. Inserting the values of ω0 and ζ into
Eq. (14–18) yields R1 = 0:04R2 and C = 1:592 × 105=

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
. Selecting R2 = 100 kΩ

requires R1 = 4 kΩ and C = 796 pF. The center frequency gain for this design is
jT jω0ð Þj= 1=2ζ2 = 12:5. The transfer function for the design is

T sð Þ= −314 × 103s

s2 + 25:1 × 103s+ 3:9456 × 109

The required MATLAB code is

T=tf([-314e3 0],[1 25.1e3 3.9456e9]);
w = logspace(4,6,10000);
bodemag(T,w);grid

The Bode magnitude plot is shown in Figure 14–15. ■

D e s i g n E x e r c i s e 1 4–4
Rework the design in Example 14–3, starting with C = 2000 pF.

A n s w e r s: R1 = 1:59 kΩ; R2 = 39:8 kΩ

D e s i g n E x e r c i s e 1 4–5
Construct a second-order bandpass transfer function with a corner frequency of 50 rad=s, a
bandwidth of 10 rad=s, and a center frequency gain of 4.

A n s w e r: T sð Þ= −40s
s2 + 10s+ 2500

S E C O N D - O R D E R B A N D S T O P F I L T E R S
The transfer function of a second-order bandstop filter from Eq. (14–4) has the form

T sð Þ= K½ s=ω0ð Þ2 + 1�
s=ω0ð Þ2 + 2ζ s=ω0ð Þ+ 1
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This transfer function has two zeros at s= � jω0 along with the
two poles defined by ζ and ω0. The resulting gain response is

jT jωð Þj= jKjj1− ω=ω0ð Þ2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1− ω=ω0ð Þ2�2 + 4ζ2 ω=ω0ð Þ2

q (14–19)

At low frequency ω�ω0ð Þ and high frequency ω�ω0ð Þ the
gain approaches jT 0ð Þj= jT ∞ð Þj! jKj. At ω=ω0 the gain is
jT jω0ð Þj= 0. Figure 14–16 shows the gain predicted by
Eq. (14–19) for some representative values of ζ. Key points
to remember are the following:

• The low- and high-frequency gains are jT 0ð Þj=
jT ∞ð Þj= jKj.

• Atω=ω0 there is a zero-gain notch in the gain response.

The notch is caused by the j-axis zeros in T sð Þ. From a design
perspective, we say that the zeros at s= � jω0 locate the notch
and ζ controls the width of the notch.

The circuit in Figure 14–17 is a modification of the bandpass
circuit in Figure 14–14. The modified circuit retains the two feedback paths and adds
a second input path via the voltage divider RA and RB. The two input and feedback
paths combine to produce an overall circuit transfer function of

T sð Þ= V2 sð Þ
V1 sð Þ =

RB

RA +RB

R1R2C1C2s2 + R1C1 +R1C2−R2C2RA=RBð Þs+ 1
R1R2C1C2s2 + R1C1 +R1C2ð Þs+ 1

� �
(14–20)

Derivation of this transfer function involves straightforward (if laborious) node anal-
ysis and is left for the enjoyment of the student in Problem 14–3.

The denominator in Eq. (14–20) is the same as the denominator of the bandpass
filter in Eq. (14–15). Hence, the design constraints in Eq. (14–16) apply here as well,
namely ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1R2C1C2
p

=
1
ω0

and

ffiffiffiffiffiffiffiffiffiffiffi
R1C1

R2C2

r
+

ffiffiffiffiffiffiffiffiffiffiffi
R1C2

R2C1

r
= 2ζ (14–21)

These constraints control the locations of the bandstop filter poles. Comparing the
numerators in Eqs. (14–4) and (14–20) gives

R1 C1 +C2ð Þ−R2C2RA=RB = 0 (14–22)

This constraint ensures that the circuit has the requisite j-axis zeros to produce the
bandstop notch. Taken together, Eqs. (14–21) and (14–22) give us three design con-
straints and six unknown element values.

The equal-capacitor method C1 =C2 =Cð Þ reduces the number of unknowns in the
design constraints. When C1 =C2 =C, the pole location constraints in Eq. (14–21)
reduce to ffiffiffiffiffiffiffiffiffiffiffi

R1R2
p

C =
1
ω0

and
R1

R2
= ζ2 (14–23)

Using this design method, we select a value of R2 and solve for R1 = ζ2R2
and C = ω0

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p� �−1
. When C1 =C2 =C, the bandstop notch requirement in

Eq. (14–22) reduces to

RA

RB
=
2R1

R2
(14–24)

ζ = 0.05
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FIGURE 14–16 Second-order bandstop gain
responses.
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FIGURE 14–17 Second-order
bandstop circuit.
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An obvious way to meet this requirement is to let RA = 2R1 and RB =R2.
Second-order bandstop filters are customarily described in terms of the notch fre-

quency ω0 and the notch bandwidth B= 2ζω0. The bandstop circuit in Figure 14–17 is
best suited for narrow-band applications aimed at eliminating a narrow range of fre-
quencies or even a single frequency. Filters with a narrow bandwidth of this type are
often referred to as notch filters. The design of wide-band bandstop filters is dis-
cussed in Sect. 14–7.

Narrow-band notch circuits are often used to eliminate power line noise at 60 Hz
(50 Hz in many countries). The next example illustrates such an application.

D E S I G N E X A M P L E 1 4–4

Use the active RC circuit in Figure 14–17 to design a bandstop filter with a notch fre-
quency at 60 Hz and a notch bandwidth of 12 Hz. Find the circuit’s transfer function
and use MATLAB to plot the filter’s gain characteristic and to estimate the attenu-
ation of the notch. Then useMultisim to simulate the circuit and compare the results.

SOLUTION:
The specified filter parameters define the notch frequency and bandwidth as

ω0 = 2π× 60 = 377 rad=s and B= 2π× 12 = 75:4 rad=s

The required damping ratio is ζ=B=2ω0 = 0:1. Using equal capacitors C1 =C2 =Cð Þ
and selectingR2 = 100 kΩ, we use Eqs. (14–23) and (14–24) to calculate the remaining
values as follows:

R1 = ζ2R2 = 1 kΩ

C =
1

ω0
ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p = 0:265 μF

RA = 2R1 = 2 kΩ

RB = R2 = 100 kΩ

The transfer function for the design is

T sð Þ= 0:98
s2 + 142:4 × 103

s2 + 75:47s+ 142:4 × 103

The required MATLAB code is

T=tf([0.98 0 0.98∗142.4e3],[1 75.47 142.4e3]);
w = logspace(2,3,10000);
bodemag(T,w);grid

Figure 14–18(a) shows the Bode magnitude plot from MATLAB. The center fre-
quency is at 60.1 Hz, and the bandwidth is approximately 12.6 Hz. An estimate of
the notch attenuation is −84.4 dB. Figure 14–18(b) shows the Grapher View results
of theMultisim simulation. The center frequency is 60.1Hz, and the bandwidth is 12.6
Hz. These values match the MATLAB results. The Multisim notch depth is esti-
mated to be −81.4 dB. Note that the simulated attenuation at the center frequency
will depend on the number of calculations selected for the frequency variable. That
is, since the calculations are evenly spaced across the frequency variable, one needs
to be very lucky to have a calculation fall right on the minimum, otherwise the soft-
ware will not return the true minimum. One way to increase the accuracy of finding
the minimum is to ask MATLAB or Multisim to make a lot of calculations. With
more calculations, a more accurate notch depth (or peak in a tuned response) will
be found. We used 10,000 points over 1 decade.
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D e s i g n E x e r c i s e 1 4–6
Rework the circuit design in Example 14–4 starting with C1 =C2 =C = 0:2 μF.

A n s w e r s: R1 = 1:33 kΩ;R2 = 133 kΩ;RA = 2:66 kΩ;RB = 133 kΩ

D e s i g n E x e r c i s e 1 4–7
Construct a second-order bandstop transfer function with a notch frequency of 50 rad=s, a
notch bandwidth of 10 rad=s, and passband gains of 5.

A n s w e r: T sð Þ= 5 s2 + 502
� �

s2 + 10s+ 502

The tuned and notch filters in Figures 14–14 and 14–17 are efficient circuits that
are easy to design and simulate. However, prototyping the notch filter in the labora-
tory requires components with very small tolerances since the zeros in the transfer
function must be accurately located to produce the notch.

Let us analyze another pair of realizations for tuned and
notch filters. Consider the circuit in Figure 14–19.

This circuit consists of a tuned circuit inside a notch cir-
cuit. We have labeled three nodes to help us write node
equations.

at NodeA: 0 =
VA sð Þ−V1 sð Þ

R
+
VA sð Þ−VC sð Þ

1
Cs

+
VA sð Þ−VB sð Þ

R+
1
Cs

at Node B: 0 =
VB sð Þ−VA sð Þ

R+
1
Cs

+
VB sð Þ−VC sð Þ

K1R

We note that VB sð Þ= 0 by the OP AMP i-υ relationship.
Using the Node B equation we find

VA sð Þ= −
VC sð Þ 1 +RCsð Þ

K1RCs

System: T1

Frequency (Hz): 66.7

Magnitude (dB): –3
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Substituting this back into the Node A equation yields

VC sð Þ
V1 sð Þ =Ttuned sð Þ= −

K1RCs
R2C2s2 1 +K1ð Þ+ 3RCs+ 1

= −

K1

K1 + 1

� �
1
RC

� �
s

s2 +
3

K1 + 1ð ÞRC|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
2ζω0

s+
1

K1 + 1ð ÞR2C2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ω2
0

(14–25)

This, then, is the basic equation for designing a tuned filter. Note that the filter’s gain
is not a controllable parameter; rather, it is a result of selecting a particular damping
coefficient and resonant frequency. If one needs a particular gain it needs to be
adjusted with either a cascading gain stage or a voltage divider.

The notch filter takes the output of the tuned filter and adds the input in such a way
as to create the band-stop characteristic in Eq. (14–4). The output of the overall cir-
cuit V2 sð Þ is found as

V2 sð Þ = −

K2RX

α
RX

VC sð Þ−
K2RX

α
RX=α

V1 sð Þ

V2 sð Þ = −
K2

α
−

K1

K1 + 1

� �
1
RC

� �
sV1 sð Þ

s2 +
3

K1 + 1ð ÞRCs+
1

K1 + 1ð ÞR2C2

0
BB@

1
CCA−K2V1 sð Þ

V2 sð Þ
V1 sð Þ =

K2

α

� �
K1

K1 + 1

� �
1
RC

� �
s−K2 s2 +

3
K1 + 1ð ÞRCs+

1
K1 + 1ð ÞR2C2

� �
s2 +

3
K1 + 1ð ÞRCs+

1
K1 + 1ð ÞR2C2

With some effort, we find that this reduces to

V2 sð Þ
V1 sð Þ =

−K2s2 +
−3K2

K1 + 1ð ÞRC +
K1K2

α K1 + 1ð ÞRC
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{= 0

s−
K2

K1 + 1ð ÞR2C2

s2 +
3

K1 + 1ð ÞRCs+
1

K1 + 1ð ÞR2C2

The coefficient of s in the numerator must equal zero for this to be a notch filter. Set-
ting those terms to zero and solving for α yields

−3K2

K1 + 1ð ÞRC +
K1K2

α K1 + 1ð ÞRC = 0

α=K1=3

This relationship is a gain condition applied to resistors that enables the inverting
summer to eliminate the s-term in the numerator and turn the tuned filter into a notch
filter. Note that the overall gainK2 is controllable for the notch filter case. The trans-
fer function for the notch filter is

V2 sð Þ
V1 sð Þ =Tnotch sð Þ= −

K2 s2 +
1

K1 + 1ð ÞR2C2

� �
s2 +

3
K1 + 1ð ÞRCs+

1
K1 + 1ð ÞR2C2

(14–26)
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D E S I G N A N D E V A L U A T I O N E X A M P L E 1 4–5

Use the active RC circuit in Figure 14–19 to design a bandstop filter with a notch fre-
quency at 60 Hz and a notch bandwidth of 12 Hz. Find the circuit’s transfer function
and useMultisim to plot the filter’s gain characteristic and to estimate the attenuation
of the notch. Compare your results with that of Example 14–4.

SOLUTION:
The specified filter parameters define the notch frequency and bandwidth as

ω0 = 2π× 60 = 377 rad=s and B= 2π× 12= 75:4 rad=s

Equating the s-term and the last term in the denominator to these parameters yields

B =
3

K1 + 1ð ÞRC = 24π

ω2
0 =

1
K1 + 1ð ÞR2C2 = 120πð Þ2

Solving forRC in the first equation and substituting it into the second equation allows
for K1 to be found.

120π=
24π K1 + 1ð Þ
3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 + 1

p

K1 = 15ð Þ2−1 = 224

We can now find R and C by substituting back into one of the equations

3
75:4 K1 + 1ð Þ =RC = 1:77 × 10−4

Selecting C = 1 μF, results in R= 177Ω.
We have just designed the tuned filter. However, our task is to design a notch filter

and compare it with the notch filter designed in Example 14–4.We, therefore, need to
find the parameter α that will eliminate the s-term in the numerator.

α=
K1

3
=
224
3

= 74:67

One last thing before we design the circuit. Unlike the circuit designed in Example
14–4, we can control the gain of the notch filter. In order to compare it we need to
make the gain of this filter K2 equal to the gain of the filter in Example 14–4. The
pass-band gain of that circuit simulates to 0.98. TheMultisim circuits used in this com-
parison are shown in Figure 14–20.

We asked Multisim to perform an AC analysis from 59:90 to 60:10 Hz using
1;000;000 calculations over one decade for accuracy in our comparison. Grapher
View returned the results shown in Figure 14–20(b). The filter in Example 14–4
had a considerably deeper and narrower notch at −109:3 dB at a frequency of
59:991 Hz than Example 14–5 that had a rounded notch at −51:83 dB at
59:995 Hz. The simulation data appears to favor the simpler circuit; namely, it has
fewer parts and a narrower and a deeper notch. The only apparent advantage of
the filter in Example 14–5 is the ability to provide gain. A second stage could be
added to the circuit in Example 14–4 to provide gain, but this would mitigate the
parts-count advantage. However, simulations are only one, albeit significant, com-
parison. A laboratory comparison would help one decide which circuit is easier
and more stable to build and test.
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■

D e s i g n E x e r c i s e 1 4–8
Design a notch filter using the realization in Figure 14–19 to achieve a notch at 200 krad=s, a
B of 20 krad=s, and a passband gain of 10.

A n s w e r: K1 = 899, K2 = 10, C = 1000 pF, R=167Ω, K1R=149:8 kΩ, α=299:7, RX =
299:7 kΩ, RX=α= 1 kΩ, K2RX=α=10 kΩ. These values simulate to ω0 of 200:7 krad=s, a
notch of −34:1 dB, and a passband gain of + 20 dB or 10. Other design options are possible.

EXAMPLE 14–5

AC analysis

EXAMPLE 14–4
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14–4 L O W - P A S S F I L T E R D E S I G N

Having developed a number of filter-building blocks in Chapter 12 and thus far in this
chapter, we can now undertake the study of cascaded filter design. There are many
different types of active filters.3 Among the most useful are the First-Order Cascade,
Butterworth, Chebyshev types 1 and 2, Elliptical or Cauer, and Bessel. Figure 14–21
shows the basic gain characteristics of four of these filters. These can be designed to
provide low-pass, high-pass, band pass, bandstop, or all-pass responses. Most filters
are designed with their magnitude (gain) response being paramount. However, there

are applications where the phase response might be essential as in phased arrays
used in communications. The all-pass filter is one in which themagnitude of the signal
is not affected but its phase is. Also, while we will concentrate on the filter’s

Chebyshev Type 1

Chebyshev Type 2 Elliptic (Cauer)

Butterworth and

Bessel and First-Order Cascade

Pass Stop
Pass Stop

StopPass Pass Stop

FIGURE 14–21

3For addition information on filter design see “Linear Circuit Design Handbook”, Analog Devices
Engineering Staff, Chapter 8 Analog Filter, Elservier, 2008.
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frequency-response characteristics, there are applications where the filter’s time-
domain characteristics are equally or even more important to the design, such as in
instrumentation or audio systems. For these applications, First-Order Cascade and
Bessel filters are often used.

The purpose of this section is to look at three of the most common cascaded filter
types (First-Order Cascade, Butterworth, and Chebyshev type 1) and to provide a
design methodology for determining the best low-pass filter to use based on its mag-
nitude (gain) characteristics.

The First-Order Cascade filter is very simple in its design but requires a very high
order filter to achieve significant selectivity. It does have excellent transient response
characteristics making it useful in applications that do not require high selectivity.
Butterworth filters, named after British engineer Stephen Butterworth, are also
called “maximally flat” filters because they have an excellent passband response.
They have much better selectivity than First-Order Cascade filters and a moderate
transient response. Chebyshev filters, named after Russian mathematician Pafnuty
Chebyshev, are also called “equiripple” filters because they trade-off a steep selec-
tivity with adding a ripple in either the pass-band, type 1, or in the stop-band, type 2.
They have a very complex transient response and phase response. Elliptic or Cauer
filters, named after German network theorist Wilhelm Cauer, offer the steepest roll-
off but at the expense of equiripples in both the pass- and stop-bands. A Bessel filter
has a maximally flat frequency-response closer to the First-Order Cascade than
Butterworth but has a transient response without an overshoot. Its phase character-
istics makes it very useful for audio applications allowing for no phase distortion. In
general, if a steep cutoff response is required, then a high-order filter is needed.
A higher order filter requires a more complex and costly circuit. High-order filters
also have the most complex transient and phase responses. As a relative example,
a particular design specification that might require a fifth-order Elliptic filter would
require a tenth-order Chebyshev or a 35th-order Butterworth. It would not even be
possible with a First-Order Cascade regardless of the order. In this chapter, we will
focus on the design of the first three types, namely First-Order Cascade, Butterworth,
and Chebyshev type 1. You should gain sufficient understanding of cascaded active
filter design to apply it to any filter type.

In this section we learn how to design multi-pole filters with prescribed low-pass
characteristics. The Bode plot in Figure 14–22 shows how low-pass filter character-
istics are specified. To satisfy the specification, the filter must be designed so that its
gain response lies within the blue region. There are many different gain responses
that meet this requirement, as illustrated by the two shown in the figure. All such gain
responses are constrained by the conditions imposed in three adjacent fre-
quency bands.

In the passband 0≤ω≤ωCð Þ, the gain response must be in the range

TMAXffiffiffi
2

p ≤ jT jωð Þj≤TMAX

In the stopband ωMIN ≤ωð Þ the gain response must be in the range jT jωð Þj≤TMIN.
In this chapter on filters, we want to define a new band between the passband and

the stopband. Specifying the response in the transition band ωC ≤ω≤ωMINð Þ is the
most significant part of filter design. The main filtering action occurs here. It is in this
region that a filter designer wants the gain response to change dramatically with fre-
quency. Two ratios describe this change: TMAX=TMIN defines how much the gain
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must change, and ωMIN=ωC specifies how rapidly the change must occur. As we study
varying approaches to filter design, we will see that there are design approaches that
can increase the filter’s attenuation rate but possibly at a price, both in the “flatness”
of the passband and in the filter’s transient performance—its step response. For some
applications, these consequences are a small price to pay for better filter perfor-
mance, while in other cases these compromises are not acceptable.

In summary, a low-pass filter design problem is defined by specifying the four
parameters: TMAX,ωC,TMIN, and ωMIN. Transfer functions (there may be several)
that meet these requirements are of the form

T sð Þ= K
qn sð Þ

where qn sð Þ is an nth-order polynomial whose roots define the poles of T sð Þ. From
our previous design experience, we can see that filter design involves two related
tasks: (1) selecting qn sð Þ and K so that the jT jωð Þj meets the filter specification
and (2) devising a circuit that realizes the transfer function T sð Þ. We will discuss three
methods of dealing with the first task. The second task is accomplished using our
active filter building blocks to design a cascade circuit.

F I R S T - O R D E R C A S C A D E F I L T E R S
A simple way to produce a multi-pole low-pass filter is to connect n identical first-
order low-pass filters in cascade. The transfer function of such a cascade connection
is written as

T sð Þ= K
s=α+ 1

� �
×

K
s=α+ 1

� �
× � � �× K

s=α+ 1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n stages

=
Kn

s=α+ 1ð Þn (14–27)

To design such a filter, we must select K, α, and n such that the gain response of this
transfer function meets a filter specification defined by TMAX,TMIN,ωC, and ωMIN.

TransitionPass Stop

|T(jω)|

TMAX

TMIN

ωC ωMIN
ω

TMAX

2√

FIGURE 14–22 Low-pass
filter specification and responses.
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The gain response of the transfer function in Eq. (14–27) is

jT jωð Þj= jKjnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ω=αð Þ2

q� �n (14–28)

The maximum gain in Eq. (14–28) occurs at ω= 0, where the gain is jT 0ð Þj= jKjn. To
meet the passband requirement of the specification, we set jKjn =TMAX and evaluate
the gain in Eq. (14–28) at the prescribed cutoff frequency ωC.

jT jωCð Þj= TMAXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ωC=αð Þ2

q� �n = TMAXffiffiffi
2

p

Equating the denominators in this equation and then solving for α yields

α=
ωCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21=n−1

p (14–29)

This equation relates the cutoff frequency of each first-order stage αð Þ to the cutoff
frequency of a cascade connection ωCð Þ of n first-order stages. Each of these stages
has a gain of K = TMAXð Þ1=n and a cutoff frequency of α. To complete a design, we
need to know the number of stages required.

Figure 14–23 shows normalized gain responses defined by Eq. (14–28) for n=
1 to n= 10 where TMAX = jKjn and α is given by Eq. (14–29). All of these responses
meet the passband requirements, and, more importantly, the transition band gain
decreases as we increase n. Obviously, we can improve the transition band perfor-
mance of T sð Þ by increasing n, but this increase adds more stages to the cascade
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circuit that realizes T sð Þ. There is a trade-off between transition band performance
and circuit complexity.What we need to know is the smallest value of n that meets the
filter specification.

We can estimate the smallest value of n from the gain plots in Figure 14–23. For
example, suppose that the transition band gain must decrease by 40 dB TMAX=TMIN =ð
100Þ in the decade above cutoff ωMIN=ωC = 10ð Þ. In Figure 14–23 we see that at
ω=ωC = 10, the normalized gain jT jωð Þj=TMAX is −32 dB for n= 2 and −42 dB for
n= 3. The n= 3 curve identifies the smallest value of n that reduces the gain by at least
40 dB in a one-decade transition band.

In summary, given values of TMAX,TMIN,ωC, and ωMIN, we construct a first-order
cascade transfer function as follows. We use Figure 14–23 (or trial and error) to find
the smallest integer n that meets the transition band requirements defined
by TMAX=TMIN, and ωMIN=ωC. Given n and ωC, we calculate α using Eq. (14–29),
K = TMAXð Þ1=n and use Eq. (14–27) to get the required transfer function. The transfer
function is partitioned into a product of n identical first-order functions, each of
which is realized using a first-order low-pass circuit. The next example illustrates this
design procedure.

D E S I G N E X A M P L E 1 4–6

(a) Construct a first-order cascade transfer function that meets the following
requirements:
TMAX = 10 dB,ωC = 200 rad=s,TMIN = −10 dB, and ωMIN = 800 rad=s.
Use MATLAB to visualize the gain plot.

(b) Design a cascade of active RC circuits that realizes the transfer function devel-
oped in (a). Use Multisim to simulate the expected frequency response. Com-
pare your result with the MATLAB plot.

SOLUTION:
(a) The specification requires the gain to decrease by 20 dB in a transition band with

ωMIN=ωC = 4. Figure 14–23 shows that at ω=ωC = 4, the normalized gain is about
−17 dB for n= 2 and about −22 dB for n= 3. Thus, n= 3 is the smallest integer
that meets the transition band requirement. Given n and ωC, we calculate α using
Eq. (14–29):

α=
ωCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21=n−1

p =
200ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21=3−1

p = 392 rad=s

Since TMAX = 10 dB (factor of 3:162, we write K = 3:162ð Þ1=3 = 1:468. So, finally,
the required first-order cascade transfer function is

T sð Þ= 1:468
s=392 + 1

� �3

Note that the cutoff frequency of each stage α= 392 rad=sð Þ is greater than the
cutoff frequency of the n-stage transfer function ωC = 200 rad=sð Þ. A quick look
at Eq. (14–29) reveals that α>ωC for all n> 1.

We expand the transfer function to place it in MATLAB as follows:

T sð Þ= 190:56 × 106

s3 + 1176s2 + 461:0 × 103s+ 60:24× 106

MATLAB’s bodemag returns the plot shown in Figure 14–24. The filter has the
desired cutoff at 200 rad=s, and at 800 rad=s it is down 21:4 dB from the passband
gain, which exceeds the requirement. We can now proceed to design our filter.
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(b) The transfer function developed in part (a) can be partitioned into a product of
three identical first-order functions of the form 1:468= s=392 + 1ð Þ. Each of these
can be realized using the first-order low-pass circuit in Figure 14–25. The transfer
function of this circuit is

T sð Þ= 1+RA=RB

RCs+ 1

The design constraints for each stage are 1 +RA=RB = 1:468 andRC = 1=392.
Selecting RB =R= 100 kΩ leads toRA = 46:8 kΩ andC = 0:0255 μF.

The Multisim simulation of three cascaded stages produces the low-pass
frequency response characteristic shown in Figure 14–26. The Grapher View
results show that the design meets the target specifications.

■

Bode diagram

Frequency (rad/s)

M
ag

n
it

u
d
e 

(d
B

)

101 102 103
−20

−15

−10

−5

0

5

10

System: T1
Frequency(rad/s): 200
Magnitude(dB): 6.98

System: T1
Frequency(rad/s): 800
Magnitude(dB): –11.4

FIGURE 14–24

+

−

R

RB
RA

C

+

v2(t)

v1(t) +

FIGURE 14–25 First-order
low-pass circuit.

OPAMP_3T_VIRTUAL OPAMP_3T_VIRTUAL OPAMP_3T_VIRTUAL

100 kΩ

0.0255 μF 0.0255 μF0.0255 μF

100 kΩ

100 kΩ100 kΩ
46.8 kΩ 46.8 kΩ46.8 kΩ

100 kΩ

100 kΩ

R2

R4

R8
R5

R7C1

R3 R6

R1

R9

C2 C3

–

+
~

1 Vpk
1 kHz

–

+

–

+

0°

V1 U1 U2
–

+

(127.3 Hz = 800 rad/s, –11.4 dB)

AC analysis
10

0

–10

–20

–30

–40
3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 200 300

(31.78 Hz = 200 rad/s, 7.0 dB)

G
ai

n
 (

d
B

)

Frequency (Hz)

U3

FIGURE 14–26

744 C H A P T E R 1 4 ACTIVE FILTER DESIGN



D e s i g n E x e r c i s e 1 4–9
Construct a first-order cascade transfer function that meets the following require-
ments: TMAX =0 dB,TMIN = −30 dB,ωC = 200 rad=s, and ωMIN = 1 krad=s.

A n s w e r:
T sð Þ= 460

s+460

� �4

B U T T E R W O R T H L O W - P A S S F I L T E R S
All Butterworth low-pass filters have transfer functions of the form T sð Þ=K=qn sð Þ,
whose gain response is

jT jωð Þj= jKjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ ω=ωCð Þ2n

q (14–30)

where ωC is the cutoff frequency and n the order of the denominator polynomial, that
is, the number of poles. By inspection, the maximum gain occurs at dc,
where jT 0ð Þj= jKj=TMAX. At the cutoff frequency, the gain is jT jωCð Þj= jKj= ffiffiffi

2
p

=
TMAX=

ffiffiffi
2

p
for all values of n. When we make K =TMAX, the gain response in

Eq. (14–30) meets the passband requirements of a filter specification for all values
of n. At high frequency ω � ωCð Þ the gain approaches an asymptote of
jKj ωC=ωð Þn, which has a slope of −20n dB/dec. Thus, we can decrease the gain in
the transition band by increasing the number of poles.

Figure 14–27 compares Butterworth and first-order cascade gain responses for
n= 4. Both responses have high-frequency asymptotes whose slopes are −80 dB=dec.
However, the Butterworth gain approaches its asymptote at a lower frequency, so
it has less gain in the transition band. The reduced gain means that the Butterworth
response has better transition band performance than the first-order cascade.
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FIGURE 14–27 First-order
cascade and Butterworth low-
pass filter responses for n = 4.
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Figure 14–28 shows normalized plots of the Butterworth gain responses defined by
Eq. (14–30), where TMAX = jKj. Clearly, the transition band gain decreases rapidly as
we increase n, the filter order. Increasing nmeans thatT sð Þ=K=qn sð Þ hasmore poles,
which in turn means more stages in a cascade circuit realizing T sð Þ. As we discovered
with the first-order cascade filter, there is a trade-off between reducing the transition
band gain and circuit complexity. What we need to know is the smallest value of n
that meets a given filter specification.

Evaluating the gain in Eq. (14–30) at ω=ωMIN with TMAX = jKj produces the
inequality

jT jωMINð Þj= TMAXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ωMIN=ωCð Þ2n

q ≤TMIN

Solving the inequality for n yields the constraint

n≥
1
2
ln½ TMAX=TMINð Þ2−1�

ln½ωMIN=ωC� (14–31)

The right side of this equation is a lower bound on the filter order n. Note that the
lower bound is determined by the transition band ratiosTMAX=TMIN andωMIN=ωC. In
other words, the smallest n depends on how much and how rapidly the gain must
change in the transition band.

For example, if the transition band gain must decrease by 30 dB ðTMAX=TMIN =
103=2Þ in the two octaves above cutoff ωMIN=ωC = 4ð Þ, then Eq. (14–31) yields

n≥
1
2

ln 103=2
� 	2

−1
� �

ln½4� = 2:49

Since filter order must be an integer, the smallest value is n= 3. The gain plots in
Figure 14–28 confirm this result, since a normalized gain below −30 dB at ω=ωC = 4
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FIGURE 14–28 Butterworth
low-pass filter responses.
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cannot be achieved by any order less than n= 3. For Butterworth low-pass filters, the
smallest value of n can be determined analytically using Eq. (14–31) or graphically
using Figure 14–28.

Once the required value of n is known, we need an nth-order polynomial qn sð Þ to
construct a transfer function with Butterworth gain characteristics. A method of
obtaining such polynomials is given in web appendix B and using that method we
generated the normalized ωC = 1ð Þ polynomials qn sð Þ in Table 14–2. All of these poly-
nomials have the property that qn 0ð Þ= 1.

Using these polynomials, we obtain an nth-order Butterworth transfer function
with a dc gain of K and cutoff frequency of ωC as

T sð Þ= K
qn s=ωCð Þ (14–32)

where qn s=ωCð Þ is the nth-order polynomial in Table 14–2 with s replaced by s=ωC.
Since qn 0ð Þ= 1, the dc gain of this transfer function is jT 0ð Þj= jKj and the poles ofT sð Þ
are roots of the equation qn s=ωCð Þ= 0.

For example, for n= 3, the polynomial in Table 14–2 is q3 sð Þ= s+ 1ð Þ s2 + s+ 1
� �

.
A third-order Butterworth low-pass transfer function with a dc gain of 0 dB
K = 1ð Þ and a cutoff frequency of ωC = 1 krad=s is written as

T sð Þ= 1
q3 s=1000ð Þ =

1

s=1000 + 1ð Þ� s=1000ð Þ2 + s=1000ð Þ+ 1
�

=
�

103

s+ 103|fflfflffl{zfflfflffl}
first order

��
106

s2 + 1000s+ 106|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
second order

�
=

109

s3 + 2000s2 + 2 × 106s+ 109

Figure 14–29 shows how the Butterworth realization works. The first-order low-pass
filter’s transfer function is multiplied by the second-order filter’s transfer function to
produce the desired response.

This transfer function has a real pole at s= −1000 rad=s and a pair of complex
poles with ω0 = 1000 rad=s and ζ= 0:5. The three poles are all located a distance of
ωC = 1000 from the origin in the s plane. This illustrates a general principle of Butter-
worth poles—Butterworth poles are all located on a circle of radiusωC in the left-half of
the s plane.

Once we have a transfer functionT sð Þwhose gain meets the filter specification, we
partition it into a product of first- and second-order functions. Each of these functions
is then realized using one of our active filter building blocks. A cascade connection of
these building blocks then produces the required transfer function. The next example
illustrates the procedure.

T A B L E 14–2 NORMALIZED POLYNOMIALS THAT PRODUCE BUTTERWORTH RESPONSES

ORDER NORMALIZED DENOMINATOR POLYNOMIALS

1 s+ 1ð Þ
2 s2 + 1:414s+ 1

� �
3 s+ 1ð Þ s2 + s+ 1

� �
4 s2 + 0:7654s+ 1

� �
s2 + 1:848s+ 1
� �

5 s+ 1ð Þ s2 + 0:6180s+ 1
� �

s2 + 1:618s+ 1
� �

6 s2 + 0:5176s+ 1
� �

s2 + 1:414s+ 1
� �

s2 + 1:932s+ 1
� �
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D E S I G N E X A M P L E 1 4–7

(a) Construct a Butterworth low-pass transfer function that meets the following
requirements:

TMAX = 20 dB,ωC = 1 krad=s,TMIN = −20 dB, and ωMIN = 4 krad=s:

(b) Design a cascade of active RC circuits that realizes the transfer function found in
part (a). Validate your design using Multisim.

SOLUTION:
(a) The specification requires the gain to decrease by 40 dB in the transition band

between ωC = 1 krad=s and ωMIN = 4 krad=s. The transition band ratios for this
specification are TMAX=TMIN = 100 and ωMIN=ωC = 4. Inserting these ratios in
Eq. (14–31) yields

n≥
1
2
ln½1002−1�

ln½4� = 3:32

Thus, n= 4 is the lowest-order Butterworth filter that meets the filter specifica-
tion. Using K =TMAX = 10 and q4 sð Þ from Table 14–2, the required fourth-order
Butterworth low-pass transfer function is

T sð Þ = K
q4 s=1000ð Þ

=
10

s
1000

� 	2
+ 0:7654

s
1000

� 	
+ 1

� �
s

1000

� 	2
+ 1:848

s
1000

� 	
+ 1

� �
(b) The fourth-order Butterworth transfer function in part (a) can be partitioned as

T sð Þ = T1 sð ÞT2 sð Þ

=
K1

s
1000

� 	2
+ 0:7654

s
1000

� 	
+ 1

2
64

3
75 K2

s
1000

� 	2
+ 1:848

s
1000

� 	
+ 1

2
64

3
75
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where K1 andK2 are to be determined. This partitioning calls for a cascade of
two second-order low-pass building blocks.

Figure 14–30 shows a design sequence for circuits that realize these transfer
functions. The first two rows in the figure show the required transfer functions
and the stage parameters ω0 and ζ. The stage protoype in the third row is the
low-pass building block circuit in Figure 14–3. Using the equal element design
method for this circuit [see Eq. (14–8)] leads to the design constraints in the
fourth row. The element values selections in the fifth row produce the two-stage
design in the last row of Figure 14–30.

As discussed in Sect. 14–2, the equal element design method does not allow
us to control K1 andK2. The values achieved in our two-stage design are
K1 = 2:235 andK2 = 1:152. Together the two stages produce an overall dc gain
of K =K1K2 = 2:235 × 1:152 = 2:575, which is less than the K = 10 required by

K1 = 2.2346

Final
designs

Element
values

Design
constraints

Stage
prototype

Stage
parameters

First Stage

Prototype
transfer
function

K1

(s/1000)2 + 0.7654(s/1000) + 1

Item Second Stage

K2

(s/1000)2 + 1.848(s/1000) + 1

ω0 = 1000    ζ = 0.7654/2 = 0.3827 ω0 = 1000    ζ = 1.848/2 = 0.924

+

−

C

C
RR

RB
RA

+

−

C

C
RR

RB
RA

RC =           = 0.001
1

ω0

Let R = 100 kΩ, then
     C  = 0.01 μF

Let RB = 100 kΩ, then

RA = 15.2 kΩ

Let R = 100 kΩ, then
     C  = 0.01 μF

Let RB = 100 kΩ, then

RA = 123 kΩ

+

−

123 kΩ
100 kΩ

100 kΩ 100 kΩ

0.01 μF

0.01 μF

K2 = 1.152

+

−

15.2 kΩ

100 kΩ

100 kΩ 100 kΩ

K1 = 3 − 2ζ = 2.2346

RA = (K1 − 1)RB

RC =           = 0.001
1

ω0

 K2 = 3 − 2ζ = 1.152

RA = (K2 − 1)RB

0.01 μF

0.01 μF

FIGURE 14–30 Design sequence for Example 14–7.
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the specification. We deal with this shortfall by adding a gain correction stage
with a gain of 10=2:575 = 3:883. Figure 14–31 shows the final three-stage design
with the added gain correction stage.

The Multisim simulation of the circuit in Figure 14–31 is shown in
Figure 14–32. The circuit meets or exceeds all of the design requirements.

■

D e s i g n E x e r c i s e 1 4–1 0
The circuit design in Example 14–7 used the equal element method. Rework the problem
using the unity gain technique. Use Multisim to validate your design. Comment on the
two approaches.

A n s w e r: Figure 14–33 shows the unity gain redesign of the fourth-order low-pass Butter-
worth filter. The Grapher View results in Figure 14–33 show that the design meets all of the
specifications.

The unity gain technique requires fewer resistors but requires precise capacitors that
may be difficult to find.
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D e s i g n E x e r c i s e 1 4–1 1
Construct a Butterworth low-pass transfer function that meets the following require-
ments: TMAX =0 dB,TMIN = −40 dB, ωC = 250 rad=s, and ωMIN = 1:5 krad=s.

A n s w e r: T sð Þ= 2503

s+ 250ð Þ s2 + 250s+ 2502
� �

C H E B Y S H E V L O W - P A S S F I L T E R S
All Chebyshev type 1 low-pass filters have a gain response of the form

jTn jωð Þj= jKjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +C2

n ω=ωCð Þp (14–33)

where Cn xð Þ is an nth-order Chebyshev polynomial defined by

Cn xð Þ= cos½n× cos−1 xð Þ� x≤ 1 (14–34a)

and

Cn xð Þ= cosh ½n× cosh−1 xð Þ� x> 1 (14–34b)

In the passband x=ω=ωC ≤ 1ð Þ, Cn xð Þ is the cosine function in Eq. (14–34a), and
the term 1+C2

n ω=ωCð Þ in the denominator of Eq. (14–33) varies between 1 (when
Cn = 0) and 2 (when Cn = �1). This means that in the passband the gain jT jωð Þj in
Eq. (14–33) varies between jKj and jKj= ffiffiffi

2
p

. Thus, the Chebyshev gain variation
remains within standard passband bounds for all values of n. However, the passband
gain variation is oscillatory rather than smooth and steady like the Butterworth
response.
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Figure 14–34 shows plots of Eq. (14–33) for n= 4 and n= 5. The oscillatory vari-
ation of the term 1+C2

n ω=ωCð Þ produces a sequence of resonant peaks and valleys
given the descriptive name ripple. The gain at the top of every peak is jKj and

the gain at the bottom of every valley is jKj= ffiffiffi
2

p
. The Chebyshev

passband gain is called an equal-ripple response because
the upper bound is always jKj and the lower bound jKj= ffiffiffi

2
p

.
Because of the equal-ripple response, the Chebyshev gain has
TMAX = jKj and jT jωCð Þj= jKj= ffiffiffi

2
p

for all values of n.4

However, the Chebyshev dc gain is jKj when n is odd and
jKj= ffiffiffi

2
p

when n is even. In other words, TMAX does not occur
at dc when n is even. We must account for this difference in dc
gain when constructing low-pass transfer functions with Cheby-
shev poles.

Figure 14–35 compares the Butterworth and Chebyshev
gain responses for n= 4. Both responses have high-frequency
asymptoteswith slopesof −80 dB=dec. The Butterworth response
is relatively flat in the passband and sedately approaches its high-
frequency asymptote in the transition band. In contrast, the last
resonant peak in the Chebyshev passband produces an initial
slope in the transition band that is steeper than −80 dB=dec.5

As a result, a Chebyshev response has less gain in the transition
band than a Butterworth response of the same order.

|T(jω)|

TMAX

n = 4
n = 5

TMAX

2

n even starts here

n odd starts here

0 ωC
ω

√

FIGURE 14–34 Chebyshev
passband gain responses.
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FIGURE 14–35 Butterworth and Chebyshev low-
pass filter responses for n = 4.

4In this text, we use a ripple of 3 dB; however, there are other many other ripples that can be used.
Chebyshev polynomials can be derived for any ripple, with 0:1, 1, 3, and 6 dB being the most
common.
5It can be shown that at ω=ωC the slope of a Chebyshev gain is n times as steep as a Butterworth
gain. See Aram Budak, Passive and Active Network Analysis and Synthesis, Houghton Mifflin,
1974, p. 516.
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Figure 14–36 shows normalized plots of the Chebyshev gain responses with
TMAX = jKj. As with Butterworth responses, the Chebyshev transition band gain
decreases rapidly as we increase n, the filter order. Again to minimize circuit com-
plexity, we need to know the smallest value of n that meets a given filter specification.
Evaluating the Chebyshev gain in Eq. (14–33) at ω=ωMIN with TMAX = jKj produces
the inequality

jT jωMINð Þj= TMAXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +C2

n ωMIN=ωCð Þp �TMIN

Solving this constraint for Cn ωMIN=ωCð Þ yields

Cn ωMIN=ωCð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TMAX

TMIN

� �2

−1

s

In the stopband x=ω=ωC ≥ 1ð Þ, the function Cn xð Þ is defined by the hyperbolic cosine
function in Eq. (14–34b). Inserting this definition into the preceding inequality and
then solving for n yields

n

cosh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TMAX=TMINð Þ2−1

q� �
cosh−1 ωMIN=ωCð Þ (14–35)

The right side of this equation is a lower bound on the filter order n. As might be
expected, the lower bound is determined by the transition band ratios TMAX=TMIN

and ωMIN=ωC. Based on our experience with first-order cascade, Butterworth, and
now Chebyshev filters, it seems reasonable to infer the following general principle
of filter design.
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Filter order is determined by howmuch and how rapidly the gainmust decrease in
the transition band.

The smallest order for a Chebyshev filter can be determined analytically using
Eq. (14–35) or graphically using the gain plots in Figure 14–36. Once the required
order is known, we need an nth-order polynomial qn sð Þ to construct a transfer func-
tion with a Chebyshev gain response. A method of obtaining such a polynomial is
given in web Appendix B. Using the method given there, we can generate the nor-
malized ωC = 1ð Þ polynomials qn sð Þ in Table 14–3. Note that these polynomials all
have the property that qn 0ð Þ= 1.

Using these polynomials, an nth-order Chebyshev transfer function with a dc gain
of K and cutoff frequency of ωC is written as

T sð Þ= K
qn s=ωCð Þ n odd (14–36a)

or

T sð Þ= K=
ffiffiffi
2

p

qn s=ωCð Þ n even (14–36b)

where qn s=ωCð Þ is the nth-order polynomial in Table 14–3 with s replaced by s=ωC.
Since qn 0ð Þ= 1, the scale factors in Eqs. (14–36a) and (14–36b) ensure that the dc
gains are T 0ð Þ= jKj when n is odd and T 0ð Þ=K=

ffiffiffi
2

p
when n is even. These scale fac-

tor adjustments are required to ensure that TMAX = jKj whether n is even or odd.
Without these adjustments, we cannot use Eq. (14–35) or Figure 14–36 when n is
even. In either case, however, the poles ofT sð Þ are roots of the equation qn s=ωCð Þ= 0.

As an example of using Table 14–3, we write a second-order Chebyshev low-pass
transfer function with a dc gain of 20 dB K = 10ð Þ and a cutoff frequency of
ωC = 1 krad=s as

T sð Þ= 10=
ffiffiffi
2

p

q2 s=1000ð Þ =
7:07

s=840:9ð Þ2 + 0:7654 s=840:9ð Þ+ 1

This transfer function hasTMAX = 10, a cutoff frequency atωC = 1000 rad=s, and a pair
of complex poles with ω0 = 840:9 rad=s and ζ= 0:3827. This illustrates two important
properties of Chebyshev poles: (1) Their natural frequencies are less than the filter
cutoff frequency ω0 <ωCð Þ and (2) their damping ratios are less than those of Butter-
worth poles of the same order. As a result, the Chebyshev poles produce resonant
peaks in the gain response at frequencies below ωC. Put differently, Chebyshev poles
are specifically located to produce an equal-ripple response in the passband.

Once we have aT sð Þ that meets the filter specification, we realize it using a cascade
of first- and second-order building blocks. The next example illustrates the design of a
Chebyshev low-pass filter.

T A B L E 14–3 NORMALIZED POLYNOMIALS THAT PRODUCE CHEBYSHEV TYPE 1 RESPONSES

ORDER NORMALIZED DENOMINATOR POLYNOMIALS

1 s+ 1ð Þ
2 ½ s=0:8409ð Þ2 + 0:7654 s=0:8409ð Þ+ 1�
3 ½ s=0:2980ð Þ+ 1�½ s=0:9159ð Þ2 + 0:3254 s=0:9159ð Þ+ 1�
4 ½ s=0:9502ð Þ2 + 0:1789 s=0:9502ð Þ+ 1�½ s=0:4425ð Þ2 + 0:9276 s=0:4425ð Þ+ 1�
5 ½ s=0:1772ð Þ+ 1�½ s=0:9674ð Þ2 + 0:1132 s=0:9674ð Þ+ 1�½ s=0:6139ð Þ2 + 0:4670 s=0:6139ð Þ+ 1�
6 ½ s=0:9771ð Þ2 + 0:0781 s=0:9771ð Þ+ 1�½ s=0:7223ð Þ2 + 0:2886 s=0:7223ð Þ+ 1�½ s=0:2978ð Þ2 + 0:9562 s=0:2978ð Þ+ 1�
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D E S I G N E X A M P L E 1 4–8

(a) Construct a Chebyshev low-pass transfer function that meets the following
requirements: TMAX = 20 dB, ωC = 10 rad=s, TMIN = −30 dB, and ωMIN = 50 rad=s.

(b) Design a cascade of active RC circuits that produces the transfer function found
in part (a).

SOLUTION:
(a) This specification requires the gain to decrease by 50 dB in the transition band

betweenωC = 10 rad=sandωMIN = 50 rad=s.Thecorrespondingtransitionbandratios
are TMAX=TMIN = 105=2 and ωMIN=ωC = 5. Using these ratios in Eq. (14–35) yields

n

cosh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
105=2
� 	2

−1

r !

cosh−1 5ð Þ = 2:81

The smallest integermeeting the specification is n= 3. Using the polynomial q3 sð Þ
from Table 14–3, we construct the required Chebyshev low-pass transfer func-
tion using Eq. (14–36a).

T sð Þ = K
q3 s=10ð Þ

=
10

s
2:98

� 	
+ 1

� �
s

9:159

� 	2
+ 0:3254

s
9:159

� 	
+ 1

� �
No scale factor adjustment is needed here because n= 3 is odd.

(b) The Chebyshev transfer function in (a) can be partitioned as

T sð Þ = T1 sð ÞT2 sð Þ

=
K1
s

2:98
+ 1

2
64

3
75 K2

s
9:159

� 	2
+ 0:3254

s
9:159

� 	
+ 1

2
64

3
75

whereK1 andK2 are to be determined. This partition calls for a cascade of a first-
order and a second-order low-pass filter.

The first row in thedesign sequence inFigure14–37 shows the required transfer
functions. The second, third, and fourth rows show the stage parameters, stage
prototypes, and design constraints. The second-order prototype is the low-pass
circuit in Figure 14–3. The design constraints for this circuit use the equal element
design method [see Eq. (14–8)]. The equal element method produces a dc gain of
K2 = 3−2ζ= 2:675. The first-order prototype is the low-pass circuit in Figure 14–25.
Its pole location is determined by the RC product and its gain K1 can be adjusted
without changing the pole location, sowe are free to setK1 = 10=K2 = 3:738, which
makesK =K1K2 = 10 as required. The assigned element values in the fifth rowpro-
duce the final design in the last row.A cascade connectionof these two stagesmeets
all design requirements without an added gain correction stage.

Figure 14–38 demonstrates the effects of the Chebyshev polynomial in build-
ing a filter with a steeper roll-off than the order of the filter in the transition band.
We have used MATLAB to plot the effects of combining a first-order and a
second-order stage to produce the composite third-order result. Note that the
first-order filter crosses the −3 dB 0:707ð Þ point at 3 rad=s while the second-order
filter has a cutoff at 14 rad=s. The composite, however, reaches the −3 dB point
exactly at the desired 10 rad=s. The absolute and normalized scale highlights the
ripple nature of the Chebyshev realization. ■
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C
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1

ω0
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     C = 3.36 μF
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 K1 = 10/K2 = 3.74

RA = (K1 − 1)RB

 K2 = 3 − 2ζ = 2.67

RA = (K2 − 1)RB

FIGURE 14–37 Design sequence for Example 14–8.
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D e s i g n a n d E v a l u a t i o n E x e r c i s e 1 4–1 2

Rework the design in Example 14–8 using the unity gain method in Sect. 14–2 to design the
required third-order low-pass circuit. Use Multisim to validate your design. Which method
is likely the better design?

A n s w e r: Figure 14–39 shows theMultisim circuit and the Grapher View output. Compar-
ing the performance of this design with the equal-element method shows the same
results. Both designs use five different part values. However, since the unity-gain method
uses two less components (resistors), the unity-gain design is likely the better choice in
this case.

D e s i g n E x e r c i s e 1 4–1 3
Construct a Chebyshev low-pass transfer function that meets the following requirements:
TMAX = 0 dB, TMIN = −30 dB, ωC = 250 rad=s, and ωMIN = 1:5 krad=s.

A n s w e r: T sð Þ= 2102=
ffiffiffi
2

p

s2 + 161s+ 2102

14–5 L O W - P A S S F I L T E R E V A L U A T I O N
We have described low-pass filter design methods for three responses, the first-order
cascade, the Butterworth, and the Chebyshev type 1. At this point we want to com-
pare themethods and discuss howwemight choose among them. In filter applications
the gain response is obviously important. Figure 14–40 shows three straight-line
asymptotes (solid lines) for components of the three filter types and the total gain
responses (dashed curves) for n= 4. All three of the total responses meet the same
passband requirements, have the same cutoff frequency, and have high-frequency
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asymptotes with slopes of −20n= −80 dB=decade.
However, the three response components use differ-
ent corner frequencies to achieve the same total
response. At one extreme, the corner frequency of
the first-order cascade response is above the cutoff
frequency, so its actual gain response approaches its
asymptote very gradually. At the other extreme, the
Chebyshev corner frequency lies below the cutoff fre-
quency and the actual response has a resonant peak
that fills the gap between the corner frequency and
the cutoff frequency. This resonance causes the Che-
byshev response to decrease rapidly in the neighbor-
hood of the cutoff frequency. The Butterworth
response has its corner frequency at the cutoff fre-
quency, so its gain response falls between these two
extremes.

The differences in gain response can be under-
stood by examining the pole-zero diagram in

Figure 14–41. The Butterworth poles are evenly distributed
on a circle of radius ωC. The Chebyshev poles lie on an
ellipse whose minor axis is much smaller than ωC. As a result,
the Chebyshev poles are closer to the j-axis, have lower damp-
ing ratios, and produce a gain response with pronounced
resonant peaks. These resonant peaks lead to the equal-ripple
response in the passband and the steep gain slope in the neigh-
borhood of the cutoff frequency. At the other extreme the
first-order cascade response has a fourth-order pole (quadruple
pole) located on the negative real axis. The distance from the
j-axis to the first-order cascade poles is much larger than ωC,
which explains the rather leisurely way its gain response transi-
tions from the passband to stopband asymptote. As might
be expected, the Butterworth poles fall between these two
extremes.

This discussion illustrates the following principle. For any
given value of n, the Chebyshev response produces more tran-
sition band attenuation than the Butterworth response, which,
in turn, produces more than the first-order cascade response.
If transition band performance is the only consideration, then
we should choose the Chebyshev response. However, the Che-
byshev response comes at a price.

Figure 14–42 shows the step response of these three low-pass
filters for n= 4. The step response of the Chebyshev filter has
lightly damped oscillations that produce a large overshoot
and a long settling time. These undesirable features of the Che-
byshev step response are a direct result of the low-damping-
ratio complex poles that produce the desirable features of its
gain response. At the other extreme, the step response of
the first-order cascade filter rises rapidly to its final value with-
out overshooting. This result should not be surprising since the
remote poles of the first-order cascade produce exponential
waveforms that have relatively short durations. In other words,

(4)

First-order
cascade

Chebyshev

Butterworth

ωC

ωC

jω

σ

−ωC−2ωC

FIGURE 14–41 First-order cascade, Butterworth,
and Chebyshev pole locations for n = 4.
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the desirable features of the first-order cascade step response are a direct result of
the remote real poles that produce the undesirable features of its gain response.
Not surprisingly, the step response of the Butterworth filter lies between these
two extremes.

Finally, consider the element values in the circuit realizations of these filters.
Examination of Table 14–3 reveals that each pair of complex poles in a Chebyshev
filter has a different ω0 and a different ζ. These parameters define the constraints on
the element values for each stage in the filter. As a result, each stage in a cascade
realization of a Chebyshev filter has a different set of element values. In contrast,
the stages in a first-order cascade filter can be exactly the same. From a manufactur-
ing point of view, it may be better to produce and stock identical circuits rather than
uniquely different circuits.

The essential point is that transition band attenuation is important, but it does not
tell the whole story. Filter design, and indeed all design, involves trade-offs between
conflicting requirements. The choice of a design approach is driven by the weight
assigned to conflicting requirements.

D E S I G N A N D E V A L U A T I O N E X A M P L E 1 4–9

A low-pass filter is required that will process high-fidelity audio signals meeting the
following criteria:

f0 = 20 kHz, TMAX =20 dB, TMIN = −50 dB, fMIN = 200 kHz

The filter should have less than �1:5 dB gain variation over most of the passband.
Design an appropriate circuit and justify your choice.

SOLUTION:
We have three possible design approaches: first-order cascade, Butterworth,
and Chebyshev. We need to determine the filter order of each design that will
accomplish the task. The filter will need to provide 70 dB of attenuation from the
passband to fMIN. It will have one decade from the cutoff frequency to accomplish
it. From Figure 14–23, we determine that the filter order for a first-order cascade
to achieve the desired response is n= 7. From Figure 14–28, we can determine
that a fourth-order Butterworth filter will accomplish the same task. Finally,
from Figure 14–36, a third-order Chebyshev filter will meet the roll-off
requirement.

Although it appears that the Chebyshev solution is the most efficient, we need
to look at other factors as well. The application is for an audio system. Ringing
caused by a poor step response is a major consideration for an audio system.
Chebyshev filters have different small damping ratios, which cause a tortured
step response with multiple ringing frequencies. Furthermore, for an audio appli-
cation the 3-dB ripple in the passband would result in varying gains for different
audio frequencies—a real concern for serious audiophiles, who can detect signal
differences of �1:5 dB. A Butterworth filter has a maximally flat response in the
passband—a desirable quality for audio applications. However, it has a step response
that is less than ideal. Since a first-order cascade has only real poles, it will have the
best step response characteristic. The decision, then, focuses on the trade-off
between simplicity in design and a very flat passband, favoring the Butterworth solu-
tion or the better step response of the first-order cascade. To see how each performs,
both circuits are designed and simulated in Multisim. Figure 14–43 shows the circuit
designs used.
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The gain characteristics shown in Figure 14–44(a) favor the Butterworth solu-
tion. The first-order cascade begins to roll off well before reaching the cutoff fre-
quency; for example, it is 1:5 dB down at 14 kHz while the Butterworth solution
does not reach 1:5 dB down until about 18 kHz. The roll-off is more rapid for the
Butterworth filter than the first-order cascade in the transition band—a better
performance for a low-pass filter. They both reach −60 dB at about 200 kHz, as
required. Figure 14–44(b) shows the step response of both circuits. The first-order
cascade has a very fast rise time without any overshoot—good for reproducing
sounds from percussion instruments. The Butterworth filter has an 11% overshoot,
a somewhat slower rise time, and a damped natural frequency of about
19 kHz—within the filter’s passband. These qualities tend to diminish the overall
audio performance.

The Butterworth filter is cheaper, uses less power, and has better frequency
response characteristics. The first-order cascade has a better step response.
Before one decides, it would be better to build breadboards of both circuits
and expose the results to an audiophile to see which performs better. The final
decision would include that result along with costs and manufacturing issues.
Technology alone is often not an obvious or sufficient basis for determining
which of two or more competing solutions is best. ■

14–6 H I G H - P A S S F I L T E R D E S I G N

An ideal high-pass filter has a constant gain above a cutoff frequency ωC and
zero gain below ωC. Filter design specifications define the degree to which real fil-
ters are required to approach the ideal. Figure 14–45 is a Bode plot specifying
the allowable region for high-pass filter gain responses. The allowable region is
defined by four familiar parameters: TMAX, TMIN, ωC, and ωMIN. We are acquainted
with the definitions and use of these parameters from our study of low-pass
filter design.
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The difference here is that ωMIN <ωC, that is, the
transition band and stopband are below the pass-
band. In fact, if we look carefully we see that
Figure 14–45 is the mirror image of Figure 14–22
for low-pass filters. This suggests that low-pass filter
design methods apply to high-pass filter design when
we interchange the positions of the passband and the
stopband. Mathematically, the interchange is called a
low-pass to high-pass transformation. The transforma-
tion is carried out by inverting the frequency variables
in the low-pass filter relationships. We demonstrate
this first for first-order cascade responses.

F I R S T - O R D E R C A S C A D E
First-order cascade low-pass gain responses are
defined in Eq. (14–28) using the normalized fre-
quency variable ω=α. Using the inverted frequency
variable α=ω in Eq. (14–28) produces the definition
of first-order cascade high-pass responses:

T jωð Þj j= jKjnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + α=ωð Þ2

q� �n (14–37)

Following the same process as for the low-pass case, the cutoff frequency α for the
cascaded filter is found as

α=ωC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21=n−1

p
(14–38)

This equation relates the cutoff frequency of each first-order stage αð Þ to the desired
cutoff frequency of the cascade connection ωCð Þ of n first-order stages. Each of these

stages has a gain of K = TMAXð Þ1=n and a cutoff frequency of α. To determine the
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number of stages required to obtain a particular roll-off, we can use the normalized
gain responses for n= 1 to n= 11 in Figure 14–46.

D E S I G N E X A M P L E 1 4–1 0

Design a cascade of active RC high-pass filter circuits to create a filter with a K of
0 dB, a cutoff frequency of 500 rad=s, aTMIN of −40 dB, and a ωMIN of 100 rad=s. Sim-
ulate the output using Multisim to verify your design.

SOLUTION:
From Figure 14–46 we find that the filter order to meet our requirement is 8. Using
Eq. (14–38), we find that the cutoff frequency of each filter is 150:422 rad=s. If we
select R= 10 kΩ, C is 0:6648 μF. Figure 14–47 shows the circuit constructed in Multi-
sim overlaid on the Grapher View of the AC analysis. The simulation shows that the
cutoff frequency is at 79:7Hz or 500 rad=s as required, and the attenuation is 41:1 dB,
exceeding the −40 dB requirement.

