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Abstract — Oversmnpled analog-to-digital (A/D) converter architectures

offer a means of exchanging resolution in time for that in amplitude so as

to avoid the difficulty of implementing complex precision analog circuits.

These arcbitectnres thus represent an attractive approach to implementing

precision A/D converters in sealed digital VLSI technologies. This paper

examines the practical design criteria for implementing oversampled con-

verters based on second-order sigma-delta (2A) modulation. Behavioral

models that include representation of various circnit impairments are

established for each of the functional building blocks comprising a

second-order 2A modulator. Extensive simulations based on these models

are then used to establish the major design criteria for each of the building

blocks. As an example, these criteria are applied to the design of a

modulator that has been integrated in a 3-pm CMOS technology. This

experimental prototype operates from a single 5-V supply, dissipates 12

mW, occupies an area of 0.77 inn/, and aefdeved a measured dynamic

range of 89 dB.

I. INTRODUCTION

T HE emergence of powerful digital signal processors

implemented in CMOS VLSI technology creates the

need for high-resolution analog-to-digital (A/D) convert-

ers that can be integrated in fabrication technologies opti-

mized for digital circuits and systems. However, the same

scaling of VLSI technology that makes possible the contin-

uing dramatic improvements in digital signal processor

performance also severely constrains the dynamic range

available for implementing the interfaces between the digi-

tal and analog representation of signals. A/D converters

based on sigma-delta (2A) modulation combine sampling

at rates well above the Nyquist rate with negative feedback

and digital filtering in order to exchange resolution in time

for that in amplitude. Furthermore, these converters are

especially insensitive to circuit imperfections and compo-

nent mismatch since they employ only a simple two-level

quantizer, and that quantizer is embedded within a feed-

back loop. XA modulators thus provide a means of ex-

ploiting the enhanced density and speed of scaled digital

VLSI circuits so as to avoid the difficulty of implementing
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complex analog circuit functions within a limited analog

dynamic range.

A 2A modulator consists of an analog filter and a

coarse quantizer enclosed in a feedback loop [1]. Together

with the filter, the feedback loop acts to attenuate the

quantization noise at low frequencies while emphasizing

the high-frequency noise. Since the signal is sampled at a

frequency which is much greater than the Nyquist rate,

high-frequency quantization noise can be removed without

affecting the signal band by means of a digital low-pass

filter operating on the output of the 2A modulator.

The simplest 2A modulator is a first-order loop wherein

the filter consists of a single integrator [2], [3]. However,

the quantization noise from first-order modulators is highly

correlated [2]–[6], and the oversampling ratio needed to

achieve resolution greater than 12 bits is prohibitively

large. Higher order 2A modulators, containing more than

one integrator in the forward path, offer the potential of

increased resolution. However, modulators with more than

two integrators suffer from potential instability owing to

the accumulation of large signals in the integrators [7], [8].

An architecture whereby several first-order modulators are

cascaded in order to achieve performance that is compara-

ble to that of higher order modulators has been suggested

as a means of overcoming the stability problem [9]–[11].

These architectures, however, call for precise gain match-

ing between the individual first-order sections, a require-

ment that conflicts with the goal of designing A/D

converters that are especially insensitive to parameter tol-

erances and component mismatch. Second-order 2A mod-

ulators are thus particularly attractive for high-resolution

A/D conversion. The effectiveness of second-order 2A

modulator architectures has already been illustrated in a

variety of applications. Digital speech processing systems

and voice-band telecommunications codecs with A/D con-

verters based on second-order 2A modulation have been

reported [12]–[1 5], and the extension of the performance

achievable with such architectures to the levels required for

digital audio [16] and higher [17] signal bandwidths has

been demonstrated.
In this paper, the considerations faced in the design of

second-order 2A modulators are examined. First, analysis

and simulation techniques for such modulators are intro-

duced. Issues concerning the design and implementation of
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Fig. 1. Block diagram of second-order XA modulator with decimator.
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the building blocks comprising a XA modulator, as well as

the interactions between these blocks, are then examined,

leading to a set of functional design criteria for each of the

blocks. In Section IV, the design criteria are applied to an

example implementation. Measurement results for this ex-

perimental prototype are presented in Section V.

