cadence

Cadence® Verilog®-AMS Language
Reference

Product Version 13.1
June 2013

© 2000-2013 Cadence Design Systems, Inc. All rights reserved.

Portions © Regents of the University of California, Sun Microsystems, Inc., Scriptics Corporation. Used by
permission.

Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

The AMS Designer simulator contains technology licensed from, and copyrighted by: Regents of the
University of California, Sun Microsystems, Inc., Scriptics Corporation, and other parties and is © 1989-
1994 Regents of the University of California, 1984, the Australian National University, 1990-1999 Scriptics
Corporation, and other parties. All rights reserved.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or
registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are
used with permission.

MMSIM contains technology licensed from, and copyrighted by: C. L. Lawson, R. J. Hanson, D. Kincaid,
and F. T. Krogh © 1979, J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson © 1988, J. J.
Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling © 1990; University of Tennessee, Knoxville, TN and
Oak Ridge National Laboratory, Oak Ridge, TN © 1992-1996; Brian Paul © 1999-2003; M. G. Johnson,
Brisbane, Queensland, Australia© 1994; Kenneth S. Kundert and the University of California, 1111 Franklin
St., Oakland, CA 94607-5200 © 1985-1988; Hewlett-Packard Company, 3000 Hanover Street, Palo Alto,
CA 94304-1185 USA © 1994, Silicon Graphics Computer Systems, Inc., 1140 E. Arques Ave., Sunnyvale,
CA 94085 © 1996-1997, Moscow Center for SPARC Technology, Moscow, Russia © 1997; Regents of the
University of California, 1111 Franklin St., Oakland, CA 94607-5200 © 1990-1994, Sun Microsystems, Inc.,
4150 Network Circle Santa Clara, CA 95054 USA © 1994-2000, Scriptics Corporation, and other parties ©
1998-1999; Aladdin Enterprises, 35 Efal St., Kiryat Arye, Petach Tikva, Israel 49511 © 1999 and Jean-loup
Gailly and Mark Adler © 1995-2005; RSA Security, Inc., 174 Middlesex Turnpike Bedford, MA 01730 ©
2005.

All rights reserved.
Associated third party license terms may be found at install_dir/doc/OpenSource/*

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document
are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 800.862.4522. All other
trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and
contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or
distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as
specified in this permission statement, this publication may not be copied, reproduced, modified, published,
uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence.
Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used only in accordance with a written agreement between Cadence and its

customer.

2. The publication may not be modified in any way.

3. Any authorized copy of the publication or portion thereof must include all original copyright,
trademark, and other proprietary notices and this permission statement.

4. The information contained in this document cannot be used in the development of like products or
software, whether for internal or external use, and shall not be used for the benefit of any other party,
whether or not for consideration.

Patents: Cadence products described in this document, are protected by U.S. Patents 5,095,454;
5,418,931; 5,606,698; 5,610,847; 5,790,436; 5,812,431; 5,838,949; 5,859,785; 5,949,992; 5,987,238;

6,088,523; 6,101,323; 6,151,698; 6,163,763; 6,181,754, 6,260,176, 6,263,301, 6,278,964, 6,301,578,
6,349,272; 6,374,390, 6,487,704, 6,493,849; 6,504,885, 6,618,837, 6,636,839; 6,778,025, 6,832,358,
6,851,097; 7,035,782; 7,039,887; 7,055,116; 7,085,700; 7,251,795; and 7,260,792.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does
not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or
usefulness of the information contained in this document. Cadence does not warrant that use of such
information will not infringe any third party rights, nor does Cadence assume any liability for damages or costs
of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

Cadence Verilog-AMS Language Reference

Contents
Preface. ... 19
Related DOCUMENES o ot e 20
Internet Mail AdAress oo e 21
Typographic and Syntax Conventionsttt 21
1
Modeling Concepts........................ 23
Verilog-AMS Language OVEIVIEW ottt e e e e e s 24
Describing a System e 24
Analog Systems 25
NOAES .. ot 25
Conservative Systems 25
Signal-FIow Systems 26
Mixed Conservative and Signal-Flow Systems 26
Simulator Flow for Analog Systems 27
2
CreatingModules...................................... ... 29
Declaring Modules 30
Declaring the Module Interface e 33
Module Name 33
POItS . . o 33
Parameters 36
Specifying Supply Sensitivity Attributes 37
Using the Sensitivity Attributes in a Chain of Buffers 39
Using Sensitivity Attributes with Inherited Connections 41
Defining Module Analog Behavior 42
Defining Analog Behavior with Control Flow 44
Using Integration and Differentiation with Analog Signals 45
Using Internal Nodes in Modules e 47
June 2013 5 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Using Internal Nodes in Behavioral Definitions 47
Using Internal Nodes in Higher Order Systems 48
3
Lexical Conventions 49
White Spaceo 50
COMMEBNES ... i e 50
Identifiers 50
Ordinary Identifiers e 51
Escaped Names 51
Scope RUIES 51
NUMDEIS .. e 52
Integer NUMDEIS e 52
Real NUMbErS e e 52
NG . e 54
4
Data Types and Objects ... 55
Integer NUMDEIS 56
Real NUMbDEIS e 56
Converting Real Numbers to Integer Numbers 57
Parameters ... e 58
Specifying a Parameter Type e 59
Specifying Permissible Values 60
Specifying Parameter Arrays e 61
Dynamic Parameters i e 62
Local Parameters e 64
GBNVAIS ..ttt e 64
NatUIES . . e 65
Declaringa Base Nature 66
DISCIPINES e e e 68
Binding Natures with Potentialand Flow 69
Binding Domains with Disciplines i 70
Disciplines and Domains of Wires and Undeclared Nets 70
Discipline Precedencet 71
June 2013 6 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Compatibility of DiSCIpliNES 71
Net DISCIPlNESo e 74
Ground NOES it 76
Real Nets e 77

Arrays of Real Nets e 78

Real Nets with More than One Driver 78
Named Branches e 80
Implicit BranChes e e 81
[9)

Statements for the Analog Block................................ 83
Assignment Statements 83

Procedural Assignment Statements in the AnalogBlock 84

Branch Contribution Statement 84

Indirect Branch Assignment Statement 86
Sequential Block Statement 87
Conditional Statement e 88
Case Statement 88
Repeat Statement e 89
While Statement e 90
For Statement e 90
Generate Statement 91
6
Operators for Analog Blocks 95
Overview of Operators 96
Unary Operatorso 97

Unary Reduction Operatorsot 97
Binary Operators e 99

Bitwise Operators 102
Ternary Operator 103
Operator PrecedenCe e 104
Expression Short-Circuiting e 104
June 2013 7 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

7
Built-In Mathematical Functions 105
Standard Mathematical Functions 106
Trigonometric and Hyperbolic FUNCtions e e 106
Controlling How Math Domain Errors Are Handled 107
8
Detectingand Using Events.................................... 109
Detectingand Using Events 110
Initial_step Event 111
Final_step Event 112
Cross EVENto 113
AboVve EVent e, 114
Absdelta Event 116
Timer BEvent 117
9
Simulator Functions 119
Announcing Discontinuity e 121
Bounding the Time Step e 123
Announcing and Handling Nonlinearities 123
Finding When a Signal IS Zero e e 124
Querying the Simulation Environment 125
Obtaining the Current Simulation Time et 125
Obtaining the Current Ambient Temperature 126
Obtaining the Thermal Voltage e 126
Querying the scale, gmin, and iteration Simulation Parameters 127
Obtaining and Setting Signal Values i 127
Obtaining Currents Using Out-of-Module References 131
Accessing ARtributes 132
Examining DriVers e 132
Counting the Number of Drivers i 133
Determining the Value Contribution of a Driver 133
Determining the Strength of a Driver 133
June 2013 8 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Detecting Updates to Drivers e 134
Analysis-Dependent Functions e 135
Determining the Current Analysis Type 135
Implementing Small-Signal AC Sources, 136
Implementing Small-Signal Noise Sources i .. 136
Generating Random Numbers e 138
Generating Random Numbers in Specified Distributions 139
Uniform Distribution 140
Normal (Gaussian) Distribution 140
Exponential Distribution 141
Poisson Distribution 142
Chi-Square Distribution e 143
Student’s T Distribution e 143
Erlang Distribution e 144
Interpolating with Table Models 145
Table Model File Format e 147
Example: Using the $table_model Function 150
Example: Preparing Data in One-Dimensional Array Format 150
Example: Using $table _model as a Built-In Digital System Task 151
Analog Operators e 152
Restrictions on Using Analog Operators 152
Limited Exponential Function 153
Time Derivative Operator e 153
Time Integral Operator 154
Circular Integrator Operator e 155
Derivative Operator e 157
Delay Operator e 158
Transition Filter e 159
Slew Filter e 163
Implementing Laplace Transform S-Domain Filters 164
Implementing Z-Transform Filters 170
Displaying Results 174
Bstrobe ... 174
Bdisplay ... 177
SWIIEE . ot 178
BdebUg ... 178
June 2013 9 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

BmoNitor ... 178
Specifying Power Consumption e 179
Working with Files e 180

Opening a File 180

Reading froma File e 183

Writingto a File e 183

Closing a File e 185
Exiting to the Operating System 185
Entering Interactive TclMode i e 186
User-Defined FUNCHiONS 187

Declaring an Analog User-Defined Function 187

Calling a User-Defined Analog Function 188
10
Instantiating Modules and Primitives.......................... 191
Instantiating Verilog-AMS Modules 192

Creating and Naming Instances 192

Creating Arrays of InStances e 193

Mapping Instance Ports to Module Ports 194
Connecting the Ports of Module Instances 195

Port Connection RUles e 197
Qverriding Parameter Values inInstances 197

Qverriding Parameter Values from the Instantiation Statement 197

Overriding Parameter Values Using defparam 199

Precedence Rules for Overriding Parameter Values 200
Instantiating Analog Primitives 200

Instantiating Analog Primitives that Use Array Valued Parameters 201

Instantiating Modules that Use Unsupported Parameter Types 201
Using an M Factor (Multiplicity Factor) 202

Example: Usingan M Factor 202
Including Verilog-A Modules in Spectre Subcircuits 204
11
Mixed-Signal Aspects of Verilog-AMS 205
Fundamental Mixed-Signal Concepts 205
June 2013 10 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

DOMaINS .. o e 205
CoNMtEXES ... e 205
Nets, Nodes, Ports, and Signals i 206
Mixed-signal and Net Disciplines 206
Behavioral Interaction 207
Accessing Discrete Nets and Variables from a Continuous Context 208
Accessing Continuous Nets and Variables from a Discrete Context 209
Detecting Discrete Events from a Continuous Context 210
Detecting Continuous Events from a Discrete Context 210
Connect MOdUIES i 210
Coding Connect ModUIES it e 211
Using Automatically-Inserted Connect Modules 215
Understanding the Factors Affecting Connect Module Placement 220
Understanding How Connect Modules Operate 227
12
Controlling the Compiler.. 233
Implementing Text Macros it 234
“define Compiler Directive e 234
“undef Compiler Directive i 235
Compiling Code Conditionally e 236
Including Files at Compilation Time 237
Adjusting the Time Scale e 238
Setting a Default Discrete Discipline for Signals 240
Setting Default Rise and Fall TIMESttt e e e 242
Resetting Directives to Default Values i 242
Specifying Which Reserved Keyword ListtoUse 243
Removing and Restoring Specific Keywords 245
Checking Support for Compact Modeling Extensions 246
A
Nodal Analysis 247
Kirchhoff's Laws e e e e e i 248
Simulating an Analog System 249
Transient ANalySiSot 249
June 2013 11 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

[@70] 0177= (0 =Y 1= 249
B
Analog Probes and Sources 251
Overview of Probes and Sources e 252
Probes ... e 252
Port BranChes e 252
SOUICES .ottt e 253
UNassigned SOUICES . .ottt e e e e e e e e e e e 255
Switch Branches 255
Examples of Sourcesand Probes 257
Linear CondUCIOr i 257
Linear Besistor e 258
BLC CirCUIt . . oot e e e e 258
Simple Implicit Diode o 258
C
Sample Model Library............... 259
Analog CoOMPONENtS e 261
Analog MUltipleXer e 261
Current Deadband Amplifier 262
Hard Current Clampo e e 263
Hard Voltage Clampo e e 264
Open Circuit Fault e 265
Operational Amplifier e 266
Constant Power SinK e 267
Short Circuit Fault e 268
Soft Current Clamp e 269
Soft Voltage Clampt e 270
Self-Tuning ResiStor e 271
Untrimmed Capacitor 273
Untrimmed INdUCIOr e 274
Untrimmed BResistor e 275
Voltage Deadband Amplifier e 276
Voltage-Controlled Variable-Gain Amplifier 277
June 2013 12 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Basic ComponentsS e 278
RESISIOr ... e 278
CapaCHOr . .. 279
INAUCEOr . . 280
Voltage-Controlled Voltage Source 281
Current-Controlled Voltage Source 282
Voltage-Controlled Current Sourcec.oiii .. 283
Current-Controlled Current SOUICE ittt 284
SWIICN . . e 285

Control COMPONENESo e 286
Error Calculation BIOCK i 286
Lag Compensator e 287
Lead Compensator 288
Lead-Lag Compensatorttt 289
Proportional Controller 290
Proportional Derivative Controller 291
Proportional Integral Controller 292
Proportional Integral Derivative Controller 293

LOgic COMPONENTSottt e 294
AND Gate e 294
NAND Gate o 295
OR Gate ... 296
NOT Gate ... e e 297
NOR Gatet e e 298
XOR Gate ... it e 299
XNOR Gate ... e 300
D-Type Flip-Flop e 301
Clocked JK FIip-FIOop ... e e 302
JK-Type Flip-Flop ... 304
Level Shifter e 305
RS-Type Flip-FIOp e 306
Trigger-Type (Toggle-Type) Flip-Flop e 307
Half Adder ... 308
FUIL ADAEr . . 309
Half Subtractor 310
Full Subtractor 311

June 2013 13 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Parallel Register, 8-Bit e 312
Serial Register, 8-Bit e 313
Electromagnetic Components 314
DC MOtOr ..t 314
Electromagnetic Relay e 315
Three-Phase Motor 316
Functional BIoCKS e 317
Amplifier ... e 317
Comparalor ... 318
Controlled Integratoro e 319
Deadband 320
Deadband Differential Amplifier 321
Differential Amplifier (Opamp) e 322
Differential Signal Driver 323
Differentiator e 324
Flow-to-Value Converter e e 325
Rectangular Hysteresis 326
INtegrator ... 327
Level Shifter 328
Limiting Differential Amplifier 329
Logarithmic Amplifier 330
MURIDIEXEE . . . e 331
QUANtiZEr . .. e 332
Repeater 333
Saturating Integrator 334
Swept Sinusoidal SOUICE e 335
Three-Phase SOUICE i e e e 336
Value-to-Flow Converter e 337
Variable Frequency Sinusoidal Source 338
Variable-Gain Differential Amplifier 339
Magnetic COmMpPONENTS o e 340
MagnetiC Core e 340
MagnetiC Gapo 341
Magnetic Winding 342
Two-Phase Transformer e 343
Mathematical Components 344
June 2013 14 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Absolute Value e 344
AdAEr . 345
Adder, 4 NUMDEIS e 346
CUDE .. 347
Cubic BOOt ... e 348
DIVIder .. e 349
Exponential Function e 350
MUl . . e 351
Natural Log Function 352
Polynomial e 353
Power FUNCLION 354
Reciprocal 355
Signed NUMbEr e 356
SQUAIE . . 357
Square BOOt 358
SUDIrACIOr e 359
Subtractor, 4 NUMDbDErs e 360
Measure COmMPONENES i e 361
ADC, 8-Bit Differential Nonlinearity Measurement 361
ADC, 8-Bit Integral Nonlinearity Measurement 362
Ammeter (Current Meter) e 363
DAC, 8-Bit Differential Nonlinearity Measurement 364
DAC, 8-Bit Integral Nonlinearity Measurement 365
Delta Probe e 366
Find Event Probe e 367
FiINd SIOpE ... 369
Frequency Meter e 370
Offset Measurement e 371
Power Meter 372
Q (Charge) Meter e 374
SaAMDIEr .. 375
Slew Rate Measurementt e 376
Signal Statistics Probe 377
Voltage Meter 379
Z (Impedance) Meter 380
Mechanical Systems e 381
June 2013 15 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

GEaAIDOX .. e 381
Mechanical Damper e 382
Mechanical Mass e e 383
Mechanical Restrainer e 384
Boad 385
Mechanical SPring e 386
Wheel ... e 387
Mixed-Signal Componentst e 388
Analog-to-Digital Converter, 8-Bit 388
Analog-to-Digital Converter, 8-Bit (Ideal) 389
DEeCimMAatOr . .. e 390
Digital-to-Analog Converter, 8-Bit 391
Digital-to-Analog Converter, 8-Bit (Ideal) 392
Sigma-Delta Converter (first-order) i 393
Sample-and-Hold Amplifier (Ideal) i 394
Single Shot e 395
Switched Capacitor Integrator 396
Power Electronics Componentst 397
Full Wave Rectifier, TwWo Phase 397
Half Wave Rectifier, TwWo Phase i 398
TS Or . o e e 399
Semiconductor Components e 400
Diode .o 400
MOS Transistor (Level 1) 401
MQOS Thin-Film Transistor e 403
N JFET Transistor e e e e e e 404
NPN Bipolar Junction Transistor 405
Schottky Diode 407
Telecommunications Components i 408
AM Demodulator e 408
AM Modulator 409
Attenuator e 410
AUdiO SOUICE ... i e 411
Bit Error Rate Calculator 412
Charge PUMD e 413
Code Generator, 2-Bit 414
June 2013 16 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Code Generator, 4-Bit e 415
19 1= o3 o [416
Digital Phase Locked Loop (PLL) e 417
Digital Voltage-Controlled Oscillator 418
FM Demodulator e 419
FM Modulator e 420
Frequency-Phase Detector i 421
Y 422
NOISE SOUICE ... ittt e e e e 423
PCM Demodulator, 8-Bit 424
PCM Modulator, 8-Bit 425
Phase Detector e 426
Phase Locked LOOD i e 427
PM Demodulator e 428
PM Modulator e 429
QAM 16-ary Demodulator 430
Quadrature Amplitude 16-ary Modulator 432
QPSK Demodulator 433
QPSK Modulator 434
Random Bit Stream Generator 435
Transmission Channel i e 436
Voltage-Controlled Oscillator e 437
D
Verilog-AMS Keywords... 439
Keywords to Support Backward Compatibility 441
Discipline and Nature Keywords it 441
Connect Rules KeyWordsttt e e 441
June 2013 17 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

E
Unsupported Elements of Verilog-AMS....................... 443

=
Updating Verilog-A Modules.................................... 457
Suggestions for Updating Models 458
Current Probes o 459
Analog FUNCiONS o e 459
NULL Statements 459
infUsed as a NUMbeEr e 460
Changing Delay to Absdelay e 460
Changing $realtime to $abstime 460
Changing bound_stepto $bound step 461
Changing Array Specifications i 461
Chained Assignments Made lllegal 461
Real Argument Not Supported as Direction Argument 461
$limexp Changed to IMEXP oot i it e e e e 462
if 'MACRO is Not Allowedo 462
warning is Not Allowed o 462
discontinuity Changed to $discontinuity 463
GlOSSAIY o 465
INdeX. ... 475
June 2013 18 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Preface

This manual describes the analog and mixed-signal aspects of the Cadence® VeriIog®-AMS
language. With Verilog-AMS, you can create and use modules that describe the high-level
behavior and structure of analog, digital, and mixed-signal components and systems. The
guidance given here is designed for users who are familiar with the development, design, and
simulation of circuits and with high-level programming languages, such as C.

For information about the digital aspects of Verilog-AMS, the definitive source is IEEE
Standard Hardware Description Language Based on the Verilog Hardware
Description Language (IEEE Std 1364-1995), published by the IEEE. Cadence
documents that describe digital Verilog include the NC Verilog Simulator Help and the
Verilog-XL Reference.

The preface discusses the following:

B Related Documents on page 20

B Internet Mail Address on page 21

m Typographic and Syntax Conventions on page 21

June 2013 19 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Preface

Related Documents

For more information about Verilog-AMS and related products, consult the sources listed
below.

Virtuoso AMS Designer Environment User Guide

m Virtuoso AMS Designer Simulator User Guide

m Virtuoso Analog Design Environment User Guide

m Virtuoso Mixed-Signal Circuit Design Environment User Guide

m NC-Verilog Simulator Help

m NC-VHDL Simulator Help

m SimVision Analysis Environment User Guide

m Virtuoso Spectre Circuit Simulator Reference

m Virtuoso Spectre Circuit Simulator User Guide

m Verilog-A Debugging Tool User Guide

B Cadence Verilog-A Language Reference

m Cadence Hierarchy Editor User Guide

m Component Description Format User Guide

B |EEE Standard VHDL Language Reference Manual (Integrated with VHDL-AMS
Changes), IEEE Std 1076.1. Available from IEEE.

B /nstance-Based View Switching Application Note

B Cadence Library Manager User Guide

m Signalscan Waves User Guide

m Virtuoso Schematic Editor User Guide

m Verilog-AMS Language Reference Manual. Available from Open Verilog
International.

m Verilog-XL Reference

June 2013 20 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Preface

Internet Mail Address

You can send product enhancement requests and report obscure problems to Customer
Support. For current phone numbers and e-mail addresses, go to Cadence Online Support
and click the Contact Us link on the Home page.

For help with obscure problems, please include the following in your e-mail:
B The license server host ID

To determine what your server’s host ID is, use the Subscription Service of Cadence
Online Support for assistance.

B A description of the problem
B The version of the Verilog-AMS product that you are using
The version of the Verilog-AMS product described here is 1.0.

B Analog simulation control files, top-level modules and all included files including
hardware design language (HDL) modules so that Customer Support can reproduce the
problem

m Output logs and error messages

Typographic and Syntax Conventions

Special typographical conventions are used to distinguish certain kinds of text in this
document. The formal syntax used in this reference uses the definition operator, : : =, to
define the more complex elements of the Verilog-AMS language in terms of less complex
elements.

B Lowercase words represent syntactic categories. For example,

module declaration

Some names begin with a part that indicates how the name is used. For example,

node identifier

represents an identifier that is used to declare or reference a node.

B Boldface words represent elements of the syntax that must be used exactly as
presented. Such items include keywords, operators, and punctuation marks. For
example,

endmodule

June 2013 21 Product Version 13.1
© 2000-2013 All Rights Reserved.

http://support.cadence.com

Cadence Verilog-AMS Language Reference
Preface

m Vertical bars indicate alternatives. You can choose to use any one of the items separated

by the bars. For example,

attribute ::=

abstol

| access
| ddt_nature
| idt_nature
| units
| huge
| blowup
| identifier

B Square brackets enclose optional items. For example,

input declaration ::=
input [range] list of port identifiers ;

B Braces enclose an item that can be repeated zero or more times. For example,

list of ports ::=
(port { , port })

Code examples are displayed in constant-width font.

/* This is an example of the font used for code.*/

Within the text, variables are in italic font, like this: allowed errors.

Within the text, keywords, filenames, names of natures, and names of disciplines are set in
constant-width font, like this: keyword, file name, name_of_nature,
name_of_discipline.

If a statement is too long to fit on one line, the remainder of the statement is indented on the
next line, like this:

qgf = width*length*cfbb* (vgfs - wkf - gb/(2*cbb) -
(vgbs - vfbb + gb/(2*cob))) + qgf par ;

To distinguish Verilog-AMS modules from the contents of analog simulation control files, the
latter are enclosed in boxes and include a comment line at the beginning identifying them as
analog simulation control files.

// sample analog simulation control file
simulator lang=spectre

save top.srcl:freq

save top.srcl:amp

save top.srcl:phase

save top.srcl:voltageAsRealNumber
timeDom tran stop=1000u

June 2013 22 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Modeling Concepts

This chapter introduces some important concepts basic to using the Cadence® Verilog®-AMS
language, including

m Verilog-AMS Language Overview on page 24

B Describing a System on page 24

m Analog Systems on page 25

June 2013 23 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Modeling Concepts

Verilog-AMS Language Overview

The VeriIog®-AMS language lets you create and use modules that describe both the high-
level behavior and the structure of analog and mixed-signal systems and components. You
describe the behavior of a component mathematically in terms of its ports and external
parameters. You describe the structure of a component in terms of interconnected
subcomponents. With the statements of Verilog-AMS, you can describe a wide range of
systems, such as electrical, mechanical, fluid dynamic, and thermodynamic systems.

For analog aspects of the design, the simulator uses Kirchhoff’s Potential and Flow laws to
develop a set of descriptive equations and then solves the equations with the Newton-
Raphson method. See Appendix A, “Nodal Analysis,” for additional information.

For information about the digital capabilities of Verilog-AMS, see the NC Verilog Simulator
Help, the Verilog-XL Reference, and the IEEE Standard Hardware Description
Language Based on the Verilog Hardware Description Language.

To introduce the algorithms underlying system simulation, the following sections describe
B What a system is
m How you specify the structure and behavior of a system

m How the simulator develops a set of equations and solves them to simulate a system

Describing a System

A system is a collection of interconnected components that produces a response when acted
upon by a stimulus. A hierarchical system is a system in which the components are also
systems. A leaf component is a component that has no subcomponents. Each leaf
component connects to zero or more nets. Each net connects to a signal which can traverse
multiple levels of the hierarchy. The behavior of each component is defined in terms of the
values of the nets to which it connects.

A signal is a hierarchical collection of nets which, because of port connections, are
contiguous. If all the nets that make up a signal are in the discrete domain, the signal is a
digital signal. If all the nets that make up a signal are in the continuous domain, the signal
is an analog signal. A signal that consists of nets from both domains is called a mixed
signal.

Similarly, a port whose connections are both analog is an analog port, a port whose
connections are both digital is a digital port, and a port with one analog connection and one

June 2013 24 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Modeling Concepts

digital connection is a mixed port. The components interconnect through ports and nets to
build a hierarchy, as illustrated in the following figure.

System Terminology

Component
\J
B—a—ol
i1 X1
} A 1 Z1 —e—02
i2 X2
B—a—o03
Port Net

Analog Systems

The information in the following sections applies to analog systems.

Nodes

A node is a point of physical connection between nets of continuous-time descriptions. Nodes
obey conservation-law semantics.

Conservative Systems

A conservative system is one that obeys the laws of conservation described by Kirchhoff’s

Potential and Flow laws. For additional information about these laws, see “Kirchhoff’s Laws”
on page 248.

June 2013 25 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Modeling Concepts

In a conservative system, each node has two values associated with it: the potential of the
node and the flow out of the node. Each branch in a conservative system also has two
associated values: the potential across the branch and the flow through the branch.

Reference Nodes

The potential of a single node is defined with respect to a reference node. The reference
node, called ground in electrical systems, has a potential of zero. Any net of continuous
discipline can be declared to be ground, and in this case, the node associated with the net is
the global reference node in the circuit. For information about declaring a ground, see
“Ground Nodes” on page 76.

Reference Directions

Each branch has a reference direction for the potential and flow. For example, consider the
following schematic. With the reference direction shown, the potential in this schematic is
positive whenever the potential of the terminal marked with a plus sign is larger than the
potential of the terminal marked with a minus sign.

O—» —O
flow

* potential -

Verilog-AMS uses associated reference directions. Consequently, a positive flow is defined
as one that enters the branch through the terminal marked with the plus sign and exits
through the terminal marked with the minus sign.

Signal-Flow Systems

Unlike conservative systems, signal-flow systems associate only a single value with each
node. Verilog-AMS supports signal-flow modeling.

Mixed Conservative and Signal-Flow Systems

With Verilog-AMS, you can model systems that contain a mixture of conservative nodes and
signal-flow nodes. Verilog-AMS accommodates this mixing with semantics that can be used
for both kinds of nodes. With Verilog-AMS you can model systems containing digital domain
information too, so you can mix conservative analog, signal flow analog, and digital modeling
in one mixed-signal system.

June 2013 26 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Modeling Concepts

Simulator Flow for Analog Systems

After you specify the structure and behavior of a system, you submit the description to the
simulator. For analog systems, the simulator then uses Kirchhoff’s laws to develop equations
that define the values and flows in the system. Because the equations are differential and
nonlinear, the simulator does not solve them directly. Instead, the simulator uses an
approximation and solves the equations iteratively at individual time points. The simulator
controls the interval between the time points to ensure the accuracy of the approximation.

At each time point, iteration continues until two convergence criteria are satisfied. The first
criterion requires that the approximate solution on this iteration be close to the accepted
solution on the previous iteration. The second criterion requires that Kirchhoff’s Flow Law be
adequately satisfied. To indicate the required accuracy for these criteria, you specify
tolerances. For a graphical representation of the analog iteration process, see the Simulator
Flow for Analog Systems figure on page 28. For more details about how the simulator uses
Kirchhoff’s laws, see “Simulating an Analog System” on page 249.

June 2013 27 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Modeling Concepts

Simulator Flow for Analog Systems

No

Start analysis
t=0
v(0) = vO

:

Update time
t=t+ At

Update values
v=v+ Av

v

Evaluate equations
f(v,t) = residue

#

Converged?
residue < e
AV < A

No

Yes %

Accept the
time step?

No

Yes ¢

June 2013
© 2000-2013

28

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

Creating Modules

A module definition appears between the keywords module and endmodule or
macromodule and endmodule. The following definition for a digital to analog converter
illustrates the form of a module definition.

module daconv (b0, bl, b2, b3, b4, b5, b6, b7, compSig);
input b0, bl, b2, b3, b4, b5, b6, b7;

output compSig;

Interface declarations —— | .50 10, b1, b2, b3, b4, b5, b6, bl;
electrical compSig;

parameter real refvVolt = 12.0;

analog
begin

V(compSig) <+ (refvVolt/256) *

: L (b0 + 2* (bl + 2* (b2 + 2* (b3 +2* (b4 +2*

Behavioral description (b5 +2* (b6 +2%b7))))))) ;
end

endmodule

See the following topics for information about creating and using modules in Cadence®

Verilog®-AMS:

Declaring Modules on page 30

Declaring the Module Interface on page 33
Specifying Supply Sensitivity Attributes on page 37

Defining Module Analog Behavior on page 42
Using Internal Nodes in Modules on page 47

Chapter 10, “Instantiating Modules and Primitives”

This chapter contains detailed discussions about declaring and connecting ports and
about instantiating modules.

June 2013 29 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Creating Modules

Declaring Modules

To declare a module, use this syntax.

module declaration ::=
module keyword module_identifier [(list of ports)]
[module items]
endmodule

module keyword ::=
module
| macromodule

module items ::=
{ module item }
| analog block

module item ::=
module item declaration
| parameter override
| module instantiation
| digital continuous_assignment
| digital gate_ instantiation
| digital udp instantiation
| digital specify block
| digital initial construct
| digital always_ construct

module item declaration ::=
parameter declaration
aliasparam declaration

input declaration

output declaration

inout declaration

ground declaration

integer declaration

net discipline declaration
real declaration

genvar declaration

branch declaration

analog function declaration
digital function declaration
digital net declaration
digital reg declaration
digital time declaration
digital realtime declaration
digital event declaration
digital task declaration

June 2013 30
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

Creating Modules

parameter override ::=

defparam list of param assignments ;

module_identifier The name of the module being declared.

list_of_ports

module_ items

An ordered list of the module’s ports. For details, see “Ports” on
page 33.

Declarations and definitions.

Note: Note that you can have no more than one analog block in

each module.

For information about

Read

Analog blocks

Parameter overrides

Module instantiation

Digital continuous assignments

Digital gate instantiations

Digital udp instantiations

Digital specify blocks

Digital initial constructs
Digital always constructs

Parameter declarations

Input, output, and inout declarations

Ground declarations
Integer declarations
Net discipline declarations

Real declarations

June 2013
© 2000-2013

“Defining Module Analog Behavior” on page 42

“Overriding Parameter Values in Instances” on
page 197

“Instantiating Verilog-AMS Modules” on page 192

“Continuous Assignments” in the Verilog-XL
Reference

“Gate and Switch Declaration Syntax” in the
Verilog-XL Reference

“UDP Instances” in the Verilog-XL Reference

“Understanding Specify Blocks” in the Verilog-XL
Reference

“initial Statement” in the Verilog-XL Reference
“always Statement” in the Verilog-XL Reference
“Parameters” on page 58

“Port Direction” on page 34

“Ground Nodes” on page 76

‘Integer Numbers” on page 56
“Net Disciplines” on page 74

“‘Real Numbers” on page 56

31 Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Creating Modules

For information about Read

Genvar declarations “Genvars” on page 64

Branch declarations “Named Branches” on page 80

Analog function declarations “User-Defined Functions” on page 187

Digital function declarations “Functions and Function Calling” in the
Verilog-XL Reference

Digital net declarations “Net and Register Declaration Syntax” in the
Verilog-XL Reference

Digital reg declarations “Net and Register Declaration Syntax” in the
Verilog-XL Reference

Digital time declarations “Integers and Times” in the Verilog-XL
Reference

Digital realtime declarations “Real Numbers” in the Verilog-XL Reference

Note: The simulator evaluates realtime and real
declarations identically.

Digital event declarations “Event Control” in the Verilog-XL Reference

Digital task declarations “Tasks and Task Enabling” in the Verilog-XL
Reference

June 2013 32 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Creating Modules

Declaring the Module Interface

Use the module interface declarations to define
m Name of the module
m Ports of the module

m Parameters of the module

For example, the module interface declaration

module res(p, n) ;
inout p, n ;
electrical p, n ;
parameter real r = 0 ;

declares a module named res, ports named p and n, and a parameter named r.

Module Name

To define the name for a module, put an identifier after the keyword module or
macromodule. Ensure that the new module name is unique among other module,
schematic, subcircuit, and model names, and any built-in Spectre® circuit simulator
primitives. If your module has any ports, list them in parentheses following the identifier.

Ports

To declare the ports used in a module, use port declarations. To specify the type and direction
of a port, use the related declarations described in this section.

list of ports ::=
port { , port }

port ::=
port expression
| .port identifier([port expression])

port expression ::=
port identifier
| port identifier [constant expression]
| port identifier [constant range]

constant range ::=
msb constant expression : lsb constant expression

For example, these code fragments illustrate possible port declarations.

module examl ; // Defines no ports
module exam2 (p, n) ; // Defines 2 simple ports
June 2013 33 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Creating Modules

Normally, you cannot use Q as the name of a port. However, if you need to use Q as a port
name, you can use the special text macro identifier, VAMS_ELEC_DIS_ONLY, as follows.

‘define VAMS ELEC DIS ONLY
“include "disciplines.vams"

(module 1, which uses a port called Q)
(module 2, which use a port called Q)

“include "disciplines.vams"

(module 3, which uses an access function called Q)
(module 4, which uses an access function called Q)

This macro undefines the sections in the disciplines.vams file that use Q, making it
available for you to use as a port name. Consequently, when you need to use Q as an access
function again, you need to include the disciplines.vams file again.

module exam5 (.b(p), .d(n)) // Defines the ports b and d, which are

// connected to the signals p and n,
// respectively

Port Type

To declare the type of a port, use a net discipline declaration in the body of the module. If you
do not declare the type of a port, you can use the port only in a structural description. In other
words, you can pass the port to module instances, but you cannot access the port in a
behavioral description. Net discipline declarations are described in “Net Disciplines” on
page 74.

Ports declared as vectors must use identical ranges for the port type and port direction
declarations.

Port Direction

You must declare the port direction for every port in the list of ports section of the module
declaration. To declare the direction of a port, use one of the following three syntaxes.

input declaration ::=
input [range] list of port identifiers j;

output declaration ::=
output [range] list of port identifiers ;

inout declaration ::=

inout [range] list of port identifiers j;
range ::=
[constant_expression : constant_expression 1]
June 2013 34 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Creating Modules

input Declares that the signals on the port cannot be set, although they
can be used in expressions.

output Declares that the signals on the port can be set, but they cannot
be used in expressions.

inout Declares that the port is bidirectional. The signals on the port can
be both set and used in expressions. inout is the default port
direction.

Ports declared as vectors must use identical ranges for the port type and port direction
declarations.

In this release of Verilog-AMS,
m The compiler does not enforce correct application of input, output, and inout.

B You cannot use parameters to define constant_expression.

Port Declaration Example

Module daconv, described below, has nine ports. The compSig port is declared with a port
direction of output, so that its value can be set. The other ports are declared with a port
direction of input, so that their values can be read. The compSig port is declared as an
analog port of the electrical discipline.

module daconv (b0, bl, b2, b3, b4, b5, b6, b7, compSig); // Declares nine ports

input b0, bl, b2, b3, b4, b5, b6, b7; // Declares ports as input

output compSig; // Declares port as output

logic b0, bl, b2, b3, b4, b5, b6, b7; // Declares type of digital ports
electrical compSig; // Declares type of analog port

parameter real refvolt = 12.0;

analog
begin

V(compSig) <+ (refvolt/256) * (b0 + 2* (bl + 2* (b2 + 2* (b3 +2* (b4 +2*
(b5 +2* (b6 +2*b7)))))));

end
endmodule

June 2013 35 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Creating Modules

Parameters

With parameter (and dynamicparam) declarations, you specify parameters that can be
changed when a module is used as an instance in a design. Using parameters lets you
customize each instance.

For each parameter, you must specify a default value. You can also specify an optional type
and an optional valid range. The following example illustrates how to declare parameters and
variables in a module.

module sdiode (np, nn);
inout np, nn;
electrical np, nn;
Module interface parameter real area=1;
declarations — | parameter real is=le-14;
parameter real n=2;
parameter real cjo=0; -4 Parameters
parameter real m=0.5;
parameter real phi=0.7;
|l parameter real tt=lp;

 real vd, id, qgd; - Local variables
analog begin
Global module scope vd = V(np, nn);
declarations and id = area*is* (exp(vd/(n*Svt)) - 1);
behavioral description — qd = tt*id + area*vd
P *cjo/pow ((1 - vd/phi), m);
I(np, nn) <+ id + ddt(gd):;
end
Aiendmodule

Module sdiode has a parameter, area, that defaults to 1. If area is not specified for an
instance, it receives a value of 1. Similarly, the other parameters, is, n, cjo, m, phi, and tt,
have specified default values too.

Module sdiode also defines three local variables: vd, id, and gd.

For more information about parameter declarations, see “Parameters” on page 58.

June 2013 36 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Creating Modules

Specifying Supply Sensitivity Attributes

Add the groundSensitivity and supplySensitivity attributes to a port or pin
definition in a mattributesodule to make a connect module sensitive to supplies in the module
to which it connects.

sensitivity attribute ::=

(* [integer groundSensitivity = "gSig sensitive_to" ;]
[integer supplySensitivity = "sSig sensitive_to" ;] *)

gSig sensitive_to,sSig _sensitive_to
Names of signals, typically global signals, to which you want a
connect module to be sensitive.

When you specify a supplySensitivity oragroundSensitivity attribute on a signal
in a connect module, the declared signal (in the connect module) takes on the value of the
supplySensitivity or groundSensitivity signal you specify.

When you specify a supplySensitivity orthe groundSensitivity attribute (or both)
on a signal in an ordinary module, the value of the supplySensitivity or
groundSensitivity signal overrides the value of the signal of the same name in the
connect module to which the ordinary module connects.

For example, you might use the groundSensitivity attribute in a connect module (such
as 1_to_e, below) as follows:

connectmodule 1 to e(dval, aval);

éiéctrical (* integer groundSensitivity = "global pwr.powl" ; *) gnd ;
endméaﬁle
The default value of gnd in this connect module is the value of signal global_pwr.powl.
If module 1_to_e connects to digital port d in ordinary module sample (below), the value of

global_pwr.pow5, which appears in the groundsSensitivity attribute for 4, overrides
the default value of gnd in the connect module.

module sample (d);
output (* integer groundSensitivity = "global pwr.powb" ; *) d ;

endméaﬁle
If port d does not have a groundSensitivity attribute, the value of gnd in the connect
module retains its default value of global_pwr.powl:

module sample (d);
output d ;

endmodule

June 2013 37 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Creating Modules

Making a connect module sensitive to supplies in the connected digital port is more likely to
produce the behavior you expect because:

When a connect module converts analog signals to digital values, the decision to output
a one or a zero depends on the relationship between the analog signal and a threshold
value. The software determines the threshold value based on the supply values in the
component that includes the connected digital port.

When a connect module converts digital values to analog signals, the connect module
needs to determine what voltage to produce for each digital input value. Again, that
voltage depends on the supplies in the component that includes the connected digital
port.

The following basic principles apply to using these sensitivity attributes:

The software inserts connect modules between a digital port and an analog net. When
you use the groundSensitivity and supplySensitivity attributes, you make the
connect module sensitive to the signals on the digital port, regardless of the port
direction.

There are two steps involved in establishing ground or supply sensitivity: Specifying the
necessary attributes in the connect module and adding the corresponding attributes to
the connected digital port definition in the ordinary module.

Note: If the connected digital port is part of a schematic, you define the attributes on the
connected pin on the schematic.

You must use detailed discipline resolution or the sensitivity attributes have no effect.

See the following topics for more information:

m Using the Sensitivity Attributes in a Chain of Buffers on page 39
B Using Sensitivity Attributes with Inherited Connections on page 41
June 2013 38 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Creating Modules

Using the Sensitivity Attributes in a Chain of Buffers

Consider a design containing three buffers, such as the following, where buffers bal and ba3
are analog blocks with analog input and output pins, and buffer bdz2 is a digital block with logic
input and output pins:

bal bd2 ba3
’ nl n2
4 A &
analog / \, analog
block elect2logic logic2elect block
connect module connect module

During elaboration, the software inserts connect modules across net n1 and the digital input
port of buffer bd2, and across the digital output port of buffer bd2 and net n2.

If you know this design has an operating voltage of 5.0 Volts, you might write an analog-to-
digital connect module with hard-coded thresholds, such as the following:

‘include "disciplines.vams"
connectmodule elect2logic(aVal, dval);
output dval;
input aVal;

logic dval;
electrical aval;
reg temp;
always begin // Digital, do this always
if(vV(aval) > 3.0)

#1 temp = 1; // Delay 1 time unit, drive output 1
else 1if (V(aval) < 2.0)

#1 temp = 0; // or drive output 0, depending on aVal
else

#1 temp = 1’bx;
end
assign dval = temp; // Bind register to digital output

endmodule

However, if the design can operate at 3.0 or 5.0 Volts depending on the supplies, you might
use the supplySensitivity and groundSensitivity attributes to write a connect
module that is sensitive to the supplies, such as the following:

// Supply-sensitive connect module
‘include "disciplines.vams"
connectmodule elect2logic(aval, dval);

output dval;

input aVal;

logic dval;

electrical aval;

electrical (* integer supplySensitivity = "cds globals.\\vdd! " ; *) \vdd!
electrical (* integer groundSensitivity = "cds globals.\\vss! " ; *) \vss!
reg temp;
always begin // Do this always
if(v(aval) > ((V(\vdd!) - V(\vss!))/2 + 0.5))
#1 temp = 1; // Delay 1 time unit, drive output 1
June 2013 39 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Creating Modules

else 1f (V(a
#1 temp
else
#1 temp
end
assign dval
endmodule

The threshold values are functions of the supply and ground values.

To specify the digital ports to which the connect module is sensitive, add

Val) < ((v(\vdd!) - V(\vss!))/2 -0.5))

= 0; // or drive output 0, depending on aVal
= 1'bx;

= temp; // Bind register to digital output

groundSensitivityand supplySensitivity attributes to the connected digital port. In
our example, the software inserts a connect module both at the input and at the output port
of buffer bd2, so in the supply-sensitive module definition, you would add both sensitivity

attributes to both ports of the buffer, like this:

module bux2 5V (
input

(* integer s

integer g

(* integer s
integer g
Z;
wire \vss! ;
wire \vdd! ;
analog begin
V(\vss!) <+
V(\vdd!) <+
end
buf #1 (Z,RA);
specify
specparam
t A Z rise
t Az fall
// Delays
(A +=> 7) =
endspecify
endmodule

o O

June 2013
© 2000-2013

Z,R);
upplySensitivity="\\vdd! ";

roundSensitivity="\\vss! "; *)

upplySensitivity="\\vdd! ";
roundSensitivity="\\vss! "; *)

[N e}
o O
~e N

14
’

[RE—

(t A 72 rise,t A 7 fall);

40

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Creating Modules

Using Sensitivity Attributes with Inherited Connections

An inherited connection is a net expression associated with either a signal or a terminal. You
use inherited connections to override specific global names in your design. For more
information, see “Inherited Connections” in the Virtuoso Schematic Editor L User Guide.

You can use inherited connections to set the values of signals on ports and use the supply
sensitivity attributes to make a connect module sensitive to those values. By doing so, you
can switch between different power supplies (that you set by inherited connections) and have
connect modules that behave differently depending on the value of the supplies.

For example, here is a buffer module with both supply sensitivity attributes on both the input
and the output ports (A and z). The signal name for each of the sensitivity attributes is an
inherited connection (\\vdd! for supplySensitivity and \\vss! for
groundSensitivity). The inh_conn_prop_name and inh_conn_def_value
attributes on wires \vss! and \vdd! set the value of the inherited connections:

module bux2 (Z,A);

input
(* integer supplySensitivity="\\vdd! ";
integer groundSensitivity="\\vss! "; *)
A
output
(* integer supplySensitivity="\\vdd! ";
integer groundSensitivity="\\vss! "; *)
Z;
wire
(* integer inh conn prop name="1Sup"; // if set, specifies value for \vss!
integer inh conn def value="cds globals.\\vss! "; *)
\vss! ; // \vss! has default value cds _globals.\\vss!
wire
(* integer inh conn prop name="hSup"; // if set, specifies value for \vdd!
integer inh conn def value="cds globals.\\vdd! "; *)
\vdd! ; // \vdd! has default value cds globals.\\vdd!

buf #1 (Z,A7);
‘ifdef functional

‘else
specify

specparam

t A Z rise = 0.1,

t A 7Z fall = 0.1;

// Delays

(A +=> Z) = (t A Z rise,t A Z fall);
endspecify o o
‘endif
endmodule

You can compare this buffer module with module bux2_5V in the previous section, where
the \vss! and \vdd! net values do not depend on inherited connections:

wire \vss!
wire \vdd!

June 2013 41 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Creating Modules

The supply-sensitive connect module is the same as the one that appears in the previous
section.

Defining Module Analog Behavior

To define the analog (continuous time) behavioral characteristics of a module, you create an
analog block. The simulator evaluates all the analog blocks in the various modules of a design
as though the blocks are executing concurrently.

analog block ::=
analog analog statement

analog statement ::=
analog seqg block
|analog branch contribution
lanalog indirect branch assignment
|analog procedural assignment
|lanalog conditional statement
lanalog for statement
Ianalog_case_statement
|lanalog event controlled statement
| system task enable
| statement

statement ::=
seq_block
|procedural assignment
|conditional statement
| loop_statement
|case statement

analog_statement can appear only within the analog block.
statement can appear anywhere within the module, including within the analog block.

See “Sequential Block Statement” on page 87 for more information about
analog_seq block and seg_block.

In the analog block, you can code contribution statements that define relationships among
analog signals in the module. For example, consider the following contribution statements:

V(nl, n2) <+ expression;
I(nl, n2) <+ expression;

where v (nl,n2) and I (nl,n2) represent potential and flow sources, respectively. You can
define expression to be any combination of linear, nonlinear, algebraic, or differential
expressions involving module signals, constants, and parameters.

The modules you write can contain at most a single analog block. When you use an analog
block, you must place it after the interface declarations and local declarations.

June 2013 42 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Creating Modules

Because the description in the analog block is a continuous-time behavioral description, you
must not use blocking event control statements, such as blocking delays, events, or waits,
within the block.

The following module includes an analog block and initial and always blocks. These blocks
work together within a single module to define an analog to digital converter.

module adc;

electrical wvin;

parameter real a amp = 5; // This parameter is used by analog.
parameter real d volt range = 5; // This parameter is used by digital.
real a freq, a phase;

real d half range;

real d vin;

real a vin

real d vin save;

reg

[7:0] b;

integer 1ii;
integer d _fd;

initial begin

end

b = 0;

d half range = d volt range / 2;

d fd = $fopen("ms6.dat");

Sfstrobe (d fd,"time\tb\td vin\ta vin\n");
d vin = 0;

always begin

end

#1;
d vin = V(vin); // Probes the voltage.
d:vinisave = d vin;
for (ii=0; ii < 8; 11 = 11 + 1) begin // Converts the voltage into
// an 8-bit register.
if (d_vin > d half range) begin
blii] = 1;
d vin = d vin - d half range;
end else b[ii] = 0} o
d vin = d vin * 2;
end

// Writes the digital output to a file.
Sfstrobe (d _fd, "%$g\t%b\t%g\t%g", Sabstime, b, d vin save, a vin);

analog begin

end

@(initial step) begin
a _freq = 10K;
end

// input
a phase = 2*'M PI*a freg*$abstime;
a vin = a amp*sin(a_phase);

V(vin) <+ a_amp*sin(a_phase); // Creates a sinusoidal voltage source.

endmodule

June 2013 43 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Creating Modules

Defining Analog Behavior with Control Flow

You can also incorporate conditional control flow into a module. With control flow, you can

define the behavior of a module in regions.

The following module, for example, describes a voltage deadband amplifier vdba. If the input
voltage is greater than vin_high or less than vin_1ow, the amplifier is active. When the
amplifier is active, the output is gain times the differential voltage between the input voltage
and the edge of the deadband. When the input is in the deadband between vin_1low and

vin_high, the amplifier is quiescent and the output voltage is zero.

voltage out

A

vin_low

slope = gain

I

dead|band

module vdba (in, out);

input in ;
output out ;

electrical in, out ;
parameter real vin low
parameter real vin high
parameter real gain

analog begin

if (V(in)
V (out)
end else if
V (out)
end else begin
V (out)

end
end

endmodule

June 2013
© 2000-2013

= voltage in

>= vin _high) begin
<+ gain*(V(in) - vin high)
<= vin low) begin

<+ gain*(V(in) - vin_ low)

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Creating Modules

The following graph shows the response of the vdba module to a sinusoidal source.

8.0

T
1

6.0
4.0
2.0
Voltage
0.0 ¢
-2.0

-4.0

Voltage in
Voltage out

-6.0

-8.0 - - -
0.0e+00 5.0e-06 1.0e-05 1.5e-05 2.0e-05

Time

T

Using Integration and Differentiation with Analog Signals

The relationships that you define among analog signals can include time domain
differentiation and integration. Verilog-AMS provides a time derivative function, ddt, and two
time integral functions, 1dt and idtmod, that you can use to define such relationships. For
example, you might write a behavioral description for an inductor as follows.

module induc(p, n);

inout p, n;

electrical p, n;
parameter real L = 0;

analog
V(p, n) <+ ddt(L * I(p, n)) -

endmodule

In module induc, the voltage across the external ports of the component is defined as equal
to the time derivative of L times the current flowing between the ports.

To define a higher order derivative, you must use an internal node or signal. For example,
module diff_2 defines internal node diff, and sets v (diff) equal to the derivative of
V (in). Thenthe module sets v (out) equal to the derivative of v (diff), in effect taking the
second order derivative of V (in) .

module diff 2(in, out) ;

input in ;

output out ;

electrical in, out ;
electrical diff ; // Defines an internal node.

analog begin
V(diff) <+ ddt(v(in)) ;

June 2013 45 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Creating Modules

V(out) <+ ddt(V(diff))
end

endmodule

For time domain integration, use the idt or idtmod functions, as illustrated in module
integrator.

module integrator(in, out) ;

input in ;

output out ;

electrical in, out ;

analog begin
V(out) <+ idt(V(in), 0) ;
end

endmodule

Module integrator sets the output voltage to the integral of the input voltage. The second
term in the idt function is the initial condition.

For more information on... see...
ddt “Time Derivative Operator” on page 153
idtmod “Circular Integrator Operator” on page 155
idt “Time Integral Operator” on page 154
June 2013 46 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Creating Modules

Using Internal Nodes in Modules

Using Verilog-AMS, you can implement complex designs in a variety of different ways. For
example, you can define behavior in modules at the leaf level and use the top-level module
to define the structure of the system. You can also define structure within modules by defining
internal nodes. With internal nodes, you can directly define behavior in the module, or you can
introduce internal nodes as a means of solving higher order differential equations that define
the network.

Using Internal Nodes in Behavioral Definitions

Consider the following RLC circuit.

M _R_ - —L—]

| Lo

Lo - - - _
Y4

ref

Module r1c_behav uses an internal node n1 and the ports in, ref, and out, to define
directly the behavioral characteristics of the RLC circuit. Notice how n1 does not appear in
the list of ports for the module.

module rlc behav(in, out, ref) ;
inout in, out, ref ;

electrical in, out, ref ;
parameter real R=1, L=1, C=1 ;

electrical nl ;

analog begin
V(in, nl) <+ R*I(in, nl) ;
V(nl, out) <+ L*ddt(I (nl, out)) ;
I(out, ref) <+ C*ddt (V(out, ref))
end

endmodule

June 2013 47 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Creating Modules

Using Internal Nodes in Higher Order Systems

You can also represent the RLC circuit by its governing differential equations. The transfer

function is given by

1 _ Vout

LCs2+RCs+1 V,'n

H(s) =

In the time domain, this becomes

Vour = Vi F O V=L 00V

aut out
If you set
an = Vour

you can write

Vc:'m: Vﬁﬂ_R'C'Vﬂl_L'C'Vﬂl

Module r1c_high_order implements these descriptions.
module rlc high order (in, out, ref) ;

inout in, out, ref ;

electrical in, out, ref ;

parameter real R=1, L=1, C=1 ;

electrical nl ;

analog begin
V(nl, ref) <+ ddt(V(out, ref)) ;

V(out, ref) <+ V(in) - (R*C*V(nl) - L*ddt(V(nl))*C
end
endmodule
June 2013 48
© 2000-2013

’

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

Lexical Conventions

A Cadence® Verilog®-AMS source text file is a stream of lexical tokens arranged in free
format. For information, see, in this chapter,

m White Space on page 50
Comments on page 50
Identifiers on page 50

Numbers on page 52

Strings on page 54

See also

m Operators for Analog Blocks on page 95

B The information about strings in Displaying Results on page 174
m Verilog-AMS Keywords on page 439

June 2013 49 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Lexical Conventions

White Space

White space consists of blanks, tabs, new-line characters, and form feeds. Verilog-AMS
ignores these characters except in strings or when they separate other tokens. For example,
this code fragment

Sstrobe ("bit error rate = $£%%",
100.0 * errors / bits) ;

is syntactically identical to:

Sstrobe ("bit error rate = $£f%%",100.0*errors/bits);

Comments

In Verilog-AMS, you can designate a comment in either of two ways.

B A one-line comment starts with the two characters // (provided they are not part of a
string) and ends with a new-line character. Within a one-line comment, the characters /
/, /*,and */ have no special meaning. A one-line comment can begin anywhere in the

line.

//

// This code fragment contains four one-line comments.
parameter real vos ; // vos 1s the offset voltage

//

m A block comment starts with the two characters / * (provided they are not part of a string)
and ends with the two characters * /. Within a block comment, the characters /* and /
/ have no special meaning.
/%
* This is an example of a block comment. A block
comment can continue over several lines, making it
easy to add extended comments to your code.

*/

Identifiers

You use an identifier to give a unique name to an object, such as a variable declaration or a
module, so that the object can be referenced from other places. There are two kinds of
identifiers: ordinary identifiers and escaped names. Both kinds are case sensitive.

June 2013 50 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Lexical Conventions

Ordinary ldentifiers

The first character of an ordinary identifier must be a letter or an underscore character (_),
but the remaining characters can be any sequence of letters, digits, dollar signs ($), and the
underscore. Examples include

unity gain bandwidth

holdValue

HoldTime
_buss?2

Escaped Names

Escaped names start with the backslash character (\) and end with white space. Neither the
backslash character nor the terminating white space is part of the identifier. Therefore, the
escaped name \pin?2 is the same as the ordinary identifier pin2.

An escaped name can include any of the printable ASCII characters (the decimal values 33
through 126 or the hexadecimal values 21 through 7E). Examples of escaped names include
\busa+index

\-clock

\!'!lerror-condition!!!

\netl\\net2

\{a,b}
\a* (b+c)

Scope Rules

In Verilog-AMS, each module, task, function, analog function, and named block that you
define creates a new scope. Within a scope, an identifier can declare only one item. This rule
means that within a scope you cannot declare two variables with the same name, nor can you
give an instance the same name as a node connecting that instance.

Any object referenced from a named block must be declared in one of the following places.
m Within the named block

m Within a named block or module that is higher in the branch of the name tree

To find a referenced object, the simulator first searches the local scope. If the referenced
object is not found in the local scope, the simulator moves up the name tree, searching
through containing named blocks until the object is found or the module boundary is reached.
If the module boundary is reached before the object is found, the simulator issues an error.

June 2013 51 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Lexical Conventions

Numbers

Verilog-AMS supports two basic literal data types for arithmetic operations: integer numbers
and real numbers.

Integer Numbers

The syntax for an integer constant is

integer number ::=
[sign] unsign num
| digital octal number
| digital binary number
| digital hex number

sign ::=
+ | -
unsign num ::=
decimal digit { _ | decimal digit }

decimal digit =
o] 1] 2|3]| 45| 6] 7] 8129

For information about digital_octal_number, digital_binary number, and
digital_hex_number, see the “Numbers” section in the “Lexical Conventions” chapter, of
the Verilog-XL Reference

The simulator ignores the underscore character (_), so you can use it anywhere in a decimal
number except as the first character. Using the underscore character can make long numbers
more legible.

Examples of integer constants include

277195000

277 195 000 //Same as the previous number
-634 //A negative number

0005

"b100x11z0 //A binary number with unknowns

Real Numbers

The syntax for a real constant is

real number ::=

[sign] unsign num .unsign_num
| [sign] unsign num [.unsign num] e [sign] unsign_ num
| [sign] unsign num [.unsign num] E [sign] unsign num
| [sign] unsign num [.unsign num] unit letter
sign ::=
+ | -
June 2013 52 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Lexical Conventions

unsign _num ::=
decimal digit { _ | decimal digit }

decimal digit =
0| 1112|314 |5]| 6]|7]8]29

unit letter ::=
|

T | G M| K|k |m]|u|n|p]| £f]|a

unit_letter represents one of the scale factors listed in the following table. If you use
unit_letter, you must not have any white space between the number and the letter. Be
certain that you use the correct case for the unit_letter.

unit_letter Scale factor unit_letter Scale factor
T = 102 k = 103
G= 10° m= 103
M = 109 u= 106
K= 108 n= 109
p= 10712
£ = 1010
a= 10718

The simulator ignores the underscore character (_), so you can use it anywhere in a real
number except as the first character. Using the underscore character can make long numbers
more legible.

