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PREFACE

If the last century was the era of electronics, the twenty-first century is probably the
era of photonics. In particular, the miniaturisation of optical components will play an
important role in the success of advanced photonic devices, based on optical waveg-
uides. This book presents the basic concepts of waveguides necessary to understand
and describe integrated photonic devices, from Maxwell’s equations to the modelling
of light propagation in arbitrary guiding structures.

The topics, as well as their depth of analysis in the book, have been established,
benefiting from the experience of several years teaching this subject at the Universidad
Autónoma de Madrid. Since integrated photonic devices have applications in very dif-
ferent areas, such as optical communication, environmental monitoring, biological and
chemical sensing, etc., students following this course may have different backgrounds.
Therefore, after the introductory chapter devoted to presenting the main characteristics
of integrated photonic technology, in Chapter 2 we review the electromagnetic theory
of light. In it the basis of electromagnetic waves is described, emphasising the most
relevant concepts connected to optical waveguides, such as the phenomenon of total
internal reflection.

Subsequent chapters deal with the fundamentals of integrated photonics: the the-
ory of optical waveguides, the coupling mode theory and light propagation in guiding
structures. Although the treatment given to the different topics is based upon funda-
mental principles, numerical examples based on real situations are given throughout,
which permit the students to relate theory to practice.

I am indebted to Professor F. Cussó, who encouraged me to write this book. I would
like also to thank Professor I. Aguirre and Professor J.A. Gonzalo who carefully read
the manuscript, and to Professor F. Jaque, in particular, who helped me with his
invaluable suggestions.

I also want to express my very special appreciation to A. Bagney for her kind help
in correcting and preparing the book in its final form.
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1
INTRODUCTION TO

INTEGRATED PHOTONICS

Introduction

The term “integrated photonics” refers to the fabrication and integration of several
photonic components on a common planar substrate. These components include beam
splitters, gratings, couplers, polarisers, interferometers, sources and detectors, among
others. In turn, these can then be used as building blocks to fabricate more complex
planar devices which can perform a wide range of functions with applications in opti-
cal communication systems, CATV, instrumentation and sensors. The setting-up of
integrated photonic technology can be considered as the confluence of several pho-
tonic disciplines (dealing with the control of light by electrons and vice versa) with
waveguide technology. In fact, optical waveguides are the key element of integrated
photonic devices that perform not only guiding, but also coupling, switching, splitting,
multiplexing and demultiplexing of optical signals. In this chapter we will introduce
the main characteristics of integrated photonic technology, showing relevant aspects
concerning material and fabrication technologies. Also, we will briefly describe some
basic components present in integrated photonic devices, emphasising the differences
in their design compared to conventional optics. Some examples of integrated photonic
devices (passive, functional, active and non-linear) are given at the end of the chap-
ter to show the elegant solution that this technology proposes for the development of
advanced optical devices.

1.1 Integrated Photonics

Optics can be defined as the branch of physical science which deals with the genera-
tion and propagation of light and its interaction with matter. Light, the main subject of
optics, is electromagnetic (EM) radiation in the wavelength range extending from the
vacuum ultraviolet (UV) at about 50 nanometers to the far infrared (IR) at 1 mm. In
spite of being a very ancient science, already studied by the founder of the School of
Alexandria, Euclid, in his Optics (280 BC), during the last quarter of the past century,
the science of optics has suffered a spectacular renaissance, due to various key devel-
opments. The first revolutionary event in modern optics was, no doubt, the invention
of the laser by T.H. Maiman in 1960 at Hughes Research Laboratories in Malibu [1],
which allowed the availability of coherent light sources with exceptional properties,
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such as high spatial and temporal coherence and very high brightness. A second major
step forward came with the development of semiconductor optical devices for the
generation and detection of light, which permitted very efficient and compact opto-
electronic devices. The last push was given by the introduction of new fabrication
techniques for obtaining very cheap optical fibres, with very low propagation losses,
close to the theoretical limits (Figure 1.1).

As a result of these new developments and associated with other technologies, such as
electronics, new disciplines have appeared connected with optics: electro-optics, opto-
electronics, quantum electronics, waveguide technology, etc. Thus, classical optics,
initially dealing with lenses, mirrors, filters, etc., has been forced to describe a new
family of much more complex devices such as lasers, semiconductor detectors, light
modulators, etc. The operation of these devices must be described in terms of optics
as well as of electronics, giving birth to a mixed discipline called photonics. This new
discipline emphasises the increasing role that electronics play in optical devices, and
also the necessity of treating light in terms of photons rather than waves, in particular
in terms of matter–light interactions (optical amplifiers, lasers, semiconductor devices,
etc.). If electronics can be considered as the discipline that describes the flow of
electrons, the term “photonics” deals with the control of photons. Nevertheless, these
two disciplines clearly overlap in many cases, because photons can control the flux of
electrons, in the case of detectors, for example, and electrons themselves can determine
the properties of light propagation, as in the case of semiconductor lasers or electro-
optic modulators.

The emergence of novel photonic devices, as well as resulting in the important
connection between optics and electronics, has given rise to other sub-disciplines within
photonics. These new areas include electro-optics, opto-electronics, quantum optics,
quantum electronics and non-linear optics, among others. Electro-optics deals with
the study of optical devices in which the electrical interaction plays a relevant role in
controlling the flow of light, such as electro-optic modulators, or certain types of lasers.
Acousto-optics is the science and technology concerned with optical devices controlled
by acoustic waves, driven by piezo-electric transducers. Systems which involve light
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Figure 1.1 Evolution of the attenuation in silica glasses. In the 1980s the dramatic drop in the
attenuation coincides with the boom of the optical fibre systems, thanks to the implementation
of new fabrication techniques
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but are mainly electronic fall under opto-electronics; these systems are in most cases
semiconductor devices, such as light-emitting diodes (LEDs), semiconductor lasers
and semiconductor-based detectors (photodiodes). The term quantum electronics is
used in connection with devices and systems that are based on the interaction of
light and matter, such as optical amplifiers and wave-mixing. The quantum nature of
light and its coherence properties are studied in quantum optics, and the processes
that involve non-linear responses of the optical media are covered by the discipline
called non-linear optics. Finally, some applied disciplines emerging from these areas
include optical communications, image and display systems, optical computing, optical
sensing, etc. In particular, the term waveguide technology is used to describe devices
and systems widely used in optical communications as well as in optical computing,
optical processing and optical sensors.

A clear example of an emergent branch of optics that combines some of the above
disciplines is the field of integrated optics, or more precisely, integrated photonics.
We consider integrated photonics to be constituted by the combining of waveguide
technology (guided optics) with other disciplines, such as electro-optics, acousto-optics,
non-linear optics and opto-electronics (Figure 1.2). The basic idea behind integrated
photonics is the use of photons instead of electrons, creating integrated optical circuits
similar to those in conventional electronics. The term “integrated optics”, first proposed
in 1960 by S.E. Miller [2], was introduced to emphasise the similarity between planar
optical circuits technology and the well-established integrated micro-electronic circuits.
The solution proposed by Miller was to fabricate integrated optical circuits through
a process in which various elements, passive as well as active, were integrated in a
single substrate, combining and interconnecting them via small optical transmission
lines called waveguides. Clearly, integrating multiple optical functions in a single
photonic device is a key step towards lowering the costs of advanced optical systems,
including optical communication networks.

The optical elements present in integrated photonic devices should include basic
components for the generation, focusing, splitting, junction, coupling, isolation, polar-
isation control, switching, modulation, filtering and light detection, ideally all of them

Integrated photonics

Waveguide technology

Opto-electronics

Acousto-optics

Electro-optics

Non-linear optics

Figure 1.2 Confluence of various disciplines into integrated photonics
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being integrated in a single optical chip. Channel waveguides are used for the intercon-
nection of the various optical elements. The main goal pursued by integrated photonics
is therefore the miniaturisation of optical systems, similar to the way in which inte-
grated electronic circuits have miniaturised electronic devices, and this is possible
thanks to the small wavelength of the light, which permits the fabrication of circuits
and compact photonic devices with sizes of the order of microns. The integration of
multiple functions within a planar optical structure can be achieved by means of pla-
nar lithographic production [3]. Although lithographic fabrication of photonic devices
requires materials different from those used in microelectronics, the processes are basi-
cally the same, and the techniques well established from 40 years of semiconductor
production are fully applicable. Indeed, a lithographic system for fabricating photonic
components uses virtually the same set of tools as in electronics: exposure tools, masks,
photoresists, and all the pattern transfer process from mask to resist and then to device.

1.2 Brief History of Integrated Photonics

For 30 years after the invention of the transistor, the processing and transmission
of information were based on electronics that used semiconductor devices for con-
trolling the electron flux. But at the beginning of the 1980s, electronics was slowly
supplemented by and even replaced by optics, and photons substituted for electrons as
information carriers. Nowadays, photonic and opto-electronic devices based on inte-
grated photonic circuits have grown in such a way that they not only clearly dominate
long-distance communications through optical fibres, but have also opened up new
fields of application, such as sensor devices, and are also beginning to penetrate in the
own field of the information processing technology. In fact, the actual opto-electronic
devices may be merely a transition to a future of all-optical computation and commu-
nication systems.

The history of integrated photonics is analogous to that of other related technologies:
discovery, fast evolution of the devices, and a long waiting time for applications [4].
The first optical waveguides, fabricated at the end of the 1960s, were bidimensional
devices on planar substrates. In the mid-1970s the successful operation of tridimen-
sional waveguides was demonstrated in a wide variety of materials, from glasses to
crystals and semiconductors. For the fabrication of functional devices in waveguide
geometries, lithium niobate (LiNbO3) was rapidly recognised as one of the most
promising alternatives. The waveguide fabrication in LiNbO3 via titanium in-diffusion
was demonstrated at the AT&T Bell Laboratory, and gave rise to the development
of channel waveguides with very low losses in a material that possesses valuable
electro-optic and acousto-optic effects. In the mid-1980s the viability of waveguide
devices based on LiNbO3, such as integrated intensity modulators of up to 40 GHz,
and with integration levels of up to 50 switches in a single photonic chip had already
been demonstrated in laboratory experiments. A few years later, the standard pack-
aging required in telecommunication systems was obtained, and so the devices were
ready to enter the market. The rapid boom of monomode optical fibre systems which
started in the 1980s was the perfect niche market for these advanced integrated pho-
tonic devices that were waiting in the research laboratories. Indeed, the demand for
increased transmission capacity (bandwidth) calls urgently for new integrated photonic
chips that permit the control and processing of such huge data transfer, in particular
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with the introduction of technology to transmit light in multiple wavelengths (WDM,
wavelength division multiplexing).

Because of the parallel development of other materials, both dielectrics such as
polymers, glasses or silica on silicon (SiO2/Si), and semiconductors such as indium
phosphide (InP), gallium arsenide (GaAs) or even silicon (Si), a wide variety of novel
and advanced integrated photonic devices was ready to emerge on the market. During
the last two decades of the twentieth century we have moved from the development
of the new concept of integrated optical devices to a huge demand for such novel
devices to implement sophisticated functions, mainly in the optical communication
technology market. In fact, at the beginning of the twenty-first century the data transfer
created by computer-based business processes and by Internet applications is growing
exponentially, which translates into a demand for increasing transmission capacity
at lower cost, which can only be met by increased use of optical fibre and associated
advanced photonic technologies (Figure 1.3). Today fibres are typically used to transmit
bit-rates up to 10 Gbit/s, which is, however, far below the intrinsic bandwidth of an
optical fibre. Wavelength Division Multiplexing (WDM) (the transmission of several
signals through a single fibre using several wavelengths) paves the way to transmit
information over an optical fibre in a much more efficient way, by combining several
10 Gbit/s signals on a single fibre. Today there are commercial WDM systems available
with bit-rates in the range of 40 to 400 Gbit/s, obtained by combining a large number of
2.5 and 10 Gbit/s signal, and using up to 32 different wavelengths. The next frontier
in data transfer capacity points to the Terabit transmission, which can be achieved
by using Time Domain Multiplexing (TDM), an obvious multiplexing technique for
digital signals. An equivalent of TDM in the optical domain (OTDM) is also being
developed with the purpose of reaching much higher bit-rates which will require the
generation and transmission of very short pulses, in the order of picoseconds, and
digital processing in the optical domain. Clearly, all these technologies will require
highly advanced optical components, and integrated photonic devices based on planar
lightwave circuits are the right choice to meet the high performance levels required,
which allow the integration of multiple functions in a single substrate (Table 1.1).

Telephonic link
60 Kb/s

Television service
10 Mb/s

Satelite
100 Mb/s

Telegraphic link
50 b/s

Coaxial cable
10 Mb/s

Optical fibre
40 Gb/s

Requirements Technologies

Serial RS232
communication

10 Kb/s

Figure 1.3 Requirements for data transfer and available technologies
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Table 1.1 Integrated optics mar-
ket in 2001 by material type [5]

Material %

Lithium niobate 30
Indium phosphide 22
Gallium arsenide 20
Silica on silicon 11
Polymer 5
Silicon 3
Other 9
TOTAL 100

1.3 Characteristics of the Integrated Photonic
Components

The basic idea behind the use of photons rather than electrons to create integrated
photonic circuits is the high frequency of light (200 THz), which allows a very large
bandwidth for transporting and managing a huge amount of information. The replace-
ment of electronic by photonic means is forced by fundamental physical reasons that
limit the information transmission rate using purely electronic means: as the frequency
of an electrical signal propagating through a conductor increases, the impedance of
the conductor also increases, thus the propagation characteristics of the electrical cable
become less favourable. That is the reason why electrical signals with frequencies above
10 MHz must be carried by specially designed conductors, called coaxial cables, in
order to minimise the effect of a high attenuation. Figure 1.4 shows the attenuation
in a typical coaxial cable as a function of the frequency. It can be seen that for high
transmission rates (∼100 MHz), the attenuation is so high (∼5 dB/Km) that commu-
nications based on electrical signals propagating on coaxial cables can be used in
applications where the typical distances are tens of metres (buildings), but they are
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useless for distances greater than several kilometres (links between cities). In contrast,
optical signals propagate through non-conducting dielectric media, operating in the
wavelength range where the materials are highly transparent. For most optical materi-
als used in optical communications and photonic devices, this transparent window falls
in the visible and near-infrared range of the electromagnetic spectrum, which corre-
sponds to light frequency in the range 150–800 THz, 106 times the frequency used in
electrical transmission!

Integrated photonic devices based on integrated optical circuits take advantage of
the relatively short wavelength of the light in this range (0.5–2 µm), which allows the
fabrication of miniature components using channel waveguides the size of microns. The
technology required to fabricate planar lightwave circuit components of such dimen-
sions is therefore common in the well-established Micro-electronic technology, using
the tools and techniques of the semiconductor industry.

The basic concept in optical integrated circuits is the same as that which operates in
optical fibres: the confinement of light. A medium that possesses a certain refractive
index, surrounded by media with lower refractive indices, can act as a light trap,
where the rays cannot escape from the structure due to the phenomena of total internal
reflection at the interfaces. This effect confines light within high refractive index media,
and can be used to fabricate optical waveguides that transport light from point to point,
whether long distances (optical fibres) or in optical circuits (integrated photonic chips).
Figure 1.5 shows the basic structures for the most common waveguide geometries.
In a planar waveguide (Figure 1.5a) light is trapped by total internal reflection in a
film (dashed region), and therefore the film must have a refractive index greater than
the refractive indices corresponding to the upper and lower media. These are usually
referred to as the cover and the substrate, respectively, and the film is called the core,
because that is where most of the optical energy is concentrated.

In a channel waveguide the light propagates within a rectangular channel (the dashed
region in Figure 1.5b) which is embedded in a planar substrate. To confine light within
the channel it is necessary for the channel to have a refractive index greater than
that of the substrate, and of course, greater than the refractive index of the upper
medium, which is usually air. This type of waveguide is the best choice for fabricating
integrated photonic devices. Because the substrate is planar, the technology associated
with integrated optical circuits is also called planar lightwave circuits (PLC).

Finally, Figure 1.5c shows the geometry of an optical fibre, which can be consid-
ered as a cylindrical channel waveguide. The central region of the optical fibre or core
is surrounded by a material called cladding. Of course, the core must have a higher

(a) (b) (c)

Figure 1.5 Basic waveguide geometries: (a) planar waveguide; (b) channel waveguide;
(c) optical fibre
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refractive index than the cladding in order to trap light within the structure after total
internal reflection.

In both channel waveguides and optical fibres the confinement of optical radiation
takes place in two dimensions, in contrast to planar waveguides where there is only light
confinement in a single direction. This fact allows light in planar waveguides to diffract
in the plane of the film, whereas in the case of channel waveguides and fibres diffraction
is avoided, forcing the light propagation to occur only along the structure’s main axis.

Three generations can be distinguished in the evolution of optical systems, from con-
ventional optical systems to integrated optical circuits (Table 1.2). The first generation
concerns conventional optical systems, where the optical components with sizes of the
order of centimetres were set on optical benches typically with dimensions of metres,
while the optical beams had diameters of the order of several millimetres. A second
generation in the evolution of optical systems can be called micro-optics. Its main
characteristic is the use of miniature optical components such as light emitting diodes,
diode lasers, multi-mode fibres, etc. These components are clearly a transition towards
the devices used nowadays in modern communication systems based on optical fibres.
Nevertheless, although the characteristics of micro-optic systems are satisfactory, there
are problems with the alignment and coupling between the components because of their
small size (of the order of millimetres). Furthermore, because of the critical alignment,
the various optical components are not packed together, making the optical system
unstable. The last generation in optical systems concerns integrated photonics, and
is based on optical circuits and components integrated in a single substrate. This, as
well as the small size of the optical components, is the key factor for the success
of integrated photonic systems. This technology, with unique features with respect to
previous generations, possesses important advantages in terms of choice of materials,
design, fabrication and performance characteristics. Some of the special features of
systems based on integrated photonic technology are the following:

1. Functionality based on electromagnetic optics. The key elements in an integrated
optical device are monomode channel waveguides with width and depth typically of
the order of microns, where the optical radiation propagates in a single mode. In this
way, while the optical systems of the first and second generation can be adequately

Table 1.2 Evolution of the optical systems technology and relevant characteristics [6]

First generation Second generation Third generation

Technology Conventional
optics

Micro-optics Integrated photonics

Typical components Mirrors, prisms,
lenses, gas
lasers

LED, LD, tiny lenses,
multi-mode fibres

Monomode channel
waveguides, LD,
monomode fibres

Alignment Necessary Necessary (hard) Unnecessary
Propagation Beam Beams in multi-mode

waveguides
Monomode

waveguides (µm)
Control electrode size 1 cm 1 mm 1 µm
Device size 1 m2 10 cm2 1 cm2 (on a 1 mm

thick substrate)

Note: LED: light emitting diode; LD: laser diode.
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treated by ray optics because of the wide diameters of the optical beams (com-
pared to the wavelength of the light), integrated optical devices must be analysed
considering the propagating light as electromagnetic waves.

2. Stable alignment. A key factor in the good performance of an optical system is the
adjustment and alignment of the various optical components, which is critical and
difficult to achieve for conventional optical systems. In contrast, in integrated pho-
tonic devices, once the optical chip has been fabricated, the alignment problem is
avoided and stability is assured. Furthermore, the device is stable against vibrations
or thermal changes. This characteristic, which is the most relevant feature in inte-
grated photonic devices, is assured because all the optical elements are integrated
in a single substrate.

3. Easy control of the guided modes. Because the waveguides are monomode, it is
easier to control the optical radiation flux through the electro-optic, acousto-optic,
thermo-optic or magneto-optic effects, or even by the light itself via non-linear inter-
actions. If the waveguides were multi-mode, this control by external fields would
be much more complicated, because of the different propagation characteristics of
each modal field.

4. Low voltage control. For devices based on light control via the electro-optic effect,
the short width of the channel waveguides allows one to drastically reduce the
distance between the control electrodes. This implies that the voltage required to
obtain a certain electric field amplitude can be considerably reduced. For example,
while the typical voltage for electro-optic control in conventional optical systems is
of the order of several KV, in integrated optic devices the voltage required is only
a few volts.

5. Faster operation. The small size of the control electrodes in an electro-optic inte-
grated photonic device implies low capacitance, and this allows for a faster switching
speed and higher modulation bandwidth. Typical modulations of 40 Gbit/s are easily
achieved using lithium niobate, polymers or InP-based devices.

6. Effective acousto-optic interactions. Since the field distributions of surface acoustic
waves (SAW) are located within a distance of a few wavelengths beneath the sub-
strate surface (tens of microns), the SAW and the optical waveguide modes overlap
strongly, giving rise to efficient acoustooptic interactions. Thus, using SAW gen-
erated by piezotransducers, high performance integrated optical devices based on
acoustooptic effect can be developed.

7. High optical power density. Compared with conventional optical beams, the opti-
cal power density in a monomode channel waveguide is very high, due to the
small cross-sectional area of the guide. This is of special relevance in the per-
formance of devices requiring high radiation intensity, such as frequency convert-
ers (via non-linear effects) or even optical amplifiers and lasers. These devices
are therefore very efficient when designed and fabricated with integrated pho-
tonic technology.

8. Compact and low weight. The use of a single substrate with an area of several
millimetres squared for integrating different photonic components makes the optical
chip very compact and very light weight.

9. Low cost. The development of integration techniques makes mass production pos-
sible via lithographic techniques and mask replication; also, the planar technology
reduces the quantity of material necessary to fabricate the photonic devices. These
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aspects are the basis of a low cost device and thus an easy introduction into
the market.

1.4 Integrated Photonics Technology

The technology and fabrication methods associated with integrated optical circuits and
components are very varied, in addition, they depend on the substrate material with
which the optical device is fabricated. The methods most widely used in the definition
of optical circuits over a substrate are diffusion techniques (such as titanium diffusion
in lithium niobate) and deposition techniques (such as chemical vapour deposition used
for silica). Since the lateral dimensions of the optical circuits are only a few microns,
the fabrication technology needs photolithographic processes. In the case of diffusion
techniques it is possible to use photolithographic masks to define open channels through
which the diffused material enters the substrate, or, alternatively, one can deposit the
previously patterned material to be diffused directly onto the substrate. For waveguides
fabricated by deposition techniques the lateral definition of the optical circuits is usually
carried out by means of etching after the deposition of the material onto the whole
substrate surface.

Optical integration can expand in two directions: serial integration and parallel inte-
gration. In serial integration for optical communication devices the different elements
of the optical chip are consecutively interconnected: laser and driver, modulator and
driver electronics, and detector and receiver electronics. In parallel integration, the chip
is built by bars of amplifiers, bars of detectors and wavelength (de)multiplexors. Also,
a combination of these two architectures should incorporate optical cross-connects
and add-drop modules. The highest level of integration (whether serial or parallel)
is achieved in monolithic integration, where all the optical elements including light
sources, light control, electronics and detectors are incorporated in a single substrate.
The most promising materials to achieve full monolithic integration are semiconductor
materials, in particular GaAs and InP. In hybrid integration technology, the optical chip
fabricated on a single substrate controls the optical signals, while additional elements
such as lasers or detectors are built on different substrates and are directly attached to
the integrated photonic device or interconnected by optical fibres. Examples of hybrid
technologies include dielectric substrates, such as glasses, silica or ferro-electric crys-
tals. The case of silica on silicon can be considered as quasi-hybrid integration, in the
sense that optical components, electronics and detector can be implemented in a single
substrate, but not the light source.

All integrated photonic devices require input/output optical signals carried by optical
fibres. Indeed, one of the most difficult tasks in packaging an integrated optical device is
attaching the fibres to the chip waveguides, known as fibre pigtails. The fibre alignment
is typically 0.1 micron or less for low power loss, where the optical chip surfaces should
be carefully polished at odd angles to eliminate back reflection from the interface.
This alignment must be maintained during the attachment and also through subsequent
thermal transitions as well as in shock and vibration-prone environments while the
device is operating.

Lithography replicates a prototype from chip to chip or from substrate to substrate.
Although a lithographic system for fabricating photonic devices uses the same tools
as in semiconductor electronics, there are some important differences. First, while in
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electronics, bends and interconnections affect the maximum data rates, in photonic
circuits the major impact is on optical power throughput. Second, while electrons
strongly interact with each other, photons can exist even in the same circuit without
interacting. As a consequence, integrated circuits in electronics usually have an overall
square geometry, with multiple layers to enable the cross-over of electrical signals,
while integrated optical chips tend to have a single layer and an elongated geometry
with unidirectional flow to minimise bending of the optical path.

Although there is a great number of lithographically processable materials that can
be used to fabricate optical waveguides, only a few of them have shown the required
characteristics to develop integrated optical devices. These include a wide range of
glasses, crystals and semiconductors (Table 1.3). In particular, the substrates most
commonly used are glasses, lithium niobate, silica on silicon, III-V semiconductor
compounds and polymers. Each type of material has its own advantages and disadvan-
tages, and the choice of a specific substrate depends on the particular application of
the photonic device. Nowadays there exists a great variety of devices based on each
of these materials.

The glass-based integrated optical devices have the great advantage of the low cost
of the starting material and the fabrication technique, mainly performed by an ionic
exchange process [7]. The method used for producing waveguides in glass substrates

Table 1.3 Materials technology for integrated photonic devices

Substrate Material
properties

Waveguide
technology

Advantages Demonstrated
devices

Multi-components
Glasses

Low price Rare
earths
incorporation

Ionic exchange Easy and cheap
fabrication
Low losses

Passive devices
Amplifiers

SiOxNy:SiO2:Si
TiO2/SiO2/Si

Cheap and
versatile
fabrication

Thermal
oxidation
CVD, FHD,
ECR, Sol-gel

Versatility
Microelec-
tronic
technology

Passive devices
TO switches
AWG

Lithium niobate Electro-optic
Acousto-optic
Non-linear
Bi-refringent

Metallic
diffusion
Protonic
exchange

Easy control of
light
Anisotropic

Switches
Modulators
Couplers
WDM and
DWDM

III-V compounds
(InP, GaAs)

Electro-optic Light
source Light
detection
Electronics

Epitaxy (MBE,
LPE, CVD,
MOCVD)

High level of
integration

Modulators
Amplifiers
Lasers AWG

Polymers Electro-optics
Thermo-optics
Non linear

Spin coating
Dip Coating

High versatility
Wide range
of physical
properties

Chemical and
biological
sensors TO
switches EO
Modulators

Notes: CVD: chemical vapour deposition; FHD: flame hydrolysis deposition; ECR: electron cyclotron reso-
nance; MBE: molecular beam epitaxy; LPE: liquid phase epitaxy; MOCVD: metal-organic chemical vapour
deposition; TO: thermo-optic; AWG: arrayed waveguide grating; WDM: wavelength division multiplexing;
DWDM: dense WDM; EO: electro-optic.
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is the exchange of alkali ions from the glass matrix (usually Na+ ions) for monovalent
cations such as K+, Ag+, Cs+ or Tl+, immersing the glass substrate in a molten salt
that contains some of these ions at temperatures in the range 200–500◦C, depending
on the type of glass and the particular salt. For defining the optical circuits, a stopping
mask is deposited onto the substrate, in such a way that the ionic exchange takes place
only in the channels opened in the mask. This mask is removed after the exchange
process. The refractive index increase due to the ionic exchange depends both on
the glass composition and on the exchanged ions, and typically varies in the range
0.01 to 0.1. Since the glasses are amorphous materials, they do not present physical
properties useful for the direct control of light, and therefore they are used mainly for
the fabrication of passive devices.

One of the materials most widely used in the fabrication of integrated optical
devices is lithium niobate (LiNbO3) [8]. This is due to several characteristics of this
crystalline material. In the first place, LiNbO3 presents very interesting physical proper-
ties: in particular, it has valuable acousto-optic, electro-optic and piezo-electric effects.
These properties allow the fabrication of functional devices such as phase modulators,
switches, directional couplers, multiplexors, etc. Besides being a birefringent material,
LiNbO3 shows high non-linear optical coefficients, and these two properties permit
very efficient frequency conversion, such as second harmonic generation and opti-
cal parametric oscillation. Furthermore, several techniques for waveguide fabrication
in LiNbO3 are now well established, including Ti or Zn metallic diffusion, protonic
exchange, or even ion implantation. The resulting waveguides have very low losses,
typically in the range of 0.01–0.2 dB/cm. Integrated optical circuits technology based
on LiNbO3 substrates is now very well established, and a great variety of devices
based on this technology, mainly in the field of optical communications, are now
commercially available.

The main advantage of silica over silicon-based photonic waveguides is the low
price and the good optical quality of the silicon substrates, besides being a well-known
material with a long tradition, and the experience developed from micro-electronic tech-
nology. The first step in waveguide fabrication using silicon substrates is the deposition
of a silicon dioxide layer a few microns thick, which can also be obtained by direct
oxidation of the silicon at high temperature. This layer has a double purpose: to pro-
vide a low index region for allowing light confinement, and also to move away the
highly absorbing silicon substrate. For this reason this layer is called a buffer layer.
The waveguide core is formed by further deposition of a high index oxynitride layer,
usually via the chemical vapour deposition method (CVD) or the flame hydrolysis
deposition (FHD) method [9]. The refractive index of the oxynitride core, SiOxNy, can
be continuously varied in the range 1.45–2.1 by controlling the relative concentration
of SiO2 and Si3N4 compounds during the deposition. As the SiO2 buffer layer has a
refractive index of 1.45, a very high index contrast between the waveguide core and
the surrounding media can be obtained. The most appealing feature of silicon as a
substrate in integrated photonics is the possibility of integrating the detector and the
associated electronic in a single platform substrate.

Perhaps, second to LiNbO3 the III–V semiconductor compounds (mainly GaAs
and InP) are the substrates with greatest impact on integrated optics technology, and
are probably the materials with the most promising future in this field [10, 11]. The
importance of the III–V compounds in integrated photonics derives from the fact that
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they offer the possibility of a high level of monolithic integration. Indeed, InP is a very
versatile platform that promises large-scale integration of active components (lasers and
detectors), passive components, and also electronics. The electronic technology of these
semiconductor materials is now well established, and optical waveguide fabrication is
quite straightforward by modifying the dopant concentration during the deposition
process, Al in the case of GaAs, and Ga or As in the case of InP. The main problem
concerning this technology has its roots in the relatively high losses of waveguides
made of these materials (>1 dB/cm). Nevertheless, the fabrication technology in InP
is rapidly improving, and several integrated photonic devices that show very high
performance are now available in the market, such as semiconductor optical amplifiers,
arrayed waveguide gratings or high speed modulators.

Among the materials suitable for integrated photonic technology, polymers occupy a
special position, due to the fact that they exhibit some very useful physical properties,
such as electro-optic, piezo-electric and non-linear effects, with values even higher
that those of lithium niobate crystals [12]. Also, the thermo-optic coefficient for poly-
mers is more than ten times higher than the corresponding coefficients for silica. The
waveguide fabrication method for polymers starts from a solution of the polymeric
material, followed by a deposition by spin coating or dip coating on a substrate. Due
to their easy processing, the polymer layers allow for great flexibility when choos-
ing a substrate; they are compatible with very different substrates such as glasses,
silicon dioxide, or even silicon and indium phosphide. The choice of a particular poly-
meric material should take into consideration some important properties such as high
transparency, easy processing, and high physical, chemical, mechanical and thermal
stability. The main advantage of polymer-based integrated optical devices is their high
potential for use in the field of chemical and biological sensors, because the organic
groups in the polymeric compound can be designed and tailored to react against a
specific medium. Also, due to the large electro-optic coefficient showed by some poly-
mers, high speed and low voltage switches and modulators have been developed for
the telecommunication market, offering high performance at low cost.

1.5 Basic Integrated Photonic Components

As in electronics, in integrated photonics there are some basic components common
to most of the integrated optical devices. Although in essence all these components
basically perform the same functions as their corresponding devices in conventional
optics, the operating principles are usually quite different, and thus their design has
very little to do with traditional optical components.

Although nowadays a long list of integrated photonic devices has been proposed,
modelled and fabricated, and their number is quickly increasing, the basic compo-
nents remain almost unchanged. Therefore it is possible to describe a short list of such
components, basic blocks from which much more complex integrated optical devices
can be built. We will now briefly outline some of the most common components, and
we will show the dramatic change in design concept of integrated photonic devices
compared to conventional optical components performing the same function. The main
difference in design comes from the fact that while in conventional optics the operation
principle is based on the behaviour of the light considered as plane waves or rays, in
integrated optics the modelling and performance of the devices should be treated using
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the formalism of electromagnetic waves; this is because the size of the beams is of
the order of the light’s wavelength, typically in the range of microns. In fact, optical
propagation in integrated photonic devices is conveyed through optical channels with
dimensions of a few micrometres, both in depth and in width. Channel waveguides are
defined in a single plane substrate, and other related elements (electrodes, piezoele-
ments, heaters, etc.) are mounted on the same substrate, giving rise to a robust and
compact photonic device. Unless otherwise stated, all the basic components that we
will now describe will be based on monomode channel waveguides.

All the optical components in integrated photonics are constructed with three building
blocks. They are the straight waveguide, the bend waveguide and the power splitter.
Using these building blocks, several basic components have been developed to perform
basic optical functions. In addition, a particular function can be executed using different
elements, whose design may differ substantially. This versatility in optical element
conception is one of the special features of integrated photonic technology. Now, we
shall discuss several of these basic blocks and optical elements that perform some basic
functions common in many integrated optical devices.

• Interconnect. This basic element serves to connect optically two points of a photonic
chip (Figure 1.6a). The straight channel waveguide (Figure 1.6b), being the simplest
structure for guiding light, interconnects different elements which are aligned on the
optical chip. It can also act as a spatial filter, maintaining a Gaussian-like mode
throughout the chip architecture. In order to interconnect different elements which
are not aligned with the optical axis of the chip, a bend waveguide is needed, and
therefore a bend waveguide is often called an offset waveguide (Figure 1.6c). These
are also used to space channel waveguides at the chip endfaces, so that multiple
fibres may be attached to it.

• Power splitter 1 × 2. A power splitter 1 × 2 is usually a symmetric element which
equally divides power from a straight waveguide between two output waveguides
(Figure 1.6d). The simplest version of a power splitter is the Y-branch (Figure 1.6e),
which is easy to design and relatively insensitive to fabrication tolerances. Neverthe-
less, the curvature radii of the two branches, as well as the junction, must be carefully
designed in order to avoid power losses. Also, if the two branches are separated by
tilted straight waveguides, the tilt angle must be small, typically a few degrees. A
different version of a power splitter is the multi-mode interference element (MMI,
Figure 1.6f). This name comes from the multi-modal character of the wide waveg-
uide region where the power split takes place. The advantage of this design is the
short length of the MMI compared to that of the Y-branch. Although the dimensions
of the MMI are not critical, allowing wide tolerances, this element must be designed
for a particular wavelength. The two power splitters which have been described are
symmetric, and thus 50% of the input power was carried by each output waveguide.
Nevertheless, asymmetric splitters can also be designed for specific purposes. In
addition, it is possible to fabricate splitters with N output waveguides, and in that
case the element is called a 1 × N splitter.

• Waveguide reflector. The waveguide reflector performs the task of reflecting back the
light in a straight waveguide (Figure 1.6g). The simplest method of performing this
task is to put a metallic mirror at the end of the channel waveguide (Figure 1.6h).
If one needs the reflection to occurs only for a particular wavelength, a multi-
stack dielectric mirror is used. Another way of building a waveguide reflector is
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to implement a grating in a region of the straight waveguide (Figure 1.6i). The
grating is inherently a wavelength selective element, and thus the grating period
must be calculated for the specific working wavelength. The reflection coefficient
of the grating depends on the length of the grating region and on the modulation
refractive index depth. The wavelength selectivity of the grating is also used for
designing waveguide filters working under Bragg condition. Besides this, the grating
in integrated photonics can be used as an optical element for performing a wide
range of functions such as focusing, deflection, coupling and decoupling light in the
waveguide, feedback in an integrated laser, sensors, etc.

• Directional coupler. This element has two input ports and two output ports
(Figure 1.6j), and is composed of two closely spaced waveguides (Figure 1.6k).
The working principle of the coupler is based on the periodical optical power
exchange that occurs between two adjacent waveguides through the overlapping
of the evanescent waves of the propagating modes. This effect is described by
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the coupled mode formalism described in Chapter 4. By setting design parameters,
including waveguide spacing and coupler length, the ratio of powers between the
two output ports may be set during the fabrication process to be between zero and 1.

• Polariser. A waveguide polariser allows to pass light having a well defined polar-
isation character, either TE or TM light, by filtering one of them (Figure 1.6l).
The fabrication of a waveguide polariser is as simple as depositing a metallic film
onto a waveguide (Figure 1.6m): the light propagating along the waveguide with
its electric field perpendicular to the substrate plane (TM mode) is strongly attenu-
ated because of the resonant coupling with the superficial plasmon modes. In this
way, at the waveguide output, only light with TE polarisation is present. As the TE
mode also suffers some attenuation, the nature of the metal as well as the metallic
film length must be carefully chosen in order to obtain a high polarisation ratio,
while maintaining a high enough TE light power. An alternative way of obtaining a
waveguide polariser is to design a waveguide that supports only TE polarised modes.
These are obtained, for example, in lithium niobate waveguides fabricated by the
protonic exchange method. In this fabrication process, while the extraordinary index
increases, the ordinary index decreases, thus forming a waveguide that supports only
extraordinary polarised modes.

• Polarisation beam splitter. In some integrated optical devices, it is necessary to
divide the input light into its two orthogonal polarisation, TE and TM, in two sepa-
rate waveguide output ports (Figure 1.6n). Figure 1.6o shows an integrated optical
element based on a lithium niobate substrate, which performs this function: the
intersecting waveguide operates as a directional coupler whose behaviour depends
on the beat between odd-mode light and even-mode light for TE-mode and TM-mode
light, respectively [13]. The TE-mode light propagates to the cross-output port and
the TM-mode light to the parallel output port. This polarisation selectivity is based
on the birefringence of LiNbO3. The length and the width of the intersecting region
must be carefully controlled to obtain high extinction ratios of both polarisations,
for a chosen wavelength.

• Phase modulator. An integrated optical phase modulator performs a controlled shift
on the phase of a light beam (Figure 1.6p), and consists of a channel waveguide
fabricated on a substrate with the possibility of changing its refractive index by means
of an externally applied field (thermal, acoustic, electric, etc.). The most common
phase modulator is based on the electro-optic effect: an electric field applied to an
electro-optic material, such as LiNbO3, induces a change in its refractive index. If
the electric field is applied through a channel waveguide, the change in the refractive
index induces a change in the propagation constant of the propagating mode, and
therefore the light travelling through that region undergoes a certain phase shift
(Figure 1.6q). The geometry of the electrodes and the voltage control depend on
the crystal orientation and on the device structure. For high modulation frequency a
special electrode configuration is necessary, such as the travelling wave configuration
or phase reversal electrodes configuration.

• Intensity modulator. One of the most important functions of an optical chip is the
intensity modulation of light at very high frequencies (Figure 1.6r). One of the most
simple ways to perform this task is to build an integrated Mach-Zehnder interferom-
eter (MZI) on an electro-optic substrate (Figure 1.6s). The MZI starts with a channel
monomode waveguide, and then splits it in two symmetric branches by means of a
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Y-branch. After some distance, the two branches becomes parallel. The MZI contin-
ues with a symmetric reverse Y-branch, and ends in a straight waveguide. If the MZI
is exactly symmetric, the input light splits at the first Y-junction into the two parallel
branches, and then recombines constructively into the final straight waveguide. On
the contrary, if in one of the interferometer’s arms the light suffers a phase shift of
180◦, at the end of the second Y-branch the light coming from the two branches will
recombine out of phase, and will give rise to destructive interference, with no light
at the output. In practice, the phase shift in one arm is carried out via the electro-
optic effect, by applying a voltage across the waveguide. By adequately choosing
the crystal orientation, polarisation, electrode geometry and applied voltage, a total
phase shift of 180◦ can be obtained for a specific wavelength.

• TE/TM mode converter. In a normal situation, TE and TM modes are orthogonal, and
then the power transfer between them cannot occur. Nevertheless, TE to TM con-
version (Figure 1.6t) can be achieved by using electro-optic substrates, which must
have non-zero off-diagonal elements in the electro-optic coefficient matrix. If lithium
niobate is used as a substrate, a periodic electrode is required because this crystals is
birefringent, and therefore the TE and TM modes have different effective refractive
indices (propagation speeds) (Figure 1.6u). By combining phase modulators and a
TE/TM converter, a fully integrated polarisation controller can be built.

• Frequency shifter. Frequency shifting in integrated optics (Figure 1.6v) can be
performed by means of the acousto-optic effect. An acoustic surface wave (SAW)
generated by a piezo-electric transducer, creates a Bragg grating in the acousto-
optic substrate that interacts with the propagating light in a specially designed
region, giving rise to diffracted light that is frequency-shifted by the Doppler
effect (Figure 1.6w). This frequency shift corresponds to the frequency of the
acoustic wave.

1.6 Some Examples of Integrated Photonics Devices

The optical elements that can be found in an optical chip can be classified according
to their function as passive, functional, active and non-linear. A passive optical ele-
ment has fixed input/output characteristics, which are determined when the photonic
component is fabricated. Examples of these are the power splitter, waveguide reflec-
tor, directional coupler, polariser, and polarisation beam splitter. Functional optical
elements are photonic components which are driven by externally applied fields (for
example, electric, acoustic or thermal). The above described phase modulator, inten-
sity modulator, frequency converter and electro-optic TE/TM converter fall into this
category. Although some authors call these devices active devices, we will keep the
name “active devices” for photonic components that perform functions such as optical
amplification and laser oscillation. This choice of nomenclature is due to the fact that
they use active impurities such as rare earths embedded in the waveguide structure, to
obtain light amplification (or oscillation) via a luminescence process after optical (or
electrical) pumping. The integrated optical amplifier and the integrated laser are two
examples of active devices. Finally, some integrated optical devices make use of the
non-linearity of certain materials to perform frequency doubling or optical parametric
oscillation, where the optical chip’s function is to generate new frequencies via a non-
linear optical process. Since the efficiency of non-linear processes is proportional to the
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Figure 1.7 The arrayed waveguide grating (AWG) is one example of a passive integrated
photonics device, used for dense wavelength demultiplexing

light intensity, these devices yield a very good performance in the integrated photonic
version, because of the small transverse area of the waveguide propagating beams.

Figure 1.7 shows an example of a passive integrated photonic device, in which no
external signal is needed for its operation. This device is called an arrayed waveguide
grating (AWG, PHASAR or waveguide grating router, WGR); its function is to pas-
sively multiplex or demultiplex signals of closely spaced wavelengths, and it is used in
fibre optical communication systems [14]. Several wavelengths coming through a sin-
gle fibre enter the AWG via any of its input waveguides. A coupler splits light between
many of the curved waveguides which define the AWG. The arrayed waveguides are
formed by waveguides having different lengths, and therefore light suffers different
phase shift for each curved waveguide. By precisely adjusting the phase shift from
each curved waveguide with respect to all the others, an interferometric pattern is set
up that results in light of different wavelengths being focused at different spatial loca-
tion on an output arc. Since the AWG distribute signals according to their wavelength,
each individual waveguide output corresponds to a specific wavelength, thereby acting
as a demultiplexor.

An example of a functional device, which also combines some passive elements
is the acousto-optic tuneable filter (AOTF) (Figure 1.8) [15]. This integrated optical
device requires an external radio-frequency (RF) control signal to selectively separate
one or more wavelength signals (drop signals). This device is fabricated with LiNbO3

and is composed of a piezo-transducer, a thin film acoustic waveguide and two polar-
isation beam splitters. The multi-wavelength input signals propagate over the optical
waveguide and are divided into their perpendicular components (TE/TM) by the first
polarisation beam splitter (PBS). Surface acoustic waves (SAW), generated by apply-
ing an RF signal to the transducer, travel through the SAW guide and cause a periodic
modulation of the optical waveguide’s refractive index. The periodic refractive index
change induces TE–TM or TM–TE conversion for the drop wavelength only. The
drop wavelength corresponds to the applied RF frequency and becomes perpendicular
to the incident light. The second PBS is then used to separate the drop wavelength
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from the incident light. By using several RF signals simultaneously, it is even possible
to drop several wavelengths.

