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Motivation

 Many analog circuits e.g. opamps, integrators,
comparators, ADC and DAC stages etc. require
amplifiers with offsets in the microvolt range

e Also, many sensors (e.g. thermopiles, bridges, hall-
effect sensors etc.) output DC signals that need to be
processed with microvolt precision

 However, the offset of native CMOS amplifiers is
typically in the millivolt range

« This tutorial will focus on dynamic offset-cancellation
(DOC) techniques, with which offset can be reduced
to the microvolt level.
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What is Offset?

REAL amplifier REAL amplifier

 When the input of a REAL amplifier is shorted, V,, # O!

« The offset V Is the input voltage required to make
V, = 0. Itis typically in the range 100pV to 10mV.

* Note: In CMQOS, input currents are usually negligible.
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Amplifier Behaviour Near DC

Characterized by A
o Offset
e Drift
+ 1/f (flicker) noise 4o Y

 Thermal noise ;rgqcl:);?li;
. 1/f corner frequency /

 Errors due to finite
CMRR and PSRR

offset, drift

1/f noise

thermal noise

log(freq)
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Differential Amplifiers

Differential amplifiers are often
used to amplify DC signals.

Their balanced structure is
 Nominally offset free

* Rejects common-mode and
power supply interference

» Easily realized in both CMOS
and bipolar technologies
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Offset In Differential Amplifiers

Component mismatch Vbb
e.g. R;#R,, M;#M, = offset
R, R2
Mismatch is mainly due to
Vout

e Doping variations
« Lithographic errors —J| M1 My |\~
 Packaging & local stress

All things being equal
 Bipolar =V~ 0.1mV
« CMOS = V_, Is 10 -100x worse!
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What to Do?

Offset and 1/f noise are part of life!

But we can reduce offset “enough” by

1. Using “large” devices and good layout! = 1mV

2. Trimming = 100V

3. Dynamic offset-cancellation (DOC) techniques = 1uV

DOC technigues also
 Reduce drift and 1/f noise
« |Improve PSRR and CMRR
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Trimming

e Low circuit complexity
« Minimal effect on circuit bandwidth
 Requires a memory element, e.qg.
o Fusible links (Zener diodes)
o Laser-trimmed resistors
o Floating gate MOSFETSs
o PROM
* Requires test infrastructure
* Does not reduce drift or 1/f noise

o Poorly defined temp. dependence of MOSFETs
= offset after trimming > 100V over temp.
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Dynamic Offset Cancellation (DOC)

Two basic ideas?

1. Measure the offset somehow and then subtract it
from the input signal = Auto-zeroing

2. Modulate the offset away from DC and then filter
It out = Chopping

ISSCC 2007 K.A.A. Makinwa
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DOC Techniques

Auto-zeroing

Discrete time

Sample offset,
then subtract.

Chopping

Continuous time

Modulate offset
away from DC,
then filter.

Switches required = CMOS or BICMOS

ISSCC 2007
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DOC Techniques vs. Trimming

+ reduction of offset and 1/f noise

+ excellent stability (over temperature, time, supply and
common-mode voltages)

+ no additional costs for testing

- possible bandwidth reduction
- increased circuit complexity
- aliasing & intermodulation issues

ISSCC 2007 K.A.A. Makinwa

12



Auto-zero Principle (1)

Auto-zero phase

e S, S,closed, S;open=V_,=V
= offset stored on C_,

« Amplifier is unavailable
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Auto-zero Principle (2)

Amplification phase:
« S,, S, open, S;closed = V., Is amplified

* Finite voltage gain A = error in sampled offset
= Input-referred residual offset V. = V J/(A+1)

« Charge injection is also a problem ...
ISSCC 2007 K.A.A. Makinwa
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Charge Injection (1)

Consists of two components
1. Channel charge, Q.= WLC_,(Vgs-V))

2. Charge in the overlap capacitance between the gate
and the source/drain = clock feed-through

Problematic when a MOSFET switches OFF.