■

D e s i g n E x e r c i s e 1 4–1 4
Design a high-pass, first-order cascade filter with a cutoff frequency of 100 krad=s, aTMIN of
−65 dB, a ωMIN of 10 krad=s, and a passband gain of 100.

A n s w e r: Use 13 stages of a first-order RC high-pass filter consisting of a 10-kΩ resistor
and a 4273-pF capacitor. Separate the stages using noninvertingOPAMPs, each with a gain
of 1.4251.

B U T T E R W O R T H H I G H - P A S S F I L T E R S
Butterworth low-pass gain responses are defined in Eq. (14–30) using the normalized
frequency variable ω=ωC. Using an inverted frequency variable ωC=ω in Eq. (14–30)
produces the definition of Butterworth high-pass gain responses:

jT jωð Þj= jKjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ωC=ωð Þ2n

q Butterworth high-pass (14–39)
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where n is the filter order. Figure 14–48 shows normalized plots of Eq. (14–39) for
n= 1 to 6, where TMAX = jKj. These plots confirm that the inverted variable ωC=ω
does in fact interchange the passband and stopband while leaving the cutoff fre-
quency unchanged at ω=ωC = 1. The inversion causes low-pass gain responses that
occur below ωC to occur as high-pass responses above ωC, and vice versa. In partic-
ular, Figure 14–48 shows that gains in the high-pass transition band decrease rapidly
as n increases.

To limit circuit complexity, we need to know the smallest n that meets a given high-
pass filter specification. For Butterworth low-pass filters, Eq. (14–31) provides a
lower bound on n in terms of the transition band ratios. For Butterworth high-pass
filters, the lower bound is found by substituting the inverted variable ωC=ω in the der-
ivation of Eq. (14–31). The modified derivation is straightforward and leads to the
following equation:

n≥
1
2
ln½ TMAX=TMINð Þ2−1�

ln ωC=ωMIN½ � High-pass order (14–40)

The lower bound on the right side of this equation depends on two transition band
ratios, namely TMAX=TMIN and ωC=ωMIN. There is no real surprise here. We have
seen several times that filter order depends on how much and how abruptly the tran-
sition band gain must decrease to meet a given specification.

To give a concrete example, suppose the transition band gain of a Butterworth
high-pass filter must decrease by 40 dB TMAX=TMIN = 102

� �
when ωC=ωMIN = 5.

Equation (14–40) yields a lower bound of

n≥
1
2

ln 102
� �2

−1
h i

ln 5½ � = 2:86
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The smallest integer meeting this bound is n= 3. This result is confirmed by the plots
in Figure 14–48, which show that a normalized gain below −40 dB at ω=ωC = 0:2 can-
not be produced by any order less than n= 3.

Given the value of n, we need to construct a high-pass transfer function with a
Butterworth gain response. A Butterworth low-pass transfer function is con-
structed using a polynomial qn sð Þ from Table 14–2 in Eq. (14–32). An nth-order
high-pass transfer function is found by inverting the frequency variable in
Eq. (14–32) to get

T sð Þ= K
qn ωC=sð Þ High-pass transfer function (14–41)

where qn ωC=sð Þ is a normalized Butterworth polynomial in Table 14–2 with s
replaced by ωC=s.

To see how the inversion process actually works, let us develop a second-order
Butterworth high-pass transfer function with ωC = 1 krad=s and TMAX = 20 dB. For
n= 2, the normalized polynomial in Table 14–2 is q2 sð Þ= s2 + 1:414s+ 1. Using
ωC = 1000 rad=s andK = 10 20 dBð Þ in Eq. (14–41) produces

T sð Þ= 10

1000
s

� �2

+ 1:414
1000
s

� �
+ 1

=
10

s
1000

� 	2
s

1000

� 	2
+ 1:414

s
1000

� 	
+ 1

This transfer function has a double zero at s= 0 and a pair of Butterworth poles with
ω0 = 1000 rad=s and ζ= 1:414=2 = 0:707. The double zero makes the dc gain jT 0ð Þj= 0
and the infinite-frequency gain jT ∞ð Þj= 10. The gain at the cutoff frequency
ωC = 1 krad=s is

jT j1000ð Þj= 10=1:414 =T ∞ð Þ=
ffiffiffi
2

p

as required. In sum, the transfer function T sð Þ has the properties of a second-order
Butterworth high-pass filter.

Designing an nth-order Butterworth high-pass filter to meet prescribed values of
TMAX, TMIN, ωC, and ωMIN involves the following steps. We first determine the smal-
lest n that meets the specification using Eq. (14–40) or the graphs in Figure 14–48.
Taking the polynomial qn sð Þ from Table 14–2 and using K =TMAX, we obtain T sð Þ
using Eq. (14–41). The polynomial qn ωC=sð Þ in the denominator of T sð Þ supplies n
Butterworth poles and n zeros at the origin. We then partition T sð Þ into a product
of first- and second-order high-pass functions and use a cascade of high-pass building
blocks to get the overall filter circuit.

The next example illustrates the Butterworth high-pass design process.

D E S I G N E X A M P L E 1 4–1 1

(a) Construct a Butterworth high-pass transfer function that meets the following
requirements: TMAX = 20 dB, ωC = 10 rad=s,TMIN = −10 dB, and ωMIN = 3 rad=s.
Use MATLAB to plot the gain response.

(b) Design a cascade of active RC circuits that realizes the transfer function found in
(a). Validate your design using Multisim.

SOLUTION:
(a) The specification requires the gain to decrease by 30 dB in the transition band

between ωMIN = 3 rad=s and ωC = 10 rad=s. The transition band ratios for this
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specification are TMAX=TMIN = 103=2 and ωC =ωMIN = 3:33. Inserting these ratios
in Eq. (14–40) yields

n≥
1
2
ln
�ð103=2Þ2−1�
ln 3:33ð Þ = 2:87

Hence, n= 3 is the lowest-order Butterworth response that meets the transition
band requirement. For n= 3, Table 14–2 lists q3 sð Þ= s+ 1ð Þ s2 + s+ 1

� �
. Using

ωC = 10 andK = 10 20 dBð Þ in Eq. (14–41) gives the required high-pass transfer
function:

T sð Þ= 10
q3 10=sð Þ =

10

10
s

� �
+ 1

� �
10
s

� �2

+
10
s

� �
+ 1

" #

=
10

s
10

� 	3
s
10

� 	
+ 1

h i s
10

� 	2
+

s
10

� 	
+ 1

� �

This third-order high-pass function has three zeros at s= 0, a real pole at
s= −10 rad=s, and a pair of complex poles with ω0 = 10 rad=s and ζ= 0:5. Note
that these high-pass poles all lie on a circle of radius ωC, as did the poles in Butter-
worth low-pass filters.

The transfer function was expanded for use in MATLAB, and the code below
was used to produce the gain curve shown in Figure 14–49. The result shows that
the transfer function meets the required specifications.

T=tf([10 0 0 0],[1 20 200 1000]);
w = logspace(0,2,10000);
bodemag(T,w);grid
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(b) The Butterworth high-pass function developed in part (a) can be partitioned as
follows:

T sð Þ = T1 sð ÞT2 sð Þ

=
s=10ð Þ2

s=10ð Þ2 + s=10 + 1

" #
10 s=10ð Þ
s=10ð Þ+ 1

� �

In this partition, all of the passband gain TMAX = 10 20 dBð Þ has been assigned to
the first-order transfer function. This makes the passband gain of the second-
order transfer function 1 0 dBð Þ so that it can be realized using the unity gain
design method [see Eq. (14–14)].

Figure 14–50 shows a design sequence based on this partitioning. The stage
transfer functions in the first row lead to the stage parameters in the second
row. The two stage prototypes are a second-order high-pass circuit with unity
gain and a first-order high-pass circuit with an adjustable gain. The design con-
straints for the second-order stage use the unity gain design method. The design
constraints for the first-order stage locate the real pole using theRC product and

K2 = 10

Final
designs

Element
values

Design
constraints

Stage
prototype

Stage
parameters

First Stage

Prototype
transfer
function

10 (s/10)

(s/10) + 1

Item Second Stage

(s/10)2

(s/10)2 + (s/10) + 1

ω0 = 10     K2 = 10ω0 = 10    ζ = 0.5    K1 = 1

+

−

Let R = 50 kΩ, then
     C = 2 μF

Let RB = 10 kΩ, then

RA = 90 kΩ

Let R2 = 100 kΩ, then
     R1 = 25 kΩ and

C = 2 μF

90 kΩ

CC

10 kΩ

K1 = 1

100 kΩ

+

−

25 kΩ

+

−
50 kΩ2 μF

2 μF

RARB

+

−
R

C

2 μF

R1

R2

R1R2C = 1/ω0 = 0.1

R1/R2 = ζ2 = 0.25

RC = 1/ω0 = 0.1

RA/RB = K2
 − 1 = 9

FIGURE 14–50 Design sequence for Example 14–11.
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adjust the OP AMP’s feedback to get the required gain. Using these constraints
together with the element value assignments in the fifth row produces the final
designs in the last row of Figure 14–50. The required passband gain is provided
by the first-order stage, so no additional gain correction stage is needed in this
example.

The final design in Figure 14–50 was built in Multisim and is shown in
Figure 14–51.

The circuit was simulated usingAC analysis, and theGrapherView plot is also
shown superimposed over the circuit in Figure 14–51. The design meets or
exceeds the specifications for the filter.

■

D e s i g n E x e r c i s e 1 4–1 5
Design a Butterworth high-pass filter using the equal element configuration that meets the
following conditions: passband gain 100,ω0 = 5 krad=s,ωMIN = 500 rad=s,Tmin= −40 dB�
1dB. You must use 10-kΩ resistors as much as possible. Use Multisim to validate your
design.

A n s w e r: The solution requires a fourth-order filter. Use two second-order equal element,
high-pass filters followed by a non-inverting gain stage. See Figure 14–52(a) for a working
design and Multisim simulation.

D e s i g n a n d E v a l u a t i o n E x e r c i s e 1 4–1 6

Repeat Exercise 14–15, but design a Butterworth high-pass filter using the unity gain con-
figuration. You must use 0:01 μF capacitors. Compare the results with Exercise 14–15.

A n s w e r: Like the previous exercise, the solution requires a fourth-order filter and a non-
inverting amplifier. Figure 14–52(b) shows a working design. In comparing this design with
the prior, there are several advantages/disadvantages with each design. The equal-element
approach uses only five different values of components simplifying ordering parts. It,
however, uses 14 components, 3 of which are not standard values plus 3 OP AMPs.
The unity-gain design uses fewer components, only 10, plus the 3 OP AMPs. However, five
of the parts are nonstandard which could increase manufacturing costs. The performance of
both approaches is similar, with the equal-element design having a larger corner-frequency
error than the unity-gain design, but both are less than 0.5%.
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C H E B Y S H E V H I G H - P A S S F I L T E R S
Our treatment of Chebyshev high-pass filters can be brief because the low-pass to
high-pass transformation used to develop Butterworth high-pass filters works equally
well here. The Chebyshev low-pass gains are defined in Eq. (14–33) in terms of a fre-
quency variable ω=ωC. Using the inverted variable ωC=ω in this definition produces
the definition of Chebyshev high-pass gain responses.

jTn jωð Þj= jKjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +C2

n ωC=ωð Þp Chebyshev high-pass (14–42)

where Cn xð Þ is an nth-order type 1 Chebyshev polynomial. The normalized plots of
the Chebyshev high-pass gains in Figure 14–53 show that the passband and stopband
have been interchanged. These Chebyshev high-pass responses have equal-ripple
responses in the passband above ωC and transition band gains below ωC that decrease
rapidly as n increases.

Equation (14–35) provides a lower bound on n for Chebyshev low-pass filters.
Using the inverted variable ωC=ω in the derivation of this equation yields a lower
bound on the Chebyshev high-pass order as

n≥
cosh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TMAX=TMINð Þ2−1

q� �
cosh−1 ωC=ωMINð Þ High-pass order (14–43)

Once again we see that the lower bound on filter order depends on how much
TMAX=TMINð Þ and how abruptly ω=ωMINð Þ the transition band gain must decrease
to meet the specification.
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For any given n, a Chebyshev low-pass transfer function is obtained using a
polynomial qn s=ωCð Þ in Eq. (14–36a) or (14–36b). To obtain a Chebyshev high-pass
transfer function, we invert the frequency variable and write

T sð Þ= K
qn ωC=sð Þ n odd (14–44a)

or

T sð Þ= K=
ffiffiffi
2

p

qn ωC=sð Þ n even (14–44b)

where qn ωC=sð Þ is a normalized Chebyshev denominator polynomial in Table 14–3
with s replaced by ωC=s. Thus, the polynomials in Table 14–2 and Table 14–3 serve
two purposes. They are used as qn s=ωCð Þ in the design of low-pass filters and as
qn ωC=sð Þ in the design of high-pass filters. For the Chebyshev high-pass case, the
order of the polynomial is found analytically using Eq. (14–43) or graphically using
the normalized gain plots in Figure 14–53.

The next example illustrates constructing Chebyshev high-pass transfer functions
to meet a given specification.

D E S I G N A N D E V A L U A T I O N E X A M P L E 1 4–1 2

Construct a Chebyshev high-pass transfer function that meets the requirements of
Example 14–11. That is, TMAX = 20 dB, ωC = 10 rad=s, TMIN = −10 dB, and
ωMIN = 3 rad=s. Use MATLAB to plot the gain of the transfer function. Design a cir-
cuit using Multisim and plot the output. Compare the gain performance of this filter
versus the Butterworth filter designed in Example 14–11.
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FIGURE 14–53 Chebyshev
high-pass filter responses.
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SOLUTION:
The transition band gain must decrease by 30 dBðTMAX=TMIN = 103=2Þ on the range
ωC=ωMIN = 3:33. Inserting these ratios in Eq. (14–43) yields

n≥
cosh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð103=2Þ2−1

q� �
cosh−1 3:33ð Þ = 2:21

Hence, n= 3 is the lowest-order Chebyshev response that meets the design require-
ment. The third-order polynomial in Table 14–3 is

q3 sð Þ= s=0:2980 + 1ð Þ½ s=0:9159ð Þ2 + 0:3254 s=0:9159ð Þ+ 1�
Using ωC = 10 andK = 10 TMAX = 20 dBð Þ in Eq. (14–44a) gives the required high-pass
transfer function:

THP sð Þ = 10
q3 10=sð Þ

=
10

10
0:2980s

� �
+ 1

� �
10

0:9159s

� �2

+ 0:3254
10

0:9159s

� �
+ 1

" #

=
10s3

s+ 33:55ð Þ s2 + 3:553s+ 119:2ð Þ

In Example 14–11, we meet this specification using a third-order Butterworth high-
pass function with poles located on a circle of radius ωC = 10 rad=s. The third-order
Chebyshev high-pass function constructed here has three zeros at s= 0 a real pole at
s= −33:55 rad=s, and a pair of complex poles with ω0 =

ffiffiffiffiffiffiffiffiffiffiffi
119:2

p
= 10:92 rad=s

and ζ= 0:1627. These poles all lie outside of a circle of radius ωC = 10 rad=s. The rea-
son for this is easy to understand. A Chebyshev high-pass function has an equal-
ripple response in the passband above ωC. Hence, the Chebyshev poles that produce
the ripple must have natural frequencies greater than ωC.

Figure 14–54(a) displays the Bode magnitude plot derived using MATLAB. The
design meets or exceeds all of the specifications. A circuit for the filter was designed
using the equal-element method. The design and the Grapher View simulation are
shown in Figure 14–54(b).

In both theMATLAB andMultisim plots, ωMIN of the Chebyshev approach has a
far greater attenuation −22:7 dBð Þ than the Butterworth approach −11:4 dBð Þ. The
price for thisbetter filtering is the ripple in thepassband.Furthermore,exceedingaspec-
ification generally does not offer a significant advantage over simply meeting it. ■

D e s i g n E x e r c i s e 1 4–1 7
Construct Butterworth and Chebyshev high-pass transfer functions that meet the following
requirements: TMAX = 10 dB,ωC = 50 rad=s,TMIN = −40 dB, and ωMIN = 10 rad=s.

A n s w e r:
TBU sð Þ =

ffiffiffiffiffi
10

p
s4

s2 + 38:3s+ 502
� �

s2 + 92:4s+ 502
� �

TCH sð Þ =
ffiffiffiffiffi
10

p
s3

s+168ð Þðs2 + 17:8s+ 54:62Þ
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14–7 B A N D P A S S A N D B A N D S T O P F I L T E R D E S I G N

In Chapter 12, we found that the cascade connection in Figure 14–55 can produce a
bandpass filter.When the cutoff frequency of the low-pass filter ωCLPð Þ, is higher than
the cutoff frequency of the high-pass filter ωCHPð Þ, the interval between the two
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frequencies is a passband separating two stopbands. The low-pass
filter provides the high-frequency stopband and the high-pass filter
the low-frequency stopband. Frequencies between the two cutoffs
fall in the passband of both filters and are transmitted through
the cascade connection, producing the passband of the resulting
bandpass filter.

When ωCLP �ωCHP, two bandpass cutoff frequencies are approx-
imately ωC1≈ωCHP and ωC2≈ωCLP. Under these conditions, the cen-
ter frequency and bandwidth of the bandpass filter are

ω0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωCHPωCLP

p
and B=ωCLP − ωCHP

and the ratio of the center frequency over the bandwidth is approximately

ω0

B
=Q≈

ffiffiffiffiffiffiffiffiffiffiffi
ωCHP

ωCLP

r
� 1

Since the quality factor is less than 1, this method of bandpass filter design produces a
wide-band filter, as contrasted with the narrow-band response Q> 1ð Þ produced by
the active RC bandpass circuit studied earlier in Sect. 14–3.

D E S I G N E X A M P L E 1 4–1 3

Use second-order Butterworth low-pass and high-pass functions to obtain a fourth-
order bandpass function with a passband gain of 0 dB and cutoff frequencies at
ωC1 = 10 rad=s and ωC2 = 50 rad=s. Use MATLAB to show a complete Bode plot of
the transfer function.

SOLUTION:
The upper cutoff frequency at 50 rad=s is produced by a low-pass function. Using
second-order Butterworth poles, the required low-pass function is

TLP sð Þ= 1

s=50ð Þ2 + ffiffiffi
2

p
s=50ð Þ+ 1

The lower cutoff frequency at 10 rad=s is to be produced by a second-order high-pass
function. Using second-order Butterworth poles, the required high-pass function is

THP sð Þ= s=10ð Þ2
s=10ð Þ2 + ffiffiffi

2
p

s=10ð Þ+ 1

When circuits realizing these two transfer functions are connected in cascade, the
overall transfer function is

THP sð Þ×TLP sð Þ = s=10ð Þ2
s=10ð Þ2 + ffiffiffi

2
p

s=10ð Þ+ 1

" #
×

1

s=50ð Þ2 + ffiffiffi
2

p
s=50ð Þ+ 1

" #

=
2500s2

s4 + 60
ffiffiffi
2

p
s3 + 3600s2 + 30;000

ffiffiffi
2

p
s+ 250;000

High-pass
ωCHP

Low-pass
ωCLP

BANDPASS

FIGURE 14–55 Cascade connection of high-pass
and low-pass filters.
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We can useMATLAB to plot a complete Bode diagram of our transfer function. We
use the following code to generate the plots shown in Figure 14–56:

T=tf([2500 0 0],...
[1 60*sqrt(2) 3600 30000*sqrt(2) 250000]);

w = logspace(0,3,10000);
bode(T,w);
grid

The gain response shows that the transfer function indeed has a bandpass character-
istic. The phase shifts over 360�, from 180� at low frequencies to −180� at high
frequencies, passing through 0� at the center frequency of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 × 50

p
= 22:36 rad=s.

At 10 and 50 rad=s, the cutoffs are as desired, but the gain is shy of 0 dB, reaching
a maximum of − 0:341 dB. This small error is probably insignificant. As the cutoff
frequencies get closer together and the bandwidth decreases, the two filter compo-
nents interact to decrease the gain at the center frequency. This interaction will
cause the gain to fail to attain the desired value. The Q of this filter is
ω0=B= 22:36=40 = 0:56. As theQ approaches 1, a different design approach is needed,
such as the tuned filter design shown in Figure 14–14 or Figure 14–19. ■

Figure 14–57 shows the dual situation in which a high-pass and a low-pass filter are
connected in parallel to produce a bandstop filter. When ωCLP �ωCHP, the region
between the two cutoff frequencies is a stopband separating two passbands. The
low-pass filter provides the low-frequency passband via the lower path and the
high-pass filter provides the high-frequency passband via the upper path. Frequen-
cies between the two cutoffs fall in the stopband of both filters and are not transmit-
ted through either path in the parallel connection. As a result, the two filters produce
the stopband of the resulting bandstop filter.When ωCHP �ωCLP, two cutoff frequen-
cies are approximately ωC1≈ωCLP and ωC2≈ωCHP.

D E S I G N E X A M P L E 1 4–1 4

Use second-order Butterworth low-pass and high-pass functions to obtain a fourth-
order bandstop function with passband gains of 0 dB and cutoff frequencies at
ωC1 = 10 rad=s and ωC2 = 50 rad=s. Use MATLAB to show a complete Bode plot of
the transfer function.
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SOLUTION:
In Example 14–13, we obtained a Butterworth bandpass response using a cascade
connection of a second-order high-pass function and a low-pass function with
ωCLP = 50�ωCHP = 10. To obtain a bandstop response, we interchange the cutoff fre-
quencies and write the two functions as

TLP sð Þ = 1

s=10ð Þ2 + ffiffiffi
2

p
s=10ð Þ+ 1

THP sð Þ = s=50ð Þ2
s=50ð Þ2 + ffiffiffi

2
p

s=50ð Þ+ 1

We now have ωCLP = 10�ωCHP = 50, which leads to a bandstop response. For the
parallel connection, the overall transfer function is the sum of the two transfer
functions.

TLP sð Þ+THP sð Þ = 1

s=10ð Þ2 + ffiffiffi
2

p
s=10ð Þ+ 1

+
s=50ð Þ2

s=50ð Þ2 + ffiffiffi
2

p
s=50ð Þ+ 1

=
s4 + 10

ffiffiffi
2

p
s3 + 200s2 + 5000

ffiffiffi
2

p
s+ 250;000

s4 + 60
ffiffiffi
2

p
s3 + 3600s2 + 30;000

ffiffiffi
2

p
s+ 250;000

As with the bandpass example, we can use MATLAB to plot a complete Bode
diagram of our transfer function. We use the following code to generate the plots
shown in Figure 14–58:

T=tf([1 10*sqrt(2) 200 5000*sqrt(2) 250000],...
[1 60*sqrt(2) 3600 30000*sqrt(2)250000]);

w = logspace(0,3,10000);
bode(T,w);
grid

The gain response shows that the transfer function indeed has a bandstop character-
istic. The phase shifts from 0� at low frequencies to −360� at high frequencies, passing
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through 180� at the center frequency of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 × 50

p
= 22:36 rad=s. At 10 rad=s and

50 rad=s, the cutoffs are as desired, with the filter reaching a maximum attenuation
of 10:2 dB. As the cutoff frequencies get closer together and the bandwidth of the
stopband decreases, the two components of the filter will interact to decrease
the amount of attenuation at the center frequency. In other words, as the bandwidth
decreases, the filter’s notch will not be as deep. The Q of this filter is
ω0=B= 22:36=40 = 0:56. As theQ approaches 1, a different design approach is needed,
such as the notch filter design shown in Figure 14–17 or Figure 14–19. ■

When the two cutoff frequencies are widely separated, we can realize wide-band
bandpass and bandstop filters using a cascade or parallel connection of low-pass and
high-pass filters. The design problem reduces to designing separate low-pass
and high-pass filters and then connecting them in cascade or parallel to obtain the
required overall response.

D e s i g n E x e r c i s e 1 4–1 8
Construct Butterworth low-pass and high-pass transfer functions whose cascade connection
produces a bandpass functionwith cutoff frequencies at 20 and 500 rad=s, a passband gain of
0 dB, and a stopband gain less than −20 dB at 5 and 2000 rad=s.

A n s w e r: T sð Þ= 5002

s2 + 707s+ 5002

" #
s2

s2 + 28:3s+ 400

� �

D e s i g n E x e r c i s e 1 4–1 9
Develop Butterworth low-pass and high-pass transfer functions whose parallel connection
produces a bandstop filter with cutoff frequencies at 2 and 800 rad=s, passband gains of
20 dB, and stopband gains less than −30 dB at 20 and 80 rad=s.

A n s w e r: TLP sð Þ = 80
s2 + 2s+ 4ð Þ s+ 2ð Þ

THP sð Þ = 10s3

s2 + 800s+ 8002
� �

s+800ð Þ

S U M M A R Y

• A filter design problem is defined by specifying attri-
butes of the gain response such as a straight-line gain
plot, cutoff frequency, passband gain, and stopband
attenuation. The first step in the design process is to
construct a transfer function T sð Þ whose gain response
meets the specification requirements.

• In the cascade design approach, the required transfer
function is partitioned into a product of first- and sec-
ond-order transfer functions, which can be independ-
ently realized using basic active RC building blocks.

• Transfer functions with real poles and zeros can be
realized using the voltage divider, noninverting

amplifier, or inverting amplifier building blocks.
Transfer functions with complex poles can be realized
using second-order active RC circuits.

• Transfer functions meeting low-pass filter specifica-
tions can be constructed using first-order cascade,
Butterworth, or Chebyshev poles. First-order cascade
filters are easy to design but have poor stopband
performance. Butterworth responses produce maxi-
mally flat passband responses and more stopband
attenuation than a first-order cascade with the same
number of poles. The Chebyshev responses produce
equal-ripple passband responses and more stopband
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attenuation than the Butterworth response with the
same number of poles.

• Filter designers should also consider the transient or
step response behavior of the filters they design.
First-order cascade filters generally have better step
response performance than either Butterworth or

Chebyshev filters because the latter’s complex poles
give rise to ringing and an overshoot.

• Ahigh-pass transfer function can be constructed from a
low-pass prototype by replacing s with ωC=s. Bandpass
(bandstop) filters can be constructed using a cascade
(parallel) connectionof a low-pass and ahigh-pass filter.

P R O B L E M S

O B J E C T I V E S E C O N D - O R D E R F I L T E R A N A L Y S I S
( S E C T S . 1 4–1 , 1 4–2 A N D 1 4–3 )
(a) Given a second-order filter circuit, find a specified transfer

function.
(b) Given the transfer function of a second-order circuit,

develop amethod of selecting the element values to achieve
specified filter characteristics.

See Examples 14–1 to 14–5 and Exercises 14–1 to 14–8.

14–1 Interchanging the positions of the resistors and capa-
citors converts the low-pass filter in Figure 14–3(a) into
the high-pass filter in Figure 14–9(a). This CR–RC inter-
change involves replacing Rk by 1=Cks and Cks by 1=Rk.
Show that this interchange converts the low-pass transfer
function in Eq. (14–6) into the high-pass function in
Eq. (14–11).

14–2 Show that the circuit in Figure 14–14 has the bandpass
transfer function in Eq. (14–16).

14–3 Show that the circuit in Figure 14–17 has the bandstop
transfer function in Eq. (14–20).

14–4 Find the transfer function of the active filter in
Figure P14–4.

+
−

R2+
−

C2

R1

C1

+
v2(t)
−

+
v1(t)

−

FIGURE P14–4

Using C1 =C2 =C = 0:1 μF, R1 = 10 kΩ, and R2 = 10MΩ, use
MATLAB to plot the filter’s Bode diagram.Determine the type
of filter it is and its roll-off.

14–5 The circuit in Figure 14–3(b) has a low-pass transfer func-
tion given in Eq. (14–6) and repeated below

T sð Þ = V2 sð Þ
V1 sð Þ

=
μ

R1R2C1C2 s2 + R1C1 + R1C2 + R2C2 − μR1C1 Þs + 1ð

In Section 14–2, we developed equal-element and unity-gain
design methods for this circuit. This problem explores an
equal-time constant design method. Using R1C1 =R2C2 and
μ= 2, develop a method of selecting values for C1, C2, R1,
and R2. Then select values so that the filter has a cutoff fre-
quency of 2 krad/s and a ζ of 0.05. Use MATLAB to plot
the filter’s Bode diagram. Determine the location in rad/s
and magnitude in dB of the peak in the frequency response.

14–6 Find the transfer function of the active filter in
Figure P14–6. Then using R1 =R2 =R3 = 10 kΩ, C1 = 0:1 μF,
and C2 = 4:444 pF, find the filter’s type and roll-off, its cutoff
frequency,and itsζ.UseMATLABtoplot thefilter’sBodedia-
gram.Build and simulate your circuit inMultisim and compare
the results with MATLAB’s. Determine the location in rad/s
and magnitude in dB of the peak in the frequency response.

+
−

R2 R3

R1

C2

C1

+
v1(t) +

v2(t)

FIGURE P14–6

14–7 Find the transfer function of the active filter in
Figure P14–7. Then using R1 = 50 kΩ, R2 = 2 kΩ, and
C1 =C2 = 0:1 μF, find the filter’s type and roll-off, its cutoff
frequency, and its ζ. Use MATLAB to plot the filter’s
Bode diagram. Build and simulate your circuit in Multisim
and compare the results with MATLAB’s. How does the
circuit and this transfer function compare with that of
Problem 14–4?

+
−

R1

+
−

C1

R2v1(t)

C2

+

−
v2(t)
+

−

FIGURE P14–7

14–8 For the filter in Figure P14–6, replace the three resistors
with three capacitors, maintaining the same subscripts, and
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the two capacitors with two resistors, again maintaining the
same subscripts. Show that the circuit’s transfer function is

T sð Þ= −R1R2C1C3s2

R1R2C2C3s2 + C1 +C2 +C3ð ÞR1s+ 1

Find the filter’s type, its cutoff frequency, and its ζ in terms of
the Rs and Cs.

14–9 The circuit in Figure 14–9(b) has a high-pass transfer func-
tion given in Eq. (14–11) and repeated below

T sð Þ = V2 sð Þ
V1 sð Þ

=
μR1R2C1C2 s2

R1R2C1C2 s2 + R2C2 + R1C1 + R1C2 − μR2C2ð Þs + 1

In Section 14–2, we developed equal-element and unity-gain
design methods for this circuit. This problem explores an
equal-time constant design method. Using R1C1 =R2C2 and
μ=2, develop a method of selecting values for C1, C2, R1,
and R2. Then select values so that the filter has a cutoff fre-
quency of 500 krad=s and a ζ of 0.25. Use MATLAB to plot
the filter’s Bode diagram.

14–10 Show that the active filter in Figure P14–10 has a transfer
function of the form

T sð Þ = V2 sð Þ
V1 sð Þ =

−R1C1s

R1R2C1C2s2 + R1C2 + R2C2ð Þ s + 1

Using R1 =R2 =R, develop a method of selecting values for
C1, C2, and R. Then select values so that the filter has a ω0

of 5 krad=s and a ζ of 0.2. Use MATLAB to plot the filter’s
Bode diagram. What type of filter is this?

+

−
R2

R1

C1 C2

v1(t)

+

v2(t)

+

FIGURE P14–10

14–11 Find the transfer function of the active filter in
Figure P14–11. Then using R1 =R2 = 10 kΩ, R3 = 20 kΩ,
andC1 =C2 = 0:01 μF, findthefilter’s typeandroll-off, its cutoff
frequency, and its ζ.UseMATLABtoplot the filter’sBodedia-
gram. Build and simulate your circuit inMultisim and compare
the results with MATLAB’s. Determine the location in rad/s
and magnitude in dB of the peak in the frequency response.

+
−

+

v1(t)
+

v2(t)
R1

R2

C1 R3C2

FIGURE P14–11

14–12 The active filter in Figure P14–12 has a transfer function
of the form

T sð Þ= V2 sð Þ
V1 sð Þ =

RCsð Þ2 + 1

RCsð Þ2 + 2RCs+ 1

Select values of R and C so that the filter has an ω0 of
377 rad/s. Use Multisim to plot the filter’s Bode magnitude
diagram. What type of filter is this? With the gain equal to
1, is ζ selectable? What is ζ in this filter?

R

R/2

R

C C

2C

+
v1(t)

+
v2(t)

+
–

FIGURE P14–12

O B J E C T I V E 1 4–2 S E C O N D - O R D E R F I L T E R D E S I G N
( S E C T S . 1 4–2 A N D 1 4–3 )
(a) Construct a second-order transfer function with specified

filter characteristics.
(b) Design a second-order circuit with specified filter

characteristics.
See Examples 14–2 to 14–4 and Exercises 14–1 to 14–8.

14–13 Design a second-order low-pass filter with a cut-

off frequency of 1 kHz, a ζ of 0.5, and a gain of 100. Use
the equal-element approach. Use Multisim to verify your
design.

14–14 Design a second-order low-pass filter with a cutoff

frequency of 1 kHz, a ζ of 0.5, and a gain of 100. Use the unity-
gain approach. Use Multisim to verify your design.
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14–15 Design a second-order high-pass filter with a cutoff

frequency of 150 kHz, a ζ of 0.01, and a gain of 20 dB. Use the
equal-element approach. Use Multisim to verify your design.

14–16 Design a second-order high-pass filter with a

cutoff frequency of 150 kHz, a ζ of 0.01, and a gain of 20 dB.
Use theunity-gainapproach.UseMultisim toverifyyourdesign.

14–17 The transfer functions of three different

second-order low-pass filter design approaches shown in
Figure P14–17 are as follows:

Ta sð Þ= 1
R1R2C1C2s2 +R2C2s+1

Tb sð Þ= μ
R1R2C1C2s2 + R1C1 +R1C2 +R2C2−μR1C1ð Þs+ 1

Tc sð Þ= −R2=R1

R2R3C1C2s2 + ½R3C2 +R2C2 1 +R3=R1ð Þ�s+ 1

The filter specifications are a cutoff frequency of 100 krad/s
and a ζ of 0.2. Using Multisim, build your three designs
and select the best one based on how well each meets the
specs, the number of parts, and the gain.

+

+
– +

–

+

–

+

v2(t)

+

v2(t)

+

v2(t)

C1

C2

C1

C1

C2

C2

R1

(a)

(b)

(c)

R1 R2

R2
R1 R3

RB
RA

R2

v1(t)

+

v1(t)

+ +

–

v1(t)

μ

FIGURE P14–17
For Problems 14–18 to 14–22, construct second-order transfer
functions thatmeet the followingrequirements.UseMATLAB
to plot the transfer function’s Bode diagram and validate the
requirements.

PROBLEM TYPE ω0 (rad/s) ζ |T (Jω0)| CONSTRAINTS

14–18 Low pass 500,000 * 50 dc gain of 60 dB
14–19 High pass 2513 0.5 * Infinite frequency

gain of 10
14–20 Bandpass 62800 * 5 B = 125.7 krad/s
14–21 Bandpass 1000 1 10 dc gain of zero
14–22 Bandstop 377 0.01 0 Passband gain of

10 dB
∗Not specified.

For Problems 14–23 to 14–32, design second-order active
filters that meet the following requirements. Simulate your
designs in Multisim to validate the requirements.

PROBLEM TYPE ω0 (rad/s) ζ CONSTRAINTS

14–23 Low pass 200 k 0.5 Use10-kΩ resistors

14–24 Low pass 500 2 dc gain of 60 dB

14–25 Low pass 1 M 0.1 Use 0.2-μF
capacitors

14–26 High pass 2500 0.2 Use 0.2-μF
capacitors

14–27 High pass 250 0.25 High-frequency
gain of 60 dB

14–28 Bandpass 5000 * Center-frequency
gain of 0 dB

14–29 Bandpass 1000 * Bandwidth of
100 rad/s.

14–30 Tuned 3.45 M 0.001 Use 500-pF
capacitors

14–31 Notch 377 0.01 Use 0.01-μF
capacitors

14–32 Bandstop 5000 1 Use 0.1-μF
capacitors

∗Not specified.

14–33 A local AM radio station has an undesirable

signal at 850 kHz. Design a notch filter to remove it.
The notch should attenuate at least 40 dB and have a
bandwidth no wider than 8.5 kHz and a passband gain
of 0 dB.

O B J E C T I V E 1 4–3 L O W - P A S S F I L T E R D E S I G N
( S E C T S . 1 4–4 A N D 1 4–5 )
Given a low-pass filter specification:
(a) Construct a transfer function that meets the specification.
(b) Design a cascade of first- and second-order circuits that

implements a given transfer function.
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(c) Select the best design from competitive filter approaches
based on specified frequency and step response criteria.

See Examples 14–6 to 14–9 and Exercises 14–9 to 14–13.

For Problems 14–34 to 14–38, construct the lowest-order trans-
fer functions that meet the following low-pass filter specifica-
tions. Calculate the gain (in dB) of the transfer function at
ω=ωC and ωMIN. Use MATLAB to validate that your transfer
function meets the design specifications.

PROBLEM POLE TYPE
ωC

(rad/s)
TMAX
(dB)

ωMIN

(rad/s)
TMIN
(dB)

14–34 First-order
cascade

2000 60 20 k −20

14–35 Butterworth 5000 0 20 k −50
14–36 Chebyshev 25 k 40 250 k −80
14–37 Butterworth 600 k 10 1.2 M −10
14–38 Chebyshev 2 M 20 8 M −40

14–39 Design an active low-pass filter to meet the speci-

fication in Problem 14–34. Use Multisim to verify that your
design meets the specifications.

14–40 Design an active low-pass filter to meet the speci-

fication in Problem 14–35. Use Multisim to verify that your
design meets the specifications.

14–41 Design an active low-pass filter to meet the speci-

fication in Problem 14–36. Use Multisim to verify that your
design meets the specifications.

14–42 Design an active low-pass filter to meet the speci-

fication in Problem 14–37. Use Multisim to verify that your
design meets the specifications.

14–43 Design an active low-pass filter to meet the speci-

fication in Problem 14–38. Use Multisim to verify that your
design meets the specifications.

14–44 A low-pass filter is needed to suppress the harmo-

nics in a periodic waveform with f0 = 1 kHz. The filter
must have unity passband gain, less than −60 dB gain at
the third harmonic, and less than −90 dB gain at the fifth
harmonic. Since power is at a premium, choose a filter
approach that minimizes the number of OP AMPs. Design
a filter that meets these requirements. Verify your design
using Multisim.

14–45 Design a low-pass filter with 6 dB passband gain, a

cutoff frequency of 2 kHz, and a stopband gain of less than
−14 dB at 6 kHz. The filter must not have an overshoot
greater than 13%. Verify your design using Multisim.

14–46 Design a low-pass filter with 0 dB passband gain, a

cutoff frequency of 4 kHz, and a stopband gain of less than
−50 dB at 16 kHz. The filter must not have an overshoot
greater than 13%. Verify your design using Multisim.

14–47 Design a low-pass filter with 10 dB passband gain, a

cutoff frequency of 10 kHz, and a stopband gain of less than
−20 dB at 20 kHz. Overshoot is not a problem, but a low filter
order, least number of parts, and a maximum of two OP
AMPs are desired. Verify your design using Multisim.

14–48 A pesky signal at 80 kHz is interfering with a

desired signal at 20 kHz.A careful analysis suggests that redu-
cing the interfering signal by 65 dB will eliminate the prob-
lem, provided the desired signal is not reduced by more
than 3 dB.Design an activeRC filter thatmeets these require-
ments. Verify your design using Multisim.

14–49 A strong signal at 2.45 MHz is interfering with an

AM signal at 980 kHz. Design a filter that will attenuate the
undesired signal by at least 60 dB. Verify your design using
Multisim.

14–50 A100 kHz square wavemust be bandwidth-limited

by attenuating all harmonics after the third. Design a low-
pass filter that attenuates the fifth harmonic and greater by
at least 20 dB. The fundamental and third harmonic should
not be reduced by more than 3 dB, and the overshoot cannot
exceed 13%.

O B J E C T I V E 1 4 – 4 H I G H - P A S S , B A N D P A S S , A N D
B A N D S T O P F I L T E R D E S I G N ( S E C T S . 1 4–6
A N D 1 4–7 )
Given a high-pass, bandpass, or bandstop filter specification:
(a) Construct a transfer function that meets the specification.
(b) Design a cascade or parallel connection of first- and second-

order circuits that implements a given transfer function.
(c) Select the best design from competitive filter approaches

based on specified frequency and step response criteria.
See Examples 14–10 to 14–14 and Exercises 14–14 to 14–19.

Construct the lowest order, high-pass transfer functions that
meet the following filter specifications. Calculate the gain (in
dB) of the transfer function at ω=ωC and ωMIN. UseMATLAB
to validate that your transfer function meets the design
specifications.

PROBLEM POLE TYPE
ωC

(rad/s)
TMAX
(dB)

ωMIN

(rad/s)
TMIN
(dB)

14–51 First-order
cascade

100 k 40 10 k 0

14–52 Butterworth 100 k 20 10 k −30
14–53 Chebyshev 100 k 0 50 k −40
14–54 You Decide 100 k 10 25 k −50
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14–55 Design an active high-pass filter to meet the spec-

ification in Problem 14–51. Use Multisim to verify that your
design meets the specifications.

14–56 Design an active high-pass filter to meet the spec-

ification in Problem 14–52. Use Multisim to verify that your
design meets the specifications.

14–57 Design an active high-pass filter to meet the spec-

ification in Problem 14–53. Use Multisim to verify that your
design meets the specifications.

14–58 Design an active high-pass filter to meet the spec-

ification in Problem 14–54. Use Multisim to verify that your
design meets the specifications.

14–59 A certain instrumentation system for a new hybrid

car needs a bandpass filter to limit its output bandwidth prior to
digitization. The filter must meet the following specifications:

TMAX = + 20± 1 dB ωCH = 5:5 krad=s 875:4 Hzð Þ± 10%
ωCL = 5 krad=s 795:8 Hzð Þ±10%

TMIN ≤ −20 dB ωCHMIN = 55 krad=s 8:754 kHzð Þ
ωCLMIN = 500 rad=s 79:6 Hzð Þ

Twovendors have submittedproposed solutions in the formof
Multisim graphics, shown in Figure P14–59. As the require-
ments engineer on the project, you need to select the best
one. You must check whether each circuit meets or fails every
specification.Youshouldalsoconsider (1)parts count, (2)ease
ofmaintainabilityand implementation (fewerparts, numberof
similar parts, adjustments of potentiometers, standard values),
(3) frequency-domain response, and (4) cost. You should
address each item for each design at least qualitatively.Attach
whatever softwareoutput you thinkwill support yourdecision.
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Chuby Filters Inc
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FIGURE P14–59

14–60 You are working at an aircraft manufacturing plant

on an altitude sensor that eventually will be used to retrofit
dozens of similar sensors on an upgrade to a current airframe.
You are required to find a quality notch filter to eliminate an
undesirable interference at 400 Hz. You find a vendor and
ask for a suitable product specification and a bid.
The specifications you require are as follows:

1. Must block signals at 400 ± 2% Hz
2. Passband gain should be 0 dB ± 1 dB
3. Bandwidth should be 20 Hz ± 5% Hz

The vendor’s proposal, shown as a Multisim drawing
in Figure P14–60, claims to meet all of the design require-
ments. Determine if it passes all of the stated requirements.
Then explain if you would buy the filter and why or why not?
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–
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1 MΩ

1 MΩ

FIGURE P14–60

14–61 An amplified portion of the radio spectrum is

shown in Figure P14–61. You need to hear all of the signals
from 1.0 to 2.0 MHz, but there is an interfering signal at 1.8
MHz. Design a notch filter to reduce that signal by at least
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50 dB and not reduce the desired signal at 1.7 MHz by more
than 6 dB. Use Multisim to validate your design.
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FIGURE P14–61

14–62 An amplified portion of the radio spectrum is

shown in Figure P14–61. You want to select the signal at
1.31 MHz, but it is barely above the background noise.
Design a tuned filter that has a Q of at least 50 and amplifies
the signal by 40 dB. Use Multisim to validate your design.

14–63 The portion of the radio spectrum shown in

Figure P14–61 is the result you want after you design a suit-
able filter and amplifier. The passband gain desired is 100 dB
and the “shoulders” of your filter should have a roll-off
of—120 dB per decade. Design a wide-band filter and ampli-
fier that is flat in the passband and has a bandwidth of 1 MHz
with a lower cutoff frequency of 1.1 MHz that meets all of
these criteria. Use Multisim to validate your design.

I N T E G R A T I N G P R O B L E M S

14–64 Bessel Filter

Bessel filters are in the category of maximally flat filters similar
to Butterworth but have a critically damped time-domain
response similar to a First-Order Cascade filter. Bessel filters
have a linear phase response over the filter’s passband, which
makes them useful in audio applications. Figure P14–64 shows

a fourth-order Bessel filter with a 20-kHz cutoff and a 0-dB pass-
band gain. Design a fourth-order First-Order Cascade and a
fourth-order Butterworth filter with the same cutoff frequency
and gain. Compare the frequency and time responses of the
three filters and comment on their strengths and weaknesses.

14–65 Design Evaluation

A need exists for a third-order Butterworth low-pass filter with
a cutoff frequency of 2 krad and a dc gain of 0 dB. The design
department has proposed the circuit in Figure P14–65. As a jun-
ior engineer in the manufacturing department, you have been
asked to verify the design and suggest modifications that would
simplify production.

+

−

10 kΩ 10 kΩ

0.1 μF

0.025 μF

50 kΩ

+

−

0.01 μF

50 kΩ

FIGURE P14–65

14–66 Modifying an Existing Circuit

One of your company’s products includes the passiveRLC filter
and OP AMP buffer circuit in Figure P14–66. The supplier of
the inductor is no longer in business and a suitable replacement
is not available, even on eBay or Craig’s List. You have been
asked to design a suitable inductorless replacement. To mini-
mize production changes, your design must use the existing
OP AMP as is and either the 1-kΩ resistor or the 0.1 μF capac-
itor or both, if possible.

+

−
0.1 μF

0.1 H1 kΩ

The rest of the circuit

FIGURE P14–66
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FIGURE P14–64
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14–67 What’s a High-Pass Filter

Tenyears after earning aBSEE, you return for amaster’s degree
and sign on as the laboratory instructor for the basic circuit anal-
ysis course. One experiment asks the students to build the active
filter in Figure P14–67 and measure its gain response over the
range from 150Hz to 15 kHz. The lab instructions say the circuit
is a high-pass filter with ω0 = 10 krad/s and an infinite frequency
gain of 0 dB. Everything goes well until a student, intrigued by
the concept of infinite frequency, inputs 1 MHz and measures a
gain of only 0.7. The student then inputs 2 MHz and measures a
gain of 0.45. The high-pass filter appears to be a bandpass filter!
Motivated by an insatiable thirst for understanding, the student
asks you for an explanation. You first check the student’s circuit
and find it to be correct. You next replace the OP AMP and
get almost the same results. Desperate for an explanation (your
credibility is on the line here), you read the course textbook (it is
Thomas,Rosa, andToussaint) and find the answer inChapter 12
(Examples 12–5 and 12–7). What do you tell the student?

+
− +

v2(t)
0.02 μF 0.02 μF

+

v1(t)

+

2.5 kΩ

10 kΩ

FIGURE P14–67

14–68 Bandpass to Bandstop Transformation

The three-terminal circuit in Figure P14–68(a) has a bandpass
transfer function of the form

T sð Þ =
VO sð Þ
VS sð Þ =

2ζ s=ω0ð Þ
s=ω0ð Þ2 + 2ζ s=ω0ð Þ+1

+
−

+ + +

−−

IN

(a)

OUT

GND

VS(s)

V1(s) V2(s) VO(s)
TV(s)

−−

+ + +

IN

(b)

OUT

GND

VS(s)

V1(s) V2(s) VO(s)

+
− −

TV(s)

FIGURE P14–68

Show that the circuit in Figure P14–68(b) has a bandstop trans-
fer function of the form

T sð Þ = VO sð Þ
VS sð Þ =

s=ω0ð Þ2 + 1

s=ω0ð Þ2 + 2ζ s=ω0ð Þ + 1

That is, show that interchanging the input and ground terminals
changes a unity-gain bandpass circuit into a unity-gain bandstop
circuit.

14–69 Third-Order Butterworth Circuit

Show that the circuit in Figure P14–69 produces a third-order
Butterworth low-pass filter with a cutoff frequency of
ωC = 1=RC and a passband gain of K = 4. Then design a third-
order Butterworth low-pass filter using the filter in Figure
P14–69 with a cutoff frequency of 10 krad/s. Verify your design
using Multisim.

+

−

R R R

R

C2C

3R

C/ 2

FIGURE P14–69

14–70 Notch Filter Comparison

To eliminate an interfering signal at 10 krad/s on a new product
design, your consulting firm needs to purchase a notch filter
with the following specifications:

Center frequency = 10 krad/s ± 0.5%

Bandwidth = 200 rad/s ± 2%

Depth of notch (attenuation at ω0) = 50 dB min.

Two vendors have submitted proposed solutions as Multisim
graphics shown in Figure P14–70. As the owner, you want to
select the best one. You must check that each circuit meets or
fails every specification. You should also consider: (1) parts
count, (2) ease of maintainability and implementation (fewer
parts, number of similar parts, adjustments of potentiometers,
standard values, and power usage), (3) frequency-domain
response, and (4) cost. You should address each item for each
design at least qualitatively. Attach whatever software outputs
you think will support your decision.
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Simplicity Filters
$15 each

Filters-R-US
$12 each

1 Vpk
1 kHz
0°

1 Vpk
1 kHz
0°

R5

R4

R3

R1

C3

C1

C2

V2

V2

0.01 μF

0.01 μF

–

+

0.01 μF

L1
1H

200 Ω

200 Ω

100 Ω

1 MΩ

U1

OPAMP_3T_VIRTUAL
R2
1 MΩ

–

+
∼

–

+
∼

FIGURE P14–70

14–71 Biquad Filter

A biquad filter has the unique properties of having the ability
to alter the filter’s parameters, namely, gain K, quality factor
Q, and resonant frequency ω0. This is done in each case by sim-
ply adjusting one of the circuit’s resistors. Furthermore, adjust-
ing any of the three parameters leaves the others unchanged.
Analyze the biquad circuit in Figure P14–71 and determine
which resistors influence each parameter. Explain how you
can adjust three resistors in a specific order to set all three
parameters.

R2

R5

R5R4R1

R3

C1

C2

+

v1(t) +

v2(t)

–
+ +

–+
–

FIGURE P14–71

14–72 Crystal Filters

Although not an active filter, crystal (Quartz) filters are very
high-Q filters. Some can have Q’s approaching 100,000. High
Q means high selectivity; hence, crystal filters are used exten-
sively in communications where fine-tuning is essential. In its
simplest form, a quartz crystal is a rectangular cut crystal with
metal plates attached to its flattest sides—imagine a parallel-
plate capacitor with the crystal as the dielectric. An electronic
equivalent of a quartz filter is shown in Figure P14–72. CO is
called the shunt capacitance, andC1,L1, andR1 are themechan-
ical capacitance, inductance, and resistanceof the crystal, respec-
tively. A particular crystal has CO = 1.2 pF, C1 = 2.3 fF, L1 = 6.2
mH, and R1 = 32 Ω. Assume RL = 10 Ω. Analyze this filter and
determine itsQ and ω0. Use MATLAB or Multisim to examine
this circuit and help calculate the requested parameters.

R1
RLL1C1

Circuit symbol Equivalent circuit

CO

v1(t) v2(t)
+

–

+
–

FIGURE P14–72
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C H A P T E R 15 MUTUAL INDUCTANCE
AND TRANSFORMERS

From the foregoing facts, it appears that a current of electricity is produced, for an instant, in a helix of copper wire surrounding a piece of
soft iron whenever magnetism is induced in the iron; also that an instantaneous current in one or the other direction accompanies every
change in the magnetic intensity of the iron.

Joseph Henry, 1831,
American Physicist

Some History Behind This Chapter
The discovery of electromagnetic induction led Michael Far-
aday to wind two separate insulated wires around an iron
ring. One winding was connected to a battery via a switch
and the other to a galvanometer. He observed that the current
in the first winding did indeed induce a current in the second,
but only when the switch was opened or closed. From this he
correctly deduced that it was the change in current that pro-
duced the inductive effect. Faraday’s coils and iron ring were
actually a crude transformer. Practical ac power transformers
were perfected by the British engineers Lucien Gauland and
Josiah Gibbs in the early 1880s.

Why This Chapter Is Important Today
Coupled coils are found in applications such as power sys-
tems, communications, and high-quality audio. In this chap-
ter you will learn how to model the magnetic coupling
between coils using the concept of mutual inductance. This
concept leads to a new circuit element called a transformer,
which provides impedance matching, electrical isolation,
and changes in the voltage level in power systems. The large
power transformers used in such systems are very efficient,
with internal losses often less than 1%.

Chapter Sections
15–1 Coupled Inductors
15–2 The Dot Convention
15–3 Energy Analysis
15–4 The Ideal Transformer
15–5 Linear Transformers

Chapter Learning Objectives
15-1 Mutual Inductance (Sects. 15–1, 15–2, and 15–3)

Given the current through or voltage across two coupled
inductors, find other currents or voltages.

15-2 The Ideal Transformer (Sect. 15–4)

Given a circuit containing ideal transformers:
(a) Find specified voltages, currents, powers, and equiv-

alent circuits.
(b) Select the turns ratio to meet prescribed conditions.

15-3 Linear Transformers (Sect. 15–5)

Given a linear circuit with a transformer operating in the
sinusoidal steady-state, find phasor voltages and cur-
rents, average powers, and equivalent impedances.
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15–1 C O U P L E D I N D U C T O R S
The i−υ characteristic of the inductor results from the magnetic field produced by
current through a coil of wire. A constant current produces a constant magnetic field
that forms closed loops of magnetic flux lines in the vicinity of the inductor.
A changing current causes these closed loops to expand or contract, thereby “cut-
ting” the turns in the winding that makes up the inductor. Faraday’s law states that
voltage across the inductor is equal to the time rate of change of the total flux linkage.
In earlier chapters, we expressed this relationship between a time-varying current
and an induced voltage in terms of a circuit parameter called inductance L.

Now suppose that a second inductor is brought close to the first so that the flux
from the first inductor links with the turns of the second inductor. If the current in
the first inductor is changing, then this flux linkage will generate a voltage in the sec-
ond inductor. The magnetic coupling between the changing current in one inductor
and the voltage generated in a second inductor produces mutual inductance.

I − υ C H A R A C T E R I S T I C S

The i−υ characteristics of coupled inductors unavoidably involve describing the
effects observed in one inductor due to causes occurring in the other. We will use
a double-subscript notation because it clearly identifies the various cause-and-effect
relationships. The first subscript indicates the inductor in which the effect takes place,
and the second identifies the inductor in which the cause occurs. For example, υ12ðtÞ is
the voltage across inductor 1 due to causes occurring in inductor 2, whereas υ11ðtÞ is
the voltage across inductor 1 due to causes occurring in inductor 1 itself.

We begin by assuming that the inductors are far apart, as shown in Figure 15–1(a).
Under these circumstances, there is nomagnetic coupling between the two. A current
i1ðtÞ passes through theN1 turns of the first inductor and i2ðtÞ throughN2 turns in the
second. Each inductor produces a flux

ϕ1 tð Þ= k1N1i1 tð Þ
Inductor 1

ϕ2 tð Þ= k2N2i2 tð Þ
Inductor 2

(15–1)

where k1 and k2 are proportionality constants. The flux linkage in each inductor is
proportional to the number of turns:

λ11ðtÞ=N1ϕ1ðtÞ
Inductor 1

λ22ðtÞ=N2ϕ2ðtÞ
Inductor 2

(15–2)

By Faraday’s law, the voltage across an inductor is equal to the time rate of change of
the flux linkage. Using Eqs. (15–1) and (15–2) together with the relationship between
voltage and time rate of change of flux linkage gives

Inductor 1: υ11 tð Þ= dλ11 tð Þ
dt

=N1
dϕ1 tð Þ
dt

= k1N2
1

� �di1 tð Þ
dt

Inductor 2: υ22 tð Þ= dλ22 tð Þ
dt

=N2
dϕ2 tð Þ
dt

= k2N2
2

� �di2 tð Þ
dt

(15–3)

Equation (15–3) provides the i−υ relationships for the inductors when there is no
mutual coupling. These results are the same as previously found in Chapter 6.

Now suppose that the inductors are brought close together so that part of the flux
produced by each inductor intercepts the other, as indicated in Figure 15–1(b). That
is, part (but not necessarily all) of the fluxes ϕ1ðtÞ and ϕ2ðtÞ in Eq. (15–1) intercept
the opposite inductor. We describe the cross coupling using the double-subscript
notation:

ϕ12ðtÞ= k12N2i2ðtÞ
Inductor 1

ϕ21ðtÞ= k21N1i1ðtÞ
Inductor 2

(15–4)

−

+

v2(t)

i2(t)

N2

−

+

v1(t)

i1(t)

N1
(a)

−

+

v2(t)

i2(t)

N2

−

+

v1(t)

i1(t)

N1

(b)

FIGURE 15–1 (a) Inductors
separated, only self-inductance
present. (b) Inductors coupled,
both self- and mutual inductance
present.
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The quantity ϕ12ðtÞ is the flux intercepting inductor 1 due to the current in inductor 2,
and ϕ21ðtÞ is the flux intercepting inductor 2 due to the current in inductor 1. The total
flux linkage in each inductor is proportional to the number of turns:

λ12ðtÞ=N1ϕ12ðtÞ
Inductor 1

λ21ðtÞ=N2ϕ21ðtÞ
Inductor 2

(15–5)

By Faraday’s law, the voltage across a winding is equal to the time rate of change of
the flux linkage. Using Eqs. (15–4) and (15–5) together with derivative relationship,
the time rate of change of flux linkages and voltages gives

Inductor 1: υ12 tð Þ= dλ12 tð Þ
dt

=N1
dϕ12 tð Þ

dt
= k12N1N2½ �di2 tð Þ

dt

Inductor 2: υ21 tð Þ= dλ21 tð Þ
dt

=N2
dϕ21 tð Þ

dt
= k21N1N2½ �di1 tð Þ

dt

(15–6)

The expressions in Eq. (15–6) are the i−υ relationships describing the cross coupling
between inductors when there is mutual coupling.

When themagnetic medium supporting the fluxes is linear, the superposition prin-
ciple applies, and the total voltage across the inductors is the sum of the results in
Eqs. (15–3) and (15–6):

Inductor 1: υ1 tð Þ= υ11 tð Þ+ υ12 tð Þ= k1N2
1

� �di1 tð Þ
dt

+ k12N1N2½ �di2 tð Þ
dt

Inductor 2: υ2 tð Þ= υ21 tð Þ+ υ22 tð Þ= k21N1N2½ �di1 tð Þ
dt

+ k2N2
2

� �di2 tð Þ
dt

(15–7)

We can identify four inductance parameters in these equations:

L1 = k1N2
1 L2 = k2N2

2 (15–8)

and
M12 = k12N1N2 M21 = k21N1N2 (15–9)

The two inductance parameters in Eq. (15–8) are the self-inductance of the inductors.
The two parameters in Eq. (15–9) are themutual inductances between the two induc-
tors. In a linear magnetic medium, k12 = k21 = kM. As a result, we can define a single
mutual inductance parameter M as

M =M12 =M21 = kMN1N2 (15–10)

Using the definitions in Eqs. (15–8) and (15–10), the i−υ characteristics of two
coupled inductors are

Inductor 1: υ1 tð Þ=L1
di1 tð Þ
dt

+M
di2 tð Þ
dt

Inductor 1: υ2 tð Þ=M
di1 tð Þ
dt

+L2
di2 tð Þ
dt

(15–11)

Coupled inductors involve three inductance parameters, the two self-inductances L1

and L2 and the mutual inductance M.
The preceding development assumes that the cross coupling is additive. Additive

coupling means that a positive rate of change of current in inductor 2 induces a
positive voltage in inductor 1, and vice versa. The additive assumption produces
the positive sign on the mutual inductance terms in Eq. (15–11). Unhappily, it is pos-
sible for a positive rate of change of current in one inductor to induce a negative volt-
age in the other. To account for additive and subtractive coupling, the general form of
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the coupled inductor i−υ characteristics includes a � sign on the mutual induc-
tance terms:

Inductor 1: υ1 tð Þ=L1
di1 tð Þ
dt

�M
di2 tð Þ
dt

Inductor 1: υ2 tð Þ= �M
di1 tð Þ
dt

+L2
di2 tð Þ
dt

(15–12)

When applying these element equations, it is necessary to know when to use a plus
sign and when to use a minus sign.