II. SYSTEM DESIGN CONSIDERATIONS

A. Second-Order 2A Modulator

Fig. 1 shows the block diagram of a second-order 2A

modulator. The analog input signal x(t) is sampled at the

sampling frequency f, =1/T. A quantizer with only two

levels at + A/2 is employed so as to avoid the harmonic

distortion generated by step-size mismatch in multibit

quantizes. Out-of-band quantization noise in the modula-

tor output is eliminated with a digital decimation filter

that also resamples the signal at the Nyquist rate, 2B. The

power S~ of the noise at the output of the filter is the sum

of the in-band quantization noise SD together with in-band

noise arising from other error sources, such as thermal

noise or errors caused by jitter in the sampling time. An

approximate expression for the quantization noise when

the quantizer is modeled by an additive white-noise source

[7] ii

(1)

The coefficient M is the oversampling ratio, defined as the

ratio of the sampling frequency j, to the Nyquist rate 2B.

For every octave of oversampling, the in-band quantiza-

tion noise is reduced by 15 dB.

The performance of A/D converters for signal process-

ing and communications applications is usually character-

ized in terms of the signal-to-noise ratio. Two definitions

for this ratio will be used here. The TSNR is the ratio of

the signal power to the total in-band noise, whereas the

SNR accounts only for uncorrelated noise and not har-

monic distortion. The useful signal range, or dynamic range

(DR), of the A/D converter for sinusoidal inputs is de-

fined as the ratio of the output power at the frequency of

the input sinusoid for a full-scale input to the output signal

power for a small input for which the TSNR is unity

(O dB). The dynamic range of an ideal Nyquist rate uni-

form PCM converter with b bits is DR = 3. 22b- 1. This

definition of the dynamic range provides a simple means

of comparing the resolution of oversampled and Nyquist

rate converters. For example, a 16-bit Nyquist rate A/D

converter corresponds to an oversampled A/D with 98-dB

dynamic range.

For the successful design and integration of a second-

order 2A modulator, it is important to establish the sensi-

tivity of the system’s performance to various circuit non-

idealities. Functional simulation techniques must be used

to examine the design trade-offs because the application of

conventional circuit and system analysis methods to the

study of higher order ZA modulators has, to date, proven

to be intractable. Circuit simulations alone are not an

effective design approach, since they do not explicitly

illustrate the fundamental trade-offs necessary in the de-

sign process. The approach taken here is based on the use

of a custom simulation program that embodies quantita-

tive models for the functional elements comprising a 2A

modulator that reflect nofidealities in the behavior of

those elements. Descriptions of these elements are held in

a generic form so that they can be mapped to a large

variety of possible circuit implementations.

Because of the oversarnpling process and the long-term

memory of second-order X A modulators, long data traces

are necessary to accurately estimate the performance of

such converters. MIDAS, a general-purpose simulator for

mixed analog and digital sampled-data systems, has been

used to generate these traces. MIDAS accepts a system

description in the form of a net list and is thus flexible

enough to accommodate a wide variety of architectural

configurations. Estimates of dynamic range and signal-to-

noise ratio, as well as distortion, are generated in MIDAS

using the sinusoidal minimal error method, a computation-

ally efficient algorithm suitable for both simulation and

experimental measurement purposes [18].

Several types of nonidealities that are characteristic of

analog circuit implementations of 2A modulators have

been studied. Signal range, electronic noise, and timing

jitter are discussed below. The sensitivity of the modulator

performance of the characteristics of the integrators and

the comparator is then considered in Section 111.

B. Signal Range

For the conventional second-order XA modulator archi-

tecture shown in Fig. 1, simulations reveal that the signal

range required at the outputs of the two integrators is

several times the full-scale analog input range, + A/2.
This requirement represents a severe problem in circuit

technologies, such as CMOS VLSI, where the dynamic
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Fig. 2. Modified architecture of second-order 2A modulator.
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Fig. 3. Comparison of integrator output probability densities for tradi-
tional and modified architectures with sinusoidal input 3 dB below

overload.

range is restricted. The modified modulator architecture

shown in Fig. 2 calls for considerably smaller signal ranges

within the integrators. This architecture differs from the

traditional configuration in two respects: a forward path

delay is included in both integrators, thus simplifying the

implementation of the modulator with straightforward

sampled-data analog circuits, and each integrator is pre-

ceded by an attenuation of 0.5. An extraction of the

modified architecture from the conventional structure re-

sults in a configuration with an attenuation of 0.5 preced-

ing the first integrator and a gain of 2 at the input of the

second integrator. However, since the second integrator is

followed immediately by a single-threshold quantizer, its

gain can be adjusted arbitrarily without impairing the

performance of the modulator [19].