ISSCC 2007 K.A.A. Makinwa
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Charge Injection (2)

0 AVinj = Qinj/ Caz
Rs _i' Vout _|_i

— L=< 3

Vs C) Caz ==

Error voltage AV, depends on many factors3*

e Source voltage and impedance

 Transistor area (WL)

 Clock amplitude & slew rate

 Value of C_, (larger values = smaller errors)

« |naO0.7um process, minimum size NMOS switch,
2.5V step & 10pF = AV, . ~ 250uV

Inj
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Mitigating Charge Injection (ClI)

clk;

« Use differential topologies
— common-mode CI |
— 15t order cancellation

e Use minimum size switches

(subject to noise & BW requirements) -
clk
* For single-ended topologies o L[ o]
dummy switches help34 i i
« But area of main switch will be T T T

~2X minimum size = more Cl half size
= limited benefit —
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Sampling the offset: kT/C noise

Ron Vout

— o o

Vos Caz mmmm

« Thermal noise of R, Is filtered by C_,

 When the switch is opened the instantaneous noise
voltage is held on C_,

 Total noise power = KT/C_, (10pF @ 300K = 20.3uV)
« Large capacitance = accurate sampling of V
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Reducing Capacitor Size (1)

charge (I)
_ injection =
Vos Vos
Ji7_@L AN N
Vin (I) I \ A2> Vout
o | X °
5 ~
(b“‘“m..

Vres = VosZ/ (AlAZ) t AVinj/ Al

o Offset of 1st amplifier is cancelled>®

e Gain of 1st amplifier reduces offset of 2"d amplifier

e But too much gain = clipping!

* Also reduces kKT/C noise and charge injection errors

— Sampling capacitors can be smaller
ISSCC 2007 K.A.A. Makinwa
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Reducing Capacitor Size (2)

Vos1
o—e o O o
Vin amjy R |:| Vout
o—o/o o)
VosZ
)\ o—o—
-
gmy — Caz

Amplifier with an auxiliary input’-8
* Vies ~ Vost/(GMyR) + Vo, (@M R) + AV ,(gm,/gm;)

« Large R and gm, << gm, = low-offset and reduced
KT/C noise and charge injection errors

— Sampling capacitors can be smaller
ISSCC 2007 K.A.A. Makinwa 20



Residual Offset of Auto-zeroing

Determined by

e Charge injection
 Leakage onC,,

* Finite amplifier gain

In practice

e Minimum size switches

 C_, as large as possible (sometimes external)
o Multi-stage amplifier topologies

Results in residual offsets of 1-10uV

ISSCC 2007 K.A.A. Makinwa
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Residual Noise of Auto-zeroing (1)

Viaz(f) = Via(D)*(1 - H(D)

H(f) is the frequency n n,az
response of the S&H :WM’ _ MM
H(f) = sinc(rf/fy) = LPF

= 1-H(f) isa HPF

= reduction of both S&H — M.

offset and 1/f noise ¢
S

— but thermal noise will
be (under) sampled
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Residual Noise of Auto-zeroing (2)

Noise A
Power

Pro = (2B/fs)Ppi under-sampled

output noise

input noise
p_ /"' ‘\ /

[ \

| | | |
-3 =2 1 0 1 2 3 fifs
+fs >
g 2B |

* Noise bandwidth B > f_ (due to settling considerations)
= Input noise will be folded back (aliased) to DC

e The result is then LP filtered by the sinc(xf/f,) function
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Residual Noise of Auto-zeroing (3)

50
" Sampled noise spectrum
M1 (Ron=3k Vout _
{ ) s » _ 40n
— =
Vin £ 30n
g i - 10pF 3
Q Velock > 20n
m':‘- Noise spectrum
100kHz 10n} with M1 turned on
&
Courtesy of R. Burt, Tl

~ 100 1K 10K 100K 1M 10M 100M
FREQUENCY (Hz)