15–2 T H E D O T C O N V E N T I O N
The parameterM is positive, so the question is.What sign should be placed in front of
this positive parameter in the i−υ relationships in Eq. (15–12)? The correct sign
depends on two things: (1) the spatial orientation of the two windings and (2) the
reference marks given to the currents and voltages.

Figure 15–2 shows the additive and subtractive spatial orientation of two coupled
inductors. In either case, the direction of the flux produced by a current is found using
the right-hand rule treated in physics courses. In the additive case, currents i1 and i2
both produce clockwise fluxes ϕ1 andϕ2. In the subtractive case, the currents produce
opposing fluxes because ϕ1 is clockwise and ϕ2 is counterclockwise. The sign for the
mutual inductance term is positive for the additive orientation and negative for the
subtractive case.

In general, it is awkward to show the spatial features of the windings in circuit dia-
grams. The dots shown near one terminal of each winding in Figure 15–2 are special
reference marks indicating the relative orientation of the windings. The reference
directions for the currents and voltages are arbitrary. They can be changed as long
as we follow the passive sign convention. However, the dots indicate physical attri-
butes of the windings that make up the coupled inductors. They are not arbitrary.
They cannot be changed.

The correct sign for the mutual inductance term hinges on how the reference marks
for currents and voltages are assigned relative to the dots. For a given winding orien-
tation, Figure 15–3 shows all four possible current and voltage reference assignments
under the passive sign convention. In cases A and B, the fluxes are additive, so the
mutual inductance term is positive. In cases C and D, the fluxes are subtractive and
themutual inductance term isnegative. From these results,wederive the following rule:

Mutual inductance is additive when both current reference directions point
toward or both point away from dotted terminals; otherwise, it is subtractive.

Because the current reference directions can be changed, a corollary of this rule is
that we can always assign reference directions so that the positive sign applies to the
mutual inductance. This corollary is important because a positive sign is built into the
mutual inductance models in circuit analysis programs like Multisim.

The following examples and exercises illustrate selecting the correct sign and
applying the i−υ characteristics in Eq. (15–12).

E X A M P L E 1 5–1

For the coupled inductors in Figure 15–4:

(a) Write the i−υ characteristics using the reference marks shown in the figure.
(b) For υSðtÞ= 200 sin 400t V, find υ2ðtÞwhen the output terminals are open-circuited

ði2 = 0Þ.

+

−

i1(t)

v1(t)

N1

i2(t)

v2(t)

+

−

N2

i1(t) i2(t)ϕ1

ϕ2

+

−

i1(t)

v1(t)

N1

i2(t)

v2(t)

+

−

N2

i1(t) i2(t)ϕ1 ϕ2

(a) Additive

(b) Subtractive

FIGURE 15–2 Winding
orientations and corresponding
reference dots.

i1(t) i2(t)ϕ1

ϕ2

+

−
v1(t)

+

−
v2(t)

ϕ2

ϕ1

+
v1(t) v2(t)
−

+

−

i1(t) i2(t)

Case A

Case B

FIGURE 15–3 All possible
current and voltage reference
marks for a fixed winding
orientation.
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SOLUTION:
(a) The two current references directions both point toward the dotted terminals.

Therefore, the mutual inductance is additive and the i−υ equations are

υ1 tð Þ=L1
di1 tð Þ
dt

+M
di2 tð Þ
dt

= 10−2di1 tð Þ
dt

+ 2× 10−3di2 tð Þ
dt

υ2 tð Þ=M
di1 tð Þ
dt

+L2
di2 tð Þ
dt

= 2× 10−3di1 tð Þ
dt

+ 10−2di2 tð Þ
dt

(b) For υ1 tð Þ= υS tð Þ= 200 sin 400t and i2 tð Þ= 0, these equations reduce to

200 sin 400t = 10−2di1 tð Þ
dt

υ2 tð Þ= 2× 10−3di1 tð Þ
dt

Solving the first equation for di1ðtÞ=dt yields
di1 tð Þ
dt

= 20;000 sin 400t

Substituting this result in the second equation produces

υ2 tð Þ= 2× 10−3 20;000 sin 400tð Þ= 40 sin 400t V
■

E x e r c i s e 15–1
In Figure 15–4, i1 tð Þ= −20 cos 8000tmAand i2 tð Þ= 0. Find υ1ðtÞ and υ2ðtÞ.
A n s w e r s: υ1ðtÞ= 1:6 sin 8000tV; υ2ðtÞ= 0:32 sin 8000tV

E X A M P L E 1 5–2

For the coupled inductors in Figure 15–5:

(a) Write the i− υ characteristics using the reference marks shown in the figure.
(b) For iSðtÞ= 2cos500tA, find υ1ðtÞ and i2ðtÞ when the output terminals are short-

circuited ðυ2 = 0Þ.

SOLUTION:
(a) The i1ðtÞ reference points toward and the i2ðtÞ reference points away from

the dotted terminals, so the mutual inductance is subtractive and the i−υ
equations are

υ1 tð Þ=L1
di1 tð Þ
dt

−M
di2 tð Þ
dt

= 5× 10−2di1 tð Þ
dt

− 6× 10−2di2 tð Þ
dt

υ2 tð Þ= −M
di1 tð Þ
dt

+L2
di2 tð Þ
dt

= −6× 10−2di1 tð Þ
dt

+ 7:5 × 10−2di2 tð Þ
dt

(b) For i1ðtÞ= iSðtÞ= 2 cos 500t and υ2ðtÞ= 0, these equations reduce to

υ1 tð Þ= 5× 10−2 d 2 cos 500tð Þ
dt

−6 × 10−2di2 tð Þ
dt

0= −6 × 10−2 d 2 cos 500tð Þ
dt

+ 7:5× 10−2di2 tð Þ
dt

+

−

i1(t)

v1(t)
L1

i2(t)

v2(t)

+

−

L1 = L2 = 10 mH
M = 2 mH

L2

M

vS(t) +
−

FIGURE 15–4

i1(t) ϕ1 ϕ2
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−
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+
v2(t)

ϕ2ϕ1

+
v1(t) v2(t)
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−

i1(t)

−
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FIGURE 15–3 (Continued)
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−
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−

L1 = 50 mH, L2 = 75 mH,  M = 60 mH

L2

M
i1(t)

iS(t)

FIGURE 15–5
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Solving the second equation for di2=dt yields

di2 tð Þ
dt

= 0:8
d 2 cos 500tð Þ

dt

or

i2 tð Þ= 1:6 cos 500tA

Substituting this result in the first equation produces

υ1 tð Þ = 5× 10−2 d 2 cos 500tð Þ
dt

−6 × 10−2 d 1:6 cos 500tð Þ
dt

= −2 sin 500t V
■

E x e r c i s e 15–2
Find υ1ðtÞ and υ2ðtÞ for the circuit in Figure 15–6.

A n s w e r: υ1 tð Þ= −10 sin 104t−3 cos 5 × 103t V

υ2 tð Þ= −15 sin 104t−5 cos 5 × 103t V

15–3 E N E R G Y A N A L Y S I S

Calculating the total energy stored in a pair of coupled inductors reveals a
fundamental limitation on allowable values of the self- and mutual inductances.
To uncover this limitation, we first calculate the total power absorbed. Multi-
plying the first equation in Eq. (15–12) by i1ðtÞ and the second equation by i2ðtÞ
produces

p1 tð Þ= υ1 tð Þi1 tð Þ=L1i1 tð Þ di1 tð Þ
dt

�Mi1 tð Þ di2 tð Þ
dt

p2 tð Þ= υ2 tð Þi2 tð Þ= �Mi2 tð Þ di1 tð Þ
dt

+L2i2 tð Þ di2 tð Þ
dt

(15–13)

The quantities p1ðtÞ and p2ðtÞ are the powers absorbed with inductors 1 and 2. The
total power is the sum of the individual inductor powers:

p tð Þ= p1 tð Þ+ p2 tð Þ

=L1 i1 tð Þdi1 tð Þ
dt

� �
�M i1 tð Þdi2 tð Þ

dt
+ i2 tð Þdi1 tð Þ

dt

� �
+L2 i2 tð Þdi2 tð Þ

dt

� �
(15–14)

Each of the bracketed terms in Eq. (15–14) is a perfect derivative. Specifically,

i1 tð Þdi1 tð Þ
dt

=
1
2
di21 tð Þ
dt

i2 tð Þdi2 tð Þ
dt

=
1
2
di22 tð Þ
dt

i1 tð Þdi2 tð Þ
dt

+ i2 tð Þdi1 tð Þ
dt

=
di1 tð Þi2 tð Þ

dt

(15–15)

+

−

v1(t)
L1

i2(t)

v2(t)

+

−

L1 = 0.2 mH, L2 = 0.5 mH
M = 0.3 mH

L2

M
i1(t)

5 cos 10,000t A 2 sin 5000t A

FIGURE 15–6
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Therefore, the total power in Eq. (15–14) is

p tð Þ= d
dt

1
2
L1i21 tð Þ�M i1 tð Þi2 tð Þ+ 1

2
L2i22 tð Þ

� �
(15–16)

Because power is the time rate of change of energy, the quantity inside the brackets in
Eq. (15–16) is the total energy stored in the two inductors. That is,

w tð Þ= 1
2
L1i21 tð Þ�M i1 tð Þi2 tð Þ+ 1

2
L2i22 tð Þ (15–17)

In Eq. (15–17), the self-inductance terms are always positive. However, the mutual
inductance term can be either positive or negative. At first glance, it appears that the
total energy could be negative. But the total energy must be positive; otherwise, the
coupled inductors could deliver net energy to the rest of the circuit.

The condition wðtÞ≥ 0 places a constraint on the values of the self- and mutual
inductances. First, if i2ðtÞ= 0, then wðtÞ≥ 0 in Eq. (15–17) requires L1 > 0. Next, if
i1ðtÞ= 0, then wðtÞ≥ 0 in Eq. (15–17) requires L2 > 0. Finally, if i1ðtÞ 6¼ 0 and
i2ðtÞ 6¼ 0, then we divide Eq. (15–17) by ½i2ðtÞ�2 and define a variable x= i1=i2. With
these changes, the energy constraint wðtÞ> 0 becomes

w tð Þ
i22 tð Þ = f xð Þ= 1

2
L1x2�Mx+

1
2
L2 ≥ 0 (15–18)

The minimum value of f ðxÞ occurs when
df xð Þ
dx

=L1x�M = 0 hence xmin = �M
L1

(15–19)

The value xmin yields the minimum of f ðxÞ because the second derivative of f ðxÞ is
positive. Substituting xmin back into Eq. (15–18) yields the condition

f xminð Þ= 1
2
L1

M2

L2
1

−
M2

L1
+
1
2
L2 =

1
2

−
M2

L1
+L2

� �
≥ 0 (15–20)

The constraint in Eq. (15–20) means that the stored energy in a pair of coupled induc-
tors is positive if

L1L2 ≥M2 (15–21)

Energy considerations dictate that in any pair of coupled inductors, the product of the
self-inductances must exceed the square of the mutual inductance.

The constraint in Eq. (15–21) is usually written in terms of a new parameter called
the coupling coefficient k. Note: This “k” is not the proportionality constants ks intro-
duced in Eq. (5–1) and (5–4). Those ks are an integral part of the Ls and M.

k=
Mffiffiffiffiffiffiffiffiffiffiffi
L1L2

p ≤ 1 (15–22)

The parameter k ranges from 0 to 1. IfM = 0, then k= 0 and the coupling between the
inductors is zero. The condition k= 1 requires perfect coupling in which all of the flux
produced by one inductor links the other. Perfect coupling is physically impossible,
although careful design can produce coupling coefficients of 0.99 and higher.

E X A M P L E 1 5–3

A pair of coupled inductors have self-inductances L1 = 2:5 H, L2 = 1:6H, and a cou-
pling coefficient of k= 0:8 . When the terminals of L2 are short-circuited υ2 tð Þ= 0ð Þ
the short-circuit current is observed to be i2 tð Þ= −50 sin 2000tð ÞmA. Find the input
voltage υ1 tð Þ for additive coupling.
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SOLUTION:
The given self-inductances and coupling coefficient yield the mutual inductance as

M = k
ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
= 0:8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:5 × 1:6

p
= 1:6 H

For additive coupling, the i−υ equations are

υ1 tð Þ = L1
di1 tð Þ
dt

+M
di2 tð Þ
dt

= 2:5
di1 tð Þ
dt

+ 1:6
di2 tð Þ
dt

υ2 tð Þ = M
di1 tð Þ
dt

+L2
di2 tð Þ
dt

= 1:6
di1 tð Þ
dt

+ 1:6
di2 tð Þ
dt

For υ2 tð Þ= 0 and i2 tð Þ= −50 × 10−3sin 2000t, these equations reduce to

υ1 tð Þ = 2:5
di1 tð Þ
dt

+ 1:6
d −50 × 10−3sin 2000t
� �

dt

0 = 1:6
di1 tð Þ
dt

+ 1:6
d −50 × 10−3sin 2000t
� �

dt

Solving the second equation for di1 tð Þ=dt yields
di1 tð Þ
dt

= −
d −50 × 10−3sin 2000t
� �

dt
= 100 cos 2000t

Substituting this result into the first equation produces

υ1 tð Þ= 2:5 100 cos 2000t½ �+ 1:6 −100 cos 2000t½ �= 90 cos 2000tV ■

E x e r c i s e 15–3
A pair of coupled inductors have self-inductances L1 = 4:5 mH and L2 = 8 mH. What is the
maximum possible mutual inductance?

A n s w e r: M = 6mH

15–4 T H E I D E A L T R A N S F O R M E R

A transformer is an electrical device that utilizes magnetic coupling between two
inductors. Transformers find application in virtually every type of electrical system,
but especially in power supplies and commercial power grids. Some example devices
from these applications are shown in Figure 15–7.

In Figure 15–8, the transformer is shown as an interface device between a source
and a load. The winding connected to the source is called the primary winding, and
the one connected to the load is called the secondary winding. In most applications,
the transformer is a coupling device that transfers signals (especially power) from the
source to the load. The basic purpose of the device is to change voltage and current
levels so that the conditions at the source and load are compatible.

Transformer design involves two primary goals: (1) to maximize the magnetic cou-
pling between the two windings and (2) to minimize the power loss in the windings.
The first goal produces nearly perfect coupling k≈1ð Þ so that almost all of the flux in
one winding links the other. The second goal produces nearly zero power loss so that
almost all of the power delivered to the primary winding transfers to the load. The
ideal transformer is a circuit element in which coupled inductors are assumed to have
perfect coupling and zero power loss. Using these two idealizations, we can derive the
i−υ characteristics of an ideal transformer.

(a)

(b)

(c)

(d)
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FIGURE 15–7 Examples of
transformer devices.
(a) Powerline step-down.
(b) Iron core. (c) Toroidal.
(d) Surface mount.
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P E R F E C T C O U P L I N G

Perfect coupling means that all of the flux in the first winding links the second, and
vice versa. Equation (15–1) defines the total flux in each winding as

Winding 1 Winding 2
ϕ1 tð Þ= k1N1i1 tð Þ ϕ2 tð Þ= k2N2i2 tð Þ (15–23)

where k1 and k2 are proportionality constants. Equation (15–4) defines the cross cou-
pling using the double subscript notation:

Winding 1 Winding 2
ϕ12 tð Þ= k12N2i2 tð Þ ϕ21 tð Þ= k21N1i1 tð Þ (15–24)

In this equation, ϕ21 tð Þ is the flux intercepting winding 1 due to the current in winding
2, and ϕ21 tð Þ is the flux intercepting winding 2 due to the current in winding 1. Perfect
coupling means that

ϕ21 tð Þ=ϕ1 tð Þ and ϕ12 tð Þ=ϕ2 tð Þ (15–25)

Comparing Eqs. (15–23) and (15–24) shows that perfect coupling requires k1 = k21
and k2 = k12. But in a linear magnetic medium k12 = k21 = kM, so perfect coupling
implies

k1 = k2 = k12 = k21 = kM (15–26)

Substituting the perfect coupling conditions in Eq. (15–26) into the i−υ characteristics
in Eq. (15–7) gives

υ1 tð Þ = kMN2
1

� �di1 tð Þ
dt

� kMN1N2½ �di2 tð Þ
dt

υ2 tð Þ = � kMN1N2½ �di1 tð Þ
dt

+ kMN2
2

� �di2 tð Þ
dt

(15–27)

Factoring N1 out of the first equation and �N2 out of the second produces

υ1 tð Þ = N1 kMN1½ �di1 tð Þ
dt

� kMN2½ �di2 tð Þ
dt

� �

υ2 tð Þ = �N2 kMN1½ �di1 tð Þ
dt

� kMN2½ �di2 tð Þ
dt

� � (15–28)

Dividing the second equation by the first shows that perfect coupling implies

υ2 tð Þ
υ1 tð Þ = �N2

N1
= �n (15–29)

where the plus sign applies for additive mutual inductance and the minus sign for
subtractive.

The parameter n in Eq. (15–29) is called the turns ratio. When n> 1 the secondary
voltage is larger than the primary voltage and the device is called a step-up trans-
former. Conversely, when n< 1, the primary voltage is larger than the secondary volt-
age and the device is called a step-down transformer. The ability to increase or
decrease ac voltages is a dominant feature and application of transformers. In com-
mercial power systems ac voltages are stepped up to several hundred kilovolts for
transmission and then stepped down to safer levels for use by customers.

+

−

v1(t)
N1

i2(t)

v2(t)

+

−N2

M
i1(t)

+
−

RS

RL

Primary Secondary

vS(t)

FIGURE 15–8 Transformer
connected at a source-load
interface.
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E X A M P L E 1 5–4

A transformer with perfect coupling has N1 = 250 turns and N2 = 25 turns. The volt-
age across the primary winding is υ1 tð Þ= 120 sin 377t V, and a resistive loadRL = 50Ω
is connected across the secondary winding. Find the current, voltage, and average
power delivered to the load. Assume additive coupling. Validate the solution using
Multisim.

SOLUTION:
For additive coupling Eq. (15–29) gives

υ2 tð Þ= N2

N1
υ1 tð Þ= 120

10
sin 377t

= 12 sin 377t V

The current delivered to the load across the secondary is

iL tð Þ= υ2 tð Þ
RL

=
12
50

sin 377t

= 0:24 sin 377tA

and the average power delivered to the load is

P=
1
2
0:24ð Þ2 × 50 = 1:44W

Use the Multisim transformer as shown in Figure 15–9. Click on the transformer and
enter the turns for each coil. For negative coupling, change the sign on the output
turns. Use the “Single frequency AC analysis” to haveMultisim calculate the desired
parameters. Grapher View returns the results shown in Figure 15–9. These are the
same as found by hand.

■

E x e r c i s e 15–4
For a transformer with perfect coupling, find the secondary voltage υ2 tð Þ when the primary
voltage is υ1 tð Þ= 50 cos 3000t V, n= 50, and the mutual inductance is subtractive. Validate
your answer using Multisim.

A n s w e r: υ2 tð Þ= −2500 cos 3000t V

The Multisim circuit and results are shown in Figure 15–10 and they validate the
calculations.

Example 15–4
Single Frequency AC Analysis @ 60 Hz

Variable Frequency (Hz) Magnitude Phase (deg)

1 60 12.00 0.00

2 P(R1) 60 1.44 0.00

3 I(R1) 60 240.00 m 0.00

V(1)-V(2)

120 Vpk
60 Hz
0°

V1 1

2
250:25

T1
R1
50 Ω

+

−

FIGURE 15–9

Exercise 15–4
Single Frequency AC Analysis @ 477.5 Hz

Variable Frequency (Hz) Magnitude Phase (deg)

1 V(1)-V(2) 477.5 2.500k 180

50 Vpk
477.5 Hz
0°

V1
1

2

5:‒250

T1

+

−

FIGURE 15–10
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Z E R O P O W E R L O S S

The ideal transformer model also assumes that there is no power loss in the trans-
former. With the passive sign convention, the quantity υ1 tð Þi1 tð Þ is the power in
the primary winding and υ2 tð Þi2 tð Þ is the power in the secondary winding. Zero power
loss requires

υ1 tð Þi1 tð Þ+ υ2 tð Þi2 tð Þ= 0 (15–30)

This equation states that whatever power enters the transformer on one winding
immediately leaves via the other winding. This not only means that there is no energy
lost in the ideal transformer but also that there is no energy stored within the element.
The zero-power-loss constraint can be rearranged as

i2 tð Þ
i1 tð Þ = −

υ1 tð Þ
υ2 tð Þ (15–31)

But under the perfect coupling assumption, υ2 tð Þ=υ1 tð Þ= �n. With zero power loss
and perfect coupling, the primary and secondary currents are related as

i2 tð Þ
i1 tð Þ = � 1

n
(15–32)

The correct sign in this equation depends on the orientation of the current reference
directions relative to the dots describing the transformer structure.

With both perfect coupling and zero power loss, the secondary current is inversely
proportional to the turns ratio. A step-up transformer n> 1ð Þ increases the voltage
and decreases the current, which improves transmission line efficiency because the
i2R losses in the conductors are smaller.

i − υ C H A R A C T E R I S T I C S

Equations (15–29) and (15–32) define the i−υ characteristics of the ideal transformer
circuit element.

υ2 tð Þ= �nυ1 tð Þ

i2 tð Þ= � 1
n
i1 tð Þ

(15–33)

Rules for selecting the correct sign in these equations are discussed below.
Equation (15–33) applies to time-varying signals since only the changes in one

coupled inductor have any effect on the other. Transformers do not pass constant
voltages or currents since coupled inductors act like short circuits to dc signals.
The sinusoid is the most common time-varying signal of interest. For the purpose of
ac circuit analysis, it is convenient to convert Eq. (15–33) into the phasor domain as

V2 = �nV1

I2 = �1
n
I1

(15–34)

These equations are based on the passive sign convention. Under this convention, the
rules for selecting the signs in these equations are

When the reference directions for the currents are both toward or both away from
the dotted terminals, then V2 = + nV1 and I2 = −I1=n; otherwise V2 = −nV1
and I2 = + I1=n.

Figure 15–11 shows the circuit symbol for the ideal transformer and several exam-
ples of the application of these rules. When using these rules remember that the dots

+

−

V1 V2

I1 I2

Ideal
−

+

−

+
1:n

V2 =  nV1, I2 = − I1 ⁄n

V1 V2

I1 I2

Ideal

−

+

1:n

V2 = −nV1, I2 = I1 ⁄n

V1 V2

I1 I2

Ideal
−

+−

+

1:n

V2 =  −nV1, I2 = I1 ⁄n

V1 V2

I1 I2

Ideal

−

++

−
1:n

V2 =  nV1, I2 = − I1 ⁄n

FIGURE 15–11
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represent physical features of a transformer; they are part of the circuit symbol and
cannot be changed. The reference directions for the currents and voltages can be
changed as long as the assignment follows the passive convention. This means that
the current reference directions can always be assigned so that both are toward a
dotted terminal.

In the typical application shown in Figure 15–12, an ac source is
connected across the primary (input) side of the transformer and a
load ZL across the secondary (output) side. An important feature of
this arrangement is that the transformer input impedance ZIN is
related to the load impedanceZL on the output. On the primary side
we have

ZIN =
V1

I1

On the secondary side, the reference marks for ZL do not follow the
passive sign convention, so

ZL =
V2

−I2

The current reference directions in Figure 15–12 are both toward dotted terminals, so
according to our rule for selecting signs V2 = + nV1 and I2 = −I1=n. Hence

ZL =
V2

−I2
=

nV1

− −I1=nð Þ = n2
V1

I1
= n2ZIN

Therefore, the transformer input impedance is

ZIN =
ZL

n2
(15–35)

Thus, Eq. (15–33) or (15–34) shows how an ideal transformer changes the voltage
and current levels, while Eq. (15–35) shows how the impedance level is changed.
Taken together, these equations allow us to analyze ac circuits containing ideal
transformers.

E X A M P L E 1 5–5

The turns ratio of the ideal transformer in Figure 15–12 is n= 5. The source and load
impedance are ZS = 2:5+ j1:5Ω andZL = 75 + j10Ω. Find I1, V1, I2, and V2 when the
input is VS = 220 ff 0� V.

SOLUTION:
Using Eq. (15–35), the transformer input impedance is

ZIN =
ZL

n2
=
75 + j10

25
= 3+ j0:4Ω

The impedance seen by the voltage source is ZS +ZIN; hence

I1 =
VS

ZS +ZIN
=

220ff0�
5:5 + j1:9

=
220ff0�

5:82ff19:1� = 37:8ff −19:1� A

The voltage on the primary side is

V1 = I1 ZIN = 37:8ff19:1�ð Þ 3:03ff7:6�ð Þ= 114ff −11:5� V

+

−

V1

I1

+

−

V2

I2

+
−

ZS

VS

ZIN

Ideal

1:n

ZL

FIGURE 15–12
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The reference directions for both I1 and I2 are toward dotted terminals, so the correct
signs in Eq. (15–34) are V2 = + nV1 and I2 = −I1=n. Hence, we get

I2 =
−I1
n

=
−37:8ff −19:1�

5
= 7:56ff160:9� A

and

V2 = nV1 = 570ff −11:5� V
■

E x e r c i s e 15–5
The turns ratio of the ideal transformer in Figure 15–12 is n= 1=4 and the source and load
impedances are ZS = 50 + j0Ω and ZL = 50− j2Ω. Find the impedance seen by the voltage
source.

A n s w e r: ZS +ZIN = 130− j32Ω

A P P L I C A T I O N D E S I G N E X A M P L E 1 5–6

Electric power is generated by a power plant and transmitted to a distribution station
using very high voltage power lines to significantly reduce power line i2R losses. From
the distribution station, the electricity is reduced to lower, but still high, voltages for
final distribution to commercial and residential users. A new home is being con-
structed that requires a 240-V rmsð Þ voltage supply with a 200-A rmsð Þ maximum
service to the home power distribution panel. The local power arriving from the dis-
tribution station is at 13:8 kV rmsð Þ with an effective series line resistance of 5Ω. It is
necessary to design a step-down transformer to provide the necessary power. Deter-
mine the equivalent minimum home-load resistance that will ensure that the maxi-
mum current is not exceeded. Validate the design using Multisim.

SOLUTION:
We can find the load resistance under maximum current conditions.
The secondary of the transformer must output 240 V rmsð Þ. At I2 =
−IL = −200 A rmsð Þ the equivalent resistance is RL = V2=IL = 240=
200 = 1:2Ω. The next task is to find the turns ratio n. Figure 15–13 dia-
grams the problem.

We can write a KVL around the input loop

13:8 k = 5 I1 +V1

And the output loop

V2 = −I2RL

From Eq. (15–34) V2 = nV1 and I2 = −I1=n. Substituting these into the input loop
equation yields

13:8 k = −5nI2 +
V2

n

Using the assumption of maximum output current, we can substitute directly for
V2 and I2

13:8 k= −5n −200ð Þ+ 240ð Þ
n

= 1000n+
240
n

I2

+

−

I1

+
−

RL

Ideal

13.8 kVrms

IL = 200 Arms

240 Vrms

5 Ω
1:n

+

−

V 1

FIGURE 15–13
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Expanding and solving for n

13:8 kn= 1000n2 + 240
� �

n2−13:8 n+ 0:24 = 0

n=
13:8 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−13:8ð Þ2−4 0:24ð Þ

q
2

=
13:8 ± 13:765

2
= 13:782 and 0:0174

Both values of n yield a correct solution to the quadratic equation, but only one is
practical. The first value of n = 13:782 would create a step-up transformer that
requires the voltage at the primary to be very small if the output is to be what is
desired. This, then, would require that there be a huge voltage drop across the line
and large power losses in the line, which are not physically realizable or practical.
Only the second value of n = 0:0174, or a turns ratio of 1 : 0:0174, which could be bet-
ter written as 57:43 : 1, is realizable. This is a step-down transformer and is the desired
solution. To clearly demonstrate the issue, both solutions were simulated usingMulti-
sim. The results are shown in Figure 15–14 with the problem, the voltage across R4,
highlighted. While both solutions produce the correctV2 and I2 values, only the solu-
tion with n = 0:0174 produced a practical one.

■

D E S I G N E X A M P L E 1 5–7

Since a transformer changes impedance levels, it can be used to match a source and
load to achieve maximum power transfer. Figure 15–15 shows a circuit model of an
audio amplifier with an output impedance of 600Ω feeding an 8-Ω speaker. Find the
transformer turns ratio needed to achieve maximum power transfer.

SOLUTION:
The maximum power transfer theorem states that power transfer
is maximized when the source and load resistance are equal
(matched). The purpose of the transformer is to create matched
conditions at the output of the amplifier. Using Eq. (15–35), the
input resistance on the primary side of the transformer is

RIN =
RL

n2
=

8
n2

To achieve matched conditions we need RIN = 600 = 8=n2, which
means that the required turns ratio is n=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8=600

p
= 1=8:66. ■

Application Design Example 15–6
Single Frequency AC Analysis @ 60 Hz

n Variable
Frequency 

(Hz)
Magnitude 

Phase 

(deg)
Design Parameter

0.017413 I(R2) 60 200 A 0 Secondary current

13.783 I(R3) 60 200 A 0 Secondary current

0.017413 V(2)-V(4) 60 240 V 0 Secondary voltage

13.783 V(6)-V(7) 60 240 V 0 Secondary voltage

0.017413 V(1) 60 13,800 V 0 Primary voltage

13.783 V(5) 60 17.4 V 0 Primary voltage

0.017413 V(3)-V(1) 60 17.4 V 0 Voltage across line

13.783 60 13,800 V 0 Voltage across lineV(8)-V(5)

13.8 kVrms
60 Hz
0°

V1
R1 2

1
3

4

1:0.017413

T1

R2
1.2 Ω

5 Ω+

−

13.8 kVrms
60 Hz
0°

V2
R4 6

5
8

7

1:13.783

T2

R3
1.2 Ω

5 Ω+

−

FIGURE 15–14

+

−

v1(t)

RIN

600 Ω

Ideal

v(t)

+

−

v2(t) 8 Ω

1:n

+
−

FIGURE 15–15
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E x e r c i s e 15–6
The input impedance on the primary side of an ideal transformer is 1250Ω when the load
connected to the secondary is 50Ω. What is the transformer turns ratio?

A n s w e r: n= 1=5

A P P L I C A T I O N E X A M P L E 1 5 – 8

In a transformer, the primary and secondary windings are magnetically coupled but
are usually electrically isolated. Transformer performance in some applications can
be improved by electrically connecting the two magnetically coupled windings in a
configuration called an autotransformer. Figure 15–16 shows a two-winding ideal
transformer connected in an autotransformer step-up configuration.

The rating of the ideal transformer when connected in the usual electrically iso-
lated two-winding configuration is Prated = υ1 tð Þi1 tð Þ= −υ2 tð Þi2 tð Þ. Connected in the
autotransformer configuration in Figure 15–16, the power delivered to the load is

Pload = υ1 tð Þ+ υ2 tð Þð Þ − i2 tð Þð Þ
For an ideal transformer υ2 tð Þ= nυ1 tð Þ and i2 tð Þ= − i1 tð Þ=n, where n=N2=N1. Hence
the power delivered to the load is

Pload = υ1 tð Þ+ nυ1 tð Þð Þ i1 tð Þ=nð Þ= 1+
1
n

� �
υ1 tð Þi1 tð Þ

= 1+
1
n

� �
Prated

The autotransformer configuration delivers more power to the load than the power
rating of the two-winding transformer. Put differently, the autotransformer can sup-
ply a specified load power using a transformer with a lower power rating. Autotrans-
formers are normally used when the turns ratio is less than 3:1, so this advantage can
be significant. A disadvantage is that the electrical isolation provided by the usual
transformer configuration is lost.

15–5 L I N E A R T R A N S F O R M E R S

By far, the most common application of transformers occurs in electric power sys-
tems, where they operate in the sinusoidal steady state. In this context, we describe
transformers in terms of phasors and impedances and deal with average power trans-
fer. The ac analysis of a transformer begins with the time-domain element equations
for a pair of coupled inductors

υ1 tð Þ=L1
di1 tð Þ
dt

±M
di2 tð Þ
dt

υ2 tð Þ= ±M
di1 tð Þ
dt

+L2
di2 tð Þ
dt

Transforming these equations into the phasor domain involves replacing waveforms
by phasors using the derivative property to obtain the phasors for di1=dt and di2=dt:

V1 = jωL1I1� jωMI2

V2 = � jωMI1 + jωL2I2
(15–36)

v1(t)

+

−

Source

v2(t)

+

−
L
o
a
d

Ideal

i1(t)

i2(t)

N1

N2

+

−

FIGURE 15–16 The
autotransformer connection.
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where

1. V1 and I1 are the phasors representing ac voltage and current of the first
winding, and jωL1 is the impedance of the self-inductance of the first winding.

2. V2 and I2 are the phasors representing ac voltage and current of the second
winding, and jωL2 is the impedance of the self-inductance of the secondwinding.

3. jωM is the impedance of the mutual inductance between the two windings.

The self-inductance impedances relate phasor voltage and current at the same pair
of terminals, while the mutual inductance impedance relates the phasor voltage at
one pair of terminals to the phasor current at the other pair. The phasor-domain
equations can also be written in terms of reactances as

V1 = jX1I1� jXMI2

V2 = � jXMI1 + jX2I2

where the three reactances areX1 =ωL1,X2 =ωL2,andXM =ωM. The degree of cou-
pling between windings is indicated by the coupling coefficient, which can be written
in terms of reactances as

k=
Mffiffiffiffiffiffiffiffiffiffiffi
L1L2

p =
XMffiffiffiffiffiffiffiffiffiffiffiffi
X1X2

p

In either form, energy considerations dictate that 0≤ k≤ 1.
Figure 15–17 shows the phasor-domain version of transformer

coupling between a source and a load. Following our previous
notation, thewinding connected to the source is called theprimary,
and the winding connected to the load is called the secondary.
Although the transformer is a bilateral device, we normally think
of signal and power transfer as passing from the primary to the sec-
ondary winding.

Our immediate objective is to write circuit equations for the
transformer using the mesh currents IA and IB in Figure 15–17.
Applying KVL around the primary circuit (mesh A) and second-
ary circuit (mesh B), we obtain the following equations:

MeshA: ZSIA +V1 =VS

Mesh B: −V2 +ZLIB = 0 (15–37)

The reference directions for the inductor currents in Figure 15–17 are both into the
dotted terminals, so the mutual inductance coupling is additive and the plus signs in
Eq. (15–36) apply. Using KCL we see that the reference directions for the currents
lead to the relations I1 = IA and I2 = −IB. The I−V relationships of the coupled induc-
tors in terms of the mesh currents are

V1 = + jωL1IA + jωM −IBð Þ
V2 = + jωMIA + jωL2 −IBð Þ (15–38)

Substituting the inductor voltages from Eq. (15–38) into the KVL equations in
Eq. (15–37) yields

Mesh A: ðZS + jωL1ÞIA− jωMIB =VS

Mesh B: − jωMIA + ðZL + jωL2ÞIB = 0
(15–39)

This set of mesh equations provides a complete description of the circuit ac response.
Once we solve for the mesh currents, we can calculate every phasor voltage and cur-
rent using Kirchhoff’s laws and element equations.

+

−

V1

jωL1

I1
jωM

+

−

V2

jωL2

I2

+
−

ZS

IBVS

ZIN

Source Transformer Load

ZLIA

FIGURE 15–17 Phasor circuit model of the two-
winding transformer.
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E X A M P L E 1 5–9

The source circuit in Figure 15–17 has ZS = 0 + j20Ω andVS = 2500 ff0� V at
ω= 377 rad=s. The transformer has L1 = 2 H,L2 = 0:2H,andM = 0:6 H. The load
impedance is ZL = 25 + j15Ω. Find IA,IB,V1,V2,ZIN, and the average power deliv-
ered by the source at input interface.

SOLUTION:
The transformer impedances are

jωL1 = j377 × 2 = j754Ω

jωL2 = j377 × 0:2 = j75:4Ω

jωM = j377 × 0:6 = j226Ω

Using these impedances in Eq. (15–39) yields the following mesh equations:

Mesh A: ðj20 + j754ÞIA− j226IB = 2500 ff0�
Mesh B: − j226IA + ð25 + j15 + j75:4ÞIB = 0

The result is two linear equations in the two unknown mesh currents. Routine
analysis yields

IA = 4:393− j7:499 = 8:691 ff −59:64� A
IB = 15:0− j14:606 = 20:959 ff −44:18� A

Given the mesh currents, the winding voltages are found to be

V1 =VS−ZSIA = 2350− j87:9= 2352 ff −2:14� V
V2 =ZLIB = 594:9− j139:7= 611 ff −13:22� V

The input impedance seen by the source circuit is

ZIN =
V1

IA
=RIN + jXIN = 145:4+ j228:2Ω

The average power delivered by the source at the input interface is

PIN =
1
2
IAj j2RIN =

8:691ð Þ2
2

145:4= 5:491 kW ■

E x e r c i s e 15–7
Using the values of the mesh currents found in Example 15–9, find the average power deliv-
ered to the load ZL.

A n s w e r: 5:491 kW

The method used in the preceding example illustrates a general approach to the
analysis of transformer circuits. The steps in the method are as follows:

S T E P 1 Write KVL equations around the primary and secondary circuits using
assigned mesh currents, source voltages, and inductor voltages.

S T E P 2 Write the I–V characteristics of the coupled inductors in terms of the mesh
currents using the dot convention to determine whether the coupling is addi-
tive or subtractive.

S T E P 3 Use the I–V relationships from step 2 to eliminate the inductor voltages from
the KVL equations obtained in step 1 to obtain mesh-current equations.

The next two examples illustrate this method of formulating mesh equations.
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E X A M P L E 1 5–1 0

Find IA,IB,V1,V2, and the impedance seen by the
voltage source in Figure 15–18.

SOLUTION:

S T E P 1 The KVL equations around meshes A
and B are

Mesh A: 50− j75ð ÞIA− − j75ð ÞIB +V1 = 100 ff0�
Mesh B: − − j75ð ÞIA + 600− j75ð ÞIB−V2 = 0

S T E P 2 For the assigned reference directions, the coupling is additive. By KCL we
have I1 = IA and I2 = −IB. Hence, the element equations for the coupled induc-
tors in terms of the mesh currents are

V1 = j10IA + j20ð−IBÞ
V2 = j20IA + j100ð−IBÞ

S T E P 3 Using these equations to eliminate the inductor voltages from the KVL equa-
tions found in step 1 yields the following mesh equations:

Mesh A : ð50− j75 + j10ÞIA + ðj75− j20ÞIB = 100 ff0�
Mesh B : ðj75− j20ÞIA + ð600− j75 + j100ÞIB = 0

Solving these equations for the mesh currents produces

IA = 0:756 + j0:896 = 1:17 ff49:8� A
IB = 0:0791− j0:0726 = 0:107 ff −42:5� A

Given the mesh currents, we find the inductor voltages from the I–V relations:

V1 = j10IA− j20IB = −10:4+ j5:98 = 12:0 ff150� V
V2 = j20IA− j100IB = −25:2+ j7:21 = 26:2 ff164� V

Finally, the impedance seen by the input voltage source is

ZIN =
VS

IA
= 55:0− j65:2Ω ■

E X A M P L E 1 5–1 1

Figure 15–19 shows an ideal transformer connected as an autotransformer. Find
the voltage and average power delivered to the load ZL for VS = 500 ff0� V,
ZS = j10Ω,ZL = 50 + j0Ω,N1 = 200,andN2 = 280.

SOLUTION:
The three-step method of writing mesh equations can be used here with a modifica-
tion to the second step:

S T E P 1 The KVL equations around meshes A and B are

Mesh A: ZSIA +V1 =VS

Mesh B: −V1−V2 +ZLIB = 0

S T E P 2 For the assigned reference directions, the coupling is additive so the ideal
transformer voltages and currents are related as

V2 = nV1 and I1 = −nI2

+

−

V1

I1

+

−

V2

I2

+
−

IB

j20 Ω

j10 Ω j100 Ω

−j75 Ω

50 Ω

IA
600 Ω

100    0° V

FIGURE 15–18

V1

+

−

+

−

VS

V2

+

−

Ideal

I1

I2

N1

N2

IB

IA

ZL

ZS

FIGURE 15–19
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By KCL we have I1 = IA−IB and I2 = −IB. Hence, the ideal transformer constrains
the two mesh currents as

IA = ðn+ 1ÞIB
S T E P 3 Using these results to eliminate IA andV2 from the KVL equation in step 1

yields

Mesh A: ðn+ 1ÞZSIB +V1 =VS

Mesh B: −ðn+ 1ÞV1 +ZLIB = 0

Notice that we cannot eliminate both V1 andV2 from the KVL equations since voltage and
current are independent in an ideal transformer. Substituting the numerical values produces

MeshA : j24IB +V1 = 500 ff0�
Mesh B : −2:4V1 + 50IB= 0

Solving these equations for IB and V1 yields

IB =10:3− j11:9 = 15:7 ff −49:0� A
V1 = 215− j247 = 328 ff −49:0� A

Given the IB, we find the output quantities as

VL=ZLIB = 516− j594 = 787 ff −49:0� A

PL =
IBj j2
2

RL =
15:72

2
50 = 6:16 kW ■

E x e r c i s e 15–8
Using the results in Example 15–11, find the input impedance seen by the source in
Figure 15–19.

A n s w e r: 8:66 + j10:0Ω

E X A M P L E 1 5–1 2

The linear transformer in Figure 15–20 is in the sinusoidal steady state with
reactances of X1 = 25Ω,X2 = 16Ω,XM =18Ω, and a load impedance of
ZL = 25− j10Ω. Find V2 and I2 when VS = 100 ff0� V.

SOLUTION:
This problem can be solved without the formal use of standard mesh equations.

S T E P 1 The coupling is additive so the i−υ equations for the transformer are

V1 = jX1I1 + jXMI2 = j25I1 + j18I2

V2 = jXMI1 + jX2I2 = j18I1 + j16I2

S T E P 2 By KVL, the two coil voltages are

V1 =VS = 100

V2 =VL = −ZLI2 = ð−25 + j10ÞI2
S T E P 3 SubstitutingtheseexpressionsforV1 andV2 intothe i−υequations inSTEP1gives

100 = j25I1 + j18I2

−25 + j10ð ÞI2 = j18I1 + j16I2

VS

I1 I2

+
−

+

−

V2

+

−

V1
jX1

jXM

jX2 ZL

FIGURE 15–20
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which can be rearranged as

100 = j25I1 + j18I2

0 = j18I1 + 25 + j6ð ÞI2
Solving these two equations in two unknowns yields

I1 = 1:92− j3:46A

I2 = −2:67− j0:744 A

and finally

V2 = −ZLI2 = 74:3− j8:13 V ■

E x e r c i s e 15–9
Using the results found in Example 15–12, find the input impedance seen by the source in
Figure 15–20.

A n s w e r: 12:26 + j22:10Ω

A P P L I C A T I O N E X A M P L E 1 5 – 1 3

A transformer transfers signals or power from one circuit to another strictly by mag-
netic induction without conductive paths between the circuits. Such circuits are said
to be electrically isolated since there is no electric current flowing directly from one to
the other. Any transformer provides isolation, as well as the common functions of
changing voltage levels or matching impedances. Transformers that have isolation
as their primary purpose are called isolation transformers.

One such purpose is the elimination of what are called ground loops. In a circuit
diagram, all ground symbols are assumed to be at the same potential because of an
implied zero-resistance connection between them. In reality, this may not be the case
and Figure 15–21 illustrates how this results in a ground loop. A ground loop is a
closed conductive path formed in part by an intentional connection between the
two circuits and in part by an unintentional (and uncontrolled) connection formed
when two “grounds” are not at the same potential.

For example, if circuit B in the figure is a metal ship moored in port and supplied
with ac power from an onshore source in Circuit A. The ship’s ground (its metal struc-
ture) may not be at the same potential as the “earth” ground of the onshore source.
This forms a ground loop and allows an errant return current to flow through an
uncontrolled path. This current causes undesirable galvanic corrosion when it passes
through the interface between the water and the ship’s metal hull. One solution is to
introduce isolation transformers in the intentional ship-to-shore connections thus
electrically isolating the ship and eliminating the conductive paths needed to form
ground loops.

Isolation transformers come in many sizes for different applications. They are
often one-to-one n= 1ð Þ transformers since their purpose is electrical isolation rather
than changing voltage levels. For example, Figure 15–22(a) shows a schematic of a
16-pin dual inline package containing three tiny one-to-one isolation transformers
and Figure 15–22(b) shows a photo of an actual device. Such a package finds appli-
cation in high-speed digital circuits in part because it is compatible with PC board
manufacturing methods.

The typical mast antenna in Figure 15–23 offers an interesting application of an
isolation transformer. The mast is made of conductive metal and is mounted on a

Circuit BCircuit A

FIGURE 15–21 A
Ground Loop
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FIGURE 15–22 16-Pin
Isolation Transformer Package
(a) Pin layout, (b) Photo of
actual device.
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non conductive base that isolates it from earth ground. The mast is driven by a radio
frequency (RF) source that may raise its metal structure to several hundred kiloVolts
above ground potential. Because of its height, a mast antenna is equipped with
attached air-traffic obstacle warning lamps that are powered by ordinary 60-Hz ac
power. The wires carrying ac power to the lamps are of necessity exposed to the
antenna’s radiated fields. The RF currents induced in these wires naturally seek a
conductive path to earth ground in the lamp power source. To avoid this diversion
of RF radiated power, an isolation transformer is inserted between the lamp power
source and the circuit bringing power to the lamps. This type of isolation transformer
requires special design features and is usually called anAustin transformer, so named
for an early patent holder, Arthur O. Austin.

C
o

ur
te

sy
 o

f 
A

lb
er

t 
R

o
sa

FIGURE 15–23 A mast
antenna.
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S U M M A R Y
• Mutual inductance describes magnetic coupling

between two inductors. Themutual inductance param-
eter relates the voltage induced in one inductor to the
rate of change of current in the other inductor. The
induced voltage can be either positive (additive cou-
pling) or negative (subtractive coupling).

• The dot convention describes the physical orientation
of the two magnetically coupled inductors. Mutual
inductance coupling is additive when both current ref-
erence arrows point toward or away from dotted term-
inals; otherwise, it is subtractive. The reference
directions for the currents can always be selected so
that the coupling is additive.

• The degree of coupling is indicated by the coupling
coefficient. Energy analysis shows that the coupling
coefficient must lie between zero and one.
A coupling coefficient of unity is called perfect cou-
pling and means that all of the flux produced by first
winding links with a second winding, and vice versa.
A coupling coefficient of zero indicates no magnetic
linkage between the windings.

• A transformer is an electrical device based on the
mutual inductance coupling between two windings.
Transformers find applications in almost all electrical
systems, especially in power supplies and the electrical
power grid. The transformer winding connected to the
power source is called the primary winding, and the
winding connected to the load is called the secondary
winding.

• The ideal transformer is a circuit element in which
the primary and secondary windings are assumed to
be perfectly coupled and to have no power loss. In
an ideal transformer, the voltages and currents in
the primary and secondary windings are related by
the turns ratio, which is the ratio of the number
of turns in the secondary winding to that in the pri-
mary winding.

• In the sinusoidal steady state, transformers can be ana-
lyzed using phasors to determine steady-state currents,
voltages, impedances, and average power transfer.
The phasor analysis of transformers is carried out
using a modified mesh-current approach.

P R O B L E M S

O B J E C T I V E 1 5–1 M U T U A L I N D U C T A N C E
( S E C T S . 1 5–1 , 1 5–2 , A N D 1 5–3 )
Given the current through or voltage across two coupled induc-
tors, find other currents or voltages.
See Examples 15–1 to 15–3 and Exercises 15–1 to 15–3.

15–1 In Figure P15–1 L1 = 10mH, L2 = 5 mH, M = 7mH,
and vS tð Þ = 200 sin 100tV.

(a) Write the i – v relationships for the coupled inductors
using the reference marks in the figure.
(b) Solve for v2 tð Þ when the output terminals are open
circuited (i2 = 0).

+

−

v1(t)
L1

i2(t)

v2(t)

+

−L2

Mi1(t)

+
−vS(t)

FIGURE P15–1

15–2 In Figure P15–1 L1 = 10mH, L2 = 5 mH, M = 7mH,
and vS tð Þ = 100 sin 1000t V.

(a) Write the i – v relationships for the coupled inductors
using the reference marks in the figure.
(b) Solve for i1 tð Þ and i2 tð Þ when the output terminals are
short-circuited (v2 = 0).

15–3 In Figure P15–1L1 = 10mH,L2 = 5 mH,M = 7mH, and
the outputs are v2 tð Þ = 0 and i2 tð Þ = 35 sin 1000tA.
(a) Write the i–v relationships for the coupled inductors
using the reference marks given.
(b) Solve for the source voltage vS tð Þ.

15–4 In Figure P15–4 L1 = L2 = 3 mH, M = 2mH, and
iS tð Þ = 50 sin 100tA. Solve for v1 tð Þ and v2 tð Þ when the out-
put terminals are open circuited (i2 = 0).

+

−

v1(t)

L1

i2(t)

v2(t)

+

−L2

Mi1(t)

iS(t)

FIGURE P15–4

15–5 In Figure P15–4 L1 =L2 = 3 mH, M= 2mH, and
i2 tð Þ= 0:5 sin 1000t A when the output terminals are short-
circuited. Solve for v1 tð Þ and i1 tð Þ.
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15–6 A pair of coupled inductors have L1 = 3:6 H, L2 = 2:5 H,
and k= 0:5 When the output terminals are open-circuited
(i2 = 0), the output voltage is observed to be v2 tð Þ=30 sin
1000tV. Find the input voltage v1 tð Þ for additive coupling.

15–7 In Figure P15–7 L1 = 2 H, L2 = 8 H, M = 4H, and
i1 tð Þ= 5 sin 1000tð ÞmA. Find the input voltage vX tð Þ.

+

−

i1(t)

v1(t)
L1

i2(t)

v2(t)

+

−L2

M

vX(t)

+

−

FIGURE P15–7

15–8 In Figure P15–8 show that LEQ = L1 1 − k2
� �

, where k is
the coupling coefficient.

L1 L2

M

LEQ

FIGURE P15–8

15–9 In Figure P15–9 show that the indicated open-circuit
voltage is

vOC = k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2=L1

p� 	
v1

where k is the coupling coefficient.

+

−

v1(t)
L1

i2(t)

vOC(t)

+

−L2

Mi1(t)

v2(t)

+

−

+
−vS(t)

FIGURE P15–9

15–10 In Figure P15–10 show that the indicated short-circuit
current is

iSC = k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1=L2

p� 	
i1

where k is the coupling coefficient. Assume that i1 has no dc
component

+

−

v1(t)
L1

i2(t)

iSC(t)
L2

Mi1(t)

v2(t)

+

−

+
−vS(t)

FIGURE P15–10

O B J E C T I V E 1 5–2 T H E I D E A L T R A N S F O R M E R
( S E C T . 1 5–4 )
Given a circuit containing ideal transformers:
(a) Find specified voltages, currents, and powers.
(b) Select the turns ratio to meet prescribed conditions.
See Examples 15–4 to 15–8 and Exercises 15–4 to 15–6.

15–11 A perfectly coupled transformer has a turns ratio
of n = 5. The voltage across the primary winding is
v1 tð Þ = 120 cos 377t V. Find the secondary voltage and the
current delivered to an 800-Ω resistive load. Assume additive
coupling. Validate your answer using Multisim.

15–12 InFigureP15–12RS = 40Ω,RL = 1280Ω, the turns ratio
is n = 8, and the source voltage is vS tð Þ = 240 cos 377t V.
Find expressions for i1 tð Þ and i2 tð Þ. Validate your answer
using Multisim.

+

−

v1(t)vS(t)

i1(t) i2(t)

+
−

RL

RS

Ideal

1:n
+

−

v2(t)

FIGURE P15–12

15–13 In Figure P15–12 RS = 50Ω, RL = 2Ω, the turns ratio is
n = 1=5, and the source voltage is vS tð Þ = 440 cos 400t V.
Find expressions for v1 tð Þ and v2 tð Þ. Validate your answer
using Multisim.

15–14 The turns ratio of the ideal transformer in Figure P15–14
is n = 5. The source and load impedances areZS = 40 + j45Ω
and ZL = 500 − j350Ω. Find I1, I2, and VO when VS =
200ff0� V.

+

−

V1

I1

+

−

V2

+

−

VO
+
−

ZS

ZLVS

Ideal

1:n
I2

FIGURE P15–14

15–15 Design the turns ratio of the ideal transformer in

Figure P15–14 so that VO = 70:8 ff7:973� V when VS = 440
ff0� V. The source and load impedances are ZS = 50
+ j0Ω and ZL = 5 + j2Ω. Validate your design using
Multisim.

15–16 In Figure P15–16 the turns ratio is n = 4, X = 45Ω, and
RL = 720Ω. Find IIN and VO when VS = 100 ff0� V.
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jX

IIN

+

−

VO
+
−

RLVS

Ideal

1:n

FIGURE P15–16

15–17 Design the turns ratio in Figure P15–16 if

VS = 200 ff0� V, VO = 100 ff0� V, X = 10Ω, and RL = 5Ω.
Then find IIN.

15–18 A 440-V source with a source resistance of 25Ω is

connected to the primary of an ideal transformer. Design the
turns ratio needed to deliver the maximum average power to
a 400-Ω load connected across the secondary.

15–19 The primary voltage of an ideal transformer is a 120-V,
60-Hz sinusoid. The secondary voltage is a 24-V, 60-Hz sinus-
oid. The secondary winding is connected to an 800-Ω resis-
tive load.
(a) Find the transformer turns ratio.
(b) Write expressions for the primary current and voltage.

15–20 The number of turns in the primary and secondary of an
ideal transformer are N1 = 50 and N2 = 400. The primary
winding is connected to a 120-V, 60-Hz source, with a source
resistance of 50Ω. The secondary winding is connected to a
4800-Ω load. Find the primary and secondary currents. Vali-
date your answers using Multisim.

15–21 In Figure P15–21 the impedances are Z1 = 20 − j45Ω,
Z2 = 45 + j30Ω, and Z3 = 300 + j250Ω. Find I1, I2, and I3.

I1 I2 I3

+
−

Ideal Ideal

1 : 2 1 : 3Z1 Z2

Z3200∠0°  V

FIGURE P15–21

15–22 In Figure P15–21 the impedances are Z1 = 35 + j20Ω,
Z2 = 70 + j8Ω, andZ3 = 270 − j0Ω. Find the input impedance
seen by the source.

15–23 An ideal transformer has a turns ratio of n= 5. The sec-
ondary winding is connected to a loadZL = 300 + j100Ω. The
primary winding is connected to a voltage source with a peak
amplitude of 300 V and an internal impedance of ZS = j2Ω.
Find the average power delivered to the load.

15–24 The primary winding of an ideal transformer with
N1 = 100 and N2 = 250 is connected to a 480-V source.
A 100-Ω load is connected across the secondary windings.
Find amplitudes of the primary and secondary currents.

15–25 A transformer that can be treated as ideal has 480 turns
in the primary winding and 240 turns in the secondary

winding. The primary winding is connected to a 60-Hz source
with a peak amplitude of 400 V. The secondary winding deli-
vers 5 kW to a resistive load. Find the primary and secondary
currents and the impedance seen by the source.

O B J E C T I V E 1 5–3 T H E L I N E A R T R A N S F O R M E R
( S E C T . 1 5–5 )
Given a linear transformer operating in the sinusoidal steady
state, find phasor voltages and currents, average powers, and
equivalent impedances.
See Examples 15–9 to 15–13 and Exercises 15–7 to 15–9.

15–26 The input voltage to the transformer in Figure P15–26 is
a sinusoid vS tð Þ=220 cos 400t V.With the circuit operating in
the sinusoidal steady state, transform the circuit into the pha-
sor domain and write mesh-current equations. Solve for the
mesh currents and find the output voltage V2 and the input
impedance ZIN.

vS(t)

+

−

+
− 30 mH

v2(t)

ZIN

60 mH

120 mH

50 Ω

600 Ω

FIGURE P15–26

15–27 Repeat Problem 15–26 with vS tð Þ = 100 cos 2000t V.

15–28 A transformer has self-inductances L1 = 200 mH, L2 =
200 mH, and a coupling coefficient of k = 0:5. The trans-
former is operating in the sinusoidal steady state with
ω = 500 rad=s and a 50-Ω resistive load connected across
the secondary winding. Find the transformer input imped-
ance. Assume additive coupling.

15–29 Repeat Problem 15–28 when a 50-mH inductive load is
connected across the secondary winding.

15–30 The linear transformer in Figure P15–30 is sinusoidal
steady state with VS = 500 V and ZL = 20 + j10Ω. Use
mesh-current analysis to find the input impedance seen by
the source and the average power delivered by the source.

+
−

+

−

VS
VO

50 Ω j10 Ω

j70 Ω

j50 Ωj100 Ω ZL

FIGURE P15–30

15–31 Repeat Problem 15–30 with ZL = 20 − j10Ω.

15–32 Find the phasor current I and the input impedance seen
by the source in Figure P15–32.
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+

V2

−

+

V1

−

I2I1

I

j8

j4 j16

ZIN

+
−

100 Ω 200 Ω

200    0° V

FIGURE P15–32

15–33 Thecircuit inFigureP15–33 is in the sinusoidal steady state
withVS = 200 ff0� V and RL = 50Ω. Use mesh-current anal-
ysis to find VO and the input impedance seen by the source.

+
−

+

−

VS VO

j10 Ω

j60 Ω

j100 Ωj40 Ω

RL−j30 Ω

FIGURE P15–33

15–34 Find IA and IB in Figure P15–34 and the input impedance
seen by the voltage source.

5 Ω

−j5 ΩIB

V2

+

−IA

V1

+

−

+
−120/_0°

n = 5

ZIN

FIGURE P15–34

15–35 If f = 60Hz, find V1 and V2 in Figure P15–34 using
Multisim.

15–36 A transformer operating in the sinusoidal steady state has
inductances L1 = 800 mH, L2 = 320 mH, and M = 500 mH.
A load ZL = 6 + j0Ω is connected across the secondary.
The 60-Hz voltage source connected to the primary side has
a peak amplitude of 250 V. Find the impedance seen by the
voltage source and the average power delivered to the load.

