

Design Compiler®
DC Ultra™
Design Compiler Graphical
HDL Compiler™
Power Compiler™
Functional Safety Manual
March 2018, Revision 1.4

2

 Synopsys, Inc. March 2018, Revision 1.4

Copyright and Proprietary Information Notice
© 2018 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information that is the
property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or copied only
in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or
translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of
Synopsys, Inc., or as expressly provided by the license agreement.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to
nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not
responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA, 94043
www.synopsys.com

https://www.synopsys.com/company/legal/trademarks-brands.html
https://www.synopsys.com/

3

March 2018, Revision 1.4 Synopsys, Inc.

Document Control
Revision history

Version Description Date

1.0 First release of the document submitted for review. 10-Jan-2018

1.1 Added revision history, fixed template issues. 06-Feb-2018

1.2 Incorporated review comments from exida review. Fixed boilerplate changes
from general feedback.

01-Mar-2018

1.3 Updated CoU-004 and typos with some AoUs; alphabetized Terms table 02-Mar-2018

1.4 Updated content based on certification review 09-Mar-2018

4

 Synopsys, Inc. March 2018, Revision 1.4

Contents
1 Customer Support .. 6

Accessing SolvNet .. 6

Contacting Synopsys Support ... 6

2 Scope of This Document .. 7

Using This Document .. 7

Terms and Definitions ... 7

3 Confidence in the Use of Software Tools According to ISO 26262-8, Clause 11 11

Overview of ISO 26262-8, Clause 11 .. 11

Work Split between Synopsys and Tool Users ... 12

4 Design Compiler Description .. 17

Coverage .. 17

Compliance with ISO 26262.. 17

Product Documentation and Support .. 17

Installation and Supported Platforms .. 18

User Competence ... 18

Managing Known Safety-Related Defects .. 19

Managing New Releases .. 19

5 Synopsys Digital Tool Chain .. 20

6 Use Cases .. 21

Use Case 1: HDL Compiler ... 22

Use Case 2: Wireload-Based Technology Mapping & Logic Optimization 24

Use Case 3: Physical-Based Mapping and Optimization .. 26

Use Case 4: Multi-Voltage Synthesis .. 28

Use Case 5: Power Optimization & Clock Gating ... 29

Use Case 6: Gate-to-Gate Optimization ... 31

7 Limitations of Use Cases .. 34

LIM-DC-1: Asynchronous Designs .. 34

LIM-DC-2: Multi-Voltage Design without UPF ... 34

LIM-DC-3: User Instantiated DesignWare (including building blocks) ... 34

LIM-DC-4: Random Access Memories (RAMs) ... 35

LIM-DC-5: Safe State Machine Synthesis ... 35

5

March 2018, Revision 1.4 Synopsys, Inc.

RTL Coding Style ... 35

Automatic State Encoding during compile_ultra .. 37

Requirements .. 38

Appendix A Software Tool Information .. 39

Appendix B Complete List of CoU and AoU IDs .. 42

6

 Synopsys, Inc. March 2018, Revision 1.4

1
Customer Support

This section describes the customer support that is available through the Synopsys SolvNet®
customer support website or by contacting the Synopsys support center.

Accessing SolvNet
The SolvNet support site includes an electronic knowledge base of technical articles and answers to
frequently asked questions about Synopsys tools. The site also gives you access to a wide range of
Synopsys online services, which include downloading software, viewing documentation, and entering
a call to the Support Center.

To access the SolvNet site:
1. Go to the web page at https://solvnet.synopsys.com.
2. If prompted, enter your user name and password. (If you do not have a Synopsys user name and

password, follow the instructions to register.)

If you need help using the site, click Help on the menu bar.

Contacting Synopsys Support
If you have problems, questions, or suggestions, you can contact the Synopsys support center in the
following ways:

• Go to the Synopsys Global Support Centers site on synopsys.com. There you can find e-mail
addresses and telephone numbers for Synopsys support centers throughout the world.

• Go to either the Synopsys SolvNet site or the Synopsys Global Support Centers site and open a
case online (Synopsys user name and password required).

https://solvnet.synopsys.com/
https://www.synopsys.com/support/global-support-centers.html
https://onlinecase.synopsys.com/
https://onlinecase.synopsys.com/

7

March 2018, Revision 1.4 Synopsys, Inc.

2
Scope of This Document

This section describes the scope of this document and defines terms used in this document.

Using This Document
The Design Compiler Functional Safety Manual describes the proper use of the Design Compiler tool
in safety-related applications according to the ISO 26262 standard, and is intended to confirm the
compliance of the Design Compiler tool to the standard when used in the context of a tool chain.

The entire family of Synopsys synthesis tools comprising Design Compiler®, DC Ultra™, Design
Compiler Graphical, HDL Compiler™ and Power Compiler™ are covered by this document; but,
henceforth all of these products will primarily be referenced in this document as Design Compiler.
Section 6 specifically lists out which of the synthesis products apply to that particular use case.

The Design Compiler tool enables the user to take a functional description of their design written in
RTL (SystemVerilog or VHDL), translate it to a logically equivalent gate level description of the
design, and optimize it for a variety of user provided constraints.
Section 3 describes an overview of the ISO 26262-8, clause 11 and the approach adopted by
Synopsys to comply with the requirements of the standard. Section 4 defines the general information
such as where to find the latest documentation and installation requirements regarding the use of the
Design Compiler tool as a software tool in the development of safety-related applications. Section 5
shows the high-level overview of the tool chain that this product belongs to. Section 6 details the
safety-related requirements for safety-qualified use cases of the Design Compiler tool. Section 7 lists
the known limitations of the use cases.
Specific documentation for performing design and analysis as part of an ISO 26262 compliant flow is
provided in Section 3, Section 5, Section 6, Appendix A, and Appendix B of this document, the
Design Compiler Functional Safety Manual.

Terms and Definitions

Term Definition

alib A technology library optimized format used by Design Compiler for
runtime improvement

8

 Synopsys, Inc. March 2018, Revision 1.4

Term Definition

AoU Assumption of Use
An action that is assumed and required to be taken by the user of a
software tool.

ASIL Automotive Safety Integrity Level
This is a risk classification scheme defined by the standard ISO 26262.
The standard identifies four levels: ASIL A, ASIL B, ASIL C, and ASIL D.
ASIL D dictates the highest integrity requirements on a product and ASIL
A dictates the lowest.

Component A part of an electronic system that implements a function in a vehicle. See
also Part 1 of the standard ISO 26262 for the definition. The standard also
refers to elements and items, but for the Design Compiler Functional
Safety Manual, there is no difference.

CoU Condition of Use
A condition of the design, software tool, design environment, or situation
that is assumed and required to be fulfilled by the user.

CRM Customer Relationship Management
Internal Synopsys database that manages customer STARs.

db A binary file format for storing library and design data

ddc A binary file format for storing design data

Defect Product nonconformance

Error An error is a discrepancy between the actual and the specified or
theoretically correct operation of an element.
The root causes of an error can be manifold. In this document, the focus
is on errors that are introduced or left undetected in a design, due to the
malfunction in a software tool (e.g. generation of bad logic by a logic
synthesis tool, failure of a static timing analysis tool to detect a timing
violation).

Fault An abnormal condition that can cause an element or item to fail.

Fault analysis An analysis that determines the behavior of a system when a fault is
introduced.

9

March 2018, Revision 1.4 Synopsys, Inc.

Term Definition

FMEA Failure Mode and Effects Analysis
An analysis that looks at different parts of a system, identifies ways the
parts could fail, and determines the causes and effects of these potential
failures.

HDL Hardware Description Language
Language for describing designs at RTL. Supports SystemVerilog and
VHDL.

Milkyway A binary file format for storing library and design data

NDM A binary file format for storing library and design data

RTL The Register Transfer Level
A level of design abstraction where data is moved from register to register

SAIF Switching Annotation Interchange Format
A text syntex for passing switching information between tools.