S&H with 100kHz clock & 50% duty-cycle

Noise aliasing = factor of 6 increase in LF noise!
Notches at multiples of 2fclock due to 50% duty cycle?
Sampled noise spectrum obtained with Spectre RF-10

ISSCC 2007 K.A.A. Makinwa 24



Residual Noise of Auto-zeroing (4)

T ——— =" a

Vn,az ~ Vn\j(ZB/fs)

before AZ

~ o \after AZ

log(freq)

e Detailed analysis? = significant reduction of 1/f noise
IF f, >> 1/f corner frequency

* Noise aliasing = LF power increased by the under-
sampling factor (USF) = 2B/f, = factor 3 to 6 in volts

ISSCC 2007
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Ping-Pong Amplifier

 Input signal “bounced”
between two auto-
zeroed amplifiers1i12

e Output V,, isthen a
guasi-continuous signal

« But switching spikes
limit performance

 Randomized switching
reduces spikes!s
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Offset Stabilization (OS)

Negative feedback High bandwidth
— offset visible at input main amplifier

R

i

Low bandwidth, low offset compensating amplifier
— Auto-zeroed or chopped

ISSCC 2007 K.A.A. Makinwa
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AZ Offset-Stabilized Amplifier

» Auto-zeroed nulling
amp cancels the offset
of main amplifiert4.1>

e Continuous output and
less spikes

e But poor overload
performance, I.e.
whenV, -V_>V_

« Amplifier cannot be
used as a comparator

ISSCC 2007 K.A.A. Makinwa
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System-level Auto-zeroing

« Phase 1: V, = A(V .+ V,)
 Phase 2:V,=AV_

— (V1'V2) = AVin

o Offset stored in the digital domain
* Widely used in instrumentation & measurement systems

ISSCC 2007 K.A.A. Makinwa 29



Correlated Double Sampling (CDS)
Vin ‘

Vin1

Vin2

« Sometimes only a signal difference is required
e.g. iIn image sensors

 Phase 1:V;=A(V,,; + V)
 Phase 2: V,=A(V,,, + V)
= (V1- V) = A(Vins = Vin2)

 To maximize suppression of 1/f noise, the interval t, - t,,
should be as short as possible

ISSCC 2007 K.A.A. Makinwa
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The 3 Sighal Method

« Phase 1: V,=A(V, .+ V,)
e Phase 2: V,= A(V .+ V,.)
* Phase 3: V;= AV

= Vi, = Vier(V1-V3)/(V5-V5)

Requires a known reference voltage
and a microprocessor to perform the division

ISSCC 2007 K.A.A. Makinwa
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Auto-Zeroing: Summary

e Offsets in the range of 1-10uV can be achieved

* No loss of bandwidth with appropriate amplifier
topologies (ping-pong, offset-stabilization)

o Sampled data technique = KT/C noise is an issue
* Noise aliasing will occur = increased LF noise

 DOC technigue of choice in sampled-data systems
e.g. switched-capacitor filters, ADCs etc.

ISSCC 2007 K.A.A. Makinwa
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Chopping Principle

Vin DC

? modulation

AC

Vos DC

et oc

DC AC

LPF

DC
—O0 Vout
~0

Signal is modulated, amplified and then demodulatedi®

+ QOutput signal is continuously available

- Low-pass filter required

ISSCC 2007
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Sqguare-wave Modulation

0, 0 A

— __J
.'_._‘

Vi »é—» I

« Easily generated modulating signal
 Modulator is a simple polarity-reversing switch
e Switches are easily realized in CMOS
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Chopping in the Time Domain

Veh Q
Vin y Vos Y Vout
o—>®—O—> / ‘ LPF—O
signal / = — _—
0 offset = _

* V.. =0 IF duty-cycle of V, Is exactly 50% = flip-flop
e IfV,=10mV & f,, = 50kHz, then 1ns skew = V, = 1pV
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Chopping in the Frequency Domain

Veh ?
(fch) +
V V
Vi 1 ® 2 1 LPF——O Vout
Vi
offset & noise
: modulated signal
signal ;
1
1T _F = A e oy
1 3 5 flfg 5 [leh
A LPF |
Vs " modulated Vout
:' \ 3ffset & noise residual noise & offset
1 /
, 1 '1 Y . /
- T T > - J ! ! >
1 3 5 flfe 1 3 5 flfen

ISSCC 2007
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Residual Noise of Chopping

A
dB

noise before
chopping

white noise

\\ after chopping

log(freq)

« 1/f noise is completely removed
IF f.,, > 1/f corner frequency

o Significantly better than auto-zeroing!

