Dynamic-Offset Cancellation Techniques in CMOS

Kofi Makinwa

Electronic Instrumentation Laboratory Delft University of Technology Delft, The Netherlands

email: k.makinwa@ieee.org

Delft University of Technology

ISSCC, Feb. 2007

Motivation

- Many analog circuits e.g. opamps, integrators, comparators, ADC and DAC stages etc. require amplifiers with offsets in the **microvolt** range
- Also, many sensors (e.g. thermopiles, bridges, halleffect sensors etc.) output DC signals that need to be processed with microvolt precision
- However, the offset of native CMOS amplifiers is typically in the **millivolt** range
- This tutorial will focus on **dynamic** offset-cancellation (DOC) techniques, with which offset can be reduced to the **microvolt** level.

ISSCC 2007

Outline

- Differential amplifiers
 Offset and 1/f noise
- Trimming
- Dynamic Offset Cancellation
 - Auto-zeroing
 - Chopping
- Design of a CMOS temperature sensor
- Summary
- References

What is Offset?

- When the input of a REAL amplifier is shorted, $V_{out} \neq 0!$
- The offset V_{os} is the input voltage required to make $V_{out} = 0$. It is typically in the range 100µV to 10mV.
- Note: In CMOS, input currents are usually negligible.

ISSCC 2007

Amplifier Behaviour Near DC

Characterized by

- Offset
- Drift
- 1/f (flicker) noise
- Thermal noise
- 1/f corner frequency
- Errors due to finite CMRR and PSRR

Differential Amplifiers

Differential amplifiers are often used to amplify DC signals.

Their balanced structure is

- Nominally offset free
- Rejects common-mode and power supply interference
- Easily realized in both CMOS and bipolar technologies

Offset in Differential Amplifiers

Component mismatch e.g. $R_1 \neq R_2$, $M_1 \neq M_2 \Rightarrow$ offset

Mismatch is mainly due to

- Doping variations
- Lithographic errors
- Packaging & local stress

All things being equal

- Bipolar \Rightarrow V_{os} ~ 0.1mV
- CMOS \Rightarrow V_{os} is 10 -100x worse!

What to Do?

Offset and 1/f noise are part of life!

But we can reduce offset "enough" by

- 1. Using "large" devices and good layout¹ \Rightarrow 1mV
- 2. Trimming $\Rightarrow 100 \mu V$
- 3. Dynamic offset-cancellation (DOC) techniques $\Rightarrow 1\mu V$

DOC techniques also

- Reduce drift and 1/f noise
- Improve PSRR and CMRR

Trimming

- Low circuit complexity
- Minimal effect on circuit bandwidth
- Requires a memory element, e.g.
 - Fusible links (Zener diodes)
 - Laser-trimmed resistors
 - Floating gate MOSFETs
 - o PROM
- Requires test infrastructure
- Does not reduce drift or 1/f noise
- Poorly defined temp. dependence of MOSFETs \Rightarrow offset after trimming > 100µV over temp.

Dynamic Offset Cancellation (DOC)

Two basic ideas²

- 1. Measure the offset somehow and then subtract it from the input signal \Rightarrow Auto-zeroing
- 2. Modulate the offset away from DC and then filter it out \Rightarrow Chopping

DOC Techniques

Auto-zeroing

Discrete time

Sample offset, then subtract.

Chopping

Continuous time

Modulate offset away from DC, then filter.

Switches required \Rightarrow CMOS or BiCMOS

DOC Techniques vs. Trimming

- + reduction of offset and 1/f noise
- + excellent stability (over temperature, time, supply and common-mode voltages)
- + no additional costs for testing
- possible bandwidth reduction
- increased circuit complexity
- aliasing & intermodulation issues

Auto-zero Principle (1)

Auto-zero phase

- S_1 , S_2 closed, S_3 open $\Rightarrow V_{out} = V_{os}$ \Rightarrow offset stored on C_{az}
- Amplifier is unavailable

ISSCC 2007

Auto-zero Principle (2)

Amplification phase:

- S_1 , S_2 open, S_3 closed $\Rightarrow V_{in}$ is amplified
- *Finite* voltage gain A \Rightarrow error in sampled offset \Rightarrow input-referred residual offset V_{res} = V_{os}/(A+1)
- Charge injection is also a problem ...

ISSCC 2007

Charge Injection (1)

Consists of two components

- 1. Channel charge, $Q_{ch} = WLC_{ox}(V_{GS}-V_t)$
- 2. Charge in the overlap capacitance between the gate and the source/drain \Rightarrow clock feed-through

Problematic when a MOSFET switches **OFF**.

