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WHAT Is DiFrereNT ABOUT THIS TEXT?

Our approach to the art of teaching circuits in our textbook differs from most others.
We realize that electric circuits are intimately integrated into so much of our modern
technology that many students from different disciplines need to learn about them.
Studying circuits can be daunting, but interesting, practical, and rewarding. This can
be true even for students who are not majoring in electrical or computer engineering.
We believe that most students who pursue engineering studies wish to be creative and
design things. Most circuits texts do not focus on this basic desire, rather spend their
pages teaching why and how electric circuits work without affording the student an
opportunity to put this learning into practice. The longer it takes students to try their
hand in designing things, the more likely it is that they will become disillusioned and
frustrated —perhaps even to the point of changing to a different major.

We have long believed that an early introduction to design and design evaluation
raises the excitement level and greatly increases student interest in their chosen dis-
cipline. Over 50 years of combined teaching experience at the USAF Academy, the
University of Denver, the University of Colorado at Denver, and the Air Force Insti-
tute of Technology, has only served to strengthen our belief. This new edition
furthers this strategy by adding more design and evaluation examples, exercises,
homework problems, and real-world applications. In addition, students today solve
problems using computers, by hand, and with a calculator. Access to personal com-
puters, laptops, notebook computers, and “smart” devices is nearly ubiquitous, and
key software used in circuit analysis and design has become available for free or at
very deep discounts for students. This edition of our text includes more software
examples, exercises, and discussions geared to making the study of circuits more
in line with the interests of today’s students. Our text has always included software,
but generally as an extension for solving circuits by hand. This edition continues our
effort begun with the sixth edition by integrating software intimately into the solution
of circuit problems whenever and wherever it really helps to solve the problems. It
still recognizes that using software does not replace the intuition that engineers must
develop to analyze, design, and make smart judgments about different working solu-
tions or designs.

The eight edition of The Analysis and Design of Linear Circuits improves on the
seventh edition and remains friendly to users who prefer a Laplace-Early approach
championed in our first edition, or those favoring the more traditional Phasor-First
approach to AC circuits. A later section discusses how to use this text to pursue either
approach using three different focuses. In this edition, we have added more skill-level
examples, exercises, and problems that can help develop the student’s confidence in
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mastering the different objectives. The eight edition assumes that the same student
prerequisites as past editions and continues to rely on students having access to per-
sonal computers —although computer access is not essential for using this textbook —
we believe it improves and expands learning. This edition targets students of all engi-
neering disciplines who need an introductory circuit analysis course of one or two
terms. The eight edition continues the authors’ combined commitment to providing
a modern, different, and innovative approach to teaching analysis, design, and design
evaluation of electric circuits.

CONTINUING FEATURES
OBJECTIVES

This text remains structured around a sequence of carefully defined cognitive learn-
ing objectives and related evaluation tools based on Bloom’s Taxonomy of Educa-
tional Objectives. The initial learning objectives focus on enabling skills at the
knowledge, comprehension, and application levels of the taxonomy that we call
Chapter Learning Objectives. As students demonstrate mastery of these lower levels,
they are introduced to higher level objectives involving analysis, synthesis (design),
and evaluation. Each learning objective is explicitly stated in terms of expected stu-
dent proficiency in the homework sections, and each is followed by at least 10 home-
work problems specifically designed to evaluate student mastery of the objective.
This framework has been a standard feature of all eight editions of this book and
has allowed us to maintain a consistent level of expected student performance over
the years. We also list our objectives in the chapter openers to orient the student to
the expected outcomes. These objectives make it easier to assess student learning and
prepare for accreditation reviews. To fulfill ABET Criterion 3: The program must
have documented student outcomes that prepare graduates to attain the program edu-
cational objectives. And to fulfill Criterion 4: The program must regularly use appro-
priate, documented processes for assessing and evaluating the extent to which the
student outcomes are being attained. The results of these evaluations must be system-
atically utilized as input for the continuous improvement of the program. Other avail-
able information may also be used to assist in the continuous improvement of the
program.

INTEGRATING PROBLEMS

Every homework section ends with several integrating problems that test mastery of
concepts that cover several objectives. These more in-depth problems test whether
the student not only has mastered individual objectives but also was able to integrate
knowledge across several objectives.

Circurt ANALYSIS AND DESIGN

Our experience convinces us that an interweaving of analysis and design topics rein-
forces a student’s grasp of circuit analysis fundamentals. Early involvement in design
provides motivation as students apply their newly acquired analysis tools to practical
situations. Using computer simulation software to verify their designs gives students
an early degree of confidence that they have actually created a design that meets
stated specifications. Ideally, a supporting laboratory program where students actu-
ally build and test their designs provides the final confirmation that they can create
useful products. Design efforts as described in this text are very useful in helping to
meet ABET’s design Criterion 3(c): an ability to design a system, component, or
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process to meet desired needs. We identify design examples, exercises, and homework
problems with an icon @

Desion EvaLuaTtion

Realistic design problems do not have unique solutions, so it is natural for students to
wonder if their design is a good one. Using smart judgment to compare alternative
solutions is a fundamental trait of good engineering. The evaluation of alternative
designs introduces students to real-world engineering practice. Our text includes
judgment problems that ask students, for example, to evaluate an “off-the-shelf”
design and ask if it could meet a specific need. In such problems, we ask the student
“would you buy it?”, or would you buy it if one change was allowed to be made to it?
Including design and the evaluation of design in an introductory course helps to con-
vince students that circuit courses are not simply vehicles for teaching routine skills,
such as node-voltage and mesh-current analyses, but also a vehicle for learning and
practicing engineering judgment. This edition offers continued coverage of design
and evaluation among the worked examples, exercises, and homework problems.
We use software extensively to help students visualize specifications, alternatives,
and their design results. This, in turn, helps them to create better designs and make
smart choices between competing designs. Evaluation generally involves the practi-
cal side of design and can support ABET Criterion 3(c)—specifically to create
designs ... within realistic constraints such as economic, environmental, social, polit-
ical, ethical, health and safety, manufacturability, and sustainability. We identify eval-

uation examples, exercises, and homework problems with an icon @

The OP AMP

A central feature of this text continues to be an early introduction and integrated
treatment of the OP AMP. The modular form of OP AMP circuits simplifies analog
circuit analysis and design by minimizing the effects of loading. This feature allows
the interconnection of simple building blocks to produce complex signal processing
functions that are especially useful to instrumentation and signal shaping applica-
tions. The close agreement between theory, simulation, and hardware allows stu-
dents to analyze, design, and successfully build useful OP AMP circuits in the
laboratory. The text covers numerous OP AMP applications, such as digital-to-
analog conversion, transducer interface circuits, comparator circuits, block diagram
realization, first-order filters, and multiple-pole active filters. These applications are
especially useful to students from other engineering disciplines that require knowl-
edge of instrumentation, interfacing, filtering, or signal processing.

LaPLACE TRANSFORMS

Laplace transforms are used to solve differential equations using algebraic techni-
ques. In circuits, Laplace transforms are used to treat important concepts such as
zero-state and zero-input responses, impulse and step responses, convolution, fre-
quency response, and filter design. An important pedagogical question is where
Laplace transforms should be taught—in the Circuits course, the Signals and Systems
course, a Differential Equations course, or elsewhere? The traditional approach in
circuits has been to first teach phasors and use them to study ac circuit analysis,
steady-state ac power, polyphase circuit analysis, magnetically coupled circuits,
and frequency response. This extended treatment of phasor analysis means that
Laplace transforms are often delayed to the last weeks of the second semester
and treated as an advanced topic along with Fourier methods and two-port networks.
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Typically, then, Laplace transforms are taught in earnest in a Signals and Systems
course, where their linkage to phasors is often overlooked. We have long advocated
an early Laplace approach, one in which Laplace transforms are introduced and
applied to circuit analysis before phasors are introduced. The advantage of treating
Laplace-based circuit analysis first is that once mastered, it makes learning phasor-
based analysis easier and more intuitive. Students quickly make the connection
between phasor analysis and the concepts of network functions, transient response,
and sinusoidal steady-state response developed through s-domain circuit analysis.
We do not claim that Laplace analysis is more fundamental or even more important
than phasor analysis. We do claim that the learning effort needed to master both pha-
sor analysis and Laplace analysis is not a zero-sum game. Our experience is that less
classroom time is needed to ensure mastery of both methods of analysis when
Laplace transform analysis is treated before phasor analysis. Emphasizing transform
methods in the circuit course also better prepares students to handle the profusion of
transforms they will encounter in subsequent Signals and Systems courses.

SIGNALS AND S16NAL PROCESSING

We begin our treatment of dynamic circuits with a separate chapter on waveforms
and signal characteristics. This chapter gives students early familiarity with important
input and output signals encountered in the study of linear circuits. Introducing sig-
nals at the beginning of dynamic circuit analysis lets students become comfortable
with time-varying signals without having to simultaneously deal with applying them
to circuits. A further emphasis on signal processing and systems is achieved through
the use of block diagrams, input-output relationships, and transform methods. The
ultimate goal is for students to understand that time-domain waveforms and
frequency-domain transforms are simply alternative ways to characterize signals
and signal processing with each domain approach providing different insight into
the circuit’s performance. Viewing signals in both domains naturally leads to discus-
sions of important concepts such as signal bandwidth, signal sampling, and reciprocal
spreading. It is also useful knowledge in choosing alternative design approaches to
filters.

CompuTter TooLs

Our philosophy recognizes that today students come to the Circuits course being
comfortable using a computer. Many already know how to use several computer
tools such as spreadsheets and word processing. Some may be familiar with math sol-
vers and possibly simulation software. One of our goals is to help them learn how to
effectively use these tools. Knowing when to use these tools and how to interpret the
results is essential to understanding circuits. We use three types of computer pro-
grams in this text to illustrate computer-aided circuit analysis, namely spreadsheets
(Excel®), math solvers (MATLAB®), and circuit simulators (Multisim®). Begin-
ning with Chapter 1, examples, exercises, and homework problems related to
computer-aided circuit analysis are integrated into all chapters. The purpose of
the examples is to show students how to develop a problem-solving style that includes
the intelligent use of the productivity tools routinely used by practicing engineers.
Exercises following most examples help students immediately practice the software
skill demonstrated in the example. There are 32 examples and 53 exercises that use
computer tools in their solution. There are 325 homework problems that require the
use of a computer tool and all are identified by a computer icon [ ].

vii
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We have created a Web Appendix D that includes additional examples that make
use of software tools. This approach of integrating software tools into circuits directly
supports ABET’s Criterion 3(k) —an ability to use the techniques, skills, and modern
engineering tools necessary for engineering practice.

ApprLicaTiON EXAMPLES

The text has many examples that link directly to practical uses. The purpose of these
examples is to show the student that the topics being covered are more than a ped-
agogical exercise. These real-world examples find use in common applications and
products. We have increased to 44 the number of Application Examples. They
include topics, such as cathode-ray tube (CRT) operation, batteries, source—load
interfacing, bipolar junction transistor (BJT) operation, digital multimeters,
common-mode rejection ratio (CMRR) in instrumentation amplifiers, attenuation
pads, electrocardiograph (ECG), and clock-timing waveforms, three on how to
obtain a waveform equation from an oscilloscope, sample-hold circuits, resonance,
impedance bridge, gain-bandwidth product, digital filtering, frequency content of
a full-wave rectifier, isolation- and auto-transformers, and more. These examples
can be used to support ABET Criterion 3(j)—a knowledge of contemporary issues.

Text aAND WEB APPENDICES

Since many students may need to review this material, we have included a text appen-
dix on complex numbers. There are also five Web appendices: One on the solution of
linear equations (A), one on Butterworth and Chebyshev poles (B), a new appendix
on Fourier transforms (C), one on software tools (D), and one with all the Exercises
worked out (E). These appendices are available at www.wiley.com/college/thomas.

New FEATURES oF THE EioHT EDITION

Skites: Bureoine ExampLes, EXERCISES, AND PROBLEMS

Users have asked that we include additional easier, skills-building examples, exercises,
and problems as a means of helping students build confidence. Throughout the text,
but especially in the early chapters, we have added several one-concept examples and
exercises to key sections. In addition, we added numerous such problems in support of
each learning objective. These skill-building items are at the Bloom’s Taxonomy
“Comprehension” level, rather than the more advanced “Application” and “Analysis”
levels. Solutions to Exercises are in a special Web Appendix E.

Circurt DesieN aAnND DEsioN EvaLuATION

Our emphasis on creating solutions and choosing the better or best one has been
strengthened with the inclusion of 64 design examples, 81 design exercises, and
263 design homework problems. There are dozens of design evaluation examples,
exercises, and homework problems. In this edition, there are 21 evaluation examples,
16 evaluation exercises, and 79 homework problems that require applying judgment.

FReQueNcYy REsponNSE AND AcTIVE FILTERS

We have continued to improve Chapter 12 on frequency response and Chapter 14 on
active filters. These chapters are excellent means of understanding the frequency
behavior of circuits. We have maintained our integration of software to assist the stu-
dent in understanding frequency behavior through Bode diagrams and pole-zero dia-
grams in both chapters. Users have told us that Chapter 14 often proves useful to
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students in subsequent design courses where knowledge of active filters may be
needed. As a result, we have sustained our coverage of active multipole notch and
tuned filters. Both chapters have more design and evaluation examples as well as
more homework problems.

AC PowEeR SYSTEMS

In our chapter on three-phase AC power circuits, we have kept it in line with what
today’s students should know. We emphasized power flow and systems in both
single phase and three phase. We added new simulation examples, exercises, and
homework.

Two Ports

In response to several users, we have updated and moved the chapter on two ports
(Chapter 17) from the main text to the Web. Although located on the Web, this chap-
ter is fully integrated with the text, with examples, exercises, and problems. It has
index references and answers to selected homework problems. We have added dis-
cussion, examples, and exercises to illustrate that two-port parameters are not just
another way to find voltage and current responses. Rather, their primary utility is
to determine global circuit properties such as voltage gain, current gain, feedback,
and Thévenin equivalence. We have added simulation examples to this chapter.

Usine THis EpiTion For LaPLACE EARLY

The eight edition is designed so that it can be used as a Laplace Early version as well as a
traditional Phasor First version. The phasor analysis chapter (Chapter 8) comes before
the study of Laplace transform techniques (Chapters 9-11). Those wishing to follow the
traditional approach can follow the eighth edition chapter organization through
Chapter 8, on phasor analysis, with a possible delaying of Chapter 7 until the second
semester. Those choosing a Laplace Early approach can follow the present chapter
organization through Chapter 7, skip Chapter 8, and proceed directly to the Laplace
chapters. The current edition includes an introduction to phasor analysis in Sect.
11-5, dealing with the sinusoidal steady state. As a result, Laplace Early users can study
phasor analysis in Chapter 8 at any point after Chapter 11. The following table shows
suggested chapter sequencing for the traditional and Laplace Early approaches for
three different subject matter emphases. The second author used the Traditional-
Electronics sequence at the USAF Academy and has used the Laplace Early—Systems
sequence at the University of Denver. Enough material is available in the printed text
and in the Web appendices to allow the construction of other topic sequences. Other
organizational options are available in the Instructor Manual.

EmpHasis SEMESTER 1 SEMESTER 2

TranimionaL (PHasor First)

Power 1|2 |3 |45 |6 | &7 |78 |15 ]| 16 9 10 | 11 12

Systems 1|2 |3 |4 |5 |6 | 87 | 78 9 10 | 11 12 | 13 | 14

Electronics 1|2 |3 |4 |56 | 87 | 78 9 10 | 11 12 | 14 |1517
Lapiace Earty

Power 1 |2 |3 |45 6 7 9 10 | 11 12 8 15 | 16

Systems 1 2 3 4 5 6 7 9 10 11 12 13 14 | 8/15

Electronics 1 2 |3 4|5 |6 7 9 10 | 11 12 | 14 | 15 | 17
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Use oF SortwaRE IN THis EpiTion

Software use throughout the text has been significantly increased and strengthened
to include many new MATLAB, Multisim, and Excel examples to help practice using
the software. Although there are many simulation products that can be used, in this
edition, we chose National Instrument’s Multisim® because of its ease of use, low
cost, breath of problems, the ability to insert virtual laboratory instruments in a cir-
cuit, and its easy integration with another NI product, LabView®. There is an
expanded Web Appendix D to simplify students’ use of software. There are 257
homework problems that suggest solutions using MATLAB, Multisim, or both.
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(HAPTER | INTRODUCTION

The electromotive action manifests itself in the form of two effects which I believe must be distinguished from the beginning by a
precise definition. I will call the first of these “electric tension,” the second “electric current.”

André-Marie Ampere, 1820,
French Mathematician/Physicist

Some History Behind This Chapter

André Ampere (1775-1836) was the first to recognize the
importance of distinguishing between the electrical effects
we now call voltage and current. He also invented the galva-
nometer, the forerunner of today’s voltmeter and ammeter.
A natural genius, he had mastered all the then-known math-
ematics by age 12. He is best known for defining the math-
ematical relationship between electric current and
magnetism, now known as Ampere’s law.

Why This Chapter Is Important Today

Welcome to the study of Linear Circuits. In this chapter you
are introduced to the lexicon of electrical engineering. You
will learn both the terminology and the variables that will
be used throughout the book. Important concepts introduced
here are voltage and current, the reference marks used to
define them, and a voltage benchmark called ground. In addi-
tion, you will gain an initial appreciation of the value of the
computational software that is common in the electrical engi-
neering profession.

Chapter Sections
1-1 About This Book
1-2 Symbols and Units
1-3 Circuit Variables

1-4 Computational and Simulation Software Introduction

Chapter Learning Objectives
1-1 Electrical Symbols and Units (Sect. 1-2)

Given an electrical quantity described in terms of words,
scientific notation, or decimal prefix notation, convert
the quantity to an alternative description.

1-2 Circuit Variables (Sect. 1-3)

Given any two of the three signal variables (i, v, p) or the
two basic variables (g, w), find the magnitude and direc-
tion (sign) of the unspecified variables.

1-3 Software Introductions (Sect. 1-4, Web Appendix D)

Given a simple computational problem, use MATLAB as
an appropriate engineering tool to solve the problem. (We
will introduce the use of Multisim to solve simulation pro-
blems starting in Chapter 2.)
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CHAPTER 1

INTRODUCTION

1-1 Asout THis Book

The basic purpose of this book is to introduce the analysis and design of linear cir-
cuits. Circuits are important in electrical engineering because they process electrical
signals that carry energy and information. For the present we can define a circuit as
an interconnection of electrical devices and a signal as a time-varying electrical entity.
For example, the information stored on an optical disk is recovered in the optical disk
player (e.g., Blu-Ray) as electronic signals, initially stored as discrete (digital) data
that are processed by circuits to generate continuous (analog) audio and video
outputs. In an electrical power system some form of stored energy (coal, nuclear,
hydro, chemical, etc.) is converted to electrical form and transferred to loads, where
the energy is converted into the form (mechanical, light, heat, etc.) required by the
customer. The optical disk player and the electrical power system both involve cir-
cuits that process and transfer electrical signals carrying energy and information.

In this text we are primarily interested in linear circuits. An important feature of a
linear circuit is that the amplitude of the output signal is proportional to the input
signal amplitude. The proportionality property of linear circuits greatly simplifies
the process of circuit analysis and design. Most circuits are linear only within a
restricted range of signal levels. When driven outside this range they become nonlin-
ear, and proportionality no longer applies. Although we will treat a few examples of
nonlinear circuits, our attention is focused on circuits operating within their lin-
ear range.

Our study also deals with interface circuits. For the purposes of this book, we
define an interface as a pair of accessible terminals at which signals may be observed
or specified. The interface idea is particularly important with integrated circuit (IC)
technology. Integrated circuits involve many thousands, indeed millions, of intercon-
nections, but only a small number are accessible to the user. Designing systems using
integrated circuits involves interconnecting complex circuits that have only a few
accessible terminals. This often includes relatively simple circuits whose purpose is
to change signal levels or formats. Such interface circuits are intentionally introduced
to ensure that the appropriate signal conditions exist at the connections between
complex integrated circuits.

Today’s engineers analyze and design circuits using software tools. Using mathe-
matical analysis tools such as MATLAB, MathCad, and Mathematica as well as cir-
cuit simulation tools such as National Instrument’s NI Multisim (Electronic
Workbench) and Cadence (OrCAD), engineers can improve their understanding
and results. As you proceed through this text, we help you develop the software skills
necessary to become practiced in linear circuit design. Although there are many dif-
ferent software programs that you can use effectively to develop these skills, we will
concentrate on MATLAB and Multisim.

Course OBJECTIVES

This book is designed to help you develop the knowledge and application skills
needed to solve three types of circuit problems: analysis, design, and evaluation.
An analysis problem involves finding the output signals of a given circuit with known
input signals. Circuit analysis is the foundation for understanding the interaction of
signals and circuits. A design problem involves devising one or more circuits that per-
form a given signal-processing function. Usually there are several possible solutions
to a design problem. This leads to an evaluation problem, which involves picking the
best solution from among several candidates using factors such as cost, power con-
sumption, and part counts. In real life the engineer’s role is a blend of analysis, design,
and evaluation, and in practice the boundaries between these categories are
often blurred.
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This text contains many worked examples to help you develop your problem-
solving skills. The examples include a problem statement and provide the intermediate
steps needed to obtain the final answer. The examples often treat analysis problems,
although design and evaluation examples are included. This text also contains a num-
ber of exercises that include only the problem statement and the final answer. You
should use the exercises to test your understanding of the circuit concepts discussed
in the preceding section. Solutions to all Exercises are available on Web Appendix E.

Throughout we will show you where it is useful to turn to software to help solve
problems, be they analysis, design, or evaluation. The computer icon [] identifies
examples, exercises, and problems that are best solved using software tools.

CHAPTER OBJECTIVES

At the start of each chapter we provide three motivational aspects for what you are
about to learn. First, we present a brief perspective of a key historical figure important
to the content of the chapter. Second, we give an overview of why this chapter is impor-
tant to your study. Third, we introduce you to the learning objectives for the chapter.

The chapter learning objectives are a carefully structured set of enabling skills. They
are introduced in the chapter opener and repeated in more detail at the end of each
chapter. Collectively, these objectives represent the basic knowledge and understand-
ing needed to master the topics covered in each chapter. In the problems section the
objectives explicitly state the expected behavior, followed by a graduated set of home-
work problems designed to help you assess your level of achievement. Each objective
also lists worked examples and exercises in the text that help you work the related
homework problems. Once you understand the chapter learning objectives, you can
move on to the integrating problems at the very end of the problems section. These
problems require mastery of several chapter learning objectives from the present
and prior chapters and provide an opportunity to test your ability to deal with compre-
hensive, integrative problems. Throughout the text, when appropriate, we label the pri-
mary purpose of the example, exercise, course-learning problem, or chapter-integrating

problem with the symbol @ for analysis, <D> for design, or @ for evaluation.

ASSESSMENT AND ACCREDITATION

Material in this text can be used effectively in a properly designed course to support
ABET accreditation criteria associated with comprehension, use of modern tools,
design, evaluation, and real-world constraints. Additional accreditation and assess-
ment guidance is provided in the Instructors Manual.

1-2 Svymsors aAND UNITS

Throughout this text we will use the international system (SI) of units. The SI system
includes six fundamental units: meter (m), kilogram (kg), second (s), ampere (A), kelvin
(K), and candela (cd). All the other units of measure can be derived from these six.

Like all disciplines, electrical engineering has its own terminology and symbology.
The symbols used to represent some of the more important physical quantities and
their units are listed in Table 1-1. It is not our purpose to define these quantities here
or to offer this list as an item for memorization. Rather, the purpose of this table is
merely to list in one place all the electrical quantities used in this book.

Numerical values in engineering range over many orders of magnitude. Conse-
quently, the system of standard decimal prefixes in Table 1-2 is used. These prefixes
on a unit abbreviation symbol indicate the power of 10 that is applied to the numer-
ical value of the quantity.
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TasiLe T-1 SOMEIMPORTANT QUANTITIES, THEIR SYMBOLS, AND UNIT ABBREVIATIONS

Quanmry StmpoL Unir Unir ABBREviATION
Time t second s
Frequency f hertz Hz
Radian frequency ® radian/second rad/s
Phase angle 0, ¢ degree or radian ° or rad
Energy w joule J
Power )4 watt w
Charge q coulomb C
Current i ampere A
Electric field “ volt/meter Vim
Voltage v volt v
Impedance Z ohm Q
Admittance Y siemens S
Resistance R ohm Q
Conductance G siemens S
Reactance X ohm Q
Susceptance B siemens S
Inductance, self L henry H
Inductance, mutual M henry H
Capacitance C farad F
Magnetic flux [} weber wb
Flux linkages A weber-turns wb-t
Power ratio PRgg bel B
TasLE 1-2 STANDARD DECIMAL PREFIXES
Mutmipuier Prerix AgBREVIATION
10'8 exa E
1015 peta P
10'2 tera T
10° giga G
10° mega M
10° kilo k
107! deci d
1072 centi c
1073 milli m
10~° micro p
10°° nano n
10712 pico p
10715 femto f
10718 atto a
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Exercise 1-1

Given the pattern in the statement 1kQ=1kilohm =1 x 10°ohms, fill in the blanks in the
following statements using the standard decimal prefixes.

(a) =_ =5x1073 watts
(b) 100dB=___ =____

(¢) 36ps=___=

(d) — =0.03 microfarads =
(e) =__ =6.6x10"hertz
Answers:

(a) 5.0mW = 5 milliwatts

(b) 10.0 decibels = 1.0 bel

(c) 3.6 picoseconds = 3.6 x 10~ seconds
(d) 30nF or 0.03 pF = 30.0 x 10~? farads
(e) 6.6 GHz = 6.6 gigahertz

1-3 CiRculT VARIABLES

The underlying physical variables in the study of electronic systems are charge and
energy. The idea of electrical charge explains the very strong electrical forces that
occur in nature. To explain both attraction and repulsion, we say that there are
two kinds of charge—positive and negative. Like charges repel, whereas unlike
charges attract each other. The symbol ¢ is used to represent charge. If the amount
of charge is varying with time, we emphasize the fact by writing ¢ as a function of ¢ or
q(?). In the SI system, charge is measured in coulombs (abbreviated C). The smallest
quantity of charge in nature is an electron’s charge (g = —1.6 x 107" C). Thus, there

are 1/|qe|=6.25x10'® electrons in 1 coulomb of charge.

Electrical charge is a rather cumbersome variable to measure in practice. Moreo-
ver, in most situations the charges are moving, so we find it more convenient to meas-
ure the amount of charge passing a given point per unit time. If ¢(¢) is the cumulative
charge passing through a point, we define a signal variable i called current as follows:

. dg

i=—

dt

Current is a measure of the flow of electrical charge. It is the time rate of change of

charge passing a given point in a circuit. The physical dimensions of current are coulombs
per second. In the SI system, the unit of current is the ampere (abbreviated A). That is,

(1-1)

1 coulomb/second =1 ampere=1 A

Since there are two types of electrical charge (positive and negative), there is a book-
keeping problem associated with the direction assigned to the current. In engineering
it is customary to define the direction of current as the direction of the net flow of
positive charge. Since electrons have negative charge, they move in the opposite
direction of the current.

A second signal variable called voltage is related to the change in energy that
would be experienced by a charge as it passes through a circuit. The symbol w is com-
monly used to represent energy. In the SI system of units, energy carries the units of
joules (abbreviated J). If a small charge dq were to experience a change in energy dw
in passing from point A to point B in a circuit, then the voltage v between A and B is
defined as the change in energy per unit charge. We can express this definition in
differential form as

_dw

U—d—q “—2)
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Voltage does not depend on the path followed by the charge dg in moving from
point A to point B. Furthermore, there can be a voltage between two points even if
there is no charge motion, since voltage is a measure of how much energy dw would
be involved if a charge dg was moved. The dimensions of voltage are joules per cou-
lomb. The unit of voltage in the SI system is the volt' (abbreviated V). That is,

1joule/coulomb=1volt=1V

The general definition of the physical variable called power is the time rate of
change of energy:

_dw
P="u

The dimensions of power are joules per second, which in the SI system is called a
watt® (abbreviated W). In electrical circuits it is useful to relate the power associated
with a device or element to the signal variables current and voltage. Using the chain

rule, Eq. (1-3) can be written as
dw dq
I eddd =t 1-4
r=(a) () .

Now using Egs. (1-1) and (1-2), we obtain

(1-3)

p:vi (] —5)

The electrical power associated with a situation is determined by the product of volt-
age and current. The total energy transferred during the period from # to £, is found
by solving for dw in Eq. (1-3) and then integrating

Wy 12}
wT:/ dw:/ Dt (1-6)
w1 151

In sum, the three key circuit variables—current, voltage, and power —are measured
as follows: current at individual points, voltage always between two points, and power
at an element or device.

APPLICATION EXAMPLE 1-1

For nearly a century, visual displays of alternating signals on televisions, oscillo-
scopes, radar screens, and so on were seen using a cathode ray tube or CRT. In
Europe, it was called the Braun tube named after its German inventor Ferdinand
Braun in 1897. However, it was J. J. Thomson, an English physicist, who was able
to show how to deflect cathode rays, a fundamental function of the modern CRT.
In its basic operation, an electron beam is produced from a heated filament connected
to a negative voltage called the cathode. These energized electrons are then acceler-
ated by a positive voltage, placed at a screen called the anode that is located some
distance away inside an evacuated container, usually made of glass, called a vacuum
tube. These electrons pass through the anode and strike a phosphorescent screen
exciting the phosphor and producing light at the spot they strike. Another voltage
placed across the neck of the CRT can cause the beam to be deflected in proportion

The volt is named after the Italian physicist, Alessandro Volta (1745-1827), for the discovery of a
practical source of current—the battery.

>The watt is named after the Scottish inventor and mechanical engineer, James Watt (1736-1819),
who is credited for inventing the steam engine and enabling the Industrial Revolution.
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to the signal applied, thereby allowing the signal to be visualized. Today, scanned
beams are still used for ion implantation in the manufacture of integrated circuits.

Consider the simplified diagram of a CRT shown in Figure 1-1. If the electron
beam carries 10'* electrons per second and is accelerated by a voltage of S0 kV, find
the power in the beam.

Anode (+)

Cathode (-) /

/-
A\

—i|Ifz

50kV

SOLUTION:

Since current is the rate of positive charge flow, its direction is opposite that of the
electron beam, as shown in Figure 1-1. The electrons are flowing to the right from the
cathode toward the anode, but the current i is flowing to the left toward the cathode.
We can find the magnitude of the current by multiplying the magnitude of the charge
of an electron gg by the rate of electron flow dng/dt.

i= \qE|dZ—f —(1.6x107°)(10%) = 1.6 x 105 A=16 pA
Therefore, the beam power is

p=vi=(50x10*)(1.6x107%) =0.8 W =800 mW u

EXAMPLE 1-2

The current through a circuit element is 50 mA. Find the total charge and the number
of electrons transferred during a period of 100 ns.

SOLUTION:
The relationship between current and charge is given in Eq. (1-1) as
d
i=4
dt

Since the current i is given, we calculate the charge transferred by solving this equa-
tion for dg and then integrating

o 1077
qT:/ dq:/ idt
Qi 0

1077
= / 50x103dt=50x10"° C=5nC
0

There are 1/|ge|=6.25x10" electrons/coulomb, so the number of electrons trans-
ferred is

ng=(5x1077 C) (6.25 x 10'® electrons/C) =31.25 x 10° electrons ]

FIGURE

1-1
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Charge (pC)
30—
20—

10
0\1||||

—10
Time (ms)

(@)
Current (nA)

40

20 —
10—

1\73456

-10 | |
—20

Time (ms)

(b)

FIGURE 1-2

Rest of
the
circuit

FIGURE 1-3 Voltage and
current reference marks for a
two-terminal device.

Exercise 1-2

A device dissipates 100 W of power. How much energy is delivered to it in 10 seconds?
Answer: 1kJ
Note: TW-s=11J

Exercise 1-3
The graph in Figure 1-2(a) shows the charge ¢(¢) flowing past a point in a wire as a function
of time.

(a) Find the current i(r) at t=1, 2.5, 3.5, 4.5, and 5.5 ms.
(b) Sketch the variation of i(¢) versus time.

Answers:

(a) —10nA, +40nA, 0nA,-20nA, OnA.
(b) The variations in i(¢) are shown in Figure 1-2(b).

THE Passive Sien CoNVENTION

We have defined three circuit variables (current, voltage, and power) using two basic
variables (charge and energy). Charge and energy, like mass, length, and time, are
basic concepts of physics that provide the scientific foundation for electrical engineer-
ing. However, engineering problems rarely involve charge and energy directly, but
are usually stated in terms of voltage, current, and power. The reason for this is sim-
ple: The circuit variables are much easier to measure and therefore are the most use-
ful working variables in engineering practice.

At this point, it is important to stress the physical differences between current and
voltage variables. Current is a measure of the time rate of charge passing a point in a
circuit. We think of currentas a through variable, since it describes the flow of electrical
charge through a point in a circuit. On the other hand, voltage is not measured at a
single point, but rather between two points or across an electrical device. Conse-
quently, we think of voltage as an across variable that inherently involves two points.

The arrow below the i(f) and the plus and minus symbols across the v(f) in
Figure 1-3 are reference marks that define the positive directions for the current
and voltage associated with an electrical device. These reference marks do not rep-
resent an assertion about what is happening physically in the circuit. The response of
an electrical circuit is determined by physical laws, not by the reference marks
assigned to the circuit variables.

The reference marks are benchmarks assigned at the beginning of the analysis.
When the actual direction and reference direction agree, the answers found by circuit
analysis will have positive algebraic signs. When they disagree, the algebraic signs of
the answers will be negative. For example, if circuit analysis reveals that the current
variable in Figure 1-3 is positive [i.e., i(¢) > 0], then the sign of this answer, together
with the assigned reference direction, indicates that the current passes through
point A in Figure 1-3 from left to right. Conversely, when analysis reveals that
the current variable is negative, then this result, combined with the assigned refer-
ence direction, tells us that the current passes through point A from right to left.
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In summary, the algebraic sign of the answer together with arbitrarily assigned ref-
erence marks tell us the actual directions of a voltage or current variable.

In Figure 1-3, the current reference arrow enters the device at the terminal
marked with the plus voltage reference mark. This orientation is called the pas-
sive sign convention. Under this convention, the power p(¢) is positive when the
device absorbs power and is negative when it delivers power to the rest of the circuit.
Since p(t) =v(t) xi(t), a device absorbs power when the voltage and current variables
have the same algebraic sign and delivers power when they have opposite signs. Cer-
tain devices, such as heaters (a toaster, for example), can only absorb power. The
voltage and current variables associated with these devices must always have the
same algebraic sign. On the other hand, a battery absorbs power [p(¢) >0] when it
is being charged and delivers power [ p(¢) < 0] when it is discharging. Thus, the voltage
and current variables for a battery can have either the same or opposite alge-
braic signs.

In a circuit some devices absorb power and others deliver power, but the sum of
the power in all of the devices in the circuit is zero. This is more than just a conser-
vation-of-energy concept. When electrical devices are interconnected to form a cir-
cuit, the only way that power can enter or leave the circuit is via the currents and
voltages at device terminals. The existence of a power balance in a circuit is one
method of checking calculations.

The passive sign convention is used throughout this book. It is also the convention
used by circuit simulation computer programs.® To interpret correctly the results of
circuit analysis, it is important to remember that the reference marks (arrows and
plus/minus signs) are reference directions, not indications of the circuit response.
The actual direction of a response is determined by comparing its reference direction
with the algebraic signs of the result predicted by circuit analysis based on physi-
cal laws.

GROUND

Since voltage is defined between two points, it is often useful to define a com-
mon voltage reference point called ground. The voltages at all other points in a
circuit are then defined with respect to this common reference point. We indi-
cate the voltage reference point using the ground symbol shown in Figure 1-4.
Under this convention we sometimes refer to the variables va(¢), vp(f), and
vc(t) as the voltages at points A, B, and C, respectively. This terminology appears
to contradict the fact that voltage is an across variable that involves two points. How-
ever, the terminology means that the variables va (¢), vg(¢), and vc(¢) are the voltages
defined between points A, B, and C and the common voltage reference point at
point G.

Using a common reference point for across variables is not an idea unique to
electrical circuits. For example, the elevation of a mountain is the number of feet
or meters between the top of the mountain and a common reference point at sea
level. If a geographic point lies below sea level, then its elevation is assigned a neg-
ative algebraic sign. So it is with voltages. If circuit analysis reveals that the voltage
variable at point A is negative [i.e., v (f) <0], then this fact together with the refer-
ence marks in Figure 1-4 indicate that the potential at point A is less than the ground
potential.

*We discuss computer-aided circuit analysis in Section 1-4.

va(®) vg(9) ve(?)
+o o +o
A B C

1°

FIGURE 1-4 Ground symbol
indicates a common voltage
reference point.
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EXAMPLE 13

Figure 1-5 shows a circuit formed by interconnecting five devices,
each of which has two terminals. A voltage and current variable has
_ been assigned to each device using the passive sign convention. The

+
working variables for each device are observed to be as follows:
Vi 5 Vs
Device 1 Device 2 Device 3 Device 4 Device 5
— +
v +100 V ? +25V +75V -75V
is i ? +5mA +5mA ? +5mA
P -1W +0.5W ? +0.75W ?
FIGURE 1-5
(a) Find the missing variable for each device and state whether the device is
absorbing or delivering power.
(b) Check your work by showing that the sum of the device powers is zero.
SOLUTION:

(a) We use p =vi to solve for the missing variable since two of the three circuit variables are
given for each device.

Device 1: i1 =p;/v1=-1/100=-10mA [p(¢) <0, delivering power]

Device 2: vy =p,/i»=0.5/0.005=100 V [p(t) >0, absorbing power]

Device 3: p3 =03i3=25x0.005=0.125 W [p(¢) >0, absorbing power]

Device 4: iy =pa/va=0.75/75=10mA [p(t) >0, absorbing power]

Device 5: ps=wvsis = —75x0.005=-0.375 W [p(¢) <0, delivering power]
(b) Summing the device powers yields

p1+p2+p3+ps+ps=—1+05+0.125+0.75-0.375
=+1.375-1.375=0

This example shows that the sum of the powers absorbed by devices is equal in magnitude
to the sum of the powers supplied by devices. A power balance always exists in the types of
circuits treated in this book and can be used as an overall check of circuit analysis
calculations. |

Exercise 1-4

The working variables of a set of two-terminal electrical devices are observed to be

as follows:
Device 1 Device 2 Device 3 Device 4 Device 5
v +10V ? -15V +5V ?
i “3A —3A +10mA ? ~12mA
P ? +40W ? +10mW ~120mW

Using the passive sign convention, find the magnitude and sign of each unknown variable and state
whether the device is absorbing or delivering power.

Answers:

Device 1: p = —30 W (delivering power); Device 2: v = —13.3 V (absorbing power); Device 3:
p=-150mW (delivering power); Device 4: i= +2mA (absorbing power); Device 5:
v= +10V (delivering power)
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1-4 COMPUTATIONAL AND SIMULATION SOFTWARE
INTRODUCTION

The problems presented in this chapter are relatively straightforward and are solv-
able with simple hand calculations or by using a scientific or engineering calculator.
As we increase our knowledge of electrical devices, their properties, and the circuits
created by connecting them together, the nature of the associated problems will
become more difficult. To solve these problems, tools that are more sophisticated
are required. Extremely valuable tools for electrical and computer engineers are
computational and simulation software that can perform all of the mathematical cal-
culations associated with a problem and displays the results in several ways that assist
in the analysis and design of circuits. To have a complete education, an engineer must
be familiar with the contemporary software tools common to the profession.
Although there are many competitive choices available, a common tool in engineer-
ing for mathematical computations is MATLAB, created by The MathWorks, Inc.,
and one for simulation is NI Multisim by National Instruments.

We introduce MATLAB as an efficient, programmable tool to perform calcula-
tions associated with engineering problems. This software is well established in
the industry and has complete documentation to support users, ranging from novices
to experts. As with any new tool, it requires an investment of time and effort to learn
how to apply it correctly and efficiently. This investment will pay off in the end by
offering the following advantages that come from using and mastering the MATLAB
software:

¢ Calculating results faster with higher accuracy
e Performing simulations efficiently

¢ Solving more complex problems

e Examining many design options quickly

e Visualizing results professionally

Similarly, we introduce Multisim as a method to graphically draw circuits and have
the software analyze the circuit in several ways. Like MATLAB, learning Multisim
requires a bit of effort but the end results are a quick way to study the behavior of the
circuits in question. Simulation software offers the following advantages:

e Rapid analysis of circuit variables, such as voltage, current, and power
e Validation of circuit designs

e Ability to modify designs quickly and accurately to explore and evaluate
many possible solutions

¢ Producing visible graphical results of desired analyses

Web Appendix D offers a brief introduction to using the MATLAB and Multisim
software for engineering problems and provides worked examples for key topics
in each chapter. Combined with the help files and tutorials available with each soft-
ware package, the appendix provides a starting point of where to find applications of
these powerful computational or simulation tools. Mastering each tool will require
significant practice and experience. To provide opportunities to practice and addi-
tional exposure to these software products, every chapter in this book will
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demonstrate specific features of the appropriate software and how they can be
applied to efficiently solve electrical engineering problems. In addition, selected pro-
blems at the end of each chapter specifically request solutions using MATLAB or
Multisim to reinforce the important features of the software in a deliberate, develop-
mental manner. Whenever an Example, Exercise, or Problem uses or recommends
the use of software in its solution, the computer icon [] will be displayed.

SUMMARY

e Circuits are important in electrical engineering
because they process signals that carry energy and
information. A circuit is an interconnection of electri-
cal devices. A signal is an electrical current or voltage
that carries energy or information. An interface is a
pair of accessible terminals at which signals may be
observed or specified.

e This book defines overall course objectives at the
analysis, design, and evaluation levels. In circuit anal-
ysis the circuit and input signals are given and the
object s to find the output signals. The object of circuit
design is to devise one or more circuits that produce
prescribed output signals for given input signals.
The evaluation problem involves appraising alterna-
tive circuit designs using criteria such as cost, power
consumption, and parts count.

e Charge (g) and energy (w) are the basic physical vari-
ables involved in electrical phenomena. Current (i),
voltage (v), and power (p) are the derived variables
used in circuit analysis and design. In the SI system,
charge is measured in coulombs (C), energy in joules
(J), current in amperes (A), voltage in volts (V), and
power in watts (W).

e Current is defined as dg/dt and is a measure of the
flow of electrical charge. Voltage is defined as
dw/dq and is a measure of the energy required to
move a small charge from one point to another. Power

is defined as dw/dt and is a measure of the rate at
which energy is being transferred. Power is related
to current and voltage as p =wvi.

e The reference marks (arrows and plus/minus signs)
assigned to a device are reference directions, not indi-
cations of the way a circuit responds. The actual direc-
tion of the response is determined by comparing the
reference direction and the algebraic sign of the
answer found by circuit analysis using physical laws.

e Under the passive sign convention, the current refer-
ence arrow is directed toward the terminal with the
positive voltage reference mark. Under this conven-
tion, the device power is positive when it absorbs
power and is negative when it delivers power. When
current and voltage have the same (opposite) alge-
braic signs, the device is absorbing (delivering) power.

e Engineers use computational software, such as
MATLAB, to increase the speed and accuracy of cal-
culations. Engineers use simulation software, such as
Multisim, to model the behavior of circuits. Software
is useful for performing circuit simulations and for
expanding the complexity of problems that can be
solved in a reasonable amount of time. Learning
and exploiting the advantages of computational and
simulation software are critical skills for engineers,
and MATLAB and Multisim are common tools for
electrical and computer engineers.

PROBLEMS

OJsective 1-1 Evectricat Symsors anp UniTs
(Sect. 1-2)

Given an electrical quantity described in terms of words, scien-
tific notation, or decimal prefix notation, convert the quantity
to an alternate description.

See Exercise 1-1.

1-1 Express the following quantities to the nearest standard
prefix using no more than three digits.
(a) 20,000,000 Hz
(b) 1025W

(c) 0.333x1078%s
d) 33x1072F

1-2 Express the following quantities to the nearest standard
prefix using no more than three digits.
(a) 0.0022H
(b) 50.7x10°J
(¢) 82.251x10"C
(d) 5633 Q

1-3 An ampere-hour (Ah) meter measures the time integral
of the current in a conductor. During an 8-hour period,
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a certain meter records 4500 Ah. Find the number of
coulombs that flowed through the meter during the record-
ing period.

1-4 Electric power companies measure energy consumption in
kilowatt-hours, denoted kWh. One kilowatt-hour is the
amount of energy transferred by 1 kW of power in a period
of 1hour. A power company billing statement reports a
user’s total energy usage to be 1500 kWh. Find the amount
of energy in joules used during the billing period.

—_
|

5 Fill in the blanks in the following statements.

(a) To convert capacitance from nanofarads to microfarads,
multiply by

(b) To convert resistance from megohms to kilohms, multi-
ply by

(¢) To convert voltage from millivolts to volts, multiply
by

(d) To convert frequency from megahertz to gigahertz, mul-
tiply by .

1-6 Which of the two entries is larger?

(a) 1000 microfarads or 0.0003333 F

(b) 0.005 x 10° Hz or 66 kHz

(¢) 0.333pCor810fC

(d) 220 millihenries or 0.150 H

OsJective 1-2 Circurt VariasLes (Sect. 1-3)

Given any two of the three signal variables (i, v, p) or the two
basic variables (g, w), find the magnitude and direction (sign)
of the unspecified variables.

See Examples 1-1 to 1-3 and Exercises 1-2 to 1-4.

1-7 A wire carries a constant current of 30 pA. How many cou-
lombs flow past a given point in the wire in 500 ms?

1-8 The net positive charge flowing through a device is
q(t) =20+ 4t mC. Find the current through the device.

1-9 Figure P1-9 shows a plot of the net positive charge flowing
in a wire versus time. Sketch the corresponding current dur-
ing the same period of time.

300
_20F
@)
= 10
AR
= (s)
“_i0l \/
0L

FIGURE P1-9

1-10 The net negative charge flowing through a device
varies as q(t) =2.2 > C. Find the current through the device
atr=0,0.5,and 1s.

1-11 A cell phone charger outputs 9.6 V and is protected by a

50-mA fuse. A 2-W cell phone is connected to it to be
charged. Will the fuse blow?

1-12 For 0<t<35s, the current through a device is i(f) =3t A.

For 5<t<10s, the current is i(£)=30-3¢ A, and i(1)=0 A
for t>10s. Sketch i(f) versus time and find the total
charge flowing through the device between ¢ = 0s and
t =10s.

1-13 The charge flowing through a device is g(¢) = 1—e ~19% uC.

What will the current be after 1.6094 ms?

1-14 The 12-V automobile battery in Figure P1-14 has an out-

put capacity of 100 Ah when connected to a head lamp that
absorbs 200 W of power. The car engine is not running and
therefore not charging the battery. Assume the battery volt-
age remains constant.

(a) Find the current supplied by the battery and determine
how long can the battery power the headlight.

(b) A 100-W device is connected through the utility port.
How long can the battery power both the headlight
and the device?

FIGURE P1-14

1-15 The current through a device is zero for ¢ < 0 and is
i(t) = 5e=3" A fort = 0. Find the charge ¢(t) flowing through
the device for ¢ = 0.

1-16 A string of holiday lights is protected by a %-A fuse and
has 100 LED lights, each of which is rated at 30 mW. How
many strings can be connected end-to-end across a 120-V cir-
cuit without blowing a fuse?

1-17 When illuminated the i —v relationship for a photocell is
i=e"—12A.Forv =-2,2,and 3V, find the device power
and state whether it is absorbing or delivering power.

1-18 A new 6-V alkaline lantern battery delivers 237.5kJ of
energy during its lifetime. How long will the battery last in
an application that draws 20 mA continuously. Assume that
the battery voltage is constant.

1-19 The maximum current allowed by a device’s power rating
is limited by a 25-mA fuse. When the device is connected to a
9-V source, what is the maximum power the device can
dissipate?

1-20 Traffic lights are being converted from incandescent
bulbs to LED arrays to save operating and maintenance
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costs. Typically, each incandescent light uses three 100-W
bulbs, one for each color R, Y, G. A competing LED
array consists of 61 LEDs with each LED requiring 9V
and drawing 20 mA of current. There are three arrays per
light—R, Y, G. A small city has 1560 traffic signals. Since
one light is always on 24/7, how much can a city save in 1 year
if the city buys their electricity at 7.2¢ per kWh?

1-21 Two electrical devices are connected as shown in
Figure P1-21. Using the reference marks shown in the figure,
find the power transferred and state whether the power is
transferred from A to B or B to A when
(@) v=+12Vandi=-12A
(b) v=+80Vandi = +10mA
(¢) v=-240Vandi=-12mA
(d) v=-15Vandi=-300pA

I < +

FIGURE P1-21

1-22 Figure P1-22 shows an electric circuit with a voltage and
a current variable assigned to each of the six devices. The
device voltages and currents are observed to be as follows:

v(V) i(A) v(V) i(A)
Device 1 15 -1 Device 4 -10 -1
Device 2 5 1 Device 5 20 -3
Device 3 10 2 Device 6 20 2

1-23 Figure P1-22 shows an electric circuit with a voltage and
a current variable assigned to each of the six devices. Use
power balance to find v4 when vy =20V, i = =2 A,
p2 = ZOW, p3 = IOW, i4 = lA, and Ps5s = Pe = 25W. Is
device 4 absorbing or delivering power?

1-24 In Figure P1-24 the voltage v, is 10 V and v, is 5 V. Find
the voltage associated with each element.

+ V2 = + V4 —
2 4
+
V3
1 S
+ V1 - — + V5 —
FIGURE P1-24

1-25 Fort = 0, the voltage across and power absorbed by a two-
terminal device are v(f) =2e~'V and p(f)=40e ~> mW.
Find the total charge delivered to the device for ¢ = 0.

OBJecTIVE 1-3 SoFTwWARE INTRODUCTION
(Sect. 1-4, Wes Appennix D)

Given a simple computational problem, use MATLAB as an
appropriate engineering tool to solve the problem. (We will
introduce Multisim problems starting in Chapter 2.)
Examples and Exercises throughout the text. See Web
Appendix D.

Find the power associated with each device and state whether

the device is absorbing or delivering power. Use the power bal-

ance to check your work. 1-26 Repeat Problem 1-22 using MATLAB to perform the [
calculations. Create a vector for the voltage values, v =
[15510-10 20 20], and a vector for the current values,
i=[-112-1-32].Compute the corresponding vector

for the power values, p, using element-by-element multipli-
cation (.x) and then use the sum command to verify the

‘o power balance.

" 1-27 Using the passive sign convention, the voltage across a [
device is v(f) = 240 cos(314¢) V and the current through

ve | 6 the device is i(f) = 4sin(314¢) A. Using MATLAB, create a
short script (m-file) to assign a value to the time variable, ¢,

- and then calculate the voltage, current, and power at that
time. Run the script for = Sms and ¢ = 10 ms, and for each

result state whether the device is absorbing or deliver-
FIGURE P1-22 ing power.
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1-28 Power Ratio (PR) in dB

A stereo amplifier takes the output of a CD player, for exam-
ple, and increases the power to an audible level. Suppose the
output of the CD player is 25 mW and the desired audible out-
put is 100 W per stereo channel, find the power ratio of the
amplifier per channel in decibels (dB), where the power ratio
in dB is

PRqp =101og, (p2/p1)

1-29 AC to DC Converter @

A manufacturer’s data sheet for the converter in Figure P1-29
states that the output voltage is vq. = 12 V when the input volt-
age v, = 120 V. When the load draws a current igc = 15A, the
input power is p,c = 300 W. Find the efficiency of the
converter.

iac idc
o—
+ +
AC to DC
Load
Vac converter Vde
= _

FIGURE P1-29

1-30 Charge-Storage Device @

A capacitor is a two-terminal device that can store electric
charge. In a linear capacitor, the amount of charge stored is
proportional to the voltage across the device. For a particular
device the proportionality is g(f) = 10 ~7v(f). If v(¢) = 0 for
t <0 and v(r) = 10(1 — ¢ %) for ¢ =0, find the energy
stored in the device at ¢t = 100 ps.

1-31 Computer Data Sheet

A manufacturer’s data sheet for a notebook computer lists the
power supply requirements as 7.5A@Q5V, 2AQ15YV,
25AQ@-15V, 225A@-5V, and 0.5A @12V. The data
sheet also states that the overall power consumption is
115 W. Are these data consistent? Explain.

1-32 Light Source Comparison @

Today people have three competing light sources for home use.
This problem asks you to determine the trade-offs between the
costs of the three types of lights. In this example, all three emit
the same amount of light (lumens). The following table shows
the salient properties of each lamp. Over the lifetime of one
light-emitting diode (LED) lamp, how much cost savings is
there by using the LED lamp over the traditional incandescent
bulb and over the compact fluorescent lamp (CFL) if electricity
costs 10 ¢/kWh?

Buts vpe CosT PER LAMP Power usep AVERAGE LIFETIME
Incandescent $1.00 100 W 1500 hours
CFL $3.00 16 W 6000 hours

LED $12.00 2 W 50,000 hours
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RCUIT ANALYSIS

The equation S = A /L shows that the current of a voltaic circuit is subject to a change, by each variation originating either in the magnitude of
a tension or in the reduced length of a part, which latter is itself again determined, both by the actual length of the part as well as its
conductivity and its section.

Georg Simon Ohm, 1827,
German Mathematician/Physicist

Some History Behind This Chapter

Georg Simon Ohm (1789-1854) discovered the law that now
bears his name in 1827. His results drew heavy criticism and
were not generally accepted for many years. Fortunately, the
importance of his contribution was eventually recognized
during his lifetime. He was honored by the Royal Society
of England in 1841 and appointed a Professor of Physics
at the University of Munich in 1849. The unit of resistance
was named after Professor Ohm in 1862 by the British Asso-
ciation Committee.

Why This Chapter Is Important Today

A circuit is an interconnection of electric devices that per-
forms a useful function. This chapter introduces some basic
tools you will need to analyze and design electric circuits.
You will also be introduced to several important electric
devices that control currents and voltages in a circuit. These
devices range from everyday things like batteries to special
integrated circuits that meter out predetermined voltages or
currents.

To analyze these circuits efficiently, we can use computer-
based tools, such as MATLAB for mathematical computa-
tions and Multisim for circuit simulations. These programs
are powerful tools that are common in both academic and
commercial applications.

Chapter Sections

2-1 Element Constraints

2-2 Connection Constraints

2-3 Combined Constraints

2-4 Equivalent Circuits

2-5 Voltage and Current Division
2-6 Circuit Reduction

2-7 Computer-Aided Circuit Analysis
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Chapter Learning Objectives

2-1 Element Constraints (Sect. 2-1)

Given a two-terminal element with one or more electri-

cal variables specified, namely i, v, or p, use the element

i—v constraint to find the magnitude and direction of the

unknown variables.

2-2  Connection Constraints (Sect. 2-2)

Given a circuit composed of two-terminal elements:

(a) Identify nodes and loops in the circuit.

(b) Identify elements connected in series and in parallel.

(¢) Use Kirchhoff’s laws (KCL and KVL) to find
selected signal variables.

2-3 Combined Constraints (Sect. 2-3)

Given a linear resistance circuit, use the element con-
straints and connection constraints to find selected signal
variables.

2-4 Equivalent Circuits (Sect. 2—4)

(a) Given a circuit consisting of linear resistors, find the
equivalent resistance between a specified pair of
terminals.

(b) Given a circuit consisting of a source-resistor combi-
nation, find an equivalent source-resistor circuit.

2-5 Voltage and Current Division (Sect. 2-5)

(a) Given a linear resistance circuit with elements con-
nected in series or parallel, use voltage or current
division to find specified voltages or currents.

(b) Design a voltage or current divider that delivers spe-
cified output signals.

2-6 Circuit Reduction (Sect. 2-6)

Given a linear resistance circuit, find selected signal vari-
ables using successive application of series and parallel
equivalence, source transformations, and voltage and
current division.

2-7 Computer-Aided Circuit Analysis (Sect. 2-7)

Given an appropriate linear circuit, use circuit simulation
and/or computational software to solve for the desired
response.
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2-1 ELemeENT CONSTRAINTS

A circuit is a collection of interconnected electrical devices. An electrical device is a
component that is treated as a separate entity. The rectangular box in Figure 21 is
used to represent any one of the two-terminal devices used to form circuits. A two-
terminal device is described by its i—v characteristic, that is, by the relationship
between the voltage across and current through the device. In most cases, the rela-
tionship is complicated and nonlinear, so we use a linear model that approximates the
dominant features of a device.

To distinguish between a device (the real thing) and its model (an approximate
stand-in), we call the model a circuit element. Thus, a device is an article of hardware
described in manufacturers’ catalogs and parts specifications. An element is a
model described in textbooks on circuit analysis. This book is no exception, and a
catalog of circuit elements will be introduced as we go on.

THE Linear ResisToR

The first element in our catalog is a linear model of the device described in
Figure 2-2. The actual i—v characteristic of this device is shown in Figure 2-2(b).
To model this curve accurately across the full operating range shown in the figure
would require at least a cubic equation. However, the graph in Figure 2-2(b) shows
that a straight line is a good approximation to the i—v characteristic if we operate the
device within its linear range. The power rating of the device limits the range over
which the i—v characteristics can be represented by a straight line through the origin.

For the passive sign convention used in Figure 2-2(a), the equations describing the
linear resistor element are

v=Ri or i=Gv (2-1)
where R and G are positive constants that are reciprocally related:
1
G=— 2-2
R (2-2)

The relationships in Eq. (2-1) are collectively known as Ohm’s law. The parameter R
is called resistance and has the unit ohms, Q. The parameter G is called conductance,
with the unit siemens, S. In earlier times, the unit of conductance was cleverly called
the mho, with the unit abbreviation symbol U (“ohm” spelled backward and the ohm
symbol upside down). Note that Ohm’s law presumes that the passive sign conven-
tion is used to assign the reference marks to voltage and current.

The Ohm’s law model is represented graphically by the black straight line in
Figure 2-2(b). The i—v characteristic for the Ohm’s law model defines a circuit ele-
ment that is said to be linear and bilateral. Linear means that the defining character-
istic is a straight line through the origin. Elements whose characteristics do not pass
through the origin or are not a straight line are said to be nonlinear. Bilateral means
that the i—v characteristic curve has odd symmetry about the origin.! With a bilateral
resistor, reversing the polarity of the applied voltage reverses the direction but not
the magnitude of the current, and vice versa. The net result is that we can connect
a bilateral resistor into a circuit without regard to which terminal is which. This is
important because devices such as diodes and batteries are not bilateral, and we must
carefully identify each terminal.

Figure 2-2(c) and (d) shows photos of discrete resistor devices.

'A curve i=f(v) has odd symmetry if f(-v) = —f(0).

+ o0

<
Device

FIGURE 2-1 Voltage and
current reference marks for a
two-terminal device.

Actual
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Courtesy of Arcol Resistors
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FIGURE 2-2 The resistor:

(a) Circuit symbol. (b) i—v
characteristics. (c) Carbon or film
resistors. (d) Wire-wound
resistors.
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FIGURE 2-2 (Continued)

The power associated with the resistor can be found from p =vi. Using Eq. (2-1) to
eliminate v from this relationship yields

p=i’R (2-3)

or using the same equations to eliminate i yields

02

2
=0°G=— (2-4)
P R
Since the parameter R is positive, these equations tell us that the power is always
nonnegative. Under the passive sign convention, this means that the resistor always
absorbs or consumes power.

EXAMPLE 2-1

A 2.2-kQ resistor has 12 V impressed across its terminals. Find the current through
the resistor and the power it dissipates.

SOLUTION:
By Ohm’s law i =v/R. Therefore, i=12/2200=0.00545=5.45 mA. The power dissi-
pated is found using Eq. (2-3) p = 2R = (0.00545)* 2200 = 65.4 mW which is the same

answer we get if we were to use Eq. (2-4) p =v?/R =12?/2200 = 65.4 mW or Eq. (1-5)
p=iv=0.00545x12=65.4 mW. [ |

Exercise 2-1

A 6-V lantern battery powers a light bulb that draws 3 mA of current. What is the resistance
of the lamp? How much power does the lantern use?

Answers: R=2kQ; p=18mW

EXAMPLE 2-2

A resistor operates as a linear element as long as the voltage and current are within
the limits defined by its power rating. Suppose we have a 47-kQ resistor with a power
rating of 0.25 W. Determine the maximum current and voltage that can be applied to
the resistor and have it remain within its linear operating range.

SOLUTION:
Using Eq. (2-3) to relate power and current, we obtain

: PMAX 0.25
= = =231 mA
MXEVTR T 7108 m

Similarly, using Eq. (2-4) to relate power and voltage, we obtain

VMAX = v/ Rpmax = V47 x10° x0.25=108 V

Exercise 2-2

What is the maximum current that can flow through a /5-W, 6.8-kQ resistor? What is the
maximum voltage that can be across it?

Answers: iyax=4.287 mA; vpmax =29.15V
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OpeN AND SHORT CIRCUITS

The next two circuit elements can be thought of as limiting cases of the linear
resistor. Consider a resistor R with a voltage v applied across it. Let’s calculate
the current i through the resistor for different values of resistance. If v=10V and
R=1Q, using Ohm’s law we readily find that i=10 A. If we increase the resistance
to 100 Q, we find i has decreased to 0.1 A or 100 mA. If we continue to increase R to
1 MQ, i becomes a very small 10 pA. Continuing this process, we arrive at a condition
where R is very nearly infinite and i just about zero. When the current i =0, we call the
special value of resistance (i.e., R= c0Q) an open circuit. Similarly, if we reduce R
until it approaches zero, we find that the voltage is very nearly zero. When v =0,
we call the special value of resistance (i.e., R = 0 Q) a short circuit. The circuit symbols
for these two elements are shown in Figure 2-3. In circuit analysis, the elements in a
circuit model are assumed to be interconnected by zero-resistance wire (that is, by
short circuits).

THE IpeEaL SwiTcH

A switch is a familiar device with many applications in electrical engineering. The
ideal switch can be modeled as a combination open- and short-circuit element.
Figure 2-4(a) and (b) shows the circuit symbol and the i—w characteristics of an ideal
switch. When the switch is open or OFF, Figure 2-4(a),

i=0 and v=anyvalue (2-5a)
and when it is closed or ON, Figure 2-4(b),
v=0 and i=anyvalue (2-5b)

When the switch is closed, the voltage across the element is zero and the element
will pass any current that may result. When open, the current is zero and the ele-
ment will withstand any voltage across its terminals. The power is always zero for
the ideal switch, since the product vi=0 when the switch is either open (i=0) or
closed (v=0). Actual switch devices have limitations, such as the maximum current
they can safely carry when closed and the maximum voltage they can withstand when
open. The switch is operated (opened or closed) by some external influence, such as a
mechanical motion, temperature, pressure, or an electrical signal.

Figure 2-4(c) shows an actual toggle switch, which is simply used to turn things ON
and OFF, and Figure 2-4(d) shows DIP (dual in-line package) switches designed for
use on a printed circuit board.

The ideal switch is also a basic concept in digital circuits, where OFF usually repre-
sents a logic 0 state and ON represents a logic 1 state.

APPLICATION EXAMPLE 2-3

The analog switch is an important device found in analog-to-digital interfaces.
Figure 2-5(a) and (b) shows the two basic versions of the device. In either type,
the switch is actuated by applying a voltage to the terminal labeled gate. The switch
in Figure 2-5(a) is said to be normally open because it is open when no voltage is
applied to the gate terminal and closes when voltage is applied. The switch in
Figure 2-5(b) is said to be normally closed because it is closed when no voltage is
applied to the controlling gate and opens when voltage is applied.

Figure 2-5(c) shows an application in which complementary analog switches are
controlled by the same gate. When gate voltage is applied, the upper switch closes
and the lower opens so that point A is connected to point C. Conversely, when no
gate voltage is applied, the upper switch opens and the lower switch closes to connect
point B to point C. In the analog world, this arrangement is called a double throw

o— o—
+ +
v g Open v IShort
R = wg R = 0 Q
pu— o

(a)

(b)

FIGURE 2-3 Circuit symbols:
(a) Open-circuit symbol.
(b) Short-circuit symbol.

Circuit symbol

+ ON
(closed)

Circuit symbol

i—v characteristics

(a)

i—v characteristics

(b)

(d)

FIGURE 2-4 The circuit

symbol and i—v characteristics of

an ideal switch: (a) Switch OFF.
(b) Switch ON. (c) Toggle switch.
(d) DIP switches.

Courtesy of Omeg Limited

Courtesy of APEM
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Gate

Rorr

(d)

> AMN———o>—<

Ron

(e

switch since point C can be connected to two other points. In the digital world, it is
called a two-to-one multiplexer (or MUX) because it allows you to select the analog
input at point A or point B under control of the digital signal applied to the gate.
In many applications, an analog switch can be treated as an ideal switch. In other
cases, it may be necessary to account for its nonideal characteristics. When the switch
is open, an analog switch acts like a very large resistance (Rorr), as suggested
in Figure 2-5(d). This resistance is negligible because it ranges from perhaps

10” to 10'! Q. When the switch is closed it acts like a small resistor (Ron), as sug-
gested in Figure 2-5(e). Depending on other circuit resistances, it may be necessary
to account for Roy, because it ranges from perhaps a few mQ to as high as 100 Q.

This example illustrates how ideal switches and resistors can be combined to
model another electrical device. It also suggests that no single model can serve in
all applications. It is up to the engineer to select a model that adequately represents
the actual device in each application.

IDEAL SOURCES

The signal and power sources required for the operation of electronic circuits are
modeled using two elements: voltage sources and current sources. These sources
can produce either constant or time-varying signals. The circuit symbols and the
i—v characteristic of an ideal voltage source are shown in Figure 2-6, while the circuit
symbol and i—v characteristic of an ideal current source are shown in Figure 2-7.
The symbol in Figure 2-6(a) represents either a time-varying or constant voltage
source. The battery symbol in Figure 2-6(b) is used exclusively for a constant volt-
age source. There is no separate symbol for a constant current source.

The i—v characteristic of an ideal voltage source in Figure 2-6(c) is described by

FIGURE 2-5 The analog
switch: (a) Normally open model.
(b) Normally closed model.

(c) Double throw model.

(d) Model with finite OFF
resistance. (e) Model with finite
ON resistance.

FIGURE 2-6 Circuit symbols
and i—v characteristic of an ideal
independent voltage source:

(a) Time-varying. (b) Constant
(Battery). (c) Constant source i—v
characteristics.

(b)

FIGURE 2-7 Circuit symbol and i—v
characteristic of an ideal independent
current source: (a) Time-varying or
constant source. (b) Constant source i—v
characteristics.

the following element equations:

v=vs and i=any value (2-6)

The element equations mean that the ideal voltage source produces vg volts across its
terminals and will supply whatever current may be required by the circuit to which it
is connected.

—~— —~
+ . +
Vs <f> v Vo= v 7
Y o
(@) (b) (©)

The i—v characteristic of an ideal current source in Figure 2-7(b) is
described by the following element equations:

i=is and v=any value (2-7)

The ideal current source produces is amperes in the direction of its arrow
symbol and will furnish whatever voltage is required by the circuit to which
it is connected.

The voltage or current produced by these ideal sources is called a forcing
function or a driving function because it represents an input that causes a
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circuit response. When the voltage or current varies with time, it is customary to write

o(t) or i(t).
EXAMPLE 2-4

Given an ideal voltage source with the time-varying voltage shown in Figure 2-8(a),

sketch its i—o characteristic at the times =0, 1, and 2 ms.

@t=0ms,v=5V

5 ¢ T \ \

0 17 2 )
0 ¢ (ms) 5 |0 |45

v
@t=2ms,v=-5V
_5 7777777777777777777777777 —
(@) (b)
SOLUTION:

At any instant in time, the time-varying source voltage has only one value. We can
treat the voltage and current at each instant of time as constants representing a snap-
shot of the source i —v characteristic. For example, at ¢ =0, the equations defining the
i—v characteristic are vg =5 V and i = any value. Figure 2-8(b) shows the i —v relation-
ship at the other instants of time. Curiously, the voltage source i—v characteristic at
t=1ms (vs=0andi=any value) is the same as that of a short circuit [see Eq. (2-5b)
or Figure 2-3(b)]. |

Exercise 2-3

A digital clock is a voltage that switches between two values at a constant rate that is used to
time digital circuits. A particular clock switches between 0 V and 5 V every 10 ps. Sketch the
clock’s i—v characteristics for the times when the clock is at 0 V and at 5 V.

Answers: On a standard i—v graph, a vertical line through the origin for the times the
clock is at 0 V and a vertical line crossing at 5 V when the clock is at 5 V.

PRACTICAL SOURCES

The practical models for voltage and current sources in Figure 2-9 may be more appro-
priate in some situations than the ideal models used up to this point. These circuits are
called practical models because they more accurately represent the characteristics of
real-world sources than do the ideal models. It is important to remember that models
are interconnections of elements, not devices. For example, the resistance in a model does
not always represent an actual resistor. As a case in point, the resistances Rg in the prac-
tical source models in Figure 2-9 do not represent physical resistors but are circuit
elements used to account for resistive effects within the source devices being
modeled.

The linear resistor, open circuit, short circuit, ideal switch, ideal voltage source,
and ideal current source are the initial entries in our catalog of circuit elements.
In Chapter 4, we will develop models for active devices such as the transistor and
OP AMP. Models for dynamic elements such as capacitors and inductors are intro-
duced in Chapter 6.

FIGURE

Vs v

(d)

FIGURE 2-9 Circuit symbols
for ideal and practical
independent sources: (a) Ideal
voltage source. (b) Practical
voltage source. (c) Ideal current
source. (d) Practical current
source.
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2-2 ConNNECTION CONSTRAINTS

In the previous section, we considered individual devices and models. In this section,
we turn our attention to the constraints introduced by interconnections of devices to
form circuits. The laws governing circuit behavior are based on the meticulous work
of the German scientist Gustav Kirchhoff (1824-1887). Kirchhoff’s laws are derived
from conservation laws as applied to circuits. They tell us that element voltages and
currents are forced to behave in certain ways when the devices are interconnected to
form a circuit. These conditions are called connection constraints because they are
based only on the circuit connections, not on the specific devices in the circuit.

In this book, we will indicate that crossing wires are connected (electrically tied
together) using the dot symbol, as in Figure 2-10(a). Sometimes, crossing wires
are not connected (electrically insulated) but pass over or under each other. Since
we are restricted to drawing wires on a planar surface, we will indicate unconnected
crossovers by not placing a dot at their intersection, as indicated in the left of
Figure 2-10(b). Other books sometimes show unconnected crossovers using the sem-
icircular “hopover” shown on the right of Figure 2-10(b). In engineering systems, two
or more separate circuits are often tied together to form a larger circuit (for example,
the interconnection of two integrated circuit packages). Interconnecting different cir-
cuits forms an interface between the circuits. The special jack or interface symbol in
Figure 2-10(c) is used in this book because interface connections represent important
points at which the interaction between two circuits can be observed or specified. On
certain occasions, a control line is required to show a mechanical or other nonelec-
trical dependency. Figure 2-10(d) shows how this dependency is indicated in this
book. Figure 2-10(e) shows how power supply connections are often shown in elec-
tronic circuit diagrams. The implied power supply connection is indicated by an
arrow pointing to the supply voltage, which may be given in numerical (+15 V) or
symbolic form (+ V().

+15V *—

Used in text +

Control !
| L line AW
o+o——

(a) (b) (©) () (e)

Element
Element
|
I
s
<

FIGURE 2-10 Symbols used in circuit diagrams: (a) Electrical connection. (b) Crossover with no connection. (c) Jack connection.
(d) Control line. (e) Power supply connection.

The treatment of Kirchhoff’s laws uses the following definitions:

e A circuit is an interconnection of electrical devices.

Q i @ @ @ * A node is an electrical juncture of two or more devices.
—
| S

izl . : e Aloop is a closed path formed by tracing through an ordered
iy i . . .
\® l l Tls sequence of nodes without passing through any node more
than once.

While it is customary to designate the juncture of two or more ele-

ments as a node, it is important to realize that a node is not confined to
@ \@ @ @ a point but includes all the zero-resistance wire from the point to each
element. In the circuit of Figure 2-11, there are only three different
FIGURE 2-11 Circuit for demonstrating nodes: A, B, and C. The points 2, 3, and 4, for example, are part of

Kirchhoff’s current law. node B, while the points 5, 6, 7, and 8 are all part of node C.
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KircHHOFF'S CURRENT Law

Kirchhoff’s first law is based on the principle of conservation of charge. Kirchhoff’s
current law (KCL) states that

the algebraic sum of the currents entering a node is zero at every instant.

In forming the algebraic sum of currents, we must take into account the current ref-
erence direction associated with each device. If the current reference direction is into
the node, then we assign a positive sign to the corresponding current in the algebraic
sum. If the reference direction is away from the node, we assign a negative sign.
Applying this convention to the nodes in Figure 2-11, we obtain the following set
of KCL connection equations:

Node A: —i1—ip =0
Node B: il—i3—i4+i5 =0 (2-8)
Node C: i +i3+is—is =0

The KCL equation at node A does not mean that the currents i; and i, are both neg-
ative. The minus signs in this equation simply mean that the reference direction for
each current is directed away from node A. Likewise, the equation at node B could be
written as

3+is=1 +i5 (2-9)

This form illustrates an alternative statement of KCL:

The sum of the currents entering a node equals the sum of the currents leaving
the node.

There are two algebraic signs associated with each current in the application of
KCL. First is the sign given to a current in writing a KCL connection equation. This
sign is determined by the orientation of the current reference direction relative to a
node. The second sign is determined by the actual direction of the current relative to
the reference direction. The actual direction is found by solving the set of KCL equa-
tions, as illustrated in the following example.

EXAMPLE 2-5

Giveni; =+4 A, iz=+1A, is = +2 A in the circuit shown in Figure 2-11, find i, and is.

SOLUTION:
Using the node A constraint in Eq. (2-8) yields

—i1—i2= —(+4)—i2=0

The sign outside the parentheses comes from the node A KCL connection constraint
in Eq. (2-8). The sign inside the parentheses comes from the actual direction of the
current. Solving this equation for the unknown current, we find that i, = —4 A. In this
case, the minus sign indicates that the actual direction of the current i, is directed
upward in Figure 2-11, which is opposite to the reference direction assigned. Using
the second KCL equation in Eq. (2-8), we can write

il—i3—i4+i5 =(+4)—<+1)—(+2) +i5 =0

which yields the result is= -1 A.

Again, the signs inside the parentheses are associated with the actual direction of
the current, and the signs outside come from the node B KCL connection constraint
in Eq. (2-8). The minus sign in the final answer means that the current is is directed in
the opposite direction from its assigned reference direction. We can check our work
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by substituting the values found into the node C constraint in Eq. (2-8). These sub-
stitutions yield

+h+iz+ig—is=(=4)+ (+1) +(+2)-(-1)=0

as required by KCL. Given three currents, we determined all the remaining currents
in the circuit using only KCL without knowing the element constraints. [ |

In Example 2-5, the unknown currents were found using only the KCL constraints
atnodes A and B. The node C equation was shown to be valid, but it did not add any
new information. If we look back at Eq. (2-8), we see that the node C equation is the
negative of the sum of the node A and B equations. In other words, the KCL con-
nection constraint at node C is not independent of the two previous equations. This
example illustrates the following general principle:

In a circuit containing a total of N nodes there are only N -1 independent KCL
connection equations.

Current equations written at N—1 nodes contain all the independent connection
constraints that can be derived from KCL. To write these equations, we select one
node as the reference or ground node and then write KCL equations at the remaining
N -1 nonreference nodes.

i iy Exercise 2-4
i i ! 17 i(, Refer to Figure 2-12.
l ’ l Ji l (a) Write KCL equations at nodes A, B, C, and D.

(b) Given ij =—1mA,i3=0.5mA,is=0.2 mA, find i, is, and is.

Answers:
(a) Node A: —i;— i, =0; node B: i — i3— is=0; node C: iy — is— ic=0;

FIGURE 2-12

+ V2 - +

node D: A +i3+ i5 +i6 =0
(b) ir=1mA;is=0.5mA;is=0.3mA

KirRcHHOFF'S VoLTAGE Law

The second of Kirchhoff’s circuit laws is based on the principle of conservation of
energy. Kirchhoff’s voltage law (KVL) states that

the algebraic sum of all the voltages around a loop is zero at every instant.

For example, three loops are shown in the circuit of Figure 2-13. In writing the alge-
braic sum of voltages, we must account for the assigned reference marks. As a loop is
traversed, a positive sign is assigned to a voltage when we go froma “ + ” to “ — ” ref-
erence mark. When we go from “ — ” to *“ +, ” we use a minus sign. Traversing the three
loops in Figure 2-13 in the indicated clockwise direction yields the following set of
KVL connection equations:

vy o —

LOOp 1: —01+02+03 =0
LOOp 2: —03+ 04 +05 =0 (2-10)

Loop 1 V3

Loop 3

Loop 2

+ Loop3: —v1+v2+v4+0vs =0

vs There are two signs associated with each voltage. The first is the

- sign given the voltage when writing the KVL connection equation.
The second is the sign determined by the actual polarity of a voltage

relative to its assigned reference polarity. The actual polarities are

FIGURE 2-13  Circuit for demonstrating found by solving the set of KVL equations, as illustrated in the fol-

Kirchhoff’s voltage law.

lowing example.
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EXAMPLE 2-6

Given 01 =5V, 0,=-3V, and v4, =10V in the circuit shown in Figure 2-13, find v3
and vs.

SOLUTION:
Inserting the given numerical values into Eq. (2-10) yields the following KVL equa-
tion for loop 1:

—v1+0p+v3=—(+5)+(=3) +(v3) =0

The sign outside the parentheses comes from the loop 1 KVL constraint in Eq. (2-10).
The sign inside comes from the actual polarity of the voltage. This equation yields
v3 = +8 V. Using this value in the loop 2 KVL constraint in Eq. (2-10) produces

—03+04+05=—(+8) + (+10) +v5=0

The result is vs = =2 V. The minus sign here means that the actual polarity of vs is the
opposite of the assigned reference polarity indicated in Figure 2-13. The results can
be checked by substituting all the aforementioned values into the loop 3 KVL con-
straint in Eq. (2-10). These substitutions yield

—(+5)+(-3)+(+10) +(-2) =0
as required by KVL. |

In Example 2-6, the unknown voltages were found using only the KVL constraints
for loops 1 and 2. The loop 3 equation was shown to be valid, but it did not add any
new information. If we look back at Eq. (2-10), we see that the loop 3 equation is
equal to the sum of the loop 1 and 2 equations. In other words, the KVL connection
constraint around loop 3 is not independent of the previous two equations. This
example illustrates the following general principle:

In a circuit containing a total of E two-terminal elements and N nodes, there are
only E - N + 1 independent KVL connection equations.

Writing voltage summations around a total of E— N + 1 different loops produces all
the independent connection constraints that can be derived from KVL. A sufficient
condition for loops to be different is that each contains at least one element that is not
contained in any other loop. In simple circuits with no crossovers, the open space
between elements or “window panes” produces E—N + 1 independent loops. How-
ever, finding all the loops in a more complicated circuit can be a nontrivial problem.

DISCUSSION: For planar circuits, the kind encountered in this text, the number of independ-
ent loops is simply the number of “window panes.” Hence, in Figure 2—13, there are three loops
but only two window panes. The same is true for Figures 2—14 and 2—15. Figure 2—18(c) has three
window panes but seven loops. The number of window panes simply identifies the number of
independent KV L equations one can write. One can use any of the different loops as long as
one does not exceed the number of independent equations. Choosing the right loops can at
times simplify the solution to the problem.

+ 2V

Exercise 2-5
Find the voltages vy and vy in Figure 2-14.

V.
Answers: vy=+8Viu,=+5V

Exercise 2-6

Find the voltages vy, vy, and v, in Figure 2-15. FIGURE 2-14
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there can be a voltage across an open circuit. One should recall that an open
circuit is a special case of a resistor with infinite resistance and a real element, it
is reasonable that KVL yields the voltage v;.

Answers: og=+25V; vy=+5V; v,=+10V. Note: One might wonder how
}_L

T ParaLLEL AND SERIES CONNECTIONS

+ 5V - +20V - -5V +
o]
+ +
40V Vx
- 10V +
FIGURE 2-15

Two types of connections occur so frequently in circuit analysis that they
deserve special attention. Elements are said to be connected in parallel
when they form a loop containing no other elements. For example, loop
A in Figure 2-16 contains only elements 1 and 2. As a result, the
+ vz - KVL connection constraint around loop A is

* * 3
Rest of + + L= —01+02=0 (2-11)
A . . . .
cirﬂlceuit n O " @ which yields v; =v;. In other words, in a parallel connection, KVL

requires equal voltages across the elements. Loop B in Figure 2-16

contains only two elements and although visibly they do not look as

FIGURE 2-16 A parallel connection. if they are in parallel, a KVL analysis quickly shows that v, =v3

and, therefore, elements 2 and 3 are in parallel. The parallel connec-
tion is not restricted to two elements. As a result, in this circuit, we have v; = v, =3,
and we say that elements 1, 2, and 3 are connected in parallel. In general, then, any
number of elements connected between two common nodes are in parallel, and as a
result, the same voltage appears across each of them. Existence of a parallel connec-
tion does not depend on the graphical position of the elements. For example, the
position of elements 1 and 3 could be switched, and the three elements are still con-
nected in parallel.

Two elements are said to be connected in series when they have one common
node to which no other element with current flowing through it is connected. In
Figure 2-17(a), elements 1 and 2 are connected in series, since only these two ele-
ments are connected at node A. Applying KCL at node A yields

i1—i2 =0 or i1=i2 (2-12)

In a series connection, KCL requires equal current through each element. Any number
of elements can be connected in series. For example, element 3 in Figure 2-17(a) is con-
nected in series with element 2 at node B, and KCL requires i, = i3. Therefore, in this
circuit iy =i = i3, we say that elements 1, 2, and 3 are connected in series, and the same
current exists in each of the elements. In general, elements are connected in series
when they form a single path between two nodes such that only elements in the path
are connected to the intermediate nodes along the path. Existence of a series connec-
tion does not depend on the graphical position of the elements. Hence, if the posi-
tions of elements 1 and 3 were switched, the three elements would still be in series.

Rest of
the
circuit

Rest of
the
circuit

FIGURE 2-17 A series connection.
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Figure 2-17(b) shows a common connection variation. Element 4 is connected at
node A between elements 1 and 2. In general, elements 1 and 2 would not be in series
since more than two elements connect at the same node. However, in this case we see
that the current through element 4 is zero. KCL tells us that all of the current that
flows through element 1 must flow through element 2. In this case, elements 1 and
2 behave as if they were in series.

EXAMPLE 2-7

Identify the elements connected in parallel and in series in each of the circuits in
Figure 2-18.

SOLUTION:

In Figure 2-18(a), elements 1 and 2 are connected in series at node A and ele-
ments 3 and 4 are connected in parallel between nodes B and C. In Figure 2-
18(b), elements 1 and 2 are connected in series at node A, as are elements 4 and
5 at node D. There are no single elements connected in parallel in this circuit. In
Figure 2-18(c), there are no elements connected in either series or parallel. It is
important to realize that in some circuits there are elements that are not connected
in either series or in parallel. [ |

Exercise 27

Identify the elements connected in series or parallel when a short circuit is connected
between nodes A and B in each of the circuits of Figure 2-18.

Answers:

Circuit in Figure 2-18(a): Elements 1, 3, and 4 are all in parallel.

Circuit in Figure 2-18(b): Elements 1 and 3 are in parallel; elements 4 and 5 are in series.

Circuit in Figure 2-18(c): Elements 1 and 3 are in parallel; elements 4 and 6 are in parallel.
Note that in all three circuits the short circuit is connected across element 2 causing the

voltages at nodes A and B to be the same. Since the voltage across an element is zero there

can be no power produced or absorbed by that element. One can say that element 2 has

been “shorted out” and effectively removes element 2 from the circuit.

Exercise 2-8

Identify the elements in Figure 2-19 that are connected in (a) parallel, (b) series, or (c)
neither.

Multiple grounds
form a single node

FIGURE 2-18

FIGURE 2-19
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FIGURE 2-20 (a) Circuit used
to demonstrate combined
constraints.

Answers:

(a) The following elements are in parallel: 1, 8, and 11; 3, 4, and 5.
(b) The following elements are in series: 9 and 10; 6 and 7.

(c) Only element 2 is not in series or parallel with any other element.

DISCUSSION: The ground symbol indicates the reference node. When ground symbols are
shown at several nodes, the nodes are effectively connected together by a short circuit to form
a single node.

2-3 ComBINED CONSTRAINTS

The usual goal of circuit analysis is to determine the currents or voltages at various
places in a circuit. This analysis is based on constraints of two distinctly different types.
The element constraints are based on the models of the specific devices connected in
the circuit. The connection constraints are based on Kirchhoff’s laws and the circuit
connections. The element equations are independent of the circuit connections. Like-
wise, the connection equations are independent of the devices in the circuit. Taken
together, however, the combination of the element and connection constraints supply
the equations needed to describe a circuit.

Our study of the combined constraints begins by considering the simple but
important example in Figure 2-20(a). This circuit is driven by a current source
is and the resulting responses are current/voltage pairs (ix, vx) and (ip, vo). The ref-
erence marks for the response pairs have been assigned using the passive sign
convention.

To solve for all four responses, we must write four equations. The first two are the
element equations

Ix =13
Vo = Rio (2-13)
The first element equation states that the response current ix and the input driving
force ig are equal in magnitude and direction. The second element equation is Ohm’s
law relating vp and ip under the passive sign convention.

The connection equations are obtained by applying Kirchhoff’s laws. The circuit
in Figure 2-20 has two elements (E=2) and two nodes (N=2), so we need
E—-N +1=1KVL equation and N-1=1KCL equation. Selecting node B as the ref-
erence node, we apply KCL at node A and apply KVL around the loop to write

KCL: —ix—ip=0

KVL: —uy+00=0 (2-14)

We now have two element constraints in Eq. (2-13) and two connection con-
straints in Eq. (2-14), so we can solve for all four responses in terms of the input driv-
ing force is. Combining the KCL connection equation and the first element equation
yields ip = —ix = —is. Substituting this result into the second element equation (Ohm’s
law) produces

DO = —Ris (2—]5)

The minus sign in this equation does not mean that vp is always negative. Nor does it
mean the resistance is negative; it cannot be. It means that when the input driving
force ig is positive, then the response vg is negative, and vice versa. This sign reversal
is a result of the way we assigned reference marks at the beginning of our analysis.
The reference marks defined the circuit input and outputs in such a way that is and vg
always have opposite algebraic signs. Put differently, Eq. (2-15) is an input-output
relationship, not an element i—v relationship.
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EXAMPLE 2-8

(a) Find the responses iy, vy, io, and vp in the circuit in Figure 2-20(a) when
is= +2mA and R=2kQ.

(b) Repeat for is = -2 mA.

SOLUTION:
(a) From Eq. (2-13) we have iy =is = +2 mA and vo =2000ip. From Eq. (2-14) we
have ip = —ix = =2 mA and vy =vo. Combining these results, we obtain

vx =vo =2000ip =2000(—0.002) = -4V
(b) In this case iy =is= -2 mA, io = —ix= —(-0.002) = +2 mA, and
vx =vo =2000ip =2000(+0.002) = +4V

This example confirms that the algebraic signs of the outputs vy, vo, and ip are
always the opposite from that of the input driving force is. [ |

Exercise 2-9

A 1-kQ resistor Ry is inserted between nodes A and B in Figure 2-20(a) as shown in
Figure 2-20(b).

The voltage across it is labeled vg and the current through it is labeled ig. Write a set of
element and connection constraints defining the circuit. Then find i, vy, io, ir, Vr, and vg if
is=1mA and R=2kQ.

Answers:

Element constraints: is =iy =1 mA; vg =1ig Rgr = 1000 x ig; vo =iog R =2000 x ip
Connection constraints: —is—igr —ig =0; —vx+vr =0; —VvR +vo =0

ix=1mA; igr = =667 pA; io = =333 pA; vo = VR = vy = =667 mV

Letus now look at the single-loop circuit shown in Figure 2-21. We start analyzing this
circuit by assigning reference marks for the voltage and current at each element. There is
no right or wrong way; however, for each element, the current and voltage must follow the
passive sign convention. We will discuss how to do this further after Exercise 2-12. Then,
using these definitions, we can write the element constraints as

DA = Vo
D1 = R1i1 (2—]6)
Uy = Rziz

These equations describe the three devices and do not depend on how the devices are
connected in the circuit.

The connection equations are obtained from Kirchhoff’s laws. To apply these
laws, we must first label the different loops and nodes. The circuit contains £ =3 ele-
ments and N =3 nodes, so there are E—N +1=1 independent KVL constraints and
N-1=2 independent KCL constraints. There is only one loop, but there are three
nodes in this circuit. We will select one node as the reference point and write
KCL equations at the other two nodes. Any node can be chosen as the reference,
so we select node C as the reference node and indicate this choice by drawing the
ground symbol there. The connection constraints are

KCL: Node A —ia—i1=0
KCL: Node B i1—ip=0 (2-17)
KVL: Loop —oa+01+02=0

These equations are independent of the specific devices in the circuit. They depend
only on Kirchhoff’s laws and the circuit connections.

(b)

FIGURE 2-20 (b) Revised
circuit used to demonstrate
combined constraints.
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FIGURE 2-21
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This circuit has six unknowns: three element currents and three element voltages.
Taken together, the element and connection equations give us six independent equa-
tions. For a network with (V) nodes and (E) two-terminal elements, we can write
(N-1) independent KCL connection equations, (E—N +1) independent KVL con-
nection equations, and (E) element equations. The total number of equations gen-
erated is

Element equations E
KCL equations N-1
KVL equations E-N+1
Total 2FE

The grand total is then (2E) combined connection and element equations, which is
exactly the number of equations needed to solve for the voltage across and current
through every element—a total of (2E) unknowns.

EXAMPLE 2-9

Find all of the element currents and voltages in Figure 2-21 for Vo =10V, R; =2000 L,
and R, =3000 Q.

SOLUTION:
Substituting the element constraints from Eq. (2-16) into the KVL connection con-
straint in Eq. (2-17) produces

—VO +R1i1 +R2i2 =0
This equation can be used to solve for i; since the second KCL connection equation
requires that i, =ij.

Vo 10
" Ri+R,  2000+3000

i 2mA

In effect, we have found all of the element currents since the elements are connected
in series. Hence, collectively the KCL connection equations require that

—ia=i1=D
Substituting all of the known values into the element equations gives
I)A=10V 01 =R1i1 =4V 02:R2i2:6v

Every element voltage and current has been found. Note the analysis strategy used.
We first found all the element currents and then used these values to find the element
voltages. [ |

Exercise 2-10

The wire connecting R; to node B in Figure 2-21 is broken. What would you measure for
ia, 01, iz, and v,? Is KVL violated? Where does the source voltage appear across?

Answers: ix=ir=0A, v;=0,=0V.KVL is not violated. The voltage V appears across
he open (broken) circuit.

EXAMPLE 2-10

Use element and connection equations to find the voltages across the resistors in
Figure 2-22.
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Combining the last element equation and the KVL equation around loop 1
shows that

V3 =0A = 30V
which is nothing more than a statement that the voltage source and R3 are connected

in parallel. Using this result in the loop 2 equation yields v; + v, =v3 =30 V. Substitut-
ing the first two element equations into this equation produces

1007; +200i, =30

But the KCL equation at node B points out that i; =i, and this result reduces to
300i, =30 or i1 =i, =0.1 A. Finally, the first two element equations yield

01 =100i; =10 V and v =200i, =20 V

In summary, the voltages across the three resistors are v; =10V,0, =20V, and
1)3230 V. [ |

Exercise 2-11

Repeat the problem of Example 2-10 if the 30-V voltage source is replaced with a 2-mA
current source with the arrow pointing up toward node A.

Answers: v;=100mV, v, =200mV, v3=300mV

EXAMPLE 2-11

Use element and connection equations to find the voltages across and the currents
through each of the elements in Figure 2-23.

SOLUTION:

@ i 22kQ

SOLUTION: OB 100 Q
A complete description of this circuit involves four element equations : A
and four connection equations. The element equations are _ \’l + v -
N Loop 2
v1 = 1004, i 4 7 ’
vy = 200i, 30V <J_r>vA x °Q vy §
U3 = 300i3 - R -
va =30V Foop !
The four connection equations are L@
KCL: Node A —iA—il—i3 =0 —
KCL: Node B ih—ip =0 FIGURE 2-22
KVL: Loop1 —va+03=0
KVL: Loop2 -wv3+vi+0;=0

A complete description of this circuit involves 2E equations lAr E—yyy
where E=4 (two Rs and one each voltage and current iﬁ + oy, -
sources). There are four element equations and four connec- + + + -
tion equations. The four element equations are 100V — "@ i § /D "
- - - 33kQ +
va =100V Loop 1 Loop 2
v1=33kQij
V) = 22 kQ i2 = @
ip = 1 mA

FIGURE 2-23
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Rest of the circuit

1 100 Q @‘5 200 Q

The four connection equations are

KCL: Node A —ian—i1—ip =0
KCL: Node B h+ig =0
KVL: Loop1 —va+v1 =0
KVL: Loop2 -vi+vy—vg =0
Combining the equation for loop 1 and the v element constraint yields
VA=V = 100V
From the element equation for the 33-kQ resistor we find
. 100
ll - 3371( - 303 mA

Using the KCL equation at Node B we find
ih=—-ig=—-1mA
Using the element constraint for the 22-kQ resistor we find
vo=(-1m) (22k)=-22V
Now from the loop 2 equation we can find the voltage across the current source
-100+(-22)=vp=-122V

And from the KCL equation for Node A we find the current through the voltage
source

in=-3.03m-(-1m)=-2.03mA

In sum, the following values have been found

va =100V

in = -2.03mA

vy =100V

i1 =3.03mA

vp=-22V

i2 = -1mA

vp = —122V

iB = 1mA [ |

—WW\
+ o+ - lzz +v; -
Ve +
@ V2= 50Q

FIGURE 2-24

Exercise 2-12

In Figure 2-24, write a loop equation around Loop 1 and a node equation at
Node A. Then if ij =200 mA and i3 = —100 mA, use the appropriate ele-
ment equations to find the voltage v,.

Answerss:
v,=35V

Loop 1: —v,+01 +v2=0; Node A: i; —i,—i3=0;

AssioNING REFERENCE MARKS

In all of our previous examples and exercises, the reference marks for the element
currents (arrows) and voltages (+ and —) were given. When reference marks are
not shown on a circuit diagram, they must be assigned by the person solving the prob-
lem. Beginners sometimes wonder how to assign reference marks when the actual
voltage polarities and current directions are unknown. It is important to remember
that the reference marks do not indicate what is actually happening in the circuit.
They are benchmarks assigned at the beginning of the analysis. If it turns out that
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the actual direction and reference direction agree, then the algebraic sign of the
response will be positive. If they disagree, the algebraic sign will be negative. In other
words, the sign of the answer together with assigned reference marks tell us the actual
voltage polarity or current direction.

In this book, the reference marks always follow the passive sign convention. This
means that for any given two-terminal element we can arbitrarily assign either the +
voltage reference mark or the current reference arrow, but not both. For example, we
can arbitrarily assign the voltage reference marks to the terminals of a two-terminal
device. Once the voltage reference is assigned, however, the passive sign convention
requires that the current reference arrow be directed into the element at the terminal
with the + mark. On the other hand, we could start by arbitrarily selecting the termi-
nal at which the current reference arrow is directed into the device. Once the current
reference is assigned, however, the passive sign convention requires that the + volt-
age reference be assigned to the selected terminal.

Following the passive sign convention avoids confusion about the direction of
power flow in a device. In addition, the element constraints, such as Ohm’s law,
assume that the passive sign convention is used to assign the voltage and current ref-
erence marks to a device.

The next example illustrates the assignment of reference marks.

EXAMPLE 2-12

Find the voltages across the resistors and current sources in Figure 2-25(a).