ISSCC 2007 K.A.A. Makinwa

37



Bandwidth & Gain Accuracy

ideal

/ \
actual F A1~ 1~1-~1 DC
— H‘/ level

Amplifier output

Demodulated amplifier output

* Limited BW = lower effective gain A
and chopping artifacts at even harmonics of f,

e A= A(1-41/T,,) for a 1st order LP filter,
where BW = 1/2nt and t << T,

e T, /t=40= BW =6.4f,, = 10% galin error!

ISSCC 2007 K.A.A. Makinwa
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Chopper Opamp with Feedback

VosZ
Vin© O O Vout
gmy Ao ‘o)
o
Cm

R2 R1 —

I_

« Feedback resistors = Accurate gaint/-18

e To suppress V,.,, A; should have high gain

« Miller capacitors C., also suppress ripple
 Minimum ripple = high chopping frequencies

ISSCC 2007 K.A.A. Makinwa
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Residual Offset of Chopping (1)

Vch r . Veh I' _

V4 \
input spikes (o '
X vt
dc offset
O

demodulated k / r r k P r
spikes o AN . AN

 Due to mismatched charge injection and clock feed-
through at the input chopperi®2°

e Causes a typical offset of 1-10uV
 Input spikes = bias current (typically 50pA)
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Residual Offset of Chopping (2)

T

input d ¢ Vspike
spikes

> 1/fah

dc offset

demodulated r t r /
spikes ¢

» Residual offset? = 2f, Vgt

o Spike shape (t) depends on source impedance
e.g. feedback resistors around an opamp
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Design Considerations

Input chopper

e Use minimum size switches

e (Good layout = symmetric, balanced clock coupling
* Ensure that switches “see” equal impedances

e Use a flip-flop to ensure an exact 50% duty-cycle

Chopping frequency f,
* Higher than 1/f noise corner frequency
« Nottoo high, as the residual offset increases with f,

Amplifier BW >> f_, to minimize gain errors

ISSCC 2007 K.A.A. Makinwa
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Band-Pass Filtering

matching oscillator

Vin+
Vin-

Clk

>22—>Clk

=3

- PN > |e

N

+ -4 >

-

.

B

S K

7 >
input bandpass

amplifier filter

Clk
;> EJE—Vout-

Vout+
third

amplifier Courtesy of C. Hagleitner, IBM

* Spike spectrum is “whiter” than that of modulated signal
— BP filter will reduce relative spike amplitude19.21.22

* Clock frequency tracks BP filter's center frequency
= low Q filter, Q ~ 5

e Residual offset ~ 0.5uV!

ISSCC 2007
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Delayed Demodulation

Optimal delay clock \ :' ‘
~ O-7Tspike :

e Tricky timing! Input J\ k

spikes : V V
e Solution: clock and delayed r
spikes delayed by clock ' — —

identical amplifiers?3 X

demodulated | dc~0
. spikes ¢
* Residual offset ~ 1pV P lﬂ p V p
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Nested Chopping

Vch,low? O Veh high

Vin l Y ¢ l Vout
o—=(X)~X)— / LPF—o0
Demodulated # l l /
spikes :l\_l\_|¥ ,_l ,_l —
Vch,low

Inner HF chopper removes 1/f noise

Outer LF chopper removes residual offset?4.2>
Residual offset ~ 100nV, but reduced bandwidth
Note: input choppers should not be merged!
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Dead-Banding

clock | ! .

input ‘

spikes : i
clock with _|J_L|_|-|_L|_|_I_L|_
dead band i

—»1 < dead band

demodulated 11 Y, dc offset

Spikes 0#==~=~=~==

e During dead-band amplifiers output is tri-stated26.27.28
* Residual offset ~ 200nV!