SDC Synopsys Design Constraints
A TCL based syntax for describing design constraints in Design Compiler

Software / software
tool

The Design Compiler tool

Software tool criteria
evaluation

Analysis according to ISO 26262 to determine the required TCL of a
software tool.

Software tool
qualification

Means to create evidence, that a software tool with low or medium TCL is
suitable to be used in the development of safety related products
according to ISO 26262.

SolvNet Synopsys customer support site

Standard In this document, refers to ISO 26262 Road Vehicles – Functional Safety,
2011 and 2018 versions.

10

 Synopsys, Inc. March 2018, Revision 1.4

Term Definition

STAR Synopsys Technical Action Request
A STAR documents and tracks a product Bug or Enhancement request
(called a B-STAR or an E-STAR, respectively). It is stored in the
Synopsys CRM database.
Only Synopsys employees can access the CRM database. However,
limited STAR information is available from SolvNet for customers who are
associated with the user site of a STAR. Customer contacts are notified
automatically when a STAR is filed or when its status changes.

TCL Tool confidence level, as defined by ISO 26262-8, clause 11
Note: The TCL of a software tool does not necessarily indicate whether

the tool may malfunction or not. The TCL defines the confidence
level that an error in the safety-related design, which is introduced
or left undetected by the software tool, can be prevented or
detected in subsequent steps of the development flow, before the
erroneous safety-related design is released.

TD Tool error detection, as defined in ISO 26262-8, clause 11

TI Tool impact, as defined in ISO 26262-8, clause 11

UPF Unified Power Format
A TCL based syntax for describing low power constraints and design
information. Supported by Design Compiler

Use case A use case is a specific way of using a software tool, that can be
characterized by:

- a limited set of tool functions and features that are used;
- a set of restrictions and constraints that are regarded while using

the tool; and
- a specific goal to be achieved or output to be generated by using

the software tool
Use cases may be associated with different steps or phases in the design
process, or they may describe alternative ways of using the tool for a
specific design step.

11

March 2018, Revision 1.4 Synopsys, Inc.

3
Confidence in the Use of Software Tools According to

ISO 26262-8, Clause 11
This section provides an overview of the ISO 26262-8, clause 11. It then describes the approach
adopted by Synopsys to comply with the requirements of the standard, and how this is mapped to
activities performed by Synopsys and the end user of the Synopsys tools.

Overview of ISO 26262-8, Clause 11
Synopsys EDA software tools contribute significantly to the design specification, implementation,
integration, verification and validation of electrical and electronic (E/E) systems and components. If
these E/E systems and components are used as part of a safety-related automotive product, an error
in these systems or components could have severe consequences on functional safety. Such an error
may arise as a result of unforeseen operating conditions or due to a fault introduced during product
development, which in turn may be caused by a software tool malfunction. ISO 26262-8, clause 11
(Confidence in the Use of Software Tools) addresses this issue and specifies requirements and
methods which aim to minimize the risk of faults in the developed product due to malfunctions of a
software tool affecting the product’s functional safety.
According to ISO 26262, to determine the required level of confidence in a software tool that is used
in the development of a safety-related automotive product, the following criteria are evaluated:

• The possibility that the malfunctioning software tool and its corresponding erroneous output can
introduce or fail to detect errors in a safety-related element being developed.

• The confidence in preventing or detecting such errors in its corresponding output.
This procedure is called Software Tool Criteria Evaluation, and it must be performed for all software
tools that are involved in the development of a safety-related element, resulting in a required Tool
Confidence Level (TCL) for each software tool.
If the software tool criteria evaluation determines that a medium or high TCL is required, then
appropriate Software Qualification methods must be applied, effectively reducing the risk of a critical
software tool error. The choice of software qualification methods depends on the required TCL and
the maximum ASIL of all the safety requirements allocated to the element developed using the
software tool. However, if the software tool criteria evaluation determines that only a low TCL is
required, then there is no need to apply such software qualification methods.
The software tool criteria evaluation and software tool qualification flow are summarized in Figure 1.

12

 Synopsys, Inc. March 2018, Revision 1.4

Figure 1: Software tool criteria evaluation and software tool qualification flow

Work Split between Synopsys and Tool Users
A software tool criteria evaluation must always be performed in the development environment of the
final tool user, and in the context of the actual product development. It is in this context, where
potential tool malfunctions, their effect on the safety-related product, and the effectiveness of
prevention and detection measures must be analyzed.
However, the tool vendor can support the tool user by performing a software tool criteria evaluation
(and, if required, a software tool qualification) on their own, based on assumed tool use cases and an
assumed development environment. If the assumptions made by the tool vendor match the actual
situation at the tool user, then the user can take over the evaluation (and qualification) results from
the tool vendor. Besides significantly reducing the effort for the tool user, this approach can also
result in a better quality for the software tool criteria evaluation and qualification, since the tool vendor
typically has a more detailed understanding of the inner working and possible malfunctions of the
software tool.
Synopsys has adopted exactly this approach, which is summarized in Figure 2.

13

March 2018, Revision 1.4 Synopsys, Inc.

Figure 2: Work Split between Synopsys and Tool Users

Synopsys performs the following activities:
1. Software tool criteria evaluation

• Identification of possible use cases for the software tool, together with required inputs and
expected outputs

• Specification of conditions of use (CoU) for each use case, related to the development
environment in which the tool is assumed to be deployed, including tool usage procedures and
constraints

• Analysis of potential software tool malfunctions, and their effect on a safety-related product
that is developed with this tool

• Analysis of prevention and detection measures internal to the software tool, to avoid tool
malfunctions, or to control and mitigate their effects

• Specification of assumptions of use (AoU), which are additional prevention and detection
measures assumed to be performed by the end user of the tool

14

 Synopsys, Inc. March 2018, Revision 1.4

• Estimation of the Tool Impact (TI) for each malfunction, and the probability of Tool error
Detection (TD) by the prevention and detection mechanisms (including assumptions of use)

• Determination of the required Tool Confidence Level (TCL) for each software tool
malfunction, based on TI and TD

• Determination of the maximum TCL from all software tool malfunctions related to a use case.
This is called the pre-determined TCL for the software tool use case

• Summary of the results in a software tool criteria evaluation report

2. Software tool qualification
• If the pre-determined TCL indicates, that a medium (TCL2) or high (TCL3) tool confidence

level is required for the software tool, then Synopsys may decide to perform a software tool
qualification

• The specific methods applied for tool qualification can vary for different tools and use cases,
and they may include an evaluation of the software tool development process, the validation of
the complete software tool, the validation of critical tool malfunctions with insufficient
prevention and detection measures, or other methods

• Summary of the qualification methods, procedures and results in a software tool qualification
report

3. Safety manual for the software tool

• The Design Compiler Functional Safety Manual (this document) is an important deliverable to
the tool users, as it includes all end user-relevant information from the Synopsys software tool
criteria evaluation and qualification

• Software tool criteria evaluation related information, documented in Section 6, includes:
o Description of software tool use cases
o Description of the required inputs and expected outputs for each use case
o Specification of conditions of use (CoU – conditions of the design, software tool, design

environment, or situation that are assumed and required to be fulfilled by the user) for
each use case

o Specification of assumptions of use (AoU – actions that are assumed and required to be
taken by the user of a software tool) for each use case

o Pre-determined TCL for each use case
• Software tool qualification related information (not required for Design Compiler and therefore

not included in this safety manua])
o Description of the scope of the software tool qualification, including malfunctions and

scenarios covered by the qualification
o Specification of additional conditions of use (CoU) derived from the software tool

qualification
o Specification of additional assumptions of use (AoU) derived from the software tool

qualification
• Other information included in this safety manual

o General information about the software tool needed by the tool user (see Appendix A)
o Known limitations of the software tool, related to the described use cases as

documented in Section 7

15

March 2018, Revision 1.4 Synopsys, Inc.