3A 3A
2 3
N
+vg—
e 100 100 100
Wy M
+v - +v3-
- + +
2A <D z 500 <D SA 2A <DvA »Z 500 v
+ - —

(a)

SOLUTION:
No voltage reference marks are given in Figure 2-25(a), so we assign those shown in
Figure 2-25(b). Because of the passive sign convention, the voltages assigned to the
three current sources must also be assigned as shown. Once the voltage marks for
v1, vz, and vz are assigned, the passive sign convention requires that the current ref-
erence directions for iy, i, and i3 be assigned as shown in Figure 2-25(c). KCL can be
used to find the resistor currents directly. Using KCL at node A gives 2—-i; -3 =0;
hence i; = -1 A. KCL applied at node C yields 3 +i3—-5=0; hence i3 =2 A. Finally,
at node B KCL requires i; —i,—i3=0; hence i, =i;—i3=-1-2=-3 A. Given the
three resistor currents, we use Ohm’s law to find the three resistor voltages.

v; =100i; = -100V

Uy = 50i2 -150V

v3 =100z = +200V

The plus on the numerical value of v3 means that the assigned reference marks agree
with the actual voltage polarity. The minus sign on the numerical values of v; and v,
mean that the assigned marks and physical reality disagree. This disagreement does

(b)

FIGURE 2-25
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3A 3A
- )
\_/ \_/
+vp- +100V -
@ -1A 100 ©Q 2A 100 Q
100 Q 5_100Q AW MA
® ¢——WW © +-100V - +200V -
i +v - ) +Vv3— l_3A
llz - + +
_ + + 2AQ>250V 150V Z 500 450\/({)5/‘
2A< Va 22500 VC<> SA + - -
P lo) »zsaele) (Y

FIGURE 2-25 (Continued)

not mean that the assigned marks for v; and v, are wrong. Reference marks are not
predictions. They are definitions that allow us to correctly formulate circuit equations
and interpret the numerical results of circuit analysis.

The voltages across the current sources can now be found by applying KVL
around the three loops shown in Figure 2-25(c).

Loopl va+vi+v2=0 or ova=-vi—-0
L00p2 VB —U1—0U3 =0 Oor ovg=0v1+03
Loop3 vc—v2+0v3=0 or oc=vy2-03

Using the resistor voltages found above we have

va = —(~100)—(-150) =250 V
vg = —100+200=100V
ve = —150-200= 350 V

Figure 2-25(d) shows the numerical values of all the voltages and currents, some of
which are negative. Again, the negative values do not mean that the voltage refer-
ence marks originally assigned in Figure 2-25(b) are incorrect. |

Exercise 2-13

In Figure 2-25(a), the 2-A source is replaced by a 100-V source with the + terminal at the top,
and the 3-A source is removed. Find the current and its direction through the voltage source.

Answer: ivoltage Source =2.33 A up.

2-4 EquivaLent CirculTs

The analysis of a circuit can often be made easier by replacing part of the circuit with
one that is equivalent but simpler. The underlying basis for two circuits to be equiv-
alent is contained in their i—v relationships.

Two circuits are said to be equivalent if they have identical i —v characteristics at

a specified pair of terminals.
In other words, when two circuits are equivalent, the voltage and current at an inter-
face do not depend on which circuit is connected to the interface.
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EQUIVALENT RESISTANCE

The two resistors in Figure 2-26(a) are connected in series between a pair of term-
inals A and B. The objective is to simplify the circuit without altering the electrical
behavior of the rest of the circuit.

The KVL equation around the loop from A to B is

V=01+0; (2-18)

Since the two resistors are connected in series, the same current i exists in both.
Applying Ohm’s law, we get vy = R;i and v, = Ryi. Substituting these relationships
into Eq. (2-18) and then simplifying yields

v=Rji+ Ryi= i(Rl +R2)

We can write this equation in terms of an equivalent resistance Rgq as

UZiREQ where REQ =Ri+R; (2-19)

This result means that the circuits in Figure 2-26(a) and (b) have the same i—v char-

acteristic at terminals A and B. As a result, the response of the rest of the circuit is

unchanged when the series connection of Ry and R; is replaced by a resistance Rgg.
In deriving the equivalence of two resistors in parallel, it is illustrative to use conduc-

tances. The parallel connection of two conductances in Figure 2-27(a) is the dual® of the

series circuit in Figure 2-26(a). Again, the objective is to replace the parallel connection

by a simpler equivalent circuit without altering the response of the rest of the circuit.
A KCL equation at node A produces

=i+ (2-20)

Since the conductances are connected in parallel, the voltage v appears across both.
Applying Ohm’s law, we obtain i; = Gyv and i, = G,v. Substituting these relationships
into Eq. (2-20) and then simplifying yields

i=UG1 +UG2 = U(G1 + Gz)

This result can be written in terms of an equivalent conductance Ggq as follows:

i=v Ggo; where Ggo =G+ G (2-21)

This result means that the circuits in Figure 2-27(a) and (b) have the same i — v character-
istic at terminals A and B. As a result, the response of the rest of the circuit is unchanged
when the parallel connection of G; and G is replaced by a conductance Gggo.

Since conductance is not normally used to describe a resistor, we can derive the
same relationship using resistors. Figure 2-27(c) shows the same circuit using resis-
tors. Recall from Eq. (2-4) that we can rewrite Eq. (2-21) as an equivalent resistance
Rpo = 1/GEQ. That is,

1 1 1 RiR>

= = = 2-22
GEQ G1 + G2 1 1 Rl + RZ ( )

R, R

Ri||R;=Rgo =

where the symbol ““||” is shorthand for “in parallel.” The expression on the far right in
Eq. (2-22) is called the product over the sum rule for two resistors in parallel. This
result is shown in Figure 2-27(d).

*Dual circuits have identical behavior patterns when we interchange the roles of the following para-
meters: (1) voltage and current, (2) series and parallel, and (3) resistance and conductance. In later
chapters, we will see duality exhibited by other circuit parameters as well.

Rest of
the
circuit

Rest of
the
circuit

FIGURE 2-26 A series
resistance circuit: (a) Original
circuit. (b) Equivalent circuit.

l...

Restof| T . .
the | v l'l G lzl G,
circuit |
(@)
®
Restof| T
the Vv =
circuit | Oro= G+ 6y
®
® (b)
® i,
Restof| T . .
the | v lll R lzl R,
circuit |
(©)
@ i
Re{}slt of| * ” R\R,
€ v Q5 L g
circuit | QTR +R,

®

(d)

FIGURE 2-27 A parallel
resistance circuit: (a) Original
circuit with resistors replaced by
their conductance equivalent.
(b) Equivalent conductance
circuit. (c) Original circuit with
resistors. (d) Equivalent
resistance circuit.
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FIGURE 2-28

Caution: The product over sum rule applies only to two resistors connected in par-
allel. When more than two resistors are in parallel, we must use the following general
result to obtain the equivalent resistance:

1 1 1
REQ = = =
GEQ Gi+Gr+Gy+--- 1 1 1

R R Ry

(2-23)

EXAMPLE 2-13

Find the equivalent resistance for the circuits in Figure 2-28 (a) and (b).

EQ SRR ,
AW |
100 Q i E
10095 100 Q E

150 Q

© () (8)

SOLUTION:

In the circuit of Figure 2-28(a), the two 100-Q resistors on the right of the circuit are
in parallel and combine using Eq. (2-22) to 50 Q as shown in Figure 2-28(c). This new
resistor is connected to the remaining 100-Q resistor. These two resistors are in series
and add as per Eq. (2-19) as shown in Figure 2-28(¢). The equivalent resistance Rgo
of the circuit of Figure 2-28(a) is 150 Q.

The circuit of Figure 2-28(b) requires a few extra steps. Starting at the farthest
right we see that the 5.6-kQ resistor and the 10-kQ resistor are in series. They add
to equal 15.6 kQ as shown in Figure 2-28(d). This new resistor is in parallel with
the 10-kQ resistor in the center of the circuit. The new 15.6-kQ resistor and the
10-kQ resistor combine to yield 6.09 kQ as shown in Figure 2-28(f). The two resistors
at the leftmost part of the circuit, that is, the 2.2-kQ and the 3.3-kQ resistors are in
parallel. These can combine as a 1.32-kQ resistor as shown in Figure 2-28(d). Finally,
the 1.32-kQ resistor and the 6.09-kQ resistor are in series and can be combined result-
ing in a Rgo =7.41 kQ as shown in Figure 2-28(g). |
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Exercise 2-14

Find the equivalent resistance for the circuit in Figure 2-29.

Answer: Rgo=500Q

EXAMPLE 2-14
Given the circuit in Figure 2-30(a),

(a) Find the equivalent resistance Rgo; connected between terminals A and B.
(b) Find the equivalent resistance Rgq, connected between terminals C and D.

R
EQ 500Q 5000

FIGURE 2-29

SOLUTION:
First we note that resistors R, and Rj3 are connected in parallel. @ R,
Applying the product over sum rule [Eq. (2-22)], we obtain o——AN
RoR;
Ry||R3 =
2” 3 R2+R3

As an interim step, we redraw the circuit, as shown in Figure 2-30(b).

the circuit of Figure 2-31. For example: Ra_p = (80(|80) + 60 =100 Q.

1kQ

(a) To find the equivalent resistance between terminals A and B, i
we note that Ry and the equivalent resistance R, ||R3 are con- @
nected in series. The total equivalent resistance Rgo1r  Rgq (a) Rpqo
between terminals A and B is
O ©
Reor = Ri+ (Ro|[R3) W i 5
RyR3
Reo1 = R +
EQ1 1 R>+R; RRiRI32
2+ K3
RiR) + RiR3 + RyR3
Rgo1 = o o o
o ©
(b) Looking between terminals C and D yields a different result.
. . . . . . . REQI REQ2
In this case R; is not involved, since there is an open circuit
(an infinite resistance) between terminals A and B. There- ®)
fore, only R;||R; affect the resistance between terminals FIGURE 2-30
C and D. As a result, Rgq is simply
RyR3
Reop =Ry||R3 =
02 = Ro||Rs Ro+ R
This example shows that equivalent resistance depends on the pair of terminals
involved. u
A
Exercise 2-15 l
Find the equivalent resistance between terminals A—C, B-D, A-D, and B-C in the circuit in 80Q2 30Q
Figure 2-30. —\W\—1 C
Answers: RA_c=Ri; Rg_p=0Q (a short circuit); Ra_p=R; +R2HR3; Rg_c= R2||R3 80Q
B[O
Exercise 2-16 60Q $259
Find the equivalent resistance between terminals A-B, A—C, A-D, B-C, B-D, and C-D in =
D

Answers: RA_c=70Q; RA_.p=65Q; Rg_c=90Q; Rg_p=85Q; Rc_p=55Q

FIGURE 2-31
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Rest of
the
circuit

Rest of
the
circuit

Circuit B

FIGURE 2-32 Practical source
models that are equivalent when

Eq. (2-24) is satisfied.

Set equal
VSN
) Circuit A
i
N
is -1 Set equal
R,
isR>
Circuit B

FIGURE 2-33 Thei-v

characteristics of practical

sources in Figure 2-32.

One final note on checking numerical calculations of equivalent resistance. When
several resistances are connected in parallel, the equivalent resistance must be smaller
than the smallest resistance in the connection. Conversely, when several resistances
are connected in series, the equivalent resistance must be larger than the largest resist-
ance in the connection.

EQUIVALENT SOURCES

The practical source models introduced previously are shown in Figure 2-32.
These models consist of an ideal voltage source in series with a resistance and
an ideal current source in parallel with a resistance. We now determine the con-
ditions under which the practical voltage source and the practical current sources
are equivalent.

Figure 2-32 shows the two practical sources connected between terminals labeled
A and B. A parallel analysis of these circuits yields the conditions for equivalency at
terminals A and B. First, Kirchhoff’s laws are applied as

Circuit A Circuit B

KVL KCL
Vs =0VR +0 Is=IR+I

Next, Ohm’s law is used to obtain

Circuit A Circuit B
.. v
VR = R]l IR = —
2
Combining these results, we find that the i—o relationships of each of the circuits at
terminals A and B are

Circuit A Circuit B
(% Us

; . v
=——+— [=——+i
Ry R Ry
These i—v characteristics take the form of the straight lines shown in Figure 2-33.
The two lines are identical when the intercepts are equal. This requires that vs/R; =i
and vs =isR,, which, in turn, requires that

Ri=R,=R and vs=isR (2-24)

When conditions in Eq. (2-24) are met, the response of the rest of the circuit is unaf-
fected when we replace a practical voltage source by an equivalent practical current
source, or vice versa. Exchanging one practical source model for an equivalent model
is called source transformation.

Caution: Source transformation means that either model will deliver the same voltage
and current to the rest of the circuit. Hence, a circuit connected to either cannot tell which
practical circuit it is connected to. It does not mean that the two models are identical in
every way. For example, when the rest of the circuit is an open circuit, there is no current
in the resistance of the practical voltage source, and hence no 2R power loss. However,
the current in the practical current source is not zero when the load is an open circuit.
Thus, equivalent sources do not usually have the same internal power loss even
though they deliver the same current and voltage to the rest of the circuit. Suppose
a problem requires the determination of the power supplied by a practical voltage
source connected to a resistive load. It would be incorrect to do a source transforma-
tion and use the transformed current times the original voltage to find the power. It
would also be incorrect to find the power supplied by the practical current source,
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since it usually is not the same as that delivered by the equivalent voltage source. (See
Example 2-15.)

EXAMPLE 2-15 s 100

(a) Convert the practical voltage source into the left of nodes A and B in Figure 2-34
(a) to an equivalent current source. 50V
(b) Suppose the practical voltage source is connected to a 5-Q load across nodes

A and B. How much power is provided by the voltage source?

SOLUTION:
. (@
(a) Using Eq. (2-24), we have
Ri=R,=R=10Q @
ig = %S - i_g —SA .
SA L Z10Q
The equivalent practical current source is shown in Figure 2-34(b) to the left of -
nodes A and B.
(b) The power provided by the source is equal to the 50-V source times the current
flowing through it. The current is found by a loop equation as follows: ®)
50 = 10><is+5><is
50 FIGURE 2-34
is=-—=333A
is =13 333
The power provided by the voltage source then is
ps=vs xis=50%x3.33=166 W [ |

DISCUSSION: Asnoted earlier, multiplying the voltage of the voltage source by the current
of the transformed current source does not produce the correct answer: 50 x5=250 W, not
166 W. However, one may be fooled into thinking that the power delivered by the transformed
current source is equal to that delivered by the original voltage source. To demonstrate that
this is not correct, combine the 5-Q load connected in parallel with the 10-Q source resistance
to get an equivalent resistance of 3.33 Q. Find the voltage across the equivalent 3.33-Q resist-
ance using Ohm’s law:

vs=isx Reg=5%3.33=16.6 V
The power provided by the equivalent current source then is
Ps =0s X g =16.6 x5=83.33 W

This is not equivalent to the correct answer of 166 W.

Transformed sources are valuable tools, as we will see, but one must remember that the
transformation creates an equivalent circuit only from the perspective of the rest of the circuit
and not between the transformed sources.

Exercise 2-17

A practical current source consists of a 2-mA ideal current source in parallel with a 500-Q
resistance. (a) Find the equivalent practical voltage source. Then (b), connect a 1-kQ resis-
tor in parallel with the first and find the power delivered by the current source. Finally
(¢), find the power delivered by the equivalent voltage source. Why the difference?

Answers:
(a) The equivalent is a 1-V ideal voltage source in series with a 500-Q resistance.
(b) The power supplied by the current source is 1.33 mW.
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FIGURE 2-35 Equivalent
circuit of a voltage source and a
resistor in parallel.

FIGURE 2-36 Equivalent
circuit of a current source and a
resistor in series.

(c) The power delivered by the transformed source is 667 pW. A source transformation
only guarantees that the load, the 1-kQ resistor, receives the same i, v, and p.

Figure 2-35 shows another source transformation in which a voltage source and
resistor in parallel is replaced by a voltage source acting alone. The two circuits
are equivalent because the i—v constraint at the input to the rest of the circuit is
v=wvs in both circuits. In other words, the response of the rest of the circuit is
unchanged if a resistor in parallel with a voltage source is removed from the circuit.
However, removing the resistor does reduce the total current supplied by the voltage
source by vs/R. While the resistor does not affect the current and voltage delivered to
the rest of the circuit, it does dissipate power that must be supplied by the source.

i i
— ——

* | Restof Vs * | Restof
Vs R Vv the f— \Y the
| circuit | circuit

The dual situation is shown in Figure 2-36. In this case a current source connected
in series with a resistor can be replaced by a current source acting alone because the

R i i
—_— —
) * | Restof is * | Restof
Is v the _— v the
_ | circuit | circuit

i—v constraint at the input to the rest of the circuit is i = ig for both circuits. In other
words, the response of the rest of the circuit is unchanged if a resistor in series with a
current source is removed from the circuit.

SummaRrRY oF EquivaLent CircuiTs

Figure 2-37 is a summary of two-terminal equivalent circuits involving resistors and
sources connected in series or parallel. The series and parallel equivalences in the
first row and the source transformations in the second row are used regularly in sub-
sequent discussions. The last row in Figure 2-37 presents additional source transfor-
mations that reduce series or parallel connections to a single ideal current or voltage
source. Proof of these equivalences involves showing that the final single-source cir-
cuits have the same i —v characteristics as the original connections. The details of such
a derivation are left as an exercise for the reader.

There are several other circuit combinations that involve equivalent circuits that
we should mention. The first is what happens if we connect two or more voltage
sources in parallel? Practical sources, such as real, same-value batteries, are often
connected in parallel to achieve more current. However, ideal sources are capable,
by their definition, of providing whatever current the load requires, hence, multiple,
same-value, voltage sources can be replaced by a single voltage source of that value.
However, one cannot connect ideal voltage sources of different values, including a
short circuit, in parallel since this would violate KVL. The dual is also true for ideal
current sources connected in series. Same-value current sources can be replaced by a
single current source of that value, while connecting ideal current sources of different
values would violate KCL.
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FIGURE 2-37 Summary of

Series Parallel . ; h
two-terminal equivalent circuits.
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Exercise 2-18

Find the equivalent circuit for each of the following

(a) Three ideal 1.5-V batteries connected in series.

(b) A 5-mA current source in series with a 100-kQ resistor.

(c) A 40-A ideal current source in parallel with an ideal 10-A current source.
(d) A 100-V source in parallel with two 10-kQ resistors.

(e) An ideal 15-V source in series with an ideal 10-mA source.

(f) A 15-V ideal source and a 5-V ideal source connected in parallel.

Answers:

(a) One 4.5-V voltage source.

(b) A single 5-mA current source.

(c) One 50-A current source.

(d) A single 100-V voltage source.

(e) A 15-Vsource in series with a 10-mA source. An ideal voltage and current sources can-
not be combined.

(f) This is not a possible combination since KVL would be violated.
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2-5 Vortace AND CurRRENT DivisioN

We complete our treatment of series and parallel circuits with a discussion of voltage
and current division. These two analysis tools find wide application in circuit analysis
and design.

VoLtaGe Division

Voltage division provides a simple way to find the voltage across each element in a
series circuit. Figure 2-38 shows a circuit that lends itself to solution by voltage divi-
sion. Applying KVL around the loop in Figure 2-38 yields

Vs =01+ +03 (2-25)

The elements in Figure 2-38 are connected in series, so the same current i exists in
each of the resistors. Using Ohm’s law, we find that

Us =R]i+R2i+R3i (2-26)
Solving for i yields
. vs
= 2-27
! R] + R2 + R3 ( )

Once the current in the series circuit is found, the voltage across each resistor is com-
puted using Ohm’s law:

Ry
=Rji=———— 2-18
vl 1 (Rl +R2 +R3) vs ( )
, Ry
1% —Rzl— (W) Us (2—29)
R;
“Ryi= (-2 2-30
03 =Rs1 <R1 +R2+R3> Us (2-30)

Looking over these results, we see an interesting pattern. In a series connection,
the voltage across each resistor is equal to its resistance divided by the equivalent
series resistance of the connection times the voltage across the series circuit. Thus,
the general expression of the voltage division rule is

Ry

=(=x 2-31
Ok (REQ> UTOTAL (2-31)

In other words, the total voltage divides among the series resistors in proportion to
their resistance over the equivalent resistance of the series connection. The following
examples show several applications of this rule.

EXAMPLE 2-16

Find the voltage across the 330-Q resistor in the circuit of Figure 2—-39.

SOLUTION:
N Applying the voltage division rule, we find that
vo B 330 B
- vo= (100+560+330+220) 24=0655V =

Exercise 2-19

Find the voltages vy, vy, and v, in the circuit of Figure 2-39. Show that the sum of all the
voltages across each of the individual resistors equals the source voltage.
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Answers: 0,=198V, v,=11.11V, and v,=436V. 1.98+11.11+4.36+6.55=24V,
Q.E.D.

EXAMPLE 2-17

Using only the available 20% tolerance’ standard-value resistors in the inside back cover,
design a voltage divider to obtain 2.9 V+20% from a 5-V source using only two
resistors.

SOLUTION:
Use the voltage—divider relationship to determine the ratio your design needs to
achieve 2.9=5xx, x=0.58.

Ro

——=0.58, Rop-0.58Rp=0.58R;, 0.42Rp=0.58Rs, Ro=1.38R;
Rs + Ro

where R is the output resistor and Ry is the source resistor. We need an output resis-
tor thatis 1.38 times the source resistor. If we had any value of resistor we wanted, the
problem would be easy —select Rp as 1.38 kQ and R, as 1 kQ. But we are restricted to
4+20% values. If we choose Rs=1KkQ, the nearest value of Rp is 1.5 kQ. This would
yield an output of 3.0 V within the £20%, even if both resistors are near the end of
their range the output can be as large as 3.46 V or as small as 2.50 V, both are still
within the desired range of 2.32 to 3.48 V. |

Exercise 2-20

Using only the available 10% tolerance resistors in the inside back cover, design a voltage
divider to obtain 6.5V £10% from a 20-V source using only two resistors.

Answer: The best choice is Ro=2.7kQ and Rs=5.6kQ. Alternately, Ro =3.3kQ and
R;=6.86kQ are also acceptable. Note that factor of 10 multiples of those pairs will also
work, that is, Ro =27 kQ and Ry =56 kQ, or Ro =270 Q and Rs =560 Q.

EXAMPLE 2-138

Select a value for the resistor Ry in Figure 2-40 so vo =8 V.

SOLUTION:
The unknown resistor is in parallel with the 10-kQ resistor. Since voltages across par-
allel elements are equal, the voltage vo =8 V appears across both. We first define an
equivalent resistance Rgg = Rx||10kQ as
Rees = Ry x 10000
FO™ R, +10000

We write the voltage division rule in terms of Rgg as

Reo
== — 1
vo=8 (REQ+2000> 0

3Discrete standard-value resistors, such as those listed in the inside cover of this text, are typically
rated with a tolerance of 20%, 10%, 5%, or other. The value of a given resistor, say 1 kQ, represents
a nominal value of resistance of 1000 Q. Depending on the resistor’s tolerance, it can vary by the
range of the tolerance. Hence, a 1-kQ resistor of 20% tolerance can vary between +20% of the nom-
inal value or from 800 to 1200 Q.

2kQ
WA

+

0V R Z10 kQ? vo

FIGURE 2-40
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FIGURE 2-42 The
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symbol. (b) Actual devices.

which yields Rgo =8 kQ. Finally, we substitute this value into the equation defining
Rgo and solve for Ry to obtain Ry =40kQ. [ |

Exercise 2-21

In Figure 2-40 Ry = 10 kQ. The output voltage vo =20 V. Find the voltage source that would
produce that output. (Hint: It is not 10 V.)

Answer: Voltage source =28 V.

EXAMPLE 2-19

Use the voltage division rule to find the output voltage vo of the circuit in
Figure 2-41.

SOLUTION:

At first glance, it appears that the voltage division rule does not apply, since the resis-
tors are not connected in series. However, the current through Rj is zero since the
output of the circuit is an open circuit. Therefore, Ohm’s law shows that
v3=R3i3=0. Applying KCL at node A shows that the same current exists in R;
and Ry, since the current through Rj is zero. Applying KVL around the output loop
shows that the voltage across R, must be equal to vg since the voltage across Rj is
zero. In essence, itis as if Ry and R, were connected in series. Therefore, voltage divi-
sion can be used and yields the output voltage as

vo= R1+R2 vs

The reader should carefully review the logic leading to this result because voltage
division applications of this type occur frequently. [ |

Exercise 2-22

In Figure 2-41, suppose that a resistor Ry is connected across the output. What value should
R4 be if we want %os to appear between node A and ground?

B RiR;+R{R,—R3R;

Answer: R
4 R,—R;

APPLICATION EXAMPLE 2-20

The operation of a potentiometer is based on the voltage division rule. The device is a
three-terminal element that uses voltage (potential) division to meter out a fraction
of the applied voltage. Simply stated, a potentiometer is an adjustable voltage
divider. Figure 2-42 shows the circuit symbol of a potentiometer, photos of three dif-
ferent types of actual potentiometers, and a typical application.

The voltage vo in Figure 2-42(c) can be adjusted by turning the shaft on the poten-
tiometer to move the wiper arm contact. Using the voltage division rule, the voltage

vo 1s found as
R R
0o = (%) Vs (2-32)
RroraL

Adjusting the movable wiper arm all the way to the top makes R; zero, and voltage
division yields
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R -0
00 = (&> vs = s (2-33)
RroraL
In other words, 100% of the applied voltage is delivered to the rest of the circuit.
Moving the wiper all the way to the bottom makes R; equal to Rtorar, and voltage
division yields
R -R
Vo = < TOTAL TOTAL) s =0 (2-34)
RroraL
This opposite extreme delivers zero voltage. By adjusting the wiper arm position, we .
can obtain an output voltage anywhere between zero and the applied voltage vs. E
When the wiper is positioned halfway between the top and bottom, we naturally §
expect to obtain half of the applied voltage. Setting Ry =1 Rrorar yields g
_1 , :
o = <RTOTAL 2 RTOTAL) Vg = D_S (2_35) Trim pots. §
RroraL 2 (b)
as expected. The many applications of the potentiometer include volume controls,
voltage balancing, and fine-tuning adjustment. R
RroraL <1—0—o+
Vs RroraL — Ry Yo

Exercise 2-23

Ten volts (vs) are connected across the 10-kQ potentiometer (Rtorar) shown in
Figure 2-42(c). A load resistor of 10 kQ is connected across its output. At what resistance
should the wiper (RroraL—R1) be set so that 2 V appears at the output, vo?

Answer: RroraL—Ri=2.36kQ.

Exercise 2-24

For the circuit shown in Figure 2-43, find the values of the output v as the potentiometer is
moved across its range. Then determine the value of v¢ if the potentiometer is set to exactly
halfway of its range.

Answers: 0<vo<15V

When the potentiometer is set to halfway, vo=6V.

@ DESIGN EXAMPLE 2-21

Design a voltage divider that will provide 5.5 V5% from a 9-V battery using only
the £10% standard-value resistors (see inside back cover). The current from the
source should be at or below 0.5 mA to avoid draining the source too quickly.

SOLUTION:
The percentage of the 9-V source desired is
55
—=0.6111
9
Using the voltage division rule, we want
R,
RiR 0.6111
R, = 0.6111R; +0.6111R,
0.6111R
Ry=——1-157R,

0.3888

(©)
FIGURE 2-42 The

O

potentiometer: (b) More actual

devices. (c) An application.

FIGURE 2-43

5kQ
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FIGURE 2-44

FIGURE 2-45 A current

divider circuit.

Selecting R; =1kQ and R, =1.5 k&, both of which are standard values, provides an
output voltage of
_ R2 x 9

= =54V
R1+R2

vo

This result is well within the range of acceptable values of 5.225V <wvg <5.775 V.
Checking to see what the current drain on the source is, we use Ohm’s law.

vs 9

=R TR, 100011500 >6mA

This fails to meet the second requirement, a current less than or equal to 0.5 mA. Our
choice of resistors is too small. Selecting R; =10 kQ and R, =15 kQ, both also standard
values, provides the same ratio but a current of only 0.36 mA, thus meeting both require-
ments. Some other R; — R, pairs that would work are 22kQ and 33 kQ2,47 kQ and
68 kQ, and 100 kQ and 150 k€. Figure 2-44 shows the design task and our chosen result.

R, i<05mA 10kQ =036 mA
AW AWV
+__ + +__ +
9V _— R, Z55V5% 9V _— 15kQ =54V

(a) (b)

The designer should be aware that the actual resistor values must be checked to
verify the final design stays within the 5% tolerance for the output voltage.

In design, one must start somewhere and make an assumption. Testing the
assumption may result in the realization that the assumption was wrong and a new
assumption must be made. Design by its nature is often an iterative process. |

CurreNT Division
Current division is a simple way to find the current through each element of a parallel
circuit. It is the dual of voltage division, so we will observe some similarities in the
form of the equations for the two approaches. Figure 2—45 shows a parallel circuit
that lends itself to solution by current division. Applying KCL at node A yields

is =i +i)+i3
The voltage v appears across all three resistances since they are connected in parallel.
Using Ohm’s law, we can write

i —vi-i-uiﬂ)i—v i+i+i
5= Ry R, R3_ Ri Ry R;

and solve for v as

. 1
UTRTTT 1
R"R R
Given the voltage v, the current through any element is found using Ohm’s law as
1,
1 R Giis

(2-36)

ll:vR_1:1 1 1 :G1+G2+G3

R R, R;
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1.
| R, Gais
2 URQ i i i G1+G2+G3 (=3
Ri R, R;
! i
. 1 Ry ® Gsis
—p— = = 2-38
B 0R3 i_i_i_'_i G1+G2+G3 ( )
R, R, R;

These results show that the source current is divided among the parallel resistors in
proportion to their conductances divided by the equivalent conductances in the par-
allel connection. Thus, the general expression for the current through the kth resistor
is given by the current division rule as

1
. Ry . G \.
= k ITOTAL = nls ITOTAL (2-39)
1 + L +ot 1 GEo
Ry R Ry,

Comparing this equation with Eq. (2-31) for voltage division, we see how similar they
look. In essence, if you know one rule you know the other: Replace v with i and R
with G in the voltage division rule to obtain the current division rule, and vice versa.
This is one of the strengths of the concept of duality.

For the two-resistor case in Figure 2-46, the current i; is found using current
division as

1
. ( G \. R . [ Ry \.
ll—(G1+G2)ls—1+1ls—<R1+R2)ls (2-40)
Ri R,
Similarly, the current i, in Figure 246 is found to be
1
. ( G \. R, . [ R \.
l2—<G1+G2)ls—i+ils—<R]+R2)ls (2—4])
R R

These two results lead to the following two-path current division rule: When a circuit
can be reduced to two equivalent resistances in parallel, the current through one
resistance is equal to the other resistance divided by the sum of the two resistances
times the total current entering the parallel combination.

Caution: Equations (2-40) and (2-41) apply only when the circuit is reduced to
two parallel paths in which one path contains the desired current and the other path
is the equivalent resistance of all other paths.

EXAMPLE 2-22
Find the current i in Figure 2-47(a).

SOLUTION:

To find i, we reduce the circuit to two paths, a path containing iy and a path equiv-
alent to all other paths, as shown in Figure 2-47(b). Now we can use the two-path
current divider rule as

6.67

lxszSZLZSA

+ o

FIGURE 2-46 Two-path

current divider circuit.
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Exercise 2-25

l ; (a) Find iy and i, in the circuit of Figure 2-47(a).
z
(b) Show that the sum of i, iy, and i, equals the source current.
zs50 A ,
nswers:

(a) iy=125A;i,=25A

(a)

Equivalent path

-l
5A<f>

Desired path

(b)
FIGURE 2-47
FIGURE 2-48

(b) ix+iy+i,=5A

Exercise 2-26

The circuit in Figure 2-48 shows a delicate device that is modeled by a
90-Q equivalent resistance. The device requires a current of 1 mA to
operate properly. A 1.5-mA fuse is inserted in series with the device

-—— Equivalent

§ 20Q § 6.67 Q resistance to protect it from overheating. The resistance of the fuse is 10 Q. With-

out the shunt resistance Ry, the source would deliver 5 mA to the
device, causing the fuse to blow. Inserting a shunt resistor Ry diverts
a portion of the available source current around the fuse and device.
Select a value of Ry so only 1 mA is delivered to the device.

. 1.5 mA fuse, 10 Q
Shunt resistor Ry

\\- 5\9/—l 1 mA required

10 mA CD 1000 900 L Bk

Answer: R,=125Q

APPLICATION EXAMPLE 2-23

Batteries chemically produce electricity that is used to power many portable devices
including cell phones, tablet computers, flashlights, hearing aids, back-up power, and
automobiles to mention just a few. Batteries are rated in both voltage and ampere-
hours. A typical car battery delivers a nominal 12 V for 70 A-hrs while a “D-cell”
delivers 1.5 V for 4.5 A-hrs. Batteries are not ideal sources; they are all real or prac-
tical sources of energy and must be modeled as an ideal voltage source in series with a
resistor. The series resistor models the battery’s internal resistance, which can vary
from a few milliohms for a car battery to as high as 100 ohms for a hearing-aid battery.
As a battery ages, especially in use, its internal resistance increases decreasing its use-
fulness. Therefore, it is good practice to measure a battery’s voltage while under load
since measuring the battery’s voltage with an open circuit could indicate a good volt-
age regardless of its internal resistance. The following example looks at the effect of a
battery’s internal resistance on the current available to a load.

A car battery of 12.6 V and an internal resistance of 25 mQ delivers 100 mA to
accessories and 210 A to the starter motor of a 6-cylinder car. Find the resistance
of the starter motor.

SOLUTION:
Figure 2-49(a) shows the circuit in question. There are several ways to tackle this
problem. Let’s solve it two ways. For our first approach we will do a source
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| 100ma | | 2104

iloo mA

25 mQ
504 A
Battery Battery

FIGURE 2-49

transformation as shown in Figure 2-49(b). We know that the total current delivered
to the loads is 210.1 A. we can use a current divider, Eq. (2-41), to find the total resist-
ance of the loads.

.~ Ryxirom _ 0.025x504
FLoads = Rs + RLoads - 0.025 + RLoads =21014

Solving for Ry oags yields 34.97 mQ
Ohm’s law can be used to find the voltage across the total load

Vioads =210.1 x 0.03497 =7.3475 V

Ohm’s law can again be used to find the resistance of the starter motor

7.3475
RMolor = 7210 =34.98 mQ

A second, somewhat simpler, approach is to realize that 210.1 A are flowing through
the source resistance. This results in a voltage drop of

Vsource =210.1 x0.025=5.2525V
By KVL this leaves 12.6—5.2525 =7.3475 V across the loads. We can then solve for
RMotor as before and find it to be 34.98 mQ. [ |

Exercise 2-27

Repeat the problem of Example 2-23 if the battery’s internal resistance increases to 70 mQ.
Will there be sufficient current available to start the car?

Answer: A source transformation can quickly show that there will be a maximum of only
180 A available for the motor and accessories. The battery is insufficient to power the start-
ing motor and accessories and driver will hear that stomach-wrenching sound. Rrrrrr-rrr-
rr-ugh!

APPLICATION EXAMPLE 2-24

The R—-2R ladder circuit in Figure 2-50 is a binary current divider that finds applica-
tions in digital-to-analog signal conversion. The operation of this circuit can be
explained using current division together with series and parallel equivalent resist-
ance. The equivalent resistance connected to ground at node 3 is 2R||2R = R, which
means that the equivalent resistance seen to the right of node 2 of R + R=2R. This in
turn means that the total equivalent resistance connected to ground at node 2 is

Lo : E i
i 12.6 V ] I () ]
i <_> 0 ] § RACC § RMomr E E § RACC § RMO[OT

i210A
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2R||2R=R and hence the equivalent resistance seen to the right of node 1 of
R+ R=2R. The net result is that the equivalent resistance seen to the right of each
numbered node is 2R.

The reference current /rgr entering node 1 divides equally
between the two available 2R paths with the result that
i1 = Irpr/2, and the current into node 2 is also i = Irgp/2. At
node 2 this current again divides equally between the two 2R
paths with the result that i, =i; /2 = Irgr/4 and the current into
node 3 is i, = Irgp/4. Finally, at node 3 this current divides
equally once more so that i3 =i,/2 = Irgr/8. In sum, the cur-
FIGURE 2-50 rents in the 2R resistors connected to ground are all of the form
i = Irgr/ 2% where k is the node number to which the resistor is
connected. Thus, the R—2R ladder circuit produces signals
(currents in this case) that decrease in a binary fashion as we
proceed down the ladder.

Clearly, the R—2R ladder can be extended to a larger number of nodes. Commer-
cially available integrated circuit ladders have as many as eight-numbered nodes pro-
ducing binary currents ranging from Irgr /2 to Irgr/256. The advantage of this circuit
is that it produces this wide range of precisely related signals using only two values of
resistance, namely R and 2R. This greatly simplifies the fabrication of the R—2R lad-
der in integrated circuit form.

2-6 Circuit RepuctioN

The concepts of series/parallel equivalence, voltage/current division, and source
transformations can be used to analyze ladder circuits of the type shown in
Figure 2-51. The basic analysis strategy is to reduce the circuit to a simpler equivalent
in which the output is easily found by voltage or current division or Ohm’s law. There
is no fixed pattern to the reduction process, and much depends on the insight of the
analyst. In any case, with circuit reduction we work directly with the circuit model,
and so the process gives us insight into circuit behavior.

FIGURE 2-51 A ladder circuit. 0—| h‘|j h‘|j L‘|;|—{ ﬁ
o . o . ——o

With circuit reduction, the desired unknowns are found by simplifying the circuit
and, in the process, eliminating certain nodes and elements. However, we must be
careful not to eliminate a node or element that includes the desired unknown voltage
or current. The next three examples illustrate circuit reduction. The final example
shows that rearranging the circuit can simplify the analysis.

EXAMPLE 2-25

Use series and parallel equivalence to find the output voltage v and the input cur-
rent is in the ladder circuit shown in Figure 2-52(a).
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SOLUTION:

One approach is to combine parallel resistors and use voltage division to find vo and then
combine all resistances into a single equivalent to find the input current is. Figure 2-52
(b) shows the step required to determine the equivalent resistance between the term-
inals B and ground. The equivalent resistance of the parallel 2R and R resistors is

Rx2R 2
R+2R 3

The reduced circuit in Figure 2-52(b) is a voltage divider. Notice that the two nodes
needed to find the voltage vp, nodes B and ground, have been retained. The
unknown voltage is found in terms of the source voltage as
2
32
VO = s = g vs
~R+R
ZR+
The input current is found by combining the equivalent resistance found previously

with the remaining resistor R to obtain

Reo1 =

Req2 = R+ Rgo1

25
=R+-R=ZR
3073
Application of series/parallel equivalence has reduced the ladder circuit to the single
equivalent resistance shown in Figure 2-52(c). Using Ohm’s law, the input current is

Us 3 vs

lS:REQZ_gﬁ

Notice that the reduction step between Figure 2-52(b) and (c) eliminates node B, so
the output voltage vp must be calculated before this reduction step is taken. |

Exercise 2-28

In Figure 2-52, R =15 kQ. The voltage source vs =5 V. Find the power delivered to the cir-
cuit by the source.

Answer: ps=1mW

EXAMPLE 2-26

Use source transformations to find the output voltage vo and the input current is in
the ladder circuit shown in Figure 2-53(a).

SOLUTION:
Figure 2-53 shows another way to reduce the circuit analyzed in Example 2-25.
Breaking the circuit at points X and Y in Figure 2-53(a) produces a voltage source
vs in series with a resistor R. Using source transformation, this combination can be
replaced by an equivalent current source in parallel with the same resistor, as shown
in Figure 2-53(b).

Caution: The current source vs/R is not the input current is, as is indicated in
Figure 2-53(b). Applying the two-path current division rule to the circuit in
Figure 2-53(b) yields the input current is as

is = = o
§R+R R°5,75R

Reqa

FIGURE

2-52
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FIGURE 2-53

(©
The three parallel resistances in Figure 2-53(b) can be combined into a single equiv-
alent conductance without eliminating the node pair used to define the output volt-

age vo. Using parallel equivalence, we obtain

1 1 1 5
GEQ_G1+G2+G3_E+ﬁ+§_ﬁ

which yields the equivalent circuit in Figure 2-53(c). The current source vs/R deter-

mines the current through the equivalent resistance in Figure 2-53(c). The output
voltage is found using Ohm’s law.

B (l)s) " 2R\ 2
0=\R)\5)75™
Of course, these results are the same as the result obtained in Example 2-25, except that
here they were obtained using a different sequence of circuit reduction steps. [ |

Exercise 2-29

In Figure 2-53(a), find the current through the 2R resistor.

Answer: ipr=->A
R=35R

EXAMPLE 2-27

Find vy in the circuit shown in Figure 2-54(a).

SOLUTION:

In the two previous examples, the unknown responses were defined at the circuit
input and output. In this example, the unknown voltage appears across a 10-Q resis-
tor in the center of the network. The approach is to reduce the circuit at both ends
while retaining the 10-Q resistor defining vy. Applying a source transformation to the
left of terminals X-Y and a series reduction to the two 10-Q resistors on the far right
yields the reduced circuit shown in Figure 2-54(b). The two pairs of 20-Q resistors
connected in parallel can be combined to produce the circuit in Figure 2-54(c).
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Rgq1

0.75 A

20Q

Rgq3 W Rgqo

10Q
0.75A

1

FIGURE 2-54
(©)
At this point there are several ways to proceed. For example, a source transformation
at the points W-Z in Figure 2-54(c) produces the circuit in Figure 2-54(d). Using
voltage division in Figure 2-54(d) yields oy,
10
Ux—mx7.5—2.5\7 ;
Yet another approach is to use the two-path current division rule in o \MAN——o AN
Figure 2-54(c) to find the current i, 20 Q 15Q 4
. 10 31, 2A 10Q 30 Q 150% ),
*10+10+10 “ 4~ 4 -
Then, applying Ohm’s law to obtain vy,
o =10xi,=2.5V - FIGURE 2-55
Exercise 2-30
Find vy and iy using circuit reduction on the circuit in Figure 2-55. TVx— 1kQ 1kQ
Answers: v,=3.33V;i,=0444 A 1/\5/\/12’9 /\Q/i/Jr W
: +
. 2.2kQ 3kQ R 33kQ SV
Exercise 2-31 = ez 6V+l §_y
Find vy and vy using circuit reduction on the circuit in Figure 2-56. - 1_

Answers: vy=-3.09V;0,=921V FIGURE 2-56
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2R 2R
Vo
Vs
(a)

+

O
j’\/w

+

2R 2R 2R
Vs Yo
(b)
®
+
2RS 2R R
vs
2R \R
(©)
@ &
R +
s 2R Yo
2
()
FIGURE 2-57
1.5kQ 1kQ 1kQ

FIGURE

2-58

EXAMPLE 2-238

Using circuit reduction, find vo in Figure 2-57(a).

SOLUTION:

One way to solve this problem is to notice that the source branch and the leftmost
two-resistor branch are connected in parallel between node A and ground. Switching
the order of these branches and replacing the two resistors by their series equivalent
yields the circuit of Figure 2-57(b). A source transformation yields the circuit in
Figure 2-57(c). This circuit contains a current source vs/2R in parallel with two
2R resistances whose equivalent resistance is

2Rx2R
2R+2R

Applying a source transformation to the current source vs/2R in parallel with Rgg
results in the circuit of Figure 2-57(d), where

VEQ = (D—S) X Rpq = (U—S>R:U—S

Rpo=2R|[2R =

2R 2R 2
Finally, applying voltage division in Figure 2-57(d) yields
_ 2R vs _ Us
"0Z\R+R+2R)2 " 4 =

Exercise 2-32

Find the voltage across the current source in Figure 2-58.

Answer: 0v5=-0.225V

2-7 CompPuTter-Aipep Circuit ANALYSIS

In this text, we use three types of computer programs to illustrate computer-aided
circuit analysis, namely spreadsheets, math solvers, and circuit simulators. Practicing
engineers routinely use these tools to analyze and design circuits, so it is important to
learn how to use them effectively. The purpose of including computer examples in
this book is to help you develop an analysis style that includes the intelligent use
of computer tools. As you develop your style, always keep in mind that computer
tools are not problem solvers. You are the problem solver. Computer tools can be
very useful, even essential, once you have defined the problem. However, they do
not substitute for an understanding of the fundamentals needed to formulate the
problem, identify a practical approach, and interpret analysis results.

There are about 100 worked examples and exercises in the text that use computer
tools. The spreadsheet examples use Microsoft Excel. The math solver examples use
MATLAB Release 2013b by The MathWorks, Inc. The circuit simulation examples
use NI Multisim V13 Student Edition by National Instruments.

Our objective is to illustrate the effective use of computer tools rather than
develop your ability to operate these specific software programs. Although this book
provides examples as helpful starting points, it does not emphasize the details of how
to operate any of these software tools. We assume that you learned how to operate
computer tools in previous courses or have enough familiarity with your computer’s
operating system to learn how to do so using online tutorials or any of a number of
commercially available manuals.

The following discussion gives a brief overview of circuit simulation and of apply-
ing a math solver to a circuit analysis problem. Many more examples will follow in
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subsequent chapters. Web Appendix D provides additional information on computer
programs that support circuit analysis.

Circurt Simuration Using CIRcuIT SimuLATiON SOFTWARE

Most circuit simulation programs are based on a circuit analysis package called
SPICE, which is an acronym for Simulation Program with Integrated Circuit Empha-
sis. Figure 2-59 is a block diagram summarizing the major features of a SPICE-based
circuit simulation program. The inputs are a circuit diagram and the type of analysis
required. In contemporary programs, the circuit diagram is drawn on the monitor
screen using a graphical schematic editor. When the circuit diagram is complete,
the input processor performs a schematic capture, a process that documents the circuit
in what is called a netlist. To initiate circuit simulation, the input processor sends the
netlist and analysis commands to the simulation processor. If the netlist file is not
properly prepared, the simulation will not run or (worse) will return erroneous
results. Hence, it is important to check the netlist to be sure that the circuit it defines
is the one you want to analyze.

Circuit [/ \  Netlist
——

diagrams Input —

Analysis processor Commands | Circuit

—_— fil
type \ J ¢

Device
library

Analysis -

summary

Simulation
processor

Analysis

Output
processor

Response
data file

results

The simulation processor uses the netlist together with data from the device
library to formulate a set of equations that describes the circuit. The simulation proc-
essor then solves the equations, writes a dc analysis summary to a standard SPICE
output file, and writes the other analysis results to a response data file. For simple
dc analysis, the desired response data are accessible by examining the SPICE output
file. For other types of analysis, the output processor can be used to generate graph-
ical plots of the data in the response data file.

There are numerous circuit simulation software products available to students—also
to professionals — that simplify the analysis, design, and evaluation of electronic circuits.
In creating this text, we looked at several competing products: OrCAD by Cadence,
Multisim by National Instruments, Circuitlab by CircuitLab, Inc., and DoCircuits by
Sparsha Learning Technologies Pvt Ltd. All of these can be used successfully to solve
the problems in this text. Students can choose whichever product suits them or their
instructor. Space limits us to selecting one for the print edition of this text. We chose
National Instrument’s Multisim because of its ease of use, low cost, breath of problems
it can easily be used on, the ability to insert virtual laboratory instruments in a circuit,
and its easy integration with another NI product LabView.

FIGURE 2-59 Flow diagram
for circuit simulation programs.
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FIGURE 2-60

National Instrument’s Multisim, also called Electronic Workbench, offers a
student-friendly tool to simulate electronic circuits. Web Appendix D provides many
examples that use Multisim to simulate circuit performance and can be used by the
student to see how circuit simulation works for different circuits and analyses. In gen-
eral, Multisim is used to view currents, voltages, and powers at various nodes or
devices in a circuit. The following example illustrates the main steps in solving a cir-
cuit analysis problem via simulation.

EXAMPLE 2-29

Use Multisim to find the voltages and currents for the circuit in Figure 2-22
(Example 2-10).

SOLUTION:

There are two methods to simulate your results using Multisim. We will cover both of
them. In the first method, we use instruments much like you would use in the labo-
ratory to view the simulation results. In the second method, we will define the vari-
ables we wish to simulate and view the results on a spread sheet. For the first method,
the main steps required to solve this problem using Multisim are as follows:

1. Graphically draw the circuit schematic using Multisim’s Design board.

2. Add whatever instruments you wish to view the results on.

3. Tell the program what type of simulation is desired.

4. Simulate the circuit (Run) and view the results. |

Begin by creating the circuit schematic by using the “Place” menu option and pla-
cing the appropriate components (three resistors, a dc voltage source, and a ground
on the workspace). Click on the resistor values and adjust each to match the problem.
Do the same for the voltage source. Then using the “Simulate” menu under
“Instruments,” select the instruments (Digital Multimeters or DMMs) you wish to
use to measure the three currents and two unknown voltages. Connect each part
and the instruments using the wiring tool. Recall that you must intercept the wires
to measure current—a through variable—when connecting the DMM as an ammeter.
Figure 2-60 shows the resulting Multisim schematic. Once the circuit is wired, click on

Place Components

Simulate:
(a) Select Instruments T
(b) Select Analysis type == =

B A LN R
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each instrument to view the setup for each instrument. Select “A” to measure current
and “V” to measure voltage. Note that the physical layout of the Multisim schematic
looks different than that of Figure 2-22. Multisim does not allow for diagonal part
placement. Although they look different, the two circuits have the same connections
and are electrically and functionally equivalent. You can verify this fact by writing
device and connection equations for both of the circuits.

The next step is simply to run your simulation by hitting the little green “Run”
triangle. The DMMs will display the desired parameters as shown in the figure.

The second method requires a little more effort to set up but yields more detailed
results. Proceed as follows:

1. Graphically draw the circuit schematic using Multisim’s Design board as above
but do notinclude any instruments. Click on the various nodes and a “Net Prop-
erties” window opens. Type in the name you wish to assign to that node —we
chose “V1”—and enter it in the box labeled “Preferred net name.” Repeat
for all nodes. This should result in the circuit of Figure 2-61(a).

2. Next you must tell Multisim what type of analysis you wish to run. Under
the “Simulate” menu option, select “Analyses” and “DC operating point”
as shown in Figure 2-61(b). The “DC Operating Point Analysis” window

100Q 1%
R
] 3 R
— 300Q2 2
0V = g’ 200Q
0
=
(@

8 File Ecit View Place MCU [ Simulate Transfer Tools Reports Options Window Help

DZs@|SR| 46 P e B

*ww%%fbﬂ.{ﬂ’hmsmp

FIGURE 2-61

1l Pause £

Instruments

Interactive simulation settings

Mixed-mode simulation settings

NI ELVIS [l simulation settings

Postprocessor

Simulation error log/audit trail
XSPICE command fineinterface
Load simulation settings...
Save simulation settings...
Automatic fault option...
Dynamic probe properties

Reverse probe direction

Selected varisbles for analyss:
All variables o

Edt expression..,

| Add expresson...

Filter selected varibles. ..

|

BE-

Single frequency AC analysis...
Transient analysis...

Fourier analysis...

Noise analysis...

Moise figure analysis...
Distortion analysis...

UL sweep...

Sensitivity...

Clear instrument data

Use tolerances

(b)

P Sweep...
Temperature sweep...
Pole zero...

Transfer function...
Worst case...

Monte Carlo...

Trace width analysis...
Batched analysis..
User defined analysis...

Stop analysis

QD | Aty ontiens | Smmary |
Variabies in areuit:

Ect expresacn...

: [ addeessn... |
1
: |
| T [ —— [reye—
| More oplors:
[Beeeieme]  gon -
Dot selocied vadobie Sebect varibies b eave
smie || o || caa ne |
|
(d)
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FIGURE 2-62 ) Variable Operating point value
File Edit View Graph Trsce Cursor Legend Tool:
B Q|9 X B E @A I(R1) 0.1
DC Operating Paint |
I(R2 0.1
Example 2-29 ®2
DC Operating Point Analysis 1(R3) 0.1
Variable [ operatingpontvalue |
[L]Ry 100.000 m (V1) 0.2
2 [IR2) 100,000 m
EEE) 100.000m P(V1) -6
F] I(V],) -200.000 m
[sron oo | V(vl) 30
iv(vl) 30.000
7 [V )v(v2) 10.000 ~
ed e V(v1)-V(v2) 10
|[Selected Disgram:DC Operating Point Analysis V(v2) 20
(@) (b)

opens and a listing of the variables that this analysis can find are listed on the
left side of the window as shown in Figure 2-61(c). Select the variables
desired and move them to the right side of the window as shown in
Figure 2-61(d). Note that there is no ready choice for the voltage across
R;. Knowing v; and v,, one can easily calculate that voltage, but Multisim
can do it for you. To do this, select “Add expression” and in the space pro-
vide type in the mathematical expression desired. In this case “V(vl)-V
(v2).” You are now ready to simulate the circuit.

3. Select “Simulate” on the bottom of the Analysis window and a new window
opens called “Grapher View” with all the desired results. These results are
shown in Figure 2-62(a). Note that these results can be exported to Excel.
Choose “Tools” under Grapher View and select “Export to Excel.” The
resulting spread sheet is shown in Figure 2-62(b).

FExercise 2-33 Note that one could even ask Multisim to calculate the power deliv-
DC Operating Point Analysis ered by the source ‘fP(Vl).” Itreturns —§ W,. the negative sign indicating
; - ; that the source delivers power to the circuit.
Variable Operating point value
L | Vo 25.000 Exercise 2-33
2 | VOV 12.500 Use Multisim to find all the voltages and currents in the circuit of Figure 2-47 []
3 | Vv 12.500 (a) (Example 2-22). o
4 | (R4 2.500 ‘
5 | 1®3) 3500 Answers: See Figure 2-63.
6 | I(R2) 1.250
7 | IR 1.250
FIGURE 2-63 Comparison oF CompuTeR-BaSED TECHNIQUES

We applied two Multisim-based approaches to solve the circuit analysis problem
originally presented as Example 2-10. Both approaches efficiently arrived at a com-
plete and correct solution and may offer some advantages over the manual approach
presented in Example 2-10. It is also possible to solve this problem using a math
solver such as MATLARB discussed in Chapter 1. As you explore these tools, you will
develop the experience and judgment to know when each tool is appropriate to assist
in solving a problem. The circuit simulation tools allow for visual representations of
the circuits and efficiently compute numerical solutions when all of the parameter
values are known. A math solver quickly manipulates a set of equations to find a solu-
tion, but you must relate the numerical results back to the original schematic to get
a full representation of the answer. Math solver software can offer distinct
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advantages over circuit simulation software when the circuit contains parameter
values expressed as variables such as R, v, or i rather than numeric values. The circuit
simulation software cannot directly handle this type of the problem, but the math
solver software accommodates it with only minor changes, as we will explore in
Chapter 3. As we develop circuit analysis and design techniques throughout the text,
we will continue to emphasize the advantages and disadvantages of the various com-
puter-based tools so that you can expand your judgment and efficiently apply the
appropriate tools for each problem. No matter what technique one uses, good “engi-
neering sense” must predominate. Results that just do not seem right should be chal-
lenged and verified. As you grow in knowledge and experience, you will develop and

enhance this important engineering characteristic.

SUMMARY

e An electrical device is a real physical entity, while a
circuit element is a mathematical or graphical model
that approximates major features of the device.

e Two-terminal circuit elements are represented by a
circuit symbol and are characterized by a single con-
straint imposed on the associated current and voltage
variables.

e An electrical circuit is an interconnection of electrical
devices. The interconnections form nodes and loops.

¢ A node is an electrical juncture of the terminals of two
or more devices. A loop is a closed path formed by
tracing through a sequence of devices without passing
through any node more than once.

¢ Device interconnections in a circuit lead to two con-
nection constraints: Kirchhoff’s current law (KCL)
states that the algebraic sum of currents at a node is
zero at every instant; and Kirchhoff’s voltage law
(KVL) states that the algebraic sum of voltages around
any loop is zero at every instant.

e A pair of two-terminal elements are connected in par-
allel if they form a loop containing no other elements.
The same voltage appears across any two elements
connected in parallel.

e A pair of two-terminal elements are connected in
series if they are connected at a node to which no other
elements are connected. The same current exists in
any two elements connected in series.

e Two circuits are said to be equivalent if they each have
the same i—o constraints at a specified pair of terminals.

e Series and parallel equivalence and voltage and current
division are important tools in circuit analysis and design.

* Source transformation changes a voltage source in
series with a resistor into an equivalent current source
in parallel with a resistor, or vice versa.

¢ Circuit reduction is a method of solving for selected
signal variables in ladder circuits. The method involves
sequential application of the series/parallel equiva-
lence rules, source transformations, and the voltage/
current division rules. The reduction sequence used
depends on the variables to be determined and the
structure of the circuit and is not unique.

e Computer-aided circuit analysis applies spreadsheets,
circuit simulation, or math solver software to analyze
circuit problems efficiently. The tools allow for visual
solutions and can eliminate the need to perform tedi-
ous or lengthy manual calculations.

PROBLEMS

O0BJECTIVE 2—1 ELemenT CoNSTRAINTS
(Secr. 2-1)

Given a two-terminal element with one or more electrical
variables specified, use the element i—v constraint to find the
magnitude and direction of the unknown variables.

See Examples 2-1 to 2-4 and Exercises 2-1 to 2-3.

2-1 The current through a 33-kQ resistor is 2.2 mA. Find the
voltage across the resistor.

2-2 The voltage across a particular resistor is 8.60 V and the
current is 366 pA. What is the actual resistance of the resis-
tor? Using the inside back cover, what is the likely standard
value of the resistor?

2-3 You can choose to connect either a 4.7-kQ resistor or a
47-kQ resistor across a 5-V source. Which will draw the least
current from the source? What is that current?

2-4 A model railroader wants to be able to electrically throw a
rail switch Rgyien from two different locations. He designs
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the circuit in Figure P2—4 using two single-pole double-throw
switches. Will it work? Explain.

Location A Location B
1 1

O———— O
2 2

Rsyitch
|t
'

Vs
FIGURE P2-4

2-5 A 100-kQ resistor dissipates 50 mW. Find the current
through the resistor.

2-6 The conductance of a particular semiconductor resistor is
0.05 mS. Find the current through the resistor when con-
nected across a 1.5-V source.

2-7 In Figure P2-7 the resistor dissipates 25 mW. Find Ry.

Py =25 mW
15V<f>

/
e
FIGURE P2-7

2-8 In Figure P2-8 find R, and the power supplied by the
source.

10 mA <1> 100V § R,

FIGURE P2-8

2-9 A resistor found in the lab has three orange stripes fol-
lowed by a gold stripe. An ohmmeter measures its resistance
as 34.9kQ. Is the resistor properly color coded? (See inside
back cover for color code.)

2-10 The i—v characteristic of a nonlinear resistor is v = 82i +
0.175.

(a) Calculate v and p fori = +£0.5, £1, £2, +5, and +10 A.
(b) Find the maximum error in v when the device is treated
as an 82-Q linear resistance on the range |i| < 0.5 A.

2-11 A 100-kQ resistor has a power rating of 0.25 W. Find the
maximum current that can flow through the resistor.

2-12 A certain type of film resistor is available with resist-
ance values between 10Q and 100 MQ. The maximum
ratings for all resistors of this type are 500 V and 0.25 W.
Show that the voltage rating is the controlling limit for
R > 1MQ and that the power rating is the controlling limit
when R < 1 MQ.

2-13 Figure P2-13 shows the circuit symbol for a class of two-
terminal devices called diodes. The i—v relationship for a spe-
cific pn junction diode is i = 5x 107" (e*" -~ 1)A.

(a) Use this equation to find 7 and p for v = 0, £0.1, £0.2,
+0.4, £0.8, and +1.0 V. Use these data to plot the i—v
characteristic of the element.

(b) Is the diode linear or nonlinear, bilateral or nonbilateral,
and active or passive?

(¢) Use the diode model to predict i and p forv=5V. Do you
think the model applies to voltages in this range?

(d) Repeat (c) forv=-5V.

4
fo———

. 4

FIGURE P2-13

2-14 A thermistor is a temperature-sensing element com-
posed of a semiconductor material, which exhibits a
large change in resistance proportional to a small change
in temperature. A particular thermistor has a resistance
of 5kQ at 25°C. Its resistance is 340 Q at 100°C. Assum-
ing a straight-line relationship between these two values,
at what temperature will the thermistor’s resistance
equal 1kQ?

O0BJECTIVE 2—-2 ConnecTioN CONSTRAINTS
(Sect. 2-2)

Given a circuit composed of two-terminal elements:

(a) Identify nodes and loops in the circuit.
(b) Identify elements connected in series and in parallel.

(c) Use Kirchhoff’s laws (KCL and KVL) to find
selected signal variables.

See Examples 2-5 to 2-7 and Exercises 2—4 to 2-8.

2-15 In Figure P2-15i, = -6 A and i3 = 2 A. Find i; and iy.

FIGURE P2-15

2-16 In Figure P2-16 determine which elements are in series,
parallel, or neither. How many different nodes and loops are
there in the circuit? Thenifv, = 3Vandv; = 5V, find vy, vy,
and vs.
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Vi V3 Vs
FIGURE P2-16

2-17 For the circuit in Figure P2-17:

(a) Identify the nodes and at least two loops.
(b) Identify any elements connected in series or parallel.

(¢) Write KCL and KVL connection equations for the circuit.

® &
] « — 3]
NI

AN

FIGURE P2-17

2-18 In Figure P2-17 i, = -30mA and iy = 20mA. Find ;
and is.

2-19 For the circuit in Figure P2-19:
(a) Identify the nodes and at least five loops in the circuit.

(b) Identify any elements connected in series or in parallel.

(¢) Write KCL and KVL connection equations for the circuit.

+ //il

- vs+

FIGURE P2-19

2-20 In Figure P2-19 v, =20V, v3 = =20V, and v4 = 6 V.
Find Vi, Vs, and V6.

2-21 In many circuits the ground is often the metal case that
houses the circuit. Occasionally a failure occurs whereby a
wire connected to a particular node touches the case caus-
ing that node to become connected to ground. Suppose
that in Figure P2-19 node C accidently touches ground.
How would that affect the voltages found in prob-
lem 2-20?

2-22 The circuit in Figure P2-22 is organized around the three

signal lines A, B, and C.

(a) Identify the nodes and at least five loops in the circuit.

(b) Write KCL connection equations for the circuit.

(¢) Ifiy = —=30mA, i, = —18mA, and i3 = 75 mA, find iy, is,
and ig.

(d) Show that the circuit in Figure P2-22 is identical to that
in Figure P2-109.

®
©

is li6

|

._
)
w
IS
w
S P

i i) i L

FIGURE P2-22

2-23 Are any of the elements in Figure P2-23 in series or par-
allel? If so, identify the ones that are. Then if v, = 10V,
vg = 10V, and vs = 5V, find vy, v3, and vg.

FIGURE P2-23

2-24 Are any of the elements in Figure P2-24 in series or par-
allel? If so, identify the ones that are. Then if ij = -5 mA,
ip = 10mA, and i3 = —15mA, find i4 and is.
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22kQ i

FIGURE P2-29

2-30 Find v, and i, in Figure P2-30. Compare the results of
your answers with those in problem 2-29. What effect did
adding the 33-kQ resistor have on the overall circuit? Did
the power supplied by the source change?

2kQ

FIGURE P2-24

2-25 (a) Use the passive sign convention to assign voltage vari-
ables consistent with the currents in Figure P2-24. Write three
KVL connection equations using these voltage variables.

(b) Ifvy4 = 0V, what can be said about the voltages across all
the other elements?

FIGURE P2-30

2-26 1f a wire is connected between nodes B and C in Figure P2
—24, what can be said about the voltages across each of the ~ 2-31 A modeler wants to light his model building using minia-
elements? ture grain-of-wheat light bulbs connected in parallel as shown

in Figure P2-31. He uses two 1.5-V “C-cells” to power his

lights. He wants to use as many lights as possible but wants

Node A —ij+ir—ig=0 to limit his current drain to 500 pA to preserve the batteries.

Node B —iy—iz+is= 0 If each light has a resistance of 50 kQ, how many lights can he

install and still be under his current limit?

2-21 The KCL equations for a three-node circuit are as follows:

Node C i1+i3+i4—i5=0 )
N - o <500 pA —— nlights ——
Draw the circuit diagram and indicate the reference directions

— )
for the element currents.
1.5V C
OBJecTiveE 2-3 CompinNeD CONSTRAINTS é)
(Secr. 2-3) sv(*) S0k
Given a linear resistance circuit, use the element constraints :

and connection constraints to find selected signal variables. o
See Examples 2-8 to 2-12 and Exercise 2-9 to 2-13. FIGURE P2-31

2-32 Find v, and i, in Figure P2-32.

2-28 For the circuit in Figure P2-28, write a complete set of

connection and element constraints and then find v, and i. 5Q Ix
33kQ i
T Rest of
the
circuit

+
500 pA
: * 56 kQ Vx

- FIGURE P2-32
2-33 In Figure P2-33:

(a) Assign a voltage and current variable to every element.
FIGURE P2-28 (b) Use KVL to find the voltage across each resistor.

2-19 For the circuit in Figure P2-29, write a complete set of (¢) Use Ohm’s law to find the current through each resistor.

connection and element constraints, then find vy and iy. (d) Use KCL to find the current through each voltage source.
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200 Q 200 Q
M * AW\
(? 10V 5V éf) 15v(+
FIGURE P2-33
2-34 Find vo in the circuit of Figure P2-34.
200 Q
AW
100 Q 100 Q
M * M
o+
C‘D 10V 5V Yo
FIGURE P2-34
2-35 Find the power provided by the source in Figure P2-35.
500 Q
rs \ +—Wy
10 mA 1kQ 1.5 kQ
FIGURE P2-35

2-36 Figure P2-36 shows a subcircuit connected to the rest of
the circuit at four points.
(a) Use element and connection constraints to find vy and iy.
(b) Show that the sum of the currents into the rest of the cir-
cuit is zero.
(¢) Findthe voltage v withrespect to the ground in the circuit.

Rest of the circuit

FIGURE P2-36

2-37 In Figure P2-37 iy = 0.33 mA. Find the value of R.

Rest of the circuit

FIGURE P2-37

2-38 Figure P2-38 shows a resistor with one terminal con-
nected to ground and the other connected to an arrow.
The arrow symbol is used to indicate a connection to
one terminal of a voltage source whose other terminal is
connected to ground. The label next to the arrow indicates
the source voltage at the ungrounded terminal. Find the
voltage across, current through, and power dissipated in
the resistor.

-18V

FIGURE P2-38

OsJective 2—4 Equivatent Circuits
(Secr. 2-4)

(a) Given a circuit consisting of linear resistors, find the
equivalent resistance between a specified pair of
terminals.

(b) Given a circuit consisting of a source-resistor combi-
nation, find an equivalent source-resistor circuit.

See Example 2-13 to 2-15 and Exercises 2-14 to 2—-18.

2-39 Find the equivalent resistance Rgq in Figure P2-39.

REQ
o— W\ AW
25Q 100 €
300 Q
O
FIGURE P2-39

2-40 Find the equivalent resistance Rgq in Figure P2—40.
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REQ
o—VN\— MWV
68 kQ 33 kQ
82 kQ 47 kQ
e}
FIGURE P2-40

2-41 Find the equivalent resistance Rgq in Figure P2—41.

Rg
Q 47 kQ

o—y AWV

56k 15kQ S 15 kQ

e

FIGURE P2-41

2-42 Equivalent resistance is defined at a particular pair of
terminals. In Figure P2-42, the same circuit is looked at from
two different terminal pairs. Find the equivalent resistances
Rgo1 and Rgq: in Figure P2-42. Note that in calculating
Rgqy the 33-kQ resistor is connected to an open circuit and
therefore does not affect the calculation.

REQ] REQ2
o AN ’ o
10 kQ
= 56kQ

22 kQ

A, A ——4—
33kQ 15 kQ
FIGURE P2-42

2-43 Find Rgo in Figure P2-43 when the switch is open.
Repeat when the switch is closed.

100 ©
Rgq
50 Q
100 100Q
o
FIGURE P2-43

2-44 Find Rgo between nodes A and B for each of the circuits
in Figure P2—-44. What conclusion can you draw about resis-
tors of the same value connected in parallel?

B
0_/\/1\3/\/_0
w W
i
o—/\ﬁ/\,—o n Rs
O e ORI B
(b)
FIGURE P2-44

2-45 Show how the circuit in Figure P2-45 could be connected to
achieve a resistance of 100, 200, 150, 50, 25, 33.3, and 133.3 Q.

FIGURE P2-45

2-46 In Figure P2-46 find the equivalent resistance between
terminals A-B, A-C, A-D, B-C, B-D, and C-D.

@ 22 kQ

100 kQ

© 100 kQ @
FIGURE P2-46

2-47 In Figure P2-47 find the equivalent resistance between
terminals A-B, A-C, A-D, B-C, B-D, and C-D.
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2-52 In Figure P2-52, the i—v characteristic of network N is
v + 50i = 5V. Find the equivalent practical current source
for the network.

R
——®
+

v
—®

FIGURE P2-52

2-53 Select the value of R, in Figure P2-53 so that Rgg =
FIGURE P2-47 100 kQ.

2-48 Select a value of Ry in Figure P2-48 so that Rgq = 15kQ.
Repeat for Rgg = 11 kQ.

22 kQ
Reg 2kQ
o o AN ——
\—> 22 kQ

Rg

40kQ 47kQ

FIGURE P2-53

e}

2-54 Two 10-kQ potentiometers (a variable resistor whose
value between the two ends is 10kQ and between one end
and the wiper—the third terminal—can range from 0Q to
10kQ) are connected as shown in Figure P2-54. What is
the range of Rgqg?

FIGURE P2-48

2-49 Using no more than four 1-kQ resistors, show how the fol-
lowing equivalent resistors can be constructed: 2 kQ, 500 Q,

1.5k, 333 Q, 200 Q, and 400 Q.
10 kQ

2-50 Do a source transformation at terminals A and B for each
practical source in Figure P2-50. T
(A)e—r

47Q 10 mA Req
g *
FIGURE P2-54

(a)
@ 2-55 Select the value of R in Figure P2-55 so that Rap = Ry.
100 kQ _ R R
sV ®

o T 4R Ry
®) c :

FIGURE P2-50
FIGURE P2-55
2-51 For each of the circuits in Figure P2-51, find the equiva- 9_56 ) - ”
lent practical voltage source at terminals A and B. —>0 What is the range of Rgq in Figure P2-36?
10 kQ
Doy DA NN
(a) (b) Rgq

FIGURE P2-51 FIGURE P2-56
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2-57 Find the equivalent resistance between terminals A and
B in Figure P2-57.

R R R
(A) o——W\ A AW

°(®)

FIGURE P2-57

OBJECTIVE 2-5 Vortace AND CuRRENT Division
(Sect. 2-5)

(a) Given a linear resistive circuit with elements con-
nected in series or parallel, use voltage or current
division to find specified voltages or currents.

(b) Design a voltage or current divider that delivers spe-
cified output signals.

See Examples 2-16 to 2-2 4 and Exercises 2-19 to 2-26.

2-58 Use voltage division in Figure P2-58 to find vy, vy, and v,
Then show that the sum of these voltages equals the source
voltage.

+ v — +tvy—
2kQ 8 kQ +
24 V 4kQ Vy
FIGURE P2-58

2-59 Use voltage division in Figure P2-59 to obtain an expres-
sion for vp in terms of R, Ry, and vs.

R

+

FIGURE P2-59

2-60 Use current division in Figure P2-60 to find iy, iy, and i,.
Then show that the sum of these currents equals the source
current.

ix i}’ iZ
3A + + +
2kQ 1kQ | 1.5kQ
FIGURE P2-60

2-61 Use current division in Figure P2-61 to find an expression
for v, in terms of R, Ry, and is.

R
AWV
T
is <D R R, Z v
FIGURE P2-61
2-62 Find iy, iy, and i, in Figure P2-62.
20 Q

5Q T
15Q ; 6 Q
y

ix¢

500 mA

FIGURE P2-62
2-63 Find vo in the circuit of Figure P2-63.

5kQ }
33%
10V 15kQS—0
Vo
° o
FIGURE P2-63

2-64 @ You wish to drive a 1-kQ load from your car battery

as shown in Figure P2-64. The load needs 5V across it to
operate correctly. Where should the wiper on the potentiom-
eter be set (Ry) to obtain the desired output voltage?

} Ry své 1kQ
FIGURE P2-64
2-65 Find the range of values of vo in Figure P2-65.
1 kQ
MW
+
12V

1.5kQ T 15 k9§ Vo

FIGURE P2-65
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2-66 Use current division in the circuit of Figure P2-66 to find
Rx so that the voltage out is 3 V. Repeat for 5V.

Rx

M

+

1A<D 10Q 102 vo

FIGURE P2-66

FIGURE P2-69

2—67@1:' P2-67 sh ltage bridge circuit
leure Shows a voltage bridge cretit, 9 79 @ Select a value of Ry in Figure P2-70 so

that is, two voltage dividers in parallel with a source

vs. One resistor Rx is variable. The goal is often to “bal- that vy = 4V.
ance” the bridge by making vy = 0 V. Derive an expres- 1kQ Ry
sion for Ry in terms of the other resistors for when the i
bridge is balanced. 24V
2 1 kQ=1kQ VL
N Rc o )
+ vy — FIGURE P2-70

Vs<1_> o O
)$/ 2-71 @ Select a value of R, in Figure P2-71 so that
Rx

Ry vr, =2V. Repeat for 4V and 6 V. Caution: Ry must be
positive.
FIGURE P2-67 +
120 mA Ry 50Q < VL
2-68 @ Ideally, a voltmeter has infinite internal resist- 100 Q -

ance and can be placed across any device to read the volt-
age without affecting the result. A particular digital
multimeter (DMM), a common laboratory tool, is con- FIGURE P2-71

nected across the circuit shown in Figure P2-68. The

expected voltage was 10.2 V. However, the DMM reads  QpJecTIVE 2-6 CirRcuIT Repuction (SecT. 2-6)

7.61 V. The large, but finite, internal resistance of the . ) o o ) )
DMM was “loading” the circuit and causing a wrong Given a linear resistive circuit, find selected signal variables

measurement to be made. Find the value of the internal  USiNg successive application of series and parallel equivalence,
resistance Ry of this DMM. source transformations, and voltage and current division.
See Example 2-25 to 2-28 and Exercises 2-27 to 2-31.

4.7 MQ T D MM-E
A 4 :
15V 10 MO ; Ry I 2-72 Use circuit reduction to find vy and iy in Figure P2-72.

5 5 20Q K
E i AN\
_____________ N

FIGURE P2-68 100 mA Q 1002 S % 1000

2-69 @ Select values for Ry, R», and R; in Figure P2-69 so

that the voltage divider produces the two output vol-
tages shown. FIGURE P2-72



68 CHAPTER 2 Basic CircuiT ANALYSIS

L[] 2-73 Use circuit reduction to find v, i, and p, in Figure P2-73.
Repeat using Multisim.

22kQ 1k =
b — AM———+—AWN—— |
\ + Vx—

300 mA 33kQ 2kQ 1kQZ
FIGURE P2-78
" " 2-79 Use source transformations in Figure P2-79 to relate vo
FIGURE P2-73 to vy, va, and vs.
O
2-74 Use circuit reduction to find vy and i in Figure P2-74. *
R R R
Vo
Vi V2 V3
o
FIGURE P2-79
FIGURE P2-74 2-80 The current through Ry in Figure P2-80 is 100 mA. Use [ ]

source transformations to find Ry. Validate your answer

2-75 Use circuit reduction to find vy, iy, and py in Figure P2-75. using Multisim.

3kQ 1.5kQ i1 =100 mA
100 Q 100 Q L
Py M\ —\VW\—or
\ +
100 V 2kt 1kQ 1k9§”x 100 V 100 Q Ry
FIGURE P2-75 FIGURE P2-80
2-76 Use circuit reduction to find vy and iy in Figure P2-76. 2-81 Select R, so that 50 V is across it in Figure P2-81.
18kQ  8kQ K 500 Q
N Tsov”
400 mA 500
100V 2kQS 4kQZVx 1kQ < 1kQ 500 Q
Ji - J l
) FIGURE P2-81
FIGURE P2-76
2-82 The box in the circuit in Figure P2-82 is a resistor whose
2-71 Use source transformation to find iy in Figure P2-77. value can be anywhere between 8 and 80kQ. Use circuit
1500 reduction to find the range of values of vy.
. 10 kQ
it
30V 2200 200 mA N
m 50V 0kRE 10k v,
FIGURE P2-77 =

2-78 Select a value for Ry so that iy = 0 A in Figure P2-78. FIGURE P2-82
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2-90 The circuit of Figure P2-90 is called a “bridge-T" circuit. [ ]
Ossective 27 Computer-Arnen Circuir Use Multisim to find all of the voltages and currents in the
Anatysis (Sect. 2-7) circuit.

Given an appropriate linear circuit, use circuit simulation and/

. . 100
or computational software to solve for the desired response. AMA
See Example 2-29 and Exercise 2-32 and also examples in Web
Appendix D. 100Q  100Q

L[] 2-83 Use Multisim to find all the currents and voltages in the
100 Q % 100 Q

circuit of Figure P2-76. 24V

L[] 2-84 Use Multisim to find all the currents and voltages in the
circuit of Figure P2-77.

[ 2-85 Use Multisim to find iy, vy, and py in the circuit of FIGURE P2-90

Figure P2-73.

L[] 2-86 Use Multisim to show the power balance in the circuit of
Figure P2-72, that is, that the sum of the power in the circuit | NTEGRATING P ROBLEMS
equals zero.

L[] 2-87 A circuit is found to have the following element and con-

nection equations: 2-91 Nonlinear Device Characteristics

The circuit in Figure P2-91 is a parallel combination of a

V= 24Y 75-Q linear resistor and a varistor whose i—v character-
v2=8kiy isticis iy = 2.6 x 107°v3. For a small voltage, the varistor
v3=5Ki3 current is quite small compared to the resistor current.
vy =4k iy For large voltages, the varistor dominates because its
Vs = 16Kk is current increases more rapidly with voltage.
(a) Plot the i—v characteristic of the parallel combination.
—vi+va+v3=0 (b) State whether the parallel combination is linear or non-
—V3+Vva+vs=0 linear, active or passive, and bilateral or nonbilateral.
. (¢) Find the range of voltages over which the resistor current
ih+ib=0 . . .
is at least 10 times as large as the varistor current.
—h+i3+iy=0 (d) Find the range of voltages over which the varistor current
—ig+is=0 is at least 10 times as large as the resistor current.
i iy

Use MATLAB to solve for all of the unknown voltages and cur- _‘f__» —

rents associated with this circuit. Sketch one possible schematic

that matches the given equations. v 75 Q§

L[] 2-88 Consider the circuit of Figure P2-88. Use MATLAB to
find all of the voltages and currents in the circuit and find s
the power provided by the source. e
220 kQ 47 kQ 47 kQ
FIGURE P2-91

240V 220 kQ 68 kQ 33 kQ
2-92 Transistor Biasing

The circuit shown in Figure P2-92 is a typical biasing arrange-
FIGURE P2-88 ment for a BJT-type transistor. The actual transistor for this
problem can be modeled as 0.7-V battery in series with a
L[] 2-89 Consider the circuit of Figure P2-88 again. Use Multi-  200-kQ resistor. Biasing allows signals that have both positive
sim to find all of the voltages, currents, and power used or  and negative variations to be properly amplified by the transis-
provided. Verify that the sum of all power in the circuit tor. Select the two biasing resistors R and Rp so that3 + 0.1V

is zero. appears across Rp.
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Transistor
0.7V

200 kQ

FIGURE P2-92

2-93 Center Tapped Voltage Divider

Figure P2-93 shows a voltage divider with the center tap con-
nected to ground. Derive equations relating va and vg to vs, Ry,
and R,.

FIGURE P2-93

2-94 Thermocouple Alarm Sensor

A type-K thermocouple produces a voltage that is propor-
tional to temperature. The characteristic of a type-K thermo-
couple is shown in Figure P2-94(a). In an application, this
transducer is used to detect when the temperature reaches
1250°C and then to cause a safety shutoff to trip and stop an
operation. The safety shutoff can be modeled by a 5-kQ input
resistance, while the transducer can be modeled by a variable
voltage source, v(T), in series with a resistance of 33Q to
account for the transducer’s wires and internal resistance as
shown in Figure P2-94(b). The safety shutoff will trip when
exactly 10 mV is applied. Select an appropriate resistance R that
will cause the safety shutoff to trip at exactly 1250°C.

80

70
60
50
40 J

/ €
30

20 T RS
|

E

10 ==
/%

0
0 500

Thermocouple output voltage (mV)

1000 1500 2000 2500

Temperature (°C)

(a)

Type-K Safety
thermocouple shutoff
(b)
FIGURE P2-94

2-95 Active Transducer @

Figure P2-95 shows an active transducer whose resistance
R(Vr) varies with the transducer voltage V1 as R(Vt) =
0.5 V12 + 1. The transducer supplies a current to a 12-Q load.
At what voltage will the load current equal 100 mA?

iL

i
nQZ

FIGURE P2-95

2-96 Interface Circuit Choice

You have a practical voltage source that can be modeled as a
5-V ideal source in series with a 1-kQ source resistor. You need
to use your source to drive a 1-kQ load that requires exactly
2 V across it. Two solutions are provided to you as shown in
Figure P2-96. Validate that both meet the requirement then
select the best solution and give the reason for your choice.
Consider part count, standard parts, accuracy of meeting the
spec, power consumed by the source, and so on. Validate your
results using Multisim.
1kQ &
3

4

5V 2k9§ 1k§z§ 2V

i =4
Interface #1 ;
1kQ ©500Q |
S>—AN—
‘ .
5V 1< 2V
> >
! Interface #2 |

FIGURE P2-96
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2-97 Programmable Voltage Divider

Figure P2-97 shows a programmable voltage divider in which
digital inputs by and b; control complementary analog switches
connecting a multitap voltage divider to the analog output vo.

The switch positions in the figure apply when digital inputs
are low. When inputs go high the switch positions reverse. Find
the analog output voltage for (bq,bg) = (0,0), (0,1), (1,0), and
(1,]) when VREF =12 V.

by

¢
oo

T S

' +

| Vo
— 1

FIGURE P2-97

2-98 Analog Voltmeter Design @ @ ®

Figure P2-98(a) shows a voltmeter circuit consisting of a
D’Arsonval meter, two series resistors, and a two-
position selector switch. A current of Izs = 400 pA pro-
duces full-scale deflection of the D’Arsonval meter,
whose internal resistance is Ry = 25 Q.

(a) @ Select the series resistance R; and R, so that a volt-

age vx = 100V produces full-scale deflection when the
switch is in position A, and voltage vy = 10V produces
full-scale deflection when the switch is in position B.

(b) @ What is the voltage across the 20-kQ resistor in

Figure P2-98(b)? What is the voltage when the voltmeter
in part (a) is set to position A and connected across the
20-kQ resistor? What is the percentage error introduced con-
necting the voltmeter?

(c) @ A different D’Arsonval meter is available with an

internal resistance of 100 Q and a full-scale deflection current
of 100 pA. If the voltmeter in part (a) is redesigned using this
D’Arsonval meter, would the error found in part (b) be smal-
ler or larger? Explain.

(a)

(b)
FIGURE P2-98

2-99 MATLAB Function for Parallel Equivalent Resistors @

Create a MATLAB function to compute the equivalent resist-
ance of a set of resistors connected in parallel. The function has
a single input, which is a vector containing the values of all of
the resistors in parallel, and it has a single output, which is
the equivalent resistance. Name the function “EQparallel”
and test it with at least three different resistor combinations.
At least one test should have three or more resistor values.

2-100 Finding an Equivalent Resistance using Multisim @ -

Use Multisim to find the equivalent resistance at terminals
A and B of the resistor mesh shown in Figure P2-100. (Hint:
Use a 1-V dc source and measure the current provided by
the source.)

Rgq

100 100 Q

e ]

FIGURE P2-100
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Assuming any system of linear conductors connected in such a manner that to the extremities of each one of them there is connected at least
one other, a system having electromotive forces Ey, E, Ejs..., no matter how distributed, we consider two points A and A’ belonging to the
system and having potentials V and V'. If the points A and A’ are connected by a wire ABA', which has a resistance r, with no electromotive
forces, the potentials of points A and A’ assume different values from V and V', but the current i flowing through this wire is given by

i=(V=V")/(r+R) in which R represents the resistance of the original wire, this resistance being measured between the points A and A,

which are considered to be electrodes.

Leon Charles Thévenin, 1883,
French Telegraph Engineer

Some History Behind This Chapter

Leon Charles Thévenin (1857-1926), a distinguished French
telegraph engineer and teacher, was led to his theorem in
1883 following an extensive study of Kirchhoff’s laws.
Norton’s theorem, the dual of Thévenin’s theorem, was not
proposed until 1926 by Edward L. Norton, an American elec-
trical engineer working on long-distance telephony. Curi-
ously, it turns out that the basic concept had been
discovered earlier by Hermann von Helmholtz while study-
ing electricity in animal tissue. Electrical engineering tradi-
tion credits Thévenin and Norton, perhaps because they
worked in areas that offered practical applications for their
results.

Why This Chapter Is Important Today

In this chapter you advance to studying general methods of
analyzing circuits and to the major theorems that describe lin-
ear circuits. These theorems are conceptual tools that give
new insight into circuit behavior. Most importantly, you will
be introduced to the design of interface circuits; your first
exposure to devising a circuit to perform a predetermined
function.

Chapter Sections

3-1 Node-Voltage Analysis

3-2 Mesh-Current Analysis

3-3 Linearity Properties

3-4 Thévenin and Norton Equivalent Circuits
3-5 Maximum Signal Transfer

3-6 Interface Circuit Design

72

Chapter Learning Objectives
3-1 General Circuit Analysis (Sects. 3—1 to 3-2)
Given a linear resistance circuit:

(a) (Formulation) Write node-voltage or mesh-current
equations for the circuit.

(b) (Solution) Solve the equations from (a) for selected
signal variables or input-output relationships using
classical or software computational techniques.

3-2 Linearity Properties (Sect. 3-3)
Given a linear resistance circuit:

(a) Use the proportionality principle to find selected
signal variables.

(b) Use the superposition principle to find selected
signal variables.

3-3 Thévenin and Norton Equivalent Circuits (Sect. 3-4)
Given a linear resistance circuit:

(a) Find the Thévenin or Norton equivalent at a speci-
fied pair of terminals.

(b) Use the Thévenin or Norton equivalent to find the
signals delivered to linear or nonlinear loads.

3-4 Maximum Signal Transfer (Sect. 3-5)

Given a linear resistance circuit:

(a) Find the maximum voltage, current, and power
available at a specified pair of terminals.

(b) Find the resistive loads required to obtain the max-
imum available signal levels.

3-5 Interface Circuit Design (Sect. 3-6)

Given the signal transfer goals at a source-load interface,
design one or more two-port interface circuits to achieve
the goals and evaluate the alternative design solutions.
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3-1 Nobpe-VoLtaGE ANALYSIS

Before describing node-voltage analysis, we first review the foundation for every
method of circuit analysis. As noted in Sect. 2-3, circuit behavior is based on con-
straints of two types: (1) connection constraints (Kirchhoff’s laws) and (2) device
constraints (element i—o relationships). As a practical matter, however, using ele-
ment voltages and currents to express the circuit constraints produces a large number
of equations that must be solved simultaneously to find the circuit responses. For
example, a circuit with only six devices requires us to treat 12 equations with
12 unknowns. Although this is not an impossible task using software tools like
MATLAB, it is highly desirable to reduce the number of equations that must be
solved simultaneously.

You should not abandon the concept of element and connection constraints. This
method is vital because it provides the foundation for all methods of circuit analysis.
In subsequent chapters, we use element and connection constraints many times to
develop important ideas in circuit analysis.

Using node voltages instead of element voltages as circuit variables can reduce the
number of equations that must be treated simultaneously. To define a set of node
voltages, we first select a reference node. The node voltages are then defined as
the voltages between the remaining nodes and the selected reference node.
Figure 3-1 shows the notation used to define node-voltage variables. In this figure
the reference node is indicated by the ground symbol and the node voltages are iden-
tified by a voltage symbol next to all the other nodes. This notation means that the
positive reference mark for the node voltage is located at the node in question,
whereas the negative mark is at the reference node. Obviously, any circuit with N
nodes involves N-1 node voltages since one node, the reference node, is known.

A fundamental property of node voltages needs to be covered at the outset.
Suppose we are given a two-terminal element whose element voltage is labeled v;.
Suppose further that the terminal with the plus reference mark is connected to a
node, say node A. The two cases shown in Figure 3-2 are the only two possible ways
the other element terminal can be connected. In case A, the other terminal is con-
nected to the reference node, in which case KVL requires v; =va. In case B, the other
terminal is connected to a nonreference node, say node B, in which case KVL
requires v; =va —vp. This example illustrates the following fundamental property
of node voltages:

If the Kth two-terminal element is connected between nodes X and Y, then the
element voltage can be expressed in terms of the two node voltages as

VK =Vx —Vy (3-1)

where X is the node connected to the positive reference for element voltage vg.

Equation (3-1) is a KVL constraint at the element level. If node Y is the reference
node, then by definition vy =0 and Eq. (3-1) reduces to vx =vy. On the other hand, if
node X is the reference node, then vy =0 and therefore vgx = —vy. The minus sign
occurs here because the positive reference for the element is connected to the refer-
ence node. In any case, the important fact is that the voltage across any two-terminal
element can be expressed as the difference of two node voltages, one of which may
be zero.

Exercise 3-1

The reference node and node voltages in the bridge circuit of Figure 3-3 are vp =5V,
v =10V, and vc = -3 V. Find the element voltages.

Answers: 0;=10V;0,=3V;03=13V; 04=8V;05=-5V

VA VB Ve

Notation

Interpretation

FIGURE 3-1 Node-voltage
definition and notation.

VA VB
(o]
+
Vi
Case A
VA VB
O O
+ —_
V1
Case B

FIGURE 3-2 Two possible
connections of a two-terminal
element.

FIGURE 3-3
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+ vy -

FIGURE 3-5 Circuit for
demonstrating node-voltage
analysis.

Exercise 3-2
For the circuit in Figure 34, first find the node voltages and then find vx and vy.

Answers: va=5V, vg=-4V, vc=6V, vp=0V (ground). vx=va-0g=9V and
UY:UA—UC:—lv.

Formucating Nobe-Vortace EquaTions

To formulate a circuit description using node voltages we use element and connec-
tion analysis, except that the KVL connection equations are not explicitly written.
Instead, we use the fundamental property of node analysis to express the element
voltages in terms of the node voltages.

The circuit in Figure 3-5 demonstrates the formulation of node-voltage equations.
In Figure 3-5 we have identified a reference node (indicated by the ground symbol),
four element currents (iy, i1, i», and i3), and two node voltages (va and vg).

The KCL constraints at the two nonreference nodes are as follows:

Node A: —i()—i1 —i2 =0

(3-2)
Node B: i2—i3 =0
Using the fundamental property of node analysis, we use the element equations to
relate the element currents to the node voltages.

Resistor Ry: i1 = —vwv
1 h R A
Resistor Ry: i = — (va —vp)
R, (3-3)
Resistor R3: i3 = — vp
R;
Current source: i = —ig

We have written six equations in six unknowns—four element currents and two
node voltages. The element equations on the right side of Egs. (3-3) involve
unknown node voltages and the input signal is. Substituting the device constraints
in Egs. (3-3) into the KCL connection constraints in Egs. (3-2) yields

1

o1
Node A: ls—Rf1 UA—E(UA—UB)—O

1 1
Node B: R—(UA—UB)—R— UB—O

2 3
which can be arranged in the following standard form:
1 1 1
Node A: (— + —)UA—— vB =Is

R, R R,
(3-4)

In this standard form all of the unknown node voltages are grouped on one side and
the independent sources on the other. This will facilitate the analysis.



NODE-VOLTAGE ANALYSIS

75

By systematically eliminating the element currents, we have reduced the circuit
description to two linear equations in the two unknown node voltages. The coef-
ficients in the equations on the left side (1/R;+1/Ry,1/Ra,1/R,+1/R3) depend
only on circuit parameters, whereas the right side contains the known input driving
force is.

As noted previously, every method of circuit analysis must satisfy KVL, KCL, and
the device i—v relationships. In developing the node-voltage equations in Egs. (3-4),
it may appear that we have not used KVL. However, KVL is satisfied because the
equations vy =va, 02 =va —vp, and vz =vp were used to write the right side of the ele-
ment equations in Egs. (3-3). The KVL constraints do not appear explicitly in the
formulation of node equations, but they are implicitly included when the fundamen-
tal property of node analysis is used to write the element voltages in terms of the node
voltages.

In summary, four steps are needed to develop node-voltage equations.

STEP 1 Select a reference node. Identify a node voltage at each of the remaining N -1
nodes and a current with every element in the circuit.

STEP 2 Write KCL connection constraints in terms of the element currents at the N —1
nonreference nodes.

STEP 3 Use the i—v relationships of the elements and the fundamental property of
node analysis to express the element currents in terms of the node voltages.

STEP 4 Substitute the element constraints from step 3 into the KCL connection
constraints from step 2 and arrange the resulting N —1 equations in a standard
form.

Writing node-voltage equations leads to N — 1 equations that must be solved simul-
taneously. If we write the element and connection constraints in terms of element
voltages and currents, we must solve 2FE simultaneous equations. The node-voltage
method reduces the number of linear equations that must be solved simultaneously to
N —1. The reduction from 2FE to N —1 is particularly impressive in circuits with a large
number of elements (large E) connected in parallel (small N).

EXAMPLE 3-1

Formulate node-voltage equations for the bridge circuit in Figure 3-6.

SOLUTION:

STEP 1 The reference node, node voltages, and element currents are shown in
Figure 3-6.

STEP 2 The KCL constraints at the three nonreference nodes are as follows:
Node A:ip—i1—ip =0
NodeB:ij—i3+i5 =0
Node C:ip—is—i5s =0

STEP 3 We write the element equations in terms of the node voltages and input signal

sources.
o 1
lop =1s1 13—EUB
1 o1
11=R—1(1)A—1)B) l4=R—41)C
1

= R_Z(UA_UC) is =1isp

Reference node

FIGURE 3-6

VA
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i3
——

ISkQ

VB

STEP 4 Substituting the element equations into the KCL constraints and arranging the
resultinstandard formyields three equations in the three unknown node voltages.

11 1 1
Node A: [ — + — )ox— —vp——vc = i
ode (R +R2) VATRVBTR,C T

1 1 1
Node B: —R—DA+ (R—1+R_3>UB +01)C = isz

1 1 1 .
NOde C —RZUA +OUB + (R R4> = —Is)

The three equations in three unknowns can be written in matrix form. Missing terms are zeros
in the matrix.

it s s ; i
R R)_ R R A ot
1

s o (iat
R, R, Ryl LY

This matrix equation is of the form Ax=b, where A is a 3 x 3 square matrix describing the cir-
cuit, x is a 3 x 1 column matrix of unknown node voltages, and b is a 3 x 1 column matrix of
known inputs. Note that matrix A is symmetrical, that is, the terms on either side of the major
diagonal, shown as a dashed line through the matrix, are the same. [ |

—is2

Exercise 3-3

For the circuit in Figure 3-6 replace the current source is, with a resistor Rs.

(a) Using the same node designations and reference node, formulate node-voltage equa-
tions for the modified circuit. Place the result in matrix form Ax=b.
(b) Is the resulting A matrix symmetrical?

Answers:

(b) Yes; see terms on either side of the diagonal above.

Exercise 34

big
k0
20 mA 50 mA

Formulate node-voltage equations for the circuit in Figure 3-7 and place the
results in matrix form Ax=b. Is the resulting matrix A symmetrical?
166,

Answers:

FIGURE 3-7

o —0.666][va] [20
Ax=b=1_ 6 “**1».\16\] {vB} a {50}

Yes, the matrix is symmetrical.

WriTiNG NoDE-VoLTAGE EQuATIONS BY INSPECTION

The node-voltage equations derived in Example 3-1 have a symmetrical pattern, as
shown by the dashed line drawn along the major diagonal. The coefficient of vp in
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the node A equation and the coefficient of v, in the node B equation are each the
negative of the conductance connected between the nodes (—1/R;). Likewise, the
coefficients of vc in the node A equation and va in the node C equation are
—1/R;. The coefficients of v, in the node A equation, vg in the node B equation,
and oc in the node C equation are the sum of the conductances connected to the node
in question. The two missing terms or zeros also fall symmetrically about the
diagonal.