Examples of real constants include

2.5K // 2500

le-6 // 0.000001
-9.6e9

-le-4

0.1u

50p // 50 * 10e-12
1.2G // 1.2 * 10e9

213 116.223_642

For information on converting real numbers to integer numbers, see “Converting Real
Numbers to Integer Numbers” on page 57.

June 2013 53 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Lexical Conventions

Strings

A string is a sequence of characters enclosed by quotation marks and contained on a single
line. Strings used as operands in expressions and assignments are treated as unsigned
integer constants represented by a sequence of 8-bit ASCII values, with one 8-bit ASCII value
representing one character.

String variables, which are not supported in analog contexts, are variables of reg type with
width equal to the number of characters in the string multiplied by 8.

For example, to store the 12 characters of the string “Hello world!” requires areg 8 * 12, or
96 bits wide.
reqg [8*12:1] stringvar ;
initial begin
stringvar = “Hello world!” ;
end

When a variable is larger than required to hold a value being assigned, the contents on the
left are padded with zeros after the assignment. This is consistent with the padding that
occurs during the assignment of nonstring values. If a string is larger than the destination
string variable, the string is truncated to the left, and the leftmost characters are lost.

Strings can be manipulated using the Verilog HDL operators. The value being manipulated
by the operator is the sequence of 8-bit ASCII values. For example,
module string test;

reqg [8*14:1] stringvar;
initial begin

stringvar = "Hello world";

Sdisplay("%s is stored as %$h", stringvar,stringvar);
stringvar = {stringvar,"!!!"};

Sdisplay("%$s is stored as %h", stringvar,stringvar);
end

endmodule

The output is

Hello world is stored as 00000048656c6c6f20776f£726c64
Hello world!!! is stored as 48656c6c6f20776f726c64212121

June 2013 54 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Data Types and Objects

The Cadence® VeriIog®-AMS language defines these data types and objects. For information
about how to use them, see the indicated locations.

Integer Numbers on page 56
Real Numbers on page 56

Parameters on page 58

Dynamic Parameters on page 62
Local Parameters on page 64
Genvars on page 64

Natures on page 65

Disciplines on page 68

Net Disciplines on page 74

Ground Nodes on page 76
Real Nets on page 77
Named Branches on page 80
Implicit Branches on page 81
Digital Nets and Registers

For information about digital nets and registers, see the “Registers and Nets” section, in
the “Data Types” chapter of the Verilog-XL Reference.

June 2013 55 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

Integer Numbers

Use the integer declaration to declare variables of type integer.

integer declaration ::=
integer list of identifiers ;

list of identifiers ::=
var name { , var_name}

var name ::=
variable identifier
| array identifier [range 1]

range :@::=

upper limit const exp : lower limit const exp
In Verilog-AMS, you can declare an integer number in a range at least as great as -23
(-2,147,483,648) to 231-1 (2,147,483,647).

To declare an array, specify the upper and lower indexes of the range. Be sure that each index
is a constant expression that evaluates to an integer value.

integer al[l:64] ; // Declares array of 64 integers
integer b, ¢, d[-20:0] ; // Declares 2 integers and an array
parameter integer max size = 15 from [1:50] ;

integer cur vector[l:max size] ;
/* If the max size parameter is not overridden, the
previous two statements declare an array of 15 integers. */

The standard attributes for descriptions and units can be used with integer declarations. For
example,
(* desc="index number", units="index" *) integer indx;

Although the desc and units attributes are allowed, Cadence tools, in this release, do
nothing with the information.

/ Important

Integers have different default initial values depending on how they are used. Integer
variables whose values are assigned in an analog context default to an initial value
of zero. Integer variables whose values are assigned in a digital context default to
an initial value of x.

Real Numbers

Use the real declaration to declare variables of type real.

real declaration ::=
real list of identifiers ;

June 2013 56 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

list of identifiers ::=
var name { , var_name }

var name ::=
variable identifier
| array identifier [range 1]

range ::=
upper limit const exp : lower limit const exp

In Verilog-AMS, you can declare real numbers in a range at least as great as 103" to 1037,
To declare an array of real numbers, specify the upper and lower indexes of the range. Be
sure that each index is a constant expression that evaluates to an integer value.

real afl:64] ; // Declares array of 64 reals
real b, ¢, d[-20:0] ; // Declares 2 reals and an array of reals
parameter integer min size = 1, max size = 30 ;

real cur vector[min size:max size] ;
/* If the two parameters are not overridden, the
previous two statements declare an array of 30 reals. */

Real variables have default initial values of zero.

The standard attributes for descriptions and units can be used with real declarations. For
example,

(* desc="gate-source capacitance", units="F" *) real cgs;

Although the desc and units attributes are allowed, Cadence tools, in this release, do
nothing with the information.

Converting Real Numbers to Integer Numbers

Verilog-AMS converts a real number to an integer number by rounding the real number to the
nearest integer. If the real number is equally distant from the two nearest integers,
Verilog-AMS converts the real number to the integer farthest from zero. The following code
fragment illustrates what happens when real numbers are assigned to integer numbers.

integer intvalA, intvalB, intvalC ;
real realvalA, realvalB, realvalC ;
realvalA = -1.7 ;

intvalA = realvalhA ; // intvalA is -2

realvalB = 1.5 ;
intvalB = realvalB ; // intvalB is 2

realvalC = -1.5 ;
intvalC = realvalC ; // intvalC is -2

If either operand in an expression is real, Verilog-AMS converts the other operand to real
before applying the operator. This conversion process can result in a loss of information.

real realvar ;

realvar = 9.0 ;
realvar = 2/3 * realvar ; // realvar is 9.0, not 6.0
June 2013 57 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

In this example, both 2 and 3 are integers, so 1 is the result of the division. Verilog-AMS
converts 1 to 1.0 before multiplying the converted number by 9.0.

Parameters

Use the parameter declaration to specify the parameters of a module.

parameter declaration ::=
parameter [opt type] list of param assignments ;

opt type ::=
real
| integer

list of param assignments ::=
declarator init {, declarator init }

declarator init ::=
parameter_id = constant_exp { opt value range }
| parameter_array_init

opt_type is described in “Specifying a Parameter Type” on page 59. Note that for parameter
arrays, however, you must specify a type.

opt_value_range is described in “Specifying Permissible Values” on page 60.
parameter_1id is the name of a parameter being declared.

param_array_init is described in “Specifying Parameter Arrays” on page 61.

As specified in the syntax, the right-hand side of each declarator_init assignment
must be a constant expression. You can include in the constant expression only constant
numbers and previously defined parameters or dynamic parameters.

Parameters are constants, so you cannot change the value of a parameter at runtime.
However, you can customize module instances by changing parameter values during
compilation. See “Overriding Parameter Values in Instances” on page 197 for more
information.

Consider the following code fragment. The parameter superior is defined by a constant
expression that includes the parameter subord.

parameter integer subord = 8 ;
parameter integer superior = 3 * subord ;

In this example, changing the value of subord changes the value of superior too because
the value of superior depends on the value of subord.

The standard attributes for descriptions and units can be used with parameter declarations.
For example,

June 2013 58 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

(* desc="Resistance", units="ohms" *) parameter real res = 1.0 from [0:inf);

Although the desc and units attributes are allowed, Cadence tools, in this release, do
nothing with the information.

For example, to run the ahd1Lib. res cell in Monte Carlo, you modify the Verilog-A model
to be something like this:
module res (vp, vn);

inout vp, vn;
electrical vp, vn;

(* cds_inherited parameter *) parameter real monteres = 0;
parameter real r = 1lk;
localparam real r effective = r + monteres; // nominal resistance plus

// monte-carlo mismatch effect

analog
V(vp, vn) <+ (r_effective)*I(vp, vn);

endmodule

In this case, monteres is the mismatch parameter. It must be defined in a model deck as a
parameters statement or be defined in the design variables section of the user interface.

You also need a statistics mismatch block in your model deck that describes the
distribution for monteres. For example:

parameters monteres=10

statistics {
mismatch {
vary monteres dist=gauss std=5
}
}

Specifying a Parameter Type

You must specify a default for each parameter you define, but the parameter type specifier is
optional (except that you must specify a type for parameter arrays). If you omit the parameter
type specifier, Verilog-AMS determines the parameter type from the constant expression. If
you do specify a type, and it conflicts with the type of the constant expression, your specified
type takes precedence.

Implicitly declared types and explicitly declared types can make parameter values look
different when you examine their values. For example, you create a module testtype.
module testtype;

parameter c¢= {3'b000, 3'bl1ll}, f= 3.4;

parameter integer cl = {3'b000, 3’'bll11l}, fl1 = 3.4;
endmodule

You then use Tcl commands to examine the values:

June 2013 59 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

ncsim> describe c

(o parameter [5:0] = 6’h07
ncsim> describe cl

cl..eee.. parameter (integer) = 7
ncsim> describe f

foooooaaa. parameter (real) = 3.4

ncsim> describe f1l

fl......... parameter (integer) = 3

These results occur because c is a 6-bit value but c1 is a 32-bit value (because it is explicitly
declared as an integer).

The three parameter declarations in the following examples all have the same effect. The first
example illustrates a case where the type of the expression agrees with the type specified for
the parameter.

parameter integer rate = 13 ;

The second example omits the parameter type, so Verilog-AMS derives it from the integer
type of the expression.

parameter rate = 13 ;

In the third example, the expression type is real, which conflicts with the specified parameter
type. The specified type, integer, takes precedence.

parameter integer rate = 13.0

In all three cases, rate is declared as an integer parameter with the value 13.

Specifying Permissible Values

Use the optional range specification to designate permissible values for a parameter. If you
need to, you can specify more than one range.

opt value range ::=
from value range specifier
| exclude value range specifier
| exclude value_constant_expression

value range specifier ::=
start paren expressionl : expression2 end paren

start paren ::=
[
| (

end paren ::=
1
|)

expressionl ::=
constant_expression
| -inf

June 2013 60 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

expression?2 ::=
constant_expression
| inf

Ensure that the first expression in each range specifier is smaller than the second expression.
Use a bracket, either “[” for the lower bound or “]” for the upper, to include an end point in the
range. Use a parenthesis, either “(” for the lower bound or “)” for the upper, to exclude an end
point from the range. To indicate the value infinity in a range, use the keyword inf. To indicate
negative infinity, use -inf.

For example, the following declaration gives the parameter cur_val the default of -15.0. The
range specification allows cur_val to acquire values in the range - < cur_val < 0.

parameter real maxval = 0.0 ;
parameter real cur val = -15.0 from (-inf:maxval) ;

The following declaration

parameter integer pos val = 30 from (0:40] ;

gives the parameter pos_val the default of 30. The range specification for pos_val allows
it to acquire values in the range 0 < pos_val <= 40.

In addition to defining a range of permissible values for a parameter, you can use the keyword
exclude to define certain values as illegal.

parameter low = 10 ;
parameter high = 20 ;
parameter integer intval = 0 from [0:inf) exclude (low:high] exclude 5 ;

In this example, both a range of values, 10 < value <= 20, and the single value 5 are defined
as illegal for the parameter intval.

Specifying Parameter Arrays

Use the parameter array initiation part of the parameter declaration (“Parameters” on
page 58) to specify information for parameter arrays.

parameter array init ::=
parameter_array_id range = constant param arrayinit {opt value range}

range =
[constant expression : constant expression]

constant param arrayinit ::=
{ param _arrayinit element list }
| ‘{ param arrayinit element list }
| ‘{ replicator element list }

param arrayinit element list ::=
constant expression { , constant expression }

replicator element list ::=
| replicator_constant_expression {constant expression}

June 2013 61 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

parameter_array._1idisthe name of a parameter array being declared.

opt_value_range is described in “Specifying Permissible Values” on page 60.

replicator_constant_expression isan integer constant with a value greater than
zero that specifies the number of times the associated constant_expression isto be
included in the element list.

For example, parameter arrays might be declared and used as follows:

parameter integer
IVgc length = 4;

parameter real
I gc[l:IVgc_length]
V_gc[l:IVgc length]

*{4{0.00}};
‘*{-5.00, -1.00, 5.00, 10.00};

Parameter arrays are subject to the following restrictions:
B The type of a parameter array must be specified in the declaration.

B An array assigned to an instance of a module must be of the exact size of the array
bounds of that instance.

m If the array size is changed via a parameter assignment, the parameter array must be
assigned an array of the new size from the same module as the parameter assignment
that changed the parameter array size.

Dynamic Parameters

Use the dynamicparam declaration to specify the parameters of a module.

parameter declaration ::=
dynamicparam [opt type] list of param assignments ;

The use of dynamic parameters enables you to change the value of a parameter during
simulation. It also allows you to reference global parameters without having their values
passed down through the hierarchy. This is done by supporting OOMR parameter references
in defparam value expressions and parameter default value expressions.

Following are some important points that must be kept in mind while using dynamic
parameters in Verilog-AMS.

B Dynamic parameters can be used at all places where normal parameters can be used.
They are set exactly like normal parameters. In addition, dynamic parameters are
evaluated as part of the normal parameter evaluation process as if they were normal
parameters.

June 2013 62 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

B Incontrast to normal parameters, OOMR references to dynamic parameters are allowed
in defparams.

Example:
module top();

dynamicparam myvar = 0.133;

Boo B1;

endmodule

module Boo
Foo F1;

defparam top.Bl.Fl.paraml = top.myvar*3; // defparam usage

endmodule

m Although OOMR references are not allowed in parameter assignments, the same effect
can be achieved by having a local defparam.

Example:

module Foo();

parameter paraml = 0;

defparam paraml = top.myvar*2; // equivalent to allowing defparams to default
// parameter values

endmodule

m ltisillegal for a dynamic parameter to affect design topology.

m ltisillegal for a parameter value that is dependent on dynamic parameters to affect
design topology. A parameter is dependent on a dynamic parameter if the value of the
dynamic parameter has an affect on the final computed value of that parameter.

m ltisillegal for a parameter value that is dependent on dynamic parameters to be
referenced from a digital context.

June 2013 63 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

Local Parameters

Use the 1ocalparam declaration to specify the parameters of a module.

parameter declaration ::=
localparam [opt type] list of param assignments ;

You cannot directly modify local parameters using ordered or named parameter value
assignments or the defparam statement.

Paramsets are subject to the following restrictions:
B You cannot use the alter and altergroup statements when you use paramsets.

B You cannot store paramsets in the Cadence library.cell:view configurations (or “5x”
configurations).

Genvars

Use the genvar declaration to specify a list of integer-valued variables used to compose
static expressions for use with behavioral loops.

genvar declaration ::=
genvar genvar_identifier {, genvar_identifier}

Genvar variables can be assigned only in limited contexts, such as accessing analog signals
within behavioral looping constructs. For example, in the following fragment, the genvar
variable i can only be assigned within the control of the for loop. Assignments to the genvar
variable i can consist of only expressions of static values, such as parameters, literals, and
other genvar variables.

genvar 1 ;

analog begin
for (i = 0; 1 < 8; i =1 + 1) begin

V(out[i]) <+ transition(valuel[i], td, tr) ;

end

end

The next example illustrates how genvar variables can be nested.

module gen case(in,out);
input [0:1] in;

output [0:1] out;
electrical [0:1] in;
electrical [0:1] out;
genvar i, 3Jj;

analog begin
for(i=1 ; i<0 || 1 <= 4; 1 = 1 + 1) begin
for(jJ =0; 3 <4 ;3

June 2013 64 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

Sstrobe ("%d %d", j, 1);
end
end

for(J =0
j]
end
end

endmodule

A genvar expression is an expression that consists of only literals and genvar variables. You
can also use the sparam_given function in genvar expressions.

Natures

Use the nature declaration to define a collection of attributes as a nature. The attributes of a
nature characterize the analog quantities that are solved for during a simulation. Attributes
define the units (such as meter, gram, and newton), access symbols and tolerances
associated with an analog quantity, and can define other characteristics as well. After you
define a nature, you can use it as part of the definition of disciplines and other natures.

nature declaration ::=
nature nature name
[nature descriptions]
endnature

nature name ::=
nature identifier

nature descriptions ::=
nature description
| nature description nature descriptions

nature description ::=
attribute = constant expression j;

attribute ::=
abstol
| access
| ddt_nature
| idt_nature
| units
| identifier
| Cadence specific attribute
Cadence specific attribute ::=
huge
| blowup
| maxdelta

Each of your nature declarations must
B Be named with a unique identifier
m Include all the required attributes listed in Table 4-3 on page 67.

B Be declared at the top level

June 2013 65 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

This requirement means that you cannot nest nature declarations inside other nature,
discipline, or module declarations.

The Verilog-AMS language specification allows you to define a nature in two ways. One way
is to define the nature directly by describing its attributes. A nature defined in this way is a
base nature, one that is not derived from another already declared nature or discipline.

The other way you can define a nature is to derive it from another nature or a discipline. In
this case, the new nature is called a derived nature.

Note: This release of Verilog-AMS does not support derived natures.

Declaring a Base Nature

To declare a base nature, you define the attributes of the nature. For example, the following
code declares the nature current by specifying five attributes. As required by the syntax,
the expression associated with each attribute must be a constant expression.

nature Mycurrent

units = "A" ;

access = 1 ;

idt nature = charge ;

abstol = 1le-12 ;

huge = le6 ;
endnature

Verilog-AMS provides the predefined attributes described in the “Predefined Attributes” table.
Cadence provides the additional attributes described in Table 4-2 on page 67. You can also
declare user-defined attributes by declaring them just as you declare the predefined
attributes. The Cadence AMS Designer simulator ignores user-defined attributes, but other
simulators might recognize them. When you code user-defined attributes, be certain that the
name of each attribute is unique in the nature you are defining.

The following table describes the predefined attributes.

Table 4-1 Predefined Attributes

Attribute Description

abstol Specifies a tolerance measure used by the simulator to determine when
potential or flow calculations have converged. abstol specifies the
maximum negligible value for signals associated with the nature. For

more information, see “Convergence” on page 249.

June 2013 66 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

Table 4-1 Predefined Attributes, continued

Attribute Description

access Identifies the name of the access function for this nature. When this
nature is bound to a potential value, access is the access function for
the potential. Similarly, when this nature is bound to a flow value,
access is the access function for the flow. Each access function must
have a unique name.

units Specifies the units to be used for the value accessed by the access
function.

idt_nature Specifies a nature to apply when the idt or idtmod operators are used.
Note: This release of Verilog-AMS ignores this attribute.
ddt_nature Specifies a nature to apply when the ddt operator is used.

Note: This release of Verilog-AMS ignores this attribute.

The next table describes the Cadence-specific attributes.

Table 4-2 Cadence-Specific Attributes

Attribute Description

huge Specifies the maximum change in signal value allowed during a single
iteration. The simulator uses huge to facilitate convergence when signal
values are very large. Default: 45.036e06

blowup Specifies the maximum allowed value for signals associated with the
nature. If the signal exceeds this value, the simulator reports an error
and stops running. Default: 1.0e09

maxdelta Specifies the maximum change allowed on a Newton-Raphson iteration.
Default: 0.3

The next table specifies the requirements for the predefined and Cadence-specific attributes.

Table 4-3 Attribute Requirements

Attribute Required or optional? The constant expression must be
abstol Required A real value

access Required for all base natures An identifier

June 2013 67 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

Table 4-3 Attribute Requirements

Attribute Required or optional? The constant expression must be

units Required for all base natures A string

idt_nature Optional The name of a nature defined
elsewhere

ddt_nature Optional The name of a nature defined
elsewhere

huge Optional A real value

blowup Optional A real value

maxdelta Optional A real value

Consider the following code fragment, which declares two base natures.

nature Charge
abstol = le-14 ;

access = Q ;

units = "coul" ;

blowup = 1le8 ;
endnature

nature Current
abstol = le-12 ;
access = 1 ;

units = "A" ;
endnature

Both nature declarations specify all the required attributes: abstol, access, andunits. In
each case, abstol is assigned a real value, access is assigned an identifier, and units is
assigned a string.

The Ccharge declaration includes an optional Cadence-specific attribute called b1 owup that
ends the simulation if the charge exceeds the specified value.

Disciplines

Use the discipline declaration to specify the characteristics of a discipline. You can then use
the discipline to declare nets and regs. You can also associate disciplines with ports, as
discussed in Chapter 11, “Mixed-Signal Aspects of Verilog-AMS.” Cadence provides
definitions of many commonly used disciplines in the disciplines.vams file installed in
yvour_install dir/tools/spectre/etc/ahdl.

discipline declaration ::=

discipline discipline identifier

June 2013 68 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

[discipline description { discipline description }]
enddiscipline

discipline description ::=
nature binding
| domain binding

nature binding ::=
potential nature_ identifier ;
| flow nature_identifier ;

domain binding ::=
domain continuous ;
| domain discrete ;

You must declare a discipline at the top level. In other words, you cannot nest a discipline
declaration inside other discipline, nature, or module declarations. Discipline identifiers have
global scope, so you can use discipline identifiers to associate nets with disciplines (declare
nets) inside any module.

Binding Natures with Potential and Flow

The disciplines that you declare can bind

m One nature with potential

m One nature with potential and a different nature with flow
m Nothing with either potential or flow

A declaration of this latter form defines an empty discipline.
The following examples illustrate each of these forms.

The first example defines a single binding, one between potential and the nature voltage.
A discipline with a single binding is called a signal-flow discipline.
discipline voltage

potential Voltage ; // A signal-flow discipline must be bound to potential.
enddiscipline

The next declaration, for the electrical discipline, defines two bindings. Such a
declaration is called a conservative discipline.
discipline electrical

potential Voltage ;

flow Current ;
enddiscipline

When you define a conservative discipline, you must be sure that the nature bound to
potential is different from the nature bound to flow.

June 2013 69 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

The third declaration defines an empty discipline. If you do not explicitly specify a domain for
an empty discipline, the domain is determined by the connectivity of the net.

discipline neutral

enddiscipline

discipline interconnect
domain continuous
enddiscipline

In addition to declaring empty disciplines, you can also use a Verilog-AMS predefined empty
discipline called wire.

/ Important

A wire in Verilog-AMS has no specified domain, so do not assume that it is digital.

Use an empty discipline when you want to let the components connected to a net determine
which potential and flow natures are used for the net.

Binding Domains with Disciplines

The domain binding of a discipline indicates whether the signal value is an analog signal to
be represented in continuous time or a digital signal to be represented in discrete time. The
default domain is continuous for disciplines that are not empty. Signals in the continuous
domain always have real values. Signals in the discrete domain can have real, integer, or
binary (0, 1, X, or z) values.

The following example illustrates how to define a discipline for an analog signal. Because the
default value for domain is cont inuous, the domain line in this example could be omitted.
discipline electrical

domain continuous ;

potential Voltage ;

flow Current ;
enddiscipline

The next example defines a discipline for a digital signal.
discipline logic

domain discrete ;
enddiscipline

Disciplines and Domains of Wires and Undeclared Nets

Nets that do not have declared disciplines are evaluated as though they have empty
disciplines. The effective domain of such nets is determined by how the nets are used.

June 2013 70 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

m Ifthe netis referenced in the digital context behavioral code or if its net type is other than
wire, then the domain of the net is assumed to be discrete.

m If the netis bound only to ports and either has no declared net type or has a net type of
wire, then the net has no domain binding.

Discipline Precedence
Disciplines can be declared in several ways and if more than one of these ways applies to a

single net, discipline conflicts can arise. Verilog-AMS resolves conflicts with the following
precedence.

Kind of Discipline Declaration Precedence
A declaration from a module other than the module to which the net Highest
belongs using an out-of-module reference. For example, precedence

module examplel ;
electrical example2.net ;
endmodule

A local declaration of a net in the module to which it belongs. For example,

module example2 ;
electrical net ;
endmodule

‘default_discipline used with qualifier only. v

“default discipline logic trireg ;

‘default_discipline without qualifier or scope. Lowest

‘default discipline logic ; precedence

Compatibility of Disciplines

Certain operations in Verilog-AMS, such as declaring branches, are allowed only if the
disciplines involved are compatible. Apply the following rules to determine whether any two
disciplines are compatible.

B Any discipline is compatible with itself.
B An empty discipline is compatible with all disciplines.

m Disciplines with the di screte domain attribute and the same signal value type, such as
bit, real, or integer, are compatible.

June 2013 71 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

m Disciplines with different domain attributes are incompatible.

m Other kinds of continuous disciplines are compatible or not compatible, as determined

by following paths through Figure 4-1 on page 72.

Figure 4-1 Analog Discipline Compatibility
< Start >

Potential
natures exist for both
disciplines

No

Yes

Potential
natures the same?

No

Flow
natures exist for both
disciplines

No

Disciplines are Disciplines not
compatible compatible

Consider the following declarations.

nature Voltage
access =V ;
units = "v" ;

June 2013 72
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

abstol = 1lu ;

endnature

nature Current
access = 1 ;
units = "A"
abstol = 1lp ;

endnature

discipline emptydis
enddiscipline

discipline electrical
potential Voltage ;
flow Current ;

enddiscipline

discipline sig flow v
potential Voltage ;
enddiscipline

To determine whetherthe electrical and sig_flow_v disciplines are compatible, follow
through the discipline compatibility chart:

1. Bothelectrical and sig_flow_v have defined natures for potential. Take the Yes
branch.

2. Infact, electrical and sig_flow_v have the same nature for potential. Take the
Yes branch.

3. electrical has a defined nature for flow, but sig_flow_v does not. Take the No
branch to the Disciplines are compatible end point.

Now add these declarations to the previous lists.

nature Position

access = X ;

units = "m"

abstol = 1u ;
endnature

nature Force

access = F ;

units = "N" ;

abstol = 1n ;
endnature

discipline mechanical
potential Position ;
flow force ;

enddiscipline

The electrical and mechanical disciplines are not compatible.
1. Both disciplines have defined natures for potential. Take the Yes branch.

2. The Position nature is not the same as the voltage nature. Take the No branch to
the Disciplines not compatible end point.

June 2013 73 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

Net Disciplines

Use the net discipline declaration to associate nets and regs with previously defined
disciplines.
net discipline declaration ::=

discipline_identifier [range] list of nets ;
| wire [range] list of nets ;

range ::=
[msb expr : 1lsb expr]

list of nets ::=
net type
| net type , list of nets

msb_expr ::=
constant_expr

lsb _expression ::=
constant_expr

net type ::=
net_identifier [range] [= constant_expr | constant_array_expr]

The standard attribute for descriptions can be used with net discipline declarations. For
example,

(* desc="drain terminal" *) electrical d;

Although the desc attribute is allowed, Cadence tools, in this release, do nothing with the
information.

The initializers specified with the equals sign in the net_type can be used only when the
discipline_identifier is a continuous discipline. The solver uses the initializer, if
provided, as a nodeset value for the potential of the net. A null value in the
constant_array._expr means that no nodeset value is being specified for that element
of the bus. The initializers cannot include out-of-module references.

A net declared without a range is called a scalar net. A net declared with a range is called a
vector net. In this release of Verilog-AMS, you cannot use parameters to define range limits.

magnetic inductorl, inductor2 ; //Declares two scalar nets

electrical [1:10] nodel ; //Declares a vector net

wire [3:0] connectl, connect2 ; //Declares two vector nets

electrical [0:4] bus = {2.3,4.5,,6.0} ; //Declares vector net with nodeset values

The following example is illegal because a range, if defined, must be the first item after the
discipline identifier and then applies to all of the listed net identifiers.

electrical AVDD, AVSS, BGAVSS, PD, SUB, [6:1] TRIM ; // Illegal
Note: Cadence recommends that you specify the direction of a port before you specify the

discipline. For example, in the following example the directions for out and in are specified
before the electrical discipline declaration.

June 2013 74 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

Consider the following declarations.

discipline emptydis
enddiscipline

module compl (out, in, unknownl, unknown2) ;
output out ;

input in ;

electrical out, in ;

emptydis unknownl ; // Declared with an empty discipline
analog

V(out) <+ 2 * V(in)
endmodule

Module comp1l has four ports: out, in, unknownl, and unknown2. The module declares
out and inaselectrical ports and uses them in the analog block. The port unknownl
is declared with an empty discipline and cannot be used in the analog block because there
is no way to access its signals. However, unknown1 can be used in the list of ports, where it
inherits natures from the ports of module instances that connect to it.

Because unknown?2 appears in the list of ports without being declared in the body of the
module, Verilog-AMS implicitly declares unknown?2 as a scalar port with the default discipline.
The default discipline type is wire, unless you use the *default_discipline compiler
directive to specify a different discipline. (For more information, see “Setting a Default

Discrete Discipline for Signals” on page 240.)

Now consider a different example.

module five inputs(portbus);
input [0:5] portbus;
electrical [0:5] portbus;
real x;
analog begin

generate i (0,4)

V(portbus[i]) <+ 0.0;

end
endmodule

The five_inputs module uses a port bus. Only one port name, portbus, appears in the
list of ports but inside the module portbus is defined with a range.

Modules compl and five_inputs illustrate the two ways you can use nets in a module.
B You can define the ports of a module by giving a list of nets on the module statement.

B You can describe the behavior of a module by declaring and using nets within the body
of the module construct.

As you might expect, if you want to describe a conservative system, you must use
conservative disciplines to define nets. If you want to describe a signal-flow or mixed
signal-flow and conservative system, you can define nets with signal-flow disciplines.

June 2013 75 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

As a result of port connections of analog nets, a single node can be bound to a number of
nets of different disciplines.

Current contributions to a node that is bound only to disciplines that have only potential
natures, are illegal. The potential of such a node is the sum of all potential contributions, but
flow for such a node is not defined.

Nets of signal flow disciplines in modules must not be bound to inout ports and you must not
contribute potential to input ports.

To access the abstol associated with a nets’s potential or flow natures, use the form

net.potential.abstol

or

net.flow.abstol

For an example, see “Cross Event” on page 113.

Ground Nodes

Use the ground declaration to declare global reference nodes.

ground declaration ::=
ground list of nets ;

You use the ground declaration to specify an already declared net of continuous discipline.
The node associated with that net then becomes the global reference node in the circuit. If
used in behavioral code, the net must be used in only the differential source and probe forms.
This requirement means that a form like v (gnd) isillegal butaformlike v (in, gnd) islegal.

For example,

module loadedsrc (out) ;
output out;
electrical out;

electrical gnd; // Declare a net of continuous discipline.
ground gnd; // Declare the ground.
parameter real srcval = 5.0;

resistor #(.r(10K)) rl(out,gnd);
analog begin
V(out) <+ V(in,gnd)*2; // Probe the voltage difference
// between in and gnd.
end
endmodule

June 2013 76 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

Real Nets

Use the real net declaration to declare a data type that represents a real-valued physical

connection between structural entities.

real net declaration ::=
wreal list of nets ;

In the following example, the real variable, st im, connects to the wreal net, in:

module foo(in, out);
input in;
output out;
wreal in; // Declares in as a wreal net.
electrical out;
analog begin
V(out) <+ 1in;
end
endmodule

module top();

real stim; // Declares stim as a real variable.

wreal wr stim;

assign wr_stim = stim;
electrical load;
foo fl(wr stim, load); // Connects stim to in.

always begin

#1 stim = stim + 0.1;
end
endmodule // top

See also the following topics:

B Arrays of Real Nets on page 78

m Real Nets with More than One Driver on page 78

June 2013 77
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

Arrays of Real Nets

To declare an array of real nets, specify the upper and lower indexes of the range. Be sure
that each index is a constant expression that evaluates to an integer value. For example:

wreal w[3:2]; // Declares w as a wreal array.

The software supports full usage of part-selects of wreal arrays, including part-selects which
refer to only a part of the full array.
Real Nets with More than One Driver

The Cadence implementation of the Verilog-AMS language supports more than one driver on
a wreal net and the following states for wreal values:

State Description
wrealZState High-impedance state equivalent to the hiZz discrete logic state
wrealXState Unknown state equivalent to the X state in discrete logic

Note: The software sets the value of a wreal net to this state
(wrealXxsState) if it cannot determine the resolved value of the
net.

Note: Any wreal net that has no driver has a value of 0.0.

These state values are global values such that you can reference them in your Verilog-AMS
code. For example:

module foo (x);
inout x;
wreal Xx;
integer error cnt;
real result;

initial error cnt = 0;
always @ (x)
begin
if (x === “wrealZState)
result = 1.234;
if (x === “wrealXState)
error cnt = error cnt + 1;
end a o
assign x = result;
endmodule

Here is another example comparing a real value (aout) to *wrealZState:

June 2013 78 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Data Types and Objects
module dac (out, in, clk);
parameter integer bits = 8 from [1:24]; // resolution (bits)
parameter real fullscale = 1.0; // output range is from 0 to fullscale (V)
output out;
wreal out;
input [0O:bits-1] in;
input clk;
logic in, clk;
real result, aout;
real bitvalue;
integer 1i;
always @ (posedge clk) begin
bitvalue = fullscale;
// aout = 0.0;
aout = “wrealZState;
for (i=bits-1; i>=0; i=i-1) begin
bitvalue = bitvalue / 2;
if (in[i])
if (aout === “wrealZState) <--- this line
aout = bitvalue;
else
aout = aout + bitvalue;
end
result = aout;
end
assign out = result;

endmodule

Note: You cannot redefine the values of these state values.

The program uses these the wrealzState and wrealXState state values to determine the
resolved value of a wreal net with more than one driver. You can use the
-wreal_resolution command-line option to select the wreal resolution function you
want to use. If you do not use the -wreal_resolution command-line option to specify a
resolution function, or if you specify -wreal_resolution default, the program uses the
default resolution algorithm, which is as follows:

Conditions Resolution

All drivers are driving wrealZState

Exactly one driver is not driving
wrealZState

More than one driver is not driving
wrealZState

June 2013
© 2000-2013

Drive the receivers using wrealZState

Drive the receivers using the only
non-wrealZState value

Drive the receivers using wrealXState and
issue a runtime error message

79 Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

Conditions Resolution

Any driver is driving wrealXState Drive the receivers using wrealXState

See “Selecting a wreal Resolution Function” in the Virtuoso® AMS Designer Simulator
User Guide for other resolution functions you can specify.

See also the following topics in the Virtuoso AMS Designer Simulator User Guide:
m “Connecting VHDL and VHDL-AMS Blocks to Verilog and Verilog-AMS Blocks”

B “Connecting Verilog-AMS wreal Signals to Analog Signals®

B “Resolving Disciplines for Verilog-AMS wreal Nets*
[

“Using wreal Nets at Mixed-Language Boundaries*

Named Branches

Use the branch declaration to declare a path between two nets of continuous discipline.
Cadence recommends that you use named branches, especially when debugging with Tcl
commands because, for example, itis easierto type value branchl thanitistotype value
\vectl1l[5] wvec2[1] andthen compute the difference between the returned value.
branch declaration ::=

branch list of branches ;

list of branches ::=
terminals list of branch identifiers

terminals ::=
(scalar _net_identifier)
| (scalar net_identifier , scalar net_identifier)

list of branch identifiers ::=
branch_identifier
| branch_identifier , list of branch identifiers

scalar_net_identifier mustbe eithera scalar net or a single element of a vector net.

You can declare branches only in a module. You must not combine explicit and implicit branch
declarations for a single branch. For more information, see “Implicit Branches” on page 81.

The scalar nets that the branch declaration associates with a branch are called the branch
terminals. If you specify only one net, Verilog-AMS assumes that the other is ground. The
branch terminals must have compatible disciplines. For more information, see “Compatibility

of Disciplines” on page 71.

Consider the following declarations.

June 2013 80 Product Version 13.1
© 2000-2013 All Rights Reserved.

../amssimug/wrealModeling.html#wreal_resolution
../amssimug/chap4.html#directConnections
../amssimug/wrealModeling.html#wrealToElectrical
../amssimug/wrealModeling.html#wrealDisciplineResolution
../amssimug/wrealModeling.html#wrealVHDL

Cadence Verilog-AMS Language Reference
Data Types and Objects

voltage [5:0] wvecl ; // Declares a vector net
voltage [1:6] vec2 ; // Declares a vector net
voltage scal ; // Declares a scalar net
voltage sca2 ; // Declares a scalar net
branch (vecl([5],vec2[1l]) branchl, (scal,sca2) branch2 ;

branchl is legally declared because each branch terminal is a single element of a vector
net. The second branch, branch2, is also legally declared because nodes scal and sca2
are both scalar nets.

Implicit Branches

As Cadence recommends, you can refer to a named branch with only a single identifier.
Alternatively, you might find it more convenient or clearer to refer to branches by their branch
terminals. Most of the examples in this reference, including the following example, use this
form of implicit branch declaration. You must not, however, combine named and implicit
branch declarations for a single branch.

module diode (a, c) ;

inout a, c¢ ;

electrical a, c ;

parameter real rs=0, is=le-14, tf=0, cjo=0, phi=0.7 ;
parameter real kf=0, af=1l, ef=1 ;

analog begin
I(a, c) <+ is*(limexp((V(a, c)-rs*I(a, a))/Svt) - 1);
I(a, c) <+ white noise(2* "P. Q * I(a, c)) ;
I(a, c¢) <+ flicker noise(kf*pow(abs(I(a, c)),af),ef);
end
endmodule

The previous example using implicit branches is equivalent to the following example using
named branches.

module diode (a, c) ;

inout a, c¢ ;

electrical a, c ;

branch (a,c) diode, (a,a) anode ; // Declare named branches
parameter real rs=0, is=le-14, tf=0, cjo=0, phi=0.7 ;
parameter real kf=0, af=1, ef=1 ;

analog begin
I(diode) <+ is* (limexp ((V(diode)-rs*I (anode))/S$vt) - 1);
I(diode) <+ white noise(2* P _Q * I(diode)) ;
I(diode) <+ flicker noise (kf*pow (abs (I (diode)),af), ef);
end
endmodule

June 2013 81 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Data Types and Objects

June 2013 82 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Statements for the Analog Block

This chapter describes the assignment statements and the procedural control constructs and
statements that the Cadence® VeriIog®-AMS language supports within the analog block. For
information, see the indicated locations. The constructs and statements discussed include

B Procedural Assignment Statements in the Analog Block on page 84
Branch Contribution Statement on page 84

Indirect Branch Assignment Statement on page 86
Sequential Block Statement on page 87

Conditional Statement on page 88

Case Statement on page 88

Loop statements, including

O Repeat Statement on page 89
0 While Statement on page 90

Q For Statement on page 90

m Generate Statement on page 91

Verilog-AMS also supports statements for use in digital contexts. For more information, see
the “Assignments” and “Behavioral Modeling” chapters, in the Verilog-XL Reference.

Assignment Statements

There are several kinds of assignment statements in Verilog-AMS: the procedural assignment
statement, the branch contribution statement, and the indirect branch assignment statement
are available for analog modeling. You use the procedural assignment statement to modify
integer and real variables and you use the branch contribution and indirect branch
assignment statements to modify branch values such as potential and flow.

June 2013 83 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Statements for the Analog Block

In addition, Verilog-AMS supports the continuous assignment statement and the procedural
assignment statement for digital modeling. Continuous assignment statements can be used
only outside of the initial, always, and analog blocks. For more information on these
statements, see the “Assignments” chapter, in the Verilog-XL Reference.

Procedural Assignment Statements in the Analog Block

Use the procedural assignment statement to modify integer and real variables.
procedural assignment ::=
lexpr = expression ;

lexpr ::=
integer_identifier
| real identifier
| array element

array element ::=
integer_identifier [constant_expression]
| real_identifier [constant_expression 1]

The left-hand operand of the procedural assignment used in analog blocks must be a
modifiable integer or real variable or an element of an integer or real array. The type of the
left-hand operand determines the type of the assignment.

The right-hand operand can be any arbitrary scalar expression constituted from legal
operands and operators.

In the following code fragment, the variable phase is assigned a real value. The value must
be real because phase is defined as a real variable.
real phase ;

analog begin
phase = idt(gain*V(in)) ;

You can also use procedural assignment statements to modify array values. For example, if
r is declared as

real r[0:3], sum ;

you can make assignments such as

r(0] = 10.1 ;
r{l] = 11.1 ;
r[2] = 12.1 ;
r(3] = 13.1 ;
sum = r[0] + r[l] + r[2] + r[3] ;

Branch Contribution Statement

Use the branch contribution statement to modify signal values.

June 2013 84 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Statements for the Analog Block

branch contribution ::=
bvalue <+ expression ;

bvalue ::=
access_identifier (analog signal list)

analog signal list ::=
branch_identifier
| node_or_port_identifier
| node_or_port_identifier , node_or_port_identifier

bvalue specifies a source branch signal. bvalue must consist of an access function
applied to a branch. expression can be linear, nonlinear, or dynamic.

Branch contribution statements must be placed within the analog block.

As discussed in the following list, the branch contribution statement differs in important ways
from the procedural assignment statement.

B You can use the procedural assignment statement only for variables, whereas you can
use the branch contribution statement only for access functions.

B Using the procedural assignment statement to assign a number to a variable overrides
the number previously contained in that variable. Using the branch contribution
statement, however, adds to any previous contribution. (Contributions to flow can be
viewed as adding new flow sources in parallel with previous flow sources. Contributions
to value can be viewed as adding new value sources in series with previous value
sources.)

Evaluation of a Branch Contribution Statement

For source branch contributions, the simulator evaluates the branch contribution statement
as follows:

1. The simulator evaluates the right-hand operand.

2. The simulator adds the value of the right-hand operand to any previously retained value
for the branch.

3. Atthe end of the evaluation of the analog block, the simulator assigns the summed value
to the source branch.

For example, given a pair of nodes declared with the electrical discipline, the code
fragment

V(nl, n2) <+ exprl ;
V(nl, n2) <+ expr2 ;

is equivalent to

V(nl, n2) <+ exprl + expr2 ;

June 2013 85 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Statements for the Analog Block

Creating a Switch Branch

/ Important

When you contribute a flow to a branch that already has a value retained for
potential, the simulator discards the value for potential and converts the branch to a
flow source. Conversely, when you contribute a potential to a branch that already
has a value retained for flow, the simulator discards the value for flow and converts
the branch to a potential source. Branches converted from flow sources to potential
sources, and vice versa, are known as switch branches. For additional information,
see “Switch Branches” on page 255.

Indirect Branch Assignment Statement

Use the indirect branch assignment statement when it is difficult to separate the target from
the equation.

indirect branch assignment ::=

target : equation ;
target ::=

bvalue
equation ::=

nexpr == expression
nexpr ::=

bvalue

| ddt (bvalue)
| idt (bvalue)
| idtmod (bvalue)

An indirect branch assignment has this format:

V(out) : V(in) ==

Read this as “find v (out) such that v (in) is zero.” This example says that out should be
driven with a voltage source and the voltage should be such that the given equation is
satisfied. Any branches referenced in the equation are only probed and not driven, so in this
example, V (in) acts as a voltage probe.

Indirect branch assignments can be used only within the analog block.

The next example models an ideal operational amplifier with infinite gain. The indirect
assignment statement says “find v (out) such that v (pin, nin) is zero.”

module opamp (out, pin, nin)
output out ;

input pin, nin ;

voltage out, pin, nin ;
analog

June 2013 86 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Statements for the Analog Block

V(out) : V(pin, nin) == 0 ; // Indirect assignment
endmodule

Indirect assignments are incompatible with assignments made with the branch contribution
statement. If you indirectly assign a value to a branch, you cannot then contribute to the
branch by using the branch contribution statement.

Sequential Block Statement

Use a sequential block when you want to group two or more statements together so that they
act like a single statement.

seq_block ::=
begin [: block identifier { block item declaration }]
{ statement }
end

block item declaration ::=
parameter declaration
integer declaration
| real declaration

For information on statement, see “Defining Module Analog Behavior” on page 42.

The statements included in a sequential block run sequentially.

If you add a block identifier, you can also declare local variables for use within the block. All
the local variables you declare are static. In other words, a unique location exists for each
local variable, and entering or leaving the block does not affect the value of a local variable.

The following code fragment uses two named blocks, declaring a local variable in each of
them. Although the variables have the same name, the simulator handles them separately
because each variable is local to its own block.

integer j ;

for (3 =0 ; 3 < 10 ; 3=3+1) begin
if (j%2) begin : odd

integer j ; // Declares a local variable

J = 3+1

$display ("0Odd numbers counted so far = %d" , J) ;
end else begin : even

integer j ; // Declares a local variable

j = 341 ;

Sdisplay ("Even numbers counted so far = %d" , j) ;
end

end

Each named block defines a new scope. For additional information, see “Scope Rules” on
page 51.

June 2013 87 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Statements for the Analog Block

Conditional Statement

Use the conditional statement to run a statement under the control of specified conditions.

conditional statement ::=
if (expression) statementl
[else statement?2]

If expression evaluates to a nonzero number (true), the simulator executes
statementl. |f expression evaluates to zero (false) and the else statement is present,
the simulator skips statement1 and executes statement?2.

If expression consists entirely of genvar expressions, literal numerical constants,
parameters, or the analysis function, statementl and statement2 can include analog
operators.

The simulator always matches an else statement with the closest previous i f that lacks an
else. In the following code fragment, for example, the first el se goes with the inner i £, as
shown by the indentation.

if (index > 0)
if (1 > j) // The next else belongs to this if

result = 1 ;
else // This else belongs to the previous if
result = j ;
else $strobe ("Index < 0"); // This else belongs to the first if

The following code fragment illustrates a particularly useful form of the i f-else construct.

if ((value > 0)&&(value <= 1)) S$strobe("Category A");
else if ((value > 1)&&(value <= 2)) S$strobe("Category B");
else if ((value > 2)&&(value <= 3)) $strobe("Category C");
else if ((value > 3)&&(value <= 4)) $strobe("Category D");
else S$strobe("Illegal value");

The simulator evaluates the expressions in order. If any one of them is true, the simulator runs
the associated statement and ends the whole chain. The last else statement handles the
default case, running if none of the other expressions is true.

Case Statement

Use the case construct to control which one of a series of statements runs.

case statement ::=

case (expression) case item { case item } endcase
case item ::=
test_expression { , test_expression } : statement
| default [:] statement
June 2013 88 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Statements for the Analog Block

The default statement is optional. Using more than one default statement in a case
construct is illegal.

The simulator evaluates each test_expression in turn and compares it with
expression. If there is a match, the statement associated with the matching
test_expression runs. If none of the expressions in text_expression matches
expression and if you coded a default case_1item, the default statement runs. If all
comparisons fail and you did not code a default case_ i tem, none of the associated
statements runs.

If expression and text_expression are genvar expressions, parameters, or the
analysis function, statement can include analog operators; otherwise, statement
cannot include analog operators.

The following code fragment determines what range value isin. For example, if valueis 1.5
the first comparison fails. The second test_expression evaluates to 1 (true), which
matches the case expression, so the $strobe ("Category B") statement runs.

real value ;

(
((value > 0)&&(value <= 1)) : S$strobe("Category A");
((value > 1)&&(value <= 2)) : S$strobe ("Category B");
((value > 2)&&(value <= 3)) : Sstrobe("Category C");
((value > 3)&&(value <= 4)) : S$strobe("Category D");
value <= 0 , value >= 4 : $strobe("Out of range");
default S$strobe ("Error. Should never get here.");
endcase

Repeat Statement

Use the repeat statement when you want a statement to run a fixed number of times.

repeat statement ::=
repeat (constant expression) statement

statement must not include any analog operators. For additional information, see “Analog
Operators” on page 152.

The following example code repeats the loop exactly 10 times while summing the first 10
digits.

integer i, total ;

i =20 ;
total = 0 ;
repeat (10) begin
i=1+4+1;
total = total + i ;
end
June 2013 89 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Statements for the Analog Block

While Statement

Use the while statement when you want to be able to leave a loop when an expression is
no longer valid.
while statement ::=

while (expression) statement

The while loop evaluates expression at each entry into the loop. If expression is
nonzero (true), statement runs. If expression starts out as zero (false), statement
never runs.

statement must not include any analog operators. For additional information, see “Analog
Operators” on page 152.

The following code fragment counts the number of random numbers generated before rand
becomes zero.

integer rand, count ;

[o)

rand = abs($random % 10) ;

count = 0 ;
while (rand) begin
count = count + 1 ;
rand = abs($Srandom % 10) ;
end ;
Sstrobe ("Count is %d", count) ;

For Statement

Use the for statement when you want a statement to run a fixed number of times.

for statement ::=
for (initial_assignment ; expression ;
step_assignment) statement

If initial_assignment, expression,and step_assignment are genvar
expressions, the statement can include analog operators; otherwise, the statement must
not include any analog operators. For additional information, see “Analog Operators” on
page 152.

Use initial_assignment to initialize an integer loop control variable that controls the
number of times the loop executes. The simulator evaluates expression at each entry into
the loop. If expression evaluates to zero, the loop terminates. If expression evaluates
to a nonzero value, the simulator first runs statement and then runs
step_assignment. step_assignment is usually defined so that it modifies the loop
control variable before the simulator evaluates expression again.

June 2013 90 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Statements for the Analog Block

For example, to sum the first 10 even numbers, the repeat loop given earlier could be
rewritten as a for loop.

integer j, total ;

Generate Statement

Note: The generate statement is obsolete. To comply with current practice, use the
genvar statement instead.

The generate statement is a looping construct that is unrolled at compile time. Use the
generate statement to simplify your code or when you have a looping construct that
contains analog operators. The generate statement can be used only within the analog
block. The generate statement is supported only for backward compatibility.

generate statement ::=

generate index_ identifier (start expr ,
end expr [, incr expr]) statement

start expr ::=
constant_expression

end expr ::=
constant_expression

incr expr ::=
constant_expression

index_identifierisanidentifierusedin statement. When statement is unrolled,
each occurrence of index_identifierfoundin statement is replaced by a constant.
You must be certain that nothing inside statement modifies the index.

In the first unrolled instance of statement, the compiler replaces each occurrence of
index_identifier bythe value start_expr. Inthe second instance, the compiler
replaces each index_identifierbythevalue start_expr plus incr_expr. Inthe
third instance, the compiler replaces each index_identifier by the value
start_expr plus twice the incr_expr. This process continues until the replacement
value is greater than the value of end_expr.

If you do not specify incr_expr, it takes the value +1 if end_expr is greater than
start_expr.lfend_exprislessthan start_expr, incr_expr takes the value -1 by
default.

June 2013 91 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Statements for the Analog Block

The values of the start_expr, end_expr, and incr_expr determine how the
generate statement behaves.

Then the generate

I And statement
start_expr > end_expr incr_expr >0 does not execute
start_expr < end_expr incr_expr <0 does not execute
start_expr = end_expr executes once

As an example of using the generate statement, consider the following module, which
implements an analog-to-digital converter.

‘define BITS 4

module adc (in, out) ;

input in ; _

output [0: BITS - 1] out ;

electrical in g

electrical [0: BITS - 1] out ;

parameter fullscale = 1.0, tdelay = 0.0, trantime = 10n ;
real samp, half ;

analog begin
half = fullscale/2.0 ;
samp = V(in) _;

generate i (BITS - 1,0) begin // default increment = -1
V(out[i]) <+ transition(samp > half, tdelay, trantime);
if (samp > half) samp = samp - half ;
samp = 2.0 * samp ;

end

end
endmodule

Module adc is equivalent to the following module coded without using the generate
statement.

“define BITS 4

module adc_unrolled (in, out) ;

input in ; _

output [0: BITS - 1] out ;

electrical in; _

electrical [0: BITS - 1] out ;

parameter fullscale = 1.0, tdelay = 0.0, trantime = 10n ;
real samp, half ;

analog begin
half = fullscale/2.0 ;
samp = V(in) ;
V(out[3]) <+ transition(samp > half, tdelay, trantime);
if (samp > half) samp = samp - half ;
samp = 2.0 * samp ;
V(out[2]) <+ transition(samp > half, tdelay, trantime);
if (samp > half) samp = samp - half ;

June 2013 92 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Statements for the Analog Block

samp = 2.0 * samp ;
V(out[1l]) <+ transition(samp > half, tdelay, trantime);
if (samp > half) samp = samp - half ;
samp = 2.0 * samp ;
V(out[0]) <+ transition(samp > half, tdelay, trantime);
if (samp > half) samp = samp - half ;
samp = 2.0 * samp ;
end
endmodule

Note: Because the generate statement is unrolled at compile time, you cannot use the
SimVision debugging tool to examine the value of index_identifier orto evaluate
expressions that contain index_identifier. For example, if index_identifieris
i, you cannot use a debugging command like print i nor can you use a command like
print{alil]}.

June 2013 93 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Statements for the Analog Block

June 2013 94 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Operators for Analog Blocks

This chapter describes the operators that you can use in analog blocks and explains how to
use them to form expressions. For basic definitions, see

m Unary Operators on page 97
m Binary Operators on page 99

m Bitwise Operators on page 102

m Ternary Operator on page 103
For information about precedence and short-circuiting, see

m Operator Precedence on page 104

m Expression Short-Circuiting on page 104

Verilog-AMS also supports additional operators for use in digital contexts. For more
information, see the “Expressions” chapter, in the Verilog-XL Reference.

June 2013 95 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Operators for Analog Blocks

Overview of Operators

An expression is a construct that combines operands with operators to produce a result that
is a function of the values of the operands and the semantic meaning of the operators. Any
legal operand is also an expression. You can use an expression anywhere Verilog-AMS
requires a value.

A constant expression is an expression whose operands are constant numbers and
previously defined parameters and whose operators all come from among the unary, binary,
and ternary operators described in this chapter.

All of the operators (except ==, ! =, ===, and ! ==), functions, and statements used in
continuous contexts report an error if the expressions they operate on contain x or z bits.

The operators listed below, with the single exception of the conditional operator, associate
from left to right. That means that when operators have the same precedence, the one
farthest to the left is evaluated first. In this example

A+ B -C

the simulator does the addition before it does the subtraction.

When operators have different precedence, the operator with the highest precedence (the
smallest precedence number) is evaluated first. In this example

A +B/ C

the division (which has a precedence of 2) is evaluated before the addition (which has a
precedence of 3). For information on precedence, see “Operator Precedence” on page 104.

You can change the order of evaluation with parentheses. If you code
(A +B) / C

the addition is evaluated before the division.

The operators divide into three groups, according to the number of operands the operator
requires. The groups are the unary operators, the binary operators, and the ternary operator.

June 2013 96 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Operators for Analog Blocks

Unary Operators

The unary operators each require a single operand. The unary operators have the highest
precedence of all the operators discussed in this chapter.

Unary Operators

Type of Example or Further
Operator Precedence Definition Operands .
Information
Allowed
+ 1 Unary plus Integer, real 1 = +13; // 1 =13
I = +(-13); // I = -13
- 1 Unary minus Integer, real R = -13.1; // R = -13.1
I=-(4-5; //1=1
! 1 Logical Integer, real I = ;(==%); % I=0
: I = 1 (1==2); I =1
negation T2 i13.25 // 1 =0
/*Result is zero for a non-
zero operand*/
~ 1 Bitwise unary Integer See the Bitwise Unary Negation
negation Operator figure on page 103.
& 1 Unary reduction integer See “Unary Reduction
AND Operators.”
~& 1 Unary reduction integer See “Unary Reduction
NAND Operators.”
| 1 Unary reduction integer See “Unary Reduction
OR Operators.”
~ | 1 Unary reduction integer See “Unary Reduction
NOR Operators.”
~ 1 Unary reduction integer See “Unary Reduction
exclusive OR Operators.”
r~or~n 1 Unary reduction integer See “Unary Reduction
exclusive NOR Operators.”

Unary Reduction Operators

The unary reduction operators perform bitwise operations on single operands and produce a
single bit result. The reduction AND, reduction OR, and reduction XOR operators first apply the
following logic tables between the first and second bits of the operand to calculate a result.

June 2013 97 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Operators for Analog Blocks

Then for the second and subsequent steps, these operators apply the same logic table to the
previous result and the next bit of the operand, continuing until there is a single bit result.

The reduction NAND, reduction NOR, and reduction XNOR operators are calculated in the same
way, except that the result is inverted.

Reduction operators can be used inthe initial and always blocks of modules but are not
supported in the analog block of Verilog-AMS modules.

Unary Reduction AND Operator

& 0 1
0 0 0
1 0 1

Unary Reduction OR Operator

I 0 1
0 0 1
1 1 1

Unary Reduction Exclusive OR Operator

A 0 1
0 0 1
1 1 0
June 2013 98 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Operators for Analog Blocks

Binary Operators

The binary operators each require two operands.

Binary Operators

Type of
. Example or Further
Operator Precedence Definition Operands .
Information
Allowed
+ aplus b Integer,real R = 10.0 + 3.1; // R = 13.1
- a minus b Integer,real I = 10 - 13; // I = -3
* a multiplied by Integer,real R = 2.2 * 2.0; // R = 4.4
b
/ a dividedby b Integer,real I =9 / 4; // T =2
R = 9.0 / 4; // R = 2.25
% a modulo b Integer, real I = 10 % 5; // I =0
I =-12 % 5; // I = -2
R =10 % 3.75 // R = 2.5
/*The result takes sign of the
first operand.*/
< a less than b; Integer,real I =5 < 7; // T =1
evaluates to 0 L=7<5; // 1 =0
or1
> a greaterthan Integer,real I =5 > 7; // I =0
b; evaluates to L=72>5; /7T =1
Oori
<= alessthanor Integer,real I = 5.0 <= 7.5; % I=1
. I =5.0<=05.0; I=1
equal to b; 1 =5 < 4 Y1 Z 0
evaluates to O
or1
>= a greater than Integer,real T = 5.0 >=7; % I =0
. I =5.0>= 5; I=1
or equal to b; I =25.0>4.8;//1I=1
evaluates to O
or1
== a equal to b; Integer,real I = 5.2 == 5.2; % I=1
I =5.2==05.0; I =0
evaluatt_asto 0,. I =122 1bes /71 =x
1, or x (if any bit
ofaorbisxor
z).
June 2013 99 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Operators for Analog Blocks

Binary Operators, continued

Type of Example or Further
Operator Precedence Definition Operands .
Information
Allowed
= 6 anotequalto Integer,real I = 5.2 !=5.2; // I =20
b; evaluates to I=5.21=50//1=1
0, 1, or x (if any
bit of a or b is x
or z).
=== 6 case equality; x integer I =1===1'bx; // I =20
and z bits
included;
evaluates to 0
or1
== 6 case inequality; integer I=11!==1'bx; // I =1
Xand Z bits
included;
evaluates to 0
or1
&& 10 Logical AND; Integer, real I = &:é;&&g:g, % I = é
I = ==2) && (2== I =
evaluates to O I = -13 s8 1; /)T =1
or1
| | 11 Logical OR; Integer, real I = (1==2) || (gzzg); % I = é
I = (1==2) | (2==3); I =
evaluates to O I =13 (] 0; VT -1
or1
& 7 Bitwise binary Integer See the Bitwise Binary AND
AND Operator figure on page 102.
9 Bitwise binary Integer See the Bitwise Binary OR
OR Operator figure on page 102.
~ 8 Bitwise binary Integer See the Bitwise Binary Exclusive
exclusive OR OR Operator figure on page 102.
N~ 8 Bitwise binary Integer See the Bitwise Binary Exclusive
exclusive NOR NOR Operator figure on page
(Same as ~") 102.
~N 8 Bitwise binary Integer See the Bitwise Binary Exclusive
exclusive NOR NOR Operator figure on page
(Same as ~~) 102.
June 2013 100 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Operators for Analog Blocks

Binary Operators, continued

Type of Example or Further
Operator Precedence Definition Operands .
Information
Allowed
<< 4 a shifted b bits Integer I =1<<2; // I =4
left I =2<<2; // 1 =8
I =4 << 2; // I =16
>> 4 a shifted b bits Integer I=14>2; // T =1
right I =2 > 2; // I =0
or 11 Event OR Event @(initial_step or
expression cross (V(vin)-1))
June 2013 101 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Operators for Analog Blocks

Bitwise Operators

The bitwise operators evaluate to integer values. Each operator combines a bit in one
operand with the corresponding bit in the other operand to calculate a result according to

these logic tables.

