
Version Z-2007.03 System Verilog User Guide
B
Troubleshooting and Problem Solving B

Troubleshooting and problem-solving guidelines are described in the
following sections:

• Reducing Simulation/Synthesis Mismatches

• Detecting Unintended Hardware and Empty Blocks

• Port Connection (.*) Reading Restriction

• Using do...while Loops

• Using the typedef Construct

• Reading Assertions in Synthesis

• Other Troubleshooting Guidelines
/ B-1HOME CONTENTS INDEX

Send comments on the documentation to Support at SolvNet Enter A Call.

http://solvnet.synopsys.com/EnterACall
http://solvnet.synopsys.com/EnterACall

Version Z-2007.03 System Verilog User Guide
Reducing Simulation/Synthesis Mismatches

The following sections discuss coding styles that might cause
synthesis/simulation mismatches:

• Tasks Inside an always_comb Block

• State Conversion: 2-State and 4-State

Tasks Inside an always_comb Block

The LRM does not define the behavior of tasks inside always_comb
blocks, but it does define the behavior for functions. To avoid a
simulation/synthesis mismatch, use void functions instead of tasks
inside always_comb blocks.

To understand why the mismatch can happen, consider what the
IEEE Std 1800-2005 says:

“always_comb is sensitive to changes within the contents of a
function, whereas always @* is only sensitive to changes to the
arguments of a function.”

Although the LRM does not say it is illegal to use tasks inside
always_comb blocks, it does not specify how always_comb blocks
should behave with tasks inside the sensitivity list. This could cause
a simulation and synthesis mismatch.

To illustrate this mismatch, consider the following:

• The code in Example B-1, which uses a task inside the
always_comb block
/ B-2HOME CONTENTS INDEX

Send comments on the documentation to Support at SolvNet Enter A Call.

http://solvnet.synopsys.com/EnterACall
http://solvnet.synopsys.com/EnterACall

Version Z-2007.03 System Verilog User Guide
• The accompanying testbench (Example B-2), GETCH netlist
(Example B-3), and simulation log (Example B-4)

Example B-1 RTL With Task In an always_comb Block
module comb1(input logic a, b ,c, output logic [1:0] y);

always_comb orf1(a);

function void orf1 (a);
y[0] = a | b | c;

endfunction

always_comb ort1 (a);

task ort1 (a);
y[1] = a | b | c;

endtask

endmodule

Example B-2 shows the testbench for Example B-1.
/ B-3HOME CONTENTS INDEX

Send comments on the documentation to Support at SolvNet Enter A Call.

http://solvnet.synopsys.com/EnterACall
http://solvnet.synopsys.com/EnterACall

Version Z-2007.03 System Verilog User Guide
Example B-2 Testbench for Design in Example B-1
module comb1_tb(output logic a, b, c);
initial
 begin
 a = 0; b = 0; c = 0;
 #10 a = 0; b = 0; c = 1;
 #10 a = 0; b = 1; c = 0;
 #10 a = 0; b = 1; c = 1;
 #10 a = 1; b = 0; c = 0;
 #10 a = 1; b = 0; c = 1;
 #10 a = 1; b = 1; c = 0;
 #10 a = 1; b = 1; c = 1;
 end
endmodule

module top;
wire a_w, b_w, c_w;
wire y1_w, y0_w ;

comb1 u1(a_w, b_w, c_w, {y1_w, y0_w});
comb1_tb u2(a_w, b_w, c_w);

initial
 begin
 $display("\t\tTime A B C Y1 Y0\n");
 $monitor($time,,,,a_w,,,,b_w,,,,c_w,,,,y1_w,,,,y0_w);
 end
endmodule

Example B-3 shows the GTECH netlist for Example B-1.

Example B-3 GTECH Netlist
module comb1 (a, b, c, y);
output [1:0] y;
input a, b, c;
 wire N0, N1;
 GTECH_OR2 C6 (.A(N0), .B(c), .Z(y[0]));
 GTECH_OR2 C7 (.A(a), .B(b), .Z(N0));
 GTECH_OR2 C8 (.A(N1), .B(c), .Z(y[1]));
 GTECH_OR2 C9 (.A(a), .B(b), .Z(N1));
endmodule

Example B-4 shows the simulation log for Example B-1.
/ B-4HOME CONTENTS INDEX

Send comments on the documentation to Support at SolvNet Enter A Call.

http://solvnet.synopsys.com/EnterACall
http://solvnet.synopsys.com/EnterACall

Version Z-2007.03 System Verilog User Guide
Example B-4 Simulation Log
SIMULATION RESULTS USING SUPERLOG:

453 lamb > sv comb1.sv comb1_tb.sv
Info: Start of SYSTEMSIM version 20021030.00 v2.2.1
Info: Incorporating SUPERLOG(tm) and CBlend(tm) technology.
Info: Copyright (C) 1998-2002 Synopsys, Inc. All rights reserved.
Info: Unpublished -- rights reserved under the copyright laws of the United
States.
Info: Oct 14, 2003 16:43:54 Reading the design...
Info: opening file comb1.sv
Info: opening file comb1_tb.sv
Info: Checking identifiers...
Info: Highest level modules:
Info: top
Info: Checking types...
Info: Oct 14, 2003 16:43:54 Elaborating the hierarchy...
Info: Oct 14, 2003 16:43:54 Starting simulation...
 Time A B C Y1 Y0

 0 0 0 0 0 0
 10 0 0 1 0 1
 20 0 1 0 0 1
 30 0 1 1 0 1
 40 1 0 0 1 1
 50 1 0 1 1 1
 60 1 1 0 1 1
 70 1 1 1 1 1
Info: Oct 14, 2003 16:43:54 End of simulation at 70 (event queue empty).
Info: Pre-Simulation Time User: 0.04 seconds System: 0.08 seconds
Info: Simulation Time User: 0.00 seconds System: 0.00 seconds
Info: End of SYSTEMSIM version 20021030.00 v2.2.1

In synthesis, the tool produces four 2-input OR gates, as shown in
Example B-3. The outputs y[0] and y[1] are both outputs of 2-input
OR gates. The simulation log (Example B-4), shows

• y[0] going to 1 when any of the inputs is 1, which is correct. Note
that y[0] is the output from the void function call orf1.
/ B-5HOME CONTENTS INDEX

Send comments on the documentation to Support at SolvNet Enter A Call.

http://solvnet.synopsys.com/EnterACall
http://solvnet.synopsys.com/EnterACall

Version Z-2007.03 System Verilog User Guide
• y[1] going to 1 only when input A goes to 1, and it is not sensitive
to the changes of B and C. This is incorrect behavior that occurs
because y[1] is the output of task ort1 inside an always_comb
block.

This situation results in a simulation/synthesis mismatch, and the
synthesis tool issues the following VER-520 warning to indicate that
a task is used inside an always_comb block:

Compiling source file /remote/cae726/sv/doc/
sim_synth_mismatch/comb1.sv
Warning: /remote/cae726/sv/doc/sim_synth_mismatch/
comb1.sv:10: Task enable in always_comb block. (VER-520)

To avoid this simulation/synthesis mismatch, use void functions
inside always_comb blocks, as shown in Example B-5, and do not
use tasks.

Example B-5 Recommended Coding Style
module comb1(input logic a, b ,c, output logic [1:0] y);

always_comb orf1(a);

function void orf1 (a);
y[0] = a | b | c;
y[1] = a | b | c;

endfunction

endmodule

State Conversion: 2-State and 4-State

The tool treats 2-state variables the same as 4-state variables. (See
Appendix D, “Unsupported Constructs.”) Therefore a simulation/
synthesis mismatch can occur when you convert from 4-state to
2-state or from 2-state to 4-state. The simulation tool considers an
“x” value as a “don’t know” value, whereas the synthesis tool
considers an “x” value as a “don’t care” value.
/ B-6HOME CONTENTS INDEX

Send comments on the documentation to Support at SolvNet Enter A Call.

http://solvnet.synopsys.com/EnterACall
http://solvnet.synopsys.com/EnterACall

Version Z-2007.03 System Verilog User Guide
In Example B-6, “a” is an input of logic type (4-state) making a
continuous assignment to “b” which is bit type (2-state). The
testbench drives “a” through the variable “a_driver” which is also
logic type but is uninitialized at time 0. Therefore for simulation, this
is a “don’t know” situation, as shown in the simulation log in
Example B-7.

Because we have the statement, assign b = a, and b is bit type, its
default value is 0 (if uninitialized), and therefore the simulation log
has A = x and B = 0 at time 0.

The tool does not issue warnings for these situations. To avoid this
simulation/synthesis mismatch, use only 2-state or only 4-state
variables and avoid such conversions.