Charge Injection (2)

Error voltage ΔV_{ini} depends on many factors^{3,4}

- Source voltage and impedance
- Transistor area (WL)
- Clock amplitude & slew rate
- Value of C_{az} (larger values \Rightarrow smaller errors)
- In a 0.7µm process, minimum size NMOS switch, 2.5V step & 10pF $\Rightarrow \Delta V_{ini} \sim 250 \mu V$

ISSCC 2007

Mitigating Charge Injection (CI)

- Use differential topologies
 ⇒ common-mode CI
 ⇒ 1st order cancellation
- Use minimum size switches (subject to noise & BW requirements)
- For single-ended topologies dummy switches help^{3,4}
- But area of main switch will be ~2x minimum size ⇒ more CI ⇒ limited benefit

Sampling the offset: kT/C noise

- Thermal noise of R_{on} is filtered by C_{az}
- When the switch is opened the instantaneous noise voltage is held on C_{az}
- Total noise power = kT/C_{az} (10pF @ 300K \Rightarrow 20.3 μ V)
- Large capacitance \Rightarrow accurate sampling of V_{os}

Reducing Capacitor Size (1)

$$V_{res} = V_{os2} / (A_1 A_2) + \Delta V_{inj} / A_1$$

- Offset of 1st amplifier is cancelled^{5,6}
- Gain of 1st amplifier reduces offset of 2nd amplifier
- **But** too much gain \Rightarrow clipping!
- Also reduces kT/C noise and charge injection errors
- \Rightarrow Sampling capacitors can be smaller

ISSCC 2007

Reducing Capacitor Size (2)

Amplifier with an auxiliary input^{7,8}

- $V_{res} \sim V_{os1}/(gm_2R) + V_{os2}/(gm_1R) + \Delta V_{inj}(gm_2/gm_1)$
- Large R and $gm_2 \ll gm_1 \Rightarrow$ low-offset and reduced kT/C noise and charge injection errors
- \Rightarrow Sampling capacitors can be smaller

ISSCC 2007

Residual Offset of Auto-zeroing

Determined by

- Charge injection
- Leakage on C_{az}
- Finite amplifier gain

In practice

- Minimum size switches
- C_{az} as large as possible (sometimes external)
- Multi-stage amplifier topologies

Results in residual offsets of $1-10\mu V$

Residual Noise of Auto-zeroing (1)

$$V_{n,az}(f) = V_n(f)^*(1 - H(f))$$

H(f) is the frequency response of the S&H

- $H(f) = sinc(\pi f/f_s) \Rightarrow LPF$
- \Rightarrow 1 H(f) is a HPF
- \Rightarrow reduction of both offset and 1/f noise
- ⇒ but thermal noise will be (under) sampled

Residual Noise of Auto-zeroing (2)

- Noise bandwidth B > f_s (due to settling considerations)
 ⇒ input noise will be folded back (aliased) to DC
- The result is then LP filtered by the sinc(π f/f_s) function

ISSCC 2007

Residual Noise of Auto-zeroing (3)

- S&H with 100kHz clock & 50% duty-cycle
- Noise aliasing \Rightarrow factor of 6 increase in LF noise!
- Notches at multiples of 2 fclock due to 50% duty cycle²
- Sampled noise spectrum obtained with Spectre RF^{9,10}

ISSCC 2007

Residual Noise of Auto-zeroing (4)

- Detailed analysis² ⇒ significant reduction of 1/*f* noise
 IF f_s >> 1/*f* corner frequency
- Noise aliasing \Rightarrow LF power increased by the undersampling factor (USF) = 2B/f_s \Rightarrow factor 3 to 6 in volts

ISSCC 2007

Ping-Pong Amplifier

- Input signal "bounced" between two autozeroed amplifiers^{11,12}
- Output V_{out} is then a quasi-continuous signal
- But switching spikes limit performance
- Randomized switching reduces spikes¹³

Offset Stabilization (OS)

Low bandwidth, low offset compensating amplifier \Rightarrow Auto-zeroed or chopped

AZ Offset-Stabilized Amplifier

- Auto-zeroed nulling amp cancels the offset of main amplifier^{14,15}
- Continuous output and less spikes
- But poor overload performance, i.e. when V₊ – V₋ > V_{os}
- Amplifier cannot be used as a comparator