Several substrate materials compatible with integrated photonic technology are also
suitable to incorporate optically active rare earth ions, which makes it possible to
fabricate active integrated optical devices [16]. Figure 1.9 shows the arrangement of an
integrated optical amplifier based on Erbium and Ytterbium ions. It basically consists
of a straight waveguide, which has rare earth ions incorporated to it, an undoped
waveguide and a directional coupler. The input pumping at 980 nm is injected into the
undoped waveguide, and the coupler transfers the pump energy to the doped straight
waveguide. Via several radiative, non-radiative and energy transfer mechanisms which
takes place on the Erbium and Ytterbium ions, the feeble input signal at 1533 nm
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Figure 1.8 The integrated acousto-optic tuneable filter uses polarisation conversion, via the
interaction between the light guide modes and the surface acoustic waves generated by a
piezo-electric transducer, to spatially separate any of the selected input wavelengths (drop sig-
nals). Since the device is externally controlled by the RF frequency applied to the transducer,
this is one example of a functional integrated photonic device
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Figure 1.9 The integrated optical amplifier based on rare earths is one example of active
integrated photonic chips
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is amplified as it propagates along the straight waveguide. If a couple of dielectric
mirrors are attached at the two waveguide ends, the amplified signal can oscillate, and
therefore an integrated laser can be obtained. The end mirrors can also be replaced by
integrated gratings, acting as a true wavelength-selective reflector.

Integrated optical parametric oscillators (OPOs) in ferro-electric crystals have been
identified as the most useful tuneable non-linear frequency converters with many
applications, mainly in environmental sensing and process monitoring. These non-
linear integrated photonic devices are based on ferro-electric materials showing high
values of second order nonlinearities, and are capable of obtaining a periodic inversion
of the ferroelectric domains. Figure 1.10 presents the design of an optical parametric
oscillator in its integrated optical version: a straight channel waveguide is fabricated
on a z-cut LiNbO3 substrate, where a periodically poled region has been patterned
perpendicular to the waveguide [17]. The two dielectric mirrors, directly attached to
the waveguide ends, allow parametric oscillation at the signal and idler frequencies,
which are created from the input pump via non-linear optical interactions. For efficient
optical parametric oscillation the crystal orientation must be adequately chosen, as well
as the periodicity of the ferro-electric domain structure.

1.7 Structure of the Book

The rest of the book has been divided into four chapters and some appendices. This
first chapter aimed to present an overview of integrated photonic technology, stressing
the radical conceptual change of photonic chips compared to traditional optical sys-
tems. Although several technical terms have been used throughout this chapter (modes,
coupling, TE/TM conversion, etc.) without a rigorous definition, they will be further
studied in subsequent chapters. Chapter 2 gives the basic EM theory necessary for
developing and understanding light behaviour in waveguide structures, starting from
Maxwell’s equations. The theory of optical waveguides is introduced in Chapter 3.
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For a correct description of light in waveguide structures having dimensions compa-
rable to its wavelength, the light must be contemplated as EM waves. Therefore, the
waveguide theory discussed in Chapter 3 is based on the EM theory of light, where
the important concept of optical waveguide mode is introduced. In this chapter we
start analysing the planar waveguide structure, where the most relevant concepts are
explained. Also, once one-dimensional waveguides are studied (planar waveguides), we
focus our attention on the theory of guided modes in two-dimensional structures such
as channel waveguides, which are the basic elements in photonic integrated circuits.

Chapter 4 is devoted to the coupling theory of modes in optical waveguides. The
understanding of mode coupling is of vital importance for most integrated optical
devices. This chapter includes the study of optical power transfer between waveguide
modes, whether it is energy transfer between co-directional or contradirectional prop-
agating modes. Also, waveguide diffraction gratings are introduced in this chapter, as
they are key integrated photonic elements which offer an efficient and controllable way
of exchange power between waveguide modes.

Finally, Chapter 5 deals with the theory of light propagation in waveguide structures.
The problem of optical propagation in waveguides is reducible to solve light paraxial
propagation in inhomogeneous media, where paraxial means propagation mainly along
a preferential direction. Although we will discuss several approaches to this problem,
we will focus on the beam propagation algorithm, known as beam propagation method
(BPM), which is a step-by-step method of simulating the passing of light through any
waveguiding medium, allowing us to track the optical field at any point as it propagates
along guiding structures.
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2
REVIEW OF THE

ELECTROMAGNETIC THEORY
OF LIGHT

Introduction

As we saw in the introductory chapter, integrated photonics devices are based on
optical waveguides with depth of the order of microns, comparable to the wavelength
of the optical radiation used in these devices (visible and near infrared). This fact
implies that the performance of the optical chips cannot be analysed in terms of ray
optics, but instead the light must be treated as electromagnetic waves. Therefore, the
electromagnetic theory of light is necessary to properly describe the behaviour of the
different optical elements that are present in any integrated photonics device. In some
cases, the vectorial nature of the electromagnetic waves can be simplified, and a scalar
treatment of the optical waves is often enough for a reasonable description of the
phenomena involved.

In this chapter we present the basics of the electromagnetic theory of light. We
derive the wave equation starting from Maxwell’s equations for light propagation in
free space, and then the wave equation in dielectric media is obtained, by introducing
the definition of refractive index. The solution for the temporal part of the wave
equation admits solution in the form of harmonic functions, which is then used to
derive a wave equation for monochromatic waves, where only the spatial dependence
of the electromagnetic field needs to be considered. The so-called Helmholtz equation
is indeed the starting equation for the analysis of optical waveguides. We then study
the properties of plane waves, as a particular solution of the Helmholtz equation, and
describe the behaviour of electromagnetic waves from the point of view of the vectorial
nature of the electric and magnetic fields, in terms of their polarisation character. Losses
in passive waveguides, as well as gain in active waveguides (lasers and amplifiers)
are also important topics when dealing with light propagation in optical waveguide
structures. To describe the behaviour of electromagnetic radiation in absorbing/gain
media in a general manner, we derive a more general wave equation by defining a
complex refractive index.

Optical waveguides are inherently inhomogeneous structures, in the sense that dif-
ferent media with different optical constants are necessary to achieve light confine-
ment. The present chapter deals with the behaviour of light at dielectric interfaces,



2.1 ELECTROMAGNETIC WAVES 25

and the reflected and transmitted waves are described by defining the reflection and
transmission coefficients, where the two types of incident waves (TE and TM polarised
waves) are examined separately. Also, the energy relations between incident, reflected
and transmitted waves are derived. Finally, the important phenomenon of total internal
reflection, being a key topic in the understanding and description of optical waveguides,
is discussed.

2.1 Electromagnetic Waves

2.1.1 Maxwell’s equations: wave equation

Light is, according to classical theory, the flow of electromagnetic (EM) radiation
through free space or through a medium in the form of electric and magnetic fields.
Although electromagnetic radiation covers an extremely wide range, from gamma rays
to long radio waves, the term “light” is restricted to the part of the electromagnetic
spectrum that goes from the vacuum ultraviolet to the far infrared. This part of the
spectrum is also called optical range. EM radiation propagates in the form of two
mutually perpendicular and coupled vectorial waves: the electric field E(r, t) and the
magnetic field H(r, t). These two vectorial magnitudes depend on the position (r)
and time (t). Therefore, in order to properly describe light propagation in a medium,
whether vacuum or a material, it is necessary in general to know six scalar functions,
with their dependence of the position and the time. Fortunately, these functions are not
completely independent, because they must satisfy a set of coupled equations, known
as Maxwell’s equations.

Maxwell’s equations form a set of four coupled equations involving the electric
field vector and the magnetic field vector of the light, and are based on experimental
evidence. Two of them are scalar equations, and the other two are vectorial. In their
differential form, Maxwell’s equations for light propagating in free space are:

∇E = 0 (2.1)

∇H = 0 (2.2)

∇ × E = −µ0
∂H

∂t
(2.3)

∇ × H = ε0
∂E

∂t
(2.4)

where the constants ε0 = 8.85 × 10−12 m−3 kg−1 s4 A2 and µ0 = 4π × 10−7 mkgs−2

A−2 represent the dielectric permittivity and the magnetic permeability of free space
respectively, and the ∇ and ∇x denote the divergence and curl operators, respectively.

For the description of the electromagnetic field in a material medium it is necessary
to define two additional vectorial magnitudes: the electric displacement vector D(r, t)
and the magnetic flux density vector B(r, t). Maxwell’s equations in a material medium,
involving these two magnitudes and the electric and magnetic fields, are expressed as:

∇D = ρ (2.5)

∇B = 0 (2.6)
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∇ × E = −∂B

∂t
(2.7)

∇ × H = J + ∂D

∂t
(2.8)

where ρ(r, t) and J(r, t) denote the charge density and the current density vector
respectively. If in the medium there are no free electric charges, which is the most
common situation in optics, Maxwell’s equations simplify in the form:

∇D = 0 (2.9)

∇B = 0 (2.10)

∇ × E = −∂B

∂t
(2.11)

∇ × H = J + ∂D

∂t
(2.12)

Nevertheless, to solve these differential coupled equations it is necessary to establish
additional relations between the vectors D and E, J and E, and the vectors H and B .
These relations are called constitutive relations, and depend on the electric and magnetic
properties of the considered medium. For a linear, homogeneous and isotropic medium,
the constitutive relations are given by:

D = εE (2.13)

B = µH (2.14)

J = σE (2.15)

where ε is the dielectric permittivity, µ is the magnetic permeability and σ is the
conductivity of the medium. If the medium is not linear, it should be necessary to
include additional terms involving power expansion of the electric and magnetic fields.
On the other hand, the fact of assuming a homogeneous medium implies that the optical
constants of the medium ε, µ and σ are not dependent of the position vector r. Finally,
in an isotropic medium these optical constants are scalar magnitudes and independent
of the direction of the vectors E and H, implying that the vectors D and J are parallel
to the electric field E, and the vector B is parallel to the magnetic field H. By contrast,
in an anisotropic medium the optical constants must be treated as tensorial magnitudes,
and the above mentioned parallelism is no longer valid in general.

By using the constitutive relations for a linear, homogeneous and isotropic medium,
Maxwell’s equations can be written in terms of the electric field E and magnetic field
H only:

∇E = 0 (2.16)

∇H = 0 (2.17)

∇ × E = −µ
∂H

∂t
(2.18)

∇ × H = σE + ε
∂E

∂t
(2.19)
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By combining adequately these four differential equations, it is possible to obtain
two differential equations in partial derivatives, one for the electric field and another
for the magnetic field:

∇2
E = µσ

∂E

∂t
+ µε

∂2E

∂t2
(2.20)

∇2
H = µσ

∂H

∂t
+ µε

∂2H

∂t2
(2.21)

These two differential equations are known as wave equations for a material medium.
It is worth noting that, although we have obtained a wave equation for the electric
field E and another for the magnetic field H, the solution of both equations are not
independent, because the electric and magnetic fields are related through Maxwell’s
equations (2.18) and (2.19).

2.1.2 Wave equation in dielectric media

A perfect dielectric medium is defined as a material in which the conductivity is σ = 0.
In this category fall most of the substrate materials used for integrated optical devices,
such as glasses, ferro-electric crystals or polymers, while metals do not belong to this
category because of their high conductivity. Then, for dielectric media (σ = 0) the
wave equations simplify on the forms:

∇2
E = µε

∂2E

∂t2
(2.22)

∇2
H = µε

∂2H

∂t2
(2.23)

Each of these two vectorial wave equations can be separated on three scalar wave
equations, expressed as:

∇2ξ = µε
∂2ξ

∂t2
(2.24)

where the scalar variable ξ(r, t) may represent each of the six Cartesian components
of either the electric and magnetic fields. The solution of this equation represents a
wave that propagates with a speed v (phase velocity) given by:

v = 1√
εµ

(2.25)

Therefore, the complete solution of the vectorial wave equations (2.22) and (2.23)
represents an electromagnetic wave, where each of the Cartesian components of the
electric and magnetic fields propagate in the form of waves of equal speed v.

For propagation in free space, and using the values for ε0 and µ0 we obtain:

c = 1√
ε0µ0

≈ 3.00 × 108 m/s (2.26)

which corresponds to the speed of light in free space measured experimentally. It is
worth noting that here the speed of light has been obtained only using values of electric
and magnetic constants.
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Usually it is convenient to express the propagation speed of the electromagnetic
waves in a medium v as function of the speed of light in free space c, through
the relation:

v ≡ c

n
(2.27)

where n represents the refractive index of the dielectric medium. Taking into account
the relations (2.25), (2.26) and (2.27), the refractive index is related with the opti-
cal constant of the material medium and the dielectric permittivity and the magnetic
permeability of the free space by:

n =
√

εµ

ε0µ0
(2.28)

As we will see in the following chapters, the refractive index of a medium is the most
important parameter in integrated photonic technology.

In most of the materials (non-magnetic materials), and in particular in dielectric
media, the magnetic permeability is very close to that of free space: µ ≈ µ0. With
this approximation (a very good one, indeed), the refractive index can be simplified
to obtain:

n ≈
√

ε

ε0
= √

εr (2.29)

where we have introduced the magnitude relative dielectric permittivity εr, also often
called dielectric constant, defined as the relation between the dielectric permittivity of
the material medium and that of the free space. Table 2.1 summarises the refractive
indices of the most relevant materials used in integrated photonic technology. Besides
the refractive index of 1 corresponding to propagation through the free space, as can
be seen in the Table 2.1 the refractive index ranges from values close to 1.5 for glasses
and some dielectric crystals to values close to 4 for semiconductor materials.

Table 2.1 Refractive indices corresponding to materials commonly
used in the fabrication of integrated photonic components

Material Refractive Wavelength
index (nm)

Glass (BK7) 1.51 633
Glass (ZBLAN) 1.50 633
Polymer (PMMA) 1.54 633
Silica (amorphous SiO2) 1.45 633
Quartz (SiO2) 1.55 633
Silicon nitride (Si3N4) 2.10 633
Calcium fluoride (CaF2) 1.43 633
Lithium niobate (LiNbO3) 2.28 (no) 633

2.20 (ne)
Silicon (Si) 3.75 1300
Gallium arsenide (GaAs) 3.4 1000
Indium phosphide (InP) 3.17 1510
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The electromagnetic waves transport energy, and the flux of energy carried by the
EM wave is given by the Poynting vector S, defined as:

S ≡ E × H (2.30)

On the other hand, the intensity (or irradiance) I of the EM wave, defined as the
amount of energy passing through the unit area in the unit of time, is given by the
time average of the Poynting vector modulus:

I = 〈|S|〉 (2.31)

The fact of using an averaged value instead of an instant value to define the intensity
of an EM wave is because, as we will see in the next section, the electric and magnetic
fields associated with the EM wave oscillate at very high frequency, and the apparatus
used to detect that intensity (light detectors) cannot follow the instant values of the
Poynting vector modulus.

2.1.3 Monochromatic waves

The time dependence of the electric and magnetic fields within the wave equations
admits solutions of the form of harmonic functions. Electromagnetic waves with such
sinusoidal dependence on the time variable are called monochromatic waves, and are
characterised by their angular frequency ω. In a general form, the electric and magnetic
fields associated with a monochromatic wave can be expressed as:

E(r, t) = E0(r) cos[ωt + ϕ(r)] (2.32)

H(r, t) = H0(r) cos[ωt + ϕ(r)] (2.33)

where the fields amplitudes E0(r) and H0(r) and the initial phase ϕ(r) depend on
the position r, but the time dependence is carried out only in the cosine argument
through ωt .

When dealing with monochromatic waves, in general it is easier to write down the
monochromatic fields using complex notation. Using this notation, the electric and
magnetic fields are expressed as:

E(r, t) = Re[E(r)e+iωt ] (2.34)

H(r, t) = Re[H(r)e+iωt ] (2.35)

where E(r) and H(r) denote the complex amplitudes of the electric and magnetic
fields, respectively (see Appendix 1). The angular frequency ω that characterises the
monochromatic wave is related to the frequency ν and the period T by:

ω = 2πν = 2π/T (2.36)

The electromagnetic spectrum covered by light (optical spectrum) ranges from fre-
quencies of 3 × 105 Hz corresponding to the far IR, to 6 × 1015 Hz corresponding to
vacuum UV, being the frequency of visible light around 5 × 1014 Hz.
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The average of the Poynting vector as a function of the complex fields amplitudes
for monochromatic waves takes the form:

〈S〉 = 〈Re{Ee+iωt} × Re{He+iωt}〉 = Re{S} (2.37)

where S has been defined as:
S = 1/2 E × H∗ (2.38)

and is called the complex Poynting vector. In this way, the intensity carried by a
monochromatic EM wave should be expressed as:

I = |Re{S}| (2.39)

In the case of monochromatic waves, Maxwell’s equations using the complex fields
amplitudes E and H are simplified notably, because the partial derivatives in respect
of the time are directly obtained by multiplying by the factor iω:

∇E = 0 (2.40)

∇H = 0 (2.41)

∇ × E = −iµ0ωH (2.42)

∇ × H = iεωE (2.43)

where we have assumed a dielectric and non-magnetic medium in which σ = 0
and µ = µ0.

Now, if we substitute the solutions on the form of monochromatic waves (2.34) and
(2.35) in the wave equation (2.24), we obtain a new wave equation, valid only for
monochromatic waves, known as the Helmholtz equation:

∇2U(r) + k2U(r) = 0 (2.44)

where now U (r) represents each of the six Cartesian components of the E(r) and H(r)
vectors defined in (2.34) and (2.35), and where we have defined k as:

k ≡ ω(εµ0)
1/2 = nk0 (2.45)

k0 ≡ ω/c (2.46)

If the material medium is inhomogeneous the dielectric permittivity is no longer
constant, but position dependent ε = ε(r). In this case, although Maxwell’s equations
remain valid, the wave equation (2.24) or the Helmholtz equation (2.44) are not longer
valid. Nevertheless, for a locally homogeneous medium, in which ε(r) varies slowly
for distances of ∼1/k, those wave equations are approximately valid by now defining
k = n(r)k0, and n(r) = [ε(r)/ε0)]1/2.

2.1.4 Monochromatic plane waves in dielectric media

Once the temporal dependence of the electromagnetic fields has been established in
terms of monochromatic waves, let us now consider the spatial dependence of the
fields. For monochromatic waves, the solution for the spatial dependence, carried by
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the complex amplitudes E(r) and H(r), can be obtained by solving the Helmholtz
equation (2.44). One of the easiest and most intuitive solutions for this equation,
and also the most frequently used in optics, is the plane wave. The plane wave is
characterised by its wavevector k, and the mathematical expressions for the complex
amplitudes are:

E(r) = E0e−ikr (2.47)

H(r) = H0e−ikr (2.48)

where the magnitudes E0 and H0 are now constant vectors. Each of the Cartesian com-
ponents of the complex amplitudes E(r) and H(r) will satisfy the Helmholtz equation,
providing that the modulus of the wavevector k is:

k = nk0 = (ω/c)n (2.49)

where ω is the angular frequency of the EM plane wave and n is the refractive index
of the medium where the wave propagates.

As the solution given by the electric and magnetic complex amplitudes must satisfy
Maxwell’s equation, by substituting equations (2.47) and (2.48) into (2.42) and (2.43)
the following relations are straightforwardly obtained:

k × H0 = −ωεE0 (2.50)

k × E0 = ωµ0H0 (2.51)

These two formulae, valid only for plane monochromatic waves, establish the relation-
ship between the electric field E, the magnetic field H and the wavevector k of the
plane wave. From equation (2.50) one obtains that the electric field is perpendicular to
the magnetic field and the wavevector. In the same way, the relation (2.51) establishes
that the magnetic field is perpendicular to E and k. Therefore, one can conclude that
k, E and H are mutually orthogonal, and because E and H lie on a plane normal to the
propagation direction defined by k, such wave in called a transverse EM wave (TEM)
(Figure 2.1).

The fact that these three vectors are perpendicular implies (from equations (2.50)
and (2.51)) that H0 = (ωε/k)E0 and H0 = (k/ωµ0)E0. These two relations can be

E

H

k

Figure 2.1 Triad defined by the electric field, magnetic field and wavevector, for a plane wave
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simultaneously fulfilled only if the wavevector modulus is k = ω(εµ0)
1/2 = ω/v =

nk 0. Of course, this is the condition needed for the wave solution described by (2.47)
and (2.48) to fulfil the Helmholtz equation (2.44).

When dealing with a monochromatic plane EM wave it is useful to characterise it by
its radiation wavelength λ, defined as the distance between the two nearest points with
equal phase of vibration, measured along the propagation direction. The wavelength is
therefore expressed by:

λ ≡ vT = v/ν = 2π/k = 2π/nk0 = λ0/n (2.52)

where λ0 represents the wavelength of the EM wave in free space, given by:

λ0 = cT = c/ν = 2π/k0 (2.53)

It is worth remarking that when an EM wave passes from one medium to another
its frequency remains unchanged, but as its phase velocity is modified due to its
dependence on the refractive index, the wavelength associated with the EM wave
should also change. Therefore, when the wavelength of an EM wave is given, it is
usually referred to the wavelength of that radiation propagating through free space.

2.1.5 Polarisation of electromagnetic waves

As we have seen, the electric and magnetic fields of a plane EM wave oscillate in
a direction perpendicular to the direction of propagation defined by the wavevector
k, and therefore the plane EM waves are transversal. A property associated with a
transversal wave is its polarisation character, related to the closed curve described by
the tip of the electric (or magnetic) field vector at a fixed point r = r0 in the space.
In order to analyse the polarisation character of an EM plane wave, let us assume,
without loss of generality, that the EM wave propagates along the z-axis. In this case
we have:

k = kuz (2.54)

where we will use ux, uy and uz as the unitary vectors along the x, y and z-axis
respectively.

First, let us assume the simplest situation of an EM wave in which its associated
electric field is along the x-axis:

E = E0 cos(ωt − kz)ux (2.55)

The magnetic field of this EM wave is obtained using the relation (2.51):

H = H0 cos(ωt − kz)uy (2.56)

where the amplitude H0 is related to the amplitude E0 by:

H0 = (k/ωµ0)E0 = (ε/µ0)
1/2E0 (2.57)

Note that the electric and magnetic fields are in phase, that is, if at a fixed time and
at a particular plane z = z0 (z being arbitrary) the electric field E reaches its maximum
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X

ZY

Figure 2.2 Oscillation of the electric and magnetic field vectors on a z-propagating EM plane
wave, which is linearly polarised along the x-axis

value, the magnetic field H will also be at its maximum value. The wave described
by equations (2.55) and (2.56) is said to be linearly polarised (or more specifically,
linearly x-polarised ) because the electric field vector E (or H) is always along a
particular direction (x direction in this case) (see Figure 2.2).

Let consider now a linearly y-polarised wave, with an addition phase of +π /2
described by:

E = E0 cos(ωt − kz + π/2)uy = −E0 sin(ωt − kz)uy (2.58)

and
H = −H0 cos(ωt − kz + π/2)ux = H0 sin(ωt − kz)ux (2.59)

with H0 = (ε/µ0)
1/2E0. Because Maxwell’s equations are linear, a linear combination

of several solutions will also be a solution. In particular, the sum of plane waves
described in (2.55) and (2.56), and those described by (2.58) and (2.59) will give us a
different, but valid, solution of the wave equation:

E = E0[cos(ωt − kz)ux − sin(ωt − kz)uy] (2.60)

and
H = H0[cos(ωt − kz)uy + sin(ωt − kz)ux] (2.61)

In order to examine the polarisation character of this new wave, let us study the
curve described by the tip of the electric field vector at a fixed plane, for instance, the
plane defined by z = 0. At this position, the time dependence of the fields is:

Ex = E0 cos ωt and Ey = −E0 sin ωt (2.62)

Hx = H0 sin ωt and Hy = H0 cos ωt (2.63)

The modulus of the electric field vector is therefore:

E
2 = E

2
x + E

2
y = E2

0 (2.64)

and for the magnetic field:
H

2 = H
2
x + H

2
y = H 2

0 (2.65)
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which indicates that, at a fixed plane, the tip of the electric field vector (and the
magnetic field vector) describe a circle. For that reason, this wave is said to be circularly
polarised. Moreover, looking at the wave along the propagation direction, one can
observe that the electric field vector rotates contra-clockwise, and thus we are dealing
with a left-hand circularly polarised wave.

On a general form, if two linearly polarised waves, mutually perpendicular, are
superposed, having the same propagation direction and frequency, but with different
amplitudes and relative phases, at a generic plane (for instance, at z = 0), we will have:

Ex = E01 cos(ωt − θ1) (2.66)

Ey = −E02 cos(ωt − θ2) (2.67)

For such a wave, the relation between the Cartesian components of the electric field is:

(Ex/E01)
2 + (Ey/E02)

2 − 2(Ex/E01)(Ey/E02) cos θ = sin2 θ (2.68)

where we have defined θ as the relative phase between Ex and Ey (θ ≡ θ2 − θ1). This
equation represents an ellipse, being the curve drawn by the electric field, and describes
an elliptically polarised wave.

In general, the principal axis of the ellipse will be tilted with respect to the x and y

axis. In particular, for θ = π /2, 3π/2, . . ., the major and minor axis of the ellipse will
lie along the x and y axis. In this case, if in addition the amplitude of the components
are equal (E01 = E02), then the ellipse will degenerate into a circle. For relative phase
of θ = 0, π , 2π, . . ., the ellipse will become a straight line, with:

Ex = ±(E02/E01)Ey (2.69)

which represents once again a linearly polarised wave.

2.1.6 Light propagation in absorbing media

An absorbing medium is characterised by the fact that the energy of the EM radiation
is dissipated in it. This would imply that the amplitude of a plane EM wave decreases
exponentially as the wave propagates along the absorbing medium. The mathematical
description of light propagation in absorbing media can be treated by considering that
the dielectric permittivity is no longer a real number, but a complex quantity εc. In
terms of field description, this implies that the electric displacement, now related by
the electric field by D = εcE, will not be in phase with the electric field in general.
As the refractive index was defined as a function of the dielectric permittivity, it will
be in general a complex number itself, now defined by:

nc =
√

εc

ε0
(2.70)

where nc is called the complex refractive index. It is useful to work with the real and
imaginary part separately, and in this way we define:

nc = n − iκ (2.71)

where now n is the real refractive index, and κ is called the absorption index.
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In addition, from the Helmholtz equation (2.44) the relation between the complex
wavevector kc (now complex) and the complex refractive index nc is

k2
c ≡ ω2εcµ = n2

ck0 (2.72)

Because the wavevector is now a complex vector, we can separate its real and
imaginary parts in the following way:

kc ≡ k − ia (2.73)

where k represents the real wavevector, and a is called the attenuation vector. The
relation between the vectors k and a and the optical constant of the material medium
n and κ are deduced from equation (2.72), resulting in

k2 − a2 = k2
0(n

2 − κ2) (2.74)

ka = k2
0nκ (2.75)

Taking into account these definitions, the electric field for a plane monochromatic
wave in absorbing medium will have the general form:

E(r, t) = Re
[
E0ei(ωt−kcr)] = Re

[
E0e−arei(ωt−kr)] (2.76)

The planes of constant amplitude will be determined by the condition ar = constant,
and therefore they will be planes perpendicular to the attenuation vector a. On the other
hand, the planes of equal phase will be defined by the condition of kr = constant, and
thus the phase front will be planes perpendicular to the real wavevector k. In general,
these two planes will not be coincident, and in this case the EM wave is said to be an
inhomogeneous wave.

Nevertheless, the most common situation faced in light propagation in absorbing
media is the case where the vectors k and a are parallel, and such a wave is called a
homogeneous wave. In this particular case, the vectors kc, k and a are related to the
optical constant of the medium through the following simple relations:

k = nk0 (2.77)

a = κk0 (2.78)

kc ≡ (n − iκ)k0 (2.79)

and the electric field takes the form:

E(r, t) = Re
[
E0ei(ωt−nck0r)] = Re

[
E0e−κk0rei(ωt−nk0r)] (2.80)

This expression describes a wave propagating in the direction defined by the vector k0,
with a phase velocity given by v = c/n, and whose amplitude decreases exponentially
in the same direction to that propagation.

One important aspect concerning light propagation in absorbing media is the intensity
variation suffered by the wave as it propagates. To calculate the intensity associated
with the wave we use the expressions given in equations (2.38) and (2.39), as well as
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the result obtained in (2.80). Without loss of generality, we assume that the propagation
is along the z-axis; in this case, the intensity takes the form:

I (z) = 1

2cµ0
|E0|2e−2κk0z (2.81)

If we now define I0 as the intensity associated with the wave at the plane z = 0,
it follows:

I0 = 1

2cµ0
|E0|2 (2.82)

and the expression for I (z) becomes in a more compact form:

I (z) = I0e−2κk0z (2.83)

This formula indicates that the intensity of the wave decreases exponentially as a
function of the propagation distance.

In some applications it is convenient to deal with the absorption by using the absorp-
tion coefficient α, defined as:

α ≡ 2κk0 = 2κω/c (2.84)

which has dimensions of m−1. In this way, the attenuation of a light beam passing an
absorbing medium is expressed in a compact manner by:

I (z) = I0e−αz (2.85)

When working with optical fibres or optical waveguides, it is usual to refer to the
light attenuation in decibels (dB), whose relation with the absorption coefficient is:

1 dB ≡ 10 log10(I0/I) = 4.3 αd (2.86)

where I/I0 represents the fraction of light intensity after a distance d .
In the case of metallic media, characterised by having a high electrical conductivity

σ (compared with εω), it is necessary to use the complete wave equations given in
(2.20) and (2.21), that include the term corresponding to the first time derivative of the
electric (and magnetic) field. Fortunately, when dealing with monochromatic waves, it
is possible to include the electrical conductivity as an extra contribution to the dielectric
permittivity in the following way:

εG = ε − iσ/ω (2.87)

where εG (clearly, a complex quantity) is known as generalised dielectric permittivity.
By using this form, the Helmholtz equation is still valid, expressed as:

∇2U(r) + k2
cU(r) = 0 (2.88)

defining kc in this case as:

k2
c = ω2εGµ = ω2(ε − iσ/ω)µ = n2

ck0 (2.89)

In this way, the mathematical formalism of the metallic media is equivalent to that of
the absorbing media, by the only consideration of including the electric conductivity
on the generalised dielectric permittivity through the equation (2.89).
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Finally, it is important to note that, even in a totally transparent dielectric medium
(κ = 0), it is possible not to have null values for the attenuation vector a; such is the
situation found in the phenomenon of total internal reflection. This particular case, of
capital importance in the description and performance of integrated photonics devices,
will be dealt with in the next chapter in connection with light propagation in optical
waveguides. From equation (2.75) it is evident that this situation only is possible if
vectors a and k are perpendicular. As we have discussed earlier, in this case we are
dealing with an inhomogeneous wave, where its planes of equal amplitude and equal
phase are perpendicular.

2.2 EM Waves at Planar Dielectric Interfaces

2.2.1 Boundary conditions at the interface

Up to now we have described the propagation of EM waves in free space or through
a material medium. Another important aspect in the study of light propagation is the
behaviour of EM waves passing from one medium to another. We will analyse this
by studying the behaviour of an EM monochromatic plane wave travelling through a
homogeneous medium, incident on a second homogeneous medium, separated from the
former by a planar interface. We will see that, besides the existence of a transmitted
wave in the second medium, the incident wave partially reflects at the interface, giving
rise to a reflected wave. The equations that determine the reflection and transmission
coefficients can be studied separately in two groups: in one situation, the electric field
of the incident EM wave has only a parallel component with respect to the incident
plane (the magnetic field being perpendicular to that plane); the other group refers to
incident EM waves in which the electric vector has only the component perpendicular
to the incident plane, and therefore the magnetic vector is perpendicular to that plane.
These two cases are mutually independent, and can be treated separately: from them
it is possible to deduce the equations that govern reflection and transmission for any
plane wave with arbitrary polarisation state.

The relations between the incident, reflected and transmitted waves are obtained by
setting the adequate boundary conditions for the fields at the planar interface, which
are derived directly from Maxwell’s equations. Because the E, D, H and B fields are
not independent, but related by Maxwell’s equations and the constitutive relations of
the media, only some of the boundary conditions should be taken into account.

From equations (2.9) and (2.10), one obtains respectively that the normal components
of the fields D and B should be kept across the boundary, that is:

(DNormal)Medium 1 = (DNormal)Medium 2 at the interface (2.90)

(BNormal)Medium 1 = (BNormal)Medium 2 at the interface (2.91)

On the other hand, by using Maxwell’s equations (2.11) and (2.12) respectively, the
conditions of continuity across the interface of the tangential components of the E and
H fields are obtained:

(ETangential)Medium 1 = (ETangential)Medium 2 at the interface (2.92)

(HTangential)Medium 1 = (HTangential)Medium 2 at the interface (2.93)
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Let us consider an EM monochromatic plane wave, characterised by its angular
frequency ωi and wavevector ki, incident from a homogeneous medium (1) to a planar
frontier separating a different homogeneous medium (2). The dielectric media are
characterised by their optical constant (ε1, µ1) and (ε2, µ2), where the subscript denotes
the medium (1 or 2). If the two media are isotropic and homogeneous, the electric field
vectors, using complex notation, corresponding to the incident, reflected and transmitted
(or refracted) waves are expressed as:

Ei (r, t) = Eie
i(ωi t−kir) (2.94)

Er (r, t) = Erei(ωr t−kr r) (2.95)

Et (r, t) = Ete
i(ωt t−kt r) (2.96)

where kr and kt are the wavevectors of the reflected and transmitted waves, and ωr

and ωt are their respective angular frequencies. The vectors Ei , Er and Et repre-
sent the electric field complex amplitudes of the incident, reflected and transmitted
waves, respectively, being independent of the time and space. The magnetic fields
vectors associated with each wave have similar expressions, and can be deduced from
equation (2.51).

Let us apply the condition of the continuity of the tangential component of the
electric field across the interface. The condition (2.92) as well as the expressions for
the electric fields gives the following relation:

[Ei (r, t) + Er (r, t)]Tangential = [Et (r, t)]Tangential (2.97)

or more explicitly, using the fact that the waves are monochromatic plane waves:

[Eie
i(ωi t−kir) + Erei(ωr t−kr r)]Tangential = [Ete

i(ωi t−kt r)]Tangential (2.98)

As this relation should be valid for any instant of time, it follows that:

ωi = ωr = ωt (2.99)

that indicates that the frequencies of the reflected and transmitted waves are equal to
the frequency of the incident wave.

On the other hand, equation (2.98) should be valid for any point at the interface.
If we choose the coordinate origin O at the interface, and the x axis in the normal
direction to the plane boundary, then the position vector r would lie in this plane.
Thus, the condition of equal spatial dependence on the exponents in equation (2.98) at
the interface is expressed as:

kiy y + kiz z = kry y + krz z = kty y + ktz z (at the interface x = 0) (2.100)

This result indicates that the tangential component of the wavevectors (for the inci-
dent, reflected and transmitted waves) must be equal:

[ki]
T = [kr]

T = [kt]
T (2.101)

In other words, at the boundary only the perpendicular component of the wavevectors
can change. Thus, the vectors kr and kt must lie in the plane defined by the ki vector
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Figure 2.3 Reference system used to study the reflection and transmission experimented by a
monochromatic plane wave incident from medium (1) to medium (2)

and the normal to the plane of the interface. This plane, perpendicular to the plane
that separates both media, is called the incident plane, and all the wavevectors lie on
it. These formulae are simplified if we choose the incident plane as the x-z plane, as
indicated in Figure 2.3: in this case the y components of the wavevectors are null, and
the relation (2.100) leads to:

kiz = krz = ktz (2.102)

If now we introduce the incident angle θi, the reflected angle θr, and the transmitted
angle θt, following Figure 2.3, the above equation can be expressed as:

ki sin θi = kr sin θr = kt sin θt (2.103)

As the electric fields given by (2.94)–(2.96) must be solutions of the wave equation,
the wavevectors modulus should be:

ki = ω(ε1µ1)
1/2 = kr (2.104)

kt = ω(ε2µ2)
1/2 (2.105)

From equations (2.103) and (2.104) one directly obtains:

θi = θr (2.106)

that indicates that the reflected angle is equal to the incident angle, known as the
law of reflection. Equation (2.103) also relates the transmitted and the incident waves,
resulting in:

ki sin θi = kt sin θt (2.107)

that is the mathematical expression for the transmission law. If the two homogeneous
media are non-magnetic (µ1 ≈ µ2 ≈ µ0) and non-absorbing materials (real refractive
indices), then:

(ε1/ε0)
1/2 = (εr1)

1/2 = n1 (2.108)

(ε2/ε0)
1/2 = (εr2)

1/2 = n2 (2.109)
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and in this case the equation (2.107) takes the familiar form of:

n1 sin θi = n2 sin θt (2.110)

which is the well-known Snell’s law, valid for dielectric materials. In the case of absorb-
ing media, the equation (2.102) is still valid, and is the correct relation to obtain the
transmitted wave. In the most general case, this would give rise to an inhomogeneous
transmitted wave.

2.2.2 Reflection and transmission coefficients: reflectance
and transmittance

Now we will focus on the relations between the electric field amplitude for the inci-
dent, reflected and transmitted waves. In order to do this, we will use the appropriate
boundary conditions (2.90)–(2.93) that should be fulfilled by the fields at the interface.
We will consider two basic types of linearly polarised incident waves separately: the
first deals with an EM wave in which the associated electric field vector lies on the
incident plane; in the second the electric field vector is perpendicular to that plane. In
the general case of an incident wave with an arbitrary polarisation state, the procedure
is to decompose it into the two basic polarisations, treating them separately, and finally
to re-compose the electric field by adding the two mutually orthogonal components.
Using appropriate boundary conditions at the interface, it can be demonstrated that if
the wave has its electric field parallel to the incident plane, the reflected and trans-
mitted waves will also have their electric field in that plane. In the same way, if the
electric wave associated to the incident wave is perpendicular to the incident plane,
the electric fields of the reflected and transmitted waves will also be perpendicular to
the incident plane.

Let us consider the first case in which the electric field vector associated with
the incident monochromatic plane wave lies on the incident plane, as depicted in
Figure 2.4. As the wavevector is also on this plane, and the magnetic field vector is
perpendicular to both vectors, it is deduced that the magnetic field vector must be
perpendicular to the incident plane: this is the reason why this case is called transverse
magnetic incidence (TM incidence). In this situation, the electric and magnetic fields
are given by:

Ei ≡ E
||
i ≡ [Eix, 0,Eiz] (2.111)

H i ≡ H
⊥
i ≡ [0,H iy, 0] (2.112)

where the symbols || and ⊥ denote vectors parallel and perpendicular to the incident
plane, respectively. As the electric field vector is parallel to the incidence plane, the TM
incidence is also called parallel incidence. Applying the condition of the continuity of
the tangential component of the electric field at the interface given by (2.92) we obtain:

Eiz + Erz = Etz (2.113)

and in terms of the incident, reflected and transmitted angles, using the geometry shown
in Figure 2.4, we obtain:

[Eie
i(ωi t−kir) cos θi − Erei(ωr t−kr r) cos θr ]x=0 = [Ete

i(ωt t−kt r) cos θt ]x=0 (2.114)
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Figure 2.4 Reflection and transmission suffered by a plane wave incident on a planar interface
that separates two dielectric media, showing the directions of the wavevector, electric field and
magnetic field vectors for the incident wave (i), reflected wave (r) and transmitted wave (t).
We have assumed that the electric field vector lies in the incidence plane (x –z plane), which
corresponds to TM incidence or parallel incidence

where the three expressions should be evaluated at the interface (x = 0). As we have
seen before, the temporal and spatial dependences of the exponentials are equal (at
x = 0), and therefore it follows that:

Ei cos θi − Er cos θi = Et cos θt (2.115)

On the other hand, the condition of continuity of the normal component of the
dielectric displacement vector (2.90) is expressed in this geometry as:

Dix + Drx = Dtx (2.116)

and taking into account the constitutive relation (2.13), we can express this relation as
a function of the electric fields:

ε1 Ei sin θi + ε1 Er sin θi = ε2 Et sin θt (2.117)

By combining the conditions (2.115) and (2.117), we obtain the following expression
for the relation between the electric field amplitudes of the reflected and incident waves:

rTM ≡ Er

Ei

= n2 cos θi − n1 cos θt

n2 cos θi + n1 cos θt

(2.118)

where rTM denotes the reflection coefficient for parallel polarisation. In a similar
way, the relation between the amplitude between the transmitted and incident waves
is obtained:

tTM ≡ Et

Ei

= 2n1 cos θi

n1 cos θt + n2 cos θi

(2.119)
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Figure 2.5 Reflection and transmission coefficients for TM-incidence (or parallel polarisation)
in the case of air–silica (n1 = 1.00, n2 = 1.45)

being here tTM the transmission coefficient for parallel polarisation. Figure 2.5 shows
the rTM and tTM values as function of the incident angle in the case of air–silica
(n1 = 1.00, n2 = 1.45). It is convenient to recall that in this particular case the rTM

and tTM coefficients are real, but in general rTM and tTM can be complex magnitudes.
Although the reflection and transmission coefficients give us valuable information

concerning the relation between the electric field amplitudes of the incident, reflected
and transmitted waves, in many cases the relevant parameter is the fraction of the inci-
dent energy that is reflected and transmitted at the interface, defined through reflectance
and transmittance. In particular, the reflectance R is defined as the quotient between
the reflected energy in an unit of time over a differential area, and the incident energy
per unit of time over the same area at the interface. Similarly, the transmittance is
defined as the quotient between the transmitted energy per unit of time over a differen-
tial area and the incident energy in that unit of time over the same area. These fluxes
of energy are related to the Poynting vector component perpendicular to the plane of
the interface, or according to the geometry in Figure 2.3, the flux along the x-axis.
The expressions for the reflectance and transmittance are therefore expressed as:

R = |〈Sref · da〉|
|〈Sinc · da〉| = |〈(Sref )x〉|

|〈(Sinc)x〉| (2.120)

T = |〈Strans · da〉|
|〈Sinc · da〉| = |〈(Strans)x〉|

|〈(Sinc)x〉| (2.121)

where Sinc, Sref and Strans represent the Poynting vectors associated with the incident,
reflected and transmitted waves, and da represents the differential area at the interface.

Taking into account the definition of the Poynting vector given in (2.30), and the
time average of the cosine squared function, we obtain:

|〈Sx〉| = |〈(ExH)x〉| = 1
2 (k/ωµ)|E|2 cos θ (2.122)
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where θ is the angle formed between the vectorial product E x H (that is, the wavevec-
tor k) with the x-axis. Using this expression and combining it with (2.120), we obtain
the reflectance for TM incidence:

RTM = (1/2)(ε1/µ1)
1/2|Er |2 cos θr

(1/2)(ε1/µ1)1/2|Ei|2 cos θi

=
∣∣∣∣Er

Ei

∣∣∣∣
2

= |rTM|2 (2.123)

or in terms of the incident and transmitted angles:

RTM =
(

n2 cos θi − n1 cos θt

n2 cos θi + n1 cos θt

)2

(2.124)

In a similar way, the transmittance is expressed as function of the refractive indices
and the incident and transmitted angles as:

TTM = 4n1n2 cos θi cos θt

(n2 cos θi + n1 cos θt )2
(2.125)

In addition, from (2.124) and (2.125) one can readily obtain:

RTM + TTM = 1 (2.126)

that can be considered as the electromagnetic energy conservation for the incident,
reflected and transmitted waves at the interface.

From equation (2.124) it follows that the reflectance will vanish for the condition
n2 cos θi = n1 cos θt. Apart from the obvious case in which the two media are optically
equivalent (n1 = n2), there exists another particularly interesting situation in which
RTM = 0. By combining (2.124) with the Snell’s law, one obtains that the reflectance
is zero for an incident angle that fulfils the equation:

tgθi = n2/n1 (2.127)

This angle, for which RTM = 0, is called Brewster’s angle θB or the polarising angle,
because the reflected wave will be linearly polarised for an incident wave with arbitrary
polarisation state. Figure 2.6 shows the reflectance and transmittance curves for the
air–silica case, where we observe that Brewster’s angle is situated at θB = 55.4◦.