Example B-6 RTL

module logic_bit_test(input logic a, output bit b);

assign b = a;
endmodule

module logic_bit_testbench(output logic a_driver);
initial begin // no intial value

#10 a_driver = ’1;
#10 a_driver = ’0;
#10 $finish;

end
endmodule

module top;
wire a_con, b_con;

logic_bit_test u1(a_con, b_con);
logic_bit_testbench u2(a_con);

initial
 begin

$display("\t\tTime A B\n");
$monitor($time,,,,a_con,,,,b_con);

 end
endmodule
/ B-7HOME CONTENTS INDEX

Send comments on the documentation to Support at SolvNet Enter A Call.

http://solvnet.synopsys.com/EnterACall
http://solvnet.synopsys.com/EnterACall

Version Z-2007.03 System Verilog User Guide
Example B-7 Simulation Log

SIMULATION RESULTS USING SUPERLOG ---

654 lamb > sv logic_bit_test.sv
Info: Start of SYSTEMSIM version 20021030.00 v2.2.1
Info: Incorporating SUPERLOG(tm) and CBlend(tm) technology.
Info: Copyright (C) 1998-2002 Synopsys, Inc. All rights reserved.
Info: Unpublished -- rights reserved under the copyright laws of the United
States.
Info: Oct 27, 2003 09:25:45 Reading the design...
Info: opening file logic_bit_test.sv
Info: Checking identifiers...
Info: Highest level modules:
Info: top
Info: Checking types...
Info: Oct 27, 2003 09:25:45 Elaborating the hierarchy...
Info: Oct 27, 2003 09:25:45 Starting simulation...
 Time A B

 0 x 0
 10 1 1
 20 0 0
Info: logic_bit_test.sv:9 $finish encountered
Info: Oct 27, 2003 09:25:45 End of simulation at 30 (explicit finish).
Info: Pre-Simulation Time User: 0.03 seconds System: 0.03 seconds
Info: Simulation Time User: 0.00 seconds System: 0.00 seconds

Info: End of SYSTEMSIM version 20021030.00 v2.2.1

Detecting Unintended Hardware and Empty Blocks

When you use the always_ff, always_latch, and always_comb
constructs, the tool expects certain hardware. If the expected
hardware is not inferred, or if the block might be removed during
compile, the tool generates a warning message. For details, see

• “Using always_comb and Inferring a Register” on page 3-3

• “Using always_comb with Empty Blocks” on page 3-5
/ B-8HOME CONTENTS INDEX

Send comments on the documentation to Support at SolvNet Enter A Call.

http://solvnet.synopsys.com/EnterACall
http://solvnet.synopsys.com/EnterACall

Version Z-2007.03 System Verilog User Guide
• “Using always_latch and Not Inferring a Sequential Device” on
page 4-4

• “Using always_latch With Empty Blocks” on page 4-5

• “Using always_ff and Not Inferring a Sequential Device” on
page 4-7

• “Using always_ff With Empty Blocks” on page 4-8

Port Connection (.*) Reading Restriction

When using the .* port connection style, you must analyze all the
lower-level modules before elaborating the top-level module;
otherwise the tool gives an ELAB-397 error message.

To understand this, consider the following two files:

// top.sv has the following code:

module top(input logic in, output logic out);
bottom b1(.*);
endmodule

// bottom.sv has the following code:

module bottom(input logic in, output logic out);
assign out = in;
endmodule

If you analyze the top-level module and elaborate the top design
without analyzing the bottom, as in the following script:

analyze -f sverilog top.sv
elaborate top
compile
write -f verilog -h -o gates.sverilog.v
quit
/ B-9HOME CONTENTS INDEX

Send comments on the documentation to Support at SolvNet Enter A Call.

http://solvnet.synopsys.com/EnterACall
http://solvnet.synopsys.com/EnterACall

Version Z-2007.03 System Verilog User Guide
you will see the following error:

Error: ./top.sv:2: The module or interface ‘bottom’ needs to be analyzed.
(ELAB-397)

To prevent this error, you can do these workarounds:

1. Modify the script to analyze the bottom module before you
elaborate the top.

analyze -f sverilog {bottom.sv top.sv}
elaborate top
compile
write -f verilog -h -o gates.sverilog.v
quit

2. Provide a placeholder bottom module in the same file as top.sv,
such as

module bottom(input logic in, output logic out);
// this is a placeholder module that contains port names but no content
endmodule

Using do...while Loops

A do....while loop is synthesizable if the exit condition is
deterministic. The tool does not handle unknown initial values in
loops when the number of iterations can still be bounded. However,
the simulator tool, VCS, does not have this restriction. For example,
Example B-8 is synthesizable; Example B-9 is not. In Example B-9,
the exit condition "x" is an unknown initial value; therefore the tool
reports an ELAB-900 error.
/ B-10HOME CONTENTS INDEX

Send comments on the documentation to Support at SolvNet Enter A Call.

http://solvnet.synopsys.com/EnterACall
http://solvnet.synopsys.com/EnterACall

Version Z-2007.03 System Verilog User Guide
Example B-8
 module do_while_test2(input logic [3:0] count1, output logic [3:0] z);

reg [3:0] x, count;

always_comb
 begin

 x = 4’d2;
count = count1;

do
begin

count++;
x++;

end
while(x < 4’d15);

 z = count;

 end

 endmodule

Example B-9
module do_while_test2(input logic [3:0] count1, count, x, output logic[3:0] z);

always_comb
begin
count = count1;
do
 begin

 count++;
 x++;

 end
 while(x < 4’d15);

 z = count;

end

 endmodule
/ B-11HOME CONTENTS INDEX

Send comments on the documentation to Support at SolvNet Enter A Call.

http://solvnet.synopsys.com/EnterACall
http://solvnet.synopsys.com/EnterACall

Version Z-2007.03 System Verilog User Guide
Using the typedef Construct

You need to define typedef before using it, as shown in
Example B-10.