15–37 A transformer operating in the sinusoidal steady state
has inductances L1 = 510mH, L2 = 2 H, and M =1H. The
load connected across the secondary is ZL = 200 + j150Ω.
The 60-Hz voltage source connected to the primary side
has a peak amplitude of 2:5 kV. Find the amplitudes of the
secondary winding voltage and current.

15–38 The linear transformer in Figure P15–38 is in the sinus-
oidal steady state with reactances of X1 = 32Ω, X2 = 50Ω,
XM = 40Ω, and a load impedance of ZL = 150 – j50Ω. Find
the input impedance seen by the voltage source.

VS

I1

ZIN

I2

+
−

+

−

V2

+

−

V1
jX1 jX2

jXM

ZL

FIGURE P15–38

15–39 The linear transformer in Figure P15–38 is in the sinus-
oidal steady state with reactances of X1 = 15Ω, X2 = 60Ω,
and XM = 30Ω. Find the transformer secondary response
V2 and I2 when ZL = 200 − j100Ω and VS = 250 ff0� V.

15–40 The self and mutual inductances of a transformer can be
calculated frommeasurements of the steady-state ac voltages
and currents with the secondary winding open-circuited and
short-circuited. Suppose the measurements are |V1 | = 60 V,
|I1 | = 120 mA, and |V2 | = 180 V when the secondary winding
is open. When the secondary is shorted, the measurements
are |I1 | = 10 A and |I2 | = 5 A. All measurements were made
at f =60 Hz. Find L1, L2, and M.

I N T E G R A T I N G P R O B L E M S
15–41 Equivalent Capacitance

A capacitor C is connected across the secondary of an ideal
transformer whose turns ratio is 1:n. Derive an expression
for the equivalent capacitance CEQ seen looking into the pri-
mary winding.

15–42 Transformer Thévenin Equivalent

In the time domain, the i–v equations for a linear trans-
former are

v1 tð Þ = L1
di1 tð Þ
dt

+M
di2 tð Þ
dt

v2 tð Þ = M
di1 tð Þ
dt

+L2
di2 tð Þ
dt

Assuming zero initial conditions, transform these equations
into the s-domain and show that the s-domain parameters
of the Thévenin equivalent at the output

ZT = 1−k2
� �

L2s and VT sð Þ= k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2=L1

p� 	
V1 sð Þ

where k is the coupling coefficient.

15–43 Perfectly Coupled Transformer

FigureP15–43 isanequivalentcircuitofaperfectlycoupledtrans-
former.Thismodel is thebasis for the transformerequivalent cir-
cuits used in the analysis of power systems. The inductanceLm is
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called the magnetizing inductance. The current through this
inductance represents the current needed to establish the
magnetic field in the transformer at no load (i2 = 0). Show that
the i–v equations for this circuit are as follows:

v1 tð Þ=Lm
di1 tð Þ
dt

+nLm
di2 tð Þ
dt

v2 tð Þ= nLm
di1 tð Þ
dt

+ n2Lm
di2 tð Þ
dt

Use these equations to show that k = 1.

Lm

i1(t) ni2(t) i2(t)

v2(t)

+

−

v1(t)

+

−

+

Ideal

1: n

FIGURE P15–43

15–44 Equivalent T-Circuit Transformer Model

The transformermodel shown inFigure15–17canalsobemod-
eled using an Equivalent T-Circuit as shown in Figure P15–44.

The three inductors are related to the transformer inductances
as follows:

LA = L1�M

LB = L2�M

LC = �M

where the upper sign applies for additive coupling and the
lower sign for subtractive coupling. Solve Example 15–9 using
the Equivalent T-Circuit and Multisim. Compare your results
with those in the example.

I2I1

Equivalent T-circuit

PIN

ZIN

VS V1

−

+

V2

−

+
ZS

jωLA jωLB

jωLC ZL
+
−

FIGURE P15–44
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C H A P T E R 16 AC POWER SYSTEMS

George Westinghouse was in my opinion, the only man on the globe who could take my alternating current (power) system under the
circumstances then existing and win the battle against prejudice and money power.

Nikola Tesla, 1932
American Engineer

Some History Behind This Chapter
The 1890s saw a competition between the dc power system
developed by Thomas Edison and the newly emerging ac sys-
tem. Initially the main drawback of the ac approach was a
lack of practical motors. The Serbian immigrant Nikola Tesla
(1856–1943) invented the three-phase ac induction motor
that met this need. In 1887, Tesla founded a company to
develop his inventions, eventually producing some 40 patents
on three-phase equipment. George Westinghouse recognized
the importance of this work and purchased the rights to
Tesla’s patents. The ac-versus dc-competition was settled
when an ac system was chosen for a large hydroelectric
power station at Niagara Falls, New York.

Why This Chapter Is Important Today
Rolling blackouts and collapsing power grids remind us that
the reliable flow of electrical power is essential in a modern
society. Although you may never work directly in the electri-
cal power field, some understanding of its concepts and lim-
itations is important in many adjacent areas of technology.
Among these concepts are complex power, single-phase
and three-phase circuits, and power flow. Have you ever
wondered why the electric transmission lines marching
across the countryside have three wires each suspended from
a large insulator? You will find the answer here.

Chapter Sections
16–1 Average and Reactive Power
16–2 Complex Power
16–3 Single-Phase Circuit Analysis
16–4 Single-Phase Power Flow
16–5 Balanced Three-Phase Circuits
16–6 Three-Phase Circuit Analysis
16–7 Three-Phase Power Flow

Chapter Learning Objectives
16-1 Complex Power (Sects. 16–1 and 16–2)

Given a linear circuit in the sinusoidal steady state:
(a) Find the average, reactive, and instantaneous power

for a specified voltage and current.
(b) Find the load impedance for a specified load

power flow.

16-2 Single-Phase Circuit Analysis (Sect. 16–3)

Given a single-phase circuit operating in the ac steady
state, find the power produced by sources or delivered
to specified loads.

16-3 Single-Phase Power Flow (Sect. 16–4)

Given a specified load power in a single-phase circuit:
(a) Find the required source outputs.
(b) Find the parallel capacitance needed to produce a

specified power factor.

16-4 Balanced Three-Phase Circuits (Sect. 16–5)

For a balanced three-phase circuit:
(a) Find all of the phase and line voltage phasors for a

given phase reference.
(b) Find equivalent Y- or Δ-connected sources and

loads.

16-5 Three-Phase Circuit Analysis (Sect. 16–6)

For a given balanced three-phase circuit:
(a) Find the line and phase current phasors for a speci-

fied phase reference.
(b) Find the source or load power using the scalars VL

and IL.

16-6 Three-Phase Power Flow (Sect. 16–7)

Given a single-line diagram of a balanced three-phase
system, find the source outputs and bus voltages that
produce a prescribed load power flow.
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16–1 A V E R A G E A N D R E A C T I V E P O W E R

We begin our study of electric power circuits with the two-terminal interface in
Figure 16–1. In power applications, we normally think of one circuit as the source
and the other as the load. Our objective is to describe the flow of power across the inter-
face when the circuit is operating in the sinusoidal steady state. To this end, wewrite the
interface voltage and current in the time domain as sinusoids of the form

υ tð Þ = VAcos ωt + θð ÞV
i tð Þ = IAcosωtA

(16–1)

In Eq. (16–1)VA and IA are real, positive numbers representing the peak amplitudes
of the voltage and current, respectively.

In Eq. (16–1) we have selected the t = 0 reference at the positive maximum of the
current i tð Þ and assigned a phase angle to υ tð Þ to account for the fact that the voltage
maximummay not occur at the same time. In the phasor domain, the angle θ=ϕV−ϕI
is the angle between the phasors V=VAffϕV and I= IAffϕI. In effect, choosing t = 0 at
the current maximum shifts the phase reference by an amount −ϕI so that the voltage
and current phasors become V=VAffθ and I= IAff0.

A method of relating power to phasor voltage and current will be presented
in the following section, but at the moment we write the instantaneous power in
the time domain.

p tð Þ = υ tð Þ× i tð Þ
= VAIAcos ωt + θð Þcosωt (16–2)

This expression for instantaneous power contains dc and ac components. To separate
the components, we first use the identity cos x+ yð Þ= cosx cosy−sinx siny to write
p tð Þ in the form

p tð Þ = VAIA cos ωt cos θ−sin ωt sin θ½ � cos ωt
= VAIA cos θ½ �cos2ωt− VAIA sin θ½ � cos ωt sin ωt

(16–3)

Using the identities cos2x=½ 1+ cos 2xð Þ and cosxsinx=½ sin 2x, we write p tð Þ in
the form

p tð Þ= VAIA
2

cosθ
� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
dc component

+
VAIA
2

cosθ
� �

cos2ωt−
VAIA
2

sinθ
� �

sin2ωt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ac component

(16–4)

Written this way, we see that the instantaneous power is the sum of a dc component
and a double-frequency ac component.

Note that instantaneous power in Eq. (16–4) is periodic. In Chapter 5, we defined
the average value of a periodic waveform as

P=
1
T

Z T

0
p tð Þdt

where T = 2π=2ω is the period of p tð Þ. In Chapter 5, we also showed that the average
value of a sinusoid is zero. Therefore, the average value of p tð Þ, denoted asP, is equal
to the constant or dc term in Eq. (16–4):

P=
VAIA
2

cosθW (16–5)

+

i(t)

v(t)
–

Source Load

FIGURE 16–1 A two-terminal
interface.
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The amplitude of the sin2ωt term in Eq. (16–4) has a form much like the average
power in Eq. (16–5), except it involves sinθ rather than cosθ. This amplitude factor
is called the reactive power of p tð Þ, where reactive power Q is defined as

Q=
VAIA
2

sinθVAR (16–6)

and has the units of Volt-Amperes Reactive or VAR.
Substituting Eqs. (16–5) and (16–6) into Eq. (16–4) yields the instantaneous power

in terms of the average power and reactive power:

p tð Þ=P 1+ cos2ωtð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
unipolar

−Qsin2ωt|fflfflfflfflffl{zfflfflfflfflffl}
bipolar

(16–7)

The energy transferred across the interface during one cycle T = 2π=2ω of p tð Þ is

W =
Z T

0
p tð Þdt

= P
Z T

0
1 + cos 2ωtð Þdt|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
net energy

− Q
Z T

0
sin 2ωt dt|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

no net energy

= P×T − 0

(16–8)

The unipolar term in Eq. (16–7) provides a net energy transfer ofP×T per cycle. The
bipolar term is a sinusoidal power oscillation of amplitude Q that provides no net
energy transfer. The average power P indicates a unidirectional flow of energy while
the reactive power Q indicates bidirectional interchange of energy.

The flow of average and reactive power is the central issue in ac power systems.
Although these two kinds of power have the same dimensions volts × amperesð Þ, they
represent quite different effects. For this reason, they are given different unit names:
average power is measured in watts (W) and reactive power in Volt-Amperes
Reactive (VAR).

E X A M P L E 1 6–1

The ac steady-state inputs to the load in Figure 16–1 are

υ tð Þ= 166 cos 500t + 55�ð ÞV
i tð Þ= 3:5 cos 500t−25�ð ÞA

Find the average power, reactive power, and instantaneous power carried by these
waveforms.

SOLUTION:
The power factor angle for this case is

θ = ϕV−ϕI

= 55�− −25�ð Þ= 80�

The average and reactive powers are

P = 0:5 × 166 × 3:5 × cos 80�ð Þ= 50:4W

Q = 0:5 × 166 × 3:5 × sin 80�ð Þ= 286 VAR

Using Eq. (16–7), the instantaneous power is

p tð Þ = P 1+ cos 2ωtð Þ½ �−Qsin 2ωtð Þ
= 50:4 1+ cos 1000tð Þ½ �−286sin 1000tð ÞW

Since P> 0, a net energy of P×T per cycle is transferred into the load. ■
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E x e r c i s e 16–1
Using the reference marks in Figure 16–1, calculate the average and reactive power for the
following voltages and currents.

(a) υ tð Þ= 168 cos 377t + 45�ð ÞV, i tð Þ=0:88 cos 377tA
(b) υ tð Þ=285 cos 2500t +68�ð ÞV, i tð Þ= 0:66 cos 2500tA

A n s w e r s:
(a) P= + 52:3W, Q= +52:3 VAR
(b) P= + 35:2W, Q= +87:2 VAR

16–2 C O M P L E X P O W E R

It is important to relate average and reactive power to phasor quantities because
steady-state analysis is conveniently carried out using phasors. In our previous work
the magnitude of a phasor represented the peak amplitude of a sinusoid. However, in
power circuit analysis, it is convenient to express phasor magnitudes in rms (root-
mean-square) values. In this chapter, phasor voltages and currents are expressed as

V=VrmsejϕV and I= IrmsejϕI (16–9)

Notice that the phasor magnitudes are the rms amplitude of the corresponding
sinusoid.

Equations (16–5) and (16–6) express average and reactive power in terms of peak
amplitudes VA and IA. In Chapter 5, we showed that the peak and rms values of a
sinusoid are related by Vrms =VA=

ffiffiffi
2

p
. The expression for average power can be eas-

ily converted into rms amplitudes since we can write Eq. (16–5) as

P =
VAIA
2

cos θ=
VAffiffiffi
2

p IAffiffiffi
2

p cos θ

= VrmsIrms cos θ
(16–10)

where θ=ϕV−ϕI is the angle between the voltage and current phasors. By similar
reasoning, Eq. (16–6) becomes

Q=Vrms Irms sinθ (16–11)

Using rms phasors, the complex power (S) at a two-terminal interface is defined as
follows:

S=VI∗ (16–12)

That is, the complex power at an interface is the product of the voltage phasor times
the conjugate of the current phasor. Substituting Eq. (16–9) into this definition yields

S = VI∗ =VrmsejϕVIrmse− jϕI

= Vrms Irms½ �ej ϕV−ϕIð Þ (16–13)

Using Euler’s relationship and the fact that the angle is θ=ϕV−ϕI, we can write com-
plex power as

S = Vrms Irms½ �ejθ
= Vrms Irms½ �cosθ+ j Vrms Irms½ �sinθ
= P+ jQVA

(16–14)

The real part of the complex power S is the average power, and the imaginary part is
the reactive power. Although S is a complex number, it is not a phasor. However, it is
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a convenient variable for keeping track of the two components of
power when the voltage and currents are expressed as phasors. Its
units are volt-amperes.

The power triangles in Figure 16–2 provide a convenient way to
remember complex power relationships and terminology. We con-
fine our study to cases in which net energy is transferred from source
to load. In such cases P> 0 and the power triangles fall in the first or
fourth quadrant, as indicated in Figure 16–2.

The magnitude Sj j=Vrms Irms is called apparent power and is
expressed using the unit volt-ampere (VA). The ratio of the average
power to the apparent power is called the power factor (pf ). Using
Eq. (16–10), we see that the power factor is

pf =
P
Sj j =

Vrms Irms cosθ
Vrms Irms

= cosθ (16–15)

Since pf = cos θ, the angle θ is called the power factor angle.
When the power factor is unity, the phasors V and I are in phase θ= 0�ð Þ and

the reactive power is zero since sinθ= 0. When the power factor is less than unity,
the reactive power is not zero and its sign is indicated by the modifiers lagging or
leading. The term lagging power factormeans the current phasor lags the voltage pha-
sor so that θ=ϕV−ϕI > 0. For a lagging power factor, S falls in the first quadrant in
Figure 16–2 and the reactive power is positive since sin θ> 0. The term leading power
factor means the current phasor leads the voltage phasor so that θ=ϕV−ϕI < 0. In
this case, S falls in the fourth quadrant in Figure 16–2 and the reactive power is
negative since sin θ< 0. Most industrial and residential loads have lagging power
factors.

E X A M P L E 1 6–2

Find the average power, reactive power, and apparent power for the following volt-
age and current phasors. Find the power factor and state whether it is lagging or
leading.

V= 350ff45� V rmsð Þ, I= 6ff65� A rmsð Þ

SOLUTION:

S = VI∗ = 350ff45�ð Þ 6ff−65�ð Þ
= 2100ff−20� = 2100 cos −20�ð Þ+ j sin −20�ð Þ½ �
= 1973− j718 VA

The average, reactive, and apparent powers are P= 1973W, Q= −718 VAR, and
Sj j= 2100 VA, respectively. The power factor is

pf =
P
Sj j =

1973
2100

= 0:939

The power factor is leading since Q is negative. ■

E x e r c i s e 16–2
Determine the average power, reactive power, and apparent power for the following volt-
age and current phasors. State whether the power factor is lagging or leading.

(a) V= 208ff−90� V rmsð Þ, I=1:75ff−75� A rmsð Þ
(b) V= 277ff+ 90� V rmsð Þ, I= 11:3ff0� A rmsð Þ

Re

+Q

–Q

jIm

S

S

Lagging

Leading
P

θ

ϕV > ϕI

ϕV < ϕI

FIGURE 16–2 Power triangles.
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A n s w e r s:
(a) P=352W;Q= −94:2 VAR; Sj j= 364 VA; leading
(b) P= 0W;Q= +3:13 kVAR; Sj j=3:13 kVA; lagging

C O M P L E X P O W E R A N D L O A D I M P E D A N C E

Figure 16–3 shows the general case for a two-terminal load. For the assigned refer-
ence directions, the load produces the element constraint V=ZI. Using this con-
straint in Eq. (16–12), we write the complex power of the load as

S = V× I∗ =ZI× I∗ =Z Ij j2

= R+ jXð ÞI2rms

where R and X are the resistance and reactance of the load, respectively. Since
S=P+ jQ, we conclude that

R=
P
I2rms

and X =
Q
I2rms

(16–16)

The load resistance and reactance are proportional to the average and reactive power
of the load, respectively.

Equation (16–16) reveals several important properties of loads made up of passive
resistors, capacitors, and inductors:

a. The load resistance requires R
 0, which means that P is nonnegative.
b. For an inductive load X =ωL> 0, which means that Q is positive.
c. For a capacitive load X = −1=ωC < 0, which means that Q is negative.

The terms inductive load, positive reactive power, and lagging power factor are equiv-
alent statements, as are the terms capacitive load, negative reactive power, and leading
power factor.

E X A M P L E 1 6–3

At 440 V rmsð Þ a two-terminal load draws 3 kVA of apparent power
at a lagging power factor of 0.9. Find

(a) Irms

(b) P
(c) Q
(d) the load impedance

Draw the power triangle for the load.

SOLUTION:
(a) Irms = Sj j=Vrms = 3000=440 = 6:82 A rmsð Þ
(b) P=VrmsIrms cos θ= 3000 × 0:9 = 2:7 kW
(c) For cos θ= 0:9 lagging, sinθ= 0:436 and

Q=VrmsIrms sin θ= 1:31 kVAR
(d) Z = P+ jQð Þ= Irmsð Þ2 = 2700 + j1310ð Þ=46:5 = 58:0+ j28:2Ω:
Figure 16–4 shows the power triangle for this load. ■

Re

1.31 kVAR

jIm

3 kVA

25.8˚

2.7 kW

FIGURE 16–4

I

V Z

+

–

FIGURE 16–3 A two-terminal
impedance.
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E x e r c i s e 16–3
Find the impedance of a two-terminal load under the following conditions.

(a) V= 120ff30� V rmsð Þ and I= 20ff75� A rmsð Þ
(b) Sj j= 3:3 kVA, Q= −1:8 kVAR, and Irms = 7:5A

A n s w e r s:
(a) Z =4:24 − j4:24Ω
(b) Z = 49:2 − j32Ω

16–3 S I N G L E - P H A S E C I R C U I T A N A L Y S I S

Single-phase circuit analysis deals with linear circuits in the sinusoidal steady state.
The term single-phase means that all of the ac sources have the same phase angle.
The analysis objective is to find the complex power produced by the sources or deliv-
ered to specified loads. Our analysis strategy is straightforward. We use the methods
of linear ac circuit analysis from Chapter 8 to find the voltage across and current
through an element. We then calculate complex power as S=VI∗ or, in the case of
a load impedance, S= Ij j2Z. In terms of circuit analysis concepts, the only thing new
here is that the final result is complex power rather than current and voltage phasors.

We can sometimes make good use of the principle of the conservation of complex
power, which states that

In a linear circuit the sum of the complex powers produced by all the sources is
equal to the sum of the complex powers delivered to all of the passive loads.

To apply this principle, we must be clear on the meaning of “produced by” and
“delivered to.” In ac power systems, we modify our practice of always using the pas-
sive sign convention. We continue to use the passive convention (current directed in
at the + voltage reference) for all passive loads, but switch to the active convention
(current directed out at the + voltage reference) for all sources. In either case we cal-
culate complex power as S=VI∗ =P+ jQ. The net result is that the average power
“produced by” a source or “delivered to” a load has the same sign.

E X A M P L E 1 6–4

A load consisting of a 2:5-kΩ resistor in parallel with a 2-μF capacitor is connected
across a 440-V rmsð Þ, 60-Hz voltage source. Find the complex power delivered to the
load and the load power factor. State whether the power factor is leading or lagging.
Validate your answers using Multism.

SOLUTION:
The source angular frequency is ω= 2π60 = 377 rad=s. The impedance of the load is

ZL =
R× 1=jωCð Þ
R+ 1=jωCð Þ =

2500

2500 × j377 × 2× 10−6 + 1

= 549− j1035Ω

The magnitude (rms value) of the current through the load is found as

Ij j = Vj j
ZLj j =

440
549− j1035j j

= 0:375 A rmsð Þ
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The complex power delivered to the load and the load power factor are

SL = Ij j2ZL =PL + jQL

= 0:375ð Þ2 × 549− j1035ð Þ
= 77:4− j146 VA

pf =
PL

SLj j =
77:4

77:4− j146j j = 0:469

The power factor is leading since QL is negative. ■
One can use Multisim to find the desired results as follows:

Build the circuit in Multisim. Use the ac power source set at 440 V rmsð Þ. Select
“Single Frequency AC Analysis” and set the frequency parameters to 60 Hz and
“Real/Imaginary” for the Complex number format. Then under the “Output” tab
askMultisim to calculate the desired parameters. Note that none of the desired para-
meters are readily selectable but need to be constructed using “Add Expression.” To
calculate the complex load ZL, we add the expression V 1ð Þ=−I 1ð Þ where V 1ð Þ is the
source voltage and I 1ð Þ is the source current. Note that I 1ð Þ is negative because of the
passive sign convention, that is, we want the current into the load not into the source.
To calculate the complex power SL, we add the expression: SL = ILj j2ZL, which
is written as mag −I V1ð Þð Þ̂ 2ð Þ∗V 1ð Þ=−I 1ð Þ. And finally, to calculate the power
factor pf, we add the expression pf =PL= SLj j=Re SLf g= SLj j, which we can enter
as real ððmag −I V1ð Þð Þ 2̂Þ∗V 1ð Þ=−I 1Þð Þ=mag mag −I V1ð Þð Þ̂ 2ð Þ∗V 1ð Þ=−I 1ð Þ� �

. Run-
ning the simulation, Grapher View returns the following:

ZL: 549:1− j1035Ω

SL: 77:44− j145:9 VA

pf: 0:4686

These are the same results calculated above by hand.

E X A M P L E 1 6–5

In Figure 16–5, the two parallel loads are connected across a 15-V rmsð Þ source.
(a) Find the complex power delivered to each load.
(b) Find the complex power produced by the source.

SOLUTION:
(a) The voltage across each load is 15ff0� V and the load impedances

are Z1 = 100Ω and Z2 = 60− j200Ω. The load currents shown in
the figure are

I1 =
15ff0�
100

= 0:15ff0� A rmsð Þ

I2 =
15ff0�

60− j200
= 0:0718ff73:3� A rmsð Þ

The complex power delivered to each load is

S1 = I1j j2Z1 = 0:15ð Þ2 100 + j0ð Þ= 2:25 + j0 VA

S2 = I2j j2Z2 = 0:0718ð Þ2 60− j200ð Þ= 0:309− j1:03 VA

+
–

–

+

60 Ω
100 Ω

I I2

I1

15   0° V15   0° V

–j200 Ω

FIGURE 16–5
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(b) We could calculate the source power by first finding I= I1 + I2 and then calculat-
ing S=VI∗. However, the conservation of complex power allows us to calculate
the power “produced by” the source as the sum of the powers “delivered to”
the loads.

S = S1 + S2 =P+ jQ

= 2:56− j1:03 VA

The power factor of the source is

pf =
P
Sj j =

2:56
2:56− j1:03j j = 0:928

The power factor is leading since Q is negative. ■

E x e r c i s e 16–4
A load consisting of a 50-Ω resistor in parallel with an inductor whose reactance is 75Ω is
connected across a 500-V rmsð Þ source. Find the complex power delivered to the load and
the load power factor. State whether the power factor is leading or lagging.

A n s w e r: SL = 5+ j3:33 kVA, pf = 0:832, lagging

E X A M P L E 1 6–6

In Figure 16–6 the load ZL is a 100-Ω resistor in series with a capacitor whose reac-
tance is −60Ω. The source voltage is 880 V rmsð Þ. Find the complex power delivered
to the load and the load power factor.

SOLUTION:
By inspection the node-voltage equation at node A is

VL−VS

50
+
VL

j40
+
VL

ZL
= 0

Solving for VL with VS = 880ff0� V and ZL = 100− j60Ω yields VL = 411 +
j309 V rmsð Þ. The magnitude of the load current is

ILj j= VLj j
ZLj j =

411 + j309j j
100− j60j j = 4:41A rmsð Þ

The complex power delivered to the load and the load power factor are

SL = ILj j2ZL = 4:412 100− j60ð Þ
= 1:95− j1:17ð Þ× 103 VA

pf =
PL

SLj j =
1:95 × 103

1:95 × 103− j1:17 × 103


 

 = 0:857

The power factor is leading since QL is negative. ■

E x e r c i s e 16–5
In Figure 16–6 the loadZL is an 80-Ω resistor and the source voltage is 220 V rmsð Þ. Find the
complex power produced by the source. Assuming 60Hz for the source, validate your
answer using Multisim.

A n s w e r: SS = 594+ j288 VA

+
–VS VLj40 Ω

50 Ω A

+

–

IL

ZL

FIGURE 16–6
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E V A L U A T I O N E X A M P L E 1 6–7

Figure 16–7 shows the residential power distribution circuit used in theUnited States.
The circuit is called three-wire, single-phase service. The term three-wire refers to the
three lines (A, B, and neutral) connecting the sources to the loadsZ1,Z2, andZ3. The
term single-phase means that the two voltage sources VS1 = 110ff0� and VS2 = 110ff0�
are in phase. The loads Z1 and Z2 are connected between line A or B and the neutral
line. These impedances represent small-appliance and lighting loads that require
110 V rmsð Þ service. The load Z3 is connected between line A and line B and repre-
sents heavier loads that require 220 V rmsð Þ service. The impedances ZW and ZN are
line impedances that are normally much smaller than the load impedances.

Suppose each 110-V source has a rated output capacity of 5 kVA and the three
loads are Z1 = 30 + j12Ω, Z2 = 24 + j8Ω, and Z3 = 10 + j2Ω. In addition, the two line
impedances are ZW = 0:05 + j0Ω and ZN = 0:14 + j0Ω. The evaluation problem is to
determine whether the two sources can supply these loads without exceeding their
rated output. The mesh current IA in Figure 16–7 is the current out of the + terminal
of the upper source VSI; hence the complex power produced by this source is
Supper =VS1 IAð Þ∗. Similarly, mesh current IB is the current out of the + terminal of
the lower sourceVS2; hence it produces Slower =VS2 IBð Þ∗. To complete the evaluation
we need to find IA and IB.

By inspection, mesh-current equations for the circuit in Figure 16–7 are

MeshA: ZW +Z1 +ZNð ÞIA−ZNIB−Z1IC = VS1

Mesh B: −ZNIA + ZW +Z2 +ZNð ÞIB−Z2IC = VS2

Mesh C: −Z1IA−Z2IB + Z1 +Z2 +Z3ð ÞIC = 0

Using MATLAB to solve for the mesh currents, we first assign values to the known
circuit parameters.

Z1 = 30 +12j; Z2 = 24 +8j; Z3 = 10 +2j;
ZW = 0.05 +0j; ZN = 0.14 +0j;
VS1 = 110 +0j; VS2 = 110 +0j;

We formulate the problem in matrix form using the Ax=B structure as follows:

A=[(ZW +Z1 +ZN) -ZN -Z1;-ZN (ZW +Z2 +ZN)-Z2;-Z1 -Z2 (Z1
+Z2 +Z3)];
B=[VS1;VS2;0];
x = A\B;
IA = x(1); IB = x(2);

+
– IAVS1 = 110 /_0º   V 

VS2 = 110 /_0º   V 

ZW

Line A

Neutral

+
– IB

ZN

Z1

Z2

ZW 

Z3IC

Line B

Residential loadsPower system

FIGURE 16–7 Residential
power distribution circuit.

820 C H A P T E R 1 6 AC POWER SYSTEMS



We now have the mesh currents IA and IB and can calculate the required complex
powers as

Supper = VS1∗conj(IA)
Supper =

2.6468e+003 +5.9138e+002j
Slower = VS2∗conj(IB)
Slower =

2.7506e+003 +6.0261e+002j

In round numbers, the apparent powers produced by the two sources are

Supper


 

= 2647 + j591j j= 2:71 kVA and Slowerj j= 2751 + j603j j= 2:82 kVA

Both apparent power outputs are within the 5-kVA rating.

16–4 S I N G L E - P H A S E P O W E R F L O W
In the previous section, the analysis objective was to find the voltages and currents
needed to calculate an unknown complex power delivered to a load. In a power flow
problem, the complex power delivered to a load is specified, and the unknowns are
the voltages and currents that will make this power flow happen. The power flow
problem is completely different from maximum power transfer. In the latter situa-
tion, the source is fixed and the load is adjusted to produce maximum power transfer.
In a power system, the load power is fixed by customer demand and the system oper-
ator adjusts the source output to meet the demand.

We illustrate power flow analysis using the two-wire, single-phase power system in
Figure 16–8. This system consists of ac source VS supplying power to a load ZL

through a two-wire transmission line with an impedance ofZW in eachwire. The anal-
ysis objective is to find the source outputs required to deliver a prescribed complex
power to the load.

There are several ways to specify the complex power at the load. Themost obvious
is simply to specify the average power PL and reactive powerQL.We can also specify
the apparent power SLj j and the power factor pf = cosθ, in which case the complex
load power is

SL = SLj j× cos θ� j sin θð Þ

= SLj j× pf� j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−pf2

q� �
where the plus sign applies to lagging power factors and the minus sign to leading
power factors. Given the average power PL and the power factor, we calculate the
apparent power as SLj j=PL=pf and use the equation above to obtain SL. Finally,
the complex power delivered by a given current IL through a load ZL is

SL = ILj j2ZL = Irmsð Þ2ZL

E X A M P L E 1 6–8

The average power delivered to the load in Figure 16–9 is 20 kW at a lagging power
factor of 0.8. The load voltage magnitude is 480 V rmsð Þ and the two-wire line has an
impedance of ZW =0:1 + j0:6Ω per wire. Find the required apparent power output
and rms voltage of the source.

ZW

ZW

+

–

+
–

IL

VLVS ZL

Source Line Load

FIGURE 16–8 A simple
electrical power system.

ZW

ZW

+
–

VS ZL

Source Line Load

IL

+

VL

–

FIGURE 16–9
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SOLUTION:
For PL = 20 × 103 W at a power factor of pf = 0:8, the complex power delivered to the
load is

SL =
PL

pf
× pf + j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−pf2

q� �
= 25× 103 0:8 + j0:6ð Þ

= 20 + j15ð Þ× 103 VA

Given VLj j= 480 V, the magnitude (rms value) of the load current is

ILj j = SLj j
VLj j =

25 × 103

480
= 52:1 A rmsð Þ

The single-phase system in Figure 16–9 has a two-wire transmission line, so the total
complex power absorbed by the line is

SW = 2× ½ ILj j2ZW�= 2× 52:1ð Þ2 × 0:1 + j0:6ð Þ
= 542 + j3260 VA

The source in Figure 16–9 supplies both SW and SL; hence by complex power
conservation,

SS = SW + SL = 20:5 + j18:3ð Þ× 103

= 27:5 × 103ff41:6� VA

The required source apparent power is SSj j= 27:5 kVA. The rms value of the source
voltage is

VSj j = SSj j
ILj j =

27:5 × 103

52:1

= 528 V rmsð Þ
■

E X A M P L E 1 6–9

Repeat Example 16–8 when the load power factor is increased to 0.95 and all other
conditions remain the same.

SOLUTION:
ForPL = 20 × 103 W at a power factor of pf = 0:95, the complex power delivered to the
load is

SL =
PL

pf
× pf + j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−pf2

q� �
= 21:05 × 103 0:95 + j0:312ð Þ

= 20 + j6:57ð Þ× 103 VA

For VLj j= 480 V the magnitude (rms value) of the load current is

ILj j = SLj j
VLj j =

21:05 × 103

480

= 43:86 A

822 C H A P T E R 1 6 AC POWER SYSTEMS



The total complex power absorbed by the two-wire line is

SW = 2× ILj j2ZW

� 	
= 2× 43:86ð Þ2 × 0:1 + j0:6ð Þ

= 385 + j2308 VA

The power produced by the source is

SS = SW + SL = 20:4 + j8:88ð Þ× 103

= 22:2× 103ff23:54� VA

and the required source power is SSj j= 22:24 kVA. The required rms source
voltage is

VSj j = SSj j
ILj j =

22:2 × 103

43:86

= 507 V rmsð Þ
In Example 16–8, the load power factor and reactive power are pf = 0:8 and
QL = 15 kVAR. In this example, the load power factor and reactive power are
pf = 0:95 and QL = 6:57 kVAR. The decrease in the load reactive power reduces
the required source output from 27:5 kVA to 22:2 kVA. The apparent power capac-
ity of the source is a limiting factor in a power system. The reactive power of the load
affects the system-generating capacity even though it transfers no net energy to
the load. ■

E x e r c i s e 16–6
A single-phase source supplies a load through a two-wire line with an impedance of
ZW =2+ j10Ω per wire. The rms load voltage is 2:4 kV and the load receives an apparent
power of 25 kVA at a lagging power factor of 0.85. Find the required source power and rms
voltage.

A n s w e r: 26:6 kVA and 2:55 kV rmsð Þ

P O W E R F A C T O R C O R R E C T I O N

An ac power system generally operates at a lagging power factor since almost all
loads are inductive. The system sources must have the kVA capacity to furnish both
the average power and the positive reactive power the inductive loads demand. As
we saw in Example 16–9, this reactive power flow increases the kVA demand on the
source. For this reason, large industrial customersmay pay a premium for the average
power consumed by inductive loads with low power factors.

Power factor correction is a process that increases the power factor without chan-
ging the power flow to an inductive load. The correction is achieved by adding capac-
itance in parallel with the inductive load ZL, as shown in Figure 16–10. To see how
this improves the power factor, we first find the reactive power of the capacitor. The
voltage across the capacitor isVL since it is in parallel with the loadZL. The capacitor
current is IC = jωCVL, so the reactive power delivered to the capacitor is

QC = jICj2XC = jjωCVLj2 −1
ωC

� �
= −ωCjVLj2

+

–

IL IC

VL 1/jωCZL

FIGURE 16–10
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The reactive powerQC is always negative whileQL for an inductive load is always
positive. The reactive power supplied to the parallel combination is QL +QC, which
means that QC can cancel part (or all) of QL. The net decrease in reactive power
means that the power factor of the parallel combination is higher than the power fac-
tor of the inductive load acting alone.

The parallel capacitor does not change the power flow to the inductive load since
voltageVL and current IL in Figure 16–10 are unchanged. In terms of power flow, the
local capacitor “supplies” part (or all) of the reactive power required by the inductive
load. Physically, reactive power represents a periodic interchange of energy. With
power factor correction, this interchange occurs between an inductive load and a
local capacitor rather than between the inductive load and a distant power source.

E X A M P L E 1 6–1 0

The inductive loadZL in Figure 16–10 draws an apparent power of 5 kVA at a lagging
power factor of 0.75 when the load voltage is 1:2 kV rmsð Þ at 60 Hz. Find the power
factor of the parallel combination when C = 5 μF.

SOLUTION:
For SLj j= 5 kVA at a lagging power factor of 0.75, the complex power delivered to
ZL is

SL = 5000 × 0:75 + j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−0:752

p� 	
= 3750 + j3307 VA

When VLj j= 1200 V rmsð Þ at 60 Hz, the reactive power of a 5-μF capacitor is

QC = −2πfC VLj j2 = −2π60 × 5× 10−6 1200ð Þ2

= −2714 VAR

The total complex power delivered to the parallel combination is

SP = SL + jQC−3750 + j3307− j2714

= 3750 + j593 VA

and the “corrected” power factor of the parallel combination is

pfcor =
3750

3750 + j593j j = 0:988
■

D E S I G N E X A M P L E 1 6–1 1

The inductive loadZL in Figure 16–10 draws an apparent power of 2 kVA at a lagging
power factor of 0.8 when the rms load voltage is 880 V rmsð Þ at 60 Hz. Find the value
of the capacitance C needed to raise the power factor of the combination to 0.95
lagging.

SOLUTION:
For SLj j= 2 kVA at a lagging power factor of 0.8, the complex power delivered to
ZL is

SL = 2000 × 0:8+ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−0:82

p� 	
= 1600 + j1200 VA
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Since PL=1600W, the parallel combination must draw an average power of
1600 W because the capacitor does not draw any average power. To deliver
1600W at a power factor of 0.95, the complex power delivered to the parallel
combination must be

SP =
1600
0:95

× 0:95 + j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−0:952

p� 	
= 1600 + j526 VA

The capacitive reactive power needed to produce this result is the difference between
the reactive power in SP and SL. That is,

QC = Im SPð Þ−Im SLð Þ
= 526−1200 = −674 VAR

Since QC = −2πfC VLj j2, the required capacitance is found to be

C =
−QC

2πf VLj j2

=
− −674ð Þ

2π60 880ð Þ2 = 2:31 × 10−6 F
■

D e s i g n E x e r c i s e 16–7
For the load conditions in Example 16–11, find the capacitance
needed to raise the power factor to unity.

A n s w e r: C =4:11 μF

16–5 B A L A N C E D T H R E E - P H A S E C I R C U I T S
Electricity is transferred from generating power plants be they
coal, gas, nuclear, hydro, wind, photovoltaic, etc., using high-
voltage transmission lines to substations located near users of
the electricity, such as major factories, population centers,
and the like. Subsequently, the electricity is transferred from
the substations to the end users via a distribution network.
Transmission lines typically use three-phase alternating current
(ac) at high-voltages and are carried on towers similar to that
pictured in Figure 16–11. Smaller towers at lower voltages are
used for the distribution network that delivers electricity to
industrial users using three-phase power. Residential and small
commercial consumers use split-phase 120 V=240 V power. In
this section, we will concentrate on three-phase power.

In a single-phase circuit, all of the voltage sources have the
same phase angle. A three-phase circuit contains three single-
phase circuits with each source at a different phase angle.
Figure16–12 showsa three-phasepower circuitmadeupof three
single-phase circuits. The power flows from the sources to the
loads thoughthree lines labeledA,B,andC.Thephasorcurrents
in these lines, labeled IA, IB, and IC, are called line currents.
There is also a neutral line labeled N shown carrying a current
IN. As we shall see, IN = 0 in balanced three-phase circuits, so
this line plays no role in the power flow from source to load.
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n 
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FIGURE 16–11 Three-phase power transmission tower.
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B A L A N C E D T H R E E - P H A S E V O L T A G E S

There are six voltages associated with the three-phase sources in Figure 16–12,
namely three line-to-line voltages and three line-to neutral voltages. These six vol-
tages are defined using two subscripts to identify the two points across which the volt-
age is measured. In this double subscript notation there is an implied + reference
mark at the first subscript and an implied − at the second.1 For example, VAB is
the voltage between line A and line B with an implied + at A and a − at B. Using
this convention, the other two line-to-line voltages are denoted VBC and VCA. Col-
lectively, these three line-to-line voltages are called simply the line voltages. Using
the same convention, the three line-to-neutral voltages are denoted VAN, VBN,
and VCN and are collectively called the phase voltages.

These two sets of voltages are not independent since they are constrained byKVL.
Applying KVL in Figure 16–12 around the closed path from point N to A to B and
back to N yields −VAN +VAB +VBN = 0 or

VAB =VAN−VBN (16–17a)

Applying the same logic to the paths N to B to C to N andN to C toA to N leads to

VBC = VBN−VCN

VCA = VCN−VAN
(16–17b)

These equations show that the line and phase voltages are not independent.
The balanced three-phase source in Figure 16–12 produces phase voltages of

the form

VAN = VPff0� V rmsð Þ
VBN = VPff−120� V rmsð Þ
VCN = VPff−240� V rmsð Þ

(16–18)

That is, a balanced source produces phase voltages that are (1) separated in phase by
120� and (2) have the same magnitude VP, where the scalar VP is the rms value of
each phase voltage. Figure 16–13(a) is the phasor diagram of the phase voltages in
Eq. (16–18). This arrangement is called the positive phase sequence or ABC
sequence since VAN leads VBN by 120� and VBN in turn leads VCN by 120�.

Figure 16–13(b) shows the ACB or negative phase sequence obtained by
interchanging the positions of VBN and VCN in the ABC sequence. Physically, the
negative phase (ACB) sequence merely switches the labels on lines B and C in
Figure 16–12.2 In what follows we will always use the positive (ABC) sequence,
except in a few homework problems where the negative sequence is specifically
called for.

The sum of the phase voltages in Eq. (16–18) is

VAN +VBN +VCN = VPff0� +VPff−120� +VPff−240�

= VP 1−0:5− j

ffiffiffi
3

p

2
−0:5 + j

ffiffiffi
3

p

2

 !
= 0

+
–

+
–

+
–

IA

IN

Z

ZW

ZW

ZW

Z Z

IB

IC

N

C

B

A

FIGURE 16–12

VCN = VP /_−240º V jIm

Re

VAN = VP /_0º V

(a)

jIm

Re

(b)

VBN = VP /_−120º V

VBN = VP /_−240º V

VCN = VP /_−120º V

VAN = VP /_0º V

FIGURE 16–13 Two possible
phase sequences (a) Positive.
(b) Negative.

1If we defined all six voltages using the usual + and − reference marks, a three-phase circuit diagram
would be hopelessly cluttered and confusing.
2When connecting real three-phase equipment, it is essential to maintain the identity of lines A, B,
and C. For example, reversing any two leads to a three-phasemotor changes the phase sequence and
causes it to rotate in the opposite direction.
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This zero-sum property is also evident graphically in Figure 16–13, where we see that
the sum of any two of the phasors is the exact opposite of the third. Any set of three
phasors is said to be balanced when the phasors have equal amplitudes and 120�

phase separation. The sum of any balanced set of phasors is always zero.
Inserting the phase voltages VAN and VBN from Eq. (16–18) into Eq. (16–17a)

yields the line voltage VAB.

VAB = VAN−VBN =VPff0�−VPff−120�

= VP−VP −
1
2
− j

ffiffiffi
3

p

2

 !
=VP

3
2
+ j

ffiffiffi
3

p

2

 !
=

ffiffiffi
3

p
VPff30� V

(16–19a)

Similarly, inserting Eq. (16–18) into Eq. (16–17b) gives the other two line voltages:

VBC =
ffiffiffi
3

p
VPff−90� V rmsð Þ

VCA =
ffiffiffi
3

p
VPff−210� V rmsð Þ

(16–19b)

The three line voltages in Eq. (16–19) are balanced since they are separated in phase
by 120� and all have a magnitude of

ffiffiffi
3

p
VP. Figure 16–14 shows the phasor diagram of

the line voltages in Eq. (16–19) and the phase voltages in Eq. (16–
18). Note that each line voltage leads a corresponding phase voltage
by 30�. We will often make use of this 30� phase lead.

In a balanced system, the scalar VL denotes the magnitude (rms
value) of the line voltages. Obviously,VL is related to the phase volt-
age magnitude VP as

VL =
ffiffiffi
3

p
VP (16–20)

In a three-phase circuit, the line-to-line voltages are
ffiffiffi
3

p
times as

large as the line-to-neutral voltages. This ratio appears in three-
phase equipment ratings, such as 120=208 V, where 120 is the phase
voltage and 208 the line voltage.

It may seem that keeping track of six voltages all at different
phase angles makes three-phase circuits much more complicated
than single-phase circuits. Actually, balanced three-phase circuits
are not that complicated because the six voltages are not independ-
ent and their phasors have a great deal of symmetry. In fact, given
the phase sequence and any one of the six voltages, we can get
the other five.

E X A M P L E 1 6–1 2

In a balanced three-phase circuit, the line voltages have an rms value of VL =
480 V rmsð Þ. Using ffVAB as the phase reference, find all of the line and phase voltages
for a positive phase sequence.

SOLUTION:
The specified phase referencemeans that we arbitrarily assign ffVAB = 0�. This assign-
ment together with VL = 480 allows us to write VAB = 480ff0� V rmsð Þ. The other two
line voltages have the same rms value, VL = 480, and phase angles that lag ffVAB at
120� intervals. For a positive (ABC) phase sequence, these voltages are VBC =
480ff−120� V rmsð Þ and VCA = 480ff−240� V rmsð Þ. The rms value of the phase vol-
tages is VP = 480=

ffiffiffi
3

p
= 277 V rmsð Þ. In Figure 16–14, we see that the line voltage

VAB leads the phase voltage VAN by 30�. Since ffVAB = 0� is the phase reference,
we can write VAN = 277ff−30� V rmsð Þ. The other two phase voltages have the same

jIm

Re

VCA

VCN

VBN

VAN

VBC

VAB

  30°

  30°

  30°

FIGURE 16–14 Phasor diagram showing phase
and line voltages for the positive phase sequence.
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rms value and lag ffVAN = −30� at 120� intervals. For a positive phase sequence, these
voltages are VBN = 277ff−150� V rmsð Þ and VCN = 277ff−270� V rmsð Þ.

There is nothing absolute about assigning ffVAB = 0� as the phase reference.
A three-phase circuit has an abundance of voltages and currents all with different
phase angles. We have to start somewhere by choosing one of the phasors as the
phase reference. The choice is arbitrary, but we often use ffVAN = 0� as a phase ref-
erence. Had we done so in this example, the phasor magnitudes VP and VL would be
unchanged but all phase angles would increase by 30�. ■

E x e r c i s e 16–8
In a balanced three-phase circuit, the rms line voltage is VL = 7:2 kV rmsð Þ. Find all of the
phase and line voltages for a positive phase sequence using ffVAN = 0� as the phase
reference.

A n s w e r s: Phase voltages: VAN = 4160ff0� V rmsð Þ, VBN = 4160ff−120� V rmsð Þ, VCN =
4160ff−240� V rmsð Þ.
Line voltages: VAB = 7200ff+ 30� V rmsð Þ, VBC = 7200ff−90� V rmsð Þ, VCA = 7200ff−210�
V rmsð Þ.

E x e r c i s e 16–9
In a balanced three-phase circuit VBC = 480ff−120� V rmsð Þ. Find the phase voltages for a
positive phase sequence.

A n s w e r: Phase voltages: VAN = 277ff−30� V rmsð Þ, VBN = 277ff−150� V rmsð Þ, VCN =
277ff−270� V rmsð Þ.

B A L A N C E D T H R E E - P H A S E C O N N E C T I O N S

A balanced three-phase source can be represented by three voltage
sources. The sources can be either Y3-connected, as in Figure 16–15
(a), or Δ-connected, as in Figure 16–15(b). Similarly, a balanced
three-phase load can be represented by three equal impedances that
can be either Y-connected as in Figure 16–16(a) or Δ-connected as
in Figure 16–16(b). These connections may be arranged various
ways in a circuit diagram, but a Y-connection always involves three
(and only three) elements tied together at a single node, while a
Δ-connection always involves a loop containing three (and only
three) elements.

Since the source and load can be either Y- or Δ-connected, it may seem that we
must deal with four possible circuit configurations.

Configuration Source Load
Y-Y Y-connected Y-connected
Y-Δ Y-connected Δ-connected
Δ-Y Δ-connected Y-connected
Δ–Δ Δ-connected Δ-connected

Keeping track of the various three-phase voltages and currents in four different con-
figurations may look like a daunting task. Fortunately, there is a way to deal with all
of these cases using an equivalent Y-Y circuit.
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3In power jargon, “Y” is at times referred to as “Wye”

828 C H A P T E R 1 6 AC POWER SYSTEMS



To develop this equivalence, we start with balanced three-phase sources. The Y-
connected sources in Figure 16–15(a) produce the phase voltages VAN, VBN, and
VCN. The Δ-connected sources in Figure 16–15(b) produce the line voltages VAB,
VBC, and VCA. In a balanced system, these voltages are not independent. Given
any one of them, we can easily calculate the other five. Specifically, if a balanced
Δ-connected source produces VAB =VLffϕ, then a Y-connected source with

VAN =
VLffiffiffi
3

p ffϕ−30� V rmsð Þ

VBN =
VLffiffiffi
3

p ffϕ−150� V rmsð Þ

VCN =
VLffiffiffi
3

p ffϕ−270� V rmsð Þ

(16–21)

would produce the same line-to-line voltages as the Δ-connected source. In other
words, a balancedΔ-connected source can be replaced by an equivalent Y-connected
source without changing the response of the rest of the circuit.

Actually, Δ-connected generators are rare because of practical limitations. If the
three sources in Figure 16–15(b) are perfectly balanced, then VAB +VBC +VCA = 0
and KVL is satisfied around the loop of voltage sources. However, even a slight
imbalance can produce large losses due to a current circulating in this loop whose
magnitude is limited only by the internal impedances of the sources. In addition,
in circuit theory, a loop of ideal voltage sources is called a pathological circuit because
there is no unique solution for the current produced by each source. For both prac-
tical and theoretical reasons, we will not treat Δ-connected sources further in
our study.

An equivalent Y-connected load can replace a Δ-connected load. First, observe
that the impedance seen between any two terminals of the Y-connected load in
Figure 16–16(a) is ZY +ZY = 2ZY. Second, note that the impedance seen between
any two terminals of the Δ-connected load in Figure 16–16(b) is
ZΔ k ZΔ +ZΔð Þ=ZΔ k 2ZΔð Þ. The two loads are equivalent when these impedances
are equal, that is, when

2ZY =ZΔ k 2ZΔð Þ= ZΔ × 2ZΔ

ZΔ + 2ZΔ
=
2ZΔ

3

Solving for ZY yields

ZY =
ZΔ

3
(16–22)

Any balanced Δ-connected load with phase impedance ZΔ can be replaced by an
equivalent Y-connected load whose phase impedance isZY =ZΔ=3 without changing
the response of the rest of the circuit.

The change from a Δ-connected load to an equivalent Y-connected load does not
change the angle of the phase impedance. That is, Eq. (16–22) is a scalar change only
so that

ffZY = ffZΔ = θ

This means that equivalent Y- and Δ-connected loads have the same power
factor, pf = cos θ.
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E X A M P L E 1 6–1 3

Figure 16–17 shows a balanced Δ-connected load in parallel with a balanced
Y-connected load. The two-phase impedances are ZΔ = 120 + j40Ω and ZY = 50 +
j30Ω. Find the phase impedance of an equivalent Y-connected load.

SOLUTION:
S T E P 1 We first convert the Y-connected load in Figure 16–17 into an equivalent

Δ-connected load using Eq. (16–22). The conversion yields phase impedances
of 3ZY and produces the circuit configuration in Figure 16–18(a).

S T E P 2 Each phase impedance 3ZY is in parallel with phase impedance ZΔ. Combin-
ing these parallel impedances as ZΔ k 3ZY produces the equivalent
Δ-connected load in Figure 16–18(b), where

ZΔEQ =ZΔ k 3ZY =
ZΔ × 3ZY

ZΔ + 3ZY

=
120 + j40ð Þ 150 + j90ð Þ
120 + j40 + 150 + j90

= 67:6 + j29:7Ω

S T E P 3 We use Eq. (16–22) again, this time to convert the load in Figure 16–18(b) into
the equivalent Y-connected load in Figure 16–18(c), where

ZYEQ =
ZΔEQ

3
=
67:6+ j29:7

3

= 22:5 + j9:9Ω

In sum, ZYEQ is the phase impedance of a balanced Y-connected load that is
equivalent to the two parallel loads in Figure 16–17. ■

E x e r c i s e 16–10
Two balanced Δ-connected loads are connected in parallel. Their phase impedances are
ZΔ1 = 50 + j24Ω andZΔ2 = 60 + j25Ω. Find the equivalent Y-connected load for the two par-
allel loads.

A n s w e r: ZYEQ = 9:10 + j4:10Ω

16–6 T H R E E - P H A S E C I R C U I T A N A L Y S I S

The analysis of the Y-Y circuit in Figure 16–19 is the key to understanding balanced
three-phase circuits. The source and load in this circuit are Y-connected since both
involve three elements tied together at a single node represented by the neutral line.
This configuration involves three separate single-phase circuits with the source phase
angles separated by 120�. The usual analysis objectives are to determine the line cur-
rents IA, IB, and IC and the power delivered to the load.

Each phase of Y-Y circuit has a load connected across a voltage source, so the
three line currents are easily seen to be

IA =
VAN

ZY
IB =

VBN

ZY
IC =

VCN

ZY

The line currents IA, IB, and IC form a balanced set of phasors because the source
voltages VAN, VBN, and VCN are balanced. As a result, the line currents all have
the same amplitude and are separated in phase by 120�. By calculating one line
current—for example, IA—we can easily construct IB and IC.
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Using ffVAN = 0� as the phase reference, the source voltage is written as
VAN =VPff0�. Writing the phase impedance as ZY = ZYj jffθ leads to the line current
IA as

IA =
VPff0�
ZYj jffθ =

VP

ZYj jff−θ= ILff−θA rmsð Þ (16–23)

The other two line currents lag IA at 120� intervals; hence for a positive phase
sequence IB = ILff−θ−120� A rmsð Þ and IC = ILff−θ−240� A rmsð Þ. In general usage,
the scalar IL denotes the magnitude (rms value) of the line currents in any balanced
three-phase circuit. For a balanced Y-connected load, IL is defined by

IL =
VP

ZYj j (16–24)

Figure 16–20 shows a phasor diagram of the line currents and phase voltages
in a Y-Y circuit.

Applying KCL at node N in Figure 16–19 yields IA + IB + IC + IN = 0. Since
the line currents are balanced their sum is IA + IB + IC = 0, hence KCL
requires IN = 0. There is no current in the neutral connection of a balanced
Y-Y circuit. The response of the circuit is not changed when this line is
replaced by any impedance whatsoever, including infinite. Put differently,
the power flow does not change when the neutral line in Figure 16–19 is
removed. As a visual aid, however, we may continue to show the neutral line
in Y-Y circuits because it serves as a reference node for the phase voltages.

E X A M P L E 1 6–1 4

In a balanced Y-Y circuit, the line voltage is VL = 480 V rmsð Þ and the phase imped-
ance isZY = 24 + j9Ω per phase. Using ffVAN = 0� as the phase reference, find the line
current and line voltage phasors for a positive phase sequence.

SOLUTION:
Themagnitude of the phase voltage isVP =VL=

ffiffiffi
3

p
= 277 V rmsð Þ. For the given phase

reference, we have VAN = 277ff0� and the phase A line current is found to be

IA =
VAN

ZY
=

277ff0�
24 + j9j jff20:6� = 10:8ff−20:6� A rmsð Þ

The other two line currents have the same magnitude and are separated in phase by
120�. For a positive phase sequence, these currents are IB = 10:8ff−140:6� A rmsð Þ and
IC = 10:8ff−260:6� A rmsð Þ. In a positive phase sequenceVAB leadsVAN by 30�; hence
VAB =VLff30� = 480ff30� V rmsð Þ. The other two line voltages are VBC = 480ff−90�
V rmsð Þ and VCA = 480ff−210� V rmsð Þ. ■

E x e r c i s e 16–11
A balanced Y-Y circuit operates with VL = 4160 V rmsð Þ and phase impedances of
ZY = 100+ j40Ω per phase. Using ffVAB = 0� as the phase reference, find IA and VAN for
a positive phase sequence.

A n s w e r: IA =22:3ff−51:8� A rmsð Þ, VAN = 2400ff−30� V rmsð Þ

Figure 16–21 shows a Y-Y circuit with three equal impedances ZW added to rep-
resent a three-wire transmission line connecting the source to the load. Adding line
impedances does not unduly complicate the analysis since the overall Y-Y circuit
is still balanced. The line impedances can be treated as part of an augmented
Y-connected load whose phase impedance is ZY +ZW.

VCN = VP ∠–240º  V (rms) jIm

Re

VAN = VP∠0º V (rms)

IC

IA

IB

θ

θ

θ

VBN = VP ∠–120º  V (rms)

FIGURE 16–20 Line currents and
phase voltages in a Y-Y circuit.
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The main difference is that the line voltages at the source and at the load are not
equal because of the voltage drop in the line. For this reason, the lines are labeled
with uppercase letters (ABCN) at the source and with lowercase letters (abcn) at
the load. For example, the line voltages are denotedVAB,VBC, andVCA at the source
and Vab, Vbc, and Vca at the load.

E X A M P L E 1 6–1 5

In Figure 16–21(a), the load impedance and line impedances are ZY = 10 + j5Ω per
phase andZW =0:15 + j0:85Ω per phase, respectively. Themagnitude of the line volt-
age at the source is VL = 208 V rmsð Þ. Using ffVA = 0� as the phase reference, find the
line current phasors and the line voltage phasors at the load for a positive phase
sequence. Validate your results using Multisim. Assume 60Hz.

SOLUTION:
In this example, the line voltage at the source is VL = 208 V rmsð Þ. The phase voltage
magnitude at the source is VP =VL=

ffiffiffi
3

p
= 120 V rmsð Þ. This phase voltage appears

across the combined impedance ZW +ZY, so the line current magnitude is found
to be

IL =
VP

ZY +ZWj j =
120

10:15 + j5:85j j = 10:24 A rmsð Þ

The specified phase reference means that VAN = 120ff0� V rmsð Þ. For a positive
phase sequence, the other two line voltages are VBN = 120ff – 120� V rmsð Þ and
VCN = 120ff – 240� V rmsð Þ. The phase voltages at the load are balanced and are
denotedVab,Vbc, andVca. The three line currents are IA, IB, and IC. The first of these
currents is found as

IA =
VAN

ZW +ZY
=

120ff0�
0:15 + j0:85 + 10 + j5

=
120ff0�

11:72ff29:9� = 10:24ff−29:9� A rmsð Þ

The remaining two line currents are related by 120�. Hence, IB = 10:24
ff−149:9� A rmsð Þ and IC = 10:24ff−269:9� A rmsð Þ.

The phase voltages at the load are balanced and are denoted Van, Vbn, and Vcn.
The first one is found as

Van = IAZY = 10:24ff−29:9�ð Þ 10 + j5ð Þ= 10:24ff−29:9�ð Þ 11:18ff26:6�ð Þ
Van = 114:5ff−3:36� V rmsð Þ

Line voltages are
ffiffiffi
3

p
times as large as the phase voltages and lead the phase vol-

tages by 30�. Hence, we have

Vab =
ffiffiffi
3

p
ff30�

� 	
114:5ff−3:36�ð Þ= 198:4ff26:6� V rmsð Þ

The other two line voltages are Vbc = 198:4ff−93:4� and Vca = 198:4
ff−213:4� V rmsð Þ. The line magnitude at the load (198:4 V rmsð Þ) is less than the
line voltage at the source (208 V rmsð Þ) due to the voltage loss across the line
impedances.