Fig. 3 shows the probability densities of the outputs of

the two integrators for both the traditional (Fig. 1) and the

modified (Fig. 2) 2A modulator architectures. Whereas

the signals at the outputs of both integrators extend only

slightly beyond the full-scale input for the modified modu-

lator design, the signal ranges are considerably larger for

the traditional architecture. The modified modulator archi-

tecture therefore requires a signal range in the integrators

which is only slightly larger than the full-scale input range

of the A/D converter. Fig. 4 shows the relative increase in

baseband noise that results from clipping the integrator

outputs for input signals 1 and 2 dB below overload. From

these results it is apparent that for signals as large as 1 dB

below overload, the performance penalty is negligible when

the signal in both integrators is clipped to a range that is

about 70 percent larger than the full-scale input range.

-
y(kT)

, 1 1 1 1 I 1 1
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I
,0
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Fig. 4. Simulated influence of integrator output range on baseband
quantization noise for input sinusoids 1 and 2 dB below overload.

C. Electronic Noise

In analog implementations of XA modulators, the signal

is corrupted not only by quantization error, but also by

electronic noise generated in the constituent circuits. Noise

injected at the modulator input is the dominant contribu-

tor. Input-referred noise from the comparator undergoes

the same second-order differentiation as the quantization

noise, and noise injected at the input of the second integra-

tor is subjected to a first-order difference function. Out-

of-band noise is eliminated by the decimation filter, but

high-frequency noise at multiples of the sampling fre-

quency will be aliased into the baseband. The total input-

referred noise power within the baseband does contribute

to S~ and thus ultimately limits the resolution of the A/D

converter.

Offset is only a minor concern in many signal acquisi-

tion systems, as long as the quantization is uniform. The

offset at the input to the first integrator is the only

significant contributor because offsets in the second inte-

grator and the comparator are suppressed by the large

low-frequency gain of the integrators. In practice, excessive

offsets should be avoided because of the consequent reduc-

tion in the effective signal range in the integrators.

D. Sampling Jitter

The sampling theorem states that a sampled signal can

be perfectly reconstructed provided that the sampling fre-

quency is at least twice the signal bandwidth and that the

sampling occurs at uniformly distributed instances in time.

An anti-aliasing filter preceding the sampler ensures that
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the first of these requirements is fulfilled. Oversampled

A/D converters put considerably less stringent require-

ments on this filter than Nyquist rate converters since the

signal is sampled at a frequency which far exceeds its

bandwidth. Sampling clock jitter results in nonuniform

sampling and increases the total error power in the quan-

tizer output. The magnitude of this error increase is a

function of both the statistical properties of the sampling

jitter and the input to the A/D converter. An estimate for

this error is derived below.

The error resulting from sampling a sinusoidal signal

with amplitude A and frequency ~X at an instant which is

in error by an amount ?3is

X(t + 8)–x(t) = 27rfx&4cos27rfxt. (2)

Under the assumption that the sampling uncertainty 8 is

an uncorrelated Gaussian random process with standard

deviation At, the power of this error signal is

(3)

with a spectrum that is a scaled and modulated (by the

sinusoidal input signal) version of the timing jitter 8. In an

oversampled A/D converter, the decimation filter removes

the content of this signal at frequencies above the base-

band. Since the clock jitter is assumed to be white, the

total power of the error is reduced by the oversampling

ratio M in the decimator process. The in-band error power

S~, is therefore

A* (2~BAt)2
(4)

In this expression, the worst-case amplitude (~ A\2) and

signal frequency (B) have been used in order to establish

an upper bound on the error power.

The error caused by clock jitter is inversely proportional

to the oversampling ratio M and adds directly to the total

error power S~ at the output of the A/D converter. Since

the in-band quantization noise S~ is inversely proportional

to the fifth power of M, the amount of clock jitter that can

be tolerated decreases for art increase in oversampling

ratio.

III. INTEGRATOR AND COMPARATOR DESIGN

The two integrators in the forward path of a second-order

XA modulator serve to accumulate the large quantization

errors that result from the use of a two-level quantizer and

force their average to zero. Ideally, for an integrator of the

form used in the modulator architecture of Fig. 2 the

output, u(kT), is the sum of the previous output, U( kT –

T), and the previous input, u(kT – T):

u(kT)=gOu(kT– T)+u(kT– T). (5)

The constant go represents the gain preceding the input to

the integrator, which is 0.5 for each of the integrators in

Fig. 2. The above equation corresponds to the following

transfer function for an ideal integrator:

H(Z)=*. (6)
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Fig. 5. Simulated influence of variations in integrator gain on baseband
quantization noise.

Analog circuit implementations of the integrators deviate

from this ideal in several ways. Errors which result from

finite gain and bandwidth, as well as those due to nonlin-

earities, are considered below.