For the particular case of normal incidence (θi = 0), the formula for the reflectance
is simplified to:

R =
(

n2 − n1

n2 + n1

)2

(2.128)

where now we have omitted the subscript TM, because for normal incidence there is
no physical difference between parallel or perpendicular incidence.

For the case air–glass the reflectance at normal incidence is R ≈ 5%, which is
a relatively low value. Nevertheless, for materials with higher refractive indices (f.i.
LiNbO3, n ≈ 2.2; GaAs, n ≈ 3.4, see Table 2.1), the reflectance at normal incidence are
high enough (R(LiNbO3) ≈ 14%, R(GaAs) ≈ 30%) to be used as partially reflecting
mirrors in some integrated photonic components, such as in propagating loss measure-
ment by the Fabry-Perot method [1], or to provide feedback in integrated waveguide
lasers [2].
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Figure 2.6 Reflectance and transmittance for TM incidence corresponding to the interface
air–silica (n1 = 1.00, n2 = 1.45). For an incident angle at θi = θB the reflectance vanishes,
corresponding to an angle of 55.4◦
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Figure 2.7 Reflection and transmission corresponding to TE incidence (perpendicular polari-
sation). While the electric field vectors are perpendicular to the incident plane (x –z plane), the
wavevectors and the magnetic field vectors lie in that plane

We now consider the situation in which the electric field vector of the incident wave
is perpendicular to the incident plane; therefore, this case is called transverse electric
incidence (TE incidence) or perpendicular polarisation. Figure 2.7 depicts this case,
where the electric field vectors are perpendicular to the incident plane, and the magnetic
field vectors lie in that plane. Taking into account the reference system of the figure,
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the electric and magnetic field vectors associated with the incident wave are:

Ei ≡ E
⊥
i ≡ [0,Eiy, 0] (2.129)

H i ≡ H
||
i ≡ [H ix, 0, H iz] (2.130)

The continuity of the tangential component of the electric field across the boundary
(2.92) is expressed in this case as:

Eiy + Ery = Ety (2.131)

To obtain the reflection and transmission coefficients it is necessary to find a second
relation between the electric field amplitudes. This is obtained by imposing the con-
dition of continuity of the tangential component of the magnetic field vector (2.93) at
the interface:

Hiz + Hrz = Htz (2.132)

and by relating the magnetic field vectors with the electric field vectors by using
equation (2.51). After straightforward calculations, the boundary condition (2.132)
becomes:

kix(Eiy − Ery) = ktxEty (2.133)

By combining (2.131) with (2.133), the reflection and transmission coefficients for
TE incidence are obtained as a function of the wavevectors:

rTE ≡ Er

Ei

= kix − ktx

kix + ktx

(2.134)

tTE ≡ Et

Ei

= 2kix

kix + ktx

(2.135)

These coefficients can be expressed in a more convenient form as a function of
the incident and refracted angles and the refractive indices of the two media by using
Snell’s law:

rTE = n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt

(2.136)

tTE = 2n1 cos θi

n1 cos θi + n2 cos θt

(2.137)

Figure 2.8 shows the reflection and transmission coefficients as a function of the
incident angle in the case of air–silica interface for TE incidence, where both coeffi-
cients are real in the whole range of incident angles. As can be seen, the transmission
coefficient is positive, indicating that the direction of the electric field vector of the
transmitted wave is coincident to that of the incident wave. By contrast, the electric
field vector associated with the reflected wave is reversed in respect to that of the
incident wave, indicating a phase shift of π in the reflected wave.

Following a similar form used for TM incidence, the reflectance and the transmittance
for TE incidence are expressed as:

RTE =
(

n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt

)2

(2.138)
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Figure 2.8 Reflection and transmission coefficients for TE incidence at the air–silica boundary
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Figure 2.9 Reflectance and transmittance for TE incidence in the air–silica interface

TTE = 4n1 cos θin2 cos θt

(n1 cos θi + n2 cos θt )2
(2.139)

The reflectance and transmittance of a TE-polarised wave incident from air to silica
are plotted in Figure 2.9. At variance to that found in TM incidence, in TE incidence
the reflectance is a monotonous increasing function of the incident angle. Therefore,
if a beam of non-polarised light is incident at an angle of θB, the interface only will
reflect the TE component of such radiation, and thus the reflected wave will be linearly
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polarised with the electric field vector perpendicular to the incident plane. This is the
reason why Brewster’s angle is also called the polarising angle, and this phenomenon
can be used to design polarisation devices.

2.2.3 Total internal reflection

The formulae describing the reflectance and transmittance whether for TM incidence
or TE incidence, were obtained by assuming that the light is incident from a less dense
medium (1) to a denser medium (2), or that the refractive index of medium (1) is
lower that the refractive index of medium (2) (n1 < n2). This is called soft incidence
(formulae (2.110), (2.137), (2.138)). From Snell’s law (2.110), if n1 < n2 holds, it is
easy to show that, regardless of the incident angle θi, the refracted angle always will
exist, or in other words, the refracted angle θt, will always be a real number.

In contrast, if the plane wave is incident from a denser to a less dense medium
(n1 > n2, hard incidence) an exceptional phenomenon takes place for a certain range
of incident angles, for which the formulae formerly given for R and T can no longer
be applied. For hard incidence (n1 > n2) there exists an incident angle θi for which
the refracted angle θt takes the value of π/2 radians. This angle is called the critical
angle θc, and its value, calculated directly from Snell’s law is:

θc ≡ sin−1(n2/n1) (2.140)

For incident angles higher than the critical angle, the sine of the refracted angle will
reach values greater than 1, thus the refracted angle is no longer a real number accord-
ing to Snell’s law. Nevertheless, this does not imply that in medium (2) there is no
transmitted wave, as we will show.

In order to calculate the reflectivity in a case of hard incidence, it is necessary to
evaluate cos θt included in the formulae for the reflection and transmission coefficients.
According to Snell’s law, it follows that:

cos θt = −(1 − sin2 θt)
1/2 (2.141)

where the negative sign of the squared root has been chosen so that the complete
expression for the electric field of the transmitted wave has a correct physical meaning.
Taking into account that now sin θt > 1, the last formula can be expressed as:

cos θt = −i(sin2 θt − 1)1/2 = −iB (2.142)

where the magnitude B has been defined as a real number by:

B ≡ (sin2 θt − 1)1/2 = (n2
1 sin2 θi/n2

2 − 1)1/2 (2.143)

According to the definition of B, the reflection and transmission coefficients for TM
and TE incidence become:

rTM = n2 cos θi + in1B

n2 cos θi − in1B
= zTM

z∗
TM

= eiφTM (2.144)

rTE = n1 cos θi + in2B

n1 cos θi − in2B
= zTE

z∗
TE

= eiφTE (2.145)
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Here, we have expressed the reflection coefficients as the quotient between a complex
number z and its conjugated z∗, and thus the modulae of both reflection coefficients
are 1. For that reason, the values of the reflectance for TM and TE polarisation are
equal to 1:

|rTM| = 1, RTM = 1 (2.146)

|rTE| = 1, RTE = 1 (2.147)

where we have used the equation (2.123), and the fact that for perpendicular polarisa-
tion also holds that RTE = |rTE|2.

On the other hand, the phase shift of the reflected waves, φTM and φTE in (2.144)
and (2.145), are calculated from the following expressions:

tan(φTM/2) = n1B/n2 cos θi (2.148)

tan(φTE/2) = n2B/n1 cos θi (2.149)

The magnitudes of the phase shifts φTE and φTM are very important when establishing
the condition of light propagation in planar optical waveguides, which gives rise to the
calculation of the allowed propagating modes, as we will see in the next chapter. These
phase shifts are represented in Figure 2.10, for the case of total internal reflection in
the boundary silica–air (n1 = 1.45, n2 = 1.00). Note that for angles lower than the
critical angle, the phase shifts are either 0 or π , but for incident angles greater that the
critical angle, the phase shift is a monotonous increasing function of the angle.

In order to obtain the complete expression for the wave in the second medium, it
is convenient to write explicitly the x and z components of the wavevector for the
transmitted wave, given by:

ktx = −kt cos θt = −k0n2 cos θt = ik0n2B (2.150)

ktz = kiz = k0n1 sin θi (2.151)
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Figure 2.10 Phase shift experienced by the reflected waves for TM and TE incidence produced
by effect of total internal reflection, in the case of the silica–air interface
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By using the definition of the complex wavevector given in (2.73), the real wavevec-
tor kt and the attenuation vector at of the transmitted wave are expressed by:

kt = [0, 0, k0n1 sin θi] (2.152)

at = [k0n2B, 0, 0] (2.153)

showing that the vectors kt and at are mutually perpendicular, and as we saw in
section (2.1.6), this situation corresponds to the case of an inhomogeneous wave. Tak-
ing into account the expression (2.80), the electric field associated with the transmitted
wave is of the form:

Et (r, t) = Re{E0e−at rei(ωt−kt r)} = Re{E0ek0n2Bxei(ωt−k0n1 sin θiz)} (2.154)

This expression indicates that in the second medium there exists an EM wave that
propagates along the interface (z-axis), and decreases in the perpendicular direction
to the interface (x-direction, x < 0). The propagation along the z-direction does not
depend on the medium (2), because it is controlled by k0n1 sin θi. The amplitude of the
electric field in the medium (2) decreases exponentially with the distance x in respect
to the boundary. precisely for this reason, the fact that the wave in medium (2) shows
an exponential decay with the distance, this wave is known as an evanescent wave.
The penetration depth, defined as the distance to the interface where the electric field
decreases a factor e, is given by:

x1/e = 1/at = 1/(k0n2B) ≈ 1/k0n2 = λ0/2πn2 (2.155)

where the last result has been obtained by assuming that B ∼ 1, and indicates that the
electric field penetrates in the medium (2) to approximately a distance of a tenth of
the wavelength.

Although in the medium (2) there exists a transmitted wave given by the expression
(2.154), it can be demonstrated that there is no energy flux in the x-direction [3],
indicating that the light is totally reflected at the boundary, although a small fraction
of it penetrates in the medium (2):

〈Sx〉 = 〈EyHz〉 = 0 (2.156)

By contrast, there is energy flow along the z-direction, parallel to the interface that
separates both media, as it is shown in Figure 2.11. In the case of TE incidence, the
z-component of the energy flux in the medium (2) is expressed as:

〈Sz〉 = 〈−EyHx〉 =
√

µ0

ε0

n1 sin θi

2n2
2

|tT E|2E2
1e2k0n2Bx (2.157)

where the squared modulus of tTE should be evaluated by using the equations (2.137),
(2.142) and (2.143). This result is of special importance when examining the behaviour
of light confined in waveguides, which is the subject of the next chapter. We will show
that, although a waveguide confines the light by total internal reflection in its adjacent
interfaces, EM radiation would be found in the surrounding media. This fact can be
exploited favourably to couple light in waveguides [4], to fabricate waveguide sensors
[5], etc., and is one of the key factors in the modal coupling as we will see in the next
chapters. Table 2.2 shows the magnitudes introduced in this chapter.
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x

zMedium 1

Medium 2
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Figure 2.11 Penetration of the evanescent wave in the medium (2), when a plane wave is
incident from the medium (1) with an incident angle greater than the critical angle

Table 2.2 Magnitudes introduced in Chapter 2, including the symbols
used and their units in the SI

Magnitude Symbol Unit (S.I.)

Electric field E V m−1, N C−1, m Kg s−2 C−1

Magnetic field H A m−1, m−1 s−1 C
Electric displacement D m−2 C
Magnetic induction B Wb m−2, Kg s−1 C−1

Current density J A m−2, m−2 s−1 C
Charge density ρ m−3 C
Poynting vector S W m−2, m2 Kg s−3

Intensity I W m−2, m2 Kg s−3

Angular frequency ω rad s−1

Frequency ν s−1, Hz
Period T s
Phase ϕ rad
Wavelength λ m
Permittivity ε F m−1, m−3 Kg−1 s2 C2

Permeability µ H m−1, m Kg C−2

Conductivity σ �−1m−1, m−3 Kg−1 s C2

Velocity, speed v m s−1

Wavevector k m−1

Attenuation vector a m−1

Dielectric constant εr dimensionless
Refractive index n dimensionless
Absorption index κ dimensionless
Absorption coefficient α m−1
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3
THEORY OF INTEGRATED

OPTIC WAVEGUIDES

Introduction

Integrated photonics devices are based on the processing of light confined in optical
structures called optical waveguides. In this chapter we will describe the theory of
optical waveguides using the electromagnetic theory of light previously discussed. We
start by describing the basic geometries found in waveguide structures: planar wave-
guides, channel waveguides, optical fibres and photonic crystals. Then, we introduce
the concept of optical mode, and discuss the types of modes that can be supported by
a planar structure. Using the Maxwell’s equations we will obtain the wave equation
for planar waveguides, and then we will solve it for the simplest case of step-index
planar waveguides, considering TE and TM polarised modes separately. In particular,
we will see that for confined radiation the wave equation admits a discrete number of
solutions, called guided modes. Based on the results obtained for guided modes in step-
index waveguides, we describe the different approaches to solving graded-index planar
waveguides, examining the advantages and disadvantages of each method. Finally,
the guided modes in channel waveguides are studied, and the solutions provided by
Marcatili’s method and the effective index method are presented. Several examples of
mode calculations are given for the different optical waveguide structures using the
methods and algorithms described in the chapter.

3.1 Optical Waveguides: Basic Geometries

The basic element in integrated photonic technology is the optical waveguide. A
waveguide can be defined as an optical structure that allows the confinement of light
within its boundaries by total internal reflection. As we saw in the previous chap-
ter, in order for total internal reflection to take place it is necessary to surround
a high index medium, where most of the radiation energy is concentrated, by low
refractive index media. A very simple example of light confinement happens in a (pla-
nar) film of glass situated in air. If the refractive index of the glass is n, the rays
inside the film that propagate with an internal angle θ greater than the critical angle
θc = sin−1(1/n) will suffer total reflection at the interfaces, and will remain trapped
inside the film: in these circumstances we say that the film situated in air acts as an
optical waveguide.
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This is the basic mechanism that operates in luminescent solar concentrators (LSC)
[1], that consist of a glass film in which some organic luminescent molecules (dyes)
are embedded (Figure 3.1). The dye molecules absorb solar radiation, and then the
radiation is re-emitted isotropically. An important fraction of the emitted radiation
is trapped by total internal reflection at the upper and lower interfaces, and reaches
the sides of the film, where a stack of solar cells are attached; in this way, a high
geometrical collection factor is obtained.

Another type of optical waveguide, that can easily be visualised is a solid cylindrical
glass tube (Figure 3.2): since the refractive index of glass is greater than the outer
medium (air in this case), radiation travelling at angles greater than the critical angle
will be confined in it by total internal reflection: in this case the confinement of the
light extends in two dimensions.

Dye molecule 

Glass film

Solar radiation

Solar cells 

Escaped radiation 

Trapped radiation

Figure 3.1 Luminescent solar concentrator acting as an optical waveguide: all the emitted
radiation at angles greater than the critical angle are totally trapped in the dye-doped glass film,
and reach the solar cell stack situated at the lateral face

Figure 3.2 A solid glass tube can act as an optical pipeline by confining the light in two
dimensions due to light undergoing total internal reflection at the glass–air interface
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As the two former examples have shown, a first waveguide classification can be
made by looking at the number of dimensions in which the light is confined (Table 3.1).
Figure 3.3 shows the three basic types of waveguides depending on their number of
dimensions for light confinement: while a planar waveguide (or 1D waveguide) confines
the radiation in one dimension (Figure 3.3a), channel waveguides (or 2D waveguides)
confine the light in two dimensions (Figure 3.3b).

There also exist structures that confine light in the three dimensions. These con-
stitute a very special case of optical waveguides: since the radiation is confined in
all directions, it cannot propagate. Therefore, these structures in fact form light traps,
and are often called photonic crystals (Figure 3.3c). The light confinement in this case
obviously cannot be based on total internal reflection; instead, photonic crystals are
fabricated by means of tridimensional periodical structures, in which the light confine-
ment is based on Bragg reflection. Photonic crystals have very interesting properties,
and their use in several devices or applications has been proposed, such as miniaturised
lasers with virtually no threshold power, waveguide bends with very small curvature
radii and dimensions, or narrow-band filters [2].

Up to now, we have not imposed any restriction on the size of the guiding structures.
In fact, the LSC and the light tubes can be called macroscopic waveguides. If we

Table 3.1 Classification of optical waveguides according to the number of
dimensions of light confinement

Dimensions of light confinement Classification of optical waveguides

1D Planar waveguides
2D Channel waveguides

Optical fibres
3D Photonics crystals

(c)

(a) (b)

Figure 3.3 Basic types of waveguide geometries: (a) planar waveguide; (b) channel wave-
guide; (c) photonic crystal
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start from a planar waveguide, and progressively reduce the thickness of the guiding
film, when sizes of the order of the wavelength of the radiation are reached, a new
phenomenon occurs: we found that due to the interference produced by the reflected
wave coming from total internal reflection at the upper boundary and the reflected
wave from the lower interface, now the light propagation is only allowed for a discrete
set of angles. For each permitted angle of propagation, the transversal structure of
the electromagnetic field associated with the radiation is maintained as the light beam
propagates along the film; these characteristics form a propagation mode. Thus, a
propagation mode is the result of combining total internal reflection and constructive
interference.

The description that we have given to illustrate the concept of propagation modes
was based on considering the light as plane waves, or in other words, that the direction
of the light propagation within the waveguide can be described by using rays. In fact,
although the ray optics treatment can give some interesting results, for a complete
understanding and description of light propagation within guiding structures, it is nec-
essary to consider light as electromagnetic waves, and use the formalism developed in
the previous chapter.

Now we will describe the typical geometries found in optical waveguides, including
planar waveguides, channel waveguides and optical fibres, and will discuss some of
their basic characteristics.

Planar waveguides Planar waveguides are optical structures than confine optical
radiation in a single dimension. Considering the refractive index distribution in the pla-
nar structure, planar waveguides can be classified as step-index waveguides or graded
index waveguides.

The step-index planar waveguide is the simplest structure for light confinement, and
is formed by a uniform planar film with a constant refractive index (homogeneous film,
nf = constant), surrounded by two dielectric media of lower refractive indices [3].
The homogeneous upper medium, or cover, has a refractive index of nc, and the lower
medium, with refractive index ns , is often called substrate. Usually, it is assumed
that the refractive index of the cover is less than or equal to the refractive index
of the substrate, nc ≤ ns , and in this way we have nf < ns ≤ nc. In fact, in many
cases the cover medium is air, and therefore nc = 1, which fulfils the assumption
previously mentioned.

If the upper and the lower media are the same (equal optical constants), the struc-
ture forms a symmetric planar waveguide. On the other hand, in integrated photonics
the upper and lower media are different, and in this case we are dealing with an
asymmetric planar waveguide (Figure 3.4). Asymmetric step-index planar waveguides
are fabricated by depositing a high-index film on top of a lower index substrate, by
means of physical methods (thermal evaporation, molecular beam epitaxy, sputtering,
etc.) or chemical methods (chemical vapour deposition, metal-organic chemical vapour
deposition, etc.).

If the high index film is not homogeneous, but its refractive index is depth depen-
dent (along the x-axis in Figure 3.5), the structure is called a graded index planar
waveguide [4]. Usually the refractive index is maximum at the top surface, and its
value decreases with depth until it reaches the value corresponding to the refractive
index of the substrate (Figure 3.5). This kind of structure is present in waveguide fab-
rication methods based on the surface modification of a substrate, whether by physical
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Figure 3.4 Asymmetric step index planar waveguide. Right: refractive index profile, where
nf < ns ≤ nc
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Figure 3.5 Graded index planar waveguide

processes (ion implantation, metal diffusion, etc.), or by chemical modification of the
substrate (ionic exchange methods).

Channel waveguides In planar waveguides the light confinement is restricted to a
single dimension (the x-axis in Figures 3.4 and 3.5), and if the light propagates along
a given direction (z-axis), the light can spread out in a perpendicular direction (y-axis)
due to diffraction. When we want to avoid this effect and keep the light beam well
confined, it is necessary for total internal reflection to take place not only at the upper
and lower interfaces, but also at the lateral boundaries. This confinement is attained
in channel waveguides, or 2D waveguides, in which the core region (where the radia-
tion is concentrated) has a refractive index greater than any of the surrounding media
(Figure 3.3b). The classification made for planar waveguides, in terms of symmet-
ric/asymmetric or step index/graded index, is also valid for channel waveguides, but
with the difference that we are now dealing with the extra dimension which charac-
terises the waveguide structure.

Although many types of channel waveguides have been proposed, three are the
most common basic structures used. The easiest way to build a channel waveguide is
to deposit a stripe made of a high refractive index material on top of a lower refrac-
tive index substrate. This kind of channel waveguide is called stripe waveguide, and
can be made by either depositing the stripe directly onto the substrate, or simply by
conveniently etching a previously deposited film (Figure 3.6a) [5]. If the etch pro-
cess is not complete and does not reach the substrate, a channel waveguide is also
produced, providing that the thickness and height of the structure are conveniently
tailored; this waveguide geometry is called rib waveguide (Figure 3.6b). Another type
of channel waveguide common in integrated photonic is the buried channel waveguide
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Figure 3.6 Three main types of channel waveguides (2D waveguides): (a) stripe waveguide;
(b) rib waveguide; (c) buried waveguide

Figure 3.7 Optical path followed by a ray of light inside an optical fibre. The light is confined
in two dimensions due to the total internal reflection occurring at the core–cover interface
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Figure 3.8 Radial dependence on the refractive index in an optical fibre with core radius a:
(a) step-index optical fibre; (b) graded index optical fibre

(Figure 3.6c). In this case the waveguide is fabricated by inducing a local increase of
the substrate’s refractive index, which is usually performed by diffusion methods [6].
Of course, the channel waveguides, either stripe or buried, that are the basic building
blocks of integrated photonic devices, require lithographic techniques, as was discussed
in Chapter 1.

Optical fibres A special type of channel waveguides, from the point of view of their
geometry and manufacturing methods as well as their applications, is called optical
fibres (Figure 3.7) [7]. Optical fibres have cylindrical geometry, and are constituted
by a cylindrical core of radius a and refractive index n1, surrounded by a cladding
of slightly lower refractive index n2. As we did with planar waveguides, we can
classify the optical fibres as step-index fibres, with homogeneous core (n1 = constant,
Figure 3.8a), or graded index fibres, in which the refractive index of the core varies
as a function of the radial distance (n1 = n1(r), Figure 3.8b). This last type of optical
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fibres is the best choice when high transmission bandwidth is required in long-distance
optical communications [7].

3.2 Types of Modes in Planar Optical Waveguides

Light behaviour in an optical waveguide can initially be analysed by examining the
case of an asymmetric planar waveguide from the point of view of geometric optics
(ray optics).

Let us consider the planar waveguide depicted in Figure 3.9, where we have assumed
that the refractive index of the film nf is higher than the refractive index corresponding
to the substrate ns and the upper cover nc. In addition, we assume the usual situation in
which the relation ns > nc is fulfilled. In this way, the critical angles that define total
internal reflection for the cover–film interface (θ1c) and the film–substrate boundary
(θ2c) are determined by:

θ1c = sin−1(nc/nf ) (3.1)

θ2c = sin−1(ns/nf ) (3.2)

In addition, as we have nf > ns > nc, it follows that the critical angles fulfil the
relation θ2c > θ1c. If now we fix our attention to the propagating angle θ of the light
inside the film (Figure 3.9), three situations can be distinguished:

(i) θ < θ1c. In this case, if the ray propagates with internal angles θ lower than the
critical angle corresponding to the film–cover interface θ1c, the light penetrates
the cover, as well as the substrate, because θ2c > θ1c. Thus, the radiation is not
confined to the film, but travels in the three regions. This situation corresponds
to radiation modes, because the light radiates to the cover and the substrate
(Figure 3.10).

(ii) θ1c < θ < θ2c. Light travelling in these circumstances is totally reflected at the
film–cover interface, thus it cannot penetrate the cover region. Nevertheless, the
radiation can still penetrate the substrate, and therefore it corresponds to substrate
radiation modes, or in short, substrate modes (Figure 3.11).

(iii) θ2c < θ < π/2. In this situation, the ray will suffer total internal reflection at the
upper and lower interfaces, and thus the radiation is totally confined and cannot
escape the film. This situation corresponds to a guided mode (Figure 3.12), and
is the most relevant case in integrated optics.

Cover, nc

Substrate, ns

Film, nf

Cover, nc

Substrate, ns

Film, nf

(a) (b)

q

Figure 3.9 (a) Asymmetric planar waveguide. (b) Zig-zag trajectory of a ray inside the film



3.2 TYPES OF MODES IN PLANAR OPTICAL WAVEGUIDES 59

Cover

Film

Substrate

q

Figure 3.10 Radiation mode in an asymmetric step-index planar waveguide
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Figure 3.11 Ray path followed by a substrate radiation mode
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Figure 3.12 Guided mode in an asymmetric planar waveguide, showing the zig-zag path traced
by the ray

Ray optics analysis of guided modes Although the light propagation in waveguide
structures should be analysed by a rigorous electromagnetic wave treatment, an analysis
based on optical rays is not only more intuitive, but in addition its solution to the
problem coincides with that supplied by the more rigorous wave treatment. The optical
ray approach of the guided modes in planar optical waveguides consists of studying a
ray inside the film moving on a zig-zag path. The first condition which a ray of light
must fulfil in order to be confined in the film region is that the angle of incidence at
the upper and lower interfaces must be higher that the critical angles defined by the
cover–film and film–substrate boundaries (Figure 3.13), that is, θ < θ1c, θ2c.

In a round trip inside the film, the ray suffers a transversal phase shift that depends
on the film thickness, and also additional phase shifts due to total internal reflection
at the two boundaries. The condition for a guided mode is established on the basis
of constructive interference, which implies that the total transversal phase shift in a
complete round trip should be an integral number of 2π . Only a discrete number of
angles fulfils that condition, and these will correspond to the propagation angles of
guided modes.



60 3 THEORY OF INTEGRATED OPTIC WAVEGUIDES

d

nc

nf

ns

x

z
q

Figure 3.13 Ray tracing a zig-zag path in an asymmetric step-index planar waveguide

The transversal phase shift experimented by the ray due to the zig-zag path in a
round trip is given by:

φ = 2kxd = 2k0nf d cos θ (3.3)

where kx is the x-component of the wavevector. On the other hand, the phase shifts
suffered by the ray due to total internal reflection at the upper (φc) and lower bound-
aries (φs) are given by equations (2.148) and (2.149), for TM and TE polarisations
respectively. The self-consistency condition for constructive interference implies that
the total phase shift must be zero or an integer multiple of 2π :

2k0nf d cos θ − φc − φs = 2πm (3.4)

where the integer m is the mode order. This relation is known as the transversal
resonance condition for guided modes in asymmetric step-index planar waveguides,
and it is a transcendental equation involving waveguide parameters (nc, nf , ns and d),
the working wavelength λ and the propagation angle θ . For a particular mode order
m, the equation (3.4) can be solved numerically, and the modal angle is obtained.

The propagation constant of the mode βm is the component of the wavevector along
the propagation direction, thus the relation with the propagation angle is:

βm = k0nf sin θm (3.5)

This constitutes a link between the ray picture of the guided modes, characterised by
its propagation angle θm, and the electromagnetic wave treatment that considers the
mode characterised by its propagation constant βm.

The ray optic approach that we have carried out can be used for the qualitative
description of light behaviour in an optical waveguide, to establish the types of mode
that can be found in such structures, to calculate the number of guided modes that
support a waveguide, and to determine its propagation constants. Nevertheless, for
many applications it is essential to know the electric field distribution of the radiation
within the waveguide structure, and this method does not provide such information. If
one wants to determine the optical fields or the intensity distribution associated with
the light propagation in waveguide structures, it becomes necessary to invoke a more
rigorous formalism, based on the electromagnetic theory of the light, as explained in
Chapter 2. Therefore, the problem should start from Maxwell’s equations applied to the
electromagnetic fields in a given structure, which defines the waveguide; the solutions
for the fields will correspond to the propagation modes.



3.3 WAVE EQUATION IN PLANAR WAVEGUIDES 61

3.3 Wave Equation in Planar Waveguides

We will now discuss the electromagnetic theory of light applied to a planar wave-
guide, because it is the simplest structure to be analysed from the point of view of
its mathematical description, and from it the general features related to more complex
waveguide geometry can be understood. Starting from Maxwell’s equations and from
the constitutive relations, we will obtain the wave equations for TE and TM propagation
that govern light behaviour in planar waveguides. These wave equations will be solved
for the general case of asymmetric step-index planar waveguides, and later on we
will discuss some methods for solving the wave equations in more complex planar
waveguides, as is the case of graded-index planar waveguides. Finally, we will discuss
the problem in the modelling of channel waveguides, and examine some approximate
methods that can be applied to calculate the propagation modes in 2D structures, such
as the effective index method and Marcatili’s method.

Assuming that the light is propagating through a dielectric (conductivity σ = 0),
non-magnetic (magnetic permeability µ = µ0), isotropic and linear medium (D = εE),
Maxwell’s equations are reduced to:

∇xE = −µ0
∂H

∂t
(3.6)

∇xH = ε0n
2 ∂E

∂t
(3.7)

where E and H are the electric and magnetic fields respectively, µ0 is the free space
permeability, ε0 is the permittivity of the free space and n is the refractive index of
the medium where the light propagates.

If the medium is optically inhomogeneous its properties are position-dependent, in
particular the refractive index, n = n(r). From Maxwell’s equations (3.6) and (3.7) the
following wave equations for E and H are derived:

∇2
E + ∇

(
1

n2
∇n2

E

)
− ε0µ0n

2 ∂2E

∂t2
= 0 (3.8)

∇2
H + 1

n2
∇n2x(∇xH) − ε0µ0n

2 ∂2H

∂t2
= 0 (3.9)

These two vectorial equations indicate that for an inhomogeneous medium the Cartesian
components of the electric field vector Ex, Ey and Ez (and the components of the mag-
netic vector) are coupled, and therefore we cannot establish a scalar equation for each
component as we did in the case of a homogeneous medium. Only in light propagation
in a homogeneous medium, in which the refractive index is constant (∇n2 = 0), the
second terms in equations (3.8) and (3.9) vanish, and each of the Cartesian components
for the fields E and H satisfy the scalar wave equation (2.24).

If the refractive index of the inhomogeneous medium depends only on two Carte-
sian coordinates, for instance x and y, so that n = n(x, y), and we choose the third
coordinate (z) as the propagation direction of the radiation, the solutions for the inho-
mogeneous wave equations (3.8) and (3.9) for monochromatic waves can be written as:

E(r, t) = E(x, y)ei(ωt−βz) (3.10)

H(r, t) = H(x, y)ei(ωt−βz) (3.11)
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ω being the angular frequency and β the propagation constant of the wave. These
two expressions determine the electromagnetic field for a propagating mode, which is
characterised by its propagation constant β. This solution is found in light propagation
in straight channel waveguides or in optical fibres, because in both cases the struc-
ture, defined by the spatial dependence of the refractive index, is invariant with the
z-coordinate.

Assuming now that the refractive index depends only on a single Cartesian coordi-
nate, for instance n = n(x), which is the case of planar optical waveguides, the spatial
part of the complex exponential function in the expressions (3.10) and (3.11) takes the
form −i(γy + βz). If we further assume propagation along the z-axis, the wave has
no dependence on the y-axis, thus γ = 0, and the electric and magnetic fields take
the form:

E(r, t) = E(x)ei(ωt−βz) (3.12)

H(r, t) = H(x)ei(ωt−βz) (3.13)

Therefore, given a refractive index distribution n(x) that defines the planar waveguide,
the solutions for the electromagnetic fields that support that waveguide are reduced to
find out the solutions for the complex field amplitudes E(x) and H(x) as well as for
the propagation constants β. We will show that for a particular propagation constant β,
whether corresponding to a confined mode or a radiation mode, the field distributions
are completely determined. Thus, providing that the polarisation character of the light
has been initially established, a mode is one-to-one defined by its propagation constant.

In order to find the propagation modes in a planar waveguide we will study two
independent situations: in the first case, the electric field associated with the mode has
only a transversal component, and so its solutions are the TE modes; the second case
involves the situation in which the electric field has only a parallel component, and
the solutions are called TM modes.

TE modes In this case we must find the general solution for the complex ampli-
tudes E(x) and H(x) when the electric field vector has only perpendicular component
(referred to the incident plane, as discussed in Section 2.2). Following the geometry
on Figure 3.14, the perpendicular component of the electric field corresponds to Ex ,
and thus Ey = Ez = 0. On the other hand, the magnetic field satisfies Hy = 0.

x
z

y

k q

Figure 3.14 TE propagation in an asymmetric planar waveguide
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Therefore, the only components of the electric and magnetic fields are Ey , Hx and Hz.
By substituting the solution for planar structures given by equations (3.12) and (3.13)
in Maxwell’s equations (3.6) and (3.7), we obtain the following coupled equations:

Hx = −(β/ωµ0)Ey (3.14)

Hz = (i/ωµ0)∂Ey/∂x (3.15)

iβHx + ∂Hz/∂x = −iωε0n
2(x)Ey (3.16)

that relate the field amplitude components Ey, Hx and Hz.
If now we substitute the Hx and Hz components from equations (3.14) and (3.15)

respectively into equation (3.16), and taking into account that the partial derivatives
are in this case total derivatives because the electric field component depends only
on the x coordinate, we obtain an equation involving only the Ey component of the
electric field:

d2Ey(x)

dx2
+ [

k2
0n

2(x) − β2] Ey(x) = 0 (3.17)

This differential equation is the wave equation that must satisfy the electric field ampli-
tude Ey(x) for TE propagation in planar structures, where k0 = 2π/λ0, and λ0 is the
wavelength of the light in free space, related to the angular frequency by ω = 2πc/λ0.
Since the wave equation (3.17) is a second-order differential equation, in order to
resolve it for a given planar structure, it will be necessary to impose additional con-
ditions. Indeed, we must impose the appropriate boundary conditions at the interfaces,
as we showed in the previous chapter. In particular, we should invoke the continuity
of the tangential components of the electric field Et and magnetic field H t at the inter-
faces. In the case of TE propagation through an asymmetric planar waveguide, these
boundary conditions imply the continuity of the Ey and Hz at the cover–film interface
and at the substrate–film boundary.

From equation (3.15) we have that the z component of the magnetic field Hz is
proportional to the first derivative of the electric field component Ey , and so the
boundary conditions lead to the continuity of the electric field component Ey besides
the continuity of its first derivative dEy/dx.

TM modes Let us now consider the case of light propagation in which its associ-
ated electric field vector has only a parallel component to the incident plane, so the

x
z

y

k
q

Figure 3.15 TM propagation in an asymmetric planar waveguide
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only component of the magnetic field is perpendicular to that plane, as indicated in
Figure 3.15.

For TM light propagation, and following Figure 3.15, the non-vanishing components
of the electric and magnetic field vectors are now Ex , Ez and Hy . In a similar way
to that undertaken for TE propagation, from Maxwell’s equations (3.6) and (3.7), and
using a solution such as that postulated by (3.12) and (3.13), we obtain the following
relation between the field components for TM propagation:

Ex = (β/ωε0n
2)Hy (3.18)

Ez = (1/iωε0n
2)∂Hy/∂x (3.19)

iβEx + ∂Ez/∂x = iωµ0Hy (3.20)

Since the magnetic field vector has now a single non-vanishing component (Hy), we
will use it to establish the wave equation for TM modes. By substituting Ex and Ez

from equations (3.18) and (3.19) respectively into equation (3.20), it yields:

d2Hy(x)

dx2
− 1

n2

dn2

dx

dHy(x)

dx
+ [

k2
0n

2(x) − β2] Hy(x) = 0 (3.21)

This is the wave equation for TM modes in planar waveguides, which is slightly
more complex than the one found for TE modes because it contains an additional
term that involves the product of the first derivatives of the magnetic field component
dHy/dx and the first derivative of the dielectric constant dn2/dx. Nevertheless, in
a constant refractive index region (n = constant), this additional term vanishes, and
equation (3.21) simplifies to:

d2Hy(x)

dx2
+ [

k2
0n

2(x) − β2] Hy(x) = 0 (3.22)

This wave equation, valid for TM propagation modes in planar waveguides, is identical
to that obtained for TE modes, with the exception that now the differential equation
has been established as a function of the magnetic field instead of the electric field.

Once again, the complete solution of equation (3.22) requires us to impose the ade-
quate boundary conditions at the interfaces. In this case, the continuity of the transversal
field components of the electric and magnetic fields leads to the continuity of Ez and
Hy field components at the interfaces. As Ez is related to Hy through equation (3.19),
the continuity across the boundary must be fulfilled for Hy and (1/n2)dHy/dx.

At this point it is necessary to recall that Figures 3.14 and 3.15, used for defin-
ing TE and TM propagation modes, include not only the electric and magnetic field
vectors, but we also have drawn a ray, with a very precise propagation angle and
even a wavevector k. Although, strictly speaking, this picture is not physically correct
because a wavevector can be defined only for monochromatic plane waves, the fact
of introducing a ray can serve as a link between the electromagnetic treatment and
the geometrical optic treatment. Indeed, the propagation angle θ can be obtained by
considering the modes as plane waves, and the result agrees with the rigorous EM
analysis using the relation β = k0nf sin θ .



3.3 WAVE EQUATION IN PLANAR WAVEGUIDES 65

General solution of the wave equation for planar waveguides Once the wave
equations for TE and TM modes have been established for planar waveguides, we
will examine in particular what kind of solution admits the wave equation for TE
polarisation, see equation (3.17). The solution in the case of light propagation with
TM polarisation is basically the same, with the exception that the boundary conditions
are slightly different, because of the factor (1/n2) in the continuity of the magnetic
field component derivative.

Starting from the wave equation that must satisfy a TE mode that propagates in a
planar waveguide, see equation (3.17), characterised by its propagation constant β, we
postulate a solution for the Ey(x) component in the form:

Ej(x) = Aj eiγj x + Bj e−iγj x (3.23)

where Ej(x) represents the y-component of the electric field amplitude for the wave
propagating in the j th region, being the coefficients Aj and Bj two complex constants,
which will be calculated after imposing the appropriate boundary conditions. It can be
proved that expression (3.23) satisfies the wave equation (3.17) providing that the γj

parameter is given by:

γj =
√

k2
0n

2
j − β2 (3.24)

where γj is different for each region, characterised by its refractive index nj .
In order to discuss the different behaviours of the solution given by (3.23) in a

particular region, it is convenient to introduce a new adimensional parameter, called
effective refractive index N , directly related to the propagation constant β of the mode
through the formula:

β ≡ k0N (3.25)

Following this definition, the effective refractive index N represents the refractive
index experienced by the mode propagating along the z-axis.

We shall now discuss the general solutions given by equation (3.23) depending on
the effective refractive index N of the mode and the refractive index nj of the region
considered (Figure 3.16).

njN

Exponential

Sinusoidal

Figure 3.16 Behaviour of the solution for the electric field component in a given region
depending on the effective refractive index of the propagation mode
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(i) If the propagation constant β is lower than k0nj (or N < nj ) then the parameter γj

is a real number, following the definition given in (3.24), and the general solution
postulated by (3.23) will correspond to a sinusoidal function.

(ii) By contrast, if the propagation constant satisfies that β > k0nj (or N > nj ), the
parameter γj is a pure imaginary number, and therefore the solution given by
(3.23) should be described by exponential functions.

3.4 Guided Modes in Step-index Planar Waveguides

The general solution discussed in the previous paragraph can easily be applied to the
case of guided modes supported by asymmetric step-index planar waveguides, consid-
ering the geometry given in Figure 3.17. The three media have refractive indices nc

(cover), nf (film) and ns (substrate), and are separated by planar boundaries perpen-
dicular to the x-axis, the light propagation being along the z-axis. We further assume
that nf < ns < nc, and that the plane x = 0 corresponds to the cover–film boundary.
Therefore, if the film thickness is d , the film–substrate interface is located at the plane
x = −d .

Guided TE-modes Although step-index planar waveguides are structures inherently
inhomogeneous, within each of the three region the refractive index is constant. Thus,
considering each region separately, the wave equation for TE modes is expressed as:

d2Ey

dx2
+ [

k2
0n

2 − β2] Ey = 0 (3.26)

If we are interested in the search of guided modes, as we have seen before, the
propagation constant β associated with a particular mode must fulfil the condition:

k0ns < β < k0nf (3.27)

or in terms of the refractive indices, the effective refractive index N of the guided
mode must be between the refractive index on the film nf and the refractive of the
substrate ns (see Figure 3.18):

ns < N < nf (3.28)

Bearing in mind this result, the wave equation (3.17) in each homogeneous region
can be written as:

d2Ey/dx2 − γ 2
c Ey = 0 x ≥ 0 (Cover) (3.29)

d2Ey/dx2 + κ2
f Ey = 0 0 > x > −d (Film) (3.30)

d2Ey/dx2 − γ 2
s Ey = 0 x ≤ −d (Substrate) (3.31)

x

z

y

0
−d

nf

ns

nc

Figure 3.17 Geometry used for the analysis of propagating modes in an asymmetric step-index
planar waveguide
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Figure 3.18 Range of values for the propagation constant β and the effective refractive index
N for guided modes, substrate modes and radiation modes

where the three parameters γc, κf and γs are given by:

γ 2
c = β2 − k2

0n
2
c (3.32)

κ2
f = k2

0n
2
f − β2 (3.33)

γ 2
s = β2 − k2

0n
2
s (3.34)

Considering these definitions and the range of β for confined modes, it is clear that
γc, κf and γs are real numbers, and we take them as positive values.

By solving the differential equations (3.29)–(3.31), the electric field in the cover,
film and substrate regions can be expressed as:

Ey =



Ae−γcx x ≥ 0
Beiκf x + Ce−iκf x −d < x < 0

Deγsx x ≤ −d
(3.35)

The electric field in the cover also admits an additional solution of the form of
A′ exp(γcx), but as an increasing exponential function for x > 0 has not physical
meaning for a confined mode, we have A′ = 0. A similar reasoning has been used to
eliminate the term D′ exp(−γsx) corresponding to the substrate region.

The boundary conditions require that Ey and dEy/dx must be continuous at the
cover–film interface (x = 0) and at the film–substrate frontier (x = −d), giving place
to four equations that relate the constant parameters A, B, C and D and the propagation
constant β. Therefore, we have five unknown quantities to be determined from only
a set of four equations. Indeed, one of the constant parameters cannot be determined
and should remain free (for instance, the parameter A), and it will be determined once
the energy carried by the propagating mode is settled. By solving this set of equations,
and after cumbersome calculation, the following equation is obtained:

tan κf d =
γc

κf

+ γs

κf

1 −
(

γc

κf

) (
γs

κf

) (3.36)

This relation can be considered as the dispersion relation for the asymmetric step-
index planar waveguide, and is a transcendental equation involving the parameters
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that define the waveguide structure (nc, nf , ns and d), the working wavelength λ and
the propagation constant β of the guided mode, and from which one can calculate
numerically the propagation constant β. In addition, as the tangent function fulfil:

tan(κf d) = tan(κf d + mπ) m = 0, 1, 2, . . . (3.37)

in general there exist several solutions for the propagation constant β depending on the
integer number m. This integer number m is called the mode order, and the associated
propagation constant is referred as βm.

It is convenient to define a set of parameters, called normalised parameters, in such
a way that the transcendental equation (3.37) can be universalised for any asymmetric
step-index waveguide. These parameters are defined as:

b = (N2 − n2
s )/(n

2
f − n2

s ) Normalised mode index (3.38)

V = k0d(n2
f − n2

s )
1/2 Normalised film thickness (3.39)

a = (n2
s − n2

c)/(n
2
f − n2

s ) Asymmetry measure (3.40)

As the effective refractive index corresponding to a confined mode is in the range
ns < N < nf , the normalised mode index b is bounded to 0 < b < 1. On the other
hand, the normalised film thickness V is directly connected to the relative thickness of
the waveguide core (film) with respect to the working wavelength, that is, V ∝ d/λ,
as deduced from relation (3.39). Finally, the asymmetry measure a is zero in the case
of symmetric waveguides, and increases as the refractive index difference between the
cover and substrate increases.