This symmetrical pattern always occurs in circuits containing only resistors and
independent current sources. To understand why, consider any general two-terminal
resistance R with one terminal connected to, say, node A. Then according to the fun-
damental property of node analysis there are only two possibilities. The other termi-
nal of R is either connected to the reference node, in which case the current leaving

node A via resistance R is

1 1

i=—(a-0)==0

RUATO=R oA
or to another nonreference node, say, node B, in which case the current leaving node
A via R is

1

I=—(vA-0

7 (vA—vB)

The pattern for node equations follows from these observations. The sum of the
currents leaving any node A via resistances is

1. va times the sum of conductances connected to node A.
2. Minus vg times the sum of conductances connected between nodes A and B.
3. Minussimilar terms for all other nodes connected tonode A by conductances.

Because of KCL, the sum of currents leaving node A via resistances plus the sum of
currents directed away from node A by independent current sources must equal zero.

Understanding the aforementioned process allows us to write node-voltage equa-
tions by inspection without going through the intermediate steps involving the KCL
constraints and the element equations or even labeling currents. For example,
the circuit in Figure 3-8 contains two independent current sources and four resistors.
Starting with node A, the sum of conductances connected to node A is 1/R; +1/R;.
The conductance between nodes A and B is 1/R,. The reference direction for the
source current ig; is into node A and for ig; is directed away from node A. Pulling
all of the observations together, we write the sum of currents directed out of
node A as

Node A: (1§1+1§2>UA_I§2 UB—i51 +i52=0 (3-5)
Similarly, the sum of conductances connected tonode Bis 1/R, + 1/R3 + 1/R4, the
conductance connected between nodes B and A is again 1/R;, and the source current
isp is directed toward node B. These observations yield the following node-voltage
equation.
1

1 1 1 .
Node B: <R2+IQ3+R4>UB_R2 UA—lSZ—O (3—6)

Rearranging Egs. (3-5) and (3-6) in standard form yields
1 1 1
N A [—+— — Ur=lq—I
ode (R] + Rz) VA R UB =151 —1s2 .

1 1 1 1 .
Node B: —R—20A+ (RZ+R3+R4>UB—152

is|

VB

RZ RZ

FIGURE 3-8 Circuit for
demonstrating how to write node-
voltage equations by inspection.
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In the matrix form Ax =b, where A is a 2 x 2 square matrix describing the circuit, x is a
2x1 column matrix of unknown node voltages, and b is a 2 x 1 column matrix of
known inputs, we can express the equations as

ol 1 S
R R, R, VA B Is1 — Is2
1 1 +l+ 1 o
Ry Ry Rs; Ryj -
We have two symmetrical equations in the two unknown voltages. The equations are

symmetrical as seen by the dashed line because the resistance R, connected between
nodes A and B appears as the cross-coupling term in each equation.

UB is2

R/2

A EXAMPLE 3-2
val R ve IR ve Formulate node-voltage equations for the circuit in Figure 3-9.
is RI2 R SOLUTION:
The total conductance connected to node A is 1/(2R)+2/R=2.5/R, to node B is
1/2R)+2/R+1/(2R)=3/R,and tonode Cis2/R+1/R+1/(2R)=3.5/R. The con-
= ductance connected between nodes A and B is 1/(2R), between nodes A and C is
FIGURE 3-9 2/R, and between nodes B and Cis 1/(2R). The independent current source is direc-
ted into node A. By inspection, the node-voltage equations are as follows:
2.5 0.5 2 .
Node A: ? DA—? UB—E vc=1s
0.5 3 0.5
Node B: —? UA+E UB—? UC—O
2 0.5 35
Node C: _ﬁ UA—? UBJ"? UC—O
Written in matrix form Ax=b,
R2s 05 27 o
R. R R A s
053 0.5 ol = 1o
R R. R ?
2 0.5 35 0
- — - = (e
VA 2 kQ VB R R R AN .
$ Note that the A matrix is symmetrical. |
st IkQ "SZQ S0QZ Yo Exercise 3-5
- Formulate node-voltage equations for the circuit in Figure 3-10.
4 o
L Answers: (1.5x107%)oa - (0.5x 10 )op = ig;
FIGURE 3-10 —(0.5 X 10_3)1)A + (25 X 10_3)03 = —ig

SoLVvING LiNEAR ALcEBRAIC EQuATIONS

So far we have dealt only with the problem of formulating node-voltage equations.
To complete a circuit analysis problem, we must solve these linear equations for
selected responses. A system of linear algebraic equations can be solved through
manual calculations or with the aid of a computer. Skilled engineers should be famil-
iar with both techniques and should develop the judgment to know when each type of
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approach is appropriate. In choosing between manual and computer-aided methods,
you may consider the following four factors:

* The number of unknown responses (the order of the problem)
e The number of parameters in symbolic versus numeric form
* Your skill in performing manual calculations

e The availability of and your proficiency with computer tools

In general, you can efficiently use manual techniques to solve lower-order problems
with numeric parameters. Cramer’s rule and Gaussian elimination are standard
mathematical tools commonly used for manual solutions. Web Appendix A provides
a brief review of these techniques.

As the order of the problem increases or if symbolic parameters are present, it
usually becomes more efficient to use an advanced calculator or computer tools, such
as MATLAB, to find the desired responses. Many scientific handheld calculators
have a built-in capability to solve linear equations when all of the parameter values
are numeric. Alternatively, circuit simulation software such as Multisim can be a
good choice for solving circuit equations when all of the parameters have numeric
values. MATLAB can efficiently solve linear systems of equations with either
numeric or symbolic parameter values. To include symbolic parameters in MATLAB
code, use either the sym or syms command to define the parameters and then pro-
ceed with the normal matrix-based solution to the problem. See Web Appendix D for
additional guidance using MATLAB.

Earlier in this section we formulated node-voltage equations for the circuit in
Figure 3-5 [see Eqgs. (3-4)].

1 1 1 .
Node A: <R—1+R—2>UA_R_2 UB =13

1 1 1
Node B: —E VA + (]e2+R3)UB_O

This problem is formulated with two unknown responses (va and vg) and has three
symbolic parameters (R;, Ry, and R3). In this case, Cramer’s rule would be a suitable
manual technique for finding the responses, but we will illustrate the solution using
MATLAB to handle the symbolic parameters. First, define the symbolic parameters:

syms R1 R2 R3 1S real
Now formulate the problem in matrix notation, using the Ax =b structure as follows:
A=[(1/R1+1/R2) -1/R2; -1/R2 (1/R2 + 1/R3)1;
B = [iS; 0];
x = A\B;
VA =x(1)
vB =x(2)

The resulting solutions are given by

VA = (R1*1S* (R2 + R3) )/ (R1 + R2 + R3)
vB = (R1*R3*%1S)/ (R1 + R2 + R3)

We can write these solutions compactly as
b, = Buis (Ro+Rs)
A Ri+ Ry +R;

R Riis

VB = R1+R2+R3
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The results express the two node voltages in terms of the circuit parameters and the
input signals. Given the two node voltages v and v, we can now determine every
element voltage and every current using Ohm’s law and the fundamental property of
node voltages.

U1 =VA V2 =VA—UB U3 =VB

;_0A _va=ug . _vs
1=— b= 3=—
Ry Ry R;

In solving the node equations, we left everything in symbolic form to emphasize that
the responses depend on the values of the circuit parameters (R;, R,, and R3) and the
input signal (is). Even when numerical values are given, it is sometimes useful to
leave some parameters in symbolic form to obtain input-output relationships or to
reveal the effect of specific parameters on the circuit response.

Rix R2 EXAMPLE 3-3
W Given the circuit in Figure 3-11, find the input resistance Ryx seen by the
VA ,\3\1;» VB ,\%\If\, vc,  currentsource and the output voltage vo. Solve this problem by hand and
L, + then using MATLAB.
s RI2 RZ Yo SOLUTION:
_ In Example 3-2 we formulated node-voltage equations for this circuit as
J_ o follows:
- 2.5 0.5 2
Node A: — VDA———— UB——= UC:is
FIGURE 3-11 R R "R

0.5 3 0.5
Node B: —? UA+E UB—? UC—O
2 0.5 35
Node C: "R UA—? uB+? vc=0
First we will solve the problem using Cramer’s rule and then we will solve it again
using MATLAB.
The input resistance Ry is the ratio l;—A, whereas the output voltage is simply vc.
S
We solve for both va and vc using Cramer’s rule as follows:
Rewrite the three node equations after multiplying both sides of each equation by
R as follows:

2.50A —0.505 —20c = Rig
—0.50 + 305 -0.50c =0
—20A-0.50 +3.50c =0
Then write as a matrix Ax=b

25 -05 -2 N Rig

-05 3 -05||vg|=1|20
-2 —0.5 35 vC 0
Then
Ris 05 -2
0 3 =05
AT 2.5 _—O(fs —355 =Rlsl(11.2525)=0'872Ri5V
-05 3 -05

-2 =05 35

]

e
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i
Rin="2-087225_0872RQ
Is I
And
25 —0.5 Ris
05 3 0
| =2 —05 0 | Ris(625) ,
Ve=vo=I"55 55 5 |= 1175 02 RisV
05 3 -05
2 -05 35

Now using MATLAB, we solve for the voltages v and v¢ beginning with v as
follows:
syms VA VB vCR iS Rin real
A=[2.5/R-1/2/R-2/R; ...
-1/2/R3/R -1/2/R; ...
-2/R-1/2/R3.5/R];
B=[iS; 0; 0];
x = A\B;
VA =x(1)

The result is given by

VA = (41%R*iS)/47

which can be expressed compactly as:
_ 41Ris
PAT g7

The input resistance can be found using

=0.872isRV

Rin = vA/1iS
which yields
Rin= “TR =0.872RQ
The output voltage is vc, which we found at the same time as v above.
vC =x(3)
This result is given by

vC = (25%R*iS) /47

which can be expressed compactly as

_25Ris
T 47

Ve =0.532RisV u

Exercise 3-6

Solve the node-voltage equations in Exercise 3-5 for v in Figure 3-10.

Answer: l)o=1000(is1—3i52)/7v
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Exercise 3-7

Use node-voltage equations to solve for vy, v, and i3 in Figure 3-12(a).

Answers: 0,=12V;0,=32V;i3=-10mA

Exercise 3-8

Solve Exercise 3-7 using Multisim.

Answer: Figure 3-12(b) shows the results. Note that the current i3 is negative because the
referenced direction is opposite of the actual direction of the current through R3. The mul-
timeter was connected to correspond to the reference direction.

FIGURE 3-12 Multimeter-XMM2 Multimeter-XMM1 Multimeter-XMM3
[ oty [ oooomn M G2001v|
[a] ] [=] [=] [a][v] [=] [=] [a][v] [o] [«]
el =] XMM2 XMMI Eavil| =il vl =il
: = '_.:z f\\+ 4-/6 . N '-.;e :  — ;.:E
Q9 @
i
Ry \_‘ 4] Ry vV,
2kO 2kO 2kQ 2kQ MG
AW MW Ry h
—v T 1 2R, 3.2kQ§ 20mA<T> , 9\
k + >
3kQ 2 32kQ T 20mA <D .

—l—()

()

(b)

Nope ANALYSIS WITH VOLTAGE SOURCES

Up to this point we have analyzed circuits containing only resistors and independent
current sources. Applying KCL in such circuits is simplified because the sum of cur-
rents at a node only involves the output of current sources or resistor currents
expressed in terms of the node voltages. Adding voltage sources to circuits modifies
node analysis procedures because the current through a voltage source is not directly
related to the voltage across it. While initially it may appear that voltage sources com-
plicate the situation, they actually simplify node analysis by reducing the number of
equations required.

Figure 3-13 shows three ways to deal with voltage sources in node analysis. Method 1
uses a source transformation to replace the voltage source and series resistance with an
equivalent current source and parallel resistance. We can then formulate node equations
at the remaining nonreference nodes in the usual way. The source transformation elim-
inates node C, so there are only N —2 nonreference nodes left in the circuit. Obviously,
method 1 only applies when there is a resistance in series with the voltage source.

Method 2 in Figure 3-13 can be used whether or not there is a resistance in series with
the voltage source. When node B is selected as the reference node, then by definition
vp =0 and the fundamental property of node voltages says that va =vs. We do not
need a node-voltage equation at node A because its voltage is known to be equal
to the source voltage. We write the node equations at the remaining N —2 nonrefer-
ence nodes in the usual way. In the final step, we move all terms involving v to the
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VA v/i/
Rest \ Rest

@ of the 1‘;—55 TD § Rg of the

circuit circuit

e
VB v];\

Method 1

Supernode

Rest \ Rest
<i> Vg of the Ci) Vs of the

circuit

Method 2 Method 3

circuit

right side, since it is a known input and not an unknown response. Method 2 reduces
the number of node equations by 1 since no equation is needed at node A.

The third method in Figure 3-13 is needed when neither node A nor node B can be
selected as the reference and the source is not connected in series with a resistance. In
this case we combine nodes A and B into a supernode, indicated by the boundary in
Figure 3—-13. We use the fact that KCL applies to the currents penetrating this bound-
ary to write a node equation at the supernode. We then write node equations at
the remaining N —3 nonreference nodes in the usual way. We now have N -3 node
equations plus one supernode equation, leaving us one equation short of the N—1
required. Using the fundamental property of node voltages, we can write

DA —UB =05 (3-8)

The voltage source inside the supernode constrains the difference between the node
voltages at nodes A and B. The voltage source constraint provides the additional
relationship needed to write N -1 independent equations in N —1 node voltages.

For reference purposes we will call these modified node equations, since we either
modify the circuit (method 1), use voltage source constraints to define node voltage
at some nodes (method 2), or combine nodes to produce a supernode (method 3).
The three methods are not mutually exclusive. We frequently use a combination
of methods, as illustrated in the following examples.

EXAMPLE 3-4

Use node-voltage analysis to find vo in the circuit in Figure 3-14(a).

FIGURE 3-13 Three methods
of treating voltage sources in
node analysis.
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FIGURE 3-14

Multimeter-XMM1

J e}

va Ry v Ry v

VP _ _ o
R +
Vsi Yo §R3 vs2 % §R1 % R, RiZ Vo
_ 1 2
1T
(a) (b)
SOLUTION:

The circuit in Figure 3-14(a) has four nodes, so we appear to need N-1=3 node-
voltage equations. However, applying source transformations to the two voltage
sources (method 1) produces the two-node circuit in Figure 3—14(b). For the modified
circuit we need only one node equation,

1 . 1 N 1 1)51+Usz
JE— R — U = — —
R, R, R ® R R,

To find the output voltage we solve for vp:

st | Us2 Us1 | bs2
vo=vg=—BL_ R _ R R _ RoRsvs1 + Ri Rsvs)
1,1 1 RRs+RiRs+RiR RRs+RiR3+RiR;

R R R RiRoR;

Because of the two voltage sources, we need only one node equation in what appears
to be a four-node circuit. The two voltage sources have a common node, so the num-
ber of unknown node voltages is reduced from three to one. The general principle
illustrated is that the number of independent KCL constraints in a circuit containing
N nodes and Ny voltage sources is N —1—Ny. [ |

As an alternative to source transformations, for this circuit we can also apply the
second method for treating voltages sources in node analysis. Since both voltage
sources are connected to ground nodes, va and vc are defined by the two voltage
sources, that is, v4 =vs; and vc=vs;. This then leaves vg as the only unknown.
We can write the equation for v as follows:

VB—Vst VB VB—Vs2
Sy B 20
Ry R3 Ry

Solving for vg
e (L L 1Y _vst Vs
"\Ri"R,R;) R R
which, as before, simplifies to

5.6kQ oy — RyR3vs1 + RiR3vs)
B=ro= RoR;+ R{R3+ R1R;

Exercise 3-9

FIGURE 3-14

In Figure 3-14(a), vs1 =24V, vs;=-12V, R =33kQ, R,=5.6kQ, and
R;=10kQ. Find vp using Multisim.

Answer: See Figure 3-14(c).
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EXAMPLE 3-5

Use node-voltage analysis to find vx in the circuit of Figure 3-15.

SOLUTION:
Since the circuit does not have a ground designated, we must choose a reference node
to start the node-voltage analysis. In theory, any node can be chosen as a ground, but
some ground choices are better than others. Choosing a ground wisely can simplify
the calculations required to find a solution. Recognize that the ground node is our
zero voltage reference. Hence, selecting a node at the minus terminal of a voltage
source immediately determines the voltage at the positive node to be the value of
the source. In our circuit, selecting node C as our ground automatically tells us that
node B is equal to 10 V. If we chose node A or node D as our reference, we would
only know that the voltage between nodes B and C is equal to 10 V, which does not
simplify our analysis. We could choose node B as our ground and we would automat-
ically know that node Cis equal to —10 V. This choice is acceptable, but we prefer to
work with positive voltages, so node C is a better option.

Having wisely chosen node C as our ground, we can write the following two node-
voltage equations:

VA—10 VA—VD VA _

Node A: 05K + 15k +ﬁ_0
~ Vp-Va Vb
Node D: 15k 0.020 + K =0

Collecting like terms, moving the known sources to the right side, and multiplying
both equations by 1000

11 1] 1
Va {_ sl _] Vo [ﬁ} = 2 =366V 0,666V =20

1 11
Vi {ﬁ] +Vp [ﬁ + 5] =20=—0.666VA +1.16Vp =20

We can write these two equations as a matrix and solve it using Cramer’s rule

’20 —0.666‘
20 1.16
Va :‘ 3.66 —0.666‘ 9565V
~0.666 1.16
’ 3.66 20’
~0.666 20
Vo= ’ 3.66 —0.666’ =22009V
~0.666 1.16
Therefore, vx =Va-Vp=-13.044 V. [ |

Exercise 3-10
For the circuit of Figure 3-15, find ix and px.

Answers: ix=869.9 uA and px = —209 mW

FIGURE 3-15
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Rix RI2 EXAMPLE 3-6
A

) R Find the input resistance of the circuit in Figure 3—16(a). Solve
N ’_' \_,V A AN—e—AA——C "D the problem using MATLAB.

§ g SOLUTION:
Method 1 for handling voltage sources will not work here because

R/2
the source in Figure 3-16(a) is not connected in series with a resis-
1 /\/I\e/\/ Vg tor. Method 2 will work in this case because the voltage source is
— connected to the reference node. As a result, we can eliminate one
(@) node equation since the node A voltage is v =vs. By inspection,
the four remaining node equations are as follows:

FIGURE 3-16

2 1 1
Node B: —vA<2 >+UB(2R+R 2R> UC<2R> 0
2 2 1 2 1 1 2
Node C: - A(ﬁ) ( )+Dc(R 2R R R) —UD (E) —UE (E)
Node D: — + f D) () 2o
odae D: —ouc VD R R VE R)™
1 1 1 2
Node E: —Uc(R>—UD<R)+UE<R R R) 0

We apply the equation vs = vs to incorporate the source voltage and eliminate v
from the equations. With this change, we can simplify the equations and write them in
matrix form (note the symmetry) as follows:

0

.3 1 i

R. 2k V0 o
111 1 2"
T3R 3R R R||v|_ |
o _i~2 _1ifw R
R R. R||u 0
0 2 _li 0
i R R RJ

In this standard form of Ax =b, we can now use MATLAB to efficiently solve for all
of the node voltages. The MATLAB code required to do this is shown below.

syms vS vB vC vD VE R

A=[3/R-1/2/R0OO0;
-1/2/R11/2/R -1/R -2/R;
0-1/R2/R-1/R;
0-2/R-1/R4/R];

B=[vS/2/R; 2*VvS/R; 0; 0] ;

x = A\B;
vB =x(1)
vC=x(2)
vD = x(3)
VvE =x(4)

The resulting solutions are given by

vB = (73*vS) /263
vC = (175*vS) /263
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vD (150*vS) /263
vE = (125*vS) /263

We can write these results compactly as
_ 731)5 _ 1751)5 _ 1501)5 _ 1251)5
263 263 - 263 - 263

To solve for the input resistance, we need to calculate the input current:

UB e UDp UE

. Us—0c Us—UB
N =

R/2 2R
Using MATLAB, we get
. 27
NZ263R
such that
_UIN _ 263R
NN 271

Exercise 3-11

For the circuit in Figure 3-16(a) let vs =120 V and R=4kQ.

(a) Use Multisim to simulate the circuit, and find all of the node voltages and the input

current.

(b) Verify that the results for the node voltages agree with the numeric expressions deter-

mined in the solution of Example 3-6.

(c) Use the input current to calculate Rpy and compare it with that found in Example 3-6.

Exercise 3-11

Ry DC Operating Point Analysis
2kQ Variable Operating point value
VA Ry vy R, ve R; 1 | V(va) 120.000
AA%Y% v
3 kQ kO 4kQ D 2 | V(vb) 33.30798
-V Rs Ry R, 3 | V(ve) 79.84791
T 120V 2kQ 2k AR T e 68.44106
Ry
Vg
AMA E 5 | V(ve) 57.03422
1 4kQ 6 | -I(V1) 30.91255m

FIGURE 3-16

Answers:

(a) See Multisim results shown in Figures 3-16(b) and (c).
(b) From the calculations in Example 3-6 using vs =120V, we get

_ 731)5 _ _ 1751)5 _ _ 1501)5 _
UB—%—33.31V ve= s =79.85V D=3 =68.44V
12504 . 271w, _
VE = —263 =57.03V LN = m =30.91 mA

The Multisim voltages are the same.

(c)
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(c) Using the input voltage and input current found in the Multisim simulation,
Rin for R=4kQ results in R=vN/iN=522-=3.882kQ, compared to

3091 m
Rin= %R =3.882 kQ. Again, they are the same.

Supernode . EXAMPLE 3-7
Vs, For the circuit in Figure 3-17,
@ (a) Formulate node-voltage equations.
(b) Solve for the output voltage vo using R; = Ry =2kQ and R, = R3 =4kQ.
i2 3
VA _>/\/\/\/ VB /\/\/\’<_ ve SOLUTION:
] R R 9 (a) The voltage sources in Figure 3-17 do not have a common node, and we
131 2 3 Iy . .
l l cannot select a reference node that includes both sources. Selecting node
n + D as the reference forces the condition vp = vs; (method 2) but leaves the other
§ Ry <_> vs2 Ry § Yo source vs; ungrounded. We surround the ungrounded source, and all wires lead-
- ing to it, by the supernode boundary shown in Figure 3-17 (method 3). KCL
@ applies to the four element currents that penetrate the supernode boundary,
and we can write
Reference /_’_ il + iz + i3 + i4 =0

These currents can easily be expressed in terms of the node voltages:

FIGURE 3-17

A (va—vB) N (vc—vg) L
Ry Ry R; R4

But since vp =vs;, the standard form of this equation is

Lo (1 ) (1
R, RJ)UAT\RTR)CT\R, TRy

We have one equation in the two unknown node voltages v and vc. Applying the fundamental
property of node voltages inside the supernode, we can write

VA —UC =Us1

That is, the ungrounded voltage source constrains the difference between the two unknown
node voltages inside the supernode. It thereby supplies the relationship needed to obtain
two equations in two unknowns.

(b) Inserting the given numerical values yields
(7.5x10 oA + (7.5x 10 e = (5x 107 *)os,
VA —UC = Us1

To find the output vp, we need to solve these equations for vc. The second equation
yields va =vc +vs;, which, when substituted into the first equation, gives the required
output:

. bs2 Vst
vo=ve=T

Exercise 3-12
For the circuit in Figure 3-18(a),

(a) Find vp when element E is a 10-kQ resistor.

(b) Find vp when element E is a 4-mA independent current source with reference arrow
pointing left.

FIGURE 3-18 (c) If element E is a resistor R, what value is required for R such that vg is 2 V?
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Answers:
(a) 253V
(b) 173V
(c) 115kQ

Exercise 3-13

For the circuit in Figure 3-18(a),

(a) Find vp when element E is an open circuit.

(b) Find oo when element E is a 10-V independent voltage source with the
positive reference on the right. =s5v
(c) Validate part (b) using Multisim.

5
>4kQ 10

kQ:

Answers:

(a) 1.92V
(b) 12.96 V

(c) See Figure 3-18(b)

SumMmARY oF NobEeE-VoLTacE ANALYSIS

We have seen that node-voltage equations are very useful in the analysis of a variety
of circuits. These equations can always be formulated using KCL, the element con-
straints, and the fundamental property of node voltages. When in doubt, always fall
back on these principles to formulate node equations in new situations. With practice
and experience, however, we eventually develop an analysis approach that allows us
to recognize shortcuts in the formulation process. The following guidelines summa-

rize our approach and may help you develop your own analysis style:

1.

Simplify the circuit by combining elements in series and parallel wherever
possible.

If not specified, select a reference node so that as many voltage sources as
possible are directly connected to the reference.

Node equations are required at supernodes and all other nonreference
nodes except those that are directly connected to the reference by voltage
sources.

Use KCL to write node equations at the nodes identified in step 3. Express
element currents in terms of node voltages or the currents produced by inde-
pendent current sources.

Write expressions relating the node voltages to the voltages produced by
independent voltage sources.

Substitute the expressions from step 5 into the node equations from step 4
and arrange the resulting equations in standard form.

Solve the equations from step 6 for the node voltages of interest. Manual
techniques may be efficient for lower-order problems. Computer tools, such
as MATLAB or Multisim, are usually more practical and faster for higher-
order problems.

3-2 MEeSH-CURRENT ANALYSIS

Mesh currents are analysis variables that are useful in circuits containing many ele-
ments connected in series. To review terminology, a loop is a closed path formed by
passing through an ordered sequence of nodes without passing through any node

FIGURE 3-18

(b)
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1

A

D

more than once. A mesh is a special type of loop that does not enclose any
elements. For example, loops A and B in Figure 3-19 are meshes, while
l

the loop Q is not a mesh because it encloses an element.

Mesh-current analysis is restricted to planar circuits. A planar circuit can be
drawn on a flat surface without crossovers in the “window pane” fashion shown
in Figure 3-19. To define a set of variables, we associate a mesh current
D (ia, i, ic, etc.) with each window pane and assign a reference direction.

The reference directions for all mesh currents are customarily taken in a

D;) )

iG

©
-

clockwise sense. There is no momentous reason for this, except perhaps

tradition.
@ O We think of these mesh currents as circulating through the elements in

their respective meshes, as suggested by the reference directions shown in
Figure 3-19. We should emphasize that this viewpoint is not based on the
physics of circuit behavior. There are not red and blue electrons running
FIGURE 3-19 Meshes in a planar around that somehow get assigned to mesh currents is or ig. Mesh currents

circuit.

FIGURE 3-20

are variables used in circuit analysis. They are only somewhat abstractly

related to the physical operation of a circuit and may be impossible to measure
directly. For example, there is no way to cut the circuit in Figure 3-19 to insert an
ammeter that measures only ig.

Mesh currents have a unique feature that is the dual of the fundamental property
of node voltages. If we examine Figure 3-19, we see the elements around the perim-
eter are contained in only one mesh, whereas those in the interior are in two meshes.
In a planar circuit any given element is contained in at most two meshes. When an
element is in two meshes, the two mesh currents circulate through the element in
opposite directions. In such cases KCL declares that the net current through the ele-
ment is the difference of the two mesh currents.

These observations lead us to the fundamental property of mesh currents:

If the Kth two-terminal element is contained in meshes X and Y, then the element
current can be expressed in terms of the two mesh currents as

g =ix—ly (3-9)

where X is the mesh whose reference direction agrees with the reference
direction of ix.
Equation (3-9) is a KCL constraint at the element level. If the element is contained in
only one mesh, then ix =ix or ix = —iy, depending on whether the reference direction
for the element current agrees or disagrees with the reference direction of the mesh
current. The key idea is that the current through every two-terminal element in a pla-
nar circuit can be expressed in terms of no more than two mesh currents.

Exercise 3-14

In Figure 3-20 the mesh currents are i =10 A, ig=5 A, and ic = -3 A. Find the element
currents i; through ic and show that KCL is satisfied at nodes A, B, and C.

Answers: i1=-10A;i=13A;i3=5A;i4,=8A;is=5Ais=-3 A
Atnode A:ij +ip +ig=0;atnode B: —i; +i3 +i4 =0;node C: —iy +i5—ig =0
-10+13-3=0; -13+5+8=0 -8+5-(-3)=0

To use mesh currents to formulate circuit equations, we use elements and connec-
tion constraints, except that the KCL constraints are not explicitly written. Instead,
we use the fundamental property of mesh currents to express the element voltages in
terms of the mesh currents. By doing so we avoid using the element currents and
work only with the element voltages and mesh currents.
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For example, the planar circuit in Figure 3-21 can be analyzed R, @ R,
using the mesh-current method. In the figure we have defined two AA— . AMA—
mesh currents and five element voltages. We write KVL constraints + v - + vy —

around each mesh using the element voltages. + , + , +
) Vs A V3 R3 g V4 Vs2

Mesh A: —vg +v1 +0v3=0 -
0+01+03 (3-10)

Mesh B: —U3+l)2+l)4=0

Using the fundamental property of mesh currents, we write the ele- FIGURE 3-21
ment voltages in terms of the mesh currents and input voltages:

v1 = Ryia 0o = Vs1
02 = Ryip 04 =032 (3-11)
v3 = R3(ian—ip)
We substitute these element equations into the KVL connection equations and
arrange the result in standard form.
(Ri+R3)ia—-R3ip
—R3ian+(Ry+R3)ip

oSt (3-12)

—Us2

We have completed the formulation process with two equations in two unknown
mesh currents.

As we have previously noted, every method of circuit analysis must satisfy KCL,
KVL, and the element i—o relationships. When formulating mesh equations, it may
appear that we have not used KCL. However, writing the element constraints in the
form in Eq. (3-11) requires the KCL equations i; =ia, i =ip, and i3 =is —ig. Mesh-
current analysis implicitly satisfies KCL when the element constraints are expressed
in terms of the mesh currents. In effect, the fundamental property of mesh currents
ensures that the KCL constraints are satisfied.

We use MATLAB to solve for the mesh currents in Eq. (3-12):

syms R1 R2 R3 vS1 vS2 iA iB v3 real
A = [R1+R3 -R3; -R3 R2+R3];
B = [vSl; -vS2];

x = A\B;
1A =x(1)
iB=x(2)

The resulting mesh currents are as follows:

. (Ra+R3)vs1 —Rsvsy
A= (3-13)

RiR; + RiR3; + RoR;
i R3 vs1 = (R1 + R3)vsy
B RiR, + RiR3; + RyR3

(3-14)

Equations (3-13) and (3-14) can now be substituted into the element constraints in
Eq. (3-11) to solve for every voltage in the circuit. For instance, the voltage across
R; is

_ RyR3vs1 + RiR3vs2

= 3-15
R1R2 +R1R3 +R2R3 ( )

v3=R3 (in—iB)

You are invited to show that the result in Eq. (3-15) agrees with the node analysis
result obtained in Example 3-4 for the same circuit.

current analysis.

Circuit for demonstrating mesh-
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The mesh-current analysis approach just illustrated can be summarized in
four steps:

STEP 1 Identify a mesh current with every mesh and a voltage across every circuit
element.

STEP 2 Write KVL connection constraints in terms of the element voltages around
every mesh.

STEP 3 Use KCL and the i—v relationships of the elements to express the element vol-
tages in terms of the mesh currents.

STEP 4 Substitute the element constraints from step 3 into the connection constraints
from step 2 and arrange the resulting equations in standard form.

The number of mesh-current equations derived in this way equals the number of
KVL connection constraints in step 2. When discussing combined constraints in
Chapter 2, we noted that there are E— N + 1 independent KVL constraints in any cir-
cuit. Using the window panes in a planar circuit generates E—N +1 independent
mesh currents. Mesh-current analysis works best when the circuit has many elements
(E large) connected in series (N also large).

Since Multisim uses node-voltage analysis to solve for node voltages, the currents
that it solves for are branch currents that may be composed of one or two mesh cur-
rents. One can calculate the mesh currents from the information provided by Multi-
sim if desired.

WRriTING MESH-CuRRENT EquATiONS BY INSPECTION

The mesh equations in Eq. (3-12) have a symmetrical pattern that is similar to the
coefficient symmetry observed in node equations. The coefficients of ig in the first
equation and ip in the second equation are the negative of the resistance common
to meshes A and B. The coefficients of i in the first equation and ig in the second
equation are the sum of the resistances in meshes A and B, respectively.

This pattern will always occur in planar circuits containing resistors and
independent voltage sources when the mesh currents are defined in the win-
dow panes of a planar circuit, as shown in Figure 3-19. To see why, consider
a general resistance R that is contained in, say, mesh A. There are only two
possibilities. R is either not contained in any other mesh, in which case the voltage
across it is

V= R(iA—O) =RiA
or contained in only one adjacent mesh, say mesh B, in which case the voltage across
it is
L= R(IA — lB)
These observations lead to the following conclusions. The voltage across resistance in
mesh A involves the following terms:

1. is times the sum of the resistances in mesh A.
2. Minus ig times the sum of resistances common to mesh A and mesh B.

3. Minus similar terms for any other mesh adjacent to mesh A with a common
resistance.

The sum of the voltages across resistors plus the sum of the independent voltage
sources around mesh A must equal zero.

The aforementioned process makes it possible for us to write mesh-current equa-
tions by inspection without going through the intermediate steps involving the KVL
connection constraints and the element constraints.
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EXAMPLE 3-8

For the circuit of Figure 3-22,

(a) Formulate mesh-current equations.
(b) Find the output vp using R; = Ry =2kQ and R, = R3; =4 kQ using MATLAB.

SOLUTION:

(a) Towrite mesh-current equations by inspection, we note that the total resis-
tancesinmeshes A, B, and Care R + R», R3 + R4, and R; + R3, respectively.
The resistance common to meshes A and C is R,. The resistance common
to meshes B and C is R;. There is no resistance common to meshes A and
B. Using these observations, we write the mesh equations as follows:

Mesh A: (R1 + Rz)iA —OiB —Rzic + 05y = 0
Mesh B: (R3 +R4)iB—0iA—R3ic—Usz =0
Mesh C: (Rz +R3)ic—R2iA —R3iB +0s1 = 0

M
R,
§Rl @ #) Vs2

A
Ry

(w) g

FIGURE 3-22

The algebraic signs assigned to voltage source terms follow the passive convention
for the mesh current in question. Arranged in standard form, these equations become

(R1+Ry)ia—Roic = —vsy

(Rg +R4)iB —R3ic

+ 0sp

—RziA—R3iB + (Rz +R3>ic = —0Us1

Coefficient symmetry greatly simplifies the formulation of these equations compared
with the more fundamental, but time-consuming, process of writing element and con-
nection constraints. Inserting the numerical values into these equations yields

6000 iA —-4000 iC = —Us2
6000 i5 —4000ic = vsy
—4000 ia —4000 ig + 8000 ic

—Us1

Putting these three mesh equations in matrix form produces a symmetrical matrix

6000 0 —4000 | [ia —vs2
0 \“60QO\‘—4000 ig|=| vs2
| —4000 —4000 +8000.] | ic — Vs
This is a matrix equation of the form Ax=B, where
r 6000 0 —4000 ia —vs2
A= 0 6000 —4000|x=|ig | B=| ovs2
L —4000 —4000 + 8000 ic — s

Using MATLAB to solve for the mesh currents, we first enter the A matrix with

the statement

A =[6000 0 -4000; 0 6000 —4000; —4000 -4000 8000] ;

The elements in the B matrix are the symbolic variables vs; and vs,. These quan-
tities are not unknowns, but symbols that represent all possible values of the input

voltages. Define the symbolic variables with the statement

syms VS1 VS2
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and then create the B matrix:
B=[-VS2; VS2; -VS1];
Solve for the unknown mesh currents using matrix division,
x = A\B

which yields

X=
-VS1/4000 - VS2/6000
VS2/6000 - VS1/4000

-(3*Vs1) /8000

The elements of the column vector x are the three unknown mesh currents expressed
in terms of the input voltages. The output voltage in Figure 3-22 is written in terms of
the mesh currents as vo = R4ig. We know Ry =2 kQ, soin MATLAB we can compute
the output voltage as

Vo = 2000*x(2)

which yields

Vo =
VS2/3 -VS1/2

We can write this answer compactly as

b US2_UsI

°73 2
The result from the mesh-current analysis obtained here is the same as the node-
voltage result obtained in Example 3-7. Either approach produces the same answer,

but which method do you think is easier? n

Exercise 3-15

Using the circuit of Figure 3-18 (see Exercises 3—-12 and 3-13), use mesh-current analysis to
find the current through the 4-kQ resistor and the voltage vo when the element E is

(a) a 10-kQ resistor.
(b) a 10-V independent voltage source with the positive reference on the right.

Answers:

(a) 949.4 pA and 2.53V
(b) 740.7 pA and 12.96 V

Mesn Eauatrons with CuRRENT SOURCES

In developing mesh analysis, we assumed that circuits contain only voltage sources
and resistors. This assumption simplifies the formulation process because the sum
of voltages around a mesh is determined by voltage sources and the mesh currents
through resistors. A current source complicates the picture because the voltage
across it is not directly related to its current. We need to adapt mesh analysis to
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accommodate current sources just as we revised node analysis to deal with voltage
sources.
There are three ways to handle current sources in mesh analysis:

1. If the current source is connected in parallel with a resistor, then it can be
converted to an equivalent voltage source by source transformation. Each
source conversion eliminates a mesh and reduces the number of equations
required by one. This method is the dual of method 1 for node analysis.

2. If a current source is contained in only one mesh, then that mesh current is
determined by the source current and is no longer an unknown. We write
mesh equations around the remaining meshes in the usual way and move
the known mesh current to the source side of the equations in the final step.
The number of equations obtained is one less than the number of meshes.
This method is the dual of method 2 for node analysis.

3. Neither of the first two methods will work when a current Supermesh
source is contained in two meshes or is not connected in '
parallel with a resistance. In this case we create a super-

mesh by excluding the current source and any elements con- [
nected in series with it, as shown in Figure 3-23. We write
one mesh equation around the supermesh using the currents
ian and ig. We then write mesh equations of the remaining
meshes in the usual way. This leaves us one equation short
because parts of meshes A and B are included in the super-
mesh. However, the fundamental property of mesh currents
relates the currents is, ia, and ig as

ia—iB=Is

This equation supplies the one additional relationship needed to
get the requisite number of equations in the unknown mesh
currents.

Excludes these elements

The aforementioned three methods are not mutually exclusive. We
can use more than one method in a circuit, as the following examples
illustrate.

EXAMPLE 3-9

Use mesh-current equations to find ip in the circuit in Figure 3-24(a).

SOLUTION:

The current source in this circuit can be handled by a source transformation
(method 1). The 2-mA source in parallel with the 4-kQ resistor in Figure 3-24(a)
can be replaced by an equivalent 8-V voltage source in series with the same resistor,
as shown in Figure 3-24(b). In this circuit the total resistance in mesh A is 6 kQ, the

3kQ 5kQ 3kQ

e
fio
5V 2kQ 4KQ 2mA 5V iA 2k§2©
1 kQ le
AMN\—se o

(a)

AWV

FIGURE 3-24

FIGURE 3-23 Example of a supermesh.
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total resistance in mesh B is 11 kQ, and the resistance contained in both meshes is
2 kQ. By inspection, the mesh equations for this circuit are as follows:

(6000)ia —(2000)ig = 5
—(2000)ia + (11000)ip = -8
Solving for the two mesh currents yieldsia =0.6290 mA and ig = —0.6129 mA. By KCL
the desired current is ip =ia —ip =1.2419 mA. The given circuit in Figure 3-24(a)
has three meshes and one current source. The source transformation leading to
Figure 3-24(b) produces a circuit with only two meshes. The general principle illus-

trated is that the number of independent mesh equations in a circuit containing
E elements, N nodes, and Np current sources is E—N +1-Nj. [ |

Exercise 3-16

In Figure 3-24 replace the 5-V source with a 1-mA dc current source with the arrow pointing
up. Use source transformations to reduce the circuit to a single mesh and then solve for ig.

Answer: 1.545mA. If you got a different answer, check it with Multisim.

Supermesh EXAMPLE 3-10

Ry Use mesh-current equations to find vo in Figure 3-25.

Excluded g5 yTION:

Source transformation (method 1) is not possible here since neither cur-
rent source is connected in parallel with a resistor. The current source is;
is in both mesh B and mesh C, so we exclude this element and create the
supermesh (method 3) shown in the figure. The sum of voltages around

FIGURE 3-25

v 4%Q

O

ioil
=5k0 10kQ

FIGURE 3-26

o the supermesh is
Ry (i—ia) + Ro(ig) + Ra(ic) + R3 (ic—ia) =0
The supermesh voltage constraint yields one equation in the three unknown mesh
currents. Applying KCL to each of the current sources yields
ia =lis1
ip—ic =is2
Because of KCL, the two current sources force constraints that supply two more

equations. Using these two KCL constraints to eliminate ix and ig from the super-
mesh KVL constraint yields

(Rl + R2 + R3 + R4)ic = (R1 + R3)i51 - (R1 + Rz)isz
Hence, the required output voltage is

(R1 +R3)i51—(R1 +R2)i52
R1 +R2 +R3 +R4 [ |

DO = R4ic =R4 X

Exercise 3-17

Use mesh analysis to find the current ip in Figure 3-26 when the element E is

(a) a 5-V voltage source with the positive reference at the top.
(b) a 10-kQ resistor.

Answers:
(a) -0.136 mA
(b) -0.538mA
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Exercise 3-18

Use mesh analysis to find the current ip in Figure 3-26 when the element E is

(a) A 1-mA current source with the reference arrow directed down
(b) Two 20-kQ resistors in parallel

Answers:
(a) -1mA
(b) —0.538mA

Exercise 3-19

Write a set of mesh-current equations for the circuit in Figure 3-27. Do not solve the
equations.

Answers: —01 +2Rip +2R(ia—ip) +v2 = 0;  4Rip-2Rig = v1—0
) +2R(iB—iA) +Ri]3 +2RiB = 0; —2RiA+5RiB =0
Exercise 3-21

Use mesh-current equations to find vg in Figure 3-27.

Answer: vo=(v1+02)/4

SUMMARY OF MESH-CURRENT ANALYSIS

Mesh-current equations can always be formulated from KVL, the element constraints,
and the fundamental property of mesh currents. When in doubt, always fall back on
these principles to formulate mesh equations in new situations. The following guide-
lines summarize an approach to formulating mesh equations for resistance circuits:

1. Simplify the circuit by combining elements in series or parallel wherever
possible.

2. Mesh equations are required for supermeshes and all other meshes except
those where current sources are contained in only one mesh.

3. Use KVL to write mesh equations for the meshes identified in step 2.
Express element voltages in terms of mesh currents or the voltage produced
by independent voltage sources.

4. Write expressions relating the mesh currents to the currents produced by
independent current sources.

5. Substitute the expressions from step 4 into the mesh equations from step 3
and place the result in standard form.

6. Solve the equations from step 5 for the mesh currents of interest. Manual
techniques may be efficient for lower-order problems. Computer tools, such
as MATLAB or Multisim, are usually more practical and faster for
higher-order problems.

3-3 LINEARITY PROPERTIES

This book treats the analysis and design of linear circuits. A circuit is said to be linear if
it can be adequately modeled using only linear elements and independent sources.
The hallmark feature of a linear circuit is that outputs are linear functions of the inputs.
Circuit inputs are the signals produced by external sources, and outputs are any other
designated signals. Mathematically, a function is said to be linear if it possesses two
properties—homogeneity and additivity. In linear circuits, homogeneity means that
the output is proportional to the input. Additivity means that the output due to

FIGURE 3-27
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X y=Kx
K
Input Output

FIGURE 3-28 Block diagram
representation of the
proportionality property.

FIGURE 3-29 Examples of
circuit exhibiting proportionality:
(a) Voltage divider. (b) Block
diagram for (a). (c) Current
divider. (d) Block diagram

for (c).

two or more inputs can be found by adding the outputs obtained when each input is
applied separately. Mathematically, these properties are written as follows:

f(Kx)=Kf(x) (homogeneity) (3-16)
and
flx1+x2)=f(x1)+f(x2) (additivity) (3-17)

where K is a scalar constant. In circuit analysis the homogeneity property is called
proportionality, while the additivity property is called superposition.

THE PRoPORTIONALITY PROPERTY

The proportionality property applies to linear circuits with one input. For linear resistive
circuits, proportionality states that every input-output relationship can be written as

y=Kx (3-18)

where x is the input current or voltage, y is an output current or voltage, and K is a
constant. The block diagram in Figure 3-28 describes this linear input-output relation-
ship. In a block diagram the lines headed by arrows indicate the direction of signal flow.
The arrow directed into the block indicates the input, while the output is indicated by the
arrow directed out of the block. The variable names written next to these lines identify the
input and output signals. The scalar constant K written inside the block indicates that
the input signal x is multiplied by K to produce the output signal as y = Kx.

The concept of proportionality is a central and recurring theme in linear circuit design.
The ratio of the output to the input is a concept that dominates much of circuit analysis
and design. We will analyze and design circuits that achieve desired K values. In this
chapter, we restrict the value to K <1, but beginning in the next chapter we will treat
circuits with K values that can be greater than one. In later chapters we will learn to
design and analyze circuits using complex ratios that vary with time or frequency.

Caution: Proportionality only applies when the input and output are current or
voltage. It does not apply to output power since power is equal to the product of cur-
rent and voltage. In other words, output power is not linearly related to the input
current or voltage.

We have already seen several examples of proportionality. For instance, using
voltage division in Figure 3-29(a) produces

VO = R2 [
0= Ri+R; S

which means

as shown in Figure 3-29(b). Similarly, applying current division to the circuit of

Figure 3-29(¢c)
. R
0= R] + R2 s

so that
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as shown in Figure 3-29(d). In these two examples the proportionality constant
K is dimensionless because the input and output have the same units. In other situa-
tions K could have the units of ohms or siemens when the input and output have
different units.

Exercise 3-21
Refer to the block diagram shown in Figure 3-28.

(a) A certain linear device has a K of 0.35. Its output is 6 V. What is the input that will
produce that output?

(b) A different linear device outputs 910 mA when its input is 1 A. What will be its output
when the input to the device is 300 mA?

Answers:

(a) 17.1V
(b) 273 mA

Exercise 3-22

Suppose the voltage divider shown in Figure 3-29(a) has a K of 0.75. How would one go
about changing the K so that it will have a K of 0.8?

Answer: Either increase the output resistor [R; in Figure 3-29(a)] or reduce the input
resistor (R; in the same figure) so that the ratio R,/(R; + R;)=0.8.

@ DESIGN EXAMPLE 3-11

Design a circuit that has a K =vp /vs = 0.67 using standard value resistors. (See inside
back cover.)

SOLUTION:
Since K is less than one we can use the voltage divider shown in Figure 3-29(a),
that is,

Ry

K:O.67:R1+R2

There are many possible combinations. If we have access to 5% tolerance resistors,
one choice is to select R, =20 kQ and solve for R;. In this case, Ry =10 kQ. If we must
use 20% tolerance resistors, choose R, =68 kQ and Ry =33 kQ. [ |

@ Design Exercise 3-23

Design a circuit that has K =ig/is =0.9 using 5% tolerance standard value resistors. (See
inside back cover.)

Answer: There are many solutions using the circuit of Figure 3-29(c). One is to select
R;=91kQ and R, =10kQ.

The next example illustrates that the proportionality constant K can be positive,
negative, or even zero.

EXAMPLE 3-12

You are given the bridge circuit of Figure 3-30(a).

(a) Find the proportionality constant K in the input-output relationship v = Kovs.
(b) Find the sign of K when R2R3 >R1R4, R2R3 =R1R4, and R2R3 <R1R4.

(c) Draw a block diagram of this relationship.
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SOLUTION:
(a) We observe that the circuit consists of two voltage dividers. Applying the voltage division
rule to each side of the bridge circuit yields
R; J Ry
vs an v = 4
R1+R3 S B R2+R4 s

The fundamental property of node voltages allows us to write

DA =

i i VO =VA—VUB
Vs ‘E R2R3 = R1R4 ] Vo

| R+ RYRo+ Ry | Substituting the equations for vs and vg into this KVL equation yields
(b) _________ vo = < R R )Us
Ri+Rs Ry+Ry
FIGURE 3-30

[ RR3-RiR,
“\(Ri+Rs) R+ R )"

= (K)vs
(b) The proportionality constant K can be positive, negative, or zero. Specifically,
If R;R3> R Ry, then K >0
If RyR3=R R4, then K=0
If RyR3 < R{R4, then K <0

When the products of the resistances in opposite legs of the bridge are equal, then K =0 and the
bridge is said to be balanced.

(c) See Figure 3-30(b). [ |

Exercise 3-24
In Figure 3-30(a) select values of R so that K= —0.333.

Answer: R;=R,=R3=1kQ and R, =5kQ. Many other solutions are possible.

Unit Qutprut METHOD

The unit output method is an analysis technique based on the proportionality prop-
erty of linear circuits. The method involves finding the input-output proportionality
constant K by assuming an output of one unit and determining the input required to
produce that unit output. This technique is most useful when applied to ladder cir-
cuits, and it involves the following steps:

1. A unit output is assumed; that is, vo=1Voripg=1A.

2. The input required to produce the unit output is then found by successive
application of KCL, KVL, and Ohm’s law.

3. Because the circuit is linear, the proportionality constant relating input and
output is
K- Output 1
~ Input Input for unit output

Given the proportionality constant K, we can find the output for any input using
Eq. (3-18).

In a way, the unit output method solves the circuit response problem
backward—that is, from output to input—as illustrated by the next example.
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EXAMPLE 3-13

Use the unit output method to find vg in the circuit shown in Figure 3-31(a).

100 10Q 5o W) e
Mo+ oA A o
- 150 e+ n 200 o
+
150 20Q Vo vo=1V
>V § ’s @ V_2 @ (Assumed)
o o . >
(a) (b)
FIGURE 3-31
SOLUTION:

We start by assuming vp = 1V, as shown in Figure 3-31(b). Then, using Ohm’s law, we
find io.

. _Vo _

io= 20 0.05A
Next, using KCL at node B, we find /.

i1=ip=0.05A

Again, using Ohm’s law, we find v;.
01=104 =05V
Then, writing a KVL equation around loop L2, we find v, as
v=01+00=05+1.0=15V
Again, using Ohm’s law, we find i, as

. _1)2_1.5_
12—15— 15 =0.1A

Next, writing a KCL equation at node A yields
i3=i1+ip=0.05+0.1=0.15 A
Using Ohm’s law one last time,
v3=10i3=15V
We can now find the source voltage vs by applying KVL around loop L1:
Uslorpo=1v=03+02=15+15=3V

A 3-V source voltage is required to produce a 1-V output. From this result, we cal-
culate the proportionality constant K to be

[(Ve) 1
K=—=-
Us 3

Once K is known, the output for the specified 5-V input is vo=(15)5=1.667V. B

Exercise 3-25
Find vo in the circuit of Figure 3-31(a) when vg is =5V, 10mV, and 3kV.

Answers: vo=-1.667V;3.333mV; 1kV
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Exercise 3-26

For the circuit in Figure 3-32(a),

(a) Use the unit output method to find K =ip /iin

(b) Then use the proportionality constant K to find ip for the input current shown in the

figure.
(c) Draw a block diagram to show the results of parts (a) and (b).
500 Q 1k o
FIGURE 3-32 M AV
0.6. mA 025 0.15. mA
0.6 mA § 2kQ 3kQ § 2kQ § IN o
(b)

X Kix
—
+

X) Kyx
K, 2X2 +© y
+
T
X Kizx /

FIGURE 3-33 Block diagram
representation of the additivity

property.

(a)

Answers:

(a) K=Y,

(b) io=0.15mA

(c) See Figure 3-32(b)

AppitiviTy PROPERTY

The additivity property states that any output current or voltage of a linear resistive
circuit with multiple inputs can be expressed as a linear combination of the several
inputs:

y:K1X1 +K2X2+K3X3+~-- (3-19)

where x1,x2,X3,... are current or voltage inputs, and Kj,K»,K3, ... are constants that
depend on the circuit parameters. Figure 3-33 shows how we represent this relation-
ship in block diagram form. Again the arrows indicate the direction of signal flow and
the K’s within the blocks are scalar multipliers. The circle in Figure 3-33 is a new
block diagram element called a summing point that implements the operation
y=>_i_,Kix;. Although the block diagram in Figure 3-33 is nothing more than a pic-
torial representation of Eq. (3-19), the diagram often helps us gain a clearer picture
of how signals interact in different parts of a circuit.

To illustrate this property, we analyze the two-input circuit in Figure 3-34(a) using
node-voltage analysis. Applying KCL at node A, we obtain

Since vp =va, we obtain the input-output relationship in the form

VO = 2 vs + RlRZ
© R1+R2 S R1+R2

Is

(3-20)
y = [Ki]x1 + [Kz]xa

This result shows that the output is a linear combination of the two inputs. Note that
Kj is dimensionless since its input and output are voltages, and that K, has the units of
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ohms since its input is a current and its output is a voltage. A representative block
diagram is shown in Figure 3-34(b).

SUPERPOSITION PRINCIPLE

Since the output in Eq. (3-19) is a linear combination, the contribution of each input
source is independent of all other inputs. This means that the output can be found by
finding the contribution from each source acting alone and then adding the individual
responses to obtain the total response. This suggests that the output of a multiple-
input linear circuit can be found by the following steps:

STEP 1 “Turn off” all independent sources except one and find the output of the cir-
cuit due to that source acting alone.

STEP 2 Repeat the process in step 1 until each independent source has been turned on
and the output due to that source found.

STEP 3 The total output with all independent sources turned on is the algebraic sum of
the outputs caused by each source acting alone.

These steps describe a circuit analysis technique called the superposition principle.
Before applying this method, we must discuss what happens when a voltage or cur-
rent source is “turned off.”

The i—v characteristics of voltage and current sources are shown in Figure 3-35.
A voltage source is “turned off” by setting its voltage to zero (vs =0). This step trans-
lates the voltage source i—v characteristic to the i-axis, as shown in Figure 3-35(a).
In Chapter 2 we found that a vertical line on the i-axis is the i—v characteristic of a
short circuit. Similarly, “turning off” a current source (is =0) in Figure 3-35(b) trans-
lates its i—o characteristic to the v-axis, which is the i —v characteristic of an open cir-
cuit. Therefore, when a voltage source is “turned off” we replace it by a short circuit,
and when a current source is “turned off” we replace it by an open circuit.

i i i i

—~— —
——oO ——O
+ +

‘ | Set vg to 0
v v

— v=yvs y=0 /—o

O=~0
<
1]
S

©
i

Short circuit

(a)
i ; ; Open circuit i=0
— —
2 i=ig Suti 2
= etigto0 20
JORES : ELESUMENE
- [<]

+ +
L—o L— o

(b)

The superposition principle is now applied to the circuit in Figure 3-34 to duplicate
the response in Eq. (3-20), which was found by node analysis. Figure 3-36 shows the
steps involved in applying superposition to the circuit in Figure 3-34. Figure 3-36(a)
shows that the circuit has two input sources. We will first “turn off” is and replace
it with an open circuit, as shown in Figure 3-36(b). The output of the circuit in

X, =1, /
2= | RiR,

FIGURE 3-34 (a) Circuit used
to demonstrate superposition.
(b) Block diagram.

FIGURE 3-35 Turning

off an independent source:

(a) Voltage source. (b) Current
source.
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R Figure 3-36(b) is called vo; and represents that part of the total output caused by the
voltage source. Using voltage division in Figure 3-36(b) yields vo; as

Ry
Rl + R2

Vo1 = Us

Next we “turn off” the voltage source and “turn on” the current source, as shown
in Figure 3-36(c). Using Ohm’s law, we get vz =ip2R>. We use current division to
express ioy in terms of is to obtain vpy

Ry il Ry = RiR,
Ri+R, "

= 1 R = = 1
Vo2 =10214%2 { 2 Ri+R, Is
Applying the superposition principle, we find the response with both sources “turned

on” by adding the two responses vo; and vop.

R, VO = Vo1 V02

Vo = 2 s + RiRs I
O IR +R:| ° T |R +R|®

This superposition result is the same as the circuit reduction result given in Eq. (3-20)
° and can be represented by the same block diagram shown in Figure 3-34(b).

Short circuit

©
FIGURE 3-36 Circuit analysis EXAMPLE 3-14
using superposition: (a) Original
circuit. (b) Current source off. (c)
Voltage source off.

Figure 3-37(a) shows a resistance circuit used to implement a signal-summing func-
tion. Use superposition to show that the output vg is a weighted sum of the inputs vg;,
0s2, and Us3.

SOLUTION:

To determine vp using superposition, we first turn off sources 1 and 2 (vs; =0 and
vs =0) to obtain the circuit in Figure 3-37(b). This circuit is a voltage divider in which
the output leg consists of two equal resistors in parallel. The equivalent resistance of
the output leg is R/2, so the voltage division rule yields

R/2 vs3
= g3 =—
R+R)2 3

Vo3

Because of the symmetry of the circuit, it can be seen that the same technique applies
to all three inputs; therefore,

_Us2 d _ Vst
VO = ? an DO1 = ?

Applying the superposition principle, the output with all sources “turned on” is

00 = Vo1 + 002 + 003
=3 [vs1 +vs2 + Vs3]
That is, the output is proportional to the sum of the three input signals with
K1=K2=K3=1/3. [ |
Exercise 3-27
Short circuits The circuit of Figure 3-38 contains two R-2R modules. Use superposition to find vo.
(®) .
Answer: 1

= — + —
FIGURE 3-37 PO =5 UsiT g s
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11 I I 1 0 I I FIGURE 3-38

0 OO0 0 U [

Exercise 3-28

Repeat Exercise 3-27 with the voltage source vs, replaced by a current source is, with the
current reference arrow directed toward ground.

Answer: vo=3vs1/5-4is;R/5

[ EXAMPLE 3-15

Use the principle of superposition to find the voltage vx in Figure 3-39(a). Validate
your answer using Multisim.

50 Q

100 Q

FIGURE 3-39

SOLUTION:
To find vx we will turn off each source one at a time starting with the voltage source as

shown in Figure 3-39(b). We chose to find the voltage vx; by first determining the
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current ix, and then using Ohm’s law, as shown in Figure 3-39(c). The circuit to the
right of the 50-Q resistor consists of two 100-Q resistors in parallel. This result, then, is
in series with the 50-Q resistor. This combination equals 100 Q. At node A, the cur-
rent ix; is exactly half of the source current or 0.6 A, because the source current
divides equally between two paths with the same equivalent resistances. At node
B, the current divides equally again, since both path resistances equal 100 Q, resulting
in ixy = 0.3A. Then by Ohm’s law

UXi =03x100=30V

To find the contribution due to the voltage source, we set the current source to zero as
shown in Figure 3-39(d). The circuit to the left of the source’s 100-Q resistor can be
combined resulting in an equivalent resistance of 60 Q. The problem of finding vxy
then reduces to a simple voltage divider as shown in Figure 3-39(e).

60 (
XY= 100+ 60

The desired voltage vy can be found by algebraically adding the two
contributions as

~120)=-45V

vx =0xi +Uxy =30+ (-45)=-15V

To validate our answer with Multisim, we draw the two superposition circuits as
shown in Figure 3-39(f ). We used both the multimeters and the DC Operating Point
Analysis, although redundant, to demonstrate the validity of superposition. The mul-
timeters show that vx; and vy, are the same as calculated by hand. Using the DC
Operating Point Analysis, we can also have Multisim add the voltages, again giving
the same overall result of —15V. As a final check, you can construct the original
circuit in 3-39(a) to verify the overall result. |

Multimeter-XMM1

Ry J Vi

100Q — 120V

Ry

= 100 Q
Example 3-15 Multimeter-XMM2
30V | ine Poi ; [ v |
DC Operating Point Analysis .
al[v][a][ae Variable Operating point value al[v][e][=
i 3 —
1| v 30.000 D
= Set... = + = _
L) L) 2 V(vxi)+V(vxv) —15.000 () .
3 V(vxv) —45.000
(€3]
FIGURE 3-39
12Q 2Q

2v(?) O f

FIGURE 3-40

Exercise 3-29

Use the principle of superposition to find the current ix in Figure 3-40.

Answers: ixi=08 A, ixy=04A,ix=12A

The preceding examples and exercises illustrate use of the superposition theorem to
analyze multiple-input linear circuits. You should not conclude that this is the
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primary application of this concept. In fact, superposition is not a particularly attrac-
tive method, since a circuit with N signal sources requires N different circuit analyses
to obtain the final result. Unless the circuit is relatively simple, superposition may not
reduce the analysis effort compared with, say, node-voltage analysis or a software
tool. Rather, superposition is an important property of linear circuits used primarily
as a conceptual tool to develop other circuit analysis and design techniques and as an
aid in understanding the effect that different sources have on an output.

34 THEvENIN AND NorTON Equivarent CiRcuITS

An interface is a connection between circuits. Circuit interfaces occur frequently in
electrical and electronic systems, so special analysis methods are used to handle
them. For the two-terminal interface shown in Figure 3-41, we normally think of
one circuit as the source S and the other as the load L. We think of signals as being
produced by the source circuit and delivered to the load circuit. The source-load
interaction at an interface is one of the central problems of circuit analysis and design.

The Thévenin and Norton equivalent circuits shown in Figure 3-42 are valuable
tools for dealing with circuit interfaces. The conditions under which these equivalent
circuits exist can be stated as a theorem:

If the source circuit in a two-terminal interface is linear, then the interface signals

v and i do not change when the source circuit is replaced by its Thévenin or Norton

equivalent circuit.
The equivalence requires the source circuit to be linear but places no restriction on
the linearity of the load circuit. Later in this section we consider cases in which the
load is nonlinear. In subsequent chapters we will study circuits in which the loads are
linear energy storage elements called capacitors and inductors.

The Thévenin equivalent circuit consists of a voltage source (vr) in series with a
resistance (Rt). The Norton equivalent circuit is a current source (ix) in parallel with
aresistance (Ry). Note that the Thévenin and Norton equivalent circuits are practical
sources in the sense discussed in Chapter 2.

The two circuits have the same i —v characteristics, since replacing one by the other
leaves the interface signals unchanged. To derive the equivalency conditions, we
apply KVL and Ohm’s law to the Thévenin equivalent in Figure 3-42(a) to obtain
its i—v relationship at the terminals A and B:

v=vT—IiRT (3-21)
Next, applying KCL and Ohm’s law to the Norton equivalent in Figure 3-42(b) yields
its i—v relationship at terminals A and B:
v

i:iN_R7N (3—22)

® S

—_—

Source Interface Load

FIGURE 3-41

interface.

®

A two-terminal

+

VT v

+

v L ;(*) IN Z Ry
N ,

Source Interface Load Source Interface

(a)

(b)

FIGURE 3-42 Equivalent circuits for the source: (a) Thévenin equivalent. (b) Norton equivalent.

Load
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FIGURE 3-43 Loads used to
find Thévenin and Norton
equivalent circuits: (a) Open
circuit yields the Thévenin
voltage. (b) Short circuit yields
the Norton current.

(c) Measuring voc and isc using
a DMM.

Solving Eq. (3-22) for v yields
= iNRN —iRN (3—23)

The Thévenin and Norton circuits have identical i—v relationships. Comparing
Egs. (3-21) and (3-23), we conclude that

Rx =Ry

3-24
iNRN =0T ( )

In essence, the Thévenin and Norton equivalent circuits are related by the source
transformation studied in Chapter 2. We do not need to find both equivalent circuits.
Once one of them is found, the other can be determined by a source transformation.
The Thévenin and Norton circuits involve four parameters (vt, Rr, in, Rn), and
Eq. (3-24) provides two relations between the four parameters. Therefore, only two para-
meters are needed to specify either equivalent circuit. Since Thévenin and Norton equiv-
alent circuits are, well, equivalent, one uses whichever one is more useful for the task.

In circuit analysis problems it is convenient to use the short-circuit current and
open-circuit voltage to specify Thévenin and Norton circuits. The circuits in
Figure 3-43(a) show that when the load is an open circuit the interface voltage equals
the Thévenin voltage; that is, voc =vT, since there is no voltage across Rt when i =0.
Similarly, the circuits in Figure 3-43(b) show that when the load is a short circuit the
interface current equals the Norton current; that is, isc = in, since all the source cur-
rent iy is diverted through the short-circuit load.

In summary, the parameters of the Thévenin and Norton equivalent circuits at a
given interface can be found by determining the open-circuit voltage and the short-
circuit current.

VT = VOC
IN = Isc (3-25)
Rn =Rt = voc/isc

APPLICATION EXAMPLE 3-16

Thévenin measurements can be made in the laboratory or in the field with a simple
digital multimeter (DMM). Look at Figure 3-43(c). If one sets the DMM to read

)

: 1
5 !
]
isc=in () i = R | =0
sc=iN ,NgRN: v =

i ]
| 1
: '
| 1
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voltage, then the multimeter acts like an open circuit' and the meter reading will be
the circuit’s open-circuit voltage voc. Setting the DMM to read current makes the
DMM act like a short circuit® and the meter reading will be the circuit’s short-circuit
current. The circuit’s Thévenin resistance can then be found using Eq. (3-25).

AppricaTioNs oF THEVENIN AND NorToN Equivarent CircuiTs

Replacing a complex circuit by its Thévenin or Norton equivalent can greatly simplify
the analysis and design of interface circuits. For example, suppose we need to select a
load resistance in Figure 3—44(a) so the source circuit to the left of the interface A-B
delivers 4 V to the load. This task is easily handled once we have the Thévenin or
Norton equivalent for the source circuit.

To obtain the Thévenin and Norton equivalents, we need voc and isc. The open-
circuit voltage voc is found by disconnecting the load at the terminals A and B, as
shown in Figure 3-44(b). The voltage across the 15-Q resistor is zero because the
open circuit causes the current through the resistor to be zero. The open-circuit volt-
age at the interface is the same as the voltage across the 10-Q resistor. Using voltage
division, this voltage is

szvocz%xﬁ:lOV

5Q ISQ@
S

15V 10Q Load

(a)
50 159@i=0 150 @
> o . .
* +
15V 10Q Voc 3A 50 <10Q v=0 iis(;
\ > . : >

(b) ©
183 Q @ @
>— -
10v Load 545 mA 183 Q Load

(d) (e

"The open-circuit resistance of a DMM is not infinite, but varies with the quality of the DMM from
107 to 10" Q.

2Similarly, the short-circuit resistance of a DMM is not zero, but varies with the quality of the DMM
from 10~ to 10 Q.

FIGURE 3-44 Example of
finding the Thévenin and Norton
equivalent circuits: (a) The given
circuit. (b) Open circuit yields the
Thévenin voltage. (c) Short
circuit yields the Norton current.
(d) Thévenin equivalent circuit.
(e) Norton equivalent circuit.
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Next we find the short-circuit current igc using the circuit in Figure 3-44(c). We
do a source transformation of the 15-V source and the series 5-Q resistor as shown
in the figure. Then we apply current division to find the short-circuit current

as follows:
1 1
— %3 30 <) x3
o= 15 b LN TEION
i+i+1 30 l+l+1 2+3+6 11
15 10 5 15 10 5
Finally, we compute the Thévenin and Norton resistances as
Rr=Ry="2€-183Q
IsC

The resulting Thévenin and Norton equivalent circuits are shown in Figures 3—44(d)
and 3-44(e).

Itis now an easy matter to select aload Ry so that4 V is supplied to the load. Using
the Thévenin equivalent circuit, the problem reduces to a voltage divider:

Ry . Ry
oT=——7->%
Ry + Rt T Ry + 18.3
Solving for Ry yields Ry, =12.2 Q.
The Thévenin and Norton equivalent can always be found from the open-circuit

voltage and short-circuit current at the interface. The following examples illustrate
other methods of determining these equivalent circuits.

x10=4V

10k Rp=6kQ EXAMPLE 3-17

VW ° VSC
12V 15kQ voc
o SOLUTION:
The open-circuit voltage can be found using a voltage divider as

@ i (®) 15k x 12
FIGURE 3-45 e T S ]
The short-circuit current is found by placing a short circuit connect-
ing nodes A and B and finding the current flowing through that
short circuit. The short circuit is in parallel with the 15-kQ resistor
thereby effectively removing it from the circuit. The short-circuit
current is thus found using Ohm’s law as

©
1S

Find the Thévenin equivalent at nodes A and B for the circuit in
Figure 3-45(a).

lsczlo—kZLZmA

The Thévenin resistance is then found as

VOC 72
Ry=—=——"—=6kQ
e 12m
The Thévenin equivalent circuit is shown in Figure 3-45(b). [ |

Exercise 3-30

Find the Thévenin equivalent at nodes A and B for the circuit in Figure 3-46.

Answers: vr=4.14V; Rr=5.01kQ

VT’RT

FIGURE 3-46
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EXAMPLE 3-18

(a) Find the Thévenin equivalent circuit of the source circuit to the left of the interface in
Figure 3-47(a).

(b) Use the Thévenin equivalent to find the power delivered to two different loads. The first
load is a 10-kQ resistor and the second is a 5-V voltage source whose positive terminal is
connected to the upper interface terminal.

SOLUTION:

(a) To find the Thévenin equivalent, we use the sequence of circuit reductions shown
in Figure 3-47. In Figure 3-47(a) the 15-V voltage source in series with the 3-kQ
resistor to the left of terminals A and B is replaced by a 3-kQ resistor in parallel with

(») © sk i,
MA—
+
(a) 6 kQ 2 mA v Load
4kQ -
. AN

©

(b) Load
© Load
(d) Load
(e) Load

FIGURE 3-47
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9kQ L

~

+

6V v 10kQZ SVCD

FIGURE 3-48

an equivalent current source with is = 15/3000 =5 mA. In Figure 3-47(b), looking
to the left of terminals C and D, we see two resistors in parallel whose equivalent
resistance is (3 kQ)|| (6 kQ) =2 kQ. We alsosee two current sources in parallel whose
equivalent isis =5 mA -2 mA =3 mA. This equivalent current source is shown in
Figure 3-47(c) to the left of terminals C and D. Figure 3-47(d) shows this current
source converted to an equivalent voltage source vs =3 mA x2 kQ =6V in series
with 2 kQ. In Figure 3-47(d) the three resistors are connected in series and can be
replaced by an equivalent resistance Rgg =2kQ+3kQ+4kQ=9kQ. This step
produces the Thévenin equivalent shown in Figure 3-47(e).

Note: The steps leading from Figure 3-47(a) to 3-47(e) involve circuit reduc-

tion techniques studied in Chapter 2, so we know that this approach works best on
ladder circuits like the one in Figure 3-47(a).
Figure 3-48 shows the Thévenin equivalent found in part (a) (Figure 3-47(e)) and the
two loads. When the load is a 10-kQ resistor, the interface current is i = (6) /(9000 +
10,000) =0.3158 mA, and the power delivered to the load is ZR;. = 0.9973 mW.
When the load is a 5-V source, the interface voltage and current are v=5V and
i=(6-5)/9000=0.1111 mA, and the power to the load isv x i = 0.5555 mW. Since
p>0 in the latter case, we see that the voltage source load is absorbing power
rather than delivering power. A practical example of this situation is a battery
charger.

Caution: The Thévenin equivalent allows us to calculate the power delivered
to a load, but it does not tell us what power is dissipated in the original source
circuit. For instance, if the load in Figure 3-47(e) is an open circuit, then no power
is dissipated in the Thévenin equivalent since i =0. This does not mean that the
power dissipated in the original source circuit is zero, as we can easily see by look-
ing back at Figure 3-47(a). The Thévenin equivalent circuit has the same i—v
characteristic at the interface, but it does not duplicate the internal characteristics
of the original source circuit. |

Exercise 3-31

For the Thévenin circuit of Figure 348, select aload Ry, so that2.5 V are delivered across it.
Choose Ry from the 10% values given in the inside back cover. What will be the actual value
of voltage delivered to the load?

Answers: Rp=6.8kQ; v, =2.58+10%V

EXAMPLE 3-19

(a) Find the Norton equivalent of the source circuit to the left of the inter-
face in Figure 3-49.

(b) Use Multisim to verify your result.

(c) Find the interface current i when the power delivered to the loadis 5 W.

(a) The circuit reduction method will not work here since the source
circuit is not a ladder. In this example we write mesh-current

60 Q 150
qov (2 (Cia @ v
180 Q
FIGURE 3-49

equations and solve directly for the source circuit i—v relation-
ship. We only need to write equations for meshes A and B since
the 2-A current source determines the mesh C current. The volt-
age sums around these meshes are as follows:

Mesh A: —40+ 60 (ix —ic) + 180 (is —ig) =0
MeshB:  —180 (ix—ip) +15 (ig—ic) +v=0
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But since ig =i and the current source forces the condition ic = —2, these equa-
tions have the form

240i,—-1807i=-80
—180is+195i=-30-0

Solving for the currents in terms of » yields

35
ia 240 -18017'[ -80 32780
[i] l—180 195] [—30—1}] 3 v
2 60
.3
T 72760

At the interface the i—v relationship of the source circuit is i=—-1.5-0v/60.
Equation (3-22) gives the i—v relationship of the Norton circuit as i=iy—
v/Rx. By direct comparison, we conclude that ix=—-1.5 A and Ry =60 Q. This
equivalent circuit is shown in Figure 3-50(a).
(b) We can use Multisim in much the same way as we can find a circuit’s Thévenin
equivalent in the laboratory or in the field as shown in Figure 3-43(c) using a mul-
timeter. Figure 3-50(b) shows how one can easily find a circuit’s open-circuit volt-
age (voc) and its short-circuit current (isc ) using Multisim. The Thévenin resistance
can then easily be calculated using Rt =voc/isc.

Multimeter-XMM1

Multimeter-XmMmz2

——
- h Al @] [l & Iy [ [@
2 o) ol =] D e
15A 2600 v | Load R R R R
v, [ 608 [ 159 s et v [ e |, 159 XMM2
_ 1 - 15 \ -
40V= 180 Q 0V= 180Q ;o
L L
(a) (b)
FIGURE 3-50

(c) When 5 W is delivered to the load, we have vi=5 or v=5/i. Substituting v=5/i
into the source i—v relationship i= —1.5-v/60 yields the quadratic equation

12 +18i+1=0

whose roots are i = —0.05778 A and —1.442 A. Thus, there are two values of inter-
face current that deliver 5 W to the load. [ |

DerivaTion oF THEVENIN'S THEOREM

The derivation of Thévenin’s theorem is based on the superposition principle. We
begin with the circuit in Figure 3-51(a), where the source circuit S is linear. Our
approach is to use superposition to show that the source circuit and the Thévenin cir-
cuit have the same i—o relationship at the interface. To find the source circuit i—v
relationship, we first disconnect the load and apply a current source itgst, as shown
in Figure 3-51(b). Using superposition to find vrgst, we first turn irgst off and leave
all the sources inside S on, as shown in Figure 3-51(c). Turning a current source off
leaves an open circuit, so

UTEST1 = VOC
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i Next we turn itgst back on and turn off all of the independent sources inside S.

> Since the source circuit S is linear, it reduces to the equivalent resistance shown in
s 5 Figure 3-51(d) when all internal sources are turned off. Using Ohm’s law, we write
v
_ vresT2 = (Req) (—itEsT)
(@ The negative sign in this equation results from the reference directions originally
assigned to itgst and vrgst in Figure 3-51(b). Using the superposition principle,
— we find the i—o relationship of the source circuit at the interface to be
9 VIEST iTEST UTEST = DTESTI + UTEST?
S = voc—Req iTEST
(b) . . . . . ) . .
This equation has the same form as the i—v relationship of the Thévenin equivalent
cTT > circuit in Eq (3—21) when UTEST =0, iTEST = i, voC =0T, and RT ZREQ.
S * ITEST The derivation points out another method of finding the Thévenin resistance. As
L oN | VTESTI OFF " indicated in Figure 3-51(d), when all the independent sources are turned off, the i—v
P I relationship of the source circuit reduces to v = —iRgq. Similarly, the i—v relationship
© of a Thévenin equivalent circuit reduces to v = —iRt when vt =0. We conclude that
____________ Rt =REgo (3-26)
ITEST

:S (le;Ses ON  We can find the value of Rt by determining the resistance seen looking back into the

! OFF source circuit with all independent sources turned off. For this reason the Thévenin
A ' resistance Rt is sometimes called the lookback resistance.

The next example shows how lookback resistance contributes to finding a Théve-
nin equivalent circuit.

FIGURE 3-51 Using

superposition to prove EXAMPLE 3-20
Thévenin’s theorem.

(a) Find the Thévenin equivalent of the source circuit to the left of the interface in
Figure 3-52(a).
(b) Use the Thévenin equivalent to find the voltage delivered to the load.

++++++++++++++++++++++++++++++++++++++++ o i o

i i A
i i R
v R !
vsl(i) vs2 C) vs3 (i) E § - | X\ \
b Bme o Short circuits Req =R

(a) (b)
FIGURE 3-52

SOLUTION:

(a) The source circuit in Figure 3-52(a) is treated in Example 3-14 by using superposition to
calculate the open-circuit voltage between terminals A and B. Using the results from
Example 3-14, we have

1
OT =VoC = 5(051 + 052 +Us3)
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Turning all sources off in Figure 3-52(a) leads to the resistance circuit in Figure 3-52(b).

Looking back into the source circuit in Figure 3-52(b), we see three equal resistances con-

nected in parallel whose equivalent resistance is R/3. Hence, the Thévenin resistance is
R

(b) Given the Thévenin circuit parameters vy and Ry, we apply voltage division in
Figure 3-52(a) to find the interface voltage.

po B Ry <051+Us2+053>: Ry (vs1 + 52 + 053)
RL+Rr ' \RL+R/3 3 3R +R) TSRS

The interface voltage is proportional to the sum of the three source voltages. The propor-
tionality constant K = Ri./(3RL + R) depends on both the source and the load since these
two circuits are connected at the interface. [ |

Exercise 3-32

For the circuit of Figure 3-53 find the Thévenin equivalent circuit seen by R;.. Then use the
equivalent circuit to find the load power p;, when Ry, =50 Q, 100 Q, and 500 Q.

Answers: or=25V, Rr=100Q

Prsoa =138 W, prigoa =1.56 W, prsoa =0.868 W

Note that the power delivered to the load appears to peak somewhere near 100 Q. We will look
at the concept of maximum power transfer in the next section.

Exercise 3-33

(a) Find the Thévenin and Norton equivalent circuits seen by the load in Figure 3-54.

(b) Find the voltage, current, and power delivered to a 50-Q load resistor.

Answers: 200 50V

RT'VT
100 Q

50V

Ry, PL

V2
/\ if\ 200

400 Q

15V

FIGURE 3-53

(a) UTZ—SOV; iN:—417mA; RN :RT=7ZQ @
(b) v=-123V i=-246mA; p=3.03W

Exercise 3-34 200 2400

Find the current and power delivered to an unknown load in

Figure 3-54 when v=+6V.
Answers: i=-1A;p=-3W

FIGURE 3-54

Apprication To NonLiNEAR LoaDs

Thévenin and Norton equivalent circuits can be used to find the response of a two-
terminal nonlinear element (NLE). The method of analysis is a straight forward
application of device and interface i—v characteristics. An interface is defined at
the terminals of the nonlinear element, and the linear part of the circuit is reduced
to the Thévenin equivalent in Figure 3-55(a). The i—v relationship of the Thévenin
equivalent can be written with interface current as the dependent variable:

. 1 uT
1= (—R—T)U+ (R—T> (3—27)

This is the equation of a straight line in the i — v plane shown in Figure 3-55(b). The line
intersects the i-axis (v=0) at i=vy/Ry=isc and intersects the v-axis (i=0) at
v=vT =v0c. This line could logically be called the source line since it is determined
by the Thévenin parameters of the source circuit. Logic notwithstanding, electrical
engineers call this the load line for reasons that have blurred with the passage of time.

Load
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FIGURE 3-55 Graphical

analysis of a nonlinear circuit:

(a) Given circuit. (b) Load line.

(c) Nonlinear device’s i—v
characteristics. (d) Q-point.

(@)
i i
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The nonlinear element has the i—v characteristic shown in Figure 3-55(c). Math-
ematically, this nonlinear characteristic has the form

i=f(v) (3-28)

To find the circuit response, we must solve Egs. (3-27) and (3-28) simultaneously.
Computer software tools like MATLAB can easily solve this problem when a numer-
ical expression for the function f(») is known explicitly. However, in practice an
approximate graphical solution is often adequate, particularly when f(v) is given only
in graphical form.

The developers of SPICE software packages like Multisim work hard to create
software models of the myriad of electronic devices used in circuit design —yet, even
with their best efforts, devices are often very nonlinear and difficult to model accu-
rately. No matter what software model one uses, there is always a possibility of error.
That is why circuits are first modeled using software and then built and tested in the
laboratory to validate the design.

In Figure 3-55(d) we superimpose the load line on the i—v characteristic curve of
the nonlinear element. The two curves intersect at the point i =in g and v =oNLE,
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which yields the values of interface variables that satisfy both the source constraints
in Eq. (3-27) and the nonlinear element constraints in Eq. (3-28). In the terminology
of electronics, the point of intersection is called the operating point or Q-point, where
“Q” stands for “quiescent.”

EXAMPLE 3-21

Find the voltage, current, and power delivered to the diode in Figure 3-56(a). The
diode’s i—v characterististics are given in Figure 3-56(b).

Circuit’s i—v characteristics

/ 1.0

(b)

SOLUTION:
We first find the Thévenin equivalent of the circuit to the left of terminals A and B.
By voltage division, the open-circuit voltage is
100
UTEPOCT 100+ 100
When the voltage source is turned off, the lookback equivalent resistance seen
between terminals A and B is

Rr=10+100100=60

The source circuit load line is given by

i=— %1} + 61_0 x2.5
This line intersects the i-axis (v=0) at i=igc=2.5/60=41.7mA and intersects the
v-axis (i=0) at v=voc =2.5 V. Figure 3-56(b) superimposes the source circuit load
line on the diode’s i—v curve. The intersection (Q-point) is at i=ip=15mA and
v=vp =1.6 V. This is the point (ip,vp) at which both the source and diode device con-
straints are satisfied. Finally, the power delivered to the diode is given by

pp=ipvp=(15x107%) (1.6) =24 mW

Because of the nonlinear element, the proportionality and superposition properties
do not apply to this circuit. For instance, if the source voltage in Figure 3-56(a) is
decreased from 5V to2.5V, the diode current and voltage do not decrease by
one-half. Try it. |

Exercise 3-35

Suppose for the circuit shown in Figure 3-56(a) that the diode’s i —v characteristics can be
modeled by the following equation:

. 64“ _ 1
= 700,000

FIGURE 3-56
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where v is given in volts and  is given in amperes. Note that these i —v characteristics is for a
different diode from that shown in Figure 3-56(b). Use manual calculations or the
MATLAB function solve to find the exact operating point for this circuit.

Answers: op=1.77V;ip=12.1mA

In summary, any two of the following parameters determine the Thévenin or Nor-
ton equivalent circuit at a specified interface:

e The open-circuit voltage at the interface
e The short-circuit current at the interface
e The source circuit lookback resistance

Alternatively, for ladder circuits the Thévenin or Norton equivalent circuit can be
found by a sequence of circuit reductions (see Example 3-18). For general circuits
they can always be found by directly solving for the i—v relationship of the source
circuit using node-voltage or mesh-current equations that include the interface cur-
rent and voltage as unknowns (see Example 3-19).

Simulation software such as Multisim can be used to find the Thévenin or Norton
equivalent circuit (see Example 3-19). Or alternately, in the field or laboratory, the
equivalent circuit parameters can be measured using appropriate instruments such as
a multimeter for dc circuits.

3-5 Maximum SienaL TRANSFER

An interface is a connection between two circuits at which the signal
levels may be observed or specified. In this regard an important consid-
eration is the maximum signal levels that can be transferred across a given

available at an interface between a fixed source and an adjustable load.
For simplicity we will treat the case in which both the source and load
are linear resistance circuits. The source can be represented by a Théve-

©

§ R »interface. This section defines the maximum voltage, current, and power

nin equivalent and the load by an equivalent resistance Ry, as shown in
Figure 3-57. For a fixed source, the parameters vt and Rt are given and

FIGURE 3-57 Two-terminal interface for the interface signal levels are functions of the load resistance Ry.

deriving the maximum signal transfer

conditions.

By voltage division, the interface voltage is
Ry

== 3-29
v RL+RT T ( )

For a fixed source and a variable load, the voltage will be a maximum if Ry is made
very large compared with Rr. Ideally, Ry should be made infinite (an open circuit), in
which case

UMAX =0T =00C (3-30)

Therefore, the maximum voltage available at the interface is the source open-circuit
voltage voc.
The current delivered at the interface is

uT

e — 3-31
! RL+RT ( )

For a fixed source and a variable load, the current will be a maximum if Ry is made
very small compared with Rry. Ideally, Ry should be zero (a short circuit), in
which case

ivax = ;—TT = in = isc (3-32)
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Therefore, the maximum current available at the interface is the source short-circuit
current isc.

The power delivered at the interface is equal to the product v x i. Using Egs. (3-29)
and (3-31), the power is

p=vxi
RLU"ZF (3—33)
(RL + RT)2

For a given source, the parameters v and Ry are fixed and the delivered power is a
function of a single variable R;.. The condition for maximum voltage (R — o) and
the condition for maximum current (Ry, =0) both produce zero power. The value of
R;. that maximizes the power lies somewhere between these two extremes. To find
this value, we differentiate Eq. (3-33) with respect to Ry, and solve for the value of Ry,
for which dp/dRy =0.

dp _[(Ru+Rr)’-2RL(RL+Rp)d ~ Rr-RL

— = v =0 (3-34)
dRy (RL+Ry)* (RL+Rp) '

Clearly, the derivative is zero when Ry = Rt. Therefore, maximum power transfer
occurs when the load resistance equals the Thévenin resistance of the source. When
the condition Ry = Rt exists, the source and load are said to be matched.

Substituting the condition Ry =Rt back into Eq. (3-33) shows the maximum
power to be

2

ot
= 3-35
PMAX =7 Ry (3-35)
Since v =iNRr, this result can also be written as
iZR
Prax = (3-36)
4
or
vTIN _ [vOC] |isc
— N | 2RI 3-37
PMAX =~ [ > } { > } (3-37)

These equations are consequences of what is known as the maximum power transfer
theorem:

A source with a fixed Thévenin resistance Ry delivers maximum power to an
adjustable load Ry, when Ry, =Ryt

To summarize, at an interface with a fixed source,

1. The maximum available voltage is the open-circuit voltage.

2. The maximum available current is the short-circuit current.

3. The maximum available power is the product of one-half the open-circuit
voltage times one-half the short-circuit current.

Figure 3-58 shows plots of the interface voltage, current, and power as functions of
Ry /Rt. The plots of v/voc, i/isc, and p/pmax are normalized to the maximum avail-
able signal levels, so the ordinates in Figure 3-58 range from 0 to 1. The plot of the

! An ideal voltage source has zero internal resistance, hence Rt =0. Equation (3-35) points out that
Rt =0 implies an infinite pmax. Infinite power is a physical impossibility, which reminds us that all
ideal circuit models have some physical limitations.
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FIGURE 3-58 Normalized
plots of current, voltage,
and power versus Ry /Rr.

1.0
ilisc P/pmax v/voc
0.5+
0.0 | | | Ry /Rt
0.01 0.1 1.0 10 100

normalized power p/pmax in the neighborhood of the maximum is not a particularly
strong function of Ry /Rt. Changing the ratio Ry /Rt by a factor of 2 in either direc-
tion from the maximum reduces p/pmax by less than 20%. The normalized voltage
v/voc is within 20% of its maximum when Ry /Rt =4. Similarly, the normalized cur-
rent is within 20% of its maximum when Ry /Rt = 1/ 4~ In other words, for engineering
purposes we can get close to the maximum signal levels with load resistances that only
approximate the theoretical requirements.

EXAMPLE 3-22
A source circuit with o1 =2.5V and Rt =60 Q drives a load with Ry =30 Q.

(a) Determine the maximum signal levels available from the source circuit.
(b) Determine the actual signal levels delivered to the load.

SOLUTION:
(a) The maximum available voltage and current are as follows:
UDMAX = DOoC =0t =25V (RL — oo)

IMAX = Isc = ;—TT =41.7mA (R =0)

The maximum available power is found using Eq. (3-37).

) I
PMAX = [%} {%} =26.0mW (R, =Rr=60Q)

(b) The actual signal levels delivered to the 30-Q load are as follows:
30

vy, = m 25=0.833V
. 25
L, = m =27.8 mA

pPL = DLiL =23.1mW

Although these levels are less than the maximum available values, the power delivered to the
30-Q load is nearly 90% of the maximum. |

Exercise 3-36

A source circuit delivers 4 V when a 50-Q resistor is connected across its output and 5V
when a 75-Q resistor is connected. Find the maximum voltage, current, and power available
from the source.

Answers: 10V; 133 mA; 333 mW




INTERFACE CircuIT DESIGN 121

Remember that the maximum signallevels just derived are for afixed source resistance
and an adjustable load resistance. This situation often occurs in communication sys-
tems where devices such as antennas, transmitters, and signal generators have fixed
source resistances such as 50, 75, 300, or 600 ohms. In such cases the load resistance
is selected to achieve the desired interface conditions, which often involves matching.
Matching source and load applies when the load resistance Ry in Figure 3-57 is
adjustable and the Thévenin source resistance Ry is fixed. When Ry is fixed and
Ry is adjustable, then Egs. (3-29), (3-31), and (3-33) point out that the maximum volt-
age, current, and power are delivered when the Thévenin source resistance is zero. If the
source circuit at an interface is adjustable, then ideally the Thévenin source resistance
should be zero. In Chapter 4 we will see that OP AMP circuits approach this ideal.

36 INTERFACE CiRcuiT DESIGN

The maximum signal levels discussed in the previous section place bounds on what is
achievable at an interface. However, those bounds are based on a fixed source and an
adjustable load. In practice, there are circumstances in which the source or the load,
or both, can be adjusted to produce prescribed interface signal levels or neither can
be adjusted. Sometimes it is necessary to insert a circuit between the source and the
load to achieve the desired results. Figure 3-59 shows the general situations and some
examples of resistive interface circuits. By its nature, the inserted circuit has two
terminal pairs, or interfaces, at which voltage and current can be observed or speci-
fied. These terminal pairs are also called ports, and the interface circuit is referred to
as a two-port network. The port connected to the source is called the input, and the
port connected to the load is called the output. The purpose of this two-port network
is to make certain that the source and load interact in a prescribed way.

FIGURE 3-59 A general
TLagl interface circuit and a few
examples: (a) Simple pass-
through (often omitted),
AN (b) series resistor, (c) parallel
C _______ N resistor, (d) L-pad left,
---------- (e) L-pad right.

Interface

Source L
circuit

(a) (b) (© (d) (e)

Examples of interface circuits

There is near-infinite number of interface circuits that one can use or devise to
meet the many interfacing challenges an analog design engineer faces. The five
shown in Figure 3-59 represent the simplest ones. The pass-through is used when
the load can be varied by the designer —in practice it may actually not even be shown
since it is a simple connection between the source and the load (Examples 3-23
and 3-24). The series and parallel interfaces are used to help deliver a particular cur-
rent, voltage, or power to a fixed load from a fixed source. In general, the series inter-
face works best when the load is powered by a voltage source and a parallel interface
works best when the load is powered by a current source (Examples 3-25 and 3-26).
The L-pads are used in helping to match the fixed source and fixed load resistances
and deliver specific voltages, currents, or power (Examples 3-27 to 3-29). A common
example is matching a stereo amplifier to a speaker —see Figure 3-60. A more com-  FIGURE 3-60 L-pad for
plex interface circuit is the bridge-T considered in Example 3-31. That interface  matching amplifier output to
serves as an attenuation pad to reduce the signal by a fixed amount while maintaining ~ speakers.

http://www.yung.com.tw/



122 CHAPTER 3

CircuiT ANALYSIS TECHNIQUES

100 Q aassssssaa: i
> >
| Lot
E Interface ' §
10V ' circuit @Y R
S e
FIGURE 3-61

the input and output resistances. In the following section we will see how to design
these interface circuits for various applications.

Basic Circurt Desien ConNCEPTS

Before we treat examples of different interface situations, you should recognize that
we are now discussing a limited form of circuit design, as contrasted with circuit anal-
ysis. Although we use circuit analysis tools in design, there are important differences.
A linear circuit analysis problem generally has a unique solution. A circuit design
problem may have many solutions or even no solution. The maximum available sig-
nal levels found in the preceding section provide bounds that help us test for the exist-
ence of a solution. Generally there will be several ways to meet the interface
constraints, and it then becomes necessary to evaluate the alternatives using other
factors, such as cost, power consumption, or reliability.

At this point in our study, resistors are the only elements we can use to design
interface circuits. In subsequent chapters we will introduce other devices, such as
OP AMPs (Chapter 4), capacitors and inductors (Chapter 6) and transformers
(Chapter 15). For this chapter, in a design situation the engineer must choose the
resistance values in a proposed circuit. This decision is influenced by a host of prac-
tical considerations, such as standard values and tolerances, power ratings, temper-
ature sensitivity, cost, and fabrication methods. We will occasionally introduce some
of these considerations into our design examples. Gaining a full understanding of
these practical matters is not one of our objectives. Rather, our goal is simply to illus-
trate how different constraints can influence the design process.

@ DESIGN EXAMPLE 3-23

Select the load resistance in Figure 3-61 so that the interface signals are in the range
defined by =4V and i =230 mA.

SOLUTION:
In this design problem, the source circuit is given and we are free to select the load.
For a fixed source, the maximum signal levels available at the interface are as follows:
UMAX = 0T = 10V
. uT
=—=100mA
IMAX Ry m

The bounds given as design requirements are below the maximum available signal
levels, so we should be able to find a suitable resistor. Using voltage division, the
interface voltage constraint requires

Ry
- >
00+ R, <104
or

10 R, >4 Ry +400

This condition yields Ry >400/6=66.7 Q. The interface current constraint can be
written as

10

- >
100+ Ry 0.03

or

10=3+0.03 Ry
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which requires R <7/0.03 =233 Q. In theory, any value of Ry between 66.7 Q and
233 Q will work. However, to allow for parameter variations we select R =150 Q
because it lies at the arithmetic midpoint of the allowable range and is a standard
value of resistance (see inside back cover). The interface in this example is a simple
pass-through as shown in Figure 3-59(a). [ |

@ Design Exercise 3-37

Select Ry in Figure 3-61 so that 190 10 % mW are delivered to the load. Select a 10% resis-
tor from inside the back cover that will provide the desired power.

Answer: Ry =33Q(187mW) or 270 Q (197 mW). The 270-Q load requires the source to
deliver less power to the total circuit, Psy70 =270 mW versus Ps33 =752 mW, and generally
is the better solution. The interface in this exercise is a simple pass-through as shown in
Figure 3-59(a).

@ DESIGN EXAMPLE 3—-24

Select a 5% standard-value load resistor Ry, for the circuit in Figure 3-62 that will
result in 10 V+5% delivered across it.

SOLUTION:
Start by finding the Thévenin equivalent circuit that R sees. The Thévenin voltage is
found using a voltage divider

2k
T = <m)30=20\/

We can find Rt by the look-back method
(2k||1 k) +3k=666+3000=3.66 kQ

Using the Thévenin circuit we just found, find the maximum voltage possible by
choosing Ry, to be an open circuit. By inspection we determine that opax =20 V.
Hence, it is possible to find a suitable resistor to deliver 10 V.

Using voltage division with the Thévenin circuit, we find Ry, as follows:

Ry

10= 27360k
36.6k
Ry = T =3.66 kQ

From the table in the inside rear cover we find that a 5% 3.6-kQ resistor is available.
Using it as our choice, we find that the resistance can vary as 3.42 kQ < R} <3.78 kQ.
Therefore, the output voltage can vary as 9.66 V<o <10.16 V. This is within the
10V £5% required.

Our interface is a simple pass-through as shown in Figure 3-59(a). |

@ Design Exercise 3-38

For the circuit of Figure 3-62, select a load resistor, if possible, so that 6 mA flows through it.

Answer: The maximum current available is 5.46 mA, hence there is no resistor available
that can result in 6 mA flowing through it.

1kQ 3kQ
30v<# %21@ %RL

FIGURE 3-62
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2Q

5V

FIGURE 3-63

<D> Design Exercise 3-39

For the circuit of Figure 3-62, determine the maximum power available, and if sufficient,
select a resistive load that will dissipate 20 mW.

Answers:

PMAX =273 mW; RL =1.169kQ or 11.50 kQ

<|)> DESIGN EXAMPLE 3-25

A light-emitting diode (LED) converts electric current into an optical signal. LEDs
operate at low signal levels with voltages from about 1V to perhaps 3 V and at cur-
rents between about 10 mA and 40 mA. Voltages or currents above these levels may
damage or destroy the device.