4. Certification and assessment report
• Synopsys may decide to perform a functional safety assessment, to confirm the correctness,

completeness and ISO 26262 conformance of the performed software tool criteria evaluation
and qualification

• Synopsys may also decide to achieve certification from an accredited third-party certification
body, in addition to the functional safety assessment

• The results of these activities are summarized in a functional safety assessment report and a
certificate which can be viewed at exida Certificate for ISO 26262 Compliance

If the tool user wants to benefit from the work done by Synopsys, then according to the Figure 2
above, the user shall perform the following activities for each software tool:

1. Software tool criteria evaluation

• Review and verify that the software tool criteria evaluation (and qualification) performed by
Synopsys, as documented in the tool‘s Functional Safety Manual, matches the actual situation
of the user’s product development process

o Verify whether the actual use case(s) of the software tool match those evaluated by
Synopsys

o Verify whether the actual inputs and outputs are identical to or a sub-set of those as
evaluated by Synopsys

o Verify that all conditions of use (CoU) specified by Synopsys are met, or whether the
development process can be adjusted to meet these CoU(s)

o Verify that all assumptions of use (AoU) specified by Synopsys are met, or whether the
development process can be adjusted to meet these AoU(s)

o Verify that the pre-determined Tool Confidence Level (TCL) for the relevant use case(s)
are TCL1, or

o Verify that Synopsys has successfully performed an additional software tool qualification
for all TCL2 and TCL3 scenarios to conclude that the tool is suitable to be used for the
development of a safety-related element of the same or higher ASIL than required by
the user

• If all the verification steps described above are successful, then the results of the Synopsys
software tool criterial evaluation (and qualification) are applicable to the tool user, which
means:

o The required TCL pre-determined by Synopsys can be taken over by the tool user for
actual product development

o If the pre-determined TCL is TCL1, then the tool can be used without the need to
perform any additional software tool qualification

o If the pre-determined TCL is TCL2 or TCL3, then the software tool qualification
performed by Synopsys is sufficient, and the tool can be used without the need for
further software tool qualification by the end user

• All of the steps above must be documented in a software tool criteria evaluation report,
including evidence for the successful conclusion of all verification steps, which may include
reference to the Synopsys Functional Safety Manual, and optionally, to the Synopsys
certification and assessment report

http://www.exida.com/SAEL

16

 Synopsys, Inc. March 2018, Revision 1.4

2. Software tool qualification
• If any of the verification steps described above as part of the tool user’s software tool criteria

evaluation fails (e.g. different use case, CoU or AoU cannot be met, pre-determined TCL is not
TCL1 and Synopsys has not performed a software tool qualification), then the user must
perform his/her own software tool qualification

• The specific methods applied for tool qualification are decided and planned by the tool user --
Synopsys does not recommend any specific methods or procedures

• The summary of the qualification methods, procedures and results shall be documented in a
software tool qualification report

17

March 2018, Revision 1.4 Synopsys, Inc.

4
Design Compiler Description

This section provides a general description regarding the use of the Design Compiler tool as a
software tool in the development of safety-related applications and describes where to get the latest
product documentation and the runtime environment required to use the Design Compiler tool.

Coverage
The Design Compiler Functional Safety Manual is intended to be used starting with the version
2017.09 and later versions of the Design Compiler tool per the use cases presented in this document.
In general, unless otherwise noted, the failure modes and detection mechanisms noted in the use
cases presented in Section 6 are tool version independent.

Compliance with ISO 26262
The Design Compiler tool can be used in the development of safety-related elements according to
ISO 26262, with allocated safety requirements up to a maximum Automotive Safety Integrity Level D
(ASIL D), if the tool is used in the context of a tool chain and in compliance with this document, the
Design Compiler Functional Safety Manual.
See the exida Certificate for ISO 26262 Compliance of Synopsys Design Compiler when used in a
tool chain flow.

Product Documentation and Support
Comprehensive documentation for using the Design Compiler tool is provided on SolvNet. The latest
documentation for the Design Compiler tool can be accessed at Design Compiler Online Help on
SolvNet.

Specific documentation for performing design and analysis as part of an ISO 26262 compliant flow is
provided in Section 3, Section 5, Section 6 and Appendix A of this document, the Design Compiler
Functional Safety Manual.
Synopsys provides online customer support for the Design Compiler tool. See Section 1 for more
information.

http://www.exida.com/SAEL
https://solvnet.synopsys.com/dow_retrieve/latest/dg/dcolh/Default.htm

18

 Synopsys, Inc. March 2018, Revision 1.4

Installation and Supported Platforms
The installation of the Design Compiler tool must follow the guidelines in the Synopsys® Installation
Guide as well as the specific Design Compiler Installation Notes document.
Users are required to download the tool executable and INSTALL_README from the SolvNet site at
https://solvnet.synopsys.com/DownloadCenter/dc/product.jsp.
Supported platforms and operating systems requirements:

• For installation instructions, see the Synopsys® Installation Guide at
https://www.synopsys.com/install.

• For the latest supported binary-compatible hardware platform or operating system, including
required operating system patches, see https://www.synopsys.com/qsc.

• If updates (including security patches) to computing environments (including operating systems)
are backward compatible with previous versions of the computing environment used to test the
Design Compiler tool, the results of the testing performed by Synopsys using such previous
versions are applicable.

Additional information:

• For information about the compute platforms roadmap, go to
https://www.synopsys.com/support/licensing-installation-computeplatforms/compute-
platforms/compute-platforms-roadmap.html.

• For platform notices, go to https://www.synopsys.com/support/licensing-installation-
computeplatforms/compute-platforms/platform-notice.html.

• For information regarding the license key retrieval process, go to
https://solvnet.synopsys.com/smartkeys/smartkeys.cgi.

User Competence
To properly use the Design Compiler tool, a user must have a good understanding and working
knowledge of the following:

• Electrical engineering and circuit design

• The ISO 26262 standard

• Documentation of the Design Compiler tool, such as the User Guide, at Design Compiler
Online Help (https://solvnet.synopsys.com/dow_retrieve/latest/dg/dcolh/Default.htm) on
SolvNet.

• This Functional Safety Manual

• The published list of safety-related defects for the Design Compiler tool available at
Design Compiler Safety-Related Issues Master List:
https://solvnet.synopsys.com/retrieve/2830153.html

https://solvnet.synopsys.com/DownloadCenter/dc/product.jsp
https://www.synopsys.com/install
https://www.synopsys.com/support/licensing-installation-computeplatforms/compute-platforms/release-specific-support.html
https://www.synopsys.com/support/licensing-installation-computeplatforms/compute-platforms/compute-platforms-roadmap.html
https://www.synopsys.com/support/licensing-installation-computeplatforms/compute-platforms/compute-platforms-roadmap.html
https://www.synopsys.com/support/licensing-installation-computeplatforms/compute-platforms/platform-notice.html
https://www.synopsys.com/support/licensing-installation-computeplatforms/compute-platforms/platform-notice.html
https://solvnet.synopsys.com/smartkeys/smartkeys.cgi
https://solvnet.synopsys.com/dow_retrieve/latest/dg/dcolh/Default.htm
https://solvnet.synopsys.com/retrieve/2830153.html

19

March 2018, Revision 1.4 Synopsys, Inc.

• Applicability of the Design Compiler tool in the overall tool chain

Managing Known Safety-Related Defects
Synopsys maintains current information for every reported defect through STARs. The Design
Compiler team evaluates each reported issue for potential impact on functional safety.
A list of all known safety-related defects for each release of Design Compiler is available on a
SolvNet knowledge base article and is referenced from the Design Compiler Release Notes.
Design Compiler users must assess, as part of their own software tool criteria evaluation, the
potential impact of the known safety-related defects in their design and must ensure mitigation of any
relevant safety-related defects.