Bitwise Binary AND Operator

& 0 1
0 0 0
1 0 1

Bitwise Binary OR Operator

I 0 1
0 0 1
1 1 1

Bitwise Binary Exclusive OR Operator

A 0 1
0 0 1
1 1 0

Bitwise Binary Exclusive NOR Operator

A~or~" |0 1

0 1 0

1 0 1

June 2013 102
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Operators for Analog Blocks

Bitwise Unary Negation Operator

Ternary Operator

There is only one ternary operator, the conditional operator. The conditional operator has the
lowest precedence of all the operators listed in this chapter.

Conditional Operator

Type of Example or Further
Operator Precedence Definition Operands .
Allowed Information
?: 12 exp ? t_exp: Valid I= 2==3 ? 1:0; // I =0
f exp expressions R= 1==1 2 1.0:0.0; // R=1.0

A complete conditional operator expression looks like this:
conditional_expr ? true_expr : false_expr

If conditional_expr is true, the conditional operator evaluates to true_expr,
otherwise to false_ expr.

The conditional operator is right associative.

This operator performs the same function as the i f-else construct. For example, the
contribution statement

V(out) <+ V(in) > 2.5 ? 0.0 : 5.0 ;

is equivalent to

If (V(in) > 2.5)
V(out) <+ 0.0 ;
else
V(out) <+ 5.0 ;

June 2013 103 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Operators for Analog Blocks

Operator Precedence

The following table summarizes the precedence information for the unary, binary, and ternary
operators. Operators at the top of the table have higher precedence than operators lower in
the table.

Precedence Operators

1 + -1~ (unary) Highest precedence
2 *1 %

3 + - (binary)

4 << >>

5 <<=>>=

6 === === |==

7 &

8 N NN

9 I

10 &&

11 I v

12 ?: (conditional operator) Lowest precedence

Expression Short-Circuiting

Sometimes the simulator can determine the value of an expression containing logical AND
(&&), logical OR (| |), or bitwise AND (&) without evaluating the entire expression. By
taking advantage of such expressions, the simulator operates more efficiently.

integer varInt;

real varReal;

@(initial step)
begin
varInt = 123;
varReal = 7.890121212e2;
end

For this example, ret String receives the value "Use Integer 123, string 456 and
real 789.0 to create a string 123456789.0!"

June 2013 104 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Built-In Mathematical Functions

This chapter describes the mathematical functions provided by the Cadence® VeriIog®-AMS
language. These functions include

m Standard Mathematical Functions on page 106

B Trigonometric and Hyperbolic Functions on page 106

m Controlling How Math Domain Errors Are Handled on page 107

Because the simulator uses differentiation to evaluate expressions, Cadence recommends
that you use only mathematical expressions that are continuously differentiable. To prevent
run-time domain errors, make sure that each argument is within a function’s domain.

June 2013 105 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Built-In Mathematical Functions

Standard Mathematical Functions

These are the standard mathematical functions supported by Verilog-AMS. The operands
must be integers or real numbers.

Function Description Domain Returned Value
abs (x) Absolute All x Integer, if x is integer;
otherwise, real
ceil (x) Smallest integer larger All x Integer
than or equal to x
exp (x) Exponential. See also Real
“Limited Exponential
Eunction” on page 1583.
floor (x) Largestintegerlessthan All x Integer
or equal to x
1n(x) Natural logarithm x>0 Real
log(x) Decimal logarithm x>0 Real
max (x,y) Maximum All x, all v Integer, if x and y are
integers; otherwise, real
min (x,y) Minimum All x, all v Integer, if x and y are
integers; otherwise, real
pow (x,y) Power of (x¥) Ally,if x>0 Real
vy >0,ifx =0
yinteger, if x <0
sgrt (x) Square root x>=0 Real

Trigonometric and Hyperbolic Functions

These are the trigonometric and hyperbolic functions supported by Verilog-AMS. The
operands must be integers or real numbers. The simulator converts operands to real numbers
if necessary.

June 2013 106
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Built-In Mathematical Functions

The trigonometric and hyperbolic functions require operands specified in radians.

Function Description Domain

sin(x) Sine All x

cos (x) Cosine All x

tan (x) Tangent - .
X # n(i) , n is odd

asin(x) Arc-sine -1 <=x<=1

acos (x) Arc-cosine -1 <=x<=1

atan (x) Arc-tangent All x

atan2 (x,y) Arc-tangent of x/y All x, all v

hypot (x,vy) Sqrt(x2 + y2) All x, all v

sinh (x) Hyperbolic sine All x

cosh (x) Hyperbolic cosine All x

tanh (x) Hyperbolic tangent All x

asinh (x) Arc-hyperbolic sine All x

acosh (x) Arc-hyperbolic cosine x>=1

atanh (x) Arc-hyperbolic tangent 1 <=x<=1

Controlling How Math Domain Errors Are Handled

To control how math domain errors are handled in Verilog-A modules, you can use the
options ahdldomainerror parameterin a Spectre control file. (In Verilog-AMS code, this
parameter can be used only in the analog block.) This parameter controls how domain (out-
of-range) errors in Verilog-A math functions such as 1og or atan are handled and
determines what kind of message is issued when a domain error is found.

The ahdldomainerror parameter format is

Name options ahdldomainerror=value

where the syntax items are defined as follows.

June 2013
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Built-In Mathematical Functions

Name The unique name you give to the options statement. The Spectre
simulator uses this name to identify this statement in error or
annotation messages

value

none If a domain error occurs, no message is issued. The simulation
continues with the argument of the math function set to the nearest
reasonable number to the invalid argument.

For example, if the " sgrt () function is passed a negative value,
the argument is reset to 0.0.

warning If a domain error occurs, a warning message is issued. The
simulation continues with the argument of the math function set to
the nearest reasonable number to the invalid argument. This is the
default.

For example, if the " sgrt () function is passed a negative value,
the argument is reset to 0.0.

error If a domain error occurs, a message such as the following (which,
in this example, indicates a problem with the * sqgrt function) is
issued.
Fatal error found by spectre during IC analysis, during
transient analysis "mytran'.

"acosh.va" 20: rl: negative argument passed to “sqgrt()'.
(value passed was -1.000000)

The simulation then terminates.

For example, you might have the following in a Spectre control file to ensure that simulation
stops when a domain error occurs.

myoption options ahdldomainerror=error

June 2013 108 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Detecting and Using Events

During a simulation, the simulator generates analog and digital events that you can use to
control the behavior of your modules. The simulator generates some of these events
automatically at various stages of the simulation. The simulator generates other events in
accordance with criteria that you specify. Your modules can detect either kind of event and
use the occurrences to determine whether specified statements run.

This chapter discusses the following kinds of events

Initial_step Event on page 111
Final_step Event on page 112

Cross Event on page 113
Above Event on page 114
Absdelta Event on page 116

Timer Event on page 117

The Cadence Verilog®-AMS language also supports events for digital contexts. For more
information, see the “Event Control” section in the “Behavioral Modeling” chapter of the
Verilog-XL Reference.

June 2013 109 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Detecting and Using Events

Detecting and Using Events

Use the @ operator to run a statement under the control of particular events.
event control statement ::=
@ (event expr) statement ;

event expr ::=
simple event [or event expr]

simple event ::=
initial step event

| final step event

| cross_event

| timer event

| expression event

| named event

| posedge_event

| negedge event

statement is the statement controlled by event_expr. The statement must not be a
contribution statement and must not contain any analog operators. The statement:

m Cannot include expressions that use analog operators.

m Cannot be a contribution statement.

simple_event is an event that you want to detect. The behavior depends on the context:

B Inthe analog context, when, and only when, simple_event occurs, the simulator runs
statement. Otherwise, statement is skipped. The kinds of simple events are
described in the following sections.

B In the digital context, processing of the block is prevented until the event expression
evaluates to true.

If you want to detect more than one kind of event, you can use the event or operator. Any one
of the events joined with the event or operator causes the simulatorto run statement. The
following fragment, for example, sets vV (out) to zero or one at the beginning of the analysis
and at any time vV (sample) crosses the value 2.5.

analog begin
@(initial step or cross(V(sample)-2.5, +1)) begin

vout = (V(in) > 2.5) ;
end
V(out) <+ wvout ;
end
For information on See
initial_step_event “Initial_step Event” on page 111
June 2013 110 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Detecting and Using Events

For information on See

final_step_event “Final_step Event” on page 112

cross_event “Cross Event” on page 113

above_event “Above Event’ on page 114

timer_event “Timer Event” on page 117

expression_event “Event Control” in Chapter 8 of Verilog-XL
Reference

named_event “Event Control” in Chapter 8 of Verilog-XL
Reference

posedge_event “Event Control” in Chapter 8 of Verilog-XL
Reference

negedge_event “Event Control” in Chapter 8 of Verilog-XL
Reference

Initial_step Event

The simulator generates an initial_step event during the solution of the first point in specified
analyses, or, if no analyses are specified, during the solution of the first point of every
analysis. Use the initial_step event to perform an action that should occur only at the
beginning of an analysis.
initial step event ::=

initial_step [(analysis list)]

analysis list ::=
analysis name { , analysis name }

analysis name ::=

"analysis_identifier"
If the string in analysis_identifier matches the analysis being run, the simulator
generates an initial_step event during the solution of the first point of that analysis. If you do
not specify analysis_1list, the simulator generates an initial_step event during the
solution of the first point, or initial DC analysis, of every analysis.

In this release of Verilog-AMS, the initial_step event is supported for the ac, noise, tran,
and dc sweep analyses.

The initial_step event is predefined, so you cannot redefine it in your model.

You can detect initial_step events only from within the analog block.

June 2013 111 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Detecting and Using Events

Final_step Event

The simulator generates a final_step event during the solution of the last point in specified
analyses, or, if no analyses are specified, during the solution of the last point of every
analysis. Use the final_step event to perform an action that should occur only at the end of
an analysis.
final step event ::=

final step [(analysis list)]

analysis list ::=
analysis name { , analysis name }

analysis name ::=
"analysis_identifier"

If the string in analysis_identifier matches the analysis being run, the simulator
generates a final_step event during the solution of the last point of that analysis. If you do not
specify analysis_1list, the simulator generates a final_step event during the solution of
the last point of every analysis.

In this release of Verilog-AMS, the final_step event is supported for the ac, noise, tran, and
dc sweep analyses.

The final_step event is predefined, so you cannot redefine it in your model.
You can detect final_step events only from within the analog block.

You might use the final_step event to print out the results at the end of an analysis. For
example, module bit_error_rate measures the bit-error of a signal and prints out the
results at the end of the analysis. (This example also uses the timer event, which is discussed
in “Timer Event” on page 117.)

module bit error rate (in, ref) ;
input in, ref ;
electrical in, ref ;
parameter real period=1l, thresh=0.5 ;
integer bits, errors ;
analog begin
@(initial step) begin
bits = 0 ;
errors = 0 ; // Initialize the variables
end
@(timer (0, period)) begin
if ((V(in) > thresh) != (V(ref) > thresh))
errors = errors + 1; // Check for errors each period

bits = bits + 1 ;
end
@(final step)
Sstrobe ("Bit error rate = $£f%%", 100.0 * errors/bits);
end
endmodule
June 2013 112 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Detecting and Using Events

Cross Event

According to criteria you set, the simulator can generate a cross event when an expression
crosses zero in a specified direction. Use the cross function to specify which crossings
generate a cross event.

cross_function ::=

cross (exprl [, direction [, time tol [, expr tol]]])
direction ::=

+1 | 0 | -1
time tol ::=

expr2
expr tol ::=

expr3

exprl is the real expression whose zero crossing you want to detect.

direction is an integer expression set to indicate which zero crossings the simulator
should detect.

If you want to Then

Detect all zero crossings Do not specify direction, or set
direction equalto0

Detect only zero crossings where the Setdirection equal to +1
value is increasing

Detect only zero crossings where the Setdirection equalto -1
value is decreasing

time_tol is a constant expression with a positive value, which is the largest time interval
that you consider negligible. The default value is 1.0s, which is large enough that the
tolerance is almost always satisfied.

expr_tol is aconstant expression with a positive value, which is the largest difference that
you consider negligible. If you specify expr_tol, bothitand time_tol must be satisfied.
If you do not specify expr_tol, the simulator uses the default expr_tol value of

le-9 + reltol*max value of the signal

In addition to generating a cross event, the cross function also controls the time steps to
accurately resolve each detected crossing.

The cross function is subject to the restrictions listed in “Restrictions on Using Analog
Operators” on page 152.

June 2013 113 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Detecting and Using Events

The following example illustrates how you might use the cross function and event. The
cross function generates a cross event each time the sample voltage increases through the
value 2.5. expr_tol is specified as the abstol associated with the potential nature of the
net sample.

module samphold (in, out, sample) ;

output out ;

input in, sample ;

electrical in, out, sample ;
real hold ;

analog begin
@(cross (V(sample)-2.5, +1, 0.0ln, sample.potential.abstol))
hold = V(in) ;
V(out) <+ transition(hold, 0, 10n) ;
end
endmodule

Above Event

According to criteria you set, the simulator can generate an above event when an expression
becomes greater than or equal to zero. Use the above function to specify when the simulator
generates an above event. An above event can be generated and detected during
initialization. By contrast, a cross event can be generated and detected only after at least one
transient time step is complete.

The above function is a Cadence language extension.

above function ::=
above (exprl [, time tol [, expr tol]])

time tol ::=
expr2

expr_tol ::=
expr3

exprl is a real expression whose value is to be compared with zero.

time_tol is a constant real expression with a positive value, which is the largest time
interval that you consider negligible.

expr_tol is a constant real expression with a positive value, which is the largest difference
that you consider negligible. If you specify expr_tol, both it and time_tol must be
satisfied. If you do not specify expr_tol, the simulator uses the value of its own reltol
parameter.

During a transient analysis, after t = 0, the above function behaves the same as a cross
function with the following specification.

cross(exprl , 1 , time tol, expr tol)

June 2013 114 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Detecting and Using Events

During a transient analysis, the above function controls the time steps to accurately resolve
the time when expr1 rises to zero or above.

The above function is subject to the restrictions listed in “Restrictions on Using Analog
Operators” on page 152.

The following example illustrates how you might use the above function. The function
generates an above event each time the analog voltage increases through the value 3.5 or
decreases through the value 1.5.

connectmodule elect2logic 2 (aVal, dval);
input aval; B
output dval;
electrical aval;
logic dval;
parameter real thresholdLo
parameter real thresholdHi

w
[G@)]
~e N

integer ival;
assign dval = ival; // direct driver/receiver propagation
always @ (above(V(aVal) - thresholdHi))
ival = 1’'bl;
always @ (above (thresholdLo - V(aVal)))
ival = 1'b0;

endmodule

The usefulness of the above function becomes apparent when elect2logic is inserted
across the in port of the inv I1 instance in the following module.
module top;

electrical src, gnd;

logic out;
ground gnd;

vsource #(.dc(5)) V1(src,gnd);
inv Il(src,out);

endmodule

module inv (in,out);
input in;
output out;

assign out = !in;
endmodule

The modules describe a circuit where an analog DC voltage source, V1, generates a constant
5 volt signal that drives a digital inverter. Using the above function in elect2logic sets the
values correctly at the end of the initialization. However, if the above function is replaced with
the cross function, the value of out is set to 1’b1 at the end of the initialization and retains
that value throughout the transient analysis. This incorrect result is caused by the fact that
cross events cannot be generated or detected during initialization.

June 2013 115 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Detecting and Using Events

Absdelta Event

According to the criteria you set, the simulator can generate an absdelta event when an
analog signal changes more than a specified amount, a capability that is typically used to
discretize analog signals. Use the absdelta function to specify when the simulator
generates an absdelta event.

You can use the absdel ta function only with the AMS Designer simulator using the
simulation front end (SFE) parser or the AMS Designer simulator using the UltraSim solver.
You must use this function only in an always block.

absdelta function ::=
absdelta (expr, delta [, time_tol [, expr_tol 11)

expr is an analog signal expression.

delta is a real expression specifying an amount of change in the value of expr. The
simulator generates an event when the exp r value changes more than del ta plus or minus
expr_tol, relative to the expr value at the previous event time.

time_tol is a real expression specifying a time increment after the previous time point.
When the current time is within t ime_ t o1 of the previous event time, no event is generated.
If time_tol is not specified, the default value is the time precision of the digital simulation.
A specified t ime_ tol that is smaller than the time precision is ignored and the time
precision is used instead.

expr_tol is a real expression, which is the largest difference in expr that you consider
negligible. If you do not specify expr_ t o1, the simulator uses the absolute voltage tolerance
(vabstol) of the analog solver.

The absdelta function generates events for the following times and conditions.
m Attime zero.
B Atthe time when the analog solver finds a stable solution during initialization.

B When the expr value changes more than del ta plus or minus expr_ tol, relative to
the previous absdelta event (but not when the current time is within t ime_ to1 of the
previous absdelta event).

B When expr changes direction (but not when the amount of the change is less than
expr_tol).

The following module describes an event-driven electrical to wreal conversion where the
absdelta function is used to determine when the electrical input signal is converted to a
wreal output signal.

June 2013 116 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Detecting and Using Events

‘include "disciplines.vams"

‘timescale 1ns / 100ps

module electrical to wreal (e _in, r out);
input e in;

output r out;

electrical e in;

wreal r out;

parameter real vdelta=0.1 from (0:inf); // voltage delta
parameter real ttol=ln from (0:1m]; // time tolerance
parameter real vtol=0.01 from (0:inf); // voltage tolerance

real sampled;
assign r out = sampled;

always @(absdelta(V(e in), vdelta, ttol, vtol))
sampled = V(e in);

endmodule

Without proper tolerances, the absdel ta function might attempt to generate a large number
of events when:

B the signal sampled by absdelta changes dramatically at a specific time step.

B you specify a very small signal delta value as the second argument to the absdelta
function.

Generation of a large number of events might significantly slow down the simulation, and in
some cases, might even exhaust the system memory and crash the simulation. To handle
such situations, the simulator ensures that no two events are generated within the span of the
time tolerance time_tol. The default and the minimal time tolerance is the time precision of
the digital simulation. A cap is also placed on how many events can be generated in a single
time step.

In addition, whenever a large number of events are to be generated, a warning message is
issued. This message includes infomation such as the instance name, the Verilog-AMS
source file name, and the line number where the problematic absdelta is used. The message
also provides suggestions on how to correct or improve the code.

A warning message is also issued whenever you specify the time tolerance to be less than
the time precision of the digital simulation. In this case, the specification is ignored and the
time precision of the digital simulation is used as the time tolerance.

Timer Event
According to criteria you set, the simulator can generate a timer event at specified times
during a simulation. Use the timer function to specify when the simulator generates a timer

event.

Do not use the timer function inside conditional statements.

June 2013 117 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Detecting and Using Events

timer function ::=
timer (start_time [, period [, timetol]])

start_time is a dynamic expression specifying an initial time. The simulator places a first
time step at, or just beyond, the start_time that you specify and generates a timer event.

period is a dynamic expression specifying a time interval. The simulator places time steps
and generates events at each multiple of period after start_time.

timetol is a constant expression specifying how close a placed time point must be to the
actual time point.

The module squarewave, below, illustrates how you might use the timer function to generate
timer events. In squarewave, the output voltage changes from positive to negative or from
negative to positive at every time interval of period/2.

module squarewave (out)
output out ;

electrical out ;
parameter period = 1.0 ;
integer x ;

analog begin

@(initial step) x =1 ;

@(timer (0, period/2)) x = -x ;

V(out) <+ transition(x, 0.0, period/100.0) ;
end
endmodule

June 2013 118 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Simulator Functions

This chapter describes the Cadence® VeriIog®-AMS language simulator functions. The
simulator functions let you access information about a simulation and manage the
simulation’s current state. You can also use the simulator functions to display and record
simulation results.

For information about using simulator functions, see

B Announcing Discontinuity on page 121
m Bounding the Time Step on page 123

Finding When a Signal Is Zero on page 124

Querying the Simulation Environment on page 125
Obtaining and Setting Signal Values on page 127
Determining the Current Analysis Type on page 135

Examining Drivers on page 132
Implementing Small-Signal AC Sources on page 136

Implementing Small-Signal Noise Sources on page 136

[
[
[
[
[
[
[
m Generating Random Numbers on page 138

m Generating Random Numbers in Specified Distributions on page 139
B Interpolating with Table Models on page 145

For information on analog operators and filters, see

B Limited Exponential Function on page 153
m Time Derivative Operator on page 153

m Time Integral Operator on page 154

m Circular Integrator Operator on page 155

June 2013 119 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Delay Operator on page 158

Transition Filter on page 159

Slew Filter on page 163

Implementing Laplace Transform S-Domain Filters on page 164
Implementing Z-Transform Filters on page 170

For descriptions of functions used to control input and output, see

m Displaying Results on page 174
m Working with Files on page 180

For descriptions of functions used to control the simulator, see

m Exiting to the Operating System on page 185

For a description of the $pwr function, which is used to specify power consumption in a
module, see

m Specifying Power Consumption on page 179

For information on using user-defined functions in the Verilog-AMS language, see

m Declaring an Analog User-Defined Function on page 187

m Calling a User-Defined Analog Function on page 188

June 2013 120 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Announcing Discontinuity

Use the $discontinuity function to tell the simulator about a discontinuity in signal
behavior.

discontinuity function ::=
$discontinuity| (constant_expression) |

constant_expression, which must be zero or a positive integer, is the degree of the
discontinuity. For example, $discontinuity, whichis equivalentto $discontinuity (0),
indicates a discontinuity in the equation, and $sdiscontinuity (1) indicates a discontinuity
in the slope of the equation.

You do not need to announce discontinuities created by switch branches or built-in functions
such as transition and slew.

Be aware that using the $discontinuity function does not guarantee that the simulator
will be able to handle a discontinuity successfully. If possible, you should avoid discontinuities
in the circuits you model.

The following example shows how you might use the $discontinuity function while
describing the behavior of a source that generates a triangular wave. As the Triangular Wave
figure on page 121 shows, the triangular wave is continuous, but as the Triangular Wave First
Derivative figure on page 121 shows, the first derivative of the wave is discontinuous.

Triangular Wave

Triangular Wave First Derivative

The module trisource describes this triangular wave source.

module trisource (vout) ;

output vout ;

voltage vout ;

parameter real wavelength = 10.0, amplitude = 1.0 ;
integer slope ;

real wstart ;

June 2013 121 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

analog begin
@(timer (0, wavelength)) begin
slope = +1 ;

wstart = S$Sabstime ;

Sdiscontinuity (1); // Change from neg to pos slope
end
@ (timer (wavelength/2, wavelength)) begin

slope = -1 ;

wstart = Sabstime ;

Sdiscontinuity (1); // Change from pos to neg slope
end

V(vout) <+ amplitude * slope * (4 * (Sabstime - wstart) / wavelength-1) ;
end
endmodule

The two $discontinuity functions in trisource tell the simulator about the
discontinuities in the derivative. In response, the simulator uses analysis techniques that take
the discontinuities into account.

The module relay, as another example, uses the $discontinuity function while
modeling a relay.

module relay (cl, c2, pin, nin) ;
inout cl, c2 ;
input pin, nin ;
electrical cl, c2, pin, nin ;
parameter real r = 1 ;
analog begin
@(cross(V(pin, nin) - 1, 0, 0.0ln, pin.potential.abstol)) S$discontinuity(0);
if (V(pin, nin) >= 1)
I(cl, c2) <+ V(cl, c2) / r ;
else
I(cl, c2) <+ 0 ;
end
endmodule

The $discontinuity functionin relay tells the simulator that there is a discontinuity in the
current when the voltage crosses the value 1. For example, passing a triangular wave like that
shown in the Relay Voltage figure on page 122 through module relay produces the
discontinuous current shown in the Relay Current figure on page 123.

Relay Voltage

Voltage

June 2013 122 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Relay Current

Lo A

Current

Bounding the Time Step

Use the sbound_step function to specify the maximum time allowed between adjacent time
points during simulation.
bound step function ::=

$bound_step (max step)

max step ::=
constant expression

By specifying appropriate time steps, you can force the simulator to track signals as closely
as your model requires. For example, module sinwave forces the simulator to simulate at
least 50 time points during each cycle.

module sinwave (outsig) ;

output outsig ;

voltage outsig ;
parameter real freq = 1.0, ampl = 1.0 ;

analog begin
V(outsig) <+ ampl * sin(2.0 * ‘M PI * freq * Sabstime) ;
$bound_step(0.02 / freq) ; // Max time step = 1/50 period
end
endmodule

Announcing and Handling Nonlinearities

Use the $1imit function to announce nonlinearities that are other than exponential. This
information is used to improve convergence.
limit call function ::=

$limit (access function reference)

| $1limit (access function reference, string, arg list)
| $limit (access function reference, analog function ID, arg list)

access_function_reference is the reference that is being limited.

string is a built-in simulator function that you recommend be used to compute the return
value. In this release, the syntax of string is not checked.

June 2013 123 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

analog_function_ID is a user-defined analog function that you recommend be used to
compute the return value. In this release, the syntax of analog_function_ID is not
checked.

arg_list is a list of arguments for the built-in or user-defined function. In this release, the
syntax of arg_1ist is not checked.

Note: Although the $1imit function is allowed, Cadence tools, in this release, do nothing
with the information. Consequently, coding

vdio = $limit(V(a,c), spicepnjlim, $vt, vcrit);
is equivalent to coding

vdio = V(a,c);

Finding When a Signal Is Zero

Use the last_crossing function to find out what the simulation time was when a signal
expression last crossed zero.

last crossing function ::=
last_crossing (signal_expression , direction)

Set direction toindicate which crossings the simulator should detect.

If you want to Then

Detect all crossings Set directionequalto0

Detect only crossings where the value is Set direction equal to +1
increasing

Detect only crossings where the value is Set direction equalto -1
decreasing

Before the first detectable crossing, the 1ast_crossing function returns a negative value.

The last_crossing function is subject to the restrictions listed in “Restrictions on Using
Analog Operators” on page 152.

The last_crossing function does not control the time step to get accurate results and uses
interpolation to estimate the time of the last crossing. To improve the accuracy, you might
want to use the last_crossing function together with the cross function.

June 2013 124 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

For example, module period calculates the period of the input signal, using the cross
function to resolve the times accurately.

module period (in) ;
input in ;

voltage in ;

integer crosscount ;
real latest, earlier ;

analog begin
@(initial step) begin
crosscount = 0 ;
earlier = 0 ;
end

@(cross(V(in), +1)) begin
crosscount = crosscount + 1 ;
earlier = latest ;
end
latest = last crossing(V(in), +1) ;
@(final step) begin
if (crosscount < 2)
$strobe ("Could not measure the period.™) ;
else
Sstrobe ("Period = %g, Crosscount = %d", latest-earlier, crosscount) ;
end
end
endmodule

Querying the Simulation Environment

Use the simulation environment functions described in the following sections to obtain
information about the current simulation environment.

Obtaining the Current Simulation Time

Verilog-AMS provide two environment parameter functions that you can use to obtain the
current simulation time: sabstime and $realtime.

$abstime Function

Use the $abstime function to obtain the current simulation time in seconds.

abstime function ::=
$abstime

$realtime Function

Use the $realtime function to obtain the current simulation time in seconds.

June 2013 125 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

realtime function ::=
$Srealtime[(time_scale)]

time_scaleis avalue used to scale the returned simulation time. The valid values are the
integers 1, 10, and 100, followed by one of the scale factors in the following table.

Scale Factor Meaning

s Seconds

ms Milliseconds
us Microseconds
ns Nanoseconds
ps Picoseconds
fs Femtoseconds

If you do not specify t ime_scale, the return value is scaled to the ‘time_unit of the
module that invokes the function.

For example, to print out the current simulation time in seconds, you might code

Sstrobe ("Simulation time = %e", Srealtime(ls))

Obtaining the Current Ambient Temperature

Use the $temperature function to obtain the ambient temperature of a circuit in degrees
Kelvin.

temperature function ::=
$temperature

Obtaining the Thermal Voltage

Use the $vt function to obtain the thermal voltage, (kT/q), of a circuit.

vt function ::=

$vt([(temp)]
temp is the temperature, in degrees Kelvin, at which the thermal voltage is to be calculated.
If you do not specify temp, the thermal voltage is calculated at the temperature returned by
the $temperature function.

June 2013 126 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Querying the scale, gmin, and iteration Simulation Parameters

Use the $simparam function to query the value of the scale, gmin, or iteration
simulation parameters. The returned value is always a real value.

simparam function ::=
$simparam ("param"™ [, expression])

param is one of the following simulation parameters.

Simulation Parameter Meaning

scale Scale factor for device instance geometry parameters.

gmin Minimum conductance placed in parallel with nonlinear
branches.

iteration lteration number of the analog solver.

expression is an expression whose value is returned if param is not recognized.

For example, to return the value of the simulation parameter named gmin, you might code

Sstrobe ("gmin = %e", S$simparam("gmin"))

To specify that a value of 2.0 is to be returned when the specified simulation parameter is not
found, you might code

$strobe ("gmin = %e", S$simparam("gmin", 2.0)) ;

Obtaining and Setting Signal Values

Use the access functions to obtain or set the signal values.

access_function reference ::=
bvalue
| pvalue

bvalue ::=
access_identifier (analog signal list)

analog signal list ::=
~ branch_identifier
| array branch identifier [genvar expression]
| net or port scalar expression
| net or port scalar expression , net or port scalar expression

net or port scalar expression ::=
net_or_port_identifier
| vector_net_or_port_identifier [genvar expression]

pvalue ::=
flow_access_identifier (<port scalar expression>)

June 2013 127 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

port scalar expression ::=
port_identifier
| array_port_identifier [constant_expression]
| vector_port_identifier [constant_expression]

Access functions in Verilog-AMS take their names from the discipline associated with a node,
port, or branch. Specifically, the access function names are defined by the access attributes
specified for the discipline’s natures.

For example, the electrical discipline, as defined in the standard definitions, uses the
nature voltage for potential. The nature voltage is defined with the access attribute
equal to v. Consequently, the access function for electrical potential is named v. For more
information, see the files installed in your_install_dir/tools/spectre/etc/ahdl.

To set a voltage, use the v access function on the left side of a contribution statement.

V(out) <+ I(in) * Rparam ;

To obtain a voltage, you might use the v access function as illustrated in the following
fragment.

I(cl, c2) <+ V(cl, c2) / r ;

The simulator provides specialized support for obtaining (from analog contexts only) the
voltages of nets or ports specified by out-of-module references. For example, you can use a
block like the following:

analog begin
tmp _a b = V(top.levell.level2.node a, top.levell.level2.node b);

tmp a = V(top.levell.level2.node a);

tmp ¢ b = V(top.levell.level2.node c[1l], top.levell.levelZ.node b[l]);

S$display("tmp a b = %g, tmp a = %g, tmp c b =%g\n", tmp a b, tmp a, tmp c b);

end

If you want to set the voltage on a net or port that is an out-of-module reference, you must be
sure to define the discipline of that net or port explicitly as electrical. For example:

// Contents of oomr.v
“include "disciplines.vams"

module top;

electrical a; // node a referenced in module sub
electrical gnd;

sub (* integer library binding = "work 1lib"; *) Isub ();
resistor #(.r(1.000)) (* integer library binding = "analogLib"; *) Rl (a, gnd);
analog begin

V(gnd) <+ 0.0;

V(Isub.b) <+ 18.0; // out-of-module reference to node b,

// explicitly declared as electrical in module sub
end
endmodule

June 2013 128 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

// Contents of sub.v
“include "disciplines.vams"

module sub;
electrical b; // node b referenced in module top

electrical gnd;
resistor #(.r(1.000)) (* integer library binding = "analogLib"; *) R1 (b ,gnd);

analog begin
V(top.a) <+ 17.0; // out-of-module reference to top.a,
// explicitly declared as electrical in module top
V(gnd)<+ 0.0;
end

endmodule

The simulator provides limited support for obtaining (from analog contexts only) the currents
of nets or ports specified by out-of-module references. For more information, see “Obtaining
Currents Using Out-of-Module References” on page 131.

You can apply access functions only to scalars or to individual elements of a vector. You select
the scalar element of a vector using an index. For example, vV (in[1]) accesses the voltage
in[1].

To see how you can use access functions, see the “Access Function Formats” table, below.
In the table, b1 refers to a branch, n1 and n2 refer to either nodes or ports, and p1 refers to
a port. The branches, nodes, and ports in this table belong to the electrical discipline,
where v is the name of the access function for the voltage (potential) and I is the name of the
access function for the current (flow). Access functions for other disciplines have different
names, but you use them in the same ways. For example, MMF is the access function for
potential in the magnetic discipline.

Access Function Formats

Format Effect

V(bl) Accesses the potential across branch b1

V(nl) Accesses the potential of n1 relative to ground

V(nl,n2) Accesses the potential difference on the unnamed branch between
nl and n2

I(bl) Accesses the current on branch b1

I(nl) Accesses the current flowing from n1 to ground

T(nl, n2) Accesses the current flowing on the unnamed branch between n1

and n2; node nl1 and node n2 cannot be the same node

June 2013 129 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Access Function Formats, continued

Format Effect

I(<pl>) Accesses the current flow into the module through port p1.

Notice the use of the port access operator (<>) in the last format. The port identifier in a port
access function must be a scalar or resolve to a constant node of a bus port accessed by a
constant expression. You cannot use the port access operator to access potential, nor can
you use the port access operator on the left side of a contribution operator. You can use the
port access operator only in modules that do not instantiate sub-hierarchies or primitives.

You can use a port access to monitor the flow. In the following example, the simulator issues
a warning if the total diode current becomes too large.

module diode (a, c) ;

electrical a, c ;

branch (a, c) diode, cap ;

parameter real is=le-14, tf=0, cjo=0, imax=1l, phi=0.7 ;

analog begin
I(diode) <+ is* (limexp (V(diode)/S$vt) -1) ;
I(cap) <+ ddt(tf*I(diode) - 2 * cjo * sgrt(phi * (phi * V(cap))))
if (I(<a>) > imax) // Checks current through port
$strobe("Warning: diode is melting!")
end
endmodule

June 2013 130 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Obtaining Currents Using Out-of-Module References

Use the Cadence-provided system task $cds_iprobe to return the current of an out-of-
module port.

OOM current reference ::=
$cds_iprobe("hierarchical_ name"™)

hierarchical_name is the hierarchical name of the out-of-module scalar port or
individual bit of a vector port whose current you want to access.

The $cds_iprobe task is subject to the following limitations:

B The returned value is always the value at the last accepted simulation point. The value
remains constant until the next simulation point is accepted. As a consequence, you
cannot use the $cds_iprobe task to model a source for a current controlled device.

B The $cds_iprobe task can be used only in analog contexts.

B The scds_iprobe task can be used only when the Spectre solver is active. This task
cannot be used with the UltraSim solver, nor with the ncelab -amsfastspice option.

B You must have an active Tcl current probe set up to probe the current that the
$cds_iprobe task returns.

For example, you set up a Tcl probe with the following command.

ncsim> probe -create -flow -shm -port top.Il

You create and simulate the following modules:

module top;
electrical a, gnd;
ground gnd;
real x;
vsource #(.type("sine"), .ampl(ll), .freg(lk)) V1(a,gnd);
leaf 11 (a,gnd);
analog begin

// The top.Il.a below is an out-of-module reference.
$display ("I<top.ll.a>=%g\n", $cds iprobe ("top.ll.a"));
end
endmodule

module leaf (a,b):;

electrical a, b;

resistor #(.r(1.0)) rl(a,b);
Endmodule

The $display statement in the analog block displays the current of port a in the instance of
the 1eaf module.

June 2013 131 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Accessing Attributes

Use the hierarchical referencing operator to access the attributes for a node or branch.
attribute reference ::=
node_identifier.pot or flow.attribute_identifier

pot or flow ::=
potential
| flow

node_identifier isthe node or branch whose attribute you want to access.
attribute_identifier is the attribute you want to access.

For example, the following fragment illustrates how to access the abstol values for a node and
a branch.
electrical a, b, nl, n2;
branch (nl, n2) cap ;
parameter real c= 1lp;
analog begin
I(a,b) <+ c*ddt(V(a,b), a.potential.abstol) ; // Access abstol for node

I(cap) <+ c*ddt(V(cap), nl.potential.abstol) ; // Access abstol for branch
end

Examining Drivers

A driver of a signal is one of the following:
B A process that assigns a value to the signal

B A connection of the signal to an output port of a module instance or simulation primitive

Each driver can have both a present value and a pending value. The present value is the
present contribution of the driver to the signal. The pending value is the next scheduled
contribution, if any, of the driver to the signal.

The drivers associated with a signal are numbered from zero to one less than the number of
drivers. For example, if there are five associated drivers, then they have the numbers 0, 1, 2,
3, and 4.

The next sections describe the Verilog-AMS driver access functions you can use to create
connect modules that are controlled by the digital drivers in ordinary modules. Note that

m Driver access functions (including the driver_update event keyword) can be used
only in the digital behavioral blocks of connect modules. They cannot be used in ordinary
modules.

June 2013 132 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

m Driver access functions (including the driver_update event keyword) are sensitive to
drivers of only ordinary modules

B . These functions automatically ignore any drivers found inside connect modules.

Counting the Number of Drivers

Use the Sdriver_count function to determine how many drivers are associated with a
specified digital signal.

driver count function ::=
$driver_count (signal)

signal is the name of the digital signal.

The sdriver_count function returns an integer, which is the number of drivers associated
with signal.

Determining the Value Contribution of a Driver

Use the driver_state function to determine the present value contribution of a specified
driver to a specified signal.

driver state function ::=
$driver_state (signal , driver_index)

signal is the name of the digital signal.

driver_indexis an integer number between 0 and N-1 where N is the total number of
drivers contributing to the signal value.

The driver_state function returns one of the following state values: 0, 1, x, or z.

Determining the Strength of a Driver

Use the driver_strength function to determine the strength contribution of a specified
driver to a specified signal.

driver strength function ::=
$driver_strength (signal , driver_index)

signal is the name of the digital signal.

driver_indexis an integer number between 0 and N-1 where N is the total number of
drivers contributing to the signal value.

June 2013 133 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

The driver_strength function returns two strengths: bits 5 through 3 for strength0 and
bits 2 through O for strengthl.

If the value returned is 0 or 1, strengthO returns the high end of the strength range and
strengthl returns the low end of the strength range. Otherwise, the strengths of both
strength0 and strengthl are defined as shown below.

strengthO strength1

Bits|7 6 5 |4 |3 2 |1 0 0 1 2 3 4 5 |6 |7 |Bits
Su0 |St0 |Pu0 |La0 |We0|MeO | SmO |HiZ0 |HiZ1 |Sm1|Mel |Wel|Lal (Putl |St1 |Sui

B5 |1 1 1 i |0 0 |0 O 0 o o0 |0 |1 1 1 1 B2
B4 |1 1 0 0 |1 1 0 |0 0 o |1 1 10 0 |1 1 |B1
B3 /1 [0 1 0 |1 |0 |1 0 0 i 0 |1 |0 |1 |0 |1 |BO

For more information, see the “Logic Strength Modeling” section, of the “Gate and Switch
Level Modeling” chapter, in the Verilog-XL Reference.

Detecting Updates to Drivers

Use the driver_update event keyword to determine when a driver of a signal is updated
by the addition of a new pending value.

driver update event keyword ::=
driver_ update (signal)

signal is the name of the digital signal.

The driver_update event occurs any time a new pending value is added to the driver, even
when there is no change in the resolved value of the signal.

Use the driver_update event keyword in conjunction with the event detection operator to
detect updates. For example, the statement in the following code executes any time a driver
of the clock signal is updated.

always @ (driver update clock)
statement ;

June 2013 134 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Analysis-Dependent Functions

The analysis-dependent functions change their behavior according to the type of analysis
being performed.

Determining the Current Analysis Type

Use the analysis function to determine whether the current analysis type matches a
specified type. By using this function, you can design modules that change their behavior
during different kinds of analyses.

analysis (analysis list)

analysis list ::=
analysis name { , analysis name }

analysis name ::=
"analysis_type"

analysis_type is one of the following analysis types.

Analysis Types and Descriptions

Analysis Type Analysis Description
dc OP or DC analysis
static Any equilibrium point calculation, including a DC analysis as well as

those that precede another analysis, such as the DC analysis that
precedes an AC or noise analysis, or the initial-condition analysis that
precedes a transient analysis

tran Transient analysis

The following table describes the values returned by the analysis function for some of the
commonly used analyses. A return value of 1 represents TRUE and a value of 0 represents
FALSE.

Simulator Analysis Type

Arqument DC TRAN AC NOISE
9 OP TRAN oP AC oP AC
static 1 1 0 1
ic 0 1 0 0 0 0
June 2013 135 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Simulator Analysis Type

Argument DC TRAN AC NOISE
oP TRAN OP AC OP AC
dc 1 0 0 0 0 0 0
tran 0 1 1 0 0 0 0
ac 0 0 0 1 1 0 0
noise 0 0 0 0 0 1 1

You can use the analysis function to make module behavior dependent on the current
analysis type.

if (analysis ("dc", "ic"))
out = ! V(in) > 0.0 ;
else
@(cross (V(in),0)) out = ! out

V(out) <+ transition (out, 5n, 1n, 1n) ;

Implementing Small-Signal AC Sources
Use the ac_stim function to implement a sinusoidal stimulus for small-signal analysis.
ac_stim (["analysis_type" [, mag [, phasell])

analysis_ type, if you specify it, must be one of the analysis types listed in the Analysis
Types and Descriptions table on page 135. The defaultfor analysis_typeisac. The mag
argument is the magnitude, with a default of 1. phase is the phase in radians, with a default
of 0.

The ac_stim function models a source with magnitude mag and phase phase only during
the analysis_ type analysis. During all other small-signal analyses, and during large-
signal analyses, the ac_stim function returns 0.

Implementing Small-Signal Noise Sources

Verilog-AMS provides three functions to support noise modeling during small-signal
analyses:

B white_noise function
B flicker_noise function

B noise_ table function

June 2013 136 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

White_noise Function

Use the white_noise function to generate white noise, noise whose current value is
completely uncorrelated with any previous or future values.

white _noise(PSD [, "name"])

PSD is the power spectral density of the source where PSD is specified in units of A% /Hz or
2
V*/Hz.

name is a label for the noise source. The simulator uses name to identify the contributions of
noise sources to the total output noise. The simulator combines into a single source all noise
sources with the same name from the same module instance.

The white_noise function is active only during small-signal noise analyses and returns 0
otherwise.

For example, you might include the following fragment in a module describing the behavior of
a diode.

I(diode) <+ white noise(2 * ‘P Q * Id, "shot") ;

For a resistor, you might use a fragment like the following.

V(res) <+ white noise(4 * ‘P K * Stemperature * rs, "thermal");

flicker_noise Function

Use the flicker_noise function to generate pink noise that varies in proportion to:
1/£%P

The syntax for the f1icker_noise function is

flicker_noise(power, exp [, "name"])

power is the power of the source at 1 Hz.

name is a label for the noise source. The simulator uses name to identify the contributions of
noise sources to the total output noise. The simulator combines into a single source all noise
sources with the same name from the same module instance.

The flicker_noise function is active only during small-signal noise analyses and returns
0 otherwise.

June 2013 137 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

For example, you might include the following fragment in a module describing the behavior of
a diode:

I(diode) <+ flicker noise(kf * pow(abs (I (diode)),af),ef)

Noise table Function

Use the noise_table function to generate noise where the spectral density of the noise
varies as a piecewise linear function of frequency.

noise_table(vector [, "name"™ 1)

vector is an array containing pairs of real numbers. The first number in each pair is a
frequency in hertz; the second number is the power at that frequency. The noise_table
function uses linear interpolation to compute the spectral density for each frequency. At
frequencies lower than the lowest frequency specified in the table, the associated power is
assumed to be the power associated with the lowest specified frequency. Similarly, at
frequencies higher than the highest frequency specified in the table, the associated power is
assumed to be the power associated with the highest specified frequency.

name is a label for the noise source. The simulator uses name to identify the contributions of
noise sources to the total output noise. The simulator combines into a single source all noise
sources with the same name from the same module instance.

The noise_table function is active only during small-signal noise analyses and returns 0
otherwise.

For example, you might include the following fragment in an analog block:
V(p,n) <+ noise table({1,2,100,4,1000,5,1000000,6}, "noitab");

In this example, the power at every frequency lower than 1 is assumed to be 2; the power at
every frequency above 1000000 is assumed to be 6.

Generating Random Numbers

Use the $random function to generate a signed integer, 32-bit, pseudorandom number.
$random [(seed)] :

seed is areg, integer, or time variable used to initialize the function. The seed provides a
starting point for the number sequence and allows you to restart at the same point. If, as

Cadence recommends, you use seed, you must assign a value to the variable before calling
the $random function.

The $random function generates a new number every time step.

June 2013 138 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Individual $random statements with different seeds generate different sequences, and
individual Srandom statements with the same seed generate identical sequences.

The following code fragment uses the absolute value function and the modulus operator to
generate integers between 0 and 99.

// There is a 5% chance of signal loss.
module randloss (pinout) ;

electrical pinout ;

integer randseed, randnum;

analog begin
@ (initial step) begin
randseed = 123 ; // Initialize the seed just once
end
randnum = abs ($random(randseed) % 100) ;
if (randnum < 5)
V(pinout) <+ 0.0 ;
else
V(pinout) <+ 3.0 ;
end // of analog block

endmodule

Generating Random Numbers in Specified Distributions
Verilog-AMS provides functions that generate random numbers in the following distribution
patterns:

Uniform

Normal (Gaussian)

Exponential

Poisson

Chi-square

Student's T

Erlang

In releases prior to IC5.0, the functions beginning with $di st return real numbers rather than
integer numbers. If you need to continue getting real numbers in more recent releases,
change each $dist function to the corresponding srdist function.

June 2013 139 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Uniform Distribution

Use the $rdist_uniform function to generate random real numbers (or the
$dist_uniform function to generate integer numbers) that are evenly distributed
throughout a specified range. The Srdist_uniform function is not supported in digital
contexts.

$rdist uniform (seed , start , end) ;
$dist_uniform (seed , start , end) ;

seed is ascalar integer variable used to initialize the sequence of generated numbers. seed
must be a variable because the function updates the value of seed at each iteration. To
ensure generation of a uniform distribution, change the value of seed only when you initialize
the sequence.

start is an integer or real expression that specifies the smallest number that the
$dist_uniform function is allowed to return. s tart must be smaller than end.

end is an integer or real expression that specifies the largest number that the
$dist_uniform function is allowed to return. end must be larger than start.

The following module returns a series of real numbers, each of which is between 20 and 60
inclusively.

module distcheck (pinout) ;

electrical pinout ;

parameter integer start range = 20 ; // A parameter
integer seed, end range;

real rrandnum ;

analog begin
@ (initial step) begin

seed = 23 ; // Initialize the seed just once
end range = 60 ; // A variable

end

rrandnum = $rdist_uniform(seed, start range, end range);

Sdisplay ("Random number is %g", rrandnum) ;

// The next line shows how the seed changes at each
// iterative use of the distribution function.

Sdisplay ("Current seed is %d", seed) ;

V(pinout) <+ rrandnum ;
end // of analog block

endmodule

Normal (Gaussian) Distribution

Use the $rdist_normal function to generate random real numbers (or the $dist_normal
function to generate integer numbers) that are normally distributed. The $rdist_normal
function is not supported in digital contexts.

June 2013 140 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

$rdist normal (seed , mean , standard deviation) ;
$dist_normal (seed , mean , standard _deviation) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed
must be a variable because the function updates the value of seed at each iteration. To
ensure generation of a normal distribution, change the value of seed only when you initialize
the sequence.

mean is an integer or real expression that specifies the value to be approached by the mean
value of the generated numbers.

standard_deviation is an integer or real expression that determines the width of
spread of the generated values around mean. Using a larger standard_deviation
spreads the generated values over a wider range.

To generate a gaussian distribution, use a mean of 0 and a standard_deviation of 1.
For example, the following module returns a series of real numbers that together form a
gaussian distribution.

module distcheck (pinout) ;

electrical pinout ;

integer seed ;
real rrandnum ;

analog begin
@ (initial step) begin

seed = 23 ;
end
rrandnum = Srdist normal (seed, 0, 1) ;
$display ("Random number is %g", rrandnum) ;

V(pinout) <+ rrandnum ;
end // of analog block

endmodule

Exponential Distribution

Use the Srdist_exponential function to generate random real numbers (or the
$dist_exponential function to generate integer numbers) that are exponentially
distributed. The srdist_exponential function is not supported in digital contexts.

$rdist_exponential (seed , mean) ;
$dist_exponential (seed , mean) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed
must be a variable because the function updates the value of seed at each iteration. To
ensure generation of an exponential distribution, change the value of seed only when you
initialize the sequence.

mean is an integer or real value greater than zero. mean specifies the value to be approached
by the mean value of the generated numbers.

June 2013 141 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

For example, the following module returns a series of real numbers that together form an
exponential distribution.

module distcheck (pinout) ;
electrical pinout ;

integer seed, mean ;

real rrandnum ;

analog begin
@ (initial step) begin

seed = 23 ;

mean = 5 ; // Mean must be > 0
end
rrandnum = $rdist7exponential(seed, mean) ;
$display ("Random number is %g", rrandnum) ;

V(pinout) <+ rrandnum ;
end // of analog block

endmodule

Poisson Distribution

Use the $Srdist_poisson function to generate random real numbers (or the
$dist_poisson function to generate integer numbers) that form a Poisson distribution. The
$rdist_poisson function is not supported in digital contexts.

$rdist_poisson (seed , mean) ;
$dist_poisson (seed , mean) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed
must be a variable because the function updates the value of seed at each iteration. To
ensure generation of a Poisson distribution, change the value of seed only when you initialize
the sequence.

mean is an integer or real value greater than zero. mean specifies the value to be approached
by the mean value of the generated numbers.

For example, the following module returns a series of real numbers that together form a
Poisson distribution.

module distcheck (pinout) ;
electrical pinout ;

integer seed, mean ;

real rrandnum ;

analog begin
@ (initial step) begin

seed = 23 ;

mean = 5 ; // Mean must be > 0
end
rrandnum = Srdist poisson(seed, mean) ;

Sdisplay ("Random number is %g", rrandnum) ;
V(pinout) <+ rrandnum ;
end // of analog block

endmodule

June 2013 142 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Chi-Square Distribution

Use the $Srdist_chi_square function to generate random real numbers (or the
$dist_chi_square function to generate integer numbers) that form a chi-square
distribution. The $rdist_chi_square function is not supported in digital contexts.

$rdist_chi_square (seed , degree_of freedom) ;
$dist_chi_square (seed , degree_of freedom) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed
must be a variable because the function updates the value of seed at each iteration. To
ensure generation of a chi-square distribution, change the value of seed only when you
initialize the sequence.

degree_of_freedomis an integer value greater than zero. degree_of_freedom
determines the width of spread of the generated values. Using a larger
degree_of_freedom spreads the generated values over a wider range.

For example, the following module returns a series of real numbers that together form a
chi-square distribution.

module distcheck (pinout) ;

electrical pinout ;

integer seed, dof ;
real rrandnum ;

analog begin
@ (initial step) begin
seed = 23 ;
dof = 5 ; // Degree of freedom must be > 0
end
rrandnum = Srdist chi square(seed, dof) ;
$display ("Random number is %g", rrandnum) ;
V(pinout) <+ rrandnum ;
end // of analog block

endmodule

Student’s T Distribution

Use the $rdist_t function to generate random real numbers (or the sdist_t function to
generate integer numbers) that form a Student’s T distribution. The srdist_t function is not
supported in digital contexts.

$rdist_t (seed , degree_of freedom) ;
¢dist_t (seed , degree_of freedom) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed
must be a variable because the function updates the value of seed at each iteration. To
ensure generation of a Student’s T distribution, change the value of seed only when you
initialize the sequence.

June 2013 143 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

degree_of_freedomis an integer value greater than zero. degree_of_ freedom
determines the width of spread of the generated values. Using a larger
degree_of_freedom spreads the generated values over a wider range.

For example, the following module returns a series of real numbers that together form a
Student’s T distribution.

module distcheck (pinout) ;
electrical pinout ;

integer seed, dof ;

real rrandnum ;

analog begin
@ (initial step) begin

seed = 23 ;

dof = 15 ; // Degree of freedom must be > 0
end
rrandnum = Srdist t(seed, dof) ;
$display ("Random number is %g", rrandnum) ;

V(pinout) <+ rrandnum ;
end // of analog block

endmodule

Erlang Distribution

Use the srdist_erlang function to generate random real numbers (or the $dist_erlang
function to generate integer numbers) that form an Erlang distribution. The $rdist_erlang
function is not supported in digital contexts.

$rdist_erlang (seed , k , mean) ;
$dist_erlang (seed , k , mean) ;

seed is a scalar integer variable used to initialize the sequence of generated numbers. seed
must be a variable because the function updates the value of seed at each iteration. To
ensure generation of an Erlang distribution, change the value of seed only when you initialize
the sequence.

k is an integer value greater than zero. Using a larger value for k decreases the variance of
the distribution.

mean is an integer or real value greater than zero. mean specifies the value to be approached
by the mean value of the generated numbers.

For example, the following module returns a series of real numbers that together form an
Erlang distribution.

module distcheck (pinout) ;
electrical pinout ;

integer seed, k, mean ;
real rrandnum ;

June 2013 144 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

analog begin
@ (initial step) begin

seed = 23 ;
k = 20 ; // k must be > 0
mean = 15 ; // Mean must be > 0
end
rrandnum = S$rdist erlang(seed, k, mean) ;

$display ("Random number is %g", rrandnum) ;
V(pinout) <+ rrandnum ;
end // of analog block

endmodule

Interpolating with Table Models

Use the $table_model function to model the behavior of a design by interpolating between
and extrapolating outside of data points.

table model declaration ::=
$table_model(variables , table source [, ctrl string])

variables ::=
independent_var { , 2nd_independent_var [, nth_independent_var]}
table source ::=
data file
| table model array
data file ::=

"filename"
| string param

table model array ::=
array_ID { , 2nd array ID [, nth_array ID]}, output_array_ ID

ctrl string ::=
"sub ctrl string { , sub_ctrl string }"

sub ctrl string ::=

O HI

| [degree char] [extrap char [extrap char]]

degree char ::=
1] 2

extrap char ::=
C | L | S| E

3

independent_var is an independent model variable. An i ndependent_var can be
any legal numerical expression that you can assign to an analog signal. You must specify an
independent model variable for each dimension with a corresponding sub_ctrl_string
other than 1 (ignore). You must not specify an independent model variable for dimensions
that have a sub_ctrl_string of I (ignore).

Note: The I (ignore) sub_ctrl_string and support for more than one dimension are
extensions beyond the Verilog-AMS LRM, Version 2.2.

June 2013 145 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

data_file is the text file that stores the sample points. You can either give the file name
directly or use a string parameter. For more information, see “Table Model File Format” on
page 147.

table_model_array is a set of one-dimensional arrays that contains the data points to
pass to the $table_model function. The size of the arrays is the same as the number of
sample points. The data is stored in the arrays so that for the %" dimension of the it sample
point, kth_dim_array identifier[i]= X;, and so that for the it sample point

output_array_identifier[i]=Y;.Foranexample, see “Example: Preparing Data in
One-Dimensional Array Format” on page 150.

ctrl_string controls the numerical aspects of the interpolation process. It consists of
subcontrol strings for each dimension.

sub_ctrl_string specifies the handling for each dimension.

When you specify T (ignore), the software ignores the corresponding dimension
(column) in the data file. You might use this setting to skip over index numbers, for
example. When you associate the I (ignore) value with a dimension, you must not
specify a corresponding independent_var for that dimension.

When you specify D (discrete), the software does not use interpolation for this dimension.
If the software cannot find the exact value for the dimension in the corresponding
dimension in the data file, it issues an error message and the simulation stops.

degree_char is the degree of the splines used for interpolation. The degree must not be
zero or exceed 3. The default value is 1.

extrap_char controls how the simulator evaluates a point that is outside the region of
sample points included in the data file. The C (clamp) extrapolation method uses a horizontal
line that passes through the nearest sample point, also called the end point, to extend the
model evaluation. The L (linear) extrapolation method, which is the default method, models
the extrapolation through a tangent line at the end point. The S (spline) extrapolation method
uses the polynomial for the nearest segment (the segment at the end) to evaluate a point
beyond the interpolation area. The E (error) extrapolation method issues a warning when the
point to be evaluated is beyond the interpolation area.

You can specify the extrapolation method to be used for each end of the sample point region.
When you do not specify an extrap_char value, the linear extrapolation method is used for
both ends. When you specify only one extrap_char value, the specified extrapolation
method is used for both ends. When you specify two extrap_char values, the first character
specifies the extrapolation method for the end with the smaller coordinate value, and the
second character specifies the method for the end with the larger coordinate value.

June 2013 146 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

You can use the $table_model function in the analog context (in an analog block) and in
the digital context (such as in an initial or an always block). In the analog context, the

Stable_model function is subject to the same restrictions as analog operators with respect
to where you can use the function. For more information, see “Restrictions on Using Analog

Operators” on page 152.

Note: In order to use the stable_model function in a digital context, you must be using
digital mixed-signal licensing or AMS Designer simulator licensing, according to the "Feature-
to-License Checklist" in the Virtuoso AMS Designer Simulator User Guide.

See also

m Table Model File Format on page 147

Example: Using the $table_model Function on page 150

Example: Preparing Data in One-Dimensional Array Format on page 150
Example: Using $table _model as a Built-In Digital System Task on page 151

Table Model File Format

The data in the table model file must be in the form of a family of ordered isolines. An isoline
is a curve of at least two values generated when one variable is swept and all other variables
are held constant. An ordered isoline is an isoline in which the sweeping variable is either
monotonically increasing or monotonically decreasing. A monotonically increasing variable
is one in which every subsequent value is equal to or greater than the previous value. A
monotonically decreasing variable is one in which every subsequent value is equal to or
less than the previous value.