The transcendental equation (3.36), written as function of the propagation constant
β, is rewritten in terms of the normalised parameters as:

tan
[
V

√
1 − b

]
=

√
b

1 − b
+

√
b + a

1 − b

1 −
√

b(b + a)

(1 − b)

(3.41)

In general, equations (3.36) or (3.41) admit a finite number of solutions for a finite
number of the integer m, and thus the waveguide will support a finite number of guided
modes. In this case, we refer to it as a multi-mode waveguide. In the particular case
in which the dispersion equation only admits a solution for m = 0, the waveguide
is called a monomode waveguide. Moreover, it is possible that a given structure has
no solution for the transcendental equation (3.36), and in this case (for a particular
working wavelength) the waveguide cannot support any guided mode.

Figure 3.19 shows the numerical solution of the dispersion equation (3.41) for a sym-
metric (a = 0) and asymmetric (a = 50) waveguide as a function of their normalised
parameters b and V , where we have included the solution for the mode orders m = 0,
m = 1 and m = 2. For example, a symmetric waveguide characterised by V = 4 will
support two TE modes (m = 0, 1); in contrast, for the same normalised film thick-
ness (V = 4) an asymmetric waveguide with a = 50 will only admit a confined TE
mode (m = 0).
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Figure 3.19 Dispersion relations for a symmetric step-index planar waveguide and for an
asymmetric waveguide (a = 50), as a function of their normalised parameters b and V

Once the propagation constant β (or b) of a mode has been calculated, the coefficients
γc, κf and γs are defined straightforwardly, and thus the electric field in the three
regions can now be completely determined:

Ey(x) =




Ae−γcx x ≥ 0

A

(
cos κf x − γc

κf

sin κf x

)
0 < x < −d

A

(
cos κf d + γc

κf

sin κf d
)

eγs(x+d) x ≤ −d

(3.42)

According to this expression, the electric field decreases exponentially in the cover
and in the substrate while its dependence is sinusoidal in the film, as was expected
for the behaviour of a confined mode. Figure 3.20 shows the electric field profiles
for the four confined modes m = 0, 1, 2, and 3, supported by a planar waveguide
formed by a 3 µm thick film of refractive index 1.50, surrounded by air and by a
substrate of refractive index 1.43. These modes have been calculated for a wavelength
of λ = 0.633 µm. As can be observed from Figure 3.20, the electric field as well as
its derivative are continuous at both interfaces. The solution for Ey , nevertheless, is
completely determined except from the constant A, which is related to the energy

Cover

Film

Substrate

TE0 TE1 TE2 TE3

Figure 3.20 TE modes in an asymmetric step-index planar waveguide. The structure parame-
ters are the following: nc = 1.00, nf = 1.50, ns = 1.43, d = 3.0 µm, λ = 633 nm



70 3 THEORY OF INTEGRATED OPTIC WAVEGUIDES

carried by the mode. In addition, the integer m that characterises the mode order
coincides with the number of zeros of the electric field profile function.

The electric fields in the cover and in the substrate are indeed evanescent waves, a
particular case of inhomogeneous wave as discussed in the previous chapter, where the
directions of propagation and attenuation are perpendicular. The modulus of the atten-
uation vector at defined in Section 2.1.6 is now given by γc in the cover region and by
γs in the substrate. Therefore, the evanescent wave penetrations are determined by 1/γc

and 1/γs . As it can be observed in Figure 3.20, for a particular mode the field pene-
tration in the cover is lower than in the substrate, and this is so because nc < ns , from
(3.32) and (3.34) it follows that γc > γs . Another important feature related to evanes-
cent fields is that as the mode number m increases, the wave penetration in a particular
region is deeper (see the different modes in Figure 3.20). This behaviour is due to the
fact that as the mode order increases, the propagation constant of the modes decreases,
thus lowering the value of γc, which implies an increase in the field penetration.

Once the electric field component Ey of a particular guided mode has been estab-
lished (the only non-vanishing electric field component for TE modes), the determi-
nation of the magnetic field associated with the mode is straightforwardly obtained
by using the equations (3.11) and (3.12), which relate the Hx and Hz components of
the magnetic field to the Ey component. In this way, the waveguide mode is fully
characterised, leaving only the parameter A to be determined from the energy carried
by the mode.

Guided TM modes In this case we are interested in the determination of the elec-
tromagnetic field structure within the planar waveguide based on the magnetic field,
because in TM polarisation the magnetic field has a single component (Hy). The wave
equation established for TM propagation in a homogeneous region was:

d2Hy

dx2
+ [

k2
0n

2 − β2] Hy = 0 (3.43)

Following a similar procedure to that performed for TE modes in the last paragraph,
one obtains a transcendental equation for confined TM waveguide modes in terms of
the normalised parameters:

tan
[
V

√
1 − b

]
=

1

γ1

√
b

1 − b
+ 1

γ2

√
b + a

1 − b

1 − 1

γ1γ2

√
b(b + a)

(1 − b)

(3.44)

which is the dispersion relation for TM guided modes for asymmetric step-index planar
waveguides. In this equation we have defined, for the sake of simplicity, the parameters
γ1 ≡ (ns/nf )2 and γ2 ≡ (nc/nf )2 = γ1 − a(1 − γ1). The solution for the magnetic
field associated with TM polarised modes remains as:

Hy(x) =




Ae−γcx x ≥ 0

A

[
cos κf x − n2

f

n2
c

γc

κf

sin κf x

]
−d < x < 0

A

[
cos κf d + n2

f

n2
c

γc

κf

sin κf d

]
eγs(x+d) x ≤ −d

(3.45)
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In a similar way seen for TE modes, the solution for guided TM modes has exponen-
tially decreasing behaviour in the cover and substrate, and a sinusoidal solution in the
film region. At variance to that found for TE modes, in TM polarised modes, there
exists a discontinuity in the first derivative of the magnetic field component Hy(x) at
x = 0 and x = −d , coming from the fact of the continuity condition of (1/n2)dHy/dx

at the interfaces.
The electric field associated with TM modes can now be obtained from

equations (3.18) and (3.19), having thus completely characterised the electromagnetic
field pattern of the guided TM mode.

Cut-off An important aspect concerning waveguides is to know what should be the
minimum film width necessary for the waveguide support of a specific mode of order m,
at a given wavelength. In this situation, the effective refractive index of this particular
mode N should be very close to the substrate refractive index ns , as it is shown
schematically in Figure 3.21. In this case, it yields:

N ≈ ns ⇒ b = (N2 − n2
s )/(n

2
f − n2

s ) ≈ 0 (3.46)

In this situation, the mode is said to be at cut-off. If the film width decreases, the
effective refractive index decreases, and the mode is not longer a guided mode, but a
substrate radiation mode, giving rise to a leaky mode.

The normalised film thickness V for TE and TM modes at the cut-off is given by:

V TE
C = tan−1(a1/2) + mπ TE modes (3.47)

V TM
C = tan−1(a1/2/γ2) + mπ TM modes (3.48)

where V TE
C and V TM

C express the film width of the core waveguide, relative to the wave-
length, necessary to support the mth mode in TE and TM propagation, respectively.
From these relations, two important conclusions can be deduced:

(i) As nc must be lower than nf , it follows that γ2 = (nc/nf )2 < 1, and consequently
it holds that V TM

C > V TE
C . This inequality implies that if a waveguide supports a

TM mode of mth order, the waveguide also supports a TE mode of the same order.
The reciprocal situation does not apply in general.

n N

nc

ns

nf

Figure 3.21 Position of the effective refractive index N , relative to the refractive indices of
the waveguide structure, for a mode close to the cut-off
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(ii) For a symmetric waveguide (a = 0), equations (3.41) and (3.44) yield V TM
C =

V TE
C = mπ . This indicates that a symmetric planar waveguide always supports at

least the fundamental mode m = 0, both TE and TM polarised modes, regardless
of the size (film thickness) or refractive indices of the guiding structure.

Radiation modes Up to now we have examined the solution of the wave equation for
planar waveguides in terms of guided modes, where the radiation is mainly confined
within the film, with decaying solution at both the cover and substrate regions in
the form of evanescent waves. In this case, the mode effective index was restricted
between the refractive index of the film and that of the substrate. Nevertheless, the wave
equation, for both TE and TM polarisation light, also admits solutions for effective
indices lower than ns . In this case, we are dealing with radiation modes, where the
light is no longer confined to the film, but can “leak” to adjacent regions, losing the
light power inside the film core as the wave propagates along the waveguide. For this
reason, these types of solutions are often called leaky modes.

Following the discussion of paragraph 3.3, outlined in Figure 3.16, for effective
refractive index values lower than ns but higher than nc (nc < N < ns , k0nc < β <

k0ns), the solutions in the film and substrate regions are in the form of oscillatory
functions, while the behaviour of the fields in the cover region is in the form of
exponential decay. This situation corresponds to substrate radiation modes, where the
light is not confined to the film region, but also spreads out to the substrate, as can be
seen in Figure 3.22. In addition, the solutions for leaky substrate modes are not discrete,
but instead the wave equation for substrate modes admits an infinite number of solutions
for continuous propagation constant values β (or effective refractive indices N ).

Finally, if the mode effective refractive index N is lower than nc (N < nc, β < k0nc)

the solution for the modal fields in the three regions is in the form of sinusoidal
functions. In this case the field pattern corresponds to a radiation mode, where the
light cannot be confined in the film but leaks to the cover and substrate regions, as can
be seen in Figure 3.23. Also, as in the case of substrate modes, there exists a continuous
and infinite number of values for the propagation constant of radiation modes, with an
infinite number of solutions for the electromagnetic field distribution.
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Figure 3.22 Substrate radiation mode in an asymmetric step-index planar waveguide
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Figure 3.23 Radiation mode in an asymmetric step-index planar waveguide

3.5 Graded-index Planar Waveguides

The waveguide structures that we have examined up to now had a step-index pro-
file, with three well-defined regions (cover, film and substrate) of constant refractive
indices. These structures are obtained by any of the deposition techniques summarised
in Chapter 1. When the waveguide fabrication is performed by a local index increase
on a substrate material, by means of diffusion techniques, for instance, the refractive
index of the waveguide shows in general a graded index profile in depth, expressed
as n = n(x). In this case the structure is called a graded-index waveguide. Usually
the maximum index increase is located at the substrate surface, slowly decreasing in
depth, until the refractive index reaches the substrate value, the typical depth being of
the order of a few microns (Figure 3.24).

There are several methods that can be used to calculate the effective refractive
index of the modes in waveguide structures with graded index profiles. Here we will
describe two methods which are widely used and provide excellent results, namely,
the multi-layer approximation and the ray approximation method. For both, we will
discuss advantages and disadvantages, and the best choice for a given problem. We
will also describe a method for reconstruction index profiles, given a discrete set of
measured modal indices.

nc

nc

ns ns

x x

z

n(x )

Figure 3.24 Graded-index planar waveguide, showing the typical graded index profile as a
function of the depth
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3.5.1 Multi-layer approximation

This method is based on the solutions obtained for asymmetric step-index planar wave-
guides, in such a way that the graded-index waveguide with an inhomogeneous core is
decomposed into a finite number (as large as necessary) of homogeneous layers having
constant refractive indices.

The operating method in multi-layer approximation is the following: first, the graded-
index region, forming the core waveguide, is sectioned into p thin layers parallel to
the planar interface, each of them having a constant refractive index nj , as shown in
Figure 3.25. In these conditions, the waveguide structure with graded refractive index
n(x) is defined by (p + 1) layers of constant refractive index nj (j = 0, 1, . . . , p),
where n0 = nc and np = ns . In addition, if the left boundary of the j th layer is situated
at x = xj , the individual layer thickness is automatically determined by dj = xj −
xj−1. Finally, the number of boundaries between two adjacent media is given by p.

If we restrict the solution of the graded waveguide to TE polarised modes, the
non-vanishing electric field component will be expressed as:

Ey = Ey(x)ei(ωt−βz) (3.49)

The electric field amplitude Ey(x) in each layer, which is assumed to be a homogeneous
medium, should fulfil the wave equation for TE modes in planar waveguides:

d2Ey

dx2
+ [

k2
0n

2 − β2] Ey = 0 (3.50)

The general solution for the electric field amplitude Ey in a generic j th layer, as we
have shown before, is given by:

Ej(x) = Aj eiγj (x−xj ) + Bj e−iγj (x−xj ) (j = 0, 1, 2 . . . , p) (3.51)

where we have omitted the subscript y in the field amplitude for the sake of clarity.
The xj coordinate defines the left position of the j th layer, and the parameter γj is
given by:

γj =
√

k2
0n

2
j − β2 (j = 0, 1, 2 . . . , p) (3.52)

j th layer

x

n(x )

nc

nf

nj

ns

xj

Figure 3.25 Sectioning of a graded-index planar waveguide for the multi-layer approxima-
tion analysis
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being nj the refractive index of the j th layer and β the propagation constant of the
mode. The effective index of a mode is calculated, as usual, by N = β/k0.

Considering the expressions given for the electric field amplitude Ej and the param-
eter γj given by (3.51) and (3.52) respectively, in the region where its refractive index
nj is higher than the effective refractive index of the mode N , the solution for the
electric field is a sinusoidal function, while in a layer having a refractive index nj

lower than N the parameter γj is a pure imaginary quantity, and therefore the electric
field will show exponential behaviour.

The Aj and Bj constants, which are in general complex magnitudes, will be deter-
mined by imposing the boundary conditions established for TE modes at the p inter-
faces, which are expressed as:

Ej = Ej+1 at x = xj (j = 1, 2 . . . , p) (3.53)

dEj/dx = dEj+1/dx at x = xj (j = 1, 2 . . . , p) (3.54)

These two conditions allow us to express the Aj+1 and Bj+1 coefficients as functions of
the Aj and Bj coefficients. The search for the propagation constant of a guided mode
is carried out by establishing the condition of an exponentially decreasing behaviour
of the electric field in the cover and substrate regions. Following this double condition,
we start by imposing the boundary condition in the cover region, expressed as:

A0 = 1 and B0 = 0 (3.55)

Next, we search for the propagation constants β that make the Ap coefficient vanish,
that is, we impose the condition that in the substrate the behaviour of the field is an
exponential decay. This value of the β parameter will correspond to a guided mode,
having an effective refractive index of N = β/k0.

The method described is applicable to any refractive index profile, and the solutions
are as exact as needed, just by increasing the number of layers in which the graded index
profile is divided. Moreover, once a particular propagation constant is calculated, the
method gives the complete electric field profile of the guided mode along the transversal
structure of the waveguide by using equation (3.51), and also the associated magnetic
field using the appropriate formulae (equations (3.14) and (3.15)).

Another important advantage of the multi-layer approximation is the possibility of
using complex refractive indices (nj + iκj ) in any of the regions defining the structure.
This issue is of particular interest when dealing with absorbing structures or with gain
regions (in the case of lasers and amplifiers), or even structures including metallic
layers such as in the case of control electrodes for integrated electro-optic modulators.
In these cases, the propagation constant β becomes a complex quantity defined by β =
k0(Neff + iKeff), the imaginary part being directly related to the attenuation coefficient
α (or gain coefficient if α < 0) of the waveguide through the relation Keff = αλ/4π .

This approach has the inconvenience of using iterative methods to calculate the
modal propagation constants. Additionally, the attenuation/gain calculation involves
performing the iteration in the complex plane.

Figure 3.26 shows the refractive index profile corresponding to a graded-index planar
waveguide, having a semi-Gaussian shape of the form:

n(x) = ns + ne−(x/d)2
(3.56)
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Figure 3.26 Semi-Gaussian refractive index profile of a graded index waveguide (thick line),
besides the approximation by step-wise layers with constant refractive index (thin lines). Circles
show the scan on effective refractive index to determine the position of the guided modes.
Parameters of the waveguide and the modal positions are given in the text

with ns = 2.2030, n = 0.0395 and d = 2 µm, being the maximum index at the sur-
face nf = ns + n. The cover is assumed to be air (nc = 1.0000). Besides the original
graded index profile (thick line), we have drawn the sectioning of the profile by con-
stant refractive index multi-layers (thin lines). In order to search for the propagation
modes, we perform a discrete scan as a function of N (in the range nf to ns), cal-
culating at each step the Ap coefficient. The guided modes correspond to effective
refractive indices N for which the Ap coefficient vanishes. In Figure 3.26 we used
the evaluation function 1/(1 + r2), with r ≡ |Ap|2/|A0|2, to determine the position
of the minima on Ap (circles), using a wavelength of λ = 0.633 µm. These minima
correspond to the maxima in the evaluation function, and define the modal positions
supported by the graded-index waveguide. Following the graph drawn by the evaluation
function, three maxima can be observed, that correspond to the guided modes at posi-
tions N0 = 2.2300, N1 = 2.2157 and N2 = 2.2059. Clearly, these values are limited to
the substrate refractive index (2.2030) and the maximum index at the surface (2.2425).

Once the modal positions have been determined, the field profile for each mode is
calculated by using equation (3.51). Figure 3.27 shows the “mode levels” drawn as
horizontal lines in the refractive index profile, and the associated electric field profile
distributions. It is worth noting that the mode order coincides with the number of zeros
of the field profile, as a general rule for modal distributions. Also, in a similar way to
that pointed out in planar waveguides, the field penetration on the form of evanescent
waves in the cover and in the substrate is deeper for higher order modes.

3.5.2 The ray approximation

The ray approximation method of calculating the modes in a graded-index planar
waveguide is based on considering that a guided mode must fulfil the condition of
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Figure 3.27 Position of the TE guided modes (dashed lines) and their corresponding electric
field distributions, obtained by the multi-layer approximation method

constructive interference, such as that imposed to calculate the modes in an asymmetric
planar waveguide by using the ray model. In the case of graded-index waveguides
the problem arises from the fact that the total phase shift experienced by the ray
must be calculated in each of the layers into which the graded waveguide must be
decomposed [8].

The phase-shifts experimented by the wave propagating in a graded-index region
can be determined by examining the path followed by a ray, as shown in Figure 3.28.
As can be observed, the ray no longer follows a zig-zag path, but instead it changes its
direction continuously, due to the fact that the refractive index changes in a continuous
manner as a function of the depth. The propagation angle θj can easily be calculated
by observing Figure 3.29:

cos θj = N/n(xj ) (3.57)

where N is the effective refractive index of the guided mode, and n(xj ) is the refractive
index of the graded waveguide evaluated at a depth x = xj . The relation between the
position change in depth of the ray and its advance in the propagation direction is

z

x x

n(x )
nc

ns

xt

N nf

Figure 3.28 Left: graded refractive index profile, showing the position of the effective index
position N of the mode and the corresponding turning point xt . Right: curved path followed by
a ray propagating within the graded index waveguide



78 3 THEORY OF INTEGRATED OPTIC WAVEGUIDES

∆z z
x

xj

j th

k0N

k0n(x)
qj

x z

xj

Figure 3.29 Above: Scheme of the partial displacements of the ray along the waveguide.
Below: relation between the refractive index at the j th position, the effective index of the mode
and the propagation angle

given by:
xj = z tan θj (3.58)

The maximum penetration of the ray in the graded index region is called the turning
point, and can be determined by imposing the condition of θj = 0 (see Figures 3.28
and 3.29). According to equation (3.57) this position is situated at a depth xt that fulfils
n(xt ) = N (see Figure 3.28). Obviously, the turning point will be different for each
guided mode, because of the different effective refractive indices associated to them.
In addition, if the graded-index profile is monotonously decreasing in depth, higher
order modes will have deeper turning point.

The incremental phase shift φj experienced by the ray after advancing a step
distance in the depth direction is given by:

φj = k0n(xj ) sin θjxj = k0

√
n2(xj ) − N2xj (3.59)

If we further assume that the index increase is small (n 
 ns), the phase shifts from
equations (2.148) and (2.149) in the turning points are given by:

φ0 = π (at x = 0) (3.60)

φt = π/2 (at x = xt ) (3.61)

The condition for constructive interference is expressed imposing an integral multiple
of 2π on the phase shift after a complete round trip of the ray. Thus, the mathematical
condition that should fulfil a guided mode yields:

�φj − φc − φt = 2mπ (3.62)

By using the partial contributions to the phase shift from equation (3.59), and tak-
ing into account the phase shifts at the surface boundary and at the turning point



3.5 GRADED-INDEX PLANAR WAVEGUIDES 79

(equations (3.60) and (3.61)), the last condition for the guided modes is finally given by:

2k0

∫ xt

0

√
n2(x) − N2dx =

(
2m + 3

2

)
π (3.63)

In general, the graded-index profiles generated by diffusion processes for waveguide
fabrication can be expressed in the following general form:

n(x) = ns + nf (x/d) (3.64)

where ns is the substrate refractive index and n is the maximum index change,
usually located at the surface. The function f (x/d) determines the particular form
(exponential, Gaussian, error function, etc.) of the index increase as function of the
depth where the parameter d indicates the diffusion or penetration depth. Also, it is
further assumed that the function f verifies 0 < f (x/d) < 1.

As it was done for the case of asymmetric step-index planar waveguides, it is worth
defining a set of normalised parameters by:

b ≡ N2 − n2
s

n2
f − n2

s

Normalised mode index (3.65)

Vd ≡ k0d
√

n2
f − n2

s Normalised penetration depth (3.66)

where nf stands for the maximum index change at the surface, given by nf = ns + n.
In most of the cases, the diffusion process performed to fabricate waveguides gives rise
to small refractive index increases relative to the substrate, and under this circumstance
it holds that n 
 ns , and thus the following approximation can be made:

n2(x) ≈ n2
s + (n2

f − n2
s )f (x/d) (3.67)

Using this relation, the equation for calculating the guided modes can be expressed as:

2Vd

∫ ξt

0

√
f (ξ) − bdξ =

(
2m + 3

2

)
π (3.68)

where ξ ≡ x/d, ξt ≡ xt/d and b ≡ f (ξt ). In this way, for a particular given function
f (ξ ), containing the information of the refractive index profile shape, the last equation
can be numerically solved.

In the particular case of a Gaussian function f (ξ) = exp(−ξ 2), which is the most
common profile obtained in waveguide fabrication by diffusion processes, the cut for
the mth mode is given by the compact formula:

Vdm = (2π)1/2(m + 3/4) (3.69)

where we have used facts that in the cut-off condition it holds that b ≈ 0 and xt → ∞,
and the result

∫ ∞
0

√
e−ξ2

dξ = √
π/2.

On the other hand, if the refractive index distribution of the graded-index waveguide
is symmetric (f (ξ) = f (−ξ)), the next set of equations is obtained:

2�φj − 2φt = 2mπ Resonant condition for guided modes (3.70)

2Vd

∫ ξt

0

√
f (ξ) − bdξ =

(
m + 1

2

)
π Condition for guided modes (3.71)

Vdm = (π/2)1/2(m + 1/2) Cut-off condition (3.72)
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The last equations are valid for TE modes as well as for TM modes, providing that
the condition n 
 ns holds. Indeed, this relation is widely fulfilled in practice in
most cases.

The advantage of this method stems from the easy numerical implementation, and
also that the method is valid for general smooth index profiles. The most important
drawback of the ray model method lies in the fact that, although the propagation
constants of the guided modes are accurately obtained, it does not provide information
about the distribution of the modal fields.

3.5.3 Reconstruction of index profiles: the inverse WKB
method

One of the most important issues in waveguide technology is to reconstruct the index
profile of a planar waveguide from a knowledge of the propagation constant of their
guided modes. Construction of the refractive index profile from the effective indices is
not only important for waveguide prescriptions but also for the evaluation of existing
waveguides. Given a refractive index profile n(x), the guided-mode equation uniquely
defines an effective index set of guided modes N(m), m being an integer number,
but conversely, an infinite number of profiles that provide the same set of effective
indices can be found. Therefore, in some cases, it is necessary to restrict the solutions
to physically reliable index profiles.

The characteristic equation for the guided mth-order mode given in (3.62) can be
expressed as:

2k0

∫ xt (m)

0

√
n2(x) − N2(m)dx − φc − φt = 2mπ (3.73)

being the upper integral limit related to the refractive indices by:

n(xt (m)) = N(m) (3.74)

where n(x) is the refractive index profile that defines the waveguide, N(m) is the
effective refractive index of the mth-order guided mode, and xt (m) is the turning point
of the mth mode, defined as the depth at which the refractive index is equal to the
effective index (Figure 3.28). The quantities φc and φt denote the phase changes at
the surface x = 0 and at the turning point xt beneath the surface. If the variation of
the refractive index at the turning point is sufficiently slow, it can be demonstrated [9]
that the phase change φt is given by π /2.

One way of reconstructing the index profile is to invert the modal equation (3.73)
by computing the locations of turning points xt recursively [10]. This equation is for-
mally identical to that obtained by applying the WKB approximation used in quantum
mechanics to solve the one-dimensional Shrödinger equation, thus the method for
reconstructing the refractive index profile starting from equation (3.73) is known as
the inverse WKB method (IWKB). Nevertheless, the direct inversion of equation (3.73)
is accurate only for highly multi-mode waveguides, since the number of straight line
segments is equal to the number of guided modes.
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An elegant way of avoiding this inconvenience is to define a continuous effective-
index function, which is then used to construct a refractive index profile by numerically
solving the WKB equation [11]. This procedure involves two steps: (a) to construct
an effective index function N(q) from the discrete set of measured guided modes, and
(b) to determine the corresponding profile n(x) by inverting equation (3.73).

Having a set of ν experimentally measured modal indices N(m) (m = 0, 1, 2 . . . ,

ν − 1), a natural way to construct the artificial effective index function N(q) is to
fit the ν discrete modal positions to a polynomial of order (ν − 1). This can be
done for instance by Neville’s algorithm [12]. As an example of this implementation,
Figure 3.30 shows four measured mode indices (circles), and the associated effective
index function calculated by a polynomial fit of order 3 (continuous line).

In order to obtain the peak refractive index n0 at the surface we first need to estimate
the value q = q0, which is done by substituting xt = 0 into equation (3.73), where the
guided mode indices m are now denoted by the artificial set of modes of indices q.
In this case, by substituting n0 = n(0) = N(q) (= nf ) in equation (2.149), we obtain
φs = π . Substituting this value into equation (3.73), besides φt = π/2, and taking into
account that the WKB integral vanishes, we finally obtain that the value of q at the
surface is q0 = −0.75. Therefore, the refractive index at the surface is easily computed
by evaluating the index function, obtained by a polynomial fit, at q = −0.75:

n0 = n(0) = N(q0) = N(−0.75) (3.75)
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Figure 3.30 Effective index function N(q) (continuous line) determined by a polynomial fit
from the experimental values of modal refractive indices N(m) (circles). The surface peak
index of the refractive index distribution n0 is calculated by evaluating the index function at
q = −0.75 (arrows)
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The polynomial fit shown in Figure 3.30 gives a refractive index value at the surface
of n0 = 2.2751.

Once the refractive index at x = 0 has been evaluated, the construction of the index
profile n(x) is point-wise built by a recursive algorithm. First, we sample N(q) in
descending order N0 > N1 > N2 > . . ., not necessarily equally spaced, where Ni cor-
responds to a turning point xi . Therefore, all we need to reconstruct the index profile
is to compute xi locations. To determine xi we use step-wise approximation to the
profile, and the index Ni of the ith step is given by the average value of Ni and
Ni−1, for i = 1, 2, . . . . This is valid provided that xi and xi+1 are sufficiently close to
each other.

Equation (3.73) can be rewritten, separated into two terms as:

Ii = αi (3.76)

where we have defined:

Ii = k0

∫ xi

0

√
n2 − N2

i dx (3.77)

and:
αi = qiπ + φc(N(qi))/2 + π/4 (3.78)

The relations (3.76)–(3.78) stand for i = 1, 2, 3 . . . . On the other hand, the integral
given by (3.77) can be replaced by a finite sum of the form:

Ii = k0


xi

√
N

2
i − N2

i +
i−1∑
j=1

xj

[√
N

2
j − N2

i −
√

N
2
j+1 − N2

i

]
 (3.79)

Equation (3.76) provides a way to design an algorithm to compute xi’s in a recursive
manner. By rearranging (3.79) and using equation (3.76) we obtain:

xi =
αi −

i−1∑
j=1

{
xj

[√
N

2
j − N2

i −
√

N
2
j+1 − N2

i

]}

k

√
N

2
i − N2

i

(3.80)

for i = 1, 2, 3, . . . and x0 = 0. Thus, starting from the fitted index function N(q),
equation (3.80), as well as equation (3.78), gives a straightforward way of reconstruct-
ing the refractive index profile n(x).

Figure 3.31 shows an example of refractive index profile reconstruction using the
IWKB algorithm described. The procedure starts from a discrete set of measured indices
N(m), which we fit into a polynomial function, to obtain the effective index function
N(q) (Figure 3.30). Then, we use the recursive algorithm given by expression (3.80) to
obtain the turning points xi’s associated with each effective index. Figure 3.31 shows
the refractive index profile calculated by the IWKB method (circles), besides the exact
profile (continuous line), where the working wavelength is λ = 0.633 µm. As can be
seen, the IWKB profile reproduces the real profile very accurately, in spite of the low
number of modes (four) used to calculate the index profile. It is worth noting that the
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Figure 3.31 Reconstruction of the refractive index profile by the IWKB method (circles) using
the data given in Figure 3.30. Continuous line is the exact index profile

refractive index peak is quite well estimated, and the fit is only less accurate for very
deep regions, where the refractive index of the waveguide reaches that of the substrate.

Due to the inevitable existence of errors in measured effective indices, in practice it
is convenient to employ least-squares fitting to construct the effective index function for
the reconstruction of refractive index profiles. In this way, the influence of experimental
errors in the obtained index profile can be minimised.

3.6 Guided Modes in Channel Waveguides

In general, the integrated photonic devices presented in Chapter 1 are based on channel
(or 2D) waveguides, in which the light is confined in two directions, allowing the
propagation in only one direction, in contrast with the planar waveguides studied in
the previous sections, where light is confined only in the direction perpendicular to
the interfaces. In this way, radiation travelling in channel waveguides can propagate
without suffering diffraction, that will otherwise give rise to power loss. Therefore, for
performing functions such as modulation, switching, amplification, etc., the channel
waveguide is the right choice for the fabrication of integrated optical devices.

The most common geometries used for the definition of channel waveguides in
integrated photonic devices are the stripe and the buried waveguides (Figure 3.32).
The rib waveguide can be considered to be special case of stripe waveguide, as was
explained in Section 3.1. Stripe optical waveguides are widely used for semiconductor-
based photonic chips, such as GaAs or InP, and also in polymeric-based integrated
photonic devices. Channel waveguide fabrication involves a selective etching of a
high index film previously deposited onto a low index substrate. The etching can be
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(a) (b) (c)

Figure 3.32 Channel or 2D waveguides: (a) load type or stripe channel waveguide; (b) buried
channel waveguide; (c) graded-index buried channel waveguide

performed by means of physical methods (ion milling) or chemical methods (solvents,
acids, etc.), or even by a combination of both, such as in reactive ion etching (RIE)
[13]. In general, stripe and rib waveguides tend to have relatively high propagation
losses (∼1 dB/cm) due to the roughness of the top and lateral walls which define
the optical channels. One way of reducing losses in these waveguides is to deposit a
cladding material covering the channels, which also serves as a protection layer against
environmental chemical agents.

Buried waveguides are fabricated by the refractive index increase of a substrate, in
regions previously defined by appropriate photolithographic masks. The index increase
is usually carried out by diffusion processes, and because of that, the channel wave-
guides fabricated following this method give rise to graded-index profiles [14]. The
main advantage of this type of channel waveguides, typical in glasses and ferro-electric
materials, is the low propagation losses that can be achieved (less than 0.1 dB/cm).
Also, buried channel waveguide geometry allows easy placing of the metallic control
electrodes, such as in the case of electro-optic modulators and switches.

When dealing with planar waveguides, whether step-index or graded index structures,
light propagation can be described in terms of two mutually orthogonal polarisations,
namely, the TE and TM propagating modes. In contrast, in channel optical wave-
guides there are no pure TE or TM modes, but instead there are two families of hybrid
transversal electromagnetic modes (TEM). Fortunately, the TEM modes that propagate
in channel waveguides are strongly polarised along the x or y direction (z being the
direction of propagation of light), and therefore a classification can be made accord-
ing to the major component of the electric field associated with the electromagnetic
radiation. Optical modes having the main electric field component along the x axis are
called Ex

pq modes, and behave very similarly to the TM modes in a planar waveguide.
For this reason, they are known as quasi-TM modes. The subscripts p and q denote
the number of nodes of the electric field Ex in the x and y direction, respectively.
Accordingly, the E

y
pq modes have Ey as the major component of the electric field, and

are closely related to the TE modes in a planar waveguide, and can be considered as
quasi-TE modes.

An exact treatment of the modal characterisation in 2D waveguides is not possible,
even in the simplest case of a symmetric rectangular channel waveguide. Therefore,
in order to solve this problem, some approximation should be made, and there are
several numerical methods which yield good results in general. Here we will explain
two widely used methods: Marcatili’s method and the effective index method. While
the first one allows us to calculate the electromagnetic field in a rectangular channel
waveguide (with a homogeneous central core), with the latter we can obtain the optical
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modes supported by a channel waveguide with arbitrary geometry, even with graded
index regions (whether the core or the surroundings).

3.6.1 Marcatili’s method

This approximate method can be used to calculate the propagation constants and modal
fields supported by a rectangular channel waveguide, whether stripe or buried, as the
one shown in Figure 3.33.

Marcatili’s method [15] allows us to model a channel waveguide geometry as shown
in Figure 3.34, which consists of a central homogeneous high index core surrounded
by four homogeneous low index regions. The waveguide core, referred to as region I
in the figure, has a rectangular cross-section with dimensions a and b in the x and
y directions respectively, and a refractive index n1. The central core is surrounded
by homogeneous regions II, III, IV and V as indicated in Figure 3.34, which have
refractive indices n2, n3, n4 and n5 respectively.

If the propagation constant β of the mode is far from the cut-off (β ≈ k0n1), the
electromagnetic field is confined mainly in the core (region I), and only a small fraction
of the energy carried by the optical mode spreads out to the surrounding regions
(regions II, III, IV and V). Moreover, the fields penetrate even less in the four corners

Figure 3.33 Geometry of a rectangular buried channel waveguide, which can be modelled by
Marcatili’s method

V IV

y

x

a

II

I

III

b

Figure 3.34 Channel waveguide geometry used for modal analysis employing Marcatili’s
method. The dotted regions are not considered in this analysis
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(dotted regions in Figure 3.34), and therefore in these regions there is very little energy
of the mode. This is the argument used in Marcatili’s method to completely ignore
these regions, and thus the analysis can be greatly simplified.

As shown in Section 3.3, if the refractive index of a medium depends only on the
x and y coordinates, and we choose the z direction as the propagation direction, the
electric field for harmonic waves can be expressed in a general form as:

E(x, y, z, t) = E(x, y)ei(ωt−βz) (3.81)

H(x, y, z, t) = H(x, y)ei(ωt−βz) (3.82)

By substituting the proposed solution given by (3.81) and (3.82) into Maxwell’s
equations (3.6) and (3.7), in a similar way as we proceeded to obtain the wave equations
for planar waveguides, this allows us to express the transversal components of the
electric and magnetic fields as functions of their longitudinal components, yielding:

Ex = −(i/K2
j )[β(∂Ez/∂x) + ωµ0(∂Hz/∂y)] (3.83)

Ey = −(i/K2
j )[β(∂Ez/∂y) − ωµ0(∂Hz/∂x)] (3.84)

Hx = −(i/K2
j )[β(∂Hz/∂x) − ωn2

j ε0(∂Ez/∂y)] (3.85)

Hy = −(i/K2
j )[β(∂Hz/∂y) + ωn2

j ε0(∂Ez/∂x)] (3.86)

where we have introduced the parameter Kj defined as:

K2
j = n2

j k
2
0 − β2 (3.87)

and k0 is given as usual by k0 = ω2ε0µ0. Taking into account the last four equations,
a complete solution for the electromagnetic optical fields can be established once the
solutions for their longitudinal components Ez and Hz are known.

Besides the relations (3.83)–(3.86), Maxwell’s equations allow us also to establish a
equation for the longitudinal component of the electric field Ez and a similar equation
for the longitudinal component of the magnetic field Hz. These two equations are
referred to as the reduced wave equations for channel waveguides, and are given by:

∂2Ez

∂x2
+ ∂2Ez

∂y2
= [β2 − k2

0n
2(x, y)]Ez (3.88)

∂2Hz

∂x2
+ ∂2Hz

∂y2
= [β2 − k2

0n
2(x, y)]Hz (3.89)

Then, the calculation of propagating modes in channel waveguides involves the
resolution of the wave equations (3.88) and (3.89), taking into account the appropriate
boundary conditions that must fulfil the fields at the interfaces.

E x
pq polarised modes Marcatili’s method for calculating the quasi-TM polarised

modes in a rectangular channel waveguide, where the electric field is polarised mainly
along the x direction, is based on the separation of variables, in such a way that the
components of the electric and magnetic fields can be factorised as a product of two
functions, one of them having dependence only on the x coordinate and the second
one which depends only on the y coordinate.



3.6 GUIDED MODES IN CHANNEL WAVEGUIDES 87

Region I As we are interested in confined modes, the propagation constant β must
be lower than n1k0, being n1 the refractive of the core. Therefore the longitudinal
components of the fields for quasi-TM modes in region I should be expressed in terms
of sinusoidal functions of the form:

Ez = A cos κx(x + ξ) cos κy(y + η) (3.90)

Hz = −A(ε0/µ0)
1/2n2

1(κy/κx)(k0/β) sin κx(x + ξ) sin κy(y + η) (3.91)

As the longitudinal components Ez and Hz must fulfil the wave equations (3.88) and
(3.89) respectively, substituting Ez and Hz in the wave equations a relation between
the parameters κx and κy and the propagation constant β can be found:

K2
1 = n2

1k
2
0 − β2 = κ2

x + κ2
y (3.92)

Besides this relation, the coefficients κx and κy are still unknown. These two coeffi-
cients, in addition to the phase parameters ξ and η (and others that will be necessary
to introduce for the fields description in the remaining regions), are determined by
imposing the appropriate boundary conditions that must fulfil the electric field and
magnetic field at the four boundaries.

The transversal components of the electric and magnetic fields are obtained
by substituting the proposed solutions given in (3.90) and (3.91) into the
equations (3.83)–(3.86), yielding:

Ex = (iA/κxβ)(n2
1k

2
0 − κ2

x ) sin κx(x + ξ) cos κy(y + η) (3.93)

Ey = −iA(κy/β) cos κx(x + ξ) sin κy(y + η) (3.94)

Hx = 0 (3.95)

Hy = iA(ε0/µ0)
1/2n2

1(k0/κx) sin κx(x + ξ) cos κy(y + ξ) (3.96)

For well-confined modes, having most of their energy concentrated in the core, it holds
that their propagation constants are far from cut-off (β ≈ n1k0), and taking into account
the relation (3.92), this implies that:

κx, κy 
 β (3.97)

and thus from equation (3.94) it follows that Ey 
 Ez, and we can ignore the compo-
nent Ey as a magnitude of second order in κy/β. As the Hx component is zero, our
analysis is based on considering only four non-vanishing components of the fields, in
particular Ex , Ez, Hz and Hy . In addition, as we are dealing with propagating modes
polarised mainly along the x direction, we find that Ez 
 Ex .

The fields in the adjacent regions to the core (regions II, III, IV and V) must dis-
appear for long distances, implying that the solutions for the fields in these regions
should be in the form of exponential decays. An additional condition that must fulfil
the fields is that the tangential component of the electric field must be continuous
at each boundary. Considering all these requirements, the following solutions for the
longitudinal components of the electric and magnetic fields in the regions II, III, IV
and V can be obtained.
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Region II By imposing the condition of continuity for the Ez component at x = −a,
and considering an exponential decay behaviour in the x direction, the longitudinal
component of the fields in region II is given by:

Ez = A cos κx(ξ − a) cos κy(y + η) exp[γ2(x + a)] (3.98)

Hz = −A(ε0/µ0)
1/2n2

2(κy/γ2)(k0/β) cos κx(ξ − a) sin κy(y + η) exp[γ2(x + a)]

(3.99)
where:

K2
2 = n2

2k
2
0 − β2 = κ2

y − γ 2
2 (3.100)

Region III In this case the condition of continuity must be imposed on the Ez com-
ponent at the position x = 0. After a similar procedure done to calculate the fields in
region II, we obtain:

Ez = A cos κxξ cos κy(y + η) exp(−γ3x) (3.101)

Hz = A(ε0/µ0)
1/2n2

3(κy/γ3)(k0/β) cos κxξ sin κy(y + η) exp(−γ3x) (3.102)

where:
K2

3 = n2
3k

2
0 − β2 = κ2

y − γ 2
3 (3.103)

Region IV In this case the amplitudes must be adjusted in order that the majority
component of the electric field Ex is continuous across the boundary at the position
y = b, obtaining:

Ez = A(n2
1/n2

4) cos κy(b + η) cos κx(x + ξ) exp[−γ4(y − b)] (3.104)

Hz = −A(ε0/µ0)
1/2n2

1(γ4/κx)(k0/β) cos κy(b + η) sin κx(x + ξ) exp[−γ4(y − b)]

(3.105)
where:

K2
4 = n2

4k
2
0 − β2 = κ2

x − γ 2
4 (3.106)

Region V In the same way as the procedure following for calculating the fields in
region IV, we impose the continuity of Ex at the boundary between regions I and V
(y = 0), and the result is:

Ez = A(n2
1/n2

5) cos κyη cos κx(x + ξ) exp(γ5y) (3.107)

Hz = A(ε0/µ0)
1/2n2

1(γ5/κx)(k0/β) cos κyη sin κx(x + ξ) exp(γ5y) (3.108)

where:
K2

5 = n2
5k

2
0 − β2 = κ2

x − γ 2
5 (3.109)

In addition to the condition of continuity of the tangential component of the electric
fields at the boundaries, it is necessary to impose also the boundary condition of the
continuity of the magnetic field component Hz at the interfaces x = 0 and x = −a.
From these two conditions we obtain the following transcendental equations:

tan(κxa) = n2
1κx(n

2
3γ2 + n2

2γ3)/(n
2
3n

2
2κ

2
x − n4

1γ2γ3) (3.110)

tan(κxξ) = −(n2
3/n2

1)(κx/γ3) (3.111)
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From equation (3.110) the coefficient κx can be numerically calculated, because the
coefficients γ2 and γ3 can be expressed as function of κx using (3.92) as well as the
relations (3.100) and (3.103). The second transcendental equation (3.111) allows us to
calculate the phase parameter ξ .

In order to determine the propagation constant β using the expression (3.92) it is also
necessary to calculate the value of the parameter κy . This parameter can be determined
after imposing the continuity of the longitudinal component of the magnetic field Hz

at the boundaries between region I and regions IV and V, that is, at the positions
y = b and y = 0. These two conditions generate two new transcendental equations
given by:

tan(κyb) = κy(γ4 + γ5)/(κ
2
y − γ4γ5) (3.112)

tan(κyη) = −γ5/κy (3.113)

From the transcendental equation (3.112), as well as the equations (3.92), (3.106) and
(3.109), the parameter κy can be calculated numerically. Once κy has been determined,
as well as the value of κx previously calculated, the propagation constant of the mode
can be obtained by means of the expression:

β = [n2
1k

2
0 − (κ2

x + κ2
y )]1/2 (3.114)

Finally, the only remaining parameter to be determined is the phase parameter η,
which is obtained from the transcendental equation (3.113). In this way, once all the
parameters have been determined, the electromagnetic field distribution of the mode
at the five regions of the rectangular channel waveguide is completely established.
Indeed, once Ez and Hz are known, the remaining components of the fields can easily
be obtained from equations (3.83)–(3.86).