System-level Auto-zeroing

- Phase 1: $V_1 = A(V_{os} + V_{in})$
- Phase 2: $V_2 = AV_{os}$
- \Rightarrow (V₁-V₂) = AV_{in}
- Offset stored in the digital domain
- Widely used in instrumentation & measurement systems

Correlated Double Sampling (CDS)

- Sometimes only a signal **difference** is required e.g. in image sensors
- Phase 1: $V_1 = A(V_{in1} + V_{os})$
- Phase 2: $V_2 = A(V_{in2} + V_{os})$

$$\Rightarrow (V_1 - V_2) = A(V_{in1} - V_{in2})$$

 To maximize suppression of 1/f noise, the interval t₁ - t₂, should be as short as possible

ISSCC 2007

The 3 Signal Method

- Phase 1: $V_1 = A(V_{os} + V_{in})$
- Phase 2: $V_2 = A(V_{os} + V_{ref})$
- Phase 3: $V_3 = AV_{os}$

$$\Rightarrow V_{in} = V_{ref}(V_1 - V_3)/(V_2 - V_3)$$

Requires a known reference voltage and a microprocessor to perform the division

ISSCC 2007

Auto-Zeroing: Summary

- Offsets in the range of $1-10\mu V$ can be achieved
- No loss of bandwidth with appropriate amplifier topologies (ping-pong, offset-stabilization)
- Sampled data technique \Rightarrow kT/C noise is an issue
- Noise aliasing will occur \Rightarrow increased LF noise
- DOC technique of choice in sampled-data systems e.g. switched-capacitor filters, ADCs etc.

Chopping Principle

Signal is modulated, amplified and then demodulated¹⁶

- + Output signal is continuously available
- Low-pass filter required

Square-wave Modulation

- Easily generated modulating signal
- Modulator is a simple polarity-reversing switch
- Switches are easily realized in CMOS

Chopping in the Time Domain

- $V_{res} = 0$ IF duty-cycle of V_{ch} is exactly 50% \Rightarrow flip-flop
- If V_{os} = 10mV & f_{ch} = 50kHz, then 1ns skew $~\Rightarrow~V_{res}$ = 1 μV

ISSCC 2007

Chopping in the Frequency Domain

ISSCC 2007

Residual Noise of Chopping

- 1/f noise is completely removed
 IF f_{ch} > 1/f corner frequency
- Significantly better than auto-zeroing!

Bandwidth & Gain Accuracy

- Limited BW ⇒ lower effective gain A_{eff}
 and chopping artifacts at even harmonics of f_{ch}
- $A_{eff} = A (1-4\tau/T_{ch})$ for a 1st order LP filter, where BW = 1/2 $\pi\tau$ and $\tau << T_{ch}$
- $T_{ch} / \tau = 40 \Rightarrow BW = 6.4 f_{ch} \Rightarrow 10\%$ gain error!

ISSCC 2007

Chopper Opamp with Feedback

- Feedback resistors \Rightarrow Accurate gain^{17,18}
- To suppress V_{os2} , A_1 should have high gain
- Miller capacitors C_m also suppress ripple
- Minimum ripple \Rightarrow high chopping frequencies

ISSCC 2007

Residual Offset of Chopping (1)

- Due to mismatched charge injection and clock feedthrough at the input chopper^{19,20}
- Causes a typical offset of $1-10\mu V$
- Input spikes \Rightarrow bias current (typically 50pA)

ISSCC 2007

Residual Offset of Chopping (2)

- Residual offset² = $2f_{ch}V_{spike}\tau$
- Spike shape (τ) depends on source impedance e.g. feedback resistors around an opamp

ISSCC 2007

Design Considerations

Input chopper

- Use minimum size switches
- Good layout \Rightarrow symmetric, balanced clock coupling
- Ensure that switches "see" equal impedances
- Use a flip-flop to ensure an exact 50% duty-cycle

Chopping frequency f_{ch}

- Higher than 1/f noise corner frequency
- Not **too** high, as the residual offset increases with f_{ch}

Amplifier BW >> f_{ch} to minimize gain errors

Band-Pass Filtering

- Spike spectrum is "whiter" than that of modulated signal \Rightarrow BP filter will reduce **relative** spike amplitude^{19,21,22}
- Clock frequency tracks BP filter's center frequency \Rightarrow low Q filter, Q ~ 5
- Residual offset ~ 0.5μ V!