For example, a bipolar transistor can be described by a family of isolines, where each isoline
is generated by holding the base current constant and sweeping the collector voltage from 0
to some maximum voltage. If the collector voltage sweeps monotonically, the generated
isoline is an ordered isoline. In this example, the collector voltage takes many values for each
of the isolines so the voltage is the fastest changing independent variable and the base
current is the slowest changing independent variable. You need to know the fastest
changing and slowest changing independent variables to arrange the data correctly in the
table model file.

The sample points are stored in the file in the following format:

June 2013 147 Product Version 13.1
© 2000-2013 All Rights Reserved.

../amssimug/Licensing.html#amsAdvancedFeaturesChecklist
../amssimug/Licensing.html#amsAdvancedFeaturesChecklist
../amssimug/Licensing.html#amsAdvancedFeaturesChecklist

Cadence Verilog-AMS Language Reference
Simulator Functions

Py

where P; (i = 1...M) are the sample points. Each sample point P; is on a separate line and
is represented as a sequence of numbers, X;; X, , ... X; Y; where I is the highest
dimension of the model, X ; . is the coordinate of the sample point in the kth dimension, and
Y, is the model value at this point. x; ; (the leftmost variable) must be the slowest changing
variable, X, ,; (the rightmost variable other than the model value) must be the fastest changing
variable, and the other variables must be arranged in between from slowest changing to

fastest changing. Comments, which begin with #, can be inserted anyplace in the file and
continue to the end of the line.

For example, to create a table model with three ordered isolines representing the function
z = f(x,y) = X+y2

you build the model as follows, assuming that you want to have four sample values on each
isoline. The y values used here are all the same and equally spaced on each isoline, but they
do not have to be.

Isoline 1;: x=1

y
z

y
b4

Isoline 3; x=3

1, 2, 3, 4

y
z 4, 7, 12, 19

Finally, you decide to prefix each row with an index. The function will be specified so as to
ignore this new column of data.

You enter the table model data into the file as

Indx is the index column to be ignored.
x 1s the slowest changing independent variable.
vy is the fastest changing independent variable.
z 1s the table model value at each point.
Indx X % z

1 1 1 2

2 1 2 5

3 1 3 10

4 1 4 17

5 2 1 3

6 2 2 6

7 2 3 11

8 2 4 18

9 3 1 4
June 2013 148 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

10 3 2 7
11 3 3 12
12 3 4 19
June 2013 149 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Example: Using the $table_model Function

For example, assume that you have a data file named nmos . tb1l, which contains the data
given above. You might use it in a module as follows:

‘include "disciplines.vams"
‘include "constants.vams"

module mynmos (g, d, s);
electrical g, d, s;
inout g, d, s;

analog begin
I(d, s) <+ $table model (V(g, s), V(d, s), "nmos.tbl", "I,3CL,3CL");
end

endmodule

In this example, the program ignores the first column of data. The independent variables are
V(g,s) and v (d, s). The degree of the splines that the program uses for interpolation is
three for each of the two active dimensions. For each of these dimensions, the extrapolation
method for the lower end is clamping and the extrapolation for the upper end is linear.

Example: Preparing Data in One-Dimensional Array Format

In this example, there are 18 sample points. Consequently, each of the one-dimensional
arrays contains 18 bits. Each point has two independent variables, represented by x and y;,
and a value, represented by £ xy.

module measured resistance (a, b);
electrical a, b;
inout a, b;
real x[0:17], y[0:17], £ xy[0:17];
analog begin

@(initial step) begin

x[0]= -10; y[0]=-10; f xy[0]=0; // Oth sample point
x[1]= -10; y[1]1=-8; f xy[l]=-0.4; // 1lst sample point
x[2]= -10; y[2]=-6; f xy[2]=-0.8; // 2nd sample point
x[3]= -9; y[3]=-10; £ xy[3]1=0.2;
x[4]= -9; y[4]=-8; £ xy[4]=-0.2;
x[5]= -9; yI[5]=-6; f xy[5]=-0.6;
x[6]= -9; yl[6]=-4; f xy[6]=-1;
x[7]1= -8; y[7]1=-10; £ xy[7]1=0.4;
x[8]= -8; yl[8]=-9; £ xy[8]=0.2;
x[9]= -8; y[9]=-7; £ xyl[9]=-0.2;
x[10]= -8; y[10]=-5; f xy[1l0]=-0.6;
x[11]= -8; y[1l1]=-3; f xy[ll]=-1;
x[121= -7; y[12]=-10; £ xy[12]1=0.6;
x[13]= =7; y[13]=-9; £ xy[13]1=0.4;
x[14]= -7; y[1l4]1=-8; f:xy[14]=0.2;
x[15]= -7; y[15]=-7; £ xy[15]=0;
x[1l6]l= -7; y[le]l=-6; f xy[l6]=-0.2;
x[17]= =7; y[17]1=-5; f:xy[17]=—0.4;
end
June 2013 150 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

I(a, b) <+ $table model (V(a), V(b), %, vy, £ xy, "3L,1L");
end
endmodule

Example: Using $table_model as a Built-In Digital System Task

You can use the stable_model function as a built-in digital system task inan initial or
always block, such as:

module example (rout, rinl, rin2, clk);
wreal rout, rinl, rin2;

input rinl, rin2;

output rout;

wire clk;

input clk;

real out;
assign rout = out;
always @clk begin
out = $table_model (rinl, rin2,"sample.dat");

end
endmodule

June 2013 151 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Analog Operators

Analog operators are functions that operate on more than just the current value of their
arguments. These functions maintain an internal state and produce a return value that is a
function of an input expression, the arguments, and their internal state.

The analog operators are the

Limited exponential function

Time derivative operator

Time integral operator
Circular integrator operator
Delay operator

Transition filter

Slew filter

Laplace transform filters

Z-transform filters

Restrictions on Using Analog Operators

Analog operators are subject to these restrictions:

B You can use analog operators inside an if or case construct only if the controlling
conditional expression consists entirely of genvar expressions, literal numerical
constants, parameters, or the analysis function.

B You cannot use analog operators in repeat, while, or for statements.

B You cannot use analog operators inside a function.

B You cannot use analog operators inside initial blocks, always blocks, or user-
defined functions.

B You cannot specify a null argument in the argument list of an analog operator.

June 2013 152 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Limited Exponential Function

Use the limited exponential function to calculate the exponential of a real argument.

limexp(expr)

expr is a dynamic expression of type real.

The 1imexp function limits the iteration step size to improve convergence. 1imexp behaves
like the exp function, except that using 1imexp to model semiconductor junctions generally
results in dramatically improved convergence. For information on the exp function, see
“Standard Mathematical Functions” on page 106.

The 1imexp function is subject to the restrictions listed in “Restrictions on Using Analog
Operators” on page 152.

Time Derivative Operator

Use the time derivative operator to calculate the time derivative of an argument.

ddt(input [, abstol | nature])

input is a dynamic expression.

abstol is a constant specifying the absolute tolerance that applies to the output of the ddt
operator. Set abstol at the largest signal level that you consider negligible. In this release
of Verilog-AMS, abstol is ignored.

nature is a nature from which the absolute tolerance is to be derived. In this release of
Verilog-AMS, nature is ignored.

The time derivative operator is subject to the restrictions listed in “Restrictions on Using
Analog Operators” on page 152.

In DC analyses, the ddt operator returns 0. To define a higher order derivative, you must use
an internal node or signal. For example, a statement such as the following is illegal.

V(out) <+ ddt(ddt (V(in))) // ILLEGAL!

For an example illustrating how to define higher order derivatives correctly, see “Using
Integration and Differentiation with Analog Signals” on page 45.

Note: You cannot output the result of the ddt operator using statements such as $Sprint,
$strobe, and $fopen. Instead, you can use an internal node to record the value, then
output the value of the internal node.

June 2013 153 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Time Integral Operator

Use the time integral operator to calculate the time integral of an argument.

idt(input [, ic [, assert [, abstol | nature]] 1)

input is a dynamic expression to be integrated.
ic is a dynamic expression specifying the initial condition.

assert is a dynamic integer-valued parameter. To reset the integration, set assert to a
nonzero value.

abstol is aconstant explicit absolute tolerance that applies to the input of the i dt operator.
Set abstol at the largest signal level that you consider negligible.

nature is a nature from which the absolute tolerance is to be derived.

The time integral operator is subject to the restrictions listed in “Restrictions on Using Analog
Operators” on page 152.

The value returned by the idt operator during DC or AC analysis depends on which of the
parameters you specify.

If you specify Then idt returns

input ;
jUX(T) dr

The time-integral of x from 0 to t with the initial condition being
computed in the DC analysis.

input, ic ;
JDI(T)dT—FiC

The time-integral of x from 0 to t with initial condition ic. In DC or IC
analyses, returns ic.

input, ic,

ji_x(m)dt—rﬁc

assert
0 [
The time-integral of x from tq to t with initial condition i c. In DC or IC
analyses, and when assert is nonzero, returns ic. tgis the time
when assert last became 0.
June 2013 154 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

If you specify Then idt returns

input, ic,

t .
assert,abstol J x(t)dt+ ic

f '

The time-integral of x from tq to ¢t with initial condition i c. In DC or IC
analysis, and when assert is nonzero, returns ic. tg is the time
when assert last became 0.

input, ic,

i :
assert, nature _[f I(T)d1+ I

0 [

The time-integral of x from t(to t with initial condition i c. In DC or IC
analysis, and when assert is nonzero, returns ic. tg is the time
when assert last became 0.

The initial condition forces the DC solution to the system. You must specify the initial
condition, ic, unless you are using the idt operator in a system with feedback that forces
input to zero. If you use a model in a feedback configuration, you can leave out the initial
condition without any unexpected behavior during simulation. For example, an operational
amplifier alone needs an initial condition, but the same amplifier with the right external
feedback circuitry does not need that forced DC solution.

The following statement illustrates using idt with a specified initial condition.

V(out) <+ sin(2* M PI*(fc*$Sabstime + idt(gain*V(in),0)))

Circular Integrator Operator

Use the circular integrator operator to convert an expression argument into its indefinitely
integrated form.

idtmod(expr [, ic [, modulus [, offset [, abstol | nature]] 1 1)

expr is the dynamic integrand or expression to be integrated.
1c is a dynamic initial condition. By default, the value of i c is zero.

modulus is a dynamic value at which the output of idtmod is reset. modulus must be a
positive value equation. If you do not specify modulus, idtmod behaves like the idt
operator and performs no limiting on the output of the integrator.

of fset is a dynamic value added to the integration. The default is zero.

June 2013 155 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

The modulus and of fset parameters define the bounds of the integral. The output of the
idtmod function always remains in the range

offset < idtmod output < offset+modulus

abstol is a constant explicit absolute tolerance that applies to the input of the idtmod
operator. Set abstol at the largest signal level that you consider negligible.

nature is a nature from which the absolute tolerance is to be derived.

The circular integrator operator is subject to the restrictions listed in “Restrictions on Using
Analog Operators” on page 152.

The value returned by the idtmod operator depends on which parameters you specify.

If you specify Then idtmod returns

— d

The time-integral of expr from 0 to t with the initial condition being
computed in the DC analysis. Returns x.

expr, 1¢c :
¥ = | expritidt+ ic
jﬂ pr(t)
The time-integral of expr from 0 to ¢ with initial condition ic. In DC
or IC analysis, returns i c; otherwise, returns x.
expr, ic, : _
modulus X = jﬂexpr(t)cf1+ ic
where x = n*modulus + k
n=..-3,-2,-1,0,1,2, 3 ...
Returns kx where 0 < k < modulus
expr, ic, : _
modulus, X = jﬂexpr(t)cf1+ ic
offset
where x = n*modulus + k
Returns k where offset < k< offset + modulus
June 2013 156 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

If you specify Then idtmod returns
expr, 1c, : _
modulus, X = J'Gexpr('t)d*t+ ic
offset,

abstol

where x = n*modulus + k
Returns k where offset < k< offset + modulus

expr, 1c, : _
modulus, x = Jﬂexpr(*t)dm+zc3
offset,

nature where x = n*modulus + k

Returns k where offset < k< offset + modulus

The initial condition forces the DC solution to the system. You must specify the initial
condition, ic, unless you are using idtmod in a system with feedback that forces expr to
zero. If you use a model in a feedback configuration, you can leave out the initial condition
without any unexpected behavior during simulation.

Example

The circular integrator is useful in cases where the integral can get very large, such as in a
voltage controlled oscillator (VCQ). For example, you might use the following approach to
generate arguments in the range [0,2x] for the sinusoid.

phase = idtmod(fc + gain*V(IN), 0, 1, 0); //Phase is in range [0,1].
V(OUT) <+ sin(2*PI*phase);

Derivative Operator

Use the ddx operator to access symbolically-computed partial derivatives of expressions in
the analog block.

ddx (expr, potential_access_id (net_or_port_scalar_expr))
ddx (expr, flow_access_id (branch_id))

expr is a real or integer value expression. The derivative operator returns the partial
derivative of this argument with respect to the unknown indicated by the second argument,
with all other unknowns held constant and evaluated at the current operating point. If expr
does not depend explicitly on the unknown, the derivative operator returns zero. The expr
argument:

m Cannot be a dynamic expression, such as ddx(ddt(...), ...)

June 2013 157 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

m Cannot be a nested expression, such as ddx (ddx (...), ...)

m Cannotinclude symbolically calculated expressions, suchas ddx (transition(...),
)

m Cannotinclude arrays, such as dax(a[0], ...)

m Cannot contain unknown variables in the system of equations, such as ddax (v (a) ,
)

m Cannot contain quantities that depend on other quantities, such as:
I(a,b)<+g*V(a,b); ddx(I(a,b), V(a))

potential_access_1id is the access operator for the potential of a scalar net or port.
net_or_port_scalar_expr is a scalar net or port.

flow_access_1id is the access operator for the flow through a branch.

branch_1id is the name of a branch.

The derivative operator is subject to the restrictions listed in “Restrictions on Using Analog
Operators” on page 152.

Example

This example implements a voltage-controlled dependent current source. The names of the
variables indicate the values of the partial derivatives: +1, -1, or 0. These values (scaled by
the parameter k) can be used in a Newton-Raphson solution.

module vccs (pout,nout,pin,nin);
electrical pout, nout, pin, nin;
inout pout, nout, pin, nin;
parameter real k = 1.0;
real vin, one, minusone, zero;
analog begin
vin = V(pin,nin);
one = ddx(vin, V(pin));
minusone = ddx(vin, V(nin));
zero = ddx(vin, V(pout)):;
I (pout,nout) <+ k * wvin;
end
endmodule

Delay Operator

Use the absdelay operator to delay the entire signal of a continuously valued waveform.

absdelay(expr , time_delay [, max_delay])

June 2013 158 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

expr is a dynamic expression to be delayed.

t ime_delay, a dynamic nonnegative value, is the length of the delay. If you specify
max_delay, you can change the value of t ime_ delay during a simulation, as long as the
value remains in the range 0 < time_delay < max_delay. Typically time_delayis a
constant but can also vary with time (when max_delay is defined).

max_delay is a constant nonnegative number greater than or equal to t ime_delay. You
cannot change max_delay because the simulator ignores any attempted changes and
continues to use the initial value.

For example, to delay an input voltage you might code
V(out) <+ absdelay(V(in), 5u) ;

3

The absdelay operator is subject to the restrictions listed in “Restrictions on Using Analog
Operators” on page 152.

In DC and operating analyses, the absdelay operator returns the value of expr unchanged.
In time-domain analyses, the absdelay operator introduces a transport delay equal to the
instantaneous value of t ime_delay based on the following formula.

Output (t) = Input (max(t-time delay, 0))

Transition Filter

Use the transition filter to smooth piecewise constant waveforms, such as digital logic
waveforms. The transition filter returns a real number that over time describes a
piecewise linear waveform. The transition filter also causes the simulator to place time
points at both corners of a transition to assure that each transition is adequately resolved.

transition(input [, delay [, rise_time [, fall_time [, time_tol 1111)

input is a dynamic input expression that describes a piecewise constant waveform. It must
have a real value. In DC analysis, the transition filter simply returns the value of input.
Changes in input do not have an effect on the output value until de1ay seconds have
passed.

delay is a dynamic nonnegative real value that is an initial delay. By default, delay has a
value of zero.

rise_timeisadynamic positive real value specifying the time over which you want positive
transitions to occur. If you do not specify rise_ time orif you give rise_ t ime a value of
0, rise_ time defaults to the value defined by ‘default_transition.

fall_time is a dynamic positive real number specifying the time over which you want
negative transitions to occur. By default, fal1_ time hasthe same value that rise_time

June 2013 159 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

has. If you do not specify rise_timeorifyougive rise_timeavalueofQ, fall_time
defaults to the value defined by ‘default_transition.

time_tol is a constant expression with a positive value. This option requires the simulator
to place time points no more than the value of t ime_ to1 away from the two corners of the
transition.

If ‘default_transition is not specified, the default behavior of the transition filter
approximates the ideal behavior of a zero-duration transition.

13

The transition filter is subject to the restrictions listed in “Restrictions on Using Analog
Operators” on page 152.

With the transition filter, you can control transitions between discrete signal levels by
setting the rise time and fall time of signal transitions. The transition filter stretches
instantaneous changes in signals over a finite amount of time, as shown below, and can also
delay the transitions.

expr(t) output_expr(t)

B B e SV W

to to

delay fall_time

rise_time

Use short transitions with caution because they can cause the simulator to slow down to meet
accuracy constraints.

The next code fragment demonstrates how the transition filter might be used.

// comparator model
analog begin

if (V(in) > 0) begin
Vout = 5 ;
end
else begin
Vout = 0 ;
end
V(out) <+ transition (Vout) ;
end
June 2013 160 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

@auﬁon

The transition filter is designed to smooth out piecewise constant
waveforms. If you apply the transition filter to smoothly varying
waveforms, the simulator might run slowly, and the results will probably
be unsatisfactory. For smoothly varying waveforms, consider using the
slew filter instead. For information, see “Slew Filter” on page 163.

If interrupted on a rising transition, the transition filter adjusts the slope so that at the
revised end of the transition the value is that of the new destination.

If the new destination value is below the
value at the point of interruption, the
transition filter

If the new destination value is above the
value at the point of interruption, the
transition filter

1. Uses the value of the original
destination as the value of the new
origin.

2. Adjusts the slope of the transition to the
rate at which the value would decay
from the value of the new origin to the
value of the new destination in
fall_time seconds.

3. Causes the value of the filter output to
decay at the new slope, from the value
at the point of interruption to the value at
the new destination.

1. Retains the original origin.

2. Adjusts the slope of the transition to the
rate at which the value would increase
from the value of the origin to the value
of the new destination in rise_time
seconds.

3. Causes the value of the filter output to
increase at the new slope, from the
value at the point of interruption to the
value at the new destination.

In the following example, a rising transition is interrupted when it is about three fourths
complete, and the value of the new destination is below the value at the point of interruption.
The transition filter computes the slope that would complete a transition from the new
origin (not the value at the point of interruption) in the specified fall_time. The

June 2013
© 2000-2013

161

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

transition filter then uses the computed slope to transition from the current value to the
new destination.

New origin g~ Original destination

I B

Interruption

. New destination
output_expression(t) ‘

rise_time

fall_time

An interruption in a falling transition causes the transition filter to behave in an equivalent
manner.

With larger delays, it is possible for a new transition to be specified before a previously
specified transition starts. The transition filter handles this by deleting any transitions that
would follow a newly scheduled transition. A transition filter can have an arbitrary number
of transitions pending. You can use a transition filter in this way to implement the
transport delay of discretely valued signals.

The following example implements a D-type flip flop. The transition filter smooths the
output waveforms.

module d ff(vin d, vclk, vout g, vout gbar) ;
input vclk, vin d ; o a
output vout g, vout gbar ;

electrical vout g, vout gbar, vclk, vin d ;
parameter real vlogic high = 5 ;

parameter real vlogic low 0 ;

parameter real vtrans clk 2.5 ;

parameter real vtrans = 2.5 ;

parameter real tdel = 3u from [0:inf) ;
parameter real trise lu from (0:inf) ;
parameter real tfall lu from (0:inf) ;

integer x ;

analog begin
@ (cross(V(vclk) - vtrans clk, +1)) x = (V(vin d) > vtrans) ;
V(vout g) <+ transition(vlogic_high*x + vlogic low*!x,tdel, trise, tfall);
V(vout gbar) <+ transition(vlogic high*!x + vlogic low*x, tdel,
trise, tfall) ;
end

endmodule

The following example illustrates a use of the transition filter that should be avoided. The
expression is dependent on a continuous signal and, as a consequence, the filter runs slowly.

I(p, n) <+ transition(V(p, n)/outl, tdel, trise, tfall); // Do not do this.

June 2013 162 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

However, you can use the following approach to implement the same behavior in a statement
that runs much faster.

I(p, n) <+ V(p, n) * transition(l/outl, tdel, trise, tfall); // Do this instead.

Slew Filter

Use the s1lew filter to control the rate of change of a waveform. A typical use for slew is
generating continuous signals from piecewise continuous signals. For discrete signals,
consider using the transition filter instead. See “Transition Filter” on page 159 for more
information.

slew(input [, max_pos_rate [, max_neg rate]])

input is a dynamic expression with a real value. In DC analysis, the s1ew filter simply
returns the value of input.

max_pos_rateisadynamic real number greater than zero, which is the maximum positive
slew rate.

max_neg_rate is a dynamic real number less than zero, which is the maximum negative
slew rate.

If you specify only one rate, its absolute value is used for both rates. If you give no rates, slew
passes the signal through unchanged. If the rate of change of input is less than the
specified maximum slew rates, slew returns the value of input.

The s1ew filter is subject to the restrictions listed in “Restrictions on Using Analog Operators”
on page 152.

When applied, s1ew forces all transitions of expr fasterthan max_pos_rate to change at
the max_pos_rate rate for positive transitions and limits negative transitions to the
max_neg_rate rate.

output_expression(t) % < max_pos_rate

At

The slew filter is particularly valuable for controlling the rate of change of sinusoidal
waveforms. The transition function distorts such signals, whereas s1ew preserves the
general shape of the waveform. The following 4-bit digital-to-analog converter uses the slew
function to control the rate of change of the analog signal at its output.

June 2013 163 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

module dac4 (d, out) ;

input [0:3] d ;

inout out ;

electrical [0:3] d ;

electrical out ;

parameter real slewrate = 0.le6 from (0:inf) ;

real Ti ;
real Vref ;
real scale fact ;

analog begin
Ti = 0 ;
Vref = 1.0 ;
scale fact = 2 ;
generate ii (3,0,-1) begin

Ti = Ti + ((v(d[ii]) > 2.5) ? (1.0/scale fact) : 0);
scale fact = scale fact/2 ;
end
V(out) <+ slew(Ti*Vref, slewrate) ;
end
endmodule

Implementing Laplace Transform S-Domain Filters

The Laplace transform filters implement lumped linear continuous-time filters. Each filter
accepts an optional absolute tolerance parameter g, which this release of Verilog-AMS
ignores. The set of array values that are used to define the poles and zeros, or numerator and
denominator, of a filter the first time it is used during an analysis are used at all subsequent
time points of the analysis. As a result, changing array values during an analysis has no effect
on the filter.

The Laplace transform filters are subject to the restrictions listed in “Restrictions on Using
Analog Operators” on page 152. However, while most analog functions can be used, with
certain restrictions, in i £ or case constructs, the Laplace transform filters cannot be used in
if or case constructs in any circumstances.

Arguments Represented as Vectors

If you use an argument represented as a vector to define a numerator in a Laplace filter, and
if one or more of the elements in the vector are 0, the order of the numerator is determined
by the position of the rightmost non-zero vector element. For example, in the following
module, the order of the numerator, nn, is 1

module test (pin, nin, pout, nout);

electrical pin, nin, pout, nout;

real nn[0:2];
real dd[0:2];
analog begin
@(initial step) begin
nn[0] = 1;// The highest order non-zero coefficient of the numerator.

June 2013 164 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

PR RP OO
e e e e .

end

V(pout, nout) <+ laplace nd(V(pin,nin), nn, dd);
end
endmodule

Arguments Represented as Arrays

If you use an argument represented as an array constant to define a numerator in a Laplace
filter, and if one or more of the elements in the array constant are 0, the order of the numerator
is determined by the position of the rightmost non-zero array element. For example, if your
numerator array constant is {1,0,0}, the order of the numerator is 1. If your array constant is
{1,0,1}, the order of the numerator is 3. In the following example, the numerator order is 1 (and
the value is 1).

module test(pin, nin, pout, nout);

electrical pin, nin, pout, nout;

analog begin

V(pout, nout) <+ laplace nd(V(pin,nin), {1,0,0}, {1,1,1});
end
endmodule

Array literals used for the Laplace transforms can also take the form that uses a back tic. For
example,
V(out) <+ laplace nd(‘{5,6},'{7.8,9.0});

Zero-Pole Laplace Transforms

Use laplace_zp to implement the zero-pole form of the Laplace transform filter.

laplace_zp(expr, C, p[,€])

C (zeta) is a fixed-sized vector of M pairs of real numbers. Each pair represents a zero. The
first number in the pair is the real part of the zero, and the second is the imaginary part. p
(rho) is a fixed-sized vector of N real pairs, one for each pole. Specify the poles in the same
manner as the zeros. If you use array literals to define the { and p vectors, the values must
be constant or dependent upon parameters only. You cannot use array literal values defined
by variables.

The transfer function is

June 2013 165 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

M-1
1_ S
H(C}"_l_'l'
k=0 K tICk
H) = 55
- —35
H([N
k=0 PrptJ/Pg

where (;l: and (;i are the real and imaginary parts of the Kth zero, and p},rc and p]i are the
real and imaginary parts of the kth pole.

If a root (a pole or zero) is real, you must specify the imaginary part as 0. If a root is complex,
its conjugate must be present. If a root is zero, the term associated with it is implemented as
s rather than (1 —s/r), where ris the root. If the list of roots is empty, unity is used for the
corresponding denominator or numerator.

Zero-Denominator Laplace Transforms

Use laplace_zd to implement the zero-denominator form of the Laplace transform filter.
laplace_zd(expr, C, d[, €])

¢ (zeta) is a fixed-sized vector of M pairs of real numbers. Each pair represents a zero. The
first number in the pair is the real part of the zero, and the second is the imaginary part. d is
a fixed-sized vector of N real numbers that contains the coefficients of the denominator. If you
use array literals to define the and d vectors, the values must be constant or dependent
upon parameters only. You cannot use array literal values defined by variables.

The transfer function is

M1
S
I (§r+'iJ
k=0 Y
NST
des
k=0

H(s) =

where erc and ¢! are the real and imaginary parts of the kth zero, and dy, is the coefficient
of the kth power of s in the denominator. If a zero is real, you must specify the imaginary part
as 0. If a zero is complex, its conjugate must be present. If a zero is zero, the term associated
with it is implemented as s rather than (1 -s/¢).

June 2013 166 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Numerator-Pole Laplace Transforms

Use laplace_np to implement the numerator-pole form of the Laplace transform filter.

laplace_np(expr, n,p[,e€])

n is a fixed-sized vector of M real numbers that contains the coefficients of the numerator. p
(rho) is a fixed-sized vector of N pairs of real numbers. Each pair represents a pole. The first
number in the pair is the real part of the pole, and the second is the imaginary part. If you use
array literals to define the n and p vectors, the array values must be constant or dependent
upon parameters only. You cannot use array values defined by variables.

The transfer function is

N-1
1 1—#j

k=0" Prrirg

where n; is the coefficient of the Kth power of s in the numerator, and p]’; and p]l(are the
real and imaginary parts of the kth pole. If a pole is real, you must specify the imaginary part
as 0. If a pole is complex, its conjugate must be present. If a pole is zero, the term associated
with it is implemented as s rather than (1 -s/p).

Numerator-Denominator Laplace Transforms

Use laplace_nd to implement the numerator-denominator form of the Laplace transform
filter.

laplace _nd(expr, n, d[,€])
n is a fixed-sized vector of M real numbers that contains the coefficients of the numerator, and
d is a fixed-sized vector of N real numbers that contains the coefficients of the denominator.

If you use array literals to define the n and d vectors, the values must be constant or
dependent upon parameters only. You cannot use array values defined by variables.

The transfer function is

June 2013 167 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

H(s) =

bl
Mz
o

bl
(=)

where ny is the coefficient of the kth power of s in the numerator, and d, isthe coefficient
of the kth power of s in the denominator.

Examples

The following code fragments illustrate how to use the Laplace transform filters.

V(out) <+ laplace zp(V(in), {0,0}, {1,2,1,-2});
implements

(1— s)(1— S) 1—0.4s+o.2s2
1+2j 1-2j

The code fragment
V(out) <+ laplace nd(V(in), {0,1}, {1,-0.4,0.2});

is equivalent.

The following statement contains an empty vector such that the middle argument is null:
V(out) <+ laplace zp(V(in), , {-1,0});

The absence of zeros, indicated by the null argument, means that the transfer function
reduces to the following equation:

1
H(s) = —
(5) 1+s
The next module illustrates the use of array literals that depend on parameters. In this code,
the array literal {dx, 6*dx, 5*dx} depends on the value of the parameter dx.
module svcvs_ zd(pin, nin, pout, nout);
electrical pin, nin, pout, nout;

parameter real nx = 0.5;
parameter integer dx = 1;

June 2013 168 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

analog begin

V (pout, nout) <+ laplace zd(V(pin,nin), {0-nx,0}, {dx, 6*dx, 5*dx});
end
endmodule

The next fragment illustrates an efficient way to initialize array values. Because only the initial
set of array values used by a filter has any effect, this example shows how you can use the
initial_step event to set values at the beginning of the specified analyses.

real nn[0:1] ;

real dd[0:2] ;

analog begin

@(initial step("static")) begin
nn[0] =1 ; // These assignment
nn[l] = 2 ; // statements run only
dd[o] =1 ; // at the beginning of
dd[1l] = 6 ; // the analyses.

end

V(pout, nout) <+ laplace nd(V(pin,nin), nn, dd) ;

end

When you use this technique, be sure to initialize the arrays at the beginning of each analysis
that uses the filter.The static analysis is the dc operating point calculation required by most
analyses, including tran, ac, and noise. Initializing the array during the static phase
ensures that the array is non-zero as these analyses proceed.

The next modules illustrate how you can use an array variable to avoid error messages about
using array literals with variable dependencies in the Laplace filters. The first version causes
an error message.

// This version does not work.

‘include "constants.vams"
‘include "disciplines.vams"

module laplace (out, in);
inout in, out;
electrical in, out;

real dummy;

analog begin

dummy = -0.5;
V(out) <+ laplace zd(V(in), [dummy,0], [1,6,5]); //Illegal!
end
endmodule

The next version works as expected.

// This version works correctly.
‘include "constants.vams"
‘include "disciplines.vams"

module laplace (out, in);
inout in, out;
electrical in, out;

real dummy;

real nn[0:1];

June 2013 169 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

analog begin

dummy = -0.5;
@(initial step) begin // Defines the array variable.
nn[0] = dummy;
nn[l] = 0;
end
V(out) <+ laplace zd(V(in), nn, [1,6,5]);
end
endmodule

Implementing Z-Transform Filters

The Z-transform filters implement linear discrete-time filters. Each filter requires you to specify
a parameter T, the sampling period of the filter. A filter with unity transfer function acts like a
simple sample-and-hold that samples every T seconds.

All Z-transform filters share three common arguments, T, 1, and ty The T argument specifies
the period of the filter and must be positive. t specifies the transition time and must be
nonnegative. If you specify a nonzero transition time, the simulator controls the time step to
accurately resolve both the leading and trailing corner of the transition. If you do not specify
a transition time, 1 defaults to one unit of time as defined by the ‘default_transition
compiler directive. If you specify a transition time of 0, the output is abruptly discontinuous.
Avoid assigning a Z-filter with 0 transition time directly to a branch because doing so greatly
slows the simulation. Finally, t, specifies the time of the first sample/transition and is also
optional. If not given, the first transition occurs at t=0.

The values of T and tj at the first time point in the analysis are stored, and those stored values
are used at all subsequent time points. The array values used to define a filter are used at all
subsequent time points, so changing array values during an analysis has no effect on the
filter.

The Z-transform filters are subject to the restrictions listed in “Restrictions on Using Analog
Operators” on page 152.

Zero-Pole Z-Transforms

Use zi_ zp to implement the zero-pole form of the Z-transform filter.

zi_zp(expr, §, p, T [+ T [, 2] 1)

¢ (zeta) is a fixed or parameter-sized vector of M pairs of real numbers. Each pair represents
a zero. The first number in the pair is the real part of the zero, and the second is the imaginary
part. p (rho) is a fixed or parameter-sized vector of N real pairs, one for each pole. The poles
are given in the same manner as the zeros. If you use array literals to define the and p
vectors, the values must be constant or dependent upon parameters only. You cannot use
array values defined by variables.

June 2013 170 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

The transfer function is

M-1 . .
(1-2"" g +ic))

k=0

N-1

H(z) =

-1 E
(1 -z (pg +JP/l€))
0

=

k

where Qr and Q;C are the real and imaginary parts of the k'h zero, and p]r(and p! are the
real and imaginary parts of the Kth pole. If a root (a pole or zero) is real, you must specify the
imaginary part as 0. If a root is complex, its conjugate must also be preser]t If a root is the
origin, the term associated with it is implemented as z ratherthan (1-(z -r)), where ris
the root. If a list of poles or zeros is empty, unity is used for the corresponding denominator
or numerator.

Zero-Denominator Z-Transforms

Use zi_ zd to implement the zero-denominator form of the Z-transform filter.

Zi_Zd(eXpr: CI dIT[IT[I tO] })

¢ (zeta) is a fixed or parameter-sized vector of M pairs of real numbers. Each pair represents
a zero. The first number in the pair is the real part of the zero, and the second is the imaginary
part. d is a fixed or parameter-sized vector of N real numbers that contains the coefficients of
the denominator. If you use array literals to define the { and d vectors, the values must be

constant or dependent upon parameters only. You cannot use array values defined by
variables.

The transfer function is

M-1 :
m (1-<eg+ich)
H(z) = £=0

where Ci and Ql are the real and imaginary parts of the Kth zero, and d, is the coefficient
of the k7 power of zin the denominator. If a zero is real, you must specify the imaginary part

June 2013 171 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

as 0. If a zero is complex, its conjugate must also be presgpt. If a zero is the origin, the term
associated with it is implemented as z rather than (1-(z - ¢)).

Numerator-Pole Z-Transforms

Use zi_np to implement the numerator-pole form of the Z-transform filter.

Zi_np(eXprr ny Py T[IT[II(]]])

n is a fixed or parameter-sized vector of M real numbers that contains the coefficients of the
numerator. p (rho) is a fixed or parameter-sized vector of N pairs of real numbers. Each pair
represents a pole. The first number in the pair is the real part of the pole, and the second is
the imaginary part. If you use array literals to define the n and p vectors, the values must be
constant or dependent upon parameters only. You cannot use array values defined by
variables.

The transfer function is

M-1 o,
p i

where n, is the coefficient of the k" power of zin the numerator, and p;; and p! are the real
and imaginary parts of the Kth pole. If a pole is real, the imaginary part must be specified as
0. If a pole is complex, its conjugate must also be present. If a pole is the origin, the term
associated with it is implemented as z rather than (1 -z " p).

Numerator-Denominator Z-Transforms

Use zi_nd to implement the numerator-denominator form of the Z-transform filter.

zi_nd(expr, n, d, T [, 7T 1[,%ty] 1)

n is a fixed or parameter-sized vector of M real numbers that contains the coefficients of the
numerator, and d is a fixed or parameter-sized vector of N real numbers that contains the
coefficients of the denominator. If you use array literals to define the n and d vectors, the
values must be constant or dependent upon parameters only. You cannot use array values
defined by variables.

The transfer function is

June 2013 172 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

where ;. is the coefficient of the k" power of z in the numerator, and dk is the coefficient
of the k?/t power of s in the denominator.

Examples

The following example illustrates an ideal sampled data integrator with the transfer function

H(z) = ——
l1-z2

This transfer function can be implemented as

module ideal int (in, out) ;
electrical in, out ;
parameter real T = 0.1m ;
parameter real tt 0.02n ;
parameter real td 0.04m ;

analog begin
// The filter is defined with constant array literals.
V(out) <+ zi nd(V(in), {1}, {1,-1}, T, tt, td) ;

end

endmodule

The next example illustrates additional ways to use parameters and arrays to define filters.

module zi (in, out);
electrical in, out;

parameter real T = 0.1;

parameter real tt = 0.02m;

parameter real td = 0.04m;

parameter real nO = 1;

parameter integer start num = O;

parameter integer num d = 2;

real nn[0:0]; // Fixed-sized array
real dd[start num:start num+num d-1]; // Parameter-sized array

real d;
analog begin

// The arrays are initialized at the beginning of the listed analyses.

June 2013 173 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

@(initial step("ac","dc","tran")) begin
d = 1*n0;
nn[start num] = n0;
dd[start num] = d; dd[1l] = -d;
end
V(out) <+ zi nd(V(in), nn, dd, T, tt, td);
end
endmodule

Displaying Results

Verilog-AMS provides these tasks for displaying information: $strobe, $display,
$Smonitor, Swrite, and Sdebug.

$strobe

Use the $strobe task to display information on the screen. sstrobe and $display use
the same arguments and are completely interchangeable. $strobe is supported in both
analog and digital contexts.
strobe task ::=

$strobe [({ list of arguments })]

list of arguments ::=
argument
| list of arguments , argument

The $strobe task prints a new-line character after the final argument. A $strobe task
without any arguments prints only a new-line character.

Each argument is a quoted string or an expression that returns a value.

Each quoted string is a set of ordinary characters, special characters, or conversion
specifications, all enclosed in one set of quotation marks. Each conversion specification in the
string must have a corresponding argument following the string. You must ensure that the
type of each argument is appropriate for the corresponding conversion specification.

You can specify an argument without a corresponding conversion specification. If you do, an
integer argument is displayed using the $d format, and a real argument is displayed using the
%g format.

June 2013 174 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Special Characters

Use the following sequences to include the specified characters and information in a quoted
string.

Use this sequence To include

\n The new-line character

\t The tab character

\\ The backslash character, \

\" The quotation mark character, "

\ddd A character specified by 1 to 3 octal digits

oe
oe

The percent character, %

The hierarchical name of the current module, function, or
named block

oo
=

o
=
o
=

Conversion Specifications

Conversion specifications have the form

% [flag] [field width 1 [. precision] format_character

where flag, field width, and precision can be used only with a real argument.

flag is one of the three choices shown in the table:

flag Meaning

- Left justify the output
+ Always print a sign

Blank space, or any character Print a space
other than a sign

field_width is an integer specifying the minimum width for the field.

precision is an integer specifying the number of digits to the right of the decimal point.

June 2013 175 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

format_character is one of the following characters.

format_ Type of
character Argument Output Example Output
borB Binary format 00000000000000000
000000000111000
corcC Integer ASCII character format
dorD Integer Decimal format 191, 48, -567
e orE Real Real, exponential format -1.0, 4e8,
34.349e-12
forFr Real Real, fixed-point format 191.04, -4.789
gorG Real Real, exponential, or decimal format, 9.6001, 7.34E-8,
whichever format results in the -23.1E6
shortest printed output
horH Integer Hexadecimal format 3e, 262, a38, fff, 3E,
A38
ooro Integer Octal format 127,777
r OrR Real Engineering notation format 123,457M, 12.345K
sors String String format
constant

Examples of $strobe Formatting

Assume that module format_module is instantiated in a netlist file with the instantiation

formatTest format module

The module is defined as

module format module ;
integer ival ;
real rval ;
analog begin
ival = 98 ;
rval = 123.456789 ;
Sstrobe ("Format c gives %c"

, ival) ;
Sstrobe ("Format C gives %C" , ival) ;
S$Sstrobe ("Format d gives %d" , ival) ;
$strobe ("Format D gives %D" , ival) ;
Sstrobe ("Format e (real) gives %e" , rval)
Sstrobe ("Format E (real) gives %E" , rval)
June 2013 176 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Sstrobe ("Format f (real) gives %f" , rval) ;
Sstrobe ("Format F (real) gives %F" , rval) ;
$Sstrobe ("Format g (real)gives %g" , rval) ;
Sstrobe ("Format G (real)gives %G" , rval) ;
$strobe ("Format h gives %h" , ival) ;
$Sstrobe ("Format H gives %H" , ival) ;
Sstrobe ("Format m gives %m")
S$strobe ("Format M gives $%M")
$strobe ("Format o gives %o" , ival) ;
S$Sstrobe ("Format O gives %0O" , ival) ;
$strobe ("Format s gives %s" , "s string")
Sstrobe ("Format S gives %S" , "S string")
Sstrobe ("newline, \ntab, \tback-slash, \\")
Sstrobe ("doublequote,\"")

end

endmodule

When you run format_module, it displays

Format c gives b

Format C gives b

Format d gives 98

Format D gives 98

Format e gives 1.234568e+02
Format E gives 1.234568e+02
Format f gives 123.456789
Format F gives 123.456789
Format g gives 123.457
Format G gives 123.457
Format h gives 62

Format H gives 62

Format m gives formatTest
Format M gives formatTest
Format o gives 142

Format O gives 142

Format s gives s string
Format S gives S string
newline,

tab, back-slash, \
doublequote, "

$display

Use the sdisplay task to display information on the screen. $display is supported in both
analog and digital contexts.
display task ::=

$display [({ list of arguments })]

list of arguments ::=
argument
| list of arguments , argument

$display and $Sstrobe use the same arguments and are completely interchangeable. For
guidance, see “$strobe” on page 174.

June 2013 177 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

$write

Use the swrite task to display information on the screen. This task is identical to the
$strobe task, except that $strobe automatically adds a newline character to the end of its
output, whereas swrite does not. Swrite is supported in both analog and digital contexts.
write task ::=

~ Swrite [({ list of arguments })]

list of arguments ::=
argument
| list of arguments , argument

The arguments you can use in 1ist_of_arguments are the same as those used for
$strobe. For guidance, see “$strobe” on page 174.

$debug

Use the sdebug task to display information on the screen while the analog solver is running.
This task displays the values of the arguments for each iteration of the solver.
debug task ::=

$debug [({ list of arguments })]

list of arguments ::=
argument
| list of arguments , argument

The arguments you can use in 1ist_of_arguments are the same as those used for
Sstrobe. For guidance, see “$strobe” on page 174.

$monitor

Use the $monitor task to display information on the screen. This task is identical to the
Sstrobe task, except that Smonitor outputs only when an argument changes
value.smonitor is supported in only digital contexts.
Smonitor task ::=

$monitor [({ list of arguments })]

list of arguments ::=
argument
| list of arguments , argument

The arguments you can use in 1ist_of_arguments are the same as those used for
$strobe. For guidance, see “$strobe” on page 174.

June 2013 178 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Specifying Power Consumption

Use the Spwr system task to specify the power consumption of a module. The Spwr task is
supported in only analog contexts.

Note: The $pwr task is a nonstandard Cadence-specific language extension.

pwr_task ::=
$pwr(expression)

expressionisan expression that specifies the power contribution. If you specify more than
one Spwr task in a behavioral description, the result of the Spwr task is the sum of the
individual contributions.

To ensure a useful result, your module must contain an assignment inside the behavior
specification. Your module must also compute the value of Spwr tasks at every iteration. If
these conditions are not met, the result of the $pwr task is zero.

The spwr task does not return a value and cannot be used inside other expressions. Instead,
access the result by using the options and save statements in the analog simulation control
file. For example, using the following statement in the analog simulation control file saves all
the individual power contributions and the sum of the contributions in the module named
name.:

name options pwr=all

For save, use a statement like the following:

save name:pwr

In each format, name is the name of a module.

For more information about the options statement, see Chapter 7 of the Spectre Circuit
Simulator User Guide. For more about the save statement, see Chapter 8 of the Spectre
Circuit Simulator User Guide.

Example

// Resistor with power contribution
‘include "disciplines.vams"

module Res (pos, neq);
inout pos, neg;
electrical pos, neg;
parameter real r=5;
analog begin
V(pos,neqg) <+ r * I(pos,neq);
Spwr (V (pos, neg) *I (pos,neqg)) ;
end
endmodule

June 2013 179 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Working with Files

Verilog-AMS provides several functions for working with files. $fopen prepares a file for
writing. $fstrobe and $fdisplay write to a file. Sfclose closes an open file.

Opening a File

Use the $fopen function to open a specified file.

fopen function ::=
multi_channel_descriptor = $fopen ("file_name"™ ["io_mode"]) ;
| fd = $fopen ("file_name", type) ;

type ::=
n r n
I IIWII
| n a n

multi_channel_descriptor is a 32-bit unsigned integer that is uniquely associated
with file_name. The $fopen functionreturnsamulti_channel_descriptor value
of zero if the file cannot be opened.

Thinkof multi_channel_descriptor as a set of 32 flags, where each flag represents
a single output channel. The least significant bit always refers to the standard output. The first
time it is called, $ fopen opens channel 1 and returns a descriptor value of 2 (binary 10). The
second time it is called, $ fopen opens channel 2 and returns a descriptor value of 4 (binary
100). Subsequent calls cause $fopen to open channels 3, 4, 5, and so on, and to return
values of 8, 16, 32, and so on, up to a maximum of 32 open channels.

io_mode is one of three possible values: w, a, or r. The w or write mode deletes the contents
of any existing files before writing to them. The a or append mode appends the next output
to the existing contents of the specified file. In both cases, if the specified file does not exist,
$fopen creates that file. The r mode opens a file for reading. An error is reported if the file
does not exist.

The $fopen function reuses channels associated with any files that are closed.

file_name is a string that can include the special commands described in “Special $fopen

Formatting Commands” on page 181. If £i1e_name contains a path indicating that the file
is to be opened in a different directory, the directory must already exist when the $fopen
function runs. £fi1le_name (together with the surrounding quotation marks) can also be
replaced by a string parameter.

type (allowed in initial or always blocks, but notin analog blocks) is a character string
or a reg that indicates how the file is to be opened. The value "r" opens the file for reading,

June 2013 180 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

"w" truncates the file to zero length or creates the file for writing, "a" opens the file for
appending, or creates the file for writing.

For example, to open a file named myfile, you can use the code

integer myChanDesc ;
myChanDesc = $fopen ("myfile") ;

Special $fopen Formatting Commands

The following special output formatting commands are available for use with the $fopen
function.

Command Output Example

%C Design filename input.scs

$D Date (yy-mm-dd) 94-02-28

$H Host name hal

%S Simulator type spectre

%P Unix process ID # 3641

3T Time (24hh:mm:ss) 15:19:25

%I Instance name opamp3

%A Analysis name dc0p, timeDomain, acSup

The special output formatting commands can be followed by one or more modifiers, which
extract information from UNIX filenames. (To avoid opening a file that is already open, the %C
command must be followed by a modifier.) The modifiers are:

Modifier Extracted information

T Root (base name) of the path for the file
Extension of the path for the file

:h Head of the path for any portion of the file before the last /
Tail of the path for any portion of the file after the last /

The (:) character itself

June 2013 181 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Any other character after a colon (:) signals the end of modifications. That character is copied
with the previous colon.

The modifiers are typically used with the $C command although they can be used with any of
the commands. However, when the output of a formatting command does not contain a / and

7, the modifiers : t and : r return the whole name and the : e and : h modifiers return “”. As
a result, be aware that using modifiers with formatting commands other than $C might not
produce the results you expect. For example, using the command

Sfopen("%$I:h.freq dat") ;

opens a file named . . freq_dat.

You can use a concatenated sequence of modifiers. For example, if your design file name is
res.ckt, and you use the statement

$fopen ("$C:r.freq dat")

then

B 3Cis the design filename (res.ckt)

B :ris the root of the design filename (res)

B .freg dat isthe new filename extension
As a result, the name of the opened file is res. freq dat.

The following table shows the various filenames generated from a design filename (%C) of

/users/maxwell/circuits/opamp.ckt

by using different formatting commands and modifiers.

Command and Modifiers Resulting Opened File

Sfopen ("%C") ; None, because the design file cannot be overwritten.
Sfopen("%C:r") ; /users/maxwell/circuits/opamp
Sfopen("%C:e") ; ckt

Sfopen("%C:h") ; /users/maxwell/circuits

Sfopen("%C:t") ; opamp.ckt

Sfopen("%C::"); /users/maxwell/circuits/opamp.ckt:
Sfopen("%C:h:h") ; /users/maxwell

Sfopen("%C:t:r"); opamp

June 2013 182 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Command and Modifiers Resulting Opened File
Sfopen("%C:r:t"); opamp
Sfopen("/tmp/%C:t:r.raw"); /tmp/opamp.raw
Sfopen("%C:e%C:r:t"); ckt.opamp
Sfopen("%C:r.%I.dat"); /users/maxwell/circuits/

opamp .opamp3 .dat

Reading from a File

Use the $fscanf function to read information from a file.

fscanf function ::=
$fscanf (multi_channel_descriptor , "format™ { , storage_arg })

Themulti_channel_descriptor thatyou specify must have a value thatis associated
with one or more currently open files. The format describes the matching operation done
between the $fscanf storage arguments and the input from the data file. The $fscanf
function sequentially attempts to match each formatting command in this string to the input
coming from the file. After the formatting command is matched to the characters from the
input stream, the next formatting command is applied to the next input coming from the file. If
a formatting command is not a skipping command, the data read from the file to match a
formatting command is stored in the formatting command’s corresponding storage_arg.
The first storage_arg corresponds to the first nonskipping formatting command; the
second storage_arg corresponds to the second nonskipping formatting command. This
matching process is repeated between all formatting commands and input data. The
formatting commands that you can use are the same as those used for $strobe. See
“$strobe” on page 174 for guidance.

For example, the following statement reads data from the file designated by fptr1 and
places the information in variables called db1 and int.

Sfscanf (fptrl, "Double = %e and Integer = %d", dbl, int);

Writing to a File

Verilog-AMS provides three input/output functions for writing to a file: $fstrobe,
$fdisplay, and $fwrite. The $fstrobe and $fdisplay functions use the same
arguments and are completely interchangeable. The $ fwrite function is similar but does not
insert automatic carriage returns in the output.

June 2013 183 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

$fstrobe

Use the $fstrobe function to write information to a file.
fstrobe function ::=
$fstrobe (multi_channel_ descriptor {,list of arguments })

list of arguments ::=
argument
| list of arguments , argument

Themulti_channel_descriptor thatyou specify must have a value thatis associated
with one or more currently open files. The arguments that you can use in
list_of_arguments are the same as those used for $strobe. See “$strobe” on

page 174 for guidance.

For example, the following code fragment illustrates how you might write simultaneously to
two open files.
integer mcdl ;
integer mcd2 ;
integer mcd ;
@(initial step) begin
mcdl = S$fopen("filel.dat™)

mcd2 = S$fopen("file2.dat")
end

mcd = mcdl | mecd2 ; // Bitwise OR combines two channels
Sfstrobe (mcd, "This is written to both files")

$fdisplay

Use the $fdisplay function to write information to a file.

fdisplay function ::=
$fdisplay (multi_channel_descriptor {,list of arguments })

list of arguments ::=
argument
| list of arguments , argument

Themulti_channel_descriptor thatyou specify must have a value thatis associated
with a currently open file. The arguments that you canusein 1ist_of_arguments are the
same as those used for Sstrobe. See “$strobe” on page 174 for guidance.

$fwrite

Use the $fwrite function to write information to a file.

fwrite function ::=
$fwrite (multi_channel_descriptor {,list of arguments })

June 2013 184 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

list of arguments ::=
argument
| list of arguments , argument

Themulti_channel_descriptor thatyou specify must have a value thatis associated
with a currently open file. The arguments that you canusein 1ist_of_arguments are the
same as those used for sstrobe. See “$strobe” on page 174 for guidance.

The $fwrite function does not insert automatic carriage returns in the output.

Closing a File

Use the $fclose function to close a specified file.

file close function ::=
$fclose (multi_channel_descriptor) ;:

Themulti_channel_descriptor thatyou specify must have a value thatis associated
with the currently open file that you want to close.

Exiting to the Operating System

Use the $finish function to make the simulator exit and return control to the operating
system.
finish function ::=

$finish [(msg level)] ;

msg_level ::=
o 1] 2

The msg_level value determines which diagnostic messages print before control returns to
the operating system. The default msg_level value is 1.

msg_level Messages printed

0 None

1 Simulation time and location

2 Simulation time, location, and statistics about the memory

and CPU time used in the simulation

Note: In this release, the $finish function always behaves as though the msg_level value
is 0, regardless of the value you actually use.

June 2013 185 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

For example, to make the simulator exit, you might code:

Sfinish ;

If you want to stop only the current analysis, without exiting the simulator, you can use the
$finish_current_analysis function instead of $finish. This allows you to stop the
ongoing analysis and start a new analysis on the simulator. The syntax of
$finish_current_analysis is the following:
finish function ::=

$finish current_analysis [(msg level)] ;
where the msg_1level value works exactly the same way as it does in the $£inish function
syntax.

Entering Interactive Tcl Mode

Use the $stop function to make the simulator enter interactive mode and display a Tcl
prompt.

stop_ function ::=
$stop [(msg level)] ;

msg_level ::=

0| 1] 2
The msg_level value determines which diagnostic messages print before the simulator
starts the interactive mode. The default msg_level value is 1.

msg_level Messages printed

0 None

1 Simulation time and location

2 Simulation time, location, and statistics about the memory

and CPU time used in the simulation

For example, to make the simulator go interactive, you might code

$stop

June 2013 186 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

User-Defined Functions

Verilog-AMS supports user-defined functions. By defining and using your own functions, you
can simplify your code and enhance readability and reuse. Each function can be a digital
function (as defined in IEEE 1364-1995 Verilog HDL) or an analog function.

Declaring an Analog User-Defined Function

To define an analog function, use this syntax:

analog function declaration ::=
analog function [type] function_identifier ;
function item declaration {function item declaration}
statement
endfunction

type ::=
integer
| real

function item declaration ::=
input declaration
| block item declaration

block item declaration ::=
integer declaration
| real declaration

type is the type of the value returned by the function. The default value is real.

statement cannot include analog operators and cannot define module behavior.
Specifically, statement cannot include

B ddt operator

idt operator

idtmod operator
Access functions
Contribution statements

Event control statements

Simulator library functions, except that you can include the functions in the next list
statement can include references to

m Svt

B Svt(temp)

June 2013 187 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

Stemperature
Srealtime
Sabstime
analysis
Sstrobe
Sdisplay
Swrite
Sfopen
Sfstrobe
sfdisplay
Sfwrite

Sfclose

All mathematical functions
You can declare local variables to be used in the function.

Each function you define must have at least one declared input. Each function must also
assign a value to the implicitly defined internal variable with the same name as the function.

For example,

analog function real chopper ;
input sw, in ; // The function has two declared inputs.
real sw, in ;

//The next line assigns a value to the implicit variable, chopper.
chopper = ((sw > 0) ? in : -in) ;

endfunction

The chopper function takes two variables, sw and in, and returns a real result. You can use
the function in any subsequent function definition or in the module definition.

Calling a User-Defined Analog Function

To call a user-defined analog function, use the following syntax.

analog function call ::=
function_identifier (expression { , expression })

June 2013 188 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

function_identifier mustbe the name of a defined function. Each expressionis
evaluated by the simulator before the function runs. However, do not rely on having
expressions evaluated in a certain order because the simulator is allowed to evaluate them in

any order.

An analog function must not call itself, either directly or indirectly, because recursive functions
are illegal. Analog function calls are allowed only inside of analog blocks.

The module phase_detector illustrates how the chopper function can be called.

module phase detector(lo, rf, if0)
inout lo, rf, if0 ;

electrical lo, rf, if0 ;
parameter real gain =1 ;

function real chopper;
input sw, in;
real sw, in;

chopper = ((sw > 0) ? in
endfunction
analog
V(1if0) <+ gain * chopper(V(lo),
endmodule
June 2013
© 2000-2013

’

-in);

V(rf));

189

//Call from within the analog block.

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Simulator Functions

June 2013 190 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

10

Instantiating Modules and Primitives

Chapter 2, “Creating Modules discusses the basic structure of Cadence® Verilog®-AMS
language modules. This chapter discusses how to instantiate Verilog-AMS modules within
other modules. Module declarations cannot nest in one another; instead, you embed
instances of modules in other modules. By embedding instances, you build a hierarchy
extending from the instances of primitive modules up through the top-level modules.

The following sections discuss

Instantiating Verilog-AMS Modules on page 192
Connecting the Ports of Module Instances on page 195

Overriding Parameter Values in Instances on page 197

Instantiating Analog Primitives on page 200

Using an M Factor (Multiplicity Factor) on page 202

Including Verilog-A Modules in Spectre Subcircuits on page 204

June 2013 191 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Instantiating Modules and Primitives

Instantiating Verilog-AMS Modules

Use the following syntax to instantiate modules in other modules.
module instantiation ::=
module_id [parameter value assignment] instance list

instance list ::=
module instance { , module instance} ;

module instance ::=
name of instance ([list of module connections])

name of instance ::=
module_instance_identifier [constant range]

list of module connections ::=
ordered port connection { , ordered port connection }
|named port connection { , named port connection }

ordered port connection ::=
[net expression]

named port connection ::=
. port identifier ([net expression])

net expression ::=
"net_identifier
|net_identifier [constant_expression 1]
|Inet_identifier [constant range]

constant range ::=
constant_expression : constant_expression

The instance_1list expression is discussed in the following sections. The
parameter_value_assignment expression is discussed in “Overriding Parameter
Values in Instances” on page 197.

Creating and Naming Instances

This section illustrates how to instantiate modules. Consider the following module, which
describes a gain block that doubles the input voltage.

module vdoubler (in, out) ;
input in ;
output out ;
electrical in, out ;
analog

V(out) <+ 2.0 * V(in) ;
endmodule

Two of these gain blocks are connected, with the output of the first becoming the input of the
second. The schematic looks like this.

gin aal gout
vdl vd2

June 2013 192 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Instantiating Modules and Primitives

This higher-level component is described by module vquad, which creates two instances,
named vdl and vd2, of module vdoubler. Module vquad also defines external ports
corresponding to those shown in the schematic.

module vquad (gin, gout) ;

input gin ;

output gout ;

electrical gin, gout ;

wire aal ;

vdoubler vdl (gin, aal) ;

vdoubler vd2 (aal, gout) ;
endmodule

Creating Arrays of Instances

The range specification on the module_instance_identifier allows you to create
arrays of instances.

name of instance ::=
module_instance_identifier [constant range]

However, a module_instance_identifier used to create an array of instances (an
AOI_identifier)is restricted to being purely digital and cannot instantiate an analog
object at any level. That means that you cannot use:

B An analog primitive or a connection module as the A0I_identifier.