Figure 3-63 shows an LED operating at v =1.5 V and connected to a 5-V source by
an interface circuit. Design the interface circuit so that the LED currentisi=15 mA £+
10% using one or more of the following standard resistors: 110 Q, 160 Q, 240 Q,
360 Q, and 510 Q. These resistors all have a tolerance of +5 %, which you must
account for in your design.

i ’: —_—

> e
E Dot
E Interface | ~7
h Y —
| circuit !"/
R

<D> Design Exercise 3-40

SOLUTION:
If the source is directly connected to the LED, the delivered current
would be
5-15

=———=175A

S
This much current would destroy (vaporize?) the device. The series
resistor R; interface [Figure 3-59(b)] is needed to limit the current
to the prescribed level. Applying KVL around the series loop yields

-5+(2+Ry)i+1.5=0
Setting i =15 mA and solving for R; yields

3.5
R1 = m - 2 = 231 Q
The nearest standard value listed is 240 Q 4 5%, which means that Ry
would fall in the range 228 < Ry <252 Q. At the end points of this range,
the LED current is

. 3.5 . 3.5

i= 75712 =13.8mA and i= 7812 15.2mA
Both of these values are within the 15 mA + 10% tolerance on the LED
current. [ |

Suppose the source circuit in Figure 3-63 is now 12 V in series with a 5-Q source resistor.
The same LED is used. How does the solution change?

Answer:

R, =695 Q. If we are restricted to using the resistors specified, then there are

at least two reasonable solutions. First, we could use a 510-Q resistor in series with a
160-Q resistor to give a total resistance of 670 Q. Another option would be to combine a
510-Q resistor in series with a parallel combination of two 360-Q resistors to give a total
resistance of 690 Q. These options satisfy the constraints, even if we account for the resistor

tolerances.
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@@ DESIGN AND EVALUATION EXAMPLE 3—-26

Design two versions of the interface circuit in Figure 3—64 that deliver v, =5 V to the
200-Q load. Evaluate the two designs in terms of power loss in the interface circuit.

SOLUTION:
If the 15-V source is directly connected to the load, the delivered volt-

age would be
200
b2 = (m) 15=12v

An interface circuit is required to reduce this voltage to the pre-
scribed 5-V level.

The figure shows two possible interface circuits [Figure 3-59(b)
and (c)]. In either case

) 5
= % =0.025 A

In the series case i} =i, =0.025, and the same current flows through all
elements in the loop. Applying KVL to the series loop

-15+0.025% (50+R1)+5=0

and solving for R,
10

Ri=5.03

-50=350€Q

In the parallel case vy =v, =5 V. Applying KCL to the parallel resistor R,

v . 15-5 5

= T _0.025=
15 R2 %) 30 Rz 0.025=0
and solving for R»,
5
Ro= 550005 =379

We have two alternative designs, both of which deliver v, =5V to the 200-Q load.
In practice, engineers use additional factors to evaluate alternatives that meet the
same design goal. The power dissipation in the interface circuit is an important factor
for two reasons. First, less interface dissipation means less power demand on the
source. Second, less dissipation in the interface resistors means they can have lower

power ratings, which are generally less expensive.

In the series case the power dissipated in Ry is 3R; =0.219 W. In the parallel case
the power dissipated in R; is v3/R, =0.875 W. Clearly the power dissipation factor

strongly favors the series design in this case.

@@ Design and Evaluation Exercise 3-41

A Norton source of 300 mA in parallel with a 50-Q source resistor provides current to a load
R =200 Q. Your task is to design an interface so that 5V +10% are delivered to the load.

(a) Using the series resistor Rg interface shown in Figure 3-59(b), select a 10% resistor

from the inside back cover that will provide the desired voltage.

(b) Using the parallel resistor Rp interface shown in Figure 3-59(c), select a 10% resistor

from the inside back cover that will provide the desired voltage.

(c) Select the solution, series or parallel, that causes the source to provide the desired volt-
age while delivering the least power. Calculate the power in each case to defend your

choice.

s0Q ', 2
+ Lo+
. Interface
15V VIU o cirenit 2 200Q
| s R
FIGURE 3-64
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Answers:

(a) Rs=350Q; hence choose 330-Q resistor (v, =5.17 V).
(b) Rp=28.57 Q; hence choose 27-Q resistor (vp =4.84 V).
(c) ps=4.11W; p, =1.45W; hence choose the parallel solution.

DISCUSSION: This is the same problem with the same numbers as in Example 3-26 except
that a Norton source provides the energy rather than the voltage source (do a source
transformation on the Thévenin source in Example 3-26). As expected, the interfaces are the
same. Yet in this case the parallel solution requires the source to deliver less power than the
series solution. What these two exercises point out is that equivalent sources are equivalent
only to the rest of the circuit and not internally. One cannot do a source transformation and
then use the transformed source to determine the power the original source provides.

@ DESIGN EXAMPLE 3-27

Design the interface circuit in Figure 3-65 so that the 40-V source delivers v, =2 V to
the output load and the resistance seen at the input port is Ry = 300 Q. Note that this
means that the input resistance of the two ports matches the source resistance.

SOLUTION:
_<+ This example places constraints at both the output port and the
Thliaites input port Qf the interface Ci.I‘Cl-lit. In.most cases two .independ—
circuit 2 § S0Q  ent constraints cannot be satisfied using only one resistor in the

40V "
interface circuit. To see why, suppose we use a single 650-Q
—— series resistor in the interface circuit. By voltage division, the

RN l output voltage would be

SURURIS A 50
= <300+650+5()) =2V

as required. However, the input resistance would be Ry =650 +
50=700 Q, which does not meet the input port requirement
of 300 Q.

To meet both requirements, we need a two-resistor L-circuit
such as the one shown Figure 3-59(d). To design this circuit, we
firstdefine Rgq = R» ||50. Using this notation, the input port con-
FIGURE 3-65 straint is Rixy = R + Rgo =300 Q and the output port constraint
becomes

Req
(oo EQ ) a0=2V
02 (300+R1+REQ> 0

o
M\

But Ry + Rgo =300; hence, the output constraint reduces to 40 Rgq =2 x 600, which
means that Rgq =30 Q. By definition,
50R,
BT Soh R, TV
which leads to S0R, =1500 + 30R;, or R, =75 Q. Finally, since Rpq =30 Q, the input
port constraint then tells us that Ry =300— Rgo =270 Q. In sum, the L-circuit in the

figure with R; =270 Q and R, =75 Q will meet both the input port and the output port
constraints. |

@ Design Exercise 3-42

Repeat Example 3-27 with the desired v, =10V instead of 2 V.

Answer: R,=-75%; since a resistor cannot be negative, it is not possible.




]

——

INTERFACE CircuUIT DESIGN

127

@ EVALUATION EXAMPLE 3-28

In Example 3-27 we designed the interface circuit in Figure 3—-65 to meet the require-
ments v, =2 V and Ryn =300 Q. It is claimed that the interface circuit in Figure 3-66
meets the same requirements.

(a) Verify that the circuit in Figure 3-66 produces v, =2 V and Ry =300 Q.
(b) Itis desired that the 50-Q load “see” a low output resistance. Which of these two circuits
best meets this requirement?

SOLUTION: 300 Q

(a) The circuit in Figure 3-66 meets the input port constraint since WY
Rin=750]| (450 +50) =750 500 =300

as required. Using this fact and voltage division, we find the
voltage at the input port of the interface circuit to be

40V =

_ R[N _ 300 _ RIN
vy = <7300+RIN> 40= (@>40_20V

Using this voltage as the input to the voltage divider made up of
the 450-Q series resistor and the 50-Q load gives

50 50
02= (m) o1 = (%) 20=2V

This verifies that the circuit in Figure 3-66 produces v, =2V
and RIN =300 Q.

(b) To compare the output resistances, we turn the 40-V source off
(replace it by a short) and find the lookback resistance seen at FIGURE 3-66
the output port. For the circuit in Figure 3-65,

Rour =Rz || (R1 +300)=75||(270+300) =66.3 Q
For the circuit in Figure 3-66,
Rour =450+750|1300 =664 Q

The circuit of Figure 3-65 is much closer to the desired resistance seen by the load and is
the better choice. |

@ Evaluation Exercise 3-43

Use Multisim to determine which solution, Figure 3-65 or Figure 3-66, requires less power
from the source.

Answer: Both require the same power, 2.667 W.

DISCUSSION: In fact, one need not do any analysis or simulation if the only question to
answer is which is lower. In the preceding example, it was shown that both circuits met the
same requirements, in particular that Ry =300 Q. Since both circuits met that requirement
exactly, both would have the same source current, namely 40/(300+300) =66.67 mA, and
therefore, the same power. Of course, the simulation would verify that fact.

<|)> DESIGN EXAMPLE 3-29

Design the interface circuit in Figure 3-67 so the 50-Q load “sees” a Thévenin resist-
ance of 50 Q between terminals C and D, while simultaneously the input voltage
source “sees” an input resistance of 300 Q between terminals A and B. Meeting these
two constraints produces matched conditions at the input and output ports of the
interface circuit.

|—<%
(—
Interface :
circuit r V2 § 50 Q
.
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FIGURE 3-67

Source Load
(a)
E ER

W —y—

iRy :

—» R, § 500

"""" b

AW A
300 Q Ry ;

i  mz

_______ (C) B

SOLUTION:
To meet the two constraints in this example, the interface circuit should be a
two-resistor L-circuit. We have chosen the L-circuit configuration shown in
Figure 3-59(d) for the following reasons. The source must see a larger resistance
(300 Q) at the input port than the load sees at the output port (50 Q). This indicates
that the source should “look” into a large series resistor R; while the load “looks”
into a smaller parallel resistor R,.

The design constraints in this example can be expressed in equation form. At the
input port (terminals A and B) the equation is

50R;
1+ Ry, +50
At the output port (terminals C and D) the equation is
(R1 +300)R,
R +300+ R,

The design requirements reduce to two equations in two unknowns. What could be
simpler?

These equations can easily be solved using a program like MATLAB. Solving them
using pencil and paper is a bit of a chore. At this point we encourage you to think about
the problem in physical terms. For instance, if we simply set R, =50 Q, then the con-
ditions at terminals C and D will be met, at least approximately. With R, =50 Q the
requirement at terminals A and B reduces to Rap=R; +50(50=R; +25=300 Q.

=300Q

=50Q
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In other words, by physical reasoning we conclude that Ry =275 Q and R, =50 Qis an
approximate solution. How good is the approximation?
These values yield input and output resistances of Rap =300 Q as required, and

Rep =50]|(275 +300) = 50/|575 = 46 Q

This value is not exactly 50 Q, but it is within 10% of the desired value. Since electrical
components may have tolerances in the 10% range, a design based on our first-guess
approximation might be adequate.

Our first-guess solution can also serve as the starting place for improving the
design. The fact that Rcp =46 Q tells us that R, =50 Q is just a bit too low. Suppose
we increase R, slightly to, say, R, =56 Q (a standard value —see inside back cover).
Then at the input port we have

Rap =R +50|/56=R; +26.42=300 Q

which would require R; =273.58 Q. The nearest standard value to this is R} =270 Q.
Using the standard values Ry =270 Q and R, =56 Q as our second guess, the input and
output resistances are

Rap =270+50(]56=270+26.42=296.42 Q
Rcp = 561(270+300) =56]|570=50.99 Q
both of which are within 2% of the desired values. Thus, finding an approximate solu-

tion can serve as the first step in the design process. Performing the first step is often
the most creative and challenging part of circuit design. [ |

@ Design Exercise 3-44

A common problem is interfacing a TV antenna’s 300-Q line to a 75-Q cable input on an
HDTYV set. Repeat Example 3-29 for this particular interface. See Figure 3—68 for a photo
of such a device.

Answers: R;=259.8Q; R,=86.6Q

APPLICATION EXAMPLE 3-30

The source-load interface in Figure 3-69 serves to introduce an important concept
that we will encounter many times in subsequent chapters. By simple voltage divi-
sion, the interface voltage is

D_RL+RT &

Source Load

www.ShowMeCables.com

FIGURE 3-68 300Q 10 75Q
adapter.

FIGURE 3-69
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If the source is ideal (Rt =0), then the interface voltage is v =vt regardless of the
value of the load Ry. Conversely, if the load is an open circuit (Ry, = o), then the
interface voltage is v = vy regardless of the value of the source resistance Rt. Real-
world applications typically fall between these two extremes with the result that
v<wvT. Since vt =voc =VMAX, interface voltage is generally less than the maximum
available voltage. The reduction in interface voltage is an example of an effect called
loading. In general

Loading is the reduction in load voltage due to the effect of load resist-
ance on the signal source driving it.

A loading problem is fundamentally different than the fixed-source, maximum power
transfer problem. With loading, the source and load are both adjustable and the ques-
tion is how they should be chosen to minimize loading. The undesirable effects of
loading can be mitigated by making Rt << Ry either by reducing the output resistance
of the source or by increasing the load resistance, or both. As a rule of thumb, the
loading effect is less than 10% when Ry =10 Ry and less than 1% when Ry, =100 Rr.

Exercise 3-45

Suppose Rt =200 Q and the loading effect should be less than 1%. What should be the smal-
lest value for Ry ?

Answer: Rp.=20kQ

APPLICATION EXAMPLE 3-31

An attenuation pad is a two-port resistance circuit that provides a nonadjustable
reduction in signal level while also providing resistance matching at the input and
output ports. Attenuators are used in numerous applications such as in audio record-
ing studios to reduce the signal coming from a microphone into an audio mixer.
A picture of a typical commercial in-line attenuator is shown in Figure 3-70(a).

Figure 3-70(b) shows the circuit of a particular attenuation pad. The manufac-
turer’s data sheet for this pad specifies the following characteristics at the input
and output ports:

Attenuation pad '

VT :Ev5/4
; RN =1600 Q 1800 Q Ry =600 Q

g E MV :
; b b 600 Q 600 Q e :
o | : :
o | 600Q : |!INPUT OUTPUT!| ! :
25 1L 200 1L 6000Z |
o8 5 = - |
33 | | b :
63 E E ¢ 20 x logio (%):_12 dB E :

® | Souce i Interface circuit ! Load |

FIGURE 3-70 Switchable In-Line Attenuator.
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Porr CHARACTERISTICS Conpimon Vawe Unirs
Thévenin 600-Q source connected at
R voltage the input port vs/4 v
Ottt Theyemn 600—94 source connected at 600 a
resistance the input port
. 600-Q load connected at the 0
Output Attenuation G 20xlog, ( l:::;t) —_12 dB
T InPut 600-Q load connected at the 600 Q
resistance output port

Use Multisim to verify these characteristics.

SOLUTION:

Multisim can readily be used to calculate the two-port characteristics of the pad
shown in Figure 3-70(b). To find the Thévenin voltage and resistance, draw the cir-
cuit in Multisim without the 600-Q load as shown in Figure 3-71. Since Multisim
needs an input to do a simulation, connect a 1-V source to the input. Copy the circuit
a second time. Connect a multimeter (DMM) across the output of each circuit. In the
first case, connect the multimeter as an ammeter (a short) to measure igc. In the

5 Rio 7 i
| W s
| 1.8 kQ ]
Re | R; Ry :
NA— VA NV i
l 600 Q | 600 Q 600 Q P XMM2
V, | o+
i R ]
— 1V i 2000 s >\
Rs 2
| MV :
: 1.8 kQ 5
Ry Ry R3 :
AMVN—; N N :
l 600Q | 600 Q 600 Q | XMM1
Vl i R —E—-o+
— 1V 280 ) e ;
: Ris i
i WY :
R : R 18kQ 5
11 1 12 13 ]
: ' OUTPUT
NN— N N :
l 600 Q TNPUT 600 Q 600 Q '
: R
V3 R ] 16
= 14 ; 600 Q
— 1V 200 Q ;

Multimeter-XMM2

Short-circuit current igc

Multimeter-XMM1

.
LA

Open-circuit voltage voc

1 = RN, 2 = Gain, 3 = Gain in dB

RT = VOC/iSC =600 Q

FIGURE 3-71

Example 3-31

DC Operating Point Analysis

Variable Operating point value
1 | V(input)/I(R11) 600
2 | V(output)/V(input) 0.25
3 | 20*log(V(output)/V(input)) | —12.04
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FIGURE 3-72

second case, connect the meter as a voltmeter (an open) to measure voc. Simulate the
circuit. The ammeter reads 416.7 pA, while the voltmeter reads 250 mV, a quarter of
the input voltage vs. Recalling that the Thévenin resistance is given by Rt =voc/isc,
we calculate that Rt =600 Q. Both vy and Ry are as specified.

To determine if the pad actually attenuates the input signal by 12 dB and if the
input sees 600 Q, we copy the circuit a third time, remove the DMM, and add
the 600-Q load to the circuit, as would be expected in the attenuation application.
We can calculate the input resistance by knowing the current provided by the
source to the circuit and the voltage of the input to the pad. The current through
the first 600-Q resistor (R;; in the figure) is the current provided by the source
to the pad. The voltage at the input node to the pad is labeled INPUT in
Figure 3-71. We can ask Multisim to do the calculation for us by adding the following
expression to the DC Operating Point Analysis request: V(input)/I(R11). The
attenuation (gain) in decibels of the pad is found as

20 % logu) (Voutput)

Vinput

On the circuit the output voltage is labeled OUTPUT and the input voltage is
taken at the node labeled INPUT. We ask Multisim to do the calculation as 20xlog
(V(input)/V(output)). Simulating the circuit Multisim returns 600 Q for the input
resistance as specified. For the attenuation Multisim calculates —12.04 dB, also as
specified. Hence, we can conclude that all specifications are met by the device. H

@ Evaluation Exercise 3-46

The manufacturer’s data sheet for the following O-pad used to attenuate the signal from a
150-Q microphone to a 1500-Q preamp load specifies the following characteristics at the
input and output ports:

Porr CHARACTERISTICS Conpimion Vawue Unirs

150-Q source microphone
connected at the input port

150-Q source microphone
connected at the input port

150-Q preamp load connected
at the output port

1500-Q preamp load connected
at the output port

Output  Thévenin voltage 0.031vs/+5% \%

Output  Thévenin resistance 1500 +5% Q

Output Attenuation 20 x log, (w) <-30 dB

Dinput

150+5% Q

Input Input resistance

Use Multisim to simulate the schematic provided by the manufacturer shown in
Figure 3-72 and determine if the specifications are met.

Ry Rrvy

INPUT 12 kQ OUTPUT

L A i
150kQ ! |
C_r) vs 150kQ  1.6kQ 15 kQ§
i Mike ; ; O-Pad ; E Preamp ;

Answers: All specifications are met.
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SUMMARY

e Node-voltage analysis involves identifying a reference
node and the node to datum voltages at the remaining
N -1 nodes. The KCL connection constraints at the
N -1 nonreference nodes combined with the element
constraints written in terms of the node voltages produce
N -1 linear equations in the unknown node voltages.

e Mesh-current analysis involves identifying mesh cur-
rents that circulate around the perimeter of each mesh
in a planar circuit. The KVL connection constraints
around E—N +1 meshes combined with the element
constraints written in terms of the mesh currents
produce E—N +1 linear equations in the unknown
mesh currents.

* Node and mesh analysis can be modified to handle
both types of independent sources using a combination
of three methods: (1) source transformations, (2)
selecting circuit variables so independent sources spec-
ify the values of some of the unknowns, and (3) using
supernodes or supermeshes.

e A circuit is linear if it contains only linear elements and
independent sources. For single-input linear circuits,
the proportionality property states that any output is
proportional to the input. For multiple-input linear cir-
cuits, the superposition principle states that any output
can be found by summing the outputs produced when
each input acts alone.

A Thévenin equivalent circuit consists of a voltage
source in series with a resistance. A Norton equivalent
circuit consists of a current source in parallel with a
resistor. The Thévenin and Norton equivalent circuits
are related by a source transformation.

The parameters of the Thévenin and Norton equiva-
lent circuits can be determined using any two of the fol-
lowing: (1) the open-circuit voltage at the interface,
(2) the short-circuit current at the interface, and (3)
the equivalent resistance of the source circuit with
all independent sources turned off.

The parameters of the Thévenin and Norton equivalent
circuits can also be determined using circuit reduction
methods or by directly solving for the source i—v rela-
tionship using node-voltage or mesh-current analysis.

For a fixed source and an adjustable load, the maximum
interface signallevels are omax =voc (RL = &), imax =
iSC (RL = 0), and PMAX =VoC isc/4 (RL = RT). When
Ry, = R, the source and load are said to be matched.
Interface signal transfer conditions are specified in
terms of the voltage, current, or power delivered to
the load. The design constraints depend on the signal
conditions specified and the circuit parameters that are
adjustable. Some design requirements may require a
two-port interface circuit. An interface design problem
may have one, many, or no solutions.

PROBLEMS

OBJECTIVE 3—1 GeNneraL Circurr ANALYSIS
(Sect. 3—1 anp 3-2)

Given a circuit:
(a) (Formulation) Write node-voltage or mesh-current equa-
tions for the circuit.

(b) (Solution) Solve the equations from (a) for selected signal
variables or input-output relationships using classical or
software computational techniques.

Node-voltage method: See Examples 3—-1 to 3-7 and Exercises

3-2 to 3-13.

Mesh-current method: See Examples 3-8 to 3—10 and Exercises

3-14 to 3-20.

3-1 Formulate node-voltage equations for the circuit in
Figure P3—1. Arrange the results in matrix form Ax=b.

AW
Rs
VA Rl VB R3 Ve
L >
(P i R, Ry %
FIGURE P3-1

3-2 (a) Formulate node-voltage equations for the circuit in

Figure P3-2. Arrange the results in matrix form Ax=b.
(b) Solve these equations for v4 and vg.
(¢) Use these results to find vy and i.
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VA R, Vg 3-6 (a) Choose a ground wisely and formulate node-voltage
AN — equations for the circuit in Figure P3-6.
T (b) Solve for vy and iy when R1 =R, =R3=R4=5kQ, vg=
+ 12V, and is =2 mA.
Ig § Ry Rz Z W § Ry
FIGURE P3-2

3-3 (a) Formulate node-voltage equations for the circuit in
Figure P3-3. Arrange the results in matrix form Ax=h.
(b) Solve these equations for v and vg.
(¢) Use these results to find v, and i.

15Q

Ix VA VB
r ——\W\
+
=50 oo 50z 3a(d)n
FIGURE P3-3

34 (a) Formulate node-voltage equations for the circuit in
Figure P3—4.
(b) Solve these equations for va and vg.
(¢) Use these results to find vy and k.

2A
(<)
N

ix VA 8Q VB
r A
1A +

=100 %Q—T_mf '

FIGURE P3-4

3-5 (a) Formulate node-voltage equations for the circuit
in Figure P3-5. Arrange the results in matrix form Ax=b.
(b) Solve these equations for v and vc.

(¢) Use these results to find vy and k.

+ vy —

Ve

VB 10 kQ
5V IOkQ%

FIGURE P3-5

FIGURE P3-6

3-7 The following are a set of node-voltage equations; draw the
circuit they represent.

VA =V§
VB—VA VB—VC .
LT _is=0
Ry Ry
Vc—VA VC—VB V_C_O
R; Ry Ry
VD =0

3-8 (a) Choose a ground wisely and formulate node-voltage [

equations for the circuit in Figure P3-8.
(b) Solve for vy and iy.
(¢) Validate your answers using Multisim.

1kQ
AWV
44’
lX
22kQ 1kQ
AWV MW
+ 1kQ s 233k
15V + vy —
AWV .
1.5kQ
FIGURE P3-8

3-9 (a) Formulate node-voltage equations for the circuit in [

Figure P3-9.

(b) Use MATLAB to find symbolic expressions for
the node voltages in terms of the parameters in the
circuit.

(¢) Find numeric values for va, vg, and v¢c when R;=
1kQ, Ry=1.5kQ, R3=22kQ, R;=33KkQ, is;= 1 mA, and
i32:3mA.

(d) Use Multisim to verify your solution to part (c) is
correct.
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FIGURE P3-11

3-12 (a) Formulate node-voltage equations for the circuit in [
Figure P3-12. (Hint: Use a supernode.)
(b) Solve for vy and .
(¢) Verify your results using Multisim.

FIGURE P3-9

L[] 3-10 (a) Formulate node-voltage equations for the bridge cir- .
cuit in Figure P3-10. o 1kQ
(b) Solve forvy andiy when Ri =R;=1KkQ, R, =R3 = 1.5kQ, MWy
Ry=680Q, and vg=12V. 1kO 5V
(¢) Repeat (b) when Ry is a variable resistor that varies AN ‘ @_
from 10 Q to 10 kQ. At what value of Ry is the voltage across
Ry =0V? Use Multisim to find the value by either varying - +
Ry by trial and error to approach the answer, or using a ISV{ + L5 kQ 2kQ ? Vx
“Parameter sweep” found under Analyses. To use the lat-
ter, proceed as follows: Under “Parameter sweep” select .
“Device type:” Resistor; “Name:” your name for our R4;
“Parameter (what you wish to vary):” resistance; “Present FIGURE P3-12
value:” Any value within your range—say, 1kQ. Under

“Points to sweep,” choose “Linear” sweep variation type. Fi P3_13. A b s i o f Ax—b
“Start” at 10 ; “Stop” at 10kQ. Use 100 points—Multisim 18Ure ro—Llo. AIrange the results in matrix form Ax=b.
(b) Solve for is and ig.

(¢) Use these results to find vy and i.

3-13 (a) Formulate mesh-current equations for the circuit in

automatically calculates the increment. Under “More
Options” choose “DC Operating Point.” Then go to the output

tab under the Parameter Sweep window. Since you want the R, R;

voltage across the 680-Q resistor, create an expression for AN AN,

it, such as V(2)—V(3) if those are the node names of the ?i

two nodes determining the voltage. Choose “Simulate.” Gra- . * . B
pher View will plot a graph of the resistance value versus the vs A )Ry @ Ry § ‘r
voltage across the 680-Q resistor. Make sure the grid lines

are shown on your graph. Use the cursor to find the value d
of resistance that causes the voltage to go to zero.

FIGURE P3-13
’;x’ 3-14 (a) Formulate mesh-current equations for the circuit in
Figure P3-14. Arrange the results in matrix form Ax=b.
R R, (b) Solve for i i, and ic.
1

(¢) Use these results to find vy and i.

-
C-D 'S ke

MA —
R3 Ry @
v 5kQ 10 kQ
M M
FIGURE P3-10 BN
10 kQ
R . . 22 kQ
3-11 (a) Formulate node-voltage equations for the circuit in s @ § @ §
Figure P3-11. 100V

(b) Solve for vy and iy when R;=1kQ, R,=1.5kQ,
R3=500Q, R4=2kQ, R,=1002, and vs =15 V. FIGURE P3-14
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3-15 (a) Formulate mesh-current equations for the circuit in
Figure P3-15. Arrange the results in matrix form Ax=b.
(b) Solve for ia and ig.

(¢) Use these results to find vy and i.

2kQ 2kQ
W
lX
+
4QZ | 4@ T | 4kQ T
C—i—) in - ig <+
_ + _
15V 15V 15V
FIGURE P3-15

3-16 (a) Formulate mesh-current equations for the circuit in
Figure P3-16. Arrange the results in matrix form Ax=b.
(b) Solve for ip and ig.

(¢) Use these results to find vy and .

(d) Solve this problem using node-voltage equations and
compare your answers with the mesh-current approach.
Which method, in this case, was simpler?

+V—
M AV
10 kQ 10 kQ
5kQ
5V 10V
DR
FIGURE P3-16

; 3-17 (a) Formulate mesh-current equations for the circuit in
Figure P3-17.
(b) Formulate node-voltage equations for the circuit in
Figure P3-17.
(¢) Which set of equations would be easier to solve? Why?
(d) Using MATLAB, find vy and i in terms of the mesh-
current variables.
(e) Using MATLAB, find vy and iy in terms of the node-
voltage variables.

Rg
AWV
( ic )
VA AMY 'B A ve
Ry L ke Tlx

FIGURE P3-17

3-18 (a) Formulate mesh-current equations for the circuit in []
Figure P3-18. (Hint: Use a supermesh.)
(b) Solve for v¢ and iy when R; =2.7kQ, R, =1.5kQ, R3=
680Q, Ry=22kQ, Rs=3.3kQ, is=10mA, and v¢=12'V.
(¢) Use Multisim to verify your results in part (b) and then
find the total power dissipated in the circuit.

; Ry R3
xr AN °
+
§Rl iS R4 Vx
Vs R —
FIGURE P3-18

3-19 (a) For the circuit of Figure P3-19 solve for ia, ig, and ic
using supermesh principles.
(b) Use these results to find vy.

R,

AV
i >
(O,

vt ()

FIGURE P3-19

3-20 (a) Formulate mesh-current equations for the circuit in [
Figure P3-20.
(b) Use MATLAB to find symbolic expressions for vy and ix
in terms of the parameters in the circuit.
(¢) Find numeric values for vy and ix when Ry = R, =8.2kQ,
R3 =22 kQ, R4 =33 kQ, is =25 mA, Vs = 15 V, and Vg2 = SV.
(d) Find the power supplied by vg;.
(e) Use Multisim to verify your solutions to parts (c) and (d)
are correct.

Ry
o AV

FIGURE P3-20

3-21 The circuit in Figure P3-21 seems to require two super-
meshes since both current sources appear in two meshes.
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However, sometimes rearranging the circuit diagram will
eliminate the need for a supermesh.

(a) Show that supermeshes can be avoided in Figure P3-21
by rearranging the connection of resistor Re.

(b) Formulate mesh-current equations for the modified cir-
cuit as redrawn in part (a).

(¢) Solve for vy when Ri1=R;=R3=R;=1kQ, Rs=Rg=
10kQ, is; =100 mA, and is; =50 mA.

AN
Re

is1
AL
_/ Rs

§ Ry Rj

is2
© A
N

@
=

©

+

R

FIGURE P3-21

3-22 (a) Formulate mesh-current equations for the circuit in
Figure P3-22.
(b) Formulate node-voltage equations for the circuit in
Figure P3-22.
(¢) Which set of equations would be easier to solve? Why?
(d) Find vy and ix using whichever method you prefer.

2.5 mA
D
N
A4 A —4 B y
2kQ . 8kQ
ov(D) ez, o 15V
IA B
_ iod
FIGURE P3-22

3-23 Use simple engineering intuition to find the input resist-
ance of the circuit in Figure P3-23. Use either node-voltage
or mesh-current analysis to prove your intuition. (Hint: It is a
balanced bridge.)

R
£
R R R
Vs@T
n R- R

FIGURE P3-23

3-24 In Figure P3-24 all of the resistors are 1 kQand vs =12 V. []

The voltage at node C is found to be vc = —2.4 V when node
B is connected to ground.

(a) Find the node voltages va and vp, and the mesh currents
iA and iB.

(b) Use Multisim to validate your answers.

ORNONNC,

'S @ R2 @ R4

®

FIGURE P3-24

3-25 Use Figure P3-24 and MATLAB to solve the following [

problems:

(a) Using mesh-current analysis, find a symbolic expression
for ia in terms of the circuit parameters.

(b) Compute the ratio vs/ia.

(¢) Find a symbolic expression for the equivalent
resistance of the circuit by combining resistors in series
and parallel. Compare your answer to the results from
part (b).

3-26 (a) Formulate mesh-current equations for the circuit in []

Figure P3-26.

(b) Formulate node-voltage equations for the circuit in
Figure P3-26.

(¢) Which set of equations would be easier to solve?
Why?

(d) Use Multisim to find the node voltages v4 and vg and the
mesh currents i, ig, and ic in Figure P3-26.

22 kQ
VB
15 kO 100 mA
i

VA @m

MW -
ke S
50V

§22kg @

FIGURE P3-26

3-2] (a) Formulate mesh-current equations for the circuit [ ]

in Figure P3-27. Arrange the results in matrix form Ax=b.
(b) Use MATLAB and mesh-current analysis to solve for
the mesh currents ia, ig, ic, and ip.

(¢) Formulate node-voltage equations for the circuit in
Figure P3-27. Arrange the results in matrix form Ax=b.
(d) Use MATLAB and node-voltage analysis to solve for the
mesh currents ia, ip, ic, and ip and compare the effort
required with each technique, that is, mesh-current versus
node-voltage analysis.
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(€) Use Multisim to verify your results in the previous 3 5 @Designavoltage-divider circuit that will realize the

two parts.
block diagram in Figure P3-28(a).
47 kQ VD 33 kQ . . o . .
MA AMV 3-30 @ Design a current-divider circuit that will realize the
. . block diagram in Figure P3-28(b).
cT Zi00ke\ P
S0V 3-31 @ Using a single resistor, design a circuit that will real-
Y~ | 2k . S
VA \—J AN ve ize the block diagram in Figure P3-28(c).
3-32 Find the proportionality constant K = vo /vs for the circuit

AWV

68 kQ @ 281k in Figure P3-32.

24v( " @

FIGURE P3-27

0BJECTIVE 3—2 LINEARITY PROPERTIES

(Secr. 3-3) FIGURE P3-32
Given a linear resistance circuit: 3-33 Find the proportionality constant K =i /vs for the circuit
(a) Use the proportionality principle to find selected signal in Figure P3-33.
variables.
(b) Use the superposition principle to find selected signal
variables.
See Examples 3-11 to 3-13 and Exercises 3-21 to 3-26 for
proportionality.

See Examples 3-14 and 3-15, and Exercises 3-27 to 3-29 for
superposition.

3-28 (a) Find v, for the block diagram shown in Figure P3-28(a). FIGURE P3-33

(b) Find the proportionality constant K for the circuit in
Figure P3-28(b).
(¢) Find the proportionality constant K for the circuit in

3-34 Find the proportionality constant K = vo /is for the circuit
in Figure P3-34.

Figure P3-28(c). : 33kQ |
—e— WV —o
i Dot
5.6mV vo i L 256kQ g 5
- 1 % : 2k |0
| =
(a) fommme e '
FIGURE P3-34
6.0 mA o [150pA
3-35 Find the proportionality constant K =ip /is for the circuit
in Figure P3-35.
(b)
12V 150 pA
— > K >
(©)

FIGURE P3-28 FIGURE P3-35
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3-36 @ Find the proportionality constant K =vg /vs for the 200 Q
circuit in Figure P3-36. Then select values for the resistors so +
that vp is —0.1 vs. 15V v0§200Q 5V
ml q | W
: R, R, % E 200 Q
CD s | . FIGURE P3-40
P 2Ry Ry % E vo 341 Use the superposition principle to find ip and vo in []
| | Figure P3-41. Verify your answer using Multisim.
—e Lo+
.................. 1 iO
FIGURE P3-36
3-37 Use the unit output method to find K and vo in +
Figure P3-37. Yo 6 mA § 1kQ 2kQ 12V
Wy
2kQ
20 mA
FIGURE P3-41

3-42 Use the superposition principle to find vo in Figure

FIGURE P3-37 P3-42.
3-38 Use the unit output method to find K and vo in 56k0 33 KO
Figure P3-38. ;
+ Vo —
24V Z68kO DSmA 210k
24V o
FIGURE P3-42
FIGURE P3-38 343 Use the superposition principle to find vo in Figure
3-39 Use the unit output method to find K in Figure P3-43.
P3-39. Then select a value for vg that will produce an output AV
current of ip =250 mA. 2KkO
S M
10 mA 5kQ +
3kQ f 2.5kQ Vo
20 mA -
FIGURE P3-43

FIGURE P3-39

3-40 Use the superposition principle to find vo in Figure 3-44 Use the superposition principle to find i in Figure P3-44. [
P3-40. Verify your answer using Multisim.
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1 mA vs=10V and the current source is off or is=0mA. Find
the output voltage when vs =20V and is = —20 mA.
io Vs
10 kQ K,
AW
5kQ 5kQ ' . +
215k 2 10kQ 's K, Yo
10V 20V \—/
® FIGURE P3-48
FIGURE P3-44 3-49 A certain linear circuit has four input voltages and one [

[1 3-45 (a) Use the superposition principle to find vo in terms of
v1, V2, and R in Figure P3—45. (This circuit is a 3-bit R—2R
network.)

(b) Use MATLAB and node-voltage analysis to verify your
answer symbolically.

R R R @
W\ '\/\/\/—O}
CS/W ZRé ZRé +
Vi R > vo
V2 V3 -

FIGURE P3-45

[1 3-46 (a) Use the superposition principle to find vo in terms of
vs, is, and R in Figure P3-46.
(b) Use MATLAB and node-voltage analysis to verify your

answer symbolically.
® R ®
M—e

YoR'0

R§vo

FIGURE P3-46

3-47 Alinear circuit containing two sources drives a 100-Q load
resistor. Source number 1 delivers 1 W to the load when
source number 2 is off. Source number 2 delivers 9 W to
the load when source number 1 is off. Find the power deliv-
ered to the load when both sources are on. (Hint: The answer
is not 10 W. Why?)

3-48 A block diagram of a linear circuit is shown in Figure P3—48.
When v¢ =10V and is =10 mA the output voltage vo=1V.
The output voltage is 2V when the voltage source is

output voltage vo. The following table lists the output for dif-
ferent values of the four inputs. Find the input-output rela-
tionship for the circuit. Specifically, find an expression for
vo in terms of the four input voltages.

v (V) vsy(V) vs3 (V) vsa(V) vo(V)
2 4 -4 1 20
1 2 2 15 -4
1 4 2 2 -1
0 5 3 -1 3

3-50 When the current source is turned off in the circuit of
Figure P3-50 the voltage source delivers 25 W to the load.
How much power does it deliver to the load when both
sources are on? Explain your answer.

100 Q P
Pg) V4
N
100V 1A 100 Q
FIGURE P3-50

OBJECTIVE 3—3 THEVENIN AND NoRTON
Eauivarent Circurts (Secr. 3-3-4)

Given a linear resistance circuit:
(a) Find the Thévenin or Norton equivalent at a specified pair
of terminals.

(b) Use the Thévenin or Norton equivalent to find the signals
delivered to linear or nonlinear loads.
See Examples 3-16 to 3-21 and Exercises 3-30 to 3-35.

3-51 For the circuit in Figure P3-51, find the Thévenin and
Norton equivalent circuits.
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10 kQ 10 kQ
YW WW—o Ry @ i
— W\, T
25V % 15 kQ W =R R
° .
VT, RT, iN
FIGURE P3-51 FIGURE P3-55

3-56 Find the Thévenin equivalent circuit seen by Ry in
Figure P3-56. Find the voltage across the load when
R =5Q,10Q, and 20 Q.

3-52 For the circuit in Figure P3-52, find the Thévenin and
Norton equivalent circuits.

1kQ 0o
* ° VW
10Q 100
<D ImAS 1kQ YW WW—
ov(* % 10Q RL
O
. 10Q
v, Ry, in ¢ .
FIGURE P3-52 FIGURE P3-56

353 L i ) o ) 3-57 Find the Norton equivalent seen by Ry in Figure P3-57.
—J3 For the circuit of Figure P3-53, find the Thévenin equiv- Find the current through the load when Ry =4.7kQ, 15kQ,

alent circuit. and 68 kQ.
25 kQ 20 kQ 1.5kQ i
AW\
30 kQ j
15kQ Z 20 mA 15k TR

FIGURE P3-53

FIGURE P3-57

3-58 You need to determine the Thévenin equivalent circuit
of a more complex linear circuit. A technician tells you

3-54 (a) Find the Thévenin or Norton equivalent circuit seen
by Ry in Figure P3-54.

1(fb;2 U_Si Stll;; equivalent circuit found in part (a) to find i she made two measurements using her DMM. The first
L= ' was with a 10-kQ load and the load current was 91 pA. The
3kQ 3kQ . second was with a 1-kQ load and the load voltage was
YW YW jvlL 124 mV. Calculate the Thévenin equivalent circuit as shown
in Figure P3-58.
15V Z10ke =3 Ry iiniP-A
+

10 kQ 1kQ < v =124 mV

FIGURE P3-54

3-55 (a) .Fin‘d the Thévenin or Norton equivalent circuit seen FIGURE P3-58
by Ry in Figure P3-55.
(b) Use the equivalent circuit found in part (a) to find i in ~ 3-59 Find the Thévenin equivalent seen by Ry in Figure P3-59.
terms of is, R{, Rp, and Ry. Find the power delivered to the load when Ry =50kQ.

(¢) Check your answer to part (b) using current division. Repeat for Ry, =100 k<.
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68 kQ 91 kQ
——\W\ L
P
2V 22 kQ § RL
FIGURE P3-59

L[] 3-60 (a) Use Multisim to find the Norton equivalent at term-

inals A and B in Figure P3-60. (Hint: Use the multimeter
to find the open-circuit voltage and short-circuit current at
the requisite terminals.)

(b) Use the Norton equivalent circuit found in part (a) to
determine the power dissipated in Ry when it is equal
to 37kQ.

(¢) Use Multisim to simulate both the original and the
Norton equivalent circuits with Ry =37kQ. Verify that
the power dissipated by the load is the same in both
situations.

82 kQ
YW
56 kQ 56 kQ
nv(r 120 pA §RL
47kQ
FIGURE P3-60

3-61 The purpose of this problem is to use Thévenin equiva-
lent circuits to find the current i, in Figure P3-61. Find the
Thévenin equivalent circuit seen looking to the left of term-
inals A and B. Find the Thévenin equivalent circuit seen look-
ing to the right of terminals C and D. Connect these
equivalent circuits together with the load resistor and find
the current ..

5kQ @ i» @
W\
4 kQ

10 kQ 10 kQ 2kQ

20V ‘_I I_’ 3mA
| ®©

FIGURE P3-61

3-62 The circuit in Figure P3-62 was solved earlier using
supermeshes (Problem 3-43). In this problem solve for the
voltage across the load resistor v, by first finding the Théve-
nin equivalent circuit seen by the load resistor. Find vy,
when R =2.5kQ.

A
2kQ
O
10 mA SkQ +
23k0 R.Z v
20 mA -
FIGURE P3-62

3-63 Assume that Figure P3-63 represents a model of the aux-

iliary output port of a car. The output currentisi=1 A when
measured by a very low-resistance ammeter. The voltage is
v=12V when measured by a very high-input resistance volt-
meter. Suppose you wanted to charge a 9-V battery by con-
necting the battery at the port, how much current would the
port deliver to the battery?

FIGURE P3-63

3-64 The i—v characteristic of the active circuit represented by

Figure P3-63 is 5v + 500i=100. Find the output voltage
when a 100-Q resistive load is connected.

3-65 You have successfully completed the first course in

Circuits I, and as part of an undergraduate work-study pro-
gram your former professor has asked you to help her grade a
Circuits I quiz. On the quiz, students were asked to find the
power supplied by the source both to the 10-kQ load (Ry.) and
to the entire circuit as shown in Figure P3—65. Your professor
asks you to help her by creating a grading sheet.

(a) Solve the quiz and establish reasonable A, B, C, D, and
F cuts for incorrect solutions.

(b) A particular student correctly finds the Thévenin equiv-
alent circuit seen by the resistive load and calculates the
power to the load using vr?/Rr. He then does a source
transformation, correctly finding the Norton equivalent of
the circuit. He calculates the source power using vt x in.
What grade would you give him?

(¢) Another student finds pp. =5.625 mW and ps=22.5 mW,
but provides no work to justify her answers. What grade
would you give her?

(d) A third student first finds the Norton equivalent, and
then finds the current through the load using a current divider
and calculates the power in the load using i; >Ry . He figures
correctly what the parallel voltage would be across the Nor-
ton circuit and the load vy, and then calculates ps =in x V.
What grade would you give him?
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AN
ke fjoke
MW M

isv(T) w0keE ks

FIGURE P3-65

3-66 The Thévenin equivalent parameters of a practical
voltage source are vy =30V and Rt =300 Q. You want the
maximum current to the load without exceeding 10 mA.
Find the smallest 5% load resistance (see inside back cover)
for which the load current does not exceed 10.0 mA.

3-67 Use a sequence of source transformations to find the
Thévenin equivalent at terminals A and B in Figure P3-67.
Then select a resistor to connect across A and B so that
2V appears across it.

®

o

50 150
M\
20V Q 1A 5Q Q 3A
e
150 sy
o
FIGURE P3-67

3-68 The circuit in Figure P3-68 provides power to a number
of loads connected in parallel. The circuit is protected by a
1-mA fuse with a nominal 100-Q resistance. Each load is
10kQ. What is the maximum number of loads the circuit
can drive without blowing the fuse?

R; =10 kQ each
10 kQ 25kQ 1m

A /_H
100 Q
20V 10 kQ (XL

FIGURE P3-68

L[] 3-69 Find the Thévenin equivalent at terminals A and B in
Figure P3-69. Use Multisim to verify your result.

/)
I + o
_/

10 mA 25000 1k
2kQ
MA——+—

FIGURE P3-69

source whose Thévenin equivalent is vr=5V and
Rr=500Q. The i-v characteristic of the resistor is
i=10"* (v + 2v3?). Use the MATLAB function solve to
find the operating point for this circuit and determine the
voltage across, the current through, and the power dissipated
in the nonlinear resistor.

whose Thévenin equivalent is vr=3V and Rr=10Q. The
i-v characteristic of the LED is i=107"7(e!®-1).
Figure P3-71 shows the LED’s i—v characteristic. Using
either MATLAB or a graphical approach, determine the
voltage across and current through the LED.

0.2
0.15
7] 01
(]
5
o
g
< 0.05
0
-0.05
-1 =05 0 05 1 15 2 25 3 35 4
Volts
FIGURE P3-71

3-72 Find the Norton equivalent seen by Ry in Figure P3-72.

Select the value of Ry so that

(a) 3V is delivered to the load.

(b) 300 mA is delivered to the load.
(¢) 100 mW is delivered to the load.

20Q @

WA

500 mA 20Q 40 Q é Ry

FIGURE P3-72

3-70 A nonlinear resistor is connected across a two-terminal [_]

3-71 A blue LED is connected across a two-terminal source [_J
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3-73 Find the Thévenin equivalent seen by Ry in Figure P3-73. 47kQ 1kQ
WW
MA
10ke 100 V %3.3 kQ R
10 kQ
A .

®
15 v@) 50 mA <D 10k Z R, FIGURE P3-76

3-77 The resistance R in Figure P3-77 is adjusted until maxi-
mum power is delivered to the load consisting of R and the

12-kQ resistor in parallel.

(a) Find the required value of R.

(b) How much power is delivered to the load?

FIGURE P3-73
3-74 Find the Thévenin equivalent seen by Ry in Figure P3-74.

Select a value of Ry, so that 5V appears across it. 2kQ memmmmssssssssoooes !
: M |
300 209 50 mA 3kQ SR Sk
Ry, 1kQ i |
<t> W Wy - Load
60V @ bl i '
0O 209 FIGURE P3-77
3-78 When a 5-kQ resistor is connected across a two-terminal

source, a current of 15 mA is delivered to the load. When a
FIGURE P3-74 second 5-kQ resistor is connected in parallel with the first,
a total current of 20 mA is delivered. Find the maximum

OBJECTIVE 3—4 Maximum SioNAL TRANSFER power available from the source,

(Sect. 3-5) 3-79 Find the value of R in the circuit of Figure P3-79 so that
maximum power is delivered to the load. What is the value of
the maximum power?

50Q R

Given a linear resistance circuit:

(a) Find the maximum voltage, current, and power available at
a specified pair of terminals.

(b) Find the resistive loads required to obtain the maximum
available signal levels.

See Example 3-22 and Exercise 3-36. 10V

3-75 For the circuit of Figure P3-75, find the value of Ry that
will result in

(a) Maximum voltage. What is that voltage?
(b) Maximum current. What is that current? FIGURE P3-79

(¢) Maximum power. What is that power? 3-80 For the circuit of Figure P3-80, find the value of Ry that
will result in:

7kQ (a) Maximum voltage. What is that voltage?
(b) Maximum current. What is that current?
10 mA 3kQ RL (¢) Maximum power. What is that power?
1.25kQ i,
AW
FIGURE P3-75 +
.. . . 24 mA
3-76 For the circuit of Figure P3-76, find the value of Ry that m <f> § ke §3 kQ L g Ry
will result in: _
(a) Maximum voltage. What is that voltage?

(b) Maximum current. What is that current?
(¢) Maximum power. What is that power? FIGURE P3-80
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3-81 @ A 1kQ load needs 10mA to operate correctly. 3-85 @ The source in Figure P3-85 has a 100-mA output

Design a practical power source to provide the needed cur-
rent. The smallest source resistance you can practically design
for is 50 Q, but you can add any other series resistance if you
need to.

3-82 A practical source delivers 25 mA to a 300-Q load. The
source delivers 5 V to a 100-Q load. Find the maximum power
available from the source.

3-83 @ A 10-V source is shown in Figure P3-83 thatis used to

power a 100-Q load. Clearly, the load does not match the
source resistance for maximum power. A young engineer
decides to obtain maximum power from the source by adding
a 100-Q shunt resistor across the load. Has he achieved his
goal of having the load obtain maximum power from the
source? Explain.

50 Q
— W —<

Cf) 10V 100 Q §100£2

Added resistor

FIGURE P3-83

OgJective 3—5 InTerFacE Circurt DESIGN AND
Evatuation (Secr. 3-6)

Given the signal transfer goals at a source-load interface, design
one or more two-port interface circuits to achieve the goals and

evaluate the alternative design solutions.
See Examples 3-23 to 3-31 and Exercises 3-37 to 3—46.

3-84 (a) @ Select Ry and design an interface circuit for the

circuit shown in Figure P3—84 so that the load voltage is 2 V.

(b) Suppose that the load was set at 15kQ. Now design an
appropriate interface so that the load voltage is 2 V.

10kQ
> <
10V 10 kQ % 5k | Interface - ; R
¢ ocircuit !
: : r<—
FIGURE P3-84

current limit. Design an interface circuit so that the load
voltage is v, =20 V and the source current is i; < 50 mA.

so 2
A : <
+ E E +
100 V v | fnterface s, = 5000
] circuit 1
> ra
FIGURE P3-85

3-86 @ Figure P3-86 shows an interface circuit connecting a

15-V source to a diode load. The i—v characteristic of the
diode is i=10""* (e*V - 1).

(a) Design an interface circuit so that v=0.7 V.

(b) Validate your answer using MATLAB.

. b+
+ : Interface | !
By _> ¢ circuit 1V
FIGURE P3-86

3-87 @ Design the interface circuit in Figure P3-87 so that the

voltage delivered to the load is v=10V +10%. Use one or
more of only the following standard resistors: 1.3 kQ, 2kQ,
3kQ, 4.3kQ, 6.2kQ, and 9.1 kQ. These resistors all have a tol-
erance of +5%, which you must account for in your design.
Repeat the problem if the desired load voltage is4.3 V +10%.

500Q . i

Interface

U
20V It circuit

FIGURE P3-87

3-88 @ @ In this problem, you will design two interface

circuits that deliver 150V to the 5-kQ load shown in
Figure P3-88.
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(a) @ Design a parallel resistor interface to meet the VIN="Vs 225 Q vr=vs/4
_ Rn=75Q AV Rr=75Q
requirements.
75Q 75 Q
(b) @ Convert the source circuit to its Thévenin >__/\/\/\/_4_/\/\/\/_{

equivalent and then design a series interface to meet the

requirement.
e § 25Q
(c) If minimizing the power that the current source

delivers is the primary consideration, which of your two
designs best meets the requirement?

____________ Attenuation pad
> <
i i + FIGURE P3-90
90 mA 10 kQ 5kQ | I“Ferfa.ie L 5kQ S w=150V
| B 7 391 @ @ Design two interface circuits in Figure P3-91
L_<

: so that the power delivered to the load is 100 mW. In one
case use a series interface resistor, and in the second case
FIGURE P3-88 use a parallel resistor to attain the same result. Evaluate your
interface circuits and determine which one results in the
source delivering less power.
3-89 ® Two teams are competing to design the interface cir-

50 Q 25Q S 1
cuit in Figure P3-89 so that the 25 mW +10% is delivered to S [ N— 100 mW
the 1-kQ load resistor. Their designs are shown in i E /
Figure P3-89. Which solution is better considering the use 10V 500 i Interface : § 500
of standard values, number of parts, and power required by ' circuit
the source? Would your choice be different if the power : E
had to be within +5%? ! S —
50 Q e
> \WNAN——<—— P FIGURE P3-91
122KQ 6800 : / 3-92 @ Design the interface circuit in Figure P3-91 so that
20V : | 1kQ . ,
i § the voltage delivered to the load is 1.0 V. Repeat for a voltage
: 5 of 3.0V.
Team A SN : 3-93 @ Design the interface circuit in Figure P3-93 so that
Rin=100Q and the current delivered to the 50-Q load is
500 SRS i=50mA. (Hint: Use an L-pad.)
. . P 100 Q frninann
i ; / AWy |
20V : § : § ke 15V _ ¢ Interface
533 Q R | circuit
Team B B : ;
FIGURE P3-89 RN
L1390 @ The bridge-T attenuation pad shown in Figure P3-90 FIGURE P3-93

was found in a drawer. You need an attenuation pad that would  3_gq
match to a 75-Q source and a 75-Q load and provide for a
—12-dB drop of signal (reduction of four times). Use Multi- Rour=50€Q and the voltage delivered to the 50-Q load is
sim to determine if the device will work. v=2.5V. (Hint: Use an L-pad.)

Design the interface circuit in Figure P3-93 so that
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[ 395

of 50 Q and a load resistance of 300 Q. Design the interface
circuit so that the input resistance is Ry =50Q +10% and
the output resistance is Rour =300 Q +10%. Validate your
design using Multisim.

The circuit in Figure P3-95 has a source resistance

50 Q fTTTtTTT
AWy |
v ; Interface
S . circuit
RN
FIGURE P3-95

3-96

will deliver v=4V to the 75-Q load. Verify this claim. Which
interface circuit consumes the least power? Which has an out-
put resistance that best matches the 75-Q load?

Itis claimed that both interface circuits in Figure P3-96

150Q |
>—
20V iz
I circuit
>—!
—AW
i 150 Q
Circuit 1 Circuit 2
FIGURE P3-96

| NTEGRATING PROBLEMS

3-97 @ Audio Speaker Resistance-Matching Network

A company is producing an interface network that they claim
would result in an Ry of 600 Q +2% and Royt of 16, 8, or
4Q +2% —depending on whether the connected speakers
are 16, 8, or 4 Q—selectable via a built-in switch. The design
is shown in Figure P3-97. Prove or disprove their claim.

600Q 1592 Q

Vs

7

16, 8,0r4 Q

Audio matching network

3-98

FIGURE P3-97

Attenuator Analysis

In Figure P3-98, a two-port attenuator connects a 600-Q source

to a 600-Q load. Find the power delivered to the load in terms of

vs. Remove the attenuator and find the power delivered to the
load when the source is directly connected to the load. By what
fraction does the attenuator reduce the power delivered to the
600-Q load? Express the fraction in dB. Verify your results

using Multisim.

600 Q

Vs

______________________

ATTENUATOR

FIGURE P3-98

3-99 @ Attenuator Design

Use the general procedure shown in Application Example 331
todesigna75 Qto 75 Q, < —20 dB attenuator with the following

characteristics:
Porr Caracreristics | Conpimion Vawe Unirs
Output| Thévenin 75-Q source vr < vg/10 \%
voltage connected at
the input port
Output| Thévenin 75-Q source 75 Q
resistance| connected at
the input port
Output| Attenuation| 75-Q load Voutput dB
20 xlogo( ——
connected at Vinput
the output port <=20
Input | Input 75-Q load 75 Q
resistance| connected at
the output port

Use Multisim to verify that your design meets these characteristics.

0O
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3-100 @ Interface Circuit Design

Using no more than three 50-Q resistors, design the interface
circuit in Figure P3—-100 so that v=4 V and i =50 mA regardless
of the value of Ry.

50 Q e
>— ——
: _
12V giateriacess ZR,
\circuit

FIGURE P3-100

3-101 @ Battery Design

A satellite requires a battery with an open-circuit voltage
voc=36V and a Thévenin resistance Rt =10Q. The battery
is to be constructed using series and parallel combinations of
one of two types of cells. The first type has voc=9V,
Rr=4Q, and a weight of 30 g. The second type has voc =4V,
Rr=2Q, and a weight of 18 g. Design a minimum weight bat-
tery that meets the open-circuit voltage and Thévenin resistance
requirements.

3-102 @ Design Evaluation

A requirement exists for a circuit to deliver 0 to 6 V to a 100-Q load
from a 24-V source rated at 3.0 W. Two proposed circuits are
shown in Figure P3-102. Which one would you choose and why?
150 Q
AW

N
Vo Z100Q

uv(t)  wesz
8

Circuit 1

150 Q
MW

+
24V i> 1009§ vo

100 Q

Circuit 2

FIGURE P3-102
3-103 @ Design Interface Competition

The output of a transistorized power supply is modeled by the
Norton equivalent circuit shown in Figure P3-103. Two teams
are competing to design the interface circuit so that
25mW +£10% is delivered to the 1-kQ load resistor. Their
designs are shown in Figure P3—-103. Which solution is better
considering the use of standard values, number of parts, and

power required by the source? Would your choice be different
if the power had to be within +5%?

/

400 mA

§509§

Team A fmmmmmmeee !

AWV
[
(]

FIGURE P3-103

3-104 @ ® Analysis of Competing Interface Circuits

Using MATLAB

Figure P3-104 displays two generalized interface circuit designs.
In both circuits, resistors Ry and R, connect a Thévenin equiv-
alent circuit to a load resistor. Using MATLAB, develop sym-
bolic expressions for the load current, i;, and the input
resistance, R, for each circuit in terms of the given parameters.
Using these two expressions, now use the MATLAB command
solve to solve for Ry and R, in terms of i and Rin. Let
vT = 15 V, RT =100 Q, RL =50 Q, iy =50 IIlA, and RIN =100 Q.
Can you use both types of interface circuits to find suitable
values for R; and R, to meet these specifications? Compare
your interface design(s) with the solution to Problem 3-93.

Rr R, — QL
VT RZ RL
Rin
(a)
Ry R, .
- " 2R Ry
RN
(b)

FIGURE P3-104

|
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resistance —that is, no current flows into the device. The output
voltage for this configuration is two times the input voltage.
Figure P3-105 shows a circuit with two sources, a fixed load and ~ Develop a relationship for the voltage vi across Ry with respect
a resistor R. Select R for maximum power transfer to the load.  to the two input voltages and the two input resistances.

The result is not an obvious one. (Hint: Simulate in Multisim
using the “Parameter sweep” under “Analyses” and do a linear
sweep for R from 1 Q to 10 MQ. Plot the power transferred to

3-105 @Maximum Power Transfer Using Multisim

Ry

2

the load P(Ry) versus the variable R. What is the maximum * N

power transferred?) ;
Vs Ry vp
R —

20 kQ 5 mA § 4 kQ
10V vs2 —
RIN =00 Q

FIGURE P3-105
3-106 @Noninverting Summer

A noninverting summer interface device is shown in Figure P3-106.
Of importance is that the input to the device has infinite

FIGURE P3-106
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Then came the morning of Tuesday, August 2, 1927, when the concept of the negative feedback amplifier came to me in a flash while
I was crossing the Hudson River on the Lackawanna Ferry, on my way to work.

Harold S. Black, 1927,
American Electrical Engineer

Some History Behind This Chapter

The integrated circuit operational amplifier (OP AMP) is the
workhorse of present-day linear electronic circuits. However,
to operate as a linear amplifier, the OP AMP must be pro-
vided with “negative feedback.” The negative feedback
amplifier is one of the key inventions of all time. During
the 1920’s, Harold S. Black (1898—1983) had been working
for several years without much success on the problem of
improving the performance of vacuum tube amplifiers in tel-
ephone systems. The feedback amplifier solution came to
him suddenly on the way to work. He realized that by utiliz-
ing negative feedback, he could obtain a desired reduction in
distortion at the expense of a sacrifice in amplification. He
documented his invention by writing the key concepts of neg-
ative feedback on his morning copy of the New York Times.
His invention paved the way for the development of world-
wide communication systems and spawned completely new
areas of technology, such as feedback control systems and
robotics. Two other achievements were necessary before
low-noise amplifiers could become practical and common-
place: the invention of the transistor by John Bardeen, Walter
Brattain, and William Shockley in 1947, and the invention of
the integrated circuit by Jack S. Kilby in 1958.

Why This Chapter Is Important Today

This is an important chapter for all engineering disciplines.
You will be introduced to modern electronic devices and
how they can be modeled. The utility of these devices will
be apparent when you design OP AMP circuits that provide
signal conditioning in instrumentation systems. You will also
be introduced to criteria used to evaluate alternative designs.
That is, you will begin to function as an engineer making
judgments about the best solution to a problem.

150

Chapter Sections

4-1 Linear Dependent Sources

4-2 Analysis of Circuits with Dependent Sources
4-3 The Operational Amplifier

4-4 OP AMP Circuit Analysis

4-5 OP AMP Circuit Design

4-6 OP AMP Circuit Applications

Chapter Learning Objectives
4-1 Linear Active Circuits (Sects. 4-1 and 4-2)

Given a linear resistance circuit containing dependent
sources, find selected output signals, input-output rela-
tionships, or input-output resistances.

4-2 OP AMP Circuit Analysis (Sects. 4-3 and 4-4)
Given a linear resistance circuit containing OP AMPs,
find selected output signals or input-output relationships.
4-3 OP AMP Circuit Design (Sect. 4-5)

Given an input-output relationship, design resistive OP
AMP circuits that implement the relationship. Evaluate
the alternative designs using stated criteria.

4-4 OP AMP Circuit Applications (Sect. 4-6)

Apply concepts of OP AMP analysis and design to cre-
ate, analyze, or evaluate circuits that perform a specific
interface, function, or task.
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4-1 LiNnearR DEPENDENT SOURCES

This chapter treats the analysis and design of circuits containing active devices, such
as transistors or operational amplifiers (OP AMPs). An active device is a component
that requires an external power supply to operate correctly. An active circuit is
one that contains one or more active devices. An important property of active circuits
is that they are capable of providing signal amplification, one of the most important
signal-processing functions in electrical engineering. Linear active circuits are gov-
erned by the proportionality property, so their input-output relationships are of
the form y=Kx. The term signal amplification means the proportionality factor
K is greater than 1 when the input x and output y have the same dimensions. A block
diagram of this function is shown in Figure 4-1(a). It is the same diagram as first intro-
duced in Figure 3-28. In that chapter, the gain was limited to be | K| <1. With active
circuits, the gain is limited by the circuit’s configuration and by the limitations of the
actual physical devices or the external power supply. Therefore, an active circuit can
deliver more signal voltage, current, and power at its output than it receives from the
input signal. The passive resistance circuits studied thus far cannot amplify voltage,
current, Oor power.

Active devices operating in a linear mode are modeled using resistors and one or
more of the dependent sources shown in Figure 4-1. A dependent source is a volt-
age or current source whose output is controlled by a voltage or current in a differ-
ent part of the circuit. As a result, there are four possible types of dependent
sources: a current-controlled voltage source (CCVS), a voltage-controlled voltage
source (VCVS), a current-controlled current source (CCCS), and a voltage-
controlled current source (VCCS). The properties of these dependent sources
are very different from those of the independent sources described in Chapter 2.
The output voltage (current) of an independent voltage (current) source is a spe-
cified value that does not depend on the circuit to which it is connected. To distin-
guish between the two types of sources, the dependent sources are represented by
the diamond symbols in Figure 4-1, in contrast to the circle symbols used for inde-
pendent sources.

Caution: In this book, we use the diamond symbol shown in Figure 4-1 to repre-
sent a dependent source. However, this representation is not universal. Some other
texts use circles and some use rectangles, while others use diamonds. Software simu-
lators also are varied. Multisim and CircuitLab use diamond symbols, while OrCAD
uses circle symbols. DoCircuits use diamonds for dependent current sources and cir-
cles for dependent voltage sources.

A linear dependent source is one whose output is proportional to the controlling
voltage or current. The defining relationship for dependent sources in Figure 4-1 are
all of the form y=Kx, where x is the controlling variable, y is the source output
variable, and K is the proportionality factor. Each type of dependent source is char-
acterized by a proportionality factor, either p, p, r, or g. These parameters are
often called simply the gain of the controlled source. Strictly speaking, the para-
meters p and § are dimensionless quantities called the voltage gain and current gain,
respectively. The parameter r has the dimensions of ohms and is called the transre-
sistance, a contraction of transfer resistance. The parameter g is called transconduct-
ance and has the dimensions of siemens.

Although dependent sources are elements used in circuit analysis, they are
conceptually different from the other circuit elements we have studied. The linear
resistor and ideal switch are models of actual devices called resistors and switches.
However, you will not find dependent sources listed in electronic part catalogs.
For this reason, dependent sources are more abstract, since they are not models
of identifiable physical devices. Dependent sources are used in combination with
other circuit elements to create models of active devices.

y=Kx

(a)

ri1

@

(b) CCVS

(c)VCVS

|

(d) CCCS

O
+

Vi

8v1

<_>

FIGURE 4-1

o)

(e) VCCS

Dependent

source circuit symbols: (a) Block
diagram of a gain stage.
(b) Current-controlled voltage
source. (c) Voltage-controlled

voltage source. (d) Current-

controlled current source.
(e) Voltage-controlled current

source.
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Source on

FIGURE 4-2 Turning off the
independent source affects the

dependent source.

In Chapter 3 we found that a voltage source acts as a short circuit when it is
turned off. Likewise, a current source behaves as an open circuit when it is turned
off. The same results apply to dependent sources, with one important difference.
Dependent sources cannot be turned on and off individually because they depend
on excitation supplied by independent sources.

Some consequences of this dependency are illustrated in Figure 4-2. When the
independent current source is turned on, KCL requires that i; =is. Through con-
trolled source action, the current controlled voltage source is on and its output is

VO = ri1 = ris

When the independent current source is off (is =0), it acts as an open circuit and KCL
requires that i; =0. The dependent source is now off and its output is

1)0=ri1=0

When the independent current source is off, the dependent voltage source acts as a
short circuit.

In other words, turning the independent source on and off turns the dependent
source on and off as well. We must be careful when applying the superposition prin-
ciple and Thévenin’s theorem to active circuits, since the state of a dependent source
depends on the excitation supplied by independent sources. To account for this
possibility, we modify the superposition principle to state that the response due to
all independent sources acting simultaneously is equal to the sum of the responses
due to each independent source acting one at a time.

4-2 Anavrvysis ofF Circuits WiTH DEPENDENT SOURCES

With certain modifications, the analysis tools developed for passive circuits apply
to active circuits as well. Circuit reduction applies to active circuits, but in so doing
we must not eliminate the control variable for a dependent source. As noted previ-
ously, when applying the superposition principle or Thévenin’s theorem, we must
remember that dependent sources cannot be turned on and off independently since
their states depend on excitation supplied by one or more independent sources. Apply-
ing a source transformation to a dependent source is sometimes helpful, but again we
must not lose the identity of a controlling signal for a dependent source. Methods like
node and mesh analysis can be adapted to include dependent sources as well.
However, the main difference is that the properties of active circuits can be sig-
nificantly different from those of the passive circuits treated in Chapters 2 and 3.
Our analysis examples are chosen to highlight these

v C) "

Rc differences.

5 A Consider the circuit of Figure 4-3(a). In this
dependent-source circuit, the dependent source, a
+ VCVS, is shown highlighted by the shaded box. To
the left, usually, there is a source circuit that provides

I i, § Vo the input to the dependent source. To the right is the

wy load circuit that receives the result of the dependent
source. Let us analyze this circuit and find the voltage
gain K =vp /vs.

We recognize the load circuit as a voltage divider.
Source or input circuit VCVS Load or output circuit . & &
That is,
(a) Ry
Vo=———(—M0
(0] RL T RC( J x)

FIGURE 4-3 (a) A circuit with a dependent source.
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Note that the dependent source’s output is negative, with the plus sign on the bottom
and the negative sign on the top. This was done intentionally to point out that in
many active devices there is a sign inversion that is modeled by inverting the sign
of the dependent source. To continue our analysis we need to find a relationship
between the dependent source’s control variable vy and the input vs. A KVL around
the input loop is

—Us +Rsi5 + Uy =0
Now, since the circuit is an open at vy, is =0. This makes vx =vs and therefore,

Ry

m(—uvs)

VO =

And therefore,

K="0_ _TBRL
Us Ry + RC

This is shown as a block diagram in Figure 4-3(b). Let us look at what happens when
we give values to the various parameters. Let all of the resistors equal 1kQ and
p=10°. K in this example would be —50,000. If in our example we let vs =100 pV,
our output vg would be —5 V. The circuit has amplified the input by 50,000 times!
What makes this even more remarkable is that due to the open circuit is, the source
current, is zero. The source is not providing any power to the circuit. Nor is there any
current iy flowing between the input and output circuits. Yet it should be clear that
there is power provided to the load. This example serves to point out that there is
something else at play. The dependent source does not rely on the input for its out-
put power. Yes, the input provides the signal that will be amplified or attenuated by
the dependent source, but the output power is obtained from a secondary source
driving the dependent source that makes all this possible.'

EXAMPLE 4-1

Determine the current, voltage, and power delivered to M\ _l

the 500-Q output load in Figure 4-4. Then find the power
gain defined as po/ps.

SOLUTION: is <> =2

The control current iy is found using current division in
the input circuit as:

Vs —HRL vo
RL+ RC
(b)
FIGURE 4-3 (b) Equivalent

block diagram.

; .2,
= (50 + 25) 5= gls -1 Source or input circuit

Similarly, the output current ip is found using current
division in the output circuit as:

. 300 . 3.
fo= <m) h=gly =2

FIGURE 4-4

'Usually the external power supply is not shown in circuit diagrams. When using a dependent source
to model an active circuit, we assume that the external supply and the active device itself can handle
whatever power is required by the circuit. When designing the actual circuit, the engineer must make
certain that the active device and its power supply operate within their power ratings.

Load or output circuit
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Vs Ct) Rp §

Atnode A, KCL requires that iy = —48i,. Combining this result with Egs. (4-1) and
(4-2) yields the output current

io = (%) (—48)ix=(-18) (%is) (4-3)

=—12ig
The output voltage vo is found using Ohm’s law as follows:
o =ip500 = —-6000ig (4-4)

The input-output relationships in Egs. (4-3) and (4—4) are of the form y = Kx with
K <0. The proportionality constants are negative because the reference direction for
io in Figure 4-4 is the opposite of the orientation of the dependent source reference
arrow. As noted earlier and worth repeating, active circuits often produce negative
values of K, which means that the input and output signals have opposite algebraic
signs. Circuits for which K <0 are said to provide signal inversion. In the analysis and
design of active circuits, it is important to keep track of signal inversions.

Using Egs. (4-3) and (4-4), the power delivered to the 500-Q load in Figure 44 is
given by

Po =voio = (—6000is) (—12is) = 72,0007 (4-5)

The independent source at the input delivers its power to the parallel combination of
50 Q and 25 Q. Hence, the input power supplied by the independent source is given by

; 50V .
ps = (50]|25)i5 = (g) i3

Given the input power and output power, we find the power gain in the circuit as:

2 2
Power gain = po _ 7 ’OOO%ZS =
Ps (50/3)ls

A power gain greater than unity means that the circuit delivers more power at its
output than it receives from the input source. At first glance this appears to be a vio-
lation of energy conservation, until we remember that dependent sources are models

of active devices that require an external power supply to operate. [ |
Re Exercise 4-1
M\ Find the output vp in terms of the input vg in the circuit in Figure 4-5.

+ Then if Rs=Rp=100Q, Rc=Ry =1kQ, and r=1kQ, find the gain
i K =vg/vs for the circuit.
riy RL § 126

FIGURE 4-5

Answers:

- —Ryr
vo= {(RS+RP)(RC )
K=-25

Nobe-VoLTaGE ANALYSIS WITH DEPENDENT SOURCES

Node analysis of active circuits is much the same as for passive circuits except that
we must account for the additional constraints caused by the dependent sources.

For example, let us look at using node analysis to continue our study of the circuit
first discussed in Figure 4-3. As shown in Figure 4-6(a), we have inserted a resistor
Rr between the source circuit and the load circuit. This simple insertion is an example
of the major reason for the great value of active circuits. Let us analyze this circuit to
find K =vp/vs and see why.
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There are five nodes in this circuit. We have selected a R = R
. . . S F C
ground and labeled the remaining four nodes. We notice VA VB vc VD
: —W——— A AWW——WA—e
that all four nodes can be related to other parameters in +
the circuit as follows: |_l§ +
VA= Vs ™
- R
Vs 12 L=Vo
VB =y <—> b & z
vy _
0C = —Hox
_iy
VD = VO —
There are only two unknown nodes, B and D. At node Source orinputcircuit | yoyg = Load or output circuit

B we can write the following node equation:

Ox—0s  Ux—(—pox)
Rg * Rp =0 FIGURE 4-6 (a) Circuit used to demonstrate effects of
feedback.

At node D we write as

vo  vo-(-pvx)
Ry Rc
Solving for vy in the node B equation, we get
. vs/Rs vs
1 1 a
-+ ﬂ 1+ M
RS RF RF

Solving the node D equation for v,, we get

1 1 — oy
1)0|: + ]: Ko

R.  Rc Rc
e — —pox Ry
O RL+Rc

Substituting our results for vy and solving for vo, we get

Vo = “HRL
© RL+RC

Us ‘|
(I+pR
14 (2R

And K equals

—p
RL+RC] 14 (1+p)Rs
Rr

K=—

VO _ RL
vs a

This gain can be represented by the block diagram shown in
Figure 4-6(b). ko | B —u
This equation looks a bit intimidating at first, but with some analysisit Vs—|"  |R_ + R¢ (1 + WRg [ Vo

. . . R~
makes a lot of sense. If we let Rr become an open circuit, that is, look Rp
exactly like our circuit in Figure 4-3, our gain K =vp/vs becomes

__THRL )
Ry + RC

o ) ) ) FIGURE 4-6
which is exactly the same response we found earlier. This value of K is the

maximum gain possible with this circuit. What is important to realize is that you now
have control of the gain (K) of the circuit from 0 to the maximum value of K above.
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FIGURE 4-6

Gain (K)

0.0

For example, if we set all the resistors to 100 Q and p to 10°—a reasonable gain for
an OP AMP —we can generate the graph shown in Figure 4-6(c). By choosing Rg, we
can obtain whatever gain we wish up to 50,000. Two gains are shown: —200 by choos-
ing Rp=1.63kQ and —20,000 by selecting R =6.7 MQ.

Device parameter sweep

=5.0k —

—10.0k —

—15.0k —

—20.0k —

—25.0k —

-30.0k -

—35.0k -

—40.0k —

—45.0k —

(1.63 kQ, K = -200)

(6.7 MQ, K = —20,000)

—50.0k

I I
158 1k 10k 100k IM 10M 63M

Feedback resistance (Ry)

(©)

The key element Ry is called the feedback resistor. Feedback is the reason for the
success of many analog circuit designs. It is important to realize that feedback often
causes the current iy to not be zero. With feedback the output circuit directs back
some of its voltage or current to the input circuit and helps the circuit designer
achieve the output desired. We will study many more examples of feedback later
in this and subsequent chapters.

Exercise 4-2

Use the graph in Figure 4-6(c) to select a value of Rg so that the gain is —25,000 and repeat
for —40,000.

Answer: Rp=10 and 40 MQ, respectively.

Exercise 4-3

With all other resistors set to 1kQ and p=10, select an appropriate value for Rf in
Figure 4-6(a) so that the gain |K| can never be larger than 10,000, or smaller than 50.

Answer: Use a 100.1-kQ fixed resistor in series with a 24-MQ variable resistor for Rg.

EXAMPLE 4-2

For the circuit of Figure 4-7, use node-voltage analysis to find expressions for the
unknown node voltages. Write your results as a matrix in Ax=b form.
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SOLUTION: VA R
The circuit in Figure 4-7 has five nodes. Selecting node E as the AW . . Rp
reference, each independent voltage source has one terminal con- -L\/\/\/ ¢ AV . o
nected to ground. R, R +
These connections force the conditions va =vs; and vg =vs;. ¥ ¥ B
Therefore, we only need to write node equations at nodes <—> Vsl <—> vs2 § Ry Pig ? Re § Yo
C and D because voltages at nodes A and B are already known. @
Node analysis involves expressing element currents in terms of o

the node voltages and applying KCL at each unknown node. The /
. . Reference / —
sum of the currents /leaving node C is
1 1 1 1 FIGURE 4-7
E(Uc—l)m) + E(DC_USZ) + R7130C + FP(DC_UD) =0

Similarly, the sum of currents leaving node D is

1 1 .
R—P(l)D —vc) + R—El)D —pig=0

These two node equations can be rearranged into the following form:

1 1 1 1 1 1
Node C: (R—1+R—2+R—B+R—P>UC_R_PUD—R_1051 +R—21)52
Node D: _R_va+ (R—P+R—E)UD:BlB

Note that we could write these two symmetrical node equations by inspection if
the dependent current source pig had been an independent source. But it is not inde-
pendent, so we must express its constraint in terms of the unknown node voltages.
Applying the fundamental property of node voltages and Ohm’s law, the current
ip can be written in terms of the node voltages as follows:

1
ip :FP(UC_UD)

Substituting this expression for ig into Eqs. (4-6) and putting the results in standard
form yields
1 1 1 1 1 1 1
N D [+ —+—+—|oc——vp=— —
ode C (Rl + & + Rs + RP> vc RPUD R, vs1 + szsz )

Node D: —([3+1)Ripl)c+ ((ﬁ+1)RiP+RLE)vD:O

And in matrix form

Tpt,1,1 L L
R R, RB‘\B;{\\ Rp (vc> | m +R72“SZ
N v
_(B+D (B+1) L\ 0

Rp Rp Re/_

The result in Egs. (4-7) involves two equations in two unknowns—the node
voltages—and includes the effect of the dependent source. However, notice that
the matrix is not symmetrical. The dependent source constraint destroys the coeffi-
cient symmetry. The resultant equations can be readily solved using simple substitu-
tion or MATLAB.

This example illustrates a general approach to writing node-voltage equations for
circuits with dependent sources. We start out treating the dependent sources as if
they are independent sources and write node equations for the resulting passive
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circuit using the inspection method developed in Chapter 3. This step produces a set
of symmetrical node-voltage equations with the independent and dependent source
terms on the right-hand side. Then we express the dependent source terms in terms of
the unknown node voltages and move them to the left-hand side of the equations with
the other terms involving the unknown node voltages. This step destroys the coeffi-
cient symmetry but leads to a set of node-voltage equations that describe the active
circuit. [ |

Exercise 44

For the circuit in Figure 4-7, use the node-voltage equations in Egs. (4-7) to find the output
voltage vo when R; =1kQ, R, =3kQ, Rg=100kQ, Rp=1.3kQ, Rg=3.3kQ, and f=50.

Answer: vo =vp =0.7360g; +0.24505,

This circuit is a signal summer that does not involve a signal inversion. The fact that the
output is a linear combination of the two inputs reminds us that the circuit is linear.

Reference

RF iO
,TVA AM—e 7] EXAMPLE 4-3
Is + vy —
+  For the circuit in Figure 4-8 find the voltage gain K, =00 /vs, and the current
Vs @) Ry § vo  gain Kj=ip/is using node-voltage analysis.
u -
’ SOLUTION:
J_ There are three nodes in this circuit. If we select the bottom node as our refer-

ence, the remaining two nodes are defined by the voltage sources. That is,
N va =vs and vg = —py.
FIGURE 4-8 By node analysis, the voltage vy is

Ux =0A —UB =05 — (—Hox)
Solving for vy yields

Ux = Ton
The output voltage is directly across the dependent source, hence,
vo =~ (hvy)

Substituting our expression for vy, we get

The voltage gain is given by

©=(i5)

This result tells us that for positive values of p greater than one, the voltage gain is
always more than one regardless of p.
To find the current gain we note that by Ohm’s law

o _ —(wy)
lo=—=
Ry, Ry,

And

vs —(—poy) _ U5+ g

ST Re Rr
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Substituting for vy, we get

o= RL
And
vs B I-p+p Vs
1
Lol sl (s) SR
ST Re R " Re Re
The current gain is given by
(%)
Ry _HRF
Ki: =
vs R
(=) ) "

Rr

The magnitude of the current gain could, in theory, range from 0 to oo, depending on
i, Ry, and Ry. Of course, practical considerations will limit the current, and hence,

the gain. |
: _ va 2KkQ vy
Exercise 4-5 Yy .
(a) Formulate node-voltage equations for the circuit in Figure 4-9. vy i io
+
b) Solve the node-voltage equations for vp and ip in terms of is. . 50
(b) ge eq 26} o is i <f> 1KkQ = vy 1 § Vo
Answers: - 00 @
@) (1.5%x10)va - (0.5%x 10 )op =is , >
a
—(2.5%107%)va +(2.5%107%)op =0 L

(b) Vo = 1000is; io = 2i5

FIGURE 4-9

EXAMPLE 4-4

Determine the output voltage of the circuit shown in Figure 4-10(a) using
Multisim.

SOLUTION:
Figure 4-10(b) shows the symbols used in Multisim to represent the four dependent
sources. These elements are found in the “Components” and then “Source” library
as shown in Figure 4-10(b) under either “Controlled Voltage Sources” or “Controlled
Current Sources.” The input ports shown as rectangles are either open circuits for the
voltage-controlled elements or short circuits for the current-controlled devices. The
output ports are voltage sources or current sources depending on the controlled var-
iable. Note that the controlled sources in Multisim are indicated by diamonds as we use
in the text. All four dependent sources are characterized by a single parameter located
next to the dependent source. The gain is set by simply clicking on the value and enter-
ing the desired gain for p, B, g, or r depending on the type of dependent source. The
dimensions of the gain depend on the dimensions of the signals at the input and out-
put ports. As we will see in subsequent examples, these elements are combined with
circuit elements to model active devices such as transistors and OP AMPs.

For the problem at hand, we used the VCVS-dependent model and set the gain at
100. The resulting circuit is shown in Figure 4-10(c) with the desired output response
displayed on the voltmeter as vo =4 V. |
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FIGURE 4-10 50 Q 22kQ
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- LV/IV  |— 1 Mho
1%
100 Q _x 33kQ < Vo VCVS VCCS
0.1V 100 v, B
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| S,

+

CCVS CCCS
(b)
Rl R 3 - .
% AN Multimeter-XMM1 |
20€ 2k v
XMM1 =

+ =
a Set... |
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R Ry L ] [ [=] [=]
=01V 2 v s L Bw [+] 4 [=] [=]
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Exercise 4-6
Find ip using Multisim for the circuit of Figure 4-11(a).

100 Q &
il
iol

90i,
10V CD 5000 2

(@)
XMM1
A
= Multimeter-XMM1
Ry T
o T
100 Q
’ [a] [v] [=] [&]
— "1 i rii————— —
— L R ~N ] [=
10V l 90 A/A 35809 [~
o  [set o,
L
(b)

FIGURE 4-11
Answer: io=-9A. See Figure 4-11(b).
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EXAMPLE 4-5
The circuit in Figure 4-12(a) is a model of an inverting OP AMP circuit.

(a) Use node-voltage analysis to find the output v in terms of the input vs.

(b) Evaluate the input-output relationship found in part (a) as the gain p becomes
very large.

(c) Assume R =R; =100 Q, p=1000, and R4 =1 kQ. Use Multisim to show the effect
of the feedback resistor R; by plotting the output gain K =vg /vs for R; varying
from 10 Q to 100 MQ.

Ry R3 VA R3 VB
AMA A\ o Wy °
4 +
+ f +
N ks h G ke | RERs . & rs
— S 2 < 4 X + (6]
C su (G w2 Wzt o A2
; 3
Given circuit Modified circuit
(a) (b)
FIGURE 4-12
SOLUTION:

(a) Applying a source transformation to the independent source leads to the
modified three-node circuit shown in Figure 4-12(b). With the indicated reference
node the dependent voltage source constrains the voltage at node B. The control
voltage is vx =v4, and the controlled source forces the node B voltage to be

UB = —HUx = —HoA

Thus, node A is the only independent node in the circuit. We can write the node
A equation by inspection as

LW
R R, R) ™ R " R

Substituting in the control source constraint yields the standard form for this equation:

(koo )on

Ri R, Rs Rs Ry

We end up with only one node equation even though at first glance the given
circuit appeared to need three node equations. The reason is that there are
two voltage sources in the original circuit in Figure 4-12(a). Since the two sources
share the reference node, the number of unknown node voltages is reduced from
three to one. The general principle illustrated is that the number of independent
KCL constraints in a circuit containing N nodes and Ny voltage sources (depend-
ent or independent) is N —1 — Ny. The one-node equation can easily be solved for
the output voltage vo =vp as follows:

1
Vo=V =— = pRl
O =UB = —H0A = 1 N

1 1
Bl | _
R1+R2+( +p)R3
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The minus signs means the circuit provides signal inversion, which is caused by
the reference polarity of the controlled source. The output voltage does not
depend on the load resistor R4, since the load is connected across an ideal
(though dependent) voltage source.

(b) For large gains p, we have (1+p)(1/R3)>[(1/R1)+(1/R2)] and the input-
output relationship reduces to

1

Vo = L Ry ~_|B
o= T|vs™ lus
1 —
( +H)R3

That is, when the active device gain is large, the voltage gain of the active circuit
depends on the ratio of two resistances. We will encounter this situation again
with OP AMP circuits.

Ry

WA
100 Q

—— "1
—_— 1V

Device parameter sweep:

(For K = =200, R; = 33 kohm)

=500 T T T T T T
10 100 1k 10k 100k 1M 10M 100M
Feedback resistance (R3)

(d)

(c) Figure 4-12(c) shows the original circuit drawn in Multisim. The analysis was
done using the “Parameter Sweep” found under “Analyses.” Using the “Dec-
ade” sweep variation, we swept resistor R; from 10Q to 100 MQ using
100 points per decade. Once the sweep was completed, we accessed the “Trace”
properties and adjusted the axes to suit including choosing the logarithmic option
for the bottom feedback resistor axis. Our result is shown in Figure 4-12(d). We
then used the cursor to find the value of R; that resulted in a gain of —200. We
found that R; =33.37kQ, so that a standard 33-kQ resistor would work. What
value of R; would you need for a gain of —400? (200.21 kQ, you can use a
200-kQ standard value resistor.) [ |
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Exercise 4-7

Use node-voltage analysis to find vo for the circuit in Figure 4-13.

Answer: 1 1
R MR
UO_ 1 1DS
Bl 1)—
RX+RL+(p+ )R2

RX
AW
R, + vy = R,
M A
On m mzo

MEsH-CuRRENT ANALYSIS WiTH DEPENDENT SOURCES

Mesh-current analysis of active circuits follows the same pattern noted for node-voltage
analysis. We initially treat the dependent sources as independent sources and write the
mesh equations of the resulting passive circuit using the inspection method from
Chapter 3. We then account for the dependent sources by expressing their constraints
in terms of unknown mesh currents. The following example illustrates the method.

EXAMPLE 4-6

(a) Formulate mesh-current equations for the circuit in Figure 4-14.

(b) Use the mesh equations to find vp and Ry when Ry =50 Q, R, =1 kQ, R3 =100 Q,
R,=5kQ, and g=100 mS.

SOLUTION:
Source transformation
R, R, io R, R, io
A AMA+—o
+Vx— +Vx— R
gvx + 3 +
'S = R Ry Z vo Vs @ 6) RyZ Vo
gR3v
[—> [—> BEST
[ [
RN Given circuit RiN Modified circuit

(a) (b)

(a) Applying source transformation to the parallel combination of R; and guy in
Figure 4-14(a) produces the dependent voltage source R3gvy=pvyx in
Figure 4-14(b).

In the modified circuit we have identified two mesh currents. Initially treating
the dependent source (gR3)vyx as an independent source leads to two symmetrical
mesh equations.

Mesh A: (R; + Ry + R3)ia — Raip =vs — (gR3)vx
Mesh B: —Rzip + (R3+ Ry4)ig = (gR3)vx
The control voltage vy can be written in terms of mesh currents as
vy =Roia
Substituting this equation for vy into the mesh equations and putting the equa-
tions in standard form yields
(R1+ Ry + R3+gRyR3)ian — Rsip =vs
—(R3+gRyR3)ian + (R3+ Ry)ig=0

The resulting mesh equations are not symmetrical because of the controlled source.

FIGURE 4-13

FIGURE 4-14
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(b) Substituting the numerical values into the mesh equations gives
(1.115x10%)ia — (10%)ig = vs
—(1.01x10%)ia + (5.1x10%)ig=0

Solving for the two mesh currents using Cramer’s rule yields

s -10?
l,A:%: 0 51x10° _ 5.1x10%g
A 1.115x 10* -10?| 5.5855x 107
‘—1.01><104 5.1x10°
=0.9131 x 10 "*vg
‘1.115><104 s
iy =28 _ -101x10° 0 ~1.808 x 10~ g

A 55885x107
The output voltage and input resistance are found using Ohm’s law as follows:
vo = R4ig =0.9040g
Rin=3=10.95kQ =
A

Exercise 4-8

Write a set of node-voltage equations and use them to find v and Rix for the circuit in
Figure 4-14. Use the parameter values given in Example 4-6.

Answers:
(a) Labeling node v between the 50-Q and 1-kQ resistors, we write the node-voltage equa-
tions and the relationship of vy and the node voltages as follows:
DA —US DA —VO _
50 1000
DO — VA [6) [6)
1000 100 * 5000

—0.1vx =0

Ux =DA —VDO

(b) Solving these equations, we get vo =0.904vs and Rpy =10.95 kQ.

EXAMPLE 4-7

The circuit in Figure 4-15 is a model of a bipolar junction tran-
sistor operating in the active mode. Use mesh analysis to find
4 the transistor base current ig.

Vee
Excluded
)
\_/

SOLUTION:

The two mesh currents in Figure 4-15 are labeled i; and i, to
avoid possible confusion with the transistor base current ig.
As drawn, the circuit requires a supermesh since the depend-
ent current source Pip is included in both meshes and is not

. T_'_ connected in parallel with a resistor. A supermesh is created
@J B Supermesh by combining meshes 1 and 2 after excluding the series subcir-
o cuit consisting of Pig and Rc. Beginning at the bottom of the
AN T i circuit, we write a KVL mesh equation around the supermesh

Ry using unknowns #; and #:

LRE-V,+i1Rg + Ve =0
FIGURE 4-15 PRET AT e
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This KVL equation provides one equation in the two unknown mesh currents. Since
the two mesh currents have opposite directions through the dependent current
source Pig, the currents iy, ip, and Bip are related by KCL as

i1 —i> = Pig

This constraint supplies the additional relationship needed to obtain two equa-
tions in the two unknown mesh-current variables. Since i = —ij, the preceding
KCL constraint means that i, = (§ + 1)i;. Substituting i, = (p + 1)i; into the supermesh
KVL equation and solving for ip yields

gz —ij = —vC Ve

B T Re+ (B+ Re 0
Exercise 4-9

Use mesh analysis to find the current i in Figure 4-16 when the element E is a dependent
current source 2iy with the reference arrow directed down.

Answer: -0.857mA

Exercise 4-10

Use mesh analysis to find the current i in Figure 4-16 when the element E is a dependent
voltage source 2000ix with the plus reference at the top.

Answer: -0.222mA

EXAMPLE 4-8

The circuit in Figure 4-17(a) represents a small-signal model of a field effect transistor
(FET) amplifier with two inputs, vs; and vs;. Use Multisim to solve for the input-
output relationship of the circuit. (Hint: Use superposition to find the respective gains
due to the two sources, for example, vs; =1V and vs; =0V, and vice versa.)

® ® ®

— R1=R2=500kQ

R3=R4=8kQ
rgs = 40 kQ
g=3mS

(@)

SOLUTION:
Since the circuit is linear, the input-output relationship is of the form

vo = Kjvs1 + Kavsy

Using the superposition principle as suggested, let us find the gain K; by
setting vs; =1 V and vs; =1 V and solving for vp (node 4). The gain K is then found

10V 4 kQ
+ 1
il o MA—
5kQ 10 kQ
FIGURE 4-16
FIGURE 4-17
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by setting vs; =0V and vs; =1V and again solving for vo. Figure 4-17(b) shows a
Multisim circuit diagram for both cases and the resulting outputs on
the multimeters. From these simulations, you can determine that K; =10 and

K, =-10.

The input-output relationship for the circuit is found as

Vo = 10(V31 —Vsz)

The circuit provides to the output the difference of the signals applied to the two inputs.
Italso can provide gain, K = 10, in this example. It is a model of a differential amplifier
of a type often used as the input stage of an OP AMP, and the gain provided must be
identical to both inputs. The next exercise looks at what happens if the gains are even
slightly different. We study about differential amplifiers later in this chapter.

Exercise 4-11

It is very important in designing differential amplifiers that the two transistors be matched
in every way so that the outputs are balanced. Use Multisim to determine the relationship
in the circuit of Figure 4-17(a) if the transconductance of FET G2 is 2.9 mS rather than 3 mS.

Answer:

vo =9.832vs1 —9.829%0s,. Equal inputs will not receive equal gains.

THEVENIN Equivarent Circurts with DEPENDENT SOURCES

To find the Thévenin equivalent of an active circuit, we must leave the independent
sources on or else supply excitation from an external test source. This means that
the Thévenin resistance cannot be found by the lookback method because that method
requires that all independent sources be turned off. Turning off the independent sources
deactivates the dependent sources as well and can result in a profound change in the
input and output characteristics of an active circuit. Thus, there are two ways of finding
active circuit Thévenin equivalents. We can either find the open-circuit voltage and
short-circuit current at the interface or directly solve for the interface i—v relationship.
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@
i

EXAMPLE 4-9 > —=
g >
Find the input resistance of the circuit in Figure 4-18. 1 Piny N
is (f) VIN § Rg Vo ZRp

SOLUTION: -
With the independent source turned off (ijy =is =0), the resistance seen at the input - r
port is Rg since the dependent current source Pipn is inactive and acts like an open |
circuit. Applying KCL at node A with the input source turned on yields Rix

i =i+ Pin = (P 1i FIGURE 4-18

By Ohm’s law, the input voltage is
VIN = iERE = (ﬁ + 1)i1NRE

Hence, the active input resistance is

v
Rin= oN = (ﬁ+ 1)RE
N

The circuit in Figure 4-18 is a model of a transistor circuit in which the gain parameter
B typically lies between 50 and 250. The input resistance with external excitation is
(p+1)Rg, which is significantly higher from the value of Rg without external excita-
tion. A higher Ry helps the transistor reduce the effects of loading on the input
source. [ |

@ Design Exercise 4-12

Your task is to design a transistor gain stage with a voltage gain (K) of —150. The transistor
you have has a f§ of 90. Use the circuit in Figure 4-18 and select appropriate values for Ry,
and Rg. Start by first finding the voltage gain K =vo/vIN.

Answers:

BRL
(B+1)Rg

Rg =1kQ and Ry, =152 kQ, respectively, other solutions are possible.

Tx — >— '

+ :

EXAMPLE 4-10 R . :

o . :

Find the Thévenin equivalent at the output interface of the circuit in Figure 4-19. Vg Vo Load |

Hvx : i

SOLUTION: 1 . 5
In this circuit the controlled voltage vy appears across an open circuit between nodes :

A and B. By the fundamental property of node voltages, vy =vs—vo. With the load
disconnected and the input source turned off (vx =0), the dependent voltage source R, vy
pox acts like a short circuit, and the Thévenin resistance looking back into the output

port is Ro. With the load connected and the input source turned on, the sum of cur- FIGURE 4-19

rents leaving node B is

00— Py
Ro

+i0=0

Using the relationship vx = vs—v0 to eliminate vy and then solving for v produces the
i—v characteristic at the output interface as

o= HUS Ro
© p+1 Op+1
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Ry Ro &
— W\ AMN
N
+ Vg —

Rin vr, Ry
FIGURE 4-20
Collector (C)
QI .
Jic
; +
Base _P »
(B) — VCE
\ _
VBE
fi
-0
Emitter (E)
(@)

FIGURE 4-21 (a) Circuit
symbol for the BJT.

The i—v relationship of a Thévenin circuit is v =vp—iR7. By direct comparison, we
find the Thévenin parameters of the active circuit to be

I)TZ& and RT:&

p+1 p+1
The circuit in Figure 4-19 is a model of an OP AMP circuit called a voltage fol-
lower. The resistance Rp for a general-purpose OP AMP is around 100 Q, while
the gain p is about 10°. Thus, the active Thévenin resistance of the voltage follower
is not 100 Q, as the lookback method suggests, but is only a milliohm. A low output
resistance reduces the loading effect caused by connecting a load to the output. H

Exercise 4-13

Find the input resistance and output Thévenin equivalent of the circuit in Figure 4-20.