Because the transcendental relations involve the tangent function, in general we
obtain a discrete number of solutions for the parameters κx and κy . Therefore, the
propagation constant β associated with a mode is determined by two integer numbers
p and q (p = 0, 1, 2 . . ., q = 0, 1, 2, . . .), and the quasi-TM mode is denoted by Ex

pq .
Figure 3.35 shows the modal intensity distributions of the quasi-TM modes (Ex

pq

polarised modes) at λ = 1.3 µm obtained by Marcatili’s method. The channel wave-
guide is a rectangular buried waveguide 2 µm deep and 5 µm wide, having a core
refractive index (region I) of 1.55. Regions II, IV and V correspond to the substrate
medium, which has a refractive index of 1.45. The upper part of the channel waveguide
is air, and therefore region III has a refractive index of n3 = 1.00.

From Figure 3.35 we observe that the TM00 mode has most of its energy concentrated
in region I, and therefore the initial assumption made for the Marcatili approximation
is well fulfilled. For higher order modes, although the energy is still concentrated in
region I, the mode penetrates appreciably in the adjacent regions (II, III, IV and V);
the higher the mode order, the deeper the penetration into the adjacent media. Also, in
region III there is very little intensity due to the large difference between its refractive
index and the refractive index of the core region (n3 = 1.00 and n1 = 1.55); this
implies that the γ3 parameter has a high value, and the exponential decay of the field
in that region makes it attenuate over short distances in the x-direction. Finally, we
can observe that in the four corners, corresponding to the dotted areas in Figure 3.34,
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TM00 TM01

TM10

 TM21

TM11

Figure 3.35 Intensity distribution for the quasi-TM modes (Ex
pq polarised modes) supported

by a rectangular channel waveguide with dimensions a = 2 µm and b = 3 µm. The refractive
index of the five homogeneous regions are: n1 = 1.55, n2 = 1.45, n3 = 1.00, n4 = 1.45 and
n5 = 1.45, the wavelength being 1.3 µm

the energy is very low, thus confirming the validity of the initial approximation made
for the applicability of this method.

E y
pq modes The solutions for quasi-TE modes (Ey

pq polarised modes) are obtained in
a similar manner to that carried out for quasi-TM modes. In this case the dominant
component for the electric field is Ey , while the component Ex can be ignored, and
also Hy = 0. The longitudinal components of the fields for E

y
pq modes in the five

regions are expressed as:

Region I

Ez = B cos κx(x + ξ) cos κy(y + η) (3.115)

Hz = −B(ε0/µ0)
1/2n2

1(κx/κy)(k/β) sin κx(x + ξ) sin κy(y + η) (3.116)

Region II

Ez = B(n2
1/n2

2) cos κx(ξ − a) cos κy(y + η) exp[γ2(x + a)] (3.117)

Hz = −B(ε0/µ0)
1/2n2

1(γ2/κy)(k/β) cos κx(ξ − a) sin κy(y + η) exp[γ2(x + a)]

(3.118)
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Region III

Ez = B(n2
1/n2

3) cos κxξ cos κy(y + η) exp(−γ3x) (3.119)

Hz = B(ε0/µ0)
1/2n2

1(γ3/κy)(k/β) cos κxξ sin κy(y + η) exp(−γ3x) (3.120)

Region IV

Ez = B cos κy(b + η) cos κx(x + ξ) exp[−γ4(y − b)] (3.121)

Hz = −B(ε0/µ0)
1/2n2

4(κx/γ4)(k/β) cos κy(b + η) sin κx(x + ξ) exp[−γ4(y − b)]

(3.122)

Region V

Ez = B cos κyη cos κx(x + ξ) exp(γ5y) (3.123)

Hz = B(ε0/µ0)
1/2n2

5(κx/γ5)(k/β) cos κyη sin κx(x + ξ) exp(γ5y) (3.124)

After imposing the condition of continuity of the component Hz at the interfaces
delimiting the region I with regions II and III (at x = −a and x = 0), we obtain:

tan(κxa) = κx(γ2 + γ3)/(κ
2
x − γ2γ3) (3.125)

tan(κxξ) = γ3/κx (3.126)

On the other hand, the continuity of Hz in the regions IV and V (at y = b and
y = 0) leads to:

tan(κyb) = n2
1κy(n

2
5γ4 + n2

4γ5)/(n
2
4n

2
5κ

2
y − n2

1γ4γ5) (3.127)

tan(κyη) = (n2
5/n2

1)(κy/γ5) (3.128)

From the transcendental equation (3.125) we obtain the parameter κx , and from the
relation (3.127) the parameter κy is calculated. The phase parameters ξ and η are
calculated following equations (3.126) and (3.128) respectively. In a similar way as
before, the propagation constants of the quasi-TE modes are finally obtained from the
relation given in (3.114). The transversal components of the electric and magnetic
fields are calculated by differentiation of the equations (3.83)–(3.86). Following this
procedure, the modal propagation constants and their associated electromagnetic fields
remain completely characterised.

Nevertheless, as was already commented, Marcatili’s method is only valid for rect-
angular channel waveguides having homogeneous regions, and for guided modes far
from cut-off condition. If one is interested in analysing a channel waveguide with a
different geometry, this method is not useful, and it is necessary to turn to others
approximate methods, such as the effective index method.

3.6.2 The effective index method

The effective index method (EIM) is an approximate analysis for calculating the
propagation modes of channel waveguides. It applies the tools developed for planar
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waveguides to solve the problem of two-dimensional structures [16]. This method is
one of the simplest approximate methods for obtaining the modal fields and the prop-
agation constant in channel waveguides having arbitrary geometry and index profiles.
It consists of solving the problem in one dimension, described by the x coordinate,
in such a way that the other coordinate (the y coordinate) acts as a parameter. In this
way, one obtains a y-dependent effective index profile; this generated index profile is
treated once again as a one-dimensional problem from which the effective index of the
propagating mode is finally obtained.

The propagation constants supported by a 2D channel waveguide having a refrac-
tive index profile which depends on two coordinates n = n(x, y) are then calculated
by solving the propagation modes for two 1D planar waveguides. The EIM treats
the channel waveguide as the superimposition of two 1D waveguides: planar wave-
guide I confines the light in the x direction, while planar waveguide II traps the light
in the y direction (Figure 3.36). For propagating modes polarised mainly along the x

direction (Ex
pq), we have seen that the major field components are Ex , Hy and Ez.

The propagation of these polarised modes is similar to the TM modes in a 1D planar
waveguide, and their solutions will correspond to the effective indices NI. Now the
second planar waveguide (waveguide II) is considered to be built from a guiding film
of refractive index NI, which has previously been calculated. The modes for the second
planar waveguide are TE polarised, with Ex , Hy and Hz as non-vanishing components,
because the light is mainly polarised along the x direction.

Let us consider the two-dimensional scalar wave equation for modes propagating in
a channel structure (equation (3.88)), defined by its refractive index function given by
n(x, y):

∂2E(x, y)

∂x2
+ ∂2E(x, y)

∂y2
+ [k2

0n
2(x, y) − β2]E(x, y) = 0 (3.129)

a

b

a

b

Channel waveguide

Planar waveguide I

Planar waveguide II 

nc

ns

nc

ns ns

nf

ns

nf

NI
p

NI
p

NII
pq

Figure 3.36 Scheme of the effective index method for solving the propagation constant of a
step-index channel waveguide. Starting from a 2D waveguide, the problem is split into two
step-index planar waveguides
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where k0 = 2π/λ, λ is the wavelength of the radiation, and β is the propagation
constant of the mode, related to the effective refractive index N by β = k0N . The
EIM is based on the assumption that the function describing the optical field admits a
factorisation of the form:

E(x, y) = �(x, y)�(y) (3.130)

Substituting this proposed solution into the wave equation for channel waveguides
(3.129), we obtain a system of two coupled differential equations:

∂2�(x, y)

∂x2
+ [k2

0n
2(x, y) − k2

0N(y)2]�(x, y) = 0 (3.131)

∂2�

∂y2
−

(
2

�

∂�

∂y

)
∂�

∂y
+

(
k2

0N
2(y) + 1

�

∂2�

∂y2
− β2

)
� = 0 (3.132)

The first step in the EIM procedure consists of solving the differential equation (3.131),
using the y coordinate as a parameter. This equation is similar to the wave equation for
planar waveguide given in (3.26). The eigenvalue solution of equation (3.131) gives
an effective index profile N(y), which depends explicitly on the y coordinate. Once
the index distribution N(y) has been obtained, we introduce this function in the second
differential equation (3.132), thus performing the second step in the problem resolution.

The approximation used by the effective index method consists of assuming that
the function �(x, y) has a slowly variation respect to the y coordinate [17]. Thus
the terms in the differential equation (3.132) that involve partial derivatives of the
function �(x, y) respect the coordinate y (second and fourth terms) can be ignored.
This approximation leads to:

∂2�

∂y2
+ [k2N2(y) − β2]� = 0 (3.133)

In this way from equation (3.132) we have obtained a decoupled differential equation,
that besides that, is similar to the wave equation for planar waveguides. Then the solu-
tion of equation (3.133) finally provides the effective index of the propagating mode in
the channel waveguide. This effective index is defined by two integer numbers p and q,
reflecting the pth and qth order solution of equations (3.131) and (3.133) respectively.

In order to see how the EIM operates in practice, let us consider a rectangular
channel waveguide similar to the one shown in Figure 3.36. The depth and width of
the core waveguide are a and b respectively. The waveguide core with refractive index
nf is embedded in a substrate of refractive index of ns being the upper part delimited
by the cover with refractive index nc.

Starting from the channel waveguide we first build an asymmetric step-index planar
waveguide, which consists of a film of width a and refractive index nf , surrounded by
a cover and a substrate, having refractive indices nc and ns respectively. This is the
planar waveguide I (Figure 3.36). The effective indices supported by this waveguide
can be calculated by using any of the methods seen in Section 3.4 to solve step-
index planar structures. The effective index associated to the pth guided mode for this
waveguide is denoted by N

p
I .

Now the second step consists of considering a symmetric step-index planar wave-
guide (waveguide II) formed by a core film of thickness b, whose refractive index
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is the effective refractive index N
p
I calculated previously. The film is surrounded on

both sides by a medium with refractive index equal to the substrate refractive index
ns . This new waveguide can easily be solved by conventional methods applied to
planar structures. The effective refractive index N

pq
II of the q order guided mode

calculated by this planar waveguide corresponds to the modal effective index for the
channel waveguide.

The effective index method can be extended in a natural way to channel waveguides
with an arbitrary refractive index profile n = n(x, y), such as the structure shown in
Figure 3.37. This is the typical index profile found in channel waveguides fabricated
by diffusion methods: the index increase is maximum at the surface, and it decreases
monotonically both in depth and laterally, until it reaches the substrate value.

Following the method outlined in Figure 3.38, for a fixed y coordinate, for instance
say yi , the index distribution as a function of the depth is given by n = n(x, yi), which
defines a planar waveguide with graded-index profile. This planar waveguide can be

n(x, y)
nc

nS

Figure 3.37 Refractive index profile of a graded-index channel waveguide. The index increase
shows Gaussian-like profile in both directions, typical in diffused waveguides

y
x

x ∆n(x, yi)

 

y

n(x, y)

NI
p(y)

NI
p(yi)

Layer at y = yi

NII
pq

Figure 3.38 Scheme of the effective index method for calculating the propagating modes in
graded-index channel waveguides
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solved by the aforementioned methods, and its solution is a discrete set of effective
indices. Let us assume that we choose an arbitrary, but fixed, mode order p among this
set of refractive indices, and we denote it by N

p
I (yi). By solving each planar waveguide

for each value of the y coordinate, a one-dimensional distribution of refractive indices
N

p
I (y) is obtained, which defines a symmetric planar waveguide, with graded-index

profile along the y-direction. The propagation modes for this second 1D waveguide
can be calculated, resulting in a new set of effective indices N

pq
II , where q indicates

the mode order. The value of N
pq
II obtained denotes the effective index of pq mode

order corresponding to the channel waveguide.
When the effective index distribution N

p
I (y) is calculated as a TE solution in the

first planar waveguide, the propagation constant for the TM solution corresponding to
the effective index profile of the qth mode is the approximate propagation constant of
the quasi-TEpq mode for the channel waveguide.

As an illustration of the method, let us consider the case of a graded-index channel
waveguide in lithium niobate, fabricated by metallic diffusion. This fabrication process
induces a refractive index increase of the substrate in the region where the diffusion
takes place: the maximum index is located at the surface, and the index increase has
a Gaussian distribution in depth and also laterally. The function that describes this
profile is given by:

n(x, y) = ns + n · e−(x2/a2+y2/b2) (3.134)

Figure 3.39 (left, above) shows a transversal view of the diffused channel waveguide
with the mentioned index profile, defined by the following parameters:

ns = 2.1675

n = 0.013

a = 3 µm

b = 5 µm

Table 3.2 summarises the results provided by the effective index method applied to
the graded-index channel waveguide for quasi-TM modes calculated for a wavelength
of λ = 0.8 µm. The values for quasi-TE modes are very similar, because the index
increase with respect to the substrate index is very small (n 
 ns).

The modal intensity distributions for each of the confined modes that supports the
channel waveguide are represented in Figure 3.39, besides the two-dimensional index
profile n(x, y). It can be observed that the modes are symmetric with respect to the
y direction, but not in the x-direction, thus reflecting the symmetry defined by the
refractive index profile n(x, y). The radiation is very well confined for the TM00

mode, but this confinement is reduced for higher order modes, in such a way that the

Table 3.2 Effective refractive indices for quasi-TM
modes at 0.8 µm supported by the graded-index chan-
nel waveguide shown in Figure 3.39

0 1 2 3
0 2.1736 2.1715 2.1696 2.1681
1 2.1679 — — —
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n(x, y) TM00

TM01 TM02 TM03

TM10

Figure 3.39 Intensity distribution for the quasi-TM modes supported by the graded-index chan-
nel waveguide defined by n(x, y) (above, left), calculated at λ = 0.8 µm. Each tic corresponds
to one micron. The waveguide parameters are indicated in the text

TM10 mode’s energy is poorly concentrated. In fact, this mode has an effective index
of 2.1679, which is very close to that of the substrate value (2.1675), indicating that
the mode is very close to the cut-off. Finally, let us note that the p and q modal
indices correspond to the number of zeros in the intensity distribution along the x and
y direction respectively.

Notes

1. The electromagnetic waves defined by equations (3.12) and (3.13) are clearly non-
planar waves, because of the spatial dependence of the fields’ amplitudes. Indeed,
a planar wave must have an infinite spatial extension, and this is not the case when
dealing with optical waveguides modes that have transversal dimensions of the order
of the wavelength of the light, typically of a few microns.

2. The longitudinal components of the fields are not independent, but related by:

β
∂Hz

∂x
= ε0n

2ω
∂Ez

∂y
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4
COUPLED MODE THEORY:

WAVEGUIDE GRATINGS

Introduction

We have shown in the last chapter that a z-invariant optical structure that defines an
optical waveguide admits solutions in the form of modes derived from Maxwell’s
equations, whose z-dependence is expressed by the simple function exp(−iβz). In this
chapter we will see that there is an orthogonal relation between the modes supported by
a waveguide structure, which implies that each mode propagates independently along
the waveguide, and therefore there is no power exchange between modes. Moreover,
the modes form a complete set of orthogonal functions in the sense that any arbitrary
electromagnetic field in a waveguide can be expressed as a superimposition of the
waveguide modes.

Nevertheless, energy transfer between modes can take place if the original waveguide
structure is altered; this means that the modes (originally independent) become mutually
“coupled”. The theory that describes the interaction between modes, or the new modes
that arise from the modified structure, is known as the coupled mode theory (CMT).
The main aim of this theory is to derive the coupling coefficients that drive the optical
power exchange between the modes of the original structure.

We will apply the results of the CMT to one of the most important integrated
photonics elements: the waveguide grating [1]. Waveguide diffraction gratings are
periodic perturbations induced in planar or channel waveguides, and are widely used
in integrated photonics technology to perform a great variety of functions: input/output
couplers, reflectors, modal conversors, etc. Also, gratings are optical elements of
high wavelength dispersion, enabling their application in wavelength filters, separa-
tors/combiners and multiplexors/demultiplexors [2]. We will describe the two main
types of waveguide gratings, and obtain the coupling coefficients in both cases, dis-
cussing the fundamental phenomena involved in mode coupling induced by waveguide
diffraction gratings.

4.1 Modal Coupling

4.1.1 Modal orthogonality and normalisation

Let us consider a dielectric loss-less waveguide (planar or channel) having an arbitrary
geometry, but which is invariant in the propagation direction z. This means that the
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structure can be described by the spatial distribution of the dielectric permittivity of the
form ε = ε(x, y) (Figure 4.1). The electromagnetic field corresponding to monochro-
matic radiation propagating along this structure must fulfil Maxwell’s equations:

∇ × E = −iωµ0H (4.1)

∇ × H = iωεE (4.2)

Let us now consider two electromagnetic waves described by their complex field
amplitudes (E1, H1) and (E2, H2). As these complex amplitudes must fulfil the above
equations, the following relation can be deduced [3] (see Appendix 4):

∇(E1 × H∗
2 + E∗

2 × H1) = 0 (4.3)

From the relation (4.3) the following expression can be obtained (see Appendix 5):
∫

S

∂

∂z
[E1 × H∗

2 + E∗
2 × H1]z dx dy = 0 (4.4)

As the dielectric permittivity ε = ε(x, y) which defines the waveguiding structure
does not depend on the z coordinate, Maxwell’s equations admit mode solutions, whose
z dependence can be expressed by the simple function exp(−iβz). These solutions
are referred to as normal modes of the z-invariant structure, where β is the modal
propagation constant. If the two electromagnetic waves in equation (4.4) correspond
to two arbitrary normal modes ν and µ, the complex amplitudes for the electric and
magnetic fields (E1, H1) and (E2, H2) should be expressed as:

E1(x, y, z) = Eν(x, y)e−iβνz (4.5)

H1(x, y, z) = Hν(x, y)e−iβνz (4.6)

E2(x, y, z) = Eµ(x, y)e−iβµz (4.7)

H2(x, y, z) = Hµ(x, y)e−iβµz (4.8)

x

z

y

e=e (x, y)

Figure 4.1 Waveguide structure which is invariant along the propagation direction, defined
through the spatial distribution of its dielectric permittivity ε(x, y)
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By substituting these expressions into equation (4.4) it yields:

−
∫∫

i(βν − βµ)e−i(βν−βµ)z
[
Eν × H∗

µ + E∗
µ × Hν

]
z

dx dy = 0 (4.9)

and taking into account the vectorial relation (A × B)z = (At × Bt ) it follows:

(βν − βµ)

∫∫ [
Eνt × H∗

µt + E∗
µt × Hνt

]
z

dx dy = 0 (4.10)

where the subscripts t and z denote the components on the xy plane and the z compo-
nent, respectively, and the integral is extended to an infinite surface S perpendicular to
the z-axis. The relation in (4.10) indicates that for βµ �= βν the integral must vanish:
this implies that the transversal electromagnetic fields are orthogonal between them,
and therefore the expression in (4.10) is known as the modal orthogonality relation.

On the other hand, and taking into account that the effective power density (in
W/m2) is given by the real part of the Poynting vector S = (1/2)E × H∗, the power
flux (in watts) transported by the radiation corresponding to the modal field µ can be
written as:

P = Pz = Re

{∫∫
1

2
(Et × H∗

t )z dx dy

}
= 1

4

∫∫ [
Eµt × H∗

µt + E∗
µt × Hµt

]
z

dx dy

(4.11)

From the above expression it is worth noting that the power flux P takes positive and
negative values for βµ > 0 and βµ < 0 respectively; this is so because the positive
and negative values of the propagation constant βµ correspond to waves propagating
in the positive and negative direction of the z axis, respectively. If the power flux P is
set to 1 W in equation (4.11), the electric and magnetic fields associated with a mode
are said to be normalised.

By combining the orthogonality relation (4.10) with the power flux normalisa-
tion (equation (4.11) with P = 1 W), we obtain the expression known as the modal
orthonormalisation, given by:

1

4

∫∫ [
Eνt × H∗

µt + E∗
µt × Hνt

]
z

dx dy = ±δµν (4.12)

where we have assumed that the relation is established for guides modes, having
discrete values of β, and δµν denotes the Kronecker’s delta function. For radiation
modes, which have a continuum spectrum on β, this relation takes the form:

1

4

∫∫ [
Eνt × H∗

µt + E∗
µt × Hνt

]
z

dx dy = ±δ(βµ − βν) (4.13)

where δ(βµ − βν) stands for the Dirac delta function. Obviously, the sign of the right
part of equations (4.12) and (4.13) has only physical meaning for µ = v, that is, when
the right-hand side does not vanish. The positive sign must be taken for βµ = βν > 0,
and a minus sign for βµ = βν < 0.

4.1.2 Modal expansion of the electromagnetic field

The electromagnetic fields of the modes in a waveguide structure form a complete
system of orthogonal functions. This implies that any arbitrary electromagnetic field
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propagating along the waveguide structure can be expressed as a superposition of
the modal fields. The relations of completitude and normalisation are applied to the
transversal fields in the xy plane, and thus an arbitrary field can be expressed in
the form:

Et (x, y, z) =
∑

ν

aνEνt (x, y)e−iβνz (4.14)

Ht (x, y, z) =
∑

ν

aνHνt (x, y)e−iβνz (4.15)

where the expansion coefficient aν represents the weighted contribution of the νth
mode to the electromagnetic field, and the symbol � denotes summation over all the
modes. Let us note that the expansion coefficients are a-dimensional magnitudes.

As the modes in a waveguide structure include guided modes with a discrete spec-
trum, as well as radiation modes with a continuum spectrum, the expansions in equa-
tions (4.14) and (4.15) imply a discrete summation for guided modes and an integral
on βν for radiation modes. The summation must be performed also for different polar-
isations and for each degenerate mode. It is also important to recall that, for a given
mode, β can take positive as well as negative values (corresponding to waves travelling
in +z and −z directions). Therefore, these two equations should include positive and
negative terms on βν .

When the integral � denotes the above described superposition, the transversal fields
Et and Ht can be fully expressed using the relations (4.14) and (4.15). In addition, the
z-component of the fields Ez and Hz can be calculated by Maxwell’s equations:

∇t × Et = −iωµ0Hz (4.16)

∇t × Ht = iωεEz (4.17)

Thus, any arbitrary field (E, H) is completely determined by a set of modal expansion
coefficients aν .

The waveguide structure that defines the modal fields {Eν, Hν} is known as the
canonical structure. As each canonical mode (normal mode) is a solution of Maxwell’s
equations for this structure, each mode can exist independently. In addition, the aν coef-
ficients which define an arbitrary electromagnetic field propagating along the canonical
structure are constant. This implies that there is no interaction between modes, or in
other words, there cannot exist energy transfer or coupling between modes.

In a waveguide structure slightly different to the canonical structure, the normal
modes cannot propagate independently, because these modes are not solutions of
Maxwell’s equation for the new structure. Nevertheless, the modal field can still
be expressed as a superposition of normal modes using relations (4.14) and (4.15),
although in this case the aν coefficients are no longer constant but are a function of
the propagation distance z:

Et (x, y, z) =
∑

ν

aν(z)Eνt (x, y)e−iβνz (4.18)

Ht (x, y, z) =
∑

ν

aν(z)Hνt (x, y)e−iβνz (4.19)

The consequence of this is that the modes of the new structure can only be expressed
as a modal superposition, the modal amplitude coefficients aν being dependent on the
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propagation distance as a result of mode coupling. The spatial evolution of the aν coef-
ficients due to mode coupling is driven by the so-called mode-coupling equations, and
the theory describing this behaviour is known as the coupled mode theory (CMT) [4].

4.1.3 Coupled mode equations: coupling coefficients

Let us assume that E(0) and H(0) represent the electric and magnetic field amplitudes
associated with an arbitrary wave propagating along a canonical waveguide structure,
described by a given distribution of the dielectric permittivity ε = ε(x, y). As these
fields must fulfil Maxwell’s equations, equations (4.1) and (4.2) become:

∇ × E(0) = −iωµ0H(0) (4.20)

∇ × H(0) = iωεE(0) (4.21)

We now consider a new structure, which is a modification of the canonical structure.
It can be described by ε + �ε = ε(x, y) + �ε(x, y), �ε being the change in the
dielectric permittivity of the modified structure respect to the canonical one. Any
arbitrary electromagnetic field (E, H) in the new structure must satisfy:

∇ × E = −iωµ0H (4.22)

∇ × H = iω(ε + �ε)E (4.23)

The spatial distribution �ε(x, y) which describes the difference between the modified
and the canonical structures can be considered as a modification or a perturbation of
the canonical structure. Nevertheless, at this point the magnitude of �ε has not to be
necessarily small compared to ε.

Following a similar procedure to that given in Appendix 4, by combining equations
(4.20) and (4.21) with equations (4.22) and (4.23), we obtain an equation that relates
the fields of the canonical structure to the fields of the modified structure, coupled
through the change in the permittivity:

∇(E × H(0)∗ + E(0)∗ × H) = −iωE(0)∗�εE (4.24)

By making an integration of this expression over a cylindrical volume with an
infinitely large area parallel to the xy plane and with an infinitesimal width in the z

direction, as is shown in Figure 4.2, it results in:
∫∫

∂

∂z

[
Et × H(0)∗

t + E(0)∗
t × Ht

]
z

dx dy = −iω

∫∫
E(0)∗�εE dx dy (4.25)

where we have proceeded in a similar way to that shown in Appendix 5, except that
the right part of this equation is not zero because of the contribution of �ε.

If we assume further that the fields E(0) and H(0) correspond to the µth mode of the
canonical structure, their transversal components can be expressed as:

E(0)
t (x, y, z) = Eµt (x, y)e−iβµz (4.26)

H(0)
t (x, y, z) = Hµt (x, y)e−iβµz (4.27)
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x

z

y

S

dz

e = e(x, y)

Figure 4.2 Volume taken for performing the integration of equation (4.24)

On the other hand, the modal expansion given by equations (4.14) and (4.15) can
be used to obtain the transversal field amplitudes Et and Ht . In this way, the left-hand
side (LHS ) of equation (4.25) leads to:

LHS =
∑

ν

∂

∂z

{
aν(z)e

−i(βν−βµ)z

∫∫ [
Eνt × H∗

µt + E∗
µt × Hνt

]
z

dx dy

}
(4.28)

The integral in the above expression, taking into account the orthonormalisation
relation (4.12), yields ±4δµν , and thus the LHS reduces to:

LHS = ±4
∂aµ(z)

∂z
= ±4

daµ(z)

dz
(4.29)

where the + and − signs must be chosen for positive and negative values of βµ,
respectively.

The complete expression for the electric field complex amplitude can be given as a
function of the field modal expansion given in (4.18) and (4.19), yielding:

E = Et + Ez = Et + ∇t × Ht / iω(ε + �ε)

=
∑

ν

aν

[
Eνt + ∇t × Hνt /iω(ε + �ε)

]
e−iβνz

=
∑

ν

aν

[
Eνt + ε

ε + �ε
Eνz

]
e−iβνz (4.30)

where, in addition, we have used a relation similar to that (4.17) to obtain Ez. Taking
into account this result, the right-hand side (RHS ) of equation (4.25) becomes:

RHS = −iω
∑

ν

aνe−i(βν−βµ)z

∫∫
E∗

µ�ε

[
Eνt + ε

ε + �ε
Eνz

]
dx dy (4.31)

By combining the results obtained in (4.29) and (4.31), equation (4.25) can finally
be written in the form:

±daµ(z)

dz
= −i

∑
ν

κµν(z)aν(z)e
−i(βν−βµ)z (4.32)
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where we have introduced the coupling coefficient κµν(z) defined as:

κµν(z) ≡ κt
µν(z) + κz

µν(z) (4.33)

κt
µν(z) ≡ ω

4

∫∫
E∗

µt (x, y)�ε(x, y, z)Eνt (x, y) dx dy (4.34)

κz
µν(z) ≡ ω

4

∫∫
E∗

µz(x, y)
ε�ε(x, y, z)

ε + �ε(x, y, z)
Eνz(x, y) dx dy (4.35)

which has the dimension of m−1.
Equation (4.32), which includes summation over all the ν modes (guided as well as

radiation modes), represents the coupling modal equation, and determines the spatial
variation (along the propagation distance z) of the modal amplitude coefficients aµ.
The parameter κµν(z) is the coupling coefficient between modes µ and ν, and has been
expressed as a summation of κt (z) representing the coupling contribution due to the
transversal component of the electric field, and κz(z) that involves the coupling between
the longitudinal component of the fields. These coupling coefficients are evaluated by
substituting the normalised electric field profiles into equations (4.34) and (4.35), and
making the integration in those spatial regions where �ε is different to zero.

In the expressions of the coupling coefficients we have explicitly included their
z-dependence, because we allow the altered structure to be z-dependent through the
modification of the dielectric permittivity �ε(x, y, z). This is indeed the most common
case, for instance, in mode coupling induced by periodic structures [1].

Let us note that if �ε is a real quantity (non-absorbing structures), from (4.34) and
(4.35), it follows that the coupling coefficients must fulfil the relation:

κνµ(z) = κ∗
µν(z) (4.36)

On the other hand, the power flux in the propagation direction z along the waveguide
structure is given by the summation of the modal power fluxes ±a2, and the derivative
on z can be expressed by equation (4.32) as:

d

dz

∑
µ

|aµ(z)|2 =
∑
µ

(
aµ

da∗
µ

dz
+ a∗

µ

daµ

dz

)
= −i

∑
µν

(κµν − κ∗
νµ)a∗

µaνe−i(βν−βµ)z

(4.37)

Taking into account the relation (4.36), the right-hand side of this equation is zero.
This result implies that the power flux is maintained as the wave propagates along the
waveguide structure. Therefore, the power flux conservation can be expressed in terms
of the coupling coefficients by:

d

dz

∑
µ

|aµ(z)|2 = 0 (4.38)

Let us note that if the structure presents absorption (or gain, in the case of lasers
and amplifiers), �ε is complex, and the relation (4.38) is no longer valid.

It is important to note here that in order to obtain the coupling modal equations it
has not been necessary to make any approximation. This means that if the superposi-
tion of all the modes is done for �ν , the electromagnetic wave evolution is adequately
described by equation (4.32). Nevertheless, an analysis using all the modes is not
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practical in most cases, because (4.32) represents a set of equations of infinite dimen-
sion, which should include radiation modes. Therefore, when the modal coupling theory
is applied in practice, only a small number of modes are considered, which are cho-
sen taking into account reasonable physical conditions, such as in the case of phase
matching conditions. Using this procedure, equation (4.32) is reduced to a small num-
ber of equations. In most cases only two guided modes are considered, and this is the
analysis that we will be following in next section. In this approximate analysis it is
necessary to choose an appropriate canonical structure in such a way that the structure
to be analysed can be represented by a �ε as small as possible, because in this case
the accuracy of the approximation will depend on the magnitude of �ε. In order to
achieve that, one can choose a canonical structure in which �ε = 0 except for a small
region in the structure.

Finally, let us consider the approximate expressions for the coupling coefficients [5].
The longitudinal components z of the fields corresponding to guided modes are usually
much smaller that the transversal components, and therefore it holds that:

|κt | � |κz| (4.39)

Using this result, in a first approximation the κt coefficient can be used as the cou-
pling coefficient κ , thus ignoring the contribution of the coefficient κz. Even if κz is not
ignored, making use of the fact that ε � �ε, equation (4.35) can be approximated to:

κz
µν(z) ≈ ω

4

∫∫
E∗

µz(x, y)�ε(x, y, z)Eνz(x, y) dx dy (4.40)

and therefore, from this equation and equation (4.34) one finally obtains:

κµν(z) ≈ ω

4

∫∫
E∗

µ(x, y)�ε(x, y, z)Eν(x, y) dx dy (4.41)

as an approximate expression for the coupling coefficient κµν(z).
So far, we have discussed the coupling coefficients in isotropic media, where the

coupling between mutually orthogonal polarised modes is not possible. This implies,
for example, that coupling between TE–TM or TM–TE modes in planar waveguides
cannot take place in isotropic structures. In the general case of anisotropic media, the
polarisation induced in the medium by the electric field of the light does not have the
same direction as the electric vector, and this implies that the constitutive relation (2.13)
involving the displacement vector and the electric field D = εE has to be substituted
by a tensorial relation. This leads to the possibility of coupling between modes that
have orthogonal polarisations. As a matter of fact, in anisotropic media the dielectric
permittivity is not longer a scalar, but a tensor, and the constitutive relation becomes:

D = εE (4.42)

where the dielectric permittivity ε is given by:

ε =

 εxx εxy εxz

εyx εyy εyz

εzx εzy εzz


 (4.43)
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If the change on the dielectric permittivity induced by the perturbation in the original
canonical structure �ε have non-null off-diagonal elements, the coupling between
perpendicular polarised modes can take place. In the general case, the change in the
dielectric permittivity tensor can be expressed as:

�ε =

 �εxx �εxy �εxz

�εyx �εyy �εyz

�εzx �εzy �εzz


 (4.44)

Although the coupling coefficient in the case of anisotropic induced changes in the
dielectric permittivity is rather complicated, it can be demonstrated that if this change
is small (�ε � ε), a compact formula can be derived [3], resulting in:

κµν(z) ≈ ω

4

∫∫
E∗

µ(x, y)�ε(x, y, z)Eν(x, y) dx dy (4.45)

where the whole vectors of the electric mode fields enter in this expression, and not
just the transverse or longitudinal part as it was in the case of isotropic media. In
many practical applications, the difference between the perturbed dielectric tensor and
the dielectric tensor corresponding to the canonical structure is small, and then the
expression given in (4.45) provides a good approximation for the coupling coefficient
in practical problems.

4.1.4 Coupling mode theory

As we have seen in previous sections, a loss-less waveguide structure which is invari-
ant along the propagation direction (z axis) can support several guided modes, which
are defined by the waveguide structure and its boundary conditions. There is an orthog-
onality relation between modes, in such a way that they can propagate independently,
without mutual coupling and without energy transfer between them.

In contrast, if the waveguide is slightly altered, for instance, by inducing a small
change in the refractive index in a region close to the waveguide, the original modes
of the unperturbed waveguide are no longer independent, but they will be mutually
coupled. There are two methods for analysing the optical propagation of the modes in
the perturbed waveguide: (i) one can calculate the normal modes of the new structure
by solving Maxwell’s equations with appropriate boundary conditions; and (ii) it is
possible to express the perturbed optical field as a summation of the normal modes
corresponding to the unperturbed waveguide [6]. Of course, the first method gives
exact solutions, but the resolution of the problem is sometimes very difficult. On
the other hand, although the second procedure provides only approximate solutions,
it is simple and direct. Also, this method allows a qualitative comprehension of the
essential features and phenomena involved in the problem, and the solution given is
usually quite accurate. Therefore, the mode coupling theory is a method that can be
used for the optical propagation description in a perturbed waveguide by means of the
known normal modes corresponding to the unperturbed structure.

Although we have seen that the optical field is described by a discrete summation
of all the guided modes plus the continuum radiation modes, in many cases it suffices
to consider only two guided modes; in other words, only two coefficients aν in the
modal expansion are different to zero.
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Waveguide I Coupled waveguidesWaveguide II

ba bb

ya yb

ye

yo

Figure 4.3 Left: structure of two independent waveguides (uncoupled), having modal fields

a and 
b, and propagation constants βa and βb. Right: when the two waveguides approach
the modal fields modify to 
e and 
o, as a result of the mutual coupling

The behaviour of two modes having mutual coupling can be examined by considering
the situation depicted in Figure 4.3. The unperturbed waveguide (canonical structure)
consists of two waveguides, I and II, which are invariant along the propagation direction
z, and each waveguide support a single guided mode, a and b. The separation distance
between the waveguides is large enough so that there is no mutual influence, in such
a way that each mode can propagate independently. The modal field distributions
corresponding to the guided modes a and b are given by 
a and 
b, respectively, and
their propagation constants are βa and βb, respectively. In our discussion we assume
that βa < βb.

Let us now examine the modification suffered by the normal modes when the two
waveguides are uniformly coupled along the propagation direction, which can be done
by reducing the separation distance between them.

When the two waveguides approach each other, the initial canonical structure is
perturbed: the original normal modes (canonical modes) 
a and 
b are no longer
modes of the new structure, and instead two new normal modes 
e and 
o appear,
which propagate along the coupled waveguide system. The propagation constants of
these two modes are βe and βo, and it holds that βe > βb and βo < βa . As the fields 
e

and 
o are now the normal modes of the new structure, they can be excited separately,
and can also propagate independently.

Also, under appropriate light injection, the two modes 
e and 
o can be excited
simultaneously. Since the propagation constants of the modes are different, they propa-
gate at different speeds, giving rise to a beat phenomenon: if one looks at the behaviour
of the light on the waveguides I and II, it seems that the optical power transfers peri-
odically between the two waveguides, in such a way that the energy is apparently
transferred from mode 
a to mode 
b and vice versa, as the optical perturbation
proceeds along the waveguide system. This coupling effect is stronger as the values
of propagation constants βa and βb become closer, as is shown in Figure 4.4 (dif-
ferent waveguides) and Figure 4.5 (identical waveguides), where the optical power in
the waveguide system is plotted as a function of the propagation distance, after light
injection into waveguide I.

This behaviour describes the main features and fundamental concepts of modal
coupling behaviour between propagating modes in waveguides structures. The purpose
of the modal coupling theory is to obtain the modal fields 
e and 
o, the propagation
constants βe and βo, the beat period, and other relevant parameters, as a function of
the known modes 
a and 
b corresponding to the unperturbed system.
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Figure 4.4 System of two coupled waveguides. Both waveguides are monomode, but have
different propagation constants. After launching light into waveguide I, there is a partial power
exchange into waveguide II
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Figure 4.5 System of two coupled monomode waveguides, having the same value of their
propagation constants. After launching light into waveguide I, there is a total power exchange
into waveguide II

The electromagnetic field of a monochromatic wave propagating along the waveguide
structure can usually be well represented by the main component of its associated
electric field (or magnetic field). We will refer to this component as the optical field,
and thus our description is based on a scalar description of the optical propagation. If

a and 
b describe the optical fields associated with the guided modes of the coupled
waveguide system I and II, they can be expressed as:


a(x, y, z, t) = A(z)e−iβazfa(x, y)eiωt (4.46)


b(x, y, z, t) = B(z)e−iβbzfb(x, y)eiωt (4.47)

where fa(x, y) and fb(x, y) are the field distribution functions which have been nor-
malised to the power flux over the transversal section of the waveguide system. If
the coupling between waveguide I and waveguide II is reduced to zero by separat-
ing sufficiently the waveguides, the fields 
a and 
b are reduced to the original
independent normal modes, and the amplitudes A(z) and B(z) are reduced to con-
stant values.

On the other hand, if the waveguides are close each other, there will exist mutual
coupling, and the amplitude A(z) and B(z) are no longer constant, but will depend on
the propagation distance z. The modal coupling equations (4.32) involving only two
guided modes are reduced to:
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±dA(z)

dz
= −iκabB(z)e−i(βb−βa)z (4.48)

±dB(z)

dz
= −iκbaA(z)e+i(βb−βa)z (4.49)

where the coefficients κab and κba are the coupling coefficients between the modes
a and b and vice versa, respectively. The term exp[±i(βb − βa)z] corresponds to the
phase mismatching between the two guided modes. If in equation (4.48) we set the
coupling coefficients to zero (κab = κba = 0), it is easily obtained that A(z) = A0 and
B(z) = B0 (constant values), and the optical fields 
a and 
b are reduced to the
original optical fields.

The coupling coefficient κab (equations (4.34) and (4.35)) takes into account the
spatial overlapping of the normal mode 
a over the region where the dielectric per-
mittivity ε changes compared to the original unperturbed structure. In this case, the
change on ε is restricted to waveguide II, as is shown in Figure 4.6. Therefore, the
coupling coefficient κab is calculated according to the following integral:

κab = C

∫
II

f ∗
a �εfb dx dy (4.50)

where the integration range extends over the transversal section of waveguide II, which
is where the perturbation �ε felt by waveguide I occurs. The constant C which appears
in (4.50) is determined by taking into account the normalisations for the functions 
a

and 
b.
The behaviour of the optical fields modified by the coupling effect can be deter-

mined by calculating the propagation constants of the waveguide system by using the
coupled mode equations (4.48) and (4.49). If the modes are collinear, two cases can be
distinguished in the coupled field behaviour: when the two waves have the same prop-
agation direction (unidirectional coupling), and when the coupled waves have opposite
directions (bi-directional coupling). Indeed, we will show that for the existence of this
second type of coupling, it is necessary to introduce an additional structure to the
waveguide system (for instance, a periodic modulation of the refractive index) in such
a way that the modes can have an efficient coupling.

I II

fb
fa

yx
∆e

Figure 4.6 Coupled waveguides, showing the modal field distributions of the uncoupled wave-
guides. Dashed area denotes the region where the integration in equation (4.50) takes place,
which is used for obtaining the coupling coefficient κab
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4.1.5 Co-directional coupling

In this case we assume that two collinear guided modes propagate along the coupled
waveguides system in the same direction (+z direction), and thus the propagation
constants associated to the guided modes have positive values: βa > 0, βb > 0. The
coupled modal equations in this case are written as:

dA(z)

dz
= −iκB(z)e−i(βb−βa)z (4.51)

dB(z)

dz
= −iκA(z)e+i(βb−βa)z (4.52)

where it holds that κab = κ∗
ba = κ , and κ is a real and positive magnitude. The cou-

pled modal equations (4.51)–(4.52) in fact constitute a set of two differential cou-
pled equations, linked through the coupling coefficient κ . To solve these differential
equations we postulate solutions of the form:

A(z) = Ae−iγ ze−i�z (4.53)

B(z) = Be−iγ ze+i�z (4.54)

where we have introduced a new magnitude �, defined by:

2� ≡ βb − βa (4.55)

This parameter, called the mismatching and expressed in m−1, gives idea of the degree
of synchronism between the modes a and b, and will allow us to discuss the favourable
conditions for the existence of efficient coupling. When the two modes are synchronised
(βb = βa , or � = 0), the situation is said to be in perfect phase-matching condition.

By introducing the solutions postulated in (4.53) and (4.54) into equations (4.51–
4.52), we test whether they are really valid solutions providing that the parameter γ

takes the value given by:
γ = ±(κ2 + �2)1/2 (4.56)

The parameter γ here defined has dimensions of m−1.
In addition, the relation between the A and B coefficients is given by:

B/A = κ/(γ − �) (4.57)

The general solutions, considering the two possible signs for the parameter γ , are
finally of the form:

A(z) = (
Aee−iγ z + Aoe+iγ z

)
e−i�z (4.58)

B(z) =
(

κAe

γ − �
e−iγ z − κAo

γ + �
e+iγ z

)
e+i�z (4.59)

The complete expressions for the modal fields in waveguides I and II are obtained
by inserting the A(z) and B(z) coefficients into equations (4.46)–(4.47), resulting in:


a(x, y, z, t) = [Aee−iβez + Aoe−iβoz]fa(x, y)eiωt (4.60)


b(x, y, z, t) = [Bee−iβez + Boe−iβoz]fb(x, y)eiωt (4.61)
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where the quotient between Ae and Be has a positive constant value and the ratio
between Ao and Bo is a negative constant.

By examining the expressions (4.58)–(4.59), the new propagation constants βe and
βo of the coupled waveguides are then determined by:

βe = (βa + βb)/2 + γ (4.62)

βo = (βa + βb)/2 − γ (4.63)

where we have chosen the + sign in the formula (4.56) for the parameter γ .
From these formulae we can deduce that the value for the propagation constant βe

is the semi-sum of βa and βb plus the constant γ , and the propagation constant βo is
this semi-sum minus γ . Moreover, the new propagation constants fulfil the relations
βe > βa, βb and βo < βa, βb. Figure 4.7 shows these results graphically, indicating
how the propagation constants change as result of the waveguides coupling.