A. Gain Variations

It was pointed out previously that a scalar preceding the

second integrator in the 2?A modulator of Fig. 2 has no

effect on the behavior of an ideal modulator because it is

absorbed by the two-level quantizer. However, deviations

in gO from its nominal value in the first integrator alter the

noise shaping function of the 2A modulator and conse-

quently change the performance of the A/D converter.

Fig. 5 shows the change of the in-band quantization

noise as a function of gO. Gain variations of as much as 20

percent from the nominal value have only a minor impact

on the performance of the A/D converter, Confirming the

general insensitivity of the ZA modulator architecture to

component variations. Larger gO means higher gain in the

forward path of the modulator and consequently greater

attenuation of the quantization noise. However, for gains

larger than about 0.6, the signal amplitudes at the integra-

tor outputs increase rapidly and the system becomes unsta-

ble.

B. Leak

The dc gain of the ideal integrator described by (6) is

infinite. In practice, the gain is limited by circuit con-

straints. The consequence of this “integrator leak” is that

only a fraction of POof the previous output of the integra-

tor is added to each new input sample. The integrator

transfer function in this case becomes

,,
–1

H(z) = ‘oz
l–POZ-l

(7)

and the dc gain is Ho = go/(l – Po). The limited gain at

low frequency reduces the attenuation of the quantization

noise in the baseband and consequently, for the 2A modu-

lator of Fig. 2, results in an increase of the in-band
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Fig. 6. Influence of integrator leak on baseband quantization noise.

quantization noise S~ that is given by

%’=:(:1+:(:)2-‘8)
This relationship is plotted in Fig. 6, along with data

obtained from simulations, for an input 20 dB below full

scale. The performance penalty incurred is on the order of

1 dB when the integrator dc gain is comparable to the

oversampling ratio.

C. Bandwidth

In typical sampled-data analog filters, the unity-gain

bandwidth of the operational amplifiers must often be at

least an order of magnitude greater than the sampling

rate. However, simulations indicate that integrator imple-

mentations using operational amplifiers with bandwidths

considerably lower than this, and with correspondingly

inaccurate settling, will not impair the X A modulator

performance, provided that the settling process is linear.

For integrators with an exponential impulse response—

as is observed for implementations which are based on an

amplifier with a single dominant pole—the time constant

of the response, ~, can be nearly as large as the sampling

period T. This constraint is considerably less stringent

than requiring the integrator to settle to within the accu-

racy of the A/D converter. Simulation results indicate that

for values of ~ larger than the sampling period, the modu-

lator becomes unstable. In Section V it will be argued that

in practice ~ must actually be kept somewhat smaller

than T.

D. Slew Rate

In the preceding subsection it was pointed out that a

large time constant for the settling of the integrator output

is acceptable, provided that the settling process is linear. In

particular, the settling must not be slew-rate limited. The

simulation results presented in Fig. 7 indicate a sharp

increase in both quantization noise and harmonic distor-

tion of the converter when the slew rate is less than

l.lA/T. These simulations are based on the assumption

that if the integrator response is not slew-rate limited, the

35
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Fig. 7. Simulated influence of integrator output slew rate on baseband
quantization noise.

impulse response is exponential with time constant n

u(kT+t) = &Tu(kT)[l- e’/T]+u(kT). (9)

The term 1 – e-‘/’ has been included to separate the

effects of finite slew rate from those due to variations in

the equivalent gain. The peak rate of change in the impulse

response occurs at t = O and is given by

du(kT+t) gO u(kT)

dt = l–e-vr ~ “ (lo)

Slewing distortion occurs when this rate exceeds the maxi-

mum slew rate the integrator can support.

E. Nonlinearity

The imperfections in analog circuit realizations of the

integrators that have been considered above are either

linear deviations from the ideal frequency response due to

gain and bandwidth limitations, or large-scale nonlineari-

ties, such as clipping and slewing. In this subsection the

influence of differential nonlinearities on the modulator

performance is examined. Such nonlinearities occur, for

example, when the integrator implementation is based on

capacitors that exhibit a voltage dependence, or on an

amplifier with input-dependent gain. From simulations it

has been observed that the consequence of these nonlinear-

ities is harmonic distortion that limits the peak SNR

achievable at large signal levels.

The following quantitative analysis of effects of integra-

tor nonlinearity is based on representing the integrator by

u(kT)[l+~lu (kT)+&u2(kT)+ .0 “ ]

=gou(kT– T)[l+alu(kT– T)

+a2u2(kT– T)+ . . . 1
+u(kT– T)[l+&o(kT-T)

+@2u2(kT– T)+ 00. 1 (11)

This model has been found to be typical of a variety of

possible integrator implementations. The parameters a,

and ~1 are the coefficients of Taylor series expansions of

the integrator input and output and are associated with

nonlinearities in the input and the storage elements, re-
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spectively. In switched-capacitor integrators, for example,

these correspond to the voltage coefficients of the capaci-

tors [20].