B Inherited connection attributes, m-factor attributes, or dynamic parameters in the
AOI_identifier.

In addition, you cannot use a VHDL design unit as the A01_identifier.

You cannot connect to the A0I_identifier anetor bus thatis declared to be analog.
Nets or buses of undetermined discipline are forced to the default discipline when they
connecttoan A0I_identifier.

When you use both the ncelab -dresolution and -messages options, the elaborator
notifies you when it encounters an array of instances. Regardless of the number of arrays of
instances in the design, the elaborator produces only a single message. For example, you
define the following modules.

/* Digital module instance array */
module pmem() ;

wire [15:0] xxpab, pab;
nmos #0.06 npab[15:0] (xxpab,pab,1’bl);
endmodule

/* Instantiate both digital and analog modules */
module tmp ()

pmem pmem() ;

ana anal() ;
endmodule

June 2013 193 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Instantiating Modules and Primitives

/* Analog module */

module anal();
electrical v;
real vValue;
initial begin

vValue = 0.1;
#100;
vValue = 1.5;

end
analog begin
V(v) <+ vValue;
end
endmodule

When you run ncelab with both the -dresolution and -messages options, the following
message is produced.

nmos #0.06 npab[15:0] (xxpab,pab,1’bl);

|
ncelab: *W,AMSAOIW (./test.v,10|14): An array of instances was encountered in the
AMS design. Only pure digital array of instance hierarchies are allowed in AMS
designs.

Mapping Instance Ports to Module Ports

When you instantiate a module, you must specify how the actual ports listed in the instance
correspond to the formal ports listed in the defining module. Module vquad, in the previous
example, demonstrates one of the two methods provided in Verilog-AMS. Module vquad
uses an ordered list, where instance vd1’s first actual port name gin maps to vdoubler’s
first formal port name in. Instance vd1’s second actual port name aal maps to
vdoubler’s second formal port name, and so on.

You can also map actual ports to the formal ports in the defining module explicitly, using name
pairs. If you choose this approach, the order of the ports does not matter.

You cannot mix the two kinds of mapping within a single instance.

Mapping Ports with Ordered Lists

To use ordered lists to map actual ports listed in the instance to the formal ports listed in the
defining module, ensure that the instance ports are in the same order as the defining module
ports. For example, consider the following module child and the module instantiator
that instantiates it.

module child (ina, inb, out) ;
input [0:3] ina ;

input inb ;

output out ;

electrical [0:3] ina ;
electrical inb ;

June 2013 194 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Instantiating Modules and Primitives

electrical out ;
endmodule

module instantiator (conin, conout)

input [0:6] conin ;

output conout ;

electrical [0:6] conin ;

electrical conout ;

child childl (conin [1:4], conin [6], conout)
end module

You can tell from the order of port names in these modules that port ina [0] in module child
maps to port conin[1] ininstance childl. Similarly, port inb in child maps to port
conin[6] ininstance childl. Port out in child maps to port conout in instance
childi.

Mapping Ports with Name Pairs

You can also link the formal ports in a defining module and the actual ports in an instance
explicitly by pairing the port names. A period and the formal port name come first in each pair,
followed, in parentheses, by the actual port name used in the instance. For example, in this
module instantiation statement,

adc2 low (.in(rem chain), .out(bout[l]), .outb()) ;
the formal names in, out, and outb, are from the defining module, and the actual names

rem_chain and bout [1] are used in the instantiating module. The empty set of
parentheses adjacent to outb show that the outb port is not used in this instance.

Ensure that the first name in each pair is a name specified on the module statement of the
defining module. Then ensure that the second name, the actual one used in the instance and
in the instantiating module, is one of the following:

B A simple net identifier
B A scalar member of a vector net or port declared within the instantiating module

B A sub-range of a vector net declared within the instantiating module

Connecting the Ports of Module Instances

Developing modules that describe components is an important step on the way to the overall
goal of simulating a system. But an equally important step is combining those components
together so that they represent the system as a whole. This section discusses how to connect
module instances, using their ports, to describe the structure and behavior of the system you
are modeling.

June 2013 195 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Instantiating Modules and Primitives

Consider again the modules vdoubler and vquad, which describe this schematic.

gin aal gout
vdl vd2

module vdoubler (in, out) ;
input in ;
output out ;
electrical in, out ;
analog

V(out) <+ 2.0 * V(in) ;
endmodule

module vquad (gin, gout) ;
input gin ;

output qgout ;

electrical gin, gout ;
wire aal ;

vdoubler vdl (gin, aal) ;
vdoubler vd2 (aal, gout) ;
endmodule

This time, note how the module instantiation statements in vquad use port names to
establish a connection between output port aal of instance vdl and input port aal of
instance vdz2.

You can establish the same connections by using name pairs, as illustrated in the following
two instantiation statements

vdoubler vdl (.out (aal), .in (gin))
vdoubler vd2 (.in (aal), .out (gout)) -

Module instantiation statements like

vdoubler vdl (gin, gout) ;
vdoubler vd2 (gin, gout) ;

establish different connections. These statements describe a system where the gain blocks
are connected in parallel, with this schematic.

vdl

gin gout

vd2

June 2013 196 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Instantiating Modules and Primitives

Port Connection Rules

You can connect the ports described in the vdoubler instances because the ports are all
analog, are defined with compatible disciplines, and are the same size. To generalize,

B Allanalog ports connected to a net are compatible with each other. You can connect both
analog and digital ports to the same net if you provide appropriate connect statements.

m You must ensure that the sizes of connected ports and nets match. In other words, you
can connect a scalar port to a scalar net, and a vector port to a vector net or
concatenated net expression of the same width.

Overriding Parameter Values in Instances

The syntax for the module instance statement is

module_id [parameter value assignment] instance list

The following sections discuss the parameter_value_assignment expression, which
is further defined as
parameter value assignment ::=

#(ordered param override list)
| #(named param override list)

ordered param override list ::=
expression { , expression }

named param override list ::=
named param override { , named param override }

named param override ::=
. parameter_identifier (expression)

By default, instances of modules inherit any parameters specified in their defining module. If
you want to change any of the default parameter values, you can do so on the module
instantiation statement itself, or from other modules and instances by using the defparam
statement. The defparam statement is particularly useful if you want to change parameters
throughout your modules from a single location.

Overriding Parameter Values from the Instantiation Statement

Using the module instantiation statement, you can assign values to parameters in two ways.
You can assign values in the order the parameters are declared, or you can assign values by
explicitly referring to parameter names. The new values must be constant expressions.

June 2013 197 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Instantiating Modules and Primitives

Overriding Parameter Values with Ordered Lists

To override parameters using an ordered list of replacement values you must ensure that the
list specifies replacement values in the same order that the parameters are defined in the
defining module. You are not required to specify replacement values for every defined
parameter, but if you omit any value you must omit every value from then on. In other words,
you cannot skip over selected parameters. If a parameter does not need a new value,
however, you can specify a replacement value equal to the default value.

Consider the two instances, weakp and plainp, instantiated within module m.

module m ;

voltage clk ;

electrical out _a, in_a ;

mosp # (2e-6, le-6) weakp (out a, in a, clk);//Overriding param values by order
mosp plainp (out b, in b, clk) ;

endmodule ;

The weakp module instantiation statement overrides the first two parameters given in the
defining module, mosp, giving the first parameter the new value 2e-6 and the second
parameter the value 1e-6. The plainp module instantiation statement has no parameter
override expression, so the parameters assume their default values.

Overriding Parameter Values By Name

You can also override parameter values in an instantiated module by pairing the parameter
names to be changed with the values they are to receive. A period and the parameter name
come first in each pair, followed by the new value in parentheses. The parameter name must
be the name of a parameter in the defining module of the module being instantiated. When
you override parameter values by name, you are not required to specify values for every
parameter.

Consider this modified definition of module vdoubler. This version has three parameters,
parml, parm2, and parm3.

module vdoubler (in, out) ;
input in ;

output out ;

electrical in, out ;

parameter parml = 0.2,
parm2 = 0.1,
parm3 = 5.0 ;
analog
V(out) <+ (parml + parm2 + parm3) * V(in) ;
endmodule

module vquad (gin, gout) ;
input gin ;
output gout ;

vdoubler # (.parm3(4.0)) vdl (gin, aal) ; // Overriding by name
vdoubler # (.parml(0.3), .parm2(0.2)) vd2 (aal, gout) ; // Overriding by name
June 2013 198 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Instantiating Modules and Primitives

vdoubler # (0.3, 0.2) vd3 (aal, gout) ; // By order
endmodule

The module instantiation statement for instance vd1 overrides parameter parm3 by name to
specify that the value for parm3 should be changed to 4.0. The other two parameters retain
the default values 0.2 and 0.1. The module instantiation statement for vd3 uses an ordered
list to override the first two parameters, parml, and parm2. Parameter parm3 retains the
default value 5.0.

Overriding Parameter Values Using defparam

Use the defparam statement to set parameter values in any module instance throughout the
module hierarchy. With this capability, for example, you can group all your parameter override
assignments together in a single module. The syntax is

defparam param = constant_exp { , param = constant_exp } ;:

param must be a complete hierarchical path for the parameter whose value you want to
change in a module instance. constant_exp must be an expression involving only
constant numbers and parameters that are defined in the same module containing the
defparam statement.

For example, as the following code demonstrates, you could remove the parameter overrides
from module vguad and put them in a new module, annotate.

module vdoubler (in, out) ;
input in ;

output out ;

electrical in, out ;

parameter parml = 0.2,
parm2 = 0.1,
parm3 = 5.0 ;
analog
V (out) <+ (parml + parm2 + parm3) * V (in) ;
endmodule

module vquad (gin, gout) ;
input gin ;

output qgout ;

vdoubler vdl (gin, aal) ;
vdoubler vd2 (aal, gout) ;
endmodule

module annotate ;
defparam
vaquad.vdl.parm3
vquad.vd2.parml
vquad.vd2.parm2
endmodule

mn
[CNSNN
N WO
~e S o~

June 2013 199 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Instantiating Modules and Primitives

Precedence Rules for Overriding Parameter Values

Use the following rules to determine which parameter override takes precedence when a
parameter value is overridden by more than one assignment.

m If overrides take place at different levels of the module hierarchy, the highest level
override takes precedence.

m If overrides take place at the same level of the module hierarchy, an override done by the
defparam statement takes precedence over overrides done by module instantiation
statements.

ps #(.b(1.5) instl (in, out);

Instances of paramsets are allowed to override only parameters that are declared in the
paramset. Using a paramset instance to attempt to override a parameter of the base module
that is not declared in the paramset results in a warning and the offending parameter override
is ignored.

Instantiating Analog Primitives

The remaining sections of the chapter describe how to instantiate some analog primitives in
your code. For more information, see the “Preparing the Design: Using Analog Primitives and
Subcircuits” chapter of the Virtuoso AMS Designer simulator User Guide.

As you can instantiate Verilog-AMS modules in other Verilog-AMS modules, you can
instantiate Spectre and SPICE masters in Verilog-AMS modules. You can also instantiate
models and subcircuits in Verilog-AMS modules. For example, the following Verilog-AMS
module instantiates two Spectre primitives: a resistor and an isource.

module ri test (pwr, gnd)

electrical pwr, gnd ;

parameter real ibias = 10u, ampl = 1.0 ;
electrical in, out ;

resistor #(.r(100K)) RL (out, pwr) ; //Instantiate resistor
isource #(.dc(ibias)) Iin (gnd, in) ; //Instantiate isource
endmodule

When you connect a net of a discrete discipline to an analog primitive, the simulator
automatically inserts a connect module between the two.

However, some instances require parameter values that are not directly supported by the
Verilog-AMS language. The following sections illustrate how to set such values in the
instantiation statement.

June 2013 200 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Instantiating Modules and Primitives

Instantiating Analog Primitives that Use Array Valued Parameters

Some analog primitives take array valued parameters. For example, you might instantiate the
svcvs primitive like this:

module fm demodulator (vin, vout, wvgnd) ;
input vin, wvgnd ;

output vout ;

electrical vin, vout, vgnd ;

parameter real gain = 1 ;

svcvs #(.gain(gain), .poles ({-1M, 0, -1M, 0}))
af filter (vout, vgnd, vin, vgnd) ;

analog begin
end

endmodule

This fm_demodulator module sets the array parameter poles to a comma-separated list
enclosed by a set of square brackets.

Instantiating Modules that Use Unsupported Parameter Types

Spectre built-in primitives take parameter values that are not supported directly by the
Verilog-AMS language. The following cases illustrate how to instantiate such modules.

To set a parameter that takes a string type value, set the value to a string constant. For
example, the next fragment shows how you might set the £i1le parameter of the vsource
device.

vsource #(.type("pwl"), .file("mydata.dat") V1 (src,gnd);
To set an enumerated parameter in an instance of a Spectre built-in primitive, enclose the

enumerated value in quotation marks. For example, the next fragment sets the parameter
type to the value pulse.

vsource # (.type("pulse"),.vall(5),.period(50u)) Vclk(clk,gnd);

June 2013 201 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Instantiating Modules and Primitives

Using an M Factor (Multiplicity Factor)

Circuit designers use m factors to mimic parallel copies of identical devices without having to
instantiate large sets of devices in parallel. A design instance can inherit an m factor from one
of its ancestors in a hierarchy of instances. The value of the inherited m factor in a particular
module instance is the product of the m factor values in the ancestors of the instance and of
the m factor value in the instance itself. If there are no passed m factors in the instance or in
the ancestors of the instance, the value of the m factor is one (1.0).

In the Cadence implementation of Verilog-AMS, you use the inherited_mfactor attribute
to access the value of the m factor and set its value as follows:

(* inherited mfactor *) parameter real m=1;

and you use the passed_mfactor attribute to pass an m factor down the hierarchy; for
example:

one #(.m(3)) (* integer passed mfactor = "m"; *) One();

This example specifies an m-factor parameter called m, gives it the value 3, and passes that
value down to instance One of the module called one. Module one does not have to have the
m parameter declared in its interface.

Note: If you are using the AMS Designer simulator in the AMS Designer environment, the
AMS netlister inserts the passed_mfactor attribute so that you only need to insert the
inherited_mfactor parameter.

Example: Using an M Factor

The following example illustrates how the m-factor value is passed down the hierarchy and
how the effective value is the product of the m factors in the current instance and in the
ancestors of the current instance.

//Verilog-AMS HDL for "amslib", "top" "verilogams"

‘include "constants.vams"
‘include "disciplines.vams"

module top;

resistor Rl (a,b);

one #(.m(3)) (* integer passed mfactor = "m"; *) One();
// The above sets the m factor for instance One to 3.
endmodule

//Verilog-AMS HDL for "amslib", "one" "verilogams"

‘include "constants.vams"
‘include "disciplines.vams"

module one ();
parameter real (* integer inherited mfactor; *) m=1;

June 2013 202 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Instantiating Modules and Primitives

resistor Rl (a,b);
two Two () ;

analog S$strobe ("Inherited mfactor in module one is %$f",m);

// Value of m factor is 3, as set in module top.
endmodule

//Verilog-AMS HDL for "amslib", "two" "verilogams"

‘include "constants.vams"
‘include "disciplines.vams"

module two ();

three #(.m(2)) (* integer passed mfactor="m";*) Three();
// m factor is not accessed in this module, but a factor of 2
// 1s added.
endmodule

//Verilog-AMS HDL for "amslib", "three" "verilogams"

‘include "constants.vams"
‘include "disciplines.vams"
module three ();
parameter real (* integer inherited mfactor; *)
// The effective value of m factor is now 3 * 2 = 6.
resistor Rl (a,b);
four Four(); // No m factor is specified.

m=1;

analog S$strobe ("Inherited mfactor in module three is %f",m);

endmodule

//Verilog-AMS HDL for "amslib", "four" "verilogams"

‘include "constants.vams"
‘include "disciplines.vams"
module four ();

resistor Rl (a,b);
endmodule

When you simulate, these modules produce output like the following.

ncsim> run
inherited mfactor in module one is 3.000000
inherited mfactor in module three is 6.000000

June 2013 203
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Instantiating Modules and Primitives

Including Verilog-A Modules in Spectre Subcircuits

Users of AMS Designer can instantiate Spectre cells in their Verilog-AMS code. By using the
ahdl_include statement, those Spectre cells can, in turn, instantiate Verilog-A modules.
This situation, which users of Spectre libraries often encounter, is summarized by the
following diagram.

Verilog-AMS module
Spectre subcircuit

Verilog-A module

Spectre instance <«

Verilog-A instance)
Behavioral code

To set up a hierarchy like this one, you use an ahdl_include statement in the Spectre
subcircuit to include the Verilog-A module.

The ahdl_include statement used in the Spectre subcircuit has the following format.

ahdl include "filename"

For filename, use either a full or a relative path that resolves across your network. For a
Verilog-A file, fi 1ename must have a . va file extension.

For example, to include in your Spectre subcircuit a Verilog-A npn instance with the name
ahd1Npn, you use a statement like the following,

ahdl_include "/usr/ahdlNpn.va"

Be sure that you make the Spectre subcircuit available by defining the MODELPATH variable.
For more information about this procedure, see the “Using Subcircuits and Models Written in
SPICE or Spectre” section, in Chapter 3, of the Virtuoso AMS Designer simulator User
Guide.

June 2013 204 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

11

Mixed-Signal Aspects of Verilog-AMS

The Cadence® Verilog®-AMS language brings analog and digital modeling together in a
single language. This chapter describes the mixed-signal features of Verilog-AMS and how
the continuous (analog) and discrete (digital) domains interact.

Fundamental Mixed-Signal Concepts

Becoming familiar with the following terms will help you understand the discussion in this
chapter.

Domains

The domain of a value refers to the method used to calculate the value. In Verilog-AMS,
B The potentials and flows described in natures are calculated in the continuous domain.
B Register contents and the states of gate primitives are calculated in the discrete domain.

B The values of real and integer variables are calculated in either the continuous or
discrete domain, depending on the context in which their values are assigned. The
domain of a variable is that of the context from which its value is assigned.

Values calculated in the discrete domain change value instantaneously and only at integer
multiples of a minimum resolvable time. Values calculated in the continuous domain vary
continuously.

Contexts

Statements in a Verilog-AMS module description can appear in the body of an analog block,
in the body of an initial or always block, or outside of any block. Statements that appear
in an analog block are in the continuous context; statements in any other location are in the
discrete context. A particular variable can be assigned values in either context, but not in both
contexts.

June 2013 205 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

Nets, Nodes, Ports, and Signals

In Verilog-AMS, hierarchical structures are created when higher-level modules create
instances of lower level modules and communicate with those instances through input,
output, and bidirectional ports. A port represents the physical connection of an expression in
the instantiating or parent module with an expression in the instantiated or child module. The
expressions, which can include registers, variables, and nets of both continuous and discrete
disciplines, are referred to as connections. A port of an instantiated module has two nets,
the upper connection, which is a net in the instantiating module, and the lower connection,
which is a net in the instantiated module.

A net is said to be in the discrete domain if it has an associated discrete discipline. A netis in
the continuous domain if it has an associated continuous discipline. A signal is a hierarchical
collection of nets that, because of port connections, are contiguous. If all the nets that make
up a signal are in the discrete domain, the signal is a digital signal. If all the nets that make
up a signal are in the continuous domain, the signal is an analog signal. A signal that
consists of nets from both domains is called a mixed signal. Similarly, a port whose
connections are both analog is an analog port, a port whose connections are both digital is
a digital port, and a port with one analog connection and one digital connection is a mixed
port.

Nets and variables in the continuous domain are termed continuous nets and continuous
variables. Nets and variables in the discrete domain are termed discrete nets and discrete
variables.

If a signal is analog or mixed, then it is associated with a node. Regardless of the number of
analog nets in an analog or mixed signal, and regardless of how the analog nets in a mixed
signal are interspersed with digital nets, the analog portion of an analog or mixed signal is
represented by only a single electrical node. This guarantees that at any instant in time the
analog portion of a mixed or analog signal has one, and only one, value that represents its
potential with respect to ground.

Analog nodes and branches are allowed only as arguments to signal access functions,
analog functions, and analog primitive and module instantiations. They cannot be connected
to digital primitives.

For additional information, see Appendix A, “Nodal Analysis.”

Mixed-signal and Net Disciplines

The discipline of a continuous net specifies the tolerance (abstol) used to calculate the
potential of the associated node. A mixed signal might have multiple continuous nets of
different compatible continuous disciplines, with different abstol values. In this case, the

June 2013 206 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

abstol of the associated node is the smallest of the abstol values specified in the
disciplines associated with the continuous nets of the signal.

Behavioral Interaction

Verilog-AMS supports various types of blocks used to describe behavior. In general, digital
behavior is described in initial and always blocks and analog behavior is described in
analog blocks. In a Verilog-AMS module, you can have, at most, one analog block and any
number of initial and always blocks.

The nets and variables of each domain can be referenced in the other context, which is how
information passes between the continuous and discrete domains. Read operations of nets
and variables in both domains are allowed from both contexts. Write operations of nets and
variables are only allowed from within the context of their domain.

The following example illustrates some of these capabilities.

“timescale 1ns/lns
module mod (in);

integer abve; // Will be an analog-owned variable.
integer below; // Will be an analog-owned variable.
integer d; // Will be a digital-owned variable.

electrical in;

always begin // Enter the digital context.
if (abve) // Read the analog variable in the digital context.
d=1; // Write the variable d in the digital context.
if (below)
d = 0; // d, because written in digital context, is owned by digital.
#5;
end
analog begin // Enter the analog context.
@ (cross (V(in) - 2.5, +1))
abve = 1; // Write to the variable abve in the analog context.
@ (cross (V(in) - 2.5, -1))
abve = 0; // abve, because written in analog context,is owned by analog.
if (d ==) // Read the value of d in the analog context.
Sstrobe (" d is still high\n"); end
endmodule

Using Verilog-AMS, you can
B Access discrete primaries, such as nets and variables, from a continuous context

B Access continuous primaries, such as flows, potentials and variables, from a discrete
context

June 2013 207 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

m Detect discrete events from a continuous context

B Detect continuous events from a discrete context

Accessing Discrete Nets and Variables from a Continuous Context

Using Verilog-AMS, you can access discrete nets and variables from a continuous context.
The following table shows how values map from the discrete context to the analog context.

Type of Eqm_valent Mapping from discrete to
discrete net Example continuous)
. . continuous
or variable variable type
real real r; real Discrete real values are accessed in

real rm[0:8];

integer integer i; integer
integer im[0:4];

bit reg rl; integer
wire wl;
reg [0:9] r[0:7];
reg r[0:66];
reg [0:34] rb;

the continuous context as real
numbers.

Discrete integer values are accessed
in the continuous context as integer
numbers.

Discrete bit and bit groupings (buses
and part selects) are accessed in the
continuous context as integer
numbers. x and z values cannot be
represented as analog integers.
Furthermore, itis illegal in the analog
context to reference digital bits that
are setto x or z.

The sign bit (bit 31) of the integer is
always set to zero, and the lowest bit
of the bit grouping is mapped to the
Oth bit of the integer. Then, the next
bit of the bus is mapped to the 1st bit
of the integer and so on. If the bus
width is less than 31 bits, the higher
bits of the integer are set to zero. Itis
illegal to access a discrete bit
grouping with more than 31 bits.

The following example shows code that accesses the value of a discrete primary from a

continuous context.

June 2013 208
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

module onebit dac (in, out) ;
input in ;

inout out ;

wire in ;

logic in ;

electrical out ;

real vout ;

analog
if (in==0) // "in"™ 1s a discrete primary.
vout = 0.0 ;
else
vout 3.0 ;

V (out) <+ vout ;

endmodule

Accessing Continuous Nets and Variables from a Discrete Context

Using access functions, you can probe continuous nets from within a discrete context. All
probes that are legal in the continuous context of a module are also legal from within the
discrete context. For more information on access functions, see “Obtaining and Setting Signal
Values” on page 127.

The following example illustrates how you might access a continuous net from the discrete
context.

module sampler (in, clk, out);

inout in;

input clk;

output out;

electrical in; // "in" is a continuous net.

wire clk;

reg out;

always @ (posedge clk) // Entering the discrete context.
out = V(in); // Access the continuous net.

endmodule

Continuous variables can be accessed for reading from any discrete context in the same
module that the continuous variables are declared. Because the discrete domain can fully
represent all continuous types, a continuous variable is fully visible when it is read in a
discrete context.

The following example illustrates this capability.

real aVar; // Will be a continuous analog variable.
electrical in;
reg dReg;
analog begin // Enter the analog context.

@ (cross (V(in) - 2.5, +1))

avar = 1; // Write to variable, so aVar is now owned by analog.

end
June 2013 209 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

always begin // Enter the digital context.
#5 dReg = avVar; // Read value of analog aVar within digital context.
end

Detecting Discrete Events from a Continuous Context

You can detect discrete events from within a continuous context. The arguments to discrete
events in continuous contexts are considered part of the discrete context. A discrete event in
a continuous context is non-blocking, like the other events allowed in continuous contexts.

The following example illustrates a discrete event being detected in a continuous context.

module sampler3 (in, clkl, clk2, out);
input in, clkl, clk2;

output out;

wire clkl;

real vout ;

electrical in, clk2, out;

analog begin // Enter the continuous context.
@ (posedge clkl, 1)) // Detect discrete event posedge clkl.
vout = V(in);
V(out) <+ vout;
end
endmodule

Detecting Continuous Events from a Discrete Context

You can detect analog (continuous) events from within a discrete context. The arguments to
these events are considered part of the continuous context. An analog event used in a
discrete context is blocking like other discrete events.

The following example illustrates an analog event being detected in a discrete context.

module sampler?2 (in, clk, out);
input in, clk;
output out;

wire in;

reg out;

electrical clk;

always @ (cross(V(clk) - 2.5, 1)) // Code to detect the analog event.
out = in;

endmodule

Connect Modules

The Verilog-AMS language allows you to describe analog and digital components and to
connect these components together. A connect module is a module automatically or

manually inserted to connect the continuous and discrete disciplines (mixed-nets) of the
design hierarchy together. A connect module contains the code required to translate and

June 2013 210 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

propagate signals between the analog and digital components. This section contains details
about the following aspects of using connect modules.

m Coding connect modules
B Understanding the factors affecting the placement of connect modules

B Understanding the behavior of connect modules

Some additional examples of connect modules can be found at:

your_install_dir/tools/affirma ams/etc/connect 1lib

Coding Connect Modules

Connect modules have the following syntax.

connectmodule declaration ::=
connectmodule module identifier (port, port) ;
[connectmodule items]
endmodule

port ::=
port identifier

connectmodule items ::=
{ connectmodule item }
| analog block

connectmodule item ::=
connectmodule item declaration
| defparam override
| analog primitive instantiation
| digital continuous_assignment
| digital gate instantiation
| digital udp_ instantiation
| digital specify block
| digital initial construct
| digital always_construct
connectmodule item declaration ::=
parameter declaration
input declaration
output declaration
inout declaration
integer declaration
net discipline declaration
real declaration

Specifying Port Directions in Connect Modules

The disciplines associated with the two specified ports, and the directions declared in the
module, together determine when the connect module can be used to connect the discrete
and continuous domains of a mixed net.

June 2013 211 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

For example, the following connect module, d2a, can bridge

B A mixed input port whose upper connection is compatible with the logic discipline and
whose lower connection is compatible with the electrical discipline

B A mixed output port whose upper connection is compatible with the electrical discipline
and whose lower connection is compatible with the logic discipline.
connectmodule d2a(in,out);
input in ;
output out ;
logic in ;
electrical out ;
endmodule

The next example, a24d, defines a connect module that can bridge

B A mixed output port whose upper connection is compatible with the logical discipline and
whose lower connection is compatible with the electrical discipline

B A mixed input port whose upper connection is compatible with the electrical discipline
and whose lower connection is compatible with the logic discipline
connectmodule a2d(out, in)
output out ;
input in ;
logic out ;
electrical in ;
endmodule

The final example, bidir, defines a connect module that can bridge any mixed port where
one connection is compatible with the logic discipline and the other connection is compatible
with the electrical discipline.
connectmodule bidir (out, in)

inout out ;

inout in ;

logic out ;

electrical in ;
endmodule

The d2a, a2d, and bidir examples illustrate all the direction combinations that are allowed
in a connect module. You must not define a connect module that declares both ports as input
or both ports as output.

Coding to Meet Connect Module Requirements

Connect modules have two functions:
B Translating between the analog and digital domains

B Using analog information to control the propagation of digital signals

June 2013 212 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

This section presents examples that illustrate how to code connect modules to handle these
requirements. For more information, see “Driver-Receiver Segregation” on page 227.

Example: Using Analog Data to Control Digital Propagation

In the following connect module, the analog code determines when the ordinary driver
outputs propagate to the ordinary receivers. The c2e connect module drives the digital port
d (through the register tmp) only when the analog value rises above or falls below a 2.5-volt
threshold.

connectmodule c2e(d,a);

inout d;
inout a;
cmosl d;
electrical a;
reg tmp;
assign d = tmp ; // Bind d to a register.
analog // Translate from digital to analog.
V(a) <+ transition(d==1 2?2 5.0 : 0.0, 3n, 3n);
always @(cross (V(a) - 2.5, +1))
tmp = 1‘bl; // Propagate the digital signal when
// the analog value rises to 2.5v.
always @(cross (V(a) - 2.5, -1))
tmp = 1'b0; // Propagate the digital signal when
// the analog value falls to 2.5v.
endmodule

Example: Using Driver Access Functions to Control Digital Propagation

The connect module described in this section uses driver access functions to examine the
values of individual digital drivers. The module uses assumptions about the analog
characteristics of a cmos1 (logic) driverto presentto port a an accurate analog equivalent
of the digital signal. The module then uses the voltage at port a to determine the logic state
that propagates to the receivers of the digital signal.

The module embodies the following assumptions about cmos1 (logic):

B The equivalent analog circuit of an output is a function of the rail-to-ground supply
voltage supply.

B The equivalent analog circuit when a gate output in cmos1 (logic) is driven high can
be approximated by a resistance impedencel between the output and the rail.

B The equivalent analog circuit when a gate output in cmos1l (logic) is driven low can
be approximated by a resistance impedence0 between the output and ground.

June 2013 213 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

B The effect of the impedance between output and rail when the output is driven low, and
of the impedance between output and ground when the output is driven high, is
negligible.

This connect module effectively adds another parallel resistor from output to ground
whenever a digital output connected to the net goes low and adds another parallel resistor
from output to rail (supply) whenever a digital output connected to the net goes high.

‘include "disciplines.vams"
‘timescale 1ns/lps

connectmodule d2a(d, a);
input d;

output a;

logic d;

electrical rail, a, gnd;
reg out;

ground gnd;

branch (rail,a) pull up;
branch (a,gnd) pull down;
branch (rail,gnd) power;

parameter real impedenceO = 120.0;
parameter real impedencel = 100.0;
parameter real impedenceOff = 1le6;
parameter real vt hi = 3.5;
parameter real vt lo = 1.5;

parameter real supply = 5.0;
integer i, num ones, num_zeros;

// net resolution(d, out);

assign d=out; // Cadence method used instead of net resolution
initial begin

num_ ones=0;

num_zeros=0;

end
always @(driver update(d)) begin
num _ones = 0;
num zeros = 0;
for (1 = 0; i < Sdriver count(d); i=i+l)
if ($driver state(d,i) ==)
num ones = num ones + 1;
else
num zeros = num zeros + 1;
end
always @(cross(V(a) - vt _hi, -1) or cross(V(a) - vt _lo, +1))
out = 1’bx;
always @(cross(V(a) - vt _hi, +1))
out = 1'bl;
always @ (cross(V(a) - vt lo, -1))
out = 1’b0; a

analog begin
// Approximately one impedencel resistor to rail per high output
// connected to the digital net.
V(pull up) <+ 1/((1/impedencel)*num ones+(l/impedenceOff)) * I(pull up);

// Approximately one impedence(O resistor to ground per low output
// connected to the digital net.
V(pull down) <+ 1/((l/impedence0)*num zeros+ (l/impedenceOff)) *I(pull down);

June 2013 214 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

V (power) <+ supply;
end

endmodule
If this module is used as the d2a in the following schematic,

B The delay from digital drivers to the digital receiver is a function of the value of the
capacitor

B The delay with two gates driving the signal is approximately half as long as the delay with
one gate driving the signal

d3
>o " D@
d1 [l d2a d2

Using Automatically-Inserted Connect Modules

To make use of an automatically-inserted connect module, you must specify the
circumstances in which it is to be used. To do that, use the connect specification discussed
in the next section. After that, the simulator automatically inserts the connect module
according to the criteria that you specify. For an example of a design that uses automatically
inserted connect modules, see “Example: Automatic Insertion of Connect Modules” on
page 218.

Choosing and Specializing Connect Modules

Use the connect specification to declare which connect modules are to be automatically
inserted in mixed ports. There can be multiple connect module declarations with port
disciplines and directions that match each discrete/continuous discipline pair. The connect
specification specifies which to use.

June 2013 215 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

connect specification ::=
connectrules connectrule_ identifier ;
{ connect spec item }
endconnectrules

connect spec item ::=
connect insertion
| connect resolution

connect insertion ::=
connect connect_module_identifier [connect mode] [#(attribute list)]
[[direction] discipline_iden, [direction] discipline_iden] ;

connect mode ::=
merged
| split

attribute list ::=
attribute
| attribute list , attribute

attribute ::=
.parameter_identifier (expression)

direction ::=
input

| output

| inout

connect_module identifieristheconnect moduletobe usedto connect mixed nets
that have the disciplines declared in the connect module. For example, if d2a is defined as
connectmodule d2a (in, out) ;

input in ;

output out ;

logic in ;

electrical out ;
endmodule

then the specification

connect d2a ;

designates the d2a module as the connect module to insert automatically to bridge a mixed
input port whose upper connection is compatible with the logic discipline and whose lower
connection is compatible with the electrical discipline.

connect_resolution is further defined as follows.

connect resolution ::=
connect discipline list resolveto discipline_identifier ;

discipline list ::=
discipline_identifier
| discipline list, discipline_identifier

You use the connect_resolution statement to specify a single discipline to use during the
discipline resolution process when multiple nets with compatible discipline are part of the
same mixed net.

June 2013 216 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

connect_mode specifies whether all ports of a common discrete discipline and port direction
share a single connect module or have individual connect modules. This attribute is
discussed further in “connect_mode Attribute Affects Connect Module Placement” on

page 221.

attribute_list allows you to override the default parameter values of the connect
module. The expressions that specify the overriding values must not be out-of-module
references. For example, the following statement specifies values for tt and vcc.

connect d2a 035u #(.tt(3.5n), .vcc(3.3))

direction allows you to override the port directions specified in the connect module. For
example, using the connect module d2a, defined above, the statement

connect d2a output logic, input electrical ;

designates the d2a module as the connect module to insert automatically to bridge a mixed
input port whose upper connection is compatible with the electrical discipline and whose
lower connection is compatible with the logic discipline or a mixed output port whose lower
connection is compatible with electrical and whose upper connection is compatible with logic.

You can use the discipline identifiers to specify different discipline combinations for the
connect module. For example, the connect module d2a, as it is coded, can only be used to
bridge the logic and electrical disciplines. However, you can use it for other discipline pairs by
coding something like this.

connect d2a logic, sig flow i ;

To use this discipline override form of the connect specification, the discipline you specify for
the continuous domain must be compatible with the continuous discipline specified in the
connect module. Similarly, the discipline you specify for the discrete domain must be
compatible with the discrete discipline specified in the connect module.

Where AMS Designer Searches for Connect Rules and Connect Modules

On the ncelab command line, you can list multiple connectrules blocks, each of which
can contain many connect rules. Each connect rule specifies a connect module to be inserted
when the connect rule is selected. A connect rule and the connect module it specifies can be
in different libraries.

The AMS elaborator uses the following approach to determine which connectrules block
and which connect rule to use.

1. The elaborator searches, in order, as many of the connectrules blocks listed on the
command line as necessary to find a valid connect rule. For example, if the command line
is

ncelab cRuleBlockA cRuleBlockB

June 2013 217 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

the elaborator looks first at the connect rules in cRuleBlockA. If there are no valid
connect rules in cRuleBlockAa, then the elaborator looks at the connect rules in
cRuleBlockB.

2. To determine whether a connect rule is valid, the elaborator attempts to locate (as
described in the next step) a connect module that matches the name specified by the
connect rule and the discipline and direction requirements for the port and net being
connected.

3. The elaborator searches the following locations, in order, for a connect module that
matches each connect rule in the connectrules block.

Q The parent library of the connect module instance.

The elaborator inserts connect modules between a lower port and an upper net. The
parent library is the library containing the module in which the upper net is located.

Q The library that contains the connectrules block.
Q The libraries listed in the cds . 1ib file.

If, in any single one of these libraries, the elaborator finds one (and only one) connect
module that matches the selected connect rule, the connect rule is valid. After finding a
connect module that makes the connect rule valid, the elaborator searches the rest of
the current library, but does not go on to other libraries.

If any single one of these libraries contains more than one connect module that matches
the selected connect rule, the elaborator issues an error.

4. If, in a connectrules block, there are multiple valid connect rules, the elaborator
selects the last such valid connect rule listed. If there are no valid connect rules, the
elaborator looks in the next connectrules block listed on the ncelab command.

Example: Automatic Insertion of Connect Modules

This example describes a ring of digital and analog inverters. To bridge between the discrete
and continuous domains, the design uses two connect modules: elec_to_logic and
logic_to_elect. The simulator automatically inserts the elec_to_logic connect
module between the out port of instance a3 and net n1, which is bound to the in port of
instance d1. The simulator automatically inserts the 1ogic_to_elect connect module
between the out port of instance d2 and net n3, which is bound to the in port of instance a3.
module ring;

dig inv dl (nl, n2);

dig inv d2 (n2, n3);
analog inv a3 (n3, nl);

endmodule

June 2013 218 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

module dig inv (in, out);
input in;
output out;
logic in, out

always begin
out = #10 ~in;
end

endmodule

module analog inv(in, out);
input in;
output out;
electrical in, out;
parameter real vth =2.5;

analog begin
if (V(in) > wvth)) outval = 0;
else
outval = 5 ;
V(out) <+ transition (outval);
end

endmodule

connectmodule elect to logic(el,cm);
input el;
output cm;
reg cm;
electrical el;
logic cm;
always
@(cross(V(el) - 2.5, 1) cm = 1;

always
@(cross (V(el) - 2.5, -1) cm = 0;

endmodule
connectmodule logic to elect(cm,el);

input cm;

output el;

logic cm;

electrical el;

analog
V(el) <+ transition((cm == 1) ? 5.0 : 0.0);

endmodule

connectrules crules ;
connect elect to logic; // Specifies which appropriate connect module to use.

connect logic:to_elect;
endconnectrules

Names for Automatically Inserted Connect Module Instances

Parameters of automatically inserted connection instances can be individually set by using
the defparam statement. To facilitate this, the instance names for the automatically inserted
modules are entirely predictable.

June 2013 219 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

To determine the name of a connect module instance when the connect_mode attribute
value is merged

1. ldentify the discipline, DisciplineName, at the bottom connection.
2. ldentify the common signal, Net.

3. Identify the connect module, ModuleName.

The instance name of the connect module is

Net__ModuleName__DisciplineName

where the name sections are joined by double underscores.

To determine an instance name when the connect_mode attribute value is split
1. Identify the discipline of the common net, nNet, at the top connection.

2. ldentify the local instance name (non-hierarchical name) at the bottom connection,
InstName.

3. Identify the port name at the bottom connection, PortName.

The instance name of the connect module is,

Net InstName PortName

where the name sections are joined by double underscores.

Understanding the Factors Affecting Connect Module Placement

By definition, connect modules are inserted between analog nets and digital nets. There are
several factors, however, that affect where the boundary between analog and digital nets is
drawn. These factors include

B The value of the connect_mode attributes of connect statements
B The disciplines used to explicitly declare nets

B The result of discipline resolution, which assigns disciplines and domains to nets whose
disciplines and domains are otherwise unknown

B The use of aliased ports, which can result in the insertion of connect modules.

June 2013 220 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

connect_mode Attribute Affects Connect Module Placement

The connect_mode attribute of the connect statement controls the segmentation of the
signal at each level of the hierarchy when a connect module is inserted. This attribute applies
only when there is more than one port of discrete discipline on a signal for which the connect
statement applies. The attribute has two possible values: split and merged. The split
value indicates that there should be one connect module inserted per port. The merged
value, which is the default, specifies that there is to be only one connect module inserted for
all the ports on a signal that match a given connect statement.

connect_mode Merged

The merged value for the connect_mode attribute instructs the elaborator to group all ports
(whether input, output, or inout) and to insert just one connect module for all of them,
provided that the needed connect module is the same for all the ports.

The following figure illustrates the effect of the merged value in three connect statements.

connectrules example ;
connect d2a merged input ttl, output electrical ;
connect bidir merged output electrical, input ttl ;
connect bidir merged inout ttl, inout electrical ;
endconnectrules

June 2013 221 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

Notice how connecting the electrical signal to the TTL input and inout ports results in the
insertion of a single connect module, bidir. Connecting the electrical signal to the TTL
output ports results in the insertion of a single, but different, module, d2a.

TTL
bidir
. ozl
inputs : =

outputs :
d2a

inouts ::
TTL

inputs :

outputs :

inouts |

electrical

R4

connect_mode Split

The split value for the connect_mode attribute instructs the simulator to insert a connect
module for each port. The following figure illustrates the effect of the split value in three
connect statements.
connectrules example ;

connect d2a split input ttl, output electrical ;

connect a2d merged output electrical, input ttl ;

connect bidir merged inout ttl, inout electrical ;
endconnectrules

With this specification, connecting the electrical signal to the TTL input ports results in the
insertion of a single instance of the a2d connect module, as specified by the merged value.
Similarly, a single instance of the bidir connect module is inserted for the inout ports.

June 2013 222 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

However, the split value used for the d2a connect statement results in the insertion of a
distinct instance of the connect module for each output port.

TTL
a2d
. ozl
inputs : =
electrical
d2a
outputs o
LA
L
d2a
inouts :
TTL
inputs :
d2a
outputs =
b4
d2a
inouts 4:
b
bidir

Disciplines Used to Declare Nets Affect Connect Module Placement

Connect modules are inserted at the boundary between the analog and digital domains. It
follows that changing the location of the boundary can affect where connect modules are
placed. For example, if the wires in the following schematic are digital, a single connect
module is inserted between the analog capacitor and the digital inverters.

ni
di d2

X c2e

June 2013 223 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

However, if net nl is analog, two connect modules are inserted.

ni
a1 c2e e2c 42

In this case, the c2e module translates the digital output of inverter d1 into analog voltage for
nl, and the e2c module translates analog voltage back into a digital signal for inverter d2.
The analog capacitor connects directly to analog net n1l.

Discipline Resolution Affects Connect Module Placement

Another factor that affects the location of the boundary between the analog and digital
domains and, therefore, where connect modules are inserted, is discipline resolution.
Discipline resolution is the process of assigning a domain and discipline to nets whose
domain and discipline are otherwise unknown (or whose discipline is wire).

The factors that affect discipline resolution are listed in the following table.

Factor For more information, see

1

The disciplines that are used in the design, “Disciplines” on page 68
including the disciplines used for inherited
connections

The value of the *default_discipline “Setting a Default Discrete Discipline for

compiler directive Signals” on page 240
The use of discipline resolution connect “Using Discipline Resolution Connect
statements Statements” on page 225

The discipline resolution method selected “Discipline Resolution Methods” on
page 225

The way that mixed-domain buses are used “Discipline Resolution in Buses” on page 227

The use of aliased ports. “How Aliased Signals Are Netlisted” in
chapter 4, of the Virtuoso AMS Designer
Environment User Guide.

June 2013 224 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

Using Discipline Resolution Connect Statements

Use the discipline resolution connect statement to specify a single discipline to resolve to
when multiple nets with compatible disciplines are part of the same mixed net.

connect resolution ::=

~connect discipline list resolveto discipline_to_use;

discipline list ::=
discipline_identifier
| discipline list,

discipline_identifier

discipline_to_use is the single discipline to be used for the net.

discipline_list is the list of compatible disciplines that are to resolve to a single

discipline.

For example,

connect electrical, electrical hi cur, electrical low power resolveto electrical

Discipline Resolution Methods

Verilog-AMS provides two methods of discipline resolution: default and detailed. The two
methods assign domains and disciplines to unknown signal segments in different ways,
resulting in different boundaries between the analog and digital domains. If you do not want
to use the default method, you can specify the detailed method using the -disres

detailed elaborator option.

The default and detailed methods have different effects, as follows:

Default method

Detailed method

Propagates both continuous and discrete
disciplines up the hierarchy, which typically
results in fewer connections between the
analog and digital domains.

Produces connection elements between the
analog and digital domains that tend to be
higher in the hierarchy.

Assigns digital disciplines to more nets on a
mixed signal.

Propagates continuous disciplines up and
back down the hierarchy to meet discrete
disciplines, which typically results in more
connections between the analog and digital
domains.

Produces connection elements between the
analog and digital domains that tend to be
lower in the hierarchy.

Assigns analog disciplines to more nets on
a mixed signal.

June 2013
© 2000-2013

225

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

Discipline resolution applies to the following kinds of nets: wire, tri, wor, trireg, wand,
tri0, tril, supply0, supplyl, wreal, and nets of unknown disciplines. If a net resolves
to the analog domain, the software ignores any digital property the net has. If a net resolves
to the digital domain, the software considers any digital property that it has during further
processing.

The methods use the following steps to assign domains and disciplines:

1. Traverse each signal hierarchically, starting at the bottom, until a net is found that has no
assigned discipline.

2. Examine the connections of the segment and assign a domain to the segment.

a

For the default method, examine the connections of the segment to only the upper
parts of ports. If all such connections are digital, assign the segment to the digital
domain. If any such connection is analog, assign the segment to the analog domain.

For the detailed method, examine the connections of the segment to both the
upper and the lower parts of ports. If all such connections are digital, assign the
segment to the digital domain. If any such connection is analog, assign the segment
to the analog domain.

3. Apply ‘default_discipline directives, as appropriate, to nets with digital domains.

4. For each net that has not yet been assigned a discipline, examine the ports to which the
segment is connected.

a

For the default method, examine all ports to which the segment forms the upper
connection. Create a list of all the disciplines at the lower connections of these ports
whose domains match the domain of the net.

For the detailed method, examine all ports to which the segment forms the upper
or lower connection. Create a list of all the disciplines at the other connections of
these ports whose domains match the domain of the net.

5. Use the list created in the previous step to determine the discipline of the net.

a

a

June 2013

If there is only a single discipline in the list, assign that discipline to the net.

If there is more than one discipline in the list, and the contents of the list match the
discipline list of a resolution connect statement (the connect..using syntax),
assign to the net the resolved discipline given by the statement.

If there is more than one discipline in the list but the contents of the list do not match
the discipline list of a resolution connect statement, the discipline of the net remains
unknown.

226 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

6. (detailed method only.) Traverse each signal hierarchically, starting at the top. When a
net is found that has no assigned discipline, repeat step 2 through step 5.

Discipline Resolution in Buses

The individual nets in a bus with an unknown domain are assigned domains according to the
following rules.

m If any netin a bus with an unknown domain is used in a behavioral statement, every net
in the bus is assigned to the digital domain.

m If any netin a bus with an unknown domain is connected to an analog primitive, every
net in the bus is assigned to the analog domain.

B The nets in buses that are used only to establish connectivity can, according to how they
are connected, all be assigned to the analog domain, all be assigned to the digital
domain, or some nets can be assigned to the analog domain and some to the digital
domain. This latter kind of bus is known as a mixed bus.

In a mixed bus, the domains of each net are individually determined by the connections
of that particular net, using the discipline resolution methods described in “Discipline
Resolution Methods” on page 225.

Understanding How Connect Modules Operate

The previous sections discuss the factors that affect where the software inserts connect
modules in a design. The following sections discuss the behavior of connect modules after
the software inserts them. The issues include

m Driver-receiver segregation
m Digital islands

B The independent behavior of connect modules

Driver-Receiver Segregation

In a purely digital net, drivers generate signals that propagate directly to receivers. In a mixed
net, analog components can affect the propagation of the digital signals. To allow for this
possibility, the AMS Designer simulator uses a technique called driver-receiver
segregation. With driver-receiver segregation, which occurs with every mixed net, digital
signals propagate only through connect modules inserted between the drivers and receivers.

June 2013 227 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

Digital nets connected to the ports of manually-inserted connect modules behave as mixed
nets and are subject to driver-receiver segregation.

Conceptual Overview of Driver-Receiver Segregation

Consider the following purely digital circuit containing two inverters.

_QQ Dgi

dz2

The driver, d1, contributes a value directly to the receiver, d2.

Adding an analog capacitor to the circuit, turns the net between d1 and d2 into a mixed net:

Because the net is mixed, it is subject to driver-receiver segregation, which severs the direct
connection between d1 and d2. After driver-receiver segregation, the circuit looks like this:

June 2013 228 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

A connect module, c2e, reestablishes the link between the digital components and translates
between the analog and digital domains. Conceptually, the circuit has the following schematic
with the connect module added:

L) Ddzg

c2e

The connect module, c2e, has both a digital input side and a digital output side, even when
c2e is coded with only a single digital port. The c2e module must have two sides because
part of its function is reading values from d1 and propagating them to d2. This is an important
point. To ensure that digital values propagate through a connect module, the connect module
code must be written to handle the task. Otherwise, the drivers have no effect on the
receivers.

In a connect module, as in regular modules, all digital ports behave like inout ports, whether
they are coded as inout, input, or output ports. For example, in the following code for the
connect module c2e, the single digital port is both read and driven, in spite of the fact that the
port is defined as input.

module c2e(d,a);

input d; // Define a digital port as input.

output a;

cmosl d;

electrical a;

assign d = d ; // Both read and drive the digital port.

analog // Perform digital to analog translation.
V(a) <+ transition(d == 1 2 5.0 : 0.0);

endmodule

To summarize the basic concepts in driver-receiver segregation:
m Every mixed net is subject to driver-receiver segregation.

m Drivers segregated from receivers by a connect module can drive signals to receivers
only if the connect module propagates the signals.

June 2013 229 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

m Digital ports in connect modules can be both read and driven, regardless of the way they
are defined.

Digital Islands Limit the Range of Connect Modules

An important aspect of driver-receiver segregation has to do with the concept of digital
islands. A digital island is the set of drivers and receivers interconnected by a purely digital
net. Digital islands end at any connection to a mixed or analog net. For example, the following
schematic contains three digital islands, each identified with dashed lines.

— —_

e2c1 "’ a6

/
\)Q/\
N e
c2e1 S
; -
W1
c2e2 |[
A

declared analog net

In this schematic, e2c1, c2el, and c2e2 are connect modules, each connecting a digital
island to the analog wire, w1.

A connect module receives digital signals only from within the digital island isolated by the
connect module and drives only the receivers located in the digital island. For example,
referring to the above schematic, the digital port on the c2el1 module receives signals only
from d1 and d3, which are the drivers in the digital island connected to the module. The c2el
module does not receive signals from d4 and d5, which are located in a different digital island.
Similarly, c2el propagates digital values only to the receiver d2. The c2e1 module does not
propagate digital values to d6, which is in a different digital island.

Multiple Connect Modules Act Independently

In a purely digital circuit with multiple drivers, the digital value acted on by the receiver is
resolved from all of the digital values written by drivers. In the following schematic, for

June 2013 230 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

example, the Verilog-AMS simulator resolves the values written by d3 and d1 and propagates
the result to d2.

d3

ni
] O O
a e

When connect modules act as drivers and receivers, however, there is another consideration:
each connect module behaves as though it is the only connect module involved. For example,
add an analog source and an analog capacitor to the previous schematic so that it looks like
this.

d3

ni

— >0 D@
d1 e2c] c2e d2

K

The e2c connect module behaves as though the c2e connect module does not exist, so the
only drivers that affect e2c are the ordinary drivers d3 and d1. Similarly, c2e is affected only
by drivers d3 and d1, not by any digital value that e2c might contribute.

The connect modules e2c and c2e both write to their digital ports as they propagate digital
values from the ordinary drivers to the ordinary receivers. Again, each connect module
operates independently of the other, so each one sends a digital signal. The simulator
resolves the two signals and sends the resolved signal to d2.

The independence of connect modules is also apparent when you use the driver access
functions. For example, applying the driver_count function to the digital port of e2¢
returns the value 2, indicating that there are two drivers associated with that signal. Similarly,
applying driver_count to the digital port of c2e returns the value 2, indicating that there

June 2013 231 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Mixed-Signal Aspects of Verilog-AMS

are two drivers associated with the signal. Neither count includes the other connect module
because each connect module behaves as though the other does not exist.

June 2013 232 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

12

Controlling the Compiler

This chapter describes how to use the Cadence® VeriIog®-AMS compiler directives for a
range of tasks. The following compiler directives are available in Verilog-AMS. You can
identify them by the initial accent grave (*) character, which is different from the single quote
character (').

Compiler Directive Task

‘define “Implementing Text Macros” on page 234

“undef

‘ifdef “Compiling Code Conditionally” on page 236
“include “Including Files at Compilation Time” on page 237
‘timescale “Adjusting the Time Scale” on page 238

‘default_discipline “Setting a Default Discrete Discipline for Signals” on page 240
‘default_transition “Setting Default Rise and Fall Times” on page 242

‘resetall “Resetting Directives to Default Values” on page 242
‘begin_keywords “Specifying Which Reserved Keyword List to Use” on
“end_keywords page 243

‘remove_keyword “Removing and Restoring Specific Keywords” on page 245

‘restore_keyword

See also “Checking Support for Compact Modeling Extensions” on page 246 for information
about a predefined macro that you can use to determine whether your simulator supports the

compact modeling extensions.

June 2013 233 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Controlling the Compiler

Implementing Text Macros

By using the text macro substitution capability provided by the “define and “undef
compiler directives, you can simplify your code and facilitate necessary changes. For
example, you can use a text macro to represent a constant you use throughout your code. If
you need to change the value of the constant, you can then change it in a single location.

“define Compiler Directive

Use the "define compiler directive to create a macro for text substitution.

text macro definition ::=
“define text macro name macro_text

text macro name ::=
text_macro_identifier[(list of formal arguments)]

list of formal arguments ::=
formal_argument_identifier { , formal_argument_identifier }

macro_text is any text specified on the same line as text_macro_name. If
macro_text is more than a single line in length, precede each new-line character with a
backslash (\). The first new-line character not preceded by a backslash ends
macro_text. You can include arguments fromthe 1ist_of_formal_arguments in
macro_text.

Subject to the restrictions in the next paragraph, you can include one-line comments in
macro_text. If you do, the comments do not become part of the text that is substituted.
macro_text can also be blank, in which case using the macro has no effect.

You must not split macro_ text across comments, numbers, strings, identifiers, keywords,
or operators.

text_macro_identifier isthe name you want to assign to the macro. You refer to this
name later when you refer to the macro. text_macro_identifier must not be the
same as any of the compiler directive keywords but can be the same as an ordinary identifier.
For example, signal_name and "signal_name are different.

/ Important

If your macro includes arguments, there must be no space between
text_macro_identifier and the left parenthesis.

To use a macro you have created with the ~ define compiler directive, use this syntax:

text macro usage ::=
“text_macro_identifier([(list of actual arguments)]

June 2013 234 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Controlling the Compiler

list of actual arguments ::=
actual_argument { , actual_argument }

actual argument ::=
expression

text_macro_identifier isaname assigned to a macro by using the “define
compiler directive. To refer to the name, precede it with the accent grave (°) character.

/ Important

If your macro includes arguments, there must be no space between
text_macro_identifier and the left parenthesis.

list_of_actual_arguments corresponds with the list of formal arguments defined
with the * define compiler directive. When you use the macro, each actual argument
substitutes for the corresponding formal argument.

For example, the following code fragment defines a macro named sum:

“define sum(a,b) ((a)+(b)) // Defines the macro

To use sum, you might code something like this.
if (“sum(p,q) > 5) begin

c =0 ;
end

The next example defines an adc with a variable delay.

‘define var adc(dly) adc #(dly)

‘var adc(2) gl21 (g21, nl0O, nll) ;
‘var _adc(5) gl22 (g22, nl0O, nll) ;

“undef Compiler Directive

Use the “undef compiler directive to undefine a macro previously defined with the “define
compiler directive.

undefine compiler directive ::=
“undef text macro_identifier

If you attempt to undefine a compiler directive that was not previously defined, the compiler
issues a warning.

June 2013 235 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Controlling the Compiler

Compiling Code Conditionally

Use the * ifdef compiler directive to control the inclusion or exclusion of code at compilation
time.
conditional compilation directive ::=
“ifdef text_macro_identifier
first group of lines
[Telse

second _group of lines]
“endif

text_macro_identifierisaVerilog-AMS identifier. first_group_of_lines and
second_group_of_lines are parts of your Verilog-AMS source description.

If you defined text_macro_identifier by usingthe *define directive, the compiler
compiles first_group_of_lines andignores second_group_of_lines. Ifyou
did not define text_macro_identifierbutyouinclude an *else, the compilerignores
first_group_of_lines and compiles second_group_of_lines.

You can use an " ifdef compiler directive anywhere in your source description. You can, in
fact, nest an * i fdef directive inside another * i fdef directive.

You must ensure that all your code, including code ignored by the compiler, follows the
Verilog-AMS lexical conventions for white space, comments, numbers, strings, identifiers,
keywords, and operators.

June 2013 236 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Controlling the Compiler

Including Files at Compilation Time

Use the " include compiler directive to insert the entire contents of a file into a source file
during compilation.

include compiler directive ::=
“include "file"

fileis the full or relative path of the file you want to include in the source file. £i1e can
contain additional * include directives. You can add a comment after the filename.

When you use the * include compiler directive, the result is as though the contents of the
included source file appear in place of the directive. For example,

“include "parts/resistors/standard/count.va" // Include the counter.

would place the entire contents of file count .va in the source file at the place where the
*include directive is coded.

Where the compiler looks for £i1e depends on whether you specify an absolute path, a
relative path, or a simple filename. If the compiler does not find the file, the compiler
generates an error message.

June 2013 237 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Controlling the Compiler

Adjusting the Time Scale

Use the " timescale compiler directive to specify the time unit and time precision of the
modules that follow it. This directive affects only digital contexts.

timescale compiler directive ::=
“timescale time period / time precision

time period ::=
time_integer time_unit

time precision ::=
time_integer time_unit

time_integer is one of the three integers: 1, 10, or 100.

time_unit is one of the following:

time_unit Meaning

S seconds

ms milliseconds
us microseconds
ns nanoseconds
ps picoseconds
fs femtoseconds

The time_unit specifies the unit of measurement for time values such as the simulation
time and delay values.

