Dynamic-Offset Cancellation Techniques in CMOS

Kofi Makinwa

Electronic Instrumentation Laboratory Delft University of Technology Delft, The Netherlands

email: k.makinwa@ieee.org

Delft University of Technology

ISSCC, Feb. 2007

Motivation

- Many analog circuits e.g. opamps, integrators, comparators, ADC and DAC stages etc. require amplifiers with offsets in the **microvolt** range
- Also, many sensors (e.g. thermopiles, bridges, halleffect sensors etc.) output DC signals that need to be processed with **microvolt** precision
- However, the offset of native CMOS amplifiers is typically in the **millivolt** range
- This tutorial will focus on **dynamic** offset-cancellation (DOC) techniques, with which offset can be reduced to the **microvolt** level.

Outline

- Differential amplifiers Offset and 1/ *f* noise
- Trimming
- Dynamic Offset Cancellation
	- Auto-zeroing
	- \circ Chopping
- Design of a CMOS temperature sensor
- •Summary
- References

What is Offset?

- $\bullet\;$ When the input of a REAL amplifier is shorted, $\mathsf{V}_{\mathsf{out}}$ \neq 0!
- The **offset** V_{os} is the input voltage required to make V_{out} = 0. It is typically in the range 100µV to 10mV.
- Note: In CMOS, input currents are usually negligible.

Amplifier Behaviour Near DC

Characterized by

- •**Offset**
- •Drift
- •1/ *f* (flicker) noise
- Thermal noise
- \bullet 1/ *f* corner frequency
- Errors due to finite CMRR and PSRR

Differential Amplifiers

Differential amplifiers are often used to amplify DC signals.

Their balanced structure is

- Nominally offset free
- Rejects common-mode and power supply interference
- Easily realized in both CMOS and bipolar technologies

Offset in Differential Amplifiers

Component mismatch e.g. R1[≠] R 2, M1[≠] M 2⇒ **offset**

Mismatch is mainly due to

- Doping variations
- Lithographic errors
- Packaging & local stress

All things being equal

- \bullet Bipolar \Rightarrow V_{os} ~ 0.1mV
- \bullet CMOS \Rightarrow V $_{\text{os}}$ is 10 -100x worse!

What to Do?

Offset and 1/ *f* noise are part of life!

But we can reduce offset "enough" by

- 1. Using "large" devices and good layout¹ \Rightarrow 1mV
- 2. Trimming ⇒ 100µV
- 3. Dynamic offset-cancellation (DOC) techniques \Rightarrow 1µV

DOC techniques also

- •Reduce drift and 1/ *f* noise
- •Improve PSRR and CMRR

Trimming

- Low circuit complexity
- •Minimal effect on circuit bandwidth
- • Requires a memory element, e.g.
	- $\circ\,$ Fusible links (Zener diodes)
	- \circ Laser-trimmed resistors
	- Floating gate MOSFETs
	- $\, \circ \,$ PROM
- Requires test infrastructure
- •Does not reduce drift or 1/ *f* noise
- • Poorly defined temp. dependence of MOSFETs \Rightarrow offset after trimming > 100µV over temp.

Dynamic Offset Cancellation (DOC)

Two basic ideas $^{\mathsf{2}}$

- 1. Measure the offset somehow and then subtract it from the input signal $\;\Rightarrow$ Auto-zeroing
- 2. Modulate the offset away from DC and then filter it out \Rightarrow Chopping

DOC Techniques

Auto-zeroing

Discrete time

Sample offset, then subtract.

Chopping

Continuous time

Modulate offset away from DC, then filter.