Figure 4.8 shows the propagation constant values corresponding to a waveguide
system which consists of two identical monomode step-index planar waveguides, as
a function of their separation distance t . When the waveguides are separated by a
large enough distance (t > 15 µm), their propagation constants are equal (synchronous
waveguides). As the separation distance decreases, the propagation constants are mod-
ified according to Figure 4.7. The plot in Figure 4.8 includes the result obtained by
the coupled mode theory, as well as the propagation constant obtained by exact cal-
culation by solving Maxwell’s equations for the coupled system. We observe that the
CMT gives good results for weak coupling, up to a separation distance of t ∼ 5 µm.
As the distance between the waveguides is reduced, the values provided by the CMT
differ from the exact values since the coupling is increased.

An example of the modification suffered by the propagation constants and field
profiles of two monomode waveguides as they approach each other is presented in
Figure 4.9 (different monomode waveguides) and Figure 4.10 (identical waveguides).
In Figure 4.9 we observe that when the waveguides are well separated, the propagation
constants and the field profiles correspond to those of two isolated monomode waveg-
uides, and modes 0 and 1 correspond to the wide and narrow waveguide respectively.
As the waveguides approach, the propagation constants modify: the lower propagation
constant (mode 1) decreases and the higher propagation constant increases its value
(mode 0). Also, the field profiles change appreciably when the waveguides interact,

ba bb

b

b

bo beb

0

0

2∆

Independent
waveguides

Coupled
waveguides

g g

Figure 4.7 Scheme representing the propagation constant values of the guided modes for two
independent waveguides (above) and the new propagation constants of the modes when the
waveguides are coupled (below), as a result of a spatial approach between them
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Figure 4.8 Comparison between the mode effective indices (propagation constants, β = k0neff)

provided by the CMT (dashed line) and the exact values (continuous line) as function of
the waveguides, separation. Waveguide parameters: identical step-index symmetric waveguides;
d = 3 µm; nc = 1.43280, nf = 1.43423; λ = 0.633 µm

0 2 4 6 8 10

1.4345

E
ffe

ct
iv

e 
re

fr
ac

tiv
e 

in
de

x

Waveguide separation (µm)

 

 

 

d = 0 µm d = 10 µm 

d = 2 µm 

 

12 14

1.4340

1.4335

1.4330

1.4325

Figure 4.9 Evolution of the propagation constants and modal field profiles of two monomode
waveguides as the separation distance reduces. Waveguide parameters: step-index symmetric
waveguides; d1 = 3 µm; d2 = 4 µm; nc = 1.43280, nf = 1.43423; λ = 0.633 µm

and they can be considered to be built by a linear combination of the two modal field
profiles corresponding to the isolated waveguides.

In the case of identical waveguides (Figure 4.10) the propagation constants are equal
for non-interacting waveguides (t > 3 µm), but as the waveguides reduce their sep-
aration distance the propagation constant splits in two different values, following the
relation (4.62)–(4.63). Also, the field profiles are constructed by a linear combina-
tion of the modal field profiles for independent waveguides: the mode 0 becomes

e = 
a + 
b, and the mode 1 
o = 
a − 
b.

Equations (4.60)–(4.61) indicate that the waves 
a and 
b propagating along the
mutually coupled waveguides I and II can be expressed as a linear combination of
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Figure 4.10 Propagation constants and modal field profiles of two identical waveguides as a
function of their separation distance. Waveguide parameters: step-index symmetric waveguides;
d = 3 µm; nc = 1.43280, nf = 1.44283; λ = 0.633 µm

two waves with propagation constants βe and βo. These two propagation constants are
therefore the propagation constants of the coupled waveguide system above described,
whose wave descriptions are given by:


e = Aefa + Befb (4.64)


o = Aofa + Bofb (4.65)

where Ae and Ao are constants determined by the initial condition of light injection.
Let us now examine the particular case in which waveguide I is selectively excited

at the input at z = 0. In this case, we have that A(0) = 1 and B(0) = 0 at z = 0, and
the coefficients A(z) and B(z) are described by:

A(z) = e−i�z

[
cos γ z + i

�

γ
sin γ z

]
(4.66)

B(z) = −e+i�z iκ

γ
sin γ z (4.67)

As fa and fb are normalised functions, the power fluxes along waveguides I and II
are described by |A(z)|2 and |B(z)|2, respectively. In this way, equations (4.66) and
(4.67) can be written in terms of the flux power as:

|A(z)|2
|A(0)|2 = 1 − F sin2 γ z (4.68)

|B(z)|2
|A(0)|2 = F sin2 γ z (4.69)

where for convenience we have defined the a-dimensional magnitude F as:

F ≡
(

κ

γ

)2

= 1

1 + (�/κ)2
(4.70)
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Figure 4.11 shows the curves calculated using the above equations, where it can
be seen that the power of the two waves propagating along the z direction has a
periodical variation. Following equations (4.68) and (4.69), F (0 � F � 1) indicates
the maximum transfer of optical power that can take place between waveguides I and
II. The maximum power transfer is achieved for a distance z = L for which it holds
that sin2 γ z = 1, that is, γ z = mπ/2, and then the minimum distance that fulfils this
condition is given by:

L = π/2γ (4.71)

This distance is called the coupling length.
If the two modes are synchronised (βa = βb, � = 0, γ = κ), the F value is maxi-

mum (F = 1) and the coupling length in this case is reduced to:

L = π/2κ (4.72)

Figure 4.12 shows a system of two parallel and identical monomode waveguides
(at λ = 0.633 µm) separated by a distance of 1 µm, with the parameters given in the
figure caption. This coupled system corresponds to the case where the two interacting
modes are synchronised. As we can seen, after launching light into the left waveguide,
a total power transfer occurs after a propagation distance of ∼500 µm. This distance
can be directly calculated by computing the coupling coefficient using the CMT, and
the results are given in Figure 4.13. We can observe that for a separation distance
between the waveguides of 1 µm the CMT gives a coupling length of ∼500 µm, in
accordance with the result shown in Figure 4.12.

From the analysis described above, two main features can be highlighted: first, when
the two modes are synchronised (βa = βb) the coupling coefficient has only influence
on the coupling length (see equation (4.72)), and a power transfer of 100% is always
obtained, regardless of the coupling coefficient κ ; second, when the modes are not
synchronised (βa �= βb), a 100% transfer is not possible, and the degree of transfer is
determined by the coupling coefficient κ and the degree of synchronisation �.
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Figure 4.11 Variation of the relative optical power in waveguides I and II as a function of
the propagation distance, in the case of synchronous waveguides (F = 1, continuous line) and
asynchronous waveguides with � �= 0 (F = 0.3, dashed line). In both cases the maximum power
transfer is achieved at L = π/2γ
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Figure 4.12 Transversal intensity profiles corresponding to two parallel planar waveguides,
separated by a distance of 1 µm, after the injection of light at z = 0 into waveguide I. The
step-index symmetric waveguides are identical, and have the following parameters: nc = 1.4328;
nf = 1.4342; film thickness d = 3 µm; wavelength λ = 0.633 µm. Each uncoupled waveguide
has a single TE guided mode with β = 14.23 µm−1. For a propagation distance of z = 0.5 mm,
all the power is transferred to waveguide II. This distance is the coupling length, and corresponds
to that calculated by using the CMT, as indicated in Figure 4.13
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TE guided modes for two parallel monomode waveguides, as a function of their separation
distance, calculated by the CMT. Dashed line represents the coupling length L. The waveguide
system has the same parameters as those indicated in Figure 4.12
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Figure 4.14 Light propagation in a waveguide system which consists of two parallel step-index
waveguides, separated by a fixed distance. The upper waveguide has a fixed width of
d1 = 1.6 µm. The lower waveguide has a width of: (a) d1 = 1.6 µm; (b) d2 = 1.7 µm; (c)
d2 = 1.8 µm and (d) d2 = 1.9 µm

In order to see the influence of the mismatching parameter on the power transfer
and on the coupling length, we have plotted in Figure 4.14 the optical field inten-
sity (indicated by a grey scale) in a system of two parallel monomode waveguides.
In all four cases, waveguide I, where the light is launched at z = 0, has the same
width (d1 = 1.6 µm). Case (a) corresponds to identical waveguides, and so the second
waveguide has a width of d2 = 1.6 µm. This is the case of synchronised modes, where
it can be observed that a total transfer occurs. If the two waveguides are not identi-
cal (from (b) d2 = 1.7 µm, (c) d2 = 1.8 µm to (d) d2 = 1.9 µm), two features can
be outlined. First, as the mismatching between the two guides increases, the fraction
of power transfer decreases. In fact, for a width d2 = 1.9 µm, the power transferred
into waveguide II is very low, and almost all the energy remains in waveguide I. A
second effect observed as the mismatching increases is the shortening in the coupling
length. According to equation (4.56), for a given coupling coefficient κ , the parameter
γ increases with the mismatching 2�, and following the formula given in (4.71) the
coupling length decreases, in agreement with the behaviour found on the sequence of
pictures in Figure 4.14.

4.1.6 Contra-directional coupling

Let us now consider the case in which collinear coupling takes place between a mode
propagating in the +z direction and a mode propagating in the −z direction, that
is, two contrapropagating modes, where their propagation constants will have oppo-
site signs. We assume that the mode a propagates in the positive direction, and thus
βa > 0, and mode b propagates in the −z direction, βb = −|βb| < 0. Under these cir-
cumstances the coupling between contrapropagating modes is not possible, regardless
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of the waveguides’ separation. For coupling to take place it is necessary to have an
additional element that induces coupling between the contrapropagating modes, and
this can be done for instance by introducing a periodic perturbation in the refractive
index in the region between the waveguides [7], as shown in Figure 4.15.

Let us assume that the coupling coefficient induced by the periodic perturbation can
be expressed as:

κab = κe−iδz (4.73)

where κ is a real positive quantity. From equations (4.48) and (4.49), we obtain the cou-
pling modal equations involving only two guided modes, and coupled via the coupling
coefficient given in (4.73):

dA(z)

dz
= −iκB(z)e−i(−|βb |−βa+δ)z (4.74)

dB(z)

dz
= +iκA(z)e+i(−|βb |−βa+δ)z (4.75)

From these equations it is clear that the modes a and b cannot be synchronised
because of the different signs of the propagation constants βa and βb. Nevertheless, this
synchronisation can be attained with −|βb| + δ thanks to the presence of the periodical
perturbation, which adds an extra contribution δ to the propagation constants. In this
case, the parameter that characterised the degree of synchronism is given by:

2� = −|βb| − βa + δ (4.76)

Figure 4.16 shows schematically the relation between the propagation constants βa

and βb, the parameter δ corresponding to the periodic structure, and the mismatch
parameter 2�.
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Waveguide II

Figure 4.15 Periodic perturbation in the region between waveguides I and II, that allows
optical power transfer between contrapropagating modes
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Figure 4.16 Scheme that shows the synchronisation of contrapropagating modes in the pres-
ence of a periodic structure
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For solving the coupled differential equations (4.74) and (4.75) we postulate solu-
tions of the form:

A(z) = Ae−iγ ze−i�z (4.77)

B(z) = Be−iγ ze+i�z (4.78)

By introducing these expressions into equations (4.74) and (4.75), it follows that
(4.77) and (4.78) are valid solutions providing that the parameter γ is given by:

γ = ±i
√

κ2 − �2 (4.79)

where the coefficients A and B must fulfil the relation:

B/A = κ/(� − γ ) (4.80)

Finally, the complete expressions for the coefficients A(z) and B(z) remain as:

A(z) = (
A+e+αz + A−e−αz

)
e−i�z (4.81)

B(z) =
(

κA+
� − iα

e+αz + κA−
� + iα

e−αz

)
e+i�z (4.82)

where the parameter α has been defined by:

α ≡ −iγ =
√

κ2 − �2 (4.83)

and A+ and A− are coefficients which should be determined by the initial conditions
of light injection for each particular case.

The complete solution for the optical fields ψa and ψb is obtained by inserting the
solution for A(z) and B(z) into equations (4.46)–(4.47), yielding finally:


a(x, y, z, t) = [A+e+αz + A−e−αz]e−i(βa+�)zfa(x, y)eiωt (4.84)


b(x, y, z, t) =
[

κA+
� − iα

e+αz + κA−
� + iα

e−αz

]
e−i(βb−�)zfb(x, y)eiωt (4.85)

In conditions of synchronism or quasi-synchronism, where |�| � κ , the value of
the parameter α defined in (4.83) is a real quantity. The first and second terms in
equation (4.84) correspond to the two normal modes of the coupled waveguide sys-
tem. One of these modes raises its amplitude with the position +z along the periodic
structure, while the amplitude corresponding to the other mode decreases. The modes
ψa and ψb are therefore a linear combination of two waves having propagation con-
stants βa + � and βb − �. More, the expressions (4.84) and (4.85) indicate that the
propagation constants β1 and β2 of the normal modes of the perturbed waveguide
system (two waveguides plus the periodic structure) are complex quantities:

β1 = βa + � ± iα (4.86)

β2 = βb − � ± iα (4.87)

This implies that the modes will experience exponential attenuation or exponen-
tial amplification as they propagate along the waveguide system, depending on the
contribution of the A+ and A− amplitude coefficients.
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Let us now consider that the periodic modulation region has a length L, that is, the
coupling region is restricted from z = 0 to z = L. Let us examine the behaviour of the
optical power in waveguides I and II in this case, assuming that at the input (z = 0) we
launch light into waveguide I. In this situation the initial condition gives A(0) = 1 at
z = 0 and B(L) = 0 at z = L. The solutions provided by equations (4.81) and (4.82),
taking into account these initial conditions, and assuming that κ > �, become:

A(z) = e−i�z α cosh[α(z − L)] + i� sinh[α(z − L)]

α cosh(αL) − i� sinh(αL)
(4.88)

B(z) = e+i�z iκ sinh[α(z − L)]

α cosh(αL) − i� sinh(αL)
(4.89)

In order to find a more compact expression for the above relations, we define the
a-dimensional magnitude F as:

F ≡
(κ

α

)2 = 1

1 − (�/κ)2 (4.90)

Using this new magnitude, the normalised power in waveguides I and II are given by:

|A(z)|2
|A(0)|2 = 1 + F sinh2[α(z − L)]

1 + F sinh2(αL)
(4.91)

|B(z)|2
|A(0)|2 = F sinh2[α(z − L)]

1 + F sinh2(αL)
(4.92)

Figure 4.17 shows the curves for the relative power between waveguides I and II
as function of the position along the coupling region, where the periodic perturbation
exists. For a value of α = 0.2π/L it can be observed that the power transferred from
waveguide I to waveguide II is ∼32%; if the parameter α is set to α = 0.5π/L, the
power transfer is increased to a value of ∼85%. It is important to note also that for
positions beyond the existence of the periodic modulation (z > L) the power in the
waveguides is not modified, because the coupling coefficient is zero and the transfer
between waveguides is inhibited. Of course, the same situation is faced for position
values of z < 0.

By examining equations (4.91) and (4.92), it can be deduced that the maximum
power transfer between waveguides is achieved when F = 1. This condition implies
that � = 0, that is, in the phase matching condition given by the relation βa = −|βb| +
δ. In this case (F = 1, κ = α), the efficiency of power transfer simplifies to:

η = |B(0)|2
|A(0)|2 = tanh2(κL) (4.93)

Following this formula, even in the most favourable case of F = 1, the efficiency
can never reach the unity. Nevertheless, for κL ≈ π the power transfer is close to
99%, and thus an interaction region length of L ≈ π/κ is enough to assure a nearly
total power transfer for practical purposes.

In the case of strong mismatching, when the mismatch parameter is greater than the
coupling coefficient (� > κ), the parameter α defined in (4.83) becomes an imaginary
number, and therefore the formulae above obtained must be consequently modified. In



120 4 COUPLED MODE THEORY: WAVEGUIDE GRATINGS

0.0

0.2

0.4

0.6

0.8

1.0

L/2 L0

Waveguide II

Waveguide I

R
el

at
iv

e 
po

w
er

Position

a = 0.5 p/L

a = 0.2 p/L

Figure 4.17 Power transfer between contrapropagating modes as a function of the position
along the periodic structure of length L, for two values of the parameter α. Note that the power
in the waveguides is only modified in the coupling region 0 < z < L

particular, the hyperbolic functions become normal sinusoidal functions, and thus the
formula (4.92) transforms to:

|B(z)|2
|A(0)|2 = F sin2 γ (z − L)

1 + F sin2(γL)
(4.94)

where now the parameters γ and F are given by:

γ =
√

�2 − κ2 (4.95)

F =
(

κ2

γ 2

)
(4.96)

The behaviour of the power transfer efficiency, using (4.94) for |�| > κ and (4.92)
for the range |�| < κ (setting z = 0), as a function of the mismatch parameter 2� is
shown in Figure 4.18. This graph corresponds to an interaction length of L = 300 µm,
using a coupling coefficient of κ = 0.012 µm−1. We observe that for the situation
close to the phase matching condition (|�| � κ) the efficiency is very close to one,
and corresponds to the value given by the formula (4.93): η = tanh2(κL) = 0.996. As
the mismatch increases, the efficiency drops and shows an oscillatory behaviour. The
first zero after the maximum in the efficiency curve occurs at a value of γ = π/2L,
and thus the width W of the efficiency as function of the mismatch is given by:

W =
√

π2

L2
+ κ2

4
(4.97)
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Figure 4.18 Efficiency of transfer between contrapropagating modes as a function of the mis-
matching parameter, for a coupling coefficient of κ = 0.012 µm−1 and a coupling length of
L = 300 µm

4.2 Diffraction Gratings in Waveguides

4.2.1 Waveguide diffraction gratings

Planar and channel waveguides with diffraction gratings are among the key components
in the fabrication of integrated photonic devices [1, 2]. A diffraction grating, or grating
for short, is a periodic structure with a period � comparable to the wavelength λ of
the light being used. The main task of a grating integrated in a waveguide structure
is to allow coupling between modes, that would otherwise remain independent. Under
specific conditions, this characteristic permits the power transfer between collinear
modes of different order, between contrapropagating modes, and also allows coupling
between guided and radiation modes, and vice versa. Indeed, the use of integrated
gratings has a great range of applications, because these structures have intrinsic selec-
tivity in terms of wavelength, modal propagation constant of the modes involved in
the coupling, or angle in the case of radiation modes. In addition, integrated photonics
technology offers the possibility of easy and full integration of the periodic structures
in planar or channel waveguides. One of the applications of waveguide gratings is
their use as waveguide reflectors, that can be used to provide the necessary feedback
in integrated lasers based on rare-earth doped materials [8] or in semiconductor lasers
[9]. The advantage of using integrated gratings instead of attached mirrors is the nar-
row linewidth achieved on the laser emission and the high mechanical stability of the
devices provided by the so-called distributed Bragg reflectors (DBRs); if the grating in
the integrated semiconductor laser is placed along the gain region of the waveguide,
the device is called a distributed feedback (DFB) laser. The high selectivity of the
grating is also used for wavelength filtering applications, such as in dense wavelength
demultiplexing. As we will show, the periodic structures in waveguides can be also
used as mode converters, for applications such as power splitters. In addition, since
the periodic structures can also induce coupling between guided and radiation modes,
waveguide gratings are efficient components for performing functions such as light
coupling and out-coupling the light outside the guide [10]. This method is of interest
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in cases where the direct end-coupling with the optical fibre is not possible or very
difficult. Finally, one interesting application of waveguide gratings lies in the field
of integrated sensors, that allow the fabrication of very compact, highly sensitive and
selective devices [11]. In this case, the optical waveguide grating acts as a coupler sen-
sor that responds to the change of optical refractive index of the liquid or gas medium
and to the adsorption or binding of molecules onto the surface [12].

From the point of view of the geometry, there are two main types of waveguide
integrated gratings. In the relief grating (or corrugated grating) the periodic modula-
tion is achieved by a periodic change in the guiding film thickness, usually on the
film–cover surface (Figure 4.19, top). The coupling coefficient induced by these struc-
tures is directly related to the thickness modulation 2h, that has to be much lower than
the film thickness in order to avoid high propagation losses. Relief gratings are static
(fixed) structures, in the sense that they cannot be modified once the integrated photonic
chip has been fabricated, usually by means of photolithographic and etching techniques.

The second kind of waveguide gratings is the index modulation type grating. In
this case, the waveguide grating is “written” by inducing a periodic modulation in the
refractive index of the guiding film (or adjacent regions). Figure 4.19 (bottom) shows
the structure of a modulation index waveguide grating, where the index change has
been induced in the whole guiding film. In this type of grating, the modulation can
be permanent, by inducing the index change via UV illumination in photosensitive
materials [13], or dynamic, where the modulation is achieved through acousto-optic or
electro-optic effects by applying electric signals to periodic electrodes [14].

4.2.2 Mathematical description of waveguide gratings

Regardless of the type, a waveguide diffraction grating is a periodic structure that can
be described by the spatial change on the dielectric permittivity �ε caused by the
grating in the original waveguide structure, that is, in the canonical structure. As �ε

is a periodic function, it can be expressed as a Fourier expansion of the form:

�ε(x, y, z) =
∑

q

�εq(x)e−iqKr (4.98)
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Figure 4.19 Two types of waveguide gratings. Above: relief grating. Below: index modula-
tion grating
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valid in the waveguide region where the grating is located, and �ε = 0 outside that
region. The quantities �εq(x) are the Fourier coefficients in the expansion, and they
depend only on the x coordinate if the wavevector K associated with the grating lies
in the plane defined by the optical waveguide (yz plane):

K = Kyuy + Kzuz (4.99)

r = yuy + zuz (4.100)

In addition, the magnitude of the wavevector K is related to the grating period � by
the following formula:

|K| = K = 2π/� (4.101)

If a wave characterised by its wavevector k is incident in the grating region, as
a result of the periodic phase modulation �ε induced by the periodic perturbation,
several diffracted waves are generated, having wavevectors given by k + qK, q being
an integer number. The existence of coupling between two guided modes induced by
the grating implies that the propagation constants βa and βb of the modes must fulfil
the relation:

βb = βa + qK (4.102)

where q indicates the coupling order. This relation is the Bragg condition for guided
modes in waveguides, and corresponds to the phase matching condition examined in
the previous sections.

In order to obtain the modal coupling equations involving power transfer induced
by waveguide gratings, one should start by rewriting equation (4.32) using the change
on the dielectric permittivity given in (4.98). By proceeding in this way, we obtain for
the variation of the aµ(z) coefficients the following equation:

±daµ(z)

dz
= −i

∑
ν

∑
q

κ(q)
µν aν(z)e

−i(βν+qK−βµ)z (4.103)

where the coupling coefficients of qth order are given by:

κt(q)
µν = ω

4

∫∫
E∗

µt(x, y)�εq(x)e−iqKyyEνt (x, y) dx dy (4.104)

κz(q)
µν = ω

4

∫∫
E∗

µz(x, y)�εq(x)e−iqKyyEνz(x, y) dx dy (4.105)

From (4.98) it follows that �ε−q = �ε∗
q , and therefore the coupling coefficients fulfil

the relation κ
(−q)
νµ = κ

(q)∗
µν . Although the right-hand side of equation (4.103) includes a

summation respect to the coupling order q, in general one can ignore all the coupling
orders except that corresponding to the efficient coupling between the modes µ and ν

near the phase matching condition, because all the other terms oscillate very quickly
with z and thus do not contribute appreciably to the coupling. Also, it is worth noting
that the summation to all the modes ν includes also the term µ = ν, called the self-
coupling term. This term, that describes the slight change on the propagation constant
of a particular mode induced by the grating, is usually very small, and can be ignored
in most cases.
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4.2.3 Collinear mode coupling induced by gratings

Let us now consider the case of coupling between two collinear propagation modes a

and b, that propagate along a planar waveguide in which exists a diffraction grating
with wavevector K that perturbs the original structure. If the propagation constants
of the modes βa and βb fulfil the Bragg condition (phase matching condition) for a
particular coupling order q, then efficient power exchange can occur between them.
Let us remember that without the presence of the periodic perturbation, the modes a

and b were independent, and power transfer between them was impossible because of
the orthogonality relation. In principle, for a planar waveguide the modes a and b can
be any arbitrary combination of TE and TM modes.

A diffraction grating integrated in a planar waveguide can be mathematically ex-
pressed as:

�ε(x, z) =
∑

q

�εq(x)e−iqKz (4.106)

If the propagation constants of the guided modes βa and βb fulfil, at least approxi-
mately, the phase matching condition for the qth coupling order (βb ≈ βa + qK), and
no other combination of modes exists that fulfils that relation, the modal coupling
equations are reduced to:

±dA(z)

dz
= −iκ∗B(z)e−i2�z (4.107)

±dB(z)

dz
= −iκA(z)e+i2�z (4.108)

where the self-coupling term has been ignored, and the coupling coefficient κ
(q)

ba is
denoted simply by κ . The mismatching parameter 2� is expressed in this case by:

2� = βb − (βa + qK) (4.109)

and denotes the deviation with respect to the perfect phase matching condition, taking
into account the effect of the periodic structure via the qth order coupling (Figure 4.20).
Besides the expression of the mismatching, the differential coupled equations (4.107)
and (4.108) are similar to those found in the previous section, and thus their solutions
are the solutions already described when we treated the general cases of collinear
coupling.

Co-directional coupling Let us now examine the coupling between two guided
modes a and b, induced by a periodic structure, that propagate in the same direc-
tion but having different propagation constants (βa �= βb). If we assume propagation

ba

b

bb0

2∆qK

Figure 4.20 Relation between the propagation constants of the modes (βa and βb), the wave-
vector of the grating (K) and the mismatching parameter (2�) in the coupling induced by a
waveguide grating structure
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along the +z direction (βa , βb > 0), then in equations (4.107) and (4.108) the plus sign
in the left-hand side must be chosen. The solutions of these equations in the case of
light injection corresponding to the selective excitation of mode a at z = 0 (A(0) = 1,
B(0) = 0) are given by:

A(z) = e−i�z

[
cos γ z + i�

γ
sin γ z

]
(4.110)

B(z) = e+i�z −iκ

γ
sin γ z (4.111)

where the parameter γ is defined by:

γ =
√

|κ|2 + �2 (4.112)

The power fluxes of the modes are given by the squared modulus of the A(z) and
B(z) coefficients, and it yields:

|A(z)|2
|A(0)|2 = 1 − F sin2 γ z (4.113)

|B(z)|2
|A(0)|2 = F sin2 γ z (4.114)

where we have introduced for the sake of clarity the a-dimensional parameter F

defined as:

F ≡ |κ|2
γ 2

= 1

1 + �2/|κ|2 (4.115)

From the above expressions it is clear that, as happened with the co-directional
coupling between the modes in two coupled waveguides, the coupling between two
modes in a waveguide induced by the presence of a periodic structure gives rise to
a periodic transfer of power as the wave advances along the +z direction (in the
region where the periodic structure exists). The efficiency of power transfer between
the modes a and b for a periodic structure of length L is given by:

η = |B(L)|2
|A(0)|2 = sin2 γL

1 + �2/|κ|2 (4.116)

In the situation of perfect phase matching condition (� = 0), the efficiency simpli-
fies to:

η = η0 = sin2(|κ|L) (4.117)

This last formula implies complete power transfer from the mode a to the mode b

when the periodic structure has a length L given by the coupling length defined as:
Lc = π/(2|κ|).
Contradirectional coupling In this case the coupling takes place between two col-
linear modes a and b that propagate in opposite directions, that is, the propagation con-
stants of the modes have opposite signs, for instance βa > 0 and βb < 0 (Figure 4.21).
This kind of interaction can occurs also when the a and b modes are the same mode
(in the same waveguide), but with opposite propagation directions.
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Figure 4.21 Scheme showing the coupling between contrapropagating modes induced by a
waveguide grating

In the equations that describe the modal coupling one must choose the positive sign
for equation (4.107) and the negative sign for (4.108). If we solve these equations in the
case of light injection at z = 0 by exciting selectively the mode a, the initial boundary
conditions are A(0) = 1 and B(L) = 0. The results, following the procedure given in
the preceding section (and for a situation near the phase matching condition), are:

A(z) = e−i�z α cosh[α(z − L)] + i� sinh[α(z − L)]

α cosh(αL) − i� sinh(αL)
(4.118)

B(z) = e+i�z iκ sinh[α(z − L)]

α cosh(αL) − i� sinh(αL)
(4.119)

where the parameter α is defined by: α ≡ (|κ|2 − �2)1/2 = −iγ . The power fluxes
as function of the position along the periodic structure (from z = 0 to z = L) are
given by:

|A(z)|2
|A(0)|2 = 1 + F sinh2[α(z − L)]

1 + F sinh2(αL)
(4.120)

|B(z)|2
|A(0)|2 = F sinh2[α(z − L)]

1 + F sinh2(αL)
(4.121)

where for clarity on the formulae we have introduced the parameter F defined as:

F ≡ |κ|2
α2

= 1

1 − �2/|κ|2 (4.122)

The equations (4.120) and (4.121), which describe the power evolution associated to
the modes a and b, show a monotonic behaviour, in contrast to the periodic behaviour
found in the case of co-directional coupling. The coupling efficiency, defined as the
quotient of the power associated with the mode b at position z = 0 with respect to the
power of the mode a at the same position, yields:

η = |B(0)|2
|A(0)|2 =

[
sinh2 αL

cosh2 αL − �2/|κ|2
]

(4.123)

This formula indicates that total power transfer can only occur for an infinitely
long periodic region. For a given periodic region length, the efficiency is maximum
at the phase matching condition (� = 0), where γ = κ and F = 1, and in this case
we have:

η = |B(0)|2
|A(0)|2 = tanh2(|κ|L) (4.124)
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We showed that for a length of L = π/|κ| the efficiency is greater that 0.99, indicating
a nearly total transfer between the contrapropagating modes.

4.2.4 Coupling coefficients calculation

The coupling coefficients induced by periodic structures are the key magnitudes needed
to calculate important parameters such as the optimum coupling length and the cou-
pling efficiency. The calculation of these coefficients is performed by substituting
the modal field profiles corresponding to modes a and b into the formulae given in
(4.104)–(4.105). Depending on the polarisation character of the modes involved in
the coupling (TE–TE, TE–TM, TM–TE or TM–TM), coupling coefficients can have
very different values. Also, the geometry or type of periodic structure perturbation
determines which of the various types of modes that a waveguide can support that
interact each other efficiently. Here we discuss the calculation of the coupling coeffi-
cients in planar waveguides, which support pure TE or TM modes [15]. The results
can be extrapolated to channel waveguides, providing that one of the lateral dimension
is much greater that the other [16].

TE–TE coupling When the mutual coupled modes a and b are TE polarised modes
in a planar waveguide, denoted by TEµ and TEν respectively, the z-component of the
electric field associated with these modes vanishes (see Chapter 3). This implies that
the longitudinal coupling coefficient which involves Ez, is κz

T EµT Eν
= 0. Therefore,

the coupling coefficient for TE–TE modes is the transversal coupling coefficient κt ,
given by

κ
(q)

T EµT Eν
= κ

t(q)

T EµT Eν
= ω

4

∫
E∗

µy(x)�εq(x)Eνy(x) dx (4.125)

where Ey is the only non-vanishing transversal component of the electric field for TE
modes. Let us remember that the electric field profiles into equation (4.125) have been
normalised to the power flux.

TM–TM coupling In this case, the electric field associated with TM polarised modes
has transversal as well as longitudinal components, and so in general two types of
coupling coefficients must be taken into account, one of them associated with the
transversal field component, and the other related to the longitudinal component of the
electric field:

κT MµT Mν
= κt

T MµT Mν
+ κz

T MµT Mν
(4.126)

Nevertheless, as we showed in the section (4.1.3), in most of the cases the transversal
component of the electric field is much greater that its longitudinal component, and
the longitudinal coupling coefficient can be ignored in a first approximation. In this
way, the coupling coefficient for TM–TM coupling can be approximated to:

κ(q)
µν ≈ κt(q)

µν = βνβµ

4ω

∫
H ∗

µy(x)

ε(x)
�εq(x)

Hνy(x)

ε(x)
dx (4.127)

where we have used the relation Ex = (β/ωε)Hy for planar waveguides given by
equation (3.18).
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TE–TM coupling Let us now consider the case in which the two modes involved in
the mutual coupling have orthogonal polarisation, that is, one mode is TE polarised and
the second one is TM polarised. In principle, if the periodic structure is isotropic, as the
TEµ and TMν modes are orthogonal, no power transfer can exist between, and therefore
the coupling coefficient is zero: κT EµT Mν

= 0. Nevertheless, if the periodic structure
that perturbs the waveguide is anisotropic, under specific conditions, the coupling
between orthogonal TE and TM modes can occur. This situation can be achieved in
some anisotropic material through the electro-optic, acousto-optic or magneto-optic
effects [17]. In particular, lithium niobate crystals and polymers exhibit a high value
of the electrooptic effect, and can be used to fabricate a TE–TM converter via the
TE–TM coupling [18, 19].

As we have shown in section (4.1.3), in the case of coupling induced by anisotropic
changes in the permittivity tensor, coupling between mutual orthogonal polarisation
modes can take place if the off-diagonal elements of the tensor are non-zero. For the
particular case in which the change on the dielectric permittivity is of the form:

�ε =

 �εxx �εxy 0

�εyx �εyy 0
0 0 �εzz


 (4.128)

following the formula given in (4.45), the coupling coefficient between the TEµ mode
and the TMν mode is expressed as:

κ
(q)

T Eµ,T Mν
= βν

4

∫
E∗

µy(x)�ε(q)
yx (x)

Hνy(x)

εxx(x)
dx (4.129)

4.2.5 Coupling coefficients in modulation index gratings

A modulation index grating is a structure where the refractive index is periodically
varied. In a planar optical waveguide a modulation index grating is generated by
inducing a periodic change in the refractive index of the guiding film, or in a region
close to it, without changing the waveguide geometry. This periodic change of the
refractive index can be achieved by means of the acousto-optic effect (dynamic grating)
via a piezo-electric transducer, or by UV illumination (permanent or static grating)
using a phase mask or an interference light pattern.

If the change in the refractive index is uniform in the guiding film of the planar
waveguide and perpendicular to the propagation direction (see Figure 4.22), it can be
expressed mathematically as:

�n(x, z) =
∑

�nq(x) cos(qKz + �q) (4.130)
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Figure 4.22 Modulation index grating geometry in a step-index planar waveguide
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where �nq(x) = �nq for −d < x < 0, and �nq(x) = 0 out of this region. If the
refractive index change induced in the guiding film is small (�n � n), the following
approximation holds:

ε + �ε = ε0(n + �n)2 ≈ ε0(n
2 + 2n�n) ⇒ �ε = 2ε0n�n (4.131)

and thus the expansion terms in equation (4.106) can be expressed as:

�εq(x) = �εq = ε0nf �nqe−i�q (4.132)

in the region −d < x < 0.
Taking into account the modal normalisation applied to planar waveguide struc-

tures for TE and TM modes (setting the power flow to 1 watt per unit width in the
y-direction):

β

2ωµ0

∫ ∞

−∞
|Eµy |2 dx = 1 TE modes (4.133)

β

2ω

∫ ∞

−∞
|Hµy |2
ε(x)

dx = 1 TM modes (4.134)

the coupling coefficients for TE–TE and TM–TM modes yield:

κT Eµ,T Eν
≈ π�nq

λ

nf

∫ 0

−d

E∗
µyEνy dx

√
NµNν

[∫ ∞

−∞
|Eµy |2 dx

∫ ∞

−∞
|Eνy |2 dx

]1/2 (4.135)

κT Mµ,T Mν
≈ π�nq

λ

nf

√
NµNν

∫ 0

−d

(H ∗
µy/ε)(Hνy)/ε) dx

[∫ ∞

−∞
(|Hµy |2/ε) dx

∫ ∞

−∞
(|Hνy |2/ε) dx

]1/2 (4.136)

where λ is the wavelength of light, nf is the guiding film refractive index, and N

denotes the effective refractive index of the mode.
The formula (4.135) can be simplified for modes far from cut-off. In this situation,

the modes are very well confined within the guiding film (−d < x < 0), and the inte-
gral limits that appear in the numerator can be extended with good approximation to
±∞, thus: ∫ 0

−d

E∗
µyEνy dx ≈

∫ ∞

−∞
E∗

µyEνy dx ≈ 2ωµ0

β
δµν (4.137)

where we have used the modal orthogonality, indicating that the second factor in
(4.135) is close to one for modes with same order (µ = ν), and close to zero for
different mode orders (µ �= ν); in addition, the same reasoning can be applied to
the formula given for TM modes. Thus, the coupling coefficients can be written
as:

κT EνT Eµ
≈ κT MνT Mµ

≈ π�nq

λ
δµν (4.138)
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This last result indicates that the modal conversion between modes having different
order (µ �= ν) cannot be achieved by using uniform index modulation structures. On the
contrary, this type of periodic structures is effective in producing strong interactions
between modes of equal order (µ = ν), in particular for contradirectional coupling
between a mode propagating in one direction and the same mode propagating in oppo-
site direction. Therefore, the modulation index structures in waveguides are suitable
for fabricating waveguide reflectors, in applications such as lasers and wavelength
demultiplexors.

The factor π�nq/λ included in the coupling coefficient for TE–TE and TM–TM
conversion using modulation index gratings is in fact the coupling coefficient found
for monochromatic plane waves in bulk. Thus, the formula given in (4.138) indicates
that the coupling coefficient in this type of waveguide gratings is equal to that of
contrapropagating plane waves. If the approximation of mode far from the cut-off does
not hold, the coupling coefficient for waveguide modes differs from that calculated
for plane waves. Figure 4.23 represents an example of this behaviour, where the ratio
between the waveguide and bulk coupling coefficients (κwg/κbulk) has been plotted as a
function of the film thickness, for a step-index planar waveguide where a modulation
index grating has been uniformly induced in the guiding film. The effective refractive
index of the fundamental TE mode has been also plotted in the same figure. For
large film thickness, the effective refractive index of the TE0 mode is very far from
cut-off (close to the film index value), the mode energy is well confined within the
film region, and thus the ratio κwg/κbulk is very close to one. As the film thickness
decreases, the mode effective refractive index N moves away from nf , and the mode
energy spreads out to the cover and substrate regions. Therefore the approximation
assumed in equation (4.137) is no longer valid, and the ratio κwg/κbulk decreases. When
the mode index reaches values close to the cut-off value (N ≈ ns), the energy is not
longer confined in the film and the coupling coefficient for the waveguide grating κwg

drops to zero.
When modulation index gratings are used as narrow-band wavelength filters, it is

important that the reflectivity curve is very narrow as a function of the mismatch (or
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Figure 4.23 Ratio between bulk and waveguide coupling coefficients. The waveguide coupling
coefficient corresponds to TE0 –TE0 contrapropagating guided modes in a step-index planar
waveguide, consisting of a SiO2/GeO2 film (nf = 1.56) on a SiO2 substrate (ns = 1.50), at a
working wavelength of λ = 1.3 µm. The refractive index of the guiding film has been modulated
by UV radiation. The cover is assumed to be air (nc = 1.00)
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the wavelength, which is closely related to the mismatch through the mode propagation
constants). Following the formula given in (4.97), this can be done by fabricating long
gratings with small coupling coefficients (that is, small modulation index changes).
Nevertheless, the sidelobes that appear in the reflectivity curve induce spurious reflec-
tivity at other wavelengths apart from the central peak wavelength. One way of avoiding
this problem is to suppress the sidelobes, which can be achieved by designing an
apodised grating. In such apodised waveguide grating the modulation depth in the
refractive index is changed along the z direction of the structure. One common func-
tional shape of the apodisation is given by:

�n = �n0 sin2(πz/L) (4.139)

where the �n0 is the maximum modulation depth and L is the grating length. The
reflectivity characteristics of such non-uniform gratings can be calculated following
the algorithm developed in [20], which also includes the possibility of considering
absorption or gain in the grating region. Figure 4.24 shows the reflectivity behaviour
of a uniform modulation index grating compared to an apodised grating using the
same coupling and grating length parameters, where the suppression of the sidelobes
is apparent.

4.2.6 Coupling coefficients in relief diffraction gratings

Relief diffraction gratings achieve the modulation on �ε by a creating a periodic
change in the waveguide dimensions. If the modification consists of periodic step-like
changes of the guiding film thickness of a planar waveguide, the diffraction grating
will have a rectangular profile as shown in Figure 4.25. The Fourier terms describing
this type of periodic structure are given by:

�εq(x) = �εq = ε0(n
2
f − n2

c)
sin qaπ

qπ
(4.140)

with q �= 0, 0 < a < 1, in the region corresponding to −h < x < h, and �εq(x) = 0
elsewhere.
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Figure 4.24 Reflectivity of a modulation index waveguide grating as function of the mismatch
parameter. (a) Uniform grating. (b) Apodised grating
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Figure 4.25 Geometry of a step-index planar waveguide with a rectangular relief diffrac-
tion grating

The coupling coefficients corresponding to this perturbed geometry are calculated
by introducing (4.140) into equations (4.104)–(4.105), and evaluating the integral. In
the case of TE–TE coupling one obtains:

κ
(q)

T EµT Eν
= π

λ

(n2
f − n2

c)√
NνNµ

sin qπa

qπ

∫ h

−h

E∗
µyEνy dx

√∫ ∞

−∞
|Eνy |2 dx

∫ ∞

−∞
|Eµy|2 dx

(4.141)

A similar expression for TM–TM coupling is found, but is now expressed as a function
of the Hy component of the fields.

Figure 4.26 shows the coupling coefficients calculated using the formula (4.141)
for an asymmetric planar waveguide, where a rectangular relief grating is situated at
the film–cover interface, using order q = 1. We observe that coupling is allowed for
modes having different order, and the coupling coefficient is higher for high order
modes. This behaviour is explained by the fact that high order modes penetrate the
relief grating more where the coupling takes place.

A good approximation of the coupling coefficients can be obtained if the modulation
depth of the periodic structure is much lower than the waveguide film thickness, that
is, when 2h � d . In this case, the electric or magnetic field in the numerator in the
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Figure 4.26 Coupling coefficients for TEµ –TEν modes in a step-index planar waveguide as
function of the guiding film thickness. Coupling is induced by a rectangular relief diffraction
grating with thickness 2h, situated at the cover-film interface, using the coupling order q = 1



4.2 DIFFRACTION GRATINGS IN WAVEGUIDES 133

integral of the coupling coefficient formulae can be considered constant, and its value
is the electric or magnetic field evaluated at x = 0.

One problem found when working with rectangular relief gratings is that several
diffraction orders are involved in the coupling, and it is therefore difficult to control
and isolate the coupling between two particular modes. This is avoided if the relief
diffraction grating has a sinusoidal profile. In this case, if the corrugation function is
h cos(Kz), the change on the dielectric permittivity induced in the waveguide structure
is expressed as:

�ε(x, z) =
{

+(n2
f − n2

c) 0 < x < h cos Kz

−(n2
f − n2

c) h cos Kz < x < 0
(4.142)

The coupling coefficient is once again calculated by using this expression in formulae
(4.104) and (4.105), bearing in mind that now �ε depends not only on the x coordinate
but also on the z coordinate. The result is that for coupling orders |q| �= 1 the coupling
coefficients between TE–TE and TM–TM modes are very small, thus the energy
transfer via high order coupling do not take place. For the fundamental order q = 1
the coupling coefficient for TE–TE modes is given by [21]:

κ
(q)

T EµT Eν
= πh

2λ

(n2
f − n2

c)√
NνNµ

E∗
µy(0)Eνy(0)√∫ ∞

−∞
|Eνy |2 dx

∫ ∞

−∞
|Eµy |2 dx

(4.143)

where we have assumed that the electric field amplitude does not vary across the
corrugation height (h � d), and E(0) denotes the electric field value at the waveguide-
cover interface.