Managing New Releases
Synopsys can release new versions of the Design Compiler tool at any time to extend its functionality
or to fix defects. When a new version is available, notification is posted on the SolvNet site. A
subscription service is available for users to be notified of any new product releases.
When installing a new version of the Design Compiler tool, users must evaluate the impact of any
known safety-related defects in their design by checking the accompanying Design Compiler Release
Notes for the following:

• Any changes that apply to safety-related use cases

• List of known safety-related defects in the new version of the Design Compiler tool
In addition, users must refer to the latest version of this document, the Design Compiler Functional
Safety Manual, available with the product release contents.

20

 Synopsys, Inc. March 2018, Revision 1.4

5
Synopsys Digital Tool Chain

This section provides an overview of where the Design Compiler is used in the tool chain.
The ISO 26262 standard provides a methodology and requirements for software tool criteria
evaluation and qualification (see ISO 26262-8, clause 11). It applies to software tools used for the
development of safety-related designs where it is essential that the tool operates correctly without
introducing or failing to detect errors in the safety-related design.
The suitability of a software tool to be used in the development of a safety-related design is
determined in the software tool criteria evaluation, which results in a Tool Confidence Level (TCL): a
level of confidence that the software tool does not introduce or fail to detect an error in the design
without being noticed, and mitigated before the design is released as a safety-related product. This
evaluation is best performed in the context of the overall software tool chain and development flow, in
which the individual software tool is used. The following high-level diagram reflects the tool chain for
which the Design Compiler tool is applicable.

Synopsys Digital Tool Chain

21

March 2018, Revision 1.4 Synopsys, Inc.

6
Use Cases

This section describes the safety-qualified use cases of the Design Compiler tool. Users should also
perform TCL determination based on their specific Use Cases.

The Design Compiler tool enables the user to take a functional description of their design written in
RTL (SystemVerilog or VHDL), translate it to a logically equivalent gate level description of the design
and optimize it for a variety of user provided constraints. This section describes use cases for several
different sections of the Design Compiler tool. Here is a general description of the use cases

1. HDL Compiler

o This is the initial step of translating a RTL description of the design functionality into a
gate level representation. This step should be executed before wireload-based
technology mapping and logic optimization or physical-based mapping and optimization.

o Affected Tools

 HDL Compiler

2. Wireload-Based Technology Mapping and Logic Optimization

o This is the step of translating the GTECH output of the HDL Compiler step into a user
provided technology library and optimizing the design based on user constraints. This
step is done when no physical based information is available.

o Affected Tools

 Design Compiler

 DC-Ultra

 Design Compiler Graphical

 Power Compiler

3. Physical-Based Mapping and Optimization

o This step can be done instead of wireload-based technology mapping and logic
optimization when physical information (library and floorplan) are available. The
functionality and failure modes are a superset of wireload-based technology mapping
and logic optimization.

o Affected Tools

 Design Compiler Graphical

 Power Compiler

4. Multi-Voltage Synthesis

o This is an additional design and optimization step that can be run on top of
wireload-based technology mapping & logic optimization or physical-based mapping
and optimization, covering designs with shut-down regions and/or power/ground

22

 Synopsys, Inc. March 2018, Revision 1.4

supplies operating at different or multiple voltages. Assumptions of use for wireload or
physical synthesis apply in addition to the assumptions unique to this mode

o Affected Tools

 Design Compiler Graphical

 Power Compiler

5. Power Optimization & Clock Gating

o This is an additional design and optimization step that can be run on top of
wireload-based technology mapping and logic optimization or physical-based mapping
and optimization, covering designs with constraints optimizing for power consumption
(dynamic and static) or commands to implement clock gating. Assumptions of use for
wireload or physical synthesis apply in addition to the assumptions unique to this mode

o Affected Tools

 Design Compiler

 DC-Ultra

 Design Compiler Graphical

 Power Compiler

6. Gate-to-Gate Optimization

o This is a stand-alone optimization mode intended for designs that have already gone
through the above use cases (either in Design Compiler or a 3rd party synthesis tool).
The assumptions of use for this mode are independent of the other modes

Use Case 1: HDL Compiler
In this use case, the user’s main goal is to perform translation of RTL to GTECH (Design Compiler’s
internal design representation). This is the initial step in the synthesis process. All designs should
execute this use case.

• Affected Tools

o HDL Compiler

• Inputs:
o RTL (.v, .sv, .vhd) text file
o TCL script (configuration, run script)

• Expected outputs:
o GTECH netlist (.ddc)
o Elaboration report (log)

• Related commands: analyze, elaborate, read_verilog, read_vhdl, read_file

23

March 2018, Revision 1.4 Synopsys, Inc.

For this use case of Design Compiler, the following conditions of use (constraints for the design and
design environment, recommended procedures for the tool usage, etc.) shall be met:

• CoU-DC-001: User shall review all error and warning messages and take appropriate action.

• CoU-DC-002: User shall follow the Design Compiler Reference Methodology or use equivalent
scripts.

• CoU-DC-003: For the final run, Tcl script-based batch mode execution shall be used, without
interactive command line entry or GUI manual command entry. Tcl scripts and log files shall be
retained as design signoff records.

For this use case of Design Compiler, the following assumptions of use (required actions to be taken
by the tool user to prevent or detect design errors due to possible tool malfunctions) shall be met:

• AoU-DC-001: User shall review synthesis log for errors, unresolved references, unmapped
cells and expected results (log must include elaboration report).

• AoU-DC-002: User shall check that all outputs are generated with an up-to-date timestamp.

• AoU-DC-003: User shall verify post-synthesis netlist vs. RTL with a formal equivalence tool
(such as Formality). The netlist verified should be the same netlist and format that is to be
used in later implementation and verification steps.

• AoU-DC-004: User shall review synthesis log for errors, unresolved references, unmapped
cells and expected results (log must include output from the following commands:
check_design, report_timing, report_area, compile/compile_ultra, report_reference).

• AoU-DC-005: User shall review paths with infer_mux in GTECH netlist to ensure MUX_OP is
used for the selector.

• AoU-DC-006: User shall verify synthesis or P&R netlist by gate-level simulation for correct
reset behavior using a logic simulator (such as VCS).

All analyzed failure modes and prevention, detection, and mitigation measures (including conditions
and assumptions of use listed above) are independent of the exact Design Compiler tool version.

A software tool criteria evaluation performed by Synopsys according to ISO 26262-8, clause 11,
which assumes the fulfillment of all conditions of use (CoU) and assumptions of use (AoU) as
described above, results in a required tool confidence level:

TCL1 for Design Compiler Use Case 1: HDL Compiler

In this case, no further activities for software tool qualification are required.

24

 Synopsys, Inc. March 2018, Revision 1.4

Use Case 2: Wireload-Based Technology Mapping & Logic
Optimization

In this use case, the user’s main goal is to map the generic technology netlist (GTECH) to a technology
specific representation of the design and optimize for provided constraints like timing and area. In this
use case, no physical data (such as a floorplan) is provided to the tool.

• Affected Tools

o Design Compiler

o DC-Ultra

o Design Compiler Graphical

o Power Compiler

• Inputs:
o GTECH netlist (.ddc) (This is the output from the HDL Compiler step)
o Technology library (.db) (Provided by ASIC vendor)
o User constraints (SDC) (User generated)
o Tcl script (configuration, run script) (User generated)

• Expected outputs:
o Mapped Netlist (.ddc)
o log file (.txt)
o analyzed tech library (alib)

 This is an internal file generated by Design Compiler. It contains an analyzed
version of the technology library input

• Related commands: compile, compile_ultra

For this use case of Design Compiler, the following conditions of use (constraints for the design and
design environment, recommended procedures for the tool usage, etc.) shall be met:

• CoU-DC-001: User shall review all error and warning messages and take appropriate action.