Fig. 8 shows simulation and amdytical results obtained

for evaluating the influence of integrator nonlinearities on

the TSNR of the A/D converter, assuming a sinusoidal

input. The performance degradation is proportional to the

amplitude of the input for the first-order nonlinearity, and

proportional to the square of the modulator input for

second-order nonlinearity. The degradation is a conse-

quence of harmonic distortion, rather than an increase in

quantization noise; thus, it is possible to evaluate the

harmonic distortion without taking the quantizer into con-

sideration.

Only distortion introduced by the first integrator in a

second-order 2A architecture such as that of Fig. 2 need

be considered, since errors introduced by the second inte-

grator are attenuated by the feedback loop. The input to

the first integrator is the difference between the modulator

input, x(M’ ), and the modulator output, which consists of

the sum of the input delayed by two sampling periods and

the quantization noise, The latter can be neglected in the

distortion analysis, as has been pointed out above. For a
sinusoidal modulator input with amplitude A and fre-

quency jX, the input to the first integrator is approximately

x(kT) – x(kT–2T) = 4nfXTAcos2nfxT, fXT <<1.

(12)

The input-referred harmonics of the integrator for this

signal can be determined either by distortion analysis with

a circuit simulation program such as SPICE [21] or SWAP

[22], or analytically, in a manner similar to the analysis

presented in [20]. When the assumption is made that

ai = /3,, the amplitudes of the first and second harmonics

are

(13)

and

h2=;A; (14)

respectively. The power of the harmonic distortion in the

output of the A/D converter due to integrator nonlinear-

ity is then approximately h~/2 -t- h; /2, provided that the

contribution of higher order harmonics is negligible. Har-

monics at frequencies above the bandwidth of the con-

verter are, of course, suppressed by the decimation filter.

This result is in excellent agreement with simulations that

do not include any simplifications.

F. Comparator Hysteresis

The l-bit quantizer in the forward path of a 2A modu-

lator can be realized with a comparator. The principle

design parameters of this comparator are speed, which

must be adequate to achieve the desired sampling rate,
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Fig. 8. Influence of integrator nonlinearity on A/D converter perfor-
mance: (a) first-order nonlinearity, and (b) second-order nonlinearity.
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input offset, input-referred noise, and hysteresis. It has

been pointed out already that offset and noise at the

comparator input are suppressed by the feedback loop of

modulator. Fig. 9 shows the performance of the A/D

converter as a function of comparator hysteresis, defined

as the minimum overdrive required to change the output.
The power of the in-band noise, S~, is virtually unchanged

for hysteresis as large as 10 percent of the full-scale con-

verter input, A, and rises at 20 dB per decade above this

point.
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Fig. 10. Second-order 2A modulator implementation.

A/D converter performance to

modeled quite accurately by an

add~ive white noise with power (h .-A/2)2, where ‘h is the

magnitude of the comparator hysteresis relative to A. The

noise undergoes the same spectral shaping as the quantiza-

tion noise. The sum of the quantization noise, SB, and the

hysteresis is therefore

~2L

[1A21.—— —+4h2 ,
‘N– 2L+1 M2L+1 12

M>> 1. (15)

The factor 4 reflects the adjustment of the scalar preceding

the second integrator from 2 to 0.5.

The sensitivity of 2A modulators to comparator hys-

teresis is several orders of magnitude smaller than that of

Nyquist rate converters. It is apparent from the model that

this is attributable to the presence of negative feedback

with high loop gain in a 2A modulator.

IV. IMPLEMENTATION

The considerations addressed above have been applied

to the design of a second-order 2A modulator that has

been integrated in a 3-pm CMOS technology. The perfor-

mance objective for this design was a dynamic range of 16

bits at as high a Nyquist rate as could be achieved within

the constraints of the technology in which the circuit was

integrated. The resolution of 16 bits corresponds to a

dynamic range of 98 dB, which can be achieved with an

oversampling ratio of M =153 if the performance is lim-

ited only by the quantization noise. To allow for increased

baseband noise due to circuit nonidealities, as well as to

maintain an oversampling ratio that is a power of 2 so as

to simplify the subsequent decimation to the Nyquist

sampling r-ate, a sampling ratio of M = 256 was chosen.

