A 35 mW 8 b 8.8 GS/s SAR ADC with Low-Power Capacitive Reference Buffers in 32 nm Digital SOI CMOS

Lukas Kull^{1,2}, Thomas Toifl¹, Martin Schmatz¹, Pier Andrea Francese¹, Christian Menolfi¹, Matthias Braendli¹, Marcel Kossel¹, Thomas Morf¹, Toke Meyer Andersen¹, Yusuf Leblebici²

¹ IBM Research – Zurich, Rueschlikon, Switzerland ² EPFL, Lausanne, Switzerland

Abstract

An asynchronous $8 \times$ interleaved redundant SAR ADC achieving $8.8 \, \text{GS/s}$ at $35 \, \text{mW}$ and $1 \, \text{V}$ supply is presented. The ADC features pass-gate selection clocking scheme for time-skew minimization and per-channel gain control based on low-power reference voltage buffers. The sub-ADC stacks the capacitive SAR DAC (CDAC) with the reference capacitor to reduce the area and enhance the settling speed. It achieves $38.5 \, \text{dB}$ SNDR and $58 \, \text{fJ/conversion-step}$ with a core chip area of $0.025 \, \text{mm}^2$ in $32 \, \text{nm}$ CMOS SOI technology.

Introduction

Next-generation high-speed links will require power- and area-optimized ADCs with more resolution than flash ADCs can provide to address higher order signal demodulation. SAR ADCs are very attractive for power-efficient converters and offer an excellent topology for deep submicron digital CMOS processes as no operational amplifiers are required. Only very few designs have explored the range above 4 GS/s.

The design presented here requires no input buffer, features a low-power voltage reference buffer with individual gain-control of each sub-ADC with a fine-grain, robust R-3R ladder [1] and a low-skew clock-generation scheme.

ADC Architecture

The ADC runs at 8.8 GS/s and is based on interleaving 8 SAR ADCs with alternating comparators for enhanced speed [2]. The SAR conversion is redundant with an optimized CDAC as shown in Fig. 1a, which relaxes the settling-time requirement from > 99% to 94%. The CDAC is based on a custom metal structure in the lower metals and placed on top of the reference deep-trench (DT)/DRAM capacitors, *Cref*, to save chip area and optimize settling speed, see Fig. 1b. The high CDAC settling speed is based on the large 80 pF *Cref* and a low-ohmic connection from CDAC to *Cref*.

Each sub-ADC receives its own master reference voltage, which is digitally set by a minimum-size 11b R-3R ladder, assuring a step size of < 0.1% *Vref* without missing codes, see Fig. 2. The calibration algorithm is external and based on an 11-step binary search from MSB to LSB to set the on-chip R-3R ladders. The master reference voltage *Vmaster* is buffered with a clocked comparator circuit to recharge *Cref*. *Vmaster* is compared with *Vref* in each sub-ADC at the end of the SAR cycle, and charge is added to *Cref* if necessary. Using a simple resistive divider instead of the circuit in Fig. 2

Fig. 3. Clock distribution.

would result in *Vref* being dependent on the input signal and sensitive to temperature variations.

The low input capacitance of 128 fF per side in the sub-SAR ADC, a short tracking window of 1/8 period and a small number of sub-ADCs enable a low input capacitance and therefore render an input buffer unnecessary. In addition, a very small sub-ADC design ensures a short routing distance to keep the parasitic resistance and capacitance small and wire mismatch in the data and clock lines negligible.

The clocking circuit in Fig. 3 is optimized for low skew by using only one 4.4 GHz clock c^2 and its inverted signal $\overline{c^2}$ to sample the signal. Pass gates controlled by clocks c^4 and c^8 are used to enable one ADC at a time. The edge tolerance serves to reduce the number of c^8 clocks required. Skew control based on current starved inverters allows clocks ck and \overline{ck} to be shifted by up to 3.5 ps in steps of < 250 fs. The layout of the data input and of the c^2 clocks is strictly symmetrical and shielded to match the capacitance, resistance and inductance of each branch.