The time_precision specifies how delay values are rounded before being used in
simulation. The values used in simulation are accurate to within the unit of time specified by
time_precision. The time_precision you specify must be less than or equal to
time_period. The smallest time_precision argumentof allthe " timescale compiler
directives in the design determines the time unit of the simulation.

The " timescale directive sets the transition time in the transition filter and in
Z-transform filters when neither local transition settings nora “default_transition
directive is used. However, Cadence recommends using the “default_transition
directive instead.

The following example illustrates how to use the " timescale directive.

“timescale 1 ns / 1 ps

June 2013 238 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Controlling the Compiler

In this example, all time values in the modules which follow the directive are multiples of 1 ns
because the time_unit argumentis 1 ns. Delays are rounded to a precision of
one-thousandth of a nanosecond because the time_precision argumentis 1 ps, or
one-thousandth of a nanosecond.

Product Version 13.1

June 2013 239
All Rights Reserved.

©2000-2013

Cadence Verilog-AMS Language Reference
Controlling the Compiler

Setting a Default Discrete Discipline for Signals

Use the "default_discipline compiler directive to specify a default discrete discipline
for signals that do not have an explicit discipline declaration. You must not use this directive
inside a module definition.
default discipline compiler directive ::=

“default_discipline [discipline_identifier [qualifier] [scope]]

qualifier ::=

| reg
wire
tri
wand
triand
wor
wreal
trior
trireg
trio
tril
supply0
supplyl

scope ::=
instance_identifier

discipline_identifieristhe discrete discipline to be associated with signals that do
not have explicit discipline declarations. Using the *default_discipline directive without
specifyinga discipline_identifier turns off the directive, so subsequent signals
without a discipline are associated with the empty discipline.

qualifier indicates the kind of signal to be acted upon by the *default_discipline
directive. If you do not specify a qualifier, the “default_discipline compiler directive is
in effect for every signal that lacks an explicit discipline declaration.

instance_identifier is the name of a module. The *default_discipline
compiler directive is effective only in the indicated module. If you do not specify a module, the
‘default_discipline is effective in every module.

You can have more than one *default_discipline directive in effect at a time, provided
that each differs in scope, qualifier, or both. Each directive remains in effect until the compiler
encounters another “default_discipline with the same combination of qualifier and
scope.

For example, the following statement illustrates how to use both a qualifier and a scope.

‘default discipline logic trireg examplel.instanceb ;

In the following module, the signals in1, in2, and out are all associated with the discipline
logic by default.
‘default discipline logic // No qualifier or scope so affects all signals.

June 2013 240 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Controlling the Compiler

module behavnand(inl, in2, out);
input inl, in2; // Not associated with any explicit discipline.
output out;
reg out;
always begin
out = ~(inl && 1in2);
end
endmodule

June 2013 241

Product Version 13.1
© 2000-2013

All Rights Reserved.

Cadence Verilog-AMS Language Reference
Controlling the Compiler

Setting Default Rise and Fall Times

Use the "default_transition compiler directive to specify default rise and fall times for
the transition and Z-transform filters. This directive affects only analog contexts.

default transition compiler directive ::=
“default_ transition transition_time

transition_time is an integer value that specifies the default rise and fall times for
transition and Z-transform filters that do not have specified rise and fall times.

If your description includes more than one “default_transition directive, the effective
rise and fall times are derived from the immediately preceding directive.

The “default_transition directive takes precedence over " timescale directives for
setting the transition time in the transition and Z-transform transform filters when local
transition settings are not provided.

If you include neither a “default_transition directive nora "timescale directive in
your description, the default rise and fall times for transition and Z-transform filters is 0.

Resetting Directives to Default Values

Use the "resetall compiler directive to set all compiler directives, exceptthe " timescale
directive, to their default values.

resetall compiler directive ::=
“resetall

Placing the " resetall compiler directive at the beginning of each of your source text files,
followed immediately by the directives you want to use in that file, ensures that only desired
directives are active.

Note: Use the “resetall directive with care because it resets the

“define DISCIPLINES VAMS

directive in the discipline.vams file, which is included by most Verilog-AMS files.

June 2013 242 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Controlling the Compiler

Specifying Which Reserved Keyword List to Use

Use the "begin_keywords and " end_keywords compiler directives to specify the active
reserved keyword list for the parser. With these directives, you can mix Verilog (digital) and
Verilog-AMS modules, even when the Verilog code uses identifiers that are Verilog-AMS
keywords.
begin keywords compiler directive ::=

“begin_keywords "version_specifier"™

version specifier ::=
|1364-1995
|1364-2001
|1364-2005
|1800-2005
end keywords compiler directive ::=
“end keywords

Each version_speci fier value specifies an active subset of the default keyword list.
The software determines the default keyword list depending on the options you specify on the
ncvlog or irun command line as follows:

Option Default Keyword List Active Reserved Keywords

-v95 0or-v1995 1364-1995 The subset of the default list that is part
of the IEEE 1364-1995 standard

-ams 1364-2005 and the The subset of the default list that

Cadence AMS keywords appears in Appendix D, “Verilog-AMS

Keywords”

-sv31l 1800-2005 The subset of the default list that is part
of the IEEE 1800-2005 standard

None of the above 1364-2005 The subset of the default list that is part

of the IEEE 1364-2005 standard

You must pair each “begin_keywords directive with a * end_keywords directive. The pair
of directives defines a region of source code to which a specified version_specifier
applies. The “begin_keywords directive affects all design elements (module, primitive,
configuration, paramset, connectrules, and connectmodule) that follow the directive, even
across source code file boundaries, until the software encounters its matching
*end_keywords directive. These directives do not affect the semantics, tokens, and other
aspects of the Verilog-AMS language.

June 2013 243 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Controlling the Compiler

Note: You must not specify the *begin_keywords and " end_keywords directives inside
a design element (module, primitive, configuration, paramset, connectrules, or
connectmodule).

You can nest directive pairs. When the software encounters a * end_keywords directive, the
compiler returns to using the version_speci fier that was in effect prior to the matching
‘begin_keywords directive.

The following example shows how you might use a Verilog (digital) module together with a
Verilog-AMS module in a design. The Verilog module uses a parameter called sin, which is
a Verilog-AMS keyword. To tell the compiler not to see sin as a keyword, you use the
‘begin_keywords directive to change the active set of keywords to a set that does not
include the sin keyword.

// Use IEEE Std 1364-2001 Verilog keywords. Do not use Verilog-AMS keywords.
"begin keywords "1364-2001"

module digital module;
parameter sin = "hello"; // Uses a Verilog-AMS keyword as an identifier.
// sin is not a keyword in 1364-2001.
initial begin
Sstrobe ("%$s", sin) ;
end
endmodule

// Restore the Verilog-AMS keywords now.
‘end_keywords

Here is another similar example:
‘begin keywords "1364-2005" // Use IEEE Std 1364-2005 Verilog keywords.

module m2 (sin ...);
input sin // Uses Verilog-AMS keyword sin as a port name.

// sin is not a keyword in 1364-2005.
éﬁ&module
“end keywords
The following example shows a definition of module m1 that does not have a
‘begin_keywords directive before it. Without this directive, the set of reserved keywords in
effect for this module is the default set of reserved keywords for Cadence’s implementation of
Verilog-AMS.

module ml; // module definition with no ‘begin keywords directive

endmodule

June 2013 244 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Controlling the Compiler

Removing and Restoring Specific Keywords

You can use the *remove_keyword and "restore_keyword compiler directives to
remove and restore specific keywords from the set of reserved keywords that the parser

recognizes.

You might use the " remove_keyword directive to remove one or more specific keywords
from the set of reserved keywords you specify using the *begin_keywords and
“end_keywords compiler directives.

You can also use the -rmkeyword command-line option (for ncvlog or irun)in a similar
fashion.

June 2013 245 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Controlling the Compiler

Checking Support for Compact Modeling Extensions

Use the __VAMS_COMPACT_MODELING___ macro to determine whether the simulator
supports the compact modeling extensions. The AMS Designer simulator supports these
extensions and sets the value of this macro to t.

VAMS COMPACT MODELING macro call::=
“ifdef __VAMS_COMPACT_ MODELING__

The __vAMS_COMPACT_MODELING___macro is predefined, so all you need to do is reference
the macro name. (Notice the double underscore characters at both the beginning and the end
of the macro name.) The returned value is t if the simulator supports the compact modeling
extensions, which are:

B Attributes consistent with Verilog-AMS Language Reference Manual version
1364-2001

Output variables

Attributes for parameter descriptions and units (desc, units)
Net descriptions

Modules (module description attribute)

String parameters

Parameter aliases

Environment parameter functions ($simparam)

Derivative operator (ddx)

Limiting function ($1imit)

Hierarchy detections functions (Sparam_given)

Display tasks ($debug)

Format specifications (%, $R)

Local parameters (1ocalparam)

If the simulator does not support the compact modeling extensions, the returned value isnil.

June 2013 246 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Nodal Analysis

This appendix briefly introduces Kirchhoff’s Laws and describes how the simulator uses them
to simulate an analog system. For information, see

B Kirchhoff’s Laws on page 248

m Simulating an Analog System on page 249

June 2013 247 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Nodal Analysis

Kirchhoff’s Laws

Simulation of the analog content of VeriIog®-AMS language modules is based on two sets of
relationships. The first set, called the constitutive relationships, consists of formulas that
describe the behavior of each component. Some formulas are supplied as built-in primitives.
You provide other formulas in the form of module definitions.

The second set of relationships, the interconnection relationships, describes the structure
of the network. This set, which contains information on how the nodes of the components are
connected, is independent of the behavior of the constituent components. Kirchhoff’s laws
provide the following properties relating the quantities present on the nodes and on the
branches that connect the nodes.

m Kirchhoff’'s Flow Law
The algebraic sum of all the flows out of a node at any instant is zero.
m Kirchhoff’s Potential Law

The algebraic sum of all the branch potentials around a loop at any instant is zero.

These laws assume that a node is infinitely small so that there is negligible difference in
potential between any two points on the node and a negligible accumulation of flow.

Kirchhoff’s Laws

ﬂOW1
1 2 I
_ " f/OWZ _ + ; t'- /
i > otential =~ potentialy
potential % p .3 =
= S 8
q) N~
D <
+ E N 8 , _g
% Q
1 ..5
Q.
- +
5 potential
Kirchhoff’s Flow Law Kirchhoff’s Potential Law

potential; + potential,+

flow; + flow,+ flows; =0 , ;
ow; owy ows3 potential;+ potentialy=0

June 2013 248 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Nodal Analysis

Simulating an Analog System

To describe an analog network, simulators combine constitutive relationships with Kirchhoff’s
laws in nodal analysis to form a system of differential-algebraic equations of the form

v, 1) = c%‘;’t)+i(v, =0

v(0) = V0

These equations are a restatement of Kirchhoff’s Flow Law.
v is a vector containing all node potentials.
tis time.
g and i are the dynamic and static portions of the flow.
fis a vector containing the total flow out of each node.

Vo is the vector of initial conditions.

Transient Analysis

The equation describing the network is differential and nonlinear, which makes it impossible
to solve directly. There are a number of different approaches to solving this problem
numerically. However, all approaches break time into increments and solve the nonlinear
equations iteratively.

The simulator replaces the time derivative operator (dg/dt) with a discrete-time finite
difference approximation. The simulation time interval is discretized and solved at individual
time points along the interval. The simulator controls the interval between the time points to
ensure the accuracy of the finite difference approximation. At each time point, the simulator
solves iteratively a system of nonlinear algebraic equations. Like most circuit simulators, the
AMS Designer simulator uses the Newton-Raphson method to solve this system.

Convergence

In Verilog-AMS, the analog behavioral description is evaluated iteratively until the Newton-
Raphson method converges. (For a graphical representation of this process, see “Simulator
Flow for Analog Systems” on page 28.) On the first iteration, the signal values used in
Verilog-AMS expressions are approximate and do not satisfy Kirchhoff’s laws.

In fact, the initial values might not be reasonable; so you must write models that do something
reasonable even when given unreasonable signal values.

June 2013 249 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Nodal Analysis

For example, if you compute the log or square root of a signal value, some signal values
cause the arguments to these functions to become negative, even though a real-world system
never exhibits negative values.

As the iteration progresses, the signal values approach the solution. Iteration continues until
two convergence criteria are satisfied. The first criterion is that the proposed solutior11 on this
iteration,)(t), must be close to the proposed solution on the previous iteration, v)(t), and

v) - vn(j B 1)’ < reltol(max(vn(]) v - l)D) + abstol

b

n n

where reltol is the relative tolerance and abstol is the absolute tolerance.

reltol is set as a simulator option and typically has a value of 0.001. There can be many
absolute tolerances, and which one is used depends on the resolved discipline of the net. You
set absolute tolerances by specifying the absto1 attribute for the natures you use. The
absolute tolerance is important when v, is converging to zero. Without abs t o1, the iteration
never converges.

The second criterion ensures that Kirchhoff’s Flow Law is satisfied:

< reltol(max(vn(v(j))’)) + abstol

an(v(j))
n

where £, (v(7/) is the flow exiting node n from branch 1.

Both of these criteria specify the absolute tolerance to ensure that convergence is not
precluded when v, or £, (v) go to zero. While you can set the relative tolerance once in an
options statement in the analog simulation control file (. scs) to work effectively on any node
in the circuit, you must scale the absolute tolerance appropriately for the associated
branches. Set the absolute tolerance to be the largest value that is negligible on all the
branches with which it is associated.

The simulator uses absolute tolerance to get an idea of the scale of signals. Absolute
tolerances are typically 1,000 to 1,000,000 times smaller than the largest typical value for
signals of a particular quantity. For example, in a typical integrated circuit, the largest potential
is about 5 volts; so the default absolute tolerance for voltage is 1 puV. The largest current is
about 1 mA; so the default absolute tolerance for current is 1 pA.

June 2013 250 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Analog Probes and Sources

This appendix describes what analog probes and sources are and gives some examples of
using them. For information, see

B Probes on page 252

m Port Branches on page 252

B Sources on page 253

For examples, see

m Linear Conductor on page 257

Linear Resistor on page 258

[
m RLC Circuit on page 258
m Simple Implicit Diode on page 258

June 2013 251 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Analog Probes and Sources

Overview of Probes and Sources

A probe is a branch in which no value is assigned for either the potential or the flow, anywhere
in the module. A source is a branch in which either the potential or the flow is assigned a
value by a contribution statement somewhere in the module.

You might find it useful to describe component behavior as a network of probes and sources.

B Itis sometimes easier to describe a component first as a network of probes and sources,
and then use the rules presented here to map the network into a behavioral description.

B Acomplex behavioral description is sometimes easier to understand if it is converted into
a network of probes and sources.

The probe and source interpretation provides the additional benefit of unambiguously
defining what the response will be when you manipulate a signal.

Probes

A flow probe is a branch in which the flow is used in an expression somewhere in the module.
A potential probe is a branch in which the potential is used. You must not measure both the
potential and the flow of a probe branch.

The equivalent circuit model for a potential probe is
The branch flow of a potential probe is zero.

The equivalent circuit model for a flow probe is

f

The branch potential of a flow probe is zero.

Port Branches

You can use the port access function to monitor the flow into the port of a module. The name
of the access function is derived from the flow nature of the discipline of the port and you use
the (<>) operator to delimit the port name. For example, T (<a>) accesses the current
through module port a.

June 2013 252 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Analog Probes and Sources

A port branch, which is a special form of a flow probe, measures the flow into a port rather
than across a branch. When a port is connected to numerous branches, using a port branch
provides a quick way of summing the flow.

The expression V (<a>) is invalid for ports and nets, where Vv is a potential access function.
The port branch probe I (<a>) cannot be used on the left side of a contribution operator <+.
As a result of these restrictions, you cannot use port branches to create behavioral resistors,
capacitors, and inductors.

In the following example, the simulator issues a warning if the current through the diode
becomes too large.

module diode (a, c) ;

electrical a, c ;

branch (a, c) diode, cap :
parameter real is=le-14, tf=0, cjo=0, imax=1, phi=0.7 ;

analog begin

I(diode) <+ is* (limexp (V(diode)/S$vt) - 1) ;
I(cap) <+ ddt(tf*I(diode) - 2 * cjo * sqgrt(phi * (phi * V(cap))))
if (I(<a>) > imax) // Checks current through port
Sstrobe("Warning: diode is melting!")
end
endmodule
Sources

A potential source is a branch in which the potential is assigned a value by a contribution
statement somewhere in the module. A flow source is a branch in which the flow is assigned
a value. A branch cannot simultaneously be both a potential and a flow source, although it
can switch between the two kinds. For additional information, see “Switch Branches” on
page 255.

June 2013 253 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Analog Probes and Sources

The circuit model for a potential source branch shows that you can obtain both the flow and
the potential for a potential source branch.

Flow probe —>if n

Potential
source g

p -.—— Potential probe

Similarly, the circuit model for a flow source branch shows that you can obtain the flow and
potential for a flow source branch.

Flow probe g lf N

Flow
source g

p -a—— Potential probe

With the flow and potential sources, you can model the four basic controlled sources, using
node or branch declarations and contribution statements like those in the following code

fragments.

The model for a voltage-controlled voltage source is

branch (ps,ns) in, (p,n) out;

V(out) <+ A * V(in);

The model for a voltage-controlled current source is

branch (ps,ns) in, (p,n) out;

I(out) <+ A * V(in);

The model for a current-controlled voltage source is

branch (ps,ns) in, (p,n) out;

V(out) <+ A * I(in);

June 2013
© 2000-2013

254

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Analog Probes and Sources

The model for a current-controlled current source is

branch (ps,ns) in, (p,n) out;
I(out) <+ A * I(in);

Unassigned Sources

If you do not assign a value to a branch, the branch flow, by default, is set to zero. In the
following fragment, for example, when closed is true, V (p, n) is set to zero. When closed
is false, the current I (p,n) is set to zero.
if (closed)

V(p,n) <+ 0 ;

else
I(p,n) <+ 0 ;

Alternatively, you could achieve the same result with

if (closed)
V(p,n) <+ 0 ;

This code fragment also sets vV (p, n) to zero when closed is true. When closed is false,
the current is set to zero by default.

Switch Branches

Switch branches are branches that change from source potential branches into source flow
branches, and vice versa. Switch branches are useful when you want to model ideal switches
or mechanical stops.

To switch a branch to being a potential source, assign to its potential. To switch a branch to
being a flow source, assign to its flow. The circuit model for a switch branch illustrates the

June 2013 255 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Analog Probes and Sources

effect, with the position of the switch dependent upon whether you assign to the potential or
to the flow of the branch.

f
Flow probe g L

+

p-a—— Potential probe
Potential _
source gy -4——— Flow source

As an example of a switch branch, consider the module idealRelay.

module idealRelay (pout, nout, psense, nsense) ;
input psense, nsense ;
output pout, nout ;
electrical pout, nout, psense, nsense ;
parameter real thresh = 2.5 ;
analog begin

if (V(psense, nsense) > thresh)

V (pout, nout) <+ 0.0 ; // Becomes potential source
else
I(pout, nout) <+ 0.0 ; // Becomes flow source
end
endmodule

The simulator assumes that a discontinuity of order zero occurs whenever the branch
switches; so you do not have to use the discontinuity function with switch branches. For more
information about the discontinuity function, see “Announcing Discontinuity” on page 121.

Contributing a flow to a branch that already has a value retained for the potential results in
the potential being discarded and the branch being converted to a flow source. Conversely,
contributing a potential to a branch that already has a value retained for the flow results in the
flow being discarded and the branch being converted to a potential source. For example, in
the following code, each of the contribution statements is discarded when the next is
encountered.

analog begin

V(out) <+ 1.0; // Discarded
I(out) <+ 1.0; // Discarded
V(out) <+ 1.0;

end

In the next example,

June 2013 256 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Analog Probes and Sources

I(out) <+ 1.0;
V(out) <+ I (out);

—

the result of v (out) is not 1.0. Instead, these two statements are equivalent to

// I(out) <+ 1.0;
V (out) <+ I (out):;

because the flow contribution is discarded. The simulator reminds you of this behavior by
issuing a warning similar to the following,
The statement on line 12 contributes either a potential to a flow source or a flow

to a potential source. To match the requirements of value retention, the statement
is ignored.

Examples of Sources and Probes

The following examples illustrate how to construct models using sources and probes.

Linear Conductor

The model for a linear conductor is

Module myconductor (p,n) ;

parameter real G=1 ;

electrical p,n ;

branch (p,n) cond ;

analog begin Gv
I(cond) <+ G * V{(cond);

< +

end
endmodule

The contribution to I (cond) makes cond a current (flow) source branch, and v (cond)
accesses the potential probe built into the current source branch.

June 2013 257 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Analog Probes and Sources

Linear Resistor

The model for a linear resistor is

module myresistor (p,n) ;
parameter real R=1 ;
electrical p,n;
branch (p,n) res ;
analog begin

V(res) <+ R * I(res);
end RI
endmodule

i,
- > R

The contribution to v (res) makes res a potential source branch. I (res) accesses the
flow probe built into the potential source branch.

RLC Circuit

A series RLC circuit is formulated by summing the voltage across the three components.

1.

o i(t)dt

vt = Ri(t) + LLi(r) +
dt

To describe the series RLC circuit with probes and sources, you might write

V(p,n) <+ R*I(p,n) + L*ddt(I(p,n)) + idt(I(p,n))/C ;

A parallel RLC circuit is formulated by summing the currents through the three components.

. V(1) d 1
) = =<+ C=v(t - d
i(?) R + dtv() +L _Oov(t) T
To describe the parallel RLC circuit, you might code
I(p,n) <+ V(p,n)/R + C*ddt(V(p,n)) + idt(V(p,n))/L ;

Simple Implicit Diode

This example illustrates a case where the model equation is implicit. The model equation is
implicit because the current I (a, c) appears on both sides of the contribution operator. The
equation specifies the current of the branch, making it a flow source branch. In addition, both
the voltage and the current of the branch are used in the behavioral description.

I(a,c) <+ is * (limexp((V(a,c) - rs * I(a,c)) / Vt) - 1) ;

June 2013 258 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

This appendix discusses the Sample Model Library, which is included with this product. The
library contains the following types of components:

B Analog Components on page 261
Basic Components on page 278

Control Components on page 286

Logic Components on page 294
Electromagnetic Components on page 314

Functional Blocks on page 317

[

[

[

[

[

B Magnetic Components on page 340
m Mathematical Components on page 344
[

[

[

[

[

[

Measure Components on page 361

Mechanical Systems on page 381
Mixed-Signal Components on page 388
Power Electronics Components on page 397
Semiconductor Components on page 400

Telecommunications Components on page 408

You can use these models as they are, you can copy them and modify them to create new
parts, or you can use them as examples. The models are in the following directory in the
software hierarchy:

SCDSHOME/tools/dfII/samples/artist/spectreHDL/Verilog-A

Refer to the README file in this directory for a list of the files containing the models. The
filenames have the suffix . va. For example, the model for the switch is located in sw. va.

June 2013 259 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Each model has an associated test circuit that can be used to simulate the model. The test
circuits can be found in the test directory.

These models are also integrated into a Cadence® design framework Il library, complete with
symbols and Component Description Formats (CDFs). If you are using the Cadence analog
design environment, you can access these models by adding the following library to your
library path:

your_install_dir/tools/dfII/samples/artist/ahdlLib

This appendix provides a list of the parts and functions in the sample library. They are
grouped according to application.

In the terminal description and parameter descriptions, the letters between the square
brackets, such as [V,A] and [V], refer to the units associated with the terminal or parameter.
V means volts, A means amps. (val, flow) means that any units can be used.

June 2013 260 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Analog Components

Analog Multiplexer

Terminals

vinl, vin2: [V,A]

vsel: selection voltage [V,A]
vout: [V,A]

Description

When vsel > vth, the output voltage follows vinl.

When vsel < vth, the output voltage follows vin2.

Instance Parameters

vth = 1->0 threshold voltage for the selection line [V]

June 2013 261
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Current Deadband Amplifier

Terminals

iin_p, iin_n: differential input current terminals [V,A]
iout: output current terminal [V,A]
Description

Outputs i1leak when differential input current (1in_p - iin_n) is between idead_low and
idead_high. When outside the deadband, the output current is an amplified version of the
differential input current plus ileak.

Instance Parameters

idead_low = lower range of dead band [A]

idead_high = upper range of dead band [A]

ileak = offset current; only output in deadband [A]

gain_low = differential current gain in lower region []

gain_high = differential current gain in lower region]

June 2013 262 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Hard Current Clamp

Terminals
vin: input terminal [V,A]
vout: output terminal [V,A]

vgnd: gnd terminal [V,A]

Description

Hard limits output current to between iclamp_upper and iclamp_1lower of the input
current.

Instance Parameters

iclamp_upper = upper clamping current [A]

iclamp_lower = lower clamping current [A]

June 2013 263 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Hard Voltage Clamp

Terminals
vin: input terminal [V,A]
vout: output terminal [V,A]

vgnd: gnd terminal [V,A]

Description

vout- vgnd hard clamped/limited to between vclamp_upper and vclamp_lower of vin -
vgnd.

Instance Parameters

vclamp_upper = upper clamping voltage [A]

vclamp_lower = lower clamping voltage [A]

June 2013 264 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Open Circuit Fault

Terminals

vp, vn! output terminals [V,A]

Description

At time=twai t, the connection between the two terminals is opened. Before this, the
connection between the terminals is closed.

Instance Parameters

twait = time to wait before open fault happens [s]

June 2013 265 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Operational Amplifier

Terminals

vin_p, vin_n: differential input voltage [V,A]
vout: output voltage [V,A]

vref: reference voltage [V,A]
vspply_p: positive supply voltage [V,A]
vspply_n: negative supply voltage [V,A]

Instance Parameters

gain = gain]

freq unitygain = unity gain frequency [Hz]

rin = input resistance [Ohms]

vin_offset = input offset voltage referred to negative [V]
ibias = input current [A]

iin_max = maximum current [A]

rsrc = source resistance [Ohms]

rout = output resistance [Ohms]

vsoft = soft output limiting value [V]

June 2013 266
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Constant Power Sink

Terminals

vp, V. terminals [V,A]

Description

Normally power watts of power is sunk. If the absolute value of vp - vn is above vabsmin,
a faction of the power is sunk. The fraction is the ratio of vp - vn to vabsmin.

Instance Parameters

power = power sunk [Watts]

vabsmin = absolute value of minimum input voltage [V]

June 2013 267 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Short Circuit Fault

Terminals

vp, vn! output terminals [V,A]

Description

At time=twait, the two terminals short. Before this, the connection between the terminals is
open.

Instance Parameters

twait = time to wait before short circuit occurs [s]

June 2013 268 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Soft Current Clamp

Terminals
vin: input terminal [V,A]
vout: output terminal [V,A]

vgnd: gnd terminal [V,A]

Description
Limits output current to between iclamp_upper and iclamp_lower of the input current.

The limiting starts working once the input current gets near iclamp_lower or
iclamp_upper. The clamping acts exponentially to ensure smoothness.

The fraction of the range (iclamp_lower, iclamp_upper) over which the exponential
clamping action occurs is exp_frac.

Excess current coming from vin is routed to vgnd.

Instance Parameters
iclamp_upper = upper clamping current [A]
iclamp_lower = lower clamping current [A]

exp_frac = fraction of iclamp range from iclamp_upper and iclamp_1lower at which
exponential clamping starts to have an effect []

June 2013 269 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Soft Voltage Clamp
Terminals

vin: input terminal [V,A]
vout: output terminal [V,A]
vgnd: gnd terminal [V,A]
Description

vout- vgnd clamped/limited to between vclamp_upper and vclamp_lower of vin -
vgnd.

The limiting starts working once the input voltage gets near vclamp_lower or
vclamp_upper. The clamping acts exponentially to ensure smoothness.

The fraction of the range (vclamp_lower, vclamp_upper) over which the exponential
clamping action occurs is exp_frac.

Instance Parameters

vclamp_upper = upper clamping voltage [A]

vclamp_lower = lower clamping voltage [A]

exp_frac = fraction of vclamp range from vclamp_upper and vclamp_lower at which
exponential clamping starts to have an effect []

June 2013 270 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Self-Tuning Resistor

Terminals
vp, V. terminals [V,A]
vtune: the voltage that is being tuned [V,A]

verr: the error in vtune [V,A]

Description

This element operates in four distinct phases:
1. It waits for tsettle seconds with the resistance between vp and vn setto rinit.

2. For tdir_check seconds, it attempts to tune the error away by increasing the
resistance in proportion to the size of the error.

3. It waits for tsettle seconds with the resistance between vp and vn setto rinit.

4. For tdir_check seconds, it attempts to tune the error away by decreasing the
resistance in proportion to the error.

5. Based on the results of (2) and (4), it selects which direction is better to tune in and tunes
as best it can using integral action. For certain systems, this might lead to unstable
behavior.

Note: Select tsettle to be greater than the largest system time constant. Select rgain so
that the positive feedback is not excessive during the direction sensing phases. Select
tdir_check so that the system has enough time to react but not so big that the resistance
drifts too far from rinit. It is better if it can be arranged that verr does not change sign
during tuning.

Instance Parameters

rmax = maximum resistance that tuning res can have [Ohms]

rmin = minimum resistance that tuning res can have [Ohms]

rinit = initial resistance [Ohms]

rgain = gain of integral tuning action [Ohms/(Vs)]

June 2013 271 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

vtune_set = value that vtune must be tuned to [V]
tsettle = amount of time to wait before tuning begins [s]

tdir_check = amount of time to spend checking each tuning direction [s]

June 2013 272 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Untrimmed Capacitor

Terminals

vp, V. terminals [V,A]

Description

Each instance has a randomly generated value of capacitance, which is calculated at
initialization. The distribution of these random values is gaussian (that is, normal) with a
c_mean and a standard deviation of c_std.

Two seeds are needed to generate the gaussian distribution.

Instance Parameters

c_mean = mean capacitance [Ohms]

c_dev = standard deviation of capacitance [Ohms]

seedl = first seed value for randomly generating capacitance values []
seed2 = second seed value for randomly generating capacitance values []

show_val = option to print the value of capacitance to stdout

June 2013 273 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Untrimmed Inductor

Terminals

vp, V. terminals [V,A]

Description

Each instance has a randomly generated value of inductance, which is calculated at
initialization. The distribution of these random values is gaussian (that is, normal) with an
1_mean and a standard deviation of 1_std.

Two seeds are needed to generate the gaussian distribution.

Instance Parameters

1_mean = mean inductance [Ohms]

1_dev = standard deviation of inductance [Ohms]

seedl = first seed value for randomly generating inductance values []
seed2 = second seed value for randomly generating inductance values []

show_val = option to print the value of inductance to stdout

June 2013 274 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Untrimmed Resistor

Terminals

vp, V. terminals [V,A]

Description

Each instance has a randomly generated value of resistance, which is calculated at
initialization. The distribution of these random values is gaussian (that is, normal) with an
r_mean and a standard deviation of r_std.

Two seeds are needed to generate the gaussian distribution.

Instance Parameters

r_mean = mean resistance [Ohms]

r_dev = standard deviation of resistance [Ohms]

seedl = first seed value for randomly generating resistance values []
seed2 = second seed value for randomly generating resistance values []

show_val = option to print the value of resistance to stdout

June 2013 275 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Voltage Deadband Amplifier

Terminals

vin_p, vin_n: differential input voltage terminals [V,A]
vout: output voltage terminal [V,A]
Description

Outputs v1eak when differential input voltage (vin_p-vin_n) is between vdead_1low and
vdead_high. When outside the deadband, the output voltage is an amplified version of the
differential input voltage plus v1eak.

Instance Parameters

vdead_1low = lower range of dead band [V]

vdead_high = upper range of dead band [V]

vleak = offset voltage; only output in deadband [V]

gain_low = differential voltage gain in lower region]

gain_high = differential voltage gain in upper region []

June 2013 276 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Voltage-Controlled Variable-Gain Amplifier

Terminals

vin_p, vin_n: differential input terminals [V,A]

vetrl_p, vetrl n: differential-controlling voltage terminals [V,A]
vout: [V,A]

Description

When there is no input offset voltage, the output is vout = gain_const * (vetrl_p -

vetrl_n) * (vin_p - vin_n) + (vout_high + vout_low)/2.

When there is an input offset voltage, vin_offset is subtracted from (vin_p - vin_n).

Instance Parameters

gain_const = amplifier gain when (vctrl_p - vectrl_n) =1 volt[]
vout_high = upper output limit [V]

vout_low = lower output limit [V]

vin_offset = input offset [V]

June 2013 277
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Basic Components

Resistor

Terminals

vp, vn: terminals (V,A)

Instance Parameters

r = resistance (Ohms)

June 2013 278 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Capacitor

Terminals

vp, vn. terminals (V,A)

Instance Parameters

c = capacitance (F)

June 2013 279 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Inductor

Terminals

vp, vn. terminals (V,A)

Instance Parameters

1 = inductance (H)

June 2013 280 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Voltage-Controlled Voltage Source

Terminals
vout_p, vout_n: controlled voltage terminals [V,A]
vin_p, vin_n: controlling voltage terminals [V,A]

Instance Parameters

gain = voltage gain]

June 2013 281 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Current-Controlled Voltage Source

Terminals
vout_p, vout_n: controlled voltage terminals [V,A]
iin_p, iin_n: controlling current terminals [V,A]

Instance Parameters

rm = resistance multiplier (V to | gain) [Ohms]

June 2013 282 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Voltage-Controlled Current Source

Terminals
iout_p, iout_n: controlled current source terminals [V,A]
vin_p, vin_n: controlling voltage terminals [V,A]

Instance Parameters

gm = conductance multiplier (V to | gain) [Mhos]

June 2013 283 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Current-Controlled Current Source

Terminals
lout_p, iout_n: controlled current terminals [V,A]
iin_p, iin_n: controlling current terminals [V,A]

Instance Parameters

gain = current gain []

June 2013 284 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Switch

Terminals
vp, vn! output terminals [V,A]

vetrlp, vetrln: control terminals [V,A]

Description

If (vetrlp - vetrln > vth), the branch between vp and vn is shorted. Otherwise, the
branch between vp and vn is opened.

Instance Parameters

vth = threshold voltage [V]

June 2013 285 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Control Components

Error Calculation Block

Terminals

sigset: setpoint signal (val, flow)

sigact: actual value signal (val, flow)

sigerr: error: difference between signals (val, flow)
Description

sigerr = sigset - sigact

Note: Defining larger values of abstol and huge for the quantities associated with sigin

and sigout can help overcome convergence and clipping problems.

Instance Parameters

tdel, trise, tfall = {usual}

June 2013 286
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Lag Compensator

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

1 +tauxS$
1 +alpha x tau x S

TF = gain x alpha x

Note: Defining larger values of abstol and huge for the quantities associated with sigin
and sigout can help overcome convergence and clipping problems.

Instance Parameters

gain = compensator gain []

tau = compensator zero at -(1/tau) [s]

alpha = compensator pole at -(1/(alpha*tau)); alpha > 1]

June 2013 287 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Lead Compensator

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

1 +tauxS$
1 +alpha x tau x S

TF = gain x alpha x

Note: Defining larger values of abstol and huge for the quantities associated with sigin
and sigout can help overcome convergence and clipping problems.

Instance Parameters

gain = compensator gain []

tau = compensator zero at -(1/tau) [s]

alpha = compensator pole at -(1/(alpha*tau)); alpha < 1]

June 2013 288 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Lead-Lag Compensator

Terminals

sigin: (val, flow)

sigout: (val, flow)

Description

TF =

gain x alphal x I +taul x5 x alpha? x I +tau2 xS

1 +alphal x taul x S 1 +alpha2 x tau2 x S

Defining larger values of abstol and huge for the quantities associated with sigin and
sigout can help overcome convergence and clipping problems.

Instance Parameters

gain = compensator gain []

taul = compensator zero at -(1/taul) [s]

alphal = compensator pole at -(1/(alpha*taul)); alphal > 1]

tau2 = compensator zero at -(1/tau2) [s]

alpha2 = compensator pole at -(1/(alpha*tau2)); alpha2 < 1]

June 2013 289 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Proportional Controller

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

sigout = kp*sigin

Note: Defining larger values of abstol and huge for the quantities associated with sigin
and sigout can help overcome convergence and clipping problems.

Instance Parameters

kp = proportional gain []

June 2013 290 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Proportional Derivative Controller

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

sigout = kp*sigin + kd* dot (sigin)

Note: Defining larger values of abstol and huge for the quantities associated with sigin
and sigout can help overcome convergence and clipping problems.

Instance Parameters

kp = proportional gain []

kd = differential gain []

June 2013 291 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Proportional Integral Controller

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

This model is a proportional, integral, and derivative controller.

sigout =kp * sigin + ki * integ (sigin) + kd* dot (sigin)

Note: Defining larger values of abstol and huge for the quantities associated with sigin

and sigout can help overcome convergence and clipping problems.

Instance Parameters
kp = proportional gain]

ki = integral gain]

June 2013 292
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Proportional Integral Derivative Controller

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

sigout =kp * sigin + ki * integ (sigin) + kd* dot (sigin)

Note: Defining larger values of abstol and huge for the quantities associated with sigin
and sigout can help overcome convergence and clipping problems.

Instance Parameters

kp = proportional gain []

ki = integral gain]

kd = differential gain]

June 2013 293 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Logic Components

AND Gate
Terminals

vinl, vin2: [V,A]
vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [S]

June 2013 294 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

NAND Gate

Terminals

vinl, vin2: [V,A]
vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [S]

June 2013 295 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

OR Gate
Terminals
vinl, vin2: [V,A]
vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [S]

June 2013 296 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

NOT Gate
Terminals

vin: [V,A]
vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [S]

June 2013 297
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

NOR Gate

Terminals

vinl, vin2: [V,A]
vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [S]

June 2013 298 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

XOR Gate
Terminals

vinl, vin2: [V,A]
vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [S]

June 2013 299
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

XNOR Gate
Terminals

vinl, vin2: [V,A]
vout: [V,A]

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for high [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [S]

June 2013 300
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

D-Type Flip-Flop

Terminals

vin_d: [V,A]

velk: [V,A]

out_gq, vout_gbar: [V,A]
Description

Triggered on the rising edge.

Instance Parameters
vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

vtrans_clk = transition voltage of clock [V]

tdel, trise, tfall = {usual} [s]

June 2013 301
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Clocked JK Flip-Flop

Terminals

vin_j: [V,A]
vin_k: [V,A]
velk: [V,A]
vout_a: [V,A]

vout_gbar: [V,A]

Description

Triggered on the rising edge.

Logic Table
J K Q@ @
0O 0 0 O
O o0 1
O 1 0 O
o 1 1 o0
i 0 0 1
1 0 1 1
1 1 0 1
i 1 1 0

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

June 2013 302 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

tdel, trise, tfall = {usual} [s]

June 2013 303 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

JK-Type Flip-Flop

Terminals
vin_j, vin_k: inputs

vout_g, vout_gbar: outputs

Description

Triggered on the rising edge.

Logic Table

Q(t+e)

-4 4 4 a4 O O O O &
- 24 O O =+ =2+ O o X
- O - O = O = o PO
O =4 24 a4 O o = o

Instance Parameters
vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]

June 2013 304
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Level Shifter

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

sigout = sigin added to sigshift.

Instance Parameters

sigshift = level shift (val)

June 2013
© 2000-2013

305

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

RS-Type Flip-Flop

Terminals

vin_s: [V,A]

vin_r: [V,A]

vout_qg, vout_gbar: [V,A]
Logic Table

S(t) R(t) Q(t) Q(t+e)

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 X
1 1 1 X

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [S]

June 2013 306 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Trigger-Type (Toggle-Type) Flip-Flop

Terminals
vtrig: trigger [V,A]

vout_qg, vout_gbar: outputs [V,A]

Description

Triggered on the rising edge.

Logic Table

T Q Q(t+e)
0O 0 O

0o 1 1

1 0 1

1 1 0

Instance Parameters
initial_state = the initial state/output of the flip-flop []
vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [S]

June 2013 307
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Half Adder

Terminals

vinl, vin2: bits to be added [V,A]
vout_sum: vout_sum out [V,A]
vout_carry: carry out [V,A]

Instance Parameters

vlogic_high = logic high value [V]
vlogic_low = logic low value [V]

vtrans = threshold for inputs to be high [V]

tdel, trise, tfall = {usual} [s]

June 2013 308 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Full Adder

Terminals

vinl, vin2: bits to be added [V,A]
vin_carry: carry in [V,A]
vout_sum: sumout [V,A]
vout_carry: carry out [V,A]

Instance Parameters

vlogic_high = logic high value [V]
vlogic_low = logic low value [V]

vtrans = threshold for inputs to be high [V]

tdel, trise, tfall = {usual} [s]

June 2013 309 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Half Subtractor

Terminals

vinl, vin2: inputs [V,A]
vout_diff: difference out [V,A]

vout_borrow: borrow out [V,A]

Formula

vinl - vin2 =vout_diff and borrow

Truth Table

in1 in2 diff borrow
0 0

- O =+ O
O = -4

1
0
0

Instance Parameters

vlogic_high = logic high value [V]
vlogic_low = logic low value [V]

vtrans = threshold for inputs to be high [V]

tdel, trise, tfall = {usual} [S]

June 2013 310
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Full Subtractor

Terminals

vinl, vin2: inputs [V,A]
vin_borrow: borrow in [V,A]
vout_diff: difference out [V,A]

vout_borrow: borrow out [V,A]

Truth Table

ini in2 bin bout doff

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

Instance Parameters

vlogic_high = logic high value [V]
vlogic_low = logic low value [V]

vtrans = threshold for inputs to be high [V]

tdel, trise, tfall = {usual} [s]

June 2013 311
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Parallel Register, 8-Bit

Terminals
vin_do0..vin_d7: input data lines [V,A]
vout_d0..vout_d7: output data lines [V,A]

venable: enable line [V,A]

Description

Input occurs on the rising edge of venable.

Instance Parameters
vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [S]

June 2013 312
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Serial Register, 8-Bit

Terminals
vin_d: input data lines [V,A]
vout_d: output data lines [V,A]

velk: enable line [V,A]

Description

Input occurs on the rising edge of vclk.

Instance Parameters
vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [S]

June 2013 313
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Electromagnetic Components

DC Motor

Terminals

vp: positive terminal [V,A]

vn: negative terminal [V,A]
pos_shaft: motor shaft [rad, Nm]
Description

This is a model of a DC motor driving a shaft.

Instance Parameters

km = motor constant [Vs/rad]
k£ = flux constant [Nm/A]

j = inertia factor [Nmsz/rad]
d = drag (friction) [Nms/rad]
rm = motor resistance [Ohms]

1m = motor inductance [H]

June 2013 314
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Electromagnetic Relay

Terminals
vopen: normally opened terminal [V,A]
vcomm: common terminal [V,A]

vclosed: normally closed terminal [V,A]
vctrl_n: negative control signal [V,A]

vetrl_p: positive control signal [V,A]

Description

This is a model of a voltage-controlled single-pole, double-throw switch. When the voltage
differential between vctrl_p and vetrl_n exceeds vtrig, the normally open branch is
shorted (closed). Otherwise, the normally open branch stays open. If the open branch is
already closed and the voltage differential between vctrl_p and vetrl_n falls below
vrelease, the normally open branch is opened.

Instance Parameters
vtrig = input value to close relay [V]

vrelease = input value to open relay [V]

June 2013 315 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Three-Phase Motor

Terminals

vpl, vnl: phase 1 terminals [V,A]

vp2, vn2: phase 2 terminals [V,A]

vp3, vn3: phase 3 terminals [V,A]

pos: position of shaft [rad, Nm]

shaft: speed of shaft [rad/s, Nm]

com: rotational reference point [rad/s, Nm]

Instance Parameters

km = motor constant [Vs/rad]
kf = flux constant [Nm/A]

j = inertia factor [Nms~2/rad]
d = drag (friction) [Nms/rad]
rm = motor resistance [Ohms]

1m = motor inductance [H]

June 2013 316 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Functional Blocks

Amplifier

Terminals

sigin: input (val, flow)
sigout: output (val, flow)

Instance Parameters
gain = gain between input and output []

sigin_offset = subtracted from sigin before amplification (val)

June 2013 317 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Comparator

Terminals

sigin: (val, flow)

sigref: reference to which sigin is compared (val, flow)
sigout: comparator output (val, flow)

Description

Compares (sigin-sigin_offset) to sigref—the output is related to their difference by
a tanh relationship.

If the difference >>> sigref, sigout is sigout_high.
If the difference = sigref, sigout is (sigout_high + sigout_low)/2.
If the difference <<< sigref, sigout is sigout_low.

Intermediate points are fitting to a tanh scaled by comp_s1ope.

Instance Parameters

sigout_high = maximum output of the comparator (val)

sigout_low = minimum output of the comparator (val)

sigin_offset = subtracted from sigin before comparison to sigref (val)

comp_slope = determines the sensitivity of the comparator []

June 2013 318 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Controlled Integrator

Terminals

sigin: (val, flow)
sigout: (val, flow)
sigctrl: (val, flow)
Description

Integration occurs while sigctrl is above sigctrl_trans.

Instance Parameters
sigout0 =initial sigout value (val)
gain = gain]

sigctrl_trans =if sigentl is above this, integration occurs (val)

June 2013 319 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Deadband

Terminals
sigin: input (val, flow)

sigout: output (val, flow)

Description

Deadband region is when sigin is between sigin_dead_high and sigin_dead_low.
sigout is zero in the deadband region. Above the deadband, the output is sigin -
sigin_dead_high. Below the deadband, the output is sigin - sigin_dead_low.
Instance Parameters

sigin_dead_high = upper deadband limit (val)

sigin_dead_low = lower deadband limit (val)

June 2013 320 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Deadband Differential Amplifier

Terminals

sigin_p, sigin_n: differential input terminals (val, flow)
sigout: output terminal (val, flow)

Description

Outputs sigout_1leak when differential input (sigin_p-sigin_n) is between
sigin_dead_low and sigin_dead_high. When outside the deadband, the output is an
amplified version of the differential input plus sigout_1leak.

Instance Parameters

sigin_dead_low = lower range of dead band (val)

sigin_dead_high = upper range of dead band (val)

sigout_leak = offset signal; only output in deadband (val)

gain_low = differential gain in lower region []

gain_high = differential gain in upper region []

June 2013 321 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Differential Amplifier (Opamp)

Terminals

sigin_p, sigin_n: (val, flow)
sigout: (val, flow)
Description

sig_out is gain times the adjusted input differential signal. The adjusted input differential
signal is the differential input minus sigin_offset.

Instance Parameters

gain = amplifier differential gain (val)

sigin_offset = input offset (val)

June 2013 322 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Differential Signal Driver

Terminals

sigin_p, sigin_n: differential input signals (val, flow)

sigout_p, sigout_n: differential output signals (val, flow)

sigref: differential outputs are with reference to this node
(val, flow)

Description

Amplifies its differential pair of input by an amount gain, producing a differential pair of output
signals. The output differential signals appear symmetrically about sigref.

Instance Parameters

gain = diffdriver gain []

June 2013 323 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Differentiator

Terminals
sigin: (val, flow)

sigout: (val, flow)

Instance Parameters

gain =]

June 2013
© 2000-2013

324

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Flow-to-Value Converter

Terminals

sigin_p, sigin_n: [V,A]
sigout_p, sigout_n: [V,A]
Description

val(sigout_p, sigout_n) =flow(sigin_p, sigin_n)

Instance Parameters

gain = flow to val gain

June 2013 325 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Rectangular Hysteresis

Terminals
sigin: (flow, val)
sigout: (flow, val)

Instance Parameters

hyst_state_init = the initial output []
sigout_high = maximum input/output (val)
sigout_low = minimum input/output (val)

sigtrig_low =the sigin value that will cause sigout to go low when sigout is high
(val)

sigtrig_high =the sigin value that will cause sigout to go high when sigout is low
(val)

tdel, trise, tfall = {usual} [s]

June 2013 326 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Integrator
Terminals

sigin: (val, flow)
sigout: (val, flow)

Instance Parameters
sigout0 = initial sigout value (val)

gain =]

June 2013 327 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Level Shifter

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

sigout = sigin added to sigshift.

Instance Parameters

sigshift = level shift (val)

June 2013
© 2000-2013

328

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Limiting Differential Amplifier

Terminals

sigin_p, sigin_n: (val, flow)
sigout: (val, flow)
Description

Has limited output swing. sigout is gain times the adjusted differential input signal about
(sigout_high + sigout_low)/2. The adjusted differential input signal is the differential
input signal minus sigin_offset.

Instance Parameters

sigout_high = upper amplifier output limit (val)

sigout_low = lower amplifier output limit (val)

gain = amplifier gain within the limits []

sigin_offset = input offset (val)

June 2013 329 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Logarithmic Amplifier

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

sigout is gain times the natural log of the absolute value of the adjusted input. The
adjusted input is sigin minus sigin_offset unless the absolute value of the this is less
than min_sigin. In this case, min_sigin is used as the adjusted input.

Instance Parameters

min_sigin = absolute value of minimum acceptable sigin (val)

gain = (val)

sigin_offset = input offset (val)

June 2013 330 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Multiplexer

Terminals

siginl, sigin2, sigin3: signals to be multiplexed (val, flow)
cntrlp, cntrlm: differential-controlling signal (val, flow)
sigout: (val, flow)

Description

If the differential-controlling signal is below sigth_high, sigout is siginl. If the
differential-controlling signal is above sigth_low, sigout is sigin3. In between these two
thresholds, sigout = sigin2.

Instance Parameters

sigth_high = high threshold value (val)

sigth_low = low threshold value (val)

June 2013 331 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Quantizer
Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

This model quantizes input with unity gain.

Instance Parameters

nlevel = number of levels to quantize to []

round = if yes, go to nearest g-level, otherwise go to nearest g-level below []
sigout_high = maximum input/output (val)

sigout_low = minimum input/output (val)

tdel, trise, tfall = {usual} [s]

June 2013 332 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Repeater

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

From 0 to period, sigout = sigin. After this, sigout is a periodic repetition of what
sigin was between 0 and period.

Instance Parameters

period = period of repeated waveform (val)

June 2013 333 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Saturating Integrator

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

The output is the limited integral of the input. The limits are sigout_max, sigin_min.
sigout0 must lie between sigout_max and sigin_min.

Instance Parameters

sigout0 =initial sigout value (val)

gain =]

sigout_max = maximum signal out (val)

sigout_min = minimum signal out (val)

June 2013 334 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Swept Sinusoidal Source

Terminals

sigout_p, sigout_n: output (val, flow)

Description

The instantaneous frequency of the output is sweep_rate * time plus start_freaq.

Instance Parameters

start_freq = start frequency [Hz]

sweep_rate = rate of increase in frequency [Hz/s]
amp = amplitude of output sinusoid (val)

points_per_cycle = number of points in a cycle of the output []

June 2013 335 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Three-Phase Source

Terminals

vouta: A-phase terminal [V,A]
voutb: B-phase terminal [V,A]
voutc: C-phase terminal [V,A]

vout_star: star terminal [V,A]

Instance Parameters
amp = phase-to-phase voltage amplitude [V]

freq = output frequency [Hz]

June 2013 336
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Value-to-Flow Converter

Terminals

sigin_p, sigin_n: [V,A]
sigout_p, sigout_n: [V,A]
Description

flow(sigout_p, sigout_n) =val(sigin_p, sigin_n)

Instance Parameters

gain = value-to-flow gain []

June 2013 337 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Variable Frequency Sinusoidal Source

Terminals

sigin: frequency-controlling signal (val, flow)
sigout: (val, flow)

Description

Outputs a variable frequency sinusoidal signal. Its instantaneous frequency is
(center_freg+ freq gain * sigin) [HZ]

Instance Parameters

amp = amplitude of the output signal (val)

center_freqg = center frequency of oscillation frequency when sigin = 0 [Hz]

freq_gain = oscillator conversion gain (Hz/val)

June 2013 338 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Variable-Gain Differential Amplifier

Terminals

sigin_p, sigin_n: differential input terminals (val, flow)
sigctrl_p, sigctrl_n: differential-controlling terminals (val, flow)
sigout: (val, flow)

Description

sigout is the product of gain_const, (sigctrl_p - sigctrl_n), and the adjusted input
differential signal added to (sigout_high + sigout_low)/2. The adjusted input differential
signal is the input differential signal minus sigin_offset.

Instance Parameters

gain_const = amplifier gain when (sigctrl_p - sigctrl_n) =1 unit]

sigout_high = upper output limit (val)

sigout_low = lower output limit (val)

sigin_offset = input offset (val)

June 2013 339 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Magnetic Components

Magnetic Core

Terminals
mp: positive MMF terminal [A, Wb]

mn: negative MMF terminal [A, WD]

Description

This is a Jiles/Atherton magnetic core model.

Instance Parameters

len = effective magnetic length of core [m]
area = magnetic cross-section area of core [m2]
ms = saturation magnetization

gamma = shaping coefficient

k = bulk coupling coefficient

alpha = interdomain coupling coefficient

c = coefficient for reversible magnetization

June 2013 340
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Magnetic Gap

Terminals
mp: positive MMF terminal [A, Wb]

mn: negative MMF terminal [A, Wb]

Description
This is a Jiles/Atherton magnetic gap model.

This model is analogous to a linear resistor in an electrical system.

Instance Parameters

len = effective magnetic length of gap [m]

area = magnetic cross-section area of gap [m?]

June 2013 341 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Magnetic Winding

Terminals
vp: positive voltage terminal [V,A]
vn: negative voltage terminal [V,A]

mp: positive MMF terminal [A, WD]

mn: negative MMF terminal [A, Wb]

Description

This is a Jiles/Atherton winding model.

Instance Parameters
num_turns = humber of turns []

rturn = winding resistance per turn [Ohms]

June 2013 342 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Two-Phase Transformer

Terminals

vp_1, vn_1: [V,A]
vp_2,vn_2: [V,A]
Description

This is structural transformer model implemented using Jiles/Atherton core and winding
primitives

Instance Parameters

turnsl = number of turns in the first winding []

turnsl = number of turns in the second winding []

rwindingl = resistance per turn of first winding [Ohms]

rwinding?2 = resistance per turn of second winding [Ohms]

len = length of the transformer core [m]

area = area of the transformer core [m?]
ms = saturation magnetization

gamma = shaping coefficient

k = bulk coupling coefficient

alpha = interdomain coupling coefficient

c = coefficient for reversible magnetization

June 2013 343 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Mathematical Components

Absolute Value

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

sigout is the absolute value of sigin.

Instance Parameters

None.

June 2013 344 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Adder

Terminals

siginl, sigin2: (val, flow)
sigout: (val, flow)
Description

This model adds two node values.

Instance Parameters
k1 = gain of sigin1 []

k2 = gain of sigin2 []

June 2013 345 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Adder, 4 Numbers

Terminals

siginl, sigin2, sigin3, sigin4: (val, flow)
sigout: (val, flow)

Description

sigout = gainl*siginl + gain2*sigin2 +gain3*sigin3 + gaind4*sigin4

Instance Parameters

gainl =gain for siginl []
gain2 =gain for sigin2 []
gain3 =gain for sigin3 []

gaind = gain for sigin4 []

June 2013 346 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Cube

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

sigout is the cube of the sigin.

Instance Parameters

None.

June 2013 347 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Cubic Root
Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

sigout is the cubic root of sigin.

Instance Parameters

epsilon = small number added to sigin to ensure not getting pow(0,0.3333.), because
pow () is implemented using logs (val)

June 2013 348 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Divider

Terminals

signumer: numerator (val, flow)
sigdenom: denominator (val, flow)
sigout: (val, flow)

Description

sigout is gain multiplied by signumer divided by sigdenom unless the absolute value of
sigdenom is less than min_sigdenom. In that case, signumer is divided by
min_sigdenom instead and multiplied by the sign of the sigdenom.

Instance Parameters

gain = divider gain []

min_sigdenom = minimum denominator (val)

June 2013 349 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Exponential Function

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

sigout is an exponential function of sigin. However, if sigin is greater than max_sigin,
sigin is taken to be max_sigin. This is necessary because the exponential function
explodes very quickly.

Instance Parameters

max_sigin = maximum value of sigin accepted (val)

June 2013 350 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Multiplier

Terminals

siginl, sigin2: inputs (val, flow)
sigout: terminals (val, flow)
Description

sigout =gain *siginl * signin2

Instance Parameters

gain = gain of multiplier []

June 2013 351 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Natural Log Function

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

sigout is the natural log of sigin, providing sigin >min_sigin. If sigin is between 0
andmin_sigin, sigout isthe log of min_sigin. If sigin is less than 0, an error is
reported.

Instance Parameters

min_sigin = minimum value of sigin (val)

June 2013 352 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Polynomial
Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

This is a model of a third-order polynomial function.

sigout =p3 * sigind +p2 * sigin? + pl * sigin + pO

Instance Parameters
p3 = cubic coefficient []
p2 = square coefficient []
pl = linear coefficient []

p0 = constant coefficient []

June 2013 353
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Power Function

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

sigout is sigin to the power of exponent.

Instance Parameters
exponent = what sigin is raised by []

epsilon = small number added to sigin to ensure not getting pow(0,0.3333.), because
pow () is implemented using logs (val)

June 2013 354 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Reciprocal
Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

sigout is gain/denom

Instance Parameters
gain = gain (val)

min_sigdenom = minimum denominator (val)

June 2013 355

©2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Signed Number

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

This is a model of the sign of the input.

sigout is +1 if sigin >= 0; otherwise, sigout is -1.

Instance Parameters

None.

June 2013 356 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Square
Terminals

sigin: input
sigout: output
Description

sigout is the square of the sigin.

Instance Parameters

None.

June 2013 357 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Square Root

Terminals

sigin: (val, flow)
sigout: (val, flow)
Description

sigout is the square root of sigin.

Instance Parameters

None.

June 2013 358 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Subtractor

Terminals

sigin_p: input subtracted from (val, flow)
sigin_n: input that is subtracted (val, flow)
sigout: (val, flow)

Instance Parameters

None.

June 2013 359 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Subtractor, 4 Numbers

Terminals

siginl, sigin2, sigin3, sigin4: (val, flow)
sigout: (val, flow)

Description

sigout = gainl*siginl - gain2*sigin2 - gain3*sigin3 - gaind4*sigin4

Instance Parameters

gainl = gain for siginl
gain2 =gain for sigin2
gain3 =gain for sigin3

gaind = gain for sigin4

June 2013 360 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Measure Components

ADC, 8-Bit Differential Nonlinearity Measurement

Terminals
vdo0. .var7: data lines from ADC [V,A]
vout: voltage sent from conversion to ADC [V,A]

velk: clocking signal for the ADC [V,A]

Description

Measures an 8-bit analog-to-digital converter’s (ADC’s) differential nonlinearity measurement
(DNL) using a histogram method. vout is sequentially set to 4,096 equally spaced voltages
between vstart and vend. At each different value of vout, a clock pulse is generated

causing the ADC to convert this vout value. The resultant code of each conversion is stored.