The modulator has been designed to operate from a single

5-V power supply.

A. Circuit Topology

Since 2A modulators are sampled-data systems, they

are readily implemented in MOS technology with

switched-capacitor (SC) circuits. Fig. 10 shows a possible

topology. A fully differential configuration has been

adopted in order to ensure high power supply rejection,

reduced clock feedthrough and switch charge injection

S1
t< ‘“-~

S2 ,.. .

/
7%

S3

Phase 1 Phase 2

Fig. 11. Clock diagram for second-order .2A modulator.

errors, improved linearity, and increased dynamic range.

The two identical integrators in Fig. 10 each consist of an

amplifier, two sampling capacitors Cl, and two integrating

capacitors C2. The ratio of Cl to C2 is chosen so as to

realize the gain of 0.5 that precedes each integrator in the

architecture of Fig. 2.

Operation of the modulator is controlled by a nonover-

lapping two-phase clock. During phase 1 all of the switches

labeled SI and S3 are open, while those labeled S2 and SA

are closed, and the input to each integrator is sampled

onto the capacitors Cl. In phase 2, switches SI and S3

open, while S2 and Sd close, and charge stored on Cl is

transferred to Cz. During this phase, the closing of switches

S2 has the effect of subtracting the output of the two-level

D/A network from the input to each integrator. The

comparison of the outputs from the second integrator is

performed during phase 1, and the comparator reset dur-

ing phase 2. With this clocking arrangement, the time

available for the integration and the time for the compari-

son are both one-half a clock cycle.
To first order, the charge injected by the MOS switches

in the circuit of Fig. 1 is a common-mode signal that is

canceled by the differential implementation of the modula-

tor. Signal-dependent charge injection is further sup-

pressed by opening switches S3 and Sq slightly before SI

and S2, respectively [23]. Since S3 and Sg are connected to

either a ground or virtual ground node, they do not exhibit

signal-dependent charge injection. Once S3 or SA has

opened, and before the other has closed, Cl is floating;

thus, the subsequent opening of SI or S3 during the inter-

val when both S3 and Sd are open will, to first order, not

inject charge onto Cl.
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A timing diagram for all of the switches in the modula-

tor is given in Fig. 11. The switches are closed when the

controlling clocks are high. The clocks must be nonover-

lapping in order to prevent charge sharing. The clocks for

switches SI and S2 are generated by delaying the clocks

for S3 and S4. An upper limit for the tolerable clock jitter

follows from (4):

1

r

2M
At<— —

271B.2b 3 “
(16)

If the baseband-error power induced by clock jitter is to be

no larger than the quantization noise resulting from an

ideal modulator, then it is necessary that At <630 ps for

B =20 kHz.

The choice of the full-scale analog input range of the

converter, which is equal to the quantizer step size A,

involves trade-offs among a number of design constraints.

A large signal range is desirable due to the presence of

electronic noise in the analog circuits. However, a large

signal range results in increased harmonic distortion due to

integrator nonlinearity. In addition, increasing the signal

range calls for operational amplifiers with a higher slew

rate. A differential full-scale input range of A = 4 V has

been chosen so as to limit the performance impairment

due to electronic noise. The simulation results presented in

Fig. 4 indicate that the signal range at the output of both

integrators should be at least 50 percent larger than the

full-scale analog input in order to avoid significant perfor-

mance degradation. The output swing of the operational

amplifiers should therefore be at least 6 V. This require-

ment is accommodated within a single 5-V supply through

the use of the fully differential topology.

B. Integrator Design

The design of the differential operational amplifier is

key to the successful realization of the integrators. The

specifications for this amplifier follow from the integrator

performance requirements described in the previous sec-

tion. A consideration of integrator leak mandates that the

amplifier open-loop gain be at least equal to the oversam-

pling ratio, M = 256. However, the gain must generally be

somewhat larger than this in order to adequately suppress

harmonic distortion.

An operational amplifier that is not slew-rate limited is

essential in order to avoid slewing distortion. A class AB

configuration with a single gain stage similar to that de-

scribed in [24] has been chosen to meet this constraint. The

slew-rate requirement is more stringent for this implemen-

tation than was derived from Fig. 7 for two reasons. First,

the integration is accomplished only during phase 2 and

thus must be completed within one-half the clock cycle.