 BUT loss of gain and aliasing due to S&H action
= slightly worse noise performance

ISSCC 2007 K.A.A. Makinwa
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Precision V-I Converter

Fast Chopper & Dead Band
EnableCM 91 ¢2

Vhall+
o

Chopper Chopper

Vhall-
o

3 T Igut+
OA ti i
p 3T 3T
- 1 To ADC
— Rvie ]? T | TT X
oA — _
; | TT Igut

* Front-end of a magnetic field sensor2® with < 50nV offset!

e Fast output chopper implements dead-bands

e During dead-bands, output current flows into a CM node
« Slow output chopper implemented in ADC

ISSCC 2007
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Dealing with Spikes: Overview

e BP Filtering: ~ 0.5uV offset, complex clock timing

 Delayed demodulation: ~ 1 uV offset, complex
clock timing

 Dead-banding: ~ 200nV offset, wide BW

Nested chopping: ~ 100nV offset, but limited BW

Last two techniques represent best compromise
between offset magnitude and circuit complexity

ISSCC 2007 K.A.A. Makinwa 48



Chopping Artifacts
Vch?

. vos/ : / ¢ LPF_VTM

offset =

Modulated offset = chopping artifacts
e Can be removed by a low-pass filter

« BUT analog filters with low cut-off frequencies are
difficult to realize on chip
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Auto-zeroing and Chopping

A

noise
(dB)

chopping

\u

N\

AZ

noise
(dB)

faz

>
log(f)

A

AZ + chopping

/N

P

f  log(

 Significantly improves LF noise performance30.31.42
 Much less artifacts than with chopping alone

« 3V offset & 20nV/VHz demonstrated in a ping-pong
amplifiers0

« Choosing f,, = 2f_, = aliased noise has notch at DC

ISSCC 2007
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AC Coupling
Vch?

v |

” Simpler
l filter!
Vout

>®—>LPF—0
AN

Feedback cancels
amplified offset here

ANV,

* AC coupling will block the amplifier’'s offset

o Alternatively, DC “servo” loop (shown) inside the
choppers will also suppress the amplifier’'s offset32:33

 Note: DC servo loop outside the choppers results in a
low-noise amplifier with a HPF characteristic3334
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Switched Capacitor Filter (1)

Sampling instants
VChT ping

 Chopped offset is integrated & the triangular ripple is then
sampled at the zero-crossings3°

o SC filter essentially eliminates residual ripple
 Filter introduces delay and a (small) noise penalty
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Switched Capacitor Filter (2)

C2hy Gp
input output a 2a, ) Tp
chopping chopping ¢ I ITP
_ switches switches
n, 1 yx—-— N p p
lg=3ul lq=3ul lg=4uA

SC Notch Filter

ﬁﬂ

Courtesy of R. Burt, Tl

o SC filters have been used in true chopper-stabilized
opamps?:36

» Note: gm4 is not chopped = V s > VoosAgmal (AgmiAgm2)

0s4

 Filter delay incorporated into a multi-path nested Miller
compensation scheme

ISSCC 2007
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Digital Filtering

y I
ch ©
dulated input voltage
\ mo
B\
Bridge + Y

\ , Amp ADC |>Q)—

Digital
LPF

« Chopped signal is digitized
 Demodulation is done digitally2>:37

« Chopper artifacts are removed by a digital LPF
e.g. a sinc filter with notches at f,

ISSCC 2007 K.A.A. Makinwa
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Dealing with Artifacts: Overview

Reduce the amplifier’s initial offset

« Auto-zeroing and chopping: increased noise
 DC servo: still requires some analog filtering
o Switched capacitor filtering

Digital Filtering
* Very low cut-off frequencies can be realized

« Decimation filter of a ZA ADC can be used to remove
chopper artifacts = no extra overhead
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Chopping: Summary

e Offsets in the range of 50nV-10uV can be achieved

 Fundamental loss of bandwidth (unless offset-stabilized
topologies can be used)

« Eliminates 1/f noise, noise floor set by thermal noise

« DOC technigue of choice when noise or offset
performance is paramount e.g. in biomedical amplifiers,
low-power opamps, smart sensors etc.