Multisim allows the circuit to be readily analyzed. Draw the circuit as shown in
Figure 16–21(b). Note the impedances need to be converted into the time domain.
Hence, the line inductance is j0:85 = j2π × 60L or L = 2:25 mH, and the load induc-
tance is j5 = j2π × 60L or L = 13:3 mH. Ask Multisim to perform a Single
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Frequency AC analysis at 60 Hz. The desired line voltage phasors are the difference
between the load voltages Van, Vbn, and Vcn. These need to be added as expressions
for analysis. The line currents are simply the currents through each of the elements in
the lines. We selected the current through the line resistors. Grapher View returned
the table shown in Figure 16–22(c). Note that Multisim likes to avoid angles less than
−180� by adding 360� to the angle. Hence, IC = 10:24ff−269:9� A rmsð Þ results in
10:24ff90:1� A rmsð Þ, and Vca = 198:4ff−213:4� V rmsð Þ is reported as Vca = 198:4
ff146:6� V rmsð Þ. ■

E x e r c i s e 16–12
In a balanced Y-Y circuit, the load and line impedances are ZY = 16 + j12Ω per phase and
ZW =0:25 + j1:5Ω per phase. The line current is IL = 14:2A rmsð Þ. Find the line voltage pha-
sors at the source using ffV~AN = 0� as the phase reference. Verify your reults usingMultisim.
Assume 60Hz.

A n s w e r: VAB = 519:6ff30:0� V rmsð Þ,VBC = 519:6ff−90:0� V rmsð Þ, andVCA = 519:6ff150:0�
or 519:6ff−210:0�V rmsð Þ.

A N A L Y S I S O F T H E Y -Δ C I R C U I T

Wenowextendouranalysisof three-phasecircuits totheY-Δ circuit in Figure 16–22(a).
In this circuit, the three sources are Y-connected because they are tied together at
node N. The three load impedances areΔ-connected since they form a three-element
loop. A neutral line is not shown in this case since the delta load has no place to con-
nect a neutral line.

When the analysis objective is to determine the line currents and the power flow,
we replace the Δ-connected load by an equivalent Y-connected load and analyze the
resulting Y-Y circuit. However, in some cases, wemay also need to know the currents
labeled IAB, IBC and ICA shown in Figure 16–22(a). These are the phase currents that
exist in each load impedance of the Δ-connected load.

The impedancesZΔ are connected from line to line so the phase currents are easily
seen to be

IAB =
VAB

ZΔ
IBC =

VBC

ZΔ
ICA =

VCA

ZΔ

The phase currents IAB, IBC, and ICA are balanced since the line voltages VAB, VBC,
andVCA are balanced. Since they are balanced, the phase currents all have the same
amplitude and are separated by 120�. Hence, we can calculate one of them, say IAB,
and use it to get the other two.

Example 16–15
Single Frequency AC Analysis @ 60 Hz

Variable
Frequency

(Hz) Magnitude Phase (deg)

1 I(R1) 60 10.2 –29.9

–149.9

90.1

26.6

–93.4

146.6

2 I(R2) 60 10.2

3 I(R3) 60 10.2

4 V(an)-V(bn) 60 198.4

5 V(bn)-V(cn) 60 198.4

6 V(cn)-V(an) 60 198.4

(b) (c)
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For a positive phase sequence using ffVAN = 0� as the phase reference, we have
VAB =VLff30�. Writing the phase impedance as ZΔ = ZΔj jffθ, the phase current IAB is

IAB =
VLff30�
ZΔj jffθ =

VL

ZΔj jff−θ+ 30� A rmsð Þ (16–25)

The other two phase currents lag IAB at 120� intervals; hence for a positive phase
sequence IBC = IPff−θ−90� A rmsð Þ and ICA = IPff−θ−210� A rmsð Þ. In a balanced
Δ-connected load, the scalar IP denotes the magnitude (rms value) of the phase
currents and is defined as

IP =
VL

ZΔj j (16–26)

It turns out that there is a simple relationship between line and phase currents. To
show this we calculate the line current IA in the equivalent Y-Y circuit. Using
ffVAN = 0� as the phase reference, the appropriate phase voltage is VAN = VL=

ffiffiffi
3

p� �
ff0� V rmsð Þ. Writing the phase impedance in the equivalent Y-connected load as
ZY = ZΔ=3j jffθ, we express IA as

IA =
VL=

ffiffiffi
3

p� �ff0�
ZΔ=3j jffθ =

ffiffiffi
3

p VL

ZΔj jff−θ=
ffiffiffi
3

p
IPff−θA rmsð Þ (16–27)

Comparing Eqs. (16–25) and (16–27) reveals two important results:

1.
ffiffiffi
3

p
IP = IL, that is, the line currents are

ffiffiffi
3

p
times as large as the phase

currents.

2. ff IAB = ff IA + 30�, that is, phase currents lead line currents by 30�.

The
ffiffiffi
3

p
magnitude factor and 30� phase shift provide a simple way to get the phase

currents from the line currents, or vice versa. Since both sets are balanced, we really
only need to calculate one of them to get the other five.

The next two examples illustrate that phasor responses in a balanced Y-Δ circuit
can be found using IA in the equivalent Y-Y circuit.

E X A M P L E 1 6–1 6

The line voltage at a Δ-connected load (see Figure 16–22(a)) with ZΔ = 40+ j30Ω per
phase is VL = 2:4 kV rmsð Þ. Find the line and phase current phasors using
ffVAN = 0� as the phase reference. Verify your results using Multisim. Assume 60 Hz.

SOLUTION:
We first calculate the line current IA in the equivalent Y-connected load. The phase
voltage at the load is VP = 2400=

ffiffiffi
3

p
= 1386 V rmsð Þ and the load impedance is

ZY =ZΔ=3 = 13:33 + j10Ω. For the specified phase reference we have VAN =
1386ff0� V rmsð Þ, and the phase A line current is calculated as

IA =
VAN

ZY
=

1386ff0�
13:33 + j10j jff36:9� = 83:1ff−36:9� A rmsð Þ

The other two line currents lag IA at −120� intervals. For a positive phase sequence,
these currents are IB = 83:1ff−156:9� A rmsð Þ and IC = 83:1ff−276:9� A rmsð Þ.
The magnitude of the phase current is IP = 83:1=

ffiffiffi
3

p
= 48A rmsð Þ. For a positive phase

sequence, the phase current IAB leads IA by 30�; hence IAB = 48ff−6:9� A rmsð Þ
and the other two phase currents are IBC = 48ff−126:9� A rmsð Þ and ICA =
48ff−246:9� A rmsð Þ.
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Another approach is to calculate IAB directly in the Δ-connected load. Using
ffVAN = 0� as the phase reference, the appropriate line voltage is VAB =VLff30� =
2400ff30�V rmsð Þ. This voltage appears across the impedance ZΔ; hence IAB is found
to be

IAB =
VAB

ZΔ
=

2400ff30�
40 + j30j jff36:9� = 48ff−6:9� A rmsð Þ

which is the same as the result derived using the line current IA.
Multisim allows the Δ-circuit to be readily analyzed. Draw the circuit as shown in

Figure 16–22(b). Note that the impedances need to be converted into the time
domain. Hence, the load inductance is j30 = j2π× 60L or L= 79:6mH. Ask Multisim
to perform a Single Frequency AC Analysis at 60 Hz. The desired line current is the
current exiting (not entering) the sources VAN, VBN, and VCN. Hence, add new
expressions: −I(V1), −I(V2), and −I(V3). The phase currents are simply the currents
through each of the elements in each branch of the delta load. We selected the cur-
rent through the load resistors: I(R4), −I(R5), and I(R6). Grapher View returned the
table shown in Figure 16–22(c). These results are the same as those calculated earlier.

■

E x e r c i s e 16–13
The line voltage at a Δ-connected load with ZΔ =520 + j400Ω per phase is
VL = 1300 V rmsð Þ. Find IA and IAB using ffVA =0� as the phase reference. Verify your
results using Multisim. Assume 60 Hz.

A n s w e r: IA =3:43ff−37:57� AðrmsÞ, IAB = 1:98ff−7:57� AðrmsÞ

E X A M P L E 1 6–1 7

A balanced three-phase source with VL = 200 V rmsð Þ feeds a Δ-connected load with
ZΔ = 12+ j6Ω per phase through a three-wire line with ZW =0:1 + j0:55Ω per phase.
Find the line current and phase current phasors using ffIA = 0� as the phase reference.

SOLUTION:
The phase impedance of the equivalent Y-connected load ZY =ZΔ=3 = 4 + j2Ω. The
phase voltage magnitude at the source is VP = 200=

ffiffiffi
3

p
= 115:5 V rmsð Þ. In each phase,

the voltage VP appears across the series combination of ZW +ZY; hence the line cur-
rent magnitude is

IL =
VP

ZW +ZYj j =
115:5

4:1 + j2:55j j = 23:9A rmsð Þ

Example 16–16
Single Frequency AC Analysis @ 60Hz

Variable Frequency (Hz) Magnitude Phase (deg)

1 I(R6) 60 48.01

2 I(R5) 60 48.01

3 I(R4) 60 48.01

4 –I(V3) 60 83.15

5 –I(V2) 60 83.15

6 –I(V1) 60 83.15
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Using ffIA as the phase reference means IA = 23:9ff0� A rmsð Þ and the other two line
currents lag IA at −120� intervals. For a positive phase sequence, these currents are
IB = 23:9ff−120� A rmsð Þ and IC = 23:9ff−240� A rmsð Þ. The phase current magnitude
is IP = 23:9=

ffiffiffi
3

p
= 13:8A rmsð Þ. The phase current IAB leads IA by 30�; hence IAB =

13:8ff+ 30� A rmsð Þ and the other two phase currents are IBC = 13:8ff−90� A rmsð Þ
and ICA = 13:7ff−210� A rmsð Þ.

Again, we can easily get the phase currents in theΔ-connected load by first finding
the line current IA in the equivalent Y-Y circuit. ■

E x e r c i s e 16–14
The phase B line current in a Δ-connected load with ZΔ = 14+ j9Ω per phase is
IB = 26ff−165� A rmsð Þ. Find IAB and VAB for a positive phase sequence.

A n s w e r s: IAB = 15ff−15� A rmsð Þ, VAB = 250ff17:7� V rmsð Þ

The phasor responses in a balanced three-phase circuit can be found in several
ways using various methods of ac circuit analysis. However, the previous examples
suggest a shortcut method based on the phasor symmetries in balanced circuits.
Because of these symmetries phasor responses can be derived from IA (or IAB)
and VAN (or VAB) using a

ffiffiffi
3

p
magnitude change and a 30� phase shift. As a matter

of analysis strategy, a shortcut method of finding phasor responses is to find first IA
and VAN in the equivalent Y-Y circuit. Then use the inherent phasor symmetries in
balanced circuits to find other phasor voltages and currents as needed.

These symmetries, however, are lost when the circuit is unbalanced. For example,
the line current symmetries are lost when the load is made up of three unequal impe-
dances. Such simple unbalanced circuits can be handled by ac circuit analysis meth-
ods, including simulations. However, circuit models for a power system involve levels
of complexity that are extremely difficult tomanage using ordinary ac circuit analysis.
For this reason, unbalanced three-phase circuits are analyzed using symmetrical
components.

The method of symmetrical components is treated in detail in courses on power
system analysis. Briefly, this method divides an unbalanced circuit into three parts:

1. A balanced three-phase circuit with a positive phase sequence

2. A balanced three-phase circuit with a negative phase sequence

3. Three identical single-phase circuits

Responses in the unbalanced circuit are then calculated as a superposition of the
responses found in each of these parts. Thus, the method of symmetrical components
treats unbalanced circuits using methods developed in this chapter, namely the anal-
ysis of single-phase and balanced three-phase circuits.

A N A L Y S I S O F P O W E R I N T H R E E - P H A S E C I R C U I T S

The analysis of power focuses on the flow of complex power rather than the phasor
voltages and currents in the circuit. The circuit in Figure 16–23 is used to illustrate the
analysis of three-phase power flow. The circuit consists of a balanced three-phase
source supplying power to a balanced three-phase load through a three-wire power
line with a wire impedance ZW in each line. Our immediate objective is to find the
complex power delivered to the load for specified conditions at the source or load
terminals. The load can be either Y- or Δ-connected but we do not need to know
how the source is connected. We only need to know that it is balanced.

IL

IL

IL

ZW

ZW

Balanced
three-phase

source

Balanced
three-phase

load

ZW

FIGURE 16–23
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The power delivered to the load in Figure 16–23 can be found using the scalars IL
and VL rather than phasors. The scalar IL is the magnitude (rms value) of the current
in the lines connecting the source and load. The scalar VL is the magnitude (rms
value) of the line-to-line voltage at the load. However, remember that the voltages
at the source and at the load are not the same due to the voltage drops in the line
impedances.

When the load in Figure 16–23 is Y-connected, an rms current IL passes through
each phase impedance ZY. The complex power delivered to each phase is I2LZY, so
the total load power is

SL = 3I2LZY

Writing the definition of IL in Eq. (16–24) in terms of VL as

IL =
VP

ZYj j =
VL=

ffiffiffi
3

p

ZYj j
allows us to express the total complex power as

SL = 3 ILð Þ ILð ÞZY = 3
VL=

ffiffiffi
3

p

ZYj j ILZY

=
ffiffiffi
3

p
VLIL

ZY

ZYj j =
ffiffiffi
3

p
VLILejθ

where θ= ffZY. Thus, the complex power delivered to the Y-connected load depends
on the line voltage, line current, and the angle of the phase impedance.

SL =
ffiffiffi
3

p
VLILejθ =PL + jQL (16–28)

where PL =
ffiffiffi
3

p
VLIL cosθ andQL =

ffiffiffi
3

p
VLIL sinθ are the average and reactive powers

delivered to the load.
When the load in Figure 16–23 is Δ-connected, an rms current IP passes through

each phase impedance ZΔ. The total complex power delivered to the load is

SL = 3I2PZΔ

Using the definition of IP in Eq. (16–26) and the fact the IP = IL=
ffiffiffi
3

p
, the total power

can be written as

SL = 3 IPð Þ IPð ÞZΔ = 3
VL

ZΔj j
� �

ILffiffiffi
3

p ZΔ

� �
=

ffiffiffi
3

p
VLIL

ZΔ

ZΔj j =
ffiffiffi
3

p
VLILejθ

where θ= ffZΔ. The final expression for SL found here is the same as Eq. (16–28) for a
Y-connected load. Thus, Eq. (16–28) applies to the balanced load in Figure 16–23
whether it is Y-connected or Δ-connected.

The generality of Eq. (16–28) is a key result. We will make frequent use of this
result in the analysis of three-phase power flow, especially the fact that the apparent
power delivered to any balanced load is SLj j= ffiffiffi

3
p

VLIL since ejθ


 

= 1.

E X A M P L E 1 6–1 8

The load in Figure 16–23 is Y-connected with a phase impedance of ZY =
12 + j5Ω=phase and the line voltage at the load is VL = 440 V rmsð Þ. Find the line
current IL and the complex power delivered to the load. Verify your answers using
Multisim. Assume 60 Hz
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SOLUTION:
Since VL = 440 V rmsð Þ, the phase voltage at the load is VP = 440=

ffiffiffi
3

p
= 254 V rmsð Þ. In

a Y-connected load, this voltage appears across the phase impedanceZY and the line
current is found to be

IL =
VP

ZYj j =
254

12 + j5j j = 19:5A rmsð Þ

The scalar IL is the rms current in all three phase impedances ZY. Hence, the total
complex power delivered to the load is

SL = 3I2LZY = 3 19:5ð Þ2 12 + j5ð Þ
= 13:7 × 103 + j5:73 × 103 VA

No phasors were needed to solve this problem. The power flow in a balanced three-
phase circuit can usually be found using only the scalars VLand IL together with the
line and load impedances.

We built the circuit in Multisim. At 60 Hz the inductor is 13:26 mH.We can find IL
using any of the three line currents. We selected the current through one of the load
resistors and asked for its magnitude: mag(I(R4)). We created a new expression to
find the complex power

SL = 3I2LZY = 3I2L
VAN

IA

� �
,

which we wrote as 3*mag(I(R6)) 2̂*(V(4)/I(R6)). Grapher View responded with
IL = 19:5 AðrmsÞ and SL = 13:7 × 103 + j5:73 × 103 VA. These are the same results as
calculated by hand. ■

E x e r c i s e 16–15
In Figure 16–23 the load is Δ-connected with a phase impedance of ZΔ = 26+ j8Ω=phase
and the line voltage at the load isVL = 1:0 kV rmsð Þ. Find the line current IL and the complex
power delivered to the load.

A n s w e r s: IL = 63:7A rmsð Þ, SL = 105× 103 + j32:4× 103 VA

E X A M P L E 1 6–1 9

In Figure 16–23, the load is Y-connected with a phase impedance of ZY = 15 +
j6Ω=phase and the line current is IL = 10 A rmsð Þ. Find the line voltage VL and the
complex power delivered to the load.

SOLUTION:
In this example, the line current IL and phase impedance ZY are given, hence the
complex power delivered to the load is

SL = 3I2LZY = 3 10ð Þ2 15 + j6ð Þ
= 4:5 + j1:8 kVA

The apparent power delivered to any balanced load can be written as SLj j= ffiffiffi
3

p
VLIL.

Solving for the line voltage gives

VL =
SLj jffiffiffi
3

p
IL

=
4:5 × 103 + j1:8 × 103


 

ffiffiffi

3
p

× 10
= 280 V rmsð Þ

Again, no phasors are needed to solve this problem. ■
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E x e r c i s e 16–16
In a balanced three-phase circuit, the line voltage at the load is 4160 V rmsð Þ and the appar-
ent power delivered to the load is 60 kVA. Find the line current.

A n s w e r: IL = 8:33 A rmsð Þ

E X A M P L E 1 6–2 0

An average power of 20 kW is delivered to a balanced Δ-connected load with
ZΔ = 30+ j45Ω=phase. Find the line voltage VL at the load and the complex power
delivered to the load.

SOLUTION:
In a balanced Δ-connected load, the phase current IP passes through all three
of the phase impedances. The total average power delivered to the load is
PL = 3I2PRΔ, where RΔ is the resistive part of the phase impedance ZΔ. Solving for
IP yields

IP =

ffiffiffiffiffiffiffiffiffi
PL

3RΔ

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20 × 103

3 × 30

s
= 14:9A rmsð Þ

The total complex power delivered to a delta load is then found as

SL = 3I2PZΔ = 3 14:9ð Þ2 30 + j45ð Þ
= 20 × 103 + j30 × 103 VA

Given the phase current, the line current is IL =
ffiffiffi
3

p
× 14:9 = 25:8A rmsð Þ. The

apparent power delivered to any balanced load is SLj j= ffiffiffi
3

p
VLIL. Solving for the line

voltage gives

VL =
SLj jffiffiffi
3

p
IL

=
20× 103 + j30 × 103


 

ffiffiffi

3
p

× 25:8
= 807 V rmsð Þ

■

E X A M P L E 1 6–2 1

In Figure 16–23, the three-phase source produces an apparent power of 3:5 kVA
at a power factor of 0.8 lagging and a line current of IL = 4:6A rmsð Þ. The
three lines connecting the source to the load have impedances of ZW =1
+ j6Ω=phase. Find the complex power delivered to the load and the line voltage
at the load.

SOLUTION:
The complex power produced by the source is

SS = SSj j pf + j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−pf2

q� �
= 3:5 × 103 0:8 + j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−0:82

p� 	
= 2:8+ j2:1ð Þ kVA

The complex power lost in any one wire is I2LZW, so the total line loss is

SW =3I2LZW =3× 4:6ð Þ2 1 + j6ð Þ
=63:5 + j381 VA
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The complex power delivered to the load equals the power produced by the source
minus the line losses. Hence

SL = SS−SW =2:74 + j1:72 kVA

Accordingly, we get the line voltage at the load as

VL =
SLj jffiffiffi
3

p
IL

=
2:74 × 103 + j1:72 × 103


 

ffiffiffi

3
p

× 4:6
= 406 V rmsð Þ

■

E x e r c i s e 16–17
In Figure 16–23, the line current is IL = 10 A rmsð Þ, the line impedance is
ZW =0:6 + j3:7Ω=phase, and the phase impedance of the load isZY = 15+ j28Ω=phase. Find
the complex power produced by the source.

A n s w e r: SS = 4:68 + j9:51 kVA

E x e r c i s e 16–18
In Figure 16–23, the line current is IL = 5A rmsð Þ, the line impedance isZW =2+ j6Ω=phase
and the load absorbs SL = 3 + j2 kVA. Find the complex power produced by the source.

A n s w e r: SS = 3:15 + j2:45 kVA

I N S T A N T A N E O U S P O W E R I N T H R E E - P H A S E C I R C U I T S
Earlier in this chapter, we found that the instantaneous power in a single-phase cir-
cuit has a dc component and an ac component. The ac components cause the instan-
taneous power flow to oscillate about an average value. One of the advantages of
balanced three-phase circuits is that the total instantaneous power does not have
an ac component.

We previously developed Eq. (16–7) to relate the instantaneous power p tð Þ in a
single-phase circuit to the two components of complex power P andQ. Applying this
equation to a balanced three-phase circuit yields the instantaneous power in any
phase of a load:

pphase tð Þ=P 1 + cos 2ωt + 2ϕð Þ½ �−Q sin 2ωt + 2ϕð Þ½ �
where P and Q are the average and reactive powers carried by the phase, and the
angle ϕ is 0� for phase A, −120� for phase B, and −240� for phase C.

The total instantaneous power is the sum of the power in each phase.

ptotal tð Þ = pA tð Þ+ pB tð Þ+ pC tð Þ
= 3P+P cos 2ωtð Þ+ cos 2ωt−240�ð Þ+ cos 2ωt−480�ð Þ½ �
−Q sin 2ωtð Þ+ sin 2ωt−240�ð Þ+ sin 2ωt−480�ð Þ½ �

Both bracketed terms in this equation contain three sinusoids with equal amplitudes
and separated in phase by 120� (−480� is the same as −120�). Like their phasor coun-
terparts, the sum of a balanced set of three sinusoidal waveforms is zero. Hence, the
bracketed terms both vanish, leaving

ptotal tð Þ= 3P=PL =
ffiffiffi
3

p
VLIL cos θ

The fact that the total instantaneous power flow is constant rather than oscillating
means that three-phase systems operate smoothly with less vibration at their mechan-
ical inputs and outputs.
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16–7 T H R E E - P H A S E P O W E R F L O W
In ordinary circuit analysis, the goal is to find the power delivered to the load for spe-
cified source conditions. In power flow analysis, the power delivered to the load is
specified and the source conditions are the unknowns. We illustrate power flow anal-
ysis using the three-phase power system in Figure 16–24. The system consists of two
balanced three-phase loads each of which draws a specified complex power from the
system. The power is supplied by a balanced source through a pair of three-wire
transmission lines with impedances of ZW1 and ZW2. In a power sys-
tem, a bus is defined as a set of three nodes at which three-phase ele-
ments are tied together. The analysis problem is to determine the
system voltages and currents that produce a specified power flow to
the loads.

Even in a simple system like Figure 16–24, it seems clear that show-
ing all three of the phases contributes little to our understanding of the
power flow. Actual power systems may have hundreds of sources and
loads all interconnected by a web of transmission lines. Including all
three of the phases would make the system diagram hopelessly clut-
tered. In a balanced system, each phase carries the same complex
power, so we do not need to show all of them.

A simpler representation is to use a single line to represent all three
of the phases. Figure 16–25 is a single-line representation of the power
system in Figure 16–24 with the three buses shown as short horizontal lines. In a
single-line diagram, a bus can be thought of as a single node at which sources, loads,
and lines are tied together. The source at bus 1 is shown as a circle with an arrow
indicating power flow into the system. The loads at bus 2 and bus 3 are shown as
arrows indicating power flow out of the system. The two transmission lines are
represented by their impedances ZW1 and ZW2.

By power flow, we mean complex power, S=P+ jQ. We use a subscript to iden-
tify the bus at which power enters or exits the system. In Figure 16–25, the symbol
S1 is the power supplied to the system by the source at bus 1, while S2 and S3 are the
powers extracted from the system by the loads at bus 2 and bus 3. In single-line
diagrams, the line currents and line voltages at represented by the scalars IL and
VL, with subscripts added for clarity as needed. In general, we do not use load
impedances since this information is implicit in the specified complex power flow.
We do not need to know whether sources and loads are Y- or Δ-connected. We need
only know that they are balanced.

The line voltage at each of its buses and the impedances of the lines connecting the
buses control the power flow in a system. Solving a power flow problem involves find-
ing a set of bus voltages and line currents that produce a prescribed system load flow.
Specifically for Figure 16–25, this would mean finding a set of bus voltages VL1, VL2,
VL3 and line currents IL1, IL2 that produce the specified load powers S2 and S3.

In power systems with several hundred buses, the power flow problem is a very
significant computational challenge. Although our examples are very elementary,
they do give some insight into the computational methods involved.

E X A M P L E 1 6–2 2

In Figure 16–26, the source at bus 1 and the load at bus 2 are interconnected by a
transmission line with ZW =1:5 + j8:5Ω=phase. The load at bus 2 draws a complex
power of S2 = 70 + j35 kVA. Assuming that VL2 = 2400 V rmsð Þ, find the complex
power produced by the source and the line voltage at bus 1.

ZW1 ZW2

ZW2

ZW2

ZW1

ZW1

Balanced
three-phase

load

Balanced
three-phase

load

Balanced
three-phase

source

Bus 1 Bus 2 Bus 3

FIGURE 16–24

IL1 IL2

VL1
S1 S2

Bus 1 Bus 2 Bus 3

S3

VL2 VL3

ZW2ZW1

FIGURE 16–25

IL1

VL1
VL2

Bus 1 Bus 2

ZW

FIGURE 16–26
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SOLUTION:
For the given values of VL2 and S2, we find the line current as

IL1 =
S2j jffiffiffi
3

p
VL2

=
70 + j35ð Þ× 103


 

ffiffiffi

3
p

× 2400
= 18:83A rmsð Þ

The power lost in the line is

SW = 3I2LZW =3× 18:83ð Þ2 1:5 + j8:5ð Þ
= 1:6+ j9:0 kVA

The source at bus 1 must supply the load power at bus 1 plus the losses in the line.
Hence, the complex power produced by the source is

S1 = S2 + SW =71:6 + j44 kVA

Now that we have IL1 and S1, we find the line voltage at bus 1 as

VL1 =
S2j jffiffiffi
3

p
IL1

=
71:6+ j44ð Þ× 103


 

ffiffiffi

3
p

× 18:83
= 2:577 kV rmsð Þ

In round numbers, the conditions VL1 = 2:58 kVðrmsÞ, IL1 = 18:8AðrmsÞ, and
VL2 = 2:4 kVðrmsÞ will produce the required load power flow. This set of conditions
is not unique and many other solutions exist. ■

E x e r c i s e 16–19
In Figure 16–26, the load at bus 2 draws a complex power of S2 = 125 + j60 kVA. The line
current is IL = 40 A rmsð Þ, and the line impedance is ZW =2+ j10Ω=phase. Find the line vol-
tages at bus 1 and bus 2.

A n s w e r s: VL1 = 2:49 kV rmsð Þ, VL2 = 2:00 kV rmsð Þ

E X A M P L E 1 6–2 3

In Figure 16–27, the source at bus 1 supplies two load buses through transmission lines
with ZW1 = 45+ j250Ω=phase and ZW2 = 50 + j330Ω=phase. Line 1 connects the
source bus to a load at bus 2 that draws a complex power of S2 = 1:5+ j0:5MVA. Line
2 connects bus 2 to a load at bus 3 that draws a complex power of S3 = 2 + j1:5MVA.
Assuming that the line voltage at bus 3 isVL3 = 115 kV rmsð Þ, find the bus voltagesVL1

andVL2, the line currents IL1 and IL2, and the source power output needed to produce
the specified load powers S2 and S3.

SOLUTION:
For the given values of VL3 and S3, we find the line current in line 2 as

IL2 =
S3j jffiffiffi
3

p
VL3

=
2 + j1:5ð Þ× 106


 

ffiffiffi

3
p

× 115 × 103
= 12:55 A rmsð Þ

The power lost in the line 2 is

SW2 = 3I2L2ZW2 = 3× 12:55ð Þ2 50 + j330ð Þ
= 23:6 + j156 kVA

At bus 2 the input power to line 2 supplies its losses SW2 plus the bus 3 load S3, namely

SW2 + S3 = 2:024 + j1:656MVA

IL1 IL2

VL1
S1 S2

Bus 1 Bus 2 Bus 3

S3

VL2 VL3

ZW1 ZW2

FIGURE 16–27
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At bus 2, the line current into line 2 is IL2. Since the input power to line 2 is SW2 + S3,
the line voltage at bus 2 is found to be

VL2 =
SW2 + S3j jffiffiffi

3
p

IL2
=

2:024 + j1:656ð Þ× 106


 

ffiffiffi

3
p

× 12:55
= 120:3 kV rmsð Þ

At bus 2, the output power of line 1 supplies the bus 2 load plus the input power into
line 2, namely

S2 + SW2 + S3ð Þ= 3:524 + j2:156MVA

The line voltage at the output of line 1 is VL2, hence the line current in line 1 is

IL1 =
S2 + SW2 + S3j jffiffiffi

3
p

VL2
=

3:524 + j2:156ð Þ× 106


 

ffiffiffi

3
p

× 120:3 × 103
= 19:83 A rmsð Þ

Given the line current IL1 the total complex power lost in line 1 is

SW1 = 3I2L1ZW1 = 3× 19:83ð Þ2 45 + j250ð Þ
= 53:1+ j295 kVA

Finally we arrive at bus 1, where the input power to line 1 must equal its losses SW1,
plus its output at the bus 2. This power is supplied by the source at bus 1, hence

S1 = SW1 + S2 + SW2 + S3ð Þ½ �= 3:577 + j2:451MVA

At bus 1 the line current is IL1, hence the line voltage is found to be

VL1 =
S1j jffiffiffi
3

p
IL1

=
3:577 + j2:451ð Þ× 106


 

ffiffiffi

3
p

× 19:83
= 126:2 kV rmsð Þ

In round numbers, the conditions VL1 = 126:2 kV rmsð Þ, IL1 = 19:8 A rmsð Þ,
VL2 = 120:3 kV rmsð Þ, IL2 = 12:5A rmsð Þ, and VL3 = 115 kV rmsð Þ will produce the
required load power flow. This set of conditions is not unique. For example, the
set VL1 = 153 kV rmsð Þ, IL1 = 15:9A rmsð Þ, VL2 = 148 kV rmsð Þ, IL2 = 10 A rmsð Þ, and
VL3 = 144 kV rmsð Þ will produce the same load power flow. ■

S U M M A R Y
• For sinusoidal voltages and currents, the instantane-

ous power is the sum of a dc component and an ac
component. The dc component is the average power
that produces a net transfer of energy. The ac compo-
nent produces no net energy transfer.

• In ac power analysis, the amplitudes of voltage and
current phasors are expressed in rms values. Complex
power is defined as S=VI∗ =P+ jQ. The real part P is
the average power in watts (W), the imaginary partQ
is the reactive power in volt-amperes reactive (VAR),
and the magnitude Sj j is the apparent power in volt-
amperes (VA).

• The power factor is the ratio of the average power to
the apparent power or the cosine of the phase angle
between the voltage and current phasors. The power
factor is said to be lagging when the current lags the
voltage Q> 0ð Þ and leading when the current leads
the voltage Q< 0ð Þ.

• In a single-phase circuit, all sources have the same
phase angle. The objective of single-phase circuit
analysis is to find the power delivered to a specified
load for given source conditions. The objective of
power flow analysis is to find the source conditions
needed to deliver a specified power to a load.

• Power factor correction increases the power factor
without changing the power flow to an inductive load.
The correction is achieved by adding capacitance in
parallel with the inductive load.

• A balanced three-phase source produces line-to-
neutral voltages VAN, VBN, and VCN with 120� phase
separation and the same amplitude VP. The line-to-
line voltages VAB, VBC, and VCA have 120� phase
separation and the same amplitude VL =

ffiffiffi
3

p
VP. In a

positive phase sequence, VAB leads VAN by 30�.

• A balanced Y-connected load has three equal impe-
dances ZY, and a balanced Δ-connected load has

843SUMMARY



three equal impedances ZΔ. A Δ-connected load can
be replaced by an equivalent Y-connected load whose
impedances are ZY =ZΔ=3.

• A shortcut way to analyze a balanced three-phase cir-
cuit is convert it into an equivalent Y-Y configuration.
Analyzing phase A of the Y-Y equivalent yields the
phasor responses needed to get the phasor responses
in any other phase.

• In a balanced three-phase circuit, (1) the neutral wire
carries no current, (2) the line currents IA, IB, and IC
have 120� phase separation and the same amplitude
IL, (3) in a Δ-connected load the phase currents
IAB, IBC, and ICA have 120� phase separation and

the same amplitude IP = IL=
ffiffiffi
3

p
, (4) in a positive phase

sequence IAB leads IA by 30�, and (5) the complex
power delivered to a Y- or a Δ-connected load is
SL =PL + jQL =

ffiffiffi
3

p
VL × ILffθ, where θ is the angle of

the phase impedance.

• The power flow in a balanced three-phase system is
determined by the line voltage at each of its buses
and the impedances of the lines connecting the buses.
The net power flow in all of the lines connected to a
bus determines the power flow into or out of a bus.
A power flow problem involves finding a set of bus
voltages and line currents that produce a prescribed
load power flow.

P R O B L E M S

O B J E C T I V E 16–1 C O M P L E X P O W E R
( S E C T S . 16–1, A D 16–2)
Given a linear circuit in the sinusoidal steady state:
(a) Find the average, reactive, and instantaneous powers for a

specified voltage and current.
(b) Find the load impedance for a specified load power flow.
See Example 16–1 to 16–3 and Exercises 16–1 to 16–3.

16–1 The following sets of v tð Þ and i tð Þ apply to the load circuit
in Figure P16–1. Find the average power, reactive power,
and instantaneous power delivered to the load.
(a) v tð Þ = 500 cos ωt + 45�ð ÞV, i tð Þ = 20 cos ωt + 50�ð ÞA
(b) v tð Þ = 95 cos ωt − 60�ð ÞV, i tð Þ = 5:5 cos ωt − 20�ð ÞA

+

i(t)

v(t)
–

Source Load

FIGURE P16–1

16–2 The following sets of v tð Þ and i tð Þ apply to the load circuit
in Figure P16–1. Calculate the average power and the reac-
tive power.
(a) v tð Þ = 135 sin ωtð ÞV, i tð Þ = 1:5 cos ωt + 30�ð ÞA
(b) v tð Þ = 370 cos ωtð ÞV, i tð Þ = 10 sin ωt + 20�ð ÞA

16–3 The following voltage and current phasors apply to the
circuit in Figure P16–3. Calculate the average power and
reactive power delivered to the impedance Z. Find the
power factor and state whether the power factor is lagging
or leading.
(a) V = 275ff20� V rmsð Þ, I = 2ff−15� A rmsð Þ
(b) V = 220ff155� V rmsð Þ, I = 10:5ff125� A rmsð Þ

V Z

+

–

I

FIGURE P16–3

16–4 The following sets of V and I apply to the circuit in
Figure P16–3. Calculate the complex power and the power
factor. State whether the power factor is lagging or leading.
(a) V = 120ff30� V rmsð Þ, I = 3:3ff−15� A rmsð Þ
(b) V = 440ff45� V rmsð Þ, I = 8ff95� A rmsð Þ

16–5 Given the load circuit in Figure P16–3, find the complex
power delivered to the load impedance Z.
(a) V = 150ff45� V rmsð Þ, Z = 50ff15� Ω
(b) Z = 30 − j40Ω, I = 10ff−25� A rmsð Þ

16–6 Find the load impedance Z for the following complex
powers when jIj = 100A.
(a) S = 1000 + j250 kVA,
(b) jSj = 15 kVA, P = 12 kW, Q < 0.

16–7 An inductive load draws an apparent power of 30 kVA at
a power factor of 0:6 from a 2400-V rmsð Þ source. Find the
complex power S and the load impedance Z.

16–8 A load draws 8 kW at a leading power factor of 0:8 from
an 880-V rmsð Þ source. Find the load current and the load
impedance.

16–9 A load draws 15A rmsð Þ, 6 kW, and 4:5 kVARS (lag-
ging) from a 60-Hz source. Find the load power factor and
impedance.

16–10 Find the impedance of a load that is rated at
440 V rmsð Þ, 5 A rmsð Þ, and 2:2 kW.
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O B J E C T I V E 16–2 S I N G L E - P H A S E C I R C U I T A N A L Y S I S
( S E C T . 16–3)
Given a single-phase circuit operating in the ac steady state,
find the power produced by the sources or delivered to speci-
fied loads.
See Examples 16–1 to 16–7 and Exercise 16–4, 16–5.

16–11 A load made up of a 200-Ω resistor in parallel with a
150-mH inductor is connected across a 240-V rmsð Þ, 60-Hz
voltage source. Find the complex power delivered to the load
and the load power factor. State whether the power factor is
lagging or leading. Verify your answers using Multisim.

16–12 A load made up of a 50-Ω resistor in parallel with a
10-μF capacitor is connected across a 400-Hz source that
delivers 110-V rmsð Þ. Find the complex power delivered to
the load and the load power factor. State whether the power
factor is lagging or leading. Verify your answers using
Multisim.

16–13 A load made up of a 100-kΩ resistor in series with a
0:02-μF capacitor is connected across 2400-V rmsð Þ, 60-Hz
voltage source. Find the complex power delivered to the load
and the load power factor. State whether the power factor is
lagging or leading. Verify your answers using Multisim.

16–14 In Figure P16–14, the load ZL is a 60-Ω resistor in series
with a capacitor whose reactance is −30Ω. The source volt-
age is 440 V rmsð Þ. Find the complex power produced by the
source and the complex power delivered to the load.

+

–

VS ZL

20 Ω

–j20 Ω

j25 Ω

VL
+
–

IL

FIGURE P16–14

16–15 Repeat Problem 16–14 when ZL is a 75-Ω resistor in
parallel with an impedance of 60 − j60Ω.

16–16 In Figure P16–16 the loadZL is a 1500-Ω resistor and the
source voltage is 440 V rmsð Þ. Find the complex power pro-
duced by the source.

VS ZL–j25 Ω

j100 Ωj100 Ω

+
–

FIGURE P16–16

16–17 Repeat Problem 16–16 when the loadZL is 100 − j100Ω
and the source voltage is 220 V rmsð Þ.

16–18 In Figure P16–18 the three load impedances are
Z1 = 20 + j15Ω, Z2 = 25 + j10Ω, and Z3 = 75 + j50Ω.
Use MATLAB to solve for the three currents IA, IB, and
IN, then the total complex power produced by the two
sources, and finally, the overall circuit power factor.

+
–

+
–

110 ∠0º   Vrms

110 ∠0º   Vrms

Z1

Z2

Z3

B

N

A

IA

IN

IB

FIGURE P16–18

16–19 In Figure P16–18, the complex powers delivered to each
load are S1 = 400 + j270 VA, S2 = 550 + j150 VA, and
S3 = 1000 + j0 VA. Find the line currents IA, IN, and IB.
Validate your answers using MATLAB.

16–20 Twoloadsareconnected inparallel acrossan880 V rmsð Þ
line. The first load draws an average power of 20 kW at a
lagging power factor of 0:77. The second load draws 15 kW
at a lagging power factor of 0:85. Find the overall power fac-
tor of the circuit and the current drawn from the line.

O B J E C T I V E 16–3 S I N G L E - P H A S E P O W E R F L O W
( S E C T . 16–4)
Given a specified load power in a single phase circuit:
(a) Find the required source outputs.
(b) Find the parallel capacitance needed to produce a speci-

fied power factor.
See Examples 16–8 to 16–11 and Exercise 16–6 and 16–7.

16–21 The average power delivered to the load ZL in
Figure P16–21 is 46 kW at a lagging power factor of 0:8.
The load voltage is 2:4 kV rmsð Þ and the line has an imped-
ance of ZW = 1 + j8Ω=wire. Find the apparent power pro-
duced by the source and themagnitude of the source voltage.

ZW +

–

+
–

VS ZL

Source Line Load

ZW

VL

IL

FIGURE P16–21

16–22 Repeat Problem 16–21 with the load power factor
increased to 0:95.

16–23 The complex power delivered to the load ZL in
Figure P16–21 is 20 + j15 kVA. The load voltage is
2 kV rmsð Þ and the line has an impedance of ZW = 2 +
j12Ω=wire. Find the magnitude of the source voltage and
the complex power produced by the source.
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16–24 The complex power delivered to the load ZL in
Figure P16–21 is 20 + j15 kVA. The source produces an
average power of 22 kW and the line has an impedance of
ZW = 2 + j12Ω=wire. Find the magnitude of the source
and load voltages.

16–25 In Figure P16–25, the voltage across the two loads is
jVL j = 4:8 kV rmsð Þ. The load Z1 draws an average power
of 15 kW at a lagging power factor of 0:8. The load Z2 draws
an apparent power of 12 kVA at a lagging power factor of
0:85. The line has an impedance of ZW = 9 + j50Ω=wire.
Find the apparent power produced by the source and the
rms value of the source voltage.

ZW +

–

+
–

VS Z1

Source Line Loads

Z2

ZW

VL

IL

FIGURE P16–25

16–26 The two loads in Figure P16–25 draw apparent powers
of jS1 j =16 kVA at a lagging power factor of 0:8 and
jS2 j = 25 kVA at unity power factor. The voltage across
the loads is 3:8 kV and the line has an impedance of
ZW = 5 + j26Ω=wire. Find the apparent power produced
by the source and the rms value of the source voltage.

16–27 A 60-Hz voltage source feeds a two-wire line with
ZW = 0:6 + j3:4Ω=wire. The load at the receiving end of
the line draws an apparent power of 5 kVA at a leading
power factor 0:8. The voltage across the load is
500 V rmsð Þ. Find the apparent power produced by the
source and the rms value of the source voltage.

16–28 InFigure P16–28, the load voltage is jVL j = 4160 V

rmsð Þ at 60 Hz and the load ZL draws an average power of
12 kW at a lagging power factor of 0:75. Find the overall
power factor of the combination if the parallel capacitance
is 1 μF. Select the value of the capacitance required to raise
the overall power factor of the parallel combination to 0:98.

+

–

ZL 1/jωCVL
Rest of the

circuit

FIGURE P16–28

16–29 In Figure P16–28, the load voltage is jVL j =
2400 V rmsð Þ at 60 Hz. The loadZL draws an apparent power
of 25 kVA at a lagging power factor of 0:7. Select the value of
the capacitance required to raise the overall power factor of
the parallel combination to 0:95. Repeat for a power factor
of unity.

16–30 A load draws 4A rmsð Þ and 5 kW at a power fac-

tor 0:8 (lagging) from a 60-Hz source. Select an appropriate
capacitor to be placed in parallel with the load to raise the
overall power factor to unity.

O B J E C T I V E 16–4 B A L A N C E D T H R E E - P H A S E C I R C U I T S
( S E C T . 16–5)
For a balanced three-phase circuit:
(a) Find all of the phase and line voltage phasors for a given

phase reference.
(b) Find equivalent Y- or Δ-connected sources and loads.
See Examples 16–12 and 16–13 and Exercises 16–8 to 16–10.

16–31 In a balanced three-phase circuit the phase voltage
magnitude is VP = 277 V rmsð Þ. For a positive phase
sequence:
(a) Find all of the line and phase voltage phasors usingVAN

as the phase reference.
(b) Sketch a phasor diagram of the line and phase voltages.

16–32 In a balanced three-phase circuit, the line voltage mag-
nitude is VL = 2:4 kV rmsð Þ. For a positive phase sequence:
(a) Find all of the line and phase voltage phasors using VAB

as the phase reference.
(b) Sketch a phasor diagram of the line and phase voltages.

16–33 In a balanced three-phase circuit VBC = j208 V rmsð Þ.
Find all the line and phase voltage phasors in polar form
for a positive phase sequence.

16–34 In a balanced three-phase circuit VAN = 300 + j400 V
rmsð Þ. Find all the line and phase voltage phasors in polar
form for a positive phase sequence.

16–35 A balanced Y-connected three-phase source has
VAN = 120ff−30� V rmsð Þ and a positive phase sequence.
Find the three line voltages in polar form.

16–36 In a balanced three-phase circuit VBN = 2400ff−90� V
rmsð Þ. FindVCA in polar form for a positive phase sequence.

16–37 A balanced Y-connected load with ZY = 10 − j5Ω=
phase is connected in parallel with a balanced delta load with
ZΔ = 60 + j15Ω=phase. Find the phase impedance of an
equivalent delta load.

16–38 A balanced Y-connected load with ZY = 30 − j20Ω=
phase is connected in parallel with a balanced Δ-connected
load with ZΔ = 120 + j400Ω=phase. Find the phase imped-
ance of an equivalent Y-connected load.

16–39 A balanced Y-connected load with ZY1 = 12 − j6Ω=
phase is connected in parallel with a second balanced
Y-connected load with ZY2 = 24 + j6Ω=phase. Find the
phase impedance of the equivalent Y-connected load.

16–40 In a balanced Δ–Δ circuit, the Δ-connected source
produces VAB = 2400ff45� V rmsð Þ and a positive phase
sequence. The phase impedance of the load is ZΔ =
200ff45� Ω=phase. Find the three source voltages and the
phase impedance in the equivalent Y –Y circuit.
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O B J E C T I V E 16–5 T H R E E - P H A S E C I R C U I T A N A L Y S I S
( S E C T . 16–6)
For a given balanced three-phase circuit:
(a) Find the line and phase current phasor responses for a spe-

cified phase reference.
(b) Find the power delivered to a load using the scalars VL

and IL.
See Examples 16–14 to 16–21 and Exercises 16–11 to 18–21.

16–41 In a balanced Y –Y circuit, the line voltage and phase
impedance are VL = 480 V rmsð Þ and ZY = 20 + j10Ω=
phase. Using ffVAN = 0� as the phase reference, find the line
current and line voltage phasors in polar form for a positive
phase sequence. Validate your results using Multisim.
Assume 60Hz.

16–42 In a balanced Y –Y circuit, the line voltage is
VL = 680 V rmsð Þ. The phase impedance is ZY = 50 + j40Ω=
phase. Using ffIA = 0� as the phase reference, find IA and
VAB in polar form for a positive phase sequence.

16–43 In a balanced Y –Δ circuit, the line voltage and phase
impedance are VL = 440 V rmsð Þ and ZΔ = 16 + j12Ω=
phase. Using ffVAB = 0� as the phase reference, find the line
current and phase current phasors in polar form for a posi-
tive phase sequence.

16–44 In a balancedY –Δ circuit, the line impedances connect-
ing the source and load are ZW = 1:5 + j6:5Ω=phase. The
phase impedances of the delta load are ZΔ = 15 + j8Ω=
phase, and the line voltage at the source is VL = 250 V
rmsð Þ. Using ffVAB = 0� as the phase reference, find the line
current IA and phase current IAB for a positive phase
sequence.

16–45 In a balanced Δ –Y circuit, the line voltage and phase
impedance are VL = 4:16 kV rmsð Þ and ZY = 250ff30� Ω=
phase. Using ffVAN = 0� as the phase reference, find the line
voltage VBC and line current IB for a positive phase
sequence. Validate your results using Multisim.
Assume 60Hz.

16–46 A balanced three-phase source with VAB = 220ff60� V
rmsð Þ supplies a balanced Δ-connected load with a phase
impedance of ZΔ = 20ff−90� Ω=phase. Find the phase cur-
rent IAB and line current IA for a positive phase sequence.

16–47 InabalancedY-connected load, the linecurrentandphase
impedance are IL = 4:7A rmsð Þ and ZY = 20 + j16Ω=
phase. Using ffVAB = 0� as the phase reference, find the line
current IA and phase voltage VAN for a positive phase
sequence.

16–48 In a balanced Δ-connected load, the phase current and
phase impedance are IP = 12A rmsð Þ and ZΔ = 200ff
−90� Ω=phase. Using ffVAB = 0� as the phase reference, find
the line current IA and line voltage VAB for a positive phase
sequence .

16–49 An average power of 6 kW is delivered to a balanced
three-phase load with a phase impedance of ZY = 40 +

j30Ω=phase. Find VL and the complex power delivered to
the load.

16–50 An apparent power of 12 kVA is delivered to balanced
three-phase load with a phase impedance of ZY = 120 +
j90Ω=phase. Find IL, VL, and the complex power delivered
to the load.

16–51 A balanced three-phase load has a phase impedance of
ZY = 60 + j40Ω=phase. The line voltage at the load is
VL = 760 V rmsð Þ. Find IL and the complex power delivered
to the load.

16–52 A balanced three-phase load has a phase impedance of
ZΔ = 400 − j100Ω=phase. The line voltage at the load is
VL = 2:4 kV rmsð Þ. Find IL and the complex power delivered
to the load.

16–53 A balanced three-phase load has a phase impedance is
ZY = 20 + j15Ω=phase. The line current at the load is
IL = 12 A rmsð Þ. Find VL and the complex power delivered
to the load.

16–54 In the balanced three-phase system in Figure 16–54
the line and load impedances are ZW = 2 + j12Ω=phase
and ZY = 16 + j10Ω=phase. The line current is IL = 15A
rmsð Þ. Find VL at the source and the complex power pro-
duced by the source.

IL

IL

IL

ZW

ZW

Balanced

three-phase

source

Balanced

three-phase

load

ZW

FIGURE P16–54

16–55 In the balanced three-phase circuit in Figure P16–54, the
line impedance is ZW = 1 + j5Ω=phase and the average
power delivered to the load is 15 kW at a lagging power fac-
tor of 0:85. The line voltage at the load is VL = 480 V rmsð Þ.
Find the line voltage at the source and complex power pro-
duced by the source.

16–56 In the balanced three-phase circuit in Figure P16–54, the
line impedance is ZW =5+ j30Ω=phase. The apparent power
delivered to the load is 25 kVA at a lagging power factor of
0:95. The line current is IL = 12A rmsð Þ. Find the line voltage
at the source and complex power produced by the source.

16–57 In the balanced three-phase circuit in Figure P16–54,
the line impedance is ZW = 2 + j12Ω=phase. The source
produces an average power 25 kW at a lagging power factor
of 0:75. The line voltage at the source is VL = 4:16 kV rmsð Þ.
Find the line voltage at the load and complex power deliv-
ered to the load.

16–58 Two balanced three-phase loads are connected in paral-
lel. The first load absorbs 25 kW at a lagging power factor of
0:9. The second load absorbs an apparent power of 30 kVA
at a leading power factor of 0:1. The line voltage at the par-
allel loads is VL = 880 V rmsð Þ. Find the line current into the
combined load.
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16–59 The average power delivered to a balancedY-connected
load is 20 kW at a lagging power factor of 0:8. The line volt-
age at the load is VL = 480 V rmsð Þ. Find the phase imped-
ance ZY of the load.

16–60 The apparent power delivered to a balanced
Δ-connected load is 30 kVA at a lagging power factor of
0:72. The line voltage at the load is VL = 2:4 kV rmsð Þ. Find
the phase impedance ZΔ of the load.

O B J E C T I V E 16–6 T H R E E - P H A S E P O W E R F L O W
( S E C T . 16–7)
Given a single-line diagram of a balanced three-phase system,
find the source outputs and bus voltages that produce a pre-
scribed load power flow.
See Examples 16–22 and 16–23 and Exercises 16–19.

16–61 In Figure P16–61 the source and load buses are inter-
connected by a transmission line with ZW = 70 + j400Ω=
phase. The load at bus 2 draws an apparent power of
jS2 j = 3MVA at a leading power factor of 0:85 and the line
voltage at bus 2 is VL2 = 230 kV rmsð Þ. Find the apparent
power produced by the source at bus 1, the source power fac-
tor, and the line voltage at bus 1.

IL

VL1 VL2
S1

Bus 1 Bus 2

S2

ZW

FIGURE P16–61

16–62 In Figure P16–61, the source and load buses are inter-
connected by a transmission line with ZW = 1 + j9Ω=
phase. The load at bus 2 draws an average power of
P2 = 45 kW at a lagging power factor of 0:8 and the line volt-
age at bus 2 isVL2 = 4:16 kV (rms). Find the apparent power
produced by the source at bus 1, the source power factor, and
the line voltage at bus 1.

16–63 In Figure P16–61 the source and load buses are inter-
connected by a transmission line with ZW = 8 + j75Ω=
phase. The load at bus 2 draws an average power of
P2 = 600 kWat a lagging power factor of 0.8 and the line cur-
rent is IL1 = 10A rmsð Þ. Find the source power factor and
the line voltages at bus 1 and bus 2.

16–64 In Figure P16–64, the three buses are interconnected by
transmission lines with wire impedances of ZW1 = 100 +
j600Ω=phase and ZW2 = 120 + j800Ω=phase. The source
at bus 2 produces an apparent power of j S2 j = 300 kVA
at a lagging power factor of 0:85. The load at bus 3 draws
an apparent power of jS3 j = 600 kVA at a lagging power
factor of 0:8. The line voltage at bus 3 is VL3 = 161 kV
rmsð Þ. Find the apparent power produced by the source at
bus 1, the source power factor, and the line voltages at bus
1 and bus 2.

IL1 IL2

VL1
S1 S2

Bus 1 Bus 2 Bus 3

S3

VL2 VL3

ZW2ZW1

FIGURE P16–64

16–65 In Figure P16–64, the three buses are interconnected by
transmission lines with wire impedances of ZW1 = 120 +
j800Ω=phase and ZW2 = 200 + j1200Ω=phase. The source
at bus 2 produces an apparent power of j S2 j = 400 kVA
at a leading power factor of 0:9. The load at bus 3 draws
an apparent power of jS3 j = 650 kVA at a lagging power
factor of 0:95. The line current in line 2 is IL2 =
3:25 A rmsð Þ. Find the apparent power produced by the
source at bus 1; the source power factor; and the line voltages
at bus 1, bus 2, and bus 3.

16–66 In Figure P16–66, the three buses are interconnected by
transmission lines with wire impedances of ZW1 = 100 +
j850Ω=phase and ZW2 = 50 + j250Ω=phase. The load at
bus 1 draws an apparent power of j S1 j = 400 kVA at a lag-
ging power factor of 0:8. The line voltage at bus 1 is
VL1 = 138 kV rmsð Þ. The load at bus 3 draws an apparent
power of jS3 j = 475 kVA at a lagging power factor of 0:9.
The line current in line 2 is IL2 = 2:5A rmsð Þ. Find the
apparent power produced by the source at bus 2, the source
power factor, and the line voltages at bus 2 and bus 3.

IL1 IL2

VL1
S1 S2

Bus 1 Bus 2 Bus 3

S3

VL2 VL3

ZW2ZW1

FIGURE P16–66

16–67 In Figure P16–67, the source at bus 1 supplies two load
buses through transmission lines with wire impedances of
ZW1 = 6 + j33Ω=phase and ZW2 = 3 + j15Ω=phase. The
load at bus 2 draws an apparent power 4MVA at a lagging
power factor of 0:95. The load at bus 3 draws an apparent
power of 3MVA at a lagging power factor of 0:9. The line
voltage at bus 3 is VL3 = 138 kV rmsð Þ. Find the apparent
power produced by the source at bus 1, the source power fac-
tor, and the line voltages at bus 1 and bus 2.

IL1 IL2

VL1
S1 S2

Bus 1 Bus 2 Bus 3

S3

VL2 VL3

ZW2ZW1

FIGURE P16–67
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I N T E G R A T I N G P R O B L E M S
16–68 Three-Phase Line-Voltage Phasors for a Negative

Phase Sequence
In a balanced three-phase system VAN = VPff0�. Find the
three line-voltage phasors in polar form when the phase
sequence is negative.

16–69 Three-Phase Motor kVA Rating

The power factor of a 50-hp 1 hp = 746Wð Þ three-phase
induction motor is 0:8 when it delivers its rated mechanical
output. When delivering its rated output, the motor effi-
ciency is 90%. Find the kVA rating of the motor.

16–70 Three-Phase Line Impedance

(a) A balanced three-phase source and a balanced three-
phase load are interconnected by a three-phase transmission
line. The load draws an average power of PL = 45 kW at a
lagging power factor of 0.8 and the source produces a com-
plex power of SS = 45:2 + j35:4ð Þ kVA. Find the transmis-
sion line wire impedance when the magnitude of the line
current is IL = 18A rmsð Þ.

16–71 Phase Converter Efficiency

Three-phase motors are often used in equipment because
they aremore efficient and reliable than single-phasemotors.
Such equipment may be installed in locations where only sin-
gle-phase power is available and the cost of installing three-
phase service is prohibitive. The rotary phase converter in
Figure P16–71 is one way of providing three-phase power
from a single-phase source. Simply stated, the converter is
a rotating transformer that shifts the phase of a portion of
the single-phase input to produce a balanced set of three-
phase voltages. In a certain application, a converter supplies
three-phase power to a 30-hp motor 1 hp = 746Wð Þ that is
85% efficiency at full load. At full load the single-phase
inputs are 220 V rmsð Þ and 150A rmsð Þ at a power factor
of 0:9 lagging. Find the efficiency of the converter.

3ϕ  OUT1ϕ IN

FIGURE P16–71
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A p p e n d i x A COMPLEX NUMBERS

Using complex numbers to represent signals and circuits is a fundamental tool in
electrical engineering. This appendix reviews complex-number representations and
arithmetic operations. These procedures, though rudimentary, must be second nature
to all who aspire to be electrical engineers. Exercises are provided to confirm yourmas-
tery of these essential skills.

A – 1 C O M P L E X - N U M B E R R E P R E S E N T A T I O N S

A complex number z can be written in rectangular form as

z= x+ jy (A–1)

where j represents
ffiffiffiffiffiffiffi
−1

p
. Mathematicians customarily use i to represent

ffiffiffiffiffiffiffi
−1

p
, but i

represents current in electrical engineering, so we use the symbol j instead.
The quantity z is a two-dimensional number represented as a point in the complex

plane, as shown in Figure A–1. The x component is called the real part and y (not jy)
the imaginary part of z. A special notation is sometimes used to indicate these two
components:

x=Refzg and y= Imfzg (A–2)

where Refzg means the real part and Imfzg the imaginary part of z.
Figure A–1 also shows the polar representation of the complex number z. In polar

form, a complex number is written

z=Mffθ (A–3)

whereM is called the magnitude and θ the angle of z. A special notation is also used
to indicate these two components.

jzj=M and ffz= θ (A–4)

where jzj means the magnitude and ffz the angle of z.
The real and imaginary parts and magnitude and angle of z are all shown geomet-

rically in Figure A–1. The relationships between the rectangular and polar forms are
easily derived from the geometry in Figure A–1:

Rectangular to polar M =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
θ = tan−1 y

x
Polar to rectangular x = Mcosθ y = M sinθ

(A–5)

The inverse tangent relation for θ involves an ambiguity that can be resolved by
identifying the correct quadrant in the z-plane using the signs of the two rectangular

components. Caution: In calculating tan−1 y
x

� 	
hand-held calculators do not recog-

nize if a minus sign belongs to the real or to the imaginary part of the ratio or if
the signs cancel. The calculated angle is either in the first or fourth quadrant and
may be off by 180�. [See Exercise A–1(b) and (c).]