Second, the signal swing at the integrator output in re-

sponse to a step input is somewhat larger than anticipated

in Fig. 7 owing to feedforward through the integrating

capacitors Cz. Therefore, in the implementation of Fig. 10

the slew rate must be at least 3A/T= 150 V/I.M. ~

For an amplifier with a single dominant pole and unity-

gain frequency j., the impulse response of the integrator

output during phase 2 will be exponential with a time

constant [25], [26]

(17)

The simulation results presented in the previous section

indicate that the condition ~ < T must be met in order to

guarantee stability of the modulator. This requirement

corresponds to a lower limit for fU of

(18)

The fact that only one-half of the clock period T is

available for the integration has been accounted for in this

equation. From (18) it is apparent that the bandwidth fti
must be greater than approximately one-half the sampling

rate, provided that the step response is purely exponential.

In practice, this latter requirement is not met precisely

because of secondary effects such as nondominant poles

and the dependence of the pole locations on the amplifier

operating point, which in this design changes during tran-

sients.

Constraints on the dynamic range mandate that the sum

of input-referred baseband noise of the first integrator and

baseband noise in the output of the two-level D/A net-

work be 104 dB below the power of a full-scale sinusoidal

input to the converter if this noise is not to exceed the

quantization noise. Sampling capacitors of 1 pF have been

employed to reduce the level of thermal noise in the

circuit, and large input transistors in the amplifier limit

flicker noise.

Harmonic distortion limits the TSNR of the converter

for large inputs. The main contributor to this distortion is

nonlinearity in the first integrator, which is a consequence

of the voltage dependence of the capacitors and the gain

nonlinearity ,of the operational amplifier. In the previous

section it was shown that it is possible to predict the

impact of these nordinearities through an analysis of the

integrator alone. In these circumstances, the magnitude of

the harmonics can be determined using a circuit simulator

that includes distortion analysis.

An estimate of the tolerable voltage dependence of the

capacitors can be extracted, from the results presented in

Fig. 8. For capacitors with a voltage dependence given by

C(u) = CO(l + ylv + y2U2), it follows from charge conserva-

tion and comparison with (11) that al= j31= ylA and

az = /32= y2A2. The first harmonic, hl, will be smaller than

predicted by (13) because of the differential configuration

of the modulator. The peak TSNR will be reduced by

about 6 dB for yl = 50 ppm/V in a single-ended configu-
ration; in the differential design the capacitor voltage

coefficient can be several times larger for the same perfor-
mance. Second-order harmonic distortion reduces the peak

TSNR by 6 dB for yt = 30 ppm/V2 in a single-ended

configuration.
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Fig. 12. Die photo of second-order 2A modulator.

C. Comparator Design

Neither sensitivity nor offset considerations present

stringent design constraints for the comparator in a sec-

ond-order 2A modulator. The two integrators provide

preamplification of the signal, and due to the feedback the

comparator offset is stored in the second integrator. The

data in Fig. 9 imply that comparator hysteresis as large as

5 percent of the full-scale input range A has a negligible

impact on the performance of the A/D converter. A

simple regenerative latch without preamplification or off-

set cancellation, such as that presented in [27], fulfills the

comparator requirements.

V. EXPERIMENTAL RESULTS

The second-order 2A modulator implementation of Fig.

10 has been integrated in a 3-pm CMOS technology. A

photograph of the chip is shown in Fig. 12. Most of the

0.77-mm2 die area is occupied by the two integrators,

which have been laid out symmetrically in order to reduce
component mismatch. The circuit dissipates 12 mW when

operating from a single 5-V power supply.

For testing, the experimental 2A modulator was con-

nected to a high-quality sinusoidal signal source, and the

initial stages of decimation were implemented with an

off-chip digital filter. The output of this filter was then

transmitted to a host computer for further filtering and an

analysis of the performance. Amplitudes of both the out-

lo~o

INPUT LEVEL [dB]

Fig. 13. Measured SNR for a sampling frequency of 4 MHz and a
signaf frequency of 1.02 kHz.

put signal and its harmonics, the quantization noise power

and spectral density, and the signal frequency were esti-

mated by the host using the same algorithms employed for

performing the simulations [18]. The advantage of this

approach over techniques that are based on the use of a

high-precision D/A converter and analog test instruments

is its insensitivity to the performance of analog test equip-

ment. The only analog— and therefore potentially limit-

ing—component in the measurement setup is the sinu-

soidal source.

Fig. 13 shows the SNR and TSNR measured for the

experimental A/D converter. For this data the modulator

was operated at its maximum clock rate of ~, = 4 MHz,

and the oversampling ratio was M = 256. The correspond-

ing Nyquist rate is 16 kHz. The frequency of the sinusoidal

input signal was 1.02 kHz. From the data of Fig. 13, the

measured dynamic range of the converter is found to be 89

dB, which corresponds to a resolution of 14.5 bits. Addi-

tional tests show that the modulator performance drops by

less than 3 dB for signal frequencies up to half the Nyquist

rate. The measured gain tracking is better than ~ 0.5 dB

and is limited largely by the decimation filter design used.