When all the conversions have been done, the DNL is calculated from the recorded data.
If log_to_fileis yes, the DNL (differential nonlinearity) is recorded and written to
filename.

Instance Parameters

vlogic_high =[V]

vlogic_low = [V]

tsettle = time to allow for settling after the data lines are changed before vao-7 are
recorded [s]—also the period of the ADC conversion clock.

vstart = voltage at which to start conversion sweep (]
vend = voltage at which to end conversion sweep []
log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []

June 2013 361 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

ADC, 8-Bit Integral Nonlinearity Measurement

Terminals
vdo0. .vd7: data lines from ADC [V,A]
vout: voltage sent from conversion to ADC [V,A]

velk: clocking signal for the ADC [V,A]

Description

Measures an 8-bit ADC’s INL using a histogram method. vout is sequentially set to 4,096
equally spaced voltages between vstart and vend. At each different value of vout, a clock
pulse is generated causing the ADC to convert this vout value. The resultant code of each
conversion is stored.

When all the conversions have been done, the INL is calculated from the recorded data.

If log_to_fileis yes, the INL (integral nonlinearity) is recorded and written to £i1ename.

Instance Parameters
vlogic_high =[V]
vlogic_low = [V]

tsettle = time to allow for settling after the data lines are changed before vdo-7 are
recorded [s]—also the period of the ADC conversion clock.

vstart = voltage at which to start conversion sweep []
vend = voltage at which to end conversion sweep []
log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []

June 2013 362 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Ammeter (Current Meter)

Terminals
vp, V. terminals [V,A]

vout: measured current converted to a voltage [V,A]

Description

Measures the current between two of its nodes. It has two modes: rms (root-mean-squared)
and absolute.

The measurement is passed through a first-order filter with bandwidth bw before being written
to a file and appearing at vout. This is useful when doing rms measurements. If bw is set to
zero, no filtering is done.

Instance Parameters

mtype = type of current measurement; absolute or rms []

bw = bw of output filter (a first-order filter) [Hz]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []

June 2013 363 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

DAC, 8-Bit Differential Nonlinearity Measurement

Terminals

vin: terminal for monitoring DAC output voltages [V,A]
vdo0. .vd7: data lines for DAC [V,A]

Description

Sweeps through all the 256 codes and records the digital-to-analog converter (DAC) output
voltage and writes the maximum DNL found to the output.

If log_to_fileis yes, the DNL (differential nonlinearity) is recorded and written to
filename.

Instance Parameters

vlogic_high =[V]

vlogic_low = [V]

tsettle = time to allow for settling after the data lines are changed before vin is recorded

[s]
log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []

June 2013 364 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

DAC, 8-Bit Integral Nonlinearity Measurement

Terminals

vin: terminal for monitoring DAC output voltages [V,A]
vdo0. .vd7: data lines for DAC [V,A]

Description

Sweeps through all the 256 codes and records the DAC output voltage and writes the
maximum INL found to the output.

If log_to_fileis yes, the INL (integral nonlinearity) is recorded and written to £i1ename.

Instance Parameters
vlogic_high =[V]
vlogic_low = [V]

tsettle = time to allow for settling after the data lines are changed before vin is recorded

[s]
log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []

June 2013 365 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Delta Probe

Terminals

start_pos, start_neg: signal that controls start of measurement []
stop_pos, stop_neg: signal that controls end of measurement []
Description

This probe measures argument delta between the occurrence of the starting and stopping
events. It can also be used to find when the start and stop signals cross the specified
reference values (by default start_count and stop_count are setto 1).
Instance Parameters
start_td, stop_td = signal delays [s]
start_val, stop_val = signal value that starts/end measurement []
start_count, stop_count = number of signal values that starts/end measurement
start_mode = one of the starting/stopping modes []

arg—argument value (simulation time)

rise—crossing of the signal value on rise

fall—crossing of the signal value on fall

crossing—any crossing of the signal value
stop_mode = one of the starting/stopping modes []

arg—argument value (simulation time)

rise—crossing of the signal value on rise

fall—crossing of the signal value on fall

crossing—any crossing of the signal value

June 2013 366 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Find Event Probe

Terminals

out_pos, out_neg: signal to measure []

start_pos, start_neg: signal that controls start of measurement []
ref_pos, ref_neg: differential reference signal

Description

This model is of a signal statistics probe. This probe measures the output signal at the
occurrence of the event:

B Ifarg_val is given, measure at this value.

B Ifstart_ref_valisgiven, measure the output signal when the start signal crosses this
value.

B If start_ref_val is not given, measure the output signal when it is equal to the
reference signal.
Instance Parameters
start = argument value that starts measurements
stop = argument value that stops measurements
start_td = signal delays [s]
start_val = signal value that starts/ends measurement []
start_count = number of signal values that starts/ends measurement
start_mode = one of the starting/stopping modes []
arg—argument value (simulation time)
rise—crossing of the signal value on rise
fall—crossing of the signal value on fall

crossing—any crossing of the signal value

June 2013 367 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

start_ref_val = start signal reference value []

arg_val = argument value that controls when to measure signals []

1. If arg_val is given, measure at the specified value of the simulation argument. If it is
not given, measure at the occurrence of the event.

2. If start_ref_val is given, measure the output signal when the start signal is equal to
the reference value.

3. If start_ref_val is not given, measure the output signal when the start signal is equal
to the reference signal.

June 2013 368 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Find Slope

Terminals

out_pos, out_neg: signal to measure []

Description

This model is of a signal statistics probe.

This probe measures slope of a signal between arg_vall and arg_val?2; if arg_val2is
not specified, it is set to the value exceeding arg_vall by 0.1%.

Instance Parameters

arg_vall = first argument value []

arg_val2 = (optional) second argument value []

June 2013 369 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Frequency Meter

Terminals
vp, V. terminals [V,A]

fout: measured frequency [FA]

Description

Measures the frequency of the voltage across the terminals by detecting the times at which
the last two zero crossings occurred. This method only works on pure AC waveforms.
Instance Parameters

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []

June 2013 370 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Offset Measurement

Terminals

vamp_out: output voltage of opamp being measured [V,A]
vamp_p: positive terminal of opamp being measured [V,A]
vamp_n: negative terminal of opamp being measured [V,A]
vamp_spply_p: positive supply of opamp being measured [V,A]
vamp_spply_n: negative supply of opamp being measured [V,A]
Description

This is a model of a slew rate measurer.

The opamp terminals of the opamp under test are connected to this model. It shorts
vamp_out 10 vamp_n and grounds vamp_vp. After tsettle seconds, the voltage read at

vamp_out is taken to be of fset.

The result is printed to the screen.

Instance Parameters
vspply_p = positive supply voltage required by opamp [V]
vspply_n = negative supply voltage required by opamp [V]

tsettle = time to let opamp settle before measuring the offset [s]

June 2013 371
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Power Meter

Terminals
iin: input for current passing through the meter [V,A]
vp_iout: positive voltage sending terminal and output for current passing

through the meter [V,A]

vn! negative voltage sensing terminal [V,A]

pout: measured impedance converted to a voltage [V]
va_out: measured apparent power [W]

pf_out: measured power factor []

Description

To measure the power being dissipated in a 2-port device, this meter should be placed in the
netlist so that the current flowing into the device passes between iin and vp_iout first, that
vp_1iout is connected to the positive terminal of the device, and that vn is connected to the
negative terminal of the device.

The measured power is the average over time of the product of the voltage across and the
current through the device. This average is calculated by integrating the VI product and
dividing by time and passing the result through a first-order filter with bandwidth bw.

The apparent power is calculated by finding the rms values of the current and voltage first and
filtering them with a first-order filter of bandwidth bw. The apparent power is the product of the
voltage and current rms values.

The purpose of the filtering is to remove ripple. Cadence recommends that bw be set to a low
value to produce accurate measurements and that at least 10 input AC cycles be allowed
before the power meter is considered settled. Also allow time for the filters to settle.

This meter requires accurate integration, so it is desirable that the integration method is set
to gear2only in the netlist.

Instance Parameters

tstart = time to wait before starting measurement [s]

June 2013 372 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

bw = bw of rms filters (a first-order filter) [Hz]
log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []

June 2013 373 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Q (Charge) Meter

Terminals
vp, V. terminals [V,A]

gout: measured charge [C,A]

Description

Measures the charge that has flown between vn and vp between tstart and tend.

Instance Parameters

tstart = start time [s]

tend = end time [s]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []

June 2013 374 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Sampler

Terminal

sigin: (val, flow)

Description

Samples sigin every tsample and writes the results to £i1ename and labels the data with
label. The time variable is recorded if log_time is yes.

Instance Parameters

tsample = how often input is sampled [s]

filename = name of file where samples are stored []

label = label for signal being sampled []

log_time = if the time variable should be logged to a file []

June 2013 375 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Slew Rate Measurement

Terminals

vamp_out: output voltage of the opamp being measured [V,A]
vamp_p: positive terminal of the opamp being measured [V,A]
vamp_n: negative terminal of the opamp being measured [V,A]
vamp_spply_p: positive supply of the opamp being measured [V,A]
vamp_spply_n: negative supply of the opamp being measured [V,A]
Description

Monitors the input and records the times at which it equals vstart and vend. The slew is
given to be vstart - vend divided by the time difference.

The result is printed to the screen.

Instance Parameters

vspply_p = positive supply voltage required by opamp [V]
vspply_n = negative supply voltage required by opamp [V]

twait = time to wait before applying pulse to opamp input [V]
vstart = voltage at which to record the first measurement point [V]
vend = voltage at which to record the other measurement point [V]

tmin = minimum time allowed between both measurements before an error is reported [s]

June 2013 376 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Signal Statistics Probe

Terminals

out_pos, out_neg: signal to measure []

start_pos, start_neg: signal that controls start of measurement []
stop_pos, stop_neg: signal that controls end of measurement []
Description

This probe measures signals such as minimum, maximum, average, peak-to-peak, root mean
square, standard deviation of the output, and start signals within a measuring window. It also
gives a correlation coefficient between output and start signals.
Instance Parameters
start_arg = argument value that starts measurements
stop_arg = argument value that stops measurements
start_td, stop_td = signal delays [s]
start_val, stop_val = signal value that starts/end measurement []
start_count, stop_count = number of signal values that starts/end measurement
start_mode = one of starting/stopping modes []
arg—argument value (simulation time)
rise—crossing of the signal value on rise
fall—crossing of the signal value on fall
crossing—any crossing of the signal value
stop_mode = one of starting/stopping modes []
arg—argument value (simulation time)

rise—crossing of the signal value on rise

June 2013 377 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

fall—crossing of the signal value on fall

crossing—any crossing of the signal value

June 2013 378 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Voltage Meter

Terminals
vp, V. terminals [V,A]

vout: measured voltage [V,A]

Description

Measures the voltage between two of its nodes. It has two modes: rms (root-mean-squared)
and absolute.

The measurement is passed through a first-order filter with bandwidth bw before being written
to a file and appearing at vout. This is useful when doing rms measurements. If bw is set to
zero, no filtering is done.

Instance Parameters

mtype = type of voltage measurement; absolute or rms []

bw = bw of output filter (a first-order filter) [Hz]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []

June 2013 379 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Z (Impedance) Meter

Terminals

iin: input for current passing through the meter [V,A]

vp_iout: positive voltage-sensing terminal and output for current passing through the
meter [V,A]

vn! negative voltage sensing terminal [V,A]

zout: measured impedance converted to a voltage [Ohms]

Description

To measure the impedance across a 2-port device, this meter should be placed in the netlist
so that the current flowing into the device passes between iin and vp_iout first, that
vp_1iout is connected to the positive terminal of the device, and that vn is connected to the
negative terminal of the device.

The impedance is calculated by finding the rms values of the current and voltage first and
filtering them with a first-order filter of bandwidth bw. The impedance is the ratio of these
filtered Irms and Vrms values. The purpose of the filtering is to remove ripple.

Cadence recommends that bw be set to a low value to produce accurate measurements and
that at least 10 input AC cycles be allowed before the zmeter is considered settled. Also allow
time for the filters to settle.

The time step size should also be kept small to increase accuracy.

This meter is nonintrusive—that is, it does not drive current in the device being measured.
However to work it requires that something else drives current through the device.
Instance Parameters

bw = bw of rms filters (a first-order filter) [Hz]

log_to_file = whether to log the results to a file; yes or no []

filename = the name of the file in which the results are logged []

June 2013 380 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Mechanical Systems

Gearbox

Terminals

wshaftl: shaft of the first gear [rad/s, Nm]
wshaft2: shaft of the second gear [rad/s, Nm]
Description

This is a model of two intermeshed gears.

Instance Parameters

radiusl = radius of first gear [m]
radius?2 = radius of second gear [m]
inertial = inertia of first gear [Nms/rad]

inertia?2 = inertia of second gear [Nms/rad]

June 2013 381
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Mechanical Damper

Terminals

posp, posn. terminals [m, N]

Instance Parameters

a = friction coefficient [N/m]

June 2013 382 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Mechanical Mass

Terminal

posin: terminal [m, N]

Instance Parameters
m = mass [kq]

gravity = whether gravity acting on the direction of movement of mass []

June 2013 383 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Mechanical Restrainer

Terminals

posp, posn. terminals [m, N]

Description

Limits extension of the nodes to which it is attached.

Instance Parameters
minl = minimum extension [m]

max1l = maximum extension [m]

June 2013 384 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Road

Terminal

posin: terminal [m, N]

Description

This is a model of a road with bumps.

Instance Parameters
height = height of bumps [m]
length = length of bumps [m]
speed = speed [m/s]

distance = distance to first bump [m]

June 2013 385
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Mechanical Spring

Terminals

posp, posn. terminals [m, N]

Instance Parameters
k = spring constant [N/m]

1 = length of the spring [m]

June 2013 386 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Wheel

Terminals

posp, posn. terminals [m, N]

Description

This is a model of a bearing wheel on a fixed surface.

Instance Parameters

height = height of the wheel [m]

June 2013 387 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Mixed-Signal Components

Analog-to-Digital Converter, 8-Bit

Terminals
vin: [V,A]
velk: [V,A]

vdol. .vd7: data output terminals [V,A]

Description

This ADC comprises 8 comparators. An input voltage is compared to half the reference
voltage. If the input exceeds it, bit 7 is set and half the reference voltage is subtracted. If not,
bit 7 is assigned zero and no voltage is subtracted from the input. Bit 6 is found by doing an
equivalent operation comparing double the adjusted input voltage coming from the first
comparator with half the reference voltage. Similarly, all the other bits are found.

Mismatch effects in the comparator reference voltages can be modeled setting mismatch to
a nonzero value. The maximum mismatch on a comparator’s reference voltage is +/-
mismatch percent of that voltage’s nominal value.

Instance Parameters

mismatch_fact = maximum mismatch as a percentage of the average value []
vlogic_high =[V]

vlogic_low = [V]

vtrans_clk = clk high-to-low transition voltage [V]

vref = voltage that voltage is done with respect to [V]

tdel, trise, tfall = {usual} [S]

June 2013 388 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Analog-to-Digital Converter, 8-Bit (Ideal)

Terminals
vin: [V,A]
velk: [V,A]

vdol. .vd7: data output terminals [V,A]

Description

This model is ideal because no mismatch is modeled.

Instance Parameters

tdel, trise, tfall = {usual} [S]

vlogic_high =[V]

vlogic_low = [V]

vtrans_clk = clk high-to-low transition voltage [V]

vref = voltage that voltage is done with respect to [V]

June 2013 389
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Decimator

Terminals
vin: [V,A]
vout: [V,A]

velk: [V.A]

Description

Produces a cumulative average of N samples of vin. vin is sampled on the positive vclk
transition. The cumulative average of the previous set of N samples is output until a new set
of N samples has been captured.

Transfer Function: 1/n * (1 - ZA-N)/(1-Z/-1)

Instance Parameters
N = oversampling ratio [V]
vtrans_clk = transition voltage of the clock [V]

tdel, trise, tfall = {usual} [S]

June 2013 390 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Digital-to-Analog Converter, 8-Bit

Terminals
vd0. .vd7: data inputs [V,A]

vout: [V,A]

Description

Mismatch effects can be modeled in this DAC by setting mismatch to a nonzero value. The
maximum mismatch on a bit is +/-mismatch percent of that bit's nominal value.

Instance Parameters

vref = reference voltage for the conversion [V]

mismatch_fact = maximum mismatch as a percentage of the average value []
vtrans = logic high-to-low transition voltage [V]

tdel, trise, tfall = {usual} [S]

June 2013 391 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Digital-to-Analog Converter, 8-Bit (Ideal)

Terminals
vd0. .vd7: data inputs [V,A]

vout: [V,A]

Instance Parameters
vref = reference voltage that conversion is with respect to [V]
vtrans = transition voltage between logic high and low [V]

tdel, trise, tfall = {usual} [s]

June 2013 392
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Sigma-Delta Converter (first-order)

Terminals
vin: [V,A]
velk: [V,A]

vout: [V,A]

Description

This is a model of a first-order sigma-delta analog-to-digital converter.

Instance Parameters

vth = threshold voltage of two-level quantizer [V]
vout_high = range of sigma-delta is 0-vout_high [V]
vtrans_clk = transition of voltage of clock [V]

tdel, trise, tfall = {usual}

June 2013 393
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Sample-and-Hold Amplifier (Ideal)

Terminals

vin: [V,A]
vclk: [V,A]
vout: [V,A]

Instance Parameters

vtrans_clk = transition voltage of the clock [V]

June 2013 394 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Single Shot

Terminals
vin: input terminal [V,A]

vout: output terminal [V,A]

Description

This model outputs a logic high pulse of duration pulse_width if a positive transition is
detected on the input.

Instance Parameters

pulse_width = pulse width [s]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]

June 2013 395 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Switched Capacitor Integrator

Terminals

vout_p, vout_n: output terminals [V,A]
vin_p, vin_n: input terminals [V,A]
vphi: switching signal [V,A]

Instance Parameters
cap_1in = input capacitor value
cap_ fb = feedback capacitor value

vphi_trans = transition voltage of vphi

June 2013 396
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Power Electronics Components

Full Wave Rectifier, Two Phase

Terminals
vin_top: input [V,A]
tfire: delay after positive zero crossing of each phase before phase

rectifier fires [s,A]

vout: rectified output voltage [V,A]

Instance Parameters
ihold = holding current (minimum current for rectifier to work) [A]
switch_time = maximum amount of time to spend attempting switch-on [s]

vdrop_rect = total rectification voltage drop [V]

June 2013 397 Product Version 13.1

©2000-2013

All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Half Wave Rectifier, Two Phase

Terminals
vin_top: input [V,A]
tfire: delay after positive zero crossing of each phase before phase

rectifier fires [s,A]

vout: rectified output voltage [V,A]

Instance Parameters
ihold = holding current (minimum current for rectifier to work) [A]
switch_time = maximum amount of time to spend attempting switch-on [s]

vdrop_rect = total rectification voltage drop [V]

June 2013 398 Product Version 13.1

©2000-2013

All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Thyristor

Terminals

vanode: anode [V,A]
vcathode: cathode [V,A]
vgate: gate [V,A]

Instance Parameters
iturn_on = thyristor gate triggering current [A]
ihold = thyristor hold current [A]

von = thyristor on voltage [V]

June 2013 399
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Semiconductor Components

Diode

Terminals

vanode: anode voltage [V,A]
vcathode: cathode voltage [V,A]
Description

This model is of a diode based on the Schockley equation.

Instance Parameters

is = saturation current with negative bias [A]

June 2013 400
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

MOS Transistor (Level 1)

Terminals

vdrain: drain [V,A]
vgate: gate [V,A]
vsource: source [V,A]

vbody: body [V,A]

Description

This model is of a basic, level-1, Schichmann-Hodges style model of a MOSFET transistor.

Instance Parameters

width = [m]

length = [m]

vto = threshold voltage [V]

gamma = bulk threshold []

phi = bulk junction potential [V]
lambda = channel length modulation []
tox = oxide thickness []

u0 = transconductance factor []

x3j = metallurgical junction depth []
is = saturation current []

cj = bulk junction capacitance [F]
vj = bulk junction voltage [V]

mj = bulk grading coefficient []

June 2013 401
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

fc = forward bias capacitance factor []

tau = parasitic diode factor []

cgbo = gate-bulk overlap capacitance [F]
cgso = gate-source overlap capacitance [F]
cgdo = gate-drain overlap capacitance [F]

dev_type = the type of MOSFET used []

June 2013 402 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

MOS Thin-Film Transistor

Terminals

vdrain: drain terminal [V,A]
vgate_front: front gate terminal [V,A]
vsource: source terminal [V,A]
vgate_back: back gate terminal [V,A]
Description

This model is of a silicon-on-insulator thin-film transistor.

This is a model of a fully depleted back surface thin-film transistor MOSFET model. No short-

channel effects.

Instance Parameters
length = length []

width = width []

toxf = oxide thickness [m]
toxb = oxide thickness [m]
nsub = [cm'3]

ngate = [cm'3]

nbody = [cm™]

tb =[m]

u0 =[]

lambda = channel length modulation factor []

dev_type = dev_type []

June 2013 403
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

N JFET Transistor

Terminals

vdrain: drain voltage [V,A]
vgate: gate voltage [V,A]
vsource: source voltage [V,A]
Description

This is a model of an n-channel, junction field-effect transistor.

Instance Parameters

area = area[]

vto = threshold voltage [V]

beta =gain []

lambda = output conductance factor []
is = saturation current []

gmin = minimal conductance []

cjs = gate-source junction capacitance [F]
cgd = gate-drain junction capacitance [F]
m = emission coefficient []

phi = gate junction barrier potential []

fc = forward bias capacitance factor []

June 2013 404
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

NPN Bipolar Junction Transistor

Terminals

vcoll: collector [V,A]
vbase: base [V,A]
vemit: emitter [V,A]

vsubs: substrate [V,A]

Description

This is a gummel-poon style npn bjt model.

Instance Parameters

area = Cross-section area

is = saturation current 1

ise = base-emitter leakage current]
isc = base-collector leakage current []
bf = beta forward]

br = beta reverse]

nf = forward emission coefficient []

nr = reverse emission coefficient []

ne = b-e leakage emission coefficient []

nc = b-c leakage emission coefficient]

vaf = forward Early voltage V]

var = reverse Early voltage [V]

ikf = forward knee current [A]

June 2013 405
©2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

ikr = reverse knee current [A]

cje = capacitance, base-emitter junction [F]

vje = voltage, base-emitter junction [V]

mje = b-e grading exponential factor []

cjc = capacitance, base-collector junction [F]
vjc = voltage, base-collector junction [V]

mjc = b-c grading exponential factor]

cjs = capacitance, collector-substrate junction [F]
vjs = voltage, collector-substrate junction [V]
mjs = c-s grading exponential factor []

fc = forward bias capacitance factor]

tf = ideal forward transit time [s]

xtf = t £ bias coefficient]

vtf = tf-vbc dependence voltage V]
itf = high current factor [

tr = reverse diffusion capacitance [s]

June 2013 406
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Schottky Diode

Terminals

vanode: anode voltage [V,A]
vcathode: cathode voltage [V,A]
Description

This model is of a diode based on the Schockley equation.

Instance Parameters

area = area of junction []

is = saturation current []

n = emission coefficient []

cjo = zero-bias junction capacitance [F]
m = grading coefficient []

phi = body potential [V]

fc = forward bias capacitance [F]
tt = transit time [s]

bv = reverse breakdown voltage [V]
rs = series resistance [Ohms]

gmin = minimal conductance [Mhos]

June 2013 407
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Telecommunications Components

AM Demodulator

Terminals
vin: AM RE input signal [V,A]

vout: demodulated signal [V,A]

Description
Demodulates the signal in vin and outputs it as vout.

Consists of four stages in series:
1. RF amp amplifier

2. Detector stage (full wave rectifier)

3. AF filters stage is a low-pass filter that extracts the AF signal—has gain of one, and two

poles at af_wn [rad/s]

4. AF amp stage amplifies by af_gain and adds af_lev_shift

Instance Parameters

rf_gain = gain of RF (radio frequency) stage []

af_wn = location of both AF (audio frequency) filter poles [rad/s]

af_gain = gain of the audio amplifier []

af_lev_shift = added to AF signal after amplification and filtering [V]

June 2013 408
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

AM Modulator

Terminals
vin: input signal [V,A]

vout: modulated signal [V,A]

Description

vin is limited to the range between vin_max and vin_min. It is also scaled so that it lies
within the +/-1 range. This produces vin_adjusted. vout is given by the following formula:

vout =unmod_amp * (1 + mod_depth *vin_adjusted) *cos (2*Pl* f_carrier * time)

Instance Parameters

f_carrier = carrier frequency [Hz]
vin_max = maximum input signal [V]
vin_min = minimum input signal [V]
mod_depth = modulation depth []

unmod_amp = unmodulation carrier amplitude [V]

June 2013 409 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Attenuator

Terminals
vin: AM input signal [V,A]

vout: rectified AM signal [V,A]

Description

vout is attenuated by attenuation.

Instance Parameters

attenuation = 20log10 attenuation [dB]

June 2013 410 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Audio Source

Terminals
vin: [V,A]

vout: [V,A]

Description

This model synthesizes an audio source. Its output is the sum of 4 sinusoidal sources.

Instance Parameters

ampl = amplitude of the first sinusoid [V]

amp2 = amplitude of the second sinusoid [V]
amp3 = amplitude of the third sinusoid [V]
amp4 = amplitude of the fourth sinusoid [V]
freqgl = frequency of the first sinusoid [Hz]
freg2 = frequency of the second sinusoid [Hz]
freq3 = frequency of the third sinusoid [HZz]

freg4 = frequency of the fourth sinusoid [Hz]

June 2013 411 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Bit Error Rate Calculator

Terminals
vinl: [V,A]

vin2: [V.A]

Description

This model compares the two input signals tstart+tperiod/2 and every tperiod
seconds later. At the end of the simulation, it prints the bit error rate, which is the number of
errors found divided by the number of bits compared.

Instance Parameters

tstart = when to start measuring [s]

tperiod = how often to compare bits [s]

vtrans = voltages above this at input are considered high [V]

June 2013 412 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Charge Pump

Terminals
vout: output terminal from which charge pumped/sucked [V,A]
vsrc: source terminal from which charge sourced/sunk [V,A]

siginc, sigdec: Logic signal that controls charge pump operation [V,A]

Description

This model can source of sink a fixed current, iamp. lts mode depends on the values of
siginc and sigdec;

When siginc > vtrans, iamp amps are pumped from the output. When sigdec >
vtrans, iamp amps are sucked into the output. When both siginc and sigdec are in the
same state, no current is sucked/pumped.

Instance Parameters

iamp = charging current magnitude [A]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [S]

June 2013 413 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Code Generator, 2-Bit

Terminals

voutO0, voutl: output bits [V,A]

Description

Generates a pair of random binary signals.

Instance Parameters

seed = random seed

tperiod = period of output code [s]
vlogic_high = output voltage for high [V]
vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [S]

June 2013 414
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Code Generator, 4-Bit

Terminals

vout_b0-3: output bits [V,A]

Description
This model is of a random 4-bit code generator.

This model outputs a different, randomly generated, 4-bit code every tperiod seconds.

Instance Parameters

tperiod = period of the code generation [s]
vlogic_high = output voltage for high [V]
vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [S]

June 2013 415 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Decider

Terminals
vin: [V,A]

vout: [V,A]

Description

This model samples this input signal a number of times and outputs the most likely value of
the binary data contained in the signal.

A decision on what data is contained in the input is made each tperiod. During each
decision period, a sample of the input is taken each tsample. A count of the number of
samples with values greater than (vlogic_high + vlogic_low)/2 is kept. If at the end of
the period, this count is greater than half the number of samples taken, a logic 1 is output. If
it is less than half the number of samples, viogic_1low is output. Otherwise, the output is
(viogic_high + vlogic_low)/2.

The sampling starts at tstart.

Instance Parameters

tperiod = period of binary data being extracted [s]
tsample = sampling period [S]

vlogic_high = output voltage for high [V]
vlogic_low = output voltage for low [V]

tstart = time at which to start sampling [s]

tdel, trise, tfall = {usual} [S]

June 2013 416 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Digital Phase Locked Loop (PLL)

Terminals
vin: [V,A]

vout: [V,A]

Description

The model comprises a number of submodels: digital phase detector, a change pump, a low-
pass filter (LPF), and a digital voltage-controlled oscillator (VCO).

They are arranged in the following way:

| | \ | Ig Vin VCO | |
vin------ | Phase | ——=———— | Charge |-—-->-——=|-————-—-——- | |
| | \ \ \Y | VCO |
—-—— Detector |-————- | Pump | | |
| | | [| lf |
| RC |
|[Network|
| (LPF) | -—-Vout
\ |

Instance Parameters

pump_iamp = amplitude of the charge pump’s output current [A]
vco_cen_freqg = center frequency of the VCO [HZz]

vco_gain = the gain of the VCO []

1pf_zero_freq = zero frequency of LPF (low-pass filter) [Hz]
lpf_pole_freq = pole frequency of LPF [Hz]

1pf_r_nom = nominal resistance of RC network implementing LPF

June 2013 417 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Digital Voltage-Controlled Oscillator

Terminals
vin: [V,A]

vout: [V,A]

Description
The output is a square wave with instantaneous frequency:

center_ freqg+ vco_gain *vin

Instance Parameters

center_freqg = center frequency of oscillation frequency when vin = 0 [Hz]
vco_gain = oscillator conversion gain [Hz/voli]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [s]

June 2013 418 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

FM Demodulator

Terminals
vin: FM RE input signal [V,A]

vout: demodulated signal [V,A]

Description
Demodulates the signal in vin and outputs it as vout.

Consists of four stages in series:
1. RF amp stage amplifiers vin
2. Detector stage is a phase locked loop (PLL)

3. AF filters stage is a low-pass filter that extracts the AF signal. The filter has gain of one,
and two poles at af_wn [rad/s]

4. AF amp stage amplifies by af_gain and adds af_lev_shift.

Instance Parameters

rf_gain = gain of RF (radio frequency) stage []
pll_out_bw = bandwidth of PLL output filter [HZz]
pll_vco_gain = gain of the PLLs VCO []

pll_vco_cf =the center frequency of the PLLs [Hz]

af_wn = location of both AF (audio frequency) filter poles [Hz]
af_gain = gain of the audio amplifier []

af_lev_shift = added to AF signal after amplification and filtering [V]

June 2013 419 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

FM Modulator

Terminals
vin: input signal [V,A]

vout: modulated signal [V,A]

Description
vout = amp * sin (phase)

where phase = integ (2 * Pl * f_carrier + vin_gain * vin)

Instance Parameters
f_carrier = carrier frequency [Hz]
amp = amplitude of the FM modulator output []

vin_gain = amplification of vin_signal before it is used to modulate the FM carrier signal []

June 2013 420 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Frequency-Phase Detector

Terminals

vin_if: signal whose phase is being detected [V,A]
vin_lo: signal from local oscillator [V,A]
sigout_inc: logic signal to control charge pump [V,A]

sigout_dec: logic signal to control charge pump [V,A]

Description

The freg_ph_detector can have three states: behind, ahead, and same. The specific
state is determined by the positive-going transitions of the signals vin_if and vin_1lo.

Positive transitions on vin_if causes the state to become the next higher state unless the
state is already ahead.

Positive transitions on vin_ 1o cause the state to become the next lower state unless the
state is already behind.

The output depends on the state the detector is in:
ahead => sigout_inc = high, sigout_dec = low
same => sigout_inc = high, sigout_dec = high

behind => sigout_inc = low, sigout_dec = high

The output signals are expected to be used by a charge_pump.

Instance Parameters

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]

June 2013 421 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Mixer

Terminals
vinl, vin2: [V,A]

vout: [V,A]

Description

vout =gain * vinl * vin2

Instance Parameters

gain = gain of mixer []

June 2013 422 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Noise Source

Terminals
vin: [V,A]

vout: [V,A]

Description

This is an approximate white noise source.

Note: It is not a true white source because its output changes every time step and the time
step is dependent on the behavior of the circuit.

Instance Parameters

amp = amplitude of the output signal about 0 [V]

June 2013 423 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

PCM Demodulator, 8-Bit

Terminals
vin: input signal [V,A]

vout: demodulated signal [V,A]

Description

The PCM demodulator samples vin atbit_rate [Hz] starting at tstart + 0.5/bit_rate.
Each set of 8 samples is considered a binary word, and these sets are converted to an output
voltage using a linear 8-bit binary code with O representing vin_min and 255 representing
vin_max. The first bit received is the LSB, bit O; the last bit received is the MSB, bit 7.

The output rate is bit_rate/8.

Instance Parameters

freqg_sample = sample frequency [Hz]

tstart = when to start sampling [s]

vout_min = minimum input voltage [V]

vout_max = maximum input voltage [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [S]

June 2013 424 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

PCM Modulator, 8-Bit

Terminals
vin: input signal [V,A]

vout: modulated signal [V,A]

Description

The PCM modulator samples vin at a sample_freq [Hz] starting at tstart. Once a
sample has been obtained, it is converted to a linear 8-bit binary code with O representing
vin_min and 255 representing vin_max.

The bits are in the code and are sequentially put through vout at a rate 8 times
sample_freq with viogic_high signifyinga 1 and viogic_1low signifying a 0. The first
bit transmitted is the LSB, bit O; the last bit transmitted is the MSB, bit 7.

Clipping occurs when the input is outside vin_min and vin_max.

Instance Parameters

sample_freq = sample frequency [Hz]
tstart = when to start sampling [s]
vin_min = minimum input voltage [V]
vin_max = maximum input voltage [V]
vlogic_high = output voltage for high [V]
vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [S]

June 2013 425 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Phase Detector

Terminals
vlocal_osc: local oscillator voltage [V,A]
vin_rf: PLL radio frequency input voltage [V,A]

vif: intermediate frequency output voltage [V,A]

Instance Parameters
gain = gain of detector []

mtype = type of phase detection to be used; chopper or multiplier []

June 2013 426 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Phase Locked Loop

Terminals

vlocal_osc: local oscillator voltage [V,A]

vin_rf: PLL radio frequency input voltage [V,A]

vout: voltage proportional to the frequency being locked onto [V,A]

vout_ph_det: output of the phase detector [V,A]

Instance Parameters

vco_gain = gain of VCO cell [Hz/V]

vco_center_freqg = VCO oscillation frequency [Hz]
phase_detect_type = type of phase detection cell to be used []

vout_filt_bandwidth = bandwidth of the low-pass filter on output [HZz]

June 2013 427
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

PM Demodulator

Terminals
vin: PM RE input signal [V,A]

vout: demodulated signal [V,A]

Description
Demodulates the signal in vin and outputs it as vout.

Consists of four stages in series:
1. RF amp stage amplifiers vin.
2. Detector stage is a phase locked loop (PLL)—the phase detector output is tapped.

3. AF filters stage is a low-pass filter that extracts the AF signal—has gain of one, and two
poles at af_wn [rad/s].

4. AF amp stage amplifies by af_gain and adds af_lev_shift.

Instance Parameters

rf_gain = gain of RF (radio frequency) stage []
pll_out_bw = bandwidth of PLL output filter [HZz]
pll_vco_gain = gain of the PLLs VCO []

pll_vco_cf = the center frequency of the PLLs [HZ]

af_wn = location of both AF (audio frequency) filter poles [Hz]
af_gain = gain of the audio amplifier []

af_lev_shift = added to AF signal after amplification and filtering [V]

June 2013 428 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

PM Modulator

Terminals
vin: input signal [V,A]

vout: modulated signal [V,A]

Description
vout = amp *siN(2 * Pl * f_carrier * time + phase_max * vin_adjusted)
where vin_adjusted is scaled version of vin that lies within the +/-1 range.

Before scaling, vin is limited to the range between vin_max and vin_min by clipping.

Instance Parameters

f_carrier = carrier frequency [Hz]

amp = amplitude of the PM modulator output []

vin_max = maximum acceptable input (clipping occurs above this) [V]
vin_min = minimum acceptable input (clipping occurs above this) [V]

phase_max = the phase shift produced when the modulating signal is at vin_max [rad]

June 2013 429 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

QAM 16-ary Demodulator

Terminals

vin: input [V,A]

vout_bit[0-4]: demodulated codes [V,A]
Description

This model is of a QPSK (quadrature phase shift key) modulator.

Demodulates a 16ary encoded QAM signal by separately sampling the input signal at 90
degrees (g-phase) and 180 degrees (i-phase).

This model does not contain a dynamic synchronizing mechanism for ensuring that sampling
occurs at the correct time points. Synchronizing can be statically adjusted by changing
tstart. tstart should correspond to when the input QAM signal is at 0 degrees.

The i-phase contains the two MSBs. The g-phase contains the two LSBs.

The constellation diagram representing this relationship follows.

/ \
| O phase
|
| | | \ \
| 0011 | 0111 | 1011 | 1111 |
0 | | | | |
| | | \ \
\ | 0010 | 0110 | 1010 | 1110 |
o | | | | | \ I Phase
1 | | | \ \ /
t | 0001 | 0101 | 1001 | 1101 |
s | | | | |
| | | \ \
| 0000 | 0100 | 1000 | 1100 |
| | | | |
|
|
0 Volts
Each code box is vbox_width volts wide.
Instance Parameters
freqg = demodulation frequency [Hz]
June 2013 430 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

vbox_width = width of modulation code box in constellation diagram [V]
vlogic_high = output voltage for high [V]
vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [s]

June 2013 431 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Quadrature Amplitude 16-ary Modulator

Terminals
vin_b[0-3]: bits of input code [V,A]

vout: modulated output [V,A]

Description
This model does 16 value (4-Bit) QAM.

It encodes the MSBs on the i-phase and the LSBs on the g-phase. Its constellation diagram
can be represented as

/ \
| QO phase
|
| | | \ \
| 0011 | 0111 | 1011 | 1111 |
0 | | | | |
| | | \ \
v | 0010 | 0110 | 1010 | 1110 |
o | | | | | \ I Phase
1 | | | \ \ /
t | 0001 | 0101 | 1001 | 1101 |
s | | | | |
| | | \ \
| 0000 | 0100 | 1000 | 1100 |
| | | | |
|
0 Volts

The two MSBs are encoded on the i-phase. The two LSBs are encoded on the g-phase.
The modulating formula is Vout = i_phase * cos(wt) + g_phase * sin(wt)

i_phase and q_phase vary between -phase_ampl and phase_ampl.

Instance Parameters

freqg = modulation frequency [Hz]

phase_ampl = amplitude of the i-phase and g-phase signals [V]
vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [s]

June 2013 432 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

QPSK Demodulator

Terminals

vin: input [V,A]

vout_1i: i-phase output [V,A]
vout_g: g-phase output [V,A]
Description

Does a QPSK demodulation on the input signal. It does not contain a dynamic synchronizing
mechanism. Synchronizing can be adjusted by changing tstart.

Detection works by separately sampling the i-phase of vin and the g-phase of vin at freg
Hz and 90 degrees out of phase. The first i-phase sample is done at tstart + 0.5/freq, the
next 1/freq seconds later, etc. Similarly, the first g-phase sample is done at tstart + 0.25/
freq, the next 1/£req seconds later, and so on.

For the i-phase, a high is detected if the sample < -vthresh. For the g-phase, a high is
detected if the sample > vthresh.

Instance Parameters

freqg = demodulation frequency [Hz]

vthresh = threshold detection voltage [V]

vlogic_high = output voltage for high [V]

vlogic_low = output voltage for low [V]

tstart = time at which demodulation starts [s]

tdel, trise, tfall = {usual} [S]

June 2013 433 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

QPSK Modulator

Terminals

vin_i,vin_qg: quadrature inputs [V,A]
vout: modulator output [V,A]
Description

This takes two sampled quadrature inputs and does QPSK modulation on them.

Instance Parameters

freq = modulation frequency [Hz]

amp = modulator amplitude [V]

vtrans = voltages above this at input are considered high [V]

tdel, trise, tfall = {usual} [S]

June 2013 434 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Sample Model Library

Random Bit Stream Generator

Terminal
vout: [V,A]
Description

This model generates a random stream of bits.

Instance Parameters

tperiod = period of stream [s]

seed = random number seed []
vlogic_high = output voltage for high [V]
vlogic_low = output voltage for low [V]

tdel, trise, tfall = {usual} [S]

June 2013 435
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Transmission Channel

Terminals
vin: AM input signal [V,A]

vout: rectified AM signal [V,A]

Description

vin has noise_amp noise added to it and the resultant is attenuated by at tenuation [dB].

Instance Parameters
attenuation = 20log10 attenuation [dB]

noise_amp = amplitude of noise added to vin before attenuation [V]

June 2013 436 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

Voltage-Controlled Oscillator

Terminals
vin: oscillation-controlling voltage [V,A]
vout: [V,A]

Instance Parameters
amp = amplitude of the output signal [V]
center_freq = center frequency of oscillation frequency when vin = 0 [Hz]

vco_gain = oscillator conversion gain [Hz/voli]

June 2013 437 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Sample Model Library

June 2013 438 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Verilog-AMS Keywords

This appendix contains the list of the Cadence® Verilog®-AMS language keywords.
Keywords are predefined nonescaped identifiers that you use to define the language

constructs.

The simulator does not interpret a Verilog-AMS keyword preceded by a backslash character
as a keyword. For more information, see “Identifiers” on page 50.

above
abs
absdelay
acos
acosh
ac_stim
aliasparam
always
analog
analysis
and

asin
asinh
assign
atan
atan2
atanh
begin
bound_step
branch
buf
bufifo
bufifl
case
casex
casez
ceil

June 2013
© 2000-2013

cmos
connectrules
cos

cosh

cross

ddt

ddx

deassign
default
defparam
delay

disable
discipline
discontinuity
driver_update
edge

else

end

endcase
endconnectrules
enddiscipline
endfunction
endmodule
endnature
endparamset
endprimitive
endspecify

439

endtable
endtask
event
exclude
exp
final_step
flicker_noise
floor
flow

for
force
forever
fork
from
function
generate
genvar
ground
highz0
highzl
hypot
idt
idtmod
if
ifnone
inf
initial

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Verilog-AMS Keywords

initial_step
inout

input
integer
join
laplace_nd
laplace_np
laplace_zd
laplace_zp
large
last_crossing
limexp

1n
localparam
log
macromodule
max

medium

min

module

nand

nature
negedge
net_resolution
nmos
noise_table
nor

not

notif0
notifl

or

output
parameter
pmos

June 2013
© 2000-2013

posedge
potential
pow
primitive
pullQ
pulll
pullup
pulldown
pwr
rcmos
real
realtime
reg
release
repeat
rnmos
rpmos
rtran
rtranifo
rtranifl
scalared
sin

sinh
slew
small
specify
Sspecparam
sqgrt
strobe
strong0
strongl
supply0
supplyl
table

440

table_model

tan
tanh
task

temperature

time
timer
tran

tranifO
tranifl

transition

tri
tri0
tril

triand

trior

trireg
vectored

vt
wait
wand
weak0
weakl
while

white_noise

wire
wor
wreal
XNor
XOr
zi_nd
zi_np
zi_ zd
zi_zp

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Verilog-AMS Keywords

Keywords to Support Backward Compatibility

Cadence provides the keywords in this section for backward compatibility only.

abstol delay units
access discontinuity vt
bound_step idt_nature

ddt_nature temperature

Discipline and Nature Keywords

Use the following keywords between the keywords discipline and enddiscipline (for
a discipline) and between the keywords nature and endnature (for a nature) only.

abstol ddt_nature idt_nature
access discrete units
continuous domain

Connect Rules Keywords

Use the following connect rules keywords between the keywords connectrules and
endconnectrules only.

connect resolveto
merged split
June 2013 441 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Verilog-AMS Keywords

June 2013 442 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

E

Unsupported Elements of Verilog-AMS

The Cadence® Verilog®-AMS language is specified in the Verilog-AMS Language
Reference Manual: Analog & Mixed-Signal Extensions to Verilog HDL, produced by
Open Verilog International. The Cadence implementation of Verilog-AMS does not support
all of the specified elements of the Verilog-AMS language in all the contexts in which the
language specification says they are to be supported.

The tables in this section list the unsupported elements according to the following
classifications:

B Unsupported elements that should be supported in behavioral contexts, such as:
expressions; initial, always, and analog blocks; and user-defined tasks and functions.

B Unsupported elements that should be supported in analog contexts, such as analog
blocks and analog functions.

B Unsupported elements that should be supported in structural contexts such as those that
exist outside behavioral contexts and have to do with hierarchy, natures, and disciplines.

B Unsupported elements that should be supported in digital contexts, such as initial and
always blocks, and user-defined digital tasks and digital functions.

June 2013 443 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Unsupported Elements of Verilog-AMS

Unsupported Elements for Behavioral Contexts

Feature

Comment

Net attributes, except for
net.potential.abstol and
net.flow.abstol, which are supported

String variables
Using probes containing vector net elements
in a digital block.

Out-of-module references

Standard math and transcendental functions

Srdist functions

Global events

@timer

Srealtime

Cannot be assigned in analog block. Cannot
be used in Sstrobe in the analog block.

Not supported to analog nets, branches, or
nature attributes.

Inside the analog block, expressions that
contain hierarchical references are not
supported. Domain ranges are checked only
for exp, sqgrt, pow, and atan2.

Supported in analog contexts but not in
digital contexts.

The @analog identifier formis not
supported.

Not supported in the digital context.

Not supported in the analog context. Use
Sabstime instead, in the analog context.

Unsupported Elements for Behavioral Analog Contexts

Feature

Comment

Parameters used to specify ranges for the
generate statement

Parameter declarations

The genvar statement

Arrays passed to functions

June 2013
© 2000-2013

444

Not supported in analog user-defined
functions.

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Unsupported Elements of Verilog-AMS

Unsupported Elements for Behavioral Analog Contexts

Feature

Comment

ddt (time derivative) operator

Laplace transform filters

Analog functions
Analog vector nets

Digital transition sensitivities

Nesting is not allowed. For example,

ddt (ddt ()) is prohibited. The abstol
argument has no effect. A nature cannot be
used as an argument.

Parameter-sized array arguments are not
supported.

Parameters are not allowed as arguments.
Not supported for the Tcl value command.

Transition sensitivities such as edval are

not supported in analog contexts. Event
sensitivities such as

@ (posedge dVal or negedge dVal)
must be used instead.

The concatenation operator

Sstime

Stime

Smonitor and $fmonitor

$monitor off/on

Sprinttimescale

Stimeformat

Sbitstoreal

Sitor

Srealtobits

Srtoil

$readmen used with the $b, $h, and %r
specifications.

June 2013 445 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Unsupported Elements of Verilog-AMS

Unsupported Elements for Structural Contexts

Feature

Comment

Derived natures

Overriding nature attributes from disciplines

Array ranges for nets
Array ranges for ground nodes

Parameter arrays

Module instantiation inside a generate
block

Parameter-sized vector nets

User-defined attributes

Vector branches

Vector arguments for simulator functions
Vector ground nodes

Parameter-sized ports

Out-of-module references

Discipline resolution

net_resolution

Nodesets on continuous nets

Parameter array declarations are not
supported. Parameter array assignments are
supported only in analog primitives.

Generate blocks, because they can be
used only in analog blocks, can contain
only behavioral code.

Only the Cadence huge, blowup, and
maxdel ta attributes are supported.

Supported for voltage probes on nets. Not
supported for branches, or for nature
attributes.

If out-of-module references are used in port
connections, the port discipline is not used to
determine the discipline of the out-of-module
reference.

June 2013
© 2000-2013

446 Product Version 13.1

All Rights Reserved.

Cadence Verilog-AMS Language Reference
Unsupported Elements of Verilog-AMS

The next list contains only VPI functions. The unsupported aspect of these functions is that
they cannot be called with wreal arguments, digital real vectors, or analog arguments of any

kind.

Unsupported Elements for Behavioral Digital Contexts When wreal Arguments Are

Used

Feature Comment

@timer

Scompare
Sstrobe_compare
Scountdrivers
Sdeposit
Sincpattern_read
SasyncSandS$Sarray
SasyncSnandSarray
SasyncSorSarray
SasyncSnorsSarray
SsyncSandSarray
SsyncsSnand$Sarray
SsyncSorSarray
Ssync$norsarray
SasyncSands$plane
SasyncSnandSplane
$async$ors$plane
SasyncSnors$plane
$sync$ands$plane
Ssync$nand$plane
$sync$or$Splane
$sync$nors$plane

Sg_initialize

June 2013 447
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Unsupported Elements of Verilog-AMS

Unsupported Elements for Behavioral Digital Contexts When wreal Arguments Are

Used, continued

Feature Comment

$q_full

Sg_remove

Sg_add

Sg_exam

Sscope

Sdumpports
Sdumpports_close
S1lsi_dumpports
Slsi close
Swritememb
Swritememh
Srecordvars
Srecordfile
Srecordon
Srecordoff
Ssignalscan
Ssignalscankill
Ssignalscanabort
Srecordabort
Srecordclose
Srecordfilecopy
Srecordfilechange
Ssignalscanconnect
Ssignalscancommand

Srecordsetup

June 2013 448
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Unsupported Elements of Verilog-AMS

The Cadence™ Verilog®-AMS language is specified in Annex C of the Verilog-AMS
Language Reference Manual: Analog & Mixed-Signal Extensions to Verilog HDL,
produced by Open Verilog International. The Cadence implementation of Verilog-AMS does
not support all of the specified elements of the Verilog-AMS language in all the contexts in
which the language specification says they are to be supported.

The tables in this section list the unsupported elements according to the following
classifications:

Unsupported elements that should be supported in behavioral contexts, such as
expressions; initial, always, and analog blocks; user-defined tasks and functions.

B Unsupported elements that should be supported in analog contexts, such as analog
blocks and analog functions.

B Unsupported elements that should be supported in structural contexts such as those
outside behavioral contexts, and having to do with hierarchy, natures, and disciplines.

B Unsupported elements that should be supported in digital contexts, such as initial and
always blocks, and user-defined digital tasks and digital functions.

June 2013 449 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Unsupported Elements of Verilog-AMS

Unsupported Elements for Behavioral Contexts

Feature

Comment

Hierarchical names, except for
node.potential.abstol and
node. flow.abstol, which are supported

Using 1" b1 constant specification

String variables

Using probes containing vector net elements
in a digital block.

String variables

The b and %B format characters

The \ddd octal specification of a character
The concatenation operator

Enforcement of input, output, and inout

Out-of-module references

Case equality (=== and ! ==) operators
casex and casez statements

Standard math and transcendental functions

Srdist functions

Global events

@timer
Driver access functions

Srealtime

June 2013
© 2000-2013

450

Cannot be assigned in analog block. Cannot
be used in $Sstrobe in the analog block.

Not supported to analog nets, branches, or
nature attributes.

Outside the analog block, arguments to
functions must be constant expressions.
Inside the analog block, expressions that
contain hierarchical references are not
supported. Domain ranges are checked only
for exp, sqgrt, pow, and atan2.

The @analog identifier formis not
supported.

Not supported in the digital context.
Driver_update is not supported.

Not supported in the analog context. In that
context, use Sabstime instead.

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Unsupported Elements of Verilog-AMS

Unsupported Elements for Behavioral Contexts

Feature

Comment

Sstime
Stime
Smonitor and Sfmonitor

The %b, %0, and $h specifications for
Sdisplay, sfdisplay, Swrite, $fwrite,
Smonitor, Sfmonitor, $Sstrobe, and
Sfstrobe

$Smonitor off/on
Sprinttimescale
Stimeformat
Sbitstoreal
Sitor
Srealtobits
Srtoil

Sreadmen used with the $b, $h, and %r
specifications.

$random The seed must be an integer constant
expression, not an unsigned integer.
June 2013 451 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Unsupported Elements of Verilog-AMS

Unsupported Elements for Behavioral Analog Contexts

Feature Comment

Parameters used to specify ranges for the
generate statement

Parameter declarations Not supported in analog user-defined
functions.

The genvar statement
Arrays passed to functions

Accessing X and z bits of a discrete net from
a continuous context.

ddt (time derivative) operator Nesting is not allowed. For example,
ddt (ddt ()) is prohibited. The abstol
argument has no effect. A nature cannot be
used as an argument.

idt (time integral) operator The abstol argument has no effect. A
nature cannot be used as an argument.

idtmod (circular integrator) operator The abstol argument has no effect. A
nature cannot be used as an argument.

Transition filter The time_tol argument is not supported.

Laplace transform filters Parameter-sized array arguments are not
supported.

Analog functions Parameters are not allowed as arguments.

‘default_ transition directive

analog vector nets Not supported for the Tcl value command.

Unsupported Elements for Structural Contexts

Feature Comment

Ordered parameter lists in hierarchical Not supported for analog primitives.
instantiation

Named nodes in hierarchical instantiation

June 2013 452 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Unsupported Elements of Verilog-AMS

Unsupported Elements for Structural Contexts

Feature

Comment

Connecting the ports of instantiated analog

primitives to digital wires

Derived natures

Overriding nature attributes from disciplines

Array ranges for nets
Array ranges for ground nodes

Parameter arrays

Parameter-sized vector nets
The defparam statement
The ground declaration

User-defined attributes

Vector branches

Vector arguments for simulator functions
Vector ground nodes

Parameter-sized ports

Out-of-module references

Discipline resolution

net_resolution

Parameter array declarations are not
supported. Parameter array assignments are
supported only in analog primitives.

Only the Cadence huge, blowup, and
maxdel ta attributes are supported.

Not supported to analog nets, branches, or
nature attributes.

If out-of-module references are used in port
connections, the port discipline is not used to
determine the discipline of the out-of-module
reference.

June 2013
© 2000-2013

453 Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Unsupported Elements of Verilog-AMS

Many of the items in the next list are VPI functions. The unsupported aspect of these functions
is that they cannot be called with wreal arguments, digital real vectors, or analog arguments

of any kind.

Unsupported Elements for Behavioral Digital Contexts

Feature Comment
Analog transition sensitivity Not supported in digital contexts.
Scompare

Sstrobe_compare
Scountdrivers
Sdeposit
Sincpattern_read
SasyncSand$Sarray
SasyncSnandSarray
SasyncSorsarray
SasyncsSnors$Sarray
Ssync$andsarray
SsyncSnand$Sarray
SsyncSorSarray
Ssync$norSarray
SasyncSands$plane
SasyncSnandSplane
SasyncSorSplane
Sasyncs$nors$plane
$syncSands$plane
SsyncS$nand$Splane
SsyncSorS$Splane
SsyncsSnorSplane
Sg_initialize

$q full

June 2013 454
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

Unsupported Elements of Verilog-AMS

Unsupported Elements for Behavioral Digital Contexts

Feature

Comment

Sg_remove

Sg_add

Sg_exam

Sscope

Sdumpports
Sdumpports_close
S1lsi_dumpports
Slsi close
Swritememb
Swritememh
Srecordvars
Srecordfile
Srecordon
Srecordoff
Ssignalscan
Ssignalscankill
Ssignalscanabort
Srecordabort
Srecordclose
Srecordfilecopy
Srecordfilechange
Ssignalscanconnect
Ssignalscancommand

Srecordsetup

June 2013 455
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Unsupported Elements of Verilog-AMS

The items in the next list are deprecated features. The Cadence implementation of
Verilog-AMS supports these features, but might not in the future. These features are no
longer supported in the standard specification of the language.

Deprecated features

Deprecated feature To comply with the current standard,...
$dist_ functions in the analog block Consider using the $rdist functions.
generate statement in the analog block Use the genvar statement.

The second argument of the cross operator Change the second operator to an integer
being a non-integer type type.

Using for, while and repeat loop statements Use a genvar loop for the timer function.
for the timer function

Unassigned variables Assign each variable. Unassigned variables
are considered digital variables.

generate Use a genvar loop instead.

The second argument of the Change the second operator to an integer

last_crossing operator being a non- type.

integer type

The items in the next list are Cadence extensions. These features are not part of the standard
specification of the language.

Cadence extensions

Feature

Cadence syntax for attributes
mfactor attribute
dynamicparams
Scds_iprobe

Inherited parameters

June 2013 456 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Updating Verilog-A Modules

The Verilog®-A language is a subset of Verilog-AMS, but some of the language elements in
that subset have changed since Verilog-A was released by itself. As a consequence, you

might need to revise your Verilog-A modules before using them as Verilog-AMS modules. The
following table highlights the differences.

Feature Indt.apendent Verilog-AMS Change
Verilog-A type
Analog time Srealtime Sabstime new
Empty discipline Predefined as type wire Type not defined default
definition
Implicit nodes 'default_nodetype default type: empty default

initial_step

final_step

Srealtime

Discontinuity
function
Limiting
exponential
function

June 2013
© 2000-2013

discipline_identifier
default: wire
Default = TRAN

Default = TRAN

Srealtime:
timescale =1 sec

discontinuity (x)

Slimexp (expression)

457

discipline, no domain type definition

Default = ALL default
definition
Default = ALL default
definition
Srealtime: definition
timescale= ' timescale
def=1n. See $abstime
sdiscontinuity (x) syntax
limexp (expression) Ssyntax

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference
Updating Verilog-A Modules

Feature Indgpendent Verilog-AMS Change
Verilog-A type
Port branch access I (a,a) I(<a>) syntax
Note: Cadence® Verilog-A Note: This form is not
supports only this form. supported in Cadence
Verilog-A.
Timestep control bound_step (const_ $bound_step (expr) syntax
(maximum expression)
stepsize)
Continuous delay () absdelay () syntax
waveform delay
User-defined Function Analog function syntax
analog functions
Discipline domain N/A, assumed continuous Now continuous (default) Extension
and discrete
Time tolerance on N/A Supports additional time Extension
timer functions tolerance argument for
timer ()
Time tolerance on N/A Supports additional time Extension
transition filter tolerance argument for
transition|()
'default_nodetype 'default_nodetype "default_discipline Obsolete
Generate generate N/A Obsolete
statement
Null statement ; Limited to case, Obsolete

conditional, and
event statements

Suggestions for Updating Models

The remainder of this appendix describes some of these changes in greater detail and
suggests ways of modifying your existing Verilog-A models so that they work in version 4.4.6
of Verilog-A and in version 1.0 of Verilog-AMS. The changes recommended here might not
work with 4.4.5 or earlier versions of Verilog-A.

June 2013 458 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Updating Verilog-A Modules

Current Probes

OVI Verilog-A 1.0 syntax for a current probe is I (a, a) . OVI Verilog-AMS 2.0 changes this to
I(<a>).