Switches required $\;\Rightarrow$ CMOS or BiCMOS

DOC Techniques vs. Trimming

- + reduction of offset and 1/ *f* noise
- + excellent stability (over temperature, time, supply and common-mode voltages)
- + no additional costs for testing
- possible bandwidth reduction
- increased circuit complexity
- aliasing & intermodulation issues

Auto-zero Principle (1)

Auto-zero phase

- $\bullet\quad$ S₁, S₂ closed, S₃ open \Rightarrow V_{out} = V_{os} \Rightarrow offset stored on C_{az}
- Amplifier is unavailable

Auto-zero Principle (2)

Amplification phase:

- $\bullet\;\;{\mathsf S}_1, \, {\mathsf S}_2$ open, ${\mathsf S}_3$ closed \Rightarrow ${\mathsf V}_{\mathsf{in}}$ is amplified
- • *Finite* voltage gain A ⇒ error in sampled offset \Rightarrow input-referred residual offset V $_{\rm res}$ = V $_{\rm os}$ /(A+1)
- •Charge injection is also a problem …

Charge Injection (1)

Consists of two components

- 1. Channel charge, Q_{ch} = WLC_{ox}(V_{GS}-V_t)
- 2. Charge in the overlap capacitance between the gate and the source/drain \Rightarrow clock feed-through

Problematic when a MOSFET switches **OFF**.

Charge Injection (2)

Error voltage $\Delta {\rm V}_{\rm inj}$ depends on many factors 3,4

- •Source voltage and impedance
- •Transistor area (WL)
- •Clock amplitude & slew rate
- •Value of C_{az} (larger values \Rightarrow smaller errors)
- • In a 0.7µm process, minimum size NMOS switch, 2.5V step & 10pF \Rightarrow $\Delta\mathsf{V}_{\mathsf{inj}}$ ~ 250µV

Mitigating Charge Injection (CI)

- Use differential topologies \Rightarrow common-mode CI \Rightarrow 1 $^{\rm st}$ order cancellation
- Use minimum size switches (subject to noise & BW requirements)
- For single-ended topologies dummy switches help3,4
- **But** area of main switch will be~2x minimum size \Rightarrow more CI $\,$ \Rightarrow limited benefit

Sampling the offset: kT/C noise

- •Thermal noise of R_{on} is filtered by C_{az}
- • When the switch is opened the instantaneous noise voltage is held on C_{27}
- •Total noise power = kT/C $_{\rm az}$ (10pF @ 300K \Rightarrow 20.3µV)
- •Large capacitance \Rightarrow accurate sampling of V_{os}

Reducing Capacitor Size (1)

$$
V_{res} = V_{os2}/(A_1A_2) + \Delta V_{inj}/A_1
$$

- •Offset of 1st amplifier is cancelled^{5,6}
- •Gain of 1st amplifier reduces offset of 2nd amplifier
- •**But** too much gain ⇒ clipping!
- •Also reduces kT/C noise and charge injection errors
- \Rightarrow Sampling capacitors can be smaller

Reducing Capacitor Size (2)

Amplifier with an auxiliary input^{7,8}

- $V_{res} \sim V_{os1}/(gm_2R) + V_{os2}/(gm_1R) + \Delta V_{inj}(gm_2/gm_1)$
- Large R and gm $_{2}$ << gm $_{1}$ \Rightarrow low-offset and reduced kT/C noise and charge injection errors
- \Rightarrow Sampling capacitors can be smaller

Residual Offset of Auto-zeroing

Determined by

- Charge injection
- $\bullet~$ Leakage on C_{az}
- Finite amplifier gain

In practice

- Minimum size switches
- \bullet $\,$ $\rm C_{az}$ as large as possible (sometimes external)
- Multi-stage amplifier topologies

Results in residual offsets of 1-10 μ V

Residual Noise of Auto-zeroing (1)

 $V_{n,az}(f) = V_n(f)^*(1 - H(f))$

H(f) is the frequency response of the S&H

- $\textsf{H}(\textsf{f})=\textsf{sinc}(\pi\textsf{f}/\textsf{f}_{_{\textsf{S}}}) \Rightarrow \textsf{LPF}$
- \Rightarrow 1 H(f) is a HPF
- \Rightarrow reduction of both offset and 1/ *f* noise
- \Rightarrow but thermal noise will be (under) sampled

Residual Noise of Auto-zeroing (2)