Another version of the polar form is obtained using Euler’s relationship:

ejθ = cosθ+ j sinθ (A–6)

Re

j Im

θ

z

M jy

x

FIGURE A–1 Graphical
representation of complex
numbers.
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We can write the polar form as

z=Mejθ =M cosθ+ jM sinθ (A–7)

This polar form is equivalent to Eq. (A–3), since the right side yields the same polar-
to-rectangular relationships as Eq. (A–5). Thus, a complex number can be repre-
sented in three ways:

z= x+ jy z=Mffθ z=Mejθ (A–8)

The relationships between these forms are given in Eq. (A–5).
The quantity z∗ is called the conjugate of the complex number z. The asterisk indi-

cates the conjugate of a complex number formed by reversing the sign of the imag-
inary component. In rectangular form, the conjugate of z= x+ jy is written as
z∗ = x− jy. In polar form, the conjugate is obtained by reversing the sign of the angle
of z, z∗ =Me− jθ. The geometric interpretation in Figure A–2 shows that conjugation
simply reflects a complex number across the real axis in the complex plane.

E x e r c i s e A–1
Convert the following complex numbers into polar form:

(a) 1 + j
ffiffiffi
3

p
(b) −10 + j20 (c) −2000− j8000 (d) 60− j80

A n s w e r s: (a) 2ej60
�

(b) 22:4ej117
�

(c) 8246ej256
�

(d) 100ej307
�

E x e r c i s e A–2
Convert the following complex numbers into rectangular form:

(a) 12ej90
�

(b) 3ej45
�

(c) 400ffπ (d) 8e− j60
�

(e) 15ejπ=6 (f) 25ff−120�

A n s w e r s: (a) 0 + j12 (b) 2:12 + j2:12 (c) −400+ j0 (d) 4− j6:93
(e) 13 + j7:5 (f) −12:5− j21:65

E x e r c i s e A–3
Evaluate the following expressions:

(a) Reð12ejπÞ (b) Imð100ff60�Þ (c) ffð−2 + j6Þ (d) Im ð4ej π4Þ∗� �
A n s w e r s: (a) −12 (b) 86:6 (c) 108:4� (d) −2:83�

A – 2 A R I T H M E T I C O P E R A T I O N S : A D D I T I O N

A N D S U B T R A C T I O N
Addition and subtraction are defined in terms of complex numbers in rectangular
form. Two complex numbers

z1 = x1 + jy1 and z2 = x2 + jy2 (A–9)

are added by separately adding the real parts and imaginary parts. The sum z1 + z2 is
defined as

z1 + z2 = ðx1 + x2Þ+ jðy1 + y2Þ (A–10)

Subtraction follows the same pattern except that the components are subtracted:

z1−z2 = ðx1−x2Þ+ jðy1−y2Þ (A–11)

Figure A–3 shows a geometric interpretation of addition and subtraction. In partic-
ular, note that z+ z∗= 2x and z−z∗= j2y.

Re

j Im

θ

z

M
jy

z

−jy

x

M

*

−θ

FIGURE A–2 Graphical
representation of conjugate
complex numbers.

Re

j Im

z2

z1

z1+z2

z1−z2
−z2

FIGURE A–3 Graphical
representation of addition and
subtraction of complex numbers.
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A - 3 M U L T I P L I C A T I O N A N D D I V I S I O N

Multiplication and division of complex numbers can be accomplished with the num-
bers in either rectangular or polar form. For complex numbers in rectangular form,
the multiplication operation yields

z1z2 = ðx1 + jy1Þðx2 + jy2Þ
= ðx1x2 + j2y1y2Þ+ jðx1y2 + x2y1Þ
= ðx1x2−y1y2Þ+ jðx1y2 + x2y1Þ

(A–12)

For numbers in polar form, the product is

z1z2 = ðM1ejθ1ÞðM2ejθ2Þ
= ðM1M2Þejðθ1 + θ2Þ

(A–13)

Multiplication is somewhat easier to carry out with the numbers in polar form,
although bothmethods should be understood. In particular, the product of a complex
number z and its conjugate z∗ is the square of its magnitude, which is always positive.

zz∗= ðMejθÞðMe− jθÞ=M2
(A–14)

For complex numbers in polar form, the division operation yields

z1
z2

=
M1ejθ1

M2ejθ2

=
M1

M2

� �
ejðθ1−θ2Þ

(A–15)

When the numbers are in rectangular form, the numerator and denominator of the
quotient are multiplied by the conjugate of the denominator.

z1
z2

z2∗
z2∗ =

ðx1 + jy1Þðx2− jy2Þ
ðx2 + jy2Þðx2− jy2Þ

Applying the multiplication rule fromEq. (A–12) to the numerator and denominator
yields

z1
z2

=
ðx1x2 + y1y2Þ+ jðx2y1−x1y2Þ

x22 + y22
(A–16)

Complex division is easier to carry out with the numbers in polar form, although both
methods should be understood.

E x e r c i s e A–4
Evaluate the following expressions using z1 = 3 + j4, z2 = 5− j7, z3 = −2 + j3, and
z4 = 5ff−30�:
(a) z1z2 (b) z3 + z4 (c) z2z3=z4 (d) z1∗+ z3z1 (e) z2 + ðz1z4Þ∗

A n s w e r s: (a) 43− j (b) 2:33 + j0:5 (c) −0:995+ j6:12 (d) −15− j3 (e) 28− j16:8

E x e r c i s e A–5
Given z= x+ jy=Mejθ, evaluate the following statements:

(a) z+ z∗ (b) z−z∗ (c) z=z∗ (d) z2 (e) ðz∗Þ2 (f) zz∗

A n s w e r s: (a) 2x (b) j2y (c) ej2θ (d) x2−y2 + j2xy (e) x2−y2− j2xy (f) x2 + y2
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E x e r c i s e A–6
Given z1 = 1,z2 = −1,z3 = j, and z4 = − j, evaluate (a) z1=z3 (b) z1=z4 (c) z3z4
(d) z3z3 (e) z4z4 (f) z2z3∗

A n s w e r s:
(a) − j (b) + j (c) 1 (d) −1 (e) −1 (f) j

E x e r c i s e A–7
Evaluate the expression TðωÞ= jω=ðjω+ 10Þ at ω= 5, 10, 20, 50, 100.

A n s w e r s: 0:447ff63:4�, 0:707ff45�, 0:894ff26:6�, 0:981ff11:3�, 0:995ff5:71�

E x e r c i s e A–8

If Z1 = − j20,Z2 = j10, andZ3 = 10 + j5, findZEQ =Z2 +
1

1=Z1 + 1=Z3

A n s w e r: ZEQ = 14:94ff34:5� = 12:31 + j8:46
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A N S W E R S TO SELECTED PROBLEMS

C H A P T E R 0 1
1–1 (a) 20,000,000 Hz= 20× 106 Hz = 20MHz

(b) 1025W=1:03 × 103 W=1:03 kW
(c) 0:333× 10−8 s = 3:33 × 10−9 s = 3:33 ns
(d) 33 × 10−12 F = 33 pF

1–3 q=16:2MC

1–5 (a) 1 × 10−3 μF
(b) 1 × 103 kΩ
(c) 1 × 10−3 V
(d) 1 × 10−3 GHz

1–7 q=15 μC
1–11 i=208:33mA; hence, the fuse will blow.
1–13 i=200 μA
1–15 q tð Þ= 5

3 1−e−3t
� �

C, t ≥ 0

1–17
v (V) i (A) p (W) ABSORBING/DELIVERING

−2 −11.8647 23.7293 Absorbing

2 −4.6109 −9.2219 Delivering

3 8.0855 24.2566 Absorbing

1–19 pMax = 225mW

1–21

CASE v i p
POWER
TRANSFER

(a) + 12 V −1:2 A −14:4W B to A

(b) + 80 V + 10mA +800mW A to B

(c) −240 V −12mA +2:88W A to B

(d) −15 V −300 μA +4:5 mW A to B

1–23 The power p4 = 5W. Therefore, being positive, the
device is absorbing power.

1–25 i tð Þ=20e− t mA , qTotal = 20 mC
1–27

t (ms) v (t) (V) i (t) (A) p (t) (W) ABSORBING/DELIVERING

5 0.191 4.00 0.764 Absorbing

10 −240.00 0.00637 −1.529 Delivering

1–29 η=180=300 = 60%
1–31 Summing the magnitudes of the powers yields a total

of 122:25W, which is greater than the stated power
consumption of 115W.
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C H A P T E R 0 2
2–1 v= 72:6 V
2–3 The 47-kΩ resistor will draw ten times less current than

the 4:7-kΩ resistor. i=106:383 μA.
2–5 i= 707:107 μA
2–7 RX = 9 kΩ
2–9 No, not correct. The code on the resistor states that it is

33 kΩ± 5%. However, the value is > 5%. It should
have a silver band indicating a ± 10% tolerance.

2–11 iMAX = 1:9174 mA
2–15 i1 = 6 A, i4 = −4A
2–17 (a) The circuit has three nodes and three loops. The

nodes are labeled A, B, and C. The first loop con-
tains elements 1 and 2; the second loop contains
elements 2, 3, and 4; and the third loop contains
elements 1, 3, and 4.

(b) Elements 3 and 4 are connected in series.
Elements 1 and 2 are connected in parallel.

(c)

THE KCL EQUATIONS ARE THE KVL EQUATIONS ARE

Node A − i1− i2− i3 = 0 Loop 1 2 −v1 + v2 = 0

Node B i3− i4 = 0 Loop 2 3 4 −v2 + v3 + v4 = 0

Node C i1 + i2 + i4 = 0 Loop 1 3 4 −v1 + v3 + v4 = 0

2–19 (a) The are four nodes and many loops. There are
only three independent KVL equations. The
nodes are labeled A, B, C, and D. Valid loops
include the following sequences of elements:
(1, 3, 2), (1, 3, 4, 5), (1, 6, 4, 2), (1, 6, 5), (2, 4, 5),
(2, 3, 6, 5), and (3, 6, 4).

(b) In this circuit, none of the elements are connected
in series and none of them are connected in
parallel.

(c)

THE KCL EQUATIONS ARE THREE INDEPENDENT KVL EQUATIONS ARE

Node A − i2− i3− i4 = 0 Loop 1 3 2 −v1−v3 + v2 = 0

Node B − i1 + i3− i6 = 0 Loop 2 4 5 −v2 + v4 + v5 = 0

Node C i1 + i2 + i5 = 0 Loop 3 6 4 v3 + v6−v4 = 0

Node D i4− i5 + i6 = 0

2–23 None of the elements are in series or parallel.
v1 = 25 V, v3 = 15 V, and v6 = 20 V.

2–25 (a) The KVL equations for the circuit are
Loop 1 2 v1 + v2 = 0
Loop 2 4 5 −v2 + v4−v5 = 0
Loop 3 4 v3 + v4 = 0

(b) If v4 = 0 V, then v3 = 0 V. Applying these voltages
to the other two loop equations, we find that

v1 = v5. The voltages across the other three
elements share the same magnitudes.

2–27 There are many equivalent diagrams to solve this
problem. One possible solution is shown in the
figure below.

i1 i4

i3

i2

i5

1 4

3
5

2

A

B

C

2–31 He can connect up to eight bulbs in parallel across the
batteries.

2–33 (a) The figure below shows the voltage and current
labels following the passive sign convention.

+ −

+ −

+

+

+
−

−

−

+

−

i2

i1

i3

v1

v2 v3

vS2 vS3vS1

iS2

iS3iS1

10 V 5 V 15 V

200 Ω

200 Ω200 Ω

+
+−

+
−

−

(b) The KVL equations are −vS1 + v1 + vS3 = 0

−vS1 + v2−vS2 = 0

vS2 + v3 + vS3 = 0

yielding v1 = −5 V; v2 = 15 V; v3 = −20 V
(c) i1 = −25 mA; i2 = 75mA; i3 = −100mA
(d) iS1 = −50mA; iS2 = −175mA; iS3 = −125 mA

2–35 pS = −66:67mW
2–37 R= 397:7Ω
2–39 REQ = 100Ω
2–41 REQ = 26:62 kΩ
2–43 Switch Open: REQ = 200Ω; Switch Closed:

REQ = 150Ω
2–47 RAB = 100Ω; RAC = 142Ω; RAD = 57Ω; RBC = 182Ω;

RBD = 97Ω; RCD = 115Ω
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2–49 REQ Ωð Þ Combination of 1-kΩ Resistors
2000 Two resistors in series: R+R

500 Two resistors in parallel: R kR
1500 One resistor in series with a parallel

combination of two resistors:R+ R kRð Þ
333 Three resistors in parallel: R kR kR
250 Four resistors in parallel: R kR kR kR
400 Two resistors in series in parallel with

two resistors in parallel: R+Rð Þ kR kR

2–53 RX = 21:78Ω
2–55 R=RL=3
2–57 REQ =R=3

2–59 υL =
RLυS

R+2RL

2–61 υL =
RRLiS
2R+RL

2–63 vO = 5 V
2–65 vO = 5:14286 V

2–67 RX =
RBRC

RA

2–69 There are many valid solutions to this problem.
One approach is to constrain the resistor values
so that the series combination has an equivalent
resistance of R1 +R2 +R3 = 5 kΩ. Then the current
will be i= v=REQ = 5Vð Þ= 5 kΩð Þ= 1mA. With a
current of 1 mA, we must have R3 = 2 kΩ to get a
voltage drop of 2 V. The second resistor, R2,
increases the voltage drop by 1:3 V, so we must
have R2 = 1:3 kΩ. Finally, the resistors must sum to
5 kΩ, so R1 = 1:7 kΩ.

2–71 For vL = 2 V, RX = 33:33Ω; for vL = 4 V, RX = ∞ Ω:
For vL = 6 V, not possible sinceRX cannot be negative.

2–73 vX = 335:077 V, iX = 76:1538 mA, pX = −146:215W
2–75 vX = 6:25 V, iX = −12:5 mA, pX = 2:5W
2–77 iX = 200mA
2–79 vO = v1 + v2 + v3ð Þ=3
2–81 R=500Ω
2–83 See the following figure.

R1

18 kΩ

R3

8 kΩ

12 kΩ
R4
4 kΩ

v1
100 V

v3v2v1

R2

PROBLEM 2-83

DC OPERATING POINT ANALYSIS

VARIABLE OPERATING POINT VALUE

1 V(v1)−V(v2) 75.000

2 V(v2) 25.000

3 V(v2)−V(v3) 16.66667

4 V(v3) 8.33333

5 I(R1) 4.166667m

6 I(R2) 2.08333m

7 I(R3) 2.08333m

8 I(R4) 2.08333m

9 I(V1) −4.16667m

2–87

The following MATLAB code
provides the solution

A = [1 0 0 0 0 0 0 0 0 0;

0 1 0 0 0 0 -8000 0 0 0;

0 0 1 0 0 0 0 -5000 0 0;

0 0 0 1 0 0 0 0 -4000 0;

0 0 0 0 1 0 0 0 0 -16000;

-1 1 1 0 0 0 0 0 0 0;

0 0 -1 1 1 0 0 0 0 0;

0 0 0 0 0 1 1 0 0 0;

0 0 0 0 0 0 -1 1 1 0;

0 0 0 0 0 0 0 0 -1 1];

B = [24 0 0 0 0 0 0 0 0 0]’;

x = A\B

The corresponding
MATLAB output is
shown below

x =

24.0000

16.0000

8.0000

1.6000

6.4000

-0.0020

0.0020

0.0016

0.0004

0.0004

One possible circuit is shown in the figure below

+

–

8 kΩ 4 kΩ

24 V v1

R2 R4

R5
16 kΩ

R3
5 kΩ

+
–

Sum the power values in the results to find 160:87109+
12:23111+ 18:02796+ 7:62104+ 3:80576+ :67213−
205:22914= 0 mW, as expected.

2–95 VT = 1:3977 V or 18:6023 V
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C H A P T E R 0 3
3–1

1
R1

+
1
R5

� �
−

1
R1

−
1
R5

−
1
R1

1
R1

+
1
R2

+
1
R3

� �
−

1
R3

−
1
R5

−
1
R3

1
R3

+
1
R4

+
1
R5

� �

2
666666664

3
777777775

υA
υB
υC

2
4

3
5= iS

0
0

2
4

3
5

3–3 (a) 1
5
+

1
10

+
1
15

� �
−

1
15

−
1
15

1
15

+
1
5

� �
2
6664

3
7775 υA

υB

� �
= 0

3

� �

(b) vA = 2:14286 V, vB = 11:7857 V
(c) vX = 11:7857 V, iX = 428:571 mA

3–5 (a)
1

10,000
+

1
10,000

� �
0

0
1

10,000
+

1
10,000

� �
2
6664

3
7775 υA

υC

� �
= 10:5× 10−3

−9:5 × 10−3

� �

(b) vA = 52:5 V, vB = −47:5 V
(c) vX = 100 V, iX = −500 μA

3–9 (a)
1
R1

+
1
R4

� �
υA−

1
R1

υB−
1
R4

υC = iS1

−
1
R1

υA +
1
R1

+
1
R2

� �
υB = iS2

−
1
R4

υA +
1
R1

+
1
R4

� �
υC = − iS2

(b) The following MATLAB code provides the
solution:

syms vA vB vC iS1 iS2 real
syms R1 R2 R3 R4 positive
Eqn1 = (1/R1+1/R4)*vA - vB/R1 - vC/R4
- iS1;
Eqn2 = -vA/R1 + (1/R1+1/R2)*vB - iS2;
Eqn3 = -vA/R4 + (1/R3+1/R4)*vC + iS2;
Soln = solve(Eqn1,Eqn2,Eqn3,vA,vB,vC);
vA1 = Soln.vA
vB1 = Soln.vB
vC1 = Soln.vC

(c) vA = 2:75 V, vB = 3:45 V, vC = −2:86 V

3–11 (a)
1
R1

+
1
R2

+
1
RX

� �
υA−

1
RX

υB =
υS
R1

−
1
RX

υA +
1
R3

+
1
R4

+
1
RX

� �
υB =

υS
R3

(b) vA = 10:6364 V, vB = 10:9091 V, vX = −272:72mV,
iX = 7:0909 mA

3–13 (a)
R1 +R2ð Þ −R2

−R2 R2 +R3 +R4ð Þ
� �

iA
iB

� �
=

υS
0

� �

(b) iA =
R2 +R3 +R4ð ÞυS

R1R2 +R1R3 +R1R4 +R2R3 +R2R4
,

iB =
R2υS

R1R2 +R1R3 +R1R4 +R2R3 +R2R4

(c) υX =
−R2R4υS

R1R2 +R1R3 +R1R4 +R2R3 +R2R4
,

iX =
− R3 +R4ð ÞυS

R1R2 +R1R3 +R1R4 +R2R3 +R2R4

3–15 (a)
4000 + 2000 + 4000ð Þ −4000

−4000 4000 + 2000 + 4000ð Þ

� �
iA
iB

� �
= 30

−30

� �
(b) iA = 2:1429 mA, iB = −2:1429 mA
(c) vX = −8:5714 V, iX = −4:2857 mA

3–17 (a) RA +RBð ÞiA−RBiB−RAiC = υS

−RBiA + RB +RC +RDð ÞiB−RCiC = 0

−RAiA−RCiB + RA +RC +REð ÞiC = 0

(b)
1
RA

+
1
RB

+
1
RC

� �
υB−

1
RC

υC =
υS
RA

−
1
RC

υB +
1
RC

+
1
RD

+
1
RE

� �
υC =

υS
RE

(c) The node-voltage equations would be easier to
solve, because there are only two unknown
voltages, vA and vB.

3–19 (a) iA = −
R4iS1 +R2iS2
R1 +R2 +R4

, iB =
R1 +R2ð ÞiS1−R2iS2
R1 +R2 +R4

,

iC =
−R4iS1 + R1 +R4ð ÞiS2

R1 +R2 +R4

(b) υX =
−R4 R1 +R2ð ÞiS1−R2iS2½ �

R1 +R2 +R4

3–23 The total input resistance is 2R.
3–25 (a) R1 +R2ð ÞiA−R2iB = υS

−R2iA + R2 +R3 +R4ð ÞiB = 0
The following MATLAB code solves the
equations:

syms iA iB vS R1 R2 R3 R4 real
Eqn1 = (R1+R2)*iA - R2*iB - vS;
Eqn2 = -R2*iA + (R2+R3+R4)*iB;
Soln = solve(Eqn1,Eqn2,iA,iB);
iA1 = Soln.iA

The corresponding MATLAB output is
shown below.

iA1 = (vS*(R2 + R3 + R4))/(R1*R2 + R1*R3
+ R1*R4 + R2*R3 + R2*R4)

(b) To find the input resistance RIN, we use the
following MATLAB command

RIN1 = vS/iA1

The corresponding MATLAB output is
shown below.

RIN1 = (R1*R2 + R1*R3 + R1*R4 + R2*R3 +
R2*R4)/(R2 + R3 + R4)
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(c) We can calculate the equivalent resistance using
the following MATLAB command

RIN2 = factor(R1 + 1/(1/R2 + 1/(R3+R4)))

The correspondingMATLABoutput is shown below.

RIN2=(R1*R2+R1*R3+R1*R4+R2*R3+R2*R4)/
(R2 + R3 + R4)

3–27 (a)

147,000 −100,000 0 0

−100,000 155,000 −22,000 0

0 −22,000 171,000 −68,000

0 0 −68,000 68,000

2
6664

3
7775

iA
iB
iC
iD

2
664

3
775=

−50
0
0
74

2
664

3
775

(b) Label the bottom node as ground. The voltage at
the upper left is vA = 24 V and at themiddle center
node is vB = 74 V. Label the upper center node as
vD and the upper right node as vC. Write the
equations by inspection.

1
33,000

+
1

22,000
+

1
81,000

� �
−

1
33,000

−
1

33,000
1

47,000
+

1
100,000

+
1

33,000

� �
2
6664

3
7775

υC

υD

" #
=

74
22,000

24
47,000

+
74

100,000

� �
2
6664

3
7775

3–29 The proportionality constant in the block diagram is
K = 0:2. For a voltage divider with two resistors,
the proportionality constant is K =R2= R1 +R2ð Þ.
We can find the required ratio for the two resis-
tors and then pick one of them to complete the

design. K = 0:2 =
1
5
=

R2

R1 +R2
, resulting in R1 = 4R2.

Any resistor combination of 4:1 will work. We will
pick R2 = 1 kΩ, then R1 = 4 kΩ.

3–31 The proportionality constant in the block diagram is
K = 12:5 × 10−6 = 1=80,000. The input is a voltage and
the output is a current, so we need a resistor that
converts a 12-V source into a 150-μA current. The
resistor value is the inverse of the proportionality
constant in this case, or R=80 kΩ. The circuit
shown below is the solution.

80 kΩx = 12 V y = 150 μA+
–

3–33 K = 500 μS

3–35 K =
R1R4

R1R2 +R1R3 +R1R4 +R2R3 +R2R4

3–37 K = 11:3626 kΩ, vO = 227:253 V
3–39 K = 5:5325 mS, vS = 45:1875 V
3–41 iO = iO1 + iO2 = 3mA+3mA=6mA

and vO = vO1 + vO2 = 3 V−3 V=0 V

3–43 vO = vO1 + vO2 = −6:667 V+ 33:333 V= 26:667 V
3–45 (a) vO = vO1 + vO2 + vO3 = 4v1 + 2v2 + 5v3ð Þ=32
3–47 The power is nonlinear with respect to the sources, so

it cannot be added directly. Use p= v2=R to find the
voltage across the load for each source, add the
voltages, and then compute the total power.

vO = vO1 + vO2 = 10 V+ 30 V= 40 V, pL = 16W
3–49 Since the circuit is linear, there is a proportionality

constant relating each input to the output. Use four
equations relating the inputs to the outputs with the
gains. Each equation is as follows:
K1vS1 +K2vS2 +K3vS3 +K4vS4 = vO And in matrix

form:

2 4 −4 1
1 2 2 1:5
1 4 2 2
0 5 3 −1

2
6664

3
7775

K1

K2

K3

K4

2
6664

3
7775=

20
−4
−1
3

2
664

3
775

Solving for the Ks and plugging into the output
equation yields: vO = vS1 + 2vS2−3vS3−2vS4

3–51 vT = 15 V, RT = 16 kΩ, iN = 937:5 μA, RN = 16 kΩ
3–53 vT = 37:5 V, RT = 25 kΩ
3–55 (a) vT = iSR1, RT =R1 +R2 =RN, iN = iSR1= R1 +R2ð Þ

(b) iL = iSR1= R1 +R2 +RLð Þ
(c) iL = R1= R1 +REQð Þ½ � iS = iSR1= R1 +R2 +RLð Þ

3–57 iL = 10:95mA for RL = 4:7 kΩ, 6:25mA for
RL = 15 kΩ, and 1:95mA for RL = 15 kΩ.

3–59 vT = 2:933 V, RT = 107:6 kΩ; pL = 17:32 μW for
RL = 50 kΩ, and 19:96 μW for RL = 100 kΩ.

3–61 vTleft = 13:333 V, RTleft = 3:333 kΩ; vTright = 5 V,
RTright = 1:667 kΩ; iL = 925:9 μA

3–63 iPort = 250 mA
3–65 (a) vA = vB = 75 V; iS = 1:5 mA; pL = 5:625mW;

pS = 22:5 mW
There are many valid approaches for grading
circuit analysis problems. Completely correct
answers earn an A grade. Solutions with minor
calculation errors earn a B grade. Solutions with
a single conceptual error would earn a C grade.
Solutions with significant conceptual errors earn
a D grade. An invalid solution, a wrong answer
with no work, or a blank page would earn an
F grade.

(b) D
(c) F
(d) B

3–69 (a) vT = 2:857 V, RT = 714:3Ω
3–71 v= 3−10i and i=10−12 e10v−1

� �
: Curves cross at

Q-point, namely, vQ = 2:4694V, iQ = 53:1 mA
3–73 vT = −156:667 V, RT = 3:333 kΩ
3–75 (a) vMAX =30 V, (b) iMAX =3 mA, (c) pMAX =

22:5 mW

3–77 (a) R= 12 kΩ, (b) pMAX = 937:5W

3–79 (a) R= 0Ω, (b) pMAX = 65:346W
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3–85 With v2 = 20 V across a 500-Ω resistor, the current
through the resistor is 40 mA. Make the interface a
resistor in series equal to 1:950 kΩ.

3–87 Use interface as shown in Figure A3–87.

500 Ω R1

R2 10 Ω20 V

i1

i2

+
–

For case 1, selectR1 = 9:5 kΩ and R2 = ∞ Ω (an open).
9:77 V< vO < 10:24 V. For case 2, select R1 = 3 kΩ and
R2 = 1 kΩ. vO = 4:124 V.

3–89 Both designs meet the specification, have two
parts, and all parts use standard values. For Team A,
the source delivers 101:8 mW of power. For Team B,
the source delivers 6:04W. Team A has the better
design because it requires less power from the source.

3–91 Designs shown below. Series design delivers less
power.

pSeries = 1:224W

R1

50 Ω 25 Ω

R4R3

11.8 Ω

R2
50 Ω

R5
50 Ω

V1
10 V

pParallel = 1:276W

R6

50 Ω 25 Ω

R8

R7
50 Ω

R10
50 Ω

R9
211.75 Ω

V2
10 V

3–95 (a) Use L-pad interface. LetR1 = 56Ω and R2 = 270Ω,
whichresults inRIN = 50:99Ω andROUT = 296:42Ω

C H A P T E R 0 4
4–1 vO=vS = −16, iO=iX = −4
4–3 vO=vS = 3:6, iO=iX = 7:2, pL = 684 mW

4–5
υO
υS

=
μ1μ2RL

RK +RL

4–7 iO=iX = β= β−1ð Þ
4–9 (a)

iO
υS

= −
RX

10 RX + 1,001,000ð Þ
(b) RX = 20:4286 kΩ

4–11 (a)
υO
υS

=
μRF

RF 1 + μð Þ+RS

(b)
υO
υS

=
200RF

201RF + 1000
; RF ! ∞ , vO=vS = 200=201;

RF = 0, vO=vS = 0; RF = 1 kΩ, vO=vS = 0:990099

4–13 For vO=vS ! ∞ , RF = 1:111 kΩ;
For vO=vS = 2, RF = 2:5 kΩ

4–15 (a) vT = rvS= RS + rð Þ, RT =Rp

(b) pL = 20:6612 μW

4–17 RIN =R= 1−βð Þ= −120:1835Ω for the values given. The
fact that the input resistance is negative means that the
dependent source causes the input voltage to have a
sign that is opposite of that expected for the given
input current.

4–19 υT =
RSROiS

RS +RO + gRSRO
, RT =

RSRO

RS +RO + gRSRO

4–21 For vS = 0:5 V, iC = 0mA, vCE = 15 V.
For vS = 4 V; iC = 3:3 mA, vCE = 4:11 V.
For vS = 6 V; iC = 4:545 mA, vCE = 0 V.

4–23 For vS = 0:8 V, iC = 1mA, vCE = 3:333 V.
For vS = 2:5 V, iC = 1:5 mA, vCE = 0 V.

4–25 RB = 575Ω
4–27 Use standard OP AMP circuits as follows:

DESIRED
GAIN OP AMP DESIGN R1 KΩð Þ R2 KΩð Þ ACTUAL GAIN

−150 Inverting 1 150 −150

+ 60 Noninverting 390 6.8 + 58:3529

+ 1 Follower 0 ∞ + 1

−1 Inverting 10 10 −1

−0:8 Inverting 15 12 −0:8

+ 0:7 Two Inverting
in Cascade

1st 47,
2nd 10

1st 33,
2nd 10

1st −0:702, 2nd
−1 = + 0:702

4–29 Connect the source to the input of the noninverting
amplifier and connect the output of the noninverting
amplifier to the input of the inverting amplifier. The
source does not affect the gain of the noninverting
amplifier and the noninverting amplifier does not
affect the gain of the inverting amplifier, so the overall
gain is the product of the gains of the individual
amplifiers, K = 100ð Þ −100ð Þ= −104.

4–31 K = vO=vS ranges from −66:67 to −133:33.
4–37 (a) vO = 15 vS

(b) For vS = 1 V, iO = 93:75 μA;
For vS = 2 V, iO = 112:5 μA (OP AMP saturates)

4–39 Use a subtractor circuit.
4–41 (a) vO = −v1−v2

(b) 14 V> v2 > −16 V

4–43 vO = −6v1−6v2 + 12v3
4–45 Feed v1 into an inverter with gain of −1 in cascade

with a three-input inverting summer. Connect the
inverter’s output to a gain of −5, v2 to a gain of −4,
and v3 to a gain of −2.
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4–47 υO =
R3 +R4

R3

� �
R2υS1 +R1υS2

R1 +R2

� �

4–49 (a) υO = −VT ℓn
υS

IORS
+ 1

� �
(b) The following MATLAB code provides the

solution: see graph below.

RS = 15e3;
IO = 3e-14;
VT = 0.026;
vS = logspace(-6,2,1000);
vO = -VT*log(1 + vS/RS/IO);
figure
semilogx(vS,vO,’g’,’LineWidth’,2)
grid on
xlabel(’v S, (V)’)
label(’v O, (V)’)

–0.2

–0.25

–0.3

–0.35

–0.4

–0.45

–0.5

–0.55

–0.6

–0.65

–0.7
10–6 10–5 10–4 10–3 10–2

vS (V)

v o
 (

V
)

10–1 100 101 102

4–51 Write thenode-voltageequationat thenegative terminal
of theOPAMPand simplify.Get 3vN = vS + 2VO. Write
the node-voltage equation at the positive terminal of
the OPAMP and simplify. Get 3vP = 2vO−2RiO. Note
that vN = vP and set the right sides of the results above
equal to each other. Solve for iO. Yields iO = −vS=2R

4–53 (a) vO = −3vS=10
(b) Block diagram as shown below.

vS –0.3 vO

4–55 (a) υO =
80
17

υS +
20
17

0:5 Vð Þ
(b) Use a subtractor circuit, flip vS so that the

negative inputs the inverting terminal.
4–59 (a) υ2 = −4υ1−5 V

(b) The block diagram below represents the circuit.

v1

v2

1 V

–4

–5

+

+

4–61 The first stage of circuit (a) is an inverting amplifier, the
second stage is an inverting summer, and the third stage
is a noninverting amplifier. υO = 1:5 υ1. Circuit (b) is a
standard noninverting amplifier with a gain of 1.5, so
the circuits do have the same gain and perform
the same operation. The circuits have different
input resistances, with circuit (a) having an input
resistance of 10 kΩ and circuit (b) having infinite
input resistance.

4–63 Use a standard noninverting amplifier design with
R1 equal to three 15- kΩ resistors connected in
series and R2 = 15 kΩ.

4–65 Use a standard subtractor with the feedback resistor
of 1MΩ.

4–69 Feed vS into a cascade of an inverter with gain of −5
into an inverting summer with gain of −10k. Second
input to the summer is a −2:5 V source with a summer
gain of −1.

4–71 The instrumentation amplifier has two stages with
gains of K1 = 2R=Rg + 1 and K2 =K. Let K1 = 1001
and K2 = 500 to get a total gain of K1K2 = 500,500,
which is close to the desired value of 5 × 105 and
meets the gain limitations for each stage. To design
K1, choose R= 10 kΩ and Rg = 20Ω. Then, the KR
resistor has a value of 5MΩ.

4–75 Circuit 1 provides the required input–output
relationship. The design uses two OP AMPs and four
resistors, all of which are standard values. Circuit 2
provides the required input–output relationship. The
design uses two OP AMPs and six resistors, five of
which are standard values. Circuit 3 does not provide
the required input–output relationship, so choose
between Circuits 1 and 2. Choose Circuit 1 because it
uses the same number of OP AMPs as Circuit 2, fewer
resistors, and all of the resistors are standard values.

4–77 v2 = −4:97585 V+ 200:058vTR. The design meets the
specifications within the allowed tolerances.

4–79 The resolution is 158:730mV.
4–81 The resolution is 312:5 mV.
4–83 Feed the transducer’s output into a −1:428 gain stage,

into an inverting summer with gain of −100. The
second summer input is a + 8 V source into a
−0:1429 gain.

4–85 Feed the transducer’soutput intoa + 100 gainstage, into
an inverting summer with gain of −111:1. The second
summer input is a −15 V source into a −0:666 gain.

4–87 TherequiredgainisK = 5 andthebiasvoltageisVb = 0 V.
Since there is no bias voltage, use a noninverting
amplifier to create an interface with a gain of 5.

4–89 Purchase the circuit if the vendor will add a buffer at
the circuit input without increasing the cost.

4–91 At a temperature of 600 K, the thermocouple output
voltage is 5:6 mV. To trigger the comparator, we need
to scale this voltage up to 1 V. The required gain is
178.571. We will set the gain to be K =179. Use a
noninverting amplifier connected to the comparator.
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C H A P T E R 0 5
5–3 (a) v tð Þ= u − t−3 μsð ÞV,

(b) v tð Þ= 5u − t−2ð Þ + 5u t−2ð ÞV
5–5 See the four graphs below.
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‒2
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1.5
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v 4
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) 
(V

⁄s
2
)

5–7 v tð Þ=−6 u t + 1ð Þ+18 u t−1ð Þ−24 u t−3ð Þ+ 12 u t−4:5ð ÞV
5–9 For −ε< t < 0, the waveform is a ramp with slope 1=ε2

that starts with a value of 0 V and rises to a value of
1=εV. For 0 < t < ε, the waveform is a ramp with a

slope of −1=ε2 that starts with a value of 1=εV and
falls to a value of 0 V.

5–11 Use the “PULSE_VOLTAGE” source under signal
voltage sources. Set: initial value to 0 V, pulsed
value to 1 V, delay time to 0 s, rise and fall times to
1 ps, pulse width to 1 ms, and period to 4 ms.

5–13 v tð Þ=5e− t=50μsu tð Þ= 5 e−20,000tu tð ÞV

5–15
di tð Þ
dt

= −250 e−2500t A/s,
Z t

0
i τð Þdτ= 40 1−e−2500t

� �
μA-s

5–17 υ tð Þ=10 e−100 t−0:01ð Þ u t−0:01ð ÞV
5–19 υ tð Þ=0:8 e−1:8735t u tð ÞV
5–21 Substitute the expression into the equation and solve

d
dt

VAe−αtð Þ+ αVAe−αt = −αVAe−αt + αVAe−αt = 0

5–25 υ tð Þ=3 cos
2π t + 0:6 μsð Þ

3 μs

� �
V

5–27 (a) a= 19:1924 V, b= −14:4101 V, f0 = 100Hz,
ω0 = 200 π rad=s

(b) a= 0A, b= 240A, f0 = 60 Hz, ω0 = 120π rad=s

5–29 (a) a= 5 V, b= −8:66 V, f0 = 200Hz, ω0 = 400π rad=s
(d) For the Multisim simulation use the ac signal

source with a 10 V peak, a 10 Hz frequency and a
150� phase. Set it in parallel with a 1 kΩ resistor.
Take the voltage across the R. Note that the
phase is set to 60� + 90� =150� because Multisim
uses a sine function instead of a cosine function.

5–31 (a) The graphs below show the respective composite
waveforms. The MATLAB code for (a) follows.

‒1
0
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)
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‒1
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0.08

(b)
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Time (s) × 10‒3
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(t
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(A

)

0.1
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t = -1e-3:2e-6:6e-3;
t = t - 2*eps;
i1t = 10e-3+5e-3*sin(500*pi*t)

.*heaviside(t);
figure

plot(t,i1t,’b’,’LineWidth’,3)
axis([-1e-3,6e-3,0,16e-3]);
grid on
xlabel(’Time, (s)’)
ylabel(’i 1(t), (A)’)

5–33 (a) VA =12 V, VB = 7 V, α= 111:923Hz.
5–35 v tð Þ= 2 u t−1:6 μsð Þ+ 3 cos 106πt + 72�

� �
V

5–37 v tð Þ= 20 + 20 e−346,574t
� �

u tð ÞV
5–39 v tð Þ= 20 e−100t + 5 cos 600πt−90�ð Þ� �

u tð ÞV.

5–41 α=4998:8 Hz

5–43 v tð Þ= −5+ 10e−103t cos 324πtð ÞV
5–45 v tð Þ= 15e−1000t cos 2000πtð Þ u tð ÞV. Plot follows below.

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

‒10

‒5

0

5

10

15

v(
t)

 (
V

)

× 10‒3

5–47 (a) Vp = 25 V, Vpp = 24:8316 mV, VMAX =25 V,
VMIN = 168:449 mV.

(b) Vavg = 4:96631 V, Vrms = 7:90551 V.
(c) T0 = 1 ms.

5–49 Vp = 10 mV, Vpp = 15mV, VMAX =10 mV, VMIN =
−5 mV, Vavg = 1:25mV, Vrms = 5:59 mV, T0 = 4 ms.

5–51 (a) Vp = 4 V, Vpp = 6 V, VMAX = 4 V, VMIN = −2 V,
T0 = 20 ms.

(b) The following MATLAB code calculates Vavg

and Vrms. Results are Vavg = 1 V, Vrms = 2:67 V.

syms t vt real
T0 = 20e-3;
TC = 1.6e-3;
vt = (4-6*exp(-t/TC))*(heaviside(t)-
heaviside(t-0.01))…
+ (-2+6*exp(-(t-0.01)/TC))*
(heaviside(t-0.01)-heaviside
(t-0.02));

vavg = int(vt,t,0,T0)/T0
vrms = sqrt(int(vt^2,t,0,T0)/T0);
vrms num = double(vrms)

5–53 VMAX =VA V, VMIN = 0 V, Vavg = 2VA=π, Vrms =

VA=
ffiffiffi
2

p
.

5–55 T0 = 4 ms, Vavg = 20 V, f0 = 250 Hz, V1 = 16 V,
f4 = 1000 Hz.

5–57 v tð Þ= 30 cos 4:8πtð Þ u t + 2ð Þ−u t−3ð Þ½ �V
5–63 The calibration factor isK =

ffiffiffi
2

p
π=4. The same calibra-

tion factor would not apply to a square wave because
the square wave’s rms value is different from the
sinusoid’s rms value.

C H A P T E R 0 6
6–1 The voltage is constant for t ≥ 0. The current is

proportional to the derivative of the voltage, and
since the voltage is not changing iC tð Þ=0A. The
power is the product of the current and voltage, so
pC tð Þ=0W. The capacitor is neither absorbing nor
delivering power.

6–3 iC tð Þ= −2:2π sin 2π104t
� �

mA,

pC tð Þ= −55π sin 4π104t
� �

mW, the capacitor is both abs-
orbing and delivering power.

6–5 υC tð Þ= 3+ 0:005t2=CV. C = 1000 pF.
6–7 See the following four graphs.
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6–13 (b) The required MATLAB code and its output are
shown below.

CODE OUTPUT

syms t x real

L = 100e-3;

iL0 = 0;

vLt = 15*exp(-100*t);

vLx = subs(vLt,t,x);

iLt = iL0 + int(vLx,x,0,t)/L

t0 = 0;

tf = 60e-3;

ts = tf/1000;

tt = t0:ts:tf;

iLtt = subs(iLt,t,tt);

vLtt = subs(vLt,t,tt);

iLt = 3/2 -(3*
exp(-100*
t))/2

6–15 iL tð Þ= 1
10n

sin 1000 ntð ÞA
6–17 vL tð Þ=10e−1000t 1−1000tð ÞV. At t =0, the power is

positive and for t > 1ms, the power is negative, so
the inductor both absorbs and delivers power.

6–19 (a) vC 0ð Þ=0 V.

(b) υL tð Þ= −LC
d2υC tð Þ

dt2
(d) The response signal is a sinusoidal waveform with

VA =87:04mV and f = 277:05Hz.

6–21 iL tð Þ= 120 e−1000t−100 mA, pL tð Þ= 600 e−1000t−720
e−2000t μW, the inductor is both delivering and
absorbing power to the rest of the circuit.

6–23 iR tð Þ= −303:03 e−1000t pA
6–25 R= 2MΩ. At t = 0, the initial conditions of both

voltage and current are zero.

6–27 vO tð Þ=4:5887 + 5:4113 e−500t V, t >0

6–29 υO tð Þ= −
R
L

Z t

0
υS xð Þdx. The original circuit is an

inverting integrator.

υO tð Þ= −
L
R

dυS tð Þ
dt

. The circuit with the swapped

components is an inverting differentiator.
6–31 (a) To match the given output, we require RC =10 s

in the differentiator circuit.
(b) The circuit is a noninverting amplifier with a

gain K =5000.
(c) To match the given output, we require

RC = 100 ms in the integrator circuit.
(d) The circuit is an inverting amplifier with a

gain K = −10,000.

6–33 Saturates in 6 s.

6–35 vO tð Þ= −4:092 e−50t V, t > 0
6–37 Straight line at −10 V from t =0 to t = 2ms. Then it

hops up to + 12V (not 20 V since OP AMP
saturates). Then it falls back down to 0 V at t =3 ms.

6–39 A necessary condition is 445:634 μs <RC < 477:465 μs.
There are many possible solutions, with one being
R= 30 kΩ and C = 0:015 μF.

6–41
d
dt

υO tð Þ+ υS tð Þ½ �+ υO tð Þ
RC

= 0

6–47 (d) The oscillating frequency is 1 rad=s, and we can
adjust the frequency by changing the resistor or
capacitor values.

6–51 For circuit C1CEQ = 2:17471 μF. For circuit C2LEQ =
100 μH.

6–53 CEQ =C

6–57 C = 0:01955 μF with an initial voltage of 30 V.
6–59 A parallel combination of a 3-mH inductor and a

2:7-μF capacitor. Note that a 2:7-μF capacitor is not
a standard value but can be constructed using a
2:2-μF and a 0:47-μF capacitors placed in parallel.

6–61 The design has a “bank” of four 3:3-μF capacitors
connected in series. Then three banks are connected
in parallel. When charged to 5 kV, this design will
be able to store w= 309:375 J.

6–63 In circuit C1, the current through the source is
45:4545 mA. In circuit C2, the circuit is open under
dc conditions and no current flows through the source.

6–65 The gain at ω= 0 is −R2=R1. The gain approaches
zero as ω! ∞ .
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6–67 The gain of the circuit at dc is −K2. And at high
frequencies, the circuit gain is again −K2.

6–68 C =200 pF
6–70 C =3:6 F
6–74 CEQ =C

C H A P T E R 0 7
7–1 i tð Þ= 25e−50t mA
7–3 For circuit C1, TC1 = 1 ms. For circuit C2, TC2 = 90:9 μs.

7–5 For circuit C1, TC1A =
R2R3 C1 +C2ð Þ

R2 +R3

TC1B =
R1R3 C1 +C2ð Þ

R1 +R3

For circuit C2, TC2Closed =
L R1R3 +R1R4 +R3R4ð Þ

R1R3R4

TC2Open =
L R1R2 +R1R3 +R1R4 +R2R3 +R3R4ð Þ

R1R2R3 +R1R3R4

7–7 (a) iL tð Þ= 5e−120,000t mA t ≥ 0
υO tð Þ= −300e−120,000t V t ≥ 0

(b) The following MATLAB code and the
corresponding MATLAB output are shown:

CODE OUTPUT

syms t iL vO real

Req = 1/(1/100e3 + 1/150e3);

L = 0.5;

TC = L/Req

iL0 = 5e-3;

iL = iL0*exp(-t/TC);

iL num = vpa(iL,5)

vO = L*diff(iL,t);

vO num = vpa(vO,5)

TC = 8.3333e-006

iL num = 0.005*exp
(-120000.0*t)

vO num = -300.0*exp
(-120000.0*t)

7–9 υO tð Þ= υC tð Þ=V0 e− t=TC = 10e−363:63t V t ≥ 0

7–11 iL tð Þ=13:0435 e−6667t mA t ≥ 0

7–13 vO tð Þ=RIA 1−e− t=RC
� �

V t ≥ 0. The forced component
is the constant term, vOF tð Þ=RIA V, and the natural
component is the exponential term, vON tð Þ=
−RIAe− t=RC V.

7–15 vO tð Þ= 75 e−277:16t V t ≥ 0. There is no forced response
in the output and the natural response is the entire
output signal.

7–17 vC tð Þ=6−2 e−20,000t V t ≥ 0. The forced component is
6 V, and the natural component is the exponential
term, −2 e−20,000t V.

7–19 vO tð Þ= vF tð Þ+ vN tð Þ. Let vF tð Þ= a cos 250tð Þ+b sin
250tð Þ. Substitute in differential equation. Carry out
the differentiation, and separating the coefficients of
the cosine terms and sine terms yields

50a+ 250b= 10

−250a+ 50b=0

Solving simultaneously for a and b results in a= 1=130
and b=1=26. Plug back into original vF tð Þ equation.
Now find coefficient of vN tð Þ. Knowing vO 0ð Þ= 0,

we find K = −1=130. Hence, vO tð Þ= −
1
130

� �
e−50t +

1
130

� �
cos 250tð Þ+ 1

26

� �
sin 250tð ÞV t ≥ 0

7–21 (a) υL tð Þ= 235
4

� �
e−193:88t V t ≥ 0

(b) υL tð Þ= 46:4 e−193:88t−23:94 sin 100tð Þ+12:35
cos 100tð ÞV t ≥ 0

(c) υL tð Þ=121:3 e−193:88t −62:58 e−100t V t ≥ 0

7–25 iL tð Þ= 1:35 e−10
6 t + 0:15 mA t ≥ 0

7–27 iL tð Þ= 1:35 e−10
6 t +0:15

� 	
u tð Þ−u t−2μsð Þ½ �

+ 1:5−1:167e−10
5 t−2μsð Þ u t−2μsð Þ

� 	
mA

7–29 (a) υ2 tð Þ= −4 + 8e−500t V t ≥ 0
(b) υ2 1:386 msð Þ= 0 V

7–31 υC tð Þ=120 e−22:73t u tð Þ−u t−20msð Þ½ �
+76:168 e−90:91 t−20msð Þ u t−20msð ÞV .Seegraphbelow.
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7–33 For vS tð Þ=15 cos 50tð ÞV, vC tð Þ=14:9 cos 50t−5:7�ð ÞV.
ForvS tð Þ=15 cos 500tð ÞV, vC tð Þ=10:6 cos 500t−45�ð ÞV.
For vS tð Þ=15 cos 5000tð ÞV, vC tð Þ=1:49
cos 5000t−84�ð ÞV.
As the frequency increases, the amplitude decreases
and the phase shift approaches −90�.

7–35 (a) C =0:01 μF, iC tð Þ= −2 e−10,000t mA
(b) wC 2 msð Þ= 8:4967 × 10−24 J
(c) We can achieve the same output for the capacitor

voltage using a 4:5454-kΩ resistor because the
voltage depends on the initial voltage and the
time constant. The larger capacitor value and
the smaller resistor value yield a larger current
with the same exponential decay.

7–37 Use an RC voltage divider with the output across the
capacitor. The IC= 2 V and the time constant is 5 ms.
Choose C = 1 μF and R then= 5 kΩ.

7–39 Use an RC voltage divider with the output across the
capacitor. The design uses a final value of 7 V and a
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time constant of 4 ms. Choose C = 1 μF and solve
for R= 4 kΩ.

7–41 The initial value is −10 V and the final value is 10 V.
The time constant is 100 μs, the resistance is 666:67Ω,
and iC tð Þ= 30 e−10,000t mA.

7–43 iL 0ð Þ= −5 mA, iL ∞ð Þ=5mA, TC = 500 μs, L= 50
mH, and R=100Ω.

7–45 A 20 u tð Þ-V source feeds a 300-Ω series resistor that
connects to a 2:667-μF capacitor in parallel with the
300-Ω load. vO tð Þ is taken across the load.

7–47 You should choose Vendor B because their design is
less expensive and meets the specification.

7–49 Use an RC voltage divider with the output across the
capacitor and with R= 927:7 kΩ.

7–51 v tð Þ= e−5t 5 cos 8:66tð Þ+ 2:887 sin 8:66tð Þ½ �V
7–53 i tð Þ= 4−4e−2t−8t e−2t A

7–55 (a) iL tð Þ= 20t e−1000t A, vC tð Þ= e−1000t 20−20,000t½ �V
(b) The response has repeated real roots, so it is

critically damped.

7–57 (a) vC tð Þ= e−412:5t 12 cos 282:6tð Þ+17:52 sin 282:6tð Þ½ �V
iL tð Þ= −10:62e−412:5tsin 282:6tð ÞmA

(b) Based on the form of the response, the circuit is
underdamped.

7–59 (a) iL tð Þ= 10+ 0:456e−19165t−10:46e−835t mA
vC tð Þ= −10:91e−19165t +10:91e−835t V

(b) Based on the form of the response, the circuit is
overdamped.

7–61 Purchase the circuit if the vendor will replace the
250-Ω resistor with a 180-Ω resistor.

7–63 (a) vC tð Þ= 24 + 1:86 e−4105t−25:86 e−295:3t V

iL tð Þ= −25:2 e−4105t + 25:2 e−295:3t mA

(b) Based on the form of the response, the circuit is
overdamped.

7–65 (a) vO tð Þ=15−10:61e−1333tsin 3771tð ÞV
(b) The MATLAB and Multisim results agree.

7–67 ω0 =
1ffiffiffiffiffiffiffi
LC

p , ζ=
1
6R

ffiffiffiffi
L
C

r
. All parameters affect the

damping ratio. We can change the damping ratio
without affecting the undamped natural frequency
by changing the resistance.

7–69 R= 250Ω, C =2 μF, vO tð Þ= 20,000t e−1000t V

7–71 R= 440Ω, C =0:2525 μF, vC tð Þ=26:4e−3000t

−66e−6000t V t ≥ 0
7–73 L= 25mH, C =32 μF. The new zero-input response

is vC tð Þ= e−3658t + e−341:7t V t ≥ 0.
7–75 R= 250Ω, C =0:1 μF, L= 25mH
7–77 (a) R= 2 kΩ, C =0:1 μF, L=100 mH
7–79 We need to change the resistor to R=6:25 kΩ to get

the proper characteristic equation.
7–81 The damping ratio varies from 0.000743 to 0.0235.

7–83 vO tð Þ= −10 1−e−10,000t
� �

V

7–87 RL = 16:844 kΩ
7–93 L= 200 μH, C =0:1 μF, V0 = 125 kV

C H A P T E R 0 8
8–1 v1 tð Þ+ v2 tð Þ= 100 cos ωt + 135�ð ÞV. See phasor dia-

gram below.

Re

135°

–45°

jlm

V1 + V2

V2

V1

8–3 v1 tð Þ+ v2 tð Þ+ v3 tð Þ= 0 cos ωtð ÞV.
8–5 (a) v1 tð Þ=220 cos 314:2t−45�ð ÞV

(b) v2 tð Þ= 110 cos 377t + 45�ð ÞV
(c) i1 tð Þ=30 cos 314:2t−26:6�ð ÞmA
(d) i2 tð Þ= 50 cos 377t−145�ð ÞmA

8–7 jωV=2828 ff45� V=s;
dv tð Þ=dt =2828 cos 200t +45�ð Þ V=s

8–9 (a) v2 tð Þ=200:25 cos 100t +92:86�ð ÞV
(b) i2 tð Þ= 14:42 cos 5t + 33:7�ð ÞA

8–11 V=15:72− j3:92 V. See phasor diagram below.

jlm

V1 + V2 + V3

V3

V2

V1

V2V3

Re

8–13 Z = 2:5 ff−80� Ω= 0:435− j2:4625Ω
8–15 (a) ω= 666:67 krad=s

(b) ω= 3:0303 krad=s
(c) at all frequencies

8–17 (a) Z = 11:176 + j35:294Ω=37:021 ff 72:43� Ω
(b) L= 17:4 mH.

8–19 Use a 41:36-Ω resistor in series with a 0:4449-μF
capacitor to replace the circuit when ω=50 krad=s.

8–21 Use a 75-Ω resistor in series with a 1:5-mH inductor to
replace the circuit when ω= 150 krad=s.

8–23 (a) Z = 48:83 + j5:828Ω= 49:17 ff 6:81�Ω
(b) Add a capacitor of 1:716 μF.
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8–25 ZL = j400Ω
8–27 C =0:9901 μF
8–29 Z =186:5− j2:434Ω= 186:52 ff−0:748� Ω
8–31 (a) See figure below for the circuit diagram.

(b) I= 371ff−68:2� mA, VR = 18:57ff−68:2� V,
VL = 46:42ff21:8� V

(c) See figure below for the phasor diagram.

I

–68.2˚

21.8˚

VR

Re

VL
jlm

j125 Ω 50 Ω I

+
–

VR+ – VL+ –

50⦟0˚ V

8–33 i tð Þ=941 cos 3 kt + 71:9�ð Þ μA
8–35 VO =

jωLVA

R+ j2ωL
; IL =

VA

R+ j2ωL

8–37 VR =
RIA

1+ jω3RC
; IC =

jω3RC IA
1+ jω3RC

8–39 VT = 7:91ff−88:3� V; ZT = 150− j50Ω; v tð Þ= 7:91
cos 2π100t−88:3�ð ÞV

8–41 vX tð Þ= 44:72 cos 2000t−63:43�ð ÞV
8–43 K = 0:3 + j0:1; VX = 28:28ff−53:13� V; IX = 63:2

ff−26:6� mA
8–45 (a) IX = IX1 + IX2 = −0:8485 + j0:9899= 1:304

ff 130:6� A
8–47

SOURCE VRj j VCj j j Ij ZRj j ZCj j
Increase/
decrease
VA

Increase/
decrease
VRj j

Incease/
decrease
VCj j

Increase/
decrease
j I j

None None

Increase/
decrease ω

Increase/
decrease
VRj j

Decrease/
increase
VCj j

Increase/
decrease
j I j

None Decrease/
increase
ZCj j

Increase/
decrease ϕ

None None None None None

8–49 vX tð Þ= vX1 tð Þ+ vX2 tð Þ= 89:44 cos 1000t +18:43�ð Þ+
79:06 cos 2000t−161:57�ð ÞV

8–51 (a) VO = 0+ j4 V, IO = 4ff90� mA
(b) VO = 0+ j4 V, IO = 8ff180� mA
(c) VO = −4:659+ j17:39 V, IO = 18ff105� mA

8–53 K = 0+ j0:4; VX = 60− j60 V; IX = 1:2+ j1:2 mA
8–55 (a) VT = 48:78− j160:98 V= 168:20ff−73:14� V,

ZT = 119:51− j24:39Ω
(b) V= 143:88 ff−50:73� V, I=534:3 ff−118:93� mA

8–57 Use a voltage divider as the interface, withZ1 in series
with the source and Z2 in parallel with the output.
Then let Z2 = 60ff45� = 42:43 + j42:43Ω, solve for Z1 =
240−Z2 = 197:57− j42:43Ω.

8–59 Use a series impedance consisting of a 200-Ω resistor
and a 200-mH inductor.

8–61 Use a voltage divider as the interface, withZ1 in series
with the source and Z2 in parallel with the output.
Then let Z2 = 10ff−45� = 7:071− j7:071 kΩ, solve for
Z1 = 15 kΩ−Z2 = 7:929 + j7:071 kΩ.ConstructZ1:R1 =
7:929 kΩ, L1 = 70:71 mH, construct Z2: R2 = 7:071 kΩ,
C2 = 0:001414 μF.

8–63 vX tð Þ= 34:68 cos 10,000t−42:2�ð ÞV
8–65 (a) VA = 0− j0 V=0ff 0� V, VB = −5000 + j0 V= 5000

ff 180� V
8–67 IA = 42:79− j99:25mA, IB = 50:30− j27:11mA,

IC = 50− j50mA, I1 = 49:77ff−98:33� mA,
I2 = 72:52ff−95:95�mA, I3 = 70:71ff 135� mA

8–69 The following MATLAB code performs the
calculations and its output is shown below.

CODE OUTPUT

syms IA IB

VS = 24;

Eqn1 = (20+30i)*IA + (20
+10i)*(IA-IB) + VS;

Eqn2 = -VS + (20+10i)*(IB-
IA) + (20+20i)*IB;

Soln = solve(Eqn1,Eqn2,
IA,IB);

IA = double(Soln.IA)

IB = double(Soln.IB)

IA = -207.9723e-003
+191.3345e-003i

IB = 307.7990e-003
-187.1750e-003i

8–71 (a) vO tð Þ= 1:414 cos 2128t−135�ð ÞV
(b) ω=1:2284 krad=s.