As an illustration of mode coupling induced by sinusoidal relief grating, Figure 4.27
shows the intensity evolution (in grey scale) as a function of the propagation distance
in a symmetric waveguide having a sinusoidal corrugated diffraction grating located
at one of the film–substrate interfaces. After launching light corresponding to the
fundamental mode, the grating induces mode conversion to the TE2 mode. Indeed,
the grating period has been calculated according to the relation given in (4.102), for a
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Figure 4.27 Light propagation in a symmetric step index planar waveguide, having a
sinusoidal relief grating, after launching light into the fundamental mode. Waveguide
parameters: nf = 2.203, nc = ns = 2.200, d = 5 µm, λ = 1.55 µm. Parameters of the grating:
� = 67.0 µm, h = 0.1 µm. After a propagation distance of z ≈ 3.9 mm the fundamental mode
is totally converted to the mode TE2



134 4 COUPLED MODE THEORY: WAVEGUIDE GRATINGS

perfect phase matching condition between the TE0 and TE2 modes, taking into account
their propagation constants.

When the two modes are present, a beat appears in the intensity pattern, because the
modes have different propagation constant. As the wave advances along the waveguide,
the energy of the fundamental mode transfers to the TE2 mode, and after a propagation
distance of z ≈ 3.9 mm all the initial power is fully transferred to the TE2 mode (cou-
pling length). If propagation continues, the energy transfers back to the fundamental
TE0 mode.

In summary, the coupling associated to TEµ ↔ TEν and TMµ ↔ TMν conversion
with µ �= ν can be achieved by using relief index structures, in contrast to the situation
faced when working with modulation index gratings. This difference comes from the
fact that while in modulation index structures the modulation is uniform in the guiding
film, in relief gratings the perturbation is located in a region close to the film surface.

References

[1] A. Yariv and M. Nakamura, “Periodic Structures for Integrated Optics”, IEEE Journal of
Quantum Electronics, QE-13, 233–253 (1977).

[2] T. Suhara and H. Nishihara, “Integrated Optics Components and Devices Using Periodic
Structures”, IEEE Journal of Quantum Electronics, QE-22, 845–867 (1986).

[3] D. Marcuse, “Coupled-Mode Theory for Anisotropic Optical Waveguides”, The Bell System
Technical Journal, 54, 985–995 (1975).

[4] W.P. Huang, “Coupled-Mode Theory for Optical Waveguides: An Overview”, Journal of
the Optical Society of America A, 11, 963–983 (1994).

[5] A. Yariv, “Coupled-Mode Theory for Guided-Wave Optics”, IEEE Journal of Quantum
Electronics, QE-9, 919–933 (1973).

[6] N. Nishihara, M. Haruna and T. Suhara, Optical Integrated Circuits, Mac-Graw Hill, R.R.
Donelley & Sons Company, United States of America (1989).

[7] R. Ulrich, “Efficiency of Optical-Grating Couplers”, Journal of the Optical Society of Amer-
ica, 63, 1419–1431 (1973).

[8] J.E. Roman and K.A. Winick, “Neodymium-Doped Glass Channel Waveguide Laser Con-
taining an Integrated Bragg Reflector”, Applied Physics Letters, 61, 2744–2748 (1992).

[9] W.P. Huang, Q. Guo and C. Wu, “A Polarization-Independent Distributed Bragg Reflector
Based on Phase-Shifted Grating Structures”, IEEE Journal of Lightwave Technology, 14,
469–473 (1996).

[10] S. Ura and S.J. Sheard, “A Configuration for Guided-Wave Excitation into a Disposable
Integrated-Optic Head”, Optics Communications, 146, 85–89 (1998).

[11] M. Wicki, R.E. Kunz, G. Voirin, K. Tiefenthaler and A. Bernard, “Novel Integrated Optical
Sensor Based on a Grating Coupler Tript”, Biosensors and Bioelectronics, 13, 1181–1185
(1998).

[12] D. Clerc and W. Lukosz, “Direct Inmunosensing with an Integrated-optical Output Grating
Coupler”, Sensors and Actuators, B40, 53–58 (1997).

[13] J.E. Roman and K.A. Winick, “Photowritten Gratings in Ion-Exchanged Glass Waveg-
uides”. Optics Letters, 18, 808–810 (1993).
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5
LIGHT PROPAGATION IN

WAVEGUIDES: THE BEAM
PROPAGATION METHOD

Introduction

One of the fundamental aspects in integrated optics is the analysis and simulation of
electromagnetic wave propagation in photonics devices based on waveguide geome-
tries, including optical waveguides.

The problem to be solved is the following: given an arbitrary distribution of refractive
index n(x, y, z), and for a given wave field distribution at the input plane at z = 0,
E(x, y, z = 0), the spatial distribution of light E(x, y, z) at a generic point z must to
be found.

Figure 5.1 outlines the problem applied to a beam splitter. In this case, the distribu-
tion of the refractive index is known, which defines the optical circuit. When a light
beam is injected at z = 0, the problem is to determine the light intensity distribution
at the exit, and in particular, what will be the output light intensity in each of the two
branches of the splitter.

In this chapter we describe the “beam propagation method” (BPM) applied to the
study of light propagation in integrated photonics devices based on optical waveguides.
We begin by deriving a paraxial form of the Helmholtz equation, known as the Fresnel
equation. This equation, valid for paraxial propagation in slowly varying optical struc-
tures, is the starting point to develop BPM algorithms. We will describe the BPM based
on the fast Fourier transform method and the BPM algorithm based on finite differ-
ences. We will show that in general the latter has superior performance for simulating
light propagation in integrated optical elements. Also we present the implementation
of transparent boundary conditions and filtering techniques, which are efficient ways
of avoiding errors in the simulation of light propagation due to the finite size of the
computational window and the use of large propagation steps, respectively. Finally, a
modal description based on BPM is presented, which allows not only calculation of
the modes supported by a straight waveguide, but also determines the modal weight
associated with each individual guided mode.
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E(x,y,z = 0)
n (x,y,z)

?

?

Figure 5.1 General problem in optical propagation: given an index distribution n(x, y, z), and
a wave field at the input, the light distribution at the exit must be found

5.1 Paraxial Propagation: Fresnel Equation

The problem of light propagation in waveguides with arbitrary geometry is very com-
plicated in general, and it is necessary to make some approximations. In the first place,
we will assume an harmonic dependence of the electric and magnetic fields, in the
form of monochromatic waves with an angular frequency ω, in such a way that the
temporal dependence will be of the form eiωt . The equation which describes such EM
waves is the vectorial Helmholtz equation:

∇2E +
(ω

c

)2
n2(x, y, z)E = 0 (5.1)

Although it is possible to work with this vectorial equation, in most cases it is
possible to treat the optical propagation problem starting from the scalar Helmholtz
equation. In this case the equation is of the form:

∇2E +
(ω

c

)2
n2(x, y, z)E = 0 (5.2)

where now E = E(x, y, z) denotes each of the six Cartesian components of the electric
and magnetic fields.

The refractive index in the domain of interest is given by n(x, y, z), and will be deter-
mined by the waveguide geometry (optical fibre, directional coupler, Mach-Zehnder
interferometer, etc.).

If the wave propagation is primarily along the positive z direction, and the refractive
index changes slowly along this direction, the field E(x, y, z) can be presented as a
complex field amplitude u(x, y, z) of slow variation, multiplied by a fast oscillating
wave moving in the +z direction (propagation direction):

E(x, y, z) = u(x, y, z)e−iKz (5.3)

where K is a constant which represents the characteristic propagation wave vector,
K = noω/c, and n0 is chosen, for example, as the refractive index of the substrate (or
the cover).

Substituting the optical field in the Helmholtz equation, it follows that:

−∂2u

∂z2
+ 2iK

∂u

∂z
=

(
∂2

∂x2
+ ∂2

∂y2

)
u + (k2 − K2)u (5.4)



138 5 LIGHT PROPAGATION IN WAVEGUIDES: THE BEAM PROPAGATION METHOD

where k0 = ω/c = 2π/λ denotes the wavevector in the vacuum, and the notation
k(x, y, z) = k0n(x, y, z) has been introduced to represent the spatial dependence of
the wavevector.

If we also assume that the optical variation is slow in the propagation direction
(“slowly varying envelope approximation, SVEA”), we will have:

∣∣∣∣∂
2u

∂z2

∣∣∣∣ �
∣∣∣∣2K

∂u

∂z

∣∣∣∣ (5.5)

In this case we can ignore the first term on the left-hand side of equation (5.4) with
respect to the second one; this approximation is known as parabolic or Fresnel approx-
imation, and equation (5.4) leads to:

2iK
∂u

∂z
=

(
∂2

∂x2
+ ∂2

∂y2

)
u + (k2 − K2)u (5.6)

which is known as the Fresnel or paraxial equation. It is the starting equation for
the description of optical propagation in inhomogeneous media, and in particular, in
waveguide structures. An example is TE propagation in 1D waveguides, where the
Fresnel equation reduces to:

2ik0n0
∂Ey

∂z
= ∂2Ey

∂x2
+ k2

0[n2(x, z) − n2
0]Ey (5.7)

where Ey is the only non-vanishing component of the electric field associated to TE
modes of the 1D waveguide, and where the refractive index is represented by n(x, z).

The solution to the Helmholtz equation or the Fresnel equation applied to optical
propagation in waveguides is known as the beam propagation method (BPM). Two
numerical schemes have been proposed to solve the Fresnel equation. In one of them,
optical propagation is modelled as a plane wave spectrum in the spatial frequency
domain, and the effect of the medium inhomogeneity is interpreted as a correction of
the phase in the spatial domain at each propagation step [1]. The use of the fast Fourier
techniques connects the spatial and spectral domains, and this method is therefore
called fast Fourier transform BPM (FFT-BPM). The propagation of EM waves in
inhomogeneous media can also be described directly in the spatial domain by a finite
difference scheme (FD) [2]. This technique allows the simulation of strong guiding
structures, and also of structures that vary in the propagation direction. The beam
propagation method which solves the paraxial form of the scalar wave equation in an
inhomogeneous medium using the finite difference method is called FD-BPM. Also
methods based on finite differences which solve the vectorial wave equation, called FD-
VPBM, have been developed [3]. There is an intermediate approximation, which starts
from the wave equation but ignores coupling terms between the transversal components
of the fields, and for that reason this method is usually referred to as semi-vectorial
(FD-SVBPM).

5.2 Fast Fourier Transform Method (FFT-BPM)

The solution to the Helmholtz equation in a homogeneous medium characterised by a
refractive index n0 is a set of plane waves, and therefore the general solution can be
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represented by a superposition of such plane waves:

E(x, y, z) =
∫ ∞

−∞

∫ ∞

−∞
E(kx, ky)e

−ikxxe−ikyye−ikzzdkxdky (5.8)

where:
kz = [K2 − k2

x − k2
y]1/2 (5.9)

and K = n0k0. The amplitudes E(kx, ky) can be obtained from the electric field dis-
tribution at z = 0 taking the Fourier transform of equation (5.8):

E(kx, ky) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
E(x, y, 0)eikxxeikyydxdy = F [E(x, y, 0)] (5.10)

where F represents the Fourier transform operation. The algorithm for calculating the
field at an arbitrary plane perpendicular to the z axis can be obtained by combining
equation (5.8) with (5.10):

E(x, y, z) = F −1{F [E(x, y, 0)]e−ikzz} (5.11)

where F −1 represents the inverse Fourier transform. This is the field diffractor operator
which represents the propagation in a medium characterised by the reference refractive
index n0.

The effect of the index variation n(x, y, z) when the wave propagates a distance
�z is a small perturbation of the phase of the distribution of the phase front. This
effect can be described by multiplying the field by a lens corrector operator, defined
by e−ik0�n2�z/2n0 , where �n2 = n2(x, y, z) − n2

0.
The BPM algorithm for the propagation along an arbitrary distance z is realised

through several discrete steps of distance �z, using a combination of the lens and
diffraction operators (Figure 5.2), as indicated by the following operator sequence:

E(x, y, z + �z) = F −1{e−ikz�z/2F {e−iK�n2�z/2n0F −1[e−ikz�z/2F [E(x, y, z)]]}}
(5.12)

5.2.1 Solution based on discrete fourier transform

The former method can be implemented numerically using discrete Fourier transform.
In this case, the spatial domain of interest, of dimensions LxL in the transversal

z = 0

∆z/2

z

∆z ∆z

Figure 5.2 The algorithm FFT-BPM for solving the Helmholtz equation replaces the waveg-
uide structure for a lens system. Between the lenses the electric field satisfies the Helmholtz
equation in a homogeneous medium
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∆x
∆y
L

L

y

n(x,y)
x

Figure 5.3 Computational window over the spatial domain of interest, that must include the
waveguide structure, as well as the evanescent waves of the propagation modes

direction, is divided in a mesh of N2 discrete points. This region must include not
only the waveguide structure, but also must be wide enough to describe at least the
evanescent waves corresponding to the propagation modes. Each cell has dimensions
of �x�y, being �x = �y = L/N (Figure 5.3).

In the optical propagation in a homogeneous medium having a constant refractive
index n0, the solution for the electric field given by the equation (5.8) can be described
through a finite series in terms of the spatial frequencies:

Ej,m(z) =
N/2∑

µ=−N/2+1

N/2∑
ν=−N/2+1

Eµν(0)e−i
2π
N

(jµ+mν)e−ikzz (5.13)

where the spatial coordinates x and y are expressed as:

x = j�x = jL/N, y = m�y = mL/N (5.14)

and the discrete spatial frequencies kx and ky are expressed as:

kx = (2π/L)µ, ky = (2π/L)ν (5.15)

The description of equation (5.10) using discrete Fourier transforms is expressed as:

Eµν(0) = 1

N2

N∑
j=1

N∑
m=1

Ejm(0)ei
2π
N

(jµ+mν)
(5.16)

The propagation through a step �z starts with a propagation along the homogeneous
medium to a distance �z/2 (Figure 5.2), that can be calculated using the following
discrete expansion:

Ejm(z + �z/2) =
N/2∑

µ=−N/2+1

N/2∑
ν=−N/2+1

Eµν(z)e
−i

2π
N

(jµ+mν)e−ikz�z/2 (5.17)

The next operation is to calculate the spatial frequency spectrum of the field, having in
mind the perturbation induced by the phase change due to the medium inhomogeneity,
because n = n(x, y, z). The lens corrector operator acting through the electric field
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takes account of that perturbation, and therefore the series expansion in this case
will be:

Eµν(z + �z) = 1

N2

N∑
j=1

·
N∑

m=1

Ejm(z + �z/2)e−ik0�n2�z/2n0 ei
2π
N

(jµ+mν)
(5.18)

Finally, the propagation through the discrete step �z ends with a propagation along a
distance �z/2 in a homogeneous medium. This step is described by:

Ejm(z + �z) =
N/2∑

µ=−N/2+1

N/2∑
ν=−N/2+1

Eµν(z + �z)e−i
2π
N

(jµ+mν)e−ikz�z/2 (5.19)

With this sequence it is possible to calculate the electric field at any arbitrary plane
perpendicular to the z axis, combining steps of length �z.

Although the direct implementation of expressions (5.16)–(5.19) involves a number
of calculations proportional to N3, the use of fast Fourier transformation techniques
allows us to reduce the number of calculations which scale as N2 log2 N . If the cal-
culation is performed in a single dimension (in the case of planar waveguides), the
number of operations is reduced to N log2 N using FFT [4].

Figure 5.4 shows an example of light propagation in a symmetric planar waveguide
using FFT-BPM algorithm. The waveguide has been designed to be monomode at the
working wavelength of 1 µm. As the input optical field does not correspond exactly to
the guided mode profile, the optical field smoothly changes along the propagation try-
ing to accommodate the profile of the real propagation mode. The detection of noise
in the field profile reveals the fact that the chosen propagation step of 2 µm is an
upper limit for properly simulating such a structure using FFT-BPM. This problem
becomes more important when 2D structures must be modelled, and although it is pos-
sible to implement FFT-BPM to simulate light propagation in such structures, another
numerical technique is preferred, based on finite difference schemes.
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Figure 5.4 Light propagation in a one-dimensional waveguide monomode at λ = 1 µm,
following a FFT-BPM scheme. The structure consists of a symmetric step-index planar
waveguide, uniform in its propagation direction, with the following parameters: n0 = 2.2,
�n = 0.003, d = 4 µm. The numerical simulation has been carried out with the parameters:
mesh of 256 points, with �x = 0.1 µm (L = 25.6 µm); propagation step �z = 2 µm, over a
distance of 1024 µm. The input optical field is a 4 µm-wide Gaussian distribution
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5.3 Method Based on Finite Differences (FD-BPM)

The numerical method based on finite differences described in this section will be
developed for one-dimensional structures (planar waveguides). In order to solve optical
propagation in 2D waveguides (channel waveguides, optical fibres, etc.) using finite
differences methods, one usually reduces the 2D-problem to a one-dimensional problem
through the effective index method described in Chapter 3. This procedure gives very
good results in general, and in addition saves computer time and releases a lot of
computer memory. Nevertheless, it is also possible to develop finite difference schemes
for 2D-structures [3].

In the FD-BPM method, the Helmholtz scalar wave equation (equation (5.6)) in partial
derivatives is approximated by a finite difference scheme, which can be expressed as:

2iK
uj (z + �z) − uj (z)

�z
= uj−1(z) − 2uj (z) + uj+1(z)

�x2
+ k2

0(n
2 − n2

0)uj (z) (5.20)

where uj (z) is the optical filed at the position (j�x, z) with j = 1, 2, . . . , N . This
scheme in finite differences, known as “forward-difference”, allows us to calculate the
optical field uj (z + �z) after a propagation step �z from a knowledge of the complete
field uj (z) at the position z [5]. The calculation of uj (z + �z) from equation (5.20) is
straightforward, and indicates that the optical field uj (z + �z) can be computed from
field values uj−1(z), uj (z) and uj+1(z) at a given position z. This method based on
finite differences is accurate to the first order. Moreover, from a numerical point of
view it is a conditionally stable method, where the stability condition is given by:

�z � �x2/2K = �x2n0π/λ (5.21)

Unfortunately, the value of �z necessary to assure stability is too small from a prac-
tical point of view. As an example, for a mesh of �x = 0.1 µm, and a wavelength of
λ = 1 µm, using a reference refractive index of n0 = 1.5, we obtain that the propaga-
tion step must be less than �z < 0.05 µm. In order to model a 5 mm length device,
we would need 105 steps!

An alternative way to overcome this problem consists in using a finite difference
scheme somewhat similar to the former, known as “backward-difference” [5]. The
Helmholtz scalar equation expressed in this way takes the following form:

2iK
uj (z + �z) − uj (z)

�z
= uj−1(z + �z) − 2uj (z + �z) + uj+1(z + �z)

�x2

+ k2
0(n

2 − n2
0)uj (z + �z) (5.22)

This method has the advantage of being unconditionally stable, although the approxi-
mated solution obtained in the simulation is similar to the “forward-difference” method,
and thus, no more accuracy is gained.

Fortunately, there is a method, also based on finite difference schemes, that is not
only unconditionally stable, but also provides more accurate solutions than the two
previous methods. This method, called Crank-Nicolson scheme [5], is a linear com-
bination of the “forward difference” method and the “backward-difference” method
(Figure 5.5).
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(a)

(b) (c)

x

z

Figure 5.5 Diagram showing the three schemes used in the simulation of light propagation
based on finite differences. (a) “Forward” or “fully explicit” is first order accurate, but is stable
only for small propagation steps. (b) “Backward” or “fully implicit” is stable for arbitrarily
long propagation steps, but is only first-order accurate. (c) “Crank-Nicolson” is second-order
accurate, and also is stable for long propagation steps

The finite difference method following a Crank-Nicolson scheme for solving the
paraxial propagation equation can be represented as:

[2K + i�zαH ]u(z + �z) = [2K − i�z(1 − α)H ]u(z) (5.23)

where the operator H is defined as:

Hu ≡ uj−1 − 2uj + uj+1

�x2
+ (n2

j − n2
0)k

2
0uj (5.24)

Expanding this scheme in terms of finite differences, the following equation is
obtained:

2iK[uj (z + �z) − uj (z)] = k2
0(n

2 − n2
0)[αuj (z + �z) − (1 − α)uj (z)]�z

+
[
α

uj−1(z + �z) − 2uj (z + �z) + uj+1(z + �z)

�x2

− (1 − α)
uj−1(z) − 2uj (z) + uj+1(z)

�x2

]
�z (5.25)

This equation relates the optical field at z + �z, that is u(z + �z), with the field at z,
that is, u(z). Rearranging terms in the previous equation, one obtains:

ajuj−1(z + �z) + bjuj (z + �z) + cjuj+1(z + �z) = rj (z) (5.26)

where the aj , bj , cj and rj coefficients are defined by:

aj = −α
�z

�x2

bj = 2α
�z

�x2
− α�z[n2

j (z + �z) − n2
0]k2

0 + 2iK
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cj = −α
�z

�x2

rj = (1 − α)
�z

�x2

[
uj−1(z) + uj+1(z)

] +
{
(1 − α)�z

[
n2

j (z) − n2
0

]
k2

0 − 2(1 − α)
�z

�x2
+ 2iK

}
uj (z) (5.27)

Equation (5.26), besides the coefficients defined by the expression (5.27), forms in
fact a tridiagonal system of N linear equations1 (j = 1, 2, . . . , N ), which can be solved
very efficiently. In addition, it can be demonstrated that the solution to this equation
system shows an excellent numerical stability. The algorithm used for solving this
tridiagonal system is the Thomas Method [6], which requires a computational time
that increases with N , while the time required for obtaining a fast Fourier transform
using a grid of N points increased as N log2 N .

Strictly speaking, the Crank-Nicolson scheme is unconditionally stable for α > 0.5
if the refractive index is independent of x and z. Nevertheless, if the refractive index
varies slowly, or if it is uniform with small discontinuities, the Crank-Nicolson method
can be applied locally. Under these circumstances, the analysis leads to valid solutions,
even for the most adverse situations.

Apart from the numerical stability, the greatest advantage of the Crank-Nicolson
method comes from the fact that it provides a better approximation to the exact
solution of the problem. While the simple finite difference method (implicit standard
scheme) allows a first-order approximation in the propagation step O(�z + �x2),
the Crank-Nicolson method establishes a second-order approximation in the propaga-
tion O(�z2 + �x2). Therefore, the finite difference method is a powerful numerical
method which allows the use of large propagation steps, with the consequent saving
in computational time.

An example of light propagation using FD-BPM is shown in Figure 5.6, which
corresponds to the same waveguide structure described in Figure 5.4. The field pro-
files obtained using FD-BPM are quite similar to those obtained when the FFT-BPM
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Figure 5.6 FD-BPM propagation based on a Crank-Nicolson scheme with α = 0.501. The
planar waveguide has the same set of parameters to those described in Figure 5.4, as well as
the same parameters used for numerical simulation
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technique is applied to simulate light propagation through a straight waveguide. The
only difference is that in the FD-BPM simulation the field profiles do not shown any
significant noise, although the simulation parameters with respect to that FFT-BPM
have been maintained, in particular, the propagation steps’ length.

In order to compare the differences between FFT and FD BPM in more detail, we
have simulated the propagation of light in slightly more complex structure. In particular
we have chosen propagation through a symmetric Y-branch, used in integrated photonic
circuits to split the signal into two waveguides, each of them carrying 50% of the input
power (Figure 5.7).

In the upper part of Figure 5.7 the results of the simulation using FFT-BPM are
shown, and in the lower part the corresponding field profiles obtained using FD-BPM
have been also plotted for comparison purposes. Both pictures show the splitting of
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Figure 5.7 Light propagation through a Y-branch, using FFT-BPM (a) and FD-BPM (b).
The structure consists initially of a symmetric planar waveguide in step, with a length of
200 µm, which splits into two branches of 550 µm length; from a distance of 750 µm the two
branches become parallel. The structure parameters are the following: substrate refractive index
1.5; waveguide refractive index 1.51; waveguide width 4 µm; half-angle branches 0.5◦. Sim-
ulation parameters: computational window of 256 (28) mesh points, separated �x = 0.25 µm
(L = 32 µm); propagation step �z = 3 µm; wavelength λ = 1 µm
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light when it enters the Y-branch, and once the branches are separated enough, the
field profiles remain almost unchanged. Therefore, the overall behaviour of the device
is well described using both numerical methods, although there is a clear difference
in the field pattern obtained: while FFT-BPM gives field profiles with ripples, FD-
BPM shows very clean field profiles, without any sign of perturbation. Under these
circumstances, the choice of FD-BPM to simulate integrated photonic circuits is clear,
since it admits larger propagation steps, and also behaves quite well managing structures
with large discontinuities in the refractive index. This is not the only advantage of FD
over FFT-BPM: if the computational window is reduced in such a way that the optical
field reaches the computational boundaries, it is necessary to implement additional
algorithms to avoid the optical fields reflecting at the boundaries and re-entering the
computational window; otherwise, the simulation of the optical devices will not be
correct. This problem can be adequately solved in the case of FD-BPM as we will
describe in Section 5.5, but it is cumbersome when using FFT-BPM. An additional
advantage of FD-BPM, besides the lower memory and time consumption in modelling
complex structures, is the possibility of incorporating wide-angle propagation and full
vector algorithms [7, 8].

5.4 Boundary Conditions

Due to the fact that the computational domain in BPM calculations is finite, it is
necessary to specify boundary conditions for the optical field at the limits of the
computational window. These boundary conditions must be adequately chosen, in such
a way that the effect of the boundaries does not introduce errors in the propagation
description of the optical field. If these conditions are not well specified, the radiation
tends to reflects on the limits of the computational window and comes back to the
region of interest, and unwanted interference is produced when the propagation is
performed by FD-BPM. In the case of wave propagation based on FFT-BPM, the
result is the disappearance of the optical field through a boundary, but the appearance
of a new perturbation from the opposite window boundary.

In order to visualise these effects, let us analyse the behaviour of a 3◦ tilted Gaus-
sian beam propagating in a one-dimensional homogeneous medium. As the Gaussian
beam propagates, besides a lateral displacement due to the incident angle, the beam
spreads transversally because of the diffraction. If the computational region is wide
enough, and therefore the beam does not reach its boundary, the simulation of the
beam propagation proceeds normally. On the other hand, if the optical field reaches
one of the computational window limits, it will be necessary to impose realistic and
reasonably physical boundary conditions for describing and adequately simulating the
optical propagation.

Figure 5.8 shows the intensity profiles for the optical field corresponding to the tilted
Gaussian beam as it advances along the propagation direction, computed by means
of FFT-BPM. When the radiation reaches the upper limit of the window the wave
disappears, but at the lower boundary a new perturbation appears, which of course does
not correspond to a realistic physical situation. Indeed, one would expect something
similar, because propagation by FFT mathematically imposes energy conservation in
the computational region.
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Figure 5.8 FFT-based propagation of a 10 µm width Gaussian beam of λ = 0.5 µm, which
enters with an angle of 3◦ in a homogeneous medium having a refractive index n0 = 2.2.
Parameters of the simulation: longitudinal step �z = 5 µm; grid size �x = 0.4 µm; 128 mesh
points in the transversal direction

An obvious solution to prevent the window limits from interfering in the correct
optical propagation is to build a wide enough computational region. In this way, the
optical field at the window limits is almost negligible, thus avoiding this unwanted
effect. Nevertheless, this procedure implies an unnecessary increment of the window
size, and the computing of the optical field in regions out of interest for the solution
of the problem.

The most common way of preventing boundary reflection using FFT-BPM is the
insertion of artificial absorption regions adjacent to the pertinent boundaries [9]. Usu-
ally, the absorption coefficient is ramped from zero at the region’s leading edge to
some maximum value at the boundary node. Thus, the thickness of the region, the
maximum absorption coefficient, and the functional shape must all be carefully chosen
for the method to work properly. However, if the gradient in the absorption coefficient
is too large, that gradient itself will generate reflections. Although the artificial absorp-
tion procedure is accurate provided that the absorption region is adequately tailored,
ensuring that this condition is fulfilled for each new problem is often a difficult and
time-consuming process. Even when successful, the addition of extra problem zones
results in computational penalties of run-time and storage space.

When using FD-BPM for simulating optical propagation we find that the field at
points j = 0 and j = N + 1 are not defined, but are necessary for calculating the field
in the interior points (j = 1 to N ), and we need two extra equations to determine
them. Dirichlet boundary conditions provide the simplest possibility by specifying the
boundary values u0 and uN+1 directly, for instance by setting their values to zero;
other possibilities are the Neumann or even the periodic boundary conditions [5].

Unfortunately, none of these boundary conditions gives satisfactory results, and the
implementation causes optical field “reflections” at the window limits, because the
condition of zero field at the boundaries is not realistic when the optical perturbation
reaches the limits of the computational window. This effect can be appreciated in
Figure 5.9 where Dirichlet boundary conditions have been implemented in FD-BPM
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Figure 5.9 FD-BPM simulation for a tilted Gaussian beam propagating through a homoge-
neous medium (same parameters as in Figure 5.8). When the radiation reaches the upper limit,
it suffers a kind of deformation and then bounces and re-enters the domain

simulation: when the Gaussian beam reaches the upper window limit, it initially suffers
a deformation, then bounces, and finally returns to the computational region.

One alternative to this dilemma consists in trying to implement realistic boundary
conditions from a physical point of view, that is, an algorithm that allows the wave
to leave the computational region when it reaches the window limits, without any
reflection coming back to the domain. This algorithm is known as transparent boundary
condition (TBC), and simulates a non-existent boundary [10]. Radiation is allowed to
freely escape the problem region without appreciable reflection, whereas radiation flux
back into the region is prevented. This TBC employs no adjustable parameters, and
thus is problem independent, and can be directly applied to any waveguide structure. In
addition, it is easily incorporated into a standard Crank-Nicolson differencing scheme in
both two and three dimensions, and it is applicable to longitudinally varying structures
of importance for integrated photonic devices [10].

5.4.1 Transparent boundary conditions

The technical description of the TBC implementation begins by considering the scalar
paraxial beam-propagation equation (equation (5.6)), and we will focus the discussion
on one-dimensional propagation for the sake of simplicity. Since only the boundary
region is of interest, we further restrict ourselves to the diffraction terms:

∂u

∂z
= i

2K

∂2u

∂x2
(5.28)

where an additional exp(iKz) dependence was assumed in the derivation of
equation (5.28). By simple manipulation, equation (5.28) may be rewritten in an energy
conservation equation:

∂

∂z

∫ a

b
|u|2dx = i

2K

(
u∗ ∂u

∂x
− u

∂u∗

∂x

)∣∣∣∣
b

a
≡ −Fb + Fa (5.29)
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where Fb represents the energy flux leaving the right boundary and Fa represents
that entering through the left boundary. Since the treatment of the two boundaries is
essentially identical, we consider only the right boundary. We next make the important
assumption that at this boundary the field is of the form:

u = u0eikxx (5.30)

where u0 and kx are in general complex, and kx is for the moment unknown. With this
assumption, the flux Fb becomes:

Fb = Re(kx)|u(b)|2
K

(5.31)

where Re indicates the real part. Therefore, as long as the real part of kx is positive,
the contribution to the overall change in energy from this boundary will always be
negative, i.e., radiative energy can only flow out of the problem region.

Within the Crank-Nicolson scheme based on finite differences, and assuming the
same exponential dependence described above, the optical field in the limit of the
window u

j

N prior to the start of the (j + 1)th propagation step should fulfil the follow-
ing relation:

u
j

N

u
j

N−1

= u
j

N−1

u
j

N−2

= eikx�x (5.32)

This expression allows the determination of kx , after completion of the j th step, using
two interior points close to the boundary. Then, the boundary condition for the next
propagation step (j + 1) is thus:

u
j+1
N = u

j+1
N−1 · eikx�x (5.33)

where the kx value is the previously calculated using equation (5.32) in the j th
step. However, prior to the application of equation (5.33), the real part of kx must
be restricted to be positive to ensure only radiation outflow. Therefore, if from
equation (5.32) the real part of kx is negative, it is reset to zero, and the field at
the boundary is redefined using the value of kx just calculated.

Since the boundary condition itself is linear and only involves the two mesh points
nearest the boundary, the ratio between the interior points previously used to determine
kx is allowed to change. Thus, the value of kx computed for the next propagation
step will generally be different. Such an adaptive procedure is required if an accurate
algorithm that reflects the minimum amount of energy back into the problem region is
to be constructed.

The great advantage of the TBC method lies in its convenience and usefulness. While
the use of artificial absorbers to remove scattered radiation is clumsy, imposes some
penalty of computer run-time and storage, and must be retailored for each new problem,
the TBC algorithm uses no adjustable parameters, thus being problem independent,
and imposes no storage penalty, because it requires no extra computational zones to
be considered.

Besides its accuracy and efficiency, the TBC algorithm shows a high degree of
robustness. The implementation is easily performed for one-dimensional problems as
well as for propagation through 2D structures. In each case, paraxial propagation leads
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Figure 5.10 Tilted Gaussian beam propagation by means of FD-BPM, using the same parame-
ters as in Figures 5.8 and 5.9, when TBC is implemented. When the radiation reaches the upper
window limit, it passes through the boundary and virtually disappears, leaving the computa-
tional region

to a solution of a tridiagonal system, and thus the inclusion of TBC does not make the
resolution of the problem more complicated.

In order to show the accuracy and robustness of TBC, we have simulated the prop-
agation of a Gaussian beam with the same set of parameters used in Figures 5.8 and
5.9, where we observed incorrect simulation when the radiation reached the upper
limit of the window. Figure 5.10 shows the propagation of the 3◦ tilted Gaussian beam
through an homogeneous medium simulated by the FD-BPM technique, where we have
implemented the TBC algorithm in both the upper and lower boundaries. We observe
that when the radiation reaches the upper window limit, it virtually disappears into the
boundary, without any sign of reflection or distortion in the beam shape as it passes
through the boundary. Indeed, the total disappearance of the beam as it crosses the
limit of the computational region is the expected result from a physical point of view.
The effective reflection coefficient, defined as the ratio between the initial energy in
the computational region and the energy in it after a long enough propagation distance,
is in this case lower than 10−4, demonstrating the high efficiency and accuracy of the
TBC method for simulating optical propagation based on FD-BPM.

5.5 Spatial Frequencies Filtering

In many circumstances, the simulation of optical propagation in waveguides gives rise
to the appearance of rippling in the electric field pattern after a certain propagation
distance, due to numerical noise. This effect is produced in both FFT and FD-BPM
algorithms. In order to correct this perturbation, which does not originate in any real
physical mechanism, it is necessary to resort to frequency filtering techniques in the
spatial frequency domain, using low-pass digital filters. In order to do this, the spatial
frequency spectrum of the electric field distribution is first calculated at a given point
in the propagation, and then it is multiplied by a certain window function, in such a way
that the high frequency components, which have a low signal to noise ratio and the
beam carries a small percentage of the total power, are removed (or at least reduced),
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and the low frequencies components where the higher amount of optical field power is
concentrated are retained. It is necessary to remember that filtering windows must be
used with caution, because some essential frequency components of the optical field
which could be necessary for the correct description of the optical propagation can
be eliminated, and thus the simulation would lose accuracy. In general, the filtering
window is chosen in such a way that it includes at least 95% of the energy transported
by the optical field.

Figure 5.11 represents the evolution of the spatial frequency power spectrum associ-
ated to light propagation through a step-index planar waveguide, using the FFT-BPM
algorithm with a propagation step of �z = 5 µm. We can observe the appearance of
high frequency components that give rise to ripples in the optical field, as can be seen
on the right-hand side of Figure 5.11. This effect is much more pronounced as the
propagation step increases, and it is more important when the waveguide profile shows
high index differences.

In order to avoid or reduce noise in optical field simulations, it is necessary to
use smaller propagation steps, which involves increasing the computational time, or
alternatively implementing filtering techniques.

In this particular example, we have chosen a filter window that allows frequencies
lower than 0.025 µm−1 to pass through, and eliminates the portion of the frequency
spectrum with frequencies higher that 0.025 µm−1, allowing 95% of the optical power
to be included in the non-filtered components. The resulting frequency spectrum is
shown in Figure 5.12 (a), along with the optical power profile obtained after using
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Figure 5.11 Left: evolution of the spatial frequency power spectrum associated with propaga-
tion in a step-index planar waveguide of 8 µm width, using a propagation step of �z = 5 µm.
Right: optical power profiles corresponding to propagation in the planar waveguide, where the
appearance of ripples in the optical field is clearly observed
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Figure 5.12 (a): frequency spectrum after filtering with a window that removes spatial fre-
quencies higher than 0.025 µm−1. (b): optical power profile obtained after propagating the field
by applying filtering techniques, where we observe the disappearance of the ripples in the
optical field
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this low-pass filter. From Figure 5.12 it can be seen that the ripples that appeared in
the optical field profile when the propagation was done without filtering have now
disappeared, and the optical field obtained after using filtering techniques shows a
profile clean of noise or ripples.

The incorporation of filtering techniques in optical propagation algorithms is very
easy to implement, in both FFT and FD-BPM, and there is almost no penalty in
computing time. As we have shown above, the implementation of these techniques
allows the use of longer propagation steps in the optical simulation, thus saving a
lot of CPU time. This situation is particularly of interest in simulating 2D structures
such as channel waveguides, where the appearance of ripples in the optical field is
immediate unless very short propagation steps are used.

5.6 Modal Description Based on BPM

BPM offers an accurate description of spatial (near-field) and angular (far-field) prop-
erties of the electric field, but it can also generate information relevant to a purely
modal description of the field [11].

In particular, the mode propagation constants and the power associated with each
mode can be determined from a Fourier analysis of the complex field amplitude corre-
lation function defined by P(z) = 〈u∗(0)u(z)〉, where the brackets signify integration
over the waveguide cross-section, and z represents axial distance. The function P (β),
which is the Fourier transform with respect to z of P(z), displays a set of resonant
peaks that identify the guided modes (and also the radiation modes) that have been
excited by the input source at z = 0. The peaks occur at values of β that correspond
to the mode propagation constants βj , and the heights of the peaks are proportional to
the powers of the corresponding modes.

In order to see how these results are obtained, let us consider light propagation
in a straight waveguide, in which the refractive index has only dependence on the x

and y coordinates, n = n(x, y). The solution for the scalar Helmholtz equation can be
approximated by the product of a complex field amplitude u(x, y, z) and a carrier wave
moving in the positive z-direction: E(x, y, z) = u(x, y, z)e−iKz, where K = n0ω/c,
and n0 is the reference refractive index.

In addition, the complex field amplitude u(x, y, z) can be expressed in terms of the
waveguide-mode eigenfunctions as:

u(x, y, z) =
∑

ν

Aνfν(x, y)e−iβνz (5.34)

where βν is the propagation constant of the νth mode, fν(x, y) is its electric field distri-
bution in the transversal direction, and Aν is its modal weight associated to the power
it carries. It is important to remark here that, using this notation, the real propagation
constant β‘

ν of the modes is related to the values of βν (from equation 5.34) by:

β‘
ν = βν + K (5.35)

The procedure for determining the mode weights and mode constants (modal
spectrum) of a straight waveguide is called the correlation-function method [11].
For this purpose, let us form the product u∗(x, y, 0)u(x, y, z) and integrate over the
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cross-section of the waveguide. Making use of equation (5.34), we obtain for the
correlation function P(z):

P(z) =
∫ ∞

−∞

∫ ∞

−∞
u∗(x, y, 0) • u(x, y, z)dxdy = 〈u∗(0)u(z)〉 (5.36)

Bearing in mind the mode orthogonality, and assuming that the transversal distribu-
tions of the modes are normalised:∫ ∞

−∞

∫ ∞

−∞
f ∗

µfνdxdy = δµν (5.37)

the correlation function P(z) can be alternatively expressed as a function of the modal
weights Aν and the propagation constants βν in the form:

P(z) =
∑

ν

|Aν |2e−iβνz (5.38)

Taking the Fourier transform of equation (5.38) gives:

P(β) =
∑

ν

|Aν |2δ(β − βν) (5.39)

where δ is the delta Kronecker function. This expression suggests that the calculated
spectrum of P(z) (that is, its Fourier transform) will display a series of resonances
with maxima at β = βν , and peak values proportional to the mode weight coefficients
Aν . The coefficient Aν is related to the relative power Wν carried by the νth mode by:

Wν = |Aν |2 (5.40)

being:
W =

∑
ν

Wν (5.41)

the total power carried in the waveguide.
In practice, as only a finite record of P(z) is available, the resulting resonances in

the spectrum P (β) will thus exhibit a finite width and shape that are characteristic of
the record length Z. Since in general the resonance peaks do not coincide exactly with
the sampled values of β, errors will result in the values of Wν and βν values inferred
from the maxima in sampled data set for P (β). The maximum uncertainty in βν can be
expressed in terms of the sampling interval �β along the β axis and the propagation
distance Z over which the solution u(x, y, z) is available as:

�βν = �β/2 = π/Z (5.42)

In order to reduce the uncertainty in the determination of the propagation constant
βν it is necessary to increase the propagation length Z, but this at the expense of
an increase in the computational time. It is possible, however, to improve substan-
tially on the accuracy implied in equation (5.42) by multiplying the data sample to
be Fourier transformed by a suitable window function and then selecting the βν val-
ues from the transformed sample by interpolation, or even by a line-shape fit for the
individual resonances.
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On the other hand, the magnitudes of the propagation constants for the guided modes
will be limited according to:

0 < |βν | < K�nmax (5.43)

where �nmax = nmax − n0. Therefore, to ensure that the axial spectrum is accurately
represented it is necessary for the axial sampling distance �z to satisfy:

�z < π/K�nmax (5.44)

or expressed as function of the wavelength:

�z < λ/2n0�nmax (5.45)

In practice, this condition is satisfied by a factor of ∼ 5.
Let us now see how to proceed in practice to obtain the propagation constants of

the modes, as well as their modal weights. For this purpose, let us consider a one-
dimensional multi-mode waveguide which is invariant in the propagation direction
(straight waveguide). If the light excitation at the input coincides with the field dis-
tribution corresponding to a guided mode, we will expect this light distribution to
propagate without losing its shape and intensity, because the energy transfer between
modes is forbidden by the modal orthogonality relationship. If, however, the light injec-
tion at z = 0 provokes the excitation of various modes, the transversal distribution of
the optical field will change as the beam propagates along the waveguide due to the
fact that each mode has a different propagation constant, and therefore the relative
phase between modes will change as a function of the propagation distance.

Figure 5.13 shows the evolution of the transversal light distribution in a one-
dimensional straight waveguide when a Gaussian beam with constant phase is launched
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Figure 5.13 Light propagation, using FD-BPM with TBC, in a multi-mode straight waveguide.
At the input a Gaussian beam of 6 µm width centred at x = 0 and constant phase is injected. The
waveguide consists of a symmetric planar waveguide having a Gaussian refractive index profile
of 8 µm, maximum index difference �n = 0.03 and a substrate refractive index of n0 = 2.2.
Parameters of the simulation: 128 point in the transversal direction; grid size �x = 0.2 µm;
propagation step �z = 5 µm; wavelength λ = 1 µm
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at the input position z = 0. The planar waveguide has a symmetric Gaussian refractive
index profile with 6 µm width and �n = 0.03 with respect to the substrate index of
n0 = 2.20. The wavelength used is λ = 1 µm, and the simulation has been performed
by FD-BPM, where TBC has been implemented. For this wavelength, the waveguide
structure supports six guided modes. As can be seen in Figure 13, the field profile
changes as the beam propagates, due to the fact that the light distribution at the input
does not correspond to any particular guided mode, but several of them have been
simultaneously excited.

Following equation (5.36), we build the correlation function P(z) corresponding
to the propagation described in Figure 5.13, and presented in Figure 5.14. After first
inspecting this figure it seems difficult to extract any relevant information about the
behaviour of the modal propagation; perhaps the only clear fact is that the evolution
of P(z) does not follow a pure senoidal function.