- •• Noise bandwidth B>f_s (due to settling considerations) \Rightarrow input noise will be folded back (aliased) to DC
- $\bullet~$ The result is then LP filtered by the ${\sf sinc}(\pi {\sf f}/{\sf f}_\text{s})$ function

Residual Noise of Auto-zeroing (3)

- S&H with 100kHz clock & 50% duty-cycle
- •Noise aliasing \Rightarrow factor of 6 increase in LF noise!
- \bullet Notches at multiples of **2**fclock due to 50% duty cycle 2
- •Sampled noise spectrum obtained with Spectre RF9,10

Residual Noise of Auto-zeroing (4)

- Detailed analysis 2 ⇒ significant reduction of 1/ *f* noise **IF** f_s >> 1/*f* corner frequency
- \bullet Noise aliasing \Rightarrow LF power increased by the undersampling factor (USF) = 2B/f $_{\textrm{s}}$ \Rightarrow factor 3 to 6 in volts

Ping-Pong Amplifier

- Input signal "bounced" between two autozeroed amplifiers^{11,12}
- Output V_{out} is then a quasi-continuous signal
- \bullet But switching spikes limit performance
- Randomized switching reduces spikes¹³

Offset Stabilization (OS)

Low bandwidth, low offset compensating amplifier \Rightarrow Auto-zeroed or chopped

AZ Offset-Stabilized Amplifier

- Auto-zeroed nulling amp cancels the offset of main amplifier^{14,15}
- Continuous output and less spikes
- But poor overload performance, i.e. when $\mathsf{V}_\text{\tiny{+}}-\mathsf{V}_\text{\tiny{-}} > \mathsf{V}_{\text{\tiny{OS}}}$
- Amplifier cannot be used as a comparator

System-level Auto-zeroing

- Phase 1: $V_1 = A(V_{os} + V_{in})$
- •Phase 2: $V_2 = AV_{\text{os}}$
- \Rightarrow (V₁-V₂) = AV_{in}
- •Offset stored in the digital domain
- •Widely used in instrumentation & measurement systems

Correlated Double Sampling (CDS)

- Sometimes only a signal **difference** is required e.g. in image sensors
- Phase 1: $V_1 = A(V_{in1} + V_{os})$
- Phase 2: \vee_2 = A(\vee_{in2} + \vee_{os})

$$
\Rightarrow (V_1 - V_2) = A(V_{in1} - V_{in2})
$$

• To maximize suppression of 1/f noise, the interval $t_1 - t_2$, should be as short as possible

The 3 Signal Method

- Phase 1: $V_1 = A(V_{os} + V_{in})$
- Phase 2: $\rm V_2$ = A(V $_{\rm os}$ + V $_{\rm ref}$)
- $\bullet~$ Phase 3: V_3 = AV $_{\mathsf{os}}$

$$
\Rightarrow V_{in} = V_{ref}(V_1 - V_3)/(V_2 - V_3)
$$

Requires a known reference voltage **and** a microprocessor to perform the division

Auto-Zeroing: Summary

- Offsets in the range of 1-10µV can be achieved
- No loss of bandwidth with appropriate amplifier topologies (ping-pong, offset-stabilization)
- Sampled data technique \Rightarrow kT/C noise is an issue
- $\bullet~$ Noise aliasing will occur \Rightarrow increased LF noise
- DOC technique of choice in sampled-data systems e.g. switched-capacitor filters, ADCs etc.

Chopping Principle

Signal is modulated, amplified and then demodulated¹⁶

- **+** Output signal is continuously available
- **-**- Low-pass filter required

Square-wave Modulation

- Easily generated modulating signal
- \bullet Modulator is a simple polarity-reversing switch
- \bullet Switches are easily realized in CMOS

Chopping in the Time Domain

- $\bullet\;\;{\rm V}_{\rm res} = 0$ **IF** duty-cycle of ${\rm V}_{\rm ch}$ is exactly 50% \Rightarrow flip-flop
- \bullet If $\rm V_{os}^{}=10mV$ & f $\rm_{ch}^{}=50kHz,$ then 1ns skew $\rm \Rightarrow V_{res}^{}=1\mu V$

Chopping in the Frequency Domain

Residual Noise of Chopping

- 1/ *f* noise is **completely** removed **IF** $f_{\sf ch}$ > 1/*f* corner frequency
- \bullet Significantly better than auto-zeroing!