ISSCC 2007 K.A.A. Makinwa
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State-of-the-Art Opamps

Noise | DOC | Isy | Typ.
Offset .
Type (O - Freg. | (max, | GBW | Technique
(M) | 10Hz) | (kHz) | pA) | (MHZ)
LTC2050 3uV 1.5uVv 7.5 1200 | 3.0 AZ-OS
Randomized
13 —
AD8571 10pV | 1.0pv 2—-4 | 1075 | 1.0 A7-PP
AD86283%0 | 10uVv | 0.6pv | 7.5/15 | 1000 | 2.5 | CH&AZ-PP
MAX4238% | 3.5,V | 1.5uv |10-15| 850 | 1.0 | R@ndomized
' ' ' CH-0S
OPA333° | 10unVv | 1.1pVv 100 28 0.35 CH-0OS
CS3001%8 | 10uV | 0.125pV | 200 | 2800 | 5.0* CH-0OS
*Conditionally stable
ISSCC 2007 K.A.A. Makinwa 57



Design of a CMOS Temp. Sensor49:4:

Why CMQOS ‘smart’ temperature sensors?
+ digital interface
+ low cost

e But accuracy Is a problem!
Only £2.0°C from —55°C to 125°C

By comparison: class-A Pt100
achieves £0.5°C in the same temp. range

e Goal: £0.1°C from -55°C to 125°C
with single temperature calibration only

ISSCC 2007 K.A.A. Makinwa
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Operating Principle

VrRer=VBe+0o.-AVBE

5&10-1 5&’

+ AVpr - 1
) > . 0AVBE s
VBE ’,’ \\\
— 'a’ AVBE --___::‘__

T 0Lprinees , s
273 -55 125 330

temperature (°C) —=

o Substrate PNPs generate:
AVge proportional to absolute temp. (PTAT)
Vge complementary to absolute temp. (CTAT)

Viemp _ @ AVpp

e Ratiometric measurement. p= =
VREF VBE + Q- AVBE

ISSCC 2007 K.A.A. Makinwa 59



Block Diagram

bias
circuit

Ibf'as
-

bipolar
core

| _"BE_| modulator

bs

decimation
filter

—-femp

« XA modulator produces bitstream bs
whose average Is representation of temperature

« Offset in AVge read-out results in errors of ~10°C/mV
= offset << 10uV required for error << 0.1°C

e Spread of Vg and bias-current ratio are mitigated by

trimming and DEM respectively*0-41

« Bitstream is filtered and scaled by decimation filter
to produce binary reading in °C

ISSCC 2007
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Charge Balancing in ZA
Sisr By T

™ | 153 clk |
16X >io"0 :
-~ 3L | loop !

+ AVpE - 5 _G:’} filter _|_ .
A 5
BE - :
- e SA hoduiator

ke

» Every clock cycle, either 16-AVgg (bs=0)
or —Vge (bs=1) is input to the loopfilter
e Resulting bitstream average p.

16-AV 16 - AV

Ve +16-AVge  VRer

ISSCC 2007 K.A.A. Makinwa
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Switched-Capacitor 15t Integrator

o0 Q/1 i% /4% lﬁié

MUX T

MUX

—
A I
Cs1 —

Css

—o|

bs

—a |

oo™

Css

C
A S
—a

02 Cinp

[ S

b1

 PNPs Q, and Qg generate AVge (bs=0) or Vg (bs=1)
« Cg4,-Cgg = gain of 1 or 16 (with 2 integration cycles)

e Correlated double-sampling (CDS) used to sample
AVge or Vge and cancel opamp’s offset and 1/f noise
ISSCC 2007 K.A.A. Makinwa
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AVge Sampling (bs=0)