8–73 (a) 0 = 2000IA− j100 IA−IBð Þ+ 10,000 IA−ICð Þ
0 = 50ff 45�+1000IB−1ff 0�+j100 IB−ICð Þ− j100 IB−IAð Þ
0 = j100 IC−IBð Þ+ 1ff 0� +100ff−45� + 10,000 IC−IAð Þ

(b)
12,000− j100ð Þ j100 −1000

j100 1000 − j100
−1000 − j100 10,000 + j100ð Þ

2
64

3
75

IA
IB
IC

2
4

3
5=

0
1ff0�−50ff45�

−100ff−45�−1ff0�

2
4

3
5

(d) VA

2000
−0:05ff45� + VA−100ff−45�

1000
+
VA−VB

− j100
= 0

VB−VA

− j100
−0:01ff−90�+VB−100ff−45�

j100
+

VB

10,000
= 0

(e)

1
2000

+
1

1000
+

1
− j100

� �
1

j100

1
j100

1
− j100

+
1

j100
+

1
10,000

� �
2
6664

3
7775

VA

VB

" #
=

0:05ff45� + 100ff−45�
1000

0:01ff−90� + 100ff−45�
j100

2
664

3
775

866 ANSWERS



(g) The node-voltage approach required only two
equations to solve for the node voltages, but
then required additional calculations to solve
for the currents. The mesh-current approach
used three equations and three unknowns
but was able to solve for two of the
unknown currents directly.

8–75 (a) VO = 28:28ff−33:47� V, IO = 565:6ff 56:53� μA
8–77 VT = 0:0785− j1:167 V= 1:170ff−86:15� V

ZT = −102:4− j129:7Ω
8–79 VS = 371:65ff 47:73� V
8–81 K =VO=VS = 0:904− j0:00571, ZIN = 49:40− j12:98 kΩ

8–83 (a)

1
50

+
1
50

+
1
j50

� �
−

1
50

−
1
j50

−
1
50

1
50

+
1

− j90
+

1
50

� �
−

1
50

−
1
j50

−
1
50

1
j50

+
1
50

+
1
100

� �

2
666666664

3
777777775

VA

VB

VC

2
4

3
5=

VS

50
0
0

2
664

3
775

(b) VA = 0:6000− j0:0826ð ÞVS V, VB = 0:4335−ð
j0:3200ÞVS V,VO = 0:4445− j0:3165ð ÞVS V
K = 0:44495− j0:31651, ZIN = 119:83− j24:72Ω

8–85 P= 56:815 mW
8–87 (a) ZT = 50− j100Ω, hence ZL = 50+ j100Ω

(b) PMAX = 36W
8–89 (a) PMAX = 25mW

(b) R= 50:5 kΩ, C = 0:0198 μF
8–93 (a) PW =10:992W, PL = 686:996W

(b) η= 98:43%
(c) To improve the efficiency, we need to decrease

the resistance in the wires or increase the
resistance in the load. Assuming that the wires
are fixed, we will double the resistance in the
load by adding a 50-Ω resistor in series,
η= 99:21%.

C H A P T E R 0 9
9–1 F sð Þ= 3000

s s+1000ð Þ. The zeros are located at s= ∞ , ∞½ �
and the poles are located at s= 0, −1000½ �.

9–3 F sð Þ= −5 s−10ð Þ
s

. The zero is located at s= 10 and the

pole is located at s= 0.

9–5 F sð Þ= − s+5ð Þ
s+2ð Þ s−1ð Þ. The zeros are located at s= −5, ∞½ �

and the poles are located at s= −2, 1½ �.
9–7 F sð Þ= 1,250,000

s s2 + 250,000ð Þ. All three zeros are at s= ∞½ � and
the poles are located at s= 0, ± j500½ �.

9–9 F sð Þ= s s+2ð Þ
s+ 1

. The zeros are located at s= 0, −2½ � and
the poles are located at s= −1, ∞½ �.

9–11 (a) F1 sð Þ= −5 s−10ð Þ
s+5ð Þ s+ 10ð Þ. The zeros are located at

s= 10, ∞½ � and the poles are at s= −5, −10½ �.
The following MATLAB code and output
validates the solution:

Code syms s t f F

f = (15*exp(-5*t) - 20*exp(-10*t))
*heaviside(t);

F = factor(laplace(f ))

Output F = -(5*(s - 10))/((s + 10)*(s + 5))

(b) F2 sð Þ= 20s s2 + 2:5× 106
� �

s2 + 106
� �

s2 + 4 × 106
� �. The zeros are

located at s = 0, ± j1581:1, ∞½ � and the poles are
located at s = ± j1000, ± j2000½ �.
The pole-zero diagrams are shown below.

jω

at ∞

–10 10–5

σ

(1)

(a)

jω

j2000

–j2000

j1581.1

–j1581.1

j1000

–j1000

at ∞

σ

(1)

(b)

9–13 (a) F1 sð Þ= 2 s2 + 24s+ 216
� �

s+ 12ð Þ2 . The zeros are located at

s= −12 ± j8:4853 and the poles are located
at s= −12, −12½ �.

(b) F2 sð Þ= 50 30s2 + 150s+20,200
� �
s s2 + 20s+ 10,100ð Þ . The zeros are

located at s= −25 ± j78:1558, ∞½ � and the poles
are located at s= 0, −10 ± j100½ �.

9–15 F sð Þ= 5se−s=20

2 s2 + 10,000ð Þ
9–17 (a) f tð Þ= At

T
u tð Þ−A t−Tð Þ

T
u t−Tð Þ−Au t−Tð Þ
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(b) F sð Þ= A 1−e−Ts−sTe−Ts
� �

Ts2

(c) Use the definition of the Laplace transform and
integration by parts.

9–19 (a) F sð Þ= 500 ½ s+ 500ð Þ2 + 10002�2 + 100s½ s+ 500ð Þ2−10002�
s½ s+ 500ð Þ2 + 10002�2

9–21 (a) f1 tð Þ= 0:2 1−e−50t
� �

u tð Þ
(b) f2 tð Þ= −e−3t + 2e−4t

� �
u tð Þ

9–23 (a) f1 tð Þ=50δ tð Þ+ 25,000
3

e−500t−
400,000

3
e−5000t

� �
u tð Þ

(b) f2 tð Þ= 50δ tð Þ+ 1250e−100t−31250e−500t
� �

u tð Þ
9–25 (a) f1 tð Þ= 300e−10t sin 30tð Þ u tð Þ

(b) f2 tð Þ= 5e−10t cos 30tð Þ u tð Þ
9–27 (a) f1 tð Þ= αt−1 + e−αt½ � u tð Þ

(b) f2 tð Þ= 1−αte−αt−e−αt½ � u tð Þ

9–29 f tð Þ= 1
9

5000e−500t + 40,000e−5000t
� �

u tð Þ

9–31 (a) f1 tð Þ= 1−
33
37

e−10
5t +

33
37

e−10
8 t

� �
u tð Þ

(b) f2 tð Þ= 5+
25
3

cos tð Þ− 25
3

cos 2tð Þ
� �

u tð Þ

9–33 (a) f1 tð Þ= 128−e−4t 112 cos 4tð Þ+ 144sin 4tð Þ½ �� �
u tð Þ

(b) f2 tð Þ= ½3−3e−10t +3e−40t � u tð Þ
9–35 (a) γ= 45

(b) γ=50
(c) γ= 55

9–37 (a) f1 tð Þ= dδ tð Þ
dt

−5δ tð Þ+26 e−5t u tð Þ
(b) f2 tð Þ= δ tð Þ−18,000 1−4500tð Þe−10,000t� �

u tð Þ

9–41 F sð Þ= 3 s+5ð Þ s+ 10ð Þ
s½ s+ 5ð Þ2 + 7:5ð Þ2�

9–43 F sð Þ= 500s s−5ð Þ s+100ð Þ
s+50ð Þ s2 + 2500ð Þ

9–45 i tð Þ= 1
4000

e−100t−e−500t
� �

u tð ÞA

9–47 (a)
diL tð Þ
dt

+250iL tð Þ=0

(b) sIL sð Þ−0:6 + 250IL sð Þ= 0

(c) IL sð Þ= 0:6
s+ 250

(d) iL tð Þ=600 e−250t u tð ÞmA

9–49 υO tð Þ= −84:45e−15,000t + 84:45 cos 377tð Þ+ 2:12 sin
�

377tð Þ� u tð ÞV
9–51 υ tð Þ= 20e−10t cos 30tð Þ+ 1

3
sin 30tð Þ

� �
u tð ÞV

9–53 (a)
d2iL tð Þ
dt2

+ 40,000
diL tð Þ
dt

+ 8,000,000iL tð Þ=0

(b) IL sð Þ= 10:05
s+ 201

−
0:05

s+ 39,799
yields

iL tð Þ= 10:05 e−201t−0:05 e−39,799t
� �

u tð Þ A

9–55 (a)
d2υC tð Þ
dt2

+
R
L
dυC tð Þ
dt

+
1
LC

υC tð Þ= 1
LC

υS tð Þ

(b) VC sð Þ= 10
s
−

20
s+ 200

+
10

s+ 400
yields

υC tð Þ= 10−20 e−200t + 10 e−400t
� �

u tð ÞV
9–57 (a) RiL tð Þ+L

diL tð Þ
dt

+
1
C

Z t

0
iL τð Þ dτ = υS tð Þ

(b) I sð Þ= −0:148
s+ 500

+ 0:148
s+ 410

s+410ð Þ2 + 706:09ð Þ2 + 0:194

706:09

s+ 410ð Þ2 + 706:09ð Þ2 yields

i tð Þ= −148e−500t + e−410t
�

148 cos 706:09tð Þ+ 194 sin 706:09tð Þ½ �g u tð ÞmA

9–59 VC sð Þ= VA

s2
−
VARC

s
+

VARC
s+ 1=RC

yields

υC tð Þ= VAt−VARC +VARC e− t=RC
� �

u tð ÞV
9–61 (a) f1 0ð Þ=100, f1 ∞ð Þ=0

(b) f2 0ð Þ=1, f2 ∞ð Þ= −4

9–63 (a) f1 0ð Þ=400, f1 ∞ð Þ= 0
(b) f2 0ð Þ=150. The final value property does not

apply in this case because sF2 sð Þ has poles on
the jω-axis, so it does not have a final value.

9–65 (a) The initial value property does not apply in this
case because F1 sð Þ is not a proper rational
function. f1 ∞ð Þ=0

(b) f2 0ð Þ=10, f2 ∞ð Þ= 10

9–69 K = f 0ð Þ, γ= f ∞ð Þ
f 0ð ÞTC

, α=
1
TC

C H A P T E R 1 0
10–1 ZEQ =

RCs+1
Cs

, R= 1 kΩ, C = 0:1 μF

10–3 (a) ZEQ =
Rs+

1
2C

s+
1

4RC

, The zero is located at s= −1=2RC

and the pole is located at s= −1=4RC
(b) R=1 kΩ, C = 0:01136 μF. The zero is located

at s= −44 krad=s

10–5 (a) ZEQ =
2
3

� �
RCs+ 1

Cs
. The zero is located at

s= −1=RC and the pole is located at s=0.
(b) R=1 kΩ, C = 2:1277 μF.

10–7 (a) ZEQ =
R s2 +

1
LC

� �
s2 +

R
L
s+

1
LC

The zeroes are located at

s= ± j1=
ffiffiffiffiffiffiffi
LC

p
and the poles are located

at s=
−RC ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2C2−4LC

p

2LC
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(b) L= 100 mH
(c) s= −5 ± j8:66 krad=s

10–9 (a) ZEQ =
4Ls Ls+Rð Þ

2Ls+R
. The zeros are located at 0

and the pole is located at s= −R=2L.
(b) Choose R=3 kΩ that yields L= 100 mH. The

zeros are located at s= 0 and −30 krad=s.
10–11 (a) The zeros are located at −695:4 rad=s and

−2876 rad=s. The pole is located at −3571 rad=s.
(b) The pole would be at s= −200 rad=s. The zeros

would shift to s= −100 ± j1411 rad=s.

10–13 (a) ZEQ =
2RC s2 +

1
RC

s+
1

8R2C2

� �
2Cs s+

1
4RC

� � . The poles are

located at s=0 and s= −1=4RC. The zeros are

located at =
1
RC

−
1
2

� �
±

ffiffiffi
1
8

r
.

(b) If R is reduced by a factor of two, the poles
would increase in magnitude by a factor of two
and would be located at zero and s= −40 krad=s.

10–15 ZEQ =
2L2s2 + 5RLs+ 2R2

Ls+R
, select R= 3:3 kΩ and

L=1H to locate the pole at s= −3:3 krad=s. The
zeros are located at s= −6:6 krad=s and
s = −1:650 krad=s.

10–17 (a) VO sð Þ=
1
RC

s+
1
RC

VS sð Þ

(b) ZT sð Þ=
R s+

2
RC

� �
s+

1
RC

10–19 (a) I2 sð Þ= R1 +Ls
R1 +R2 +Ls

I1 sð Þ

(b) ZN sð Þ= R1 +Lsð ÞR2

R1 +R2 +Ls
(c) the zero is located at s= −R1=L and the poles are

located at zero and − R1 +R2ð Þ=L. The natural
pole is at s= − R1 +R2ð Þ=L and the forced pole
is at zero.

10–21 VT sð Þ= Ls
R+2Ls

VS sð Þ, ZT sð Þ= RLs
R+ 2Ls

10–23 (a) VR sð Þ=
R
L

s2 +
R
L
s+

1
LC

, VL sð Þ= s

s2 +
R
L
s+

1
LC

,

VC sð Þ=
1
LC

s s2 +
R
L
s+

1
LC

� �

(b) For VR sð Þ, there are two zeros at ∞ and the

poles are located at =
−R±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−

4L
C

r
2L

. For

VL sð Þ, the zeros are at 0 and ∞ and the poles
are the same as those for VR sð Þ. For VC sð Þ,
three zeros are at ∞ and it has two poles that
are the same as those for VR sð Þ, plus an
additional pole at 0.

(c) vR 0ð Þ=0, vR ∞ð Þ=0, vL 0ð Þ=1, vL ∞ð Þ= 0,
vC 0ð Þ= 0, vC ∞ð Þ= 1. An RLC circuit with a
step input can be used to switch a voltage
from zero to one, from one to zero, or to
hold a value of zero, depending on how we
connect the output terminals. In addition,
the initial voltage appears across the inductor
and the final voltage appears across the
capacitor.

10–25 IL sð Þ=
VA

2R

s+
3R
L

, iL tð Þ= VA

2R
e−3t=L u tð ÞA,VO sð Þ=

−
VA

2

s+
3R
L

υO tð Þ= −
VA

2
e−3t=L u tð ÞV

10–27 IC sð Þ=
−
3VA

2R

s+
3

2RC

, iC tð Þ= 3VA

2R
e−3t=2RC u tð ÞA,

VO sð Þ=
−
2
3
VA

s
+

−VA

s+
3

2RC

υO tð Þ= −VA
2
3
+ e−3t=2RC

� �
u tð ÞV

10–29 IL sð Þ=
VA

3L
+ IA

s+
2R
3L

, iL tð Þ= VA

3L
+ IA

� �
e−2Rt=3L u tð ÞA,

VL sð Þ= VA

3
−

2R
9L

VA

s+
2R
3L

−

2
3
RIA

s+
2R
3L

υO tð Þ= VA

3
δ tð Þ− 2R

9L
VA + 3LIAð Þe−2Rt=3L u tð ÞV

10–31 IL sð Þ=
−
VA

100
s+ 1000

+

VA

100

s+
2000
3

iL tð Þ= VA

100
e−2000t=3−e−1000t
� 	

u tð ÞA

10–33 VC sð Þ=
VA

LC

s s2 +
R1 +R2

L
s+

1
LC

� �
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vC tð Þ= 15−15e−250 t cos 1392tð Þ+ 0:1796 sin 1392tð Þ½ �
u tð ÞV

10–35
VO sð Þ
I1 sð Þ =

R2C2s2 + 5RCs+ 4
3Cs RCs+ 2ð Þ The zeros are located at

s= −4=RC and s= −1=RC. The poles are located at
zero and s= −2=RC.

10–37 VRzs sð Þ=
s2 +

1
LC

s2 +
1
RC

s+
1
LC

VS sð Þ

VRzi sð Þ=
1
C
I0

s2 +
1
RC

s+
1
LC

10–39 υO tð Þ=
�
125
8

e−1000t=9

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
−
675
8

e−1000t

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
�
u tð ÞV

Natural Forced

10–41 I sð Þ= IS sð Þ
7RCs+1

10–43 VT sð Þ= 50
s+ 250

, ZT sð Þ= 10;000 s+ 500ð Þ
s+250

10–45 ZX sð Þ= 1
Cs

10–47 V sð Þ= βLsVA + IBðRLs2 +RLβ2Þ
s2 + β2
� �

2Ls+Rð Þ The forced poles

are at s= ± jβ and the natural pole is located
at s= −R=2L.

10–49
V2 sð Þ
V1 sð Þ =

1
RC

s

s2 +
3
RC

s+
1

R2C2

, choose R= 1 kΩ and

C = 1 μF to meet the specifications.
10–51 (a) The mesh-current equations are:

Ls+R1ð ÞIA sð Þ−R1IB sð Þ=V1 sð Þ
−R1IA sð Þ+ R1 +R2 + 1=Csð Þ IB sð Þ= 0
(b) Solve the second mesh-current equation for

IA sð Þ and substitute into the first equation.
(c) Zero is at 0, poles are at

s= − L+R1R2Cð Þ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L+R1R2Cð Þ2 −4 R1 +R2ð ÞLCR1

p
2 R1 +R2ð ÞLC .

(d) i2 tð Þ=
ffiffiffi
2

p

100
e−2000t=3 sin

2000
ffiffiffi
2

p

3
t

!
u tð ÞA

 

10–53 (a) The node-voltage equations are:
C1s+ 1=R1 +C2sð ÞVA sð Þ−C2s VB sð Þ=C1sV1 sð Þ

−C2sVA sð Þ+ C2s+1=R2ð ÞVB sð Þ=0

(b) V2 sð Þ= R1R2C1C2s2V1 sð Þ
R1R2C1C2s2 + R1C1 +R2C2 +R1C2ð Þs+ 1

(c) V2 sð Þ= R1R2C1C2s2V1 sð Þ
R1R2C1C2s2 + R1C1 +R2C2ð Þs+ 1

, the

buffer reduced the coefficient of the s term in the
denominator. In general, this change reduces
the damping coefficient.

(d) Without the OP AMP: Pick R1 =R2 = 1 kΩ and
get C1 = 0:0230 μF and C2 = 0:0435 μF. With OP
AMP: Choose R1 =R2 = 1 kΩ, C1 = 0:1 μF, and
C2 = 0:01 μF to place the poles as specified.

10–55 (a) The mesh-current equations are:

R1 + 1=C1sð ÞIA sð Þ− 1=C1sð ÞIB sð Þ=V1 sð Þ
− 1=C1sð ÞIA sð Þ+ R2 + 1=C1s+ 1=C2sð Þ IB sð Þ=0

(b)
V2 sð Þ
V1 sð Þ =

R1R2C1C2s2 + R1C1 +R2C2ð Þs+ 1
R1R2C1C2s2 + R1C1 +R2C2 +R1C2ð Þs+ 1

10–57 VT sð Þ= R1R2C1C2s2 + R1C1 +R2C2ð Þs+ 1
� �

V1 sð Þ
R1R2C1C2s2 + R1C1 +R2C2 +R1C2ð Þs+ 1

ZT sð Þ= R2 + R1C1 +R1C2ð Þs+ 1½ �
R1R2C1C2s2 + R1C1 +R2C2 +R1C2ð Þs+ 1

10–59 (a) The mesh-current equations are:
ð0:01 + 10−5sÞVA sð Þ−10−5s VB sð Þ= −50μ,
−10−5s VA sð Þ+ 10−5s+0:01+5=s

� 	
VB sð Þ= 50μ,

υC tð Þ= −5e−375t

cos 125
ffiffiffi
7

p
t

� 	
−
2
ffiffiffi
7

p

14
sin 125

ffiffiffi
7

p
t

� 	" #
u tð ÞV

10–63 C = 0:1 μF, L= 25mH, R= 2 kΩ
10–67 (a) Mesh currents IA sð Þ and IB sð Þ are linked through

the definition of IX sð Þ and the dependent current
source. Only one of those two currents is
independent. Mesh current IC sð Þ is independent.

(b) R1−
Ls
β−1

� �
IA sð Þ−R1IC sð Þ=VS sð Þ

− R1−
R2β
β−1

� �
IA sð Þ + 1

Cs
+R2 +R1

� �
IC sð Þ= 0

(c) IX sð Þ= 1
1−β

IA sð Þ, VX sð Þ= 1
Cs

IC sð Þ

10–69
VO sð Þ
VS sð Þ =

5000
3

s

s2 +
20,000

3
s+

25,000,000
3

υO tð Þ= 50 e−
5000
3 t−e−5000t

� �
u tð Þ V

10–71 (b)
VO sð Þ
VS sð Þ =

R2LCs2

R1 +R2ð ÞLCs2 + R1R2C +Lð Þs+R1

(c) L= 500 mH, C = 2 μF

10–73 VO sð Þ= RVS sð Þ
R+Lsð Þ LCs2 +RCs+ 2ð Þ, poles are at

s= −
R
L

and =
−RC ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RCð Þ2−8LC

q
2LC

, sub

L=R2C=4, get s= −
4
RC

, and s=
−2 ± j2
RC

10–75 (a) The two zeros are located at infinity and the
poles are located at s= 0, which is forced, and
s= −5000 rad=s, which is the natural pole.

(b) υO tð Þ= −3+ 3e−5000t
� �

u tð ÞV
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10–77 υO tð Þ= 10
3
e−10t−

750
169

e−50t +
560
507

e−610t=7 +
4000t
13

e−50t
� �

u tð ÞV

C H A P T E R 1 1
11–1 Z sð Þ= 2RCs+ 1

Cs
, TV sð Þ= RCs+ 1

2RCs+1

11–3 (a) sð Þ= LCs2 +RCs+ 1
Cs

, TV sð Þ=
R
L
s

s2 +
R
L
s+

1
LC

(b) SelectR=2 kΩ and solve forL= 1H andC = 1 μF.
Under these conditions, the zeros are located at
zero and infinity. Other design choices are
possible.

11–5 Z sð Þ= RLCs2 +Ls+R
LCs2 + 1

,TV sð Þ= Ls
RLCs2 +Ls+R

The numerator of Z sð Þ (zeros) matches the
denominator of TV sð Þ (poles.)

11–7 (a) Z sð Þ= ∞ Ω, TV sð Þ= RCs+ 2
RCs+ 1

(b) Choose R= 5 kΩ and solve for C = 0:1 μF. The
zero is located at s= −4000 rad=s.

11–9 TV sð Þ= R
2RLCs2 +R2Cs+Ls+R

11–11 TV sð Þ= −μ R2Cs+1ð Þ
R1 +R2ð ÞCs+ 1

, The pole is located at

s= −1= R1 +R2ð ÞC. Pick R1 =R2 = 5 kΩ and solve
for C = 0:001 μF. The gain factor μ does not
influence the pole location.

11–13 T1 sð Þ= R
Ls+ 3R

, The pole is located at s= −3R=L.

Pick R= 100Ω and solve for L= 600 mH.

11–15 Z sð Þ= 33,000s+ 17,857,000
s

TV sð Þ= s 11s+ 10,000ð Þ
s+ 10,000ð Þ s+541:1ð Þ ;

The zeros are located at s= 0 and s=
−10,000=11 rad=s. The poles are located at
s= −10,000 rad=s and s= −541:1 rad=s.

11–17 h tð Þ= 56
89

δ tð Þ+ 18:937 e−51:07t u tð Þ

g tð Þ= 1−
33
89

e−51:07t
� �

u tð Þ

11–19 h tð Þ= δ tð Þ− 20,000
3

e−50,000t=3 u tð ÞV

g tð Þ= 1
5

3+ 2e−50,000t=3
� 	

u tð ÞV
11–21 h tð Þ= −10,000e−2500t u tð Þ, g tð Þ= 4 e−2500t−1

� �
u tð Þ

11–23 h tð Þ= δ tð Þ+10 e−10t u tð ÞV, g tð Þ= 2−e−10t
� �

u tð ÞV
11–25 h tð Þ= 2δ tð Þ−4000 e−200t u tð Þ

g tð Þ= 20e−200t −18
� �

u tð Þ

11–27 G sð Þ= 1,250,000= s+ 25,000ð Þ s+50,000ð Þ;
H sð Þ= 1,250,000s= s+ 25,000ð Þ s+ 50,000ð Þ;
h tð Þ= 1,250,000 2e−50;000t−e−25;000t

� �
u tð Þ

11–29 y tð Þ= 1
1000

5000t−1+ e−5000t
� �

u tð Þ
11–31 Use an LR voltage divider with the voltage (a unit

step) taken across the resistor. Let R= 10 kΩ
and L=1H.

11–33 TherequiredMATLABcodeandresults areas shown.

CODE RESULTS
syms s t

Hs = (s+2000)/(s+1000)

xt = 5*exp(-1000*t);

Xs = laplace(xt)

Ys = simplify(Hs*Xs)

yt = ilaplace(Ys)

Hs = (s + 2000)/(s + 1000)

Xs = 5/(s + 1000)

Ys = (5*(s + 2000))/
(s + 1000)^2

yt = 5*exp(-1000*t)
+ 5000*t*exp(-1000*t)

11–35 v2SS tð Þ=17:8 cos 1414:21t−90�ð Þ μV,
v2SS tð Þ=2:43 cos 1000t−76�ð ÞV,v2SS tð Þ=10 V

11–37 v2SS tð Þ=25 cos 2000t +90�ð ÞV,v2SS tð Þ=0 V:
The poles are located at s= −1000 ± j1732 rad=s.

11–39 i2SS tð Þ=199 cos 50,000t + 95:7�ð Þ μA, i2SS tð Þ=1:414
cos 5000t +135�ð ÞmA: The pole is located at s=
−5000 rad=s.

11–41 (a) i2SS tð Þ= 980:6 cos 500t + 78:7�ð Þ μA
(b) i2SS tð Þ= 3:536 cos 2500t + 45�ð ÞmA
(c) i2SS tð Þ= 4:903 cos 12,500t +11:3�ð ÞmA
(d) Multisim agrees.

11–43 ySS tð Þ= 21:11 cos 200t−39:3�ð Þ
11–45 The pole is located at s= +100 rad=s, so the response

is not stable. There is no steady-state response.

11–47 ySS tð Þ= 1:996 cos 10,000t−179:8�ð Þ
11–49 ySS tð Þ= 11:76 cos 100t−107:1�ð Þ

11–51 y tð Þ=
Z t

0
h t−τð Þx τð Þ dτ=

Z t

0
u t−τð Þu τð Þdτ

=
Z t

0
dτ

� �
u tð Þ= tu tð Þ= r tð Þ

11–53 y tð Þ= tð Þu tð Þ− t−2ð Þu t−2ð Þ= r tð Þ−r t−2ð Þ
11–55 y tð Þ= 1

2
t2−4t +4
� �

u t−2ð Þ− t2−4t + 3
� �

u t−3ð Þ� �
11–57 (a) y tð Þ=10 1−e− tð Þu tð Þ + 10 e− t−1ð Þ−1

� �
u t−1ð Þ

(b) Y sð Þ=H sð ÞX sð Þ= 10
s
−

10
s+1

−
10e−s

s
+
10e−s

s+1
;

therefore, y tð Þ=10 1−e− tð Þu tð Þ+ 10 e− t−1ð Þ−1
� �

u t−1ð Þ; as found in part (a).

11–59 y tð Þ=
Z t

0
h t−τð Þx τð Þdτ=

Z t

0
f t−τð Þδ τð Þdτ

=
Z t

0
f tð Þδ τð Þdτ= f tð Þ

Z t

0
δ τð Þdτ= f tð Þ 1ð Þ= f tð Þ
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11–61 y tð Þ=
Z t

0
x t−τð Þh τð Þ dτ=

Z t

0
u t−τð Þh τð Þ dτ

=
Z t

0
h τð Þ dτ

� �
u tð Þ= g tð Þu tð Þ

11–65 h tð Þ= 10
3

e−2t−e−5t
� �

u tð Þ
11–67 y tð Þ= r tð Þ
11–69 Use an RC voltage divider with V2 sð Þ taken across

the capacitor. R= 1 kΩ, C =0:002 μF.
11–71 Rewrite the transfer function as:

TV sð Þ= 1
10

� � 105

s

1+
105

s

2
664

3
775. Use two voltage dividers

separated by a Follower. The first has R1 = 9 kΩ in
series with the input and R2 = 1 kΩ between R1 and
ground. The second has R3 = 10 kΩ connected to
the output of the Follower and C3 = 1000 pF
between R3 and ground.

11–73 Rewrite the transfer function as: TV sð Þ= 0:1s+1000
0:1s

.

The design is a non-inverter with a 1-kΩ resistor in
the feedback loop and a 100-mH inductor between
vN and ground.

11–75 Rewrite the transfer function as:

TV sð Þ= 105

105 +
107

s

2
664

3
775 10½ �

107

s

104 +
107

s

2
664

3
775: The design

consists of two RC voltage dividers separated by
a noninverting amplifier with gain of 10. First voltage
divider (HP) has R1 = 100 kΩ and C = 0:1 μF. Second
RC voltage divider (LP) has R4 = 10 kΩ
and C = 0:1 μF.

11–77 (a) All three realize the specified transfer function.
(b) Choose design 1 since its output is the output of

an OP AMP and it will not be affected by the
1-kΩ load. The 1-kΩ load will influence the
transfer functions of the other two designs.

(c) Choose design 2. The source will add 50Ω to the
input resistance, but it will not substantially
change the transfer function. The same for
Design 1, but Design 2 has fewer OP AMPs and
fewer components overall, so it is a better choice.
The 50-Ω source resistance will substantially
change the transfer function in Design 3.

(d) Use Design 3 to minimize power usage since it is
passive and has no OP AMPs to power.

11–81 Use a seriesRLC circuit with the output taken across
the series combination of the resistor and capacitor.
Use values of R= 200Ω, L=1H, and C =1 μF.

11–83 (a) Both circuits realize thedesired transfer function.
(b) Use the first circuit. There will be loading issues

with the second circuit.

(c) Either circuit will be acceptable, but the second
design is passive, so if power usage is a concern, it
is a better choice than the first circuit.

(c) The claim is false. If the second circuit is
connected in front of the first circuit, there will
be loading between the circuits and the
resulting transfer function will not be the
product of the individual transfer functions.

11–85 Create the following transfer function:

TV sð Þ= V2 sð Þ
V1 sð Þ = 103

� � 104 +
106

s

104 +
106

s
+
106

s

2
664

3
775: The circuit

design is a non-inverter with R1 = 1 kΩ, R2 = 1MΩ,
and a C-RC voltage divider with the output taken
across R4C4, with R4 = 10 kΩ, and C3 =C4 = 1 μF.

11–87 The circuit can work if we use node A as the input
with a buffer attached, node D as the output, and
connect a 90-kΩ resistor between nodes B and C.

11–91 The fan-out level with 2-pF capacitors is five
in this case. If the driver connects to more
than five loads, the capacitance will be above
10:92 pF, the RC time constant will increase, and
the 5-V step function will not rise to 3:7 V in less
than 10 ns.

C H A P T E R 1 2
12–1 K = 132:04 dB

12–3 (a) K = −9:12 dB
(b) K = −6:02 dB

12–5 TV sð Þ= 0:5 s
s+ 4700

(a) jT j0ð Þj=0, jT j∞ð Þj=0:5
(c) jT j1175ð Þj= −18:33 dB, jT j2350ð Þj= −13:01 dB,

jT j4700ð Þj= −9:03 dB
(e) K = −12:3 dB

12–7 TV sð Þ= −50,000
s+ 10;000

(a) jT j0ð Þj=5, jT j∞ð Þj=0
(c) jT j1000ð Þj= 13:94 dB, jT j10,000ð Þj= 10:97 dB,

jT j100,000ð Þj= −6:06 dB
(e) Replace the 10-kΩ resistor with a 50-kΩ resistor

to increase the passband gain by a factor of five
and then replace the capacitor with a 0:002-μF
capacitor to maintain the same cutoff frequency.

12–9 TV sð Þ= 5 s
s+ 1000

12–11 TV sð Þ= s
s+ 500

. Use an RC voltage divider filter

with the output taken across the resistor.
R= 2 kΩ, C = 1 μF.
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12–15 Use an RC voltage divider LPF with R= 10 kΩ,
C =0:001 μF feeding a noninverter with a gain
of 50, for example, RA = 490 kΩ and RB = 10 kΩ.
The OP AMP must have a GBW of at least
5Mrad=s to not affect the filter’s cutoff frequency.

12–17 TV sð Þ= −104 s
s+ 2000

. The desired cutoff frequency is

ωC = 2000 rad=s or fC = 318:31 Hz. The gain-
bandwidth product for the desired filter is
GBW = 3:1831MHz. The OP AMP with a GBW of
2MHz will not meet the specifications for the
filter. Use a suitable inverting-OP AMP HPF with
the input leg being an R of 1 kΩ and a C of 0:5 μF
in series with a feedback resistor of 10MΩ.

12–19 (a) TV sð Þ= K +1ð Þ s
s+ 1=RC

(b) It is an HPF with ωC = 1=RC.
(c) The passband gain is K + 1ð Þ.
(d) The cutoff frequency is fC = 500 kHz. Select

R= 1 kΩ, then KR= 100 kΩ and C =318 pF.
(e) The gain-bandwidth product should be at

least GBW = 50MHz.

12–21 TV sð Þ= 5000
s+ 5000

jT 0ð Þj= 0 dB,
jT j500ð Þj= −0:0432 dB, jT j50,000ð Þj= −20:04 dB,
jT j500,000ð Þj= −40:00 dB

12–23 TV sð Þ= 50s
s+ 10;000

(a) It is an HPF with ωC = 10 krad=s and a passband
gain of 50 or 33:98 dB.

(b) MATLAB Code
syms s
T = 50*s/(s+10000);
w = logspace(2,6,1000);
Tjw = subs(T,s,1i*w);
MagTjw = abs(Tjw);
MagTjwdB = 20*log10(MagTjw);
semilogx(w,MagTjwdB,’b’,’

LineWidth’,2.5)
grid on
xlabel(’Frequency, (rad/s)’)
ylabel(’Magnitude, (dB)’)

(c) The design is an HP first-order series RC circuit
with the output taken across the resistor
connected to a noninverting amplifier with a
gain of 50. For the RC filter, select R= 1 kΩ
and C = 0:1 μF.

12–25 (a) The following MATLAB code plots both the
gain and phase for the Bode diagram:

figure
ww = logspace(1,5,5000);

TT = tf([1000 0],[1 1000 1e6]);
bode(TT,ww);
grid on

The gain response is that of a bandpass filter.
(b) From either the magnitude or phase response

plots, the center frequency is 1000 rad=s.
(c) From the magnitude response plot and using the

data point function in MATLAB, the cutoff
frequencies are at ωC1 = 619 rad=s and ωC2 =
1620 rad=s.

(d) From the phase response plot and using the data
point function in MATLAB, the phase angles
are ffT j0ð Þ= 90�, ffT j∞ð Þ= −90�, ffT ωC1ð Þ=
44:9�, ffT ωC2ð Þ= −45:1�, ffT ω0ð Þ= 0�.

12–27 (a) The gain response is that of a band-stop or band-
reject filter.

(b) From either the magnitude or phase response
plots, the center frequency is 1000 rad=s.

(c) From the magnitude response plot and using the
data point function in MATLAB, the cutoff
frequencies are at ωC1 = 951 rad=s and ωC2 =
1050 rad=s. From the phase response plot and
using the data point function in MATLAB, the
phase angles are ffT j0ð Þ=0�, ffT j∞ð Þ= 0�,
ffT ωC1ð Þ= −44:9�, ffT ωC2ð Þ= 44:9�, ffT ω0ð Þ= 0�.

12–29 (a) The gain response is that of a low-pass filter.
(b) From the magnitude response plot and using the

data point function in MATLAB, the cutoff
frequency is at ωC = 1550 rad=s and the
resonant peak occurs at ω= 1000 rad=s.

(c) From the phase response plot and using the data
point function inMATLAB, thephaseanglesare:
ffT j0ð Þ=0�, ffT j∞ð Þ= −180�, ffT ωCð Þ= −177�.

(d) AnOPAMP is not required. The filter has a gain
greater than one at the resonant peak, butwe can
achieve this result using a passive RLC circuit.

12–33 Choose the circuit in Figure P12–32, since its output
is the output of an OP AMP and it will not cause any
loading at the output. The circuit is Figure P12–31
will not meet the specifications when connected to
a 500-Ω load.

12–37 The first stage will be an active low-pass filter with
resistor values that are large enough to make the
source resistance insignificant. This stage will have
a gain of 1 or 0 dB and a cutoff frequency of
20 kHz. Select R=800 kΩ and C =10 pF. The
second stage will be an active high-pass filter with
a cutoff frequency of 20 Hz. Select R= 10 kΩ and
C =0:8 μF. Make the feedback resistor in the
second stage a potentiometer to control the overall
gain of the circuit. The potentiometer should vary
from 10 kΩ to 10MΩ to achieve gains of 1 0 dBð Þ
to 1000 60 dBð Þ.

873ANSWERS



12–39 The circuit is a series RLC bandpass filter with gain.
Q=0:1729, B= 3900 rad=s, ω0 = 674:2 rad=s,
ωC1 = 113:26 rad=s, and ωC2 = 4013:3 rad=s. The
circuit is a wide-band filter.

12–43 The filter cannot be designed with a cascade
connection of first-order filters because the quality
factor is too high.

12–45 (a) Without parasitic RP: TV sð Þ=
s2 +

1
LC

s2 +
R1

L
s+

1
LC

With parasitic RP: TV sð Þ=
s2 +

1
LC

s2 +
R1 +RP

L
s+

1
LC

(b) The Multisim simulation shows without RP:
Q= 50, B= 500 rad=s, and ω0 = 25 krad=s. With
RP: Q= 35:71, B=700 rad=s, and ω0 =
25 krad=s. The parasitic resistance decreases
the quality factor, increases the bandwidth, but
does not change the center frequency.

12–47 L= 30mH, C = 0:0133 μF,Q=1. The quality factor is
one, so the circuit is neither wide-band nor
narrow-band.

12–49 We selected the upper cutoff frequency of
fC2 = 150 Hz to meet the specification. Hence,
L= 221mH, C = 7:96 μF, and R is given as 75Ω.

12–51 TV sð Þ= R LCs2 + 1
� �

RLCs2 +Ls+R
. The transfer function has the

form of a bandstop filter. ω0 =
1ffiffiffiffiffiffiffi
LC

p , ωC1 = −
1

2RC
+ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2RC

� �2

+
1
LC

s
, ωC2 =

1
2RC

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2RC

� �2

+
1
LC

s
,

B=
1
RC

. Pick R= 10 kΩ, C = 0:01 μF, and

L= 250mH to meet the specifications.
12–55 The plots show that the steady-state outputs are:

ACTUAL ESTIMATES
υ2 tð Þ= 99:50 cos 50t−95:71�ð ÞV υ2 tð Þ= 100 cos 50t−90�ð ÞV
υ2 tð Þ= 707:11 cos 500t−135�ð ÞV υ2 tð Þ= 1000 cos 500t−135�ð ÞV
υ2 tð Þ= 995:0 cos 5000t−174:3�ð ÞV υ2 tð Þ= 1000 cos 5000t−180�ð ÞV

12–63 (a) The function is a low-pass filter with a cutoff
frequency of approximately 10 krad=s. The
passband gain is 0 dB or 1.

(c) υ2 tð Þ= 252:5 cos 1000t−71:42�ð ÞV

12–65 (a) TV sð Þ= s+100ð Þ2
s+ 10ð Þ2 .

(c) At ω= 10 rad=s and 100 rad=s, the straight-line
gains are 40 dB and 0 dB, respectively.
The actual gains at those frequencies are

34:07 dB and 5:934 dB, respectively. For both
frequencies, the error is approximately 6 dB.

12–67 (a) TV sð Þ= 3500s
s+ 100ð Þ s+600ð Þ

(b) The gain plot is of a bandpass filter with cutoffs
at 100 and 600 rad=s and a peak gain of
5 13:97 dBð Þ at 245 rad=s.

12–69 (a) TV sð Þ= 106s
s+ 1000ð Þ s+ 100,000ð Þ

(b) Partition as follows: TV sð Þ= 10s
s+1000

� �
105

s+100,000

 !
. Use two stages. The first stage

is a high-pass filter with a gain of 10 and a
cutoff frequency of 1 krad=s. The second stage
is a low-pass filter with a gain of one and a
cutoff frequency of 100 krad=s. Use a cascade
connection of two first-order OP AMP filters
to meet the specifications.

12–71 (b) Forω=10, 100, 1000, and 10,000 rad=s, the phase
estimates are 0�, −45�, −45�, and 0�, respectively.
The actual phase values at those frequencies are
−5:14�, −39:3�, −39:3�, and −5:14�. The
largest error occurs at the geometric mean of
the two critical points or 316 rad=s, where the
straight line approximation is −45� and the
actual is −54:9�.

12–73 (a) TV sð Þ= 50s
s+ 100ð Þ, It is a high-pass filter.

(d) Use an inverting OPAMPRCHP filter with the
input being a series 10-kΩ resistor and a 1-μF
capacitor. The feedback resistor is 500 kΩ.

12–75 (a) TV sð Þ= 100s3

s+ 1ð Þ s+ 100ð Þ It is a high-pass filter.

(d) Partitionas follows:TV sð Þ= 10s
s+ 1

� �
10s

s+ 100

� �
sð Þ.

Use three stages. The first stage is a high-pass
filter with a gain of 10 and a cutoff frequency
of 1 rad=s. The second stage is a high-pass
filter with a gain of 10 and a cutoff frequency
of 100 rad=s. The third is a differentiator
circuit with a gain of 1. Use a cascade
connection of two first-order OP AMP filters
and an OP AMP differentiator.

(e) The step response simulation used a step size
of −1 nV to allow for a reasonable response.
Note that the step response simulation does
not match the MATLAB response for the
first few milliseconds. The theoretical step
response contains a delta function, which
causes the filter to saturate at the beginning of
the response.
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12–77 The initial and final values of the step response are
both one. The duration of the step response 5TCð Þ
is approximately 500ms.

12–79 Ttuned sð Þ= 108s

s2 + xs+108
� � = 108s

s2 + 2ζω0s+ω2
0

� �
To maximize Q, we want to decrease B and,
therefore, ζ. Picking a ζ less than one will allow
ringing. The best design option is x= 20,000.

12–81 (a) TV sð Þ=
1
RC

s

s2 +
1
RC

s+
1
LC

(b) f0,min = 241:25 kHz, f0,max = 762:91 kHz
(c) B= 49:798 kHz.

C H A P T E R 1 3
13–1 f tð Þ= 4A

π
sin 2πf0tð Þ+ 1

3
sin 6πf0tð Þ+ 1

5
sin 10πf0tð Þ

�
+
1
7
sin 14πf0tð Þ

�
13–3 a0 = 2 V, an =

20
nπ

sin
nπ
5

� 	
V, bn = 0

13–5 First cycle can be written as υ tð Þ=VA 1−
2t
T0

� �
,

hence, a0 = 0, an = 0, bn =
2VA

nπ
.

13–7 (b) a0 =VA 1−e−1
� �

, an =
2VA 1−e−1

� �
4n2π2 + 1

,

bn =
4nπVA 1−e−1

� �
4n2π2 + 1

.

13–9 υ tð Þ= −2:5−6:7524 cos 1000πtð Þ−sin 1000πtð Þ½ �−
2:2508 cos 3000πtð Þ+ sin 3000πtð Þ½ �+1:3505
cos 5000πtð Þ−sin 5000πtð Þ½ �+ 0:9646 cos 7000πtð Þ+½
sin 7000πtð Þ�−0:7503 cos 9000πtð Þ−sin 9000πtð Þ½ �

13–11 (a) υ tð Þ= −
20
π
cos

πt
8

� 	
+
20
3π

cos
3πt
8

� �
−
4
π
cos

5πt
8

� �
+
20
7π

cos
7πt
8

� �
V

13–13 υ tð Þ≈215:814−143:876 cos 200πtð Þ−28:775
cos 400πtð Þ−12:332 cos 600πtð Þ−6:8512 cos 800πtð ÞV

13–15 g tð Þ≈4 + 6:0793 cos 20,000πtð Þ+ 0:6755 cos 60,000πtð Þ
+0:2432 cos 100,000πtð Þ+0:1241 cos 140,000πtð ÞV

13–17 (a) The waveform has VA =1 V and T0 = 1 s.
A related signal in Figure 13–4 is a rectangular
pulse with T =2T0=3 that has also been
multiplied by −1 and shifted by VA to make
the signal all positive.

(b) a0 =
VA

3
V, an = −

2VA

nπ
sin

2nπ
3

� �
V, bn = 0

13–19 (a) The fundamental frequency is f0 = 7500 Hz. The
period is T0 = 133:33 μs. Harmonics are present
for n=1, 3, 5, and 7.

(b) It has odd symmetry and half-wave symmetry.

(c) υ t− T0
4

� �
= −5 cos 15,000πtð Þ+ 1

9
cos 45,000πtð Þ

�
+

1
25

cos 75,000πtð Þ+ 1
49

cos 105,000πtð Þ
�
V

13–21 (b) a0 =
2VA

π
, an =

4VA

π 1−4n2ð Þ cos nπð Þ, bn = 0

13–23 (a) υ2 tð Þ= 3:71 cos 10kt−68:2�ð Þ+ 0:661 cos 30kt−ð
82:4�Þ+0:266 cos 50kt−68:2�ð ÞV

(b) The smaller capacitor values allow the output
waveform to better approximate the input
waveform. As the capacitor value increases,
the cutoff frequency for the low-pass filter
decreases and the output waveform is not able
to capture the rapid changes in the input
waveform.

13–25 υO tð Þ= 8:10 cos 1 kt−92:9�ð Þ+0:891 cos 3 kt−81:5�ð Þ
+0:315 cos 5 kt−104�ð Þ+ 0:156 cos 7 kt + 70:7�ð ÞV

13–27 (a) Use a series RC voltage-divider circuit with the
output taken across the capacitor connected to
a noninverting amplifier with a gain of + 5.
A square ware includes only the odd
harmonics, so the filter must pass ω= 100 and
300 rad=s. Pick the filter cutoff frequency to
be ωC = 400 rad=s.

(b) υO tð Þ=6:18 cos 100t−104�ð Þ+1:69 cos 300t−ð
127�Þ+0:795 cos 500t−141�ð Þ+ 0:451 cos 700t−ð
150�ÞV

13–29 (a) a0 = 0, an =
40

nπð Þ2 , bn = 0

(b) ω (KRAD/S) INPUT aN Vð Þ OUTPUT aN mVð Þ
5 4.0528 4.2217

15 0.4503 2.1108

25 0.1621 162.1139

35 0.0827 0.6031

45 0.0500 0.2010

13–33 (a) Use a seriesRLC voltage-divider circuit with the
output taken across the inductor and capacitor
with an ω0 = 200 rad=s. To meet the design
specifications, choose R=30Ω, L=1 H, and C =
2:778 μF.

(b) At the output, the third harmonic is eliminated.
The input and output for the first harmonic are
9.7268 and 9.7251 and those for the fifth
harmonic are 0.3891 and 0.3886, both are
relatively unchanged.

13–35 υO tð Þ= 10+ 10 sin 2π500tð Þ−2:5 cos 2π1000tð Þ+0:625
cos 2π4000tð ÞV. The amplitude spectrum does not
change. The phase spectrum changes, with the
amount of phase shift being proportional to the
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frequency of the component. The linear phase shift
allows for the constant time delay.

13–37 P=3:22W
13–39 (a) i tð Þ= 1:2 + 0:48 sin 200πtð Þ−0:16 sin 600πtð Þ+

0:096 sin 1000πtð Þ A

p tð Þ= 1
50

60 + 24 sin 200πtð Þ−8½
sin 600πtð Þ+4:8 sin 1000πtð Þ�2 W

(b) and (e) P=78:63W
(c) and (d) Vrms = 62:702 V

13–41 Vrms =
ffiffiffiffiffiffiffiffiffiffiffi
A2=3

p
, V3rms =A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2 + 5
8π2

r
,
P3rms

PTotal
= 0:9399 or

about 94%.
13–43 The rms value is Vrms =A=2 and the percentage of

power carried by the dc component and the first
three terms in the Fourier series is 99:90%.

13–45 Vrms =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VA

2=3
q

, P=VA
2=3R, Pdc =VA

2=4R. The dc

component carries 75% of the power and the ac
components carry the remaining 25% of the power.

13–47 T sð Þ= 100s
s+1000

. The transfer functionmagnitudes are

44.721 and 83.205. The output component
magnitudes are 894:43 V and 998:46 V. The rms
value of the steady-state output is 947:87 V.

13–49 T sð Þ= 26,667
s+53,333

. The transfer function magnitudes

are 0.48667 and 0.40830. The output component
magnitudes are 7:3001 V and 2:0415 V. The rms
value of the output voltage is 5:36 V and the average
power delivered to the load is P=574:59 mW.

C H A P T E R 1 4
14–1 TLPF sð Þ= μ

R1R2C1C2s2 + R1C1 +R1C2 +R2C2−μR1C1ð Þs+ 1
,

making the substitutions, yields

THPF sð Þ= μR1R2C1C2s2

R1R2C1C2s2 + R1C1 +R1C2 +R2C2−μR2C2ð Þs+ 1

14–3 The transfer function is shown below and matches
Eq. (14–20).

T sð Þ= RB

ðRA +RBÞ
� �

R1R2C1C2s2 + R1C1 +R1C2 −R2C2RA=RBð Þs+1
R1R2C1C2s2 + R1C1 +R1C2ð Þs+1

h i
14–5 Let R1C1 =R2C2 =T and substitute into transfer

function: T sð Þ= 2
T2s2 +R1C2s+ 1

=

2
T2

s2 +
R1C2

T2 s+
1
T2

.

From this we can find the following:
1
T2 =ω2

0, ω0 =

1
R1C1

=
1

R2C2
, R1C2ω0 = 2ζ. For the design start by

selecting C1 = 0:025 μF, then R1 = 20 kΩ, C2 =

0:0025 μF, R2 = 200 kΩ. The peak occurs at ω=
1995 rad=s and has a value of 26:032 dB.

14–7 T sð Þ= R1R2C1C2s2

R1R2C1C2s2 +R1C1s+ 1
, ω2

0 =
1

R1R2C1C2
,

2ζω0 =
1

R2C2
;T sð Þ= s2

s2 + 5000s+ 106
=

s2

s+ 209ð Þ s+4791ð Þ.
The transfer function is that of a second-order, high-
pass filter. The amplitude of the Bode plot has a
maximum roll-off of 40 dB per decade. The poles
are located at 209 and 4791 rad=s. The passband
gain is one and ζ= 2:5. The circuit in Figure P14–7 is
the same as the circuit in Figure P14–4 with the
resistors and capacitors swapped. This causes the
LP filter to become an HP filter.

14–9 Let R1C1 =R2C2 =T and μ=2 and then substitute

into transfer function: T sð Þ= 2s2

T2s2 +R1C2s+ 1
=

2s2

s2 +
R1C2

T2 s+
1
T2

From this we can find the following:

1
T2 =ω2

0, ω0 =
1

R1C1
=

1
R2C2

, R1C2ω0 = 2ζ. For the

design start by selecting C1 = 500 pF, then R1 = 4 kΩ,
C2 = 250 pF, R2 = 8 kΩ.

14–13 Using ω0 = 2000π rad=s and jT jω0ð Þj= K
2ζ

=100, we

get T sð Þ= 100 2000πð Þ2s
s2 + 2000πs+ 2000πð Þ2. Using the standard

second-order, low-pass, active-filter design and the
equal-element approach, we have R1 =R2 =R, C1 =
C2 =C, Select C = 0:1 μF and solve for R=
1:592 kΩ. The gain with the filter design is 2, so
select RA =RB = 1 kΩ. We will need an additional
gain factor of 50, so add a noninverting amplifier
connected to the second-order filter.

14–15 Using ω0 = 300 π krad=s and jT jω0ð Þj= K
2ζ

=500, we

get T sð Þ= 10s2

s2 + 6000πs+ 300,000πð Þ2. Using the

standard second-order, high-pass, active-filter design
and the equal-element approach, we have
R1 =R2 =R, C1 = C2 =C, Select C = 0:001 μF and
solve for R=1:061 kΩ. The gain with the filter
design is 3.356, so select RA = 2:356 kΩ and
RB = 1 kΩ. We will need an additional gain factor
of 3.356, so add a noninverting amplifier connected
to the second-order filter.

14–19 T sð Þ= 10s2

s2 + 2153s+ 2153ð Þ2

14–21 T sð Þ= 20,000s
s2 + 2000s+ 1,000,000

14–23 Use an equal-element LP design with R= 10 kΩ,
C = 500 pF, μ= 2, and RA =RB = 10 kΩ.

14–25 Use an equal-element HP design with R= 5Ω,
C = 0:2 μF, μ=2:8, and RA = 18 kΩ, RB = 10 kΩ.
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14–27 Use the unity gain HP design and include an
amplifier to provide the gain of 60 dB. C =0:16 μF,
R1 = 6:25 kΩ, R2 = 100 kΩ. Second noninverting OP
AMP use RA = 1MΩ, RB = 1 kΩ.

14–29 Design the BP circuit using the equal-capacitor
method with ζ= 0:05, R1 = 1 kΩ, R2 = 400 kΩ,

C =0:05 μF, and jT jω0ð Þj= 1

2ζ2
= 200.

14–31 Design the notch circuit using the equal-capacitor
method with C = 0:01 μF, R1 = 2:65252 kΩ, R2 =
26:5252MΩ, RA =5:30504 kΩ, RB = 26:5252MΩ.

14–33 The notch filter has a center frequency at ω0 =
1:7πMrad=s. Select the bandwidth to be B=
17π krad=s. Design the circuit using the equal-
capacitor method using C = 10 pF, R1 = 93:62Ω,
R2 = 3:7448MΩ, RA =187:24Ω, RB = 3:7448MΩ.
Since the pass-band gain is 0.9995 no additional
gain is needed.

14–35 Butterworth LP filter, n≥ 4:1524, hence; use n=5.

T sð Þ= 5000ð Þ5
s+ 5000ð Þ s2 + 3090s+ 50002

� �
s2 + 8090s+50002
� �

jT jωCð Þj= −3:01 dB, jT jωMINð Þj= −60:2 dB
14–37 Butterworth LP filter, n≥ 3:3147, hence; use n= 4.

T sð Þ=
ffiffiffiffiffi
10

p
600,000ð Þ4

s2 + 459,240s+ 600,0002
� �

s2 + 1,108,800s+ 600,0002
� �,

jT jωCð Þj= 6:99 dB, jT jωMINð Þj= −14:10 dB
14–39 The transfer function in Problem 14–34 was for a

first-order cascade low-pass filter with eight
identical stages. Each stage has a cutoff frequency
of ωC = 6:648 krad=s and a gain of K = 2:3714. Use
a first-order, low-pass OP AMP design with gain.
Pick C = 0:01 μF, R2 = 15:042 kΩ, R1 = 6:343 kΩ.

14–43 The transfer function is for a fourth-order Chebyshev
filter. Use a noninverting amplifier with a gain of
7.071 to provide all of the gain for the transfer
function. Use a unity-gain design approach for the
two second-order stages. For the first filter stage we
use ω0 = 1,900,400 rad=s, ζ= 0:08945, C1 = 0:001 μF,
C2 = 8 pF, and R= 5:883 kΩ. For the second filter
stage we use ω0 = 885,000 rad=s, ζ=0:4638, C1 =
0:001 μF, C2 = 215 pF, and R=2:436 kΩ.

14–45 To guarantee that there is no overshoot, use a first-
order cascade design. We have the following
relationships for a low-pass, first-order cascade
design: n= 7, α=38:95 krad=s, K =1:1037. Hence,

T sð Þ= 1:1037ð Þ 38,950ð Þ
s+38,950

� �7
. Pick C =0:01 μF,

R2 = 2:567 kΩ, R1 = 2:326 kΩ.

14–47 A Butterworth filter design requires a fifth-order
filter, which implies we would have to use three
OP AMPs in the design. The Chebyshev filter can
meet the specification for using only two OP AMPs.

T sð Þ= 2:236ð Þ 59,703ð Þ2 27,803ð Þ2
s2 + 10,681s+ 59,7032
� �

s2 + 25,790s+ 27,8032
� �.

14–49 Design the filter with a passband gain of 0 dB, a
cutoff frequency of ω0 = 2πMrad=s, TMIN = −60 dB,
and ωMIN = 4:9πMrad=s. The required filter order
is either an eighth-order Butterworth design or a
fifth-order Chebyshev design. Use the Chebyshev
approach.

T sð Þ= 1,113,000ð Þ 6,078,000ð Þ2 3,857,000ð Þ2
s+ 1,113,000ð Þ s2 + 688,000s+6,078,0002

� �
s2 + 1,801,000s+3,857,0002
� �

.

14–51 Use a first-order cascade design. We have the
following relationships for a high-pass, first-order
cascade design: n=3, α=50:983 krad=s, K = 4:6416.

Hence, T sð Þ= 4:6416s
s+ 50,983

� �3
. jT jωCð Þj= 36:99 dB,

jT jωMINð Þj= −2:94 dB.
14–53 Use a fifth-order HP Chebyshev filter design. K = 1.

T sð Þ= s5

s+ 564,334ð Þ s2 + 11,702s+103,370ð Þ
s2 + 76,071s+ 162,8932
� �

jT j ωCð Þj= −3:01 dB, jT j ωMINð Þj= −51:17 dB.
14–55 The transfer function in Problem 14–51 was for a

first-order cascade high-pass filter with three
identical stages. Each stage has a cutoff frequency
of ωC = 50:983 krad=s and a gain of K =4:6416. Use
a first-order, high-pass OP AMP design with gain.
Pick C = 0:01 μF, R1 = 1:961 kΩ, and R2 = 9:104 kΩ.

14–59

ITEM SPECIFICATION VENDOR #1 VENDOR #2

jTMAXj 20 dB 20:29 dB 20:83 dB
ωCL 795:8Hz 794:0Hz 723:0Hz
ωCH 875:4Hz 877:3Hz 964:0Hz
jT ωCLMINð Þj −20 dB −20:04 dB −42:5 dB
jT ωCHMINð Þj −20 dB −20:04 dB −42:5 dB
Meets specs Yes Yes

Passband Peaked passband Flat passband

Parts count Minimum 7 10

Similar parts Maximum 1 pair 3 pairs

Potentiometers Minimum 0 2

Standard values Maximum 3 2

Cost Minimum $125 $95

Strictly speaking, the response for Vendor #2 does
not meet the specification for ωCH by 1:06 Hz. The
response is extremely close to meeting the
specification and we would have to analyze actual
circuits to determine their performance. From an
overall perspective, the circuit from Vendor #1
clearly meets all of the specifications, requires
fewer parts, has more similar parts, no
potentiometers, and more standard parts. Even
though the circuit from Vendor #1 is more
expensive, it is probably the best option.
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14–61 Use a second-order bandstop filter with a center
frequency of 1:8MHz and a bandwidth of
0:3MHz. Use the equal-capacitor design approach
with C = 2 pF. We have the following design
parameters. ω0 = 3:6πMrad=s, ζ=0:08333, C = 2 pF,
R1 = 3:684 kΩ, R2 = 530:5 kΩ, RA =7:368 kΩ, and
RB = 530:5 kΩ. The filter has a center frequency of
1:8MHz and cutoff frequencies of 1:652MHz and
1:961MHz, which yield a bandwidth of 0:309MHz.
The gain at the center frequency is −81:76 dB, and
the gain at 1:7MHz is −5:06 dB.