Bandwidth & Gain Accuracy

- $\bullet~$ Limited BW \Rightarrow lower effective gain $\mathsf{A}_{\mathsf{eff}}$ $\mathop{\mathsf{and}}$ chopping artifacts at even harmonics of f $_{\mathsf{ch}}$
- $A_{\text{eff}} = A (1-4\tau/T_{\text{ch}})$ for a 1st order LP filter, where BW = 1/2 π τ and τ << T $_{\rm ch}$
- T_{ch} / τ = 40 \Rightarrow BW = 6.4f_{ch} \Rightarrow 10% gain error!

Chopper Opamp with Feedback

- Feedback resistors \Rightarrow Accurate gain 17,18
- •To suppress $\mathsf{V}_{\text{os}2}$, A_1 should have high gain
- •Miller capacitors C_{m} also suppress ripple
- •Minimum ripple \Rightarrow high chopping frequencies

Residual Offset of Chopping (1)

- Due to mismatched charge injection and clock feedthrough at the input chopper^{19,20}
- \bullet Causes a typical offset of 1-10 μ V
- •Input spikes \Rightarrow bias current (typically 50pA)

Residual Offset of Chopping (2)

- Residual offset 2 = 2f $_{\rm ch}$ V $_{\rm spike}$ τ
- $\bullet~$ Spike shape (τ) depends on source impedance e.g. feedback resistors around an opamp

Design Considerations

Input chopper

- •Use minimum size switches
- •Good layout \Rightarrow symmetric, balanced clock coupling
- Ensure that switches "see" equal impedances
- Use a flip-flop to ensure an exact 50% duty-cycle

Chopping frequency f_{ch}

- Higher than 1/ *f* noise corner frequency
- $\bullet~$ Not **too** high, as the residual offset increases with f $_{\mathsf{ch}}$

Amplifier BW >> f_{ch} to minimize gain errors

Band-Pass Filtering

- Spike spectrum is "whiter" than that of modulated signal ⇒ BP filter will reduce **relative** spike amplitude19,21,22
- Clock frequency tracks BP filter's center frequency \Rightarrow low Q filter, Q ~ 5
- \bullet Residual offset ~ 0.5 μV!

Delayed Demodulation

- Optimal delay $\sim 0.7\tau_{\rm spike}$
- •Tricky timing!
- Solution: clock and spikes delayed by identical amplifiers²³
- \bullet Residual offset $\sim 1 \mu V$

Nested Chopping

- •Inner HF chopper removes 1/ *f* noise
- •Outer LF chopper removes residual offset^{24,25}
- •Residual offset ~ 100nV, but reduced bandwidth
- •Note: input choppers should not be merged!

Dead-Banding

- •During dead-band amplifiers output is tri-stated^{26,27,28}
- •Residual offset ~ 200nV!
- BUT loss of gain and aliasing due to S&H action \Rightarrow slightly worse noise performance

Precision V-I Converter

- $\bullet~$ Front-end of a magnetic field sensor 29 with $<$ 50nV offset!
- •Fast output chopper implements dead-bands
- •During dead-bands, output current flows into a CM node
- •Slow output chopper implemented in ADC

Dealing with Spikes: Overview

- \bullet BP Filtering: ~ 0.5 μV offset, complex clock timing
- Delayed demodulation: \sim 1 μ V offset, complex clock timing
- •Dead-banding: ~ 200nV offset, wide BW
- •Nested chopping: ~ 100nV offset, but limited BW

Last two techniques represent best compromise between offset magnitude and circuit complexity

Chopping Artifacts

Modulated offset \Rightarrow chopping artifacts $\;$

- •Can be removed by a low-pass filter
- \bullet BUT analog filters with low cut-off frequencies are difficult to realize on chip