For large input signals, the precision of the converter is

limited by harmonic distortion rather than quantization

noise, as is apparent from the divergence of the TSNR

from the SNR in Fig. 13. In this design, the amplifier is the

dominant source of distortion, a consequence of the large

signal range in the integrators in comparison with the

supply voltage. The capacitors in the experimental modu-

lator were realized with double polysilicon layers, and their

contribution to the total distortion is negligible.

The dynamic range of the 2A modulator is plotted as a
function of the sampling rate in Fig. 14. For sampling

rates below 4 MHz, the dynamic range is independent of

the clock rate; it then drops rapidly at higher operating

frequencies. The pronounced decrease of the performance

above 4 MHz has also been observed in simulation results

and has been identified as resulting from instability. The

unit y-gain bandwidth of the operational amplifiers was

measured to be 8 MHz with a phase margin of 80°. Thus,

the modulator can be operated at speeds up to half the

amplifier bandwidth without performance degradation. In
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contrast, an order of magnitude higher bandwidth would

be required if it were necessary for the amplifier outputs to

settle to within the resolution of the overall converter.

Second-order effects are responsible for limiting the

useful sampling frequency to a value which is smaller than

that predicted by simulation, of the modulator assuming

integrators with a perfectly exponential impulse response.

These effects include deviations in the impulse response

from an exponential waveform because of the drastic

change in bias currents that occur in the class All opera-

tional amplifier during large-signal transients. In addition,

the time constants of the amplifier response during phase 1

and phase 2 differ as a result of changes in the equivalent

load capacitance. The slew rate of the amplifier is greater

than 200 V/ps, sufficient to prevent slmving distortion in

all operating conditions of ‘the integrators.

In Fig. 15 the dynamic range of the converter is plotted

as a function of the oversampling ratio. The performance

increases by 15 dB for every doubling of the oversampling

ratio up to M = 64, as is expected for an ideal 22A modula-

tor. In this regime, the dynamic rWge of the modulator is

within 4 dB of that of an ideal modulator with perfect

components and no error sources other than quantization

noise. At hi@er oversampling ratios, the performance im-

provement obtained by increasing the oversampling ratio

is reduced. Flicker noise in the input transistors of the first

integrator has been found to be the primary limitation

when the signal is oversampled by a factor greater than 64.

The dynamic range of 89 dB corresponds to fabrication of

the modulator in a technology wherein the l/~ noise is

characterized by a flicker-noise coefficient KI = 5010-24

V2. F [28], a value consistent with typical CMOS technolo-

gies [29]. This flicker-noise limitation can be overcome by

increasing the size of the input transistors, or through the

use of a chopper-stabilized amplifier [30]. The size of the

input devices was kept relatively small in this design

because of concern for the amplifier frequency response.

VI. CONCLUSION

Second-order 2A modulators constitute an efficient ar-

chitecture for implementing high-resolution A/D convert-

ers in scaled high-performance integrated circuit technolo-

gies. Both simulations and analytic results have been used

to establish design criteria for the analog circuit blocks

comprising such a modulator. Specifically, it has been

found that iritegrator linearity has a crucial influence on

the performance of these converters, whereas 2A modula-

tors impose only modest demands on integrator bandwidth

and are relatively insensitive to offset and hysteresis in the

comparator. The analysis presented here has also been

used to identify mechanisms other than quantization noise

that may limit the performance, of 2A modulators regard-

less of the oversampling ratio.

The limitations on both the speed and dynamic range of

the experimental A/D converter reported herein can be

readily overcome through the use of a higher performance

technology. Scaled digital VLSI technologies are especially

suitable for these types of converters because they provide

the density and speed necessary to include the decimation

filter, as well as other signal processing functions, OD the

same chip as the modulator. Conversely, oversampling

architectures provide a means of exploiting the enhanced

speed of scaled digital technologies so as to overcome

constraints on the available dynamic range and the need

for precision circuits and componerUs. In a sampled-data

CMOS implementation of a 2A modulator, the only re-

quirement imposed on the fabrication technology is the

availability y of capacitors. The accuracy of the capacitor

ratios is not critical since the performance of lXA modula-

tors is not sensitive to the gain gO preceding the integra-

tors. In comparison with Nyquist rate converters, relatively

large capacitor voltage coefficients can be tolerated be-

cause the modulator feedback loop serves to reduce the

resulting distortion.
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