Measurement Results and Conclusions

The ADC nominal full-scale input is $500 \text{ mV}_{\text{pp,diff}}$. The *Vmaster* tuning range is 250-500 mV and is nominally set to 380 mV. The ADC operates from a single 1V supply, but tolerates a supply range from 0.8 to 1.2V. The measured to-tal power consumption of 35 mW at 1V and 8.8 GS/s consists of 6 mW for clock generation and 29 mW for the 8 sub-ADCs.

Figure 4 plots ENOB vs. input frequency at 8GS/s sampling frequency. ENOB is limited by thermal noise. The skew compensation was not tuned for flat ENOB. The amplitude vs. input frequency plot in Fig. 4 shows a 3dB bandwidth of 4.2GHz. All 3 samples are from a typical process corner.

Figure 5 gives the spectrum of a typical sample at 3.81 GHz input frequency achieving 48.7 dB SFDR with the input amplitude set to reach -1 dBFS.

The measured DNL is below 0.71LSB and INL below 0.88LSB, see Fig. 6, i.e. very similar to DNL/INL of a single SAR ADC [2]. INL exhibits a small systematic mismatch resulting from the layout of the CDAC for the MSB and the MSB-1 capacitors. Table I compares the performance of ADCs [3, 4, 5]. A FOM of 58fJ/conversion-step is found at 1.0V supply and 8.8GS/s based on ENOB at low frequency. The sampling frequency is above 10GS/s at 1.1V supply for all measured samples. The ADC was manufactured in a 32nm SOI CMOS process with a core area of $130 \,\mu\text{m} \times 195 \,\mu\text{m}$, see Fig. 7. In summary, the design presented has a $28 \times$ smaller FOM, a $12 \times$ smaller area and $9 \times$ smaller power consumption than previously reported 6b+, ≥ 4 GS/s CMOS ADCs [6].

			-		
Specifications	[3]	[4]	[5]	This work	
Architecture	Flash	Ti-Pipeline	Ti-Flash	Ti-SAR	
CMOS Technology (nm)	65	90	65	32	
Resolution (bits)	6	6	6	8	
Supply Voltage (V)	1.3	-	1.5	1.0	1.1
SNDR (dB)	32	36.6	30.8	38.5	38.5
Sampling Speed (GHz)	5	10.3	16	8.8	10
Number of Channels	1	8	8	8	
Power (mW)	320	1600	435	35	49
FOM (fJ/conv. step)	1970	2790	2600	58	71
Area (mm²)	0.3	-	1.47	0.025	

References

- [1] M. Pastre, and M. Kayal, *Methodology for the Digital Calibration of Analog Circuits and Systems*, Springer, 2006.
- [2] L. Kull, T. Toifl, M. Schmatz, et. al., "A 3.1mW 8b 1.2GS/s singlechannel asynchronous SAR ADC with alternate comparators for enhanced speed in 32nm digital SOI CMOS," *ISSCC. Dig. Tech. Papers*, Feb. 2013, in press.
- [3] M. Choi, Jungeun Lee, Jungho Lee, and H. Son, "A 6-bit 5-GSample/s Nyquist A/D converter in 65nm CMOS," *IEEE Symposium on VLSI Circuits*, pp. 16-17, June 2008.
- [4] A. Nazemi, C. Grace, L. Lewyn, et. al., "A 10.3GS/s 6bit (5.1 ENOB at Nyquist) time-interleaved/pipelined ADC using open-loop amplifiers and digital calibration in 90nm CMOS," *IEEE Symposium on VLSI Circuits*, pp. 18-19, June 2008.
- [5] C.-C. Huang, C.-Y. Wang, and J.-T. Wu, "A CMOS 6-Bit 16-GS/s time-interleaved ADC using digital background calibration techniques," *IEEE J. Solid-State Circuits*, vol. 46, no. 4, pp. 848-858, Apr. 2011.
- [6] B. Murmann, "ADC performance survey 1997-2012," [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html.