Auto-zeroing and Chopping

- •Significantly improves LF noise performance^{30,31,42}
- •Much less artifacts than with chopping alone
- 3 μ V offset & 20nV/ \sqrt{Hz} demonstrated in a ping-pong amplifier³⁰
- •Choosing $f_{ch} = 2f_{az} \Rightarrow$ aliased noise has notch at DC

AC Coupling

- AC coupling will block the amplifier's offset
- Alternatively, DC "servo" loop (shown) *inside* the choppers will also suppress the amplifier's offset $32,33$
- Note: DC servo loop *outside* the choppers results in a low-noise amplifier with a HPF characteristic^{33,34}

Switched Capacitor Filter (1)

- • Chopped offset is integrated & the triangular ripple is then sampled at the zero-crossings³⁵
- •SC filter essentially eliminates residual ripple
- •Filter introduces delay and a (small) noise penalty

Switched Capacitor Filter (2)

- • SC filters have been used in **true** chopper-stabilized opamps9,36
- $\bullet~$ Note: gm4 is not chopped \Rightarrow V $_{\sf res}$ > V $_{\sf os4}$ A $_{\sf gm4}$ /(A $_{\sf gm1}$ A $_{\sf gm2})$
- • Filter delay incorporated into a multi-path nested Miller compensation scheme

Digital Filtering

- •Chopped signal is digitized
- •Demodulation is done digitally^{25,37}
- • Chopper artifacts are removed by a digital LPF e.g. a sinc filter with notches at f_{ch}

Dealing with Artifacts: Overview

Reduce the amplifier's initial offset

- •Auto-zeroing and chopping: increased noise
- •DC servo: still requires some analog filtering
- Switched capacitor filtering

Digital Filtering

- Very low cut-off frequencies can be realized
- \bullet Decimation filter of a ΣΔ ADC can be used to remove chopper artifacts \Rightarrow no extra overhead

Chopping: Summary

- •Offsets in the range of 50nV-10µV can be achieved
- Fundamental loss of bandwidth (unless offset-stabilized topologies can be used)
- Eliminates 1/ *f* noise, noise floor set by thermal noise
- \bullet DOC technique of choice when noise or offset performance is paramount e.g. in biomedical amplifiers, low-power opamps, smart sensors etc.

State-of-the-Art Opamps

*****Conditionally stable

Design of a CMOS Temp. Sensor^{40,41}

- Why CMOS 'smart' temperature sensors? + digital interface + low cost
- But accuracy is a problem! Only $\pm2.0^{\circ}$ C from –55°C to 125 ° $^{\circ}{\rm C}$
- By comparison: class-A Pt100 achieves $\pm 0.5^{\circ}\text{C}$ in the same temp. range
- Goal: ±0.1°C from –55°C to 125°Cwith single temperature calibration only

Operating Principle

• Substrate PNPs generate:

 ΔV_{BE^-} proportional to absolute temp. (PTAT) V_{BF} complementary to absolute temp. (CTAT)

• Ratiometric measurement: *BE BE BE REFTEMP* $V_{RF} + \alpha \cdot \Delta V$ *V V V* $+ \, \alpha \cdot \Delta$ $\mu = \frac{V_{\text{TEMP}}}{V} = \frac{\alpha \cdot \Delta}{V}$

Block Diagram

- ΣΔ modulator produces bitstream *bs* whose average is representation of temperature
- $\bullet \;\;$ <u>Offset</u> in ΔV_{BE} read-out results in errors of ~10°C/mV \Rightarrow offset << 10 μ V required for error << 0.1°C
- $\bullet~$ Spread of \mathcal{V}_{BE} and bias-current ratio are mitigated by trimming and DEM respectively^{40,41}
- • Bitstream is filtered and scaled by decimation filter to produce binary reading in °C