C H A P T E R 1 5
15–1 (a) υ1 tð Þ=0:01

di1 tð Þ
dt

+ 0:007
di2 tð Þ
dt

υ2 tð Þ=0:007
di1 tð Þ
dt

+0:005
di2 tð Þ
dt

(b) υ2 tð Þ= 140 sin 1000tð ÞV

15–3 (a) υ1 tð Þ=0:01
di1 tð Þ
dt

+ 0:007
di2 tð Þ
dt

υ2 tð Þ=0:007
di1 tð Þ
dt

+0:005
di2 tð Þ
dt

(b) υS tð Þ= −5 cos 1000tð ÞV

15–5 υ1 tð Þ= 0:003
di1 tð Þ
dt

−0:002
di2 tð Þ
dt

υ2 tð Þ= −0:002
di1 tð Þ
dt

+0:003
di2 tð Þ
dt

i1 tð Þ=0:75 sin 1000tð ÞA, υ1 tð Þ= 1:25 cos 1000tð ÞV
15–7 υX tð Þ= 90 cos 1000tð ÞV

15–9 υOC tð Þ= υ2 tð Þ= M
L1

υ1 tð Þ= k

ffiffiffiffiffiffi
L2

L1

r
υ1 tð Þ

15–11 iL tð Þ=0:75 cos 377tð ÞA, υ2 tð Þ=600 cos 377tð ÞV
15–13 ZIN =

ZL

n2
= 50Ω, υ1 tð Þ=220 cos 400tð ÞV

υ2 tð Þ=44 cos 400tð ÞV
15–15 There are two solutions to the quadratic equation

(n=0:4+ j0:16 and 0:25− j0:000035), with only one
of them, n=0:25, presenting a reasonable solution.

15–17 n=0:5, IIN = 22:36ff−63:3� V
15–19 (a) The turns ratio is 5:1

(b) i1 tð Þ= 6 cos 120πtð ÞmA, υ1 tð Þ= 120 cos 120πtð ÞV
15–21 I1 = 3:166 + j2:444A, I2 = 1:583+ j1:222 A,

I3 = 0:528 + j0:407A
15–23 PL = 3 kW
15–25 jI1j= 25A, jI2j=50A, RIN = 16Ω
15–27 100= 50 I1 + j60 I1 + j120 I2

0 = − j120 I1− j240 I2−600 I2
V2 = 107:9 + j67:4 V, ZIN = 70:69 + j51:72Ω

15–29 ZIN = j 80Ω
15–31 ZIN = 99 + j12Ω, PL = 1:2443 kW
15–33 j10− j30ð Þ IA +V1− − j30ð Þ IB =VS

− − j30ð Þ IA−V2 + 50− j30ð Þ IB = 0
VO = 240+ j120 V, ZIN = 6:0811 + j11:4865Ω

15–35 V1 = 30:86ff−162:39� V, V2 = 154:32ff−162:39� V
15–37 The amplitudes in the secondary are jV2j=

4:7291 kV and jI2j= 18:9162A.
15–39 V2 = 500+ j0 V, I2 = −2− jA

15–41 CEQ =n2C

C H A P T E R 1 6
16–1 (a) P= 4981W, Q= −435:8 VAR

(b) P=200:1W, Q= −167:9 VAR

16–3 (a) P= 450:5W, Q=315:5 VAR, pf = 0:8192, lagging.
(b) P=2001W, Q= 1155 VAR, pf = 0:8660, lagging.

16–5 (a) S= 434:7+ j116:5 VA
(b) S=3000 + j4000 VA

16–7 S= 18,000 + j24,000 VA, Z = 115:2 + j153:6Ω
16–9 pf = 0:8, Z = 26:67 + j20Ω
16–11 SL = 288+ j1019 VA, pf = 0:2721, lagging.
16–13 SL = 20:88− j27:69 VA, pf = 0:6022, leading.
16–15 SS = 6573:4 + j2551:6 VA, SL = 1437− j552:7 VA
16–17 SS = 48:4+ j629:2 VA
16–19 IA = 8:1818− j2:4545A rmsð Þ

IB = −9:5455 + j1:3636A rmsð Þ
IN = 1:3636 + j1:0909A rmsð Þ

16–21 jSSj= 64,274:6 VA, jVSj=2682:8 V rmsð Þ
16–23 SS = 20,625 + j18,750 VA, jVSj=2229:9 V rmsð Þ
16–25 jSSj= 33,797 VA, jVSj= 5280:6 V rmsð Þ
16–27 jSSj= 4728:3 VA, jVSj=472:83 V rmsð Þ
16–29 Cpf 0:95 = 5:573 μF, Cpf1 = 8:2219 μF
16–31 (a) VAN = 277ff0� V rmsð Þ, VBN = 277ff−120� V rmsð Þ,

VCN = 277ff−240� V rmsð Þ
VAB = 480ff30� V rmsð Þ, VBC = 480ff−90� V rmsð Þ,
VCA = 480ff−210� V rmsð Þ

(b) See phasor diagram below.

VAN = 277  0o V⦣

VAB = 480  30o V⦣

VCN = 277  –240o V⦣

jIm

VCA = 480  –210o V⦣

VBC = 480  –90o V⦣

VBN = 277  –120o V⦣

Re
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16–33 VAN = 120ff180� V rmsð Þ, VBN = 120ff60� V rmsð Þ,
VCN = 120ff−60� V rmsð Þ, VAB = 208ff−150� V rmsð Þ,
VBC = 208ff90� V rmsð Þ, VCA = 208ff−30� V rmsð Þ

16–35 VAB = 208ff0� V rmsð Þ, VBC = 208ff−120� V rmsð Þ,
VCA = 208ff−240� V rmsð Þ

16–37 ZΔEQ = 22:5− j5Ω
16–39 ZYEQ = 9− j2Ω
16–41 VAN = 277:1ff0� V rmsð Þ, VBN = 277:1ff−120� V rmsð Þ,

VCN = 277:1ff−240� V rmsð Þ, IA = 12:39ff−26:6� A rmsð Þ,
IB = 12:39ff−146:6� A rmsð Þ, IC = 12:39ff−266:6� A rmsð Þ

16–43 IA = 38:11ff−66:87� A rmsð Þ, IB = 38:11ff−186:87� A rmsð Þ,
IC = 38:11ff−306:87� A rmsð Þ, IAB = 22ff−36:87� A rmsð Þ,
IBC = 22ff−156:87� A rmsð Þ, ICA = 22ff−276:87� A rmsð Þ

16–45 VBC = 4160ff−90� V rmsð Þ, IB = 9:607ff−150� A rmsð Þ
16–47 IA = 4:7ff−68:66� A rmsð Þ,VAN = 120:38ff−30� V rmsð Þ
16–49 VL = 612:37 V rmsð Þ, SL = 6000 + j4500 VA
16–51 IL = 6:0849A rmsð Þ, SL = 6665 + j4443 VA
16–53 VL = 519:6 V rmsð Þ, SL = 8640 + j6480 VA
16–55 SS = 16,351:6 + j16,054:4 VA, VL = 623:3 V rmsð Þ
16–57 SL = 24,871:6− j21,277:5 VA, VL = 4084:8 V rmsð Þ
16–59 ZY = 7:3728 + j5:5296Ω
16–61 jS1j= 2:9750MVA,

pf = 0:8612, VL1 = 228,081 V rmsð Þ
16–63 pf = 0:7868, VL1 = 44,201:9 V rmsð Þ,

VL2 = 43,301:3 V rmsð Þ
16–65 jS1j= 504,776 VA, pf = 0:527, VL1 = 121,875 V rmsð Þ,

VL2 = 118,804 V rmsð Þ, VL3 = 115,470 V rmsð Þ
16–67 jS1j= 7:0343MVA,

pf = 0:9264, VL1 = 139,103 V rmsð Þ,
VL2 = 138,201 V rmsð Þ

16–69 jS j= 51:896 kVA

C H A P T E R 1 7
17–1 z11 = 400Ω, z21 = 100Ω, z12 = 100Ω, z22 = 166:7Ω
17–3 z11 = 20 + j60Ω, z21 = −20 + j40Ω,

z12 = −20 + j40Ω, z22 = 20− j40Ω
17–5 z11 =R1 + β+1ð ÞR2, z21 = −βR3, z12 = 0, z22 =R3

17–7 I1 = 40 mA, I2 = −10 mA
17–9 I1 = 60 mA, I2 = −30 mA
17–11 V1 = z11I1 + z12I2, V2 = z21I1 + z22I2 = −ZLI2

z21I1 = − ZL + z22ð ÞI2, I2 = −
z21

ZL + z22
I1,

V1 = z11I1 + z12 −
z21

ZL + z22

� �
I1, therefore

ZIN = z11−
z12z21
ZL + z22

17–13 (a) h11 = 0, h21 = −1, h12 = 1, h22 =Y
(b) h11 =Z, h21 = −1, h12 = 1, h22 = 0

17–15 h11 =R1 +R2, h21 = β, h12 = 0, h22 = 1=R3

17–17 h11 =R1, h21 = −R1=R2, h12 = 0, h22 = 1=R2

17–19 VT = 5 V and RT = 250Ω

17–21 (a)
V2

I2
= 100Ω

(b)
V2

I2
= 400Ω

17–23 V1 =h11I1 +h12V2, I2 = h21I1 + h22V2

Apply VX to the input port and short-circuit the
output port.

VX =h11I1 + h12 0ð Þ= h11I1

I2SC =h21I1 + h22 0ð Þ= h21I1

I1 =
I2SC
h21

, VX =
h11
h21

I2SC, I2SC =
h21
h11

VX

Apply VX to the output port and short-circuit the
input port.

0 =h11I1SC +h12VX, I1SC = −
h12
h11

VX

Comparing the equations for I1SC and I2SC, for
reciprocity to hold, we must have h12 = −h21.

17–25 V1 =h11I1 +h12V2, I2 = h21I1 + h22V2

Solve the second equation for I1 and substitute the
results for I1 into the first i−v relationship.

I1 = −
h22
h21

V2 +
1
h21

I2 =CV2−DI2

V1 =
h12h21−h11h22

h21

� �
V2 +

h11
h21

I2 =AV2−BI2

17–27 V1 =h11I1 +h12V2, I2 = h21I1 + h22V2

Apply the condition that the input is open I1 = 0ð Þ to
the first equation, then the second equation provides
the relationship for the output impedance.

V1 =h12V2, I2 = h22V2, ZOUT =
1
h22

17–31 t½ �= 0:02 20Ω
0:00002S 0:02

� �
, TI = −50

17–33 z½ �= 80 20

15 25

� �
Ω, the network is not reciprocal

since z12 6¼ z21.

17–35 y½ �= 100 −60
−60 140

� �
mS, the network is reciprocal

since y12 = y21.
17–39 ZL =Z∗

T = 20− j40Ω
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INDEX

ac (alternating current) signal, see
waveforms

Across variable (voltage), 8
ADC, see Analog-to-digital converter
Active circuit, 151
Active device:
dependent source, 151
OP AMP, 171
transistor, 168
transducer, 203

Active filters:
second-order BP 730, BS 732
basics, 720
Butterworth, LP 745, HP 763
Chebyshev, LP 751, HP 769
design, 721
First-Order Cascade, LP 741, HP 762
Sallen-Key, LP 721, HP, 726

Adapter, 300Ω to 75Ω, photo, 129
Additive property (sinusoids), 250
Additivity property (superposition),

98, 102
Admittance (Y):
Laplace, 503
matrix [y], WC6
parallel connection, 400, 509
parameters, WC5
phasors, 391
transfer, 558
two-port y-parameters, WC6

Aliasing, 712
Ampere (A) (unit), 5
Ampère, André-Marie, 1
Amplifier:
differential, 187, 192
ideal OP AMP model, 173
inverting, 181
inverting summer, 184
instrumentation, 192, 212
logarithmic, 224
noninverting, 175
noninverting summer, 185
real OP AMPs (GBW), 628
subtractor-double, 190
subtractor-single, 187
transistor, 168
voltage follower, 179

Amplitude:
descriptors, 260
functions, 235, 240, 245

Amplitude spectrum, 695
Analog computer, 294
Analog-to-digital converter:
flash, 216, photo 217

full-scale input, 216
resolution, 216
sample-hold, 281, photo 281

Analysis, definition, 2
Angular or radian frequency (ω), 247
Aperiodic waveform, 250
Apparent power, 815
Applications:

300-Ω to 75-Ω adapter, 127
analog switch, 19
analog-to-digital converter (ADC), 280
attenuation pad, 130
autotransformer, 799
band-limited differentiator, 295
batteries, 48
binary current divider, 49
BJT transistor, 168
Cathode ray tube (CRT), 6
clock waveform, 263
damped sinusoidal waveform, 255
dc power supply (full-wave
rectifier), 705

decibels, 620
digital clock detection, 328
digital clock skew, 603
digital multimeters (DMM), 180
dynamic OP AMP circuits, 295
ECG waveform, 264
exponential waveform, 243
filter LP (using phasors), 407
gain-bandwidth product, 628
impedance bridge, 399
instrumentation amplifier, 212
isolation transformer, 804
L-pad, 126
loading, 129
Maxwell bridge, 399
non-inverting summer, 185
oscilloscope, 243, 244, 248, 255
potentiometer, 44
power distribution, 797
resonance, 405
sample-and-hold circuit, 280, 378
signal bandwidth, 710
signal sampling, 710
sinusoidal waveform, 248
step response descriptors, 575
Thévenin measurements with
DMM, 108

time-limited integrator, 295
Assigning reference marks, 32
Asymptotically stable, 570
Average power (P), 437, 812

of a periodic signal, 707

Attenuator, in-line 130, photo, 130
Austin, Arthur O., 805
Average value:

of a signal (Vavg), 260
of a periodic signal (a0), 688
of sinusoidal signal, 262

B (susceptance) (S), 400
B (bandwidth) (Hz, rad/s), 644, 650, 710,

731, 734, 773
Balanced three-phase:

basics, 825, 828
Δ-Δ connection, 828
Δ-Y connection, 828
Y-Δ connection, 828
Y-Y connection, 828

Ballantine, Stuart, WC1
Bandpass filter:

basics, 637
cascade design, 637, 773
narrow band, see tuned
parallel RLC, 649
second order, 730
series RLC, 643
tuned, 643, 649, 731, 735
using first-order circuits, 637
using phasor analysis, 429
wide band, 644, 773

Bandstop filter:
basics, 637, 732, 774
narrow band, see notch
notch, 647, 733, 735
parallel design, 641, 774
second order, 647, 733, 735
series RLC, 647
using first-order circuits, 641

Bandwidth, 644, 650, 731, 773
Battery, 20, 48
Bell, Alexander Graham,

footnote 620
Bessel filter, 782
Bilateral, 17
Bipolar power, 813
Biquad filter, 784
Black, Harold S, 150
Block diagrams:

differential amplifier, 187
differentiator, 289
integrator, 289
instrumentation system, 202
gain, 98, 151, 175, 181
network function, 555
of sinusoidal steady-stare response, 578
proportionality constant (K), 98
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Block diagrams: (Continued)
summary table basic, 188, 290, inside

front cover
summing point, 102, 184

Blocking capacitor, 574
Bode, Hendrik, 554, 616
Bode diagram:

basics, 619
complex poles and zeros, 661, 665
first order, LP 622, HP 630
real poles and zeros, 652
straight-line approximation (SL),

654, 659
using Multisim, 658, Web App D
using MATLAB, 634, 656, Web App D

Bridge circuits:
basic, 100
bridge-T, 130, 146
impedance, 399, 418
Maxwell, 399
reference bridge, 208, 210, 211
Wheatstone, 100, 135, 137, 144

Bromwich, Thomas John, 453, 498
Brune, Otto, 554
Budak, Aram, footnote 752
Buffer (see also OP AMP circuits), 179
Bus, 841
Butterworth, Stephen, 740
Butterworth:

discussion of poles, 497, Web App B
high-pass response, 763
low-pass response, 745
overview, 739
pole-zero diagram, 758
polynomials, 747, inside rear cover
step response, 758
third-order filter, 783

C (capacitor), 275
Capacitance (C) definition, 275
Campbell, George A, 719
Capacitive load, 816
Capacitive reactance (XC), 395

power-factor correction, 823
Capacitor (C):

average power, 437
basics, 275
blocking, 574
bypass (for BJT), 553
dc response, 299
energy (wC(t)), 276, 436
photos, 275, 276
impedance, 391, 502
i-v relationships, 275
parallel connection, 296
power (pC(t)), 276, 436
series connection, 297
standard values, see inside rear cover
super capacitor, 307, 378, footnote 596
two-wire feed through, 305

Cascade connection, 189, 566, 590, 720
Cascade design:

dc OP AMP, 193

transfer function, 590
first-order filters, 637, 741, 762
multiple-order filters, 720

Cauer, Wilhelm, 554, 740
Cauer or Elliptic filter, 739
Causal waveform, 260, footnote 584
Center frequency (ω0), 643, 650, 731
Chain rule, 188, 566
Chapter Learning Objectives (CLOs), 3
Characteristic equation:

first order, 313
second order, series 346, parallel 354

Charge (q(t)), 5, 276
Charging exponential, see

exponential rise
Chebyshev Type 1:

discussion of poles, Web App B
high-pass response, 769
low-pass response, 751
overview, 739
pole-zero diagram, 758
polynomials, 754, inside rear cover
step response, 758

Chebychev Type 2, 739
Chen, Wai Kai, footnote 731
Circuit (definition), 2, 17, 22
Circuit analysis:

combined constraints (dc), 28
computer aided, 11, 54, Web App D
definition, 2
dependent sources, 152
phasor domain, 394, using Multisim 404
phasor domain, mesh current, 423
phasor domain, node voltage, 422
single phase, 817
three-phase, 830
using Laplace transforms, 480, 508, 523
using Fourier series, 699
using Fourier transforms, Web App C

Circuit design:
ac voltage divider (phasor), 395
bandpass filter, 429, 637, 639,

731, 773
bandstop filter, 638, 734, 774
Bode plot, 656
Butterworth, LP 745, HP 763
concepts, 122
Chebyshev, LP 751, HP 769
comparator, 214
complex poles, 529
DAC, 200, 201
dc voltage divider, 42
differential equation, 293, 294
discussion, 2, 193
First-Order Cascade, LP 741, HP 762
first-order step response, 333, 574, 602
first-order voltage divider, 590
high-pass filters, 632, 761
input-output relationship, 197, 293
low-pass filters, 413, 624, 628, 739
interface circuits (dc), 122 to 132
interface circuit (ac) (phasors), 421
inverting OP AMP network, 594

network function, 590, 592, 594, 598,
595, 599

OP AMP inverter, 182, 594
OP AMP interface circuit, 202, 208
OP AMP non-inverter, 178
OP AMP subtractor (difference amp),

187, 190
OP AMP summer, 184, 185
OPAMP transducer interface, 205, 208,

210, 212
passive notch filter, 648
phasor load design, 416
poles and zeros, 466, 529, 538
power factor correction, 824
RC circuit, 333
RLC circuits, 366, 367, 598, 599, 602,

646, 648
sample-hold, 378
second-order active filters, 637, 723, 727
second-order step response, 366, 600
second-order network function, 593,

595, 599
transfer function, 563
transistor inverter, 171
transformer maximum power

transfer, 798
using MATLAB, 602, 666, 734, Web

App D
using Multisim, 645, 666, 734, Web

App D
voltage divider and OP AMP, 592

Circuit determinant, 434, 526, 529, 537, 539
Circuit reduction, 50, 409, 508
Circuit theorems:

maximum power transfer, 119, 438
maximum signal transfer, 118
proportionality, 98, 409, 513
superposition, 102, 410, 514
Thévenin/Norton, 107, 415, 520

Circuit variables, 5
Clock waveform, 263
Common mode rejection ratio

(CMRR), 212
Combined constraints, 28, 499
Comparator:

basics, 214
flash ADC, 216
zero-crossing detector, 215

Complex frequency (s = ‒ α ± jβ), 350, also
footnote 351

Complex frequency variable s
(Laplace), 454

Complex numbers:
Arithmetic operations, App A
conjugate, App A
exponential form, App A
imaginary part, App A
real part, App A

Complex poles, 471
Complex power:

and load impedance, 816
basics, 814
conservation of, 817
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Composite waveforms:
basics, 252
damped ramp, 254
damped sinusoid, 255
double exponential, 257
double-sided exponential, 254
exponential rise, 253
signal’s fundamental frequency, 259
signal’s harmonic frequencies, 259
signum function, 253

Computer tools:
basics, 11, 54, Web App D
comparison between tools, 58
Excel, 241, 342, 528, 706
MATLAB, 11, Web App D
Multisim, 56, Web App D

Conductance (G), 17, 400, 503
Conjugate match (max power), 439
Connections models, 22
Connection constraints:
definition, 22
using phasors, 389
using Laplace transforms, 499
using Fourier transforms, Web

App C
Continuity:
capacitor voltage, 277, 330
inductor current, 284, 330

Convolution:
applications of, 589
basics, 583
equivalence between t- and s-

domains, 586
graphical approach, 587
integral, 584
using MATLAB, 585, Web App D

Corner frequency, 622
Coulomb (unit), 5
Coupled inductors:
basics, 786
energy, 790
dot convention, 788
i-v relationships, 786
mutual inductance, 786
self-inductance, 786

Coupling coefficient (k), 791, 800
Course learning objectives (CLOs):
basics, 2
intro to each chapter
with each problem set

Cover-up algorithm, 470
Cramer's rule, 79, Web App A
Critical frequencies (ωC), 466
Critically damped, 352
Crystal filters, 784
Current:
definition, 5
lag, lead, 390, 391
line, 830
mesh, 89
Norton, 107
phase, 833
short circuit, 108

Current division:
basics, 46, 400, 509
binary, 49
phasor, 400
two path, 47

Current gain (β), 151, two-port TI, WC15
Current source:

dependent, 151, 501
Fourier representation of, Web App C
ideal, 20, 500
i-v characteristics, 20
Laplace representation of, 500
phasor representation, 383
practical, 21
symbol, 20

Current transfer function, 558
Cutoff frequency, 617, 644, see also

respective filters
Cyclic frequency (f), 247

Δ-connection, 828
Δ-Y transformation, 829
DAC, see Digital-to-analog converter
Damped ramp, 254
Damped sinusoid, 255
Damping:

cases (RLC), series 352, parallel 355
Damping ratio (ζ), 352, 359, 529, 541,

644, 721
Darlington, Sidney, 554
D’Arsonval meter, 71
dc (direct current):

current source, 20
signal, 234
voltage source, 20

dc equivalent circuits, C and L, 299
dc steady-state response, 572
Decade, 619
Decibel, 619
Defibrillation waveform, 264
Delay time, 575
Delyannis-Friend circuit, footnote 731
Dependent source:

analysis, 152
basics, 151
CCCS, 151
CCVS, 151
Laplace representation of, 501
parameters, μ, β, g, r, 151
Thévenin/Norton, 166
VCCS, 151
VCVS, 151

Design, introduction, 2, see also Circuit
design

Determinant, Web App A
circuit, 526

Device, 17
Differential amplifier

basics, 173
one-stage, 187
two-stage, 190
instrumentation, 192, 212

Differential equation:

classical solution first order, 310
classical solution second order, 344, 353
solution by Laplace transforms, 480
solution by Fourier transforms, Web
App C

Differentiator:
band-limited, 295
definition, 289

Differentiation property:
Laplace, 461
Fourier, Web App C

Digital-to-analog converter:
discussion of, 199
full-scale output, 200
photos, 200
R-2R ladder, 201
resolution, 200
weighted summer, 200

Digital Multimeter (DMM), 108, 180
Dirac, Paul, footnote 237
Dirichlet, P.G.L., 686
Dirichlet conditions, 697
Dot convention, 788
Double exponential, 257
Double-sided exponential, 254
Driving function, 20
Driving-point impedance, 558
Duality:

definition, 288
examples: footnote 36, 47, 288, 311,
354, 650

Duality property, Web App C
Dynamic OP AMP circuits, 288

ECG waveform, 264
Edison, Thomas, 811
Effective value, see Root-mean-square
Electric field (ℰ) (V/m), 275
Element, 17
Element constraints:

basics, 17
using phasors, 391
using Laplace transforms, 500
using Fourier transforms, Web App C

Elliptic or Cauer filter, 739
Energy (w):

capacitor, 276
coupled inductors, 790
definition, 6
inductor, 283
phasors, 436
signal, Web App C

Energy spectral density, Web App C
Equal-capacitor method, BP 731, BR 733
Equal-element method, LP 723, HP 727
Equiripple filters, 740
Equivalent circuits:

admittance, 503
capacitance, 296
definition, 34
of C and L at dc, 299
impedance, 508
inductance, 298
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Equivalent circuits: (Continued)
resistance, 35
sources, 38
summary of, 40, (Table) 41
Thévenin/Norton, 107, 415, 520, 809
transformer, 810

Euler's relationship, 383, 814
Evaluation:

bandpass circuits, 646
bandstop circuits, 641, 737
basic design concepts, 126
cascade connections, 567, 568, 768, 770
design evaluation, 600
eliminate 60 Hz hum, 579
high-pass filters, 428, 634
high fidelity filter, 759
interface circuits (active), 191, 193, 196,

197, 205
interface circuits (passive), 125,

127, 132
introduction, 2
loading, 567
low-pass filters, 413, 757, 759
notch filter, 670
pressure transducers, 672
RC circuits, 334
Residential power distribution, 820
RLC bandpass filter circuit, 646
second-order LP filter, 723
step response designs, 334, 600
transfer function designs, 567, 600, 601

Even symmetry, 697
Exponential order (Laplace), 455
Exponential waveform:

basics, 240
double, 257
double-sided, 254
properties of, 242
rise, 253
Laplace transform of, 456

Fan-out, 614
Farad (F) (unit), 275
Faraday, Michael, 274, 309, 785
Feedback, 181
Filter:

60 Hz notch, 452, 734, 737
active, 720
active LP filter overview, 739
bandpass, 429, 638, 773
bandstop, 638, 732, 774
basics, 617
Bessel, 782
biquad, 784
Butterworth, LP 745, HP 763
Chebyshev, LP 751, HP 769
crystal, 784
First-Order Cascade, LP 741, HP 762
high pass, 428, 630, 726, 761, 762,

763, 769
low pass, 408, 413, 621, 721, 739, 741,

745, 751
notch, 648, 733, 735

passive, 720
summary of second-order filters, 721
tuned, see notch
using MATLAB, 413, 429, 668, 743,

765, Web App D
using Multisim, 645, 658, 737, 748, 760,

768, Web App D
Final conditions, 329
Final-value property, 488
First-order circuit:

basics, 311
design with (bandpass), 637
design with (bandstop), 638, 642
design with (high pass), 632
design with (low pass), 624, 628
differential equation, RC 311, RL 311
exponential input transient

response, 336
frequency response (high pass), 630
frequency response (low pass), 621
network function design, 590
RC and RL circuits, 310, 312, 321,

329, 336
sinusoidal input transient response, 336
step response, 321
zero-input response, 312, 515
zero-state response, 327, 515

First-Order Cascade filters, LP 741,
HP 762

pole-zero diagram, 758
step response, 758

Flash converter (ADC), 217, photo 217
Flux (), 287, 786, 793
Flux linkage (λ):

basics, 282
coupled coils, 786
transformers, 793

Follower (see also OP AMP circuits), 179
Forced pole, 526, 555
Forced response, 321, 506, 516, 539
Forcing function, 20
Foster, Ronald M, 554
Fourier, Jean Baptiste, 686
Fourier series:

alternative form, 695
amplitude spectrum, 695
average power, 706
coefficients, 687, 688
composite waveforms, 259
fundamental frequency, 687
in circuit analysis, 699
line spectra, 695
overview, 687
phase spectrum, 695
rms value, 706
symmetries, 697
table of common waveforms, 694
using MATLAB, 689, Web App D

Fourier transforms (F(ω)), Web App C
Frequency:

angular, 247
center (f0, ω0), 643, 650, 731
complex (s), 350

corner (fC, ωC), 622
critical (fC, ωC), 466
cutoff (fC, ωC), 617, 644, 648
cyclic (f), 247
damped natural (β), 350
fundamental, 258, 687
harmonic, 258, 687
natural, 350
negative, Web App C
neper (α), 350
notch, 648, 733
radian (β, ω), 350
resonant (ω0), 391, 643, 650,
spectrum, 688
undamped natural (ω0), 359

Frequency response:
and step response, 667
Bode diagrams, 619
definition, 617
descriptors, 617
first-order bandpass, 539
first-order bandstop, 641
first-order high pass, 630
first-order low pass, 621
of four basic gain responses, 618
RLC circuits bandpass, 429, 643, 649
RLC circuits bandstop, 647

Fundamental frequency, 258, 687
Full-scale output (DAC), 200

G(s) (step response transform), 572
g(t) (step response), 572
Gain (K):

current, 151
follower, 179
inverter, 181
non-inverter, 174
proportionality constant, 98, 409, 513
two-port TV or TI, WC15
voltage, 151

Gain-bandwidth product (GBW), 626
Gain function, 617
Gauland, Lucien, 785
Gate function, 239
Gibbs, Josiah, 785
Grapher View (Multisim), 58
Ground, 9
Ground loop, 804

H(s) (impulse response transform), 569
h(t) (impulse response), 569
Half-wave symmetry, 697
Harmonic frequency, 258, 687
Heaviside, Oliver, footnote 335, 382,

453, 498
Henry, Joseph, 274, 785
Henry (H) (unit), 282
Hertz (Hz) (unit), 247
Hidden symmetry, 698
High-pass filter:

basics, 630, 761
Butterworth, 763
Chebychev, 769
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first order, 630
First-Order Cascade, 762
second order equal element, 727
second order unity gain, 727

h-matrix, WC8
Home power distribution, 451
Homogeneity, 97
Homogeneous equation, 312
Hybrid h-parameters, WC7

i (the current variable) (A), 5
i–v characteristics, 17
Ideal models:
capacitor, 275
current source, 20
dependent source, 151
inductor, 282
OP AMP, 174, and GBW 627
open circuit, 19
resistor, 17
short circuit, 19
switch, 19
BJT transistor, 169
voltage source, 20

Ideal transformer:
basics, 792
i-v relationships, 795
input impedance, 796

Impedance (Z):
bridge, 399
concept, 391
driving-point, 558
frequency effects on, 391
input, 558
magnitude scaling, 596
matrix [z], WC3
parallel connection Laplace, 509
parallel connection phasor domain, 400
ratio of phasors V and I, 391
ratio of V(s) and I(s), 502
ratio of V(ω) and I(ω), Web App C
resonance (ω0), 391
series connection Laplace, 508
series connection phasor domain, 395
two-port z-parameters, WC3

Improper rational function, 474
Impulse function (δ(t)), 236
Impulse response (h(t)), 569, diagram 573
Impulse response transform (H(s)):
and convolution, 583
basics, 569
diagram, 573
from network function, 569
from step response, 572

Inductance (L):
definition, 282
mutual (M), 787
self (L), 282, 786

Inductive load, 816
Inductive reactance (XL), 395
power factor correction, 823

Inductor (L):
air-coil design, 308

average power, 436
basics, 282
chokes, footnote 596
coupled, 786
dc equivalence, 299
energy (wL(t)), 283, 436
photos, 282, 283
impedance (Fourier transform), Web
App C

impedance (Laplace transform), 502
impedance (phasor domain), 391
i-v relationships, 282
parallel connection, 298
power (pL(t)), 283, 436
series connection, 298
standard values, 596, see inside
rear cover

Initial conditions, 329, 502, 503
Initial-value property, 488
Input, 98
Input impedance, 558
In phase, 390
Instantaneous power (p(t)):

basics, 435, 812
three-phase, 840

Instantaneous value, 259
Instrumentation systems:

active transducers, 203
basics, 201
passive transducers (photos), 207

Instrumentation amplifier, 193, 212
Integration property:

Laplace, 459
Fourier, Web App C

Integrator:
description, 288
time-limited, 295

Interface, 2
Interface circuit design, 121, 196, 201
Inverse Laplace transforms:

complex poles, 471
definition, 457, 469
improper rational function, 474
multiple poles, 476
simple poles, 469
sum of residues, 473
table, 464, see table inside rear cover
using MATLAB, 479, Web App D

Inverting amplifier, 181
Isolation transformer, 804, photo 804

Joule (J) (unit), 5

K (proportionality constant for gain), see
Gain (K)

K (scale factor in pole-zero diagrams), 466
k1, k2, kM (proportionality constants for

inductors), 282, 786
k (coupling coefficient), 791
Kirchhoff, Gustav, 22
Kirchhoff's laws:

basics, 22
current (KCL), 23

phasor domain, 389
in Laplace transforms, 499
in Fourier transforms, Web App C
voltage (KVL), 24

L (inductor), 282, 787
L-pad, 121, photo 121
Ladder circuit, 50
Lagging power factor, 815
Laplace, Pierre Simon, 453
Laplace transforms (F(s)):

basics, 454
circuit response using Laplace, 480
complex differentiation property, 497
definition, 455
differentiation property, 461
inverse, 457, 469
integration property, 459
linearity, 458
poles and zeros, 466
properties and pairs, 458
relationship to Fourier transforms,
Web App C

solving differential/integrodifferential
eq, 480

table of pairs, 464, inside back cover
table of properties, 464, inside
back cover

translation properties, 462
uniqueness property, 457
using MATLAB, 466, Web App D

Leading power factor, 815
Linear:

circuit, 2,
definition, 17
element, 17

Linearity properties:
additivity, 97
Fourier, Web App C
homogeneity, 97
Laplace, 458
proportionality, 98
superposition, 98

Line current, 825
Line spectra, 695
Line voltage, 826
Load-flow problem:

single-phase, 821
three-phase, 836, 841

Loading:
definition, 130, 182
follower used to avoid, 179
OP AMP, 178, 189
s domain, 590

Logarithmic amplifier, 224
Lookback impedance, 417
Lookback resistance (RT), 114
Loop (definition), 22
Low-pass filter:

basics, 621, 739
Butterworth, 745
Chebyshev, 751
comparisons, 757
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Low-pass filter: (Continued)
first order, 621
First-Order Cascade, 741
second order equal element, 723
second order unity gain, 723

M (mutual inductance), 787
Magnitude scaling, 596
Matrix:

admittance or [y]matrix, WC6
basics, 76, 89, Web App A
hybrid or [h] matrix, WC8
impedance or [z] matrix, WC3
mesh-current analysis, 89
node-voltage analysis, 76
s-domain analysis, 525, 533
symmetrical, 76
transmission or [t] matrix, WC10
using MATLAB, Web App D
using complex numbers (phasors), 433

Matched condition
dc, 119
conjugate, 439

MATLAB:
applications, throughout text, Web

App D
discussion, 11, 54

Maximally flat filters, 740
Maximum signal transfer:

basics, 118
current, 119
graph, (120)
power, 119, 438
theorem (power), 119
voltage, 118

Maxwell bridge, 399
Maxwell, James Clerk, 233
Mesh-current analysis:

basics, 89
by inspection, 92
fundamental property, 90
using Fourier transform analysis, Web

App C
using Laplace transform analysis, 532
using MATLAB, 91, 534, Web App D
using phasor analysis, 423
summary of, 97
supermesh, 95
symmetrical matrix Ax=b, 93
with current sources, 94
with dependent sources, 163

Mho (℧) (unit), 17
Multiple poles, 476, filters 740
Multisim:

applications, throughout text, Web
App D

discussion, 11, 54
Mutual inductance (M), 787, and the dot

convention 788

N (coil turns), 282, 786
n (turns ratio) 793,
Napier, John, footnote 351

Narrow band, 644
Natural frequencies (s, α, β), 352
Natural pole, 526, 555
Natural response, 321, 506, 539
Neper frequency (s-1), 350, also

footnote 351
Netlist, 55
Network function:

and phasors, 582
definition, 514, 555
design and evaluation of, 589
design comparison, 567, 600
determining, 555
driving-point impedance (Z(s)), 558
importance of cascade connection, 590
impulse response, 569
sinusoidal steady-state response, 576
step response, 572
transfer function (T(s)), 558
with current/voltage dividers, 559, 590
with OP AMPs, 559, 592

Node (definition), 22
Node voltage, 73
Node-voltage analysis:

basics, 73
by inspection, 76
fundamental property, 73
using Excel, 525
using Fourier transform analysis, Web

App C
using Laplace transform analysis, 523
using MATLAB, 86, Web App D
using Multisim, 82, 159, Web App D
using phasor analysis, 422
summary of, 89
supernode, 83
symmetrical matrix Ax=b, 76
with dependent sources, 154
with OP AMPs, 191
with voltage sources, 82

Non-causal waveform, 260, Web App C
Noninverting amplifier, 178
Nonlinear:

analysis, 115
characteristics, 69
element, 17

Nonreciprocal network, WC3
Norton equivalent circuit:

applications, 109
basics, 107
phasor domain, 415
s domain, 520

Notch bandwidth, 734
Notch filter, 638, 648, 732, 735
Notch frequency, 648, 734
Nyquist, Harry, footnote 711
Nyquist rate, 711

Octave, 619
Odd symmetry, footnote 17, 697
Ohm (Ω) (unit), 17
Ohm's law, 17
Ohm, Simon Georg, 16

O-pad, 132
OP AMP:

basics, 171
closed-loop gain, 175
dependent source model, 173
effect of finite gain, 176
photos, 172
ideal model, 173, 174
in the s domain, 501
notation, 172
open-loop gain (A), footnote 174
operating modes, 173
transfer characteristics, 172

OP AMP circuits:
analog-to-digital (ADC) circuit, 216
applications, 199
bandpass filter,639,634,646,730,735,773
bandstop filter, 641, 732, 735, 774
buffer, 179
cascading observation, 189
comparator circuits, 214
design, 193
differential amplifier, 187
differentiator, 289
digital-to-analog circuits, 199, 200, 201
follower, 179
high-pass filter,633,636,726,762,763,769
integrator, 289
instrumentation systems, 201
inverting amplifier, 181
log-amp, 224
low-pass filter, 624, 722, 741, 745, 751
noninverting amplifier, 175
Sallen-Key realization, LP 721, HP 726
subtractor (one-stage), 187
subtractor (two-stage), 190
summary of (Table), 188, 290
summing amplifier (inverting), 184
summing amplifier (non-inverting), 185
voltage follower, 179

Open circuit, 19
Open-circuit voltage (vOC), 108
Open Loop gain (A) or (μ), footnote 173
Operational amplifier, see OP AMP
Oscilloscope probe, 552
Out of phase, 390
Output, 98
Overdamped response, 352
Overshoot, 575

p (the power variable) (W), 6
Parallel connection:

admittances, 400, 509
capacitors, 296
current sources, 41
definition, 26
impedances, 400
inductors, 298
resistors, 35

Parseval's theorem, Web App C
Partial fraction expansion:

of complex poles, 471
of improper rational functions, 474
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of multiple poles, 476
of simple poles, 469

Passband, 617, 740
Passive sign convention, 8, 9
Passive filter, 720
Peak-to-peak value of a signal, 260
Peak value of a signal, 260
Perfect coupling, 791, 793
Period (T0), 245
Periodic waveform, 250, 687
average value of, 260
Fourier series of, rms value of,

261, 706
Permittivity (ε), 275
Phase angle (ϕ), 247
Phase converter, 849
Phase current, 833
Phase function, 617
Phase sequence, 826
Phase spectrum, 695
Phase voltage, 826
Phasor:
and network functions, 582
definition, 383
diagram, 383
domain, 394
properties, 384
rotating, 384

Phasor circuit analysis:
basics, 389, 394
device constraints, 389
connection constraints, 389
current division, 400
energy and power, 435
filters, 408, 413, 429
frequency vs. impedance, 391
general circuit analysis, 422
impedance concept, 391
in out of phase, lead, lag, 391
phasor domain, 395
proportionality, 409
source transformation, 416
superposition, 410
Thévenin and Norton equivalents,

415
voltage division, 395

Photoresistor:
photo, 207
interfacing, 207

Piecewise continuous (Laplace), 455
Piezoelectric transducer, 306
Planar circuit, 90, 422, 532
Pole:
basics, 466
circuit determinant, 539
complex, 471, 538
double real, 538
forced, 526, 539
form of filter response, 758
multiple, 476
natural,526, 539
number of, 541
simple, 469, 538
stable, 539

Pole-zero diagram:
and circuit response, 538
basics, 466
finding transforms from, 479
left hand plane, 539
of second-order filter types, 758
scale factor (K), 466
software applications, Web App D

Port, 121, 558, WC2
Potentiometer, 44, photos, 44, 45
Power (p(t)):

apparent, 815
average (P), 437, 706, 812
complex, 814
definition, 6
flow, single phase 821
gain, 153
instantaneous, 435, 812
maximum, 119, 438
phasors, 435
reactive (Q), 813
three phase, 836, 840, 841

Power factor (pf ):
angle, 815
basics, 815
correction, 823

Power triangle, 815
Practical sources

current, 21
voltage, 21

Primary winding, 792
Proper rational function, 469
Proportionality property

dc circuits, 98
phasor domain, 409
s domain, 513

Prototype, 596

Quality factor (Q), 644, 650, 731
Quantities, table of, 4, see inside

front cover
Quiescent or Q-point, 117

R (resistor), 17
Radians per second (rad/s) (Unit), 247
Ragazzini, John R., 171
Ramp function (r(t)), 238
Range of practical components, 597, see

inside rear cover
Rational function, 469, 513
Reactance (X), 395
Reactive power (Q), 813
Reciprocal network, WC3
Reciprocal spreading, 668,

Web App C
Reference marks, 8
Relationships between responses in s and

t domains, 573
Residue, 469

sums of, 473
Resistance (R),

basics, 17
lookback (RT), 114
real part of impedance, 391, 502

Resistor (R):
average power, 436
photos, 17, 18
i-v relationships, 17
impedance, 391, 502
linear, 17
parallel connection, 35
power, 18
series connection, 35
standard values, 596, see inside
rear cover

Resolution (DAC), 200
Resonance (ω0), 391, 405, 644
Resonant frequency (ω0), 392, 405, 644, 651
Response: see also transient and

frequency responses
ac steady state, 340
dc steady state, 340, 572
critically damped, 352
forced, 321, 539
frequency, 617
impulse, 569
narrow band, 644
natural, 321, 539
overdamped, 352
sinusoidal steady state, 340, 576
step, 321, 359, 572
underdamped, 352
wide band, 644
zero frequency (dc), 340
zero input, 312, 345, 515
zero state, 327, 515

Reversal property, Web App C
Ringing, 670, 759
Rise time, 575
RC and RL circuits:

characteristic equations,RC 313,RL 313
frequency response, 621, 624, 631, 634
initial and final conditions, 329
step response, 321
zero-input response, 312
zero-state response, 327

RLC circuits:
basics, 344
characteristic equation, series 346,
parallel 354

frequency response, 643, 647
design, 366, 367, 646, 648, 702
parallel, 353, 647
series, 344, 646
zero-input response: series 345, 348

Root-mean-square (Vrms) value, 261, 707
Rotating phasor, 384

s-plane geometry relationships, 529
Sallen-Key, footnote 729, table 730, LP

721, HP 726
Sample-and-hold circuit, 280, 378
Sampling:

aliasing, 712
anti-aliasing, 712
Nyquist rate, footnote 711
strictly band-limited, 711
theorem, 711
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Secondary winding, 792
Self-inductance, 282, 787
Scale factor, 466
Scaling property, Web App C
Second-order circuit:

bandpass prototype, 730
bandstop prototype, 732
differential equation, 345, 354, 359
integrodifferential equation, 345
high-pass prototype, 726
low-pass prototype, 721
network function design, 598
parallel RLC, 354, 648
Sallen-Key, footnote 729
series RLC, 345, 643
step response, 359
zero-input response, 345, 353

Self-inductance (L), 282, 786
Sensor, see Transducer
Series connection:

basics, 26
capacitors, 297
impedances, 395, 508
inductors, 298
resistors, 35
voltage sources, 41

Shannon, Claude, footnote 711
Short circuit, 19
Short-circuit current (iSC), 108
Siemens (S) (unit), 17
Signals:

ac, 261
amplification, 151
composite, 252
dc, 234, 261
damped ramp, 254
damped sinusoid, 255
definition, 2
double exponential, 257
double-sided exponential, 254
exponential, 240
exponential rise, 253
introduction, 2, 234
inversion, 154
impulse, 236
ramp, 238
signum (sgn(t)), 253
sinc x (sin x/x), Web App C
sinusoidal, 245
step function, 235

Signum function (sgn(t)), 253
Single-line representation of power

systems, 841
Simple pole(s), 469
Single phase circuit analysis, 817
Single phase power flow, 821
Singularity functions, 238
Sinusoidal steady-state response:

average power, 437
basics, 340
fromnetwork functions, 576, diagram573
using phasors, 389
relationship with phasors, 582

Sinusoidal waveform:
basics, 245
damped, 255
Fourier transform of, Web App C
Laplace transformof, (sin) 459, (cos) 462
properties of, 250, 385
phasor representation, 383

Solving linear algebraic equations, 78,
Web App A

Source:
current (ideal), 20
dependent, 151
equivalent, 38
practical (i and v), 21
three phase, 826
voltage (ideal), 20

Source transformation:
dc, 38
phasor domain, 415
s domain, 520

Spectrum, 688
SPICE, 55, 116
Stability:

and pole loci, 539, 541
asymptotic, 570
inherently stable, 539
marginally stable, 539, see also

footnote, 539
Standard decimal prefixes, Table 1-2, 3
Standard form (second-order eq.), 360
State variable, 277, 284, 311
Steady-state response, 340, 556, 576
Steinmetz, Charles, 382
Step function (u(t)), 235
Step response (g(t)):

definition, 572
descriptors, 575
diagram 573

Step-response transform (G(s)):
and frequency response, 667
diagram, 573
first-order circuit, 321
from impulse response, 572
from network function, 572
second-order circuit, 359
using MATLAB, in various sections,

Web App D
using Multisim, in various sections,

Web App D
Step-down transformer, 793
Step-up transformer, 793
Stopband, 617, 740
Strain gauge:

photo, 207
interfacing, 208, 210

Subtractor, see differential amplifier
Summing amplifier, 184, 185
Super Capacitor, 307, 378
Supermesh, 95
Supernode, 83
Superposition principle

dc, 98, 103
ac (phasor domain), 409

s domain, 514
Susceptance (B), 400
Switch:

analog, 19
ideal, 19
photos of, 19
models, 20

Symbols and Units, 3, see also Table 1-1, 4

t-parameters, WC10
T(s) (transfer function), 555, 558
T-circuit, 413
Tank circuit, 650, 683
Temporal descriptors, 259
Tesla, Nikola, 811
Test signals, 557
Thévenin, Leon Charles, 72
Thévenin equivalent circuit

applications of, 109
basics, 107
derivation of theorem, 113
of a transformer, 810
phasor domain, 415, 426
relationship to Norton, 108
s domain, 520
with dependent sources, 166
with nonlinear loads, 115

Thévenin resistance (RT=RN), 108
Three-phase power analysis:

balanced connections, 827, 828
basics, 830
instantaneous power, 840
power flow, 836, 841
single-line diagram, 841
using Multisim, 832, 834, Web

App D
Y-Δ analysis, 833
Y-Δ connection, 828
Y-Δ conversions, 829

Thermistor, 207, photo, 207
Thermocouple, 205, curves 228, 230
Thermometer code, 217
Time constant:

definition, 240
RC circuit, 313
RL circuit, 314

Time shift (TS):
effect on exponential, 242
effect on impulse, 237
effect on ramp, 238
effect on sinusoid, 246
effect on step function, 235

Transconductance (g), 151
Transducers:

accelerometer, 229
active, 203
design with, 203 to 213
interface circuit, 202
passive, 207, photos 207
photocell, 203
photoresistor, 207, photo 207
pressure, 229, 672
strain gauge, 207, photo 207
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thermistors, 207, photo 207
thermocouples, 205, curves, 228

Transfer characteristics
BJT, 171
OP AMP, 172

Transfer function:
admittance, 558
current, 558
definition, 558
determining, 559
Fourier domain, Web App C
impedance, 558
voltage, 558
with OP AMPs, 559

Transform pair:
Fourier, Web App C
Laplace, 455, 464, see table inside

rear cover
Transformed circuits, 499
Transformers:
autotransformer, 799, 802
basics, 792
equivalent circuit, 810
photos, 792
ideal, 792
impedance matching, 798
isolation transformer, 804
i-v characteristics, 795, two-port WC21
linear, 799
maximum power transfer, 798
perfect coupling, 793
phasor model, 799
solution using Multisim 794, 798, Web

App D
step down, 793
step up, 793
turns ratio, 793
windings, 792
zero power loss, 795

Transient response:
first-order (classical), RC 313, RL 314
second-order (classical), series 344,

parallel, 353
using Laplace, 504, 505, 507, 569, 572
using MATLAB, Web App D
using Multisim, Web App D

Transition band, 740
Transistor (BJT):
basics, 168
biasing, 69
bypass capacitor, 553
digital switch, 171
models, 170
photos, 169
operating modes, 169

Translation property:
Fourier transform, Web App C
Laplace transform, 462

Transmission matrix [t], WC10
Transmission t-parameters, WC10
Transresistance (r), 151
Through variable (current), 8

Tuned filter, 644, 731, 735
Turning off sources, 103
Turns ratio n, 793
Two-port network, 121, 558, WC2

admittanceory-parameters,WC2,WC5
conversion table, WC13
current gain, WC15, table WC16
definition, WC2
hybrid or h-parameters, WC2, WC7
impedance or z-parameters,
WC2, WC3

network, WC2
parameters, WC2
transfer function, 558
transmissionor t-parameters,WC2,WC10
two-port connections or
conversions, WC12

voltage gain, WC13, table WC16

Undamped natural frequency (ω0), 359,
529, 541

Under-damped response, 352
Unilateral two-port network, WC20
Unipolar power, 813
Uniqueness property:

Fourier transform, Web App C
Laplace transform, 457

Unit output method, 100, 409
Units, table of, 4, inside front cover
Unity gain method, LP 723, HP 727
Unstable circuit, 539

v (the voltage variable) (V), 5
Virtual keyboard, 718
Volt (V) (unit), 6
Volta, Alessandro, footnote 6
Volt-Amperes (VA) (unit), 8152
Volt-Amperes Reactive (VAR)

(unit), 813
Voltage:

average value (Vavg), 260, a0, 689
definition, 5
lag, lead, 390, 391
line, 827
maximum value (VMAX), 260
minimum value (VMIN), 260
node, 73
open circuit, 108
peak value (Vp), 260
peak-to-peak value (Vpp), 260
root-mean-square value (Vrms), 261
root-mean-square value of periodic
functions, 706

Thévenin, 107
phase, 826

Voltage division, 42, 395, 508, 590, 592
Voltage follower, 179
Voltage gain (μ), 151, two-port TV, WC15
Voltage source:

ac source symbol, 20
battery symbol, 20
dependent, 151

Fourier representation of, Web App C
i-v characteristics, 20
Laplace representation of, 500
phasor representation, 383
practical, 21
three-phase, 826

Wagner, K.W., 719
Watt (W) (unit), 6
Watt, James, footnote 6
Waveforms:

basics, 234
amplitude descriptors, 260
damped ramp, 254
damped sinusoid, 255
dc signals, 234
double exponential, 257
double-sided exponential, 254
exponentials (e�t=TC), 240
generation using MATLAB, Web
App D

generation using Multisim, Web
App D

impulse (δ(t)), 236
instantaneous value, 259
partial descriptors, 259
ramp (r(t)), 238
signum function (sgn(t)), 253
sinc (sin x/x), Web App C
singularity functions, 238
sinusoids (cos ωt + φ), 245
step (u(t)), 235
temporal descriptors, 259
waveform-transform relationship,
454

Waveform symmetries, 697
Weber, Wilhelm, 282
Weber (Wb) (unit), 282, 786
Weber-turns (Wb-t) (unit), 282, 786
Westinghouse, George, 811
Wide band, 644

X (reactance), 395

Y (admittance), 395
Y-connection, 828
y-parameters, WC5

Z (impedance):
Fourier, Web App C
Laplace, 503
phasors, 391

z-parameters, WC3
Zero, 466, 721
Zero crossing detector, 215
Zero-input response, 312, 327, 345,

348, 515
Zero power loss, 795
Zero–state response, 327, 515
Zeta (ζ) damping ratio, 352, 359, 529, 534,

644, 721
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STANDARD VALUES

THE RESISTOR COLOR CODE

Color

First
Significant

Digit

Second
Significant

Digit Multiplier Tolerance

None ±20%

Silver 0.01 ±10%

Gold 0.1 ±5%

Black 0 0 1

Brown 1 1 10 ±1%

Red 2 2 100 ±2%

Orange 3 3 1k

Yellow 4 4 10k

Green 5 5 100k

Blue 6 6 1000k

Violet 7 7

Gray 8 8

White 9 9

STANDARD VALUES FOR RESISTORS

VALUE TOLERANCES VALUE TOLERANCES VALUE TOLERANCES

10 �5%,�10%, �20% 22 �5%, �10%,�20% 47 �5%,�10%,�20%

11 �5% 24 �5% 51 �5%

12 �5%,�10% 27 �5%, �10% 56 �5%,�10%

13 �5% 30 �5% 62 �5%

15 �5%,�10%, �20% 33 �5%, �10%,�20% 68 �5%,�10%,�20%

16 �5% 36 �5% 75 �5%

18 �5%,�10% 39 �5%, �10% 82 �5%,�10%

20 �5% 43 �5% 91 �5%

STANDARD VALUES FOR CAPACITORS

pF pF pF pF μF

1.0 10 100 1000 0.01 0.1 1.0 10 100 1000 10,000

1.1 11 110 1100

1.2 12 120 1200

1.3 13 130 1300

1.5 15 150 1500 0.015 0.15 1.5 15 150 1500

1.6 16 160 1600

1.8 18 180 1800

2.0 20 200 2000

2.2 22 220 2200 0.022 0.22 2.2 22 220 2200

2.4 24 240 2400

2.7 27 270 2700

3.0 30 300 3000

3.3 33 330 3300 0.033 0.33 3.3 33 330 3300

3.6 36 360 3600

3.9 39 390 3900

4.3 43 430 4300

4.7 47 470 4700 0.047 0.47 4.7 47 470 4700

5.1 51 510 5100

5.6 56 560 5600

6.2 62 620 6200

6.8 68 680 6800 0.068 0.68 6.8 68 680 6800

7.5 75 750 7500

8.2 82 820 8200

9.1 91 910 9100

μF μF μF μF μF μF

STANDARD VALUES FOR INDUCTORS

mH, μH

1.0 10 100 1000

1.1 11 110 1100

1.2 12 120 1200

1.3 13 130 1300

1.5 15 150 1500

1.6 16 160 1600

1.8 18 180 1800

2.0 20 200 2000

2.2 22 220 2200

2.4 24 240 2400

2.7 27 270 2700

3.0 30 300 3000

3.3 33 330 3300

3.6 36 360 3600

3.9 39 390 3900

4.3 43 430 4300

4.7 47 470 4700

5.1 51 510 5100

5.6 56 560 5600

6.2 62 620 6200

6.8 68 680 6800

7.5 75 750 7500

8.2 82 820 8200

8.7 87 870 8700

9.1 91 910 9100



BASIC LAPLACE TRANSFORM PAIRS

SIGNAL WAVEFORM fðtÞ TRANSFORM FðsÞ

Impulse δðtÞ 1

Step function uðtÞ 1
s

Ramp tuðtÞ 1
s2

Exponential e−αt½ �u tð Þ 1
s+ α

Damped ramp te−αt½ �u tð Þ 1

s+ αð Þ2

Sine sinβt½ �u tð Þ β
s2 + β2

Cosine cosβt½ �u tð Þ s

s2 + β2

Damped sine e−αt sinβt½ �u tð Þ β
s+ αð Þ2 + β2

Damped cosine e−αt cosβt½ �u tð Þ s+ αð Þ
s+ αð Þ2 + β2

BASIC LAPLACE TRANSFORMATION PROPERTIES

PROPERTIES TIME DOMAIN FREQUENCY DOMAIN

Independent variable t s

Signal representation f ðtÞ FðsÞ

Uniqueness ℒ−1 F sð Þf g =ð Þ f tð Þ½ �u tð Þ ℒ f tð Þf g=F sð Þ

Linearity Af1 tð Þ+Bf2 tð Þ AF1 sð Þ+BF2 sð Þ

Integration
Z t

0
f τð Þdτ

F sð Þ
s

Differentiation df tð Þ
dt

sF sð Þ− f 0−ð Þ

d2f tð Þ
dt2

s2F sð Þ−sf 0−ð Þ−f 0 0−ð Þ

d3f tð Þ
dt3

s3F sð Þ−s2F 0−ð Þ−sf 0 0−ð Þ−f 00 0−ð Þ

s-Domain translation e−αt f tð Þ F s+ αð Þ

t-Domain translation f t−að Þu t−að Þ e−asF sð Þ

SALLEN-KEY FILTER REALIZATIONS

RB

RB

RAμ=RA+RB

Z2

Z4v1(t)
+

v1(t)
+

+

+

–

Z1

Z3

Equal Element Unity Gain

Z2

Z4

+

–

Z1

Z3

μ

μ = 1
v2(t)

+

v2(t)

NORMALIZED POLYNOMIALS THAT
PRODUCE BUTTERWORTH RESPONSES

ORDER NORMALIZED DENOMINATOR POLYNOMIALS

1 s+ 1ð Þ

2 s2 + 1:414s+ 1
� �

3 s+ 1ð Þ s2 + s+ 1
� �

4 s2 + 0:7654s+ 1
� �

s2 + 1:848s+ 1
� �

5 s+ 1ð Þ s2 + 0:6180s+ 1
� �

s2 + 1:618s+ 1
� �

6 s2 + 0:5176s+ 1
� �

s2 + 1:414s+ 1
� �

s2 + 1:932s+ 1
� �

NORMALIZED POLYNOMIALS THAT PRODUCE CHEBYCHEV
RESPONSES

ORDER NORMALIZED DENOMINATOR POLYNOMIALS

1 s+ 1ð Þ

2 s=0:8409ð Þ2 + 0:7654 s=0:8409ð Þ+1
h i

3
h
s=0:2980ð Þ+1

i
s=0:9159ð Þ2 + 0:3254 s=0:9159ð Þ+1

h i
4 s=0:9502ð Þ2 + 0:1789 s=0:9502ð Þ+1

	h i
s=0:4425ð Þ2 + 0:9276 s=0:4425ð Þ+1

h i
5

h
s=0:1772ð Þ+1

i
s=0:9674ð Þ2 + 0:1132 s=0:9674ð Þ+1

h i
s=0:6139ð Þ2 + 0:4670 s=0:6139ð Þ+ 1

h i
6 s=0:9771ð Þ2 + 0:0781 s=0:9771ð Þ+ 1

h i
s=0:7223ð Þ2 + 0:2886 s=0:7223ð Þ+1

h i
s=0:2978ð Þ2 + 0:9562 s=0:2978ð Þ+1

h i

FILTER TYPE

EQUAL ELEMENT UNITY GAIN

Z1 Z2 Z3 Z4 ω0 μ Z1 Z2 Z3 Z4 ω0 ζ

LP R R C C 1/RC 3−2ζ R R C1 C2 1=R
ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2=C1

p
HP C C R R 1/RC 3−2ζ C C R1 R2 1=C

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1=R2

p
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