Answers:
RIN = (1 + P—)RF
or= p?Us
Rr=Ro

APPLICATION EXAMPLE 4-11

We have defined four linear dependent sources and shown how to analyze circuits
containing these active elements. In this and the next section we show how dependent
sources are used to model semiconductor devices like transistors and OP AMPs. The
transistor model used here describes the voltages and currents at its external term-
inals. The model does not describe the transistor’s physical structure or internal
charge flow. Those subjects are left to subsequent courses in semiconductor materials
and devices.

The two basic transistor types are the bipolar junction transistor (BJT) and the
field effect transistor (FET). Both types have several possible operating modes, each
with a different set of i—v characteristics. This is something new in our study. Up to
this point the characteristics of circuit elements have been fixed. With the transistor
we encounter a device whose i—v characteristics can change. We concentrate on the
BJT because its i—v characteristics are much easier to understand than the FET.
Because it is easier to understand, the simpler BJT best serves as a prelude to our
study of the OP AMP—an important semiconductor device that also has several pos-
sible operating modes.

The circuit symbol of the BJT is shown in Figure 4-21(a). The device has three
terminals called the emitter (E), the base (B), and the collector (C). The voltages
vpe and vcg are called the base-emitter and collector-emitter voltages, respectively.
The three currents ig, ig, and ic are called the emitter, base, and collector currents.
Photos of real devices are shown in Figures 4-21(b) through 4-21(e).

Applying KCL to the BJT as a whole yields

Ig =1IB t1IC
which means that only two of the three currents can be independently specified.
We normally work with ig and ic, and use KCL to find ig when it is needed.
The BJT’s large-signal model is defined in terms of input signals iz and vgg,
and output signals ic and vcg. For the BJT shown in Figure 4-21(a), the model

applies to a region in which these signals are never negative. Within this region there
are three possible operating modes. The active mode is the dominant feature of a
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BJT. In this mode the collector current ic is controlled by the base current ig
and vgg 1S constant.

Active mode: ic=pig and wvpg=V, (4-8)
The proportionality factor f is called the forward current gain and typically
ranges from about 50 to several hundreds. The constant V, is called the thresh-
old voltage, which is normally less than a volt. Figure 4-22(a) shows the circuit
elements that model the active mode i—v characteristics as defined in Eq. (4
8). In the active mode ig and vcg are determined by the interaction of these
i—v characteristics with the rest of the circuit.

Two additional operating modes exist at the boundary of the BJT’s operating
region. When ig =0 and ic =0, the transistor is in the cutoff mode and the
device acts like an open circuit between the collector and emitter. When
vce =0 and vgg =V, the transistor is in the saturation mode, and the device
acts like a short circuit between the collector and emitter. These two modes
are summarized as follows:

Cutoff mode: ig=0 and ic=0
Saturation mode: vcg=0 and ogg=V, (4-9)

Figures 4-22(b) and 4-22(c) show the circuit elements that model the i—o
characteristics defined in Eq. (4-9).

The circuit in Figure 4-22(b) points out that in the cutoff mode, vcg must
equal the open-circuit voltage available from the external circuit. The circuit in
Figure 4-22(c) points out that in the saturation mode, ic must equal the short-
circuit current available from the external circuit. The net result is that the
BJT’s output variables must fall within the following bounds:

Cutoff Saturation
bounds bounds (4-10)
0 < ic < isc
VOC = UCE = 0

where voc and igc are the open-circuit voltage and short-circuit current avail-
able between the collector and emitter terminals. In the cutoff mode the tran-
sistor outputs ic and vcg are equal to their respective cutoff bounds. In
saturation mode the outputs equal their saturation bounds. In the active mode
the outputs fall between the cutoff and saturation bounds.

With this background we are prepared to analyze the transistor circuit in
Figure 4-232The objective of our analysis is to find the outputs ic and vcg. To
do this we must know the transistor’s operating mode. To find the operating
mode we make use of the following two facts:

1. The lower bounds in Eq. (4-10) mean that ic and vcg cannot be negative.

2. The upper bounds in Eq. (4-10) depend on the rest of the circuit.

For the circuit in Figure 4-23 these upper bounds are voc = Ve and
isc =Vce/Rc.

Our analysis strategy assumes the device is in the active mode and uses the
active mode device equations to find ic. According to Eq. (4-8) the active mode

Image used with permission
from Fairchild Semiconductor
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FIGURE 4-21 (Continued). (b)
BD243C Power transistor.

(c) 2N3442 High voltage power
transistor. (d) 2N3904 Small signal
transistor. (e) 2N2907 Switching
transistor.

This circuit is called the common-emitter configuration because the emitter terminal is common to

the input and output loops.
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E
(b)
C
o+
VV
s VCEZO
B i—_J |_—
vgg = Vy
—_ 4
E

FIGURE 4-22 Circuit models
for BJT operating modes:

(a) Active mode. (b) Cutoff
mode. (c) Saturation mode.

Ry ip i +

—_—
AW aQ
Vs Input VBE — | -
loop

FIGURE 4-23 BJT common-emitter circuit.

Output ; Vee
loop -

element equations are vgg =V, and ic =fig. Using these element constraints and
applying KVL around the input loop in Figure 4-23 yields the collector current as

ic=Pig =p (USI;BVY)

This equation indicates that if vg >V, then, ic >0. However, if vs <V, then ic <0,
which would violate its cutoff bound. Thus, if the input voltage vs is greater than
the threshold voltage V/,, then the BJT can be in the active mode. But if og <V,
the BJT is in the cutoff mode and the outputs equal their cutoff bounds in
Eq. (4-10), namely ic =0 and vcg =voc = Vee.

When vs >V, Eq. (4-11) predicts a positive collector current that increases line-
arly with vg. To find the collector-emitter voltage we apply KVL around the output
loop in Figure 4-23 to obtain

(4-11)

ocg = Vec—icRc (4-12)

This equation predicts that vcg >0 as long as ic < Vee/Re. But Vee/Re is the
short-circuit current available from the external circuit. Thus, as long as vs>V,
and ic <isc, the BJT is in the active mode and Egs. (4-11) and (4-12) correctly
predict the outputs ic and vcg. However, if Eq. (4-11) predicts that ic >isc, then
Eq. (4-12) says that vcg <0. Both of these results violate the saturation bounds in
Eq. (4-10). When this happens, the BJT is actually in the saturation mode and the
outputs equal their saturation bounds in Eq. (4-10), namely ic=isc=Vcc/Rc
and UCE = 0.

Figure 4-24 summarizes this discussion using graphs of the outputs vcg and ic
versus the input voltage vs. When vs <V, the BJT is in the cutoff mode and the out-
puts are ic =0 and vcg =voc = Vee. When vs >V, the BJT enters the active mode
and the outputs ic and vcg are governed by Egs. (4-11) and (4-12). Under these
equations, ic increases linearly as vg increases, with the result that ocg decreases
linearly. The collector current continues to increase as vs increases until it reaches
its saturation bound at ic =igc. At that point the transistor switches into the satura-
tion mode and thereafter the outputs remain constant at ic =isc = Vcc/Rc and
UCE = 0.

In digital applications the input voltage drives the transistor between the cutoff
and saturation modes passing through the active mode as quickly as possible. In ana-
log circuit applications the transistor remains in the active mode where the slope of
the transfer characteristic provides voltage amplification. In the next section we find
that the OP AMP has similar transfer characteristics.

Suppose that the circuit parameters in Figure 4-23 are f=100, V,=0.7 V,
R =100kQ, Rc =1kQ, and Vcc=5V. Find ic and vcg when vg =2 V. Repeat when
s = 6V.
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SOLUTION: VCE ic

Since vs =2 V is greater than V, =0.7 V, the transistor is not in

the cutoff mode. We assume that it is in the active mode and Cutoff Active Safuration

use Eq. (4-11) to calculate ic. . | Ve
. vs — Vy) ( 2-07 ) cc Re
ic=p|———) =100 ——— ) =1.3 mA
¢ ﬁ( Rs 100 % 10°

The available short-circuit current is isc=Vcc/Rc=5mA.
Since the calculated ic is less than igc, the transistor is in fact
in the active mode and we use Eq. (4-12) to find ocg.

vee=Vee — icRe=5-13x107° x1000=3.7V

For vg =2V, the transistor is in the active mode and the out-
puts are ic =1.3mA and ocg =3.7 V.

For vs =6V, we again assume that the transistor is in the
active mode and calculate the collector current from Eq. (4-11).

vs (V)

FIGURE 4-24 Output responses of the BJT circuit in
. ofvs = Vi 6-071\ Figure 4-23. This is called the circuit’s transfer
ic=p(Z =) =100 — ) =53 mA 23
R 100 x 103 characteristics.

The calculated ic is greater than the available isc. For this input the transistor is
in the saturation mode and the outputs equal their saturation bounds, namely
iC:iSC:5mA and UCE =0. [ |

@ Design Exercise 4-14

The known parameters in Figure 4-25 are =100, V,=0.7V,
Rc=1kQ, and Vcc=5V. The circuit is to function as a digital . Rc
inverter that meets two conditions: ‘e M\

1. An input of vs =0V must produce an output of vcg=5V. . $——o0

2. An input of vg =5V must produce an output of vcg =0V ——— VN — v
Select a value of Ry so that the circuit meets these conditions. + \ - 'cc

Vs
100x 4.3 VBE

Answer: Rp<———==86kQ -
5x10

Any reasonable value less than 86 kQ (say 56 kQ, astandard value) ~ FIGURE 4-25
will work.

4-3 THe OPERATIONAL AMPLIFIER

The integrated circuit OP AMP is the premier linear active device in present-day ana-
log circuit applications. The term operational amplifier was apparently first used in a
1947 paper by John R. Ragazzini and his colleagues, who reported on work carried
out for the National Defense Research Council during World War II. The paper
described high-gain dc amplifier circuits that perform mathematical operations (addi-
tion, subtraction, multiplication, division, integration, etc.); hence the name operational
amplifier. For more than a decade the most important applications were general- and
special-purpose analog computers using vacuum tube amplifiers. In the early 1960s
general-purpose, discrete-transistor OP AMPs became readily available, and by the
mid-1960s the first commercial integrated circuit OP AMPs entered the market. The
transition from vacuum tubes to integrated circuits decreased the size, power consump-
tion, and cost of OP AMPs by nearly three orders of magnitude. By the early 1970s the
integrated circuit version became the dominant active device in analog circuits.
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FIGURE 4-26 Examples of
OP AMP packages: (a) Dual
in-line 14-pin and 8-pin packages
(DIP). (b) A discrete-component,
high-performance audio package.
(c) Low-power surface-mount
package.
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/ power supply
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FIGURE 4-27 The OP AMP::
(a) Circuit symbol. (b) Pin-out
diagram for an eight-pin DIP
package.

The device itself is a complex array of transistors, resistors, diodes, and capacitors,
all fabricated and interconnected on a tiny silicon chip. Figure 4-26 shows examples
of ways OP AMPs are packaged for use in circuits. In spite of its complexity, the
device can be modeled by rather simple i—v characteristics. We do not need to con-
cern ourselves with what is going on inside the package; rather, we treat the OP AMP
using a behavioral model that constrains the voltages and currents at the external
terminals of the device.

OP AMP Nortation

Certain matters of notation and nomenclature must be discussed before developing a
circuit model for the OP AMP. The OP AMP is a five-terminal device, as shown in
Figure 4-27(a). The “+” and “—” symbols identify the input terminals and are a short-
hand notation for the noninverting and inverting input terminals, respectively. These
“+” and “-” symbols identify the two input terminals and have nothing to do with the
polarity of the voltages applied. The other terminals are the output and the positive
and negative supply voltages, usually labeled + Ve and —Vc. While some OP
AMPs have more than five terminals, these five are always present and are the only
ones we will use in this text. Figure 4-27(b) shows how these terminals are arranged
in a common eight-pin integrated circuit package.

The two power supply terminals in Figure 4-27 are not usually shown in circuit
diagrams. Be assured that they are always there because the external power supplies
are required for the OP AMP to operate as an active device. The power required for
signal amplification comes through these terminals from an external power source.
The + Ve and -V voltages applied to these terminals also determine the upper
and lower limits on the OP AMP output voltage.

Figure 4-28(a) shows a complete set of voltage and current variables for the OP
AMP, while Figure 4-28(b) shows the abbreviated set of signal variables we will
use. All voltages are defined with respect to a common reference node, usually
ground. Voltage variables vp, vN, and vp are defined by writing a voltage symbol
beside the corresponding terminals. This notation means the “+” reference mark is
at the terminal in question and the “-” reference mark is at the reference or
ground terminal. In this book the reference directions for the currents are directed
in at input terminals and out at the output. At times the abbreviated set of current
variables may appear to violate KCL. For example, a global KCL equation for the
complete set of variables in Figure 4-28(a) is

io=Ic+ +Ic_ +ip+in (correctequation) (4-13)

A similar equation using the shorthand set of current variables in Figure 4-28(b)
reads

io=IN+Ip (incorrectequation) (4-14)

This equation is not correct, since it does not include all the currents. What is more
important, it implies that the output current comes from the inputs. In fact, this is
wrong. The input currents are very small, ideally zero. The output current comes
from the supply voltages, as Eq. (4-13) points out, even though these terminals
are not shown on the abbreviated circuit diagram.

TRANSFER CHARACTERISTICS

The dominant feature of the OP AMP is the transfer characteristic shown in
Figure 4-29. This characteristic provides the relationships between the noninverting
input vp, the inverting input vy, and the output voltage vo. The transfer characteristic
is divided into three regions or modes called +saturation, —saturation, and linear. In
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the linear region the OP AMP is a differential amplifier because the output is pro-
portional to the difference between the two inputs. The slope of the line in the linear
range is called the voltage gain. In this linear region the input-output relation is

VO ZA(UP—UN) (4—]5)

The voltage gain of an OP AMP is very large, usually greater than 10°. As long as
the net input (vp—oN) is very small, the output will be proportional to the input.
However, when Alvop—ovn| > Ve, the OP AMP is saturated and the output voltage
is limited by the supply voltages (less some small internal losses).

In the previous section, we stated that the transistor has three operating modes.
The input-output characteristic in Figure 4-29 points out that the OP AMP also
has three operating modes:

1. +Saturation mode when A (vp—oN) > Ve and vp = + Ve
2. —Saturation mode when A(vp—oN) < —Vec and vp = —Vece.
3. Linear mode when Ajvop—oxN| < Ve and vo = A(vp—on).

Usually we analyze and design OP AMP circuits using the model for the linear
mode. When the operating mode is not given, we use a self-consistent approach sim-
ilar to the one used for the transistor. That is, we assume that the OP AMP is in
the linear mode and then calculate the output voltage vo. If it turns out that
—Vee <vo < + Vg, then the assumption is correct and the OP AMP is indeed in
the linear mode. If vp < — V¢, then the assumption is wrong and the OP AMP is
in the —saturation mode with vg = —Vc. lf vo > + Vi, then the assumption is wrong
and the OP AMP is in the +saturation mode with vg = + V.

[peaL OP AMP MopeL

A dependent-source model of an OP AMP operating in its linear range is shown in
Figure 4-30. This model includes an input resistance (R;), an output resistance (Ro),
and a voltage-controlled voltage source whose gain is A.> Numerical values of these
OP AMP parameters typically fall in the following ranges:

10°<R; <102 Q

10<Rp <100 Q

10°<A<10°
Clearly, high input resistance, low output resistances, and high voltage
gain are the key attributes of an OP AMP.

The dependent-source model can be used to develop the i—o relation-

ships of the ideal model. For the OP AMP to operate in its linear mode, the
output voltage is bounded by

—Vee oo +Vee
Using Eq. (4-15), we can write this bound as

—%S(UP—UN)S +%

The supply voltage V¢ is typically about 15V, while A is a very large

i
vpoii (0} +
+ N | >—ow
VNOT

L
(b)

FIGURE 4-28 OP AMP
voltage and current definitions:
(a) Complete set.

(b) Shorthand set.

Yo
+Vee
Output voltage
_— swing i
§ 1 Vp — VN
A
: ; Ve

—Saturation lincaIE +Saturation

FIGURE 4-29 OP AMP
transfer characteristics.

number, usually 10° or greater. Consequently, linear operation requires FIGURE 4-30 Dependent-source model of
that vp~vn. In the ideal OP AMP model, the voltage gain is assumed to  an OP AMP operating in the linear mode.

3The parameter A is used in OP AMP notation to define the device’s “open-loop” gain, which is
equal to p for VCVS models. In real OP AMPs, the open-loop gain listed in reference manuals is
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FIGURE 4-31 Ideal OP AMP
characteristics.
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(b)

FIGURE 4-32 The

noninverting amplifier circuit.

be infinite (A — o), in which case linear operation forces vp =vn. The input resist-
ance R of the ideal OP AMP is assumed to be infinite, so the currents entering input
terminals are zero. In summary, the i—o relationships of the ideal model of the OP
AMP are as follows:
N (4-16)
ip=ix=0
The implications of these element equations are illustrated on the OP AMP circuit
symbol in Figure 4-31.

At first glance the element constraints of the ideal OP AMP appear to be fairly
useless. They look more like connection constraints and are totally silent about
the output quantities (vo and ip), which are usually the signals of greatest interest.
They seem to say that the OP AMP input terminals are simultaneously a short circuit
(vp =vN) and an open circuit (ip = in =0). In practice, however, the ideal model of the
OP AMP is very useful because in linear applications feedback is always present.
That is, for the OP AMP to operate in a linear mode, it is necessary for there to
be feedback paths from the output to one or both of the inputs. These feedback paths
ensure that vp ~#vn and make it possible for us to analyze OP AMP circuits using the
ideal OP AMP element constraints in Eq. (4-16).

NoninvERTING OP AMP

To illustrate the effects of feedback, let us find the input-output characteristics of the
circuit in Figure 4-32. In this circuit the voltage divider provides a feedback path from
the output to the inverting input.* Since the ideal OP AMP draws no current at either
input (ip =in =0), we can use voltage division to determine the voltage at the invert-
ing input:

Ry
ON= 55— 4-17
N= R R, (4-17)
The input source connection at the noninverting input requires the condition
VP =0s (4-18)

The ideal OP AMP element constraints demand that vp =wvy; therefore, we can
equate the right sides of Egs. (4-17) and (4-18) to obtain the input-output relation-
ship of the overall circuit.

R1+R2
=——>0

R, 5 (4-19)

vo

The preceding analysis illustrates a general strategy for analyzing OP AMP cir-
cuits. We use normal circuit analysis methods to express the OP AMP input voltages

generally a minimum rather than an exact value. Hence, a listing for A equal to, say, 10° may mean
that the device can be expected to have at least that amount of open-loop gain, but could exceed it by
a factor of 10 or more. In general, we like to have A as large as possible. As we will see, it is the
“closed-loop” gain that we want to be exact.

“The feedback must always be to the inverting terminal. Otherwise the circuit will be unstable for
reasons that we cannot explain based on what we have learned thus far. Further complicating this
understanding is that when using the ideal OP AMP model in either Multisim or OrCAD, the soft-
ware does not distinguish between feedback to the positive or negative terminals. This, of course, is
not true for a real OP AMP like a uA741 as used in the laboratory, in circuit applications, or in
simulations.
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vp and vy in terms of circuit parameters. We then use the ideal OP AMP constraint
vp =v\ to solve for the overall circuit input-output relationship.

The circuit in Figure 4-32(a) is called a noninverting amplifier. The input-output
relationship is of the form vo = Kvs, which reminds us that the circuit is linear.
Figure 4-32(b) shows the functional building block for this circuit, where the propor-
tionality constant K is

_R1 +R2

K
Ry

(4-20)
In an OP AMP circuit the proportionality constant K is sometimes called the closed-
loop gain, because it defines the input-output relationship when the feedback loop is
connected (closed).

When discussing OP AMP circuits, it is necessary to distinguish between two
types of gains. The first is the large open-loop voltage gain provided by the OP
AMP device itself. The second is the closed-loop voltage gain of the OP AMP circuit
with a negative feedback path. Note that Eq. (4-20) indicates that the circuit gain is
determined by the resistors in the feedback path, not by the value of the OP AMP
gain. The gain in Eq. (4-20) is really the voltage division rule upside down. Varia-
tion of the value of K depends on the tolerance on the resistors in the feedback
path, not the variation in the value of the OP AMP’s gain. In effect, feedback
converts the OP AMP’s very large but variable gain into a much smaller but well-
defined gain.

Let us look at a first example of a noninverting OP AMP. Consider the
circuit shown in Figure 4-33(a). Let us find the output voltage, the output cur-
rent, the voltage gain, the output power, and the power gain.

The circuit we just studied is contained within the shaded area. There is an
input source and an output load. The gain of the OP AMP circuit is found
using Eq. (4-20) as

_R1+R2 _20k+5k_

K = =5
R, S5k

The output voltage is found by substituting into Eq. (4-19), but there is a pos-
sible complication. In the derivation of Eq. (4-19) the input was connected ®
directly to the noninverting terminal. In this circuit there is a 1-kQ resistor

between the source and the OP AMP. Doing a KVL at the input yields FIGURE  4-33

—Us+1kiP+UP=O

But we recall that for an ideal OP AMP ip = ix =0. Therefore, there is no voltage drop
across the 1-kQ resistor so that the input voltage is impressed directly across the OP
AMP. Eq. (4-19) holds. The output voltage is found as

vo=5%x1=5V
We calculate the output current by using Ohm’s Law as follows:

. DO 5
lo—RL =10k =500 pA

The output power is simply po=vo xipo=5x500p=2.5mW. It does not make
sense to talk about power gain with these types of circuits. Since the input current
ip is zero, the source does not provide any power to the circuit. This would appear
to say that this circuit has infinite power gain. Of course that is not true. There is
a power source driving the OP AMP that is indeed providing the necessary power
to the load.
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@ DESIGN EXAMPLE 4-—12

Design an amplifier with a gain of K =10.

SOLUTION:
Using a noninverting OP AMP circuit, the design problem is to select the values of
the resistors in the feedback path. From Eq. (4-20) the design constraint is

(R] +R2)

10=
0 R

We have one constraint with two unknowns. Arbitrarily selecting R, =10 kQ, we find
R1 =90 kQ. These resistors would normally have low tolerances (+1% or less) to pro-
duce a precisely controlled closed-loop gain.

Comment: The problem of choosing resistance values in OP AMP circuit design
problems deserves some discussion. Although values of resistance from a few ohms
to several hundred megohms are commercially available, we generally limit ourselves
to the range from about 1 kQ to perhaps 1 MQ. The lower limit of 1 kQ is imposed in
part because of power dissipation in the resistors. Typically, we use resistors with
Y%4-W power ratings or less. The maximum voltage in OP AMP circuits is often around
15 V. The smallest %-W resistance we can use 1S Ryn = (15)2 /0.25= 900 Q, or about
1kQ. The upper bound of 1 MQ comes about because surface leakage makes it
difficult to maintain the tolerance in a high-value resistor. High-value resistors are
also noisy, which leads to problems when they are connected in the feedback path.
The 1-kQ to 1-MQ range should be used as a guideline, not an inviolate design rule.
Actual design choices are influenced by system-specific factors and changes in
technology. |

<D> Design Exercise 4-15

Design a noninverting amplifier circuit with a gain of 74+ 10% using standard 10% resistors.
(See inside back cover for standard values.)

Answer: Referring to Figure 4-32(a), R =22kQ and R,=3.3kQ or R;=27kQ and
R, =4.7kQ. Other combinations are possible.
Exercise 4-16

The noninverting amplifier circuit in Figure 4-32(a) is operating with R;=2R, and
Vee = £12' V. Over what range of input voltages vg is the OP AMP in the linear mode?

Answer: —-4V<og< +4V

<D> Design Exercise 4-17

There is a need for an OP AMP noninverting amplifier with a gain of 0.5. Design such a circuit.

Answer: Itis not possible to design a noninverting amplifier with a gain less than one.
K= R‘%ﬁ, hence K =1. Note: If the sign of the gain is not important, we can achieve the

desired gain with an inverting amplifier or if the sign is important, with a voltage follower
followed by a voltage divider. Both of these OP AMP configurations will be studied later.

Errects oF Finite OP AMP Garn

The ideal OP AMP model has an infinite gain. Actual OP AMP devices have very
large, but finite voltage gains. We now address the effect of large but finite gain
on the input-output relationships of OP AMP circuits.
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The circuit in Figure 4-34 shows a finite gain OP AMP circuit
model in which the input resistance Ry is infinite. The actual
values of OP AMP input resistance range from 10°to 102 Q,
so no important effect is left out by ignoring this resistance. Exam-
ining the circuit, we see that the noninverting input voltage is deter-
mined by the independent voltage source. The inverting input can
be found by voltage division, since the current iy is zero. In other
words, Egs. (4-17) and (4-18) apply to this circuit as well.

We next determine the output voltage in terms of the con-
trolled-source voltage using voltage division on the series con-

e e s

vp

nection of the three resistors Ro, Ry, and R;:

BB op-un) 5"
UO_RO +R1+R2 VPN —
Substituting vp and vy from Egs. (4-17) and (4-18) yields FIGURE 4-34 The noninverting amplifier circuit with
the dependent-source model.
_ R1 + R2 A R2 (4 2”
vo= RO+R1+R2 vs R]+RZUO

The intermediate result in Eq. (4-21) shows that feedback is present since vp appears
on both sides of the equation. Solving for v yields
_ A (R1 + Rz)

- Ro +Ry +R2(1 +A)

vo Us (4-22)

In the limit, as A — oo, Eq. (4-22) reduces to

_ R1 +R2
= R

(Y6) s = Kl)s
where K is the closed-loop gain we previously found using the ideal OP
AMP model.

To see the effect of a finite A, we ignore Ro in Eq. (4-22) since it is generally quite
small compared with Ry + R,. With this approximation Eq. (4-22) can be written in
the following form:

3 K
O T (k/A)S

When written in this form, we see that the closed-loop gain reduces to K as
A — 0. Moreover, we see that the finite-gain model yields a good approximation
to the ideal model results as long as K < A. In other words, the ideal model yields
good results as long as the closed-loop gain is much less than the open-loop gain
of the OP AMP device. One practical rule of thumb is to limit the closed-loop gain
to less than 1% of the OP AMP gain (i.e., K <A/100).

The feedback path also affects the active output resistance. To see this, we con-
struct a Thévenin equivalent circuit using the open-circuit voltage and the short-
circuit current. Equation (4-23) is the open-circuit voltage, and we need only find
the short-circuit current. Connecting a short-circuit at the output in Figure 4-34
forces vy =0 but leaves vp =vs. Therefore, the short-circuit current is

isc=A(vs/Ro)
As a result, the Thévenin resistance is
_ VOC _ K/A

isc - 1+ K/A
When K <« A, this expression reduces to

(4-23)

Ro
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Vs

K
Rt = ZRONOQ

The OP AMP circuit with feedback has an output Thévenin resistance that is much
smaller than the output Thévenin resistance of the OP AMP device itself. In fact, the
Thévenin resistance is very small since R is typically less than 100 Q and A is greater
than 10°.

At this point we can summarize our discussion. We introduced the OP AMP as an
active five-terminal device including two supply terminals not normally shown on the
circuit diagram. We then developed an ideal model of this device that is used to ana-
lyze and design circuits that have feedback. Feedback must be present for the device
to operate in the linear mode. The most dramatic feature of the ideal model is the
assumption of infinite gain. Using a finite-gain model, we found that the ideal model
predicts the circuit input-output relationship quite closely as long as the circuit gain K
is much smaller than the OP AMP gain A. We also discovered that the Thévenin out-
put resistance of an OP AMP with feedback is essentially zero.

In the rest of this book we use the ideal i—v constraints in Eq. (4-16) to analyze OP
AMP circuits. The OP AMP circuits have essentially zero output resistance, which
means that the output voltage does not change with different loads. Unless otherwise
stated, from now on the term OP AMP refers to the ideal model.

4—4 OP AMP Circuit ANALYSIS

OP AMP circuit analysis takes advantage of OP AMP building blocks that are
connected together in cascade (similar to series) to perform signal analysis func-
tions that are too complex for any one building block alone. This approach
greatly simplifies the analysis and design of these types of circuits. The reason
this works is that OP AMP building blocks, as we saw, have very low output resis-
tances enabling other circuits to be connected to their outputs without altering
the function of either building block. In some cases, a passive circuit’s signal pro-
cessing function can be unintentionally altered by connecting that circuit to
another. When this effect occurs, the circuit is said to be “loaded,” and the effect
needs to be considered. Some OP AMP building blocks, such as the noninverter
just studied, also have very high input resistances. This feature enables them to
be connected to the output of circuits that are sensitive to loading, such as voltage
dividers, without affecting their signal processing function. In this section, we
introduce four more building blocks to complement the non-
inverter just studied. These are the voltage follower, the
inverting amplifier, the summer, and the subtractor. The
key to using the building block approach is to recognize
R; the feedback pattern and to isolate the basic circuit as a build-
ing block. The first example illustrates this process.

Vo

Ry,
%4 EXAMPLE 4-13

_ - Find the input-output relationship, that is, the K of the circuit in

Source Voltage divider Noninverting amplifier  Load 4-35(a)
Passive circuit ’

FIGURE 4-35

Active circuit

@ SOLUTION:
Vo As we look at the circuit, we can recognize a voltage divider and
Kamp o— a noninverting OP AMP—two separate building blocks. Since
®) the noninverter draws no current from the voltage divider, the

output of the divider is unaltered and impressed on the input
to the OP AMP at vp. Each building block has its own gain:
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Kyp for the voltage divider and K app for the noninverter. Figure 4-35(b) shows the
two building blocks in cascade. That is, the output of the first building block
becomes the input of the second. We can find the gain of the voltage divider as
follows:

vp Ry

Kyp=—=
vb [ R1+R2

Since the noninverting amplifier has zero output resistance, the load Ry, has no effect on the
output voltage vp. Using Eq. (4-19), the gain of the noninverting amplifier circuit is

R;+R
Kamp =2 =2
op R4

The overall circuit gain is found as

vo _ [vp]|vo
Kcireurr = — = |—| |—
vs |vs] |vp

= Kvp x Kamp

_ Rz R3 + R4

B R1 + R2 R4
The gain Kcrrcurr is the product of Kyp times Kayp because the amplifier circuit
does not load the source circuit since ip =0. [ |

Exercise 4-18

(a) Find vg in Figure 4-35(a) when Ry =R, =1kQ,vs=1V, R3=R4=1kQand Ry =100 Q.
(b) Repeat when Rj is a short circuit and the other values are the same.

Answers:
(a) Do=1V
(b) Do=0.5V

VoLtacE FoLLoWER

The OP AMP in Figure 4-36(a) is connected as a voltage follower or buffer. In this
case, the feedback path is a direct connection from the output to the inverting input.
The feedback connection forces the condition vx =vo. The input current ip =0, so
there is no voltage across the source resistance Rs. Applying KVL, we have the input
condition vp =vs. The ideal OP AMP model requires vp =vn, so we conclude that
vo =vs. By inspection, the closed-loop gain is K =1. Since the output exactly equals
the input, we say that the output follows the input (hence the name voltage follower).

The voltage follower is used in interface circuits because it isolates the source
from the load. Note that the input-output relationship vo =vs does not depend
on the source or load resistance. When the source is connected directly to the
load, as in Figure 4-36(b), the voltage delivered to the load depends on Rs and
Ry. The source and load interaction limits the signals that can be transferred across

Rg 'p

VP ;
f + 1Ze) Y - RS
NN >

vs ﬁ Sk =R

(a) (b)

-
[

FIGURE 4-36 (a) Source-load
interface with a voltage follower.
(b) Interface without the voltage
follower.
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the interface, as discussed in Chapter 3. When the voltage follower is inserted between
the source and load, the signal levels are limited by the capability of the OP AMP.

By Ohm’s law, the current delivered to the load is ip =vo/RL. But since vo =wvs,
the output current can be written in the form

io=vs/Ru
Applying KCL at the reference node, we discover an apparent dilemma:
ip=io
For the ideal model ip =0, but the preceding equations say that ip cannot be zero
unless vg is zero. It appears that KCL is violated.

The dilemma is resolved by noting that the circuit diagram does not include the
supply terminals. The output current comes from the power supply, not from the
input. This dilemma arises only at the reference node (the ground terminal). In
OP AMP circuits, as in all circuits, KCL must be satisfied. However, we must be alert

to the fact that a KCL equation at the reference node could yield misleading results
because the power supply terminals are not usually included in circuit diagrams.

<D> Design Exercise 4-19

There is a need for an OP AMP noninverting amplifier with a gain of 0.5. Design such a
circuit. Use the results of Example 4-13 as a guide.

Answer: Use a voltage divider with two equal resistors cascaded by a follower.

APPLICATION EXAMPLE 4-14

Digital (or even analog) Multimeters (DMMs) are ubiquitous engineering tools.
They can be purchased for as little as $5 to as much as several thousand dollars. Most
popular models are in the range of $100 to $200 and are hand-held portables. Clearly
there must be differences to warrant such a wide range of prices. These differences
are durability, accuracy, functions, input resistance, and battery or plug-in powered,
to mention a few. For this discussion let us focus on input resistance.

Consider the circuit of Figure 4-37(a). A particular DMM is used to measure
the voltage across the 10-MQ resistor. The anticipated voltage was 8 V. However,
the meter reads 6 V. The meter has an internal resistance that is in parallel with the

5MQ @ 5 MQ @
——0 —o

+ iy
12V 10MQ§

Voc

.0000
4\

12V 10MQZ voc

——0 <—n_|

®

(@) (b)

[of
531)

FIGURE 4-37

resistor that is being measured and is significantly altering the reading. One can cal-
culate the internal resistance of the meter Ry; using voltage division as follows:

(Rm || 10 M)

0= Ru 1 10M) +5M

12
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where

10M><RM

Ry |[10M=——"""M
m |10 10M+ Ry

Solving for Ry, we find that Ry =10 MQ.

The reason for the problem is that the current splits at node A sending some
through the DMM. In theory, with a perfect DMM all of the current would flow
through the load.

The problem can be solved by inserting a follower in front of the DMM as shown in
Figure 4-37(b). Better DMMs have a follower in the front end to permit them to meas-
ure voltages across high resistances. The down side is that a follower requires power to
operate. It should be noted that most voltage measurements are made across resistors
significantly smaller than 10 MQ, negating the need for a follower.

Exercise 4-20

A DMM with a known internal resistance of 12.5 MQ is used to measure voltages

+ Vi —
across several resistors in the circuit shown in Figure 4-38. What voltage will be meas- AV
ured on the DMM across each resistor? 50 kQ
+
: +
Answers: Resistor ~ Expecten Vourae (V) Measuren Vouraee (V) Percent Ervor 50V <—> 10 MQ§ V2
50kQ 0.237 0.236 0.41 500 kQ
10MQ 474 455 4.01 WY
500 kQ 237 228 3.68 RE

FIGURE 4-38

Exercise 4-21

The circuits in Figure 4-36 have vs=1.5V, Rs=2kQ, and Ry =1kQ. Compute the maxi-
mum power available from the source. Compute the power absorbed by the load resistor
in the direct connection in Figure 4-36(b) and in the voltage follower circuit in Figure 4-36
(a). Discuss any differences.

Answers: 281 uW; 250 pW; 2250 pW

DISCUSSION: With the direct connection, the power delivered to the load is less than the
maximum power available. With the voltage follower circuit, the power delivered to the load is
greater than the maximum value specified by the maximum power transfer theorem. However,
the maximum power transfer theorem does not apply to the voltage follower circuit since the
load power comes from the OP AMP power supply rather than from the signal source.

THE INVERTING AMPLIFIER

The circuit in Figure 4-39 is called an inverting amplifier. The key feature of this cir-
cuit is that the input signal and the feedback are both applied at the inverting input.
Since the noninverting input is grounded, we have vp =0, an observation we will use
shortly. The sum of currents entering node A can be written as

US —UN n VO —UN
Ry Ry

—in=0 (4-24)

The element constraints for the OP AMP are vp = vy and ip = iy =0. Since vp =0, it
follows that vx = 0. Substituting the OP AMP constraints into Eq. (4-24) and solving
for the input-output relationship yields

Vo= — (2—?) Us (4—25)

Feedback path
R R, /

AN $— Vo

FIGURE 4-39 The inverting
amplifier circuit.
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This result is of the form v = Kvs, where K is the closed-loop gain. However, in this
case the voltage gain K = — R, /R; is negative, indicating a signal inversion (hence the
name inverting amplifier). We use the block diagram symbol in Figure 4-39(b) to
indicate either the inverting or the noninverting OP AMP configuration.

BOKL Exercise 4-22
10kQ 100 kKO The switch in Figure 4-40 moves from A to B. What is the output voltage vo when the
switch is in position A and in position B?
IRY ; Answers: Switch in position A, vo=-10V.
+ _O Switch in position B, vo = -15V, because the OP AMP is saturated.
e Vcc=115Vi @ Design Exercise 4-23

- - - A 2-mV signal vs needs to be amplified by a gain of —450+10% using standard 10%
FIGURE 4-40 resistors from the inside back cover. Design an appropriate circuit to amplify the signal.

Answer: Because the gain needs to be negative, an inverting amplifier like that shown
in Figure 4-39(a) is used with R, =470k and R; =1 kQ. This produces a gain of —470,
well within the 10% tolerance.

Letuslook at another feature of the inverting OP AMP that should be understood.
The OP AMP constraints mean that the input current i; in Figure 4-39(a) is

. US—UN US
ll = = —
Ry Ry

This, in turn, shows that the input resistance seen by the source vg is

Rin=—=R; (4-26)
n

In other words, the inverting amplifier has a finite input resistance determined by the
external resistor R;.

The next example shows that the finite input resistance must be taken into account
when analyzing circuits with OP AMPs in the inverting amplifier configuration.

EXAMPLE 4-15
Find the input-output relationship of the circuit in Figure 4-41(a).

SOLUTION:

The circuit to the right of node B is an inverting amplifier. The load resistance Ry has
no effect on the circuit transfer characteristics since the OP AMP has zero output
resistance. However, the source circuit to the left of node B is influenced by the input
resistance of the inverting amplifier circuit. The effect can be seen by constructing a
Thévenin equivalent of the circuit to the left of node B, as shown in Figure 4-41(b).
By inspection of Figure 4-41(a),

R,

T = %
T R1+R2 S
RiR,

T=
R1+R2

In Figure 4-41(b) the Thévenin resistance is connected in series with the input resis-
tor Rj, yielding the equivalent resistance Rgo = Rt + R3 shown in Figure 4-41(c).
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This reduced circuit is in the form of an inverting amplifier, so we can write the input-
output relationship relating v and ot as

_ l)_() _ R4 R4(R1 +R2)

B T - _REQ T R1R2 +R1R3 +R2R3

Ki

The overall input-output relationship from the input source vg to the OP AMP output
vo 1s obtained as follows:

vo [vo] [or
Kcircurr = — = |—| |—
vs

T | | VS
__ R4(R1 + Rz) R2
Rle + R1R3 + R2R3 R1 + R2
~ RoRs
B R1R2+R1R3 +R2R3

It is important to note that the overall gain is not the product of the source circuit
voltage gain R,/(R; + R;) and the inverting amplifier gain —R4/R3. In this circuit
the two building blocks interact because the input resistance of the inverting ampli-
fier circuit loads the source circuit. |

FIGURE

4-41
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10 kQ 15kQ  150kQ 33kQ Exercise 4-24
AMA——— W\, e o

:

Find the voltage gain K =vo/vs for the circuit in Figure 4-42.

+
VS<+> Answer: K=-2.89
15k 8k S

Vo

— THE SumminNGg AMPLIFIER

The summing amplifier or adder circuit is shown in Figure
FIGURE 4-42 4-43(a). This circuit has two inputs connected at node A,
which is called the summing point. Since the noninverting
input is grounded, we have the condition vp =0. This configuration is similar to the
inverting amplifier, so we start by applying KCL to write the sum of currents entering

the node A summing point.

V]—=UN V2—UN UVO—UN .
+ + -

=0 4-71
R1 Rz RF IN ( )
FIGURE 4-43 The inverting Rg IF
summer. AN °vo
> v
K, *
+ +C Vo
v
2 2 +1

() (b)

With the noninverting input grounded, the OP AMP element constraints are
on =vp =0 and iy =0. Substituting these OP AMP constraints into Eq. (4-27), we
can solve for the circuit input-output relationship.

_(_Rey, o (_Re
o=\ TR, R, )" (4-28)
= (K] )1)] + (K2)1)2

The output is a weighted sum of the two inputs. The scale factors (or gains, as they are
called) are determined by the ratio of the feedback resistor Rg to the input resistor for
each input: that is, K1 = —Rp/R; and K, = —Rp/R;. In the special case Rj =R, =R,
Eq. (4-28) reduces to

Vo = —?F(vl +v3)

In this special case the output is proportional to the sum of the two inputs (hence
the name summing amplifier or, more precisely, inverting summer). A block diagram
representation of this circuit is shown in Figure 4-43(b).

The summing amplifier in Figure 4-43 has two inputs, so there are two gains to
contend with, one for each input. The input-output relationship in Eq. (4-28) is easily
generalized to the case of n inputs as

_( Rr N Ry . Ry
o=\ TR ™ R, )" R, (4-29)

= K1 + Koy + -+ Ko,
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where Ry is the feedback resistor and Ry, R»,...,R, are the input resistors for the n
input voltages v1,v,...,0,. You can easily verify this result by expanding the KCL
sum in Eq. (4-27) to include 7 inputs, invoking the OP AMP constraints, and then
solving for vo.

Exercise 4-25
In Figure 4-43, v, =0.6 V, v, =0.4 V, R; =3.3kQ, R, =4.7kQ, and Ry =15kQ. Find vo.

Answer: vo=-40V

@ DESIGN EXAMPLE 4-16

Design an inverting summer that implements the input-output relationship

Vo = —(51]1 T 131)2)

SOLUTION: 13 kQ 65 kQ
The design problem involves selecting the input and feedback resistors so that v, o—AAN AN *— g
Rp Ry ~
—=5 d —=13 V2
R n R, 5kQ
One solution is arbitrarily to select Rp =65k, which yields R; =13kQ and +
R, =5kQ. The resulting circuit is shown in Figure 4-44(a). The design can be L
modified to use standard resistance values for resistors with £5% tolerance (a)
(see inside back cover). Selecting the standard value Rp=56kQ requires 1Ko
—0 Vo

R; =112kQ and R, =431 kQ. The nearest standard values are 11kQ and 43 k. = '\ e
The resulting circuit shown in Figure 4-44(b) incorporates standard value resis- :

tors and produces gains of K;=-56/11=-5.09 and K=-56/43=-13.02. ,,
These nominal gains are within 2% of the values in the specified input-output 4.3kQ
relationship. | +
Exercise 4-26 —E
(a) Find vg in Figure 4-44(a) when v; =2V and 0= -0.5 V. (b)
(b) Ifv, = 4.100 mV and Vc = 15V, what is the maximum value of v, for linear mode FIGURE 4-44
operation?
(c) Ifv; =500mV and Ve = + 15V, what is the minimum value of v, for linear mode
operation?
Answers:

(a) =3.5V;(b) 1V;(c) -1.346V

APPLICATION EXAMPLE 4-17

Inverting amplifiers of the type discussed above have the ability to be easily
designed with outputs being the weighted sum of the various inputs. While this
type of OP AMP Summer is the most common by far, there is occasionally the need
for a noninverting summer. In this example we analyze a noninverting summer and
discuss the advantages and disadvantages of this summer versus the inverting
summer.

Consider the circuit of Figure 4-45 and find the input-output relationship.
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FIGURE 4-45

One should recognize the shaded area of the figure as being that of a noninverting
amplifier with gain K = {%}, and vo = K xvp, Where vp acts as the summing

terminal of the circuit as well as the non-inverting terminal of the OP AMP.
We can find the voltage at vp using superposition. For the contribution of v; we
set all sources except v; to zero and solve for the voltage vp;

vp =0 R [|Rs|| - Rn =0 K
P1 =01 Ri+R: |Rs] - R 1K1

Similarly for the contribution of v,

Op2 =02 Ry R - R =0K5
R2+R1 HR3|| ~~'RN

And so forth, until all input sources have been accounted for. Then using the additive
property of linear circuits, we obtain the final result

Up =0Vp1 +0Up2 + ...+ UPN
UP=1)1K1 +02K2+ 000 P UNKN

Vo = KUP :K(01K1 s 1)2K2 9P 000 TP UNKN)

While this appears to be a simple result, calculating weighted gains for each input is
not so simple, especially if there are more than two or three inputs. If all the inputs are
to have the same gain then selecting all source resistors to be equal, makes the circuit
useful and easy to use. For example, consider a three-input noninverting summer
with all source resistors equal. Using our previous result for N =3, we get

_ RRs _ R2 1
'""Ri+Ry|Rs R+R/2 3
_ _RiRs _ R2 1
" Ry+Ri|[Rs R+R/2 3
_ RR  R2 1
>"Ri+Ri|[R;, R+R/2 3

So that our final result is

K
1)0=K(%+D§2+1%3) =§(U1 +1)2+1)3)
The designer can choose the OP AMP gain K to produce the overall gain desired.
If, for example, one wanted an overall gain of 10, one would choose K =30,
resulting in

30
Vo = ?(ul+vz+v3) =10(v1+v2+03)

In summary, the noninverting summer has the advantage of being able to sum mul-
tiple inputs with all positive gains using a single OP AMP. Its main disadvantage is
that the design process of selecting resistors to achieve specific gain values can be
significantly more complicated.

Exercise 4-27

Design a noninverting summer for four inputs with equal gains of 50.

Answer: Select all source resistors equal and then make the gain of the OP AMP 200.
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THE DIFFERENTIAL AMPLIFIER

The circuit in Figure 4-46(a) is called a differential amplifier or subtractor. Like the
summer, this circuit has two inputs, one applied at the inverting input and one at the
noninverting input of the OP AMP. The input-output relationship can be obtained
using the superposition principle.

o @ m b
W\’ ) W\/ 0 Vo
i,
Vi v -
R3 Nlp -~ |
+ Vi
K
vp 1
1L +1 v
%) Ry O—“
1% +
51

(a) (b)

First, we turn off source v,, in which case there is no excitation at the noninverting
input and vp = 0. In effect, the noninverting input is grounded and the circuit acts like
an inverting amplifier with the result that

R,
Vo1 =——-0 4-30
o= "R (4-30)
Next, turning v, back on and turning v; off, we see that the circuit looks like a non-
inverting amplifier with a voltage divider connected at its input. This case was treated
in Example 4-13, so we can write

R4 Rl +R2
— 4-31
002 { Rit R4] [ R }02 (4-31)

Using superposition, we add outputs in Eqs. (4-30) and (4-31) to obtain the output
with both sources on:

0O =001 T V02

SN e PR NN LS S e (4-32)
- Ry ! R3+ Ry Ry 2 B

= [Kl]l)l + [Kz]l)z

where K; and K are the inverting and noninverting gains. Figure 4-46(b) shows how
the differential amplifier is represented in a block diagram.
For the special case of R3/R1 =R4/R>, Eq. (4-32) reduces to
R
o = R—j (02-0v1) (4-33)
In this case the output is proportional to the difference between the two inputs
(hence the name differential amplifier or subtractor).

FIGURE 4-46 The differential
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10 kQ 40 kQ Exercise 4-28
+ (a) Findthe input-outputrelationship of the subtractor circuitin Figure 4-47.
V,
> 0 (b) Ifvcc = +£15V and vy =3 V, what is the allowable range of v, for lin-
Vi 10KO S ear operation of the OP AMP?
+ Answers:
—— (a) vo=—4v; +3vy; (b) -1V=sp,29V
1] 15 kQ
- - Basic OP AMP Burtoine Brocks
FIGURE 4-47 The block diagram representations of the basic OP AMP circuit con-
figurations are shown in Figure 4-48. The noninverting and inverting amplifiers are
represented as gain blocks. The summing amplifier and differential amplifier require
Circuit Block diagram Gains
V1
—oO Vo
Vi K ‘o R] + R2
K= R
R, Ry 2
— NONINVERTING
Ry R,
vi AW~ AMA Vo
Vi Vo _ R2
K K=- i3
- INVERTING
Ry R
v o—\Wy AW Vo
R2 Vi R
K = _°F
v o Ki=-%,
C Yo
%) + R
Py K=-%
T SUMMER
Ry Ry
v o= A 16 " R
- ! +f TR
R; < )VO
V2 + % + R
2 _ [ Ri+Ry Ry \
R, K, f K2—( R ) (R3+R4)
- SUBTRACTOR
FIGURE 4-48 Summary of basic OP AMP signal-processing circuits.
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both gain blocks and the summing point symbol. Considerable care must be used
when translating from a block diagram to a circuit, or vice versa, since some gain
blocks involve negative gains. For example, the gains of the inverting summer are
negative. The required minus sign is sometimes moved to the summing point and
the value of K within the gain block changed to a positive number. Since there is
no standard convention for doing this, it is important to keep track of the signs asso-
ciated with gain blocks and summing points.

The OP AMP building blocks in Figure 4-48 can be interconnected to obtain
complex signal-processing functions. These interconnects do not change the
input-output relationships of each block, provided the connections are all between
outputs and inputs. Each of the building blocks in Figure 4-48 is a feedback circuit
with an OP AMP output. These feedback circuits have insignificant output resis-
tances and can drive any load within the OP AMP’s output current capacity.” In
other words, the building block outputs act like ideal voltage sources just like
the voltage sources connected to the block inputs. This observation leads to the fol-
lowing conclusion:

Connecting the output of one building block circuit to an input of another does
not change the signal-processing function performed by either circuit.

This property allows us to find the function performed by an interconnection using
the functions performed by the individual building blocks. Conversely, this property
allows us to design an interconnection by breaking a required function down into sep-
arate building block functions.

EXAMPLE 4-138

Derive an expression for v in Figure 4-49(a) in terms of the two inputs. Draw a
block diagram representative of the circuit.

VA

+3

5&9 10 kQ VA .
+ f
10 kQ o 5Vo -1
> _ + \_
s 20 kQ Vo

—+
_;5V
i 10kQ

(a)
FIGURE 4-49 (a) Circuit. (b) Block diagram.

SOLUTION:

The circuit is an interconnection of two basic building blocks: a three-input summer
and a noninverting amplifier. The circuit meets the connection requirement since
building block outputs are connected to other building block inputs. The node volt-
age va in the figure is the output of the summer. The summer inputs are a fixed 5-V

*Maximum OP AMP output currents for OP AMPs like the uA741 are typically around 20 mA and
generally range from 1 to 100 mA.

N

(b)

Yo
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FIGURE 4-50

source, a signal source vs and the noninverting amplifier output vo. Using the invert-
ing summer input-output relationship in Eq. (4-29), we have

1
DA = —5—205—500

The summer output v, is the input to the noninverting amplifier whose voltage gain is
K =3. Using the input-output relationship of the noninverting amplifier, we have

vo =3vA
= —15—6vs—§vo
2
Solving for vg yields
vo=-6-2.4vg

The signal-processing function on the interconnection was found using the input-
output relationships of the individual building blocks. The method even works with
a feedback path because the 20-kQ resistor is connected from the noninverting ampli-
fier output to the input of the inverting summer. The block diagram is shown in
Figure 4-49(b). u

Exercise 4-29

Derive an expression for vg in Figure 4-50 in terms of the inputs vy and v,.

10kQ 40kQ 20kQ 40kQ
A M * M M »—o
10 kQ VJE)
Vi > + Vo =

Answer: vo=8v—4v,

EXAMPLE 4-19

Derive an expression for v in Figure 4-51 in terms of the two inputs v; and v;.

Vi

FIGURE 4-51

SOLUTION:
Ra VA Rs Ry . The circuit is an interconnection of a noninverting amplifier
W Wy Wy Y and an inverting amplifier with an additional signal v,
YO applied at its noninverting input. The voltage va shown in
- B the figure is the output of the noninverting amplifier:
+ +

_ R] +R2
VDA = R] U1

We use superposition to find vg. First, set v, =0, which con-
nects the noninverting input of the second stage to ground.
In this case the second stage acts like an inverting amplifier
whose input is v4 and whose output is the response due to vy
acting alone:

Ry
vo1 = |-+ |V
01 R A

_ _& R1+R2D
IR R

V2
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Next, set v; =0 which sets v4 =0 in turn. In effect this connects resistor Rz to ground.
In this case the second stage acts like a noninverting amplifier whose input is v, and
whose output is the response due to v, acting alone:

R3 + Ry
U
Ry |°

Vo2 =

Applying superposition, the total output is

VO =001 +VO2

R4 R1+R2 + R3 +R4
=—|= v v
Ry|| R | R, |*

= [—Kl]l)l + [Kz]l)z

where —K; and K, are the inverting and noninverting gains, respectively.

The dual OP AMP circuit in Figure 4-51 performs the same signal-processing
function as the single OP AMP subtractor circuit in Fig. 4-48. Why use two OP AMPs
to obtain a function that can be achieved using only one? The answer is that both
input signals in Figure 4-51 are applied to noninverting OP AMP inputs that have
very high input resistances. This means that the two—-OP AMP subtractor does not
load the input signal sources. The basic subtractor in Figure 4-48 has finite input
resistances that may load the input signal sources. This difference could be important
when the input signal sources have high Thévenin resistances. |

@@ Design and Evaluation Exercise 4-30

We have looked at two ways to design subtractor circuits—the more common way as shown
in Figure 4-46 and the less common way as shown in Figure 4-51. Your task is to design OP
AMP circuits that meet the following expression: vo = —20v; + 10v, using both realizations.
Atleast one resistor in each circuit must be 1 kQ. The remaining resistors should be selected
from the standard 5% values from the inside back cover. Then list pros and cons for each
approach.

Answers: Single-OP AMP approach: R; =1kQ, R, =20kQ, R3=11kQ, and R4 =10kQ.
Advantages: fewer parts, less power required (one versus two OP AMPs), and simpler
design. Disadvantage: low input resistance may result in loading.

Two—-OP AMP approach: R; =9.1kQ, R, =11kQ, R3=1kQ, and R4=9.1 kQ. Advan-
tage: high input resistance allows for connecting to almost any source circuit. Disadvan-
tages: more parts, more power required, and a slightly more
complicated design.

Other design values are possible.

Rest of the circuit

Nope-Vortace Anarysis with OP AMPS

There are many useful OP AMP circuits that are not simply
interconnections of basic building blocks. In such cases we
use a modified form of node-voltage analysis that is based
on the OP AMP connections in Figure 4-52. The overall circuit
contains N nodes, including the three associated with the OP
AMP. Normally the objective is to find the OP AMP output
voltage vo relative to the reference node (ground). We assign
node voltage variables to the N-1 nonreference nodes,
including a variable at the OP AMP output. However, an ideal
OP AMP acts like a dependent voltage source connected
between the output terminal and ground. As a result, the

FIGURE 4-52 General OP AMP circuit analysis.
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FIGURE 4-53

Vo

Ry ®

>

OP AMP output voltage is determined by the other node voltages, and so we do not
need to write a node equation at the OP AMP output node.

We formulate node equations at the other N -2 nonreference nodes in the usual
way. Since there are N —1 node voltages, we seem to have more unknowns than equa-
tions. However, the OP AMP forces the condition vp =vy in Figure 4-52. This elim-
inates one unknown node voltage since these two nodes are forced to have identical
voltages. Finally, remember that the ideal OP AMP draws no current at its inputs
(ip =in =0) in Figure 4-52, so these currents can be ignored when formulating node
equations.

The following steps outline an approach to the formulation of node equations for
OP AMP circuits:

STEP 1 Identify a node voltage at all nonreference nodes, including OP AMP outputs, but
do not formulate node equations at the OP AMP output nodes.

STEP 2 Formulate node equations at the remaining nonreference nodes and then use the
ideal OP AMP voltage constraint vp =vn to reduce the number of unknowns.

EXAMPLE 4-20

Derive an expression for v in Figure 4-53 in terms of the inputs v; and v,.

SOLUTION:

This circuit is not an interconnection of OP AMP building blocks because the resistor
R, is connected between two inputs. We use the node-voltage method outlined above
to find the required input-output relationship.

STEP 1 The circuit has a total of six nonreference nodes as shown in the figure. Nodes B and
E are OP AMP outputs while nodes A and F are connected to ground by the input
voltage sources v, and vy, respectively. As a result, we only need node equations at
C and D. Writing the sum of currents leaving these nodes

UC—UB VC—Up
Node C: —=0
ode R] + Rz
Up —UC Up —VE
Node D: =0
ode R2 + R3

yields two equations in the four node voltages vg, vc, vp, and vg.

STEP 2 The noninverting OP AMP inputs are connected to independent voltages sources v,
and v;. The OP AMP voltage constraints (vp = on) mean thatvp =01 and vc =v;. These
constraints eliminate vc and vp as unknowns and reduce the two node equations to

U2 —UB U2 — U1
Node C: =0
ode R1 + Rz
01— D1 —DVg
NodeD: —— =4+ "E—
ode R + R 0

The node-voltage formulation method outlined above leads to two equations in the
two unknown node voltages vg and vg.

We solve the node C equation for vp
VB =0y + —1(1)2—1)1)
R,

and the node D equation for vg

R
VE=v] + R—z(vl —v3)
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Using the fundamental property of node voltages yields the required output as
R1 + R2 + R3
0o = VB —VE = {Ri} (2-01)
2
The circuit in Figure 4-53 is a differential amplifier of the form vp=K(v;-v) in
which the input voltages v; and v, are applied at noninverting OP AMP inputs that
have very high input resistances. The circuit is the first stage of a commercially avail-
able integrated circuit called an instrumentation amplifier. We will use this cir-
cuit later. u

@ Design Exercise 4-31

Select values of Rj, R,, and Rj in Figure 4-53 so that vo =50(v, —v1).

Answer: Selecting Ry = R3 =24.5kQ and R, =1kQ is one of many possible solutions.

4-5 OP AMP Circuit DESIGN

This section is dedicated to OP AMP circuit design. Unlike circuit analysis, where
we are asked to find the single correct input-output relationship for a given circuit
configuration, circuit design asks us to create a circuit that will realize a desired
input-output relationship. Successful OP AMP circuit designs are accomplished by
interconnecting the various building blocks studied (inverter, noninverter, follower,
summer, subtractor, and more to come). The design process is greatly simplified by
the nearly one-to-one correspondence between the actual OP AMP circuits and their
building-block equivalents. However, unlike analysis problems, design problems rarely
have a unique solution since there are usually several OP AMP circuits that can meet the
design objective. This prompts the question, which is the better or best design solution?
Sometimes the choice is obvious; at other times it is not. Making the right choice is
the highest level of learning—a key objective of every nascent engineer—and is
called evaluation (the art of making smart engineering decisions). We have already
seen some application of this skill in Chapter 3 with respect to choosing the better
interface. Engineers are often faced with selecting the best solution from several possi-
bilities. In making their recommendations, engineers consider many factors, including
economic considerations (purchase, maintenance, disposal, and replacement costs),
environmental issues (power used, recyclability, pollution produced), ergonomics
and aesthetics, reliability (durability, maintainability, and accuracy), number of parts,
uniqueness of parts, physical properties (size, shape, and weight), dependability of
the vendor, and availability over time. In making a decision, itis essential that one knows
the appropriate factors to consider and their respective importance to the application. In
this section and the next, we will look at some of these issues.

@ EVALUATION EXAMPLE 4-31

In a particular application, it is necessary to implement the block dia- vio
gram shown in Figure 4-54. The maximum individual OP AMP gain

cannot exceed £2000. The input resistance of the first signal stage

must be at least 10 kQ. The nominal input signal v; is 1 pV.

109

Two vendors have provided competitive solutions, shown in Figure 2.6V o
4-55. Choose the best solution based on achieving the desired output

considering: cost, parts count, variety of parts needed, and power usage. FIGURE 454

N
=)

Yo
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FIGURE 4-55

1 MQ
10 kQ 10 MQ VA 1kQ W
AN AN - AMA ~
1 MQ 5
— + +
Vi
N + Vo
26V —

(a) Vendor A

10 MQ

10 kQ

Cost $12 each
(b) Vendor B

SOLUTION:

Referring to the block diagram, we determine what output the circuit is supposed to
deliver. We see that the input is multiplied by 10° and then added to —2.6 V. Hence,
we must have a circuit that has the following input-output relation:

vo=10%,-2.6 V

Also, the input signal that must be amplified is small, only around 1 pV, and therefore
it needs a large gain to make it usable (K = 106). The input resistance must be at least
10 kQ, probably to avoid loading from v;. The individual OP AMPs cannot have a
gain magnitude exceeding 2000. At some point in the design, the 2.6-V source will
need to be subtracted from the amplified v;.

Let us analyze each vendor’s submission to see first if the circuits meet the
required specifications.

Vendor A

This vendor chose a straightforward approach, splitting the gain across two OP AMP
stages. At v, the output is —1000v;. This is then input to an inverting summer along
with the 2.6 V. The input from v, is given a gain of —1000 while the 2.6-V input is
given a gain of —1. The end result is the following expression for vo:

00 =01(~1000)(=1000) + (= 1)2.6 = 10°%; -2.6 V

Checking the other criteria; (a) the input to the first signal stage is 10 kQ, right at the
limit; (b) total parts, 7; (c) different parts, 5; (d) power requirement, two OP AMPs;
and (e) cost, $15.

Vendor B

This vendor took a nontraditional approach. The vendor split the gain across two OP
AMPs but used a noninverter for the first stage followed by a subtractor. The input to
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the inverting terminal seems uncommon and needs to be analyzed to see if it works.

The first stage provides an output gain at vp of 1001. We need to see what the inputs

to the subtractor are before we can determine the output. We start by doing a Thé-

venin equivalence at vg. We get o1 =2.597 mV and Ry =100Q|[100kQ2=99.9 Q.
Next, we look at the subtractor relationship:

v :—&u + RitR Ry v
© R1 ! R1 R3+R4 2

We note that R, =10 MQ. The other resistance will take some work to calculate.
R; is the input resistance at the inverting terminal. We see that it is 10 kQ plus
R, or 10,099.9 Q. Now Rj3 is the series resistance connected to the noninverting
terminal, or 0Q, while R4 is the resistance from the noninverting terminal to
ground —an open circuit, or co Q. Substituting these values into our subtractor equa-
tion, we get

107 10,099.9 + 107 o
vo=- 10,099.90'0025 o7+ ( 10,099.9 ) (0+ oo> (100T)or

vo = —2.57+0.992 x 10%,

This vendor’s solution is close but not exact. The gain is off by 0.8% and the constant
is off by 1.2%. Checking the other criteria: (a) the input to the first signal stage is
into a noninverting stage or about co Q, so there are no concerns with loading;
(b) total parts, 8, (c) different parts, 5, (d) power requirement two OP AMPs; and
(e) cost, $12.

DISCUSSION: Vendor A’s circuit meets all of the specifications exactly, but it costs
more than Vendor B’s circuit. Vendor B’s solution, on the other hand, is not exact,
but the errors are small. Vendor B uses one extra part, but three of the parts are the
same, while Vendor A’s circuit has only two parts that are the same. Both use two OP
AMPs and, since the power supplies to the OP AMPs usually are the largest sources
of power usage, they are equal on this criterion. The bottom line: if the number of
circuits being purchased is small, then Vendor A provides the simpler and most
accurate design. If the number is large so that cost becomes a significant factor and the
small errors can be tolerated, then choose Vendor B. [ |

O Exercise 4-32

Verify the solutions found in Evaluation Example 4-21 using Multisim.

R, Rg .
MWy M Multimeter-XMM1 [
10 MQ 1.0 MQ XMM1
R, 1507 V |
AWV ~_Ul — — =
1 w0k [a] o[
Y + e
OPAMP_3T_VIRTUAL VVY o~ =]
[ : Set. I 5

FIGURE 4-56
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Ry Ry,

M M —

10 kQ 10 MQ Multimeter-XMM2
XMM2
i | =

U4 f’é 1577V |

OPAMP 3T VIRTUAL - oo - .

3T
A v Q dB
. > Gmale
OPAMP_3T_VIRTUAL Loz =
— " Ry w -
=y A o o.
Ry  100kQ
100 Q

(b)

FIGURE 4-56 (Continued)

Answer: Figure 4-56 displays the results.

@@ DESIGN AND EVALUATION EXAMPLE 4-22
Design the interface circuit in Figure 4-57 so that 200mW is delivered to the
500-Q load.

FIGURE 4-57

5V

+ R3 +
V1 } 1)
Circuit 1 Circuit 2
SOLUTION:
The maximum power available from the 5-V source is
v} 5

=—L == __=125mW
PMAX = 1R = 150~ 120 M
which is less than the required 200-mW output. This means that the interface circuit
must contain an active device that provides voltage gain. To determine the required
voltage gain, we express the output power as

2
=% _
p2=50,=02W
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which yields the required output voltage as v; = +v0.2x500= +10 V. Since the
inputis a 5-V source, we need overall voltage gains of K = 2. We can get these gains
using either the noninverting amplifier or the inverting amplifier shown in the figure.

First Design

The noninverting amplifier shown in the figure has very high input resistance; hence,
it=0and v; =5 V. To get a voltage gain of K = +2 we need (1 + R,/R;) =2. Selecting
R1 =R, =10kQ completes the design. Many other choices of resistors are possible.

Second Design

The inverting amplifier shown in the figure has an input resistance of R3; hence, the
input current is not zero, and v; =5-50i; <5 V. In other words, the interface circuit
loads the input source. However, if we specify that R3 > 50 Q, the effect of loading
can be ignored since i; ~0 and the input voltage is essentially 5 V. Neglecting the
effect of loading, a voltage gain of K = —2 requires Rs/R3=2. Selecting R; =25kQ
and R;=50kQ completes the design. Many other choices of resistors are possible
as long as R3 > 50 Q. [ |

Exercise 4-33

Using the circuits and analyses shown in Design Example 4-22, how much power is
being provided by the signal source in each design? What is providing the power to the load?

Answers: In circuit 1 the signal source is providing zero power. In circuit 2 the signal
source is providing ps=v?/R; W. In each case, the power for the load is being supplied
by the OP AMP’s £V ¢ sources.

@@ DESIGN AND EVALUATION EXAMPLE 4-23

Design a circuit using OP AMPs that implements the input-output relationship

vo =501 +4v,—203

SOLUTION:
We will show two ways to solve this design problem and then discuss each design.

First Design
Rewriting the required input-output relationship as

VO = —5(—1)1)—4(—1)2)—21)3

suggests an inverting summer with three inputs —v;, —v,, and v3 with summing gains
of -5, —4, and -2, respectively. Figure 4-58(a) is a block diagram of this approach
and Figure 4-58(b) is an OP AMP circuit that implements the block diagram. This
design requires three OP AMPs and eight resistors.

Second Design
Rewriting the required input-output relationship as

VO = —2[—2.501 —21)2] —21)3

suggests an inverting summer with two inputs [—2.5v; —2v;] and v3, both with a sum-
ming gain of —2. The input [-2.50; —20;] can be obtained using a second inverting
summer whose inputs are v; and v,. Figure 4-58(c) is a block diagram of this
approach and Figure 4-58(d) is an OP AMP circuit that implements the block dia-
gram. This design requires two OP AMPs and six resistors.

Evaluation Discussion
This example illustrates again that there are often several ways to solve a given design
problem. This leads to the question of how to choose between different design
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| 5 10 kQ 10 kQ 10 kQ
V] - _ + Vol—’\/\/\« AV —— W
+
iyl =@ gt ;
+
o 10 kQ 10 kQ 12.5 kQ 50 kQ
e - + oW\ W\ W W\ o+
3 %) Vo
(a) Block diagram = >
+ +
25 kQ
+o M
V3
(b) Circuit realization
o 25 20 kQ 50 kQ 25 kQ
g N + o——\, AV ——— W\
Vi
( -2 -
+
o—»] 2 —T +
V2 <>—> 176 3
T 50 kQ
25k — AW A +
+
\?3 —2 V2 >~
(c) Block diagram .
25 kQ
+o AM—
V3
(d) Circuit realization
FIGURE 4-58

solutions. Candidate designs are evaluated using criteria beyond the fact that they
implement a given signal-processing function. One common measure is to choose
the design that uses the fewest components. Applying this “smallest part count” cri-
teria in this example leads us to choose the second design.

Using this criterion, it is important to understand the impact of part count on the
cost of fabricating a circuit. Reducing part count does much more than simply reduce
component costs. It also (and often more importantly) reduces printed circuit board
space, assembly costs, packaging costs, testing, and logistics costs. |

@ Evaluation Exercise 4-34

A requirement exists for a circuit that implements the block diagram in Figure 4-59(a). The
circuit in Figure 4-59(b) is a proposed solution. A breadboard prototype of this circuit failed
to pass preliminary testing. Why?
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10 kQ
10 + 20 kQ 100 kQ
MW A o+
_ Vo
V1 >
+ T
o 10 F—={-20 +<>—— vo = ko S 10kQ
Vi —
+ —
o -1 100 kQ
5V fc AMM—
(a) Block diagram el sV (b) Circuit realization
_[+
FIGURE 4-59

Answers: (1) The noninverter produces a gain of 11, not the desired 10. (2) The gain from
the noninverter into the inverting summer is —5, not —20. (3) The 5-V source is inverted,
resulting in a final value of +5 V instead of the desired —5 V. (4) A common error for new
students, the inverting summer has the “+” and “-” terminals reversed.

4—6 OP AMP Circuit APPLICATIONS

OP AMP circuits are fundamental building blocks in a wide range of signal-
processing applications, especially instrumentation, status monitoring, process con-
trol, filtering, digital-to-analog conversion, and analog-to-digital conversion. This
section provides a brief introduction to three of these applications.

DicitaL-to-AnaLoc CoNVERSION

A digital-to-analog converter (DAC) has become a very common device. Its purpose
is to convert digital signals—binary 1s and Os—to an analog or continuous format.
DAC:s are mixed-signal devices: the input to a DAC is a digital signal and the output
is an analog signal. DACs are used extensively in robotics, audio applications, and
communications, especially in high-definition digital television and cell phone appli-
cations. Figure 4-60 shows a simplified block diagram of this device along with photos
of commercially available DACs. For the purpose of the following discussion we will
focus on four-bit devices, although typical devices are generally eight-bit, 10-bit,
12-bit, or even 24-bit. The block diagram in Figure 4-60(a) has a four-bit digital input
(b1,b2,b3,b4) and analog output v, and a fixed reference voltage Vrgr. The input
bits can each have only one of two values: a high or logic “1” or a low or logic
“0.” The input-output relationship of the four-bit converter can be written as follows:

3 by b3 by
Vo = KVREF <b1 + 7 + Z + §> (4—34)
Bit by is called the most significant bit (MSB) because it carries the largest weight in
this sum. Conversely, bit by is called the least significant bit (LSB) because it carries
the smallest weight.

VREF

DAC

. -
o

(b)

— Vo

Courtesy of IDT.com

FIGURE 4-60 (a) A digital-to-

analog converter (DAC).
(b) Ceramic thin-film/IC
20-bit devices. (c) 16-bit

8- to

DAC-8734. (d) 12-bit DAC

development board.
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For example, a four-bit DAC with K=0.5 and Vrgr=10V and a digital input
(0, 1, 0, 1) produces an analog output of
1 0 1

uo:O.5x10<O+§+Z+§> =3.125V

Similarly, inputs of (0, 1, 1, 1) and (1, 1, 0, 0) produce outputs of 4.375V and 7.5V,
respectively. With a four-bit converter, there are 2* =16 possible input codes and

hence 16 possible analog output levels. The full-scale output of a DAC is defined
(©) as the output when the input bits are all 1 (vp =9.375V in this example). The reso-
lution of a DAC is defined as the change in the analog output caused by an input
change of one LSB (0.625 V in this example). We can think of resolution as the volt-
age increment between adjacent output levels.

" The N-bit converter generalization of the four-bit input-output relationship in
2~ Eq. (4-34)is

Photo courtesy of Texas

Instruments

N by
Vo = KVREF ké"lF (4—35)

www.mikroe.com

Integrated circuit DACs are available with inputs of N =8 to N =24 bits. Increasing
the number of bits improves the conversion precision since the resolution is inversely
proportional to 2V~!. For this reason, DAC resolution is often somewhat loosely
FIGURE 4-60 (Continued) quoted in terms of bits.
We can now discuss two OP AMP circuits that implement Eq. (4-35) for N =4.
The first method uses the four-input OP AMP summer in Figure 4-61. The summer
inputs vy, v2, v3, and v are applied to the binary-weighted input resistors R, 2R, 4R,
and 8R, respectively. The output of the summer is related to these inputs by the input-
output relationship in Eq. (4-29).

()

Ry Ry Ry Ry

V]E)EF Vo = _ﬁvl_ﬁl)Z—ﬁU:’)_S_Ruﬁl
—oO RF (%} U3 Uy
noR -5 g+5)
b, The input voltages are determined by switches controlled by the
— input bits b1, by, b3, and bs. When a bit is low (0), the switch is in the
¢—o

lower position, connecting the related input to ground. When a bit
is high (1), the switch is in the upper position, connecting the related
input to the reference voltage Vrgr. In other words, an input volt-

}Q
=
+o

) N - o age is zero when its control bit is 0 and equal to Vrgr when its con-
V3 4R trol bit is 1. In effect, the input voltages are related to the input bits
: + as vx = bx VREr. As a result, we can write the summer output as
- by
— — _ Rp byVRer | b3VREr | baVREF
—o vo = ——| b1VRrEr + + +
vy 8R R 2 4 8
! Rp by b3 by
--b _ _ 7 ey 278
ad 4 RVREF(b1+2+4+8
FIGURE 4-61 A binary-weighted summer This result i.s of the form of Eq. (4'—35) w.ith N=4and K = —RF/R
DAC. A four-bit DAC can also be realized using the R-2R ladder circuit

in Figure 4-62. In this case the voltage inputs vy, vy, v3, and vy are
applied to the 2R legs of the ladder. The OP AMP’s noninverting input is connected
to ground (vp =0). Since vx =vp =0, node A in Figure 4-62 is a “virtual” ground. In
other words, the R-2R ladder is effectively shorted to ground at node A. The short-
circuit current the ladder delivers to this virtual short can be shown to be
U1 [%) U3 U4

isc=3R " 2R 3R T TR
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Since node A is a virtual ground, the current through the feed- vy
back resistor is ir =vo /Rp. For an ideal OP AMP, ix=0, so Q

the KCL constraint at node A requires ir +isc =0, or | R 2R EC, JF_ Rp
bo ;B b g A é TR
Rr 2R 4R 8R 16R L 1 R vo
Solving for vg leads to the following results: oy, 2R
R Rr Ry Rp Wy
vo=—ﬁv1—ﬁvz—§0rﬁv4 :---b2
Rr vy 03 W4 = R § =
=k 3 g) 1 2R
The input voltages vy, v, v3, and v4 are defined by the same j: [
switching arrangement as the inverting summer DAC in — b R
Figure 4-61. Hence, they are related to the input bits as IR

vr = b VRrEr, and the output voltage becomes V4 I
R bV, b3V, b4V, f
Vo = F<b1VREF+ 2VREF | D3VREF D4 REF) b,

2R 2 4 8

_ Rg by b3 by
__ﬁVREF<b1+7+Z+§)

e 2R

This result is of the form of Eq. (4-35) with N=4 FIGURE 4-62 An R-2R ladder DAC.

and K =Rp/2R.

In theory, the four-bit inverting summer DAC in Figure 4-61 could be extended
to a larger number of bits. However, the range of input resistances rapidly gets
out of hand. For example, a 10-bit DAC would require input resistances ranging
from R to 1024R. With integrated circuit technology it is virtually impossible to main-
tain tight resistance tolerances over a wide range of resistance values.

The four-bit R-2R ladder DAC in Figure 4-62 can be extended to a larger number
of bits using only two values of resistance, namely R and 2R. The absolute value of R
does not matter. What matters is that the added resistances stand in a two-to-one ratio.
Controlling the ratio of two resistances is much easier to accomplish with integrated
circuit technology than controlling the absolute value of a resistance. This fact accounts
for the widespread use of R-2R ladder architecture in integrated circuit DACs.

Exercise 4-35

The R-2R ladder DAC in Figure 4-62 has Rp =40 kQ, R=10kQ, and Vrgr = -3 V. Find the
full-scale output and resolution of the converter.

Answers: 11.25V;0.75V
Exercise 4-36

A student chooses to design a 6-bit weighted sum DAC for a project. The requirement is to
have errors of 1% or less. What tolerance (accuracy) must the resistors used in the design
have to meet the requirement?

Answers: Assume we can control the value for R in the design. Whatever value the
designer chooses for R, the 32R resistor must meet the tolerance specification. Therefore,
the tolerance for R is at most 0.03125%. An R-2R design is likely the better option.

INSTRUMENTATION SYSTEMS

One of the most interesting and useful applications of OP AMP circuits is for instru-
mentation systems that collect and process data about physical phenomena. The
instrumentation system typically connects an input transducer to an output
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transducer in a meaningful way. An input transducer in this text is a device that con-
verts some physical quantity, such as temperature, light intensity, stress, strain, pres-
sure, rotation, acceleration, or velocity, to an electrical signal. An output transducer
performs the opposite conversion, using electrical signals to generate a physical
quantity. In an instrumentation system, an input transducer generates an electrical
signal that describes some ongoing physical phenomenon. The transducer signal is
processed by OP AMP circuits and provided to an output transducer for observation,
recording, or, frequently, processing by an analog-to-digital converter (ADC). In the
latter case, the output of an ADC is usually sent to a computer or microprocessor. In
addition, the output signal can be used in a feedback control system to monitor and
regulate the physical process itself.

The starting point in instrumentation system design is the transducer. In general,
there are two basic types of transducers: active transducers, which produce a voltage
or current proportional to the physical parameter being sensed, and passive transdu-
cers, which change a parameter, such as resistance or conductance, in proportion to
the physical parameter being sensed but do not directly produce an output voltage
or current. Active transducers usually produce outputs that are quite small—in the
millivolt or microvolt range or in the microampere or nanoampere range. Active trans-
ducers often need considerable amplification to make their signals useful. Passive trans-
ducers, on the other hand, often have effects that are more dramatic. A photoresistor,
for example, can change the resistance over four, five, or even six orders of magnitude,
butit does not produce an output on its own. Passive transducers need to have an exter-
nalsource to produce a voltage or current thatis proportional to the physical parameter.

The block diagram in Figure 4-63 shows an instrumentation sys-
............ tem in its simplest form. The objective of the system is to deliver an

‘%>— _<%| output signal, vg, that is related to the physical quantity measured
* f ; * Restof | by the input transducer, vrr. In many instrumentation systems, the
ETrans ducer! Vig . Interface | Yo e;lteo | transducer is known and is assumed to be linear over the desired
; circuit ! system | range of measurements. The desired output is also assumed to be
b P . linear. The task is to design the interface circuit between the input
> < i and output. Suppose the input transducer converts a physical vari-
"""""" ' . ~ ablexinto an electrical voltage vrr. For many transducers this volt-
FIGURE 4-63 Transducer interface circuit. age is of the form

+ + +
: -
TR + Yo

b

FIGURE 4-64 Block diagram

of typical instrumentation system.

UTR:mx+b

where m is a calibration constant and b is a constant offset or bias. With active trans-
ducers, the voltage is usually quite small and must be amplified by some gain K to
meet the needs of the rest of the system. The amplified signal includes a component
proportional to the physical variable, K (mx), and an amplified bias component, K (b).
We can introduce another bias voltage, V}, to compensate for the K(b) term and
yield an output voltage, vo, which is aligned with the needs of the rest of the system.
Figure 4-64 is a block diagram of the typical signal processing steps that need to
be designed. To summarize, the input transducer voltage, vrg, is amplified by K
and then a bias voltage, Vy, is applied to make the signal the proper level for the
output vp:

vo =Kotr + Vp (4-36)

The gain K is the ratio of the desired output voltage range to the available voltage
range at the input transducer:

Desired range

~ Available range (4-37)
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A concern in calculating the desired K is getting the sign correct. In this regard, it is
important to keep track of the limits of the range. To do so, it may be helpful to create
a table similar to Table 4-1, where p; and p; are the physical values measured by the
input transducer. The gain K is then calculated as

_ Desiredrange 0o (p1)—vo(p2)
~ Available range  v7r(p1)—vTR(P2)

TasLe 4=
PhysicaL Rance Lower Prysicar Vatue, 7 Upper Prvsica Vawe, py
Desired range for vp vo(p1) vo(p2)
Available range at vrr orr(p1) vtr(P2)

For example, if you are designing a system that will read the temperature from 0°C
to 100°C and you want 0°C to produce 5V and 100°C to produce 0 V, create a table
similar to Table 4-2 where v1gr(0°) and vrr(100°) are the voltage signals the input
transducer produces when the temperature is 0°C and 100°C, respectively. The gain
is then computed as

Physical range 0° 100°

_ Desiredrange 5 - 0
~ Available range  v7r(0°) — vrr(100°)

TasLEe 4-2
PrvsicaL Rance 0° 100°
Desired Range for vp 00(0°)=5V 00(100°)=0V
Available Range at oTg o1r(0%) o1r(1007)

The physical range is shown above the gain equation for reference and to help keep
the voltage values aligned correctly. If you wanted 100°C to produce 5V and 0°C to
produce 0V, you would reverse the terms on the top of the ratio:

Physical range 0° 100°
_ Desiredrange 0 - 5
~ Available range  v1r(0°) — 01r(100°) '/"g
% 1000 p-----mmmmmmmmmmmme e :

Active TRANSDUCERS £
To put this procedure into practice, we will consider the specific example 8
of an active transducer. Figure 4-65 shows the characteristics of a light 2
intensity transducer that converts luminance in the range from 200 to g 200 -~ ‘
1000 lumens/m? to an electrical signal in the range from 4t020mV. = ;1 2'0 VTR
The output of the interface circuit is required to drive an ADC whose Voltage (mV)

full-scale input range is 0 to 5 V. The interface circuit must convert a
range of 4mV to 20mV to a output range of 0V to 5 V, respectively. FIGURE 4-65 Photocell transducer
Inserting these values into Eq. (4-36) gives characteristics.

K x0.004 + V, =0V @200 lumens/m?
K x0.02+ V=5V @ 1000 lumens,/m?
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Tasire 4-3
Pvsica Ranee 200 Lumens/m? 1000 usens/m?
Desired range for vg ov 5V
Available range at vrr 4mV 20 mV

Applying Eq. (4-37) and carefully aligning our range end points, we get

Luminance range 200 lumens/ m’ 1000 lumens/ m>
_ Desiredrange 0 - 5 B
K= Available range ~ 0004 - 002 o123

Inserting this value of K into the first equation and solving for the bias gives
Vp=-0.004 K =—1.25 V. Thus, the interface circuit must implement an input-output
relationship defined by

vo=(312.5) vrr—1.25 (4-380)

To design the interface circuit, we partition the required gain as K=(-25)x
(—=12.5)=312.5. This allows us to get the overall gain of +312.5 using two inverting
amplifier stages with gains of —25 and —12.5. We also rewrite the bias voltage as
Vb =(-0.25)5=-1.25V. This allows us to get the required bias using an inverting
gain of —0.25 and a standard 5-V power supply as the reference source. Inserting
these results into Eq. (4-38a) yields

UTR = (—25) (—12.5) UTR — (025)5 (4—38b)

Figure 4-66(a) shows a block diagram of Eq. (4-38b) while Figure 4-66(b) shows an
OP AMP circuit that implements the block diagram. Obviously this design is not
unique since we can rearrange Eq. (4-38a) in many different ways.

10 kQ 250 kQ 1kQ
+ 0|25 125 + oA e . ANV
VTR VTR
X ~
VO
:+ 2 12.5kQ
AN o
=) +
= "
+0 -0.25 -
5V
+
(a)
50 kQ =
5V
(b)

FIGURE 4-66 Photocell interface circuit realization: (a) Block diagram. (b) Circuit realization.
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@@ DESIGN AND EVALUATION EXAMPLE 4-24

A commercially available temperature transducer has the characteristics shown
in Figure 4-67. Design an OP AMP circuit to interface the transducer output
for temperatures ranging from —20°C to 120°C with a panel meter whose full-scale
input range is 0 to 3 V. Use a standard 1.5-V battery as the reference source
for the required bias. Develop two competing designs and discuss pros and cons
of each.

SOLUTION:

Figure 4-67 shows that the transducer output voltage ranges from
2.1V to 0.42V for the temperature ranging from —20°C to 120°C.
The interface circuit must convert a range of 2.1V to 042V to a

ranging of 0V to 3V, respectively. Inserting these values into 120
Eq. (4-36) gives

0=Kx21+V, at-20°C

3=Kx0.42+V, at120°C %
Calculating the gain K, ;%
Temp.range -20°C 120°C %
0 - 3 2
K= 51 — o4 —1.786

-20

Inserting this value of K into the first equation and solving for the

bias gives V=-2.1 K=3.75V. The bias voltage can be rewritten

as Vp=3.75=(2.5)1.5V, which means we need a gain of 2.5 to get FIGURE 4-67
the required bias from the specified 1.5-V battery reference source.

Thus, the interface circuit must realize the following input-output

relationship.

Vo = -1.786 UTR + (25)15

Looking at the required relationship, we can see that a subtractor circuit can realize the
desired input-output relationship. We know two ways to design subtractor circuits—
the basic one—-OP AMP circuit and the two—OP AMP subtractor. We can design our
circuit using each approach and compare the results.

First Design

The required function is of the form vo = — Kjv; + Kyvp, where Kj =1.786, vy = v7R,
K> =2.5,and v, =1.5 V. This function can be realized using the basic subtractor build-
ing block in Figure 4-68(a). Equation (4-32) relates the two gains to the subtractor

circuit parameters as
R2 R1 + R2 R4
Ky=— d K,=
! R] an 2 ( R1 ) (R3 +R4)

The gain K; =1.786 can be realized by selecting R, =10 kQ and Ry =0.56 R, =5.6 kQ.
Using these values in the K, equation produces

10 Ry
k= (1+3¢) (ovg) =25

Solving for R4 yields Ry =8.75 R3. Selecting R3 =1 kQ requires that R4 = 8.75 kQ. This
completes the first design. Obviously, many other choices are possible.

Voltage (V)
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Ry
+ +o—1+ +o—+
+ Vi 1)
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2 R, (b) Two—OP AMP subtractor

(a) Basic one—OP AMP subtractor

FIGURE 4-68

Second Design

The required function vp = — K01 + K»v; can also be realized using the two—-OP AMP
subtractor shown in Figure 4-68(b). This circuit is analyzed in Example 4-19, where
the two gains are related to circuit parameters as

Ry, R Ry
Kl_R_3(1+R_1) and K2—1+R3
The gain K;=2.5 can be realized by selecting R;=10kQ which requires
R4=1.5 R3=15kQ. Using these values in the K; equation gives

15 (. R\
Kl—ﬁ (1+R_1) =1.786
Solving for R; yields Ry =5.25 R;. Selecting R, =10kQ, requires that Ry =52.5 kQ.
This completes the second design. Many other choices are possible.

Evaluation Discussion

In terms of parts count, both designs use four resistors. The first design uses a one—OP
AMP subtractor while the second design uses the two—OP AMP version. This differ-
ence makes the first design the best choice under a “smallest parts count” criteria.
However, with the two—-OP AMP subtractor, both input signals are applied directly
to noninverting OP AMP inputs. These inputs have very high input resistances, which
means that the second design does not load the transducer or drain energy from the
1.5-V battery. This difference could be an important advantage of the second design
if the transducer has a high Thévenin resistance or if the interface circuit must oper-
ate for extended periods of time with no servicing of the battery. |

<D> Design Exercise 4-37

A pressure transducer must be connected to a boiler. The selected transducer is linear

between 100 and 1000 psi. Specifically, it has the following characteristics: At 100 psi it pro-

duces 10 pV, and at 1000 psi it produces 100 pV. The output needs to be connected to a

0-10-V meter so that 100 psi will give a reading of 0V and 1000 psi a reading of 10 V.

Design a suitable interface using OP AMPs that have a maximum closed-loop gain of 2000.
Validate your design using Multisim.

Answer: K=111,111 and Vi, =-1.11 V. One of many possible solutions is shown in
Figure 4-69. Multisim results are shown in Figures 4-69(b) and (c).
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Design exercise 4-37
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PassiveE TRANSDUCERS

As mentioned previously, passive transducers require an external source to produce
a voltage or current that is proportional to the physical parameter being measured.
Photoresistors, thermistors, strain gauges, and rotation sensors are but a few of the
passive transducers that use a variance in resistance to sense a physical parameter.
Figure 4-70 shows photos of some passive transducers. In all cases let us look at
how the resistance varies with the physical parameter.

There are two ways to apply an external source to a passive transducer. The first is
using a simple voltage divider, shown in Figure 4-71(a). This technique is useful when
the accuracy of the sensor is not critical and the change in parameter value is

FIGURE 4-69

Courtesy of Brain K. Bovard, BKB

Electronics

Image Courtesy of Vishay Intertechnology,

Inc.

Courtesy of
Honeywell, Inc.

©

FIGURE 4-70 Passive
transducers:: (a) Photoresistors. (b)
Strain gauge. (c) Thermistors.
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FIGURE 4-71

Methods for
adding an external voltage to
passive transducers:: (a) voltage
divider, (b) bridge circuit.

* VREr
+ VREF o
Reference
Reference resistor ¢ resistor \ § §RA
—o o—
o Sensor
< + _
Sensor AN Vir
\ + /g/( § Ry
VIR
Voltage divider Bridge circuit
(@) (b)

significant, as with photoresistors, thermistors, or rotational devices such as potenti-
ometers. The second approach is to use a bridge circuit as shown in Figure 4-71(b).
This technique allows for very precise measurement of small changes in parameter
values, such as those created by strain gauges. Let us see an example of each
approach.

@ DESIGN EXAMPLE 4-25

A particular photoresistor varies from 10 MQ in total darkness to 10 kQ in bright
light. Design an interface system that will produce 5 V when the photoresistor senses
bright light and 0 V when it is in total darkness. Show that the design works using
Multisim.

SOLUTION:

Since the photoresistor varies over three orders of magnitude, we can use the
voltage divider method shown in Figure 4-71(a). We select a 10-V source in
series with a 10-kQ reference resistor and the photoresistor as shown in

10kQ to 10 MQ  Figure 4-72(a). The reason for this choice becomes more apparent if we look

10 kQ
O
4
V.
10V B
(a)
5kQ to 10 kQ
5Vto 10V Ry o
VIr
VT
(b)

FIGURE 4-72

at the Thévenin equivalent of the circuit as shown in Figure 4-72(b).

The Thévenin voltage vt varies from 5V in bright light to about 10V in
darkness and the Thévenin resistance Rt varies from 5kQ to about 10 kQ,
respectively. These values simplify the design of the interface circuit; namely,
the interface circuit must convert a range of 5 V to 10 V to an output range of
S5Vt 0OV.

Inserting these values into Eq. (4-36) gives

K x10+V, = 0Vindarkness
K x5+V, = 5Vinbrightness
Applying Eq. (4-37) and aligning our range end points, we get
Sensor range Bright Dark

Desired range 5 - 0

~ Available range 5 - 10
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The bias is readily calculated as +10 V.

Figure 4-73(a) shows a possible interface circuit. Note that the 10-V bias was
inverted so that it will add as a positive value. If this is not possible, use an inverter
to change the sign of the bias before applying it to the summer. The large 1-MQ resis-
tors avoid loading the input to the inverter. Multisim shows the result of the simula-

tion in Figure 4-73(b). Note that the output is not linear. [ |
1 MQ
5kQto 10 kQ 1 MQ Wy
5Vt 10V Ry + 1 MQ
VTR rvvv— +
VT VO
0V = + 5VtoOV
(a)

Photoresistor interface circuit

Output voltage (V)

SRS S SN O S i
Photoresistor resistance (Q)

(b)
FIGURE 4-73

@ Design Exercise 4-38

Use a subtractor to design the interface for the example above.

Answer: Use all 1-MQ resistors in a standard subtractor circuit. Apply the transducer
input to the wire leading to the negative terminal of the OP AMP and apply the 10-V bias
to the input leading to the positive terminal of the OP AMP. The results are identical to
Figure 4-73(b).

@ Design Exercise 4-39

A 2-kQ potentiometer is connected to the flaps of an unmanned aerial vehicle, or UAV, to
detect their position. When the flaps are at their maximum upward extension of +45°, the
potentiometer is at its maximum resistance of 2 kQ; when the flaps are flat or 0°, the poten-
tiometer is set at 1 kQ; and when the flaps are at their minimum downward extension of
—45°, the potentiometer is at its minimum resistance of 0 kQ. Design an interface to a
0-5V ADC that gives +45° at 5V and —45° at O V.

Answer: One possible design is shown in Figure 4-74. If there is a concern about loading
the input to the ADC, insert a buffer after the potentiometer. Sometimes simplicity is the
best policy.

FIGURE 4-74
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FIGURE 4-75

The next example demonstrates the use of a bridge circuit to detect small changes in a
passive transducer.

@ DESIGN EXAMPLE 4-26

A strain gauge is a resistive device that measures the elongation (strain) of a solid
material caused by applied forces (stress). A typical strain gauge consists of a thin
film of conducting material deposited on an insulating substrate. When the gauge
is bonded to a member under stress, its resistance changes by

AL
AR = 4RG T

where Rg is the resistance of the gauge with no applied stress and AL /L is the elon-
gation of the material expressed as a fraction of the unstressed length L. The change
in resistance AR is only a tenth of an ohm or so, which is far too little to be measured
with an ohmmeter. To detect such a small change, the strain gauge is placed in a
Wheatstone bridge circuit like the one shown in Figure 4-71(b). The bridge contains
fixed resistors Rx and Rg, two matched strain gauges Rg; [the reference resistor in
Figure 4-71(b)] and Rg; [the passive transducer or sensor in Figure 4-71(b)], and a
precisely controlled reference voltage Vrgr. The values of Ry and Rp are chosen so
that the bridge is balanced (vrr =0) when no stress is applied. When stress is applied,
the resistance of the stressed gauge changes to Rg; + AR and the bridge is unbalanced
(otr # 0). The differential signal (vrr ) indicates the strain resulting from the applied
stress. See Figure 4-75.

Design an OP AMP circuit to translate strains in the range 0 < AL /L <0.02% into
an output voltage in the range 0 V<op <5V, for Rg=120Q and Vrgr=25 V.

SOLUTION:
With external stress applied, the resistance Rg, changes to R, + AR. Applying volt-
age division to each leg of the bridge yields

_ RG2+AR
27 Rg1+ Rg2 + AR
— Ry
B RA +RB

v VREF

01 VREF

The differential voltage (v, — v1) =vrr can be written as

Rgz +AR Ry :|

- = =V, —
v2 VL= VTR REF |:R(;1 + RGZ +AR RA + RB

To achieve bridge balance in the unstressed state, we select Rg1 = Rgy =Ra =Rp =
Rg, in which case the differential voltage reduces to

AR AR AL
—01=01R = VREF |——————| 2 Viep |——| = Vrer | —
V27 U1 = UIR = VREF {41!3G +2AR} REF [4RG} REF {L ]

Thus, the differential voltage is directly proportional to the strain AL /L. However,
for VrRer=25V and AL/L =0.02%, the differential voltage is only (Vrgr) (AL/L)=
25x0.0002 =5 mV. To obtain the required 5-V output we need a voltage gain of 1000:

Strain 0% 0.02%
K= L =1000
T 0 - 0.005

The bias voltage, V4, is zero in this case.
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+VREF = 25 \'

RA=RB=RG1=RG2=1209
§RG1 R §
10 kQ 10 MQ
+ VTR - AN M 0
+ +
§RGZ+AR Rp § 0-5 mV B 0-5V
_ 10 kQ -
AW + 1
N 10 MQ

The OP AMP subtractor is specifically designed to amplify differential signals.
Selecting Ry = R3 =10 kQ and R; = R4 =10 MQ produces an input-output relationship
for the subtractor circuit of

DO = 1000 UTR

Figure 4-76 shows the basic design.

The input resistance of the subtractor circuit must be large to avoid
loading the bridge circuit. The Thévenin resistance looking back into the bridge
circuit is as follows:

Rr=RG1||Rc2 +Ra||Rs
RT =Rg|‘RG +R6||RG
Rr=R5=120Q

This value is small compared with the 10-kQ input resistance of the subtractor’s
inverting input.