• CoU-DC-002: User shall follow the Design Compiler Reference Methodology or use equivalent
scripts.

• CoU-DC-003: For the final run, Tcl script-based batch mode execution shall be used, without
interactive command line entry or GUI manual command entry. Tcl scripts and log files shall be
retained as design signoff records.

• CoU-DC-004: Pre-route timing and power calculations are not considered accurate enough for
final design signoff. User shall validate timing and power requirements post-route in an

25

March 2018, Revision 1.4 Synopsys, Inc.

appropriate signoff tools (such as PrimeTime and PrimeTime-PX) prior to delivery of the final
product.

For this use case of Design Compiler, the following assumptions of use (required actions to be taken
by the tool user to prevent or detect design errors due to possible tool malfunctions) shall be met:

• AoU-DC-002: User shall check that all outputs are generated with an up-to-date timestamp.

• AoU-DC-003: User shall verify post-synthesis netlist vs. RTL with a formal equivalence tool
(such as Formality). The netlist verified should be the same netlist and format that is to be
used in later implementation and verification steps.

• AoU-DC-004: User shall review synthesis log for errors, unresolved references, unmapped
cells and expected results (log must include output from the following commands:
check_design, report_timing, report_area, compile/compile_ultra, report_reference).

• AoU-DC-007: User shall verify synthesis netlist timing in a signoff static timing tool (such as
PrimeTime).

• AoU-DC-008: User shall review logs of DFT tool (such as DFT Compiler) for errors and verify
scan coverage.

• AoU-DC-010: User shall review paths with infer_mux in synthesis netlist to ensure MUX cells
are used.

• AoU-DC-012: User shall review place & route tool (such as ICC or ICC II) log file for errors
during read (place & route is the next implementation step in the digital tool chain).

• AoU-DC-013: User shall review log of clock domain crossing checking tools (such as SpyGlass
CDC).

All analyzed failure modes and prevention, detection and mitigation measures (including conditions
and assumptions of use listed above) are independent of the exact Design Compiler tool version.

A software tool criteria evaluation performed by Synopsys according to ISO 26262-8, clause 11,
which assumes the fulfillment of all conditions of use (CoU) and assumptions of use (AoU) as
described above, results in a required tool confidence level:

TCL1 for Design Compiler Use Case 2: Wireload-Based Technology Mapping & Logic
Optimization

In this case, no further activities for software tool qualification are required.

26

 Synopsys, Inc. March 2018, Revision 1.4

Use Case 3: Physical-Based Mapping and Optimization
In this use case, the user’s main goal is to map the generic technology netlist (GTECH) to a technology
specific representation of the design and optimize for provided constraints like timing and area. In this
use case, physical data (such as a floorplan) is provided to the tool and optimization takes place in the
context of standard cell placement. This use case is a super-set of Use Case 2. Only inputs and outputs
unique to this use case are listed.

• Affected Tools

o Design Compiler Graphical

o Power Compiler

• Inputs:
o physical libraries (Milkyway)
o floorplan information (DEF)

• Expected outputs:
o See Wireload Based Technology Mapping & Logic Optimization
o If physical information is passed to the place and route tool, it will be included with the

design database (.ddc output)

• Related commands: compile, compile_ultra

For this use case of Design Compiler, the following conditions of use (constraints for the design and
design environment, recommended procedures for the tool usage, etc.) shall be met:

• CoU-DC-001: User shall review all error and warning messages and take appropriate action.

• CoU-DC-002: User shall follow the Design Compiler Reference Methodology or use equivalent
scripts.

• CoU-DC-003: For the final run, Tcl script-based batch mode execution shall be used, without
interactive command line entry or GUI manual command entry. Tcl scripts and log files shall be
retained as design signoff records.

• CoU-DC-004: Pre-route timing and power calculations are not considered accurate enough for
final design signoff. User shall validate timing and power requirements post-route in an
appropriate signoff tools (such as PrimeTime and PrimeTime PX) prior to delivery of the final
product.

27

March 2018, Revision 1.4 Synopsys, Inc.

For this use case of Design Compiler, the following assumptions of use (required actions to be taken
by the tool user to prevent or detect design errors due to possible tool malfunctions) shall be met:

• AoU-DC-002: User shall check that all outputs are generated with an up-to-date timestamp.

• AoU-DC-003: User shall verify post-synthesis netlist vs. RTL with a formal equivalence tool
(such as Formality). The netlist verified should be the same netlist and format that is to be
used in later implementation and verification steps.

• AoU-DC-004: User shall review synthesis log for errors, unresolved references, unmapped
cells and expected results (log must include output from the following commands:
check_design, report_timing, report_area, compile/compile_ultra, report_reference).

• AoU-DC-007: User shall verify synthesis netlist timing in a signoff static timing tool (such as
PrimeTime).

• AoU-DC-008: User shall review logs of DFT tool (such as DFT Compiler) for errors and verify
scan coverage.

• AoU-DC-010: User shall review paths with infer_mux in synthesis netlist to ensure MUX cells
are used.

• AoU-DC-011: User shall review floorplan visually in synthesis or place & route tool (such as
Design Compiler or ICC I/II).

• AoU-DC-012: User shall review place & route tool (such as ICC or ICC II) log file for errors
during read (place & route is the next implementation step in the digital tool chain).

• AoU-DC-013: User shall review log of clock domain crossing checking tools (such as SpyGlass
CDC).

All analyzed failure modes and prevention, detection and mitigation measures (including conditions
and assumptions of use listed above) are independent of the exact Design Compiler tool version.

A software tool criteria evaluation performed by Synopsys according to ISO 26262-8, clause 11,
which assumes the fulfillment of all conditions of use (CoU) and assumptions of use (AoU) as
described above, results in a required tool confidence level:

TCL1 for Design Compiler Use Case 3: Physical Based Mapping and Optimization

In this case, no further activities for software tool qualification are required.

28

 Synopsys, Inc. March 2018, Revision 1.4

Use Case 4: Multi-Voltage Synthesis
In this use case, the user’s main goal is to add constraints and design information based on multi-
voltage design styles such as multiple voltages / supply nets, shutdown areas, or voltage scaling.
Note: These settings are applied on top of use cases 2 or 3, the detection measures conditions and
assumptions of use (CoU and AoU) for this use case are applied in addition to the detection measures
for those use cases.

• Affected Tools:

o Design Compiler Graphical

o Power Compiler

• Inputs:
o Power intent (UPF)
o Inputs of Use Case 2 or 3

• Expected outputs:
o Incremental/updated UPF (UPF’)
o Outputs from Use Case 2 or 3

• Related commands: load_upf prior to compile / compile_ultra

For this use case of Design Compiler, the following conditions of use (constraints for the design and
design environment, recommended procedures for the tool usage, etc.) shall be met:

• CoU-DC-001: User shall review all error and warning messages and take appropriate action.

• CoU-DC-002: User shall follow the Design Compiler Reference Methodology or use equivalent
scripts.

• CoU-DC-003: For the final run, Tcl script-based batch mode execution shall be used, without
interactive command line entry or GUI manual command entry. Tcl scripts and log files shall be
retained as design signoff records.

• CoU-DC-004: Pre-route timing and power calculations are not considered accurate enough for
final design signoff. User shall validate timing and power requirements post-route in an
appropriate signoff tools (such as PrimeTime and PrimeTime-PX) prior to delivery of the final
product.

• CoU-DC-005: User shall run load_upf prior to issuing the compile or compile_ultra command.

29

March 2018, Revision 1.4 Synopsys, Inc.

For this use case of Design Compiler, the following assumptions of use (required actions to be taken
by the tool user to prevent or detect design errors due to possible tool malfunctions) shall be met:

• AoU-DC-002: User shall check that all outputs are generated with an up-to-date timestamp.