ISSCC 2007

Delayed Demodulation

- Optimal delay $\sim 0.7 \tau_{spike}$
- Tricky timing!
- Solution: clock and spikes delayed by identical amplifiers²³
- Residual offset ~ $1\mu V$

Nested Chopping

- Inner HF chopper removes 1/f noise
- Outer LF chopper removes residual offset^{24,25}
- Residual offset ~ 100nV, but reduced bandwidth
- Note: input choppers should not be merged!

Dead-Banding

- During dead-band amplifiers output is tri-stated^{26,27,28}
- Residual offset ~ 200nV!
- BUT loss of gain and aliasing due to S&H action ⇒ slightly worse noise performance

Precision V-I Converter

- Front-end of a magnetic field sensor²⁹ with < 50nV offset!
- Fast output chopper implements dead-bands
- During dead-bands, output current flows into a CM node
- Slow output chopper implemented in ADC

ISSCC 2007

Dealing with Spikes: Overview

- BP Filtering: ~ $0.5\mu V$ offset, complex clock timing
- Delayed demodulation: ~ 1 $\mu V\,$ offset, complex clock timing
- Dead-banding: ~ 200nV offset, wide BW
- Nested chopping: ~ 100nV offset, but limited BW

Last two techniques represent best compromise between offset magnitude and circuit complexity

Chopping Artifacts

Modulated offset \Rightarrow chopping artifacts

- Can be removed by a low-pass filter
- BUT analog filters with low cut-off frequencies are difficult to realize on chip

ISSCC 2007

Auto-zeroing and Chopping

- Significantly improves LF noise performance^{30,31,42}
- Much less artifacts than with chopping alone
- 3 μ V offset & 20nV/ \sqrt{Hz} demonstrated in a ping-pong amplifier³⁰
- Choosing $f_{ch} = 2f_{az} \Rightarrow$ aliased noise has notch at DC

ISSCC 2007

AC Coupling

- AC coupling will block the amplifier's offset
- Alternatively, DC "servo" loop (shown) *inside* the choppers will also suppress the amplifier's offset^{32,33}
- Note: DC servo loop *outside* the choppers results in a low-noise amplifier with a HPF characteristic^{33,34}

Switched Capacitor Filter (1)

- Chopped offset is integrated & the triangular ripple is then sampled at the zero-crossings³⁵
- SC filter essentially eliminates residual ripple
- Filter introduces delay and a (small) noise penalty

ISSCC 2007

Switched Capacitor Filter (2)

- SC filters have been used in true chopper-stabilized opamps^{9,36}
- Note: gm4 is not chopped \Rightarrow V_{res} > V_{os4}A_{gm4}/(A_{gm1}A_{gm2})
- Filter delay incorporated into a multi-path nested Miller compensation scheme

ISSCC 2007

Digital Filtering

- Chopped signal is digitized
- Demodulation is done digitally^{25,37}
- Chopper artifacts are removed by a digital LPF e.g. a sinc filter with notches at f_{ch}

Dealing with Artifacts: Overview

Reduce the amplifier's initial offset

- Auto-zeroing and chopping: increased noise
- DC servo: still requires some analog filtering
- Switched capacitor filtering

Digital Filtering

- Very low cut-off frequencies can be realized
- Decimation filter of a $\Sigma\Delta$ ADC can be used to remove chopper artifacts \Rightarrow no extra overhead

Chopping: Summary

- Offsets in the range of 50nV-10µV can be achieved
- Fundamental loss of bandwidth (unless offset-stabilized topologies can be used)
- Eliminates 1/f noise, noise floor set by thermal noise
- DOC technique of choice when noise or offset performance is paramount e.g. in biomedical amplifiers, low-power opamps, smart sensors etc.

State-of-the-Art Opamps

Туре	Offset (max)	Noise (0 - 10Hz)	DOC Freq. (kHz)	lsy (max, μA)	Typ. GBW (MHz)	Technique
LTC2050	3µV	1.5µV	7.5	1200	3.0	AZ-OS
AD8571 ¹³	10µV	1.0µV	2 – 4	1075	1.0	Randomized AZ-PP
AD8628 ³⁰	10µV	0.6µV	7.5/15	1000	2.5	CH & AZ-PP
MAX4238 ³⁹	3.5µV	1.5µV	10 – 15	850	1.0	Randomized CH-OS
OPA333 ⁹	10µV	1.1µV	100	28	0.35	CH-OS
CS3001 ³⁸	10µV	0.125µV	200	2800	5.0*	CH-OS