DISCUSSION: The transducer in this example is the resistor Rgy. In the unstressed
state, the voltage across this resistor is vy =12.5 V. In the stressed state the voltage is
0, =12.505 V. In other words, the transducer’s 5-mV signal component is accompanied
by a very large bias. We cannot amplify the 12.5-V bias component by K =1000 before
subtracting it out since it will saturate the OP AMP. By using a bridge circuit in which
01 =12.5'V, the bias is eliminated at the input and the OP AMP processes the differen-
tial signal v) —vy =vrr. The situation illustrated in this example is actually quite com-
mon. Consequently, the first amplifier stage in most instrumentation systems is a
differential amplifier that removes the transducer bias. [ |

Exercise 440

Using the circuit shown in Figure 4-76, simulate the effect in Multisim varying the strain
gauge Rg; from 120 Q to 120.1 Q in increments of 0.001 Q. Plot the resulting output versus
percent of stress (AL/L).

Answer: See Figure 4-77.

FIGURE 4-76
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FIGURE 4-77

OUTPUT

Ri1 OPAMP_3T_VIRTUAL
10 MQ

Strain guage instrumentation amplifier

25m

SIS
S »
8 B

8m

Stress in percent (Output)

W
=]

)
3

\} D 3 S 3 9] o Q S \ Q
Q Q Q Q Q Q Q Q Q Q N
\} Q- \R Q- Q- \} \} Q- Q- Q- Q-
OO N N R N O O SRR IR

Strain guage resistance (£2)

APPLICATION EXAMPLE 4-27

Instrumentation amplifiers are used as we have seen to provide signal processing of
gain and bias to transducer outputs in preparation for use in ADC and other output
devices. A well-designed instrumentation amplifier provides very high gain, very
high common-mode rejection ratio, and very high input resistance, among other
more subtle features best left for future study. Using active transducers can be diffi-
cult if they have a high source resistance or a source resistance that varies with the
transducer’s output voltage. A traditional differential amplifier shown in Figure 4-46
has the potential problem of loading the transducer because of its finite input resist-
ance. A better solution is a two-stage configuration using the OP AMP circuit ana-
lyzed in Example 4-20 followed by a differential amplifier, as shown in Figure 4-78.

The instrumentation amplifier consists of two differential amplifiers each with a
potential gain. The first stage acts like a pair of buffers (remove R, and that can
be easily seen) to provide a very high input resistance thereby minimizing loading
problems. The second stage is a common differential amplifier that enables easy
resistance connection to the output. Both stages can have gain. The first stage’s gain
was found in Example 4-20 as K; = %1: + 1, while the second stage has gain K, =K. A

necessary condition for a high-quality instrumentation amplifier is a high common
mode rejection ratio (CMRR). The CMRR of a differential amplifier measures the
ability of the amplifier to reject input signals common to both inputs. A high CMRR
isimportant in applications where the signal of interest, say, the transducer’s small volt-
age change, is superimposed on a larger voltage offset, or when the key information is
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FIGURE 4-78

contained in the voltage difference between two signals. To ensure this quality, the
resistors R must be carefully matched. If not, the gain of one input side over the other
could mask the actual information change desired. Since most instrumentation ampli-
fiers are manufactured on a single semiconductor chip, resistors can be made nearly
identical and, if necessary, laser-trimmed. An interesting and useful feature is that the
resistor R, can be external of the chip and a potentiometer used to vary the gain.
Since this resistance occurs only once in the gain relationship, it does not need to
be carefully matched. The advantages of this two-stage configuration are that the
input has very high input resistance and the two stages can help distribute the gain
if a very high gain is needed. Many commercial manufacturers employ this architec-
ture for their instrumentation amplifiers, such as Analog Devices, Linear Technol-
ogy, Maxim Integrated Products, National Semiconductor, and Texas Instruments.

- <D> Design Exercise 4-41

Design an instrumentation amplifier using the configuration of Figure 4-78 that has a gain

of 10°. Let Ryg =100 Q. Note that no single stage can have a gain greater than 10*. Verify
your solution using Multisim.

Answer: Choose R=10kQ, KR=5MQ, R, =100 Q as one possible solution. See Multisim
simulation in Figure 4-79.

OPAMP _3T_VIRTUAL

Multimeter-xmm1 [0 FIGURE 4-79
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FIGURE 4-80 An OP AMP

comparator.

FIGURE 4-81

ComparaTor CIrRCUITS

A comparator is a mixed-signal device whose digital output is either high or low
depending on the relative amplitudes of two analog inputs. For example, the
open-loop (no feedback) OP AMP circuit in Figure 4-80 functions as a comparator.
In the absence of feedback, the OP AMP is driven into one of its two saturation
modes by the analog inputs vp and vn. Specifically, if vp > vx, the OP AMP is in pos-
itive saturation with vo = + Vc. Conversely, if vp < vy, the OP AMP is in negative
saturation with vg = — V.

In digital logic terminology, the comparator output is said to be a logic high
(1) when vp>vnN and a logic low (0) when vp <vn. The output voltage levels associ-
ated with the high and low states are usually denoted as Vop and Vor, respectively.
These levels are determined by the positive and negative power supply voltages, which
can be different from the £15 V commonly used in linear applications of OP AMPs.
A useful comparator power configuration uses a unipolar supply of 0 and +5 V, which
allows for an immediate interface to digital logic. Although the standard OP AMPs
discussed for linear operation, such as the uA741 studied earlier, can be used in com-
parator applications, they are not ideal for switching between £V ¢ because of the
slow switching times. Comparator families such as the LM111 are designed expressly
for comparator applications.

@ DESIGN EXAMPLE 4-28

A commercial oven that heats a critical product cannot exceed a predetermined tem-
perature. A temperature sensing thermocouple circuit produces a voltage propor-
tional to the oven temperature. The output voltage varies linearly from 0V at 0°C
to 12 V at 1000°C. Design a circuit that will detect when a set temperature is exceeded
and will output 0 V. That output will then shut off the +15-V power to the relay that is
normally ON and controls the 240-V power to the oven. Once the relay trips, it needs
to be reset manually. Figure 4-81(a) shows the diagram of the task.

240 V (ON) or 0 V (OFF)
o3y 5Verov
Oven — Comparator SR Relay
Temp set VRgp
(a)
Vo
N
Oven turned OFF

Oven turned ON
(b) ()
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SOLUTION:

The comparator circuit in Figure 4-81(b) is used to detect whenever the signal
applied to vy goes above a preset voltage that is connected to vp. The preset voltage
is controlled by a potentiometer that outputs 0-15V depending on how it is
set. Whenever the temperature of the oven exceeds the set threshold temperature,
the comparator switches and the relay trips, which turn off the oven. An example
is shown in Figure 4-81(c). The desired maximum temperature Vgigr is set to
produce 10 V. Starting at room temperature the oven heats up the thermocouple cir-
cuit and outputs an increasing voltage viemp. When the temperature in the oven
reaches the set temperature, the comparator outputs 0V and the oven starts to
cool off. |

Exercise 4-42
Find the comparator output voltage in Figure 4-82 for the following:
(a) U1 =2V, 1)2=3V, Vcc=5V

(b) U1 ZOV, Uy = -3 V, VCC =10V

(C) v = —2V, Uy = —3V, VCC =3V

Answers:
(a) vo=0V;(b) v6=10V; (c) vo=3V

Figure 4-83(a) shows a comparator circuit often called a zero-crossing detector.
A time-varying analog signal is applied to the noninverting input [vp=0s(?)],
and the inverting input is connected to ground (vn =0). In this configuration the
comparator output is vo= +Vce when og(¢)>0 and vo=-Vce when vg(f) <0.
Figure 4-83(b) shows plots of the input and output signals versus time for
vs(t)=10sin(zt) V and Ve =15V. In digital logic terms, the comparator output
changes state (toggles) whenever the analog input passes through zero; hence the
name zero-crossing detector. This circuit is also called a polarity detector because
the digital output is high when the polarity of the analog input is positive and low
when the polarity is negative.

A modified version of the zero-crossing detector is shown in Figure 4-84(a).
A time-varying analog signal is still applied to the noninverting input [vp =vs(?)] as
before, and the modification connects a fixed reference voltage to the inverting input
(on=VRgrer). In this configuration the comparator output is vo= +Vcc when
vs(t)>Vgrer and vo=-Vce when vg(f) < Vrgp. In effect the applied reference

vo(?)

ol

10
/\ vs(f)
o +VCC 1 3
0 t
\J 2 4
+ \/
-10

VS(I) ~ VO(I) _VCC

-20

(@ (b)

o +Vce
+
_ +
Vo
Vi V2 _I

FIGURE 4-82

FIGURE 4-83 Zero-crossing
detector: (a) Circuit. (b) Signals.
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FIGURE 4-84 Modified zero-
crossing detector: (a) Circuit.
(b) Signals.
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(b)

voltage shifts the switching threshold from zero to Vggr. Figure 4-84(b) shows how

the threshold shift changes the output signal for vs(z) =10sin(zt) V, Vec =15V,
and VREF =5V.

An analog-to-digital converter (ADC) is a mixed-signal device that

converts an analog input into a multibit digital output. Figure 4-85 is a

VRER block diagram of an ADC with an analog input vs(t), a four-bit digital
output (b1, by, b3, by), and a fixed reference voltage Vrgr. The output bits
can have only one of two values: a high (1) or a low (0). The code used by
these bits to represent the analog input depends on the architecture of

——— MsB the ADC.
The circuit in Figure 4-86(a) is a four-comparator ADC that converts
vs(t) o——=|  ADC : the a}nalog input l{s(l) iqto a four-bit digital output. The analog' input is
applied to the noninverting input of each of the comparators. A fixed ref-
—— > LSB  erence voltage is applied to a voltage divider string. Successive taps on
the voltage divider supply a reference voltage to the inverting input of
ANALOG DIGITAL

FIGURE 4-85 An analog-to-digital

converter (ADC).

the comparators. These reference voltages are all different, and each is
larger than the reference voltage of the comparator immediately below it.

The output of any one comparator is high (1) when the analog input
exceeds its applied reference voltage; otherwise it is low (0). When
vs(t) <0.2 Vrgr, the input is smaller than all of the reference voltages, so the digital
output is (0,0,0,0). When 0.2 Vrgr <vs(f) <0.4 Vrgr, the digital output is (0,0,0,1).
In this range the input exceeds the reference voltage of the lower comparator, so its
output switches to by =1. The outputs of the other comparators remain at zero since
the input is smaller than their reference voltages. When 0.4 Vrgr <vs(f) <0.6 VREF,
the output is (0,0,1,1) because the input exceeds the reference voltages of the bottom
two comparators but not the top two. These observations reveal a pattern that is sum-
marized in Table 4-4.

The circuit in Figure 4-86(a) is called a flash converter because the comparators
operate in parallel and the conversion takes place almost instantaneously. The circuit
divides the input amplitude range into five bins and converts each bin into a unique
four-bit code. The full-scale input range is the voltage range over which the input
amplitude falls within one of the bins (0 to Vrgp in this example). This range can obvi-
ously be increased by increasing the reference voltage. The price of doing so is
reduced resolution, defined as the largest input voltage change that falls entirely
within one bin (0.2 Vrgr in this example). Resolution can be improved by expanding
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the voltage divider string and adding more comparators. Some integrated circuit VREF vs(f)
flash converters have as many as 256 comparators. An example of an eight-bit flash ?
converter is shown in Figure 4-86(b). ;

The pattern of 1s and Os in Table 4-4 is called a thermometer code because ~ R , b
the number of 1s increases monotonically as vs increases, like the way the 0.8VRgFR —°
mercury column in a thermometer increases with temperature. Integrated
circuit flash converters have built-in decoders that convert the thermometer
code into a standard binary code. The flash converter is by far the fastest R§ : by
ADC architecture. 0.6VRrER °
Tasre 4-4 R § - by

Disita Qutpurs 0-4Vker °
Anatoc Ineur Rance b by by b R §
0<vs<0.2 Vrer 0 0 0 0 ] by

0.2Vrer —o

0.2 Vrgr <vs <0.4 VRgr 0 0 0 1
0.4 Vrgr <vs <0.6 VRgr 0 0 1 1
0.6 Vrer <vs <0.8 Vrer 0 1 1 1 R
0.8 Vrer <vs < VREF 1 1 1 1

Exercise 443

The reference voltage in Figure 4-86(a) is Vrer =15 V. What are the output codes cor-

responding to vs =1, 2, 5, 10, and 14 V?

Answers:

(0,0,0,0); (0,0,0,0): (0,0,0,1); (0,1,1,1); (1,1,1,1)

Courtesy of Murata Power

Solutions

SUMMARY

FIGURE 4-86 (a) Flash ADC
diagram. (b) Eight-bit flash ADC IC.

A linear dependent source generates a voltage or a cur-
rent whose value is proportional to a voltage or current
atanother pointin a circuit. There are four such sources:
the current-controlled voltage source, the voltage-
controlled voltage source, the current-controlled cur-
rent source, and the voltage-controlled current source.

Circuits containing dependent sources can be analyzed
by node-voltage or mesh-current methods. Such cir-
cuits can have input-output relationships that produce
voltage, current, or power gain. The presence of feed-
back can dramatically influence the input and output
resistances of active circuits.

The OP AMPis an active device with five terminals called
the inverting input, the noninverting input, the output,
and two power supply terminals. The device is a high-gain
differential amplifier with three possible operating modes:
+saturation, —saturation, and linear. The output predicted

by the linear mode circuit model is compared with known
bounds to determine the actual operating mode.

The ideal OP AMP model has an infinite voltage gain,
an infinite input resistance, and zero output resistance.
The i—v characteristics of an ideal OP AMP are
ip =in =0 and vp =oN. The ideal model is a good work-
ing approximation in linear applications.

The four basic OP AMP circuit building blocks are the
inverting amplifier, the noninverting amplifier, the
inverting summer, and the subtractor. The analysis
or design of complex OP AMP circuits can be based
on these four building blocks provided the intercon-
nections are made between the output of one to the
input of another.

Important applications of OP AMPs include interface
circuits, digital-to-analog converters, instrumentation
systems, and comparator circuits.
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PROBLEMS

OsJective 4—1 Linear Active Circuits (b) Validate your answers by simulating the circuit in
y y g
(Secrs. 4—], aND 4-2) Multisim.

Given a linear resistance circuit containing dependent sources,
find selected output signals, input-output relationships, or
input-output resistances.

See Examples 4-1 to 4-11 and Exercises 4-1 to 4-14. +

Vs Lix ‘ 1004 10 kQ= Vo

33kQ 47kQ 0

4-1 Find the voltage gain vo/vs and current gain io/iy in
Figure P4-1 for r = 10 kQ.

100Q x 500Q o
AN A FIGURE P4-4
+

vs<f> 4000 Z T iy 2kQ S

R Rp Ry
- + + +
FIGURE P4-1 Vg vx vy Ri=
H1vx HaVy
4-2 Find the voltage gain vo /vy and the current gain iq /is in - - S

Figure P4-2. For is = 10 mA, find the power supplied by
the input current source and the power delivered to the FIGURE P4-5
1.5-k€ load resistor.

4-5 Find the voltage gain vo/vs in Figure P4-5.

4-6 Find the voltage gain vo/vs in Figure P4-6.

i o
l ' T 00 '
+ i + Vv,
100 Q io x
? * 90i) ¢ v CD 10kQ Z V0
is <> VI Z100Q L5 kQ Yo
= 20T 9T ]
O
FIGURE P4-6
FIGURE P4-2 ) ) ) o
4-7 Find an expression for the current gainig /is in Figure P4-7.
4-3 Find the voltage gain vo/vs and current gain io/ix in ® io
Figure P4-3 for g =3 x 1073S. For vs = 10V, find the S @ N\
power supplied by the input voltage source and the power i ? T

delivered to the 2-kQ load resistor. Big

+
. . R R
1kQ % s00Q 0 ’s <-> = c

A AW e
+ j +
VsCD 3k v e Z10kQ 2k S =
- - FIGURE P4-7
Hint: Apply KCL at node A.
FIGURE P4-3 (Hint: Apply KCL at node A.)
4-8 (a) Find the voltage vo in Figure P4-8.
1 44 (a) Find the voltage gain vo/vs and current gain io /iy in (b) Validate your answer by simulating the circuit in =~

T Figure P4-4. Multisim.
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1 0_3Vx R S R F
— C >— + Yx - +
1.5kQ 1kQ vs wy RLZv
M °+ _
+
2V 1kQ T 33k v FIGURE P4-11
o— 4-12 Select g in the circuit of Figure P4-12 so that the output
voltage is 10 V.
FIGURE P4-8 1 kO
——WW\e .
[ 4-9 (a) Find an expression for the gain ig /vs in Figure P4-9 in + L5k0
- terms of Rx. 1 mV <+> . = § Yo
(b) Select a value for Rx so that the gain is —0.002. * 8Vx
(¢) Simulate the circuit in Multisim and perform a param- - -

eter sweep on Rx from 10 Q to 10 MQ and using the
cursor to find the required value of Rx. How does your FIGURE P4-12
answer compare with part (b)?

4-13 In the circuit of Figure P4-13, the VCVS has a p of 10, Rs

1kQ Rx io is a 10-kQ resistor and Ry is a 3.3-kQ resistor. Find the value
‘l of the feedback resistor Ry that will cause the gain K =vg/vs
to go to infinity. Is there a value of Ry that will yield K = 2?
A Determine that resistance or explain why not.
- S 10kQ
103 vy 1kQ  Rg
+ Vx — +
FIGURE P4-9 D “Qg v
— v, O
S 3100,
4-10 Find an expression for the voltage gain vo/vs in
Figure P4-10. FIGURE P4-13
&?\/ . 4-14 Find the Thévenin equivalent circuit that the load Ry sees
— v+ + in Figure P4-14. Repeat the problem with R replaced by an
v open circuit.
+ X
Vs C—) } 0Z v
o
FIGURE P4-10

] 411 (a) Find an expression for the voltage gain vo/vs in
- Figure P4-11.
(b) Let Rs = 1kQ, Ry = 1kQ, and p = 200. Find the
voltage gain vp/vs as a function of Rg. Find the volt- FIGURE P4-14
age gain for three values of Rg: o0, 0 Q, and 1 kQ. ] ) ) o
(¢) Simulate the circuit in Multisim and perform a param- 4-15 (a) Find .the Thévenln equivalent circuit that the load Ry
eter sweep on Ry from 10 Q to 10 MQ. Use the cursor sees in Figure 4-15.
to find your output at Rr = 1kQ. How does your (b) Then if Rp=r=Ry =10kQ, Rs=1kQ, and
answer compare with part (b)? vs = 1V, find the power delivered to the load resistor.
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Rs Rp i
] AMAN——2— W, .
lsT + + | |
vs @) s RLZ ig Ry = v« Ro v | Load |
<—l gvx : :
§ S :
Thévenin circuit
FIGURE P4-19

FIGURE P4-15

4-16 Find Ry in Figure P4-16.

s> AN o
R
¥ ¥
'S <_> r W Vis
> o
Ry
FIGURE P4-16

4-17 1f R = 2.2kQ and B = 110 in Figure P4-17, what is the
effect on the input resistance Ry caused by the dependent
source?

i,

FIGURE P4-17

4-18 Find the Norton equivalent circuit seen by the load in
Figure P4-18.

Ry i

—~—
~.
»”
+

Vs Rx § Bix RO 1% E Load E

FIGURE P4-18

4-19 Find the Thévenin equivalent circuit seen by the load in
Figure P4-19.

4-20 Figure P4-20is a dependent-source model of a subtractor. [
Use MATLAB or node-voltage analysis to derive an exact =

expression for the output. Then let p — o and compare
your answer to the expression for the subtractor in
Eq. (4-32) in the text.

R R
VA 1 VB 2 146!
+ +
Vsl v, M Ro Vo
VD R3 - —
- VE - -
Vs2 R4
FIGURE P4-20

4-21 The circuit parameters in Figure P4-21 are Rz = 100 kQ,
Rc =33kQ, p=100,V, =07V, and Vcc = 15V. Find ic
and vcg for vs = 0.5 V. Repeat for vg =4V and 6 V.

Rc
— AW
fe
Ry js» * +
VCE ___V
—— 'CC
N -
Vs —
FIGURE P4-21

4-72 @ The circuit parameters in Figure P4-21 are

Rc =3kQ, p=100, V, =0.7V, and Vcc =5V. Select a
value of R such that the transistor is in the saturation mode
when vg 22 V.

4-23 The parameters of the transistor in Figure P4-23 are
p =100 and V, =0.7V. Find ic and vcg for vs = 0.8 V.
Repeat for vg =2.5V.
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ic 10 kQ +10V
n AW |
. £
+ lLampl \\\
10 kQ __"' Lamp=10V @ 2 W
1 ver 220kQ  — 15V 5
iB \ - E ]
Vs : Digital ; B =50
' VD circuit ] _
: | V,=0.7V
E vwp=5V |
FIGURE P4-23 | Rp =500 Q ; =

4-24 @ When using a transistor as a linear amplifier, it

is important to avoid driving the transistor into either cutoff
or saturation. Since most signals that are amplified are time
varying, the maximum excursions of the time-varying signal
should be known. In this problem, the time-varying signal
is a 3-V sinusoid, vs = 3 cos ot V. To avoid driving the tran-
sistor into cutoff, a dc bias voltage vg;,s is added in series with
the sinusoid. Your task is to select appropriate values for vgias
and Rg. Your choices should be the smallest bias voltage nec-
essary to prevent cutoff and a sufficient base resistor to avoid
saturation. The parameters of the transistor in Figure P4-24
are p = 90and V,, = 0.7 V. After selecting appropriate values
for vgias and Rp, find the maximum and minimum values of
vo for vg = 3 cos ot V.

10 kQ
AN
—— o
Ry N __+
— 15V
Vs \ Vo —
+
VBias
FIGURE P4-24

4-25 An emergency indicator light uses a 10-V, 2-W incandes-
cent lamp. It is to be ON when a digital output is high (5 V).
The digital circuit does not have sufficient power to turn
on the lamp directly. However, as is common practice, a
transistor driver is used as a digital switch. Select Rp in
the circuit of Figure P4-25 so as to drive the transistor into
saturation causing it to act as a short circuit between the
lamp and ground when the digital output is high. The
Thévenin equivalent for the digital circuit is also shown in
the figure.

FIGURE P4-25

OgJsective 4—2 OP AMP Circuit AnaLysis
(Secrs. 4—3 anp 4-4)

Given a linear resistance circuit containing OP AMPs, find
selected output signals or input-output relationships.
See Examples 4-12 to 4-20 and Exercises 4-15 to 4-31.

4-26 Find the voltage gain of each OP AMP circuit shown in
Figure P4-26.

15 kQ 470 kQ
— W M o
+ +
Vs - Vo

+
- @

15 kQ 470 kQ
Wy Wy o
1 '
— - Yo

+ o—t

Vs (b)
FIGURE P4-26

4-71 @ Considering simplicity and standard 10% tolerance

resistors as major constraints, design OP AMP circuits that
produce the following voltage gains +10%: - 150, + 60,
+1,-1,-0.8, + 0.7.

4-28 @ Two OP AMP circuits are shown in Figure P4-28.

Both claim to produce a gain of either £100.
(a) Show that the claim is true.
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(b) A practical source with a series resistor of 1kQ is con-
nected to the input of each circuit. Does the original claim
still hold? If it does not, explain why.

: 1kQ | "IN
| >+ Vo
: E
| | — +
| 1
I : 99 kQ
i l
I 1
: : %1 kQ
Source Circuit 1
100 kQ
M
VIN 1 kQ
>—AMN— Vo
+ +—o
+
Circuit 2
FIGURE P4-28

4-29 @ Suppose the output of the practical source shown in

Figure P4-28 needs to be amplified by —10* and you can use
only the two circuits shown. How would you connect the cir-
cuits to achieve this? Explain why.

1 4-30 (a) Find the voltage gain vo/vs in Figure P4-30. What is

the range of the input that can be amplified without
causing the OP AMP to saturate?
(b) Validate your answers by simulating the circuit in

Multisim.
22kQ  33kQ 330 kQ

>N AW o

+

Vg 47 kQ B Vo

+
VCC =+15V
FIGURE P4-30

4-31 What is the range of the gain vo/vs in Figure P4-31?

1.5kQ 100 kQ 100 kQ

AWV MW AWV 99—
+

‘—I Yo

Vs
+
VCC =+15V
FIGURE P4-31
4-32 Design a simple OP AMP circuit that has a variable

gain from —100 to —5000.

4-33 @ Using only one OP AMP, design a circuit that rea-

lizes the following equation:

Vo = 5V1 -33V

4-34 @ Design a circuit using only one OP AMP that rea-

lizes the following equation:

Vo = —10V1 —O.5V2

4-35 @ Two non-OP AMP circuits need to be connected in

cascade. Explain why using a follower is more useful than
simply connecting the two circuits using wires. Are there
any downsides to using a follower?

4-36 For the circuit in Figure P4-36:
(a) Find vo in terms of vg.
(b) Find ip for vg = 1 V. Repeat for vg = 3 V.

10 kQ
+

) 1
s @) AW .

Vcc=i24V

FIGURE P4-36

4-3] For the circuit in Figure P4-37:
(a) Find vo in terms of vg.
(b) Find ip for vg = 1 V. Repeat for vg =2V



223

PROBLEMS

4-42 The input-output relationship for a three-input inverting
summer is

Vo=— [V1 + 10V2 + 1001/3}

=
=

=

The resistance of the feedback resistor is 100kQ. Find the

10 kQ
Wy ! + values of the input resistors R;, R, and Rj.
Vee=x=18V
vg 150 kQ ce 4-43 Find vo in terms of the inputs vy, v, and v3 in
Figure P4-43.
FIGURE P4-37

v

|
- W
5

4-38 A young designer needed to amplify a 2-V signal by
the factors of 1, 5, and 10. Find the problem with the design
shown in Figure P4-38. Recommend a fix.

90 kQ

3
=

240 kQ v
Vo

=9

10 kQ
W -
+
1 ° AW AW .
25kQ 30 kQ J__
o—+ =
+ VCC =x15V V3
Vs
FIGURE P4-38 -
FIGURE P4-43

(Hint: Use superposition.)
4-44 The switch in Figure P4-44 is open. Find v in terms of
the inputs vs; and vs,. Repeat with the switch closed.

4-39 @ Design two circuits to produce the following out-

put: vo =2v; —4v;.
(a) In your first design, use a standard subtractor.

(b) In your second design, both inputs must be into high

input resistance amplifiers to avoid loading.
15 kQ 60 kQ
4-40 Design a noninverting summer for five inputs with AN\ AN »—o
+
equal gains of 10. ~
. . . +
4-41 For the circuit in Figure P4-41: <_> Vsi Vo
(a) Find vo in terms of the inputs v; and v;. +
(b) Ifv; = 1V, what is the range of values v, can have with- 15 kQ 60 kQ _
out saturating the OP AMP? AV M
50 kQ 50 kQ 100 kQ o
AW AW ° @) ver " o
176) Switch
V1 =
- 50 kQ 50 kQ * -
FIGURE P4-44
— VCC =+15V
V2
4-45 @ Design an OP AMP circuit that realizes the block

FIGURE P4-41

diagram shown in Figure 4-45. Do not use more than two

OP AMPs in your design.
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’ +5 (a) Show thatvy=—-Vryin (1 + R:;Q) if the i—v characteristics
10
of the diode is ip =Io (e"/V7-1).
(b) Using MATLAB plot vo versus vs for Rg=15kQ,
}\ Io=3x10"" A, and V1=0.026 V. Plot your results on
V20 —4 A vo a semilog plot for 107° V<vg<100 V.
+
RS iD + Vp
V3 o —2 /\/\/\, N °
+
Vs
FIGURE P4-45 - Vo
4-46 Design an OP AMP circuit that realizes the block +
diagram shown in Figure 4-46. The OP AMPs that you must —
use have a maximum gain of 3000. =
FIGURE P4-49

Vs o—| 3% 107 — o

FIGURE P4-46
4-47 Find vo in terms of vs; and vs, in Figure P4-47.
Ry Ry
. AN AN o+
— Vo
vsi R
o—AA\—1
Vg2 R2
o—AMAN—
FIGURE P4-47

4-48 @ It is claimed that vo = vs when the switch is closed

in Figure P4-48 and that vo = —vs when the switch is open.
Prove or disprove this claim.

R R
M\ MWy °
+
Vs <i_> R Vo
Sw
FIGURE P4-48

] 449 The circuit in Figure P4-49 has a diode in its feedback

path and is called a “log-amp” because its output is propor-
tional to the natural log of the input.

4-50 (a) Use node-voltage analysis to find the input-output
relationship or K of the circuit in Figure P4-50.

(b) @ Select values for the resistors so that K = —10.

R
o—AA— R, .
+ +
Vs e Yo
FIGURE P4-50

4-51 Use node-voltage analysis in Figure P4-51 to show that
io = —vs/2R regardless of the load. That is, show that the cir-
cuit is a voltage-controlled current source.

2R io
|
+

Coks = k=

Load

+ e
Yo

FIGURE P4-51
4-52 For the circuit of Figure P4-52:

(a) Find the output in terms of v;.
(b) Draw a block diagram for the circuit.
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10 kQ 100 kQ 10kQ 100 kQ 4—56 For the circuit in Flgure P4-56: D
o—W\ Wy oMy Wy . o (a) Find vg in terms of v and the 1-V source. -
+ 33 kO * (b) Prove that the block diagram provides the same output.
V1 - - 176
4 + + (c) @ Redesign the circuit using only one OP AMP.
=3V (d) Validate your design using Multisim.
= = 1kQ 10 kQ
1V <
FIGURE P4-52 oW M 9
1 kQ 10 kQ 20 kQ Vo
Vs + o—M—p—M—p—M—e—>

4-53 For the circuit of Figure P4-53:
(a) Find the output in terms of vs. +
(b) Draw a block diagram for the circuit.

50 kQ

+

FIGURE P4-56

FIGURE P4-53
4-571 @ On a quiz, an instructor asked the students to
4-54 For the block diagram of Figure P4-54: draw a circuit that would realize the block diagram shown
(a) Find an expression for vg in terms of v; and v;. in Figure P4-57.

. . . . . (a) One student drew the circuit shown in Figure P4-57.
(b) @ Design a suitable circuit that realizes the block dia- (b) The instructor noted three problems with the student’s

gram using only one OP AMP. design. Find the problems and correct them.

no—fE— -
%) 0—>+<>+—> —>vo 'S \./ |_| (0]

(a)
50 kQ
FIGURE P4-54
100 kQ 50 kQ o
, _ MN——=
4-55 For the block diagram of Figure P4-55: +
(a) Find an expression for vp in terms of vs and the input Vs 100 k€2
voltage source.
200 kQ
(b) @ Design a suitable circuit that realizes the block — —
diagram using only one OP AMP and the 0.5-V source. (b) -
0.5 Vo—=|-10 FIGURE P4-57

Vg HQ_.b_,,_j . 4-58 @ On an exam, students were asked to design an effi-

cient solution for the following relationship: v, =3v; +15.
Two of the designs are shown in Figure P4-58. Which, if
any, of the designs are correct and what grade would you
FIGURE P4-55 award each student?
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10kQ  10kQ 10 kQ  20kQ 4-61 @ Faced with having to construct the circuit in Figure
Vi P4-61(a), a student offers to build the circuit in Figure
P4-61(b) claiming that it performs the same task. As the teach-
10 kQ ing assistant in the course, do you agree with the stu-
+ 5V 20 kQ dents claim?
—|;— L 10 kQ 20 kQ 20 kQ 20 kQ
= - Mo
(a) + o
Vi — +
10 kQ + L Vo
+ 20 kQ
Y1 10 kQ — 10kQ
L W\
j 5V _ —
;T|; 10 kQ 50 kQ
(b)
FIGURE P4-58

4-59 For the circuit of Figure P4-59:
(a) Find the output v; in terms of the input v;.
(b) Draw a representative block diagram for the circuit.

10 kQ
- .
+
10 kQ 10 kQ
T2V M M
q + 1}(\)/\1;\,9
Vi -
+ — ———O0 V.
o It
AMA————A,
=4 10kQ 10kQ =
FIGURE P4-59

] 4-60 For the circuit of Figure P4-60:

(a) Use node-voltage analysis to find the output vo in terms
of the input vs.

(b) Draw a representative block diagram for the circuit.

(¢) Verify your answer using Multisim.

100 kQ
AN
vy S0KQ vy 150kQ v
—AW, AN + Vo
—o0+V(
= 300 kQ
s (g . v
50 kQ
FIGURE P4-60

(b)
FIGURE P4-61

OsJecTIVE 4—3 OP AMP Circurtr DESiGN AND

Evatuation (Sect. 4=5)

Given an input-output relationship, design resistive OP AMP
circuits that implement the relationship. Evaluate the alterna-
tive designs using stated criteria.

See Examples 4-21 to 4-23 and Exercises 4-32 to 4-34.

4-62

gain of —1000 and an input resistance greater than 5 kQ using
standard 5% resistance values less than 3.3 MQ.

Design a single OP AMP amplifier with a voltage

4-63 Design an OP AMP amplifier with a voltage gain of
4 using only 15-kQ resistors and one OP AMP.

4-64 @ Using a single OP AMP, design a circuit with inputs

vy and v, and an output vo = v, — 5vy. The input resistance
seen by each input should be greater than 1 kQ.

4-65 @ Design a differential amplifier with inputs v; and v,

and an output vo = 100(v, — v;) using only one OP AMP.
All resistances must be between 10 kQ and 1 MQ.

4-66 @ Using no more than two OP AMPs, design an OP

AMP circuit with inputs vy, v, and 100mV and an out-
putvo = -3v; + 2v, - 300 mV.
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4-67 @ Design a two-input noninverting summer that will

produce an output vo = 200 (vi + vy).

4-68 @ Design a three-input noninverting summer that will

produce an output vo = 6 (vi + v2 + 1V).

4-69 @ Design a cascaded OP AMP circuit that will produce

the output vp =5 x 10”vs + 2.5 V. The maximum gain for
an OP AMP is 10,000. The input stage must have an input
resistance of 1kQ or greater.

4-70 <D> Design a cascaded OP AMP circuit that will produce

the following output vp = —-3.5 x 10%vg — 1.5 V. The maxi-
mum gain for an OP AMP is 10,000. The input stage must
have an input resistance of 1 kQ or greater. The only voltage
source available is the +15V used to power the OP AMPs.

47

Figure 4-78 (Example 427), design a circuit that will produce

the output v = 5x 10° (vi = v2). No single OP AMP can
have a gain greater than 5000.

Using the instrumentation amplifier shown in

Design the interface circuit in Figure P4-72 so that

15 mW is delivered to the 100-Q load. Repeat for a 100-kQ
load. Verity your designs using Multisim. Assume that your
OP AMPs have Ve = £15V.

50 Q onnassanan 2o
>— R E--
| Lo+ P>
LV : Int'erfa.ce : vs 500 1)
| circuit
FIGURE P4-72

4-73 @ Design the interface circuit in Figure P4-73 so that
the output is v, = 150v; + 1.5V.

50Q

AWV — —<

: P

,?>_E Interface | 2

T : circuit o S0ke

— 15V T
_____—_I_:___
FIGURE P4-73

4-74 (a) <D> Design a circuit that can produce

vo =2000vTr —2.6 V using two OP AMPs. The input

resistance must be greater than 10kQ for vrr. The
largest resistor you can use is 1 MQ.

(b) Repeat using only one OP AMP. What concession to
the specifications must be made to permit this?

4-75 ® A requirement exists for an OP AMP circuit with

the input-output relationship

Vo= 5V51 —2V32

Three proposed designs are shown in Figure P4-75. As the
project engineer, you must recommend one of these cir-
cuits for production. Which of these circuits would you rec-
ommend for production and why? Do not assume they
all work.

Vs2 1kQ
Circuit 1

2 kQ

Circuit 2
1kQ 5kQ
+
vs2 +
Vo
+ oA MWA—
Vst 2 kQ 1kQ —
Circuit 3
FIGURE P4-75

4-76

deliver 12 V to a 1-kQ load using a 4-V source as an input volt-
age. Two proposed designs are shown in Figure P4-76. Some
characteristics of the OP AMP that must be used in the design
are as follows:

A requirement exists for an OP AMP circuit to

CharACTERISTIC My TvpicaL Max Unirs
Open-loop gain 10° 2 % 10° - V/mV
Input resistance 1010 10! - Q
Output voltage -12 - +15 \%
Output current - - 25 mA

Which of these circuits would you recommend for production and why?
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o } 12 V o } 12 V ,\/2\/1\3
(o Rl i -
4V e 1 kQ 4V e 1 kQ _T_ AN ’ = 1
180 Q 1kQ v + +vo
— L L = L L R
Circuit 1 Circuit 2 2R =
——W—2 v,
FIGURE P4-76 vy
RZ
(Hint: Verify that the circuits perform the required function.) 2R
o—WA——¢ 1
4-71 ® A particular application requires that an instru- ‘j;
mentation interface delivers vo=200vrr—5V£2% to a R §
DAC. The solution currently in use requires two OP AMPs 2R
and is constantly draining the supply batteries. A young engi- _j’_—/\/\/\/—' Ve
neer designed another tentative solution using just one OP vy
AMP shown in Figure P4-77. As her supervisor, you must 2R
determine if her design meets the specifications.
630 kQ —
20 kQ 33kQ FIGURE P4-80
W 4-81 A fifth bit is added to the R-2R DAC shown in Figure
+ 1000 " ¥ P4-80. What is the maximum possible magnitude of the out-
5VC I Vs put voltage? What is the resolution of the revised DAC?
= To DAC
= i 3.3 kQ © 4-82 @ A Chromel-Constantan thermocouple (curve E) has
+ the characteristics shown in Figure P4-82. Design an interface
VIR § 680 kO that will produce a —5-V to +5-V output where —5 V refers to
0°C and +5V refers to 1000°C. The transducer can be mod-
£ eled as a voltage source in series with a 15-Q resistor.
FIGURE P4-77 “ mv
70 ,/
Osyective 4—4 OP AMP Circurt AppLicaTiONS /
(Sect. 4-6) 60
Apply concepts of OP AMP analysis and design to create, ana- /
lyze, or evaluate circuits that perform a specific interface, func- ~ 50 B/
tion, or task. E j
See Examples 4-24 to 4-28 and Exercises 4-35 to 4-43. = 40 / P
= 4
= K
4-78 The analog output of a five-bit DAC is 2.97 V when the § // b
input code is (1, 0, 0, 1, 1). What is the full-scale output of A 30 va
the DAC? How much does the analog output change when / /
the input LSB changes? 20 // / T yd
4-79 The full-scale output of a six-bit DAC is 10.0 V. What is / / =
the analog output when the input code is (0, 1, 0, 1, 0, 1)? 10 /// R——=
What is the resolution of this DAC? / S
(m—

4-80 An R-2R DAC is shown in Figure P4-80. The digital vol-
tages vi, v, etc., can be either 5V for a logic 1 or 0V for a
logic 0. What is the DAC’s output when the logic input is
(0,1,01)?

0
0 100 200 300 400 500 600 700 800 900 1000
Cold-hot junctions temperature gradient (°C )

FIGURE P4-82
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4-83 @ A Chromel-Alumel thermocouple (curve K in  4-86 @Amedical grade pressure transducer has been devel-

Figure P4-82) is used to measure the temperature of an elec-
tric oven used in the semiconductor industry. Design an inter-
face that will produce a 0-V to 6-V output where 0 V refers to
200°C and 6 V refers to 1200°C (assume a straight line out to
1200°C). The transducer can be modeled as a voltage source
in series with a 500-Q resistor.

4-84 @ An analog accelerometer produces a continuous

voltage that is proportional to acceleration in gravitational
units or g. Figure P4-84 shows the characteristics of the accel-
erometer in question. The black curve is the actual character-
istics; the colored curve is an acceptable linearized model.
Design an instrumentation system that will output —10V
for —2g and +10V for 2g. Note that this accelerometer has
an output resistance of 32 kQ.

5
45
4 e
3.5 -
3 7
25
2
1.5 P
1 gz
0.5

0
-3.0 2.0 -1.0 0.0 1.0 2.0 3.0
8

FIGURE P4-84
4-85 @ A small pressure transducer has the characteristics

Volts

shown in Figure P4-85. Design an interface that will operate
between 10 and 30 psi. An input of 10 psi should produce 0 V
and 30 psi should produce +5 V. The transducer is modeled
as a voltage source in series with a 500-Q resistor that can vary
£75 Q depending on the pressure. The OP AMPs you must
use have a maximum closed-loop gain of 2000. Your only
available bias source is the £15V ¢ supply.

V(uV)
1200

1000

800
N
600

400

200

0 T T T T T T T T
AN O 9 PP
Pressure (psi)

DN

FIGURE P4-85

oped for use in invasive blood pressure monitoring. The output
voltage of the transducer is vrr = (0.06P — 0.75) mV, where
P is pressure in mmHg. The output resistance of the trans-
ducer is 1kQ. The blood pressure measurement is to be an
input to an existing multisensor monitoring system. This sys-
tem treats a 1-V input as a blood pressure of 20 mmHg and a
10-V input as a blood pressure of 200 mmHg. Design an OP
AMP circuit to interface the new pressure transducer with the
existing monitoring system.

4-87 @ The acid/alkaline balance of a fluid is measured by

the pH scale. The scale runs from 0 (extremely acid) to
14 (extremely alkaline), with pH 7 being neutral. A pH
electrode is a sensor that produces a small voltage that is
directly proportional to the pH of the fluid in a test chamber.
For a certain pH electrode, the proportionality factor is
50mV/pH. A preamplifier is needed to interface this sensor
with a variety of laboratory instruments. The output of the
preamp must be 1V when the sensor is immersed in a test
solution with pH = 4 and 1.75V when it is immersed in a
solution with pH = 7. Design an amplifier to meet these
requirements.

4-88 @ A photoresistor varies from 10 Q in bright sunlight

to 500 kQ in total darkness. Design a suitable circuit using the
photoresistor so that total darkness produces 0V, while
bright sunlight produces -5V, regardless of the load. You
have a 5-V source and a +15-V source to power any OP
AMP you may need.

4-89 @ Your engineering firm needs an instrumentation

amplifier that provides the following input-output relationship:
vo =10%vtr —3.5 V. The transducer is modeled as a voltage
source in series with a resistor that varies with the transducer
voltage from 40 Q to 750 Q. A vendor is offering the amplifier
shown in Figure P4-89, and the vendor agrees to make a sin-
gle change to the amplifier, if needed, for no cost. Would you
recommend buying it? Explain your rationale.

Cost $75 each

Instrumentation Amplifier Model 54

FIGURE P4-89
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4-90 @ Your supervisor drew Figure P4-90 on the back of

an envelope to show you what he expects as an output to a
signal that varies between +5V. Design a suitable comparator
circuit to achieve his expectation.

5 pormnnnannes e S

O
<
i
|

FIGURE P4-90

4-91 @ A rocket design team has a need to detect the tem-

peratures in a rocket motor. The combustion chamber is
that part of a thrust chamber where the combustion
of the propellant takes place. The combustion temperature
is much higher than the melting points of most chamber
wall materials and reaches a temperature of 3000 K. There-
fore, it is necessary either to cool these walls or to stop
rocket operation before the critical wall areas become
too hot. If the heat transfer is too high and thus the wall
temperatures become locally too high, the thrust chamber
will fail. The most critical wall regions are at and near
the nozzle throat and at the nozzle exit. There are two
thermocouples located in a rocket engine, namely, one
at the throat and the other at the end of the nozzle exit.
Your task is to design an emergency shutoff of the
rocket engine if either temperature exceeds 600 K. Shutoff
is done by sending a 5-VDC signal to a fuel controller
that will immediately stop the flow of fuel and abort
the rocket. Use a unipolar comparator powered by a
0- and 5-V supply. Set the comparator reference voltage
at 600Kas1V. Use the R-type thermocouple shown in
Figure P4-91 because of its superior accuracy and stability,
especially in a reducing environment as is found in rocket
engines.
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FIGURE P4-91

4-92 The OP AMP in Figure P4-92 operates as a comparator.

Find the output voltage when vs =5V. Repeat for
Vs = -3V and Vs = 12V.

+15V
2R R
+ +
Vo
Vs
FIGURE P4-92

4-93 The circuit in Figure P4-93 has Vcec = +5V and

vN = —3V. Sketch the output voltage vo on the range
0=<t=<2sforvs(t) =4sin(2nr) V.

+5V

+

— 3V
T

vs(?)

FIGURE P4-93

4-94 A five-bit flash ADC in Figure P4-94 uses a reference

voltage of 5V. Find the output code for the analog inputs
vs = 3.5V,2.3V,and 4.9 V. If the reference voltage is chan-
ged to 8 V, which of these codes would change?
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VREF Vs

FIGURE P4-94

| NTEGRATING PROBLEMS
4-95 @ Bipolar Power Supply Voltages

The circuit in Figure P4-95 produces bipolar power
supply voltages Vpos > 0 and VNeg < 0 from a floating
unipolar voltage source Vggp > 0. Note that the OP
AMP output is grounded and that its + V¢c and — V¢
terminals are connected to Vpos and Vngg, respectively.

(a) Show that Vpos = +VREF/2 and VyNgg = _VREF/2
even if the load resistors Rpos and Rxgg are not equal.

(b) If Rpos and Rngg are not equal, a current ig must flow
into or out of ground. How does the ungrounded voltage
source Vgrgr supply this ground current?

(¢) Ineffect, the OP AMP creates a “virtual ground” at point
A (VA = 0) but draws no current in doing so. Why not
just connect point A to a “real ground” and do away with
the OP AMP?

I ? Vpos

Vi J:§R § Rpos
VREF — @'—+ ig_» llﬁ !
) g R [V 1 f

V2

Vee

+

RNEG

—Vee T

© VNEG

FIGURE P4-95

4-96

There is a need to design a thermometer that can read from
30°C to 300°C to monitor the temperature of an Unmanned
Aerial Vehicle’s (UAV) power supply. The output will feed a
0-V to 5-V ADC prior to transmission of the temperature data
to the ground. A reading of 30°C will deliver 0V to the ADC,
while 300°C will deliver 5 V. Select an appropriate thermocou-
ple with sufficient voltage spread from Figure P4-82 and design
the instrumentation amplifier. Other criteria are as follows: the
transducers have a 15-Q series resistance; the fewer OP AMPs
the better; since power is limited, the maximum OP AMP gain is
1000; and the bias voltage, if needed, must be from the available
15-V supply.

4-97 @ High Bias Design Problem

A particular pressure sensor is designed to operate under con-
stant pressure. The task is to detect a pressure increase and
sound an alarm. The sensor produces 1 mV at 100 psi, its usual
operating pressure, and increases by 1 pV/psi. The design must
sound an alarm if the pressure reaches 150 psi. The transducer
is modeled as a voltage source with a series resistor that varies
with pressure from 50 Q at 100 psi to 150 Q at 150 psi. Two types
of OP AMPs are available. Type 1 are single-sided, meaning
they have a + Vccof 5Vanda — Ve of 0 V. Type 2 OP AMPs
are double-sided with a V¢ of 15V and have a maximum
closed-loop gain of 5000. The alarm can be driven with the
+5-V available from a saturated type 1 OP AMP. Only
+15-V and +5-V sources are available. Design the alarm
circuit.

Thermometer Design Problem

4-98 @ Weathervane Azimuth Detection

A weathervane turns with the wind direction. The base of the
weathervane is connected to a rotary potentiometer without
stops, that is, the potentiometer turns from 0 Q to 10 kQ linearly
clockwise, but jumps to 0 after the maximum resistance is
reached and would continue toward 10kQ if the weathervane
continues to rotate clockwise. The need is to output the voltage
from the potentiometer to comparators that will light 2-VDC
LEDs. Each LED will correspond to a wind direction, N, NE,
E, SE, etc. Set North at 1V (hence it should always be ON as
long as the system is ON) and NW at 8 V. As the vane turns
clockwise from N to NW, additional LEDs come on. If the vane
turns counterclockwise, the LEDs go off as it turns. You have
available a 15-VDC supply.

4-99 @ Current Switching DAC

The circuit in Figure P4-99 is a four-bit DAC. The
DAC output is the voltage vp and the input is the binary
code represented by bits by, by, b3, and by. The input bits
are either 0 (low) or 1 (high), and each controls one of the
four switches in the figure. When bits are low, their
switches are in the left position, directing the 2R leg cur-
rents to ground. When bits are high, their switches move
to the right position, directing the 2R leg currents to the
OP AMP’s inverting input. The 2R leg currents do not
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change when switching from left to right because the
inverting input is a virtual ground (vN = vp = 0). The
purpose of this problem is to show that this constant-
current switching produces the following input-output
relationship.

(a) Since the inverting input is a virtual ground, show that the
currents in the 2R legs are i1 = Vrgr/2R, i; = VRer/4R,
i3 = VrRer/8R, and iy = Vrer/16R, regardless of switch
positions.

(b) Show that the sum of currents at the inverting input is

blil + bziz + b3i3 + b4i4 + lF =0
where bits by (k = 1, 2, 3, 4) are either 0 or 1.

(¢) Use the results in parts (a) and (b) to show that the OP

AMP output voltage is

b b b
VO:__VREF(b1+72+ZS+§4)

£

Virtual ground /
+

FIGURE P4-99
4-100 OP AMP Circuit Analysis and Design

(a) @ Find the input-output relationship of the circuit in
Figure P4-100.

(b) @ Design a circuit that realizes the relationship found
in part (a) using only 10-kQ resistors and one OP AMP.

R 2R R R
o—W\ AMN—rs A A\ o
+ 1AR +
V1 + Vo

V2
1
AWV A
R 2R

FIGURE P4-100

4-101 @ Instrumentation Amplifier with Alarm

Strain gauges measuring the deflection of a sintered metal col-
umn are connected to a Wheatstone bridge. The output of the
bridge is balanced when there is no strain producing 0 V output.
As the column is deflected, the bridge produces 150 pV/Q
change caused by the strain gauges. The maximum possible
defection would result in a 4-Q change. Design an instrumenta-
tion amplifier that can take the voltage created in the bridge and
send it to a 0-5V ADC, where no deflection produces 0V at
the ADC and maximum deflection produces 5 V. To avoid load-
ing, send the output of the bridge to a very high input resistance
differential amplifier. The columns being tested are brittle and
can shatter violently if the conditions cause the strain gauges to
change by more than 3.9 Q. For safety, connect the output of
your instrumentation amplifier to a comparator circuit that will
trigger an alarm when the strain causes the resistance to change
by 3.75 Q. The alarm needs to be triggered by 15 V.

4-102 @ Resistance Temperature Transducer

100 Q VTR
v +
V= Az -
= 25V
=+
Il
L "Too0a 6000
Circuit 1
Rrg vrr 600 Q 1/\/1\(/;;
AV =
* +
S5V — 10003 * Vo
- 25V
1
il
Circuit 2

FIGURE P4-102

A resistive transducer uses a sensing element whose resistance
varies with temperature. For a particular transducer, the resist-
ance varies as Ryr = 0.375T + 100 Q, where T is temperature
in °C. This transducer is to be included in a circuit to measure
temperatures in the range from —200°C to 800°C. The circuit
must convert the transducer resistance variation over this tem-
perature range into an output voltage in the range from 0 V to
5 V. Two proposed circuit designs are shown in Figure P4-102.
Which of these circuits would you recommend for production
and why? (Hint: First verify that the circuits perform the
required function.) Use Multisim to verify your results.
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Under the sea, under the sea mark how the telegraph motions to me. Under the sea, under the sea signals are coming along.

James Clerk Maxwell, 1873,
Scottish Physicist and
Occasional Humorous Poet.

Some History Behind This Chapter

James Clerk Maxwell (1831-1879) is considered the unify-
ing founder of the mathematical theory of electromagnetics.
This genial Scotsman often communicated his thoughts to
friends and colleagues via whimsical poetry. In the short
excerpt given above, Maxwell reminds us that the purpose
of a communication system (the submarine cable telegraph
in this case) is to transmit signals and that those signals must
be changing, or in motion as he put it.

Why This Chapter Is Important Today

Up to this point we have only treated dc signals that are time
invariant. These constant signals are a logical place to begin
the study of circuit analysis and design. However, to carry
information, signals must change, otherwise they keep telling
us the same thing over and over again. This chapter intro-
duces the three basic, time-varying signals used in the anal-
ysis and design of linear circuits.

The chapter also demonstrates how signals can be combined
to create more complex signals. Finally, we look at key,
though partial, properties of signals that allow us to determine
how they might perform without describing the complete
signal.

Chapter Sections

5-1 Introduction

5-2 The Step Waveform

5-3 The Exponential Waveform
5-4 The Sinusoidal Waveform
5-5 Composite Waveforms

5-6 Waveform Partial Descriptors

Chapter Learning Objectives

5-1 Basic Waveforms (Sects. 5-2, 5-3, and 5-4)

Given an equation, graph, or word description of step, ramp,

exponential, or sinusoid waveforms:

(a) Construct an alternative description of the waveform.

(b) Find the parameters or properties of the waveform.

(c) Construct new waveforms by integrating or differen-
tiating the given waveform.

(d) Generate the basic waveforms in MATLAB or Mul-
tisim and use them appropriately to solve problems
or simulate circuits. (See Web Appendix D).

5-2 Composite Waveforms (Sect. 5-5)

Given an equation, graph, or word description of a composite

waveform:

(a) Construct
waveform.

an alternative description of the

(b) Find the parameters or properties of the waveform.

(c) Generate the composite waveforms in MATLAB or
Multisim and use them appropriately to solve pro-
blems or simulate circuits. (See Web Appendix D).

5-3 Waveform Partial Descriptors (Sect. 5-6)

Given a complete description of a basic or composite
waveform:

(a) Classify the waveform as periodic or aperiodic and
causal or noncausal.

(b) Find the applicable partial waveform descriptors.

(© se appropriate software tools to calculate applicable
Use appropri f 1 Icul pplicabl
partial waveform descriptors (See Web Appendix D).

233
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w(t)

Vo

0

FIGURE 5-1 A constant or dc
waveform.

v(1)

Step

(1)

Exponential

5-1 INTRODUCTION

We normally think of a signal as an electrical current i(¢) or voltage v(¢). The time
variation of the signal is called a waveform. More formally,

A waveform is an equation or graph that defines the signal as a function of time.

Up to this point our study has been limited to the type of waveform shown in
Figure 5-1. The three dots at the start of the waveform indicate that the waveform
is unchanged from the beginning, while the three dots at the end imply that it will
remain the same forever. Waveforms that are constant for all time are called dc sig-
nals. The abbreviation dc stands for direct current, but it applies to either voltage or
current. Mathematical expressions for a dc voltage o(¢) or current i(¢) take the form

um:w}

for —oo <f< o0 (5-1)
i (l ) =1
This equation is only a model. No physical signal can remain constant forever. It is a
useful model, however, because it approximates the signals produced by physical
devices such as batteries.

There are two matters of notation and convention that must be discussed before
continuing. First, quantities that are constant (non-time-varying) are usually repre-
sented by uppercase letters (Va, I, To) or lowercase letters in the early part of
the alphabet (a, b7, fy). Time-varying electrical quantities are represented by the low-
ercase letters i, v, p, g, and w. The time variation is expressly indicated when we write
these quantities as vy (¢), ia (f), or we(t). Time variation is implicit when they are writ-
ten as vy, ia, O Wc.

Second, in a circuit diagram, signal variables are normally accompanied by the ref-
erence marks (+, —) for voltage and (—) for current. It is important to remember that
these reference marks do not indicate the polarity of a voltage or the direction of cur-
rent. The marks provide a baseline for determining the sign of the numerical value of
the actual waveform. When the actual voltage polarity or current direction coincides
with the reference directions, the signal has a positive value. When the opposite
occurs, the value is negative. Figure 5-2 shows examples of voltage waveforms,

v(t) v(t) v(t)

===

-~
-
~

.

Al

Sinusoid Pulse train Square wave

/\ 0 V(1)
/\ ~~ " : *\ /\ /\ '

Damped sinusoid Sawtooth Triangular wave

FIGURE 5-2 Some example waveforms.
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including some that assume both positive and negative values. The bipolar wave-
forms indicate that the actual voltage polarity is changing as a function of time.

The waveforms in Figure 5-2 are examples of signals used in electrical engineer-
ing. Since there are many such signals, it may seem that the study of signals involves
the uninviting task of compiling a lengthy catalog of waveforms. However, it turns out
that a long list is not needed. In fact, we can derive most of the waveforms of interest
using just three basic signal models: the step, exponential, and sinusoidal functions.
The small number of basic signals illustrates why models are so useful to engineers. In
reality, waveforms are very complex, but their time variation can be approximated
adequately using only a few basic building blocks.

Finally, in this chapter we will focus on the use of voltage v(¢) to represent a signal
waveform. Remember, however, that a signal can be either a voltage v(¢) or cur-
rent i(t).

5-2 THEe STep WAVEFORM

The first basic signal in our catalog is the step waveform. The general step function is
based on the unit step function' defined as

0 forr<O
u(t):{ ort<

(5-2)
1 fort=0

The step function waveform is equal to zero when its argument ¢ is negative, and is
equal to unity when its argument is positive. Mathematically, the function u(z) has a
jump discontinuity at r=0.

Strictly speaking, it is impossible to generate a true step function since signal vari-
ables like current and voltage cannot jump from one value to another in zero time.
Practically speaking, we can generate very good approximations to the step function.
What is required is that the transition time be short compared with other response
times in the circuit. Actually, the generation of approximate step functions is an eve-
ryday occurrence since people frequently turn things like TVs, stereos, computers
and lights on and off.

Figure 5-3(a) shows how a step might be physically constructed on a circuit dia-
gram. It is assumed that the transition from off to on occurs instantaneously at the
time the switch is thrown, that is, at # = 0 in the figure. The same process is shown more
compactly in Figure 5-3(b).

On the surface, it may appear that the step function is not a very exciting waveform
or, at best, only a source of temporary excitement. However, the step waveform is a
versatile signal used to construct a wide range of useful waveforms. Multiplying u(t)
by a constant V5 produces the waveform

Vault) :{ 0 fort<0 (5-3)
Va fort=0
Replacing ¢ by (t—Ts) produces a waveform Vu(t—Ts), which takes on the values
VAu(t—Ts)z{ 0 fort<Ts (54
Va fort=Ts

The amplitude V5 scales the size of the step discontinuity, and the time-shift
parameter Ts advances or delays the time at which the step occurs, as shown

The step function is also referred to as a Heaviside function, after Oliver Heaviside, English elec-
trical engineer (1850-1925). In MATLAB, a step function u(z) is entered as “heaviside(t)”.

Vi OFF

Vau(t)

(b)
FIGURE 5-3

(a) Approximation to a step
function. (b) Typical
representation.
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FIGURE 5-4 Effect of time v(t) (1) v(t)
shifting on the step function Te<O Te=0 Te>0
waveform. S 5= S
Va Va p——— Val---1
t t t

—Tg 0 0Ty 0 Ts

v(t) = Vault + Ts) V(1) = Vau(t) v(t) = Vau(t - Tg)
v (V) in Figure 5-4. The step function transitions when the value of  makes the argument of

s the function equal to zero. For example, the function v(f)=5u(t+6) V shifts+5

voltsatr=—6s,and i() =2 u(¢t—1)mA shifts + 2 mA at r=1s.

0 ‘ L (L Amplitude gnd time-shift parameters are required to def.ine the general step fupc—
01 2 3 4 5 7 tion. The amplitude V4 carries the units of volts. The amplitude of the step function

in electric current is /5 and carries the units of amperes. The constant 7 carries the

Sr units of time, usually seconds. The parameters V5 (or I5) and Ts can be positive,
@ negative, or zero. By combining several step functions, we can represent a number
(o) (V) of important waveforms. One possibility is illustrated in the following example:
3u(t-1)
3 EXAMPLE 5-1

Express the waveform in Figure 5-5(a) in terms of step functions.

SOLUTION:

A w3 S The amplitu.de of the pulse jumps to a value of 3 V atr=1s; therefore, 3u(r—1) is part
of the equation for the waveform. The pulse returns to zero at =3 s, so an equal and
opposite step must occur at r=3s. Putting these observations together, we express
FIGURE 5-5 the rectangular pulse as

o(t)=3u(t-1)-3u (t-3)V

Figure 5-5(b) shows how the two step functions combine to produce the given
rectangular pulse. [ |
v(n) (V)

A Exercise 5-1
10

Write an expression using unit step functions for the waveform in Figure 5-6.

Answer: o(t) =10u(t +2) - 15u(t-2) + Su(t-4)V

= 1(S)

-2 2 | 4
5 beeeen

FIGURE 5-6

THe ImpuLse Function

The generalization of Example 5-1 is the waveform
o(t) =Valult-T)-u(t-T,)|V

This waveform is a rectangular pulse of amplitude V4 that turns on at = 77 and off at
t=T,. The pulse train and square wave signals in Figure 5-2 can be generated by a
series of these pulses. Pulses that turn on at some time 77 and off at some later time 7,
are sometimes called gating functions because they are used in conjunction with elec-
tronic switches to enable or inhibit the passage of another signal.

A unit-area pulse centered on =0 is written in terms of step functions as

u(t):% {u(mg)—u(t—gﬂv (5-5)
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The pulse in Eq. (5-5) is zero everywhere except in the range — T/2<¢< T /2, where its
value is 1/T. The area under the pulse is 1 because its scale factor is inversely propor-
tional to its duration. As shown in Figure 5-7(a), the pulse becomes narrower and
higher as 7" decreases but maintains its unit area. In the limit as 7' — 0 the scale factor
approaches infinity but the area remains 1. The function obtained in the limit is called a
unit impulse,” symbolized as &(¢). The graphical representation of (¢) is shown in
Figure 5-7(b). The impulse is an idealized model of a large-amplitude, short-duration
pulse.
A formal definition of the unit impulse is

t
8(t)=0fort £0 and / 5(x)dx = u(f) (5-6)
The first condition says the impulse is zero everywhere except at t=0. The second
condition suggests that the unit impulse is the derivative of a unit step function:

dul(t)

The conclusion in Eq. (5-7) cannot be justified using elementary mathematics since
the function u(¢) has a discontinuity at =0 and its derivative at that point does not
exist in the usual sense. However, the concept can be justified using limiting condi-
tions on continuous functions, as discussed in texts on signals and systems.® Accord-
ingly, we defer the question of mathematical rigor to later courses and think of the
unit impulse as the derivative of a unit step function. Note that this means that the
unit impulse 8(¢) has units of reciprocal time, or s™!.

An impulse of strength K is denoted v(f) = K5(¢). Consequently, the scale factor K
has the units of V-s and is the area under the impulse K8(¢). In the graphical repre-
sentation of the impulse the value of K is written in parentheses beside the arrow, as
shown in Figure 5-7(b).

EXAMPLE 5-2
Calculate and sketch the derivative of the pulse in Figure 5-8(a).

SOLUTION:
In Example 5-1 the pulse waveform was written as
o(t) =3u(t-1)-3u(t-3)V
Using the derivative property of the step function, we write
do(t)
dt
The derivative waveform consists of a positive-going impulse at =1 s and a negative-
going impulse at r=3s. Figure 5-8(b) shows how the impulse train is represented

graphically. The waveform v(¢) has the units of volts (V), so its derivative dv(t)/dt
has the units of V/s.

=38(t-1)-38(t-3)V/s

@ Evaluation Exercise 5-2

Figure 5-9 purports to be an alternative description of an impulse function as € — 0. Prove
or disprove the claim.

>The unit impulse is also referred to as the Dirac delta, after Paul Dirac, the British physicist who
introduced it.

*For example, see Alan V. Oppenheim and Allan S. Willsky, Signals and Systems Analysis (Engle-
wood Cliffs, N.J.: Prentice Hall, 1983), pp. 22-23.
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Vo Answer: From the figure, the area of the triangle is 1(2¢)(1/€) =1. As e — 0, the base of
y the triangle shrinks to zero but the amplitude grows to infinity. Yet the area always remains
y at 1. Hence, this is equivalent to the definition of an impulse and proves the claim.
s 0 . © THe Ramp Funcrion
The unit ramp is defined as the integral of a step function:
FIGURE 5-9

(1)

(a)

Kr([—Ts)
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FIGURE 5-10 (a) Unit ramp
waveform. (b) General ramp
waveform.
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t

r(1) :/ u(x)dx =tu(t) (5-8)
The unit ramp waveform r(¢) in Figure 5-10(a) is zero for <0 and is equal to ¢ for
t>0. Notice that the slope of r(¢) is 1 and has the units of time, or s. A ramp of strength
K is denoted v(t) = Kr(t), where the scale factor K has the units of V/s and is the slope
of the ramp. The general ramp waveform shown in Figure 5-10(b), written as
o(t)=Kr(t—Ts), is zero for t<Ts and equal to K(t—Ts) for t=Ts. By adding a
sequence of ramps, we can create the triangular and sawtooth waveforms shown
in Figure 5-2.

SINGULARITY FUNCTIONS

The unit impulse, unit step, and unit ramp form a triad of related signals that are
referred to as singularity functions. They are related by integration as

u(t) = /[ d(x)dx

. (5-9)
r(t) = / u(x)dx
or by differentiation as
5(1) = dul(t)
i (5-10)
() = dr(t)
=

These signals are used to generate other waveforms and as test inputs to linear systems
to characterize their responses. When applying the singularity functions in circuit anal-
ysis, it is important to remember that u(¢) is a dimensionless function. Egs. (5-9) and
(5-10) point out that 8(¢) carries the units of s=! and r(¢) carries units of seconds.

EXAMPLE 5-3
Derive an expression for the waveform for the integral of the pulse shown in
Figure 5-11(a).

SOLUTION:
In Example 5-1 the pulse waveform was written as
o(t) =3u(t-1)-3u(t-3)V

Using the integration property of the step function, we write
t
/ o(x)dx = 3r(t—1)~3r(-3)

The integral is zero for t<1s. For 1<t<3 the waveform is 3(¢z—1). For >3 it is
3(t—1)-3(t—3)=6. These two ramps produce the pulse integral shown in
Figure 5-11(b). The waveform o(¢) has the units of volts (V), so the units of its
integral are V-s. u
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Exercise 5-3

Write an expression using ramp functions to describe the waveform shown in Figure 5-12.

Answer: o(t)=r(t+1)-2r(t-1)+r(t-3)V

EXAMPLE 5-4

Figure 5-13(a) shows an ideal electronic switch whose input is a ramp 2r(¢), where the
scale factor K =2 carries the units of V/s. Find the switch output v (¢) when the gate
function in Example 5-1, shown in Figure 5-13(b), is applied to the control terminal
(G) of the switch.

SOLUTION:
In Example 5-1 the gate function was written as
oG (1) =3u(t-1)-3u(t-3)V
The gate function turns the switch on at# =1 s and off at =3 s. The output voltage of
the switch is
0 r<1
2t 1<t<3
0 3<«t

vo(t) =

Note that the amplitude of the gate function does not influence the magnitude of the
output voltage, since it only controls the position of the switch.

Only the portion of the input waveform within the gate interval appears at the out-
put. Figures 5-13(b), 5-13(c), and 5-13(d) show how the gate function vg(¢) controls
the passage of the input signal through the electronic switch.

This waveform can be written as a sum of singularity functions as follows. First we
write vo(f) in terms of a gate function:

0o (1) =2tu(t—1)—u(t-3)]

Gate function
We then manipulate this equation as follows:
vo(t) = 2tu(t-1)-2tu(t-3)
=2(t=1+Du(t-1)-2(t=3+3)u(t-3)
=2(t=Du(t-1) +2u(t-1)-2(t-3)u(t-3) —6u(t-3)

r(t-1) r(t=3)
So finally,
vo(t)=2r(t=1)+2u(t—-1)-2r(t-3)—6u(t-3)
which describes the gated ramp in terms of step and ramp waveforms. |

Exercise 54

Express the following signals in terms of singularity functions:

0 t<2 0 t<2
(a)vi(t)= 4 2<t<4  (b)vy(t)= 4 2<t<4
-4 4<t =2t+12 4<t

@u)= [ widr @)=

v(®) (V)

FIGURE

> Control

ouT

vg(1) (V)

| | | £(s)

Le 1(s)

Lo 1(s)

(d)

FIGURE 5-13
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Answers:

(a) v1(r) =4u(t-2)—8u(t-4)  (b) va(t)=4u(t-2)-2r(t-4)
(©) v3(t) =4r(t-2)-8r(t-4)  (d) va(t) =48(t-2) ~2u(t—4)

5-3 THE ExroNENTIAL WAVEFORM

The exponential waveform is a step function whose amplitude factor gradually
decays to zero. The equation for this waveform is

o(t) = {VAe"/ TC] u(t) (5-11)

v(@®) (V) A graph of v(t) versus ¢/ T¢ is shown in Figure 5-14. The exponen-
tial starts out like a step function. It is zero for <0 and jumps to a
maximum amplitude of V5 at t=0. Thereafter it monotonically
decays toward zero as time marches on. The two parameters that
define the waveform are the amplitude V4 (in volts) and the time
constant 7¢ (in seconds). The amplitude of a current exponential
would be written /o and carry the units of amperes.

The time constant is of special interest, since it determines the rate
at which the waveform decays to zero. An exponential decays to

i
i

0 > 3 4 5 7.  about36.8% of its initial amplitude v(0) = V4 in one time constant,
because att=Tc, v(Tc) = Vae™!, or approximately 0.368 x Vo. At
FIGURE 5-14 The exponential waveform. t=5Tc, the value of the waveform is Ve, or approximately

0.00674 V . An exponential signal decays to less than 1% of its ini-
tial amplitude in a time span of five time constants. In theory, an exponential endures
forever, but practically speaking after about 57 the waveform amplitude becomes
negligibly small. We define the duration of a waveform to be the interval of time out-
side of which the waveform is everywhere less than a stated value. Using this concept,
we say the duration of an exponential waveform is 57¢.

Figure 5-15 shows how an exponential waveform can be constructed. Note that
the unit step multiplies the exponential function and turns it on at t=0.

EXAMPLE 5-5

Plot the waveform v(r) = [-17e 1% ]u(t)V.

SOLUTION:

From the form of v(¢), we recognize that V4 =—-17Vand Tc =1/100s or 10 ms. The
minimum value of v(¢) is v(0)=—-17 V, and the maximum value is approximately
0 V as t approaches 57¢ =50 ms. These observations define appropriate scales for
plotting the waveform. Spreadsheet programs are especially useful for the repetitive
calculations and graphical functions involved in waveform plotting. Figure 5-16
shows how this example can be handled using Excel. We developed our desired equa-
tion by listing our time axis in a column labeled #(ms). We began with a negative num-
ber —2.5 ms because we want to show the effect of the unit step u(¢). We plotted the
curve for five time constants or 50 ms. In another column labeled —17¢~1%% we then
wrote our desired equation without the unit step equal to —17*EXP(— 100 *
C3/1000), where C3 was the column with the time axis entry and the division by
1000 scales the time units correctly. Finally, we added the unit step in a third column
labeled u(t). In the last column that we labeled v(t), we brought it all together by
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ON =0 FIGURE 5-15 (a) Construct of
a decaying exponential
waveform. (b) Typical

+ + representation. (c) Composite
v(f) = Vpe e Ct) OFF vo (f) v(1) = VaeTeu(r) vo (1) waveforms showing final result.

(@ (b)

v(®) (V)
e ‘\\

v(t) = VaeTc VL

v(t) = u(t)

------------------ t(s)

(©)
Note: The waveforms actually fall atop each other but are shown slightly
shifted so they can be distinguished.
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v() (V)

0 100 200 300 400 500

FIGURE 5-17

1(ps)

multiplying the desired equation column by the unit step. We then opened the graph-
ing tool and plotted the v(¢) column versus the time column. Note that there is a slope
to the line from —1.25 ms and 0. The plotter does not know to stay at «(¢) =0 until the
axis, hence the slope. This is a good time to point out that in real practice there are no
instantaneous rises and falls, and there will always be a slope. Making this slope as
close to perfect (vertical in this case) is a major challenge of engineering. [ |

Exercise 5-5
Sketch the waveform described by

o(t) =20e 100 (1) v

Answer: See Figure 5-17.

PROPERTIES OF EXPONENTIAL WAVEFORMS

The decrement property describes the decay rate of an exponential signal. For >0
the exponential waveform is given by

o(t)=Vae ey (5-12)

The step function can be omitted since it is unity for ¢>0. At time ¢+ Af the
amplitude is

o(t+At)=Vpe +80/Te v, o=t/ Tep=Ml/Te (5-13)
The ratio of these two amplitudes is

o(t+At) Vae !/ Teeai/Te — o Ai/Tc

o(f) | VaeUlc G140

The decrement ratio is independent of amplitude and time. In any fixed time period
At, the fractional decrease depends only on the time constant. The decrement prop-
erty states that the same percentage decay occurs in equal time intervals.
The slope of the exponential waveform (for >0) is found by differentiating
Eq. (5-12) with respect to time:
dU(t) — Eeft/T(; — U(t) (5_]5)

dt Tc Tc

The slope property states that the time rate of change of the exponential waveform is
inversely proportional to the time constant. Small time constants lead to large slopes
or rapid decays, while large time constants produce shallow slopes and long
decay times.
Equation (5-15) can be rearranged as
do(t) o) (5-16)

dt Tc

When o(¢) is an exponential of the form in Eq. (5-12), then dv/dt+v/T¢=0. That is,
the exponential waveform is a solution of the first-order linear differential equation
in Eq. (5-16). We will make use of this fact in Chapter 7.

The time-shifted exponential waveform is obtained by replacing ¢ on the right side
of in Eq. (5-11) by t—Ts. The general exponential waveform is written as

o(t) = |Vae T/ Tely(t—Ts)V (5-17)
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where Ty is the time-shift parameter for the waveform. Figure 5-18 shows exponen-
tial waveforms with the same amplitude and time constant but different values of Ts.
Time shifting translates the waveform to the left or right depending on whether 75 is
negative or positive. Caution: The factor t— Ts must appear in both the argument of
the step function and the exponential, as shown in Eq. (5-17).

APPLICATION EXAMPLE 5-6 Ts 0

v(t)

_TS <0

An oscilloscope is a laboratory instrument that displays the instantaneous value of a
waveform versus time. Figure 5-19 shows an oscilloscope display of a portion of an
exponential waveform. In the figure, the vertical (amplitude) axis is calibrated at
2V per division, and the horizontal (time) axis is calibrated at 1 ms per division. Find
the time constant of the exponential.

Amplitude
(2 V/div) To>0
Iy '
L t
. 0
3.6 div > S 0.5 div s
‘ | | | L TS | i FIGURE 5-18 Effect of time
N l‘ e .
B ) shifting on the exponential
t (1 ms/div) waveform.
! 8 div |
FIGURE 5-19
SOLUTION:

For ¢> Ts the general expression for an exponential in Eq. (5-17) becomes
o(t) = Vae T8/ Tey

We have only a portion of the waveform, so we do not know the location of the t=0
time origin; hence, we cannot find the amplitude Vo or the time shift 75 from the
display. But, according to the decrement property, we should be able to determine
the time constant since the decrement ratio is independent of amplitude and time.
Specifically, Eq. (5-14) points out that

o(t+ Ar) oA/ Te

o(t)

Solving for the time constant 7¢ yields

At
v(t)
|
t [v(t + At)}
Taking the starting point at the left edge of the oscilloscope display yields
o(t)=(3.6div)(2V/div) =72V

Tc=

Next, defining At to be the full width of the display produces
Ar=(8div)(1 ms/ div) =8 ms
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FIGURE 5-20

FIGURE 5-21

and

v(t+Af) =(0.5div)(2V/div)=1V

As a result, the time constant of the waveform is found to be

At 8x 1073
Te= @ T2/ =405ms
o(t+ Ar) [ |

@ Application Exercise 5-6

You are in a Circuits laboratory and are required to determine the time constant of a volt-
age signal. You observe the signal on an oscilloscope as shown in Figure 5-20. The scope
tells you that ground is at 0.3 V. Find its time constant.

Amplitude
(1 V/div)

_ 0.2 divy| 0.3 div
] t

= (1 ps/div)

4.0 div A

! 7.5 div

Answer: Tc=2.00ps

Exercise 5-7

Figure 5-21 shows three exponential waveforms. Match each curve with the appropriate
expression.

1. 0y(t) =100 e~ /1900 (t—100p)V

2. 0y(t) =100 e~ 1000 (1) V

3. 03(t) =100 ¢~ [~ 1000)/1000] 1y (4 _100 )V

v(®) (V)

100

e i ‘(s)

Answer: Waveform (a) =2, (b) =3, and (c) =1.
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Exercise 5-8

(a) An exponential waveform has 0(0)=1.2V and »(3) =0.5V. What are V5 and T¢ for
this waveform?

(b) An exponential waveform has v(0)=5V and »(2)=1.25V. Find the value of v(¢) at
t=1sand t=4s?

(c) An exponential waveform has v(0) =5V and an initial (=0) slope of —25V/s. What
are V5 and T¢ for this waveform?

(d) An exponential waveform decays to 10% of its initial value in 3 ms. What is 7 for this
waveform?

(e) A waveform has 0(2)=4V, v(6)=1V, and »v(10)=0.5V. Is it an exponential
waveform?

Answers:

(a) VA =12 V, TC =3.43s

(b) v(1)=2.5V,0(4)=03125V

(¢) Va=5V,Tc=200ms

(d) Tc=1.303ms

(e) No, it violates the decrement property.

Exercise 59

Find the amplitude and time constant for each of the following exponential signals:
(a) v1(t)= [—156‘1000’]14(1) \'%

(b) va2(t) = [+12e71u(r) mV

(¢) i3(t) = [15¢73u(-1) mA

(d) is(t)= [4e’20°<[’1°0)}u(t—100) A

Answers:

(a) VA=—15V,TC:1IHS
(b) VAzlsz, Tczl()s
(¢) In=15mA,Tc=2ms
(d) IA:4A,TC:5ms

54 Tue SinusoiDAL WAVEFORM

The cosine and sine functions are important in all branches of sci- T,
ence and engineering. The corresponding time-varying waveform Va
in Figure 5-22 plays an especially prominent role in electrical

engineering. - F t
In contrast with the step and exponential waveforms studied / \/ § / \/
earlier, the sinusoid, like the dc waveform in Figure 5-1, N —Va

extends indefinitely in time in both the positive and negative

directions. The sinusoid has neither a beginning nor an end. FIGURE 5-22 The eternal sinusoid.
Of course, real signals have finite durations. They were turned

on at some finite time in the past and will be turned off at some time in the

future. While it may seem unrealistic to have a signal model that lasts forever,

it turns out that the eternal sinewave is a very good approximation in many

practical applications.

The sinusoid in Figure 5-22 is an endless repetition of identical oscillations
between positive and negative peaks. The amplitude V5 (in volts) or I (in amperes)
defines the maximum and minimum values of the oscillations. The period T} (usually
seconds) is the time required to complete one cycle of the oscillation. The sinusoid
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v(t)

- T) —~|

can be expressed mathematically using either the sine or the cosine function. The
choice between the two depends on where we choose to define t=0. If we choose
t=0 at a point where the sinusoid is zero, then it can be written as
o(t) =V sin(2nt/Ty)V (5-18a)
On the other hand, if we choose ¢=0 at a point where the sinusoid is at a positive
peak, we can write an equation for it in terms of a cosine function:
o(t)=Va cos(2nt/Ty)V (5-18h)
Although either choice will work, it is common practice to choose =0 at a positive
peak; hence Eq. (5-18b) applies. Thus, we will continue to call the waveform a sinus-
oid even though we use a cosine function to describe it.
As in the case of the step and exponential functions, the general sinusoid is
obtained by replacing ¢ by (1—Ts). Inserting this change in Eq. (5-18a) yields a gen-
eral expression for the sinusoid as

o(t)=Vacos2n(t—Ts)/To|V (5-19)
where the constant T is the time-shift parameter. Figure 5-23 shows that the sinusoid
shifts to the right when 75>0 and to the left when 75 <0. In effect, time shifting
causes the positive peak nearest the origin to occur at ¢ =T5.

The time-shifting parameter can also be represented by an angle:

o(t)=Va cos2nt/ Ty + |V (5-20)

2nt
V() =V COS(Tz )V v(1) v(f) = Vscos [ﬁ - )V

|<— Ty —|

A : I‘ |
N\ N ! N
B / Ts \/ \/ :
oy - =Va

(a) (b)

V(D) v(t) = Vzcos (ﬂ + jV
Ty
TS <0 T
B S— 0 ——
—Vy
©

FIGURE 5-23 Effect of time shifting on the sinusoidal waveform.
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The parameter ¢ is called the phase angle. The term phase angle is based on the cir-
cular interpretation of the cosine function. We think of the period as being divided
into 2rx radians, or 360°. In this sense the phase angle is the angle between ¢ =0 and the
nearest positive peak. Comparing Egs. (5-19) and (5-20), we find the relation
between Ts and ¢ to be

Ts o Is

T~ 360 T, (5-21)
Changing the phase angle moves the waveform to the left or right, revealing different
phases of the oscillating waveform (hence the name phase angle).

The phase angle should be expressed in radians, but is more often reported in
degrees. Care should be taken when numerically evaluating the argument of the cosine
(2nt/ Ty + ) to ensure that both terms have the same units. The term 2xnt/ T has the
units of radians, so it is necessary to convert ¢ to radians when it is given in degrees.

An alternative form of the general sinusoid is obtained by expanding Eq. (5-20)
using the identity cos(x +y) = cos(x)cos(y) —sin(x)sin(y),

o(t) =[Va cosd]cos(2nt/Ty) + [- Va sind]sin (2xt/Ty) V

b=-2n

The quantities inside the brackets in this equation are constants; therefore, we can
write the general sinusoid in the following form:

o(t)=acos(2nt/Ty) + b sin(2nt/Ty) V (5-22)

The two amplitude-like parameters a and b have the same units as the waveform
(volts in this case) and are called Fourier coefficients. By definition, the Fourier coef-
ficients are related to the amplitude and phase parameters by the equations

a=Vpcosd

. (5-23)
b=-Vasind

The inverse relationships are obtained by squaring and adding the expressions in
Eq. (5-23):

Va=Va®+b? (5-24)
and by dividing the second expression in Eq. (5-23) by the first:

-b
— -1 _
¢=tan p (5-25)

Caution: The inverse tangent function on a calculator has a +£180° ambiguity that can
be resolved by considering the signs of the Fourier coefficients a and b.

It is customary to describe the time variation of the sinusoid in terms of a fre-
quency parameter. Cyclic frequency fj is defined as the number of periods per unit
time. By definition, the period Ty is the number of seconds per cycle; consequently,
the number of cycles per second is

1
=T
where fj is the cyclic frequency or simply the frequency. The unit of frequency (cycles

per second) is the hertz (Hz). The angular frequency ) in radians per second is
related to the cyclic frequency by the relationship

fo (5-26)

W = 275f0 = — (5—27)

because there are 2n radians per cycle.
There are two ways to express the concept of sinusoidal frequency: cyclic fre-
quency (fy, hertz) and angular frequency (wo, radians per second). When working
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FIGURE 5-24

with signals, we tend to use the former. For example, radio stations transmit carrier
signals at frequencies specified as 690 kHz (AM band) or 101 MHz (FM band).
Radian frequency is more convenient when describing the characteristics of circuits
driven by sinusoidal inputs.

In summary, there are several equivalent ways to describe the general sinusoid:

B 2n(t-Ts)| 2mt B 2t . (2mt
v(t)—VAcos{ T ]—VACOS(TOHI))—acos(T>+bs1n(T)V

0 0 0
= Va cos2nfo(t—Ts)] = Va cos(2x fot + ) =a cos(2x fot) + b sin(2x fot )V
=V cos[wo(t—=Ts)] =V cos(wgt + d) =a cos(wpt) + b sin(wgt)V

To use any one of these expressions, we need three types of parameters:

1. Amplitude: either V5 or the Fourier coefficients a and b
2. Time shift: either Ts or the phase angle ¢
3. Time/frequency: either Ty, fy, or wg
In different parts of this book we use different forms to represent a sinusoid. There-

fore, it is important for you to understand thoroughly the relationships among the
various parameters in Egs. (5-21) through (5-27).

APPLICATION EXAMPLE 5-7

Figure 5-24 shows an oscilloscope display of a sinusoid. The vertical axis (amplitude)
is calibrated at 5 V per division, and the horizontal axis (time) is calibrated at 0.1 ms
per division. Derive an expression for the sinusoid displayed in Figure 5-24.

Amplitude
(5 V/div)

A N\
4 di /

I I P
(0.1 ms/div)

4 div \ /

NN DR IR I ___5.\
I
[ U I R _7/

4 div

SOLUTION:
The maximum amplitude of the waveform is seen to be four vertical divisions;
therefore,

Va=(4div)(5 V/div)=20V

There are four horizontal divisions between successive zero crossings, which means
there are a total of eight divisions in one cycle. The period of the waveform is

Ty=(8div)(0.1 ms/div) =0.8 ms
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The two frequency parameters are fy=1/T)=1.25kHz and wy =2xf; =7854 rad/s.
The parameters Va, Ty, fo, and oy do not depend on the location of the =0 axis.

To determine the time shift 75, we need to define a time origin. The r=0 axis
is arbitrarily taken at the left edge of the display in Figure 5-24. The positive
peak shown in the display is 5.5 divisions to the right of # =0, which is more than half
a cycle (four divisions). The positive peak closest to =0 is not shown in Figure 5-24
because it must lie beyond the left edge of the display. However, the positive peak
shown in the display is located at t=Ts+ T since it is one cycle after t=Ts. We
can write

Ts+ To=(5.5div)(0.1 ms/div) =0.55 ms

which yields 75 =0.55-Ty = —0.25 ms. As expected, Ts is negative because the near-
est positive peak is to the left of r=0.
Given Ts, we can calculate the remaining parameters of the sinusoid as follows:

¢ = _2nTs =196rador112.5°
To

a=Vacosp=-7.65V

b=-Vasing=-185V

Finally, the three alternative expressions for the displayed sinusoid are

v(t) = 20 cos[(7854t) +0.25x 10| V
=20cos(7854t+112.5°) V
= —7.65cos7854t—18.5sin7854t V

Exercise 5-10

Derive an expression for the sinusoid displayed in Figure 5-24 when ¢=0 is placed in the
middle of the display.

Answer: v(t) =20 cos(7854t-22.5°) V

Exercise 5-11
Sketch the waveform described by
o(t) =10 cos(2000nt—60°) V

Answer: See Figure 5-25

V(1) (V)
1 ms I
10
|
|
I
\\ ! i t (ms)
\ 0.166 \\
\\ \
- —10

FIGURE 5-25
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PROPERTIES OF SINUSOIDS

In general, a waveform is said to be periodic if
o(t+Ty)=o(t)

for all values of t. The constant Ty is called the period of the waveform if it is the
smallest nonzero interval for which o(¢+ T) =v(t). Since this equality must be valid
for all values of ¢, it follows that periodic signals must have eternal waveforms that
extend indefinitely in time in both directions. Signals that are not periodic are called
aperiodic.
The sinusoid is a periodic signal since
U(l+ To) =Va COS[ZTE([ + To)/T() + (M
=Vacos[2n(t)/ Ty + b+ 2x]

But cos(x +2x) =cos(x). Consequently,

o(t+To)=Vacos2nt/To+d)=0(t)

for all ¢.

The additive property of sinusoids states that summing two or more sinusoids with
the same frequency yields a sinusoid with different amplitude and phase parameters
but the same frequency. To illustrate, consider two sinusoids

v1(t) = ay cos(2xfot) + by sin(2xfyt) V
02(1) = ay cos(2xfot) + by sin(2xfyt) V
The waveform v3(f) =0y (f) + v2(¢) can be written as
03(1) = (a1 + az)cos(2nfot) + (b1 + by )sin(2nfor)V

because cosine and sine are linearly independent functions. We obtain the Fourier
coefficients of the sum of two sinusoids by adding their Fourier coefficients, provided
the two have the same frequency. Caution: The summation must take place with the
sinusoids in Fourier coefficient form. Sums of sinusoids cannot be found by adding
amplitudes and phase angles.

The derivative and integral properties state that when we differentiate or integrate
a sinusoid, the result is another sinusoid with the same frequency:

dv t
d(Va coswr) = —oVa sinwt =0V cos(wt +1/2)

dt
/VA cos(wt)dt = % sinot = % cos(wt—m/2)

These operations change the amplitude and phase angle but do not change the
frequency. The fact that differentiation and integration preserve the underlying
waveform is a key property of the sinusoid. No other periodic waveform has this
shape-preserving property.

EXAMPLE 5-8

(a) Find the period and the cyclic and radian frequencies for each of the following
sinusoids:

v1(t) = 17 cos(2000¢—30°) V
vy(t) = 12 cos(2000¢ +30°) V

(b) Find the waveform of v3(t) =v1 () +v2(f) V.
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SOLUTION:

(a) The two sinusoids have the same frequency oy =2000rad/s since a term 2000¢
appears in the arguments of v;(¢) and wvy(f). Therefore, fy=wo/2n=318.3 Hz
and Ty=1/fy=3.14 ms.

(b) We use the additive property, since the two sinusoids have the same frequency.
Beyond this checkpoint, the frequency plays no further role in the calculation.
The two sinusoids must be converted to the Fourier coefficient form using
Eq. (5-23).

ap =17cos(-30°)= +14.7V
by = —17sin(-30°) = +8.50 V
a, =12cos(30°) = +10.4V

by = —12sin(30°) = -6.00 V

The Fourier coefficients of the signal v3 =v; + v, are found as

as =ap+a =251V
b3 =b1+b, =250V

The amplitude and phase angle of v3() are found using Egs. (5-24) and (5-25):

Va = /a2 +b3=252V

¢ =tan"1(-2.5/25.1)=-5.69°

Two equivalent representations of v3(f) are
03(t) =25.1 cos(2000¢) + 2.5 sin(2000¢) V
and

v3(t) =25.2 cos(2000¢ —5.69°) V

Exercise 5-12
Write an equation for the waveform obtained by integrating and differentiating the
following signals:

(a) v1(t)=30cos(101-60°) V

(b) v2(t) =3 cos(4000xt) —4 sin(4000mr) V

Answers:
d
(a) % =300 cos(10¢ +30°)V/s
/vl (t)dt =3 cos(10t-150°)V-s
dl)z 4 o
(b) 7 =27 x 10%cos(4000nt + 143.1°) V /s
1 e}
/vzdt: 300m cos(4000mz —36.87°) V-s

Exercise 5-13

A sinusoid has a period of 5 ps. At =0 the amplitude is 12 V. The waveform reaches its first
positive peak after =0 at =4 ps. Find its amplitude, frequency, and phase angle.

Answers: Va=38.8V;fy=200kHz; = +72°
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FIGURE 5-26

@ Application Exercise 5-14

You are in a Circuits laboratory and are required to characterize a voltage signal. You
observe the signal on an oscilloscope as shown in Figure 5-26. You measure the voltage
of two adjacent peaks as shown on the figure. Write an expression for the voltage in ampli-
tude-phase form.

200
175 (2.777m, 169.7) (19.45m, 169.7)

150 AN 7/~ \
25

4 \ / \
100 I/ \ /
75 \ / \
0 \\ / \

S / \
A \ / \
S s \ / \
Z 5 \ /

_75 A\
\ / \
s \ / \ ,

-150 \ / N\ /
N A 1/

0 2m 4m 6m 8m 10m 12m 14m 16m 18m 20m 22m 24m 26m 28m 30m
Time (s)

Answer: v(t)=169.7 cos (377t-60°) V. Note: This is the description of the standard
120-V, 60-Hz commercial voltage for the United States.

5-5 CompPosSITE WAVEFORMS

In the previous sections we introduced the step, exponential, and sinusoidal wave-
forms. These waveforms are basic signals because they can be combined to synthesize
all other signals used in this book. Signals generated by combining the three basic
waveforms are called composite signals. This section provides examples of composite
waveforms.

EXAMPLE 5-9
Characterize the composite waveform generated by

l)(t) = VAu(t) = VAM( —t) \Y%

SOLUTION:

The first term in this waveform is simply a step function of amplitude V5 that occurs
att=0. The second term involves the function u(-¢), whose waveform requires some
discussion. Strictly speaking, the general step function u(x) is unity when x>0 and
zero when x <0. That is, u(x) is unity when its argument is positive and zero when
it is negative. Under this rule the function u(-¢) is unity when —¢>0 and zero when
—1<0, that is,

{1 fort<0
u(—t)=
0 fort>0
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which is the reverse of the step function u(t). Figure 5-27 shows how the two com-
ponents combine to produce a composite waveform that extends indefinitely in both
directions and has a jump discontinuity of 2V 4 at t=0. This composite waveform is

called a signum function.

Exercise 5-15

Describe the following waveform:

0(t) = [Vau(t) = Vau(=0)][8(t +1) +8(t) +8(t—1)] V

Answer: There are only two terms present: v(f) = —Vad(t+1) + Vad(t-1) V

DISCUSSION: Each impulse function exists only at one point in time. Since all three impulse
functions have a weight of 1 they simply multiply the value of the signum function at the
time the impulses exist, namely, at t=—1,0, and +1. The values are —Va, 0, and +Va,
respectively. The selective nature of multiplying a function by an impulse is called the sifting

property.

EXAMPLE 5-10

Characterize the composite waveform generated by subtracting an exponential from

a step function with the same amplitude.

SOLUTION:
The equation for this composite waveform is

(1) = Vau(t)—[Vae /Te]u(t) V
= Va[l-e"Tclu(t) v

For t <0 the waveform is zero because of the step function. At =0
the waveform is still zero since the step and exponential cancel.

v(0)=Va[1-¢"](1)=0

For ¢t > T the waveform approaches a constant value V5 because
the exponential term decays to zero. For practical purposes v(t) is
within less than 1% of its final value Vs when t=5Tc. At
t=Tc,v(Tc)=Va(l-e™')=0.632V 5. The waveform rises to about
63% of its final value in one time constant. All of the observations
are summarized in the plot shown in Figure 5-28. This waveform is
called an exponential rise. It is also sometimes referred to as a “char-
ging exponential,” since it represents the behavior of signals that
occur during the buildup of voltage in resistor-capacitor circuits stud-
ied in Chapter 7. |

Exercise 5-16
(a) Sketch the waveform described by the following:

o(t) = [15¢72% —10]u(r) V
(b) What is the value of the voltage at t=T¢?

Answers:

(a) See Figure 5-29.
(b) —-4.48V

Va -

V(1)

Vau(®)

N
—Vau(—1)

- _VA

FIGURE 5-27 The signum

waveform.
v(t)
VA """"""""""""""
0.632Vp ------- /
0.5V
0 i | | | |
0 Tc 2Tc 3Tc 4Tc STc

FIGURE 5-28 The exponential rise waveform.

v(n) (V)
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-5
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e~a(-Dy(-1)

v(t)

Exercise 5-17

1 Figure 5-30 contains a waveform that is called a double-sided exponential, which is

e~ %y(t)

FIGURE 5-30

v(t)

0.4V, -

0.3Va -

0.2Va

0.1V,

defined as the sum of a normal exponential and a reversed exponential. This waveform
is 1 at =0 and decays exponentially to zero in both directions along the time axis. Write an
expression for this waveform.

Answer: o(tf)=e V.

EXAMPLE 5-11

Characterize the composite waveform obtained by multiplying the ramp r(¢)/Tc
times an exponential.

SOLUTION:

The equation for this composite waveform is

0
0

FIGURE

Tc

5-31

2Te  3Tc 4Tc 5T¢

The damped ramp waveform.

Exercise 5-18

o(t) = %) [vAe-f/Tc}u(z) \%

= Va[(t/Tc)e T lu() V

For t <0 the waveform is zero because of the step function. Atz =0 the
waveform is zero because r(0)=0. For >0 there is a competition
between two effects—the ramp increases linearly with time while
the exponential decays to zero. Since the composite waveform is
the product of these terms, it is important to determine which
effect dominates. In the limit, as t — oo, the product of the ramp
and exponential takes on the indeterminate form of infinity times
zero. A single application of I’Hépital’s rule, then, shows that the
exponential dominates, forcing the v(¢) to zero as t becomes large.
That is, the exponential decay overpowers the linearly increasing
ramp, as shown by the graph in Figure 5-31. The waveform obtained
by multiplying a ramp by a decaying exponential is called a
damped ramp. [ |

The equation describing a damped ramp is as follows:

W(6)=Va KTL) e*f/Tc} u(t) v

C

(a) Find the time at which the function reaches its maximum value.
(b) What is the value of v(f) at the maximum?