Example B-10
For example, allowed.sv is allowed; not_allowed.sv is not allowed.

 allowed.sv
 ==========

 typedef logic mytype;

 module allowed(input logic clock, input mytype in, output mytype out);
always_ff@(posedge clock)

out = in;
 endmodule

 not_allowed.sv
 ==============

 module not_allowed(input logic clock, input mytype in, output mytype out);

always_ff@(posedge clock)
out <= in;

 endmodule

 typedef logic mytype;

Reading Assertions in Synthesis

The following SystemVerilog keywords are parsed and ignored:
assert, assume (VCS, the simulation tool, may not support this
keyword at this time), before, bind, bins, binsof, class, clocking,
constraint, cover, coverpoint, covergroup, cross, endclass,
endclocking, endgroup, endpackage, endprogram, endproperty,
endsequence, extends, final, first_match, intersect, ignore_bins,
/ B-12HOME CONTENTS INDEX

Send comments on the documentation to Support at SolvNet Enter A Call.

http://solvnet.synopsys.com/EnterACall
http://solvnet.synopsys.com/EnterACall

Version Z-2007.03 System Verilog User Guide
illegal_bins, local, package, program, property, protected,
sequence, super, this, var, throughout, within. If an assertion-related
keyword is not parsed and ignored, it is considered to be
unsupported. For these unsupported keywords, see “Unsupported
Constructs” in Appendix D.

Example B-11 shows how the synthesis tool parses and ignores the
“assert” keyword. The example correctly infers a flip-flop, as shown
in the inference report in Example B-12.

Example B-11
 module dff_with_imm_assert(input DATA, CLK, RESET, output logic Q);
 //synopsys sync_set_reset "RESET"

 always_ff @(posedge CLK)
if (~RESET)

begin
 Q <= 1’b0;

assert (Q == 1’b0)
$display("%m PASS:Flip Flop got reset");
else
$display("%m FAIL:Flip Flop got reset");

end
else

 Q <= DATA;

 endmodule

Example B-12 Inference Report
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Flip-flop | 1 | N | N | N | N | Y | N | N |
===
Presto compilation completed successfully.
/ B-13HOME CONTENTS INDEX

Send comments on the documentation to Support at SolvNet Enter A Call.

http://solvnet.synopsys.com/EnterACall
http://solvnet.synopsys.com/EnterACall

Version Z-2007.03 System Verilog User Guide
Other Troubleshooting Guidelines

• For unsupported SystemVerilog constructs, see “Unsupported
Constructs” in Appendix D.

• If you are having problems with $unit, make sure you are
following the coding guidelines in Chapter 2, “Global Name
Space ($unit).

• If you are having problems with interfaces, make sure you are
following the coding guidelines in Chapter 6, “Interfaces.

• Regarding casting, the use of nonvoid function calls as
statements is supported but generates a warning.

• In some cases, the tool does not correctly rename the output.
See “Renaming Example 3” on page 6-36.

• If your design contains interfaces, you cannot use the elaborate
command to instantiate a parameterized design. See “Reading
SystemVerilog Files” on page 1-7.

• If your design uses checker libraries, see “Reading Designs With
Assertion Checker Libraries” on page 1-10.

• Generally, all the restrictions for HDL Compiler (Presto Verilog)
apply to the SystemVerilog tool. For details, see the HDL
Compiler (Presto Verilog) Reference Manual.
/ B-14HOME CONTENTS INDEX

Send comments on the documentation to Support at SolvNet Enter A Call.

http://solvnet.synopsys.com/EnterACall
http://solvnet.synopsys.com/EnterACall

	Troubleshooting and Problem Solving
	Reducing Simulation/Synthesis Mismatches
	Tasks Inside an always_comb Block
	State Conversion: 2-State and 4-State

	Detecting Unintended Hardware and Empty Blocks
	Port Connection (.*) Reading Restriction
	Using do...while Loops
	Using the typedef Construct
	Reading Assertions in Synthesis
	Other Troubleshooting Guidelines