*Conditionally stable

ISSCC 2007

Design of a CMOS Temp. Sensor^{40,41}

- Why CMOS 'smart' temperature sensors?
 + digital interface
 + low cost
- But accuracy is a problem! Only ±2.0°C from –55°C to 125°C
- By comparison: class-A Pt100 achieves ±0.5°C in the same temp. range
- Goal: ±0.1°C from –55°C to 125°C with single temperature calibration only

Operating Principle

• Substrate PNPs generate:

 ΔV_{BE} proportional to absolute temp. (PTAT) V_{BE} complementary to absolute temp. (CTAT)

• Ratiometric measurement: $\mu = \frac{V_{TEMP}}{V_{REF}} = \frac{\alpha \cdot \Delta V_{BE}}{V_{BE} + \alpha \cdot \Delta V_{BE}}$

ISSCC 2007

Block Diagram

- $\Sigma\Delta$ modulator produces bitstream *bs* whose average is representation of temperature
- <u>Offset</u> in ΔV_{BE} read-out results in errors of ~10°C/mV \Rightarrow offset << 10µV required for error << 0.1°C
- Spread of V_{BE} and bias-current ratio are mitigated by trimming and DEM respectively^{40,41}
- Bitstream is filtered and scaled by decimation filter to produce binary reading in °C

Charge Balancing in $\Sigma\Delta$

- Every clock cycle, either 16·∆V_{BE} (bs=0) or −V_{BE} (bs=1) is input to the loopfilter
- Resulting bitstream average μ:

$$\mu \cdot V_{BE} = (1 - \mu) \cdot 16 \cdot \Delta V_{BE} \Rightarrow \mu = \frac{16 \cdot \Delta V_{BE}}{V_{BE} + 16 \cdot \Delta V_{BE}} = \frac{16 \cdot \Delta V_{BE}}{V_{REF}}$$
ISSCC 2007 K.A.A. Makinwa

Switched-Capacitor 1st Integrator

- PNPs Q_L and Q_R generate ΔV_{BE} (bs=0) or V_{BE} (bs=1)
- C_{S1} - C_{S8} \Rightarrow gain of 1 or 16 (with 2 integration cycles)
- Correlated double-sampling (CDS) used to sample ΔV_{BE} or V_{BE} and cancel opamp's offset and 1/f noise ISSCC 2007 K.A.A. Makinwa

ΔV_{BE} Sampling (bs=0)

- PNPs biased at 1:5 current ratio
- $\Delta V_{BE,RL}$ and offset sampled on 8 sampling capacitors
- Minimum size NMOS switches + 5pF caps
 - \Rightarrow residual offset ~ 10µV \Rightarrow too high

ISSCC 2007

ΔV_{BE} Integration (bs=0)

- Bias currents are swapped \Rightarrow integrated charge: 8 · C_{S} · ($\Delta V_{BE,RL} + \Delta V_{BE,LR}$)
- 2 integration cycles in 1 $\Sigma\Delta$ cycle \Rightarrow total charge: 16 · C_{S} · ($\Delta V_{BE,RL} + \Delta V_{BE,LR}$)

ISSCC 2007

V_{BE} Sampling (bs=1)

- Q_L biased at programmable current I_{trim}
- $-V_{BEL}$ and offset sampled on 1 sampling capacitor

V_{BE} Integration (bs=1)

- I_{trim} swapped to Q_R \Rightarrow total charge: $C_S \cdot (V_{BEL} + V_{BER})$
- compare with $16 \cdot C_{S} \cdot (\Delta V_{BE,RL} + \Delta V_{BE,LR})$ \Rightarrow effective 16x gain for ΔV_{BE}

ISSCC 2007

Chopped $\Sigma\Delta$ Modulator

Chip Micrograph

- 4.5mm² in
 0.7μm CMOS
- Off-chip decimation filter removes chopper residuals
- Supply voltage: 2.5..5.5V
- Supply current: 75µA

Measurement Results

24 samples from 1 batch Inaccuracy (±3σ) after trimming at 30°C: ±0.03°C 30°C ±0.1°C -55..125°C World's most

World's most accurate CMOS temp sensor!

ISSCC 2007

Summary

- Offset and 1/f are part of life!
- Trimming
 - reduces offset but not 1/f noise
 - o no loss of bandwidth
- Auto-zeroing
 - \circ Reduces 1/*f* noise, but sampling \Rightarrow noise aliasing
 - Indirect loss of bandwidth
- Chopping
 - o eliminates 1/f noise
 - Direct loss of bandwidth
- Nested DOC techniques \Rightarrow sub-microvolt offset