Answers:

(a) The maximum occurs at r=Tc.
(b) U(Tc) =0.368 VA.
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EXAMPLE 5-12

Characterize the composite waveform obtained by multiplying sin wg?
by an exponential.

SOLUTION:
In this case the composite waveform is expressed as

v(t) = sinwgt [Vae 7 Tclu(t) V
= Vale "/ Tesinagt|u(t) V

Figure 5-32 shows a graph of this waveform for 7y =2T¢. For t<0
the step function forces the waveform to be zero. At ¢ =0, and peri-
odically thereafter, the waveform passes through zero because
sin(nr) =0. The waveform is not periodic, however, because the
decaying exponential gradually reduces the amplitude of the oscilla-
tion. For all practical purposes the oscillations become negligibly
small for >57¢c. The waveform obtained by multiplying a sinusoid
by a decaying exponential is called a damped sine. |

APPLICATION EXAMPLE 5-13

(1)

Va b
VA({_[/TC
0.5V, |-
ol 1 ! -
Tc/ 2Tc 7] 3¢ 4Tc
0.5V, |-
To

Underdamped second-order systems produce the damped sinusoidal waveform
shown in Figure 5-32. When presented with such a display, it may be necessary to
determine an expression for the resulting waveform. Consider the damped sinusoid

shown in Figure 5-33. We will find an approximate expression.

50 T T

v =47V, 1=0.75 ms

40
36 V" \
30

W

LN SN

\ / \ vy =7.0V,it=19.5 ms
10 VA

/K
N
)

Voltage (V)

NN

0 0.005 0.01 0.015 0.02 0.025
Time (s)

0.03

FIGURE 5-32 The damped sine waveform.

FIGURE 5-33
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We need to determine the waveform’s amplitude V4, its time constant 7c, and its
oscillatory frequency, ®y. We start by estimating the coordinates of the first peak,
(0.00075 5,47 V). To calculate the time constant we need another peak. We could
select the second peak, but if we choose a later peak we can get a more accurate
result. Hence, we choose the fourth peak, (0.0195s,7.0 V). We can find the time con-
stant from the decrement property noted earlier in Example 5-6.

At 0.0195-0.00075 0.01875
Tc_ln o0 = - 4_7 =190 =9.87 ms
o(t+ Ar) 7.0
1
— =101.3s71
T 01.3s

We can use the same two points for finding 7. However, we must divide the result by
3 since there are three cycles involved.

At 0.01875
To= 3= 3 =6.25ms

Then we find the radian frequency o from the period:
2n

W = T 1005 rad/s

Since the waveform has a phase shift, we find the time shift 75 by measuring the
time from when the function is zero to the first peak of the cosine. This was our first
peak, 0.00075 s. We can then calculate the phase shift from Eq. (5-21):

~0.00075 . .
=G ooes. ¥ 3607 = ~432

We can then write what we have found thus far in our waveform equation:
o(t) = Vae 1913 cos (1005t —43.2°)u(t) V
We can find V5 by substituting a value for o(¢) at a time we know. The easiest is at
t=0, where 0(0)~36 V.
0(0) = 36=Vae cos(0-43.2°) = V0.729
Va =494

Finally, our desired waveform is

() =49.4 7113 cos(10051—43.2°)u(t) V

DISCUSSION: The function used to generate the waveform in Figure 5-33 was
o(t) =50 e 1%% cos (10007 —45°)u(t) V

The errors are all small, with the phase angle having the largest error of 4%. The
size of the errors is, of course, dependent on how accurately one can read the
display.

@ Application Exercise 5-19

For the damped sinusoid waveform shown in Figure 5-34, determine an approximate
expression for o(z).
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Answer: The generating waveform is o(¢) = 100 e~ '% sin(2000¢)u(t) V.

FIGURE 5-34

EXAMPLE 5-14

Characterize the composite waveform obtained as the difference of two expo-
nentials with the same amplitude.

SOLUTION:
The equation for this composite waveform is

(1) = [Vae T u(t) - [Va e /2] u(r)
= Va(e /Ti—e /T2 u(r)

For Ti>T, the resulting waveform is illustrated in Figure 5-35 (plotted
for Ty =2T3). For t <0 the waveform is zero. At t=0 the waveform is still zero,
since

For t>> T the waveform returns to zero because both exponentials decay to
zero. For 5Ty >t>5T, the second exponential is negligible and the waveform
essentially reduces to the first exponential. Conversely, for ¢ < T the first expo-
nential is essentially constant, so the second exponential determines the early
time variation of the waveform. The waveform is called a double exponential,
since both exponential components make important contributions to the
waveform. |

VAe_t/Tl = Vl(t)

—“Vae T = vy(1)

—v L

FIGURE 5-35 The double
exponential waveform.
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Exercise 5-20

A double exponential waveform is given as

v(t)=10[e 1 — =2y (1) V

(a) What is the value of »(f) at the maximum, and at what time does it occur?
(b) What is the time constant of the dominant (longer-lasting) exponential?
(c) Use MATLAB to plot the curve and verify the results of (a) using the cursor tool.

Answers:

(a) The maximum value is 3.257 V, and it occurs at =611 ps.

(b) The dominant exponential is the first one, since it has the longer time constant of 1 ms
versus 400 ps for the second exponential.

(c) See Figure 5-36.

FIGURE 5-36 3.5 T T ! | |

——!VpMax =3.257V, 1 =611 ps : :
d : — Double exponential
3 S & ............ .............. .............. .............. .............. ....... WaVefOrIn

Voltage (V)

Time (s) % 1073

EXAMPLE 5-15

Characterize the composite waveform defined by

10 . 10 . 10 .
o(t)=5- - sin(2x500¢) — e sin(271000¢) — i sin(2x1500¢) V

SOLUTION:
The waveform is the sum of a constant (dc) term and three sinusoids at different fre-
quencies. The first sinusoidal component is called the fundamental because it has the
lowest frequency. As a result the frequency fy =500 Hz is called the fundamental fre-
quency. The other sinusoidal terms are said to be harmonics because their frequen-
cies are integer multiples of fj. Specifically, the second sinusoidal term is called the
second harmonic (2f,=1000Hz) while the third term is the third harmonic
(3fo=1500 Hz). Figure 5-37 shows a plot of this waveform. Note that the waveform
is periodic with a period equal to that of the fundamental component, namely,
To=1/fo =2 ms. The decomposition of a periodic waveform into a sum of harmonic
0 T } ] J ) sinusoids is called a Fourier series, a topic we will study in detail in Chapter 13. In fact,
the waveform in this example is the first four terms in the Fourier series for a 10-V
FIGURE 5-37 sawtooth wave of the type shown in Figure 5-2. [ |

(1)
10} Ty

W
T
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Exercise 5-21
For the following composite waveforms, determine the maximum amplitude, the approxi-
mate duration, and the type of waveform represented:

(a) v1(t) =[25sin1000f][u(t) —u(t-10)] V

(b) v2(t) =[50 cos1000¢] [e =2 Ju(r) V

() i3(r) = [30002e 1% 1(r) mA

(d) is(t) =100 A

Answers:
(a) 25V, 10s, gated sinusoid

(b) 50V, 25ms, decaying sinusoid 12 T T T T T T T T T
(c) 1.10mA, 5 ms, damped ramp ' 5 S 5 5 S '
(d) 10 A, 2 ms, double-sided exponential

Exercise 5-22

Characterize the following waveform defined by

V(@) (V)

Z [b, sin(2nnfot)|V

n=
where b, =4 Va/nn, Va=10V, f, =1000 Hz, and n=1,3,5,7,
9,11... by plotting the first six # terms for a half period of the fun-
damental frequency f,. (Hint: Vary t from 0 to 500 ps in 50 ps
steps. Excel is useful here.) What waveform in Figure 5-2 does
this function best resemble?

0 S NN N N I SR B BN

10 ....... ......... ...... ....... ....... ....... .

Answers: A plotusing Excel of the odd terms 1 through 11 is - .
shown in Figure 5-38. The plot resembles a half-cycle of a Time in mocroseconds with odd n from 1 to 11
1000 Hz square wave.

FIGURE 5-38

56 Waverorm PaRrRTIAL DESCRIPTORS

An equation or graph defines a waveform for all time. The value of a waveform v(¢)
or i(t) at time ¢ is called the instantaneous value of the waveform. If one were
to replace ¢ with a particular time and evaluate the equation, one would obtain
the value of the waveform for that particular or instant of time. We often use para-
meters called partial descriptors that characterize important features of a waveform
but do not give a complete description. These partial descriptors fall into two cate-
gories: (1) those that describe temporal features and (2) those that describe ampli-
tude features.

TempoRAL DESCRIPTORS

Temporal descriptors identify waveform attributes relative to the time axis. For
example, waveforms that repeat themselves at fixed time intervals are said to be peri-
odic. Stated formally,

A signalv(t) is periodic ifv(t + Ty) =v(t) for all t, where the period T is the smal-

lest value that meets this condition. Signals that are not periodic are called

aperiodic.

The fact that a waveform is periodic provides important information about the sig-
nal but does not specify all of its characteristics. Thus, the fact that a signal is periodic
is itself a partial description, as is the value of the period. The eternal sinewave is the
premier example of a periodic signal. The square wave and triangular wave in
Figure 5-2 are also periodic. Examples of aperiodic waveforms are the step function,
exponential, and damped sine.

0 50 100 150 200 250 300 350 400 450 500
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FIGURE 5-39 Maximum
value (Vyax), minimum value
(VmiN), peak value (Vy,), and
peak-to-peak value (Vyp).

Waveforms that are identically zero prior to some specified time are said to be
causal. Stated formally,

A signal v(t) is causal if there exists a value of T such that v(t) =0 for all t<T;
otherwise it is noncausal.

It is usually assumed that a causal signal is zero for ¢ <0, since we can always use
time shifting to make the starting point of a waveform at t=0. Examples of causal
waveforms are the step function, exponential, and damped sine. The eternal sine-
wave or a constant dc signal are, of course, noncausal.

Causal waveforms play a central role in circuit analysis. When the input driving force
x(t) is causal, the circuit response y(#) must also be causal. That is, a physically real-
izable circuit cannot anticipate and respond to an input before it is applied. Causality
is an important temporal feature, but only a partial description of the waveform.

AmpLiTUDE DESCRIPTORS

Amplitude descriptors are positive scalars that describe signal strength. Generally, a
waveform varies between two extreme values denoted as Viyiax and Vyvn. The peak-
to-peak value (V) describes the total excursion of v(r) and is defined as

Vip =VmMax—VmiN (5-28)

Under this definition V/, is always positive even if Viyax and Vi are both negative.
The peak value (Vp) is the maximum of the absolute value of the waveform. That is,

Vp = MAX{|Vmax|,|Vmin|} (5-29)

The peak value is a positive number that indicates the maximum absolute excursion
of the waveform from zero. Figure 5-39 shows examples of these two amplitude
descriptors.

v(n) ()

\% e e
MA)S 170 , VMax
Vop | Vp
VMIN
VMmN [+ -- 0 t

(a) (b)

The peak and peak-to-peak values describe waveform variation using the extreme
values. The average value smooths things out to reveal the underlying waveform base-
line. Average value is the area under the waveform over some period of time 7', divided
by that time period. Mathematically, we define average value (Vavg) over the time
interval T as

1 t+T
Vavg = ?/[ o(x)dx (5-30)

For periodic signals the period Ty is used as the averaging interval 7.

For some periodic waveforms the integral in Eq. (5-30) can be estimated graphically.
The net area under the waveform is the area above the time axis minus the area below
the time axis. For example, the two waveforms in Figure 5-39 obviously have nonzero
average values. The waveform in Figure 5-39(a) has a negative average value because
the negative area below the time axis more than cancels the area above the axis. Sim-
ilarly, the waveform in Figure 5-39(b) clearly has a positive average value.
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The average value indicates whether the waveform contains a constant, non-time-
varying component. The average value is also called the dec component because dc
signals are constant for all #. On the other hand, the ac components have zero average
value and are periodic. For example, the waveform in Example 5-15

10 . 10 . 10 .
v(t)=5- . sin(2x500¢) - o sin(2x1000¢) - i sin(2x1500¢) V

has a 5-V average value due to its dc component. The three sinusoids are ac compo-
nents because they are periodic and have zero average value. Sinusoids have zero
average value because over any given cycle the positive area above the time axis
is exactly canceled by the negative area below.*

EXAMPLE 5-16

Find the peak, peak-to-peak, and average values of the periodic input and output
waveforms in Figure 5-40 of a half-wave rectifier.

SOLUTION:
The input waveform is a sinusoid whose amplitude descriptors are

Vop=2Va Vp=Va Vae=0

The output waveform is obtained by clipping off the negative half-cycle of the input
sinusoid. The amplitude descriptors of the output waveform are

Vop=Vp=Va
The output has a nonzero average value, since there is a net positive area under the

waveform. The upper limit in Eq. (5-30) can be taken as 7} /2, since the waveform is
zero from T /2 to Ty.

To/2 To/2
1 . Va
Vg = 7l Va sin(2nt/ Ty)dt = > cos(2nt/Ty) .
_Va
B T

The signal processor produces an output with a dc value from

an input with no dc component. Rectifying circuits described Vi
in electronics courses produce waveforms like the output in
Figure 5-40. |

0

NAWA
0 t
\/"\/
Va |-
Input
: Signal :
In Out
processor
—— —<

Ty

Output

FIGURE 5-40

v(t)

Exercise 5-23

For the pulse waveform in Figure 5-41 find Viyax, Vmin, Vp, Vop,

and Viyy,. =Va

Answers: Vmax=Va, VMin=—Va, Vp=Va, Vpp=2Va, Vi =0V FIGURE 5-41

RooTr-mEaAN-Sauare VaLue

The root-mean-square value (V) is a measure of the average power carried by the
signal. The instantaneous power delivered to a resistor R by a voltage v(t) is

p(t)=— )] (5-31)

“The dc value of a partial sinusoid is, of course, not zero. Its value depends on the fraction of the cycle
involved.
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FIGURE 5-42

The average power delivered to the resistor in time span 7' is defined as

1 t+T
Pavg:T /t p(t)dt (5-32)

Combining Egs. (5-31) and (5-32) yields

o R / HT[U(I)]Zdt (5-33)
avg R T .

The quantity inside the large brackets in Eq. (5-33) is the average value of the
square of the waveform. The units of the bracketed term are volts squared. The
square root of this term defines the amplitude partial descriptor Vims.

1 t+T
Vims =1/ = / (1)) dr (5-34)
T),

The amplitude descriptor Vins is called the root-mean-square (rms) value because it
is obtained by taking the square root of the average (mean) of the square of the wave-
form. For periodic signals the averaging interval is one cycle since such a waveform
repeats itself every T, seconds.

We can express the average power delivered to a resistor in terms of Vi as

Pa"g = E rms

(5-35)
The equation for average power in terms of Vs has the same form as the power
delivered by a dc signal. For this reason the rms value was originally called the effec-
tive value, although this term is no longer common. If the waveform amplitude is
doubled, its rms value is doubled, and the average power is quadrupled. Commercial
electrical power systems use transmission voltages in the range of several hundred
kilovolts (rms) to efficiently transmit power over long distances.

EXAMPLE 5-17

Find the average and rms values of the sinusoid and sawtooth waveforms in Figure 5-42.

V(1) w(#)
Areas are equal
d Areas are equal

Val----f--\-g---m--m-m g - Val-@x-7~-t----~-------pNcmo -

Vave [—F/— = V. t

avg avg \l/ T, \/ 2Ty \/3T0
+ + + - - -

0 L B T e

SOLUTION:

As noted previously, the sinusoid has an average value of zero. The sawtooth clearly
has a positive average value. By geometry, the net area under one cycle of the saw-
tooth waveform is V4 T/2, so its average value is (1/70)(VaTo/2) =V /2. To obtain
the rms value of the sinusoid we apply Eq. (5-34) as
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2 1
Vims = \/(‘;A) / Sin2(2nt/To)dt
0 0

:wvA)z [t sin(4m/T0)]T“_VA

To 2 8x/T,

o V2

For the sawtooth waveform the rms value is found as:

t3

_ 2 (VA [ _Va
Vrms—\/TO/O (VAI/T(]) d[—\/ T(:;’ |:3:|0 _\/g

Exercise 524

Find the peak, peak-to-peak, average, and rms values of the periodic
waveform in Figure 5-43.

Answers: V,=2Va; Vpp=3Va; Vavg=Y2; Vims = LV

Exercise 5-25

Classify each of the following signals as periodic or aperiodic and causal
or noncausal. Then calculate the average and rms values of the periodic
waveforms, and the peak and peak-to-peak values of the other

waveforms.

(a) 01(¢) =99 cos 30007 — 132 sin 3000z V
(b) vy(r) =34]sin 800mt][u(t) — u(t — 0.03)] V
(c) i3(r)=120[u(t+5) — u(t=5)] mA

(d) is(t)=50 A

Answers:

(a) Periodic, noncausal, Vay, =0, and Vi =117V
(b) Aperiodic, causal, V, =34V, and V,,, =68 V
(c) Aperiodic, causal, V=V, =120mA

(d) Aperiodic, noncausal, V, =50 A, and V;,; =0

APPLICATION EXAMPLE 5-138

The operation of a digital system is coordinated and controlled by
a periodic waveform called a clock. The clock waveform provides
a standard timing reference to maintain synchronization between
signal-processing results that become valid at different times dur-
ing the clock cycle. Because of differences in digital circuit delays,
there must be agreed-upon instants of time when circuit outputs
can be treated as valid. The clock defers further signal processing
until slower and faster outputs settle down when the clock signals
the start of the next signal-processing cycle.

Figure 5-44 shows an idealized clock waveform as a periodic
sequence of rectangular pulses. While we could easily write an
exact expression for the clock waveform, we are interested here
in discussing its partial descriptors. The first descriptor is the
period T or equivalently the clock frequency fy=1/T. Clock
frequency is a common measure of signal-processing speed and

[ |
v(t)
2Vp -—=n
VA —
: T, 3n
2 4
- | t
7 Ty 5Ty
4 4
V|-
FIGURE 5-43
v(t)
]
VPP
LRCN ] . T_» PP
Cy ;
Cpy = Clock as generated
l‘ L ]
1" ;
C; = Clock at location 1
—| I3
Cy [t~ ;
C, = Clock at location 2

FIGURE 5-44
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V(1)

can take values into the GHz range. The pulse duration 7 is the time interval in each
cycle when the pulse amplitude is high (not zero). In waveform terminology the ratio
of the time in the high state to the period, thatis, 7'/ Ty, is called the duty cycle, usually
expressed as a percentage. The pulse edges are the transition points at which the
pulse changes states. There is a rising edge at the low-to-high transition and a falling
edge at the high-to-low transition.

The pulse edges define the agreed-upon time instants at which the circuit outputs
can be treated as valid inputs to other circuits. This means that circuit outputs must
settle down during the time period between successive edges. Some synchronous
operations are triggered by the rising edge and others by the falling edge. To provide
equal settling times for both cases requires equal time between edges. In other words, it
is desirable for the clock duty cycle to be 50%. As a result, the clock waveform is essen-
tially a raised square wave whose dc offset equals one half of the peak-to-peak value.

The system clock Cy in Figure 5—44 is generated at some point in a circuit and then
distributed to other locations. The clock distribution network almost invariably intro-
duces delays, as illustrated by C; and C; in Figure 5—44. Clock delay (7p) is defined as
the time difference between a clock edge at a given location and the corresponding
edge in the system clock at the point where it was generated. Delay is not neces-
sarily a bad thing unless unequal delays cause the edges to be skewed, as indicated
by the offset between C; and C, in Figure 5-44. When delays are significantly dif-
ferent, there is uncertainty as to instants of time at which further signal processing can
safely proceed. This delay dispersion is called clock skew (fs), defined as the time
difference between a clock edge at a given location and the corresponding edge at
another location. Controlling clock skew is an important consideration in the design
of the clock distribution network in high-speed very large-scale integrated (VLSI)
circuits.

Thus, partial descriptors of clock waveforms include frequency, duty cycle, edges,
delay, and skew. The coming chapters treat dynamic circuits that modify input wave-
forms to produce outputs with different partial descriptors. In particular, dynamic cir-
cuit elements cause changes in a clock waveform, especially the partial descriptors of
edges, delay, and skew.

APPLICATION EXAMPLE 5-19

An electrocardiogram (ECG) is a valuable diagnostic tool used in cardiovascular
medicine. The ECG is based on the fact that the heart emits measurable bioelectric
signals that can be recorded to evaluate the functioning of the heart as a mechanical
pump. These signals were first observed in the late 19th century, and subsequent
signal processing developments have led to the advanced tech-
nology of present-day ECG equipment.

The bioelectric signals of the heart muscle are measured
and recorded through the placement of skin electrodes at var-

ious sites on the surface of the body. The site selection as well
as discussion of the functions of the cardiac muscle are beyond
the scope of this example. Rather, our purpose is to introduce
some of the useful partial descriptors of ECG waveforms.

In bioelectric terminology the normal ECG waveform
in Figure 5-45 is composed of a P wave, a QRS complex,

FIGURE

5-45

! and a T wave. This sequence of pulses depicts the electrical
activity that stimulates the correct functioning of the cardiac
muscle. The flat baseline between successive events is called
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isoelectric, which means there is no bioelectric activity and the heart muscle returns
to aresting state. The body’s natural pacemaker produces a nominally periodic wave-
form under the resting conditions used with ECG tests.

Partial waveform descriptors used to analyze ECG waveforms include:

1. The heart rate (1/7)), which is normally between 60 and 100 beats per
minute.

2. The PR interval (normally 0.12-0.20 seconds), which is the time between the
start of the P wave and the start of the QRS complex.

3. The QRS interval (normally 0.06-0.10 seconds), which is the time between
onset and end of the QRS complex.

4. The ST segment is the signal level between the end of the QRS complex
and the start of the T wave. This level should be the same as the isoelectric
baseline between successive pulses.

Departures from these normal conditions serve as diagnostic tools in cardiovascular
medicine. Some of the abnormal waveform features of concern include an irregular
heart rate, a missing P wave, a prolonged QRS interval, or an elevated ST segment.
Departures from nominal conditions allow the trained clinician to diagnose the situ-
ation, especially when abnormal features occur in certain combinations. However,
it is not our purpose to discuss the medical interpretation of ECG waveform abnorm-
alities. Rather, this example illustrates that bioelectric signals carry information and
that the information is decoded by analyzing the signal’s partial waveform descriptors.

SIGNALS AND SoFTwaARE TooLs

The value of software tools is readily apparent when circuits are tested using a variety
of signals. The Multisim software will allow us to rapidly simulate circuit behavior
under a variety of excitations such as steps, exponentials, sinusoids, and composite
signals. Web Appendix D discusses how to use the various signal sources available
in Multisim. In addition, the web appendix examines the calculating, plotting, and
integration functions available in MATLARB to create professional graphs and to effi-
ciently calculate partial waveform descriptors. In the web appendix there are exam-
ples, exercises, sample problems, and MATLARB software routines are provided that
you can use to help solve problems found in the text.

SUMMARY

e A waveform is an equation or graph that describesavolt- ¢ A sinusoid can be defined in terms of three types

age or current as a function of time. Most signals of inter-
est in electrical engineering can be derived using three
basic waveforms: the step, exponential, and sinusoid.

The step function is defined by its amplitude and time-
shift parameters. The impulse, step, and ramp are
called singularity functions and are often used as test
inputs for circuit analysis purposes.

The exponential waveform is defined by its amplitude,
time constant, and time-shift parameter. For practical
purposes, the duration of the exponential waveform is
five time constants.

of parameters: amplitude (either V5 or the Fourier
coefficients a and b), time shift (either Ts or the phase
angle ¢), and time/frequency (either Ty or fy or wy).

Many composite waveforms can be derived using the
three basic waveforms. Some examples are the
impulse, ramp, damped ramp, damped sinusoid, expo-
nential rise, and double exponential.

Partial descriptors are used to classify or describe impor-
tant signal attributes. Two important temporal attributes
are periodicity and causality. Periodic waveforms repeat
themselves every T seconds. Causal signals are zero for
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t<0. Some important amplitude descriptors are peak
value V,,, peak-to-peak value V/,,, average value Vg,
and root-mean-square value V.

e Software programs like Multisim and MATLAB can
generate appropriate signals for use in simulation,

PROBLEMS

analysis, and computation of circuit responses.
MATLAB can perform numeric and symbolic integra-
tion to assist with signal analysis.

Ossective 5—1 Basic Waverorms (Sects. 5-2,
5-3, 5-4)

Given an equation, graph, or word description of a linear
combination of step, ramp, exponential, or sinusoid waveforms
(a) Construct an alternative description of the waveform.

(b) Find the parameters or properties of the waveform.

(c) Construct new waveforms by integrating or differentiating
the given waveform.

(d) Generate the basic waveforms in MATLAB or Multisim
and use them appropriately to solve problems or simulate
circuits. (See Web Appendix D.)

See Examples 5-1 to 5-8 and Exercises 5-1 to 5-14.

5-1 Sketch the following waveforms:
@) v (1) =5u(t) — Su(t - 1)V
(b) vo2(t)=3u(t +2) - 2u(t-2)V
(©) i5(t)=—-3u(t+3)+6u(r)-3u(t—3) mA
(@) is(t)=2u(~1) A

5-2 Using appropriate step functions, write an expression for
each waveform in Figure P5-2.

i(H(mA) YOO
120 30
-2 2
5 s f(s) — . % 1(s)
-120 =30
(a) (b)
(V)
10 L
S 5] 4 e b ™
-10
(©
FIGURE P5-2

5-3 Using appropriate step functions, write an expression for
each waveform in Figure P5-3.

v(n(V)

1(ps)
-3

(a)
v(n(V)

1(s)

(b)
FIGURE P5-3

5-4 Sketch the following waveforms:
@ vi(t)=5-u(®)V
(b) ix(t) = —2u(t + 0.002) + 3u(t + 0.001) — u(r) mA
© vs(t)=t[u(t+1) —u(t-1)]V

5-5 Sketch the following waveforms:
@ vi)=r(t+2)-r(t-2)V
M) va(t)=4d+rt+1)-2r(t-1) +r(t-3)V

(@ vsio)= 1110
v, (t
() va(t) = ;2()

5-6 Express each of the following signals as a sum of singularity
functions.

2 t<1
@@ v(t)=<4 1=<r<2
0 2<t
0 t<0
o) VZ(t)z -6t 0<t<?2
-18 + 2t 2<t<6
0 6=t

5-7 Express the waveform in Figure P5-7 as a sum of step
functions.
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(1) (V) >
A
AL\
12
2 -1 o \
| | | [T
> 1 (s) 2, \
0o [12 [34]s E .
% S 2 \
-12
1
NN
FIGURE P5-7 ]
0 -
0 50 100p 150p 2001 2500 300p
5-8 Express each of the waveforms in Figure P5-8 as a sum of Time )
singularity functions. FIGURE P5-13
5-14 Write an expression for the waveform in Figure P5-14.
vi() (V) vo(1) (V)
A \ 25
0.0
| ]
25 ,//
1(s) /|
s 50 L/
& -75 //
2 _100|—/
(a) (b) /
FIGURE P5-8 2
-15.0
5-9 Sketch the waveform described by the following: 1755 Sn 10p 15 200 250 300
Time (s)
1 FIGURE P5-14

1 1 1

v(t) = L—ZH E} [w(t+e)—u(t)]+ [_s_zt+ E} [w(t)—u(t-e)| V
5-15 Write expressions for the derivative (t>0) and
integral (from 0 to ¢) of the exponential waveform

5-10 Sketch the waveform described by the following: i(t) = [100 6] u(r) mA.

(@) v(1)=108(¢ + 10)—108(r) + 108(t—10) V . o

1 5-16 An exponential waveform decays to 50% of its initial (¢ =0)
() v(1)= Zk:l 26 t-k)V amplitude in 20 ps. Find the time constant of the waveform.

5-17 Write an expression for the waveform in Figure P5-17.
[ 5-11 Using its pulse voltage source, generate on Multisim a v(t) (V)
waveform v(¢) that starts at =2 ms and consists of a pulse
train of 1-V pulses with a 1-ms pulse width that repeat
every 4 ms. 10

5-12 Sketch the following exponential waveforms. Find the
amplitude and time constant of each waveform.
(@) vi(r)= [50 e‘lOO’] (t) A\

3.68
(b) vy(t) = [100 e”/SO] -2)V
(© v3(t)=[Se " V]u t—S)V
(d) V4(t) [ 1010 OOOt] u(l) A\Y | ) I t (ms)

0 10 20 30 40 50 60
5-13 Write an expression for the waveform in Figure P5-13. FIGURE P5-17
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5-18 The amplitude of an exponential waveformis 12V at¢=0
and 7V at =3 ms. What is its time constant?

5-19 Construct an exponential waveform that fits entirely
within the nonshaded region in Figure P5-19.

v(®) (V)

1.0

X EETrTr— |
05

0 t(s
0 0.2 ©

FIGURE P5-19

5-20 Construct an exponential waveform that fits entirely
within the nonshaded region in Figure P5-20.

v(H(V)

20
18

12

0 1
ol 5 1012 20 M

FIGURE P5-20

5-21 By direct substitution, show that the exponential function
v(t)=Vae ™ satisfies the following first-order differential
equation.

dv(t)
dt

+ av(t)=0

5-22 Find the period, frequency, amplitude, time shift, and
phase angle of the following sinusoids.
(a) v1(t) =240 cos (120xr) — 240 sin (120mz) V
(b) v2(t)=-30cos(50knt) + 40sin (50 knt) V

] 5-23 (a) Plot the waveform of each sinusoid in Problem 5-22

by hand.

(b) Use Multisim to produce the waveform in Problem
5-22(a).

(¢) Use MATLAB to produce the waveform in Problem
5-22(b).

5-24 Write an expression for the sinusoid in Figure P5-24.
What are the phase angle and time shift of the waveform?

v(n) (V)

t (ms)

FIGURE P5-24

5-25 Write an expression for the sinusoid in Figure P5-25.
What are the phase angle and time shift of the waveform?

(1) (V)

[ o \/ a1
1

/

I QS -

FIGURE P5-25

5-26 Write an expression for the sinusoid in Figure P5-26.
What are the phase angle and time shift of the waveform?

400 (6.25 ms, 339V), (229 ms, 339V)
N
300 N
200 4 N\
/
~ 100 N\
z /
oy 0
g \ /
= _100[H£ \
—200
- I N
0008 2970 N
—400 [ T[]
0 2m 4m 6m 8m I10m 12m I4m 16m 18m 20m 22m 24m
Time (s)
FIGURE P5-26

5-27 Find the Fourier coefficients, cyclic frequency, and radian
frequency of the following sinusoids:
(a) v(t)=24cos(200xt + 36.9°) V
(b) () =240 cos (120t — 90°) A

5-28 Use MATLAB or Excel to display two cycles of the fol-
lowing waveform:

]
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vs(t) =19.1 sin 1000z + 6.37 sin 3000xz + 3.82 sin 5000xz +2.73
sin 7000xz + 2.1 sin 9000zt V

What are the period and amplitude of the resulting waveform?
What common waveform is this waveform approximating?

[ 5-29 For the following sinusoid: v(r) =10 cos(2r200¢ + 60°) V
“  (a) Find the Fourier coefficients, cyclic frequency, and radian
frequency.
(b) Plot the waveform by hand.
(¢) Use MATLAB to produce the waveform.
(d) Use Multisim to produce the waveform.

OBJECTIVE 5—2 CompoSITE WAVEFORMS
(Sect. 5=5)

Given an equation, graph, or word description of a composite

waveform

(a) Construct an alternative description of the waveform.

(b) Find the parameters or properties of the waveform.

(c) Generate the composite waveforms in MATLAB or
Multisim and use them appropriately to solve problems
or simulate circuits. (See Web Appendix D.)

See Examples 5-9 to 5-15 and Exercises 5-15 to 5-22.

] 5-30 Consider the following composite waveforms.
@ vi(t)==5[1-¢e 10000 ] y(r) v
M) va()=15[e™" —e 1 Ju(t) vV
Sketch each on paper and then generate each using MATLAB
and compare the results.

] 5-31 Consider the following composite waveforms.
(a) i1(1)=10 + 5sin(500nt) u(t) mA
(b) (1) =50 [e71% + cos (2000mr)] u(r) mA
Sketch each by hand and then generate each using MATLAB
and compare the results.

[ 5-32 Sketch the damped ramp v(r) =2te%u(t) V.
~  (a) Find the maximum value of the waveform and the time at
which it occurs.
(b) Plot the same waveform using MATLAB and repeat (a)
(¢) Compare the results.

[ 5-33 The value of the waveformv(¢) = (Va — Ve ™) u(t)is5V
—  atr=0,8Vatr=5ms, and approaches 12V as t — .
(a) Find V4, V3, and «, and then sketch the waveform.
(b) Validate your answers by plotting your result in
MATLAB.

5-34 Write an expression for the composite sinusoidal wave-
form in Figure P5-34.

(1) (V)

t (ms)

FIGURE P5-34

5-35 Write an expression for the composite sinusoidal wave-
form in Figure P5-35.

v(n) (V)

FIGURE P5-35

5-36 A waveform of the form v(t)=5 — 10 cos(pr — 45°) peri- [
odically reaches a minimum every 10 ms. -
(a) Find the maximum and minimum values of v(¢), the value

of B, and then sketch the waveform.
(b) Generate the waveform in Multisim.
(¢) Generate the waveform in MATLAB.

5-37 Write an expression for the composite exponential wave-
form in Figure P5-37.

v(n) (V)
40

30

20

1 (ps)

FIGURE P5-37

5-38 Write an expression for the composite exponential wave-
form in Figure P5-38.
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v(®) (V) SIS
4 -
3 = N
3 7 |
2.736 2 / s Ny
2 —~ 1 s N\“ —— -
————— e it EE S \ X e S
1264 | ———— dom % 0
I N N
| | / e -
L | i
0 0 3 5 3 t (ms) ) >’/ 4
-3 o <4
FIGURE P5-38 e
] 5-39 Write an expression for the composite exponential wave- i
=" form in Figure P5-39. Then use MATLAB to construct the 0 0002 0.004 0.006 0.008 Ti?l.lgl(s)o.mz 0.014 0016 0.018 0.02
same waveform and compare the results.
’s FIGURE P5-42
\
2T 5-43 A circuit response is shown in Figure P5-43. Determine
15 \\ II an approximate expression for the waveform.
[
& 10 /l\ A\ 6
! T T 2
s v A e N
1WA A 5 B
0 vI\V\I II\\ \[] II\\ L/ II\\ 2 \
s N T JE 7N
0 5m  10m 15m 20m 25m 30m 35m 40m 45m  50m S -2 b Y o
. : ~ 3 /
e g4y f \ i yARn
EE
- \ / /. A\ y4
FIGURE P5-39 by - -
-8
7 5-40 For the double exponential v(z) = 10 (e~ —~2000) (1) V -9
~— (a) Find the maximum value of the waveform and the time at -1 7
which it occurs. :}%
(b) Determine the dominant exponential. ) 1 00002 0,004 0006 0.008 0.01 0,012 0014 0.016 0,018 0.02
(¢) Generate the waveform in MATLAB and validate the Time (s)
result.
FIGURE P5-43

5-41 For the double exponential v(r)=15(e~*—e="")u(r) V

shown in Figure P5-41, find o. 5-44 A circuit response is shown in Figure P5-44 that occurs

0 when one exponential stops and another begins where the
prior one left off. Determine an approximate expression

N ol for the waveform.
/
4 st 20
~ //
2z 18
% 6 e N
s 16 N
3 / N\
> 500 ps, 710.45y 14
-8 J- \
\ / / S 12
/ s )
=10 A & 10 N
g SN | s00ms,7.34v)
“12 > 8 \(
0 05 1 15 2 25 3 35 4 45 5 6
Time (s) x 107 4 \\
N
FIGURE P5-41 2
\\
5_42 Write an expression for the damped sine waveform in 0.0 10.0m 20.0m 30.0m 40.0m ;?r.nO;TLSSO.Om 70.0m 80.0m 90.0m 100.0m
Figure P5-42. Note: The exponential envelope was added

to help in the determination of the damping exponential. FIGURE P5-44
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] 545 Sketch or use MATLAB or Excel to graph three or four  5-50 Figure P5-50is the result of the sum of a fundamental and

cycles of a damped sinusoid with a damping coefficient of one of its harmonics (an integer multiple of the fundamental).
1ms, a v(0) amplitude of 15V, a frequency of 1 kHz, and a Find Vmax, VMmins Vp, Vips Vaves Vims, and T for the
phase shift of 0°. waveform.
150
0BJecTIVE 5—3 WaveErorm ParTIAL DESCRIPTORS 125
(Sect. 5-6) 100
75|\ ViV \
Given a complete description of a basic or composite waveform 5 R R
(a) Classify the waveform as periodic or aperiodic and causal or ~ | [V Vi [
S 25
noncausal. = o \ | \ |
(b) Find the applicable partial waveform descriptors. = s /\ I\
(c) Use appropriate software tools to calculate applicable par- -50 \ | \ |
tial waveform descriptors. 75 \V\ | n.iaf
See Examples 5-16 to 5-19 and Exercises 5-23 to 5-25. -100 \A \AJ
s ViV ViV
5-46 Find Vimax. Vmins Vp, Vpps Vave, and Vi for each of the _150
following sinusoids. 0 02505075 1 125 1.5 1.75 2 2.25 2.5 2.75 3 3.253.5 3.75 4
(a) vi(t)=84.84 cos(377¢t) + 84.84sin(377t) V Time, (s) x107
(b) vy (1) = -30 cos(1000xt) — 40 sin(1000xt) V
(© v3(t)=10 + 10 cos(5000mt + 45°) V FIGURE P5-50

5-51 Figure P5-51 displays the response of a circuit to a square [
wave signal. The response is a periodic sequence of exponen- ~—
tial waveforms. Each exponential has a time constant of
1.6 ms.

(a) Find Vmax, VMmN, Vp, Vpp, and T for the waveform.
(b) Use MATLAB to find Vi, and Vip.

5-48 Find Vmax, VmiNs Vi, Vops Vaves Vims, and Ty for the peri- 5
odic waveform in Figure P5-48 and determine if the wave-
form is causal or noncausal.

5-47 An exponential waveform given by v(t) =25 e (1) V
repeats every five time constants.
(a) Find Vp, Vpp, VMAX, and VMIN-
(b) Find V,y, and Vps.
(¢) Find the period Ty of the waveform.

[ /

W) (V) 3
. 1/ /

oL \ \
-1

L N\ N\

0 ' ' t (ms) 3

0 15 30 45 60 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

FIGURE P5-48 Time, (s)
FIGURE P5-51

5-49 Find Vmax, Vmins Vi, Vips Vaves Vims, and T for the peri-

odic waveform in Figure P5-49. 5-52 Find Vyax, VM, Vave, and Vi of the offset sine wave

v(n) (mV) v(t)=Vo + Vacos(2nt/Ty) V in terms of Vj and V.

T . .
0 | 5-53 Find Vmax, Vmin, Vave, and Vs of the full-wave rectified

10 sine wave v(t) = Vo sin(2xnt/Ty) V in terms of V5. Is the wave-
form causal or non-causal?

51
5-54 The first cycle (¢ >0) of a periodic waveform with
0 ! f (ms) To =500 ms can be expressed as
0 1 2 3 4 5 6
Sl v(t) =2u(t)-3u(t-0.2) +2u(t-0.4) V

Sketch the waveform and find Vyvax, Vmin, Vp, Vpp, and
FIGURE P5-49 Vavg-
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[ 5-55 A periodic waveform can be expressed as

v(t) =20+ 16 cos 500zt — 8 sin 1000z + 4 cos 2000 V

(a) Whatis the period of the waveform? What is the average
value of the waveform? What is the amplitude of the fun-
damental (lowest frequency) component? What is the
highest frequency in the waveform?

(b) Simulate the waveform in MATLAB or Excel and find
VMAX, VMIN, Vp, Vpp, and vavg-

[ 556 Using Multisim, create the following waveforms and state if

each waveformis causal or non-causal, periodic or non-periodic:

(a) A step voltage switching from 0 to 5V at r =100 ms.

(b) A triangular wave that has amplitude of 75V and a
period of 10 ms.

(¢) A cosine with amplitude of 100 V, radian frequency of
2000r rad/s, and a phase shift of —45°.

(d) A positive sawtooth wave with amplitude of 5V and a
period of 100 ms.

(e) A charging exponential starting at —10 V and growing to
+5V witha Tc of 1s.

| NTEGRATING PROBLEMS

5-57 @ Gated Function

Some radars use a modulated pulse to determine range and
target information. A gated modulated pulse is shown in
Figure P5-57. Determine an expression for the waveform.

40
30

—
—

A

20

————

10

0

(D), (V)

I ———

|
|
|
I
S RARHARY

-4 3 2 -1 0 1 2 3 4 5
Time, (s)

FIGURE P5-57

L
S

5-58 @ Exponential Signal Descriptors

Several of the time descriptors used in digital data commu-
nication systems are based on exponential signals. In this
problem, we explore three of these descriptors.

(a) The time constant of fall is defined as the time required
for a pulse to fall from 70.7% to 26.0% of its maximum
value. Assuming that the pulse decreases as e~"/Te find
the relationship between the time constant of fall and
the time constant of the exponential decay.

(b) The risetime of a pulse is the time required for a pulse torise
from 10% to 90% of its maximum value. Assuming that the

pulse increases as 1 —e ™/’ find the relationship between
rise time and the time constant of the exponential rise.
(¢) The leading-edge pulse time is defined as the time at which a
pulse rises to 50% of its maximum value. Assuming the pulse
increasesas 1—e /7 find the relationship between leading-
edge pulse time and the time constant of the exponential rise.

5-59

Ventricular fibrillation is a life-threatening loss of synchronous
activity in the heart. To restore normal activity, a defibrillator
delivers a brief but intense pulse of electrical current through
the patient’s chest. The pulse waveform is of interest because
different waveforms may lead to different outcomes.
Figure P5-59 show a waveform known as a biphasic truncated
exponential used in implantable defibrillators. The waveform
is an exponential current whose direction of flow reverses after
4ms and terminates after 8 ms. Write an expression for this
waveform using the basic signals discussed in this chapter.

i1) (A)

Defibrillation Waveforms

4ms 4ms
351---
15 f--nfemnmemna
0 L —L
5 b ] )
FIGURE P5-59

5-60 @ =)

Timing digital circuits is vital to the operation of any digital device.
Using an ideal OP AMP (running open-loop, i.e., without feed-
back) and appropriate resistors, design a way to convert a sinusoid
into a square wave that varies from —15 to 15V with a period of
1 ms. The only non-sinusoidal supply available is Ve = +15 V.

Digital Clock Generator

5-61

Figure P5-61 shows a gated 60-Hz sine wave. For the portion
shown, find V},, Vip, Vmax, VMIN, Vave, and Vipg.

150

Partial Sinewave Descriptors
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5-62 @ @ [ Undesired Oscillations

A testis being run in a wind tunnel when a sensor on the trailing
edge of a wing produces the response shown in Figure P5-62.
When the sensor output reached 1V, the test was terminated.
You are asked to analyze the results. The oscillation could be
tolerated if it never reaches 20 V because the onboard computer
can mitigate it. However, the response time for the computer to
actuate the compensating aileron is 80 ms. Will the compensa-
tion occur in time?
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5-63 @ Voltmeter Calibration

Most dc voltmeters measure the average value of the applied
signal. A dc meter that measures the average value can be
adapted to indicate the rms value of an ac signal. The input
is passed through a rectifier circuit. The rectifier output is
the absolute value of the input and is applied to a dc meter
whose deflection is proportional to the average value of the
rectified signal. The meter scale is calibrated to indicate the
rms value of the input signal. A calibration factor is needed
to convert the average absolute value into the rms value of
the ac signal. What is the required calibration factor for a
sinusoid? Would the same calibration factor apply to a square
wave?

5-64

Create a MATLAB function to analyze signals represented
numerically. The function should have the following two inputs:
(1) a vector containing equally spaced samples of the signal of
interest and (2) the time step used to sample the signal con-
tained in the vector. The function should display the following
descriptors of the signal: Vmax, VMmN, Vp, Vpp, Vavg, and Vips.
The function should also plot the waveform assuming the signal
starts at t=0.

L[] MATLAB Signal Analyzer
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From the foregoing facts, it appears that a current of electricity is produced, for an instant, in a helix of copper wire surrounding a piece of
soft iron whenever magnetism is induced in the iron; also that an instantaneous current in one or the other direction accompanies every

change in the magnetic intensity of the iron.

Joseph Henry, 1831,
American Physicist

Some History Behind This Chapter

Joseph Henry (1797-1878) and the British physicist Michael
Faraday (1791-1867) independently discovered magnetic
induction almost simultaneously. The quotation above is
Henry’s summary of the experiments leading to his discovery
of magnetic induction. Although Henry and Faraday used
similar apparatus and observed almost the same results,
Henry was the first to fully recognize the importance of the
discovery. The units of circuit inductance (henrys) honors
Henry, while the mathematical generalization of magnetic
induction is called Faraday’s law.

Why This Chapter Is Important Today

Electric circuits owe much of their utility to devices that store
energy, even if only for a short period of time. In this chapter
you will be introduced to two new circuit elements: the
capacitor and the inductor. These energy-storing elements
lead to circuits that perform various mathematical operations
like integration and differentiation. The energy-storing capa-
bility makes possible the signal-processing operations in
modern communications systems and audio equipment.

Chapter Sections

6=1 The Capacitor

6—2 The Inductor

6-3 Dynamic OP AMP Circuits

6-4 Equivalent Capacitance and Inductance

274

Chapter Learning Objectives

6-1 Capacitor and Inductor Responses (Sects. 6-1, 6-2)

(a) Given the current through a capacitor or an induc-
tor, find the voltage across the element.

(b) Given the voltage across a capacitor or an inductor,
find the current through the element.

(c) Find the power and energy associated with a capac-
itor or inductor.

6-2 Dynamic OP AMP Circuits (Sect. 6-3)

(a) Given an OP AMP integrator or differentiator,
determine the output for specified inputs.

(b) Given an RC circuit containing OP AMPs, find the
input—output relationship and construct a block
diagram.

(c) Design an RC circuit containing OP AMPs that
implements a given input—-output relationship.

6-3 Equivalent Inductance and Capacitance (Sect. 6-4)

(a) Derive equivalence properties of inductors and
capacitors or use equivalence properties to simplify
LC circuits.

(b) Given an RLC circuit with dc inputs, find the dc cur-
rents and voltage responses.
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6-1 THe CapaciTOR

A capacitor is a dynamic element involving the time variation of an electric field pro-
duced by a voltage. Figure 6-1(a) shows the parallel plate capacitor, which is the sim-
plest physical form of a capacitive device. Figure 6-1 also shows two alternative
circuit symbols. Photos of actual devices are shown in Figure 6-2.

Electrostatics shows that a uniform electric field (¢) exists between the metal
plates in Figure 6-1(a) when a voltage exists across the capacitor.! The electric field
produces charge separation with equal and opposite charges appearing on the capac-
itor plates. When the separation d is small compared with the dimension of the plates,
the electric field between the plates is

o4
((t)—a

where ¢ is the permittivity of the dielectric, A is the area of the plates, and g(¢) is the
magnitude of the electric charge on each plate. The relationship between the electric
field and the voltage across the capacitor vc() is given by

_vc(t)

(6-1)

“ 6-2
(1)=— (6-2)
Substituting Eq. (6-2) into Eq. (6-1) and solving for the charge ¢(¢) yields
A
q(r)= {87} oc(?) (6-3

The proportionality constant inside the brackets in this equation is the capacitance C
of the capacitor. That is, by definition,

eA
C= i (6-4)

The unit of capacitance is the farad (F), a term that honors the British physicist
Michael Faraday. Values of capacitance range from a few pF (10‘12 F) in semicon-
ductor devices to tens of mF(lO‘3 F) in industrial capacitor banks. Note: Capacitor
manufacturers typically do not use nanofarads and prefer to rate their capacitors as
fractions of microfarads or multiples of picofarads. Some standard values for com-
mercially available capacitors are found on the inside rear cover.

Using Eq. (6-4), the defining relationship for the capacitor becomes

q(t) = Coc(t) (6-5)

Figure 6-3(a) graphically displays the element constraint in Eq. (6-5). The graph
points out that the capacitor is a linear element since the defining relationship
between voltage and charge is a straight line through the origin.

I—V ReLaTionNsHIP

To express the element constraint in terms of voltage and current, we differentiate
Eq. (6-5) with respect to time ¢ as follows

dq(t) _ d[Coc(1)]

dt dt

! An electric field is a vector quantity. In Figure 6-1(a) the field is confined to the space between the
two plates and is perpendicular to the plates.

+q -4

—1 0
\ % Dielectric

|<—d—>| Metal plates
(a)

. D i)
VC(I) /1\

ic(?) l

——F——

(b)

FIGURE 6-1 The capacitor:
(a) Parallel plate device.
(b) Circuit symbols.
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FIGURE 6-2 Photos of real
capacitors: (a) Ceramic.

(b) Electrolytic. (c) Air-tunable.
(d) Film capacitors. (e) High-
voltage. (f) Trim capacitors.
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FIGURE 6-2 (Continued)
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FIGURE 6-3 (a) Graph of the
defining relationship of a linear
capacitor. (b) Circuit symbol
showing capacitor voltage and
current.

Since C is constant and ic() is the time derivative of ¢(¢), we obtain a capacitor i—v
relationship in the form

doc(t)
dt

The relationship assumes that the reference marks for the current and voltage follow
the passive sign convention shown in Figure 6-3(b).

The time derivative in Eq. (6-6) means the current is zero when the voltage across
the capacitor is constant, and vice versa. In other words, the capacitor acts like an
open circuit (ic =0) when dc excitations are applied. The capacitor is a dynamic ele-
ment because the current is zero unless the voltage is changing. However, a discon-
tinuous change in voltage would require an infinite current, which is physically
impossible. Therefore, the capacitor voltage must be a continuous function of time.

Equation (6-06) relates the capacitor current to the rate of change of the capacitor
voltage. To express the voltage in terms of the current, we multiply both sides of
Eq. (6-6) by dt, solve for the differential dvc, and integrate:

/ducz%/ic(t)dt

Selecting the integration limits requires some discussion. We assume that at some
time £y the voltage across the capacitor vc(fy) is known and we want to determine
the voltage at some later time > fy. Therefore, the integration limits are

l)c
/ dvc = —/ lC

where x is a dummy integration variable. Integrating the left side of this equation and
solving for vc(z) yields

ic()=C (6-6)

Dc(t) Uc(t()) (x)dx (6-7)

1
C lo

In practice, the time ¢ is established by a physical event such as closing a switch or the
start of a particular clock pulse. Nothing is lost in the integration in Eq. (6-7) if we

arbitrarily define 7, to be zero. Using 7, =0 in Eq. (6-7) yields

ve(t) =0e(0) + % /0 () (6-8)

Equation (6-8) is the integral form of the capacitor i—v constraint. Both the integral
form and the derivative form in Eq. (6-6) assume that the reference marks for current
and voltage follow the passive sign convention in Figure 6-3(b).

Power aND ENERGY

With the passive sign convention the capacitor power is
pc(t)=ic(t)oc(t) (6-9)

Using Eq. (6-6) to eliminate ic(¢) from Eq. (6-9) yields the capacitor power in
the form

doc(t) d[1
t)=Coc(t)———= C 6-10
pet) = Coc() 252 = 2 IS Cor 1) (6-10
This equation shows that the power can be either positive or negative because the
capacitor voltage and its time rate of change can have opposite signs. With the passive
sign convention, a positive sign means the element absorbs power, while a negative
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sign means the element delivers power. The ability to deliver power implies that the
capacitor can store energy.

To determine the stored energy, we note that the expression for power in
Eq. (6-10) is a perfect derivative. Since power is the time rate of change of energy,
the quantity inside the brackets must be the energy stored in the capacitor. Math-
ematically, we can infer from Eq. (6-10) that the energy at time ¢ is

1
2
The constant in this equation is the value of stored energy at some instant ¢+ when

vc(t) =0. At such an instant the electric field is zero; hence the stored energy is also
zero. As a result, the constant is zero and we write the capacitor energy as

we(t) = 5 Cok(t) + constant

wel(t) = %CU%(Z) (6-11)

The stored energy is never negative, since it is proportional to the square of the volt-
age. The capacitor absorbs power from the circuit when storing energy and returns
previously stored energy when delivering power to the circuit.

The relationship in Eq. (6-11) also implies that voltage is a continuous function of
time, since an abrupt change in the voltage implies a discontinuous change in energy.
Since power is the time derivative of energy, a discontinuous change in energy
implies infinite power, which is physically impossible. The capacitor voltage is called
a state variable because it determines the energy state of the element.

To summarize, the capacitor is a dynamic circuit element with the following
properties:

1. The current through the capacitor is zero unless the voltage is changing. The
capacitor acts like an open circuit to dc excitations.

2. The voltage across the capacitor is a continuous function of time.
A discontinuous change in capacitor voltage would require infinite current
and power, which is physically impossible.

3. The capacitor absorbs power from the circuit when storing energy and returns
previously stored energy when delivering power. The net energy transfer is
nonnegative, indicating that the capacitor is a passive element.

The following examples illustrate these properties.

EXAMPLE 6-1

The voltage in Figure 6-4(a) appears across a ! />-pF capacitor. Find the current
through the capacitor.

SOLUTION:
The capacitor current is proportional to the time rate of change of the voltage. For
0 <t<2ms the slope of the voltage waveform has a constant value

doc 10
—=———=5000V
dt " 2x10° /e
The capacitor current during this interval is
ic(t)= CddltC =(0.5x% 10‘6) x (5% 103) =2.5mA

For 2<t<3 ms the rate of change of the voltage is —5000 V/s. Since the rate of
change of voltage is negative, the current changes direction and takes on the value
ic(t)=-2.5mA. For >3 ms, the voltage is constant, so its slope is zero; hence the

ve() (V)
0]

ic(7) (mA)
2.5

FIGURE 6-4

(b)
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ic(n) (A)

Iy

ve() (V)

IhTc
C

FIGURE 6-5

current is zero. The resulting current waveform is shown in Figure 6-4(b). Note that
the voltage across the capacitor (the state variable) is continuous, but the capacitor
current can be, and in this case is, discontinuous. [ |

Exercise 61

A 0.01-pF capacitor has the following voltage impressed across it

0(t)=100[e "] u(r) V

Find the current ic(¢) through the capacitor for ¢>0.

Answer: ic(t)=—-e """ u(r) mA

EXAMPLE 6-2
The ic(¢) in Figure 6-5(a) is given by

ic(t) =1 <€_I/TC) Lt(t) A
Find the voltage across the capacitor if vc(0)=0V.

SOLUTION:
Using the capacitor i—v relationship in integral form,

1 /.
vc(t) =vc(0) + 6/ ic(x)dx
0
1 /! Iy T,
- — -x/Tc g, _10LC [ —x/Tc
O+C/0 Iye dx C ( e )

= IOCY:C (1 —e‘t/TC> Vv

The graph in Figure 6-5(b) shows that the voltage is continuous while the current is
discontinuous. |

t

0

Exercise 6-2

(a) The voltage across a 10-pF capacitor is 25[sin 2000¢]u(¢) V. Derive an expression for the
current through the capacitor.

(b) Att=0the voltage across a 100-pF capacitor is —5 V. The current through the capacitor
is 10[u(t)—u(t-=10"*)]pA. What is the voltage across the capacitor for ¢>0?

Answers:
(a) ic(t)=0.5[cos2000¢]u(r)A

(b) ve(t)=-5+10°t Vor0<r<0.1 msandoc(f) =5V for t>0.1 ms
Exercise 6-3

For t =0 the voltage across a 200-pF capacitor is Se~

4000¢ AV

(a) What is the charge on the capacitor at r=0 and = + 0 ?
(b) Derive an expression for the current through the capacitor for 7=0.
(c) For t>0 is the device absorbing or delivering power?

Answers:

(a) 1nCand 0 C

(b) ic(t) — _46—4()()0tpA
(c) Delivering
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EXAMPLE 6-3

Figure 6-6(a) shows the voltage across a 0.5-pF capacitor. Find the capacitor’s energy

and power.
ve(n) (V)
10 f---------
5 ..............
0 | | | | |
o 1 2 3 4 5
t (ms)
(a)
pc() (mW)
25 f----m--
Absorbing power
e
| | | |
0
o1 |2 4 5
125 b t (ms)
Delivering power
Y 3 gp
(©
SOLUTION:

ic(t) (mA) FIGURE 6-6

2.5

(b)

we(t) ()

25.0

18.75

12.5

6.25

0.0

The current through the capacitor was found in Example 6-1. The power waveform
is the point-by-point product of the voltage and current waveforms. The energy is
found either by integrating the power waveform or by calculating AC[vc (1))
point by point. The current, power, and energy are shown in Figures 6-6(b),
6-6(c), and 6-6(d). Note that the capacitor energy increases when it is absorbing
power [pc(t) >0] and decreases when delivering power [pc(¢) <0]. [ |

Exercise 64

Find the power and energy for the capacitors in Exercise 6—2.

Answers:

(a) pc(t)
wcelt

(1)
(b) pc(t)
c(r)=
we(t) =
we(t) =

<

6.25[sin 40006]u(1)W

3.125 [sin® 2000 ¢]u(t) mJ

~0.05+10% mW for 0<z<0.1 ms

Ofort>0.1 ms

1.25-5x10* +5x 1082 nJ for 0 <7< 0.1 ms

1.25n]) fort>0.1 ms
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ic(t) (A)
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ve() (V)

IhTc
C

(b)
pc(®) (W)
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we(t) ()
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2C

(d
FIGURE 6-7
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t(s)

t(s)

t(s)

EXAMPLE 6—4
The current through a capacitor is given by

ic(t) = Iole /" u(t) A
Find the capacitor’s energy and power.

SOLUTION:
The current and voltage were found in Example 6-2 and are shown in Figures
6-7(a) and 6-7(b). The power waveform is found as the product of current and voltage:

pc(t) =ic(t)oc(r)
= [Ioe_t/TC] [% (1—6"/T‘?)]

_ [;Tc (e"/TC _e—2z/Tc)
C

The waveform of the power is shown in Figure 6-7(c). The energy is given by

1 1, Tc)? 2
we(t) =5 Cof (1) = % (1—6”/ Tv)

The time history of the energy is shown in Figure 6-7(d). In this example, both power
and energy are always positive. [ |

Exercise 6-5

Find the power and energy for the capacitor in Exercise 6-3.

Answers:
pe(t) = =20e~80000 1w

we(t) =2.5¢7800

APPLICATION EXAMPLE 6-5

Analog signals abound, but in today’s technological world, analog signals must be
transformed into digital formats to ease electronic transmission and processing. At
the end, these digital signals are often restored to analog form. The first step in
the conversion process uses a sample-and-hold circuit. This circuit is usually found
at the input to an analog-to-digital converter (ADC). The purpose of the circuit is
to sample an analog time-varying input waveform at a specified instant and then hold
that value constant until conversion to digital form is complete. This example dis-
cusses the role of a capacitor in such a circuit.

The basic sample-and-hold circuit in Figure 6-8(a) includes an input buffer, a dig-
itally controlled electronic switch (usually driven by a digital clock vg(¢)), a holding
capacitor C, and an output buffer. The input buffer is a voltage follower whose output
replicates the analog input signal vg(¢) and prevents the sample-and-hold circuit from
loading the input. Importantly, the input buffer supplies a charging current ic(¢) to
the capacitor. The output buffer is also a voltage follower whose output replicates
the capacitor voltage and prevents the ADC circuit from loading the sample-and-
hold circuit.
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To see how the circuit operates, we describe one cycle of the sample-and-hold
process. At time #; shown in Figure 6-8(b), the digital control v (¢) goes high, which
causes the switch to close. This act allows the input buffer to supply a charging
current ic(t) to drive the capacitor voltage to the level of the analog input. At time
, also shown in Figure 6-8(b), the digital control goes low, the switch opens,
and thereafter the capacitor current ic(¢) =0. Zero current means that capacitor volt-
age is constant since dvc(¢)/dt is zero. In sum, closing the switch causes the capacitor
voltage to track the input (once the capacitor reaches that value), and opening the
switch causes the capacitor voltage to hold a sample of the input until the process
repeats.

Figure 6-8(b) shows several more cycles of the sample-and-hold process. Samples
of the input waveform are acquired during the time intervals labeled #¢. During these
intervals the control signal is high, the switch is closed, and the capacitor charges or
discharges in order to track the analog input voltage. Analog-to-digital conversion of
the circuit output voltage takes place during the time intervals tapc. During these
intervals the control signal is low, the switch is open, and the capacitor holds the out-
put voltage constant.

Sample-and-hold circuits are available as monolithic integrated circuits (see
Figure 6-8(c)) that include the two buffers, the electronic switch, but usually not
the holding capacitor. The capacitor is supplied externally, and its selection
involves a trade-off. In an ideal sample-and-hold circuit, the capacitor voltage
tracks the input when the switch is closed (sample mode) and holds the value indef-
initely when the switch is open (hold mode). In real circuits the input buffer has a
maximum output current, which means that some time is needed to charge the
capacitor in the sample mode. Minimizing this sample acquisition time argues
for a small capacitor. On the other hand, in the hold mode, the output buffer draws
a small current that gradually discharges the capacitor, causing the output voltage
to slowly decrease. Minimizing this output drop calls for a large capacitor. Thus,
selecting the capacitance of the holding capacitor involves a compromise between
the sample acquisition time and the output voltage drop in the hold mode. A few
other issues might be obvious. The capacitor must have sufficient time to charge up
to the value of the signal, hence the clock signal must be sufficiently long to permit
this to happen. Similarly, the time allowed for the conversion to occur must also be
sufficient. Note also that the analog signal shown is changing slowly. Clearly if
the analog signal was changing more rapidly, then the sampling and conversion
must be done faster. Currently these concerns are beyond the scope of this text,
but for those interested, investigate Nyquist and Sampling Theory or see Example
13-12 in this text.

Sample Hold

vg(1) =

ve(r) = vo(r)

/
.
i

From analog Sample-and hold

. T
source < 4:/: circuit A ];)C
vs(7) () l +
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e

¥ !
vo(t) vs(t)

S B
: :

JIcifapcifcilapc i fc i fapc | e
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Solutions
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@ (b) ©
FIGURE 6-8



282 CHAPTER 6

CAPACITANCE AND INDUCTANCE

b0

-
A (1)

¢;%’$’$‘s

(a)

(b)

FIGURE 6-9 (a) Magnetic flux
surrounding a current-carrying
coil. (b) Circuit symbol showing
inductor current and voltage.
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FIGURE 6-10 Examplesofreal
inductors: (a) Toroidal. (b) Axial.
(c) Choke.

6—2 THE INDUCTOR

The inductor is a dynamic circuit element involving the time variation of the magnetic
field produced by a current. Magnetostatics shows that a magnetic flux ¢ surrounds a
wire carrying an electric current. When the wire is wound into a coil, the lines of flux
concentrate along the axis of the coil, as shown in Figure 6-9(a). In a linear magnetic
medium, the flux is proportional to both the current and the number of turns in the
coil. Therefore, the total flux is

(1) = k1 Nig (1) (6-12)

where k; is a constant of proportionality.

The magnetic flux intercepts or links the turns of the coil. The flux linkage in a coil
is represented by the symbol A, with units of webers (Wb), named after the German
scientist Wilhelm Weber (1804-1891). The flux linkage is proportional to the number
of turns in the coil and to the total magnetic flux, so A(¢) is

Mt)=No(r) (6-13)
Substituting Eq. (6-12) into Eq. (6-13) gives
A1) = [kiN?iL (1) (6-14)

The proportionality constant inside the brackets in this equation is the inductance L
of the coil. That is, by definition

L=k N? (6-15)

The unit of inductance is the henry (H) (plural: henrys), a name that honors
American scientist Joseph Henry. Figure 6-9(b) shows the circuit symbol for an induc-
tor. Photos of some examples of actual devices are shown in Figure 6-10. Some standard
values for commercially available inductors are found in the inside rear cover.

Using Eq. (6-15), the defining relationship for the inductor becomes

Me)=Lip(2) (6-16)

Figure 6-11 graphically displays the inductor’s element constraint in Eq. (6-16). The
graph points out that the inductor is a linear element since the defining relationship is
a straight line through the origin.

I[—V ReLationsHIp

Equation (6-16) is the inductor element constraint in terms of current and flux link-
age. To obtain the element characteristic in terms of voltage and current, we differ-
entiate Eq. (6-16) with respect to time:
LXOENG)
= 6-17
dt dt (617
The inductance L is a constant. According to Faraday’s law, the voltage across the
inductor is equal to the time rate of change of flux linkage. Therefore, we obtain
an inductor i—v relationship in the form

diL(l)
dt

The time derivative in Eq. (6-18) means that the voltage across the inductor is zero unless
the current is time varying. Under dc excitation the current is constant and vy, =0, so the
inductor acts like a short circuit. The inductor is a dynamic element because only a
changing current produces a nonzero voltage. However, a discontinuous change in
current would produce an infinite voltage, which is physically impossible. Therefore,
the current ii (f) must be a continuous function of time .

UL([) =L

(6-18)
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Equation (6-18) relates the inductor voltage to the rate of change of the inductor
current. To express the inductor current in terms of the voltage, we multiply both
sides of Eq. (6-18) by dt, solve for the differential di;, and integrate:

/diL(t):%/uL(t)dt (6-19)

To set the limits of integration, we assume that the inductor current iy (¢y) is known at
some time f. Under this assumption the integration limits are

i (t) 1 ¢
/ dip (1) = */ o (x)dx (6-20)
iL(to) LJ,

where x is a dummy integration variable. The left side of Eq. (6-20) integrates to
produce

1 t
i) it ()= 7 / o1 (x)dx (6-21)
lo

The reference time ¢ is established by some physical event, such as closing or opening
a switch. Without losing any generality, we can assume f, =0 and solving for i (¢)
write Eq. (6-21) in the form

1

i () =i(0) + 7 /0 o () (6-12)

Equation (6-22) is the integral form of the inductor i—v characteristic. Both the inte-
gral form and the derivative form in Eq. (6-18) assume that the reference marks for
the inductor voltage and current follow the passive sign convention shown in
Figure 6-9(b).

Power anD ENERGY
With the passive sign convention the inductor power is
pL(t)=iL(t)vL(r) (6-23)

Using Eq. (6-18) to eliminate vy (¢) from this equation puts the inductor power
in the form

pu=law)| L] - La ] 1)

‘e

www.butlerwinding.com

(d)

www.butlerwinding.com

www.butlerwinding.com

®

FIGURE 6-10 (Continued)
(d) Surface mount. (e) Air Coil.
(f) Bobbin Wound.

i ()
diy (1)

This expression shows that power can be positive or negative because the induc-
tor current and its time derivative can have opposite signs. Therefore, like a
capacitor, an inductor can both absorb and deliver power. The ability to deliver
power indicates that the inductor can store energy.

To find the stored energy, we note that the power relation in Eq. (6-24) is a

M)

perfect derivative. Since power is the time rate of change of energy, the quantity FIGURE 6-11 Graph of the defining
inside the brackets must represent the energy stored in the magnetic field of the  relationship of a linear inductor.

inductor. From Eq. (6-24), we infer that the energy at time ¢ is

1.
wi(t) = ELli(I) + constant
As is the case with capacitor energy, the constant in this expression is zero since it is
the energy stored at an instant ¢ at which iy (£) =0. As a result, the energy stored in the
inductor is

wi(f) = %Lii(r) (6-25)



284 CHAPTER 6

CAPACITANCE AND INDUCTANCE

i(1) (A)
5

- t(ms)

-5

(a)

v(n) (V)
20

(b)

FIGURE 6-12

The energy stored in an inductor is never negative because it is proportional to the
square of the current. The inductor stores energy when absorbing power and returns
previously stored energy when delivering power, so that the net energy transfer is
never negative.

Equation (6-25) implies that inductor current is a continuous function of time
because an abrupt change in current causes a discontinuity in the energy. Since power
is the time derivative of energy, an energy discontinuity implies infinite power, which
is physically impossible. Current is called the state variable of the inductor because it
determines the energy state of the element.

In summary, the inductor is a dynamic circuit element with the following properties:

1. The voltage across the inductor is zero unless the current through the inductor
is changing. The inductor acts like a short circuit for dc excitations.

2. The current through the inductor is a continuous function of time. A discon-
tinuous change in inductor current would require infinite voltage and power,
which is physically impossible.

3. Theinductor absorbs power from the circuit when storing energy and delivers
power to the circuit when returning previously stored energy. The net energy is
nonnegative, indicating that the inductor is a passive element.

EXAMPLE 6-6

The current through a 2-mH inductor is iy (¢) =4 sin 1000z + 1 sin 30007 A as shown in
Figure 6-12(a). Find the resulting inductor voltage.

SOLUTION:
The voltage is found from the derivative form of the i—v relationship:

oL (f) = Ld’Z—t(t) =0.002[4 x 1000 cos 1000z + 1 x 3000 cos 3000/]

= 8 cos 1000z + 6 cos 3000t V

The resulting voltage waveform is shown in Figure 6-12(b). Note that the current and
voltage waveforms each contain two sinusoids with the same two frequencies. How-
ever, the relative amplitudes of the two sinusoids are different. In i (¢), the ratio of
the amplitude of the component at o =3krad/s to the component at ® = 1krad/s is 1:4,
whereas in vy (¢) this ratio is 3:4. The fact that the responses of energy storage ele-
ments depend on frequency allows us to create frequency-selective signal processors
called filters. We will study filters in greater depth in Chapters 8, 12, and 14. |

Exercise 66

For >0, the voltage across a 4-mH inductor is vp (f) =20e72° V. The initial current
is i.(0) =0.

(a) What is the current through the inductor for z>0?

(b) What is the power for ¢>0?

(c) What is the energy for t>0?

Answers:

(a) i(r)=2.5(1-e20) A

(b) p(r) =50 (e2000r _ g=4000r) yy

(c) wi(t) =12.5(1-2¢72000 4 ¢=40000)
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EXAMPLE 6-—7

Figure 6-13 shows the current through and voltage across an unknown energy stor-
age element.

(a) What is the element and what is its numerical value?

(b) If the energy stored in the element at £ =0 is zero, how much energy is stored in
the element at 1=1s?

SOLUTION:

(a) By inspection, the voltage across the device is proportional to the derivative of
the current, so the element is a linear inductor. During the interval 0 <t <1s, the
slope of the current waveform is 10 A/s. During the same interval the voltage is a
constant 100 mV. Therefore, the inductance is

o(t) 01V

= = = 10 H
dijdi 10A)s
(b) The energy stored at r=1sis
1
wr(1)==Li (1)=0.5(0.01)(10)*=0.5J u

2

Exercise 6—7

For t<0, the current through a 100-mH inductor is zero. For ¢=0, the current
is i (1) = 202000 _20e 4000t A

(a) Derive an expression for the voltage across the inductor for > 0.

(b) Find the time #>0 at which the inductor voltage passes through zero.

(c) Derive an expression for the inductor power for ¢ > 0.

(d) Find the time interval over which the inductor absorbs power and the interval over
which it delivers power.

Answers:

(a) vL(1) = —4e 20000 1 84000y

(b) t=0.347 ms

(c) pu(t)=—80e 400 1 240¢ =000 _160e =800 mW

(d) Absorbing for 0<t<0.347 ms, delivering for ¢>0.347 ms

[ EXAMPLE 6-8

The current through a 2.5-mH inductor is a damped sine i(¢) = 10e =" sin 2000¢. Plot
the waveforms of the element current, voltage, power, and energy.

SOLUTION:

Following are the MATLAB code and the resulting plots for the current, voltage,
power, and energy. The code uses symbolic variables, differentiation, and multipli-
cation to calculate the expressions for the four signals. An appropriate time vector
is then substituted into the symbolic expressions to create numerical vectors that
can be plotted. The subplot function allows multiple plots to be placed in a single fig-
ure window. In the plots shown in Figure 6-14, note that the current, voltage, and
power alternate signs, whereas the energy signal is always positive.

i®) (A)

10 f-emmeeeeess :
5 ?
L
0 0.5 1.0 1.5
W) (V)
0.1
0.05 —
| |
0 0.5 1.0 1.5
FIGURE 6-13

t(s)

t(s)

(a)

(b)
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Current
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N
) 1 2 3 4
(a) x 1073
Voltage
50
>
= 0
= \/
-50

1 2 3 4
(b) x 1073
Power
200
100 2\
= )
s 0 =
< \ /
<
-100
—2004 1 2 3 4
Time, (s) « 103
()
Energy
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< 0.04
]
|
0.02 \/
00 1 2 3 4
Time, (s) % 10-3
(d)
FIGURE 6-14

The MATLAB code uses a numerical time vector defined by the expression

MATLAB Code
% Create symbolic variables
syms t iL vL pL wL real

% Create the inductor current signal
iL = 10%exp (-500%t) *sin (2000%t) ;

% Define the inductance
L=0.0025;

[tt=0:0.00001 : 0.004;]. The sinusoid has a period of T =2x/2000=0.00314,
so plotting from ¢ = 0 ms to t =4 ms is sufficient to capture a full period of the sinusoid.
The time step size of 10 ps is a convenient choice and generated 401 points to plot,
which produced a smooth curve for each signal.

% Calculate the voltage, power, and energy

vL = Lxdiff (iL, ‘t’);
pL = iLxvL;
wL = LxiLA2/2;

% Create a time vector
tt=0:0.00001:0.004;

% Substitute the time vector into the symbolic expressions

iLtt = subs (iL, t, tt);

vLtt = subs (VL, t, tt);
pLtt = subs (pL, t, tt) ;
wLtt = subs (wL, t, tt);

% Plot the results using the subplot function

subplot (2,2,1)

plot (tt,iLtt, ‘b’ , ‘LinewWidth’,2) ;

grid on
ylabel (‘i L(t), (A)")
title(*Current’)

subplot (2,2,2)

plot (tt,vLtt, ‘b’ , ‘LineWidth’,2) ;

grid on
ylabel (‘v_L(t), (V)')
title(‘Voltage’)

subplot (2,2, 3)

plot (tt,pLtt, ‘b’ , ‘LinewWidth’,2) ;

grid on

xlabel (‘Time, (s)’);
ylabel (*p L(t), (W)")
title (*Power’)

subplot (2,2,4)

plot (tt,wLtt, ‘b’ , ‘LineWidth’,2) ;

grid on

xlabel (‘Time, (s)’);
ylabel (*w_L(t), (J)’)
title (‘Energy’)
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Exercise 68

Using the MATLAB code from Example 68, modify it to find the waveforms of the current,
voltage, power, and energy of a 50-mH inductor with a current flowing through it given by

. 5. 5 . 5 .
iL(t)=- ;sm(400nt) - ﬂmn(SOOm) - £s1n(1200m) mA

Answers: Two cycles of the plots are shown in Figure 6-15.

x 10-3 Current Voltage FIGURE 6-15
2 A\ A\ 0.1 N\ A\ JA
o \ /AT AVAVI I AVAVA
é 0 /J \\ r/ 5_0,1 / \ / \
‘:l‘l\/ \ >_|4)_2 l \/ \
-2 |\ \V 3 \/
0 0.002 0.004 0.006 0.008 0.01 ’ 0 0.002 0.004 0.006 0.008 0.01
. X 104 Power % 10-7 Energy

ol sl ]
LU |\ =R || |l
vy L N

0 0.002 0.004 0.006 0.008 0.01 0 0.002 0.004 0.006 0.008 0.01
Time (s) Time (s)

[}

=1
oo

L (W)
(=]

wi (1) )

o
=

Exercise 6-9

A 50-mH inductor has an initial current of i (0)=0 A. The following voltage is applied
across the inductor starting at t=0:

5. 5 . 5 .
oL(t)=- —sin (400mt) — %sm(SOOm) - gsm(lZOOnt) A%

For =0, use MATLAB to determine the inductor current, power, and energy. Plot those
three signals and the inductor voltage for 0 <7 <10 ms.

Answer: The plots are shown in Figure 6-16.

C t
0 urren! 4 Voltage FlGU RE 6_] 6
-0.02 2 A A
< z // //
0-0.04 S /J /‘/
=
N N A
-0.06
0 0.005 0.01 -4
0 0.005 0.01
(a)
(b)
Power x 1073 Energy
0.1 8

A

0.05 -\ A 6
R/ N2 W - I O W A
= 0 < 4
g =
& \'\ \’\ - / \ / \
-0.05 \/ \/ 2
-0.1 0
0.005 0.01 0 0.005 0.01
Time, (s) Time, (s)

(c) ()]
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CHAPTER 6

CAPACITANCE AND INDUCTANCE

MoORE ABOUT DUALITY

The capacitor and inductor characteristics are quite similar. Interchanging C and L,
and i and v converts the capacitor equations into the inductor equations, and vice
versa. This interchangeability illustrates the principle of duality. The dual concepts
seen so far are as follows:

KVL — KCL

Loop — Node
Resistance — Conductance
Voltage source — Current source
Thévenin - Norton

Short circuit - Open circuit
Series - Parallel
Capacitance — Inductance
Flux linkage o Charge

The term in one column is the dual of the term in the other column. The principle of
duality states that

If every electrical term in a correct statement about circuit behavior is replaced by

its dual, then the result is another correct statement.
This principle may help beginners gain confidence in their understanding of circuit
analysis. When the concept in one column is understood, the dual concept in the
other column becomes easier to remember and apply.

6-3 Dvynamic OP AMP CircuiTs

The dynamic characteristics of capacitors and inductors produce signal-processing
functions that cannot be obtained using resistors. The OP AMP circuit in
Figure 6-17(a) is similar to the inverting amplifier circuit except for the capacitor
in the feedback path. To determine the signal-processing function of the circuit,
we need to find its input-output relationship.

We begin by writing a KCL equation at node A.

iR (1) +ic(t) =in(1)

The resistor and capacitor device equations are written using their i—v relationships
and the fundamental property of node voltages:

ic(t) — Cd[UO([)d;UA(t)]

in(0) = & los(0)~0A(0)

The ideal OP AMP device equations are inx(¢) =0 and va (z) =0. Substituting all of the
element constraints into the KCL connection constraint produces

vs(t)  ~dvo(t)

AVl SA N
R " at

To solve for the output v (), we multiply this equation by dt, solve for the differential

dvo, and integrate as follows

/ dvo(f) = —% / os (1)t

=0
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Assuming the output voltage is known at time ) =0, the integration limits are

oc () 1 t
doo (t :——/u X)dx
|, @o0=-ge | »st0

C

which yields
1 t

Uo(l) =Uo(0)—R—C ; s

(x)dx

The initial condition v (0) is actually the voltage on the capacitor at =0, since by
KVL, we have vc(f) =vo(t)—va(t). But va=0 for the OP AMP, so in general
vo(t) =vc(t). When the voltage on the capacitor is zero at =0, the circuit input—
output relationship reduces to

1 t

- R A vs (.x)dx

vo(t) = (6-26)
The output voltage is proportional to the integral of the input voltage when the initial
capacitor voltage is zero. The circuit in Figure 6-17(a) is an inverting integrator since
the proportionality constant is negative. The constant 1/RC has the units of reciprocal
seconds (s7!) so that both sides of Eq. (6-26) have the units of volts.

Interchanging the resistor and capacitor in Figure 6-17(a) produces the OP AMP
differentiator in Figure 6-17(b). To find the input-output relationship of this circuit,
we start by writing the element and connection equations. The KCL connection con-
straint at node A is

IR (1) +ic (1) = in(t)
The device equations for the input capacitor and feedback resistor are
dvs(t) —va(1)]

ic(t) =C dr
in(1) = o0 ()0a(1)]

The device equations for the OP AMP are in(f) =0 and va () =0. Substituting all of
these element constraints into the KCL connection constraint produces

vo(t) .dos(t)
R "

Solving this equation for vo(¢) produces the circuit input-output relationship:

dl)s([)
dt

The output voltage is proportional to the derivative of the input voltage. The cir-
cuit in Figure 6-17(b) is an inverting differentiator since the proportionality constant
(—RC) is negative. The units of the constant RC are seconds so that both sides of
Eq. (6-27) have the units of volts.

There are OP AMP inductor circuits that produce the inverting integrator and
differentiator functions; however, they are of little practical interest because of the
physical size and resistive losses in real inductor devices.

Figure 6-18 shows OP AMP circuits and block diagrams for the inverting integra-
tor and differentiator, together with signal-processing functions studied in Chapter 4.
The term operational amplifier results from the various mathematical operations
implemented by these circuits. The following examples illustrate using the collection
of circuits in Figure 6-18 on the next page in the analysis and design of signal-
processing functions.

=0

vo(f)=-RC (6-27)

RO R vo(® C

S
vs(t) iN(l)i ic(®) | vo(®)

(@)
ic® C va) R

.
vs(1) IN(D) ¢ I vo(?)

(b)

FIGURE 6-17 (a) The
inverting OP AMP integrator.
(b) The inverting OP AMP
differentiator.
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Circuit Block diagram Gains
210) vo(?)
p—O
vi(0) = vo(?) _Ri+Ry
=R,
R, R’y
TNoninverting
vi() Ry Vo(t)
M) e vold) e R
=" %,
I_Vertlng
R] RF VO([) V](t)
. K, R
B é vo(1) S
2
va() Rp
vo(t + Ky=— —F
v AP ! TR
Sur_nmer
vo(®) vi(t
(oM 9 Tx * R
| =— =%
R3 y VO(t) Rl
v (t) () R +R R
’ 0! +71 Kz—( : 2)( ! )
K2 R] R3 + R4
T Subtractor
vy () «& vO(t>
© ' It
Vl(l) VO(t) 1
LLD“ = K="
Integrator
vy(7) C vo(t)
E vi(0) 77 Vo)
K dr K=-RC
Differentiator

FIGURE

6-18 Summary of basic OP AMP signal-processing circuits.
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EXAMPLE 6-9

The input to the circuit in Figure 6-19(a) is vs(¢) = 10u(t) V. Derive an expression for
the output voltage. The OP AMP saturates when vp(f)= £15 V.

vs(0), vo(1) (V) FIGURE 6-19

10 —
3 SN L TS 0 S
1MQ 1 uF A
1 M 05 1:0 1'5 2.0 25 3.0 3i5
“0v+ LN
vs(t) vo(®) - NC T

() (b)

SOLUTION:

The circuit is the inverting integrator with an initial voltage of 0 V across the capac-
itor. Assuming the OP AMP is operating in the linear mode, the output voltage is

vo(t) = 1)0(0)—%/0 vs(x)dx

1 t
N=0-—— [ 104
vo(f) =0-179 ><10_6/0 *

t
vo(t) =—/0 10dx=-10tV t>0

The output contains a ramp with a slope of —10 V/s. The negative slope is due to
the fact that the OP AMP is an inverting integrator. The output will continue to
decrease until the OP AMP saturates at —15V at r=1.5s. Beyond that time the
output is a constant —15 V. Figure 6-19(b) shows both the input and the output of
the integrator.

This example illustrates that dynamic circuits with bounded inputs may have
unbounded responses. The circuit input here is a 10-V step function that has a
bounded amplitude. The circuit output is a ramp whose output would be unbounded
except that the OP AMP saturates. |

Exercise 6-10
The input to the circuit in Figure 6-19 is vg(r) =10 [e~>]u(r) V.

(a) For vc(0) =0, derive an expression for the output voltage, assuming the OP AMP is in
its linear range.

(b) Does the OP AMP saturate with the given input?

Answers:

(a) vo(t)=2(e™>"=1)u(t) V

(b) Does not saturate
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EXAMPLE 6-10

The input to the circuit in Figure 6-20(a) is the trapezoidal waveform shown
in Figure 6-20(b). Find the output waveform. The OP AMP saturates when
vo(t)=+£15V.

FIGURE 6-20 vs(0) (V)

| L.,
5 p (ms)
100nF  10kQ
+ + E E !
vs(?) vo(t) 25 fermaeeee e |7 |
0 L I I t (ms)
0o |1 2 4 6
— -5
(@) (©)
SOLUTION:
The circuit is the inverting differentiator with the following input—output
relationship:

_ dvs(l)_ 1 dl)s(t)
vo(l)=—RC—7== 1060 a1

The output voltage is constant over each of the following three time intervals:

1. For 0<t<1ms, the input slope is 5000 V/s and the output is vo=-5 V.

2. For 1<t<3ms, the input slope is zero, so the output is zero as well.

3. For 3 <t<5ms, the input slope is —2500 V /s and the output is +2.5 V.
The resulting output waveform is shown in Figure 6-20(c).

The output voltage remains within £15-V limits, so the OP AMP operates in the
linear mode. |

Exercise 611

The input to the circuit in Figure 6-20(a) is vs(f) = V4 cos 2000t V. The OP AMP saturates
when vp(f)= £15 V.

(a) Derive an expression for the output, assuming that the OP AMP is in the lin-
ear mode.
(b) What is the maximum value of Vo for linear operation?

Answers:
(a) vo(t)=2Va sin 2000t V
(b) [Val <75V
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@ DESIGN EXAMPLE 6—11

Use the functional blocks in Figure 618 to design an OP AMP circuit to implement
the input-output relationship given below. Then simulate your circuit using Multisim
to verify your results when vg(¢) =cos 100z V.

dvs (1)
dt

+100vs(r) =100 vy (£)

SOLUTION:
There are many approaches to solving this problem. In our approach, we begin by
dividing both sides of the input-output relationship by 100 yielding

dvs (1)
dt

Then we can draw the block diagram in Figure 6-21(a), which shows that we need a
weighted differentiator and a summer. However, the differentiator and the summer
are both inverting circuits. This means that the output sign of the summer and the
differentiator will cancel, but the input that goes straight to the summer will be
inverted. This then requires that we insert an inverter between the input and the sum-
mer as shown in Figure 6-21(b). The inverting building blocks are realizable using the
OP AMP circuits in Figure 618, and the overall transfer characteristic is noninvert-
ing as required. One of many possible circuit realizations is shown in Figure 6-21(c)
with the constraint that the differentiator’s RC =0.01. Selecting the OP AMPs and

Uo(l) = Us(t) +0.01

+ Inverting amplifier ~ Inverting summer
vg() Q—' vo(®) IMQ 1MQm(IMQ  IMQ v ()
0.01 d/dt

(a)

Inverting differentiator Inverting differentiator
(b) ©

Transient Analysis

(Output)

i t V3 V2
(input) /< ) (V2) /

N /7 /

soom LV \ \ VARVARIAV, N
A\ N\ N4 AN\ N
\ N \ / /NN \
N/ / VAREA\WWAN \
~500m X \\ \/ / / \ \\

/N > NN/
¥ N NS e \ \7[/

-1.5

Voltage (V)
(=}

Om 10m 20m 30m 40m 50m 60m 70m 80m 90m 100m
Time (s)

(d)

FIGURE 6-21
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vsi(H) R

the values of R and C depends on many additional factors, such as accuracy, internal
resistance of the input source, and output load. The Multisim simulation with
vs(t)=cos 100t V is shown in Figure 6-21(d). We have plotted

C . . R
. I . vo()  the input, the output, and the inputs into the summer, that

FIGURE 6-22

R R
i—’\/\/v —AMA—— W
vea() R
+
R

I $ s, »y(¢) is the inverted input and v3(¢) is the weighted differen-
tiated input. u
Exercise 6—12
= Find the input-output relationship of the circuit in Figure 6-22.

Answer: Uo(t):DO(O)+RLC/0[(031(X)_DS2(X))dx

@ DESIGN EXAMPLE 6—12

Differential, integral, and integrodifferential equations can be solved using dynamic
circuits. Suppose a second-order system can be described by the following differential
equation:

d*oo(1) dvo(t)
a2 +100 I

Develop a block-diagram representation of the equation and then design a circuit to
solve the equation. That is, design a circuit where the output is vo ().

5

+500000 (1) =250 V

SOLUTION:
The first step is to solve the equation for the highest-order derivative with a coeffi-
cient of 1. Hence,

d21)0 (t) _ dl)o([)
aw -

Next, we realize that the highest-order derivative is simply the sum of three inputs. If
we integrate the second derivative we obtain the first derivative, and if we integrate
the first derivative we obtain the desired output, v (f). We can use the outputs of the
integrators, scale them, and feed them back into the summer along with the 50-V
driving function. This can be seen in the block diagram of Figure 6-23(a).

We can design the circuit by implementing the block diagram. For each integrator
we select the gain to be —1. Because all of our building blocks are inverting ampli-
fiers, we need to include two inverters to make the signs
come out correctly. The summer is used to achieve the
appropriate gains. Figure 6-23(b) shows one possible cir-
| vo(D) cuit design.

~100000 (1) + 50 V

& d
+ d;z dt
50V —»Q J
+
+
20
-103

DISCUSSION: Not too long ago, before digital computers
became ubiquitous, these types of problems were solved
using analog computers. Analog computers solved com-
plex, coupled, differential equations using integrators, dif-
ferentiators, summers, inverters, and noninverters. Our

FIGURE 6-23

(a)

early space efforts, for example, relied heavily on analog
computers. Today, of course, fast, redundant, and rela-
tively cheap digital computers are used and analog com-
puters have been relegated to the annals of history. W
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FIGURE 6-23 (Continued)

d —d
dr? dr
—o
+
L vo(0)
—d
dt
10 kQ 10 kQ / 1 MQ 1 uF
Design a circuit to solve the following differential equation: +° AW °
+
do-(t 0.1V 2 kQ
10250 500, =1v . 0
Answer: There are several possible solutions. Figure 6-24 shows L L
one. 1kQ 1kQ
°® AAA & AAA

VVVv VVVv

APPLICATION EXAMPLE 6-13

Dynamic OP AMP circuits can function as integrators or differ-
entiators. Given an equation or graph of an input waveform,
we can predict output waveforms using the mathematical FIGURE 6-24
operations of integration or differentiation. Integrators and
differentiators work flawlessly on ideal signal models. In practice there are some
limitations caused by relatively small imperfections in real-world signals.

First consider an inverting integrator with an input vs(¢) + Vo, where vs(t) is the
desired signal and V) is a relatively small dc offset. For this input an ideal inverting
integrator has an output of

Uo(l‘) = —R—C

t
/ Vs (x)dx + Vot
L,-/ ~—~
Desired output Ramp

The desired output is accompanied by a ramp waveform caused by a small dc offset.
Even if V) is very small, the ramp V¢ will eventually overwhelm the desired signal
and saturate the OP AMP.

The dc offset problem is dealt with using the reset switch in Figure 6-25(a) to
limit the time interval during which the circuit performs integration. When the
reset signal is high, the switch is closed, any voltage on the capacitor is removed,
and the integrator output voltage is forced to zero. When the reset signal goes low,
the switch opens and the circuit operates as an integrator. At the end of a fixed (a) Time-limited integrator
time interval, the reset signal goes high again and the switch closes, forcing the
output to zero. Practical integrator applications use time-limited integration in FIGURE 6-25
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C R R

o]

+ +
Vs(l) VO(I)

(b) Band-limited differentiator

FIGURE 6-25 (Continued)

FIGURE 6-26 Capacitors
connected in parallel. (a) Given
circuit. (b) Equivalent circuit.

which the integrator output is periodically reset to zero before any offset driven
ramp becomes important.

Next, consider an inverting differentiator with an input vs(¢) + Vo x sin(wt), where
vs(1) is the desired signal and v4 sin(ot) represents relatively small high-frequency
noise. For this input an ideal inverting differentiator has an output of

dvs (1)

dt
S

Desired output Noise

vo(t)=-RC + @V cos(ot)

The desired output is accompanied by an amplified noise component. Even if the
input noise amplitude V4 is very small, the term V4 can be large for high-frequency
noise. The basic problem is that differentiation amplifies high-frequency noise to a
degree that can overwhelm the desired signal.

The high-frequency noise problem is dealt with by adding the series resistor shown
in Figure 6-25(b). This addition limits the frequency range over which the circuit
actually performs differentiation. At low frequencies the capacitor is the dominant
element, the series resistor plays no role, and the circuit performs differentiation.
At high frequencies the roles reverse: The added resistor dominates, the capacitor
can be ignored, and the circuit functions as an inverter. As a result the modified cir-
cuit only differentiates signals in a low-frequency band.” Practical applications use
band-limited differentiation to avoid high-frequency noise problems.

04 EquivaLENT CAPACITANCE AND INDUCTANCE

In Chapter 2 we found that resistors connected in series or parallel can be replaced by
equivalent resistances. The same principle applies to connections of capacitors and
inductors—for example, to the parallel connection of capacitors in Figure 6-26(a).
Applying KCL at node A yields

i()=i1(t) +ip(t) +- - +in(2)

©® 0@

Restof | + |{ii(®) [}ix® §in(®) | Restof | +
the v(t) == s the v(t) ==
circuit | _ | Cy TCz 1 Cy circuit Cpo=Ci1+Cy+..+Cy

(a) (b)

Since the elements are connected in parallel, KVL requires
vi(t) =0p(t) =---=on (1) =0(1)
Because the capacitors all have the same voltage, their i—o relationships are all of the
form i (¢) = Cy do(t)/dt. Substituting the i—v relationships into the KCL equation
yields
do(t)
dt

do(t)
dt

do(t)

i(t)zCl d

+C2

+CN

In Chapter 12 we find that this low-frequency band falls below wc =1/RC.
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Factoring the derivative out of each term we get

i(t):(C1+C2+---+CN)dl:i—(tt)
This equation states that the responses v(¢) and i(¢) in Figure 6-26(a) do not change

when the N parallel capacitors are replaced by an equivalent capacitance:
Ceo=C1+Cy+---+Cy (parallel connection) (6-28)

The equivalent capacitance simplification is shown in Figure 6-26(b). The initial volt-
age, if any, on the equivalent capacitance is v(0), the common voltage across all of the
original N capacitors at t=0.

Next consider the series connection of N capacitors in Figure 6-27(a). Applying
KVL around loop 1 in Figure 6-27(a) yields the equation

o(t)=o1(t) +va(t) + - +on(2)
FIGURE 6-27 Capacitors

in ¢, G, i1) @ connected in series. (a) Given
= circuit. (b) Equivalent circuit.

== >
Rest v v +! Rest
of the | (¢ — Cy of the | v(t) == | | I I
circuit | @ VN(t_)_ § circuit | G O + C—2+ - +C—N
(@) (b)

Since the elements are connected in series, KCL requires
(1) =i(t)=---=in (1) =i(r)

Since the same current exists in all capacitors, their i—v relationships are all of
the form

1 t
vr(t) =0k (0) + —/ i(x)dx
Cr Jo
Substituting these i—o relationships into the loop 1 KVL equation yields

u(t):v1(0)+cilA i(x)dx+vz(0)+ci2/0 i(x)dx
+~~~+0N(0)+CLN/0 i(x)dx

We can factor the integral out of each term to obtain

v<r>=[U1<0>+uz<0>+--~+uN<o>1+(Ci]+ciz+-~-+ciN)/o i(x)dx

This equation indicates that the responses v(¢) and i(¢) in Figure 6-27(a) do not
change when the N series capacitors are replaced by an equivalent capacitance:

1 1 1 1
— =t —— = series connection (6-29)
Ceq C1 G Cy ( )
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1 pF

Pl
0.5 uF 0.5 uF

700 pH

0.1 pF

300 pH
0.05 pF

O

lmH

F

(©)
FIGURE 6-28

26.67 mH

Lo
i)

(b)

1210 pH

(©)
FIGURE 6-29

0.1 pF

The equivalent capacitance is shown in Figure 6-27(b). The initial voltage on the
equivalent capacitance is the sum of the initial voltages on each of the original N
capacitors.

The equivalent capacitance of a parallel connection is the sum of the individual
capacitances. The reciprocal of the equivalent capacitance of a series connection is
the sum of the reciprocals of the individual capacitances. Since the capacitor and
inductor are dual elements, the corresponding results for inductors are found
by interchanging the series and parallel equivalence rules for the capacitor. That
is, in a series connection the equivalent inductance is the sum of the individual
inductances:

Leo=L1+Lo+---+Ly (series connection) (6-30)

For the parallel connection, the reciprocals add to produce the reciprocal of the
equivalent inductance:

1 1 1 1

— =t —+- (6-31)
Leo L1 Ly Ly

(parallel connection)

Derivation of Egs. (6-30) and (6-31) uses the approach given previously for the
capacitor except that the roles of voltage and current are interchanged. Completion
of the derivation is left as a problem for the reader.