Charge Balancing in ΣΔ

- Every clock cycle, either 16·∆V_{BE} (bs=0) or $-V_{BE}$ (bs=1) is input to the loopfilter
- \bullet Resulting bitstream average μ:

$$
\mu \cdot V_{BE} = (1 - \mu) \cdot 16 \cdot \Delta V_{BE} \Rightarrow \mu = \frac{16 \cdot \Delta V_{BE}}{V_{BE} + 16 \cdot \Delta V_{BE}} = \frac{16 \cdot \Delta V_{BE}}{V_{REF}}
$$

ISSCC 2007 K.A.A. Makinwa 61

Switched-Capacitor 1st Integrator

- PNPs Q_L and Q_R generate $\Delta\,V_{BE}$ (bs=0) or $\,V_{BE}$ (bs=1)
- C_{S1} - C_{S8} \Rightarrow gain of 1 or 16 (with 2 integration cycles)
- ISSCC 2007 K.A.A. Makinwaa 62 • Correlated double-sampling (CDS) used to sample Δ V_{BE} *or* V_{BE} *and cancel opamp's offset and 1/f noise*

$\boldsymbol{\Delta}$ *VBE* **Sampling (***bs***=0)**

- •PNPs biased at 1:5 current ratio
- • $\Delta\mathsf{V}_{\mathsf{BE},\mathsf{RL}}$ **and** offset sampled on 8 sampling capacitors
- •Minimum size NMOS switches + 5pF caps
- ISSCC 2007 K.A.A. Makinwaa 63 \Rightarrow residual offset ~ 10 μ V \Rightarrow too high $\;$

$\boldsymbol{\Delta}$ *VBE* **Integration (***bs***=0)**

- \bullet Bias currents are swapped \Rightarrow integrated charge: 8 \cdot $C_{\textrm{S}}\cdot$ $(\Delta V_{BE,RL}$ + $\Delta V_{BE,LR})$
- \bullet $\,$ 2 integration cycles in 1 $\Sigma\Delta$ cycle \Rightarrow total charge: 16 \cdot $C_{\text{S}}\cdot$ $(\Delta V_{BE,RL}$ + $\Delta V_{BE,LR})$

VBE **Sampling (***bs***=1)**

- • Q_L biased at programmable current I_{trim}
- \bullet $\bullet~~ -V_{BEL}$ and offset sampled on 1 sampling capacitor

VBE **Integration (***bs***=1)**

- \bullet $\,$ $\,I_{trim}$ swapped to $\, \mathrm{Q}_{R} \,$ \Rightarrow total charge: $C_\mathcal{S}\cdot(V_{BEL}+V_{BER})$
- compare with 16 \cdot $C_{\textrm{S}}\cdot$ $(\Delta V_{BE,RL}$ + $\Delta V_{BE,LR})$ \Rightarrow effective 16x gain for $\Delta\mathsf{V}_{\!B\!E}$

Chopped ΣΔ **Modulator**

ISSCC 2007 K.A.A. Makinwaa 67 Offset after CDS >10 μV ⇒ input, output **and** modulator state are chopped 2x per conversion \Rightarrow sub- $\mu\mathsf{V}$ offset

Chip Micrograph

- • $4.5\mathsf{mm}^2$ in 0.7 μm CMOS
- Off-chip decimation filter removes chopper residuals
- • Supply voltage: 2.5..5.5V
- •Supply current: 75µA

Measurement Results

24 samples from 1 batchInaccuracy (±3 ^σ) after trimming at 30°C: ±0.03°C 30°C $\pm 0.1^{\circ}$ C –55..125 $^{\circ}$ C

World's most accurate CMOS temp sensor!

Summary

- Offset and 1/*f* are part of life!
- Trimming
	- \circ reduces offset but not 1/*f* noise
	- $\circ\,$ no loss of bandwidth
- Auto-zeroing
	- $\circ~$ Reduces 1/*f* noise, but sampling \Rightarrow noise aliasing
	- \circ Indirect loss of bandwidth
- Chopping
	- eliminates 1/ *f* noise
	- \circ Direct loss of bandwidth
- $\bullet~$ Nested DOC techniques \Rightarrow sub-microvolt offset