Nevertheless, a Fourier transform of the correlation function P(z) gives a much
clearer picture, as it can be seen in Figure 5.15. From Figure 5.15 it is possible to
observe a series of well-defined peaks, ranging between 0.0 and 0.16 µm−1, with
different heights.
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Figure 5.14 Correlation function P(z) corresponding to the propagation described in
Figure 5.13
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Figure 5.15 Axial spectrum obtained from a 2560 µm propagation length in a planar waveg-
uide, after launching Gaussian profile input centred at x = 0. Only the even (symmetric) modes
transport energy
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Table 5.1 Propagation constants determined by the correlation-function method after two
distinct excitations, besides their “exact” values calculated by the multi-layer method

Mode βν(1) (µm−1) βν(2) (µm−1) βν (Exact) (µm−1) Error (µm−1)

0 0.1620 0.1620 0.1684 0.0064
1 – 0.1301 0.1311 0.0001
2 0.0982 0.0982 0.0971 0.0011
3 – 0.0687 0.0671 0.0016
4 0.0442 0.0442 0.0413 0.0029
5 – 0.0245 0.0203 0.0042
6 0.0074 0.0074 0.0044 0.0030

In Figure 5.15 the resonance peaks appear at values of the propagation constant
β = 0.1620, 0.0982, 0.0442 and 0.0074 µm−1, with different intensities increasing with
β. These values correspond to guided modes of the structure, because β > 0. Table 5.1
shows these values βν(1), besides the “exact” propagation constants obtained using a
multi-layer analysis, as was described in Chapter 3. From Table 5.1 it is evident that
only the even modes have been excited by the symmetric Gaussian injection, centred
at x = 0, at the input of the waveguide. On the other hand, the error found in the
propagation constants, referred to their exact values, indicates that it is a bit higher
that the expected one calculated by the formula (5.43):

�βj = �β/2 = π/Z = 0.002 µm−1

This small discrepancy is due to the discretisation of the structure, in this particular
case a Gaussian refractive index profile.

In addition, the use of a propagation step of �z = 5 µm assures that the whole
modal spectrum is represented, because the condition:

�z < λ/2n0�nmax = 7.6 µm

is fulfilled.
In order to obtain the propagation constant of every single mode, it is necessary that

the light injection at the input excites adequately each of them. Choosing the same
Gaussian excitation, but now shifted 6 µm respect to the waveguide centre, we obtain
the propagation depicted in Figure 5.16.

The modal spectrum corresponding to this propagation is represented in Figure 5.17,
where now it can be observed that the six propagating modes supported by the waveg-
uide have been excited, although with different amount of energy. The propagation
constants βν(2) calculated from this graph have been included in Table 5.1, where we
observe that they coincide with the analysis performed with a different excitation. It
should be also pointed out that a small fraction of energy is presented for negative
values of the propagation constant. This fact indicates that the electric field at the input
has also excited radiation modes.

5.6.1 Modal field calculation using BPM

Once the propagation constants of the waveguide modes have been calculated, with
a further and simple analysis it is also possible to determine the transversal field
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Figure 5.16 FD-BPM simulation in a symmetric multi-mode waveguide, after the light injec-
tion having a Gaussian profile of 6 µm width centred at x = 6 µm, and constant phase. The
waveguide structure, as well as the simulation parameters, are similar to those presented in
Figure 5.13

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20

M
od

al
 w

ei
gh

t (
ar

b.
 u

ni
ts

)

Propagation constant (µm−1)

Figure 5.17 Axial spectrum obtained after launching a shifted Gaussian beam. This input
source is able to excite all modes, as well as radiation modes

distribution f (x, y) corresponding to each propagation mode. For this purpose, it is
enough to allow the input source to propagate along the straight waveguide, and then
multiply the optical field simulated at each propagation step by the factor exp(iβµz),
where βµ indicates the propagation constant (previously calculated) of the µth mode
whose transverse field distribution fµ(x, y) we want to obtain. In such a way, if we
now add these contributions as the wave propagates, all the modes, except the µth
mode, will have a phase which changes with the propagation distance, and will cancel
for a long enough propagation length. In contrast, the µth mode will not have any
z-dependence, because it has been eliminated after multiplying the optical field by the
factor exp(iβµz). Therefore, the transversal field distribution corresponding to the µth
mode will build up as the perturbation advances along the straight waveguide.

We restrict the problem to a one-dimensional waveguide, and therefore the field
profiles will have dependence only on the x coordinate. If we assume that the optical
field in the waveguide can be expressed only by the set of m confined modes, thus
ignoring the energy carried out by the continuum radiation modes, the optical field can
be written as:

u(x, z) =
m−1∑
ν=0

Aνfν(x)e−iβνz (5.46)



5.6 MODAL DESCRIPTION BASED ON BPM 159

For obtaining the field distribution corresponding to the µth mode, we build the
function Gµ(x) defined as:

Gµ(x) =
∫ Z

0
u(x, z)eiβµzdz =

∫ Z

0

(
m−1∑
ν=0

Aνfν(x)e−i�βµνz

)
dz (5.47)

where Z is the total propagation length, and �βµν is defined as (βν − βµ). This function
can be separated in to two terms as:

Gµ(x) = Aµfµ(x)Z +
m−1∑
ν=0
ν 
=µ

(
Aνfν(x)

∫ Z

0
e−i�βµνz dz

)
(5.48)

The integrals in equation (5.48) are periodic functions of z, and thus they are limited
to a given value, depending on the propagation constant of the modes. In particu-
lar, their absolute values are limited to |2/�βµν |, and therefore the second term in
equation (5.48) is a bounded value, which depends on the power transported for each
mode through their modal weights Aν . By contrary, the first term in equation (5.48)
is a function which grows linearly with the propagation length Z. Therefore, for large
values on the propagation length, the second term can be ignored, and the first term
will reproduce the transverse field distribution of the µth mode, or in other words, the
function Gµ(x) is proportional to the field distribution fµ(x). To obtain an accurate
field distribution, and assuming equally spaced modes and similar modal weights, the
propagation length should fulfil the condition:

Z � m(m − 1)/�β (5.49)

m being the number of confined modes which supports the waveguide, and �β the
difference between the propagation constants of two consecutive modes.

Nevertheless, although Z was chosen long, it does not guarantee the total elimination
of the contribution of a specific mode ν, and to accurately build the field distribution of
a mode it is necessary to excite it with a high fraction of the total input energy. In order
to overcome these problems, we can alternatively choose a slight different method.

First, we build the function H0(x) defined as:

H0(x) =
∫ 2π/�βµ0

0
u(x, z)eiβµz dz (5.50)

or expressed in terms of the modal fields:

H0(x) =
∫ 2π/�βµ0

0

(
m−1∑
ν=0

Aνfν(x)e−i�βµνz

)
dz =

=
∫ 2π/�βµ0

0
A0f0(x)e−i�βµ0z dz

+
∫ 2π/�βµ0

0

(
m−1∑
ν=1

Aνfν(x)e−i�βµνz dz

)
(5.51)
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The first term in the right hand of the above equation is exactly cancelled, because of
the proper choice of the integral limits. Thus, we ensure that the function H0(x) has
no more contribution to the 0th mode field distribution given by f0(x).

Second, we now choose the function H0(x) previously calculated as a new input
field u(x, z = 0), and we perform a new propagation sequence. The new input field
cannot therefore excite the 0th mode. We repeat the steps one and two for each mode,
except for the µth mode, obtaining the function H1(x), H2(x), etc. In this way, we
are subtracting the contribution of each propagating mode to the optical field, and the
result is the procurement of the modal profile for the µth mode.

This new method is exact, because all the modes, except the selected one, are
eliminated. Also, this procedure is accurate providing that the propagation constants
of the propagating modes are well determined, and assuming that the contribution to
the radiation modes can be neglected. The main advantage of this method is that the
propagation steps can be exactly calculated for the elimination of each mode, and
consequently the algorithm is straightforward, thus saving computational time, which
is particularly important for modelling two-dimensional structures.

As an example of an application, let us consider a one-dimensional straight waveg-
uide, which is multi-mode at λ = 1.55 µm. The planar waveguide has a symmetric
Gaussian refractive index profile as shown in Figure 5.18, with a width of d = 3.5 µm,
and a maximum index change of �n = 0.030, where the substrate refractive index is
n0 = 2.200. Here we have made no distinction between TE and TM modes because
of the small and gradual index difference of the waveguide refractive index profile.

Figure 5.19 shows the intensity (square of the optical field) profiles corresponding to
the four confined modes which supports the waveguide at λ = 1.55 µm. The intensity
profiles shown in Figure 5.19a correspond to the modal distributions obtained by the
FD-BPM algorithm using �z = 5 µm length steps. The input source is a Gaussian
beam of 5 µm width, shifted 3 µm with respect to the centre of the planar waveguide.
The window size is 32 µm, with 128 mesh points size 0.25 µm. Together with the
intensity profiles, we have included the propagation constants calculated by the corre-
lation method algorithm, which were used to compute the intensity profiles as well.

In order to compare these results, Figure 5.19b shows the intensity modal profiles
of the planar waveguide, but obtained by the multi-layer method described in the
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Figure 5.18 Gaussian refractive index profile used to calculate the modal field distributions
using BPM algorithm
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Figure 5.19 Modal intensities corresponding to the four propagating modes in a planar waveg-
uide with graded Gaussian index profile. (a): intensity profiles and propagation constants calcu-
lated by the BPM algorithm. (b): results from the multi-layer method

Chapter 3, and the propagation constants of the modes. We can observe that not are
only similar values of the propagation constants obtained, but also the intensity profiles
coincide accurately with the ones calculated by the BPM algorithm.

Note

1All the elements of a tridiagonal matrix are equal to zero, except for the diagonal and
the two parallel lines adjacent to it, i.e., uij = 0, except uii, ui−1,i and ui+1,i .
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Appendix 1
COMPLEX NOTATION OF THE

ELECTRIC AND MAGNETIC
FIELDS

The electromagnetic field is composed by two vectorial fields, the electric and magnetic
fields. In the case of monochromatic waves, the fields have harmonic dependence on
time, and thus can be expressed as:

E(r, t) = E0(r) cos[ωt + ϕ(r)]

H(r, t) = H0(r) cos[ωt + ϕ(r)]

Using complex notation, the electric and magnetic fields are expressed as:

E(r, t) = Re[E(r)eiωt ]

H(r, t) = Re[H(r)eiωt ]

where E(r) and H(r) denote the complex amplitudes of the electric and magnetic fields,
respectively.

Taking into account Moivre’s formula, eix = cos(x) + i sin(x), and expanding the
complex amplitudes E(r) and H(r) into their real and imaginary parts:

E(r) = Er (r) + iEi(r)

H(r) = Hr (r) + iHi (r)

the relations between the real and imaginary part of the complex amplitudes with the
amplitudes E0(r) and H0(r) and the initial phase ϕ(r) are given by:

Er (r) = E0 cos ϕ(r)

Ei (r) = −E0 sin ϕ(r)

Hr (r) = H0 cos ϕ(r)

Hi (r) = −H0 sin ϕ(r)



Appendix 2
PHASE SHIFTS FOR TE AND

TM INCIDENCE

Program core for the calculation of the phase shifts suffered for soft and hard incidence,
for TE and TM polarised waves.

n1 = Val(Text1.Text)
n2 = Val(Text2.Text)
pi = 4 * Atn(1)
xmin = Val(Text4.Text)
xmax = Val(Text5.Text)
steps = Val(Text11.Text)
ymin = Val(Text7.Text)
ymax = Val(Text8.Text)
Picture1.Scale (xmin, -ymax)-(xmax, -ymin)
Picture1.Line (xmin, -ymax)-(xmax, -ymin), 15, B
Picture1.Line (xmin, 0)-(xmax, 0), 15
’Tics in axis
For t = xmin To xmax Step 10
Picture1.Line (t, 0)-(t, -5)

Next t
For t = -ymin To -ymax Step -10
Picture1.Line (xmin, t)-(xmin + (xmax - xmin) / 40, t)

Next t

tetap = Atn(n2 / n1)
tetap = tetap * 180 / pi
If n1 < n2 Then GoTo 10 Else GoTo 20

10 ’Soft incidence
For a = xmin + 0.00001 To tetap Step (xmax - xmin) / steps

fitm = -pi
Picture1.PSet (a, 180 * fitm / pi), RGB(0, 0, 255)
fite = 0
Picture1.PSet (a, 180 * fite / pi), RGB(255, 0, 0)

Next
For a = tetap To xmax - 0.000001 Step (xmax - xmin) / steps

fitm = 0
Picture1.PSet (a, 180 * fitm / pi), RGB(0, 0, 255)
fite = 0
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Picture1.PSet (a, 180 * fite / pi), RGB(255, 0, 0)
Next
GoTo 100

20 ’Hard incidence
tetac = Atn(n2 / (n1 ^ 2 - n2 ^ 2) ^ 0.5)
tetac = tetac * 180 / pi
For a = xmin + 0.00001 To tetap Step (xmax - xmin) / steps
fitm = -pi
Picture1.PSet (a, 180 * fitm / pi), RGB(0, 0, 255)
fite = 0
Picture1.PSet (a, 180 * fite / pi), RGB(255, 0, 0)

Next
For a = tetap To tetac - 0.000001 Step (xmax - xmin) / steps
fitm = 0
Picture1.PSet (a, 180 * fitm / pi), RGB(0, 0, 255)
fite = 0
Picture1.PSet (a, 180 * fite / pi), RGB(255, 0, 0)

Next
For a = tetac + 0.000001 To xmax - 0.0001 Step (xmax - xmin) /
steps tetai = a * pi / 180
cosenoti = (1 - Sin(tetai) ^ 2) ^ 0.5
senot = n1 * Sin(tetai) / n2
B = -(senot ^ 2 - 1) ^ 0.5
tanfitm = n1 * B / (n2 * cosenoti)
fitm = 2 * Atn(tanfitm)
Picture1.PSet (a, 180 * fitm / pi), RGB(0, 0, 255)
tanfite = n2 * B / (n1 * cosenoti)
fite = 2 * Atn(tanfite)
Picture1.PSet (a, 180 * fite / pi), RGB(255, 0, 0)

Next
100 END



Appendix 3
MARCATILI’S METHOD FOR
SOLVING GUIDED MODES IN

RECTANGULAR CHANNEL
WAVEGUIDES

The following sentences are the code for solving quasi-TE guided modes in rectangular
waveguides by the Marcatili’s method. The integers p% and q% denote the mode label,
and beta is the propagation constant of the mode.

First Subroutine
Picture1.Cls
pi = 4 * Atn(1)
n1 = Val(Text3.Text) 'Core refractive index (region I)
n2 = Val(Text4.Text) 'Refractive index of region II
n3 = Val(Text5.Text) 'Refractive index of region III
n4 = Val(Text6.Text) 'Refractive index of region IV
n5 = Val(Text7.Text) 'Refractive index of region V
lan = Val(Text8.Text) 'Wavelength
k = 2 * pi / lan
a = Val(Text9.Text) 'Channel dimension in x-direction
b = Val(Text10.Text) 'Channel dimension in y-direction
deltaa = 0.05
deltab = 0.05

Picture1.Scale (0, -10)-(n1, 10)
Picture1.Line (0, 0)-(n1, 0), 1
Picture1.Line (0, -10)-(n1, 10), 1, B
acum = 100
mx% = 0: my% = 0
For neff = 0.0000001 To n1 Step 0.00005
kxx = neff * k
g2p = ((n1 ^ 2 - n2 ^ 2) * k ^ 2 - kxx ^ 2)
If g2p < 0 Then GoTo 150
g2 = g2p ^ 0.5
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g3p = ((n1 ^ 2 - n3 ^ 2) * k ^ 2 - kxx ^ 2)
If g3p < 0 Then GoTo 150
g3 = g3p ^ 0.5
x = Tan(kxx * a)
y = (n1 ^ 2 * kxx * (n3 ^ 2 * g2 + n2 ^ 2 * g3)) /

(n3 ^ 2 * n2 ^ 2 * kxx ^ 2 - n1 ^ 4 * g2 * g3)
psi = (1 / kxx) * Atn(-kxx * n3 ^ 2 / (n1 ^ 2 * g3))
dif = x - y
If acum <= 0 And dif > 0 Then GoSub 100
acum = dif
Picture1.PSet (neff, dif), RGB(0, 0, 255)
Next neff
GoTo 150

100 kx(mx%) = kxx
fx(mx%) = psi
gx(mx%) = g2
hx(mx%) = g3

mx% = mx% + 1
Return

150
acum = 100
For neff = 0.0000001 To n1 Step 0.00005
kyy = neff * k
g4p = ((n1 ^ 2 - n4 ^ 2) * k ^ 2 - kyy ^ 2)
If g4p < 0 Then GoTo 300
g4 = g4p ^ 0.5
g5p = ((n1 ^ 2 - n5 ^ 2) * k ^ 2 - kyy ^ 2)
If g5p < 0 Then GoTo 300
g5 = g5p ^ 0.5
x = Tan(kyy * b)
y = (kyy * (g4 + g5)) / (kyy ^ 2 - g4 * g5)
eta = (1 / kyy) * Atn(-g5 / kyy)
dif = x - y
If acum <= 0 And dif > 0 Then GoSub 200
acum = dif
Picture1.PSet (neff, dif), RGB(255, 0, 0)
Next neff

GoTo 300

200 ky(my%) = kyy
fy(my%) = eta
gy(my%) = g4
hy(my%) = g5

my% = my% + 1
Return

300 'End of first calculation
Text11.Text = mx% - 1
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Text12.Text = my% - 1
Command5.Enabled = False

End Sub

Second Subroutine
'*********DRAW THE MODE *******

Command5.Enabled = False

p% = Val(Text1.Text)
q% = Val(Text2.Text)
psi = fx(p%)
kxx = kx(p%)
eta = fy(q%)
kyy = ky(q%)
beta = (n1 ^ 2 * k ^ 2 - (kxx ^ 2 + kyy ^ 2)) ^ 0.5
g2 = gx(p%): g3 = hx(p%)
g4 = gy(q%): g5 = hy(q%)
Picture2.Cls

neff = beta * lan / (2 * pi)
Text14.Text = neff
lonx = Val(Text13.Text) / 2
lony = Val(Text15.Text) / 2

Picture2.Scale (b / 2 - lony, -a / 2 + lonx)-(b / 2 + lony, a / 2 - lonx)

maximum = -1

'********* Region 1 (core) ********
prefactor = (n1 ^ 2 * k ^ 2 - kxx ^ 2) / (kxx * beta)
For x = -a To 0 Step deltaa
For y = 0 To b Step deltab
ex = prefactor * Sin(kxx * (x + psi)) * Cos(kyy * (y + eta))
If Abs(ex) > maximum Then maximum = Abs(ex)
Next y
Next x

'******* Region 2 ******
For x = -2 * a To -a Step deltaa
For y = 0 To b Step deltab
ex = (g2 ^ 2 + n2 ^ 2 * k ^ 2) / (g2 * beta) * Cos(kxx * (psi

- a)) * Cos(kyy * (y + eta)) * Exp(g2 * (x + a))
If Abs(ex) > maximum Then maximum = Abs(ex)
Next y
Next x

'******* Region 3 ******
For x = 0 To a Step deltaa
For y = 0 To b Step deltab
ex = -(g3 ^ 2 + n3 ^ 2 * k ^ 2) / (g3 * beta) * Cos(kxx * psi)

* Cos(kyy * (y + eta)) * Exp(-g3 * x)
If Abs(ex) > maximum Then maximum = Abs(ex)
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Next y
Next x

'******** Region 4 *******
For x = -a To 0 Step deltaa
For y = b To 2 * b Step deltab
ex = (n1 ^ 2/n4 ^ 2) * (n4 ^ 2 * k ^ 2-kxx ^ 2)/(kxx * beta) *

Cos(kyy * (b + eta)) * Sin(kxx * (x + psi)) * Exp(-g4 * (y - b))
If Abs(ex) > maximum Then maximum = Abs(ex)
Next y
Next x

'****** Region 5 *****
For x = -a To 0 Step deltaa
For y = -b To 0 Step deltab
ex = (n1 ^ 2/n5 ^ 2) * (n5 ^ 2 * k ^ 2 - kxx ^ 2) /

(kxx * beta) * Cos(kyy * eta) * Sin(kxx * (x + psi)) * Exp(g5 * y)
If Abs(ex) > maximum Then maximum = Abs(ex)
Next y
Next x

factor = 255 / maximum ^ 2
'******* Region 1 ******
For x = -a To 0 Step deltaa
For y = 0 To b Step deltab
ex = prefactor * Sin(kxx * (x + psi)) * Cos(kyy * (y + eta))
col = Int(factor * ex ^ 2)
Picture2.Line (y, x)-(y + deltab, x + deltaa), RGB(256 - col,

256 - col, 256 - col), BF
Next y
Next x

'******* Region 2 ******
For x = -2 * a To -a Step deltaa
For y = 0 To b Step deltab
ex = (g2 ^ 2 + n2 ^ 2 * k ^ 2) / (g2 * beta) * Cos(kxx * (psi

- a)) * Cos(kyy * (y + eta)) * Exp(g2 * (x + a))
col = Int(factor * ex ^ 2)
Picture2.Line (y, x)-(y + deltab, x + deltaa), RGB(256 - col,

256 - col, 256 - col), BF
Next y
Next x

'******* Region 3 ******
For x = 0 To a Step deltaa
For y = 0 To b Step deltab
ex = -(g3 ^ 2 + n3 ^ 2 * k ^ 2) / (g3 * beta) * Cos(kxx * psi)

* Cos(kyy * (y + eta)) * Exp(-g3 * x)
col = Int(factor * ex ^ 2)
Picture2.Line (y, x)-(y + deltab, x + deltaa), RGB(256 - col,

256 - col, 256 - col), BF
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Next y
Next x

'******** Region 4 *******
For x = -a To 0 Step deltaa
For y = b To 2 * b Step deltab
ex = (n1 ^ 2 / n4 ^ 2) * (n4 ^ 2 * k ^ 2 - kxx ^ 2) / (kxx * beta) *

Cos(kyy * (b + eta)) * Sin(kxx * (x + psi)) * Exp(-g4 * (y - b))
col = Int(factor * ex ^ 2)
Picture2.Line (y, x)-(y + deltab, x + deltaa), RGB(256 - col,

256 - col, 256 - col), BF
Next y
Next x

'****** Region 5 *****
For x = -a To 0 Step deltaa
For y = -b To 0 Step deltab
ex = (n1 ^ 2 / n5 ^ 2) * (n5 ^ 2 * k ^ 2 - kxx ^ 2)/(kxx *

beta) * Cos(kyy * eta) * Sin(kxx * (x + psi)) * Exp(g5 * y)
col = Int(factor * ex ^ 2)
Picture2.Line (y, x)-(y + deltab, x + deltaa), RGB(256 - col,

256 - col, 256 - col), BF
Next y
Next x

Picture2.Line (b, 0)-(0, -a), RGB(255, 0, 0), B

If Check1.Value = False Then GoTo 400
'Draw the GRID
Picture2.Line (b, 0)-(0, -a), RGB(255, 0, 0), B
For x = -20 To 20
Picture2.Line (x, -20)-(x, 20), 15
Next
For y = -20 To 20
Picture2.Line (-20, y)-(20, y), 15
Next

400
End Sub
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DEMONSTRATION OF

FORMULA (4.3)

Let us assume that two electromagnetic fields (E1,H1) and (E2,H2) are monochromatic
waves propagating along a structure characterised by its optical constants µ0 and ε.
These two fields satisfy Maxwell’s equations:

∇ × E1 = −iωµ0H1 (A.1)

∇ × H1 = iωεE1 (A.2)

∇ × E2 = −iωµ0H2 (A.3)

∇ × H2 = iωεE2 (A.4)

By combining the above equations, we form the following expression:

E∗
1(A.4)∗ − H2(A.1) − H∗

1(A.3) + E2(A.2)∗ (A.5)

After straightforward calculation we obtain:

E∗
1∇ × H2 − H2(∇ × E1)

∗ − H∗
1∇ × E2 + E2(∇ × H1)

∗

= E∗
1(iωεE2) − H2(−iωµ0H1)

∗ − H∗
1(−iωµ0H2) + E2(iωεE1)

∗ = 0 (A.6)

Now, taking into account the vectorial identity:

∇(A × B) ≡ B(∇ × A) − A(∇ × B) (A.7)

the equation (A.6) takes the final form:

∇(E1 × H∗
2 + E∗

2 × H1) = 0 (A.8)



Appendix 5
DERIVATION OF
FORMULA (4.4)

Let us assume that A(x, y, z) is a vectorial function that fulfils the condition:

∇A(x, y, z) = 0 (A.9)

We perform an integration of the function ∇A over the volume inside a cylinder
delimited by two circular surfaces perpendicular to the z-axis, as shown in Figure A.1,
by evaluating the expression: ∫∫∫

V

∇A dV (A.10)

Making use of the Gauss’ theorem, this integral can be converted into a surface
integral over the close surface that surrounds the volume V :

∫∫∫
V

(∇A) dV =
∫∫
©

S

A dS = 0 (A.11)

The close surface integral in (A.11) can be separated into three parts, corresponding
to the two perpendicular surfaces to the z-axis (S1 and S2), and the lateral surface of
the cylinder (S3):

∫∫
©

S

A dS =
∫

S1
A dS +

∫
S2

A dS +
∫

S3
A dS = 0 (A.12)

If the radius of the cylinder base tends to infinity (S1, S2 → ∞), and the cylinder
height is much smaller that the cylinder radius, the integral corresponding to the surface
S3 can be neglected, and therefore expression (A.12) simplifies to:

∫∫
©

S

A dS = −
∫

S1
Az(x, y, z) dx dy +

∫
S2

Az(x, y, z + �z) dx dy = 0 (A.13)

where Az indicates the longitudinal component of the vector A.
If the distance �z tends to zero (�z → dz), equation (A.13) can be converted in:

∫
S

∂

∂z
Az(x, y, z) dx dy = 0 (A.14)
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x

z

y

S1S2

S3

∆z

Figure A.1

Now, if the vectorial function A stands for the vectorial function:

A ≡ (E1 × H∗
2 + E∗

2 × H1) (A.15)

then the following equation is obtained:
∫

S

∂

∂z
[E1 × H∗

2 + E∗
2 × H1]z dx dy = 0 (A.16)



Appendix 6
FAST FOURIER ALGORITHM

Replaces Dat( ) by its discrete Fourier transform, if isign% is input as 1; or replaces
Dat( ) by nn% times its inverse discrete Fourier transform, if isign% is input as −1.
Dat( ) is a complex array of length nn% or, equivalently, a real array of length 2*nn%.
nn% must be an integer power of 2. This algorithm can be used to implement the
FFT-BPM program, based on (5.16)–(5.19) formulae.

Sub FFT()
‘**** SUBROUTINE FFT *****

Dim nn%, j%, i%, m%, mmax%, istep%
Dim tempr, tempi, wpr, wpi, wr, wi, wtemp
nn% = 2 * n%
j% = 1
For i% = 1 To nn% Step 2

If j% > i% Then
tempr = dat(j%) ‘Real part of Dat()
tempi = dat(j% + 1) ‘Imaginary part of Dat()
dat(j%) = dat(i%)
dat(j% + 1) = dat(i% + 1)
dat(i%) = tempr
dat(i% + 1) = tempi
End If
m% = nn% / 2

1000 if m% >= 2 And j% > m% Then
j% = j% - m%
m% = m% / 2
GoTo 1000
End If
j% = j% + m%

Next i%
mmax% = 2

2000 If nn% > mmax% Then
istep% = 2 * mmax%
teta = 2 * pi / (isign% * mmax%)
wpr = -2 * (Sin(teta / 2)) ^ 2
wpi = Sin(teta)
wr = 1
wi = 0
For m% = 1 To mmax% Step 2
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For i% = m% To nn% Step istep%
j% = i% + mmax%
tempr = wr * dat(j%) - wi * dat(j% + 1)
tempi = wr * dat(j% + 1) + wi * dat(j%)
dat(j%) = dat(i%) - tempr
dat(j% + 1) = dat(i% + 1) - tempi
dat(i%) = dat(i%) + tempr
dat(i% + 1) = dat(i% + 1) + tempi
Next i%
wtemp = wr
wr = wr * wpr - wi * wpi + wr
wi = wi * wpr + wtemp * wpi + wi

Next m%
mmax% = istep%

GoTo 2000
End If

End Sub

(Adapted from: W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numer-
ical Recipes in Fortran 77: The Art of Scientific Computing, Chapter 12. Cambridge
University Press, New York, 1996.)



Appendix 7
IMPLEMENTATION OF THE

CRANK-NICOLSON
PROPAGATION SCHEME

Implementation of the Crank-Nicolson propagation scheme using the Thomas Method
for solving the tridiagonal system described by equations (5.26) and (5.27).

The complex optical field u and other variables (a, b, c and r) are split in their real
and imaginary parts as:

u = u1 + iu2

a = a1 + ia2

b = b1 + ib2

c = c1 + ic2

r = r1 + ir2

i being the imaginary unity.
The following code solves a propagation step �z for the optical field u, using Dirich-

let boundary conditions if TBC% = 0 or transparent boundary conditions if TBC% = 1.
The integer n% denotes the number of discretisation points for the optical field.

Sub THOMAS()
Dim q%, s%, j%
Dim aa, bb, modulo, fi, aa2, bb2, a, bp1, bp2, be1, be2,

t1, t2
‘Transparent Boundary Condition for the right frontier
q% = 1
aa = (u1(n% - q%) * u1(n% - 1 - q%) + u2(n% - q%) *

u2(n% - 1 - q%)) / (u1(n% - 1 - q%) ^ 2 + u2(n% - 1 - q%) ^ 2)
bb = (u1(n% - q%) * u2(n% - 1 - q%) - u2(n% - q%) *

u1(n% - 1 - q%)) / (u1(n% - 1 - q%) ^ 2 + u2(n% - 1 - q%) ^ 2)
modulo = (aa ^ 2 + bb ^ 2) ^ 0.5
fi = -Atn(bb / aa)
aa = modulo * Cos(fi)
bb = modulo * Sin(fi)
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If bb > 0 Then aa = modulo: bb = 0
‘Transparent Boundary Condition for the left frontier
q% = 3: s% = q% - 1
aa2 = (u1(q%) * u1(s%) + u2(q%) * u2(s%)) /

(u1(s%) ^ 2 + u2(s%) ^ 2)
bb2 = (u1(q%) * u2(s%) - u2(q%) * u1(s%)) /

(u1(s%) ^ 2 + u2(s%) ^ 2)
modulo = (aa2 ^ 2 + bb2 ^ 2) ^ 0.5
fi = -Atn(bb2 / aa2)
aa2 = modulo * Cos(fi)
bb2 = modulo * Sin(fi)
If bb2 < 0 Then aa2 = modulo: bb2 = 0
‘Thomas Algorithm
a = dz / (2 * dx ^ 2)
a1(1) = 0: a2(1) = 0
b1(1) = aa2: b2(1) = bb2
c1(1) = -1: c2(1) = 0
a1(n%) = aa: a2(n%) = bb
b1(n%) = -1: b2(n%) = 0
c1(n%) = 0: c2(n%) = 0
r1(1) = 0: r2(1) = 0
r1(n%) = 0: r2(n%) = 0
For j% = 1 + TBC% To n% - TBC%

a1(j%) = -a * alfa: a2(j%) = 0
b1(j%) = 2 * a * alfa - (dz / 2) * alfa *

(ri(j%) ^ 2 - ri0 ^ 2) * k0 ^ 2
b2(j%) = k
c1(j%) = -a * alfa: c2(j%) = 0
bp1 = -2 * a * (1 - alfa) + (dz / 2) * (1 - alfa) *

(ri(j%) ^ 2 - ri0 ^ 2) * k0 ^ 2
bp2 = k
r1(j%) = a * (1 - alfa) * u1(j% - 1) + bp1 * u1(j%) -

bp2 * u2(j%) + a * (1 - alfa) * u1(j% + 1)
r2(j%) = a * (1 - alfa) * u2(j% - 1) + bp2 * u1(j%) +

bp1 * u2(j%) + a * (1 - alfa) * u2(j% + 1)
Next j%
be1 = b1(1): be2 = b2(1)
u1(1) = (r1(1) * be1 + r2(1) * be2) / (be1 ^ 2 + be2 ^ 2)
u2(1) = (r2(1) * be1 - r1(1) * be2) / (be1 ^ 2 + be2 ^ 2)
For j% = 2 To n% Step 1

g1(j%) = (c1(j% - 1) * be1 + c2(j% - 1) * be2) /
(be1 ^ 2 + be2 ^ 2)

g2(j%) = (c2(j% - 1) * be1 - c1(j% - 1) * be2) /
(be1 ^ 2 + be2 ^ 2)

be1 = b1(j%) - a1(j%) * g1(j%) + a2(j%) * g2(j%)
be2 = b2(j%) - a1(j%) * g2(j%) - a2(j%) * g1(j%)
If (be1 ^ 2 + be2 ^ 2) < 1E-20 Then End
t1 = r1(j%) - a1(j%) * u1(j% - 1) + a2(j%) *

u2(j% - 1)
t2 = r2(j%) - a1(j%) * u2(j% - 1) - a2(j%) *

u1(j% - 1)
u1(j%) = (t1 * be1 + t2 * be2) /
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(be1 ^ 2 + be2 ^ 2)
u2(j%) = (t2 * be1 - t1 * be2) /

(be1 ^ 2 + be2 ^ 2)
Next j%
For j% = n% - 1 To 1 Step -1

u1(j%) = u1(j%) - g1(j% + 1) * u1(j% + 1) +
g2(j% + 1) * u2(j% + 1)

u2(j%) = u2(j%) - g1(j% + 1) * u2(j% + 1) -
g2(j% + 1) * u1(j% + 1)

Next
End Sub



Appendix 8
LIST OF ABBREVIATIONS

AO Acousto-optic MBE Molecular beam epitaxy
AOTF Acousto-optic tuneable filter MMI Multi-mode interference
AWG Arrayed waveguide grating MOCVD Metal-organic chemical vapour
BPM Beam propagation method deposition
CATV Cable television MZI Mach-Zehnder interferometer
CMT Coupled mode theory OD Optical density
CVD Chemical vapour deposition OPO Optical parametric oscillator
DBR Distributed Bragg reflector OTDM Optical TDM
DFB Distributed feedback PBS Polarisation beam splitter
DWDM Dense WDM PHASAR Phase array
ECR Electron cyclotron resonance PLC Planar lightwave circuit
EIM Effective index method RF Radio frequency
EM Electromagnetic SAW Surface acoustic wave
EO Electro-optic TBC Transparent boundary condition
FD Finite differences TDM Time division multiplexing
FFT Fast Fourier transform TE Transverse electric
FHD Flame hydrolysis TEM Transversal electromagnetic

deposition TM Transverse magnetic
IWKB Inverse WKB TO Thermo-optic
LED Light emitting diode WDM Wavelength division multiplexing
LPE Liquid phase epitaxy WGR Waveguide grating router
LSC Luminescent solar WKB Wentzel-Kramers-Brillouin

concentrator (approximation)



Appendix 9
SOME USEFUL PHYSICAL

CONSTANTS

Quantity Symbol Value

Speed of light in vacuum c 3.00 × 108 m/s
Dielectric permittivity of the vacuum ε0 8.85 × 10−12 F/m
Magnetic permeability of the vacuum µ0 4π × 10−7 H/m
Planck’s constant h 6.63 × 10−34 Js
Boltzmann’s constant K 1.38 × 10−23 J/K
Stefan-Boltzmann’s constant σ 5.67 × 10−9 W/m2K4

Avogadro’s constant NA 6.02 × 1023 mol−1

Elementary charge e 1.60 × 10−19 C
Electron rest mass me 9.11 × 10−31 Kg
Proton rest mass mp 1.67 × 10−27 Kg
Gases constant R 8.31 J/K mol
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A
Absorbing medium 34–36
Absorption

index 34, 50
coefficient 36,50,147

Acoustooptic 9, 135
Asymmetric planar waveguide 55, 58, 59,

62, 63, 77, 132
Asymmetry measure 68
Angular frequency 29, 31,50
Anisotropic

directional coupler 15
medium 26, 105, 128
optical waveguides 134

Apodised grating 131
Attenuation

coefficient 75
vector 35, 49, 50, 70

AWG 11, 19

B
Backward difference 142, 143
Bandwidth 4, 5, 6, 9, 58
Beam propagation

method 22, 136, 138
equation 148

Boundary
condition 37–40, 64, 65, 67, 75, 88, 126,

146
reflection 147

Bragg
condition 16, 123, 124
grating 18, 135
reflection 54
reflector 121, 134

Brewster’s angle 43, 47
Buffer layer 12

Buried
channel waveguide 56, 84, 85
waveguide 57, 83, 84, 89

C
Canonical structure 101, 102, 105–107,

122
Canonical mode 101
Circularly polarised 34
Cladding 7, 8, 57, 84
CMT 98, 102, 111–115
Co-directional coupling 124, 125, 126
Complex amplitude 29–31, 38, 62, 99, 103,

137, 153
Complex notation 29, 38
Complex Poynting vector 30
Complex refractive index 24, 34, 35, 75
Complex wavevector 35, 49
Constitutive relations 26, 37, 41, 61, 105
Collinear 109, 110

coupling 116, 124
modes 121, 124

Contra-directional coupling 116, 125,
130

Correlation function 154, 156
method 153, 157

Corrugated grating 122, 133
Coupling

efficiency 126
coefficient 98, 102, 114–133
length 114, 115, 116, 121, 125, 127
modal equation 104, 123, 124
order 123, 124, 132, 133

Coupled mode theory 22, 105, 106, 107
Crank-Nicolson scheme 142–144, 148,

149
Critical angle 47, 48, 50, 52, 53, 58, 59
Cut-off 71, 79, 85, 87, 91, 96, 129, 130
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D
Degree

of synchronism 110, 114, 117
of transfer 114

Dielectric constant 28, 50, 64
Dielectric

permittivity 25, 26, 34, 36, 99, 102, 105
tensor 105, 106, 128

Differential coupled equation 26, 124
Diffraction grating 22, 98, 121, 122, 124,

131–133
Dirac delta function 100
Dirichlet boundary condition 147
Dispersion relation 67, 69, 70
Dye 53

E
Effective-index 75, 80, 82, 92–96

function 81–83
method 52, 61, 84, 91–97, 135, 142
profile 92–95

Effective refractive index 65–68, 71–77,
80, 93, 94, 112, 113, 129, 130

Efficiency 119–121, 125–127, 149, 150
EIM 91–93
Electric field distribution 60, 77, 150
Electromagnetic wave 9, 14, 24–31, 55, 59,

60, 96, 99, 104, 136
Electrooptic 2–4, 9, 11–13, 17, 18, 75, 84,

122, 128, 135
Elliptically polarised 34
Evanescent wave 16, 49, 50, 70, 72, 76,

140
Expansion coefficient 101

F
FD-BPM 138, 142–160
FFT 141, 146, 147
FFT-BPM 138
Field amplitude 9, 40–45, 62–65
Field diffractor operator 139
Filtering techniques 136, 150–153
Finite difference scheme 138, 141, 142
Forward difference 142
Fourier

coefficient 123
expansion 122
transform 136–144, 153–156

Frequency 29
conversion 12
converter 9, 18, 21

doubling 18
shifter 16, 18

Fresnel equation 136–138

G
GaAs 5, 10–13, 28, 43, 83
Generalised dielectric permittivity 36
Graded index

waveguides 55, 73–76
fiber 57, 161
profile 73, 75–79

Grating 1, 15, 16, 98, 121–128

H
Hard incidence 47
Helmholtz equation 24, 30–36, 136–138
Homogeneous medium 26, 37–39, 55, 61,

66, 74, 139–141, 146, 147, 150
Homogeneous wave 35

I
Incident plane 37–40, 44, 47, 62, 63
Index modulation index grating 122, 130
Inhomogeneous

medium 22, 30, 61, 138
structure 24
wave 35, 37, 40, 49, 70

Integrated optical
circuits 3, 7–12, 23
devices 5, 8–20

Integrated photonic devices 1–3
Intensity 29, 30, 36, 50

modulator 4, 16,17
Irradiance 29
Isotropic medium 26, 38, 61, 105, 106, 128

K
Kronecker’s delta 100, 154

L
Leaky mode 71, 72
Law of reflection 39
LED 3, 8
Lens corrector operator 139, 140
LiNbO3 4, 12, 17, 19, 21, 23, 28, 43, 50, 97,

134, 135
Linear

medium 26, 61
combination 33, 112, 118, 142

Linearly polarised 33, 34, 40, 43, 46
Lithographic 4, 9, 10, 22, 57
Locally homogeneous Helmholtz equation

30
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Luminescence 18
Luminescent solar concentrator 53

M
Mach-Zehnder 16, 17
Magnetic permeability 25, 26, 28, 61
Marcatili’s method 61, 84–91
Micro-optics 8
Mismatching 110–131
Mismatch parameter 117, 124
MMI 14, 15
Modal

propagation constant 75, 91, 99
orthogonality relation 98–100, 129, 155

Mode
coupling 98–102
coupling equations 102–106
order 60, 68

Modulation index grating 128–134
Monomode waveguide 68, 111, 141
Multilayer approximation 73, 74–80
Multiplexing 5, 11, 19
Multimode waveguide 68, 80
MZI 17, 18

N
Neumann boundary condition 147
Neville’s algorithm 81
Non-linear Optics 2, 3, 18
Normal mode 99, 101, 107
Normalised

film thickness 68
mode index 68
parameters 68

O
Optical

chip 4, 9–11
communications 3, 5, 7
fibre 2, 4, 5, 7, 54–57
field 86, 93, 106–109, 137

Optics 1,2
Optoelectronics 2,3
Orthogonal 31, 40, 84, 98–100
Orthonormalisation 100

P
Parabolic approximation 138
Parallel incidence 40,41
Penetration depth 49, 79
Perfect phase-matching condition 110, 124
Period 29, 50

Periodic
boundary condition 147
perturbation 98, 117

PHASAR 19
Phase 29

matching condition 105, 110, 119, 120
mismatching 109
shift 45, 48, 59, 60, 77, 78
velocity 27, 32, 35

Photolithographic 10, 84, 122
Photonics 1–3
Photonic crystal 54
Planar lightwave circuits 5,7
Plane

wave 30–32
boundary 38, 45, 46, 48, 49

Polarising angle 43, 47
Power flux 100, 104

conservation 104
normalisation 100

Power exchange 108, 124
Poynting vector 29, 30, 42, 50
Propagation

constant 60, 62, 65, 66
mode 55, 60, 61

Q
Quantum Electronics 2,3
Quantum Optics 2,3
Quasi-

TE mode 84, 90, 91
TM mode 84, 86–90
synchronism 118

R
Radiation mode 58, 59, 62, 71–73, 100, 101
Reflectance 40–48
Reflection coefficient 41, 48
Refractive index 28, 31, 34, 35
Relief grating 122, 132, 133
Relative dielectric permittivity 28
Rib waveguide 56, 57, 83, 84
RIE 84

S
SAW 9, 16, 18–20
Scalar Helmholtz equation 142, 153
Self-coupling term 123, 124
SiO2 5, 11, 12, 28, 130
Snell’s law 40
Soft incidence 47
Spatial frequency 138, 140, 150–152
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Step-index waveguide 55–60
Stripe waveguide 56, 57, 84, 85
Substrate 7, 11–13, 55

mode 58, 67, 72
radiation mode 58, 59, 71, 72

Surface acoustic wave, see SAW
Symmetric planar waveguide 55
Synchronism 118

T
Tensor (see dielectric tensor)
TE

incidence 44–49
mode 62–71

TE-TE coupling 127, 129, 132
TE-TM

coupling 105, 128
converter 15, 18

Thomas method 144
TM

incidence 40–49
mode 62–65, 70, 71

TM-TM coupling 127, 129, 132
Total internal reflection 37, 47–50, 52–59
Transcendental equation 67, 68, 70, 88, 89,

91

Transmission
coefficient 40–50
law 39

Transmittance 40–50
Transparent boundary condition 148–150
Transversal resonance condition 60
Transverse

EM wave 31
magnetic incidence (see TM incidence)
electric incidence (see TE incidence)

Tridiagonal system 144
Turning point77, 78, 80, 82

W
WGR 19
Wave equation 25–27, 30, 61

for TE propagation 63
for TM propagation 64

Waveguide
diffraction grating (see waveguide grating)
grating 121–127

Wavelength 32, 50
Wavevector 31, 32
WDM 5, 11
Window function 150
WKB approximation 80–83