EXAMPLE 6-14

Find the equivalent capacitance and inductance of the circuits in Figure 6-28.

SOLUTION:

(a) For the circuit in Figure 6-28(a), the two 0.5-uF capacitors in parallel combine to
yield an equivalent of 0.5+ 0.5 =1-uF capacitance. This 1-uF equivalent capaci-
tance is in series with a 1-pF capacitor, yielding an overall equivalent of
CEQ = 1/(1/1 +
1/1)=0.5pF.

(b) For the circuit of Figure 6-28(b), the 10-mH and the 30-mH inductors are
in series and add to produce an equivalent inductance of 40 mH. This 40-mH

equivalent inductance is in parallel with the 80-mH inductor. The equivalent
inductance of the parallel combination is Lggo=1/(1/40+1/80)=26.67 mH.

(c) The circuit of Figure 6-28(c) contains both inductors and capacitors. In later
chapters, we will learn how to combine all of these into a single equivalent
element. For now, we combine the inductors and the capacitors separately.
The 5-pF capacitor in parallel with the 0.1-pF capacitor yields an equivalent
capacitance of 0.100005 pF. For all practical purposes, the 5-pF capacitor can
be ignored, leaving two 0.1-pF capacitors in series with equivalent capacitance
of 0.05 pF. Combining this equivalent capacitance in parallel with the remaining
0.05-pF capacitor yields an overall equivalent capacitance of 0.1 pF. The
parallel 700-pH and 300-pH inductors yield an equivalent inductance of
1/(1/700+1/300) =210 pH. This equivalent inductance is effectively in series
with the 1-mH inductor at the bottom, yielding 1000 +210=1210 pH as the over-
all equivalent inductance.

Figure 6-29 shows the simplified equivalent circuits for each of the circuits of
Figure 6-28. [ |
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Exercise 6-14

(a) A 150-pH inductor is in parallel with two other identical inductors. That combination is
in series with a 100-pH inductor. What is the equivalent inductance of the connection?

(b) A capacitor bank consists of five hundred 400-VDC, 10-mF capacitors in parallel. How
much energy can the bank store when the capacitors are fully charged?

Answers:

(a) LEQ =150 },lH
(b) w=400kJ

Exercise 615

Find the equivalent capacitance and the initial stored voltage for the circuit in Figure 6-30.

Answer: Cgq=0.0276 pF with vc(0)=35V.

Exercise 616

The current through a series connection of two 1-uF capacitors is a rectangular pulse with an
amplitude of 2 mA and a duration of 10 ms. At ¢ =0 the voltage across the first capacitor is
+10 V and across the second is zero.

(a) What is the voltage across the series combination at =10 ms?
(b) What is the maximum instantaneous power delivered to the series combination?
(c) What is the energy stored on the first capacitor at t=0 and =10 ms?

Answers:

(a) 50V

(b) 100 mW at z=10 ms
(c) 50 pJ and 450 pJ

DC Eaquivarent Circuits

Sometimes we need to find the dc response of circuits containing capacitors and
inductors. In the first two sections of this chapter, we found that under dc conditions
a capacitor acts like an open circuit and an inductor acts like a short circuit. In other
words, under dc conditions, an equivalent circuit for a capacitor is an open circuit and
an equivalent circuit of an inductor is a short circuit.

To determine dc responses, we replace capacitors by open circuits and inductors
by short circuits and analyze the resulting resistance circuit using any of the methods
in Chapters 2 through 4. The circuit analysis involves only resistance circuits and
yields capacitor voltages and inductor currents along with any other variables of
interest. Computer programs like Multisim use this type of dc analysis to find the ini-
tial operating point of a circuit to be analyzed. The dc capacitor voltages and inductor
currents become initial conditions for a transient response that begins at =0 when
something in the circuit changes, such as the position of a switch.

EXAMPLE 6-15

Determine the voltage across the capacitors and current through the inductors in
Figure 6-31(a).

SOLUTION:

The circuit is driven by a 5-V dc source. Figure 6-31(b) shows the equivalent circuit
under dc conditions. The current in the resulting series circuit is 5/(50 + 50) =50 mA.
This dc current exists in both inductors, so ir; =ir, =50 mA. By voltage division the

0.033 pF

o

+20 V-

+
+ 10\_/ O.IpF
0.15pF ==15V

5V T 0.022 uF

FIGURE 6-30
G
}7
50 Q Ly L,
+
T_ 5V C T 50 Q
(a)
vea(h)
A

50Q [Ll(t)o i)
HESARRENY I
T7 SV V(f](l)I 50Q

(®)

FIGURE 6-31
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voltage across the 50-Q output resistor is v=5x50/(50+50)=2.5V; therefore,
vc1(0) =2.5 V. The voltage across C, is zero because of the short circuits produced

by the two inductors. [ |
R, R,

Exercise 617

Find the OP AMP output voltage in Figure 6-32.

Answer:

R, +R
(e} ([ ) = %Udc
1

FIGURE 6-32
SUMMARY
e The linear capacitor and inductor are dynamic circuit circuit. Circuit state variables are continuous

elements that can store energy. The instantaneous ele-
ment power is positive when they are storing energy and
negative when they are delivering previously stored
energy. The net energy transfer is never negative
because inductors and capacitors are passive elements.

e The current through a capacitor is zero unless the volt-
age is changing. A capacitor acts like an open circuit to
dc excitations.

e The voltage across an inductor is zero unless the cur-
rent is changing. An inductor acts like a short circuit
to dc excitations.

e Capacitor voltage and inductor current are called state
variables because they define the energy state of a

PROBLEMS

functions of time as long as the circuit driving forces
are finite.

e OP AMP capacitor circuits perform signal
integration or differentiation. These operations,
together with the summer and gain functions, provide
the building blocks for designing dynamic input—
output characteristics.

e Capacitors or inductors in series or parallel can be
replaced with an equivalent element found by adding
the individual capacitances or inductances or their reci-
procals. The dc response of a dynamic circuit can be
found by replacing all capacitors with open circuits
and all inductors with short circuits.

OBJsective 61 CapaciTorR AND INDUCTOR
ResponNses (Sects. 6—1 anD 6-2)

(a) Given the current through a capacitor or an inductor, find
the voltage across the element.

(b) Given the voltage across a capacitor or an inductor, find the
current through the element.

(c) Find the power and energy associated with a capacitor or
inductor.

See Examples 6-1 to 64 and 6-6 to 6-8, and Exercises 6 —1

to 6-9.

6~1 For t>=0 the voltage across a 1-uF capacitor is
ve(t) = 10u(r) V. Derive expressions for ic(f) and pc(t). Is
the capacitor absorbing power, delivering power, or both?

62 For t =0 the voltage across a 0.022-uF capacitor is
ve(t) = 5e7 %% u(f) V. Derive expressions for ic(t) and
pc(t). Is the capacitor absorbing power, delivering power,
or both?

6—3 The voltage across a 2200-pF capacitor is vc(t) = 50 cos
(2x10%*) V. Derive expressions for ic(f) and pc(t). Is the
capacitor absorbing power, delivering power, or both?

6—4 The current through a 0.1-uF capacitor is a rectangular pulse
with an amplitude of 2mA and a duration of 5 ms. Find the
capacitor voltage at the end of the pulse when the capacitor
voltage at the beginning of the pulse is —1 V.

6—5 For ¢ =0 the current through capacitor is ic(f) = 10 £ u(t) mA.
At t = 0 the capacitor voltage is 3 V. Atr = 1ms the voltage
is 8 V. Find the capacitance of the device.
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6—6 The voltage across a 0.01-uF capacitor is shown in 6-11 The current through a 100-mH inductor is shown in
Figure P6-6. Prepare sketches of ic(f), pc(f), and we(z). Is Figure P6-11. Prepare sketches of vy (¢), pp(f), and wy (¢).
the capacitor absorbing power, delivering power, or both? i(H) (mA)

v(®) (V)

20 oo,

10[---F---

' ' t (ms)
0 20 30 40 50 0

o
[l T

1 (ps)

=]
T

10
FIGURE P6-6
FIGURE P6-11
6—7 The voltage across a 0.01-pF capacitor is shown in
Figure P6-7. Prepare sketches of ic(t), pc(f), and we(t). 6—12 For ¢ > 0 the current through a 4300-uH inductor is

Is the capacitor absorbing power, delivering power, or both? i(r) = 1e71%%% A Find vy (1), pL(t), and wy(t) for 1 = 0.

WHV) Is the inductor absorbing power, delivering power, or both?
6-13 For =0 the voltage across a 100-mH inductor is [ ]

W= ) vi(t) = 15e719% V. Plot i (¢) versus time when i (0) = 0 A.

: (a) Solve using Multisim. In Multisim use the exponential

voltage source, and set its initial value to 15V and the

0 o '5 pulsed value to 0 V. Set the rise-time appropriately. Set

the fall delay time well beyond the period over which

you want to observe the response. Then, click on the

Y I inductor and set the inductor’s initial condition to 0 A.

Plot the output using the transient analysis. Under

“Analysis parameters,” be sure to check the box under
FIGURE P6-7 initial conditions to “User-defined” and set the “End

time” to display at least five time constants.
6—8 The current through a 1500-pF capacitor is shown in (b) Solve using MATLAB.

Figure P6-8. Given that vc(0) = =5V, at what time will

the voltage vc(#) first reach 50 V. 6—14 Repeat Problem 6-13 when the voltage across a 20-mH []
i(7) (mA) inductor is vp(f) = 4072V, Plot i (f) versus time

when i, (0) = -1 A.

6—15 A voltage vi(¢) = 5c0s(1000nf) V appears across a [
' 50-mH inductor, where 7 is a positive integer that controls
E the frequency of the input signal. The amplitude of the
E input signal is constant. Assume i, (0) = 0 A. Use MATLAB
i ) and symbolic variables to compute an expression for ir (£). On
0 5 10 the same axes, plot i (¢) versus time for n = 1, 2, 3, 4, and 5,

20~

over an appropriate time scale. On another set of axes, plot
FIGURE P4-8 the amplitude of i (¢) versus the coefficient n. As n
approaches infinity, what happens to the amplitude of the
L] 6-9 For 1=0 the current through a 0.33-uF capacitor is current? What type of circuit element does the inductor
ic(t) = 5sin(1000nt) mA. Using Multisim, plot vc(t) versus behave like as n approaches infinity?
time when vc(0) = —=5V. In Multisim, use the ac current

6-16 For ¢ =0 the voltage across a 100-mH inductor is
vp(t) =500¢u(t) V. At t=2ms the inductor current is
observed to be zero. Find the value of i (0).

source —note that the frequency is in Hz—and set the other
parameters appropriately. Click on the capacitor and set the
initial condition to —5V. Then simulate the output using the
transient analysis but be certain to check “User-defined” 6-17 For t >0 the current through a 100-mH inductor
under initial conditions. is i (f) = 100te71% A, Derive an expression for vi (t). Is

6-10 A 100-uF capacitor has no voltage across it at ¢ = 0. the inductor absorbing power or delivering power or both?

A current flowing through the capacitor is given as 6-18 The capacitor in Figure P6-18 carries an initial voltage
ic(t) = 2u(t) = 3u(t — 3) + u(t — 6) mA. Find the voltage ve(0) = =25V, At ¢ = 0, the switch is closed, and there-
across the capacitor at t = 4s. Repeat for ¢t = 6. after the voltage across the capacitor is ve(f) = —100 +
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75 =200 Y Derive expressions for ic(¢) and pc(t) for t > 0. Is
the capacitor absorbing power, delivering power, or both?

ic(t)

+ r 51 = Rest of
VC(E) f— 10 p,F V(l‘) the
e ( H circuit

FIGURE P6-18

L[] 6-19 A 33-pF capacitor and a 10-mH inductor are connected in
parallel with a closed switch as shown in Figure P6-19. The
inductor has —5 mA flowing through it at# = 0—. The switch
opens at t = 0.

(a) Find the initial voltage across the capacitor at ¢ = 0.

(b) Write an equation for the voltage across the elements for
t > 0. Do not solve it.

(¢) Simulate the circuit using Multisim. Connect an inductor
in parallel with a capacitor and assign the appropriate ini-
tial conditions and run a transient analysis. Plot the volt-
age across the elements for 5 ms.

(d) Characterize the response signal.

iL(0) = =5 mA
+ t=0

33 uF == vc(0) 10 mH
FIGURE P6-19

6—20 The inductor in Figure P6-20 carries an initial current of
i(0) = 0.2 A. At = 0, the switch opens, and thereafter the
current into the rest of the circuit is i(f) = —0.2¢7200% A,
Derive expressions for vy (t)and py(¢) for ¢ > 0 . Is the induc-
tor absorbing or delivering power?

i (1) i(r)
+ 1=0 Rest of
v () & 50 pH the
- circuit
FIGURE P6-20

6—21 The inductor in Figure P6-20 carries an initial current of
i.(0) = 20mA. At =0, the switch opens, and thereafter the
voltage across the inductor is v (f) = —6 ¢~ mV. Derive
expressions for ip(f)and pr(¢t) for 7> 0. Is the inductor
absorbing or delivering power?

622 A 0.033-pF capacitor is connected in series with a
10-kQ resistor. The voltage across the capacitor is vc(t) =
10 cos(5000¢) V. What is the voltage across the resistor?

6—23 A 500-pH inductor is connected in parallel with a 330-kQ
resistor. The current through the inductor is iy (f) =
200 =199 A, What is the current through the resistor?

6-24 For ¢t > 0 the voltage across an energy storage element is
v(t) =579V and the current through the element is
i(f) =10 = 5¢71% A, What are the element, the element
value, and its initial condition?

6-25 For t>0 the voltage across a circuit element is
v(t) = 5te719%% cos(1000¢) V and the current through the ele-

mentisi(t) = 2.5 te™1%% cos(1000¢) pA. What are the element,
the element value, and its initial condition?

6-26 For ¢ > 0 the voltage across an energy storage element is
v(t) = 5 - 203 V and the current through the element is
i(f) = 2000¢ + 16 > mA. What are the element, the ele-
ment value, and its initial condition?

OgJsective 6—2 Dynamic OP AMP Circuits
(Sect. 6-3)

(a) Given an OP AMP integrator or differentiator, determine
the output for specified inputs.

(b) Given a general RC OP AMP circuit, determine its
input-output relationship and construct a block
diagram.

(c) Design an RC OP AMP circuit to implement a given input—
output relationship or a block diagram.

See Examples 6-9 to 6-13 and Exercises 610 to 6-13.

6-2/ The OP AMP integrator in Figure P6-27 has R = 33kQ,
C = 0.056pF, and vp(0) =10V. The input is vs(t) =

5¢73%% y(f) V. The OP AMP has a Vcc = +£15V. Find
vo(t) fort > 0.
R C
+ +
vs(t) vo()
FIGURE P6-27

6—28 Build the OP AMP circuit of Figure P6-27 in Multisim. []

Let R = 33kQ, C = 0.056pF, and vo(0) = 15 V. The input
is 10 (1 — %) u(r) V. The OP AMP has a Ve = +15V.
Plot the output vo(¢) forz > 0. Over what period of time is
the OP AMP in the linear range? [Hints: Use the exponential
source, set the initial condition of the capacitor to 15V, and
arrange the limits of the OP AMP to £15 V. When running
the transient simulation, ensure that the analysis uses user-
defined initial conditions.]

6-29 Following the rationale used to derive the dynamic RC
circuits in Figure 6-17, derive the input-output relationship
for the circuit in Figure P6-29. What mathematical operation
does the circuit perform? Reverse the location of the resistor
and the inductor. What mathematical operation does the cir-
cuit perform now?
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FIGURE P6-29

6-30 An OP AMP integrator with R =1MQ, C = 1yF,
and vp(0) =0V has the input waveform shown in
Figure P6-30. Sketch vo(¢) for ¢ > 0.

vs (0 (V)

) PO

t(s
10 20 30 40 ®

-1.5

FIGURE P6-30

6—31 An OP AMP circuit from Figure 6-18 is in the box shown
in Figure 6-31. The input and outputs are given. What is the
function of the circuit in the box if:

(a) vs(t) = cos 500t mV and vp () = 5sin 5007 V?
(b) vs(t) = cos 500t mV and v (f) = 5 cos 500t V?
(¢) vs(t) = cos 500t mV and v (t) = —20sin 500f pV.
(d) vs(f) = cos 500t mV and vp(f) = —10 cos 500t V.

vs(?)

—

vo(h)

e

OP AMP
Circuit

FIGURE P6-31

6-32
ize each of the functions in problem 6-31.

L[] 6-33 The OP AMP integrator in Figure P6-27 has R = 50kQ,
C =120pF, and vp(0) = -2V. The input is vg(f) =
10 u(t) V. Use Multisim to determine how long it takes for
the OP AMP to saturate when Ve = £12V.

6—34 The OP AMP integrator in Figure P6-27 has R = 22kQ,
C =0.001 pF, and vo(0) =0V. The input is vs(t) =
2 sin (o) u(t) V. Derive an expression for vo(#) and find the
smallest allowable value of w for linear operation of the
OP AMP. Assume Ve = £15V.

6-35 The OP AMP differentiator in Figure P6-35 with
R =22kQ and C = 0.62pF has the input vs(t) = 6(1 —
e=>u(¢) V. Find vo () fort > 0.

Design appropriate OP AMP circuits that will real-

303
C R
- 2
Vs(l) VO(l)
FIGURE P6-35

6-36 @ Redesign the circuit of Figure P6-35 using an RL
circuit rather than the RC approach shown. Refer to Problem
6-29.

637 The OP AMP differentiator in Figure P6-35 with
R =33kQ, C =0.1pF, and a Vcc = £12V has the input
waveform shown in Figure P6-37. Sketch vo(¢) for ¢ > 0.

vs (1) (V)

FIGURE P6-37

6—38 The OP AMP differentiator shown in Figure P6-35 has
R=100kQ and C=0.1pF and an output vo(f)=
1[sin (100¢)] u(¢) V. What is its input vg(£)?

6-39 @ The input to the OP AMP differentiator in

Figure P6-35 is vs(f) = 5 [sin (2nx 10°)] u(f) mV. Select R
and C so that the output sinusoid has extreme values of at
least 14 V but does not saturate the OP AMP at +£ 15 V.

6—40 The OP AMP differentiator in Figure P6-35 with []
R = 5kQ and C = 220 pF has the input vs(r) = 2.5[sin (ot)]
u(t) V. Determine the frequency at which the OP AMP satu-
rates at +£15 V. Validate your answer using Multisim. [Hint:
Use an AC source and an AC analysis with a linear sweep
from 100 kHz to 1 MHz. Use the cursor to determine at what
frequency the magnitude of the output reaches [15]| V.]

6-41 Find the input-output relationship of the RC OP AMP
circuit in Figure P6-41.

C
vs() i—|

R R

vo(?)

FIGURE P6-41

6—42 Find the input-output relationship of the RC OP AMP
circuit in Figure P6-42.
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O

=

vo(t)

p— +
vs(?)

FIGURE P6-42

6—43 Show that the RC OP AMP circuit in Figure P6-43 is a
noninverting integrator whose input—output relationship is
t

vo(t) = RLC / vs(x)dx + vo(0)
0

iy v
IR B
— vo(?)

R
+
vs(?) CI

FIGURE P6-43

6—44 @ Design an RC OP AMP circuit to implement the

block diagram in Figure P6-44.
d

a2,
©—> vo(?)

J+

vs()

s !

50

FIGURE P6-44

6—45 @ Repeat Problem 644 but use an RL OP AMP

circuit.

6—46 @ For the block diagram shown in Figure P6-46

(a) Find the differential equation the block diagramrepresents.
(b) Design an RC OP AMP circuit that implements the block
diagram.

FIGURE P6-46

[ 647 @ In this problem you will design an oscillator. The
equation for your oscillator is
dZVO(l)
ar

Vo(l)z (VA%

(a) Draw a block diagram to solve your equation (vo(f)
should be your output) using differentiators.

(b) Draw a block diagram to solve your equation (vo(r)
should be your output) using integrators.

(¢) Design a circuit using OP AMP integrators to realize your
block diagram.

(d) Using Multisim, simulate your circuit and show that your
output is an oscillator. Give both capacitors in the circuit
2-V initial conditions. What is its oscillating frequency?
What could you do to alter the oscillating frequency?

648 @ Draw a block diagram and then design an RC OP
AMP circuit to implement the input-output relationship
t
vo(t) = =25vs(t) + ISO/VS(x)dx

0
6-49 @ Design an OP AMP circuit to solve the following
differential equation:
1 dvs() 1 d*vs(t)
10 dr 20 4P

vo(t) = 10vs(t) +

6-50 @ Design an RC circuit using only one OP AMP and only

one capacitor that implements the input—output relationship
t t

vo(t) = —15/ vs1(x) dx —20/ vsa(x) dx

0

OBJECTIVE 6—3 EquivaLENT INDUCTANCE AND

CapaciTance (Sect. 6-4)

(a) Derive equivalence properties of inductors and capacitors
or use equivalence properties to simplify LC circuits.

(b) Given an RLC circuit with dc input signals, find the dc cur-
rent and voltage responses.
See Examples 6-14 and 6-15 and Exercise 6-14 to 6-17.

6-51 Find a single equivalent element for each circuit in
Figure P6-51.

1.0 pF :z Ny 3.3 pF
2.2 pF :E /\\ 2.2 pF

100 pH

FIGURE P6-51
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6-52

inductor and the combination connected in parallel with a
1-mH inductor. All are £5%. Find the equivalent inductance
of the connection. Which inductor played no effective role in
this combination and could have been ignored?

A 2-H inductor is connected in series with a 2-mH

6—53 Use the lookback method to find the equivalent capaci-
tance of the circuit shown in Figure P6-53.

©

v(t)

a d\/ﬁ
XX

CEQ
FIGURE P6-53
6-54

235 mH for a particular application. However, you only have
100-mH inductors available. How might you connect these to
get within +5% of the desired value?

6-55 Verify Egs. (6-30) and (6-31) .

6—56 What is the equivalent capacitance and initial voltage of a
series connection of a 100-uF capacitor with 100 V stored and
a 47-pF capacitor with 200 V stored?

You need to have an equivalent inductance of

6—57 What is the equivalent capacitance and initial voltage for
the capacitor bank shown in Figure P6-57?

0.43 pF

—

+15 V-

+ Lol uF |+

¥
+ 10V 10V
0.01 pF == 15V 0.0l yF | —

5V :I— 0.022 pF

FIGURE P6-57

6—58 What is the equivalent inductance and initial current for
the inductors shown in Figure P6-58?

Cro

+1oo pA
100 pH

FIGURE P6-58

6—59 For the circuit in Figure P6-59, find an equivalent circuit
consisting of one inductor and one capacitor. Select a value of
an inductor and a capacitor from among the standard values
in the inside rear cover to realize your result and connect
them appropriately.

O
== 6 yF
==0.3 uF 3 mH3 mH
= 4 pF
O
FIGURE P6-59

660 Figure P6-60 is the equivalent circuit of a two-wire feed-
through capacitor.

(a) What is the capacitance between terminal 1 and ground
when terminal 2 is open?

(b) What is the capacitance between terminal 1 and ground
when terminal 2 is grounded?

(1) 001 yF
I

1=

.02 pF

© I0.0_l 3

FIGURE P6-60

661

5kV andstore atleast 250 J of energy. Design a series—parallel
combination that meets the voltage and energy requirements
using 33-pF capacitors each rated at 1.5 kV max.

A capacitor bank is required that can be charged to

6—62 @ A switching power supply requires an inductor that

can store at least 1 mJ of energy. A list of available inductors
is shown below. Select the inductor that best meets the
requirement. Consider both meeting the specifications and
cost. Explain your choice.

L(pH) Lux(A) Cost Eact
10 9.2 $4.75
20 7.0 $5.00
50 5.5 $4.50

100 43 $4.75

150 38 $4.50

250 25 $4.75

500 2.1 $5.00

6—63 The circuits in Figure P6-63 are driven by dc sources. Find
the current through the source under dc conditions.



306 CHAPTER 6 CAPACITANCE AND INDUCTANCE

i:330Q L Ly 6—67 The OP AMP circuit in Figure P6-67 is a notch filter that
will be studied later. Determine the circuit gain at dc and as
the frequency approaches oo rad/s.

Cl
zdc 330Q C
24V — % 220 Q%
FIGURE P6-63 FIGURE P6-67

6—64 The circuit in Figure P6-64 is driven by 10-V dc source.
Find the energy stored in the capacitor and inductor under
L e et | NTEGRATING PROBLEMS

50 Q
N AN l we(D) / wr (1)
— vd Piezoelectric transducers (sensors) measure dynamic phenom-
10V_—  1pF 5mH
_—|— T ena such as pressure and force. These phenomena cause stresses
that “squeeze” a quantity of electric charge from piezoelectric
material in the transducer (the term piezo means “squeeze”
FIGURE P6-64 in Greek). The amount of charge ¢(¢) is directly proportional

6—65 The OP AMP circuit in Figure P6-65 has a capacitor inits the measured variable x(t), that is g(r) = ow(7). Signal ampli-

feedback loop. Determine the circuit gain at dc and as the fre- fication is needed becguse the amount of charge produced is
quency approaches oo rad/s. on the order of pC. Figure P6-68 shows an OP AMP charge

amplifier that provides the necessary gain. First show that the

I? OP AMP output is vo(t) = —Kgq(t). Then select a value of C

668 @ Piezoelectric Transducer

R so that the charge amplifier gain is K = SmV/pC.
R 2
- oA o ¢
+
s o) I
— |:| R vo()
) 27
FIGURE P6-65 x(0) o
6—66 The OP AMP circuit in Figure P6-66 has a capacitor in its L
feedback loop. Determine the circuit gain at dc and as the fre- B
quency approaches oo rad/s. FIGURE P6-68
C
H 6—69 @ LC Circuit Response
® ® At t=0 the switch in Figure P6-69 is closed and thereafter

AAA - the voltage across the capacitor is
+
vo(f) ve(t) = (10 + 10,000¢) e~ 3001 v

Use MATLAB to solve all of the following problems.
(a) Use the capacitor’s i —v characteristic to find the current
vs(?) i(t) for t = 0.
(b) Use the inductor’s i—v characteristic and i(¢) to find vy (¢)
FIGURE P6-66 fort = 0.

+
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(¢) Use vc(t), vi(t), and KVL to find the voltage v(z) deliv-
ered to the rest of the circuit.

(d) The v(¢) found in (c) should be proportional to the i(¢)
found in (a). If so, what is the equivalent resistance look-
ing into the rest of the circuit?

(e) On the same axes, plot v (%), vi(), and v(z). Use a differ-
ent color for each waveform. Use the plots to verify KVL
for the circuit.

1=0 25myg i)
o>
+ (- F

Rest of
ve(h) v(t) the

T - _ circuit

FIGURE P6-69

6-70 @ Supercapacitor

Supercapacitors have very large capacitances (typically from
0.1 to 3000 F), very long charge-holding times, and small sizes,
making them useful in nonbattery backup power applications.
To measure its capacitance, a supercapacitor is charged to
an initial voltage vo(0) = 6 V. At ¢ = 0, the device undergoes
a constant current discharge of ip = 3 mA. After 1 hour, the
voltage remaining on the capacitor is 3 V. Find the device’s
capacitance.

[ 671 @ Analog Computer Solution

Design an OP AMP circuit that solves the following second-
order differential equation for vo(¢). Solve for the response
for vo(f) using Multisim. Caution: Avoid saturating the
OP AMPs by distributing the gain across several OP AMPs.

25 uF

L{ZVO([) 1 73dVo(l)
a2 +§><10 T

6—72 @ @ RC OP AMP Circuit Design

An upgrade to one of your company’s robotics products
requires a proportional plus integral compensator that imple-
ments the input-output relationship

107° +vo(t)=1.5u(t)

vo(t) = vs(t) + 50/ vs (x) dx
0

The input voltage vs(¢) comes from an OP AMP, and the output
voltage vo(f) drives a 10-kQ resistive load. Two competing
designs are shown in Figure P6-72. As the project engineer,
you are responsible for recommending one of these designs for
production. Which design would you recommend and why?
(Your mentor, a wise senior engineer, suggests that you first check
that both designs implement the required signal-processing
function.)

10 kQ
10 kQ
AW ¥
20kQ  1pF = VO+( )
o——MN\—p—{——W\—
+ 10 kQ 10 kQ
vs(t)
Design #1
S0kQ 0.4 pF
+
— vo(H)
+
vs(0)
Design #2
FIGURE P6-72
6-73 Tunable Capacitor

In Section 6-1, Figure 6-2(c) shows an air-tunable capacitor as
one example of the capacitor types. This type of device can vary
its capacitance similar to how a potentiometer can vary its resist-
ance. Changing the capacitance in a circuit can change the fre-
quency at which it operates. Suppose we are given the circuit in
Figure P6-73 with a capacitor connected in parallel with an
inductor. There are no other devices in the circuit. The capac-
itor has an initial voltage vc(0) = V) V and the inductor’s initial
current is ir,(0) = 0 A.

Q
It

FIGURE P6-73

The differential equation for the voltage across the capacitor in
this circuit is given by

dZVC (1) 1

—vc(t)=0

az e’
We will learn more about solving this type of differential equa-
tion in the next chapter and beyond. The solution to this differ-
ential equation is

ve(t) = Vocos (

;)t>0
VLC)
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Using MATLAB, plot on asemi-logscale (logarithmic on the hor-
izontal and linear on the vertical) the radian frequency of v¢(¢)
versus the capacitance of the circuit. Use capacitances scaled
logarithmically from 0.001 to 1 pF. In a separate MATLAB fig-
ure, use the subplot command to plot vc(f) versus time for
C = 0.001 pF, 0.01 pF, 0.1 pF, and 1 pF. Using the plots you cre-
ated and your knowledge of how a capacitor stores charge,
explain why changing the capacitance of a parallel LC circuit
changes the frequency at which it oscillates.

6-74 @ Equivalent Capacitance Bridge

Find the equivalent capacitance of the capacitance bridge
shown in Figure P6-74. (Hint: Use Node Analysis.)

A X

CEQ

FIGURE P6-74

675

In a particular radio frequency (RF) application, you determine
there is a need for a small inductor of 150 pH and rather than
trying to order one and wait for it to arrive, you decide to wind
it yourself. The applicable equation is

2N?
“9r+ 10!

Air-Coil Inductor Design

where L is the inductance in pH, r is the radius of the coil in
inches, /is the length of the coil in inches, and N is the number
of turns. A maximum length of 1 inch and a maximum coil
diameter of 0.25 inches are required in order to fit in the space
available. You have both 45-gauge and 50-gauge wires that
are 0.0028 and 0.001 inches in diameter, respectively, but
the thinner wire is difficult to wind without breaking. Design
your coil.
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When a mathematician engaged in investigating physical actions and results has arrived at his own conclusions, may they not be expressed in
common language as fully, clearly and definitely as in mathematical formula? If so, would it not be a great boon to such as we to express them
so—translating them out of their hieroglyphics that we also might work upon them by experiment.

Michael Faraday, 1857,
British Physicist

Some History Behind This Chapter

Michael Faraday (1791-1867) was appointed a Fellow in the
Royal Society at age 32 and was a lecturer at the Royal Insti-
tution in London for more than 50 years. During this time he
published over 150 papers on chemistry and electricity. The
most important of these papers was the series Experimental
Researches in Electricity, which included a description of
his discovery of magnetic induction. A gifted experimental-
ist, Faraday apparently felt that mathematics obscured the
physical truths he discovered through experimentation.

Why This Chapter Is Important Today

OK, this is a tough chapter. It concentrates on the classical
methods of finding the transient response of circuits contain-
ing resistors, capacitors, and inductors. Mathematically this
requires us to solve first- and second-order differential equa-
tions. These solutions help us understand applications such
as timing circuits and digital gate delays. It is important to
understand first- and second-order transients because we will
revisit these concepts frequently in subsequent chapters.

Chapter Sections

7-1 RC and RL Circuits

7-2 First-Order Circuit Step Response

7-3 Initial and Final Conditions

7-4 First-Order Circuit Response to Exponential
and Sinusoidal Inputs

7-5 The Series RLC Circuit

7-6 The Parallel RLC Circuit

7-7 Second-Order Circuit Step Response

Chapter Learning Objectives

7-1 First-order Circuit Analysis (Sects. 7-1 to 7—4)

Given a first-order RC or RL circuit:

(a) Find the circuit differential equation, the circuit time
constant, and the initial conditions (if not given).

(b) Find the zero-input response.

(c) Find the complete response for step function, expo-
nential, and sinusoidal inputs.

7-2 First-order Circuit Design (Sects. 7-1 to 7-4)
Given responses in a first-order RC or RL circuit:
(a) Find the circuit parameters or other responses.
(b) Design a circuit to produce the given responses.

7-3 Second-order Circuit Analysis (Sects. 7-5 to 7-7)

Given a second-order circuit:

(a) Find the circuit differential equation.

(b) Find the circuit natural frequencies and the initial
conditions (if not given).

(c) Find the zero-input response.

(d) Find the complete response for a step function input.

7-4 Second-order Circuit Design (Sects. 7-5 to 7-7)
Given responses in a second-order RLC circuit:

(a) Find the circuit parameters or other responses.
(b) Design a circuit to produce the given responses.

309
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Begin

Differential
equation

Classical
techniques

Response
waveform

End

FIGURE 7-1 Flow diagram for
dynamic circuit analysis.

FIGURE 7-2 First-order
circuits: (a) RC series circuit.
(b) RL parallel circuit.

7-1 RC anp RL CircuiTs

The flow diagram in Figure 7-1 shows the two major steps in the analysis of a dynamic
circuit. In the first step we use device and connection equations to formulate a dif-
ferential equation describing the circuit. In the second step we solve the differential
equation to find the circuit response. In this chapter we examine basic methods of
formulating circuit differential equations and the time-honored, classical methods
of solving for responses. Solving for the responses of simple dynamic circuits gives
us insight into the physical behavior of the basic circuit modules of the more complex
networks in subsequent chapters. This insight will help us correlate circuit behavior
with the results obtained by other methods of dynamic circuit analysis. There are sev-
eral other treatments for solving dynamic circuits —each with its own advantages and
disadvantages. We will look at phasor circuit analysis in the next chapter and return
to it in Chapters 15, 16, and 17. A good deal of our study will involve the use of the
Laplace transform methods beginning in Chapter 9 through Chapter 12, and again in
Chapters 14 and 15. In Web Appendix C, we will take a brief look into circuit analysis
using Fourier transforms.

Formucrating RC anp RL Circurt EquaTions

RC and RL circuits contain linear resistors and a single equivalent capacitor or
inductor. Figure 7-2 shows how we can divide RC and RL circuits into two parts:
(1) the dynamic element and (2) the rest of the circuit, containing only linear resistors
and sources. To formulate the equation governing either of these circuits, we replace
the resistors and sources by their Thévenin or Norton equivalents shown in
Figure 7-2.

Dealing first with the series RC circuit in Figure 7-2(a), we note that the Thévenin
equivalent source is governed by the KVL constraint

Rri(t) +v(t) =vr () (7-1
i(t) i(1)
—&— &
+ Ry +
Resistors
and v — C = vp(?) W) =/ C
sources
o ‘
(a)
i(t) i(1)
_<% o
+ +
Resistors

and () & L = iN() D Ry w(7) %L

sources

(b)
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The capacitor i—v constraint is

. do(t)
1) =C——+= 7-2
i(0) =™ 7-2
Substituting the i—v constraint into the source constraint yields
do(t
RyC l;(t) +o(t) =or(t) (7-3)

The unknown in Eq. (7-3) is the capacitor voltage v(¢) that determines the amount of
energy stored in the RC circuit and is referred to as the state variable.

Mathematically, Eq. (7-3) is a first-order linear differential equation with constant
coefficients. The equation is first order because the first derivative of the dependent
variable is the highest-order derivative in the equation. The product RrC is a con-
stant coefficient because it depends on fixed circuit parameters. The signal v () is
the Thévenin equivalent of the independent sources driving the circuit. The voltage
ot (t) is the input, and the capacitor voltage v(¢) is the circuit response.

The Norton equivalent source in the RL parallel circuit in Figure 7-2(b) is gov-
erned by the KCL constraint

o(t) . .
R(—N) +i(t)=in(2) (7-4)
The element constraint for the inductor can be written as
di(t)
=L—7 7-
o(t) o (7-5)

Combining the element and source constraints we get the differential equation for
the RL circuit:

L di(r)

RN dt
The response of the RL circuit is also governed by a first-order linear differential
equation with constant coefficients. The dependent variable in Eq. (7-6) is the induc-
tor current. The circuit parameters enter as the constant ratio L /Ry, and the driving
forces are represented by a Norton equivalent current in(¢). The unknown in
Eq. (7-6) is the inductor current i(¢). This current determines the amount of energy
stored in the RL circuit and is referred to as the state variable.

The state variables in first-order circuits are the capacitor voltage in the RC circuit
and the inductor current in the RL circuit. As we will see, these state variables contain
sufficient information about the past to determine future circuit responses.

We observe that Egs. (7-3) and (7-6) have the same form. In fact, interchanging
the quantities

+i(t) =in(t) (7-6)

Rr— Gn= Ri C— L v—1i vy in series« parallel
N
converts one equation into the other. This interchange is another example of the prin-
ciple of duality. Because of duality we do not need to study the RC and RL circuits as
independent problems. Everything we learn by solving the RC circuit, for example,
can be applied to the RL circuit as well.

We refer to the RC and RL circuits as first-order circuits because they are
described by a first-order differential equation. The first-order differential equations
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in Egs. (7-3) and (7-6) describe general RC and RL circuits shown in Figure 7-2. Any
circuit containing a single uncombinable capacitor or inductor and linear resistors
and sources is a first-order circuit.

Lero-Input Response oF FirsT-ORrRDER CIRCUITS

The response of a first-order circuit is found by solving the circuit differential equa-
tion. For the RC circuit the response o(¢) must satisfy the differential equation in
Eq. (7-3) and the initial condition »(0). By examining Eq. (7-3) we see that the
response depends on three factors:

1. The inputs driving the circuit vy (¢)
2. The values of the circuit parameters Rt and C
3. The value of v(f) at t=0 (i.e., the initial condition)

The first two factors apply to any linear circuit, including resistance circuits. The
third factor relates to the initial energy stored in the circuit. The initial energy can
cause the circuit to have a nonzero response even when the input vp () =0 for £=0.
The existence of a response with no input is something new in our study of linear
circuits.

To explore this discovery we find the zero-input response. Setting all independent
sources in Figure 7-2 to zero makes vr(f) =0 in Eq. (7-3):

do(t)
dt
Mathematically, Eq. (7-7) is a homogeneous equation because the right side is zero.

The classical approach to solving a linear homogeneous differential equation is to try
a solution in the form of an exponential

RrC—~ +0(1)=0 (7-7)

o(r) = Ke" (7-8)

where K and s are constants to be determined.

The form of the homogeneous equation suggests an exponential solution for the
following reasons. Equation (7-7) requires that o(¢) plus RrC times its derivative
must add to zero for all time #>0. This can only occur if v(¢) and its derivative have
the same form. In Chapter 5 we saw that an exponential signal and its derivative are
both of the form e~*/T¢, Furthermore, empirical observations of the physical behavior
of such circuits suggest an exponential response. Therefore, the exponential is a log-
ical starting place.

If Eq. (7-8) is indeed a solution, then it must satisfy the differential equation in
Eq. (7-7). Substituting the trial solution into Eq. (7-7) yields

R1CKse® + Ke®' =0
or
Ke"(RtCs+1)=0

The exponential function e* cannot be zero for all ¢. The condition K =0 is a trivial
solution because it implies that v(¢) is zero for all time ¢. The only nontrivial way to
satisfy the equation involves the condition

RrCs+1=0 (7-9)
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Equation (7-9) is the circuit characteristic equation because its root determines the
attributes of v(¢). The characteristic equation has a single root at s= —1/R1C, so the
zero-input response of the RC circuit has the form

o(t)=Ke "/R1C >0

The constant K can be evaluated using the value of v(¢) at £ =0. Using the notation
0(0) =V yields

v(0)=Ke’ =K =V
The final form of the zero-input response is
l)(t) = Voeit/RTC t= 0 (7_]0)

The zero-input response of the RC circuit is the familiar exponential waveform
shown in Figure 7-3. At¢=0 the exponential response starts out at v(0) = V and then
decays to zero as t — oo. The time constant 7¢ = RtC depends only on fixed circuit
parameters. From our study of the exponential signals in Chapter 5, we know that the
u(t) decays to about 36.8% of its initial amplitude in one time constant and to essen-
tially zero after about five time constants. The zero-input response of the RC circuit is
determined by two quantities: (1) the circuit time constant and (2) the value of the
capacitor voltage at t=0.

Let us now look at the behavior of an RL circuit and compare it to the RC circuit
just studied.

The zero-input response of the RL circuit in Figure 7-2(b) is found by setting the
Norton current ix(f) =0 in Eq. (7-6).

L di(y)
Ry di
The unknown in this homogeneous differential equation is the inductor current i(¢).

Equation (7-11) has the same form as the homogeneous equation for the RC circuit,
which suggests a trial solution of the form

i(t) = Ke"

+i(1)=0 (7-11)

where K and s are constants to be determined. Substituting the trial solution into
Eq. (7-11) yields the RL circuit characteristic equation

L
e +1=0 (7-12)
V(1) {0,
%
0 Ry + N
v
’ vp() =0 v == Cw0)=V,

0 1 T T T
0  RiC 2RiC 3RyC 4RiC S5RyC

t

FIGURE 7-3 First-order RC
circuit zero-input response.
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RZ

C2

C3

FIGURE 7-4

The root of this equation is s = — Ry /L. Denoting the initial value of the inductor cur-
rent by [y, we evaluate the constant K:

i(0)=I=Ke"=K
The final form of the zero-input response of the RL circuit is
i(t)=Ipe ®N/L >0 (7-13)

For the RL circuit the zero-input response of the state variable i(¢) is an exponen-
tial function with a time constant of 7c = GnL =L/Rx=L/Ry. This response con-
nects the initial state i(0) =/, with the final state i( o) =0.

The zero-input responses in Egs. (7-10) and (7-13) show the duality between first-
order RC and RL circuits. These results point out that the zero-input response in a
first-order circuit depends on two quantities: (1) the circuit time constant and (2) the
value of the state variable at ¢ =0. Capacitor voltage and inductor current are called
state variables because they determine the amount of energy stored in the circuit at
any time ¢. The following examples show that the zero-input response of the state
variable provides enough information to determine the zero-input response of every
other voltage and current in the circuit.

But first, let us find the time constants of RC or RL circuits.

EXAMPLE 7-1
Find the time constants for circuits C1 and C2 in Figure 7-4.

SOLUTION:

Circuit C1 has three resistors and a single inductor. The question one should ask is,

“What is the equivalent or Norton resistance that the inductor sees?” The time con-

stant then will be L/ Rgq. In this example, the inductor “sees” two resistors R; and R,
RiR>

Ri+Ry

in parallel and that combination in series with Rs. Therefore, Rgq is +R5.

Hence, the time constant is

To = L _ L _ L(R1+R2)
C_REQ B RIRZ _R1R2+R3R] +R3R2

R1+R2

+R3

Circuit C2 has two capacitors that can be combined into one equivalent capacitor and
two resistors in parallel that can also be combined. The time constant for an RC cir-

2 . .
, and the equivalent resistance

. L C
cuit is RgoCio. For this circuit we have Cgg = C 1+ C
1+C2

RiR
that Cgq sees is Rgg = =2 Therefore, the time constant is
R1 + R2
RiR, C1 C2
Tc=RpoCro=
¢ EQ™EQ <R1 +R2) <C1 + C2 s ]

Exercise 7-1

Find the time constant 7 for circuit C3 in Figure 7-4.

Answer: = LiL .
¢ (L1 +L2)(R1 +R2)
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EXAMPLE 7-2

The switch in Figure 7-5(a) closes at t =0, connecting a 1-pF capacitor with 10 V ini-

tially stored across it to two resistors in series. Find the responses vc(f) and i(¢) for 5910
t=0. Write an equation for the power pg(¢) absorbed by the equivalent resistance.
Validate your answers using Multisim.

SOLUTION:

The solution involves the zero-input response of an RC circuit since the only energy
in the circuit is the voltage stored on the capacitor at t=0. To start this solution, we ~FIGURE 7-5
must first determine the circuit time constant after the switch closes. The equivalent

resistance seen by the capacitor is

Reo =100 kQ +200 kQ =300 kQ
For =0, the time constant is
Tc=RrC=RpgoC=300kQx1p=0.3s

The initial capacitor voltage is Vy = 10 V. Using Eq. (7-10), the zero-input response of
the capacitor voltage is

ve(t)=10e7/03=10e=33 V(=0

This result allows us to readily find the current i(¢), since once the switch closes we
have a series circuit. The current, then, is found by calculating the current through the
capacitor using the capacitor’s i—v relationship

dve (1) d(10e73)

(1) =ic(t)=C =1x10° =-333e A

i(0) =ic(t)= S <1 x -~ ey

The minus sign tells us that the current is opposite of the referenced direction and is

actually flowing out of the capacitor. R )

The power absorbed by the equivalent resistance can be found as follows: lol\é\/lzg
C
pr(t)=ixRpq=(-333x 10-%-3-33’)2 (300 k) =333¢ % yW g’;(z)o o L 1 0uF

IC=10.0V

Notice the analysis pattern. We first determine the zero-input response of the capac-

itor voltage. The state variable response together with resistance circuit analysis tech- T

—
(=
=

niques was then used to find the current. The circuit time constant and the value of
the state variable at =0 provide enough information to determine the zero-input
response of every voltage or current in the circuit. FIGURE 7-5
Simulating the behavior of the circuit in Multisim will help drive home the fact that
there are responses in the circuit with the only energy source being the voltage stored
in the capacitor at ¢ =0.
Figure 7-5(b) is the circuit drawn in Multisim. We have placed 10 V on the capac-
itor as its initial condition. We then simulated the circuit using a transient analysis,
being certain to tell the analysis to use the user-defined initial conditions.
Figure 7-5(c) shows the plots of the capacitor voltage v(f) and the circuit current
i(¢) for t=0. From the plot we can see that the voltage across the capacitor starts
at 10 V and then exponentially decays to zero. The current in the circuit is at its
maximum magnitude at =0 and then decays to zero with the same time constant
of 300 ms as the capacitor’s voltage response.
To simulate the power dissipated in the resistors, we needed to create our
own output expression. We created P(R1) + P(R2). We also included the power deliv-
ered by the capacitor P(C1) and plotted both curves together in Figure 7-5(d). We can
see from the plot that the power absorbed by the resistors exactly matches that deliv-
ered by the capacitor (note that the power is negative for the capacitor and positive for
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the resistors). Also note that the time constant for the power is 150 ms, which is half of
that for the current and voltage. All of the answers have been validated. [ |

Transient Analysis Transient Analysis
1;13 — 400n | |
. \ f —5p 300p — T
E jg \ // Circuit current it " 200 \ Resistor power px(r)
% 60 \ |/ 15 E £ 100 >
g 50 : 2 OTC=150ms| ~—~— |
£ 40 ,/ N 2 20 |
: ~/— s 2 =1
S Zg T30 ml N BHE ~200p Pady
o IZTapacitolr voltagei vc(ti\ ~3004 |y / Capacitor power p(1)
0.0 } t ; —351 —400p
0 200.0m 400.0m 600.0m 800.0m 1.0 12 1.4 1.6 1.8 2.0 0 100m  200m  300m 400m 500m 600m 700m 800m 900m 1
Time (s) Time (s)
© (@
FIGURE 7-5 (Continued)
t=0 iR(®) Exercise 7-2
The switch in Figure 7-6 closes at t=0. For =0 the current through the resistor
+ fq i () = 100t
V(1) == 1 uF 10kQ is ir(r)=e” T mA.
- (a) What is the capacitor voltage at t=0?
(b) Write an equation for v(t) for r=0.
(c) Write an equation for the power absorbed by the resistor for ¢ =0.

FIGURE 7-6 (d) How much energy does the resistor dissipate for 1=0?

(e) How much energy is stored in the capacitor at t=0?

Answers:

(a) 10V

(b) o(t) =10e~1 v

(c) pr(t)=10e=2%" mW

(d) 50y

(¢) S0
L,

EXAMPLE 7-3
i.(0) Find the response of the state variable of the RL circuit in Figure 7-7
o using L1 =10 mH, L, =30 mH, Ry =2 kQ, R, =6 kQ, and i (0) =100 mA.

L

Given circuit

3

i(1)
+
RiR;
Rl ar R2 V(l)

%L1+L2

Equivalent circuit

FIGURE 7-7

SOLUTION:

The inductors are connected in series and can be replaced by an equivalent
inductor

Lgo=L1+L;=10+30=40mH
Likewise, the resistors are connected in parallel and the resistance seen by Lgq is
_ RiR,
Ri+R;
Figure 7-7 shows the resulting equivalent circuit. The interface signals o(¢) and i()

are the voltage across and current through Lgo =L+ L;. The time constant of
the equivalent RL circuit is

Lgo 004
“Reo 1500

=1.5kQ

Rro

S

¢ 37,500
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The initial current through Lgg is iz (0) =0.1 A. Using Eq. (7-13) with 7, =0.1 yields
the zero-state response of the inductor current.

i(1)=0.1e73500 A ;>0

Given the state variable response, we can find every other response in the original
circuit. For example, by KCL and current division the current through R; is

i(1)=0.75e¢3 75 A >0

Exercise 7-3
Find the current through R; and the power dissipated in R; in Example 7-3.
) R

'Ry (l) B Rl + R2
Pr, (1) = (ir, (1)) x R = (0.075 e‘37‘500’)2 x2000=11.25¢ 000 W ;>0

Answers: i(t)=25e7 7 mA 120

Example 7-3 illustrates an important point. The RL circuit in Figure 7-7 is a first-
order circuit even though it contains two inductors. The two inductors are connected
in series and can be replaced by a single equivalent inductor. In general, capacitors or
inductors in series and parallel can be replaced by a single equivalent element. Thus,
any circuit containing the equivalent of a single inductor or a single capacitor is a first-
order circuit.

EXAMPLE 74 1=0

The switch in Figure 7-8 is closed at =0, connecting a capacitor with
an initial voltage of 30 V to the resistances shown. Find the responses
oc(t),i(t),i1(t), and ip(f) for £=0.

+
ve) =30V

0.5 pF

=

SOLUTION:

This problem involves the zero-input response of an RC circuit since

there is no independent source in the circuit. To find the required FiGURE 7-8
responses, we first determine the circuit time constant with the switch

closed (¢=0). The equivalent or Thévenin resistance seen by the

capacitor is

Rpo =10k + (20k||20 k) =20 kQ
For 1= 0 the circuit time constant is
Tc=RrC=20x10°x0.5x10°=10ms

The initial capacitor voltage is given by V,=30V. Using Eq. (7-10), the zero-input
response of the capacitor voltage is

ve(f)=30e7100 V>0

The capacitor voltage provides the information needed to solve for all other zero-
input responses. The current i(¢) through the capacitor is

dvc(l)

i(t) = C = (0.5x107°)(30)(-100)e "%
=-15"1""mA >0

The minus sign means that the actual current, shown in Figure 7-8, is opposite the
referenced direction. The capacitor is delivering power to the resistors in a manner
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FIGURE 7-9

ic(?)

—~——

( C
WRAG ﬁ—iz@
e

: R, +
4y in(®) l vo(d)

vs(?) —
vp(1) _T_

FIGURE 7-10 First-order OP
AMP RC circuit.

similar to an exponentially decaying source. We can use current division to find the
other currents.

o 20k o0
ll(t):lz(t):ml(t):—0.75€ 100 mA t=0 ]

Exercise 7-4

The switch in the RL circuit of Figure 7-9(a) moves instantly from position A to position
B at r=0. If the current flowing through the inductor at =0 is 1 mA, how long after the
switch moves to position B does it take for the voltage across the resistor to reach
—5V? Validate your answer using Multisim.

Answers: vr(t)=-5Vatt=6.93ps. See Figure 7-9(b) for the Multisim results.

Transient Analysis

0.0
-1.0 o
20 ,/
30 //
Z 40 A
& 50 4
S 6.0
> (6.92 ps, =5.00V)
-7.0
-8.0 /
-9.0 /
-10.0
0 Sp 10p  15p 20p  25p 30p  35p 40p  45p S0p
Time (s)
(b)

Sometimes it may be difficult to determine the Thévenin or Norton equivalent
seen by the dynamic element in a first-order circuit. In such cases we use other circuit
analysis techniques to derive the differential equation in terms of a more convenient
signal variable. For example, the OP AMP RC circuit in Figure 7-10 is a first-order
circuit because it contains a single capacitor.

From previous experience we know that the key to analyzing an inverting OP
AMP circuit is to write a KCL equation at the inverting input. The sum of currents
entering the inverting input is

Ril(us(t) —on(?)) +Ri2(uo(r) —on()) + cw —in(t) =0
%/_/

it (1) i (t) ic(t)

The element equations for the OP AMP are ix(¢) =0 and on(¢) =vp(f). However, the
noninverting input is grounded; hence on(¢) = vp(f) = 0. Substituting the OP AMP ele-
ment constraints into the KCL constraint yields

Us(l‘) N l)o(l‘) +Cdvo(l)

=0
Ry R, dt

which can be rearranged in standard form as

dl)()(l‘)

R
A

l)o(t)Z —fl)s(t) (7-14)
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The unknown in Eq. (7-14) is the OP AMP output voltage rather than the capacitor
voltage. The form of the differential equation indicates that the circuit time constant
is TC = R2 C.

EXAMPLE 7-5

Use Multisim to analyze the zero-input transient behavior of the first-order OP AMP
RC circuit shown in Figure 7-10, when C =1 pF, R; = R, =200 kQ, and v¢(0) = - 10 V.
Find the responses v (), ir, (¢), ir, (), and ic(¢) for t=0. Display your results on one
Grapher View plot.

SOLUTION:

The solution involves zero-input responses; hence, in drawing our circuit in Multisim,
we set the input of Figure 7-10 to zero (a short), set the capacitor’s initial condition to
10 V, which yields the correct sign for vc(0) = =10 V, and draw the rest of the circuit
as shown in Figure 7-11(a).

The current through R; is instantly found since one end of the resistor is connected
to ground via the shorted source and the second is connected to vx(¢), which, by the
element equation for the OP AMP equals vp(¢), and in this case is connected to
ground. This forces the voltage across R; to be equal to zero and, therefore, the cur-
rent through it is always zero. We will not plot this current since it will be a straight
line at zero.

In simulating the rest of the circuit we ask Multisim to perform a transient
analysis being certain to set the initial conditions to “user-defined.” Since the
time constant for this circuit is R,C, we calculate 7¢c =200k x 1 p=0.2's. We would
like to display at least five time constants, so we set the “Start time” to zero and
the “End time” to 1.0s. We will let Multisim set the remaining two parameters
automatically. Next, we need to tell Multisim which parameters we want it to
calculate and display. We select the three desired outputs I(Cl), I(R2), and
V(2), the last being the OP AMP output vo(t), and move them from the “Variables
in circuit” column to the “Selected variables for analysis” column. We then click on
“Simulate.”

The Grapher View opens and the output voltage plot is readily visible, but the
current plots appear as a straight line at zero. We need to separate the plots to display
them on the same graph. Click on “Graph” and open the “Properties.” Open
“Traces” and select trace 1 under “Trace ID”; this should be the voltage trace. Under
the “Y-vertical axis” select “Left axis.” Then under “Trace ID” select 2, one of the
current traces, and then under the “Y-vertical axis” select “Right axis.” Do the same
for the second current trace. This will have the Grapher View plot the voltage
trace against the left voltage axis and the two current traces against the right current
axis. Now we will need to adjust the left, right, and bottom axes. On the left axis, label
the axis “Voltage (V)” and choose a large font (e.g., 24 pts). Ensure that the “Axis”
box is “enabled” (it should be by default) and the “Scale” “Linear.” Set the range
from —10 to 0 (V), and then set the “Total ticks” to 10 and “Minor ticks” to 2. This
will display 10 grid lines, but label only every other line. On the bottom axis, label the
axis “Time (s)” and again choose a large font. Set the range from 0 to 1 (s) (so as to
display five time constants). Ensure that the “Axis” is “enabled” and the “Scale”
“Linear.” Again set the “Total ticks” to 10 and “Minor ticks” to 2. Finally, on the
right axis, label the axis “Current (A)” and select a large font. Under “Axis” you
need to check the box titled “Enabled.” This box was already checked on the previ-
ous axes by default. Set the Scale to “Linear” like the others. The range is set by not-
ing that at =0, the —10 V across the capacitor is also across R,. We can compute that
the extreme current through R, will be —10+200k=—-50pA. Since the current

Il 2
Il
1 pF
IC=10.0V
R,
M
200 kQ
RI
>l
200 kQ ——
+
OPAMP_3T_VIRTUAL
(a)
FIGURE 7-11




320 CHAPTER 7

FiIrRsT- AND SECOND-ORDER CIRCUITS

FIGURE 7-11

FIGURE 7-12

(Continued)

through the capacitor will be the same as through R, but opposite in sign, set the
range from —50 ps (—=5¢7%%) to +50ps (5¢7%). Finally, set the “Total ticks” to
10 and “Minor ticks” to 1, so as to display all of the gridline values. You can then
adjust the weight of the grid lines, the axes, the font size of the axes, the title,
as you see fit. Our result is shown in Figure 7-11(b). The output voltage goes
from —10V to zero, while the capacitor current goes from +50 pA to zero and the
resistor current varies from —50 pA to zero. All the time constants are the same.
The power associated with the capacitor is always negative, which indicates that it
is delivering power to the rest of the circuit. |

Transient Analysis

0.0 — 50p
— | 40p
-2.0 30p
v 20y
> 40 Ja lop 2
~ / — =t
o 5]
] p— 0 2
S 60 -10p 3
/ =20p
-8.0 / =30u
—40p
-10.0 —50p
0 200m 400m 600m 800m 1
Time (s)
(b)

Exercise 7-5

A 100-mH inductor and two resistors are all connected in parallel. One resistor is 100 Q and
the second is 470 Q. At time ¢ =0, the inductor has 100 mA flowing through it. Use Multisim
to calculate a transient plot of the current through the inductor and through each resistor
for t=0.

Answers: The Grapher View in Figure 7-12 shows the desired transient responses.

Transient Analysis

100m
T
\ Inductor current, i (1)
60m
40m /
= 20m + . .
< 470-Q resistor current, ip(t)
= 0 ¥ —
2 S —
6 —20m /
—40m = k
—60m \
_80m / 100-€2 Resistor Current, ig,(t)
~100m N —

0.0 5000p 10m 15m 20m 25m 30m 35m 40m 45m 5.0m
Time (s)
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7-2 FirsT-ORDER CircuIT STEP RESPONSE

Linear circuits often are characterized by their response to certain classic signals. The
step, for example, helps characterize the circuit’s transient behavior, while the sinus-
oid helps characterize the circuit’s frequency response. This chapter deals with the
classical approach to the transient behavior of circuits. First, in this section, we will
look at the step response of first-order circuits. Next we will look at the transient
behavior from applying a sinusoid or an exponential to a first-order circuit. We will
conclude our study of transient responses by studying the zero-input and step
responses of second-order circuits.

The step response analysis we are about to undertake introduces the concepts of
forced, natural, zero-state, and zero-input responses, which appear extensively in
later chapters. Ironically, designing a circuit to meet transient response specifications
requires making compromises with respect to the circuit’s steady-state performance.
Understanding why circuits behave as they do under both transient and steady-state
excitations is essential to finding the optimum design and poses an interesting chal-
lenge for circuit designers.

Our development of the first-order step response treats the RC circuit in detail and
then summarizes the corresponding results for its dual, the RL circuit. When the
input to the RC circuit in Figure 7-13(a) is a step function, we can write the Thévenin
source as vt(t) = Vau(t). The circuit differential equation in Eq. (7-3) becomes

do(t)
dt

The step response is a function v(¢) that satisfies this differential equation for =0 and
meets the initial condition v(0). Since u(¢) =1 for t=0 we can write Eq. (7-15) as

RTCdl;(tt) +o(t)=Va fort=0 (7-16)

RtC +o(t)=Vau(t) (7-15)

Mathematics provides a number of approaches to solving this equation, including
separation of variables and integrating factors. However, because the circuit is linear,
we chose a method that uses superposition to divide the solution for v(f) into two
components:

o(t) =oN(t) +vp(t) (7-17)

The first component, vn(?), is the natural response and is the general solution of
Eq. (7-16) when the input is set to zero. The natural response has its origin in
the physical characteristic of the circuit and does not depend on the form of the input.
The component vg(?) is the forced response and is a particular solution of Eq. (7-16)
when the input is the step function. We call this the forced response because it repre-
sents what the circuit is compelled to do by the form of the input.

Finding the natural response requires the general solution of Eq. (7-16) with the
input set to zero as follows:

don (t)
dt

But this is the homogeneous equation that produces the zero-input response in
Eq. (7-8). Therefore, we know that the natural response takes the form

on(t) = Ke //RC >0 (7-18)

RtC

on(H)=0 =20

This is a general solution of the homogeneous equation because it contains an arbi-
trary constant K. At this point we cannot evaluate K from the initial condition, as we

Vau(®)

<
=
o
|
|

(a)

FIGURE 7-13 (a) RC circuit
driven by a step input.
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i(1)

+

IA“(")C?) Rx v(t) éL

(b)

FIGURE 7-13 (Continued) (b)
RC circuit driven by a step input.

did for the zero-input response. The initial condition applies to the total response
(natural plus forced), and we have yet to find the forced response.
Turning now to the forced response, we seek a particular solution of the equation

dvg (l)

R
4

+op(t)=Va 20 (7-19)

The equation requires that a linear combination of vg(f) and its derivative equal

a constant Va for r=0. Setting vp(f)=Va meets this condition since dvp/dt=

dV o /dt=0. Substituting vp(t) = VA into Eq. (7-19) reduces it to the identity Vs = Va.
Now combining the forced and natural responses, we obtain

o(t) = on(t) +op(1)

= Ke/®C Ly, >0

This equation is the general solution for the step response because it satisfies
Eq. (7-16) and contains an arbitrary constant K. This constant can now be evaluated
using the initial condition. Setting =0 we get

0(0)=Vo=Ke® +Va=K+Vy

The initial condition requires that K = (V(y— V). Substituting this conclusion into the
general solution yields the step response of the RC circuit.

o(t)=(Vo=Va)e "RC 1 Vo 20 (7-20)

The RC circuit step response in Eq. (7-20) starts out at the initial condition V and
is driven to a final condition V5, which is determined by the amplitude of the step
function input. That is, the initial and final values of the response are:

lim v(f) = (Vo—Va)e "+ Vo=V,

t—0+

llil‘l;lo l)(t) = (Vo—VA)efoo +VAa=Va
The path between the two end points is an exponential waveform whose time con-
stant is the circuit time constant. We know from our study of exponential signals that
the step response will reach its final value after about five time constants. In other
words, after about five time constants the natural response decays to zero and we
are left with a constant forced response caused by the step function input.

The RL circuit in Figure 7-13(b) is the dual of the RC circuit in Figure 7-13(a), so
the development of its step responses follows the same pattern discussed previously.
Briefly sketching the main steps, the Norton equivalent input is a step function 7o u(¢),
and for =0 the RL circuit differential equation Eq. (7-6) becomes

L di(t) .
==Y = > 7-21
Re di +i(t)=In 120 (7-11)
The solution of this equation is found by superimposing the natural and forced com-
ponents. The natural response is the solution of the homogeneous equation [right
side of Eq. (7-21) set to zero] and takes the same form as the zero-input response
found in the previous section.

in(t) = Ke BNU/L >0



FiIrRsT-ORDER CIRCUIT STEP RESPONSE

323

where K is a constant to be evaluated from the initial condition once the complete
response is known. The forced response is a particular solution of the equation
L diF([ )
RN dt

+ip(t)=In 120

Setting ip(t) = I satisfies this equation since dl 5 /dt=0.
Combining the forced and natural responses, we obtain the general solution of
Eq. (7-21) in the form

i(t) = in(t) +ip(2)
=Ke /Ly, 120
The constant K is now evaluated from the initial condition:
i(0)=Ip=Ke " +In =K +1,
The initial condition requires that K =1/y—1Ia, so the step response of the RL cir-
cuit is
i(t)=(Top—1Ipn)e BN/ Iy t20 (7-22)

The RL circuit step response has the same form as the RC circuit step response in
Eq. (7-20). At t=0 the starting value of the response is i(0) = [y, as required by the
initial condition. The final value is the forced response i(c0) = ip(f) = I, since the nat-
ural response decays to zero as time increases.

A step function input to the RC or RL circuit drives the state variable from
an initial value determined by what happened prior to =0 to a final value v(®)
determined by the amplitude of the step function applied at t=0. The time
needed to transition from the initial to the final value is about 5T, where Tc VA 0r /a
is the circuit time constant. We conclude that the step response of a first-
order circuit depends on three quantities:

1. The amplitude of the step input (Vo or Ia)
2. The circuit time constant (RtC or L/RN)
3. The value of the state variable at t=0 (V) or Iy) 0
A typical plot of a first-order response is shown in Figure 7-14. One
should realize that the initial or final conditions can be positive or negative.
The exponential plot, therefore, can go from positive to negative, positive

to positive, negative to positive (as shown on the figure), or negative to
negative.

Vp or [y

EXAMPLE 7-6
Find the response of the RC circuit in Figure 7-15.

SOLUTION:
The circuit is first order, since the two capacitors in series can be replaced by a single
equivalent capacitor

1
CEQ = i =0.0833 HF
G G
The initial voltage on Cgg is the sum of the initial voltages on the original capacitors.
V0=V01 +V02=5+10=15V

or (1)

J Te 2Tc 3T 4T¢ 5T¢

FIGURE 7-14 Step response of a typical
first-order circuit.

iR,() R
W\ n
C +V
(ﬁ) vay R R
2 ==V

Vo =100V C;=0.1pF

atr=0 C,=0.5yF

Vor=5V R, =30kQ

V02= 1OV R2= lOkQ
FIGURE 7-15
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To find the Thévenin equivalent seen by Cgq, we first find the open-circuit voltage.
Disconnecting the capacitors in Figure 7-15 and using voltage division at the inter-
face yields

Ry 10

"Rk Vau(t) = ElOOu(t) =25u(t) V

Z)T([) = VOC

Replacing the voltage source by a short circuit and looking to the left at the interface,
we see R; in parallel with R;. The Thévenin resistance of this combination is
1

RT:ﬁ:7.5kQ

R R

The circuit time constant is

1

3 -8

= =(7. . 07°%) =

TC RTCEQ (75X10)(833X1 ) 16OOS

For the Thévenin equivalent circuit, the initial capacitor voltage is V=15V, the step
inputis 25u(t), and the time constant is 1/1600 s. Using the RC circuit step response in
Eq. (7-20) yields

o(f) = (15-25)e~ 160 4 25
=25-10e- 1600y >0

The initial (¢=0) value of v(¢) is 25-10=15V, as required. The equivalent capacitor
voltage is driven to a final value of 25 V by the step input in the Thévenin equivalent
circuit. For practical purposes, v(t) reaches 25 V after about 5T¢ =3.125 ms. [ |

Exercise 7-6
Use the results from Example 7-6 and find the current through R; in Figure 7-15 for ¢ =0.

Answer: i, () =2.5+033¢7100" mA =0

EXAMPLE 7-7

Find the step response of the RL circuit in Figure 7-16(a). The initial condition
is 1(0) = I().

Tpu(t) C*) §R1

FIGURE 7-16

R, i) i)
WV— <
v L @ CD SRy +Ry (1) % L
Ryl pu(t) B
- Rl + R2 0 T T T T — I
0 L/Ry 2L/Ry 3LIRy 4L/Ry SLIRy
() (b) ©)
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SOLUTION:
We first find the Norton equivalent to the left of the interface. By current division, the
short-circuit current at the interface is

- Ri+R»

isc(t) Iau(t)

Looking to the left at the interface with the current source off (replaced by an open
circuit), we see R; and R, in series producing a Norton resistance

Rn=R;+R»

The time constant of the Norton equivalent circuit in Figure 7-16(b) is
L

Te=——"
¢ <R1+R2)

The natural response of the Norton equivalent circuit is
in(t) = Ke (RitR)/L >
The short-circuit current igc(¢) is the step function input in the Norton circuit. There-
fore, the forced response is
Ry

lF([) = iSC (t) = mIAM(I)

Superimposing the natural and forced responses yields

Ril4

t=0
R1+R2

i(t) = Ke~(RirRo)/L 4

The constant K can be evaluated from the initial condition:

. Rily
0)=lh=K
l( ) 0 * R1 + R2
which requires that
Rl
K=1I)-
0 R1 +R2
So the circuit step response is
. Rily | _ Ril4
t) = _ (R]+R2)I/L IEO
l() |:0 R1+R2:|e +R1+R2
An example of this response is shown in Figure 7-16(c). [ |

Exercise 7-7

Use the results from Example 7-7 and find the voltage across the current source in
Figure 7-16(a) for t=0.

An SWEeT: Usource (t) = RIIA |:1

R }+{R1[A

_ —I | Rie"(Ri+R)I/LY, >0
R1+R2 R1+R2 U:| 1e

[ EXAMPLE 7-8

The state variable response of a first-order RC circuit for a step function input is

ve(f)=20e"2-10V 20
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FIGURE 7-17

(a) What is the circuit time constant?

(b) What is the initial voltage across the capacitor?

(c) What is the amplitude of the forced response?

(d) At what time is vc(f) =0?

(e) Use MATLAB to display the state variable response and use the cursor to val-
idate the time found in part (d).

SOLUTION:

(a) The natural response of a first-order circuit is of the form Ke~'/’c. Therefore, the
time constant of the given responses is 7¢ =1/200=5 ms.
(b) The initial (£=0) voltage across the capacitor is

vc(0)=20e"-10=20-10=10V

(c) The natural response decays to zero, so the forced response is the final
value vc(t).

ve(e0)=20e"° -10=0-10=-10V

(d) The capacitor voltage must pass through zero at some intermediate time, since
the initial value is positive and the final value negative. This time is found by
setting the step response equal to zero:

20e7200_10 =0 or e ™=1/2

which yields the condition 2% =2 or t = 1n2/200 = 3.47 ms.
(e) The following MATLAB code plots the step response. The plot and the cursor
display are shown in Figure 7-17.

clear all

t=0:2e-6:20e-3;

vC = 20%exp (-200%t) -10;

plot (t,vC, b’ , 'LineWidth’, 3)
hold on

grid on

xlabel (' Time (g) ')

ylabel ('Voltage (V) ')

10 1 1 1 1 1 1 1 1 1
e
6 14--X\-- qmmmme- ammmme- Ammm e - - - fm - e P Femmm- rom----
S 4q----- 1o a------ A s --- - e Fo----- L r------
<~ \ Capacitor voltage =0 when t =3.47 ms | ! ! !
I EEEEEEE RREEEEE - Fomme-- F------ L Rt
8 h 4 h h h | | | i
I (I T R . EEEEEEL RRRREEl - Foome-- HEREEER LR Rl
= 1 1 1 1 1 1 1 1
T 2 N bbbt Ry s bbb Foeee- e i
< 1 1
=3 1 1 1 1 1 1 1 1 1
S Aqeeooe- 1----- ARt T {--=---- oos oo Fooees Foooee- poooe booee
e T TR S S
- .' ...... N Ao I ....... s -mee- [ R, .
10 i i i i i i j T

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Time (s)
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Exercise 7-8
Given the first-order circuit step response

ve(f)=20-20e" 1000y 40

(a) What is the amplitude of the step input?

(b) What is the circuit time constant?

(c) What is the initial value of the state variable?
(d) What is the circuit differential equation?

Answers:

(a) 20V

(b) 1 ms

(c) OV

(d) 10 3doc (1) /dt +ve =20u(t)

Exercise 7-9

Find the solutions of the following first-order differential equations:

(a) 10*4”1”%:%%(:):—&{(:) ve(0)=5V

(b) 5x 10-2d’LLT(t) +2000i (1) =10u(r) i (0)= —5SmA

Answers:

(@) vc(f)=—5+10e" 10000y >0
(b) iL(t)=5-10e~4000rmA =0

LERO-STATE RESPONSE

Additional properties of dynamic circuit responses are revealed by rearranging
the RC and RL circuit step responses in Egs. (7-20) and (7-22) in the following way:

RCcircuit:o(t) = Voe /R1C 4 Y (1—e /R1C) 120
Se— —

zero-input response zero-state response

— —~—
RL circuit: i(f) = Ipe ®/E + IA(l—e‘RN‘/L) t=0

We recognize the first term on the right in each equation as the zero-input response
discussed in Sect. 7-1. By definition, the zero-input response occurs when the input is
zero (Va=0orIx =0). The second term on the right in each equation is called the
zero-state response because this part occurs when the initial state of the circuit is zero
(V():OOI'I():O).

The zero-state response is proportional to the amplitude of the input step
function (VA or 15). However, the total response (zero input plus zero state) is not
directly proportional to the input amplitude. When the initial state is not zero, the cir-
cuit appears to violate the proportionality property of linear circuits. However, bear in
mind that the proportionality property applies to linear circuits with only one input.

The RC and RL circuits can store energy and have memory. In effect, they
have two inputs: (1) the input that occurred before =0, and (2) the step function
applied at r=0. The first input produces the initial energy state of the circuit at
t=0, and the second causes the zero-state response for r=0. In general, for =0,
the total response of a dynamic circuit is the sum of two responses: (1) the zero-input
response caused by the initial conditions produced by inputs applied before =0, and
(2) the zero-state response caused by inputs applied after #=0.
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FIGURE 7-18

APPLICATION EXAMPLE 7-9

The operation of a digital system is controlled by a clock waveform that provides a
standard timing reference. At its source a clock waveform can be described by a rec-
tangular pulse of the form

vs(£) = Valu(t)—u(t=T)]

In this example the pulse amplitude is VA =5V and the pulse duration is 7 =10ns.
This clock pulse drives a digital device that can be modeled by the circuit in
Figure 7-18(a). In this model vs(¢) is the rectangular clock pulse defined above
and o(¢) is the clock waveform as received at the input to the digital device. The pres-
ence of a clock pulse at the device input will be detected only if v(f) exceeds a spe-
cified logic “1” threshold level.

Find the zero-state response of the voltage v(¢) when RC =10ns. Will the clock
pulse be detected if the logic “1” threshold level is 3.7 V?

v(®) (V)
| vs(t)
5 """I_/___:—_—'———_—_-
37 v -7 Logic “1” threshold
R i1) 316 =K ()
i PN V(D) = vi(0) + (D)
T+ 1.2 : \'&c “0” threshold (s)
0 . ! ! ! t (ns
C—l_) vs() W) C =;t Vo=0 0 10 20 30 40 50
- Y I S _
(@ (b)
SOLUTION:

The rectangular pulse input vg(¢) is indicated by dashed lines in Figure 7-18(b).
The initial capacitor voltage is zero because we seek the zero-state response. The total
response can be found as the sum of the zero-state responses caused by two inputs:

1. A positive 5-V step function applied at =0
2. A negative 5-V step function applied at r=10ns

The first input causes a zero-state response of
v1(t) = Va(l-e "R u(r)
= 5(1—e "u()
The second input causes a zero-state response of
0y(t) = =Va(1—e CT/REYy(t-T)
= —5[1—e 10107 (1-107%)

Notice that vy(¢) = —v (t=T), that is, v (¢) is obtained by inverting and delaying v (¢)
by T=10ns. The total response is the superposition of these two responses.

o(t)=v1(t) +va(2)
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Figure 7-18(b) shows how the two responses combine to produce the overall
pulse response of the circuit. The response v(f) begins at zero and eventually
reaches a final value of +5 V. At r=T=10ns the first response reaches v;(T) =
5(1—e ') =3.16 V. The second response v,(t) begins at t=T =10ns, and thereafter
is equal and opposite to v;(f) except that it is delayed by 7 =10ns. The net result
is that the total response reaches a maximum of v(7") =3.16 V. In this example the
clock pulse will not be detected because the logic “1” threshold level is 3.7 V. Clock
pulse detection would be made possible by increasing the pulse duration so that
o(T)>3.7V. This requires that

5(1-e"9'T)>37V

or 1.3>5¢719°T which yields 7'>1.347 x 10~%. For the digital device in this example,
the minimum detectable clock pulse duration is about 13.5 ns. |

Exercise 7-10

The element in Figure 7-19 is a 1-pF capacitor. The switch closes at ¢ = 0. Find the zero-state
response of the capacitor voltage vc(f) for 1=0.

Answer: oc(f)=25(1-e )V 120

Exercise 7-11

The element in Figure 7-19 is a 1-mH inductor. The switch closes at ¢ = 0. Find the zero-state
response of the inductor current i (¢) for ¢ =0.

Answer: i ()=05(1-eM)mA 20

7-3 IniTiaL AND FinaAL CONDITIONS

Reviewing the first-order step responses of the last section shows that for =0 the
state variable responses can be written in the form

RC circuit: vc(t) = [pc(0)—ve(00)]e ™ T¢ + ve(co) t=0

(7-23)
RL circuit: it (t) = [i.(0)—ip(c0)]e™/TC +ip (c0) =0

In both circuits the step response is of the general form

State Initial Final Final
variable = | value of the — valueof the | xe™/7¢+ value of the
response | state variable state variable state variable

To determine the step response of a first-order circuit, we need three quantities: the
initial value of the state variable, the final value of the state variable, and the time
constant. Since we know how to get the time constant directly from the circuit, it
would be useful to have a direct way to determine the initial and final values by
inspecting the circuit itself.

The final value can be calculated directly from the circuit by observing that for
t>5T¢ the step responses approach a constant value or dc value. Under dc condi-
tions, a capacitor acts like an open circuit and an inductor acts like a short circuit.
As aresult, the final value of the state variable is found by applying dc analysis meth-
ods to the circuit configuration for ¢ >0, with capacitors replaced by open circuits
(OC) and inductors replaced by short circuits (SC).

i(t)

0kQ | T -
4
120 10 kQ
0V = k= 5kQ
FIGURE 7-19
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(©)
FIGURE 7-20 Solving a

switched dynamic circuit using
the initial and final conditions.

We can also use dc analysis to determine the initial value in many practical situa-
tions. A common situation is a circuit containing dc sources and a switch that is in one
position for a period of time much greater than the circuit time constant, and then is
moved to a new position at t =0. For example, if the switch is closed for a long period
of time, then the dc sources drive the state variable to a final value. If the switch is
now opened at t=0, then the dc sources drive the state variable to a new final con-
dition appropriate to the new circuit configuration for ¢ > 0.

Note: The initial condition at ¢ =0 is the dc value of the state variable for the circuit
configuration that existed before the switch changed positions at ¢ =0. The switching
action cannot cause an instantaneous change in the initial condition because capac-
itor voltage and inductor current are continuous functions of time. In other words,
opening a switch at =0 marks the boundary between two eras. The final condition
of the state variable for the ¢ <0 era is the initial condition for the ¢ > 0 era that follows.

The usual way to state a switched circuit problem is to say that a switch has been
closed (open) for a long time and then is opened (closed) at =0. In this context, a
long time means at least five time constants. Time constants rarely exceed a few hun-
dred milliseconds in electrical circuits, so a long time passes rather quickly.

The state variable response in switched dynamic circuits is found using the follow-
ing steps:

STEP 1 Find the initial value by applying dc analysis to the circuit configuration for
t <0 with the capacitor (inductor) replaced with an open (short) circuit.

STEP 2 TFind the final value by applying dc analysis to the circuit configuration for ¢ >0
with the capacitor (inductor) replaced with an open (short) circuit.

STEP 3 Find the time constant T¢ of the circuit in the configuration for ¢>0.
STEP 4 Write the step response directly using Eq. (7-23) without formulating and sol-
ving the circuit differential equation.

For example, the switch in Figure 7-20(a) has been closed for a long time and is
opened at t=0. We want to find the capacitor voltage v(t) for t=0.

STEP 1 The initial condition is found by dc analysis of the circuit configuration in
Figure 7-20(b), where the switch is closed. Using voltage division, the initial
capacitor voltage is found to be

0(0) = RoVa
B R1 +R2

STEP 2 The final condition is found by dc analysis of the circuit configuration in
Figure 7-20(c), where the switch is open. When the switch is open the circuit
has no dc excitation, so the final value of the capacitor voltage is zero.

STEP 3 The circuit in Figure 7-20(c) also gives us the time constant. Looking back at
the interface, we see an equivalent resistance of R;, since R; is connected
in series with an open switch. For =0 the time constant is R,C. Using
Eq. (7-23), the capacitor voltage for =0 is

o(t) = [0(0)~v(e0)]e™"/T¢ + v(c0)
_ RV o 1/RoC
R1 + R2
The result is a zero-input response, since there is no excitation for =0. But now
we see how the initial condition for the zero-input response could be produced phys-

ically by opening a switch that has been closed for a long time.
To continue the analysis, we find the capacitor current using its element constraint:

t=0

dt __R1+R2

i(r) = c W VA_ ke 45
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This is the capacitor current for £=0. For <0 the circuit in Figure 7-20(b) points
out that the capacitor current is zero since the capacitor acts like an open circuit.

The capacitor voltage and current responses are plotted in Figure 7-21. The capac-
itor voltage is continuous at ¢ = 0, but the capacitor current has a jump discontinuity at
t=0. In other words, state variables are continuous, but nonstate variables can have
discontinuities at =0. Since the state variable is continuous, we first find the circuit
state variable and then solve for other circuit variables using the element and connec-
tion constraints.

w(1) i(1) FIGURE 7-21 Two responses
A i A in the RC circuit of Figure 7-20.
__1 .- Continuous 0 RrC 2R;C 3R;C 4RyC 5RyC f Fig
T 1 1 1 | 1 l‘
R
2Va Discontinuous
Ri+R,
-V,
T T T 1 1 t R]+/;€2 -

0  RpC 2RrC 3RrC 4RiC 5R;C

EXAMPLE 7-10

The switch in Figure 7-22(a) has been open for a long time and is closed at z =0. Find
the inductor current for ¢ =0.

— Vu V(1) L
SOLUTION:
We first find the initial condition using the circuit in Figure 7-22(b). By series equiv-
alence the initial current is

. Va
l(O) B R] +R2

The final condition and the time constant are determined from the circuit in

_ 0)=0 | SC
Figure 7-22(c). Closing the switch shorts out R, and the final condition and time —|-_ Va " )_
constant for ¢ >0 are
. Va L L (b)
l(OO)—R—] and TC_R_N_R_l
Using Eq. (7-23), the inductor current for 1 >0 is
i(t) = [i(0) — i(co)Je™"/Tc +i(c0) — v, v(c0)=0] SC
= I: Va _E:|6R11/L+E >0 T_ <
Ri+R, R Ry [ | ©
Exercise 7-12 FIGURE 7-22

The switch in Figure 7-22(a) has been closed for a long time. The switch opens at r=0. Find
the inductor current for ¢ =0.
Va  Va
R 1 R 1+ R2

Va

- t=0
R1+R2

Answer: i(t):{

:| e’(RlJrRZ)[/L +
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20 kQ

FIGURE 7-23

EXAMPLE 7-11

The switch in the circuit of Figure 7-23 has been open for a long time. It closes at = 0.
Find the current ir(¢) for £=0.

SOLUTION:

Although the example asks for the current through the 20-kQ resistor, it is important
that we solve for the voltage across the capacitor first, since it is the state variable. The
voltage across the capacitor is continuous whereas the current may not be. Once we
have found the state variable, we can apply the usual connection and element con-
straints to find the desired variable.

We start by finding the initial voltage across the capacitor at t =0—, a whisker of
time before the switch is thrown. At t=0-, the capacitor is being excited by a dc
source, hence it behaves like an open circuit. The voltage can be found using a voltage
divider

(20k+10k)
ve(0-)= S5 a0k + 10k 0 20V
The final condition can be found similarly. At ¢= oo, the closed switch shorts out the
10-kQ resistor. Hence, our voltage divider becomes

20k
T 20k+20k

Next we need to find the time constant. For an RC circuit the time constant is given as
R1C, where Ry is the Thévenin resistance that the capacitor sees after the switch has
been thrown. Using the look-back method with the switch shorting out the 10-kQ
resistor and setting the source to zero by replacing it with a short circuit, we see that
RT is

vc(o0) 50=25V

20k x20k

= 30ks 20k L0ke

T

And the time constant is
Tc=RrC=10kx0.1p=1ms

Appling these calculations to Eq. (7-23), we find the equation for the state
variable

ve(t) = (30-25)e o +25
ve(t) = 5e 100 125V >0

To find the current through the 20-kQ resistor, we recognize that the resistor is in
parallel with the capacitor, thereby sharing the same voltage. Applying Ohm’s law
yields the desired result

ve(t)  S5em1000r 425 oo0r
= = = ) IZ 0
iR ()= 0k 0.25¢719 4 1 25 mA -

Exercise 7-13

The switch in the circuit of Figure 7-23 has been closed for a long time. It opens at r=0. Find
the voltage vc(f) and the current ig(¢) for t=0.

Answers: ve(t) = =5e™ 83 430V, =0

ir(t) = 0.167¢ ¥ + 1mA, =0
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@ DESIGN EXAMPLE 7-12

Design a first-order RC circuit using standard parts (see inside rear cover) that will
produce the following voltage across the capacitor: v¢ () =50—100e200 V.,

SOLUTION:
We know that the circuit will look like Figure 7-24(a). We need to select a suitable
source vg(t), a switch, a resistor R, and a capacitor C.

FIGURE 7-24

5 t=0

AW W
R B 33kQ

+
+ e
- 1 50V = 1! 17
vs(f) u(t) <_> C = ve(®) - — 50V = v
- t o 0015pF| -

(@) (b)

We also know that the general form of a state-variable response is
ve(t) = [pc(0)—ve (o) e e + (o) V, 120

Comparing the general form to our given desired response vc (t) = 50—100e =200 v,
we calculate the time constant as 1/2000 =500 ps. Hence, we want 7T¢ = RC =500 ps.
Selecting C=0.015 pF, a standard value, yields R=33.3kQ. There is an R=33kQ, a
standard value that should be close enough considering the tolerances of the compo-
nents. We now must determine the initial and final voltages. Substituting =0 into
our desired output equation, we find our initial voltage is —50 V. Similarly, substitut-
ing t=oc0, we find our final voltage is +50V. This suggests two voltages,
switching at t=0 from -50V to +50V. We can now design our circuit as shown
in Figure 7-24(b). [ |

@ Design Exercise 7-14

Design a first-order RL circuit that will produce the following current through the inductor:
ir(t) =5-5¢73 mA for t=0. Use standard values for the components.

Answer: A parallel circuit consisting of a current source is(¢) = 5u(t)mA, an inductor of
2 mH, and a resistor of 1 Q is one possible solution.

EXAMPLE 7-13

For t=0 the state variable response of the RL circuit in Figure 7-25(a) is
observed to be

ir ()

(a) Identify the forced and natural components of the response.
(b) Find the circuit time constant. e '
(c) Find the Thévenin equivalent circuit seen by the inductor. ()

FIGURE 7-25

; vr(?) E
i (1) =50+ 100" mA : CD ; 200 mH
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SOLUTION:

(a) The natural component is the exponential term 100e mA. The forced com-
ponent is what remains after the natural component dies out as t — oo, namely,
ir(00) =50 mA. The forced response is a constant 50 mA, which means that the
Thévenin equivalent is a dc source.

(b) The time constant is the reciprocal of the coefficient of ¢ in e that is,
Tc=5000"1=0.2 ms.

(c) Expressed in terms of circuit parameters the time constant is 7¢c = L /Ry, which
yields the Thévenin resistance as Rr=L/Tc=1kQ. For dc excitation the
inductor acts like a short circuit at 7= c0. Hence, i1 (c0) = o1 /Rt and the Thévenin
voltage is

—5000¢

UT(t)ZRTiL(OO)=1kQX501’1’1A=50V |

Exercise 7-15

Use Multisim to to find the inductor current it () and voltage vy (¢) for r>0 for the circuit
in Figure 7-25. (Hint: Make certain you have the direction of the inital condition correct.)

Answer: See Figure 7-25(b).

Transient Analysis

0 150 m
—-10 4 - 140 m
20 - 130 m
\Inductor voltage vy (t)
=30 - 120 m
S 40 1 - 110m O
s 3
§° -0 Inductor current iy (¢) [ 100m E
S 60 A F90m 2=
-70 - 80 m
—~80 - 70 m
—90 - 60 m
-100 T T T T T T T T T 50m
0 100p  200p  300p  400p  500p  600p  700p  800p 900 I m
Time (s)
(b)

@ EVALUATION EXAMPLE 7-14

The switch in Figure 7-26 moves from position A to position B at ¢ =0. The first-order
RC circuit in the figure must be designed to produce an output of

vo(t)=5(1-e 1) v 120

Evaluate the two proposed circuit designs shown in the figure using the following
criteria.

(a) A design must produce the required output.
(b) If both produce the desired output, then compare part counts and use of standard values
to identify the best design.
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B _t=0
0 —o
A +
1st order
15V Cj) RC vo(t)
circuit
o

150 Q 600
L 4pEL L
75QF == 204F 3002 == 1iF=
O O O O
Circuit A Circuit B
SOLUTION:
(a) The desired outputis a first-order step response with v (0) =0, vo(c0) =5 V,and T¢ =1 ms.

(b)

For 1 <0 the switch is in position B and there is zero input; hence v (0) =0 for both circuits.
For ¢=0 the switch is in position A. The final condition v (e0) is found using voltage divi-
sion on the circuit with the capacitors replaced by open circuits. The circuit time constant is
found using the Thévenin resistance seen by the capacitors. The final value and time con-
stant of circuit A are

75

Circuit A : vo(oo)zm15=5v
150 x 75 —6 -3
Te=—-—=220x107"=1
C150 4 7500} 10 =10

The equivalent capacitance in circuit B is Cgg =4 + 1 =5 pF. The final value and time con-
stant of circuit B are

L 300
Cerult B . Vo= mls = 5 V
600 x 300 —6 -3
c= ms x107°=10""s
Both circuits produce the desired output. A

Circuit A uses three components: a standard 75-Q resistor, a standard

150-Q resistor, and a nonstandard 20-uF capacitor (see inside back B
cover for standard values). Circuit B uses four components: a standard 15V

300-Q resistor, a nonstandard 600-Q resistor, a standard 1-pF capacitor,

and a nonstandard 4-puF capacitor. Circuit A is a better design than

circuit B in terms of both the number of parts and the use of standard

values. |

<D> Design Exercise 7-18

There is a need to design an interface circuit in Figure 7-27(a) so that the
output voltage vo(f) across the 100-Q load equals 10(1—e~1%%) V for 1 =0.
Use the fewest number of components possible.

Answer: See Figure 7-27(b) for one possible design. FIGURE 7-27

FIGURE 7-26
>— =
t=0 i
Interface
circuit Yo
>—| >
(@)
150 Q |
300pH |
(b)

100 Q
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Exercise 7-17

In the circuit in Figure 7-28 the switch has been in position A for a long time
and is moved to position B at t=0. For #>0 find the output voltage vo(t).

Answer: vo(f) = —4e™ %V

FIGURE 7-28

FIGURE 7-29

7-4 FirsT-ORDER CirRcUIT RESPONSE TO
ExpoNENTIAL AND SINUSOIDAL INPUTS

A myriad of different signals can excite linear circuits. As we develop our under-
standing of circuit behavior, note that several signals provide important insight into
circuit behavior. Thus far, we have looked at the response of first-order circuits to
step functions and developed analysis techniques that are quick and methodical.
We will now look at the transient response of first-order circuits to two different,
common, and useful signals: the exponential and the sinusoid. In later chapters,
we will learn other techniques to analyze these and more complex circuits; however,
knowing the classical time-domain approach shown in Figure 7-1 will make under-
standing these subsequent techniques easier.
Let us consider an RC circuit excited by a signal other than a step. If the input
signal to the RC circuit in Figure 7-29 starts at =0, then we can write the circuit
differential equation in Eq. (7-3) as

FC rRec®) o(t) =vr(t)u(r) (7-24)

dt

The u(¢) implies that the driving signal or(f) has a finite start time arbitrarily
selected as t=0. This implies that there is an initial condition, v(0) = V), that will
have to satisty Eq. (7-24).

As with the step response, we find the solution in two parts, namely, the natural
response and the forced response. The natural response is of the form

on(t)=Ke /RiC =0

The natural response of a first-order circuit always has this form because it is a gen-
eral solution of the homogeneous equation with the input set to zero. The form of the
natural response depends on the physical characteristics of the circuit and is inde-
pendent of the input.

The forced response vp(f) depends on both the circuit and the nature of the
forcing function (the input). The forced response is a particular solution of the equation
dl)F(l )

dt
This equation states that whatever function we pick as vp(f) plus RtC times the first
derivative of that same function must equal or(¢). This requires that our choice

of vg(t) have the same form as that of the forcing function vr(¢). Table 7-1 shows the
form of the forced response that should be used based on the form of the forcing function.

RtC

+op(t) =or(t) t=0

TasLe 7-1
Form OF THE FORCING FUNCTION, Form oF THE FoRCED RESPONSE,
or(1) (1=0) vp(t) (120)
Va K¢
VAe—u[ KFe—(x[
Va(cos ot), V(sin o) or .
Va(cos wt) + Vg (sin o) @ cos i +b sin of
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EXAMPLE 7-15
Find the response of the RC circuit in Figure 7-29 to an exponential forcing function.

The initial capacitor voltage is v(0) = V.

SOLUTION:
As before, the natural response is

on(t) = Ke /ReC >0
The forced response to an exponential input is found using Eq. (7-24) as

dog (I)

Ry C +UF(l)=VA€7m t=0

where we select vg(f) = Kpe™™ from Table 7-1. Substituting for vp(¢),

dKFe"”

R
4

+K]:€7m=VA€7w t=0

Performing the differentiation gives
RrCKp(-a)e ™ + Kpe ™ =Vae ™ t=0
Canceling out the exponentials leaves
—oKpRTC+Kp=Va

Solving for K yields

Va

Kp=-——2
F o1 aRrC

Substituting back into our solution for the forced response and combining it with
the natural response, we get

Va

B S )
T—aR C’

D(t) = UN(t)'i‘UF([) = Ke !/RrC

This leaves only the constant K from the natural response to be determined. We find
K by using the initial condition v(0) = V.

Va
0)=V,= K -0/RtC . "A -0
0(0) 0 e + 1—0(RTCe

Va

K=Vy-——*2
O T aRC

Putting it all together, we find the total solution as

VA
1—(XRTC

Va

— 2 My t>
1—aR.C* 0

o(t) = {VO—

:|et/RTC +

The resulting waveform is the sum of two decaying exponentials. The exponential
with the longest time constant will outlast the other and is called the dominant
exponential. |
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FIGURE 7-30

FIGURE 7-31

Exercise 7-18

The capacitor in the circuit of Figure 7-30 is in the zero state. Find the voltage across and the
current through the capacitor for 1 >0.

Answers:

ve(r) = 45.5e71000 45 5,-8333 >
ic(f) = —45.5¢710001 1 37908333 YA 20

Exercise 7-19

The circuit in Figure 7-29 has Ry = 100 kQ, and C=0.1 uF, and it is driven by 10e =" V. The
capacitor has an initial voltage of —-5V.

(a) Determine which is the dominant exponential.

(b) Use Multisim to find the transient response of the capacitor voltage. Plot the input volt-
age on the same graph.

(c) Determine the maximum voltage Vyax across the capacitor and the time at which the
maximum occurs.

Answers:

(a) The forcing function has the dominant exponential with a 20-ms time constant. The cir-
cuit’s time constant is only 10 ms and it quickly decays away, leaving only that of the
forcing function.

(b) See Figure 7-31 for the Grapher View result of the response.

(c) Using the cursor function on the Grapher View shows that the maximum voltage Vyax
is 4.02 'V and occurs at 18.6 ms.

Transient Analysis

I I
201X Source voltage vp(r) = 10 % u(r) V
7.0 AN #
50 (Capacitor voltage maximum 4.02 V at 18.6 ms)
% 3.0 P
@ /
G /
> 1.0 A = ——
————
-1.0 A
’ l Capacitor voltage v¢(1)
-3.0
[
=5.0
0 10m 20m 30m 40m 50m 60m 70m 80m 90m 100m

Time (s)

In the following discussion, we solve for the capacitor voltage in the RC circuit

of Figure 7-29 when the input source is 