• AoU-DC-009: User shall review synthesis log for errors, unresolved references, unmapped
cells and expected results (log must include output from the following commands:
check_design, report_timing, report_area, compile/compile_ultra, check_mv_design).

• AoU-DC-012: User shall review place & route tool (such as ICC or ICC II) log file for errors
during read (place & route is the next implementation step in the digital tool chain).

• AoU-DC-014: User shall review low power static checking tool results (such as VC LP) run on
gate-level netlist plus UPF'. This will compare original intent vs UPF' output intent.

• AoU-DC-018: User shall verify post-synthesis netlist vs. RTL with a formal equivalence tool
(such as Formality) including UPF verification. The netlist verified should be same netlist &
format that is to be used in later implementation & verification steps.

• AoU-DC-019: User shall verify synthesis netlist timing in a signoff static timing tool (such as
PrimeTime) including voltage violations.

All analyzed failure modes and prevention, detection and mitigation measures (including conditions
and assumptions of use listed above) are independent of the exact Design Compiler tool version.

A software tool criteria evaluation performed by Synopsys according to ISO 26262-8, clause 11,
which assumes the fulfillment of all conditions of use (CoU) and assumptions of use (AoU) as
described above, results in a required tool confidence level:

TCL1 for Design Compiler Use Case 4: Multi-Voltage Synthesis

In this case, no further activities for software tool qualification are required.

Use Case 5: Power Optimization & Clock Gating
In this use case, the user’s main goal is to reduce leakage and dynamic power in the design.
Note: These settings are applied on top of use cases 2 or 3, the detection measures conditions and
assumptions of use (CoU and AoU) for this use case are applied in addition to the detection measures
for those use cases.

• Affected Tools

o Design Compiler

o DC-Ultra

30

 Synopsys, Inc. March 2018, Revision 1.4

o Design Compiler Graphical

o Power Compiler

• Inputs:
o Switching annotation (SAIF)
o Inputs of Use Case 2 or 3

• Expected outputs:
o Outputs from Use Case 2 or 3

• Related commands: compile, compile_ultra

For this use case of Design Compiler, the following conditions of use (constraints for the design and
design environment, recommended procedures for the tool usage, etc.) shall be met:

• CoU-DC-001: User shall review all error and warning messages and take appropriate action.

• CoU-DC-002: User shall follow the Design Compiler Reference Methodology or use equivalent
scripts.

• CoU-DC-003: For the final run, Tcl script-based batch mode execution shall be used, without
interactive command line entry or GUI manual command entry. Tcl scripts and log files shall be
retained as design signoff records.

• CoU-DC-004: Pre-route timing and power calculations are not considered accurate enough for
final design signoff. User shall validate timing and power requirements post-route in an
appropriate signoff tools (such as PrimeTime and PrimeTime-PX) prior to delivery of the final
product.

For this use case of Design Compiler, the following assumptions of use (required actions to be taken
by the tool user to prevent or detect design errors due to possible tool malfunctions) shall be met:

• AoU-DC-003: User shall verify post-synthesis netlist vs. RTL with a formal equivalence tool
(such as Formality). The netlist verified should be the same netlist and format that is to be
used in later implementation and verification steps.

• AoU-DC-007: User shall verify synthesis netlist timing in a signoff static timing tool (such as
PrimeTime).

• AoU-DC-015: User shall verify power usage of final netlist in a signoff power analysis tool
(such as PrimeTime-PX).

• AoU-DC-016: User shall review input clock_gating scripts for correctness and strategy of the
implementation.

• AoU-DC-017: User shall review DFT DRC report in synthesis log (log to include DFT DRC
report).

31

March 2018, Revision 1.4 Synopsys, Inc.

• AoU-DC-020: User shall review synthesis log for errors, unresolved references, unmapped
cells and expected results (log must include output from the following commands:
check_design, report_timing, report_area, compile/compile_ultra plus report_switching_activity
output for switching annotation percentages, report_power for power consumption,
report_clock_gating and report_clock_gating_check).

All analyzed failure modes and prevention, detection, and mitigation measures (including conditions
and assumptions of use listed above) are independent of the exact Design Compiler tool version.

A software tool criteria evaluation performed by Synopsys according to ISO 26262-8, clause 11,
which assumes the fulfillment of all conditions of use (CoU) and assumptions of use (AoU) as
described above, results in a required tool confidence level:

TCL1 for Design Compiler Use Case 5: Power Optimization & Clock Gating

In this case, no further activities for software tool qualification are required.

Use Case 6: Gate-to-Gate Optimization
In this use case, the user’s main goal is to improve a netlist that has already gone through synthesis
(in a tool such as Design Compiler). The input netlist is optimized for provided constraints like timing
and area.

• Inputs:
o Gate level netlist (Verilog)
o User constraints (SDC)
o Logic Library (db)
o TCL script (configuration, run script)

• Expected outputs:
o Gate level netlist (Verilog)
o Log file (.txt)

• Related commands: optimize_netlist

32

 Synopsys, Inc. March 2018, Revision 1.4

For this use case of Design Compiler, the following conditions of use (constraints for the design and
design environment, recommended procedures for the tool usage, etc.) shall be met:

• CoU-DC-001: User shall review all error and warning messages and take appropriate action.

• CoU-DC-002: User shall follow the Design Compiler Reference Methodology or use equivalent
scripts.

• CoU-DC-003: For the final run, Tcl script-based batch mode execution shall be used, without
interactive command line entry or GUI manual command entry. Tcl scripts and log files shall be
retained as design signoff records.

• CoU-DC-004: Pre-route timing and power calculations are not considered accurate enough for
final design signoff. User shall validate timing and power requirements post-route in an
appropriate signoff tools (such as PrimeTime and PrimeTime PX) prior to delivery of the final
product.

For this use case of Design Compiler, the following assumptions of use (required actions to be taken
by the tool user to prevent or detect design errors due to possible tool malfunctions) shall be met:

• AoU-DC-002: User shall check that all outputs are generated with an up-to-date timestamp.

• AoU-DC-003: User shall verify post-synthesis netlist vs. RTL with a formal equivalence tool
(such as Formality). The netlist verified should be the same netlist and format that is to be
used in later implementation and verification steps.

• AoU-DC-007: User shall verify synthesis netlist timing in a signoff static timing tool (such as
PrimeTime).

• AoU-DC-013: User shall review log of clock domain crossing checking tools (such as SpyGlass
CDC).

• AoU-DC-021: User shall review synthesis log for errors, unresolved references, unmapped
cells and expected results (log must include output from the following commands:
check_design, report_timing, report_area, optimize_nelist, report_reference).

All analyzed failure modes and prevention, detection, and mitigation measures (including conditions
and assumptions of use listed above) are independent of the exact Design Compiler tool version.

A software tool criteria evaluation performed by Synopsys according to ISO 26262-8, clause 11,
which assumes the fulfillment of all conditions of use (CoU) and assumptions of use (AoU) as
described above, results in a required tool confidence level:

TCL1 for Design Compiler Use Case 6: Gate-to-gate optimization

In this case, no further activities for software tool qualification are required.

33

March 2018, Revision 1.4 Synopsys, Inc.

34

 Synopsys, Inc. March 2018, Revision 1.4

7
Limitations of Use Cases

This section describes all known limitations of the use cases mentioned in the previous section.

All known safety-related issues for the Design Compiler tool are listed in the Design Compiler Safety-
Related Issues Master List available on SolvNet.

LIM-DC-1: Asynchronous Designs
Design Compiler is a synchronous design tool and as such, does not maintain the priority structure of
logic in a combinational tree. This can lead to functional errors if the design is an asynchronous
design.

For asynchronous design elements (not including asynchronous set/resets) it is recommended that
users instantiate the logic structures directly in the RTL and do not allow the Design Compiler to re-
structure via constraints such as size_only.