. . Vbpe
XA cycle » Id Iﬂ IE:J Css o
s ‘|_ Op > M -
¢2-|é_ : T + : C:?1 -
q)L J_ . ,¢ 5,¢ AV —o—o—| | +- -»V+
' ! BE . N int1
E E S e I <o
VA :',f'_‘_‘_*:::'__';:f'- QL Qr : Cs1
o fEAVe | ’_I:I r'; o
| | i
VSSQ CSS (I)1

 PNPs biased at 1:5 current ratio
* AVge g and offset sampled on 8 sampling capacitors

e Minimum size NMOS switches + 5pF caps

= residual offset ~ 10uV = too high
ISSCC 2007 K.A.A. Makinwa
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AVyge Integration (bs=0)

. . VDD &

XA cycle —>: I ¢ [2¢ ,Si Ces
o1 ] | il

" 1 [ T 6 o s

o> .t | 0o Cinr
02 ] 3 A
q)L J. !_ 5’¢ I¢ AVBE | +_>
| | ———{ -3
Via 7= *"'"‘\__,_ Q Qr + : Cs: —@{—u—
5 TELAVBE 5 FI:I r'; Ci 92 Gy
Vss® Clg

 Bias currents are swapped

e 2 integration cycles in 1 XA cycle
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Ve Sampling (bs=1)

Vpps
« YA cycle > Iy ¢¢

‘ l ;? ;6% N

01
¥2 |‘— : : E C:S1 \
oL | | lrim VBE"”L °": TS

""""""" E + |_°""6|| 7 =

VZA--_---_--__--__:- QL :31
-------- i oL | P
Ve r'; | _
Vss® 01

* Q, biased at programmable current I,
 —Vgg and offset sampled on 1 sampling capacitor
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Vg Integration (bs=1)

Vppe
+ XA cycle— WO b ...lﬁi%
01 ] 5
E E )

’mm* VBER > Vint1

| — Qg - ST o
§ o |_|; C 92 Gy

e | SWapped to Qg
= total charge: Cs- (Vgg, + Vagr)

« compare with 16 - C5 - (AVge g + AVige 1R)
— effective 16x gain for AVgg
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Chopped A Modulator

Css 91 M
— " o ” o o (I)/ R ! (I)
reset = 'Esf
. o
' 02 Cint o 0
—o"o ” === =====" 1
Cs1 N .y !
1 switched
J > o o—| X +- > X ' capacitor |
2 ST 4 + second .
| ~ C;; \ e / ' integrator .
chop oo | e :
2 chlop Cintl chlop
:\o—
reset
—\c II \0
Css 01

Offset after CDS >10uV = input, output and modulator
state are chopped 2x per conversion = sub-uV offset
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Chip Micrograph

ISSCC 2007

N\

K.A.A. Makinwa

4.5mm? in
0.7um CMOS

Off-chip decimation
filter removes
chopper residuals

Supply voltage:

2.5..5.5V
Supply current: 75uA
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Measurement Results

0.15

0.1

Error (°C)
o

-0.05

-0.1

-0.15

ISSCC 2007

-60 -40 -20 0 20 40 o0 80 100 120 140

Temperature (°C)

K.A.A. Makinwa

24 samples
from 1 batch

Inaccuracy (x30)
after trimming
at 30°C.:

+0.03°C 30°C
+0.1°C -55..125°C

World’s most
accurate CMOS
temp sensor!
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Summary

o Offset and 1/f are part of life!

Trimming
o reduces offset but not 1/f noise
o Nno loss of bandwidth
Auto-zeroing
o Reduces 1/f noise, but sampling = noise aliasing
o Indirect loss of bandwidth
Chopping
o eliminates 1/f noise
o Direct loss of bandwidth
Nested DOC techniques = sub-microvolt offset

ISSCC 2007 K.A.A. Makinwa
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