Suggested change: Put I (<a>) insidean *ifdef _ VAMS_ENABLE__, which makes the
syntax effective only for Verilog-AMS. For example, change

iin val = I(vin,vin);
to
‘ifdef VAMS ENABLE
iin val = I(<vin>);
‘else
iin val = I(vin,vin);
‘endif

Verilog-A warning: None

Analog Functions

OVI Verilog-A 1.0 declaration of an analog function is

function name;

OV Verilog-AMS 2.0 uses the syntax

analog function name;

Suggested change: Prefix all function declarations by the word analog. For example,
change

function real foo;

to

analog function real foo;

Verilog-A warning: None

NULL Statements

QVI Verilog-A 1.0 allows NULL statements to be used anywhere in an analog block. OVI
Verilog-AMS 2.0 allows NULL statements to be used only after case statements or event
control statements.

Suggested change:

Remove illegal NULL statements. For example, change

June 2013 459 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Updating Verilog-A Modules

begin
end;

to

begin
end

Verilog-A warning: None

inf Used as a Number

Spectre Verilog-A allows ' inf to be used as a number. OVI Verilog-AMS 2.0 allows 'inf to
be used only on ranges.

Suggested change:

Change all illegal references to ' inf to a large number such as 1M. For example, change;

parameter real points per cycle = inf from [6:inf];
to
parameter real points per cycle = 1M from [6:inf];

Verilog-A warning: None

Changing Delay to Absdelay

QOVI Verilog-A 1.0 uses delay as the analog delay operator but OVI Verilog-AMS 2.0 uses
absdelay.

Suggested change: Change delay to absdelay. This change usually leads to faster,
better results.

Verilog-A warning: None

Changing $realtime to $abstime

OVI Verilog-A 1.0 uses $realtime as absolute time but OVI Verilog-AMS 2.0 uses
Sabstime.

Suggested change: Change $realtime to $abstime.

Verilog-A warning: Yes

June 2013 460 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Updating Verilog-A Modules

Changing bound_step to $bound_step

QVI Verilog-A 1.0 uses bound_step for step bounding but OVI Verilog-AMS 2.0 uses
Sbound_step.

Suggested change: Change bound_step to $bound_step.

Verilog-A warning: None

Changing Array Specifications
OVI Verilog-A 1.0 uses [] to specify arrays but OVI Verilog-AMS 2.0 uses { }.

Suggested change: Change [] to {}. For example, change

svcevs #(.poles([-2* PI*bw,0])) output filter
to
svcevs #(.poles({-2* "PI*bw,0})) output filter

Verilog-A warning: None

Chained Assignments Made lllegal

Spectre-Verilog-A allows chained assignments, such as x=y=z, but OVI Verilog-AMS 2.0
makes this illegal.

Suggested change: Break chain assignments into single assignments. For example,
change

X=Y=Z;
to
Y = zZi X = Y;

Verilog-A warning: None

Real Argument Not Supported as Direction Argument

Spectre-Verilog-A allows real numbers to be used for the arguments of @cross and
last_crossing but OVI Verilog-AMS 2.0 makes this illegal.

Suggested change: Change the real numbers to integers. For example, change

@(cross(V(in),1.0) begin

June 2013 461 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Updating Verilog-A Modules

to

@(cross(V(in),1l) begin

Verilog-A warning: None

$limexp Changed to limexp
OVI Verilog-A 1.0 uses $1imexp, but OVI Verilog-AMS 2.0 uses 1imexp.

Suggested change: Change $1imexp to 1imexp. For example, change

I(vp,vn) <+ is * ($limexp (vacross/Svt) - 1);
to
I(vp,vn) <+ is * (limexp (vacross/$vt) - 1);

Verilog-A warning: None

'if ' MACRO is Not Allowed

Spectre-Verilog-A allows userstotype 'if 'MACRO, but OVI Verilog-AMS 2.0, 1.0 and 1364
say this is illegal.

Suggested change: Change 'if 'MACROto 'if MACRO (Do not use the tick mark for
the macro). For example, change

‘ifdef ‘CHECK BACK SURFACE

to
‘ifdef CHECK_BACK_S URFACE

Verilog-A warning: None

$warning is Not Allowed

Spectre-Verilog-A supports Swarning, but OVI Verilog-AMS 2.0, 1.0 and 1364 do not
support this as a standard built-in function.

Suggested change: Change Swarning to $strobe.

Verilog-A warning: None

June 2013 462 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Updating Verilog-A Modules

discontinuity Changed to $discontinuity
QVI Verilog-A 1.0 uses discontinuity, but OVI Verilog-AMS 2.0 uses $discontinuity.
Suggested change: Change discontinuity to $discontinuity.

Verilog-A warning: None

June 2013 463 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Updating Verilog-A Modules

June 2013 464 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Glossary

A

ADC
Abbreviation for Analog-to-Digital Converter.

A circuit that converts analog signals to discrete states or levels. The output numbers are
usually power of two sent to a digital bus.

AF
A wave that can be heard by humans; frequency is in the range of 20-20,000 hertz.

analog context

The context of statements that appear in the body of an analog block in a mixed-signal
(analog-digital) model such as Verilog-AMS. Anything evaluated by the analog simulator,
such as an analog simultaneous statement, in the VHDL-AMS model.

analog HDL
An analog hardware description language for describing analog circuits and functions.

analog port
A port whose connections are both analog.

analog signal

A hierarchical collection of interconnected nets, where all the nets are of a continuous
discipline.

behavioral description

The mathematical mapping of inputs to outputs for a module, including intermediate
variables and control flow.

behavioral model

A version of a module with a unique set of parameters designed to model a specific
component.

June 2013 465 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Glossary

block
A level within the behavioral description of a module, delimited by begin and end.

branch

A path between two nodes. Each branch has two associated quantities, a potential and
a flow, with a reference direction for each.

Cc

CDF
Abbreviation for Component Description Formats.

Properties attached to a library element or cell view. Cadence® Virtuoso® Analog
Design Environment netlister uses CDF properties to dump the element instantiation in
the simulation netlist.

component

The fundamental unit within a system. A component encapsulates behavior and
structure. Modules and models can represent a single component, or a component with
many subcomponents.

connect module

A module automatically or manually inserted by using the connect statement, which
contains the code required to translate and propagate signals between the analog and
digital nets comprising a signal.

constitutive relationships

The expressions and statements that relate the outputs, inputs, and parameters of a
module. These relationships constitute a behavioral description.

continuous context

Same as analog context—the context of statements that appear in the body of an
analog block in a mixed-signal (analog-digital) model such as Verilog-AMS. Anything
evaluated by the analog simulator, such as an analog simultaneous statement, in the
VHDL-AMS model.

continuous net
A net of a continuous discipline.

continuous variable
A variable whose value is calculated in the continuous domain.

June 2013 466 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Glossary

control flow

The conditional and iterative statements that control the behavior of a module. These
statements evaluate variables (counters, flags, and tokens) to control the operation of
different sections of a behavioral description.

child module
A module instantiated inside the behavioral description of another, “parent” module.

D
DAC
Abbreviation for digital-to-analog converter.
A device that accepts a digital input and produces an analog output. For example, an 8-
bit DAC would convert an input of 8 binary signals into a single analog (real) value.
DFII
The former Cadence Design Framework Il, which has now become Virtuoso Design
Environment in IC 6.1.
DNL
Abbreviation for Differential Nonlinearity.
Classical static measurement for the ADC circuit that shows the difference between the
ideal and measured ADC step width in least significant bit (LSB) units. The ADC DNL
goal is to stay within + 0.5 LSB.
declaration

A definition of the properties of a variable, node, port, parameter, or net.

digital context
The context of statements that appear in a location other than an analog block.

digital island

The set of drivers and receivers interconnected by a digital net or a contiguous collection
of digital nets.

digital port
A port whose connections are both digital.

digital signal
A hierarchical collection of interconnected nets where all the nets are of a discrete
discipline.

June 2013 467 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Glossary

discipline
A user-defined binding of potential and flow natures and other attributes to a net.

Disciplines are used to declare analog nets and can also be used as part of the
declaration of digital nets.

discipline resolution

The process of assigning a domain and discipline to nets whose domain and discipline
are otherwise unknown (or whose discipline is wire.)

discrete context

The context of statements that appear in a location other than an analog block, for
example initial and always blocks, in mixed-signal (analog-digital) models such as
Verilog-AMS. Anything evaluated by the digital simulator such as process blocks and
signal assignment statements, in the VHDL-AMS model.

discrete net
A net of a discrete discipline.

discrete variable
A variable whose value is calculated in the discrete domain.

driver-receiver segregation

The conceptual severing of the connections between drivers and receivers that occurs in
mixed nets. When driver-receiver segregation occurs, digital signals propagate only
through connect modules inserted between the drivers and receivers.

dynamic expression

An expression whose value is derived from the evaluation of a derivative (the dadt
function). Dynamic expressions define time-dependent module behavior. Some
functions cannot operate on dynamic expressions.

E

element
The fundamental unit within a system, which encapsulates behavior and structure (also
known as a component).

June 2013 468 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Glossary

F

flow
One of the two fundamental quantities used to simulate the behavior of a system. In
electrical systems, flow is current.

G

global declarations
Declarations of variables and parameters at the beginning of a behavioral description.

ground
The reference node, which has a potential of zero.

instance

A named occurrence of a component created from a module definition. One module
definition can occur in multiple instances.

instantiation

The process of creating an instance from a module definition or simulator primitive, and
defining the connectivity and parameters of that instance. (Placing an instance in a circuit
or system.)

H

hierarchical system
A system in which the components are also systems.

K

Kirchhoff’s Laws

Physical laws that define the interconnection relationships of nodes, branches,
potentials, and flows. Kirchhoff’s Laws specify a conservation of flow in and out of a node
and a conservation of potential around a loop of branches.

L

LPF
Abbreviation for low-pass filter.

June 2013 469 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Glossary

An electronic filter that passes low-frequency signals but attenuates (reduces the
amplitude of) signals with frequencies higher than the cutoff frequency.

level

One block within a behavioral description, delimited by a pair of matching keywords such
as begin-end, discipline-enddiscipline.

leaf component
A component that has no subcomponents.

M

mixed port
A port with one analog connection and one digital connection.

mixed signal

A hierarchical collection of interconnected nets that includes nets associated with both
continuous and discrete disciplines.

module
A definition of the interfaces and behavior of a component.

N

nature
A named collection of attributes consisting of units, tolerances, and access function
names.

NR method
Newton-Raphson method. A generalized method for solving systems of nonlinear
algebraic equations by breaking them into a series of many small linear operations
ideally suited for computer processing.

net
An expression, which can include registers and variables, and nets of both continuous
and discrete disciplines.

node
A connection point of two or more branches in a graph. In an electrical system, and
equipotential surface can be modeled as a node.

June 2013 470 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Glossary

nondynamic expression
An expression whose derivative with respect to time is zero for every point in time.

P

PLL
Abbreviation for phase locked loop.
A control system that generates a signal that is related to the phase of an input signal.

parameter

A variable used to characterize the behavior of an instance of a module. Parameters are
defined in the first section of a module, the module interface declarations, and can be
specified each time a module is instantiated.

parameter declaration
The statement in a module definition that defines the instance parameters of the module.

port

The physical connection of an expression in an instantiating (parent) module with an
expression in an instantiated (child) module. A port of an instantiated module has two
nets, the upper connection, which is a net in the instantiating module, and the lower
connection, which is a net in the instantiated module.

potential

One of the two fundamental quantities used to simulate the behavior of a system. In
electrical systems, potential is voltage.

primitive
A basic component that is defined entirely in terms of behavior, without reference to any
other primitives.

probe

A branch introduced into a circuit (or system) that does not alter the circuit’s behavior, but
lets the simulator read the potential or flow at that point.

R
RF

Abbreviation for radio frequency.

This is a specific range of an oscillating signal, usually in the 3 KHz-300 GHz range.
June 2013 471 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Glossary

rms
Abbreviation for root-mean-squared.
A way to measure the average power.

reference direction

A convention for determining whether the flow through a branch, the potential across a
branch, or the flow in or out of a terminal, is positive or negative.

reference node

The global node (which has a potential of zero) against which the potentials of all single
nodes are measured. In an electrical system, the reference node is ground.

run-time binding (of sources)

The conditional introduction and removal of potential and flow sources during a
simulation. A potential source can replace a flow source and vice versa.

S

scope
The current nesting level of a block.

seed
A number used to initialize a random number generator, or a string used to initialize a list
of automatically generated names, such as for a list of pins.

signal

1. A hierarchical collection of nets that, because of port connections, are contiguous.
2. A single valued function of time, such as voltage or current in a transient simulation.

structural definitions

Instantiating modules inside other modules through the use of module definitions and
declarations to create a hierarchical structure in the module’s behavioral description.

source

A branch introduced between two nodes to contribute to the potential and flow of those
nodes.

system

A collection of interconnected components that produces a response when acted upon
by a stimulus.

June 2013 472 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Glossary

'}

VCO
Abbreviation for Voltage Controlled Oscillator.
An oscillator whose frequency can be controlled by a voltage input.

Verilog®-A
A language for the behavioral description of continuous-time systems that uses a syntax
similar to digital Verilog.

Verilog-AMS

A mixed-signal language for the behavioral description of continuous-time and discrete-
time systems that uses a syntax similar to digital Verilog.

June 2013 473 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference
Glossary

June 2013 474 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

Index

Symbols

" (accent grave) 233
“default_nodetype compiler directive
“define compiler directive
syntax 234
tested by “ifdef compiler directive 2
“ifdef compiler directive 236
“include compiler directive 237
‘resetall compiler directive 242
“timescale compiler directive 238, 242
‘undef compiler directive 235
A (bitwise binary exclusive OR) 100
A~ (bitwise binary exclusive NOR) 100
_ (underscore), in identifiers 51
I (logical negation) 97
I= (not equal to) 100
- (binary minus) 99
- (unary minus) 97
? and : (conditional operator) 103
" (double quote character), displaying
((left parenthesis) 61
(* attributes
cds_inherited_parameter
desc 56, 57,59, 74
groundSensitivity 37
inh_conn_def_value 41
inh_conn_prop_name 41
library_binding 128
passed_mfactor 202
supplySensitivity 37
(tab character), displaying
) (right parenthesis) 61
[(left bracket), using to include end point in
range 61
] (right bracket), using to include end point in
range 61
@ (at-sign) operator
* (multiply) 99
/ (divide) 99
/* (slash, asterisk), as comment marker
// (double slash), as comment marker
/f 469
\ (backslash)
continuing macro text with 234
displaying 175

N
~
o

(ep}

17

59

17

110

50
50

June 2013
© 2000-2013

in escaped names 51

& (bitwise binary and) 100

&& (logical and) 100

% (modulo) 99

% (percent character), displaying
+ (binary plus) 99

+ (unary plus) 97

< (less than) 99

<+ (branch contribution operator)
<< (shift bits left) 101
<= (less than or equal)
== (logical equals) 99
> (greater than) 99
>= (greater than or equal) 99

>> (shift bits right) 101

| (bitwise binary or) 100

Il (logical or) 100

~ (bitwise unary negation) 97

~N (bitwise binary exclusive nor) 100
$ (dollar sign), in identifiers 51

99

$abstime function 125
$display 177
$display task 177, 178

143

$dist_chi_square function
$dist_erlang function 144
$dist_exponential function 141
$dist_normal function 140
$dist_poisson function 142
$dist_t function 143
$dist_uniform function 140
$fclose task 185
$fdisplay 184
$fdisplay task 184
$fopen task 180
special formatting commands for
$fstrobe 184
$fstrobe task
$fwrite 184
$limexp
analog operator 153
$limit function

183,184

123
$random simulator function 138

$realtime function 125
$strobe 174
description 174, 179

example of use 176

Product Version 13.1
All Rights Reserved.

—i
o1

181

Cadence Verilog-AMS Language Reference

Swrite 17

(oo}

A

A 465
above event 114
abs function 106
absdelta function 116
absolute function 106
absolute tolerances
used to evaluate convergence
absolute value 344
absolute value model
abstol attribute
in convergence 250
description 66
requirements for 67
ac_stim simulator function 136
accent grave ('), compiler directive
designation 233
access attribute
description 67
requirements for 67
access functions
name taken from discipline 128
syntax 127
using in branch contribution
statement 85
using to obtain values 128
using to set values 128
acos function 107
acosh function 107
ADC
8-bit differential nonlinearity
measurement 361
8-bit integral nonlinearity
measurement 362
definition 361
ADC model
8-bit 388
8-bit (ideal) 389
8-bit differential nonlinearity
measurement 361
8-bit integral nonlinearity
measurement 362
adder 345
adder model 345
four numbers 346
full 309
half 308

250

344

June 2013
© 2000-2013

476

adder, 4 numbers 346
AM demodulator 408

AM demodulator model 408
AM modulator 409
AM modulator model 409

ammeter (current meter) 363

ammeter model 363

amplifier 317

amplifier model 317
current deadband 262

deadband differential 321
differential 322
limiting differential 329

logarithmic 330
operational 266
sample-and-hold (ideal) 394
variable gain differential 339
voltage deadband 276
voltage-controlled variable-gain 277
analog behavior, defining with control
flow 43
analog blocks
multiple blocks not allowed 42
placement 42
analog components 261

analog events 109 to 118
absdelta 116
cross 11

detecting 110
detecting multiple 110
final_step 112
initial_step 111
timer 117
analog multiplexer 261
analog multiplexer model 261
analog operators 152
$limexp 153
not allowed in for loop 90
listed 152
not allowed in repeat loop 89
restrictions on 152
using in looping constructs 91
not allowed in while loop 90
analog systems 25
analog-to-digital converter
example 92
model, 8-bit 388
model, 8-bit (ideal) 389
model, 8-bit differential nonlinearity
measurement 361
model, 8-bit integral nonlinearity

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

measurement 362
analyses

detecting first time step in

detecting last time step in
analysis function 135
analysis types 135
analysis-dependent functions
AND gate 294
AND gate model 294
arc-cosine function 107
arc-hyperbolic cosine function 107
arc-hyperbolic sine function 107
arc-hyperbolic tangent function 107
arc-sine function 107
arc-tangent function 107
arc-tangent of x/y function 107
arrays

arguments represented as 165

as parameter values 201

assignment operator for 84

of integers, declaring 56

of parameters 61

of reals, declaring 57

of wreals, declaring 78
asin function 107
asinh function 107
assignment operator, procedural
assignment statement 83
assignment statement, indirect branch 86
associated reference directions 26
association order, of operators 96
atan function 107
atan2 function 107
atanh function 107
attenuator model 410
attributes

abstol 66

access 67

blowup 67

ddt_nature 67

huge 67

idt_nature 67

requirements 67

units 67

user-defined 66

using to define base nature 66
audio source 411
audio source model

BN
e
N

BN
e
N

—i
N

107

84

411

June 2013
© 2000-2013

477

B

B 465
backward compatibility 441
base natures
declaring 66
description 66
basic components 278
behavioral characteristics, defining with
internal nodes 47
behavioral description, definition 465
behavioral model, definition 465
bidirectional ports 35
binary operators 99
binding, run-time, definition 472
bit error rate calculator model 412

bitwise operators 102
AND 102
exclusive NOR 102
exclusive OR 102
inclusive OR 102

unary negation 103
blanks, as white space
block comment 50
blocks

analog 42

definition 466
blowup attribute, description 67
bound_step simulator function 123
braces, meaning of in syntax 22
brackets ([]) 61
branch contribution statement

compared with procedural assignment

statement 85
cumulative effect of

evaluation of 85

incompatible with indirect branch

assignment 87

syntax 84
branch data type 80
branch terminals 80
branches

declaring 80

definition 466

flow, default value for

reference directions for

switch, creating 86

switch, defined 255

switch, equivalent circuit model for

values associated with 26

0

85

255
26

255

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

built-in primitives 248
buses 74

C

c or C format character 176
capacitor model 279

untrimmed 273
case construct 88
case statement 88
CDF, definition 260
cds_inherited_parameter attribute 59
channel_descriptor, returned by

$fopen 180

charge meter model
charge pump model
child modules

definition 467
chi-square distribution function 143
circuit fault model

open 265

short 268
circular integrator operator

example 157

using 155
clamp model

hard current 263

hard voltage 264

soft current 269

soft voltage 270
clocked JK flip-flop model 302
closing a file 185
code generator model

2-bit 414

4-bit 415
comments 50

in modules 50

in text macros 234
comparator 318

example 160

model 318
compatibility

of disciplines 71, 70
compensator model

lag 287

lead 288

lead-lag 289
compilation, conditional
compiler directives

“default_nodetype 24

374
413

N

236

June 2013
© 2000-2013

478

() 233
242

267

201

“define 234
‘include 237, 238, 242
242
‘timescale 238, 242
‘undef 235
list of 233
resetting to default values
definition 466
conditional compilation 236
conditional statement 88
connect modules
driver-receiver segregation 227
connecting instances
rules for 197
connecting the ports of module
conservative discipline 69
conservative systems 25
define 75
defined 25
constant expression 96
constant power sink model
integer 52
real 52
constitutive relationships -
definition 248, 466
constructs o
case 88
procedural control 83
contribution statements, format 42, 84
control flow
definition 467

“ifdef 236
‘resetall 242
238, 242
designated by accent grave ()
components
conditional operator 103
digital islands 230
example 196
instances 195
conservative disciplines used to
values associated with 26
constants
string, used as parameters
use in nodal analysis 24
looping 91
control components 286 -
describing behavior with 44

controlled integrator model 319
controlled sources 254
controller model
proportional 290
proportional derivative 291

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

proportional integral 292

proportional integral derivative 29

conventions, typographical 21
convergence 249
conversion specifications 175

converting real numbers to integers 57
core model, magnetic 340
cos function 107
cosh function 107
cosine function 107
cross event 113
cross function
syntax 113
cube model 347
cubic root model
current
access function 129
accessing branch current 129
accessing the current of an out-of-

348

module port 131
flow into module through a port 129
current analysis type, determining 135
current clamp model
hard 263
soft 269
current deadband amplifier model 262
current meter model 363
current source model
current-controlled 284
voltage-controlled 283
current-controlled current source 255, 284
current-controlled current source
model 284
current-controlled voltage source 254, 282
current-controlled voltage source
model 282
D
d or D format character 176
DAC model
8-bit 391
8-bit (ideal) 392
8-bit differential nonlinearity
measurement 364
8-bit integral nonlinearity
measurement 365
DAC, definition 364
damper model 382
data types
June 2013
©2000-2013

branch 80
discipline 68
integer number
nature 65
parameter
real number
DC analysis
value returned by idt during
DC motor model 314
ddt operator (time derivative)
ddt_nature attribute
description 67
requirements for 68
deadband amplifier model
current 262
voltage 276
deadband differential amplifier model
deadband model 320
decider model 416
decimal logarithm function
decimator model 390
declarations
definition 467
global, definition 469
.def filename extension 259
default values, required for parameters 59
“default_nodetype compiler directive 240
“define compiler directive
syntax 234
defparam statement
overriding parameter values with
precedence of 200
delay operator 158
delaying continuously valued
waveform 158
delta probe model 366
demodulator model
8-bit PCM 424
AM 408
FM 419
PM 428
QAM 16-ary
QPSK 433
derivative controller model
proportional 291
proportional integral
derivative, time 153
derived nature 66
desc attribute 56, 57, 59, 74
describing a system 24
description attribute

56

58
56

154

45, 153

321

106

199

430

293

479 Product Version 13.1

All Rights Reserved.

Cadence Verilog-AMS Language Reference

forintegers 56 $dist_erlang function 144
for net disciplines 74 $dist_exponential function 141
for parameter declarations 58 $dist_normal function 140
forreals 57 $dist_poisson function 142
differential amplifier (opamp) 322 $dist_t function 143
differential amplifier model 322 $dist_uniform function 140
deadband 321 distributions
limiting 329 chi-square 143
variable gain 339 Erlang 144
differential signal driver 323 exponential 141
differential signal driver model 323 gaussian 141
differentiator model 324 normal 140
digital islands 230 Poisson 142
digital phase locked loop model 417 Student's T 143
digital to analog converter example 163 uniform 140
digital voltage controlled oscillator divider model 349
model 418 DNL, definition 361
digital-to-analog converter model dollar signs, in identifiers 51
8-bit 391 domain
8-bit (ideal) 392 of hyperbolic functions 107
8-bit differential nonlinearity of mathematical functions 106
measurement 364 of trigonometric functions 107
8-bit integral nonlinearity driver model
measurement 365 differential signal 323
diode model 400 driver_count function 133
Schottky 407 driver_state function 133
direction of ports, declaring 34 driver_strength function 133
directions, reference 472 driver-receiver segregation 227
directives. See compiler directives definition 468
disciplines 68 drivers
compatibility of 71 to 73 definition 132
conservative 69 number of, determining 133
declaring 68 numbering system for 132
definition 468 strength contribution of,
empty 69, 70 determining 133
empty, declaring terminals with 75 value contribution of, determining 133
scope of 69 D-type flip-flop model 301
signal-flow 69 dynamic expression, definition 468
discontinuities dynamic parameters
announcing 121 declaring 62
in switch branches 256
discontinuity function
not required for switch branches 256 E
syntax 121
discrete-time finite difference E 468
approximation 249 e or E format character 176
$display task 177, 178 8-bit parallel register model 312
displaying 8-bit serial register model 313
information 174 electromagnetic components 314
results 174 electromagnetic relay 315
$dist_chi_square function 143 electromagnetic relay model 315
June 2013 480 Product Version 13.1

© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

element, definition 468
else statement, matching with if
statement 88
empty disciplines
compatibility of 71
definition 69
example 70
predefined (wire) 70
endmodule keyword 29, 30
entering interactive Tcl mode 186
enumerated values, as parameter
values 201
environment functions
Erlang distribution 144
Erlang distribution function 144
error calculation block 286
error calculation block model
escaped names 51
defined 51
using keywords as
event OR operator 1
events
detecting analog 110
detecting and using 109
events, analog 109to 118
examples
$strobe formatting 176
analog-to-digital converter 92
ideal relay 256
ideal sampled data integrator 173
inductor 45
RLC circuit 47
sources and probes 257
voltage deadband amplifier 44
exclude keyword 61
exiting to the operating system 185
4

125

286

439

1

exp function 106
exponential distribution function 141
exponential function 106
exponential function model 350
exponential function, limited 153
expressions

constant 96

definition 96

dynamic, definition 468
short circuiting of 104
F
F 467
June 2013
©2000-2013

481

f or F format character 176
fault model
open circuit 265
short circuit 268
$fclose task 185
$fdisplay task 184
files
closing 185
including at compilation time
opening 180

writing to 183
files, working with 180
filters

slew 163

transition 159
final_step event 112
find event probe 367
find event probe model
find slope 369
find slope model 369
finite-difference approximation
flicker_noise function 137
flicker_noise simulator function 137
flip-flop model

clocked JK 302

D-type 301

JK-type 304

RS-type 306

toggle-type 307

trigger-type 307
flow

default value for

definition 469

in a conservative system 26

probes, definition 252

sources, definition 253

sources, equivalent circuit model

for 254
sources, switching to potential
sources 255

237

367

249

255

flow law. See Kirchhoff's Laws, Flow Law

flow-to-value converter model 325
FM demodulator 419

FM demodulator model 419

FM modulator model 420

$fopen task 180

for loop statement 90

for statement 90

formatting output 175
four-number adder model 346

four-number subtractor model 360

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

frequency meter model 370

frequency-phase detector model 421

$fstrobe task 183, 184

full adder model 309

full subtractor model 311

full wave rectifier model, two phase 397

functional blocks 317

functions
access 127
defining 187
environment 12
mathematical 1
user-defined 1

G

G 469

g or G format character 176
gain block 192

gap model, magnetic 341

o1

o

5

(0]
~

gaussian distribution 141
gearbox model 381
generate statement 91
generating random numbers 138
generating random numbers in specified
distributions 139
genvars 64
global declarations, definition 469
ground nodes
as assumed branch terminal 80
potential of 26
groundSensitivity and supplySensitivity
attributes 37
grouping parameter overrides 199

H

H 469
h or H format character 176
half adder model 308
half subtractor model 310
half wave rectifier model, two phase 398
hard current clamp model 263
hard voltage clamp model 264
hierarchical name, displaying 175
hierarchy level

parameter override precedence

and 200

higher order systems 48

June 2013
© 2000-2013

huge attribute, description 67
hyperbolic cosine function 107
hyperbolic functions 106
hyperbolic sine function 107
hyperbolic tangent function 107
hypot function 107
hypotenuse function 107

hysteresis model, rectangular 326

IC analysis, value returned by idt
during 154

ideal relay example 256
ideal sampled data integrator example 173
identifiers 50
idt operator

example 46

using in feedback configuration 155
idt_nature attribute

description 67

requirements for 68
idtmod operator

example 157

using 155
“ifdef compiler directive 236

ignored code, restrictions on 236
impedance meter model 380
implicit branches 81
implicit models 258
“include compiler directive 237
indirect branch assignment statement 86
inductor model 280
module describing 45
untrimmed 274
-inf (negative infinity) 61
infinity, indicating in a range 61
inh_conn_def_value attribute 41
inh_conn_prop_name attribute 41
inherited connections
definition 41
supply sensitivity attributes, with 41
inherited_mfactor attribute 202
initial_step event 111
syntax 111
instances
connecting with ports 195, 196
creating 192
creating and naming 192
definition 469

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

197

overriding parameter values in
instantiating
analog primitives 199
analog primitives that use array valued
parameters 201
modules that use unsupported parameter
types 201
instantiation
definition 469
of non-Verilog-A modules 201
statement. See module instantiation
statement example
syntax 192
integer
attributes for
constants 52
data type 56
declaring 56
numbers 52, 55
range allowed in Verilog-A 56
integral controller model, proportional
integral derivative controller model,
proportional 293
integral, time 154
integration and differentiation with analog
signal, using 45
integrator 327
integrator model 327
controlled 319
saturating 334
switched capacitor 396
interconnection relationships

56

292

248

interface declarations, example 33
internal nodes
for higher order derivatives 45
in higher order systems 48
use 47
internal nodes in behavioral definitions,
using 47
internal nodes in higher order system,
using 48
internal nodes in modules, using 47
interpolating with table models 145

J

JK-type flip-flop model 304

June 2013
© 2000-2013

483

K
keywords, list of 439
Kirchhoff's Laws 248

definition 469

Flow Law 25, 248, 249, 250
illustrated 248
use in nodal analysis 249
Potential Law 25, 248

L

L 469

lag compensator model 287

Laplace transforms
numerator-denominator form
numerator-pole form 167
s-domain filters 164

167

zero-denominator form 166
zero-pole form 165
laplace_nd Laplace transform 167
laplace_np Laplace transform 167
laplace_zd Laplace transform 166
laplace_zp Laplace transform 165

last_crossing simulator function
improving accuracy of 124
setting direction for 113,
syntax 124
laws, Kirchhoff’'s. See Kirchhoff’'s Laws
lead compensator model 288
lead-lag compensator model 289
left justifying output 175
level shifter model 305, 328
level, definition 470
library_binding attribute 128
$limexp analog operator 153
limited exponential function 153
limiting differential amplifier model
linear conductor model 257
linear resistor model 258
In function 106
local parameters
declaring 64
log function 106
logarithm function
decimal 106
natural 106
logarithmic amplifier model
logic components 294

~

29

330

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

logic table 304, 306, 307
LPF, definition 417

M

M 470

m factor (multiplicity factor)
example of using 202
using 202

macros. See text macros

magnetic components 340

magnetic core 340

magnetic core model 340
magnetic gap 341
magnetic gap model 341

magnetic winding 342
magnetic winding model 342
mapping instance ports to module
ports 194

mapping ports with ordered lists
mass model 383
math domain errors, controlling 107
mathematical components 344
mathematical functions 106
maximum (max) function 106
measure components 361
measurement model

offset 371

slew rate 371, 376
mechanical damper 382

194

mechanical damper model 382
mechanical mass 383
mechanical mass model 383
mechanical restrainer 384
mechanical restrainer model 384
mechanical spring 386
mechanical spring model 386
mechanical systems 381
minimum (min) function 106

mixed conservative and signal-flow
systems 26

mixed-signal components 388
mixer 422
mixer model
models

library of samples 259
modulator model

8-bit PCM 425

AM 409

FM 420

421, 422

June 2013
© 2000-2013

484

PM 42

QPSK 434

quadrature amplitude 16-ary 432

module instantiation statement

overrides by, subordinate to
defparam 200

module keyword 29
modules

MQOS thin-film transistor
MQOS thin-film transistor model
MOS transistor (level 1)

analog behavior of
defining 42
behavioral description 42
capacitor example 45
child, definition 467
declaring 30
definition 30, 470
format 29
hierarchy of 191
instantiating in other modules 192
instantiation statement, example 193,
196
interface declarations 33
interface, declaring 33
internal nodes in 47
name 33
using nodes in 75
non-Verilog-A 201
overview 29

RLC circuit example 47, 48
top-level 191
transformer example 192

voltage deadband amplifier example 44
403
403
401

MOS transistor model (level 1) 401
motor model

multiplexer model

DC 314
three-phase 316

331

multiplier model 35

N
N

N JFET transistor model

470
404

name pairs

mapping instance nodes with 195
rules for, when mapping instance
nodes 195

named branches 76

Product Version 13.1

All Rights Reserved.

Cadence Verilog-AMS Language Reference

names, escaped 51
NAND Gate 295
NAND gate model 295
natural log function model 352
natural logarithm function 106
natures 65
access function for
attributes 66
base, declaring 66
base, definition 66
binding with potential and flow 69
declaring 65
definition 470
deriving from other natures 66
requirements for 65
net disciplines 74
description attribute for
new-line characters
as white space 50
displaying 175
Newton-Raphson method
definition 470
used to evaluate systems
nodal analysis 249
node data type 74
nodes 25
assumed to be infinitely small
connecting instances with 195
declaring 74
definition 470
identifier, used in name pair 195
instance, mapping with name pairs
matching sizes required when
connected 197
as module ports 75
reference, definition 472
reference, potential of 26
scalar 74
values associated with 26
vector, declaring 74
vector, definition 74
ways of using 75
noise functions
flicker_noise 137
noise_table 138
noise source model 423
noise_table function 138
noise_table simulator function 138
nonlinearities, announcing and
handling 123
NOR Gate 298

67

74

24

24

June 2013
© 2000-2013

1

5

485

NOR gate model 298
normal (gaussian) distribution
normal distribution function
NOT Gate 297
NOT gate model 297
NPN bipolar junction transistor model
NR method, definition 470
numbers 52
numerator-denominator Laplace
transforms 167
numerator-denominator Z-transforms
numerator-pole Laplace transforms
numerator-pole Z-transforms 172

o)
o or O format character 176
offset measurement 371
offset measurement model 371
one-line comment 50
opamp model 266, 322
open circuit fault 265
open circuit fault model
opening
file 180
operational amplifier model
operators 95 to 103
analog 152
association of
binary 99
bitwise 102
circular integrator 155
delay 158
idtmod 155
precedence 104

14

14

26

266

96

precedence of
ternary 103
time derivative
time integral
unary 97

or (event OR) 101

OR Gate 296

OR gate model 296

OR operator, event 110

order of evaluation, changing 96

ordered lists, mapping nodes with 194

ordinary identifiers 51

oscillator model
digital voltage controlled
voltage-controlled 437

96, 104
153
154

41

Product Version 13.1
All Rights Reserved.

405

172
167

Cadence Verilog-AMS Language Reference

out-of-module current access 131
overriding parameter values 197,
?7? to 200

by name 198

from the instantiation statement 197

grouping override statements

together 199

in instances 197

precedence rules 200
overview

analog events 109

operators 95
overview of probes and sources 252

P

P 471
parallel register model, 8-bit 312
parallel register, 8-bit 312
parameters 36, 58
aliases 64
array values as 201
arrays of 61
attributes for 58
changing during compilation 58
must be constants 58
declaration, definition 471
declaring 58
default value required 59
definition 471
dependence on other parameters 58
enumerated values as 201
names 36
overriding values with defparam
statement 199
overriding values with module
instantiation statement 197
permissible values for, specifying 60
string values as 201
type specifier optional 59
type, specifying 59
parentheses
changing evaluation order with 96
using to exclude end point in range 61
passed_mfactor attribute 202
PCM demodulator model, 8-bit 424
PCM demodulator, 8-bit 424
PCM modulator model, 8-bit 425
PCM modulator, 8-bit 425
pending value of a driver 132

June 2013
© 2000-2013

period of signal, example of
calculating 125
permissible values for parameters,
specifying 60
permissible values, specifying 60
phase detector
model 426
phase locked loop model 427
digital 417
PLL model 427
digital 417
PLL, definition 419
PM demodulator 428
PM demodulator model 428
PM modulator 429
PM modulator model 42

Poisson distribution 142
Poisson distribution function 142
polynomial 353
polynomial model 353
port branches 253
monitoring flow with 252
port bus, defining 75
port connection rules 197
port declaration example 35
port direction 34
port type 34
ports 33
bidirectional 35
declaring 33
defining by listing nodes 75
direction, declaring 34
instance, mapping to defining module
ports 194
names, using to connect instances 196
type of, declaring 34
undeclared types as 34
potential
definition 471
in electrical systems 26
probes 252
sources, definition 253
sources, equivalent circuit model
for 254
sources, switching to flow sources 255
potential law. See Kirchhoff's Laws 25
power (pow) function 106
power consumption, specifying 178
power electronics components 397
power function model 354
power meter model 372

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

power sink model, constant 267 random numbers, generating 138
precedence of operators 96, 104 $random simulator function 138
precedence rules range
for overriding parameter values 200 for integer numbers 56
primitives for real numbers 57
definition 471 rate of change, controlling with slew
instantiating in Verilog-A modules 200 filter 163
probe model reading from a file 183
delta 366 real constants
find event 367 scale factors for 53
signal statistics 367, 369, 377 syntax 52
probes 252 real numbers 52, 56
definition 252, 471 attributes for 57
flow 252 converting to integers 57
potential 252 declaring 56
reasons for using 252 range permitted 57
procedural assignment statement 84 reciprocal model 355
procedural assignment statements in the rectangular hysteresis model 326
analog block 84 reference directions 26
procedural control constructs 83 associated 26
proportional controller model 290 definition 472
proportional derivative controller 291 illustrated 26
proportional derivative controller reference nodes 26
model 291 definition 472
proportional integral controller model 292 potential of 26
proportional integral derivative controller relative tolerance 250
model 293 relay
pump model, charge 413 example 122

model, electromagnetic 31

reltol (relative tolerance) 250

Q repeat loop statement 89
repeat statement 89
Q (charge) meter model 374 repeater 333
QAM 16-ary demodulator model 430 repeater model 333
QPSK demodulator model 433 ‘resetall compiler directive 242
QPSK modulator model 430, 434 resistor model 278
QPSK, definition 430 self-tuning 271
quadrature amplitude 16-ary modulator untrimmed 275
model 432 restrainer model 384
quadrature phase shift key demodulator restrictions on using analog operators 152
model 433 rise times, setting default for 242
quadrature phase shift key modulator RLC Circuit 258
model 434 RLC circuit 47, 48
quantizer model 332 RLC circuit model 258
querying the simulation environment 125 rms, definition 363

road model 385
RS-Type Flip-Flop 306

R RS-type flip-flop model 306
rules, for connecting instances 197
R 471 run time binding, definition 472

random bit stream generator model 435

June 2013 487 Product Version 13.1
© 2000-2013 All Rights Reserved.

Cadence Verilog-AMS Language Reference

S

S 472
s or S format character 176
sample-and-hold amplifier model
(ideal) 394
sampler model 375
saturating integrator model 334
scalar node 74
scale factors, for real constants 53
Schottky Diode 407
Schottky diode model
scope
definition 472
named block defines new 87
of discipline identifiers 69
rules 51
self-tuning resistor 271
self-tuning resistor model 271
semiconductor components 400
sensitivity attributes 37
sequential block statement 87
serial register model, 8-bit 313
serial register, 8-bit 313
shifter model, level 305, 328
short circuit fault 268
short circuit fault model 268
short circuiting, of expressions 104
sigma-delta converter (first-order) 393
sigma-delta converter model (first
order) 393

407

signal driver model, differential 323
signal statistics probe 377
signal statistics probe model 367, 369, 377

signal values

modifying with branch contribution

statement 84

obtaining and setting 128
signal values, obtaining and setting 127
signal-flow discipline 69
signal-flow systems 26

modeling supported by Verilog-A 26

signal-flow disciplines used to define 75
signed number 356
signed number model 356
signs, requesting in output
simple implicit diode 258
simple implicit diode model 258
simulating a system 249
simulation environment, querying 125

175

June 2013
© 2000-2013

simulation time, obtaining current 125
simulator flow 27
simulator functions

$dist_chi_square 143
$dist_erlang 144
$dist_exponential 141
$dist_normal 140
$dist_poisson 142
$dist_t 143
$dist_uniform 140
$random 138
ac_stim 136
analysis 135
bound_step 123
discontinuity 121
flicker_noise 137
last_crossing 124

limiting function 123

noise_table 138

white_noise 137
sin function 107
sine function 107
single shot model
sinh function 107
sink model, constant power
sinusoidal source

swept, model 335

variable frequency, model 338

sinusoidal stimulus, implementing with

395
267

ac_stim 136
sinusoidal waveforms, controlling with slew
filter 163
sizes, of connected terminals and
nodes 197
slew filter 163
slew rate measurement model 371, 376
small-signal AC sources 136
small-signal noise sources 136
smoothing piecewise constant
waveforms 159
soft current clamp model 269
soft voltage clamp model 270
source model
audio 411
noise 423
swept sinusoidal 335
three-phase 336
variable frequency sinusoidal 338
sources 253
controlled 254
current-controlled current 255

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

254

current-controlled voltage
definition 252, 472
flow 253

linear conductor model 257
linear resistor model 258
potential 253

reasons for using 252
RLC circuit model 258

simple implicit diode model 258

unassigned 255

voltage-controlled current 254

voltage-controlled voltage 254
space

displaying or printing 175

white 50

special characters 175
special characters, displaying 1
Spectre
primitives, instantiating in Verilog-A
modules 200
spring model 386
sqr function 106
square brackets, meaning of, in syntax
square model 357
square root function 106
square root model 358
standard mathematical functions 106
strength contribution of drivers,
determining 133
strings, as parameter values
$strobe
description 174, 179
example 176
structural definitions, definition 472
structural descriptions, undeclared port
typesin 34
Student’s T distribution 143
Student’s T distribution function
subtractor model 359
four numbers 360
full 311
half 310
supplySensitivity and groundSensitivity
attributes 37
svcvs primitive 201
swept sinusoidal source
model 335
switch 285
branch, creating 86
branches 86, 255, 256
branches, value retention for

7

(&3]

201

14

256

June 2013
© 2000-2013

489

model 285
switched capacitor integrator model
syntax

definition operator (::=) 21

typographical conventions for
systems

conservative 25

definition 24

396

21

T

tab characters
as white space 50
displaying 175
table model file format 147
tan function 107
tangent function 107
tanh function 107
telecommunications components
temperature, obtaining current
ambient 126
terminals
branch 80
ternary operator
text macros
defining 234
restrictions on 234
undefining 235
thermal voltage, obtaining 126
third-order polynomial function model
three-phase
motor model
source model 336
thyristor model 399
time derivative operator
time integral operator
time step, bounding 123
time-points, placed by transition filter
timer event 117
timer function 117
“timescale compiler directive
not reset by “resetall directive
syntax 238, 242
toggle-type flip-flop model
tolerances
absolute 250
relative 250
transformer model, two-phase
transient analysis 249
transistor model

408

10

316

153

15

—
©

242

307

34

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

MOS (level 1)
MOS thin-film
NJFET 404
NPN bipolar junction
transition filter
not recommended for smoothly varying
waveforms 161
syntax 159
transmission channel model 436
triangular wave source, example 121
trigger-type flip-flop model 307
trigonometric and hyperbolic functions 1
trigonometric functions 106
troubleshooting loops of rigid
branches 257
two-phase transformer model 343
type specifier, optional on parameter
declaration 59

401

40

405

U

unary operators 97

defined 97

precedence of 97
unary reduction operators 97
unassigned sources 255
“undef compiler directive 235
undefining text macros 235
underscore, in identifiers 51
uniform distribution 140
uniform distribution function
unit attribute

description 67

for integers 56

for parameters 58

forreals 57

requirements for 68
units (scale factors) for real numbers 53
untrimmed

14

capacitor model 273
inductor model 274
resistor model 275

user-defined functions 187

calling 188
declaring 187
declaring analog 187
restrictions on 187

June 2013
© 2000-2013

490

\'

V 473
value contribution of drivers,
determining 133
value retention for switch branches 256
value-to-flow converter model 337
variable frequency sinusoidal source
model 338
variable-gain amplifier model, voltage-
controlled 277
variable-gain differential amplifier
model 339
VCO model 437
VCO, definition 417
vector nodes, definition 74
vectors, arguments represented as
Verilog-A
definition 473
language overview 24
vertical bars, meaning of, in syntax
voltage
access function 129
accessing potential across a
branch 129
accessing potential difference
voltage clamp model
hard 264
soft 270
voltage deadband amplifier
model 276
voltage meter model
voltage source model
current-controlled 282
voltage-controlled 281
voltage-controlled current source
voltage-controlled current source
model 283
voltage-controlled oscillator
model 437
model, digital 418
voltage-controlled variable-gain amplifier
model 277
voltage-controlled voltage source 254
voltage-controlled voltage source
model 281

-y
N
©

44
379

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

W

wheel 387

wheel model 387

while loop statement 90

while statement 90

white space 50

white_noise simulator function 137

winding model, magnetic 342

wire (predefined empty discipline) 70

wreal nets 77

wrealXState 78

wrealZState 78

writing to a file 183

X

XNOR Gate 300

XNOR gate model 300

XOR Gate 299

XOR gate model 299

y4

Z (impedance) meter 380

Z (impedance) meter model 380

zero crosses, detecting 113

zero-denominator Laplace transforms 166

zero-denominator Z-transforms 171

zero-pole Laplace transforms 165

zero-pole Z-transforms 170

Zi_nd Z-transform filter 172

Zi_np Z-transform filter 172

Zi_zd Z-transform filter 1

Zi_zp Z-transform filter

Z-transform filters 170

Z-transforms
introduction 170
numerator-denominator form 172
numerator-pole form 172

zero-denominator form 171
zero-pole form 170

s [
S
o

June 2013 491
© 2000-2013

Product Version 13.1
All Rights Reserved.

Cadence Verilog-AMS Language Reference

June 2013 492 Product Version 13.1
© 2000-2013 All Rights Reserved.

	Contents
	Preface
	Related Documents
	Internet Mail Address
	Typographic and Syntax Conventions

	Modeling Concepts
	Verilog-AMS Language Overview
	Describing a System
	Analog Systems
	Nodes
	Conservative Systems
	Signal-Flow Systems
	Mixed Conservative and Signal-Flow Systems
	Simulator Flow for Analog Systems

	Creating Modules
	Declaring Modules
	Declaring the Module Interface
	Module Name
	Ports
	Parameters

	Specifying Supply Sensitivity Attributes
	Using the Sensitivity Attributes in a Chain of Buffers
	Using Sensitivity Attributes with Inherited Connections

	Defining Module Analog Behavior
	Defining Analog Behavior with Control Flow
	Using Integration and Differentiation with Analog Signals

	Using Internal Nodes in Modules
	Using Internal Nodes in Behavioral Definitions
	Using Internal Nodes in Higher Order Systems

	Lexical Conventions
	White Space
	Comments
	Identifiers
	Ordinary Identifiers
	Escaped Names
	Scope Rules

	Numbers
	Integer Numbers
	Real Numbers

	Strings

	Data Types and Objects
	Integer Numbers
	Real Numbers
	Converting Real Numbers to Integer Numbers

	Parameters
	Specifying a Parameter Type
	Specifying Permissible Values
	Specifying Parameter Arrays

	Dynamic Parameters
	Local Parameters
	Genvars
	Natures
	Declaring a Base Nature

	Disciplines
	Binding Natures with Potential and Flow
	Binding Domains with Disciplines
	Disciplines and Domains of Wires and Undeclared Nets
	Discipline Precedence
	Compatibility of Disciplines

	Net Disciplines
	Ground Nodes
	Real Nets
	Arrays of Real Nets
	Real Nets with More than One Driver

	Named Branches
	Implicit Branches

	Statements for the Analog Block
	Assignment Statements
	Procedural Assignment Statements in the Analog Block
	Branch Contribution Statement
	Indirect Branch Assignment Statement

	Sequential Block Statement
	Conditional Statement
	Case Statement
	Repeat Statement
	While Statement
	For Statement
	Generate Statement

	Operators for Analog Blocks
	Overview of Operators
	Unary Operators
	Unary Reduction Operators

	Binary Operators
	Bitwise Operators

	Ternary Operator
	Operator Precedence
	Expression Short-Circuiting

	Built-In Mathematical Functions
	Standard Mathematical Functions
	Trigonometric and Hyperbolic Functions
	Controlling How Math Domain Errors Are Handled

	Detecting and Using Events
	Detecting and Using Events
	Initial_step Event
	Final_step Event
	Cross Event
	Above Event
	Absdelta Event
	Timer Event

	Simulator Functions
	Announcing Discontinuity
	Bounding the Time Step
	Announcing and Handling Nonlinearities
	Finding When a Signal Is Zero
	Querying the Simulation Environment
	Obtaining the Current Simulation Time
	Obtaining the Current Ambient Temperature
	Obtaining the Thermal Voltage
	Querying the scale, gmin, and iteration Simulation Parameters

	Obtaining and Setting Signal Values
	Obtaining Currents Using Out-of-Module References

	Accessing Attributes
	Examining Drivers
	Counting the Number of Drivers
	Determining the Value Contribution of a Driver
	Determining the Strength of a Driver
	Detecting Updates to Drivers

	Analysis-Dependent Functions
	Determining the Current Analysis Type
	Implementing Small-Signal AC Sources
	Implementing Small-Signal Noise Sources

	Generating Random Numbers
	Generating Random Numbers in Specified Distributions
	Uniform Distribution
	Normal (Gaussian) Distribution
	Exponential Distribution
	Poisson Distribution
	Chi-Square Distribution
	Student’s T Distribution
	Erlang Distribution

	Interpolating with Table Models
	Table Model File Format
	Example: Using the $table_model Function
	Example: Preparing Data in One-Dimensional Array Format
	Example: Using $table_model as a Built-In Digital System Task

	Analog Operators
	Restrictions on Using Analog Operators
	Limited Exponential Function
	Time Derivative Operator
	Time Integral Operator
	Circular Integrator Operator
	Derivative Operator
	Delay Operator
	Transition Filter
	Slew Filter
	Implementing Laplace Transform S-Domain Filters
	Implementing Z-Transform Filters

	Displaying Results
	$strobe
	$display
	$write
	$debug
	$monitor

	Specifying Power Consumption
	Working with Files
	Opening a File
	Reading from a File
	Writing to a File
	Closing a File

	Exiting to the Operating System
	Entering Interactive Tcl Mode
	User-Defined Functions
	Declaring an Analog User-Defined Function
	Calling a User-Defined Analog Function

	Instantiating Modules and Primitives
	Instantiating Verilog-AMS Modules
	Creating and Naming Instances
	Creating Arrays of Instances
	Mapping Instance Ports to Module Ports

	Connecting the Ports of Module Instances
	Port Connection Rules

	Overriding Parameter Values in Instances
	Overriding Parameter Values from the Instantiation Statement
	Overriding Parameter Values Using defparam
	Precedence Rules for Overriding Parameter Values

	Instantiating Analog Primitives
	Instantiating Analog Primitives that Use Array Valued Parameters
	Instantiating Modules that Use Unsupported Parameter Types

	Using an M Factor (Multiplicity Factor)
	Example: Using an M Factor

	Including Verilog-A Modules in Spectre Subcircuits

	Mixed-Signal Aspects of Verilog-AMS
	Fundamental Mixed-Signal Concepts
	Domains
	Contexts
	Nets, Nodes, Ports, and Signals
	Mixed-signal and Net Disciplines

	Behavioral Interaction
	Accessing Discrete Nets and Variables from a Continuous Context
	Accessing Continuous Nets and Variables from a Discrete Context
	Detecting Discrete Events from a Continuous Context
	Detecting Continuous Events from a Discrete Context

	Connect Modules
	Coding Connect Modules
	Using Automatically-Inserted Connect Modules
	Understanding the Factors Affecting Connect Module Placement
	Understanding How Connect Modules Operate

	Controlling the Compiler
	Implementing Text Macros
	`define Compiler Directive
	`undef Compiler Directive

	Compiling Code Conditionally
	Including Files at Compilation Time
	Adjusting the Time Scale
	Setting a Default Discrete Discipline for Signals
	Setting Default Rise and Fall Times
	Resetting Directives to Default Values
	Specifying Which Reserved Keyword List to Use
	Removing and Restoring Specific Keywords
	Checking Support for Compact Modeling Extensions

	Nodal Analysis
	Kirchhoff’s Laws
	Simulating an Analog System
	Transient Analysis
	Convergence

	Analog Probes and Sources
	Overview of Probes and Sources
	Probes
	Port Branches
	Sources
	Unassigned Sources
	Switch Branches

	Examples of Sources and Probes
	Linear Conductor
	Linear Resistor
	RLC Circuit
	Simple Implicit Diode

	Sample Model Library
	Analog Components
	Analog Multiplexer
	Current Deadband Amplifier
	Hard Current Clamp
	Hard Voltage Clamp
	Open Circuit Fault
	Operational Amplifier
	Constant Power Sink
	Short Circuit Fault
	Soft Current Clamp
	Soft Voltage Clamp
	Self-Tuning Resistor
	Untrimmed Capacitor
	Untrimmed Inductor
	Untrimmed Resistor
	Voltage Deadband Amplifier
	Voltage-Controlled Variable-Gain Amplifier

	Basic Components
	Resistor
	Capacitor
	Inductor
	Voltage-Controlled Voltage Source
	Current-Controlled Voltage Source
	Voltage-Controlled Current Source
	Current-Controlled Current Source
	Switch

	Control Components
	Error Calculation Block
	Lag Compensator
	Lead Compensator
	Lead-Lag Compensator
	Proportional Controller
	Proportional Derivative Controller
	Proportional Integral Controller
	Proportional Integral Derivative Controller

	Logic Components
	AND Gate
	NAND Gate
	OR Gate
	NOT Gate
	NOR Gate
	XOR Gate
	XNOR Gate
	D-Type Flip-Flop
	Clocked JK Flip-Flop
	JK-Type Flip-Flop
	Level Shifter
	RS-Type Flip-Flop
	Trigger-Type (Toggle-Type) Flip-Flop
	Half Adder
	Full Adder
	Half Subtractor
	Full Subtractor
	Parallel Register, 8-Bit
	Serial Register, 8-Bit

	Electromagnetic Components
	DC Motor
	Electromagnetic Relay
	Three-Phase Motor

	Functional Blocks
	Amplifier
	Comparator
	Controlled Integrator
	Deadband
	Deadband Differential Amplifier
	Differential Amplifier (Opamp)
	Differential Signal Driver
	Differentiator
	Flow-to-Value Converter
	Rectangular Hysteresis
	Integrator
	Level Shifter
	Limiting Differential Amplifier
	Logarithmic Amplifier
	Multiplexer
	Quantizer
	Repeater
	Saturating Integrator
	Swept Sinusoidal Source
	Three-Phase Source
	Value-to-Flow Converter
	Variable Frequency Sinusoidal Source
	Variable-Gain Differential Amplifier

	Magnetic Components
	Magnetic Core
	Magnetic Gap
	Magnetic Winding
	Two-Phase Transformer

	Mathematical Components
	Absolute Value
	Adder
	Adder, 4 Numbers
	Cube
	Cubic Root
	Divider
	Exponential Function
	Multiplier
	Natural Log Function
	Polynomial
	Power Function
	Reciprocal
	Signed Number
	Square
	Square Root
	Subtractor
	Subtractor, 4 Numbers

	Measure Components
	ADC, 8-Bit Differential Nonlinearity Measurement
	ADC, 8-Bit Integral Nonlinearity Measurement
	Ammeter (Current Meter)
	DAC, 8-Bit Differential Nonlinearity Measurement
	DAC, 8-Bit Integral Nonlinearity Measurement
	Delta Probe
	Find Event Probe
	Find Slope
	Frequency Meter
	Offset Measurement
	Power Meter
	Q (Charge) Meter
	Sampler
	Slew Rate Measurement
	Signal Statistics Probe
	Voltage Meter
	Z (Impedance) Meter

	Mechanical Systems
	Gearbox
	Mechanical Damper
	Mechanical Mass
	Mechanical Restrainer
	Road
	Mechanical Spring
	Wheel

	Mixed-Signal Components
	Analog-to-Digital Converter, 8-Bit
	Analog-to-Digital Converter, 8-Bit (Ideal)
	Decimator
	Digital-to-Analog Converter, 8-Bit
	Digital-to-Analog Converter, 8-Bit (Ideal)
	Sigma-Delta Converter (first-order)
	Sample-and-Hold Amplifier (Ideal)
	Single Shot
	Switched Capacitor Integrator

	Power Electronics Components
	Full Wave Rectifier, Two Phase
	Half Wave Rectifier, Two Phase
	Thyristor

	Semiconductor Components
	Diode
	MOS Transistor (Level 1)
	MOS Thin-Film Transistor
	N JFET Transistor
	NPN Bipolar Junction Transistor
	Schottky Diode

	Telecommunications Components
	AM Demodulator
	AM Modulator
	Attenuator
	Audio Source
	Bit Error Rate Calculator
	Charge Pump
	Code Generator, 2-Bit
	Code Generator, 4-Bit
	Decider
	Digital Phase Locked Loop (PLL)
	Digital Voltage-Controlled Oscillator
	FM Demodulator
	FM Modulator
	Frequency-Phase Detector
	Mixer
	Noise Source
	PCM Demodulator, 8-Bit
	PCM Modulator, 8-Bit
	Phase Detector
	Phase Locked Loop
	PM Demodulator
	PM Modulator
	QAM 16-ary Demodulator
	Quadrature Amplitude 16-ary Modulator
	QPSK Demodulator
	QPSK Modulator
	Random Bit Stream Generator
	Transmission Channel
	Voltage-Controlled Oscillator

	Verilog-AMS Keywords
	Keywords to Support Backward Compatibility
	Discipline and Nature Keywords
	Connect Rules Keywords

	Unsupported Elements of Verilog-AMS
	Updating Verilog-A Modules
	Suggestions for Updating Models
	Current Probes
	Analog Functions
	NULL Statements
	inf Used as a Number
	Changing Delay to Absdelay
	Changing $realtime to $abstime
	Changing bound_step to $bound_step
	Changing Array Specifications
	Chained Assignments Made Illegal
	Real Argument Not Supported as Direction Argument
	$limexp Changed to limexp
	'if 'MACRO is Not Allowed
	$warning is Not Allowed
	discontinuity Changed to $discontinuity

	Glossary
	Index