LIM-DC-2: Multi-Voltage Design without UPF
Designs with shutdown regions (power domains) can be implemented outside of the UPF design flow.
For instance, it is possible to insert all isolation cells into the design by hand. If this approach is taken,
Formality cannot validate the design behavior during shutdown and there will be a gap in the
validation.

For safety-related designs with shutdown regions UPF should be used.

LIM-DC-3: User Instantiated DesignWare (including building
blocks)
This limitation applies to any user instantiated instances where the RTL functionality was written by a
third party other than the user. Examples of this could be DesignWare elements or third-party IP. Only
the connectivity of these elements can be verified by the Design Compiler tool chain. The functionality
of these elements cannot be validated by the tool chain and must be validated by other means.
Building block DesignWare: DesignWare elements that are automatically inferred by Design Compiler
from the user RTL are covered by the validation tool chain. The functionality of the gates from the
DesignWare part will be verified vs the user RTL description. However, if the parts are instantiated

https://solvnet.synopsys.com/retrieve/2830153.html
https://solvnet.synopsys.com/retrieve/2830153.html

35

March 2018, Revision 1.4 Synopsys, Inc.

instead of inferred, there is no user RTL to compare against and the correctness of the DesignWare
building block will have to be evaluated by other means.

LIM-DC-4: Random Access Memories (RAMs)
RAMs are user instantiated cells that generally have a different underlying physical structure that is
more vulnerable to SEUs than a typical cell. For guidelines on picking fault-tolerant RAM
implementations to instantiate, consult with the vendor of your manufacturing technology.

LIM-DC-5: Safe State Machine Synthesis
For the purposes of this document, a safe state machine is defined as one that will return to a known
state after a Single Event Upset (SEU).
This article describes how to model the safe state machine in RTL and configure Design Compiler (DC)
such that

• The functional states have pre-defined names for ease of reading
• Known behavior the non-functional state is preserved through synthesis

RTL Coding Style
There are generally several ways to model state machine logic in RTL. This article focuses on where
the sequential state registers are in one process and the combinational next state logic is in a separate
process. This is the generally recommended coding style and tends to be easier to read.

State Encoding
There are a couple of methods available in VHDL for specifying the functional states of a state machine.
The first is to create type with enumerated values matching the functional states.

SystemVerilog
 typedef enum {s0, s1, s2, s3, s4,s5} state_values;
 state_values state, next_state;

VHDL
 type state_values is (s0,s1,s2,s3,s4,s5);
 signal state, next_state: state_values;

The second is to create named constants with the state encoding

SystemVerilog
 localparam logic [5:0] s0 = 6’b000001;
 localparam logic [5:0] s1 = 6’b000010;

36

 Synopsys, Inc. March 2018, Revision 1.4

 localparam logic [5:0] s2 = 6’b000100;
 localparam logic [5:0] s3 = 6’b001000;
 localparam logic [5:0] s4 = 6’b010000;
 localparam logic [5:0] s5 = 6’b100000;

VHDL
 constant S0 : std_logic_vector(5 downto 0) := B"000001";
 constant S1 : std_logic_vector(5 downto 0) := B"000010";
 constant S2 : std_logic_vector(5 downto 0) := B"000100";
 constant S3 : std_logic_vector(5 downto 0) := B"001000";
 constant S4 : std_logic_vector(5 downto 0) := B"010000";
 constant S5 : std_logic_vector(5 downto 0) := B"100000";

For the purposes of synthesis in DC the second style is required. When an enumerated type is specified,
DC will treat values outside of the enumeration and don’t_cares. This negates our ability to specify a
known behavior for non-enumerated state with the others clause (as we’ll see later in the article)
To ensure that a SEU doesn’t cause the state machine to jump to another random functional state,
users should specify a state encoding that allows detection of a SEU like one-hot or Hamming-2

Specifying Behavior of non-Functional States
Most often the next state logic for a state machine is specified in a case statement. Using the named
constants above allows a readable format for the functional states.

SystemVerilog
 case (state)
 s0 : begin
 out1 <= “00”;
 next_state <= in1 ? s0 : s1;
 end
 s1 : begin
 out1 <= “01”;
 next_state <= s2;
 end
 s2 : begin
 out1 <= “10”;
 next_state <= s3;
 end
 s3 : begin
 out1 <= “10”;
 next_state <= s4;
 end
 s4 : begin
 out1 <= “11”;
 next_state <= s5;
 end
 s5 : begin
 out1 <= “11”;
 next_state <= s0;

37

March 2018, Revision 1.4 Synopsys, Inc.

 end
 default : begin
 out1 <= “00”;
 next_state <= s0;
 end

VHDL
 case state is
 when s0 => out1 <="00";
 if in1 = '0' then
 next_state <= s0;
 else
 next_state <= s1;
 end if;
 when s1 => out1 <="01";
 next_state <= s2;
 when s2 => out1 <="10";
 next_state <= s3;
 when s3 => out1 <="10";
 next_state <= s4;
 when s4 => out1 <="11";
 next_state <= s5;
 when s5 => out1 <= "11";
 next_state <= s0;
 when others => out1 <= "11";
 next_state <= s0;

The “default” or “others” clause will catch all the non-functional states and synthesis will create logic to
return the state machine to the specified state on the next clock. As mentioned earlier if an enumerated
type is used for the state vector, DC will consider the others clause unreachable and will synthesize
don’t-care logic for the unreachable states.
Note: If the desire is for the state machine to return to the reset state in the event of an upset, it is the
users responsibility to ensure the state specified in the others clause matches the state specified in the
reset condition of the state registers

Automatic State Encoding during compile_ultra
Design Compiler can re-encode state machines with different encoding schemes (binary, grey, onehot).
However, this capability is limited to state machines specified with enumerated types and cannot handle
non-functional states. As such, it is not useful for fault tolerant state machines.

38

 Synopsys, Inc. March 2018, Revision 1.4

Requirements
By using the following coding styles

• State encoding using constants
• Others clause to specify behavior for non-functional state

Users can ensure that DC synthesizes a state machine with known behavior for non-functional states

39

March 2018, Revision 1.4 Synopsys, Inc.

Appendix A
 Software Tool Information

This section provides general information about the Design Compiler software tool, which is needed
by the tool user for performing his/her software tool criteria evaluation.

The following information about Design Compiler is required according to ISO 26262-8, for the
planning of the usage of a software tool (clause 11.4.4) and the preparation of the own software tool
criteria evaluation (clause 11.4.5).
Please note that some of the information below provided by Synopsys simply needs to be confirmed
by the tool user and can be used without modification. Other information must be completed or
updated by the tool user to reflect his/her actual situation.

Required Info Tool Information Reference / Comment
Tool vendor Synopsys, Inc. ISO 26262-8, 11.4.4.1.a

Tool name and
version

Design Compiler
DC Ultra
Design Compiler Graphical
HDL Compiler
Power Compiler

ISO 26262-8, 11.4.4.1.a
To determine tool version,
use:
report_version -
options

Tool use cases ISO 26262-8, 11.4.4.1.c
ISO 26262-8, 11.4.5.1.a
To be completed by the tool
user. Align with / verify
against use cases
described in Section 6 of
this document.

Tool inputs and
expected
outputs

 ISO 26262-8, 11.4.5.1.b
To be completed by the tool
user. Align with / verify
against inputs and outputs
described in Section 6 of
this document.

40

 Synopsys, Inc. March 2018, Revision 1.4

Required Info Tool Information Reference / Comment
Tool
configuration
and constraints

 ISO 26262-8, 11.4.4.1.b
ISO 26262-8, 11.4.5.1.c
To be completed by the tool
user. Align with / verify
against CoU for the use
cases described in Section
6 of this document.

Tool
environment
(OS)

Refer to the Design Compiler Installation Notes at
https://solvnet.synopsys.com/DownloadCenter.
Click the Design Compiler tool name, release
number, and then "View installation guide" for tool
version-specific OS support.

ISO 26262-8, 11.4.4.1.d
To be completed by the tool
user. Align with / verify
against the OS version
evaluated by Synopsys.
To determine Linux version,
use:
uname -osr

Tool
environment
(CAD tool
chain)

 ISO 26262-8, 11.4.4.1.d
To be completed by the tool
user. To determine name
and version of your tool
chain, please consult your
CAD department.

Maximum ASIL ASIL D ISO 26262-8, 11.4.4.1.e

Tool
qualification
methods

 ISO 26262-8, 11.4.4.1.f
Software tool qualification is
not required for Design
Compiler

User manual
and other
usage guide
documents

See Design Compiler Online Help on SolvNet.

ISO 26262-8, 11.4.4.2.a – d
Tool user to include a link
to these documents
(Synopsys SolvNet or local
copy), and to add any
additional company-internal
tool usage guidelines.

https://solvnet.synopsys.com/DownloadCenter
https://solvnet.synopsys.com/dow_retrieve/latest/dg/dcolh/Default.htm

41

March 2018, Revision 1.4 Synopsys, Inc.

Required Info Tool Information Reference / Comment
Known
software tool
malfunctions,
and appropriate
work
arounds ...

For limitations, refer to Section 7 of this document.
https://solvnet.synopsys.com/retrieve/2830153.html

ISO 26262-8, 11.4.4.2.e
Tool user to include a link
to these documents
(Synopsys SolvNet or local
copy), and to add any
additional company-internal
work around descriptions.

Measures for
the detection of
tool
malfunctions ...

 ISO 26262-8, 11.4.4.2.f
To be completed by the tool
user. Align with / verify
against AoU for the use
cases described in Section
6 of this document.

https://solvnet.synopsys.com/retrieve/2830153.html

42

 Synopsys, Inc. March 2018, Revision 1.4

Appendix B
 Complete List of CoU and AoU IDs

The complete list of Conditions of Use (CoU) for Design Compiler is in the table below. CoU defines a
condition of the design, software tool, design environment, or situation that is assumed and required
to be fulfilled by the user.

ID Description

CoU-DC-001 User shall review all error and warning messages and take appropriate action.

CoU-DC-002 User shall follow the Design Compiler Reference Methodology or use equivalent
scripts.

CoU-DC-003
For the final run, Tcl script-based batch mode execution shall be used, without
interactive command line entry or GUI manual command entry. Tcl scripts and log
files shall be retained as design signoff records.

CoU-DC-004

Pre-route timing and power calculations are not considered accurate enough for
final design signoff. User shall validate timing and power requirements post-route
in an appropriate signoff tools (such as PrimeTime and PrimeTime PX) prior to
delivery of the final product.

CoU-DC-005 User shall run load_upf prior to issuing the compile or compile_ultra command.

The complete list of Assumptions of Use (AoU) for Design Compiler is in the table below. AoU defines
an action that is assumed and required to be taken by the user of a software tool.

ID Description

AoU-DC-001 User shall review synthesis log for errors, unresolved references, unmapped cells
and expected results (log must include elaboration report).

AoU-DC-002 User shall check that all outputs are generated with an up-to-date timestamp.

AoU-DC-003
User shall verify post-synthesis netlist vs. RTL with a formal equivalence tool
(such as Formality). The netlist verified should be the same netlist and format that
is to be used in later implementation and verification steps.

AoU-DC-004

User shall review synthesis log for errors, unresolved references, unmapped cells
and expected results (log must include output from the following commands:
check_design, report_timing, report_area, compile/compile_ultra,
report_reference).

43

March 2018, Revision 1.4 Synopsys, Inc.

ID Description

AoU-DC-005 User shall review paths with infer_mux in GTECH netlist to ensure MUX_OP is
used for the selector.

AoU-DC-006 User shall verify synthesis or P&R netlist by gate-level simulation for correct reset
behavior using a logic simulator (such as VCS).

AoU-DC-007 User shall verify synthesis netlist timing in a signoff static timing tool (such as
PrimeTime).

AoU-DC-008 User shall review logs of DFT tool (such as DFT Compiler) for errors and verify
scan coverage.

AoU-DC-009

User shall review synthesis log for errors, unresolved references, unmapped cells
and expected results (log must include output from the following commands:
check_design, report_timing, report_area, compile/compile_ultra,
check_mv_design).

AoU-DC-010 User shall review paths with infer_mux in synthesis netlist to ensure MUX cells
are used.

AoU-DC-011 User shall review floorplan visually in synthesis or place & route tool (such as
Design Compiler or ICC I/II).

AoU-DC-012
User shall review place & route tool (such as ICC or ICC II) log file for errors
during read (place & route is the next implementation step in the digital tool
chain).

AoU-DC-013 User shall review log of clock domain crossing checking tools (such as SpyGlass
CDC).

AoU-DC-014 User shall review low power static checking tool results (such as VC LP) run on
gate-level netlist plus UPF'. This will compare original intent vs UPF' output intent.

AoU-DC-015 User shall verify power usage of final netlist in a signoff power analysis tool (such
as PrimeTime-PX).

AoU-DC-016 User shall review input clock_gating scripts for correctness and strategy of the
implementation.

AoU-DC-017 User shall review DFT DRC report in synthesis log (log to include DFT DRC
report).

44

 Synopsys, Inc. March 2018, Revision 1.4

ID Description

AoU-DC-018

User shall verify post-synthesis netlist vs. RTL with a formal equivalence tool
(such as Formality) including UPF verification. The netlist verified should be
same netlist & format that is to be used in later implementation & verification
steps.

AoU-DC-019
User shall verify synthesis netlist timing in a signoff static timing tool (such as
PrimeTime) including voltage violations.

AoU-DC-020

User shall review synthesis log for errors, unresolved references, unmapped cells
and expected results (log must include output from the following commands:
check_design, report_timing, report_area, compile/compile_ultra plus
report_switching_activity output for switching annotation percentages,
report_power for power consumption, report_clock_gating and
report_clock_gating_check).

AoU-DC-021
User shall review synthesis log for errors, unresolved references, unmapped cells
and expected results (log must include output from the following commands:
check_design, report_timing, report_area, optimize_nelist, report_reference).

	Contents
	1 Customer Support
	Accessing SolvNet
	Contacting Synopsys Support

	2 Scope of This Document
	Using This Document
	Terms and Definitions

	3 Confidence in the Use of Software Tools According to ISO 26262-8, Clause 11
	Overview of ISO 26262-8, Clause 11
	Work Split between Synopsys and Tool Users

	4 Design Compiler Description
	Coverage
	Compliance with ISO 26262
	Product Documentation and Support
	Installation and Supported Platforms
	User Competence
	Managing Known Safety-Related Defects
	Managing New Releases

	5 Synopsys Digital Tool Chain
	6 Use Cases
	Use Case 1: HDL Compiler
	Use Case 2: Wireload-Based Technology Mapping & Logic Optimization
	Use Case 3: Physical-Based Mapping and Optimization
	Use Case 4: Multi-Voltage Synthesis
	Use Case 5: Power Optimization & Clock Gating
	Use Case 6: Gate-to-Gate Optimization

	7 Limitations of Use Cases
	LIM-DC-1: Asynchronous Designs
	LIM-DC-2: Multi-Voltage Design without UPF
	LIM-DC-3: User Instantiated DesignWare (including building blocks)
	LIM-DC-4: Random Access Memories (RAMs)
	LIM-DC-5: Safe State Machine Synthesis
	RTL Coding Style
	State Encoding
	SystemVerilog
	VHDL
	SystemVerilog
	VHDL

	Specifying Behavior of non-Functional States
	SystemVerilog
	VHDL

	Automatic State Encoding during compile_ultra
	Requirements

	Appendix A Software Tool Information
	Appendix B Complete List of CoU and AoU IDs

